hash
stringlengths
64
64
content
stringlengths
0
1.51M
b582b2d844854ec360e01daa9dd191bb36ca7cc84314531e37a6cc096362f6d0
from sympy import (sin, cos, atan2, log, exp, gamma, conjugate, sqrt, factorial, Integral, Piecewise, Add, diff, symbols, S, Float, Dummy, Eq, Range, Catalan, EulerGamma, E, GoldenRatio, I, pi, Function, Rational, Integer, Lambda, sign, Mod) from sympy.codegen import For, Assignment, aug_assign from sympy.codegen.ast import Declaration, Type, Variable, float32, float64, value_const, real, bool_, While from sympy.core.relational import Relational from sympy.logic.boolalg import And, Or, Not, Equivalent, Xor from sympy.printing.fcode import fcode, FCodePrinter from sympy.tensor import IndexedBase, Idx from sympy.utilities.lambdify import implemented_function from sympy.utilities.pytest import raises from sympy.core.compatibility import range from sympy.matrices import Matrix, MatrixSymbol def test_printmethod(): x = symbols('x') class nint(Function): def _fcode(self, printer): return "nint(%s)" % printer._print(self.args[0]) assert fcode(nint(x)) == " nint(x)" def test_fcode_sign(): #issue 12267 x=symbols('x') y=symbols('y', integer=True) z=symbols('z', complex=True) assert fcode(sign(x), standard=95, source_format='free') == "merge(0d0, dsign(1d0, x), x == 0d0)" assert fcode(sign(y), standard=95, source_format='free') == "merge(0, isign(1, y), y == 0)" assert fcode(sign(z), standard=95, source_format='free') == "merge(cmplx(0d0, 0d0), z/abs(z), abs(z) == 0d0)" raises(NotImplementedError, lambda: fcode(sign(x))) def test_fcode_Pow(): x, y = symbols('x,y') n = symbols('n', integer=True) assert fcode(x**3) == " x**3" assert fcode(x**(y**3)) == " x**(y**3)" assert fcode(1/(sin(x)*3.5)**(x - y**x)/(x**2 + y)) == \ " (3.5d0*sin(x))**(-x + y**x)/(x**2 + y)" assert fcode(sqrt(x)) == ' sqrt(x)' assert fcode(sqrt(n)) == ' sqrt(dble(n))' assert fcode(x**0.5) == ' sqrt(x)' assert fcode(sqrt(x)) == ' sqrt(x)' assert fcode(sqrt(10)) == ' sqrt(10.0d0)' assert fcode(x**-1.0) == ' 1d0/x' assert fcode(x**-2.0, 'y', source_format='free') == 'y = x**(-2.0d0)' # 2823 assert fcode(x**Rational(3, 7)) == ' x**(3.0d0/7.0d0)' def test_fcode_Rational(): x = symbols('x') assert fcode(Rational(3, 7)) == " 3.0d0/7.0d0" assert fcode(Rational(18, 9)) == " 2" assert fcode(Rational(3, -7)) == " -3.0d0/7.0d0" assert fcode(Rational(-3, -7)) == " 3.0d0/7.0d0" assert fcode(x + Rational(3, 7)) == " x + 3.0d0/7.0d0" assert fcode(Rational(3, 7)*x) == " (3.0d0/7.0d0)*x" def test_fcode_Integer(): assert fcode(Integer(67)) == " 67" assert fcode(Integer(-1)) == " -1" def test_fcode_Float(): assert fcode(Float(42.0)) == " 42.0000000000000d0" assert fcode(Float(-1e20)) == " -1.00000000000000d+20" def test_fcode_functions(): x, y = symbols('x,y') assert fcode(sin(x) ** cos(y)) == " sin(x)**cos(y)" raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=66)) raises(NotImplementedError, lambda: fcode(x % y, standard=66)) raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=77)) raises(NotImplementedError, lambda: fcode(x % y, standard=77)) for standard in [90, 95, 2003, 2008]: assert fcode(Mod(x, y), standard=standard) == " modulo(x, y)" assert fcode(x % y, standard=standard) == " modulo(x, y)" def test_case(): ob = FCodePrinter() x,x_,x__,y,X,X_,Y = symbols('x,x_,x__,y,X,X_,Y') assert fcode(exp(x_) + sin(x*y) + cos(X*Y)) == \ ' exp(x_) + sin(x*y) + cos(X__*Y_)' assert fcode(exp(x__) + 2*x*Y*X_**Rational(7, 2)) == \ ' 2*X_**(7.0d0/2.0d0)*Y*x + exp(x__)' assert fcode(exp(x_) + sin(x*y) + cos(X*Y), name_mangling=False) == \ ' exp(x_) + sin(x*y) + cos(X*Y)' assert fcode(x - cos(X), name_mangling=False) == ' x - cos(X)' assert ob.doprint(X*sin(x) + x_, assign_to='me') == ' me = X*sin(x_) + x__' assert ob.doprint(X*sin(x), assign_to='mu') == ' mu = X*sin(x_)' assert ob.doprint(x_, assign_to='ad') == ' ad = x__' n, m = symbols('n,m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) I = Idx('I', n) assert fcode(A[i, I]*x[I], assign_to=y[i], source_format='free') == ( "do i = 1, m\n" " y(i) = 0\n" "end do\n" "do i = 1, m\n" " do I_ = 1, n\n" " y(i) = A(i, I_)*x(I_) + y(i)\n" " end do\n" "end do" ) #issue 6814 def test_fcode_functions_with_integers(): x= symbols('x') log10_17 = log(10).evalf(17) loglog10_17 = '0.8340324452479558d0' assert fcode(x * log(10)) == " x*%sd0" % log10_17 assert fcode(x * log(10)) == " x*%sd0" % log10_17 assert fcode(x * log(S(10))) == " x*%sd0" % log10_17 assert fcode(log(S(10))) == " %sd0" % log10_17 assert fcode(exp(10)) == " %sd0" % exp(10).evalf(17) assert fcode(x * log(log(10))) == " x*%s" % loglog10_17 assert fcode(x * log(log(S(10)))) == " x*%s" % loglog10_17 def test_fcode_NumberSymbol(): prec = 17 p = FCodePrinter() assert fcode(Catalan) == ' parameter (Catalan = %sd0)\n Catalan' % Catalan.evalf(prec) assert fcode(EulerGamma) == ' parameter (EulerGamma = %sd0)\n EulerGamma' % EulerGamma.evalf(prec) assert fcode(E) == ' parameter (E = %sd0)\n E' % E.evalf(prec) assert fcode(GoldenRatio) == ' parameter (GoldenRatio = %sd0)\n GoldenRatio' % GoldenRatio.evalf(prec) assert fcode(pi) == ' parameter (pi = %sd0)\n pi' % pi.evalf(prec) assert fcode( pi, precision=5) == ' parameter (pi = %sd0)\n pi' % pi.evalf(5) assert fcode(Catalan, human=False) == (set( [(Catalan, p._print(Catalan.evalf(prec)))]), set([]), ' Catalan') assert fcode(EulerGamma, human=False) == (set([(EulerGamma, p._print( EulerGamma.evalf(prec)))]), set([]), ' EulerGamma') assert fcode(E, human=False) == ( set([(E, p._print(E.evalf(prec)))]), set([]), ' E') assert fcode(GoldenRatio, human=False) == (set([(GoldenRatio, p._print( GoldenRatio.evalf(prec)))]), set([]), ' GoldenRatio') assert fcode(pi, human=False) == ( set([(pi, p._print(pi.evalf(prec)))]), set([]), ' pi') assert fcode(pi, precision=5, human=False) == ( set([(pi, p._print(pi.evalf(5)))]), set([]), ' pi') def test_fcode_complex(): assert fcode(I) == " cmplx(0,1)" x = symbols('x') assert fcode(4*I) == " cmplx(0,4)" assert fcode(3 + 4*I) == " cmplx(3,4)" assert fcode(3 + 4*I + x) == " cmplx(3,4) + x" assert fcode(I*x) == " cmplx(0,1)*x" assert fcode(3 + 4*I - x) == " cmplx(3,4) - x" x = symbols('x', imaginary=True) assert fcode(5*x) == " 5*x" assert fcode(I*x) == " cmplx(0,1)*x" assert fcode(3 + x) == " x + 3" def test_implicit(): x, y = symbols('x,y') assert fcode(sin(x)) == " sin(x)" assert fcode(atan2(x, y)) == " atan2(x, y)" assert fcode(conjugate(x)) == " conjg(x)" def test_not_fortran(): x = symbols('x') g = Function('g') gamma_f = fcode(gamma(x)) assert gamma_f == "C Not supported in Fortran:\nC gamma\n gamma(x)" assert fcode(Integral(sin(x))) == "C Not supported in Fortran:\nC Integral\n Integral(sin(x), x)" assert fcode(g(x)) == "C Not supported in Fortran:\nC g\n g(x)" def test_user_functions(): x = symbols('x') assert fcode(sin(x), user_functions={"sin": "zsin"}) == " zsin(x)" x = symbols('x') assert fcode( gamma(x), user_functions={"gamma": "mygamma"}) == " mygamma(x)" g = Function('g') assert fcode(g(x), user_functions={"g": "great"}) == " great(x)" n = symbols('n', integer=True) assert fcode( factorial(n), user_functions={"factorial": "fct"}) == " fct(n)" def test_inline_function(): x = symbols('x') g = implemented_function('g', Lambda(x, 2*x)) assert fcode(g(x)) == " 2*x" g = implemented_function('g', Lambda(x, 2*pi/x)) assert fcode(g(x)) == ( " parameter (pi = %sd0)\n" " 2*pi/x" ) % pi.evalf(17) A = IndexedBase('A') i = Idx('i', symbols('n', integer=True)) g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) assert fcode(g(A[i]), assign_to=A[i]) == ( " do i = 1, n\n" " A(i) = (A(i) + 1)*(A(i) + 2)*A(i)\n" " end do" ) def test_assign_to(): x = symbols('x') assert fcode(sin(x), assign_to="s") == " s = sin(x)" def test_line_wrapping(): x, y = symbols('x,y') assert fcode(((x + y)**10).expand(), assign_to="var") == ( " var = x**10 + 10*x**9*y + 45*x**8*y**2 + 120*x**7*y**3 + 210*x**6*\n" " @ y**4 + 252*x**5*y**5 + 210*x**4*y**6 + 120*x**3*y**7 + 45*x**2*y\n" " @ **8 + 10*x*y**9 + y**10" ) e = [x**i for i in range(11)] assert fcode(Add(*e)) == ( " x**10 + x**9 + x**8 + x**7 + x**6 + x**5 + x**4 + x**3 + x**2 + x\n" " @ + 1" ) def test_fcode_precedence(): x, y = symbols("x y") assert fcode(And(x < y, y < x + 1), source_format="free") == \ "x < y .and. y < x + 1" assert fcode(Or(x < y, y < x + 1), source_format="free") == \ "x < y .or. y < x + 1" assert fcode(Xor(x < y, y < x + 1, evaluate=False), source_format="free") == "x < y .neqv. y < x + 1" assert fcode(Equivalent(x < y, y < x + 1), source_format="free") == \ "x < y .eqv. y < x + 1" def test_fcode_Logical(): x, y, z = symbols("x y z") # unary Not assert fcode(Not(x), source_format="free") == ".not. x" # binary And assert fcode(And(x, y), source_format="free") == "x .and. y" assert fcode(And(x, Not(y)), source_format="free") == "x .and. .not. y" assert fcode(And(Not(x), y), source_format="free") == "y .and. .not. x" assert fcode(And(Not(x), Not(y)), source_format="free") == \ ".not. x .and. .not. y" assert fcode(Not(And(x, y), evaluate=False), source_format="free") == \ ".not. (x .and. y)" # binary Or assert fcode(Or(x, y), source_format="free") == "x .or. y" assert fcode(Or(x, Not(y)), source_format="free") == "x .or. .not. y" assert fcode(Or(Not(x), y), source_format="free") == "y .or. .not. x" assert fcode(Or(Not(x), Not(y)), source_format="free") == \ ".not. x .or. .not. y" assert fcode(Not(Or(x, y), evaluate=False), source_format="free") == \ ".not. (x .or. y)" # mixed And/Or assert fcode(And(Or(y, z), x), source_format="free") == "x .and. (y .or. z)" assert fcode(And(Or(z, x), y), source_format="free") == "y .and. (x .or. z)" assert fcode(And(Or(x, y), z), source_format="free") == "z .and. (x .or. y)" assert fcode(Or(And(y, z), x), source_format="free") == "x .or. y .and. z" assert fcode(Or(And(z, x), y), source_format="free") == "y .or. x .and. z" assert fcode(Or(And(x, y), z), source_format="free") == "z .or. x .and. y" # trinary And assert fcode(And(x, y, z), source_format="free") == "x .and. y .and. z" assert fcode(And(x, y, Not(z)), source_format="free") == \ "x .and. y .and. .not. z" assert fcode(And(x, Not(y), z), source_format="free") == \ "x .and. z .and. .not. y" assert fcode(And(Not(x), y, z), source_format="free") == \ "y .and. z .and. .not. x" assert fcode(Not(And(x, y, z), evaluate=False), source_format="free") == \ ".not. (x .and. y .and. z)" # trinary Or assert fcode(Or(x, y, z), source_format="free") == "x .or. y .or. z" assert fcode(Or(x, y, Not(z)), source_format="free") == \ "x .or. y .or. .not. z" assert fcode(Or(x, Not(y), z), source_format="free") == \ "x .or. z .or. .not. y" assert fcode(Or(Not(x), y, z), source_format="free") == \ "y .or. z .or. .not. x" assert fcode(Not(Or(x, y, z), evaluate=False), source_format="free") == \ ".not. (x .or. y .or. z)" def test_fcode_Xlogical(): x, y, z = symbols("x y z") # binary Xor assert fcode(Xor(x, y, evaluate=False), source_format="free") == \ "x .neqv. y" assert fcode(Xor(x, Not(y), evaluate=False), source_format="free") == \ "x .neqv. .not. y" assert fcode(Xor(Not(x), y, evaluate=False), source_format="free") == \ "y .neqv. .not. x" assert fcode(Xor(Not(x), Not(y), evaluate=False), source_format="free") == ".not. x .neqv. .not. y" assert fcode(Not(Xor(x, y, evaluate=False), evaluate=False), source_format="free") == ".not. (x .neqv. y)" # binary Equivalent assert fcode(Equivalent(x, y), source_format="free") == "x .eqv. y" assert fcode(Equivalent(x, Not(y)), source_format="free") == \ "x .eqv. .not. y" assert fcode(Equivalent(Not(x), y), source_format="free") == \ "y .eqv. .not. x" assert fcode(Equivalent(Not(x), Not(y)), source_format="free") == \ ".not. x .eqv. .not. y" assert fcode(Not(Equivalent(x, y), evaluate=False), source_format="free") == ".not. (x .eqv. y)" # mixed And/Equivalent assert fcode(Equivalent(And(y, z), x), source_format="free") == \ "x .eqv. y .and. z" assert fcode(Equivalent(And(z, x), y), source_format="free") == \ "y .eqv. x .and. z" assert fcode(Equivalent(And(x, y), z), source_format="free") == \ "z .eqv. x .and. y" assert fcode(And(Equivalent(y, z), x), source_format="free") == \ "x .and. (y .eqv. z)" assert fcode(And(Equivalent(z, x), y), source_format="free") == \ "y .and. (x .eqv. z)" assert fcode(And(Equivalent(x, y), z), source_format="free") == \ "z .and. (x .eqv. y)" # mixed Or/Equivalent assert fcode(Equivalent(Or(y, z), x), source_format="free") == \ "x .eqv. y .or. z" assert fcode(Equivalent(Or(z, x), y), source_format="free") == \ "y .eqv. x .or. z" assert fcode(Equivalent(Or(x, y), z), source_format="free") == \ "z .eqv. x .or. y" assert fcode(Or(Equivalent(y, z), x), source_format="free") == \ "x .or. (y .eqv. z)" assert fcode(Or(Equivalent(z, x), y), source_format="free") == \ "y .or. (x .eqv. z)" assert fcode(Or(Equivalent(x, y), z), source_format="free") == \ "z .or. (x .eqv. y)" # mixed Xor/Equivalent assert fcode(Equivalent(Xor(y, z, evaluate=False), x), source_format="free") == "x .eqv. (y .neqv. z)" assert fcode(Equivalent(Xor(z, x, evaluate=False), y), source_format="free") == "y .eqv. (x .neqv. z)" assert fcode(Equivalent(Xor(x, y, evaluate=False), z), source_format="free") == "z .eqv. (x .neqv. y)" assert fcode(Xor(Equivalent(y, z), x, evaluate=False), source_format="free") == "x .neqv. (y .eqv. z)" assert fcode(Xor(Equivalent(z, x), y, evaluate=False), source_format="free") == "y .neqv. (x .eqv. z)" assert fcode(Xor(Equivalent(x, y), z, evaluate=False), source_format="free") == "z .neqv. (x .eqv. y)" # mixed And/Xor assert fcode(Xor(And(y, z), x, evaluate=False), source_format="free") == \ "x .neqv. y .and. z" assert fcode(Xor(And(z, x), y, evaluate=False), source_format="free") == \ "y .neqv. x .and. z" assert fcode(Xor(And(x, y), z, evaluate=False), source_format="free") == \ "z .neqv. x .and. y" assert fcode(And(Xor(y, z, evaluate=False), x), source_format="free") == \ "x .and. (y .neqv. z)" assert fcode(And(Xor(z, x, evaluate=False), y), source_format="free") == \ "y .and. (x .neqv. z)" assert fcode(And(Xor(x, y, evaluate=False), z), source_format="free") == \ "z .and. (x .neqv. y)" # mixed Or/Xor assert fcode(Xor(Or(y, z), x, evaluate=False), source_format="free") == \ "x .neqv. y .or. z" assert fcode(Xor(Or(z, x), y, evaluate=False), source_format="free") == \ "y .neqv. x .or. z" assert fcode(Xor(Or(x, y), z, evaluate=False), source_format="free") == \ "z .neqv. x .or. y" assert fcode(Or(Xor(y, z, evaluate=False), x), source_format="free") == \ "x .or. (y .neqv. z)" assert fcode(Or(Xor(z, x, evaluate=False), y), source_format="free") == \ "y .or. (x .neqv. z)" assert fcode(Or(Xor(x, y, evaluate=False), z), source_format="free") == \ "z .or. (x .neqv. y)" # trinary Xor assert fcode(Xor(x, y, z, evaluate=False), source_format="free") == \ "x .neqv. y .neqv. z" assert fcode(Xor(x, y, Not(z), evaluate=False), source_format="free") == \ "x .neqv. y .neqv. .not. z" assert fcode(Xor(x, Not(y), z, evaluate=False), source_format="free") == \ "x .neqv. z .neqv. .not. y" assert fcode(Xor(Not(x), y, z, evaluate=False), source_format="free") == \ "y .neqv. z .neqv. .not. x" def test_fcode_Relational(): x, y = symbols("x y") assert fcode(Relational(x, y, "=="), source_format="free") == "x == y" assert fcode(Relational(x, y, "!="), source_format="free") == "x /= y" assert fcode(Relational(x, y, ">="), source_format="free") == "x >= y" assert fcode(Relational(x, y, "<="), source_format="free") == "x <= y" assert fcode(Relational(x, y, ">"), source_format="free") == "x > y" assert fcode(Relational(x, y, "<"), source_format="free") == "x < y" def test_fcode_Piecewise(): x = symbols('x') expr = Piecewise((x, x < 1), (x**2, True)) # Check that inline conditional (merge) fails if standard isn't 95+ raises(NotImplementedError, lambda: fcode(expr)) code = fcode(expr, standard=95) expected = " merge(x, x**2, x < 1)" assert code == expected assert fcode(Piecewise((x, x < 1), (x**2, True)), assign_to="var") == ( " if (x < 1) then\n" " var = x\n" " else\n" " var = x**2\n" " end if" ) a = cos(x)/x b = sin(x)/x for i in range(10): a = diff(a, x) b = diff(b, x) expected = ( " if (x < 0) then\n" " weird_name = -cos(x)/x + 10*sin(x)/x**2 + 90*cos(x)/x**3 - 720*\n" " @ sin(x)/x**4 - 5040*cos(x)/x**5 + 30240*sin(x)/x**6 + 151200*cos(x\n" " @ )/x**7 - 604800*sin(x)/x**8 - 1814400*cos(x)/x**9 + 3628800*sin(x\n" " @ )/x**10 + 3628800*cos(x)/x**11\n" " else\n" " weird_name = -sin(x)/x - 10*cos(x)/x**2 + 90*sin(x)/x**3 + 720*\n" " @ cos(x)/x**4 - 5040*sin(x)/x**5 - 30240*cos(x)/x**6 + 151200*sin(x\n" " @ )/x**7 + 604800*cos(x)/x**8 - 1814400*sin(x)/x**9 - 3628800*cos(x\n" " @ )/x**10 + 3628800*sin(x)/x**11\n" " end if" ) code = fcode(Piecewise((a, x < 0), (b, True)), assign_to="weird_name") assert code == expected code = fcode(Piecewise((x, x < 1), (x**2, x > 1), (sin(x), True)), standard=95) expected = " merge(x, merge(x**2, sin(x), x > 1), x < 1)" assert code == expected # Check that Piecewise without a True (default) condition error expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) raises(ValueError, lambda: fcode(expr)) def test_wrap_fortran(): # "########################################################################" printer = FCodePrinter() lines = [ "C This is a long comment on a single line that must be wrapped properly to produce nice output", " this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly", ] wrapped_lines = printer._wrap_fortran(lines) expected_lines = [ "C This is a long comment on a single line that must be wrapped", "C properly to produce nice output", " this = is + a + long + and + nasty + fortran + statement + that *", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that *", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that", " @ * must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that*", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that", " @ *must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement +", " @ that*must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that**", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that", " @ **must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement + that", " @ **must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement +", " @ that**must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement(that)/", " @ must + be + wrapped + properly", " this = is + a + long + and + nasty + fortran + statement(that)", " @ /must + be + wrapped + properly", ] for line in wrapped_lines: assert len(line) <= 72 for w, e in zip(wrapped_lines, expected_lines): assert w == e assert len(wrapped_lines) == len(expected_lines) def test_wrap_fortran_keep_d0(): printer = FCodePrinter() lines = [ ' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break = 10.0d0' ] expected = [ ' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =', ' @ 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =', ' @ 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =', ' @ 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =', ' @ 1.0d0', ' this_variable_is_very_long_because_we_try_to_test_line_break =', ' @ 10.0d0' ] assert printer._wrap_fortran(lines) == expected def test_settings(): raises(TypeError, lambda: fcode(S(4), method="garbage")) def test_free_form_code_line(): x, y = symbols('x,y') assert fcode(cos(x) + sin(y), source_format='free') == "sin(y) + cos(x)" def test_free_form_continuation_line(): x, y = symbols('x,y') result = fcode(((cos(x) + sin(y))**(7)).expand(), source_format='free') expected = ( 'sin(y)**7 + 7*sin(y)**6*cos(x) + 21*sin(y)**5*cos(x)**2 + 35*sin(y)**4* &\n' ' cos(x)**3 + 35*sin(y)**3*cos(x)**4 + 21*sin(y)**2*cos(x)**5 + 7* &\n' ' sin(y)*cos(x)**6 + cos(x)**7' ) assert result == expected def test_free_form_comment_line(): printer = FCodePrinter({'source_format': 'free'}) lines = [ "! This is a long comment on a single line that must be wrapped properly to produce nice output"] expected = [ '! This is a long comment on a single line that must be wrapped properly', '! to produce nice output'] assert printer._wrap_fortran(lines) == expected def test_loops(): n, m = symbols('n,m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) expected = ( 'do i = 1, m\n' ' y(i) = 0\n' 'end do\n' 'do i = 1, m\n' ' do j = 1, n\n' ' y(i) = %(rhs)s\n' ' end do\n' 'end do' ) code = fcode(A[i, j]*x[j], assign_to=y[i], source_format='free') assert (code == expected % {'rhs': 'y(i) + A(i, j)*x(j)'} or code == expected % {'rhs': 'y(i) + x(j)*A(i, j)'} or code == expected % {'rhs': 'x(j)*A(i, j) + y(i)'} or code == expected % {'rhs': 'A(i, j)*x(j) + y(i)'}) def test_dummy_loops(): i, m = symbols('i m', integer=True, cls=Dummy) x = IndexedBase('x') y = IndexedBase('y') i = Idx(i, m) expected = ( 'do i_%(icount)i = 1, m_%(mcount)i\n' ' y(i_%(icount)i) = x(i_%(icount)i)\n' 'end do' ) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index} code = fcode(x[i], assign_to=y[i], source_format='free') assert code == expected def test_fcode_Indexed_without_looking_for_contraction(): len_y = 5 y = IndexedBase('y', shape=(len_y,)) x = IndexedBase('x', shape=(len_y,)) Dy = IndexedBase('Dy', shape=(len_y-1,)) i = Idx('i', len_y-1) e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i])) code0 = fcode(e.rhs, assign_to=e.lhs, contract=False) assert code0.endswith('Dy(i) = (y(i + 1) - y(i))/(x(i + 1) - x(i))') def test_derived_classes(): class MyFancyFCodePrinter(FCodePrinter): _default_settings = FCodePrinter._default_settings.copy() printer = MyFancyFCodePrinter() x = symbols('x') assert printer.doprint(sin(x), "bork") == " bork = sin(x)" def test_indent(): codelines = ( 'subroutine test(a)\n' 'integer :: a, i, j\n' '\n' 'do\n' 'do \n' 'do j = 1, 5\n' 'if (a>b) then\n' 'if(b>0) then\n' 'a = 3\n' 'donot_indent_me = 2\n' 'do_not_indent_me_either = 2\n' 'ifIam_indented_something_went_wrong = 2\n' 'if_I_am_indented_something_went_wrong = 2\n' 'end should not be unindented here\n' 'end if\n' 'endif\n' 'end do\n' 'end do\n' 'enddo\n' 'end subroutine\n' '\n' 'subroutine test2(a)\n' 'integer :: a\n' 'do\n' 'a = a + 1\n' 'end do \n' 'end subroutine\n' ) expected = ( 'subroutine test(a)\n' 'integer :: a, i, j\n' '\n' 'do\n' ' do \n' ' do j = 1, 5\n' ' if (a>b) then\n' ' if(b>0) then\n' ' a = 3\n' ' donot_indent_me = 2\n' ' do_not_indent_me_either = 2\n' ' ifIam_indented_something_went_wrong = 2\n' ' if_I_am_indented_something_went_wrong = 2\n' ' end should not be unindented here\n' ' end if\n' ' endif\n' ' end do\n' ' end do\n' 'enddo\n' 'end subroutine\n' '\n' 'subroutine test2(a)\n' 'integer :: a\n' 'do\n' ' a = a + 1\n' 'end do \n' 'end subroutine\n' ) p = FCodePrinter({'source_format': 'free'}) result = p.indent_code(codelines) assert result == expected def test_Matrix_printing(): x, y, z = symbols('x,y,z') # Test returning a Matrix mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)]) A = MatrixSymbol('A', 3, 1) assert fcode(mat, A) == ( " A(1, 1) = x*y\n" " if (y > 0) then\n" " A(2, 1) = x + 2\n" " else\n" " A(2, 1) = y\n" " end if\n" " A(3, 1) = sin(z)") # Test using MatrixElements in expressions expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0] assert fcode(expr, standard=95) == ( " merge(2*A(3, 1), A(3, 1), x > 0) + sin(A(2, 1)) + A(1, 1)") # Test using MatrixElements in a Matrix q = MatrixSymbol('q', 5, 1) M = MatrixSymbol('M', 3, 3) m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])], [q[1,0] + q[2,0], q[3, 0], 5], [2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]]) assert fcode(m, M) == ( " M(1, 1) = sin(q(2, 1))\n" " M(2, 1) = q(2, 1) + q(3, 1)\n" " M(3, 1) = 2*q(5, 1)/q(2, 1)\n" " M(1, 2) = 0\n" " M(2, 2) = q(4, 1)\n" " M(3, 2) = sqrt(q(1, 1)) + 4\n" " M(1, 3) = cos(q(3, 1))\n" " M(2, 3) = 5\n" " M(3, 3) = 0") def test_fcode_For(): x, y = symbols('x y') f = For(x, Range(0, 10, 2), [Assignment(y, x * y)]) sol = fcode(f) assert sol == (" do x = 0, 10, 2\n" " y = x*y\n" " end do") def test_fcode_Declaration(): def check(expr, ref, **kwargs): assert fcode(expr, standard=95, source_format='free', **kwargs) == ref i = symbols('i', integer=True) var1 = Variable.deduced(i) dcl1 = Declaration(var1) check(dcl1, "integer*4 :: i") x, y = symbols('x y') var2 = Variable(x, float32, value=42, attrs={value_const}) dcl2b = Declaration(var2) check(dcl2b, 'real*4, parameter :: x = 42') var3 = Variable(y, type=bool_) dcl3 = Declaration(var3) check(dcl3, 'logical :: y') check(float32, "real*4") check(float64, "real*8") check(real, "real*4", type_aliases={real: float32}) check(real, "real*8", type_aliases={real: float64}) def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(fcode(A[0, 0]) == " A(1, 1)") assert(fcode(3 * A[0, 0]) == " 3*A(1, 1)") F = C[0, 0].subs(C, A - B) assert(fcode(F) == " (A - B)(1, 1)") def test_aug_assign(): x = symbols('x') assert fcode(aug_assign(x, '+', 1), source_format='free') == 'x = x + 1' def test_While(): x = symbols('x') assert fcode(While(abs(x) > 1, [aug_assign(x, '-', 1)]), source_format='free') == ( 'do while (abs(x) > 1)\n' ' x = x - 1\n' 'end do' )
7d2ea6b1c29144d1abc402abe128a0890fb8ead596a6b5c91cc3773c308babe7
from sympy import symbols, sin, Matrix, Interval, Piecewise, Sum, lambdify,Expr from sympy.utilities.pytest import raises from sympy.printing.tensorflow import TensorflowPrinter from sympy.printing.lambdarepr import lambdarepr, LambdaPrinter, NumExprPrinter x, y, z = symbols("x,y,z") i, a, b = symbols("i,a,b") j, c, d = symbols("j,c,d") def test_basic(): assert lambdarepr(x*y) == "x*y" assert lambdarepr(x + y) in ["y + x", "x + y"] assert lambdarepr(x**y) == "x**y" def test_matrix(): A = Matrix([[x, y], [y*x, z**2]]) # assert lambdarepr(A) == "ImmutableDenseMatrix([[x, y], [x*y, z**2]])" # Test printing a Matrix that has an element that is printed differently # with the LambdaPrinter than in the StrPrinter. p = Piecewise((x, True), evaluate=False) A = Matrix([p]) assert lambdarepr(A) == "ImmutableDenseMatrix([[((x))]])" def test_piecewise(): # In each case, test eval() the lambdarepr() to make sure there are a # correct number of parentheses. It will give a SyntaxError if there aren't. h = "lambda x: " p = Piecewise((x, True), evaluate=False) l = lambdarepr(p) eval(h + l) assert l == "((x))" p = Piecewise((x, x < 0)) l = lambdarepr(p) eval(h + l) assert l == "((x) if (x < 0) else None)" p = Piecewise( (1, x < 1), (2, x < 2), (0, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x < 1) else (2) if (x < 2) else (0))" p = Piecewise( (1, x < 1), (2, x < 2), ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x < 1) else (2) if (x < 2) else None)" p = Piecewise( (x, x < 1), (x**2, Interval(3, 4, True, False).contains(x)), (0, True), ) l = lambdarepr(p) eval(h + l) assert l == "((x) if (x < 1) else (x**2) if (((x <= 4)) and ((x > 3))) else (0))" p = Piecewise( (x**2, x < 0), (x, x < 1), (2 - x, x >= 1), (0, True), evaluate=False ) l = lambdarepr(p) eval(h + l) assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\ " else (-x + 2) if (x >= 1) else (0))" p = Piecewise( (x**2, x < 0), (x, x < 1), (2 - x, x >= 1), evaluate=False ) l = lambdarepr(p) eval(h + l) assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\ " else (-x + 2) if (x >= 1) else None)" p = Piecewise( (1, x >= 1), (2, x >= 2), (3, x >= 3), (4, x >= 4), (5, x >= 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x >= 1) else (2) if (x >= 2) else (3) if (x >= 3)"\ " else (4) if (x >= 4) else (5) if (x >= 5) else (6))" p = Piecewise( (1, x <= 1), (2, x <= 2), (3, x <= 3), (4, x <= 4), (5, x <= 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x <= 1) else (2) if (x <= 2) else (3) if (x <= 3)"\ " else (4) if (x <= 4) else (5) if (x <= 5) else (6))" p = Piecewise( (1, x > 1), (2, x > 2), (3, x > 3), (4, x > 4), (5, x > 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l =="((1) if (x > 1) else (2) if (x > 2) else (3) if (x > 3)"\ " else (4) if (x > 4) else (5) if (x > 5) else (6))" p = Piecewise( (1, x < 1), (2, x < 2), (3, x < 3), (4, x < 4), (5, x < 5), (6, True) ) l = lambdarepr(p) eval(h + l) assert l == "((1) if (x < 1) else (2) if (x < 2) else (3) if (x < 3)"\ " else (4) if (x < 4) else (5) if (x < 5) else (6))" p = Piecewise( (Piecewise( (1, x > 0), (2, True) ), y > 0), (3, True) ) l = lambdarepr(p) eval(h + l) assert l == "((((1) if (x > 0) else (2))) if (y > 0) else (3))" def test_sum__1(): # In each case, test eval() the lambdarepr() to make sure that # it evaluates to the same results as the symbolic expression s = Sum(x ** i, (i, a, b)) l = lambdarepr(s) assert l == "(builtins.sum(x**i for i in range(a, b+1)))" args = x, a, b f = lambdify(args, s) v = 2, 3, 8 assert f(*v) == s.subs(zip(args, v)).doit() def test_sum__2(): s = Sum(i * x, (i, a, b)) l = lambdarepr(s) assert l == "(builtins.sum(i*x for i in range(a, b+1)))" args = x, a, b f = lambdify(args, s) v = 2, 3, 8 assert f(*v) == s.subs(zip(args, v)).doit() def test_multiple_sums(): s = Sum(i * x + j, (i, a, b), (j, c, d)) l = lambdarepr(s) assert l == "(builtins.sum(i*x + j for i in range(a, b+1) for j in range(c, d+1)))" args = x, a, b, c, d f = lambdify(args, s) vals = 2, 3, 4, 5, 6 f_ref = s.subs(zip(args, vals)).doit() f_res = f(*vals) assert f_res == f_ref def test_settings(): raises(TypeError, lambda: lambdarepr(sin(x), method="garbage")) class CustomPrintedObject(Expr): def _lambdacode(self, printer): return 'lambda' def _tensorflowcode(self, printer): return 'tensorflow' def _numpycode(self, printer): return 'numpy' def _numexprcode(self, printer): return 'numexpr' def _mpmathcode(self, printer): return 'mpmath' def test_printmethod(): # In each case, printmethod is called to test # its working obj = CustomPrintedObject() assert LambdaPrinter().doprint(obj) == 'lambda' assert TensorflowPrinter().doprint(obj) == 'tensorflow' assert NumExprPrinter().doprint(obj) == "evaluate('numexpr', truediv=True)"
562cc9db086e3ee081cfc16ad98c100e7f64fa7f11cd870a50f01220f028fb20
from sympy.core import ( S, pi, oo, symbols, Rational, Integer, Float, Mod, GoldenRatio, EulerGamma, Catalan, Lambda, Dummy, Eq, nan, Mul, Pow ) from sympy.functions import ( Abs, acos, acosh, asin, asinh, atan, atanh, atan2, ceiling, cos, cosh, erf, erfc, exp, floor, gamma, log, loggamma, Max, Min, Piecewise, sign, sin, sinh, sqrt, tan, tanh ) from sympy.sets import Range from sympy.logic import ITE from sympy.codegen import For, aug_assign, Assignment from sympy.utilities.pytest import raises, XFAIL from sympy.printing.ccode import CCodePrinter, C89CodePrinter, C99CodePrinter, get_math_macros from sympy.codegen.ast import ( AddAugmentedAssignment, Element, Type, FloatType, Declaration, Pointer, Variable, value_const, pointer_const, While, Scope, Print, FunctionPrototype, FunctionDefinition, FunctionCall, Return, real, float32, float64, float80, float128, intc, Comment, CodeBlock ) from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, fma, log10, Cbrt, hypot, Sqrt from sympy.codegen.cnodes import restrict from sympy.utilities.lambdify import implemented_function from sympy.utilities.pytest import warns_deprecated_sympy from sympy.tensor import IndexedBase, Idx from sympy.matrices import Matrix, MatrixSymbol from sympy import ccode x, y, z = symbols('x,y,z') def test_printmethod(): class fabs(Abs): def _ccode(self, printer): return "fabs(%s)" % printer._print(self.args[0]) assert ccode(fabs(x)) == "fabs(x)" def test_ccode_sqrt(): assert ccode(sqrt(x)) == "sqrt(x)" assert ccode(x**0.5) == "sqrt(x)" assert ccode(sqrt(x)) == "sqrt(x)" def test_ccode_Pow(): assert ccode(x**3) == "pow(x, 3)" assert ccode(x**(y**3)) == "pow(x, pow(y, 3))" g = implemented_function('g', Lambda(x, 2*x)) assert ccode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2) + y)" assert ccode(x**-1.0) == '1.0/x' assert ccode(x**Rational(2, 3)) == 'pow(x, 2.0/3.0)' assert ccode(x**Rational(2, 3), type_aliases={real: float80}) == 'powl(x, 2.0L/3.0L)' _cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"), (lambda base, exp: not exp.is_integer, "pow")] assert ccode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)' assert ccode(x**0.5, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 0.5)' assert ccode(x**Rational(16, 5), user_functions={'Pow': _cond_cfunc}) == 'pow(x, 16.0/5.0)' _cond_cfunc2 = [(lambda base, exp: base == 2, lambda base, exp: 'exp2(%s)' % exp), (lambda base, exp: base != 2, 'pow')] # Related to gh-11353 assert ccode(2**x, user_functions={'Pow': _cond_cfunc2}) == 'exp2(x)' assert ccode(x**2, user_functions={'Pow': _cond_cfunc2}) == 'pow(x, 2)' # For issue 14160 assert ccode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), evaluate=False)) == '-2*x/(y*y)' def test_ccode_Max(): # Test for gh-11926 assert ccode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))' def test_ccode_constants_mathh(): assert ccode(exp(1)) == "M_E" assert ccode(pi) == "M_PI" assert ccode(oo, standard='c89') == "HUGE_VAL" assert ccode(-oo, standard='c89') == "-HUGE_VAL" assert ccode(oo) == "INFINITY" assert ccode(-oo, standard='c99') == "-INFINITY" assert ccode(pi, type_aliases={real: float80}) == "M_PIl" def test_ccode_constants_other(): assert ccode(2*GoldenRatio) == "const double GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17) assert ccode( 2*Catalan) == "const double Catalan = %s;\n2*Catalan" % Catalan.evalf(17) assert ccode(2*EulerGamma) == "const double EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17) def test_ccode_Rational(): assert ccode(Rational(3, 7)) == "3.0/7.0" assert ccode(Rational(3, 7), type_aliases={real: float80}) == "3.0L/7.0L" assert ccode(Rational(18, 9)) == "2" assert ccode(Rational(3, -7)) == "-3.0/7.0" assert ccode(Rational(3, -7), type_aliases={real: float80}) == "-3.0L/7.0L" assert ccode(Rational(-3, -7)) == "3.0/7.0" assert ccode(Rational(-3, -7), type_aliases={real: float80}) == "3.0L/7.0L" assert ccode(x + Rational(3, 7)) == "x + 3.0/7.0" assert ccode(x + Rational(3, 7), type_aliases={real: float80}) == "x + 3.0L/7.0L" assert ccode(Rational(3, 7)*x) == "(3.0/7.0)*x" assert ccode(Rational(3, 7)*x, type_aliases={real: float80}) == "(3.0L/7.0L)*x" def test_ccode_Integer(): assert ccode(Integer(67)) == "67" assert ccode(Integer(-1)) == "-1" def test_ccode_functions(): assert ccode(sin(x) ** cos(x)) == "pow(sin(x), cos(x))" def test_ccode_inline_function(): x = symbols('x') g = implemented_function('g', Lambda(x, 2*x)) assert ccode(g(x)) == "2*x" g = implemented_function('g', Lambda(x, 2*x/Catalan)) assert ccode( g(x)) == "const double Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17) A = IndexedBase('A') i = Idx('i', symbols('n', integer=True)) g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) assert ccode(g(A[i]), assign_to=A[i]) == ( "for (int i=0; i<n; i++){\n" " A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n" "}" ) def test_ccode_exceptions(): assert ccode(gamma(x), standard='C99') == "tgamma(x)" gamma_c89 = ccode(gamma(x), standard='C89') assert 'not supported in c' in gamma_c89.lower() gamma_c89 = ccode(gamma(x), standard='C89', allow_unknown_functions=False) assert 'not supported in c' in gamma_c89.lower() gamma_c89 = ccode(gamma(x), standard='C89', allow_unknown_functions=True) assert not 'not supported in c' in gamma_c89.lower() assert ccode(ceiling(x)) == "ceil(x)" assert ccode(Abs(x)) == "fabs(x)" assert ccode(gamma(x)) == "tgamma(x)" r, s = symbols('r,s', real=True) assert ccode(Mod(ceiling(r), ceiling(s))) == "((ceil(r)) % (ceil(s)))" assert ccode(Mod(r, s)) == "fmod(r, s)" def test_ccode_user_functions(): x = symbols('x', integer=False) n = symbols('n', integer=True) custom_functions = { "ceiling": "ceil", "Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")], } assert ccode(ceiling(x), user_functions=custom_functions) == "ceil(x)" assert ccode(Abs(x), user_functions=custom_functions) == "fabs(x)" assert ccode(Abs(n), user_functions=custom_functions) == "abs(n)" def test_ccode_boolean(): assert ccode(True) == "true" assert ccode(S.true) == "true" assert ccode(False) == "false" assert ccode(S.false) == "false" assert ccode(x & y) == "x && y" assert ccode(x | y) == "x || y" assert ccode(~x) == "!x" assert ccode(x & y & z) == "x && y && z" assert ccode(x | y | z) == "x || y || z" assert ccode((x & y) | z) == "z || x && y" assert ccode((x | y) & z) == "z && (x || y)" def test_ccode_Relational(): from sympy import Eq, Ne, Le, Lt, Gt, Ge assert ccode(Eq(x, y)) == "x == y" assert ccode(Ne(x, y)) == "x != y" assert ccode(Le(x, y)) == "x <= y" assert ccode(Lt(x, y)) == "x < y" assert ccode(Gt(x, y)) == "x > y" assert ccode(Ge(x, y)) == "x >= y" def test_ccode_Piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) assert ccode(expr) == ( "((x < 1) ? (\n" " x\n" ")\n" ": (\n" " pow(x, 2)\n" "))") assert ccode(expr, assign_to="c") == ( "if (x < 1) {\n" " c = x;\n" "}\n" "else {\n" " c = pow(x, 2);\n" "}") expr = Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)) assert ccode(expr) == ( "((x < 1) ? (\n" " x\n" ")\n" ": ((x < 2) ? (\n" " x + 1\n" ")\n" ": (\n" " pow(x, 2)\n" ")))") assert ccode(expr, assign_to='c') == ( "if (x < 1) {\n" " c = x;\n" "}\n" "else if (x < 2) {\n" " c = x + 1;\n" "}\n" "else {\n" " c = pow(x, 2);\n" "}") # Check that Piecewise without a True (default) condition error expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) raises(ValueError, lambda: ccode(expr)) def test_ccode_sinc(): from sympy import sinc expr = sinc(x) assert ccode(expr) == ( "((x != 0) ? (\n" " sin(x)/x\n" ")\n" ": (\n" " 1\n" "))") def test_ccode_Piecewise_deep(): p = ccode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))) assert p == ( "2*((x < 1) ? (\n" " x\n" ")\n" ": ((x < 2) ? (\n" " x + 1\n" ")\n" ": (\n" " pow(x, 2)\n" ")))") expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1 assert ccode(expr) == ( "pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n" " 0\n" ")\n" ": (\n" " 1\n" ")) + cos(z) - 1") assert ccode(expr, assign_to='c') == ( "c = pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n" " 0\n" ")\n" ": (\n" " 1\n" ")) + cos(z) - 1;") def test_ccode_ITE(): expr = ITE(x < 1, y, z) assert ccode(expr) == ( "((x < 1) ? (\n" " y\n" ")\n" ": (\n" " z\n" "))") def test_ccode_settings(): raises(TypeError, lambda: ccode(sin(x), method="garbage")) def test_ccode_Indexed(): from sympy.tensor import IndexedBase, Idx from sympy import symbols s, n, m, o = symbols('s n m o', integer=True) i, j, k = Idx('i', n), Idx('j', m), Idx('k', o) x = IndexedBase('x')[j] A = IndexedBase('A')[i, j] B = IndexedBase('B')[i, j, k] with warns_deprecated_sympy(): p = CCodePrinter() p._not_c = set() assert p._print_Indexed(x) == 'x[j]' assert p._print_Indexed(A) == 'A[%s]' % (m*i+j) assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k) assert p._not_c == set() A = IndexedBase('A', shape=(5,3))[i, j] assert p._print_Indexed(A) == 'A[%s]' % (3*i + j) A = IndexedBase('A', shape=(5,3), strides='F')[i, j] assert ccode(A) == 'A[%s]' % (i + 5*j) A = IndexedBase('A', shape=(29,29), strides=(1, s), offset=o)[i, j] assert ccode(A) == 'A[o + s*j + i]' Abase = IndexedBase('A', strides=(s, m, n), offset=o) assert ccode(Abase[i, j, k]) == 'A[m*j + n*k + o + s*i]' assert ccode(Abase[2, 3, k]) == 'A[3*m + n*k + o + 2*s]' def test_Element(): assert ccode(Element('x', 'ij')) == 'x[i][j]' assert ccode(Element('x', 'ij', strides='kl', offset='o')) == 'x[i*k + j*l + o]' assert ccode(Element('x', (3,))) == 'x[3]' assert ccode(Element('x', (3,4,5))) == 'x[3][4][5]' def test_ccode_Indexed_without_looking_for_contraction(): len_y = 5 y = IndexedBase('y', shape=(len_y,)) x = IndexedBase('x', shape=(len_y,)) Dy = IndexedBase('Dy', shape=(len_y-1,)) i = Idx('i', len_y-1) e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i])) code0 = ccode(e.rhs, assign_to=e.lhs, contract=False) assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1) def test_ccode_loops_matrix_vector(): n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) s = ( 'for (int i=0; i<m; i++){\n' ' y[i] = 0;\n' '}\n' 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\ ' }\n' '}' ) assert ccode(A[i, j]*x[j], assign_to=y[i]) == s def test_dummy_loops(): i, m = symbols('i m', integer=True, cls=Dummy) x = IndexedBase('x') y = IndexedBase('y') i = Idx(i, m) expected = ( 'for (int i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n' ' y[i_%(icount)i] = x[i_%(icount)i];\n' '}' ) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index} assert ccode(x[i], assign_to=y[i]) == expected def test_ccode_loops_add(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') z = IndexedBase('z') i = Idx('i', m) j = Idx('j', n) s = ( 'for (int i=0; i<m; i++){\n' ' y[i] = x[i] + z[i];\n' '}\n' 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\ ' }\n' '}' ) assert ccode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) == s def test_ccode_loops_multiple_contractions(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) s = ( 'for (int i=0; i<m; i++){\n' ' y[i] = 0;\n' '}\n' 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' for (int k=0; k<o; k++){\n' ' for (int l=0; l<p; l++){\n' ' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ ' }\n' ' }\n' ' }\n' '}' ) assert ccode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) == s def test_ccode_loops_addfactor(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') c = IndexedBase('c') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) s = ( 'for (int i=0; i<m; i++){\n' ' y[i] = 0;\n' '}\n' 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' for (int k=0; k<o; k++){\n' ' for (int l=0; l<p; l++){\n' ' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ ' }\n' ' }\n' ' }\n' '}' ) assert ccode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) == s def test_ccode_loops_multiple_terms(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') c = IndexedBase('c') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) s0 = ( 'for (int i=0; i<m; i++){\n' ' y[i] = 0;\n' '}\n' ) s1 = ( 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' for (int k=0; k<o; k++){\n' ' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\ ' }\n' ' }\n' '}\n' ) s2 = ( 'for (int i=0; i<m; i++){\n' ' for (int k=0; k<o; k++){\n' ' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\ ' }\n' '}\n' ) s3 = ( 'for (int i=0; i<m; i++){\n' ' for (int j=0; j<n; j++){\n' ' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\ ' }\n' '}\n' ) c = ccode(b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i]) assert (c == s0 + s1 + s2 + s3[:-1] or c == s0 + s1 + s3 + s2[:-1] or c == s0 + s2 + s1 + s3[:-1] or c == s0 + s2 + s3 + s1[:-1] or c == s0 + s3 + s1 + s2[:-1] or c == s0 + s3 + s2 + s1[:-1]) def test_dereference_printing(): expr = x + y + sin(z) + z assert ccode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))" def test_Matrix_printing(): # Test returning a Matrix mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)]) A = MatrixSymbol('A', 3, 1) assert ccode(mat, A) == ( "A[0] = x*y;\n" "if (y > 0) {\n" " A[1] = x + 2;\n" "}\n" "else {\n" " A[1] = y;\n" "}\n" "A[2] = sin(z);") # Test using MatrixElements in expressions expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0] assert ccode(expr) == ( "((x > 0) ? (\n" " 2*A[2]\n" ")\n" ": (\n" " A[2]\n" ")) + sin(A[1]) + A[0]") # Test using MatrixElements in a Matrix q = MatrixSymbol('q', 5, 1) M = MatrixSymbol('M', 3, 3) m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])], [q[1,0] + q[2,0], q[3, 0], 5], [2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]]) assert ccode(m, M) == ( "M[0] = sin(q[1]);\n" "M[1] = 0;\n" "M[2] = cos(q[2]);\n" "M[3] = q[1] + q[2];\n" "M[4] = q[3];\n" "M[5] = 5;\n" "M[6] = 2*q[4]/q[1];\n" "M[7] = sqrt(q[0]) + 4;\n" "M[8] = 0;") def test_ccode_reserved_words(): x, y = symbols('x, if') with raises(ValueError): ccode(y**2, error_on_reserved=True, standard='C99') assert ccode(y**2) == 'pow(if_, 2)' assert ccode(x * y**2, dereference=[y]) == 'pow((*if_), 2)*x' assert ccode(y**2, reserved_word_suffix='_unreserved') == 'pow(if_unreserved, 2)' def test_ccode_sign(): expr1, ref1 = sign(x) * y, 'y*(((x) > 0) - ((x) < 0))' expr2, ref2 = sign(cos(x)), '(((cos(x)) > 0) - ((cos(x)) < 0))' expr3, ref3 = sign(2 * x + x**2) * x + x**2, 'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))' assert ccode(expr1) == ref1 assert ccode(expr1, 'z') == 'z = %s;' % ref1 assert ccode(expr2) == ref2 assert ccode(expr3) == ref3 def test_ccode_Assignment(): assert ccode(Assignment(x, y + z)) == 'x = y + z;' assert ccode(aug_assign(x, '+', y + z)) == 'x += y + z;' def test_ccode_For(): f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)]) assert ccode(f) == ("for (x = 0; x < 10; x += 2) {\n" " y *= x;\n" "}") def test_ccode_Max_Min(): assert ccode(Max(x, 0), standard='C89') == '((0 > x) ? 0 : x)' assert ccode(Max(x, 0), standard='C99') == 'fmax(0, x)' assert ccode(Min(x, 0, sqrt(x)), standard='c89') == ( '((0 < ((x < sqrt(x)) ? x : sqrt(x))) ? 0 : ((x < sqrt(x)) ? x : sqrt(x)))' ) def test_ccode_standard(): assert ccode(expm1(x), standard='c99') == 'expm1(x)' assert ccode(nan, standard='c99') == 'NAN' assert ccode(float('nan'), standard='c99') == 'NAN' def test_CCodePrinter(): with warns_deprecated_sympy(): CCodePrinter() with warns_deprecated_sympy(): assert CCodePrinter().language == 'C' def test_C89CodePrinter(): c89printer = C89CodePrinter() assert c89printer.language == 'C' assert c89printer.standard == 'C89' assert 'void' in c89printer.reserved_words assert 'template' not in c89printer.reserved_words def test_C99CodePrinter(): assert C99CodePrinter().doprint(expm1(x)) == 'expm1(x)' assert C99CodePrinter().doprint(log1p(x)) == 'log1p(x)' assert C99CodePrinter().doprint(exp2(x)) == 'exp2(x)' assert C99CodePrinter().doprint(log2(x)) == 'log2(x)' assert C99CodePrinter().doprint(fma(x, y, -z)) == 'fma(x, y, -z)' assert C99CodePrinter().doprint(log10(x)) == 'log10(x)' assert C99CodePrinter().doprint(Cbrt(x)) == 'cbrt(x)' # note Cbrt due to cbrt already taken. assert C99CodePrinter().doprint(hypot(x, y)) == 'hypot(x, y)' assert C99CodePrinter().doprint(loggamma(x)) == 'lgamma(x)' assert C99CodePrinter().doprint(Max(x, 3, x**2)) == 'fmax(3, fmax(x, pow(x, 2)))' assert C99CodePrinter().doprint(Min(x, 3)) == 'fmin(3, x)' c99printer = C99CodePrinter() assert c99printer.language == 'C' assert c99printer.standard == 'C99' assert 'restrict' in c99printer.reserved_words assert 'using' not in c99printer.reserved_words @XFAIL def test_C99CodePrinter__precision_f80(): f80_printer = C99CodePrinter(dict(type_aliases={real: float80})) assert f80_printer.doprint(sin(x+Float('2.1'))) == 'sinl(x + 2.1L)' def test_C99CodePrinter__precision(): n = symbols('n', integer=True) f32_printer = C99CodePrinter(dict(type_aliases={real: float32})) f64_printer = C99CodePrinter(dict(type_aliases={real: float64})) f80_printer = C99CodePrinter(dict(type_aliases={real: float80})) assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)' assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)' assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)' for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']): def check(expr, ref): assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper()) check(Abs(n), 'abs(n)') check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})') check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))') check(exp(x*8.0), 'exp{s}(8.0{S}*x)') check(exp2(x), 'exp2{s}(x)') check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)') check(Mod(n, 2), '((n) % (2))') check(Mod(2*n + 3, 3*n + 5), '((2*n + 3) % (3*n + 5))') check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})') check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})') check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)') check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)') check(log2(x*8.0), 'log2{s}(8.0{S}*x)') check(log1p(x), 'log1p{s}(x)') check(2**x, 'pow{s}(2, x)') check(2.0**x, 'pow{s}(2.0{S}, x)') check(x**3, 'pow{s}(x, 3)') check(x**4.0, 'pow{s}(x, 4.0{S})') check(sqrt(3+x), 'sqrt{s}(x + 3)') check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})') check(hypot(x, y), 'hypot{s}(x, y)') check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})') check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})') check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})') check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})') check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})') check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})') check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)') check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})') check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})') check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})') check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})') check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})') check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})') check(erf(42.*x), 'erf{s}(42.0{S}*x)') check(erfc(42.*x), 'erfc{s}(42.0{S}*x)') check(gamma(x), 'tgamma{s}(x)') check(loggamma(x), 'lgamma{s}(x)') check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})") check(floor(x + 2.), "floor{s}(x + 2.0{S})") check(fma(x, y, -z), 'fma{s}(x, y, -z)') check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))') check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)') def test_get_math_macros(): macros = get_math_macros() assert macros[exp(1)] == 'M_E' assert macros[1/Sqrt(2)] == 'M_SQRT1_2' def test_ccode_Declaration(): i = symbols('i', integer=True) var1 = Variable(i, type=Type.from_expr(i)) dcl1 = Declaration(var1) assert ccode(dcl1) == 'int i' var2 = Variable(x, type=float32, attrs={value_const}) dcl2a = Declaration(var2) assert ccode(dcl2a) == 'const float x' dcl2b = var2.as_Declaration(value=pi) assert ccode(dcl2b) == 'const float x = M_PI' var3 = Variable(y, type=Type('bool')) dcl3 = Declaration(var3) printer = C89CodePrinter() assert 'stdbool.h' not in printer.headers assert printer.doprint(dcl3) == 'bool y' assert 'stdbool.h' in printer.headers u = symbols('u', real=True) ptr4 = Pointer.deduced(u, attrs={pointer_const, restrict}) dcl4 = Declaration(ptr4) assert ccode(dcl4) == 'double * const restrict u' var5 = Variable(x, Type('__float128'), attrs={value_const}) dcl5a = Declaration(var5) assert ccode(dcl5a) == 'const __float128 x' var5b = Variable(var5.symbol, var5.type, pi, attrs=var5.attrs) dcl5b = Declaration(var5b) assert ccode(dcl5b) == 'const __float128 x = M_PI' def test_C99CodePrinter_custom_type(): # We will look at __float128 (new in glibc 2.26) f128 = FloatType('_Float128', float128.nbits, float128.nmant, float128.nexp) p128 = C99CodePrinter(dict( type_aliases={real: f128}, type_literal_suffixes={f128: 'Q'}, type_func_suffixes={f128: 'f128'}, type_math_macro_suffixes={ real: 'f128', f128: 'f128' }, type_macros={ f128: ('__STDC_WANT_IEC_60559_TYPES_EXT__',) } )) assert p128.doprint(x) == 'x' assert not p128.headers assert not p128.libraries assert not p128.macros assert p128.doprint(2.0) == '2.0Q' assert not p128.headers assert not p128.libraries assert p128.macros == {'__STDC_WANT_IEC_60559_TYPES_EXT__'} assert p128.doprint(Rational(1, 2)) == '1.0Q/2.0Q' assert p128.doprint(sin(x)) == 'sinf128(x)' assert p128.doprint(cos(2., evaluate=False)) == 'cosf128(2.0Q)' var5 = Variable(x, f128, attrs={value_const}) dcl5a = Declaration(var5) assert ccode(dcl5a) == 'const _Float128 x' var5b = Variable(x, f128, pi, attrs={value_const}) dcl5b = Declaration(var5b) assert p128.doprint(dcl5b) == 'const _Float128 x = M_PIf128' var5b = Variable(x, f128, value=Catalan.evalf(38), attrs={value_const}) dcl5c = Declaration(var5b) assert p128.doprint(dcl5c) == 'const _Float128 x = %sQ' % Catalan.evalf(f128.decimal_dig) def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(ccode(A[0, 0]) == "A[0]") assert(ccode(3 * A[0, 0]) == "3*A[0]") F = C[0, 0].subs(C, A - B) assert(ccode(F) == "(A - B)[0]") def test_subclass_CCodePrinter(): # issue gh-12687 class MySubClass(CCodePrinter): pass def test_ccode_math_macros(): assert ccode(z + exp(1)) == 'z + M_E' assert ccode(z + log2(exp(1))) == 'z + M_LOG2E' assert ccode(z + 1/log(2)) == 'z + M_LOG2E' assert ccode(z + log(2)) == 'z + M_LN2' assert ccode(z + log(10)) == 'z + M_LN10' assert ccode(z + pi) == 'z + M_PI' assert ccode(z + pi/2) == 'z + M_PI_2' assert ccode(z + pi/4) == 'z + M_PI_4' assert ccode(z + 1/pi) == 'z + M_1_PI' assert ccode(z + 2/pi) == 'z + M_2_PI' assert ccode(z + 2/sqrt(pi)) == 'z + M_2_SQRTPI' assert ccode(z + 2/Sqrt(pi)) == 'z + M_2_SQRTPI' assert ccode(z + sqrt(2)) == 'z + M_SQRT2' assert ccode(z + Sqrt(2)) == 'z + M_SQRT2' assert ccode(z + 1/sqrt(2)) == 'z + M_SQRT1_2' assert ccode(z + 1/Sqrt(2)) == 'z + M_SQRT1_2' def test_ccode_Type(): assert ccode(Type('float')) == 'float' assert ccode(intc) == 'int' def test_ccode_codegen_ast(): assert ccode(Comment("this is a comment")) == "// this is a comment" assert ccode(While(abs(x) > 1, [aug_assign(x, '-', 1)])) == ( 'while (fabs(x) > 1) {\n' ' x -= 1;\n' '}' ) assert ccode(Scope([AddAugmentedAssignment(x, 1)])) == ( '{\n' ' x += 1;\n' '}' ) inp_x = Declaration(Variable(x, type=real)) assert ccode(FunctionPrototype(real, 'pwer', [inp_x])) == 'double pwer(double x)' assert ccode(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) == ( 'double pwer(double x){\n' ' x = pow(x, 2);\n' '}' ) # Elements of CodeBlock are formatted as statements: block = CodeBlock( x, Print([x, y], "%d %d"), FunctionCall('pwer', [x]), Return(x), ) assert ccode(block) == '\n'.join([ 'x;', 'printf("%d %d", x, y);', 'pwer(x);', 'return x;', ])
3076e7115052ddb21b0b25a17a25b2377c542ec7b219feb2b22ea2114d17467d
from sympy import ( Add, Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial, FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral, Interval, InverseCosineTransform, InverseFourierTransform, InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform, Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul, Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational, RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs, Sum, Symbol, ImageSet, Tuple, Union, Ynm, Znm, arg, asin, acsc, Mod, assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling, Complement, chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler, exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite, hyper, im, jacobi, laguerre, legendre, lerchphi, log, meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols, uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not, Contains, divisor_sigma, SymmetricDifference, SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps, AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction, UnevaluatedExpr, Quaternion) from sympy.ntheory.factor_ import udivisor_sigma from sympy.abc import mu, tau from sympy.printing.latex import (latex, translate, greek_letters_set, tex_greek_dictionary) from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableSparseNDimArray, MutableDenseNDimArray) from sympy.tensor.array import tensorproduct from sympy.utilities.pytest import XFAIL, raises from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita from sympy.logic import Implies from sympy.logic.boolalg import And, Or, Xor from sympy.physics.quantum import Commutator, Operator from sympy.physics.units import degree, radian, kg, meter, R from sympy.core.trace import Tr from sympy.core.compatibility import range from sympy.combinatorics.permutations import Cycle, Permutation from sympy import MatrixSymbol, ln from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient from sympy.sets.setexpr import SetExpr import sympy as sym class lowergamma(sym.lowergamma): pass # testing notation inheritance by a subclass with same name x, y, z, t, a, b, c = symbols('x y z t a b c') k, m, n = symbols('k m n', integer=True) def test_printmethod(): class R(Abs): def _latex(self, printer): return "foo(%s)" % printer._print(self.args[0]) assert latex(R(x)) == "foo(x)" class R(Abs): def _latex(self, printer): return "foo" assert latex(R(x)) == "foo" def test_latex_basic(): assert latex(1 + x) == "x + 1" assert latex(x**2) == "x^{2}" assert latex(x**(1 + x)) == "x^{x + 1}" assert latex(x**3 + x + 1 + x**2) == "x^{3} + x^{2} + x + 1" assert latex(2*x*y) == "2 x y" assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y" assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y" assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}" assert latex(1/x) == r"\frac{1}{x}" assert latex(1/x, fold_short_frac=True) == "1 / x" assert latex(-S(3)/2) == r"- \frac{3}{2}" assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2" assert latex(1/x**2) == r"\frac{1}{x^{2}}" assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}" assert latex(x/2) == r"\frac{x}{2}" assert latex(x/2, fold_short_frac=True) == "x / 2" assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}" assert latex((x + y)/(2*x), fold_short_frac=True) == \ r"\left(x + y\right) / 2 x" assert latex((x + y)/(2*x), long_frac_ratio=0) == \ r"\frac{1}{2 x} \left(x + y\right)" assert latex((x + y)/x) == r"\frac{x + y}{x}" assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}" assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}" assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \ r"\frac{2 x}{3} \sqrt{2}" assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}" assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \ r"\left(2 \int x\, dx\right) / 3" assert latex(sqrt(x)) == r"\sqrt{x}" assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}" assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}" assert latex(sqrt(x), itex=True) == r"\sqrt{x}" assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}" assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}" assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}" assert latex(x**Rational(3, 4), fold_frac_powers=True) == "x^{3/4}" assert latex((x + 1)**Rational(3, 4)) == \ r"\left(x + 1\right)^{\frac{3}{4}}" assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \ r"\left(x + 1\right)^{3/4}" assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x" assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x" assert latex(1.5e20*x, mul_symbol='times') == r"1.5 \times 10^{20} \times x" assert latex(1/sin(x)) == r"\frac{1}{\sin{\left (x \right )}}" assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left (x \right )}}" assert latex(sin(x)**Rational(3, 2)) == \ r"\sin^{\frac{3}{2}}{\left (x \right )}" assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \ r"\sin^{3/2}{\left (x \right )}" assert latex(~x) == r"\neg x" assert latex(x & y) == r"x \wedge y" assert latex(x & y & z) == r"x \wedge y \wedge z" assert latex(x | y) == r"x \vee y" assert latex(x | y | z) == r"x \vee y \vee z" assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)" assert latex(Implies(x, y)) == r"x \Rightarrow y" assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y" assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z" assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)" assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i" assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \ r"x_i \wedge y_i" assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"x_i \wedge y_i \wedge z_i" assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i" assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"x_i \vee y_i \vee z_i" assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \ r"z_i \vee \left(x_i \wedge y_i\right)" assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \ r"x_i \Rightarrow y_i" p = Symbol('p', positive=True) assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left (p \right )}" def test_latex_builtins(): assert latex(True) == r"\mathrm{True}" assert latex(False) == r"\mathrm{False}" assert latex(None) == r"\mathrm{None}" assert latex(true) == r"\mathrm{True}" assert latex(false) == r'\mathrm{False}' def test_latex_SingularityFunction(): assert latex(SingularityFunction(x, 4, 5)) == r"{\langle x - 4 \rangle}^{5}" assert latex(SingularityFunction(x, -3, 4)) == r"{\langle x + 3 \rangle}^{4}" assert latex(SingularityFunction(x, 0, 4)) == r"{\langle x \rangle}^{4}" assert latex(SingularityFunction(x, a, n)) == r"{\langle - a + x \rangle}^{n}" assert latex(SingularityFunction(x, 4, -2)) == r"{\langle x - 4 \rangle}^{-2}" assert latex(SingularityFunction(x, 4, -1)) == r"{\langle x - 4 \rangle}^{-1}" def test_latex_cycle(): assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)" assert latex(Cycle(1, 2)(4, 5, 6)) == r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)" assert latex(Cycle()) == r"\left( \right)" def test_latex_permutation(): assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)" assert latex(Permutation(1, 2)(4, 5, 6)) == r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)" assert latex(Permutation()) == r"\left( \right)" assert latex(Permutation(2, 4)*Permutation(5)) == r"\left( 2\; 4\right)\left( 5\right)" assert latex(Permutation(5)) == r"\left( 5\right)" def test_latex_Float(): assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}" assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}" assert latex(Float(1.0e-100), mul_symbol="times") == r"1.0 \times 10^{-100}" assert latex(1.0*oo) == r"\infty" assert latex(-1.0*oo) == r"- \infty" def test_latex_vector_expressions(): A = CoordSys3D('A') assert latex(Cross(A.i, A.j*A.x*3+A.k)) == r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)" assert latex(Cross(A.i, A.j)) == r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}" assert latex(x*Cross(A.i, A.j)) == r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)" assert latex(Cross(x*A.i, A.j)) == r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)' assert latex(Curl(3*A.x*A.j)) == r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Curl(3*A.x*A.j+A.i)) == r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Curl(3*x*A.x*A.j)) == r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)" assert latex(x*Curl(3*A.x*A.j)) == r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)" assert latex(Divergence(3*A.x*A.j+A.i)) == r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(Divergence(3*A.x*A.j)) == r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)" assert latex(x*Divergence(3*A.x*A.j)) == r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)" assert latex(Dot(A.i, A.j*A.x*3+A.k)) == r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)" assert latex(Dot(A.i, A.j)) == r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}" assert latex(Dot(x*A.i, A.j)) == r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)" assert latex(x*Dot(A.i, A.j)) == r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)" assert latex(Gradient(A.x)) == r"\nabla\cdot \mathbf{{x}_{A}}" assert latex(Gradient(A.x + 3*A.y)) == r"\nabla\cdot \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)" assert latex(x*Gradient(A.x)) == r"x \left(\nabla\cdot \mathbf{{x}_{A}}\right)" assert latex(Gradient(x*A.x)) == r"\nabla\cdot \left(\mathbf{{x}_{A}} x\right)" def test_latex_symbols(): Gamma, lmbda, rho = symbols('Gamma, lambda, rho') tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU') assert latex(tau) == r"\tau" assert latex(Tau) == "T" assert latex(TAU) == r"\tau" assert latex(taU) == r"\tau" # Check that all capitalized greek letters are handled explicitly capitalized_letters = set(l.capitalize() for l in greek_letters_set) assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0 assert latex(Gamma + lmbda) == r"\Gamma + \lambda" assert latex(Gamma * lmbda) == r"\Gamma \lambda" assert latex(Symbol('q1')) == r"q_{1}" assert latex(Symbol('q21')) == r"q_{21}" assert latex(Symbol('epsilon0')) == r"\epsilon_{0}" assert latex(Symbol('omega1')) == r"\omega_{1}" assert latex(Symbol('91')) == r"91" assert latex(Symbol('alpha_new')) == r"\alpha_{new}" assert latex(Symbol('C^orig')) == r"C^{orig}" assert latex(Symbol('x^alpha')) == r"x^{\alpha}" assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}" assert latex(Symbol('e^Alpha')) == r"e^{A}" assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}" assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}" @XFAIL def test_latex_symbols_failing(): rho, mass, volume = symbols('rho, mass, volume') assert latex( volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}" assert latex(volume / mass * rho == 1) == r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1" assert latex(mass**3 * volume**3) == r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}" def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == r'f{\left (x \right )}' assert latex(f) == r'f' g = Function('g') assert latex(g(x, y)) == r'g{\left (x,y \right )}' assert latex(g) == r'g' h = Function('h') assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}' assert latex(h) == r'h' Li = Function('Li') assert latex(Li) == r'\operatorname{Li}' assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}' mybeta = Function('beta') # not to be confused with the beta function assert latex(mybeta(x, y, z)) == r"\beta{\left (x,y,z \right )}" assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)' assert latex(mybeta(x)) == r"\beta{\left (x \right )}" assert latex(mybeta) == r"\beta" g = Function('gamma') # not to be confused with the gamma function assert latex(g(x, y, z)) == r"\gamma{\left (x,y,z \right )}" assert latex(g(x)) == r"\gamma{\left (x \right )}" assert latex(g) == r"\gamma" a1 = Function('a_1') assert latex(a1) == r"\operatorname{a_{1}}" assert latex(a1(x)) == r"\operatorname{a_{1}}{\left (x \right )}" # issue 5868 omega1 = Function('omega1') assert latex(omega1) == r"\omega_{1}" assert latex(omega1(x)) == r"\omega_{1}{\left (x \right )}" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(acsc(x), inv_trig_style="full") == \ r"\operatorname{arccsc}{\left (x \right )}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}" assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\left|{x}\right|" assert latex(re(x)) == r"\Re{\left(x\right)}" assert latex(re(x + y)) == r"\Re{\left(x\right)} + \Re{\left(y\right)}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" w = Wild('w') assert latex(gamma(w)) == r"\Gamma\left(w\right)" assert latex(Order(x)) == r"O\left(x\right)" assert latex(Order(x, x)) == r"O\left(x\right)" assert latex(Order(x, (x, 0))) == r"O\left(x\right)" assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)" assert latex(Order(x - y, (x, y))) == r"O\left(x - y; x\rightarrow y\right)" assert latex(Order(x, x, y)) == r"O\left(x; \left ( x, \quad y\right )\rightarrow \left ( 0, \quad 0\right )\right)" assert latex(Order(x, x, y)) == r"O\left(x; \left ( x, \quad y\right )\rightarrow \left ( 0, \quad 0\right )\right)" assert latex(Order(x, (x, oo), (y, oo))) == r"O\left(x; \left ( x, \quad y\right )\rightarrow \left ( \infty, \quad \infty\right )\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{\left(x\right)}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta\left(x\right)' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex( polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(elliptic_k(z)) == r"K\left(z\right)" assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)" assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)" assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)" assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)" assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)" assert latex(elliptic_e(z)) == r"E\left(z\right)" assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)" assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y, z)**2) == \ r"\Pi^{2}\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)" assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)' assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)' assert latex( jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)' assert latex(jacobi(n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' assert latex( gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)' assert latex(gegenbauer(n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' assert latex( chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}' assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' assert latex( chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}' assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' assert latex( assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_legendre(n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' assert latex( assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_laguerre(n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' theta = Symbol("theta", real=True) phi = Symbol("phi", real=True) assert latex(Ynm(n,m,theta,phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)' assert latex(Ynm(n, m, theta, phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}' assert latex(Znm(n,m,theta,phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)' assert latex(Znm(n, m, theta, phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}' # Test latex printing of function names with "_" assert latex( polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}" assert latex(polar_lift( 0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}" assert latex(totient(n)) == r'\phi\left(n\right)' assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}' assert latex(reduced_totient(n)) == r'\lambda\left(n\right)' assert latex(reduced_totient(n) ** 2) == r'\left(\lambda\left(n\right)\right)^{2}' assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)" assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)" assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)" assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)" assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)" assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)" assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)" assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)" assert latex(primenu(n)) == r'\nu\left(n\right)' assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}' assert latex(primeomega(n)) == r'\Omega\left(n\right)' assert latex(primeomega(n) ** 2) == r'\left(\Omega\left(n\right)\right)^{2}' assert latex(Mod(x, 7)) == r'x\bmod{7}' assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}' assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}' assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1' assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)' # some unknown function name should get rendered with \operatorname fjlkd = Function('fjlkd') assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}' # even when it is referred to without an argument assert latex(fjlkd) == r'\operatorname{fjlkd}' # test that notation passes to subclasses of the same name only def test_function_subclass_different_name(): class mygamma(gamma): pass assert latex(mygamma) == r"\operatorname{mygamma}" assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left (x \right )}" def test_hyper_printing(): from sympy import pi from sympy.abc import x, z assert latex(meijerg(Tuple(pi, pi, x), Tuple(1), (0, 1), Tuple(1, 2, 3/pi), z)) == \ r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, \frac{3}{\pi} \end{matrix} \middle| {z} \right)}' assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \ r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}' assert latex(hyper((x, 2), (3,), z)) == \ r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \ r'\\ 3 \end{matrix}\middle| {z} \right)}' assert latex(hyper(Tuple(), Tuple(1), z)) == \ r'{{}_{0}F_{1}\left(\begin{matrix} ' \ r'\\ 1 \end{matrix}\middle| {z} \right)}' def test_latex_bessel(): from sympy.functions.special.bessel import (besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn, hn1, hn2) from sympy.abc import z assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)' assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)' assert latex(besseli(n, z)) == r'I_{n}\left(z\right)' assert latex(besselk(n, z)) == r'K_{n}\left(z\right)' assert latex(hankel1(n, z**2)**2) == \ r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}' assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)' assert latex(jn(n, z)) == r'j_{n}\left(z\right)' assert latex(yn(n, z)) == r'y_{n}\left(z\right)' assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)' assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)' def test_latex_fresnel(): from sympy.functions.special.error_functions import (fresnels, fresnelc) from sympy.abc import z assert latex(fresnels(z)) == r'S\left(z\right)' assert latex(fresnelc(z)) == r'C\left(z\right)' assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)' assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)' def test_latex_brackets(): assert latex((-1)**x) == r"\left(-1\right)^{x}" def test_latex_indexed(): Psi_symbol = Symbol('Psi_0', complex=True, real=False) Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False)) symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol)) indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0])) # \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}} assert symbol_latex == '\\Psi_{0} \\overline{\\Psi_{0}}' assert indexed_latex == '\\overline{{\\Psi}_{0}} {\\Psi}_{0}' # Symbol('gamma') gives r'\gamma' assert latex(Indexed('x1',Symbol('i'))) == '{x_{1}}_{i}' assert latex(IndexedBase('gamma')) == r'\gamma' assert latex(IndexedBase('a b')) == 'a b' assert latex(IndexedBase('a_b')) == 'a_{b}' def test_latex_derivatives(): # regular "d" for ordinary derivatives assert latex(diff(x**3, x, evaluate=False)) == \ r"\frac{d}{d x} x^{3}" assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \ r"\frac{d}{d x} \left(x^{2} + \sin{\left (x \right )}\right)" assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False)) == \ r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left (x \right )}\right)" assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \ r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left (x \right )}\right)" # \partial for partial derivatives assert latex(diff(sin(x * y), x, evaluate=False)) == \ r"\frac{\partial}{\partial x} \sin{\left (x y \right )}" assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \ r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left (x y \right )}\right)" assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \ r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left (x y \right )}\right)" assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \ r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left (x y \right )}\right)" # mixed partial derivatives f = Function("f") assert latex(diff(diff(f(x,y), x, evaluate=False), y, evaluate=False)) == \ r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x,y)) assert latex(diff(diff(diff(f(x,y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \ r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x,y)) # use ordinary d when one of the variables has been integrated out assert latex(diff(Integral(exp(-x * y), (x, 0, oo)), y, evaluate=False)) == \ r"\frac{d}{d y} \int_{0}^{\infty} e^{- x y}\, dx" # Derivative wrapped in power: assert latex(diff(x, x, evaluate=False)**2) == \ r"\left(\frac{d}{d x} x\right)^{2}" assert latex(diff(f(x), x)**2) == \ r"\left(\frac{d}{d x} f{\left (x \right )}\right)^{2}" assert latex(diff(f(x), (x, n))) == \ r"\frac{d^{n}}{d x^{n}} f{\left (x \right )}" def test_latex_subs(): assert latex(Subs(x*y, ( x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}' def test_latex_integrals(): assert latex(Integral(log(x), x)) == r"\int \log{\left (x \right )}\, dx" assert latex(Integral(x**2, (x, 0, 1))) == r"\int_{0}^{1} x^{2}\, dx" assert latex(Integral(x**2, (x, 10, 20))) == r"\int_{10}^{20} x^{2}\, dx" assert latex(Integral( y*x**2, (x, 0, 1), y)) == r"\int\int_{0}^{1} x^{2} y\, dx\, dy" assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') \ == r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}" assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \ == r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$" assert latex(Integral(x, (x, 0))) == r"\int^{0} x\, dx" assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy" assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz" assert latex(Integral(x*y*z*t, x, y, z, t)) == \ r"\iiiint t x y z\, dx\, dy\, dz\, dt" assert latex(Integral(x, x, x, x, x, x, x)) == \ r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx" assert latex(Integral(x, x, y, (z, 0, 1))) == \ r"\int_{0}^{1}\int\int x\, dx\, dy\, dz" # fix issue #10806 assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}" assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz" assert latex(Integral(x+z/2, z)) == r"\int \left(x + \frac{z}{2}\right)\, dz" assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz" def test_latex_sets(): for s in (frozenset, set): assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}" assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}" assert latex(s(range(1, 13))) == \ r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}" s = FiniteSet assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}" assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}" assert latex(s(*range(1, 13))) == \ r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}" def test_latex_SetExpr(): iv = Interval(1, 3) se = SetExpr(iv) assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)" def test_latex_Range(): assert latex(Range(1, 51)) == \ r'\left\{1, 2, \ldots, 50\right\}' assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}' assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}' assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}' assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}' assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots, \infty\right\}' assert latex(Range(oo, -2, -2)) == r'\left\{\infty, \ldots, 2, 0\right\}' assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots, -\infty\right\}' def test_latex_sequences(): s1 = SeqFormula(a**2, (0, oo)) s2 = SeqPer((1, 2)) latex_str = r'\left[0, 1, 4, 9, \ldots\right]' assert latex(s1) == latex_str latex_str = r'\left[1, 2, 1, 2, \ldots\right]' assert latex(s2) == latex_str s3 = SeqFormula(a**2, (0, 2)) s4 = SeqPer((1, 2), (0, 2)) latex_str = r'\left[0, 1, 4\right]' assert latex(s3) == latex_str latex_str = r'\left[1, 2, 1\right]' assert latex(s4) == latex_str s5 = SeqFormula(a**2, (-oo, 0)) s6 = SeqPer((1, 2), (-oo, 0)) latex_str = r'\left[\ldots, 9, 4, 1, 0\right]' assert latex(s5) == latex_str latex_str = r'\left[\ldots, 2, 1, 2, 1\right]' assert latex(s6) == latex_str latex_str = r'\left[1, 3, 5, 11, \ldots\right]' assert latex(SeqAdd(s1, s2)) == latex_str latex_str = r'\left[1, 3, 5\right]' assert latex(SeqAdd(s3, s4)) == latex_str latex_str = r'\left[\ldots, 11, 5, 3, 1\right]' assert latex(SeqAdd(s5, s6)) == latex_str latex_str = r'\left[0, 2, 4, 18, \ldots\right]' assert latex(SeqMul(s1, s2)) == latex_str latex_str = r'\left[0, 2, 4\right]' assert latex(SeqMul(s3, s4)) == latex_str latex_str = r'\left[\ldots, 18, 4, 2, 0\right]' assert latex(SeqMul(s5, s6)) == latex_str def test_latex_FourierSeries(): latex_str = r'2 \sin{\left (x \right )} - \sin{\left (2 x \right )} + \frac{2 \sin{\left (3 x \right )}}{3} + \ldots' assert latex(fourier_series(x, (x, -pi, pi))) == latex_str def test_latex_FormalPowerSeries(): latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}' assert latex(fps(log(1 + x))) == latex_str def test_latex_intervals(): a = Symbol('a', real=True) assert latex(Interval(0, 0)) == r"\left\{0\right\}" assert latex(Interval(0, a)) == r"\left[0, a\right]" assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]" assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]" assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)" assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)" def test_latex_AccumuBounds(): a = Symbol('a', real=True) assert latex(AccumBounds(0, 1)) == r"\langle 0, 1\rangle" assert latex(AccumBounds(0, a)) == r"\langle 0, a\rangle" assert latex(AccumBounds(a + 1, a + 2)) == r"\langle a + 1, a + 2\rangle" def test_latex_emptyset(): assert latex(S.EmptySet) == r"\emptyset" def test_latex_commutator(): A = Operator('A') B = Operator('B') comm = Commutator(B, A) assert latex(comm.doit()) == r"- (A B - B A)" def test_latex_union(): assert latex(Union(Interval(0, 1), Interval(2, 3))) == \ r"\left[0, 1\right] \cup \left[2, 3\right]" assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \ r"\left\{1, 2\right\} \cup \left[3, 4\right]" def test_latex_symmetric_difference(): assert latex(SymmetricDifference(Interval(2,5), Interval(4,7), \ evaluate = False)) == r'\left[2, 5\right] \triangle \left[4, 7\right]' def test_latex_Complement(): assert latex(Complement(S.Reals, S.Naturals)) == r"\mathbb{R} \setminus \mathbb{N}" def test_latex_Complexes(): assert latex(S.Complexes) == r"\mathbb{C}" def test_latex_productset(): line = Interval(0, 1) bigline = Interval(0, 10) fset = FiniteSet(1, 2, 3) assert latex(line**2) == r"%s^{2}" % latex(line) assert latex(line**10) == r"%s^{10}" % latex(line) assert latex(line * bigline * fset) == r"%s \times %s \times %s" % ( latex(line), latex(bigline), latex(fset)) def test_latex_Naturals(): assert latex(S.Naturals) == r"\mathbb{N}" def test_latex_Naturals0(): assert latex(S.Naturals0) == r"\mathbb{N}_0" def test_latex_Integers(): assert latex(S.Integers) == r"\mathbb{Z}" def test_latex_ImageSet(): x = Symbol('x') assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \ r"\left\{x^{2}\; |\; x \in \mathbb{N}\right\}" y = Symbol('y') imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) assert latex(imgset) == r"\left\{x + y\; |\; x \in \left\{1, 2, 3\right\}, y \in \left\{3, 4\right\}\right\}" def test_latex_ConditionSet(): x = Symbol('x') assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \ r"\left\{x \mid x \in \mathbb{R} \wedge x^{2} = 1 \right\}" assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \ r"\left\{x \mid x^{2} = 1 \right\}" def test_latex_ComplexRegion(): assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \ r"\left\{x + y i\; |\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}" assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \ r"\left\{r \left(i \sin{\left (\theta \right )} + \cos{\left (\theta \right )}\right)\; |\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}" def test_latex_Contains(): x = Symbol('x') assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}" def test_latex_sum(): assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \ r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}" assert latex(Sum(x**2, (x, -2, 2))) == \ r"\sum_{x=-2}^{2} x^{2}" assert latex(Sum(x**2 + y, (x, -2, 2))) == \ r"\sum_{x=-2}^{2} \left(x^{2} + y\right)" assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \ r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}" def test_latex_product(): assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \ r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}" assert latex(Product(x**2, (x, -2, 2))) == \ r"\prod_{x=-2}^{2} x^{2}" assert latex(Product(x**2 + y, (x, -2, 2))) == \ r"\prod_{x=-2}^{2} \left(x^{2} + y\right)" assert latex(Product(x, (x, -2, 2))**2) == \ r"\left(\prod_{x=-2}^{2} x\right)^{2}" def test_latex_limits(): assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x" # issue 8175 f = Function('f') assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left (x \right )}" assert latex(Limit(f(x), x, 0, "-")) == r"\lim_{x \to 0^-} f{\left (x \right )}" # issue #10806 assert latex(Limit(f(x), x, 0)**2) == r"\left(\lim_{x \to 0^+} f{\left (x \right )}\right)^{2}" # bi-directional limit assert latex(Limit(f(x), x, 0, dir='+-')) == r"\lim_{x \to 0} f{\left (x \right )}" def test_latex_log(): assert latex(log(x)) == r"\log{\left (x \right )}" assert latex(ln(x)) == r"\log{\left (x \right )}" assert latex(log(x), ln_notation=True) == r"\ln{\left (x \right )}" assert latex(log(x)+log(y)) == r"\log{\left (x \right )} + \log{\left (y \right )}" assert latex(log(x)+log(y), ln_notation=True) == r"\ln{\left (x \right )} + \ln{\left (y \right )}" assert latex(pow(log(x),x)) == r"\log{\left (x \right )}^{x}" assert latex(pow(log(x),x), ln_notation=True) == r"\ln{\left (x \right )}^{x}" def test_issue_3568(): beta = Symbol(r'\beta') y = beta + x assert latex(y) in [r'\beta + x', r'x + \beta'] beta = Symbol(r'beta') y = beta + x assert latex(y) in [r'\beta + x', r'x + \beta'] def test_latex(): assert latex((2*tau)**Rational(7, 2)) == "8 \\sqrt{2} \\tau^{\\frac{7}{2}}" assert latex((2*mu)**Rational(7, 2), mode='equation*') == \ "\\begin{equation*}8 \\sqrt{2} \\mu^{\\frac{7}{2}}\\end{equation*}" assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \ "$$8 \\sqrt{2} \\mu^{\\frac{7}{2}}$$" assert latex([2/x, y]) == r"\left [ \frac{2}{x}, \quad y\right ]" def test_latex_dict(): d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4} assert latex(d) == r'\left \{ 1 : 1, \quad x : 3, \quad x^{2} : 2, \quad x^{3} : 4\right \}' D = Dict(d) assert latex(D) == r'\left \{ 1 : 1, \quad x : 3, \quad x^{2} : 2, \quad x^{3} : 4\right \}' def test_latex_list(): l = [Symbol('omega1'), Symbol('a'), Symbol('alpha')] assert latex(l) == r'\left [ \omega_{1}, \quad a, \quad \alpha\right ]' def test_latex_rational(): #tests issue 3973 assert latex(-Rational(1, 2)) == "- \\frac{1}{2}" assert latex(Rational(-1, 2)) == "- \\frac{1}{2}" assert latex(Rational(1, -2)) == "- \\frac{1}{2}" assert latex(-Rational(-1, 2)) == "\\frac{1}{2}" assert latex(-Rational(1, 2)*x) == "- \\frac{x}{2}" assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \ "- \\frac{x}{2} - \\frac{2 y}{3}" def test_latex_inverse(): #tests issue 4129 assert latex(1/x) == "\\frac{1}{x}" assert latex(1/(x + y)) == "\\frac{1}{x + y}" def test_latex_DiracDelta(): assert latex(DiracDelta(x)) == r"\delta\left(x\right)" assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}" assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)" assert latex(DiracDelta(x, 5)) == \ r"\delta^{\left( 5 \right)}\left( x \right)" assert latex(DiracDelta(x, 5)**2) == \ r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}" def test_latex_Heaviside(): assert latex(Heaviside(x)) == r"\theta\left(x\right)" assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}" def test_latex_KroneckerDelta(): assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}" assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}" # issue 6578 assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}" def test_latex_LeviCivita(): assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}" assert latex(LeviCivita(x, y, z)**2) == r"\left(\varepsilon_{x y z}\right)^{2}" assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}" assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}" assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}" def test_mode(): expr = x + y assert latex(expr) == 'x + y' assert latex(expr, mode='plain') == 'x + y' assert latex(expr, mode='inline') == '$x + y$' assert latex( expr, mode='equation*') == '\\begin{equation*}x + y\\end{equation*}' assert latex( expr, mode='equation') == '\\begin{equation}x + y\\end{equation}' def test_latex_Piecewise(): p = Piecewise((x, x < 1), (x**2, True)) assert latex(p) == "\\begin{cases} x & \\text{for}\\: x < 1 \\\\x^{2} &" \ " \\text{otherwise} \\end{cases}" assert latex(p, itex=True) == "\\begin{cases} x & \\text{for}\\: x \\lt 1 \\\\x^{2} &" \ " \\text{otherwise} \\end{cases}" p = Piecewise((x, x < 0), (0, x >= 0)) assert latex(p) == '\\begin{cases} x & \\text{for}\\: x < 0 \\\\0 &' \ ' \\text{otherwise} \\end{cases}' A, B = symbols("A B", commutative=False) p = Piecewise((A**2, Eq(A, B)), (A*B, True)) s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}" assert latex(p) == s assert latex(A*p) == r"A \left(%s\right)" % s assert latex(p*A) == r"\left(%s\right) A" % s def test_latex_Matrix(): M = Matrix([[1 + x, y], [y, x - 1]]) assert latex(M) == \ r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]' assert latex(M, mode='inline') == \ r'$\left[\begin{smallmatrix}x + 1 & y\\' \ r'y & x - 1\end{smallmatrix}\right]$' assert latex(M, mat_str='array') == \ r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]' assert latex(M, mat_str='bmatrix') == \ r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]' assert latex(M, mat_delim=None, mat_str='bmatrix') == \ r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}' M2 = Matrix(1, 11, range(11)) assert latex(M2) == \ r'\left[\begin{array}{ccccccccccc}' \ r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]' def test_latex_matrix_with_functions(): t = symbols('t') theta1 = symbols('theta1', cls=Function) M = Matrix([[sin(theta1(t)), cos(theta1(t))], [cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]]) expected = (r'\left[\begin{matrix}\sin{\left ' r'(\theta_{1}{\left (t \right )} \right )} & ' r'\cos{\left (\theta_{1}{\left (t \right )} \right ' r')}\\\cos{\left (\frac{d}{d t} \theta_{1}{\left (t ' r'\right )} \right )} & \sin{\left (\frac{d}{d t} ' r'\theta_{1}{\left (t \right )} \right ' r')}\end{matrix}\right]') assert latex(M) == expected def test_latex_NDimArray(): x, y, z, w = symbols("x y z w") for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): # Basic: scalar array M = ArrayType(x) assert latex(M) == "x" M = ArrayType([[1 / x, y], [z, w]]) M1 = ArrayType([1 / x, y, z]) M2 = tensorproduct(M1, M) M3 = tensorproduct(M, M) assert latex(M) == '\\left[\\begin{matrix}\\frac{1}{x} & y\\\\z & w\\end{matrix}\\right]' assert latex(M1) == "\\left[\\begin{matrix}\\frac{1}{x} & y & z\\end{matrix}\\right]" assert latex(M2) == r"\left[\begin{matrix}" \ r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \ r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \ r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \ r"\end{matrix}\right]" assert latex(M3) == r"""\left[\begin{matrix}"""\ r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\ r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\ r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\ r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\ r"""\end{matrix}\right]""" Mrow = ArrayType([[x, y, 1/z]]) Mcolumn = ArrayType([[x], [y], [1/z]]) Mcol2 = ArrayType([Mcolumn.tolist()]) assert latex(Mrow) == r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]" assert latex(Mcolumn) == r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]" assert latex(Mcol2) == r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]' def test_latex_mul_symbol(): assert latex(4*4**x, mul_symbol='times') == "4 \\times 4^{x}" assert latex(4*4**x, mul_symbol='dot') == "4 \\cdot 4^{x}" assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}" assert latex(4*x, mul_symbol='times') == "4 \\times x" assert latex(4*x, mul_symbol='dot') == "4 \\cdot x" assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x" def test_latex_issue_4381(): y = 4*4**log(2) assert latex(y) == r'4 \cdot 4^{\log{\left (2 \right )}}' assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left (2 \right )}}}' def test_latex_issue_4576(): assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}" assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}" assert latex(Symbol("beta_13")) == r"\beta_{13}" assert latex(Symbol("x_a_b")) == r"x_{a b}" assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}" assert latex(Symbol("x_a_b1")) == r"x_{a b1}" assert latex(Symbol("x_a_1")) == r"x_{a 1}" assert latex(Symbol("x_1_a")) == r"x_{1 a}" assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}" assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}" assert latex(Symbol("x_11^a")) == r"x^{a}_{11}" assert latex(Symbol("x_11__a")) == r"x^{a}_{11}" assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}" assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}" assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}" assert latex(Symbol("alpha_11")) == r"\alpha_{11}" assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}" assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}" assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}" assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}" def test_latex_pow_fraction(): x = Symbol('x') # Testing exp assert 'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace # Testing just e^{-x} in case future changes alter behavior of muls or fracs # In particular current output is \frac{1}{2}e^{- x} but perhaps this will # change to \frac{e^{-x}}{2} # Testing general, non-exp, power assert '3^{-x}' in latex(3**-x/2).replace(' ', '') def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) assert latex(A*B*C**-1) == "A B C^{-1}" assert latex(C**-1*A*B) == "C^{-1} A B" assert latex(A*C**-1*B) == "A C^{-1} B" def test_latex_order(): expr = x**3 + x**2*y + 3*x*y**3 + y**4 assert latex(expr, order='lex') == "x^{3} + x^{2} y + 3 x y^{3} + y^{4}" assert latex( expr, order='rev-lex') == "y^{4} + 3 x y^{3} + x^{2} y + x^{3}" def test_latex_Lambda(): assert latex(Lambda(x, x + 1)) == \ r"\left( x \mapsto x + 1 \right)" assert latex(Lambda((x, y), x + 1)) == \ r"\left( \left ( x, \quad y\right ) \mapsto x + 1 \right)" def test_latex_PolyElement(): Ruv, u,v = ring("u,v", ZZ) Rxyz, x,y,z = ring("x,y,z", Ruv) assert latex(x - x) == r"0" assert latex(x - 1) == r"x - 1" assert latex(x + 1) == r"x + 1" assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1" assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x" assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1" assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1" assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1" assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1" def test_latex_FracElement(): Fuv, u,v = field("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Fuv) assert latex(x - x) == r"0" assert latex(x - 1) == r"x - 1" assert latex(x + 1) == r"x + 1" assert latex(x/3) == r"\frac{x}{3}" assert latex(x/z) == r"\frac{x}{z}" assert latex(x*y/z) == r"\frac{x y}{z}" assert latex(x/(z*t)) == r"\frac{x}{z t}" assert latex(x*y/(z*t)) == r"\frac{x y}{z t}" assert latex((x - 1)/y) == r"\frac{x - 1}{y}" assert latex((x + 1)/y) == r"\frac{x + 1}{y}" assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}" assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}" assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}" assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}" assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}" assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}" def test_latex_Poly(): assert latex(Poly(x**2 + 2 * x, x)) == \ r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}" assert latex(Poly(x/y, x)) == \ r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}" assert latex(Poly(2.0*x + y)) == \ r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}" def test_latex_Poly_order(): assert latex(Poly([a, 1, b, 2, c, 3], x)) == \ '\\operatorname{Poly}{\\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' assert latex(Poly([a, 1, b+c, 2, 3], x)) == \ '\\operatorname{Poly}{\\left( a x^{4} + x^{3} + \\left(b + c\\right) x^{2} + 2 x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b, (x, y))) == \ '\\operatorname{Poly}{\\left( a x^{3} + x^{2}y - b xy^{2} - xy - a x - c y^{3} + y + b, x, y, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}' def test_latex_ComplexRootOf(): assert latex(rootof(x**5 + x + 3, 0)) == \ r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}" def test_latex_RootSum(): assert latex(RootSum(x**5 + x + 3, sin)) == \ r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left (x \right )} \right)\right)}" def test_settings(): raises(TypeError, lambda: latex(x*y, method="garbage")) def test_latex_numbers(): assert latex(catalan(n)) == r"C_{n}" assert latex(catalan(n)**2) == r"C_{n}^{2}" def test_latex_euler(): assert latex(euler(n)) == r"E_{n}" assert latex(euler(n, x)) == r"E_{n}\left(x\right)" assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)" def test_lamda(): assert latex(Symbol('lamda')) == r"\lambda" assert latex(Symbol('Lamda')) == r"\Lambda" def test_custom_symbol_names(): x = Symbol('x') y = Symbol('y') assert latex(x) == "x" assert latex(x, symbol_names={x: "x_i"}) == "x_i" assert latex(x + y, symbol_names={x: "x_i"}) == "x_i + y" assert latex(x**2, symbol_names={x: "x_i"}) == "x_i^{2}" assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == "x_i + y_j" def test_matAdd(): from sympy import MatrixSymbol from sympy.printing.latex import LatexPrinter C = MatrixSymbol('C', 5, 5) B = MatrixSymbol('B', 5, 5) l = LatexPrinter() assert l._print(C - 2*B) in ['- 2 B + C', 'C -2 B'] assert l._print(C + 2*B) in ['2 B + C', 'C + 2 B'] assert l._print(B - 2*C) in ['B - 2 C', '- 2 C + B'] assert l._print(B + 2*C) in ['B + 2 C', '2 C + B'] def test_matMul(): from sympy import MatrixSymbol from sympy.printing.latex import LatexPrinter A = MatrixSymbol('A', 5, 5) B = MatrixSymbol('B', 5, 5) x = Symbol('x') l = LatexPrinter() assert l._print_MatMul(2*A) == '2 A' assert l._print_MatMul(2*x*A) == '2 x A' assert l._print_MatMul(-2*A) == '- 2 A' assert l._print_MatMul(1.5*A) == '1.5 A' assert l._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A' assert l._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A' assert l._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A' assert l._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)', r'- 2 A \left(2 B + A\right)'] def test_latex_MatrixSlice(): from sympy.matrices.expressions import MatrixSymbol assert latex(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == \ r'X\left[:5, 1:9:2\right]' assert latex(MatrixSymbol('X', 10, 10)[5, :5:2]) == \ r'X\left[5, :5:2\right]' def test_latex_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert latex(where(X > 0)) == r"Domain: 0 < x_{1} \wedge x_{1} < \infty" D = Die('d1', 6) assert latex(where(D > 4)) == r"Domain: d_{1} = 5 \vee d_{1} = 6" A = Exponential('a', 1) B = Exponential('b', 1) assert latex( pspace(Tuple(A, B)).domain) == \ r"Domain: 0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty" def test_PrettyPoly(): from sympy.polys.domains import QQ F = QQ.frac_field(x, y) R = QQ[x, y] assert latex(F.convert(x/(x + y))) == latex(x/(x + y)) assert latex(R.convert(x + y)) == latex(x + y) def test_integral_transforms(): x = Symbol("x") k = Symbol("k") f = Function("f") a = Symbol("a") b = Symbol("b") assert latex(MellinTransform(f(x), x, k)) == r"\mathcal{M}_{x}\left[f{\left (x \right )}\right]\left(k\right)" assert latex(InverseMellinTransform(f(k), k, x, a, b)) == r"\mathcal{M}^{-1}_{k}\left[f{\left (k \right )}\right]\left(x\right)" assert latex(LaplaceTransform(f(x), x, k)) == r"\mathcal{L}_{x}\left[f{\left (x \right )}\right]\left(k\right)" assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == r"\mathcal{L}^{-1}_{k}\left[f{\left (k \right )}\right]\left(x\right)" assert latex(FourierTransform(f(x), x, k)) == r"\mathcal{F}_{x}\left[f{\left (x \right )}\right]\left(k\right)" assert latex(InverseFourierTransform(f(k), k, x)) == r"\mathcal{F}^{-1}_{k}\left[f{\left (k \right )}\right]\left(x\right)" assert latex(CosineTransform(f(x), x, k)) == r"\mathcal{COS}_{x}\left[f{\left (x \right )}\right]\left(k\right)" assert latex(InverseCosineTransform(f(k), k, x)) == r"\mathcal{COS}^{-1}_{k}\left[f{\left (k \right )}\right]\left(x\right)" assert latex(SineTransform(f(x), x, k)) == r"\mathcal{SIN}_{x}\left[f{\left (x \right )}\right]\left(k\right)" assert latex(InverseSineTransform(f(k), k, x)) == r"\mathcal{SIN}^{-1}_{k}\left[f{\left (k \right )}\right]\left(x\right)" def test_PolynomialRingBase(): from sympy.polys.domains import QQ assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]" assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \ r"S_<^{-1}\mathbb{Q}\left[x, y\right]" def test_categories(): from sympy.categories import (Object, IdentityMorphism, NamedMorphism, Category, Diagram, DiagramGrid) A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A2, A3, "f2") id_A1 = IdentityMorphism(A1) K1 = Category("K1") assert latex(A1) == "A_{1}" assert latex(f1) == "f_{1}:A_{1}\\rightarrow A_{2}" assert latex(id_A1) == "id:A_{1}\\rightarrow A_{1}" assert latex(f2*f1) == "f_{2}\\circ f_{1}:A_{1}\\rightarrow A_{3}" assert latex(K1) == r"\mathbf{K_{1}}" d = Diagram() assert latex(d) == r"\emptyset" d = Diagram({f1: "unique", f2: S.EmptySet}) assert latex(d) == r"\left \{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \emptyset, \quad id:A_{1}\rightarrow " \ r"A_{1} : \emptyset, \quad id:A_{2}\rightarrow A_{2} : " \ r"\emptyset, \quad id:A_{3}\rightarrow A_{3} : \emptyset, " \ r"\quad f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \ r"\quad f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right \}" d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) assert latex(d) == r"\left \{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \emptyset, \quad id:A_{1}\rightarrow " \ r"A_{1} : \emptyset, \quad id:A_{2}\rightarrow A_{2} : " \ r"\emptyset, \quad id:A_{3}\rightarrow A_{3} : \emptyset, " \ r"\quad f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \ r" \quad f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right \}" \ r"\Longrightarrow \left \{ f_{2}\circ f_{1}:A_{1}" \ r"\rightarrow A_{3} : \left\{unique\right\}\right \}" # A linear diagram. A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d = Diagram([f, g]) grid = DiagramGrid(d) assert latex(grid) == "\\begin{array}{cc}\n" \ "A & B \\\\\n" \ " & C \n" \ "\\end{array}\n" def test_Modules(): from sympy.polys.domains import QQ from sympy.polys.agca import homomorphism R = QQ.old_poly_ring(x, y) F = R.free_module(2) M = F.submodule([x, y], [1, x**2]) assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}" assert latex(M) == \ r"\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>" I = R.ideal(x**2, y) assert latex(I) == r"\left< {x^{2}},{y} \right>" Q = F / M assert latex(Q) == r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}" assert latex(Q.submodule([1, x**3/2], [2, y])) == \ r"\left< {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}},{{\left[ {2},{y} \right]} + {\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}} \right>" h = homomorphism(QQ.old_poly_ring(x).free_module(2), QQ.old_poly_ring(x).free_module(2), [0, 0]) assert latex(h) == r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : {{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}" def test_QuotientRing(): from sympy.polys.domains import QQ R = QQ.old_poly_ring(x)/[x**2 + 1] assert latex( R) == r"\frac{\mathbb{Q}\left[x\right]}{\left< {x^{2} + 1} \right>}" assert latex(R.one) == r"{1} + {\left< {x^{2} + 1} \right>}" def test_Tr(): #TODO: Handle indices A, B = symbols('A B', commutative=False) t = Tr(A*B) assert latex(t) == r'\mbox{Tr}\left(A B\right)' def test_Adjoint(): from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(Adjoint(X)) == r'X^\dagger' assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^\dagger' assert latex(Adjoint(X) + Adjoint(Y)) == r'X^\dagger + Y^\dagger' assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^\dagger' assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^\dagger X^\dagger' assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^\dagger' assert latex(Adjoint(X)**2) == r'\left(X^\dagger\right)^{2}' assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^\dagger' assert latex(Inverse(Adjoint(X))) == r'\left(X^\dagger\right)^{-1}' assert latex(Adjoint(Transpose(X))) == r'\left(X^T\right)^\dagger' assert latex(Transpose(Adjoint(X))) == r'\left(X^\dagger\right)^T' def test_Hadamard(): from sympy.matrices import MatrixSymbol, HadamardProduct X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}' assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y' def test_ZeroMatrix(): from sympy import ZeroMatrix assert latex(ZeroMatrix(1, 1)) == r"\mathbb{0}" def test_boolean_args_order(): syms = symbols('a:f') expr = And(*syms) assert latex(expr) == 'a \\wedge b \\wedge c \\wedge d \\wedge e \\wedge f' expr = Or(*syms) assert latex(expr) == 'a \\vee b \\vee c \\vee d \\vee e \\vee f' expr = Equivalent(*syms) assert latex(expr) == 'a \\Leftrightarrow b \\Leftrightarrow c \\Leftrightarrow d \\Leftrightarrow e \\Leftrightarrow f' expr = Xor(*syms) assert latex(expr) == 'a \\veebar b \\veebar c \\veebar d \\veebar e \\veebar f' def test_imaginary(): i = sqrt(-1) assert latex(i) == r'i' def test_builtins_without_args(): assert latex(sin) == r'\sin' assert latex(cos) == r'\cos' assert latex(tan) == r'\tan' assert latex(log) == r'\log' assert latex(Ei) == r'\operatorname{Ei}' assert latex(zeta) == r'\zeta' def test_latex_greek_functions(): # bug because capital greeks that have roman equivalents should not use # \Alpha, \Beta, \Eta, etc. s = Function('Alpha') assert latex(s) == r'A' assert latex(s(x)) == r'A{\left (x \right )}' s = Function('Beta') assert latex(s) == r'B' s = Function('Eta') assert latex(s) == r'H' assert latex(s(x)) == r'H{\left (x \right )}' # bug because sympy.core.numbers.Pi is special p = Function('Pi') # assert latex(p(x)) == r'\Pi{\left (x \right )}' assert latex(p) == r'\Pi' # bug because not all greeks are included c = Function('chi') assert latex(c(x)) == r'\chi{\left (x \right )}' assert latex(c) == r'\chi' def test_translate(): s = 'Alpha' assert translate(s) == 'A' s = 'Beta' assert translate(s) == 'B' s = 'Eta' assert translate(s) == 'H' s = 'omicron' assert translate(s) == 'o' s = 'Pi' assert translate(s) == r'\Pi' s = 'pi' assert translate(s) == r'\pi' s = 'LamdaHatDOT' assert translate(s) == r'\dot{\hat{\Lambda}}' def test_other_symbols(): from sympy.printing.latex import other_symbols for s in other_symbols: assert latex(symbols(s)) == "\\"+s def test_modifiers(): # Test each modifier individually in the simplest case (with funny capitalizations) assert latex(symbols("xMathring")) == r"\mathring{x}" assert latex(symbols("xCheck")) == r"\check{x}" assert latex(symbols("xBreve")) == r"\breve{x}" assert latex(symbols("xAcute")) == r"\acute{x}" assert latex(symbols("xGrave")) == r"\grave{x}" assert latex(symbols("xTilde")) == r"\tilde{x}" assert latex(symbols("xPrime")) == r"{x}'" assert latex(symbols("xddDDot")) == r"\ddddot{x}" assert latex(symbols("xDdDot")) == r"\dddot{x}" assert latex(symbols("xDDot")) == r"\ddot{x}" assert latex(symbols("xBold")) == r"\boldsymbol{x}" assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|" assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle" assert latex(symbols("xHat")) == r"\hat{x}" assert latex(symbols("xDot")) == r"\dot{x}" assert latex(symbols("xBar")) == r"\bar{x}" assert latex(symbols("xVec")) == r"\vec{x}" assert latex(symbols("xAbs")) == r"\left|{x}\right|" assert latex(symbols("xMag")) == r"\left|{x}\right|" assert latex(symbols("xPrM")) == r"{x}'" assert latex(symbols("xBM")) == r"\boldsymbol{x}" # Test strings that are *only* the names of modifiers assert latex(symbols("Mathring")) == r"Mathring" assert latex(symbols("Check")) == r"Check" assert latex(symbols("Breve")) == r"Breve" assert latex(symbols("Acute")) == r"Acute" assert latex(symbols("Grave")) == r"Grave" assert latex(symbols("Tilde")) == r"Tilde" assert latex(symbols("Prime")) == r"Prime" assert latex(symbols("DDot")) == r"\dot{D}" assert latex(symbols("Bold")) == r"Bold" assert latex(symbols("NORm")) == r"NORm" assert latex(symbols("AVG")) == r"AVG" assert latex(symbols("Hat")) == r"Hat" assert latex(symbols("Dot")) == r"Dot" assert latex(symbols("Bar")) == r"Bar" assert latex(symbols("Vec")) == r"Vec" assert latex(symbols("Abs")) == r"Abs" assert latex(symbols("Mag")) == r"Mag" assert latex(symbols("PrM")) == r"PrM" assert latex(symbols("BM")) == r"BM" assert latex(symbols("hbar")) == r"\hbar" # Check a few combinations assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}" assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}" assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|" # Check a couple big, ugly combinations assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}" assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}" def test_greek_symbols(): assert latex(Symbol('alpha')) == r'\alpha' assert latex(Symbol('beta')) == r'\beta' assert latex(Symbol('gamma')) == r'\gamma' assert latex(Symbol('delta')) == r'\delta' assert latex(Symbol('epsilon')) == r'\epsilon' assert latex(Symbol('zeta')) == r'\zeta' assert latex(Symbol('eta')) == r'\eta' assert latex(Symbol('theta')) == r'\theta' assert latex(Symbol('iota')) == r'\iota' assert latex(Symbol('kappa')) == r'\kappa' assert latex(Symbol('lambda')) == r'\lambda' assert latex(Symbol('mu')) == r'\mu' assert latex(Symbol('nu')) == r'\nu' assert latex(Symbol('xi')) == r'\xi' assert latex(Symbol('omicron')) == r'o' assert latex(Symbol('pi')) == r'\pi' assert latex(Symbol('rho')) == r'\rho' assert latex(Symbol('sigma')) == r'\sigma' assert latex(Symbol('tau')) == r'\tau' assert latex(Symbol('upsilon')) == r'\upsilon' assert latex(Symbol('phi')) == r'\phi' assert latex(Symbol('chi')) == r'\chi' assert latex(Symbol('psi')) == r'\psi' assert latex(Symbol('omega')) == r'\omega' assert latex(Symbol('Alpha')) == r'A' assert latex(Symbol('Beta')) == r'B' assert latex(Symbol('Gamma')) == r'\Gamma' assert latex(Symbol('Delta')) == r'\Delta' assert latex(Symbol('Epsilon')) == r'E' assert latex(Symbol('Zeta')) == r'Z' assert latex(Symbol('Eta')) == r'H' assert latex(Symbol('Theta')) == r'\Theta' assert latex(Symbol('Iota')) == r'I' assert latex(Symbol('Kappa')) == r'K' assert latex(Symbol('Lambda')) == r'\Lambda' assert latex(Symbol('Mu')) == r'M' assert latex(Symbol('Nu')) == r'N' assert latex(Symbol('Xi')) == r'\Xi' assert latex(Symbol('Omicron')) == r'O' assert latex(Symbol('Pi')) == r'\Pi' assert latex(Symbol('Rho')) == r'P' assert latex(Symbol('Sigma')) == r'\Sigma' assert latex(Symbol('Tau')) == r'T' assert latex(Symbol('Upsilon')) == r'\Upsilon' assert latex(Symbol('Phi')) == r'\Phi' assert latex(Symbol('Chi')) == r'X' assert latex(Symbol('Psi')) == r'\Psi' assert latex(Symbol('Omega')) == r'\Omega' assert latex(Symbol('varepsilon')) == r'\varepsilon' assert latex(Symbol('varkappa')) == r'\varkappa' assert latex(Symbol('varphi')) == r'\varphi' assert latex(Symbol('varpi')) == r'\varpi' assert latex(Symbol('varrho')) == r'\varrho' assert latex(Symbol('varsigma')) == r'\varsigma' assert latex(Symbol('vartheta')) == r'\vartheta' @XFAIL def test_builtin_without_args_mismatched_names(): assert latex(CosineTransform) == r'\mathcal{COS}' def test_builtin_no_args(): assert latex(Chi) == r'\operatorname{Chi}' assert latex(beta) == r'\operatorname{B}' assert latex(gamma) == r'\Gamma' assert latex(KroneckerDelta) == r'\delta' assert latex(DiracDelta) == r'\delta' assert latex(lowergamma) == r'\gamma' def test_issue_6853(): p = Function('Pi') assert latex(p(x)) == r"\Pi{\left (x \right )}" def test_Mul(): e = Mul(-2, x + 1, evaluate=False) assert latex(e) == r'- 2 \left(x + 1\right)' e = Mul(2, x + 1, evaluate=False) assert latex(e) == r'2 \left(x + 1\right)' e = Mul(S.One/2, x + 1, evaluate=False) assert latex(e) == r'\frac{x + 1}{2}' e = Mul(y, x + 1, evaluate=False) assert latex(e) == r'y \left(x + 1\right)' e = Mul(-y, x + 1, evaluate=False) assert latex(e) == r'- y \left(x + 1\right)' e = Mul(-2, x + 1) assert latex(e) == r'- 2 x - 2' e = Mul(2, x + 1) assert latex(e) == r'2 x + 2' def test_Pow(): e = Pow(2, 2, evaluate=False) assert latex(e) == r'2^{2}' def test_issue_7180(): assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y" assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y" def test_issue_8409(): assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}" def test_issue_8470(): from sympy.parsing.sympy_parser import parse_expr e = parse_expr("-B*A", evaluate=False) assert latex(e) == r"A \left(- B\right)" def test_issue_7117(): # See also issue #5031 (hence the evaluate=False in these). e = Eq(x + 1, 2*x) q = Mul(2, e, evaluate=False) assert latex(q) == r"2 \left(x + 1 = 2 x\right)" q = Add(6, e, evaluate=False) assert latex(q) == r"6 + \left(x + 1 = 2 x\right)" q = Pow(e, 2, evaluate=False) assert latex(q) == r"\left(x + 1 = 2 x\right)^{2}" def test_issue_15439(): x = MatrixSymbol('x', 2, 2) y = MatrixSymbol('y', 2, 2) assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)" assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)" assert latex((x * y).subs(x, -x)) == r"- x y" def test_issue_2934(): assert latex(Symbol(r'\frac{a_1}{b_1}')) == '\\frac{a_1}{b_1}' def test_issue_10489(): latexSymbolWithBrace = 'C_{x_{0}}' s = Symbol(latexSymbolWithBrace) assert latex(s) == latexSymbolWithBrace assert latex(cos(s)) == r'\cos{\left (C_{x_{0}} \right )}' def test_issue_12886(): m__1, l__1 = symbols('m__1, l__1') assert latex(m__1**2 + l__1**2) == r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}' def test_issue_13559(): from sympy.parsing.sympy_parser import parse_expr expr = parse_expr('5/1', evaluate=False) assert latex(expr) == r"\frac{5}{1}" def test_issue_13651(): expr = c + Mul(-1, a + b, evaluate=False) assert latex(expr) == r"c - \left(a + b\right)" def test_latex_UnevaluatedExpr(): x = symbols("x") he = UnevaluatedExpr(1/x) assert latex(he) == latex(1/x) == r"\frac{1}{x}" assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}" assert latex(he + 1) == r"1 + \frac{1}{x}" assert latex(x*he) == r"x \frac{1}{x}" def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert latex(A[0, 0]) == r"A_{0, 0}" assert latex(3 * A[0, 0]) == r"3 A_{0, 0}" F = C[0, 0].subs(C, A - B) assert latex(F) == r"\left(A - B\right)_{0, 0}" def test_MatrixSymbol_printing(): # test cases for issue #14237 A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert latex(-A) == r"- A" assert latex(A - A*B - B) == r"A - A B - B" assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B" def test_Quaternion_latex_printing(): q = Quaternion(x, y, z, t) assert latex(q) == "x + y i + z j + t k" q = Quaternion(x,y,z,x*t) assert latex(q) == "x + y i + z j + t x k" q = Quaternion(x,y,z,x+t) assert latex(q) == r"x + y i + z j + \left(t + x\right) k" def test_TensorProduct_printing(): from sympy.tensor.functions import TensorProduct A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert latex(TensorProduct(A, B)) == r"A \otimes B" def test_WedgeProduct_printing(): from sympy.diffgeom.rn import R2 from sympy.diffgeom import WedgeProduct wp = WedgeProduct(R2.dx, R2.dy) assert latex(wp) == r"\mathrm{d}x \wedge \mathrm{d}y" def test_issue_14041(): import sympy.physics.mechanics as me A_frame = me.ReferenceFrame('A') thetad, phid = me.dynamicsymbols('theta, phi', 1) L = Symbol('L') assert latex(L*(phid + thetad)**2*A_frame.x) == \ r"L \left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}" assert latex((phid + thetad)**2*A_frame.x) == \ r"\left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}" assert latex((phid*thetad)**a*A_frame.x) == \ r"\left(\dot{\phi} \dot{\theta}\right)^{a}\mathbf{\hat{a}_x}" def test_issue_9216(): expr_1 = Pow(1, -1, evaluate=False) assert latex(expr_1) == r"1^{-1}" expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False) assert latex(expr_2) == r"1^{1^{-1}}" expr_3 = Pow(3, -2, evaluate=False) assert latex(expr_3) == r"\frac{1}{9}" expr_4 = Pow(1, -2, evaluate=False) assert latex(expr_4) == r"1^{-2}" def test_latex_printer_tensor(): from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead L = TensorIndexType("L") i, j, k, l = tensor_indices("i j k l", L) i0 = tensor_indices("i_0", L) A, B, C, D = tensorhead("A B C D", [L], [[1]]) H = tensorhead("H", [L, L], [[1], [1]]) K = tensorhead("K", [L, L, L, L], [[1], [1], [1], [1]]) assert latex(i) == "{}^{i}" assert latex(-i) == "{}_{i}" expr = A(i) assert latex(expr) == "A{}^{i}" expr = A(i0) assert latex(expr) == "A{}^{i_{0}}" expr = A(-i) assert latex(expr) == "A{}_{i}" expr = -3*A(i) assert latex(expr) == r"-3A{}^{i}" expr = K(i, j, -k, -i0) assert latex(expr) == "K{}^{ij}{}_{ki_{0}}" expr = K(i, -j, -k, i0) assert latex(expr) == "K{}^{i}{}_{jk}{}^{i_{0}}" expr = K(i, -j, k, -i0) assert latex(expr) == "K{}^{i}{}_{j}{}^{k}{}_{i_{0}}" expr = H(i, -j) assert latex(expr) == "H{}^{i}{}_{j}" expr = H(i, j) assert latex(expr) == "H{}^{ij}" expr = H(-i, -j) assert latex(expr) == "H{}_{ij}" expr = (1+x)*A(i) assert latex(expr) == r"\left(x + 1\right)A{}^{i}" expr = H(i, -i) assert latex(expr) == "H{}^{L_{0}}{}_{L_{0}}" expr = H(i, -j)*A(j)*B(k) assert latex(expr) == "H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}" expr = A(i) + 3*B(i) assert latex(expr) == "3B{}^{i} + A{}^{i}" ## Test ``TensorElement``: from sympy.tensor.tensor import TensorElement expr = TensorElement(K(i,j,k,l), {i:3, k:2}) assert latex(expr) == 'K{}^{i=3,j,k=2,l}' expr = TensorElement(K(i,j,k,l), {i:3}) assert latex(expr) == 'K{}^{i=3,jkl}' expr = TensorElement(K(i,-j,k,l), {i:3, k:2}) assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2,l}' expr = TensorElement(K(i,-j,k,-l), {i:3, k:2}) assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}' expr = TensorElement(K(i,j,-k,-l), {i:3, -k:2}) assert latex(expr) == 'K{}^{i=3,j}{}_{k=2,l}' expr = TensorElement(K(i,j,-k,-l), {i:3}) assert latex(expr) == 'K{}^{i=3,j}{}_{kl}' def test_trace(): # Issue 15303 from sympy import trace A = MatrixSymbol("A", 2, 2) assert latex(trace(A)) == r"\mathrm{tr}\left (A \right )" assert latex(trace(A**2)) == r"\mathrm{tr}\left (A^{2} \right )" def test_print_basic(): # Issue 15303 from sympy import Basic, Expr # dummy class for testing printing where the function is not implemented in latex.py class UnimplementedExpr(Expr): def __new__(cls, e): return Basic.__new__(cls, e) # dummy function for testing def unimplemented_expr(expr): return UnimplementedExpr(expr).doit() # override class name to use superscript / subscript def unimplemented_expr_sup_sub(expr): result = UnimplementedExpr(expr) result.__class__.__name__ = 'UnimplementedExpr_x^1' return result assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)' assert latex(unimplemented_expr(x**2)) == r'UnimplementedExpr\left(x^{2}\right)' assert latex(unimplemented_expr_sup_sub(x)) == r'UnimplementedExpr^{1}_{x}\left(x\right)'
f899eb0780e434979a7b051d8c6ebc8343ee1c6ff6e1ee24530d78d24008f1ea
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, Tuple, Symbol) from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow from sympy.functions import Piecewise, sqrt, ceiling, exp, sin, cos from sympy.utilities.pytest import raises from sympy.utilities.lambdify import implemented_function from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity, HadamardProduct, SparseMatrix) from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli, besselk, hankel1, hankel2, airyai, airybi, airyaiprime, airybiprime) from sympy.utilities.pytest import XFAIL from sympy.core.compatibility import range from sympy import julia_code x, y, z = symbols('x,y,z') def test_Integer(): assert julia_code(Integer(67)) == "67" assert julia_code(Integer(-1)) == "-1" def test_Rational(): assert julia_code(Rational(3, 7)) == "3/7" assert julia_code(Rational(18, 9)) == "2" assert julia_code(Rational(3, -7)) == "-3/7" assert julia_code(Rational(-3, -7)) == "3/7" assert julia_code(x + Rational(3, 7)) == "x + 3/7" assert julia_code(Rational(3, 7)*x) == "3*x/7" def test_Function(): assert julia_code(sin(x) ** cos(x)) == "sin(x).^cos(x)" assert julia_code(abs(x)) == "abs(x)" assert julia_code(ceiling(x)) == "ceil(x)" def test_Pow(): assert julia_code(x**3) == "x.^3" assert julia_code(x**(y**3)) == "x.^(y.^3)" assert julia_code(x**Rational(2, 3)) == 'x.^(2/3)' g = implemented_function('g', Lambda(x, 2*x)) assert julia_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "(3.5*2*x).^(-x + y.^x)./(x.^2 + y)" # For issue 14160 assert julia_code(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), evaluate=False)) == '-2*x./(y.*y)' def test_basic_ops(): assert julia_code(x*y) == "x.*y" assert julia_code(x + y) == "x + y" assert julia_code(x - y) == "x - y" assert julia_code(-x) == "-x" def test_1_over_x_and_sqrt(): # 1.0 and 0.5 would do something different in regular StrPrinter, # but these are exact in IEEE floating point so no different here. assert julia_code(1/x) == '1./x' assert julia_code(x**-1) == julia_code(x**-1.0) == '1./x' assert julia_code(1/sqrt(x)) == '1./sqrt(x)' assert julia_code(x**-S.Half) == julia_code(x**-0.5) == '1./sqrt(x)' assert julia_code(sqrt(x)) == 'sqrt(x)' assert julia_code(x**S.Half) == julia_code(x**0.5) == 'sqrt(x)' assert julia_code(1/pi) == '1/pi' assert julia_code(pi**-1) == julia_code(pi**-1.0) == '1/pi' assert julia_code(pi**-0.5) == '1/sqrt(pi)' def test_mix_number_mult_symbols(): assert julia_code(3*x) == "3*x" assert julia_code(pi*x) == "pi*x" assert julia_code(3/x) == "3./x" assert julia_code(pi/x) == "pi./x" assert julia_code(x/3) == "x/3" assert julia_code(x/pi) == "x/pi" assert julia_code(x*y) == "x.*y" assert julia_code(3*x*y) == "3*x.*y" assert julia_code(3*pi*x*y) == "3*pi*x.*y" assert julia_code(x/y) == "x./y" assert julia_code(3*x/y) == "3*x./y" assert julia_code(x*y/z) == "x.*y./z" assert julia_code(x/y*z) == "x.*z./y" assert julia_code(1/x/y) == "1./(x.*y)" assert julia_code(2*pi*x/y/z) == "2*pi*x./(y.*z)" assert julia_code(3*pi/x) == "3*pi./x" assert julia_code(S(3)/5) == "3/5" assert julia_code(S(3)/5*x) == "3*x/5" assert julia_code(x/y/z) == "x./(y.*z)" assert julia_code((x+y)/z) == "(x + y)./z" assert julia_code((x+y)/(z+x)) == "(x + y)./(x + z)" assert julia_code((x+y)/EulerGamma) == "(x + y)/eulergamma" assert julia_code(x/3/pi) == "x/(3*pi)" assert julia_code(S(3)/5*x*y/pi) == "3*x.*y/(5*pi)" def test_mix_number_pow_symbols(): assert julia_code(pi**3) == 'pi^3' assert julia_code(x**2) == 'x.^2' assert julia_code(x**(pi**3)) == 'x.^(pi^3)' assert julia_code(x**y) == 'x.^y' assert julia_code(x**(y**z)) == 'x.^(y.^z)' assert julia_code((x**y)**z) == '(x.^y).^z' def test_imag(): I = S('I') assert julia_code(I) == "im" assert julia_code(5*I) == "5im" assert julia_code((S(3)/2)*I) == "3*im/2" assert julia_code(3+4*I) == "3 + 4im" def test_constants(): assert julia_code(pi) == "pi" assert julia_code(oo) == "Inf" assert julia_code(-oo) == "-Inf" assert julia_code(S.NegativeInfinity) == "-Inf" assert julia_code(S.NaN) == "NaN" assert julia_code(S.Exp1) == "e" assert julia_code(exp(1)) == "e" def test_constants_other(): assert julia_code(2*GoldenRatio) == "2*golden" assert julia_code(2*Catalan) == "2*catalan" assert julia_code(2*EulerGamma) == "2*eulergamma" def test_boolean(): assert julia_code(x & y) == "x && y" assert julia_code(x | y) == "x || y" assert julia_code(~x) == "!x" assert julia_code(x & y & z) == "x && y && z" assert julia_code(x | y | z) == "x || y || z" assert julia_code((x & y) | z) == "z || x && y" assert julia_code((x | y) & z) == "z && (x || y)" def test_Matrices(): assert julia_code(Matrix(1, 1, [10])) == "[10]" A = Matrix([[1, sin(x/2), abs(x)], [0, 1, pi], [0, exp(1), ceiling(x)]]); expected = ("[1 sin(x/2) abs(x);\n" "0 1 pi;\n" "0 e ceil(x)]") assert julia_code(A) == expected # row and columns assert julia_code(A[:,0]) == "[1, 0, 0]" assert julia_code(A[0,:]) == "[1 sin(x/2) abs(x)]" # empty matrices assert julia_code(Matrix(0, 0, [])) == 'zeros(0, 0)' assert julia_code(Matrix(0, 3, [])) == 'zeros(0, 3)' # annoying to read but correct assert julia_code(Matrix([[x, x - y, -y]])) == "[x x - y -y]" def test_vector_entries_hadamard(): # For a row or column, user might to use the other dimension A = Matrix([[1, sin(2/x), 3*pi/x/5]]) assert julia_code(A) == "[1 sin(2./x) 3*pi./(5*x)]" assert julia_code(A.T) == "[1, sin(2./x), 3*pi./(5*x)]" @XFAIL def test_Matrices_entries_not_hadamard(): # For Matrix with col >= 2, row >= 2, they need to be scalars # FIXME: is it worth worrying about this? Its not wrong, just # leave it user's responsibility to put scalar data for x. A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]]) expected = ("[1 sin(2/x) 3*pi/(5*x);\n" "1 2 x*y]") # <- we give x.*y assert julia_code(A) == expected def test_MatrixSymbol(): n = Symbol('n', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) assert julia_code(A*B) == "A*B" assert julia_code(B*A) == "B*A" assert julia_code(2*A*B) == "2*A*B" assert julia_code(B*2*A) == "2*B*A" assert julia_code(A*(B + 3*Identity(n))) == "A*(3*eye(n) + B)" assert julia_code(A**(x**2)) == "A^(x.^2)" assert julia_code(A**3) == "A^3" assert julia_code(A**(S.Half)) == "A^(1/2)" def test_special_matrices(): assert julia_code(6*Identity(3)) == "6*eye(3)" def test_containers(): assert julia_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \ "Any[1, 2, 3, Any[4, 5, Any[6, 7]], 8, Any[9, 10], 11]" assert julia_code((1, 2, (3, 4))) == "(1, 2, (3, 4))" assert julia_code([1]) == "Any[1]" assert julia_code((1,)) == "(1,)" assert julia_code(Tuple(*[1, 2, 3])) == "(1, 2, 3)" assert julia_code((1, x*y, (3, x**2))) == "(1, x.*y, (3, x.^2))" # scalar, matrix, empty matrix and empty list assert julia_code((1, eye(3), Matrix(0, 0, []), [])) == "(1, [1 0 0;\n0 1 0;\n0 0 1], zeros(0, 0), Any[])" def test_julia_noninline(): source = julia_code((x+y)/Catalan, assign_to='me', inline=False) expected = ( "const Catalan = %s\n" "me = (x + y)/Catalan" ) % Catalan.evalf(17) assert source == expected def test_julia_piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) assert julia_code(expr) == "((x < 1) ? (x) : (x.^2))" assert julia_code(expr, assign_to="r") == ( "r = ((x < 1) ? (x) : (x.^2))") assert julia_code(expr, assign_to="r", inline=False) == ( "if (x < 1)\n" " r = x\n" "else\n" " r = x.^2\n" "end") expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True)) expected = ("((x < 1) ? (x.^2) :\n" "(x < 2) ? (x.^3) :\n" "(x < 3) ? (x.^4) : (x.^5))") assert julia_code(expr) == expected assert julia_code(expr, assign_to="r") == "r = " + expected assert julia_code(expr, assign_to="r", inline=False) == ( "if (x < 1)\n" " r = x.^2\n" "elseif (x < 2)\n" " r = x.^3\n" "elseif (x < 3)\n" " r = x.^4\n" "else\n" " r = x.^5\n" "end") # Check that Piecewise without a True (default) condition error expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) raises(ValueError, lambda: julia_code(expr)) def test_julia_piecewise_times_const(): pw = Piecewise((x, x < 1), (x**2, True)) assert julia_code(2*pw) == "2*((x < 1) ? (x) : (x.^2))" assert julia_code(pw/x) == "((x < 1) ? (x) : (x.^2))./x" assert julia_code(pw/(x*y)) == "((x < 1) ? (x) : (x.^2))./(x.*y)" assert julia_code(pw/3) == "((x < 1) ? (x) : (x.^2))/3" def test_julia_matrix_assign_to(): A = Matrix([[1, 2, 3]]) assert julia_code(A, assign_to='a') == "a = [1 2 3]" A = Matrix([[1, 2], [3, 4]]) assert julia_code(A, assign_to='A') == "A = [1 2;\n3 4]" def test_julia_matrix_assign_to_more(): # assigning to Symbol or MatrixSymbol requires lhs/rhs match A = Matrix([[1, 2, 3]]) B = MatrixSymbol('B', 1, 3) C = MatrixSymbol('C', 2, 3) assert julia_code(A, assign_to=B) == "B = [1 2 3]" raises(ValueError, lambda: julia_code(A, assign_to=x)) raises(ValueError, lambda: julia_code(A, assign_to=C)) def test_julia_matrix_1x1(): A = Matrix([[3]]) B = MatrixSymbol('B', 1, 1) C = MatrixSymbol('C', 1, 2) assert julia_code(A, assign_to=B) == "B = [3]" # FIXME? #assert julia_code(A, assign_to=x) == "x = [3]" raises(ValueError, lambda: julia_code(A, assign_to=C)) def test_julia_matrix_elements(): A = Matrix([[x, 2, x*y]]) assert julia_code(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x.^2 + x.*y + 2" A = MatrixSymbol('AA', 1, 3) assert julia_code(A) == "AA" assert julia_code(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \ "sin(AA[1,2]) + AA[1,1].^2 + AA[1,3]" assert julia_code(sum(A)) == "AA[1,1] + AA[1,2] + AA[1,3]" def test_julia_boolean(): assert julia_code(True) == "true" assert julia_code(S.true) == "true" assert julia_code(False) == "false" assert julia_code(S.false) == "false" def test_julia_not_supported(): assert julia_code(S.ComplexInfinity) == ( "# Not supported in Julia:\n" "# ComplexInfinity\n" "zoo" ) f = Function('f') assert julia_code(f(x).diff(x)) == ( "# Not supported in Julia:\n" "# Derivative\n" "Derivative(f(x), x)" ) def test_trick_indent_with_end_else_words(): # words starting with "end" or "else" do not confuse the indenter t1 = S('endless'); t2 = S('elsewhere'); pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True)) assert julia_code(pw, inline=False) == ( "if (x < 0)\n" " endless\n" "elseif (x <= 1)\n" " elsewhere\n" "else\n" " 1\n" "end") def test_haramard(): A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) v = MatrixSymbol('v', 3, 1) h = MatrixSymbol('h', 1, 3) C = HadamardProduct(A, B) assert julia_code(C) == "A.*B" assert julia_code(C*v) == "(A.*B)*v" assert julia_code(h*C*v) == "h*(A.*B)*v" assert julia_code(C*A) == "(A.*B)*A" # mixing Hadamard and scalar strange b/c we vectorize scalars assert julia_code(C*x*y) == "(x.*y)*(A.*B)" def test_sparse(): M = SparseMatrix(5, 6, {}) M[2, 2] = 10; M[1, 2] = 20; M[1, 3] = 22; M[0, 3] = 30; M[3, 0] = x*y; assert julia_code(M) == ( "sparse([4, 2, 3, 1, 2], [1, 3, 3, 4, 4], [x.*y, 20, 10, 30, 22], 5, 6)" ) def test_specfun(): n = Symbol('n') for f in [besselj, bessely, besseli, besselk]: assert julia_code(f(n, x)) == f.__name__ + '(n, x)' for f in [airyai, airyaiprime, airybi, airybiprime]: assert julia_code(f(x)) == f.__name__ + '(x)' assert julia_code(hankel1(n, x)) == 'hankelh1(n, x)' assert julia_code(hankel2(n, x)) == 'hankelh2(n, x)' assert julia_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2' assert julia_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2' def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(julia_code(A[0, 0]) == "A[1,1]") assert(julia_code(3 * A[0, 0]) == "3*A[1,1]") F = C[0, 0].subs(C, A - B) assert(julia_code(F) == "(A - B)[1,1]")
5475e56e3d6105fbf16ffcc74c070ed4eb3382596df7554a4a040a28b26ec37f
from sympy.core import (S, pi, oo, Symbol, symbols, Rational, Integer, GoldenRatio, EulerGamma, Catalan, Lambda, Dummy, Eq) from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt, gamma, sign, Max, Min, factorial, beta) from sympy.sets import Range from sympy.logic import ITE from sympy.codegen import For, aug_assign, Assignment from sympy.utilities.pytest import raises from sympy.printing.rcode import RCodePrinter from sympy.utilities.lambdify import implemented_function from sympy.tensor import IndexedBase, Idx from sympy.matrices import Matrix, MatrixSymbol from sympy import rcode from difflib import Differ from pprint import pprint x, y, z = symbols('x,y,z') def test_printmethod(): class fabs(Abs): def _rcode(self, printer): return "abs(%s)" % printer._print(self.args[0]) assert rcode(fabs(x)) == "abs(x)" def test_rcode_sqrt(): assert rcode(sqrt(x)) == "sqrt(x)" assert rcode(x**0.5) == "sqrt(x)" assert rcode(sqrt(x)) == "sqrt(x)" def test_rcode_Pow(): assert rcode(x**3) == "x^3" assert rcode(x**(y**3)) == "x^(y^3)" g = implemented_function('g', Lambda(x, 2*x)) assert rcode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "(3.5*2*x)^(-x + y^x)/(x^2 + y)" assert rcode(x**-1.0) == '1.0/x' assert rcode(x**Rational(2, 3)) == 'x^(2.0/3.0)' _cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"), (lambda base, exp: not exp.is_integer, "pow")] assert rcode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)' assert rcode(x**3.2, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 3.2)' def test_rcode_Max(): # Test for gh-11926 assert rcode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))' def test_rcode_constants_mathh(): p=rcode(exp(1)) assert rcode(exp(1)) == "exp(1)" assert rcode(pi) == "pi" assert rcode(oo) == "Inf" assert rcode(-oo) == "-Inf" def test_rcode_constants_other(): assert rcode(2*GoldenRatio) == "GoldenRatio = 1.61803398874989;\n2*GoldenRatio" assert rcode( 2*Catalan) == "Catalan = 0.915965594177219;\n2*Catalan" assert rcode(2*EulerGamma) == "EulerGamma = 0.577215664901533;\n2*EulerGamma" def test_rcode_Rational(): assert rcode(Rational(3, 7)) == "3.0/7.0" assert rcode(Rational(18, 9)) == "2" assert rcode(Rational(3, -7)) == "-3.0/7.0" assert rcode(Rational(-3, -7)) == "3.0/7.0" assert rcode(x + Rational(3, 7)) == "x + 3.0/7.0" assert rcode(Rational(3, 7)*x) == "(3.0/7.0)*x" def test_rcode_Integer(): assert rcode(Integer(67)) == "67" assert rcode(Integer(-1)) == "-1" def test_rcode_functions(): assert rcode(sin(x) ** cos(x)) == "sin(x)^cos(x)" assert rcode(factorial(x) + gamma(y)) == "factorial(x) + gamma(y)" assert rcode(beta(Min(x, y), Max(x, y))) == "beta(min(x, y), max(x, y))" def test_rcode_inline_function(): x = symbols('x') g = implemented_function('g', Lambda(x, 2*x)) assert rcode(g(x)) == "2*x" g = implemented_function('g', Lambda(x, 2*x/Catalan)) assert rcode( g(x)) == "Catalan = %s;\n2*x/Catalan" % Catalan.n() A = IndexedBase('A') i = Idx('i', symbols('n', integer=True)) g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) res=rcode(g(A[i]), assign_to=A[i]) ref=( "for (i in 1:n){\n" " A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n" "}" ) assert res == ref def test_rcode_exceptions(): assert rcode(ceiling(x)) == "ceiling(x)" assert rcode(Abs(x)) == "abs(x)" assert rcode(gamma(x)) == "gamma(x)" def test_rcode_user_functions(): x = symbols('x', integer=False) n = symbols('n', integer=True) custom_functions = { "ceiling": "myceil", "Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")], } assert rcode(ceiling(x), user_functions=custom_functions) == "myceil(x)" assert rcode(Abs(x), user_functions=custom_functions) == "fabs(x)" assert rcode(Abs(n), user_functions=custom_functions) == "abs(n)" def test_rcode_boolean(): assert rcode(True) == "True" assert rcode(S.true) == "True" assert rcode(False) == "False" assert rcode(S.false) == "False" assert rcode(x & y) == "x & y" assert rcode(x | y) == "x | y" assert rcode(~x) == "!x" assert rcode(x & y & z) == "x & y & z" assert rcode(x | y | z) == "x | y | z" assert rcode((x & y) | z) == "z | x & y" assert rcode((x | y) & z) == "z & (x | y)" def test_rcode_Relational(): from sympy import Eq, Ne, Le, Lt, Gt, Ge assert rcode(Eq(x, y)) == "x == y" assert rcode(Ne(x, y)) == "x != y" assert rcode(Le(x, y)) == "x <= y" assert rcode(Lt(x, y)) == "x < y" assert rcode(Gt(x, y)) == "x > y" assert rcode(Ge(x, y)) == "x >= y" def test_rcode_Piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) res=rcode(expr) ref="ifelse(x < 1,x,x^2)" assert res == ref tau=Symbol("tau") res=rcode(expr,tau) ref="tau = ifelse(x < 1,x,x^2);" assert res == ref expr = 2*Piecewise((x, x < 1), (x**2, x<2), (x**3,True)) assert rcode(expr) == "2*ifelse(x < 1,x,ifelse(x < 2,x^2,x^3))" res = rcode(expr, assign_to='c') assert res == "c = 2*ifelse(x < 1,x,ifelse(x < 2,x^2,x^3));" # Check that Piecewise without a True (default) condition error #expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) #raises(ValueError, lambda: rcode(expr)) expr = 2*Piecewise((x, x < 1), (x**2, x<2)) assert(rcode(expr))== "2*ifelse(x < 1,x,ifelse(x < 2,x^2,NA))" def test_rcode_sinc(): from sympy import sinc expr = sinc(x) res = rcode(expr) ref = "ifelse(x != 0,sin(x)/x,1)" assert res == ref def test_rcode_Piecewise_deep(): p = rcode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))) assert p == "2*ifelse(x < 1,x,ifelse(x < 2,x + 1,x^2))" expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1 p = rcode(expr) ref="x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1" assert p == ref ref="c = x^2 + x*y*z + y^2 + ifelse(x < 0.5,0,1) + cos(z) - 1;" p = rcode(expr, assign_to='c') assert p == ref def test_rcode_ITE(): expr = ITE(x < 1, y, z) p = rcode(expr) ref="ifelse(x < 1,y,z)" assert p == ref def test_rcode_settings(): raises(TypeError, lambda: rcode(sin(x), method="garbage")) def test_rcode_Indexed(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o = symbols('n m o', integer=True) i, j, k = Idx('i', n), Idx('j', m), Idx('k', o) p = RCodePrinter() p._not_r = set() x = IndexedBase('x')[j] assert p._print_Indexed(x) == 'x[j]' A = IndexedBase('A')[i, j] assert p._print_Indexed(A) == 'A[i, j]' B = IndexedBase('B')[i, j, k] assert p._print_Indexed(B) == 'B[i, j, k]' assert p._not_r == set() def test_rcode_Indexed_without_looking_for_contraction(): len_y = 5 y = IndexedBase('y', shape=(len_y,)) x = IndexedBase('x', shape=(len_y,)) Dy = IndexedBase('Dy', shape=(len_y-1,)) i = Idx('i', len_y-1) e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i])) code0 = rcode(e.rhs, assign_to=e.lhs, contract=False) assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1) def test_rcode_loops_matrix_vector(): n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) s = ( 'for (i in 1:m){\n' ' y[i] = 0;\n' '}\n' 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' y[i] = A[i, j]*x[j] + y[i];\n' ' }\n' '}' ) c = rcode(A[i, j]*x[j], assign_to=y[i]) assert c == s def test_dummy_loops(): # the following line could also be # [Dummy(s, integer=True) for s in 'im'] # or [Dummy(integer=True) for s in 'im'] i, m = symbols('i m', integer=True, cls=Dummy) x = IndexedBase('x') y = IndexedBase('y') i = Idx(i, m) expected = ( 'for (i_%(icount)i in 1:m_%(mcount)i){\n' ' y[i_%(icount)i] = x[i_%(icount)i];\n' '}' ) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index} code = rcode(x[i], assign_to=y[i]) assert code == expected def test_rcode_loops_add(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') z = IndexedBase('z') i = Idx('i', m) j = Idx('j', n) s = ( 'for (i in 1:m){\n' ' y[i] = x[i] + z[i];\n' '}\n' 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' y[i] = A[i, j]*x[j] + y[i];\n' ' }\n' '}' ) c = rcode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) assert c == s def test_rcode_loops_multiple_contractions(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) s = ( 'for (i in 1:m){\n' ' y[i] = 0;\n' '}\n' 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' for (k in 1:o){\n' ' for (l in 1:p){\n' ' y[i] = a[i, j, k, l]*b[j, k, l] + y[i];\n' ' }\n' ' }\n' ' }\n' '}' ) c = rcode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) assert c == s def test_rcode_loops_addfactor(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') c = IndexedBase('c') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) s = ( 'for (i in 1:m){\n' ' y[i] = 0;\n' '}\n' 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' for (k in 1:o){\n' ' for (l in 1:p){\n' ' y[i] = (a[i, j, k, l] + b[i, j, k, l])*c[j, k, l] + y[i];\n' ' }\n' ' }\n' ' }\n' '}' ) c = rcode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) assert c == s def test_rcode_loops_multiple_terms(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') c = IndexedBase('c') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) s0 = ( 'for (i in 1:m){\n' ' y[i] = 0;\n' '}\n' ) s1 = ( 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' for (k in 1:o){\n' ' y[i] = b[j]*b[k]*c[i, j, k] + y[i];\n' ' }\n' ' }\n' '}\n' ) s2 = ( 'for (i in 1:m){\n' ' for (k in 1:o){\n' ' y[i] = a[i, k]*b[k] + y[i];\n' ' }\n' '}\n' ) s3 = ( 'for (i in 1:m){\n' ' for (j in 1:n){\n' ' y[i] = a[i, j]*b[j] + y[i];\n' ' }\n' '}\n' ) c = rcode( b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i]) ref=dict() ref[0] = s0 + s1 + s2 + s3[:-1] ref[1] = s0 + s1 + s3 + s2[:-1] ref[2] = s0 + s2 + s1 + s3[:-1] ref[3] = s0 + s2 + s3 + s1[:-1] ref[4] = s0 + s3 + s1 + s2[:-1] ref[5] = s0 + s3 + s2 + s1[:-1] assert (c == ref[0] or c == ref[1] or c == ref[2] or c == ref[3] or c == ref[4] or c == ref[5]) def test_dereference_printing(): expr = x + y + sin(z) + z assert rcode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))" def test_Matrix_printing(): # Test returning a Matrix mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)]) A = MatrixSymbol('A', 3, 1) p = rcode(mat, A) assert p == ( "A[0] = x*y;\n" "A[1] = ifelse(y > 0,x + 2,y);\n" "A[2] = sin(z);") # Test using MatrixElements in expressions expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0] p = rcode(expr) assert p == ("ifelse(x > 0,2*A[2],A[2]) + sin(A[1]) + A[0]") # Test using MatrixElements in a Matrix q = MatrixSymbol('q', 5, 1) M = MatrixSymbol('M', 3, 3) m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])], [q[1,0] + q[2,0], q[3, 0], 5], [2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]]) assert rcode(m, M) == ( "M[0] = sin(q[1]);\n" "M[1] = 0;\n" "M[2] = cos(q[2]);\n" "M[3] = q[1] + q[2];\n" "M[4] = q[3];\n" "M[5] = 5;\n" "M[6] = 2*q[4]/q[1];\n" "M[7] = sqrt(q[0]) + 4;\n" "M[8] = 0;") def test_rcode_sgn(): expr = sign(x) * y assert rcode(expr) == 'y*sign(x)' p = rcode(expr, 'z') assert p == 'z = y*sign(x);' p = rcode(sign(2 * x + x**2) * x + x**2) assert p == "x^2 + x*sign(x^2 + 2*x)" expr = sign(cos(x)) p = rcode(expr) assert p == 'sign(cos(x))' def test_rcode_Assignment(): assert rcode(Assignment(x, y + z)) == 'x = y + z;' assert rcode(aug_assign(x, '+', y + z)) == 'x += y + z;' def test_rcode_For(): f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)]) sol = rcode(f) assert sol == ("for (x = 0; x < 10; x += 2) {\n" " y *= x;\n" "}") def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(rcode(A[0, 0]) == "A[0]") assert(rcode(3 * A[0, 0]) == "3*A[0]") F = C[0, 0].subs(C, A - B) assert(rcode(F) == "(A - B)[0]")
3637c0a2b9841eb7cda1f39ac1923a8a9d75913e890fdb6c67840a34fb3fe235
from sympy.core import (pi, oo, symbols, Rational, Integer, GoldenRatio, EulerGamma, Catalan, Lambda, Dummy, S) from sympy.functions import (Piecewise, sin, cos, Abs, exp, ceiling, sqrt, sinh, cosh, tanh, asin, acos, acosh, Max, Min) from sympy.utilities.pytest import raises from sympy.printing.jscode import JavascriptCodePrinter from sympy.utilities.lambdify import implemented_function from sympy.tensor import IndexedBase, Idx from sympy.matrices import Matrix, MatrixSymbol from sympy import jscode x, y, z = symbols('x,y,z') def test_printmethod(): assert jscode(Abs(x)) == "Math.abs(x)" def test_jscode_sqrt(): assert jscode(sqrt(x)) == "Math.sqrt(x)" assert jscode(x**0.5) == "Math.sqrt(x)" assert jscode(x**(S(1)/3)) == "Math.cbrt(x)" def test_jscode_Pow(): g = implemented_function('g', Lambda(x, 2*x)) assert jscode(x**3) == "Math.pow(x, 3)" assert jscode(x**(y**3)) == "Math.pow(x, Math.pow(y, 3))" assert jscode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "Math.pow(3.5*2*x, -x + Math.pow(y, x))/(Math.pow(x, 2) + y)" assert jscode(x**-1.0) == '1/x' def test_jscode_constants_mathh(): assert jscode(exp(1)) == "Math.E" assert jscode(pi) == "Math.PI" assert jscode(oo) == "Number.POSITIVE_INFINITY" assert jscode(-oo) == "Number.NEGATIVE_INFINITY" def test_jscode_constants_other(): assert jscode( 2*GoldenRatio) == "var GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17) assert jscode(2*Catalan) == "var Catalan = %s;\n2*Catalan" % Catalan.evalf(17) assert jscode( 2*EulerGamma) == "var EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17) def test_jscode_Rational(): assert jscode(Rational(3, 7)) == "3/7" assert jscode(Rational(18, 9)) == "2" assert jscode(Rational(3, -7)) == "-3/7" assert jscode(Rational(-3, -7)) == "3/7" def test_jscode_Integer(): assert jscode(Integer(67)) == "67" assert jscode(Integer(-1)) == "-1" def test_jscode_functions(): assert jscode(sin(x) ** cos(x)) == "Math.pow(Math.sin(x), Math.cos(x))" assert jscode(sinh(x) * cosh(x)) == "Math.sinh(x)*Math.cosh(x)" assert jscode(Max(x, y) + Min(x, y)) == "Math.max(x, y) + Math.min(x, y)" assert jscode(tanh(x)*acosh(y)) == "Math.tanh(x)*Math.acosh(y)" assert jscode(asin(x)-acos(y)) == "-Math.acos(y) + Math.asin(x)" def test_jscode_inline_function(): x = symbols('x') g = implemented_function('g', Lambda(x, 2*x)) assert jscode(g(x)) == "2*x" g = implemented_function('g', Lambda(x, 2*x/Catalan)) assert jscode(g(x)) == "var Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17) A = IndexedBase('A') i = Idx('i', symbols('n', integer=True)) g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x))) assert jscode(g(A[i]), assign_to=A[i]) == ( "for (var i=0; i<n; i++){\n" " A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n" "}" ) def test_jscode_exceptions(): assert jscode(ceiling(x)) == "Math.ceil(x)" assert jscode(Abs(x)) == "Math.abs(x)" def test_jscode_boolean(): assert jscode(x & y) == "x && y" assert jscode(x | y) == "x || y" assert jscode(~x) == "!x" assert jscode(x & y & z) == "x && y && z" assert jscode(x | y | z) == "x || y || z" assert jscode((x & y) | z) == "z || x && y" assert jscode((x | y) & z) == "z && (x || y)" def test_jscode_Piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) p = jscode(expr) s = \ """\ ((x < 1) ? ( x ) : ( Math.pow(x, 2) ))\ """ assert p == s assert jscode(expr, assign_to="c") == ( "if (x < 1) {\n" " c = x;\n" "}\n" "else {\n" " c = Math.pow(x, 2);\n" "}") # Check that Piecewise without a True (default) condition error expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) raises(ValueError, lambda: jscode(expr)) def test_jscode_Piecewise_deep(): p = jscode(2*Piecewise((x, x < 1), (x**2, True))) s = \ """\ 2*((x < 1) ? ( x ) : ( Math.pow(x, 2) ))\ """ assert p == s def test_jscode_settings(): raises(TypeError, lambda: jscode(sin(x), method="garbage")) def test_jscode_Indexed(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o = symbols('n m o', integer=True) i, j, k = Idx('i', n), Idx('j', m), Idx('k', o) p = JavascriptCodePrinter() p._not_c = set() x = IndexedBase('x')[j] assert p._print_Indexed(x) == 'x[j]' A = IndexedBase('A')[i, j] assert p._print_Indexed(A) == 'A[%s]' % (m*i+j) B = IndexedBase('B')[i, j, k] assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k) assert p._not_c == set() def test_jscode_loops_matrix_vector(): n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) s = ( 'for (var i=0; i<m; i++){\n' ' y[i] = 0;\n' '}\n' 'for (var i=0; i<m; i++){\n' ' for (var j=0; j<n; j++){\n' ' y[i] = A[n*i + j]*x[j] + y[i];\n' ' }\n' '}' ) c = jscode(A[i, j]*x[j], assign_to=y[i]) assert c == s def test_dummy_loops(): i, m = symbols('i m', integer=True, cls=Dummy) x = IndexedBase('x') y = IndexedBase('y') i = Idx(i, m) expected = ( 'for (var i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n' ' y[i_%(icount)i] = x[i_%(icount)i];\n' '}' ) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index} code = jscode(x[i], assign_to=y[i]) assert code == expected def test_jscode_loops_add(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m = symbols('n m', integer=True) A = IndexedBase('A') x = IndexedBase('x') y = IndexedBase('y') z = IndexedBase('z') i = Idx('i', m) j = Idx('j', n) s = ( 'for (var i=0; i<m; i++){\n' ' y[i] = x[i] + z[i];\n' '}\n' 'for (var i=0; i<m; i++){\n' ' for (var j=0; j<n; j++){\n' ' y[i] = A[n*i + j]*x[j] + y[i];\n' ' }\n' '}' ) c = jscode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) assert c == s def test_jscode_loops_multiple_contractions(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) s = ( 'for (var i=0; i<m; i++){\n' ' y[i] = 0;\n' '}\n' 'for (var i=0; i<m; i++){\n' ' for (var j=0; j<n; j++){\n' ' for (var k=0; k<o; k++){\n' ' for (var l=0; l<p; l++){\n' ' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ ' }\n' ' }\n' ' }\n' '}' ) c = jscode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) assert c == s def test_jscode_loops_addfactor(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') c = IndexedBase('c') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) l = Idx('l', p) s = ( 'for (var i=0; i<m; i++){\n' ' y[i] = 0;\n' '}\n' 'for (var i=0; i<m; i++){\n' ' for (var j=0; j<n; j++){\n' ' for (var k=0; k<o; k++){\n' ' for (var l=0; l<p; l++){\n' ' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\ ' }\n' ' }\n' ' }\n' '}' ) c = jscode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) assert c == s def test_jscode_loops_multiple_terms(): from sympy.tensor import IndexedBase, Idx from sympy import symbols n, m, o, p = symbols('n m o p', integer=True) a = IndexedBase('a') b = IndexedBase('b') c = IndexedBase('c') y = IndexedBase('y') i = Idx('i', m) j = Idx('j', n) k = Idx('k', o) s0 = ( 'for (var i=0; i<m; i++){\n' ' y[i] = 0;\n' '}\n' ) s1 = ( 'for (var i=0; i<m; i++){\n' ' for (var j=0; j<n; j++){\n' ' for (var k=0; k<o; k++){\n' ' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\ ' }\n' ' }\n' '}\n' ) s2 = ( 'for (var i=0; i<m; i++){\n' ' for (var k=0; k<o; k++){\n' ' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\ ' }\n' '}\n' ) s3 = ( 'for (var i=0; i<m; i++){\n' ' for (var j=0; j<n; j++){\n' ' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\ ' }\n' '}\n' ) c = jscode( b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i]) assert (c == s0 + s1 + s2 + s3[:-1] or c == s0 + s1 + s3 + s2[:-1] or c == s0 + s2 + s1 + s3[:-1] or c == s0 + s2 + s3 + s1[:-1] or c == s0 + s3 + s1 + s2[:-1] or c == s0 + s3 + s2 + s1[:-1]) def test_Matrix_printing(): # Test returning a Matrix mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)]) A = MatrixSymbol('A', 3, 1) assert jscode(mat, A) == ( "A[0] = x*y;\n" "if (y > 0) {\n" " A[1] = x + 2;\n" "}\n" "else {\n" " A[1] = y;\n" "}\n" "A[2] = Math.sin(z);") # Test using MatrixElements in expressions expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0] assert jscode(expr) == ( "((x > 0) ? (\n" " 2*A[2]\n" ")\n" ": (\n" " A[2]\n" ")) + Math.sin(A[1]) + A[0]") # Test using MatrixElements in a Matrix q = MatrixSymbol('q', 5, 1) M = MatrixSymbol('M', 3, 3) m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])], [q[1,0] + q[2,0], q[3, 0], 5], [2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]]) assert jscode(m, M) == ( "M[0] = Math.sin(q[1]);\n" "M[1] = 0;\n" "M[2] = Math.cos(q[2]);\n" "M[3] = q[1] + q[2];\n" "M[4] = q[3];\n" "M[5] = 5;\n" "M[6] = 2*q[4]/q[1];\n" "M[7] = Math.sqrt(q[0]) + 4;\n" "M[8] = 0;") def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(jscode(A[0, 0]) == "A[0]") assert(jscode(3 * A[0, 0]) == "3*A[0]") F = C[0, 0].subs(C, A - B) assert(jscode(F) == "(A - B)[0]")
c89017e73c4970257fc08f269eb29b4c1032ace2fb4daffe197cb464c82a6f8a
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, Tuple, Derivative) from sympy.integrals import Integral from sympy.concrete import Sum from sympy.functions import exp, sin, cos, conjugate, Max, Min from sympy import mathematica_code as mcode x, y, z = symbols('x,y,z') f = Function('f') def test_Integer(): assert mcode(Integer(67)) == "67" assert mcode(Integer(-1)) == "-1" def test_Rational(): assert mcode(Rational(3, 7)) == "3/7" assert mcode(Rational(18, 9)) == "2" assert mcode(Rational(3, -7)) == "-3/7" assert mcode(Rational(-3, -7)) == "3/7" assert mcode(x + Rational(3, 7)) == "x + 3/7" assert mcode(Rational(3, 7)*x) == "(3/7)*x" def test_Function(): assert mcode(f(x, y, z)) == "f[x, y, z]" assert mcode(sin(x) ** cos(x)) == "Sin[x]^Cos[x]" assert mcode(conjugate(x)) == "Conjugate[x]" assert mcode(Max(x,y,z)*Min(y,z)) == "Max[x, y, z]*Min[y, z]" def test_Pow(): assert mcode(x**3) == "x^3" assert mcode(x**(y**3)) == "x^(y^3)" assert mcode(1/(f(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "(3.5*f[x])^(-x + y^x)/(x^2 + y)" assert mcode(x**-1.0) == 'x^(-1.0)' assert mcode(x**Rational(2, 3)) == 'x^(2/3)' def test_Mul(): A, B, C, D = symbols('A B C D', commutative=False) assert mcode(x*y*z) == "x*y*z" assert mcode(x*y*A) == "x*y*A" assert mcode(x*y*A*B) == "x*y*A**B" assert mcode(x*y*A*B*C) == "x*y*A**B**C" assert mcode(x*A*B*(C + D)*A*y) == "x*y*A**B**(C + D)**A" def test_constants(): assert mcode(pi) == "Pi" assert mcode(oo) == "Infinity" assert mcode(S.NegativeInfinity) == "-Infinity" assert mcode(S.EulerGamma) == "EulerGamma" assert mcode(S.Catalan) == "Catalan" assert mcode(S.Exp1) == "E" def test_containers(): assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \ "{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}" assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}" assert mcode([1]) == "{1}" assert mcode((1,)) == "{1}" assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}" def test_Integral(): assert mcode(Integral(sin(sin(x)), x)) == "Hold[Integrate[Sin[Sin[x]], x]]" assert mcode(Integral(exp(-x**2 - y**2), (x, -oo, oo), (y, -oo, oo))) == \ "Hold[Integrate[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \ "{y, -Infinity, Infinity}]]" def test_Derivative(): assert mcode(Derivative(sin(x), x)) == "Hold[D[Sin[x], x]]" assert mcode(Derivative(x, x)) == "Hold[D[x, x]]" assert mcode(Derivative(sin(x)*y**4, x, 2)) == "Hold[D[y^4*Sin[x], {x, 2}]]" assert mcode(Derivative(sin(x)*y**4, x, y, x)) == "Hold[D[y^4*Sin[x], x, y, x]]" assert mcode(Derivative(sin(x)*y**4, x, y, 3, x)) == "Hold[D[y^4*Sin[x], x, {y, 3}, x]]" def test_Sum(): assert mcode(Sum(sin(x), (x, 0, 10))) == "Hold[Sum[Sin[x], {x, 0, 10}]]" assert mcode(Sum(exp(-x**2 - y**2), (x, -oo, oo), (y, -oo, oo))) == \ "Hold[Sum[Exp[-x^2 - y^2], {x, -Infinity, Infinity}, " \ "{y, -Infinity, Infinity}]]"
bf0ba228ea1006d77b2bfd2f04f397a0a5b70ab39f4c2c5840085e7b91602c9b
""" Important note on tests in this module - the Theano printing functions use a global cache by default, which means that tests using it will modify global state and thus not be independent from each other. Instead of using the "cache" keyword argument each time, this module uses the theano_code_ and theano_function_ functions defined below which default to using a new, empty cache instead. """ import logging from sympy.external import import_module from sympy.utilities.pytest import raises, SKIP theanologger = logging.getLogger('theano.configdefaults') theanologger.setLevel(logging.CRITICAL) theano = import_module('theano') theanologger.setLevel(logging.WARNING) if theano: import numpy as np ts = theano.scalar tt = theano.tensor xt, yt, zt = [tt.scalar(name, 'floatX') for name in 'xyz'] Xt, Yt, Zt = [tt.tensor('floatX', (False, False), name=n) for n in 'XYZ'] else: #bin/test will not execute any tests now disabled = True import sympy as sy from sympy import S from sympy.abc import x, y, z, t from sympy.printing.theanocode import (theano_code, dim_handling, theano_function) # Default set of matrix symbols for testing - make square so we can both # multiply and perform elementwise operations between them. X, Y, Z = [sy.MatrixSymbol(n, 4, 4) for n in 'XYZ'] # For testing AppliedUndef f_t = sy.Function('f')(t) def theano_code_(expr, **kwargs): """ Wrapper for theano_code that uses a new, empty cache by default. """ kwargs.setdefault('cache', {}) return theano_code(expr, **kwargs) def theano_function_(inputs, outputs, **kwargs): """ Wrapper for theano_function that uses a new, empty cache by default. """ kwargs.setdefault('cache', {}) return theano_function(inputs, outputs, **kwargs) def fgraph_of(*exprs): """ Transform SymPy expressions into Theano Computation. Parameters ========== exprs Sympy expressions Returns ======= theano.gof.FunctionGraph """ outs = list(map(theano_code_, exprs)) ins = theano.gof.graph.inputs(outs) ins, outs = theano.gof.graph.clone(ins, outs) return theano.gof.FunctionGraph(ins, outs) def theano_simplify(fgraph): """ Simplify a Theano Computation. Parameters ========== fgraph : theano.gof.FunctionGraph Returns ======= theano.gof.FunctionGraph """ mode = theano.compile.get_default_mode().excluding("fusion") fgraph = fgraph.clone() mode.optimizer.optimize(fgraph) return fgraph def theq(a, b): """ Test two Theano objects for equality. Also accepts numeric types and lists/tuples of supported types. Note - debugprint() has a bug where it will accept numeric types but does not respect the "file" argument and in this case and instead prints the number to stdout and returns an empty string. This can lead to tests passing where they should fail because any two numbers will always compare as equal. To prevent this we treat numbers as a separate case. """ numeric_types = (int, float, np.number) a_is_num = isinstance(a, numeric_types) b_is_num = isinstance(b, numeric_types) # Compare numeric types using regular equality if a_is_num or b_is_num: if not (a_is_num and b_is_num): return False return a == b # Compare sequences element-wise a_is_seq = isinstance(a, (tuple, list)) b_is_seq = isinstance(b, (tuple, list)) if a_is_seq or b_is_seq: if not (a_is_seq and b_is_seq) or type(a) != type(b): return False return list(map(theq, a)) == list(map(theq, b)) # Otherwise, assume debugprint() can handle it astr = theano.printing.debugprint(a, file='str') bstr = theano.printing.debugprint(b, file='str') # Check for bug mentioned above for argname, argval, argstr in [('a', a, astr), ('b', b, bstr)]: if argstr == '': raise TypeError( 'theano.printing.debugprint(%s) returned empty string ' '(%s is instance of %r)' % (argname, argname, type(argval)) ) return astr == bstr def test_example_symbols(): """ Check that the example symbols in this module print to their Theano equivalents, as many of the other tests depend on this. """ assert theq(xt, theano_code_(x)) assert theq(yt, theano_code_(y)) assert theq(zt, theano_code_(z)) assert theq(Xt, theano_code_(X)) assert theq(Yt, theano_code_(Y)) assert theq(Zt, theano_code_(Z)) def test_Symbol(): """ Test printing a Symbol to a theano variable. """ xx = theano_code_(x) assert isinstance(xx, (tt.TensorVariable, ts.ScalarVariable)) assert xx.broadcastable == () assert xx.name == x.name xx2 = theano_code_(x, broadcastables={x: (False,)}) assert xx2.broadcastable == (False,) assert xx2.name == x.name def test_MatrixSymbol(): """ Test printing a MatrixSymbol to a theano variable. """ XX = theano_code_(X) assert isinstance(XX, tt.TensorVariable) assert XX.broadcastable == (False, False) @SKIP # TODO - this is currently not checked but should be implemented def test_MatrixSymbol_wrong_dims(): """ Test MatrixSymbol with invalid broadcastable. """ bcs = [(), (False,), (True,), (True, False), (False, True,), (True, True)] for bc in bcs: with raises(ValueError): theano_code_(X, broadcastables={X: bc}) def test_AppliedUndef(): """ Test printing AppliedUndef instance, which works similarly to Symbol. """ ftt = theano_code_(f_t) assert isinstance(ftt, tt.TensorVariable) assert ftt.broadcastable == () assert ftt.name == 'f_t' def test_add(): expr = x + y comp = theano_code_(expr) assert comp.owner.op == theano.tensor.add def test_trig(): assert theq(theano_code_(sy.sin(x)), tt.sin(xt)) assert theq(theano_code_(sy.tan(x)), tt.tan(xt)) def test_many(): """ Test printing a complex expression with multiple symbols. """ expr = sy.exp(x**2 + sy.cos(y)) * sy.log(2*z) comp = theano_code_(expr) expected = tt.exp(xt**2 + tt.cos(yt)) * tt.log(2*zt) assert theq(comp, expected) def test_dtype(): """ Test specifying specific data types through the dtype argument. """ for dtype in ['float32', 'float64', 'int8', 'int16', 'int32', 'int64']: assert theano_code_(x, dtypes={x: dtype}).type.dtype == dtype # "floatX" type assert theano_code_(x, dtypes={x: 'floatX'}).type.dtype in ('float32', 'float64') # Type promotion assert theano_code_(x + 1, dtypes={x: 'float32'}).type.dtype == 'float32' assert theano_code_(x + y, dtypes={x: 'float64', y: 'float32'}).type.dtype == 'float64' def test_broadcastables(): """ Test the "broadcastables" argument when printing symbol-like objects. """ # No restrictions on shape for s in [x, f_t]: for bc in [(), (False,), (True,), (False, False), (True, False)]: assert theano_code_(s, broadcastables={s: bc}).broadcastable == bc # TODO - matrix broadcasting? def test_broadcasting(): """ Test "broadcastable" attribute after applying element-wise binary op. """ expr = x + y cases = [ [(), (), ()], [(False,), (False,), (False,)], [(True,), (False,), (False,)], [(False, True), (False, False), (False, False)], [(True, False), (False, False), (False, False)], ] for bc1, bc2, bc3 in cases: comp = theano_code_(expr, broadcastables={x: bc1, y: bc2}) assert comp.broadcastable == bc3 def test_MatMul(): expr = X*Y*Z expr_t = theano_code_(expr) assert isinstance(expr_t.owner.op, tt.Dot) assert theq(expr_t, Xt.dot(Yt).dot(Zt)) def test_Transpose(): assert isinstance(theano_code_(X.T).owner.op, tt.DimShuffle) def test_MatAdd(): expr = X+Y+Z assert isinstance(theano_code_(expr).owner.op, tt.Elemwise) def test_Rationals(): assert theq(theano_code_(sy.Integer(2) / 3), tt.true_div(2, 3)) assert theq(theano_code_(S.Half), tt.true_div(1, 2)) def test_Integers(): assert theano_code_(sy.Integer(3)) == 3 def test_factorial(): n = sy.Symbol('n') assert theano_code_(sy.factorial(n)) def test_Derivative(): simp = lambda expr: theano_simplify(fgraph_of(expr)) assert theq(simp(theano_code_(sy.Derivative(sy.sin(x), x, evaluate=False))), simp(theano.grad(tt.sin(xt), xt))) def test_theano_function_simple(): """ Test theano_function() with single output. """ f = theano_function_([x, y], [x+y]) assert f(2, 3) == 5 def test_theano_function_multi(): """ Test theano_function() with multiple outputs. """ f = theano_function_([x, y], [x+y, x-y]) o1, o2 = f(2, 3) assert o1 == 5 assert o2 == -1 def test_theano_function_numpy(): """ Test theano_function() vs Numpy implementation. """ f = theano_function_([x, y], [x+y], dim=1, dtypes={x: 'float64', y: 'float64'}) assert np.linalg.norm(f([1, 2], [3, 4]) - np.asarray([4, 6])) < 1e-9 f = theano_function_([x, y], [x+y], dtypes={x: 'float64', y: 'float64'}, dim=1) xx = np.arange(3).astype('float64') yy = 2*np.arange(3).astype('float64') assert np.linalg.norm(f(xx, yy) - 3*np.arange(3)) < 1e-9 def test_theano_function_matrix(): m = sy.Matrix([[x, y], [z, x + y + z]]) expected = np.array([[1.0, 2.0], [3.0, 1.0 + 2.0 + 3.0]]) f = theano_function_([x, y, z], [m]) np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected) f = theano_function_([x, y, z], [m], scalar=True) np.testing.assert_allclose(f(1.0, 2.0, 3.0), expected) f = theano_function_([x, y, z], [m, m]) assert isinstance(f(1.0, 2.0, 3.0), type([])) np.testing.assert_allclose(f(1.0, 2.0, 3.0)[0], expected) np.testing.assert_allclose(f(1.0, 2.0, 3.0)[1], expected) def test_dim_handling(): assert dim_handling([x], dim=2) == {x: (False, False)} assert dim_handling([x, y], dims={x: 1, y: 2}) == {x: (False, True), y: (False, False)} assert dim_handling([x], broadcastables={x: (False,)}) == {x: (False,)} def test_theano_function_kwargs(): """ Test passing additional kwargs from theano_function() to theano.function(). """ import numpy as np f = theano_function_([x, y, z], [x+y], dim=1, on_unused_input='ignore', dtypes={x: 'float64', y: 'float64', z: 'float64'}) assert np.linalg.norm(f([1, 2], [3, 4], [0, 0]) - np.asarray([4, 6])) < 1e-9 f = theano_function_([x, y, z], [x+y], dtypes={x: 'float64', y: 'float64', z: 'float64'}, dim=1, on_unused_input='ignore') xx = np.arange(3).astype('float64') yy = 2*np.arange(3).astype('float64') zz = 2*np.arange(3).astype('float64') assert np.linalg.norm(f(xx, yy, zz) - 3*np.arange(3)) < 1e-9 def test_theano_function_scalar(): """ Test the "scalar" argument to theano_function(). """ args = [ ([x, y], [x + y], None, [0]), # Single 0d output ([X, Y], [X + Y], None, [2]), # Single 2d output ([x, y], [x + y], {x: 0, y: 1}, [1]), # Single 1d output ([x, y], [x + y, x - y], None, [0, 0]), # Two 0d outputs ([x, y, X, Y], [x + y, X + Y], None, [0, 2]), # One 0d output, one 2d ] # Create and test functions with and without the scalar setting for inputs, outputs, in_dims, out_dims in args: for scalar in [False, True]: f = theano_function_(inputs, outputs, dims=in_dims, scalar=scalar) # Check the theano_function attribute is set whether wrapped or not assert isinstance(f.theano_function, theano.compile.function_module.Function) # Feed in inputs of the appropriate size and get outputs in_values = [ np.ones([1 if bc else 5 for bc in i.type.broadcastable]) for i in f.theano_function.input_storage ] out_values = f(*in_values) if not isinstance(out_values, list): out_values = [out_values] # Check output types and shapes assert len(out_dims) == len(out_values) for d, value in zip(out_dims, out_values): if scalar and d == 0: # Should have been converted to a scalar value assert isinstance(value, np.number) else: # Otherwise should be an array assert isinstance(value, np.ndarray) assert value.ndim == d def test_theano_function_bad_kwarg(): """ Passing an unknown keyword argument to theano_function() should raise an exception. """ raises(Exception, lambda : theano_function_([x], [x+1], foobar=3)) def test_slice(): assert theano_code_(slice(1, 2, 3)) == slice(1, 2, 3) def theq_slice(s1, s2): for attr in ['start', 'stop', 'step']: a1 = getattr(s1, attr) a2 = getattr(s2, attr) if a1 is None or a2 is None: if not (a1 is None or a2 is None): return False elif not theq(a1, a2): return False return True dtypes = {x: 'int32', y: 'int32'} assert theq_slice(theano_code_(slice(x, y), dtypes=dtypes), slice(xt, yt)) assert theq_slice(theano_code_(slice(1, x, 3), dtypes=dtypes), slice(1, xt, 3)) def test_MatrixSlice(): from theano import Constant cache = {} n = sy.Symbol('n', integer=True) X = sy.MatrixSymbol('X', n, n) Y = X[1:2:3, 4:5:6] Yt = theano_code_(Y, cache=cache) s = ts.Scalar('int64') assert tuple(Yt.owner.op.idx_list) == (slice(s, s, s), slice(s, s, s)) assert Yt.owner.inputs[0] == theano_code_(X, cache=cache) # == doesn't work in theano like it does in SymPy. You have to use # equals. assert all(Yt.owner.inputs[i].equals(Constant(s, i)) for i in range(1, 7)) k = sy.Symbol('k') kt = theano_code_(k, dtypes={k: 'int32'}) start, stop, step = 4, k, 2 Y = X[start:stop:step] Yt = theano_code_(Y, dtypes={n: 'int32', k: 'int32'}) # assert Yt.owner.op.idx_list[0].stop == kt def test_BlockMatrix(): n = sy.Symbol('n', integer=True) A, B, C, D = [sy.MatrixSymbol(name, n, n) for name in 'ABCD'] At, Bt, Ct, Dt = map(theano_code_, (A, B, C, D)) Block = sy.BlockMatrix([[A, B], [C, D]]) Blockt = theano_code_(Block) solutions = [tt.join(0, tt.join(1, At, Bt), tt.join(1, Ct, Dt)), tt.join(1, tt.join(0, At, Ct), tt.join(0, Bt, Dt))] assert any(theq(Blockt, solution) for solution in solutions) @SKIP def test_BlockMatrix_Inverse_execution(): k, n = 2, 4 dtype = 'float32' A = sy.MatrixSymbol('A', n, k) B = sy.MatrixSymbol('B', n, n) inputs = A, B output = B.I*A cutsizes = {A: [(n//2, n//2), (k//2, k//2)], B: [(n//2, n//2), (n//2, n//2)]} cutinputs = [sy.blockcut(i, *cutsizes[i]) for i in inputs] cutoutput = output.subs(dict(zip(inputs, cutinputs))) dtypes = dict(zip(inputs, [dtype]*len(inputs))) f = theano_function_(inputs, [output], dtypes=dtypes, cache={}) fblocked = theano_function_(inputs, [sy.block_collapse(cutoutput)], dtypes=dtypes, cache={}) ninputs = [np.random.rand(*x.shape).astype(dtype) for x in inputs] ninputs = [np.arange(n*k).reshape(A.shape).astype(dtype), np.eye(n).astype(dtype)] ninputs[1] += np.ones(B.shape)*1e-5 assert np.allclose(f(*ninputs), fblocked(*ninputs), rtol=1e-5) def test_DenseMatrix(): t = sy.Symbol('theta') for MatrixType in [sy.Matrix, sy.ImmutableMatrix]: X = MatrixType([[sy.cos(t), -sy.sin(t)], [sy.sin(t), sy.cos(t)]]) tX = theano_code_(X) assert isinstance(tX, tt.TensorVariable) assert tX.owner.op == tt.join_ def test_cache_basic(): """ Test single symbol-like objects are cached when printed by themselves. """ # Pairs of objects which should be considered equivalent with respect to caching pairs = [ (x, sy.Symbol('x')), (X, sy.MatrixSymbol('X', *X.shape)), (f_t, sy.Function('f')(sy.Symbol('t'))), ] for s1, s2 in pairs: cache = {} st = theano_code_(s1, cache=cache) # Test hit with same instance assert theano_code_(s1, cache=cache) is st # Test miss with same instance but new cache assert theano_code_(s1, cache={}) is not st # Test hit with different but equivalent instance assert theano_code_(s2, cache=cache) is st def test_global_cache(): """ Test use of the global cache. """ from sympy.printing.theanocode import global_cache backup = dict(global_cache) try: # Temporarily empty global cache global_cache.clear() for s in [x, X, f_t]: st = theano_code(s) assert theano_code(s) is st finally: # Restore global cache global_cache.update(backup) def test_cache_types_distinct(): """ Test that symbol-like objects of different types (Symbol, MatrixSymbol, AppliedUndef) are distinguished by the cache even if they have the same name. """ symbols = [sy.Symbol('f_t'), sy.MatrixSymbol('f_t', 4, 4), f_t] cache = {} # Single shared cache printed = {} for s in symbols: st = theano_code_(s, cache=cache) assert st not in printed.values() printed[s] = st # Check all printed objects are distinct assert len(set(map(id, printed.values()))) == len(symbols) # Check retrieving for s, st in printed.items(): assert theano_code(s, cache=cache) is st def test_symbols_are_created_once(): """ Test that a symbol is cached and reused when it appears in an expression more than once. """ expr = sy.Add(x, x, evaluate=False) comp = theano_code_(expr) assert theq(comp, xt + xt) assert not theq(comp, xt + theano_code_(x)) def test_cache_complex(): """ Test caching on a complicated expression with multiple symbols appearing multiple times. """ expr = x ** 2 + (y - sy.exp(x)) * sy.sin(z - x * y) symbol_names = {s.name for s in expr.free_symbols} expr_t = theano_code_(expr) # Iterate through variables in the Theano computational graph that the # printed expression depends on seen = set() for v in theano.gof.graph.ancestors([expr_t]): # Owner-less, non-constant variables should be our symbols if v.owner is None and not isinstance(v, theano.gof.graph.Constant): # Check it corresponds to a symbol and appears only once assert v.name in symbol_names assert v.name not in seen seen.add(v.name) # Check all were present assert seen == symbol_names def test_Piecewise(): # A piecewise linear expr = sy.Piecewise((0, x<0), (x, x<2), (1, True)) # ___/III result = theano_code_(expr) assert result.owner.op == tt.switch expected = tt.switch(xt<0, 0, tt.switch(xt<2, xt, 1)) assert theq(result, expected) expr = sy.Piecewise((x, x < 0)) result = theano_code_(expr) expected = tt.switch(xt < 0, xt, np.nan) assert theq(result, expected) expr = sy.Piecewise((0, sy.And(x>0, x<2)), \ (x, sy.Or(x>2, x<0))) result = theano_code_(expr) expected = tt.switch(tt.and_(xt>0,xt<2), 0, \ tt.switch(tt.or_(xt>2, xt<0), xt, np.nan)) assert theq(result, expected) def test_Relationals(): assert theq(theano_code_(sy.Eq(x, y)), tt.eq(xt, yt)) # assert theq(theano_code_(sy.Ne(x, y)), tt.neq(xt, yt)) # TODO - implement assert theq(theano_code_(x > y), xt > yt) assert theq(theano_code_(x < y), xt < yt) assert theq(theano_code_(x >= y), xt >= yt) assert theq(theano_code_(x <= y), xt <= yt)
5441db8a52cc6af45173a62dfce56d6b3880e30d95b68c850183f45e9ccd8f4b
from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer, Tuple, Symbol) from sympy.core import EulerGamma, GoldenRatio, Catalan, Lambda, Mul, Pow from sympy.functions import (arg, atan2, bernoulli, beta, ceiling, chebyshevu, chebyshevt, conjugate, DiracDelta, exp, expint, factorial, floor, harmonic, Heaviside, im, laguerre, LambertW, log, Max, Min, Piecewise, polylog, re, RisingFactorial, sign, sinc, sqrt, zeta) from sympy.functions import (sin, cos, tan, cot, sec, csc, asin, acos, acot, atan, asec, acsc, sinh, cosh, tanh, coth, csch, sech, asinh, acosh, atanh, acoth, asech, acsch) from sympy.utilities.pytest import raises from sympy.utilities.lambdify import implemented_function from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity, HadamardProduct, SparseMatrix) from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli, besselk, hankel1, hankel2, airyai, airybi, airyaiprime, airybiprime) from sympy.functions.special.gamma_functions import (gamma, lowergamma, uppergamma, loggamma, polygamma) from sympy.functions.special.error_functions import (Chi, Ci, erf, erfc, erfi, erfcinv, erfinv, fresnelc, fresnels, li, Shi, Si) from sympy.utilities.pytest import XFAIL from sympy.core.compatibility import range from sympy import octave_code from sympy import octave_code as mcode x, y, z = symbols('x,y,z') def test_Integer(): assert mcode(Integer(67)) == "67" assert mcode(Integer(-1)) == "-1" def test_Rational(): assert mcode(Rational(3, 7)) == "3/7" assert mcode(Rational(18, 9)) == "2" assert mcode(Rational(3, -7)) == "-3/7" assert mcode(Rational(-3, -7)) == "3/7" assert mcode(x + Rational(3, 7)) == "x + 3/7" assert mcode(Rational(3, 7)*x) == "3*x/7" def test_Function(): assert mcode(sin(x) ** cos(x)) == "sin(x).^cos(x)" assert mcode(sign(x)) == "sign(x)" assert mcode(exp(x)) == "exp(x)" assert mcode(log(x)) == "log(x)" assert mcode(factorial(x)) == "factorial(x)" assert mcode(floor(x)) == "floor(x)" assert mcode(atan2(y, x)) == "atan2(y, x)" assert mcode(beta(x, y)) == 'beta(x, y)' assert mcode(polylog(x, y)) == 'polylog(x, y)' assert mcode(harmonic(x)) == 'harmonic(x)' assert mcode(bernoulli(x)) == "bernoulli(x)" assert mcode(bernoulli(x, y)) == "bernoulli(x, y)" def test_Function_change_name(): assert mcode(abs(x)) == "abs(x)" assert mcode(ceiling(x)) == "ceil(x)" assert mcode(arg(x)) == "angle(x)" assert mcode(im(x)) == "imag(x)" assert mcode(re(x)) == "real(x)" assert mcode(conjugate(x)) == "conj(x)" assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)" assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)" assert mcode(laguerre(x, y)) == "laguerreL(x, y)" assert mcode(Chi(x)) == "coshint(x)" assert mcode(Shi(x)) == "sinhint(x)" assert mcode(Ci(x)) == "cosint(x)" assert mcode(Si(x)) == "sinint(x)" assert mcode(li(x)) == "logint(x)" assert mcode(loggamma(x)) == "gammaln(x)" assert mcode(polygamma(x, y)) == "psi(x, y)" assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)" assert mcode(DiracDelta(x)) == "dirac(x)" assert mcode(DiracDelta(x, 3)) == "dirac(3, x)" assert mcode(Heaviside(x)) == "heaviside(x)" assert mcode(Heaviside(x, y)) == "heaviside(x, y)" def test_minmax(): assert mcode(Max(x, y) + Min(x, y)) == "max(x, y) + min(x, y)" assert mcode(Max(x, y, z)) == "max(x, max(y, z))" assert mcode(Min(x, y, z)) == "min(x, min(y, z))" def test_Pow(): assert mcode(x**3) == "x.^3" assert mcode(x**(y**3)) == "x.^(y.^3)" assert mcode(x**Rational(2, 3)) == 'x.^(2/3)' g = implemented_function('g', Lambda(x, 2*x)) assert mcode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "(3.5*2*x).^(-x + y.^x)./(x.^2 + y)" # For issue 14160 assert mcode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), evaluate=False)) == '-2*x./(y.*y)' def test_basic_ops(): assert mcode(x*y) == "x.*y" assert mcode(x + y) == "x + y" assert mcode(x - y) == "x - y" assert mcode(-x) == "-x" def test_1_over_x_and_sqrt(): # 1.0 and 0.5 would do something different in regular StrPrinter, # but these are exact in IEEE floating point so no different here. assert mcode(1/x) == '1./x' assert mcode(x**-1) == mcode(x**-1.0) == '1./x' assert mcode(1/sqrt(x)) == '1./sqrt(x)' assert mcode(x**-S.Half) == mcode(x**-0.5) == '1./sqrt(x)' assert mcode(sqrt(x)) == 'sqrt(x)' assert mcode(x**S.Half) == mcode(x**0.5) == 'sqrt(x)' assert mcode(1/pi) == '1/pi' assert mcode(pi**-1) == mcode(pi**-1.0) == '1/pi' assert mcode(pi**-0.5) == '1/sqrt(pi)' def test_mix_number_mult_symbols(): assert mcode(3*x) == "3*x" assert mcode(pi*x) == "pi*x" assert mcode(3/x) == "3./x" assert mcode(pi/x) == "pi./x" assert mcode(x/3) == "x/3" assert mcode(x/pi) == "x/pi" assert mcode(x*y) == "x.*y" assert mcode(3*x*y) == "3*x.*y" assert mcode(3*pi*x*y) == "3*pi*x.*y" assert mcode(x/y) == "x./y" assert mcode(3*x/y) == "3*x./y" assert mcode(x*y/z) == "x.*y./z" assert mcode(x/y*z) == "x.*z./y" assert mcode(1/x/y) == "1./(x.*y)" assert mcode(2*pi*x/y/z) == "2*pi*x./(y.*z)" assert mcode(3*pi/x) == "3*pi./x" assert mcode(S(3)/5) == "3/5" assert mcode(S(3)/5*x) == "3*x/5" assert mcode(x/y/z) == "x./(y.*z)" assert mcode((x+y)/z) == "(x + y)./z" assert mcode((x+y)/(z+x)) == "(x + y)./(x + z)" assert mcode((x+y)/EulerGamma) == "(x + y)/%s" % EulerGamma.evalf(17) assert mcode(x/3/pi) == "x/(3*pi)" assert mcode(S(3)/5*x*y/pi) == "3*x.*y/(5*pi)" def test_mix_number_pow_symbols(): assert mcode(pi**3) == 'pi^3' assert mcode(x**2) == 'x.^2' assert mcode(x**(pi**3)) == 'x.^(pi^3)' assert mcode(x**y) == 'x.^y' assert mcode(x**(y**z)) == 'x.^(y.^z)' assert mcode((x**y)**z) == '(x.^y).^z' def test_imag(): I = S('I') assert mcode(I) == "1i" assert mcode(5*I) == "5i" assert mcode((S(3)/2)*I) == "3*1i/2" assert mcode(3+4*I) == "3 + 4i" assert mcode(sqrt(3)*I) == "sqrt(3)*1i" def test_constants(): assert mcode(pi) == "pi" assert mcode(oo) == "inf" assert mcode(-oo) == "-inf" assert mcode(S.NegativeInfinity) == "-inf" assert mcode(S.NaN) == "NaN" assert mcode(S.Exp1) == "exp(1)" assert mcode(exp(1)) == "exp(1)" def test_constants_other(): assert mcode(2*GoldenRatio) == "2*(1+sqrt(5))/2" assert mcode(2*Catalan) == "2*%s" % Catalan.evalf(17) assert mcode(2*EulerGamma) == "2*%s" % EulerGamma.evalf(17) def test_boolean(): assert mcode(x & y) == "x & y" assert mcode(x | y) == "x | y" assert mcode(~x) == "~x" assert mcode(x & y & z) == "x & y & z" assert mcode(x | y | z) == "x | y | z" assert mcode((x & y) | z) == "z | x & y" assert mcode((x | y) & z) == "z & (x | y)" def test_KroneckerDelta(): from sympy.functions import KroneckerDelta assert mcode(KroneckerDelta(x, y)) == "double(x == y)" assert mcode(KroneckerDelta(x, y + 1)) == "double(x == (y + 1))" assert mcode(KroneckerDelta(2**x, y)) == "double((2.^x) == y)" def test_Matrices(): assert mcode(Matrix(1, 1, [10])) == "10" A = Matrix([[1, sin(x/2), abs(x)], [0, 1, pi], [0, exp(1), ceiling(x)]]); expected = "[1 sin(x/2) abs(x); 0 1 pi; 0 exp(1) ceil(x)]" assert mcode(A) == expected # row and columns assert mcode(A[:,0]) == "[1; 0; 0]" assert mcode(A[0,:]) == "[1 sin(x/2) abs(x)]" # empty matrices assert mcode(Matrix(0, 0, [])) == '[]' assert mcode(Matrix(0, 3, [])) == 'zeros(0, 3)' # annoying to read but correct assert mcode(Matrix([[x, x - y, -y]])) == "[x x - y -y]" def test_vector_entries_hadamard(): # For a row or column, user might to use the other dimension A = Matrix([[1, sin(2/x), 3*pi/x/5]]) assert mcode(A) == "[1 sin(2./x) 3*pi./(5*x)]" assert mcode(A.T) == "[1; sin(2./x); 3*pi./(5*x)]" @XFAIL def test_Matrices_entries_not_hadamard(): # For Matrix with col >= 2, row >= 2, they need to be scalars # FIXME: is it worth worrying about this? Its not wrong, just # leave it user's responsibility to put scalar data for x. A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]]) expected = ("[1 sin(2/x) 3*pi/(5*x);\n" "1 2 x*y]") # <- we give x.*y assert mcode(A) == expected def test_MatrixSymbol(): n = Symbol('n', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) assert mcode(A*B) == "A*B" assert mcode(B*A) == "B*A" assert mcode(2*A*B) == "2*A*B" assert mcode(B*2*A) == "2*B*A" assert mcode(A*(B + 3*Identity(n))) == "A*(3*eye(n) + B)" assert mcode(A**(x**2)) == "A^(x.^2)" assert mcode(A**3) == "A^3" assert mcode(A**(S.Half)) == "A^(1/2)" def test_special_matrices(): assert mcode(6*Identity(3)) == "6*eye(3)" def test_containers(): assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \ "{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}" assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}" assert mcode([1]) == "{1}" assert mcode((1,)) == "{1}" assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}" assert mcode((1, x*y, (3, x**2))) == "{1, x.*y, {3, x.^2}}" # scalar, matrix, empty matrix and empty list assert mcode((1, eye(3), Matrix(0, 0, []), [])) == "{1, [1 0 0; 0 1 0; 0 0 1], [], {}}" def test_octave_noninline(): source = mcode((x+y)/Catalan, assign_to='me', inline=False) expected = ( "Catalan = %s;\n" "me = (x + y)/Catalan;" ) % Catalan.evalf(17) assert source == expected def test_octave_piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) assert mcode(expr) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))" assert mcode(expr, assign_to="r") == ( "r = ((x < 1).*(x) + (~(x < 1)).*(x.^2));") assert mcode(expr, assign_to="r", inline=False) == ( "if (x < 1)\n" " r = x;\n" "else\n" " r = x.^2;\n" "end") expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True)) expected = ("((x < 1).*(x.^2) + (~(x < 1)).*( ...\n" "(x < 2).*(x.^3) + (~(x < 2)).*( ...\n" "(x < 3).*(x.^4) + (~(x < 3)).*(x.^5))))") assert mcode(expr) == expected assert mcode(expr, assign_to="r") == "r = " + expected + ";" assert mcode(expr, assign_to="r", inline=False) == ( "if (x < 1)\n" " r = x.^2;\n" "elseif (x < 2)\n" " r = x.^3;\n" "elseif (x < 3)\n" " r = x.^4;\n" "else\n" " r = x.^5;\n" "end") # Check that Piecewise without a True (default) condition error expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) raises(ValueError, lambda: mcode(expr)) def test_octave_piecewise_times_const(): pw = Piecewise((x, x < 1), (x**2, True)) assert mcode(2*pw) == "2*((x < 1).*(x) + (~(x < 1)).*(x.^2))" assert mcode(pw/x) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./x" assert mcode(pw/(x*y)) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./(x.*y)" assert mcode(pw/3) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))/3" def test_octave_matrix_assign_to(): A = Matrix([[1, 2, 3]]) assert mcode(A, assign_to='a') == "a = [1 2 3];" A = Matrix([[1, 2], [3, 4]]) assert mcode(A, assign_to='A') == "A = [1 2; 3 4];" def test_octave_matrix_assign_to_more(): # assigning to Symbol or MatrixSymbol requires lhs/rhs match A = Matrix([[1, 2, 3]]) B = MatrixSymbol('B', 1, 3) C = MatrixSymbol('C', 2, 3) assert mcode(A, assign_to=B) == "B = [1 2 3];" raises(ValueError, lambda: mcode(A, assign_to=x)) raises(ValueError, lambda: mcode(A, assign_to=C)) def test_octave_matrix_1x1(): A = Matrix([[3]]) B = MatrixSymbol('B', 1, 1) C = MatrixSymbol('C', 1, 2) assert mcode(A, assign_to=B) == "B = 3;" # FIXME? #assert mcode(A, assign_to=x) == "x = 3;" raises(ValueError, lambda: mcode(A, assign_to=C)) def test_octave_matrix_elements(): A = Matrix([[x, 2, x*y]]) assert mcode(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x.^2 + x.*y + 2" A = MatrixSymbol('AA', 1, 3) assert mcode(A) == "AA" assert mcode(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \ "sin(AA(1, 2)) + AA(1, 1).^2 + AA(1, 3)" assert mcode(sum(A)) == "AA(1, 1) + AA(1, 2) + AA(1, 3)" def test_octave_boolean(): assert mcode(True) == "true" assert mcode(S.true) == "true" assert mcode(False) == "false" assert mcode(S.false) == "false" def test_octave_not_supported(): assert mcode(S.ComplexInfinity) == ( "% Not supported in Octave:\n" "% ComplexInfinity\n" "zoo" ) f = Function('f') assert mcode(f(x).diff(x)) == ( "% Not supported in Octave:\n" "% Derivative\n" "Derivative(f(x), x)" ) def test_octave_not_supported_not_on_whitelist(): from sympy import assoc_laguerre assert mcode(assoc_laguerre(x, y, z)) == ( "% Not supported in Octave:\n" "% assoc_laguerre\n" "assoc_laguerre(x, y, z)" ) def test_octave_expint(): assert mcode(expint(1, x)) == "expint(x)" assert mcode(expint(2, x)) == ( "% Not supported in Octave:\n" "% expint\n" "expint(2, x)" ) assert mcode(expint(y, x)) == ( "% Not supported in Octave:\n" "% expint\n" "expint(y, x)" ) def test_trick_indent_with_end_else_words(): # words starting with "end" or "else" do not confuse the indenter t1 = S('endless'); t2 = S('elsewhere'); pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True)) assert mcode(pw, inline=False) == ( "if (x < 0)\n" " endless\n" "elseif (x <= 1)\n" " elsewhere\n" "else\n" " 1\n" "end") def test_haramard(): A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) v = MatrixSymbol('v', 3, 1) h = MatrixSymbol('h', 1, 3) C = HadamardProduct(A, B) assert mcode(C) == "A.*B" assert mcode(C*v) == "(A.*B)*v" assert mcode(h*C*v) == "h*(A.*B)*v" assert mcode(C*A) == "(A.*B)*A" # mixing Hadamard and scalar strange b/c we vectorize scalars assert mcode(C*x*y) == "(x.*y)*(A.*B)" def test_sparse(): M = SparseMatrix(5, 6, {}) M[2, 2] = 10; M[1, 2] = 20; M[1, 3] = 22; M[0, 3] = 30; M[3, 0] = x*y; assert mcode(M) == ( "sparse([4 2 3 1 2], [1 3 3 4 4], [x.*y 20 10 30 22], 5, 6)" ) def test_sinc(): assert mcode(sinc(x)) == 'sinc(x/pi)' assert mcode(sinc((x + 3))) == 'sinc((x + 3)/pi)' assert mcode(sinc(pi*(x + 3))) == 'sinc(x + 3)' def test_trigfun(): for f in (sin, cos, tan, cot, sec, csc, asin, acos, acot, atan, asec, acsc, sinh, cosh, tanh, coth, csch, sech, asinh, acosh, atanh, acoth, asech, acsch): assert octave_code(f(x) == f.__name__ + '(x)') def test_specfun(): n = Symbol('n') for f in [besselj, bessely, besseli, besselk]: assert octave_code(f(n, x)) == f.__name__ + '(n, x)' for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma): assert octave_code(f(x)) == f.__name__ + '(x)' assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)' assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)' assert octave_code(airyai(x)) == 'airy(0, x)' assert octave_code(airyaiprime(x)) == 'airy(1, x)' assert octave_code(airybi(x)) == 'airy(2, x)' assert octave_code(airybiprime(x)) == 'airy(3, x)' assert octave_code(uppergamma(n, x)) == 'gammainc(x, n, \'upper\')' assert octave_code(lowergamma(n, x)) == 'gammainc(x, n, \'lower\')' assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2' assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2' assert octave_code(LambertW(x)) == 'lambertw(x)' assert octave_code(LambertW(x, n)) == 'lambertw(n, x)' def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert mcode(A[0, 0]) == "A(1, 1)" assert mcode(3 * A[0, 0]) == "3*A(1, 1)" F = C[0, 0].subs(C, A - B) assert mcode(F) == "(A - B)(1, 1)" def test_zeta_printing_issue_14820(): assert octave_code(zeta(x)) == 'zeta(x)' assert octave_code(zeta(x, y)) == '% Not supported in Octave:\n% zeta\nzeta(x, y)'
8ebfc1dde191ec81cdb8046174ad8bf338281748ea1a90a99d227ddce03dc105
import random from sympy.printing.tensorflow import TensorflowPrinter from sympy.printing.tensorflow import tensorflow_code from sympy import (eye, symbols, MatrixSymbol, Symbol, Matrix, symbols, sin, exp, Function, Derivative, Trace) from sympy.codegen.array_utils import (CodegenArrayContraction, CodegenArrayTensorProduct, CodegenArrayElementwiseAdd, CodegenArrayPermuteDims, CodegenArrayDiagonal) from sympy.utilities.lambdify import lambdify from sympy.utilities.pytest import skip from sympy.external import import_module tf = tensorflow = import_module("tensorflow") M = MatrixSymbol("M", 3, 3) N = MatrixSymbol("N", 3, 3) P = MatrixSymbol("P", 3, 3) Q = MatrixSymbol("Q", 3, 3) x, y, z, t = symbols("x y z t") if tf is not None: llo = [[j for j in range(i, i+3)] for i in range(0, 9, 3)] m3x3 = tf.constant(llo) m3x3sympy = Matrix(llo) session = tf.Session() def _compare_tensorflow_matrix(variables, expr): f = lambdify(variables, expr, 'tensorflow') random_matrices = [Matrix([[random.randint(0, 10) for k in range(i.shape[1])] for j in range(i.shape[0])]) for i in variables] random_variables = [eval(tensorflow_code(i)) for i in random_matrices] r = session.run(f(*random_variables)) e = expr.subs({k: v for k, v in zip(variables, random_matrices)}).doit() if e.is_Matrix: e = e.tolist() assert (r == e).all() def test_tensorflow_matrix(): if not tf: skip("TensorFlow not installed") assert tensorflow_code(eye(3)) == "tensorflow.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]])" expr = Matrix([[x, sin(y)], [exp(z), -t]]) assert tensorflow_code(expr) == "tensorflow.Variable([[x, tensorflow.sin(y)], [tensorflow.exp(z), -t]])" expr = M assert tensorflow_code(expr) == "M" _compare_tensorflow_matrix((M,), expr) expr = M + N assert tensorflow_code(expr) == "tensorflow.add(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = M*N assert tensorflow_code(expr) == "tensorflow.matmul(M, N)" _compare_tensorflow_matrix((M, N), expr) expr = M*N*P*Q assert tensorflow_code(expr) == "tensorflow.matmul(tensorflow.matmul(tensorflow.matmul(M, N), P), Q)" _compare_tensorflow_matrix((M, N, P, Q), expr) expr = M**3 assert tensorflow_code(expr) == "tensorflow.matmul(tensorflow.matmul(M, M), M)" _compare_tensorflow_matrix((M,), expr) expr = M.T assert tensorflow_code(expr) == "tensorflow.matrix_transpose(M)" _compare_tensorflow_matrix((M,), expr) expr = Trace(M) assert tensorflow_code(expr) == "tensorflow.trace(M)" _compare_tensorflow_matrix((M,), expr) def test_codegen_einsum(): if not tf: skip("TensorFlow not installed") session = tf.Session() M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = CodegenArrayContraction.from_MatMul(M*N) f = lambdify((M, N), cg, 'tensorflow') ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1,-2], [-1, 3]]) y = session.run(f(ma, mb)) c = session.run(tf.matmul(ma, mb)) assert (y == c).all() def test_codegen_extra(): if not tf: skip("TensorFlow not installed") session = tf.Session() M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) P = MatrixSymbol("P", 2, 2) Q = MatrixSymbol("Q", 2, 2) ma = tf.constant([[1, 2], [3, 4]]) mb = tf.constant([[1,-2], [-1, 3]]) mc = tf.constant([[2, 0], [1, 2]]) md = tf.constant([[1,-1], [4, 7]]) cg = CodegenArrayTensorProduct(M, N) assert tensorflow_code(cg) == 'tensorflow.einsum("ab,cd", M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.einsum("ij,kl", ma, mb)) assert (y == c).all() cg = CodegenArrayElementwiseAdd(M, N) assert tensorflow_code(cg) == 'tensorflow.add(M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(ma + mb) assert (y == c).all() cg = CodegenArrayElementwiseAdd(M, N, P) assert tensorflow_code(cg) == 'tensorflow.add(tensorflow.add(M, N), P)' f = lambdify((M, N, P), cg, 'tensorflow') y = session.run(f(ma, mb, mc)) c = session.run(ma + mb + mc) assert (y == c).all() cg = CodegenArrayElementwiseAdd(M, N, P, Q) assert tensorflow_code(cg) == 'tensorflow.add(tensorflow.add(tensorflow.add(M, N), P), Q)' f = lambdify((M, N, P, Q), cg, 'tensorflow') y = session.run(f(ma, mb, mc, md)) c = session.run(ma + mb + mc + md) assert (y == c).all() cg = CodegenArrayPermuteDims(M, [1, 0]) assert tensorflow_code(cg) == 'tensorflow.transpose(M, [1, 0])' f = lambdify((M,), cg, 'tensorflow') y = session.run(f(ma)) c = session.run(tf.transpose(ma)) assert (y == c).all() cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 2, 3, 0]) assert tensorflow_code(cg) == 'tensorflow.transpose(tensorflow.einsum("ab,cd", M, N), [1, 2, 3, 0])' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.transpose(tf.einsum("ab,cd", ma, mb), [1, 2, 3, 0])) assert (y == c).all() cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)) assert tensorflow_code(cg) == 'tensorflow.einsum("ab,bc->acb", M, N)' f = lambdify((M, N), cg, 'tensorflow') y = session.run(f(ma, mb)) c = session.run(tf.einsum("ab,bc->acb", ma, mb)) assert (y == c).all() def test_MatrixElement_printing(): A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert tensorflow_code(A[0, 0]) == "A[0, 0]" assert tensorflow_code(3 * A[0, 0]) == "3*A[0, 0]" F = C[0, 0].subs(C, A - B) assert tensorflow_code(F) == "(tensorflow.add((-1)*B, A))[0, 0]" def test_tensorflow_Derivative(): f = Function("f") expr = Derivative(sin(x), x) assert tensorflow_code(expr) == "tensorflow.gradients(tensorflow.sin(x), x)[0]"
56f68b719929caf354fb00eaffd1fe962cafe4c010ddcd280db6aaab3dfa767d
from sympy import (Piecewise, lambdify, Equality, Unequality, Sum, Mod, cbrt, sqrt, MatrixSymbol) from sympy.abc import x, i, j, a, b, c, d from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Cbrt, Sqrt from sympy.codegen.array_utils import (CodegenArrayContraction, CodegenArrayTensorProduct, CodegenArrayDiagonal, CodegenArrayPermuteDims, CodegenArrayElementwiseAdd) from sympy.printing.lambdarepr import NumPyPrinter from sympy.utilities.pytest import skip from sympy.external import import_module np = import_module('numpy') def test_numpy_piecewise_regression(): """ NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+. See gh-9747 and gh-9749 for details. """ p = Piecewise((1, x < 0), (0, True)) assert NumPyPrinter().doprint(p) == 'numpy.select([numpy.less(x, 0),True], [1,0], default=numpy.nan)' def test_sum(): if not np: skip("NumPy not installed") s = Sum(x ** i, (i, a, b)) f = lambdify((a, b, x), s, 'numpy') a_, b_ = 0, 10 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1))) s = Sum(i * x, (i, a, b)) f = lambdify((a, b, x), s, 'numpy') a_, b_ = 0, 10 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1))) def test_multiple_sums(): if not np: skip("NumPy not installed") s = Sum((x + j) * i, (i, a, b), (j, c, d)) f = lambdify((a, b, c, d, x), s, 'numpy') a_, b_ = 0, 10 c_, d_ = 11, 21 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, c_, d_, x_), sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1))) def test_codegen_einsum(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = CodegenArrayContraction.from_MatMul(M*N) f = lambdify((M, N), cg, 'numpy') ma = np.matrix([[1, 2], [3, 4]]) mb = np.matrix([[1,-2], [-1, 3]]) assert (f(ma, mb) == ma*mb).all() def test_codegen_extra(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) P = MatrixSymbol("P", 2, 2) Q = MatrixSymbol("Q", 2, 2) ma = np.matrix([[1, 2], [3, 4]]) mb = np.matrix([[1,-2], [-1, 3]]) mc = np.matrix([[2, 0], [1, 2]]) md = np.matrix([[1,-1], [4, 7]]) cg = CodegenArrayTensorProduct(M, N) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.einsum(ma, [0, 1], mb, [2, 3])).all() cg = CodegenArrayElementwiseAdd(M, N) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == ma+mb).all() cg = CodegenArrayElementwiseAdd(M, N, P) f = lambdify((M, N, P), cg, 'numpy') assert (f(ma, mb, mc) == ma+mb+mc).all() cg = CodegenArrayElementwiseAdd(M, N, P, Q) f = lambdify((M, N, P, Q), cg, 'numpy') assert (f(ma, mb, mc, md) == ma+mb+mc+md).all() cg = CodegenArrayPermuteDims(M, [1, 0]) f = lambdify((M,), cg, 'numpy') assert (f(ma) == ma.T).all() cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 2, 3, 0]) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.transpose(np.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all() cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.diagonal(np.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all() def test_relational(): if not np: skip("NumPy not installed") e = Equality(x, 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, True, False]) e = Unequality(x, 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, False, True]) e = (x < 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, False, False]) e = (x <= 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, True, False]) e = (x > 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, False, True]) e = (x >= 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, True, True]) def test_mod(): if not np: skip("NumPy not installed") e = Mod(a, b) f = lambdify((a, b), e) a_ = np.array([0, 1, 2, 3]) b_ = 2 assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([0, 1, 2, 3]) b_ = np.array([2, 2, 2, 2]) assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([2, 3, 4, 5]) b_ = np.array([2, 3, 4, 5]) assert np.array_equal(f(a_, b_), [0, 0, 0, 0]) def test_expm1(): if not np: skip("NumPy not installed") f = lambdify((a,), expm1(a), 'numpy') assert abs(f(1e-10) - 1e-10 - 5e-21) < 1e-22 def test_log1p(): if not np: skip("NumPy not installed") f = lambdify((a,), log1p(a), 'numpy') assert abs(f(1e-99) - 1e-99) < 1e-100 def test_hypot(): if not np: skip("NumPy not installed") assert abs(lambdify((a, b), hypot(a, b), 'numpy')(3, 4) - 5) < 1e-16 def test_log10(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), log10(a), 'numpy')(100) - 2) < 1e-16 def test_exp2(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), exp2(a), 'numpy')(5) - 32) < 1e-16 def test_log2(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), log2(a), 'numpy')(256) - 8) < 1e-16 def test_Sqrt(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), Sqrt(a), 'numpy')(4) - 2) < 1e-16 def test_sqrt(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), sqrt(a), 'numpy')(4) - 2) < 1e-16
a34559491bbdb6993e9249e3dd9372e1ac57f5549d29cd7b6481e5dde2181563
# -*- coding: utf-8 -*- from sympy import ( Add, And, Basic, Derivative, Dict, Eq, Equivalent, FF, FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction, Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or, Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S, Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate, groebner, oo, pi, symbols, ilex, grlex, Range, Contains, SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE, Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio) from sympy.core.expr import UnevaluatedExpr from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta, Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos, euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log, meijerg, sin, sqrt, subfactorial, tan, uppergamma, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta) from sympy.codegen.ast import (Assignment, AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment) from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct from sympy.printing.pretty import pretty as xpretty from sympy.printing.pretty import pprint from sympy.physics.units import joule, degree, radian from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct) from sympy.utilities.pytest import raises, XFAIL from sympy.core.trace import Tr from sympy.core.compatibility import u_decode as u from sympy.core.compatibility import range from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross from sympy.tensor.functions import TensorProduct from sympy.sets.setexpr import SetExpr from sympy.sets import ImageSet from sympy.tensor.tensor import (TensorIndexType, tensor_indices, tensorhead, TensorElement) import sympy as sym class lowergamma(sym.lowergamma): pass # testing notation inheritance by a subclass with same name a, b, c, d, x, y, z, k, n = symbols('a,b,c,d,x,y,z,k,n') f = Function("f") th = Symbol('theta') ph = Symbol('phi') """ Expressions whose pretty-printing is tested here: (A '#' to the right of an expression indicates that its various acceptable orderings are accounted for by the tests.) BASIC EXPRESSIONS: oo (x**2) 1/x y*x**-2 x**Rational(-5,2) (-2)**x Pow(3, 1, evaluate=False) (x**2 + x + 1) # 1-x # 1-2*x # x/y -x/y (x+2)/y # (1+x)*y #3 -5*x/(x+10) # correct placement of negative sign 1 - Rational(3,2)*(x+1) -(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524 ORDERING: x**2 + x + 1 1 - x 1 - 2*x 2*x**4 + y**2 - x**2 + y**3 RELATIONAL: Eq(x, y) Lt(x, y) Gt(x, y) Le(x, y) Ge(x, y) Ne(x/(y+1), y**2) # RATIONAL NUMBERS: y*x**-2 y**Rational(3,2) * x**Rational(-5,2) sin(x)**3/tan(x)**2 FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING): (2*x + exp(x)) # Abs(x) Abs(x/(x**2+1)) # Abs(1 / (y - Abs(x))) factorial(n) factorial(2*n) subfactorial(n) subfactorial(2*n) factorial(factorial(factorial(n))) factorial(n+1) # conjugate(x) conjugate(f(x+1)) # f(x) f(x, y) f(x/(y+1), y) # f(x**x**x**x**x**x) sin(x)**2 conjugate(a+b*I) conjugate(exp(a+b*I)) conjugate( f(1 + conjugate(f(x))) ) # f(x/(y+1), y) # denom of first arg floor(1 / (y - floor(x))) ceiling(1 / (y - ceiling(x))) SQRT: sqrt(2) 2**Rational(1,3) 2**Rational(1,1000) sqrt(x**2 + 1) (1 + sqrt(5))**Rational(1,3) 2**(1/x) sqrt(2+pi) (2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2) DERIVATIVES: Derivative(log(x), x, evaluate=False) Derivative(log(x), x, evaluate=False) + x # Derivative(log(x) + x**2, x, y, evaluate=False) Derivative(2*x*y, y, x, evaluate=False) + x**2 # beta(alpha).diff(alpha) INTEGRALS: Integral(log(x), x) Integral(x**2, x) Integral((sin(x))**2 / (tan(x))**2) Integral(x**(2**x), x) Integral(x**2, (x,1,2)) Integral(x**2, (x,Rational(1,2),10)) Integral(x**2*y**2, x,y) Integral(x**2, (x, None, 1)) Integral(x**2, (x, 1, None)) Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi)) MATRICES: Matrix([[x**2+1, 1], [y, x+y]]) # Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) PIECEWISE: Piecewise((x,x<1),(x**2,True)) ITE: ITE(x, y, z) SEQUENCES (TUPLES, LISTS, DICTIONARIES): () [] {} (1/x,) [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) {x: sin(x)} {1/x: 1/y, x: sin(x)**2} # [x**2] (x**2,) {x**2: 1} LIMITS: Limit(x, x, oo) Limit(x**2, x, 0) Limit(1/x, x, 0) Limit(sin(x)/x, x, 0) UNITS: joule => kg*m**2/s SUBS: Subs(f(x), x, ph**2) Subs(f(x).diff(x), x, 0) Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ORDER: O(1) O(1/x) O(x**2 + y**2) """ def pretty(expr, order=None): """ASCII pretty-printing""" return xpretty(expr, order=order, use_unicode=False, wrap_line=False) def upretty(expr, order=None): """Unicode pretty-printing""" return xpretty(expr, order=order, use_unicode=True, wrap_line=False) def test_pretty_ascii_str(): assert pretty( 'xxx' ) == 'xxx' assert pretty( "xxx" ) == 'xxx' assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' assert pretty( "xxx'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' def test_pretty_unicode_str(): assert pretty( u'xxx' ) == u'xxx' assert pretty( u'xxx' ) == u'xxx' assert pretty( u'xxx\'xxx' ) == u'xxx\'xxx' assert pretty( u'xxx"xxx' ) == u'xxx\"xxx' assert pretty( u'xxx\"xxx' ) == u'xxx\"xxx' assert pretty( u"xxx'xxx" ) == u'xxx\'xxx' assert pretty( u"xxx\'xxx" ) == u'xxx\'xxx' assert pretty( u"xxx\"xxx" ) == u'xxx\"xxx' assert pretty( u"xxx\"xxx\'xxx" ) == u'xxx"xxx\'xxx' assert pretty( u"xxx\nxxx" ) == u'xxx\nxxx' def test_upretty_greek(): assert upretty( oo ) == u'∞' assert upretty( Symbol('alpha^+_1') ) == u'α⁺₁' assert upretty( Symbol('beta') ) == u'β' assert upretty(Symbol('lambda')) == u'λ' def test_upretty_multiindex(): assert upretty( Symbol('beta12') ) == u'β₁₂' assert upretty( Symbol('Y00') ) == u'Y₀₀' assert upretty( Symbol('Y_00') ) == u'Y₀₀' assert upretty( Symbol('F^+-') ) == u'F⁺⁻' def test_upretty_sub_super(): assert upretty( Symbol('beta_1_2') ) == u'β₁ ₂' assert upretty( Symbol('beta^1^2') ) == u'β¹ ²' assert upretty( Symbol('beta_1^2') ) == u'β²₁' assert upretty( Symbol('beta_10_20') ) == u'β₁₀ ₂₀' assert upretty( Symbol('beta_ax_gamma^i') ) == u'βⁱₐₓ ᵧ' assert upretty( Symbol("F^1^2_3_4") ) == u'F¹ ²₃ ₄' assert upretty( Symbol("F_1_2^3^4") ) == u'F³ ⁴₁ ₂' assert upretty( Symbol("F_1_2_3_4") ) == u'F₁ ₂ ₃ ₄' assert upretty( Symbol("F^1^2^3^4") ) == u'F¹ ² ³ ⁴' def test_upretty_subs_missing_in_24(): assert upretty( Symbol('F_beta') ) == u'Fᵦ' assert upretty( Symbol('F_gamma') ) == u'Fᵧ' assert upretty( Symbol('F_rho') ) == u'Fᵨ' assert upretty( Symbol('F_phi') ) == u'Fᵩ' assert upretty( Symbol('F_chi') ) == u'Fᵪ' assert upretty( Symbol('F_a') ) == u'Fₐ' assert upretty( Symbol('F_e') ) == u'Fₑ' assert upretty( Symbol('F_i') ) == u'Fᵢ' assert upretty( Symbol('F_o') ) == u'Fₒ' assert upretty( Symbol('F_u') ) == u'Fᵤ' assert upretty( Symbol('F_r') ) == u'Fᵣ' assert upretty( Symbol('F_v') ) == u'Fᵥ' assert upretty( Symbol('F_x') ) == u'Fₓ' @XFAIL def test_missing_in_2X_issue_9047(): assert upretty( Symbol('F_h') ) == u'Fₕ' assert upretty( Symbol('F_k') ) == u'Fₖ' assert upretty( Symbol('F_l') ) == u'Fₗ' assert upretty( Symbol('F_m') ) == u'Fₘ' assert upretty( Symbol('F_n') ) == u'Fₙ' assert upretty( Symbol('F_p') ) == u'Fₚ' assert upretty( Symbol('F_s') ) == u'Fₛ' assert upretty( Symbol('F_t') ) == u'Fₜ' def test_upretty_modifiers(): # Accents assert upretty( Symbol('Fmathring') ) == u'F̊' assert upretty( Symbol('Fddddot') ) == u'F̈̈' assert upretty( Symbol('Fdddot') ) == u'F̈̇' assert upretty( Symbol('Fddot') ) == u'F̈' assert upretty( Symbol('Fdot') ) == u'Ḟ' assert upretty( Symbol('Fcheck') ) == u'F̌' assert upretty( Symbol('Fbreve') ) == u'F̆' assert upretty( Symbol('Facute') ) == u'F́' assert upretty( Symbol('Fgrave') ) == u'F̀' assert upretty( Symbol('Ftilde') ) == u'F̃' assert upretty( Symbol('Fhat') ) == u'F̂' assert upretty( Symbol('Fbar') ) == u'F̅' assert upretty( Symbol('Fvec') ) == u'F⃗' assert upretty( Symbol('Fprime') ) == u'F′' assert upretty( Symbol('Fprm') ) == u'F′' # No faces are actually implemented, but test to make sure the modifiers are stripped assert upretty( Symbol('Fbold') ) == u'Fbold' assert upretty( Symbol('Fbm') ) == u'Fbm' assert upretty( Symbol('Fcal') ) == u'Fcal' assert upretty( Symbol('Fscr') ) == u'Fscr' assert upretty( Symbol('Ffrak') ) == u'Ffrak' # Brackets assert upretty( Symbol('Fnorm') ) == u'‖F‖' assert upretty( Symbol('Favg') ) == u'⟨F⟩' assert upretty( Symbol('Fabs') ) == u'|F|' assert upretty( Symbol('Fmag') ) == u'|F|' # Combinations assert upretty( Symbol('xvecdot') ) == u'x⃗̇' assert upretty( Symbol('xDotVec') ) == u'ẋ⃗' assert upretty( Symbol('xHATNorm') ) == u'‖x̂‖' assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == u'x̊_y̌′__|z̆|' assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == u'α̇̂_n⃗̇__t̃′' assert upretty( Symbol('x_dot') ) == u'x_dot' assert upretty( Symbol('x__dot') ) == u'x__dot' def test_pretty_Cycle(): from sympy.combinatorics.permutations import Cycle assert pretty(Cycle(1, 2)) == '(1 2)' assert pretty(Cycle(2)) == '(2)' assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)' assert pretty(Cycle()) == '()' def test_pretty_basic(): assert pretty( -Rational(1)/2 ) == '-1/2' assert pretty( -Rational(13)/22 ) == \ """\ -13 \n\ ----\n\ 22 \ """ expr = oo ascii_str = \ """\ oo\ """ ucode_str = \ u("""\ ∞\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2) ascii_str = \ """\ 2\n\ x \ """ ucode_str = \ u("""\ 2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 1/x ascii_str = \ """\ 1\n\ -\n\ x\ """ ucode_str = \ u("""\ 1\n\ ─\n\ x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # not the same as 1/x expr = x**-1.0 ascii_str = \ """\ -1.0\n\ x \ """ ucode_str = \ ("""\ -1.0\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # see issue #2860 expr = Pow(S(2), -1.0, evaluate=False) ascii_str = \ """\ -1.0\n\ 2 \ """ ucode_str = \ ("""\ -1.0\n\ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ u("""\ y \n\ ──\n\ 2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x**Rational(-5, 2) ascii_str = \ """\ 1 \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ u("""\ 1 \n\ ────\n\ 5/2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (-2)**x ascii_str = \ """\ x\n\ (-2) \ """ ucode_str = \ u("""\ x\n\ (-2) \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # See issue 4923 expr = Pow(3, 1, evaluate=False) ascii_str = \ """\ 1\n\ 3 \ """ ucode_str = \ u("""\ 1\n\ 3 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2 + x + 1) ascii_str_1 = \ """\ 2\n\ 1 + x + x \ """ ascii_str_2 = \ """\ 2 \n\ x + x + 1\ """ ascii_str_3 = \ """\ 2 \n\ x + 1 + x\ """ ucode_str_1 = \ u("""\ 2\n\ 1 + x + x \ """) ucode_str_2 = \ u("""\ 2 \n\ x + x + 1\ """) ucode_str_3 = \ u("""\ 2 \n\ x + 1 + x\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] expr = 1 - x ascii_str_1 = \ """\ 1 - x\ """ ascii_str_2 = \ """\ -x + 1\ """ ucode_str_1 = \ u("""\ 1 - x\ """) ucode_str_2 = \ u("""\ -x + 1\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 1 - 2*x ascii_str_1 = \ """\ 1 - 2*x\ """ ascii_str_2 = \ """\ -2*x + 1\ """ ucode_str_1 = \ u("""\ 1 - 2⋅x\ """) ucode_str_2 = \ u("""\ -2⋅x + 1\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = x/y ascii_str = \ """\ x\n\ -\n\ y\ """ ucode_str = \ u("""\ x\n\ ─\n\ y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/y ascii_str = \ """\ -x \n\ ---\n\ y \ """ ucode_str = \ u("""\ -x \n\ ───\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x + 2)/y ascii_str_1 = \ """\ 2 + x\n\ -----\n\ y \ """ ascii_str_2 = \ """\ x + 2\n\ -----\n\ y \ """ ucode_str_1 = \ u("""\ 2 + x\n\ ─────\n\ y \ """) ucode_str_2 = \ u("""\ x + 2\n\ ─────\n\ y \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = (1 + x)*y ascii_str_1 = \ """\ y*(1 + x)\ """ ascii_str_2 = \ """\ (1 + x)*y\ """ ascii_str_3 = \ """\ y*(x + 1)\ """ ucode_str_1 = \ u("""\ y⋅(1 + x)\ """) ucode_str_2 = \ u("""\ (1 + x)⋅y\ """) ucode_str_3 = \ u("""\ y⋅(x + 1)\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] # Test for correct placement of the negative sign expr = -5*x/(x + 10) ascii_str_1 = \ """\ -5*x \n\ ------\n\ 10 + x\ """ ascii_str_2 = \ """\ -5*x \n\ ------\n\ x + 10\ """ ucode_str_1 = \ u("""\ -5⋅x \n\ ──────\n\ 10 + x\ """) ucode_str_2 = \ u("""\ -5⋅x \n\ ──────\n\ x + 10\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = -S(1)/2 - 3*x ascii_str = \ """\ -3*x - 1/2\ """ ucode_str = \ u("""\ -3⋅x - 1/2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S(1)/2 - 3*x ascii_str = \ """\ -3*x + 1/2\ """ ucode_str = \ u("""\ -3⋅x + 1/2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -S(1)/2 - 3*x/2 ascii_str = \ """\ 3*x 1\n\ - --- - -\n\ 2 2\ """ ucode_str = \ u("""\ 3⋅x 1\n\ - ─── - ─\n\ 2 2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S(1)/2 - 3*x/2 ascii_str = \ """\ 3*x 1\n\ - --- + -\n\ 2 2\ """ ucode_str = \ u("""\ 3⋅x 1\n\ - ─── + ─\n\ 2 2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_negative_fractions(): expr = -x/y ascii_str =\ """\ -x \n\ ---\n\ y \ """ ucode_str =\ u("""\ -x \n\ ───\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x*z/y ascii_str =\ """\ -x*z \n\ -----\n\ y \ """ ucode_str =\ u("""\ -x⋅z \n\ ─────\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x**2/y ascii_str =\ """\ 2\n\ x \n\ --\n\ y \ """ ucode_str =\ u("""\ 2\n\ x \n\ ──\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x**2/y ascii_str =\ """\ 2 \n\ -x \n\ ----\n\ y \ """ ucode_str =\ u("""\ 2 \n\ -x \n\ ────\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/(y*z) ascii_str =\ """\ -x \n\ ---\n\ y*z\ """ ucode_str =\ u("""\ -x \n\ ───\n\ y⋅z\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -a/y**2 ascii_str =\ """\ -a \n\ ---\n\ 2\n\ y \ """ ucode_str =\ u("""\ -a \n\ ───\n\ 2\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**(-a/b) ascii_str =\ """\ -a \n\ ---\n\ b \n\ y \ """ ucode_str =\ u("""\ -a \n\ ───\n\ b \n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -1/y**2 ascii_str =\ """\ -1 \n\ ---\n\ 2\n\ y \ """ ucode_str =\ u("""\ -1 \n\ ───\n\ 2\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -10/b**2 ascii_str =\ """\ -10 \n\ ----\n\ 2 \n\ b \ """ ucode_str =\ u("""\ -10 \n\ ────\n\ 2 \n\ b \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Rational(-200, 37) ascii_str =\ """\ -200 \n\ -----\n\ 37 \ """ ucode_str =\ u("""\ -200 \n\ ─────\n\ 37 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_5524(): assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ """\ / ___ \\ 2\n\ (x - 5)*\\-x - 2*\\/ 2 + 5/ - (-y + 5) \ """ assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ u("""\ 2\n\ (x - 5)⋅(-x - 2⋅√2 + 5) - (-y + 5) \ """) def test_pretty_ordering(): assert pretty(x**2 + x + 1, order='lex') == \ """\ 2 \n\ x + x + 1\ """ assert pretty(x**2 + x + 1, order='rev-lex') == \ """\ 2\n\ 1 + x + x \ """ assert pretty(1 - x, order='lex') == '-x + 1' assert pretty(1 - x, order='rev-lex') == '1 - x' assert pretty(1 - 2*x, order='lex') == '-2*x + 1' assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x' f = 2*x**4 + y**2 - x**2 + y**3 assert pretty(f, order=None) == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='lex') == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='rev-lex') == \ """\ 2 3 2 4\n\ y + y - x + 2*x \ """ expr = x - x**3/6 + x**5/120 + O(x**6) ascii_str = \ """\ 3 5 \n\ x x / 6\\\n\ x - -- + --- + O\\x /\n\ 6 120 \ """ ucode_str = \ u("""\ 3 5 \n\ x x ⎛ 6⎞\n\ x - ── + ─── + O⎝x ⎠\n\ 6 120 \ """) assert pretty(expr, order=None) == ascii_str assert upretty(expr, order=None) == ucode_str assert pretty(expr, order='lex') == ascii_str assert upretty(expr, order='lex') == ucode_str assert pretty(expr, order='rev-lex') == ascii_str assert upretty(expr, order='rev-lex') == ucode_str def test_EulerGamma(): assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma" assert upretty(EulerGamma) == u"γ" def test_GoldenRatio(): assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio" assert upretty(GoldenRatio) == u"φ" def test_pretty_relational(): expr = Eq(x, y) ascii_str = \ """\ x = y\ """ ucode_str = \ u("""\ x = y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lt(x, y) ascii_str = \ """\ x < y\ """ ucode_str = \ u("""\ x < y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Gt(x, y) ascii_str = \ """\ x > y\ """ ucode_str = \ u("""\ x > y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Le(x, y) ascii_str = \ """\ x <= y\ """ ucode_str = \ u("""\ x ≤ y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ge(x, y) ascii_str = \ """\ x >= y\ """ ucode_str = \ u("""\ x ≥ y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ne(x/(y + 1), y**2) ascii_str_1 = \ """\ x 2\n\ ----- != y \n\ 1 + y \ """ ascii_str_2 = \ """\ x 2\n\ ----- != y \n\ y + 1 \ """ ucode_str_1 = \ u("""\ x 2\n\ ───── ≠ y \n\ 1 + y \ """) ucode_str_2 = \ u("""\ x 2\n\ ───── ≠ y \n\ y + 1 \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] def test_Assignment(): expr = Assignment(x, y) ascii_str = \ """\ x := y\ """ ucode_str = \ u("""\ x := y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_AugmentedAssignment(): expr = AddAugmentedAssignment(x, y) ascii_str = \ """\ x += y\ """ ucode_str = \ u("""\ x += y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = SubAugmentedAssignment(x, y) ascii_str = \ """\ x -= y\ """ ucode_str = \ u("""\ x -= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = MulAugmentedAssignment(x, y) ascii_str = \ """\ x *= y\ """ ucode_str = \ u("""\ x *= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = DivAugmentedAssignment(x, y) ascii_str = \ """\ x /= y\ """ ucode_str = \ u("""\ x /= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ModAugmentedAssignment(x, y) ascii_str = \ """\ x %= y\ """ ucode_str = \ u("""\ x %= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_7117(): # See also issue #5031 (hence the evaluate=False in these). e = Eq(x + 1, x/2) q = Mul(2, e, evaluate=False) assert upretty(q) == u("""\ ⎛ x⎞\n\ 2⋅⎜x + 1 = ─⎟\n\ ⎝ 2⎠\ """) q = Add(e, 6, evaluate=False) assert upretty(q) == u("""\ ⎛ x⎞\n\ 6 + ⎜x + 1 = ─⎟\n\ ⎝ 2⎠\ """) q = Pow(e, 2, evaluate=False) assert upretty(q) == u("""\ 2\n\ ⎛ x⎞ \n\ ⎜x + 1 = ─⎟ \n\ ⎝ 2⎠ \ """) e2 = Eq(x, 2) q = Mul(e, e2, evaluate=False) assert upretty(q) == u("""\ ⎛ x⎞ \n\ ⎜x + 1 = ─⎟⋅(x = 2)\n\ ⎝ 2⎠ \ """) def test_pretty_rational(): expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ u("""\ y \n\ ──\n\ 2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**Rational(3, 2) * x**Rational(-5, 2) ascii_str = \ """\ 3/2\n\ y \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ u("""\ 3/2\n\ y \n\ ────\n\ 5/2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**3/tan(x)**2 ascii_str = \ """\ 3 \n\ sin (x)\n\ -------\n\ 2 \n\ tan (x)\ """ ucode_str = \ u("""\ 3 \n\ sin (x)\n\ ───────\n\ 2 \n\ tan (x)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_functions(): """Tests for Abs, conjugate, exp, function braces, and factorial.""" expr = (2*x + exp(x)) ascii_str_1 = \ """\ x\n\ 2*x + e \ """ ascii_str_2 = \ """\ x \n\ e + 2*x\ """ ucode_str_1 = \ u("""\ x\n\ 2⋅x + ℯ \ """) ucode_str_2 = \ u("""\ x \n\ ℯ + 2⋅x\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Abs(x) ascii_str = \ """\ |x|\ """ ucode_str = \ u("""\ │x│\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Abs(x/(x**2 + 1)) ascii_str_1 = \ """\ | x |\n\ |------|\n\ | 2|\n\ |1 + x |\ """ ascii_str_2 = \ """\ | x |\n\ |------|\n\ | 2 |\n\ |x + 1|\ """ ucode_str_1 = \ u("""\ │ x │\n\ │──────│\n\ │ 2│\n\ │1 + x │\ """) ucode_str_2 = \ u("""\ │ x │\n\ │──────│\n\ │ 2 │\n\ │x + 1│\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Abs(1 / (y - Abs(x))) ascii_str = \ """\ | 1 |\n\ |-------|\n\ |y - |x||\ """ ucode_str = \ u("""\ │ 1 │\n\ │───────│\n\ │y - │x││\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial(n) ascii_str = \ """\ n!\ """ ucode_str = \ u("""\ n!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(2*n) ascii_str = \ """\ (2*n)!\ """ ucode_str = \ u("""\ (2⋅n)!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(factorial(factorial(n))) ascii_str = \ """\ ((n!)!)!\ """ ucode_str = \ u("""\ ((n!)!)!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(n + 1) ascii_str_1 = \ """\ (1 + n)!\ """ ascii_str_2 = \ """\ (n + 1)!\ """ ucode_str_1 = \ u("""\ (1 + n)!\ """) ucode_str_2 = \ u("""\ (n + 1)!\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = subfactorial(n) ascii_str = \ """\ !n\ """ ucode_str = \ u("""\ !n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = subfactorial(2*n) ascii_str = \ """\ !(2*n)\ """ ucode_str = \ u("""\ !(2⋅n)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial2(n) ascii_str = \ """\ n!!\ """ ucode_str = \ u("""\ n!!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(2*n) ascii_str = \ """\ (2*n)!!\ """ ucode_str = \ u("""\ (2⋅n)!!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(factorial2(factorial2(n))) ascii_str = \ """\ ((n!!)!!)!!\ """ ucode_str = \ u("""\ ((n!!)!!)!!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(n + 1) ascii_str_1 = \ """\ (1 + n)!!\ """ ascii_str_2 = \ """\ (n + 1)!!\ """ ucode_str_1 = \ u("""\ (1 + n)!!\ """) ucode_str_2 = \ u("""\ (n + 1)!!\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 2*binomial(n, k) ascii_str = \ """\ /n\\\n\ 2*| |\n\ \\k/\ """ ucode_str = \ u("""\ ⎛n⎞\n\ 2⋅⎜ ⎟\n\ ⎝k⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(2*n, k) ascii_str = \ """\ /2*n\\\n\ 2*| |\n\ \\ k /\ """ ucode_str = \ u("""\ ⎛2⋅n⎞\n\ 2⋅⎜ ⎟\n\ ⎝ k ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(n**2, k) ascii_str = \ """\ / 2\\\n\ |n |\n\ 2*| |\n\ \\k /\ """ ucode_str = \ u("""\ ⎛ 2⎞\n\ ⎜n ⎟\n\ 2⋅⎜ ⎟\n\ ⎝k ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ u("""\ C \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(x) ascii_str = \ """\ _\n\ x\ """ ucode_str = \ u("""\ _\n\ x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str f = Function('f') expr = conjugate(f(x + 1)) ascii_str_1 = \ """\ ________\n\ f(1 + x)\ """ ascii_str_2 = \ """\ ________\n\ f(x + 1)\ """ ucode_str_1 = \ u("""\ ________\n\ f(1 + x)\ """) ucode_str_2 = \ u("""\ ________\n\ f(x + 1)\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x) ascii_str = \ """\ f(x)\ """ ucode_str = \ u("""\ f(x)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x, y) ascii_str = \ """\ f(x, y)\ """ ucode_str = \ u("""\ f(x, y)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """) ucode_str_2 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x**x**x**x**x**x) ascii_str = \ """\ / / / / / x\\\\\\\\\\ | | | | \\x /|||| | | | \\x /||| | | \\x /|| | \\x /| f\\x /\ """ ucode_str = \ u("""\ ⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞ ⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟ ⎜ ⎜ ⎝x ⎠⎟⎟ ⎜ ⎝x ⎠⎟ f⎝x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**2 ascii_str = \ """\ 2 \n\ sin (x)\ """ ucode_str = \ u("""\ 2 \n\ sin (x)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(a + b*I) ascii_str = \ """\ _ _\n\ a - I*b\ """ ucode_str = \ u("""\ _ _\n\ a - ⅈ⋅b\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(exp(a + b*I)) ascii_str = \ """\ _ _\n\ a - I*b\n\ e \ """ ucode_str = \ u("""\ _ _\n\ a - ⅈ⋅b\n\ ℯ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate( f(1 + conjugate(f(x))) ) ascii_str_1 = \ """\ ___________\n\ / ____\\\n\ f\\1 + f(x)/\ """ ascii_str_2 = \ """\ ___________\n\ /____ \\\n\ f\\f(x) + 1/\ """ ucode_str_1 = \ u("""\ ___________\n\ ⎛ ____⎞\n\ f⎝1 + f(x)⎠\ """) ucode_str_2 = \ u("""\ ___________\n\ ⎛____ ⎞\n\ f⎝f(x) + 1⎠\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """) ucode_str_2 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = floor(1 / (y - floor(x))) ascii_str = \ """\ / 1 \\\n\ floor|------------|\n\ \\y - floor(x)/\ """ ucode_str = \ u("""\ ⎢ 1 ⎥\n\ ⎢───────⎥\n\ ⎣y - ⌊x⌋⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ceiling(1 / (y - ceiling(x))) ascii_str = \ """\ / 1 \\\n\ ceiling|--------------|\n\ \\y - ceiling(x)/\ """ ucode_str = \ u("""\ ⎡ 1 ⎤\n\ ⎢───────⎥\n\ ⎢y - ⌈x⌉⎥\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n) ascii_str = \ """\ E \n\ n\ """ ucode_str = \ u("""\ E \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(1/(1 + 1/(1 + 1/n))) ascii_str = \ """\ E \n\ 1 \n\ ---------\n\ 1 \n\ 1 + -----\n\ 1\n\ 1 + -\n\ n\ """ ucode_str = \ u("""\ E \n\ 1 \n\ ─────────\n\ 1 \n\ 1 + ─────\n\ 1\n\ 1 + ─\n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x) ascii_str = \ """\ E (x)\n\ n \ """ ucode_str = \ u("""\ E (x)\n\ n \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x/2) ascii_str = \ """\ /x\\\n\ E |-|\n\ n\\2/\ """ ucode_str = \ u("""\ ⎛x⎞\n\ E ⎜─⎟\n\ n⎝2⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt(): expr = sqrt(2) ascii_str = \ """\ ___\n\ \\/ 2 \ """ ucode_str = \ u"√2" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 3) ascii_str = \ """\ 3 ___\n\ \\/ 2 \ """ ucode_str = \ u("""\ 3 ___\n\ ╲╱ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 1000) ascii_str = \ """\ 1000___\n\ \\/ 2 \ """ ucode_str = \ u("""\ 1000___\n\ ╲╱ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(x**2 + 1) ascii_str = \ """\ ________\n\ / 2 \n\ \\/ x + 1 \ """ ucode_str = \ u("""\ ________\n\ ╱ 2 \n\ ╲╱ x + 1 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1 + sqrt(5))**Rational(1, 3) ascii_str = \ """\ ___________\n\ 3 / ___ \n\ \\/ 1 + \\/ 5 \ """ ucode_str = \ u("""\ 3 ________\n\ ╲╱ 1 + √5 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**(1/x) ascii_str = \ """\ x ___\n\ \\/ 2 \ """ ucode_str = \ u("""\ x ___\n\ ╲╱ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(2 + pi) ascii_str = \ """\ ________\n\ \\/ 2 + pi \ """ ucode_str = \ u("""\ _______\n\ ╲╱ 2 + π \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (2 + ( 1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2) ascii_str = \ """\ ____________ \n\ / 2 1000___ \n\ / x + 1 \\/ x + 1\n\ 4 / 2 + ------ + -----------\n\ \\/ x + 2 ________\n\ / 2 \n\ \\/ x + 3 \ """ ucode_str = \ u("""\ ____________ \n\ ╱ 2 1000___ \n\ ╱ x + 1 ╲╱ x + 1\n\ 4 ╱ 2 + ────── + ───────────\n\ ╲╱ x + 2 ________\n\ ╱ 2 \n\ ╲╱ x + 3 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt_char_knob(): # See PR #9234. expr = sqrt(2) ucode_str1 = \ u("""\ ___\n\ ╲╱ 2 \ """) ucode_str2 = \ u"√2" assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=False) == ucode_str1 assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=True) == ucode_str2 def test_pretty_sqrt_longsymbol_no_sqrt_char(): # Do not use unicode sqrt char for long symbols (see PR #9234). expr = sqrt(Symbol('C1')) ucode_str = \ u("""\ ____\n\ ╲╱ C₁ \ """) assert upretty(expr) == ucode_str def test_pretty_KroneckerDelta(): x, y = symbols("x, y") expr = KroneckerDelta(x, y) ascii_str = \ """\ d \n\ x,y\ """ ucode_str = \ u("""\ δ \n\ x,y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_product(): n, m, k, l = symbols('n m k l') f = symbols('f', cls=Function) expr = Product(f((n/3)**2), (n, k**2, l)) unicode_str = \ u("""\ l \n\ ┬────────┬ \n\ │ │ ⎛ 2⎞\n\ │ │ ⎜n ⎟\n\ │ │ f⎜──⎟\n\ │ │ ⎝9 ⎠\n\ │ │ \n\ 2 \n\ n = k """) ascii_str = \ """\ l \n\ __________ \n\ | | / 2\\\n\ | | |n |\n\ | | f|--|\n\ | | \\9 /\n\ | | \n\ 2 \n\ n = k """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m)) unicode_str = \ u("""\ m l \n\ ┬────────┬ ┬────────┬ \n\ │ │ │ │ ⎛ 2⎞\n\ │ │ │ │ ⎜n ⎟\n\ │ │ │ │ f⎜──⎟\n\ │ │ │ │ ⎝9 ⎠\n\ │ │ │ │ \n\ l = 1 2 \n\ n = k """) ascii_str = \ """\ m l \n\ __________ __________ \n\ | | | | / 2\\\n\ | | | | |n |\n\ | | | | f|--|\n\ | | | | \\9 /\n\ | | | | \n\ l = 1 2 \n\ n = k """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_pretty_lambda(): # S.IdentityFunction is a special case expr = Lambda(y, y) assert pretty(expr) == "x -> x" assert upretty(expr) == u"x ↦ x" expr = Lambda(x, x+1) assert pretty(expr) == "x -> x + 1" assert upretty(expr) == u"x ↦ x + 1" expr = Lambda(x, x**2) ascii_str = \ """\ 2\n\ x -> x \ """ ucode_str = \ u("""\ 2\n\ x ↦ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(x, x**2)**2 ascii_str = \ """\ 2 / 2\\ \n\ \\x -> x / \ """ ucode_str = \ u("""\ 2 ⎛ 2⎞ \n\ ⎝x ↦ x ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x) ascii_str = "(x, y) -> x" ucode_str = u"(x, y) ↦ x" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x**2) ascii_str = \ """\ 2\n\ (x, y) -> x \ """ ucode_str = \ u("""\ 2\n\ (x, y) ↦ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_order(): expr = O(1) ascii_str = \ """\ O(1)\ """ ucode_str = \ u("""\ O(1)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x) ascii_str = \ """\ /1\\\n\ O|-|\n\ \\x/\ """ ucode_str = \ u("""\ ⎛1⎞\n\ O⎜─⎟\n\ ⎝x⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (0, 0)/\ """ ucode_str = \ u("""\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (0, 0)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1, (x, oo)) ascii_str = \ """\ O(1; x -> oo)\ """ ucode_str = \ u("""\ O(1; x → ∞)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x, (x, oo)) ascii_str = \ """\ /1 \\\n\ O|-; x -> oo|\n\ \\x /\ """ ucode_str = \ u("""\ ⎛1 ⎞\n\ O⎜─; x → ∞⎟\n\ ⎝x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2, (x, oo), (y, oo)) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (oo, oo)/\ """ ucode_str = \ u("""\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (∞, ∞)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_derivatives(): # Simple expr = Derivative(log(x), x, evaluate=False) ascii_str = \ """\ d \n\ --(log(x))\n\ dx \ """ ucode_str = \ u("""\ d \n\ ──(log(x))\n\ dx \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(log(x), x, evaluate=False) + x ascii_str_1 = \ """\ d \n\ x + --(log(x))\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(log(x)) + x\n\ dx \ """ ucode_str_1 = \ u("""\ d \n\ x + ──(log(x))\n\ dx \ """) ucode_str_2 = \ u("""\ d \n\ ──(log(x)) + x\n\ dx \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] # basic partial derivatives expr = Derivative(log(x + y) + x, x) ascii_str_1 = \ """\ d \n\ --(log(x + y) + x)\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(x + log(x + y))\n\ dx \ """ ucode_str_1 = \ u("""\ ∂ \n\ ──(log(x + y) + x)\n\ ∂x \ """) ucode_str_2 = \ u("""\ ∂ \n\ ──(x + log(x + y))\n\ ∂x \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr) # Multiple symbols expr = Derivative(log(x) + x**2, x, y) ascii_str_1 = \ """\ 2 \n\ d / 2\\\n\ -----\\log(x) + x /\n\ dy dx \ """ ascii_str_2 = \ """\ 2 \n\ d / 2 \\\n\ -----\\x + log(x)/\n\ dy dx \ """ ucode_str_1 = \ u("""\ 2 \n\ d ⎛ 2⎞\n\ ─────⎝log(x) + x ⎠\n\ dy dx \ """) ucode_str_2 = \ u("""\ 2 \n\ d ⎛ 2 ⎞\n\ ─────⎝x + log(x)⎠\n\ dy dx \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, y, x) + x**2 ascii_str_1 = \ """\ 2 \n\ d 2\n\ -----(2*x*y) + x \n\ dx dy \ """ ascii_str_2 = \ """\ 2 \n\ 2 d \n\ x + -----(2*x*y)\n\ dx dy \ """ ucode_str_1 = \ u("""\ 2 \n\ ∂ 2\n\ ─────(2⋅x⋅y) + x \n\ ∂x ∂y \ """) ucode_str_2 = \ u("""\ 2 \n\ 2 ∂ \n\ x + ─────(2⋅x⋅y)\n\ ∂x ∂y \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, x, x) ascii_str = \ """\ 2 \n\ d \n\ ---(2*x*y)\n\ 2 \n\ dx \ """ ucode_str = \ u("""\ 2 \n\ ∂ \n\ ───(2⋅x⋅y)\n\ 2 \n\ ∂x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, 17) ascii_str = \ """\ 17 \n\ d \n\ ----(2*x*y)\n\ 17 \n\ dx \ """ ucode_str = \ u("""\ 17 \n\ ∂ \n\ ────(2⋅x⋅y)\n\ 17 \n\ ∂x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, x, y) ascii_str = \ """\ 3 \n\ d \n\ ------(2*x*y)\n\ 2 \n\ dy dx \ """ ucode_str = \ u("""\ 3 \n\ ∂ \n\ ──────(2⋅x⋅y)\n\ 2 \n\ ∂y ∂x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # Greek letters alpha = Symbol('alpha') beta = Function('beta') expr = beta(alpha).diff(alpha) ascii_str = \ """\ d \n\ ------(beta(alpha))\n\ dalpha \ """ ucode_str = \ u("""\ d \n\ ──(β(α))\n\ dα \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(f(x), (x, n)) ascii_str = \ """\ n \n\ d \n\ ---(f(x))\n\ n \n\ dx \ """ ucode_str = \ u("""\ n \n\ d \n\ ───(f(x))\n\ n \n\ dx \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_integrals(): expr = Integral(log(x), x) ascii_str = \ """\ / \n\ | \n\ | log(x) dx\n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ log(x) dx\n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, x) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral((sin(x))**2 / (tan(x))**2) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | sin (x) \n\ | ------- dx\n\ | 2 \n\ | tan (x) \n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ 2 \n\ ⎮ sin (x) \n\ ⎮ ─────── dx\n\ ⎮ 2 \n\ ⎮ tan (x) \n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**(2**x), x) ascii_str = \ """\ / \n\ | \n\ | / x\\ \n\ | \\2 / \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ ⎛ x⎞ \n\ ⎮ ⎝2 ⎠ \n\ ⎮ x dx\n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, 1, 2)) ascii_str = \ """\ 2 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1 \ """ ucode_str = \ u("""\ 2 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, Rational(1, 2), 10)) ascii_str = \ """\ 10 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1/2 \ """ ucode_str = \ u("""\ 10 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1/2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2*y**2, x, y) ascii_str = \ """\ / / \n\ | | \n\ | | 2 2 \n\ | | x *y dx dy\n\ | | \n\ / / \ """ ucode_str = \ u("""\ ⌠ ⌠ \n\ ⎮ ⎮ 2 2 \n\ ⎮ ⎮ x ⋅y dx dy\n\ ⌡ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi)) ascii_str = \ """\ 2*pi pi \n\ / / \n\ | | \n\ | | sin(theta) \n\ | | ---------- d(theta) d(phi)\n\ | | cos(phi) \n\ | | \n\ / / \n\ 0 0 \ """ ucode_str = \ u("""\ 2⋅π π \n\ ⌠ ⌠ \n\ ⎮ ⎮ sin(θ) \n\ ⎮ ⎮ ────── dθ dφ\n\ ⎮ ⎮ cos(φ) \n\ ⌡ ⌡ \n\ 0 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_matrix(): # Empty Matrix expr = Matrix() ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(2, 0, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(0, 2, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix([[x**2 + 1, 1], [y, x + y]]) ascii_str_1 = \ """\ [ 2 ] [1 + x 1 ] [ ] [ y x + y]\ """ ascii_str_2 = \ """\ [ 2 ] [x + 1 1 ] [ ] [ y x + y]\ """ ucode_str_1 = \ u("""\ ⎡ 2 ⎤ ⎢1 + x 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """) ucode_str_2 = \ u("""\ ⎡ 2 ⎤ ⎢x + 1 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) ascii_str = \ """\ [x ] [- y theta] [y ] [ ] [ I*k*phi ] [0 e 1 ]\ """ ucode_str = \ u("""\ ⎡x ⎤ ⎢─ y θ⎥ ⎢y ⎥ ⎢ ⎥ ⎢ ⅈ⋅k⋅φ ⎥ ⎣0 ℯ 1⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ndim_arrays(): x, y, z, w = symbols("x y z w") for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): # Basic: scalar array M = ArrayType(x) assert pretty(M) == "x" assert upretty(M) == "x" M = ArrayType([[1/x, y], [z, w]]) M1 = ArrayType([1/x, y, z]) M2 = tensorproduct(M1, M) M3 = tensorproduct(M, M) ascii_str = \ """\ [1 ]\n\ [- y]\n\ [x ]\n\ [ ]\n\ [z w]\ """ ucode_str = \ u("""\ ⎡1 ⎤\n\ ⎢─ y⎥\n\ ⎢x ⎥\n\ ⎢ ⎥\n\ ⎣z w⎦\ """) assert pretty(M) == ascii_str assert upretty(M) == ucode_str ascii_str = \ """\ [1 ]\n\ [- y z]\n\ [x ]\ """ ucode_str = \ u("""\ ⎡1 ⎤\n\ ⎢─ y z⎥\n\ ⎣x ⎦\ """) assert pretty(M1) == ascii_str assert upretty(M1) == ucode_str ascii_str = \ """\ [[1 y] ]\n\ [[-- -] [z ]]\n\ [[ 2 x] [ y 2 ] [- y*z]]\n\ [[x ] [ - y ] [x ]]\n\ [[ ] [ x ] [ ]]\n\ [[z w] [ ] [ 2 ]]\n\ [[- -] [y*z w*y] [z w*z]]\n\ [[x x] ]\ """ ucode_str = \ u("""\ ⎡⎡1 y⎤ ⎤\n\ ⎢⎢── ─⎥ ⎡z ⎤⎥\n\ ⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\ ⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\ ⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\ ⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\ ⎣⎣x x⎦ ⎦\ """) assert pretty(M2) == ascii_str assert upretty(M2) == ucode_str ascii_str = \ """\ [ [1 y] ]\n\ [ [-- -] ]\n\ [ [ 2 x] [ y 2 ]]\n\ [ [x ] [ - y ]]\n\ [ [ ] [ x ]]\n\ [ [z w] [ ]]\n\ [ [- -] [y*z w*y]]\n\ [ [x x] ]\n\ [ ]\n\ [[z ] [ w ]]\n\ [[- y*z] [ - w*y]]\n\ [[x ] [ x ]]\n\ [[ ] [ ]]\n\ [[ 2 ] [ 2 ]]\n\ [[z w*z] [w*z w ]]\ """ ucode_str = \ u("""\ ⎡ ⎡1 y⎤ ⎤\n\ ⎢ ⎢── ─⎥ ⎥\n\ ⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\ ⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\ ⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\ ⎢ ⎢z w⎥ ⎢ ⎥⎥\n\ ⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\ ⎢ ⎣x x⎦ ⎥\n\ ⎢ ⎥\n\ ⎢⎡z ⎤ ⎡ w ⎤⎥\n\ ⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\ ⎢⎢x ⎥ ⎢ x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ ⎥⎥\n\ ⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\ ⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\ """) assert pretty(M3) == ascii_str assert upretty(M3) == ucode_str Mrow = ArrayType([[x, y, 1 / z]]) Mcolumn = ArrayType([[x], [y], [1 / z]]) Mcol2 = ArrayType([Mcolumn.tolist()]) ascii_str = \ """\ [[ 1]]\n\ [[x y -]]\n\ [[ z]]\ """ ucode_str = \ u("""\ ⎡⎡ 1⎤⎤\n\ ⎢⎢x y ─⎥⎥\n\ ⎣⎣ z⎦⎦\ """) assert pretty(Mrow) == ascii_str assert upretty(Mrow) == ucode_str ascii_str = \ """\ [x]\n\ [ ]\n\ [y]\n\ [ ]\n\ [1]\n\ [-]\n\ [z]\ """ ucode_str = \ u("""\ ⎡x⎤\n\ ⎢ ⎥\n\ ⎢y⎥\n\ ⎢ ⎥\n\ ⎢1⎥\n\ ⎢─⎥\n\ ⎣z⎦\ """) assert pretty(Mcolumn) == ascii_str assert upretty(Mcolumn) == ucode_str ascii_str = \ """\ [[x]]\n\ [[ ]]\n\ [[y]]\n\ [[ ]]\n\ [[1]]\n\ [[-]]\n\ [[z]]\ """ ucode_str = \ u("""\ ⎡⎡x⎤⎤\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢y⎥⎥\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢1⎥⎥\n\ ⎢⎢─⎥⎥\n\ ⎣⎣z⎦⎦\ """) assert pretty(Mcol2) == ascii_str assert upretty(Mcol2) == ucode_str def test_tensor_TensorProduct(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert upretty(TensorProduct(A, B)) == "A\u2297B" assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A" def test_diffgeom_print_WedgeProduct(): from sympy.diffgeom.rn import R2 from sympy.diffgeom import WedgeProduct wp = WedgeProduct(R2.dx, R2.dy) assert upretty(wp) == u("ⅆ x∧ⅆ y") def test_Adjoint(): X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert pretty(Adjoint(X)) == " +\nX " assert pretty(Adjoint(X + Y)) == " +\n(X + Y) " assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y " assert pretty(Adjoint(X*Y)) == " +\n(X*Y) " assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X " assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / " assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / " assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / " assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / " assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / " assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / " assert upretty(Adjoint(X)) == u" †\nX " assert upretty(Adjoint(X + Y)) == u" †\n(X + Y) " assert upretty(Adjoint(X) + Adjoint(Y)) == u" † †\nX + Y " assert upretty(Adjoint(X*Y)) == u" †\n(X⋅Y) " assert upretty(Adjoint(Y)*Adjoint(X)) == u" † †\nY ⋅X " assert upretty(Adjoint(X**2)) == \ u" †\n⎛ 2⎞ \n⎝X ⎠ " assert upretty(Adjoint(X)**2) == \ u" 2\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Inverse(X))) == \ u" †\n⎛ -1⎞ \n⎝X ⎠ " assert upretty(Inverse(Adjoint(X))) == \ u" -1\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Transpose(X))) == \ u" †\n⎛ T⎞ \n⎝X ⎠ " assert upretty(Transpose(Adjoint(X))) == \ u" T\n⎛ †⎞ \n⎝X ⎠ " def test_pretty_Trace_issue_9044(): X = Matrix([[1, 2], [3, 4]]) Y = Matrix([[2, 4], [6, 8]]) ascii_str_1 = \ """\ /[1 2]\\ tr|[ ]| \\[3 4]/\ """ ucode_str_1 = \ u("""\ ⎛⎡1 2⎤⎞ tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠\ """) ascii_str_2 = \ """\ /[1 2]\\ /[2 4]\\ tr|[ ]| + tr|[ ]| \\[3 4]/ \\[6 8]/\ """ ucode_str_2 = \ u("""\ ⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞ tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\ """) assert pretty(Trace(X)) == ascii_str_1 assert upretty(Trace(X)) == ucode_str_1 assert pretty(Trace(X) + Trace(Y)) == ascii_str_2 assert upretty(Trace(X) + Trace(Y)) == ucode_str_2 def test_MatrixExpressions(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) assert pretty(X) == upretty(X) == "X" Y = X[1:2:3, 4:5:6] ascii_str = ucode_str = "X[1:3, 4:6]" assert pretty(Y) == ascii_str assert upretty(Y) == ucode_str Z = X[1:10:2] ascii_str = ucode_str = "X[1:10:2, :n]" assert pretty(Z) == ascii_str assert upretty(Z) == ucode_str def test_pretty_dotproduct(): from sympy.matrices import Matrix, MatrixSymbol from sympy.matrices.expressions.dotproduct import DotProduct n = symbols("n", integer=True) A = MatrixSymbol('A', n, 1) B = MatrixSymbol('B', n, 1) C = Matrix(1, 3, [1, 2, 3]) D = Matrix(1, 3, [1, 3, 4]) assert pretty(DotProduct(A, B)) == u"A*B" assert pretty(DotProduct(C, D)) == u"[1 2 3]*[1 3 4]" assert upretty(DotProduct(A, B)) == u"A⋅B" assert upretty(DotProduct(C, D)) == u"[1 2 3]⋅[1 3 4]" def test_pretty_piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ /x for x < 1\n\ | \n\ < 2 \n\ |x otherwise\n\ \\ \ """ ucode_str = \ u("""\ ⎧x for x < 1\n\ ⎪ \n\ ⎨ 2 \n\ ⎪x otherwise\n\ ⎩ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ //x for x < 1\\\n\ || |\n\ -|< 2 |\n\ ||x otherwise|\n\ \\\\ /\ """ ucode_str = \ u("""\ ⎛⎧x for x < 1⎞\n\ ⎜⎪ ⎟\n\ -⎜⎨ 2 ⎟\n\ ⎜⎪x otherwise⎟\n\ ⎝⎩ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x + |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ u("""\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x - |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ u("""\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x*Piecewise((x, x > 0), (y, True)) ascii_str = \ """\ //x for x > 0\\\n\ x*|< |\n\ \\\\y otherwise/\ """ ucode_str = \ u("""\ ⎛⎧x for x > 0⎞\n\ x⋅⎜⎨ ⎟\n\ ⎝⎩y otherwise⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ |< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ u("""\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ ⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ -|< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ u("""\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ -⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1), ()), ((), (1, 0)), 1/y), True)) ascii_str = \ """\ / |1| \n\ | 0 for |-| < 1\n\ | |y| \n\ | \n\ < 1 for |y| < 1\n\ | \n\ | __0, 2 /2, 1 | 1\\ \n\ |y*/__ | | -| otherwise \n\ \\ \\_|2, 2 \\ 1, 0 | y/ \ """ ucode_str = \ u("""\ ⎧ │1│ \n\ ⎪ 0 for │─│ < 1\n\ ⎪ │y│ \n\ ⎪ \n\ ⎨ 1 for │y│ < 1\n\ ⎪ \n\ ⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\ ⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\ ⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # XXX: We have to use evaluate=False here because Piecewise._eval_power # denests the power. expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False) ascii_str = \ """\ 2\n\ //x for x > 0\\ \n\ |< | \n\ \\\\y otherwise/ \ """ ucode_str = \ u("""\ 2\n\ ⎛⎧x for x > 0⎞ \n\ ⎜⎨ ⎟ \n\ ⎝⎩y otherwise⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ITE(): expr = ITE(x, y, z) assert pretty(expr) == ( '/y for x \n' '< \n' '\\z otherwise' ) assert upretty(expr) == u("""\ ⎧y for x \n\ ⎨ \n\ ⎩z otherwise\ """) def test_pretty_seq(): expr = () ascii_str = \ """\ ()\ """ ucode_str = \ u("""\ ()\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [] ascii_str = \ """\ []\ """ ucode_str = \ u("""\ []\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {} expr_2 = {} ascii_str = \ """\ {}\ """ ucode_str = \ u("""\ {}\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = (1/x,) ascii_str = \ """\ 1 \n\ (-,)\n\ x \ """ ucode_str = \ u("""\ ⎛1 ⎞\n\ ⎜─,⎟\n\ ⎝x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ [x , -, x, y, -----------]\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ u("""\ ⎡ 2 ⎤\n\ ⎢ 2 1 sin (θ)⎥\n\ ⎢x , ─, x, y, ───────⎥\n\ ⎢ x 2 ⎥\n\ ⎣ cos (φ)⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x: sin(x)} expr_2 = Dict({x: sin(x)}) ascii_str = \ """\ {x: sin(x)}\ """ ucode_str = \ u("""\ {x: sin(x)}\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = {1/x: 1/y, x: sin(x)**2} expr_2 = Dict({1/x: 1/y, x: sin(x)**2}) ascii_str = \ """\ 1 1 2 \n\ {-: -, x: sin (x)}\n\ x y \ """ ucode_str = \ u("""\ ⎧1 1 2 ⎫\n\ ⎨─: ─, x: sin (x)⎬\n\ ⎩x y ⎭\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str # There used to be a bug with pretty-printing sequences of even height. expr = [x**2] ascii_str = \ """\ 2 \n\ [x ]\ """ ucode_str = \ u("""\ ⎡ 2⎤\n\ ⎣x ⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2,) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x**2: 1} expr_2 = Dict({x**2: 1}) ascii_str = \ """\ 2 \n\ {x : 1}\ """ ucode_str = \ u("""\ ⎧ 2 ⎫\n\ ⎨x : 1⎬\n\ ⎩ ⎭\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str def test_any_object_in_sequence(): # Cf. issue 5306 b1 = Basic() b2 = Basic(Basic()) expr = [b2, b1] assert pretty(expr) == "[Basic(Basic()), Basic()]" assert upretty(expr) == u"[Basic(Basic()), Basic()]" expr = {b2, b1} assert pretty(expr) == "{Basic(), Basic(Basic())}" assert upretty(expr) == u"{Basic(), Basic(Basic())}" expr = {b2: b1, b1: b2} expr2 = Dict({b2: b1, b1: b2}) assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert pretty( expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr2) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" def test_print_builtin_set(): assert pretty(set()) == 'set()' assert upretty(set()) == u'set()' assert pretty(frozenset()) == 'frozenset()' assert upretty(frozenset()) == u'frozenset()' s1 = {1/x, x} s2 = frozenset(s1) assert pretty(s1) == \ """\ 1 \n\ {-, x} x \ """ assert upretty(s1) == \ u"""\ ⎧1 ⎫ ⎨─, x⎬ ⎩x ⎭\ """ assert pretty(s2) == \ """\ 1 \n\ frozenset({-, x}) x \ """ assert upretty(s2) == \ u"""\ ⎛⎧1 ⎫⎞ frozenset⎜⎨─, x⎬⎟ ⎝⎩x ⎭⎠\ """ def test_pretty_sets(): s = FiniteSet assert pretty(s(*[x*y, x**2])) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty(set([x*y, x**2])) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(set(range(1, 13))) == \ "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty(frozenset([x*y, x**2])) == \ """\ 2 \n\ frozenset({x , x*y})\ """ assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})" assert pretty(frozenset(range(1, 13))) == \ "frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})" assert pretty(Range(0, 3, 1)) == '{0, 1, 2}' ascii_str = '{0, 1, ..., 29}' ucode_str = u'{0, 1, …, 29}' assert pretty(Range(0, 30, 1)) == ascii_str assert upretty(Range(0, 30, 1)) == ucode_str ascii_str = '{30, 29, ..., 2}' ucode_str = u('{30, 29, …, 2}') assert pretty(Range(30, 1, -1)) == ascii_str assert upretty(Range(30, 1, -1)) == ucode_str ascii_str = '{0, 2, ..., oo}' ucode_str = u'{0, 2, …, ∞}' assert pretty(Range(0, oo, 2)) == ascii_str assert upretty(Range(0, oo, 2)) == ucode_str ascii_str = '{oo, ..., 2, 0}' ucode_str = u('{∞, …, 2, 0}') assert pretty(Range(oo, -2, -2)) == ascii_str assert upretty(Range(oo, -2, -2)) == ucode_str ascii_str = '{-2, -3, ..., -oo}' ucode_str = u('{-2, -3, …, -∞}') assert pretty(Range(-2, -oo, -1)) == ascii_str assert upretty(Range(-2, -oo, -1)) == ucode_str def test_pretty_SetExpr(): iv = Interval(1, 3) se = SetExpr(iv) ascii_str = "SetExpr([1, 3])" ucode_str = u("SetExpr([1, 3])") assert pretty(se) == ascii_str assert upretty(se) == ucode_str def test_pretty_ImageSet(): imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) ascii_str = '{x + y | x in {1, 2, 3} , y in {3, 4}}' ucode_str = u('{x + y | x ∊ {1, 2, 3} , y ∊ {3, 4}}') assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(x, x**2), S.Naturals) ascii_str = \ ' 2 \n'\ '{x | x in Naturals}' ucode_str = u('''\ ⎧ 2 ⎫\n\ ⎨x | x ∊ ℕ⎬\n\ ⎩ ⎭''') assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str def test_pretty_ConditionSet(): from sympy import ConditionSet ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}' ucode_str = u'{x | x ∊ ℝ ∧ sin(x) = 0}' assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == u'{1}' assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet()" assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == u"∅" assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == u'{2}' def test_pretty_ComplexRegion(): from sympy import ComplexRegion ucode_str = u'{x + y⋅ⅈ | x, y ∊ [3, 5] × [4, 6]}' assert upretty(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == ucode_str ucode_str = u'{r⋅(ⅈ⋅sin(θ) + cos(θ)) | r, θ ∊ [0, 1] × [0, 2⋅π)}' assert upretty(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == ucode_str def test_pretty_Union_issue_10414(): a, b = Interval(2, 3), Interval(4, 7) ucode_str = u'[2, 3] ∪ [4, 7]' ascii_str = '[2, 3] U [4, 7]' assert upretty(Union(a, b)) == ucode_str assert pretty(Union(a, b)) == ascii_str def test_pretty_Intersection_issue_10414(): x, y, z, w = symbols('x, y, z, w') a, b = Interval(x, y), Interval(z, w) ucode_str = u'[x, y] ∩ [z, w]' ascii_str = '[x, y] n [z, w]' assert upretty(Intersection(a, b)) == ucode_str assert pretty(Intersection(a, b)) == ascii_str def test_ProductSet_paranthesis(): ucode_str = u'([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])' a, b, c = Interval(2, 3), Interval(4, 7), Interval(1, 9) assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str def test_ProductSet_prod_char_issue_10413(): ascii_str = '[2, 3] x [4, 7]' ucode_str = u'[2, 3] × [4, 7]' a, b = Interval(2, 3), Interval(4, 7) assert pretty(a*b) == ascii_str assert upretty(a*b) == ucode_str def test_pretty_sequences(): s1 = SeqFormula(a**2, (0, oo)) s2 = SeqPer((1, 2)) ascii_str = '[0, 1, 4, 9, ...]' ucode_str = u'[0, 1, 4, 9, …]' assert pretty(s1) == ascii_str assert upretty(s1) == ucode_str ascii_str = '[1, 2, 1, 2, ...]' ucode_str = u'[1, 2, 1, 2, …]' assert pretty(s2) == ascii_str assert upretty(s2) == ucode_str s3 = SeqFormula(a**2, (0, 2)) s4 = SeqPer((1, 2), (0, 2)) ascii_str = '[0, 1, 4]' ucode_str = u'[0, 1, 4]' assert pretty(s3) == ascii_str assert upretty(s3) == ucode_str ascii_str = '[1, 2, 1]' ucode_str = u'[1, 2, 1]' assert pretty(s4) == ascii_str assert upretty(s4) == ucode_str s5 = SeqFormula(a**2, (-oo, 0)) s6 = SeqPer((1, 2), (-oo, 0)) ascii_str = '[..., 9, 4, 1, 0]' ucode_str = u'[…, 9, 4, 1, 0]' assert pretty(s5) == ascii_str assert upretty(s5) == ucode_str ascii_str = '[..., 2, 1, 2, 1]' ucode_str = u'[…, 2, 1, 2, 1]' assert pretty(s6) == ascii_str assert upretty(s6) == ucode_str ascii_str = '[1, 3, 5, 11, ...]' ucode_str = u'[1, 3, 5, 11, …]' assert pretty(SeqAdd(s1, s2)) == ascii_str assert upretty(SeqAdd(s1, s2)) == ucode_str ascii_str = '[1, 3, 5]' ucode_str = u'[1, 3, 5]' assert pretty(SeqAdd(s3, s4)) == ascii_str assert upretty(SeqAdd(s3, s4)) == ucode_str ascii_str = '[..., 11, 5, 3, 1]' ucode_str = u'[…, 11, 5, 3, 1]' assert pretty(SeqAdd(s5, s6)) == ascii_str assert upretty(SeqAdd(s5, s6)) == ucode_str ascii_str = '[0, 2, 4, 18, ...]' ucode_str = u'[0, 2, 4, 18, …]' assert pretty(SeqMul(s1, s2)) == ascii_str assert upretty(SeqMul(s1, s2)) == ucode_str ascii_str = '[0, 2, 4]' ucode_str = u'[0, 2, 4]' assert pretty(SeqMul(s3, s4)) == ascii_str assert upretty(SeqMul(s3, s4)) == ucode_str ascii_str = '[..., 18, 4, 2, 0]' ucode_str = u'[…, 18, 4, 2, 0]' assert pretty(SeqMul(s5, s6)) == ascii_str assert upretty(SeqMul(s5, s6)) == ucode_str def test_pretty_FourierSeries(): f = fourier_series(x, (x, -pi, pi)) ascii_str = \ """\ 2*sin(3*x) \n\ 2*sin(x) - sin(2*x) + ---------- + ...\n\ 3 \ """ ucode_str = \ u("""\ 2⋅sin(3⋅x) \n\ 2⋅sin(x) - sin(2⋅x) + ────────── + …\n\ 3 \ """) assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_FormalPowerSeries(): f = fps(log(1 + x)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -k k \n\ \\ -(-1) *x \n\ / -----------\n\ / k \n\ /___, \n\ k = 1 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -k k \n\ ╲ -(-1) ⋅x \n\ ╱ ───────────\n\ ╱ k \n\ ╱ \n\ ‾‾‾‾ \n\ k = 1 \ """) assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_limits(): expr = Limit(x, x, oo) ascii_str = \ """\ lim x\n\ x->oo \ """ ucode_str = \ u("""\ lim x\n\ x─→∞ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x**2, x, 0) ascii_str = \ """\ 2\n\ lim x \n\ x->0+ \ """ ucode_str = \ u("""\ 2\n\ lim x \n\ x─→0⁺ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(1/x, x, 0) ascii_str = \ """\ 1\n\ lim -\n\ x->0+x\ """ ucode_str = \ u("""\ 1\n\ lim ─\n\ x─→0⁺x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0) ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0+\\ x /\ """ ucode_str = \ u("""\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁺⎝ x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0, "-") ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0-\\ x /\ """ ucode_str = \ u("""\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁻⎝ x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x + sin(x), x, 0) ascii_str = \ """\ lim (x + sin(x))\n\ x->0+ \ """ ucode_str = \ u("""\ lim (x + sin(x))\n\ x─→0⁺ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x, x, 0)**2 ascii_str = \ """\ 2\n\ / lim x\\ \n\ \\x->0+ / \ """ ucode_str = \ u("""\ 2\n\ ⎛ lim x⎞ \n\ ⎝x─→0⁺ ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ u("""\ ⎛ ⎛y⎞⎞\n\ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ 2* lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ u("""\ ⎛ ⎛y⎞⎞\n\ 2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x), x, 0, dir='+-') ascii_str = \ """\ lim sin(x)\n\ x->0 \ """ ucode_str = \ u("""\ lim sin(x)\n\ x─→0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ComplexRootOf(): expr = rootof(x**5 + 11*x - 2, 0) ascii_str = \ """\ / 5 \\\n\ CRootOf\\x + 11*x - 2, 0/\ """ ucode_str = \ u("""\ ⎛ 5 ⎞\n\ CRootOf⎝x + 11⋅x - 2, 0⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_RootSum(): expr = RootSum(x**5 + 11*x - 2, auto=False) ascii_str = \ """\ / 5 \\\n\ RootSum\\x + 11*x - 2/\ """ ucode_str = \ u("""\ ⎛ 5 ⎞\n\ RootSum⎝x + 11⋅x - 2⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z))) ascii_str = \ """\ / 5 z\\\n\ RootSum\\x + 11*x - 2, z -> e /\ """ ucode_str = \ u("""\ ⎛ 5 z⎞\n\ RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_GroebnerBasis(): expr = groebner([], x, y) ascii_str = \ """\ GroebnerBasis([], x, y, domain=ZZ, order=lex)\ """ ucode_str = \ u("""\ GroebnerBasis([], x, y, domain=ℤ, order=lex)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] expr = groebner(F, x, y, order='grlex') ascii_str = \ """\ /[ 2 2 ] \\\n\ GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\ """ ucode_str = \ u("""\ ⎛⎡ 2 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = expr.fglm('lex') ascii_str = \ """\ /[ 2 4 3 2 ] \\\n\ GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\ """ ucode_str = \ u("""\ ⎛⎡ 2 4 3 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_Boolean(): expr = Not(x, evaluate=False) assert pretty(expr) == "Not(x)" assert upretty(expr) == u"¬x" expr = And(x, y) assert pretty(expr) == "And(x, y)" assert upretty(expr) == u"x ∧ y" expr = Or(x, y) assert pretty(expr) == "Or(x, y)" assert upretty(expr) == u"x ∨ y" syms = symbols('a:f') expr = And(*syms) assert pretty(expr) == "And(a, b, c, d, e, f)" assert upretty(expr) == u"a ∧ b ∧ c ∧ d ∧ e ∧ f" expr = Or(*syms) assert pretty(expr) == "Or(a, b, c, d, e, f)" assert upretty(expr) == u"a ∨ b ∨ c ∨ d ∨ e ∨ f" expr = Xor(x, y, evaluate=False) assert pretty(expr) == "Xor(x, y)" assert upretty(expr) == u"x ⊻ y" expr = Nand(x, y, evaluate=False) assert pretty(expr) == "Nand(x, y)" assert upretty(expr) == u"x ⊼ y" expr = Nor(x, y, evaluate=False) assert pretty(expr) == "Nor(x, y)" assert upretty(expr) == u"x ⊽ y" expr = Implies(x, y, evaluate=False) assert pretty(expr) == "Implies(x, y)" assert upretty(expr) == u"x → y" # don't sort args expr = Implies(y, x, evaluate=False) assert pretty(expr) == "Implies(y, x)" assert upretty(expr) == u"y → x" expr = Equivalent(x, y, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == u"x ⇔ y" expr = Equivalent(y, x, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == u"x ⇔ y" def test_pretty_Domain(): expr = FF(23) assert pretty(expr) == "GF(23)" assert upretty(expr) == u"ℤ₂₃" expr = ZZ assert pretty(expr) == "ZZ" assert upretty(expr) == u"ℤ" expr = QQ assert pretty(expr) == "QQ" assert upretty(expr) == u"ℚ" expr = RR assert pretty(expr) == "RR" assert upretty(expr) == u"ℝ" expr = QQ[x] assert pretty(expr) == "QQ[x]" assert upretty(expr) == u"ℚ[x]" expr = QQ[x, y] assert pretty(expr) == "QQ[x, y]" assert upretty(expr) == u"ℚ[x, y]" expr = ZZ.frac_field(x) assert pretty(expr) == "ZZ(x)" assert upretty(expr) == u"ℤ(x)" expr = ZZ.frac_field(x, y) assert pretty(expr) == "ZZ(x, y)" assert upretty(expr) == u"ℤ(x, y)" expr = QQ.poly_ring(x, y, order=grlex) assert pretty(expr) == "QQ[x, y, order=grlex]" assert upretty(expr) == u"ℚ[x, y, order=grlex]" expr = QQ.poly_ring(x, y, order=ilex) assert pretty(expr) == "QQ[x, y, order=ilex]" assert upretty(expr) == u"ℚ[x, y, order=ilex]" def test_pretty_prec(): assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3" assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [ "0.300000000000000*x", "x*0.300000000000000" ] assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] def test_pprint(): import sys from sympy.core.compatibility import StringIO fd = StringIO() sso = sys.stdout sys.stdout = fd try: pprint(pi, use_unicode=False, wrap_line=False) finally: sys.stdout = sso assert fd.getvalue() == 'pi\n' def test_pretty_class(): """Test that the printer dispatcher correctly handles classes.""" class C: pass # C has no .__class__ and this was causing problems class D(object): pass assert pretty( C ) == str( C ) assert pretty( D ) == str( D ) def test_pretty_no_wrap_line(): huge_expr = 0 for i in range(20): huge_expr += i*sin(i + x) assert xpretty(huge_expr ).find('\n') != -1 assert xpretty(huge_expr, wrap_line=False).find('\n') == -1 def test_settings(): raises(TypeError, lambda: pretty(S(4), method="garbage")) def test_pretty_sum(): from sympy.abc import x, a, b, k, m, n expr = Sum(k**k, (k, 0, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = 0 \ """ ucode_str = \ u("""\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**k, (k, oo, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = oo \ """ ucode_str = \ u("""\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = ∞ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n)) ascii_str = \ """\ n \n\ n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ u("""\ n \n\ n \n\ ______ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╲ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╲ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), ( k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ 2 2 1 x \n\ k = n + n + x + x + - + - \n\ x n \ """ ucode_str = \ u("""\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╲ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ 2 2 1 x \n\ k = n + n + x + x + ─ + ─ \n\ x n \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x))) ascii_str = \ """\ 2 2 1 x \n\ n + n + x + x + - + - \n\ x n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ u("""\ 2 2 1 x \n\ n + n + x + x + ─ + ─ \n\ x n \n\ ______ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╲ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x, (x, 0, oo)) ascii_str = \ """\ oo \n\ __ \n\ \\ ` \n\ ) x\n\ /_, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ___ \n\ ╲ \n\ ╲ x\n\ ╱ \n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**2, (x, 0, oo)) ascii_str = \ u("""\ oo \n\ ___ \n\ \\ ` \n\ \\ 2\n\ / x \n\ /__, \n\ x = 0 \ """) ucode_str = \ u("""\ ∞ \n\ ___ \n\ ╲ \n\ ╲ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ___ \n\ \\ ` \n\ \\ x\n\ ) -\n\ / 2\n\ /__, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ x\n\ ╲ ─\n\ ╱ 2\n\ ╱ \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**3/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 3\n\ \\ x \n\ / --\n\ / 2 \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 3\n\ ╲ x \n\ ╱ ──\n\ ╱ 2 \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum((x**3*y**(x/2))**n, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ n\n\ \\ / x\\ \n\ ) | -| \n\ / | 3 2| \n\ / \\x *y / \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ _____ \n\ ╲ \n\ ╲ n\n\ ╲ ⎛ x⎞ \n\ ╲ ⎜ ─⎟ \n\ ╱ ⎜ 3 2⎟ \n\ ╱ ⎝x ⋅y ⎠ \n\ ╱ \n\ ╱ \n\ ‾‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/x**2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 1 \n\ \\ --\n\ / 2\n\ / x \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 1 \n\ ╲ ──\n\ ╱ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -a \n\ \\ ---\n\ / b \n\ / y \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -a \n\ ╲ ───\n\ ╱ b \n\ ╱ y \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2)) ascii_str = \ """\ 2 oo \n\ ____ ____ \n\ \\ ` \\ ` \n\ \\ \\ -a\n\ \\ \\ --\n\ / / b \n\ / / y \n\ /___, /___, \n\ y = 1 x = 0 \ """ ucode_str = \ u("""\ 2 ∞ \n\ ____ ____ \n\ ╲ ╲ \n\ ╲ ╲ -a\n\ ╲ ╲ ──\n\ ╱ ╱ b \n\ ╱ ╱ y \n\ ╱ ╱ \n\ ‾‾‾‾ ‾‾‾‾ \n\ y = 1 x = 0 \ """) expr = Sum(1/(1 + 1/( 1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k) ascii_str = \ """\ 1 \n\ 1 + - \n\ oo n \n\ _____ _____ \n\ \\ ` \\ ` \n\ \\ \\ / 1 \\ \n\ \\ \\ |1 + ---------| \n\ \\ \\ | 1 | 1 \n\ ) ) | 1 + -----| + -----\n\ / / | 1| 1\n\ / / | 1 + -| 1 + -\n\ / / \\ k/ k\n\ /____, /____, \n\ 1 k = 111 \n\ k = ----- \n\ m + 1 \ """ ucode_str = \ u("""\ 1 \n\ 1 + ─ \n\ ∞ n \n\ ______ ______ \n\ ╲ ╲ \n\ ╲ ╲ ⎛ 1 ⎞ \n\ ╲ ╲ ⎜1 + ─────────⎟ \n\ ╲ ╲ ⎜ 1 ⎟ \n\ ╲ ╲ ⎜ 1 + ─────⎟ 1 \n\ ╱ ╱ ⎜ 1⎟ + ─────\n\ ╱ ╱ ⎜ 1 + ─⎟ 1\n\ ╱ ╱ ⎝ k⎠ 1 + ─\n\ ╱ ╱ k\n\ ╱ ╱ \n\ ‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\ 1 k = 111 \n\ k = ───── \n\ m + 1 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_units(): expr = joule ascii_str1 = \ """\ 2\n\ kilogram*meter \n\ ---------------\n\ 2 \n\ second \ """ unicode_str1 = \ u("""\ 2\n\ kilogram⋅meter \n\ ───────────────\n\ 2 \n\ second \ """) ascii_str2 = \ """\ 2\n\ 3*x*y*kilogram*meter \n\ ---------------------\n\ 2 \n\ second \ """ unicode_str2 = \ u("""\ 2\n\ 3⋅x⋅y⋅kilogram⋅meter \n\ ─────────────────────\n\ 2 \n\ second \ """) from sympy.physics.units import kg, m, s assert upretty(expr) == u("joule") assert pretty(expr) == "joule" assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1 assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1 assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2 assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2 def test_pretty_Subs(): f = Function('f') expr = Subs(f(x), x, ph**2) ascii_str = \ """\ (f(x))| 2\n\ |x=phi \ """ unicode_str = \ u("""\ (f(x))│ 2\n\ │x=φ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x), x, 0) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ \\dx /|x=0\ """ unicode_str = \ u("""\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎝dx ⎠│x=0\ """) assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ |dx || \n\ |--------|| \n\ \\ y /|x=0, y=1/2\ """ unicode_str = \ u("""\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎜dx ⎟│ \n\ ⎜────────⎟│ \n\ ⎝ y ⎠│x=0, y=1/2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_gammas(): assert upretty(lowergamma(x, y)) == u"γ(x, y)" assert upretty(uppergamma(x, y)) == u"Γ(x, y)" assert xpretty(gamma(x), use_unicode=True) == u'Γ(x)' assert xpretty(gamma, use_unicode=True) == u'Γ' assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == u'γ(x)' assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == u'γ' def test_beta(): assert xpretty(beta(x,y), use_unicode=True) == u'Β(x, y)' assert xpretty(beta(x,y), use_unicode=False) == u'B(x, y)' assert xpretty(beta, use_unicode=True) == u'Β' assert xpretty(beta, use_unicode=False) == u'B' mybeta = Function('beta') assert xpretty(mybeta(x), use_unicode=True) == u'β(x)' assert xpretty(mybeta(x, y, z), use_unicode=False) == u'beta(x, y, z)' assert xpretty(mybeta, use_unicode=True) == u'β' # test that notation passes to subclasses of the same name only def test_function_subclass_different_name(): class mygamma(gamma): pass assert xpretty(mygamma, use_unicode=True) == r"mygamma" assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)" def test_SingularityFunction(): assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == ( """\ n\n\ <x> \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == ( """\ n\n\ <x - 1> \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == ( """\ n\n\ <x + 1> \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == ( """\ n\n\ <x - y> \ """) assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == ( """\ n\n\ <x> \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == ( """\ n\n\ <x - 1> \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == ( """\ n\n\ <x + 1> \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == ( """\ n\n\ <x - y> \ """) def test_deltas(): assert xpretty(DiracDelta(x), use_unicode=True) == u'δ(x)' assert xpretty(DiracDelta(x, 1), use_unicode=True) == \ u("""\ (1) \n\ δ (x)\ """) assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \ u("""\ (1) \n\ x⋅δ (x)\ """) def test_hyper(): expr = hyper((), (), z) ucode_str = \ u("""\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ z⎟\n\ 0╵ 0 ⎝ │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | z|\n\ 0 0 \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((), (1,), x) ucode_str = \ u("""\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 0╵ 1 ⎝1 │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | x|\n\ 0 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([2], [1], x) ucode_str = \ u("""\ ┌─ ⎛2 │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 1╵ 1 ⎝1 │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ /2 | \\\n\ | | | x|\n\ 1 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x) ucode_str = \ u("""\ ⎛ π │ ⎞\n\ ┌─ ⎜ ─, -2⋅k │ ⎟\n\ ├─ ⎜ 3 │ x⎟\n\ 2╵ 4 ⎜ │ ⎟\n\ ⎝3, 4, 5, -3 │ ⎠\ """) ascii_str = \ """\ \n\ _ / pi | \\\n\ |_ | --, -2*k | |\n\ | | 3 | x|\n\ 2 4 | | |\n\ \\3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2) ucode_str = \ u("""\ ┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\ ├─ ⎜ │ x ⎟\n\ 3╵ 4 ⎝3, 4, 5, -3 │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ /pi, 2/3, -2*k | 2\\\n\ | | | x |\n\ 3 4 \\ 3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ┌─ ⎜1, 2 │ 1 + ─────────⎟\n\ ├─ ⎜ │ 1 ⎟\n\ 2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """) ascii_str = \ """\ \n\ / | 1 \\\n\ | | -------------|\n\ _ | | 1 |\n\ |_ |1, 2 | 1 + ---------|\n\ | | | 1 |\n\ 2 2 |3, 4 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_meijerg(): expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z) ucode_str = \ u("""\ ╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\ """) ascii_str = \ """\ __2, 3 /pi, pi, x 1 | \\\n\ /__ | | z|\n\ \\_|4, 5 \\ 0, 1 1, 2, 3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2) ucode_str = \ u("""\ ⎛ π │ ⎞\n\ ╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\ │╶┐ ⎜ 7 │ z ⎟\n\ ╰─╯5, 0 ⎜ │ ⎟\n\ ⎝ │ ⎠\ """) ascii_str = \ """\ / pi | \\\n\ __0, 2 |1, -- 2, pi, 5 | 2|\n\ /__ | 7 | z |\n\ \\_|5, 0 | | |\n\ \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ucode_str = \ u("""\ ╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯11, 2 ⎝ 1 1 │ ⎠\ """) ascii_str = \ """\ __ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\ /__ | | z|\n\ \\_|11, 2 \\ 1 1 | /\ """ expr = meijerg([1]*10, [1], [1], [1], z) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\ │╶┐ ⎜ │ 1 ⎟\n\ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """) ascii_str = \ """\ / | 1 \\\n\ | | -------------|\n\ | | 1 |\n\ __1, 2 |1, 2 4, 3 | 1 + ---------|\n\ /__ | | 1 |\n\ \\_|4, 3 | 3 4, 5 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(expr, x) ucode_str = \ u("""\ ⌠ \n\ ⎮ ⎛ │ 1 ⎞ \n\ ⎮ ⎜ │ ─────────────⎟ \n\ ⎮ ⎜ │ 1 ⎟ \n\ ⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\ ⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\ ⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\ ⎮ ⎜ │ 1⎟ \n\ ⎮ ⎜ │ 1 + ─⎟ \n\ ⎮ ⎝ │ x⎠ \n\ ⌡ \ """) ascii_str = \ """\ / \n\ | \n\ | / | 1 \\ \n\ | | | -------------| \n\ | | | 1 | \n\ | __1, 2 |1, 2 4, 3 | 1 + ---------| \n\ | /__ | | 1 | dx\n\ | \\_|4, 3 | 3 4, 5 | 1 + -----| \n\ | | | 1| \n\ | | | 1 + -| \n\ | \\ | x/ \n\ | \n\ / \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) expr = A*B*C**-1 ascii_str = \ """\ -1\n\ A*B*C \ """ ucode_str = \ u("""\ -1\n\ A⋅B⋅C \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = C**-1*A*B ascii_str = \ """\ -1 \n\ C *A*B\ """ ucode_str = \ u("""\ -1 \n\ C ⋅A⋅B\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B ascii_str = \ """\ -1 \n\ A*C *B\ """ ucode_str = \ u("""\ -1 \n\ A⋅C ⋅B\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B/x ascii_str = \ """\ -1 \n\ A*C *B\n\ -------\n\ x \ """ ucode_str = \ u("""\ -1 \n\ A⋅C ⋅B\n\ ───────\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_special_functions(): x, y = symbols("x y") # atan2 expr = atan2(y/sqrt(200), sqrt(x)) ascii_str = \ """\ / ___ \\\n\ |\\/ 2 *y ___|\n\ atan2|-------, \\/ x |\n\ \\ 20 /\ """ ucode_str = \ u("""\ ⎛√2⋅y ⎞\n\ atan2⎜────, √x⎟\n\ ⎝ 20 ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_geometry(): e = Segment((0, 1), (0, 2)) assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))' e = Ray((1, 1), angle=4.02*pi) assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))' def test_expint(): expr = Ei(x) string = 'Ei(x)' assert pretty(expr) == string assert upretty(expr) == string expr = expint(1, z) ucode_str = u"E₁(z)" ascii_str = "expint(1, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str assert pretty(Shi(x)) == 'Shi(x)' assert pretty(Si(x)) == 'Si(x)' assert pretty(Ci(x)) == 'Ci(x)' assert pretty(Chi(x)) == 'Chi(x)' assert upretty(Shi(x)) == 'Shi(x)' assert upretty(Si(x)) == 'Si(x)' assert upretty(Ci(x)) == 'Ci(x)' assert upretty(Chi(x)) == 'Chi(x)' def test_elliptic_functions(): ascii_str = \ """\ / 1 \\\n\ K|-----|\n\ \\z + 1/\ """ ucode_str = \ u("""\ ⎛ 1 ⎞\n\ K⎜─────⎟\n\ ⎝z + 1⎠\ """) expr = elliptic_k(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ F|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ F⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """) expr = elliptic_f(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 1 \\\n\ E|-----|\n\ \\z + 1/\ """ ucode_str = \ u("""\ ⎛ 1 ⎞\n\ E⎜─────⎟\n\ ⎝z + 1⎠\ """) expr = elliptic_e(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ E|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ E⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """) expr = elliptic_e(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / |4\\\n\ Pi|3|-|\n\ \\ |x/\ """ ucode_str = \ u("""\ ⎛ │4⎞\n\ Π⎜3│─⎟\n\ ⎝ │x⎠\ """) expr = elliptic_pi(3, 4/x) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 4| \\\n\ Pi|3; -|6|\n\ \\ x| /\ """ ucode_str = \ u("""\ ⎛ 4│ ⎞\n\ Π⎜3; ─│6⎟\n\ ⎝ x│ ⎠\ """) expr = elliptic_pi(3, 4/x, 6) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert upretty(where(X > 0)) == u"Domain: 0 < x₁ ∧ x₁ < ∞" D = Die('d1', 6) assert upretty(where(D > 4)) == u'Domain: d₁ = 5 ∨ d₁ = 6' A = Exponential('a', 1) B = Exponential('b', 1) assert upretty(pspace(Tuple(A, B)).domain) == \ u'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞' def test_PrettyPoly(): F = QQ.frac_field(x, y) R = QQ.poly_ring(x, y) expr = F.convert(x/(x + y)) assert pretty(expr) == "x/(x + y)" assert upretty(expr) == u"x/(x + y)" expr = R.convert(x + y) assert pretty(expr) == "x + y" assert upretty(expr) == u"x + y" def test_issue_6285(): assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 ' assert pretty(Pow(x, (1/pi))) == 'pi___\n\\/ x ' def test_issue_6359(): assert pretty(Integral(x**2, x)**2) == \ """\ 2 / / \\ \n\ | | | \n\ | | 2 | \n\ | | x dx| \n\ | | | \n\ \\/ / \ """ assert upretty(Integral(x**2, x)**2) == \ u("""\ 2 ⎛⌠ ⎞ \n\ ⎜⎮ 2 ⎟ \n\ ⎜⎮ x dx⎟ \n\ ⎝⌡ ⎠ \ """) assert pretty(Sum(x**2, (x, 0, 1))**2) == \ """\ 2 / 1 \\ \n\ | ___ | \n\ | \\ ` | \n\ | \\ 2| \n\ | / x | \n\ | /__, | \n\ \\x = 0 / \ """ assert upretty(Sum(x**2, (x, 0, 1))**2) == \ u("""\ 2 ⎛ 1 ⎞ \n\ ⎜ ___ ⎟ \n\ ⎜ ╲ ⎟ \n\ ⎜ ╲ 2⎟ \n\ ⎜ ╱ x ⎟ \n\ ⎜ ╱ ⎟ \n\ ⎜ ‾‾‾ ⎟ \n\ ⎝x = 0 ⎠ \ """) assert pretty(Product(x**2, (x, 1, 2))**2) == \ """\ 2 / 2 \\ \n\ |______ | \n\ || | 2| \n\ || | x | \n\ || | | \n\ \\x = 1 / \ """ assert upretty(Product(x**2, (x, 1, 2))**2) == \ u("""\ 2 ⎛ 2 ⎞ \n\ ⎜┬────┬ ⎟ \n\ ⎜│ │ 2⎟ \n\ ⎜│ │ x ⎟ \n\ ⎜│ │ ⎟ \n\ ⎝x = 1 ⎠ \ """) f = Function('f') assert pretty(Derivative(f(x), x)**2) == \ """\ 2 /d \\ \n\ |--(f(x))| \n\ \\dx / \ """ assert upretty(Derivative(f(x), x)**2) == \ u("""\ 2 ⎛d ⎞ \n\ ⎜──(f(x))⎟ \n\ ⎝dx ⎠ \ """) def test_issue_6739(): ascii_str = \ """\ 1 \n\ -----\n\ ___\n\ \\/ x \ """ ucode_str = \ u("""\ 1 \n\ ──\n\ √x\ """) assert pretty(1/sqrt(x)) == ascii_str assert upretty(1/sqrt(x)) == ucode_str def test_complicated_symbol_unchanged(): for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]: assert pretty(Symbol(symb_name)) == symb_name def test_categories(): from sympy.categories import (Object, IdentityMorphism, NamedMorphism, Category, Diagram, DiagramGrid) A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A2, A3, "f2") id_A1 = IdentityMorphism(A1) K1 = Category("K1") assert pretty(A1) == "A1" assert upretty(A1) == u"A₁" assert pretty(f1) == "f1:A1-->A2" assert upretty(f1) == u"f₁:A₁——▶A₂" assert pretty(id_A1) == "id:A1-->A1" assert upretty(id_A1) == u"id:A₁——▶A₁" assert pretty(f2*f1) == "f2*f1:A1-->A3" assert upretty(f2*f1) == u"f₂∘f₁:A₁——▶A₃" assert pretty(K1) == "K1" assert upretty(K1) == u"K₁" # Test how diagrams are printed. d = Diagram() assert pretty(d) == "EmptySet()" assert upretty(d) == u"∅" d = Diagram({f1: "unique", f2: S.EmptySet}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet(), id:A1-->A1: " \ "EmptySet(), id:A2-->A2: EmptySet(), id:A3-->A3: " \ "EmptySet(), f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet()}" assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \ "id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}") d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet(), id:A1-->A1: " \ "EmptySet(), id:A2-->A2: EmptySet(), id:A3-->A3: " \ "EmptySet(), f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet()}" \ " ==> {f2*f1:A1-->A3: {unique}}" assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \ "∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \ " ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}") grid = DiagramGrid(d) assert pretty(grid) == "A1 A2\n \nA3 " assert upretty(grid) == u"A₁ A₂\n \nA₃ " def test_PrettyModules(): R = QQ.old_poly_ring(x, y) F = R.free_module(2) M = F.submodule([x, y], [1, x**2]) ucode_str = \ u("""\ 2\n\ ℚ[x, y] \ """) ascii_str = \ """\ 2\n\ QQ[x, y] \ """ assert upretty(F) == ucode_str assert pretty(F) == ascii_str ucode_str = \ u("""\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """) ascii_str = \ """\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(M) == ucode_str assert pretty(M) == ascii_str I = R.ideal(x**2, y) ucode_str = \ u("""\ ╱ 2 ╲\n\ ╲x , y╱\ """) ascii_str = \ """\ 2 \n\ <x , y>\ """ assert upretty(I) == ucode_str assert pretty(I) == ascii_str Q = F / M ucode_str = \ u("""\ 2 \n\ ℚ[x, y] \n\ ─────────────────\n\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """) ascii_str = \ """\ 2 \n\ QQ[x, y] \n\ -----------------\n\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(Q) == ucode_str assert pretty(Q) == ascii_str ucode_str = \ u("""\ ╱⎡ 3⎤ ╲\n\ │⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\ │⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\ ╲⎣ 2 ⎦ ╱\ """) ascii_str = \ """\ 3 \n\ x 2 2 \n\ <[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\ 2 \ """ def test_QuotientRing(): R = QQ.old_poly_ring(x)/[x**2 + 1] ucode_str = \ u("""\ ℚ[x] \n\ ────────\n\ ╱ 2 ╲\n\ ╲x + 1╱\ """) ascii_str = \ """\ QQ[x] \n\ --------\n\ 2 \n\ <x + 1>\ """ assert upretty(R) == ucode_str assert pretty(R) == ascii_str ucode_str = \ u("""\ ╱ 2 ╲\n\ 1 + ╲x + 1╱\ """) ascii_str = \ """\ 2 \n\ 1 + <x + 1>\ """ assert upretty(R.one) == ucode_str assert pretty(R.one) == ascii_str def test_Homomorphism(): from sympy.polys.agca import homomorphism R = QQ.old_poly_ring(x) expr = homomorphism(R.free_module(1), R.free_module(1), [0]) ucode_str = \ u("""\ 1 1\n\ [0] : ℚ[x] ──> ℚ[x] \ """) ascii_str = \ """\ 1 1\n\ [0] : QQ[x] --> QQ[x] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0]) ucode_str = \ u("""\ ⎡0 0⎤ 2 2\n\ ⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\ ⎣0 0⎦ \ """) ascii_str = \ """\ [0 0] 2 2\n\ [ ] : QQ[x] --> QQ[x] \n\ [0 0] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0]) ucode_str = \ u("""\ 1\n\ 1 ℚ[x] \n\ [0] : ℚ[x] ──> ─────\n\ <[x]>\ """) ascii_str = \ """\ 1\n\ 1 QQ[x] \n\ [0] : QQ[x] --> ------\n\ <[x]> \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str def test_Tr(): A, B = symbols('A B', commutative=False) t = Tr(A*B) assert pretty(t) == r'Tr(A*B)' assert upretty(t) == u'Tr(A⋅B)' def test_pretty_Add(): eq = Mul(-2, x - 2, evaluate=False) + 5 assert pretty(eq) == '-2*(x - 2) + 5' def test_issue_7179(): assert upretty(Not(Equivalent(x, y))) == u'x ⇎ y' assert upretty(Not(Implies(x, y))) == u'x ↛ y' def test_issue_7180(): assert upretty(Equivalent(x, y)) == u'x ⇔ y' def test_pretty_Complement(): assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals' assert upretty(S.Reals - S.Naturals) == u'ℝ \\ ℕ' assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0' assert upretty(S.Reals - S.Naturals0) == u'ℝ \\ ℕ₀' def test_pretty_SymmetricDifference(): from sympy import SymmetricDifference, Interval from sympy.utilities.pytest import raises assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \ evaluate = False)) == u'[2, 3] ∆ [3, 5]' with raises(NotImplementedError): pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False)) def test_pretty_Contains(): assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)' assert upretty(Contains(x, S.Integers)) == u'x ∈ ℤ' def test_issue_8292(): from sympy.core import sympify e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False) ucode_str = \ u("""\ 4 4 \n\ 2⋅(x - 1) x + x\n\ - ────────── + ──────\n\ 4 x - 1 \n\ (x - 1) \ """) ascii_str = \ """\ 4 4 \n\ 2*(x - 1) x + x\n\ - ---------- + ------\n\ 4 x - 1 \n\ (x - 1) \ """ assert pretty(e) == ascii_str assert upretty(e) == ucode_str def test_issue_4335(): y = Function('y') expr = -y(x).diff(x) ucode_str = \ u("""\ d \n\ -──(y(x))\n\ dx \ """) ascii_str = \ """\ d \n\ - --(y(x))\n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_8344(): from sympy.core import sympify e = sympify('2*x*y**2/1**2 + 1', evaluate=False) ucode_str = \ u("""\ 2 \n\ 2⋅x⋅y \n\ ────── + 1\n\ 2 \n\ 1 \ """) assert upretty(e) == ucode_str def test_issue_6324(): x = Pow(2, 3, evaluate=False) y = Pow(10, -2, evaluate=False) e = Mul(x, y, evaluate=False) ucode_str = \ u("""\ 3\n\ 2 \n\ ───\n\ 2\n\ 10 \ """) assert upretty(e) == ucode_str def test_issue_7927(): e = sin(x/2)**cos(x/2) ucode_str = \ u("""\ ⎛x⎞\n\ cos⎜─⎟\n\ ⎝2⎠\n\ ⎛ ⎛x⎞⎞ \n\ ⎜sin⎜─⎟⎟ \n\ ⎝ ⎝2⎠⎠ \ """) assert upretty(e) == ucode_str e = sin(x)**(S(11)/13) ucode_str = \ u("""\ 11\n\ ──\n\ 13\n\ (sin(x)) \ """) assert upretty(e) == ucode_str def test_issue_6134(): from sympy.abc import lamda, t phi = Function('phi') e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1)) ucode_str = \ u("""\ 1 1 \n\ 2 ⌠ ⌠ \n\ λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\ ⌡ ⌡ \n\ 0 0 \ """) assert upretty(e) == ucode_str def test_issue_9877(): ucode_str1 = u'(2, 3) ∪ ([1, 2] \\ {x})' a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x) assert upretty(Union(a, Complement(b, c))) == ucode_str1 ucode_str2 = u'{x} ∩ {y} ∩ ({z} \\ [1, 2])' d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2) assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2 def test_issue_13651(): expr1 = c + Mul(-1, a + b, evaluate=False) assert pretty(expr1) == 'c - (a + b)' expr2 = c + Mul(-1, a - b + d, evaluate=False) assert pretty(expr2) == 'c - (a - b + d)' def test_pretty_primenu(): from sympy.ntheory.factor_ import primenu ascii_str1 = "nu(n)" ucode_str1 = u("ν(n)") n = symbols('n', integer=True) assert pretty(primenu(n)) == ascii_str1 assert upretty(primenu(n)) == ucode_str1 def test_pretty_primeomega(): from sympy.ntheory.factor_ import primeomega ascii_str1 = "Omega(n)" ucode_str1 = u("Ω(n)") n = symbols('n', integer=True) assert pretty(primeomega(n)) == ascii_str1 assert upretty(primeomega(n)) == ucode_str1 def test_pretty_Mod(): from sympy.core import Mod ascii_str1 = "x mod 7" ucode_str1 = u("x mod 7") ascii_str2 = "(x + 1) mod 7" ucode_str2 = u("(x + 1) mod 7") ascii_str3 = "2*x mod 7" ucode_str3 = u("2⋅x mod 7") ascii_str4 = "(x mod 7) + 1" ucode_str4 = u("(x mod 7) + 1") ascii_str5 = "2*(x mod 7)" ucode_str5 = u("2⋅(x mod 7)") x = symbols('x', integer=True) assert pretty(Mod(x, 7)) == ascii_str1 assert upretty(Mod(x, 7)) == ucode_str1 assert pretty(Mod(x + 1, 7)) == ascii_str2 assert upretty(Mod(x + 1, 7)) == ucode_str2 assert pretty(Mod(2 * x, 7)) == ascii_str3 assert upretty(Mod(2 * x, 7)) == ucode_str3 assert pretty(Mod(x, 7) + 1) == ascii_str4 assert upretty(Mod(x, 7) + 1) == ucode_str4 assert pretty(2 * Mod(x, 7)) == ascii_str5 assert upretty(2 * Mod(x, 7)) == ucode_str5 def test_issue_11801(): assert pretty(Symbol("")) == "" assert upretty(Symbol("")) == "" def test_pretty_UnevaluatedExpr(): x = symbols('x') he = UnevaluatedExpr(1/x) ucode_str = \ u("""\ 1\n\ ─\n\ x\ """) assert upretty(he) == ucode_str ucode_str = \ u("""\ 2\n\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝x⎠ \ """) assert upretty(he**2) == ucode_str ucode_str = \ u("""\ 1\n\ 1 + ─\n\ x\ """) assert upretty(he + 1) == ucode_str ucode_str = \ u('''\ 1\n\ x⋅─\n\ x\ ''') assert upretty(x*he) == ucode_str def test_issue_10472(): M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0])) ucode_str = \ u("""\ ⎛⎡0 0⎤ ⎡0⎤⎞ ⎜⎢ ⎥, ⎢ ⎥⎟ ⎝⎣0 0⎦ ⎣0⎦⎠\ """) assert upretty(M) == ucode_str def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) ascii_str1 = "A_00" ucode_str1 = u("A₀₀") assert pretty(A[0, 0]) == ascii_str1 assert upretty(A[0, 0]) == ucode_str1 ascii_str1 = "3*A_00" ucode_str1 = u("3⋅A₀₀") assert pretty(3*A[0, 0]) == ascii_str1 assert upretty(3*A[0, 0]) == ucode_str1 ascii_str1 = "(-B + A)[0, 0]" ucode_str1 = u("(-B + A)[0, 0]") F = C[0, 0].subs(C, A - B) assert pretty(F) == ascii_str1 assert upretty(F) == ucode_str1 def test_issue_12675(): from sympy.vector import CoordSys3D x, y, t, j = symbols('x y t j') e = CoordSys3D('e') ucode_str = \ u("""\ ⎛ t⎞ \n\ ⎜⎛x⎞ ⎟ e_j\n\ ⎜⎜─⎟ ⎟ \n\ ⎝⎝y⎠ ⎠ \ """) assert upretty((x/y)**t*e.j) == ucode_str ucode_str = \ u("""\ ⎛1⎞ \n\ ⎜─⎟ e_j\n\ ⎝y⎠ \ """) assert upretty((1/y)*e.j) == ucode_str def test_MatrixSymbol_printing(): # test cases for issue #14237 A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert pretty(-A*B*C) == "-A*B*C" assert pretty(A - B) == "-B + A" assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C" # issue #14814 x = MatrixSymbol('x', n, n) y = MatrixSymbol('y*', n, n) assert pretty(x + y) == "x + y*" ascii_str = \ """\ 2 \n\ -2*y* -a*x\ """ assert pretty(-a*x + -2*y*y) == ascii_str def test_degree_printing(): expr1 = 90*degree assert pretty(expr1) == u'90°' expr2 = x*degree assert pretty(expr2) == u'x°' expr3 = cos(x*degree + 90*degree) assert pretty(expr3) == u'cos(x° + 90°)' def test_vector_expr_pretty_printing(): A = CoordSys3D('A') assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == u("(A_i)×((A_x) A_i + (3⋅A_y) A_j)") assert upretty(x*Cross(A.i, A.j)) == u('x⋅(A_i)×(A_j)') assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == u("∇×((A_x) A_i + (3⋅A_y) A_j)") assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == u("∇⋅((A_x) A_i + (3⋅A_y) A_j)") assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == u("(A_i)⋅((A_x) A_i + (3⋅A_y) A_j)") assert upretty(Gradient(A.x+3*A.y)) == u("∇⋅(A_x + 3⋅A_y)") # TODO: add support for ASCII pretty. def test_pretty_print_tensor_expr(): L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) i0 = tensor_indices("i_0", L) A, B, C, D = tensorhead("A B C D", [L], [[1]]) H = tensorhead("H", [L, L], [[1], [1]]) expr = -i ascii_str = \ """\ -i\ """ ucode_str = \ u("""\ -i\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) ascii_str = \ """\ i\n\ A \n\ \ """ ucode_str = \ u("""\ i\n\ A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i0) ascii_str = \ """\ i_0\n\ A \n\ \ """ ucode_str = \ u("""\ i₀\n\ A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(-i) ascii_str = \ """\ \n\ A \n\ i\ """ ucode_str = \ u("""\ \n\ A \n\ i\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -3*A(-i) ascii_str = \ """\ \n\ -3*A \n\ i\ """ ucode_str = \ u("""\ \n\ -3⋅A \n\ i\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j) ascii_str = \ """\ i \n\ H \n\ j\ """ ucode_str = \ u("""\ i \n\ H \n\ j\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -i) ascii_str = \ """\ L_0 \n\ H \n\ L_0\ """ ucode_str = \ u("""\ L₀ \n\ H \n\ L₀\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j)*A(j)*B(k) ascii_str = \ """\ i L_0 k\n\ H *A *B \n\ L_0 \ """ ucode_str = \ u("""\ i L₀ k\n\ H ⋅A ⋅B \n\ L₀ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1+x)*A(i) ascii_str = \ """\ i\n\ (x + 1)*A \n\ \ """ ucode_str = \ u("""\ i\n\ (x + 1)⋅A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) + 3*B(i) ascii_str = \ """\ i i\n\ A + 3*B \n\ \ """ ucode_str = \ u("""\ i i\n\ A + 3⋅B \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_print_tensor_partial_deriv(): from sympy.tensor.toperators import PartialDerivative from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) i0 = tensor_indices("i0", L) A, B, C, D = tensorhead("A B C D", [L], [[1]]) H = tensorhead("H", [L, L], [[1], [1]]) expr = PartialDerivative(A(i), A(j)) ascii_str = \ """\ d / i\\\n\ ---|A |\n\ j\\ /\n\ dA \n\ \ """ ucode_str = \ u("""\ ∂ ⎛ i⎞\n\ ───⎜A ⎟\n\ j⎝ ⎠\n\ ∂A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k \\\n\ A *---|H |\n\ j\\ L_0/\n\ dA \n\ \ """ ucode_str = \ u("""\ L₀ ∂ ⎛ k ⎞\n\ A ⋅───⎜H ⎟\n\ j⎝ L₀⎠\n\ ∂A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k k \\\n\ A *---|B *C + 3*H |\n\ j\\ L_0 L_0/\n\ dA \n\ \ """ ucode_str = \ u("""\ L₀ ∂ ⎛ k k ⎞\n\ A ⋅───⎜B ⋅C + 3⋅H ⎟\n\ j⎝ L₀ L₀⎠\n\ ∂A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(-j), D(j)) ascii_str = \ """\ / i i\\ d / \\\n\ |A + B |*-----|C |\n\ \\ / L_0\\ L_0/\n\ dD \n\ \ """ ucode_str = \ u("""\ ⎛ i i⎞ ∂ ⎛ ⎞\n\ ⎜A + B ⎟⋅────⎜C ⎟\n\ ⎝ ⎠ L₀⎝ L₀⎠\n\ ∂D \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j)) ascii_str = \ """\ / L_0 L_0\\ d / \\\n\ |A + B |*---|C |\n\ \\ / j\\ L_0/\n\ dD \n\ \ """ ucode_str = \ u("""\ ⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\ ⎜A + B ⎟⋅───⎜C ⎟\n\ ⎝ ⎠ j⎝ L₀⎠\n\ ∂D \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i:1}) ascii_str = \ """\ i=1,j\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i:1, j:1}) ascii_str = \ """\ i=1,j=1\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {j:1}) ascii_str = \ """\ i,j=1\n\ H \n\ \ """ ucode_str = ascii_str expr = TensorElement(H(-i, j), {-i:1}) ascii_str = \ """\ j\n\ H \n\ i=1 \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_15560(): a = MatrixSymbol('a', 1, 1) e = pretty(a*(KroneckerProduct(a, a))) result = 'a*(a x a)' assert e == result
e261eb37f9286d3d5e83d55886a1f21965da9337fe99f396b92e7664bd8d752d
from sympy import sqrt, Abs from sympy.core import S from sympy.integrals.intpoly import (decompose, best_origin, polytope_integrate) from sympy.geometry.line import Segment2D from sympy.geometry.polygon import Polygon from sympy.geometry.point import Point from sympy.abc import x, y, z def test_decompose(): assert decompose(x) == {1: x} assert decompose(x**2) == {2: x**2} assert decompose(x*y) == {2: x*y} assert decompose(x + y) == {1: x + y} assert decompose(x**2 + y) == {1: y, 2: x**2} assert decompose(8*x**2 + 4*y + 7) == {0: 7, 1: 4*y, 2: 8*x**2} assert decompose(x**2 + 3*y*x) == {2: x**2 + 3*x*y} assert decompose(9*x**2 + y + 4*x + x**3 + y**2*x + 3) ==\ {0: 3, 1: 4*x + y, 2: 9*x**2, 3: x**3 + x*y**2} assert decompose(x, True) == {x} assert decompose(x ** 2, True) == {x**2} assert decompose(x * y, True) == {x * y} assert decompose(x + y, True) == {x, y} assert decompose(x ** 2 + y, True) == {y, x ** 2} assert decompose(8 * x ** 2 + 4 * y + 7, True) == {7, 4*y, 8*x**2} assert decompose(x ** 2 + 3 * y * x, True) == {x ** 2, 3 * x * y} assert decompose(9 * x ** 2 + y + 4 * x + x ** 3 + y ** 2 * x + 3, True) == \ {3, y, 4*x, 9*x**2, x*y**2, x**3} def test_best_origin(): expr1 = y ** 2 * x ** 5 + y ** 5 * x ** 7 + 7 * x + x ** 12 + y ** 7 * x l1 = Segment2D(Point(0, 3), Point(1, 1)) l2 = Segment2D(Point(S(3) / 2, 0), Point(S(3) / 2, 3)) l3 = Segment2D(Point(0, S(3) / 2), Point(3, S(3) / 2)) l4 = Segment2D(Point(0, 2), Point(2, 0)) l5 = Segment2D(Point(0, 2), Point(1, 1)) l6 = Segment2D(Point(2, 0), Point(1, 1)) assert best_origin((2, 1), 3, l1, expr1) == (0, 3) assert best_origin((2, 0), 3, l2, x ** 7) == (S(3) / 2, 0) assert best_origin((0, 2), 3, l3, x ** 7) == (0, S(3) / 2) assert best_origin((1, 1), 2, l4, x ** 7 * y ** 3) == (0, 2) assert best_origin((1, 1), 2, l4, x ** 3 * y ** 7) == (2, 0) assert best_origin((1, 1), 2, l5, x ** 2 * y ** 9) == (0, 2) assert best_origin((1, 1), 2, l6, x ** 9 * y ** 2) == (2, 0) def test_polytope_integrate(): # Convex 2-Polytopes # Vertex representation assert polytope_integrate(Polygon(Point(0, 0), Point(0, 2), Point(4, 0)), 1, dims=(x, y)) == 4 assert polytope_integrate(Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)), x * y) ==\ S(1)/4 assert polytope_integrate(Polygon(Point(0, 3), Point(5, 3), Point(1, 1)), 6*x**2 - 40*y) == S(-935)/3 assert polytope_integrate(Polygon(Point(0, 0), Point(0, sqrt(3)), Point(sqrt(3), sqrt(3)), Point(sqrt(3), 0)), 1) == 3 hexagon = Polygon(Point(0, 0), Point(-sqrt(3) / 2, S(1)/2), Point(-sqrt(3) / 2, S(3) / 2), Point(0, 2), Point(sqrt(3) / 2, S(3) / 2), Point(sqrt(3) / 2, S(1)/2)) assert polytope_integrate(hexagon, 1) == S(3*sqrt(3)) / 2 # Hyperplane representation assert polytope_integrate([((-1, 0), 0), ((1, 2), 4), ((0, -1), 0)], 1, dims=(x, y)) == 4 assert polytope_integrate([((-1, 0), 0), ((0, 1), 1), ((1, 0), 1), ((0, -1), 0)], x * y) == S(1)/4 assert polytope_integrate([((0, 1), 3), ((1, -2), -1), ((-2, -1), -3)], 6*x**2 - 40*y) == S(-935)/3 assert polytope_integrate([((-1, 0), 0), ((0, sqrt(3)), 3), ((sqrt(3), 0), 3), ((0, -1), 0)], 1) == 3 hexagon = [((-S(1) / 2, -sqrt(3) / 2), 0), ((-1, 0), sqrt(3) / 2), ((-S(1) / 2, sqrt(3) / 2), sqrt(3)), ((S(1) / 2, sqrt(3) / 2), sqrt(3)), ((1, 0), sqrt(3) / 2), ((S(1) / 2, -sqrt(3) / 2), 0)] assert polytope_integrate(hexagon, 1) == S(3*sqrt(3)) / 2 # Non-convex polytopes # Vertex representation assert polytope_integrate(Polygon(Point(-1, -1), Point(-1, 1), Point(1, 1), Point(0, 0), Point(1, -1)), 1) == 3 assert polytope_integrate(Polygon(Point(-1, -1), Point(-1, 1), Point(0, 0), Point(1, 1), Point(1, -1), Point(0, 0)), 1) == 2 # Hyperplane representation assert polytope_integrate([((-1, 0), 1), ((0, 1), 1), ((1, -1), 0), ((1, 1), 0), ((0, -1), 1)], 1) == 3 assert polytope_integrate([((-1, 0), 1), ((1, 1), 0), ((-1, 1), 0), ((1, 0), 1), ((-1, -1), 0), ((1, -1), 0)], 1) == 2 # Tests for 2D polytopes mentioned in Chin et al(Page 10): # http://dilbert.engr.ucdavis.edu/~suku/quadrature/cls-integration.pdf fig1 = Polygon(Point(1.220, -0.827), Point(-1.490, -4.503), Point(-3.766, -1.622), Point(-4.240, -0.091), Point(-3.160, 4), Point(-0.981, 4.447), Point(0.132, 4.027)) assert polytope_integrate(fig1, x**2 + x*y + y**2) ==\ S(2031627344735367)/(8*10**12) fig2 = Polygon(Point(4.561, 2.317), Point(1.491, -1.315), Point(-3.310, -3.164), Point(-4.845, -3.110), Point(-4.569, 1.867)) assert polytope_integrate(fig2, x**2 + x*y + y**2) ==\ S(517091313866043)/(16*10**11) fig3 = Polygon(Point(-2.740, -1.888), Point(-3.292, 4.233), Point(-2.723, -0.697), Point(-0.643, -3.151)) assert polytope_integrate(fig3, x**2 + x*y + y**2) ==\ S(147449361647041)/(8*10**12) fig4 = Polygon(Point(0.211, -4.622), Point(-2.684, 3.851), Point(0.468, 4.879), Point(4.630, -1.325), Point(-0.411, -1.044)) assert polytope_integrate(fig4, x**2 + x*y + y**2) ==\ S(180742845225803)/(10**12) # Tests for many polynomials with maximum degree given(2D case). tri = Polygon(Point(0, 3), Point(5, 3), Point(1, 1)) polys = [] expr1 = x**9*y + x**7*y**3 + 2*x**2*y**8 expr2 = x**6*y**4 + x**5*y**5 + 2*y**10 expr3 = x**10 + x**9*y + x**8*y**2 + x**5*y**5 polys.extend((expr1, expr2, expr3)) result_dict = polytope_integrate(tri, polys, max_degree=10) assert result_dict[expr1] == S(615780107)/594 assert result_dict[expr2] == S(13062161)/27 assert result_dict[expr3] == S(1946257153)/924 # Tests when all integral of all monomials up to a max_degree is to be # calculated. assert polytope_integrate(Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)), max_degree=4) == {0: 0, 1: 1, x: S(1) / 2, x ** 2 * y ** 2: S(1) / 9, x ** 4: S(1) / 5, y ** 4: S(1) / 5, y: S(1) / 2, x * y ** 2: S(1) / 6, y ** 2: S(1) / 3, x ** 3: S(1) / 4, x ** 2 * y: S(1) / 6, x ** 3 * y: S(1) / 8, x * y: S(1) / 4, y ** 3: S(1) / 4, x ** 2: S(1) / 3, x * y ** 3: S(1) / 8} # Tests for 3D polytopes cube1 = [[(0, 0, 0), (0, 6, 6), (6, 6, 6), (3, 6, 0), (0, 6, 0), (6, 0, 6), (3, 0, 0), (0, 0, 6)], [1, 2, 3, 4], [3, 2, 5, 6], [1, 7, 5, 2], [0, 6, 5, 7], [1, 4, 0, 7], [0, 4, 3, 6]] assert polytope_integrate(cube1, 1) == S(162) # 3D Test cases in Chin et al(2015) cube2 = [[(0, 0, 0), (0, 0, 5), (0, 5, 0), (0, 5, 5), (5, 0, 0), (5, 0, 5), (5, 5, 0), (5, 5, 5)], [3, 7, 6, 2], [1, 5, 7, 3], [5, 4, 6, 7], [0, 4, 5, 1], [2, 0, 1, 3], [2, 6, 4, 0]] cube3 = [[(0, 0, 0), (5, 0, 0), (5, 4, 0), (3, 2, 0), (3, 5, 0), (0, 5, 0), (0, 0, 5), (5, 0, 5), (5, 4, 5), (3, 2, 5), (3, 5, 5), (0, 5, 5)], [6, 11, 5, 0], [1, 7, 6, 0], [5, 4, 3, 2, 1, 0], [11, 10, 4, 5], [10, 9, 3, 4], [9, 8, 2, 3], [8, 7, 1, 2], [7, 8, 9, 10, 11, 6]] cube4 = [[(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (S(1) / 4, S(1) / 4, S(1) / 4)], [0, 2, 1], [1, 3, 0], [4, 2, 3], [4, 3, 1], [0, 1, 2], [2, 4, 1], [0, 3, 2]] assert polytope_integrate(cube2, x ** 2 + y ** 2 + x * y + z ** 2) ==\ S(15625)/4 assert polytope_integrate(cube3, x ** 2 + y ** 2 + x * y + z ** 2) ==\ S(33835) / 12 assert polytope_integrate(cube4, x ** 2 + y ** 2 + x * y + z ** 2) ==\ S(37) / 960 # Test cases from Mathematica's PolyhedronData library octahedron = [[(S(-1) / sqrt(2), 0, 0), (0, S(1) / sqrt(2), 0), (0, 0, S(-1) / sqrt(2)), (0, 0, S(1) / sqrt(2)), (0, S(-1) / sqrt(2), 0), (S(1) / sqrt(2), 0, 0)], [3, 4, 5], [3, 5, 1], [3, 1, 0], [3, 0, 4], [4, 0, 2], [4, 2, 5], [2, 0, 1], [5, 2, 1]] assert polytope_integrate(octahedron, 1) == sqrt(2) / 3 great_stellated_dodecahedron =\ [[(-0.32491969623290634095, 0, 0.42532540417601993887), (0.32491969623290634095, 0, -0.42532540417601993887), (-0.52573111211913359231, 0, 0.10040570794311363956), (0.52573111211913359231, 0, -0.10040570794311363956), (-0.10040570794311363956, -0.3090169943749474241, 0.42532540417601993887), (-0.10040570794311363956, 0.30901699437494742410, 0.42532540417601993887), (0.10040570794311363956, -0.3090169943749474241, -0.42532540417601993887), (0.10040570794311363956, 0.30901699437494742410, -0.42532540417601993887), (-0.16245984811645317047, -0.5, 0.10040570794311363956), (-0.16245984811645317047, 0.5, 0.10040570794311363956), (0.16245984811645317047, -0.5, -0.10040570794311363956), (0.16245984811645317047, 0.5, -0.10040570794311363956), (-0.42532540417601993887, -0.3090169943749474241, -0.10040570794311363956), (-0.42532540417601993887, 0.30901699437494742410, -0.10040570794311363956), (-0.26286555605956679615, 0.1909830056250525759, -0.42532540417601993887), (-0.26286555605956679615, -0.1909830056250525759, -0.42532540417601993887), (0.26286555605956679615, 0.1909830056250525759, 0.42532540417601993887), (0.26286555605956679615, -0.1909830056250525759, 0.42532540417601993887), (0.42532540417601993887, -0.3090169943749474241, 0.10040570794311363956), (0.42532540417601993887, 0.30901699437494742410, 0.10040570794311363956)], [12, 3, 0, 6, 16], [17, 7, 0, 3, 13], [9, 6, 0, 7, 8], [18, 2, 1, 4, 14], [15, 5, 1, 2, 19], [11, 4, 1, 5, 10], [8, 19, 2, 18, 9], [10, 13, 3, 12, 11], [16, 14, 4, 11, 12], [13, 10, 5, 15, 17], [14, 16, 6, 9, 18], [19, 8, 7, 17, 15]] # Actual volume is : 0.163118960624632 assert Abs(polytope_integrate(great_stellated_dodecahedron, 1) -\ 0.163118960624632) < 1e-12 expr = x **2 + y ** 2 + z ** 2 octahedron_five_compound = [[(0, -0.7071067811865475244, 0), (0, 0.70710678118654752440, 0), (0.1148764602736805918, -0.35355339059327376220, -0.60150095500754567366), (0.1148764602736805918, 0.35355339059327376220, -0.60150095500754567366), (0.18587401723009224507, -0.57206140281768429760, 0.37174803446018449013), (0.18587401723009224507, 0.57206140281768429760, 0.37174803446018449013), (0.30075047750377283683, -0.21850801222441053540, 0.60150095500754567366), (0.30075047750377283683, 0.21850801222441053540, 0.60150095500754567366), (0.48662449473386508189, -0.35355339059327376220, -0.37174803446018449013), (0.48662449473386508189, 0.35355339059327376220, -0.37174803446018449013), (-0.60150095500754567366, 0, -0.37174803446018449013), (-0.30075047750377283683, -0.21850801222441053540, -0.60150095500754567366), (-0.30075047750377283683, 0.21850801222441053540, -0.60150095500754567366), (0.60150095500754567366, 0, 0.37174803446018449013), (0.4156269377774534286, -0.57206140281768429760, 0), (0.4156269377774534286, 0.57206140281768429760, 0), (0.37174803446018449013, 0, -0.60150095500754567366), (-0.4156269377774534286, -0.57206140281768429760, 0), (-0.4156269377774534286, 0.57206140281768429760, 0), (-0.67249851196395732696, -0.21850801222441053540, 0), (-0.67249851196395732696, 0.21850801222441053540, 0), (0.67249851196395732696, -0.21850801222441053540, 0), (0.67249851196395732696, 0.21850801222441053540, 0), (-0.37174803446018449013, 0, 0.60150095500754567366), (-0.48662449473386508189, -0.35355339059327376220, 0.37174803446018449013), (-0.48662449473386508189, 0.35355339059327376220, 0.37174803446018449013), (-0.18587401723009224507, -0.57206140281768429760, -0.37174803446018449013), (-0.18587401723009224507, 0.57206140281768429760, -0.37174803446018449013), (-0.11487646027368059176, -0.35355339059327376220, 0.60150095500754567366), (-0.11487646027368059176, 0.35355339059327376220, 0.60150095500754567366)], [0, 10, 16], [23, 10, 0], [16, 13, 0], [0, 13, 23], [16, 10, 1], [1, 10, 23], [1, 13, 16], [23, 13, 1], [2, 4, 19], [22, 4, 2], [2, 19, 27], [27, 22, 2], [20, 5, 3], [3, 5, 21], [26, 20, 3], [3, 21, 26], [29, 19, 4], [4, 22, 29], [5, 20, 28], [28, 21, 5], [6, 8, 15], [17, 8, 6], [6, 15, 25], [25, 17, 6], [14, 9, 7], [7, 9, 18], [24, 14, 7], [7, 18, 24], [8, 12, 15], [17, 12, 8], [14, 11, 9], [9, 11, 18], [11, 14, 24], [24, 18, 11], [25, 15, 12], [12, 17, 25], [29, 27, 19], [20, 26, 28], [28, 26, 21], [22, 27, 29]] assert Abs(polytope_integrate(octahedron_five_compound, expr)) - 0.353553\ < 1e-6 cube_five_compound = [[(-0.1624598481164531631, -0.5, -0.6881909602355867691), (-0.1624598481164531631, 0.5, -0.6881909602355867691), (0.1624598481164531631, -0.5, 0.68819096023558676910), (0.1624598481164531631, 0.5, 0.68819096023558676910), (-0.52573111211913359231, 0, -0.6881909602355867691), (0.52573111211913359231, 0, 0.68819096023558676910), (-0.26286555605956679615, -0.8090169943749474241, -0.1624598481164531631), (-0.26286555605956679615, 0.8090169943749474241, -0.1624598481164531631), (0.26286555605956680301, -0.8090169943749474241, 0.1624598481164531631), (0.26286555605956680301, 0.8090169943749474241, 0.1624598481164531631), (-0.42532540417601993887, -0.3090169943749474241, 0.68819096023558676910), (-0.42532540417601993887, 0.30901699437494742410, 0.68819096023558676910), (0.42532540417601996609, -0.3090169943749474241, -0.6881909602355867691), (0.42532540417601996609, 0.30901699437494742410, -0.6881909602355867691), (-0.6881909602355867691, -0.5, 0.1624598481164531631), (-0.6881909602355867691, 0.5, 0.1624598481164531631), (0.68819096023558676910, -0.5, -0.1624598481164531631), (0.68819096023558676910, 0.5, -0.1624598481164531631), (-0.85065080835203998877, 0, -0.1624598481164531631), (0.85065080835203993218, 0, 0.1624598481164531631)], [18, 10, 3, 7], [13, 19, 8, 0], [18, 0, 8, 10], [3, 19, 13, 7], [18, 7, 13, 0], [8, 19, 3, 10], [6, 2, 11, 18], [1, 9, 19, 12], [11, 9, 1, 18], [6, 12, 19, 2], [1, 12, 6, 18], [11, 2, 19, 9], [4, 14, 11, 7], [17, 5, 8, 12], [4, 12, 8, 14], [11, 5, 17, 7], [4, 7, 17, 12], [8, 5, 11, 14], [6, 10, 15, 4], [13, 9, 5, 16], [15, 9, 13, 4], [6, 16, 5, 10], [13, 16, 6, 4], [15, 10, 5, 9], [14, 15, 1, 0], [16, 17, 3, 2], [14, 2, 3, 15], [1, 17, 16, 0], [14, 0, 16, 2], [3, 17, 1, 15]] assert Abs(polytope_integrate(cube_five_compound, expr) - 1.25) < 1e-12 echidnahedron = [[(0, 0, -2.4898982848827801995), (0, 0, 2.4898982848827802734), (0, -4.2360679774997896964, -2.4898982848827801995), (0, -4.2360679774997896964, 2.4898982848827802734), (0, 4.2360679774997896964, -2.4898982848827801995), (0, 4.2360679774997896964, 2.4898982848827802734), (-4.0287400534704067567, -1.3090169943749474241, -2.4898982848827801995), (-4.0287400534704067567, -1.3090169943749474241, 2.4898982848827802734), (-4.0287400534704067567, 1.3090169943749474241, -2.4898982848827801995), (-4.0287400534704067567, 1.3090169943749474241, 2.4898982848827802734), (4.0287400534704069747, -1.3090169943749474241, -2.4898982848827801995), (4.0287400534704069747, -1.3090169943749474241, 2.4898982848827802734), (4.0287400534704069747, 1.3090169943749474241, -2.4898982848827801995), (4.0287400534704069747, 1.3090169943749474241, 2.4898982848827802734), (-2.4898982848827801995, -3.4270509831248422723, -2.4898982848827801995), (-2.4898982848827801995, -3.4270509831248422723, 2.4898982848827802734), (-2.4898982848827801995, 3.4270509831248422723, -2.4898982848827801995), (-2.4898982848827801995, 3.4270509831248422723, 2.4898982848827802734), (2.4898982848827802734, -3.4270509831248422723, -2.4898982848827801995), (2.4898982848827802734, -3.4270509831248422723, 2.4898982848827802734), (2.4898982848827802734, 3.4270509831248422723, -2.4898982848827801995), (2.4898982848827802734, 3.4270509831248422723, 2.4898982848827802734), (-4.7169310137059934362, -0.8090169943749474241, -1.1135163644116066184), (-4.7169310137059934362, 0.8090169943749474241, -1.1135163644116066184), (4.7169310137059937438, -0.8090169943749474241, 1.11351636441160673519), (4.7169310137059937438, 0.8090169943749474241, 1.11351636441160673519), (-4.2916056095299737777, -2.1180339887498948482, 1.11351636441160673519), (-4.2916056095299737777, 2.1180339887498948482, 1.11351636441160673519), (4.2916056095299737777, -2.1180339887498948482, -1.1135163644116066184), (4.2916056095299737777, 2.1180339887498948482, -1.1135163644116066184), (-3.6034146492943870399, 0, -3.3405490932348205213), (3.6034146492943870399, 0, 3.3405490932348202056), (-3.3405490932348205213, -3.4270509831248422723, 1.11351636441160673519), (-3.3405490932348205213, 3.4270509831248422723, 1.11351636441160673519), (3.3405490932348202056, -3.4270509831248422723, -1.1135163644116066184), (3.3405490932348202056, 3.4270509831248422723, -1.1135163644116066184), (-2.9152236890588002395, -2.1180339887498948482, 3.3405490932348202056), (-2.9152236890588002395, 2.1180339887498948482, 3.3405490932348202056), (2.9152236890588002395, -2.1180339887498948482, -3.3405490932348205213), (2.9152236890588002395, 2.1180339887498948482, -3.3405490932348205213), (-2.2270327288232132368, 0, -1.1135163644116066184), (-2.2270327288232132368, -4.2360679774997896964, -1.1135163644116066184), (-2.2270327288232132368, 4.2360679774997896964, -1.1135163644116066184), (2.2270327288232134704, 0, 1.11351636441160673519), (2.2270327288232134704, -4.2360679774997896964, 1.11351636441160673519), (2.2270327288232134704, 4.2360679774997896964, 1.11351636441160673519), (-1.8017073246471935200, -1.3090169943749474241, 1.11351636441160673519), (-1.8017073246471935200, 1.3090169943749474241, 1.11351636441160673519), (1.8017073246471935043, -1.3090169943749474241, -1.1135163644116066184), (1.8017073246471935043, 1.3090169943749474241, -1.1135163644116066184), (-1.3763819204711735382, 0, -4.7169310137059934362), (-1.3763819204711735382, 0, 0.26286555605956679615), (1.37638192047117353821, 0, 4.7169310137059937438), (1.37638192047117353821, 0, -0.26286555605956679615), (-1.1135163644116066184, -3.4270509831248422723, -3.3405490932348205213), (-1.1135163644116066184, -0.8090169943749474241, 4.7169310137059937438), (-1.1135163644116066184, -0.8090169943749474241, -0.26286555605956679615), (-1.1135163644116066184, 0.8090169943749474241, 4.7169310137059937438), (-1.1135163644116066184, 0.8090169943749474241, -0.26286555605956679615), (-1.1135163644116066184, 3.4270509831248422723, -3.3405490932348205213), (1.11351636441160673519, -3.4270509831248422723, 3.3405490932348202056), (1.11351636441160673519, -0.8090169943749474241, -4.7169310137059934362), (1.11351636441160673519, -0.8090169943749474241, 0.26286555605956679615), (1.11351636441160673519, 0.8090169943749474241, -4.7169310137059934362), (1.11351636441160673519, 0.8090169943749474241, 0.26286555605956679615), (1.11351636441160673519, 3.4270509831248422723, 3.3405490932348202056), (-0.85065080835203998877, 0, 1.11351636441160673519), (0.85065080835203993218, 0, -1.1135163644116066184), (-0.6881909602355867691, -0.5, -1.1135163644116066184), (-0.6881909602355867691, 0.5, -1.1135163644116066184), (-0.6881909602355867691, -4.7360679774997896964, -1.1135163644116066184), (-0.6881909602355867691, -2.1180339887498948482, -1.1135163644116066184), (-0.6881909602355867691, 2.1180339887498948482, -1.1135163644116066184), (-0.6881909602355867691, 4.7360679774997896964, -1.1135163644116066184), (0.68819096023558676910, -0.5, 1.11351636441160673519), (0.68819096023558676910, 0.5, 1.11351636441160673519), (0.68819096023558676910, -4.7360679774997896964, 1.11351636441160673519), (0.68819096023558676910, -2.1180339887498948482, 1.11351636441160673519), (0.68819096023558676910, 2.1180339887498948482, 1.11351636441160673519), (0.68819096023558676910, 4.7360679774997896964, 1.11351636441160673519), (-0.42532540417601993887, -1.3090169943749474241, -4.7169310137059934362), (-0.42532540417601993887, -1.3090169943749474241, 0.26286555605956679615), (-0.42532540417601993887, 1.3090169943749474241, -4.7169310137059934362), (-0.42532540417601993887, 1.3090169943749474241, 0.26286555605956679615), (-0.26286555605956679615, -0.8090169943749474241, 1.11351636441160673519), (-0.26286555605956679615, 0.8090169943749474241, 1.11351636441160673519), (0.26286555605956679615, -0.8090169943749474241, -1.1135163644116066184), (0.26286555605956679615, 0.8090169943749474241, -1.1135163644116066184), (0.42532540417601996609, -1.3090169943749474241, 4.7169310137059937438), (0.42532540417601996609, -1.3090169943749474241, -0.26286555605956679615), (0.42532540417601996609, 1.3090169943749474241, 4.7169310137059937438), (0.42532540417601996609, 1.3090169943749474241, -0.26286555605956679615)], [9, 66, 47], [44, 62, 77], [20, 91, 49], [33, 47, 83], [3, 77, 84], [12, 49, 53], [36, 84, 66], [28, 53, 62], [73, 83, 91], [15, 84, 46], [25, 64, 43], [16, 58, 72], [26, 46, 51], [11, 43, 74], [4, 72, 91], [60, 74, 84], [35, 91, 64], [23, 51, 58], [19, 74, 77], [79, 83, 78], [6, 56, 40], [76, 77, 81], [21, 78, 75], [8, 40, 58], [31, 75, 74], [42, 58, 83], [41, 81, 56], [13, 75, 43], [27, 51, 47], [2, 89, 71], [24, 43, 62], [17, 47, 85], [14, 71, 56], [65, 85, 75], [22, 56, 51], [34, 62, 89], [5, 85, 78], [32, 81, 46], [10, 53, 48], [45, 78, 64], [7, 46, 66], [18, 48, 89], [37, 66, 85], [70, 89, 81], [29, 64, 53], [88, 74, 1], [38, 67, 48], [42, 83, 72], [57, 1, 85], [34, 48, 62], [59, 72, 87], [19, 62, 74], [63, 87, 67], [17, 85, 83], [52, 75, 1], [39, 87, 49], [22, 51, 40], [55, 1, 66], [29, 49, 64], [30, 40, 69], [13, 64, 75], [82, 69, 87], [7, 66, 51], [90, 85, 1], [59, 69, 72], [70, 81, 71], [88, 1, 84], [73, 72, 83], [54, 71, 68], [5, 83, 85], [50, 68, 69], [3, 84, 81], [57, 66, 1], [30, 68, 40], [28, 62, 48], [52, 1, 74], [23, 40, 51], [38, 48, 86], [9, 51, 66], [80, 86, 68], [11, 74, 62], [55, 84, 1], [54, 86, 71], [35, 64, 49], [90, 1, 75], [41, 71, 81], [39, 49, 67], [15, 81, 84], [61, 67, 86], [21, 75, 64], [24, 53, 43], [50, 69, 0], [37, 85, 47], [31, 43, 75], [61, 0, 67], [27, 47, 58], [10, 67, 53], [8, 58, 69], [90, 75, 85], [45, 91, 78], [80, 68, 0], [36, 66, 46], [65, 78, 85], [63, 0, 87], [32, 46, 56], [20, 87, 91], [14, 56, 68], [57, 85, 66], [33, 58, 47], [61, 86, 0], [60, 84, 77], [37, 47, 66], [82, 0, 69], [44, 77, 89], [16, 69, 58], [18, 89, 86], [55, 66, 84], [26, 56, 46], [63, 67, 0], [31, 74, 43], [36, 46, 84], [50, 0, 68], [25, 43, 53], [6, 68, 56], [12, 53, 67], [88, 84, 74], [76, 89, 77], [82, 87, 0], [65, 75, 78], [60, 77, 74], [80, 0, 86], [79, 78, 91], [2, 86, 89], [4, 91, 87], [52, 74, 75], [21, 64, 78], [18, 86, 48], [23, 58, 40], [5, 78, 83], [28, 48, 53], [6, 40, 68], [25, 53, 64], [54, 68, 86], [33, 83, 58], [17, 83, 47], [12, 67, 49], [41, 56, 71], [9, 47, 51], [35, 49, 91], [2, 71, 86], [79, 91, 83], [38, 86, 67], [26, 51, 56], [7, 51, 46], [4, 87, 72], [34, 89, 48], [15, 46, 81], [42, 72, 58], [10, 48, 67], [27, 58, 51], [39, 67, 87], [76, 81, 89], [3, 81, 77], [8, 69, 40], [29, 53, 49], [19, 77, 62], [22, 40, 56], [20, 49, 87], [32, 56, 81], [59, 87, 69], [24, 62, 53], [11, 62, 43], [14, 68, 71], [73, 91, 72], [13, 43, 64], [70, 71, 89], [16, 72, 69], [44, 89, 62], [30, 69, 68], [45, 64, 91]] # Actual volume is : 51.405764746872634 assert Abs(polytope_integrate(echidnahedron, 1) - 51.4057647468726) < 1e-12 assert Abs(polytope_integrate(echidnahedron, expr) - 253.569603474519) <\ 1e-12 # Tests for many polynomials with maximum degree given(2D case). assert polytope_integrate(cube2, [x**2, y*z], max_degree=2) == \ {y * z: 3125 / S(4), x ** 2: 3125 / S(3)} assert polytope_integrate(cube2, max_degree=2) == \ {1: 125, x: 625 / S(2), x * z: 3125 / S(4), y: 625 / S(2), y * z: 3125 / S(4), z ** 2: 3125 / S(3), y ** 2: 3125 / S(3), z: 625 / S(2), x * y: 3125 / S(4), x ** 2: 3125 / S(3)} def test_polytopes_intersecting_sides(): fig5 = Polygon(Point(-4.165, -0.832), Point(-3.668, 1.568), Point(-3.266, 1.279), Point(-1.090, -2.080), Point(3.313, -0.683), Point(3.033, -4.845), Point(-4.395, 4.840), Point(-1.007, -3.328)) assert polytope_integrate(fig5, x**2 + x*y + y**2) ==\ S(1633405224899363)/(24*10**12) fig6 = Polygon(Point(-3.018, -4.473), Point(-0.103, 2.378), Point(-1.605, -2.308), Point(4.516, -0.771), Point(4.203, 0.478)) assert polytope_integrate(fig6, x**2 + x*y + y**2) ==\ S(88161333955921)/(3*10**12)
6642c305c30e15b8e4458244b8707acc32cf622cc24c22d8dfbc695d60a316ee
from sympy import ( Abs, acos, acosh, Add, And, asin, asinh, atan, Ci, cos, sinh, cosh, tanh, Derivative, diff, DiracDelta, E, Ei, Eq, exp, erf, erfi, EulerGamma, Expr, factor, Function, gamma, gammasimp, I, Idx, im, IndexedBase, Integral, integrate, Interval, Lambda, LambertW, log, Matrix, Max, meijerg, Min, nan, Ne, O, oo, pi, Piecewise, polar_lift, Poly, polygamma, Rational, re, S, Si, sign, simplify, sin, sinc, SingularityFunction, sqrt, sstr, Sum, Symbol, symbols, sympify, tan, trigsimp, Tuple ) from sympy.functions.elementary.complexes import periodic_argument from sympy.functions.elementary.integers import floor from sympy.integrals.risch import NonElementaryIntegral from sympy.physics import units from sympy.core.compatibility import range from sympy.utilities.pytest import XFAIL, raises, slow, skip, ON_TRAVIS from sympy.utilities.randtest import verify_numerically from sympy.integrals.integrals import Integral x, y, a, t, x_1, x_2, z, s = symbols('x y a t x_1 x_2 z s') n = Symbol('n', integer=True) f = Function('f') def test_principal_value(): g = 1 / x assert Integral(g, (x, -oo, oo)).principal_value() == 0 assert Integral(g, (y, -oo, oo)).principal_value() == oo * sign(1 / x) raises(ValueError, lambda: Integral(g, (x)).principal_value()) raises(ValueError, lambda: Integral(g).principal_value()) l = 1 / ((x ** 3) - 1) assert Integral(l, (x, -oo, oo)).principal_value() == -sqrt(3)*pi/3 raises(ValueError, lambda: Integral(l, (x, -oo, 1)).principal_value()) d = 1 / (x ** 2 - 1) assert Integral(d, (x, -oo, oo)).principal_value() == 0 assert Integral(d, (x, -2, 2)).principal_value() == -log(3) v = x / (x ** 2 - 1) assert Integral(v, (x, -oo, oo)).principal_value() == 0 assert Integral(v, (x, -2, 2)).principal_value() == 0 s = x ** 2 / (x ** 2 - 1) assert Integral(s, (x, -oo, oo)).principal_value() == oo assert Integral(s, (x, -2, 2)).principal_value() == -log(3) + 4 f = 1 / ((x ** 2 - 1) * (1 + x ** 2)) assert Integral(f, (x, -oo, oo)).principal_value() == -pi / 2 assert Integral(f, (x, -2, 2)).principal_value() == -atan(2) - log(3) / 2 def diff_test(i): """Return the set of symbols, s, which were used in testing that i.diff(s) agrees with i.doit().diff(s). If there is an error then the assertion will fail, causing the test to fail.""" syms = i.free_symbols for s in syms: assert (i.diff(s).doit() - i.doit().diff(s)).expand() == 0 return syms def test_improper_integral(): assert integrate(log(x), (x, 0, 1)) == -1 assert integrate(x**(-2), (x, 1, oo)) == 1 assert integrate(1/(1 + exp(x)), (x, 0, oo)) == log(2) def test_constructor(): # this is shared by Sum, so testing Integral's constructor # is equivalent to testing Sum's s1 = Integral(n, n) assert s1.limits == (Tuple(n),) s2 = Integral(n, (n,)) assert s2.limits == (Tuple(n),) s3 = Integral(Sum(x, (x, 1, y))) assert s3.limits == (Tuple(y),) s4 = Integral(n, Tuple(n,)) assert s4.limits == (Tuple(n),) s5 = Integral(n, (n, Interval(1, 2))) assert s5.limits == (Tuple(n, 1, 2),) # Testing constructor with inequalities: s6 = Integral(n, n > 10) assert s6.limits == (Tuple(n, 10, oo),) s7 = Integral(n, (n > 2) & (n < 5)) assert s7.limits == (Tuple(n, 2, 5),) def test_basics(): assert Integral(0, x) != 0 assert Integral(x, (x, 1, 1)) != 0 assert Integral(oo, x) != oo assert Integral(S.NaN, x) == S.NaN assert diff(Integral(y, y), x) == 0 assert diff(Integral(x, (x, 0, 1)), x) == 0 assert diff(Integral(x, x), x) == x assert diff(Integral(t, (t, 0, x)), x) == x e = (t + 1)**2 assert diff(integrate(e, (t, 0, x)), x) == \ diff(Integral(e, (t, 0, x)), x).doit().expand() == \ ((1 + x)**2).expand() assert diff(integrate(e, (t, 0, x)), t) == \ diff(Integral(e, (t, 0, x)), t) == 0 assert diff(integrate(e, (t, 0, x)), a) == \ diff(Integral(e, (t, 0, x)), a) == 0 assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0 assert integrate(e, (t, a, x)).diff(x) == \ Integral(e, (t, a, x)).diff(x).doit().expand() assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2) assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand() assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2 assert Integral(x, x).atoms() == {x} assert Integral(f(x), (x, 0, 1)).atoms() == {S(0), S(1), x} assert diff_test(Integral(x, (x, 3*y))) == {y} assert diff_test(Integral(x, (a, 3*y))) == {x, y} assert integrate(x, (x, oo, oo)) == 0 #issue 8171 assert integrate(x, (x, -oo, -oo)) == 0 # sum integral of terms assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x) assert Integral(x).is_commutative n = Symbol('n', commutative=False) assert Integral(n + x, x).is_commutative is False def test_diff_wrt(): class Test(Expr): _diff_wrt = True is_commutative = True t = Test() assert integrate(t + 1, t) == t**2/2 + t assert integrate(t + 1, (t, 0, 1)) == S(3)/2 raises(ValueError, lambda: integrate(x + 1, x + 1)) raises(ValueError, lambda: integrate(x + 1, (x + 1, 0, 1))) def test_basics_multiple(): assert diff_test(Integral(x, (x, 3*x, 5*y), (y, x, 2*x))) == {x} assert diff_test(Integral(x, (x, 5*y), (y, x, 2*x))) == {x} assert diff_test(Integral(x, (x, 5*y), (y, y, 2*x))) == {x, y} assert diff_test(Integral(y, y, x)) == {x, y} assert diff_test(Integral(y*x, x, y)) == {x, y} assert diff_test(Integral(x + y, y, (y, 1, x))) == {x} assert diff_test(Integral(x + y, (x, x, y), (y, y, x))) == {x, y} def test_conjugate_transpose(): A, B = symbols("A B", commutative=False) x = Symbol("x", complex=True) p = Integral(A*B, (x,)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() x = Symbol("x", real=True) p = Integral(A*B, (x,)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() def test_integration(): assert integrate(0, (t, 0, x)) == 0 assert integrate(3, (t, 0, x)) == 3*x assert integrate(t, (t, 0, x)) == x**2/2 assert integrate(3*t, (t, 0, x)) == 3*x**2/2 assert integrate(3*t**2, (t, 0, x)) == x**3 assert integrate(1/t, (t, 1, x)) == log(x) assert integrate(-1/t**2, (t, 1, x)) == 1/x - 1 assert integrate(t**2 + 5*t - 8, (t, 0, x)) == x**3/3 + 5*x**2/2 - 8*x assert integrate(x**2, x) == x**3/3 assert integrate((3*t*x)**5, x) == (3*t)**5 * x**6 / 6 b = Symbol("b") c = Symbol("c") assert integrate(a*t, (t, 0, x)) == a*x**2/2 assert integrate(a*t**4, (t, 0, x)) == a*x**5/5 assert integrate(a*t**2 + b*t + c, (t, 0, x)) == a*x**3/3 + b*x**2/2 + c*x def test_multiple_integration(): assert integrate((x**2)*(y**2), (x, 0, 1), (y, -1, 2)) == Rational(1) assert integrate((y**2)*(x**2), x, y) == Rational(1, 9)*(x**3)*(y**3) assert integrate(1/(x + 3)/(1 + x)**3, x) == \ -S(1)/8*log(3 + x) + S(1)/8*log(1 + x) + x/(4 + 8*x + 4*x**2) assert integrate(sin(x*y)*y, (x, 0, 1), (y, 0, 1)) == -sin(1) + 1 def test_issue_3532(): assert integrate(exp(-x), (x, 0, oo)) == 1 def test_issue_3560(): assert integrate(sqrt(x)**3, x) == 2*sqrt(x)**5/5 assert integrate(sqrt(x), x) == 2*sqrt(x)**3/3 assert integrate(1/sqrt(x)**3, x) == -2/sqrt(x) def test_integrate_poly(): p = Poly(x + x**2*y + y**3, x, y) qx = integrate(p, x) qy = integrate(p, y) assert isinstance(qx, Poly) is True assert isinstance(qy, Poly) is True assert qx.gens == (x, y) assert qy.gens == (x, y) assert qx.as_expr() == x**2/2 + x**3*y/3 + x*y**3 assert qy.as_expr() == x*y + x**2*y**2/2 + y**4/4 def test_integrate_poly_defined(): p = Poly(x + x**2*y + y**3, x, y) Qx = integrate(p, (x, 0, 1)) Qy = integrate(p, (y, 0, pi)) assert isinstance(Qx, Poly) is True assert isinstance(Qy, Poly) is True assert Qx.gens == (y,) assert Qy.gens == (x,) assert Qx.as_expr() == Rational(1, 2) + y/3 + y**3 assert Qy.as_expr() == pi**4/4 + pi*x + pi**2*x**2/2 def test_integrate_omit_var(): y = Symbol('y') assert integrate(x) == x**2/2 raises(ValueError, lambda: integrate(2)) raises(ValueError, lambda: integrate(x*y)) def test_integrate_poly_accurately(): y = Symbol('y') assert integrate(x*sin(y), x) == x**2*sin(y)/2 # when passed to risch_norman, this will be a CPU hog, so this really # checks, that integrated function is recognized as polynomial assert integrate(x**1000*sin(y), x) == x**1001*sin(y)/1001 def test_issue_3635(): y = Symbol('y') assert integrate(x**2, y) == x**2*y assert integrate(x**2, (y, -1, 1)) == 2*x**2 # works in sympy and py.test but hangs in `setup.py test` def test_integrate_linearterm_pow(): # check integrate((a*x+b)^c, x) -- issue 3499 y = Symbol('y', positive=True) # TODO: Remove conds='none' below, let the assumption take care of it. assert integrate(x**y, x, conds='none') == x**(y + 1)/(y + 1) assert integrate((exp(y)*x + 1/y)**(1 + sin(y)), x, conds='none') == \ exp(-y)*(exp(y)*x + 1/y)**(2 + sin(y)) / (2 + sin(y)) def test_issue_3618(): assert integrate(pi*sqrt(x), x) == 2*pi*sqrt(x)**3/3 assert integrate(pi*sqrt(x) + E*sqrt(x)**3, x) == \ 2*pi*sqrt(x)**3/3 + 2*E *sqrt(x)**5/5 def test_issue_3623(): assert integrate(cos((n + 1)*x), x) == Piecewise( (sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True)) assert integrate(cos((n - 1)*x), x) == Piecewise( (sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) assert integrate(cos((n + 1)*x) + cos((n - 1)*x), x) == \ Piecewise((sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) + \ Piecewise((sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True)) def test_issue_3664(): n = Symbol('n', integer=True, nonzero=True) assert integrate(-1./2 * x * sin(n * pi * x/2), [x, -2, 0]) == \ 2*cos(pi*n)/(pi*n) assert integrate(-Rational(1)/2 * x * sin(n * pi * x/2), [x, -2, 0]) == \ 2*cos(pi*n)/(pi*n) def test_issue_3679(): # definite integration of rational functions gives wrong answers assert NS(Integral(1/(x**2 - 8*x + 17), (x, 2, 4))) == '1.10714871779409' def test_issue_3686(): # remove this when fresnel itegrals are implemented from sympy import expand_func, fresnels assert expand_func(integrate(sin(x**2), x)) == \ sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2 def test_integrate_units(): m = units.m s = units.s assert integrate(x * m/s, (x, 1*s, 5*s)) == 12*m*s def test_transcendental_functions(): assert integrate(LambertW(2*x), x) == \ -x + x*LambertW(2*x) + x/LambertW(2*x) def test_log_polylog(): assert integrate(log(1 - x)/x, (x, 0, 1)) == -pi**2/6 assert integrate(log(x)*(1 - x)**(-1), (x, 0, 1)) == -pi**2/6 def test_issue_3740(): f = 4*log(x) - 2*log(x)**2 fid = diff(integrate(f, x), x) assert abs(f.subs(x, 42).evalf() - fid.subs(x, 42).evalf()) < 1e-10 def test_issue_3788(): assert integrate(1/(1 + x**2), x) == atan(x) def test_issue_3952(): f = sin(x) assert integrate(f, x) == -cos(x) raises(ValueError, lambda: integrate(f, 2*x)) def test_issue_4516(): assert integrate(2**x - 2*x, x) == 2**x/log(2) - x**2 def test_issue_7450(): ans = integrate(exp(-(1 + I)*x), (x, 0, oo)) assert re(ans) == S.Half and im(ans) == -S.Half def test_issue_8623(): assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2 assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \ pi*floor((x - pi/2)/pi))/2 def test_issue_9569(): assert integrate(1 / (2 - cos(x)), (x, 0, pi)) == pi/sqrt(3) assert integrate(1/(2 - cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)) + pi*floor((x/2 - pi/2)/pi))/3 def test_issue_13749(): assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3) assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3 def test_matrices(): M = Matrix(2, 2, lambda i, j: (i + j + 1)*sin((i + j + 1)*x)) assert integrate(M, x) == Matrix([ [-cos(x), -cos(2*x)], [-cos(2*x), -cos(3*x)], ]) def test_integrate_functions(): # issue 4111 assert integrate(f(x), x) == Integral(f(x), x) assert integrate(f(x), (x, 0, 1)) == Integral(f(x), (x, 0, 1)) assert integrate(f(x)*diff(f(x), x), x) == f(x)**2/2 assert integrate(diff(f(x), x) / f(x), x) == log(f(x)) def test_integrate_derivatives(): assert integrate(Derivative(f(x), x), x) == f(x) assert integrate(Derivative(f(y), y), x) == x*Derivative(f(y), y) assert integrate(Derivative(f(x), x)**2, x) == \ Integral(Derivative(f(x), x)**2, x) def test_transform(): a = Integral(x**2 + 1, (x, -1, 2)) fx = x fy = 3*y + 1 assert a.doit() == a.transform(fx, fy).doit() assert a.transform(fx, fy).transform(fy, fx) == a fx = 3*x + 1 fy = y assert a.transform(fx, fy).transform(fy, fx) == a a = Integral(sin(1/x), (x, 0, 1)) assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo)) assert a.transform(x, 1/y).transform(y, 1/x) == a a = Integral(exp(-x**2), (x, -oo, oo)) assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo)) # < 3 arg limit handled properly assert Integral(x, x).transform(x, a*y).doit() == \ Integral(y*a**2, y).doit() _3 = S(3) assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \ Integral(-1/x**3, (x, -oo, -1/_3)).doit() assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \ Integral(y**(-3), (y, 1/_3, oo)) # issue 8400 i = Integral(x + y, (x, 1, 2), (y, 1, 2)) assert i.transform(x, (x + 2*y, x)).doit() == \ i.transform(x, (x + 2*z, x)).doit() == 3 def test_issue_4052(): f = S(1)/2*asin(x) + x*sqrt(1 - x**2)/2 assert integrate(cos(asin(x)), x) == f assert integrate(sin(acos(x)), x) == f def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) @slow def test_evalf_integrals(): assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000' gauss = Integral(exp(-x**2), (x, -oo, oo)) assert NS(gauss, 15) == '1.77245385090552' assert NS(gauss**2 - pi + E*Rational( 1, 10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20') # A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html t = Symbol('t') a = 8*sqrt(3)/(1 + 3*t**2) b = 16*sqrt(2)*(3*t + 1)*sqrt(4*t**2 + t + 1)**3 c = (3*t**2 + 1)*(11*t**2 + 2*t + 3)**2 d = sqrt(2)*(249*t**2 + 54*t + 65)/(11*t**2 + 2*t + 3)**2 f = a - b/c - d assert NS(Integral(f, (t, 0, 1)), 50) == \ NS((3*sqrt(2) - 49*pi + 162*atan(sqrt(2)))/12, 50) # http://mathworld.wolfram.com/VardisIntegral.html assert NS(Integral(log(log(1/x))/(1 + x + x**2), (x, 0, 1)), 15) == \ NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15) # http://mathworld.wolfram.com/AhmedsIntegral.html assert NS(Integral(atan(sqrt(x**2 + 2))/(sqrt(x**2 + 2)*(x**2 + 1)), (x, 0, 1)), 15) == NS(5*pi**2/96, 15) # http://mathworld.wolfram.com/AbelsIntegral.html assert NS(Integral(x/((exp(pi*x) - exp( -pi*x))*(x**2 + 1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4', 15) # Complex part trimming # http://mathworld.wolfram.com/VardisIntegral.html assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \ NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15) # # Endpoints causing trouble (rounding error in integration points -> complex log) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22) # Needs zero handling assert NS(pi - 4*Integral( 'sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0') # Oscillatory quadrature a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15) assert 0.49 < a < 0.51 assert NS( Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928' assert NS(Integral( cos(pi*x + 1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365' # indefinite integrals aren't evaluated assert NS(Integral(x, x)) == 'Integral(x, x)' assert NS(Integral(x, (x, y))) == 'Integral(x, (x, y))' def test_evalf_issue_939(): # https://github.com/sympy/sympy/issues/4038 # The output form of an integral may differ by a step function between # revisions, making this test a bit useless. This can't be said about # other two tests. For now, all values of this evaluation are used here, # but in future this should be reconsidered. assert NS(integrate(1/(x**5 + 1), x).subs(x, 4), chop=True) in \ ['-0.000976138910649103', '0.965906660135753', '1.93278945918216'] assert NS(Integral(1/(x**5 + 1), (x, 2, 4))) == '0.0144361088886740' assert NS( integrate(1/(x**5 + 1), (x, 2, 4)), chop=True) == '0.0144361088886740' @XFAIL def test_failing_integrals(): #--- # Double integrals not implemented assert NS(Integral( sqrt(x) + x*y, (x, 1, 2), (y, -1, 1)), 15) == '2.43790283299492' # double integral + zero detection assert NS(Integral(sin(x + x*y), (x, -1, 1), (y, -1, 1)), 15) == '0.0' def test_integrate_SingularityFunction(): in_1 = SingularityFunction(x, a, 3) + SingularityFunction(x, 5, -1) out_1 = SingularityFunction(x, a, 4)/4 + SingularityFunction(x, 5, 0) assert integrate(in_1, x) == out_1 in_2 = 10*SingularityFunction(x, 4, 0) - 5*SingularityFunction(x, -6, -2) out_2 = 10*SingularityFunction(x, 4, 1) - 5*SingularityFunction(x, -6, -1) assert integrate(in_2, x) == out_2 in_3 = 2*x**2*y -10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -2) out_3_1 = 2*x**3*y/3 - 2*x*SingularityFunction(y, 10, -2) - 5*SingularityFunction(x, -4, 8)/4 out_3_2 = x**2*y**2 - 10*y*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -1) assert integrate(in_3, x) == out_3_1 assert integrate(in_3, y) == out_3_2 assert Integral(in_3, x) == Integral(in_3, x) assert Integral(in_3, x).doit() == out_3_1 in_4 = 10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(x, 10, -2) out_4 = 5*SingularityFunction(x, -4, 8)/4 - 2*SingularityFunction(x, 10, -1) assert integrate(in_4, (x, -oo, x)) == out_4 assert integrate(SingularityFunction(x, 5, -1), x) == SingularityFunction(x, 5, 0) assert integrate(SingularityFunction(x, 0, -1), (x, -oo, oo)) == 1 assert integrate(5*SingularityFunction(x, 5, -1), (x, -oo, oo)) == 5 assert integrate(SingularityFunction(x, 5, -1) * f(x), (x, -oo, oo)) == f(5) def test_integrate_DiracDelta(): # This is here to check that deltaintegrate is being called, but also # to test definite integrals. More tests are in test_deltafunctions.py assert integrate(DiracDelta(x) * f(x), (x, -oo, oo)) == f(0) assert integrate(DiracDelta(x)**2, (x, -oo, oo)) == DiracDelta(0) # issue 4522 assert integrate(integrate((4 - 4*x + x*y - 4*y) * \ DiracDelta(x)*DiracDelta(y - 1), (x, 0, 1)), (y, 0, 1)) == 0 # issue 5729 p = exp(-(x**2 + y**2))/pi assert integrate(p*DiracDelta(x - 10*y), (x, -oo, oo), (y, -oo, oo)) == \ integrate(p*DiracDelta(x - 10*y), (y, -oo, oo), (x, -oo, oo)) == \ integrate(p*DiracDelta(10*x - y), (x, -oo, oo), (y, -oo, oo)) == \ integrate(p*DiracDelta(10*x - y), (y, -oo, oo), (x, -oo, oo)) == \ 1/sqrt(101*pi) @XFAIL def test_integrate_DiracDelta_fails(): # issue 6427 assert integrate(integrate(integrate( DiracDelta(x - y - z), (z, 0, oo)), (y, 0, 1)), (x, 0, 1)) == S(1)/2 def test_integrate_returns_piecewise(): assert integrate(x**y, x) == Piecewise( (x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True)) assert integrate(x**y, y) == Piecewise( (x**y/log(x), Ne(log(x), 0)), (y, True)) assert integrate(exp(n*x), x) == Piecewise( (exp(n*x)/n, Ne(n, 0)), (x, True)) assert integrate(x*exp(n*x), x) == Piecewise( ((n*x - 1)*exp(n*x)/n**2, Ne(n**2, 0)), (x**2/2, True)) assert integrate(x**(n*y), x) == Piecewise( (x**(n*y + 1)/(n*y + 1), Ne(n*y, -1)), (log(x), True)) assert integrate(x**(n*y), y) == Piecewise( (x**(n*y)/(n*log(x)), Ne(n*log(x), 0)), (y, True)) assert integrate(cos(n*x), x) == Piecewise( (sin(n*x)/n, Ne(n, 0)), (x, True)) assert integrate(cos(n*x)**2, x) == Piecewise( ((n*x/2 + sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (x, True)) assert integrate(x*cos(n*x), x) == Piecewise( (x*sin(n*x)/n + cos(n*x)/n**2, Ne(n, 0)), (x**2/2, True)) assert integrate(sin(n*x), x) == Piecewise( (-cos(n*x)/n, Ne(n, 0)), (0, True)) assert integrate(sin(n*x)**2, x) == Piecewise( ((n*x/2 - sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (0, True)) assert integrate(x*sin(n*x), x) == Piecewise( (-x*cos(n*x)/n + sin(n*x)/n**2, Ne(n, 0)), (0, True)) assert integrate(exp(x*y), (x, 0, z)) == Piecewise( (exp(y*z)/y - 1/y, (y > -oo) & (y < oo) & Ne(y, 0)), (z, True)) def test_integrate_max_min(): x = symbols('x', real=True) assert integrate(Min(x, 2), (x, 0, 3)) == 4 assert integrate(Max(x**2, x**3), (x, 0, 2)) == S(49)/12 assert integrate(Min(exp(x), exp(-x))**2, x) == Piecewise( \ (exp(2*x)/2, x <= 0), (1 - exp(-2*x)/2, True)) # issue 7907 c = symbols('c', real=True) int1 = integrate(Max(c, x)*exp(-x**2), (x, -oo, oo)) int2 = integrate(c*exp(-x**2), (x, -oo, c)) int3 = integrate(x*exp(-x**2), (x, c, oo)) assert int1 == int2 + int3 == sqrt(pi)*c*erf(c)/2 + \ sqrt(pi)*c/2 + exp(-c**2)/2 def test_integrate_Abs_sign(): assert integrate(Abs(x), (x, -2, 1)) == S(5)/2 assert integrate(Abs(x), (x, 0, 1)) == S(1)/2 assert integrate(Abs(x + 1), (x, 0, 1)) == S(3)/2 assert integrate(Abs(x**2 - 1), (x, -2, 2)) == 4 assert integrate(Abs(x**2 - 3*x), (x, -15, 15)) == 2259 assert integrate(sign(x), (x, -1, 2)) == 1 assert integrate(sign(x)*sin(x), (x, -pi, pi)) == 4 assert integrate(sign(x - 2) * x**2, (x, 0, 3)) == S(11)/3 t, s = symbols('t s', real=True) assert integrate(Abs(t), t) == Piecewise( (-t**2/2, t <= 0), (t**2/2, True)) assert integrate(Abs(2*t - 6), t) == Piecewise( (-t**2 + 6*t, t <= 3), (t**2 - 6*t + 18, True)) assert (integrate(abs(t - s**2), (t, 0, 2)) == 2*s**2*Min(2, s**2) - 2*s**2 - Min(2, s**2)**2 + 2) assert integrate(exp(-Abs(t)), t) == Piecewise( (exp(t), t <= 0), (2 - exp(-t), True)) assert integrate(sign(2*t - 6), t) == Piecewise( (-t, t < 3), (t - 6, True)) assert integrate(2*t*sign(t**2 - 1), t) == Piecewise( (t**2, t < -1), (-t**2 + 2, t < 1), (t**2, True)) assert integrate(sign(t), (t, s + 1)) == Piecewise( (s + 1, s + 1 > 0), (-s - 1, s + 1 < 0), (0, True)) def test_subs1(): e = Integral(exp(x - y), x) assert e.subs(y, 3) == Integral(exp(x - 3), x) e = Integral(exp(x - y), (x, 0, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo)) def test_subs2(): e = Integral(exp(x - y), x, t) assert e.subs(y, 3) == Integral(exp(x - 3), x, t) e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs3(): e = Integral(exp(x - y), (x, 0, y), (t, y, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 3), (t, 3, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, x, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs4(): e = Integral(exp(x), (x, 0, y), (t, y, 1)) assert e.subs(y, 3) == Integral(exp(x), (x, 0, 3), (t, 3, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs5(): e = Integral(exp(-x**2), (x, -oo, oo)) assert e.subs(x, 5) == e e = Integral(exp(-x**2 + y), x) assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x) e = Integral(exp(-x**2 + y), (x, x)) assert e.subs(x, 5) == Integral(exp(y - x**2), (x, 5)) assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x) e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo)) assert e.subs(x, 5) == e assert e.subs(y, 5) == e # Test evaluation of antiderivatives e = Integral(exp(-x**2), (x, x)) assert e.subs(x, 5) == Integral(exp(-x**2), (x, 5)) e = Integral(exp(x), x) assert (e.subs(x,1) - e.subs(x,0) - Integral(exp(x), (x, 0, 1)) ).doit().is_zero def test_subs6(): a, b = symbols('a b') e = Integral(x*y, (x, f(x), f(y))) assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y))) assert e.subs(y, 1) == Integral(x, (x, f(x), f(1))) e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y))) assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y))) assert e.subs(y, 1) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1))) e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a))) assert e.subs(a, 1) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1))) def test_subs7(): e = Integral(x, (x, 1, y), (y, 1, 2)) assert e.subs({x: 1, y: 2}) == e e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)), (y, 1, 2)) assert e.subs(sin(y), 1) == e assert e.subs(sin(x), 1) == Integral(sin(x) + sin(y), (x, 1, sin(y)), (y, 1, 2)) def test_expand(): e = Integral(f(x)+f(x**2), (x, 1, y)) assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y)) def test_integration_variable(): raises(ValueError, lambda: Integral(exp(-x**2), 3)) raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo))) def test_expand_integral(): assert Integral(cos(x**2)*(sin(x**2) + 1), (x, 0, 1)).expand() == \ Integral(cos(x**2)*sin(x**2), (x, 0, 1)) + \ Integral(cos(x**2), (x, 0, 1)) assert Integral(cos(x**2)*(sin(x**2) + 1), x).expand() == \ Integral(cos(x**2)*sin(x**2), x) + \ Integral(cos(x**2), x) def test_as_sum_midpoint1(): e = Integral(sqrt(x**3 + 1), (x, 2, 10)) assert e.as_sum(1, method="midpoint") == 8*sqrt(217) assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57) assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \ 8*sqrt(3081)/27 + 8*sqrt(52809)/27 assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \ 4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14) assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5 e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10)) raises(NotImplementedError, lambda: e.as_sum(4)) def test_as_sum_midpoint2(): e = Integral((x + y)**2, (x, 0, 1)) n = Symbol('n', positive=True, integer=True) assert e.as_sum(1, method="midpoint").expand() == S(1)/4 + y + y**2 assert e.as_sum(2, method="midpoint").expand() == S(5)/16 + y + y**2 assert e.as_sum(3, method="midpoint").expand() == S(35)/108 + y + y**2 assert e.as_sum(4, method="midpoint").expand() == S(21)/64 + y + y**2 assert e.as_sum(n, method="midpoint").expand() == \ y**2 + y + S(1)/3 - 1/(12*n**2) def test_as_sum_left(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="left").expand() == y**2 assert e.as_sum(2, method="left").expand() == S(1)/8 + y/2 + y**2 assert e.as_sum(3, method="left").expand() == S(5)/27 + 2*y/3 + y**2 assert e.as_sum(4, method="left").expand() == S(7)/32 + 3*y/4 + y**2 assert e.as_sum(n, method="left").expand() == \ y**2 + y + S(1)/3 - y/n - 1/(2*n) + 1/(6*n**2) assert e.as_sum(10, method="left", evaluate=False).has(Sum) def test_as_sum_right(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2 assert e.as_sum(2, method="right").expand() == S(5)/8 + 3*y/2 + y**2 assert e.as_sum(3, method="right").expand() == S(14)/27 + 4*y/3 + y**2 assert e.as_sum(4, method="right").expand() == S(15)/32 + 5*y/4 + y**2 assert e.as_sum(n, method="right").expand() == \ y**2 + y + S(1)/3 + y/n + 1/(2*n) + 1/(6*n**2) def test_as_sum_trapezoid(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="trapezoid").expand() == y**2 + y + S(1)/2 assert e.as_sum(2, method="trapezoid").expand() == y**2 + y + S(3)/8 assert e.as_sum(3, method="trapezoid").expand() == y**2 + y + S(19)/54 assert e.as_sum(4, method="trapezoid").expand() == y**2 + y + S(11)/32 assert e.as_sum(n, method="trapezoid").expand() == \ y**2 + y + S(1)/3 + 1/(6*n**2) assert Integral(sign(x), (x, 0, 1)).as_sum(1, 'trapezoid') == S(1)/2 def test_as_sum_raises(): e = Integral((x + y)**2, (x, 0, 1)) raises(ValueError, lambda: e.as_sum(-1)) raises(ValueError, lambda: e.as_sum(0)) raises(ValueError, lambda: Integral(x).as_sum(3)) raises(ValueError, lambda: e.as_sum(oo)) raises(ValueError, lambda: e.as_sum(3, method='xxxx2')) def test_nested_doit(): e = Integral(Integral(x, x), x) f = Integral(x, x, x) assert e.doit() == f.doit() def test_issue_4665(): # Allow only upper or lower limit evaluation e = Integral(x**2, (x, None, 1)) f = Integral(x**2, (x, 1, None)) assert e.doit() == Rational(1, 3) assert f.doit() == Rational(-1, 3) assert Integral(x*y, (x, None, y)).subs(y, t) == Integral(x*t, (x, None, t)) assert Integral(x*y, (x, y, None)).subs(y, t) == Integral(x*t, (x, t, None)) assert integrate(x**2, (x, None, 1)) == Rational(1, 3) assert integrate(x**2, (x, 1, None)) == Rational(-1, 3) assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3) def test_integral_reconstruct(): e = Integral(x**2, (x, -1, 1)) assert e == Integral(*e.args) def test_doit_integrals(): e = Integral(Integral(2*x), (x, 0, 1)) assert e.doit() == Rational(1, 3) assert e.doit(deep=False) == Rational(1, 3) f = Function('f') # doesn't matter if the integral can't be performed assert Integral(f(x), (x, 1, 1)).doit() == 0 # doesn't matter if the limits can't be evaluated assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0 assert Integral(x, (a, 0)).doit() == 0 limits = ((a, 1, exp(x)), (x, 0)) assert Integral(a, *limits).doit() == S(1)/4 assert Integral(a, *list(reversed(limits))).doit() == 0 def test_issue_4884(): assert integrate(sqrt(x)*(1 + x)) == \ Piecewise( (2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15, Abs(x + 1) > 1), (2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 - 4*I*sqrt(-x)/15, True)) assert integrate(x**x*(1 + log(x))) == x**x def test_is_number(): from sympy.abc import x, y, z from sympy import cos, sin assert Integral(x).is_number is False assert Integral(1, x).is_number is False assert Integral(1, (x, 1)).is_number is True assert Integral(1, (x, 1, 2)).is_number is True assert Integral(1, (x, 1, y)).is_number is False assert Integral(1, (x, y)).is_number is False assert Integral(x, y).is_number is False assert Integral(x, (y, 1, x)).is_number is False assert Integral(x, (y, 1, 2)).is_number is False assert Integral(x, (x, 1, 2)).is_number is True # `foo.is_number` should always be equivalent to `not foo.free_symbols` # in each of these cases, there are pseudo-free symbols i = Integral(x, (y, 1, 1)) assert i.is_number is False and i.n() == 0 i = Integral(x, (y, z, z)) assert i.is_number is False and i.n() == 0 i = Integral(1, (y, z, z + 2)) assert i.is_number is False and i.n() == 2 assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False assert Integral(x, (x, 1)).is_number is True assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True # it is possible to get a false negative if the integrand is # actually an unsimplified zero, but this is true of is_number in general. assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False assert Integral(f(x), (x, 0, 1)).is_number is True def test_symbols(): from sympy.abc import x, y, z assert Integral(0, x).free_symbols == {x} assert Integral(x).free_symbols == {x} assert Integral(x, (x, None, y)).free_symbols == {y} assert Integral(x, (x, y, None)).free_symbols == {y} assert Integral(x, (x, 1, y)).free_symbols == {y} assert Integral(x, (x, y, 1)).free_symbols == {y} assert Integral(x, (x, x, y)).free_symbols == {x, y} assert Integral(x, x, y).free_symbols == {x, y} assert Integral(x, (x, 1, 2)).free_symbols == set() assert Integral(x, (y, 1, 2)).free_symbols == {x} # pseudo-free in this case assert Integral(x, (y, z, z)).free_symbols == {x, z} assert Integral(x, (y, 1, 2), (y, None, None)).free_symbols == {x, y} assert Integral(x, (y, 1, 2), (x, 1, y)).free_symbols == {y} assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2)).free_symbols == set() assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2)).free_symbols == set() assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2)).free_symbols == \ {x} def test_is_zero(): from sympy.abc import x, m assert Integral(0, (x, 1, x)).is_zero assert Integral(1, (x, 1, 1)).is_zero assert Integral(1, (x, 1, 2), (y, 2)).is_zero is False assert Integral(x, (m, 0)).is_zero assert Integral(x + m, (m, 0)).is_zero is None i = Integral(m, (m, 1, exp(x)), (x, 0)) assert i.is_zero is None assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero is True assert Integral(x, (x, oo, oo)).is_zero # issue 8171 assert Integral(x, (x, -oo, -oo)).is_zero # this is zero but is beyond the scope of what is_zero # should be doing assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None def test_series(): from sympy.abc import x i = Integral(cos(x), (x, x)) e = i.lseries(x) assert i.nseries(x, n=8).removeO() == Add(*[next(e) for j in range(4)]) def test_trig_nonelementary_integrals(): x = Symbol('x') assert integrate((1 + sin(x))/x, x) == log(x) + Si(x) # next one comes out as log(x) + log(x**2)/2 + Ci(x) # so not hardcoding this log ugliness assert integrate((cos(x) + 2)/x, x).has(Ci) def test_issue_4403(): x = Symbol('x') y = Symbol('y') z = Symbol('z', positive=True) assert integrate(sqrt(x**2 + z**2), x) == \ z**2*asinh(x/z)/2 + x*sqrt(x**2 + z**2)/2 assert integrate(sqrt(x**2 - z**2), x) == \ -z**2*acosh(x/z)/2 + x*sqrt(x**2 - z**2)/2 x = Symbol('x', real=True) y = Symbol('y', positive=True) assert integrate(1/(x**2 + y**2)**S('3/2'), x) == \ x/(y**2*sqrt(x**2 + y**2)) # If y is real and nonzero, we get x*Abs(y)/(y**3*sqrt(x**2 + y**2)), # which results from sqrt(1 + x**2/y**2) = sqrt(x**2 + y**2)/|y|. def test_issue_4403_2(): assert integrate(sqrt(-x**2 - 4), x) == \ -2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2 def test_issue_4100(): R = Symbol('R', positive=True) assert integrate(sqrt(R**2 - x**2), (x, 0, R)) == pi*R**2/4 def test_issue_5167(): from sympy.abc import w, x, y, z f = Function('f') assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x) assert Integral(f(x)).args == (f(x), Tuple(x)) assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x)) assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y)) assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y)) assert Integral(Integral(Integral(f(x), x), y), z).args == \ (f(x), Tuple(x), Tuple(y), Tuple(z)) assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x) assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x) assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)] assert integrate(Integral(2, x), x) == x**2 assert integrate(Integral(2, x), y) == 2*x*y # don't re-order given limits assert Integral(1, x, y).args != Integral(1, y, x).args # do as many as possible assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2 assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \ y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2)) def test_issue_4890(): z = Symbol('z', positive=True) assert integrate(exp(-log(x)**2), x) == \ sqrt(pi)*exp(S(1)/4)*erf(log(x)-S(1)/2)/2 assert integrate(exp(log(x)**2), x) == \ sqrt(pi)*exp(-S(1)/4)*erfi(log(x)+S(1)/2)/2 assert integrate(exp(-z*log(x)**2), x) == \ sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z)) def test_issue_4376(): n = Symbol('n', integer=True, positive=True) assert simplify(integrate(n*(x**(1/n) - 1), (x, 0, S.Half)) - (n**2 - 2**(1/n)*n**2 - n*2**(1/n))/(2**(1 + 1/n) + n*2**(1 + 1/n))) == 0 def test_issue_4517(): assert integrate((sqrt(x) - x**3)/x**Rational(1, 3), x) == \ 6*x**Rational(7, 6)/7 - 3*x**Rational(11, 3)/11 def test_issue_4527(): k, m = symbols('k m', integer=True) ans = integrate(sin(k*x)*sin(m*x), (x, 0, pi) ).simplify() == Piecewise( (0, Eq(k, 0) | Eq(m, 0)), (-pi/2, Eq(k, -m)), (pi/2, Eq(k, m)), (0, True)) assert integrate(sin(k*x)*sin(m*x), (x,)) == Piecewise( (0, And(Eq(k, 0), Eq(m, 0))), (-x*sin(m*x)**2/2 - x*cos(m*x)**2/2 + sin(m*x)*cos(m*x)/(2*m), Eq(k, -m)), (x*sin(m*x)**2/2 + x*cos(m*x)**2/2 - sin(m*x)*cos(m*x)/(2*m), Eq(k, m)), (m*sin(k*x)*cos(m*x)/(k**2 - m**2) - k*sin(m*x)*cos(k*x)/(k**2 - m**2), True)) def test_issue_4199(): ypos = Symbol('y', positive=True) # TODO: Remove conds='none' below, let the assumption take care of it. assert integrate(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo), conds='none') == \ Integral(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo)) @slow def test_issue_3940(): a, b, c, d = symbols('a:d', positive=True, finite=True) assert integrate(exp(-x**2 + I*c*x), x) == \ -sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2 assert integrate(exp(a*x**2 + b*x + c), x) == \ sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a)) from sympy import expand_mul from sympy.abc import k assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \ sqrt(pi)*exp(-k**2/4) a, d = symbols('a d', positive=True) assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \ sqrt(pi)*exp(d**2/a)/sqrt(a) def test_issue_5413(): # Note that this is not the same as testing ratint() because integrate() # pulls out the coefficient. assert integrate(-a/(a**2 + x**2), x) == I*log(-I*a + x)/2 - I*log(I*a + x)/2 def test_issue_4892a(): A, z = symbols('A z') c = Symbol('c', nonzero=True) P1 = -A*exp(-z) P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2) h1 = -sin(x)**2 - cos(y)**2 h2 = -sin(x)**2 + sin(y)**2 - 1 # there is still some non-deterministic behavior in integrate # or trigsimp which permits one of the following assert integrate(c*(P2 - P1), t) in [ c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)), c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)), c*( A* h1 *log(c*t)/c + A*t*exp(-z)), c*( A* h2 *log(c*t)/c + A*t*exp(-z)), (A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z), (A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z), ] def test_issue_4892b(): # Issues relating to issue 4596 are making the actual result of this hard # to test. The answer should be something like # # (-sin(y) + sqrt(-72 + 48*cos(y) - 8*cos(y)**2)/2)*log(x + sqrt(-72 + # 48*cos(y) - 8*cos(y)**2)/(2*(3 - cos(y)))) + (-sin(y) - sqrt(-72 + # 48*cos(y) - 8*cos(y)**2)/2)*log(x - sqrt(-72 + 48*cos(y) - # 8*cos(y)**2)/(2*(3 - cos(y)))) + x**2*sin(y)/2 + 2*x*cos(y) expr = (sin(y)*x**3 + 2*cos(y)*x**2 + 12)/(x**2 + 2) assert trigsimp(factor(integrate(expr, x).diff(x) - expr)) == 0 def test_issue_5178(): assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \ 2*Integral(f(y, z), (y, 0, pi), (z, 0, pi)) def test_integrate_series(): f = sin(x).series(x, 0, 10) g = x**2/2 - x**4/24 + x**6/720 - x**8/40320 + x**10/3628800 + O(x**11) assert integrate(f, x) == g assert diff(integrate(f, x), x) == f assert integrate(O(x**5), x) == O(x**6) def test_atom_bug(): from sympy import meijerg from sympy.integrals.heurisch import heurisch assert heurisch(meijerg([], [], [1], [], x), x) is None def test_limit_bug(): z = Symbol('z', zero=False) assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)) == \ (log(z**2) + 2*EulerGamma + 2*log(pi))/(2*z) - \ (-log(pi*z) + log(pi**2*z**2)/2 + Ci(pi**2*z))/z + log(pi)/z def test_issue_4703(): g = Function('g') assert integrate(exp(x)*g(x), x).has(Integral) def test_issue_1888(): f = Function('f') assert integrate(f(x).diff(x)**2, x).has(Integral) # The following tests work using meijerint. def test_issue_3558(): from sympy import Si assert integrate(cos(x*y), (x, -pi/2, pi/2), (y, 0, pi)) == 2*Si(pi**2/2) def test_issue_4422(): assert integrate(1/sqrt(16 + 4*x**2), x) == asinh(x/2) / 2 def test_issue_4493(): from sympy import simplify assert simplify(integrate(x*sqrt(1 + 2*x), x)) == \ sqrt(2*x + 1)*(6*x**2 + x - 1)/15 def test_issue_4737(): assert integrate(sin(x)/x, (x, -oo, oo)) == pi assert integrate(sin(x)/x, (x, 0, oo)) == pi/2 def test_issue_4992(): # Note: psi in _check_antecedents becomes NaN. from sympy import simplify, expand_func, polygamma, gamma a = Symbol('a', positive=True) assert simplify(expand_func(integrate(exp(-x)*log(x)*x**a, (x, 0, oo)))) == \ (a*polygamma(0, a) + 1)*gamma(a) def test_issue_4487(): from sympy import lowergamma, simplify assert simplify(integrate(exp(-x)*x**y, x)) == lowergamma(y + 1, x) def test_issue_4215(): x = Symbol("x") assert integrate(1/(x**2), (x, -1, 1)) == oo def test_issue_4400(): n = Symbol('n', integer=True, positive=True) assert integrate((x**n)*log(x), x) == \ n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - \ x*x**n/(n**2 + 2*n + 1) def test_issue_6253(): # Note: this used to raise NotImplementedError # Note: psi in _check_antecedents becomes NaN. assert integrate((sqrt(1 - x) + sqrt(1 + x))**2/x, x, meijerg=True) == \ Integral((sqrt(-x + 1) + sqrt(x + 1))**2/x, x) def test_issue_4153(): assert integrate(1/(1 + x + y + z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) in [ -12*log(3) - 3*log(6)/2 + 3*log(8)/2 + 5*log(2) + 7*log(4), 6*log(2) + 8*log(4) - 27*log(3)/2, 22*log(2) - 27*log(3)/2, -12*log(3) - 3*log(6)/2 + 47*log(2)/2] def test_issue_4326(): R, b, h = symbols('R b h') # It doesn't matter if we can do the integral. Just make sure the result # doesn't contain nan. This is really a test against _eval_interval. assert not integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R)).has(nan) def test_powers(): assert integrate(2**x + 3**x, x) == 2**x/log(2) + 3**x/log(3) def test_manual_option(): raises(ValueError, lambda: integrate(1/x, x, manual=True, meijerg=True)) # an example of a function that manual integration cannot handle assert integrate(exp(x**2), x, manual=True) == Integral(exp(x**2), x) def test_meijerg_option(): raises(ValueError, lambda: integrate(1/x, x, meijerg=True, risch=True)) # an example of a function that meijerg integration cannot handle assert integrate(tan(x), x, meijerg=True) == Integral(tan(x), x) def test_risch_option(): # risch=True only allowed on indefinite integrals raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True)) assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x) assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2) assert integrate(erf(x), x, risch=True) == Integral(erf(x), x) # TODO: How to test risch=False? def test_issue_6828(): f = 1/(1.08*x**2 - 4.3) g = integrate(f, x).diff(x) assert verify_numerically(f, g, tol=1e-12) @XFAIL def test_integrate_Piecewise_rational_over_reals(): f = Piecewise( (0, t - 478.515625*pi < 0), (13.2075145209219*pi/(0.000871222*t + 0.995)**2, t - 478.515625*pi >= 0)) assert integrate(f, (t, 0, oo)) == 15235.9375*pi def test_issue_4803(): x_max = Symbol("x_max") assert integrate(y/pi*exp(-(x_max - x)/cos(a)), x) == \ y*exp((x - x_max)/cos(a))*cos(a)/pi def test_issue_4234(): assert integrate(1/sqrt(1 + tan(x)**2)) == tan(x)/sqrt(1 + tan(x)**2) def test_issue_4492(): assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise( (I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) / (8*sqrt(x**2 - 5)), 1 < Abs(x**2)/5), ((-2*x**5 + 15*x**3 - 25*x + 25*sqrt(-x**2 + 5)*asin(sqrt(5)*x/5)) / (8*sqrt(-x**2 + 5)), True)) def test_issue_2708(): # This test needs to use an integration function that can # not be evaluated in closed form. Update as needed. f = 1/(a + z + log(z)) integral_f = NonElementaryIntegral(f, (z, 2, 3)) assert Integral(f, (z, 2, 3)).doit() == integral_f assert integrate(f + exp(z), (z, 2, 3)) == integral_f - exp(2) + exp(3) assert integrate(2*f + exp(z), (z, 2, 3)) == \ 2*integral_f - exp(2) + exp(3) assert integrate(exp(1.2*n*s*z*(-t + z)/t), (z, 0, x)) == \ NonElementaryIntegral(exp(-1.2*n*s*z)*exp(1.2*n*s*z**2/t), (z, 0, x)) def test_issue_8368(): assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \ Piecewise( ( pi*Piecewise( ( -s/(pi*(-s**2 + 1)), Abs(s**2) < 1), ( 1/(pi*s*(1 - 1/s**2)), Abs(s**(-2)) < 1), ( meijerg( ((S(1)/2,), (0, 0)), ((0, S(1)/2), (0,)), polar_lift(s)**2), True) ), And( Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0, Ne(s**2, 1)) ), ( Integral(exp(-s*x)*cosh(x), (x, 0, oo)), True)) assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \ Piecewise( ( -1/(s + 1)/2 - 1/(-s + 1)/2, And( Ne(1/s, 1), Abs(periodic_argument(s, oo)) < pi/2, Abs(periodic_argument(s, oo)) <= pi/2, cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1 > 0)), ( Integral(exp(-s*x)*sinh(x), (x, 0, oo)), True)) def test_issue_8901(): assert integrate(sinh(1.0*x)) == 1.0*cosh(1.0*x) assert integrate(tanh(1.0*x)) == 1.0*x - 1.0*log(tanh(1.0*x) + 1) assert integrate(tanh(x)) == x - log(tanh(x) + 1) def test_issue_8945(): assert integrate(sin(x)**3/x, (x, 0, 1)) == -Si(3)/4 + 3*Si(1)/4 assert integrate(sin(x)**3/x, (x, 0, oo)) == pi/4 assert integrate(cos(x)**2/x**2, x) == -Si(2*x) - cos(2*x)/(2*x) - 1/(2*x) @slow def test_issue_7130(): if ON_TRAVIS: skip("Too slow for travis.") i, L, a, b = symbols('i L a b') integrand = (cos(pi*i*x/L)**2 / (a + b*x)).rewrite(exp) assert x not in integrate(integrand, (x, 0, L)).free_symbols def test_issue_10567(): a, b, c, t = symbols('a b c t') vt = Matrix([a*t, b, c]) assert integrate(vt, t) == Integral(vt, t).doit() assert integrate(vt, t) == Matrix([[a*t**2/2], [b*t], [c*t]]) def test_issue_11856(): t = symbols('t') assert integrate(sinc(pi*t), t) == Si(pi*t)/pi def test_issue_4950(): assert integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) ==\ -2.4*exp(8*x) - 12.0*exp(5*x) def test_issue_4968(): assert integrate(sin(log(x**2))) == x*sin(2*log(x))/5 - 2*x*cos(2*log(x))/5 def test_singularities(): assert integrate(1/x**2, (x, -oo, oo)) == oo assert integrate(1/x**2, (x, -1, 1)) == oo assert integrate(1/(x - 1)**2, (x, -2, 2)) == oo assert integrate(1/x**2, (x, 1, -1)) == -oo assert integrate(1/(x - 1)**2, (x, 2, -2)) == -oo def test_issue_12645(): x, y = symbols('x y', real=True) assert (integrate(sin(x*x + y*y), (x, -sqrt(pi - y*y), sqrt(pi - y*y)), (y, -sqrt(pi), sqrt(pi))) == Integral(sin(x**2 + y**2), (x, -sqrt(-y**2 + pi), sqrt(-y**2 + pi)), (y, -sqrt(pi), sqrt(pi)))) def test_issue_12677(): assert integrate(sin(x) / (cos(x)**3) , (x, 0, pi/6)) == Rational(1,6) def test_issue_14064(): assert integrate(1/cosh(x), (x, 0, oo)) == pi/2 def test_issue_14027(): assert integrate(1/(1 + exp(x - S(1)/2)/(1 + exp(x))), x) == \ x - exp(S(1)/2)*log(exp(x) + exp(S(1)/2)/(1 + exp(S(1)/2)))/(exp(S(1)/2) + E) def test_issue_8170(): assert integrate(tan(x), (x, 0, pi/2)) == S.Infinity def test_issue_8440_14040(): assert integrate(1/x, (x, -1, 1)) == S.NaN assert integrate(1/(x + 1), (x, -2, 3)) == S.NaN def test_issue_14096(): assert integrate(1/(x + y)**2, (x, 0, 1)) == -1/(y + 1) + 1/y assert integrate(1/(1 + x + y + z)**2, (x, 0, 1), (y, 0, 1), (z, 0, 1)) == \ -4*log(4) - 6*log(2) + 9*log(3) def test_issue_14144(): assert Abs(integrate(1/sqrt(1 - x**3), (x, 0, 1)).n() - 1.402182) < 1e-6 assert Abs(integrate(sqrt(1 - x**3), (x, 0, 1)).n() - 0.841309) < 1e-6 def test_issue_14375(): # This raised a TypeError. The antiderivative has exp_polar, which # may be possible to unpolarify, so the exact output is not asserted here. assert integrate(exp(I*x)*log(x), x).has(Ei) def test_issue_14437(): f = Function('f')(x, y, z) assert integrate(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) == \ Integral(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) def test_issue_14470(): assert integrate(1/sqrt(exp(x) + 1), x) == \ log(-1 + 1/sqrt(exp(x) + 1)) - log(1 + 1/sqrt(exp(x) + 1)) def test_issue_14877(): f = exp(1 - exp(x**2)*x + 2*x**2)*(2*x**3 + x)/(1 - exp(x**2)*x)**2 assert integrate(f, x) == \ -exp(2*x**2 - x*exp(x**2) + 1)/(x*exp(3*x**2) - exp(2*x**2)) def test_issue_14782(): f = sqrt(-x**2 + 1)*(-x**2 + x) assert integrate(f, [x, -1, 1]) == - pi / 8 assert integrate(f, [x, 0, 1]) == S(1) / 3 - pi / 16 def test_issue_12081(): f = x**(-S(3)/2)*exp(-x) assert integrate(f, [x, 0, oo]) == oo def test_issue_15285(): y = 1/x - 1 f = 4*y*exp(-2*y)/x**2 assert integrate(f, [x, 0, 1]) == 1 def test_issue_15432(): assert integrate(x**n * exp(-x) * log(x), (x, 0, oo)).gammasimp() == Piecewise( (gamma(n + 1)*polygamma(0, n) + gamma(n + 1)/n, re(n) + 1 > 0), (Integral(x**n*exp(-x)*log(x), (x, 0, oo)), True)) def test_issue_15124(): omega = IndexedBase('omega') m, p = symbols('m p', cls=Idx) assert integrate(exp(x*I*(omega[m] + omega[p])), x, conds='none') == \ -I*exp(I*x*omega[m])*exp(I*x*omega[p])/(omega[m] + omega[p]) def test_issue_15218(): assert Eq(x, y).integrate(x) == Eq(x**2/2, x*y) assert Integral(Eq(x, y), x) == Eq(Integral(x, x), Integral(y, x)) assert Integral(Eq(x, y), x).doit() == Eq(x**2/2, x*y) def test_issue_15292(): res = integrate(exp(-x**2*cos(2*t)) * cos(x**2*sin(2*t)), (x, 0, oo)) assert isinstance(res, Piecewise) assert gammasimp((res - sqrt(pi)/2 * cos(t)).subs(t, pi/6)) == 0 def test_issue_4514(): assert integrate(sin(2*x)/sin(x), x) == 2*sin(x)
d99636506f29c68cd7c7c1771641e57c2197812200c68aa9d35f3db61bef665a
"""Most of these tests come from the examples in Bronstein's book.""" from sympy import (Poly, I, S, Function, log, symbols, exp, tan, sqrt, Symbol, Lambda, sin, Eq, Ne, Piecewise, factor, expand_log, cancel, expand, diff, pi, atan) from sympy.integrals.risch import (gcdex_diophantine, frac_in, as_poly_1t, derivation, splitfactor, splitfactor_sqf, canonical_representation, hermite_reduce, polynomial_reduce, residue_reduce, residue_reduce_to_basic, integrate_primitive, integrate_hyperexponential_polynomial, integrate_hyperexponential, integrate_hypertangent_polynomial, integrate_nonlinear_no_specials, integer_powers, DifferentialExtension, risch_integrate, DecrementLevel, NonElementaryIntegral, recognize_log_derivative, recognize_derivative, laurent_series) from sympy.utilities.pytest import raises from sympy.abc import x, t, nu, z, a, y t0, t1, t2 = symbols('t:3') i = Symbol('i') def test_gcdex_diophantine(): assert gcdex_diophantine(Poly(x**4 - 2*x**3 - 6*x**2 + 12*x + 15), Poly(x**3 + x**2 - 4*x - 4), Poly(x**2 - 1)) == \ (Poly((-x**2 + 4*x - 3)/5), Poly((x**3 - 7*x**2 + 16*x - 10)/5)) def test_frac_in(): assert frac_in(Poly((x + 1)/x*t, t), x) == \ (Poly(t*x + t, x), Poly(x, x)) assert frac_in((x + 1)/x*t, x) == \ (Poly(t*x + t, x), Poly(x, x)) assert frac_in((Poly((x + 1)/x*t, t), Poly(t + 1, t)), x) == \ (Poly(t*x + t, x), Poly((1 + t)*x, x)) raises(ValueError, lambda: frac_in((x + 1)/log(x)*t, x)) assert frac_in(Poly((2 + 2*x + x*(1 + x))/(1 + x)**2, t), x, cancel=True) == \ (Poly(x + 2, x), Poly(x + 1, x)) def test_as_poly_1t(): assert as_poly_1t(2/t + t, t, z) in [ Poly(t + 2*z, t, z), Poly(t + 2*z, z, t)] assert as_poly_1t(2/t + 3/t**2, t, z) in [ Poly(2*z + 3*z**2, t, z), Poly(2*z + 3*z**2, z, t)] assert as_poly_1t(2/((exp(2) + 1)*t), t, z) in [ Poly(2/(exp(2) + 1)*z, t, z), Poly(2/(exp(2) + 1)*z, z, t)] assert as_poly_1t(2/((exp(2) + 1)*t) + t, t, z) in [ Poly(t + 2/(exp(2) + 1)*z, t, z), Poly(t + 2/(exp(2) + 1)*z, z, t)] assert as_poly_1t(S(0), t, z) == Poly(0, t, z) def test_derivation(): p = Poly(4*x**4*t**5 + (-4*x**3 - 4*x**4)*t**4 + (-3*x**2 + 2*x**3)*t**3 + (2*x + 7*x**2 + 2*x**3)*t**2 + (1 - 4*x - 4*x**2)*t - 1 + 2*x, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - 3/(2*x)*t + 1/(2*x), t)]}) assert derivation(p, DE) == Poly(-20*x**4*t**6 + (2*x**3 + 16*x**4)*t**5 + (21*x**2 + 12*x**3)*t**4 + (7*x/2 - 25*x**2 - 12*x**3)*t**3 + (-5 - 15*x/2 + 7*x**2)*t**2 - (3 - 8*x - 10*x**2 - 4*x**3)/(2*x)*t + (1 - 4*x**2)/(2*x), t) assert derivation(Poly(1, t), DE) == Poly(0, t) assert derivation(Poly(t, t), DE) == DE.d assert derivation(Poly(t**2 + 1/x*t + (1 - 2*x)/(4*x**2), t), DE) == \ Poly(-2*t**3 - 4/x*t**2 - (5 - 2*x)/(2*x**2)*t - (1 - 2*x)/(2*x**3), t, domain='ZZ(x)') DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t, t)]}) assert derivation(Poly(x*t*t1, t), DE) == Poly(t*t1 + x*t*t1 + t, t) assert derivation(Poly(x*t*t1, t), DE, coefficientD=True) == \ Poly((1 + t1)*t, t) DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert derivation(Poly(x, x), DE) == Poly(1, x) # Test basic option assert derivation((x + 1)/(x - 1), DE, basic=True) == -2/(1 - 2*x + x**2) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert derivation((t + 1)/(t - 1), DE, basic=True) == -2*t/(1 - 2*t + t**2) assert derivation(t + 1, DE, basic=True) == t def test_splitfactor(): p = Poly(4*x**4*t**5 + (-4*x**3 - 4*x**4)*t**4 + (-3*x**2 + 2*x**3)*t**3 + (2*x + 7*x**2 + 2*x**3)*t**2 + (1 - 4*x - 4*x**2)*t - 1 + 2*x, t, field=True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - 3/(2*x)*t + 1/(2*x), t)]}) assert splitfactor(p, DE) == (Poly(4*x**4*t**3 + (-8*x**3 - 4*x**4)*t**2 + (4*x**2 + 8*x**3)*t - 4*x**2, t), Poly(t**2 + 1/x*t + (1 - 2*x)/(4*x**2), t, domain='ZZ(x)')) assert splitfactor(Poly(x, t), DE) == (Poly(x, t), Poly(1, t)) r = Poly(-4*x**4*z**2 + 4*x**6*z**2 - z*x**3 - 4*x**5*z**3 + 4*x**3*z**3 + x**4 + z*x**5 - x**6, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) assert splitfactor(r, DE, coefficientD=True) == \ (Poly(x*z - x**2 - z*x**3 + x**4, t), Poly(-x**2 + 4*x**2*z**2, t)) assert splitfactor_sqf(r, DE, coefficientD=True) == \ (((Poly(x*z - x**2 - z*x**3 + x**4, t), 1),), ((Poly(-x**2 + 4*x**2*z**2, t), 1),)) assert splitfactor(Poly(0, t), DE) == (Poly(0, t), Poly(1, t)) assert splitfactor_sqf(Poly(0, t), DE) == (((Poly(0, t), 1),), ()) def test_canonical_representation(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) assert canonical_representation(Poly(x - t, t), Poly(t**2, t), DE) == \ (Poly(0, t), (Poly(0, t), Poly(1, t)), (Poly(-t + x, t), Poly(t**2, t))) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert canonical_representation(Poly(t**5 + t**3 + x**2*t + 1, t), Poly((t**2 + 1)**3, t), DE) == \ (Poly(0, t), (Poly(t**5 + t**3 + x**2*t + 1, t), Poly(t**6 + 3*t**4 + 3*t**2 + 1, t)), (Poly(0, t), Poly(1, t))) def test_hermite_reduce(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert hermite_reduce(Poly(x - t, t), Poly(t**2, t), DE) == \ ((Poly(-x, t), Poly(t, t)), (Poly(0, t), Poly(1, t)), (Poly(-x, t), Poly(1, t))) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - t/x - (1 - nu**2/x**2), t)]}) assert hermite_reduce( Poly(x**2*t**5 + x*t**4 - nu**2*t**3 - x*(x**2 + 1)*t**2 - (x**2 - nu**2)*t - x**5/4, t), Poly(x**2*t**4 + x**2*(x**2 + 2)*t**2 + x**2 + x**4 + x**6/4, t), DE) == \ ((Poly(-x**2 - 4, t), Poly(4*t**2 + 2*x**2 + 4, t)), (Poly((-2*nu**2 - x**4)*t - (2*x**3 + 2*x), t), Poly(2*x**2*t**2 + x**4 + 2*x**2, t)), (Poly(x*t + 1, t), Poly(x, t))) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) a = Poly((-2 + 3*x)*t**3 + (-1 + x)*t**2 + (-4*x + 2*x**2)*t + x**2, t) d = Poly(x*t**6 - 4*x**2*t**5 + 6*x**3*t**4 - 4*x**4*t**3 + x**5*t**2, t) assert hermite_reduce(a, d, DE) == \ ((Poly(3*t**2 + t + 3*x, t), Poly(3*t**4 - 9*x*t**3 + 9*x**2*t**2 - 3*x**3*t, t)), (Poly(0, t), Poly(1, t)), (Poly(0, t), Poly(1, t))) assert hermite_reduce( Poly(-t**2 + 2*t + 2, t), Poly(-x*t**2 + 2*x*t - x, t), DE) == \ ((Poly(3, t), Poly(t - 1, t)), (Poly(0, t), Poly(1, t)), (Poly(1, t), Poly(x, t))) assert hermite_reduce( Poly(-x**2*t**6 + (-1 - 2*x**3 + x**4)*t**3 + (-3 - 3*x**4)*t**2 - 2*x*t - x - 3*x**2, t), Poly(x**4*t**6 - 2*x**2*t**3 + 1, t), DE) == \ ((Poly(x**3*t + x**4 + 1, t), Poly(x**3*t**3 - x, t)), (Poly(0, t), Poly(1, t)), (Poly(-1, t), Poly(x**2, t))) assert hermite_reduce( Poly((-2 + 3*x)*t**3 + (-1 + x)*t**2 + (-4*x + 2*x**2)*t + x**2, t), Poly(x*t**6 - 4*x**2*t**5 + 6*x**3*t**4 - 4*x**4*t**3 + x**5*t**2, t), DE) == \ ((Poly(3*t**2 + t + 3*x, t), Poly(3*t**4 - 9*x*t**3 + 9*x**2*t**2 - 3*x**3*t, t)), (Poly(0, t), Poly(1, t)), (Poly(0, t), Poly(1, t))) def test_polynomial_reduce(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) assert polynomial_reduce(Poly(1 + x*t + t**2, t), DE) == \ (Poly(t, t), Poly(x*t, t)) assert polynomial_reduce(Poly(0, t), DE) == \ (Poly(0, t), Poly(0, t)) def test_laurent_series(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1, t)]}) a = Poly(36, t) d = Poly((t - 2)*(t**2 - 1)**2, t) F = Poly(t**2 - 1, t) n = 2 assert laurent_series(a, d, F, n, DE) == \ (Poly(-3*t**3 + 3*t**2 - 6*t - 8, t), Poly(t**5 + t**4 - 2*t**3 - 2*t**2 + t + 1, t), [Poly(-3*t**3 - 6*t**2, t), Poly(2*t**6 + 6*t**5 - 8*t**3, t)]) def test_recognize_derivative(): DE = DifferentialExtension(extension={'D': [Poly(1, t)]}) a = Poly(36, t) d = Poly((t - 2)*(t**2 - 1)**2, t) assert recognize_derivative(a, d, DE) == False DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) a = Poly(2, t) d = Poly(t**2 - 1, t) assert recognize_derivative(a, d, DE) == False assert recognize_derivative(Poly(x*t, t), Poly(1, t), DE) == True DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert recognize_derivative(Poly(t, t), Poly(1, t), DE) == True def test_recognize_log_derivative(): a = Poly(2*x**2 + 4*x*t - 2*t - x**2*t, t) d = Poly((2*x + t)*(t + x**2), t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert recognize_log_derivative(a, d, DE, z) == True DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) assert recognize_log_derivative(Poly(t + 1, t), Poly(t + x, t), DE) == True assert recognize_log_derivative(Poly(2, t), Poly(t**2 - 1, t), DE) == True DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert recognize_log_derivative(Poly(1, x), Poly(x**2 - 2, x), DE) == False assert recognize_log_derivative(Poly(1, x), Poly(x**2 + x, x), DE) == True DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert recognize_log_derivative(Poly(1, t), Poly(t**2 - 2, t), DE) == False assert recognize_log_derivative(Poly(1, t), Poly(t**2 + t, t), DE) == False def test_residue_reduce(): a = Poly(2*t**2 - t - x**2, t) d = Poly(t**3 - x**2*t, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)], 'Tfuncs': [log]}) assert residue_reduce(a, d, DE, z, invert=False) == \ ([(Poly(z**2 - S(1)/4, z), Poly((1 + 3*x*z - 6*z**2 - 2*x**2 + 4*x**2*z**2)*t - x*z + x**2 + 2*x**2*z**2 - 2*z*x**3, t))], False) assert residue_reduce(a, d, DE, z, invert=True) == \ ([(Poly(z**2 - S(1)/4, z), Poly(t + 2*x*z, t))], False) assert residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t,), DE, z, invert=False) == \ ([(Poly(z**2 - 1, z), Poly(-2*z*t/x - 2/x, t))], True) ans = residue_reduce(Poly(-2/x, t), Poly(t**2 - 1, t), DE, z, invert=True) assert ans == ([(Poly(z**2 - 1, z), Poly(t + z, t))], True) assert residue_reduce_to_basic(ans[0], DE, z) == -log(-1 + log(x)) + log(1 + log(x)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - t/x - (1 - nu**2/x**2), t)]}) # TODO: Skip or make faster assert residue_reduce(Poly((-2*nu**2 - x**4)/(2*x**2)*t - (1 + x**2)/x, t), Poly(t**2 + 1 + x**2/2, t), DE, z) == \ ([(Poly(z + S(1)/2, z, domain='QQ'), Poly(t**2 + 1 + x**2/2, t, domain='EX'))], True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) assert residue_reduce(Poly(-2*x*t + 1 - x**2, t), Poly(t**2 + 2*x*t + 1 + x**2, t), DE, z) == \ ([(Poly(z**2 + S(1)/4, z), Poly(t + x + 2*z, t))], True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert residue_reduce(Poly(t, t), Poly(t + sqrt(2), t), DE, z) == \ ([(Poly(z - 1, z), Poly(t + sqrt(2), t))], True) def test_integrate_hyperexponential(): # TODO: Add tests for integrate_hyperexponential() from the book a = Poly((1 + 2*t1 + t1**2 + 2*t1**3)*t**2 + (1 + t1**2)*t + 1 + t1**2, t) d = Poly(1, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t1**2, t1), Poly(t*(1 + t1**2), t)], 'Tfuncs': [tan, Lambda(i, exp(tan(i)))]}) assert integrate_hyperexponential(a, d, DE) == \ (exp(2*tan(x))*tan(x) + exp(tan(x)), 1 + t1**2, True) a = Poly((t1**3 + (x + 1)*t1**2 + t1 + x + 2)*t, t) assert integrate_hyperexponential(a, d, DE) == \ ((x + tan(x))*exp(tan(x)), 0, True) a = Poly(t, t) d = Poly(1, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2*x*t, t)], 'Tfuncs': [Lambda(i, exp(x**2))]}) assert integrate_hyperexponential(a, d, DE) == \ (0, NonElementaryIntegral(exp(x**2), x), False) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'Tfuncs': [exp]}) assert integrate_hyperexponential(a, d, DE) == (exp(x), 0, True) a = Poly(25*t**6 - 10*t**5 + 7*t**4 - 8*t**3 + 13*t**2 + 2*t - 1, t) d = Poly(25*t**6 + 35*t**4 + 11*t**2 + 1, t) assert integrate_hyperexponential(a, d, DE) == \ (-(11 - 10*exp(x))/(5 + 25*exp(2*x)) + log(1 + exp(2*x)), -1, True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(t0*t, t)], 'Tfuncs': [exp, Lambda(i, exp(exp(i)))]}) assert integrate_hyperexponential(Poly(2*t0*t**2, t), Poly(1, t), DE) == (exp(2*exp(x)), 0, True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(-t0*t, t)], 'Tfuncs': [exp, Lambda(i, exp(-exp(i)))]}) assert integrate_hyperexponential(Poly(-27*exp(9) - 162*t0*exp(9) + 27*x*t0*exp(9), t), Poly((36*exp(18) + x**2*exp(18) - 12*x*exp(18))*t, t), DE) == \ (27*exp(exp(x))/(-6*exp(9) + x*exp(9)), 0, True) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'Tfuncs': [exp]}) assert integrate_hyperexponential(Poly(x**2/2*t, t), Poly(1, t), DE) == \ ((2 - 2*x + x**2)*exp(x)/2, 0, True) assert integrate_hyperexponential(Poly(1 + t, t), Poly(t, t), DE) == \ (-exp(-x), 1, True) # x - exp(-x) assert integrate_hyperexponential(Poly(x, t), Poly(t + 1, t), DE) == \ (0, NonElementaryIntegral(x/(1 + exp(x)), x), False) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t0), Poly(2*x*t1, t1)], 'Tfuncs': [log, Lambda(i, exp(i**2))]}) elem, nonelem, b = integrate_hyperexponential(Poly((8*x**7 - 12*x**5 + 6*x**3 - x)*t1**4 + (8*t0*x**7 - 8*t0*x**6 - 4*t0*x**5 + 2*t0*x**3 + 2*t0*x**2 - t0*x + 24*x**8 - 36*x**6 - 4*x**5 + 22*x**4 + 4*x**3 - 7*x**2 - x + 1)*t1**3 + (8*t0*x**8 - 4*t0*x**6 - 16*t0*x**5 - 2*t0*x**4 + 12*t0*x**3 + t0*x**2 - 2*t0*x + 24*x**9 - 36*x**7 - 8*x**6 + 22*x**5 + 12*x**4 - 7*x**3 - 6*x**2 + x + 1)*t1**2 + (8*t0*x**8 - 8*t0*x**6 - 16*t0*x**5 + 6*t0*x**4 + 10*t0*x**3 - 2*t0*x**2 - t0*x + 8*x**10 - 12*x**8 - 4*x**7 + 2*x**6 + 12*x**5 + 3*x**4 - 9*x**3 - x**2 + 2*x)*t1 + 8*t0*x**7 - 12*t0*x**6 - 4*t0*x**5 + 8*t0*x**4 - t0*x**2 - 4*x**7 + 4*x**6 + 4*x**5 - 4*x**4 - x**3 + x**2, t1), Poly((8*x**7 - 12*x**5 + 6*x**3 - x)*t1**4 + (24*x**8 + 8*x**7 - 36*x**6 - 12*x**5 + 18*x**4 + 6*x**3 - 3*x**2 - x)*t1**3 + (24*x**9 + 24*x**8 - 36*x**7 - 36*x**6 + 18*x**5 + 18*x**4 - 3*x**3 - 3*x**2)*t1**2 + (8*x**10 + 24*x**9 - 12*x**8 - 36*x**7 + 6*x**6 + 18*x**5 - x**4 - 3*x**3)*t1 + 8*x**10 - 12*x**8 + 6*x**6 - x**4, t1), DE) assert factor(elem) == -((x - 1)*log(x)/((x + exp(x**2))*(2*x**2 - 1))) assert (nonelem, b) == (NonElementaryIntegral(exp(x**2)/(exp(x**2) + 1), x), False) def test_integrate_hyperexponential_polynomial(): # Without proper cancellation within integrate_hyperexponential_polynomial(), # this will take a long time to complete, and will return a complicated # expression p = Poly((-28*x**11*t0 - 6*x**8*t0 + 6*x**9*t0 - 15*x**8*t0**2 + 15*x**7*t0**2 + 84*x**10*t0**2 - 140*x**9*t0**3 - 20*x**6*t0**3 + 20*x**7*t0**3 - 15*x**6*t0**4 + 15*x**5*t0**4 + 140*x**8*t0**4 - 84*x**7*t0**5 - 6*x**4*t0**5 + 6*x**5*t0**5 + x**3*t0**6 - x**4*t0**6 + 28*x**6*t0**6 - 4*x**5*t0**7 + x**9 - x**10 + 4*x**12)/(-8*x**11*t0 + 28*x**10*t0**2 - 56*x**9*t0**3 + 70*x**8*t0**4 - 56*x**7*t0**5 + 28*x**6*t0**6 - 8*x**5*t0**7 + x**4*t0**8 + x**12)*t1**2 + (-28*x**11*t0 - 12*x**8*t0 + 12*x**9*t0 - 30*x**8*t0**2 + 30*x**7*t0**2 + 84*x**10*t0**2 - 140*x**9*t0**3 - 40*x**6*t0**3 + 40*x**7*t0**3 - 30*x**6*t0**4 + 30*x**5*t0**4 + 140*x**8*t0**4 - 84*x**7*t0**5 - 12*x**4*t0**5 + 12*x**5*t0**5 - 2*x**4*t0**6 + 2*x**3*t0**6 + 28*x**6*t0**6 - 4*x**5*t0**7 + 2*x**9 - 2*x**10 + 4*x**12)/(-8*x**11*t0 + 28*x**10*t0**2 - 56*x**9*t0**3 + 70*x**8*t0**4 - 56*x**7*t0**5 + 28*x**6*t0**6 - 8*x**5*t0**7 + x**4*t0**8 + x**12)*t1 + (-2*x**2*t0 + 2*x**3*t0 + x*t0**2 - x**2*t0**2 + x**3 - x**4)/(-4*x**5*t0 + 6*x**4*t0**2 - 4*x**3*t0**3 + x**2*t0**4 + x**6), t1, z, expand=False) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t0), Poly(2*x*t1, t1)]}) assert integrate_hyperexponential_polynomial(p, DE, z) == ( Poly((x - t0)*t1**2 + (-2*t0 + 2*x)*t1, t1), Poly(-2*x*t0 + x**2 + t0**2, t1), True) DE = DifferentialExtension(extension={'D':[Poly(1, x), Poly(t0, t0)]}) assert integrate_hyperexponential_polynomial(Poly(0, t0), DE, z) == ( Poly(0, t0), Poly(1, t0), True) def test_integrate_hyperexponential_returns_piecewise(): a, b = symbols('a b') DE = DifferentialExtension(a**x, x) assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise( (exp(x*log(a))/log(a), Ne(log(a), 0)), (x, True)), 0, True) DE = DifferentialExtension(a**(b*x), x) assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise( (exp(b*x*log(a))/(b*log(a)), Ne(b*log(a), 0)), (x, True)), 0, True) DE = DifferentialExtension(exp(a*x), x) assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise( (exp(a*x)/a, Ne(a, 0)), (x, True)), 0, True) DE = DifferentialExtension(x*exp(a*x), x) assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise( ((a*x - 1)*exp(a*x)/a**2, Ne(a**2, 0)), (x**2/2, True)), 0, True) DE = DifferentialExtension(x**2*exp(a*x), x) assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise( ((x**2*a**2 - 2*a*x + 2)*exp(a*x)/a**3, Ne(a**3, 0)), (x**3/3, True)), 0, True) DE = DifferentialExtension(x**y + z, y) assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise( (exp(log(x)*y)/log(x), Ne(log(x), 0)), (y, True)), z, True) DE = DifferentialExtension(x**y + z + x**(2*y), y) assert integrate_hyperexponential(DE.fa, DE.fd, DE) == (Piecewise( ((exp(2*log(x)*y)*log(x) + 2*exp(log(x)*y)*log(x))/(2*log(x)**2), Ne(2*log(x)**2, 0)), (2*y, True), ), z, True) # TODO: Add a test where two different parts of the extension use a # Piecewise, like y**x + z**x. def test_issue_13947(): a, t, s = symbols('a t s') assert risch_integrate(2**(-pi)/(2**t + 1), t) == \ 2**(-pi)*t - 2**(-pi)*log(2**t + 1)/log(2) assert risch_integrate(a**(t - s)/(a**t + 1), t) == \ exp(-s*log(a))*log(a**t + 1)/log(a) def test_integrate_primitive(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)], 'Tfuncs': [log]}) assert integrate_primitive(Poly(t, t), Poly(1, t), DE) == (x*log(x), -1, True) assert integrate_primitive(Poly(x, t), Poly(t, t), DE) == (0, NonElementaryIntegral(x/log(x), x), False) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x + 1), t2)], 'Tfuncs': [log, Lambda(i, log(i + 1))]}) assert integrate_primitive(Poly(t1, t2), Poly(t2, t2), DE) == \ (0, NonElementaryIntegral(log(x)/log(1 + x), x), False) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x*t1), t2)], 'Tfuncs': [log, Lambda(i, log(log(i)))]}) assert integrate_primitive(Poly(t2, t2), Poly(t1, t2), DE) == \ (0, NonElementaryIntegral(log(log(x))/log(x), x), False) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t0)], 'Tfuncs': [log]}) assert integrate_primitive(Poly(x**2*t0**3 + (3*x**2 + x)*t0**2 + (3*x**2 + 2*x)*t0 + x**2 + x, t0), Poly(x**2*t0**4 + 4*x**2*t0**3 + 6*x**2*t0**2 + 4*x**2*t0 + x**2, t0), DE) == \ (-1/(log(x) + 1), NonElementaryIntegral(1/(log(x) + 1), x), False) def test_integrate_hypertangent_polynomial(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert integrate_hypertangent_polynomial(Poly(t**2 + x*t + 1, t), DE) == \ (Poly(t, t), Poly(x/2, t)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(a*(t**2 + 1), t)]}) assert integrate_hypertangent_polynomial(Poly(t**5, t), DE) == \ (Poly(1/(4*a)*t**4 - 1/(2*a)*t**2, t), Poly(1/(2*a), t)) def test_integrate_nonlinear_no_specials(): a, d, = Poly(x**2*t**5 + x*t**4 - nu**2*t**3 - x*(x**2 + 1)*t**2 - (x**2 - nu**2)*t - x**5/4, t), Poly(x**2*t**4 + x**2*(x**2 + 2)*t**2 + x**2 + x**4 + x**6/4, t) # f(x) == phi_nu(x), the logarithmic derivative of J_v, the Bessel function, # which has no specials (see Chapter 5, note 4 of Bronstein's book). f = Function('phi_nu') DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t**2 - t/x - (1 - nu**2/x**2), t)], 'Tfuncs': [f]}) assert integrate_nonlinear_no_specials(a, d, DE) == \ (-log(1 + f(x)**2 + x**2/2)/2 - (4 + x**2)/(4 + 2*x**2 + 4*f(x)**2), True) assert integrate_nonlinear_no_specials(Poly(t, t), Poly(1, t), DE) == \ (0, False) def test_integer_powers(): assert integer_powers([x, x/2, x**2 + 1, 2*x/3]) == [ (x/6, [(x, 6), (x/2, 3), (2*x/3, 4)]), (1 + x**2, [(1 + x**2, 1)])] def test_DifferentialExtension_exp(): assert DifferentialExtension(exp(x) + exp(x**2), x)._important_attrs == \ (Poly(t1 + t0, t1), Poly(1, t1), [Poly(1, x,), Poly(t0, t0), Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i)), Lambda(i, exp(i**2))], [], [None, 'exp', 'exp'], [None, x, x**2]) assert DifferentialExtension(exp(x) + exp(2*x), x)._important_attrs == \ (Poly(t0**2 + t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0, t0)], [x, t0], [Lambda(i, exp(i))], [], [None, 'exp'], [None, x]) assert DifferentialExtension(exp(x) + exp(x/2), x)._important_attrs == \ (Poly(t0**2 + t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0/2, t0)], [x, t0], [Lambda(i, exp(i/2))], [], [None, 'exp'], [None, x/2]) assert DifferentialExtension(exp(x) + exp(x**2) + exp(x + x**2), x)._important_attrs == \ (Poly((1 + t0)*t1 + t0, t1), Poly(1, t1), [Poly(1, x), Poly(t0, t0), Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i)), Lambda(i, exp(i**2))], [], [None, 'exp', 'exp'], [None, x, x**2]) assert DifferentialExtension(exp(x) + exp(x**2) + exp(x + x**2 + 1), x)._important_attrs == \ (Poly((1 + S.Exp1*t0)*t1 + t0, t1), Poly(1, t1), [Poly(1, x), Poly(t0, t0), Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i)), Lambda(i, exp(i**2))], [], [None, 'exp', 'exp'], [None, x, x**2]) assert DifferentialExtension(exp(x) + exp(x**2) + exp(x/2 + x**2), x)._important_attrs == \ (Poly((t0 + 1)*t1 + t0**2, t1), Poly(1, t1), [Poly(1, x), Poly(t0/2, t0), Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i/2)), Lambda(i, exp(i**2))], [(exp(x/2), sqrt(exp(x)))], [None, 'exp', 'exp'], [None, x/2, x**2]) assert DifferentialExtension(exp(x) + exp(x**2) + exp(x/2 + x**2 + 3), x)._important_attrs == \ (Poly((t0*exp(3) + 1)*t1 + t0**2, t1), Poly(1, t1), [Poly(1, x), Poly(t0/2, t0), Poly(2*x*t1, t1)], [x, t0, t1], [Lambda(i, exp(i/2)), Lambda(i, exp(i**2))], [(exp(x/2), sqrt(exp(x)))], [None, 'exp', 'exp'], [None, x/2, x**2]) assert DifferentialExtension(sqrt(exp(x)), x)._important_attrs == \ (Poly(t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0/2, t0)], [x, t0], [Lambda(i, exp(i/2))], [(exp(x/2), sqrt(exp(x)))], [None, 'exp'], [None, x/2]) assert DifferentialExtension(exp(x/2), x)._important_attrs == \ (Poly(t0, t0), Poly(1, t0), [Poly(1, x), Poly(t0/2, t0)], [x, t0], [Lambda(i, exp(i/2))], [], [None, 'exp'], [None, x/2]) def test_DifferentialExtension_log(): assert DifferentialExtension(log(x)*log(x + 1)*log(2*x**2 + 2*x), x)._important_attrs == \ (Poly(t0*t1**2 + (t0*log(2) + t0**2)*t1, t1), Poly(1, t1), [Poly(1, x), Poly(1/x, t0), Poly(1/(x + 1), t1, expand=False)], [x, t0, t1], [Lambda(i, log(i)), Lambda(i, log(i + 1))], [], [None, 'log', 'log'], [None, x, x + 1]) assert DifferentialExtension(x**x*log(x), x)._important_attrs == \ (Poly(t0*t1, t1), Poly(1, t1), [Poly(1, x), Poly(1/x, t0), Poly((1 + t0)*t1, t1)], [x, t0, t1], [Lambda(i, log(i)), Lambda(i, exp(t0*i))], [(exp(x*log(x)), x**x)], [None, 'log', 'exp'], [None, x, t0*x]) def test_DifferentialExtension_symlog(): # See comment on test_risch_integrate below assert DifferentialExtension(log(x**x), x)._important_attrs == \ (Poly(t0*x, t1), Poly(1, t1), [Poly(1, x), Poly(1/x, t0), Poly((t0 + 1)*t1, t1)], [x, t0, t1], [Lambda(i, log(i)), Lambda(i, exp(i*t0))], [(exp(x*log(x)), x**x)], [None, 'log', 'exp'], [None, x, t0*x]) assert DifferentialExtension(log(x**y), x)._important_attrs == \ (Poly(y*t0, t0), Poly(1, t0), [Poly(1, x), Poly(1/x, t0)], [x, t0], [Lambda(i, log(i))], [(y*log(x), log(x**y))], [None, 'log'], [None, x]) assert DifferentialExtension(log(sqrt(x)), x)._important_attrs == \ (Poly(t0, t0), Poly(2, t0), [Poly(1, x), Poly(1/x, t0)], [x, t0], [Lambda(i, log(i))], [(log(x)/2, log(sqrt(x)))], [None, 'log'], [None, x]) def test_DifferentialExtension_handle_first(): assert DifferentialExtension(exp(x)*log(x), x, handle_first='log')._important_attrs == \ (Poly(t0*t1, t1), Poly(1, t1), [Poly(1, x), Poly(1/x, t0), Poly(t1, t1)], [x, t0, t1], [Lambda(i, log(i)), Lambda(i, exp(i))], [], [None, 'log', 'exp'], [None, x, x]) assert DifferentialExtension(exp(x)*log(x), x, handle_first='exp')._important_attrs == \ (Poly(t0*t1, t1), Poly(1, t1), [Poly(1, x), Poly(t0, t0), Poly(1/x, t1)], [x, t0, t1], [Lambda(i, exp(i)), Lambda(i, log(i))], [], [None, 'exp', 'log'], [None, x, x]) # This one must have the log first, regardless of what we set it to # (because the log is inside of the exponential: x**x == exp(x*log(x))) assert DifferentialExtension(-x**x*log(x)**2 + x**x - x**x/x, x, handle_first='exp')._important_attrs == \ DifferentialExtension(-x**x*log(x)**2 + x**x - x**x/x, x, handle_first='log')._important_attrs == \ (Poly((-1 + x - x*t0**2)*t1, t1), Poly(x, t1), [Poly(1, x), Poly(1/x, t0), Poly((1 + t0)*t1, t1)], [x, t0, t1], [Lambda(i, log(i)), Lambda(i, exp(t0*i))], [(exp(x*log(x)), x**x)], [None, 'log', 'exp'], [None, x, t0*x]) def test_DifferentialExtension_all_attrs(): # Test 'unimportant' attributes DE = DifferentialExtension(exp(x)*log(x), x, handle_first='exp') assert DE.f == exp(x)*log(x) assert DE.newf == t0*t1 assert DE.x == x assert DE.cases == ['base', 'exp', 'primitive'] assert DE.case == 'primitive' assert DE.level == -1 assert DE.t == t1 == DE.T[DE.level] assert DE.d == Poly(1/x, t1) == DE.D[DE.level] raises(ValueError, lambda: DE.increment_level()) DE.decrement_level() assert DE.level == -2 assert DE.t == t0 == DE.T[DE.level] assert DE.d == Poly(t0, t0) == DE.D[DE.level] assert DE.case == 'exp' DE.decrement_level() assert DE.level == -3 assert DE.t == x == DE.T[DE.level] == DE.x assert DE.d == Poly(1, x) == DE.D[DE.level] assert DE.case == 'base' raises(ValueError, lambda: DE.decrement_level()) DE.increment_level() DE.increment_level() assert DE.level == -1 assert DE.t == t1 == DE.T[DE.level] assert DE.d == Poly(1/x, t1) == DE.D[DE.level] assert DE.case == 'primitive' # Test methods assert DE.indices('log') == [2] assert DE.indices('exp') == [1] def test_DifferentialExtension_extension_flag(): raises(ValueError, lambda: DifferentialExtension(extension={'T': [x, t]})) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert DE._important_attrs == (None, None, [Poly(1, x), Poly(t, t)], [x, t], None, None, None, None) assert DE.d == Poly(t, t) assert DE.t == t assert DE.level == -1 assert DE.cases == ['base', 'exp'] assert DE.x == x assert DE.case == 'exp' DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)], 'exts': [None, 'exp'], 'extargs': [None, x]}) assert DE._important_attrs == (None, None, [Poly(1, x), Poly(t, t)], [x, t], None, None, [None, 'exp'], [None, x]) raises(ValueError, lambda: DifferentialExtension()) def test_DifferentialExtension_misc(): # Odd ends assert DifferentialExtension(sin(y)*exp(x), x)._important_attrs == \ (Poly(sin(y)*t0, t0, domain='ZZ[sin(y)]'), Poly(1, t0, domain='ZZ'), [Poly(1, x, domain='ZZ'), Poly(t0, t0, domain='ZZ')], [x, t0], [Lambda(i, exp(i))], [], [None, 'exp'], [None, x]) raises(NotImplementedError, lambda: DifferentialExtension(sin(x), x)) assert DifferentialExtension(10**x, x)._important_attrs == \ (Poly(t0, t0), Poly(1, t0), [Poly(1, x), Poly(log(10)*t0, t0)], [x, t0], [Lambda(i, exp(i*log(10)))], [(exp(x*log(10)), 10**x)], [None, 'exp'], [None, x*log(10)]) assert DifferentialExtension(log(x) + log(x**2), x)._important_attrs in [ (Poly(3*t0, t0), Poly(2, t0), [Poly(1, x), Poly(2/x, t0)], [x, t0], [Lambda(i, log(i**2))], [], [None, ], [], [1], [x**2]), (Poly(3*t0, t0), Poly(1, t0), [Poly(1, x), Poly(1/x, t0)], [x, t0], [Lambda(i, log(i))], [], [None, 'log'], [None, x])] assert DifferentialExtension(S.Zero, x)._important_attrs == \ (Poly(0, x), Poly(1, x), [Poly(1, x)], [x], [], [], [None], [None]) assert DifferentialExtension(tan(atan(x).rewrite(log)), x)._important_attrs == \ (Poly(x, x), Poly(1, x), [Poly(1, x)], [x], [], [], [None], [None]) def test_DifferentialExtension_Rothstein(): # Rothstein's integral f = (2581284541*exp(x) + 1757211400)/(39916800*exp(3*x) + 119750400*exp(x)**2 + 119750400*exp(x) + 39916800)*exp(1/(exp(x) + 1) - 10*x) assert DifferentialExtension(f, x)._important_attrs == \ (Poly((1757211400 + 2581284541*t0)*t1, t1), Poly(39916800 + 119750400*t0 + 119750400*t0**2 + 39916800*t0**3, t1), [Poly(1, x), Poly(t0, t0), Poly(-(10 + 21*t0 + 10*t0**2)/(1 + 2*t0 + t0**2)*t1, t1, domain='ZZ(t0)')], [x, t0, t1], [Lambda(i, exp(i)), Lambda(i, exp(1/(t0 + 1) - 10*i))], [], [None, 'exp', 'exp'], [None, x, 1/(t0 + 1) - 10*x]) class _TestingException(Exception): """Dummy Exception class for testing.""" pass def test_DecrementLevel(): DE = DifferentialExtension(x*log(exp(x) + 1), x) assert DE.level == -1 assert DE.t == t1 assert DE.d == Poly(t0/(t0 + 1), t1) assert DE.case == 'primitive' with DecrementLevel(DE): assert DE.level == -2 assert DE.t == t0 assert DE.d == Poly(t0, t0) assert DE.case == 'exp' with DecrementLevel(DE): assert DE.level == -3 assert DE.t == x assert DE.d == Poly(1, x) assert DE.case == 'base' assert DE.level == -2 assert DE.t == t0 assert DE.d == Poly(t0, t0) assert DE.case == 'exp' assert DE.level == -1 assert DE.t == t1 assert DE.d == Poly(t0/(t0 + 1), t1) assert DE.case == 'primitive' # Test that __exit__ is called after an exception correctly try: with DecrementLevel(DE): raise _TestingException except _TestingException: pass else: raise AssertionError("Did not raise.") assert DE.level == -1 assert DE.t == t1 assert DE.d == Poly(t0/(t0 + 1), t1) assert DE.case == 'primitive' def test_risch_integrate(): assert risch_integrate(t0*exp(x), x) == t0*exp(x) assert risch_integrate(sin(x), x, rewrite_complex=True) == -exp(I*x)/2 - exp(-I*x)/2 # From my GSoC writeup assert risch_integrate((1 + 2*x**2 + x**4 + 2*x**3*exp(2*x**2))/ (x**4*exp(x**2) + 2*x**2*exp(x**2) + exp(x**2)), x) == \ NonElementaryIntegral(exp(-x**2), x) + exp(x**2)/(1 + x**2) assert risch_integrate(0, x) == 0 # also tests prde_cancel() e1 = log(x/exp(x) + 1) ans1 = risch_integrate(e1, x) assert ans1 == (x*log(x*exp(-x) + 1) + NonElementaryIntegral((x**2 - x)/(x + exp(x)), x)) assert cancel(diff(ans1, x) - e1) == 0 # also tests issue #10798 e2 = (log(-1/y)/2 - log(1/y)/2)/y - (log(1 - 1/y)/2 - log(1 + 1/y)/2)/y ans2 = risch_integrate(e2, y) assert ans2 == log(1/y)*log(1 - 1/y)/2 - log(1/y)*log(1 + 1/y)/2 + \ NonElementaryIntegral((I*pi*y**2 - 2*y*log(1/y) - I*pi)/(2*y**3 - 2*y), y) assert expand_log(cancel(diff(ans2, y) - e2), force=True) == 0 # These are tested here in addition to in test_DifferentialExtension above # (symlogs) to test that backsubs works correctly. The integrals should be # written in terms of the original logarithms in the integrands. # XXX: Unfortunately, making backsubs work on this one is a little # trickier, because x**x is converted to exp(x*log(x)), and so log(x**x) # is converted to x*log(x). (x**2*log(x)).subs(x*log(x), log(x**x)) is # smart enough, the issue is that these splits happen at different places # in the algorithm. Maybe a heuristic is in order assert risch_integrate(log(x**x), x) == x**2*log(x)/2 - x**2/4 assert risch_integrate(log(x**y), x) == x*log(x**y) - x*y assert risch_integrate(log(sqrt(x)), x) == x*log(sqrt(x)) - x/2 def test_risch_integrate_float(): assert risch_integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) == -2.4*exp(8*x) - 12.0*exp(5*x) def test_NonElementaryIntegral(): assert isinstance(risch_integrate(exp(x**2), x), NonElementaryIntegral) assert isinstance(risch_integrate(x**x*log(x), x), NonElementaryIntegral) # Make sure methods of Integral still give back a NonElementaryIntegral assert isinstance(NonElementaryIntegral(x**x*t0, x).subs(t0, log(x)), NonElementaryIntegral) def test_xtothex(): a = risch_integrate(x**x, x) assert a == NonElementaryIntegral(x**x, x) assert isinstance(a, NonElementaryIntegral) def test_DifferentialExtension_equality(): DE1 = DE2 = DifferentialExtension(log(x), x) assert DE1 == DE2 def test_DifferentialExtension_printing(): DE = DifferentialExtension(exp(2*x**2) + log(exp(x**2) + 1), x) assert repr(DE) == ("DifferentialExtension(dict([('f', exp(2*x**2) + log(exp(x**2) + 1)), " "('x', x), ('T', [x, t0, t1]), ('D', [Poly(1, x, domain='ZZ'), Poly(2*x*t0, t0, domain='ZZ[x]'), " "Poly(2*t0*x/(t0 + 1), t1, domain='ZZ(x,t0)')]), ('fa', Poly(t1 + t0**2, t1, domain='ZZ[t0]')), " "('fd', Poly(1, t1, domain='ZZ')), ('Tfuncs', [Lambda(i, exp(i**2)), Lambda(i, log(t0 + 1))]), " "('backsubs', []), ('exts', [None, 'exp', 'log']), ('extargs', [None, x**2, t0 + 1]), " "('cases', ['base', 'exp', 'primitive']), ('case', 'primitive'), ('t', t1), " "('d', Poly(2*t0*x/(t0 + 1), t1, domain='ZZ(x,t0)')), ('newf', t0**2 + t1), ('level', -1), " "('dummy', False)]))") assert str(DE) == ("DifferentialExtension({fa=Poly(t1 + t0**2, t1, domain='ZZ[t0]'), " "fd=Poly(1, t1, domain='ZZ'), D=[Poly(1, x, domain='ZZ'), Poly(2*x*t0, t0, domain='ZZ[x]'), " "Poly(2*t0*x/(t0 + 1), t1, domain='ZZ(x,t0)')]})")
39202073e76ba7d4042a0f4f901093c6baff5f77935e2d77425da933e5c28f9a
from sympy import (sin, cos, tan, sec, csc, cot, log, exp, atan, asin, acos, Symbol, Integral, integrate, pi, Dummy, Derivative, diff, I, sqrt, erf, Piecewise, Eq, Ne, symbols, Rational, And, Heaviside, S, asinh, acosh, atanh, acoth, expand, Function, jacobi, gegenbauer, chebyshevt, chebyshevu, legendre, hermite, laguerre, assoc_laguerre) from sympy.integrals.manualintegrate import (manualintegrate, find_substitutions, _parts_rule) x, y, z, u, n, a, b, c = symbols('x y z u n a b c') f = Function('f') def test_find_substitutions(): assert find_substitutions((cot(x)**2 + 1)**2*csc(x)**2*cot(x)**2, x, u) == \ [(cot(x), 1, -u**6 - 2*u**4 - u**2)] assert find_substitutions((sec(x)**2 + tan(x) * sec(x)) / (sec(x) + tan(x)), x, u) == [(sec(x) + tan(x), 1, 1/u)] assert find_substitutions(x * exp(-x**2), x, u) == [(-x**2, -S.Half, exp(u))] def test_manualintegrate_polynomials(): assert manualintegrate(y, x) == x*y assert manualintegrate(exp(2), x) == x * exp(2) assert manualintegrate(x**2, x) == x**3 / 3 assert manualintegrate(3 * x**2 + 4 * x**3, x) == x**3 + x**4 assert manualintegrate((x + 2)**3, x) == (x + 2)**4 / 4 assert manualintegrate((3*x + 4)**2, x) == (3*x + 4)**3 / 9 assert manualintegrate((u + 2)**3, u) == (u + 2)**4 / 4 assert manualintegrate((3*u + 4)**2, u) == (3*u + 4)**3 / 9 def test_manualintegrate_exponentials(): assert manualintegrate(exp(2*x), x) == exp(2*x) / 2 assert manualintegrate(2**x, x) == (2 ** x) / log(2) assert manualintegrate(1 / x, x) == log(x) assert manualintegrate(1 / (2*x + 3), x) == log(2*x + 3) / 2 assert manualintegrate(log(x)**2 / x, x) == log(x)**3 / 3 def test_manualintegrate_parts(): assert manualintegrate(exp(x) * sin(x), x) == \ (exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2 assert manualintegrate(2*x*cos(x), x) == 2*x*sin(x) + 2*cos(x) assert manualintegrate(x * log(x), x) == x**2*log(x)/2 - x**2/4 assert manualintegrate(log(x), x) == x * log(x) - x assert manualintegrate((3*x**2 + 5) * exp(x), x) == \ 3*x**2*exp(x) - 6*x*exp(x) + 11*exp(x) assert manualintegrate(atan(x), x) == x*atan(x) - log(x**2 + 1)/2 # Make sure _parts_rule does not go into an infinite loop here assert manualintegrate(log(1/x)/(x + 1), x).has(Integral) # Make sure _parts_rule doesn't pick u = constant but can pick dv = # constant if necessary, e.g. for integrate(atan(x)) assert _parts_rule(cos(x), x) == None assert _parts_rule(exp(x), x) == None assert _parts_rule(x**2, x) == None result = _parts_rule(atan(x), x) assert result[0] == atan(x) and result[1] == 1 def test_manualintegrate_trigonometry(): assert manualintegrate(sin(x), x) == -cos(x) assert manualintegrate(tan(x), x) == -log(cos(x)) assert manualintegrate(sec(x), x) == log(sec(x) + tan(x)) assert manualintegrate(csc(x), x) == -log(csc(x) + cot(x)) assert manualintegrate(sin(x) * cos(x), x) in [sin(x) ** 2 / 2, -cos(x)**2 / 2] assert manualintegrate(-sec(x) * tan(x), x) == -sec(x) assert manualintegrate(csc(x) * cot(x), x) == -csc(x) assert manualintegrate(sec(x)**2, x) == tan(x) assert manualintegrate(csc(x)**2, x) == -cot(x) assert manualintegrate(x * sec(x**2), x) == log(tan(x**2) + sec(x**2))/2 assert manualintegrate(cos(x)*csc(sin(x)), x) == -log(cot(sin(x)) + csc(sin(x))) assert manualintegrate(cos(3*x)*sec(x), x) == -x + sin(2*x) assert manualintegrate(sin(3*x)*sec(x), x) == \ -3*log(cos(x)) + 2*log(cos(x)**2) - 2*cos(x)**2 def test_manualintegrate_trigpowers(): assert manualintegrate(sin(x)**2 * cos(x), x) == sin(x)**3 / 3 assert manualintegrate(sin(x)**2 * cos(x) **2, x) == \ x / 8 - sin(4*x) / 32 assert manualintegrate(sin(x) * cos(x)**3, x) == -cos(x)**4 / 4 assert manualintegrate(sin(x)**3 * cos(x)**2, x) == \ cos(x)**5 / 5 - cos(x)**3 / 3 assert manualintegrate(tan(x)**3 * sec(x), x) == sec(x)**3/3 - sec(x) assert manualintegrate(tan(x) * sec(x) **2, x) == sec(x)**2/2 assert manualintegrate(cot(x)**5 * csc(x), x) == \ -csc(x)**5/5 + 2*csc(x)**3/3 - csc(x) assert manualintegrate(cot(x)**2 * csc(x)**6, x) == \ -cot(x)**7/7 - 2*cot(x)**5/5 - cot(x)**3/3 def test_manualintegrate_inversetrig(): # atan assert manualintegrate(exp(x) / (1 + exp(2*x)), x) == atan(exp(x)) assert manualintegrate(1 / (4 + 9 * x**2), x) == atan(3 * x/2) / 6 assert manualintegrate(1 / (16 + 16 * x**2), x) == atan(x) / 16 assert manualintegrate(1 / (4 + x**2), x) == atan(x / 2) / 2 assert manualintegrate(1 / (1 + 4 * x**2), x) == atan(2*x) / 2 assert manualintegrate(1/(a + b*x**2), x) == \ Piecewise((atan(x/sqrt(a/b))/(b*sqrt(a/b)), a/b > 0), \ (-acoth(x/sqrt(-a/b))/(b*sqrt(-a/b)), And(a/b < 0, x**2 > -a/b)), \ (-atanh(x/sqrt(-a/b))/(b*sqrt(-a/b)), And(a/b < 0, x**2 < -a/b))) assert manualintegrate(1/(4 + b*x**2), x) == \ Piecewise((atan(x/(2*sqrt(1/b)))/(2*b*sqrt(1/b)), 4/b > 0), \ (-acoth(x/(2*sqrt(-1/b)))/(2*b*sqrt(-1/b)), And(4/b < 0, x**2 > -4/b)), \ (-atanh(x/(2*sqrt(-1/b)))/(2*b*sqrt(-1/b)), And(4/b < 0, x**2 < -4/b))) assert manualintegrate(1/(a + 4*x**2), x) == \ Piecewise((atan(2*x/sqrt(a))/(2*sqrt(a)), a/4 > 0), \ (-acoth(2*x/sqrt(-a))/(2*sqrt(-a)), And(a/4 < 0, x**2 > -a/4)), \ (-atanh(2*x/sqrt(-a))/(2*sqrt(-a)), And(a/4 < 0, x**2 < -a/4))) assert manualintegrate(1/(4 + 4*x**2), x) == atan(x) / 4 # asin assert manualintegrate(1/sqrt(1-x**2), x) == asin(x) assert manualintegrate(1/sqrt(4-4*x**2), x) == asin(x)/2 assert manualintegrate(3/sqrt(1-9*x**2), x) == asin(3*x) assert manualintegrate(1/sqrt(4-9*x**2), x) == asin(3*x/2)/3 # asinh assert manualintegrate(1/sqrt(x**2 + 1), x) == \ asinh(x) assert manualintegrate(1/sqrt(x**2 + 4), x) == \ asinh(x/2) assert manualintegrate(1/sqrt(4*x**2 + 4), x) == \ asinh(x)/2 assert manualintegrate(1/sqrt(4*x**2 + 1), x) == \ asinh(2*x)/2 assert manualintegrate(1/sqrt(a*x**2 + 1), x) == \ Piecewise((sqrt(-1/a)*asin(x*sqrt(-a)), a < 0), (sqrt(1/a)*asinh(sqrt(a)*x), a > 0)) assert manualintegrate(1/sqrt(a + x**2), x) == \ Piecewise((asinh(x*sqrt(1/a)), a > 0), (acosh(x*sqrt(-1/a)), a < 0)) # acosh assert manualintegrate(1/sqrt(x**2 - 1), x) == \ acosh(x) assert manualintegrate(1/sqrt(x**2 - 4), x) == \ acosh(x/2) assert manualintegrate(1/sqrt(4*x**2 - 4), x) == \ acosh(x)/2 assert manualintegrate(1/sqrt(9*x**2 - 1), x) == \ acosh(3*x)/3 assert manualintegrate(1/sqrt(a*x**2 - 4), x) == \ Piecewise((sqrt(1/a)*acosh(sqrt(a)*x/2), a > 0)) assert manualintegrate(1/sqrt(-a + 4*x**2), x) == \ Piecewise((asinh(2*x*sqrt(-1/a))/2, -a > 0), (acosh(2*x*sqrt(1/a))/2, -a < 0)) # piecewise assert manualintegrate(1/sqrt(a-b*x**2), x) == \ Piecewise((sqrt(a/b)*asin(x*sqrt(b/a))/sqrt(a), And(-b < 0, a > 0)), (sqrt(-a/b)*asinh(x*sqrt(-b/a))/sqrt(a), And(-b > 0, a > 0)), (sqrt(a/b)*acosh(x*sqrt(b/a))/sqrt(-a), And(-b > 0, a < 0))) assert manualintegrate(1/sqrt(a + b*x**2), x) == \ Piecewise((sqrt(-a/b)*asin(x*sqrt(-b/a))/sqrt(a), And(a > 0, b < 0)), (sqrt(a/b)*asinh(x*sqrt(b/a))/sqrt(a), And(a > 0, b > 0)), (sqrt(-a/b)*acosh(x*sqrt(-b/a))/sqrt(-a), And(a < 0, b > 0))) def test_manualintegrate_trig_substitution(): assert manualintegrate(sqrt(16*x**2 - 9)/x, x) == \ Piecewise((sqrt(16*x**2 - 9) - 3*acos(3/(4*x)), And(x < 3*S.One/4, x > -3*S.One/4))) assert manualintegrate(1/(x**4 * sqrt(25-x**2)), x) == \ Piecewise((-sqrt(-x**2/25 + 1)/(125*x) - (-x**2/25 + 1)**(3*S.Half)/(15*x**3), And(x < 5, x > -5))) assert manualintegrate(x**7/(49*x**2 + 1)**(3 * S.Half), x) == \ ((49*x**2 + 1)**(5*S.Half)/28824005 - (49*x**2 + 1)**(3*S.Half)/5764801 + 3*sqrt(49*x**2 + 1)/5764801 + 1/(5764801*sqrt(49*x**2 + 1))) def test_manualintegrate_trivial_substitution(): assert manualintegrate((exp(x) - exp(-x))/x, x) == \ -Integral(exp(-x)/x, x) + Integral(exp(x)/x, x) def test_manualintegrate_rational(): assert manualintegrate(1/(4 - x**2), x) == Piecewise((acoth(x/2)/2, x**2 > 4), (atanh(x/2)/2, x**2 < 4)) assert manualintegrate(1/(-1 + x**2), x) == Piecewise((-acoth(x), x**2 > 1), (-atanh(x), x**2 < 1)) def test_manualintegrate_derivative(): assert manualintegrate(pi * Derivative(x**2 + 2*x + 3), x) == \ pi * ((x**2 + 2*x + 3)) assert manualintegrate(Derivative(x**2 + 2*x + 3, y), x) == \ Integral(Derivative(x**2 + 2*x + 3, y)) assert manualintegrate(Derivative(sin(x), x, x, x, y), x) == \ Derivative(sin(x), x, x, y) def test_manualintegrate_Heaviside(): assert manualintegrate(Heaviside(x), x) == x*Heaviside(x) assert manualintegrate(x*Heaviside(2), x) == x**2/2 assert manualintegrate(x*Heaviside(-2), x) == 0 assert manualintegrate(x*Heaviside( x), x) == x**2*Heaviside( x)/2 assert manualintegrate(x*Heaviside(-x), x) == x**2*Heaviside(-x)/2 assert manualintegrate(Heaviside(2*x + 4), x) == (x+2)*Heaviside(2*x + 4) assert manualintegrate(x*Heaviside(x), x) == x**2*Heaviside(x)/2 assert manualintegrate(Heaviside(x + 1)*Heaviside(1 - x)*x**2, x) == \ ((x**3/3 + S(1)/3)*Heaviside(x + 1) - S(2)/3)*Heaviside(-x + 1) y = Symbol('y') assert manualintegrate(sin(7 + x)*Heaviside(3*x - 7), x) == \ (- cos(x + 7) + cos(S(28)/3))*Heaviside(3*x - S(7)) assert manualintegrate(sin(y + x)*Heaviside(3*x - y), x) == \ (cos(4*y/3) - cos(x + y))*Heaviside(3*x - y) def test_manualintegrate_orthogonal_poly(): n = symbols('n') a, b = 7, S(5)/3 polys = [jacobi(n, a, b, x), gegenbauer(n, a, x), chebyshevt(n, x), chebyshevu(n, x), legendre(n, x), hermite(n, x), laguerre(n, x), assoc_laguerre(n, a, x)] for p in polys: integral = manualintegrate(p, x) for deg in [-2, -1, 0, 1, 3, 5, 8]: # some accept negative "degree", some do not try: p_subbed = p.subs(n, deg) except ValueError: continue assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0 # can also integrate simple expressions with these polynomials q = x*p.subs(x, 2*x + 1) integral = manualintegrate(q, x) for deg in [2, 4, 7]: assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0 # cannot integrate with respect to any other parameter t = symbols('t') for i in range(len(p.args) - 1): new_args = list(p.args) new_args[i] = t assert isinstance(manualintegrate(p.func(*new_args), t), Integral) def test_issue_6799(): r, x, phi = map(Symbol, 'r x phi'.split()) n = Symbol('n', integer=True, positive=True) integrand = (cos(n*(x-phi))*cos(n*x)) limits = (x, -pi, pi) assert manualintegrate(integrand, x) == \ ((n*x/2 + sin(2*n*x)/4)*cos(n*phi) - sin(n*phi)*cos(n*x)**2/2)/n assert r * integrate(integrand, limits).trigsimp() / pi == r * cos(n * phi) assert not integrate(integrand, limits).has(Dummy) def test_issue_12251(): assert manualintegrate(x**y, x) == Piecewise( (x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True)) def test_issue_3796(): assert manualintegrate(diff(exp(x + x**2)), x) == exp(x + x**2) assert integrate(x * exp(x**4), x, risch=False) == -I*sqrt(pi)*erf(I*x**2)/4 def test_manual_true(): assert integrate(exp(x) * sin(x), x, manual=True) == \ (exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2 assert integrate(sin(x) * cos(x), x, manual=True) in \ [sin(x) ** 2 / 2, -cos(x)**2 / 2] def test_issue_6746(): y = Symbol('y') n = Symbol('n') assert manualintegrate(y**x, x) == Piecewise( (y**x/log(y), Ne(log(y), 0)), (x, True)) assert manualintegrate(y**(n*x), x) == Piecewise( (Piecewise( (y**(n*x)/log(y), Ne(log(y), 0)), (n*x, True) )/n, Ne(n, 0)), (x, True)) assert manualintegrate(exp(n*x), x) == Piecewise( (exp(n*x)/n, Ne(n, 0)), (x, True)) y = Symbol('y', positive=True) assert manualintegrate((y + 1)**x, x) == (y + 1)**x/log(y + 1) y = Symbol('y', zero=True) assert manualintegrate((y + 1)**x, x) == x y = Symbol('y') n = Symbol('n', nonzero=True) assert manualintegrate(y**(n*x), x) == Piecewise( (y**(n*x)/log(y), Ne(log(y), 0)), (n*x, True))/n y = Symbol('y', positive=True) assert manualintegrate((y + 1)**(n*x), x) == \ (y + 1)**(n*x)/(n*log(y + 1)) a = Symbol('a', negative=True) b = Symbol('b') assert manualintegrate(1/(a + b*x**2), x) == \ Piecewise((atan(x/sqrt(a/b))/(b*sqrt(a/b)), a/b > 0), \ (-acoth(x/sqrt(-a/b))/(b*sqrt(-a/b)), And(a/b < 0, x**2 > -a/b)), \ (-atanh(x/sqrt(-a/b))/(b*sqrt(-a/b)), And(a/b < 0, x**2 < -a/b))) b = Symbol('b', negative=True) assert manualintegrate(1/(a + b*x**2), x) == \ atan(x/(sqrt(-a)*sqrt(-1/b)))/(b*sqrt(-a)*sqrt(-1/b)) assert manualintegrate(1/((x**a + y**b + 4)*sqrt(a*x**2 + 1)), x) == \ y**(-b)*Integral(x**(-a)/(y**(-b)*sqrt(a*x**2 + 1) + x**(-a)*sqrt(a*x**2 + 1) + 4*x**(-a)*y**(-b)*sqrt(a*x**2 + 1)), x) assert manualintegrate(1/((x**2 + 4)*sqrt(4*x**2 + 1)), x) == \ Integral(1/((x**2 + 4)*sqrt(4*x**2 + 1)), x) assert manualintegrate(1/(x - a**x + x*b**2), x) == \ Integral(1/(-a**x + b**2*x + x), x) def test_issue_2850(): assert manualintegrate(asin(x)*log(x), x) == -x*asin(x) - sqrt(-x**2 + 1) \ + (x*asin(x) + sqrt(-x**2 + 1))*log(x) - Integral(sqrt(-x**2 + 1)/x, x) assert manualintegrate(acos(x)*log(x), x) == -x*acos(x) + sqrt(-x**2 + 1) + \ (x*acos(x) - sqrt(-x**2 + 1))*log(x) + Integral(sqrt(-x**2 + 1)/x, x) assert manualintegrate(atan(x)*log(x), x) == -x*atan(x) + (x*atan(x) - \ log(x**2 + 1)/2)*log(x) + log(x**2 + 1)/2 + Integral(log(x**2 + 1)/x, x)/2 def test_issue_9462(): assert manualintegrate(sin(2*x)*exp(x), x) == exp(x)*sin(2*x) \ - 2*exp(x)*cos(2*x) - 4*Integral(exp(x)*sin(2*x), x) assert manualintegrate((x - 3) / (x**2 - 2*x + 2)**2, x) == \ Integral(x/(x**4 - 4*x**3 + 8*x**2 - 8*x + 4), x) \ - 3*Integral(1/(x**4 - 4*x**3 + 8*x**2 - 8*x + 4), x) def test_issue_10847(): assert manualintegrate(x**2 / (x**2 - c), x) == c*Piecewise((atan(x/sqrt(-c))/sqrt(-c), -c > 0), \ (-acoth(x/sqrt(c))/sqrt(c), And(-c < 0, x**2 > c)), \ (-atanh(x/sqrt(c))/sqrt(c), And(-c < 0, x**2 < c))) + x assert manualintegrate(sqrt(x - y) * log(z / x), x) == 4*y**2*Piecewise((atan(sqrt(x - y)/sqrt(y))/sqrt(y), y > 0), \ (-acoth(sqrt(x - y)/sqrt(-y))/sqrt(-y), \ And(x - y > -y, y < 0)), \ (-atanh(sqrt(x - y)/sqrt(-y))/sqrt(-y), \ And(x - y < -y, y < 0)))/3 \ - 4*y*sqrt(x - y)/3 + 2*(x - y)**(S(3)/2)*log(z/x)/3 \ + 4*(x - y)**(S(3)/2)/9 assert manualintegrate(sqrt(x) * log(x), x) == 2*x**(S(3)/2)*log(x)/3 - 4*x**(S(3)/2)/9 assert manualintegrate(sqrt(a*x + b) / x, x) == -2*b*Piecewise((-atan(sqrt(a*x + b)/sqrt(-b))/sqrt(-b), -b > 0), \ (acoth(sqrt(a*x + b)/sqrt(b))/sqrt(b), And(-b < 0, a*x + b > b)), \ (atanh(sqrt(a*x + b)/sqrt(b))/sqrt(b), And(-b < 0, a*x + b < b))) \ + 2*sqrt(a*x + b) assert expand(manualintegrate(sqrt(a*x + b) / (x + c), x)) == -2*a*c*Piecewise((atan(sqrt(a*x + b)/sqrt(a*c - b))/sqrt(a*c - b), \ a*c - b > 0), (-acoth(sqrt(a*x + b)/sqrt(-a*c + b))/sqrt(-a*c + b), And(a*c - b < 0, a*x + b > -a*c + b)), \ (-atanh(sqrt(a*x + b)/sqrt(-a*c + b))/sqrt(-a*c + b), And(a*c - b < 0, a*x + b < -a*c + b))) \ + 2*b*Piecewise((atan(sqrt(a*x + b)/sqrt(a*c - b))/sqrt(a*c - b), a*c - b > 0), \ (-acoth(sqrt(a*x + b)/sqrt(-a*c + b))/sqrt(-a*c + b), And(a*c - b < 0, a*x + b > -a*c + b)), \ (-atanh(sqrt(a*x + b)/sqrt(-a*c + b))/sqrt(-a*c + b), And(a*c - b < 0, a*x + b < -a*c + b))) + 2*sqrt(a*x + b) assert manualintegrate((4*x**4 + 4*x**3 + 16*x**2 + 12*x + 8) \ / (x**6 + 2*x**5 + 3*x**4 + 4*x**3 + 3*x**2 + 2*x + 1), x) == \ 2*x/(x**2 + 1) + 3*atan(x) - 1/(x**2 + 1) - 3/(x + 1) assert manualintegrate(sqrt(2*x + 3) / (x + 1), x) == 2*sqrt(2*x + 3) - log(sqrt(2*x + 3) + 1) + log(sqrt(2*x + 3) - 1) assert manualintegrate(sqrt(2*x + 3) / 2 * x, x) == (2*x + 3)**(S(5)/2)/20 - (2*x + 3)**(S(3)/2)/4 assert manualintegrate(x**Rational(3,2) * log(x), x) == 2*x**Rational(5,2)*log(x)/5 - 4*x**Rational(5,2)/25 assert manualintegrate(x**(-3) * log(x), x) == -log(x)/(2*x**2) - 1/(4*x**2) assert manualintegrate(log(y)/(y**2*(1 - 1/y)), y) == \ log(y)*log(-1 + 1/y) - Integral(log(-1 + 1/y)/y, y) def test_issue_12899(): assert manualintegrate(f(x,y).diff(x),y) == Integral(Derivative(f(x,y),x),y) assert manualintegrate(f(x,y).diff(y).diff(x),y) == Derivative(f(x,y),x) def test_constant_independent_of_symbol(): assert manualintegrate(Integral(y, (x, 1, 2)), x) == \ x*Integral(y, (x, 1, 2)) def test_issue_12641(): assert manualintegrate(sin(2*x), x) == -cos(2*x)/2 assert manualintegrate(cos(x)*sin(2*x), x) == -2*cos(x)**3/3 assert manualintegrate((sin(2*x)*cos(x))/(1 + cos(x)), x) == \ -2*log(cos(x) + 1) - cos(x)**2 + 2*cos(x) def test_issue_13297(): assert manualintegrate(sin(x) * cos(x)**5, x) == -cos(x)**6 / 6 def test_issue_14470(): assert manualintegrate(1/(x*sqrt(x + 1)), x) == \ log(-1 + 1/sqrt(x + 1)) - log(1 + 1/sqrt(x + 1)) def test_issue_9858(): assert manualintegrate(exp(x)*cos(exp(x)), x) == sin(exp(x)) assert manualintegrate(exp(2*x)*cos(exp(x)), x) == \ exp(x)*sin(exp(x)) + cos(exp(x)) res = manualintegrate(exp(10*x)*sin(exp(x)), x) assert not res.has(Integral) assert res.diff(x) == exp(10*x)*sin(exp(x)) # an example with many similar integrations by parts assert manualintegrate(sum([x*exp(k*x) for k in range(1, 8)]), x) == ( x*exp(7*x)/7 + x*exp(6*x)/6 + x*exp(5*x)/5 + x*exp(4*x)/4 + x*exp(3*x)/3 + x*exp(2*x)/2 + x*exp(x) - exp(7*x)/49 -exp(6*x)/36 - exp(5*x)/25 - exp(4*x)/16 - exp(3*x)/9 - exp(2*x)/4 - exp(x))
a0e9a085da1685044996a88b68c666e1834d9893c5dd08040e682583a68e49e5
# A collection of failing integrals from the issues. from sympy import ( integrate, Integral, exp, oo, pi, sign, sqrt, sin, cos, tan, S, log, gamma, sinh, ) from sympy.utilities.pytest import XFAIL, SKIP, slow, skip, ON_TRAVIS from sympy.abc import x, k, c, y, R, b, h, a, m @SKIP("Too slow for @slow") @XFAIL def test_issue_3880(): # integrate_hyperexponential(Poly(t*2*(1 - t0**2)*t0*(x**3 + x**2), t), Poly((1 + t0**2)**2*2*(x**2 + x + 1), t), [Poly(1, x), Poly(1 + t0**2, t0), Poly(t, t)], [x, t0, t], [exp, tan]) assert not integrate(exp(x)*cos(2*x)*sin(2*x) * (x**3 + x**2)/(2*(x**2 + x + 1)), x).has(Integral) @XFAIL def test_issue_4212(): assert not integrate(sign(x), x).has(Integral) @XFAIL def test_issue_4326(): assert integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R)).has(Integral) @XFAIL def test_issue_4491(): assert not integrate(x*sqrt(x**2 + 2*x + 4), x).has(Integral) @XFAIL @slow def test_issue_4511(): # This works, but gives a complicated answer. The correct answer is x - cos(x). # The last one is what Maple gives. It is also quite slow. assert integrate(cos(x)**2 / (1 - sin(x))) in [x - cos(x), 1 - cos(x) + x, -2/(tan((S(1)/2)*x)**2 + 1) + x] @XFAIL def test_issue_4525(): # Warning: takes a long time assert not integrate((x**m * (1 - x)**n * (a + b*x + c*x**2))/(1 + x**2), (x, 0, 1)).has(Integral) @XFAIL @slow def test_issue_4540(): if ON_TRAVIS: skip("Too slow for travis.") # Note, this integral is probably nonelementary assert not integrate( (sin(1/x) - x*exp(x)) / ((-sin(1/x) + x*exp(x))*x + x*sin(1/x)), x).has(Integral) @XFAIL def test_issue_4551(): assert integrate(1/(x*sqrt(1 - x**2)), x).has(Integral) @XFAIL def test_issue_4737a(): # Implementation of Si() assert integrate(sin(x)/x, x).has(Integral) @XFAIL def test_issue_1638b(): assert integrate(sin(x)/x, (x, -oo, oo)) == pi/2 @XFAIL @slow def test_issue_4891(): # Requires the hypergeometric function. assert not integrate(cos(x)**y, x).has(Integral) @XFAIL @slow def test_issue_1796a(): assert not integrate(exp(2*b*x)*exp(-a*x**2), x).has(Integral) @XFAIL def test_issue_4895b(): assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, -oo, 0)).has(Integral) @XFAIL def test_issue_4895c(): assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, -oo, oo)).has(Integral) @XFAIL def test_issue_4895d(): assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, 0, oo)).has(Integral) @XFAIL @slow def test_issue_4941(): if ON_TRAVIS: skip("Too slow for travis.") assert not integrate(sqrt(1 + sinh(x/20)**2), (x, -25, 25)).has(Integral) @XFAIL def test_issue_4992(): # Nonelementary integral. Requires hypergeometric/Meijer-G handling. assert not integrate(log(x) * x**(k - 1) * exp(-x) / gamma(k), (x, 0, oo)).has(Integral)
3c138e3ec2d16ddf7f93957ee4de52da4c154167c2c6beef2f5028176d392f8c
from sympy.integrals.transforms import (mellin_transform, inverse_mellin_transform, laplace_transform, inverse_laplace_transform, fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform, cosine_transform, inverse_cosine_transform, hankel_transform, inverse_hankel_transform, LaplaceTransform, FourierTransform, SineTransform, CosineTransform, InverseLaplaceTransform, InverseFourierTransform, InverseSineTransform, InverseCosineTransform, IntegralTransformError) from sympy import ( gamma, exp, oo, Heaviside, symbols, Symbol, re, factorial, pi, arg, cos, S, Abs, And, Or, sin, sqrt, I, log, tan, hyperexpand, meijerg, EulerGamma, erf, erfc, besselj, bessely, besseli, besselk, exp_polar, polar_lift, unpolarify, Function, expint, expand_mul, gammasimp, trigsimp, atan, sinh, cosh, Ne, periodic_argument, atan2, Abs) from sympy.utilities.pytest import XFAIL, slow, skip, raises from sympy.matrices import Matrix, eye from sympy.abc import x, s, a, b, c, d nu, beta, rho = symbols('nu beta rho') def test_undefined_function(): from sympy import Function, MellinTransform f = Function('f') assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s) assert mellin_transform(f(x) + exp(-x), x, s) == \ (MellinTransform(f(x), x, s) + gamma(s), (0, oo), True) assert laplace_transform(2*f(x), x, s) == 2*LaplaceTransform(f(x), x, s) # TODO test derivative and other rules when implemented def test_free_symbols(): from sympy import Function f = Function('f') assert mellin_transform(f(x), x, s).free_symbols == {s} assert mellin_transform(f(x)*a, x, s).free_symbols == {s, a} def test_as_integral(): from sympy import Function, Integral f = Function('f') assert mellin_transform(f(x), x, s).rewrite('Integral') == \ Integral(x**(s - 1)*f(x), (x, 0, oo)) assert fourier_transform(f(x), x, s).rewrite('Integral') == \ Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo)) assert laplace_transform(f(x), x, s).rewrite('Integral') == \ Integral(f(x)*exp(-s*x), (x, 0, oo)) assert str(2*pi*I*inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \ == "Integral(x**(-s)*f(s), (s, _c - oo*I, _c + oo*I))" assert str(2*pi*I*inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \ "Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))" assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \ Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo)) # NOTE this is stuck in risch because meijerint cannot handle it @slow @XFAIL def test_mellin_transform_fail(): skip("Risch takes forever.") MT = mellin_transform bpos = symbols('b', positive=True) bneg = symbols('b', negative=True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) # TODO does not work with bneg, argument wrong. Needs changes to matching. assert MT(expr.subs(b, -bpos), x, s) == \ ((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s) *gamma(1 - a - 2*s)/gamma(1 - s), (-re(a), -re(a)/2 + S(1)/2), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, -bpos), x, s) == \ ( 2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2* s)*gamma(a + s)/gamma(-s + 1), (-re(a), -re(a)/2), True) # Test exponent 1: assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \ (-bpos**(2*s + 1)*gamma(s)*gamma(-s - S(1)/2)/(2*sqrt(pi)), (-1, -S(1)/2), True) def test_mellin_transform(): from sympy import Max, Min MT = mellin_transform bpos = symbols('b', positive=True) # 8.4.2 assert MT(x**nu*Heaviside(x - 1), x, s) == \ (-1/(nu + s), (-oo, -re(nu)), True) assert MT(x**nu*Heaviside(1 - x), x, s) == \ (1/(nu + s), (-re(nu), oo), True) assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \ (gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), -re(beta) < 0) assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \ (gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), (-oo, -re(beta) + 1), -re(beta) < 0) assert MT((1 + x)**(-rho), x, s) == \ (gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True) # TODO also the conditions should be simplified, e.g. # And(re(rho) - 1 < 0, re(rho) < 1) should just be # re(rho) < 1 assert MT(abs(1 - x)**(-rho), x, s) == ( 2*sin(pi*rho/2)*gamma(1 - rho)* cos(pi*(rho/2 - s))*gamma(s)*gamma(rho-s)/pi, (0, re(rho)), And(re(rho) - 1 < 0, re(rho) < 1)) mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x) + a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s) assert mt[1], mt[2] == ((0, -re(beta) + 1), -re(beta) < 0) assert MT((x**a - b**a)/(x - b), x, s)[0] == \ pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))) assert MT((x**a - bpos**a)/(x - bpos), x, s) == \ (pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))), (Max(-re(a), 0), Min(1 - re(a), 1)), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, bpos), x, s) == \ (-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1), (0, -re(a)/2), True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) assert MT(expr.subs(b, bpos), x, s) == \ (2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s) *gamma(1 - a - 2*s)/gamma(1 - a - s), (0, -re(a)/2 + S(1)/2), True) # 8.4.2 assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True) assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True) # 8.4.5 assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True) assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True) assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True) assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True) assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True) assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True) # 8.4.14 assert MT(erf(sqrt(x)), x, s) == \ (-gamma(s + S(1)/2)/(sqrt(pi)*s), (-S(1)/2, 0), True) @slow def test_mellin_transform2(): MT = mellin_transform # TODO we cannot currently do these (needs summation of 3F2(-1)) # this also implies that they cannot be written as a single g-function # (although this is possible) mt = MT(log(x)/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)**2/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)/(x + 1)**2, x, s) assert mt[1:] == ((0, 2), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) @slow def test_mellin_transform_bessel(): from sympy import Max MT = mellin_transform # 8.4.19 assert MT(besselj(a, 2*sqrt(x)), x, s) == \ (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, S(3)/4), True) assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(-2*s + S(1)/2)*gamma(a/2 + s + S(1)/2)/( gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), ( -re(a)/2 - S(1)/2, S(1)/4), True) assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(a/2 + s)*gamma(-2*s + S(1)/2)/( gamma(-a/2 - s + S(1)/2)*gamma(a - 2*s + 1)), ( -re(a)/2, S(1)/4), True) assert MT(besselj(a, sqrt(x))**2, x, s) == \ (gamma(a + s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), (-re(a), S(1)/2), True) assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \ (gamma(s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)), (0, S(1)/2), True) # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as # I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large) assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (gamma(1 - s)*gamma(a + s - S(1)/2) / (sqrt(pi)*gamma(S(3)/2 - s)*gamma(a - s + S(1)/2)), (S(1)/2 - re(a), S(1)/2), True) assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \ (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s) / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2) *gamma( 1 - s + (a + b)/2)), (-(re(a) + re(b))/2, S(1)/2), True) assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \ ((Max(re(a), -re(a)), S(1)/2), True) # Section 8.4.20 assert MT(bessely(a, 2*sqrt(x)), x, s) == \ (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi, (Max(-re(a)/2, re(a)/2), S(3)/4), True) assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*sin(pi*(a/2 - s))*gamma(S(1)/2 - 2*s) * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s) / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)), (Max(-(re(a) + 1)/2, (re(a) - 1)/2), S(1)/4), True) assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S(1)/2 - 2*s) / (sqrt(pi)*gamma(S(1)/2 - s - a/2)*gamma(S(1)/2 - s + a/2)), (Max(-re(a)/2, re(a)/2), S(1)/4), True) assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S(1)/2 - s) / (pi**S('3/2')*gamma(1 + a - s)), (Max(-re(a), 0), S(1)/2), True) assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S(1)/2), True) # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x)) # are a mess (no matter what way you look at it ...) assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \ ((Max(-re(a), 0, re(a)), S(1)/2), True) # Section 8.4.22 # TODO we can't do any of these (delicate cancellation) # Section 8.4.23 assert MT(besselk(a, 2*sqrt(x)), x, s) == \ (gamma( s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True) assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk( a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)* gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True) # TODO bessely(a, x)*besselk(a, x) is a mess assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (gamma(s)*gamma( a + s)*gamma(-s + S(1)/2)/(2*sqrt(pi)*gamma(a - s + 1)), (Max(-re(a), 0), S(1)/2), True) assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \ gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \ gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \ re(a)/2 - re(b)/2), S(1)/2), True) # TODO products of besselk are a mess mt = MT(exp(-x/2)*besselk(a, x/2), x, s) mt0 = gammasimp((trigsimp(gammasimp(mt[0].expand(func=True))))) assert mt0 == 2*pi**(S(3)/2)*cos(pi*s)*gamma(-s + S(1)/2)/( (cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1)) assert mt[1:] == ((Max(-re(a), re(a)), oo), True) # TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done # TODO various strange products of special orders @slow def test_expint(): from sympy import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei aneg = Symbol('a', negative=True) u = Symbol('u', polar=True) assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True) assert inverse_mellin_transform(gamma(s)/s, s, x, (0, oo)).rewrite(expint).expand() == E1(x) assert mellin_transform(expint(a, x), x, s) == \ (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True) # XXX IMT has hickups with complicated strips ... assert simplify(unpolarify( inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x, (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \ expint(aneg, x) assert mellin_transform(Si(x), x, s) == \ (-2**s*sqrt(pi)*gamma(s/2 + S(1)/2)/( 2*s*gamma(-s/2 + 1)), (-1, 0), True) assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2) /(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \ == Si(x) assert mellin_transform(Ci(sqrt(x)), x, s) == \ (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S(1)/2)), (0, 1), True) assert inverse_mellin_transform( -4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S(1)/2)), s, u, (0, 1)).expand() == Ci(sqrt(u)) # TODO LT of Si, Shi, Chi is a mess ... assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True) assert laplace_transform(expint(a, x), x, s) == \ (lerchphi(s*exp_polar(I*pi), 1, a), 0, S(0) < re(a)) assert laplace_transform(expint(1, x), x, s) == (log(s + 1)/s, 0, True) assert laplace_transform(expint(2, x), x, s) == \ ((s - log(s + 1))/s**2, 0, True) assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \ Heaviside(u)*Ci(u) assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \ Heaviside(x)*E1(x) assert inverse_laplace_transform((s - log(s + 1))/s**2, s, x).rewrite(expint).expand() == \ (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand() @slow def test_inverse_mellin_transform(): from sympy import (sin, simplify, Max, Min, expand, powsimp, exp_polar, cos, cot) IMT = inverse_mellin_transform assert IMT(gamma(s), s, x, (0, oo)) == exp(-x) assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x) assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \ (x**2 + 1)*Heaviside(1 - x)/(4*x) # test passing "None" assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) # test expansion of sums assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x # test factorisation of polys r = symbols('r', real=True) assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo) ).subs(x, r).rewrite(sin).simplify() \ == sin(r)*Heaviside(1 - exp(-r)) # test multiplicative substitution _a, _b = symbols('a b', positive=True) assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a) assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b) def simp_pows(expr): return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp) # Now test the inverses of all direct transforms tested above # Section 8.4.2 nu = symbols('nu', real=True, finite=True) assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1) assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \ == (1 - x)**(beta - 1)*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), s, x, (-oo, None))) \ == (x - 1)**(beta - 1)*Heaviside(x - 1) assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \ == (1/(x + 1))**rho assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c) *gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi, s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \ == (x**c - d**c)/(x - d) assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s) *gamma(-c/2 - s)/gamma(1 - c - s), s, x, (0, -re(c)/2))) == \ (1 + sqrt(x + 1))**c assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s) /gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \ b**(a - 1)*(sqrt(1 + x/b**2) + 1)**(a - 1)*(b**2*sqrt(1 + x/b**2) + b**2 + x)/(b**2 + x) assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s) / gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \ b**c*(sqrt(1 + x/b**2) + 1)**c # Section 8.4.5 assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x) assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \ log(x)**3*Heaviside(x - 1) assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1) assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1) assert IMT(pi/(s*sin(2*pi*s)), s, x, (-S(1)/2, 0)) == log(sqrt(x) + 1) assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x) # TODO def mysimp(expr): from sympy import expand, logcombine, powsimp return expand( powsimp(logcombine(expr, force=True), force=True, deep=True), force=True).replace(exp_polar, exp) assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [ log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1), log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1)] # test passing cot assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [ log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1), -log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1), ] # 8.4.14 assert IMT(-gamma(s + S(1)/2)/(sqrt(pi)*s), s, x, (-S(1)/2, 0)) == \ erf(sqrt(x)) # 8.4.19 assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, S(3)/4))) \ == besselj(a, 2*sqrt(x)) assert simplify(IMT(2**a*gamma(S(1)/2 - 2*s)*gamma(s + (a + 1)/2) / (gamma(1 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-(re(a) + 1)/2, S(1)/4))) == \ sin(sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S(1)/2 - 2*s) / (gamma(S(1)/2 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-re(a)/2, S(1)/4))) == \ cos(sqrt(x))*besselj(a, sqrt(x)) # TODO this comes out as an amazing mess, but simplifies nicely assert simplify(IMT(gamma(a + s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), s, x, (-re(a), S(1)/2))) == \ besselj(a, sqrt(x))**2 assert simplify(IMT(gamma(s)*gamma(S(1)/2 - s) / (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)), s, x, (0, S(1)/2))) == \ besselj(-a, sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) *gamma(a/2 + b/2 - s + 1)), s, x, (-(re(a) + re(b))/2, S(1)/2))) == \ besselj(a, sqrt(x))*besselj(b, sqrt(x)) # Section 8.4.20 # TODO this can be further simplified! assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), s, x, (Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S(1)/2))) == \ besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) - besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b) # TODO more # for coverage assert IMT(pi/cos(pi*s), s, x, (0, S(1)/2)) == sqrt(x)/(x + 1) @slow def test_laplace_transform(): from sympy import fresnels, fresnelc LT = laplace_transform a, b, c, = symbols('a b c', positive=True) t = symbols('t') w = Symbol("w") f = Function("f") # Test unevaluated form assert laplace_transform(f(t), t, w) == LaplaceTransform(f(t), t, w) assert inverse_laplace_transform( f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0) # test a bug spos = symbols('s', positive=True) assert LT(exp(t), t, spos)[:2] == (1/(spos - 1), 1) # basic tests from wikipedia assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \ ((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True) assert LT(t**a, t, s) == (s**(-a - 1)*gamma(a + 1), 0, True) assert LT(Heaviside(t), t, s) == (1/s, 0, True) assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True) assert LT(1 - exp(-a*t), t, s) == (a/(s*(a + s)), 0, True) assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \ == exp(-b)/(s**2 - 1) assert LT(exp(t), t, s)[:2] == (1/(s - 1), 1) assert LT(exp(2*t), t, s)[:2] == (1/(s - 2), 2) assert LT(exp(a*t), t, s)[:2] == (1/(s - a), a) assert LT(log(t/a), t, s) == ((log(a*s) + EulerGamma)/s/-1, 0, True) assert LT(erf(t), t, s) == (erfc(s/2)*exp(s**2/4)/s, 0, True) assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True) assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True) # TODO would be nice to have these come out better assert LT(exp(-a*t)*sin(b*t), t, s) == (b/(b**2 + (a + s)**2), -a, True) assert LT(exp(-a*t)*cos(b*t), t, s) == \ ((a + s)/(b**2 + (a + s)**2), -a, True) assert LT(besselj(0, t), t, s) == (1/sqrt(1 + s**2), 0, True) assert LT(besselj(1, t), t, s) == (1 - 1/sqrt(1 + 1/s**2), 0, True) # TODO general order works, but is a *mess* # TODO besseli also works, but is an even greater mess # test a bug in conditions processing # TODO the auxiliary condition should be recognised/simplified assert LT(exp(t)*cos(t), t, s)[:-1] in [ ((s - 1)/(s**2 - 2*s + 2), -oo), ((s - 1)/((s - 1)**2 + 1), -oo), ] # Fresnel functions assert laplace_transform(fresnels(t), t, s) == \ ((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 - cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True) assert laplace_transform(fresnelc(t), t, s) == ( ((2*sin(s**2/(2*pi))*fresnelc(s/pi) - 2*cos(s**2/(2*pi))*fresnels(s/pi) + sqrt(2)*cos(s**2/(2*pi) + pi/4))/(2*s), 0, True)) cond = Ne(1/s, 1) & ( S(0) < cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1) assert LT(Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]]), t, s) ==\ Matrix([ [(1/(s - 1), 1, True), ((s + 1)**(-2), 0, True)], [((s + 1)**(-2), 0, True), (1/(s - 1), 1, True)] ]) def test_issue_8368_7173(): LT = laplace_transform # hyperbolic assert LT(sinh(x), x, s) == (1/(s**2 - 1), 1, True) assert LT(cosh(x), x, s) == (s/(s**2 - 1), 1, True) assert LT(sinh(x + 3), x, s) == ( (-s + (s + 1)*exp(6) + 1)*exp(-3)/(s - 1)/(s + 1)/2, 1, True) assert LT(sinh(x)*cosh(x), x, s) == ( 1/(s**2 - 4), 2, Ne(s/2, 1)) # trig (make sure they are not being rewritten in terms of exp) assert LT(cos(x + 3), x, s) == ((s*cos(3) - sin(3))/(s**2 + 1), 0, True) def test_inverse_laplace_transform(): from sympy import sinh, cosh, besselj, besseli, simplify, factor_terms ILT = inverse_laplace_transform a, b, c, = symbols('a b c', positive=True, finite=True) t = symbols('t') def simp_hyp(expr): return factor_terms(expand_mul(expr)).rewrite(sin) # just test inverses of all of the above assert ILT(1/s, s, t) == Heaviside(t) assert ILT(1/s**2, s, t) == t*Heaviside(t) assert ILT(1/s**5, s, t) == t**4*Heaviside(t)/24 assert ILT(exp(-a*s)/s, s, t) == Heaviside(t - a) assert ILT(exp(-a*s)/(s + b), s, t) == exp(b*(a - t))*Heaviside(-a + t) assert ILT(a/(s**2 + a**2), s, t) == sin(a*t)*Heaviside(t) assert ILT(s/(s**2 + a**2), s, t) == cos(a*t)*Heaviside(t) # TODO is there a way around simp_hyp? assert simp_hyp(ILT(a/(s**2 - a**2), s, t)) == sinh(a*t)*Heaviside(t) assert simp_hyp(ILT(s/(s**2 - a**2), s, t)) == cosh(a*t)*Heaviside(t) assert ILT(a/((s + b)**2 + a**2), s, t) == exp(-b*t)*sin(a*t)*Heaviside(t) assert ILT( (s + b)/((s + b)**2 + a**2), s, t) == exp(-b*t)*cos(a*t)*Heaviside(t) # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess # TODO should this simplify further? assert ILT(exp(-a*s)/s**b, s, t) == \ (t - a)**(b - 1)*Heaviside(t - a)/gamma(b) assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \ Heaviside(t - a)*besselj(0, a - t) # note: besselj(0, x) is even # XXX ILT turns these branch factor into trig functions ... assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2), s, t).rewrite(exp)) == \ Heaviside(t)*besseli(b, a*t) assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2), s, t).rewrite(exp) == \ Heaviside(t)*besselj(b, a*t) assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t)) # TODO can we make erf(t) work? assert ILT(1/(s**2*(s**2 + 1)),s,t) == (t - sin(t))*Heaviside(t) assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\ Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]]) def test_inverse_laplace_transform_delta(): from sympy import DiracDelta ILT = inverse_laplace_transform t = symbols('t') assert ILT(2, s, t) == 2*DiracDelta(t) assert ILT(2*exp(3*s) - 5*exp(-7*s), s, t) == \ 2*DiracDelta(t + 3) - 5*DiracDelta(t - 7) a = cos(sin(7)/2) assert ILT(a*exp(-3*s), s, t) == a*DiracDelta(t - 3) assert ILT(exp(2*s), s, t) == DiracDelta(t + 2) r = Symbol('r', real=True) assert ILT(exp(r*s), s, t) == DiracDelta(t + r) def test_inverse_laplace_transform_delta_cond(): from sympy import DiracDelta, Eq, im, Heaviside ILT = inverse_laplace_transform t = symbols('t') r = Symbol('r', real=True) assert ILT(exp(r*s), s, t, noconds=False) == (DiracDelta(t + r), True) z = Symbol('z') assert ILT(exp(z*s), s, t, noconds=False) == \ (DiracDelta(t + z), Eq(im(z), 0)) # inversion does not exist: verify it doesn't evaluate to DiracDelta for z in (Symbol('z', real=False), Symbol('z', imaginary=True, zero=False)): f = ILT(exp(z*s), s, t, noconds=False) f = f[0] if isinstance(f, tuple) else f assert f.func != DiracDelta # issue 15043 assert ILT(1/s + exp(r*s)/s, s, t, noconds=False) == ( Heaviside(t) + Heaviside(r + t), True) def test_fourier_transform(): from sympy import simplify, expand, expand_complex, factor, expand_trig FT = fourier_transform IFT = inverse_fourier_transform def simp(x): return simplify(expand_trig(expand_complex(expand(x)))) def sinc(x): return sin(pi*x)/(pi*x) k = symbols('k', real=True) f = Function("f") # TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x) a = symbols('a', positive=True) b = symbols('b', positive=True) posk = symbols('posk', positive=True) # Test unevaluated form assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k) assert inverse_fourier_transform( f(k), k, x) == InverseFourierTransform(f(k), k, x) # basic examples from wikipedia assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a # TODO IFT is a *mess* assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a # TODO IFT assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k) # NOTE: the ift comes out in pieces assert IFT(1/(a + 2*pi*I*x), x, posk, noconds=False) == (exp(-a*posk), True) assert IFT(1/(a + 2*pi*I*x), x, -posk, noconds=False) == (0, True) assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True), noconds=False) == (0, True) # TODO IFT without factoring comes out as meijer g assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k)**2 assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \ b/(b**2 + (a + 2*I*pi*k)**2) assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a) assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2) assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2) # TODO IFT (comes out as meijer G) # TODO besselj(n, x), n an integer > 0 actually can be done... # TODO are there other common transforms (no distributions!)? def test_sine_transform(): from sympy import EulerGamma t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w) assert inverse_sine_transform( f(w), w, t) == InverseSineTransform(f(w), w, t) assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert sine_transform((1/sqrt(t))**3, t, w) == 2*sqrt(w) assert sine_transform(t**(-a), t, w) == 2**( -a + S(1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2) assert inverse_sine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S(1)/2), w, t) == t**(-a) assert sine_transform( exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)) assert inverse_sine_transform( sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) assert sine_transform( log(t)/t, t, w) == -sqrt(2)*sqrt(pi)*(log(w**2) + 2*EulerGamma)/4 assert sine_transform( t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**(S(3)/2)) assert inverse_sine_transform( sqrt(2)*w*exp(-w**2/(4*a))/(4*a**(S(3)/2)), w, t) == t*exp(-a*t**2) def test_cosine_transform(): from sympy import Si, Ci t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w) assert inverse_cosine_transform( f(w), w, t) == InverseCosineTransform(f(w), w, t) assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert cosine_transform(1/( a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a) assert cosine_transform(t**( -a), t, w) == 2**(-a + S(1)/2)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2) assert inverse_cosine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + S(1)/2)/gamma(a/2), w, t) == t**(-a) assert cosine_transform( exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)) assert inverse_cosine_transform( sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt( t)), t, w) == a*exp(-a**2/(2*w))/(2*w**(S(3)/2)) assert cosine_transform(1/(a + t), t, w) == sqrt(2)*( (-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi) assert inverse_cosine_transform(sqrt(2)*meijerg(((S(1)/2, 0), ()), ( (S(1)/2, 0, 0), (S(1)/2,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t) assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg( ((S(1)/2,), ()), ((0, 0), (S(1)/2,)), a**2*w**2/4)/(2*sqrt(pi)) assert inverse_cosine_transform(sqrt(2)*meijerg(((S(1)/2,), ()), ((0, 0), (S(1)/2,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1)) def test_hankel_transform(): from sympy import gamma, sqrt, exp r = Symbol("r") k = Symbol("k") nu = Symbol("nu") m = Symbol("m") a = symbols("a") assert hankel_transform(1/r, r, k, 0) == 1/k assert inverse_hankel_transform(1/k, k, r, 0) == 1/r assert hankel_transform( 1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2) assert inverse_hankel_transform( 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m) assert hankel_transform(1/r**m, r, k, nu) == ( 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)) assert inverse_hankel_transform(2**(-m + 1)*k**( m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m) assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \ 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S( 3)/2)*gamma(nu + S(3)/2)/sqrt(pi) assert inverse_hankel_transform( 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S(3)/2)*gamma( nu + S(3)/2)/sqrt(pi), k, r, nu) == r**nu*exp(-a*r) def test_issue_7181(): assert mellin_transform(1/(1 - x), x, s) != None def test_issue_8882(): # This is the original test. # from sympy import diff, Integral, integrate # r = Symbol('r') # psi = 1/r*sin(r)*exp(-(a0*r)) # h = -1/2*diff(psi, r, r) - 1/r*psi # f = 4*pi*psi*h*r**2 # assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True # To save time, only the critical part is included. F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \ sin(s*atan(sqrt(1/a**2)/2))*gamma(s) raises(IntegralTransformError, lambda: inverse_mellin_transform(F, s, x, (-1, oo), **{'as_meijerg': True, 'needeval': True})) def test_issue_7173(): from sympy import cse x0, x1, x2, x3 = symbols('x:4') ans = laplace_transform(sinh(a*x)*cosh(a*x), x, s) r, e = cse(ans) assert r == [ (x0, pi/2), (x1, arg(a)), (x2, Abs(x1)), (x3, Abs(x1 + pi))] assert e == [ a/(-4*a**2 + s**2), 0, ((x0 >= x2) | (x2 < x0)) & ((x0 >= x3) | (x3 < x0))] def test_issue_8514(): from sympy import simplify a, b, c, = symbols('a b c', positive=True) t = symbols('t', positive=True) ft = simplify(inverse_laplace_transform(1/(a*s**2+b*s+c),s, t)) assert ft == (I*exp(t*cos(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c - b**2))/a)*sin(t*sin(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs( 4*a*c - b**2))/(2*a)) + exp(t*cos(atan2(0, -4*a*c + b**2) /2)*sqrt(Abs(4*a*c - b**2))/a)*cos(t*sin(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c - b**2))/(2*a)) + I*sin(t*sin( atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c - b**2))/(2*a)) - cos(t*sin(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c - b**2))/(2*a)))*exp(-t*(b + cos(atan2(0, -4*a*c + b**2)/2) *sqrt(Abs(4*a*c - b**2)))/(2*a))/sqrt(-4*a*c + b**2) def test_issue_12591(): x, y = symbols("x y", real=True) assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y) def test_issue_14692(): b = Symbol('b', negative=True) assert laplace_transform(1/(I*x - b), x, s) == \ (-I*exp(I*b*s)*expint(1, b*s*exp_polar(I*pi/2)), 0, True)
cc45949389095dc3a402569d836835a581b01ada18dc23bab83e879aae453a21
"""Most of these tests come from the examples in Bronstein's book.""" from sympy.integrals.risch import (DifferentialExtension, NonElementaryIntegral, derivation, risch_integrate) from sympy.integrals.prde import (prde_normal_denom, prde_special_denom, prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large, prde_no_cancel_b_small, limited_integrate_reduce, limited_integrate, is_deriv_k, is_log_deriv_k_t_radical, parametric_log_deriv_heu, is_log_deriv_k_t_radical_in_field, param_poly_rischDE, param_rischDE, prde_cancel_liouvillian) from sympy.polys.polymatrix import PolyMatrix as Matrix from sympy import Poly, S, symbols, integrate, log, I, pi, exp from sympy.abc import x, t, n, y t0, t1, t2, t3, k = symbols('t:4 k') def test_prde_normal_denom(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) fa = Poly(1, t) fd = Poly(x, t) G = [(Poly(t, t), Poly(1 + t**2, t)), (Poly(1, t), Poly(x + x*t**2, t))] assert prde_normal_denom(fa, fd, G, DE) == \ (Poly(x, t), (Poly(1, t), Poly(1, t)), [(Poly(x*t, t), Poly(t**2 + 1, t)), (Poly(1, t), Poly(t**2 + 1, t))], Poly(1, t)) G = [(Poly(t, t), Poly(t**2 + 2*t + 1, t)), (Poly(x*t, t), Poly(t**2 + 2*t + 1, t)), (Poly(x*t**2, t), Poly(t**2 + 2*t + 1, t))] DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert prde_normal_denom(Poly(x, t), Poly(1, t), G, DE) == \ (Poly(t + 1, t), (Poly((-1 + x)*t + x, t), Poly(1, t)), [(Poly(t, t), Poly(1, t)), (Poly(x*t, t), Poly(1, t)), (Poly(x*t**2, t), Poly(1, t))], Poly(t + 1, t)) def test_prde_special_denom(): a = Poly(t + 1, t) ba = Poly(t**2, t) bd = Poly(1, t) G = [(Poly(t, t), Poly(1, t)), (Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))] DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert prde_special_denom(a, ba, bd, G, DE) == \ (Poly(t + 1, t), Poly(t**2, t), [(Poly(t, t), Poly(1, t)), (Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))], Poly(1, t)) G = [(Poly(t, t), Poly(1, t)), (Poly(1, t), Poly(t, t))] assert prde_special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), G, DE) == \ (Poly(1, t), Poly(t**2 - 1, t), [(Poly(t**2, t), Poly(1, t)), (Poly(1, t), Poly(1, t))], Poly(t, t)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-2*x*t0, t0)]}) DE.decrement_level() G = [(Poly(t, t), Poly(t**2, t)), (Poly(2*t, t), Poly(t, t))] assert prde_special_denom(Poly(5*x*t + 1, t), Poly(t**2 + 2*x**3*t, t), Poly(t**3 + 2, t), G, DE) == \ (Poly(5*x*t + 1, t), Poly(0, t), [(Poly(t, t), Poly(t**2, t)), (Poly(2*t, t), Poly(t, t))], Poly(1, x)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly((t**2 + 1)*2*x, t)]}) G = [(Poly(t + x, t), Poly(t*x, t)), (Poly(2*t, t), Poly(x**2, x))] assert prde_special_denom(Poly(5*x*t + 1, t), Poly(t**2 + 2*x**3*t, t), Poly(t**3, t), G, DE) == \ (Poly(5*x*t + 1, t), Poly(0, t), [(Poly(t + x, t), Poly(x*t, t)), (Poly(2*t, t, x), Poly(x**2, t, x))], Poly(1, t)) assert prde_special_denom(Poly(t + 1, t), Poly(t**2, t), Poly(t**3, t), G, DE) == \ (Poly(t + 1, t), Poly(0, t), [(Poly(t + x, t), Poly(x*t, t)), (Poly(2*t, t, x), Poly(x**2, t, x))], Poly(1, t)) def test_prde_linear_constraints(): DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) G = [(Poly(2*x**3 + 3*x + 1, x), Poly(x**2 - 1, x)), (Poly(1, x), Poly(x - 1, x)), (Poly(1, x), Poly(x + 1, x))] assert prde_linear_constraints(Poly(1, x), Poly(0, x), G, DE) == \ ((Poly(2*x, x), Poly(0, x), Poly(0, x)), Matrix([[1, 1, -1], [5, 1, 1]])) G = [(Poly(t, t), Poly(1, t)), (Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))] DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert prde_linear_constraints(Poly(t + 1, t), Poly(t**2, t), G, DE) == \ ((Poly(t, t), Poly(t**2, t), Poly(t**3, t)), Matrix(0, 3, [])) G = [(Poly(2*x, t), Poly(t, t)), (Poly(-x, t), Poly(t, t))] DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) assert prde_linear_constraints(Poly(1, t), Poly(0, t), G, DE) == \ ((Poly(0, t), Poly(0, t)), Matrix([[2*x, -x]])) def test_constant_system(): A = Matrix([[-(x + 3)/(x - 1), (x + 1)/(x - 1), 1], [-x - 3, x + 1, x - 1], [2*(x + 3)/(x - 1), 0, 0]]) u = Matrix([(x + 1)/(x - 1), x + 1, 0]) DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert constant_system(A, u, DE) == \ (Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 0], [0, 0, 1]]), Matrix([0, 1, 0, 0])) def test_prde_spde(): D = [Poly(x, t), Poly(-x*t, t)] DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) # TODO: when bound_degree() can handle this, test degree bound from that too assert prde_spde(Poly(t, t), Poly(-1/x, t), D, n, DE) == \ (Poly(t, t), Poly(0, t), [Poly(2*x, t), Poly(-x, t)], [Poly(-x**2, t), Poly(0, t)], n - 1) def test_prde_no_cancel(): # b large DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**2, x), Poly(1, x)], 2, DE) == \ ([Poly(x**2 - 2*x + 2, x), Poly(1, x)], Matrix([[1, 0, -1, 0], [0, 1, 0, -1]])) assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**3, x), Poly(1, x)], 3, DE) == \ ([Poly(x**3 - 3*x**2 + 6*x - 6, x), Poly(1, x)], Matrix([[1, 0, -1, 0], [0, 1, 0, -1]])) assert prde_no_cancel_b_large(Poly(x, x), [Poly(x**2, x), Poly(1, x)], 1, DE) == \ ([Poly(x, x, domain='ZZ'), Poly(0, x, domain='ZZ')], Matrix([[1, -1, 0, 0], [1, 0, -1, 0], [0, 1, 0, -1]])) # b small # XXX: Is there a better example of a monomial with D.degree() > 2? DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**3 + 1, t)]}) # My original q was t**4 + t + 1, but this solution implies q == t**4 # (c1 = 4), with some of the ci for the original q equal to 0. G = [Poly(t**6, t), Poly(x*t**5, t), Poly(t**3, t), Poly(x*t**2, t), Poly(1 + x, t)] assert prde_no_cancel_b_small(Poly(x*t, t), G, 4, DE) == \ ([Poly(t**4/4 - x/12*t**3 + x**2/24*t**2 + (-S(11)/12 - x**3/24)*t + x/24, t), Poly(x/3*t**3 - x**2/6*t**2 + (-S(1)/3 + x**3/6)*t - x/6, t), Poly(t, t), Poly(0, t), Poly(0, t)], Matrix([[1, 0, -1, 0, 0, 0, 0, 0, 0, 0], [0, 1, -S(1)/4, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, -1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, -1]])) # TODO: Add test for deg(b) <= 0 with b small DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) b = Poly(-1/x**2, t, field=True) # deg(b) == 0 q = [Poly(x**i*t**j, t, field=True) for i in range(2) for j in range(3)] h, A = prde_no_cancel_b_small(b, q, 3, DE) V = A.nullspace() assert len(V) == 1 assert V[0] == Matrix([-S(1)/2, 0, 0, 1, 0, 0]*3) assert (Matrix([h])*V[0][6:, :])[0] == Poly(x**2/2, t, domain='ZZ(x)') assert (Matrix([q])*V[0][:6, :])[0] == Poly(x - S(1)/2, t, domain='QQ(x)') def test_prde_cancel_liouvillian(): ### 1. case == 'primitive' # used when integrating f = log(x) - log(x - 1) # Not taken from 'the' book DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) p0 = Poly(0, t, field=True) h, A = prde_cancel_liouvillian(Poly(-1/(x - 1), t), [Poly(-x + 1, t), Poly(1, t)], 1, DE) V = A.nullspace() h == [p0, p0, Poly((x - 1)*t, t), p0, p0, p0, p0, p0, p0, p0, Poly(x - 1, t), Poly(-x**2 + x, t), p0, p0, p0, p0] assert A.rank() == 16 assert (Matrix([h])*V[0][:16, :]) == Matrix([[Poly(0, t, domain='QQ(x)')]]) ### 2. case == 'exp' # used when integrating log(x/exp(x) + 1) # Not taken from book DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t, t)]}) assert prde_cancel_liouvillian(Poly(0, t, domain='QQ[x]'), [Poly(1, t, domain='QQ(x)')], 0, DE) == \ ([Poly(1, t, domain='QQ'), Poly(x, t)], Matrix([[-1, 0, 1]])) def test_param_poly_rischDE(): DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) a = Poly(x**2 - x, x, field=True) b = Poly(1, x, field=True) q = [Poly(x, x, field=True), Poly(x**2, x, field=True)] h, A = param_poly_rischDE(a, b, q, 3, DE) assert A.nullspace() == [Matrix([0, 1, 1, 1])] # c1, c2, d1, d2 # Solution of a*Dp + b*p = c1*q1 + c2*q2 = q2 = x**2 # is d1*h1 + d2*h2 = h1 + h2 = x. assert h[0] + h[1] == Poly(x, x) # a*Dp + b*p = q1 = x has no solution. a = Poly(x**2 - x, x, field=True) b = Poly(x**2 - 5*x + 3, x, field=True) q = [Poly(1, x, field=True), Poly(x, x, field=True), Poly(x**2, x, field=True)] h, A = param_poly_rischDE(a, b, q, 3, DE) assert A.nullspace() == [Matrix([3, -5, 1, -5, 1, 1])] p = -5*h[0] + h[1] + h[2] # Poly(1, x) assert a*derivation(p, DE) + b*p == Poly(x**2 - 5*x + 3, x) def test_param_rischDE(): DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) p1, px = Poly(1, x, field=True), Poly(x, x, field=True) G = [(p1, px), (p1, p1), (px, p1)] # [1/x, 1, x] h, A = param_rischDE(-p1, Poly(x**2, x, field=True), G, DE) assert len(h) == 3 p = [hi[0].as_expr()/hi[1].as_expr() for hi in h] V = A.nullspace() assert len(V) == 2 assert V[0] == Matrix([-1, 1, 0, -1, 1, 0]) y = -p[0] + p[1] + 0*p[2] # x assert y.diff(x) - y/x**2 == 1 - 1/x # Dy + f*y == -G0 + G1 + 0*G2 # the below test computation takes place while computing the integral # of 'f = log(log(x + exp(x)))' DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) G = [(Poly(t + x, t, domain='ZZ(x)'), Poly(1, t, domain='QQ')), (Poly(0, t, domain='QQ'), Poly(1, t, domain='QQ'))] h, A = param_rischDE(Poly(-t - 1, t, field=True), Poly(t + x, t, field=True), G, DE) assert len(h) == 5 p = [hi[0].as_expr()/hi[1].as_expr() for hi in h] V = A.nullspace() assert len(V) == 3 assert V[0] == Matrix([0, 0, 0, 0, 1, 0, 0]) y = 0*p[0] + 0*p[1] + 1*p[2] + 0*p[3] + 0*p[4] assert y.diff(t) - y/(t + x) == 0 # Dy + f*y = 0*G0 + 0*G1 def test_limited_integrate_reduce(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) assert limited_integrate_reduce(Poly(x, t), Poly(t**2, t), [(Poly(x, t), Poly(t, t))], DE) == \ (Poly(t, t), Poly(-1/x, t), Poly(t, t), 1, (Poly(x, t), Poly(1, t)), [(Poly(-x*t, t), Poly(1, t))]) def test_limited_integrate(): DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) G = [(Poly(x, x), Poly(x + 1, x))] assert limited_integrate(Poly(-(1 + x + 5*x**2 - 3*x**3), x), Poly(1 - x - x**2 + x**3, x), G, DE) == \ ((Poly(x**2 - x + 2, x), Poly(x - 1, x)), [2]) G = [(Poly(1, x), Poly(x, x))] assert limited_integrate(Poly(5*x**2, x), Poly(3, x), G, DE) == \ ((Poly(5*x**3/9, x), Poly(1, x)), [0]) def test_is_log_deriv_k_t_radical(): DE = DifferentialExtension(extension={'D': [Poly(1, x)], 'exts': [None], 'extargs': [None]}) assert is_log_deriv_k_t_radical(Poly(2*x, x), Poly(1, x), DE) is None DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2*t1, t1), Poly(1/x, t2)], 'exts': [None, 'exp', 'log'], 'extargs': [None, 2*x, x]}) assert is_log_deriv_k_t_radical(Poly(x + t2/2, t2), Poly(1, t2), DE) == \ ([(t1, 1), (x, 1)], t1*x, 2, 0) # TODO: Add more tests DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(1/x, t)], 'exts': [None, 'exp', 'log'], 'extargs': [None, x, x]}) assert is_log_deriv_k_t_radical(Poly(x + t/2 + 3, t), Poly(1, t), DE) == \ ([(t0, 2), (x, 1)], x*t0**2, 2, 3) def test_is_deriv_k(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x + 1), t2)], 'exts': [None, 'log', 'log'], 'extargs': [None, x, x + 1]}) assert is_deriv_k(Poly(2*x**2 + 2*x, t2), Poly(1, t2), DE) == \ ([(t1, 1), (t2, 1)], t1 + t2, 2) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t2, t2)], 'exts': [None, 'log', 'exp'], 'extargs': [None, x, x]}) assert is_deriv_k(Poly(x**2*t2**3, t2), Poly(1, t2), DE) == \ ([(x, 3), (t1, 2)], 2*t1 + 3*x, 1) # TODO: Add more tests, including ones with exponentials DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2/x, t1)], 'exts': [None, 'log'], 'extargs': [None, x**2]}) assert is_deriv_k(Poly(x, t1), Poly(1, t1), DE) == \ ([(t1, S(1)/2)], t1/2, 1) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2/(1 + x), t0)], 'exts': [None, 'log'], 'extargs': [None, x**2 + 2*x + 1]}) assert is_deriv_k(Poly(1 + x, t0), Poly(1, t0), DE) == \ ([(t0, S(1)/2)], t0/2, 1) # Issue 10798 # DE = DifferentialExtension(log(1/x), x) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-1/x, t)], 'exts': [None, 'log'], 'extargs': [None, 1/x]}) assert is_deriv_k(Poly(1, t), Poly(x, t), DE) == ([(t, 1)], t, 1) def test_is_log_deriv_k_t_radical_in_field(): # NOTE: any potential constant factor in the second element of the result # doesn't matter, because it cancels in Da/a. DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) assert is_log_deriv_k_t_radical_in_field(Poly(5*t + 1, t), Poly(2*t*x, t), DE) == \ (2, t*x**5) assert is_log_deriv_k_t_radical_in_field(Poly(2 + 3*t, t), Poly(5*x*t, t), DE) == \ (5, x**3*t**2) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t/x**2, t)]}) assert is_log_deriv_k_t_radical_in_field(Poly(-(1 + 2*t), t), Poly(2*x**2 + 2*x**2*t, t), DE) == \ (2, t + t**2) assert is_log_deriv_k_t_radical_in_field(Poly(-1, t), Poly(x**2, t), DE) == \ (1, t) assert is_log_deriv_k_t_radical_in_field(Poly(1, t), Poly(2*x**2, t), DE) == \ (2, 1/t) def test_parametric_log_deriv(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) assert parametric_log_deriv_heu(Poly(5*t**2 + t - 6, t), Poly(2*x*t**2, t), Poly(-1, t), Poly(x*t**2, t), DE) == \ (2, 6, t*x**5)
0d3547f214ad4b66b3d2d7965120050a6240ac51f72e34bfd680625dde8b7c09
from sympy import ( Symbol, Wild, sin, cos, exp, sqrt, pi, Function, Derivative, Integer, Eq, symbols, Add, I, Float, log, Rational, Lambda, atan2, cse, cot, tan, S, Tuple, Basic, Dict, Piecewise, oo, Mul, factor, nsimplify, zoo, Subs, RootOf, AccumBounds, Matrix, zeros) from sympy.core.basic import _aresame from sympy.utilities.pytest import XFAIL from sympy.abc import a, x, y, z def test_subs(): n3 = Rational(3) e = x e = e.subs(x, n3) assert e == Rational(3) e = 2*x assert e == 2*x e = e.subs(x, n3) assert e == Rational(6) def test_subs_Matrix(): z = zeros(2) assert (x*y).subs({x:z, y:0}) == z assert (x*y).subs({y:z, x:0}) == 0 assert (x*y).subs({y:z, x:0}, simultaneous=True) == z assert (x + y).subs({x: z, y: z}) == z def test_subs_AccumBounds(): e = x e = e.subs(x, AccumBounds(1, 3)) assert e == AccumBounds(1, 3) e = 2*x e = e.subs(x, AccumBounds(1, 3)) assert e == AccumBounds(2, 6) e = x + x**2 e = e.subs(x, AccumBounds(-1, 1)) assert e == AccumBounds(-1, 2) def test_trigonometric(): n3 = Rational(3) e = (sin(x)**2).diff(x) assert e == 2*sin(x)*cos(x) e = e.subs(x, n3) assert e == 2*cos(n3)*sin(n3) e = (sin(x)**2).diff(x) assert e == 2*sin(x)*cos(x) e = e.subs(sin(x), cos(x)) assert e == 2*cos(x)**2 assert exp(pi).subs(exp, sin) == 0 assert cos(exp(pi)).subs(exp, sin) == 1 i = Symbol('i', integer=True) zoo = S.ComplexInfinity assert tan(x).subs(x, pi/2) is zoo assert cot(x).subs(x, pi) is zoo assert cot(i*x).subs(x, pi) is zoo assert tan(i*x).subs(x, pi/2) == tan(i*pi/2) assert tan(i*x).subs(x, pi/2).subs(i, 1) is zoo o = Symbol('o', odd=True) assert tan(o*x).subs(x, pi/2) == tan(o*pi/2) def test_powers(): assert sqrt(1 - sqrt(x)).subs(x, 4) == I assert (sqrt(1 - x**2)**3).subs(x, 2) == - 3*I*sqrt(3) assert (x**Rational(1, 3)).subs(x, 27) == 3 assert (x**Rational(1, 3)).subs(x, -27) == 3*(-1)**Rational(1, 3) assert ((-x)**Rational(1, 3)).subs(x, 27) == 3*(-1)**Rational(1, 3) n = Symbol('n', negative=True) assert (x**n).subs(x, 0) is S.ComplexInfinity assert exp(-1).subs(S.Exp1, 0) is S.ComplexInfinity assert (x**(4.0*y)).subs(x**(2.0*y), n) == n**2.0 assert (2**(x + 2)).subs(2, 3) == 3**(x + 3) def test_logexppow(): # no eval() x = Symbol('x', real=True) w = Symbol('w') e = (3**(1 + x) + 2**(1 + x))/(3**x + 2**x) assert e.subs(2**x, w) != e assert e.subs(exp(x*log(Rational(2))), w) != e def test_bug(): x1 = Symbol('x1') x2 = Symbol('x2') y = x1*x2 assert y.subs(x1, Float(3.0)) == Float(3.0)*x2 def test_subbug1(): # see that they don't fail (x**x).subs(x, 1) (x**x).subs(x, 1.0) def test_subbug2(): # Ensure this does not cause infinite recursion assert Float(7.7).epsilon_eq(abs(x).subs(x, -7.7)) def test_dict_set(): a, b, c = map(Wild, 'abc') f = 3*cos(4*x) r = f.match(a*cos(b*x)) assert r == {a: 3, b: 4} e = a/b*sin(b*x) assert e.subs(r) == r[a]/r[b]*sin(r[b]*x) assert e.subs(r) == 3*sin(4*x) / 4 s = set(r.items()) assert e.subs(s) == r[a]/r[b]*sin(r[b]*x) assert e.subs(s) == 3*sin(4*x) / 4 assert e.subs(r) == r[a]/r[b]*sin(r[b]*x) assert e.subs(r) == 3*sin(4*x) / 4 assert x.subs(Dict((x, 1))) == 1 def test_dict_ambigous(): # see issue 3566 f = x*exp(x) g = z*exp(z) df = {x: y, exp(x): y} dg = {z: y, exp(z): y} assert f.subs(df) == y**2 assert g.subs(dg) == y**2 # and this is how order can affect the result assert f.subs(x, y).subs(exp(x), y) == y*exp(y) assert f.subs(exp(x), y).subs(x, y) == y**2 # length of args and count_ops are the same so # default_sort_key resolves ordering...if one # doesn't want this result then an unordered # sequence should not be used. e = 1 + x*y assert e.subs({x: y, y: 2}) == 5 # here, there are no obviously clashing keys or values # but the results depend on the order assert exp(x/2 + y).subs({exp(y + 1): 2, x: 2}) == exp(y + 1) def test_deriv_sub_bug3(): f = Function('f') pat = Derivative(f(x), x, x) assert pat.subs(y, y**2) == Derivative(f(x), x, x) assert pat.subs(y, y**2) != Derivative(f(x), x) def test_equality_subs1(): f = Function('f') eq = Eq(f(x)**2, x) res = Eq(Integer(16), x) assert eq.subs(f(x), 4) == res def test_equality_subs2(): f = Function('f') eq = Eq(f(x)**2, 16) assert bool(eq.subs(f(x), 3)) is False assert bool(eq.subs(f(x), 4)) is True def test_issue_3742(): e = sqrt(x)*exp(y) assert e.subs(sqrt(x), 1) == exp(y) def test_subs_dict1(): assert (1 + x*y).subs(x, pi) == 1 + pi*y assert (1 + x*y).subs({x: pi, y: 2}) == 1 + 2*pi c2, c3, q1p, q2p, c1, s1, s2, s3 = symbols('c2 c3 q1p q2p c1 s1 s2 s3') test = (c2**2*q2p*c3 + c1**2*s2**2*q2p*c3 + s1**2*s2**2*q2p*c3 - c1**2*q1p*c2*s3 - s1**2*q1p*c2*s3) assert (test.subs({c1**2: 1 - s1**2, c2**2: 1 - s2**2, c3**3: 1 - s3**2}) == c3*q2p*(1 - s2**2) + c3*q2p*s2**2*(1 - s1**2) - c2*q1p*s3*(1 - s1**2) + c3*q2p*s1**2*s2**2 - c2*q1p*s3*s1**2) def test_mul(): x, y, z, a, b, c = symbols('x y z a b c') A, B, C = symbols('A B C', commutative=0) assert (x*y*z).subs(z*x, y) == y**2 assert (z*x).subs(1/x, z) == 1 assert (x*y/z).subs(1/z, a) == a*x*y assert (x*y/z).subs(x/z, a) == a*y assert (x*y/z).subs(y/z, a) == a*x assert (x*y/z).subs(x/z, 1/a) == y/a assert (x*y/z).subs(x, 1/a) == y/(z*a) assert (2*x*y).subs(5*x*y, z) != 2*z/5 assert (x*y*A).subs(x*y, a) == a*A assert (x**2*y**(3*x/2)).subs(x*y**(x/2), 2) == 4*y**(x/2) assert (x*exp(x*2)).subs(x*exp(x), 2) == 2*exp(x) assert ((x**(2*y))**3).subs(x**y, 2) == 64 assert (x*A*B).subs(x*A, y) == y*B assert (x*y*(1 + x)*(1 + x*y)).subs(x*y, 2) == 6*(1 + x) assert ((1 + A*B)*A*B).subs(A*B, x*A*B) assert (x*a/z).subs(x/z, A) == a*A assert (x**3*A).subs(x**2*A, a) == a*x assert (x**2*A*B).subs(x**2*B, a) == a*A assert (x**2*A*B).subs(x**2*A, a) == a*B assert (b*A**3/(a**3*c**3)).subs(a**4*c**3*A**3/b**4, z) == \ b*A**3/(a**3*c**3) assert (6*x).subs(2*x, y) == 3*y assert (y*exp(3*x/2)).subs(y*exp(x), 2) == 2*exp(x/2) assert (y*exp(3*x/2)).subs(y*exp(x), 2) == 2*exp(x/2) assert (A**2*B*A**2*B*A**2).subs(A*B*A, C) == A*C**2*A assert (x*A**3).subs(x*A, y) == y*A**2 assert (x**2*A**3).subs(x*A, y) == y**2*A assert (x*A**3).subs(x*A, B) == B*A**2 assert (x*A*B*A*exp(x*A*B)).subs(x*A, B) == B**2*A*exp(B*B) assert (x**2*A*B*A*exp(x*A*B)).subs(x*A, B) == B**3*exp(B**2) assert (x**3*A*exp(x*A*B)*A*exp(x*A*B)).subs(x*A, B) == \ x*B*exp(B**2)*B*exp(B**2) assert (x*A*B*C*A*B).subs(x*A*B, C) == C**2*A*B assert (-I*a*b).subs(a*b, 2) == -2*I # issue 6361 assert (-8*I*a).subs(-2*a, 1) == 4*I assert (-I*a).subs(-a, 1) == I # issue 6441 assert (4*x**2).subs(2*x, y) == y**2 assert (2*4*x**2).subs(2*x, y) == 2*y**2 assert (-x**3/9).subs(-x/3, z) == -z**2*x assert (-x**3/9).subs(x/3, z) == -z**2*x assert (-2*x**3/9).subs(x/3, z) == -2*x*z**2 assert (-2*x**3/9).subs(-x/3, z) == -2*x*z**2 assert (-2*x**3/9).subs(-2*x, z) == z*x**2/9 assert (-2*x**3/9).subs(2*x, z) == -z*x**2/9 assert (2*(3*x/5/7)**2).subs(3*x/5, z) == 2*(S(1)/7)**2*z**2 assert (4*x).subs(-2*x, z) == 4*x # try keep subs literal def test_subs_simple(): a = symbols('a', commutative=True) x = symbols('x', commutative=False) assert (2*a).subs(1, 3) == 2*a assert (2*a).subs(2, 3) == 3*a assert (2*a).subs(a, 3) == 6 assert sin(2).subs(1, 3) == sin(2) assert sin(2).subs(2, 3) == sin(3) assert sin(a).subs(a, 3) == sin(3) assert (2*x).subs(1, 3) == 2*x assert (2*x).subs(2, 3) == 3*x assert (2*x).subs(x, 3) == 6 assert sin(x).subs(x, 3) == sin(3) def test_subs_constants(): a, b = symbols('a b', commutative=True) x, y = symbols('x y', commutative=False) assert (a*b).subs(2*a, 1) == a*b assert (1.5*a*b).subs(a, 1) == 1.5*b assert (2*a*b).subs(2*a, 1) == b assert (2*a*b).subs(4*a, 1) == 2*a*b assert (x*y).subs(2*x, 1) == x*y assert (1.5*x*y).subs(x, 1) == 1.5*y assert (2*x*y).subs(2*x, 1) == y assert (2*x*y).subs(4*x, 1) == 2*x*y def test_subs_commutative(): a, b, c, d, K = symbols('a b c d K', commutative=True) assert (a*b).subs(a*b, K) == K assert (a*b*a*b).subs(a*b, K) == K**2 assert (a*a*b*b).subs(a*b, K) == K**2 assert (a*b*c*d).subs(a*b*c, K) == d*K assert (a*b**c).subs(a, K) == K*b**c assert (a*b**c).subs(b, K) == a*K**c assert (a*b**c).subs(c, K) == a*b**K assert (a*b*c*b*a).subs(a*b, K) == c*K**2 assert (a**3*b**2*a).subs(a*b, K) == a**2*K**2 def test_subs_noncommutative(): w, x, y, z, L = symbols('w x y z L', commutative=False) alpha = symbols('alpha', commutative=True) someint = symbols('someint', commutative=True, integer=True) assert (x*y).subs(x*y, L) == L assert (w*y*x).subs(x*y, L) == w*y*x assert (w*x*y*z).subs(x*y, L) == w*L*z assert (x*y*x*y).subs(x*y, L) == L**2 assert (x*x*y).subs(x*y, L) == x*L assert (x*x*y*y).subs(x*y, L) == x*L*y assert (w*x*y).subs(x*y*z, L) == w*x*y assert (x*y**z).subs(x, L) == L*y**z assert (x*y**z).subs(y, L) == x*L**z assert (x*y**z).subs(z, L) == x*y**L assert (w*x*y*z*x*y).subs(x*y*z, L) == w*L*x*y assert (w*x*y*y*w*x*x*y*x*y*y*x*y).subs(x*y, L) == w*L*y*w*x*L**2*y*L # Check fractional power substitutions. It should not do # substitutions that choose a value for noncommutative log, # or inverses that don't already appear in the expressions. assert (x*x*x).subs(x*x, L) == L*x assert (x*x*x*y*x*x*x*x).subs(x*x, L) == L*x*y*L**2 for p in range(1, 5): for k in range(10): assert (y * x**k).subs(x**p, L) == y * L**(k//p) * x**(k % p) assert (x**(S(3)/2)).subs(x**(S(1)/2), L) == x**(S(3)/2) assert (x**(S(1)/2)).subs(x**(S(1)/2), L) == L assert (x**(-S(1)/2)).subs(x**(S(1)/2), L) == x**(-S(1)/2) assert (x**(-S(1)/2)).subs(x**(-S(1)/2), L) == L assert (x**(2*someint)).subs(x**someint, L) == L**2 assert (x**(2*someint + 3)).subs(x**someint, L) == L**2*x**3 assert (x**(3*someint + 3)).subs(x**someint, L) == L**3*x**3 assert (x**(3*someint)).subs(x**(2*someint), L) == L * x**someint assert (x**(4*someint)).subs(x**(2*someint), L) == L**2 assert (x**(4*someint + 1)).subs(x**(2*someint), L) == L**2 * x assert (x**(4*someint)).subs(x**(3*someint), L) == L * x**someint assert (x**(4*someint + 1)).subs(x**(3*someint), L) == L * x**(someint + 1) assert (x**(2*alpha)).subs(x**alpha, L) == x**(2*alpha) assert (x**(2*alpha + 2)).subs(x**2, L) == x**(2*alpha + 2) assert ((2*z)**alpha).subs(z**alpha, y) == (2*z)**alpha assert (x**(2*someint*alpha)).subs(x**someint, L) == x**(2*someint*alpha) assert (x**(2*someint + alpha)).subs(x**someint, L) == x**(2*someint + alpha) # This could in principle be substituted, but is not currently # because it requires recognizing that someint**2 is divisible by # someint. assert (x**(someint**2 + 3)).subs(x**someint, L) == x**(someint**2 + 3) # alpha**z := exp(log(alpha) z) is usually well-defined assert (4**z).subs(2**z, y) == y**2 # Negative powers assert (x**(-1)).subs(x**3, L) == x**(-1) assert (x**(-2)).subs(x**3, L) == x**(-2) assert (x**(-3)).subs(x**3, L) == L**(-1) assert (x**(-4)).subs(x**3, L) == L**(-1) * x**(-1) assert (x**(-5)).subs(x**3, L) == L**(-1) * x**(-2) assert (x**(-1)).subs(x**(-3), L) == x**(-1) assert (x**(-2)).subs(x**(-3), L) == x**(-2) assert (x**(-3)).subs(x**(-3), L) == L assert (x**(-4)).subs(x**(-3), L) == L * x**(-1) assert (x**(-5)).subs(x**(-3), L) == L * x**(-2) assert (x**1).subs(x**(-3), L) == x assert (x**2).subs(x**(-3), L) == x**2 assert (x**3).subs(x**(-3), L) == L**(-1) assert (x**4).subs(x**(-3), L) == L**(-1) * x assert (x**5).subs(x**(-3), L) == L**(-1) * x**2 def test_subs_basic_funcs(): a, b, c, d, K = symbols('a b c d K', commutative=True) w, x, y, z, L = symbols('w x y z L', commutative=False) assert (x + y).subs(x + y, L) == L assert (x - y).subs(x - y, L) == L assert (x/y).subs(x, L) == L/y assert (x**y).subs(x, L) == L**y assert (x**y).subs(y, L) == x**L assert ((a - c)/b).subs(b, K) == (a - c)/K assert (exp(x*y - z)).subs(x*y, L) == exp(L - z) assert (a*exp(x*y - w*z) + b*exp(x*y + w*z)).subs(z, 0) == \ a*exp(x*y) + b*exp(x*y) assert ((a - b)/(c*d - a*b)).subs(c*d - a*b, K) == (a - b)/K assert (w*exp(a*b - c)*x*y/4).subs(x*y, L) == w*exp(a*b - c)*L/4 def test_subs_wild(): R, S, T, U = symbols('R S T U', cls=Wild) assert (R*S).subs(R*S, T) == T assert (S*R).subs(R*S, T) == T assert (R + S).subs(R + S, T) == T assert (R**S).subs(R, T) == T**S assert (R**S).subs(S, T) == R**T assert (R*S**T).subs(R, U) == U*S**T assert (R*S**T).subs(S, U) == R*U**T assert (R*S**T).subs(T, U) == R*S**U def test_subs_mixed(): a, b, c, d, K = symbols('a b c d K', commutative=True) w, x, y, z, L = symbols('w x y z L', commutative=False) R, S, T, U = symbols('R S T U', cls=Wild) assert (a*x*y).subs(x*y, L) == a*L assert (a*b*x*y*x).subs(x*y, L) == a*b*L*x assert (R*x*y*exp(x*y)).subs(x*y, L) == R*L*exp(L) assert (a*x*y*y*x - x*y*z*exp(a*b)).subs(x*y, L) == a*L*y*x - L*z*exp(a*b) e = c*y*x*y*x**(R*S - a*b) - T*(a*R*b*S) assert e.subs(x*y, L).subs(a*b, K).subs(R*S, U) == \ c*y*L*x**(U - K) - T*(U*K) def test_division(): a, b, c = symbols('a b c', commutative=True) x, y, z = symbols('x y z', commutative=True) assert (1/a).subs(a, c) == 1/c assert (1/a**2).subs(a, c) == 1/c**2 assert (1/a**2).subs(a, -2) == Rational(1, 4) assert (-(1/a**2)).subs(a, -2) == -Rational(1, 4) assert (1/x).subs(x, z) == 1/z assert (1/x**2).subs(x, z) == 1/z**2 assert (1/x**2).subs(x, -2) == Rational(1, 4) assert (-(1/x**2)).subs(x, -2) == -Rational(1, 4) #issue 5360 assert (1/x).subs(x, 0) == 1/S(0) def test_add(): a, b, c, d, x, y, t = symbols('a b c d x y t') assert (a**2 - b - c).subs(a**2 - b, d) in [d - c, a**2 - b - c] assert (a**2 - c).subs(a**2 - c, d) == d assert (a**2 - b - c).subs(a**2 - c, d) in [d - b, a**2 - b - c] assert (a**2 - x - c).subs(a**2 - c, d) in [d - x, a**2 - x - c] assert (a**2 - b - sqrt(a)).subs(a**2 - sqrt(a), c) == c - b assert (a + b + exp(a + b)).subs(a + b, c) == c + exp(c) assert (c + b + exp(c + b)).subs(c + b, a) == a + exp(a) assert (a + b + c + d).subs(b + c, x) == a + d + x assert (a + b + c + d).subs(-b - c, x) == a + d - x assert ((x + 1)*y).subs(x + 1, t) == t*y assert ((-x - 1)*y).subs(x + 1, t) == -t*y assert ((x - 1)*y).subs(x + 1, t) == y*(t - 2) assert ((-x + 1)*y).subs(x + 1, t) == y*(-t + 2) # this should work every time: e = a**2 - b - c assert e.subs(Add(*e.args[:2]), d) == d + e.args[2] assert e.subs(a**2 - c, d) == d - b # the fallback should recognize when a change has # been made; while .1 == Rational(1, 10) they are not the same # and the change should be made assert (0.1 + a).subs(0.1, Rational(1, 10)) == Rational(1, 10) + a e = (-x*(-y + 1) - y*(y - 1)) ans = (-x*(x) - y*(-x)).expand() assert e.subs(-y + 1, x) == ans def test_subs_issue_4009(): assert (I*Symbol('a')).subs(1, 2) == I*Symbol('a') def test_functions_subs(): f, g = symbols('f g', cls=Function) l = Lambda((x, y), sin(x) + y) assert (g(y, x) + cos(x)).subs(g, l) == sin(y) + x + cos(x) assert (f(x)**2).subs(f, sin) == sin(x)**2 assert (f(x, y)).subs(f, log) == log(x, y) assert (f(x, y)).subs(f, sin) == f(x, y) assert (sin(x) + atan2(x, y)).subs([[atan2, f], [sin, g]]) == \ f(x, y) + g(x) assert (g(f(x + y, x))).subs([[f, l], [g, exp]]) == exp(x + sin(x + y)) def test_derivative_subs(): f = Function('f') g = Function('g') assert Derivative(f(x), x).subs(f(x), y) != 0 # need xreplace to put the function back, see #13803 assert Derivative(f(x), x).subs(f(x), y).xreplace({y: f(x)}) == \ Derivative(f(x), x) # issues 5085, 5037 assert cse(Derivative(f(x), x) + f(x))[1][0].has(Derivative) assert cse(Derivative(f(x, y), x) + Derivative(f(x, y), y))[1][0].has(Derivative) eq = Derivative(g(x), g(x)) assert eq.subs(g, f) == Derivative(f(x), f(x)) assert eq.subs(g(x), f(x)) == Derivative(f(x), f(x)) assert eq.subs(g, cos) == Subs(Derivative(y, y), y, cos(x)) def test_derivative_subs2(): f_func, g_func = symbols('f g', cls=Function) f, g = f_func(x, y, z), g_func(x, y, z) assert Derivative(f, x, y).subs(Derivative(f, x, y), g) == g assert Derivative(f, y, x).subs(Derivative(f, x, y), g) == g assert Derivative(f, x, y).subs(Derivative(f, x), g) == Derivative(g, y) assert Derivative(f, x, y).subs(Derivative(f, y), g) == Derivative(g, x) assert (Derivative(f, x, y, z).subs( Derivative(f, x, z), g) == Derivative(g, y)) assert (Derivative(f, x, y, z).subs( Derivative(f, z, y), g) == Derivative(g, x)) assert (Derivative(f, x, y, z).subs( Derivative(f, z, y, x), g) == g) # Issue 9135 assert (Derivative(f, x, x, y).subs( Derivative(f, y, y), g) == Derivative(f, x, x, y)) assert (Derivative(f, x, y, y, z).subs( Derivative(f, x, y, y, y), g) == Derivative(f, x, y, y, z)) assert Derivative(f, x, y).subs(Derivative(f_func(x), x, y), g) == Derivative(f, x, y) def test_derivative_subs3(): dex = Derivative(exp(x), x) assert Derivative(dex, x).subs(dex, exp(x)) == dex assert dex.subs(exp(x), dex) == Derivative(exp(x), x, x) def test_issue_5284(): A, B = symbols('A B', commutative=False) assert (x*A).subs(x**2*A, B) == x*A assert (A**2).subs(A**3, B) == A**2 assert (A**6).subs(A**3, B) == B**2 def test_subs_iter(): assert x.subs(reversed([[x, y]])) == y it = iter([[x, y]]) assert x.subs(it) == y assert x.subs(Tuple((x, y))) == y def test_subs_dict(): a, b, c, d, e = symbols('a b c d e') assert (2*x + y + z).subs(dict(x=1, y=2)) == 4 + z l = [(sin(x), 2), (x, 1)] assert (sin(x)).subs(l) == \ (sin(x)).subs(dict(l)) == 2 assert sin(x).subs(reversed(l)) == sin(1) expr = sin(2*x) + sqrt(sin(2*x))*cos(2*x)*sin(exp(x)*x) reps = dict([ (sin(2*x), c), (sqrt(sin(2*x)), a), (cos(2*x), b), (exp(x), e), (x, d), ]) assert expr.subs(reps) == c + a*b*sin(d*e) l = [(x, 3), (y, x**2)] assert (x + y).subs(l) == 3 + x**2 assert (x + y).subs(reversed(l)) == 12 # If changes are made to convert lists into dictionaries and do # a dictionary-lookup replacement, these tests will help to catch # some logical errors that might occur l = [(y, z + 2), (1 + z, 5), (z, 2)] assert (y - 1 + 3*x).subs(l) == 5 + 3*x l = [(y, z + 2), (z, 3)] assert (y - 2).subs(l) == 3 def test_no_arith_subs_on_floats(): assert (x + 3).subs(x + 3, a) == a assert (x + 3).subs(x + 2, a) == a + 1 assert (x + y + 3).subs(x + 3, a) == a + y assert (x + y + 3).subs(x + 2, a) == a + y + 1 assert (x + 3.0).subs(x + 3.0, a) == a assert (x + 3.0).subs(x + 2.0, a) == x + 3.0 assert (x + y + 3.0).subs(x + 3.0, a) == a + y assert (x + y + 3.0).subs(x + 2.0, a) == x + y + 3.0 def test_issue_5651(): a, b, c, K = symbols('a b c K', commutative=True) assert (a/(b*c)).subs(b*c, K) == a/K assert (a/(b**2*c**3)).subs(b*c, K) == a/(c*K**2) assert (1/(x*y)).subs(x*y, 2) == S.Half assert ((1 + x*y)/(x*y)).subs(x*y, 1) == 2 assert (x*y*z).subs(x*y, 2) == 2*z assert ((1 + x*y)/(x*y)/z).subs(x*y, 1) == 2/z def test_issue_6075(): assert Tuple(1, True).subs(1, 2) == Tuple(2, True) def test_issue_6079(): # since x + 2.0 == x + 2 we can't do a simple equality test assert _aresame((x + 2.0).subs(2, 3), x + 2.0) assert _aresame((x + 2.0).subs(2.0, 3), x + 3) assert not _aresame(x + 2, x + 2.0) assert not _aresame(Basic(cos, 1), Basic(cos, 1.)) assert _aresame(cos, cos) assert not _aresame(1, S(1)) assert not _aresame(x, symbols('x', positive=True)) def test_issue_4680(): N = Symbol('N') assert N.subs(dict(N=3)) == 3 def test_issue_6158(): assert (x - 1).subs(1, y) == x - y assert (x - 1).subs(-1, y) == x + y assert (x - oo).subs(oo, y) == x - y assert (x - oo).subs(-oo, y) == x + y def test_Function_subs(): f, g, h, i = symbols('f g h i', cls=Function) p = Piecewise((g(f(x, y)), x < -1), (g(x), x <= 1)) assert p.subs(g, h) == Piecewise((h(f(x, y)), x < -1), (h(x), x <= 1)) assert (f(y) + g(x)).subs({f: h, g: i}) == i(x) + h(y) def test_simultaneous_subs(): reps = {x: 0, y: 0} assert (x/y).subs(reps) != (y/x).subs(reps) assert (x/y).subs(reps, simultaneous=True) == \ (y/x).subs(reps, simultaneous=True) reps = reps.items() assert (x/y).subs(reps) != (y/x).subs(reps) assert (x/y).subs(reps, simultaneous=True) == \ (y/x).subs(reps, simultaneous=True) assert Derivative(x, y, z).subs(reps, simultaneous=True) == \ Subs(Derivative(0, y, z), y, 0) def test_issue_6419_6421(): assert (1/(1 + x/y)).subs(x/y, x) == 1/(1 + x) assert (-2*I).subs(2*I, x) == -x assert (-I*x).subs(I*x, x) == -x assert (-3*I*y**4).subs(3*I*y**2, x) == -x*y**2 def test_issue_6559(): assert (-12*x + y).subs(-x, 1) == 12 + y # though this involves cse it generated a failure in Mul._eval_subs x0, x1 = symbols('x0 x1') e = -log(-12*sqrt(2) + 17)/24 - log(-2*sqrt(2) + 3)/12 + sqrt(2)/3 # XXX modify cse so x1 is eliminated and x0 = -sqrt(2)? assert cse(e) == ( [(x0, sqrt(2))], [x0/3 - log(-12*x0 + 17)/24 - log(-2*x0 + 3)/12]) def test_issue_5261(): x = symbols('x', real=True) e = I*x assert exp(e).subs(exp(x), y) == y**I assert (2**e).subs(2**x, y) == y**I eq = (-2)**e assert eq.subs((-2)**x, y) == eq def test_issue_6923(): assert (-2*x*sqrt(2)).subs(2*x, y) == -sqrt(2)*y def test_2arg_hack(): N = Symbol('N', commutative=False) ans = Mul(2, y + 1, evaluate=False) assert (2*x*(y + 1)).subs(x, 1, hack2=True) == ans assert (2*(y + 1 + N)).subs(N, 0, hack2=True) == ans @XFAIL def test_mul2(): """When this fails, remove things labelled "2-arg hack" 1) remove special handling in the fallback of subs that was added in the same commit as this test 2) remove the special handling in Mul.flatten """ assert (2*(x + 1)).is_Mul def test_noncommutative_subs(): x,y = symbols('x,y', commutative=False) assert (x*y*x).subs([(x, x*y), (y, x)], simultaneous=True) == (x*y*x**2*y) def test_issue_2877(): f = Float(2.0) assert (x + f).subs({f: 2}) == x + 2 def r(a, b, c): return factor(a*x**2 + b*x + c) e = r(5.0/6, 10, 5) assert nsimplify(e) == 5*x**2/6 + 10*x + 5 def test_issue_5910(): t = Symbol('t') assert (1/(1 - t)).subs(t, 1) == zoo n = t d = t - 1 assert (n/d).subs(t, 1) == zoo assert (-n/-d).subs(t, 1) == zoo def test_issue_5217(): s = Symbol('s') z = (1 - 2*x*x) w = (1 + 2*x*x) q = 2*x*x*2*y*y sub = {2*x*x: s} assert w.subs(sub) == 1 + s assert z.subs(sub) == 1 - s assert q == 4*x**2*y**2 assert q.subs(sub) == 2*y**2*s def test_issue_10829(): assert (4**x).subs(2**x, y) == y**2 assert (9**x).subs(3**x, y) == y**2 def test_pow_eval_subs_no_cache(): # Tests pull request 9376 is working from sympy.core.cache import clear_cache s = 1/sqrt(x**2) # This bug only appeared when the cache was turned off. # We need to approximate running this test without the cache. # This creates approximately the same situation. clear_cache() # This used to fail with a wrong result. # It incorrectly returned 1/sqrt(x**2) before this pull request. result = s.subs(sqrt(x**2), y) assert result == 1/y def test_RootOf_issue_10092(): x = Symbol('x', real=True) eq = x**3 - 17*x**2 + 81*x - 118 r = RootOf(eq, 0) assert (x < r).subs(x, r) is S.false def test_issue_8886(): from sympy.physics.mechanics import ReferenceFrame as R # if something can't be sympified we assume that it # doesn't play well with SymPy and disallow the # substitution v = R('A').x assert x.subs(x, v) == x assert v.subs(v, x) == v assert v.__eq__(x) is False def test_issue_12657(): # treat -oo like the atom that it is reps = [(-oo, 1), (oo, 2)] assert (x < -oo).subs(reps) == (x < 1) assert (x < -oo).subs(list(reversed(reps))) == (x < 1) reps = [(-oo, 2), (oo, 1)] assert (x < oo).subs(reps) == (x < 1) assert (x < oo).subs(list(reversed(reps))) == (x < 1) def test_recurse_Application_args(): F = Lambda((x, y), exp(2*x + 3*y)) f = Function('f') A = f(x, f(x, x)) C = F(x, F(x, x)) assert A.subs(f, F) == A.replace(f, F) == C def test_Subs_subs(): assert Subs(x*y, x, x).subs(x, y) == Subs(x*y, x, y) assert Subs(x*y, x, x + 1).subs(x, y) == \ Subs(x*y, x, y + 1) assert Subs(x*y, y, x + 1).subs(x, y) == \ Subs(y**2, y, y + 1) a = Subs(x*y*z, (y, x, z), (x + 1, x + z, x)) b = Subs(x*y*z, (y, x, z), (x + 1, y + z, y)) assert a.subs(x, y) == b and \ a.doit().subs(x, y) == a.subs(x, y).doit() f = Function('f') g = Function('g') assert Subs(2*f(x, y) + g(x), f(x, y), 1).subs(y, 2) == Subs( 2*f(x, y) + g(x), (f(x, y), y), (1, 2)) def test_issue_13333(): eq = 1/x assert eq.subs(dict(x='1/2')) == 2 assert eq.subs(dict(x='(1/2)')) == 2 def test_issue_15234(): x, y = symbols('x y', real=True) p = 6*x**5 + x**4 - 4*x**3 + 4*x**2 - 2*x + 3 p_subbed = 6*x**5 - 4*x**3 - 2*x + y**4 + 4*y**2 + 3 assert p.subs([(x**i, y**i) for i in [2, 4]]) == p_subbed x, y = symbols('x y', complex=True) p = 6*x**5 + x**4 - 4*x**3 + 4*x**2 - 2*x + 3 p_subbed = 6*x**5 - 4*x**3 - 2*x + y**4 + 4*y**2 + 3 assert p.subs([(x**i, y**i) for i in [2, 4]]) == p_subbed def test_issue_6976(): x, y = symbols('x y') assert (sqrt(x)**3 + sqrt(x) + x + x**2).subs(sqrt(x), y) == \ y**4 + y**3 + y**2 + y assert (x**4 + x**3 + x**2 + x + sqrt(x)).subs(x**2, y) == \ sqrt(x) + x**3 + x + y**2 + y assert x.subs(x**3, y) == x assert x.subs(x**(S(1)/3), y) == y**3 # More substitutions are possible with nonnegative symbols x, y = symbols('x y', nonnegative=True) assert (x**4 + x**3 + x**2 + x + sqrt(x)).subs(x**2, y) == \ y**(S(1)/4) + y**(S(3)/2) + sqrt(y) + y**2 + y assert x.subs(x**3, y) == y**(S(1)/3)
dcc8008f46a9ff6c6e65e21dc098f52f8f3b910b3eb357f12e0c8cc7955d094e
from sympy import (Add, Basic, Expr, S, Symbol, Wild, Float, Integer, Rational, I, sin, cos, tan, exp, log, nan, oo, sqrt, symbols, Integral, sympify, WildFunction, Poly, Function, Derivative, Number, pi, NumberSymbol, zoo, Piecewise, Mul, Pow, nsimplify, ratsimp, trigsimp, radsimp, powsimp, simplify, together, collect, factorial, apart, combsimp, factor, refine, cancel, Tuple, default_sort_key, DiracDelta, gamma, Dummy, Sum, E, exp_polar, expand, diff, O, Heaviside, Si, Max, UnevaluatedExpr, integrate, gammasimp) from sympy.core.function import AppliedUndef from sympy.core.compatibility import range from sympy.physics.secondquant import FockState from sympy.physics.units import meter from sympy.series.formal import FormalPowerSeries from sympy.utilities.pytest import raises, XFAIL from sympy.abc import a, b, c, n, t, u, x, y, z class DummyNumber(object): """ Minimal implementation of a number that works with SymPy. If one has a Number class (e.g. Sage Integer, or some other custom class) that one wants to work well with SymPy, one has to implement at least the methods of this class DummyNumber, resp. its subclasses I5 and F1_1. Basically, one just needs to implement either __int__() or __float__() and then one needs to make sure that the class works with Python integers and with itself. """ def __radd__(self, a): if isinstance(a, (int, float)): return a + self.number return NotImplemented def __truediv__(a, b): return a.__div__(b) def __rtruediv__(a, b): return a.__rdiv__(b) def __add__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number + a return NotImplemented def __rsub__(self, a): if isinstance(a, (int, float)): return a - self.number return NotImplemented def __sub__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number - a return NotImplemented def __rmul__(self, a): if isinstance(a, (int, float)): return a * self.number return NotImplemented def __mul__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number * a return NotImplemented def __rdiv__(self, a): if isinstance(a, (int, float)): return a / self.number return NotImplemented def __div__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number / a return NotImplemented def __rpow__(self, a): if isinstance(a, (int, float)): return a ** self.number return NotImplemented def __pow__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number ** a return NotImplemented def __pos__(self): return self.number def __neg__(self): return - self.number class I5(DummyNumber): number = 5 def __int__(self): return self.number class F1_1(DummyNumber): number = 1.1 def __float__(self): return self.number i5 = I5() f1_1 = F1_1() # basic sympy objects basic_objs = [ Rational(2), Float("1.3"), x, y, pow(x, y)*y, ] # all supported objects all_objs = basic_objs + [ 5, 5.5, i5, f1_1 ] def dotest(s): for x in all_objs: for y in all_objs: s(x, y) return True def test_basic(): def j(a, b): x = a x = +a x = -a x = a + b x = a - b x = a*b x = a/b x = a**b assert dotest(j) def test_ibasic(): def s(a, b): x = a x += b x = a x -= b x = a x *= b x = a x /= b assert dotest(s) def test_relational(): from sympy import Lt assert (pi < 3) is S.false assert (pi <= 3) is S.false assert (pi > 3) is S.true assert (pi >= 3) is S.true assert (-pi < 3) is S.true assert (-pi <= 3) is S.true assert (-pi > 3) is S.false assert (-pi >= 3) is S.false r = Symbol('r', real=True) assert (r - 2 < r - 3) is S.false assert Lt(x + I, x + I + 2).func == Lt # issue 8288 def test_relational_assumptions(): from sympy import Lt, Gt, Le, Ge m1 = Symbol("m1", nonnegative=False) m2 = Symbol("m2", positive=False) m3 = Symbol("m3", nonpositive=False) m4 = Symbol("m4", negative=False) assert (m1 < 0) == Lt(m1, 0) assert (m2 <= 0) == Le(m2, 0) assert (m3 > 0) == Gt(m3, 0) assert (m4 >= 0) == Ge(m4, 0) m1 = Symbol("m1", nonnegative=False, real=True) m2 = Symbol("m2", positive=False, real=True) m3 = Symbol("m3", nonpositive=False, real=True) m4 = Symbol("m4", negative=False, real=True) assert (m1 < 0) is S.true assert (m2 <= 0) is S.true assert (m3 > 0) is S.true assert (m4 >= 0) is S.true m1 = Symbol("m1", negative=True) m2 = Symbol("m2", nonpositive=True) m3 = Symbol("m3", positive=True) m4 = Symbol("m4", nonnegative=True) assert (m1 < 0) is S.true assert (m2 <= 0) is S.true assert (m3 > 0) is S.true assert (m4 >= 0) is S.true m1 = Symbol("m1", negative=False, real=True) m2 = Symbol("m2", nonpositive=False, real=True) m3 = Symbol("m3", positive=False, real=True) m4 = Symbol("m4", nonnegative=False, real=True) assert (m1 < 0) is S.false assert (m2 <= 0) is S.false assert (m3 > 0) is S.false assert (m4 >= 0) is S.false def test_relational_noncommutative(): from sympy import Lt, Gt, Le, Ge A, B = symbols('A,B', commutative=False) assert (A < B) == Lt(A, B) assert (A <= B) == Le(A, B) assert (A > B) == Gt(A, B) assert (A >= B) == Ge(A, B) def test_basic_nostr(): for obj in basic_objs: raises(TypeError, lambda: obj + '1') raises(TypeError, lambda: obj - '1') if obj == 2: assert obj * '1' == '11' else: raises(TypeError, lambda: obj * '1') raises(TypeError, lambda: obj / '1') raises(TypeError, lambda: obj ** '1') def test_series_expansion_for_uniform_order(): assert (1/x + y + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + x).series(x, 0, 1) == 1/x + y + O(x) assert (1/x + 1 + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + 1 + x).series(x, 0, 1) == 1/x + 1 + O(x) assert (1/x + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + y*x + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + y*x + x).series(x, 0, 1) == 1/x + y + O(x) def test_leadterm(): assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0) assert (1/x**2 + 1 + x + x**2).leadterm(x)[1] == -2 assert (1/x + 1 + x + x**2).leadterm(x)[1] == -1 assert (x**2 + 1/x).leadterm(x)[1] == -1 assert (1 + x**2).leadterm(x)[1] == 0 assert (x + 1).leadterm(x)[1] == 0 assert (x + x**2).leadterm(x)[1] == 1 assert (x**2).leadterm(x)[1] == 2 def test_as_leading_term(): assert (3 + 2*x**(log(3)/log(2) - 1)).as_leading_term(x) == 3 assert (1/x**2 + 1 + x + x**2).as_leading_term(x) == 1/x**2 assert (1/x + 1 + x + x**2).as_leading_term(x) == 1/x assert (x**2 + 1/x).as_leading_term(x) == 1/x assert (1 + x**2).as_leading_term(x) == 1 assert (x + 1).as_leading_term(x) == 1 assert (x + x**2).as_leading_term(x) == x assert (x**2).as_leading_term(x) == x**2 assert (x + oo).as_leading_term(x) == oo def test_leadterm2(): assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).leadterm(x) == \ (sin(1 + sin(1)), 0) def test_leadterm3(): assert (y + z + x).leadterm(x) == (y + z, 0) def test_as_leading_term2(): assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).as_leading_term(x) == \ sin(1 + sin(1)) def test_as_leading_term3(): assert (2 + pi + x).as_leading_term(x) == 2 + pi assert (2*x + pi*x + x**2).as_leading_term(x) == (2 + pi)*x def test_as_leading_term4(): # see issue 6843 n = Symbol('n', integer=True, positive=True) r = -n**3/(2*n**2 + 4*n + 2) - n**2/(n**2 + 2*n + 1) + \ n**2/(n + 1) - n/(2*n**2 + 4*n + 2) + n/(n*x + x) + 2*n/(n + 1) - \ 1 + 1/(n*x + x) + 1/(n + 1) - 1/x assert r.as_leading_term(x).cancel() == n/2 def test_as_leading_term_stub(): class foo(Function): pass assert foo(1/x).as_leading_term(x) == foo(1/x) assert foo(1).as_leading_term(x) == foo(1) raises(NotImplementedError, lambda: foo(x).as_leading_term(x)) def test_as_leading_term_deriv_integral(): # related to issue 11313 assert Derivative(x ** 3, x).as_leading_term(x) == 3*x**2 assert Derivative(x ** 3, y).as_leading_term(x) == 0 assert Integral(x ** 3, x).as_leading_term(x) == x**4/4 assert Integral(x ** 3, y).as_leading_term(x) == y*x**3 assert Derivative(exp(x), x).as_leading_term(x) == 1 assert Derivative(log(x), x).as_leading_term(x) == (1/x).as_leading_term(x) def test_atoms(): assert x.atoms() == {x} assert (1 + x).atoms() == {x, S(1)} assert (1 + 2*cos(x)).atoms(Symbol) == {x} assert (1 + 2*cos(x)).atoms(Symbol, Number) == {S(1), S(2), x} assert (2*(x**(y**x))).atoms() == {S(2), x, y} assert Rational(1, 2).atoms() == {S.Half} assert Rational(1, 2).atoms(Symbol) == set([]) assert sin(oo).atoms(oo) == set() assert Poly(0, x).atoms() == {S.Zero} assert Poly(1, x).atoms() == {S.One} assert Poly(x, x).atoms() == {x} assert Poly(x, x, y).atoms() == {x} assert Poly(x + y, x, y).atoms() == {x, y} assert Poly(x + y, x, y, z).atoms() == {x, y} assert Poly(x + y*t, x, y, z).atoms() == {t, x, y} assert (I*pi).atoms(NumberSymbol) == {pi} assert (I*pi).atoms(NumberSymbol, I) == \ (I*pi).atoms(I, NumberSymbol) == {pi, I} assert exp(exp(x)).atoms(exp) == {exp(exp(x)), exp(x)} assert (1 + x*(2 + y) + exp(3 + z)).atoms(Add) == \ {1 + x*(2 + y) + exp(3 + z), 2 + y, 3 + z} # issue 6132 f = Function('f') e = (f(x) + sin(x) + 2) assert e.atoms(AppliedUndef) == \ {f(x)} assert e.atoms(AppliedUndef, Function) == \ {f(x), sin(x)} assert e.atoms(Function) == \ {f(x), sin(x)} assert e.atoms(AppliedUndef, Number) == \ {f(x), S(2)} assert e.atoms(Function, Number) == \ {S(2), sin(x), f(x)} def test_is_polynomial(): k = Symbol('k', nonnegative=True, integer=True) assert Rational(2).is_polynomial(x, y, z) is True assert (S.Pi).is_polynomial(x, y, z) is True assert x.is_polynomial(x) is True assert x.is_polynomial(y) is True assert (x**2).is_polynomial(x) is True assert (x**2).is_polynomial(y) is True assert (x**(-2)).is_polynomial(x) is False assert (x**(-2)).is_polynomial(y) is True assert (2**x).is_polynomial(x) is False assert (2**x).is_polynomial(y) is True assert (x**k).is_polynomial(x) is False assert (x**k).is_polynomial(k) is False assert (x**x).is_polynomial(x) is False assert (k**k).is_polynomial(k) is False assert (k**x).is_polynomial(k) is False assert (x**(-k)).is_polynomial(x) is False assert ((2*x)**k).is_polynomial(x) is False assert (x**2 + 3*x - 8).is_polynomial(x) is True assert (x**2 + 3*x - 8).is_polynomial(y) is True assert (x**2 + 3*x - 8).is_polynomial() is True assert sqrt(x).is_polynomial(x) is False assert (sqrt(x)**3).is_polynomial(x) is False assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(x) is True assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(y) is False assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial() is True assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial() is False assert ( (x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial(x, y) is True assert ( (x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial(x, y) is False def test_is_rational_function(): assert Integer(1).is_rational_function() is True assert Integer(1).is_rational_function(x) is True assert Rational(17, 54).is_rational_function() is True assert Rational(17, 54).is_rational_function(x) is True assert (12/x).is_rational_function() is True assert (12/x).is_rational_function(x) is True assert (x/y).is_rational_function() is True assert (x/y).is_rational_function(x) is True assert (x/y).is_rational_function(x, y) is True assert (x**2 + 1/x/y).is_rational_function() is True assert (x**2 + 1/x/y).is_rational_function(x) is True assert (x**2 + 1/x/y).is_rational_function(x, y) is True assert (sin(y)/x).is_rational_function() is False assert (sin(y)/x).is_rational_function(y) is False assert (sin(y)/x).is_rational_function(x) is True assert (sin(y)/x).is_rational_function(x, y) is False assert (S.NaN).is_rational_function() is False assert (S.Infinity).is_rational_function() is False assert (-S.Infinity).is_rational_function() is False assert (S.ComplexInfinity).is_rational_function() is False def test_is_algebraic_expr(): assert sqrt(3).is_algebraic_expr(x) is True assert sqrt(3).is_algebraic_expr() is True eq = ((1 + x**2)/(1 - y**2))**(S(1)/3) assert eq.is_algebraic_expr(x) is True assert eq.is_algebraic_expr(y) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(x) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(y) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr() is True assert (cos(y)/sqrt(x)).is_algebraic_expr() is False assert (cos(y)/sqrt(x)).is_algebraic_expr(x) is True assert (cos(y)/sqrt(x)).is_algebraic_expr(y) is False assert (cos(y)/sqrt(x)).is_algebraic_expr(x, y) is False def test_SAGE1(): #see https://github.com/sympy/sympy/issues/3346 class MyInt: def _sympy_(self): return Integer(5) m = MyInt() e = Rational(2)*m assert e == 10 raises(TypeError, lambda: Rational(2)*MyInt) def test_SAGE2(): class MyInt(object): def __int__(self): return 5 assert sympify(MyInt()) == 5 e = Rational(2)*MyInt() assert e == 10 raises(TypeError, lambda: Rational(2)*MyInt) def test_SAGE3(): class MySymbol: def __rmul__(self, other): return ('mys', other, self) o = MySymbol() e = x*o assert e == ('mys', x, o) def test_len(): e = x*y assert len(e.args) == 2 e = x + y + z assert len(e.args) == 3 def test_doit(): a = Integral(x**2, x) assert isinstance(a.doit(), Integral) is False assert isinstance(a.doit(integrals=True), Integral) is False assert isinstance(a.doit(integrals=False), Integral) is True assert (2*Integral(x, x)).doit() == x**2 def test_attribute_error(): raises(AttributeError, lambda: x.cos()) raises(AttributeError, lambda: x.sin()) raises(AttributeError, lambda: x.exp()) def test_args(): assert (x*y).args in ((x, y), (y, x)) assert (x + y).args in ((x, y), (y, x)) assert (x*y + 1).args in ((x*y, 1), (1, x*y)) assert sin(x*y).args == (x*y,) assert sin(x*y).args[0] == x*y assert (x**y).args == (x, y) assert (x**y).args[0] == x assert (x**y).args[1] == y def test_noncommutative_expand_issue_3757(): A, B, C = symbols('A,B,C', commutative=False) assert A*B - B*A != 0 assert (A*(A + B)*B).expand() == A**2*B + A*B**2 assert (A*(A + B + C)*B).expand() == A**2*B + A*B**2 + A*C*B def test_as_numer_denom(): a, b, c = symbols('a, b, c') assert nan.as_numer_denom() == (nan, 1) assert oo.as_numer_denom() == (oo, 1) assert (-oo).as_numer_denom() == (-oo, 1) assert zoo.as_numer_denom() == (zoo, 1) assert (-zoo).as_numer_denom() == (zoo, 1) assert x.as_numer_denom() == (x, 1) assert (1/x).as_numer_denom() == (1, x) assert (x/y).as_numer_denom() == (x, y) assert (x/2).as_numer_denom() == (x, 2) assert (x*y/z).as_numer_denom() == (x*y, z) assert (x/(y*z)).as_numer_denom() == (x, y*z) assert Rational(1, 2).as_numer_denom() == (1, 2) assert (1/y**2).as_numer_denom() == (1, y**2) assert (x/y**2).as_numer_denom() == (x, y**2) assert ((x**2 + 1)/y).as_numer_denom() == (x**2 + 1, y) assert (x*(y + 1)/y**7).as_numer_denom() == (x*(y + 1), y**7) assert (x**-2).as_numer_denom() == (1, x**2) assert (a/x + b/2/x + c/3/x).as_numer_denom() == \ (6*a + 3*b + 2*c, 6*x) assert (a/x + b/2/x + c/3/y).as_numer_denom() == \ (2*c*x + y*(6*a + 3*b), 6*x*y) assert (a/x + b/2/x + c/.5/x).as_numer_denom() == \ (2*a + b + 4.0*c, 2*x) # this should take no more than a few seconds assert int(log(Add(*[Dummy()/i/x for i in range(1, 705)] ).as_numer_denom()[1]/x).n(4)) == 705 for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: assert (i + x/3).as_numer_denom() == \ (x + i, 3) assert (S.Infinity + x/3 + y/4).as_numer_denom() == \ (4*x + 3*y + S.Infinity, 12) assert (oo*x + zoo*y).as_numer_denom() == \ (zoo*y + oo*x, 1) A, B, C = symbols('A,B,C', commutative=False) assert (A*B*C**-1).as_numer_denom() == (A*B*C**-1, 1) assert (A*B*C**-1/x).as_numer_denom() == (A*B*C**-1, x) assert (C**-1*A*B).as_numer_denom() == (C**-1*A*B, 1) assert (C**-1*A*B/x).as_numer_denom() == (C**-1*A*B, x) assert ((A*B*C)**-1).as_numer_denom() == ((A*B*C)**-1, 1) assert ((A*B*C)**-1/x).as_numer_denom() == ((A*B*C)**-1, x) def test_trunc(): import math x, y = symbols('x y') assert math.trunc(2) == 2 assert math.trunc(4.57) == 4 assert math.trunc(-5.79) == -5 assert math.trunc(pi) == 3 assert math.trunc(log(7)) == 1 assert math.trunc(exp(5)) == 148 assert math.trunc(cos(pi)) == -1 assert math.trunc(sin(5)) == 0 raises(TypeError, lambda: math.trunc(x)) raises(TypeError, lambda: math.trunc(x + y**2)) raises(TypeError, lambda: math.trunc(oo)) def test_as_independent(): assert S.Zero.as_independent(x, as_Add=True) == (0, 0) assert S.Zero.as_independent(x, as_Add=False) == (0, 0) assert (2*x*sin(x) + y + x).as_independent(x) == (y, x + 2*x*sin(x)) assert (2*x*sin(x) + y + x).as_independent(y) == (x + 2*x*sin(x), y) assert (2*x*sin(x) + y + x).as_independent(x, y) == (0, y + x + 2*x*sin(x)) assert (x*sin(x)*cos(y)).as_independent(x) == (cos(y), x*sin(x)) assert (x*sin(x)*cos(y)).as_independent(y) == (x*sin(x), cos(y)) assert (x*sin(x)*cos(y)).as_independent(x, y) == (1, x*sin(x)*cos(y)) assert (sin(x)).as_independent(x) == (1, sin(x)) assert (sin(x)).as_independent(y) == (sin(x), 1) assert (2*sin(x)).as_independent(x) == (2, sin(x)) assert (2*sin(x)).as_independent(y) == (2*sin(x), 1) # issue 4903 = 1766b n1, n2, n3 = symbols('n1 n2 n3', commutative=False) assert (n1 + n1*n2).as_independent(n2) == (n1, n1*n2) assert (n2*n1 + n1*n2).as_independent(n2) == (0, n1*n2 + n2*n1) assert (n1*n2*n1).as_independent(n2) == (n1, n2*n1) assert (n1*n2*n1).as_independent(n1) == (1, n1*n2*n1) assert (3*x).as_independent(x, as_Add=True) == (0, 3*x) assert (3*x).as_independent(x, as_Add=False) == (3, x) assert (3 + x).as_independent(x, as_Add=True) == (3, x) assert (3 + x).as_independent(x, as_Add=False) == (1, 3 + x) # issue 5479 assert (3*x).as_independent(Symbol) == (3, x) # issue 5648 assert (n1*x*y).as_independent(x) == (n1*y, x) assert ((x + n1)*(x - y)).as_independent(x) == (1, (x + n1)*(x - y)) assert ((x + n1)*(x - y)).as_independent(y) == (x + n1, x - y) assert (DiracDelta(x - n1)*DiracDelta(x - y)).as_independent(x) \ == (1, DiracDelta(x - n1)*DiracDelta(x - y)) assert (x*y*n1*n2*n3).as_independent(n2) == (x*y*n1, n2*n3) assert (x*y*n1*n2*n3).as_independent(n1) == (x*y, n1*n2*n3) assert (x*y*n1*n2*n3).as_independent(n3) == (x*y*n1*n2, n3) assert (DiracDelta(x - n1)*DiracDelta(y - n1)*DiracDelta(x - n2)).as_independent(y) == \ (DiracDelta(x - n1)*DiracDelta(x - n2), DiracDelta(y - n1)) # issue 5784 assert (x + Integral(x, (x, 1, 2))).as_independent(x, strict=True) == \ (Integral(x, (x, 1, 2)), x) eq = Add(x, -x, 2, -3, evaluate=False) assert eq.as_independent(x) == (-1, Add(x, -x, evaluate=False)) eq = Mul(x, 1/x, 2, -3, evaluate=False) eq.as_independent(x) == (-6, Mul(x, 1/x, evaluate=False)) assert (x*y).as_independent(z, as_Add=True) == (x*y, 0) @XFAIL def test_call_2(): # TODO UndefinedFunction does not subclass Expr f = Function('f') assert (2*f)(x) == 2*f(x) def test_replace(): f = log(sin(x)) + tan(sin(x**2)) assert f.replace(sin, cos) == log(cos(x)) + tan(cos(x**2)) assert f.replace( sin, lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2)) a = Wild('a') b = Wild('b') assert f.replace(sin(a), cos(a)) == log(cos(x)) + tan(cos(x**2)) assert f.replace( sin(a), lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2)) # test exact assert (2*x).replace(a*x + b, b - a, exact=True) == 2*x assert (2*x).replace(a*x + b, b - a) == 2/x assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=True) == 2*x assert (2*x).replace(a*x + b, lambda a, b: b - a) == 2/x g = 2*sin(x**3) assert g.replace( lambda expr: expr.is_Number, lambda expr: expr**2) == 4*sin(x**9) assert cos(x).replace(cos, sin, map=True) == (sin(x), {cos(x): sin(x)}) assert sin(x).replace(cos, sin) == sin(x) cond, func = lambda x: x.is_Mul, lambda x: 2*x assert (x*y).replace(cond, func, map=True) == (2*x*y, {x*y: 2*x*y}) assert (x*(1 + x*y)).replace(cond, func, map=True) == \ (2*x*(2*x*y + 1), {x*(2*x*y + 1): 2*x*(2*x*y + 1), x*y: 2*x*y}) assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, map=True) == \ (sin(x), {sin(x): sin(x)/y}) # if not simultaneous then y*sin(x) -> y*sin(x)/y = sin(x) -> sin(x)/y assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, simultaneous=False) == sin(x)/y assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e) == O(1, x) assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e, simultaneous=False) == x**2/2 + O(x**3) assert (x*(x*y + 3)).replace(lambda x: x.is_Mul, lambda x: 2 + x) == \ x*(x*y + 5) + 2 e = (x*y + 1)*(2*x*y + 1) + 1 assert e.replace(cond, func, map=True) == ( 2*((2*x*y + 1)*(4*x*y + 1)) + 1, {2*x*y: 4*x*y, x*y: 2*x*y, (2*x*y + 1)*(4*x*y + 1): 2*((2*x*y + 1)*(4*x*y + 1))}) assert x.replace(x, y) == y assert (x + 1).replace(1, 2) == x + 2 # https://groups.google.com/forum/#!topic/sympy/8wCgeC95tz0 n1, n2, n3 = symbols('n1:4', commutative=False) f = Function('f') assert (n1*f(n2)).replace(f, lambda x: x) == n1*n2 assert (n3*f(n2)).replace(f, lambda x: x) == n3*n2 def test_find(): expr = (x + y + 2 + sin(3*x)) assert expr.find(lambda u: u.is_Integer) == {S(2), S(3)} assert expr.find(lambda u: u.is_Symbol) == {x, y} assert expr.find(lambda u: u.is_Integer, group=True) == {S(2): 1, S(3): 1} assert expr.find(lambda u: u.is_Symbol, group=True) == {x: 2, y: 1} assert expr.find(Integer) == {S(2), S(3)} assert expr.find(Symbol) == {x, y} assert expr.find(Integer, group=True) == {S(2): 1, S(3): 1} assert expr.find(Symbol, group=True) == {x: 2, y: 1} a = Wild('a') expr = sin(sin(x)) + sin(x) + cos(x) + x assert expr.find(lambda u: type(u) is sin) == {sin(x), sin(sin(x))} assert expr.find( lambda u: type(u) is sin, group=True) == {sin(x): 2, sin(sin(x)): 1} assert expr.find(sin(a)) == {sin(x), sin(sin(x))} assert expr.find(sin(a), group=True) == {sin(x): 2, sin(sin(x)): 1} assert expr.find(sin) == {sin(x), sin(sin(x))} assert expr.find(sin, group=True) == {sin(x): 2, sin(sin(x)): 1} def test_count(): expr = (x + y + 2 + sin(3*x)) assert expr.count(lambda u: u.is_Integer) == 2 assert expr.count(lambda u: u.is_Symbol) == 3 assert expr.count(Integer) == 2 assert expr.count(Symbol) == 3 assert expr.count(2) == 1 a = Wild('a') assert expr.count(sin) == 1 assert expr.count(sin(a)) == 1 assert expr.count(lambda u: type(u) is sin) == 1 f = Function('f') assert f(x).count(f(x)) == 1 assert f(x).diff(x).count(f(x)) == 1 assert f(x).diff(x).count(x) == 2 def test_has_basics(): f = Function('f') g = Function('g') p = Wild('p') assert sin(x).has(x) assert sin(x).has(sin) assert not sin(x).has(y) assert not sin(x).has(cos) assert f(x).has(x) assert f(x).has(f) assert not f(x).has(y) assert not f(x).has(g) assert f(x).diff(x).has(x) assert f(x).diff(x).has(f) assert f(x).diff(x).has(Derivative) assert not f(x).diff(x).has(y) assert not f(x).diff(x).has(g) assert not f(x).diff(x).has(sin) assert (x**2).has(Symbol) assert not (x**2).has(Wild) assert (2*p).has(Wild) assert not x.has() def test_has_multiple(): f = x**2*y + sin(2**t + log(z)) assert f.has(x) assert f.has(y) assert f.has(z) assert f.has(t) assert not f.has(u) assert f.has(x, y, z, t) assert f.has(x, y, z, t, u) i = Integer(4400) assert not i.has(x) assert (i*x**i).has(x) assert not (i*y**i).has(x) assert (i*y**i).has(x, y) assert not (i*y**i).has(x, z) def test_has_piecewise(): f = (x*y + 3/y)**(3 + 2) g = Function('g') h = Function('h') p = Piecewise((g(x), x < -1), (1, x <= 1), (f, True)) assert p.has(x) assert p.has(y) assert not p.has(z) assert p.has(1) assert p.has(3) assert not p.has(4) assert p.has(f) assert p.has(g) assert not p.has(h) def test_has_iterative(): A, B, C = symbols('A,B,C', commutative=False) f = x*gamma(x)*sin(x)*exp(x*y)*A*B*C*cos(x*A*B) assert f.has(x) assert f.has(x*y) assert f.has(x*sin(x)) assert not f.has(x*sin(y)) assert f.has(x*A) assert f.has(x*A*B) assert not f.has(x*A*C) assert f.has(x*A*B*C) assert not f.has(x*A*C*B) assert f.has(x*sin(x)*A*B*C) assert not f.has(x*sin(x)*A*C*B) assert not f.has(x*sin(y)*A*B*C) assert f.has(x*gamma(x)) assert not f.has(x + sin(x)) assert (x & y & z).has(x & z) def test_has_integrals(): f = Integral(x**2 + sin(x*y*z), (x, 0, x + y + z)) assert f.has(x + y) assert f.has(x + z) assert f.has(y + z) assert f.has(x*y) assert f.has(x*z) assert f.has(y*z) assert not f.has(2*x + y) assert not f.has(2*x*y) def test_has_tuple(): f = Function('f') g = Function('g') h = Function('h') assert Tuple(x, y).has(x) assert not Tuple(x, y).has(z) assert Tuple(f(x), g(x)).has(x) assert not Tuple(f(x), g(x)).has(y) assert Tuple(f(x), g(x)).has(f) assert Tuple(f(x), g(x)).has(f(x)) assert not Tuple(f, g).has(x) assert Tuple(f, g).has(f) assert not Tuple(f, g).has(h) assert Tuple(True).has(True) is True # .has(1) will also be True def test_has_units(): from sympy.physics.units import m, s assert (x*m/s).has(x) assert (x*m/s).has(y, z) is False def test_has_polys(): poly = Poly(x**2 + x*y*sin(z), x, y, t) assert poly.has(x) assert poly.has(x, y, z) assert poly.has(x, y, z, t) def test_has_physics(): assert FockState((x, y)).has(x) def test_as_poly_as_expr(): f = x**2 + 2*x*y assert f.as_poly().as_expr() == f assert f.as_poly(x, y).as_expr() == f assert (f + sin(x)).as_poly(x, y) is None p = Poly(f, x, y) assert p.as_poly() == p def test_nonzero(): assert bool(S.Zero) is False assert bool(S.One) is True assert bool(x) is True assert bool(x + y) is True assert bool(x - x) is False assert bool(x*y) is True assert bool(x*1) is True assert bool(x*0) is False def test_is_number(): assert Float(3.14).is_number is True assert Integer(737).is_number is True assert Rational(3, 2).is_number is True assert Rational(8).is_number is True assert x.is_number is False assert (2*x).is_number is False assert (x + y).is_number is False assert log(2).is_number is True assert log(x).is_number is False assert (2 + log(2)).is_number is True assert (8 + log(2)).is_number is True assert (2 + log(x)).is_number is False assert (8 + log(2) + x).is_number is False assert (1 + x**2/x - x).is_number is True assert Tuple(Integer(1)).is_number is False assert Add(2, x).is_number is False assert Mul(3, 4).is_number is True assert Pow(log(2), 2).is_number is True assert oo.is_number is True g = WildFunction('g') assert g.is_number is False assert (2*g).is_number is False assert (x**2).subs(x, 3).is_number is True # test extensibility of .is_number # on subinstances of Basic class A(Basic): pass a = A() assert a.is_number is False def test_as_coeff_add(): assert S(2).as_coeff_add() == (2, ()) assert S(3.0).as_coeff_add() == (0, (S(3.0),)) assert S(-3.0).as_coeff_add() == (0, (S(-3.0),)) assert x.as_coeff_add() == (0, (x,)) assert (x - 1).as_coeff_add() == (-1, (x,)) assert (x + 1).as_coeff_add() == (1, (x,)) assert (x + 2).as_coeff_add() == (2, (x,)) assert (x + y).as_coeff_add(y) == (x, (y,)) assert (3*x).as_coeff_add(y) == (3*x, ()) # don't do expansion e = (x + y)**2 assert e.as_coeff_add(y) == (0, (e,)) def test_as_coeff_mul(): assert S(2).as_coeff_mul() == (2, ()) assert S(3.0).as_coeff_mul() == (1, (S(3.0),)) assert S(-3.0).as_coeff_mul() == (-1, (S(3.0),)) assert S(-3.0).as_coeff_mul(rational=False) == (-S(3.0), ()) assert x.as_coeff_mul() == (1, (x,)) assert (-x).as_coeff_mul() == (-1, (x,)) assert (2*x).as_coeff_mul() == (2, (x,)) assert (x*y).as_coeff_mul(y) == (x, (y,)) assert (3 + x).as_coeff_mul() == (1, (3 + x,)) assert (3 + x).as_coeff_mul(y) == (3 + x, ()) # don't do expansion e = exp(x + y) assert e.as_coeff_mul(y) == (1, (e,)) e = 2**(x + y) assert e.as_coeff_mul(y) == (1, (e,)) assert (1.1*x).as_coeff_mul(rational=False) == (1.1, (x,)) assert (1.1*x).as_coeff_mul() == (1, (1.1, x)) assert (-oo*x).as_coeff_mul(rational=True) == (-1, (oo, x)) def test_as_coeff_exponent(): assert (3*x**4).as_coeff_exponent(x) == (3, 4) assert (2*x**3).as_coeff_exponent(x) == (2, 3) assert (4*x**2).as_coeff_exponent(x) == (4, 2) assert (6*x**1).as_coeff_exponent(x) == (6, 1) assert (3*x**0).as_coeff_exponent(x) == (3, 0) assert (2*x**0).as_coeff_exponent(x) == (2, 0) assert (1*x**0).as_coeff_exponent(x) == (1, 0) assert (0*x**0).as_coeff_exponent(x) == (0, 0) assert (-1*x**0).as_coeff_exponent(x) == (-1, 0) assert (-2*x**0).as_coeff_exponent(x) == (-2, 0) assert (2*x**3 + pi*x**3).as_coeff_exponent(x) == (2 + pi, 3) assert (x*log(2)/(2*x + pi*x)).as_coeff_exponent(x) == \ (log(2)/(2 + pi), 0) # issue 4784 D = Derivative f = Function('f') fx = D(f(x), x) assert fx.as_coeff_exponent(f(x)) == (fx, 0) def test_extractions(): assert ((x*y)**3).extract_multiplicatively(x**2 * y) == x*y**2 assert ((x*y)**3).extract_multiplicatively(x**4 * y) is None assert (2*x).extract_multiplicatively(2) == x assert (2*x).extract_multiplicatively(3) is None assert (2*x).extract_multiplicatively(-1) is None assert (Rational(1, 2)*x).extract_multiplicatively(3) == x/6 assert (sqrt(x)).extract_multiplicatively(x) is None assert (sqrt(x)).extract_multiplicatively(1/x) is None assert x.extract_multiplicatively(-x) is None assert (-2 - 4*I).extract_multiplicatively(-2) == 1 + 2*I assert (-2 - 4*I).extract_multiplicatively(3) is None assert (-2*x - 4*y - 8).extract_multiplicatively(-2) == x + 2*y + 4 assert (-2*x*y - 4*x**2*y).extract_multiplicatively(-2*y) == 2*x**2 + x assert (2*x*y + 4*x**2*y).extract_multiplicatively(2*y) == 2*x**2 + x assert (-4*y**2*x).extract_multiplicatively(-3*y) is None assert ((x*y)**3).extract_additively(1) is None assert (x + 1).extract_additively(x) == 1 assert (x + 1).extract_additively(2*x) is None assert (x + 1).extract_additively(-x) is None assert (-x + 1).extract_additively(2*x) is None assert (2*x + 3).extract_additively(x) == x + 3 assert (2*x + 3).extract_additively(2) == 2*x + 1 assert (2*x + 3).extract_additively(3) == 2*x assert (2*x + 3).extract_additively(-2) is None assert (2*x + 3).extract_additively(3*x) is None assert (2*x + 3).extract_additively(2*x) == 3 assert x.extract_additively(0) == x assert S(2).extract_additively(x) is None assert S(2.).extract_additively(2) == S.Zero assert S(2*x + 3).extract_additively(x + 1) == x + 2 assert S(2*x + 3).extract_additively(y + 1) is None assert S(2*x - 3).extract_additively(x + 1) is None assert S(2*x - 3).extract_additively(y + z) is None assert ((a + 1)*x*4 + y).extract_additively(x).expand() == \ 4*a*x + 3*x + y assert ((a + 1)*x*4 + 3*y).extract_additively(x + 2*y).expand() == \ 4*a*x + 3*x + y assert (y*(x + 1)).extract_additively(x + 1) is None assert ((y + 1)*(x + 1) + 3).extract_additively(x + 1) == \ y*(x + 1) + 3 assert ((x + y)*(x + 1) + x + y + 3).extract_additively(x + y) == \ x*(x + y) + 3 assert (x + y + 2*((x + y)*(x + 1)) + 3).extract_additively((x + y)*(x + 1)) == \ x + y + (x + 1)*(x + y) + 3 assert ((y + 1)*(x + 2*y + 1) + 3).extract_additively(y + 1) == \ (x + 2*y)*(y + 1) + 3 n = Symbol("n", integer=True) assert (Integer(-3)).could_extract_minus_sign() is True assert (-n*x + x).could_extract_minus_sign() != \ (n*x - x).could_extract_minus_sign() assert (x - y).could_extract_minus_sign() != \ (-x + y).could_extract_minus_sign() assert (1 - x - y).could_extract_minus_sign() is True assert (1 - x + y).could_extract_minus_sign() is False assert ((-x - x*y)/y).could_extract_minus_sign() is True assert (-(x + x*y)/y).could_extract_minus_sign() is True assert ((x + x*y)/(-y)).could_extract_minus_sign() is True assert ((x + x*y)/y).could_extract_minus_sign() is False assert (x*(-x - x**3)).could_extract_minus_sign() is True assert ((-x - y)/(x + y)).could_extract_minus_sign() is True class sign_invariant(Function, Expr): nargs = 1 def __neg__(self): return self foo = sign_invariant(x) assert foo == -foo assert foo.could_extract_minus_sign() is False # The results of each of these will vary on different machines, e.g. # the first one might be False and the other (then) is true or vice versa, # so both are included. assert ((-x - y)/(x - y)).could_extract_minus_sign() is False or \ ((-x - y)/(y - x)).could_extract_minus_sign() is False assert (x - y).could_extract_minus_sign() is False assert (-x + y).could_extract_minus_sign() is True def test_nan_extractions(): for r in (1, 0, I, nan): assert nan.extract_additively(r) is None assert nan.extract_multiplicatively(r) is None def test_coeff(): assert (x + 1).coeff(x + 1) == 1 assert (3*x).coeff(0) == 0 assert (z*(1 + x)*x**2).coeff(1 + x) == z*x**2 assert (1 + 2*x*x**(1 + x)).coeff(x*x**(1 + x)) == 2 assert (1 + 2*x**(y + z)).coeff(x**(y + z)) == 2 assert (3 + 2*x + 4*x**2).coeff(1) == 0 assert (3 + 2*x + 4*x**2).coeff(-1) == 0 assert (3 + 2*x + 4*x**2).coeff(x) == 2 assert (3 + 2*x + 4*x**2).coeff(x**2) == 4 assert (3 + 2*x + 4*x**2).coeff(x**3) == 0 assert (-x/8 + x*y).coeff(x) == -S(1)/8 + y assert (-x/8 + x*y).coeff(-x) == S(1)/8 assert (4*x).coeff(2*x) == 0 assert (2*x).coeff(2*x) == 1 assert (-oo*x).coeff(x*oo) == -1 assert (10*x).coeff(x, 0) == 0 assert (10*x).coeff(10*x, 0) == 0 n1, n2 = symbols('n1 n2', commutative=False) assert (n1*n2).coeff(n1) == 1 assert (n1*n2).coeff(n2) == n1 assert (n1*n2 + x*n1).coeff(n1) == 1 # 1*n1*(n2+x) assert (n2*n1 + x*n1).coeff(n1) == n2 + x assert (n2*n1 + x*n1**2).coeff(n1) == n2 assert (n1**x).coeff(n1) == 0 assert (n1*n2 + n2*n1).coeff(n1) == 0 assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=1) == n2 assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=0) == 2 f = Function('f') assert (2*f(x) + 3*f(x).diff(x)).coeff(f(x)) == 2 expr = z*(x + y)**2 expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2 assert expr.coeff(z) == (x + y)**2 assert expr.coeff(x + y) == 0 assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2 assert (x + y + 3*z).coeff(1) == x + y assert (-x + 2*y).coeff(-1) == x assert (x - 2*y).coeff(-1) == 2*y assert (3 + 2*x + 4*x**2).coeff(1) == 0 assert (-x - 2*y).coeff(2) == -y assert (x + sqrt(2)*x).coeff(sqrt(2)) == x assert (3 + 2*x + 4*x**2).coeff(x) == 2 assert (3 + 2*x + 4*x**2).coeff(x**2) == 4 assert (3 + 2*x + 4*x**2).coeff(x**3) == 0 assert (z*(x + y)**2).coeff((x + y)**2) == z assert (z*(x + y)**2).coeff(x + y) == 0 assert (2 + 2*x + (x + 1)*y).coeff(x + 1) == y assert (x + 2*y + 3).coeff(1) == x assert (x + 2*y + 3).coeff(x, 0) == 2*y + 3 assert (x**2 + 2*y + 3*x).coeff(x**2, 0) == 2*y + 3*x assert x.coeff(0, 0) == 0 assert x.coeff(x, 0) == 0 n, m, o, l = symbols('n m o l', commutative=False) assert n.coeff(n) == 1 assert y.coeff(n) == 0 assert (3*n).coeff(n) == 3 assert (2 + n).coeff(x*m) == 0 assert (2*x*n*m).coeff(x) == 2*n*m assert (2 + n).coeff(x*m*n + y) == 0 assert (2*x*n*m).coeff(3*n) == 0 assert (n*m + m*n*m).coeff(n) == 1 + m assert (n*m + m*n*m).coeff(n, right=True) == m # = (1 + m)*n*m assert (n*m + m*n).coeff(n) == 0 assert (n*m + o*m*n).coeff(m*n) == o assert (n*m + o*m*n).coeff(m*n, right=1) == 1 assert (n*m + n*m*n).coeff(n*m, right=1) == 1 + n # = n*m*(n + 1) assert (x*y).coeff(z, 0) == x*y def test_coeff2(): r, kappa = symbols('r, kappa') psi = Function("psi") g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2)) g = g.expand() assert g.coeff((psi(r).diff(r))) == 2/r def test_coeff2_0(): r, kappa = symbols('r, kappa') psi = Function("psi") g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2)) g = g.expand() assert g.coeff(psi(r).diff(r, 2)) == 1 def test_coeff_expand(): expr = z*(x + y)**2 expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2 assert expr.coeff(z) == (x + y)**2 assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2 def test_integrate(): assert x.integrate(x) == x**2/2 assert x.integrate((x, 0, 1)) == S(1)/2 def test_as_base_exp(): assert x.as_base_exp() == (x, S.One) assert (x*y*z).as_base_exp() == (x*y*z, S.One) assert (x + y + z).as_base_exp() == (x + y + z, S.One) assert ((x + y)**z).as_base_exp() == (x + y, z) def test_issue_4963(): assert hasattr(Mul(x, y), "is_commutative") assert hasattr(Mul(x, y, evaluate=False), "is_commutative") assert hasattr(Pow(x, y), "is_commutative") assert hasattr(Pow(x, y, evaluate=False), "is_commutative") expr = Mul(Pow(2, 2, evaluate=False), 3, evaluate=False) + 1 assert hasattr(expr, "is_commutative") def test_action_verbs(): assert nsimplify((1/(exp(3*pi*x/5) + 1))) == \ (1/(exp(3*pi*x/5) + 1)).nsimplify() assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp() assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep=True) assert radsimp(1/(2 + sqrt(2))) == (1/(2 + sqrt(2))).radsimp() assert radsimp(1/(a + b*sqrt(c)), symbolic=False) == \ (1/(a + b*sqrt(c))).radsimp(symbolic=False) assert powsimp(x**y*x**z*y**z, combine='all') == \ (x**y*x**z*y**z).powsimp(combine='all') assert (x**t*y**t).powsimp(force=True) == (x*y)**t assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify() assert together(1/x + 1/y) == (1/x + 1/y).together() assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == \ (a*x**2 + b*x**2 + a*x - b*x + c).collect(x) assert apart(y/(y + 2)/(y + 1), y) == (y/(y + 2)/(y + 1)).apart(y) assert combsimp(y/(x + 2)/(x + 1)) == (y/(x + 2)/(x + 1)).combsimp() assert gammasimp(gamma(x)/gamma(x-5)) == (gamma(x)/gamma(x-5)).gammasimp() assert factor(x**2 + 5*x + 6) == (x**2 + 5*x + 6).factor() assert refine(sqrt(x**2)) == sqrt(x**2).refine() assert cancel((x**2 + 5*x + 6)/(x + 2)) == ((x**2 + 5*x + 6)/(x + 2)).cancel() def test_as_powers_dict(): assert x.as_powers_dict() == {x: 1} assert (x**y*z).as_powers_dict() == {x: y, z: 1} assert Mul(2, 2, evaluate=False).as_powers_dict() == {S(2): S(2)} assert (x*y).as_powers_dict()[z] == 0 assert (x + y).as_powers_dict()[z] == 0 def test_as_coefficients_dict(): check = [S(1), x, y, x*y, 1] assert [Add(3*x, 2*x, y, 3).as_coefficients_dict()[i] for i in check] == \ [3, 5, 1, 0, 3] assert [Add(3*x, 2*x, y, 3, evaluate=False).as_coefficients_dict()[i] for i in check] == [3, 5, 1, 0, 3] assert [(3*x*y).as_coefficients_dict()[i] for i in check] == \ [0, 0, 0, 3, 0] assert [(3.0*x*y).as_coefficients_dict()[i] for i in check] == \ [0, 0, 0, 3.0, 0] assert (3.0*x*y).as_coefficients_dict()[3.0*x*y] == 0 def test_args_cnc(): A = symbols('A', commutative=False) assert (x + A).args_cnc() == \ [[], [x + A]] assert (x + a).args_cnc() == \ [[a + x], []] assert (x*a).args_cnc() == \ [[a, x], []] assert (x*y*A*(A + 1)).args_cnc(cset=True) == \ [{x, y}, [A, 1 + A]] assert Mul(x, x, evaluate=False).args_cnc(cset=True, warn=False) == \ [{x}, []] assert Mul(x, x**2, evaluate=False).args_cnc(cset=True, warn=False) == \ [{x, x**2}, []] raises(ValueError, lambda: Mul(x, x, evaluate=False).args_cnc(cset=True)) assert Mul(x, y, x, evaluate=False).args_cnc() == \ [[x, y, x], []] # always split -1 from leading number assert (-1.*x).args_cnc() == [[-1, 1.0, x], []] def test_new_rawargs(): n = Symbol('n', commutative=False) a = x + n assert a.is_commutative is False assert a._new_rawargs(x).is_commutative assert a._new_rawargs(x, y).is_commutative assert a._new_rawargs(x, n).is_commutative is False assert a._new_rawargs(x, y, n).is_commutative is False m = x*n assert m.is_commutative is False assert m._new_rawargs(x).is_commutative assert m._new_rawargs(n).is_commutative is False assert m._new_rawargs(x, y).is_commutative assert m._new_rawargs(x, n).is_commutative is False assert m._new_rawargs(x, y, n).is_commutative is False assert m._new_rawargs(x, n, reeval=False).is_commutative is False assert m._new_rawargs(S.One) is S.One def test_issue_5226(): assert Add(evaluate=False) == 0 assert Mul(evaluate=False) == 1 assert Mul(x + y, evaluate=False).is_Add def test_free_symbols(): # free_symbols should return the free symbols of an object assert S(1).free_symbols == set() assert (x).free_symbols == {x} assert Integral(x, (x, 1, y)).free_symbols == {y} assert (-Integral(x, (x, 1, y))).free_symbols == {y} assert meter.free_symbols == set() assert (meter**x).free_symbols == {x} def test_issue_5300(): x = Symbol('x', commutative=False) assert x*sqrt(2)/sqrt(6) == x*sqrt(3)/3 def test_floordiv(): from sympy.functions.elementary.integers import floor assert x // y == floor(x / y) def test_as_coeff_Mul(): assert S(0).as_coeff_Mul() == (S.One, S.Zero) assert Integer(3).as_coeff_Mul() == (Integer(3), Integer(1)) assert Rational(3, 4).as_coeff_Mul() == (Rational(3, 4), Integer(1)) assert Float(5.0).as_coeff_Mul() == (Float(5.0), Integer(1)) assert (Integer(3)*x).as_coeff_Mul() == (Integer(3), x) assert (Rational(3, 4)*x).as_coeff_Mul() == (Rational(3, 4), x) assert (Float(5.0)*x).as_coeff_Mul() == (Float(5.0), x) assert (Integer(3)*x*y).as_coeff_Mul() == (Integer(3), x*y) assert (Rational(3, 4)*x*y).as_coeff_Mul() == (Rational(3, 4), x*y) assert (Float(5.0)*x*y).as_coeff_Mul() == (Float(5.0), x*y) assert (x).as_coeff_Mul() == (S.One, x) assert (x*y).as_coeff_Mul() == (S.One, x*y) assert (-oo*x).as_coeff_Mul(rational=True) == (-1, oo*x) def test_as_coeff_Add(): assert Integer(3).as_coeff_Add() == (Integer(3), Integer(0)) assert Rational(3, 4).as_coeff_Add() == (Rational(3, 4), Integer(0)) assert Float(5.0).as_coeff_Add() == (Float(5.0), Integer(0)) assert (Integer(3) + x).as_coeff_Add() == (Integer(3), x) assert (Rational(3, 4) + x).as_coeff_Add() == (Rational(3, 4), x) assert (Float(5.0) + x).as_coeff_Add() == (Float(5.0), x) assert (Float(5.0) + x).as_coeff_Add(rational=True) == (0, Float(5.0) + x) assert (Integer(3) + x + y).as_coeff_Add() == (Integer(3), x + y) assert (Rational(3, 4) + x + y).as_coeff_Add() == (Rational(3, 4), x + y) assert (Float(5.0) + x + y).as_coeff_Add() == (Float(5.0), x + y) assert (x).as_coeff_Add() == (S.Zero, x) assert (x*y).as_coeff_Add() == (S.Zero, x*y) def test_expr_sorting(): f, g = symbols('f,g', cls=Function) exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2] assert sorted(exprs, key=default_sort_key) == exprs exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n, sin(x**2), cos(x), cos(x**2), tan(x)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1] assert sorted(exprs, key=default_sort_key) == exprs exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1] assert sorted(exprs, key=default_sort_key) == exprs exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[3], [1, 2]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[1, 2], [2, 3]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[1, 2], [1, 2, 3]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [{x: -y}, {x: y}] assert sorted(exprs, key=default_sort_key) == exprs exprs = [{1}, {1, 2}] assert sorted(exprs, key=default_sort_key) == exprs a, b = exprs = [Dummy('x'), Dummy('x')] assert sorted([b, a], key=default_sort_key) == exprs def test_as_ordered_factors(): f, g = symbols('f,g', cls=Function) assert x.as_ordered_factors() == [x] assert (2*x*x**n*sin(x)*cos(x)).as_ordered_factors() \ == [Integer(2), x, x**n, sin(x), cos(x)] args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] expr = Mul(*args) assert expr.as_ordered_factors() == args A, B = symbols('A,B', commutative=False) assert (A*B).as_ordered_factors() == [A, B] assert (B*A).as_ordered_factors() == [B, A] def test_as_ordered_terms(): f, g = symbols('f,g', cls=Function) assert x.as_ordered_terms() == [x] assert (sin(x)**2*cos(x) + sin(x)*cos(x)**2 + 1).as_ordered_terms() \ == [sin(x)**2*cos(x), sin(x)*cos(x)**2, 1] args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] expr = Add(*args) assert expr.as_ordered_terms() == args assert (1 + 4*sqrt(3)*pi*x).as_ordered_terms() == [4*pi*x*sqrt(3), 1] assert ( 2 + 3*I).as_ordered_terms() == [2, 3*I] assert (-2 + 3*I).as_ordered_terms() == [-2, 3*I] assert ( 2 - 3*I).as_ordered_terms() == [2, -3*I] assert (-2 - 3*I).as_ordered_terms() == [-2, -3*I] assert ( 4 + 3*I).as_ordered_terms() == [4, 3*I] assert (-4 + 3*I).as_ordered_terms() == [-4, 3*I] assert ( 4 - 3*I).as_ordered_terms() == [4, -3*I] assert (-4 - 3*I).as_ordered_terms() == [-4, -3*I] f = x**2*y**2 + x*y**4 + y + 2 assert f.as_ordered_terms(order="lex") == [x**2*y**2, x*y**4, y, 2] assert f.as_ordered_terms(order="grlex") == [x*y**4, x**2*y**2, y, 2] assert f.as_ordered_terms(order="rev-lex") == [2, y, x*y**4, x**2*y**2] assert f.as_ordered_terms(order="rev-grlex") == [2, y, x**2*y**2, x*y**4] def test_sort_key_atomic_expr(): from sympy.physics.units import m, s assert sorted([-m, s], key=lambda arg: arg.sort_key()) == [-m, s] def test_eval_interval(): assert exp(x)._eval_interval(*Tuple(x, 0, 1)) == exp(1) - exp(0) # issue 4199 # first subs and limit gives NaN a = x/y assert a._eval_interval(x, S(0), oo)._eval_interval(y, oo, S(0)) is S.NaN # second subs and limit gives NaN assert a._eval_interval(x, S(0), oo)._eval_interval(y, S(0), oo) is S.NaN # difference gives S.NaN a = x - y assert a._eval_interval(x, S(1), oo)._eval_interval(y, oo, S(1)) is S.NaN raises(ValueError, lambda: x._eval_interval(x, None, None)) a = -y*Heaviside(x - y) assert a._eval_interval(x, -oo, oo) == -y assert a._eval_interval(x, oo, -oo) == y def test_eval_interval_zoo(): # Test that limit is used when zoo is returned assert Si(1/x)._eval_interval(x, S(0), S(1)) == -pi/2 + Si(1) def test_primitive(): assert (3*(x + 1)**2).primitive() == (3, (x + 1)**2) assert (6*x + 2).primitive() == (2, 3*x + 1) assert (x/2 + 3).primitive() == (S(1)/2, x + 6) eq = (6*x + 2)*(x/2 + 3) assert eq.primitive()[0] == 1 eq = (2 + 2*x)**2 assert eq.primitive()[0] == 1 assert (4.0*x).primitive() == (1, 4.0*x) assert (4.0*x + y/2).primitive() == (S.Half, 8.0*x + y) assert (-2*x).primitive() == (2, -x) assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).primitive() == \ (S(1)/14, 7.0*x + 21*y + 10*z) for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: assert (i + x/3).primitive() == \ (S(1)/3, i + x) assert (S.Infinity + 2*x/3 + 4*y/7).primitive() == \ (S(1)/21, 14*x + 12*y + oo) assert S.Zero.primitive() == (S.One, S.Zero) def test_issue_5843(): a = 1 + x assert (2*a).extract_multiplicatively(a) == 2 assert (4*a).extract_multiplicatively(2*a) == 2 assert ((3*a)*(2*a)).extract_multiplicatively(a) == 6*a def test_is_constant(): from sympy.solvers.solvers import checksol Sum(x, (x, 1, 10)).is_constant() is True Sum(x, (x, 1, n)).is_constant() is False Sum(x, (x, 1, n)).is_constant(y) is True Sum(x, (x, 1, n)).is_constant(n) is False Sum(x, (x, 1, n)).is_constant(x) is True eq = a*cos(x)**2 + a*sin(x)**2 - a eq.is_constant() is True assert eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 assert x.is_constant() is False assert x.is_constant(y) is True assert checksol(x, x, Sum(x, (x, 1, n))) is False assert checksol(x, x, Sum(x, (x, 1, n))) is False f = Function('f') assert f(1).is_constant assert checksol(x, x, f(x)) is False p = symbols('p', positive=True) assert Pow(x, S(0), evaluate=False).is_constant() is True # == 1 assert Pow(S(0), x, evaluate=False).is_constant() is False # == 0 or 1 assert (2**x).is_constant() is False assert Pow(S(2), S(3), evaluate=False).is_constant() is True z1, z2 = symbols('z1 z2', zero=True) assert (z1 + 2*z2).is_constant() is True assert meter.is_constant() is True assert (3*meter).is_constant() is True assert (x*meter).is_constant() is False assert Poly(3,x).is_constant() is True def test_equals(): assert (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2).equals(0) assert (x**2 - 1).equals((x + 1)*(x - 1)) assert (cos(x)**2 + sin(x)**2).equals(1) assert (a*cos(x)**2 + a*sin(x)**2).equals(a) r = sqrt(2) assert (-1/(r + r*x) + 1/r/(1 + x)).equals(0) assert factorial(x + 1).equals((x + 1)*factorial(x)) assert sqrt(3).equals(2*sqrt(3)) is False assert (sqrt(5)*sqrt(3)).equals(sqrt(3)) is False assert (sqrt(5) + sqrt(3)).equals(0) is False assert (sqrt(5) + pi).equals(0) is False assert meter.equals(0) is False assert (3*meter**2).equals(0) is False eq = -(-1)**(S(3)/4)*6**(S(1)/4) + (-6)**(S(1)/4)*I if eq != 0: # if canonicalization makes this zero, skip the test assert eq.equals(0) assert sqrt(x).equals(0) is False # from integrate(x*sqrt(1 + 2*x), x); # diff is zero only when assumptions allow i = 2*sqrt(2)*x**(S(5)/2)*(1 + 1/(2*x))**(S(5)/2)/5 + \ 2*sqrt(2)*x**(S(3)/2)*(1 + 1/(2*x))**(S(5)/2)/(-6 - 3/x) ans = sqrt(2*x + 1)*(6*x**2 + x - 1)/15 diff = i - ans assert diff.equals(0) is False assert diff.subs(x, -S.Half/2) == 7*sqrt(2)/120 # there are regions for x for which the expression is True, for # example, when x < -1/2 or x > 0 the expression is zero p = Symbol('p', positive=True) assert diff.subs(x, p).equals(0) is True assert diff.subs(x, -1).equals(0) is True # prove via minimal_polynomial or self-consistency eq = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert eq.equals(0) q = 3**Rational(1, 3) + 3 p = expand(q**3)**Rational(1, 3) assert (p - q).equals(0) # issue 6829 # eq = q*x + q/4 + x**4 + x**3 + 2*x**2 - S(1)/3 # z = eq.subs(x, solve(eq, x)[0]) q = symbols('q') z = (q*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/6)/2 - S(1)/4) + q/4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/6)/2 - S(1)/4)**4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/6)/2 - S(1)/4)**3 + 2*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S(1)/3) - S(13)/6)/2 - S(1)/4)**2 - S(1)/3) assert z.equals(0) def test_random(): from sympy import posify, lucas assert posify(x)[0]._random() is not None assert lucas(n)._random(2, -2, 0, -1, 1) is None # issue 8662 assert Piecewise((Max(x, y), z))._random() is None def test_round(): from sympy.abc import x assert Float('0.1249999').round(2) == 0.12 d20 = 12345678901234567890 ans = S(d20).round(2) assert ans.is_Float and ans == d20 ans = S(d20).round(-2) assert ans.is_Float and ans == 12345678901234567900 assert S('1/7').round(4) == 0.1429 assert S('.[12345]').round(4) == 0.1235 assert S('.1349').round(2) == 0.13 n = S(12345) ans = n.round() assert ans.is_Float assert ans == n ans = n.round(1) assert ans.is_Float assert ans == n ans = n.round(4) assert ans.is_Float assert ans == n assert n.round(-1) == 12350 r = n.round(-4) assert r == 10000 # in fact, it should equal many values since __eq__ # compares at equal precision assert all(r == i for i in range(9984, 10049)) assert n.round(-5) == 0 assert (pi + sqrt(2)).round(2) == 4.56 assert (10*(pi + sqrt(2))).round(-1) == 50 raises(TypeError, lambda: round(x + 2, 2)) assert S(2.3).round(1) == 2.3 e = S(12.345).round(2) assert e == round(12.345, 2) assert type(e) is Float assert (Float(.3, 3) + 2*pi).round() == 7 assert (Float(.3, 3) + 2*pi*100).round() == 629 assert (Float(.03, 3) + 2*pi/100).round(5) == 0.09283 assert (Float(.03, 3) + 2*pi/100).round(4) == 0.0928 assert (pi + 2*E*I).round() == 3 + 5*I assert S.Zero.round() == 0 a = (Add(1, Float('1.' + '9'*27, ''), evaluate=0)) assert a.round(10) == Float('3.0000000000', '') assert a.round(25) == Float('3.0000000000000000000000000', '') assert a.round(26) == Float('3.00000000000000000000000000', '') assert a.round(27) == Float('2.999999999999999999999999999', '') assert a.round(30) == Float('2.999999999999999999999999999', '') raises(TypeError, lambda: x.round()) f = Function('f') raises(TypeError, lambda: f(1).round()) # exact magnitude of 10 assert str(S(1).round()) == '1.' assert str(S(100).round()) == '100.' # applied to real and imaginary portions assert (2*pi + E*I).round() == 6 + 3*I assert (2*pi + I/10).round() == 6 assert (pi/10 + 2*I).round() == 2*I # the lhs re and im parts are Float with dps of 2 # and those on the right have dps of 15 so they won't compare # equal unless we use string or compare components (which will # then coerce the floats to the same precision) or re-create # the floats assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I' assert (pi/10 + E*I).round(2).as_real_imag() == (0.31, 2.72) assert (pi/10 + E*I).round(2) == Float(0.31, 2) + I*Float(2.72, 3) # issue 6914 assert (I**(I + 3)).round(3) == Float('-0.208', '')*I # issue 8720 assert S(-123.6).round() == -124. assert S(-1.5).round() == -2. assert S(-100.5).round() == -101. assert S(-1.5 - 10.5*I).round() == -2.0 - 11.0*I # issue 7961 assert str(S(0.006).round(2)) == '0.01' assert str(S(0.00106).round(4)) == '0.0011' # issue 8147 assert S.NaN.round() == S.NaN assert S.Infinity.round() == S.Infinity assert S.NegativeInfinity.round() == S.NegativeInfinity assert S.ComplexInfinity.round() == S.ComplexInfinity def test_held_expression_UnevaluatedExpr(): x = symbols("x") he = UnevaluatedExpr(1/x) e1 = x*he assert isinstance(e1, Mul) assert e1.args == (x, he) assert e1.doit() == 1 assert UnevaluatedExpr(Derivative(x, x)).doit(deep=False ) == Derivative(x, x) assert UnevaluatedExpr(Derivative(x, x)).doit() == 1 xx = Mul(x, x, evaluate=False) assert xx != x**2 ue2 = UnevaluatedExpr(xx) assert isinstance(ue2, UnevaluatedExpr) assert ue2.args == (xx,) assert ue2.doit() == x**2 assert ue2.doit(deep=False) == xx x2 = UnevaluatedExpr(2)*2 assert type(x2) is Mul assert x2.args == (2, UnevaluatedExpr(2)) def test_round_exception_nostr(): # Don't use the string form of the expression in the round exception, as # it's too slow s = Symbol('bad') try: s.round() except TypeError as e: assert 'bad' not in str(e) else: # Did not raise raise AssertionError("Did not raise") def test_extract_branch_factor(): assert exp_polar(2.0*I*pi).extract_branch_factor() == (1, 1) def test_identity_removal(): assert Add.make_args(x + 0) == (x,) assert Mul.make_args(x*1) == (x,) def test_float_0(): assert Float(0.0) + 1 == Float(1.0) @XFAIL def test_float_0_fail(): assert Float(0.0)*x == Float(0.0) assert (x + Float(0.0)).is_Add def test_issue_6325(): ans = (b**2 + z**2 - (b*(a + b*t) + z*(c + t*z))**2/( (a + b*t)**2 + (c + t*z)**2))/sqrt((a + b*t)**2 + (c + t*z)**2) e = sqrt((a + b*t)**2 + (c + z*t)**2) assert diff(e, t, 2) == ans e.diff(t, 2) == ans assert diff(e, t, 2, simplify=False) != ans def test_issue_7426(): f1 = a % c f2 = x % z assert f1.equals(f2) is None def test_issue_1112(): x = Symbol('x', positive=False) assert (x > 0) is S.false def test_issue_10161(): x = symbols('x', real=True) assert x*abs(x)*abs(x) == x**3 def test_issue_10755(): x = symbols('x') raises(TypeError, lambda: int(log(x))) raises(TypeError, lambda: log(x).round(2)) def test_issue_11877(): x = symbols('x') assert integrate(log(S(1)/2 - x), (x, 0, S(1)/2)) == -S(1)/2 -log(2)/2 def test_normal(): x = symbols('x') e = Mul(S.Half, 1 + x, evaluate=False) assert e.normal() == e
d0cb0a5f42670228e9385800a6c2bbb22c11348d5e65deb9d57e553577b4a7b6
"""Test whether all elements of cls.args are instances of Basic. """ # NOTE: keep tests sorted by (module, class name) key. If a class can't # be instantiated, add it here anyway with @SKIP("abstract class) (see # e.g. Function). import os import re import io from sympy import (Basic, S, symbols, sqrt, sin, oo, Interval, exp, Lambda, pi, Eq, log, Function) from sympy.core.compatibility import range from sympy.utilities.pytest import XFAIL, SKIP x, y, z = symbols('x,y,z') def test_all_classes_are_tested(): this = os.path.split(__file__)[0] path = os.path.join(this, os.pardir, os.pardir) sympy_path = os.path.abspath(path) prefix = os.path.split(sympy_path)[0] + os.sep re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE) modules = {} for root, dirs, files in os.walk(sympy_path): module = root.replace(prefix, "").replace(os.sep, ".") for file in files: if file.startswith(("_", "test_", "bench_")): continue if not file.endswith(".py"): continue with io.open(os.path.join(root, file), "r", encoding='utf-8') as f: text = f.read() submodule = module + '.' + file[:-3] names = re_cls.findall(text) if not names: continue try: mod = __import__(submodule, fromlist=names) except ImportError: continue def is_Basic(name): cls = getattr(mod, name) if hasattr(cls, '_sympy_deprecated_func'): cls = cls._sympy_deprecated_func return issubclass(cls, Basic) names = list(filter(is_Basic, names)) if names: modules[submodule] = names ns = globals() failed = [] for module, names in modules.items(): mod = module.replace('.', '__') for name in names: test = 'test_' + mod + '__' + name if test not in ns: failed.append(module + '.' + name) assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed) def _test_args(obj): return all(isinstance(arg, Basic) for arg in obj.args) def test_sympy__assumptions__assume__AppliedPredicate(): from sympy.assumptions.assume import AppliedPredicate, Predicate from sympy import Q assert _test_args(AppliedPredicate(Predicate("test"), 2)) assert _test_args(Q.is_true(True)) def test_sympy__assumptions__assume__Predicate(): from sympy.assumptions.assume import Predicate assert _test_args(Predicate("test")) def test_sympy__assumptions__sathandlers__UnevaluatedOnFree(): from sympy.assumptions.sathandlers import UnevaluatedOnFree from sympy import Q assert _test_args(UnevaluatedOnFree(Q.positive)) assert _test_args(UnevaluatedOnFree(Q.positive(x))) assert _test_args(UnevaluatedOnFree(Q.positive(x*y))) def test_sympy__assumptions__sathandlers__AllArgs(): from sympy.assumptions.sathandlers import AllArgs from sympy import Q assert _test_args(AllArgs(Q.positive)) assert _test_args(AllArgs(Q.positive(x))) assert _test_args(AllArgs(Q.positive(x*y))) def test_sympy__assumptions__sathandlers__AnyArgs(): from sympy.assumptions.sathandlers import AnyArgs from sympy import Q assert _test_args(AnyArgs(Q.positive)) assert _test_args(AnyArgs(Q.positive(x))) assert _test_args(AnyArgs(Q.positive(x*y))) def test_sympy__assumptions__sathandlers__ExactlyOneArg(): from sympy.assumptions.sathandlers import ExactlyOneArg from sympy import Q assert _test_args(ExactlyOneArg(Q.positive)) assert _test_args(ExactlyOneArg(Q.positive(x))) assert _test_args(ExactlyOneArg(Q.positive(x*y))) def test_sympy__assumptions__sathandlers__CheckOldAssump(): from sympy.assumptions.sathandlers import CheckOldAssump from sympy import Q assert _test_args(CheckOldAssump(Q.positive)) assert _test_args(CheckOldAssump(Q.positive(x))) assert _test_args(CheckOldAssump(Q.positive(x*y))) def test_sympy__assumptions__sathandlers__CheckIsPrime(): from sympy.assumptions.sathandlers import CheckIsPrime from sympy import Q # Input must be a number assert _test_args(CheckIsPrime(Q.positive)) assert _test_args(CheckIsPrime(Q.positive(5))) @SKIP("abstract Class") def test_sympy__codegen__ast__AssignmentBase(): from sympy.codegen.ast import AssignmentBase assert _test_args(AssignmentBase(x, 1)) @SKIP("abstract Class") def test_sympy__codegen__ast__AugmentedAssignment(): from sympy.codegen.ast import AugmentedAssignment assert _test_args(AugmentedAssignment(x, 1)) def test_sympy__codegen__ast__AddAugmentedAssignment(): from sympy.codegen.ast import AddAugmentedAssignment assert _test_args(AddAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__SubAugmentedAssignment(): from sympy.codegen.ast import SubAugmentedAssignment assert _test_args(SubAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__MulAugmentedAssignment(): from sympy.codegen.ast import MulAugmentedAssignment assert _test_args(MulAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__DivAugmentedAssignment(): from sympy.codegen.ast import DivAugmentedAssignment assert _test_args(DivAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__ModAugmentedAssignment(): from sympy.codegen.ast import ModAugmentedAssignment assert _test_args(ModAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__CodeBlock(): from sympy.codegen.ast import CodeBlock, Assignment assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2))) def test_sympy__codegen__ast__For(): from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment from sympy import Range assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1)))) def test_sympy__codegen__ast__Token(): from sympy.codegen.ast import Token assert _test_args(Token()) def test_sympy__codegen__ast__ContinueToken(): from sympy.codegen.ast import ContinueToken assert _test_args(ContinueToken()) def test_sympy__codegen__ast__BreakToken(): from sympy.codegen.ast import BreakToken assert _test_args(BreakToken()) def test_sympy__codegen__ast__NoneToken(): from sympy.codegen.ast import NoneToken assert _test_args(NoneToken()) def test_sympy__codegen__ast__String(): from sympy.codegen.ast import String assert _test_args(String('foobar')) def test_sympy__codegen__ast__QuotedString(): from sympy.codegen.ast import QuotedString assert _test_args(QuotedString('foobar')) def test_sympy__codegen__ast__Comment(): from sympy.codegen.ast import Comment assert _test_args(Comment('this is a comment')) def test_sympy__codegen__ast__Node(): from sympy.codegen.ast import Node assert _test_args(Node()) assert _test_args(Node(attrs={1, 2, 3})) def test_sympy__codegen__ast__Type(): from sympy.codegen.ast import Type assert _test_args(Type('float128')) def test_sympy__codegen__ast__IntBaseType(): from sympy.codegen.ast import IntBaseType assert _test_args(IntBaseType('bigint')) def test_sympy__codegen__ast___SizedIntType(): from sympy.codegen.ast import _SizedIntType assert _test_args(_SizedIntType('int128', 128)) def test_sympy__codegen__ast__SignedIntType(): from sympy.codegen.ast import SignedIntType assert _test_args(SignedIntType('int128_with_sign', 128)) def test_sympy__codegen__ast__UnsignedIntType(): from sympy.codegen.ast import UnsignedIntType assert _test_args(UnsignedIntType('unt128', 128)) def test_sympy__codegen__ast__FloatBaseType(): from sympy.codegen.ast import FloatBaseType assert _test_args(FloatBaseType('positive_real')) def test_sympy__codegen__ast__FloatType(): from sympy.codegen.ast import FloatType assert _test_args(FloatType('float242', 242, nmant=142, nexp=99)) def test_sympy__codegen__ast__ComplexBaseType(): from sympy.codegen.ast import ComplexBaseType assert _test_args(ComplexBaseType('positive_cmplx')) def test_sympy__codegen__ast__ComplexType(): from sympy.codegen.ast import ComplexType assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5)) def test_sympy__codegen__ast__Attribute(): from sympy.codegen.ast import Attribute assert _test_args(Attribute('noexcept')) def test_sympy__codegen__ast__Variable(): from sympy.codegen.ast import Variable, Type, value_const assert _test_args(Variable(x)) assert _test_args(Variable(y, Type('float32'), {value_const})) assert _test_args(Variable(z, type=Type('float64'))) def test_sympy__codegen__ast__Pointer(): from sympy.codegen.ast import Pointer, Type, pointer_const assert _test_args(Pointer(x)) assert _test_args(Pointer(y, type=Type('float32'))) assert _test_args(Pointer(z, Type('float64'), {pointer_const})) def test_sympy__codegen__ast__Declaration(): from sympy.codegen.ast import Declaration, Variable, Type vx = Variable(x, type=Type('float')) assert _test_args(Declaration(vx)) def test_sympy__codegen__ast__While(): from sympy.codegen.ast import While, AddAugmentedAssignment assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Scope(): from sympy.codegen.ast import Scope, AddAugmentedAssignment assert _test_args(Scope([AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Stream(): from sympy.codegen.ast import Stream assert _test_args(Stream('stdin')) def test_sympy__codegen__ast__Print(): from sympy.codegen.ast import Print assert _test_args(Print([x, y])) assert _test_args(Print([x, y], "%d %d")) def test_sympy__codegen__ast__FunctionPrototype(): from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionPrototype(real, 'pwer', [inp_x])) def test_sympy__codegen__ast__FunctionDefinition(): from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) def test_sympy__codegen__ast__Return(): from sympy.codegen.ast import Return assert _test_args(Return(x)) def test_sympy__codegen__ast__FunctionCall(): from sympy.codegen.ast import FunctionCall assert _test_args(FunctionCall('pwer', [x])) def test_sympy__codegen__ast__Element(): from sympy.codegen.ast import Element assert _test_args(Element('x', range(3))) def test_sympy__codegen__cnodes__CommaOperator(): from sympy.codegen.cnodes import CommaOperator assert _test_args(CommaOperator(1, 2)) def test_sympy__codegen__cnodes__goto(): from sympy.codegen.cnodes import goto assert _test_args(goto('early_exit')) def test_sympy__codegen__cnodes__Label(): from sympy.codegen.cnodes import Label assert _test_args(Label('early_exit')) def test_sympy__codegen__cnodes__PreDecrement(): from sympy.codegen.cnodes import PreDecrement assert _test_args(PreDecrement(x)) def test_sympy__codegen__cnodes__PostDecrement(): from sympy.codegen.cnodes import PostDecrement assert _test_args(PostDecrement(x)) def test_sympy__codegen__cnodes__PreIncrement(): from sympy.codegen.cnodes import PreIncrement assert _test_args(PreIncrement(x)) def test_sympy__codegen__cnodes__PostIncrement(): from sympy.codegen.cnodes import PostIncrement assert _test_args(PostIncrement(x)) def test_sympy__codegen__cnodes__struct(): from sympy.codegen.ast import real, Variable from sympy.codegen.cnodes import struct assert _test_args(struct(declarations=[ Variable(x, type=real), Variable(y, type=real) ])) def test_sympy__codegen__cnodes__union(): from sympy.codegen.ast import float32, int32, Variable from sympy.codegen.cnodes import union assert _test_args(union(declarations=[ Variable(x, type=float32), Variable(y, type=int32) ])) def test_sympy__codegen__cxxnodes__using(): from sympy.codegen.cxxnodes import using assert _test_args(using('std::vector')) assert _test_args(using('std::vector', 'vec')) def test_sympy__codegen__fnodes__Program(): from sympy.codegen.fnodes import Program assert _test_args(Program('foobar', [])) def test_sympy__codegen__fnodes__Module(): from sympy.codegen.fnodes import Module assert _test_args(Module('foobar', [], [])) def test_sympy__codegen__fnodes__Subroutine(): from sympy.codegen.fnodes import Subroutine x = symbols('x', real=True) assert _test_args(Subroutine('foo', [x], [])) def test_sympy__codegen__fnodes__GoTo(): from sympy.codegen.fnodes import GoTo assert _test_args(GoTo([10])) assert _test_args(GoTo([10, 20], x > 1)) def test_sympy__codegen__fnodes__FortranReturn(): from sympy.codegen.fnodes import FortranReturn assert _test_args(FortranReturn(10)) def test_sympy__codegen__fnodes__Extent(): from sympy.codegen.fnodes import Extent assert _test_args(Extent()) assert _test_args(Extent(None)) assert _test_args(Extent(':')) assert _test_args(Extent(-3, 4)) assert _test_args(Extent(x, y)) def test_sympy__codegen__fnodes__use_rename(): from sympy.codegen.fnodes import use_rename assert _test_args(use_rename('loc', 'glob')) def test_sympy__codegen__fnodes__use(): from sympy.codegen.fnodes import use assert _test_args(use('modfoo', only='bar')) def test_sympy__codegen__fnodes__SubroutineCall(): from sympy.codegen.fnodes import SubroutineCall assert _test_args(SubroutineCall('foo', ['bar', 'baz'])) def test_sympy__codegen__fnodes__Do(): from sympy.codegen.fnodes import Do assert _test_args(Do([], 'i', 1, 42)) def test_sympy__codegen__fnodes__ImpliedDoLoop(): from sympy.codegen.fnodes import ImpliedDoLoop assert _test_args(ImpliedDoLoop('i', 'i', 1, 42)) def test_sympy__codegen__fnodes__ArrayConstructor(): from sympy.codegen.fnodes import ArrayConstructor assert _test_args(ArrayConstructor([1, 2, 3])) from sympy.codegen.fnodes import ImpliedDoLoop idl = ImpliedDoLoop('i', 'i', 1, 42) assert _test_args(ArrayConstructor([1, idl, 3])) def test_sympy__codegen__fnodes__sum_(): from sympy.codegen.fnodes import sum_ assert _test_args(sum_('arr')) def test_sympy__codegen__fnodes__product_(): from sympy.codegen.fnodes import product_ assert _test_args(product_('arr')) @XFAIL def test_sympy__combinatorics__graycode__GrayCode(): from sympy.combinatorics.graycode import GrayCode # an integer is given and returned from GrayCode as the arg assert _test_args(GrayCode(3, start='100')) assert _test_args(GrayCode(3, rank=1)) def test_sympy__combinatorics__subsets__Subset(): from sympy.combinatorics.subsets import Subset assert _test_args(Subset([0, 1], [0, 1, 2, 3])) assert _test_args(Subset(['c', 'd'], ['a', 'b', 'c', 'd'])) @XFAIL def test_sympy__combinatorics__permutations__Permutation(): from sympy.combinatorics.permutations import Permutation assert _test_args(Permutation([0, 1, 2, 3])) def test_sympy__combinatorics__perm_groups__PermutationGroup(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup assert _test_args(PermutationGroup([Permutation([0, 1])])) def test_sympy__combinatorics__polyhedron__Polyhedron(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.polyhedron import Polyhedron from sympy.abc import w, x, y, z pgroup = [Permutation([[0, 1, 2], [3]]), Permutation([[0, 1, 3], [2]]), Permutation([[0, 2, 3], [1]]), Permutation([[1, 2, 3], [0]]), Permutation([[0, 1], [2, 3]]), Permutation([[0, 2], [1, 3]]), Permutation([[0, 3], [1, 2]]), Permutation([[0, 1, 2, 3]])] corners = [w, x, y, z] faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)] assert _test_args(Polyhedron(corners, faces, pgroup)) @XFAIL def test_sympy__combinatorics__prufer__Prufer(): from sympy.combinatorics.prufer import Prufer assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4)) def test_sympy__combinatorics__partitions__Partition(): from sympy.combinatorics.partitions import Partition assert _test_args(Partition([1])) @XFAIL def test_sympy__combinatorics__partitions__IntegerPartition(): from sympy.combinatorics.partitions import IntegerPartition assert _test_args(IntegerPartition([1])) def test_sympy__concrete__products__Product(): from sympy.concrete.products import Product assert _test_args(Product(x, (x, 0, 10))) assert _test_args(Product(x, (x, 0, y), (y, 0, 10))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__ExprWithLimits(): from sympy.concrete.expr_with_limits import ExprWithLimits assert _test_args(ExprWithLimits(x, (x, 0, 10))) assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__AddWithLimits(): from sympy.concrete.expr_with_limits import AddWithLimits assert _test_args(AddWithLimits(x, (x, 0, 10))) assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits(): from sympy.concrete.expr_with_intlimits import ExprWithIntLimits assert _test_args(ExprWithIntLimits(x, (x, 0, 10))) assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3))) def test_sympy__concrete__summations__Sum(): from sympy.concrete.summations import Sum assert _test_args(Sum(x, (x, 0, 10))) assert _test_args(Sum(x, (x, 0, y), (y, 0, 10))) def test_sympy__core__add__Add(): from sympy.core.add import Add assert _test_args(Add(x, y, z, 2)) def test_sympy__core__basic__Atom(): from sympy.core.basic import Atom assert _test_args(Atom()) def test_sympy__core__basic__Basic(): from sympy.core.basic import Basic assert _test_args(Basic()) def test_sympy__core__containers__Dict(): from sympy.core.containers import Dict assert _test_args(Dict({x: y, y: z})) def test_sympy__core__containers__Tuple(): from sympy.core.containers import Tuple assert _test_args(Tuple(x, y, z, 2)) def test_sympy__core__expr__AtomicExpr(): from sympy.core.expr import AtomicExpr assert _test_args(AtomicExpr()) def test_sympy__core__expr__Expr(): from sympy.core.expr import Expr assert _test_args(Expr()) def test_sympy__core__expr__UnevaluatedExpr(): from sympy.core.expr import UnevaluatedExpr from sympy.abc import x assert _test_args(UnevaluatedExpr(x)) def test_sympy__core__function__Application(): from sympy.core.function import Application assert _test_args(Application(1, 2, 3)) def test_sympy__core__function__AppliedUndef(): from sympy.core.function import AppliedUndef assert _test_args(AppliedUndef(1, 2, 3)) def test_sympy__core__function__Derivative(): from sympy.core.function import Derivative assert _test_args(Derivative(2, x, y, 3)) @SKIP("abstract class") def test_sympy__core__function__Function(): pass def test_sympy__core__function__Lambda(): assert _test_args(Lambda((x, y), x + y + z)) def test_sympy__core__function__Subs(): from sympy.core.function import Subs assert _test_args(Subs(x + y, x, 2)) def test_sympy__core__function__WildFunction(): from sympy.core.function import WildFunction assert _test_args(WildFunction('f')) def test_sympy__core__mod__Mod(): from sympy.core.mod import Mod assert _test_args(Mod(x, 2)) def test_sympy__core__mul__Mul(): from sympy.core.mul import Mul assert _test_args(Mul(2, x, y, z)) def test_sympy__core__numbers__Catalan(): from sympy.core.numbers import Catalan assert _test_args(Catalan()) def test_sympy__core__numbers__ComplexInfinity(): from sympy.core.numbers import ComplexInfinity assert _test_args(ComplexInfinity()) def test_sympy__core__numbers__EulerGamma(): from sympy.core.numbers import EulerGamma assert _test_args(EulerGamma()) def test_sympy__core__numbers__Exp1(): from sympy.core.numbers import Exp1 assert _test_args(Exp1()) def test_sympy__core__numbers__Float(): from sympy.core.numbers import Float assert _test_args(Float(1.23)) def test_sympy__core__numbers__GoldenRatio(): from sympy.core.numbers import GoldenRatio assert _test_args(GoldenRatio()) def test_sympy__core__numbers__TribonacciConstant(): from sympy.core.numbers import TribonacciConstant assert _test_args(TribonacciConstant()) def test_sympy__core__numbers__Half(): from sympy.core.numbers import Half assert _test_args(Half()) def test_sympy__core__numbers__ImaginaryUnit(): from sympy.core.numbers import ImaginaryUnit assert _test_args(ImaginaryUnit()) def test_sympy__core__numbers__Infinity(): from sympy.core.numbers import Infinity assert _test_args(Infinity()) def test_sympy__core__numbers__Integer(): from sympy.core.numbers import Integer assert _test_args(Integer(7)) @SKIP("abstract class") def test_sympy__core__numbers__IntegerConstant(): pass def test_sympy__core__numbers__NaN(): from sympy.core.numbers import NaN assert _test_args(NaN()) def test_sympy__core__numbers__NegativeInfinity(): from sympy.core.numbers import NegativeInfinity assert _test_args(NegativeInfinity()) def test_sympy__core__numbers__NegativeOne(): from sympy.core.numbers import NegativeOne assert _test_args(NegativeOne()) def test_sympy__core__numbers__Number(): from sympy.core.numbers import Number assert _test_args(Number(1, 7)) def test_sympy__core__numbers__NumberSymbol(): from sympy.core.numbers import NumberSymbol assert _test_args(NumberSymbol()) def test_sympy__core__numbers__One(): from sympy.core.numbers import One assert _test_args(One()) def test_sympy__core__numbers__Pi(): from sympy.core.numbers import Pi assert _test_args(Pi()) def test_sympy__core__numbers__Rational(): from sympy.core.numbers import Rational assert _test_args(Rational(1, 7)) @SKIP("abstract class") def test_sympy__core__numbers__RationalConstant(): pass def test_sympy__core__numbers__Zero(): from sympy.core.numbers import Zero assert _test_args(Zero()) @SKIP("abstract class") def test_sympy__core__operations__AssocOp(): pass @SKIP("abstract class") def test_sympy__core__operations__LatticeOp(): pass def test_sympy__core__power__Pow(): from sympy.core.power import Pow assert _test_args(Pow(x, 2)) def test_sympy__algebras__quaternion__Quaternion(): from sympy.algebras.quaternion import Quaternion assert _test_args(Quaternion(x, 1, 2, 3)) def test_sympy__core__relational__Equality(): from sympy.core.relational import Equality assert _test_args(Equality(x, 2)) def test_sympy__core__relational__GreaterThan(): from sympy.core.relational import GreaterThan assert _test_args(GreaterThan(x, 2)) def test_sympy__core__relational__LessThan(): from sympy.core.relational import LessThan assert _test_args(LessThan(x, 2)) @SKIP("abstract class") def test_sympy__core__relational__Relational(): pass def test_sympy__core__relational__StrictGreaterThan(): from sympy.core.relational import StrictGreaterThan assert _test_args(StrictGreaterThan(x, 2)) def test_sympy__core__relational__StrictLessThan(): from sympy.core.relational import StrictLessThan assert _test_args(StrictLessThan(x, 2)) def test_sympy__core__relational__Unequality(): from sympy.core.relational import Unequality assert _test_args(Unequality(x, 2)) def test_sympy__sandbox__indexed_integrals__IndexedIntegral(): from sympy.tensor import IndexedBase, Idx from sympy.sandbox.indexed_integrals import IndexedIntegral A = IndexedBase('A') i, j = symbols('i j', integer=True) a1, a2 = symbols('a1:3', cls=Idx) assert _test_args(IndexedIntegral(A[a1], A[a2])) assert _test_args(IndexedIntegral(A[i], A[j])) def test_sympy__calculus__util__AccumulationBounds(): from sympy.calculus.util import AccumulationBounds assert _test_args(AccumulationBounds(0, 1)) def test_sympy__sets__ordinals__OmegaPower(): from sympy.sets.ordinals import OmegaPower assert _test_args(OmegaPower(1, 1)) def test_sympy__sets__ordinals__Ordinal(): from sympy.sets.ordinals import Ordinal, OmegaPower assert _test_args(Ordinal(OmegaPower(2, 1))) def test_sympy__sets__ordinals__OrdinalOmega(): from sympy.sets.ordinals import OrdinalOmega assert _test_args(OrdinalOmega()) def test_sympy__sets__ordinals__OrdinalZero(): from sympy.sets.ordinals import OrdinalZero assert _test_args(OrdinalZero()) def test_sympy__sets__sets__EmptySet(): from sympy.sets.sets import EmptySet assert _test_args(EmptySet()) def test_sympy__sets__sets__UniversalSet(): from sympy.sets.sets import UniversalSet assert _test_args(UniversalSet()) def test_sympy__sets__sets__FiniteSet(): from sympy.sets.sets import FiniteSet assert _test_args(FiniteSet(x, y, z)) def test_sympy__sets__sets__Interval(): from sympy.sets.sets import Interval assert _test_args(Interval(0, 1)) def test_sympy__sets__sets__ProductSet(): from sympy.sets.sets import ProductSet, Interval assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1))) @SKIP("does it make sense to test this?") def test_sympy__sets__sets__Set(): from sympy.sets.sets import Set assert _test_args(Set()) def test_sympy__sets__sets__Intersection(): from sympy.sets.sets import Intersection, Interval assert _test_args(Intersection(Interval(0, 3), Interval(2, 4), evaluate=False)) def test_sympy__sets__sets__Union(): from sympy.sets.sets import Union, Interval assert _test_args(Union(Interval(0, 1), Interval(2, 3))) def test_sympy__sets__sets__Complement(): from sympy.sets.sets import Complement assert _test_args(Complement(Interval(0, 2), Interval(0, 1))) def test_sympy__sets__sets__SymmetricDifference(): from sympy.sets.sets import FiniteSet, SymmetricDifference assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \ FiniteSet(2, 3, 4))) def test_sympy__core__trace__Tr(): from sympy.core.trace import Tr a, b = symbols('a b') assert _test_args(Tr(a + b)) def test_sympy__sets__setexpr__SetExpr(): from sympy.sets.setexpr import SetExpr assert _test_args(SetExpr(Interval(0, 1))) def test_sympy__sets__fancysets__Naturals(): from sympy.sets.fancysets import Naturals assert _test_args(Naturals()) def test_sympy__sets__fancysets__Naturals0(): from sympy.sets.fancysets import Naturals0 assert _test_args(Naturals0()) def test_sympy__sets__fancysets__Integers(): from sympy.sets.fancysets import Integers assert _test_args(Integers()) def test_sympy__sets__fancysets__Reals(): from sympy.sets.fancysets import Reals assert _test_args(Reals()) def test_sympy__sets__fancysets__Complexes(): from sympy.sets.fancysets import Complexes assert _test_args(Complexes()) def test_sympy__sets__fancysets__ComplexRegion(): from sympy.sets.fancysets import ComplexRegion from sympy import S from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) theta = Interval(0, 2*S.Pi) assert _test_args(ComplexRegion(a*b)) assert _test_args(ComplexRegion(a*theta, polar=True)) def test_sympy__sets__fancysets__ImageSet(): from sympy.sets.fancysets import ImageSet from sympy import S, Symbol x = Symbol('x') assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals)) def test_sympy__sets__fancysets__Range(): from sympy.sets.fancysets import Range assert _test_args(Range(1, 5, 1)) def test_sympy__sets__conditionset__ConditionSet(): from sympy.sets.conditionset import ConditionSet from sympy import S, Symbol x = Symbol('x') assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals)) def test_sympy__sets__contains__Contains(): from sympy.sets.fancysets import Range from sympy.sets.contains import Contains assert _test_args(Contains(x, Range(0, 10, 2))) # STATS from sympy.stats.crv_types import NormalDistribution nd = NormalDistribution(0, 1) from sympy.stats.frv_types import DieDistribution die = DieDistribution(6) def test_sympy__stats__crv__ContinuousDomain(): from sympy.stats.crv import ContinuousDomain assert _test_args(ContinuousDomain({x}, Interval(-oo, oo))) def test_sympy__stats__crv__SingleContinuousDomain(): from sympy.stats.crv import SingleContinuousDomain assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo))) def test_sympy__stats__crv__ProductContinuousDomain(): from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) E = SingleContinuousDomain(y, Interval(0, oo)) assert _test_args(ProductContinuousDomain(D, E)) def test_sympy__stats__crv__ConditionalContinuousDomain(): from sympy.stats.crv import (SingleContinuousDomain, ConditionalContinuousDomain) D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ConditionalContinuousDomain(D, x > 0)) def test_sympy__stats__crv__ContinuousPSpace(): from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ContinuousPSpace(D, nd)) def test_sympy__stats__crv__SingleContinuousPSpace(): from sympy.stats.crv import SingleContinuousPSpace assert _test_args(SingleContinuousPSpace(x, nd)) @SKIP("abstract class") def test_sympy__stats__crv__SingleContinuousDistribution(): pass def test_sympy__stats__drv__SingleDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain assert _test_args(SingleDiscreteDomain(x, S.Naturals)) def test_sympy__stats__drv__ProductDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals) Y = SingleDiscreteDomain(y, S.Integers) assert _test_args(ProductDiscreteDomain(X, Y)) def test_sympy__stats__drv__SingleDiscretePSpace(): from sympy.stats.drv import SingleDiscretePSpace from sympy.stats.drv_types import PoissonDistribution assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1))) def test_sympy__stats__drv__DiscretePSpace(): from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain density = Lambda(x, 2**(-x)) domain = SingleDiscreteDomain(x, S.Naturals) assert _test_args(DiscretePSpace(domain, density)) def test_sympy__stats__drv__ConditionalDiscreteDomain(): from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals0) assert _test_args(ConditionalDiscreteDomain(X, x > 2)) def test_sympy__stats__joint_rv__JointPSpace(): from sympy.stats.joint_rv import JointPSpace, JointDistribution assert _test_args(JointPSpace('X', JointDistribution(1))) def test_sympy__stats__joint_rv__JointRandomSymbol(): from sympy.stats.joint_rv import JointRandomSymbol assert _test_args(JointRandomSymbol(x)) def test_sympy__stats__joint_rv__JointDistributionHandmade(): from sympy import Indexed from sympy.stats.joint_rv import JointDistributionHandmade x1, x2 = (Indexed('x', i) for i in (1, 2)) assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2)) def test_sympy__stats__joint_rv__MarginalDistribution(): from sympy.stats.rv import RandomSymbol from sympy.stats.joint_rv import MarginalDistribution r = RandomSymbol(S('r')) assert _test_args(MarginalDistribution(r, (r,))) def test_sympy__stats__joint_rv__CompoundDistribution(): from sympy.stats.joint_rv import CompoundDistribution from sympy.stats.drv_types import PoissonDistribution r = PoissonDistribution(x) assert _test_args(CompoundDistribution(PoissonDistribution(r))) @SKIP("abstract class") def test_sympy__stats__drv__SingleDiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDomain(): pass def test_sympy__stats__rv__RandomDomain(): from sympy.stats.rv import RandomDomain from sympy.sets.sets import FiniteSet assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3))) def test_sympy__stats__rv__SingleDomain(): from sympy.stats.rv import SingleDomain from sympy.sets.sets import FiniteSet assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3))) def test_sympy__stats__rv__ConditionalDomain(): from sympy.stats.rv import ConditionalDomain, RandomDomain from sympy.sets.sets import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2)) assert _test_args(ConditionalDomain(D, x > 1)) def test_sympy__stats__rv__PSpace(): from sympy.stats.rv import PSpace, RandomDomain from sympy import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6)) assert _test_args(PSpace(D, die)) @SKIP("abstract Class") def test_sympy__stats__rv__SinglePSpace(): pass def test_sympy__stats__rv__RandomSymbol(): from sympy.stats.rv import RandomSymbol from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) assert _test_args(RandomSymbol(x, A)) @SKIP("abstract Class") def test_sympy__stats__rv__ProductPSpace(): pass def test_sympy__stats__rv__IndependentProductPSpace(): from sympy.stats.rv import IndependentProductPSpace from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) B = SingleContinuousPSpace(y, nd) assert _test_args(IndependentProductPSpace(A, B)) def test_sympy__stats__rv__ProductDomain(): from sympy.stats.rv import ProductDomain, SingleDomain D = SingleDomain(x, Interval(-oo, oo)) E = SingleDomain(y, Interval(0, oo)) assert _test_args(ProductDomain(D, E)) def test_sympy__stats__symbolic_probability__Probability(): from sympy.stats.symbolic_probability import Probability from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Probability(X > 0)) def test_sympy__stats__symbolic_probability__Expectation(): from sympy.stats.symbolic_probability import Expectation from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Expectation(X > 0)) def test_sympy__stats__symbolic_probability__Covariance(): from sympy.stats.symbolic_probability import Covariance from sympy.stats import Normal X = Normal('X', 0, 1) Y = Normal('Y', 0, 3) assert _test_args(Covariance(X, Y)) def test_sympy__stats__symbolic_probability__Variance(): from sympy.stats.symbolic_probability import Variance from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Variance(X)) def test_sympy__stats__frv_types__DiscreteUniformDistribution(): from sympy.stats.frv_types import DiscreteUniformDistribution from sympy.core.containers import Tuple assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6))))) def test_sympy__stats__frv_types__DieDistribution(): assert _test_args(die) def test_sympy__stats__frv_types__BernoulliDistribution(): from sympy.stats.frv_types import BernoulliDistribution assert _test_args(BernoulliDistribution(S.Half, 0, 1)) def test_sympy__stats__frv_types__BinomialDistribution(): from sympy.stats.frv_types import BinomialDistribution assert _test_args(BinomialDistribution(5, S.Half, 1, 0)) def test_sympy__stats__frv_types__HypergeometricDistribution(): from sympy.stats.frv_types import HypergeometricDistribution assert _test_args(HypergeometricDistribution(10, 5, 3)) def test_sympy__stats__frv_types__RademacherDistribution(): from sympy.stats.frv_types import RademacherDistribution assert _test_args(RademacherDistribution()) def test_sympy__stats__frv__FiniteDomain(): from sympy.stats.frv import FiniteDomain assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2 def test_sympy__stats__frv__SingleFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2 def test_sympy__stats__frv__ProductFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) yd = SingleFiniteDomain(y, {1, 2}) assert _test_args(ProductFiniteDomain(xd, yd)) def test_sympy__stats__frv__ConditionalFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(ConditionalFiniteDomain(xd, x > 1)) def test_sympy__stats__frv__FinitePSpace(): from sympy.stats.frv import FinitePSpace, SingleFiniteDomain xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6}) p = 1.0/6 xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) def test_sympy__stats__frv__SingleFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace from sympy import Symbol assert _test_args(SingleFinitePSpace(Symbol('x'), die)) def test_sympy__stats__frv__ProductFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace from sympy import Symbol xp = SingleFinitePSpace(Symbol('x'), die) yp = SingleFinitePSpace(Symbol('y'), die) assert _test_args(ProductFinitePSpace(xp, yp)) @SKIP("abstract class") def test_sympy__stats__frv__SingleFiniteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__crv__ContinuousDistribution(): pass def test_sympy__stats__frv_types__FiniteDistributionHandmade(): from sympy.stats.frv_types import FiniteDistributionHandmade assert _test_args(FiniteDistributionHandmade({1: 1})) def test_sympy__stats__crv__ContinuousDistributionHandmade(): from sympy.stats.crv import ContinuousDistributionHandmade from sympy import Symbol, Interval assert _test_args(ContinuousDistributionHandmade(Symbol('x'), Interval(0, 2))) def test_sympy__stats__drv__DiscreteDistributionHandmade(): from sympy.stats.drv import DiscreteDistributionHandmade assert _test_args(DiscreteDistributionHandmade(x, S.Naturals)) def test_sympy__stats__rv__Density(): from sympy.stats.rv import Density from sympy.stats.crv_types import Normal assert _test_args(Density(Normal('x', 0, 1))) def test_sympy__stats__crv_types__ArcsinDistribution(): from sympy.stats.crv_types import ArcsinDistribution assert _test_args(ArcsinDistribution(0, 1)) def test_sympy__stats__crv_types__BeniniDistribution(): from sympy.stats.crv_types import BeniniDistribution assert _test_args(BeniniDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaDistribution(): from sympy.stats.crv_types import BetaDistribution assert _test_args(BetaDistribution(1, 1)) def test_sympy__stats__crv_types__BetaPrimeDistribution(): from sympy.stats.crv_types import BetaPrimeDistribution assert _test_args(BetaPrimeDistribution(1, 1)) def test_sympy__stats__crv_types__CauchyDistribution(): from sympy.stats.crv_types import CauchyDistribution assert _test_args(CauchyDistribution(0, 1)) def test_sympy__stats__crv_types__ChiDistribution(): from sympy.stats.crv_types import ChiDistribution assert _test_args(ChiDistribution(1)) def test_sympy__stats__crv_types__ChiNoncentralDistribution(): from sympy.stats.crv_types import ChiNoncentralDistribution assert _test_args(ChiNoncentralDistribution(1,1)) def test_sympy__stats__crv_types__ChiSquaredDistribution(): from sympy.stats.crv_types import ChiSquaredDistribution assert _test_args(ChiSquaredDistribution(1)) def test_sympy__stats__crv_types__DagumDistribution(): from sympy.stats.crv_types import DagumDistribution assert _test_args(DagumDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExponentialDistribution(): from sympy.stats.crv_types import ExponentialDistribution assert _test_args(ExponentialDistribution(1)) def test_sympy__stats__crv_types__FDistributionDistribution(): from sympy.stats.crv_types import FDistributionDistribution assert _test_args(FDistributionDistribution(1, 1)) def test_sympy__stats__crv_types__FisherZDistribution(): from sympy.stats.crv_types import FisherZDistribution assert _test_args(FisherZDistribution(1, 1)) def test_sympy__stats__crv_types__FrechetDistribution(): from sympy.stats.crv_types import FrechetDistribution assert _test_args(FrechetDistribution(1, 1, 1)) def test_sympy__stats__crv_types__GammaInverseDistribution(): from sympy.stats.crv_types import GammaInverseDistribution assert _test_args(GammaInverseDistribution(1, 1)) def test_sympy__stats__crv_types__GammaDistribution(): from sympy.stats.crv_types import GammaDistribution assert _test_args(GammaDistribution(1, 1)) def test_sympy__stats__crv_types__GumbelDistribution(): from sympy.stats.crv_types import GumbelDistribution assert _test_args(GumbelDistribution(1, 1)) def test_sympy__stats__crv_types__GompertzDistribution(): from sympy.stats.crv_types import GompertzDistribution assert _test_args(GompertzDistribution(1, 1)) def test_sympy__stats__crv_types__KumaraswamyDistribution(): from sympy.stats.crv_types import KumaraswamyDistribution assert _test_args(KumaraswamyDistribution(1, 1)) def test_sympy__stats__crv_types__LaplaceDistribution(): from sympy.stats.crv_types import LaplaceDistribution assert _test_args(LaplaceDistribution(0, 1)) def test_sympy__stats__crv_types__LogisticDistribution(): from sympy.stats.crv_types import LogisticDistribution assert _test_args(LogisticDistribution(0, 1)) def test_sympy__stats__crv_types__LogNormalDistribution(): from sympy.stats.crv_types import LogNormalDistribution assert _test_args(LogNormalDistribution(0, 1)) def test_sympy__stats__crv_types__MaxwellDistribution(): from sympy.stats.crv_types import MaxwellDistribution assert _test_args(MaxwellDistribution(1)) def test_sympy__stats__crv_types__NakagamiDistribution(): from sympy.stats.crv_types import NakagamiDistribution assert _test_args(NakagamiDistribution(1, 1)) def test_sympy__stats__crv_types__NormalDistribution(): from sympy.stats.crv_types import NormalDistribution assert _test_args(NormalDistribution(0, 1)) def test_sympy__stats__crv_types__ParetoDistribution(): from sympy.stats.crv_types import ParetoDistribution assert _test_args(ParetoDistribution(1, 1)) def test_sympy__stats__crv_types__QuadraticUDistribution(): from sympy.stats.crv_types import QuadraticUDistribution assert _test_args(QuadraticUDistribution(1, 2)) def test_sympy__stats__crv_types__RaisedCosineDistribution(): from sympy.stats.crv_types import RaisedCosineDistribution assert _test_args(RaisedCosineDistribution(1, 1)) def test_sympy__stats__crv_types__RayleighDistribution(): from sympy.stats.crv_types import RayleighDistribution assert _test_args(RayleighDistribution(1)) def test_sympy__stats__crv_types__ShiftedGompertzDistribution(): from sympy.stats.crv_types import ShiftedGompertzDistribution assert _test_args(ShiftedGompertzDistribution(1, 1)) def test_sympy__stats__crv_types__StudentTDistribution(): from sympy.stats.crv_types import StudentTDistribution assert _test_args(StudentTDistribution(1)) def test_sympy__stats__crv_types__TrapezoidalDistribution(): from sympy.stats.crv_types import TrapezoidalDistribution assert _test_args(TrapezoidalDistribution(1, 2, 3, 4)) def test_sympy__stats__crv_types__TriangularDistribution(): from sympy.stats.crv_types import TriangularDistribution assert _test_args(TriangularDistribution(-1, 0, 1)) def test_sympy__stats__crv_types__UniformDistribution(): from sympy.stats.crv_types import UniformDistribution assert _test_args(UniformDistribution(0, 1)) def test_sympy__stats__crv_types__UniformSumDistribution(): from sympy.stats.crv_types import UniformSumDistribution assert _test_args(UniformSumDistribution(1)) def test_sympy__stats__crv_types__VonMisesDistribution(): from sympy.stats.crv_types import VonMisesDistribution assert _test_args(VonMisesDistribution(1, 1)) def test_sympy__stats__crv_types__WeibullDistribution(): from sympy.stats.crv_types import WeibullDistribution assert _test_args(WeibullDistribution(1, 1)) def test_sympy__stats__crv_types__WignerSemicircleDistribution(): from sympy.stats.crv_types import WignerSemicircleDistribution assert _test_args(WignerSemicircleDistribution(1)) def test_sympy__stats__drv_types__GeometricDistribution(): from sympy.stats.drv_types import GeometricDistribution assert _test_args(GeometricDistribution(.5)) def test_sympy__stats__drv_types__LogarithmicDistribution(): from sympy.stats.drv_types import LogarithmicDistribution assert _test_args(LogarithmicDistribution(.5)) def test_sympy__stats__drv_types__NegativeBinomialDistribution(): from sympy.stats.drv_types import NegativeBinomialDistribution assert _test_args(NegativeBinomialDistribution(.5, .5)) def test_sympy__stats__drv_types__PoissonDistribution(): from sympy.stats.drv_types import PoissonDistribution assert _test_args(PoissonDistribution(1)) def test_sympy__stats__drv_types__YuleSimonDistribution(): from sympy.stats.drv_types import YuleSimonDistribution assert _test_args(YuleSimonDistribution(.5)) def test_sympy__stats__drv_types__ZetaDistribution(): from sympy.stats.drv_types import ZetaDistribution assert _test_args(ZetaDistribution(1.5)) def test_sympy__stats__joint_rv__JointDistribution(): from sympy.stats.joint_rv import JointDistribution assert _test_args(JointDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution(): from sympy.stats.joint_rv_types import MultivariateNormalDistribution assert _test_args( MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution(): from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateTDistribution(): from sympy.stats.joint_rv_types import MultivariateTDistribution assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1)) def test_sympy__stats__joint_rv_types__NormalGammaDistribution(): from sympy.stats.joint_rv_types import NormalGammaDistribution assert _test_args(NormalGammaDistribution(1, 2, 3, 4)) def test_sympy__core__symbol__Dummy(): from sympy.core.symbol import Dummy assert _test_args(Dummy('t')) def test_sympy__core__symbol__Symbol(): from sympy.core.symbol import Symbol assert _test_args(Symbol('t')) def test_sympy__core__symbol__Wild(): from sympy.core.symbol import Wild assert _test_args(Wild('x', exclude=[x])) @SKIP("abstract class") def test_sympy__functions__combinatorial__factorials__CombinatorialFunction(): pass def test_sympy__functions__combinatorial__factorials__FallingFactorial(): from sympy.functions.combinatorial.factorials import FallingFactorial assert _test_args(FallingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__MultiFactorial(): from sympy.functions.combinatorial.factorials import MultiFactorial assert _test_args(MultiFactorial(x)) def test_sympy__functions__combinatorial__factorials__RisingFactorial(): from sympy.functions.combinatorial.factorials import RisingFactorial assert _test_args(RisingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__binomial(): from sympy.functions.combinatorial.factorials import binomial assert _test_args(binomial(2, x)) def test_sympy__functions__combinatorial__factorials__subfactorial(): from sympy.functions.combinatorial.factorials import subfactorial assert _test_args(subfactorial(1)) def test_sympy__functions__combinatorial__factorials__factorial(): from sympy.functions.combinatorial.factorials import factorial assert _test_args(factorial(x)) def test_sympy__functions__combinatorial__factorials__factorial2(): from sympy.functions.combinatorial.factorials import factorial2 assert _test_args(factorial2(x)) def test_sympy__functions__combinatorial__numbers__bell(): from sympy.functions.combinatorial.numbers import bell assert _test_args(bell(x, y)) def test_sympy__functions__combinatorial__numbers__bernoulli(): from sympy.functions.combinatorial.numbers import bernoulli assert _test_args(bernoulli(x)) def test_sympy__functions__combinatorial__numbers__catalan(): from sympy.functions.combinatorial.numbers import catalan assert _test_args(catalan(x)) def test_sympy__functions__combinatorial__numbers__genocchi(): from sympy.functions.combinatorial.numbers import genocchi assert _test_args(genocchi(x)) def test_sympy__functions__combinatorial__numbers__euler(): from sympy.functions.combinatorial.numbers import euler assert _test_args(euler(x)) def test_sympy__functions__combinatorial__numbers__carmichael(): from sympy.functions.combinatorial.numbers import carmichael assert _test_args(carmichael(x)) def test_sympy__functions__combinatorial__numbers__fibonacci(): from sympy.functions.combinatorial.numbers import fibonacci assert _test_args(fibonacci(x)) def test_sympy__functions__combinatorial__numbers__tribonacci(): from sympy.functions.combinatorial.numbers import tribonacci assert _test_args(tribonacci(x)) def test_sympy__functions__combinatorial__numbers__harmonic(): from sympy.functions.combinatorial.numbers import harmonic assert _test_args(harmonic(x, 2)) def test_sympy__functions__combinatorial__numbers__lucas(): from sympy.functions.combinatorial.numbers import lucas assert _test_args(lucas(x)) def test_sympy__functions__combinatorial__numbers__partition(): from sympy.core.symbol import Symbol from sympy.functions.combinatorial.numbers import partition assert _test_args(partition(Symbol('a', integer=True))) def test_sympy__functions__elementary__complexes__Abs(): from sympy.functions.elementary.complexes import Abs assert _test_args(Abs(x)) def test_sympy__functions__elementary__complexes__adjoint(): from sympy.functions.elementary.complexes import adjoint assert _test_args(adjoint(x)) def test_sympy__functions__elementary__complexes__arg(): from sympy.functions.elementary.complexes import arg assert _test_args(arg(x)) def test_sympy__functions__elementary__complexes__conjugate(): from sympy.functions.elementary.complexes import conjugate assert _test_args(conjugate(x)) def test_sympy__functions__elementary__complexes__im(): from sympy.functions.elementary.complexes import im assert _test_args(im(x)) def test_sympy__functions__elementary__complexes__re(): from sympy.functions.elementary.complexes import re assert _test_args(re(x)) def test_sympy__functions__elementary__complexes__sign(): from sympy.functions.elementary.complexes import sign assert _test_args(sign(x)) def test_sympy__functions__elementary__complexes__polar_lift(): from sympy.functions.elementary.complexes import polar_lift assert _test_args(polar_lift(x)) def test_sympy__functions__elementary__complexes__periodic_argument(): from sympy.functions.elementary.complexes import periodic_argument assert _test_args(periodic_argument(x, y)) def test_sympy__functions__elementary__complexes__principal_branch(): from sympy.functions.elementary.complexes import principal_branch assert _test_args(principal_branch(x, y)) def test_sympy__functions__elementary__complexes__transpose(): from sympy.functions.elementary.complexes import transpose assert _test_args(transpose(x)) def test_sympy__functions__elementary__exponential__LambertW(): from sympy.functions.elementary.exponential import LambertW assert _test_args(LambertW(2)) @SKIP("abstract class") def test_sympy__functions__elementary__exponential__ExpBase(): pass def test_sympy__functions__elementary__exponential__exp(): from sympy.functions.elementary.exponential import exp assert _test_args(exp(2)) def test_sympy__functions__elementary__exponential__exp_polar(): from sympy.functions.elementary.exponential import exp_polar assert _test_args(exp_polar(2)) def test_sympy__functions__elementary__exponential__log(): from sympy.functions.elementary.exponential import log assert _test_args(log(2)) @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction(): pass def test_sympy__functions__elementary__hyperbolic__acosh(): from sympy.functions.elementary.hyperbolic import acosh assert _test_args(acosh(2)) def test_sympy__functions__elementary__hyperbolic__acoth(): from sympy.functions.elementary.hyperbolic import acoth assert _test_args(acoth(2)) def test_sympy__functions__elementary__hyperbolic__asinh(): from sympy.functions.elementary.hyperbolic import asinh assert _test_args(asinh(2)) def test_sympy__functions__elementary__hyperbolic__atanh(): from sympy.functions.elementary.hyperbolic import atanh assert _test_args(atanh(2)) def test_sympy__functions__elementary__hyperbolic__asech(): from sympy.functions.elementary.hyperbolic import asech assert _test_args(asech(2)) def test_sympy__functions__elementary__hyperbolic__acsch(): from sympy.functions.elementary.hyperbolic import acsch assert _test_args(acsch(2)) def test_sympy__functions__elementary__hyperbolic__cosh(): from sympy.functions.elementary.hyperbolic import cosh assert _test_args(cosh(2)) def test_sympy__functions__elementary__hyperbolic__coth(): from sympy.functions.elementary.hyperbolic import coth assert _test_args(coth(2)) def test_sympy__functions__elementary__hyperbolic__csch(): from sympy.functions.elementary.hyperbolic import csch assert _test_args(csch(2)) def test_sympy__functions__elementary__hyperbolic__sech(): from sympy.functions.elementary.hyperbolic import sech assert _test_args(sech(2)) def test_sympy__functions__elementary__hyperbolic__sinh(): from sympy.functions.elementary.hyperbolic import sinh assert _test_args(sinh(2)) def test_sympy__functions__elementary__hyperbolic__tanh(): from sympy.functions.elementary.hyperbolic import tanh assert _test_args(tanh(2)) @SKIP("does this work at all?") def test_sympy__functions__elementary__integers__RoundFunction(): from sympy.functions.elementary.integers import RoundFunction assert _test_args(RoundFunction()) def test_sympy__functions__elementary__integers__ceiling(): from sympy.functions.elementary.integers import ceiling assert _test_args(ceiling(x)) def test_sympy__functions__elementary__integers__floor(): from sympy.functions.elementary.integers import floor assert _test_args(floor(x)) def test_sympy__functions__elementary__integers__frac(): from sympy.functions.elementary.integers import frac assert _test_args(frac(x)) def test_sympy__functions__elementary__miscellaneous__IdentityFunction(): from sympy.functions.elementary.miscellaneous import IdentityFunction assert _test_args(IdentityFunction()) def test_sympy__functions__elementary__miscellaneous__Max(): from sympy.functions.elementary.miscellaneous import Max assert _test_args(Max(x, 2)) def test_sympy__functions__elementary__miscellaneous__Min(): from sympy.functions.elementary.miscellaneous import Min assert _test_args(Min(x, 2)) @SKIP("abstract class") def test_sympy__functions__elementary__miscellaneous__MinMaxBase(): pass def test_sympy__functions__elementary__piecewise__ExprCondPair(): from sympy.functions.elementary.piecewise import ExprCondPair assert _test_args(ExprCondPair(1, True)) def test_sympy__functions__elementary__piecewise__Piecewise(): from sympy.functions.elementary.piecewise import Piecewise assert _test_args(Piecewise((1, x >= 0), (0, True))) @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__TrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction(): pass def test_sympy__functions__elementary__trigonometric__acos(): from sympy.functions.elementary.trigonometric import acos assert _test_args(acos(2)) def test_sympy__functions__elementary__trigonometric__acot(): from sympy.functions.elementary.trigonometric import acot assert _test_args(acot(2)) def test_sympy__functions__elementary__trigonometric__asin(): from sympy.functions.elementary.trigonometric import asin assert _test_args(asin(2)) def test_sympy__functions__elementary__trigonometric__asec(): from sympy.functions.elementary.trigonometric import asec assert _test_args(asec(2)) def test_sympy__functions__elementary__trigonometric__acsc(): from sympy.functions.elementary.trigonometric import acsc assert _test_args(acsc(2)) def test_sympy__functions__elementary__trigonometric__atan(): from sympy.functions.elementary.trigonometric import atan assert _test_args(atan(2)) def test_sympy__functions__elementary__trigonometric__atan2(): from sympy.functions.elementary.trigonometric import atan2 assert _test_args(atan2(2, 3)) def test_sympy__functions__elementary__trigonometric__cos(): from sympy.functions.elementary.trigonometric import cos assert _test_args(cos(2)) def test_sympy__functions__elementary__trigonometric__csc(): from sympy.functions.elementary.trigonometric import csc assert _test_args(csc(2)) def test_sympy__functions__elementary__trigonometric__cot(): from sympy.functions.elementary.trigonometric import cot assert _test_args(cot(2)) def test_sympy__functions__elementary__trigonometric__sin(): assert _test_args(sin(2)) def test_sympy__functions__elementary__trigonometric__sinc(): from sympy.functions.elementary.trigonometric import sinc assert _test_args(sinc(2)) def test_sympy__functions__elementary__trigonometric__sec(): from sympy.functions.elementary.trigonometric import sec assert _test_args(sec(2)) def test_sympy__functions__elementary__trigonometric__tan(): from sympy.functions.elementary.trigonometric import tan assert _test_args(tan(2)) @SKIP("abstract class") def test_sympy__functions__special__bessel__BesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalBesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalHankelBase(): pass def test_sympy__functions__special__bessel__besseli(): from sympy.functions.special.bessel import besseli assert _test_args(besseli(x, 1)) def test_sympy__functions__special__bessel__besselj(): from sympy.functions.special.bessel import besselj assert _test_args(besselj(x, 1)) def test_sympy__functions__special__bessel__besselk(): from sympy.functions.special.bessel import besselk assert _test_args(besselk(x, 1)) def test_sympy__functions__special__bessel__bessely(): from sympy.functions.special.bessel import bessely assert _test_args(bessely(x, 1)) def test_sympy__functions__special__bessel__hankel1(): from sympy.functions.special.bessel import hankel1 assert _test_args(hankel1(x, 1)) def test_sympy__functions__special__bessel__hankel2(): from sympy.functions.special.bessel import hankel2 assert _test_args(hankel2(x, 1)) def test_sympy__functions__special__bessel__jn(): from sympy.functions.special.bessel import jn assert _test_args(jn(0, x)) def test_sympy__functions__special__bessel__yn(): from sympy.functions.special.bessel import yn assert _test_args(yn(0, x)) def test_sympy__functions__special__bessel__hn1(): from sympy.functions.special.bessel import hn1 assert _test_args(hn1(0, x)) def test_sympy__functions__special__bessel__hn2(): from sympy.functions.special.bessel import hn2 assert _test_args(hn2(0, x)) def test_sympy__functions__special__bessel__AiryBase(): pass def test_sympy__functions__special__bessel__airyai(): from sympy.functions.special.bessel import airyai assert _test_args(airyai(2)) def test_sympy__functions__special__bessel__airybi(): from sympy.functions.special.bessel import airybi assert _test_args(airybi(2)) def test_sympy__functions__special__bessel__airyaiprime(): from sympy.functions.special.bessel import airyaiprime assert _test_args(airyaiprime(2)) def test_sympy__functions__special__bessel__airybiprime(): from sympy.functions.special.bessel import airybiprime assert _test_args(airybiprime(2)) def test_sympy__functions__special__elliptic_integrals__elliptic_k(): from sympy.functions.special.elliptic_integrals import elliptic_k as K assert _test_args(K(x)) def test_sympy__functions__special__elliptic_integrals__elliptic_f(): from sympy.functions.special.elliptic_integrals import elliptic_f as F assert _test_args(F(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_e(): from sympy.functions.special.elliptic_integrals import elliptic_e as E assert _test_args(E(x)) assert _test_args(E(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_pi(): from sympy.functions.special.elliptic_integrals import elliptic_pi as P assert _test_args(P(x, y)) assert _test_args(P(x, y, z)) def test_sympy__functions__special__delta_functions__DiracDelta(): from sympy.functions.special.delta_functions import DiracDelta assert _test_args(DiracDelta(x, 1)) def test_sympy__functions__special__singularity_functions__SingularityFunction(): from sympy.functions.special.singularity_functions import SingularityFunction assert _test_args(SingularityFunction(x, y, z)) def test_sympy__functions__special__delta_functions__Heaviside(): from sympy.functions.special.delta_functions import Heaviside assert _test_args(Heaviside(x)) def test_sympy__functions__special__error_functions__erf(): from sympy.functions.special.error_functions import erf assert _test_args(erf(2)) def test_sympy__functions__special__error_functions__erfc(): from sympy.functions.special.error_functions import erfc assert _test_args(erfc(2)) def test_sympy__functions__special__error_functions__erfi(): from sympy.functions.special.error_functions import erfi assert _test_args(erfi(2)) def test_sympy__functions__special__error_functions__erf2(): from sympy.functions.special.error_functions import erf2 assert _test_args(erf2(2, 3)) def test_sympy__functions__special__error_functions__erfinv(): from sympy.functions.special.error_functions import erfinv assert _test_args(erfinv(2)) def test_sympy__functions__special__error_functions__erfcinv(): from sympy.functions.special.error_functions import erfcinv assert _test_args(erfcinv(2)) def test_sympy__functions__special__error_functions__erf2inv(): from sympy.functions.special.error_functions import erf2inv assert _test_args(erf2inv(2, 3)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__FresnelIntegral(): pass def test_sympy__functions__special__error_functions__fresnels(): from sympy.functions.special.error_functions import fresnels assert _test_args(fresnels(2)) def test_sympy__functions__special__error_functions__fresnelc(): from sympy.functions.special.error_functions import fresnelc assert _test_args(fresnelc(2)) def test_sympy__functions__special__error_functions__erfs(): from sympy.functions.special.error_functions import _erfs assert _test_args(_erfs(2)) def test_sympy__functions__special__error_functions__Ei(): from sympy.functions.special.error_functions import Ei assert _test_args(Ei(2)) def test_sympy__functions__special__error_functions__li(): from sympy.functions.special.error_functions import li assert _test_args(li(2)) def test_sympy__functions__special__error_functions__Li(): from sympy.functions.special.error_functions import Li assert _test_args(Li(2)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__TrigonometricIntegral(): pass def test_sympy__functions__special__error_functions__Si(): from sympy.functions.special.error_functions import Si assert _test_args(Si(2)) def test_sympy__functions__special__error_functions__Ci(): from sympy.functions.special.error_functions import Ci assert _test_args(Ci(2)) def test_sympy__functions__special__error_functions__Shi(): from sympy.functions.special.error_functions import Shi assert _test_args(Shi(2)) def test_sympy__functions__special__error_functions__Chi(): from sympy.functions.special.error_functions import Chi assert _test_args(Chi(2)) def test_sympy__functions__special__error_functions__expint(): from sympy.functions.special.error_functions import expint assert _test_args(expint(y, x)) def test_sympy__functions__special__gamma_functions__gamma(): from sympy.functions.special.gamma_functions import gamma assert _test_args(gamma(x)) def test_sympy__functions__special__gamma_functions__loggamma(): from sympy.functions.special.gamma_functions import loggamma assert _test_args(loggamma(2)) def test_sympy__functions__special__gamma_functions__lowergamma(): from sympy.functions.special.gamma_functions import lowergamma assert _test_args(lowergamma(x, 2)) def test_sympy__functions__special__gamma_functions__polygamma(): from sympy.functions.special.gamma_functions import polygamma assert _test_args(polygamma(x, 2)) def test_sympy__functions__special__gamma_functions__uppergamma(): from sympy.functions.special.gamma_functions import uppergamma assert _test_args(uppergamma(x, 2)) def test_sympy__functions__special__beta_functions__beta(): from sympy.functions.special.beta_functions import beta assert _test_args(beta(x, x)) def test_sympy__functions__special__mathieu_functions__MathieuBase(): pass def test_sympy__functions__special__mathieu_functions__mathieus(): from sympy.functions.special.mathieu_functions import mathieus assert _test_args(mathieus(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieuc(): from sympy.functions.special.mathieu_functions import mathieuc assert _test_args(mathieuc(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieusprime(): from sympy.functions.special.mathieu_functions import mathieusprime assert _test_args(mathieusprime(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieucprime(): from sympy.functions.special.mathieu_functions import mathieucprime assert _test_args(mathieucprime(1, 1, 1)) @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleParametersBase(): pass @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleArg(): pass def test_sympy__functions__special__hyper__hyper(): from sympy.functions.special.hyper import hyper assert _test_args(hyper([1, 2, 3], [4, 5], x)) def test_sympy__functions__special__hyper__meijerg(): from sympy.functions.special.hyper import meijerg assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x)) @SKIP("abstract class") def test_sympy__functions__special__hyper__HyperRep(): pass def test_sympy__functions__special__hyper__HyperRep_power1(): from sympy.functions.special.hyper import HyperRep_power1 assert _test_args(HyperRep_power1(x, y)) def test_sympy__functions__special__hyper__HyperRep_power2(): from sympy.functions.special.hyper import HyperRep_power2 assert _test_args(HyperRep_power2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log1(): from sympy.functions.special.hyper import HyperRep_log1 assert _test_args(HyperRep_log1(x)) def test_sympy__functions__special__hyper__HyperRep_atanh(): from sympy.functions.special.hyper import HyperRep_atanh assert _test_args(HyperRep_atanh(x)) def test_sympy__functions__special__hyper__HyperRep_asin1(): from sympy.functions.special.hyper import HyperRep_asin1 assert _test_args(HyperRep_asin1(x)) def test_sympy__functions__special__hyper__HyperRep_asin2(): from sympy.functions.special.hyper import HyperRep_asin2 assert _test_args(HyperRep_asin2(x)) def test_sympy__functions__special__hyper__HyperRep_sqrts1(): from sympy.functions.special.hyper import HyperRep_sqrts1 assert _test_args(HyperRep_sqrts1(x, y)) def test_sympy__functions__special__hyper__HyperRep_sqrts2(): from sympy.functions.special.hyper import HyperRep_sqrts2 assert _test_args(HyperRep_sqrts2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log2(): from sympy.functions.special.hyper import HyperRep_log2 assert _test_args(HyperRep_log2(x)) def test_sympy__functions__special__hyper__HyperRep_cosasin(): from sympy.functions.special.hyper import HyperRep_cosasin assert _test_args(HyperRep_cosasin(x, y)) def test_sympy__functions__special__hyper__HyperRep_sinasin(): from sympy.functions.special.hyper import HyperRep_sinasin assert _test_args(HyperRep_sinasin(x, y)) def test_sympy__functions__special__hyper__appellf1(): from sympy.functions.special.hyper import appellf1 a, b1, b2, c, x, y = symbols('a b1 b2 c x y') assert _test_args(appellf1(a, b1, b2, c, x, y)) @SKIP("abstract class") def test_sympy__functions__special__polynomials__OrthogonalPolynomial(): pass def test_sympy__functions__special__polynomials__jacobi(): from sympy.functions.special.polynomials import jacobi assert _test_args(jacobi(x, 2, 2, 2)) def test_sympy__functions__special__polynomials__gegenbauer(): from sympy.functions.special.polynomials import gegenbauer assert _test_args(gegenbauer(x, 2, 2)) def test_sympy__functions__special__polynomials__chebyshevt(): from sympy.functions.special.polynomials import chebyshevt assert _test_args(chebyshevt(x, 2)) def test_sympy__functions__special__polynomials__chebyshevt_root(): from sympy.functions.special.polynomials import chebyshevt_root assert _test_args(chebyshevt_root(3, 2)) def test_sympy__functions__special__polynomials__chebyshevu(): from sympy.functions.special.polynomials import chebyshevu assert _test_args(chebyshevu(x, 2)) def test_sympy__functions__special__polynomials__chebyshevu_root(): from sympy.functions.special.polynomials import chebyshevu_root assert _test_args(chebyshevu_root(3, 2)) def test_sympy__functions__special__polynomials__hermite(): from sympy.functions.special.polynomials import hermite assert _test_args(hermite(x, 2)) def test_sympy__functions__special__polynomials__legendre(): from sympy.functions.special.polynomials import legendre assert _test_args(legendre(x, 2)) def test_sympy__functions__special__polynomials__assoc_legendre(): from sympy.functions.special.polynomials import assoc_legendre assert _test_args(assoc_legendre(x, 0, y)) def test_sympy__functions__special__polynomials__laguerre(): from sympy.functions.special.polynomials import laguerre assert _test_args(laguerre(x, 2)) def test_sympy__functions__special__polynomials__assoc_laguerre(): from sympy.functions.special.polynomials import assoc_laguerre assert _test_args(assoc_laguerre(x, 0, y)) def test_sympy__functions__special__spherical_harmonics__Ynm(): from sympy.functions.special.spherical_harmonics import Ynm assert _test_args(Ynm(1, 1, x, y)) def test_sympy__functions__special__spherical_harmonics__Znm(): from sympy.functions.special.spherical_harmonics import Znm assert _test_args(Znm(1, 1, x, y)) def test_sympy__functions__special__tensor_functions__LeviCivita(): from sympy.functions.special.tensor_functions import LeviCivita assert _test_args(LeviCivita(x, y, 2)) def test_sympy__functions__special__tensor_functions__KroneckerDelta(): from sympy.functions.special.tensor_functions import KroneckerDelta assert _test_args(KroneckerDelta(x, y)) def test_sympy__functions__special__zeta_functions__dirichlet_eta(): from sympy.functions.special.zeta_functions import dirichlet_eta assert _test_args(dirichlet_eta(x)) def test_sympy__functions__special__zeta_functions__zeta(): from sympy.functions.special.zeta_functions import zeta assert _test_args(zeta(101)) def test_sympy__functions__special__zeta_functions__lerchphi(): from sympy.functions.special.zeta_functions import lerchphi assert _test_args(lerchphi(x, y, z)) def test_sympy__functions__special__zeta_functions__polylog(): from sympy.functions.special.zeta_functions import polylog assert _test_args(polylog(x, y)) def test_sympy__functions__special__zeta_functions__stieltjes(): from sympy.functions.special.zeta_functions import stieltjes assert _test_args(stieltjes(x, y)) def test_sympy__integrals__integrals__Integral(): from sympy.integrals.integrals import Integral assert _test_args(Integral(2, (x, 0, 1))) def test_sympy__integrals__risch__NonElementaryIntegral(): from sympy.integrals.risch import NonElementaryIntegral assert _test_args(NonElementaryIntegral(exp(-x**2), x)) @SKIP("abstract class") def test_sympy__integrals__transforms__IntegralTransform(): pass def test_sympy__integrals__transforms__MellinTransform(): from sympy.integrals.transforms import MellinTransform assert _test_args(MellinTransform(2, x, y)) def test_sympy__integrals__transforms__InverseMellinTransform(): from sympy.integrals.transforms import InverseMellinTransform assert _test_args(InverseMellinTransform(2, x, y, 0, 1)) def test_sympy__integrals__transforms__LaplaceTransform(): from sympy.integrals.transforms import LaplaceTransform assert _test_args(LaplaceTransform(2, x, y)) def test_sympy__integrals__transforms__InverseLaplaceTransform(): from sympy.integrals.transforms import InverseLaplaceTransform assert _test_args(InverseLaplaceTransform(2, x, y, 0)) @SKIP("abstract class") def test_sympy__integrals__transforms__FourierTypeTransform(): pass def test_sympy__integrals__transforms__InverseFourierTransform(): from sympy.integrals.transforms import InverseFourierTransform assert _test_args(InverseFourierTransform(2, x, y)) def test_sympy__integrals__transforms__FourierTransform(): from sympy.integrals.transforms import FourierTransform assert _test_args(FourierTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__SineCosineTypeTransform(): pass def test_sympy__integrals__transforms__InverseSineTransform(): from sympy.integrals.transforms import InverseSineTransform assert _test_args(InverseSineTransform(2, x, y)) def test_sympy__integrals__transforms__SineTransform(): from sympy.integrals.transforms import SineTransform assert _test_args(SineTransform(2, x, y)) def test_sympy__integrals__transforms__InverseCosineTransform(): from sympy.integrals.transforms import InverseCosineTransform assert _test_args(InverseCosineTransform(2, x, y)) def test_sympy__integrals__transforms__CosineTransform(): from sympy.integrals.transforms import CosineTransform assert _test_args(CosineTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__HankelTypeTransform(): pass def test_sympy__integrals__transforms__InverseHankelTransform(): from sympy.integrals.transforms import InverseHankelTransform assert _test_args(InverseHankelTransform(2, x, y, 0)) def test_sympy__integrals__transforms__HankelTransform(): from sympy.integrals.transforms import HankelTransform assert _test_args(HankelTransform(2, x, y, 0)) @XFAIL def test_sympy__liealgebras__cartan_type__CartanType_generator(): from sympy.liealgebras.cartan_type import CartanType_generator assert _test_args(CartanType_generator("A2")) @XFAIL def test_sympy__liealgebras__cartan_type__Standard_Cartan(): from sympy.liealgebras.cartan_type import Standard_Cartan assert _test_args(Standard_Cartan("A", 2)) @XFAIL def test_sympy__liealgebras__weyl_group__WeylGroup(): from sympy.liealgebras.weyl_group import WeylGroup assert _test_args(WeylGroup("B4")) @XFAIL def test_sympy__liealgebras__root_system__RootSystem(): from sympy.liealgebras.root_system import RootSystem assert _test_args(RootSystem("A2")) @XFAIL def test_sympy__liealgebras__type_a__TypeA(): from sympy.liealgebras.type_a import TypeA assert _test_args(TypeA(2)) @XFAIL def test_sympy__liealgebras__type_b__TypeB(): from sympy.liealgebras.type_b import TypeB assert _test_args(TypeB(4)) @XFAIL def test_sympy__liealgebras__type_c__TypeC(): from sympy.liealgebras.type_c import TypeC assert _test_args(TypeC(4)) @XFAIL def test_sympy__liealgebras__type_d__TypeD(): from sympy.liealgebras.type_d import TypeD assert _test_args(TypeD(4)) @XFAIL def test_sympy__liealgebras__type_e__TypeE(): from sympy.liealgebras.type_e import TypeE assert _test_args(TypeE(6)) @XFAIL def test_sympy__liealgebras__type_f__TypeF(): from sympy.liealgebras.type_f import TypeF assert _test_args(TypeF(4)) @XFAIL def test_sympy__liealgebras__type_g__TypeG(): from sympy.liealgebras.type_g import TypeG assert _test_args(TypeG(2)) def test_sympy__logic__boolalg__And(): from sympy.logic.boolalg import And assert _test_args(And(x, y, 1)) @SKIP("abstract class") def test_sympy__logic__boolalg__Boolean(): pass def test_sympy__logic__boolalg__BooleanFunction(): from sympy.logic.boolalg import BooleanFunction assert _test_args(BooleanFunction(1, 2, 3)) @SKIP("abstract class") def test_sympy__logic__boolalg__BooleanAtom(): pass def test_sympy__logic__boolalg__BooleanTrue(): from sympy.logic.boolalg import true assert _test_args(true) def test_sympy__logic__boolalg__BooleanFalse(): from sympy.logic.boolalg import false assert _test_args(false) def test_sympy__logic__boolalg__Equivalent(): from sympy.logic.boolalg import Equivalent assert _test_args(Equivalent(x, 2)) def test_sympy__logic__boolalg__ITE(): from sympy.logic.boolalg import ITE assert _test_args(ITE(x, y, 1)) def test_sympy__logic__boolalg__Implies(): from sympy.logic.boolalg import Implies assert _test_args(Implies(x, y)) def test_sympy__logic__boolalg__Nand(): from sympy.logic.boolalg import Nand assert _test_args(Nand(x, y, 1)) def test_sympy__logic__boolalg__Nor(): from sympy.logic.boolalg import Nor assert _test_args(Nor(x, y)) def test_sympy__logic__boolalg__Not(): from sympy.logic.boolalg import Not assert _test_args(Not(x)) def test_sympy__logic__boolalg__Or(): from sympy.logic.boolalg import Or assert _test_args(Or(x, y)) def test_sympy__logic__boolalg__Xor(): from sympy.logic.boolalg import Xor assert _test_args(Xor(x, y, 2)) def test_sympy__logic__boolalg__Xnor(): from sympy.logic.boolalg import Xnor assert _test_args(Xnor(x, y, 2)) def test_sympy__matrices__matrices__DeferredVector(): from sympy.matrices.matrices import DeferredVector assert _test_args(DeferredVector("X")) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixBase(): pass def test_sympy__matrices__immutable__ImmutableDenseMatrix(): from sympy.matrices.immutable import ImmutableDenseMatrix m = ImmutableDenseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__immutable__ImmutableSparseMatrix(): from sympy.matrices.immutable import ImmutableSparseMatrix m = ImmutableSparseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, {(0, 0): 1}) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__expressions__slice__MatrixSlice(): from sympy.matrices.expressions.slice import MatrixSlice from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 4, 4) assert _test_args(MatrixSlice(X, (0, 2), (0, 2))) def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix(): from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) assert _test_args(BlockDiagMatrix(X, Y)) def test_sympy__matrices__expressions__blockmatrix__BlockMatrix(): from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) Z = MatrixSymbol('Z', x, y) O = ZeroMatrix(y, x) assert _test_args(BlockMatrix([[X, Z], [O, Y]])) def test_sympy__matrices__expressions__inverse__Inverse(): from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions import MatrixSymbol assert _test_args(Inverse(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__matadd__MatAdd(): from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(MatAdd(X, Y)) def test_sympy__matrices__expressions__matexpr__Identity(): from sympy.matrices.expressions.matexpr import Identity assert _test_args(Identity(3)) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixExpr(): pass def test_sympy__matrices__expressions__matexpr__MatrixElement(): from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement from sympy import S assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3))) @XFAIL def test_sympy__matrices__expressions__matexpr__MatrixSymbol(): from sympy.matrices.expressions.matexpr import MatrixSymbol assert _test_args(MatrixSymbol('A', 3, 5)) def test_sympy__matrices__expressions__matexpr__ZeroMatrix(): from sympy.matrices.expressions.matexpr import ZeroMatrix assert _test_args(ZeroMatrix(3, 5)) def test_sympy__matrices__expressions__matmul__MatMul(): from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', y, x) assert _test_args(MatMul(X, Y)) def test_sympy__matrices__expressions__dotproduct__DotProduct(): from sympy.matrices.expressions.dotproduct import DotProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, 1) Y = MatrixSymbol('Y', x, 1) assert _test_args(DotProduct(X, Y)) def test_sympy__matrices__expressions__diagonal__DiagonalMatrix(): from sympy.matrices.expressions.diagonal import DiagonalMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagonalMatrix(x)) def test_sympy__matrices__expressions__diagonal__DiagonalOf(): from sympy.matrices.expressions.diagonal import DiagonalOf from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('x', 10, 10) assert _test_args(DiagonalOf(X)) def test_sympy__matrices__expressions__hadamard__HadamardProduct(): from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(HadamardProduct(X, Y)) def test_sympy__matrices__expressions__kronecker__KroneckerProduct(): from sympy.matrices.expressions.kronecker import KroneckerProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(KroneckerProduct(X, Y)) def test_sympy__matrices__expressions__matpow__MatPow(): from sympy.matrices.expressions.matpow import MatPow from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) assert _test_args(MatPow(X, 2)) def test_sympy__matrices__expressions__transpose__Transpose(): from sympy.matrices.expressions.transpose import Transpose from sympy.matrices.expressions import MatrixSymbol assert _test_args(Transpose(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__adjoint__Adjoint(): from sympy.matrices.expressions.adjoint import Adjoint from sympy.matrices.expressions import MatrixSymbol assert _test_args(Adjoint(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__trace__Trace(): from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions import MatrixSymbol assert _test_args(Trace(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__determinant__Determinant(): from sympy.matrices.expressions.determinant import Determinant from sympy.matrices.expressions import MatrixSymbol assert _test_args(Determinant(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix(): from sympy.matrices.expressions.funcmatrix import FunctionMatrix from sympy import symbols i, j = symbols('i,j') assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) )) def test_sympy__matrices__expressions__fourier__DFT(): from sympy.matrices.expressions.fourier import DFT from sympy import S assert _test_args(DFT(S(2))) def test_sympy__matrices__expressions__fourier__IDFT(): from sympy.matrices.expressions.fourier import IDFT from sympy import S assert _test_args(IDFT(S(2))) from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 10, 10) def test_sympy__matrices__expressions__factorizations__LofLU(): from sympy.matrices.expressions.factorizations import LofLU assert _test_args(LofLU(X)) def test_sympy__matrices__expressions__factorizations__UofLU(): from sympy.matrices.expressions.factorizations import UofLU assert _test_args(UofLU(X)) def test_sympy__matrices__expressions__factorizations__QofQR(): from sympy.matrices.expressions.factorizations import QofQR assert _test_args(QofQR(X)) def test_sympy__matrices__expressions__factorizations__RofQR(): from sympy.matrices.expressions.factorizations import RofQR assert _test_args(RofQR(X)) def test_sympy__matrices__expressions__factorizations__LofCholesky(): from sympy.matrices.expressions.factorizations import LofCholesky assert _test_args(LofCholesky(X)) def test_sympy__matrices__expressions__factorizations__UofCholesky(): from sympy.matrices.expressions.factorizations import UofCholesky assert _test_args(UofCholesky(X)) def test_sympy__matrices__expressions__factorizations__EigenVectors(): from sympy.matrices.expressions.factorizations import EigenVectors assert _test_args(EigenVectors(X)) def test_sympy__matrices__expressions__factorizations__EigenValues(): from sympy.matrices.expressions.factorizations import EigenValues assert _test_args(EigenValues(X)) def test_sympy__matrices__expressions__factorizations__UofSVD(): from sympy.matrices.expressions.factorizations import UofSVD assert _test_args(UofSVD(X)) def test_sympy__matrices__expressions__factorizations__VofSVD(): from sympy.matrices.expressions.factorizations import VofSVD assert _test_args(VofSVD(X)) def test_sympy__matrices__expressions__factorizations__SofSVD(): from sympy.matrices.expressions.factorizations import SofSVD assert _test_args(SofSVD(X)) @SKIP("abstract class") def test_sympy__matrices__expressions__factorizations__Factorization(): pass def test_sympy__physics__vector__frame__CoordinateSym(): from sympy.physics.vector import CoordinateSym from sympy.physics.vector import ReferenceFrame assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0)) def test_sympy__physics__paulialgebra__Pauli(): from sympy.physics.paulialgebra import Pauli assert _test_args(Pauli(1)) def test_sympy__physics__quantum__anticommutator__AntiCommutator(): from sympy.physics.quantum.anticommutator import AntiCommutator assert _test_args(AntiCommutator(x, y)) def test_sympy__physics__quantum__cartesian__PositionBra3D(): from sympy.physics.quantum.cartesian import PositionBra3D assert _test_args(PositionBra3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionKet3D(): from sympy.physics.quantum.cartesian import PositionKet3D assert _test_args(PositionKet3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionState3D(): from sympy.physics.quantum.cartesian import PositionState3D assert _test_args(PositionState3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PxBra(): from sympy.physics.quantum.cartesian import PxBra assert _test_args(PxBra(x, y, z)) def test_sympy__physics__quantum__cartesian__PxKet(): from sympy.physics.quantum.cartesian import PxKet assert _test_args(PxKet(x, y, z)) def test_sympy__physics__quantum__cartesian__PxOp(): from sympy.physics.quantum.cartesian import PxOp assert _test_args(PxOp(x, y, z)) def test_sympy__physics__quantum__cartesian__XBra(): from sympy.physics.quantum.cartesian import XBra assert _test_args(XBra(x)) def test_sympy__physics__quantum__cartesian__XKet(): from sympy.physics.quantum.cartesian import XKet assert _test_args(XKet(x)) def test_sympy__physics__quantum__cartesian__XOp(): from sympy.physics.quantum.cartesian import XOp assert _test_args(XOp(x)) def test_sympy__physics__quantum__cartesian__YOp(): from sympy.physics.quantum.cartesian import YOp assert _test_args(YOp(x)) def test_sympy__physics__quantum__cartesian__ZOp(): from sympy.physics.quantum.cartesian import ZOp assert _test_args(ZOp(x)) def test_sympy__physics__quantum__cg__CG(): from sympy.physics.quantum.cg import CG from sympy import S assert _test_args(CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1)) def test_sympy__physics__quantum__cg__Wigner3j(): from sympy.physics.quantum.cg import Wigner3j assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0)) def test_sympy__physics__quantum__cg__Wigner6j(): from sympy.physics.quantum.cg import Wigner6j assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2)) def test_sympy__physics__quantum__cg__Wigner9j(): from sympy.physics.quantum.cg import Wigner9j assert _test_args(Wigner9j(2, 1, 1, S(3)/2, S(1)/2, 1, S(1)/2, S(1)/2, 0)) def test_sympy__physics__quantum__circuitplot__Mz(): from sympy.physics.quantum.circuitplot import Mz assert _test_args(Mz(0)) def test_sympy__physics__quantum__circuitplot__Mx(): from sympy.physics.quantum.circuitplot import Mx assert _test_args(Mx(0)) def test_sympy__physics__quantum__commutator__Commutator(): from sympy.physics.quantum.commutator import Commutator A, B = symbols('A,B', commutative=False) assert _test_args(Commutator(A, B)) def test_sympy__physics__quantum__constants__HBar(): from sympy.physics.quantum.constants import HBar assert _test_args(HBar()) def test_sympy__physics__quantum__dagger__Dagger(): from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.state import Ket assert _test_args(Dagger(Dagger(Ket('psi')))) def test_sympy__physics__quantum__gate__CGate(): from sympy.physics.quantum.gate import CGate, Gate assert _test_args(CGate((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CGateS(): from sympy.physics.quantum.gate import CGateS, Gate assert _test_args(CGateS((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CNotGate(): from sympy.physics.quantum.gate import CNotGate assert _test_args(CNotGate(0, 1)) def test_sympy__physics__quantum__gate__Gate(): from sympy.physics.quantum.gate import Gate assert _test_args(Gate(0)) def test_sympy__physics__quantum__gate__HadamardGate(): from sympy.physics.quantum.gate import HadamardGate assert _test_args(HadamardGate(0)) def test_sympy__physics__quantum__gate__IdentityGate(): from sympy.physics.quantum.gate import IdentityGate assert _test_args(IdentityGate(0)) def test_sympy__physics__quantum__gate__OneQubitGate(): from sympy.physics.quantum.gate import OneQubitGate assert _test_args(OneQubitGate(0)) def test_sympy__physics__quantum__gate__PhaseGate(): from sympy.physics.quantum.gate import PhaseGate assert _test_args(PhaseGate(0)) def test_sympy__physics__quantum__gate__SwapGate(): from sympy.physics.quantum.gate import SwapGate assert _test_args(SwapGate(0, 1)) def test_sympy__physics__quantum__gate__TGate(): from sympy.physics.quantum.gate import TGate assert _test_args(TGate(0)) def test_sympy__physics__quantum__gate__TwoQubitGate(): from sympy.physics.quantum.gate import TwoQubitGate assert _test_args(TwoQubitGate(0)) def test_sympy__physics__quantum__gate__UGate(): from sympy.physics.quantum.gate import UGate from sympy.matrices.immutable import ImmutableDenseMatrix from sympy import Integer, Tuple assert _test_args( UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]]))) def test_sympy__physics__quantum__gate__XGate(): from sympy.physics.quantum.gate import XGate assert _test_args(XGate(0)) def test_sympy__physics__quantum__gate__YGate(): from sympy.physics.quantum.gate import YGate assert _test_args(YGate(0)) def test_sympy__physics__quantum__gate__ZGate(): from sympy.physics.quantum.gate import ZGate assert _test_args(ZGate(0)) @SKIP("TODO: sympy.physics") def test_sympy__physics__quantum__grover__OracleGate(): from sympy.physics.quantum.grover import OracleGate assert _test_args(OracleGate()) def test_sympy__physics__quantum__grover__WGate(): from sympy.physics.quantum.grover import WGate assert _test_args(WGate(1)) def test_sympy__physics__quantum__hilbert__ComplexSpace(): from sympy.physics.quantum.hilbert import ComplexSpace assert _test_args(ComplexSpace(x)) def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace(): from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(DirectSumHilbertSpace(c, f)) def test_sympy__physics__quantum__hilbert__FockSpace(): from sympy.physics.quantum.hilbert import FockSpace assert _test_args(FockSpace()) def test_sympy__physics__quantum__hilbert__HilbertSpace(): from sympy.physics.quantum.hilbert import HilbertSpace assert _test_args(HilbertSpace()) def test_sympy__physics__quantum__hilbert__L2(): from sympy.physics.quantum.hilbert import L2 from sympy import oo, Interval assert _test_args(L2(Interval(0, oo))) def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace(): from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace f = FockSpace() assert _test_args(TensorPowerHilbertSpace(f, 2)) def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace(): from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(TensorProductHilbertSpace(f, c)) def test_sympy__physics__quantum__innerproduct__InnerProduct(): from sympy.physics.quantum import Bra, Ket, InnerProduct b = Bra('b') k = Ket('k') assert _test_args(InnerProduct(b, k)) def test_sympy__physics__quantum__operator__DifferentialOperator(): from sympy.physics.quantum.operator import DifferentialOperator from sympy import Derivative, Function f = Function('f') assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x))) def test_sympy__physics__quantum__operator__HermitianOperator(): from sympy.physics.quantum.operator import HermitianOperator assert _test_args(HermitianOperator('H')) def test_sympy__physics__quantum__operator__IdentityOperator(): from sympy.physics.quantum.operator import IdentityOperator assert _test_args(IdentityOperator(5)) def test_sympy__physics__quantum__operator__Operator(): from sympy.physics.quantum.operator import Operator assert _test_args(Operator('A')) def test_sympy__physics__quantum__operator__OuterProduct(): from sympy.physics.quantum.operator import OuterProduct from sympy.physics.quantum import Ket, Bra b = Bra('b') k = Ket('k') assert _test_args(OuterProduct(k, b)) def test_sympy__physics__quantum__operator__UnitaryOperator(): from sympy.physics.quantum.operator import UnitaryOperator assert _test_args(UnitaryOperator('U')) def test_sympy__physics__quantum__piab__PIABBra(): from sympy.physics.quantum.piab import PIABBra assert _test_args(PIABBra('B')) def test_sympy__physics__quantum__boson__BosonOp(): from sympy.physics.quantum.boson import BosonOp assert _test_args(BosonOp('a')) assert _test_args(BosonOp('a', False)) def test_sympy__physics__quantum__boson__BosonFockKet(): from sympy.physics.quantum.boson import BosonFockKet assert _test_args(BosonFockKet(1)) def test_sympy__physics__quantum__boson__BosonFockBra(): from sympy.physics.quantum.boson import BosonFockBra assert _test_args(BosonFockBra(1)) def test_sympy__physics__quantum__boson__BosonCoherentKet(): from sympy.physics.quantum.boson import BosonCoherentKet assert _test_args(BosonCoherentKet(1)) def test_sympy__physics__quantum__boson__BosonCoherentBra(): from sympy.physics.quantum.boson import BosonCoherentBra assert _test_args(BosonCoherentBra(1)) def test_sympy__physics__quantum__fermion__FermionOp(): from sympy.physics.quantum.fermion import FermionOp assert _test_args(FermionOp('c')) assert _test_args(FermionOp('c', False)) def test_sympy__physics__quantum__fermion__FermionFockKet(): from sympy.physics.quantum.fermion import FermionFockKet assert _test_args(FermionFockKet(1)) def test_sympy__physics__quantum__fermion__FermionFockBra(): from sympy.physics.quantum.fermion import FermionFockBra assert _test_args(FermionFockBra(1)) def test_sympy__physics__quantum__pauli__SigmaOpBase(): from sympy.physics.quantum.pauli import SigmaOpBase assert _test_args(SigmaOpBase()) def test_sympy__physics__quantum__pauli__SigmaX(): from sympy.physics.quantum.pauli import SigmaX assert _test_args(SigmaX()) def test_sympy__physics__quantum__pauli__SigmaY(): from sympy.physics.quantum.pauli import SigmaY assert _test_args(SigmaY()) def test_sympy__physics__quantum__pauli__SigmaZ(): from sympy.physics.quantum.pauli import SigmaZ assert _test_args(SigmaZ()) def test_sympy__physics__quantum__pauli__SigmaMinus(): from sympy.physics.quantum.pauli import SigmaMinus assert _test_args(SigmaMinus()) def test_sympy__physics__quantum__pauli__SigmaPlus(): from sympy.physics.quantum.pauli import SigmaPlus assert _test_args(SigmaPlus()) def test_sympy__physics__quantum__pauli__SigmaZKet(): from sympy.physics.quantum.pauli import SigmaZKet assert _test_args(SigmaZKet(0)) def test_sympy__physics__quantum__pauli__SigmaZBra(): from sympy.physics.quantum.pauli import SigmaZBra assert _test_args(SigmaZBra(0)) def test_sympy__physics__quantum__piab__PIABHamiltonian(): from sympy.physics.quantum.piab import PIABHamiltonian assert _test_args(PIABHamiltonian('P')) def test_sympy__physics__quantum__piab__PIABKet(): from sympy.physics.quantum.piab import PIABKet assert _test_args(PIABKet('K')) def test_sympy__physics__quantum__qexpr__QExpr(): from sympy.physics.quantum.qexpr import QExpr assert _test_args(QExpr(0)) def test_sympy__physics__quantum__qft__Fourier(): from sympy.physics.quantum.qft import Fourier assert _test_args(Fourier(0, 1)) def test_sympy__physics__quantum__qft__IQFT(): from sympy.physics.quantum.qft import IQFT assert _test_args(IQFT(0, 1)) def test_sympy__physics__quantum__qft__QFT(): from sympy.physics.quantum.qft import QFT assert _test_args(QFT(0, 1)) def test_sympy__physics__quantum__qft__RkGate(): from sympy.physics.quantum.qft import RkGate assert _test_args(RkGate(0, 1)) def test_sympy__physics__quantum__qubit__IntQubit(): from sympy.physics.quantum.qubit import IntQubit assert _test_args(IntQubit(0)) def test_sympy__physics__quantum__qubit__IntQubitBra(): from sympy.physics.quantum.qubit import IntQubitBra assert _test_args(IntQubitBra(0)) def test_sympy__physics__quantum__qubit__IntQubitState(): from sympy.physics.quantum.qubit import IntQubitState, QubitState assert _test_args(IntQubitState(QubitState(0, 1))) def test_sympy__physics__quantum__qubit__Qubit(): from sympy.physics.quantum.qubit import Qubit assert _test_args(Qubit(0, 0, 0)) def test_sympy__physics__quantum__qubit__QubitBra(): from sympy.physics.quantum.qubit import QubitBra assert _test_args(QubitBra('1', 0)) def test_sympy__physics__quantum__qubit__QubitState(): from sympy.physics.quantum.qubit import QubitState assert _test_args(QubitState(0, 1)) def test_sympy__physics__quantum__density__Density(): from sympy.physics.quantum.density import Density from sympy.physics.quantum.state import Ket assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5])) @SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented") def test_sympy__physics__quantum__shor__CMod(): from sympy.physics.quantum.shor import CMod assert _test_args(CMod()) def test_sympy__physics__quantum__spin__CoupledSpinState(): from sympy.physics.quantum.spin import CoupledSpinState assert _test_args(CoupledSpinState(1, 0, (1, 1))) assert _test_args(CoupledSpinState(1, 0, (1, S(1)/2, S(1)/2))) assert _test_args(CoupledSpinState( 1, 0, (1, S(1)/2, S(1)/2), ((2, 3, S(1)/2), (1, 2, 1)) )) j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x') assert CoupledSpinState( j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3)) assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \ CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) ) def test_sympy__physics__quantum__spin__J2Op(): from sympy.physics.quantum.spin import J2Op assert _test_args(J2Op('J')) def test_sympy__physics__quantum__spin__JminusOp(): from sympy.physics.quantum.spin import JminusOp assert _test_args(JminusOp('J')) def test_sympy__physics__quantum__spin__JplusOp(): from sympy.physics.quantum.spin import JplusOp assert _test_args(JplusOp('J')) def test_sympy__physics__quantum__spin__JxBra(): from sympy.physics.quantum.spin import JxBra assert _test_args(JxBra(1, 0)) def test_sympy__physics__quantum__spin__JxBraCoupled(): from sympy.physics.quantum.spin import JxBraCoupled assert _test_args(JxBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxKet(): from sympy.physics.quantum.spin import JxKet assert _test_args(JxKet(1, 0)) def test_sympy__physics__quantum__spin__JxKetCoupled(): from sympy.physics.quantum.spin import JxKetCoupled assert _test_args(JxKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxOp(): from sympy.physics.quantum.spin import JxOp assert _test_args(JxOp('J')) def test_sympy__physics__quantum__spin__JyBra(): from sympy.physics.quantum.spin import JyBra assert _test_args(JyBra(1, 0)) def test_sympy__physics__quantum__spin__JyBraCoupled(): from sympy.physics.quantum.spin import JyBraCoupled assert _test_args(JyBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyKet(): from sympy.physics.quantum.spin import JyKet assert _test_args(JyKet(1, 0)) def test_sympy__physics__quantum__spin__JyKetCoupled(): from sympy.physics.quantum.spin import JyKetCoupled assert _test_args(JyKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyOp(): from sympy.physics.quantum.spin import JyOp assert _test_args(JyOp('J')) def test_sympy__physics__quantum__spin__JzBra(): from sympy.physics.quantum.spin import JzBra assert _test_args(JzBra(1, 0)) def test_sympy__physics__quantum__spin__JzBraCoupled(): from sympy.physics.quantum.spin import JzBraCoupled assert _test_args(JzBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzKet(): from sympy.physics.quantum.spin import JzKet assert _test_args(JzKet(1, 0)) def test_sympy__physics__quantum__spin__JzKetCoupled(): from sympy.physics.quantum.spin import JzKetCoupled assert _test_args(JzKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzOp(): from sympy.physics.quantum.spin import JzOp assert _test_args(JzOp('J')) def test_sympy__physics__quantum__spin__Rotation(): from sympy.physics.quantum.spin import Rotation assert _test_args(Rotation(pi, 0, pi/2)) def test_sympy__physics__quantum__spin__SpinState(): from sympy.physics.quantum.spin import SpinState assert _test_args(SpinState(1, 0)) def test_sympy__physics__quantum__spin__WignerD(): from sympy.physics.quantum.spin import WignerD assert _test_args(WignerD(0, 1, 2, 3, 4, 5)) def test_sympy__physics__quantum__state__Bra(): from sympy.physics.quantum.state import Bra assert _test_args(Bra(0)) def test_sympy__physics__quantum__state__BraBase(): from sympy.physics.quantum.state import BraBase assert _test_args(BraBase(0)) def test_sympy__physics__quantum__state__Ket(): from sympy.physics.quantum.state import Ket assert _test_args(Ket(0)) def test_sympy__physics__quantum__state__KetBase(): from sympy.physics.quantum.state import KetBase assert _test_args(KetBase(0)) def test_sympy__physics__quantum__state__State(): from sympy.physics.quantum.state import State assert _test_args(State(0)) def test_sympy__physics__quantum__state__StateBase(): from sympy.physics.quantum.state import StateBase assert _test_args(StateBase(0)) def test_sympy__physics__quantum__state__TimeDepBra(): from sympy.physics.quantum.state import TimeDepBra assert _test_args(TimeDepBra('psi', 't')) def test_sympy__physics__quantum__state__TimeDepKet(): from sympy.physics.quantum.state import TimeDepKet assert _test_args(TimeDepKet('psi', 't')) def test_sympy__physics__quantum__state__TimeDepState(): from sympy.physics.quantum.state import TimeDepState assert _test_args(TimeDepState('psi', 't')) def test_sympy__physics__quantum__state__Wavefunction(): from sympy.physics.quantum.state import Wavefunction from sympy.functions import sin from sympy import Piecewise n = 1 L = 1 g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) assert _test_args(Wavefunction(g, x)) def test_sympy__physics__quantum__tensorproduct__TensorProduct(): from sympy.physics.quantum.tensorproduct import TensorProduct assert _test_args(TensorProduct(x, y)) def test_sympy__physics__quantum__identitysearch__GateIdentity(): from sympy.physics.quantum.gate import X from sympy.physics.quantum.identitysearch import GateIdentity assert _test_args(GateIdentity(X(0), X(0))) def test_sympy__physics__quantum__sho1d__SHOOp(): from sympy.physics.quantum.sho1d import SHOOp assert _test_args(SHOOp('a')) def test_sympy__physics__quantum__sho1d__RaisingOp(): from sympy.physics.quantum.sho1d import RaisingOp assert _test_args(RaisingOp('a')) def test_sympy__physics__quantum__sho1d__LoweringOp(): from sympy.physics.quantum.sho1d import LoweringOp assert _test_args(LoweringOp('a')) def test_sympy__physics__quantum__sho1d__NumberOp(): from sympy.physics.quantum.sho1d import NumberOp assert _test_args(NumberOp('N')) def test_sympy__physics__quantum__sho1d__Hamiltonian(): from sympy.physics.quantum.sho1d import Hamiltonian assert _test_args(Hamiltonian('H')) def test_sympy__physics__quantum__sho1d__SHOState(): from sympy.physics.quantum.sho1d import SHOState assert _test_args(SHOState(0)) def test_sympy__physics__quantum__sho1d__SHOKet(): from sympy.physics.quantum.sho1d import SHOKet assert _test_args(SHOKet(0)) def test_sympy__physics__quantum__sho1d__SHOBra(): from sympy.physics.quantum.sho1d import SHOBra assert _test_args(SHOBra(0)) def test_sympy__physics__secondquant__AnnihilateBoson(): from sympy.physics.secondquant import AnnihilateBoson assert _test_args(AnnihilateBoson(0)) def test_sympy__physics__secondquant__AnnihilateFermion(): from sympy.physics.secondquant import AnnihilateFermion assert _test_args(AnnihilateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Annihilator(): pass def test_sympy__physics__secondquant__AntiSymmetricTensor(): from sympy.physics.secondquant import AntiSymmetricTensor i, j = symbols('i j', below_fermi=True) a, b = symbols('a b', above_fermi=True) assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j))) def test_sympy__physics__secondquant__BosonState(): from sympy.physics.secondquant import BosonState assert _test_args(BosonState((0, 1))) @SKIP("abstract class") def test_sympy__physics__secondquant__BosonicOperator(): pass def test_sympy__physics__secondquant__Commutator(): from sympy.physics.secondquant import Commutator assert _test_args(Commutator(x, y)) def test_sympy__physics__secondquant__CreateBoson(): from sympy.physics.secondquant import CreateBoson assert _test_args(CreateBoson(0)) def test_sympy__physics__secondquant__CreateFermion(): from sympy.physics.secondquant import CreateFermion assert _test_args(CreateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Creator(): pass def test_sympy__physics__secondquant__Dagger(): from sympy.physics.secondquant import Dagger from sympy import I assert _test_args(Dagger(2*I)) def test_sympy__physics__secondquant__FermionState(): from sympy.physics.secondquant import FermionState assert _test_args(FermionState((0, 1))) def test_sympy__physics__secondquant__FermionicOperator(): from sympy.physics.secondquant import FermionicOperator assert _test_args(FermionicOperator(0)) def test_sympy__physics__secondquant__FockState(): from sympy.physics.secondquant import FockState assert _test_args(FockState((0, 1))) def test_sympy__physics__secondquant__FockStateBosonBra(): from sympy.physics.secondquant import FockStateBosonBra assert _test_args(FockStateBosonBra((0, 1))) def test_sympy__physics__secondquant__FockStateBosonKet(): from sympy.physics.secondquant import FockStateBosonKet assert _test_args(FockStateBosonKet((0, 1))) def test_sympy__physics__secondquant__FockStateBra(): from sympy.physics.secondquant import FockStateBra assert _test_args(FockStateBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionBra(): from sympy.physics.secondquant import FockStateFermionBra assert _test_args(FockStateFermionBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionKet(): from sympy.physics.secondquant import FockStateFermionKet assert _test_args(FockStateFermionKet((0, 1))) def test_sympy__physics__secondquant__FockStateKet(): from sympy.physics.secondquant import FockStateKet assert _test_args(FockStateKet((0, 1))) def test_sympy__physics__secondquant__InnerProduct(): from sympy.physics.secondquant import InnerProduct from sympy.physics.secondquant import FockStateKet, FockStateBra assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1)))) def test_sympy__physics__secondquant__NO(): from sympy.physics.secondquant import NO, F, Fd assert _test_args(NO(Fd(x)*F(y))) def test_sympy__physics__secondquant__PermutationOperator(): from sympy.physics.secondquant import PermutationOperator assert _test_args(PermutationOperator(0, 1)) def test_sympy__physics__secondquant__SqOperator(): from sympy.physics.secondquant import SqOperator assert _test_args(SqOperator(0)) def test_sympy__physics__secondquant__TensorSymbol(): from sympy.physics.secondquant import TensorSymbol assert _test_args(TensorSymbol(x)) def test_sympy__physics__units__dimensions__Dimension(): from sympy.physics.units.dimensions import Dimension assert _test_args(Dimension("length", "L")) def test_sympy__physics__units__dimensions__DimensionSystem(): from sympy.physics.units.dimensions import DimensionSystem from sympy.physics.units.dimensions import length, time, velocity assert _test_args(DimensionSystem((length, time), (velocity,))) def test_sympy__physics__units__quantities__Quantity(): from sympy.physics.units.quantities import Quantity from sympy.physics.units import length assert _test_args(Quantity("dam")) def test_sympy__physics__units__prefixes__Prefix(): from sympy.physics.units.prefixes import Prefix assert _test_args(Prefix('kilo', 'k', 3)) def test_sympy__core__numbers__AlgebraicNumber(): from sympy.core.numbers import AlgebraicNumber assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3])) def test_sympy__polys__polytools__GroebnerBasis(): from sympy.polys.polytools import GroebnerBasis assert _test_args(GroebnerBasis([x, y, z], x, y, z)) def test_sympy__polys__polytools__Poly(): from sympy.polys.polytools import Poly assert _test_args(Poly(2, x, y)) def test_sympy__polys__polytools__PurePoly(): from sympy.polys.polytools import PurePoly assert _test_args(PurePoly(2, x, y)) @SKIP('abstract class') def test_sympy__polys__rootoftools__RootOf(): pass def test_sympy__polys__rootoftools__ComplexRootOf(): from sympy.polys.rootoftools import ComplexRootOf assert _test_args(ComplexRootOf(x**3 + x + 1, 0)) def test_sympy__polys__rootoftools__RootSum(): from sympy.polys.rootoftools import RootSum assert _test_args(RootSum(x**3 + x + 1, sin)) def test_sympy__series__limits__Limit(): from sympy.series.limits import Limit assert _test_args(Limit(x, x, 0, dir='-')) def test_sympy__series__order__Order(): from sympy.series.order import Order assert _test_args(Order(1, x, y)) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqBase(): pass def test_sympy__series__sequences__EmptySequence(): from sympy.series.sequences import EmptySequence assert _test_args(EmptySequence()) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqExpr(): pass def test_sympy__series__sequences__SeqPer(): from sympy.series.sequences import SeqPer assert _test_args(SeqPer((1, 2, 3), (0, 10))) def test_sympy__series__sequences__SeqFormula(): from sympy.series.sequences import SeqFormula assert _test_args(SeqFormula(x**2, (0, 10))) def test_sympy__series__sequences__RecursiveSeq(): from sympy.series.sequences import RecursiveSeq y = Function("y") n = symbols("n") assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y, n, (0, 1))) assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y, n)) def test_sympy__series__sequences__SeqExprOp(): from sympy.series.sequences import SeqExprOp, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqExprOp(s1, s2)) def test_sympy__series__sequences__SeqAdd(): from sympy.series.sequences import SeqAdd, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqAdd(s1, s2)) def test_sympy__series__sequences__SeqMul(): from sympy.series.sequences import SeqMul, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqMul(s1, s2)) @SKIP('Abstract Class') def test_sympy__series__series_class__SeriesBase(): pass def test_sympy__series__fourier__FourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(x, (x, -pi, pi))) def test_sympy__series__formal__FormalPowerSeries(): from sympy.series.formal import fps assert _test_args(fps(log(1 + x), x)) def test_sympy__simplify__hyperexpand__Hyper_Function(): from sympy.simplify.hyperexpand import Hyper_Function assert _test_args(Hyper_Function([2], [1])) def test_sympy__simplify__hyperexpand__G_Function(): from sympy.simplify.hyperexpand import G_Function assert _test_args(G_Function([2], [1], [], [])) @SKIP("abstract class") def test_sympy__tensor__array__ndim_array__ImmutableNDimArray(): pass def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray(): from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(densarr) def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray(): from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(sparr) def test_sympy__tensor__functions__TensorProduct(): from sympy.tensor.functions import TensorProduct tp = TensorProduct(3, 4, evaluate=False) assert _test_args(tp) def test_sympy__tensor__indexed__Idx(): from sympy.tensor.indexed import Idx assert _test_args(Idx('test')) assert _test_args(Idx(1, (0, 10))) def test_sympy__tensor__indexed__Indexed(): from sympy.tensor.indexed import Indexed, Idx assert _test_args(Indexed('A', Idx('i'), Idx('j'))) def test_sympy__tensor__indexed__IndexedBase(): from sympy.tensor.indexed import IndexedBase assert _test_args(IndexedBase('A', shape=(x, y))) assert _test_args(IndexedBase('A', 1)) assert _test_args(IndexedBase('A')[0, 1]) def test_sympy__tensor__tensor__TensorIndexType(): from sympy.tensor.tensor import TensorIndexType assert _test_args(TensorIndexType('Lorentz', metric=False)) def test_sympy__tensor__tensor__TensorSymmetry(): from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2))) def test_sympy__tensor__tensor__TensorType(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorType Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') sym = TensorSymmetry(get_symmetric_group_sgs(1)) assert _test_args(TensorType([Lorentz], sym)) def test_sympy__tensor__tensor__TensorHead(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') sym = TensorSymmetry(get_symmetric_group_sgs(1)) S1 = TensorType([Lorentz], sym) assert _test_args(TensorHead('p', S1, 0)) def test_sympy__tensor__tensor__TensorIndex(): from sympy.tensor.tensor import TensorIndexType, TensorIndex Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') assert _test_args(TensorIndex('i', Lorentz)) @SKIP("abstract class") def test_sympy__tensor__tensor__TensExpr(): pass def test_sympy__tensor__tensor__TensAdd(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, tensor_indices, TensAdd Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) S1 = TensorType([Lorentz], sym) p, q = S1('p,q') t1 = p(a) t2 = q(a) assert _test_args(TensAdd(t1, t2)) def test_sympy__tensor__tensor__Tensor(): from sympy.core import S from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, tensor_indices, TensMul Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) S1 = TensorType([Lorentz], sym) p = S1('p') assert _test_args(p(a)) def test_sympy__tensor__tensor__TensMul(): from sympy.core import S from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs, tensor_indices, TensMul Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) S1 = TensorType([Lorentz], sym) p = S1('p') q = S1('q') assert _test_args(3*p(a)*q(b)) def test_sympy__tensor__tensor__TensorElement(): from sympy.tensor.tensor import TensorIndexType, tensorhead, TensorElement L = TensorIndexType("L") A = tensorhead("A", [L, L], [[1], [1]]) telem = TensorElement(A(x, y), {x: 1}) assert _test_args(telem) def test_sympy__tensor__toperators__PartialDerivative(): from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead from sympy.tensor.toperators import PartialDerivative Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b = tensor_indices('a,b', Lorentz) A = tensorhead("A", [Lorentz], [[1]]) assert _test_args(PartialDerivative(A(a), A(b))) def test_as_coeff_add(): assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add() def test_sympy__geometry__curve__Curve(): from sympy.geometry.curve import Curve assert _test_args(Curve((x, 1), (x, 0, 1))) def test_sympy__geometry__point__Point(): from sympy.geometry.point import Point assert _test_args(Point(0, 1)) def test_sympy__geometry__point__Point2D(): from sympy.geometry.point import Point2D assert _test_args(Point2D(0, 1)) def test_sympy__geometry__point__Point3D(): from sympy.geometry.point import Point3D assert _test_args(Point3D(0, 1, 2)) def test_sympy__geometry__ellipse__Ellipse(): from sympy.geometry.ellipse import Ellipse assert _test_args(Ellipse((0, 1), 2, 3)) def test_sympy__geometry__ellipse__Circle(): from sympy.geometry.ellipse import Circle assert _test_args(Circle((0, 1), 2)) def test_sympy__geometry__parabola__Parabola(): from sympy.geometry.parabola import Parabola from sympy.geometry.line import Line assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3)))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity(): pass def test_sympy__geometry__line__Line(): from sympy.geometry.line import Line assert _test_args(Line((0, 1), (2, 3))) def test_sympy__geometry__line__Ray(): from sympy.geometry.line import Ray assert _test_args(Ray((0, 1), (2, 3))) def test_sympy__geometry__line__Segment(): from sympy.geometry.line import Segment assert _test_args(Segment((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity2D(): pass def test_sympy__geometry__line__Line2D(): from sympy.geometry.line import Line2D assert _test_args(Line2D((0, 1), (2, 3))) def test_sympy__geometry__line__Ray2D(): from sympy.geometry.line import Ray2D assert _test_args(Ray2D((0, 1), (2, 3))) def test_sympy__geometry__line__Segment2D(): from sympy.geometry.line import Segment2D assert _test_args(Segment2D((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity3D(): pass def test_sympy__geometry__line__Line3D(): from sympy.geometry.line import Line3D assert _test_args(Line3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Segment3D(): from sympy.geometry.line import Segment3D assert _test_args(Segment3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Ray3D(): from sympy.geometry.line import Ray3D assert _test_args(Ray3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__plane__Plane(): from sympy.geometry.plane import Plane assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3))) def test_sympy__geometry__polygon__Polygon(): from sympy.geometry.polygon import Polygon assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7))) def test_sympy__geometry__polygon__RegularPolygon(): from sympy.geometry.polygon import RegularPolygon assert _test_args(RegularPolygon((0, 1), 2, 3, 4)) def test_sympy__geometry__polygon__Triangle(): from sympy.geometry.polygon import Triangle assert _test_args(Triangle((0, 1), (2, 3), (4, 5))) def test_sympy__geometry__entity__GeometryEntity(): from sympy.geometry.entity import GeometryEntity from sympy.geometry.point import Point assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2])) @SKIP("abstract class") def test_sympy__geometry__entity__GeometrySet(): pass def test_sympy__diffgeom__diffgeom__Manifold(): from sympy.diffgeom import Manifold assert _test_args(Manifold('name', 3)) def test_sympy__diffgeom__diffgeom__Patch(): from sympy.diffgeom import Manifold, Patch assert _test_args(Patch('name', Manifold('name', 3))) def test_sympy__diffgeom__diffgeom__CoordSystem(): from sympy.diffgeom import Manifold, Patch, CoordSystem assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)))) @XFAIL def test_sympy__diffgeom__diffgeom__Point(): from sympy.diffgeom import Manifold, Patch, CoordSystem, Point assert _test_args(Point( CoordSystem('name', Patch('name', Manifold('name', 3))), [x, y])) def test_sympy__diffgeom__diffgeom__BaseScalarField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(BaseScalarField(cs, 0)) def test_sympy__diffgeom__diffgeom__BaseVectorField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(BaseVectorField(cs, 0)) def test_sympy__diffgeom__diffgeom__Differential(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(Differential(BaseScalarField(cs, 0))) def test_sympy__diffgeom__diffgeom__Commutator(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator cs = CoordSystem('name', Patch('name', Manifold('name', 3))) cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3))) v = BaseVectorField(cs, 0) v1 = BaseVectorField(cs1, 0) assert _test_args(Commutator(v, v1)) def test_sympy__diffgeom__diffgeom__TensorProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3))) d = Differential(BaseScalarField(cs, 0)) assert _test_args(TensorProduct(d, d)) def test_sympy__diffgeom__diffgeom__WedgeProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3))) d = Differential(BaseScalarField(cs, 0)) d1 = Differential(BaseScalarField(cs, 1)) assert _test_args(WedgeProduct(d, d1)) def test_sympy__diffgeom__diffgeom__LieDerivative(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative cs = CoordSystem('name', Patch('name', Manifold('name', 3))) d = Differential(BaseScalarField(cs, 0)) v = BaseVectorField(cs, 0) assert _test_args(LieDerivative(v, d)) @XFAIL def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3)) def test_sympy__diffgeom__diffgeom__CovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3))) v = BaseVectorField(cs, 0) _test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3)) def test_sympy__categories__baseclasses__Class(): from sympy.categories.baseclasses import Class assert _test_args(Class()) def test_sympy__categories__baseclasses__Object(): from sympy.categories import Object assert _test_args(Object("A")) @XFAIL def test_sympy__categories__baseclasses__Morphism(): from sympy.categories import Object, Morphism assert _test_args(Morphism(Object("A"), Object("B"))) def test_sympy__categories__baseclasses__IdentityMorphism(): from sympy.categories import Object, IdentityMorphism assert _test_args(IdentityMorphism(Object("A"))) def test_sympy__categories__baseclasses__NamedMorphism(): from sympy.categories import Object, NamedMorphism assert _test_args(NamedMorphism(Object("A"), Object("B"), "f")) def test_sympy__categories__baseclasses__CompositeMorphism(): from sympy.categories import Object, NamedMorphism, CompositeMorphism A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") assert _test_args(CompositeMorphism(f, g)) def test_sympy__categories__baseclasses__Diagram(): from sympy.categories import Object, NamedMorphism, Diagram A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") d = Diagram([f]) assert _test_args(d) def test_sympy__categories__baseclasses__Category(): from sympy.categories import Object, NamedMorphism, Diagram, Category A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d1 = Diagram([f, g]) d2 = Diagram([f]) K = Category("K", commutative_diagrams=[d1, d2]) assert _test_args(K) def test_sympy__ntheory__factor___totient(): from sympy.ntheory.factor_ import totient k = symbols('k', integer=True) t = totient(k) assert _test_args(t) def test_sympy__ntheory__factor___reduced_totient(): from sympy.ntheory.factor_ import reduced_totient k = symbols('k', integer=True) t = reduced_totient(k) assert _test_args(t) def test_sympy__ntheory__factor___divisor_sigma(): from sympy.ntheory.factor_ import divisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = divisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___udivisor_sigma(): from sympy.ntheory.factor_ import udivisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = udivisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___primenu(): from sympy.ntheory.factor_ import primenu n = symbols('n', integer=True) t = primenu(n) assert _test_args(t) def test_sympy__ntheory__factor___primeomega(): from sympy.ntheory.factor_ import primeomega n = symbols('n', integer=True) t = primeomega(n) assert _test_args(t) def test_sympy__ntheory__residue_ntheory__mobius(): from sympy.ntheory import mobius assert _test_args(mobius(2)) def test_sympy__ntheory__generate__primepi(): from sympy.ntheory import primepi n = symbols('n') t = primepi(n) assert _test_args(t) def test_sympy__physics__optics__waves__TWave(): from sympy.physics.optics import TWave A, f, phi = symbols('A, f, phi') assert _test_args(TWave(A, f, phi)) def test_sympy__physics__optics__gaussopt__BeamParameter(): from sympy.physics.optics import BeamParameter assert _test_args(BeamParameter(530e-9, 1, w=1e-3)) def test_sympy__physics__optics__medium__Medium(): from sympy.physics.optics import Medium assert _test_args(Medium('m')) def test_sympy__codegen__array_utils__CodegenArrayContraction(): from sympy.codegen.array_utils import CodegenArrayContraction from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayContraction(A, (0, 1))) def test_sympy__codegen__array_utils__CodegenArrayDiagonal(): from sympy.codegen.array_utils import CodegenArrayDiagonal from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayDiagonal(A, (0, 1))) def test_sympy__codegen__array_utils__CodegenArrayTensorProduct(): from sympy.codegen.array_utils import CodegenArrayTensorProduct from sympy import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(CodegenArrayTensorProduct(A, B)) def test_sympy__codegen__array_utils__CodegenArrayElementwiseAdd(): from sympy.codegen.array_utils import CodegenArrayElementwiseAdd from sympy import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(CodegenArrayElementwiseAdd(A, B)) def test_sympy__codegen__array_utils__CodegenArrayPermuteDims(): from sympy.codegen.array_utils import CodegenArrayPermuteDims from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayPermuteDims(A, (1, 0))) def test_sympy__codegen__ast__Assignment(): from sympy.codegen.ast import Assignment assert _test_args(Assignment(x, y)) def test_sympy__codegen__cfunctions__expm1(): from sympy.codegen.cfunctions import expm1 assert _test_args(expm1(x)) def test_sympy__codegen__cfunctions__log1p(): from sympy.codegen.cfunctions import log1p assert _test_args(log1p(x)) def test_sympy__codegen__cfunctions__exp2(): from sympy.codegen.cfunctions import exp2 assert _test_args(exp2(x)) def test_sympy__codegen__cfunctions__log2(): from sympy.codegen.cfunctions import log2 assert _test_args(log2(x)) def test_sympy__codegen__cfunctions__fma(): from sympy.codegen.cfunctions import fma assert _test_args(fma(x, y, z)) def test_sympy__codegen__cfunctions__log10(): from sympy.codegen.cfunctions import log10 assert _test_args(log10(x)) def test_sympy__codegen__cfunctions__Sqrt(): from sympy.codegen.cfunctions import Sqrt assert _test_args(Sqrt(x)) def test_sympy__codegen__cfunctions__Cbrt(): from sympy.codegen.cfunctions import Cbrt assert _test_args(Cbrt(x)) def test_sympy__codegen__cfunctions__hypot(): from sympy.codegen.cfunctions import hypot assert _test_args(hypot(x, y)) def test_sympy__codegen__fnodes__FFunction(): from sympy.codegen.fnodes import FFunction assert _test_args(FFunction('f')) def test_sympy__codegen__fnodes__F95Function(): from sympy.codegen.fnodes import F95Function assert _test_args(F95Function('f')) def test_sympy__codegen__fnodes__isign(): from sympy.codegen.fnodes import isign assert _test_args(isign(1, x)) def test_sympy__codegen__fnodes__dsign(): from sympy.codegen.fnodes import dsign assert _test_args(dsign(1, x)) def test_sympy__codegen__fnodes__cmplx(): from sympy.codegen.fnodes import cmplx assert _test_args(cmplx(x, y)) def test_sympy__codegen__fnodes__kind(): from sympy.codegen.fnodes import kind assert _test_args(kind(x)) def test_sympy__codegen__fnodes__merge(): from sympy.codegen.fnodes import merge assert _test_args(merge(1, 2, Eq(x, 0))) def test_sympy__codegen__fnodes___literal(): from sympy.codegen.fnodes import _literal assert _test_args(_literal(1)) def test_sympy__codegen__fnodes__literal_sp(): from sympy.codegen.fnodes import literal_sp assert _test_args(literal_sp(1)) def test_sympy__codegen__fnodes__literal_dp(): from sympy.codegen.fnodes import literal_dp assert _test_args(literal_dp(1)) def test_sympy__vector__coordsysrect__CoordSys3D(): from sympy.vector.coordsysrect import CoordSys3D assert _test_args(CoordSys3D('C')) def test_sympy__vector__point__Point(): from sympy.vector.point import Point assert _test_args(Point('P')) def test_sympy__vector__basisdependent__BasisDependent(): from sympy.vector.basisdependent import BasisDependent #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__basisdependent__BasisDependentMul(): from sympy.vector.basisdependent import BasisDependentMul #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__basisdependent__BasisDependentAdd(): from sympy.vector.basisdependent import BasisDependentAdd #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__basisdependent__BasisDependentZero(): from sympy.vector.basisdependent import BasisDependentZero #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__vector__BaseVector(): from sympy.vector.vector import BaseVector from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseVector(0, C, ' ', ' ')) def test_sympy__vector__vector__VectorAdd(): from sympy.vector.vector import VectorAdd, VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a, b, c, x, y, z v1 = a*C.i + b*C.j + c*C.k v2 = x*C.i + y*C.j + z*C.k assert _test_args(VectorAdd(v1, v2)) assert _test_args(VectorMul(x, v1)) def test_sympy__vector__vector__VectorMul(): from sympy.vector.vector import VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a assert _test_args(VectorMul(a, C.i)) def test_sympy__vector__vector__VectorZero(): from sympy.vector.vector import VectorZero assert _test_args(VectorZero()) def test_sympy__vector__vector__Vector(): from sympy.vector.vector import Vector #Vector is never to be initialized using args pass def test_sympy__vector__vector__Cross(): from sympy.vector.vector import Cross from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Cross(C.i, C.j)) def test_sympy__vector__vector__Dot(): from sympy.vector.vector import Dot from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Dot(C.i, C.j)) def test_sympy__vector__dyadic__Dyadic(): from sympy.vector.dyadic import Dyadic #Dyadic is never to be initialized using args pass def test_sympy__vector__dyadic__BaseDyadic(): from sympy.vector.dyadic import BaseDyadic from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseDyadic(C.i, C.j)) def test_sympy__vector__dyadic__DyadicMul(): from sympy.vector.dyadic import BaseDyadic, DyadicMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicAdd(): from sympy.vector.dyadic import BaseDyadic, DyadicAdd from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i), BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicZero(): from sympy.vector.dyadic import DyadicZero assert _test_args(DyadicZero()) def test_sympy__vector__deloperator__Del(): from sympy.vector.deloperator import Del assert _test_args(Del()) def test_sympy__vector__operators__Curl(): from sympy.vector.operators import Curl from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Curl(C.i)) def test_sympy__vector__operators__Divergence(): from sympy.vector.operators import Divergence from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Divergence(C.i)) def test_sympy__vector__operators__Gradient(): from sympy.vector.operators import Gradient from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Gradient(C.x)) def test_sympy__vector__orienters__Orienter(): from sympy.vector.orienters import Orienter #Not to be initialized def test_sympy__vector__orienters__ThreeAngleOrienter(): from sympy.vector.orienters import ThreeAngleOrienter #Not to be initialized def test_sympy__vector__orienters__AxisOrienter(): from sympy.vector.orienters import AxisOrienter from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(AxisOrienter(x, C.i)) def test_sympy__vector__orienters__BodyOrienter(): from sympy.vector.orienters import BodyOrienter assert _test_args(BodyOrienter(x, y, z, '123')) def test_sympy__vector__orienters__SpaceOrienter(): from sympy.vector.orienters import SpaceOrienter assert _test_args(SpaceOrienter(x, y, z, '123')) def test_sympy__vector__orienters__QuaternionOrienter(): from sympy.vector.orienters import QuaternionOrienter a, b, c, d = symbols('a b c d') assert _test_args(QuaternionOrienter(a, b, c, d)) def test_sympy__vector__scalar__BaseScalar(): from sympy.vector.scalar import BaseScalar from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseScalar(0, C, ' ', ' ')) def test_sympy__physics__wigner__Wigner3j(): from sympy.physics.wigner import Wigner3j assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0)) def test_sympy__integrals__rubi__symbol__matchpyWC(): from sympy.integrals.rubi.symbol import matchpyWC assert _test_args(matchpyWC(1, True, 'a')) def test_sympy__integrals__rubi__utility_function__rubi_unevaluated_expr(): from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr a = symbols('a') assert _test_args(rubi_unevaluated_expr(a)) def test_sympy__integrals__rubi__utility_function__exp(): from sympy.integrals.rubi.utility_function import exp assert _test_args(exp(5)) def test_sympy__integrals__rubi__utility_function__log(): from sympy.integrals.rubi.utility_function import log assert _test_args(log(5)) def test_sympy__integrals__rubi__utility_function__Int(): from sympy.integrals.rubi.utility_function import Int assert _test_args(Int(5, x)) def test_sympy__integrals__rubi__utility_function__Util_Coefficient(): from sympy.integrals.rubi.utility_function import Util_Coefficient a, x = symbols('a x') assert _test_args(Util_Coefficient(a, x)) def test_sympy__integrals__rubi__utility_function__Gamma(): from sympy.integrals.rubi.utility_function import Gamma assert _test_args(Gamma(5)) def test_sympy__integrals__rubi__utility_function__Util_Part(): from sympy.integrals.rubi.utility_function import Util_Part a, b = symbols('a b') assert _test_args(Util_Part(a + b, 0)) def test_sympy__integrals__rubi__utility_function__PolyGamma(): from sympy.integrals.rubi.utility_function import PolyGamma assert _test_args(PolyGamma(1, 1)) def test_sympy__integrals__rubi__utility_function__ProductLog(): from sympy.integrals.rubi.utility_function import ProductLog assert _test_args(ProductLog(1))
a912c5d5b421fa22f0dc75893bef1ea3e6fbb195842c0287780212034597861c
from sympy import (Symbol, Wild, GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, pi, I, Rational, sympify, symbols, Dummy, Tuple, ) from sympy.core.symbol import _uniquely_named_symbol, _symbol from sympy.utilities.pytest import raises from sympy.core.symbol import disambiguate def test_Symbol(): a = Symbol("a") x1 = Symbol("x") x2 = Symbol("x") xdummy1 = Dummy("x") xdummy2 = Dummy("x") assert a != x1 assert a != x2 assert x1 == x2 assert x1 != xdummy1 assert xdummy1 != xdummy2 assert Symbol("x") == Symbol("x") assert Dummy("x") != Dummy("x") d = symbols('d', cls=Dummy) assert isinstance(d, Dummy) c, d = symbols('c,d', cls=Dummy) assert isinstance(c, Dummy) assert isinstance(d, Dummy) raises(TypeError, lambda: Symbol()) def test_Dummy(): assert Dummy() != Dummy() def test_Dummy_force_dummy_index(): raises(AssertionError, lambda: Dummy(dummy_index=1)) assert Dummy('d', dummy_index=2) == Dummy('d', dummy_index=2) assert Dummy('d1', dummy_index=2) != Dummy('d2', dummy_index=2) d1 = Dummy('d', dummy_index=3) d2 = Dummy('d') # might fail if d1 were created with dummy_index >= 10**6 assert d1 != d2 d3 = Dummy('d', dummy_index=3) assert d1 == d3 assert Dummy()._count == Dummy('d', dummy_index=3)._count def test_lt_gt(): from sympy import sympify as S x, y = Symbol('x'), Symbol('y') assert (x >= y) == GreaterThan(x, y) assert (x >= 0) == GreaterThan(x, 0) assert (x <= y) == LessThan(x, y) assert (x <= 0) == LessThan(x, 0) assert (0 <= x) == GreaterThan(x, 0) assert (0 >= x) == LessThan(x, 0) assert (S(0) >= x) == GreaterThan(0, x) assert (S(0) <= x) == LessThan(0, x) assert (x > y) == StrictGreaterThan(x, y) assert (x > 0) == StrictGreaterThan(x, 0) assert (x < y) == StrictLessThan(x, y) assert (x < 0) == StrictLessThan(x, 0) assert (0 < x) == StrictGreaterThan(x, 0) assert (0 > x) == StrictLessThan(x, 0) assert (S(0) > x) == StrictGreaterThan(0, x) assert (S(0) < x) == StrictLessThan(0, x) e = x**2 + 4*x + 1 assert (e >= 0) == GreaterThan(e, 0) assert (0 <= e) == GreaterThan(e, 0) assert (e > 0) == StrictGreaterThan(e, 0) assert (0 < e) == StrictGreaterThan(e, 0) assert (e <= 0) == LessThan(e, 0) assert (0 >= e) == LessThan(e, 0) assert (e < 0) == StrictLessThan(e, 0) assert (0 > e) == StrictLessThan(e, 0) assert (S(0) >= e) == GreaterThan(0, e) assert (S(0) <= e) == LessThan(0, e) assert (S(0) < e) == StrictLessThan(0, e) assert (S(0) > e) == StrictGreaterThan(0, e) def test_no_len(): # there should be no len for numbers x = Symbol('x') raises(TypeError, lambda: len(x)) def test_ineq_unequal(): S = sympify x, y, z = symbols('x,y,z') e = ( S(-1) >= x, S(-1) >= y, S(-1) >= z, S(-1) > x, S(-1) > y, S(-1) > z, S(-1) <= x, S(-1) <= y, S(-1) <= z, S(-1) < x, S(-1) < y, S(-1) < z, S(0) >= x, S(0) >= y, S(0) >= z, S(0) > x, S(0) > y, S(0) > z, S(0) <= x, S(0) <= y, S(0) <= z, S(0) < x, S(0) < y, S(0) < z, S('3/7') >= x, S('3/7') >= y, S('3/7') >= z, S('3/7') > x, S('3/7') > y, S('3/7') > z, S('3/7') <= x, S('3/7') <= y, S('3/7') <= z, S('3/7') < x, S('3/7') < y, S('3/7') < z, S(1.5) >= x, S(1.5) >= y, S(1.5) >= z, S(1.5) > x, S(1.5) > y, S(1.5) > z, S(1.5) <= x, S(1.5) <= y, S(1.5) <= z, S(1.5) < x, S(1.5) < y, S(1.5) < z, S(2) >= x, S(2) >= y, S(2) >= z, S(2) > x, S(2) > y, S(2) > z, S(2) <= x, S(2) <= y, S(2) <= z, S(2) < x, S(2) < y, S(2) < z, x >= -1, y >= -1, z >= -1, x > -1, y > -1, z > -1, x <= -1, y <= -1, z <= -1, x < -1, y < -1, z < -1, x >= 0, y >= 0, z >= 0, x > 0, y > 0, z > 0, x <= 0, y <= 0, z <= 0, x < 0, y < 0, z < 0, x >= 1.5, y >= 1.5, z >= 1.5, x > 1.5, y > 1.5, z > 1.5, x <= 1.5, y <= 1.5, z <= 1.5, x < 1.5, y < 1.5, z < 1.5, x >= 2, y >= 2, z >= 2, x > 2, y > 2, z > 2, x <= 2, y <= 2, z <= 2, x < 2, y < 2, z < 2, x >= y, x >= z, y >= x, y >= z, z >= x, z >= y, x > y, x > z, y > x, y > z, z > x, z > y, x <= y, x <= z, y <= x, y <= z, z <= x, z <= y, x < y, x < z, y < x, y < z, z < x, z < y, x - pi >= y + z, y - pi >= x + z, z - pi >= x + y, x - pi > y + z, y - pi > x + z, z - pi > x + y, x - pi <= y + z, y - pi <= x + z, z - pi <= x + y, x - pi < y + z, y - pi < x + z, z - pi < x + y, True, False ) left_e = e[:-1] for i, e1 in enumerate( left_e ): for e2 in e[i + 1:]: assert e1 != e2 def test_Wild_properties(): # these tests only include Atoms x = Symbol("x") y = Symbol("y") p = Symbol("p", positive=True) k = Symbol("k", integer=True) n = Symbol("n", integer=True, positive=True) given_patterns = [ x, y, p, k, -k, n, -n, sympify(-3), sympify(3), pi, Rational(3, 2), I ] integerp = lambda k: k.is_integer positivep = lambda k: k.is_positive symbolp = lambda k: k.is_Symbol realp = lambda k: k.is_real S = Wild("S", properties=[symbolp]) R = Wild("R", properties=[realp]) Y = Wild("Y", exclude=[x, p, k, n]) P = Wild("P", properties=[positivep]) K = Wild("K", properties=[integerp]) N = Wild("N", properties=[positivep, integerp]) given_wildcards = [ S, R, Y, P, K, N ] goodmatch = { S: (x, y, p, k, n), R: (p, k, -k, n, -n, -3, 3, pi, Rational(3, 2)), Y: (y, -3, 3, pi, Rational(3, 2), I ), P: (p, n, 3, pi, Rational(3, 2)), K: (k, -k, n, -n, -3, 3), N: (n, 3)} for A in given_wildcards: for pat in given_patterns: d = pat.match(A) if pat in goodmatch[A]: assert d[A] in goodmatch[A] else: assert d is None def test_symbols(): x = Symbol('x') y = Symbol('y') z = Symbol('z') assert symbols('x') == x assert symbols('x ') == x assert symbols(' x ') == x assert symbols('x,') == (x,) assert symbols('x, ') == (x,) assert symbols('x ,') == (x,) assert symbols('x , y') == (x, y) assert symbols('x,y,z') == (x, y, z) assert symbols('x y z') == (x, y, z) assert symbols('x,y,z,') == (x, y, z) assert symbols('x y z ') == (x, y, z) xyz = Symbol('xyz') abc = Symbol('abc') assert symbols('xyz') == xyz assert symbols('xyz,') == (xyz,) assert symbols('xyz,abc') == (xyz, abc) assert symbols(('xyz',)) == (xyz,) assert symbols(('xyz,',)) == ((xyz,),) assert symbols(('x,y,z,',)) == ((x, y, z),) assert symbols(('xyz', 'abc')) == (xyz, abc) assert symbols(('xyz,abc',)) == ((xyz, abc),) assert symbols(('xyz,abc', 'x,y,z')) == ((xyz, abc), (x, y, z)) assert symbols(('x', 'y', 'z')) == (x, y, z) assert symbols(['x', 'y', 'z']) == [x, y, z] assert symbols(set(['x', 'y', 'z'])) == set([x, y, z]) raises(ValueError, lambda: symbols('')) raises(ValueError, lambda: symbols(',')) raises(ValueError, lambda: symbols('x,,y,,z')) raises(ValueError, lambda: symbols(('x', '', 'y', '', 'z'))) a, b = symbols('x,y', real=True) assert a.is_real and b.is_real x0 = Symbol('x0') x1 = Symbol('x1') x2 = Symbol('x2') y0 = Symbol('y0') y1 = Symbol('y1') assert symbols('x0:0') == () assert symbols('x0:1') == (x0,) assert symbols('x0:2') == (x0, x1) assert symbols('x0:3') == (x0, x1, x2) assert symbols('x:0') == () assert symbols('x:1') == (x0,) assert symbols('x:2') == (x0, x1) assert symbols('x:3') == (x0, x1, x2) assert symbols('x1:1') == () assert symbols('x1:2') == (x1,) assert symbols('x1:3') == (x1, x2) assert symbols('x1:3,x,y,z') == (x1, x2, x, y, z) assert symbols('x:3,y:2') == (x0, x1, x2, y0, y1) assert symbols(('x:3', 'y:2')) == ((x0, x1, x2), (y0, y1)) a = Symbol('a') b = Symbol('b') c = Symbol('c') d = Symbol('d') assert symbols('x:z') == (x, y, z) assert symbols('a:d,x:z') == (a, b, c, d, x, y, z) assert symbols(('a:d', 'x:z')) == ((a, b, c, d), (x, y, z)) aa = Symbol('aa') ab = Symbol('ab') ac = Symbol('ac') ad = Symbol('ad') assert symbols('aa:d') == (aa, ab, ac, ad) assert symbols('aa:d,x:z') == (aa, ab, ac, ad, x, y, z) assert symbols(('aa:d','x:z')) == ((aa, ab, ac, ad), (x, y, z)) # issue 6675 def sym(s): return str(symbols(s)) assert sym('a0:4') == '(a0, a1, a2, a3)' assert sym('a2:4,b1:3') == '(a2, a3, b1, b2)' assert sym('a1(2:4)') == '(a12, a13)' assert sym(('a0:2.0:2')) == '(a0.0, a0.1, a1.0, a1.1)' assert sym(('aa:cz')) == '(aaz, abz, acz)' assert sym('aa:c0:2') == '(aa0, aa1, ab0, ab1, ac0, ac1)' assert sym('aa:ba:b') == '(aaa, aab, aba, abb)' assert sym('a:3b') == '(a0b, a1b, a2b)' assert sym('a-1:3b') == '(a-1b, a-2b)' assert sym(r'a:2\,:2' + chr(0)) == '(a0,0%s, a0,1%s, a1,0%s, a1,1%s)' % ( (chr(0),)*4) assert sym('x(:a:3)') == '(x(a0), x(a1), x(a2))' assert sym('x(:c):1') == '(xa0, xb0, xc0)' assert sym('x((:a)):3') == '(x(a)0, x(a)1, x(a)2)' assert sym('x(:a:3') == '(x(a0, x(a1, x(a2)' assert sym(':2') == '(0, 1)' assert sym(':b') == '(a, b)' assert sym(':b:2') == '(a0, a1, b0, b1)' assert sym(':2:2') == '(00, 01, 10, 11)' assert sym(':b:b') == '(aa, ab, ba, bb)' raises(ValueError, lambda: symbols(':')) raises(ValueError, lambda: symbols('a:')) raises(ValueError, lambda: symbols('::')) raises(ValueError, lambda: symbols('a::')) raises(ValueError, lambda: symbols(':a:')) raises(ValueError, lambda: symbols('::a')) def test_symbols_become_functions_issue_3539(): from sympy.abc import alpha, phi, beta, t raises(TypeError, lambda: beta(2)) raises(TypeError, lambda: beta(2.5)) raises(TypeError, lambda: phi(2.5)) raises(TypeError, lambda: alpha(2.5)) raises(TypeError, lambda: phi(t)) def test_unicode(): xu = Symbol(u'x') x = Symbol('x') assert x == xu raises(TypeError, lambda: Symbol(1)) def test__uniquely_named_symbol_and__symbol(): F = _uniquely_named_symbol x = Symbol('x') assert F(x) == x assert F('x') == x assert str(F('x', x)) == '_x' assert str(F('x', (x + 1, 1/x))) == '_x' _x = Symbol('x', real=True) assert F(('x', _x)) == _x assert F((x, _x)) == _x assert F('x', real=True).is_real y = Symbol('y') assert F(('x', y), real=True).is_real r = Symbol('x', real=True) assert F(('x', r)).is_real assert F(('x', r), real=False).is_real assert F('x1', Symbol('x1'), compare=lambda i: str(i).rstrip('1')).name == 'x1' assert F('x1', Symbol('x1'), modify=lambda i: i + '_').name == 'x1_' assert _symbol(x, _x) == x def test_disambiguate(): x, y, y_1, _x, x_1, x_2 = symbols('x y y_1 _x x_1 x_2') t1 = Dummy('y'), _x, Dummy('x'), Dummy('x') t2 = Dummy('x'), Dummy('x') t3 = Dummy('x'), Dummy('y') t4 = x, Dummy('x') t5 = Symbol('x', integer=True), x, Symbol('x_1') assert disambiguate(*t1) == (y, x_2, x, x_1) assert disambiguate(*t2) == (x, x_1) assert disambiguate(*t3) == (x, y) assert disambiguate(*t4) == (x_1, x) assert disambiguate(*t5) == (t5[0], x_2, x_1) assert disambiguate(*t5)[0] != x # assumptions are retained t6 = _x, Dummy('x')/y t7 = y*Dummy('y'), y assert disambiguate(*t6) == (x_1, x/y) assert disambiguate(*t7) == (y*y_1, y_1) assert disambiguate(Dummy('x_1'), Dummy('x_1') ) == (x_1, Symbol('x_1_1'))
8d00e93cae56b7b7c7158faf09bd593ae004abbbde45eeafd3849c6074df79b9
import decimal from sympy import (Rational, Symbol, Float, I, sqrt, cbrt, oo, nan, pi, E, Integer, S, factorial, Catalan, EulerGamma, GoldenRatio, TribonacciConstant, cos, exp, Number, zoo, log, Mul, Pow, Tuple, latex, Gt, Lt, Ge, Le, AlgebraicNumber, simplify, sin, fibonacci, RealField, sympify, srepr) from sympy.core.compatibility import long from sympy.core.power import integer_nthroot, isqrt, integer_log from sympy.core.logic import fuzzy_not from sympy.core.numbers import (igcd, ilcm, igcdex, seterr, _intcache, igcd2, igcd_lehmer, mpf_norm, comp, mod_inverse) from sympy.core.mod import Mod from sympy.polys.domains.groundtypes import PythonRational from sympy.utilities.decorator import conserve_mpmath_dps from sympy.utilities.iterables import permutations from sympy.utilities.pytest import XFAIL, raises from mpmath import mpf from mpmath.rational import mpq import mpmath t = Symbol('t', real=False) def same_and_same_prec(a, b): # stricter matching for Floats return a == b and a._prec == b._prec def test_integers_cache(): python_int = 2**65 + 3175259 while python_int in _intcache or hash(python_int) in _intcache: python_int += 1 sympy_int = Integer(python_int) assert python_int in _intcache assert hash(python_int) not in _intcache sympy_int_int = Integer(sympy_int) assert python_int in _intcache assert hash(python_int) not in _intcache sympy_hash_int = Integer(hash(python_int)) assert python_int in _intcache assert hash(python_int) in _intcache def test_seterr(): seterr(divide=True) raises(ValueError, lambda: S.Zero/S.Zero) seterr(divide=False) assert S.Zero / S.Zero == S.NaN def test_mod(): x = Rational(1, 2) y = Rational(3, 4) z = Rational(5, 18043) assert x % x == 0 assert x % y == 1/S(2) assert x % z == 3/S(36086) assert y % x == 1/S(4) assert y % y == 0 assert y % z == 9/S(72172) assert z % x == 5/S(18043) assert z % y == 5/S(18043) assert z % z == 0 a = Float(2.6) assert (a % .2) == 0 assert (a % 2).round(15) == 0.6 assert (a % 0.5).round(15) == 0.1 p = Symbol('p', infinite=True) assert oo % oo == nan assert zoo % oo == nan assert 5 % oo == nan assert p % 5 == nan # In these two tests, if the precision of m does # not match the precision of the ans, then it is # likely that the change made now gives an answer # with degraded accuracy. r = Rational(500, 41) f = Float('.36', 3) m = r % f ans = Float(r % Rational(f), 3) assert m == ans and m._prec == ans._prec f = Float('8.36', 3) m = f % r ans = Float(Rational(f) % r, 3) assert m == ans and m._prec == ans._prec s = S.Zero assert s % float(1) == S.Zero # No rounding required since these numbers can be represented # exactly. assert Rational(3, 4) % Float(1.1) == 0.75 assert Float(1.5) % Rational(5, 4) == 0.25 assert Rational(5, 4).__rmod__(Float('1.5')) == 0.25 assert Float('1.5').__rmod__(Float('2.75')) == Float('1.25') assert 2.75 % Float('1.5') == Float('1.25') a = Integer(7) b = Integer(4) assert type(a % b) == Integer assert a % b == Integer(3) assert Integer(1) % Rational(2, 3) == Rational(1, 3) assert Rational(7, 5) % Integer(1) == Rational(2, 5) assert Integer(2) % 1.5 == 0.5 assert Integer(3).__rmod__(Integer(10)) == Integer(1) assert Integer(10) % 4 == Integer(2) assert 15 % Integer(4) == Integer(3) def test_divmod(): assert divmod(S(12), S(8)) == Tuple(1, 4) assert divmod(-S(12), S(8)) == Tuple(-2, 4) assert divmod(S(0), S(1)) == Tuple(0, 0) raises(ZeroDivisionError, lambda: divmod(S(0), S(0))) raises(ZeroDivisionError, lambda: divmod(S(1), S(0))) assert divmod(S(12), 8) == Tuple(1, 4) assert divmod(12, S(8)) == Tuple(1, 4) assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2")) assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5")) assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3")) assert divmod(S("2"), S("0.1")) == Tuple(S("20"), S("0")) assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1")) assert divmod(S("2"), 2) == Tuple(S("1"), S("0")) assert divmod(2, S("2")) == Tuple(S("1"), S("0")) assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5")) assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3")) assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2")) assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5")) assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), Float("1/6")) assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3")) assert divmod(S("3/2"), S("0.1")) == Tuple(S("15"), S("0")) assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1")) assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2")) assert divmod(2, S("3/2")) == Tuple(S("1"), S("0.5")) assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0")) assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0")) assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0")) assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3")) assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3")) assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0")) assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1")) assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5")) assert divmod(2, S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5")) assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1")) assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3")) assert divmod(2, S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3")) assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1")) assert divmod(2, S("0.1")) == Tuple(S("20"), S("0")) assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1")) assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0")) assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1")) assert str(divmod(S("2"), 0.3)) == '(6, 0.2)' assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)' assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)' assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)' assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)' assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)' assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)' assert divmod(-3, S(2)) == (-2, 1) assert divmod(S(-3), S(2)) == (-2, 1) assert divmod(S(-3), 2) == (-2, 1) assert divmod(S(4), S(-3.1)) == Tuple(-2, -2.2) assert divmod(S(4), S(-2.1)) == divmod(4, -2.1) assert divmod(S(-8), S(-2.5) ) == Tuple(3 , -0.5) def test_igcd(): assert igcd(0, 0) == 0 assert igcd(0, 1) == 1 assert igcd(1, 0) == 1 assert igcd(0, 7) == 7 assert igcd(7, 0) == 7 assert igcd(7, 1) == 1 assert igcd(1, 7) == 1 assert igcd(-1, 0) == 1 assert igcd(0, -1) == 1 assert igcd(-1, -1) == 1 assert igcd(-1, 7) == 1 assert igcd(7, -1) == 1 assert igcd(8, 2) == 2 assert igcd(4, 8) == 4 assert igcd(8, 16) == 8 assert igcd(7, -3) == 1 assert igcd(-7, 3) == 1 assert igcd(-7, -3) == 1 assert igcd(*[10, 20, 30]) == 10 raises(TypeError, lambda: igcd()) raises(TypeError, lambda: igcd(2)) raises(ValueError, lambda: igcd(0, None)) raises(ValueError, lambda: igcd(1, 2.2)) for args in permutations((45.1, 1, 30)): raises(ValueError, lambda: igcd(*args)) for args in permutations((1, 2, None)): raises(ValueError, lambda: igcd(*args)) def test_igcd_lehmer(): a, b = fibonacci(10001), fibonacci(10000) # len(str(a)) == 2090 # small divisors, long Euclidean sequence assert igcd_lehmer(a, b) == 1 c = fibonacci(100) assert igcd_lehmer(a*c, b*c) == c # big divisor assert igcd_lehmer(a, 10**1000) == 1 def test_igcd2(): # short loop assert igcd2(2**100 - 1, 2**99 - 1) == 1 # Lehmer's algorithm a, b = int(fibonacci(10001)), int(fibonacci(10000)) assert igcd2(a, b) == 1 def test_ilcm(): assert ilcm(0, 0) == 0 assert ilcm(1, 0) == 0 assert ilcm(0, 1) == 0 assert ilcm(1, 1) == 1 assert ilcm(2, 1) == 2 assert ilcm(8, 2) == 8 assert ilcm(8, 6) == 24 assert ilcm(8, 7) == 56 assert ilcm(*[10, 20, 30]) == 60 raises(ValueError, lambda: ilcm(8.1, 7)) raises(ValueError, lambda: ilcm(8, 7.1)) def test_igcdex(): assert igcdex(2, 3) == (-1, 1, 1) assert igcdex(10, 12) == (-1, 1, 2) assert igcdex(100, 2004) == (-20, 1, 4) def _strictly_equal(a, b): return (a.p, a.q, type(a.p), type(a.q)) == \ (b.p, b.q, type(b.p), type(b.q)) def _test_rational_new(cls): """ Tests that are common between Integer and Rational. """ assert cls(0) is S.Zero assert cls(1) is S.One assert cls(-1) is S.NegativeOne # These look odd, but are similar to int(): assert cls('1') is S.One assert cls(u'-1') is S.NegativeOne i = Integer(10) assert _strictly_equal(i, cls('10')) assert _strictly_equal(i, cls(u'10')) assert _strictly_equal(i, cls(long(10))) assert _strictly_equal(i, cls(i)) raises(TypeError, lambda: cls(Symbol('x'))) def test_Integer_new(): """ Test for Integer constructor """ _test_rational_new(Integer) assert _strictly_equal(Integer(0.9), S.Zero) assert _strictly_equal(Integer(10.5), Integer(10)) raises(ValueError, lambda: Integer("10.5")) assert Integer(Rational('1.' + '9'*20)) == 1 def test_Rational_new(): """" Test for Rational constructor """ _test_rational_new(Rational) n1 = Rational(1, 2) assert n1 == Rational(Integer(1), 2) assert n1 == Rational(Integer(1), Integer(2)) assert n1 == Rational(1, Integer(2)) assert n1 == Rational(Rational(1, 2)) assert 1 == Rational(n1, n1) assert Rational(3, 2) == Rational(Rational(1, 2), Rational(1, 3)) assert Rational(3, 1) == Rational(1, Rational(1, 3)) n3_4 = Rational(3, 4) assert Rational('3/4') == n3_4 assert -Rational('-3/4') == n3_4 assert Rational('.76').limit_denominator(4) == n3_4 assert Rational(19, 25).limit_denominator(4) == n3_4 assert Rational('19/25').limit_denominator(4) == n3_4 assert Rational(1.0, 3) == Rational(1, 3) assert Rational(1, 3.0) == Rational(1, 3) assert Rational(Float(0.5)) == Rational(1, 2) assert Rational('1e2/1e-2') == Rational(10000) assert Rational('1 234') == Rational(1234) assert Rational('1/1 234') == Rational(1, 1234) assert Rational(-1, 0) == S.ComplexInfinity assert Rational(1, 0) == S.ComplexInfinity # Make sure Rational doesn't lose precision on Floats assert Rational(pi.evalf(100)).evalf(100) == pi.evalf(100) raises(TypeError, lambda: Rational('3**3')) raises(TypeError, lambda: Rational('1/2 + 2/3')) # handle fractions.Fraction instances try: import fractions assert Rational(fractions.Fraction(1, 2)) == Rational(1, 2) except ImportError: pass assert Rational(mpq(2, 6)) == Rational(1, 3) assert Rational(PythonRational(2, 6)) == Rational(1, 3) def test_Number_new(): """" Test for Number constructor """ # Expected behavior on numbers and strings assert Number(1) is S.One assert Number(2).__class__ is Integer assert Number(-622).__class__ is Integer assert Number(5, 3).__class__ is Rational assert Number(5.3).__class__ is Float assert Number('1') is S.One assert Number('2').__class__ is Integer assert Number('-622').__class__ is Integer assert Number('5/3').__class__ is Rational assert Number('5.3').__class__ is Float raises(ValueError, lambda: Number('cos')) raises(TypeError, lambda: Number(cos)) a = Rational(3, 5) assert Number(a) is a # Check idempotence on Numbers def test_Rational_cmp(): n1 = Rational(1, 4) n2 = Rational(1, 3) n3 = Rational(2, 4) n4 = Rational(2, -4) n5 = Rational(0) n6 = Rational(1) n7 = Rational(3) n8 = Rational(-3) assert n8 < n5 assert n5 < n6 assert n6 < n7 assert n8 < n7 assert n7 > n8 assert (n1 + 1)**n2 < 2 assert ((n1 + n6)/n7) < 1 assert n4 < n3 assert n2 < n3 assert n1 < n2 assert n3 > n1 assert not n3 < n1 assert not (Rational(-1) > 0) assert Rational(-1) < 0 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Float(): def eq(a, b): t = Float("1.0E-15") return (-t < a - b < t) a = Float(2) ** Float(3) assert eq(a.evalf(), Float(8)) assert eq((pi ** -1).evalf(), Float("0.31830988618379067")) a = Float(2) ** Float(4) assert eq(a.evalf(), Float(16)) assert (S(.3) == S(.5)) is False x_str = Float((0, '13333333333333', -52, 53)) x2_str = Float((0, '26666666666666', -53, 53)) x_hex = Float((0, long(0x13333333333333), -52, 53)) x_dec = Float((0, 5404319552844595, -52, 53)) assert x_str == x_hex == x_dec == Float(1.2) # This looses a binary digit of precision, so it isn't equal to the above, # but check that it normalizes correctly x2_hex = Float((0, long(0x13333333333333)*2, -53, 53)) assert x2_hex._mpf_ == (0, 5404319552844595, -52, 52) # XXX: Should this test also hold? # assert x2_hex._prec == 52 # x2_str and 1.2 are superficially the same assert str(x2_str) == str(Float(1.2)) # but are different at the mpf level assert Float(1.2)._mpf_ == (0, long(5404319552844595), -52, 53) assert x2_str._mpf_ == (0, long(10808639105689190), -53, 53) assert Float((0, long(0), -123, -1)) == Float('nan') assert Float((0, long(0), -456, -2)) == Float('inf') == Float('+inf') assert Float((1, long(0), -789, -3)) == Float('-inf') raises(ValueError, lambda: Float((0, 7, 1, 3), '')) assert Float('+inf').is_finite is False assert Float('+inf').is_negative is False assert Float('+inf').is_positive is True assert Float('+inf').is_infinite is True assert Float('+inf').is_zero is False assert Float('-inf').is_finite is False assert Float('-inf').is_negative is True assert Float('-inf').is_positive is False assert Float('-inf').is_infinite is True assert Float('-inf').is_zero is False assert Float('0.0').is_finite is True assert Float('0.0').is_negative is False assert Float('0.0').is_positive is False assert Float('0.0').is_infinite is False assert Float('0.0').is_zero is True # rationality properties assert Float(1).is_rational is None assert Float(1).is_irrational is None assert sqrt(2).n(15).is_rational is None assert sqrt(2).n(15).is_irrational is None # do not automatically evalf def teq(a): assert (a.evalf() == a) is False assert (a.evalf() != a) is True assert (a == a.evalf()) is False assert (a != a.evalf()) is True teq(pi) teq(2*pi) teq(cos(0.1, evaluate=False)) # long integer i = 12345678901234567890 assert same_and_same_prec(Float(12, ''), Float('12', '')) assert same_and_same_prec(Float(Integer(i), ''), Float(i, '')) assert same_and_same_prec(Float(i, ''), Float(str(i), 20)) assert same_and_same_prec(Float(str(i)), Float(i, '')) assert same_and_same_prec(Float(i), Float(i, '')) # inexact floats (repeating binary = denom not multiple of 2) # cannot have precision greater than 15 assert Float(.125, 22) == .125 assert Float(2.0, 22) == 2 assert float(Float('.12500000000000001', '')) == .125 raises(ValueError, lambda: Float(.12500000000000001, '')) # allow spaces Float('123 456.123 456') == Float('123456.123456') Integer('123 456') == Integer('123456') Rational('123 456.123 456') == Rational('123456.123456') assert Float(' .3e2') == Float('0.3e2') # allow auto precision detection assert Float('.1', '') == Float(.1, 1) assert Float('.125', '') == Float(.125, 3) assert Float('.100', '') == Float(.1, 3) assert Float('2.0', '') == Float('2', 2) raises(ValueError, lambda: Float("12.3d-4", "")) raises(ValueError, lambda: Float(12.3, "")) raises(ValueError, lambda: Float('.')) raises(ValueError, lambda: Float('-.')) zero = Float('0.0') assert Float('-0') == zero assert Float('.0') == zero assert Float('-.0') == zero assert Float('-0.0') == zero assert Float(0.0) == zero assert Float(0) == zero assert Float(0, '') == Float('0', '') assert Float(1) == Float(1.0) assert Float(S.Zero) == zero assert Float(S.One) == Float(1.0) assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3) assert Float(decimal.Decimal('nan')) == S.NaN assert Float(decimal.Decimal('Infinity')) == S.Infinity assert Float(decimal.Decimal('-Infinity')) == S.NegativeInfinity assert '{0:.3f}'.format(Float(4.236622)) == '4.237' assert '{0:.35f}'.format(Float(pi.n(40), 40)) == \ '3.14159265358979323846264338327950288' assert Float(oo) == Float('+inf') assert Float(-oo) == Float('-inf') # unicode assert Float(u'0.73908513321516064100000000') == \ Float('0.73908513321516064100000000') assert Float(u'0.73908513321516064100000000', 28) == \ Float('0.73908513321516064100000000', 28) # binary precision # Decimal value 0.1 cannot be expressed precisely as a base 2 fraction a = Float(S(1)/10, dps=15) b = Float(S(1)/10, dps=16) p = Float(S(1)/10, precision=53) q = Float(S(1)/10, precision=54) assert a._mpf_ == p._mpf_ assert not a._mpf_ == q._mpf_ assert not b._mpf_ == q._mpf_ # Precision specifying errors raises(ValueError, lambda: Float("1.23", dps=3, precision=10)) raises(ValueError, lambda: Float("1.23", dps="", precision=10)) raises(ValueError, lambda: Float("1.23", dps=3, precision="")) raises(ValueError, lambda: Float("1.23", dps="", precision="")) # from NumberSymbol assert same_and_same_prec(Float(pi, 32), pi.evalf(32)) assert same_and_same_prec(Float(Catalan), Catalan.evalf()) @conserve_mpmath_dps def test_float_mpf(): import mpmath mpmath.mp.dps = 100 mp_pi = mpmath.pi() assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) mpmath.mp.dps = 15 assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) def test_Float_RealElement(): repi = RealField(dps=100)(pi.evalf(100)) # We still have to pass the precision because Float doesn't know what # RealElement is, but make sure it keeps full precision from the result. assert Float(repi, 100) == pi.evalf(100) def test_Float_default_to_highprec_from_str(): s = str(pi.evalf(128)) assert same_and_same_prec(Float(s), Float(s, '')) def test_Float_eval(): a = Float(3.2) assert (a**2).is_Float def test_Float_issue_2107(): a = Float(0.1, 10) b = Float("0.1", 10) assert a - a == 0 assert a + (-a) == 0 assert S.Zero + a - a == 0 assert S.Zero + a + (-a) == 0 assert b - b == 0 assert b + (-b) == 0 assert S.Zero + b - b == 0 assert S.Zero + b + (-b) == 0 def test_issue_14289(): from sympy.polys.numberfields import to_number_field a = 1 - sqrt(2) b = to_number_field(a) assert b.as_expr() == a assert b.minpoly(a).expand() == 0 def test_Float_from_tuple(): a = Float((0, '1L', 0, 1)) b = Float((0, '1', 0, 1)) assert a == b def test_Infinity(): assert oo != 1 assert 1*oo == oo assert 1 != oo assert oo != -oo assert oo != Symbol("x")**3 assert oo + 1 == oo assert 2 + oo == oo assert 3*oo + 2 == oo assert S.Half**oo == 0 assert S.Half**(-oo) == oo assert -oo*3 == -oo assert oo + oo == oo assert -oo + oo*(-5) == -oo assert 1/oo == 0 assert 1/(-oo) == 0 assert 8/oo == 0 assert oo % 2 == nan assert 2 % oo == nan assert oo/oo == nan assert oo/-oo == nan assert -oo/oo == nan assert -oo/-oo == nan assert oo - oo == nan assert oo - -oo == oo assert -oo - oo == -oo assert -oo - -oo == nan assert oo + -oo == nan assert -oo + oo == nan assert oo + oo == oo assert -oo + oo == nan assert oo + -oo == nan assert -oo + -oo == -oo assert oo*oo == oo assert -oo*oo == -oo assert oo*-oo == -oo assert -oo*-oo == oo assert oo/0 == oo assert -oo/0 == -oo assert 0/oo == 0 assert 0/-oo == 0 assert oo*0 == nan assert -oo*0 == nan assert 0*oo == nan assert 0*-oo == nan assert oo + 0 == oo assert -oo + 0 == -oo assert 0 + oo == oo assert 0 + -oo == -oo assert oo - 0 == oo assert -oo - 0 == -oo assert 0 - oo == -oo assert 0 - -oo == oo assert oo/2 == oo assert -oo/2 == -oo assert oo/-2 == -oo assert -oo/-2 == oo assert oo*2 == oo assert -oo*2 == -oo assert oo*-2 == -oo assert 2/oo == 0 assert 2/-oo == 0 assert -2/oo == 0 assert -2/-oo == 0 assert 2*oo == oo assert 2*-oo == -oo assert -2*oo == -oo assert -2*-oo == oo assert 2 + oo == oo assert 2 - oo == -oo assert -2 + oo == oo assert -2 - oo == -oo assert 2 + -oo == -oo assert 2 - -oo == oo assert -2 + -oo == -oo assert -2 - -oo == oo assert S(2) + oo == oo assert S(2) - oo == -oo assert oo/I == -oo*I assert -oo/I == oo*I assert oo*float(1) == Float('inf') and (oo*float(1)).is_Float assert -oo*float(1) == Float('-inf') and (-oo*float(1)).is_Float assert oo/float(1) == Float('inf') and (oo/float(1)).is_Float assert -oo/float(1) == Float('-inf') and (-oo/float(1)).is_Float assert oo*float(-1) == Float('-inf') and (oo*float(-1)).is_Float assert -oo*float(-1) == Float('inf') and (-oo*float(-1)).is_Float assert oo/float(-1) == Float('-inf') and (oo/float(-1)).is_Float assert -oo/float(-1) == Float('inf') and (-oo/float(-1)).is_Float assert oo + float(1) == Float('inf') and (oo + float(1)).is_Float assert -oo + float(1) == Float('-inf') and (-oo + float(1)).is_Float assert oo - float(1) == Float('inf') and (oo - float(1)).is_Float assert -oo - float(1) == Float('-inf') and (-oo - float(1)).is_Float assert float(1)*oo == Float('inf') and (float(1)*oo).is_Float assert float(1)*-oo == Float('-inf') and (float(1)*-oo).is_Float assert float(1)/oo == 0 assert float(1)/-oo == 0 assert float(-1)*oo == Float('-inf') and (float(-1)*oo).is_Float assert float(-1)*-oo == Float('inf') and (float(-1)*-oo).is_Float assert float(-1)/oo == 0 assert float(-1)/-oo == 0 assert float(1) + oo == Float('inf') assert float(1) + -oo == Float('-inf') assert float(1) - oo == Float('-inf') assert float(1) - -oo == Float('inf') assert Float('nan') == nan assert nan*1.0 == nan assert -1.0*nan == nan assert nan*oo == nan assert nan*-oo == nan assert nan/oo == nan assert nan/-oo == nan assert nan + oo == nan assert nan + -oo == nan assert nan - oo == nan assert nan - -oo == nan assert -oo * S.Zero == nan assert oo*nan == nan assert -oo*nan == nan assert oo/nan == nan assert -oo/nan == nan assert oo + nan == nan assert -oo + nan == nan assert oo - nan == nan assert -oo - nan == nan assert S.Zero * oo == nan assert oo.is_Rational is False assert isinstance(oo, Rational) is False assert S.One/oo == 0 assert -S.One/oo == 0 assert S.One/-oo == 0 assert -S.One/-oo == 0 assert S.One*oo == oo assert -S.One*oo == -oo assert S.One*-oo == -oo assert -S.One*-oo == oo assert S.One/nan == nan assert S.One - -oo == oo assert S.One + nan == nan assert S.One - nan == nan assert nan - S.One == nan assert nan/S.One == nan assert -oo - S.One == -oo def test_Infinity_2(): x = Symbol('x') assert oo*x != oo assert oo*(pi - 1) == oo assert oo*(1 - pi) == -oo assert (-oo)*x != -oo assert (-oo)*(pi - 1) == -oo assert (-oo)*(1 - pi) == oo assert (-1)**S.NaN is S.NaN assert oo - Float('inf') is S.NaN assert oo + Float('-inf') is S.NaN assert oo*0 is S.NaN assert oo/Float('inf') is S.NaN assert oo/Float('-inf') is S.NaN assert oo**S.NaN is S.NaN assert -oo + Float('inf') is S.NaN assert -oo - Float('-inf') is S.NaN assert -oo*S.NaN is S.NaN assert -oo*0 is S.NaN assert -oo/Float('inf') is S.NaN assert -oo/Float('-inf') is S.NaN assert -oo/S.NaN is S.NaN assert abs(-oo) == oo assert all((-oo)**i is S.NaN for i in (oo, -oo, S.NaN)) assert (-oo)**3 == -oo assert (-oo)**2 == oo assert abs(S.ComplexInfinity) == oo def test_Mul_Infinity_Zero(): assert 0*Float('inf') == nan assert 0*Float('-inf') == nan assert 0*Float('inf') == nan assert 0*Float('-inf') == nan assert Float('inf')*0 == nan assert Float('-inf')*0 == nan assert Float('inf')*0 == nan assert Float('-inf')*0 == nan assert Float(0)*Float('inf') == nan assert Float(0)*Float('-inf') == nan assert Float(0)*Float('inf') == nan assert Float(0)*Float('-inf') == nan assert Float('inf')*Float(0) == nan assert Float('-inf')*Float(0) == nan assert Float('inf')*Float(0) == nan assert Float('-inf')*Float(0) == nan def test_Div_By_Zero(): assert 1/S(0) == zoo assert 1/Float(0) == Float('inf') assert 0/S(0) == nan assert 0/Float(0) == nan assert S(0)/0 == nan assert Float(0)/0 == nan assert -1/S(0) == zoo assert -1/Float(0) == Float('-inf') def test_Infinity_inequations(): assert oo > pi assert not (oo < pi) assert exp(-3) < oo assert Float('+inf') > pi assert not (Float('+inf') < pi) assert exp(-3) < Float('+inf') raises(TypeError, lambda: oo < I) raises(TypeError, lambda: oo <= I) raises(TypeError, lambda: oo > I) raises(TypeError, lambda: oo >= I) raises(TypeError, lambda: -oo < I) raises(TypeError, lambda: -oo <= I) raises(TypeError, lambda: -oo > I) raises(TypeError, lambda: -oo >= I) raises(TypeError, lambda: I < oo) raises(TypeError, lambda: I <= oo) raises(TypeError, lambda: I > oo) raises(TypeError, lambda: I >= oo) raises(TypeError, lambda: I < -oo) raises(TypeError, lambda: I <= -oo) raises(TypeError, lambda: I > -oo) raises(TypeError, lambda: I >= -oo) assert oo > -oo and oo >= -oo assert (oo < -oo) == False and (oo <= -oo) == False assert -oo < oo and -oo <= oo assert (-oo > oo) == False and (-oo >= oo) == False assert (oo < oo) == False # issue 7775 assert (oo > oo) == False assert (-oo > -oo) == False and (-oo < -oo) == False assert oo >= oo and oo <= oo and -oo >= -oo and -oo <= -oo assert (-oo < -Float('inf')) == False assert (oo > Float('inf')) == False assert -oo >= -Float('inf') assert oo <= Float('inf') x = Symbol('x') b = Symbol('b', finite=True, real=True) assert (x < oo) == Lt(x, oo) # issue 7775 assert b < oo and b > -oo and b <= oo and b >= -oo assert oo > b and oo >= b and (oo < b) == False and (oo <= b) == False assert (-oo > b) == False and (-oo >= b) == False and -oo < b and -oo <= b assert (oo < x) == Lt(oo, x) and (oo > x) == Gt(oo, x) assert (oo <= x) == Le(oo, x) and (oo >= x) == Ge(oo, x) assert (-oo < x) == Lt(-oo, x) and (-oo > x) == Gt(-oo, x) assert (-oo <= x) == Le(-oo, x) and (-oo >= x) == Ge(-oo, x) def test_NaN(): assert nan == nan assert nan != 1 assert 1*nan == nan assert 1 != nan assert nan == -nan assert oo != Symbol("x")**3 assert nan + 1 == nan assert 2 + nan == nan assert 3*nan + 2 == nan assert -nan*3 == nan assert nan + nan == nan assert -nan + nan*(-5) == nan assert 1/nan == nan assert 1/(-nan) == nan assert 8/nan == nan raises(TypeError, lambda: nan > 0) raises(TypeError, lambda: nan < 0) raises(TypeError, lambda: nan >= 0) raises(TypeError, lambda: nan <= 0) raises(TypeError, lambda: 0 < nan) raises(TypeError, lambda: 0 > nan) raises(TypeError, lambda: 0 <= nan) raises(TypeError, lambda: 0 >= nan) assert S.One + nan == nan assert S.One - nan == nan assert S.One*nan == nan assert S.One/nan == nan assert nan - S.One == nan assert nan*S.One == nan assert nan + S.One == nan assert nan/S.One == nan assert nan**0 == 1 # as per IEEE 754 assert 1**nan == nan # IEEE 754 is not the best choice for symbolic work # test Pow._eval_power's handling of NaN assert Pow(nan, 0, evaluate=False)**2 == 1 def test_special_numbers(): assert isinstance(S.NaN, Number) is True assert isinstance(S.Infinity, Number) is True assert isinstance(S.NegativeInfinity, Number) is True assert S.NaN.is_number is True assert S.Infinity.is_number is True assert S.NegativeInfinity.is_number is True assert S.ComplexInfinity.is_number is True assert isinstance(S.NaN, Rational) is False assert isinstance(S.Infinity, Rational) is False assert isinstance(S.NegativeInfinity, Rational) is False assert S.NaN.is_rational is not True assert S.Infinity.is_rational is not True assert S.NegativeInfinity.is_rational is not True def test_powers(): assert integer_nthroot(1, 2) == (1, True) assert integer_nthroot(1, 5) == (1, True) assert integer_nthroot(2, 1) == (2, True) assert integer_nthroot(2, 2) == (1, False) assert integer_nthroot(2, 5) == (1, False) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(123**25, 25) == (123, True) assert integer_nthroot(123**25 + 1, 25) == (123, False) assert integer_nthroot(123**25 - 1, 25) == (122, False) assert integer_nthroot(1, 1) == (1, True) assert integer_nthroot(0, 1) == (0, True) assert integer_nthroot(0, 3) == (0, True) assert integer_nthroot(10000, 1) == (10000, True) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(16, 2) == (4, True) assert integer_nthroot(26, 2) == (5, False) assert integer_nthroot(1234567**7, 7) == (1234567, True) assert integer_nthroot(1234567**7 + 1, 7) == (1234567, False) assert integer_nthroot(1234567**7 - 1, 7) == (1234566, False) b = 25**1000 assert integer_nthroot(b, 1000) == (25, True) assert integer_nthroot(b + 1, 1000) == (25, False) assert integer_nthroot(b - 1, 1000) == (24, False) c = 10**400 c2 = c**2 assert integer_nthroot(c2, 2) == (c, True) assert integer_nthroot(c2 + 1, 2) == (c, False) assert integer_nthroot(c2 - 1, 2) == (c - 1, False) assert integer_nthroot(2, 10**10) == (1, False) p, r = integer_nthroot(int(factorial(10000)), 100) assert p % (10**10) == 5322420655 assert not r # Test that this is fast assert integer_nthroot(2, 10**10) == (1, False) # output should be int if possible assert type(integer_nthroot(2**61, 2)[0]) is int def test_integer_nthroot_overflow(): assert integer_nthroot(10**(50*50), 50) == (10**50, True) assert integer_nthroot(10**100000, 10000) == (10**10, True) def test_integer_log(): raises(ValueError, lambda: integer_log(2, 1)) raises(ValueError, lambda: integer_log(0, 2)) raises(ValueError, lambda: integer_log(1.1, 2)) raises(ValueError, lambda: integer_log(1, 2.2)) assert integer_log(1, 2) == (0, True) assert integer_log(1, 3) == (0, True) assert integer_log(2, 3) == (0, False) assert integer_log(3, 3) == (1, True) assert integer_log(3*2, 3) == (1, False) assert integer_log(3**2, 3) == (2, True) assert integer_log(3*4, 3) == (2, False) assert integer_log(3**3, 3) == (3, True) assert integer_log(27, 5) == (2, False) assert integer_log(2, 3) == (0, False) assert integer_log(-4, -2) == (2, False) assert integer_log(27, -3) == (3, False) assert integer_log(-49, 7) == (0, False) assert integer_log(-49, -7) == (2, False) def test_isqrt(): from math import sqrt as _sqrt limit = 17984395633462800708566937239551 assert int(_sqrt(limit)) == integer_nthroot(limit, 2)[0] assert int(_sqrt(limit + 1)) != integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 1) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 1 + S.Half) == integer_nthroot(limit + 1, 2)[0] def test_powers_Integer(): """Test Integer._eval_power""" # check infinity assert S(1) ** S.Infinity == S.NaN assert S(-1)** S.Infinity == S.NaN assert S(2) ** S.Infinity == S.Infinity assert S(-2)** S.Infinity == S.Infinity + S.Infinity * S.ImaginaryUnit assert S(0) ** S.Infinity == 0 # check Nan assert S(1) ** S.NaN == S.NaN assert S(-1) ** S.NaN == S.NaN # check for exact roots assert S(-1) ** Rational(6, 5) == - (-1)**(S(1)/5) assert sqrt(S(4)) == 2 assert sqrt(S(-4)) == I * 2 assert S(16) ** Rational(1, 4) == 2 assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1, 4) assert S(9) ** Rational(3, 2) == 27 assert S(-9) ** Rational(3, 2) == -27*I assert S(27) ** Rational(2, 3) == 9 assert S(-27) ** Rational(2, 3) == 9 * (S(-1) ** Rational(2, 3)) assert (-2) ** Rational(-2, 1) == Rational(1, 4) # not exact roots assert sqrt(-3) == I*sqrt(3) assert (3) ** (S(3)/2) == 3 * sqrt(3) assert (-3) ** (S(3)/2) == - 3 * sqrt(-3) assert (-3) ** (S(5)/2) == 9 * I * sqrt(3) assert (-3) ** (S(7)/2) == - I * 27 * sqrt(3) assert (2) ** (S(3)/2) == 2 * sqrt(2) assert (2) ** (S(-3)/2) == sqrt(2) / 4 assert (81) ** (S(2)/3) == 9 * (S(3) ** (S(2)/3)) assert (-81) ** (S(2)/3) == 9 * (S(-3) ** (S(2)/3)) assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 # join roots assert sqrt(6) + sqrt(24) == 3*sqrt(6) assert sqrt(2) * sqrt(3) == sqrt(6) # separate symbols & constansts x = Symbol("x") assert sqrt(49 * x) == 7 * sqrt(x) assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi) # check that it is fast for big numbers assert (2**64 + 1) ** Rational(4, 3) assert (2**64 + 1) ** Rational(17, 25) # negative rational power and negative base assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 assert (-2) ** Rational(-10, 3) == \ (-1)**Rational(2, 3)*2**Rational(2, 3)/16 assert abs(Pow(-2, Rational(-10, 3)).n() - Pow(-2, Rational(-10, 3), evaluate=False).n()) < 1e-16 # negative base and rational power with some simplification assert (-8) ** Rational(2, 5) == \ 2*(-1)**Rational(2, 5)*2**Rational(1, 5) assert (-4) ** Rational(9, 5) == \ -8*(-1)**Rational(4, 5)*2**Rational(3, 5) assert S(1234).factors() == {617: 1, 2: 1} assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1} # test that eval_power factors numbers bigger than # the current limit in factor_trial_division (2**15) from sympy import nextprime n = nextprime(2**15) assert sqrt(n**2) == n assert sqrt(n**3) == n*sqrt(n) assert sqrt(4*n) == 2*sqrt(n) # check that factors of base with powers sharing gcd with power are removed assert (2**4*3)**Rational(1, 6) == 2**Rational(2, 3)*3**Rational(1, 6) assert (2**4*3)**Rational(5, 6) == 8*2**Rational(1, 3)*3**Rational(5, 6) # check that bases sharing a gcd are exptracted assert 2**Rational(1, 3)*3**Rational(1, 4)*6**Rational(1, 5) == \ 2**Rational(8, 15)*3**Rational(9, 20) assert sqrt(8)*24**Rational(1, 3)*6**Rational(1, 5) == \ 4*2**Rational(7, 10)*3**Rational(8, 15) assert sqrt(8)*(-24)**Rational(1, 3)*(-6)**Rational(1, 5) == \ 4*(-3)**Rational(8, 15)*2**Rational(7, 10) assert 2**Rational(1, 3)*2**Rational(8, 9) == 2*2**Rational(2, 9) assert 2**Rational(2, 3)*6**Rational(1, 3) == 2*3**Rational(1, 3) assert 2**Rational(2, 3)*6**Rational(8, 9) == \ 2*2**Rational(5, 9)*3**Rational(8, 9) assert (-2)**Rational(2, S(3))*(-4)**Rational(1, S(3)) == -2*2**Rational(1, 3) assert 3*Pow(3, 2, evaluate=False) == 3**3 assert 3*Pow(3, -1/S(3), evaluate=False) == 3**(2/S(3)) assert (-2)**(1/S(3))*(-3)**(1/S(4))*(-5)**(5/S(6)) == \ -(-1)**Rational(5, 12)*2**Rational(1, 3)*3**Rational(1, 4) * \ 5**Rational(5, 6) assert Integer(-2)**Symbol('', even=True) == \ Integer(2)**Symbol('', even=True) assert (-1)**Float(.5) == 1.0*I def test_powers_Rational(): """Test Rational._eval_power""" # check infinity assert Rational(1, 2) ** S.Infinity == 0 assert Rational(3, 2) ** S.Infinity == S.Infinity assert Rational(-1, 2) ** S.Infinity == 0 assert Rational(-3, 2) ** S.Infinity == \ S.Infinity + S.Infinity * S.ImaginaryUnit # check Nan assert Rational(3, 4) ** S.NaN == S.NaN assert Rational(-2, 3) ** S.NaN == S.NaN # exact roots on numerator assert sqrt(Rational(4, 3)) == 2 * sqrt(3) / 3 assert Rational(4, 3) ** Rational(3, 2) == 8 * sqrt(3) / 9 assert sqrt(Rational(-4, 3)) == I * 2 * sqrt(3) / 3 assert Rational(-4, 3) ** Rational(3, 2) == - I * 8 * sqrt(3) / 9 assert Rational(27, 2) ** Rational(1, 3) == 3 * (2 ** Rational(2, 3)) / 2 assert Rational(5**3, 8**3) ** Rational(4, 3) == Rational(5**4, 8**4) # exact root on denominator assert sqrt(Rational(1, 4)) == Rational(1, 2) assert sqrt(Rational(1, -4)) == I * Rational(1, 2) assert sqrt(Rational(3, 4)) == sqrt(3) / 2 assert sqrt(Rational(3, -4)) == I * sqrt(3) / 2 assert Rational(5, 27) ** Rational(1, 3) == (5 ** Rational(1, 3)) / 3 # not exact roots assert sqrt(Rational(1, 2)) == sqrt(2) / 2 assert sqrt(Rational(-4, 7)) == I * sqrt(Rational(4, 7)) assert Rational(-3, 2)**Rational(-7, 3) == \ -4*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/27 assert Rational(-3, 2)**Rational(-2, 3) == \ -(-1)**Rational(1, 3)*2**Rational(2, 3)*3**Rational(1, 3)/3 assert Rational(-3, 2)**Rational(-10, 3) == \ 8*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/81 assert abs(Pow(Rational(-2, 3), Rational(-7, 4)).n() - Pow(Rational(-2, 3), Rational(-7, 4), evaluate=False).n()) < 1e-16 # negative integer power and negative rational base assert Rational(-2, 3) ** Rational(-2, 1) == Rational(9, 4) a = Rational(1, 10) assert a**Float(a, 2) == Float(a, 2)**Float(a, 2) assert Rational(-2, 3)**Symbol('', even=True) == \ Rational(2, 3)**Symbol('', even=True) def test_powers_Float(): assert str((S('-1/10')**S('3/10')).n()) == str(Float(-.1)**(.3)) def test_abs1(): assert Rational(1, 6) != Rational(-1, 6) assert abs(Rational(1, 6)) == abs(Rational(-1, 6)) def test_accept_int(): assert Float(4) == 4 def test_dont_accept_str(): assert Float("0.2") != "0.2" assert not (Float("0.2") == "0.2") def test_int(): a = Rational(5) assert int(a) == 5 a = Rational(9, 10) assert int(a) == int(-a) == 0 assert 1/(-1)**Rational(2, 3) == -(-1)**Rational(1, 3) assert int(pi) == 3 assert int(E) == 2 assert int(GoldenRatio) == 1 assert int(TribonacciConstant) == 2 # issue 10368 a = S(32442016954)/78058255275 assert type(int(a)) is type(int(-a)) is int def test_long(): a = Rational(5) assert long(a) == 5 a = Rational(9, 10) assert long(a) == long(-a) == 0 a = Integer(2**100) assert long(a) == a assert long(pi) == 3 assert long(E) == 2 assert long(GoldenRatio) == 1 assert long(TribonacciConstant) == 2 def test_real_bug(): x = Symbol("x") assert str(2.0*x*x) in ["(2.0*x)*x", "2.0*x**2", "2.00000000000000*x**2"] assert str(2.1*x*x) != "(2.0*x)*x" def test_bug_sqrt(): assert ((sqrt(Rational(2)) + 1)*(sqrt(Rational(2)) - 1)).expand() == 1 def test_pi_Pi(): "Test that pi (instance) is imported, but Pi (class) is not" from sympy import pi with raises(ImportError): from sympy import Pi def test_no_len(): # there should be no len for numbers raises(TypeError, lambda: len(Rational(2))) raises(TypeError, lambda: len(Rational(2, 3))) raises(TypeError, lambda: len(Integer(2))) def test_issue_3321(): assert sqrt(Rational(1, 5)) == sqrt(Rational(1, 5)) assert 5 * sqrt(Rational(1, 5)) == sqrt(5) def test_issue_3692(): assert ((-1)**Rational(1, 6)).expand(complex=True) == I/2 + sqrt(3)/2 assert ((-5)**Rational(1, 6)).expand(complex=True) == \ 5**Rational(1, 6)*I/2 + 5**Rational(1, 6)*sqrt(3)/2 assert ((-64)**Rational(1, 6)).expand(complex=True) == I + sqrt(3) def test_issue_3423(): x = Symbol("x") assert sqrt(x - 1).as_base_exp() == (x - 1, S.Half) assert sqrt(x - 1) != I*sqrt(1 - x) def test_issue_3449(): x = Symbol("x") assert sqrt(x - 1).subs(x, 5) == 2 def test_issue_13890(): x = Symbol("x") e = (-x/4 - S(1)/12)**x - 1 f = simplify(e) a = S(9)/5 assert abs(e.subs(x,a).evalf() - f.subs(x,a).evalf()) < 1e-15 def test_Integer_factors(): def F(i): return Integer(i).factors() assert F(1) == {} assert F(2) == {2: 1} assert F(3) == {3: 1} assert F(4) == {2: 2} assert F(5) == {5: 1} assert F(6) == {2: 1, 3: 1} assert F(7) == {7: 1} assert F(8) == {2: 3} assert F(9) == {3: 2} assert F(10) == {2: 1, 5: 1} assert F(11) == {11: 1} assert F(12) == {2: 2, 3: 1} assert F(13) == {13: 1} assert F(14) == {2: 1, 7: 1} assert F(15) == {3: 1, 5: 1} assert F(16) == {2: 4} assert F(17) == {17: 1} assert F(18) == {2: 1, 3: 2} assert F(19) == {19: 1} assert F(20) == {2: 2, 5: 1} assert F(21) == {3: 1, 7: 1} assert F(22) == {2: 1, 11: 1} assert F(23) == {23: 1} assert F(24) == {2: 3, 3: 1} assert F(25) == {5: 2} assert F(26) == {2: 1, 13: 1} assert F(27) == {3: 3} assert F(28) == {2: 2, 7: 1} assert F(29) == {29: 1} assert F(30) == {2: 1, 3: 1, 5: 1} assert F(31) == {31: 1} assert F(32) == {2: 5} assert F(33) == {3: 1, 11: 1} assert F(34) == {2: 1, 17: 1} assert F(35) == {5: 1, 7: 1} assert F(36) == {2: 2, 3: 2} assert F(37) == {37: 1} assert F(38) == {2: 1, 19: 1} assert F(39) == {3: 1, 13: 1} assert F(40) == {2: 3, 5: 1} assert F(41) == {41: 1} assert F(42) == {2: 1, 3: 1, 7: 1} assert F(43) == {43: 1} assert F(44) == {2: 2, 11: 1} assert F(45) == {3: 2, 5: 1} assert F(46) == {2: 1, 23: 1} assert F(47) == {47: 1} assert F(48) == {2: 4, 3: 1} assert F(49) == {7: 2} assert F(50) == {2: 1, 5: 2} assert F(51) == {3: 1, 17: 1} def test_Rational_factors(): def F(p, q, visual=None): return Rational(p, q).factors(visual=visual) assert F(2, 3) == {2: 1, 3: -1} assert F(2, 9) == {2: 1, 3: -2} assert F(2, 15) == {2: 1, 3: -1, 5: -1} assert F(6, 10) == {3: 1, 5: -1} def test_issue_4107(): assert pi*(E + 10) + pi*(-E - 10) != 0 assert pi*(E + 10**10) + pi*(-E - 10**10) != 0 assert pi*(E + 10**20) + pi*(-E - 10**20) != 0 assert pi*(E + 10**80) + pi*(-E - 10**80) != 0 assert (pi*(E + 10) + pi*(-E - 10)).expand() == 0 assert (pi*(E + 10**10) + pi*(-E - 10**10)).expand() == 0 assert (pi*(E + 10**20) + pi*(-E - 10**20)).expand() == 0 assert (pi*(E + 10**80) + pi*(-E - 10**80)).expand() == 0 def test_IntegerInteger(): a = Integer(4) b = Integer(a) assert a == b def test_Rational_gcd_lcm_cofactors(): assert Integer(4).gcd(2) == Integer(2) assert Integer(4).lcm(2) == Integer(4) assert Integer(4).gcd(Integer(2)) == Integer(2) assert Integer(4).lcm(Integer(2)) == Integer(4) a, b = 720**99911, 480**12342 assert Integer(a).lcm(b) == a*b/Integer(a).gcd(b) assert Integer(4).gcd(3) == Integer(1) assert Integer(4).lcm(3) == Integer(12) assert Integer(4).gcd(Integer(3)) == Integer(1) assert Integer(4).lcm(Integer(3)) == Integer(12) assert Rational(4, 3).gcd(2) == Rational(2, 3) assert Rational(4, 3).lcm(2) == Integer(4) assert Rational(4, 3).gcd(Integer(2)) == Rational(2, 3) assert Rational(4, 3).lcm(Integer(2)) == Integer(4) assert Integer(4).gcd(Rational(2, 9)) == Rational(2, 9) assert Integer(4).lcm(Rational(2, 9)) == Integer(4) assert Rational(4, 3).gcd(Rational(2, 9)) == Rational(2, 9) assert Rational(4, 3).lcm(Rational(2, 9)) == Rational(4, 3) assert Rational(4, 5).gcd(Rational(2, 9)) == Rational(2, 45) assert Rational(4, 5).lcm(Rational(2, 9)) == Integer(4) assert Rational(5, 9).lcm(Rational(3, 7)) == Rational(Integer(5).lcm(3),Integer(9).gcd(7)) assert Integer(4).cofactors(2) == (Integer(2), Integer(2), Integer(1)) assert Integer(4).cofactors(Integer(2)) == \ (Integer(2), Integer(2), Integer(1)) assert Integer(4).gcd(Float(2.0)) == S.One assert Integer(4).lcm(Float(2.0)) == Float(8.0) assert Integer(4).cofactors(Float(2.0)) == (S.One, Integer(4), Float(2.0)) assert Rational(1, 2).gcd(Float(2.0)) == S.One assert Rational(1, 2).lcm(Float(2.0)) == Float(1.0) assert Rational(1, 2).cofactors(Float(2.0)) == \ (S.One, Rational(1, 2), Float(2.0)) def test_Float_gcd_lcm_cofactors(): assert Float(2.0).gcd(Integer(4)) == S.One assert Float(2.0).lcm(Integer(4)) == Float(8.0) assert Float(2.0).cofactors(Integer(4)) == (S.One, Float(2.0), Integer(4)) assert Float(2.0).gcd(Rational(1, 2)) == S.One assert Float(2.0).lcm(Rational(1, 2)) == Float(1.0) assert Float(2.0).cofactors(Rational(1, 2)) == \ (S.One, Float(2.0), Rational(1, 2)) def test_issue_4611(): assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10 assert abs(E._evalf(50) - 2.71828182845905) < 1e-10 assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10 assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10 assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10 assert abs(TribonacciConstant._evalf(50) - 1.83928675521416) < 1e-10 x = Symbol("x") assert (pi + x).evalf() == pi.evalf() + x assert (E + x).evalf() == E.evalf() + x assert (Catalan + x).evalf() == Catalan.evalf() + x assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x assert (TribonacciConstant + x).evalf() == TribonacciConstant.evalf() + x @conserve_mpmath_dps def test_conversion_to_mpmath(): assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1) assert mpmath.mpmathify(Rational(1, 2)) == mpmath.mpf(0.5) assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23') assert mpmath.mpmathify(I) == mpmath.mpc(1j) assert mpmath.mpmathify(1 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(Rational(1, 2) + Rational(1, 2)*I) == mpmath.mpc(0.5 + 0.5j) assert mpmath.mpmathify(2*I) == mpmath.mpc(2j) assert mpmath.mpmathify(2.0*I) == mpmath.mpc(2j) assert mpmath.mpmathify(Rational(1, 2)*I) == mpmath.mpc(0.5j) mpmath.mp.dps = 100 assert mpmath.mpmathify(pi.evalf(100) + pi.evalf(100)*I) == mpmath.pi + mpmath.pi*mpmath.j assert mpmath.mpmathify(pi.evalf(100)*I) == mpmath.pi*mpmath.j def test_relational(): # real x = S(.1) assert (x != cos) is True assert (x == cos) is False # rational x = Rational(1, 3) assert (x != cos) is True assert (x == cos) is False # integer defers to rational so these tests are omitted # number symbol x = pi assert (x != cos) is True assert (x == cos) is False def test_Integer_as_index(): assert 'hello'[Integer(2):] == 'llo' def test_Rational_int(): assert int( Rational(7, 5)) == 1 assert int( Rational(1, 2)) == 0 assert int(-Rational(1, 2)) == 0 assert int(-Rational(7, 5)) == -1 def test_zoo(): b = Symbol('b', finite=True) nz = Symbol('nz', nonzero=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) im = Symbol('i', imaginary=True) c = Symbol('c', complex=True) pb = Symbol('pb', positive=True, finite=True) nb = Symbol('nb', negative=True, finite=True) imb = Symbol('ib', imaginary=True, finite=True) for i in [I, S.Infinity, S.NegativeInfinity, S.Zero, S.One, S.Pi, S.Half, S(3), log(3), b, nz, p, n, im, pb, nb, imb, c]: if i.is_finite and (i.is_real or i.is_imaginary): assert i + zoo is zoo assert i - zoo is zoo assert zoo + i is zoo assert zoo - i is zoo elif i.is_finite is not False: assert (i + zoo).is_Add assert (i - zoo).is_Add assert (zoo + i).is_Add assert (zoo - i).is_Add else: assert (i + zoo) is S.NaN assert (i - zoo) is S.NaN assert (zoo + i) is S.NaN assert (zoo - i) is S.NaN if fuzzy_not(i.is_zero) and (i.is_real or i.is_imaginary): assert i*zoo is zoo assert zoo*i is zoo elif i.is_zero: assert i*zoo is S.NaN assert zoo*i is S.NaN else: assert (i*zoo).is_Mul assert (zoo*i).is_Mul if fuzzy_not((1/i).is_zero) and (i.is_real or i.is_imaginary): assert zoo/i is zoo elif (1/i).is_zero: assert zoo/i is S.NaN elif i.is_zero: assert zoo/i is zoo else: assert (zoo/i).is_Mul assert (I*oo).is_Mul # allow directed infinity assert zoo + zoo is S.NaN assert zoo * zoo is zoo assert zoo - zoo is S.NaN assert zoo/zoo is S.NaN assert zoo**zoo is S.NaN assert zoo**0 is S.One assert zoo**2 is zoo assert 1/zoo is S.Zero assert Mul.flatten([S(-1), oo, S(0)]) == ([S.NaN], [], None) def test_issue_4122(): x = Symbol('x', nonpositive=True) assert (oo + x).is_Add x = Symbol('x', finite=True) assert (oo + x).is_Add # x could be imaginary x = Symbol('x', nonnegative=True) assert oo + x == oo x = Symbol('x', finite=True, real=True) assert oo + x == oo # similarly for negative infinity x = Symbol('x', nonnegative=True) assert (-oo + x).is_Add x = Symbol('x', finite=True) assert (-oo + x).is_Add x = Symbol('x', nonpositive=True) assert -oo + x == -oo x = Symbol('x', finite=True, real=True) assert -oo + x == -oo def test_GoldenRatio_expand(): assert GoldenRatio.expand(func=True) == S.Half + sqrt(5)/2 def test_TribonacciConstant_expand(): assert TribonacciConstant.expand(func=True) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_as_content_primitive(): assert S.Zero.as_content_primitive() == (1, 0) assert S.Half.as_content_primitive() == (S.Half, 1) assert (-S.Half).as_content_primitive() == (S.Half, -1) assert S(3).as_content_primitive() == (3, 1) assert S(3.1).as_content_primitive() == (1, 3.1) def test_hashing_sympy_integers(): # Test for issue 5072 assert set([Integer(3)]) == set([int(3)]) assert hash(Integer(4)) == hash(int(4)) def test_issue_4172(): assert int((E**100).round()) == \ 26881171418161354484126255515800135873611119 assert int((pi**100).round()) == \ 51878483143196131920862615246303013562686760680406 assert int((Rational(1)/EulerGamma**100).round()) == \ 734833795660954410469466 @XFAIL def test_mpmath_issues(): from mpmath.libmp.libmpf import _normalize import mpmath.libmp as mlib rnd = mlib.round_nearest mpf = (0, long(0), -123, -1, 53, rnd) # nan assert _normalize(mpf, 53) != (0, long(0), 0, 0) mpf = (0, long(0), -456, -2, 53, rnd) # +inf assert _normalize(mpf, 53) != (0, long(0), 0, 0) mpf = (1, long(0), -789, -3, 53, rnd) # -inf assert _normalize(mpf, 53) != (0, long(0), 0, 0) from mpmath.libmp.libmpf import fnan assert mlib.mpf_eq(fnan, fnan) def test_Catalan_EulerGamma_prec(): n = GoldenRatio f = Float(n.n(), 5) assert f._mpf_ == (0, long(212079), -17, 18) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ n = EulerGamma f = Float(n.n(), 5) assert f._mpf_ == (0, long(302627), -19, 19) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ def test_Float_eq(): assert Float(.12, 3) != Float(.12, 4) assert Float(.12, 3) == .12 assert 0.12 == Float(.12, 3) assert Float('.12', 22) != .12 def test_int_NumberSymbols(): assert [int(i) for i in [pi, EulerGamma, E, GoldenRatio, Catalan]] == \ [3, 0, 2, 1, 0] def test_issue_6640(): from mpmath.libmp.libmpf import finf, fninf # fnan is not included because Float no longer returns fnan, # but otherwise, the same sort of test could apply assert Float(finf).is_zero is False assert Float(fninf).is_zero is False assert bool(Float(0)) is False def test_issue_6349(): assert Float('23.e3', '')._prec == 10 assert Float('23e3', '')._prec == 20 assert Float('23000', '')._prec == 20 assert Float('-23000', '')._prec == 20 def test_mpf_norm(): assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_ assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_ def test_latex(): assert latex(pi) == r"\pi" assert latex(E) == r"e" assert latex(GoldenRatio) == r"\phi" assert latex(TribonacciConstant) == r"\mathrm{TribonacciConstant}" assert latex(EulerGamma) == r"\gamma" assert latex(oo) == r"\infty" assert latex(-oo) == r"-\infty" assert latex(zoo) == r"\tilde{\infty}" assert latex(nan) == r"\mathrm{NaN}" assert latex(I) == r"i" def test_issue_7742(): assert -oo % 1 == nan def test_simplify_AlgebraicNumber(): A = AlgebraicNumber e = 3**(S(1)/6)*(3 + (135 + 78*sqrt(3))**(S(2)/3))/(45 + 26*sqrt(3))**(S(1)/3) assert simplify(A(e)) == A(12) # wester test_C20 e = (41 + 29*sqrt(2))**(S(1)/5) assert simplify(A(e)) == A(1 + sqrt(2)) # wester test_C21 e = (3 + 4*I)**(Rational(3, 2)) assert simplify(A(e)) == A(2 + 11*I) # issue 4401 def test_Float_idempotence(): x = Float('1.23', '') y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) x = Float(10**20) y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) def test_comp(): # sqrt(2) = 1.414213 5623730950... a = sqrt(2).n(7) assert comp(a, 1.41421346) is False assert comp(a, 1.41421347) assert comp(a, 1.41421366) assert comp(a, 1.41421367) is False assert comp(sqrt(2).n(2), '1.4') assert comp(sqrt(2).n(2), Float(1.4, 2), '') raises(ValueError, lambda: comp(sqrt(2).n(2), 1.4, '')) assert comp(sqrt(2).n(2), Float(1.4, 3), '') is False def test_issue_9491(): assert oo**zoo == nan def test_issue_10063(): assert 2**Float(3) == Float(8) def test_issue_10020(): assert oo**I is S.NaN assert oo**(1 + I) is S.ComplexInfinity assert oo**(-1 + I) is S.Zero assert (-oo)**I is S.NaN assert (-oo)**(-1 + I) is S.Zero assert oo**t == Pow(oo, t, evaluate=False) assert (-oo)**t == Pow(-oo, t, evaluate=False) def test_invert_numbers(): assert S(2).invert(5) == 3 assert S(2).invert(S(5)/2) == S.Half assert S(2).invert(5.) == 3 assert S(2).invert(S(5)) == 3 assert S(2.).invert(5) == 3 assert S(sqrt(2)).invert(5) == 1/sqrt(2) assert S(sqrt(2)).invert(sqrt(3)) == 1/sqrt(2) def test_mod_inverse(): assert mod_inverse(3, 11) == 4 assert mod_inverse(5, 11) == 9 assert mod_inverse(21124921, 521512) == 7713 assert mod_inverse(124215421, 5125) == 2981 assert mod_inverse(214, 12515) == 1579 assert mod_inverse(5823991, 3299) == 1442 assert mod_inverse(123, 44) == 39 assert mod_inverse(2, 5) == 3 assert mod_inverse(-2, 5) == 2 assert mod_inverse(2, -5) == -2 assert mod_inverse(-2, -5) == -3 assert mod_inverse(-3, -7) == -5 x = Symbol('x') assert S(2).invert(x) == S.Half raises(TypeError, lambda: mod_inverse(2, x)) raises(ValueError, lambda: mod_inverse(2, S.Half)) raises(ValueError, lambda: mod_inverse(2, cos(1)**2 + sin(1)**2)) def test_golden_ratio_rewrite_as_sqrt(): assert GoldenRatio.rewrite(sqrt) == S.Half + sqrt(5)*S.Half def test_tribonacci_constant_rewrite_as_sqrt(): assert TribonacciConstant.rewrite(sqrt) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_comparisons_with_unknown_type(): class Foo(object): """ Class that is unaware of Basic, and relies on both classes returning the NotImplemented singleton for equivalence to evaluate to False. """ ni, nf, nr = Integer(3), Float(1.0), Rational(1, 3) foo = Foo() for n in ni, nf, nr, oo, -oo, zoo, nan: assert n != foo assert foo != n assert not n == foo assert not foo == n raises(TypeError, lambda: n < foo) raises(TypeError, lambda: foo > n) raises(TypeError, lambda: n > foo) raises(TypeError, lambda: foo < n) raises(TypeError, lambda: n <= foo) raises(TypeError, lambda: foo >= n) raises(TypeError, lambda: n >= foo) raises(TypeError, lambda: foo <= n) class Bar(object): """ Class that considers itself equal to any instance of Number except infinities and nans, and relies on sympy types returning the NotImplemented singleton for symmetric equality relations. """ def __eq__(self, other): if other in (oo, -oo, zoo, nan): return False if isinstance(other, Number): return True return NotImplemented def __ne__(self, other): return not self == other bar = Bar() for n in ni, nf, nr: assert n == bar assert bar == n assert not n != bar assert not bar != n for n in oo, -oo, zoo, nan: assert n != bar assert bar != n assert not n == bar assert not bar == n for n in ni, nf, nr, oo, -oo, zoo, nan: raises(TypeError, lambda: n < bar) raises(TypeError, lambda: bar > n) raises(TypeError, lambda: n > bar) raises(TypeError, lambda: bar < n) raises(TypeError, lambda: n <= bar) raises(TypeError, lambda: bar >= n) raises(TypeError, lambda: n >= bar) raises(TypeError, lambda: bar <= n) def test_NumberSymbol_comparison(): rpi = Rational('905502432259640373/288230376151711744') fpi = Float(float(pi)) assert (rpi == pi) == (pi == rpi) assert (rpi != pi) == (pi != rpi) assert (rpi < pi) == (pi > rpi) assert (rpi <= pi) == (pi >= rpi) assert (rpi > pi) == (pi < rpi) assert (rpi >= pi) == (pi <= rpi) assert (fpi == pi) == (pi == fpi) assert (fpi != pi) == (pi != fpi) assert (fpi < pi) == (pi > fpi) assert (fpi <= pi) == (pi >= fpi) assert (fpi > pi) == (pi < fpi) assert (fpi >= pi) == (pi <= fpi) def test_Integer_precision(): # Make sure Integer inputs for keyword args work assert Float('1.0', dps=Integer(15))._prec == 53 assert Float('1.0', precision=Integer(15))._prec == 15 assert type(Float('1.0', precision=Integer(15))._prec) == int assert sympify(srepr(Float('1.0', precision=15))) == Float('1.0', precision=15) def test_numpy_to_float(): from sympy.utilities.pytest import skip from sympy.external import import_module np = import_module('numpy') if not np: skip('numpy not installed. Abort numpy tests.') def check_prec_and_relerr(npval, ratval): prec = np.finfo(npval).nmant + 1 x = Float(npval) assert x._prec == prec y = Float(ratval, precision=prec) assert abs((x - y)/y) < 2**(-(prec + 1)) check_prec_and_relerr(np.float16(2/3), S(2)/3) check_prec_and_relerr(np.float32(2/3), S(2)/3) check_prec_and_relerr(np.float64(2/3), S(2)/3) # extended precision, on some arch/compilers: x = np.longdouble(2)/3 check_prec_and_relerr(x, S(2)/3) y = Float(x, precision=10) assert same_and_same_prec(y, Float(S(2)/3, precision=10)) raises(TypeError, lambda: Float(np.complex64(1+2j))) raises(TypeError, lambda: Float(np.complex128(1+2j)))
1710163e0d8819a6d0af20868dd8c945ebf127a1ac2386e68fda022d46002e7b
from sympy import (Lambda, Symbol, Function, Derivative, Subs, sqrt, log, exp, Rational, Float, sin, cos, acos, diff, I, re, im, E, expand, pi, O, Sum, S, polygamma, loggamma, expint, Tuple, Dummy, Eq, Expr, symbols, nfloat, Piecewise, Indexed, Matrix, Basic) from sympy.utilities.pytest import XFAIL, raises from sympy.core.basic import _aresame from sympy.core.function import PoleError, _mexpand from sympy.core.sympify import sympify from sympy.sets.sets import FiniteSet from sympy.solvers.solveset import solveset from sympy.utilities.iterables import subsets, variations from sympy.core.cache import clear_cache from sympy.core.compatibility import range from sympy.tensor.array import NDimArray from sympy.abc import t, w, x, y, z f, g, h = symbols('f g h', cls=Function) _xi_1, _xi_2, _xi_3 = [Dummy() for i in range(3)] def test_f_expand_complex(): x = Symbol('x', real=True) assert f(x).expand(complex=True) == I*im(f(x)) + re(f(x)) assert exp(x).expand(complex=True) == exp(x) assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x) assert exp(z).expand(complex=True) == cos(im(z))*exp(re(z)) + \ I*sin(im(z))*exp(re(z)) def test_bug1(): e = sqrt(-log(w)) assert e.subs(log(w), -x) == sqrt(x) e = sqrt(-5*log(w)) assert e.subs(log(w), -x) == sqrt(5*x) def test_general_function(): nu = Function('nu') e = nu(x) edx = e.diff(x) edy = e.diff(y) edxdx = e.diff(x).diff(x) edxdy = e.diff(x).diff(y) assert e == nu(x) assert edx != nu(x) assert edx == diff(nu(x), x) assert edy == 0 assert edxdx == diff(diff(nu(x), x), x) assert edxdy == 0 def test_general_function_nullary(): nu = Function('nu') e = nu() edx = e.diff(x) edxdx = e.diff(x).diff(x) assert e == nu() assert edx != nu() assert edx == 0 assert edxdx == 0 def test_derivative_subs_bug(): e = diff(g(x), x) assert e.subs(g(x), f(x)) != e assert e.subs(g(x), f(x)) == Derivative(f(x), x) assert e.subs(g(x), -f(x)) == Derivative(-f(x), x) assert e.subs(x, y) == Derivative(g(y), y) def test_derivative_subs_self_bug(): d = diff(f(x), x) assert d.subs(d, y) == y def test_derivative_linearity(): assert diff(-f(x), x) == -diff(f(x), x) assert diff(8*f(x), x) == 8*diff(f(x), x) assert diff(8*f(x), x) != 7*diff(f(x), x) assert diff(8*f(x)*x, x) == 8*f(x) + 8*x*diff(f(x), x) assert diff(8*f(x)*y*x, x).expand() == 8*y*f(x) + 8*y*x*diff(f(x), x) def test_derivative_evaluate(): assert Derivative(sin(x), x) != diff(sin(x), x) assert Derivative(sin(x), x).doit() == diff(sin(x), x) assert Derivative(Derivative(f(x), x), x) == diff(f(x), x, x) assert Derivative(sin(x), x, 0) == sin(x) assert Derivative(sin(x), (x, y), (x, -y)) == sin(x) def test_diff_symbols(): assert diff(f(x, y, z), x, y, z) == Derivative(f(x, y, z), x, y, z) assert diff(f(x, y, z), x, x, x) == Derivative(f(x, y, z), x, x, x) == Derivative(f(x, y, z), (x, 3)) assert diff(f(x, y, z), x, 3) == Derivative(f(x, y, z), x, 3) # issue 5028 assert [diff(-z + x/y, sym) for sym in (z, x, y)] == [-1, 1/y, -x/y**2] assert diff(f(x, y, z), x, y, z, 2) == Derivative(f(x, y, z), x, y, z, z) assert diff(f(x, y, z), x, y, z, 2, evaluate=False) == \ Derivative(f(x, y, z), x, y, z, z) assert Derivative(f(x, y, z), x, y, z)._eval_derivative(z) == \ Derivative(f(x, y, z), x, y, z, z) assert Derivative(Derivative(f(x, y, z), x), y)._eval_derivative(z) == \ Derivative(f(x, y, z), x, y, z) raises(TypeError, lambda: cos(x).diff((x, y)).variables) assert cos(x).diff((x, y))._wrt_variables == [x] def test_Function(): class myfunc(Function): @classmethod def eval(cls): # zero args return assert myfunc.nargs == FiniteSet(0) assert myfunc().nargs == FiniteSet(0) raises(TypeError, lambda: myfunc(x).nargs) class myfunc(Function): @classmethod def eval(cls, x): # one arg return assert myfunc.nargs == FiniteSet(1) assert myfunc(x).nargs == FiniteSet(1) raises(TypeError, lambda: myfunc(x, y).nargs) class myfunc(Function): @classmethod def eval(cls, *x): # star args return assert myfunc.nargs == S.Naturals0 assert myfunc(x).nargs == S.Naturals0 def test_nargs(): f = Function('f') assert f.nargs == S.Naturals0 assert f(1).nargs == S.Naturals0 assert Function('f', nargs=2)(1, 2).nargs == FiniteSet(2) assert sin.nargs == FiniteSet(1) assert sin(2).nargs == FiniteSet(1) assert log.nargs == FiniteSet(1, 2) assert log(2).nargs == FiniteSet(1, 2) assert Function('f', nargs=2).nargs == FiniteSet(2) assert Function('f', nargs=0).nargs == FiniteSet(0) assert Function('f', nargs=(0, 1)).nargs == FiniteSet(0, 1) assert Function('f', nargs=None).nargs == S.Naturals0 raises(ValueError, lambda: Function('f', nargs=())) def test_Lambda(): e = Lambda(x, x**2) assert e(4) == 16 assert e(x) == x**2 assert e(y) == y**2 assert Lambda((), 42)() == 42 assert Lambda((), 42) == Lambda((), 42) assert Lambda((), 42) != Lambda((), 43) assert Lambda((), f(x))() == f(x) assert Lambda((), 42).nargs == FiniteSet(0) assert Lambda(x, x**2) == Lambda(x, x**2) assert Lambda(x, x**2) == Lambda(y, y**2) assert Lambda(x, x**2) != Lambda(y, y**2 + 1) assert Lambda((x, y), x**y) == Lambda((y, x), y**x) assert Lambda((x, y), x**y) != Lambda((x, y), y**x) assert Lambda((x, y), x**y)(x, y) == x**y assert Lambda((x, y), x**y)(3, 3) == 3**3 assert Lambda((x, y), x**y)(x, 3) == x**3 assert Lambda((x, y), x**y)(3, y) == 3**y assert Lambda(x, f(x))(x) == f(x) assert Lambda(x, x**2)(e(x)) == x**4 assert e(e(x)) == x**4 x1, x2 = (Indexed('x', i) for i in (1, 2)) assert Lambda((x1, x2), x1 + x2)(x, y) == x + y assert Lambda((x, y), x + y).nargs == FiniteSet(2) p = x, y, z, t assert Lambda(p, t*(x + y + z))(*p) == t * (x + y + z) assert Lambda(x, 2*x) + Lambda(y, 2*y) == 2*Lambda(x, 2*x) assert Lambda(x, 2*x) not in [ Lambda(x, x) ] raises(TypeError, lambda: Lambda(1, x)) assert Lambda(x, 1)(1) is S.One def test_IdentityFunction(): assert Lambda(x, x) is Lambda(y, y) is S.IdentityFunction assert Lambda(x, 2*x) is not S.IdentityFunction assert Lambda((x, y), x) is not S.IdentityFunction def test_Lambda_symbols(): assert Lambda(x, 2*x).free_symbols == set() assert Lambda(x, x*y).free_symbols == {y} assert Lambda((), 42).free_symbols == set() assert Lambda((), x*y).free_symbols == {x,y} def test_functionclas_symbols(): assert f.free_symbols == set() def test_Lambda_arguments(): raises(TypeError, lambda: Lambda(x, 2*x)(x, y)) raises(TypeError, lambda: Lambda((x, y), x + y)(x)) raises(TypeError, lambda: Lambda((), 42)(x)) def test_Lambda_equality(): assert Lambda(x, 2*x) == Lambda(y, 2*y) # although variables are casts as Dummies, the expressions # should still compare equal assert Lambda((x, y), 2*x) == Lambda((x, y), 2*x) assert Lambda(x, 2*x) != Lambda((x, y), 2*x) assert Lambda(x, 2*x) != 2*x def test_Subs(): assert Subs(1, (), ()) is S.One # check null subs influence on hashing assert Subs(x, y, z) != Subs(x, y, 1) # neutral subs works assert Subs(x, x, 1).subs(x, y).has(y) # self mapping var/point assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x) assert Subs(x, x, 0).has(x) # it's a structural answer assert not Subs(x, x, 0).free_symbols assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1)) assert Subs(x, (x,), (0,)) == Subs(x, x, 0) assert Subs(x, x, 0) == Subs(y, y, 0) assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0) assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0) assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y, z), (x, y, z), (0, 0, 1)) assert Subs(x, y, 2).subs(x, y).doit() == 2 assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y) + z, (x, y, z), (0, 1, 0)) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1))) raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1))) assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1)) assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y assert Subs(f(x), x, 0).free_symbols == set([]) assert Subs(f(x, y), x, z).free_symbols == {y, z} assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0) e = Subs(y**2*f(x), x, y) assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0) e1 = Subs(z*f(x), x, 1) e2 = Subs(z*f(y), y, 1) assert e1 + e2 == 2*e1 assert e1.__hash__() == e2.__hash__() assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x)) assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x), x, x + y) assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \ Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \ z + Rational('1/2').n(2)*f(0) assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0) assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x) ).doit() == 2*exp(x) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x) ).doit(deep=False) == 2*Derivative(exp(x), x) assert Derivative(f(x, g(x)), x).doit() == Derivative(g(x), x )*Subs(Derivative(f(x, y), y), y, g(x) ) + Subs(Derivative(f(y, g(x)), y), y, x) def test_doitdoit(): done = Derivative(f(x, g(x)), x, g(x)).doit() assert done == done.doit() @XFAIL def test_Subs2(): # this reflects a limitation of subs(), probably won't fix assert Subs(f(x), x**2, x).doit() == f(sqrt(x)) def test_expand_function(): assert expand(x + y) == x + y assert expand(x + y, complex=True) == I*im(x) + I*im(y) + re(x) + re(y) assert expand((x + y)**11, modulus=11) == x**11 + y**11 def test_function_comparable(): assert sin(x).is_comparable is False assert cos(x).is_comparable is False assert sin(Float('0.1')).is_comparable is True assert cos(Float('0.1')).is_comparable is True assert sin(E).is_comparable is True assert cos(E).is_comparable is True assert sin(Rational(1, 3)).is_comparable is True assert cos(Rational(1, 3)).is_comparable is True @XFAIL def test_function_comparable_infinities(): assert sin(oo).is_comparable is False assert sin(-oo).is_comparable is False assert sin(zoo).is_comparable is False assert sin(nan).is_comparable is False def test_deriv1(): # These all requre derivatives evaluated at a point (issue 4719) to work. # See issue 4624 assert f(2*x).diff(x) == 2*Subs(Derivative(f(x), x), x, 2*x) assert (f(x)**3).diff(x) == 3*f(x)**2*f(x).diff(x) assert (f(2*x)**3).diff(x) == 6*f(2*x)**2*Subs( Derivative(f(x), x), x, 2*x) assert f(2 + x).diff(x) == Subs(Derivative(f(x), x), x, x + 2) assert f(2 + 3*x).diff(x) == 3*Subs( Derivative(f(x), x), x, 3*x + 2) assert f(3*sin(x)).diff(x) == 3*cos(x)*Subs( Derivative(f(x), x), x, 3*sin(x)) # See issue 8510 assert f(x, x + z).diff(x) == ( Subs(Derivative(f(y, x + z), y), y, x) + Subs(Derivative(f(x, y), y), y, x + z)) assert f(x, x**2).diff(x) == ( 2*x*Subs(Derivative(f(x, y), y), y, x**2) + Subs(Derivative(f(y, x**2), y), y, x)) # but Subs is not always necessary assert f(x, g(y)).diff(g(y)) == Derivative(f(x, g(y)), g(y)) def test_deriv2(): assert (x**3).diff(x) == 3*x**2 assert (x**3).diff(x, evaluate=False) != 3*x**2 assert (x**3).diff(x, evaluate=False) == Derivative(x**3, x) assert diff(x**3, x) == 3*x**2 assert diff(x**3, x, evaluate=False) != 3*x**2 assert diff(x**3, x, evaluate=False) == Derivative(x**3, x) def test_func_deriv(): assert f(x).diff(x) == Derivative(f(x), x) # issue 4534 assert f(x, y).diff(x, y) - f(x, y).diff(y, x) == 0 assert Derivative(f(x, y), x, y).args[1:] == ((x, 1), (y, 1)) assert Derivative(f(x, y), y, x).args[1:] == ((y, 1), (x, 1)) assert (Derivative(f(x, y), x, y) - Derivative(f(x, y), y, x)).doit() == 0 def test_suppressed_evaluation(): a = sin(0, evaluate=False) assert a != 0 assert a.func is sin assert a.args == (0,) def test_function_evalf(): def eq(a, b, eps): return abs(a - b) < eps assert eq(sin(1).evalf(15), Float("0.841470984807897"), 1e-13) assert eq( sin(2).evalf(25), Float("0.9092974268256816953960199", 25), 1e-23) assert eq(sin(1 + I).evalf( 15), Float("1.29845758141598") + Float("0.634963914784736")*I, 1e-13) assert eq(exp(1 + I).evalf(15), Float( "1.46869393991588") + Float("2.28735528717884239")*I, 1e-13) assert eq(exp(-0.5 + 1.5*I).evalf(15), Float( "0.0429042815937374") + Float("0.605011292285002")*I, 1e-13) assert eq(log(pi + sqrt(2)*I).evalf( 15), Float("1.23699044022052") + Float("0.422985442737893")*I, 1e-13) assert eq(cos(100).evalf(15), Float("0.86231887228768"), 1e-13) def test_extensibility_eval(): class MyFunc(Function): @classmethod def eval(cls, *args): return (0, 0, 0) assert MyFunc(0) == (0, 0, 0) def test_function_non_commutative(): x = Symbol('x', commutative=False) assert f(x).is_commutative is False assert sin(x).is_commutative is False assert exp(x).is_commutative is False assert log(x).is_commutative is False assert f(x).is_complex is False assert sin(x).is_complex is False assert exp(x).is_complex is False assert log(x).is_complex is False def test_function_complex(): x = Symbol('x', complex=True) assert f(x).is_commutative is True assert sin(x).is_commutative is True assert exp(x).is_commutative is True assert log(x).is_commutative is True assert f(x).is_complex is True assert sin(x).is_complex is True assert exp(x).is_complex is True assert log(x).is_complex is True def test_function__eval_nseries(): n = Symbol('n') assert sin(x)._eval_nseries(x, 2, None) == x + O(x**2) assert sin(x + 1)._eval_nseries(x, 2, None) == x*cos(1) + sin(1) + O(x**2) assert sin(pi*(1 - x))._eval_nseries(x, 2, None) == pi*x + O(x**2) assert acos(1 - x**2)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x**2) + O(x**2) assert polygamma(n, x + 1)._eval_nseries(x, 2, None) == \ polygamma(n, 1) + polygamma(n + 1, 1)*x + O(x**2) raises(PoleError, lambda: sin(1/x)._eval_nseries(x, 2, None)) assert acos(1 - x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x) + O(x) assert acos(1 + x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(-x) + O(x) # XXX: wrong, branch cuts assert loggamma(1/x)._eval_nseries(x, 0, None) == \ log(x)/2 - log(x)/x - 1/x + O(1, x) assert loggamma(log(1/x)).nseries(x, n=1, logx=y) == loggamma(-y) # issue 6725: assert expint(S(3)/2, -x)._eval_nseries(x, 5, None) == \ 2 - 2*sqrt(pi)*sqrt(-x) - 2*x - x**2/3 - x**3/15 - x**4/84 + O(x**5) assert sin(sqrt(x))._eval_nseries(x, 3, None) == \ sqrt(x) - x**(S(3)/2)/6 + x**(S(5)/2)/120 + O(x**3) def test_doit(): n = Symbol('n', integer=True) f = Sum(2 * n * x, (n, 1, 3)) d = Derivative(f, x) assert d.doit() == 12 assert d.doit(deep=False) == Sum(2*n, (n, 1, 3)) def test_evalf_default(): from sympy.functions.special.gamma_functions import polygamma assert type(sin(4.0)) == Float assert type(re(sin(I + 1.0))) == Float assert type(im(sin(I + 1.0))) == Float assert type(sin(4)) == sin assert type(polygamma(2.0, 4.0)) == Float assert type(sin(Rational(1, 4))) == sin def test_issue_5399(): args = [x, y, S(2), S.Half] def ok(a): """Return True if the input args for diff are ok""" if not a: return False if a[0].is_Symbol is False: return False s_at = [i for i in range(len(a)) if a[i].is_Symbol] n_at = [i for i in range(len(a)) if not a[i].is_Symbol] # every symbol is followed by symbol or int # every number is followed by a symbol return (all(a[i + 1].is_Symbol or a[i + 1].is_Integer for i in s_at if i + 1 < len(a)) and all(a[i + 1].is_Symbol for i in n_at if i + 1 < len(a))) eq = x**10*y**8 for a in subsets(args): for v in variations(a, len(a)): if ok(v): noraise = eq.diff(*v) else: raises(ValueError, lambda: eq.diff(*v)) def test_derivative_numerically(): from random import random z0 = random() + I*random() assert abs(Derivative(sin(x), x).doit_numerically(z0) - cos(z0)) < 1e-15 def test_fdiff_argument_index_error(): from sympy.core.function import ArgumentIndexError class myfunc(Function): nargs = 1 # define since there is no eval routine def fdiff(self, idx): raise ArgumentIndexError mf = myfunc(x) assert mf.diff(x) == Derivative(mf, x) raises(TypeError, lambda: myfunc(x, x)) def test_deriv_wrt_function(): x = f(t) xd = diff(x, t) xdd = diff(xd, t) y = g(t) yd = diff(y, t) assert diff(x, t) == xd assert diff(2 * x + 4, t) == 2 * xd assert diff(2 * x + 4 + y, t) == 2 * xd + yd assert diff(2 * x + 4 + y * x, t) == 2 * xd + x * yd + xd * y assert diff(2 * x + 4 + y * x, x) == 2 + y assert (diff(4 * x**2 + 3 * x + x * y, t) == 3 * xd + x * yd + xd * y + 8 * x * xd) assert (diff(4 * x**2 + 3 * xd + x * y, t) == 3 * xdd + x * yd + xd * y + 8 * x * xd) assert diff(4 * x**2 + 3 * xd + x * y, xd) == 3 assert diff(4 * x**2 + 3 * xd + x * y, xdd) == 0 assert diff(sin(x), t) == xd * cos(x) assert diff(exp(x), t) == xd * exp(x) assert diff(sqrt(x), t) == xd / (2 * sqrt(x)) def test_diff_wrt_value(): assert Expr()._diff_wrt is False assert x._diff_wrt is True assert f(x)._diff_wrt is True assert Derivative(f(x), x)._diff_wrt is True assert Derivative(x**2, x)._diff_wrt is False def test_diff_wrt(): fx = f(x) dfx = diff(f(x), x) ddfx = diff(f(x), x, x) assert diff(sin(fx) + fx**2, fx) == cos(fx) + 2*fx assert diff(sin(dfx) + dfx**2, dfx) == cos(dfx) + 2*dfx assert diff(sin(ddfx) + ddfx**2, ddfx) == cos(ddfx) + 2*ddfx assert diff(fx**2, dfx) == 0 assert diff(fx**2, ddfx) == 0 assert diff(dfx**2, fx) == 0 assert diff(dfx**2, ddfx) == 0 assert diff(ddfx**2, dfx) == 0 assert diff(fx*dfx*ddfx, fx) == dfx*ddfx assert diff(fx*dfx*ddfx, dfx) == fx*ddfx assert diff(fx*dfx*ddfx, ddfx) == fx*dfx assert diff(f(x), x).diff(f(x)) == 0 assert (sin(f(x)) - cos(diff(f(x), x))).diff(f(x)) == cos(f(x)) assert diff(sin(fx), fx, x) == diff(sin(fx), x, fx) # Chain rule cases assert f(g(x)).diff(x) == \ Derivative(g(x), x)*Derivative(f(g(x)), g(x)) assert diff(f(g(x), h(y)), x) == \ Derivative(g(x), x)*Derivative(f(g(x), h(y)), g(x)) assert diff(f(g(x), h(x)), x) == ( Subs(Derivative(f(y, h(x)), y), y, g(x))*Derivative(g(x), x) + Subs(Derivative(f(g(x), y), y), y, h(x))*Derivative(h(x), x)) assert f( sin(x)).diff(x) == cos(x)*Subs(Derivative(f(x), x), x, sin(x)) assert diff(f(g(x)), g(x)) == Derivative(f(g(x)), g(x)) def test_diff_wrt_func_subs(): assert f(g(x)).diff(x).subs(g, Lambda(x, 2*x)).doit() == f(2*x).diff(x) def test_subs_in_derivative(): expr = sin(x*exp(y)) u = Function('u') v = Function('v') assert Derivative(expr, y).subs(expr, y) == Derivative(y, y) assert Derivative(expr, y).subs(y, x).doit() == \ Derivative(expr, y).doit().subs(y, x) assert Derivative(f(x, y), y).subs(y, x) == Subs(Derivative(f(x, y), y), y, x) assert Derivative(f(x, y), y).subs(x, y) == Subs(Derivative(f(x, y), y), x, y) assert Derivative(f(x, y), y).subs(y, g(x, y)) == Subs(Derivative(f(x, y), y), y, g(x, y)).doit() assert Derivative(f(x, y), y).subs(x, g(x, y)) == Subs(Derivative(f(x, y), y), x, g(x, y)) assert Derivative(f(x, y), g(y)).subs(x, g(x, y)) == Derivative(f(g(x, y), y), g(y)) assert Derivative(f(u(x), h(y)), h(y)).subs(h(y), g(x, y)) == \ Subs(Derivative(f(u(x), h(y)), h(y)), h(y), g(x, y)).doit() assert Derivative(f(x, y), y).subs(y, z) == Derivative(f(x, z), z) assert Derivative(f(x, y), y).subs(y, g(y)) == Derivative(f(x, g(y)), g(y)) assert Derivative(f(g(x), h(y)), h(y)).subs(h(y), u(y)) == \ Derivative(f(g(x), u(y)), u(y)) assert Derivative(f(x, f(x, x)), f(x, x)).subs( f, Lambda((x, y), x + y)) == Subs( Derivative(z + x, z), z, 2*x) assert Subs(Derivative(f(f(x)), x), f, cos).doit() == sin(x)*sin(cos(x)) assert Subs(Derivative(f(f(x)), f(x)), f, cos).doit() == -sin(cos(x)) # Issue 13791. No comparison (it's a long formula) but this used to raise an exception. assert isinstance(v(x, y, u(x, y)).diff(y).diff(x).diff(y), Expr) # This is also related to issues 13791 and 13795; issue 15190 F = Lambda((x, y), exp(2*x + 3*y)) abstract = f(x, f(x, x)).diff(x, 2) concrete = F(x, F(x, x)).diff(x, 2) assert (abstract.subs(f, F).doit() - concrete).simplify() == 0 # don't introduce a new symbol if not necessary assert x in f(x).diff(x).subs(x, 0).atoms() # case (4) assert Derivative(f(x,f(x,y)), x, y).subs(x, g(y) ) == Subs(Derivative(f(x, f(x, y)), x, y), x, g(y)) assert Derivative(f(x, x), x).subs(x, 0 ) == Subs(Derivative(f(x, x), x), x, 0) # issue 15194 assert Derivative(f(y, g(x)), (x, z)).subs(z, x ) == Derivative(f(y, g(x)), (x, x)) df = f(x).diff(x) assert df.subs(df, 1) is S.One assert df.diff(df) is S.One dxy = Derivative(f(x, y), x, y) dyx = Derivative(f(x, y), y, x) assert dxy.subs(Derivative(f(x, y), y, x), 1) is S.One assert dxy.diff(dyx) is S.One assert Derivative(f(x, y), x, 2, y, 3).subs( dyx, g(x, y)) == Derivative(g(x, y), x, 1, y, 2) assert Derivative(f(x, x - y), y).subs(x, x + y) == Subs( Derivative(f(x, x - y), y), x, x + y) def test_diff_wrt_not_allowed(): # issue 7027 included for wrt in ( cos(x), re(x), x**2, x*y, 1 + x, Derivative(cos(x), x), Derivative(f(f(x)), x)): raises(ValueError, lambda: diff(f(x), wrt)) # if we don't differentiate wrt then don't raise error assert diff(exp(x*y), x*y, 0) == exp(x*y) def test_klein_gordon_lagrangian(): m = Symbol('m') phi = f(x, t) L = -(diff(phi, t)**2 - diff(phi, x)**2 - m**2*phi**2)/2 eqna = Eq( diff(L, phi) - diff(L, diff(phi, x), x) - diff(L, diff(phi, t), t), 0) eqnb = Eq(diff(phi, t, t) - diff(phi, x, x) + m**2*phi, 0) assert eqna == eqnb def test_sho_lagrangian(): m = Symbol('m') k = Symbol('k') x = f(t) L = m*diff(x, t)**2/2 - k*x**2/2 eqna = Eq(diff(L, x), diff(L, diff(x, t), t)) eqnb = Eq(-k*x, m*diff(x, t, t)) assert eqna == eqnb assert diff(L, x, t) == diff(L, t, x) assert diff(L, diff(x, t), t) == m*diff(x, t, 2) assert diff(L, t, diff(x, t)) == -k*x + m*diff(x, t, 2) def test_straight_line(): F = f(x) Fd = F.diff(x) L = sqrt(1 + Fd**2) assert diff(L, F) == 0 assert diff(L, Fd) == Fd/sqrt(1 + Fd**2) def test_sort_variable(): vsort = Derivative._sort_variable_count def vsort0(*v, **kw): reverse = kw.get('reverse', False) return [i[0] for i in vsort([(i, 0) for i in ( reversed(v) if reverse else v)])] for R in range(2): assert vsort0(y, x, reverse=R) == [x, y] assert vsort0(f(x), x, reverse=R) == [x, f(x)] assert vsort0(f(y), f(x), reverse=R) == [f(x), f(y)] assert vsort0(g(x), f(y), reverse=R) == [f(y), g(x)] assert vsort0(f(x, y), f(x), reverse=R) == [f(x), f(x, y)] fx = f(x).diff(x) assert vsort0(fx, y, reverse=R) == [y, fx] fy = f(y).diff(y) assert vsort0(fy, fx, reverse=R) == [fx, fy] fxx = fx.diff(x) assert vsort0(fxx, fx, reverse=R) == [fx, fxx] assert vsort0(Basic(x), f(x), reverse=R) == [f(x), Basic(x)] assert vsort0(Basic(y), Basic(x), reverse=R) == [Basic(x), Basic(y)] assert vsort0(Basic(y, z), Basic(x), reverse=R) == [ Basic(x), Basic(y, z)] assert vsort0(fx, x, reverse=R) == [ x, fx] if R else [fx, x] assert vsort0(Basic(x), x, reverse=R) == [ x, Basic(x)] if R else [Basic(x), x] assert vsort0(Basic(f(x)), f(x), reverse=R) == [ f(x), Basic(f(x))] if R else [Basic(f(x)), f(x)] assert vsort0(Basic(x, z), Basic(x), reverse=R) == [ Basic(x), Basic(x, z)] if R else [Basic(x, z), Basic(x)] assert vsort([]) == [] assert _aresame(vsort([(x, 1)]), [Tuple(x, 1)]) assert vsort([(x, y), (x, z)]) == [(x, y + z)] assert vsort([(y, 1), (x, 1 + y)]) == [(x, 1 + y), (y, 1)] # coverage complete; legacy tests below assert vsort([(x, 3), (y, 2), (z, 1)]) == [(x, 3), (y, 2), (z, 1)] assert vsort([(h(x), 1), (g(x), 1), (f(x), 1)]) == [ (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(z, 1), (y, 2), (x, 3), (h(x), 1), (g(x), 1), (f(x), 1)]) == [(x, 3), (y, 2), (z, 1), (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(x, 1), (f(x), 1), (y, 1), (f(y), 1)]) == [(x, 1), (y, 1), (f(x), 1), (f(y), 1)] assert vsort([(y, 1), (x, 2), (g(x), 1), (f(x), 1), (z, 1), (h(x), 1), (y, 2), (x, 1)]) == [(x, 3), (y, 3), (z, 1), (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(z, 1), (y, 1), (f(x), 1), (x, 1), (f(x), 1), (g(x), 1)]) == [(x, 1), (y, 1), (z, 1), (f(x), 2), (g(x), 1)] assert vsort([(z, 1), (y, 2), (f(x), 1), (x, 2), (f(x), 2), (g(x), 1), (z, 2), (z, 1), (y, 1), (x, 1)]) == [(x, 3), (y, 3), (z, 4), (f(x), 3), (g(x), 1)] assert vsort(((y, 2), (x, 1), (y, 1), (x, 1))) == [(x, 2), (y, 3)] assert isinstance(vsort([(x, 3), (y, 2), (z, 1)])[0], Tuple) assert vsort([(x, 1), (f(x), 1), (x, 1)]) == [(x, 2), (f(x), 1)] assert vsort([(y, 2), (x, 3), (z, 1)]) == [(x, 3), (y, 2), (z, 1)] assert vsort([(h(y), 1), (g(x), 1), (f(x), 1)]) == [ (f(x), 1), (g(x), 1), (h(y), 1)] assert vsort([(x, 1), (y, 1), (x, 1)]) == [(x, 2), (y, 1)] assert vsort([(f(x), 1), (f(y), 1), (f(x), 1)]) == [ (f(x), 2), (f(y), 1)] dfx = f(x).diff(x) self = [(dfx, 1), (x, 1)] assert vsort(self) == self assert vsort([ (dfx, 1), (y, 1), (f(x), 1), (x, 1), (f(y), 1), (x, 1)]) == [ (y, 1), (f(x), 1), (f(y), 1), (dfx, 1), (x, 2)] dfy = f(y).diff(y) assert vsort([(dfy, 1), (dfx, 1)]) == [(dfx, 1), (dfy, 1)] d2fx = dfx.diff(x) assert vsort([(d2fx, 1), (dfx, 1)]) == [(dfx, 1), (d2fx, 1)] def test_multiple_derivative(): # Issue #15007 assert f(x, y).diff(y, y, x, y, x ) == Derivative(f(x, y), (x, 2), (y, 3)) def test_unhandled(): class MyExpr(Expr): def _eval_derivative(self, s): if not s.name.startswith('xi'): return self else: return None d = Dummy() eq = MyExpr(f(x), y, z) assert diff(eq, x, y, f(x), z) == Derivative(eq, f(x)) assert diff(eq, f(x), x) == Derivative(eq, f(x)) assert f(x, y).diff(x,(y, z)) == Derivative(f(x, y), x, (y, z)) assert f(x, y).diff(x,(y, 0)) == Derivative(f(x, y), x) def test_nfloat(): from sympy.core.basic import _aresame from sympy.polys.rootoftools import rootof x = Symbol("x") eq = x**(S(4)/3) + 4*x**(S(1)/3)/3 assert _aresame(nfloat(eq), x**(S(4)/3) + (4.0/3)*x**(S(1)/3)) assert _aresame(nfloat(eq, exponent=True), x**(4.0/3) + (4.0/3)*x**(1.0/3)) eq = x**(S(4)/3) + 4*x**(x/3)/3 assert _aresame(nfloat(eq), x**(S(4)/3) + (4.0/3)*x**(x/3)) big = 12345678901234567890 # specify precision to match value used in nfloat Float_big = Float(big, 15) assert _aresame(nfloat(big), Float_big) assert _aresame(nfloat(big*x), Float_big*x) assert _aresame(nfloat(x**big, exponent=True), x**Float_big) assert nfloat({x: sqrt(2)}) == {x: nfloat(sqrt(2))} assert nfloat({sqrt(2): x}) == {sqrt(2): x} assert nfloat(cos(x + sqrt(2))) == cos(x + nfloat(sqrt(2))) # issue 6342 f = S('x*lamda + lamda**3*(x/2 + 1/2) + lamda**2 + 1/4') assert not any(a.free_symbols for a in solveset(f.subs(x, -0.139))) # issue 6632 assert nfloat(-100000*sqrt(2500000001) + 5000000001) == \ 9.99999999800000e-11 # issue 7122 eq = cos(3*x**4 + y)*rootof(x**5 + 3*x**3 + 1, 0) assert str(nfloat(eq, exponent=False, n=1)) == '-0.7*cos(3.0*x**4 + y)' def test_issue_7068(): from sympy.abc import a, b f = Function('f') y1 = Dummy('y') y2 = Dummy('y') func1 = f(a + y1 * b) func2 = f(a + y2 * b) func1_y = func1.diff(y1) func2_y = func2.diff(y2) assert func1_y != func2_y z1 = Subs(f(a), a, y1) z2 = Subs(f(a), a, y2) assert z1 != z2 def test_issue_7231(): from sympy.abc import a ans1 = f(x).series(x, a) res = (f(a) + (-a + x)*Subs(Derivative(f(y), y), y, a) + (-a + x)**2*Subs(Derivative(f(y), y, y), y, a)/2 + (-a + x)**3*Subs(Derivative(f(y), y, y, y), y, a)/6 + (-a + x)**4*Subs(Derivative(f(y), y, y, y, y), y, a)/24 + (-a + x)**5*Subs(Derivative(f(y), y, y, y, y, y), y, a)/120 + O((-a + x)**6, (x, a))) assert res == ans1 ans2 = f(x).series(x, a) assert res == ans2 def test_issue_7687(): from sympy.core.function import Function from sympy.abc import x f = Function('f')(x) ff = Function('f')(x) match_with_cache = ff.matches(f) assert isinstance(f, type(ff)) clear_cache() ff = Function('f')(x) assert isinstance(f, type(ff)) assert match_with_cache == ff.matches(f) def test_issue_7688(): from sympy.core.function import Function, UndefinedFunction f = Function('f') # actually an UndefinedFunction clear_cache() class A(UndefinedFunction): pass a = A('f') assert isinstance(a, type(f)) def test_mexpand(): from sympy.abc import x assert _mexpand(None) is None assert _mexpand(1) is S.One assert _mexpand(x*(x + 1)**2) == (x*(x + 1)**2).expand() def test_issue_8469(): # This should not take forever to run N = 40 def g(w, theta): return 1/(1+exp(w-theta)) ws = symbols(['w%i'%i for i in range(N)]) import functools expr = functools.reduce(g,ws) def test_issue_12996(): # foo=True imitates the sort of arguments that Derivative can get # from Integral when it passes doit to the expression assert Derivative(im(x), x).doit(foo=True) == Derivative(im(x), x) def test_should_evalf(): # This should not take forever to run (see #8506) assert isinstance(sin((1.0 + 1.0*I)**10000 + 1), sin) def test_Derivative_as_finite_difference(): # Central 1st derivative at gridpoint x, h = symbols('x h', real=True) dfdx = f(x).diff(x) assert (dfdx.as_finite_difference([x-2, x-1, x, x+1, x+2]) - (S(1)/12*(f(x-2)-f(x+2)) + S(2)/3*(f(x+1)-f(x-1)))).simplify() == 0 # Central 1st derivative "half-way" assert (dfdx.as_finite_difference() - (f(x + S(1)/2)-f(x - S(1)/2))).simplify() == 0 assert (dfdx.as_finite_difference(h) - (f(x + h/S(2))-f(x - h/S(2)))/h).simplify() == 0 assert (dfdx.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (S(9)/(8*2*h)*(f(x+h) - f(x-h)) + S(1)/(24*2*h)*(f(x - 3*h) - f(x + 3*h)))).simplify() == 0 # One sided 1st derivative at gridpoint assert (dfdx.as_finite_difference([0, 1, 2], 0) - (-S(3)/2*f(0) + 2*f(1) - f(2)/2)).simplify() == 0 assert (dfdx.as_finite_difference([x, x+h], x) - (f(x+h) - f(x))/h).simplify() == 0 assert (dfdx.as_finite_difference([x-h, x, x+h], x-h) - (-S(3)/(2*h)*f(x-h) + 2/h*f(x) - S(1)/(2*h)*f(x+h))).simplify() == 0 # One sided 1st derivative "half-way" assert (dfdx.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h, x + 7*h]) - 1/(2*h)*(-S(11)/(12)*f(x-h) + S(17)/(24)*f(x+h) + S(3)/8*f(x + 3*h) - S(5)/24*f(x + 5*h) + S(1)/24*f(x + 7*h))).simplify() == 0 d2fdx2 = f(x).diff(x, 2) # Central 2nd derivative at gridpoint assert (d2fdx2.as_finite_difference([x-h, x, x+h]) - h**-2 * (f(x-h) + f(x+h) - 2*f(x))).simplify() == 0 assert (d2fdx2.as_finite_difference([x - 2*h, x-h, x, x+h, x + 2*h]) - h**-2 * (-S(1)/12*(f(x - 2*h) + f(x + 2*h)) + S(4)/3*(f(x+h) + f(x-h)) - S(5)/2*f(x))).simplify() == 0 # Central 2nd derivative "half-way" assert (d2fdx2.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (2*h)**-2 * (S(1)/2*(f(x - 3*h) + f(x + 3*h)) - S(1)/2*(f(x+h) + f(x-h)))).simplify() == 0 # One sided 2nd derivative at gridpoint assert (d2fdx2.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) - h**-2 * (2*f(x) - 5*f(x+h) + 4*f(x+2*h) - f(x+3*h))).simplify() == 0 # One sided 2nd derivative at "half-way" assert (d2fdx2.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) - (2*h)**-2 * (S(3)/2*f(x-h) - S(7)/2*f(x+h) + S(5)/2*f(x + 3*h) - S(1)/2*f(x + 5*h))).simplify() == 0 d3fdx3 = f(x).diff(x, 3) # Central 3rd derivative at gridpoint assert (d3fdx3.as_finite_difference() - (-f(x - 3/S(2)) + 3*f(x - 1/S(2)) - 3*f(x + 1/S(2)) + f(x + 3/S(2)))).simplify() == 0 assert (d3fdx3.as_finite_difference( [x - 3*h, x - 2*h, x-h, x, x+h, x + 2*h, x + 3*h]) - h**-3 * (S(1)/8*(f(x - 3*h) - f(x + 3*h)) - f(x - 2*h) + f(x + 2*h) + S(13)/8*(f(x-h) - f(x+h)))).simplify() == 0 # Central 3rd derivative at "half-way" assert (d3fdx3.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (2*h)**-3 * (f(x + 3*h)-f(x - 3*h) + 3*(f(x-h)-f(x+h)))).simplify() == 0 # One sided 3rd derivative at gridpoint assert (d3fdx3.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) - h**-3 * (f(x + 3*h)-f(x) + 3*(f(x+h)-f(x + 2*h)))).simplify() == 0 # One sided 3rd derivative at "half-way" assert (d3fdx3.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) - (2*h)**-3 * (f(x + 5*h)-f(x-h) + 3*(f(x+h)-f(x + 3*h)))).simplify() == 0 # issue 11007 y = Symbol('y', real=True) d2fdxdy = f(x, y).diff(x, y) ref0 = Derivative(f(x + S(1)/2, y), y) - Derivative(f(x - S(1)/2, y), y) assert (d2fdxdy.as_finite_difference(wrt=x) - ref0).simplify() == 0 half = S(1)/2 xm, xp, ym, yp = x-half, x+half, y-half, y+half ref2 = f(xm, ym) + f(xp, yp) - f(xp, ym) - f(xm, yp) assert (d2fdxdy.as_finite_difference() - ref2).simplify() == 0 def test_issue_11159(): # Tests Application._eval_subs expr1 = E expr0 = expr1 * expr1 expr1 = expr0.subs(expr1,expr0) assert expr0 == expr1 def test_issue_12005(): e1 = Subs(Derivative(f(x), x), x, x) assert e1.diff(x) == Derivative(f(x), x, x) e2 = Subs(Derivative(f(x), x), x, x**2 + 1) assert e2.diff(x) == 2*x*Subs(Derivative(f(x), x, x), x, x**2 + 1) e3 = Subs(Derivative(f(x) + y**2 - y, y), y, y**2) assert e3.diff(y) == 4*y e4 = Subs(Derivative(f(x + y), y), y, (x**2)) assert e4.diff(y) == S.Zero e5 = Subs(Derivative(f(x), x), (y, z), (y, z)) assert e5.diff(x) == Derivative(f(x), x, x) assert f(g(x)).diff(g(x), g(x)) == Derivative(f(g(x)), g(x), g(x)) def test_issue_13843(): x = symbols('x') f = Function('f') m, n = symbols('m n', integer=True) assert Derivative(Derivative(f(x), (x, m)), (x, n)) == Derivative(f(x), (x, m + n)) assert Derivative(Derivative(f(x), (x, m+5)), (x, n+3)) == Derivative(f(x), (x, m + n + 8)) assert Derivative(f(x), (x, n)).doit() == Derivative(f(x), (x, n)) def test_order_could_be_zero(): x, y = symbols('x, y') n = symbols('n', integer=True, nonnegative=True) m = symbols('m', integer=True, positive=True) assert diff(y, (x, n)) == Piecewise((y, Eq(n, 0)), (0, True)) assert diff(y, (x, n + 1)) == S.Zero assert diff(y, (x, m)) == S.Zero def test_undefined_function_eq(): f = Function('f') f2 = Function('f') g = Function('g') f_real = Function('f', is_real=True) # This test may only be meaningful if the cache is turned off assert f == f2 assert hash(f) == hash(f2) assert f == f assert f != g assert f != f_real def test_function_assumptions(): x = Symbol('x') f = Function('f') f_real = Function('f', real=True) assert f != f_real assert f(x) != f_real(x) assert f(x).is_real is None assert f_real(x).is_real is True # Can also do it this way, but it won't be equal to f_real because of the # way UndefinedFunction.__new__ works. f_real2 = Function('f', is_real=True) assert f_real2(x).is_real is True def test_undef_fcn_float_issue_6938(): f = Function('ceil') assert not f(0.3).is_number f = Function('sin') assert not f(0.3).is_number assert not f(pi).evalf().is_number x = Symbol('x') assert not f(x).evalf(subs={x:1.2}).is_number def test_undefined_function_eval(): # Issue 15170. Make sure UndefinedFunction with eval defined works # properly. The issue there was that the hash was determined before _nargs # was set, which is included in the hash, hence changing the hash. The # class is added to sympy.core.core.all_classes before the hash is # changed, meaning "temp in all_classes" would fail, causing sympify(temp(t)) # to give a new class. We will eventually remove all_classes, but make # sure this continues to work. fdiff = lambda self, argindex=1: cos(self.args[argindex - 1]) eval = classmethod(lambda cls, t: None) _imp_ = classmethod(lambda cls, t: sin(t)) temp = Function('temp', fdiff=fdiff, eval=eval, _imp_=_imp_) expr = temp(t) assert sympify(expr) == expr assert type(sympify(expr)).fdiff.__name__ == "<lambda>" assert expr.diff(t) == cos(t) def test_issue_15241(): F = f(x) Fx = F.diff(x) assert (F + x*Fx).diff(x, Fx) == 2 assert (F + x*Fx).diff(Fx, x) == 1 assert (x*F + x*Fx*F).diff(F, x) == x*Fx.diff(x) + Fx + 1 assert (x*F + x*Fx*F).diff(x, F) == x*Fx.diff(x) + Fx + 1 y = f(x) G = f(y) Gy = G.diff(y) assert (G + y*Gy).diff(y, Gy) == 2 assert (G + y*Gy).diff(Gy, y) == 1 assert (y*G + y*Gy*G).diff(G, y) == y*Gy.diff(y) + Gy + 1 assert (y*G + y*Gy*G).diff(y, G) == y*Gy.diff(y) + Gy + 1 def test_issue_15266(): assert Subs(Derivative(f(y), x, y), y, g(x)).doit() != 0 def test_issue_7027(): for wrt in (cos(x), re(x), Derivative(cos(x), x)): raises(ValueError, lambda: diff(f(x), wrt)) def test_derivative_quick_exit(): assert f(x).diff(y) == 0 assert f(x).diff(y, f(x)) == 0 assert f(x).diff(x, f(y)) == 0 assert f(f(x)).diff(x, f(x), f(y)) == 0 assert f(f(x)).diff(x, f(x), y) == 0 assert f(x).diff(g(x)) == 0 assert f(x).diff(x, f(x).diff(x)) == 1 df = f(x).diff(x) assert f(x).diff(df) == 0 dg = g(x).diff(x) assert dg.diff(df).doit() == 0 def test_issue_15084_13166(): eq = f(x, g(x)) assert eq.diff((g(x), y)) == Derivative(f(x, g(x)), (g(x), y)) # issue 13166 assert eq.diff(x, 2).doit() == ( (Derivative(f(x, g(x)), (g(x), 2))*Derivative(g(x), x) + Subs(Derivative(f(x, _xi_2), _xi_2, x), _xi_2, g(x)))*Derivative(g(x), x) + Derivative(f(x, g(x)), g(x))*Derivative(g(x), (x, 2)) + Derivative(g(x), x)*Subs(Derivative(f(_xi_1, g(x)), _xi_1, g(x)), _xi_1, x) + Subs(Derivative(f(_xi_1, g(x)), (_xi_1, 2)), _xi_1, x)) # issue 6681 assert diff(f(x, t, g(x, t)), x).doit() == ( Derivative(f(x, t, g(x, t)), g(x, t))*Derivative(g(x, t), x) + Subs(Derivative(f(_xi_1, t, g(x, t)), _xi_1), _xi_1, x)) # make sure the order doesn't matter when using diff assert eq.diff(x, g(x)) == eq.diff(g(x), x) def test_negative_counts(): # issue 13873 raises(ValueError, lambda: sin(x).diff(x, -1)) def test_Derivative__new__(): raises(TypeError, lambda: f(x).diff((x, 2), 0)) assert f(x, y).diff([(x, y), 0]) == f(x, y) assert f(x, y).diff([(x, y), 1]) == NDimArray([ Derivative(f(x, y), x), Derivative(f(x, y), y)]) assert f(x,y).diff(y, (x, z), y, x) == Derivative( f(x, y), (x, z + 1), (y, 2)) assert Matrix([x]).diff(x, 2) == Matrix([0]) # is_zero exit def test_issue_14719_10150(): class V(Expr): _diff_wrt = True is_scalar = False assert V().diff(V()) == Derivative(V(), V()) assert (2*V()).diff(V()) == 2*Derivative(V(), V()) class X(Expr): _diff_wrt = True assert X().diff(X()) == 1 assert (2*X()).diff(X()) == 2 def test_noncommutative_issue_15131(): x = Symbol('x', commutative=False) t = Symbol('t', commutative=False) fx = Function('Fx', commutative=False)(x) ft = Function('Ft', commutative=False)(t) A = Symbol('A', commutative=False) eq = fx * A * ft eqdt = eq.diff(t) assert eqdt.args[-1] == ft.diff(t) def test_Subs_Derivative(): a = Derivative(f(g(x), h(x)), g(x), h(x),x) b = Derivative(Derivative(f(g(x), h(x)), g(x), h(x)),x) c = f(g(x), h(x)).diff(g(x), h(x), x) d = f(g(x), h(x)).diff(g(x), h(x)).diff(x) e = Derivative(f(g(x), h(x)), x) eqs = (a, b, c, d, e) subs = lambda arg: arg.subs(f, Lambda((x, y), exp(x + y)) ).subs(g(x), 1/x).subs(h(x), x**3) ans = 3*x**2*exp(1/x)*exp(x**3) - exp(1/x)*exp(x**3)/x**2 assert all(subs(i).doit().expand() == ans for i in eqs) assert all(subs(i.doit()).doit().expand() == ans for i in eqs)
6a4ce229b9886f0b5e6e2d7359515e69c04ec0967db13787eb455cf7924d48fc
"""This tests sympy/core/basic.py with (ideally) no reference to subclasses of Basic or Atom.""" import collections import sys from sympy.core.basic import (Basic, Atom, preorder_traversal, as_Basic, _atomic) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.core.function import Function, Lambda from sympy.core.compatibility import default_sort_key from sympy import sin, Q, cos, gamma, Tuple, Integral, Sum from sympy.functions.elementary.exponential import exp from sympy.utilities.pytest import raises from sympy.core import I, pi b1 = Basic() b2 = Basic(b1) b3 = Basic(b2) b21 = Basic(b2, b1) def test_structure(): assert b21.args == (b2, b1) assert b21.func(*b21.args) == b21 assert bool(b1) def test_equality(): instances = [b1, b2, b3, b21, Basic(b1, b1, b1), Basic] for i, b_i in enumerate(instances): for j, b_j in enumerate(instances): assert (b_i == b_j) == (i == j) assert (b_i != b_j) == (i != j) assert Basic() != [] assert not(Basic() == []) assert Basic() != 0 assert not(Basic() == 0) class Foo(object): """ Class that is unaware of Basic, and relies on both classes returning the NotImplemented singleton for equivalence to evaluate to False. """ b = Basic() foo = Foo() assert b != foo assert foo != b assert not b == foo assert not foo == b class Bar(object): """ Class that considers itself equal to any instance of Basic, and relies on Basic returning the NotImplemented singleton in order to achieve a symmetric equivalence relation. """ def __eq__(self, other): if isinstance(other, Basic): return True return NotImplemented def __ne__(self, other): return not self == other bar = Bar() assert b == bar assert bar == b assert not b != bar assert not bar != b def test_matches_basic(): instances = [Basic(b1, b1, b2), Basic(b1, b2, b1), Basic(b2, b1, b1), Basic(b1, b2), Basic(b2, b1), b2, b1] for i, b_i in enumerate(instances): for j, b_j in enumerate(instances): if i == j: assert b_i.matches(b_j) == {} else: assert b_i.matches(b_j) is None assert b1.match(b1) == {} def test_has(): assert b21.has(b1) assert b21.has(b3, b1) assert b21.has(Basic) assert not b1.has(b21, b3) assert not b21.has() def test_subs(): assert b21.subs(b2, b1) == Basic(b1, b1) assert b21.subs(b2, b21) == Basic(b21, b1) assert b3.subs(b2, b1) == b2 assert b21.subs([(b2, b1), (b1, b2)]) == Basic(b2, b2) assert b21.subs({b1: b2, b2: b1}) == Basic(b2, b2) if sys.version_info >= (3, 4): assert b21.subs(collections.ChainMap({b1: b2}, {b2: b1})) == Basic(b2, b2) assert b21.subs(collections.OrderedDict([(b2, b1), (b1, b2)])) == Basic(b2, b2) raises(ValueError, lambda: b21.subs('bad arg')) raises(ValueError, lambda: b21.subs(b1, b2, b3)) # dict(b1=foo) creates a string 'b1' but leaves foo unchanged; subs # will convert the first to a symbol but will raise an error if foo # cannot be sympified; sympification is strict if foo is not string raises(ValueError, lambda: b21.subs(b1='bad arg')) def test_atoms(): assert b21.atoms() == set() def test_free_symbols_empty(): assert b21.free_symbols == set() def test_doit(): assert b21.doit() == b21 assert b21.doit(deep=False) == b21 def test_S(): assert repr(S) == 'S' def test_xreplace(): assert b21.xreplace({b2: b1}) == Basic(b1, b1) assert b21.xreplace({b2: b21}) == Basic(b21, b1) assert b3.xreplace({b2: b1}) == b2 assert Basic(b1, b2).xreplace({b1: b2, b2: b1}) == Basic(b2, b1) assert Atom(b1).xreplace({b1: b2}) == Atom(b1) assert Atom(b1).xreplace({Atom(b1): b2}) == b2 raises(TypeError, lambda: b1.xreplace()) raises(TypeError, lambda: b1.xreplace([b1, b2])) for f in (exp, Function('f')): assert f.xreplace({}) == f assert f.xreplace({}, hack2=True) == f assert f.xreplace({f: b1}) == b1 assert f.xreplace({f: b1}, hack2=True) == b1 def test_preorder_traversal(): expr = Basic(b21, b3) assert list( preorder_traversal(expr)) == [expr, b21, b2, b1, b1, b3, b2, b1] assert list(preorder_traversal(('abc', ('d', 'ef')))) == [ ('abc', ('d', 'ef')), 'abc', ('d', 'ef'), 'd', 'ef'] result = [] pt = preorder_traversal(expr) for i in pt: result.append(i) if i == b2: pt.skip() assert result == [expr, b21, b2, b1, b3, b2] w, x, y, z = symbols('w:z') expr = z + w*(x + y) assert list(preorder_traversal([expr], keys=default_sort_key)) == \ [[w*(x + y) + z], w*(x + y) + z, z, w*(x + y), w, x + y, x, y] assert list(preorder_traversal((x + y)*z, keys=True)) == \ [z*(x + y), z, x + y, x, y] def test_sorted_args(): x = symbols('x') assert b21._sorted_args == b21.args raises(AttributeError, lambda: x._sorted_args) def test_call(): x, y = symbols('x y') # See the long history of this in issues 5026 and 5105. raises(TypeError, lambda: sin(x)({ x : 1, sin(x) : 2})) raises(TypeError, lambda: sin(x)(1)) # No effect as there are no callables assert sin(x).rcall(1) == sin(x) assert (1 + sin(x)).rcall(1) == 1 + sin(x) # Effect in the pressence of callables l = Lambda(x, 2*x) assert (l + x).rcall(y) == 2*y + x assert (x**l).rcall(2) == x**4 # TODO UndefinedFunction does not subclass Expr #f = Function('f') #assert (2*f)(x) == 2*f(x) assert (Q.real & Q.positive).rcall(x) == Q.real(x) & Q.positive(x) def test_rewrite(): x, y, z = symbols('x y z') a, b = symbols('a b') f1 = sin(x) + cos(x) assert f1.rewrite(cos,exp) == exp(I*x)/2 + sin(x) + exp(-I*x)/2 assert f1.rewrite([cos],sin) == sin(x) + sin(x + pi/2, evaluate=False) f2 = sin(x) + cos(y)/gamma(z) assert f2.rewrite(sin,exp) == -I*(exp(I*x) - exp(-I*x))/2 + cos(y)/gamma(z) def test_literal_evalf_is_number_is_zero_is_comparable(): from sympy.integrals.integrals import Integral from sympy.core.symbol import symbols from sympy.core.function import Function from sympy.functions.elementary.trigonometric import cos, sin x = symbols('x') f = Function('f') # issue 5033 assert f.is_number is False # issue 6646 assert f(1).is_number is False i = Integral(0, (x, x, x)) # expressions that are symbolically 0 can be difficult to prove # so in case there is some easy way to know if something is 0 # it should appear in the is_zero property for that object; # if is_zero is true evalf should always be able to compute that # zero assert i.n() == 0 assert i.is_zero assert i.is_number is False assert i.evalf(2, strict=False) == 0 # issue 10268 n = sin(1)**2 + cos(1)**2 - 1 assert n.is_comparable is False assert n.n(2).is_comparable is False assert n.n(2).n(2).is_comparable def test_as_Basic(): assert as_Basic(1) is S.One assert as_Basic(()) == Tuple() raises(TypeError, lambda: as_Basic([])) def test_atomic(): g, h = map(Function, 'gh') x = symbols('x') assert _atomic(g(x + h(x))) == {g(x + h(x))} assert _atomic(g(x + h(x)), recursive=True) == {h(x), x, g(x + h(x))} def test_as_dummy(): u, v, x, y, z, _0, _1 = symbols('u v x y z _0 _1') assert Lambda(x, x + 1).as_dummy() == Lambda(_0, _0 + 1) assert Lambda(x, x + _0).as_dummy() == Lambda(_1, _0 + _1) assert (1 + Sum(x, (x, 1, x))).as_dummy() == 1 + Sum(_0, (_0, 1, x)) def test_canonical_variables(): x, i0, i1 = symbols('x _:2') assert Integral(x, (x, x + 1)).canonical_variables == {x: i0} assert Integral(x, (x, x + i0)).canonical_variables == {x: i1}
42e291ad77e82285db729f06160c6fb8ccb3f73707415671ca7f6792c83cb541
from sympy import (Symbol, Rational, cos, sin, tan, cot, exp, log, Function, Derivative, Expr, symbols, pi, I, S, diff, Piecewise, Eq, ff, Sum, And, factorial, Max, NDimArray, re, im) from sympy.utilities.pytest import raises def test_diff(): x, y = symbols('x, y') assert Rational(1, 3).diff(x) is S.Zero assert I.diff(x) is S.Zero assert pi.diff(x) is S.Zero assert x.diff(x, 0) == x assert (x**2).diff(x, 2, x) == 0 assert (x**2).diff((x, 2), x) == 0 assert (x**2).diff((x, 1), x) == 2 assert (x**2).diff((x, 1), (x, 1)) == 2 assert (x**2).diff((x, 2)) == 2 assert (x**2).diff(x, y, 0) == 2*x assert (x**2).diff(x, (y, 0)) == 2*x assert (x**2).diff(x, y) == 0 raises(ValueError, lambda: x.diff(1, x)) a = Symbol("a") b = Symbol("b") c = Symbol("c") p = Rational(5) e = a*b + b**p assert e.diff(a) == b assert e.diff(b) == a + 5*b**4 assert e.diff(b).diff(a) == Rational(1) e = a*(b + c) assert e.diff(a) == b + c assert e.diff(b) == a assert e.diff(b).diff(a) == Rational(1) e = c**p assert e.diff(c, 6) == Rational(0) assert e.diff(c, 5) == Rational(120) e = c**Rational(2) assert e.diff(c) == 2*c e = a*b*c assert e.diff(c) == a*b def test_diff2(): n3 = Rational(3) n2 = Rational(2) n6 = Rational(6) x, c = map(Symbol, 'xc') e = n3*(-n2 + x**n2)*cos(x) + x*(-n6 + x**n2)*sin(x) assert e == 3*(-2 + x**2)*cos(x) + x*(-6 + x**2)*sin(x) assert e.diff(x).expand() == x**3*cos(x) e = (x + 1)**3 assert e.diff(x) == 3*(x + 1)**2 e = x*(x + 1)**3 assert e.diff(x) == (x + 1)**3 + 3*x*(x + 1)**2 e = 2*exp(x*x)*x assert e.diff(x) == 2*exp(x**2) + 4*x**2*exp(x**2) def test_diff3(): a, b, c = map(Symbol, 'abc') p = Rational(5) e = a*b + sin(b**p) assert e == a*b + sin(b**5) assert e.diff(a) == b assert e.diff(b) == a + 5*b**4*cos(b**5) e = tan(c) assert e == tan(c) assert e.diff(c) in [cos(c)**(-2), 1 + sin(c)**2/cos(c)**2, 1 + tan(c)**2] e = c*log(c) - c assert e == -c + c*log(c) assert e.diff(c) == log(c) e = log(sin(c)) assert e == log(sin(c)) assert e.diff(c) in [sin(c)**(-1)*cos(c), cot(c)] e = (Rational(2)**a/log(Rational(2))) assert e == 2**a*log(Rational(2))**(-1) assert e.diff(a) == 2**a def test_diff_no_eval_derivative(): class My(Expr): def __new__(cls, x): return Expr.__new__(cls, x) x, y = symbols('x y') # My doesn't have its own _eval_derivative method assert My(x).diff(x).func is Derivative assert My(x).diff(x, 3).func is Derivative assert re(x).diff(x, 2) == Derivative(re(x), (x, 2)) # issue 15518 assert diff(NDimArray([re(x), im(x)]), (x, 2)) == NDimArray( [Derivative(re(x), (x, 2)), Derivative(im(x), (x, 2))]) # it doesn't have y so it shouldn't need a method for this case assert My(x).diff(y) == 0 def test_speed(): # this should return in 0.0s. If it takes forever, it's wrong. x = Symbol("x") assert x.diff(x, 10**8) == 0 def test_deriv_noncommutative(): A = Symbol("A", commutative=False) f = Function("f") x = Symbol("x") assert A*f(x)*A == f(x)*A**2 assert A*f(x).diff(x)*A == f(x).diff(x) * A**2 def test_diff_nth_derivative(): f = Function("f") x = Symbol("x") y = Symbol("y") z = Symbol("z") n = Symbol("n", integer=True) expr = diff(sin(x), (x, n)) expr2 = diff(f(x), (x, 2)) expr3 = diff(f(x), (x, n)) assert expr.subs(sin(x), cos(-x)) == Derivative(cos(-x), (x, n)) assert expr.subs(n, 1).doit() == cos(x) assert expr.subs(n, 2).doit() == -sin(x) assert expr2.subs(Derivative(f(x), x), y) == Derivative(y, x) # Currently not supported (cannot determine if `n > 1`): #assert expr3.subs(Derivative(f(x), x), y) == Derivative(y, (x, n-1)) assert expr3 == Derivative(f(x), (x, n)) assert diff(x, (x, n)) == Piecewise((x, Eq(n, 0)), (1, Eq(n, 1)), (0, True)) assert diff(2*x, (x, n)).dummy_eq( Sum(Piecewise((2*x*factorial(n)/(factorial(y)*factorial(-y + n)), Eq(y, 0) & Eq(Max(0, -y + n), 0)), (2*factorial(n)/(factorial(y)*factorial(-y + n)), Eq(y, 0) & Eq(Max(0, -y + n), 1)), (0, True)), (y, 0, n))) # TODO: assert diff(x**2, (x, n)) == x**(2-n)*ff(2, n) exprm = x*sin(x) mul_diff = diff(exprm, (x, n)) assert isinstance(mul_diff, Sum) for i in range(5): assert mul_diff.subs(n, i).doit() == exprm.diff((x, i)).expand() exprm2 = 2*y*x*sin(x)*cos(x)*log(x)*exp(x) dex = exprm2.diff((x, n)) assert isinstance(dex, Sum) for i in range(7): assert dex.subs(n, i).doit().expand() == \ exprm2.diff((x, i)).expand() assert (cos(x)*sin(y)).diff([[x, y, z]]) == NDimArray([ -sin(x)*sin(y), cos(x)*cos(y), 0])
2241539e0f7d9af58cd5aa07c291c1b55145f46d3d6a37355de97f390e716d37
from sympy.utilities.pytest import XFAIL, raises from sympy import (S, Symbol, symbols, nan, oo, I, pi, Float, And, Or, Not, Implies, Xor, zoo, sqrt, Rational, simplify, Function, Eq, log, cos, sin, Add) from sympy.core.compatibility import range from sympy.core.relational import (Relational, Equality, Unequality, GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Rel, Eq, Lt, Le, Gt, Ge, Ne, _canonical) from sympy.sets.sets import Interval, FiniteSet x, y, z, t = symbols('x,y,z,t') def test_rel_ne(): assert Relational(x, y, '!=') == Ne(x, y) # issue 6116 p = Symbol('p', positive=True) assert Ne(p, 0) is S.true def test_rel_subs(): e = Relational(x, y, '==') e = e.subs(x, z) assert isinstance(e, Equality) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '>=') e = e.subs(x, z) assert isinstance(e, GreaterThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '<=') e = e.subs(x, z) assert isinstance(e, LessThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '>') e = e.subs(x, z) assert isinstance(e, StrictGreaterThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '<') e = e.subs(x, z) assert isinstance(e, StrictLessThan) assert e.lhs == z assert e.rhs == y e = Eq(x, 0) assert e.subs(x, 0) is S.true assert e.subs(x, 1) is S.false def test_wrappers(): e = x + x**2 res = Relational(y, e, '==') assert Rel(y, x + x**2, '==') == res assert Eq(y, x + x**2) == res res = Relational(y, e, '<') assert Lt(y, x + x**2) == res res = Relational(y, e, '<=') assert Le(y, x + x**2) == res res = Relational(y, e, '>') assert Gt(y, x + x**2) == res res = Relational(y, e, '>=') assert Ge(y, x + x**2) == res res = Relational(y, e, '!=') assert Ne(y, x + x**2) == res def test_Eq(): assert Eq(x**2) == Eq(x**2, 0) assert Eq(x**2) != Eq(x**2, 1) assert Eq(x, x) # issue 5719 # issue 6116 p = Symbol('p', positive=True) assert Eq(p, 0) is S.false # issue 13348 assert Eq(True, 1) is S.false def test_rel_Infinity(): # NOTE: All of these are actually handled by sympy.core.Number, and do # not create Relational objects. assert (oo > oo) is S.false assert (oo > -oo) is S.true assert (oo > 1) is S.true assert (oo < oo) is S.false assert (oo < -oo) is S.false assert (oo < 1) is S.false assert (oo >= oo) is S.true assert (oo >= -oo) is S.true assert (oo >= 1) is S.true assert (oo <= oo) is S.true assert (oo <= -oo) is S.false assert (oo <= 1) is S.false assert (-oo > oo) is S.false assert (-oo > -oo) is S.false assert (-oo > 1) is S.false assert (-oo < oo) is S.true assert (-oo < -oo) is S.false assert (-oo < 1) is S.true assert (-oo >= oo) is S.false assert (-oo >= -oo) is S.true assert (-oo >= 1) is S.false assert (-oo <= oo) is S.true assert (-oo <= -oo) is S.true assert (-oo <= 1) is S.true def test_bool(): assert Eq(0, 0) is S.true assert Eq(1, 0) is S.false assert Ne(0, 0) is S.false assert Ne(1, 0) is S.true assert Lt(0, 1) is S.true assert Lt(1, 0) is S.false assert Le(0, 1) is S.true assert Le(1, 0) is S.false assert Le(0, 0) is S.true assert Gt(1, 0) is S.true assert Gt(0, 1) is S.false assert Ge(1, 0) is S.true assert Ge(0, 1) is S.false assert Ge(1, 1) is S.true assert Eq(I, 2) is S.false assert Ne(I, 2) is S.true raises(TypeError, lambda: Gt(I, 2)) raises(TypeError, lambda: Ge(I, 2)) raises(TypeError, lambda: Lt(I, 2)) raises(TypeError, lambda: Le(I, 2)) a = Float('.000000000000000000001', '') b = Float('.0000000000000000000001', '') assert Eq(pi + a, pi + b) is S.false def test_rich_cmp(): assert (x < y) == Lt(x, y) assert (x <= y) == Le(x, y) assert (x > y) == Gt(x, y) assert (x >= y) == Ge(x, y) def test_doit(): from sympy import Symbol p = Symbol('p', positive=True) n = Symbol('n', negative=True) np = Symbol('np', nonpositive=True) nn = Symbol('nn', nonnegative=True) assert Gt(p, 0).doit() is S.true assert Gt(p, 1).doit() == Gt(p, 1) assert Ge(p, 0).doit() is S.true assert Le(p, 0).doit() is S.false assert Lt(n, 0).doit() is S.true assert Le(np, 0).doit() is S.true assert Gt(nn, 0).doit() == Gt(nn, 0) assert Lt(nn, 0).doit() is S.false assert Eq(x, 0).doit() == Eq(x, 0) def test_new_relational(): x = Symbol('x') assert Eq(x) == Relational(x, 0) # None ==> Equality assert Eq(x) == Relational(x, 0, '==') assert Eq(x) == Relational(x, 0, 'eq') assert Eq(x) == Equality(x, 0) assert Eq(x, -1) == Relational(x, -1) # None ==> Equality assert Eq(x, -1) == Relational(x, -1, '==') assert Eq(x, -1) == Relational(x, -1, 'eq') assert Eq(x, -1) == Equality(x, -1) assert Eq(x) != Relational(x, 1) # None ==> Equality assert Eq(x) != Relational(x, 1, '==') assert Eq(x) != Relational(x, 1, 'eq') assert Eq(x) != Equality(x, 1) assert Eq(x, -1) != Relational(x, 1) # None ==> Equality assert Eq(x, -1) != Relational(x, 1, '==') assert Eq(x, -1) != Relational(x, 1, 'eq') assert Eq(x, -1) != Equality(x, 1) assert Ne(x, 0) == Relational(x, 0, '!=') assert Ne(x, 0) == Relational(x, 0, '<>') assert Ne(x, 0) == Relational(x, 0, 'ne') assert Ne(x, 0) == Unequality(x, 0) assert Ne(x, 0) != Relational(x, 1, '!=') assert Ne(x, 0) != Relational(x, 1, '<>') assert Ne(x, 0) != Relational(x, 1, 'ne') assert Ne(x, 0) != Unequality(x, 1) assert Ge(x, 0) == Relational(x, 0, '>=') assert Ge(x, 0) == Relational(x, 0, 'ge') assert Ge(x, 0) == GreaterThan(x, 0) assert Ge(x, 1) != Relational(x, 0, '>=') assert Ge(x, 1) != Relational(x, 0, 'ge') assert Ge(x, 1) != GreaterThan(x, 0) assert (x >= 1) == Relational(x, 1, '>=') assert (x >= 1) == Relational(x, 1, 'ge') assert (x >= 1) == GreaterThan(x, 1) assert (x >= 0) != Relational(x, 1, '>=') assert (x >= 0) != Relational(x, 1, 'ge') assert (x >= 0) != GreaterThan(x, 1) assert Le(x, 0) == Relational(x, 0, '<=') assert Le(x, 0) == Relational(x, 0, 'le') assert Le(x, 0) == LessThan(x, 0) assert Le(x, 1) != Relational(x, 0, '<=') assert Le(x, 1) != Relational(x, 0, 'le') assert Le(x, 1) != LessThan(x, 0) assert (x <= 1) == Relational(x, 1, '<=') assert (x <= 1) == Relational(x, 1, 'le') assert (x <= 1) == LessThan(x, 1) assert (x <= 0) != Relational(x, 1, '<=') assert (x <= 0) != Relational(x, 1, 'le') assert (x <= 0) != LessThan(x, 1) assert Gt(x, 0) == Relational(x, 0, '>') assert Gt(x, 0) == Relational(x, 0, 'gt') assert Gt(x, 0) == StrictGreaterThan(x, 0) assert Gt(x, 1) != Relational(x, 0, '>') assert Gt(x, 1) != Relational(x, 0, 'gt') assert Gt(x, 1) != StrictGreaterThan(x, 0) assert (x > 1) == Relational(x, 1, '>') assert (x > 1) == Relational(x, 1, 'gt') assert (x > 1) == StrictGreaterThan(x, 1) assert (x > 0) != Relational(x, 1, '>') assert (x > 0) != Relational(x, 1, 'gt') assert (x > 0) != StrictGreaterThan(x, 1) assert Lt(x, 0) == Relational(x, 0, '<') assert Lt(x, 0) == Relational(x, 0, 'lt') assert Lt(x, 0) == StrictLessThan(x, 0) assert Lt(x, 1) != Relational(x, 0, '<') assert Lt(x, 1) != Relational(x, 0, 'lt') assert Lt(x, 1) != StrictLessThan(x, 0) assert (x < 1) == Relational(x, 1, '<') assert (x < 1) == Relational(x, 1, 'lt') assert (x < 1) == StrictLessThan(x, 1) assert (x < 0) != Relational(x, 1, '<') assert (x < 0) != Relational(x, 1, 'lt') assert (x < 0) != StrictLessThan(x, 1) # finally, some fuzz testing from random import randint from sympy.core.compatibility import unichr for i in range(100): while 1: strtype, length = (unichr, 65535) if randint(0, 1) else (chr, 255) relation_type = strtype(randint(0, length)) if randint(0, 1): relation_type += strtype(randint(0, length)) if relation_type not in ('==', 'eq', '!=', '<>', 'ne', '>=', 'ge', '<=', 'le', '>', 'gt', '<', 'lt', ':=', '+=', '-=', '*=', '/=', '%='): break raises(ValueError, lambda: Relational(x, 1, relation_type)) assert all(Relational(x, 0, op).rel_op == '==' for op in ('eq', '==')) assert all(Relational(x, 0, op).rel_op == '!=' for op in ('ne', '<>', '!=')) assert all(Relational(x, 0, op).rel_op == '>' for op in ('gt', '>')) assert all(Relational(x, 0, op).rel_op == '<' for op in ('lt', '<')) assert all(Relational(x, 0, op).rel_op == '>=' for op in ('ge', '>=')) assert all(Relational(x, 0, op).rel_op == '<=' for op in ('le', '<=')) def test_relational_bool_output(): # https://github.com/sympy/sympy/issues/5931 raises(TypeError, lambda: bool(x > 3)) raises(TypeError, lambda: bool(x >= 3)) raises(TypeError, lambda: bool(x < 3)) raises(TypeError, lambda: bool(x <= 3)) raises(TypeError, lambda: bool(Eq(x, 3))) raises(TypeError, lambda: bool(Ne(x, 3))) def test_relational_logic_symbols(): # See issue 6204 assert (x < y) & (z < t) == And(x < y, z < t) assert (x < y) | (z < t) == Or(x < y, z < t) assert ~(x < y) == Not(x < y) assert (x < y) >> (z < t) == Implies(x < y, z < t) assert (x < y) << (z < t) == Implies(z < t, x < y) assert (x < y) ^ (z < t) == Xor(x < y, z < t) assert isinstance((x < y) & (z < t), And) assert isinstance((x < y) | (z < t), Or) assert isinstance(~(x < y), GreaterThan) assert isinstance((x < y) >> (z < t), Implies) assert isinstance((x < y) << (z < t), Implies) assert isinstance((x < y) ^ (z < t), (Or, Xor)) def test_univariate_relational_as_set(): assert (x > 0).as_set() == Interval(0, oo, True, True) assert (x >= 0).as_set() == Interval(0, oo) assert (x < 0).as_set() == Interval(-oo, 0, True, True) assert (x <= 0).as_set() == Interval(-oo, 0) assert Eq(x, 0).as_set() == FiniteSet(0) assert Ne(x, 0).as_set() == Interval(-oo, 0, True, True) + \ Interval(0, oo, True, True) assert (x**2 >= 4).as_set() == Interval(-oo, -2) + Interval(2, oo) @XFAIL def test_multivariate_relational_as_set(): assert (x*y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) + \ Interval(-oo, 0)*Interval(-oo, 0) def test_Not(): assert Not(Equality(x, y)) == Unequality(x, y) assert Not(Unequality(x, y)) == Equality(x, y) assert Not(StrictGreaterThan(x, y)) == LessThan(x, y) assert Not(StrictLessThan(x, y)) == GreaterThan(x, y) assert Not(GreaterThan(x, y)) == StrictLessThan(x, y) assert Not(LessThan(x, y)) == StrictGreaterThan(x, y) def test_evaluate(): assert str(Eq(x, x, evaluate=False)) == 'Eq(x, x)' assert Eq(x, x, evaluate=False).doit() == S.true assert str(Ne(x, x, evaluate=False)) == 'Ne(x, x)' assert Ne(x, x, evaluate=False).doit() == S.false assert str(Ge(x, x, evaluate=False)) == 'x >= x' assert str(Le(x, x, evaluate=False)) == 'x <= x' assert str(Gt(x, x, evaluate=False)) == 'x > x' assert str(Lt(x, x, evaluate=False)) == 'x < x' def assert_all_ineq_raise_TypeError(a, b): raises(TypeError, lambda: a > b) raises(TypeError, lambda: a >= b) raises(TypeError, lambda: a < b) raises(TypeError, lambda: a <= b) raises(TypeError, lambda: b > a) raises(TypeError, lambda: b >= a) raises(TypeError, lambda: b < a) raises(TypeError, lambda: b <= a) def assert_all_ineq_give_class_Inequality(a, b): """All inequality operations on `a` and `b` result in class Inequality.""" from sympy.core.relational import _Inequality as Inequality assert isinstance(a > b, Inequality) assert isinstance(a >= b, Inequality) assert isinstance(a < b, Inequality) assert isinstance(a <= b, Inequality) assert isinstance(b > a, Inequality) assert isinstance(b >= a, Inequality) assert isinstance(b < a, Inequality) assert isinstance(b <= a, Inequality) def test_imaginary_compare_raises_TypeError(): # See issue #5724 assert_all_ineq_raise_TypeError(I, x) def test_complex_compare_not_real(): # two cases which are not real y = Symbol('y', imaginary=True) z = Symbol('z', complex=True, real=False) for w in (y, z): assert_all_ineq_raise_TypeError(2, w) # some cases which should remain un-evaluated t = Symbol('t') x = Symbol('x', real=True) z = Symbol('z', complex=True) for w in (x, z, t): assert_all_ineq_give_class_Inequality(2, w) def test_imaginary_and_inf_compare_raises_TypeError(): # See pull request #7835 y = Symbol('y', imaginary=True) assert_all_ineq_raise_TypeError(oo, y) assert_all_ineq_raise_TypeError(-oo, y) def test_complex_pure_imag_not_ordered(): raises(TypeError, lambda: 2*I < 3*I) # more generally x = Symbol('x', real=True, nonzero=True) y = Symbol('y', imaginary=True) z = Symbol('z', complex=True) assert_all_ineq_raise_TypeError(I, y) t = I*x # an imaginary number, should raise errors assert_all_ineq_raise_TypeError(2, t) t = -I*y # a real number, so no errors assert_all_ineq_give_class_Inequality(2, t) t = I*z # unknown, should be unevaluated assert_all_ineq_give_class_Inequality(2, t) def test_x_minus_y_not_same_as_x_lt_y(): """ A consequence of pull request #7792 is that `x - y < 0` and `x < y` are not synonymous. """ x = I + 2 y = I + 3 raises(TypeError, lambda: x < y) assert x - y < 0 ineq = Lt(x, y, evaluate=False) raises(TypeError, lambda: ineq.doit()) assert ineq.lhs - ineq.rhs < 0 t = Symbol('t', imaginary=True) x = 2 + t y = 3 + t ineq = Lt(x, y, evaluate=False) raises(TypeError, lambda: ineq.doit()) assert ineq.lhs - ineq.rhs < 0 # this one should give error either way x = I + 2 y = 2*I + 3 raises(TypeError, lambda: x < y) raises(TypeError, lambda: x - y < 0) def test_nan_equality_exceptions(): # See issue #7774 import random assert Equality(nan, nan) is S.false assert Unequality(nan, nan) is S.true # See issue #7773 A = (x, S(0), S(1)/3, pi, oo, -oo) assert Equality(nan, random.choice(A)) is S.false assert Equality(random.choice(A), nan) is S.false assert Unequality(nan, random.choice(A)) is S.true assert Unequality(random.choice(A), nan) is S.true def test_nan_inequality_raise_errors(): # See discussion in pull request #7776. We test inequalities with # a set including examples of various classes. for q in (x, S(0), S(10), S(1)/3, pi, S(1.3), oo, -oo, nan): assert_all_ineq_raise_TypeError(q, nan) def test_nan_complex_inequalities(): # Comparisons of NaN with non-real raise errors, we're not too # fussy whether its the NaN error or complex error. for r in (I, zoo, Symbol('z', imaginary=True)): assert_all_ineq_raise_TypeError(r, nan) def test_complex_infinity_inequalities(): raises(TypeError, lambda: zoo > 0) raises(TypeError, lambda: zoo >= 0) raises(TypeError, lambda: zoo < 0) raises(TypeError, lambda: zoo <= 0) def test_inequalities_symbol_name_same(): """Using the operator and functional forms should give same results.""" # We test all combinations from a set # FIXME: could replace with random selection after test passes A = (x, y, S(0), S(1)/3, pi, oo, -oo) for a in A: for b in A: assert Gt(a, b) == (a > b) assert Lt(a, b) == (a < b) assert Ge(a, b) == (a >= b) assert Le(a, b) == (a <= b) for b in (y, S(0), S(1)/3, pi, oo, -oo): assert Gt(x, b, evaluate=False) == (x > b) assert Lt(x, b, evaluate=False) == (x < b) assert Ge(x, b, evaluate=False) == (x >= b) assert Le(x, b, evaluate=False) == (x <= b) for b in (y, S(0), S(1)/3, pi, oo, -oo): assert Gt(b, x, evaluate=False) == (b > x) assert Lt(b, x, evaluate=False) == (b < x) assert Ge(b, x, evaluate=False) == (b >= x) assert Le(b, x, evaluate=False) == (b <= x) def test_inequalities_symbol_name_same_complex(): """Using the operator and functional forms should give same results. With complex non-real numbers, both should raise errors. """ # FIXME: could replace with random selection after test passes for a in (x, S(0), S(1)/3, pi, oo): raises(TypeError, lambda: Gt(a, I)) raises(TypeError, lambda: a > I) raises(TypeError, lambda: Lt(a, I)) raises(TypeError, lambda: a < I) raises(TypeError, lambda: Ge(a, I)) raises(TypeError, lambda: a >= I) raises(TypeError, lambda: Le(a, I)) raises(TypeError, lambda: a <= I) def test_inequalities_cant_sympify_other(): # see issue 7833 from operator import gt, lt, ge, le bar = "foo" for a in (x, S(0), S(1)/3, pi, I, zoo, oo, -oo, nan): for op in (lt, gt, le, ge): raises(TypeError, lambda: op(a, bar)) def test_ineq_avoid_wild_symbol_flip(): # see issue #7951, we try to avoid this internally, e.g., by using # __lt__ instead of "<". from sympy.core.symbol import Wild p = symbols('p', cls=Wild) # x > p might flip, but Gt should not: assert Gt(x, p) == Gt(x, p, evaluate=False) # Previously failed as 'p > x': e = Lt(x, y).subs({y: p}) assert e == Lt(x, p, evaluate=False) # Previously failed as 'p <= x': e = Ge(x, p).doit() assert e == Ge(x, p, evaluate=False) def test_issue_8245(): a = S("6506833320952669167898688709329/5070602400912917605986812821504") q = a.n(10) assert (a == q) is True assert (a != q) is False assert (a > q) == False assert (a < q) == False assert (a >= q) == True assert (a <= q) == True a = sqrt(2) r = Rational(str(a.n(30))) assert (r == a) is False assert (r != a) is True assert (r > a) == True assert (r < a) == False assert (r >= a) == True assert (r <= a) == False a = sqrt(2) r = Rational(str(a.n(29))) assert (r == a) is False assert (r != a) is True assert (r > a) == False assert (r < a) == True assert (r >= a) == False assert (r <= a) == True assert Eq(log(cos(2)**2 + sin(2)**2), 0) == True def test_issue_8449(): p = Symbol('p', nonnegative=True) assert Lt(-oo, p) assert Ge(-oo, p) is S.false assert Gt(oo, -p) assert Le(oo, -p) is S.false def test_simplify_relational(): assert simplify(x*(y + 1) - x*y - x + 1 < x) == (x > 1) r = S(1) < x # canonical operations are not the same as simplification, # so if there is no simplification, canonicalization will # be done unless the measure forbids it assert simplify(r) == r.canonical assert simplify(r, ratio=0) != r.canonical # this is not a random test; in _eval_simplify # this will simplify to S.false and that is the # reason for the 'if r.is_Relational' in Relational's # _eval_simplify routine assert simplify(-(2**(3*pi/2) + 6**pi)**(1/pi) + 2*(2**(pi/2) + 3**pi)**(1/pi) < 0) is S.false # canonical at least for f in (Eq, Ne): f(y, x).simplify() == f(x, y) f(x - 1, 0).simplify() == f(x, 1) f(x - 1, x).simplify() == S.false f(2*x - 1, x).simplify() == f(x, 1) f(2*x, 4).simplify() == f(x, 2) z = cos(1)**2 + sin(1)**2 - 1 # z.is_zero is None f(z*x, 0).simplify() == f(z*x, 0) def test_equals(): w, x, y, z = symbols('w:z') f = Function('f') assert Eq(x, 1).equals(Eq(x*(y + 1) - x*y - x + 1, x)) assert Eq(x, y).equals(x < y, True) == False assert Eq(x, f(1)).equals(Eq(x, f(2)), True) == f(1) - f(2) assert Eq(f(1), y).equals(Eq(f(2), y), True) == f(1) - f(2) assert Eq(x, f(1)).equals(Eq(f(2), x), True) == f(1) - f(2) assert Eq(f(1), x).equals(Eq(x, f(2)), True) == f(1) - f(2) assert Eq(w, x).equals(Eq(y, z), True) == False assert Eq(f(1), f(2)).equals(Eq(f(3), f(4)), True) == f(1) - f(3) assert (x < y).equals(y > x, True) == True assert (x < y).equals(y >= x, True) == False assert (x < y).equals(z < y, True) == False assert (x < y).equals(x < z, True) == False assert (x < f(1)).equals(x < f(2), True) == f(1) - f(2) assert (f(1) < x).equals(f(2) < x, True) == f(1) - f(2) def test_reversed(): assert (x < y).reversed == (y > x) assert (x <= y).reversed == (y >= x) assert Eq(x, y, evaluate=False).reversed == Eq(y, x, evaluate=False) assert Ne(x, y, evaluate=False).reversed == Ne(y, x, evaluate=False) assert (x >= y).reversed == (y <= x) assert (x > y).reversed == (y < x) def test_canonical(): c = [i.canonical for i in ( x + y < z, x + 2 > 3, x < 2, S(2) > x, x**2 > -x/y, Gt(3, 2, evaluate=False) )] assert [i.canonical for i in c] == c assert [i.reversed.canonical for i in c] == c assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c) c = [i.reversed.func(i.rhs, i.lhs, evaluate=False).canonical for i in c] assert [i.canonical for i in c] == c assert [i.reversed.canonical for i in c] == c assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c) @XFAIL def test_issue_8444(): x = symbols('x', real=True) assert (x <= oo) == (x >= -oo) == True x = symbols('x') assert x >= floor(x) assert (x < floor(x)) == False assert Gt(x, floor(x)) == Gt(x, floor(x), evaluate=False) assert Ge(x, floor(x)) == Ge(x, floor(x), evaluate=False) assert x <= ceiling(x) assert (x > ceiling(x)) == False assert Lt(x, ceiling(x)) == Lt(x, ceiling(x), evaluate=False) assert Le(x, ceiling(x)) == Le(x, ceiling(x), evaluate=False) i = symbols('i', integer=True) assert (i > floor(i)) == False assert (i < ceiling(i)) == False def test_issue_10304(): d = cos(1)**2 + sin(1)**2 - 1 assert d.is_comparable is False # if this fails, find a new d e = 1 + d*I assert simplify(Eq(e, 0)) is S.false def test_issue_10401(): x = symbols('x') fin = symbols('inf', finite=True) inf = symbols('inf', infinite=True) inf2 = symbols('inf2', infinite=True) zero = symbols('z', zero=True) nonzero = symbols('nz', zero=False, finite=True) assert Eq(1/(1/x + 1), 1).func is Eq assert Eq(1/(1/x + 1), 1).subs(x, S.ComplexInfinity) is S.true assert Eq(1/(1/fin + 1), 1) is S.false T, F = S.true, S.false assert Eq(fin, inf) is F assert Eq(inf, inf2) is T and inf != inf2 assert Eq(inf/inf2, 0) is F assert Eq(inf/fin, 0) is F assert Eq(fin/inf, 0) is T assert Eq(zero/nonzero, 0) is T and ((zero/nonzero) != 0) assert Eq(inf, -inf) is F assert Eq(fin/(fin + 1), 1) is S.false o = symbols('o', odd=True) assert Eq(o, 2*o) is S.false p = symbols('p', positive=True) assert Eq(p/(p - 1), 1) is F def test_issue_10633(): assert Eq(True, False) == False assert Eq(False, True) == False assert Eq(True, True) == True assert Eq(False, False) == True def test_issue_10927(): x = symbols('x') assert str(Eq(x, oo)) == 'Eq(x, oo)' assert str(Eq(x, -oo)) == 'Eq(x, -oo)' def test_issues_13081_12583_12534(): # 13081 r = Rational('905502432259640373/288230376151711744') assert (r < pi) is S.false assert (r > pi) is S.true # 12583 v = sqrt(2) u = sqrt(v) + 2/sqrt(10 - 8/sqrt(2 - v) + 4*v*(1/sqrt(2 - v) - 1)) assert (u >= 0) is S.true # 12534; Rational vs NumberSymbol # here are some precisions for which Rational forms # at a lower and higher precision bracket the value of pi # e.g. for p = 20: # Rational(pi.n(p + 1)).n(25) = 3.14159265358979323846 2834 # pi.n(25) = 3.14159265358979323846 2643 # Rational(pi.n(p )).n(25) = 3.14159265358979323846 1987 assert [p for p in range(20, 50) if (Rational(pi.n(p)) < pi) and (pi < Rational(pi.n(p + 1))) ] == [20, 24, 27, 33, 37, 43, 48] # pick one such precision and affirm that the reversed operation # gives the opposite result, i.e. if x < y is true then x > y # must be false p = 20 # Rational vs NumberSymbol G = [Rational(pi.n(i)) > pi for i in (p, p + 1)] L = [Rational(pi.n(i)) < pi for i in (p, p + 1)] assert G == [False, True] assert all(i is not j for i, j in zip(L, G)) # Float vs NumberSymbol G = [pi.n(i) > pi for i in (p, p + 1)] L = [pi.n(i) < pi for i in (p, p + 1)] assert G == [False, True] assert all(i is not j for i, j in zip(L, G)) # Float vs Float G = [pi.n(p) > pi.n(p + 1)] L = [pi.n(p) < pi.n(p + 1)] assert G == [True] assert all(i is not j for i, j in zip(L, G)) # Float vs Rational # the rational form is less than the floating representation # at the same precision assert [i for i in range(15, 50) if Rational(pi.n(i)) > pi.n(i) ] == [] # this should be the same if we reverse the relational assert [i for i in range(15, 50) if pi.n(i) < Rational(pi.n(i)) ] == [] def test_binary_symbols(): ans = set([x]) for f in Eq, Ne: for t in S.true, S.false: eq = f(x, S.true) assert eq.binary_symbols == ans assert eq.reversed.binary_symbols == ans assert f(x, 1).binary_symbols == set() def test_rel_args(): # can't have Boolean args; this is automatic with Python 3 # so this test and the __lt__, etc..., definitions in # relational.py and boolalg.py which are marked with /// # can be removed. for op in ['<', '<=', '>', '>=']: for b in (S.true, x < 1, And(x, y)): for v in (0.1, 1, 2**32, t, S(1)): raises(TypeError, lambda: Relational(b, v, op)) def test_Equality_rewrite_as_Add(): eq = Eq(x + y, y - x) assert eq.rewrite(Add) == 2*x assert eq.rewrite(Add, evaluate=None).args == (x, x, y, -y) assert eq.rewrite(Add, evaluate=False).args == (x, y, x, -y)
c61ed428f0ab1123bc09a648548766b35adfe685ee9af4cb7cbcb0b16556e4c5
from sympy import (Abs, Add, atan, ceiling, cos, E, Eq, exp, factorial, fibonacci, floor, Function, GoldenRatio, I, Integral, integrate, log, Mul, N, oo, pi, Pow, product, Product, Rational, S, Sum, sin, sqrt, sstr, sympify, Symbol, Max, nfloat) from sympy.core.evalf import (complex_accuracy, PrecisionExhausted, scaled_zero, get_integer_part, as_mpmath) from mpmath import inf, ninf from mpmath.libmp.libmpf import from_float from sympy.core.compatibility import long, range from sympy.utilities.pytest import raises, XFAIL from sympy.abc import n, x, y def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) def test_evalf_helpers(): assert complex_accuracy((from_float(2.0), None, 35, None)) == 35 assert complex_accuracy((from_float(2.0), from_float(10.0), 35, 100)) == 37 assert complex_accuracy( (from_float(2.0), from_float(1000.0), 35, 100)) == 43 assert complex_accuracy((from_float(2.0), from_float(10.0), 100, 35)) == 35 assert complex_accuracy( (from_float(2.0), from_float(1000.0), 100, 35)) == 35 def test_evalf_basic(): assert NS('pi', 15) == '3.14159265358979' assert NS('2/3', 10) == '0.6666666667' assert NS('355/113-pi', 6) == '2.66764e-7' assert NS('16*atan(1/5)-4*atan(1/239)', 15) == '3.14159265358979' def test_cancellation(): assert NS(Add(pi, Rational(1, 10**1000), -pi, evaluate=False), 15, maxn=1200) == '1.00000000000000e-1000' def test_evalf_powers(): assert NS('pi**(10**20)', 10) == '1.339148777e+49714987269413385435' assert NS(pi**(10**100), 10) == ('4.946362032e+4971498726941338543512682882' '9089887365167832438044244613405349992494711208' '95526746555473864642912223') assert NS('2**(1/10**50)', 15) == '1.00000000000000' assert NS('2**(1/10**50)-1', 15) == '6.93147180559945e-51' # Evaluation of Rump's ill-conditioned polynomial def test_evalf_rump(): a = 1335*y**6/4 + x**2*(11*x**2*y**2 - y**6 - 121*y**4 - 2) + 11*y**8/2 + x/(2*y) assert NS(a, 15, subs={x: 77617, y: 33096}) == '-0.827396059946821' def test_evalf_complex(): assert NS('2*sqrt(pi)*I', 10) == '3.544907702*I' assert NS('3+3*I', 15) == '3.00000000000000 + 3.00000000000000*I' assert NS('E+pi*I', 15) == '2.71828182845905 + 3.14159265358979*I' assert NS('pi * (3+4*I)', 15) == '9.42477796076938 + 12.5663706143592*I' assert NS('I*(2+I)', 15) == '-1.00000000000000 + 2.00000000000000*I' @XFAIL def test_evalf_complex_bug(): assert NS('(pi+E*I)*(E+pi*I)', 15) in ('0.e-15 + 17.25866050002*I', '0.e-17 + 17.25866050002*I', '-0.e-17 + 17.25866050002*I') def test_evalf_complex_powers(): assert NS('(E+pi*I)**100000000000000000') == \ '-3.58896782867793e+61850354284995199 + 4.58581754997159e+61850354284995199*I' # XXX: rewrite if a+a*I simplification introduced in sympy #assert NS('(pi + pi*I)**2') in ('0.e-15 + 19.7392088021787*I', '0.e-16 + 19.7392088021787*I') assert NS('(pi + pi*I)**2', chop=True) == '19.7392088021787*I' assert NS( '(pi + 1/10**8 + pi*I)**2') == '6.2831853e-8 + 19.7392088650106*I' assert NS('(pi + 1/10**12 + pi*I)**2') == '6.283e-12 + 19.7392088021850*I' assert NS('(pi + pi*I)**4', chop=True) == '-389.636364136010' assert NS( '(pi + 1/10**8 + pi*I)**4') == '-389.636366616512 + 2.4805021e-6*I' assert NS('(pi + 1/10**12 + pi*I)**4') == '-389.636364136258 + 2.481e-10*I' assert NS( '(10000*pi + 10000*pi*I)**4', chop=True) == '-3.89636364136010e+18' @XFAIL def test_evalf_complex_powers_bug(): assert NS('(pi + pi*I)**4') == '-389.63636413601 + 0.e-14*I' def test_evalf_exponentiation(): assert NS(sqrt(-pi)) == '1.77245385090552*I' assert NS(Pow(pi*I, Rational( 1, 2), evaluate=False)) == '1.25331413731550 + 1.25331413731550*I' assert NS(pi**I) == '0.413292116101594 + 0.910598499212615*I' assert NS(pi**(E + I/3)) == '20.8438653991931 + 8.36343473930031*I' assert NS((pi + I/3)**(E + I/3)) == '17.2442906093590 + 13.6839376767037*I' assert NS(exp(pi)) == '23.1406926327793' assert NS(exp(pi + E*I)) == '-21.0981542849657 + 9.50576358282422*I' assert NS(pi**pi) == '36.4621596072079' assert NS((-pi)**pi) == '-32.9138577418939 - 15.6897116534332*I' assert NS((-pi)**(-pi)) == '-0.0247567717232697 + 0.0118013091280262*I' # An example from Smith, "Multiple Precision Complex Arithmetic and Functions" def test_evalf_complex_cancellation(): A = Rational('63287/100000') B = Rational('52498/100000') C = Rational('69301/100000') D = Rational('83542/100000') F = Rational('2231321613/2500000000') # XXX: the number of returned mantissa digits in the real part could # change with the implementation. What matters is that the returned digits are # correct; those that are showing now are correct. # >>> ((A+B*I)*(C+D*I)).expand() # 64471/10000000000 + 2231321613*I/2500000000 # >>> 2231321613*4 # 8925286452L assert NS((A + B*I)*(C + D*I), 6) == '6.44710e-6 + 0.892529*I' assert NS((A + B*I)*(C + D*I), 10) == '6.447100000e-6 + 0.8925286452*I' assert NS((A + B*I)*( C + D*I) - F*I, 5) in ('6.4471e-6 + 0.e-14*I', '6.4471e-6 - 0.e-14*I') def test_evalf_logs(): assert NS("log(3+pi*I)", 15) == '1.46877619736226 + 0.808448792630022*I' assert NS("log(pi*I)", 15) == '1.14472988584940 + 1.57079632679490*I' assert NS('log(-1 + 0.00001)', 2) == '-1.0e-5 + 3.1*I' assert NS('log(100, 10, evaluate=False)', 15) == '2.00000000000000' assert NS('-2*I*log(-(-1)**(S(1)/9))', 15) == '-5.58505360638185' def test_evalf_trig(): assert NS('sin(1)', 15) == '0.841470984807897' assert NS('cos(1)', 15) == '0.540302305868140' assert NS('sin(10**-6)', 15) == '9.99999999999833e-7' assert NS('cos(10**-6)', 15) == '0.999999999999500' assert NS('sin(E*10**100)', 15) == '0.409160531722613' # Some input near roots assert NS(sin(exp(pi*sqrt(163))*pi), 15) == '-2.35596641936785e-12' assert NS(sin(pi*10**100 + Rational(7, 10**5), evaluate=False), 15, maxn=120) == \ '6.99999999428333e-5' assert NS(sin(Rational(7, 10**5), evaluate=False), 15) == \ '6.99999999428333e-5' # Check detection of various false identities def test_evalf_near_integers(): # Binet's formula f = lambda n: ((1 + sqrt(5))**n)/(2**n * sqrt(5)) assert NS(f(5000) - fibonacci(5000), 10, maxn=1500) == '5.156009964e-1046' # Some near-integer identities from # http://mathworld.wolfram.com/AlmostInteger.html assert NS('sin(2017*2**(1/5))', 15) == '-1.00000000000000' assert NS('sin(2017*2**(1/5))', 20) == '-0.99999999999999997857' assert NS('1+sin(2017*2**(1/5))', 15) == '2.14322287389390e-17' assert NS('45 - 613*E/37 + 35/991', 15) == '6.03764498766326e-11' def test_evalf_ramanujan(): assert NS(exp(pi*sqrt(163)) - 640320**3 - 744, 10) == '-7.499274028e-13' # A related identity A = 262537412640768744*exp(-pi*sqrt(163)) B = 196884*exp(-2*pi*sqrt(163)) C = 103378831900730205293632*exp(-3*pi*sqrt(163)) assert NS(1 - A - B + C, 10) == '1.613679005e-59' # Input that for various reasons have failed at some point def test_evalf_bugs(): assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10) assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10) assert NS('expand_log(log(1+1/10**50))', 20) == '1.0000000000000000000e-50' assert NS('log(10**100,10)', 10) == '100.0000000' assert NS('log(2)', 10) == '0.6931471806' assert NS( '(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667' assert NS(sin(1) + Rational( 1, 10**100)*I, 15) == '0.841470984807897 + 1.00000000000000e-100*I' assert x.evalf() == x assert NS((1 + I)**2*I, 6) == '-2.00000' d = {n: ( -1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)} assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I' assert NS(((-I - sqrt(2)*I)**2).evalf()) == '-5.82842712474619' assert NS((1 + I)**2*I, 15) == '-2.00000000000000' # issue 4758 (1/2): assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71' # issue 4758 (2/2): With the bug present, this still only fails if the # terms are in the order given here. This is not generally the case, # because the order depends on the hashes of the terms. assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n, subs={n: .01}) == '19.8100000000000' assert NS(((x - 1)*((1 - x))**1000).n() ) == '(-x + 1.00000000000000)**1000*(x - 1.00000000000000)' assert NS((-x).n()) == '-x' assert NS((-2*x).n()) == '-2.00000000000000*x' assert NS((-2*x*y).n()) == '-2.00000000000000*x*y' assert cos(x).n(subs={x: 1+I}) == cos(x).subs(x, 1+I).n() # issue 6660. Also NaN != mpmath.nan # In this order: # 0*nan, 0/nan, 0*inf, 0/inf # 0+nan, 0-nan, 0+inf, 0-inf # >>> n = Some Number # n*nan, n/nan, n*inf, n/inf # n+nan, n-nan, n+inf, n-inf assert (0*E**(oo)).n() == S.NaN assert (0/E**(oo)).n() == S.Zero assert (0+E**(oo)).n() == S.Infinity assert (0-E**(oo)).n() == S.NegativeInfinity assert (5*E**(oo)).n() == S.Infinity assert (5/E**(oo)).n() == S.Zero assert (5+E**(oo)).n() == S.Infinity assert (5-E**(oo)).n() == S.NegativeInfinity #issue 7416 assert as_mpmath(0.0, 10, {'chop': True}) == 0 #issue 5412 assert ((oo*I).n() == S.Infinity*I) assert ((oo+oo*I).n() == S.Infinity + S.Infinity*I) #issue 11518 assert NS(2*x**2.5, 5) == '2.0000*x**2.5000' #issue 13076 assert NS(Mul(Max(0, y), x, evaluate=False).evalf()) == 'x*Max(0, y)' def test_evalf_integer_parts(): a = floor(log(8)/log(2) - exp(-1000), evaluate=False) b = floor(log(8)/log(2), evaluate=False) assert a.evalf() == 3 assert b.evalf() == 3 # equals, as a fallback, can still fail but it might succeed as here assert ceiling(10*(sin(1)**2 + cos(1)**2)) == 10 assert int(floor(factorial(50)/E, evaluate=False).evalf(70)) == \ long(11188719610782480504630258070757734324011354208865721592720336800) assert int(ceiling(factorial(50)/E, evaluate=False).evalf(70)) == \ long(11188719610782480504630258070757734324011354208865721592720336801) assert int(floor((GoldenRatio**999 / sqrt(5) + Rational(1, 2))) .evalf(1000)) == fibonacci(999) assert int(floor((GoldenRatio**1000 / sqrt(5) + Rational(1, 2))) .evalf(1000)) == fibonacci(1000) assert ceiling(x).evalf(subs={x: 3}) == 3 assert ceiling(x).evalf(subs={x: 3*I}) == 3*I assert ceiling(x).evalf(subs={x: 2 + 3*I}) == 2 + 3*I assert ceiling(x).evalf(subs={x: 3.}) == 3 assert ceiling(x).evalf(subs={x: 3.*I}) == 3*I assert ceiling(x).evalf(subs={x: 2. + 3*I}) == 2 + 3*I assert float((floor(1.5, evaluate=False)+1/9).evalf()) == 1 + 1/9 assert float((floor(0.5, evaluate=False)+20).evalf()) == 20 def test_evalf_trig_zero_detection(): a = sin(160*pi, evaluate=False) t = a.evalf(maxn=100) assert abs(t) < 1e-100 assert t._prec < 2 assert a.evalf(chop=True) == 0 raises(PrecisionExhausted, lambda: a.evalf(strict=True)) def test_evalf_sum(): assert Sum(n,(n,1,2)).evalf() == 3. assert Sum(n,(n,1,2)).doit().evalf() == 3. # the next test should return instantly assert Sum(1/n,(n,1,2)).evalf() == 1.5 # issue 8219 assert Sum(E/factorial(n), (n, 0, oo)).evalf() == (E*E).evalf() # issue 8254 assert Sum(2**n*n/factorial(n), (n, 0, oo)).evalf() == (2*E*E).evalf() # issue 8411 s = Sum(1/x**2, (x, 100, oo)) assert s.n() == s.doit().n() def test_evalf_divergent_series(): raises(ValueError, lambda: Sum(1/n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(n/(n**2 + 1), (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(n**2, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(2**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-2)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((2*n + 3)/(3*n**2 + 4), (n, 0, oo)).evalf()) raises(ValueError, lambda: Sum((0.5*n**3)/(n**4 + 1), (n, 0, oo)).evalf()) def test_evalf_product(): assert Product(n, (n, 1, 10)).evalf() == 3628800. assert Product(1 - S.Half**2/n**2, (n, 1, oo)).evalf(5)==0.63662 assert Product(n, (n, -1, 3)).evalf() == 0 def test_evalf_py_methods(): assert abs(float(pi + 1) - 4.1415926535897932) < 1e-10 assert abs(complex(pi + 1) - 4.1415926535897932) < 1e-10 assert abs( complex(pi + E*I) - (3.1415926535897931 + 2.7182818284590451j)) < 1e-10 raises(TypeError, lambda: float(pi + x)) def test_evalf_power_subs_bugs(): assert (x**2).evalf(subs={x: 0}) == 0 assert sqrt(x).evalf(subs={x: 0}) == 0 assert (x**Rational(2, 3)).evalf(subs={x: 0}) == 0 assert (x**x).evalf(subs={x: 0}) == 1 assert (3**x).evalf(subs={x: 0}) == 1 assert exp(x).evalf(subs={x: 0}) == 1 assert ((2 + I)**x).evalf(subs={x: 0}) == 1 assert (0**x).evalf(subs={x: 0}) == 1 def test_evalf_arguments(): raises(TypeError, lambda: pi.evalf(method="garbage")) def test_implemented_function_evalf(): from sympy.utilities.lambdify import implemented_function f = Function('f') f = implemented_function(f, lambda x: x + 1) assert str(f(x)) == "f(x)" assert str(f(2)) == "f(2)" assert f(2).evalf() == 3 assert f(x).evalf() == f(x) f = implemented_function(Function('sin'), lambda x: x + 1) assert f(2).evalf() != sin(2) del f._imp_ # XXX: due to caching _imp_ would influence all other tests def test_evaluate_false(): for no in [0, False]: assert Add(3, 2, evaluate=no).is_Add assert Mul(3, 2, evaluate=no).is_Mul assert Pow(3, 2, evaluate=no).is_Pow assert Pow(y, 2, evaluate=True) - Pow(y, 2, evaluate=True) == 0 def test_evalf_relational(): assert Eq(x/5, y/10).evalf() == Eq(0.2*x, 0.1*y) def test_issue_5486(): assert not cos(sqrt(0.5 + I)).n().is_Function def test_issue_5486_bug(): from sympy import I, Expr assert abs(Expr._from_mpmath(I._to_mpmath(15), 15) - I) < 1.0e-15 def test_bugs(): from sympy import polar_lift, re assert abs(re((1 + I)**2)) < 1e-15 # anything that evalf's to 0 will do in place of polar_lift assert abs(polar_lift(0)).n() == 0 def test_subs(): assert NS('besseli(-x, y) - besseli(x, y)', subs={x: 3.5, y: 20.0}) == \ '-4.92535585957223e-10' assert NS('Piecewise((x, x>0)) + Piecewise((1-x, x>0))', subs={x: 0.1}) == \ '1.00000000000000' raises(TypeError, lambda: x.evalf(subs=(x, 1))) def test_issue_4956_5204(): # issue 4956 v = S('''(-27*12**(1/3)*sqrt(31)*I + 27*2**(2/3)*3**(1/3)*sqrt(31)*I)/(-2511*2**(2/3)*3**(1/3) + (29*18**(1/3) + 9*2**(1/3)*3**(2/3)*sqrt(31)*I + 87*2**(1/3)*3**(1/6)*I)**2)''') assert NS(v, 1) == '0.e-118 - 0.e-118*I' # issue 5204 v = S('''-(357587765856 + 18873261792*249**(1/2) + 56619785376*I*83**(1/2) + 108755765856*I*3**(1/2) + 41281887168*6**(1/3)*(1422 + 54*249**(1/2))**(1/3) - 1239810624*6**(1/3)*249**(1/2)*(1422 + 54*249**(1/2))**(1/3) - 3110400000*I*6**(1/3)*83**(1/2)*(1422 + 54*249**(1/2))**(1/3) + 13478400000*I*3**(1/2)*6**(1/3)*(1422 + 54*249**(1/2))**(1/3) + 1274950152*6**(2/3)*(1422 + 54*249**(1/2))**(2/3) + 32347944*6**(2/3)*249**(1/2)*(1422 + 54*249**(1/2))**(2/3) - 1758790152*I*3**(1/2)*6**(2/3)*(1422 + 54*249**(1/2))**(2/3) - 304403832*I*6**(2/3)*83**(1/2)*(1422 + 4*249**(1/2))**(2/3))/(175732658352 + (1106028 + 25596*249**(1/2) + 76788*I*83**(1/2))**2)''') assert NS(v, 5) == '0.077284 + 1.1104*I' assert NS(v, 1) == '0.08 + 1.*I' def test_old_docstring(): a = (E + pi*I)*(E - pi*I) assert NS(a) == '17.2586605000200' assert a.n() == 17.25866050002001 def test_issue_4806(): assert integrate(atan(x)**2, (x, -1, 1)).evalf().round(1) == 0.5 assert atan(0, evaluate=False).n() == 0 def test_evalf_mul(): # sympy should not try to expand this; it should be handled term-wise # in evalf through mpmath assert NS(product(1 + sqrt(n)*I, (n, 1, 500)), 1) == '5.e+567 + 2.e+568*I' def test_scaled_zero(): a, b = (([0], 1, 100, 1), -1) assert scaled_zero(100) == (a, b) assert scaled_zero(a) == (0, 1, 100, 1) a, b = (([1], 1, 100, 1), -1) assert scaled_zero(100, -1) == (a, b) assert scaled_zero(a) == (1, 1, 100, 1) raises(ValueError, lambda: scaled_zero(scaled_zero(100))) raises(ValueError, lambda: scaled_zero(100, 2)) raises(ValueError, lambda: scaled_zero(100, 0)) raises(ValueError, lambda: scaled_zero((1, 5, 1, 3))) def test_chop_value(): for i in range(-27, 28): assert (Pow(10, i)*2).n(chop=10**i) and not (Pow(10, i)).n(chop=10**i) def test_infinities(): assert oo.evalf(chop=True) == inf assert (-oo).evalf(chop=True) == ninf def test_to_mpmath(): assert sqrt(3)._to_mpmath(20)._mpf_ == (0, long(908093), -19, 20) assert S(3.2)._to_mpmath(20)._mpf_ == (0, long(838861), -18, 20) def test_issue_6632_evalf(): add = (-100000*sqrt(2500000001) + 5000000001) assert add.n() == 9.999999998e-11 assert (add*add).n() == 9.999999996e-21 def test_issue_4945(): from sympy.abc import H from sympy import zoo assert (H/0).evalf(subs={H:1}) == zoo*H def test_evalf_integral(): # test that workprec has to increase in order to get a result other than 0 eps = Rational(1, 1000000) assert Integral(sin(x), (x, -pi, pi + eps)).n(2)._prec == 10 def test_issue_8821_highprec_from_str(): s = str(pi.evalf(128)) p = N(s) assert Abs(sin(p)) < 1e-15 p = N(s, 64) assert Abs(sin(p)) < 1e-64 def test_issue_8853(): p = Symbol('x', even=True, positive=True) assert floor(-p - S.Half).is_even == False assert floor(-p + S.Half).is_even == True assert ceiling(p - S.Half).is_even == True assert ceiling(p + S.Half).is_even == False assert get_integer_part(S.Half, -1, {}, True) == (0, 0) assert get_integer_part(S.Half, 1, {}, True) == (1, 0) assert get_integer_part(-S.Half, -1, {}, True) == (-1, 0) assert get_integer_part(-S.Half, 1, {}, True) == (0, 0) def test_issue_9326(): from sympy import Dummy d1 = Dummy('d') d2 = Dummy('d') e = d1 + d2 assert e.evalf(subs = {d1: 1, d2: 2}) == 3 def test_issue_10323(): assert ceiling(sqrt(2**30 + 1)) == 2**15 + 1 def test_AssocOp_Function(): # the first arg of Min is not comparable in the imaginary part raises(ValueError, lambda: S(''' Min(-sqrt(3)*cos(pi/18)/6 + re(1/((-1/2 - sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 + sin(pi/18)/2 + 2 + I*(-cos(pi/18)/2 - sqrt(3)*sin(pi/18)/6 + im(1/((-1/2 - sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3), re(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*cos(pi/18)/6 - sin(pi/18)/2 + 2 + I*(im(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*sin(pi/18)/6 + cos(pi/18)/2))''')) # if that is changed so a non-comparable number remains as # an arg, then the Min/Max instantiation needs to be changed # to watch out for non-comparable args when making simplifications # and the following test should be added instead (with e being # the sympified expression above): # raises(ValueError, lambda: e._eval_evalf(2)) def test_issue_10395(): eq = x*Max(0, y) assert nfloat(eq) == eq eq = x*Max(y, -1.1) assert nfloat(eq) == eq assert Max(y, 4).n() == Max(4.0, y) def test_issue_13098(): assert floor(log(S('9.'+'9'*20), 10)) == 0 assert ceiling(log(S('9.'+'9'*20), 10)) == 1 assert floor(log(20 - S('9.'+'9'*20), 10)) == 1 assert ceiling(log(20 - S('9.'+'9'*20), 10)) == 2 def test_issue_14601(): e = 5*x*y/2 - y*(35*(x**3)/2 - 15*x/2) subst = {x:0.0, y:0.0} e2 = e.evalf(subs=subst) assert float(e2) == 0.0 assert float((x + x*(x**2 + x)).evalf(subs={x: 0.0})) == 0.0
dafcad55cbfac3c2f099977a6d21b24675ff3c81325a2561cccfeabf601bd535
from sympy import (Basic, Symbol, sin, cos, exp, sqrt, Rational, Float, re, pi, sympify, Add, Mul, Pow, Mod, I, log, S, Max, symbols, oo, zoo, Integer, sign, im, nan, Dummy, factorial, comp, refine ) from sympy.core.compatibility import long, range from sympy.utilities.iterables import cartes from sympy.utilities.pytest import XFAIL, raises from sympy.utilities.randtest import verify_numerically a, c, x, y, z = symbols('a,c,x,y,z') b = Symbol("b", positive=True) def same_and_same_prec(a, b): # stricter matching for Floats return a == b and a._prec == b._prec def test_bug1(): assert re(x) != x x.series(x, 0, 1) assert re(x) != x def test_Symbol(): e = a*b assert e == a*b assert a*b*b == a*b**2 assert a*b*b + c == c + a*b**2 assert a*b*b - c == -c + a*b**2 x = Symbol('x', complex=True, real=False) assert x.is_imaginary is None # could be I or 1 + I x = Symbol('x', complex=True, imaginary=False) assert x.is_real is None # could be 1 or 1 + I x = Symbol('x', real=True) assert x.is_complex x = Symbol('x', imaginary=True) assert x.is_complex x = Symbol('x', real=False, imaginary=False) assert x.is_complex is None # might be a non-number def test_arit0(): p = Rational(5) e = a*b assert e == a*b e = a*b + b*a assert e == 2*a*b e = a*b + b*a + a*b + p*b*a assert e == 8*a*b e = a*b + b*a + a*b + p*b*a + a assert e == a + 8*a*b e = a + a assert e == 2*a e = a + b + a assert e == b + 2*a e = a + b*b + a + b*b assert e == 2*a + 2*b**2 e = a + Rational(2) + b*b + a + b*b + p assert e == 7 + 2*a + 2*b**2 e = (a + b*b + a + b*b)*p assert e == 5*(2*a + 2*b**2) e = (a*b*c + c*b*a + b*a*c)*p assert e == 15*a*b*c e = (a*b*c + c*b*a + b*a*c)*p - Rational(15)*a*b*c assert e == Rational(0) e = Rational(50)*(a - a) assert e == Rational(0) e = b*a - b - a*b + b assert e == Rational(0) e = a*b + c**p assert e == a*b + c**5 e = a/b assert e == a*b**(-1) e = a*2*2 assert e == 4*a e = 2 + a*2/2 assert e == 2 + a e = 2 - a - 2 assert e == -a e = 2*a*2 assert e == 4*a e = 2/a/2 assert e == a**(-1) e = 2**a**2 assert e == 2**(a**2) e = -(1 + a) assert e == -1 - a e = Rational(1, 2)*(1 + a) assert e == Rational(1, 2) + a/2 def test_div(): e = a/b assert e == a*b**(-1) e = a/b + c/2 assert e == a*b**(-1) + Rational(1)/2*c e = (1 - b)/(b - 1) assert e == (1 + -b)*((-1) + b)**(-1) def test_pow(): n1 = Rational(1) n2 = Rational(2) n5 = Rational(5) e = a*a assert e == a**2 e = a*a*a assert e == a**3 e = a*a*a*a**Rational(6) assert e == a**9 e = a*a*a*a**Rational(6) - a**Rational(9) assert e == Rational(0) e = a**(b - b) assert e == Rational(1) e = (a + Rational(1) - a)**b assert e == Rational(1) e = (a + b + c)**n2 assert e == (a + b + c)**2 assert e.expand() == 2*b*c + 2*a*c + 2*a*b + a**2 + c**2 + b**2 e = (a + b)**n2 assert e == (a + b)**2 assert e.expand() == 2*a*b + a**2 + b**2 e = (a + b)**(n1/n2) assert e == sqrt(a + b) assert e.expand() == sqrt(a + b) n = n5**(n1/n2) assert n == sqrt(5) e = n*a*b - n*b*a assert e == Rational(0) e = n*a*b + n*b*a assert e == 2*a*b*sqrt(5) assert e.diff(a) == 2*b*sqrt(5) assert e.diff(a) == 2*b*sqrt(5) e = a/b**2 assert e == a*b**(-2) assert sqrt(2*(1 + sqrt(2))) == (2*(1 + 2**Rational(1, 2)))**Rational(1, 2) x = Symbol('x') y = Symbol('y') assert ((x*y)**3).expand() == y**3 * x**3 assert ((x*y)**-3).expand() == y**-3 * x**-3 assert (x**5*(3*x)**(3)).expand() == 27 * x**8 assert (x**5*(-3*x)**(3)).expand() == -27 * x**8 assert (x**5*(3*x)**(-3)).expand() == Rational(1, 27) * x**2 assert (x**5*(-3*x)**(-3)).expand() == -Rational(1, 27) * x**2 # expand_power_exp assert (x**(y**(x + exp(x + y)) + z)).expand(deep=False) == \ x**z*x**(y**(x + exp(x + y))) assert (x**(y**(x + exp(x + y)) + z)).expand() == \ x**z*x**(y**x*y**(exp(x)*exp(y))) n = Symbol('n', even=False) k = Symbol('k', even=True) o = Symbol('o', odd=True) assert (-1)**x == (-1)**x assert (-1)**n == (-1)**n assert (-2)**k == 2**k assert (-1)**k == 1 def test_pow2(): # x**(2*y) is always (x**y)**2 but is only (x**2)**y if # x.is_positive or y.is_integer # let x = 1 to see why the following are not true. assert (-x)**Rational(2, 3) != x**Rational(2, 3) assert (-x)**Rational(5, 7) != -x**Rational(5, 7) assert ((-x)**2)**Rational(1, 3) != ((-x)**Rational(1, 3))**2 assert sqrt(x**2) != x def test_pow3(): assert sqrt(2)**3 == 2 * sqrt(2) assert sqrt(2)**3 == sqrt(8) def test_mod_pow(): for s, t, u, v in [(4, 13, 497, 445), (4, -3, 497, 365), (3.2, 2.1, 1.9, 0.1031015682350942), (S(3)/2, 5, S(5)/6, S(3)/32)]: assert pow(S(s), t, u) == v assert pow(S(s), S(t), u) == v assert pow(S(s), t, S(u)) == v assert pow(S(s), S(t), S(u)) == v assert pow(S(2), S(10000000000), S(3)) == 1 assert pow(x, y, z) == x**y%z raises(TypeError, lambda: pow(S(4), "13", 497)) raises(TypeError, lambda: pow(S(4), 13, "497")) def test_pow_E(): assert 2**(y/log(2)) == S.Exp1**y assert 2**(y/log(2)/3) == S.Exp1**(y/3) assert 3**(1/log(-3)) != S.Exp1 assert (3 + 2*I)**(1/(log(-3 - 2*I) + I*pi)) == S.Exp1 assert (4 + 2*I)**(1/(log(-4 - 2*I) + I*pi)) == S.Exp1 assert (3 + 2*I)**(1/(log(-3 - 2*I, 3)/2 + I*pi/log(3)/2)) == 9 assert (3 + 2*I)**(1/(log(3 + 2*I, 3)/2)) == 9 # every time tests are run they will affirm with a different random # value that this identity holds while 1: b = x._random() r, i = b.as_real_imag() if i: break assert verify_numerically(b**(1/(log(-b) + sign(i)*I*pi).n()), S.Exp1) def test_pow_issue_3516(): assert 4**Rational(1, 4) == sqrt(2) def test_pow_im(): for m in (-2, -1, 2): for d in (3, 4, 5): b = m*I for i in range(1, 4*d + 1): e = Rational(i, d) assert (b**e - b.n()**e.n()).n(2, chop=1e-10) == 0 e = Rational(7, 3) assert (2*x*I)**e == 4*2**Rational(1, 3)*(I*x)**e # same as Wolfram Alpha im = symbols('im', imaginary=True) assert (2*im*I)**e == 4*2**Rational(1, 3)*(I*im)**e args = [I, I, I, I, 2] e = Rational(1, 3) ans = 2**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args = [I, I, I, 2] e = Rational(1, 3) ans = 2**e*(-I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-3) ans = (6*I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-1) ans = (-6*I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args = [I, I, 2] e = Rational(1, 3) ans = (-2)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-3) ans = (6)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-1) ans = (-6)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans assert Mul(Pow(-1, Rational(3, 2), evaluate=False), I, I) == I assert Mul(I*Pow(I, S.Half, evaluate=False)) == (-1)**Rational(3, 4) def test_real_mul(): assert Float(0) * pi * x == Float(0) assert set((Float(1) * pi * x).args) == {Float(1), pi, x} def test_ncmul(): A = Symbol("A", commutative=False) B = Symbol("B", commutative=False) C = Symbol("C", commutative=False) assert A*B != B*A assert A*B*C != C*B*A assert A*b*B*3*C == 3*b*A*B*C assert A*b*B*3*C != 3*b*B*A*C assert A*b*B*3*C == 3*A*B*C*b assert A + B == B + A assert (A + B)*C != C*(A + B) assert C*(A + B)*C != C*C*(A + B) assert A*A == A**2 assert (A + B)*(A + B) == (A + B)**2 assert A**-1 * A == 1 assert A/A == 1 assert A/(A**2) == 1/A assert A/(1 + A) == A/(1 + A) assert set((A + B + 2*(A + B)).args) == \ {A, B, 2*(A + B)} def test_ncpow(): x = Symbol('x', commutative=False) y = Symbol('y', commutative=False) z = Symbol('z', commutative=False) a = Symbol('a') b = Symbol('b') c = Symbol('c') assert (x**2)*(y**2) != (y**2)*(x**2) assert (x**-2)*y != y*(x**2) assert 2**x*2**y != 2**(x + y) assert 2**x*2**y*2**z != 2**(x + y + z) assert 2**x*2**(2*x) == 2**(3*x) assert 2**x*2**(2*x)*2**x == 2**(4*x) assert exp(x)*exp(y) != exp(y)*exp(x) assert exp(x)*exp(y)*exp(z) != exp(y)*exp(x)*exp(z) assert exp(x)*exp(y)*exp(z) != exp(x + y + z) assert x**a*x**b != x**(a + b) assert x**a*x**b*x**c != x**(a + b + c) assert x**3*x**4 == x**7 assert x**3*x**4*x**2 == x**9 assert x**a*x**(4*a) == x**(5*a) assert x**a*x**(4*a)*x**a == x**(6*a) def test_powerbug(): x = Symbol("x") assert x**1 != (-x)**1 assert x**2 == (-x)**2 assert x**3 != (-x)**3 assert x**4 == (-x)**4 assert x**5 != (-x)**5 assert x**6 == (-x)**6 assert x**128 == (-x)**128 assert x**129 != (-x)**129 assert (2*x)**2 == (-2*x)**2 def test_Mul_doesnt_expand_exp(): x = Symbol('x') y = Symbol('y') assert exp(x)*exp(y) == exp(x)*exp(y) assert 2**x*2**y == 2**x*2**y assert x**2*x**3 == x**5 assert 2**x*3**x == 6**x assert x**(y)*x**(2*y) == x**(3*y) assert sqrt(2)*sqrt(2) == 2 assert 2**x*2**(2*x) == 2**(3*x) assert sqrt(2)*2**Rational(1, 4)*5**Rational(3, 4) == 10**Rational(3, 4) assert (x**(-log(5)/log(3))*x)/(x*x**( - log(5)/log(3))) == sympify(1) def test_Add_Mul_is_integer(): x = Symbol('x') k = Symbol('k', integer=True) n = Symbol('n', integer=True) assert (2*k).is_integer is True assert (-k).is_integer is True assert (k/3).is_integer is None assert (x*k*n).is_integer is None assert (k + n).is_integer is True assert (k + x).is_integer is None assert (k + n*x).is_integer is None assert (k + n/3).is_integer is None assert ((1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False assert (1 + (1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False def test_Add_Mul_is_finite(): x = Symbol('x', real=True, finite=False) assert sin(x).is_finite is True assert (x*sin(x)).is_finite is False assert (1024*sin(x)).is_finite is True assert (sin(x)*exp(x)).is_finite is not True assert (sin(x)*cos(x)).is_finite is True assert (x*sin(x)*exp(x)).is_finite is not True assert (sin(x) - 67).is_finite is True assert (sin(x) + exp(x)).is_finite is not True assert (1 + x).is_finite is False assert (1 + x**2 + (1 + x)*(1 - x)).is_finite is None assert (sqrt(2)*(1 + x)).is_finite is False assert (sqrt(2)*(1 + x)*(1 - x)).is_finite is False def test_Mul_is_even_odd(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) n = Symbol('n', odd=True) m = Symbol('m', even=True) assert (2*x).is_even is True assert (2*x).is_odd is False assert (3*x).is_even is None assert (3*x).is_odd is None assert (k/3).is_integer is None assert (k/3).is_even is None assert (k/3).is_odd is None assert (2*n).is_even is True assert (2*n).is_odd is False assert (2*m).is_even is True assert (2*m).is_odd is False assert (-n).is_even is False assert (-n).is_odd is True assert (k*n).is_even is False assert (k*n).is_odd is True assert (k*m).is_even is True assert (k*m).is_odd is False assert (k*n*m).is_even is True assert (k*n*m).is_odd is False assert (k*m*x).is_even is True assert (k*m*x).is_odd is False # issue 6791: assert (x/2).is_integer is None assert (k/2).is_integer is False assert (m/2).is_integer is True assert (x*y).is_even is None assert (x*x).is_even is None assert (x*(x + k)).is_even is True assert (x*(x + m)).is_even is None assert (x*y).is_odd is None assert (x*x).is_odd is None assert (x*(x + k)).is_odd is False assert (x*(x + m)).is_odd is None @XFAIL def test_evenness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) assert (x*y*(y + k)).is_even is True assert (y*x*(x + k)).is_even is True def test_evenness_in_ternary_integer_product_with_even(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) m = Symbol('m', even=True) assert (x*y*(y + m)).is_even is None @XFAIL def test_oddness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) assert (x*y*(y + k)).is_odd is False assert (y*x*(x + k)).is_odd is False def test_oddness_in_ternary_integer_product_with_even(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) m = Symbol('m', even=True) assert (x*y*(y + m)).is_odd is None def test_Mul_is_rational(): x = Symbol('x') n = Symbol('n', integer=True) m = Symbol('m', integer=True, nonzero=True) assert (n/m).is_rational is True assert (x/pi).is_rational is None assert (x/n).is_rational is None assert (m/pi).is_rational is False r = Symbol('r', rational=True) assert (pi*r).is_rational is None # issue 8008 z = Symbol('z', zero=True) i = Symbol('i', imaginary=True) assert (z*i).is_rational is None bi = Symbol('i', imaginary=True, finite=True) assert (z*bi).is_zero is True def test_Add_is_rational(): x = Symbol('x') n = Symbol('n', rational=True) m = Symbol('m', rational=True) assert (n + m).is_rational is True assert (x + pi).is_rational is None assert (x + n).is_rational is None assert (n + pi).is_rational is False def test_Add_is_even_odd(): x = Symbol('x', integer=True) k = Symbol('k', odd=True) n = Symbol('n', odd=True) m = Symbol('m', even=True) assert (k + 7).is_even is True assert (k + 7).is_odd is False assert (-k + 7).is_even is True assert (-k + 7).is_odd is False assert (k - 12).is_even is False assert (k - 12).is_odd is True assert (-k - 12).is_even is False assert (-k - 12).is_odd is True assert (k + n).is_even is True assert (k + n).is_odd is False assert (k + m).is_even is False assert (k + m).is_odd is True assert (k + n + m).is_even is True assert (k + n + m).is_odd is False assert (k + n + x + m).is_even is None assert (k + n + x + m).is_odd is None def test_Mul_is_negative_positive(): x = Symbol('x', real=True) y = Symbol('y', real=False, complex=True) z = Symbol('z', zero=True) e = 2*z assert e.is_Mul and e.is_positive is False and e.is_negative is False neg = Symbol('neg', negative=True) pos = Symbol('pos', positive=True) nneg = Symbol('nneg', nonnegative=True) npos = Symbol('npos', nonpositive=True) assert neg.is_negative is True assert (-neg).is_negative is False assert (2*neg).is_negative is True assert (2*pos)._eval_is_negative() is False assert (2*pos).is_negative is False assert pos.is_negative is False assert (-pos).is_negative is True assert (2*pos).is_negative is False assert (pos*neg).is_negative is True assert (2*pos*neg).is_negative is True assert (-pos*neg).is_negative is False assert (pos*neg*y).is_negative is False # y.is_real=F; !real -> !neg assert nneg.is_negative is False assert (-nneg).is_negative is None assert (2*nneg).is_negative is False assert npos.is_negative is None assert (-npos).is_negative is False assert (2*npos).is_negative is None assert (nneg*npos).is_negative is None assert (neg*nneg).is_negative is None assert (neg*npos).is_negative is False assert (pos*nneg).is_negative is False assert (pos*npos).is_negative is None assert (npos*neg*nneg).is_negative is False assert (npos*pos*nneg).is_negative is None assert (-npos*neg*nneg).is_negative is None assert (-npos*pos*nneg).is_negative is False assert (17*npos*neg*nneg).is_negative is False assert (17*npos*pos*nneg).is_negative is None assert (neg*npos*pos*nneg).is_negative is False assert (x*neg).is_negative is None assert (nneg*npos*pos*x*neg).is_negative is None assert neg.is_positive is False assert (-neg).is_positive is True assert (2*neg).is_positive is False assert pos.is_positive is True assert (-pos).is_positive is False assert (2*pos).is_positive is True assert (pos*neg).is_positive is False assert (2*pos*neg).is_positive is False assert (-pos*neg).is_positive is True assert (-pos*neg*y).is_positive is False # y.is_real=F; !real -> !neg assert nneg.is_positive is None assert (-nneg).is_positive is False assert (2*nneg).is_positive is None assert npos.is_positive is False assert (-npos).is_positive is None assert (2*npos).is_positive is False assert (nneg*npos).is_positive is False assert (neg*nneg).is_positive is False assert (neg*npos).is_positive is None assert (pos*nneg).is_positive is None assert (pos*npos).is_positive is False assert (npos*neg*nneg).is_positive is None assert (npos*pos*nneg).is_positive is False assert (-npos*neg*nneg).is_positive is False assert (-npos*pos*nneg).is_positive is None assert (17*npos*neg*nneg).is_positive is None assert (17*npos*pos*nneg).is_positive is False assert (neg*npos*pos*nneg).is_positive is None assert (x*neg).is_positive is None assert (nneg*npos*pos*x*neg).is_positive is None def test_Mul_is_negative_positive_2(): a = Symbol('a', nonnegative=True) b = Symbol('b', nonnegative=True) c = Symbol('c', nonpositive=True) d = Symbol('d', nonpositive=True) assert (a*b).is_nonnegative is True assert (a*b).is_negative is False assert (a*b).is_zero is None assert (a*b).is_positive is None assert (c*d).is_nonnegative is True assert (c*d).is_negative is False assert (c*d).is_zero is None assert (c*d).is_positive is None assert (a*c).is_nonpositive is True assert (a*c).is_positive is False assert (a*c).is_zero is None assert (a*c).is_negative is None def test_Mul_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert k.is_nonpositive is True assert (-k).is_nonpositive is False assert (2*k).is_nonpositive is True assert n.is_nonpositive is False assert (-n).is_nonpositive is True assert (2*n).is_nonpositive is False assert (n*k).is_nonpositive is True assert (2*n*k).is_nonpositive is True assert (-n*k).is_nonpositive is False assert u.is_nonpositive is None assert (-u).is_nonpositive is True assert (2*u).is_nonpositive is None assert v.is_nonpositive is True assert (-v).is_nonpositive is None assert (2*v).is_nonpositive is True assert (u*v).is_nonpositive is True assert (k*u).is_nonpositive is True assert (k*v).is_nonpositive is None assert (n*u).is_nonpositive is None assert (n*v).is_nonpositive is True assert (v*k*u).is_nonpositive is None assert (v*n*u).is_nonpositive is True assert (-v*k*u).is_nonpositive is True assert (-v*n*u).is_nonpositive is None assert (17*v*k*u).is_nonpositive is None assert (17*v*n*u).is_nonpositive is True assert (k*v*n*u).is_nonpositive is None assert (x*k).is_nonpositive is None assert (u*v*n*x*k).is_nonpositive is None assert k.is_nonnegative is False assert (-k).is_nonnegative is True assert (2*k).is_nonnegative is False assert n.is_nonnegative is True assert (-n).is_nonnegative is False assert (2*n).is_nonnegative is True assert (n*k).is_nonnegative is False assert (2*n*k).is_nonnegative is False assert (-n*k).is_nonnegative is True assert u.is_nonnegative is True assert (-u).is_nonnegative is None assert (2*u).is_nonnegative is True assert v.is_nonnegative is None assert (-v).is_nonnegative is True assert (2*v).is_nonnegative is None assert (u*v).is_nonnegative is None assert (k*u).is_nonnegative is None assert (k*v).is_nonnegative is True assert (n*u).is_nonnegative is True assert (n*v).is_nonnegative is None assert (v*k*u).is_nonnegative is True assert (v*n*u).is_nonnegative is None assert (-v*k*u).is_nonnegative is None assert (-v*n*u).is_nonnegative is True assert (17*v*k*u).is_nonnegative is True assert (17*v*n*u).is_nonnegative is None assert (k*v*n*u).is_nonnegative is True assert (x*k).is_nonnegative is None assert (u*v*n*x*k).is_nonnegative is None def test_Add_is_negative_positive(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert (k - 2).is_negative is True assert (k + 17).is_negative is None assert (-k - 5).is_negative is None assert (-k + 123).is_negative is False assert (k - n).is_negative is True assert (k + n).is_negative is None assert (-k - n).is_negative is None assert (-k + n).is_negative is False assert (k - n - 2).is_negative is True assert (k + n + 17).is_negative is None assert (-k - n - 5).is_negative is None assert (-k + n + 123).is_negative is False assert (-2*k + 123*n + 17).is_negative is False assert (k + u).is_negative is None assert (k + v).is_negative is True assert (n + u).is_negative is False assert (n + v).is_negative is None assert (u - v).is_negative is False assert (u + v).is_negative is None assert (-u - v).is_negative is None assert (-u + v).is_negative is None assert (u - v + n + 2).is_negative is False assert (u + v + n + 2).is_negative is None assert (-u - v + n + 2).is_negative is None assert (-u + v + n + 2).is_negative is None assert (k + x).is_negative is None assert (k + x - n).is_negative is None assert (k - 2).is_positive is False assert (k + 17).is_positive is None assert (-k - 5).is_positive is None assert (-k + 123).is_positive is True assert (k - n).is_positive is False assert (k + n).is_positive is None assert (-k - n).is_positive is None assert (-k + n).is_positive is True assert (k - n - 2).is_positive is False assert (k + n + 17).is_positive is None assert (-k - n - 5).is_positive is None assert (-k + n + 123).is_positive is True assert (-2*k + 123*n + 17).is_positive is True assert (k + u).is_positive is None assert (k + v).is_positive is False assert (n + u).is_positive is True assert (n + v).is_positive is None assert (u - v).is_positive is None assert (u + v).is_positive is None assert (-u - v).is_positive is None assert (-u + v).is_positive is False assert (u - v - n - 2).is_positive is None assert (u + v - n - 2).is_positive is None assert (-u - v - n - 2).is_positive is None assert (-u + v - n - 2).is_positive is False assert (n + x).is_positive is None assert (n + x - k).is_positive is None z = (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2) assert z.is_zero z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert z.is_zero def test_Add_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert (u - 2).is_nonpositive is None assert (u + 17).is_nonpositive is False assert (-u - 5).is_nonpositive is True assert (-u + 123).is_nonpositive is None assert (u - v).is_nonpositive is None assert (u + v).is_nonpositive is None assert (-u - v).is_nonpositive is None assert (-u + v).is_nonpositive is True assert (u - v - 2).is_nonpositive is None assert (u + v + 17).is_nonpositive is None assert (-u - v - 5).is_nonpositive is None assert (-u + v - 123).is_nonpositive is True assert (-2*u + 123*v - 17).is_nonpositive is True assert (k + u).is_nonpositive is None assert (k + v).is_nonpositive is True assert (n + u).is_nonpositive is False assert (n + v).is_nonpositive is None assert (k - n).is_nonpositive is True assert (k + n).is_nonpositive is None assert (-k - n).is_nonpositive is None assert (-k + n).is_nonpositive is False assert (k - n + u + 2).is_nonpositive is None assert (k + n + u + 2).is_nonpositive is None assert (-k - n + u + 2).is_nonpositive is None assert (-k + n + u + 2).is_nonpositive is False assert (u + x).is_nonpositive is None assert (v - x - n).is_nonpositive is None assert (u - 2).is_nonnegative is None assert (u + 17).is_nonnegative is True assert (-u - 5).is_nonnegative is False assert (-u + 123).is_nonnegative is None assert (u - v).is_nonnegative is True assert (u + v).is_nonnegative is None assert (-u - v).is_nonnegative is None assert (-u + v).is_nonnegative is None assert (u - v + 2).is_nonnegative is True assert (u + v + 17).is_nonnegative is None assert (-u - v - 5).is_nonnegative is None assert (-u + v - 123).is_nonnegative is False assert (2*u - 123*v + 17).is_nonnegative is True assert (k + u).is_nonnegative is None assert (k + v).is_nonnegative is False assert (n + u).is_nonnegative is True assert (n + v).is_nonnegative is None assert (k - n).is_nonnegative is False assert (k + n).is_nonnegative is None assert (-k - n).is_nonnegative is None assert (-k + n).is_nonnegative is True assert (k - n - u - 2).is_nonnegative is False assert (k + n - u - 2).is_nonnegative is None assert (-k - n - u - 2).is_nonnegative is None assert (-k + n - u - 2).is_nonnegative is None assert (u - x).is_nonnegative is None assert (v + x + n).is_nonnegative is None def test_Pow_is_integer(): x = Symbol('x') k = Symbol('k', integer=True) n = Symbol('n', integer=True, nonnegative=True) m = Symbol('m', integer=True, positive=True) assert (k**2).is_integer is True assert (k**(-2)).is_integer is None assert ((m + 1)**(-2)).is_integer is False assert (m**(-1)).is_integer is None # issue 8580 assert (2**k).is_integer is None assert (2**(-k)).is_integer is None assert (2**n).is_integer is True assert (2**(-n)).is_integer is None assert (2**m).is_integer is True assert (2**(-m)).is_integer is False assert (x**2).is_integer is None assert (2**x).is_integer is None assert (k**n).is_integer is True assert (k**(-n)).is_integer is None assert (k**x).is_integer is None assert (x**k).is_integer is None assert (k**(n*m)).is_integer is True assert (k**(-n*m)).is_integer is None assert sqrt(3).is_integer is False assert sqrt(.3).is_integer is False assert Pow(3, 2, evaluate=False).is_integer is True assert Pow(3, 0, evaluate=False).is_integer is True assert Pow(3, -2, evaluate=False).is_integer is False assert Pow(S.Half, 3, evaluate=False).is_integer is False # decided by re-evaluating assert Pow(3, S.Half, evaluate=False).is_integer is False assert Pow(3, S.Half, evaluate=False).is_integer is False assert Pow(4, S.Half, evaluate=False).is_integer is True assert Pow(S.Half, -2, evaluate=False).is_integer is True assert ((-1)**k).is_integer x = Symbol('x', real=True, integer=False) assert (x**2).is_integer is None # issue 8641 def test_Pow_is_real(): x = Symbol('x', real=True) y = Symbol('y', real=True, positive=True) assert (x**2).is_real is True assert (x**3).is_real is True assert (x**x).is_real is None assert (y**x).is_real is True assert (x**Rational(1, 3)).is_real is None assert (y**Rational(1, 3)).is_real is True assert sqrt(-1 - sqrt(2)).is_real is False i = Symbol('i', imaginary=True) assert (i**i).is_real is None assert (I**i).is_real is True assert ((-I)**i).is_real is True assert (2**i).is_real is None # (2**(pi/log(2) * I)) is real, 2**I is not assert (2**I).is_real is False assert (2**-I).is_real is False assert (i**2).is_real is True assert (i**3).is_real is False assert (i**x).is_real is None # could be (-I)**(2/3) e = Symbol('e', even=True) o = Symbol('o', odd=True) k = Symbol('k', integer=True) assert (i**e).is_real is True assert (i**o).is_real is False assert (i**k).is_real is None assert (i**(4*k)).is_real is True x = Symbol("x", nonnegative=True) y = Symbol("y", nonnegative=True) assert im(x**y).expand(complex=True) is S.Zero assert (x**y).is_real is True i = Symbol('i', imaginary=True) assert (exp(i)**I).is_real is True assert log(exp(i)).is_imaginary is None # i could be 2*pi*I c = Symbol('c', complex=True) assert log(c).is_real is None # c could be 0 or 2, too assert log(exp(c)).is_real is None # log(0), log(E), ... n = Symbol('n', negative=False) assert log(n).is_real is None n = Symbol('n', nonnegative=True) assert log(n).is_real is None assert sqrt(-I).is_real is False # issue 7843 def test_real_Pow(): k = Symbol('k', integer=True, nonzero=True) assert (k**(I*pi/log(k))).is_real def test_Pow_is_finite(): x = Symbol('x', real=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) assert (x**2).is_finite is None # x could be oo assert (x**x).is_finite is None # ditto assert (p**x).is_finite is None # ditto assert (n**x).is_finite is None # ditto assert (1/S.Pi).is_finite assert (sin(x)**2).is_finite is True assert (sin(x)**x).is_finite is None assert (sin(x)**exp(x)).is_finite is None assert (1/sin(x)).is_finite is None # if zero, no, otherwise yes assert (1/exp(x)).is_finite is None # x could be -oo def test_Pow_is_even_odd(): x = Symbol('x') k = Symbol('k', even=True) n = Symbol('n', odd=True) m = Symbol('m', integer=True, nonnegative=True) p = Symbol('p', integer=True, positive=True) assert ((-1)**n).is_odd assert ((-1)**k).is_odd assert ((-1)**(m - p)).is_odd assert (k**2).is_even is True assert (n**2).is_even is False assert (2**k).is_even is None assert (x**2).is_even is None assert (k**m).is_even is None assert (n**m).is_even is False assert (k**p).is_even is True assert (n**p).is_even is False assert (m**k).is_even is None assert (p**k).is_even is None assert (m**n).is_even is None assert (p**n).is_even is None assert (k**x).is_even is None assert (n**x).is_even is None assert (k**2).is_odd is False assert (n**2).is_odd is True assert (3**k).is_odd is None assert (k**m).is_odd is None assert (n**m).is_odd is True assert (k**p).is_odd is False assert (n**p).is_odd is True assert (m**k).is_odd is None assert (p**k).is_odd is None assert (m**n).is_odd is None assert (p**n).is_odd is None assert (k**x).is_odd is None assert (n**x).is_odd is None def test_Pow_is_negative_positive(): r = Symbol('r', real=True) k = Symbol('k', integer=True, positive=True) n = Symbol('n', even=True) m = Symbol('m', odd=True) x = Symbol('x') assert (2**r).is_positive is True assert ((-2)**r).is_positive is None assert ((-2)**n).is_positive is True assert ((-2)**m).is_positive is False assert (k**2).is_positive is True assert (k**(-2)).is_positive is True assert (k**r).is_positive is True assert ((-k)**r).is_positive is None assert ((-k)**n).is_positive is True assert ((-k)**m).is_positive is False assert (2**r).is_negative is False assert ((-2)**r).is_negative is None assert ((-2)**n).is_negative is False assert ((-2)**m).is_negative is True assert (k**2).is_negative is False assert (k**(-2)).is_negative is False assert (k**r).is_negative is False assert ((-k)**r).is_negative is None assert ((-k)**n).is_negative is False assert ((-k)**m).is_negative is True assert (2**x).is_positive is None assert (2**x).is_negative is None def test_Pow_is_zero(): z = Symbol('z', zero=True) e = z**2 assert e.is_zero assert e.is_positive is False assert e.is_negative is False assert Pow(0, 0, evaluate=False).is_zero is False assert Pow(0, 3, evaluate=False).is_zero assert Pow(0, oo, evaluate=False).is_zero assert Pow(0, -3, evaluate=False).is_zero is False assert Pow(0, -oo, evaluate=False).is_zero is False assert Pow(2, 2, evaluate=False).is_zero is False a = Symbol('a', zero=False) assert Pow(a, 3).is_zero is False # issue 7965 assert Pow(2, oo, evaluate=False).is_zero is False assert Pow(2, -oo, evaluate=False).is_zero assert Pow(S.Half, oo, evaluate=False).is_zero assert Pow(S.Half, -oo, evaluate=False).is_zero is False def test_Pow_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', integer=True, nonnegative=True) l = Symbol('l', integer=True, positive=True) n = Symbol('n', even=True) m = Symbol('m', odd=True) assert (x**(4*k)).is_nonnegative is True assert (2**x).is_nonnegative is True assert ((-2)**x).is_nonnegative is None assert ((-2)**n).is_nonnegative is True assert ((-2)**m).is_nonnegative is False assert (k**2).is_nonnegative is True assert (k**(-2)).is_nonnegative is None assert (k**k).is_nonnegative is True assert (k**x).is_nonnegative is None # NOTE (0**x).is_real = U assert (l**x).is_nonnegative is True assert (l**x).is_positive is True assert ((-k)**x).is_nonnegative is None assert ((-k)**m).is_nonnegative is None assert (2**x).is_nonpositive is False assert ((-2)**x).is_nonpositive is None assert ((-2)**n).is_nonpositive is False assert ((-2)**m).is_nonpositive is True assert (k**2).is_nonpositive is None assert (k**(-2)).is_nonpositive is None assert (k**x).is_nonpositive is None assert ((-k)**x).is_nonpositive is None assert ((-k)**n).is_nonpositive is None assert (x**2).is_nonnegative is True i = symbols('i', imaginary=True) assert (i**2).is_nonpositive is True assert (i**4).is_nonpositive is False assert (i**3).is_nonpositive is False assert (I**i).is_nonnegative is True assert (exp(I)**i).is_nonnegative is True assert ((-k)**n).is_nonnegative is True assert ((-k)**m).is_nonpositive is True def test_Mul_is_imaginary_real(): r = Symbol('r', real=True) p = Symbol('p', positive=True) i = Symbol('i', imaginary=True) ii = Symbol('ii', imaginary=True) x = Symbol('x') assert I.is_imaginary is True assert I.is_real is False assert (-I).is_imaginary is True assert (-I).is_real is False assert (3*I).is_imaginary is True assert (3*I).is_real is False assert (I*I).is_imaginary is False assert (I*I).is_real is True e = (p + p*I) j = Symbol('j', integer=True, zero=False) assert (e**j).is_real is None assert (e**(2*j)).is_real is None assert (e**j).is_imaginary is None assert (e**(2*j)).is_imaginary is None assert (e**-1).is_imaginary is False assert (e**2).is_imaginary assert (e**3).is_imaginary is False assert (e**4).is_imaginary is False assert (e**5).is_imaginary is False assert (e**-1).is_real is False assert (e**2).is_real is False assert (e**3).is_real is False assert (e**4).is_real assert (e**5).is_real is False assert (e**3).is_complex assert (r*i).is_imaginary is None assert (r*i).is_real is None assert (x*i).is_imaginary is None assert (x*i).is_real is None assert (i*ii).is_imaginary is False assert (i*ii).is_real is True assert (r*i*ii).is_imaginary is False assert (r*i*ii).is_real is True # Github's issue 5874: nr = Symbol('nr', real=False, complex=True) # e.g. I or 1 + I a = Symbol('a', real=True, nonzero=True) b = Symbol('b', real=True) assert (i*nr).is_real is None assert (a*nr).is_real is False assert (b*nr).is_real is None ni = Symbol('ni', imaginary=False, complex=True) # e.g. 2 or 1 + I a = Symbol('a', real=True, nonzero=True) b = Symbol('b', real=True) assert (i*ni).is_real is False assert (a*ni).is_real is None assert (b*ni).is_real is None def test_Mul_hermitian_antihermitian(): a = Symbol('a', hermitian=True, zero=False) b = Symbol('b', hermitian=True) c = Symbol('c', hermitian=False) d = Symbol('d', antihermitian=True) e1 = Mul(a, b, c, evaluate=False) e2 = Mul(b, a, c, evaluate=False) e3 = Mul(a, b, c, d, evaluate=False) e4 = Mul(b, a, c, d, evaluate=False) e5 = Mul(a, c, evaluate=False) e6 = Mul(a, c, d, evaluate=False) assert e1.is_hermitian is None assert e2.is_hermitian is None assert e1.is_antihermitian is None assert e2.is_antihermitian is None assert e3.is_antihermitian is None assert e4.is_antihermitian is None assert e5.is_antihermitian is None assert e6.is_antihermitian is None def test_Add_is_comparable(): assert (x + y).is_comparable is False assert (x + 1).is_comparable is False assert (Rational(1, 3) - sqrt(8)).is_comparable is True def test_Mul_is_comparable(): assert (x*y).is_comparable is False assert (x*2).is_comparable is False assert (sqrt(2)*Rational(1, 3)).is_comparable is True def test_Pow_is_comparable(): assert (x**y).is_comparable is False assert (x**2).is_comparable is False assert (sqrt(Rational(1, 3))).is_comparable is True def test_Add_is_positive_2(): e = Rational(1, 3) - sqrt(8) assert e.is_positive is False assert e.is_negative is True e = pi - 1 assert e.is_positive is True assert e.is_negative is False def test_Add_is_irrational(): i = Symbol('i', irrational=True) assert i.is_irrational is True assert i.is_rational is False assert (i + 1).is_irrational is True assert (i + 1).is_rational is False @XFAIL def test_issue_3531(): class MightyNumeric(tuple): def __rdiv__(self, other): return "something" def __rtruediv__(self, other): return "something" assert sympify(1)/MightyNumeric((1, 2)) == "something" def test_issue_3531b(): class Foo: def __init__(self): self.field = 1.0 def __mul__(self, other): self.field = self.field * other def __rmul__(self, other): self.field = other * self.field f = Foo() x = Symbol("x") assert f*x == x*f def test_bug3(): a = Symbol("a") b = Symbol("b", positive=True) e = 2*a + b f = b + 2*a assert e == f def test_suppressed_evaluation(): a = Add(0, 3, 2, evaluate=False) b = Mul(1, 3, 2, evaluate=False) c = Pow(3, 2, evaluate=False) assert a != 6 assert a.func is Add assert a.args == (3, 2) assert b != 6 assert b.func is Mul assert b.args == (3, 2) assert c != 9 assert c.func is Pow assert c.args == (3, 2) def test_Add_as_coeff_mul(): # issue 5524. These should all be (1, self) assert (x + 1).as_coeff_mul() == (1, (x + 1,)) assert (x + 2).as_coeff_mul() == (1, (x + 2,)) assert (x + 3).as_coeff_mul() == (1, (x + 3,)) assert (x - 1).as_coeff_mul() == (1, (x - 1,)) assert (x - 2).as_coeff_mul() == (1, (x - 2,)) assert (x - 3).as_coeff_mul() == (1, (x - 3,)) n = Symbol('n', integer=True) assert (n + 1).as_coeff_mul() == (1, (n + 1,)) assert (n + 2).as_coeff_mul() == (1, (n + 2,)) assert (n + 3).as_coeff_mul() == (1, (n + 3,)) assert (n - 1).as_coeff_mul() == (1, (n - 1,)) assert (n - 2).as_coeff_mul() == (1, (n - 2,)) assert (n - 3).as_coeff_mul() == (1, (n - 3,)) def test_Pow_as_coeff_mul_doesnt_expand(): assert exp(x + y).as_coeff_mul() == (1, (exp(x + y),)) assert exp(x + exp(x + y)) != exp(x + exp(x)*exp(y)) def test_issue_3514(): assert sqrt(S.Half) * sqrt(6) == 2 * sqrt(3)/2 assert S(1)/2*sqrt(6)*sqrt(2) == sqrt(3) assert sqrt(6)/2*sqrt(2) == sqrt(3) assert sqrt(6)*sqrt(2)/2 == sqrt(3) def test_make_args(): assert Add.make_args(x) == (x,) assert Mul.make_args(x) == (x,) assert Add.make_args(x*y*z) == (x*y*z,) assert Mul.make_args(x*y*z) == (x*y*z).args assert Add.make_args(x + y + z) == (x + y + z).args assert Mul.make_args(x + y + z) == (x + y + z,) assert Add.make_args((x + y)**z) == ((x + y)**z,) assert Mul.make_args((x + y)**z) == ((x + y)**z,) def test_issue_5126(): assert (-2)**x*(-3)**x != 6**x i = Symbol('i', integer=1) assert (-2)**i*(-3)**i == 6**i def test_Rational_as_content_primitive(): c, p = S(1), S(0) assert (c*p).as_content_primitive() == (c, p) c, p = S(1)/2, S(1) assert (c*p).as_content_primitive() == (c, p) def test_Add_as_content_primitive(): assert (x + 2).as_content_primitive() == (1, x + 2) assert (3*x + 2).as_content_primitive() == (1, 3*x + 2) assert (3*x + 3).as_content_primitive() == (3, x + 1) assert (3*x + 6).as_content_primitive() == (3, x + 2) assert (3*x + 2*y).as_content_primitive() == (1, 3*x + 2*y) assert (3*x + 3*y).as_content_primitive() == (3, x + y) assert (3*x + 6*y).as_content_primitive() == (3, x + 2*y) assert (3/x + 2*x*y*z**2).as_content_primitive() == (1, 3/x + 2*x*y*z**2) assert (3/x + 3*x*y*z**2).as_content_primitive() == (3, 1/x + x*y*z**2) assert (3/x + 6*x*y*z**2).as_content_primitive() == (3, 1/x + 2*x*y*z**2) assert (2*x/3 + 4*y/9).as_content_primitive() == \ (Rational(2, 9), 3*x + 2*y) assert (2*x/3 + 2.5*y).as_content_primitive() == \ (Rational(1, 3), 2*x + 7.5*y) # the coefficient may sort to a position other than 0 p = 3 + x + y assert (2*p).expand().as_content_primitive() == (2, p) assert (2.0*p).expand().as_content_primitive() == (1, 2.*p) p *= -1 assert (2*p).expand().as_content_primitive() == (2, p) def test_Mul_as_content_primitive(): assert (2*x).as_content_primitive() == (2, x) assert (x*(2 + 2*x)).as_content_primitive() == (2, x*(1 + x)) assert (x*(2 + 2*y)*(3*x + 3)**2).as_content_primitive() == \ (18, x*(1 + y)*(x + 1)**2) assert ((2 + 2*x)**2*(3 + 6*x) + S.Half).as_content_primitive() == \ (S.Half, 24*(x + 1)**2*(2*x + 1) + 1) def test_Pow_as_content_primitive(): assert (x**y).as_content_primitive() == (1, x**y) assert ((2*x + 2)**y).as_content_primitive() == \ (1, (Mul(2, (x + 1), evaluate=False))**y) assert ((2*x + 2)**3).as_content_primitive() == (8, (x + 1)**3) def test_issue_5460(): u = Mul(2, (1 + x), evaluate=False) assert (2 + u).args == (2, u) def test_product_irrational(): from sympy import I, pi assert (I*pi).is_irrational is False # The following used to be deduced from the above bug: assert (I*pi).is_positive is False def test_issue_5919(): assert (x/(y*(1 + y))).expand() == x/(y**2 + y) def test_Mod(): assert Mod(x, 1).func is Mod assert pi % pi == S.Zero assert Mod(5, 3) == 2 assert Mod(-5, 3) == 1 assert Mod(5, -3) == -1 assert Mod(-5, -3) == -2 assert type(Mod(3.2, 2, evaluate=False)) == Mod assert 5 % x == Mod(5, x) assert x % 5 == Mod(x, 5) assert x % y == Mod(x, y) assert (x % y).subs({x: 5, y: 3}) == 2 assert Mod(nan, 1) == nan assert Mod(1, nan) == nan assert Mod(nan, nan) == nan Mod(0, x) == 0 with raises(ZeroDivisionError): Mod(x, 0) k = Symbol('k', integer=True) m = Symbol('m', integer=True, positive=True) assert (x**m % x).func is Mod assert (k**(-m) % k).func is Mod assert k**m % k == 0 assert (-2*k)**m % k == 0 # Float handling point3 = Float(3.3) % 1 assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1) assert Mod(-3.3, 1) == 1 - point3 assert Mod(0.7, 1) == Float(0.7) e = Mod(1.3, 1) assert comp(e, .3) and e.is_Float e = Mod(1.3, .7) assert comp(e, .6) and e.is_Float e = Mod(1.3, Rational(7, 10)) assert comp(e, .6) and e.is_Float e = Mod(Rational(13, 10), 0.7) assert comp(e, .6) and e.is_Float e = Mod(Rational(13, 10), Rational(7, 10)) assert comp(e, .6) and e.is_Rational # check that sign is right r2 = sqrt(2) r3 = sqrt(3) for i in [-r3, -r2, r2, r3]: for j in [-r3, -r2, r2, r3]: assert verify_numerically(i % j, i.n() % j.n()) for _x in range(4): for _y in range(9): reps = [(x, _x), (y, _y)] assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9 # denesting t = Symbol('t', real=True) assert Mod(Mod(x, t), t) == Mod(x, t) assert Mod(-Mod(x, t), t) == Mod(-x, t) assert Mod(Mod(x, 2*t), t) == Mod(x, t) assert Mod(-Mod(x, 2*t), t) == Mod(-x, t) assert Mod(Mod(x, t), 2*t) == Mod(x, t) assert Mod(-Mod(x, t), -2*t) == -Mod(x, t) for i in [-4, -2, 2, 4]: for j in [-4, -2, 2, 4]: for k in range(4): assert Mod(Mod(x, i), j).subs({x: k}) == (k % i) % j assert Mod(-Mod(x, i), j).subs({x: k}) == -(k % i) % j # known difference assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5) p = symbols('p', positive=True) assert Mod(2, p + 3) == 2 assert Mod(-2, p + 3) == p + 1 assert Mod(2, -p - 3) == -p - 1 assert Mod(-2, -p - 3) == -2 assert Mod(p + 5, p + 3) == 2 assert Mod(-p - 5, p + 3) == p + 1 assert Mod(p + 5, -p - 3) == -p - 1 assert Mod(-p - 5, -p - 3) == -2 assert Mod(p + 1, p - 1).func is Mod # handling sums assert (x + 3) % 1 == Mod(x, 1) assert (x + 3.0) % 1 == Mod(1.*x, 1) assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1) a = Mod(.6*x + y, .3*y) b = Mod(0.1*y + 0.6*x, 0.3*y) # Test that a, b are equal, with 1e-14 accuracy in coefficients eps = 1e-14 assert abs((a.args[0] - b.args[0]).subs({x: 1, y: 1})) < eps assert abs((a.args[1] - b.args[1]).subs({x: 1, y: 1})) < eps assert (x + 1) % x == 1 % x assert (x + y) % x == y % x assert (x + y + 2) % x == (y + 2) % x assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x) assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x) # gcd extraction assert (-3*x) % (-2*y) == -Mod(3*x, 2*y) assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x) assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x) assert (6*pi) % (.3*x*pi) == 0.3*pi*Mod(20, x) assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x) assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x) assert (12*x) % (2*y) == 2*Mod(6*x, y) assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y) assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y) assert (-2*pi) % (3*pi) == pi assert (2*x + 2) % (x + 1) == 0 assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1) assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y) i = Symbol('i', integer=True) assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y) assert Mod(4*i, 4) == 0 # issue 8677 n = Symbol('n', integer=True, positive=True) assert factorial(n) % n == 0 assert factorial(n + 2) % n == 0 assert (factorial(n + 4) % (n + 5)).func is Mod # modular exponentiation assert Mod(Pow(4, 13, evaluate=False), 497) == Mod(Pow(4, 13), 497) assert Mod(Pow(2, 10000000000, evaluate=False), 3) == 1 assert Mod(Pow(32131231232, 9**10**6, evaluate=False),10**12) == pow(32131231232,9**10**6,10**12) assert Mod(Pow(33284959323, 123**999, evaluate=False),11**13) == pow(33284959323,123**999,11**13) assert Mod(Pow(78789849597, 333**555, evaluate=False),12**9) == pow(78789849597,333**555,12**9) # Wilson's theorem factorial(18042, evaluate=False) % 18043 == 18042 p = Symbol('n', prime=True) factorial(p - 1) % p == p - 1 factorial(p - 1) % -p == -1 (factorial(3, evaluate=False) % 4).doit() == 2 n = Symbol('n', composite=True, odd=True) factorial(n - 1) % n == 0 # symbolic with known parity n = Symbol('n', even=True) assert Mod(n, 2) == 0 n = Symbol('n', odd=True) assert Mod(n, 2) == 1 # issue 10963 assert (x**6000%400).args[1] == 400 #issue 13543 assert Mod(Mod(x + 1, 2) + 1 , 2) == Mod(x,2) assert Mod(Mod(x + 2, 4)*(x + 4), 4) == Mod(x*(x + 2), 4) assert Mod(Mod(x + 2, 4)*4, 4) == 0 def test_Mod_is_integer(): p = Symbol('p', integer=True) q1 = Symbol('q1', integer=True) q2 = Symbol('q2', integer=True, nonzero=True) assert Mod(x, y).is_integer is None assert Mod(p, q1).is_integer is None assert Mod(x, q2).is_integer is None assert Mod(p, q2).is_integer def test_Mod_is_nonposneg(): n = Symbol('n', integer=True) k = Symbol('k', integer=True, positive=True) assert (n%3).is_nonnegative assert Mod(n, -3).is_nonpositive assert Mod(n, k).is_nonnegative assert Mod(n, -k).is_nonpositive assert Mod(k, n).is_nonnegative is None def test_issue_6001(): A = Symbol("A", commutative=False) eq = A + A**2 # it doesn't matter whether it's True or False; they should # just all be the same assert ( eq.is_commutative == (eq + 1).is_commutative == (A + 1).is_commutative) B = Symbol("B", commutative=False) # Although commutative terms could cancel we return True # meaning "there are non-commutative symbols; aftersubstitution # that definition can change, e.g. (A*B).subs(B,A**-1) -> 1 assert (sqrt(2)*A).is_commutative is False assert (sqrt(2)*A*B).is_commutative is False def test_polar(): from sympy import polar_lift p = Symbol('p', polar=True) x = Symbol('x') assert p.is_polar assert x.is_polar is None assert S(1).is_polar is None assert (p**x).is_polar is True assert (x**p).is_polar is None assert ((2*p)**x).is_polar is True assert (2*p).is_polar is True assert (-2*p).is_polar is not True assert (polar_lift(-2)*p).is_polar is True q = Symbol('q', polar=True) assert (p*q)**2 == p**2 * q**2 assert (2*q)**2 == 4 * q**2 assert ((p*q)**x).expand() == p**x * q**x def test_issue_6040(): a, b = Pow(1, 2, evaluate=False), S.One assert a != b assert b != a assert not (a == b) assert not (b == a) def test_issue_6082(): # Comparison is symmetric assert Basic.compare(Max(x, 1), Max(x, 2)) == \ - Basic.compare(Max(x, 2), Max(x, 1)) # Equal expressions compare equal assert Basic.compare(Max(x, 1), Max(x, 1)) == 0 # Basic subtypes (such as Max) compare different than standard types assert Basic.compare(Max(1, x), frozenset((1, x))) != 0 def test_issue_6077(): assert x**2.0/x == x**1.0 assert x/x**2.0 == x**-1.0 assert x*x**2.0 == x**3.0 assert x**1.5*x**2.5 == x**4.0 assert 2**(2.0*x)/2**x == 2**(1.0*x) assert 2**x/2**(2.0*x) == 2**(-1.0*x) assert 2**x*2**(2.0*x) == 2**(3.0*x) assert 2**(1.5*x)*2**(2.5*x) == 2**(4.0*x) def test_mul_flatten_oo(): p = symbols('p', positive=True) n, m = symbols('n,m', negative=True) x_im = symbols('x_im', imaginary=True) assert n*oo == -oo assert n*m*oo == oo assert p*oo == oo assert x_im*oo != I*oo # i could be +/- 3*I -> +/-oo def test_add_flatten(): # see https://github.com/sympy/sympy/issues/2633#issuecomment-29545524 a = oo + I*oo b = oo - I*oo assert a + b == nan assert a - b == nan assert (1/a).simplify() == (1/b).simplify() == 0 a = Pow(2, 3, evaluate=False) assert a + a == 16 def test_issue_5160_6087_6089_6090(): # issue 6087 assert ((-2*x*y**y)**3.2).n(2) == (2**3.2*(-x*y**y)**3.2).n(2) # issue 6089 A, B, C = symbols('A,B,C', commutative=False) assert (2.*B*C)**3 == 8.0*(B*C)**3 assert (-2.*B*C)**3 == -8.0*(B*C)**3 assert (-2*B*C)**2 == 4*(B*C)**2 # issue 5160 assert sqrt(-1.0*x) == 1.0*sqrt(-x) assert sqrt(1.0*x) == 1.0*sqrt(x) # issue 6090 assert (-2*x*y*A*B)**2 == 4*x**2*y**2*(A*B)**2 def test_float_int(): assert int(float(sqrt(10))) == int(sqrt(10)) assert int(pi**1000) % 10 == 2 assert int(Float('1.123456789012345678901234567890e20', '')) == \ long(112345678901234567890) assert int(Float('1.123456789012345678901234567890e25', '')) == \ long(11234567890123456789012345) # decimal forces float so it's not an exact integer ending in 000000 assert int(Float('1.123456789012345678901234567890e35', '')) == \ 112345678901234567890123456789000192 assert int(Float('123456789012345678901234567890e5', '')) == \ 12345678901234567890123456789000000 assert Integer(Float('1.123456789012345678901234567890e20', '')) == \ 112345678901234567890 assert Integer(Float('1.123456789012345678901234567890e25', '')) == \ 11234567890123456789012345 # decimal forces float so it's not an exact integer ending in 000000 assert Integer(Float('1.123456789012345678901234567890e35', '')) == \ 112345678901234567890123456789000192 assert Integer(Float('123456789012345678901234567890e5', '')) == \ 12345678901234567890123456789000000 assert same_and_same_prec(Float('123000e-2',''), Float('1230.00', '')) assert same_and_same_prec(Float('123000e2',''), Float('12300000', '')) assert int(1 + Rational('.9999999999999999999999999')) == 1 assert int(pi/1e20) == 0 assert int(1 + pi/1e20) == 1 assert int(Add(1.2, -2, evaluate=False)) == int(1.2 - 2) assert int(Add(1.2, +2, evaluate=False)) == int(1.2 + 2) assert int(Add(1 + Float('.99999999999999999', ''), evaluate=False)) == 1 raises(TypeError, lambda: float(x)) raises(TypeError, lambda: float(sqrt(-1))) assert int(12345678901234567890 + cos(1)**2 + sin(1)**2) == \ 12345678901234567891 def test_issue_6611a(): assert Mul.flatten([3**Rational(1, 3), Pow(-Rational(1, 9), Rational(2, 3), evaluate=False)]) == \ ([Rational(1, 3), (-1)**Rational(2, 3)], [], None) def test_denest_add_mul(): # when working with evaluated expressions make sure they denest eq = x + 1 eq = Add(eq, 2, evaluate=False) eq = Add(eq, 2, evaluate=False) assert Add(*eq.args) == x + 5 eq = x*2 eq = Mul(eq, 2, evaluate=False) eq = Mul(eq, 2, evaluate=False) assert Mul(*eq.args) == 8*x # but don't let them denest unecessarily eq = Mul(-2, x - 2, evaluate=False) assert 2*eq == Mul(-4, x - 2, evaluate=False) assert -eq == Mul(2, x - 2, evaluate=False) def test_mul_coeff(): # It is important that all Numbers be removed from the seq; # This can be tricky when powers combine to produce those numbers p = exp(I*pi/3) assert p**2*x*p*y*p*x*p**2 == x**2*y def test_mul_zero_detection(): nz = Dummy(real=True, zero=False, finite=True) r = Dummy(real=True) c = Dummy(real=False, complex=True, finite=True) c2 = Dummy(real=False, complex=True, finite=True) i = Dummy(imaginary=True, finite=True) e = nz*r*c assert e.is_imaginary is None assert e.is_real is None e = nz*c assert e.is_imaginary is None assert e.is_real is False e = nz*i*c assert e.is_imaginary is False assert e.is_real is None # check for more than one complex; it is important to use # uniquely named Symbols to ensure that two factors appear # e.g. if the symbols have the same name they just become # a single factor, a power. e = nz*i*c*c2 assert e.is_imaginary is None assert e.is_real is None # _eval_is_real and _eval_is_zero both employ trapping of the # zero value so args should be tested in both directions and # TO AVOID GETTING THE CACHED RESULT, Dummy MUST BE USED # real is unknonwn def test(z, b, e): if z.is_zero and b.is_finite: assert e.is_real and e.is_zero else: assert e.is_real is None if b.is_finite: if z.is_zero: assert e.is_zero else: assert e.is_zero is None elif b.is_finite is False: if z.is_zero is None: assert e.is_zero is None else: assert e.is_zero is False for iz, ib in cartes(*[[True, False, None]]*2): z = Dummy('z', nonzero=iz) b = Dummy('f', finite=ib) e = Mul(z, b, evaluate=False) test(z, b, e) z = Dummy('nz', nonzero=iz) b = Dummy('f', finite=ib) e = Mul(b, z, evaluate=False) test(z, b, e) # real is True def test(z, b, e): if z.is_zero and not b.is_finite: assert e.is_real is None else: assert e.is_real for iz, ib in cartes(*[[True, False, None]]*2): z = Dummy('z', nonzero=iz, real=True) b = Dummy('b', finite=ib, real=True) e = Mul(z, b, evaluate=False) test(z, b, e) z = Dummy('z', nonzero=iz, real=True) b = Dummy('b', finite=ib, real=True) e = Mul(b, z, evaluate=False) test(z, b, e) def test_Mul_with_zero_infinite(): zer = Dummy(zero=True) inf = Dummy(finite=False) e = Mul(zer, inf, evaluate=False) assert e.is_positive is None assert e.is_hermitian is None e = Mul(inf, zer, evaluate=False) assert e.is_positive is None assert e.is_hermitian is None def test_Mul_does_not_cancel_infinities(): a, b = symbols('a b') assert ((zoo + 3*a)/(3*a + zoo)) is nan assert ((b - oo)/(b - oo)) is nan # issue 13904 expr = (1/(a+b) + 1/(a-b))/(1/(a+b) - 1/(a-b)) assert expr.subs(b, a) is nan def test_Mul_does_not_distribute_infinity(): a, b = symbols('a b') assert ((1 + I)*oo).is_Mul assert ((a + b)*(-oo)).is_Mul assert ((a + 1)*zoo).is_Mul assert ((1 + I)*oo).is_finite is False z = (1 + I)*oo assert ((1 - I)*z).expand() is oo def test_issue_8247_8354(): from sympy import tan z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert z.is_positive is False # it's 0 z = S('''-2**(1/3)*(3*sqrt(93) + 29)**2 - 4*(3*sqrt(93) + 29)**(4/3) + 12*sqrt(93)*(3*sqrt(93) + 29)**(1/3) + 116*(3*sqrt(93) + 29)**(1/3) + 174*2**(1/3)*sqrt(93) + 1678*2**(1/3)''') assert z.is_positive is False # it's 0 z = 2*(-3*tan(19*pi/90) + sqrt(3))*cos(11*pi/90)*cos(19*pi/90) - \ sqrt(3)*(-3 + 4*cos(19*pi/90)**2) assert z.is_positive is not True # it's zero and it shouldn't hang z = S('''9*(3*sqrt(93) + 29)**(2/3)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**3 + 72*(3*sqrt(93) + 29)**(2/3)*(81*sqrt(93) + 783) + (162*sqrt(93) + 1566)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**2''') assert z.is_positive is False # it's 0 (and a single _mexpand isn't enough) def test_Add_is_zero(): x, y = symbols('x y', zero=True) assert (x + y).is_zero def test_issue_14392(): assert (sin(zoo)**2).as_real_imag() == (nan, nan) def test_divmod(): assert divmod(x, y) == (x//y, x % y) assert divmod(x, 3) == (x//3, x % 3) assert divmod(3, x) == (3//x, 3 % x)
362214ea98f890532f270550809e6d86593a8d9145f396054ba9b2bb959c3135
"""Tests that the IPython printing module is properly loaded. """ from sympy.interactive.session import init_ipython_session from sympy.external import import_module from sympy.utilities.pytest import raises # run_cell was added in IPython 0.11 ipython = import_module("IPython", min_module_version="0.11") # disable tests if ipython is not present if not ipython: disabled = True def test_ipythonprinting(): # Initialize and setup IPython session app = init_ipython_session() app.run_cell("ip = get_ipython()") app.run_cell("inst = ip.instance()") app.run_cell("format = inst.display_formatter.format") app.run_cell("from sympy import Symbol") # Printing without printing extension app.run_cell("a = format(Symbol('pi'))") app.run_cell("a2 = format(Symbol('pi')**2)") # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: assert app.user_ns['a']['text/plain'] == "pi" assert app.user_ns['a2']['text/plain'] == "pi**2" else: assert app.user_ns['a'][0]['text/plain'] == "pi" assert app.user_ns['a2'][0]['text/plain'] == "pi**2" # Load printing extension app.run_cell("from sympy import init_printing") app.run_cell("init_printing()") # Printing with printing extension app.run_cell("a = format(Symbol('pi'))") app.run_cell("a2 = format(Symbol('pi')**2)") # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: assert app.user_ns['a']['text/plain'] in (u'\N{GREEK SMALL LETTER PI}', 'pi') assert app.user_ns['a2']['text/plain'] in (u' 2\n\N{GREEK SMALL LETTER PI} ', ' 2\npi ') else: assert app.user_ns['a'][0]['text/plain'] in (u'\N{GREEK SMALL LETTER PI}', 'pi') assert app.user_ns['a2'][0]['text/plain'] in (u' 2\n\N{GREEK SMALL LETTER PI} ', ' 2\npi ') def test_print_builtin_option(): # Initialize and setup IPython session app = init_ipython_session() app.run_cell("ip = get_ipython()") app.run_cell("inst = ip.instance()") app.run_cell("format = inst.display_formatter.format") app.run_cell("from sympy import Symbol") app.run_cell("from sympy import init_printing") app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})") # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: text = app.user_ns['a']['text/plain'] raises(KeyError, lambda: app.user_ns['a']['text/latex']) else: text = app.user_ns['a'][0]['text/plain'] raises(KeyError, lambda: app.user_ns['a'][0]['text/latex']) # Note : Unicode of Python2 is equivalent to str in Python3. In Python 3 we have one # text type: str which holds Unicode data and two byte types bytes and bytearray. # XXX: How can we make this ignore the terminal width? This test fails if # the terminal is too narrow. assert text in ("{pi: 3.14, n_i: 3}", u'{n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3, \N{GREEK SMALL LETTER PI}: 3.14}', "{n_i: 3, pi: 3.14}", u'{\N{GREEK SMALL LETTER PI}: 3.14, n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3}') # If we enable the default printing, then the dictionary's should render # as a LaTeX version of the whole dict: ${\pi: 3.14, n_i: 3}$ app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True") app.run_cell("init_printing(use_latex=True)") app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})") # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: text = app.user_ns['a']['text/plain'] latex = app.user_ns['a']['text/latex'] else: text = app.user_ns['a'][0]['text/plain'] latex = app.user_ns['a'][0]['text/latex'] assert text in ("{pi: 3.14, n_i: 3}", u'{n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3, \N{GREEK SMALL LETTER PI}: 3.14}', "{n_i: 3, pi: 3.14}", u'{\N{GREEK SMALL LETTER PI}: 3.14, n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3}') assert latex == r'$$\begin{equation*}\left \{ n_{i} : 3, \quad \pi : 3.14\right \}\end{equation*}$$' app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True") app.run_cell("init_printing(use_latex=True, print_builtin=False)") app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})") # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: text = app.user_ns['a']['text/plain'] raises(KeyError, lambda: app.user_ns['a']['text/latex']) else: text = app.user_ns['a'][0]['text/plain'] raises(KeyError, lambda: app.user_ns['a'][0]['text/latex']) # Note : Unicode of Python2 is equivalent to str in Python3. In Python 3 we have one # text type: str which holds Unicode data and two byte types bytes and bytearray. # Python 3.3.3 + IPython 0.13.2 gives: '{n_i: 3, pi: 3.14}' # Python 3.3.3 + IPython 1.1.0 gives: '{n_i: 3, pi: 3.14}' # Python 2.7.5 + IPython 1.1.0 gives: '{pi: 3.14, n_i: 3}' assert text in ("{pi: 3.14, n_i: 3}", "{n_i: 3, pi: 3.14}") def test_builtin_containers(): # Initialize and setup IPython session app = init_ipython_session() app.run_cell("ip = get_ipython()") app.run_cell("inst = ip.instance()") app.run_cell("format = inst.display_formatter.format") app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True") app.run_cell("from sympy import init_printing, Matrix") app.run_cell('init_printing(use_latex=True, use_unicode=False)') # Make sure containers that shouldn't pretty print don't. app.run_cell('a = format((True, False))') app.run_cell('import sys') app.run_cell('b = format(sys.flags)') app.run_cell('c = format((Matrix([1, 2]),))') # Deal with API change starting at IPython 1.0 if int(ipython.__version__.split(".")[0]) < 1: assert app.user_ns['a']['text/plain'] == '(True, False)' assert 'text/latex' not in app.user_ns['a'] assert app.user_ns['b']['text/plain'][:10] == 'sys.flags(' assert 'text/latex' not in app.user_ns['b'] assert app.user_ns['c']['text/plain'] == \ """\ [1] \n\ ([ ],) [2] \ """ assert app.user_ns['c']['text/latex'] == '$$\\begin{equation*}\\left ( \\left[\\begin{matrix}1\\\\2\\end{matrix}\\right]\\right )\\end{equation*}$$' else: assert app.user_ns['a'][0]['text/plain'] == '(True, False)' assert 'text/latex' not in app.user_ns['a'][0] assert app.user_ns['b'][0]['text/plain'][:10] == 'sys.flags(' assert 'text/latex' not in app.user_ns['b'][0] assert app.user_ns['c'][0]['text/plain'] == \ """\ [1] \n\ ([ ],) [2] \ """ assert app.user_ns['c'][0]['text/latex'] == '$$\\begin{equation*}\\left ( \\left[\\begin{matrix}1\\\\2\\end{matrix}\\right]\\right )\\end{equation*}$$' def test_matplotlib_bad_latex(): # Initialize and setup IPython session app = init_ipython_session() app.run_cell("import IPython") app.run_cell("ip = get_ipython()") app.run_cell("inst = ip.instance()") app.run_cell("format = inst.display_formatter.format") app.run_cell("from sympy import init_printing, Matrix") app.run_cell("init_printing(use_latex='matplotlib')") # The png formatter is not enabled by default in this context app.run_cell("inst.display_formatter.formatters['image/png'].enabled = True") # Make sure no warnings are raised by IPython app.run_cell("import warnings") # IPython.core.formatters.FormatterWarning was introduced in IPython 2.0 if int(ipython.__version__.split(".")[0]) < 2: app.run_cell("warnings.simplefilter('error')") else: app.run_cell("warnings.simplefilter('error', IPython.core.formatters.FormatterWarning)") # This should not raise an exception app.run_cell("a = format(Matrix([1, 2, 3]))") # issue 9799 app.run_cell("from sympy import Piecewise, Symbol, Eq") app.run_cell("x = Symbol('x'); pw = format(Piecewise((1, Eq(x, 0)), (0, True)))")
e8df4cddf0b56f7f041dfed4267473634cd40ed6043bd42746e8af627ac32fa3
from sympy.polys.domains import QQ, EX, RR from sympy.polys.rings import ring from sympy.polys.ring_series import (_invert_monoms, rs_integrate, rs_trunc, rs_mul, rs_square, rs_pow, _has_constant_term, rs_hadamard_exp, rs_series_from_list, rs_exp, rs_log, rs_newton, rs_series_inversion, rs_compose_add, rs_asin, rs_atan, rs_atanh, rs_tan, rs_cot, rs_sin, rs_cos, rs_cos_sin, rs_sinh, rs_cosh, rs_tanh, _tan1, rs_fun, rs_nth_root, rs_LambertW, rs_series_reversion, rs_is_puiseux, rs_series) from sympy.utilities.pytest import raises from sympy.core.compatibility import range from sympy.core.symbol import symbols from sympy.functions import (sin, cos, exp, tan, cot, atan, asin, atanh, tanh, log, sqrt) from sympy.core.numbers import Rational from sympy.core import expand, S def is_close(a, b): tol = 10**(-10) assert abs(a - b) < tol def test_ring_series1(): R, x = ring('x', QQ) p = x**4 + 2*x**3 + 3*x + 4 assert _invert_monoms(p) == 4*x**4 + 3*x**3 + 2*x + 1 assert rs_hadamard_exp(p) == x**4/24 + x**3/3 + 3*x + 4 R, x = ring('x', QQ) p = x**4 + 2*x**3 + 3*x + 4 assert rs_integrate(p, x) == x**5/5 + x**4/2 + 3*x**2/2 + 4*x R, x, y = ring('x, y', QQ) p = x**2*y**2 + x + 1 assert rs_integrate(p, x) == x**3*y**2/3 + x**2/2 + x assert rs_integrate(p, y) == x**2*y**3/3 + x*y + y def test_trunc(): R, x, y, t = ring('x, y, t', QQ) p = (y + t*x)**4 p1 = rs_trunc(p, x, 3) assert p1 == y**4 + 4*y**3*t*x + 6*y**2*t**2*x**2 def test_mul_trunc(): R, x, y, t = ring('x, y, t', QQ) p = 1 + t*x + t*y for i in range(2): p = rs_mul(p, p, t, 3) assert p == 6*x**2*t**2 + 12*x*y*t**2 + 6*y**2*t**2 + 4*x*t + 4*y*t + 1 p = 1 + t*x + t*y + t**2*x*y p1 = rs_mul(p, p, t, 2) assert p1 == 1 + 2*t*x + 2*t*y R1, z = ring('z', QQ) def test1(p): p2 = rs_mul(p, z, x, 2) raises(ValueError, lambda: test1(p)) p1 = 2 + 2*x + 3*x**2 p2 = 3 + x**2 assert rs_mul(p1, p2, x, 4) == 2*x**3 + 11*x**2 + 6*x + 6 def test_square_trunc(): R, x, y, t = ring('x, y, t', QQ) p = (1 + t*x + t*y)*2 p1 = rs_mul(p, p, x, 3) p2 = rs_square(p, x, 3) assert p1 == p2 p = 1 + x + x**2 + x**3 assert rs_square(p, x, 4) == 4*x**3 + 3*x**2 + 2*x + 1 def test_pow_trunc(): R, x, y, z = ring('x, y, z', QQ) p0 = y + x*z p = p0**16 for xx in (x, y, z): p1 = rs_trunc(p, xx, 8) p2 = rs_pow(p0, 16, xx, 8) assert p1 == p2 p = 1 + x p1 = rs_pow(p, 3, x, 2) assert p1 == 1 + 3*x assert rs_pow(p, 0, x, 2) == 1 assert rs_pow(p, -2, x, 2) == 1 - 2*x p = x + y assert rs_pow(p, 3, y, 3) == x**3 + 3*x**2*y + 3*x*y**2 assert rs_pow(1 + x, Rational(2, 3), x, 4) == 4*x**3/81 - x**2/9 + 2*x/3 + 1 def test_has_constant_term(): R, x, y, z = ring('x, y, z', QQ) p = y + x*z assert _has_constant_term(p, x) p = x + x**4 assert not _has_constant_term(p, x) p = 1 + x + x**4 assert _has_constant_term(p, x) p = x + y + x*z def test_inversion(): R, x = ring('x', QQ) p = 2 + x + 2*x**2 n = 5 p1 = rs_series_inversion(p, x, n) assert rs_trunc(p*p1, x, n) == 1 R, x, y = ring('x, y', QQ) p = 2 + x + 2*x**2 + y*x + x**2*y p1 = rs_series_inversion(p, x, n) assert rs_trunc(p*p1, x, n) == 1 R, x, y = ring('x, y', QQ) p = 1 + x + y def test2(p): p1 = rs_series_inversion(p, x, 4) raises(NotImplementedError, lambda: test2(p)) p = R.zero def test3(p): p1 = rs_series_inversion(p, x, 3) raises(ZeroDivisionError, lambda: test3(p)) def test_series_reversion(): R, x, y = ring('x, y', QQ) p = rs_tan(x, x, 10) assert rs_series_reversion(p, x, 8, y) == rs_atan(y, y, 8) p = rs_sin(x, x, 10) assert rs_series_reversion(p, x, 8, y) == 5*y**7/112 + 3*y**5/40 + \ y**3/6 + y def test_series_from_list(): R, x = ring('x', QQ) p = 1 + 2*x + x**2 + 3*x**3 c = [1, 2, 0, 4, 4] r = rs_series_from_list(p, c, x, 5) pc = R.from_list(list(reversed(c))) r1 = rs_trunc(pc.compose(x, p), x, 5) assert r == r1 R, x, y = ring('x, y', QQ) c = [1, 3, 5, 7] p1 = rs_series_from_list(x + y, c, x, 3, concur=0) p2 = rs_trunc((1 + 3*(x+y) + 5*(x+y)**2 + 7*(x+y)**3), x, 3) assert p1 == p2 R, x = ring('x', QQ) h = 25 p = rs_exp(x, x, h) - 1 p1 = rs_series_from_list(p, c, x, h) p2 = 0 for i, cx in enumerate(c): p2 += cx*rs_pow(p, i, x, h) assert p1 == p2 def test_log(): R, x = ring('x', QQ) p = 1 + x p1 = rs_log(p, x, 4)/x**2 assert p1 == S(1)/3*x - S(1)/2 + x**(-1) p = 1 + x +2*x**2/3 p1 = rs_log(p, x, 9) assert p1 == -17*x**8/648 + 13*x**7/189 - 11*x**6/162 - x**5/45 + \ 7*x**4/36 - x**3/3 + x**2/6 + x p2 = rs_series_inversion(p, x, 9) p3 = rs_log(p2, x, 9) assert p3 == -p1 R, x, y = ring('x, y', QQ) p = 1 + x + 2*y*x**2 p1 = rs_log(p, x, 6) assert p1 == (4*x**5*y**2 - 2*x**5*y - 2*x**4*y**2 + x**5/5 + 2*x**4*y - x**4/4 - 2*x**3*y + x**3/3 + 2*x**2*y - x**2/2 + x) # Constant term in series a = symbols('a') R, x, y = ring('x, y', EX) assert rs_log(x + a, x, 5) == -EX(1/(4*a**4))*x**4 + EX(1/(3*a**3))*x**3 \ - EX(1/(2*a**2))*x**2 + EX(1/a)*x + EX(log(a)) assert rs_log(x + x**2*y + a, x, 4) == -EX(a**(-2))*x**3*y + \ EX(1/(3*a**3))*x**3 + EX(1/a)*x**2*y - EX(1/(2*a**2))*x**2 + \ EX(1/a)*x + EX(log(a)) p = x + x**2 + 3 assert rs_log(p, x, 10).compose(x, 5) == EX(log(3) + S(19281291595)/9920232) def test_exp(): R, x = ring('x', QQ) p = x + x**4 for h in [10, 30]: q = rs_series_inversion(1 + p, x, h) - 1 p1 = rs_exp(q, x, h) q1 = rs_log(p1, x, h) assert q1 == q p1 = rs_exp(p, x, 30) assert p1.coeff(x**29) == QQ(74274246775059676726972369, 353670479749588078181744640000) prec = 21 p = rs_log(1 + x, x, prec) p1 = rs_exp(p, x, prec) assert p1 == x + 1 # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[exp(a), a]) assert rs_exp(x + a, x, 5) == exp(a)*x**4/24 + exp(a)*x**3/6 + \ exp(a)*x**2/2 + exp(a)*x + exp(a) assert rs_exp(x + x**2*y + a, x, 5) == exp(a)*x**4*y**2/2 + \ exp(a)*x**4*y/2 + exp(a)*x**4/24 + exp(a)*x**3*y + \ exp(a)*x**3/6 + exp(a)*x**2*y + exp(a)*x**2/2 + exp(a)*x + exp(a) R, x, y = ring('x, y', EX) assert rs_exp(x + a, x, 5) == EX(exp(a)/24)*x**4 + EX(exp(a)/6)*x**3 + \ EX(exp(a)/2)*x**2 + EX(exp(a))*x + EX(exp(a)) assert rs_exp(x + x**2*y + a, x, 5) == EX(exp(a)/2)*x**4*y**2 + \ EX(exp(a)/2)*x**4*y + EX(exp(a)/24)*x**4 + EX(exp(a))*x**3*y + \ EX(exp(a)/6)*x**3 + EX(exp(a))*x**2*y + EX(exp(a)/2)*x**2 + \ EX(exp(a))*x + EX(exp(a)) def test_newton(): R, x = ring('x', QQ) p = x**2 - 2 r = rs_newton(p, x, 4) f = [1, 0, -2] assert r == 8*x**4 + 4*x**2 + 2 def test_compose_add(): R, x = ring('x', QQ) p1 = x**3 - 1 p2 = x**2 - 2 assert rs_compose_add(p1, p2) == x**6 - 6*x**4 - 2*x**3 + 12*x**2 - 12*x - 7 def test_fun(): R, x, y = ring('x, y', QQ) p = x*y + x**2*y**3 + x**5*y assert rs_fun(p, rs_tan, x, 10) == rs_tan(p, x, 10) assert rs_fun(p, _tan1, x, 10) == _tan1(p, x, 10) def test_nth_root(): R, x, y = ring('x, y', QQ) r1 = rs_nth_root(1 + x**2*y, 4, x, 10) assert rs_nth_root(1 + x**2*y, 4, x, 10) == -77*x**8*y**4/2048 + \ 7*x**6*y**3/128 - 3*x**4*y**2/32 + x**2*y/4 + 1 assert rs_nth_root(1 + x*y + x**2*y**3, 3, x, 5) == -x**4*y**6/9 + \ 5*x**4*y**5/27 - 10*x**4*y**4/243 - 2*x**3*y**4/9 + 5*x**3*y**3/81 + \ x**2*y**3/3 - x**2*y**2/9 + x*y/3 + 1 assert rs_nth_root(8*x, 3, x, 3) == 2*x**QQ(1, 3) assert rs_nth_root(8*x + x**2 + x**3, 3, x, 3) == x**QQ(4,3)/12 + 2*x**QQ(1,3) r = rs_nth_root(8*x + x**2*y + x**3, 3, x, 4) assert r == -x**QQ(7,3)*y**2/288 + x**QQ(7,3)/12 + x**QQ(4,3)*y/12 + 2*x**QQ(1,3) # Constant term in series a = symbols('a') R, x, y = ring('x, y', EX) assert rs_nth_root(x + a, 3, x, 4) == EX(5/(81*a**QQ(8, 3)))*x**3 - \ EX(1/(9*a**QQ(5, 3)))*x**2 + EX(1/(3*a**QQ(2, 3)))*x + EX(a**QQ(1, 3)) assert rs_nth_root(x**QQ(2, 3) + x**2*y + 5, 2, x, 3) == -EX(sqrt(5)/100)*\ x**QQ(8, 3)*y - EX(sqrt(5)/16000)*x**QQ(8, 3) + EX(sqrt(5)/10)*x**2*y + \ EX(sqrt(5)/2000)*x**2 - EX(sqrt(5)/200)*x**QQ(4, 3) + \ EX(sqrt(5)/10)*x**QQ(2, 3) + EX(sqrt(5)) def test_atan(): R, x, y = ring('x, y', QQ) assert rs_atan(x, x, 9) == -x**7/7 + x**5/5 - x**3/3 + x assert rs_atan(x*y + x**2*y**3, x, 9) == 2*x**8*y**11 - x**8*y**9 + \ 2*x**7*y**9 - x**7*y**7/7 - x**6*y**9/3 + x**6*y**7 - x**5*y**7 + \ x**5*y**5/5 - x**4*y**5 - x**3*y**3/3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', EX) assert rs_atan(x + a, x, 5) == -EX((a**3 - a)/(a**8 + 4*a**6 + 6*a**4 + \ 4*a**2 + 1))*x**4 + EX((3*a**2 - 1)/(3*a**6 + 9*a**4 + \ 9*a**2 + 3))*x**3 - EX(a/(a**4 + 2*a**2 + 1))*x**2 + \ EX(1/(a**2 + 1))*x + EX(atan(a)) assert rs_atan(x + x**2*y + a, x, 4) == -EX(2*a/(a**4 + 2*a**2 + 1)) \ *x**3*y + EX((3*a**2 - 1)/(3*a**6 + 9*a**4 + 9*a**2 + 3))*x**3 + \ EX(1/(a**2 + 1))*x**2*y - EX(a/(a**4 + 2*a**2 + 1))*x**2 + EX(1/(a**2 \ + 1))*x + EX(atan(a)) def test_asin(): R, x, y = ring('x, y', QQ) assert rs_asin(x + x*y, x, 5) == x**3*y**3/6 + x**3*y**2/2 + x**3*y/2 + \ x**3/6 + x*y + x assert rs_asin(x*y + x**2*y**3, x, 6) == x**5*y**7/2 + 3*x**5*y**5/40 + \ x**4*y**5/2 + x**3*y**3/6 + x**2*y**3 + x*y def test_tan(): R, x, y = ring('x, y', QQ) assert rs_tan(x, x, 9)/x**5 == \ S(17)/315*x**2 + S(2)/15 + S(1)/3*x**(-2) + x**(-4) assert rs_tan(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 + 17*x**8*y**9/45 + \ 4*x**7*y**9/3 + 17*x**7*y**7/315 + x**6*y**9/3 + 2*x**6*y**7/3 + \ x**5*y**7 + 2*x**5*y**5/15 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[tan(a), a]) assert rs_tan(x + a, x, 5) == (tan(a)**5 + 5*tan(a)**S(3)/3 + 2*tan(a)/3)*x**4 + (tan(a)**4 + 4*tan(a)**2/3 + S(1)/3)*x**3 + \ (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a) assert rs_tan(x + x**2*y + a, x, 4) == (2*tan(a)**3 + 2*tan(a))*x**3*y + \ (tan(a)**4 + S(4)/3*tan(a)**2 + S(1)/3)*x**3 + (tan(a)**2 + 1)*x**2*y + \ (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a) R, x, y = ring('x, y', EX) assert rs_tan(x + a, x, 5) == EX(tan(a)**5 + 5*tan(a)**3/3 + 2*tan(a)/3)*x**4 + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \ EX(tan(a)**3 + tan(a))*x**2 + EX(tan(a)**2 + 1)*x + EX(tan(a)) assert rs_tan(x + x**2*y + a, x, 4) == EX(2*tan(a)**3 + 2*tan(a))*x**3*y + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \ EX(tan(a)**2 + 1)*x**2*y + EX(tan(a)**3 + tan(a))*x**2 + \ EX(tan(a)**2 + 1)*x + EX(tan(a)) p = x + x**2 + 5 assert rs_atan(p, x, 10).compose(x, 10) == EX(atan(5) + S(67701870330562640) / \ 668083460499) def test_cot(): R, x, y = ring('x, y', QQ) assert rs_cot(x**6 + x**7, x, 8) == x**(-6) - x**(-5) + x**(-4) - \ x**(-3) + x**(-2) - x**(-1) + 1 - x + x**2 - x**3 + x**4 - x**5 + \ 2*x**6/3 - 4*x**7/3 assert rs_cot(x + x**2*y, x, 5) == -x**4*y**5 - x**4*y/15 + x**3*y**4 - \ x**3/45 - x**2*y**3 - x**2*y/3 + x*y**2 - x/3 - y + x**(-1) def test_sin(): R, x, y = ring('x, y', QQ) assert rs_sin(x, x, 9)/x**5 == \ -S(1)/5040*x**2 + S(1)/120 - S(1)/6*x**(-2) + x**(-4) assert rs_sin(x*y + x**2*y**3, x, 9) == x**8*y**11/12 - \ x**8*y**9/720 + x**7*y**9/12 - x**7*y**7/5040 - x**6*y**9/6 + \ x**6*y**7/24 - x**5*y**7/2 + x**5*y**5/120 - x**4*y**5/2 - \ x**3*y**3/6 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[sin(a), cos(a), a]) assert rs_sin(x + a, x, 5) == sin(a)*x**4/24 - cos(a)*x**3/6 - \ sin(a)*x**2/2 + cos(a)*x + sin(a) assert rs_sin(x + x**2*y + a, x, 5) == -sin(a)*x**4*y**2/2 - \ cos(a)*x**4*y/2 + sin(a)*x**4/24 - sin(a)*x**3*y - cos(a)*x**3/6 + \ cos(a)*x**2*y - sin(a)*x**2/2 + cos(a)*x + sin(a) R, x, y = ring('x, y', EX) assert rs_sin(x + a, x, 5) == EX(sin(a)/24)*x**4 - EX(cos(a)/6)*x**3 - \ EX(sin(a)/2)*x**2 + EX(cos(a))*x + EX(sin(a)) assert rs_sin(x + x**2*y + a, x, 5) == -EX(sin(a)/2)*x**4*y**2 - \ EX(cos(a)/2)*x**4*y + EX(sin(a)/24)*x**4 - EX(sin(a))*x**3*y - \ EX(cos(a)/6)*x**3 + EX(cos(a))*x**2*y - EX(sin(a)/2)*x**2 + \ EX(cos(a))*x + EX(sin(a)) def test_cos(): R, x, y = ring('x, y', QQ) assert rs_cos(x, x, 9)/x**5 == \ S(1)/40320*x**3 - S(1)/720*x + S(1)/24*x**(-1) - S(1)/2*x**(-3) + x**(-5) assert rs_cos(x*y + x**2*y**3, x, 9) == x**8*y**12/24 - \ x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 - \ x**7*y**8/120 + x**6*y**8/4 - x**6*y**6/720 + x**5*y**6/6 - \ x**4*y**6/2 + x**4*y**4/24 - x**3*y**4 - x**2*y**2/2 + 1 # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[sin(a), cos(a), a]) assert rs_cos(x + a, x, 5) == cos(a)*x**4/24 + sin(a)*x**3/6 - \ cos(a)*x**2/2 - sin(a)*x + cos(a) assert rs_cos(x + x**2*y + a, x, 5) == -cos(a)*x**4*y**2/2 + \ sin(a)*x**4*y/2 + cos(a)*x**4/24 - cos(a)*x**3*y + sin(a)*x**3/6 - \ sin(a)*x**2*y - cos(a)*x**2/2 - sin(a)*x + cos(a) R, x, y = ring('x, y', EX) assert rs_cos(x + a, x, 5) == EX(cos(a)/24)*x**4 + EX(sin(a)/6)*x**3 - \ EX(cos(a)/2)*x**2 - EX(sin(a))*x + EX(cos(a)) assert rs_cos(x + x**2*y + a, x, 5) == -EX(cos(a)/2)*x**4*y**2 + \ EX(sin(a)/2)*x**4*y + EX(cos(a)/24)*x**4 - EX(cos(a))*x**3*y + \ EX(sin(a)/6)*x**3 - EX(sin(a))*x**2*y - EX(cos(a)/2)*x**2 - \ EX(sin(a))*x + EX(cos(a)) def test_cos_sin(): R, x, y = ring('x, y', QQ) cos, sin = rs_cos_sin(x, x, 9) assert cos == rs_cos(x, x, 9) assert sin == rs_sin(x, x, 9) cos, sin = rs_cos_sin(x + x*y, x, 5) assert cos == rs_cos(x + x*y, x, 5) assert sin == rs_sin(x + x*y, x, 5) def test_atanh(): R, x, y = ring('x, y', QQ) assert rs_atanh(x, x, 9)/x**5 == S(1)/7*x**2 + S(1)/5 + S(1)/3*x**(-2) + x**(-4) assert rs_atanh(x*y + x**2*y**3, x, 9) == 2*x**8*y**11 + x**8*y**9 + \ 2*x**7*y**9 + x**7*y**7/7 + x**6*y**9/3 + x**6*y**7 + x**5*y**7 + \ x**5*y**5/5 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', EX) assert rs_atanh(x + a, x, 5) == EX((a**3 + a)/(a**8 - 4*a**6 + 6*a**4 - \ 4*a**2 + 1))*x**4 - EX((3*a**2 + 1)/(3*a**6 - 9*a**4 + \ 9*a**2 - 3))*x**3 + EX(a/(a**4 - 2*a**2 + 1))*x**2 - EX(1/(a**2 - \ 1))*x + EX(atanh(a)) assert rs_atanh(x + x**2*y + a, x, 4) == EX(2*a/(a**4 - 2*a**2 + \ 1))*x**3*y - EX((3*a**2 + 1)/(3*a**6 - 9*a**4 + 9*a**2 - 3))*x**3 - \ EX(1/(a**2 - 1))*x**2*y + EX(a/(a**4 - 2*a**2 + 1))*x**2 - \ EX(1/(a**2 - 1))*x + EX(atanh(a)) p = x + x**2 + 5 assert rs_atanh(p, x, 10).compose(x, 10) == EX(-S(733442653682135)/5079158784 \ + atanh(5)) def test_sinh(): R, x, y = ring('x, y', QQ) assert rs_sinh(x, x, 9)/x**5 == S(1)/5040*x**2 + S(1)/120 + S(1)/6*x**(-2) + x**(-4) assert rs_sinh(x*y + x**2*y**3, x, 9) == x**8*y**11/12 + \ x**8*y**9/720 + x**7*y**9/12 + x**7*y**7/5040 + x**6*y**9/6 + \ x**6*y**7/24 + x**5*y**7/2 + x**5*y**5/120 + x**4*y**5/2 + \ x**3*y**3/6 + x**2*y**3 + x*y def test_cosh(): R, x, y = ring('x, y', QQ) assert rs_cosh(x, x, 9)/x**5 == S(1)/40320*x**3 + S(1)/720*x + S(1)/24*x**(-1) + \ S(1)/2*x**(-3) + x**(-5) assert rs_cosh(x*y + x**2*y**3, x, 9) == x**8*y**12/24 + \ x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 + \ x**7*y**8/120 + x**6*y**8/4 + x**6*y**6/720 + x**5*y**6/6 + \ x**4*y**6/2 + x**4*y**4/24 + x**3*y**4 + x**2*y**2/2 + 1 def test_tanh(): R, x, y = ring('x, y', QQ) assert rs_tanh(x, x, 9)/x**5 == -S(17)/315*x**2 + S(2)/15 - S(1)/3*x**(-2) + x**(-4) assert rs_tanh(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 - \ 17*x**8*y**9/45 + 4*x**7*y**9/3 - 17*x**7*y**7/315 - x**6*y**9/3 + \ 2*x**6*y**7/3 - x**5*y**7 + 2*x**5*y**5/15 - x**4*y**5 - \ x**3*y**3/3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', EX) assert rs_tanh(x + a, x, 5) == EX(tanh(a)**5 - 5*tanh(a)**3/3 + 2*tanh(a)/3)*x**4 + EX(-tanh(a)**4 + 4*tanh(a)**2/3 - QQ(1, 3))*x**3 + \ EX(tanh(a)**3 - tanh(a))*x**2 + EX(-tanh(a)**2 + 1)*x + EX(tanh(a)) p = rs_tanh(x + x**2*y + a, x, 4) assert (p.compose(x, 10)).compose(y, 5) == EX(-1000*tanh(a)**4 + \ 10100*tanh(a)**3 + 2470*tanh(a)**2/3 - 10099*tanh(a) + QQ(530, 3)) def test_RR(): rs_funcs = [rs_sin, rs_cos, rs_tan, rs_cot, rs_atan, rs_tanh] sympy_funcs = [sin, cos, tan, cot, atan, tanh] R, x, y = ring('x, y', RR) a = symbols('a') for rs_func, sympy_func in zip(rs_funcs, sympy_funcs): p = rs_func(2 + x, x, 5).compose(x, 5) q = sympy_func(2 + a).series(a, 0, 5).removeO() is_close(p.as_expr(), q.subs(a, 5).n()) p = rs_nth_root(2 + x, 5, x, 5).compose(x, 5) q = ((2 + a)**QQ(1, 5)).series(a, 0, 5).removeO() is_close(p.as_expr(), q.subs(a, 5).n()) def test_is_regular(): R, x, y = ring('x, y', QQ) p = 1 + 2*x + x**2 + 3*x**3 assert not rs_is_puiseux(p, x) p = x + x**QQ(1,5)*y assert rs_is_puiseux(p, x) assert not rs_is_puiseux(p, y) p = x + x**2*y**QQ(1,5)*y assert not rs_is_puiseux(p, x) def test_puiseux(): R, x, y = ring('x, y', QQ) p = x**QQ(2,5) + x**QQ(2,3) + x r = rs_series_inversion(p, x, 1) r1 = -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + x**QQ(2,3) + \ 2*x**QQ(7,15) - x**QQ(2,5) - x**QQ(1,5) + x**QQ(2,15) - x**QQ(-2,15) \ + x**QQ(-2,5) assert r == r1 r = rs_nth_root(1 + p, 3, x, 1) assert r == -x**QQ(4,5)/9 + x**QQ(2,3)/3 + x**QQ(2,5)/3 + 1 r = rs_log(1 + p, x, 1) assert r == -x**QQ(4,5)/2 + x**QQ(2,3) + x**QQ(2,5) r = rs_LambertW(p, x, 1) assert r == -x**QQ(4,5) + x**QQ(2,3) + x**QQ(2,5) p1 = x + x**QQ(1,5)*y r = rs_exp(p1, x, 1) assert r == x**QQ(4,5)*y**4/24 + x**QQ(3,5)*y**3/6 + x**QQ(2,5)*y**2/2 + \ x**QQ(1,5)*y + 1 r = rs_atan(p, x, 2) assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \ x + x**QQ(2,3) + x**QQ(2,5) r = rs_atan(p1, x, 2) assert r == x**QQ(9,5)*y**9/9 + x**QQ(9,5)*y**4 - x**QQ(7,5)*y**7/7 - \ x**QQ(7,5)*y**2 + x*y**5/5 + x - x**QQ(3,5)*y**3/3 + x**QQ(1,5)*y r = rs_asin(p, x, 2) assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_cot(p, x, 1) assert r == -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + \ 2*x**QQ(2,3)/3 + 2*x**QQ(7,15) - 4*x**QQ(2,5)/3 - x**QQ(1,5) + \ x**QQ(2,15) - x**QQ(-2,15) + x**QQ(-2,5) r = rs_cos_sin(p, x, 2) assert r[0] == x**QQ(28,15)/6 - x**QQ(5,3) + x**QQ(8,5)/24 - x**QQ(7,5) - \ x**QQ(4,3)/2 - x**QQ(16,15) - x**QQ(4,5)/2 + 1 assert r[1] == -x**QQ(9,5)/2 - x**QQ(26,15)/2 - x**QQ(22,15)/2 - \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_atanh(p, x, 2) assert r == x**QQ(9,5) + x**QQ(26,15) + x**QQ(22,15) + x**QQ(6,5)/3 + x + \ x**QQ(2,3) + x**QQ(2,5) r = rs_sinh(p, x, 2) assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_cosh(p, x, 2) assert r == x**QQ(28,15)/6 + x**QQ(5,3) + x**QQ(8,5)/24 + x**QQ(7,5) + \ x**QQ(4,3)/2 + x**QQ(16,15) + x**QQ(4,5)/2 + 1 r = rs_tanh(p, x, 2) assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \ x + x**QQ(2,3) + x**QQ(2,5) def test1(): R, x = ring('x', QQ) r = rs_sin(x, x, 15)*x**(-5) assert r == x**8/6227020800 - x**6/39916800 + x**4/362880 - x**2/5040 + \ QQ(1,120) - x**-2/6 + x**-4 p = rs_sin(x, x, 10) r = rs_nth_root(p, 2, x, 10) assert r == -67*x**QQ(17,2)/29030400 - x**QQ(13,2)/24192 + \ x**QQ(9,2)/1440 - x**QQ(5,2)/12 + x**QQ(1,2) p = rs_sin(x, x, 10) r = rs_nth_root(p, 7, x, 10) r = rs_pow(r, 5, x, 10) assert r == -97*x**QQ(61,7)/124467840 - x**QQ(47,7)/16464 + \ 11*x**QQ(33,7)/3528 - 5*x**QQ(19,7)/42 + x**QQ(5,7) r = rs_exp(x**QQ(1,2), x, 10) assert r == x**QQ(19,2)/121645100408832000 + x**9/6402373705728000 + \ x**QQ(17,2)/355687428096000 + x**8/20922789888000 + \ x**QQ(15,2)/1307674368000 + x**7/87178291200 + \ x**QQ(13,2)/6227020800 + x**6/479001600 + x**QQ(11,2)/39916800 + \ x**5/3628800 + x**QQ(9,2)/362880 + x**4/40320 + x**QQ(7,2)/5040 + \ x**3/720 + x**QQ(5,2)/120 + x**2/24 + x**QQ(3,2)/6 + x/2 + \ x**QQ(1,2) + 1 def test_puiseux2(): R, y = ring('y', QQ) S, x = ring('x', R) p = x + x**QQ(1,5)*y r = rs_atan(p, x, 3) assert r == (y**13/13 + y**8 + 2*y**3)*x**QQ(13,5) - (y**11/11 + y**6 + y)*x**QQ(11,5) + (y**9/9 + y**4)*x**QQ(9,5) - (y**7/7 + y**2)*x**QQ(7,5) + (y**5/5 + 1)*x - y**3*x**QQ(3,5)/3 + y*x**QQ(1,5) def test_rs_series(): x, a, b, c = symbols('x, a, b, c') assert rs_series(a, a, 5).as_expr() == a assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0, 5)).removeO() assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) + cos(a)).series(a, 0, 5)).removeO() assert rs_series(sin(a)*cos(a), a, 5).as_expr() == ((sin(a)* cos(a)).series(a, 0, 5)).removeO() p = (sin(a) - a)*(cos(a**2) + a**4/2) assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0, 10).removeO()) p = sin(a**2/2 + a/3) + cos(a/5)*sin(a/2)**3 assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = sin(x**2 + a)*(cos(x**3 - 1) - a - a**2) assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = sin(a**2 - a/3 + 2)**5*exp(a**3 - a/2) assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0, 10).removeO()) p = sin(a + b + c) assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = tan(sin(a**2 + 4) + b + c) assert expand(rs_series(p, a, 6).as_expr()) == expand(p.series(a, 0, 6).removeO()) p = a**QQ(2,5) + a**QQ(2,3) + a r = rs_series(tan(p), a, 2) assert r.as_expr() == a**QQ(9,5) + a**QQ(26,15) + a**QQ(22,15) + a**QQ(6,5)/3 + \ a + a**QQ(2,3) + a**QQ(2,5) r = rs_series(exp(p), a, 1) assert r.as_expr() == a**QQ(4,5)/2 + a**QQ(2,3) + a**QQ(2,5) + 1 r = rs_series(sin(p), a, 2) assert r.as_expr() == -a**QQ(9,5)/2 - a**QQ(26,15)/2 - a**QQ(22,15)/2 - \ a**QQ(6,5)/6 + a + a**QQ(2,3) + a**QQ(2,5) r = rs_series(cos(p), a, 2) assert r.as_expr() == a**QQ(28,15)/6 - a**QQ(5,3) + a**QQ(8,5)/24 - a**QQ(7,5) - \ a**QQ(4,3)/2 - a**QQ(16,15) - a**QQ(4,5)/2 + 1 assert rs_series(sin(a)/7, a, 5).as_expr() == (sin(a)/7).series(a, 0, 5).removeO() assert rs_series(log(1 + x), x, 5).as_expr() == -x**4/4 + x**3/3 - \ x**2/2 + x assert rs_series(log(1 + 4*x), x, 5).as_expr() == -64*x**4 + 64*x**3/3 - \ 8*x**2 + 4*x assert rs_series(log(1 + x + x**2), x, 10).as_expr() == -2*x**9/9 + \ x**8/8 + x**7/7 - x**6/3 + x**5/5 + x**4/4 - 2*x**3/3 + \ x**2/2 + x assert rs_series(log(1 + x*a**2), x, 7).as_expr() == -x**6*a**12/6 + \ x**5*a**10/5 - x**4*a**8/4 + x**3*a**6/3 - \ x**2*a**4/2 + x*a**2
63634418ca7f1cf2faf45ca8718ec5083ad83eaae7ad9879d0a20d5ee85e7c7f
"""Tests for algorithms for partial fraction decomposition of rational functions. """ from sympy.polys.partfrac import ( apart_undetermined_coeffs, apart, apart_list, assemble_partfrac_list ) from sympy import (S, Poly, E, pi, I, Matrix, Eq, RootSum, Lambda, Symbol, Dummy, factor, together, sqrt, Expr, Rational) from sympy.utilities.pytest import raises, XFAIL from sympy.abc import x, y, a, b, c def test_apart(): assert apart(1) == 1 assert apart(1, x) == 1 f, g = (x**2 + 1)/(x + 1), 2/(x + 1) + x - 1 assert apart(f, full=False) == g assert apart(f, full=True) == g f, g = 1/(x + 2)/(x + 1), 1/(1 + x) - 1/(2 + x) assert apart(f, full=False) == g assert apart(f, full=True) == g f, g = 1/(x + 1)/(x + 5), -1/(5 + x)/4 + 1/(1 + x)/4 assert apart(f, full=False) == g assert apart(f, full=True) == g assert apart((E*x + 2)/(x - pi)*(x - 1), x) == \ 2 - E + E*pi + E*x + (E*pi + 2)*(pi - 1)/(x - pi) assert apart(Eq((x**2 + 1)/(x + 1), x), x) == Eq(x - 1 + 2/(x + 1), x) assert apart(x/2, y) == x/2 f, g = (x+y)/(2*x - y), Rational(3, 2)*y/((2*x - y)) + Rational(1, 2) assert apart(f, x, full=False) == g assert apart(f, x, full=True) == g f, g = (x+y)/(2*x - y), 3*x/(2*x - y) - 1 assert apart(f, y, full=False) == g assert apart(f, y, full=True) == g raises(NotImplementedError, lambda: apart(1/(x + 1)/(y + 2))) def test_apart_matrix(): M = Matrix(2, 2, lambda i, j: 1/(x + i + 1)/(x + j)) assert apart(M) == Matrix([ [1/x - 1/(x + 1), (x + 1)**(-2)], [1/(2*x) - (S(1)/2)/(x + 2), 1/(x + 1) - 1/(x + 2)], ]) def test_apart_symbolic(): f = a*x**4 + (2*b + 2*a*c)*x**3 + (4*b*c - a**2 + a*c**2)*x**2 + \ (-2*a*b + 2*b*c**2)*x - b**2 g = a**2*x**4 + (2*a*b + 2*c*a**2)*x**3 + (4*a*b*c + b**2 + a**2*c**2)*x**2 + (2*c*b**2 + 2*a*b*c**2)*x + b**2*c**2 assert apart(f/g, x) == 1/a - 1/(x + c)**2 - b**2/(a*(a*x + b)**2) assert apart(1/((x + a)*(x + b)*(x + c)), x) == \ 1/((a - c)*(b - c)*(c + x)) - 1/((a - b)*(b - c)*(b + x)) + \ 1/((a - b)*(a - c)*(a + x)) def test_apart_extension(): f = 2/(x**2 + 1) g = I/(x + I) - I/(x - I) assert apart(f, extension=I) == g assert apart(f, gaussian=True) == g f = x/((x - 2)*(x + I)) assert factor(together(apart(f)).expand()) == f def test_apart_full(): f = 1/(x**2 + 1) assert apart(f, full=False) == f assert apart(f, full=True) == \ -RootSum(x**2 + 1, Lambda(a, a/(x - a)), auto=False)/2 f = 1/(x**3 + x + 1) assert apart(f, full=False) == f assert apart(f, full=True) == \ RootSum(x**3 + x + 1, Lambda(a, (6*a**2/31 - 9*a/31 + S(4)/31)/(x - a)), auto=False) f = 1/(x**5 + 1) assert apart(f, full=False) == \ (-S(1)/5)*((x**3 - 2*x**2 + 3*x - 4)/(x**4 - x**3 + x**2 - x + 1)) + (S(1)/5)/(x + 1) assert apart(f, full=True) == \ -RootSum(x**4 - x**3 + x**2 - x + 1, Lambda(a, a/(x - a)), auto=False)/5 + (S(1)/5)/(x + 1) def test_apart_undetermined_coeffs(): p = Poly(2*x - 3) q = Poly(x**9 - x**8 - x**6 + x**5 - 2*x**2 + 3*x - 1) r = (-x**7 - x**6 - x**5 + 4)/(x**8 - x**5 - 2*x + 1) + 1/(x - 1) assert apart_undetermined_coeffs(p, q) == r p = Poly(1, x, domain='ZZ[a,b]') q = Poly((x + a)*(x + b), x, domain='ZZ[a,b]') r = 1/((a - b)*(b + x)) - 1/((a - b)*(a + x)) assert apart_undetermined_coeffs(p, q) == r def test_apart_list(): from sympy.utilities.iterables import numbered_symbols w0, w1, w2 = Symbol("w0"), Symbol("w1"), Symbol("w2") _a = Dummy("a") f = (-2*x - 2*x**2) / (3*x**2 - 6*x) assert apart_list(f, x, dummies=numbered_symbols("w")) == (-1, Poly(S(2)/3, x, domain='QQ'), [(Poly(w0 - 2, w0, domain='ZZ'), Lambda(_a, 2), Lambda(_a, -_a + x), 1)]) assert apart_list(2/(x**2-2), x, dummies=numbered_symbols("w")) == (1, Poly(0, x, domain='ZZ'), [(Poly(w0**2 - 2, w0, domain='ZZ'), Lambda(_a, _a/2), Lambda(_a, -_a + x), 1)]) f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2) assert apart_list(f, x, dummies=numbered_symbols("w")) == (1, Poly(0, x, domain='ZZ'), [(Poly(w0 - 2, w0, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1), (Poly(w1**2 - 1, w1, domain='ZZ'), Lambda(_a, -3*_a - 6), Lambda(_a, -_a + x), 2), (Poly(w2 + 1, w2, domain='ZZ'), Lambda(_a, -4), Lambda(_a, -_a + x), 1)]) def test_assemble_partfrac_list(): f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2) pfd = apart_list(f) assert assemble_partfrac_list(pfd) == -4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2) a = Dummy("a") pfd = (1, Poly(0, x, domain='ZZ'), [([sqrt(2),-sqrt(2)], Lambda(a, a/2), Lambda(a, -a + x), 1)]) assert assemble_partfrac_list(pfd) == -1/(sqrt(2)*(x + sqrt(2))) + 1/(sqrt(2)*(x - sqrt(2))) @XFAIL def test_noncommutative_pseudomultivariate(): # apart doesn't go inside noncommutative expressions class foo(Expr): is_commutative=False e = x/(x + x*y) c = 1/(1 + y) assert apart(e + foo(e)) == c + foo(c) assert apart(e*foo(e)) == c*foo(c) def test_noncommutative(): class foo(Expr): is_commutative=False e = x/(x + x*y) c = 1/(1 + y) assert apart(e + foo()) == c + foo() def test_issue_5798(): assert apart( 2*x/(x**2 + 1) - (x - 1)/(2*(x**2 + 1)) + 1/(2*(x + 1)) - 2/x) == \ (3*x + 1)/(x**2 + 1)/2 + 1/(x + 1)/2 - 2/x
28ad66c03e8f8f698325177dd929e61f9cbb73010c4c2681264651cfa8d96f45
"""Tests for the implementation of RootOf class and related tools. """ from sympy.polys.polytools import Poly from sympy.polys.rootoftools import (rootof, RootOf, CRootOf, RootSum, _pure_key_dict as D) from sympy.polys.polyerrors import ( MultivariatePolynomialError, GeneratorsNeeded, PolynomialError, ) from sympy import ( S, sqrt, I, Rational, Float, Lambda, log, exp, tan, Function, Eq, solve, legendre_poly ) from sympy.utilities.pytest import raises from sympy.core.compatibility import range from sympy.abc import a, b, x, y, z, r def test_CRootOf___new__(): assert rootof(x, 0) == 0 assert rootof(x, -1) == 0 assert rootof(x, S.Zero) == 0 assert rootof(x - 1, 0) == 1 assert rootof(x - 1, -1) == 1 assert rootof(x + 1, 0) == -1 assert rootof(x + 1, -1) == -1 assert rootof(x**2 + 2*x + 3, 0) == -1 - I*sqrt(2) assert rootof(x**2 + 2*x + 3, 1) == -1 + I*sqrt(2) assert rootof(x**2 + 2*x + 3, -1) == -1 + I*sqrt(2) assert rootof(x**2 + 2*x + 3, -2) == -1 - I*sqrt(2) r = rootof(x**2 + 2*x + 3, 0, radicals=False) assert isinstance(r, RootOf) is True r = rootof(x**2 + 2*x + 3, 1, radicals=False) assert isinstance(r, RootOf) is True r = rootof(x**2 + 2*x + 3, -1, radicals=False) assert isinstance(r, RootOf) is True r = rootof(x**2 + 2*x + 3, -2, radicals=False) assert isinstance(r, RootOf) is True assert rootof((x - 1)*(x + 1), 0, radicals=False) == -1 assert rootof((x - 1)*(x + 1), 1, radicals=False) == 1 assert rootof((x - 1)*(x + 1), -1, radicals=False) == 1 assert rootof((x - 1)*(x + 1), -2, radicals=False) == -1 assert rootof((x - 1)*(x + 1), 0, radicals=True) == -1 assert rootof((x - 1)*(x + 1), 1, radicals=True) == 1 assert rootof((x - 1)*(x + 1), -1, radicals=True) == 1 assert rootof((x - 1)*(x + 1), -2, radicals=True) == -1 assert rootof((x - 1)*(x**3 + x + 3), 0) == rootof(x**3 + x + 3, 0) assert rootof((x - 1)*(x**3 + x + 3), 1) == 1 assert rootof((x - 1)*(x**3 + x + 3), 2) == rootof(x**3 + x + 3, 1) assert rootof((x - 1)*(x**3 + x + 3), 3) == rootof(x**3 + x + 3, 2) assert rootof((x - 1)*(x**3 + x + 3), -1) == rootof(x**3 + x + 3, 2) assert rootof((x - 1)*(x**3 + x + 3), -2) == rootof(x**3 + x + 3, 1) assert rootof((x - 1)*(x**3 + x + 3), -3) == 1 assert rootof((x - 1)*(x**3 + x + 3), -4) == rootof(x**3 + x + 3, 0) assert rootof(x**4 + 3*x**3, 0) == -3 assert rootof(x**4 + 3*x**3, 1) == 0 assert rootof(x**4 + 3*x**3, 2) == 0 assert rootof(x**4 + 3*x**3, 3) == 0 raises(GeneratorsNeeded, lambda: rootof(0, 0)) raises(GeneratorsNeeded, lambda: rootof(1, 0)) raises(PolynomialError, lambda: rootof(Poly(0, x), 0)) raises(PolynomialError, lambda: rootof(Poly(1, x), 0)) raises(PolynomialError, lambda: rootof(x - y, 0)) # issue 8617 raises(PolynomialError, lambda: rootof(exp(x), 0)) raises(NotImplementedError, lambda: rootof(x**3 - x + sqrt(2), 0)) raises(NotImplementedError, lambda: rootof(x**3 - x + I, 0)) raises(IndexError, lambda: rootof(x**2 - 1, -4)) raises(IndexError, lambda: rootof(x**2 - 1, -3)) raises(IndexError, lambda: rootof(x**2 - 1, 2)) raises(IndexError, lambda: rootof(x**2 - 1, 3)) raises(ValueError, lambda: rootof(x**2 - 1, x)) assert rootof(Poly(x - y, x), 0) == y assert rootof(Poly(x**2 - y, x), 0) == -sqrt(y) assert rootof(Poly(x**2 - y, x), 1) == sqrt(y) assert rootof(Poly(x**3 - y, x), 0) == y**Rational(1, 3) assert rootof(y*x**3 + y*x + 2*y, x, 0) == -1 raises(NotImplementedError, lambda: rootof(x**3 + x + 2*y, x, 0)) assert rootof(x**3 + x + 1, 0).is_commutative is True def test_CRootOf_attributes(): r = rootof(x**3 + x + 3, 0) assert r.is_number assert r.free_symbols == set() # if the following assertion fails then multivariate polynomials # are apparently supported and the RootOf.free_symbols routine # should be changed to return whatever symbols would not be # the PurePoly dummy symbol raises(NotImplementedError, lambda: rootof(Poly(x**3 + y*x + 1, x), 0)) def test_CRootOf___eq__(): assert (rootof(x**3 + x + 3, 0) == rootof(x**3 + x + 3, 0)) is True assert (rootof(x**3 + x + 3, 0) == rootof(x**3 + x + 3, 1)) is False assert (rootof(x**3 + x + 3, 1) == rootof(x**3 + x + 3, 1)) is True assert (rootof(x**3 + x + 3, 1) == rootof(x**3 + x + 3, 2)) is False assert (rootof(x**3 + x + 3, 2) == rootof(x**3 + x + 3, 2)) is True assert (rootof(x**3 + x + 3, 0) == rootof(y**3 + y + 3, 0)) is True assert (rootof(x**3 + x + 3, 0) == rootof(y**3 + y + 3, 1)) is False assert (rootof(x**3 + x + 3, 1) == rootof(y**3 + y + 3, 1)) is True assert (rootof(x**3 + x + 3, 1) == rootof(y**3 + y + 3, 2)) is False assert (rootof(x**3 + x + 3, 2) == rootof(y**3 + y + 3, 2)) is True def test_CRootOf___eval_Eq__(): f = Function('f') eq = x**3 + x + 3 r = rootof(eq, 2) r1 = rootof(eq, 1) assert Eq(r, r1) is S.false assert Eq(r, r) is S.true assert Eq(r, x) is S.false assert Eq(r, 0) is S.false assert Eq(r, S.Infinity) is S.false assert Eq(r, I) is S.false assert Eq(r, f(0)) is S.false assert Eq(r, f(0)) is S.false sol = solve(eq) for s in sol: if s.is_real: assert Eq(r, s) is S.false r = rootof(eq, 0) for s in sol: if s.is_real: assert Eq(r, s) is S.true eq = x**3 + x + 1 sol = solve(eq) assert [Eq(rootof(eq, i), j) for i in range(3) for j in sol] == [ False, False, True, False, True, False, True, False, False] assert Eq(rootof(eq, 0), 1 + S.ImaginaryUnit) == False def test_CRootOf_is_real(): assert rootof(x**3 + x + 3, 0).is_real is True assert rootof(x**3 + x + 3, 1).is_real is False assert rootof(x**3 + x + 3, 2).is_real is False def test_CRootOf_is_complex(): assert rootof(x**3 + x + 3, 0).is_complex is True def test_CRootOf_subs(): assert rootof(x**3 + x + 1, 0).subs(x, y) == rootof(y**3 + y + 1, 0) def test_CRootOf_diff(): assert rootof(x**3 + x + 1, 0).diff(x) == 0 assert rootof(x**3 + x + 1, 0).diff(y) == 0 def test_CRootOf_evalf(): real = rootof(x**3 + x + 3, 0).evalf(n=20) assert real.epsilon_eq(Float("-1.2134116627622296341")) re, im = rootof(x**3 + x + 3, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq( Float("0.60670583138111481707")) assert im.epsilon_eq(-Float("1.45061224918844152650")) re, im = rootof(x**3 + x + 3, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("0.60670583138111481707")) assert im.epsilon_eq(Float("1.45061224918844152650")) p = legendre_poly(4, x, polys=True) roots = [str(r.n(17)) for r in p.real_roots()] # magnitudes are given by # sqrt(3/S(7) - 2*sqrt(6/S(5))/7) # and # sqrt(3/S(7) + 2*sqrt(6/S(5))/7) assert roots == [ "-0.86113631159405258", "-0.33998104358485626", "0.33998104358485626", "0.86113631159405258", ] re = rootof(x**5 - 5*x + 12, 0).evalf(n=20) assert re.epsilon_eq(Float("-1.84208596619025438271")) re, im = rootof(x**5 - 5*x + 12, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("-1.709561043370328882010")) re, im = rootof(x**5 - 5*x + 12, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("+1.709561043370328882010")) re, im = rootof(x**5 - 5*x + 12, 3).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("-0.719798681483861386681")) re, im = rootof(x**5 - 5*x + 12, 4).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("+0.719798681483861386681")) # issue 6393 assert str(rootof(x**5 + 2*x**4 + x**3 - 68719476736, 0).n(3)) == '147.' eq = (531441*x**11 + 3857868*x**10 + 13730229*x**9 + 32597882*x**8 + 55077472*x**7 + 60452000*x**6 + 32172064*x**5 - 4383808*x**4 - 11942912*x**3 - 1506304*x**2 + 1453312*x + 512) a, b = rootof(eq, 1).n(2).as_real_imag() c, d = rootof(eq, 2).n(2).as_real_imag() assert a == c assert b < d assert b == -d # issue 6451 r = rootof(legendre_poly(64, x), 7) assert r.n(2) == r.n(100).n(2) # issue 9019 r0 = rootof(x**2 + 1, 0, radicals=False) r1 = rootof(x**2 + 1, 1, radicals=False) assert r0.n(4) == -1.0*I assert r1.n(4) == 1.0*I # make sure verification is used in case a max/min traps the "root" assert str(rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0).n(3)) == '-0.976' # watch out for UnboundLocalError c = CRootOf(90720*x**6 - 4032*x**4 + 84*x**2 - 1, 0) assert c._eval_evalf(2) # doesn't fail # watch out for imaginary parts that don't want to evaluate assert str(RootOf(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 + 39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 + 877969, 10).n(2)) == '-3.4*I' assert abs(RootOf(x**4 + 10*x**2 + 1, 0).n(2)) < 0.4 # check reset and args r = [RootOf(x**3 + x + 3, i) for i in range(3)] r[0]._reset() for ri in r: i = ri._get_interval() n = ri.n(2) assert i != ri._get_interval() ri._reset() assert i == ri._get_interval() assert i == i.func(*i.args) def test_CRootOf_evalf_caching_bug(): r = rootof(x**5 - 5*x + 12, 1) r.n() a = r._get_interval() r = rootof(x**5 - 5*x + 12, 1) r.n() b = r._get_interval() assert a == b def test_CRootOf_real_roots(): assert Poly(x**5 + x + 1).real_roots() == [rootof(x**3 - x**2 + 1, 0)] assert Poly(x**5 + x + 1).real_roots(radicals=False) == [rootof( x**3 - x**2 + 1, 0)] def test_CRootOf_all_roots(): assert Poly(x**5 + x + 1).all_roots() == [ rootof(x**3 - x**2 + 1, 0), -S(1)/2 - sqrt(3)*I/2, -S(1)/2 + sqrt(3)*I/2, rootof(x**3 - x**2 + 1, 1), rootof(x**3 - x**2 + 1, 2), ] assert Poly(x**5 + x + 1).all_roots(radicals=False) == [ rootof(x**3 - x**2 + 1, 0), rootof(x**2 + x + 1, 0, radicals=False), rootof(x**2 + x + 1, 1, radicals=False), rootof(x**3 - x**2 + 1, 1), rootof(x**3 - x**2 + 1, 2), ] def test_CRootOf_eval_rational(): p = legendre_poly(4, x, polys=True) roots = [r.eval_rational(n=18) for r in p.real_roots()] for r in roots: assert isinstance(r, Rational) roots = [str(r.n(17)) for r in roots] assert roots == [ "-0.86113631159405258", "-0.33998104358485626", "0.33998104358485626", "0.86113631159405258", ] def test_RootSum___new__(): f = x**3 + x + 3 g = Lambda(r, log(r*x)) s = RootSum(f, g) assert isinstance(s, RootSum) is True assert RootSum(f**2, g) == 2*RootSum(f, g) assert RootSum((x - 7)*f**3, g) == log(7*x) + 3*RootSum(f, g) # issue 5571 assert hash(RootSum((x - 7)*f**3, g)) == hash(log(7*x) + 3*RootSum(f, g)) raises(MultivariatePolynomialError, lambda: RootSum(x**3 + x + y)) raises(ValueError, lambda: RootSum(x**2 + 3, lambda x: x)) assert RootSum(f, exp) == RootSum(f, Lambda(x, exp(x))) assert RootSum(f, log) == RootSum(f, Lambda(x, log(x))) assert isinstance(RootSum(f, auto=False), RootSum) is True assert RootSum(f) == 0 assert RootSum(f, Lambda(x, x)) == 0 assert RootSum(f, Lambda(x, x**2)) == -2 assert RootSum(f, Lambda(x, 1)) == 3 assert RootSum(f, Lambda(x, 2)) == 6 assert RootSum(f, auto=False).is_commutative is True assert RootSum(f, Lambda(x, 1/(x + x**2))) == S(11)/3 assert RootSum(f, Lambda(x, y/(x + x**2))) == S(11)/3*y assert RootSum(x**2 - 1, Lambda(x, 3*x**2), x) == 6 assert RootSum(x**2 - y, Lambda(x, 3*x**2), x) == 6*y assert RootSum(x**2 - 1, Lambda(x, z*x**2), x) == 2*z assert RootSum(x**2 - y, Lambda(x, z*x**2), x) == 2*z*y assert RootSum( x**2 - 1, Lambda(x, exp(x)), quadratic=True) == exp(-1) + exp(1) assert RootSum(x**3 + a*x + a**3, tan, x) == \ RootSum(x**3 + x + 1, Lambda(x, tan(a*x))) assert RootSum(a**3*x**3 + a*x + 1, tan, x) == \ RootSum(x**3 + x + 1, Lambda(x, tan(x/a))) def test_RootSum_free_symbols(): assert RootSum(x**3 + x + 3, Lambda(r, exp(r))).free_symbols == set() assert RootSum(x**3 + x + 3, Lambda(r, exp(a*r))).free_symbols == {a} assert RootSum( x**3 + x + y, Lambda(r, exp(a*r)), x).free_symbols == {a, y} def test_RootSum___eq__(): f = Lambda(x, exp(x)) assert (RootSum(x**3 + x + 1, f) == RootSum(x**3 + x + 1, f)) is True assert (RootSum(x**3 + x + 1, f) == RootSum(y**3 + y + 1, f)) is True assert (RootSum(x**3 + x + 1, f) == RootSum(x**3 + x + 2, f)) is False assert (RootSum(x**3 + x + 1, f) == RootSum(y**3 + y + 2, f)) is False def test_RootSum_doit(): rs = RootSum(x**2 + 1, exp) assert isinstance(rs, RootSum) is True assert rs.doit() == exp(-I) + exp(I) rs = RootSum(x**2 + a, exp, x) assert isinstance(rs, RootSum) is True assert rs.doit() == exp(-sqrt(-a)) + exp(sqrt(-a)) def test_RootSum_evalf(): rs = RootSum(x**2 + 1, exp) assert rs.evalf(n=20, chop=True).epsilon_eq(Float("1.0806046117362794348")) assert rs.evalf(n=15, chop=True).epsilon_eq(Float("1.08060461173628")) rs = RootSum(x**2 + a, exp, x) assert rs.evalf() == rs def test_RootSum_diff(): f = x**3 + x + 3 g = Lambda(r, exp(r*x)) h = Lambda(r, r*exp(r*x)) assert RootSum(f, g).diff(x) == RootSum(f, h) def test_RootSum_subs(): f = x**3 + x + 3 g = Lambda(r, exp(r*x)) F = y**3 + y + 3 G = Lambda(r, exp(r*y)) assert RootSum(f, g).subs(y, 1) == RootSum(f, g) assert RootSum(f, g).subs(x, y) == RootSum(F, G) def test_RootSum_rational(): assert RootSum( z**5 - z + 1, Lambda(z, z/(x - z))) == (4*x - 5)/(x**5 - x + 1) f = 161*z**3 + 115*z**2 + 19*z + 1 g = Lambda(z, z*log( -3381*z**4/4 - 3381*z**3/4 - 625*z**2/2 - 125*z/2 - 5 + exp(x))) assert RootSum(f, g).diff(x) == -( (5*exp(2*x) - 6*exp(x) + 4)*exp(x)/(exp(3*x) - exp(2*x) + 1))/7 def test_RootSum_independent(): f = (x**3 - a)**2*(x**4 - b)**3 g = Lambda(x, 5*tan(x) + 7) h = Lambda(x, tan(x)) r0 = RootSum(x**3 - a, h, x) r1 = RootSum(x**4 - b, h, x) assert RootSum(f, g, x).as_ordered_terms() == [10*r0, 15*r1, 126] def test_issue_7876(): l1 = Poly(x**6 - x + 1, x).all_roots() l2 = [rootof(x**6 - x + 1, i) for i in range(6)] assert frozenset(l1) == frozenset(l2) def test_issue_8316(): f = Poly(7*x**8 - 9) assert len(f.all_roots()) == 8 f = Poly(7*x**8 - 10) assert len(f.all_roots()) == 8 def test__imag_count(): from sympy.polys.rootoftools import _imag_count_of_factor def imag_count(p): return sum([_imag_count_of_factor(f)*m for f, m in p.factor_list()[1]]) assert imag_count(Poly(x**6 + 10*x**2 + 1)) == 2 assert imag_count(Poly(x**2)) == 0 assert imag_count(Poly([1]*3 + [-1], x)) == 0 assert imag_count(Poly(x**3 + 1)) == 0 assert imag_count(Poly(x**2 + 1)) == 2 assert imag_count(Poly(x**2 - 1)) == 0 assert imag_count(Poly(x**4 - 1)) == 2 assert imag_count(Poly(x**4 + 1)) == 0 assert imag_count(Poly([1, 2, 3], x)) == 0 assert imag_count(Poly(x**3 + x + 1)) == 0 assert imag_count(Poly(x**4 + x + 1)) == 0 def q(r1, r2, p): return Poly(((x - r1)*(x - r2)).subs(x, x**p), x) assert imag_count(q(-1, -2, 2)) == 4 assert imag_count(q(-1, 2, 2)) == 2 assert imag_count(q(1, 2, 2)) == 0 assert imag_count(q(1, 2, 4)) == 4 assert imag_count(q(-1, 2, 4)) == 2 assert imag_count(q(-1, -2, 4)) == 0 def test_RootOf_is_imaginary(): r = RootOf(x**4 + 4*x**2 + 1, 1) i = r._get_interval() assert r.is_imaginary and i.ax*i.bx <= 0 def test_is_disjoint(): eq = x**3 + 5*x + 1 ir = rootof(eq, 0)._get_interval() ii = rootof(eq, 1)._get_interval() assert ir.is_disjoint(ii) assert ii.is_disjoint(ir) def test_pure_key_dict(): p = D() assert (x in p) is False assert (1 in p) is False p[x] = 1 assert x in p assert y in p assert p[y] == 1 raises(KeyError, lambda: p[1]) def dont(k): p[k] = 2 raises(ValueError, lambda: dont(1)) def test_eval_approx_relative(): CRootOf.clear_cache() t = [CRootOf(x**3 + 10*x + 1, i) for i in range(3)] assert [i.eval_rational(1e-1) for i in t] == [ -S(21)/220, S(15)/256 - 805*I/256, S(15)/256 + 805*I/256] t[0]._reset() assert [i.eval_rational(1e-1, 1e-4) for i in t] == [ -S(21)/220, S(3275)/65536 - 414645*I/131072, S(3275)/65536 + 414645*I/131072] assert S(t[0]._get_interval().dx) < 1e-1 assert S(t[1]._get_interval().dx) < 1e-1 assert S(t[1]._get_interval().dy) < 1e-4 assert S(t[2]._get_interval().dx) < 1e-1 assert S(t[2]._get_interval().dy) < 1e-4 t[0]._reset() assert [i.eval_rational(1e-4, 1e-4) for i in t] == [ -S(2001)/20020, S(6545)/131072 - 414645*I/131072, S(6545)/131072 + 414645*I/131072] assert S(t[0]._get_interval().dx) < 1e-4 assert S(t[1]._get_interval().dx) < 1e-4 assert S(t[1]._get_interval().dy) < 1e-4 assert S(t[2]._get_interval().dx) < 1e-4 assert S(t[2]._get_interval().dy) < 1e-4 # in the following, the actual relative precision is # less than tested, but it should never be greater t[0]._reset() assert [i.eval_rational(n=2) for i in t] == [ -S(202201)/2024022, S(104755)/2097152 - 6634255*I/2097152, S(104755)/2097152 + 6634255*I/2097152] assert abs(S(t[0]._get_interval().dx)/t[0]) < 1e-2 assert abs(S(t[1]._get_interval().dx)/t[1]).n() < 1e-2 assert abs(S(t[1]._get_interval().dy)/t[1]).n() < 1e-2 assert abs(S(t[2]._get_interval().dx)/t[2]).n() < 1e-2 assert abs(S(t[2]._get_interval().dy)/t[2]).n() < 1e-2 t[0]._reset() assert [i.eval_rational(n=3) for i in t] == [ -S(202201)/2024022, S(1676045)/33554432 - 106148135*I/33554432, S(1676045)/33554432 + 106148135*I/33554432] assert abs(S(t[0]._get_interval().dx)/t[0]) < 1e-3 assert abs(S(t[1]._get_interval().dx)/t[1]).n() < 1e-3 assert abs(S(t[1]._get_interval().dy)/t[1]).n() < 1e-3 assert abs(S(t[2]._get_interval().dx)/t[2]).n() < 1e-3 assert abs(S(t[2]._get_interval().dy)/t[2]).n() < 1e-3 t[0]._reset() a = [i.eval_approx(2) for i in t] assert [str(i) for i in a] == [ '-0.10', '0.05 - 3.2*I', '0.05 + 3.2*I'] assert all(abs(((a[i] - t[i])/t[i]).n()) < 1e-2 for i in range(len(a)))
2e85ef51b78f360fc71d1441bf4b229c6665f6361632f54d8662eb0b9327c9fb
"""Tests for user-friendly public interface to polynomial functions. """ from sympy.polys.polytools import ( Poly, PurePoly, poly, parallel_poly_from_expr, degree, degree_list, total_degree, LC, LM, LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert, subresultants, resultant, discriminant, terms_gcd, cofactors, gcd, gcd_list, lcm, lcm_list, trunc, monic, content, primitive, compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf, factor_list, factor, intervals, refine_root, count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner, GroebnerBasis, is_zero_dimensional, _torational_factor_list, to_rational_coeffs) from sympy.polys.polyerrors import ( MultivariatePolynomialError, ExactQuotientFailed, PolificationFailed, ComputationFailed, UnificationFailed, RefinementFailed, GeneratorsNeeded, GeneratorsError, PolynomialError, CoercionFailed, DomainError, OptionError, FlagError) from sympy.polys.polyclasses import DMP from sympy.polys.fields import field from sympy.polys.domains import FF, ZZ, QQ, RR, EX from sympy.polys.domains.realfield import RealField from sympy.polys.orderings import lex, grlex, grevlex from sympy import ( S, Integer, Rational, Float, Mul, Symbol, sqrt, Piecewise, Derivative, exp, sin, tanh, expand, oo, I, pi, re, im, rootof, Eq, Tuple, Expr, diff) from sympy.core.basic import _aresame from sympy.core.compatibility import iterable from sympy.core.mul import _keep_coeff from sympy.utilities.pytest import raises, XFAIL from sympy.simplify import simplify from sympy.abc import a, b, c, d, p, q, t, w, x, y, z from sympy import MatrixSymbol def _epsilon_eq(a, b): for x, y in zip(a, b): if abs(x - y) > 1e-10: return False return True def _strict_eq(a, b): if type(a) == type(b): if iterable(a): if len(a) == len(b): return all(_strict_eq(c, d) for c, d in zip(a, b)) else: return False else: return isinstance(a, Poly) and a.eq(b, strict=True) else: return False def test_Poly_from_dict(): K = FF(3) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {0: 1, 1: 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {(0,): 1, (1,): 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict({(0, 0): 1, (1, 1): 2}, gens=( x, y), domain=K).rep == DMP([[K(2), K(0)], [K(1)]], K) assert Poly.from_dict({0: 1, 1: 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict({(1,): sin(y)}, gens=x, composite=False) == \ Poly(sin(y)*x, x, domain='EX') assert Poly.from_dict({(1,): y}, gens=x, composite=False) == \ Poly(y*x, x, domain='EX') assert Poly.from_dict({(1, 1): 1}, gens=(x, y), composite=False) == \ Poly(x*y, x, y, domain='ZZ') assert Poly.from_dict({(1, 0): y}, gens=(x, z), composite=False) == \ Poly(y*x, x, z, domain='EX') def test_Poly_from_list(): K = FF(3) assert Poly.from_list([2, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_list([5, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_list([2, 1], gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_list([2, 1], gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_list([2, 1], gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_list([2, 1], gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_list([0, 1.0], gens=x).rep == DMP([RR(1.0)], RR) assert Poly.from_list([1.0, 0], gens=x).rep == DMP([RR(1.0), RR(0.0)], RR) raises(MultivariatePolynomialError, lambda: Poly.from_list([[]], gens=(x, y))) def test_Poly_from_poly(): f = Poly(x + 7, x, domain=ZZ) g = Poly(x + 2, x, modulus=3) h = Poly(x + y, x, y, domain=ZZ) K = FF(3) assert Poly.from_poly(f) == f assert Poly.from_poly(f, domain=K).rep == DMP([K(1), K(1)], K) assert Poly.from_poly(f, domain=ZZ).rep == DMP([1, 7], ZZ) assert Poly.from_poly(f, domain=QQ).rep == DMP([1, 7], QQ) assert Poly.from_poly(f, gens=x) == f assert Poly.from_poly(f, gens=x, domain=K).rep == DMP([K(1), K(1)], K) assert Poly.from_poly(f, gens=x, domain=ZZ).rep == DMP([1, 7], ZZ) assert Poly.from_poly(f, gens=x, domain=QQ).rep == DMP([1, 7], QQ) assert Poly.from_poly(f, gens=y) == Poly(x + 7, y, domain='ZZ[x]') raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=K)) raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=ZZ)) raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=QQ)) assert Poly.from_poly(f, gens=(x, y)) == Poly(x + 7, x, y, domain='ZZ') assert Poly.from_poly( f, gens=(x, y), domain=ZZ) == Poly(x + 7, x, y, domain='ZZ') assert Poly.from_poly( f, gens=(x, y), domain=QQ) == Poly(x + 7, x, y, domain='QQ') assert Poly.from_poly( f, gens=(x, y), modulus=3) == Poly(x + 7, x, y, domain='FF(3)') K = FF(2) assert Poly.from_poly(g) == g assert Poly.from_poly(g, domain=ZZ).rep == DMP([1, -1], ZZ) raises(CoercionFailed, lambda: Poly.from_poly(g, domain=QQ)) assert Poly.from_poly(g, domain=K).rep == DMP([K(1), K(0)], K) assert Poly.from_poly(g, gens=x) == g assert Poly.from_poly(g, gens=x, domain=ZZ).rep == DMP([1, -1], ZZ) raises(CoercionFailed, lambda: Poly.from_poly(g, gens=x, domain=QQ)) assert Poly.from_poly(g, gens=x, domain=K).rep == DMP([K(1), K(0)], K) K = FF(3) assert Poly.from_poly(h) == h assert Poly.from_poly( h, domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly(h, domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly(h, gens=x) == Poly(x + y, x, domain=ZZ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=ZZ)) assert Poly.from_poly( h, gens=x, domain=ZZ[y]) == Poly(x + y, x, domain=ZZ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=QQ)) assert Poly.from_poly( h, gens=x, domain=QQ[y]) == Poly(x + y, x, domain=QQ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, modulus=3)) assert Poly.from_poly(h, gens=y) == Poly(x + y, y, domain=ZZ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=ZZ)) assert Poly.from_poly( h, gens=y, domain=ZZ[x]) == Poly(x + y, y, domain=ZZ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=QQ)) assert Poly.from_poly( h, gens=y, domain=QQ[x]) == Poly(x + y, y, domain=QQ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, modulus=3)) assert Poly.from_poly(h, gens=(x, y)) == h assert Poly.from_poly( h, gens=(x, y), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(x, y), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(x, y), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly( h, gens=(y, x)).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(y, x), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(y, x), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(y, x), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly( h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) def test_Poly_from_expr(): raises(GeneratorsNeeded, lambda: Poly.from_expr(S(0))) raises(GeneratorsNeeded, lambda: Poly.from_expr(S(7))) F3 = FF(3) assert Poly.from_expr(x + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(y + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(x + 5, x, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(y + 5, y, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(x + y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3) assert Poly.from_expr(x + y, x, y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3) assert Poly.from_expr(x + 5).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, y).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, y, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x, y, domain=ZZ).rep == DMP([[1], [5]], ZZ) assert Poly.from_expr(y + 5, x, y, domain=ZZ).rep == DMP([[1, 5]], ZZ) def test_Poly__new__(): raises(GeneratorsError, lambda: Poly(x + 1, x, x)) raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[x])) raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[y])) raises(OptionError, lambda: Poly(x, x, symmetric=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, domain=QQ)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, gaussian=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, gaussian=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=[sqrt(3)])) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=[sqrt(3)])) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=False)) raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=False)) raises(NotImplementedError, lambda: Poly(x + 1, x, modulus=3, order='grlex')) raises(NotImplementedError, lambda: Poly(x + 1, x, order='grlex')) raises(GeneratorsNeeded, lambda: Poly({1: 2, 0: 1})) raises(GeneratorsNeeded, lambda: Poly([2, 1])) raises(GeneratorsNeeded, lambda: Poly((2, 1))) raises(GeneratorsNeeded, lambda: Poly(1)) f = a*x**2 + b*x + c assert Poly({2: a, 1: b, 0: c}, x) == f assert Poly(iter([a, b, c]), x) == f assert Poly([a, b, c], x) == f assert Poly((a, b, c), x) == f f = Poly({}, x, y, z) assert f.gens == (x, y, z) and f.as_expr() == 0 assert Poly(Poly(a*x + b*y, x, y), x) == Poly(a*x + b*y, x) assert Poly(3*x**2 + 2*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1] assert Poly(3*x**2 + 2*x + 1, domain='QQ').all_coeffs() == [3, 2, 1] assert Poly(3*x**2 + 2*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0] raises(CoercionFailed, lambda: Poly(3*x**2/5 + 2*x/5 + 1, domain='ZZ')) assert Poly( 3*x**2/5 + 2*x/5 + 1, domain='QQ').all_coeffs() == [S(3)/5, S(2)/5, 1] assert _epsilon_eq( Poly(3*x**2/5 + 2*x/5 + 1, domain='RR').all_coeffs(), [0.6, 0.4, 1.0]) assert Poly(3.0*x**2 + 2.0*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1] assert Poly(3.0*x**2 + 2.0*x + 1, domain='QQ').all_coeffs() == [3, 2, 1] assert Poly( 3.0*x**2 + 2.0*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0] raises(CoercionFailed, lambda: Poly(3.1*x**2 + 2.1*x + 1, domain='ZZ')) assert Poly(3.1*x**2 + 2.1*x + 1, domain='QQ').all_coeffs() == [S(31)/10, S(21)/10, 1] assert Poly(3.1*x**2 + 2.1*x + 1, domain='RR').all_coeffs() == [3.1, 2.1, 1.0] assert Poly({(2, 1): 1, (1, 2): 2, (1, 1): 3}, x, y) == \ Poly(x**2*y + 2*x*y**2 + 3*x*y, x, y) assert Poly(x**2 + 1, extension=I).get_domain() == QQ.algebraic_field(I) f = 3*x**5 - x**4 + x**3 - x** 2 + 65538 assert Poly(f, x, modulus=65537, symmetric=True) == \ Poly(3*x**5 - x**4 + x**3 - x** 2 + 1, x, modulus=65537, symmetric=True) assert Poly(f, x, modulus=65537, symmetric=False) == \ Poly(3*x**5 + 65536*x**4 + x**3 + 65536*x** 2 + 1, x, modulus=65537, symmetric=False) assert isinstance(Poly(x**2 + x + 1.0).get_domain(), RealField) def test_Poly__args(): assert Poly(x**2 + 1).args == (x**2 + 1,) def test_Poly__gens(): assert Poly((x - p)*(x - q), x).gens == (x,) assert Poly((x - p)*(x - q), p).gens == (p,) assert Poly((x - p)*(x - q), q).gens == (q,) assert Poly((x - p)*(x - q), x, p).gens == (x, p) assert Poly((x - p)*(x - q), x, q).gens == (x, q) assert Poly((x - p)*(x - q), x, p, q).gens == (x, p, q) assert Poly((x - p)*(x - q), p, x, q).gens == (p, x, q) assert Poly((x - p)*(x - q), p, q, x).gens == (p, q, x) assert Poly((x - p)*(x - q)).gens == (x, p, q) assert Poly((x - p)*(x - q), sort='x > p > q').gens == (x, p, q) assert Poly((x - p)*(x - q), sort='p > x > q').gens == (p, x, q) assert Poly((x - p)*(x - q), sort='p > q > x').gens == (p, q, x) assert Poly((x - p)*(x - q), x, p, q, sort='p > q > x').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='x').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='p').gens == (p, x, q) assert Poly((x - p)*(x - q), wrt='q').gens == (q, x, p) assert Poly((x - p)*(x - q), wrt=x).gens == (x, p, q) assert Poly((x - p)*(x - q), wrt=p).gens == (p, x, q) assert Poly((x - p)*(x - q), wrt=q).gens == (q, x, p) assert Poly((x - p)*(x - q), x, p, q, wrt='p').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='p', sort='q > x').gens == (p, q, x) assert Poly((x - p)*(x - q), wrt='q', sort='p > x').gens == (q, p, x) def test_Poly_zero(): assert Poly(x).zero == Poly(0, x, domain=ZZ) assert Poly(x/2).zero == Poly(0, x, domain=QQ) def test_Poly_one(): assert Poly(x).one == Poly(1, x, domain=ZZ) assert Poly(x/2).one == Poly(1, x, domain=QQ) def test_Poly__unify(): raises(UnificationFailed, lambda: Poly(x)._unify(y)) F3 = FF(3) F5 = FF(5) assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=3))[2:] == ( DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3)) assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=5))[2:] == ( DMP([[F5(1)], []], F5), DMP([[F5(1), F5(0)]], F5)) assert Poly(y, x, y)._unify(Poly(x, x, modulus=3))[2:] == (DMP([[F3(1), F3(0)]], F3), DMP([[F3(1)], []], F3)) assert Poly(x, x, modulus=3)._unify(Poly(y, x, y))[2:] == (DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3)) assert Poly(x + 1, x)._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], ZZ), DMP([1, 2], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) F, A, B = field("a,b", ZZ) assert Poly(a*x, x, domain='ZZ[a]')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \ (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain())) assert Poly(a*x, x, domain='ZZ(a)')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \ (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain())) raises(CoercionFailed, lambda: Poly(Poly(x**2 + x**2*z, y, field=True), domain='ZZ(x)')) f = Poly(t**2 + t/3 + x, t, domain='QQ(x)') g = Poly(t**2 + t/3 + x, t, domain='QQ[x]') assert f._unify(g)[2:] == (f.rep, f.rep) def test_Poly_free_symbols(): assert Poly(x**2 + 1).free_symbols == {x} assert Poly(x**2 + y*z).free_symbols == {x, y, z} assert Poly(x**2 + y*z, x).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z)).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z), x).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z), x, domain=EX).free_symbols == {x, y, z} assert Poly(1 + x + x**2, x, y, z).free_symbols == {x} assert Poly(x + sin(y), z).free_symbols == {x, y} def test_PurePoly_free_symbols(): assert PurePoly(x**2 + 1).free_symbols == set([]) assert PurePoly(x**2 + y*z).free_symbols == set([]) assert PurePoly(x**2 + y*z, x).free_symbols == {y, z} assert PurePoly(x**2 + sin(y*z)).free_symbols == set([]) assert PurePoly(x**2 + sin(y*z), x).free_symbols == {y, z} assert PurePoly(x**2 + sin(y*z), x, domain=EX).free_symbols == {y, z} def test_Poly__eq__(): assert (Poly(x, x) == Poly(x, x)) is True assert (Poly(x, x, domain=QQ) == Poly(x, x)) is True assert (Poly(x, x) == Poly(x, x, domain=QQ)) is True assert (Poly(x, x, domain=ZZ[a]) == Poly(x, x)) is True assert (Poly(x, x) == Poly(x, x, domain=ZZ[a])) is True assert (Poly(x*y, x, y) == Poly(x, x)) is False assert (Poly(x, x, y) == Poly(x, x)) is False assert (Poly(x, x) == Poly(x, x, y)) is False assert (Poly(x**2 + 1, x) == Poly(y**2 + 1, y)) is False assert (Poly(y**2 + 1, y) == Poly(x**2 + 1, x)) is False f = Poly(x, x, domain=ZZ) g = Poly(x, x, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True t0 = Symbol('t0') f = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='QQ[x,t0]') g = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='ZZ(x,t0)') assert (f == g) is True def test_PurePoly__eq__(): assert (PurePoly(x, x) == PurePoly(x, x)) is True assert (PurePoly(x, x, domain=QQ) == PurePoly(x, x)) is True assert (PurePoly(x, x) == PurePoly(x, x, domain=QQ)) is True assert (PurePoly(x, x, domain=ZZ[a]) == PurePoly(x, x)) is True assert (PurePoly(x, x) == PurePoly(x, x, domain=ZZ[a])) is True assert (PurePoly(x*y, x, y) == PurePoly(x, x)) is False assert (PurePoly(x, x, y) == PurePoly(x, x)) is False assert (PurePoly(x, x) == PurePoly(x, x, y)) is False assert (PurePoly(x**2 + 1, x) == PurePoly(y**2 + 1, y)) is True assert (PurePoly(y**2 + 1, y) == PurePoly(x**2 + 1, x)) is True f = PurePoly(x, x, domain=ZZ) g = PurePoly(x, x, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True f = PurePoly(x, x, domain=ZZ) g = PurePoly(y, y, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True def test_PurePoly_Poly(): assert isinstance(PurePoly(Poly(x**2 + 1)), PurePoly) is True assert isinstance(Poly(PurePoly(x**2 + 1)), Poly) is True def test_Poly_get_domain(): assert Poly(2*x).get_domain() == ZZ assert Poly(2*x, domain='ZZ').get_domain() == ZZ assert Poly(2*x, domain='QQ').get_domain() == QQ assert Poly(x/2).get_domain() == QQ raises(CoercionFailed, lambda: Poly(x/2, domain='ZZ')) assert Poly(x/2, domain='QQ').get_domain() == QQ assert isinstance(Poly(0.2*x).get_domain(), RealField) def test_Poly_set_domain(): assert Poly(2*x + 1).set_domain(ZZ) == Poly(2*x + 1) assert Poly(2*x + 1).set_domain('ZZ') == Poly(2*x + 1) assert Poly(2*x + 1).set_domain(QQ) == Poly(2*x + 1, domain='QQ') assert Poly(2*x + 1).set_domain('QQ') == Poly(2*x + 1, domain='QQ') assert Poly(S(2)/10*x + S(1)/10).set_domain('RR') == Poly(0.2*x + 0.1) assert Poly(0.2*x + 0.1).set_domain('QQ') == Poly(S(2)/10*x + S(1)/10) raises(CoercionFailed, lambda: Poly(x/2 + 1).set_domain(ZZ)) raises(CoercionFailed, lambda: Poly(x + 1, modulus=2).set_domain(QQ)) raises(GeneratorsError, lambda: Poly(x*y, x, y).set_domain(ZZ[y])) def test_Poly_get_modulus(): assert Poly(x**2 + 1, modulus=2).get_modulus() == 2 raises(PolynomialError, lambda: Poly(x**2 + 1).get_modulus()) def test_Poly_set_modulus(): assert Poly( x**2 + 1, modulus=2).set_modulus(7) == Poly(x**2 + 1, modulus=7) assert Poly( x**2 + 5, modulus=7).set_modulus(2) == Poly(x**2 + 1, modulus=2) assert Poly(x**2 + 1).set_modulus(2) == Poly(x**2 + 1, modulus=2) raises(CoercionFailed, lambda: Poly(x/2 + 1).set_modulus(2)) def test_Poly_add_ground(): assert Poly(x + 1).add_ground(2) == Poly(x + 3) def test_Poly_sub_ground(): assert Poly(x + 1).sub_ground(2) == Poly(x - 1) def test_Poly_mul_ground(): assert Poly(x + 1).mul_ground(2) == Poly(2*x + 2) def test_Poly_quo_ground(): assert Poly(2*x + 4).quo_ground(2) == Poly(x + 2) assert Poly(2*x + 3).quo_ground(2) == Poly(x + 1) def test_Poly_exquo_ground(): assert Poly(2*x + 4).exquo_ground(2) == Poly(x + 2) raises(ExactQuotientFailed, lambda: Poly(2*x + 3).exquo_ground(2)) def test_Poly_abs(): assert Poly(-x + 1, x).abs() == abs(Poly(-x + 1, x)) == Poly(x + 1, x) def test_Poly_neg(): assert Poly(-x + 1, x).neg() == -Poly(-x + 1, x) == Poly(x - 1, x) def test_Poly_add(): assert Poly(0, x).add(Poly(0, x)) == Poly(0, x) assert Poly(0, x) + Poly(0, x) == Poly(0, x) assert Poly(1, x).add(Poly(0, x)) == Poly(1, x) assert Poly(1, x, y) + Poly(0, x) == Poly(1, x, y) assert Poly(0, x).add(Poly(1, x, y)) == Poly(1, x, y) assert Poly(0, x, y) + Poly(1, x, y) == Poly(1, x, y) assert Poly(1, x) + x == Poly(x + 1, x) assert Poly(1, x) + sin(x) == 1 + sin(x) assert Poly(x, x) + 1 == Poly(x + 1, x) assert 1 + Poly(x, x) == Poly(x + 1, x) def test_Poly_sub(): assert Poly(0, x).sub(Poly(0, x)) == Poly(0, x) assert Poly(0, x) - Poly(0, x) == Poly(0, x) assert Poly(1, x).sub(Poly(0, x)) == Poly(1, x) assert Poly(1, x, y) - Poly(0, x) == Poly(1, x, y) assert Poly(0, x).sub(Poly(1, x, y)) == Poly(-1, x, y) assert Poly(0, x, y) - Poly(1, x, y) == Poly(-1, x, y) assert Poly(1, x) - x == Poly(1 - x, x) assert Poly(1, x) - sin(x) == 1 - sin(x) assert Poly(x, x) - 1 == Poly(x - 1, x) assert 1 - Poly(x, x) == Poly(1 - x, x) def test_Poly_mul(): assert Poly(0, x).mul(Poly(0, x)) == Poly(0, x) assert Poly(0, x) * Poly(0, x) == Poly(0, x) assert Poly(2, x).mul(Poly(4, x)) == Poly(8, x) assert Poly(2, x, y) * Poly(4, x) == Poly(8, x, y) assert Poly(4, x).mul(Poly(2, x, y)) == Poly(8, x, y) assert Poly(4, x, y) * Poly(2, x, y) == Poly(8, x, y) assert Poly(1, x) * x == Poly(x, x) assert Poly(1, x) * sin(x) == sin(x) assert Poly(x, x) * 2 == Poly(2*x, x) assert 2 * Poly(x, x) == Poly(2*x, x) def test_issue_13079(): assert Poly(x)*x == Poly(x**2, x, domain='ZZ') assert x*Poly(x) == Poly(x**2, x, domain='ZZ') assert -2*Poly(x) == Poly(-2*x, x, domain='ZZ') assert S(-2)*Poly(x) == Poly(-2*x, x, domain='ZZ') assert Poly(x)*S(-2) == Poly(-2*x, x, domain='ZZ') def test_Poly_sqr(): assert Poly(x*y, x, y).sqr() == Poly(x**2*y**2, x, y) def test_Poly_pow(): assert Poly(x, x).pow(10) == Poly(x**10, x) assert Poly(x, x).pow(Integer(10)) == Poly(x**10, x) assert Poly(2*y, x, y).pow(4) == Poly(16*y**4, x, y) assert Poly(2*y, x, y).pow(Integer(4)) == Poly(16*y**4, x, y) assert Poly(7*x*y, x, y)**3 == Poly(343*x**3*y**3, x, y) assert Poly(x*y + 1, x, y)**(-1) == (x*y + 1)**(-1) assert Poly(x*y + 1, x, y)**x == (x*y + 1)**x def test_Poly_divmod(): f, g = Poly(x**2), Poly(x) q, r = g, Poly(0, x) assert divmod(f, g) == (q, r) assert f // g == q assert f % g == r assert divmod(f, x) == (q, r) assert f // x == q assert f % x == r q, r = Poly(0, x), Poly(2, x) assert divmod(2, g) == (q, r) assert 2 // g == q assert 2 % g == r assert Poly(x)/Poly(x) == 1 assert Poly(x**2)/Poly(x) == x assert Poly(x)/Poly(x**2) == 1/x def test_Poly_eq_ne(): assert (Poly(x + y, x, y) == Poly(x + y, x, y)) is True assert (Poly(x + y, x) == Poly(x + y, x, y)) is False assert (Poly(x + y, x, y) == Poly(x + y, x)) is False assert (Poly(x + y, x) == Poly(x + y, x)) is True assert (Poly(x + y, y) == Poly(x + y, y)) is True assert (Poly(x + y, x, y) == x + y) is True assert (Poly(x + y, x) == x + y) is True assert (Poly(x + y, x, y) == x + y) is True assert (Poly(x + y, x) == x + y) is True assert (Poly(x + y, y) == x + y) is True assert (Poly(x + y, x, y) != Poly(x + y, x, y)) is False assert (Poly(x + y, x) != Poly(x + y, x, y)) is True assert (Poly(x + y, x, y) != Poly(x + y, x)) is True assert (Poly(x + y, x) != Poly(x + y, x)) is False assert (Poly(x + y, y) != Poly(x + y, y)) is False assert (Poly(x + y, x, y) != x + y) is False assert (Poly(x + y, x) != x + y) is False assert (Poly(x + y, x, y) != x + y) is False assert (Poly(x + y, x) != x + y) is False assert (Poly(x + y, y) != x + y) is False assert (Poly(x, x) == sin(x)) is False assert (Poly(x, x) != sin(x)) is True def test_Poly_nonzero(): assert not bool(Poly(0, x)) is True assert not bool(Poly(1, x)) is False def test_Poly_properties(): assert Poly(0, x).is_zero is True assert Poly(1, x).is_zero is False assert Poly(1, x).is_one is True assert Poly(2, x).is_one is False assert Poly(x - 1, x).is_sqf is True assert Poly((x - 1)**2, x).is_sqf is False assert Poly(x - 1, x).is_monic is True assert Poly(2*x - 1, x).is_monic is False assert Poly(3*x + 2, x).is_primitive is True assert Poly(4*x + 2, x).is_primitive is False assert Poly(1, x).is_ground is True assert Poly(x, x).is_ground is False assert Poly(x + y + z + 1).is_linear is True assert Poly(x*y*z + 1).is_linear is False assert Poly(x*y + z + 1).is_quadratic is True assert Poly(x*y*z + 1).is_quadratic is False assert Poly(x*y).is_monomial is True assert Poly(x*y + 1).is_monomial is False assert Poly(x**2 + x*y).is_homogeneous is True assert Poly(x**3 + x*y).is_homogeneous is False assert Poly(x).is_univariate is True assert Poly(x*y).is_univariate is False assert Poly(x*y).is_multivariate is True assert Poly(x).is_multivariate is False assert Poly( x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1).is_cyclotomic is False assert Poly( x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1).is_cyclotomic is True def test_Poly_is_irreducible(): assert Poly(x**2 + x + 1).is_irreducible is True assert Poly(x**2 + 2*x + 1).is_irreducible is False assert Poly(7*x + 3, modulus=11).is_irreducible is True assert Poly(7*x**2 + 3*x + 1, modulus=11).is_irreducible is False def test_Poly_subs(): assert Poly(x + 1).subs(x, 0) == 1 assert Poly(x + 1).subs(x, x) == Poly(x + 1) assert Poly(x + 1).subs(x, y) == Poly(y + 1) assert Poly(x*y, x).subs(y, x) == x**2 assert Poly(x*y, x).subs(x, y) == y**2 def test_Poly_replace(): assert Poly(x + 1).replace(x) == Poly(x + 1) assert Poly(x + 1).replace(y) == Poly(y + 1) raises(PolynomialError, lambda: Poly(x + y).replace(z)) assert Poly(x + 1).replace(x, x) == Poly(x + 1) assert Poly(x + 1).replace(x, y) == Poly(y + 1) assert Poly(x + y).replace(x, x) == Poly(x + y) assert Poly(x + y).replace(x, z) == Poly(z + y, z, y) assert Poly(x + y).replace(y, y) == Poly(x + y) assert Poly(x + y).replace(y, z) == Poly(x + z, x, z) assert Poly(x + y).replace(z, t) == Poly(x + y) raises(PolynomialError, lambda: Poly(x + y).replace(x, y)) assert Poly(x + y, x).replace(x, z) == Poly(z + y, z) assert Poly(x + y, y).replace(y, z) == Poly(x + z, z) raises(PolynomialError, lambda: Poly(x + y, x).replace(x, y)) raises(PolynomialError, lambda: Poly(x + y, y).replace(y, x)) def test_Poly_reorder(): raises(PolynomialError, lambda: Poly(x + y).reorder(x, z)) assert Poly(x + y, x, y).reorder(x, y) == Poly(x + y, x, y) assert Poly(x + y, x, y).reorder(y, x) == Poly(x + y, y, x) assert Poly(x + y, y, x).reorder(x, y) == Poly(x + y, x, y) assert Poly(x + y, y, x).reorder(y, x) == Poly(x + y, y, x) assert Poly(x + y, x, y).reorder(wrt=x) == Poly(x + y, x, y) assert Poly(x + y, x, y).reorder(wrt=y) == Poly(x + y, y, x) def test_Poly_ltrim(): f = Poly(y**2 + y*z**2, x, y, z).ltrim(y) assert f.as_expr() == y**2 + y*z**2 and f.gens == (y, z) assert Poly(x*y - x, z, x, y).ltrim(1) == Poly(x*y - x, x, y) raises(PolynomialError, lambda: Poly(x*y**2 + y**2, x, y).ltrim(y)) raises(PolynomialError, lambda: Poly(x*y - x, x, y).ltrim(-1)) def test_Poly_has_only_gens(): assert Poly(x*y + 1, x, y, z).has_only_gens(x, y) is True assert Poly(x*y + z, x, y, z).has_only_gens(x, y) is False raises(GeneratorsError, lambda: Poly(x*y**2 + y**2, x, y).has_only_gens(t)) def test_Poly_to_ring(): assert Poly(2*x + 1, domain='ZZ').to_ring() == Poly(2*x + 1, domain='ZZ') assert Poly(2*x + 1, domain='QQ').to_ring() == Poly(2*x + 1, domain='ZZ') raises(CoercionFailed, lambda: Poly(x/2 + 1).to_ring()) raises(DomainError, lambda: Poly(2*x + 1, modulus=3).to_ring()) def test_Poly_to_field(): assert Poly(2*x + 1, domain='ZZ').to_field() == Poly(2*x + 1, domain='QQ') assert Poly(2*x + 1, domain='QQ').to_field() == Poly(2*x + 1, domain='QQ') assert Poly(x/2 + 1, domain='QQ').to_field() == Poly(x/2 + 1, domain='QQ') assert Poly(2*x + 1, modulus=3).to_field() == Poly(2*x + 1, modulus=3) assert Poly(2.0*x + 1.0).to_field() == Poly(2.0*x + 1.0) def test_Poly_to_exact(): assert Poly(2*x).to_exact() == Poly(2*x) assert Poly(x/2).to_exact() == Poly(x/2) assert Poly(0.1*x).to_exact() == Poly(x/10) def test_Poly_retract(): f = Poly(x**2 + 1, x, domain=QQ[y]) assert f.retract() == Poly(x**2 + 1, x, domain='ZZ') assert f.retract(field=True) == Poly(x**2 + 1, x, domain='QQ') assert Poly(0, x, y).retract() == Poly(0, x, y) def test_Poly_slice(): f = Poly(x**3 + 2*x**2 + 3*x + 4) assert f.slice(0, 0) == Poly(0, x) assert f.slice(0, 1) == Poly(4, x) assert f.slice(0, 2) == Poly(3*x + 4, x) assert f.slice(0, 3) == Poly(2*x**2 + 3*x + 4, x) assert f.slice(0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x) assert f.slice(x, 0, 0) == Poly(0, x) assert f.slice(x, 0, 1) == Poly(4, x) assert f.slice(x, 0, 2) == Poly(3*x + 4, x) assert f.slice(x, 0, 3) == Poly(2*x**2 + 3*x + 4, x) assert f.slice(x, 0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x) def test_Poly_coeffs(): assert Poly(0, x).coeffs() == [0] assert Poly(1, x).coeffs() == [1] assert Poly(2*x + 1, x).coeffs() == [2, 1] assert Poly(7*x**2 + 2*x + 1, x).coeffs() == [7, 2, 1] assert Poly(7*x**4 + 2*x + 1, x).coeffs() == [7, 2, 1] assert Poly(x*y**7 + 2*x**2*y**3).coeffs('lex') == [2, 1] assert Poly(x*y**7 + 2*x**2*y**3).coeffs('grlex') == [1, 2] def test_Poly_monoms(): assert Poly(0, x).monoms() == [(0,)] assert Poly(1, x).monoms() == [(0,)] assert Poly(2*x + 1, x).monoms() == [(1,), (0,)] assert Poly(7*x**2 + 2*x + 1, x).monoms() == [(2,), (1,), (0,)] assert Poly(7*x**4 + 2*x + 1, x).monoms() == [(4,), (1,), (0,)] assert Poly(x*y**7 + 2*x**2*y**3).monoms('lex') == [(2, 3), (1, 7)] assert Poly(x*y**7 + 2*x**2*y**3).monoms('grlex') == [(1, 7), (2, 3)] def test_Poly_terms(): assert Poly(0, x).terms() == [((0,), 0)] assert Poly(1, x).terms() == [((0,), 1)] assert Poly(2*x + 1, x).terms() == [((1,), 2), ((0,), 1)] assert Poly(7*x**2 + 2*x + 1, x).terms() == [((2,), 7), ((1,), 2), ((0,), 1)] assert Poly(7*x**4 + 2*x + 1, x).terms() == [((4,), 7), ((1,), 2), ((0,), 1)] assert Poly( x*y**7 + 2*x**2*y**3).terms('lex') == [((2, 3), 2), ((1, 7), 1)] assert Poly( x*y**7 + 2*x**2*y**3).terms('grlex') == [((1, 7), 1), ((2, 3), 2)] def test_Poly_all_coeffs(): assert Poly(0, x).all_coeffs() == [0] assert Poly(1, x).all_coeffs() == [1] assert Poly(2*x + 1, x).all_coeffs() == [2, 1] assert Poly(7*x**2 + 2*x + 1, x).all_coeffs() == [7, 2, 1] assert Poly(7*x**4 + 2*x + 1, x).all_coeffs() == [7, 0, 0, 2, 1] def test_Poly_all_monoms(): assert Poly(0, x).all_monoms() == [(0,)] assert Poly(1, x).all_monoms() == [(0,)] assert Poly(2*x + 1, x).all_monoms() == [(1,), (0,)] assert Poly(7*x**2 + 2*x + 1, x).all_monoms() == [(2,), (1,), (0,)] assert Poly(7*x**4 + 2*x + 1, x).all_monoms() == [(4,), (3,), (2,), (1,), (0,)] def test_Poly_all_terms(): assert Poly(0, x).all_terms() == [((0,), 0)] assert Poly(1, x).all_terms() == [((0,), 1)] assert Poly(2*x + 1, x).all_terms() == [((1,), 2), ((0,), 1)] assert Poly(7*x**2 + 2*x + 1, x).all_terms() == \ [((2,), 7), ((1,), 2), ((0,), 1)] assert Poly(7*x**4 + 2*x + 1, x).all_terms() == \ [((4,), 7), ((3,), 0), ((2,), 0), ((1,), 2), ((0,), 1)] def test_Poly_termwise(): f = Poly(x**2 + 20*x + 400) g = Poly(x**2 + 2*x + 4) def func(monom, coeff): (k,) = monom return coeff//10**(2 - k) assert f.termwise(func) == g def func(monom, coeff): (k,) = monom return (k,), coeff//10**(2 - k) assert f.termwise(func) == g def test_Poly_length(): assert Poly(0, x).length() == 0 assert Poly(1, x).length() == 1 assert Poly(x, x).length() == 1 assert Poly(x + 1, x).length() == 2 assert Poly(x**2 + 1, x).length() == 2 assert Poly(x**2 + x + 1, x).length() == 3 def test_Poly_as_dict(): assert Poly(0, x).as_dict() == {} assert Poly(0, x, y, z).as_dict() == {} assert Poly(1, x).as_dict() == {(0,): 1} assert Poly(1, x, y, z).as_dict() == {(0, 0, 0): 1} assert Poly(x**2 + 3, x).as_dict() == {(2,): 1, (0,): 3} assert Poly(x**2 + 3, x, y, z).as_dict() == {(2, 0, 0): 1, (0, 0, 0): 3} assert Poly(3*x**2*y*z**3 + 4*x*y + 5*x*z).as_dict() == {(2, 1, 3): 3, (1, 1, 0): 4, (1, 0, 1): 5} def test_Poly_as_expr(): assert Poly(0, x).as_expr() == 0 assert Poly(0, x, y, z).as_expr() == 0 assert Poly(1, x).as_expr() == 1 assert Poly(1, x, y, z).as_expr() == 1 assert Poly(x**2 + 3, x).as_expr() == x**2 + 3 assert Poly(x**2 + 3, x, y, z).as_expr() == x**2 + 3 assert Poly( 3*x**2*y*z**3 + 4*x*y + 5*x*z).as_expr() == 3*x**2*y*z**3 + 4*x*y + 5*x*z f = Poly(x**2 + 2*x*y**2 - y, x, y) assert f.as_expr() == -y + x**2 + 2*x*y**2 assert f.as_expr({x: 5}) == 25 - y + 10*y**2 assert f.as_expr({y: 6}) == -6 + 72*x + x**2 assert f.as_expr({x: 5, y: 6}) == 379 assert f.as_expr(5, 6) == 379 raises(GeneratorsError, lambda: f.as_expr({z: 7})) def test_Poly_lift(): assert Poly(x**4 - I*x + 17*I, x, gaussian=True).lift() == \ Poly(x**16 + 2*x**10 + 578*x**8 + x**4 - 578*x**2 + 83521, x, domain='QQ') def test_Poly_deflate(): assert Poly(0, x).deflate() == ((1,), Poly(0, x)) assert Poly(1, x).deflate() == ((1,), Poly(1, x)) assert Poly(x, x).deflate() == ((1,), Poly(x, x)) assert Poly(x**2, x).deflate() == ((2,), Poly(x, x)) assert Poly(x**17, x).deflate() == ((17,), Poly(x, x)) assert Poly( x**2*y*z**11 + x**4*z**11).deflate() == ((2, 1, 11), Poly(x*y*z + x**2*z)) def test_Poly_inject(): f = Poly(x**2*y + x*y**3 + x*y + 1, x) assert f.inject() == Poly(x**2*y + x*y**3 + x*y + 1, x, y) assert f.inject(front=True) == Poly(y**3*x + y*x**2 + y*x + 1, y, x) def test_Poly_eject(): f = Poly(x**2*y + x*y**3 + x*y + 1, x, y) assert f.eject(x) == Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]') assert f.eject(y) == Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]') ex = x + y + z + t + w g = Poly(ex, x, y, z, t, w) assert g.eject(x) == Poly(ex, y, z, t, w, domain='ZZ[x]') assert g.eject(x, y) == Poly(ex, z, t, w, domain='ZZ[x, y]') assert g.eject(x, y, z) == Poly(ex, t, w, domain='ZZ[x, y, z]') assert g.eject(w) == Poly(ex, x, y, z, t, domain='ZZ[w]') assert g.eject(t, w) == Poly(ex, x, y, z, domain='ZZ[w, t]') assert g.eject(z, t, w) == Poly(ex, x, y, domain='ZZ[w, t, z]') raises(DomainError, lambda: Poly(x*y, x, y, domain=ZZ[z]).eject(y)) raises(NotImplementedError, lambda: Poly(x*y, x, y, z).eject(y)) def test_Poly_exclude(): assert Poly(x, x, y).exclude() == Poly(x, x) assert Poly(x*y, x, y).exclude() == Poly(x*y, x, y) assert Poly(1, x, y).exclude() == Poly(1, x, y) def test_Poly__gen_to_level(): assert Poly(1, x, y)._gen_to_level(-2) == 0 assert Poly(1, x, y)._gen_to_level(-1) == 1 assert Poly(1, x, y)._gen_to_level( 0) == 0 assert Poly(1, x, y)._gen_to_level( 1) == 1 raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(-3)) raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level( 2)) assert Poly(1, x, y)._gen_to_level(x) == 0 assert Poly(1, x, y)._gen_to_level(y) == 1 assert Poly(1, x, y)._gen_to_level('x') == 0 assert Poly(1, x, y)._gen_to_level('y') == 1 raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(z)) raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level('z')) def test_Poly_degree(): assert Poly(0, x).degree() == -oo assert Poly(1, x).degree() == 0 assert Poly(x, x).degree() == 1 assert Poly(0, x).degree(gen=0) == -oo assert Poly(1, x).degree(gen=0) == 0 assert Poly(x, x).degree(gen=0) == 1 assert Poly(0, x).degree(gen=x) == -oo assert Poly(1, x).degree(gen=x) == 0 assert Poly(x, x).degree(gen=x) == 1 assert Poly(0, x).degree(gen='x') == -oo assert Poly(1, x).degree(gen='x') == 0 assert Poly(x, x).degree(gen='x') == 1 raises(PolynomialError, lambda: Poly(1, x).degree(gen=1)) raises(PolynomialError, lambda: Poly(1, x).degree(gen=y)) raises(PolynomialError, lambda: Poly(1, x).degree(gen='y')) assert Poly(1, x, y).degree() == 0 assert Poly(2*y, x, y).degree() == 0 assert Poly(x*y, x, y).degree() == 1 assert Poly(1, x, y).degree(gen=x) == 0 assert Poly(2*y, x, y).degree(gen=x) == 0 assert Poly(x*y, x, y).degree(gen=x) == 1 assert Poly(1, x, y).degree(gen=y) == 0 assert Poly(2*y, x, y).degree(gen=y) == 1 assert Poly(x*y, x, y).degree(gen=y) == 1 assert degree(0, x) == -oo assert degree(1, x) == 0 assert degree(x, x) == 1 assert degree(x*y**2, x) == 1 assert degree(x*y**2, y) == 2 assert degree(x*y**2, z) == 0 assert degree(pi) == 1 raises(TypeError, lambda: degree(y**2 + x**3)) raises(TypeError, lambda: degree(y**2 + x**3, 1)) raises(PolynomialError, lambda: degree(x, 1.1)) raises(PolynomialError, lambda: degree(x**2/(x**3 + 1), x)) assert degree(Poly(0,x),z) == -oo assert degree(Poly(1,x),z) == 0 assert degree(Poly(x**2+y**3,y)) == 3 assert degree(Poly(y**2 + x**3, y, x), 1) == 3 assert degree(Poly(y**2 + x**3, x), z) == 0 assert degree(Poly(y**2 + x**3 + z**4, x), z) == 4 def test_Poly_degree_list(): assert Poly(0, x).degree_list() == (-oo,) assert Poly(0, x, y).degree_list() == (-oo, -oo) assert Poly(0, x, y, z).degree_list() == (-oo, -oo, -oo) assert Poly(1, x).degree_list() == (0,) assert Poly(1, x, y).degree_list() == (0, 0) assert Poly(1, x, y, z).degree_list() == (0, 0, 0) assert Poly(x**2*y + x**3*z**2 + 1).degree_list() == (3, 1, 2) assert degree_list(1, x) == (0,) assert degree_list(x, x) == (1,) assert degree_list(x*y**2) == (1, 2) raises(ComputationFailed, lambda: degree_list(1)) def test_Poly_total_degree(): assert Poly(x**2*y + x**3*z**2 + 1).total_degree() == 5 assert Poly(x**2 + z**3).total_degree() == 3 assert Poly(x*y*z + z**4).total_degree() == 4 assert Poly(x**3 + x + 1).total_degree() == 3 assert total_degree(x*y + z**3) == 3 assert total_degree(x*y + z**3, x, y) == 2 assert total_degree(1) == 0 assert total_degree(Poly(y**2 + x**3 + z**4)) == 4 assert total_degree(Poly(y**2 + x**3 + z**4, x)) == 3 assert total_degree(Poly(y**2 + x**3 + z**4, x), z) == 4 assert total_degree(Poly(x**9 + x*z*y + x**3*z**2 + z**7,x), z) == 7 def test_Poly_homogenize(): assert Poly(x**2+y).homogenize(z) == Poly(x**2+y*z) assert Poly(x+y).homogenize(z) == Poly(x+y, x, y, z) assert Poly(x+y**2).homogenize(y) == Poly(x*y+y**2) def test_Poly_homogeneous_order(): assert Poly(0, x, y).homogeneous_order() == -oo assert Poly(1, x, y).homogeneous_order() == 0 assert Poly(x, x, y).homogeneous_order() == 1 assert Poly(x*y, x, y).homogeneous_order() == 2 assert Poly(x + 1, x, y).homogeneous_order() is None assert Poly(x*y + x, x, y).homogeneous_order() is None assert Poly(x**5 + 2*x**3*y**2 + 9*x*y**4).homogeneous_order() == 5 assert Poly(x**5 + 2*x**3*y**3 + 9*x*y**4).homogeneous_order() is None def test_Poly_LC(): assert Poly(0, x).LC() == 0 assert Poly(1, x).LC() == 1 assert Poly(2*x**2 + x, x).LC() == 2 assert Poly(x*y**7 + 2*x**2*y**3).LC('lex') == 2 assert Poly(x*y**7 + 2*x**2*y**3).LC('grlex') == 1 assert LC(x*y**7 + 2*x**2*y**3, order='lex') == 2 assert LC(x*y**7 + 2*x**2*y**3, order='grlex') == 1 def test_Poly_TC(): assert Poly(0, x).TC() == 0 assert Poly(1, x).TC() == 1 assert Poly(2*x**2 + x, x).TC() == 0 def test_Poly_EC(): assert Poly(0, x).EC() == 0 assert Poly(1, x).EC() == 1 assert Poly(2*x**2 + x, x).EC() == 1 assert Poly(x*y**7 + 2*x**2*y**3).EC('lex') == 1 assert Poly(x*y**7 + 2*x**2*y**3).EC('grlex') == 2 def test_Poly_coeff(): assert Poly(0, x).coeff_monomial(1) == 0 assert Poly(0, x).coeff_monomial(x) == 0 assert Poly(1, x).coeff_monomial(1) == 1 assert Poly(1, x).coeff_monomial(x) == 0 assert Poly(x**8, x).coeff_monomial(1) == 0 assert Poly(x**8, x).coeff_monomial(x**7) == 0 assert Poly(x**8, x).coeff_monomial(x**8) == 1 assert Poly(x**8, x).coeff_monomial(x**9) == 0 assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(1) == 1 assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(x*y**2) == 3 p = Poly(24*x*y*exp(8) + 23*x, x, y) assert p.coeff_monomial(x) == 23 assert p.coeff_monomial(y) == 0 assert p.coeff_monomial(x*y) == 24*exp(8) assert p.as_expr().coeff(x) == 24*y*exp(8) + 23 raises(NotImplementedError, lambda: p.coeff(x)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(0)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x*y)) def test_Poly_nth(): assert Poly(0, x).nth(0) == 0 assert Poly(0, x).nth(1) == 0 assert Poly(1, x).nth(0) == 1 assert Poly(1, x).nth(1) == 0 assert Poly(x**8, x).nth(0) == 0 assert Poly(x**8, x).nth(7) == 0 assert Poly(x**8, x).nth(8) == 1 assert Poly(x**8, x).nth(9) == 0 assert Poly(3*x*y**2 + 1, x, y).nth(0, 0) == 1 assert Poly(3*x*y**2 + 1, x, y).nth(1, 2) == 3 raises(ValueError, lambda: Poly(x*y + 1, x, y).nth(1)) def test_Poly_LM(): assert Poly(0, x).LM() == (0,) assert Poly(1, x).LM() == (0,) assert Poly(2*x**2 + x, x).LM() == (2,) assert Poly(x*y**7 + 2*x**2*y**3).LM('lex') == (2, 3) assert Poly(x*y**7 + 2*x**2*y**3).LM('grlex') == (1, 7) assert LM(x*y**7 + 2*x**2*y**3, order='lex') == x**2*y**3 assert LM(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7 def test_Poly_LM_custom_order(): f = Poly(x**2*y**3*z + x**2*y*z**3 + x*y*z + 1) rev_lex = lambda monom: tuple(reversed(monom)) assert f.LM(order='lex') == (2, 3, 1) assert f.LM(order=rev_lex) == (2, 1, 3) def test_Poly_EM(): assert Poly(0, x).EM() == (0,) assert Poly(1, x).EM() == (0,) assert Poly(2*x**2 + x, x).EM() == (1,) assert Poly(x*y**7 + 2*x**2*y**3).EM('lex') == (1, 7) assert Poly(x*y**7 + 2*x**2*y**3).EM('grlex') == (2, 3) def test_Poly_LT(): assert Poly(0, x).LT() == ((0,), 0) assert Poly(1, x).LT() == ((0,), 1) assert Poly(2*x**2 + x, x).LT() == ((2,), 2) assert Poly(x*y**7 + 2*x**2*y**3).LT('lex') == ((2, 3), 2) assert Poly(x*y**7 + 2*x**2*y**3).LT('grlex') == ((1, 7), 1) assert LT(x*y**7 + 2*x**2*y**3, order='lex') == 2*x**2*y**3 assert LT(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7 def test_Poly_ET(): assert Poly(0, x).ET() == ((0,), 0) assert Poly(1, x).ET() == ((0,), 1) assert Poly(2*x**2 + x, x).ET() == ((1,), 1) assert Poly(x*y**7 + 2*x**2*y**3).ET('lex') == ((1, 7), 1) assert Poly(x*y**7 + 2*x**2*y**3).ET('grlex') == ((2, 3), 2) def test_Poly_max_norm(): assert Poly(-1, x).max_norm() == 1 assert Poly( 0, x).max_norm() == 0 assert Poly( 1, x).max_norm() == 1 def test_Poly_l1_norm(): assert Poly(-1, x).l1_norm() == 1 assert Poly( 0, x).l1_norm() == 0 assert Poly( 1, x).l1_norm() == 1 def test_Poly_clear_denoms(): coeff, poly = Poly(x + 2, x).clear_denoms() assert coeff == 1 and poly == Poly( x + 2, x, domain='ZZ') and poly.get_domain() == ZZ coeff, poly = Poly(x/2 + 1, x).clear_denoms() assert coeff == 2 and poly == Poly( x + 2, x, domain='QQ') and poly.get_domain() == QQ coeff, poly = Poly(x/2 + 1, x).clear_denoms(convert=True) assert coeff == 2 and poly == Poly( x + 2, x, domain='ZZ') and poly.get_domain() == ZZ coeff, poly = Poly(x/y + 1, x).clear_denoms(convert=True) assert coeff == y and poly == Poly( x + y, x, domain='ZZ[y]') and poly.get_domain() == ZZ[y] coeff, poly = Poly(x/3 + sqrt(2), x, domain='EX').clear_denoms() assert coeff == 3 and poly == Poly( x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX coeff, poly = Poly( x/3 + sqrt(2), x, domain='EX').clear_denoms(convert=True) assert coeff == 3 and poly == Poly( x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX def test_Poly_rat_clear_denoms(): f = Poly(x**2/y + 1, x) g = Poly(x**3 + y, x) assert f.rat_clear_denoms(g) == \ (Poly(x**2 + y, x), Poly(y*x**3 + y**2, x)) f = f.set_domain(EX) g = g.set_domain(EX) assert f.rat_clear_denoms(g) == (f, g) def test_Poly_integrate(): assert Poly(x + 1).integrate() == Poly(x**2/2 + x) assert Poly(x + 1).integrate(x) == Poly(x**2/2 + x) assert Poly(x + 1).integrate((x, 1)) == Poly(x**2/2 + x) assert Poly(x*y + 1).integrate(x) == Poly(x**2*y/2 + x) assert Poly(x*y + 1).integrate(y) == Poly(x*y**2/2 + y) assert Poly(x*y + 1).integrate(x, x) == Poly(x**3*y/6 + x**2/2) assert Poly(x*y + 1).integrate(y, y) == Poly(x*y**3/6 + y**2/2) assert Poly(x*y + 1).integrate((x, 2)) == Poly(x**3*y/6 + x**2/2) assert Poly(x*y + 1).integrate((y, 2)) == Poly(x*y**3/6 + y**2/2) assert Poly(x*y + 1).integrate(x, y) == Poly(x**2*y**2/4 + x*y) assert Poly(x*y + 1).integrate(y, x) == Poly(x**2*y**2/4 + x*y) def test_Poly_diff(): assert Poly(x**2 + x).diff() == Poly(2*x + 1) assert Poly(x**2 + x).diff(x) == Poly(2*x + 1) assert Poly(x**2 + x).diff((x, 1)) == Poly(2*x + 1) assert Poly(x**2*y**2 + x*y).diff(x) == Poly(2*x*y**2 + y) assert Poly(x**2*y**2 + x*y).diff(y) == Poly(2*x**2*y + x) assert Poly(x**2*y**2 + x*y).diff(x, x) == Poly(2*y**2, x, y) assert Poly(x**2*y**2 + x*y).diff(y, y) == Poly(2*x**2, x, y) assert Poly(x**2*y**2 + x*y).diff((x, 2)) == Poly(2*y**2, x, y) assert Poly(x**2*y**2 + x*y).diff((y, 2)) == Poly(2*x**2, x, y) assert Poly(x**2*y**2 + x*y).diff(x, y) == Poly(4*x*y + 1) assert Poly(x**2*y**2 + x*y).diff(y, x) == Poly(4*x*y + 1) def test_issue_9585(): assert diff(Poly(x**2 + x)) == Poly(2*x + 1) assert diff(Poly(x**2 + x), x, evaluate=False) == \ Derivative(Poly(x**2 + x), x) assert Derivative(Poly(x**2 + x), x).doit() == Poly(2*x + 1) def test_Poly_eval(): assert Poly(0, x).eval(7) == 0 assert Poly(1, x).eval(7) == 1 assert Poly(x, x).eval(7) == 7 assert Poly(0, x).eval(0, 7) == 0 assert Poly(1, x).eval(0, 7) == 1 assert Poly(x, x).eval(0, 7) == 7 assert Poly(0, x).eval(x, 7) == 0 assert Poly(1, x).eval(x, 7) == 1 assert Poly(x, x).eval(x, 7) == 7 assert Poly(0, x).eval('x', 7) == 0 assert Poly(1, x).eval('x', 7) == 1 assert Poly(x, x).eval('x', 7) == 7 raises(PolynomialError, lambda: Poly(1, x).eval(1, 7)) raises(PolynomialError, lambda: Poly(1, x).eval(y, 7)) raises(PolynomialError, lambda: Poly(1, x).eval('y', 7)) assert Poly(123, x, y).eval(7) == Poly(123, y) assert Poly(2*y, x, y).eval(7) == Poly(2*y, y) assert Poly(x*y, x, y).eval(7) == Poly(7*y, y) assert Poly(123, x, y).eval(x, 7) == Poly(123, y) assert Poly(2*y, x, y).eval(x, 7) == Poly(2*y, y) assert Poly(x*y, x, y).eval(x, 7) == Poly(7*y, y) assert Poly(123, x, y).eval(y, 7) == Poly(123, x) assert Poly(2*y, x, y).eval(y, 7) == Poly(14, x) assert Poly(x*y, x, y).eval(y, 7) == Poly(7*x, x) assert Poly(x*y + y, x, y).eval({x: 7}) == Poly(8*y, y) assert Poly(x*y + y, x, y).eval({y: 7}) == Poly(7*x + 7, x) assert Poly(x*y + y, x, y).eval({x: 6, y: 7}) == 49 assert Poly(x*y + y, x, y).eval({x: 7, y: 6}) == 48 assert Poly(x*y + y, x, y).eval((6, 7)) == 49 assert Poly(x*y + y, x, y).eval([6, 7]) == 49 assert Poly(x + 1, domain='ZZ').eval(S(1)/2) == S(3)/2 assert Poly(x + 1, domain='ZZ').eval(sqrt(2)) == sqrt(2) + 1 raises(ValueError, lambda: Poly(x*y + y, x, y).eval((6, 7, 8))) raises(DomainError, lambda: Poly(x + 1, domain='ZZ').eval(S(1)/2, auto=False)) # issue 6344 alpha = Symbol('alpha') result = (2*alpha*z - 2*alpha + z**2 + 3)/(z**2 - 2*z + 1) f = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, domain='ZZ[alpha]') assert f.eval((z + 1)/(z - 1)) == result g = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, y, domain='ZZ[alpha]') assert g.eval((z + 1)/(z - 1)) == Poly(result, y, domain='ZZ(alpha,z)') def test_Poly___call__(): f = Poly(2*x*y + 3*x + y + 2*z) assert f(2) == Poly(5*y + 2*z + 6) assert f(2, 5) == Poly(2*z + 31) assert f(2, 5, 7) == 45 def test_parallel_poly_from_expr(): assert parallel_poly_from_expr( [x - 1, x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr([Poly( x - 1, x), Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([Poly( x - 1, x), x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([x - 1, Poly( x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([Poly(x - 1, x), Poly( x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr( [x - 1, x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr([Poly(x, x, y), Poly(y, x, y)], x, y, order='lex')[0] == \ [Poly(x, x, y, domain='ZZ'), Poly(y, x, y, domain='ZZ')] raises(PolificationFailed, lambda: parallel_poly_from_expr([0, 1])) def test_pdiv(): f, g = x**2 - y**2, x - y q, r = x + y, 0 F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ] assert F.pdiv(G) == (Q, R) assert F.prem(G) == R assert F.pquo(G) == Q assert F.pexquo(G) == Q assert pdiv(f, g) == (q, r) assert prem(f, g) == r assert pquo(f, g) == q assert pexquo(f, g) == q assert pdiv(f, g, x, y) == (q, r) assert prem(f, g, x, y) == r assert pquo(f, g, x, y) == q assert pexquo(f, g, x, y) == q assert pdiv(f, g, (x, y)) == (q, r) assert prem(f, g, (x, y)) == r assert pquo(f, g, (x, y)) == q assert pexquo(f, g, (x, y)) == q assert pdiv(F, G) == (Q, R) assert prem(F, G) == R assert pquo(F, G) == Q assert pexquo(F, G) == Q assert pdiv(f, g, polys=True) == (Q, R) assert prem(f, g, polys=True) == R assert pquo(f, g, polys=True) == Q assert pexquo(f, g, polys=True) == Q assert pdiv(F, G, polys=False) == (q, r) assert prem(F, G, polys=False) == r assert pquo(F, G, polys=False) == q assert pexquo(F, G, polys=False) == q raises(ComputationFailed, lambda: pdiv(4, 2)) raises(ComputationFailed, lambda: prem(4, 2)) raises(ComputationFailed, lambda: pquo(4, 2)) raises(ComputationFailed, lambda: pexquo(4, 2)) def test_div(): f, g = x**2 - y**2, x - y q, r = x + y, 0 F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ] assert F.div(G) == (Q, R) assert F.rem(G) == R assert F.quo(G) == Q assert F.exquo(G) == Q assert div(f, g) == (q, r) assert rem(f, g) == r assert quo(f, g) == q assert exquo(f, g) == q assert div(f, g, x, y) == (q, r) assert rem(f, g, x, y) == r assert quo(f, g, x, y) == q assert exquo(f, g, x, y) == q assert div(f, g, (x, y)) == (q, r) assert rem(f, g, (x, y)) == r assert quo(f, g, (x, y)) == q assert exquo(f, g, (x, y)) == q assert div(F, G) == (Q, R) assert rem(F, G) == R assert quo(F, G) == Q assert exquo(F, G) == Q assert div(f, g, polys=True) == (Q, R) assert rem(f, g, polys=True) == R assert quo(f, g, polys=True) == Q assert exquo(f, g, polys=True) == Q assert div(F, G, polys=False) == (q, r) assert rem(F, G, polys=False) == r assert quo(F, G, polys=False) == q assert exquo(F, G, polys=False) == q raises(ComputationFailed, lambda: div(4, 2)) raises(ComputationFailed, lambda: rem(4, 2)) raises(ComputationFailed, lambda: quo(4, 2)) raises(ComputationFailed, lambda: exquo(4, 2)) f, g = x**2 + 1, 2*x - 4 qz, rz = 0, x**2 + 1 qq, rq = x/2 + 1, 5 assert div(f, g) == (qq, rq) assert div(f, g, auto=True) == (qq, rq) assert div(f, g, auto=False) == (qz, rz) assert div(f, g, domain=ZZ) == (qz, rz) assert div(f, g, domain=QQ) == (qq, rq) assert div(f, g, domain=ZZ, auto=True) == (qq, rq) assert div(f, g, domain=ZZ, auto=False) == (qz, rz) assert div(f, g, domain=QQ, auto=True) == (qq, rq) assert div(f, g, domain=QQ, auto=False) == (qq, rq) assert rem(f, g) == rq assert rem(f, g, auto=True) == rq assert rem(f, g, auto=False) == rz assert rem(f, g, domain=ZZ) == rz assert rem(f, g, domain=QQ) == rq assert rem(f, g, domain=ZZ, auto=True) == rq assert rem(f, g, domain=ZZ, auto=False) == rz assert rem(f, g, domain=QQ, auto=True) == rq assert rem(f, g, domain=QQ, auto=False) == rq assert quo(f, g) == qq assert quo(f, g, auto=True) == qq assert quo(f, g, auto=False) == qz assert quo(f, g, domain=ZZ) == qz assert quo(f, g, domain=QQ) == qq assert quo(f, g, domain=ZZ, auto=True) == qq assert quo(f, g, domain=ZZ, auto=False) == qz assert quo(f, g, domain=QQ, auto=True) == qq assert quo(f, g, domain=QQ, auto=False) == qq f, g, q = x**2, 2*x, x/2 assert exquo(f, g) == q assert exquo(f, g, auto=True) == q raises(ExactQuotientFailed, lambda: exquo(f, g, auto=False)) raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ)) assert exquo(f, g, domain=QQ) == q assert exquo(f, g, domain=ZZ, auto=True) == q raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ, auto=False)) assert exquo(f, g, domain=QQ, auto=True) == q assert exquo(f, g, domain=QQ, auto=False) == q f, g = Poly(x**2), Poly(x) q, r = f.div(g) assert q.get_domain().is_ZZ and r.get_domain().is_ZZ r = f.rem(g) assert r.get_domain().is_ZZ q = f.quo(g) assert q.get_domain().is_ZZ q = f.exquo(g) assert q.get_domain().is_ZZ f, g = Poly(x+y, x), Poly(2*x+y, x) q, r = f.div(g) assert q.get_domain().is_Frac and r.get_domain().is_Frac def test_gcdex(): f, g = 2*x, x**2 - 16 s, t, h = x/32, -Rational(1, 16), 1 F, G, S, T, H = [ Poly(u, x, domain='QQ') for u in (f, g, s, t, h) ] assert F.half_gcdex(G) == (S, H) assert F.gcdex(G) == (S, T, H) assert F.invert(G) == S assert half_gcdex(f, g) == (s, h) assert gcdex(f, g) == (s, t, h) assert invert(f, g) == s assert half_gcdex(f, g, x) == (s, h) assert gcdex(f, g, x) == (s, t, h) assert invert(f, g, x) == s assert half_gcdex(f, g, (x,)) == (s, h) assert gcdex(f, g, (x,)) == (s, t, h) assert invert(f, g, (x,)) == s assert half_gcdex(F, G) == (S, H) assert gcdex(F, G) == (S, T, H) assert invert(F, G) == S assert half_gcdex(f, g, polys=True) == (S, H) assert gcdex(f, g, polys=True) == (S, T, H) assert invert(f, g, polys=True) == S assert half_gcdex(F, G, polys=False) == (s, h) assert gcdex(F, G, polys=False) == (s, t, h) assert invert(F, G, polys=False) == s assert half_gcdex(100, 2004) == (-20, 4) assert gcdex(100, 2004) == (-20, 1, 4) assert invert(3, 7) == 5 raises(DomainError, lambda: half_gcdex(x + 1, 2*x + 1, auto=False)) raises(DomainError, lambda: gcdex(x + 1, 2*x + 1, auto=False)) raises(DomainError, lambda: invert(x + 1, 2*x + 1, auto=False)) def test_revert(): f = Poly(1 - x**2/2 + x**4/24 - x**6/720) g = Poly(61*x**6/720 + 5*x**4/24 + x**2/2 + 1) assert f.revert(8) == g def test_subresultants(): f, g, h = x**2 - 2*x + 1, x**2 - 1, 2*x - 2 F, G, H = Poly(f), Poly(g), Poly(h) assert F.subresultants(G) == [F, G, H] assert subresultants(f, g) == [f, g, h] assert subresultants(f, g, x) == [f, g, h] assert subresultants(f, g, (x,)) == [f, g, h] assert subresultants(F, G) == [F, G, H] assert subresultants(f, g, polys=True) == [F, G, H] assert subresultants(F, G, polys=False) == [f, g, h] raises(ComputationFailed, lambda: subresultants(4, 2)) def test_resultant(): f, g, h = x**2 - 2*x + 1, x**2 - 1, 0 F, G = Poly(f), Poly(g) assert F.resultant(G) == h assert resultant(f, g) == h assert resultant(f, g, x) == h assert resultant(f, g, (x,)) == h assert resultant(F, G) == h assert resultant(f, g, polys=True) == h assert resultant(F, G, polys=False) == h assert resultant(f, g, includePRS=True) == (h, [f, g, 2*x - 2]) f, g, h = x - a, x - b, a - b F, G, H = Poly(f), Poly(g), Poly(h) assert F.resultant(G) == H assert resultant(f, g) == h assert resultant(f, g, x) == h assert resultant(f, g, (x,)) == h assert resultant(F, G) == H assert resultant(f, g, polys=True) == H assert resultant(F, G, polys=False) == h raises(ComputationFailed, lambda: resultant(4, 2)) def test_discriminant(): f, g = x**3 + 3*x**2 + 9*x - 13, -11664 F = Poly(f) assert F.discriminant() == g assert discriminant(f) == g assert discriminant(f, x) == g assert discriminant(f, (x,)) == g assert discriminant(F) == g assert discriminant(f, polys=True) == g assert discriminant(F, polys=False) == g f, g = a*x**2 + b*x + c, b**2 - 4*a*c F, G = Poly(f), Poly(g) assert F.discriminant() == G assert discriminant(f) == g assert discriminant(f, x, a, b, c) == g assert discriminant(f, (x, a, b, c)) == g assert discriminant(F) == G assert discriminant(f, polys=True) == G assert discriminant(F, polys=False) == g raises(ComputationFailed, lambda: discriminant(4)) def test_dispersion(): # We test only the API here. For more mathematical # tests see the dedicated test file. fp = poly((x + 1)*(x + 2), x) assert sorted(fp.dispersionset()) == [0, 1] assert fp.dispersion() == 1 fp = poly(x**4 - 3*x**2 + 1, x) gp = fp.shift(-3) assert sorted(fp.dispersionset(gp)) == [2, 3, 4] assert fp.dispersion(gp) == 4 def test_gcd_list(): F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2] assert gcd_list(F) == x - 1 assert gcd_list(F, polys=True) == Poly(x - 1) assert gcd_list([]) == 0 assert gcd_list([1, 2]) == 1 assert gcd_list([4, 6, 8]) == 2 assert gcd_list([x*(y + 42) - x*y - x*42]) == 0 gcd = gcd_list([], x) assert gcd.is_Number and gcd is S.Zero gcd = gcd_list([], x, polys=True) assert gcd.is_Poly and gcd.is_zero raises(ComputationFailed, lambda: gcd_list([], polys=True)) def test_lcm_list(): F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2] assert lcm_list(F) == x**5 - x**4 - 2*x**3 - x**2 + x + 2 assert lcm_list(F, polys=True) == Poly(x**5 - x**4 - 2*x**3 - x**2 + x + 2) assert lcm_list([]) == 1 assert lcm_list([1, 2]) == 2 assert lcm_list([4, 6, 8]) == 24 assert lcm_list([x*(y + 42) - x*y - x*42]) == 0 lcm = lcm_list([], x) assert lcm.is_Number and lcm is S.One lcm = lcm_list([], x, polys=True) assert lcm.is_Poly and lcm.is_one raises(ComputationFailed, lambda: lcm_list([], polys=True)) def test_gcd(): f, g = x**3 - 1, x**2 - 1 s, t = x**2 + x + 1, x + 1 h, r = x - 1, x**4 + x**3 - x - 1 F, G, S, T, H, R = [ Poly(u) for u in (f, g, s, t, h, r) ] assert F.cofactors(G) == (H, S, T) assert F.gcd(G) == H assert F.lcm(G) == R assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == r assert cofactors(f, g, x) == (h, s, t) assert gcd(f, g, x) == h assert lcm(f, g, x) == r assert cofactors(f, g, (x,)) == (h, s, t) assert gcd(f, g, (x,)) == h assert lcm(f, g, (x,)) == r assert cofactors(F, G) == (H, S, T) assert gcd(F, G) == H assert lcm(F, G) == R assert cofactors(f, g, polys=True) == (H, S, T) assert gcd(f, g, polys=True) == H assert lcm(f, g, polys=True) == R assert cofactors(F, G, polys=False) == (h, s, t) assert gcd(F, G, polys=False) == h assert lcm(F, G, polys=False) == r f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0 h, s, t = g, 1.0*x + 1.0, 1.0 assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == f f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0 h, s, t = g, 1.0*x + 1.0, 1.0 assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == f assert cofactors(8, 6) == (2, 4, 3) assert gcd(8, 6) == 2 assert lcm(8, 6) == 24 f, g = x**2 - 3*x - 4, x**3 - 4*x**2 + x - 4 l = x**4 - 3*x**3 - 3*x**2 - 3*x - 4 h, s, t = x - 4, x + 1, x**2 + 1 assert cofactors(f, g, modulus=11) == (h, s, t) assert gcd(f, g, modulus=11) == h assert lcm(f, g, modulus=11) == l f, g = x**2 + 8*x + 7, x**3 + 7*x**2 + x + 7 l = x**4 + 8*x**3 + 8*x**2 + 8*x + 7 h, s, t = x + 7, x + 1, x**2 + 1 assert cofactors(f, g, modulus=11, symmetric=False) == (h, s, t) assert gcd(f, g, modulus=11, symmetric=False) == h assert lcm(f, g, modulus=11, symmetric=False) == l raises(TypeError, lambda: gcd(x)) raises(TypeError, lambda: lcm(x)) def test_gcd_numbers_vs_polys(): assert isinstance(gcd(3, 9), Integer) assert isinstance(gcd(3*x, 9), Integer) assert gcd(3, 9) == 3 assert gcd(3*x, 9) == 3 assert isinstance(gcd(S(3)/2, S(9)/4), Rational) assert isinstance(gcd(S(3)/2*x, S(9)/4), Rational) assert gcd(S(3)/2, S(9)/4) == S(3)/4 assert gcd(S(3)/2*x, S(9)/4) == 1 assert isinstance(gcd(3.0, 9.0), Float) assert isinstance(gcd(3.0*x, 9.0), Float) assert gcd(3.0, 9.0) == 1.0 assert gcd(3.0*x, 9.0) == 1.0 def test_terms_gcd(): assert terms_gcd(1) == 1 assert terms_gcd(1, x) == 1 assert terms_gcd(x - 1) == x - 1 assert terms_gcd(-x - 1) == -x - 1 assert terms_gcd(2*x + 3) == 2*x + 3 assert terms_gcd(6*x + 4) == Mul(2, 3*x + 2, evaluate=False) assert terms_gcd(x**3*y + x*y**3) == x*y*(x**2 + y**2) assert terms_gcd(2*x**3*y + 2*x*y**3) == 2*x*y*(x**2 + y**2) assert terms_gcd(x**3*y/2 + x*y**3/2) == x*y/2*(x**2 + y**2) assert terms_gcd(x**3*y + 2*x*y**3) == x*y*(x**2 + 2*y**2) assert terms_gcd(2*x**3*y + 4*x*y**3) == 2*x*y*(x**2 + 2*y**2) assert terms_gcd(2*x**3*y/3 + 4*x*y**3/5) == 2*x*y/15*(5*x**2 + 6*y**2) assert terms_gcd(2.0*x**3*y + 4.1*x*y**3) == x*y*(2.0*x**2 + 4.1*y**2) assert _aresame(terms_gcd(2.0*x + 3), 2.0*x + 3) assert terms_gcd((3 + 3*x)*(x + x*y), expand=False) == \ (3*x + 3)*(x*y + x) assert terms_gcd((3 + 3*x)*(x + x*sin(3 + 3*y)), expand=False, deep=True) == \ 3*x*(x + 1)*(sin(Mul(3, y + 1, evaluate=False)) + 1) assert terms_gcd(sin(x + x*y), deep=True) == \ sin(x*(y + 1)) eq = Eq(2*x, 2*y + 2*z*y) assert terms_gcd(eq) == eq assert terms_gcd(eq, deep=True) == Eq(2*x, 2*y*(z + 1)) def test_trunc(): f, g = x**5 + 2*x**4 + 3*x**3 + 4*x**2 + 5*x + 6, x**5 - x**4 + x**2 - x F, G = Poly(f), Poly(g) assert F.trunc(3) == G assert trunc(f, 3) == g assert trunc(f, 3, x) == g assert trunc(f, 3, (x,)) == g assert trunc(F, 3) == G assert trunc(f, 3, polys=True) == G assert trunc(F, 3, polys=False) == g f, g = 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1, -x**4 + x**3 - x + 1 F, G = Poly(f), Poly(g) assert F.trunc(3) == G assert trunc(f, 3) == g assert trunc(f, 3, x) == g assert trunc(f, 3, (x,)) == g assert trunc(F, 3) == G assert trunc(f, 3, polys=True) == G assert trunc(F, 3, polys=False) == g f = Poly(x**2 + 2*x + 3, modulus=5) assert f.trunc(2) == Poly(x**2 + 1, modulus=5) def test_monic(): f, g = 2*x - 1, x - S(1)/2 F, G = Poly(f, domain='QQ'), Poly(g) assert F.monic() == G assert monic(f) == g assert monic(f, x) == g assert monic(f, (x,)) == g assert monic(F) == G assert monic(f, polys=True) == G assert monic(F, polys=False) == g raises(ComputationFailed, lambda: monic(4)) assert monic(2*x**2 + 6*x + 4, auto=False) == x**2 + 3*x + 2 raises(ExactQuotientFailed, lambda: monic(2*x + 6*x + 1, auto=False)) assert monic(2.0*x**2 + 6.0*x + 4.0) == 1.0*x**2 + 3.0*x + 2.0 assert monic(2*x**2 + 3*x + 4, modulus=5) == x**2 - x + 2 def test_content(): f, F = 4*x + 2, Poly(4*x + 2) assert F.content() == 2 assert content(f) == 2 raises(ComputationFailed, lambda: content(4)) f = Poly(2*x, modulus=3) assert f.content() == 1 def test_primitive(): f, g = 4*x + 2, 2*x + 1 F, G = Poly(f), Poly(g) assert F.primitive() == (2, G) assert primitive(f) == (2, g) assert primitive(f, x) == (2, g) assert primitive(f, (x,)) == (2, g) assert primitive(F) == (2, G) assert primitive(f, polys=True) == (2, G) assert primitive(F, polys=False) == (2, g) raises(ComputationFailed, lambda: primitive(4)) f = Poly(2*x, modulus=3) g = Poly(2.0*x, domain=RR) assert f.primitive() == (1, f) assert g.primitive() == (1.0, g) assert primitive(S('-3*x/4 + y + 11/8')) == \ S('(1/8, -6*x + 8*y + 11)') def test_compose(): f = x**12 + 20*x**10 + 150*x**8 + 500*x**6 + 625*x**4 - 2*x**3 - 10*x + 9 g = x**4 - 2*x + 9 h = x**3 + 5*x F, G, H = map(Poly, (f, g, h)) assert G.compose(H) == F assert compose(g, h) == f assert compose(g, h, x) == f assert compose(g, h, (x,)) == f assert compose(G, H) == F assert compose(g, h, polys=True) == F assert compose(G, H, polys=False) == f assert F.decompose() == [G, H] assert decompose(f) == [g, h] assert decompose(f, x) == [g, h] assert decompose(f, (x,)) == [g, h] assert decompose(F) == [G, H] assert decompose(f, polys=True) == [G, H] assert decompose(F, polys=False) == [g, h] raises(ComputationFailed, lambda: compose(4, 2)) raises(ComputationFailed, lambda: decompose(4)) assert compose(x**2 - y**2, x - y, x, y) == x**2 - 2*x*y assert compose(x**2 - y**2, x - y, y, x) == -y**2 + 2*x*y def test_shift(): assert Poly(x**2 - 2*x + 1, x).shift(2) == Poly(x**2 + 2*x + 1, x) def test_transform(): # Also test that 3-way unification is done correctly assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \ Poly(4, x) == \ cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - 1))) assert Poly(x**2 - x/2 + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \ Poly(3*x**2/2 + S(5)/2, x) == \ cancel((x - 1)**2*(x**2 - x/2 + 1).subs(x, (x + 1)/(x - 1))) assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + S(1)/2), Poly(x - 1)) == \ Poly(S(9)/4, x) == \ cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + S(1)/2)/(x - 1))) assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - S(1)/2)) == \ Poly(S(9)/4, x) == \ cancel((x - S(1)/2)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - S(1)/2))) # Unify ZZ, QQ, and RR assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1.0), Poly(x - S(1)/2)) == \ Poly(S(9)/4, x) == \ cancel((x - S(1)/2)**2*(x**2 - 2*x + 1).subs(x, (x + 1.0)/(x - S(1)/2))) raises(ValueError, lambda: Poly(x*y).transform(Poly(x + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(y + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(y - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x*y + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(x*y - 1))) def test_sturm(): f, F = x, Poly(x, domain='QQ') g, G = 1, Poly(1, x, domain='QQ') assert F.sturm() == [F, G] assert sturm(f) == [f, g] assert sturm(f, x) == [f, g] assert sturm(f, (x,)) == [f, g] assert sturm(F) == [F, G] assert sturm(f, polys=True) == [F, G] assert sturm(F, polys=False) == [f, g] raises(ComputationFailed, lambda: sturm(4)) raises(DomainError, lambda: sturm(f, auto=False)) f = Poly(S(1024)/(15625*pi**8)*x**5 - S(4096)/(625*pi**8)*x**4 + S(32)/(15625*pi**4)*x**3 - S(128)/(625*pi**4)*x**2 + S(1)/62500*x - S(1)/625, x, domain='ZZ(pi)') assert sturm(f) == \ [Poly(x**3 - 100*x**2 + pi**4/64*x - 25*pi**4/16, x, domain='ZZ(pi)'), Poly(3*x**2 - 200*x + pi**4/64, x, domain='ZZ(pi)'), Poly((S(20000)/9 - pi**4/96)*x + 25*pi**4/18, x, domain='ZZ(pi)'), Poly((-3686400000000*pi**4 - 11520000*pi**8 - 9*pi**12)/(26214400000000 - 245760000*pi**4 + 576*pi**8), x, domain='ZZ(pi)')] def test_gff(): f = x**5 + 2*x**4 - x**3 - 2*x**2 assert Poly(f).gff_list() == [(Poly(x), 1), (Poly(x + 2), 4)] assert gff_list(f) == [(x, 1), (x + 2, 4)] raises(NotImplementedError, lambda: gff(f)) f = x*(x - 1)**3*(x - 2)**2*(x - 4)**2*(x - 5) assert Poly(f).gff_list() == [( Poly(x**2 - 5*x + 4), 1), (Poly(x**2 - 5*x + 4), 2), (Poly(x), 3)] assert gff_list(f) == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)] raises(NotImplementedError, lambda: gff(f)) def test_norm(): a, b = sqrt(2), sqrt(3) f = Poly(a*x + b*y, x, y, extension=(a, b)) assert f.norm() == Poly(4*x**4 - 12*x**2*y**2 + 9*y**4, x, y, domain='QQ') def test_sqf_norm(): assert sqf_norm(x**2 - 2, extension=sqrt(3)) == \ (1, x**2 - 2*sqrt(3)*x + 1, x**4 - 10*x**2 + 1) assert sqf_norm(x**2 - 3, extension=sqrt(2)) == \ (1, x**2 - 2*sqrt(2)*x - 1, x**4 - 10*x**2 + 1) assert Poly(x**2 - 2, extension=sqrt(3)).sqf_norm() == \ (1, Poly(x**2 - 2*sqrt(3)*x + 1, x, extension=sqrt(3)), Poly(x**4 - 10*x**2 + 1, x, domain='QQ')) assert Poly(x**2 - 3, extension=sqrt(2)).sqf_norm() == \ (1, Poly(x**2 - 2*sqrt(2)*x - 1, x, extension=sqrt(2)), Poly(x**4 - 10*x**2 + 1, x, domain='QQ')) def test_sqf(): f = x**5 - x**3 - x**2 + 1 g = x**3 + 2*x**2 + 2*x + 1 h = x - 1 p = x**4 + x**3 - x - 1 F, G, H, P = map(Poly, (f, g, h, p)) assert F.sqf_part() == P assert sqf_part(f) == p assert sqf_part(f, x) == p assert sqf_part(f, (x,)) == p assert sqf_part(F) == P assert sqf_part(f, polys=True) == P assert sqf_part(F, polys=False) == p assert F.sqf_list() == (1, [(G, 1), (H, 2)]) assert sqf_list(f) == (1, [(g, 1), (h, 2)]) assert sqf_list(f, x) == (1, [(g, 1), (h, 2)]) assert sqf_list(f, (x,)) == (1, [(g, 1), (h, 2)]) assert sqf_list(F) == (1, [(G, 1), (H, 2)]) assert sqf_list(f, polys=True) == (1, [(G, 1), (H, 2)]) assert sqf_list(F, polys=False) == (1, [(g, 1), (h, 2)]) assert F.sqf_list_include() == [(G, 1), (H, 2)] raises(ComputationFailed, lambda: sqf_part(4)) assert sqf(1) == 1 assert sqf_list(1) == (1, []) assert sqf((2*x**2 + 2)**7) == 128*(x**2 + 1)**7 assert sqf(f) == g*h**2 assert sqf(f, x) == g*h**2 assert sqf(f, (x,)) == g*h**2 d = x**2 + y**2 assert sqf(f/d) == (g*h**2)/d assert sqf(f/d, x) == (g*h**2)/d assert sqf(f/d, (x,)) == (g*h**2)/d assert sqf(x - 1) == x - 1 assert sqf(-x - 1) == -x - 1 assert sqf(x - 1) == x - 1 assert sqf(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert sqf((6*x - 10)/(3*x - 6)) == S(2)/3*((3*x - 5)/(x - 2)) assert sqf(Poly(x**2 - 2*x + 1)) == (x - 1)**2 f = 3 + x - x*(1 + x) + x**2 assert sqf(f) == 3 f = (x**2 + 2*x + 1)**20000000000 assert sqf(f) == (x + 1)**40000000000 assert sqf_list(f) == (1, [(x + 1, 40000000000)]) def test_factor(): f = x**5 - x**3 - x**2 + 1 u = x + 1 v = x - 1 w = x**2 + x + 1 F, U, V, W = map(Poly, (f, u, v, w)) assert F.factor_list() == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(f) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(f, x) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(f, (x,)) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(F) == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(f, polys=True) == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(F, polys=False) == (1, [(u, 1), (v, 2), (w, 1)]) assert F.factor_list_include() == [(U, 1), (V, 2), (W, 1)] assert factor_list(1) == (1, []) assert factor_list(6) == (6, []) assert factor_list(sqrt(3), x) == (sqrt(3), []) assert factor_list((-1)**x, x) == (1, [(-1, x)]) assert factor_list((2*x)**y, x) == (1, [(2, y), (x, y)]) assert factor_list(sqrt(x*y), x) == (1, [(x*y, S.Half)]) assert factor(6) == 6 and factor(6).is_Integer assert factor_list(3*x) == (3, [(x, 1)]) assert factor_list(3*x**2) == (3, [(x, 2)]) assert factor(3*x) == 3*x assert factor(3*x**2) == 3*x**2 assert factor((2*x**2 + 2)**7) == 128*(x**2 + 1)**7 assert factor(f) == u*v**2*w assert factor(f, x) == u*v**2*w assert factor(f, (x,)) == u*v**2*w g, p, q, r = x**2 - y**2, x - y, x + y, x**2 + 1 assert factor(f/g) == (u*v**2*w)/(p*q) assert factor(f/g, x) == (u*v**2*w)/(p*q) assert factor(f/g, (x,)) == (u*v**2*w)/(p*q) p = Symbol('p', positive=True) i = Symbol('i', integer=True) r = Symbol('r', real=True) assert factor(sqrt(x*y)).is_Pow is True assert factor(sqrt(3*x**2 - 3)) == sqrt(3)*sqrt((x - 1)*(x + 1)) assert factor(sqrt(3*x**2 + 3)) == sqrt(3)*sqrt(x**2 + 1) assert factor((y*x**2 - y)**i) == y**i*(x - 1)**i*(x + 1)**i assert factor((y*x**2 + y)**i) == y**i*(x**2 + 1)**i assert factor((y*x**2 - y)**t) == (y*(x - 1)*(x + 1))**t assert factor((y*x**2 + y)**t) == (y*(x**2 + 1))**t f = sqrt(expand((r**2 + 1)*(p + 1)*(p - 1)*(p - 2)**3)) g = sqrt((p - 2)**3*(p - 1))*sqrt(p + 1)*sqrt(r**2 + 1) assert factor(f) == g assert factor(g) == g g = (x - 1)**5*(r**2 + 1) f = sqrt(expand(g)) assert factor(f) == sqrt(g) f = Poly(sin(1)*x + 1, x, domain=EX) assert f.factor_list() == (1, [(f, 1)]) f = x**4 + 1 assert factor(f) == f assert factor(f, extension=I) == (x**2 - I)*(x**2 + I) assert factor(f, gaussian=True) == (x**2 - I)*(x**2 + I) assert factor( f, extension=sqrt(2)) == (x**2 + sqrt(2)*x + 1)*(x**2 - sqrt(2)*x + 1) f = x**2 + 2*sqrt(2)*x + 2 assert factor(f, extension=sqrt(2)) == (x + sqrt(2))**2 assert factor(f**3, extension=sqrt(2)) == (x + sqrt(2))**6 assert factor(x**2 - 2*y**2, extension=sqrt(2)) == \ (x + sqrt(2)*y)*(x - sqrt(2)*y) assert factor(2*x**2 - 4*y**2, extension=sqrt(2)) == \ 2*((x + sqrt(2)*y)*(x - sqrt(2)*y)) assert factor(x - 1) == x - 1 assert factor(-x - 1) == -x - 1 assert factor(x - 1) == x - 1 assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert factor(x**11 + x + 1, modulus=65537, symmetric=True) == \ (x**2 + x + 1)*(x**9 - x**8 + x**6 - x**5 + x**3 - x** 2 + 1) assert factor(x**11 + x + 1, modulus=65537, symmetric=False) == \ (x**2 + x + 1)*(x**9 + 65536*x**8 + x**6 + 65536*x**5 + x**3 + 65536*x** 2 + 1) f = x/pi + x*sin(x)/pi g = y/(pi**2 + 2*pi + 1) + y*sin(x)/(pi**2 + 2*pi + 1) assert factor(f) == x*(sin(x) + 1)/pi assert factor(g) == y*(sin(x) + 1)/(pi + 1)**2 assert factor(Eq( x**2 + 2*x + 1, x**3 + 1)) == Eq((x + 1)**2, (x + 1)*(x**2 - x + 1)) f = (x**2 - 1)/(x**2 + 4*x + 4) assert factor(f) == (x + 1)*(x - 1)/(x + 2)**2 assert factor(f, x) == (x + 1)*(x - 1)/(x + 2)**2 f = 3 + x - x*(1 + x) + x**2 assert factor(f) == 3 assert factor(f, x) == 3 assert factor(1/(x**2 + 2*x + 1/x) - 1) == -((1 - x + 2*x**2 + x**3)/(1 + 2*x**2 + x**3)) assert factor(f, expand=False) == f raises(PolynomialError, lambda: factor(f, x, expand=False)) raises(FlagError, lambda: factor(x**2 - 1, polys=True)) assert factor([x, Eq(x**2 - y**2, Tuple(x**2 - z**2, 1/x + 1/y))]) == \ [x, Eq((x - y)*(x + y), Tuple((x - z)*(x + z), (x + y)/x/y))] assert not isinstance( Poly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True assert isinstance( PurePoly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True assert factor(sqrt(-x)) == sqrt(-x) # issue 5917 e = (-2*x*(-x + 1)*(x - 1)*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)*(x**2*(x - 1) - x*(x - 1) - x) - (-2*x**2*(x - 1)**2 - x*(-x + 1)*(-x*(-x + 1) + x*(x - 1)))*(x**2*(x - 1)**4 - x*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2))) assert factor(e) == 0 # deep option assert factor(sin(x**2 + x) + x, deep=True) == sin(x*(x + 1)) + x assert factor(sqrt(x**2)) == sqrt(x**2) # issue 13149 assert factor(expand((0.5*x+1)*(0.5*y+1))) == Mul(1.0, 0.5*x + 1.0, 0.5*y + 1.0, evaluate = False) assert factor(expand((0.5*x+0.5)**2)) == 0.25*(1.0*x + 1.0)**2 def test_factor_large(): f = (x**2 + 4*x + 4)**10000000*(x**2 + 1)*(x**2 + 2*x + 1)**1234567 g = ((x**2 + 2*x + 1)**3000*y**2 + (x**2 + 2*x + 1)**3000*2*y + ( x**2 + 2*x + 1)**3000) assert factor(f) == (x + 2)**20000000*(x**2 + 1)*(x + 1)**2469134 assert factor(g) == (x + 1)**6000*(y + 1)**2 assert factor_list( f) == (1, [(x + 1, 2469134), (x + 2, 20000000), (x**2 + 1, 1)]) assert factor_list(g) == (1, [(y + 1, 2), (x + 1, 6000)]) f = (x**2 - y**2)**200000*(x**7 + 1) g = (x**2 + y**2)**200000*(x**7 + 1) assert factor(f) == \ (x + 1)*(x - y)**200000*(x + y)**200000*(x**6 - x**5 + x**4 - x**3 + x**2 - x + 1) assert factor(g, gaussian=True) == \ (x + 1)*(x - I*y)**200000*(x + I*y)**200000*(x**6 - x**5 + x**4 - x**3 + x**2 - x + 1) assert factor_list(f) == \ (1, [(x + 1, 1), (x - y, 200000), (x + y, 200000), (x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)]) assert factor_list(g, gaussian=True) == \ (1, [(x + 1, 1), (x - I*y, 200000), (x + I*y, 200000), ( x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)]) def test_factor_noeval(): assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert factor((6*x - 10)/(3*x - 6)) == Mul(S(2)/3, 3*x - 5, 1/(x - 2)) def test_intervals(): assert intervals(0) == [] assert intervals(1) == [] assert intervals(x, sqf=True) == [(0, 0)] assert intervals(x) == [((0, 0), 1)] assert intervals(x**128) == [((0, 0), 128)] assert intervals([x**2, x**4]) == [((0, 0), {0: 2, 1: 4})] f = Poly((2*x/5 - S(17)/3)*(4*x + S(1)/257)) assert f.intervals(sqf=True) == [(-1, 0), (14, 15)] assert f.intervals() == [((-1, 0), 1), ((14, 15), 1)] assert f.intervals(fast=True, sqf=True) == [(-1, 0), (14, 15)] assert f.intervals(fast=True) == [((-1, 0), 1), ((14, 15), 1)] assert f.intervals(eps=S(1)/10) == f.intervals(eps=0.1) == \ [((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)] assert f.intervals(eps=S(1)/100) == f.intervals(eps=0.01) == \ [((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)] assert f.intervals(eps=S(1)/1000) == f.intervals(eps=0.001) == \ [((-S(1)/1002, 0), 1), ((S(85)/6, S(85)/6), 1)] assert f.intervals(eps=S(1)/10000) == f.intervals(eps=0.0001) == \ [((-S(1)/1028, -S(1)/1028), 1), ((S(85)/6, S(85)/6), 1)] f = (2*x/5 - S(17)/3)*(4*x + S(1)/257) assert intervals(f, sqf=True) == [(-1, 0), (14, 15)] assert intervals(f) == [((-1, 0), 1), ((14, 15), 1)] assert intervals(f, eps=S(1)/10) == intervals(f, eps=0.1) == \ [((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)] assert intervals(f, eps=S(1)/100) == intervals(f, eps=0.01) == \ [((-S(1)/258, 0), 1), ((S(85)/6, S(85)/6), 1)] assert intervals(f, eps=S(1)/1000) == intervals(f, eps=0.001) == \ [((-S(1)/1002, 0), 1), ((S(85)/6, S(85)/6), 1)] assert intervals(f, eps=S(1)/10000) == intervals(f, eps=0.0001) == \ [((-S(1)/1028, -S(1)/1028), 1), ((S(85)/6, S(85)/6), 1)] f = Poly((x**2 - 2)*(x**2 - 3)**7*(x + 1)*(7*x + 3)**3) assert f.intervals() == \ [((-2, -S(3)/2), 7), ((-S(3)/2, -1), 1), ((-1, -1), 1), ((-1, 0), 3), ((1, S(3)/2), 1), ((S(3)/2, 2), 7)] assert intervals([x**5 - 200, x**5 - 201]) == \ [((S(75)/26, S(101)/35), {0: 1}), ((S(309)/107, S(26)/9), {1: 1})] assert intervals([x**5 - 200, x**5 - 201], fast=True) == \ [((S(75)/26, S(101)/35), {0: 1}), ((S(309)/107, S(26)/9), {1: 1})] assert intervals([x**2 - 200, x**2 - 201]) == \ [((-S(71)/5, -S(85)/6), {1: 1}), ((-S(85)/6, -14), {0: 1}), ((14, S(85)/6), {0: 1}), ((S(85)/6, S(71)/5), {1: 1})] assert intervals([x + 1, x + 2, x - 1, x + 1, 1, x - 1, x - 1, (x - 2)**2]) == \ [((-2, -2), {1: 1}), ((-1, -1), {0: 1, 3: 1}), ((1, 1), {2: 1, 5: 1, 6: 1}), ((2, 2), {7: 2})] f, g, h = x**2 - 2, x**4 - 4*x**2 + 4, x - 1 assert intervals(f, inf=S(7)/4, sqf=True) == [] assert intervals(f, inf=S(7)/5, sqf=True) == [(S(7)/5, S(3)/2)] assert intervals(f, sup=S(7)/4, sqf=True) == [(-2, -1), (1, S(3)/2)] assert intervals(f, sup=S(7)/5, sqf=True) == [(-2, -1)] assert intervals(g, inf=S(7)/4) == [] assert intervals(g, inf=S(7)/5) == [((S(7)/5, S(3)/2), 2)] assert intervals(g, sup=S(7)/4) == [((-2, -1), 2), ((1, S(3)/2), 2)] assert intervals(g, sup=S(7)/5) == [((-2, -1), 2)] assert intervals([g, h], inf=S(7)/4) == [] assert intervals([g, h], inf=S(7)/5) == [((S(7)/5, S(3)/2), {0: 2})] assert intervals([g, h], sup=S( 7)/4) == [((-2, -1), {0: 2}), ((1, 1), {1: 1}), ((1, S(3)/2), {0: 2})] assert intervals( [g, h], sup=S(7)/5) == [((-2, -1), {0: 2}), ((1, 1), {1: 1})] assert intervals([x + 2, x**2 - 2]) == \ [((-2, -2), {0: 1}), ((-2, -1), {1: 1}), ((1, 2), {1: 1})] assert intervals([x + 2, x**2 - 2], strict=True) == \ [((-2, -2), {0: 1}), ((-S(3)/2, -1), {1: 1}), ((1, 2), {1: 1})] f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20 assert intervals(f) == [] real_part, complex_part = intervals(f, all=True, sqf=True) assert real_part == [] assert all(re(a) < re(r) < re(b) and im( a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f))) assert complex_part == [(-S(40)/7 - 40*I/7, 0), (-S(40)/7, 40*I/7), (-40*I/7, S(40)/7), (0, S(40)/7 + 40*I/7)] real_part, complex_part = intervals(f, all=True, sqf=True, eps=S(1)/10) assert real_part == [] assert all(re(a) < re(r) < re(b) and im( a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f))) raises(ValueError, lambda: intervals(x**2 - 2, eps=10**-100000)) raises(ValueError, lambda: Poly(x**2 - 2).intervals(eps=10**-100000)) raises( ValueError, lambda: intervals([x**2 - 2, x**2 - 3], eps=10**-100000)) def test_refine_root(): f = Poly(x**2 - 2) assert f.refine_root(1, 2, steps=0) == (1, 2) assert f.refine_root(-2, -1, steps=0) == (-2, -1) assert f.refine_root(1, 2, steps=None) == (1, S(3)/2) assert f.refine_root(-2, -1, steps=None) == (-S(3)/2, -1) assert f.refine_root(1, 2, steps=1) == (1, S(3)/2) assert f.refine_root(-2, -1, steps=1) == (-S(3)/2, -1) assert f.refine_root(1, 2, steps=1, fast=True) == (1, S(3)/2) assert f.refine_root(-2, -1, steps=1, fast=True) == (-S(3)/2, -1) assert f.refine_root(1, 2, eps=S(1)/100) == (S(24)/17, S(17)/12) assert f.refine_root(1, 2, eps=1e-2) == (S(24)/17, S(17)/12) raises(PolynomialError, lambda: (f**2).refine_root(1, 2, check_sqf=True)) raises(RefinementFailed, lambda: (f**2).refine_root(1, 2)) raises(RefinementFailed, lambda: (f**2).refine_root(2, 3)) f = x**2 - 2 assert refine_root(f, 1, 2, steps=1) == (1, S(3)/2) assert refine_root(f, -2, -1, steps=1) == (-S(3)/2, -1) assert refine_root(f, 1, 2, steps=1, fast=True) == (1, S(3)/2) assert refine_root(f, -2, -1, steps=1, fast=True) == (-S(3)/2, -1) assert refine_root(f, 1, 2, eps=S(1)/100) == (S(24)/17, S(17)/12) assert refine_root(f, 1, 2, eps=1e-2) == (S(24)/17, S(17)/12) raises(PolynomialError, lambda: refine_root(1, 7, 8, eps=S(1)/100)) raises(ValueError, lambda: Poly(f).refine_root(1, 2, eps=10**-100000)) raises(ValueError, lambda: refine_root(f, 1, 2, eps=10**-100000)) def test_count_roots(): assert count_roots(x**2 - 2) == 2 assert count_roots(x**2 - 2, inf=-oo) == 2 assert count_roots(x**2 - 2, sup=+oo) == 2 assert count_roots(x**2 - 2, inf=-oo, sup=+oo) == 2 assert count_roots(x**2 - 2, inf=-2) == 2 assert count_roots(x**2 - 2, inf=-1) == 1 assert count_roots(x**2 - 2, sup=1) == 1 assert count_roots(x**2 - 2, sup=2) == 2 assert count_roots(x**2 - 2, inf=-1, sup=1) == 0 assert count_roots(x**2 - 2, inf=-2, sup=2) == 2 assert count_roots(x**2 - 2, inf=-1, sup=1) == 0 assert count_roots(x**2 - 2, inf=-2, sup=2) == 2 assert count_roots(x**2 + 2) == 0 assert count_roots(x**2 + 2, inf=-2*I) == 2 assert count_roots(x**2 + 2, sup=+2*I) == 2 assert count_roots(x**2 + 2, inf=-2*I, sup=+2*I) == 2 assert count_roots(x**2 + 2, inf=0) == 0 assert count_roots(x**2 + 2, sup=0) == 0 assert count_roots(x**2 + 2, inf=-I) == 1 assert count_roots(x**2 + 2, sup=+I) == 1 assert count_roots(x**2 + 2, inf=+I/2, sup=+I) == 0 assert count_roots(x**2 + 2, inf=-I, sup=-I/2) == 0 raises(PolynomialError, lambda: count_roots(1)) def test_Poly_root(): f = Poly(2*x**3 - 7*x**2 + 4*x + 4) assert f.root(0) == -S(1)/2 assert f.root(1) == 2 assert f.root(2) == 2 raises(IndexError, lambda: f.root(3)) assert Poly(x**5 + x + 1).root(0) == rootof(x**3 - x**2 + 1, 0) def test_real_roots(): assert real_roots(x) == [0] assert real_roots(x, multiple=False) == [(0, 1)] assert real_roots(x**3) == [0, 0, 0] assert real_roots(x**3, multiple=False) == [(0, 3)] assert real_roots(x*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0] assert real_roots(x*(x**3 + x + 3), multiple=False) == [(rootof( x**3 + x + 3, 0), 1), (0, 1)] assert real_roots( x**3*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0, 0, 0] assert real_roots(x**3*(x**3 + x + 3), multiple=False) == [(rootof( x**3 + x + 3, 0), 1), (0, 3)] f = 2*x**3 - 7*x**2 + 4*x + 4 g = x**3 + x + 1 assert Poly(f).real_roots() == [-S(1)/2, 2, 2] assert Poly(g).real_roots() == [rootof(g, 0)] def test_all_roots(): f = 2*x**3 - 7*x**2 + 4*x + 4 g = x**3 + x + 1 assert Poly(f).all_roots() == [-S(1)/2, 2, 2] assert Poly(g).all_roots() == [rootof(g, 0), rootof(g, 1), rootof(g, 2)] def test_nroots(): assert Poly(0, x).nroots() == [] assert Poly(1, x).nroots() == [] assert Poly(x**2 - 1, x).nroots() == [-1.0, 1.0] assert Poly(x**2 + 1, x).nroots() == [-1.0*I, 1.0*I] roots = Poly(x**2 - 1, x).nroots() assert roots == [-1.0, 1.0] roots = Poly(x**2 + 1, x).nroots() assert roots == [-1.0*I, 1.0*I] roots = Poly(x**2/3 - S(1)/3, x).nroots() assert roots == [-1.0, 1.0] roots = Poly(x**2/3 + S(1)/3, x).nroots() assert roots == [-1.0*I, 1.0*I] assert Poly(x**2 + 2*I, x).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I] assert Poly( x**2 + 2*I, x, extension=I).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I] assert Poly(0.2*x + 0.1).nroots() == [-0.5] roots = nroots(x**5 + x + 1, n=5) eps = Float("1e-5") assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.true assert im(roots[0]) == 0.0 assert re(roots[1]) == -0.5 assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.true assert re(roots[2]) == -0.5 assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.true assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.true assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.true assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.true assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.true eps = Float("1e-6") assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.false assert im(roots[0]) == 0.0 assert re(roots[1]) == -0.5 assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.false assert re(roots[2]) == -0.5 assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.false assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.false assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.false assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.false assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.false raises(DomainError, lambda: Poly(x + y, x).nroots()) raises(MultivariatePolynomialError, lambda: Poly(x + y).nroots()) assert nroots(x**2 - 1) == [-1.0, 1.0] roots = nroots(x**2 - 1) assert roots == [-1.0, 1.0] assert nroots(x + I) == [-1.0*I] assert nroots(x + 2*I) == [-2.0*I] raises(PolynomialError, lambda: nroots(0)) # issue 8296 f = Poly(x**4 - 1) assert f.nroots(2) == [w.n(2) for w in f.all_roots()] assert str(Poly(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 + 39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 + 877969).nroots(2)) == ('[-1.7 - 1.9*I, -1.7 + 1.9*I, -1.7 ' '- 2.5*I, -1.7 + 2.5*I, -1.0*I, 1.0*I, -1.7*I, 1.7*I, -2.8*I, ' '2.8*I, -3.4*I, 3.4*I, 1.7 - 1.9*I, 1.7 + 1.9*I, 1.7 - 2.5*I, ' '1.7 + 2.5*I]') def test_ground_roots(): f = x**6 - 4*x**4 + 4*x**3 - x**2 assert Poly(f).ground_roots() == {S(1): 2, S(0): 2} assert ground_roots(f) == {S(1): 2, S(0): 2} def test_nth_power_roots_poly(): f = x**4 - x**2 + 1 f_2 = (x**2 - x + 1)**2 f_3 = (x**2 + 1)**2 f_4 = (x**2 + x + 1)**2 f_12 = (x - 1)**4 assert nth_power_roots_poly(f, 1) == f raises(ValueError, lambda: nth_power_roots_poly(f, 0)) raises(ValueError, lambda: nth_power_roots_poly(f, x)) assert factor(nth_power_roots_poly(f, 2)) == f_2 assert factor(nth_power_roots_poly(f, 3)) == f_3 assert factor(nth_power_roots_poly(f, 4)) == f_4 assert factor(nth_power_roots_poly(f, 12)) == f_12 raises(MultivariatePolynomialError, lambda: nth_power_roots_poly( x + y, 2, x, y)) def test_torational_factor_list(): p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))})) assert _torational_factor_list(p, x) == (-2, [ (-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)]) p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + 2**Rational(1, 4))})) assert _torational_factor_list(p, x) is None def test_cancel(): assert cancel(0) == 0 assert cancel(7) == 7 assert cancel(x) == x assert cancel(oo) == oo assert cancel((2, 3)) == (1, 2, 3) assert cancel((1, 0), x) == (1, 1, 0) assert cancel((0, 1), x) == (1, 0, 1) f, g, p, q = 4*x**2 - 4, 2*x - 2, 2*x + 2, 1 F, G, P, Q = [ Poly(u, x) for u in (f, g, p, q) ] assert F.cancel(G) == (1, P, Q) assert cancel((f, g)) == (1, p, q) assert cancel((f, g), x) == (1, p, q) assert cancel((f, g), (x,)) == (1, p, q) assert cancel((F, G)) == (1, P, Q) assert cancel((f, g), polys=True) == (1, P, Q) assert cancel((F, G), polys=False) == (1, p, q) f = (x**2 - 2)/(x + sqrt(2)) assert cancel(f) == f assert cancel(f, greedy=False) == x - sqrt(2) f = (x**2 - 2)/(x - sqrt(2)) assert cancel(f) == f assert cancel(f, greedy=False) == x + sqrt(2) assert cancel((x**2/4 - 1, x/2 - 1)) == (S(1)/2, x + 2, 1) assert cancel((x**2 - y)/(x - y)) == 1/(x - y)*(x**2 - y) assert cancel((x**2 - y**2)/(x - y), x) == x + y assert cancel((x**2 - y**2)/(x - y), y) == x + y assert cancel((x**2 - y**2)/(x - y)) == x + y assert cancel((x**3 - 1)/(x**2 - 1)) == (x**2 + x + 1)/(x + 1) assert cancel((x**3/2 - S(1)/2)/(x**2 - 1)) == (x**2 + x + 1)/(2*x + 2) assert cancel((exp(2*x) + 2*exp(x) + 1)/(exp(x) + 1)) == exp(x) + 1 f = Poly(x**2 - a**2, x) g = Poly(x - a, x) F = Poly(x + a, x) G = Poly(1, x) assert cancel((f, g)) == (1, F, G) f = x**3 + (sqrt(2) - 2)*x**2 - (2*sqrt(2) + 3)*x - 3*sqrt(2) g = x**2 - 2 assert cancel((f, g), extension=True) == (1, x**2 - 2*x - 3, x - sqrt(2)) f = Poly(-2*x + 3, x) g = Poly(-x**9 + x**8 + x**6 - x**5 + 2*x**2 - 3*x + 1, x) assert cancel((f, g)) == (1, -f, -g) f = Poly(y, y, domain='ZZ(x)') g = Poly(1, y, domain='ZZ[x]') assert f.cancel( g) == (1, Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)')) assert f.cancel(g, include=True) == ( Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)')) f = Poly(5*x*y + x, y, domain='ZZ(x)') g = Poly(2*x**2*y, y, domain='ZZ(x)') assert f.cancel(g, include=True) == ( Poly(5*y + 1, y, domain='ZZ(x)'), Poly(2*x*y, y, domain='ZZ(x)')) f = -(-2*x - 4*y + 0.005*(z - y)**2)/((z - y)*(-z + y + 2)) assert cancel(f).is_Mul == True P = tanh(x - 3.0) Q = tanh(x + 3.0) f = ((-2*P**2 + 2)*(-P**2 + 1)*Q**2/2 + (-2*P**2 + 2)*(-2*Q**2 + 2)*P*Q - (-2*P**2 + 2)*P**2*Q**2 + (-2*Q**2 + 2)*(-Q**2 + 1)*P**2/2 - (-2*Q**2 + 2)*P**2*Q**2)/(2*sqrt(P**2*Q**2 + 0.0001)) \ + (-(-2*P**2 + 2)*P*Q**2/2 - (-2*Q**2 + 2)*P**2*Q/2)*((-2*P**2 + 2)*P*Q**2/2 + (-2*Q**2 + 2)*P**2*Q/2)/(2*(P**2*Q**2 + 0.0001)**(S(3)/2)) assert cancel(f).is_Mul == True # issue 7022 A = Symbol('A', commutative=False) p1 = Piecewise((A*(x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True)) p2 = Piecewise((A*(x - 1), x > 1), (1/x, True)) assert cancel(p1) == p2 assert cancel(2*p1) == 2*p2 assert cancel(1 + p1) == 1 + p2 assert cancel((x**2 - 1)/(x + 1)*p1) == (x - 1)*p2 assert cancel((x**2 - 1)/(x + 1) + p1) == (x - 1) + p2 p3 = Piecewise(((x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True)) p4 = Piecewise(((x - 1), x > 1), (1/x, True)) assert cancel(p3) == p4 assert cancel(2*p3) == 2*p4 assert cancel(1 + p3) == 1 + p4 assert cancel((x**2 - 1)/(x + 1)*p3) == (x - 1)*p4 assert cancel((x**2 - 1)/(x + 1) + p3) == (x - 1) + p4 # issue 9363 M = MatrixSymbol('M', 5, 5) assert cancel(M[0,0] + 7) == M[0,0] + 7 expr = sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2] / z assert cancel(expr) == (z*sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2]) / z def test_reduced(): f = 2*x**4 + y**2 - x**2 + y**3 G = [x**3 - x, y**3 - y] Q = [2*x, 1] r = x**2 + y**2 + y assert reduced(f, G) == (Q, r) assert reduced(f, G, x, y) == (Q, r) H = groebner(G) assert H.reduce(f) == (Q, r) Q = [Poly(2*x, x, y), Poly(1, x, y)] r = Poly(x**2 + y**2 + y, x, y) assert _strict_eq(reduced(f, G, polys=True), (Q, r)) assert _strict_eq(reduced(f, G, x, y, polys=True), (Q, r)) H = groebner(G, polys=True) assert _strict_eq(H.reduce(f), (Q, r)) f = 2*x**3 + y**3 + 3*y G = groebner([x**2 + y**2 - 1, x*y - 2]) Q = [x**2 - x*y**3/2 + x*y/2 + y**6/4 - y**4/2 + y**2/4, -y**5/4 + y**3/2 + 3*y/4] r = 0 assert reduced(f, G) == (Q, r) assert G.reduce(f) == (Q, r) assert reduced(f, G, auto=False)[1] != 0 assert G.reduce(f, auto=False)[1] != 0 assert G.contains(f) is True assert G.contains(f + 1) is False assert reduced(1, [1], x) == ([1], 0) raises(ComputationFailed, lambda: reduced(1, [1])) def test_groebner(): assert groebner([], x, y, z) == [] assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex') == [1 + x**2, -1 + y**4] assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex') == [-1 + y**4, z**3, 1 + x**2] assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex', polys=True) == \ [Poly(1 + x**2, x, y), Poly(-1 + y**4, x, y)] assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex', polys=True) == \ [Poly(-1 + y**4, x, y, z), Poly(z**3, x, y, z), Poly(1 + x**2, x, y, z)] assert groebner([x**3 - 1, x**2 - 1]) == [x - 1] assert groebner([Eq(x**3, 1), Eq(x**2, 1)]) == [x - 1] F = [3*x**2 + y*z - 5*x - 1, 2*x + 3*x*y + y**2, x - 3*y + x*z - 2*z**2] f = z**9 - x**2*y**3 - 3*x*y**2*z + 11*y*z**2 + x**2*z**2 - 5 G = groebner(F, x, y, z, modulus=7, symmetric=False) assert G == [1 + x + y + 3*z + 2*z**2 + 2*z**3 + 6*z**4 + z**5, 1 + 3*y + y**2 + 6*z**2 + 3*z**3 + 3*z**4 + 3*z**5 + 4*z**6, 1 + 4*y + 4*z + y*z + 4*z**3 + z**4 + z**6, 6 + 6*z + z**2 + 4*z**3 + 3*z**4 + 6*z**5 + 3*z**6 + z**7] Q, r = reduced(f, G, x, y, z, modulus=7, symmetric=False, polys=True) assert sum([ q*g for q, g in zip(Q, G.polys)], r) == Poly(f, modulus=7) F = [x*y - 2*y, 2*y**2 - x**2] assert groebner(F, x, y, order='grevlex') == \ [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] assert groebner(F, y, x, order='grevlex') == \ [x**3 - 2*x**2, -x**2 + 2*y**2, x*y - 2*y] assert groebner(F, order='grevlex', field=True) == \ [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] assert groebner([1], x) == [1] assert groebner([x**2 + 2.0*y], x, y) == [1.0*x**2 + 2.0*y] raises(ComputationFailed, lambda: groebner([1])) assert groebner([x**2 - 1, x**3 + 1], method='buchberger') == [x + 1] assert groebner([x**2 - 1, x**3 + 1], method='f5b') == [x + 1] raises(ValueError, lambda: groebner([x, y], method='unknown')) def test_fglm(): F = [a + b + c + d, a*b + a*d + b*c + b*d, a*b*c + a*b*d + a*c*d + b*c*d, a*b*c*d - 1] G = groebner(F, a, b, c, d, order=grlex) B = [ 4*a + 3*d**9 - 4*d**5 - 3*d, 4*b + 4*c - 3*d**9 + 4*d**5 + 7*d, 4*c**2 + 3*d**10 - 4*d**6 - 3*d**2, 4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d, d**12 - d**8 - d**4 + 1, ] assert groebner(F, a, b, c, d, order=lex) == B assert G.fglm(lex) == B F = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, -72*t*x**7 - 252*t*x**6 + 192*t*x**5 + 1260*t*x**4 + 312*t*x**3 - 404*t*x**2 - 576*t*x + \ 108*t - 72*x**7 - 256*x**6 + 192*x**5 + 1280*x**4 + 312*x**3 - 576*x + 96] G = groebner(F, t, x, order=grlex) B = [ 203577793572507451707*t + 627982239411707112*x**7 - 666924143779443762*x**6 - \ 10874593056632447619*x**5 + 5119998792707079562*x**4 + 72917161949456066376*x**3 + \ 20362663855832380362*x**2 - 142079311455258371571*x + 183756699868981873194, 9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, ] assert groebner(F, t, x, order=lex) == B assert G.fglm(lex) == B F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1] G = groebner(F, x, y, order=lex) B = [ x**2 - x - 3*y + 1, y**2 - 2*x + y - 1, ] assert groebner(F, x, y, order=grlex) == B assert G.fglm(grlex) == B def test_is_zero_dimensional(): assert is_zero_dimensional([x, y], x, y) is True assert is_zero_dimensional([x**3 + y**2], x, y) is False assert is_zero_dimensional([x, y, z], x, y, z) is True assert is_zero_dimensional([x, y, z], x, y, z, t) is False F = [x*y - z, y*z - x, x*y - y] assert is_zero_dimensional(F, x, y, z) is True F = [x**2 - 2*x*z + 5, x*y**2 + y*z**3, 3*y**2 - 8*z**2] assert is_zero_dimensional(F, x, y, z) is True def test_GroebnerBasis(): F = [x*y - 2*y, 2*y**2 - x**2] G = groebner(F, x, y, order='grevlex') H = [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] P = [ Poly(h, x, y) for h in H ] assert groebner(F + [0], x, y, order='grevlex') == G assert isinstance(G, GroebnerBasis) is True assert len(G) == 3 assert G[0] == H[0] and not G[0].is_Poly assert G[1] == H[1] and not G[1].is_Poly assert G[2] == H[2] and not G[2].is_Poly assert G[1:] == H[1:] and not any(g.is_Poly for g in G[1:]) assert G[:2] == H[:2] and not any(g.is_Poly for g in G[1:]) assert G.exprs == H assert G.polys == P assert G.gens == (x, y) assert G.domain == ZZ assert G.order == grevlex assert G == H assert G == tuple(H) assert G == P assert G == tuple(P) assert G != [] G = groebner(F, x, y, order='grevlex', polys=True) assert G[0] == P[0] and G[0].is_Poly assert G[1] == P[1] and G[1].is_Poly assert G[2] == P[2] and G[2].is_Poly assert G[1:] == P[1:] and all(g.is_Poly for g in G[1:]) assert G[:2] == P[:2] and all(g.is_Poly for g in G[1:]) def test_poly(): assert poly(x) == Poly(x, x) assert poly(y) == Poly(y, y) assert poly(x + y) == Poly(x + y, x, y) assert poly(x + sin(x)) == Poly(x + sin(x), x, sin(x)) assert poly(x + y, wrt=y) == Poly(x + y, y, x) assert poly(x + sin(x), wrt=sin(x)) == Poly(x + sin(x), sin(x), x) assert poly(x*y + 2*x*z**2 + 17) == Poly(x*y + 2*x*z**2 + 17, x, y, z) assert poly(2*(y + z)**2 - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - 1, y, z) assert poly( x*(y + z)**2 - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - 1, x, y, z) assert poly(2*x*( y + z)**2 - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*x*z**2 - 1, x, y, z) assert poly(2*( y + z)**2 - x - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - x - 1, x, y, z) assert poly(x*( y + z)**2 - x - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - x - 1, x, y, z) assert poly(2*x*(y + z)**2 - x - 1) == Poly(2*x*y**2 + 4*x*y*z + 2* x*z**2 - x - 1, x, y, z) assert poly(x*y + (x + y)**2 + (x + z)**2) == \ Poly(2*x*z + 3*x*y + y**2 + z**2 + 2*x**2, x, y, z) assert poly(x*y*(x + y)*(x + z)**2) == \ Poly(x**3*y**2 + x*y**2*z**2 + y*x**2*z**2 + 2*z*x**2* y**2 + 2*y*z*x**3 + y*x**4, x, y, z) assert poly(Poly(x + y + z, y, x, z)) == Poly(x + y + z, y, x, z) assert poly((x + y)**2, x) == Poly(x**2 + 2*x*y + y**2, x, domain=ZZ[y]) assert poly((x + y)**2, y) == Poly(x**2 + 2*x*y + y**2, y, domain=ZZ[x]) assert poly(1, x) == Poly(1, x) raises(GeneratorsNeeded, lambda: poly(1)) # issue 6184 assert poly(x + y, x, y) == Poly(x + y, x, y) assert poly(x + y, y, x) == Poly(x + y, y, x) def test_keep_coeff(): u = Mul(2, x + 1, evaluate=False) assert _keep_coeff(S(1), x) == x assert _keep_coeff(S(-1), x) == -x assert _keep_coeff(S(1.0), x) == 1.0*x assert _keep_coeff(S(-1.0), x) == -1.0*x assert _keep_coeff(S(1), 2*x) == 2*x assert _keep_coeff(S(2), x/2) == x assert _keep_coeff(S(2), sin(x)) == 2*sin(x) assert _keep_coeff(S(2), x + 1) == u assert _keep_coeff(x, 1/x) == 1 assert _keep_coeff(x + 1, S(2)) == u @XFAIL def test_poly_matching_consistency(): # Test for this issue: # https://github.com/sympy/sympy/issues/5514 assert I * Poly(x, x) == Poly(I*x, x) assert Poly(x, x) * I == Poly(I*x, x) @XFAIL def test_issue_5786(): assert expand(factor(expand( (x - I*y)*(z - I*t)), extension=[I])) == -I*t*x - t*y + x*z - I*y*z def test_noncommutative(): class foo(Expr): is_commutative=False e = x/(x + x*y) c = 1/( 1 + y) assert cancel(foo(e)) == foo(c) assert cancel(e + foo(e)) == c + foo(c) assert cancel(e*foo(c)) == c*foo(c) def test_to_rational_coeffs(): assert to_rational_coeffs( Poly(x**3 + y*x**2 + sqrt(y), x, domain='EX')) is None def test_factor_terms(): # issue 7067 assert factor_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)]) assert sqf_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)]) def test_as_list(): # issue 14496 assert Poly(x**3 + 2, x, domain='ZZ').as_list() == [1, 0, 0, 2] assert Poly(x**2 + y + 1, x, y, domain='ZZ').as_list() == [[1], [], [1, 1]] assert Poly(x**2 + y + 1, x, y, z, domain='ZZ').as_list() == \ [[[1]], [[]], [[1], [1]]] def test_issue_11198(): assert factor_list(sqrt(2)*x) == (sqrt(2), [(x, 1)]) assert factor_list(sqrt(2)*sin(x), sin(x)) == (sqrt(2), [(sin(x), 1)]) def test_Poly_precision(): # Make sure Poly doesn't lose precision p = Poly(pi.evalf(100)*x) assert p.as_expr() == pi.evalf(100)*x def test_issue_12400(): # Correction of check for negative exponents assert poly(1/(1+sqrt(2)), x) == \ Poly(1/(1+sqrt(2)), x , domain='EX') def test_issue_14364(): assert gcd(S(6)*(1 + sqrt(3))/5, S(3)*(1 + sqrt(3))/10) == S(3)/10 * (1 + sqrt(3)) assert gcd(sqrt(5)*S(4)/7, sqrt(5)*S(2)/3) == sqrt(5)*S(2)/21 assert lcm(S(2)/3*sqrt(3), S(5)/6*sqrt(3)) == S(10)*sqrt(3)/3 assert lcm(3*sqrt(3), S(4)/sqrt(3)) == 12*sqrt(3) assert lcm(S(5)*(1 + 2**(S(1)/3))/6, S(3)*(1 + 2**(S(1)/3))/8) == S(15)/2 * (1 + 2**(S(1)/3)) assert gcd(S(2)/3*sqrt(3), S(5)/6/sqrt(3)) == sqrt(3)/18 assert gcd(S(4)*sqrt(13)/7, S(3)*sqrt(13)/14) == sqrt(13)/14 # gcd_list and lcm_list assert gcd([S(2)*sqrt(47)/7, S(6)*sqrt(47)/5, S(8)*sqrt(47)/5]) == S(2)*sqrt(47)/35 assert gcd([S(6)*(1 + sqrt(7))/5, S(2)*(1 + sqrt(7))/7, S(4)*(1 + sqrt(7))/13]) == S(2)/455 * (1 + sqrt(7)) assert lcm((S(7)/sqrt(15)/2, S(5)/sqrt(15)/6, S(5)/sqrt(15)/8)) == S(35)/(2*sqrt(15)) assert lcm([S(5)*(2 + 2**(S(5)/7))/6, S(7)*(2 + 2**(S(5)/7))/2, S(13)*(2 + 2**(S(5)/7))/4]) == S(455)/2 * (2 + 2**(S(5)/7))
a3699b97beeae2e4d938fd5d43496104eb1ae5aa4a71f73e879b0069808d27be
from sympy.matrices.dense import Matrix from sympy.polys.polymatrix import PolyMatrix from sympy.polys import Poly from sympy import S, ZZ, QQ, EX from sympy.abc import x def test_polymatrix(): pm1 = PolyMatrix([[Poly(x**2, x), Poly(-x, x)], [Poly(x**3, x), Poly(-1 + x, x)]]) v1 = PolyMatrix([[1, 0], [-1, 0]], ring='ZZ[x]') m1 = Matrix([[1, 0], [-1, 0]], ring='ZZ[x]') A = PolyMatrix([[Poly(x**2 + x, x), Poly(0, x)], \ [Poly(x**3 - x + 1, x), Poly(0, x)]]) B = PolyMatrix([[Poly(x**2, x), Poly(-x, x)], [Poly(-x**2, x), Poly(x, x)]]) assert A.ring == ZZ[x] assert isinstance(pm1*v1, PolyMatrix) assert pm1*v1 == A assert pm1*m1 == A assert v1*pm1 == B pm2 = PolyMatrix([[Poly(x**2, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(-x**2, x, domain='QQ'), \ Poly(x**3, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(-x**3, x, domain='QQ')]]) assert pm2.ring == QQ[x] v2 = PolyMatrix([1, 0, 0, 0, 0, 0], ring='ZZ[x]') m2 = Matrix([1, 0, 0, 0, 0, 0], ring='ZZ[x]') C = PolyMatrix([[Poly(x**2, x, domain='QQ')]]) assert pm2*v2 == C assert pm2*m2 == C pm3 = PolyMatrix([[Poly(x**2, x), S(1)]], ring='ZZ[x]') v3 = (S(1)/2)*pm3 assert v3 == PolyMatrix([[Poly(S(1)/2*x**2, x, domain='QQ'), S(1)/2]], ring='EX') assert pm3*(S(1)/2) == v3 assert v3.ring == EX pm4 = PolyMatrix([[Poly(x**2, x, domain='ZZ'), Poly(-x**2, x, domain='ZZ')]]) v4 = Matrix([1, -1], ring='ZZ[x]') assert pm4*v4 == PolyMatrix([[Poly(2*x**2, x, domain='ZZ')]]) assert len(PolyMatrix()) == 0 assert PolyMatrix([1, 0, 0, 1])/(-1) == PolyMatrix([-1, 0, 0, -1])
b568c61a34d73e424660afd1b8da2303fac22a452babbf4199ae5527ce903354
from sympy.core import S from sympy.simplify import simplify, trigsimp from sympy import pi, sqrt, symbols, ImmutableMatrix as Matrix, \ sin, cos, Function, Integral, Derivative, diff from sympy.vector.vector import Vector, BaseVector, VectorAdd, \ VectorMul, VectorZero from sympy.vector.coordsysrect import CoordSys3D from sympy.vector.vector import Cross, Dot, dot, cross C = CoordSys3D('C') i, j, k = C.base_vectors() a, b, c = symbols('a b c') def test_cross(): v1 = C.x * i + C.z * C.z * j v2 = C.x * i + C.y * j + C.z * k assert Cross(v1, v2) == Cross(C.x*C.i + C.z**2*C.j, C.x*C.i + C.y*C.j + C.z*C.k) assert Cross(v1, v2).doit() == C.z**3*C.i + (-C.x*C.z)*C.j + (C.x*C.y - C.x*C.z**2)*C.k assert cross(v1, v2) == C.z**3*C.i + (-C.x*C.z)*C.j + (C.x*C.y - C.x*C.z**2)*C.k assert Cross(v1, v2) == -Cross(v2, v1) assert Cross(v1, v2) + Cross(v2, v1) == Vector.zero def test_dot(): v1 = C.x * i + C.z * C.z * j v2 = C.x * i + C.y * j + C.z * k assert Dot(v1, v2) == Dot(C.x*C.i + C.z**2*C.j, C.x*C.i + C.y*C.j + C.z*C.k) assert Dot(v1, v2).doit() == C.x**2 + C.y*C.z**2 assert Dot(v1, v2).doit() == C.x**2 + C.y*C.z**2 assert Dot(v1, v2) == Dot(v2, v1) def test_vector_sympy(): """ Test whether the Vector framework confirms to the hashing and equality testing properties of SymPy. """ v1 = 3*j assert v1 == j*3 assert v1.components == {j: 3} v2 = 3*i + 4*j + 5*k v3 = 2*i + 4*j + i + 4*k + k assert v3 == v2 assert v3.__hash__() == v2.__hash__() def test_vector(): assert isinstance(i, BaseVector) assert i != j assert j != k assert k != i assert i - i == Vector.zero assert i + Vector.zero == i assert i - Vector.zero == i assert Vector.zero != 0 assert -Vector.zero == Vector.zero v1 = a*i + b*j + c*k v2 = a**2*i + b**2*j + c**2*k v3 = v1 + v2 v4 = 2 * v1 v5 = a * i assert isinstance(v1, VectorAdd) assert v1 - v1 == Vector.zero assert v1 + Vector.zero == v1 assert v1.dot(i) == a assert v1.dot(j) == b assert v1.dot(k) == c assert i.dot(v2) == a**2 assert j.dot(v2) == b**2 assert k.dot(v2) == c**2 assert v3.dot(i) == a**2 + a assert v3.dot(j) == b**2 + b assert v3.dot(k) == c**2 + c assert v1 + v2 == v2 + v1 assert v1 - v2 == -1 * (v2 - v1) assert a * v1 == v1 * a assert isinstance(v5, VectorMul) assert v5.base_vector == i assert v5.measure_number == a assert isinstance(v4, Vector) assert isinstance(v4, VectorAdd) assert isinstance(v4, Vector) assert isinstance(Vector.zero, VectorZero) assert isinstance(Vector.zero, Vector) assert isinstance(v1 * 0, VectorZero) assert v1.to_matrix(C) == Matrix([[a], [b], [c]]) assert i.components == {i: 1} assert v5.components == {i: a} assert v1.components == {i: a, j: b, k: c} assert VectorAdd(v1, Vector.zero) == v1 assert VectorMul(a, v1) == v1*a assert VectorMul(1, i) == i assert VectorAdd(v1, Vector.zero) == v1 assert VectorMul(0, Vector.zero) == Vector.zero def test_vector_magnitude_normalize(): assert Vector.zero.magnitude() == 0 assert Vector.zero.normalize() == Vector.zero assert i.magnitude() == 1 assert j.magnitude() == 1 assert k.magnitude() == 1 assert i.normalize() == i assert j.normalize() == j assert k.normalize() == k v1 = a * i assert v1.normalize() == (a/sqrt(a**2))*i assert v1.magnitude() == sqrt(a**2) v2 = a*i + b*j + c*k assert v2.magnitude() == sqrt(a**2 + b**2 + c**2) assert v2.normalize() == v2 / v2.magnitude() v3 = i + j assert v3.normalize() == (sqrt(2)/2)*C.i + (sqrt(2)/2)*C.j def test_vector_simplify(): A, s, k, m = symbols('A, s, k, m') test1 = (1 / a + 1 / b) * i assert (test1 & i) != (a + b) / (a * b) test1 = simplify(test1) assert (test1 & i) == (a + b) / (a * b) assert test1.simplify() == simplify(test1) test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * i test2 = simplify(test2) assert (test2 & i) == (A**2 * s**4 / (4 * pi * k * m**3)) test3 = ((4 + 4 * a - 2 * (2 + 2 * a)) / (2 + 2 * a)) * i test3 = simplify(test3) assert (test3 & i) == 0 test4 = ((-4 * a * b**2 - 2 * b**3 - 2 * a**2 * b) / (a + b)**2) * i test4 = simplify(test4) assert (test4 & i) == -2 * b v = (sin(a)+cos(a))**2*i - j assert trigsimp(v) == (2*sin(a + pi/4)**2)*i + (-1)*j assert trigsimp(v) == v.trigsimp() assert simplify(Vector.zero) == Vector.zero def test_vector_dot(): assert i.dot(Vector.zero) == 0 assert Vector.zero.dot(i) == 0 assert i & Vector.zero == 0 assert i.dot(i) == 1 assert i.dot(j) == 0 assert i.dot(k) == 0 assert i & i == 1 assert i & j == 0 assert i & k == 0 assert j.dot(i) == 0 assert j.dot(j) == 1 assert j.dot(k) == 0 assert j & i == 0 assert j & j == 1 assert j & k == 0 assert k.dot(i) == 0 assert k.dot(j) == 0 assert k.dot(k) == 1 assert k & i == 0 assert k & j == 0 assert k & k == 1 def test_vector_cross(): assert i.cross(Vector.zero) == Vector.zero assert Vector.zero.cross(i) == Vector.zero assert i.cross(i) == Vector.zero assert i.cross(j) == k assert i.cross(k) == -j assert i ^ i == Vector.zero assert i ^ j == k assert i ^ k == -j assert j.cross(i) == -k assert j.cross(j) == Vector.zero assert j.cross(k) == i assert j ^ i == -k assert j ^ j == Vector.zero assert j ^ k == i assert k.cross(i) == j assert k.cross(j) == -i assert k.cross(k) == Vector.zero assert k ^ i == j assert k ^ j == -i assert k ^ k == Vector.zero def test_projection(): v1 = i + j + k v2 = 3*i + 4*j v3 = 0*i + 0*j assert v1.projection(v1) == i + j + k assert v1.projection(v2) == S(7)/3*C.i + S(7)/3*C.j + S(7)/3*C.k assert v1.projection(v1, scalar=True) == 1 assert v1.projection(v2, scalar=True) == S(7)/3 assert v3.projection(v1) == Vector.zero def test_vector_diff_integrate(): f = Function('f') v = f(a)*C.i + a**2*C.j - C.k assert Derivative(v, a) == Derivative((f(a))*C.i + a**2*C.j + (-1)*C.k, a) assert (diff(v, a) == v.diff(a) == Derivative(v, a).doit() == (Derivative(f(a), a))*C.i + 2*a*C.j) assert (Integral(v, a) == (Integral(f(a), a))*C.i + (Integral(a**2, a))*C.j + (Integral(-1, a))*C.k)
af20632ff1d0fc1ba02ec7aa9453c019b94077693cb2b6902925b621dfc52120
from sympy.core.function import Derivative from sympy.vector.vector import Vector from sympy.vector.coordsysrect import CoordSys3D from sympy.simplify import simplify from sympy.core.symbol import symbols from sympy.core import S from sympy import sin, cos from sympy.vector.vector import Dot from sympy.vector.operators import curl, divergence, gradient, Gradient, Divergence, Cross from sympy.vector.deloperator import Del from sympy.vector.functions import (is_conservative, is_solenoidal, scalar_potential, directional_derivative, laplacian, scalar_potential_difference) from sympy.utilities.pytest import raises C = CoordSys3D('C') i, j, k = C.base_vectors() x, y, z = C.base_scalars() delop = Del() a, b, c, q = symbols('a b c q') def test_del_operator(): # Tests for curl assert delop ^ Vector.zero == Vector.zero assert ((delop ^ Vector.zero).doit() == Vector.zero == curl(Vector.zero)) assert delop.cross(Vector.zero) == delop ^ Vector.zero assert (delop ^ i).doit() == Vector.zero assert delop.cross(2*y**2*j, doit=True) == Vector.zero assert delop.cross(2*y**2*j) == delop ^ 2*y**2*j v = x*y*z * (i + j + k) assert ((delop ^ v).doit() == (-x*y + x*z)*i + (x*y - y*z)*j + (-x*z + y*z)*k == curl(v)) assert delop ^ v == delop.cross(v) assert (delop.cross(2*x**2*j) == (Derivative(0, C.y) - Derivative(2*C.x**2, C.z))*C.i + (-Derivative(0, C.x) + Derivative(0, C.z))*C.j + (-Derivative(0, C.y) + Derivative(2*C.x**2, C.x))*C.k) assert (delop.cross(2*x**2*j, doit=True) == 4*x*k == curl(2*x**2*j)) #Tests for divergence assert delop & Vector.zero == S(0) == divergence(Vector.zero) assert (delop & Vector.zero).doit() == S(0) assert delop.dot(Vector.zero) == delop & Vector.zero assert (delop & i).doit() == S(0) assert (delop & x**2*i).doit() == 2*x == divergence(x**2*i) assert (delop.dot(v, doit=True) == x*y + y*z + z*x == divergence(v)) assert delop & v == delop.dot(v) assert delop.dot(1/(x*y*z) * (i + j + k), doit=True) == \ - 1 / (x*y*z**2) - 1 / (x*y**2*z) - 1 / (x**2*y*z) v = x*i + y*j + z*k assert (delop & v == Derivative(C.x, C.x) + Derivative(C.y, C.y) + Derivative(C.z, C.z)) assert delop.dot(v, doit=True) == 3 == divergence(v) assert delop & v == delop.dot(v) assert simplify((delop & v).doit()) == 3 #Tests for gradient assert (delop.gradient(0, doit=True) == Vector.zero == gradient(0)) assert delop.gradient(0) == delop(0) assert (delop(S(0))).doit() == Vector.zero assert (delop(x) == (Derivative(C.x, C.x))*C.i + (Derivative(C.x, C.y))*C.j + (Derivative(C.x, C.z))*C.k) assert (delop(x)).doit() == i == gradient(x) assert (delop(x*y*z) == (Derivative(C.x*C.y*C.z, C.x))*C.i + (Derivative(C.x*C.y*C.z, C.y))*C.j + (Derivative(C.x*C.y*C.z, C.z))*C.k) assert (delop.gradient(x*y*z, doit=True) == y*z*i + z*x*j + x*y*k == gradient(x*y*z)) assert delop(x*y*z) == delop.gradient(x*y*z) assert (delop(2*x**2)).doit() == 4*x*i assert ((delop(a*sin(y) / x)).doit() == -a*sin(y)/x**2 * i + a*cos(y)/x * j) #Tests for directional derivative assert (Vector.zero & delop)(a) == S(0) assert ((Vector.zero & delop)(a)).doit() == S(0) assert ((v & delop)(Vector.zero)).doit() == Vector.zero assert ((v & delop)(S(0))).doit() == S(0) assert ((i & delop)(x)).doit() == 1 assert ((j & delop)(y)).doit() == 1 assert ((k & delop)(z)).doit() == 1 assert ((i & delop)(x*y*z)).doit() == y*z assert ((v & delop)(x)).doit() == x assert ((v & delop)(x*y*z)).doit() == 3*x*y*z assert (v & delop)(x + y + z) == C.x + C.y + C.z assert ((v & delop)(x + y + z)).doit() == x + y + z assert ((v & delop)(v)).doit() == v assert ((i & delop)(v)).doit() == i assert ((j & delop)(v)).doit() == j assert ((k & delop)(v)).doit() == k assert ((v & delop)(Vector.zero)).doit() == Vector.zero # Tests for laplacian on scalar fields assert laplacian(x*y*z) == S.Zero assert laplacian(x**2) == S(2) assert laplacian(x**2*y**2*z**2) == \ 2*y**2*z**2 + 2*x**2*z**2 + 2*x**2*y**2 A = CoordSys3D('A', transformation="spherical", variable_names=["r", "theta", "phi"]) B = CoordSys3D('B', transformation='cylindrical', variable_names=["r", "theta", "z"]) assert laplacian(A.r + A.theta + A.phi) == 2/A.r + cos(A.theta)/(A.r**2*sin(A.theta)) assert laplacian(B.r + B.theta + B.z) == 1/B.r # Tests for laplacian on vector fields assert laplacian(x*y*z*(i + j + k)) == Vector.zero assert laplacian(x*y**2*z*(i + j + k)) == \ 2*x*z*i + 2*x*z*j + 2*x*z*k def test_product_rules(): """ Tests the six product rules defined with respect to the Del operator References ========== .. [1] https://en.wikipedia.org/wiki/Del """ #Define the scalar and vector functions f = 2*x*y*z g = x*y + y*z + z*x u = x**2*i + 4*j - y**2*z*k v = 4*i + x*y*z*k # First product rule lhs = delop(f * g, doit=True) rhs = (f * delop(g) + g * delop(f)).doit() assert simplify(lhs) == simplify(rhs) # Second product rule lhs = delop(u & v).doit() rhs = ((u ^ (delop ^ v)) + (v ^ (delop ^ u)) + \ ((u & delop)(v)) + ((v & delop)(u))).doit() assert simplify(lhs) == simplify(rhs) # Third product rule lhs = (delop & (f*v)).doit() rhs = ((f * (delop & v)) + (v & (delop(f)))).doit() assert simplify(lhs) == simplify(rhs) # Fourth product rule lhs = (delop & (u ^ v)).doit() rhs = ((v & (delop ^ u)) - (u & (delop ^ v))).doit() assert simplify(lhs) == simplify(rhs) # Fifth product rule lhs = (delop ^ (f * v)).doit() rhs = (((delop(f)) ^ v) + (f * (delop ^ v))).doit() assert simplify(lhs) == simplify(rhs) # Sixth product rule lhs = (delop ^ (u ^ v)).doit() rhs = ((u * (delop & v) - v * (delop & u) + (v & delop)(u) - (u & delop)(v))).doit() assert simplify(lhs) == simplify(rhs) P = C.orient_new_axis('P', q, C.k) scalar_field = 2*x**2*y*z grad_field = gradient(scalar_field) vector_field = y**2*i + 3*x*j + 5*y*z*k curl_field = curl(vector_field) def test_conservative(): assert is_conservative(Vector.zero) is True assert is_conservative(i) is True assert is_conservative(2 * i + 3 * j + 4 * k) is True assert (is_conservative(y*z*i + x*z*j + x*y*k) is True) assert is_conservative(x * j) is False assert is_conservative(grad_field) is True assert is_conservative(curl_field) is False assert (is_conservative(4*x*y*z*i + 2*x**2*z*j) is False) assert is_conservative(z*P.i + P.x*k) is True def test_solenoidal(): assert is_solenoidal(Vector.zero) is True assert is_solenoidal(i) is True assert is_solenoidal(2 * i + 3 * j + 4 * k) is True assert (is_solenoidal(y*z*i + x*z*j + x*y*k) is True) assert is_solenoidal(y * j) is False assert is_solenoidal(grad_field) is False assert is_solenoidal(curl_field) is True assert is_solenoidal((-2*y + 3)*k) is True assert is_solenoidal(cos(q)*i + sin(q)*j + cos(q)*P.k) is True assert is_solenoidal(z*P.i + P.x*k) is True def test_directional_derivative(): assert directional_derivative(C.x*C.y*C.z, 3*C.i + 4*C.j + C.k) == C.x*C.y + 4*C.x*C.z + 3*C.y*C.z assert directional_derivative(5*C.x**2*C.z, 3*C.i + 4*C.j + C.k) == 5*C.x**2 + 30*C.x*C.z assert directional_derivative(5*C.x**2*C.z, 4*C.j) == S.Zero D = CoordSys3D("D", "spherical", variable_names=["r", "theta", "phi"], vector_names=["e_r", "e_theta", "e_phi"]) r, theta, phi = D.base_scalars() e_r, e_theta, e_phi = D.base_vectors() assert directional_derivative(r**2*e_r, e_r) == 2*r*e_r assert directional_derivative(5*r**2*phi, 3*e_r + 4*e_theta + e_phi) == 5*r**2 + 30*r*phi def test_scalar_potential(): assert scalar_potential(Vector.zero, C) == 0 assert scalar_potential(i, C) == x assert scalar_potential(j, C) == y assert scalar_potential(k, C) == z assert scalar_potential(y*z*i + x*z*j + x*y*k, C) == x*y*z assert scalar_potential(grad_field, C) == scalar_field assert scalar_potential(z*P.i + P.x*k, C) == x*z*cos(q) + y*z*sin(q) assert scalar_potential(z*P.i + P.x*k, P) == P.x*P.z raises(ValueError, lambda: scalar_potential(x*j, C)) def test_scalar_potential_difference(): point1 = C.origin.locate_new('P1', 1*i + 2*j + 3*k) point2 = C.origin.locate_new('P2', 4*i + 5*j + 6*k) genericpointC = C.origin.locate_new('RP', x*i + y*j + z*k) genericpointP = P.origin.locate_new('PP', P.x*P.i + P.y*P.j + P.z*P.k) assert scalar_potential_difference(S(0), C, point1, point2) == 0 assert (scalar_potential_difference(scalar_field, C, C.origin, genericpointC) == scalar_field) assert (scalar_potential_difference(grad_field, C, C.origin, genericpointC) == scalar_field) assert scalar_potential_difference(grad_field, C, point1, point2) == 948 assert (scalar_potential_difference(y*z*i + x*z*j + x*y*k, C, point1, genericpointC) == x*y*z - 6) potential_diff_P = (2*P.z*(P.x*sin(q) + P.y*cos(q))* (P.x*cos(q) - P.y*sin(q))**2) assert (scalar_potential_difference(grad_field, P, P.origin, genericpointP).simplify() == potential_diff_P.simplify()) def test_differential_operators_curvilinear_system(): A = CoordSys3D('A', transformation="spherical", variable_names=["r", "theta", "phi"]) B = CoordSys3D('B', transformation='cylindrical', variable_names=["r", "theta", "z"]) # Test for spherical coordinate system and gradient assert gradient(3*A.r + 4*A.theta) == 3*A.i + 4/A.r*A.j assert gradient(3*A.r*A.phi + 4*A.theta) == 3*A.phi*A.i + 4/A.r*A.j + (3/sin(A.theta))*A.k assert gradient(0*A.r + 0*A.theta+0*A.phi) == Vector.zero assert gradient(A.r*A.theta*A.phi) == A.theta*A.phi*A.i + A.phi*A.j + (A.theta/sin(A.theta))*A.k # Test for spherical coordinate system and divergence assert divergence(A.r * A.i + A.theta * A.j + A.phi * A.k) == \ (sin(A.theta)*A.r + cos(A.theta)*A.r*A.theta)/(sin(A.theta)*A.r**2) + 3 + 1/(sin(A.theta)*A.r) assert divergence(3*A.r*A.phi*A.i + A.theta*A.j + A.r*A.theta*A.phi*A.k) == \ (sin(A.theta)*A.r + cos(A.theta)*A.r*A.theta)/(sin(A.theta)*A.r**2) + 9*A.phi + A.theta/sin(A.theta) assert divergence(Vector.zero) == 0 assert divergence(0*A.i + 0*A.j + 0*A.k) == 0 # Test for spherical coordinate system and curl assert curl(A.r*A.i + A.theta*A.j + A.phi*A.k) == \ (cos(A.theta)*A.phi/(sin(A.theta)*A.r))*A.i + (-A.phi/A.r)*A.j + A.theta/A.r*A.k assert curl(A.r*A.j + A.phi*A.k) == (cos(A.theta)*A.phi/(sin(A.theta)*A.r))*A.i + (-A.phi/A.r)*A.j + 2*A.k # Test for cylindrical coordinate system and gradient assert gradient(0*B.r + 0*B.theta+0*B.z) == Vector.zero assert gradient(B.r*B.theta*B.z) == B.theta*B.z*B.i + B.z*B.j + B.r*B.theta*B.k assert gradient(3*B.r) == 3*B.i assert gradient(2*B.theta) == 2/B.r * B.j assert gradient(4*B.z) == 4*B.k # Test for cylindrical coordinate system and divergence assert divergence(B.r*B.i + B.theta*B.j + B.z*B.k) == 3 + 1/B.r assert divergence(B.r*B.j + B.z*B.k) == 1 # Test for cylindrical coordinate system and curl assert curl(B.r*B.j + B.z*B.k) == 2*B.k assert curl(3*B.i + 2/B.r*B.j + 4*B.k) == Vector.zero def test_mixed_coordinates(): # gradient a = CoordSys3D('a') b = CoordSys3D('b') c = CoordSys3D('c') assert gradient(a.x*b.y) == b.y*a.i + a.x*b.j assert gradient(3*cos(q)*a.x*b.x+a.y*(a.x+((cos(q)+b.x)))) ==\ (a.y + 3*b.x*cos(q))*a.i + (a.x + b.x + cos(q))*a.j + (3*a.x*cos(q) + a.y)*b.i # Some tests need further work: # assert gradient(a.x*(cos(a.x+b.x))) == (cos(a.x + b.x))*a.i + a.x*Gradient(cos(a.x + b.x)) # assert gradient(cos(a.x + b.x)*cos(a.x + b.z)) == Gradient(cos(a.x + b.x)*cos(a.x + b.z)) assert gradient(a.x**b.y) == Gradient(a.x**b.y) # assert gradient(cos(a.x+b.y)*a.z) == None assert gradient(cos(a.x*b.y)) == Gradient(cos(a.x*b.y)) assert gradient(3*cos(q)*a.x*b.x*a.z*a.y+ b.y*b.z + cos(a.x+a.y)*b.z) == \ (3*a.y*a.z*b.x*cos(q) - b.z*sin(a.x + a.y))*a.i + \ (3*a.x*a.z*b.x*cos(q) - b.z*sin(a.x + a.y))*a.j + (3*a.x*a.y*b.x*cos(q))*a.k + \ (3*a.x*a.y*a.z*cos(q))*b.i + b.z*b.j + (b.y + cos(a.x + a.y))*b.k # divergence assert divergence(a.i*a.x+a.j*a.y+a.z*a.k + b.i*b.x+b.j*b.y+b.z*b.k + c.i*c.x+c.j*c.y+c.z*c.k) == S(9) # assert divergence(3*a.i*a.x*cos(a.x+b.z) + a.j*b.x*c.z) == None assert divergence(3*a.i*a.x*a.z + b.j*b.x*c.z + 3*a.j*a.z*a.y) == \ 6*a.z + b.x*Dot(b.j, c.k) assert divergence(3*cos(q)*a.x*b.x*b.i*c.x) == \ 3*a.x*b.x*cos(q)*Dot(b.i, c.i) + 3*a.x*c.x*cos(q) + 3*b.x*c.x*cos(q)*Dot(b.i, a.i) assert divergence(a.x*b.x*c.x*Cross(a.x*a.i, a.y*b.j)) ==\ a.x*b.x*c.x*Divergence(Cross(a.x*a.i, a.y*b.j)) + \ b.x*c.x*Dot(Cross(a.x*a.i, a.y*b.j), a.i) + \ a.x*c.x*Dot(Cross(a.x*a.i, a.y*b.j), b.i) + \ a.x*b.x*Dot(Cross(a.x*a.i, a.y*b.j), c.i) assert divergence(a.x*b.x*c.x*(a.x*a.i + b.x*b.i)) == \ 4*a.x*b.x*c.x +\ a.x**2*c.x*Dot(a.i, b.i) +\ a.x**2*b.x*Dot(a.i, c.i) +\ b.x**2*c.x*Dot(b.i, a.i) +\ a.x*b.x**2*Dot(b.i, c.i)
02ee1a9972e6e1caf8b44efab602a62d67e4471ee4c1dacca6753bbb2ceb6b49
from sympy.utilities.pytest import raises, warns_deprecated_sympy from sympy.vector.coordsysrect import CoordSys3D, CoordSysCartesian from sympy.vector.scalar import BaseScalar from sympy import sin, sinh, cos, cosh, sqrt, pi, ImmutableMatrix as Matrix, \ symbols, simplify, zeros, expand, acos, atan2 from sympy.vector.functions import express from sympy.vector.point import Point from sympy.vector.vector import Vector from sympy.vector.orienters import (AxisOrienter, BodyOrienter, SpaceOrienter, QuaternionOrienter) x, y, z = symbols('x y z') a, b, c, q = symbols('a b c q') q1, q2, q3, q4 = symbols('q1 q2 q3 q4') def test_func_args(): A = CoordSys3D('A') assert A.x.func(*A.x.args) == A.x expr = 3*A.x + 4*A.y assert expr.func(*expr.args) == expr assert A.i.func(*A.i.args) == A.i v = A.x*A.i + A.y*A.j + A.z*A.k assert v.func(*v.args) == v assert A.origin.func(*A.origin.args) == A.origin def test_coordsyscartesian_equivalence(): A = CoordSys3D('A') A1 = CoordSys3D('A') assert A1 == A B = CoordSys3D('B') assert A != B def test_orienters(): A = CoordSys3D('A') axis_orienter = AxisOrienter(a, A.k) body_orienter = BodyOrienter(a, b, c, '123') space_orienter = SpaceOrienter(a, b, c, '123') q_orienter = QuaternionOrienter(q1, q2, q3, q4) assert axis_orienter.rotation_matrix(A) == Matrix([ [ cos(a), sin(a), 0], [-sin(a), cos(a), 0], [ 0, 0, 1]]) assert body_orienter.rotation_matrix() == Matrix([ [ cos(b)*cos(c), sin(a)*sin(b)*cos(c) + sin(c)*cos(a), sin(a)*sin(c) - sin(b)*cos(a)*cos(c)], [-sin(c)*cos(b), -sin(a)*sin(b)*sin(c) + cos(a)*cos(c), sin(a)*cos(c) + sin(b)*sin(c)*cos(a)], [ sin(b), -sin(a)*cos(b), cos(a)*cos(b)]]) assert space_orienter.rotation_matrix() == Matrix([ [cos(b)*cos(c), sin(c)*cos(b), -sin(b)], [sin(a)*sin(b)*cos(c) - sin(c)*cos(a), sin(a)*sin(b)*sin(c) + cos(a)*cos(c), sin(a)*cos(b)], [sin(a)*sin(c) + sin(b)*cos(a)*cos(c), -sin(a)*cos(c) + sin(b)*sin(c)*cos(a), cos(a)*cos(b)]]) assert q_orienter.rotation_matrix() == Matrix([ [q1**2 + q2**2 - q3**2 - q4**2, 2*q1*q4 + 2*q2*q3, -2*q1*q3 + 2*q2*q4], [-2*q1*q4 + 2*q2*q3, q1**2 - q2**2 + q3**2 - q4**2, 2*q1*q2 + 2*q3*q4], [2*q1*q3 + 2*q2*q4, -2*q1*q2 + 2*q3*q4, q1**2 - q2**2 - q3**2 + q4**2]]) def test_coordinate_vars(): """ Tests the coordinate variables functionality with respect to reorientation of coordinate systems. """ A = CoordSys3D('A') # Note that the name given on the lhs is different from A.x._name assert BaseScalar(0, A, 'A_x', r'\mathbf{{x}_{A}}') == A.x assert BaseScalar(1, A, 'A_y', r'\mathbf{{y}_{A}}') == A.y assert BaseScalar(2, A, 'A_z', r'\mathbf{{z}_{A}}') == A.z assert BaseScalar(0, A, 'A_x', r'\mathbf{{x}_{A}}').__hash__() == A.x.__hash__() assert isinstance(A.x, BaseScalar) and \ isinstance(A.y, BaseScalar) and \ isinstance(A.z, BaseScalar) assert A.x*A.y == A.y*A.x assert A.scalar_map(A) == {A.x: A.x, A.y: A.y, A.z: A.z} assert A.x.system == A assert A.x.diff(A.x) == 1 B = A.orient_new_axis('B', q, A.k) assert B.scalar_map(A) == {B.z: A.z, B.y: -A.x*sin(q) + A.y*cos(q), B.x: A.x*cos(q) + A.y*sin(q)} assert A.scalar_map(B) == {A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z} assert express(B.x, A, variables=True) == A.x*cos(q) + A.y*sin(q) assert express(B.y, A, variables=True) == -A.x*sin(q) + A.y*cos(q) assert express(B.z, A, variables=True) == A.z assert expand(express(B.x*B.y*B.z, A, variables=True)) == \ expand(A.z*(-A.x*sin(q) + A.y*cos(q))*(A.x*cos(q) + A.y*sin(q))) assert express(B.x*B.i + B.y*B.j + B.z*B.k, A) == \ (B.x*cos(q) - B.y*sin(q))*A.i + (B.x*sin(q) + \ B.y*cos(q))*A.j + B.z*A.k assert simplify(express(B.x*B.i + B.y*B.j + B.z*B.k, A, \ variables=True)) == \ A.x*A.i + A.y*A.j + A.z*A.k assert express(A.x*A.i + A.y*A.j + A.z*A.k, B) == \ (A.x*cos(q) + A.y*sin(q))*B.i + \ (-A.x*sin(q) + A.y*cos(q))*B.j + A.z*B.k assert simplify(express(A.x*A.i + A.y*A.j + A.z*A.k, B, \ variables=True)) == \ B.x*B.i + B.y*B.j + B.z*B.k N = B.orient_new_axis('N', -q, B.k) assert N.scalar_map(A) == \ {N.x: A.x, N.z: A.z, N.y: A.y} C = A.orient_new_axis('C', q, A.i + A.j + A.k) mapping = A.scalar_map(C) assert mapping[A.x].equals(C.x*(2*cos(q) + 1)/3 + C.y*(-2*sin(q + pi/6) + 1)/3 + C.z*(-2*cos(q + pi/3) + 1)/3) assert mapping[A.y].equals(C.x*(-2*cos(q + pi/3) + 1)/3 + C.y*(2*cos(q) + 1)/3 + C.z*(-2*sin(q + pi/6) + 1)/3) assert mapping[A.z].equals(C.x*(-2*sin(q + pi/6) + 1)/3 + C.y*(-2*cos(q + pi/3) + 1)/3 + C.z*(2*cos(q) + 1)/3) D = A.locate_new('D', a*A.i + b*A.j + c*A.k) assert D.scalar_map(A) == {D.z: A.z - c, D.x: A.x - a, D.y: A.y - b} E = A.orient_new_axis('E', a, A.k, a*A.i + b*A.j + c*A.k) assert A.scalar_map(E) == {A.z: E.z + c, A.x: E.x*cos(a) - E.y*sin(a) + a, A.y: E.x*sin(a) + E.y*cos(a) + b} assert E.scalar_map(A) == {E.x: (A.x - a)*cos(a) + (A.y - b)*sin(a), E.y: (-A.x + a)*sin(a) + (A.y - b)*cos(a), E.z: A.z - c} F = A.locate_new('F', Vector.zero) assert A.scalar_map(F) == {A.z: F.z, A.x: F.x, A.y: F.y} def test_rotation_matrix(): N = CoordSys3D('N') A = N.orient_new_axis('A', q1, N.k) B = A.orient_new_axis('B', q2, A.i) C = B.orient_new_axis('C', q3, B.j) D = N.orient_new_axis('D', q4, N.j) E = N.orient_new_space('E', q1, q2, q3, '123') F = N.orient_new_quaternion('F', q1, q2, q3, q4) G = N.orient_new_body('G', q1, q2, q3, '123') assert N.rotation_matrix(C) == Matrix([ [- sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3), - sin(q1) * cos(q2), sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1)], \ [sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), \ cos(q1) * cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * \ cos(q3)], [- sin(q3) * cos(q2), sin(q2), cos(q2) * cos(q3)]]) test_mat = D.rotation_matrix(C) - Matrix( [[cos(q1) * cos(q3) * cos(q4) - sin(q3) * (- sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4)), - sin(q2) * sin(q4) - sin(q1) * cos(q2) * cos(q4), sin(q3) * cos(q1) * cos(q4) + cos(q3) * \ (- sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4))], \ [sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), cos(q1) * \ cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3)], \ [sin(q4) * cos(q1) * cos(q3) - sin(q3) * (cos(q2) * cos(q4) + \ sin(q1) * sin(q2) * \ sin(q4)), sin(q2) * cos(q4) - sin(q1) * sin(q4) * cos(q2), sin(q3) * \ sin(q4) * cos(q1) + cos(q3) * (cos(q2) * cos(q4) + \ sin(q1) * sin(q2) * sin(q4))]]) assert test_mat.expand() == zeros(3, 3) assert E.rotation_matrix(N) == Matrix( [[cos(q2)*cos(q3), sin(q3)*cos(q2), -sin(q2)], [sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), \ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2)], \ [sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), - \ sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2)]]) assert F.rotation_matrix(N) == Matrix([[ q1**2 + q2**2 - q3**2 - q4**2, 2*q1*q4 + 2*q2*q3, -2*q1*q3 + 2*q2*q4],[ -2*q1*q4 + 2*q2*q3, q1**2 - q2**2 + q3**2 - q4**2, 2*q1*q2 + 2*q3*q4], [2*q1*q3 + 2*q2*q4, -2*q1*q2 + 2*q3*q4, q1**2 - q2**2 - q3**2 + q4**2]]) assert G.rotation_matrix(N) == Matrix([[ cos(q2)*cos(q3), sin(q1)*sin(q2)*cos(q3) + sin(q3)*cos(q1), sin(q1)*sin(q3) - sin(q2)*cos(q1)*cos(q3)], [ -sin(q3)*cos(q2), -sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],[ sin(q2), -sin(q1)*cos(q2), cos(q1)*cos(q2)]]) def test_vector_with_orientation(): """ Tests the effects of orientation of coordinate systems on basic vector operations. """ N = CoordSys3D('N') A = N.orient_new_axis('A', q1, N.k) B = A.orient_new_axis('B', q2, A.i) C = B.orient_new_axis('C', q3, B.j) # Test to_matrix v1 = a*N.i + b*N.j + c*N.k assert v1.to_matrix(A) == Matrix([[ a*cos(q1) + b*sin(q1)], [-a*sin(q1) + b*cos(q1)], [ c]]) # Test dot assert N.i.dot(A.i) == cos(q1) assert N.i.dot(A.j) == -sin(q1) assert N.i.dot(A.k) == 0 assert N.j.dot(A.i) == sin(q1) assert N.j.dot(A.j) == cos(q1) assert N.j.dot(A.k) == 0 assert N.k.dot(A.i) == 0 assert N.k.dot(A.j) == 0 assert N.k.dot(A.k) == 1 assert N.i.dot(A.i + A.j) == -sin(q1) + cos(q1) == \ (A.i + A.j).dot(N.i) assert A.i.dot(C.i) == cos(q3) assert A.i.dot(C.j) == 0 assert A.i.dot(C.k) == sin(q3) assert A.j.dot(C.i) == sin(q2)*sin(q3) assert A.j.dot(C.j) == cos(q2) assert A.j.dot(C.k) == -sin(q2)*cos(q3) assert A.k.dot(C.i) == -cos(q2)*sin(q3) assert A.k.dot(C.j) == sin(q2) assert A.k.dot(C.k) == cos(q2)*cos(q3) # Test cross assert N.i.cross(A.i) == sin(q1)*A.k assert N.i.cross(A.j) == cos(q1)*A.k assert N.i.cross(A.k) == -sin(q1)*A.i - cos(q1)*A.j assert N.j.cross(A.i) == -cos(q1)*A.k assert N.j.cross(A.j) == sin(q1)*A.k assert N.j.cross(A.k) == cos(q1)*A.i - sin(q1)*A.j assert N.k.cross(A.i) == A.j assert N.k.cross(A.j) == -A.i assert N.k.cross(A.k) == Vector.zero assert N.i.cross(A.i) == sin(q1)*A.k assert N.i.cross(A.j) == cos(q1)*A.k assert N.i.cross(A.i + A.j) == sin(q1)*A.k + cos(q1)*A.k assert (A.i + A.j).cross(N.i) == (-sin(q1) - cos(q1))*N.k assert A.i.cross(C.i) == sin(q3)*C.j assert A.i.cross(C.j) == -sin(q3)*C.i + cos(q3)*C.k assert A.i.cross(C.k) == -cos(q3)*C.j assert C.i.cross(A.i) == (-sin(q3)*cos(q2))*A.j + \ (-sin(q2)*sin(q3))*A.k assert C.j.cross(A.i) == (sin(q2))*A.j + (-cos(q2))*A.k assert express(C.k.cross(A.i), C).trigsimp() == cos(q3)*C.j def test_orient_new_methods(): N = CoordSys3D('N') orienter1 = AxisOrienter(q4, N.j) orienter2 = SpaceOrienter(q1, q2, q3, '123') orienter3 = QuaternionOrienter(q1, q2, q3, q4) orienter4 = BodyOrienter(q1, q2, q3, '123') D = N.orient_new('D', (orienter1, )) E = N.orient_new('E', (orienter2, )) F = N.orient_new('F', (orienter3, )) G = N.orient_new('G', (orienter4, )) assert D == N.orient_new_axis('D', q4, N.j) assert E == N.orient_new_space('E', q1, q2, q3, '123') assert F == N.orient_new_quaternion('F', q1, q2, q3, q4) assert G == N.orient_new_body('G', q1, q2, q3, '123') def test_locatenew_point(): """ Tests Point class, and locate_new method in CoordSysCartesian. """ A = CoordSys3D('A') assert isinstance(A.origin, Point) v = a*A.i + b*A.j + c*A.k C = A.locate_new('C', v) assert C.origin.position_wrt(A) == \ C.position_wrt(A) == \ C.origin.position_wrt(A.origin) == v assert A.origin.position_wrt(C) == \ A.position_wrt(C) == \ A.origin.position_wrt(C.origin) == -v assert A.origin.express_coordinates(C) == (-a, -b, -c) p = A.origin.locate_new('p', -v) assert p.express_coordinates(A) == (-a, -b, -c) assert p.position_wrt(C.origin) == p.position_wrt(C) == \ -2 * v p1 = p.locate_new('p1', 2*v) assert p1.position_wrt(C.origin) == Vector.zero assert p1.express_coordinates(C) == (0, 0, 0) p2 = p.locate_new('p2', A.i) assert p1.position_wrt(p2) == 2*v - A.i assert p2.express_coordinates(C) == (-2*a + 1, -2*b, -2*c) def test_create_new(): a = CoordSys3D('a') c = a.create_new('c', transformation='spherical') assert c._parent == a assert c.transformation_to_parent() == \ (c.r*sin(c.theta)*cos(c.phi), c.r*sin(c.theta)*sin(c.phi), c.r*cos(c.theta)) assert c.transformation_from_parent() == \ (sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x)) def test_evalf(): A = CoordSys3D('A') v = 3*A.i + 4*A.j + a*A.k assert v.n() == v.evalf() assert v.evalf(subs={a:1}) == v.subs(a, 1).evalf() def test_lame_coefficients(): a = CoordSys3D('a', 'spherical') assert a.lame_coefficients() == (1, a.r, sin(a.theta)*a.r) a = CoordSys3D('a') assert a.lame_coefficients() == (1, 1, 1) a = CoordSys3D('a', 'cartesian') assert a.lame_coefficients() == (1, 1, 1) a = CoordSys3D('a', 'cylindrical') assert a.lame_coefficients() == (1, a.r, 1) def test_transformation_equations(): x, y, z = symbols('x y z') # Str a = CoordSys3D('a', transformation='spherical', variable_names=["r", "theta", "phi"]) r, theta, phi = a.base_scalars() assert r == a.r assert theta == a.theta assert phi == a.phi raises(AttributeError, lambda: a.x) raises(AttributeError, lambda: a.y) raises(AttributeError, lambda: a.z) assert a.transformation_to_parent() == ( r*sin(theta)*cos(phi), r*sin(theta)*sin(phi), r*cos(theta) ) assert a.lame_coefficients() == (1, r, r*sin(theta)) assert a.transformation_from_parent_function()(x, y, z) == ( sqrt(x ** 2 + y ** 2 + z ** 2), acos((z) / sqrt(x**2 + y**2 + z**2)), atan2(y, x) ) a = CoordSys3D('a', transformation='cylindrical', variable_names=["r", "theta", "z"]) r, theta, z = a.base_scalars() assert a.transformation_to_parent() == ( r*cos(theta), r*sin(theta), z ) assert a.lame_coefficients() == (1, a.r, 1) assert a.transformation_from_parent_function()(x, y, z) == (sqrt(x**2 + y**2), atan2(y, x), z) a = CoordSys3D('a', 'cartesian') assert a.transformation_to_parent() == (a.x, a.y, a.z) assert a.lame_coefficients() == (1, 1, 1) assert a.transformation_from_parent_function()(x, y, z) == (x, y, z) # Variables and expressions # Cartesian with equation tuple: x, y, z = symbols('x y z') a = CoordSys3D('a', ((x, y, z), (x, y, z))) a._calculate_inv_trans_equations() assert a.transformation_to_parent() == (a.x1, a.x2, a.x3) assert a.lame_coefficients() == (1, 1, 1) assert a.transformation_from_parent_function()(x, y, z) == (x, y, z) r, theta, z = symbols("r theta z") # Cylindrical with equation tuple: a = CoordSys3D('a', [(r, theta, z), (r*cos(theta), r*sin(theta), z)], variable_names=["r", "theta", "z"]) r, theta, z = a.base_scalars() assert a.transformation_to_parent() == ( r*cos(theta), r*sin(theta), z ) assert a.lame_coefficients() == ( sqrt(sin(theta)**2 + cos(theta)**2), sqrt(r**2*sin(theta)**2 + r**2*cos(theta)**2), 1 ) # ==> this should simplify to (1, r, 1), tests are too slow with `simplify`. # Definitions with `lambda`: # Cartesian with `lambda` a = CoordSys3D('a', lambda x, y, z: (x, y, z)) assert a.transformation_to_parent() == (a.x1, a.x2, a.x3) assert a.lame_coefficients() == (1, 1, 1) a._calculate_inv_trans_equations() assert a.transformation_from_parent_function()(x, y, z) == (x, y, z) # Spherical with `lambda` a = CoordSys3D('a', lambda r, theta, phi: (r*sin(theta)*cos(phi), r*sin(theta)*sin(phi), r*cos(theta)), variable_names=["r", "theta", "phi"]) r, theta, phi = a.base_scalars() assert a.transformation_to_parent() == ( r*sin(theta)*cos(phi), r*sin(phi)*sin(theta), r*cos(theta) ) assert a.lame_coefficients() == ( sqrt(sin(phi)**2*sin(theta)**2 + sin(theta)**2*cos(phi)**2 + cos(theta)**2), sqrt(r**2*sin(phi)**2*cos(theta)**2 + r**2*sin(theta)**2 + r**2*cos(phi)**2*cos(theta)**2), sqrt(r**2*sin(phi)**2*sin(theta)**2 + r**2*sin(theta)**2*cos(phi)**2) ) # ==> this should simplify to (1, r, sin(theta)*r), `simplify` is too slow. # Cylindrical with `lambda` a = CoordSys3D('a', lambda r, theta, z: (r*cos(theta), r*sin(theta), z), variable_names=["r", "theta", "z"] ) r, theta, z = a.base_scalars() assert a.transformation_to_parent() == (r*cos(theta), r*sin(theta), z) assert a.lame_coefficients() == ( sqrt(sin(theta)**2 + cos(theta)**2), sqrt(r**2*sin(theta)**2 + r**2*cos(theta)**2), 1 ) # ==> this should simplify to (1, a.x, 1) raises(TypeError, lambda: CoordSys3D('a', transformation={ x: x*sin(y)*cos(z), y:x*sin(y)*sin(z), z: x*cos(y)})) def test_check_orthogonality(): x, y, z = symbols('x y z') u,v = symbols('u, v') a = CoordSys3D('a', transformation=((x, y, z), (x*sin(y)*cos(z), x*sin(y)*sin(z), x*cos(y)))) assert a._check_orthogonality(a._transformation) is True a = CoordSys3D('a', transformation=((x, y, z), (x * cos(y), x * sin(y), z))) assert a._check_orthogonality(a._transformation) is True a = CoordSys3D('a', transformation=((u, v, z), (cosh(u) * cos(v), sinh(u) * sin(v), z))) assert a._check_orthogonality(a._transformation) is True raises(ValueError, lambda: CoordSys3D('a', transformation=((x, x, z), (x, y, z)))) raises(ValueError, lambda: CoordSys3D('a', transformation=( (x, y, z), (x*sin(y/2)*cos(z), x*sin(y)*sin(z), x*cos(y))))) def test_coordsys3d(): with warns_deprecated_sympy(): assert CoordSysCartesian("C") == CoordSys3D("C") def test_rotation_trans_equations(): a = CoordSys3D('a') from sympy import symbols q0 = symbols('q0') assert a._rotation_trans_equations(a._parent_rotation_matrix, a.base_scalars()) == (a.x, a.y, a.z) assert a._rotation_trans_equations(a._inverse_rotation_matrix(), a.base_scalars()) == (a.x, a.y, a.z) b = a.orient_new_axis('b', 0, -a.k) assert b._rotation_trans_equations(b._parent_rotation_matrix, b.base_scalars()) == (b.x, b.y, b.z) assert b._rotation_trans_equations(b._inverse_rotation_matrix(), b.base_scalars()) == (b.x, b.y, b.z) c = a.orient_new_axis('c', q0, -a.k) assert c._rotation_trans_equations(c._parent_rotation_matrix, c.base_scalars()) == \ (-sin(q0) * c.y + cos(q0) * c.x, sin(q0) * c.x + cos(q0) * c.y, c.z) assert c._rotation_trans_equations(c._inverse_rotation_matrix(), c.base_scalars()) == \ (sin(q0) * c.y + cos(q0) * c.x, -sin(q0) * c.x + cos(q0) * c.y, c.z)
f64560156b138579e10d60629d5f270270c2169ea71b5b90dc4617841f48c094
from sympy import Dummy, S, Symbol, symbols, pi, sqrt, asin, sin, cos from sympy.geometry import Line, Point, Ray, Segment, Point3D, Line3D, Ray3D, Segment3D, Plane from sympy.geometry.util import are_coplanar from sympy.utilities.pytest import raises, slow @slow def test_plane(): x, y, z, u, v = symbols('x y z u v', real=True) p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(1, 2, 3) pl3 = Plane(p1, p2, p3) pl4 = Plane(p1, normal_vector=(1, 1, 1)) pl4b = Plane(p1, p2) pl5 = Plane(p3, normal_vector=(1, 2, 3)) pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2)) pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1)) pl8 = Plane(p1, normal_vector=(0, 0, 1)) pl9 = Plane(p1, normal_vector=(0, 12, 0)) pl10 = Plane(p1, normal_vector=(-2, 0, 0)) pl11 = Plane(p2, normal_vector=(0, 0, 1)) l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1)) l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1)) l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9)) assert Plane(p1, p2, p3) != Plane(p1, p3, p2) assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2)) assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1)) assert pl3 != pl4 assert pl4 == pl4b assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3)) assert pl5.equation(x, y, z) == x + 2*y + 3*z - 14 assert pl3.equation(x, y, z) == x - 2*y + z assert pl3.p1 == p1 assert pl4.p1 == p1 assert pl5.p1 == p3 assert pl4.normal_vector == (1, 1, 1) assert pl5.normal_vector == (1, 2, 3) assert p1 in pl3 assert p1 in pl4 assert p3 in pl5 assert pl3.projection(Point(0, 0)) == p1 p = pl3.projection(Point3D(1, 1, 0)) assert p == Point3D(7/6, 2/3, 1/6) assert p in pl3 l = pl3.projection_line(Line(Point(0, 0), Point(1, 1))) assert l == Line3D(Point3D(0, 0, 0), Point3D(7/6, 2/3, 1/6)) assert l in pl3 # get a segment that does not intersect the plane which is also # parallel to pl3's normal veector t = Dummy() r = pl3.random_point() a = pl3.perpendicular_line(r).arbitrary_point(t) s = Segment3D(a.subs(t, 1), a.subs(t, 2)) assert s.p1 not in pl3 and s.p2 not in pl3 assert pl3.projection_line(s).equals(r) assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \ Segment3D(Point3D(5/6, 1/3, -1/6), Point3D(7/6, 2/3, 1/6)) assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \ Ray3D(Point3D(14/3, 11/3, 11/3), Point3D(13/3, 13/3, 10/3)) assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r) assert pl3.is_parallel(pl6) is False assert pl4.is_parallel(pl6) assert pl6.is_parallel(l1) is False assert pl3.is_perpendicular(pl6) assert pl4.is_perpendicular(pl7) assert pl6.is_perpendicular(pl7) assert pl6.is_perpendicular(l1) is False assert pl6.distance(pl6.arbitrary_point(u, v)) == 0 assert pl7.distance(pl7.arbitrary_point(u, v)) == 0 assert pl6.distance(pl6.arbitrary_point(t)) == 0 assert pl7.distance(pl7.arbitrary_point(t)) == 0 assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1 assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1 assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \ 2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6) assert pl3.arbitrary_point(u, v) == Point3D(2*u - v, u + 2*v, 5*v) assert pl7.distance(Point3D(1, 3, 5)) == 5*sqrt(6)/6 assert pl6.distance(Point3D(0, 0, 0)) == 4*sqrt(3) assert pl6.distance(pl6.p1) == 0 assert pl7.distance(pl6) == 0 assert pl7.distance(l1) == 0 assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == 0 pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3) assert pl6.angle_between(pl3) == pi/2 assert pl6.angle_between(pl6) == 0 assert pl6.angle_between(pl4) == 0 assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \ -asin(sqrt(3)/6) assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \ asin(sqrt(7)/3) assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \ asin(7*sqrt(246)/246) assert are_coplanar(l1, l2, l3) is False assert are_coplanar(l1) is False assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2), Point3D(1, 1, 2), Point3D(1, 2, 2)) assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2)) assert Plane.are_concurrent(pl3, pl4, pl5) is False assert Plane.are_concurrent(pl6) is False raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0))) raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0))) assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \ normal_vector=(1, -2, 1)) # perpendicular_plane p = Plane((0, 0, 0), (1, 0, 0)) # default assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0)) # 1 pt assert p.perpendicular_plane(Point3D(1, 0, 1)) == \ Plane(Point3D(1, 0, 1), (0, 1, 0)) # pts as tuples assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \ Plane(Point3D(1, 0, 1), (0, 0, -1)) a, b = Point3D(0, 0, 0), Point3D(0, 1, 0) Z = (0, 0, 1) p = Plane(a, normal_vector=Z) # case 4 assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0)) n = Point3D(*Z) # case 1 assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0)) # case 2 assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \ Plane(Point3D(0, 0, 0), (1, 0, 0)) # case 1&3 assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \ Plane(Point3D(0, 1, 0), (-1, 0, 0)) # case 2&3 assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \ Plane(Point3D(0, 0, 1), (1, 0, 0)) assert pl6.intersection(pl6) == [pl6] assert pl4.intersection(pl4.p1) == [pl4.p1] assert pl3.intersection(pl6) == [ Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))] assert pl3.intersection(Line3D(Point3D(1,2,4), Point3D(4,4,2))) == [ Point3D(2, 8/3, 10/3)] assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3)) ) == [Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))] assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [ Point3D(-1, 3, 10)] assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [ Point3D(-1, 3, 10)] assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [ Point3D(13/2, 3/4, 0)] r = Ray(Point(2, 3), Point(4, 2)) assert Plane((1,2,0), normal_vector=(0,0,1)).intersection(r) == [ Ray3D(Point(2, 3), Point(4, 2))] assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))] assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))] assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))] assert pl11.intersection(pl8) == [] assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))] assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))] assert pl3.random_point() in pl3 # test geometrical entity using equals assert pl4.intersection(pl4.p1)[0].equals(pl4.p1) assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))) pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1)) assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(Line((0, 0, 0), (0.1, 1.2, 0))) assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0))) assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(Segment3D(p1, (21, 1, 0))) assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8) assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals( Line3D(p1, direction_ratio=(112 * pi, 0, 0))) assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals( Line3D(p1, direction_ratio=(0, -11, 0))) assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals( Line3D(p1, direction_ratio=(0, 11, 0))) assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals( Line3D(p1, direction_ratio=(1, -1, 0))) assert pl3.random_point() in pl3 assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) is 0 # check if two plane are equals assert pl6.intersection(pl6)[0].equals(pl6) assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False assert pl8.equals(pl8) assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12))) assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12*sqrt(3)))) # issue 8570 l2 = Line3D(Point3D(S(50000004459633)/5000000000000, -S(891926590718643)/1000000000000000, S(231800966893633)/100000000000000), Point3D(S(50000004459633)/50000000000000, -S(222981647679771)/250000000000000, S(231800966893633)/100000000000000)) p2 = Plane(Point3D(S(402775636372767)/100000000000000, -S(97224357654973)/100000000000000, S(216793600814789)/100000000000000), (-S('9.00000087501922'), -S('4.81170658872543e-13'), S('0.0'))) assert str([i.n(2) for i in p2.intersection(l2)]) == \ '[Point3D(4.0, -0.89, 2.3)]' def test_dimension_normalization(): A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1)) b = Point(1, 1) assert A.projection(b) == Point(S(5)/3, S(5)/3, S(2)/3) a, b = Point(0, 0), Point3D(0, 1) Z = (0, 0, 1) p = Plane(a, normal_vector=Z) assert p.perpendicular_plane(a, b) == Plane(Point3D(0, 0, 0), (1, 0, 0)) assert Plane((1, 2, 1), (2, 1, 0), (3, 1, 2) ).intersection((2, 1)) == [Point(2, 1, 0)] def test_parameter_value(): t, u, v = symbols("t, u v") p = Plane((0, 0, 0), (0, 0, 1), (0, 1, 0)) assert p.parameter_value((0, -3, 2), t) == {t: asin(2*sqrt(13)/13)} assert p.parameter_value((0, -3, 2), u, v) == {u: 3, v: 2} raises(ValueError, lambda: p.parameter_value((1, 0, 0), t))
18aee7735bab7aeb671500b0167ddeed2583931b00089243efae130d25def8ba
from sympy import (Rational, Float, S, Symbol, cos, oo, pi, simplify, sin, sqrt, symbols, acos) from sympy.core.compatibility import range from sympy.functions.elementary.trigonometric import tan from sympy.geometry import (Circle, GeometryError, Line, Point, Ray, Segment, Triangle, intersection, Point3D, Line3D, Ray3D, Segment3D, Point2D, Line2D) from sympy.geometry.line import Undecidable from sympy.geometry.polygon import _asa as asa from sympy.utilities.iterables import cartes from sympy.utilities.pytest import raises, slow, warns import traceback import sys x = Symbol('x', real=True) y = Symbol('y', real=True) z = Symbol('z', real=True) k = Symbol('k', real=True) x1 = Symbol('x1', real=True) y1 = Symbol('y1', real=True) t = Symbol('t', real=True) a, b = symbols('a,b', real=True) m = symbols('m', real=True) def test_object_from_equation(): from sympy.abc import x, y, a, b assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21)) assert Line(3*x + 5 * y + 1) == Line2D(Point2D(0, -S(1)/5), Point2D(1, -S(4)/5)) assert Line(3*a + b + 18, x='a', y='b') == Line2D(Point2D(0, -18), Point2D(1, -21)) assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3)) assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1)) raises(ValueError, lambda: Line(x)) raises(ValueError, lambda: Line(y)) raises(ValueError, lambda: Line(x/y)) raises(ValueError, lambda: Line(a/b, x='a', y='b')) raises(ValueError, lambda: Line(y/x)) raises(ValueError, lambda: Line(b/a, x='a', y='b')) raises(ValueError, lambda: Line((x + 1)**2 + y)) def feq(a, b): """Test if two floating point values are 'equal'.""" t_float = Float("1.0E-10") return -t_float < a - b < t_float def test_angle_between(): a = Point(1, 2, 3, 4) b = a.orthogonal_direction o = a.origin assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)), Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4) assert Line(a, o).angle_between(Line(b, o)) == pi / 2 assert Line3D.angle_between(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)), Line3D(Point3D(0, 0, 0), Point3D(5, 0, 0))) == acos(sqrt(3) / 3) def test_closing_angle(): a = Ray((0, 0), angle=0) b = Ray((1, 2), angle=pi/2) assert a.closing_angle(b) == -pi/2 assert b.closing_angle(a) == pi/2 assert a.closing_angle(a) == 0 def test_arbitrary_point(): l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) l2 = Line(Point(x1, x1), Point(y1, y1)) assert l2.arbitrary_point() in l2 assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \ Point(t + 1, t + 1) assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t) assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point() assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \ Point3D(t + 1, 2 * t + 1, 3 * t + 1) assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \ Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2)) assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2) assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \ Point3D(t + 1, 2 * t + 1, 3 * t + 1) raises(ValueError, (lambda: Line((x, 1), (2, 3)).arbitrary_point(x))) def test_are_concurrent_2d(): l1 = Line(Point(0, 0), Point(1, 1)) l2 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert Line.are_concurrent(l1) is False assert Line.are_concurrent(l1, l2) assert Line.are_concurrent(l1, l1, l1, l2) assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(-Rational(3, 5), x1))) assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False def test_are_concurrent_3d(): p1 = Point3D(0, 0, 0) l1 = Line(p1, Point3D(1, 1, 1)) parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0)) assert Line3D.are_concurrent(l1) is False assert Line3D.are_concurrent(l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False assert Line3D.are_concurrent(l1, Line3D(p1, Point3D(x1, x1, x1)), Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True assert Line3D.are_concurrent(parallel_1, parallel_2) is False def test_arguments(): """Functions accepting `Point` objects in `geometry` should also accept tuples, lists, and generators and automatically convert them to points.""" from sympy import subsets singles2d = ((1, 2), [1, 3], Point(1, 5)) doubles2d = subsets(singles2d, 2) l2d = Line(Point2D(1, 2), Point2D(2, 3)) singles3d = ((1, 2, 3), [1, 2, 4], Point(1, 2, 6)) doubles3d = subsets(singles3d, 2) l3d = Line(Point3D(1, 2, 3), Point3D(1, 1, 2)) singles4d = ((1, 2, 3, 4), [1, 2, 3, 5], Point(1, 2, 3, 7)) doubles4d = subsets(singles4d, 2) l4d = Line(Point(1, 2, 3, 4), Point(2, 2, 2, 2)) # test 2D test_single = ['contains', 'distance', 'equals', 'parallel_line', 'perpendicular_line', 'perpendicular_segment', 'projection', 'intersection'] for p in doubles2d: Line2D(*p) for func in test_single: for p in singles2d: getattr(l2d, func)(p) # test 3D for p in doubles3d: Line3D(*p) for func in test_single: for p in singles3d: getattr(l3d, func)(p) # test 4D for p in doubles4d: Line(*p) for func in test_single: for p in singles4d: getattr(l4d, func)(p) def test_basic_properties_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p10 = Point(2000, 2000) p_r3 = Ray(p1, p2).random_point() p_r4 = Ray(p2, p1).random_point() l1 = Line(p1, p2) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) l4 = Line(p1, Point(1, 0)) r1 = Ray(p1, Point(0, 1)) r2 = Ray(Point(0, 1), p1) s1 = Segment(p1, p10) p_s1 = s1.random_point() assert Line((1, 1), slope=1) == Line((1, 1), (2, 2)) assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2)) assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2)) assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1)) assert Line(p1, p2) == Line(p1, p2) assert Line(p1, p2) != Line(p2, p1) assert l1 != Line(Point(x1, x1), Point(y1, y1)) assert l1 != l3 assert Line(p1, p10) != Line(p10, p1) assert Line(p1, p10) != p1 assert p1 in l1 # is p1 on the line l1? assert p1 not in l3 assert s1 in Line(p1, p10) assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2)) assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1)) assert (r1 in s1) is False assert Segment(p1, p2) in s1 assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5)) assert Segment(p1, p2).midpoint == Point(Rational(1, 2), Rational(1, 2)) assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2)) assert l1.slope == 1 assert l3.slope == oo assert l4.slope == 0 assert Line(p1, Point(0, 1)).slope == oo assert Line(r1.source, r1.random_point()).slope == r1.slope assert Line(r2.source, r2.random_point()).slope == r2.slope assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope assert l4.coefficients == (0, 1, 0) assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0) assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0) # issue 7963 r = Ray((0, 0), angle=x) assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1)) assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1)) assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1)) assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1)) assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1)) for ind in range(0, 5): assert l3.random_point() in l3 assert p_r3.x >= p1.x and p_r3.y >= p1.y assert p_r4.x <= p2.x and p_r4.y <= p2.y assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y assert hash(s1) != hash(Segment(p10, p1)) assert s1.plot_interval() == [t, 0, 1] assert Line(p1, p10).plot_interval() == [t, -5, 5] assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10] def test_basic_properties_3d(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(x1, x1, x1) p5 = Point3D(x1, 1 + x1, 1) l1 = Line3D(p1, p2) l3 = Line3D(p3, p5) r1 = Ray3D(p1, Point3D(-1, 5, 0)) r3 = Ray3D(p1, p2) s1 = Segment3D(p1, p2) assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5)) assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8)) assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4)) assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0)) assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0)) assert Line3D(p1, p2) != Line3D(p2, p1) assert l1 != l3 assert l1 != Line3D(p3, Point3D(y1, y1, y1)) assert r3 != r1 assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) assert p1 in l1 assert p1 not in l3 assert l1.direction_ratio == [1, 1, 1] assert s1.midpoint == Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2)) # Test zdirection assert Ray3D(p1, Point3D(0, 0, -1)).zdirection == S.NegativeInfinity def test_contains(): p1 = Point(0, 0) r = Ray(p1, Point(4, 4)) r1 = Ray3D(p1, Point3D(0, 0, -1)) r2 = Ray3D(p1, Point3D(0, 1, 0)) r3 = Ray3D(p1, Point3D(0, 0, 1)) l = Line(Point(0, 1), Point(3, 4)) # Segment contains assert Point(0, (a + b) / 2) in Segment((0, a), (0, b)) assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0)) assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0)) assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0)) assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains( Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False # Line contains assert l.contains(Point(0, 1)) is True assert l.contains((0, 1)) is True assert l.contains((0, 0)) is False # Ray contains assert r.contains(p1) is True assert r.contains((1, 1)) is True assert r.contains((1, 3)) is False assert r.contains(Segment((1, 1), (2, 2))) is True assert r.contains(Segment((1, 2), (2, 5))) is False assert r.contains(Ray((2, 2), (3, 3))) is True assert r.contains(Ray((2, 2), (3, 5))) is False assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False assert r2.contains(Point3D(0, 0, 0)) is True assert r3.contains(Point3D(0, 0, 0)) is True assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z)) with warns(UserWarning): assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False with warns(UserWarning): assert r3.contains(Point(1.0, 1.0)) is False def test_contains_nonreal_symbols(): u, v, w, z = symbols('u, v, w, z') l = Segment(Point(u, w), Point(v, z)) p = Point(2*u/3 + v/3, 2*w/3 + z/3) assert l.contains(p) def test_distance_2d(): p1 = Point(0, 0) p2 = Point(1, 1) half = Rational(1, 2) s1 = Segment(Point(0, 0), Point(1, 1)) s2 = Segment(Point(half, half), Point(1, 0)) r = Ray(p1, p2) assert s1.distance(Point(0, 0)) == 0 assert s1.distance((0, 0)) == 0 assert s2.distance(Point(0, 0)) == 2 ** half / 2 assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2) assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2) assert Line(p1, p2).distance(Point(2, 2)) == 0 assert Line(p1, p2).distance((-1, 1)) == sqrt(2) assert Line((0, 0), (0, 1)).distance(p1) == 0 assert Line((0, 0), (0, 1)).distance(p2) == 1 assert Line((0, 0), (1, 0)).distance(p1) == 0 assert Line((0, 0), (1, 0)).distance(p2) == 1 assert r.distance(Point(-1, -1)) == sqrt(2) assert r.distance(Point(1, 1)) == 0 assert r.distance(Point(-1, 1)) == sqrt(2) assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4 assert r.distance((1, 1)) == 0 def test_dimension_normalization(): with warns(UserWarning): assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2)) def test_distance_3d(): p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1) p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2) s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) s2 = Segment3D(Point3D(S(1) / 2, S(1) / 2, S(1) / 2), Point3D(1, 0, 1)) r = Ray3D(p1, p2) assert s1.distance(p1) == 0 assert s2.distance(p1) == sqrt(3) / 2 assert s2.distance(p3) == 2 * sqrt(6) / 3 assert s1.distance((0, 0, 0)) == 0 assert s2.distance((0, 0, 0)) == sqrt(3) / 2 assert s1.distance(p1) == 0 assert s2.distance(p1) == sqrt(3) / 2 assert s2.distance(p3) == 2 * sqrt(6) / 3 assert s1.distance((0, 0, 0)) == 0 assert s2.distance((0, 0, 0)) == sqrt(3) / 2 # Line to point assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3 assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3 assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0 assert Line3D(p1, p2).distance((2, 2, 2)) == 0 assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3 assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0 assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2) assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0 assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2) # Ray to point assert r.distance(Point3D(-1, -1, -1)) == sqrt(3) assert r.distance(Point3D(1, 1, 1)) == 0 assert r.distance((-1, -1, -1)) == sqrt(3) assert r.distance((1, 1, 1)) == 0 assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3 assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2 assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6 def test_equals(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l2 = Line((0, 5), slope=m) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1))) assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1))) assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \ equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1))) assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1))) assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1))) assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals( Line3D(Point3D(0, 1, 0), Point3D(S(1) / 2, S(1) / 2, 0))) assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S(1) / 2, S(1) / 2))) assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False def test_equation(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l3 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert simplify(l1.equation()) in (x - y, y - x) assert simplify(l3.equation()) in (x - x1, x1 - x) assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y assert Line(p1, Point(0, 1)).equation() == x assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2 assert Line(p2, Point(2, 1)).equation() == y - 1 assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1) ).equation() == (-x + y, -x + z) assert Line3D(Point(1, 2, 3), Point(2, 3, 4) ).equation() == (-x + y - 1, -x + z - 2) assert Line3D(Point(1, 2, 3), Point(1, 3, 4) ).equation() == (x - 1, -y + z - 1) assert Line3D(Point(1, 2, 3), Point(2, 2, 4) ).equation() == (y - 2, -x + z - 2) assert Line3D(Point(1, 2, 3), Point(2, 3, 3) ).equation() == (-x + y - 1, z - 3) assert Line3D(Point(1, 2, 3), Point(1, 2, 4) ).equation() == (x - 1, y - 2) assert Line3D(Point(1, 2, 3), Point(1, 3, 3) ).equation() == (x - 1, z - 3) assert Line3D(Point(1, 2, 3), Point(2, 2, 3) ).equation() == (y - 2, z - 3) def test_intersection_2d(): p1 = Point(0, 0) p2 = Point(1, 1) p3 = Point(x1, x1) p4 = Point(y1, y1) l1 = Line(p1, p2) l3 = Line(Point(0, 0), Point(3, 4)) r1 = Ray(Point(1, 1), Point(2, 2)) r2 = Ray(Point(0, 0), Point(3, 4)) r4 = Ray(p1, p2) r6 = Ray(Point(0, 1), Point(1, 2)) r7 = Ray(Point(0.5, 0.5), Point(1, 1)) s1 = Segment(p1, p2) s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5)) s3 = Segment(Point(0, 0), Point(3, 4)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point(x1, 1 + x1)) == [] assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]] assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == [] assert intersection(l3, l3) == [l3] assert intersection(l3, r2) == [r2] assert intersection(l3, s3) == [s3] assert intersection(s3, l3) == [s3] assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == [] assert intersection(r2, l3) == [r2] assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))] assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)] assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))] assert r4.intersection(s2) == [s2] assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == [] assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert r4.intersection(Ray(p2, p1)) == [s1] assert Ray(p2, p1).intersection(r6) == [] assert r4.intersection(r7) == r7.intersection(r4) == [r7] assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))] assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \ [Segment(Point(0, 0), Point(0, 1))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((1, 0), (2, 0)).intersection( Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))] assert Segment3D((0, 0), (3, 0)).intersection( Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)] assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)] assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)] assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == [] assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1] assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))] assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == [] assert s1.intersection(s2) == [s2] assert s2.intersection(s1) == [s2] def test_intersection_3d(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) l1 = Line3D(p1, p2) l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2)) r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0)) assert intersection(l1, p1) == [p1] assert intersection(l1, Point3D(x1, 1 + x1, 1)) == [] assert intersection(l1, l1.parallel_line(p1)) == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))] assert intersection(l2, r2) == [r2] assert intersection(l2, s1) == [s1] assert intersection(r2, l2) == [r2] assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)] assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))) == [ Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))] assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \ == [Point3D(0, 0, 0)] assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \ [Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))] assert intersection(s1, r2) == [s1] assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \ [Point3D(2, 2, 1)] assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)] assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \ [Point3D(t, t)] assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection(Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == [] def test_is_parallel(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) p3 = Point3D(x1, x1, x1) l2 = Line(Point(x1, x1), Point(y1, y1)) l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1)) assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2) assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1))) assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0))) assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1)) assert Line3D(p1, p2).parallel_line(p3.args) == \ Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1)) assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False def test_is_perpendicular(): p1 = Point(0, 0) p2 = Point(1, 1) l1 = Line(p1, p2) l2 = Line(Point(x1, x1), Point(y1, y1)) l1_1 = Line(p1, Point(-x1, x1)) # 2D assert Line.is_perpendicular(l1, l1_1) assert Line.is_perpendicular(l1, l2) is False p = l1.random_point() assert l1.perpendicular_segment(p) == p # 3D assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)), Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)), Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)), Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False def test_is_similar(): p1 = Point(2000, 2000) p2 = p1.scale(2, 2) r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)) r2 = Ray(Point(0, 0), Point(0, 1)) s1 = Segment(Point(0, 0), p1) assert s1.is_similar(Segment(p1, p2)) assert s1.is_similar(r2) is False assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False @slow def test_line_intersection(): assert asa(120, 8, 52) == \ Triangle( Point(0, 0), Point(8, 0), Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45), 4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45))) assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)] assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)] assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10)) x = 8 * tan(13 * pi / 45) / (tan(13 * pi / 45) + sqrt(3)) y = (-8 * sqrt(3) * tan(13 * pi / 45) ** 2 + 24 * tan(13 * pi / 45)) / (-3 + tan(13 * pi / 45) ** 2) assert Line(Point(0, 0), Point(1, -sqrt(3))).contains(Point(x, y)) is True def test_length(): s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)) assert Line(Point(0, 0), Point(1, 1)).length == oo assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2) assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length == oo def test_projection(): p1 = Point(0, 0) p2 = Point3D(0, 0, 0) p3 = Point(-x1, x1) l1 = Line(p1, Point(1, 1)) l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) l3 = Line3D(p2, Point3D(1, 1, 1)) r1 = Ray(Point(1, 1), Point(2, 2)) assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1) assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1) assert Segment(Point(-2, 2), Point(0, 4)).projection(r1) == Segment(Point(-1, 3), Point(0, 4)) assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3)) assert l1.projection(p3) == p1 assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2)) assert l1.projection(Ray(p1, Point(-1, 1))) == p1 assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1) assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1) assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2)) assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2)) assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(S(4)/3, S(4)/3, S(4)/3)) assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(S(1)/3, S(1)/3, S(1)/3)) assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0) assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2) def test_perpendicular_bisector(): s1 = Segment(Point(0, 0), Point(1, 1)) aline = Line(Point(S(1)/2, S(1)/2), Point(S(3)/2, -S(1)/2)) on_line = Segment(Point(S(1)/2, S(1)/2), Point(S(3)/2, -S(1)/2)).midpoint assert s1.perpendicular_bisector().equals(aline) assert s1.perpendicular_bisector(on_line).equals(Segment(s1.midpoint, on_line)) assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline) def test_raises(): d, e = symbols('a,b', real=True) s = Segment((d, 0), (e, 0)) raises(TypeError, lambda: Line((1, 1), 1)) raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0))) raises(Undecidable, lambda: Point(2 * d, 0) in s) raises(ValueError, lambda: Ray3D(Point(1.0, 1.0))) raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0))) raises(TypeError, lambda: Line3D((1, 1), 1)) raises(ValueError, lambda: Line3D(Point3D(0, 0, 0))) raises(TypeError, lambda: Ray((1, 1), 1)) raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)) .projection(Circle(Point(0, 0), 1))) def test_ray_generation(): assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2)) assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0)) assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2)) assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1)) assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1)) assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1), Point(2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 - sqrt( 2 * sqrt(5) + 10) / 4 + 2 + sqrt(5))) assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1), Point(2, 1 + tan(4.02 * pi))) assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5))) assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5)) assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4)) assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2)) def test_symbolic_intersect(): # Issue 7814. circle = Circle(Point(x, 0), y) line = Line(Point(k, z), slope=0) assert line.intersection(circle) == [Point(x + sqrt((y - z) * (y + z)), z), Point(x - sqrt((y - z) * (y + z)), z)] def test_issue_2941(): def _check(): for f, g in cartes(*[(Line, Ray, Segment)] * 2): l1 = f(a, b) l2 = g(c, d) assert l1.intersection(l2) == l2.intersection(l1) # intersect at end point c, d = (-2, -2), (-2, 0) a, b = (0, 0), (1, 1) _check() # midline intersection c, d = (-2, -3), (-2, 0) _check() def test_parameter_value(): t = Symbol('t') p1, p2 = Point(0, 1), Point(5, 6) l = Line(p1, p2) assert l.parameter_value((5, 6), t) == {t: 1} raises(ValueError, lambda: l.parameter_value((0, 0), t))
b3d70520633670833b58b41d3c1b13e88d10694c44924344e16fc8d8c8fa459c
from sympy import Rational, Symbol, S from sympy.geometry import Circle, Line, Point, Polygon, Segment, Parabola from sympy.sets import FiniteSet, Union, Intersection, EmptySet def test_booleans(): """ test basic unions and intersections """ half = Rational(1, 2) p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)]) l1 = Line(Point(0,0), Point(1,1)) l2 = Line(Point(half, half), Point(5,5)) l3 = Line(p2, p3) l4 = Line(p3, p4) poly1 = Polygon(p1, p2, p3, p4) poly2 = Polygon(p5, p6, p7) poly3 = Polygon(p1, p2, p5) assert Union(l1, l2).equals(l1) assert Intersection(l1, l2).equals(l1) assert Intersection(l1, l4) == FiniteSet(Point(1,1)) assert Intersection(Union(l1, l4), l3) == FiniteSet(Point(-S(1)/3, -S(1)/3), Point(5, 1)) assert Intersection(l1, FiniteSet(Point(7,-7))) == EmptySet() assert Intersection(Circle(Point(0,0), 3), Line(p1,p2)) == FiniteSet(Point(-3,0), Point(3,0)) assert Intersection(l1, FiniteSet(p1)) == FiniteSet(p1) assert Union(l1, FiniteSet(p1)) == l1 fs = FiniteSet(Point(S(1)/3, 1), Point(S(2)/3, 0), Point(S(9)/5, S(1)/5), Point(S(7)/3, 1)) # test the intersection of polygons assert Intersection(poly1, poly2) == fs # make sure if we union polygons with subsets, the subsets go away assert Union(poly1, poly2, fs) == Union(poly1, poly2) # make sure that if we union with a FiniteSet that isn't a subset, # that the points in the intersection stop being listed assert Union(poly1, FiniteSet(Point(0,0), Point(3,5))) == Union(poly1, FiniteSet(Point(3,5))) # intersect two polygons that share an edge assert Intersection(poly1, poly3) == Union(FiniteSet(Point(S(3)/2, 1), Point(2, 1)), Segment(Point(0, 0), Point(1, 0)))
3d2adca7ae9b048a94fcddbda888741a7fc1413ffa1653427bf13d58620e8cc4
from sympy import Rational, S, Symbol, symbols, pi, sqrt, oo, Point2D, Segment2D, I from sympy.core.compatibility import range from sympy.geometry import (Circle, Ellipse, GeometryError, Line, Point, Polygon, Ray, RegularPolygon, Segment, Triangle, intersection) from sympy.utilities.pytest import raises from sympy import integrate from sympy.functions.special.elliptic_integrals import elliptic_e def test_ellipse_equation_using_slope(): from sympy.abc import x, y e1 = Ellipse(Point(1, 0), 3, 2) assert str(e1.equation(_slope=1)) == str((-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1) e2 = Ellipse(Point(0, 0), 4, 1) assert str(e2.equation(_slope=1)) == str((-x + y)**2/2 + (x + y)**2/32 - 1) e3 = Ellipse(Point(1, 5), 6, 2) assert str(e3.equation(_slope=2)) == str((-2*x + y - 3)**2/20 + (x + 2*y - 11)**2/180 - 1) def test_object_from_equation(): from sympy.abc import x, y, a, b assert Circle(x**2 + y**2 + 3*x + 4*y - 8) == Circle(Point2D(S(-3) / 2, -2), sqrt(57) / 2) assert Circle(x**2 + y**2 + 6*x + 8*y + 25) == Circle(Point2D(-3, -4), 0) assert Circle(a**2 + b**2 + 6*a + 8*b + 25, x='a', y='b') == Circle(Point2D(-3, -4), 0) assert Circle(x**2 + y**2 - 25) == Circle(Point2D(0, 0), 5) assert Circle(x**2 + y**2) == Circle(Point2D(0, 0), 0) assert Circle(a**2 + b**2, x='a', y='b') == Circle(Point2D(0, 0), 0) assert Circle(x**2 + y**2 + 6*x + 8) == Circle(Point2D(-3, 0), 1) assert Circle(x**2 + y**2 + 6*y + 8) == Circle(Point2D(0, -3), 1) assert Circle(6*(x**2) + 6*(y**2) + 6*x + 8*y - 25) == Circle(Point2D(-S(1)/2, -S(2)/3), 5*sqrt(37)/6) assert Circle(x**2 + y**2 + 3*x + 4*y + 26) == Circle(Point2D(-S(3)/2, -2), sqrt(79)*I/2) assert Circle(x**2 + y**2 + 25) == Circle(Point2D(0, 0), 5*I) assert Circle(a**2 + b**2 + 25, x='a', y='b') == Circle(Point2D(0, 0), 5*I) raises(GeometryError, lambda: Circle(x**2 + 6*y + 8)) raises(GeometryError, lambda: Circle(6*(x ** 2) + 4*(y**2) + 6*x + 8*y + 25)) raises(ValueError, lambda: Circle(a**2 + b**2 + 3*a + 4*b - 8)) def test_ellipse_geom(): x = Symbol('x', real=True) y = Symbol('y', real=True) t = Symbol('t', real=True) y1 = Symbol('y1', real=True) half = Rational(1, 2) p1 = Point(0, 0) p2 = Point(1, 1) p4 = Point(0, 1) e1 = Ellipse(p1, 1, 1) e2 = Ellipse(p2, half, 1) e3 = Ellipse(p1, y1, y1) c1 = Circle(p1, 1) c2 = Circle(p2, 1) c3 = Circle(Point(sqrt(2), sqrt(2)), 1) l1 = Line(p1, p2) # Test creation with three points cen, rad = Point(3*half, 2), 5*half assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad) assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2)) raises(ValueError, lambda: Ellipse(None, None, None, 1)) raises(GeometryError, lambda: Circle(Point(0, 0))) # Basic Stuff assert Ellipse(None, 1, 1).center == Point(0, 0) assert e1 == c1 assert e1 != e2 assert e1 != l1 assert p4 in e1 assert p2 not in e2 assert e1.area == pi assert e2.area == pi/2 assert e3.area == pi*y1*abs(y1) assert c1.area == e1.area assert c1.circumference == e1.circumference assert e3.circumference == 2*pi*y1 assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi] assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi] assert c1.minor == 1 assert c1.major == 1 assert c1.hradius == 1 assert c1.vradius == 1 assert Ellipse((1, 1), 0, 0) == Point(1, 1) assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1)) assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2)) # Private Functions assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1))) assert c1 in e1 assert (Line(p1, p2) in e1) is False assert e1.__cmp__(e1) == 0 assert e1.__cmp__(Point(0, 0)) > 0 # Encloses assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True assert e1.encloses(Line(p1, p2)) is False assert e1.encloses(Ray(p1, p2)) is False assert e1.encloses(e1) is False assert e1.encloses( Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True assert e1.encloses(RegularPolygon(p1, 5, 3)) is False assert e1.encloses(RegularPolygon(p2, 5, 3)) is False assert e2.arbitrary_point() in e2 # Foci f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0) ef = Ellipse(Point(0, 0), 4, 2) assert ef.foci in [(f1, f2), (f2, f1)] # Tangents v = sqrt(2) / 2 p1_1 = Point(v, v) p1_2 = p2 + Point(half, 0) p1_3 = p2 + Point(0, 1) assert e1.tangent_lines(p4) == c1.tangent_lines(p4) assert e2.tangent_lines(p1_2) == [Line(Point(S(3)/2, 1), Point(S(3)/2, S(1)/2))] assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(S(5)/4, 2))] assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))] assert c1.tangent_lines(p1) == [] assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1))) assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1))) assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2)))) assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False assert c1.is_tangent(e1) is True assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True assert c1.is_tangent( Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True assert c1.is_tangent( Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(S(77)/25, S(132)/25)), Line(Point(0, 0), Point(S(33)/5, S(22)/5))] assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \ [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))] assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \ [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))] assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \ [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))), Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ] # for numerical calculations, we shouldn't demand exact equality, # so only test up to the desired precision def lines_close(l1, l2, prec): """ tests whether l1 and 12 are within 10**(-prec) of each other """ return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec) def line_list_close(ll1, ll2, prec): return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2)) e = Ellipse(Point(0, 0), 2, 1) assert e.normal_lines(Point(0, 0)) == \ [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))] assert e.normal_lines(Point(1, 0)) == \ [Line(Point(0, 0), Point(1, 0))] assert e.normal_lines((0, 1)) == \ [Line(Point(0, 0), Point(0, 1))] assert line_list_close(e.normal_lines(Point(1, 1), 2), [ Line(Point(-S(51)/26, -S(1)/5), Point(-S(25)/26, S(17)/83)), Line(Point(S(28)/29, -S(7)/8), Point(S(57)/29, -S(9)/2))], 2) # test the failure of Poly.intervals and checks a point on the boundary p = Point(sqrt(3), S.Half) assert p in e assert line_list_close(e.normal_lines(p, 2), [ Line(Point(-S(341)/171, -S(1)/13), Point(-S(170)/171, S(5)/64)), Line(Point(S(26)/15, -S(1)/2), Point(S(41)/15, -S(43)/26))], 2) # be sure to use the slope that isn't undefined on boundary e = Ellipse((0, 0), 2, 2*sqrt(3)/3) assert line_list_close(e.normal_lines((1, 1), 2), [ Line(Point(-S(64)/33, -S(20)/71), Point(-S(31)/33, S(2)/13)), Line(Point(1, -1), Point(2, -4))], 2) # general ellipse fails except under certain conditions e = Ellipse((0, 0), x, 1) assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))] raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1))) # Properties major = 3 minor = 1 e4 = Ellipse(p2, minor, major) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major*(1 - ecc) assert e4.apoapsis == major*(1 + ecc) assert e4.semilatus_rectum == major*(1 - ecc ** 2) # independent of orientation e4 = Ellipse(p2, major, minor) assert e4.focus_distance == sqrt(major**2 - minor**2) ecc = e4.focus_distance / major assert e4.eccentricity == ecc assert e4.periapsis == major*(1 - ecc) assert e4.apoapsis == major*(1 + ecc) # Intersection l1 = Line(Point(1, -5), Point(1, 5)) l2 = Line(Point(-5, -1), Point(5, -1)) l3 = Line(Point(-1, -1), Point(1, 1)) l4 = Line(Point(-10, 0), Point(0, 10)) pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)] assert intersection(e2, l4) == [] assert intersection(c1, Point(1, 0)) == [Point(1, 0)] assert intersection(c1, l1) == [Point(1, 0)] assert intersection(c1, l2) == [Point(0, -1)] assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]] assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)] assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)] assert e1.intersection(l1) == [Point(1, 0)] assert e2.intersection(l4) == [] assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)] assert e1.intersection(Circle(Point(5, 0), 1)) == [] assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)] assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == [] assert e1.intersection(Point(2, 0)) == [] assert e1.intersection(e1) == e1 assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)] assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)] assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == [] assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)] assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == [] assert Circle((0, 0), S(1)/2).intersection( Triangle((-1, 0), (1, 0), (0, 1))) == [ Point(-S(1)/2, 0), Point(S(1)/2, 0)] raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1)))) raises(TypeError, lambda: intersection(e2, Rational(12))) # some special case intersections csmall = Circle(p1, 3) cbig = Circle(p1, 5) cout = Circle(Point(5, 5), 1) # one circle inside of another assert csmall.intersection(cbig) == [] # separate circles assert csmall.intersection(cout) == [] # coincident circles assert csmall.intersection(csmall) == csmall v = sqrt(2) t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0)) points = intersection(t1, c1) assert len(points) == 4 assert Point(0, 1) in points assert Point(0, -1) in points assert Point(v/2, v/2) in points assert Point(v/2, -v/2) in points circ = Circle(Point(0, 0), 5) elip = Ellipse(Point(0, 0), 5, 20) assert intersection(circ, elip) in \ [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]] assert elip.tangent_lines(Point(0, 0)) == [] elip = Ellipse(Point(0, 0), 3, 2) assert elip.tangent_lines(Point(3, 0)) == \ [Line(Point(3, 0), Point(3, -12))] e1 = Ellipse(Point(0, 0), 5, 10) e2 = Ellipse(Point(2, 1), 4, 8) a = S(53)/17 c = 2*sqrt(3991)/17 ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)] assert e1.intersection(e2) == ans e2 = Ellipse(Point(x, y), 4, 8) c = sqrt(3991) ans = [Point(-c/68 + a, 2*c/17 + a/2), Point(c/68 + a, -2*c/17 + a/2)] assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans # Combinations of above assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0]) e = Ellipse((1, 2), 3, 2) assert e.tangent_lines(Point(10, 0)) == \ [Line(Point(10, 0), Point(1, 0)), Line(Point(10, 0), Point(S(14)/5, S(18)/5))] # encloses_point e = Ellipse((0, 0), 1, 2) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point( e.center + Point(e.hradius + Rational(1, 10), 0)) is False e = Ellipse((0, 0), 2, 1) assert e.encloses_point(e.center) assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10))) assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0)) assert e.encloses_point(e.center + Point(e.hradius, 0)) is False assert e.encloses_point( e.center + Point(e.hradius + Rational(1, 10), 0)) is False assert c1.encloses_point(Point(1, 0)) is False assert c1.encloses_point(Point(0.3, 0.4)) is True assert e.scale(2, 3) == Ellipse((0, 0), 4, 3) assert e.scale(3, 6) == Ellipse((0, 0), 6, 6) assert e.rotate(pi) == e assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1) raises(NotImplementedError, lambda: e.rotate(pi/3)) # Circle rotation tests (Issue #11743) # Link - https://github.com/sympy/sympy/issues/11743 cir = Circle(Point(1, 0), 1) assert cir.rotate(pi/2) == Circle(Point(0, 1), 1) assert cir.rotate(pi/3) == Circle(Point(S(1)/2, sqrt(3)/2), 1) assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1) assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S(1)/2 + sqrt(3)/2, S(1)/2 + sqrt(3)/2), 1) def test_construction(): e1 = Ellipse(hradius=2, vradius=1, eccentricity=None) assert e1.eccentricity == sqrt(3)/2 e2 = Ellipse(hradius=2, vradius=None, eccentricity=sqrt(3)/2) assert e2.vradius == 1 e3 = Ellipse(hradius=None, vradius=1, eccentricity=sqrt(3)/2) assert e3.hradius == 2 # filter(None, iterator) filters out anything falsey, including 0 # eccentricity would be filtered out in this case and the constructor would throw an error e4 = Ellipse(Point(0, 0), hradius=1, eccentricity=0) assert e4.vradius == 1 def test_ellipse_random_point(): y1 = Symbol('y1', real=True) e3 = Ellipse(Point(0, 0), y1, y1) rx, ry = Symbol('rx'), Symbol('ry') for ind in range(0, 5): r = e3.random_point() # substitution should give zero*y1**2 assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0) def test_repr(): assert repr(Circle((0, 1), 2)) == 'Circle(Point2D(0, 1), 2)' def test_transform(): c = Circle((1, 1), 2) assert c.scale(-1) == Circle((-1, 1), 2) assert c.scale(y=-1) == Circle((1, -1), 2) assert c.scale(2) == Ellipse((2, 1), 4, 2) assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \ Ellipse(Point(-4, -10), 4, 9) assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \ Ellipse(Point(-4, -10), 4, 6) assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \ Ellipse(Point(-8, -10), 6, 9) assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \ Circle(Point(-8, -10), 6) assert Circle(Point(-8, -10), 6).scale(S(1)/3, S(1)/3, (4, 5)) == \ Circle((0, 0), 2) assert Circle((0, 0), 2).translate(4, 5) == \ Circle((4, 5), 2) assert Circle((0, 0), 2).scale(3, 3) == \ Circle((0, 0), 6) def test_bounds(): e1 = Ellipse(Point(0, 0), 3, 5) e2 = Ellipse(Point(2, -2), 7, 7) c1 = Circle(Point(2, -2), 7) c2 = Circle(Point(-2, 0), Point(0, 2), Point(2, 0)) assert e1.bounds == (-3, -5, 3, 5) assert e2.bounds == (-5, -9, 9, 5) assert c1.bounds == (-5, -9, 9, 5) assert c2.bounds == (-2, -2, 2, 2) def test_reflect(): b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) t1 = Triangle((0, 0), (1, 0), (2, 3)) assert t1.area == -t1.reflect(l).area e = Ellipse((1, 0), 1, 2) assert e.area == -e.reflect(Line((1, 0), slope=0)).area assert e.area == -e.reflect(Line((1, 0), slope=oo)).area raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m))) def test_is_tangent(): e1 = Ellipse(Point(0, 0), 3, 5) c1 = Circle(Point(2, -2), 7) assert e1.is_tangent(Point(0, 0)) is False assert e1.is_tangent(Point(3, 0)) is False assert e1.is_tangent(e1) is True assert e1.is_tangent(Ellipse((0, 0), 1, 2)) is False assert e1.is_tangent(Ellipse((0, 0), 3, 2)) is True assert c1.is_tangent(Ellipse((2, -2), 7, 1)) is True assert c1.is_tangent(Circle((11, -2), 2)) is True assert c1.is_tangent(Circle((7, -2), 2)) is True assert c1.is_tangent(Ray((-5, -2), (-15, -20))) is False assert c1.is_tangent(Ray((-3, -2), (-15, -20))) is False assert c1.is_tangent(Ray((-3, -22), (15, 20))) is False assert c1.is_tangent(Ray((9, 20), (9, -20))) is True assert e1.is_tangent(Segment((2, 2), (-7, 7))) is False assert e1.is_tangent(Segment((0, 0), (1, 2))) is False assert c1.is_tangent(Segment((0, 0), (-5, -2))) is False assert e1.is_tangent(Segment((3, 0), (12, 12))) is False assert e1.is_tangent(Segment((12, 12), (3, 0))) is False assert e1.is_tangent(Segment((-3, 0), (3, 0))) is False assert e1.is_tangent(Segment((-3, 5), (3, 5))) is True assert e1.is_tangent(Line((0, 0), (1, 1))) is False assert e1.is_tangent(Line((-3, 0), (-2.99, -0.001))) is False assert e1.is_tangent(Line((-3, 0), (-3, 1))) is True assert e1.is_tangent(Polygon((0, 0), (5, 5), (5, -5))) is False assert e1.is_tangent(Polygon((-100, -50), (-40, -334), (-70, -52))) is False assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 1))) is False assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 5))) is False assert e1.is_tangent(Polygon((-3, 0), (0, -5), (3, 0), (0, 5))) is False assert e1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is True assert c1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is False assert e1.is_tangent(Polygon((0, 0), (3, 0), (7, 7), (0, 5))) is False assert e1.is_tangent(Polygon((3, 12), (3, -12), (6, 5))) is True assert e1.is_tangent(Polygon((3, 12), (3, -12), (0, -5), (0, 5))) is False assert e1.is_tangent(Polygon((3, 0), (5, 7), (6, -5))) is False raises(TypeError, lambda: e1.is_tangent(Point(0, 0, 0))) raises(TypeError, lambda: e1.is_tangent(Rational(5))) def test_parameter_value(): t = Symbol('t') e = Ellipse(Point(0, 0), 3, 5) assert e.parameter_value((3, 0), t) == {t: 0} raises(ValueError, lambda: e.parameter_value((4, 0), t)) def test_second_moment_of_area(): x, y = symbols('x, y') e = Ellipse(Point(0, 0), 5, 4) I_yy = 2*4*integrate(sqrt(25 - x**2)*x**2, (x, -5, 5))/5 I_xx = 2*5*integrate(sqrt(16 - y**2)*y**2, (y, -4, 4))/4 Y = 3*sqrt(1 - x**2/5**2) I_xy = integrate(integrate(y, (y, -Y, Y))*x, (x, -5, 5)) assert I_yy == e.second_moment_of_area()[1] assert I_xx == e.second_moment_of_area()[0] assert I_xy == e.second_moment_of_area()[2] def test_circumference(): M = Symbol('M') m = Symbol('m') assert Ellipse(Point(0, 0), M, m).circumference == 4 * M * elliptic_e((M ** 2 - m ** 2) / M**2) assert Ellipse(Point(0, 0), 5, 4).circumference == 20 * elliptic_e(S(9) / 25) # degenerate ellipse assert Ellipse(None, 1, None, 1).length == 2 # circle assert Ellipse(None, 1, None, 0).circumference == 2*pi # test numerically assert abs(Ellipse(None, hradius=5, vradius=3).circumference.evalf(16) - 25.52699886339813) < 1e-10 def test_issue_15259(): assert Circle((1, 2), 0) == Point(1, 2)
91c533c3a7c18d5a252d17baf652863b5be7af16c50eade1ca69aa785623fc10
from sympy import Symbol, sqrt, Derivative, S from sympy.geometry import Point, Point2D, Line, Circle ,Polygon, Segment, convex_hull, intersection, centroid from sympy.geometry.util import idiff, closest_points, farthest_points, _ordered_points from sympy.solvers.solvers import solve from sympy.utilities.pytest import raises def test_idiff(): x = Symbol('x', real=True) y = Symbol('y', real=True) t = Symbol('t', real=True) # the use of idiff in ellipse also provides coverage circ = x**2 + y**2 - 4 ans = -3*x*(x**2 + y**2)/y**5 assert ans == idiff(circ, y, x, 3).simplify() assert ans == idiff(circ, [y], x, 3).simplify() assert idiff(circ, y, x, 3).simplify() == ans explicit = 12*x/sqrt(-x**2 + 4)**5 assert ans.subs(y, solve(circ, y)[0]).equals(explicit) assert True in [sol.diff(x, 3).equals(explicit) for sol in solve(circ, y)] assert idiff(x + t + y, [y, t], x) == -Derivative(t, x) - 1 def test_intersection(): assert intersection(Point(0, 0)) == [] raises(TypeError, lambda: intersection(Point(0, 0), 3)) assert intersection( Segment((0, 0), (2, 0)), Segment((-1, 0), (1, 0)), Line((0, 0), (0, 1)), pairwise=True) == [ Point(0, 0), Segment((0, 0), (1, 0))] assert intersection( Line((0, 0), (0, 1)), Segment((0, 0), (2, 0)), Segment((-1, 0), (1, 0)), pairwise=True) == [ Point(0, 0), Segment((0, 0), (1, 0))] assert intersection( Line((0, 0), (0, 1)), Segment((0, 0), (2, 0)), Segment((-1, 0), (1, 0)), Line((0, 0), slope=1), pairwise=True) == [ Point(0, 0), Segment((0, 0), (1, 0))] def test_convex_hull(): raises(TypeError, lambda: convex_hull(Point(0, 0), 3)) points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)] assert convex_hull(*points, **dict(polygon=False)) == ( [Point2D(-5, -2), Point2D(1, -1), Point2D(3, -1), Point2D(15, -4)], [Point2D(-5, -2), Point2D(15, -4)]) def test_centroid(): p = Polygon((0, 0), (10, 0), (10, 10)) q = p.translate(0, 20) assert centroid(p, q) == Point(20, 40)/3 p = Segment((0, 0), (2, 0)) q = Segment((0, 0), (2, 2)) assert centroid(p, q) == Point(1, -sqrt(2) + 2) assert centroid(Point(0, 0), Point(2, 0)) == Point(2, 0)/2 assert centroid(Point(0, 0), Point(0, 0), Point(2, 0)) == Point(2, 0)/3 def test_farthest_points_closest_points(): from random import randint from sympy.utilities.iterables import subsets for how in (min, max): if how is min: func = closest_points else: func = farthest_points raises(ValueError, lambda: func(Point2D(0, 0), Point2D(0, 0))) # 3rd pt dx is close and pt is closer to 1st pt p1 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 1)] # 3rd pt dx is close and pt is closer to 2nd pt p2 = [Point2D(0, 0), Point2D(3, 0), Point2D(2, 1)] # 3rd pt dx is close and but pt is not closer p3 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 10)] # 3rd pt dx is not closer and it's closer to 2nd pt p4 = [Point2D(0, 0), Point2D(3, 0), Point2D(4, 0)] # 3rd pt dx is not closer and it's closer to 1st pt p5 = [Point2D(0, 0), Point2D(3, 0), Point2D(-1, 0)] # duplicate point doesn't affect outcome dup = [Point2D(0, 0), Point2D(3, 0), Point2D(3, 0), Point2D(-1, 0)] # symbolic x = Symbol('x', positive=True) s = [Point2D(a) for a in ((x, 1), (x + 3, 2), (x + 2, 2))] for points in (p1, p2, p3, p4, p5, s, dup): d = how(i.distance(j) for i, j in subsets(points, 2)) ans = a, b = list(func(*points))[0] a.distance(b) == d assert ans == _ordered_points(ans) # if the following ever fails, the above tests were not sufficient # and the logical error in the routine should be fixed points = set() while len(points) != 7: points.add(Point2D(randint(1, 100), randint(1, 100))) points = list(points) d = how(i.distance(j) for i, j in subsets(points, 2)) ans = a, b = list(func(*points))[0] a.distance(b) == d assert ans == _ordered_points(ans) # equidistant points a, b, c = ( Point2D(0, 0), Point2D(1, 0), Point2D(S(1)/2, sqrt(3)/2)) ans = set([_ordered_points((i, j)) for i, j in subsets((a, b, c), 2)]) assert closest_points(b, c, a) == ans assert farthest_points(b, c, a) == ans # unique to farthest points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)] assert farthest_points(*points) == set( [(Point2D(-5, 2), Point2D(15, 4))]) points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)] assert farthest_points(*points) == set( [(Point2D(-5, -2), Point2D(15, -4))]) assert farthest_points((1, 1), (0, 0)) == set( [(Point2D(0, 0), Point2D(1, 1))]) raises(ValueError, lambda: farthest_points((1, 1)))
2540c04a90701f55eeef863b2e00a434fe4912cd7348a2e4db184fae3f00d6f9
from sympy import I, Rational, Symbol, pi, sqrt from sympy.geometry import Line, Point, Point2D, Point3D, Line3D, Plane from sympy.geometry.entity import rotate, scale, translate from sympy.matrices import Matrix from sympy.utilities.iterables import subsets, permutations, cartes from sympy.utilities.pytest import raises, warns import traceback import sys def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = Rational(1, 2) p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) line = Line(Point(1,0), slope = 1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert p4*5 == Point(5, 5) assert -p2 == Point(-y1, -y2) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2*I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) # distance should be symmetric assert p1.distance(line) == line.distance(p1) assert p4.distance(line) == line.distance(p4) assert Point.taxicab_distance(p4, p3) == 2 assert Point.canberra_distance(p4, p5) == 1 p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) with warns(UserWarning): assert Point.is_collinear(p3, Point(p3, dim=4)) assert p3.is_collinear() assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) for pts in permutations((p2_1, p2_2, p2_3, p2_5)): assert Point.is_concyclic(*pts) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi/2) == Point(0, 1) assert p.rotate(pi/2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) def test_point3D(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) x3 = Symbol('x3', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) y3 = Symbol('y3', real=True) half = Rational(1, 2) p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert p4*5 == Point3D(5, 5, 5) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2, half + half*x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) Point3D.are_collinear(p3) assert Point3D.are_collinear(p3, p4) assert Point3D.are_collinear(p3, p4, p1_1, p1_2) assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.are_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b = Rational(1, 2), Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2)) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2) # Test __new__ assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float # Test length property returns correctly assert p.length == 0 assert p1_1.length == 0 assert p1_2.length == 0 # Test are_colinear type error raises(TypeError, lambda: Point3D.are_collinear(p, x)) # Test are_coplanar assert Point.are_coplanar() assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0)) assert Point.are_coplanar((1, 2, 0), (1, 2, 3)) with warns(UserWarning): raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3))) assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3)) assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False planar2 = Point3D(1, -1, 1) planar3 = Point3D(-1, 1, 1) assert Point3D.are_coplanar(p, planar2, planar3) == True assert Point3D.are_coplanar(p, planar2, planar3, p3) == False assert Point.are_coplanar(p, planar2) planar2 = Point3D(1, 1, 2) planar3 = Point3D(1, 1, 3) assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)) assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)]) # all 2D points are coplanar assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True # Test Intersection assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)] # Test Scale assert planar2.scale(1, 1, 1) == planar2 assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1) assert planar2.scale(1, 1, 1, p3) == planar2 # Test Transform identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) assert p.transform(identity) == p trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]]) assert p.transform(trans) == Point3D(2, 2, 2) raises(ValueError, lambda: p.transform(p)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # Test Equals assert p.equals(x1) == False # Test __sub__ p_4d = Point(0, 0, 0, 1) with warns(UserWarning): assert p - p_4d == Point(1, 1, 1, -1) p_4d3d = Point(0, 0, 1, 0) with warns(UserWarning): assert p - p_4d3d == Point(1, 1, 0, 0) def test_Point2D(): # Test Distance p1 = Point2D(1, 5) p2 = Point2D(4, 2.5) p3 = (6, 3) assert p1.distance(p2) == sqrt(61)/2 assert p2.distance(p3) == sqrt(17)/2 def test_issue_9214(): p1 = Point3D(4, -2, 6) p2 = Point3D(1, 2, 3) p3 = Point3D(7, 2, 3) assert Point3D.are_collinear(p1, p2, p3) is False def test_issue_11617(): p1 = Point3D(1,0,2) p2 = Point2D(2,0) with warns(UserWarning): assert p1.distance(p2) == sqrt(5) def test_transform(): p = Point(1, 1) assert p.transform(rotate(pi/2)) == Point(-1, 1) assert p.transform(scale(3, 2)) == Point(3, 2) assert p.transform(translate(1, 2)) == Point(2, 3) assert Point(1, 1).scale(2, 3, (4, 5)) == \ Point(-2, -7) assert Point(1, 1).translate(4, 5) == \ Point(5, 6) def test_concyclic_doctest_bug(): p1, p2 = Point(-1, 0), Point(1, 0) p3, p4 = Point(0, 1), Point(-1, 2) assert Point.is_concyclic(p1, p2, p3) assert not Point.is_concyclic(p1, p2, p3, p4) def test_arguments(): """Functions accepting `Point` objects in `geometry` should also accept tuples and lists and automatically convert them to points.""" singles2d = ((1,2), [1,2], Point(1,2)) singles2d2 = ((1,3), [1,3], Point(1,3)) doubles2d = cartes(singles2d, singles2d2) p2d = Point2D(1,2) singles3d = ((1,2,3), [1,2,3], Point(1,2,3)) doubles3d = subsets(singles3d, 2) p3d = Point3D(1,2,3) singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4)) doubles4d = subsets(singles4d, 2) p4d = Point(1,2,3,4) # test 2D test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__'] test_double = ['is_concyclic', 'is_collinear'] for p in singles2d: Point2D(p) for func in test_single: for p in singles2d: getattr(p2d, func)(p) for func in test_double: for p in doubles2d: getattr(p2d, func)(*p) # test 3D test_double = ['is_collinear'] for p in singles3d: Point3D(p) for func in test_single: for p in singles3d: getattr(p3d, func)(p) for func in test_double: for p in doubles2d: getattr(p3d, func)(*p) # test 4D test_double = ['is_collinear'] for p in singles4d: Point(p) for func in test_single: for p in singles4d: getattr(p4d, func)(p) for func in test_double: for p in doubles4d: getattr(p4d, func)(*p) # test evaluate=False for ops x = Symbol('x') a = Point(0, 1) assert a + (0.1, x) == Point(0.1, 1 + x) a = Point(0, 1) assert a/10.0 == Point(0.0, 0.1) a = Point(0, 1) assert a*10.0 == Point(0.0, 10.0) # test evaluate=False when changing dimensions u = Point(.1, .2, evaluate=False) u4 = Point(u, dim=4, on_morph='ignore') assert u4.args == (.1, .2, 0, 0) assert all(i.is_Float for i in u4.args[:2]) # and even when *not* changing dimensions assert all(i.is_Float for i in Point(u).args) # never raise error if creating an origin assert Point(dim=3, on_morph='error') def test_unit(): assert Point(1, 1).unit == Point(sqrt(2)/2, sqrt(2)/2) def test_dot(): raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1)))) def test__normalize_dimension(): assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [ Point(1, 2), Point(3, 4)] assert Point._normalize_dimension( Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [ Point(1, 2, 0), Point(3, 4, 0)] def test_direction_cosine(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0] assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0] assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1] assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0] assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0] assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1] assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2)/2, sqrt(2)/2, 0] assert p1.direction_cosine(Point3D(1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3] assert p1.direction_cosine(Point3D(-12, 0 -15)) == [-4*sqrt(41)/41, -5*sqrt(41)/41, 0] assert p2.direction_cosine(Point3D(0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3] assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1] assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]
627f6fb581c84c281670377ec539731e6ae131158c7e93ecef9f6887e7c9eae2
from sympy import Symbol, pi, sqrt, Rational from sympy.geometry import Circle, Ellipse, Line, Point, Polygon, Ray, RegularPolygon, Segment, Triangle, Parabola from sympy.geometry.entity import scale from sympy.utilities.pytest import raises from random import random def test_subs(): x = Symbol('x', real=True) y = Symbol('y', real=True) p = Point(x, 2) q = Point(1, 1) r = Point(3, 4) for o in [p, Segment(p, q), Ray(p, q), Line(p, q), Triangle(p, q, r), RegularPolygon(p, 3, 6), Polygon(p, q, r, Point(5, 4)), Circle(p, 3), Ellipse(p, 3, 4)]: assert 'y' in str(o.subs(x, y)) assert p.subs({x: 1}) == Point(1, 2) assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4) assert Point(1, 2).subs((1, 2), Point(3, 4)) == Point(3, 4) assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4) assert Point(1, 2).subs({(1, 2)}) == Point(2, 2) raises(ValueError, lambda: Point(1, 2).subs(1)) raises(ValueError, lambda: Point(1, 1).subs((Point(1, 1), Point(1, 2)), 1, 2)) def test_transform(): assert scale(1, 2, (3, 4)).tolist() == \ [[1, 0, 0], [0, 2, 0], [0, -4, 1]] def test_reflect_entity_overrides(): x = Symbol('x', real=True) y = Symbol('y', real=True) b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) c = Circle((x, y), 3) cr = c.reflect(l) assert cr == Circle(r, -3) assert c.area == -cr.area pent = RegularPolygon((1, 2), 1, 5) l = Line(pent.vertices[1], slope=Rational(random() - .5, random() - .5)) rpent = pent.reflect(l) assert rpent.center == pent.center.reflect(l) rvert = [i.reflect(l) for i in pent.vertices] for v in rpent.vertices: for i in range(len(rvert)): ri = rvert[i] if ri.equals(v): rvert.remove(ri) break assert not rvert assert pent.area.equals(-rpent.area)
f3084ea9359a03ad3ae0ae4b25d011b4b752822704d6d03792870c9eb0a64a8f
from sympy import Abs, Rational, Float, S, Symbol, symbols, cos, pi, sqrt, oo from sympy.functions.elementary.trigonometric import tan from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D, Polygon, Ray, RegularPolygon, Segment, Triangle, are_similar, convex_hull, intersection, Line) from sympy.utilities.pytest import raises, slow, warns from sympy.utilities.randtest import verify_numerically from sympy.geometry.polygon import rad, deg from sympy import integrate def feq(a, b): """Test if two floating point values are 'equal'.""" t_float = Float("1.0E-10") return -t_float < a - b < t_float @slow def test_polygon(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) half = Rational(1, 2) a, b, c = Point(0, 0), Point(2, 0), Point(3, 3) t = Triangle(a, b, c) assert Polygon(a, Point(1, 0), b, c) == t assert Polygon(Point(1, 0), b, c, a) == t assert Polygon(b, c, a, Point(1, 0)) == t # 2 "remove folded" tests assert Polygon(a, Point(3, 0), b, c) == t assert Polygon(a, b, Point(3, -1), b, c) == t # remove multiple collinear points assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15), Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15), Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15), Point(15, -3), Point(15, 10), Point(15, 15)) == \ Polygon(Point(-15,-15), Point(15,-15), Point(15,15), Point(-15,15)) p1 = Polygon( Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon( Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon( Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon( Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon( Point(0, 0), Point(4, 4), Point(0, 4)) p6 = Polygon( Point(-11, 1), Point(-9, 6.6), Point(-4, -3), Point(-8.4, -8.7)) r = Ray(Point(-9,6.6), Point(-9,5.5)) # # General polygon # assert p1 == p2 assert len(p1.args) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0) ).is_convex() is False # ensure convex for both CW and CCW point specification assert p3.is_convex() assert p4.is_convex() dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) is None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) is False assert p5.encloses_point(Point(4, 0)) is False assert p1.encloses(Circle(Point(2.5,2.5),5)) is False assert p1.encloses(Ellipse(Point(2.5,2),5,6)) is False p5.plot_interval('x') == [x, 0, 1] assert p5.distance( Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance( Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 with warns(UserWarning, match="Polygons may intersect producing erroneous output"): Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance( Polygon(Point(0, 0), Point(0, 1), Point(1, 1))) assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \ Point(0, 0) raises(ValueError, lambda: Polygon( Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x')) assert p6.intersection(r) == [Point(-9, -84/13), Point(-9, 33/5)] # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2)) raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5)) assert p1 != p2 assert p1.interior_angle == 3*pi/5 assert p1.exterior_angle == 2*pi/5 assert p2.apothem == 5*cos(pi/5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) is False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi/3) assert p1.rotation == pi/3 assert p1.vertices[0] == Point(5, 5*sqrt(3)) for var in p1.args: if isinstance(var, Point): assert var == Point(0, 0) else: assert var == 5 or var == 10 or var == pi / 3 assert p1 != Point(0, 0) assert p1 != p5 # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, 2*pi/3) assert p1 == p1_old assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5)) assert p1.length == 20*sqrt(-sqrt(5)/8 + 5/8) assert p1.scale(2, 2) == \ RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation) assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \ Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3)) assert repr(p1) == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, lambda: Triangle(Point(0, 0))) # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() is False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf()/2) assert t1.is_equilateral() is False assert t2.is_equilateral() assert t3.is_equilateral() is False assert are_similar(t1, t2) is False assert are_similar(t1, t3) assert are_similar(t2, t3) is False assert t1.is_similar(Point(0, 0)) is False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) ic = (250 - 125*sqrt(2)) / 50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2 assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6 assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1)) # Exradius assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2 # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Nine-point circle assert t1.nine_point_circle == Circle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) assert t1.nine_point_circle == Circle(Point(0, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2].equals(s1[0]) assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 t = S('''Triangle( Point(100080156402737/5000000000000, 79782624633431/500000000000), Point(39223884078253/2000000000000, 156345163124289/1000000000000), Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''') assert t.orthocenter == S('''Point(-780660869050599840216997''' '''79471538701955848721853/80368430960602242240789074233100000000000000,''' '''20151573611150265741278060334545897615974257/16073686192120448448157''' '''8148466200000000000)''') # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon( Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5)/4), Point(1, Rational(5)/4), Point(1, Rational(9)/4), Point(0, Rational(9)/4)) p3 = Polygon( Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon( Point(1, 1), Point(Rational(6)/5, 1), Point(1, Rational(6)/5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3)/4 assert p3.distance(pt2) == sqrt(2)/2 '''Polygon to Polygon''' # p1.distance(p2) emits a warning with warns(UserWarning, match="Polygons may intersect producing erroneous output"): assert p1.distance(p2) == half/2 assert p1.distance(p3) == sqrt(2)/2 # p3.distance(p4) emits a warning with warns(UserWarning, match="Polygons may intersect producing erroneous output"): assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2) def test_convex_hull(): p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), Point(4, -1), Point(6, 2)] ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1]) #test handling of duplicate points p.append(p[3]) #more than 3 collinear points another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), Point(-45, -24)] ch2 = Segment(another_p[0], another_p[1]) assert convex_hull(*another_p) == ch2 assert convex_hull(*p) == ch assert convex_hull(p[0]) == p[0] assert convex_hull(p[0], p[1]) == Segment(p[0], p[1]) # no unique points assert convex_hull(*[p[-1]]*3) == p[-1] # collection of items assert convex_hull(*[Point(0, 0), Segment(Point(1, 0), Point(1, 1)), RegularPolygon(Point(2, 0), 2, 4)]) == \ Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2)) def test_encloses(): # square with a dimpled left side s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), Point(S.Half, S.Half)) # the following is True if the polygon isn't treated as closing on itself assert s.encloses(Point(0, S.Half)) is False assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex assert s.encloses(Point(Rational(3, 4), S.Half)) is True def test_triangle_kwargs(): assert Triangle(sss=(3, 4, 5)) == \ Triangle(Point(0, 0), Point(3, 0), Point(3, 4)) assert Triangle(asa=(30, 2, 30)) == \ Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3)) assert Triangle(sas=(1, 45, 2)) == \ Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2)) assert Triangle(sss=(1, 2, 5)) is None assert deg(rad(180)) == 180 def test_transform(): pts = [Point(0, 0), Point(S(1)/2, S(1)/4), Point(1, 1)] pts_out = [Point(-4, -10), Point(-3, -S(37)/4), Point(-2, -7)] assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out) assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \ Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13)) def test_reflect(): x = Symbol('x', real=True) y = Symbol('y', real=True) b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) dp = l.perpendicular_segment(p).length dr = l.perpendicular_segment(r).length assert verify_numerically(dp, dr) t = Triangle((0, 0), (1, 0), (2, 3)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \ == Triangle(Point(5, 0), Point(4, 0), Point(4, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \ == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \ == Triangle(Point(1, 6), Point(2, 6), Point(2, 4)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \ == Triangle(Point(1, 0), Point(2, 0), Point(2, -2)) def test_eulerline(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \ == Line(Point2D(0, 0), Point2D(S(1)/2, S(1)/2)) assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \ == Point2D(5, 5*sqrt(3)/3) assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \ == Line(Point2D(S(64)/7, 3), Point2D(-S(29)/14, -S(7)/2)) def test_intersection(): poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1)) poly2 = Polygon(Point(0, 1), Point(-5, 0), Point(0, -4), Point(0, S(1)/5), Point(S(1)/2, -0.1), Point(1,0), Point(0, 1)) assert poly1.intersection(poly2) == [Point2D(S(1)/3, 0), Segment(Point(0, S(1)/5), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(poly1) == [Point(S(1)/3, 0), Segment(Point(0, 0), Point(0, S(1)/5)), Segment(Point(1, 0), Point(0, 1))] assert poly1.intersection(Point(0, 0)) == [Point(0, 0)] assert poly1.intersection(Point(-12, -43)) == [] assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0), Point(0, 0), Point(S(1)/3, 0), Point(1, 0)] assert poly2.intersection(Line((-12, 12), (12, 12))) == [] assert poly2.intersection(Ray((-3,4), (1,0))) == [Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2), Point(0, 0)] assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)), Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)), Segment(Point(0, -4), Point(0, S(1)/5)), Segment(Point(0, S(1)/5), Point(S(1)/2, -S(1)/10)), Segment(Point(0, 1), Point(-5, 0)), Segment(Point(S(1)/2, -S(1)/10), Point(1, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) == [Point(-S(5)/7, S(6)/7), Segment(Point2D(0, 1), Point(1, 0))] assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == [] def test_parameter_value(): t = Symbol('t') sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0)) assert sq.parameter_value((0.5, 1), t) == {t: S(3)/8} q = Polygon((0, 0), (2, 1), (2, 4), (4, 0)) assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708 raises(ValueError, lambda: sq.parameter_value((5, 6), t)) def test_issue_12966(): poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5), Point(10, 5), Point(10, 0)) t = Symbol('t') pt = poly.arbitrary_point(t) DELTA = 5/poly.perimeter assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [ Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10), Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)] def test_second_moment_of_area(): x, y = symbols('x, y') # triangle p1, p2, p3 = [(0, 0), (4, 0), (0, 2)] p = (0, 0) # equation of hypotenuse eq_y = (1-x/4)*2 I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4)) I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4)) I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4)) triangle = Polygon(p1, p2, p3) assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0 assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0 assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0 # rectangle p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)] I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4)) I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4)) I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4)) rectangle = Polygon(p1, p2, p3, p4) assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0 assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0 assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0
e606fa511104e31c4185276a462f41a35e55b595863318e1756aa1ff66dd96dc
from sympy import Rational, oo, sqrt, S from sympy import Line, Point, Point2D, Parabola, Segment2D, Ray2D from sympy import Circle, Ellipse from sympy.utilities.pytest import raises def test_parabola_geom(): p1 = Point(0, 0) p2 = Point(3, 7) p3 = Point(0, 4) p4 = Point(6, 0) d1 = Line(Point(4, 0), Point(4, 9)) d2 = Line(Point(7, 6), Point(3, 6)) d3 = Line(Point(4, 0), slope=oo) d4 = Line(Point(7, 6), slope=0) half = Rational(1, 2) pa1 = Parabola(None, d2) pa2 = Parabola(directrix=d1) pa3 = Parabola(p1, d1) pa4 = Parabola(p2, d2) pa5 = Parabola(p2, d4) pa6 = Parabola(p3, d2) pa7 = Parabola(p2, d1) pa8 = Parabola(p4, d1) pa9 = Parabola(p4, d3) raises(ValueError, lambda: Parabola(Point(7, 8, 9), Line(Point(6, 7), Point(7, 7)))) raises(NotImplementedError, lambda: Parabola(Point(7, 8), Line(Point(3, 7), Point(2, 9)))) raises(ValueError, lambda: Parabola(Point(0, 2), Line(Point(7, 2), Point(6, 2)))) raises(ValueError, lambda: Parabola(Point(7, 8), Point(3, 8))) # Basic Stuff assert pa1.focus == Point(0, 0) assert pa2 == pa3 assert pa4 != pa7 assert pa6 != pa7 assert pa6.focus == Point2D(0, 4) assert pa6.focal_length == 1 assert pa6.p_parameter == -1 assert pa6.vertex == Point2D(0, 5) assert pa6.eccentricity == 1 assert pa7.focus == Point2D(3, 7) assert pa7.focal_length == half assert pa7.p_parameter == -half assert pa7.vertex == Point2D(7*half, 7) assert pa4.focal_length == half assert pa4.p_parameter == half assert pa4.vertex == Point2D(3, 13*half) assert pa8.focal_length == 1 assert pa8.p_parameter == 1 assert pa8.vertex == Point2D(5, 0) assert pa4.focal_length == pa5.focal_length assert pa4.p_parameter == pa5.p_parameter assert pa4.vertex == pa5.vertex assert pa4.equation() == pa5.equation() assert pa8.focal_length == pa9.focal_length assert pa8.p_parameter == pa9.p_parameter assert pa8.vertex == pa9.vertex assert pa8.equation() == pa9.equation() def test_parabola_intersection(): l1 = Line(Point(1, -2), Point(-1,-2)) l2 = Line(Point(1, 2), Point(-1,2)) l3 = Line(Point(1, 0), Point(-1,0)) p1 = Point(0,0) p2 = Point(0, -2) p3 = Point(120, -12) parabola1 = Parabola(p1, l1) # parabola with parabola assert parabola1.intersection(parabola1) == [parabola1] assert parabola1.intersection(Parabola(p1, l2)) == [Point2D(-2, 0), Point2D(2, 0)] assert parabola1.intersection(Parabola(p2, l3)) == [Point2D(0, -1)] assert parabola1.intersection(Parabola(Point(16, 0), l1)) == [Point2D(8, 15)] assert parabola1.intersection(Parabola(Point(0, 16), l1)) == [Point2D(-6, 8), Point2D(6, 8)] assert parabola1.intersection(Parabola(p3, l3)) == [] # parabola with point assert parabola1.intersection(p1) == [] assert parabola1.intersection(Point2D(0, -1)) == [Point2D(0, -1)] assert parabola1.intersection(Point2D(4, 3)) == [Point2D(4, 3)] # parabola with line assert parabola1.intersection(Line(Point2D(-7, 3), Point(12, 3))) == [Point2D(-4, 3), Point2D(4, 3)] assert parabola1.intersection(Line(Point(-4, -1), Point(4, -1))) == [Point(0, -1)] assert parabola1.intersection(Line(Point(2, 0), Point(0, -2))) == [Point2D(2, 0)] # parabola with segment assert parabola1.intersection(Segment2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)] assert parabola1.intersection(Segment2D((0, -5), (0, 6))) == [Point2D(0, -1)] assert parabola1.intersection(Segment2D((-12, -65), (14, -68))) == [] # parabola with ray assert parabola1.intersection(Ray2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)] assert parabola1.intersection(Ray2D((0, 7), (1, 14))) == [Point2D(14 + 2*sqrt(57), 105 + 14*sqrt(57))] assert parabola1.intersection(Ray2D((0, 7), (0, 14))) == [] # parabola with ellipse/circle assert parabola1.intersection(Circle(p1, 2)) == [Point2D(-2, 0), Point2D(2, 0)] assert parabola1.intersection(Circle(p2, 1)) == [Point2D(0, -1), Point2D(0, -1)] assert parabola1.intersection(Ellipse(p2, 2, 1)) == [Point2D(0, -1), Point2D(0, -1)] assert parabola1.intersection(Ellipse(Point(0, 19), 5, 7)) == [] assert parabola1.intersection(Ellipse((0, 3), 12, 4)) == \ [Point2D(0, -1), Point2D(0, -1), Point2D(-4*sqrt(17)/3, S(59)/9), Point2D(4*sqrt(17)/3, S(59)/9)]
2a959546f1259b86c12d04a6c08be77366628af9536592a8993ae61a6c4413cb
from sympy import Symbol, pi, symbols, Tuple, S, sqrt, asinh from sympy.geometry import Curve, Line, Point, Ellipse, Ray, Segment, Circle, Polygon, RegularPolygon from sympy.utilities.pytest import raises, slow def test_curve(): x = Symbol('x', real=True) s = Symbol('s') z = Symbol('z') # this curve is independent of the indicated parameter c = Curve([2*s, s**2], (z, 0, 2)) assert c.parameter == z assert c.functions == (2*s, s**2) assert c.arbitrary_point() == Point(2*s, s**2) assert c.arbitrary_point(z) == Point(2*s, s**2) # this is how it is normally used c = Curve([2*s, s**2], (s, 0, 2)) assert c.parameter == s assert c.functions == (2*s, s**2) t = Symbol('t') # the t returned as assumptions assert c.arbitrary_point() != Point(2*t, t**2) t = Symbol('t', real=True) # now t has the same assumptions so the test passes assert c.arbitrary_point() == Point(2*t, t**2) assert c.arbitrary_point(z) == Point(2*z, z**2) assert c.arbitrary_point(c.parameter) == Point(2*s, s**2) assert c.arbitrary_point(None) == Point(2*s, s**2) assert c.plot_interval() == [t, 0, 2] assert c.plot_interval(z) == [z, 0, 2] assert Curve([x, x], (x, 0, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate( 1, 3).arbitrary_point(s) == \ Line((0, 0), (1, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate( 1, 3).arbitrary_point(s) == \ Point(-2*s + 7, 3*s + 6) raises(ValueError, lambda: Curve((s), (s, 1, 2))) raises(ValueError, lambda: Curve((x, x * 2), (1, x))) raises(ValueError, lambda: Curve((s, s + t), (s, 1, 2)).arbitrary_point()) raises(ValueError, lambda: Curve((s, s + t), (t, 1, 2)).arbitrary_point(s)) @slow def test_free_symbols(): a, b, c, d, e, f, s = symbols('a:f,s') assert Point(a, b).free_symbols == {a, b} assert Line((a, b), (c, d)).free_symbols == {a, b, c, d} assert Ray((a, b), (c, d)).free_symbols == {a, b, c, d} assert Ray((a, b), angle=c).free_symbols == {a, b, c} assert Segment((a, b), (c, d)).free_symbols == {a, b, c, d} assert Line((a, b), slope=c).free_symbols == {a, b, c} assert Curve((a*s, b*s), (s, c, d)).free_symbols == {a, b, c, d} assert Ellipse((a, b), c, d).free_symbols == {a, b, c, d} assert Ellipse((a, b), c, eccentricity=d).free_symbols == \ {a, b, c, d} assert Ellipse((a, b), vradius=c, eccentricity=d).free_symbols == \ {a, b, c, d} assert Circle((a, b), c).free_symbols == {a, b, c} assert Circle((a, b), (c, d), (e, f)).free_symbols == \ {e, d, c, b, f, a} assert Polygon((a, b), (c, d), (e, f)).free_symbols == \ {e, b, d, f, a, c} assert RegularPolygon((a, b), c, d, e).free_symbols == {e, a, b, c, d} def test_transform(): x = Symbol('x', real=True) y = Symbol('y', real=True) c = Curve((x, x**2), (x, 0, 1)) cout = Curve((2*x - 4, 3*x**2 - 10), (x, 0, 1)) pts = [Point(0, 0), Point(S(1)/2, S(1)/4), Point(1, 1)] pts_out = [Point(-4, -10), Point(-3, -S(37)/4), Point(-2, -7)] assert c.scale(2, 3, (4, 5)) == cout assert [c.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts assert [cout.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts_out assert Curve((x + y, 3*x), (x, 0, 1)).subs(y, S.Half) == \ Curve((x + S(1)/2, 3*x), (x, 0, 1)) assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \ Curve((x + 4, 3*x + 5), (x, 0, 1)) def test_length(): t = Symbol('t', real=True) c1 = Curve((t, 0), (t, 0, 1)) assert c1.length == 1 c2 = Curve((t, t), (t, 0, 1)) assert c2.length == sqrt(2) c3 = Curve((t ** 2, t), (t, 2, 5)) assert c3.length == -sqrt(17) - asinh(4) / 4 + asinh(10) / 4 + 5 * sqrt(101) / 2 def test_parameter_value(): t = Symbol('t') C = Curve([2*t, t**2], (t, 0, 2)) assert C.parameter_value((2, 1), t) == {t: 1} raises(ValueError, lambda: C.parameter_value((2, 0), t))
4a47205833b70b491cc0e508ced43ae0f04d9035d93d735502d587ac68e41d42
from sympy.holonomic import (DifferentialOperator, HolonomicFunction, DifferentialOperators, from_hyper, from_meijerg, expr_to_holonomic) from sympy.holonomic.recurrence import RecurrenceOperators, HolonomicSequence from sympy import (symbols, hyper, S, sqrt, pi, exp, erf, erfc, sstr, Symbol, O, I, meijerg, sin, cos, log, cosh, besselj, hyperexpand, Ci, EulerGamma, Si, asinh, gamma, beta) from sympy import ZZ, QQ, RR def test_DifferentialOperator(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') assert Dx == R.derivative_operator assert Dx == DifferentialOperator([R.base.zero, R.base.one], R) assert x * Dx + x**2 * Dx**2 == DifferentialOperator([0, x, x**2], R) assert (x**2 + 1) + Dx + x * \ Dx**5 == DifferentialOperator([x**2 + 1, 1, 0, 0, 0, x], R) assert (x * Dx + x**2 + 1 - Dx * (x**3 + x))**3 == (-48 * x**6) + \ (-57 * x**7) * Dx + (-15 * x**8) * Dx**2 + (-x**9) * Dx**3 p = (x * Dx**2 + (x**2 + 3) * Dx**5) * (Dx + x**2) q = (2 * x) + (4 * x**2) * Dx + (x**3) * Dx**2 + \ (20 * x**2 + x + 60) * Dx**3 + (10 * x**3 + 30 * x) * Dx**4 + \ (x**4 + 3 * x**2) * Dx**5 + (x**2 + 3) * Dx**6 assert p == q def test_HolonomicFunction_addition(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx**2 * x, x) q = HolonomicFunction((2) * Dx + (x) * Dx**2, x) assert p == q p = HolonomicFunction(x * Dx + 1, x) q = HolonomicFunction(Dx + 1, x) r = HolonomicFunction((x - 2) + (x**2 - 2) * Dx + (x**2 - x) * Dx**2, x) assert p + q == r p = HolonomicFunction(x * Dx + Dx**2 * (x**2 + 2), x) q = HolonomicFunction(Dx - 3, x) r = HolonomicFunction((-54 * x**2 - 126 * x - 150) + (-135 * x**3 - 252 * x**2 - 270 * x + 140) * Dx +\ (-27 * x**4 - 24 * x**2 + 14 * x - 150) * Dx**2 + \ (9 * x**4 + 15 * x**3 + 38 * x**2 + 30 * x +40) * Dx**3, x) assert p + q == r p = HolonomicFunction(Dx**5 - 1, x) q = HolonomicFunction(x**3 + Dx, x) r = HolonomicFunction((-x**18 + 45*x**14 - 525*x**10 + 1575*x**6 - x**3 - 630*x**2) + \ (-x**15 + 30*x**11 - 195*x**7 + 210*x**3 - 1)*Dx + (x**18 - 45*x**14 + 525*x**10 - \ 1575*x**6 + x**3 + 630*x**2)*Dx**5 + (x**15 - 30*x**11 + 195*x**7 - 210*x**3 + \ 1)*Dx**6, x) assert p+q == r p = x**2 + 3*x + 8 q = x**3 - 7*x + 5 p = p*Dx - p.diff() q = q*Dx - q.diff() r = HolonomicFunction(p, x) + HolonomicFunction(q, x) s = HolonomicFunction((6*x**2 + 18*x + 14) + (-4*x**3 - 18*x**2 - 62*x + 10)*Dx +\ (x**4 + 6*x**3 + 31*x**2 - 10*x - 71)*Dx**2, x) assert r == s def test_HolonomicFunction_multiplication(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx+x+x*Dx**2, x) q = HolonomicFunction(x*Dx+Dx*x+Dx**2, x) r = HolonomicFunction((8*x**6 + 4*x**4 + 6*x**2 + 3) + (24*x**5 - 4*x**3 + 24*x)*Dx + \ (8*x**6 + 20*x**4 + 12*x**2 + 2)*Dx**2 + (8*x**5 + 4*x**3 + 4*x)*Dx**3 + \ (2*x**4 + x**2)*Dx**4, x) assert p*q == r p = HolonomicFunction(Dx**2+1, x) q = HolonomicFunction(Dx-1, x) r = HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x) assert p*q == r p = HolonomicFunction(Dx**2+1+x+Dx, x) q = HolonomicFunction((Dx*x-1)**2, x) r = HolonomicFunction((4*x**7 + 11*x**6 + 16*x**5 + 4*x**4 - 6*x**3 - 7*x**2 - 8*x - 2) + \ (8*x**6 + 26*x**5 + 24*x**4 - 3*x**3 - 11*x**2 - 6*x - 2)*Dx + \ (8*x**6 + 18*x**5 + 15*x**4 - 3*x**3 - 6*x**2 - 6*x - 2)*Dx**2 + (8*x**5 + \ 10*x**4 + 6*x**3 - 2*x**2 - 4*x)*Dx**3 + (4*x**5 + 3*x**4 - x**2)*Dx**4, x) assert p*q == r p = HolonomicFunction(x*Dx**2-1, x) q = HolonomicFunction(Dx*x-x, x) r = HolonomicFunction((x - 3) + (-2*x + 2)*Dx + (x)*Dx**2, x) assert p*q == r def test_addition_initial_condition(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx-1, x, 0, [3]) q = HolonomicFunction(Dx**2+1, x, 0, [1, 0]) r = HolonomicFunction(-1 + Dx - Dx**2 + Dx**3, x, 0, [4, 3, 2]) assert p + q == r p = HolonomicFunction(Dx - x + Dx**2, x, 0, [1, 2]) q = HolonomicFunction(Dx**2 + x, x, 0, [1, 0]) r = HolonomicFunction((-x**4 - x**3/4 - x**2 + S(1)/4) + (x**3 + x**2/4 + 3*x/4 + 1)*Dx + \ (-3*x/2 + S(7)/4)*Dx**2 + (x**2 - 7*x/4 + S(1)/4)*Dx**3 + (x**2 + x/4 + S(1)/2)*Dx**4, x, 0, [2, 2, -2, 2]) assert p + q == r p = HolonomicFunction(Dx**2 + 4*x*Dx + x**2, x, 0, [3, 4]) q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1]) r = HolonomicFunction((x**6 + 2*x**4 - 5*x**2 - 6) + (4*x**5 + 36*x**3 - 32*x)*Dx + \ (x**6 + 3*x**4 + 5*x**2 - 9)*Dx**2 + (4*x**5 + 36*x**3 - 32*x)*Dx**3 + (x**4 + \ 10*x**2 - 3)*Dx**4, x, 0, [4, 5, -1, -17]) assert p + q == r q = HolonomicFunction(Dx**3 + x, x, 2, [3, 0, 1]) p = HolonomicFunction(Dx - 1, x, 2, [1]) r = HolonomicFunction((-x**2 - x + 1) + (x**2 + x)*Dx + (-x - 2)*Dx**3 + \ (x + 1)*Dx**4, x, 2, [4, 1, 2, -5 ]) assert p + q == r p = expr_to_holonomic(sin(x)) q = expr_to_holonomic(1/x, x0=1) r = HolonomicFunction((x**2 + 6) + (x**3 + 2*x)*Dx + (x**2 + 6)*Dx**2 + (x**3 + 2*x)*Dx**3, \ x, 1, [sin(1) + 1, -1 + cos(1), -sin(1) + 2]) assert p + q == r C_1 = symbols('C_1') p = expr_to_holonomic(sqrt(x)) q = expr_to_holonomic(sqrt(x**2-x)) r = (p + q).to_expr().subs(C_1, -I/2).expand() assert r == I*sqrt(x)*sqrt(-x + 1) + sqrt(x) def test_multiplication_initial_condition(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx**2 + x*Dx - 1, x, 0, [3, 1]) q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1]) r = HolonomicFunction((x**4 + 14*x**2 + 60) + 4*x*Dx + (x**4 + 9*x**2 + 20)*Dx**2 + \ (2*x**3 + 18*x)*Dx**3 + (x**2 + 10)*Dx**4, x, 0, [3, 4, 2, 3]) assert p * q == r p = HolonomicFunction(Dx**2 + x, x, 0, [1, 0]) q = HolonomicFunction(Dx**3 - x**2, x, 0, [3, 3, 3]) r = HolonomicFunction((x**8 - 37*x**7/27 - 10*x**6/27 - 164*x**5/9 - 184*x**4/9 + \ 160*x**3/27 + 404*x**2/9 + 8*x + S(40)/3) + (6*x**7 - 128*x**6/9 - 98*x**5/9 - 28*x**4/9 + \ 8*x**3/9 + 28*x**2 + 40*x/9 - 40)*Dx + (3*x**6 - 82*x**5/9 + 76*x**4/9 + 4*x**3/3 + \ 220*x**2/9 - 80*x/3)*Dx**2 + (-2*x**6 + 128*x**5/27 - 2*x**4/3 -80*x**2/9 + S(200)/9)*Dx**3 + \ (3*x**5 - 64*x**4/9 - 28*x**3/9 + 6*x**2 - 20*x/9 - S(20)/3)*Dx**4 + (-4*x**3 + 64*x**2/9 + \ 8*x/3)*Dx**5 + (x**4 - 64*x**3/27 - 4*x**2/3 + S(20)/9)*Dx**6, x, 0, [3, 3, 3, -3, -12, -24]) assert p * q == r p = HolonomicFunction(Dx - 1, x, 0, [2]) q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) r = HolonomicFunction(2 -2*Dx + Dx**2, x, 0, [0, 2]) assert p * q == r q = HolonomicFunction(x*Dx**2 + 1 + 2*Dx, x, 0,[0, 1]) r = HolonomicFunction((x - 1) + (-2*x + 2)*Dx + x*Dx**2, x, 0, [0, 2]) assert p * q == r p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 3]) q = HolonomicFunction(Dx**3 + 1, x, 0, [1, 2, 1]) r = HolonomicFunction(6*Dx + 3*Dx**2 + 2*Dx**3 - 3*Dx**4 + Dx**6, x, 0, [1, 5, 14, 17, 17, 2]) assert p * q == r p = expr_to_holonomic(sin(x)) q = expr_to_holonomic(1/x, x0=1) r = HolonomicFunction(x + 2*Dx + x*Dx**2, x, 1, [sin(1), -sin(1) + cos(1)]) assert p * q == r p = expr_to_holonomic(sqrt(x)) q = expr_to_holonomic(sqrt(x**2-x)) r = (p * q).to_expr() assert r == I*x*sqrt(-x + 1) def test_HolonomicFunction_composition(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx-1, x).composition(x**2+x) r = HolonomicFunction((-2*x - 1) + Dx, x) assert p == r p = HolonomicFunction(Dx**2+1, x).composition(x**5+x**2+1) r = HolonomicFunction((125*x**12 + 150*x**9 + 60*x**6 + 8*x**3) + (-20*x**3 - 2)*Dx + \ (5*x**4 + 2*x)*Dx**2, x) assert p == r p = HolonomicFunction(Dx**2*x+x, x).composition(2*x**3+x**2+1) r = HolonomicFunction((216*x**9 + 324*x**8 + 180*x**7 + 152*x**6 + 112*x**5 + \ 36*x**4 + 4*x**3) + (24*x**4 + 16*x**3 + 3*x**2 - 6*x - 1)*Dx + (6*x**5 + 5*x**4 + \ x**3 + 3*x**2 + x)*Dx**2, x) assert p == r p = HolonomicFunction(Dx**2+1, x).composition(1-x**2) r = HolonomicFunction((4*x**3) - Dx + x*Dx**2, x) assert p == r p = HolonomicFunction(Dx**2+1, x).composition(x - 2/(x**2 + 1)) r = HolonomicFunction((x**12 + 6*x**10 + 12*x**9 + 15*x**8 + 48*x**7 + 68*x**6 + \ 72*x**5 + 111*x**4 + 112*x**3 + 54*x**2 + 12*x + 1) + (12*x**8 + 32*x**6 + \ 24*x**4 - 4)*Dx + (x**12 + 6*x**10 + 4*x**9 + 15*x**8 + 16*x**7 + 20*x**6 + 24*x**5+ \ 15*x**4 + 16*x**3 + 6*x**2 + 4*x + 1)*Dx**2, x) assert p == r def test_from_hyper(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = hyper([1, 1], [S(3)/2], x**2/4) q = HolonomicFunction((4*x) + (5*x**2 - 8)*Dx + (x**3 - 4*x)*Dx**2, x, 1, [2*sqrt(3)*pi/9, -4*sqrt(3)*pi/27 + S(4)/3]) r = from_hyper(p) assert r == q p = from_hyper(hyper([1], [S(3)/2], x**2/4)) q = HolonomicFunction(-x + (-x**2/2 + 2)*Dx + x*Dx**2, x) x0 = 1 y0 = '[sqrt(pi)*exp(1/4)*erf(1/2), -sqrt(pi)*exp(1/4)*erf(1/2)/2 + 1]' assert sstr(p.y0) == y0 assert q.annihilator == p.annihilator def test_from_meijerg(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = from_meijerg(meijerg(([], [S(3)/2]), ([S(1)/2], [S(1)/2, 1]), x)) q = HolonomicFunction(x/2 - S(1)/4 + (-x**2 + x/4)*Dx + x**2*Dx**2 + x**3*Dx**3, x, 1, \ [1/sqrt(pi), 1/(2*sqrt(pi)), -1/(4*sqrt(pi))]) assert p == q p = from_meijerg(meijerg(([], []), ([0], []), x)) q = HolonomicFunction(1 + Dx, x, 0, [1]) assert p == q p = from_meijerg(meijerg(([1], []), ([S(1)/2], [0]), x)) q = HolonomicFunction((x + S(1)/2)*Dx + x*Dx**2, x, 1, [sqrt(pi)*erf(1), exp(-1)]) assert p == q p = from_meijerg(meijerg(([0], [1]), ([0], []), 2*x**2)) q = HolonomicFunction((3*x**2 - 1)*Dx + x**3*Dx**2, x, 1, [-exp(-S(1)/2) + 1, -exp(-S(1)/2)]) assert p == q def test_to_Sequence(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') n = symbols('n', integer=True) _, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn') p = HolonomicFunction(x**2*Dx**4 + x + Dx, x).to_sequence() q = [(HolonomicSequence(1 + (n + 2)*Sn**2 + (n**4 + 6*n**3 + 11*n**2 + 6*n)*Sn**3), 0, 1)] assert p == q p = HolonomicFunction(x**2*Dx**4 + x**3 + Dx**2, x).to_sequence() q = [(HolonomicSequence(1 + (n**4 + 14*n**3 + 72*n**2 + 163*n + 140)*Sn**5), 0, 0)] assert p == q p = HolonomicFunction(x**3*Dx**4 + 1 + Dx**2, x).to_sequence() q = [(HolonomicSequence(1 + (n**4 - 2*n**3 - n**2 + 2*n)*Sn + (n**2 + 3*n + 2)*Sn**2), 0, 0)] assert p == q p = HolonomicFunction(3*x**3*Dx**4 + 2*x*Dx + x*Dx**3, x).to_sequence() q = [(HolonomicSequence(2*n + (3*n**4 - 6*n**3 - 3*n**2 + 6*n)*Sn + (n**3 + 3*n**2 + 2*n)*Sn**2), 0, 1)] assert p == q def test_to_Sequence_Initial_Coniditons(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') n = symbols('n', integer=True) _, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn') p = HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence() q = [(HolonomicSequence(-1 + (n + 1)*Sn, 1), 0)] assert p == q p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_sequence() q = [(HolonomicSequence(1 + (n**2 + 3*n + 2)*Sn**2, [0, 1]), 0)] assert p == q p = HolonomicFunction(Dx**2 + 1 + x**3*Dx, x, 0, [2, 3]).to_sequence() q = [(HolonomicSequence(n + Sn**2 + (n**2 + 7*n + 12)*Sn**4, [2, 3, -1, -S(1)/2, S(1)/12]), 1)] assert p == q p = HolonomicFunction(x**3*Dx**5 + 1 + Dx, x).to_sequence() q = [(HolonomicSequence(1 + (n + 1)*Sn + (n**5 - 5*n**3 + 4*n)*Sn**2), 0, 3)] assert p == q C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3') p = expr_to_holonomic(log(1+x**2)) q = [(HolonomicSequence(n**2 + (n**2 + 2*n)*Sn**2, [0, 0, C_2]), 0, 1)] assert p.to_sequence() == q p = p.diff() q = [(HolonomicSequence((n + 2) + (n + 2)*Sn**2, [C_0, 0]), 1, 0)] assert p.to_sequence() == q p = expr_to_holonomic(erf(x) + x).to_sequence() q = [(HolonomicSequence((2*n**2 - 2*n) + (n**3 + 2*n**2 - n - 2)*Sn**2, [0, 1 + 2/sqrt(pi), 0, C_3]), 0, 2)] assert p == q def test_series(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx**2 + 2*x*Dx, x, 0, [0, 1]).series(n=10) q = x - x**3/3 + x**5/10 - x**7/42 + x**9/216 + O(x**10) assert p == q p = HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2) q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # cos(x) r = (p * q).series(n=10) # expansion of cos(x) * exp(x**2) s = 1 + x**2/2 + x**4/24 - 31*x**6/720 - 179*x**8/8064 + O(x**10) assert r == s t = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]) # log(1 + x) r = (p * t + q).series(n=10) s = 1 + x - x**2 + 4*x**3/3 - 17*x**4/24 + 31*x**5/30 - 481*x**6/720 +\ 71*x**7/105 - 20159*x**8/40320 + 379*x**9/840 + O(x**10) assert r == s p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \ (4-6*x**3+2*x**4)*Dx**2, x, 0, [0, 1]).series(n=7) q = x + x**3/6 - 3*x**4/16 + x**5/20 - 23*x**6/960 + O(x**7) assert p == q p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \ (4-6*x**3+2*x**4)*Dx**2, x, 0, [1, 0]).series(n=7) q = 1 - 3*x**2/4 - x**3/4 - 5*x**4/32 - 3*x**5/40 - 17*x**6/384 + O(x**7) assert p == q p = expr_to_holonomic(erf(x) + x).series(n=10) C_3 = symbols('C_3') q = (erf(x) + x).series(n=10) assert p.subs(C_3, -2/(3*sqrt(pi))) == q assert expr_to_holonomic(sqrt(x**3 + x)).series(n=10) == sqrt(x**3 + x).series(n=10) assert expr_to_holonomic((2*x - 3*x**2)**(S(1)/3)).series() == ((2*x - 3*x**2)**(S(1)/3)).series() assert expr_to_holonomic(sqrt(x**2-x)).series() == (sqrt(x**2-x)).series() assert expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).series(n=10) == (cos(x)**2/x**2).series(n=10) assert expr_to_holonomic(cos(x)**2/x**2, x0=1).series(n=10) == (cos(x)**2/x**2).series(n=10, x0=1) assert expr_to_holonomic(cos(x-1)**2/(x-1)**2, x0=1, y0={-2: [1, 0, -1]}).series(n=10) \ == (cos(x-1)**2/(x-1)**2).series(x0=1, n=10) def test_evalf_euler(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') # log(1+x) p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]) # path taken is a straight line from 0 to 1, on the real axis r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] s = '0.699525841805253' # approx. equal to log(2) i.e. 0.693147180559945 assert sstr(p.evalf(r, method='Euler')[-1]) == s # path taken is a traingle 0-->1+i-->2 r = [0.1 + 0.1*I] for i in range(9): r.append(r[-1]+0.1+0.1*I) for i in range(10): r.append(r[-1]+0.1-0.1*I) # close to the exact solution 1.09861228866811 # imaginary part also close to zero s = '1.07530466271334 - 0.0251200594793912*I' assert sstr(p.evalf(r, method='Euler')[-1]) == s # sin(x) p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) s = '0.905546532085401 - 6.93889390390723e-18*I' assert sstr(p.evalf(r, method='Euler')[-1]) == s # computing sin(pi/2) using this method # using a linear path from 0 to pi/2 r = [0.1] for i in range(14): r.append(r[-1] + 0.1) r.append(pi/2) s = '1.08016557252834' # close to 1.0 (exact solution) assert sstr(p.evalf(r, method='Euler')[-1]) == s # trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2) # computing the same value sin(pi/2) using different path r = [0.1*I] for i in range(9): r.append(r[-1]+0.1*I) for i in range(15): r.append(r[-1]+0.1) r.append(pi/2+I) for i in range(10): r.append(r[-1]-0.1*I) # close to 1.0 s = '0.976882381836257 - 1.65557671738537e-16*I' assert sstr(p.evalf(r, method='Euler')[-1]) == s # cos(x) p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # compute cos(pi) along 0-->pi r = [0.05] for i in range(61): r.append(r[-1]+0.05) r.append(pi) # close to -1 (exact answer) s = '-1.08140824719196' assert sstr(p.evalf(r, method='Euler')[-1]) == s # a rectangular path (0 -> i -> 2+i -> 2) r = [0.1*I] for i in range(9): r.append(r[-1]+0.1*I) for i in range(20): r.append(r[-1]+0.1) for i in range(10): r.append(r[-1]-0.1*I) p = HolonomicFunction(Dx**2 + 1, x, 0, [1,1]).evalf(r, method='Euler') s = '0.501421652861245 - 3.88578058618805e-16*I' assert sstr(p[-1]) == s def test_evalf_rk4(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') # log(1+x) p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]) # path taken is a straight line from 0 to 1, on the real axis r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] s = '0.693146363174626' # approx. equal to log(2) i.e. 0.693147180559945 assert sstr(p.evalf(r)[-1]) == s # path taken is a traingle 0-->1+i-->2 r = [0.1 + 0.1*I] for i in range(9): r.append(r[-1]+0.1+0.1*I) for i in range(10): r.append(r[-1]+0.1-0.1*I) # close to the exact solution 1.09861228866811 # imaginary part also close to zero s = '1.098616 + 1.36083e-7*I' assert sstr(p.evalf(r)[-1].n(7)) == s # sin(x) p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) s = '0.90929463522785 + 1.52655665885959e-16*I' assert sstr(p.evalf(r)[-1]) == s # computing sin(pi/2) using this method # using a linear path from 0 to pi/2 r = [0.1] for i in range(14): r.append(r[-1] + 0.1) r.append(pi/2) s = '0.999999895088917' # close to 1.0 (exact solution) assert sstr(p.evalf(r)[-1]) == s # trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2) # computing the same value sin(pi/2) using different path r = [0.1*I] for i in range(9): r.append(r[-1]+0.1*I) for i in range(15): r.append(r[-1]+0.1) r.append(pi/2+I) for i in range(10): r.append(r[-1]-0.1*I) # close to 1.0 s = '1.00000003415141 + 6.11940487991086e-16*I' assert sstr(p.evalf(r)[-1]) == s # cos(x) p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # compute cos(pi) along 0-->pi r = [0.05] for i in range(61): r.append(r[-1]+0.05) r.append(pi) # close to -1 (exact answer) s = '-0.999999993238714' assert sstr(p.evalf(r)[-1]) == s # a rectangular path (0 -> i -> 2+i -> 2) r = [0.1*I] for i in range(9): r.append(r[-1]+0.1*I) for i in range(20): r.append(r[-1]+0.1) for i in range(10): r.append(r[-1]-0.1*I) p = HolonomicFunction(Dx**2 + 1, x, 0, [1,1]).evalf(r) s = '0.493152791638442 - 1.41553435639707e-15*I' assert sstr(p[-1]) == s def test_expr_to_holonomic(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = expr_to_holonomic((sin(x)/x)**2) q = HolonomicFunction(8*x + (4*x**2 + 6)*Dx + 6*x*Dx**2 + x**2*Dx**3, x, 0, \ [1, 0, -S(2)/3]) assert p == q p = expr_to_holonomic(1/(1+x**2)**2) q = HolonomicFunction(4*x + (x**2 + 1)*Dx, x, 0, [1]) assert p == q p = expr_to_holonomic(exp(x)*sin(x)+x*log(1+x)) q = HolonomicFunction((2*x**3 + 10*x**2 + 20*x + 18) + (-2*x**4 - 10*x**3 - 20*x**2 \ - 18*x)*Dx + (2*x**5 + 6*x**4 + 7*x**3 + 8*x**2 + 10*x - 4)*Dx**2 + \ (-2*x**5 - 5*x**4 - 2*x**3 + 2*x**2 - x + 4)*Dx**3 + (x**5 + 2*x**4 - x**3 - \ 7*x**2/2 + x + S(5)/2)*Dx**4, x, 0, [0, 1, 4, -1]) assert p == q p = expr_to_holonomic(x*exp(x)+cos(x)+1) q = HolonomicFunction((-x - 3)*Dx + (x + 2)*Dx**2 + (-x - 3)*Dx**3 + (x + 2)*Dx**4, x, \ 0, [2, 1, 1, 3]) assert p == q assert (x*exp(x)+cos(x)+1).series(n=10) == p.series(n=10) p = expr_to_holonomic(log(1 + x)**2 + 1) q = HolonomicFunction(Dx + (3*x + 3)*Dx**2 + (x**2 + 2*x + 1)*Dx**3, x, 0, [1, 0, 2]) assert p == q p = expr_to_holonomic(erf(x)**2 + x) q = HolonomicFunction((8*x**4 - 2*x**2 + 2)*Dx**2 + (6*x**3 - x/2)*Dx**3 + \ (x**2+ S(1)/4)*Dx**4, x, 0, [0, 1, 8/pi, 0]) assert p == q p = expr_to_holonomic(cosh(x)*x) q = HolonomicFunction((-x**2 + 2) -2*x*Dx + x**2*Dx**2, x, 0, [0, 1]) assert p == q p = expr_to_holonomic(besselj(2, x)) q = HolonomicFunction((x**2 - 4) + x*Dx + x**2*Dx**2, x, 0, [0, 0]) assert p == q p = expr_to_holonomic(besselj(0, x) + exp(x)) q = HolonomicFunction((-x**2 - x/2 + S(1)/2) + (x**2 - x/2 - S(3)/2)*Dx + (-x**2 + x/2 + 1)*Dx**2 +\ (x**2 + x/2)*Dx**3, x, 0, [2, 1, S(1)/2]) assert p == q p = expr_to_holonomic(sin(x)**2/x) q = HolonomicFunction(4 + 4*x*Dx + 3*Dx**2 + x*Dx**3, x, 0, [0, 1, 0]) assert p == q p = expr_to_holonomic(sin(x)**2/x, x0=2) q = HolonomicFunction((4) + (4*x)*Dx + (3)*Dx**2 + (x)*Dx**3, x, 2, [sin(2)**2/2, sin(2)*cos(2) - sin(2)**2/4, -3*sin(2)**2/4 + cos(2)**2 - sin(2)*cos(2)]) assert p == q p = expr_to_holonomic(log(x)/2 - Ci(2*x)/2 + Ci(2)/2) q = HolonomicFunction(4*Dx + 4*x*Dx**2 + 3*Dx**3 + x*Dx**4, x, 0, \ [-log(2)/2 - EulerGamma/2 + Ci(2)/2, 0, 1, 0]) assert p == q p = p.to_expr() q = log(x)/2 - Ci(2*x)/2 + Ci(2)/2 assert p == q p = expr_to_holonomic(x**(S(1)/2), x0=1) q = HolonomicFunction(x*Dx - S(1)/2, x, 1, [1]) assert p == q p = expr_to_holonomic(sqrt(1 + x**2)) q = HolonomicFunction((-x) + (x**2 + 1)*Dx, x, 0, [1]) assert p == q assert (expr_to_holonomic(sqrt(x) + sqrt(2*x)).to_expr()-\ (sqrt(x) + sqrt(2*x))).simplify() == 0 assert expr_to_holonomic(3*x+2*sqrt(x)).to_expr() == 3*x+2*sqrt(x) p = expr_to_holonomic((x**4+x**3+5*x**2+3*x+2)/x**2, lenics=3) q = HolonomicFunction((-2*x**4 - x**3 + 3*x + 4) + (x**5 + x**4 + 5*x**3 + 3*x**2 + \ 2*x)*Dx, x, 0, {-2: [2, 3, 5]}) assert p == q p = expr_to_holonomic(1/(x-1)**2, lenics=3, x0=1) q = HolonomicFunction((2) + (x - 1)*Dx, x, 1, {-2: [1, 0, 0]}) assert p == q a = symbols("a") p = expr_to_holonomic(sqrt(a*x), x=x) assert p.to_expr() == sqrt(a)*sqrt(x) def test_to_hyper(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx - 2, x, 0, [3]).to_hyper() q = 3 * hyper([], [], 2*x) assert p == q p = hyperexpand(HolonomicFunction((1 + x) * Dx - 3, x, 0, [2]).to_hyper()).expand() q = 2*x**3 + 6*x**2 + 6*x + 2 assert p == q p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_hyper() q = -x**2*hyper((2, 2, 1), (3, 2), -x)/2 + x assert p == q p = HolonomicFunction(2*x*Dx + Dx**2, x, 0, [0, 2/sqrt(pi)]).to_hyper() q = 2*x*hyper((S(1)/2,), (S(3)/2,), -x**2)/sqrt(pi) assert p == q p = hyperexpand(HolonomicFunction(2*x*Dx + Dx**2, x, 0, [1, -2/sqrt(pi)]).to_hyper()) q = erfc(x) assert p.rewrite(erfc) == q p = hyperexpand(HolonomicFunction((x**2 - 1) + x*Dx + x**2*Dx**2, x, 0, [0, S(1)/2]).to_hyper()) q = besselj(1, x) assert p == q p = hyperexpand(HolonomicFunction(x*Dx**2 + Dx + x, x, 0, [1, 0]).to_hyper()) q = besselj(0, x) assert p == q def test_to_expr(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx - 1, x, 0, [1]).to_expr() q = exp(x) assert p == q p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr() q = cos(x) assert p == q p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr() q = cosh(x) assert p == q p = HolonomicFunction(2 + (4*x - 1)*Dx + \ (x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand() q = 1/(x**2 - 2*x + 1) assert p == q p = expr_to_holonomic(sin(x)**2/x).integrate((x, 0, x)).to_expr() q = (sin(x)**2/x).integrate((x, 0, x)) assert p == q C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3') p = expr_to_holonomic(log(1+x**2)).to_expr() q = C_2*log(x**2 + 1) assert p == q p = expr_to_holonomic(log(1+x**2)).diff().to_expr() q = C_0*x/(x**2 + 1) assert p == q p = expr_to_holonomic(erf(x) + x).to_expr() q = 3*C_3*x - 3*sqrt(pi)*C_3*erf(x)/2 + x + 2*x/sqrt(pi) assert p == q p = expr_to_holonomic(sqrt(x), x0=1).to_expr() assert p == sqrt(x) assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x) p = expr_to_holonomic(sqrt(1 + x**2)).to_expr() assert p == sqrt(1+x**2) p = expr_to_holonomic((2*x**2 + 1)**(S(2)/3)).to_expr() assert p == (2*x**2 + 1)**(S(2)/3) p = expr_to_holonomic(sqrt(-x**2+2*x)).to_expr() assert p == sqrt(x)*sqrt(-x + 2) p = expr_to_holonomic((-2*x**3+7*x)**(S(2)/3)).to_expr() q = x**(S(2)/3)*(-2*x**2 + 7)**(S(2)/3) assert p == q p = from_hyper(hyper((-2, -3), (S(1)/2, ), x)) s = hyperexpand(hyper((-2, -3), (S(1)/2, ), x)) D_0 = Symbol('D_0') C_0 = Symbol('C_0') assert (p.to_expr().subs({C_0:1, D_0:0}) - s).simplify() == 0 p.y0 = {0: [1], S(1)/2: [0]} assert p.to_expr() == s assert expr_to_holonomic(x**5).to_expr() == x**5 assert expr_to_holonomic(2*x**3-3*x**2).to_expr().expand() == \ 2*x**3-3*x**2 a = symbols("a") p = (expr_to_holonomic(1.4*x)*expr_to_holonomic(a*x, x)).to_expr() q = 1.4*a*x**2 assert p == q p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(a*x, x)).to_expr() q = x*(a + 1.4) assert p == q p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(x)).to_expr() assert p == 2.4*x def test_integrate(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = expr_to_holonomic(sin(x)**2/x, x0=1).integrate((x, 2, 3)) q = '0.166270406994788' assert sstr(p) == q p = expr_to_holonomic(sin(x)).integrate((x, 0, x)).to_expr() q = 1 - cos(x) assert p == q p = expr_to_holonomic(sin(x)).integrate((x, 0, 3)) q = 1 - cos(3) assert p == q p = expr_to_holonomic(sin(x)/x, x0=1).integrate((x, 1, 2)) q = '0.659329913368450' assert sstr(p) == q p = expr_to_holonomic(sin(x)**2/x, x0=1).integrate((x, 1, 0)) q = '-0.423690480850035' assert sstr(p) == q p = expr_to_holonomic(sin(x)/x) assert p.integrate(x).to_expr() == Si(x) assert p.integrate((x, 0, 2)) == Si(2) p = expr_to_holonomic(sin(x)**2/x) q = p.to_expr() assert p.integrate(x).to_expr() == q.integrate((x, 0, x)) assert p.integrate((x, 0, 1)) == q.integrate((x, 0, 1)) assert expr_to_holonomic(1/x, x0=1).integrate(x).to_expr() == log(x) p = expr_to_holonomic((x + 1)**3*exp(-x), x0=-1).integrate(x).to_expr() q = (-x**3 - 6*x**2 - 15*x + 6*exp(x + 1) - 16)*exp(-x) assert p == q p = expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).integrate(x).to_expr() q = -Si(2*x) - cos(x)**2/x assert p == q p = expr_to_holonomic(sqrt(x**2+x)).integrate(x).to_expr() q = (x**(S(3)/2)*(2*x**2 + 3*x + 1) - x*sqrt(x + 1)*asinh(sqrt(x)))/(4*x*sqrt(x + 1)) assert p == q p = expr_to_holonomic(sqrt(x**2+1)).integrate(x).to_expr() q = (sqrt(x**2+1)).integrate(x) assert (p-q).simplify() == 0 p = expr_to_holonomic(1/x**2, y0={-2:[1, 0, 0]}) r = expr_to_holonomic(1/x**2, lenics=3) assert p == r q = expr_to_holonomic(cos(x)**2) assert (r*q).integrate(x).to_expr() == -Si(2*x) - cos(x)**2/x def test_diff(): x, y = symbols('x, y') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(x*Dx**2 + 1, x, 0, [0, 1]) assert p.diff().to_expr() == p.to_expr().diff().simplify() p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]) assert p.diff(x, 2).to_expr() == p.to_expr() p = expr_to_holonomic(Si(x)) assert p.diff().to_expr() == sin(x)/x assert p.diff(y) == 0 C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3') q = Si(x) assert p.diff(x).to_expr() == q.diff() assert p.diff(x, 2).to_expr().subs(C_0, -S(1)/3) == q.diff(x, 2).simplify() assert p.diff(x, 3).series().subs({C_3:-S(1)/3, C_0:0}) == q.diff(x, 3).series() def test_extended_domain_in_expr_to_holonomic(): x = symbols('x') p = expr_to_holonomic(1.2*cos(3.1*x)) assert p.to_expr() == 1.2*cos(3.1*x) assert sstr(p.integrate(x).to_expr()) == '0.387096774193548*sin(3.1*x)' _, Dx = DifferentialOperators(RR.old_poly_ring(x), 'Dx') p = expr_to_holonomic(1.1329138213*x) q = HolonomicFunction((-1.1329138213) + (1.1329138213*x)*Dx, x, 0, {1: [1.1329138213]}) assert p == q assert p.to_expr() == 1.1329138213*x assert sstr(p.integrate((x, 1, 2))) == sstr((1.1329138213*x).integrate((x, 1, 2))) y, z = symbols('y, z') p = expr_to_holonomic(sin(x*y*z), x=x) assert p.to_expr() == sin(x*y*z) assert p.integrate(x).to_expr() == (-cos(x*y*z) + 1)/(y*z) p = expr_to_holonomic(sin(x*y + z), x=x).integrate(x).to_expr() q = (cos(z) - cos(x*y + z))/y assert p == q a = symbols('a') p = expr_to_holonomic(a*x, x) assert p.to_expr() == a*x assert p.integrate(x).to_expr() == a*x**2/2 D_2, C_1 = symbols("D_2, C_1") p = expr_to_holonomic(x) + expr_to_holonomic(1.2*cos(x)) p = p.to_expr().subs(D_2, 0) assert p - x - 1.2*cos(1.0*x) == 0 p = expr_to_holonomic(x) * expr_to_holonomic(1.2*cos(x)) p = p.to_expr().subs(C_1, 0) assert p - 1.2*x*cos(1.0*x) == 0 def test_to_meijerg(): x = symbols('x') assert hyperexpand(expr_to_holonomic(sin(x)).to_meijerg()) == sin(x) assert hyperexpand(expr_to_holonomic(cos(x)).to_meijerg()) == cos(x) assert hyperexpand(expr_to_holonomic(exp(x)).to_meijerg()) == exp(x) assert hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() == log(x) assert expr_to_holonomic(4*x**2/3 + 7).to_meijerg() == 4*x**2/3 + 7 assert hyperexpand(expr_to_holonomic(besselj(2, x), lenics=3).to_meijerg()) == besselj(2, x) p = hyper((-S(1)/2, -3), (), x) assert from_hyper(p).to_meijerg() == hyperexpand(p) p = hyper((S(1), S(3)), (S(2), ), x) assert (hyperexpand(from_hyper(p).to_meijerg()) - hyperexpand(p)).expand() == 0 p = from_hyper(hyper((-2, -3), (S(1)/2, ), x)) s = hyperexpand(hyper((-2, -3), (S(1)/2, ), x)) C_0 = Symbol('C_0') C_1 = Symbol('C_1') D_0 = Symbol('D_0') assert (hyperexpand(p.to_meijerg()).subs({C_0:1, D_0:0}) - s).simplify() == 0 p.y0 = {0: [1], S(1)/2: [0]} assert (hyperexpand(p.to_meijerg()) - s).simplify() == 0 p = expr_to_holonomic(besselj(S(1)/2, x), initcond=False) assert (p.to_expr() - (D_0*sin(x) + C_0*cos(x) + C_1*sin(x))/sqrt(x)).simplify() == 0 p = expr_to_holonomic(besselj(S(1)/2, x), y0={S(-1)/2: [sqrt(2)/sqrt(pi), sqrt(2)/sqrt(pi)]}) assert (p.to_expr() - besselj(S(1)/2, x) - besselj(S(-1)/2, x)).simplify() == 0 def test_gaussian(): mu, x = symbols("mu x") sd = symbols("sd", positive=True) Q = QQ[mu, sd].get_field() e = sqrt(2)*exp(-(-mu + x)**2/(2*sd**2))/(2*sqrt(pi)*sd) h1 = expr_to_holonomic(e, x, domain=Q) _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx') h2 = HolonomicFunction((-mu/sd**2 + x/sd**2) + (1)*Dx, x) assert h1 == h2 def test_beta(): a, b, x = symbols("a b x", positive=True) e = x**(a - 1)*(-x + 1)**(b - 1)/beta(a, b) Q = QQ[a, b].get_field() h1 = expr_to_holonomic(e, x, domain=Q) _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx') h2 = HolonomicFunction((a + x*(-a - b + 2) - 1) + (x**2 - x)*Dx, x) assert h1 == h2 def test_gamma(): a, b, x = symbols("a b x", positive=True) e = b**(-a)*x**(a - 1)*exp(-x/b)/gamma(a) Q = QQ[a, b].get_field() h1 = expr_to_holonomic(e, x, domain=Q) _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx') h2 = HolonomicFunction((-a + 1 + x/b) + (x)*Dx, x) assert h1 == h2 def test_symbolic_power(): x, n = symbols("x n") Q = QQ[n].get_field() _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx') h1 = HolonomicFunction((-1) + (x)*Dx, x) ** -n h2 = HolonomicFunction((n) + (x)*Dx, x) assert h1 == h2 def test_negative_power(): x = symbols("x") _, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') h1 = HolonomicFunction((-1) + (x)*Dx, x) ** -2 h2 = HolonomicFunction((2) + (x)*Dx, x) assert h1 == h2 def test_expr_in_power(): x, n = symbols("x n") Q = QQ[n].get_field() _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx') h1 = HolonomicFunction((-1) + (x)*Dx, x) ** (n - 3) h2 = HolonomicFunction((-n + 3) + (x)*Dx, x) assert h1 == h2
b1f964ef2ecd70cf7b8b7e4f7706764b7f55f26fd46f5efc59734ff4624fbb25
import sympy from sympy.parsing.sympy_parser import ( parse_expr, standard_transformations, convert_xor, implicit_multiplication_application, implicit_multiplication, implicit_application, function_exponentiation, split_symbols, split_symbols_custom, _token_splittable ) from sympy.utilities.pytest import raises def test_implicit_multiplication(): cases = { '5x': '5*x', 'abc': 'a*b*c', '3sin(x)': '3*sin(x)', '(x+1)(x+2)': '(x+1)*(x+2)', '(5 x**2)sin(x)': '(5*x**2)*sin(x)', '2 sin(x) cos(x)': '2*sin(x)*cos(x)', 'pi x': 'pi*x', 'x pi': 'x*pi', 'E x': 'E*x', 'EulerGamma y': 'EulerGamma*y', 'E pi': 'E*pi', 'pi (x + 2)': 'pi*(x+2)', '(x + 2) pi': '(x+2)*pi', 'pi sin(x)': 'pi*sin(x)', } transformations = standard_transformations + (convert_xor,) transformations2 = transformations + (split_symbols, implicit_multiplication) for case in cases: implicit = parse_expr(case, transformations=transformations2) normal = parse_expr(cases[case], transformations=transformations) assert(implicit == normal) application = ['sin x', 'cos 2*x', 'sin cos x'] for case in application: raises(SyntaxError, lambda: parse_expr(case, transformations=transformations2)) raises(TypeError, lambda: parse_expr('sin**2(x)', transformations=transformations2)) def test_implicit_application(): cases = { 'factorial': 'factorial', 'sin x': 'sin(x)', 'tan y**3': 'tan(y**3)', 'cos 2*x': 'cos(2*x)', '(cot)': 'cot', 'sin cos tan x': 'sin(cos(tan(x)))' } transformations = standard_transformations + (convert_xor,) transformations2 = transformations + (implicit_application,) for case in cases: implicit = parse_expr(case, transformations=transformations2) normal = parse_expr(cases[case], transformations=transformations) assert(implicit == normal), (implicit, normal) multiplication = ['x y', 'x sin x', '2x'] for case in multiplication: raises(SyntaxError, lambda: parse_expr(case, transformations=transformations2)) raises(TypeError, lambda: parse_expr('sin**2(x)', transformations=transformations2)) def test_function_exponentiation(): cases = { 'sin**2(x)': 'sin(x)**2', 'exp^y(z)': 'exp(z)^y', 'sin**2(E^(x))': 'sin(E^(x))**2' } transformations = standard_transformations + (convert_xor,) transformations2 = transformations + (function_exponentiation,) for case in cases: implicit = parse_expr(case, transformations=transformations2) normal = parse_expr(cases[case], transformations=transformations) assert(implicit == normal) other_implicit = ['x y', 'x sin x', '2x', 'sin x', 'cos 2*x', 'sin cos x'] for case in other_implicit: raises(SyntaxError, lambda: parse_expr(case, transformations=transformations2)) assert parse_expr('x**2', local_dict={ 'x': sympy.Symbol('x') }, transformations=transformations2) == parse_expr('x**2') def test_symbol_splitting(): # By default Greek letter names should not be split (lambda is a keyword # so skip it) transformations = standard_transformations + (split_symbols,) greek_letters = ('alpha', 'beta', 'gamma', 'delta', 'epsilon', 'zeta', 'eta', 'theta', 'iota', 'kappa', 'mu', 'nu', 'xi', 'omicron', 'pi', 'rho', 'sigma', 'tau', 'upsilon', 'phi', 'chi', 'psi', 'omega') for letter in greek_letters: assert(parse_expr(letter, transformations=transformations) == parse_expr(letter)) # Make sure symbol splitting resolves names transformations += (implicit_multiplication,) local_dict = { 'e': sympy.E } cases = { 'xe': 'E*x', 'Iy': 'I*y', 'ee': 'E*E', } for case, expected in cases.items(): assert(parse_expr(case, local_dict=local_dict, transformations=transformations) == parse_expr(expected)) # Make sure custom splitting works def can_split(symbol): if symbol not in ('unsplittable', 'names'): return _token_splittable(symbol) return False transformations = standard_transformations transformations += (split_symbols_custom(can_split), implicit_multiplication) assert(parse_expr('unsplittable', transformations=transformations) == parse_expr('unsplittable')) assert(parse_expr('names', transformations=transformations) == parse_expr('names')) assert(parse_expr('xy', transformations=transformations) == parse_expr('x*y')) for letter in greek_letters: assert(parse_expr(letter, transformations=transformations) == parse_expr(letter)) def test_all_implicit_steps(): cases = { '2x': '2*x', # implicit multiplication 'x y': 'x*y', 'xy': 'x*y', 'sin x': 'sin(x)', # add parentheses '2sin x': '2*sin(x)', 'x y z': 'x*y*z', 'sin(2 * 3x)': 'sin(2 * 3 * x)', 'sin(x) (1 + cos(x))': 'sin(x) * (1 + cos(x))', '(x + 2) sin(x)': '(x + 2) * sin(x)', '(x + 2) sin x': '(x + 2) * sin(x)', 'sin(sin x)': 'sin(sin(x))', 'sin x!': 'sin(factorial(x))', 'sin x!!': 'sin(factorial2(x))', 'factorial': 'factorial', # don't apply a bare function 'x sin x': 'x * sin(x)', # both application and multiplication 'xy sin x': 'x * y * sin(x)', '(x+2)(x+3)': '(x + 2) * (x+3)', 'x**2 + 2xy + y**2': 'x**2 + 2 * x * y + y**2', # split the xy 'pi': 'pi', # don't mess with constants 'None': 'None', 'ln sin x': 'ln(sin(x))', # multiple implicit function applications 'factorial': 'factorial', # don't add parentheses 'sin x**2': 'sin(x**2)', # implicit application to an exponential 'alpha': 'Symbol("alpha")', # don't split Greek letters/subscripts 'x_2': 'Symbol("x_2")', 'sin^2 x**2': 'sin(x**2)**2', # function raised to a power 'sin**3(x)': 'sin(x)**3', '(factorial)': 'factorial', 'tan 3x': 'tan(3*x)', 'sin^2(3*E^(x))': 'sin(3*E**(x))**2', 'sin**2(E^(3x))': 'sin(E**(3*x))**2', 'sin^2 (3x*E^(x))': 'sin(3*x*E^x)**2', 'pi sin x': 'pi*sin(x)', } transformations = standard_transformations + (convert_xor,) transformations2 = transformations + (implicit_multiplication_application,) for case in cases: implicit = parse_expr(case, transformations=transformations2) normal = parse_expr(cases[case], transformations=transformations) assert(implicit == normal)
a9b30f972adb5806c69e2fe3a1640d33d0daf942cd4af5a94ea90618236f22b8
# -*- coding: utf-8 -*- import sys from sympy.core import Symbol, Function, Float, Rational, Integer, I, Mul, Pow, Eq from sympy.core.compatibility import PY3 from sympy.functions import exp, factorial, factorial2, sin from sympy.logic import And from sympy.series import Limit from sympy.utilities.pytest import raises, skip from sympy.parsing.sympy_parser import ( parse_expr, standard_transformations, rationalize, TokenError, split_symbols, implicit_multiplication, convert_equals_signs, convert_xor, function_exponentiation, ) def test_sympy_parser(): x = Symbol('x') inputs = { '2*x': 2 * x, '3.00': Float(3), '22/7': Rational(22, 7), '2+3j': 2 + 3*I, 'exp(x)': exp(x), 'x!': factorial(x), 'x!!': factorial2(x), '(x + 1)! - 1': factorial(x + 1) - 1, '3.[3]': Rational(10, 3), '.0[3]': Rational(1, 30), '3.2[3]': Rational(97, 30), '1.3[12]': Rational(433, 330), '1 + 3.[3]': Rational(13, 3), '1 + .0[3]': Rational(31, 30), '1 + 3.2[3]': Rational(127, 30), '.[0011]': Rational(1, 909), '0.1[00102] + 1': Rational(366697, 333330), '1.[0191]': Rational(10190, 9999), '10!': 3628800, '-(2)': -Integer(2), '[-1, -2, 3]': [Integer(-1), Integer(-2), Integer(3)], 'Symbol("x").free_symbols': x.free_symbols, "S('S(3).n(n=3)')": 3.00, 'factorint(12, visual=True)': Mul( Pow(2, 2, evaluate=False), Pow(3, 1, evaluate=False), evaluate=False), 'Limit(sin(x), x, 0, dir="-")': Limit(sin(x), x, 0, dir='-'), } for text, result in inputs.items(): assert parse_expr(text) == result def test_rationalize(): inputs = { '0.123': Rational(123, 1000) } transformations = standard_transformations + (rationalize,) for text, result in inputs.items(): assert parse_expr(text, transformations=transformations) == result def test_factorial_fail(): inputs = ['x!!!', 'x!!!!', '(!)'] for text in inputs: try: parse_expr(text) assert False except TokenError: assert True def test_repeated_fail(): inputs = ['1[1]', '.1e1[1]', '0x1[1]', '1.1j[1]', '1.1[1 + 1]', '0.1[[1]]', '0x1.1[1]'] # All are valid Python, so only raise TypeError for invalid indexing for text in inputs: raises(TypeError, lambda: parse_expr(text)) inputs = ['0.1[', '0.1[1', '0.1[]'] for text in inputs: raises((TokenError, SyntaxError), lambda: parse_expr(text)) def test_repeated_dot_only(): assert parse_expr('.[1]') == Rational(1, 9) assert parse_expr('1 + .[1]') == Rational(10, 9) def test_local_dict(): local_dict = { 'my_function': lambda x: x + 2 } inputs = { 'my_function(2)': Integer(4) } for text, result in inputs.items(): assert parse_expr(text, local_dict=local_dict) == result def test_local_dict_split_implmult(): t = standard_transformations + (split_symbols, implicit_multiplication,) w = Symbol('w', real=True) y = Symbol('y') assert parse_expr('yx', local_dict={'x':w}, transformations=t) == y*w def test_local_dict_symbol_to_fcn(): x = Symbol('x') d = {'foo': Function('bar')} assert parse_expr('foo(x)', local_dict=d) == d['foo'](x) # XXX: bit odd, but would be error if parser left the Symbol d = {'foo': Symbol('baz')} assert parse_expr('foo(x)', local_dict=d) == Function('baz')(x) def test_global_dict(): global_dict = { 'Symbol': Symbol } inputs = { 'Q & S': And(Symbol('Q'), Symbol('S')) } for text, result in inputs.items(): assert parse_expr(text, global_dict=global_dict) == result def test_issue_2515(): raises(TokenError, lambda: parse_expr('(()')) raises(TokenError, lambda: parse_expr('"""')) def test_issue_7663(): x = Symbol('x') e = '2*(x+1)' assert parse_expr(e, evaluate=0) == parse_expr(e, evaluate=False) def test_issue_10560(): inputs = { '4*-3' : '(-3)*4', '-4*3' : '(-4)*3', } for text, result in inputs.items(): assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False) def test_issue_10773(): inputs = { '-10/5': '(-10)/5', '-10/-5' : '(-10)/(-5)', } for text, result in inputs.items(): assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False) def test_split_symbols(): transformations = standard_transformations + \ (split_symbols, implicit_multiplication,) x = Symbol('x') y = Symbol('y') xy = Symbol('xy') assert parse_expr("xy") == xy assert parse_expr("xy", transformations=transformations) == x*y def test_split_symbols_function(): transformations = standard_transformations + \ (split_symbols, implicit_multiplication,) x = Symbol('x') y = Symbol('y') a = Symbol('a') f = Function('f') assert parse_expr("ay(x+1)", transformations=transformations) == a*y*(x+1) assert parse_expr("af(x+1)", transformations=transformations, local_dict={'f':f}) == a*f(x+1) def test_functional_exponent(): t = standard_transformations + (convert_xor, function_exponentiation) x = Symbol('x') y = Symbol('y') a = Symbol('a') yfcn = Function('y') assert parse_expr("sin^2(x)", transformations=t) == (sin(x))**2 assert parse_expr("sin^y(x)", transformations=t) == (sin(x))**y assert parse_expr("exp^y(x)", transformations=t) == (exp(x))**y assert parse_expr("E^y(x)", transformations=t) == exp(yfcn(x)) assert parse_expr("a^y(x)", transformations=t) == a**(yfcn(x)) def test_match_parentheses_implicit_multiplication(): transformations = standard_transformations + \ (implicit_multiplication,) raises(TokenError, lambda: parse_expr('(1,2),(3,4]',transformations=transformations)) def test_convert_equals_signs(): transformations = standard_transformations + \ (convert_equals_signs, ) x = Symbol('x') y = Symbol('y') assert parse_expr("1*2=x", transformations=transformations) == Eq(2, x) assert parse_expr("y = x", transformations=transformations) == Eq(y, x) assert parse_expr("(2*y = x) = False", transformations=transformations) == Eq(Eq(2*y, x), False) def test_parse_function_issue_3539(): x = Symbol('x') f = Function('f') assert parse_expr('f(x)') == f(x) def test_unicode_names(): if not PY3: skip("test_unicode_names can only pass in Python 3") assert parse_expr(u'α') == Symbol(u'α') def test_python3_features(): # Make sure the tokenizer can handle Python 3-only features if sys.version_info < (3, 6): skip("test_python3_features requires Python 3.6 or newer") assert parse_expr("123_456") == 123456 assert parse_expr("1.2[3_4]") == parse_expr("1.2[34]") == Rational(611, 495) assert parse_expr("1.2[012_012]") == parse_expr("1.2[012012]") == Rational(400, 333) assert parse_expr('.[3_4]') == parse_expr('.[34]') == Rational(34, 99) assert parse_expr('.1[3_4]') == parse_expr('.1[34]') == Rational(133, 990) assert parse_expr('123_123.123_123[3_4]') == parse_expr('123123.123123[34]') == Rational(12189189189211, 99000000)
7275568dbfdb986e9fde90945dfc5d9ee3dddb5b544a60c230428b18280cc44e
from sympy.external import import_module from sympy.utilities import pytest antlr4 = import_module("antlr4", warn_not_installed=False) # disable tests if antlr4-python*-runtime is not present if antlr4: disabled = True def test_no_import(): from sympy.parsing.latex import parse_latex with pytest.ignore_warnings(UserWarning): with pytest.raises(ImportError): parse_latex('1 + 1')
564fd31b13a997d95e8ae2230b2f256682154bedff807758c5402e3fb10da96a
from sympy.external import import_module from .errors import LaTeXParsingError # noqa def parse_latex(s): r"""Converts the string ``s`` to a SymPy ``Expr`` Parameters ========== s : str The LaTeX string to parse. In Python source containing LaTeX, *raw strings* (denoted with ``r"``, like this one) are preferred, as LaTeX makes liberal use of the ``\`` character, which would trigger escaping in normal Python strings. Examples ======== >>> from sympy.parsing.latex import parse_latex # doctest: +SKIP >>> expr = parse_latex(r"\frac {1 + \sqrt {\a}} {\b}") # doctest: +SKIP >>> expr # doctest: +SKIP (sqrt(a) + 1)/b >>> expr.evalf(4, subs=dict(a=5, b=2)) # doctest: +SKIP 1.618 """ _latex = import_module( 'sympy.parsing.latex._parse_latex_antlr', __import__kwargs={'fromlist': ['X']}) if _latex is not None: return _latex.parse_latex(s)
250dd4752157f88630cb1b120f3f6e6b73c1f42c2c75e8ecba6d1d4c573054fe
"""Hermitian conjugation.""" from __future__ import print_function, division from sympy.core import Expr from sympy.functions.elementary.complexes import adjoint __all__ = [ 'Dagger' ] class Dagger(adjoint): """General Hermitian conjugate operation. Take the Hermetian conjugate of an argument [1]_. For matrices this operation is equivalent to transpose and complex conjugate [2]_. Parameters ========== arg : Expr The sympy expression that we want to take the dagger of. Examples ======== Daggering various quantum objects: >>> from sympy.physics.quantum.dagger import Dagger >>> from sympy.physics.quantum.state import Ket, Bra >>> from sympy.physics.quantum.operator import Operator >>> Dagger(Ket('psi')) <psi| >>> Dagger(Bra('phi')) |phi> >>> Dagger(Operator('A')) Dagger(A) Inner and outer products:: >>> from sympy.physics.quantum import InnerProduct, OuterProduct >>> Dagger(InnerProduct(Bra('a'), Ket('b'))) <b|a> >>> Dagger(OuterProduct(Ket('a'), Bra('b'))) |b><a| Powers, sums and products:: >>> A = Operator('A') >>> B = Operator('B') >>> Dagger(A*B) Dagger(B)*Dagger(A) >>> Dagger(A+B) Dagger(A) + Dagger(B) >>> Dagger(A**2) Dagger(A)**2 Dagger also seamlessly handles complex numbers and matrices:: >>> from sympy import Matrix, I >>> m = Matrix([[1,I],[2,I]]) >>> m Matrix([ [1, I], [2, I]]) >>> Dagger(m) Matrix([ [ 1, 2], [-I, -I]]) References ========== .. [1] https://en.wikipedia.org/wiki/Hermitian_adjoint .. [2] https://en.wikipedia.org/wiki/Hermitian_transpose """ def __new__(cls, arg): if hasattr(arg, 'adjoint'): obj = arg.adjoint() elif hasattr(arg, 'conjugate') and hasattr(arg, 'transpose'): obj = arg.conjugate().transpose() if obj is not None: return obj return Expr.__new__(cls, arg) adjoint.__name__ = "Dagger" adjoint._sympyrepr = lambda a, b: "Dagger(%s)" % b._print(a.args[0])
5cda885d9af31bc90395de505ccccffc1fc8734937a7022fc2df498be39249b8
"""The anti-commutator: ``{A,B} = A*B + B*A``.""" from __future__ import print_function, division from sympy import S, Expr, Mul, Integer from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.operator import Operator from sympy.physics.quantum.dagger import Dagger __all__ = [ 'AntiCommutator' ] #----------------------------------------------------------------------------- # Anti-commutator #----------------------------------------------------------------------------- class AntiCommutator(Expr): """The standard anticommutator, in an unevaluated state. Evaluating an anticommutator is defined [1]_ as: ``{A, B} = A*B + B*A``. This class returns the anticommutator in an unevaluated form. To evaluate the anticommutator, use the ``.doit()`` method. Canonical ordering of an anticommutator is ``{A, B}`` for ``A < B``. The arguments of the anticommutator are put into canonical order using ``__cmp__``. If ``B < A``, then ``{A, B}`` is returned as ``{B, A}``. Parameters ========== A : Expr The first argument of the anticommutator {A,B}. B : Expr The second argument of the anticommutator {A,B}. Examples ======== >>> from sympy import symbols >>> from sympy.physics.quantum import AntiCommutator >>> from sympy.physics.quantum import Operator, Dagger >>> x, y = symbols('x,y') >>> A = Operator('A') >>> B = Operator('B') Create an anticommutator and use ``doit()`` to multiply them out. >>> ac = AntiCommutator(A,B); ac {A,B} >>> ac.doit() A*B + B*A The commutator orders it arguments in canonical order: >>> ac = AntiCommutator(B,A); ac {A,B} Commutative constants are factored out: >>> AntiCommutator(3*x*A,x*y*B) 3*x**2*y*{A,B} Adjoint operations applied to the anticommutator are properly applied to the arguments: >>> Dagger(AntiCommutator(A,B)) {Dagger(A),Dagger(B)} References ========== .. [1] https://en.wikipedia.org/wiki/Commutator """ is_commutative = False def __new__(cls, A, B): r = cls.eval(A, B) if r is not None: return r obj = Expr.__new__(cls, A, B) return obj @classmethod def eval(cls, a, b): if not (a and b): return S.Zero if a == b: return Integer(2)*a**2 if a.is_commutative or b.is_commutative: return Integer(2)*a*b # [xA,yB] -> xy*[A,B] ca, nca = a.args_cnc() cb, ncb = b.args_cnc() c_part = ca + cb if c_part: return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb))) # Canonical ordering of arguments #The Commutator [A,B] is on canonical form if A < B. if a.compare(b) == 1: return cls(b, a) def doit(self, **hints): """ Evaluate anticommutator """ A = self.args[0] B = self.args[1] if isinstance(A, Operator) and isinstance(B, Operator): try: comm = A._eval_anticommutator(B, **hints) except NotImplementedError: try: comm = B._eval_anticommutator(A, **hints) except NotImplementedError: comm = None if comm is not None: return comm.doit(**hints) return (A*B + B*A).doit(**hints) def _eval_adjoint(self): return AntiCommutator(Dagger(self.args[0]), Dagger(self.args[1])) def _sympyrepr(self, printer, *args): return "%s(%s,%s)" % ( self.__class__.__name__, printer._print( self.args[0]), printer._print(self.args[1]) ) def _sympystr(self, printer, *args): return "{%s,%s}" % (self.args[0], self.args[1]) def _pretty(self, printer, *args): pform = printer._print(self.args[0], *args) pform = prettyForm(*pform.right((prettyForm(u',')))) pform = prettyForm(*pform.right((printer._print(self.args[1], *args)))) pform = prettyForm(*pform.parens(left='{', right='}')) return pform def _latex(self, printer, *args): return "\\left\\{%s,%s\\right\\}" % tuple([ printer._print(arg, *args) for arg in self.args])
f7ab28db56745423ebfef34a46ff415dd9149f10699546877481672c16b23a50
"""Dirac notation for states.""" from __future__ import print_function, division from sympy import (cacheit, conjugate, Expr, Function, integrate, oo, sqrt, Tuple) from sympy.core.compatibility import range from sympy.printing.pretty.stringpict import stringPict from sympy.physics.quantum.qexpr import QExpr, dispatch_method __all__ = [ 'KetBase', 'BraBase', 'StateBase', 'State', 'Ket', 'Bra', 'TimeDepState', 'TimeDepBra', 'TimeDepKet', 'Wavefunction' ] #----------------------------------------------------------------------------- # States, bras and kets. #----------------------------------------------------------------------------- # ASCII brackets _lbracket = "<" _rbracket = ">" _straight_bracket = "|" # Unicode brackets # MATHEMATICAL ANGLE BRACKETS _lbracket_ucode = u"\N{MATHEMATICAL LEFT ANGLE BRACKET}" _rbracket_ucode = u"\N{MATHEMATICAL RIGHT ANGLE BRACKET}" # LIGHT VERTICAL BAR _straight_bracket_ucode = u"\N{LIGHT VERTICAL BAR}" # Other options for unicode printing of <, > and | for Dirac notation. # LEFT-POINTING ANGLE BRACKET # _lbracket = u"\u2329" # _rbracket = u"\u232A" # LEFT ANGLE BRACKET # _lbracket = u"\u3008" # _rbracket = u"\u3009" # VERTICAL LINE # _straight_bracket = u"\u007C" class StateBase(QExpr): """Abstract base class for general abstract states in quantum mechanics. All other state classes defined will need to inherit from this class. It carries the basic structure for all other states such as dual, _eval_adjoint and label. This is an abstract base class and you should not instantiate it directly, instead use State. """ @classmethod def _operators_to_state(self, ops, **options): """ Returns the eigenstate instance for the passed operators. This method should be overridden in subclasses. It will handle being passed either an Operator instance or set of Operator instances. It should return the corresponding state INSTANCE or simply raise a NotImplementedError. See cartesian.py for an example. """ raise NotImplementedError("Cannot map operators to states in this class. Method not implemented!") def _state_to_operators(self, op_classes, **options): """ Returns the operators which this state instance is an eigenstate of. This method should be overridden in subclasses. It will be called on state instances and be passed the operator classes that we wish to make into instances. The state instance will then transform the classes appropriately, or raise a NotImplementedError if it cannot return operator instances. See cartesian.py for examples, """ raise NotImplementedError( "Cannot map this state to operators. Method not implemented!") @property def operators(self): """Return the operator(s) that this state is an eigenstate of""" from .operatorset import state_to_operators # import internally to avoid circular import errors return state_to_operators(self) def _enumerate_state(self, num_states, **options): raise NotImplementedError("Cannot enumerate this state!") def _represent_default_basis(self, **options): return self._represent(basis=self.operators) #------------------------------------------------------------------------- # Dagger/dual #------------------------------------------------------------------------- @property def dual(self): """Return the dual state of this one.""" return self.dual_class()._new_rawargs(self.hilbert_space, *self.args) @classmethod def dual_class(self): """Return the class used to construct the dual.""" raise NotImplementedError( 'dual_class must be implemented in a subclass' ) def _eval_adjoint(self): """Compute the dagger of this state using the dual.""" return self.dual #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _pretty_brackets(self, height, use_unicode=True): # Return pretty printed brackets for the state # Ideally, this could be done by pform.parens but it does not support the angled < and > # Setup for unicode vs ascii if use_unicode: lbracket, rbracket = self.lbracket_ucode, self.rbracket_ucode slash, bslash, vert = u'\N{BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT}', \ u'\N{BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT}', \ u'\N{BOX DRAWINGS LIGHT VERTICAL}' else: lbracket, rbracket = self.lbracket, self.rbracket slash, bslash, vert = '/', '\\', '|' # If height is 1, just return brackets if height == 1: return stringPict(lbracket), stringPict(rbracket) # Make height even height += (height % 2) brackets = [] for bracket in lbracket, rbracket: # Create left bracket if bracket in {_lbracket, _lbracket_ucode}: bracket_args = [ ' ' * (height//2 - i - 1) + slash for i in range(height // 2)] bracket_args.extend( [ ' ' * i + bslash for i in range(height // 2)]) # Create right bracket elif bracket in {_rbracket, _rbracket_ucode}: bracket_args = [ ' ' * i + bslash for i in range(height // 2)] bracket_args.extend([ ' ' * ( height//2 - i - 1) + slash for i in range(height // 2)]) # Create straight bracket elif bracket in {_straight_bracket, _straight_bracket_ucode}: bracket_args = [vert for i in range(height)] else: raise ValueError(bracket) brackets.append( stringPict('\n'.join(bracket_args), baseline=height//2)) return brackets def _sympystr(self, printer, *args): contents = self._print_contents(printer, *args) return '%s%s%s' % (self.lbracket, contents, self.rbracket) def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm # Get brackets pform = self._print_contents_pretty(printer, *args) lbracket, rbracket = self._pretty_brackets( pform.height(), printer._use_unicode) # Put together state pform = prettyForm(*pform.left(lbracket)) pform = prettyForm(*pform.right(rbracket)) return pform def _latex(self, printer, *args): contents = self._print_contents_latex(printer, *args) # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. return '{%s%s%s}' % (self.lbracket_latex, contents, self.rbracket_latex) class KetBase(StateBase): """Base class for Kets. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Ket. """ lbracket = _straight_bracket rbracket = _rbracket lbracket_ucode = _straight_bracket_ucode rbracket_ucode = _rbracket_ucode lbracket_latex = r'\left|' rbracket_latex = r'\right\rangle ' @classmethod def default_args(self): return ("psi",) @classmethod def dual_class(self): return BraBase def __mul__(self, other): """KetBase*other""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, BraBase): return OuterProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*KetBase""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, BraBase): return InnerProduct(other, self) else: return Expr.__rmul__(self, other) #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_innerproduct(self, bra, **hints): """Evaluate the inner product between this ket and a bra. This is called to compute <bra|ket>, where the ket is ``self``. This method will dispatch to sub-methods having the format:: ``def _eval_innerproduct_BraClass(self, **hints):`` Subclasses should define these methods (one for each BraClass) to teach the ket how to take inner products with bras. """ return dispatch_method(self, '_eval_innerproduct', bra, **hints) def _apply_operator(self, op, **options): """Apply an Operator to this Ket. This method will dispatch to methods having the format:: ``def _apply_operator_OperatorName(op, **options):`` Subclasses should define these methods (one for each OperatorName) to teach the Ket how operators act on it. Parameters ========== op : Operator The Operator that is acting on the Ket. options : dict A dict of key/value pairs that control how the operator is applied to the Ket. """ return dispatch_method(self, '_apply_operator', op, **options) class BraBase(StateBase): """Base class for Bras. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Bra. """ lbracket = _lbracket rbracket = _straight_bracket lbracket_ucode = _lbracket_ucode rbracket_ucode = _straight_bracket_ucode lbracket_latex = r'\left\langle ' rbracket_latex = r'\right|' @classmethod def _operators_to_state(self, ops, **options): state = self.dual_class().operators_to_state(ops, **options) return state.dual def _state_to_operators(self, op_classes, **options): return self.dual._state_to_operators(op_classes, **options) def _enumerate_state(self, num_states, **options): dual_states = self.dual._enumerate_state(num_states, **options) return [x.dual for x in dual_states] @classmethod def default_args(self): return self.dual_class().default_args() @classmethod def dual_class(self): return KetBase def __mul__(self, other): """BraBase*other""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, KetBase): return InnerProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*BraBase""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, KetBase): return OuterProduct(other, self) else: return Expr.__rmul__(self, other) def _represent(self, **options): """A default represent that uses the Ket's version.""" from sympy.physics.quantum.dagger import Dagger return Dagger(self.dual._represent(**options)) class State(StateBase): """General abstract quantum state used as a base class for Ket and Bra.""" pass class Ket(State, KetBase): """A general time-independent Ket in quantum mechanics. Inherits from State and KetBase. This class should be used as the base class for all physical, time-independent Kets in a system. This class and its subclasses will be the main classes that users will use for expressing Kets in Dirac notation [1]_. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Ket and looking at its properties:: >>> from sympy.physics.quantum import Ket, Bra >>> from sympy import symbols, I >>> k = Ket('psi') >>> k |psi> >>> k.hilbert_space H >>> k.is_commutative False >>> k.label (psi,) Ket's know about their associated bra:: >>> k.dual <psi| >>> k.dual_class() <class 'sympy.physics.quantum.state.Bra'> Take a linear combination of two kets:: >>> k0 = Ket(0) >>> k1 = Ket(1) >>> 2*I*k0 - 4*k1 2*I*|0> - 4*|1> Compound labels are passed as tuples:: >>> n, m = symbols('n,m') >>> k = Ket(n,m) >>> k |nm> References ========== .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Bra class Bra(State, BraBase): """A general time-independent Bra in quantum mechanics. Inherits from State and BraBase. A Bra is the dual of a Ket [1]_. This class and its subclasses will be the main classes that users will use for expressing Bras in Dirac notation. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Bra and look at its properties:: >>> from sympy.physics.quantum import Ket, Bra >>> from sympy import symbols, I >>> b = Bra('psi') >>> b <psi| >>> b.hilbert_space H >>> b.is_commutative False Bra's know about their dual Ket's:: >>> b.dual |psi> >>> b.dual_class() <class 'sympy.physics.quantum.state.Ket'> Like Kets, Bras can have compound labels and be manipulated in a similar manner:: >>> n, m = symbols('n,m') >>> b = Bra(n,m) - I*Bra(m,n) >>> b -I*<mn| + <nm| Symbols in a Bra can be substituted using ``.subs``:: >>> b.subs(n,m) <mm| - I*<mm| References ========== .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Ket #----------------------------------------------------------------------------- # Time dependent states, bras and kets. #----------------------------------------------------------------------------- class TimeDepState(StateBase): """Base class for a general time-dependent quantum state. This class is used as a base class for any time-dependent state. The main difference between this class and the time-independent state is that this class takes a second argument that is the time in addition to the usual label argument. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. """ #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def default_args(self): return ("psi", "t") #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def label(self): """The label of the state.""" return self.args[:-1] @property def time(self): """The time of the state.""" return self.args[-1] #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _print_time(self, printer, *args): return printer._print(self.time, *args) _print_time_repr = _print_time _print_time_latex = _print_time def _print_time_pretty(self, printer, *args): pform = printer._print(self.time, *args) return pform def _print_contents(self, printer, *args): label = self._print_label(printer, *args) time = self._print_time(printer, *args) return '%s;%s' % (label, time) def _print_label_repr(self, printer, *args): label = self._print_sequence(self.label, ',', printer, *args) time = self._print_time_repr(printer, *args) return '%s,%s' % (label, time) def _print_contents_pretty(self, printer, *args): label = self._print_label_pretty(printer, *args) time = self._print_time_pretty(printer, *args) return printer._print_seq((label, time), delimiter=';') def _print_contents_latex(self, printer, *args): label = self._print_sequence( self.label, self._label_separator, printer, *args) time = self._print_time_latex(printer, *args) return '%s;%s' % (label, time) class TimeDepKet(TimeDepState, KetBase): """General time-dependent Ket in quantum mechanics. This inherits from ``TimeDepState`` and ``KetBase`` and is the main class that should be used for Kets that vary with time. Its dual is a ``TimeDepBra``. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== Create a TimeDepKet and look at its attributes:: >>> from sympy.physics.quantum import TimeDepKet >>> k = TimeDepKet('psi', 't') >>> k |psi;t> >>> k.time t >>> k.label (psi,) >>> k.hilbert_space H TimeDepKets know about their dual bra:: >>> k.dual <psi;t| >>> k.dual_class() <class 'sympy.physics.quantum.state.TimeDepBra'> """ @classmethod def dual_class(self): return TimeDepBra class TimeDepBra(TimeDepState, BraBase): """General time-dependent Bra in quantum mechanics. This inherits from TimeDepState and BraBase and is the main class that should be used for Bras that vary with time. Its dual is a TimeDepBra. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== >>> from sympy.physics.quantum import TimeDepBra >>> from sympy import symbols, I >>> b = TimeDepBra('psi', 't') >>> b <psi;t| >>> b.time t >>> b.label (psi,) >>> b.hilbert_space H >>> b.dual |psi;t> """ @classmethod def dual_class(self): return TimeDepKet class Wavefunction(Function): """Class for representations in continuous bases This class takes an expression and coordinates in its constructor. It can be used to easily calculate normalizations and probabilities. Parameters ========== expr : Expr The expression representing the functional form of the w.f. coords : Symbol or tuple The coordinates to be integrated over, and their bounds Examples ======== Particle in a box, specifying bounds in the more primitive way of using Piecewise: >>> from sympy import Symbol, Piecewise, pi, N >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = Symbol('x', real=True) >>> n = 1 >>> L = 1 >>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) >>> f = Wavefunction(g, x) >>> f.norm 1 >>> f.is_normalized True >>> p = f.prob() >>> p(0) 0 >>> p(L) 0 >>> p(0.5) 2 >>> p(0.85*L) 2*sin(0.85*pi)**2 >>> N(p(0.85*L)) 0.412214747707527 Additionally, you can specify the bounds of the function and the indices in a more compact way: >>> from sympy import symbols, pi, diff >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> f(L+1) 0 >>> f(L-1) sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L) >>> f(-1) 0 >>> f(0.85) sqrt(2)*sin(0.85*pi*n/L)/sqrt(L) >>> f(0.85, n=1, L=1) sqrt(2)*sin(0.85*pi) >>> f.is_commutative False All arguments are automatically sympified, so you can define the variables as strings rather than symbols: >>> expr = x**2 >>> f = Wavefunction(expr, 'x') >>> type(f.variables[0]) <class 'sympy.core.symbol.Symbol'> Derivatives of Wavefunctions will return Wavefunctions: >>> diff(f, x) Wavefunction(2*x, x) """ #Any passed tuples for coordinates and their bounds need to be #converted to Tuples before Function's constructor is called, to #avoid errors from calling is_Float in the constructor def __new__(cls, *args, **options): new_args = [None for i in args] ct = 0 for arg in args: if isinstance(arg, tuple): new_args[ct] = Tuple(*arg) else: new_args[ct] = arg ct += 1 return super(Function, cls).__new__(cls, *new_args, **options) def __call__(self, *args, **options): var = self.variables if len(args) != len(var): raise NotImplementedError( "Incorrect number of arguments to function!") ct = 0 #If the passed value is outside the specified bounds, return 0 for v in var: lower, upper = self.limits[v] #Do the comparison to limits only if the passed symbol is actually #a symbol present in the limits; #Had problems with a comparison of x > L if isinstance(args[ct], Expr) and \ not (lower in args[ct].free_symbols or upper in args[ct].free_symbols): continue if (args[ct] < lower) == True or (args[ct] > upper) == True: return 0 ct += 1 expr = self.expr #Allows user to make a call like f(2, 4, m=1, n=1) for symbol in list(expr.free_symbols): if str(symbol) in options.keys(): val = options[str(symbol)] expr = expr.subs(symbol, val) return expr.subs(zip(var, args)) def _eval_derivative(self, symbol): expr = self.expr deriv = expr._eval_derivative(symbol) return Wavefunction(deriv, *self.args[1:]) def _eval_conjugate(self): return Wavefunction(conjugate(self.expr), *self.args[1:]) def _eval_transpose(self): return self @property def free_symbols(self): return self.expr.free_symbols @property def is_commutative(self): """ Override Function's is_commutative so that order is preserved in represented expressions """ return False @classmethod def eval(self, *args): return None @property def variables(self): """ Return the coordinates which the wavefunction depends on Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x,y = symbols('x,y') >>> f = Wavefunction(x*y, x, y) >>> f.variables (x, y) >>> g = Wavefunction(x*y, x) >>> g.variables (x,) """ var = [g[0] if isinstance(g, Tuple) else g for g in self._args[1:]] return tuple(var) @property def limits(self): """ Return the limits of the coordinates which the w.f. depends on If no limits are specified, defaults to ``(-oo, oo)``. Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, (x, 0, 1)) >>> f.limits {x: (0, 1)} >>> f = Wavefunction(x**2, x) >>> f.limits {x: (-oo, oo)} >>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2)) >>> f.limits {x: (-oo, oo), y: (-1, 2)} """ limits = [(g[1], g[2]) if isinstance(g, Tuple) else (-oo, oo) for g in self._args[1:]] return dict(zip(self.variables, tuple(limits))) @property def expr(self): """ Return the expression which is the functional form of the Wavefunction Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, x) >>> f.expr x**2 """ return self._args[0] @property def is_normalized(self): """ Returns true if the Wavefunction is properly normalized Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.is_normalized True """ return (self.norm == 1.0) @property @cacheit def norm(self): """ Return the normalization of the specified functional form. This function integrates over the coordinates of the Wavefunction, with the bounds specified. Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm sqrt(2)*sqrt(L)/2 """ exp = self.expr*conjugate(self.expr) var = self.variables limits = self.limits for v in var: curr_limits = limits[v] exp = integrate(exp, (v, curr_limits[0], curr_limits[1])) return sqrt(exp) def normalize(self): """ Return a normalized version of the Wavefunction Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = symbols('x', real=True) >>> L = symbols('L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.normalize() Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L)) """ const = self.norm if const == oo: raise NotImplementedError("The function is not normalizable!") else: return Wavefunction((const)**(-1)*self.expr, *self.args[1:]) def prob(self): r""" Return the absolute magnitude of the w.f., `|\psi(x)|^2` Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', real=True) >>> n = symbols('n', integer=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.prob() Wavefunction(sin(pi*n*x/L)**2, x) """ return Wavefunction(self.expr*conjugate(self.expr), *self.variables)
8225fc89d27fa3c1cc0a8d0a94f472afa7fe48070e8a4f78606d546cdd0a7b67
"""Utilities to deal with sympy.Matrix, numpy and scipy.sparse.""" from __future__ import print_function, division from sympy import MatrixBase, I, Expr, Integer from sympy.core.compatibility import range from sympy.matrices import eye, zeros from sympy.external import import_module __all__ = [ 'numpy_ndarray', 'scipy_sparse_matrix', 'sympy_to_numpy', 'sympy_to_scipy_sparse', 'numpy_to_sympy', 'scipy_sparse_to_sympy', 'flatten_scalar', 'matrix_dagger', 'to_sympy', 'to_numpy', 'to_scipy_sparse', 'matrix_tensor_product', 'matrix_zeros' ] # Conditionally define the base classes for numpy and scipy.sparse arrays # for use in isinstance tests. np = import_module('numpy') if not np: class numpy_ndarray(object): pass else: numpy_ndarray = np.ndarray scipy = import_module('scipy', __import__kwargs={'fromlist': ['sparse']}) if not scipy: class scipy_sparse_matrix(object): pass sparse = None else: sparse = scipy.sparse # Try to find spmatrix. if hasattr(sparse, 'base'): # Newer versions have it under scipy.sparse.base. scipy_sparse_matrix = sparse.base.spmatrix elif hasattr(sparse, 'sparse'): # Older versions have it under scipy.sparse.sparse. scipy_sparse_matrix = sparse.sparse.spmatrix def sympy_to_numpy(m, **options): """Convert a sympy Matrix/complex number to a numpy matrix or scalar.""" if not np: raise ImportError dtype = options.get('dtype', 'complex') if isinstance(m, MatrixBase): return np.matrix(m.tolist(), dtype=dtype) elif isinstance(m, Expr): if m.is_Number or m.is_NumberSymbol or m == I: return complex(m) raise TypeError('Expected MatrixBase or complex scalar, got: %r' % m) def sympy_to_scipy_sparse(m, **options): """Convert a sympy Matrix/complex number to a numpy matrix or scalar.""" if not np or not sparse: raise ImportError dtype = options.get('dtype', 'complex') if isinstance(m, MatrixBase): return sparse.csr_matrix(np.matrix(m.tolist(), dtype=dtype)) elif isinstance(m, Expr): if m.is_Number or m.is_NumberSymbol or m == I: return complex(m) raise TypeError('Expected MatrixBase or complex scalar, got: %r' % m) def scipy_sparse_to_sympy(m, **options): """Convert a scipy.sparse matrix to a sympy matrix.""" return MatrixBase(m.todense()) def numpy_to_sympy(m, **options): """Convert a numpy matrix to a sympy matrix.""" return MatrixBase(m) def to_sympy(m, **options): """Convert a numpy/scipy.sparse matrix to a sympy matrix.""" if isinstance(m, MatrixBase): return m elif isinstance(m, numpy_ndarray): return numpy_to_sympy(m) elif isinstance(m, scipy_sparse_matrix): return scipy_sparse_to_sympy(m) elif isinstance(m, Expr): return m raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m) def to_numpy(m, **options): """Convert a sympy/scipy.sparse matrix to a numpy matrix.""" dtype = options.get('dtype', 'complex') if isinstance(m, (MatrixBase, Expr)): return sympy_to_numpy(m, dtype=dtype) elif isinstance(m, numpy_ndarray): return m elif isinstance(m, scipy_sparse_matrix): return m.todense() raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m) def to_scipy_sparse(m, **options): """Convert a sympy/numpy matrix to a scipy.sparse matrix.""" dtype = options.get('dtype', 'complex') if isinstance(m, (MatrixBase, Expr)): return sympy_to_scipy_sparse(m, dtype=dtype) elif isinstance(m, numpy_ndarray): if not sparse: raise ImportError return sparse.csr_matrix(m) elif isinstance(m, scipy_sparse_matrix): return m raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m) def flatten_scalar(e): """Flatten a 1x1 matrix to a scalar, return larger matrices unchanged.""" if isinstance(e, MatrixBase): if e.shape == (1, 1): e = e[0] if isinstance(e, (numpy_ndarray, scipy_sparse_matrix)): if e.shape == (1, 1): e = complex(e[0, 0]) return e def matrix_dagger(e): """Return the dagger of a sympy/numpy/scipy.sparse matrix.""" if isinstance(e, MatrixBase): return e.H elif isinstance(e, (numpy_ndarray, scipy_sparse_matrix)): return e.conjugate().transpose() raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % e) # TODO: Move this into sympy.matricies. def _sympy_tensor_product(*matrices): """Compute the tensor product of a sequence of sympy Matrices. This is the standard Kronecker product of matrices [1]. Parameters ========== matrices : tuple of MatrixBase instances The matrices to take the tensor product of. Returns ======= matrix : MatrixBase The tensor product matrix. Examples ======== >>> from sympy import I, Matrix, symbols >>> from sympy.physics.quantum.matrixutils import _sympy_tensor_product >>> m1 = Matrix([[1,2],[3,4]]) >>> m2 = Matrix([[1,0],[0,1]]) >>> _sympy_tensor_product(m1, m2) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2], [3, 0, 4, 0], [0, 3, 0, 4]]) >>> _sympy_tensor_product(m2, m1) Matrix([ [1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4]]) References ========== [1] https://en.wikipedia.org/wiki/Kronecker_product """ # Make sure we have a sequence of Matrices if not all(isinstance(m, MatrixBase) for m in matrices): raise TypeError( 'Sequence of Matrices expected, got: %s' % repr(matrices) ) # Pull out the first element in the product. matrix_expansion = matrices[-1] # Do the tensor product working from right to left. for mat in reversed(matrices[:-1]): rows = mat.rows cols = mat.cols # Go through each row appending tensor product to. # running matrix_expansion. for i in range(rows): start = matrix_expansion*mat[i*cols] # Go through each column joining each item for j in range(cols - 1): start = start.row_join( matrix_expansion*mat[i*cols + j + 1] ) # If this is the first element, make it the start of the # new row. if i == 0: next = start else: next = next.col_join(start) matrix_expansion = next return matrix_expansion def _numpy_tensor_product(*product): """numpy version of tensor product of multiple arguments.""" if not np: raise ImportError answer = product[0] for item in product[1:]: answer = np.kron(answer, item) return answer def _scipy_sparse_tensor_product(*product): """scipy.sparse version of tensor product of multiple arguments.""" if not sparse: raise ImportError answer = product[0] for item in product[1:]: answer = sparse.kron(answer, item) # The final matrices will just be multiplied, so csr is a good final # sparse format. return sparse.csr_matrix(answer) def matrix_tensor_product(*product): """Compute the matrix tensor product of sympy/numpy/scipy.sparse matrices.""" if isinstance(product[0], MatrixBase): return _sympy_tensor_product(*product) elif isinstance(product[0], numpy_ndarray): return _numpy_tensor_product(*product) elif isinstance(product[0], scipy_sparse_matrix): return _scipy_sparse_tensor_product(*product) def _numpy_eye(n): """numpy version of complex eye.""" if not np: raise ImportError return np.matrix(np.eye(n, dtype='complex')) def _scipy_sparse_eye(n): """scipy.sparse version of complex eye.""" if not sparse: raise ImportError return sparse.eye(n, n, dtype='complex') def matrix_eye(n, **options): """Get the version of eye and tensor_product for a given format.""" format = options.get('format', 'sympy') if format == 'sympy': return eye(n) elif format == 'numpy': return _numpy_eye(n) elif format == 'scipy.sparse': return _scipy_sparse_eye(n) raise NotImplementedError('Invalid format: %r' % format) def _numpy_zeros(m, n, **options): """numpy version of zeros.""" dtype = options.get('dtype', 'float64') if not np: raise ImportError return np.zeros((m, n), dtype=dtype) def _scipy_sparse_zeros(m, n, **options): """scipy.sparse version of zeros.""" spmatrix = options.get('spmatrix', 'csr') dtype = options.get('dtype', 'float64') if not sparse: raise ImportError if spmatrix == 'lil': return sparse.lil_matrix((m, n), dtype=dtype) elif spmatrix == 'csr': return sparse.csr_matrix((m, n), dtype=dtype) def matrix_zeros(m, n, **options): """"Get a zeros matrix for a given format.""" format = options.get('format', 'sympy') dtype = options.get('dtype', 'float64') spmatrix = options.get('spmatrix', 'csr') if format == 'sympy': return zeros(m, n) elif format == 'numpy': return _numpy_zeros(m, n, **options) elif format == 'scipy.sparse': return _scipy_sparse_zeros(m, n, **options) raise NotImplementedError('Invaild format: %r' % format) def _numpy_matrix_to_zero(e): """Convert a numpy zero matrix to the zero scalar.""" if not np: raise ImportError test = np.zeros_like(e) if np.allclose(e, test): return 0.0 else: return e def _scipy_sparse_matrix_to_zero(e): """Convert a scipy.sparse zero matrix to the zero scalar.""" if not np: raise ImportError edense = e.todense() test = np.zeros_like(edense) if np.allclose(edense, test): return 0.0 else: return e def matrix_to_zero(e): """Convert a zero matrix to the scalar zero.""" if isinstance(e, MatrixBase): if zeros(*e.shape) == e: e = Integer(0) elif isinstance(e, numpy_ndarray): e = _numpy_matrix_to_zero(e) elif isinstance(e, scipy_sparse_matrix): e = _scipy_sparse_matrix_to_zero(e) return e
6bd30b3ff9365b735e1568febcb3e271bf91fd1ec14420a941e5b595b88331fd
"""Quantum mechanical operators. TODO: * Fix early 0 in apply_operators. * Debug and test apply_operators. * Get cse working with classes in this file. * Doctests and documentation of special methods for InnerProduct, Commutator, AntiCommutator, represent, apply_operators. """ from __future__ import print_function, division from sympy import Derivative, Expr, Integer, oo, Mul, expand, Add from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.qexpr import QExpr, dispatch_method from sympy.matrices import eye __all__ = [ 'Operator', 'HermitianOperator', 'UnitaryOperator', 'IdentityOperator', 'OuterProduct', 'DifferentialOperator' ] #----------------------------------------------------------------------------- # Operators and outer products #----------------------------------------------------------------------------- class Operator(QExpr): """Base class for non-commuting quantum operators. An operator maps between quantum states [1]_. In quantum mechanics, observables (including, but not limited to, measured physical values) are represented as Hermitian operators [2]_. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== Create an operator and examine its attributes:: >>> from sympy.physics.quantum import Operator >>> from sympy import symbols, I >>> A = Operator('A') >>> A A >>> A.hilbert_space H >>> A.label (A,) >>> A.is_commutative False Create another operator and do some arithmetic operations:: >>> B = Operator('B') >>> C = 2*A*A + I*B >>> C 2*A**2 + I*B Operators don't commute:: >>> A.is_commutative False >>> B.is_commutative False >>> A*B == B*A False Polymonials of operators respect the commutation properties:: >>> e = (A+B)**3 >>> e.expand() A*B*A + A*B**2 + A**2*B + A**3 + B*A*B + B*A**2 + B**2*A + B**3 Operator inverses are handle symbolically:: >>> A.inv() A**(-1) >>> A*A.inv() 1 References ========== .. [1] https://en.wikipedia.org/wiki/Operator_%28physics%29 .. [2] https://en.wikipedia.org/wiki/Observable """ @classmethod def default_args(self): return ("O",) #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- _label_separator = ',' def _print_operator_name(self, printer, *args): return printer._print(self.__class__.__name__, *args) _print_operator_name_latex = _print_operator_name def _print_operator_name_pretty(self, printer, *args): return prettyForm(self.__class__.__name__) def _print_contents(self, printer, *args): if len(self.label) == 1: return self._print_label(printer, *args) else: return '%s(%s)' % ( self._print_operator_name(printer, *args), self._print_label(printer, *args) ) def _print_contents_pretty(self, printer, *args): if len(self.label) == 1: return self._print_label_pretty(printer, *args) else: pform = self._print_operator_name_pretty(printer, *args) label_pform = self._print_label_pretty(printer, *args) label_pform = prettyForm( *label_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right((label_pform))) return pform def _print_contents_latex(self, printer, *args): if len(self.label) == 1: return self._print_label_latex(printer, *args) else: return r'%s\left(%s\right)' % ( self._print_operator_name_latex(printer, *args), self._print_label_latex(printer, *args) ) #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_commutator(self, other, **options): """Evaluate [self, other] if known, return None if not known.""" return dispatch_method(self, '_eval_commutator', other, **options) def _eval_anticommutator(self, other, **options): """Evaluate [self, other] if known.""" return dispatch_method(self, '_eval_anticommutator', other, **options) #------------------------------------------------------------------------- # Operator application #------------------------------------------------------------------------- def _apply_operator(self, ket, **options): return dispatch_method(self, '_apply_operator', ket, **options) def matrix_element(self, *args): raise NotImplementedError('matrix_elements is not defined') def inverse(self): return self._eval_inverse() inv = inverse def _eval_inverse(self): return self**(-1) def __mul__(self, other): if isinstance(other, IdentityOperator): return self return Mul(self, other) class HermitianOperator(Operator): """A Hermitian operator that satisfies H == Dagger(H). Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== >>> from sympy.physics.quantum import Dagger, HermitianOperator >>> H = HermitianOperator('H') >>> Dagger(H) H """ is_hermitian = True def _eval_inverse(self): if isinstance(self, UnitaryOperator): return self else: return Operator._eval_inverse(self) def _eval_power(self, exp): if isinstance(self, UnitaryOperator): if exp == -1: return Operator._eval_power(self, exp) elif abs(exp) % 2 == 0: return self*(Operator._eval_inverse(self)) else: return self else: return Operator._eval_power(self, exp) class UnitaryOperator(Operator): """A unitary operator that satisfies U*Dagger(U) == 1. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== >>> from sympy.physics.quantum import Dagger, UnitaryOperator >>> U = UnitaryOperator('U') >>> U*Dagger(U) 1 """ def _eval_adjoint(self): return self._eval_inverse() class IdentityOperator(Operator): """An identity operator I that satisfies op * I == I * op == op for any operator op. Parameters ========== N : Integer Optional parameter that specifies the dimension of the Hilbert space of operator. This is used when generating a matrix representation. Examples ======== >>> from sympy.physics.quantum import IdentityOperator >>> IdentityOperator() I """ @property def dimension(self): return self.N @classmethod def default_args(self): return (oo,) def __init__(self, *args, **hints): if not len(args) in [0, 1]: raise ValueError('0 or 1 parameters expected, got %s' % args) self.N = args[0] if (len(args) == 1 and args[0]) else oo def _eval_commutator(self, other, **hints): return Integer(0) def _eval_anticommutator(self, other, **hints): return 2 * other def _eval_inverse(self): return self def _eval_adjoint(self): return self def _apply_operator(self, ket, **options): return ket def _eval_power(self, exp): return self def _print_contents(self, printer, *args): return 'I' def _print_contents_pretty(self, printer, *args): return prettyForm('I') def _print_contents_latex(self, printer, *args): return r'{\mathcal{I}}' def __mul__(self, other): if isinstance(other, Operator): return other return Mul(self, other) def _represent_default_basis(self, **options): if not self.N or self.N == oo: raise NotImplementedError('Cannot represent infinite dimensional' + ' identity operator as a matrix') format = options.get('format', 'sympy') if format != 'sympy': raise NotImplementedError('Representation in format ' + '%s not implemented.' % format) return eye(self.N) class OuterProduct(Operator): """An unevaluated outer product between a ket and bra. This constructs an outer product between any subclass of ``KetBase`` and ``BraBase`` as ``|a><b|``. An ``OuterProduct`` inherits from Operator as they act as operators in quantum expressions. For reference see [1]_. Parameters ========== ket : KetBase The ket on the left side of the outer product. bar : BraBase The bra on the right side of the outer product. Examples ======== Create a simple outer product by hand and take its dagger:: >>> from sympy.physics.quantum import Ket, Bra, OuterProduct, Dagger >>> from sympy.physics.quantum import Operator >>> k = Ket('k') >>> b = Bra('b') >>> op = OuterProduct(k, b) >>> op |k><b| >>> op.hilbert_space H >>> op.ket |k> >>> op.bra <b| >>> Dagger(op) |b><k| In simple products of kets and bras outer products will be automatically identified and created:: >>> k*b |k><b| But in more complex expressions, outer products are not automatically created:: >>> A = Operator('A') >>> A*k*b A*|k>*<b| A user can force the creation of an outer product in a complex expression by using parentheses to group the ket and bra:: >>> A*(k*b) A*|k><b| References ========== .. [1] https://en.wikipedia.org/wiki/Outer_product """ is_commutative = False def __new__(cls, *args, **old_assumptions): from sympy.physics.quantum.state import KetBase, BraBase if len(args) != 2: raise ValueError('2 parameters expected, got %d' % len(args)) ket_expr = expand(args[0]) bra_expr = expand(args[1]) if (isinstance(ket_expr, (KetBase, Mul)) and isinstance(bra_expr, (BraBase, Mul))): ket_c, kets = ket_expr.args_cnc() bra_c, bras = bra_expr.args_cnc() if len(kets) != 1 or not isinstance(kets[0], KetBase): raise TypeError('KetBase subclass expected' ', got: %r' % Mul(*kets)) if len(bras) != 1 or not isinstance(bras[0], BraBase): raise TypeError('BraBase subclass expected' ', got: %r' % Mul(*bras)) if not kets[0].dual_class() == bras[0].__class__: raise TypeError( 'ket and bra are not dual classes: %r, %r' % (kets[0].__class__, bras[0].__class__) ) # TODO: make sure the hilbert spaces of the bra and ket are # compatible obj = Expr.__new__(cls, *(kets[0], bras[0]), **old_assumptions) obj.hilbert_space = kets[0].hilbert_space return Mul(*(ket_c + bra_c)) * obj op_terms = [] if isinstance(ket_expr, Add) and isinstance(bra_expr, Add): for ket_term in ket_expr.args: for bra_term in bra_expr.args: op_terms.append(OuterProduct(ket_term, bra_term, **old_assumptions)) elif isinstance(ket_expr, Add): for ket_term in ket_expr.args: op_terms.append(OuterProduct(ket_term, bra_expr, **old_assumptions)) elif isinstance(bra_expr, Add): for bra_term in bra_expr.args: op_terms.append(OuterProduct(ket_expr, bra_term, **old_assumptions)) else: raise TypeError( 'Expected ket and bra expression, got: %r, %r' % (ket_expr, bra_expr) ) return Add(*op_terms) @property def ket(self): """Return the ket on the left side of the outer product.""" return self.args[0] @property def bra(self): """Return the bra on the right side of the outer product.""" return self.args[1] def _eval_adjoint(self): return OuterProduct(Dagger(self.bra), Dagger(self.ket)) def _sympystr(self, printer, *args): return str(self.ket) + str(self.bra) def _sympyrepr(self, printer, *args): return '%s(%s,%s)' % (self.__class__.__name__, printer._print(self.ket, *args), printer._print(self.bra, *args)) def _pretty(self, printer, *args): pform = self.ket._pretty(printer, *args) return prettyForm(*pform.right(self.bra._pretty(printer, *args))) def _latex(self, printer, *args): k = printer._print(self.ket, *args) b = printer._print(self.bra, *args) return k + b def _represent(self, **options): k = self.ket._represent(**options) b = self.bra._represent(**options) return k*b def _eval_trace(self, **kwargs): # TODO if operands are tensorproducts this may be will be handled # differently. return self.ket._eval_trace(self.bra, **kwargs) class DifferentialOperator(Operator): """An operator for representing the differential operator, i.e. d/dx It is initialized by passing two arguments. The first is an arbitrary expression that involves a function, such as ``Derivative(f(x), x)``. The second is the function (e.g. ``f(x)``) which we are to replace with the ``Wavefunction`` that this ``DifferentialOperator`` is applied to. Parameters ========== expr : Expr The arbitrary expression which the appropriate Wavefunction is to be substituted into func : Expr A function (e.g. f(x)) which is to be replaced with the appropriate Wavefunction when this DifferentialOperator is applied Examples ======== You can define a completely arbitrary expression and specify where the Wavefunction is to be substituted >>> from sympy import Derivative, Function, Symbol >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy.physics.quantum.qapply import qapply >>> f = Function('f') >>> x = Symbol('x') >>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) >>> w = Wavefunction(x**2, x) >>> d.function f(x) >>> d.variables (x,) >>> qapply(d*w) Wavefunction(2, x) """ @property def variables(self): """ Returns the variables with which the function in the specified arbitrary expression is evaluated Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Symbol, Function, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) >>> d.variables (x,) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.variables (x, y) """ return self.args[-1].args @property def function(self): """ Returns the function which is to be replaced with the Wavefunction Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Function, Symbol, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(Derivative(f(x), x), f(x)) >>> d.function f(x) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.function f(x, y) """ return self.args[-1] @property def expr(self): """ Returns the arbitrary expression which is to have the Wavefunction substituted into it Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Function, Symbol, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(Derivative(f(x), x), f(x)) >>> d.expr Derivative(f(x), x) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.expr Derivative(f(x, y), x) + Derivative(f(x, y), y) """ return self.args[0] @property def free_symbols(self): """ Return the free symbols of the expression. """ return self.expr.free_symbols def _apply_operator_Wavefunction(self, func): from sympy.physics.quantum.state import Wavefunction var = self.variables wf_vars = func.args[1:] f = self.function new_expr = self.expr.subs(f, func(*var)) new_expr = new_expr.doit() return Wavefunction(new_expr, *wf_vars) def _eval_derivative(self, symbol): new_expr = Derivative(self.expr, symbol) return DifferentialOperator(new_expr, self.args[-1]) #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _print(self, printer, *args): return '%s(%s)' % ( self._print_operator_name(printer, *args), self._print_label(printer, *args) ) def _print_pretty(self, printer, *args): pform = self._print_operator_name_pretty(printer, *args) label_pform = self._print_label_pretty(printer, *args) label_pform = prettyForm( *label_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right((label_pform))) return pform
2d89b6496f1d6cea9a08e5001b5583d8ce3b74b86ff747f93d1f336e77b68f03
"""Symbolic inner product.""" from __future__ import print_function, division from sympy import Expr, conjugate from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.state import KetBase, BraBase __all__ = [ 'InnerProduct' ] # InnerProduct is not an QExpr because it is really just a regular commutative # number. We have gone back and forth about this, but we gain a lot by having # it subclass Expr. The main challenges were getting Dagger to work # (we use _eval_conjugate) and represent (we can use atoms and subs). Having # it be an Expr, mean that there are no commutative QExpr subclasses, # which simplifies the design of everything. class InnerProduct(Expr): """An unevaluated inner product between a Bra and a Ket [1]. Parameters ========== bra : BraBase or subclass The bra on the left side of the inner product. ket : KetBase or subclass The ket on the right side of the inner product. Examples ======== Create an InnerProduct and check its properties: >>> from sympy.physics.quantum import Bra, Ket, InnerProduct >>> b = Bra('b') >>> k = Ket('k') >>> ip = b*k >>> ip <b|k> >>> ip.bra <b| >>> ip.ket |k> In simple products of kets and bras inner products will be automatically identified and created:: >>> b*k <b|k> But in more complex expressions, there is ambiguity in whether inner or outer products should be created:: >>> k*b*k*b |k><b|*|k>*<b| A user can force the creation of a inner products in a complex expression by using parentheses to group the bra and ket:: >>> k*(b*k)*b <b|k>*|k>*<b| Notice how the inner product <b|k> moved to the left of the expression because inner products are commutative complex numbers. References ========== .. [1] https://en.wikipedia.org/wiki/Inner_product """ is_complex = True def __new__(cls, bra, ket): if not isinstance(ket, KetBase): raise TypeError('KetBase subclass expected, got: %r' % ket) if not isinstance(bra, BraBase): raise TypeError('BraBase subclass expected, got: %r' % ket) obj = Expr.__new__(cls, bra, ket) return obj @property def bra(self): return self.args[0] @property def ket(self): return self.args[1] def _eval_conjugate(self): return InnerProduct(Dagger(self.ket), Dagger(self.bra)) def _sympyrepr(self, printer, *args): return '%s(%s,%s)' % (self.__class__.__name__, printer._print(self.bra, *args), printer._print(self.ket, *args)) def _sympystr(self, printer, *args): sbra = str(self.bra) sket = str(self.ket) return '%s|%s' % (sbra[:-1], sket[1:]) def _pretty(self, printer, *args): # Print state contents bra = self.bra._print_contents_pretty(printer, *args) ket = self.ket._print_contents_pretty(printer, *args) # Print brackets height = max(bra.height(), ket.height()) use_unicode = printer._use_unicode lbracket, _ = self.bra._pretty_brackets(height, use_unicode) cbracket, rbracket = self.ket._pretty_brackets(height, use_unicode) # Build innerproduct pform = prettyForm(*bra.left(lbracket)) pform = prettyForm(*pform.right(cbracket)) pform = prettyForm(*pform.right(ket)) pform = prettyForm(*pform.right(rbracket)) return pform def _latex(self, printer, *args): bra_label = self.bra._print_contents_latex(printer, *args) ket = printer._print(self.ket, *args) return r'\left\langle %s \right. %s' % (bra_label, ket) def doit(self, **hints): try: r = self.ket._eval_innerproduct(self.bra, **hints) except NotImplementedError: try: r = conjugate( self.bra.dual._eval_innerproduct(self.ket.dual, **hints) ) except NotImplementedError: r = None if r is not None: return r return self
b678912117ebda7029276da0d66c2fc73798565db77fa066461934c510eeef70
from __future__ import print_function, division from itertools import product from sympy import Tuple, Add, Mul, Matrix, log, expand, Rational from sympy.core.trace import Tr from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.operator import HermitianOperator from sympy.physics.quantum.represent import represent from sympy.physics.quantum.matrixutils import numpy_ndarray, scipy_sparse_matrix, to_numpy from sympy.physics.quantum.tensorproduct import TensorProduct, tensor_product_simp class Density(HermitianOperator): """Density operator for representing mixed states. TODO: Density operator support for Qubits Parameters ========== values : tuples/lists Each tuple/list should be of form (state, prob) or [state,prob] Examples ======== Create a density operator with 2 states represented by Kets. >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d 'Density'((|0>, 0.5),(|1>, 0.5)) """ @classmethod def _eval_args(cls, args): # call this to qsympify the args args = super(Density, cls)._eval_args(args) for arg in args: # Check if arg is a tuple if not (isinstance(arg, Tuple) and len(arg) == 2): raise ValueError("Each argument should be of form [state,prob]" " or ( state, prob )") return args def states(self): """Return list of all states. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.states() (|0>, |1>) """ return Tuple(*[arg[0] for arg in self.args]) def probs(self): """Return list of all probabilities. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.probs() (0.5, 0.5) """ return Tuple(*[arg[1] for arg in self.args]) def get_state(self, index): """Return specific state by index. Parameters ========== index : index of state to be returned Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.states()[1] |1> """ state = self.args[index][0] return state def get_prob(self, index): """Return probability of specific state by index. Parameters =========== index : index of states whose probability is returned. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.probs()[1] 0.500000000000000 """ prob = self.args[index][1] return prob def apply_op(self, op): """op will operate on each individual state. Parameters ========== op : Operator Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> from sympy.physics.quantum.operator import Operator >>> A = Operator('A') >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.apply_op(A) 'Density'((A*|0>, 0.5),(A*|1>, 0.5)) """ new_args = [(op*state, prob) for (state, prob) in self.args] return Density(*new_args) def doit(self, **hints): """Expand the density operator into an outer product format. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> from sympy.physics.quantum.operator import Operator >>> A = Operator('A') >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.doit() 0.5*|0><0| + 0.5*|1><1| """ terms = [] for (state, prob) in self.args: state = state.expand() # needed to break up (a+b)*c if (isinstance(state, Add)): for arg in product(state.args, repeat=2): terms.append(prob * self._generate_outer_prod(arg[0], arg[1])) else: terms.append(prob * self._generate_outer_prod(state, state)) return Add(*terms) def _generate_outer_prod(self, arg1, arg2): c_part1, nc_part1 = arg1.args_cnc() c_part2, nc_part2 = arg2.args_cnc() if ( len(nc_part1) == 0 or len(nc_part2) == 0 ): raise ValueError('Atleast one-pair of' ' Non-commutative instance required' ' for outer product.') # Muls of Tensor Products should be expanded # before this function is called if (isinstance(nc_part1[0], TensorProduct) and len(nc_part1) == 1 and len(nc_part2) == 1): op = tensor_product_simp(nc_part1[0] * Dagger(nc_part2[0])) else: op = Mul(*nc_part1) * Dagger(Mul(*nc_part2)) return Mul(*c_part1)*Mul(*c_part2)*op def _represent(self, **options): return represent(self.doit(), **options) def _print_operator_name_latex(self, printer, *args): return printer._print(r'\rho', *args) def _print_operator_name_pretty(self, printer, *args): return prettyForm(unichr('\N{GREEK SMALL LETTER RHO}')) def _eval_trace(self, **kwargs): indices = kwargs.get('indices', []) return Tr(self.doit(), indices).doit() def entropy(self): """ Compute the entropy of a density matrix. Refer to density.entropy() method for examples. """ return entropy(self) def entropy(density): """Compute the entropy of a matrix/density object. This computes -Tr(density*ln(density)) using the eigenvalue decomposition of density, which is given as either a Density instance or a matrix (numpy.ndarray, sympy.Matrix or scipy.sparse). Parameters ========== density : density matrix of type Density, sympy matrix, scipy.sparse or numpy.ndarray Examples ======== >>> from sympy.physics.quantum.density import Density, entropy >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.matrixutils import scipy_sparse_matrix >>> from sympy.physics.quantum.spin import JzKet, Jz >>> from sympy import S, log >>> up = JzKet(S(1)/2,S(1)/2) >>> down = JzKet(S(1)/2,-S(1)/2) >>> d = Density((up,0.5),(down,0.5)) >>> entropy(d) log(2)/2 """ if isinstance(density, Density): density = represent(density) # represent in Matrix if isinstance(density, scipy_sparse_matrix): density = to_numpy(density) if isinstance(density, Matrix): eigvals = density.eigenvals().keys() return expand(-sum(e*log(e) for e in eigvals)) elif isinstance(density, numpy_ndarray): import numpy as np eigvals = np.linalg.eigvals(density) return -np.sum(eigvals*np.log(eigvals)) else: raise ValueError( "numpy.ndarray, scipy.sparse or sympy matrix expected") def fidelity(state1, state2): """ Computes the fidelity [1]_ between two quantum states The arguments provided to this function should be a square matrix or a Density object. If it is a square matrix, it is assumed to be diagonalizable. Parameters ========== state1, state2 : a density matrix or Matrix Examples ======== >>> from sympy import S, sqrt >>> from sympy.physics.quantum.dagger import Dagger >>> from sympy.physics.quantum.spin import JzKet >>> from sympy.physics.quantum.density import Density, fidelity >>> from sympy.physics.quantum.represent import represent >>> >>> up = JzKet(S(1)/2,S(1)/2) >>> down = JzKet(S(1)/2,-S(1)/2) >>> amp = 1/sqrt(2) >>> updown = (amp * up) + (amp * down) >>> >>> # represent turns Kets into matrices >>> up_dm = represent(up * Dagger(up)) >>> down_dm = represent(down * Dagger(down)) >>> updown_dm = represent(updown * Dagger(updown)) >>> >>> fidelity(up_dm, up_dm) 1 >>> fidelity(up_dm, down_dm) #orthogonal states 0 >>> fidelity(up_dm, updown_dm).evalf().round(3) 0.707 References ========== .. [1] https://en.wikipedia.org/wiki/Fidelity_of_quantum_states """ state1 = represent(state1) if isinstance(state1, Density) else state1 state2 = represent(state2) if isinstance(state2, Density) else state2 if (not isinstance(state1, Matrix) or not isinstance(state2, Matrix)): raise ValueError("state1 and state2 must be of type Density or Matrix " "received type=%s for state1 and type=%s for state2" % (type(state1), type(state2))) if ( state1.shape != state2.shape and state1.is_square): raise ValueError("The dimensions of both args should be equal and the " "matrix obtained should be a square matrix") sqrt_state1 = state1**Rational(1, 2) return Tr((sqrt_state1 * state2 * sqrt_state1)**Rational(1, 2)).doit()
6b3b4d57b347c88fc5b49cf9cfdfe19adfd9ac72de2287b9febc1848b1ce8b7f
"""The commutator: [A,B] = A*B - B*A.""" from __future__ import print_function, division from sympy import S, Expr, Mul, Add from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.operator import Operator __all__ = [ 'Commutator' ] #----------------------------------------------------------------------------- # Commutator #----------------------------------------------------------------------------- class Commutator(Expr): """The standard commutator, in an unevaluated state. Evaluating a commutator is defined [1]_ as: ``[A, B] = A*B - B*A``. This class returns the commutator in an unevaluated form. To evaluate the commutator, use the ``.doit()`` method. Canonical ordering of a commutator is ``[A, B]`` for ``A < B``. The arguments of the commutator are put into canonical order using ``__cmp__``. If ``B < A``, then ``[B, A]`` is returned as ``-[A, B]``. Parameters ========== A : Expr The first argument of the commutator [A,B]. B : Expr The second argument of the commutator [A,B]. Examples ======== >>> from sympy.physics.quantum import Commutator, Dagger, Operator >>> from sympy.abc import x, y >>> A = Operator('A') >>> B = Operator('B') >>> C = Operator('C') Create a commutator and use ``.doit()`` to evaluate it: >>> comm = Commutator(A, B) >>> comm [A,B] >>> comm.doit() A*B - B*A The commutator orders it arguments in canonical order: >>> comm = Commutator(B, A); comm -[A,B] Commutative constants are factored out: >>> Commutator(3*x*A, x*y*B) 3*x**2*y*[A,B] Using ``.expand(commutator=True)``, the standard commutator expansion rules can be applied: >>> Commutator(A+B, C).expand(commutator=True) [A,C] + [B,C] >>> Commutator(A, B+C).expand(commutator=True) [A,B] + [A,C] >>> Commutator(A*B, C).expand(commutator=True) [A,C]*B + A*[B,C] >>> Commutator(A, B*C).expand(commutator=True) [A,B]*C + B*[A,C] Adjoint operations applied to the commutator are properly applied to the arguments: >>> Dagger(Commutator(A, B)) -[Dagger(A),Dagger(B)] References ========== .. [1] https://en.wikipedia.org/wiki/Commutator """ is_commutative = False def __new__(cls, A, B): r = cls.eval(A, B) if r is not None: return r obj = Expr.__new__(cls, A, B) return obj @classmethod def eval(cls, a, b): if not (a and b): return S.Zero if a == b: return S.Zero if a.is_commutative or b.is_commutative: return S.Zero # [xA,yB] -> xy*[A,B] ca, nca = a.args_cnc() cb, ncb = b.args_cnc() c_part = ca + cb if c_part: return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb))) # Canonical ordering of arguments # The Commutator [A, B] is in canonical form if A < B. if a.compare(b) == 1: return S.NegativeOne*cls(b, a) def _eval_expand_commutator(self, **hints): A = self.args[0] B = self.args[1] if isinstance(A, Add): # [A + B, C] -> [A, C] + [B, C] sargs = [] for term in A.args: comm = Commutator(term, B) if isinstance(comm, Commutator): comm = comm._eval_expand_commutator() sargs.append(comm) return Add(*sargs) elif isinstance(B, Add): # [A, B + C] -> [A, B] + [A, C] sargs = [] for term in B.args: comm = Commutator(A, term) if isinstance(comm, Commutator): comm = comm._eval_expand_commutator() sargs.append(comm) return Add(*sargs) elif isinstance(A, Mul): # [A*B, C] -> A*[B, C] + [A, C]*B a = A.args[0] b = Mul(*A.args[1:]) c = B comm1 = Commutator(b, c) comm2 = Commutator(a, c) if isinstance(comm1, Commutator): comm1 = comm1._eval_expand_commutator() if isinstance(comm2, Commutator): comm2 = comm2._eval_expand_commutator() first = Mul(a, comm1) second = Mul(comm2, b) return Add(first, second) elif isinstance(B, Mul): # [A, B*C] -> [A, B]*C + B*[A, C] a = A b = B.args[0] c = Mul(*B.args[1:]) comm1 = Commutator(a, b) comm2 = Commutator(a, c) if isinstance(comm1, Commutator): comm1 = comm1._eval_expand_commutator() if isinstance(comm2, Commutator): comm2 = comm2._eval_expand_commutator() first = Mul(comm1, c) second = Mul(b, comm2) return Add(first, second) # No changes, so return self return self def doit(self, **hints): """ Evaluate commutator """ A = self.args[0] B = self.args[1] if isinstance(A, Operator) and isinstance(B, Operator): try: comm = A._eval_commutator(B, **hints) except NotImplementedError: try: comm = -1*B._eval_commutator(A, **hints) except NotImplementedError: comm = None if comm is not None: return comm.doit(**hints) return (A*B - B*A).doit(**hints) def _eval_adjoint(self): return Commutator(Dagger(self.args[1]), Dagger(self.args[0])) def _sympyrepr(self, printer, *args): return "%s(%s,%s)" % ( self.__class__.__name__, printer._print( self.args[0]), printer._print(self.args[1]) ) def _sympystr(self, printer, *args): return "[%s,%s]" % (self.args[0], self.args[1]) def _pretty(self, printer, *args): pform = printer._print(self.args[0], *args) pform = prettyForm(*pform.right((prettyForm(u',')))) pform = prettyForm(*pform.right((printer._print(self.args[1], *args)))) pform = prettyForm(*pform.parens(left='[', right=']')) return pform def _latex(self, printer, *args): return "\\left[%s,%s\\right]" % tuple([ printer._print(arg, *args) for arg in self.args])
2466a49b5d7fd197f0b4cb7d1bab2e3cd437e0672ff761c7eda98a160bf34a7b
"""Constants (like hbar) related to quantum mechanics.""" from __future__ import print_function, division from sympy.core.numbers import NumberSymbol from sympy.core.singleton import Singleton from sympy.core.compatibility import with_metaclass from sympy.printing.pretty.stringpict import prettyForm import mpmath.libmp as mlib #----------------------------------------------------------------------------- # Constants #----------------------------------------------------------------------------- __all__ = [ 'hbar' ] class HBar(with_metaclass(Singleton, NumberSymbol)): """Reduced Plank's constant in numerical and symbolic form [1]_. Examples ======== >>> from sympy.physics.quantum.constants import hbar >>> hbar.evalf() 1.05457162000000e-34 References ========== .. [1] https://en.wikipedia.org/wiki/Planck_constant """ is_real = True is_positive = True is_negative = False is_irrational = True __slots__ = [] def _as_mpf_val(self, prec): return mlib.from_float(1.05457162e-34, prec) def _sympyrepr(self, printer, *args): return 'HBar()' def _sympystr(self, printer, *args): return 'hbar' def _pretty(self, printer, *args): if printer._use_unicode: return prettyForm(u'\N{PLANCK CONSTANT OVER TWO PI}') return prettyForm('hbar') def _latex(self, printer, *args): return r'\hbar' # Create an instance for everyone to use. hbar = HBar()
cd0f0870d019f961ab43d62edb0ddb4a20a1b8bd0b2ad0ca62f84ee2147e55ca
"""Hilbert spaces for quantum mechanics. Authors: * Brian Granger * Matt Curry """ from __future__ import print_function, division from sympy import Basic, Interval, oo, sympify from sympy.core.compatibility import range from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.qexpr import QuantumError from sympy.core.compatibility import reduce __all__ = [ 'HilbertSpaceError', 'HilbertSpace', 'ComplexSpace', 'L2', 'FockSpace' ] #----------------------------------------------------------------------------- # Main objects #----------------------------------------------------------------------------- class HilbertSpaceError(QuantumError): pass #----------------------------------------------------------------------------- # Main objects #----------------------------------------------------------------------------- class HilbertSpace(Basic): """An abstract Hilbert space for quantum mechanics. In short, a Hilbert space is an abstract vector space that is complete with inner products defined [1]_. Examples ======== >>> from sympy.physics.quantum.hilbert import HilbertSpace >>> hs = HilbertSpace() >>> hs H References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space """ def __new__(cls): obj = Basic.__new__(cls) return obj @property def dimension(self): """Return the Hilbert dimension of the space.""" raise NotImplementedError('This Hilbert space has no dimension.') def __add__(self, other): return DirectSumHilbertSpace(self, other) def __radd__(self, other): return DirectSumHilbertSpace(other, self) def __mul__(self, other): return TensorProductHilbertSpace(self, other) def __rmul__(self, other): return TensorProductHilbertSpace(other, self) def __pow__(self, other, mod=None): if mod is not None: raise ValueError('The third argument to __pow__ is not supported \ for Hilbert spaces.') return TensorPowerHilbertSpace(self, other) def __contains__(self, other): """Is the operator or state in this Hilbert space. This is checked by comparing the classes of the Hilbert spaces, not the instances. This is to allow Hilbert Spaces with symbolic dimensions. """ if other.hilbert_space.__class__ == self.__class__: return True else: return False def _sympystr(self, printer, *args): return u'H' def _pretty(self, printer, *args): ustr = u'\N{LATIN CAPITAL LETTER H}' return prettyForm(ustr) def _latex(self, printer, *args): return r'\mathcal{H}' class ComplexSpace(HilbertSpace): """Finite dimensional Hilbert space of complex vectors. The elements of this Hilbert space are n-dimensional complex valued vectors with the usual inner product that takes the complex conjugate of the vector on the right. A classic example of this type of Hilbert space is spin-1/2, which is ``ComplexSpace(2)``. Generalizing to spin-s, the space is ``ComplexSpace(2*s+1)``. Quantum computing with N qubits is done with the direct product space ``ComplexSpace(2)**N``. Examples ======== >>> from sympy import symbols >>> from sympy.physics.quantum.hilbert import ComplexSpace >>> c1 = ComplexSpace(2) >>> c1 C(2) >>> c1.dimension 2 >>> n = symbols('n') >>> c2 = ComplexSpace(n) >>> c2 C(n) >>> c2.dimension n """ def __new__(cls, dimension): dimension = sympify(dimension) r = cls.eval(dimension) if isinstance(r, Basic): return r obj = Basic.__new__(cls, dimension) return obj @classmethod def eval(cls, dimension): if len(dimension.atoms()) == 1: if not (dimension.is_Integer and dimension > 0 or dimension is oo or dimension.is_Symbol): raise TypeError('The dimension of a ComplexSpace can only' 'be a positive integer, oo, or a Symbol: %r' % dimension) else: for dim in dimension.atoms(): if not (dim.is_Integer or dim is oo or dim.is_Symbol): raise TypeError('The dimension of a ComplexSpace can only' ' contain integers, oo, or a Symbol: %r' % dim) @property def dimension(self): return self.args[0] def _sympyrepr(self, printer, *args): return "%s(%s)" % (self.__class__.__name__, printer._print(self.dimension, *args)) def _sympystr(self, printer, *args): return "C(%s)" % printer._print(self.dimension, *args) def _pretty(self, printer, *args): ustr = u'\N{LATIN CAPITAL LETTER C}' pform_exp = printer._print(self.dimension, *args) pform_base = prettyForm(ustr) return pform_base**pform_exp def _latex(self, printer, *args): return r'\mathcal{C}^{%s}' % printer._print(self.dimension, *args) class L2(HilbertSpace): """The Hilbert space of square integrable functions on an interval. An L2 object takes in a single sympy Interval argument which represents the interval its functions (vectors) are defined on. Examples ======== >>> from sympy import Interval, oo >>> from sympy.physics.quantum.hilbert import L2 >>> hs = L2(Interval(0,oo)) >>> hs L2(Interval(0, oo)) >>> hs.dimension oo >>> hs.interval Interval(0, oo) """ def __new__(cls, interval): if not isinstance(interval, Interval): raise TypeError('L2 interval must be an Interval instance: %r' % interval) obj = Basic.__new__(cls, interval) return obj @property def dimension(self): return oo @property def interval(self): return self.args[0] def _sympyrepr(self, printer, *args): return "L2(%s)" % printer._print(self.interval, *args) def _sympystr(self, printer, *args): return "L2(%s)" % printer._print(self.interval, *args) def _pretty(self, printer, *args): pform_exp = prettyForm(u'2') pform_base = prettyForm(u'L') return pform_base**pform_exp def _latex(self, printer, *args): interval = printer._print(self.interval, *args) return r'{\mathcal{L}^2}\left( %s \right)' % interval class FockSpace(HilbertSpace): """The Hilbert space for second quantization. Technically, this Hilbert space is a infinite direct sum of direct products of single particle Hilbert spaces [1]_. This is a mess, so we have a class to represent it directly. Examples ======== >>> from sympy.physics.quantum.hilbert import FockSpace >>> hs = FockSpace() >>> hs F >>> hs.dimension oo References ========== .. [1] https://en.wikipedia.org/wiki/Fock_space """ def __new__(cls): obj = Basic.__new__(cls) return obj @property def dimension(self): return oo def _sympyrepr(self, printer, *args): return "FockSpace()" def _sympystr(self, printer, *args): return "F" def _pretty(self, printer, *args): ustr = u'\N{LATIN CAPITAL LETTER F}' return prettyForm(ustr) def _latex(self, printer, *args): return r'\mathcal{F}' class TensorProductHilbertSpace(HilbertSpace): """A tensor product of Hilbert spaces [1]_. The tensor product between Hilbert spaces is represented by the operator ``*`` Products of the same Hilbert space will be combined into tensor powers. A ``TensorProductHilbertSpace`` object takes in an arbitrary number of ``HilbertSpace`` objects as its arguments. In addition, multiplication of ``HilbertSpace`` objects will automatically return this tensor product object. Examples ======== >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace >>> from sympy import symbols >>> c = ComplexSpace(2) >>> f = FockSpace() >>> hs = c*f >>> hs C(2)*F >>> hs.dimension oo >>> hs.spaces (C(2), F) >>> c1 = ComplexSpace(2) >>> n = symbols('n') >>> c2 = ComplexSpace(n) >>> hs = c1*c2 >>> hs C(2)*C(n) >>> hs.dimension 2*n References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products """ def __new__(cls, *args): r = cls.eval(args) if isinstance(r, Basic): return r obj = Basic.__new__(cls, *args) return obj @classmethod def eval(cls, args): """Evaluates the direct product.""" new_args = [] recall = False #flatten arguments for arg in args: if isinstance(arg, TensorProductHilbertSpace): new_args.extend(arg.args) recall = True elif isinstance(arg, (HilbertSpace, TensorPowerHilbertSpace)): new_args.append(arg) else: raise TypeError('Hilbert spaces can only be multiplied by \ other Hilbert spaces: %r' % arg) #combine like arguments into direct powers comb_args = [] prev_arg = None for new_arg in new_args: if prev_arg is not None: if isinstance(new_arg, TensorPowerHilbertSpace) and \ isinstance(prev_arg, TensorPowerHilbertSpace) and \ new_arg.base == prev_arg.base: prev_arg = new_arg.base**(new_arg.exp + prev_arg.exp) elif isinstance(new_arg, TensorPowerHilbertSpace) and \ new_arg.base == prev_arg: prev_arg = prev_arg**(new_arg.exp + 1) elif isinstance(prev_arg, TensorPowerHilbertSpace) and \ new_arg == prev_arg.base: prev_arg = new_arg**(prev_arg.exp + 1) elif new_arg == prev_arg: prev_arg = new_arg**2 else: comb_args.append(prev_arg) prev_arg = new_arg elif prev_arg is None: prev_arg = new_arg comb_args.append(prev_arg) if recall: return TensorProductHilbertSpace(*comb_args) elif len(comb_args) == 1: return TensorPowerHilbertSpace(comb_args[0].base, comb_args[0].exp) else: return None @property def dimension(self): arg_list = [arg.dimension for arg in self.args] if oo in arg_list: return oo else: return reduce(lambda x, y: x*y, arg_list) @property def spaces(self): """A tuple of the Hilbert spaces in this tensor product.""" return self.args def _spaces_printer(self, printer, *args): spaces_strs = [] for arg in self.args: s = printer._print(arg, *args) if isinstance(arg, DirectSumHilbertSpace): s = '(%s)' % s spaces_strs.append(s) return spaces_strs def _sympyrepr(self, printer, *args): spaces_reprs = self._spaces_printer(printer, *args) return "TensorProductHilbertSpace(%s)" % ','.join(spaces_reprs) def _sympystr(self, printer, *args): spaces_strs = self._spaces_printer(printer, *args) return '*'.join(spaces_strs) def _pretty(self, printer, *args): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right(u' ' + u'\N{N-ARY CIRCLED TIMES OPERATOR}' + u' ')) else: pform = prettyForm(*pform.right(' x ')) return pform def _latex(self, printer, *args): length = len(self.args) s = '' for i in range(length): arg_s = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): arg_s = r'\left(%s\right)' % arg_s s = s + arg_s if i != length - 1: s = s + r'\otimes ' return s class DirectSumHilbertSpace(HilbertSpace): """A direct sum of Hilbert spaces [1]_. This class uses the ``+`` operator to represent direct sums between different Hilbert spaces. A ``DirectSumHilbertSpace`` object takes in an arbitrary number of ``HilbertSpace`` objects as its arguments. Also, addition of ``HilbertSpace`` objects will automatically return a direct sum object. Examples ======== >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace >>> from sympy import symbols >>> c = ComplexSpace(2) >>> f = FockSpace() >>> hs = c+f >>> hs C(2)+F >>> hs.dimension oo >>> list(hs.spaces) [C(2), F] References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Direct_sums """ def __new__(cls, *args): r = cls.eval(args) if isinstance(r, Basic): return r obj = Basic.__new__(cls, *args) return obj @classmethod def eval(cls, args): """Evaluates the direct product.""" new_args = [] recall = False #flatten arguments for arg in args: if isinstance(arg, DirectSumHilbertSpace): new_args.extend(arg.args) recall = True elif isinstance(arg, HilbertSpace): new_args.append(arg) else: raise TypeError('Hilbert spaces can only be summed with other \ Hilbert spaces: %r' % arg) if recall: return DirectSumHilbertSpace(*new_args) else: return None @property def dimension(self): arg_list = [arg.dimension for arg in self.args] if oo in arg_list: return oo else: return reduce(lambda x, y: x + y, arg_list) @property def spaces(self): """A tuple of the Hilbert spaces in this direct sum.""" return self.args def _sympyrepr(self, printer, *args): spaces_reprs = [printer._print(arg, *args) for arg in self.args] return "DirectSumHilbertSpace(%s)" % ','.join(spaces_reprs) def _sympystr(self, printer, *args): spaces_strs = [printer._print(arg, *args) for arg in self.args] return '+'.join(spaces_strs) def _pretty(self, printer, *args): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right(u' \N{CIRCLED PLUS} ')) else: pform = prettyForm(*pform.right(' + ')) return pform def _latex(self, printer, *args): length = len(self.args) s = '' for i in range(length): arg_s = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): arg_s = r'\left(%s\right)' % arg_s s = s + arg_s if i != length - 1: s = s + r'\oplus ' return s class TensorPowerHilbertSpace(HilbertSpace): """An exponentiated Hilbert space [1]_. Tensor powers (repeated tensor products) are represented by the operator ``**`` Identical Hilbert spaces that are multiplied together will be automatically combined into a single tensor power object. Any Hilbert space, product, or sum may be raised to a tensor power. The ``TensorPowerHilbertSpace`` takes two arguments: the Hilbert space; and the tensor power (number). Examples ======== >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace >>> from sympy import symbols >>> n = symbols('n') >>> c = ComplexSpace(2) >>> hs = c**n >>> hs C(2)**n >>> hs.dimension 2**n >>> c = ComplexSpace(2) >>> c*c C(2)**2 >>> f = FockSpace() >>> c*f*f C(2)*F**2 References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products """ def __new__(cls, *args): r = cls.eval(args) if isinstance(r, Basic): return r return Basic.__new__(cls, *r) @classmethod def eval(cls, args): new_args = args[0], sympify(args[1]) exp = new_args[1] #simplify hs**1 -> hs if exp == 1: return args[0] #simplify hs**0 -> 1 if exp == 0: return sympify(1) #check (and allow) for hs**(x+42+y...) case if len(exp.atoms()) == 1: if not (exp.is_Integer and exp >= 0 or exp.is_Symbol): raise ValueError('Hilbert spaces can only be raised to \ positive integers or Symbols: %r' % exp) else: for power in exp.atoms(): if not (power.is_Integer or power.is_Symbol): raise ValueError('Tensor powers can only contain integers \ or Symbols: %r' % power) return new_args @property def base(self): return self.args[0] @property def exp(self): return self.args[1] @property def dimension(self): if self.base.dimension == oo: return oo else: return self.base.dimension**self.exp def _sympyrepr(self, printer, *args): return "TensorPowerHilbertSpace(%s,%s)" % (printer._print(self.base, *args), printer._print(self.exp, *args)) def _sympystr(self, printer, *args): return "%s**%s" % (printer._print(self.base, *args), printer._print(self.exp, *args)) def _pretty(self, printer, *args): pform_exp = printer._print(self.exp, *args) if printer._use_unicode: pform_exp = prettyForm(*pform_exp.left(prettyForm(u'\N{N-ARY CIRCLED TIMES OPERATOR}'))) else: pform_exp = prettyForm(*pform_exp.left(prettyForm('x'))) pform_base = printer._print(self.base, *args) return pform_base**pform_exp def _latex(self, printer, *args): base = printer._print(self.base, *args) exp = printer._print(self.exp, *args) return r'{%s}^{\otimes %s}' % (base, exp)
8456df29b0f196541b21b678d0890fd862bfb7bb636c79cb740cbdba3c77bdf0
from sympy.core.backend import (S, sympify, expand, sqrt, Add, zeros, ImmutableMatrix as Matrix) from sympy import trigsimp from sympy.core.compatibility import unicode from sympy.utilities.misc import filldedent __all__ = ['Vector'] class Vector(object): """The class used to define vectors. It along with ReferenceFrame are the building blocks of describing a classical mechanics system in PyDy and sympy.physics.vector. Attributes ========== simp : Boolean Let certain methods use trigsimp on their outputs """ simp = False def __init__(self, inlist): """This is the constructor for the Vector class. You shouldn't be calling this, it should only be used by other functions. You should be treating Vectors like you would with if you were doing the math by hand, and getting the first 3 from the standard basis vectors from a ReferenceFrame. The only exception is to create a zero vector: zv = Vector(0) """ self.args = [] if inlist == 0: inlist = [] if isinstance(inlist, dict): d = inlist else: d = {} for inp in inlist: if inp[1] in d: d[inp[1]] += inp[0] else: d[inp[1]] = inp[0] for k, v in d.items(): if v != Matrix([0, 0, 0]): self.args.append((v, k)) def __hash__(self): return hash(tuple(self.args)) def __add__(self, other): """The add operator for Vector. """ if other == 0: return self other = _check_vector(other) return Vector(self.args + other.args) def __and__(self, other): """Dot product of two vectors. Returns a scalar, the dot product of the two Vectors Parameters ========== other : Vector The Vector which we are dotting with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dot >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> dot(N.x, N.x) 1 >>> dot(N.x, N.y) 0 >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> dot(N.y, A.y) cos(q1) """ from sympy.physics.vector.dyadic import Dyadic if isinstance(other, Dyadic): return NotImplemented other = _check_vector(other) out = S(0) for i, v1 in enumerate(self.args): for j, v2 in enumerate(other.args): out += ((v2[0].T) * (v2[1].dcm(v1[1])) * (v1[0]))[0] if Vector.simp: return trigsimp(sympify(out), recursive=True) else: return sympify(out) def __div__(self, other): """This uses mul and inputs self and 1 divided by other. """ return self.__mul__(sympify(1) / other) __truediv__ = __div__ def __eq__(self, other): """Tests for equality. It is very import to note that this is only as good as the SymPy equality test; False does not always mean they are not equivalent Vectors. If other is 0, and self is empty, returns True. If other is 0 and self is not empty, returns False. If none of the above, only accepts other as a Vector. """ if other == 0: other = Vector(0) try: other = _check_vector(other) except TypeError: return False if (self.args == []) and (other.args == []): return True elif (self.args == []) or (other.args == []): return False frame = self.args[0][1] for v in frame: if expand((self - other) & v) != 0: return False return True def __mul__(self, other): """Multiplies the Vector by a sympifyable expression. Parameters ========== other : Sympifyable The scalar to multiply this Vector with Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> b = Symbol('b') >>> V = 10 * b * N.x >>> print(V) 10*b*N.x """ newlist = [v for v in self.args] for i, v in enumerate(newlist): newlist[i] = (sympify(other) * newlist[i][0], newlist[i][1]) return Vector(newlist) def __ne__(self, other): return not self == other def __neg__(self): return self * -1 def __or__(self, other): """Outer product between two Vectors. A rank increasing operation, which returns a Dyadic from two Vectors Parameters ========== other : Vector The Vector to take the outer product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> outer(N.x, N.x) (N.x|N.x) """ from sympy.physics.vector.dyadic import Dyadic other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(self.args): for i2, v2 in enumerate(other.args): # it looks this way because if we are in the same frame and # use the enumerate function on the same frame in a nested # fashion, then bad things happen ol += Dyadic([(v[0][0] * v2[0][0], v[1].x, v2[1].x)]) ol += Dyadic([(v[0][0] * v2[0][1], v[1].x, v2[1].y)]) ol += Dyadic([(v[0][0] * v2[0][2], v[1].x, v2[1].z)]) ol += Dyadic([(v[0][1] * v2[0][0], v[1].y, v2[1].x)]) ol += Dyadic([(v[0][1] * v2[0][1], v[1].y, v2[1].y)]) ol += Dyadic([(v[0][1] * v2[0][2], v[1].y, v2[1].z)]) ol += Dyadic([(v[0][2] * v2[0][0], v[1].z, v2[1].x)]) ol += Dyadic([(v[0][2] * v2[0][1], v[1].z, v2[1].y)]) ol += Dyadic([(v[0][2] * v2[0][2], v[1].z, v2[1].z)]) return ol def _latex(self, printer=None): """Latex Printing method. """ from sympy.physics.vector.printing import VectorLatexPrinter ar = self.args # just to shorten things if len(ar) == 0: return str(0) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: ol.append(' + ' + ar[i][1].latex_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: ol.append(' - ' + ar[i][1].latex_vecs[j]) elif ar[i][0][j] != 0: # If the coefficient of the basis vector is not 1 or -1; # also, we might wrap it in parentheses, for readability. arg_str = VectorLatexPrinter().doprint(ar[i][0][j]) if isinstance(ar[i][0][j], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + ar[i][1].latex_vecs[j]) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def _pretty(self, printer=None): """Pretty Printing method. """ from sympy.physics.vector.printing import VectorPrettyPrinter from sympy.printing.pretty.stringpict import prettyForm e = self class Fake(object): def render(self, *args, **kwargs): ar = e.args # just to shorten things if len(ar) == 0: return unicode(0) settings = printer._settings if printer else {} vp = printer if printer else VectorPrettyPrinter(settings) pforms = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: pform = vp._print(ar[i][1].pretty_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: pform = vp._print(ar[i][1].pretty_vecs[j]) pform = prettyForm(*pform.left(" - ")) bin = prettyForm.NEG pform = prettyForm(binding=bin, *pform) elif ar[i][0][j] != 0: # If the basis vector coeff is not 1 or -1, # we might wrap it in parentheses, for readability. pform = vp._print(ar[i][0][j]) if isinstance(ar[i][0][j], Add): tmp = pform.parens() pform = prettyForm(tmp[0], tmp[1]) pform = prettyForm(*pform.right(" ", ar[i][1].pretty_vecs[j])) else: continue pforms.append(pform) pform = prettyForm.__add__(*pforms) kwargs["wrap_line"] = kwargs.get("wrap_line") kwargs["num_columns"] = kwargs.get("num_columns") out_str = pform.render(*args, **kwargs) mlines = [line.rstrip() for line in out_str.split("\n")] return "\n".join(mlines) return Fake() def __ror__(self, other): """Outer product between two Vectors. A rank increasing operation, which returns a Dyadic from two Vectors Parameters ========== other : Vector The Vector to take the outer product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> outer(N.x, N.x) (N.x|N.x) """ from sympy.physics.vector.dyadic import Dyadic other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(other.args): for i2, v2 in enumerate(self.args): # it looks this way because if we are in the same frame and # use the enumerate function on the same frame in a nested # fashion, then bad things happen ol += Dyadic([(v[0][0] * v2[0][0], v[1].x, v2[1].x)]) ol += Dyadic([(v[0][0] * v2[0][1], v[1].x, v2[1].y)]) ol += Dyadic([(v[0][0] * v2[0][2], v[1].x, v2[1].z)]) ol += Dyadic([(v[0][1] * v2[0][0], v[1].y, v2[1].x)]) ol += Dyadic([(v[0][1] * v2[0][1], v[1].y, v2[1].y)]) ol += Dyadic([(v[0][1] * v2[0][2], v[1].y, v2[1].z)]) ol += Dyadic([(v[0][2] * v2[0][0], v[1].z, v2[1].x)]) ol += Dyadic([(v[0][2] * v2[0][1], v[1].z, v2[1].y)]) ol += Dyadic([(v[0][2] * v2[0][2], v[1].z, v2[1].z)]) return ol def __rsub__(self, other): return (-1 * self) + other def __str__(self, printer=None, order=True): """Printing method. """ from sympy.physics.vector.printing import VectorStrPrinter if not order or len(self.args) == 1: ar = list(self.args) elif len(self.args) == 0: return str(0) else: d = {v[1]: v[0] for v in self.args} keys = sorted(d.keys(), key=lambda x: x.index) ar = [] for key in keys: ar.append((d[key], key)) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: ol.append(' + ' + ar[i][1].str_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: ol.append(' - ' + ar[i][1].str_vecs[j]) elif ar[i][0][j] != 0: # If the coefficient of the basis vector is not 1 or -1; # also, we might wrap it in parentheses, for readability. arg_str = VectorStrPrinter().doprint(ar[i][0][j]) if isinstance(ar[i][0][j], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + '*' + ar[i][1].str_vecs[j]) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def __sub__(self, other): """The subraction operator. """ return self.__add__(other * -1) def __xor__(self, other): """The cross product operator for two Vectors. Returns a Vector, expressed in the same ReferenceFrames as self. Parameters ========== other : Vector The Vector which we are crossing with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> N.x ^ N.y N.z >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> A.x ^ N.y N.z >>> N.y ^ A.x - sin(q1)*A.y - cos(q1)*A.z """ from sympy.physics.vector.dyadic import Dyadic if isinstance(other, Dyadic): return NotImplemented other = _check_vector(other) if other.args == []: return Vector(0) def _det(mat): """This is needed as a little method for to find the determinant of a list in python; needs to work for a 3x3 list. SymPy's Matrix won't take in Vector, so need a custom function. You shouldn't be calling this. """ return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) + mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) + mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0])) outlist = [] ar = other.args # For brevity for i, v in enumerate(ar): tempx = v[1].x tempy = v[1].y tempz = v[1].z tempm = ([[tempx, tempy, tempz], [self & tempx, self & tempy, self & tempz], [Vector([ar[i]]) & tempx, Vector([ar[i]]) & tempy, Vector([ar[i]]) & tempz]]) outlist += _det(tempm).args return Vector(outlist) # We don't define _repr_png_ here because it would add a large amount of # data to any notebook containing SymPy expressions, without adding # anything useful to the notebook. It can still enabled manually, e.g., # for the qtconsole, with init_printing(). def _repr_latex_(self): """ IPython/Jupyter LaTeX printing To change the behavior of this (e.g., pass in some settings to LaTeX), use init_printing(). init_printing() will also enable LaTeX printing for built in numeric types like ints and container types that contain SymPy objects, like lists and dictionaries of expressions. """ from sympy.printing.latex import latex s = latex(self, mode='equation*') s = s.strip('$') return "$$%s$$" % s _repr_latex_orig = _repr_latex_ _sympystr = __str__ _sympyrepr = _sympystr __repr__ = __str__ __radd__ = __add__ __rand__ = __and__ __rmul__ = __mul__ def separate(self): """ The constituents of this vector in different reference frames, as per its definition. Returns a dict mapping each ReferenceFrame to the corresponding constituent Vector. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> R1 = ReferenceFrame('R1') >>> R2 = ReferenceFrame('R2') >>> v = R1.x + R2.x >>> v.separate() == {R1: R1.x, R2: R2.x} True """ components = {} for x in self.args: components[x[1]] = Vector([x]) return components def dot(self, other): return self & other dot.__doc__ = __and__.__doc__ def cross(self, other): return self ^ other cross.__doc__ = __xor__.__doc__ def outer(self, other): return self | other outer.__doc__ = __or__.__doc__ def diff(self, var, frame, var_in_dcm=True): """Returns the partial derivative of the vector with respect to a variable in the provided reference frame. Parameters ========== var : Symbol What the partial derivative is taken with respect to. frame : ReferenceFrame The reference frame that the partial derivative is taken in. var_in_dcm : boolean If true, the differentiation algorithm assumes that the variable may be present in any of the direction cosine matrices that relate the frame to the frames of any component of the vector. But if it is known that the variable is not present in the direction cosine matrices, false can be set to skip full reexpression in the desired frame. Examples ======== >>> from sympy import Symbol >>> from sympy.physics.vector import dynamicsymbols, ReferenceFrame >>> from sympy.physics.vector import Vector >>> Vector.simp = True >>> t = Symbol('t') >>> q1 = dynamicsymbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.y]) >>> A.x.diff(t, N) - q1'*A.z >>> B = ReferenceFrame('B') >>> u1, u2 = dynamicsymbols('u1, u2') >>> v = u1 * A.x + u2 * B.y >>> v.diff(u2, N, var_in_dcm=False) B.y """ from sympy.physics.vector.frame import _check_frame var = sympify(var) _check_frame(frame) inlist = [] for vector_component in self.args: measure_number = vector_component[0] component_frame = vector_component[1] if component_frame == frame: inlist += [(measure_number.diff(var), frame)] else: # If the direction cosine matrix relating the component frame # with the derivative frame does not contain the variable. if not var_in_dcm or (frame.dcm(component_frame).diff(var) == zeros(3, 3)): inlist += [(measure_number.diff(var), component_frame)] else: # else express in the frame reexp_vec_comp = Vector([vector_component]).express(frame) deriv = reexp_vec_comp.args[0][0].diff(var) inlist += Vector([(deriv, frame)]).express(component_frame).args return Vector(inlist) def express(self, otherframe, variables=False): """ Returns a Vector equivalent to this one, expressed in otherframe. Uses the global express method. Parameters ========== otherframe : ReferenceFrame The frame for this Vector to be described in variables : boolean If True, the coordinate symbols(if present) in this Vector are re-expressed in terms otherframe Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector, dynamicsymbols >>> q1 = dynamicsymbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.y]) >>> A.x.express(N) cos(q1)*N.x - sin(q1)*N.z """ from sympy.physics.vector import express return express(self, otherframe, variables=variables) def to_matrix(self, reference_frame): """Returns the matrix form of the vector with respect to the given frame. Parameters ---------- reference_frame : ReferenceFrame The reference frame that the rows of the matrix correspond to. Returns ------- matrix : ImmutableMatrix, shape(3,1) The matrix that gives the 1D vector. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.mechanics.functions import inertia >>> a, b, c = symbols('a, b, c') >>> N = ReferenceFrame('N') >>> vector = a * N.x + b * N.y + c * N.z >>> vector.to_matrix(N) Matrix([ [a], [b], [c]]) >>> beta = symbols('beta') >>> A = N.orientnew('A', 'Axis', (beta, N.x)) >>> vector.to_matrix(A) Matrix([ [ a], [ b*cos(beta) + c*sin(beta)], [-b*sin(beta) + c*cos(beta)]]) """ return Matrix([self.dot(unit_vec) for unit_vec in reference_frame]).reshape(3, 1) def doit(self, **hints): """Calls .doit() on each term in the Vector""" d = {} for v in self.args: d[v[1]] = v[0].applyfunc(lambda x: x.doit(**hints)) return Vector(d) def dt(self, otherframe): """ Returns a Vector which is the time derivative of the self Vector, taken in frame otherframe. Calls the global time_derivative method Parameters ========== otherframe : ReferenceFrame The frame to calculate the time derivative in """ from sympy.physics.vector import time_derivative return time_derivative(self, otherframe) def simplify(self): """Returns a simplified Vector.""" d = {} for v in self.args: d[v[1]] = v[0].simplify() return Vector(d) def subs(self, *args, **kwargs): """Substitution on the Vector. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> s = Symbol('s') >>> a = N.x * s >>> a.subs({s: 2}) 2*N.x """ d = {} for v in self.args: d[v[1]] = v[0].subs(*args, **kwargs) return Vector(d) def magnitude(self): """Returns the magnitude (Euclidean norm) of self.""" return sqrt(self & self) def normalize(self): """Returns a Vector of magnitude 1, codirectional with self.""" return Vector(self.args + []) / self.magnitude() def applyfunc(self, f): """Apply a function to each component of a vector.""" if not callable(f): raise TypeError("`f` must be callable.") d = {} for v in self.args: d[v[1]] = v[0].applyfunc(f) return Vector(d) def free_symbols(self, reference_frame): """ Returns the free symbols in the measure numbers of the vector expressed in the given reference frame. Parameter ========= reference_frame : ReferenceFrame The frame with respect to which the free symbols of the given vector is to be determined. """ return self.to_matrix(reference_frame).free_symbols class VectorTypeError(TypeError): def __init__(self, other, want): msg = filldedent("Expected an instance of %s, but received object " "'%s' of %s." % (type(want), other, type(other))) super(VectorTypeError, self).__init__(msg) def _check_vector(other): if not isinstance(other, Vector): raise TypeError('A Vector must be supplied') return other
0c84c183eaf96349be6090c9250774ded36b5effe92376a0506ead49d6e1c5c3
from __future__ import print_function, division from sympy.core.backend import (sympify, diff, sin, cos, Matrix, symbols, Function, S, Symbol) from sympy import integrate, trigsimp from sympy.core.compatibility import reduce from .vector import Vector, _check_vector from .frame import CoordinateSym, _check_frame from .dyadic import Dyadic from .printing import vprint, vsprint, vpprint, vlatex, init_vprinting from sympy.utilities.iterables import iterable __all__ = ['cross', 'dot', 'express', 'time_derivative', 'outer', 'kinematic_equations', 'get_motion_params', 'partial_velocity', 'dynamicsymbols', 'vprint', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting'] def cross(vec1, vec2): """Cross product convenience wrapper for Vector.cross(): \n""" if not isinstance(vec1, (Vector, Dyadic)): raise TypeError('Cross product is between two vectors') return vec1 ^ vec2 cross.__doc__ += Vector.cross.__doc__ def dot(vec1, vec2): """Dot product convenience wrapper for Vector.dot(): \n""" if not isinstance(vec1, (Vector, Dyadic)): raise TypeError('Dot product is between two vectors') return vec1 & vec2 dot.__doc__ += Vector.dot.__doc__ def express(expr, frame, frame2=None, variables=False): """ Global function for 'express' functionality. Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame. Refer to the local methods of Vector and Dyadic for details. If 'variables' is True, then the coordinate variables (CoordinateSym instances) of other frames present in the vector/scalar field or dyadic expression are also substituted in terms of the base scalars of this frame. Parameters ========== expr : Vector/Dyadic/scalar(sympyfiable) The expression to re-express in ReferenceFrame 'frame' frame: ReferenceFrame The reference frame to express expr in frame2 : ReferenceFrame The other frame required for re-expression(only for Dyadic expr) variables : boolean Specifies whether to substitute the coordinate variables present in expr, in terms of those of frame Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> from sympy.physics.vector import express >>> express(d, B, N) cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x) >>> express(B.x, N) cos(q)*N.x + sin(q)*N.y >>> express(N[0], B, variables=True) B_x*cos(q(t)) - B_y*sin(q(t)) """ _check_frame(frame) if expr == 0: return expr if isinstance(expr, Vector): #Given expr is a Vector if variables: #If variables attribute is True, substitute #the coordinate variables in the Vector frame_list = [x[-1] for x in expr.args] subs_dict = {} for f in frame_list: subs_dict.update(f.variable_map(frame)) expr = expr.subs(subs_dict) #Re-express in this frame outvec = Vector([]) for i, v in enumerate(expr.args): if v[1] != frame: temp = frame.dcm(v[1]) * v[0] if Vector.simp: temp = temp.applyfunc(lambda x: trigsimp(x, method='fu')) outvec += Vector([(temp, frame)]) else: outvec += Vector([v]) return outvec if isinstance(expr, Dyadic): if frame2 is None: frame2 = frame _check_frame(frame2) ol = Dyadic(0) for i, v in enumerate(expr.args): ol += express(v[0], frame, variables=variables) * \ (express(v[1], frame, variables=variables) | express(v[2], frame2, variables=variables)) return ol else: if variables: #Given expr is a scalar field frame_set = set([]) expr = sympify(expr) #Subsitute all the coordinate variables for x in expr.free_symbols: if isinstance(x, CoordinateSym)and x.frame != frame: frame_set.add(x.frame) subs_dict = {} for f in frame_set: subs_dict.update(f.variable_map(frame)) return expr.subs(subs_dict) return expr def time_derivative(expr, frame, order=1): """ Calculate the time derivative of a vector/scalar field function or dyadic expression in given frame. References ========== https://en.wikipedia.org/wiki/Rotating_reference_frame#Time_derivatives_in_the_two_frames Parameters ========== expr : Vector/Dyadic/sympifyable The expression whose time derivative is to be calculated frame : ReferenceFrame The reference frame to calculate the time derivative in order : integer The order of the derivative to be calculated Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> from sympy import Symbol >>> q1 = Symbol('q1') >>> u1 = dynamicsymbols('u1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> v = u1 * N.x >>> A.set_ang_vel(N, 10*A.x) >>> from sympy.physics.vector import time_derivative >>> time_derivative(v, N) u1'*N.x >>> time_derivative(u1*A[0], N) N_x*Derivative(u1(t), t) >>> B = N.orientnew('B', 'Axis', [u1, N.z]) >>> from sympy.physics.vector import outer >>> d = outer(N.x, N.x) >>> time_derivative(d, B) - u1'*(N.y|N.x) - u1'*(N.x|N.y) """ t = dynamicsymbols._t _check_frame(frame) if order == 0: return expr if order % 1 != 0 or order < 0: raise ValueError("Unsupported value of order entered") if isinstance(expr, Vector): outlist = [] for i, v in enumerate(expr.args): if v[1] == frame: outlist += [(express(v[0], frame, variables=True).diff(t), frame)] else: outlist += (time_derivative(Vector([v]), v[1]) + \ (v[1].ang_vel_in(frame) ^ Vector([v]))).args outvec = Vector(outlist) return time_derivative(outvec, frame, order - 1) if isinstance(expr, Dyadic): ol = Dyadic(0) for i, v in enumerate(expr.args): ol += (v[0].diff(t) * (v[1] | v[2])) ol += (v[0] * (time_derivative(v[1], frame) | v[2])) ol += (v[0] * (v[1] | time_derivative(v[2], frame))) return time_derivative(ol, frame, order - 1) else: return diff(express(expr, frame, variables=True), t, order) def outer(vec1, vec2): """Outer product convenience wrapper for Vector.outer():\n""" if not isinstance(vec1, Vector): raise TypeError('Outer product is between two Vectors') return vec1 | vec2 outer.__doc__ += Vector.outer.__doc__ def kinematic_equations(speeds, coords, rot_type, rot_order=''): """Gives equations relating the qdot's to u's for a rotation type. Supply rotation type and order as in orient. Speeds are assumed to be body-fixed; if we are defining the orientation of B in A using by rot_type, the angular velocity of B in A is assumed to be in the form: speed[0]*B.x + speed[1]*B.y + speed[2]*B.z Parameters ========== speeds : list of length 3 The body fixed angular velocity measure numbers. coords : list of length 3 or 4 The coordinates used to define the orientation of the two frames. rot_type : str The type of rotation used to create the equations. Body, Space, or Quaternion only rot_order : str If applicable, the order of a series of rotations. Examples ======== >>> from sympy.physics.vector import dynamicsymbols >>> from sympy.physics.vector import kinematic_equations, vprint >>> u1, u2, u3 = dynamicsymbols('u1 u2 u3') >>> q1, q2, q3 = dynamicsymbols('q1 q2 q3') >>> vprint(kinematic_equations([u1,u2,u3], [q1,q2,q3], 'body', '313'), ... order=None) [-(u1*sin(q3) + u2*cos(q3))/sin(q2) + q1', -u1*cos(q3) + u2*sin(q3) + q2', (u1*sin(q3) + u2*cos(q3))*cos(q2)/sin(q2) - u3 + q3'] """ # Code below is checking and sanitizing input approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '1', '2', '3', '') rot_order = str(rot_order).upper() # Now we need to make sure XYZ = 123 rot_type = rot_type.upper() rot_order = [i.replace('X', '1') for i in rot_order] rot_order = [i.replace('Y', '2') for i in rot_order] rot_order = [i.replace('Z', '3') for i in rot_order] rot_order = ''.join(rot_order) if not isinstance(speeds, (list, tuple)): raise TypeError('Need to supply speeds in a list') if len(speeds) != 3: raise TypeError('Need to supply 3 body-fixed speeds') if not isinstance(coords, (list, tuple)): raise TypeError('Need to supply coordinates in a list') if rot_type.lower() in ['body', 'space']: if rot_order not in approved_orders: raise ValueError('Not an acceptable rotation order') if len(coords) != 3: raise ValueError('Need 3 coordinates for body or space') # Actual hard-coded kinematic differential equations w1, w2, w3 = speeds if w1 == w2 == w3 == 0: return [S.Zero]*3 q1, q2, q3 = coords q1d, q2d, q3d = [diff(i, dynamicsymbols._t) for i in coords] s1, s2, s3 = [sin(q1), sin(q2), sin(q3)] c1, c2, c3 = [cos(q1), cos(q2), cos(q3)] if rot_type.lower() == 'body': if rot_order == '123': return [q1d - (w1 * c3 - w2 * s3) / c2, q2d - w1 * s3 - w2 * c3, q3d - (-w1 * c3 + w2 * s3) * s2 / c2 - w3] if rot_order == '231': return [q1d - (w2 * c3 - w3 * s3) / c2, q2d - w2 * s3 - w3 * c3, q3d - w1 - (- w2 * c3 + w3 * s3) * s2 / c2] if rot_order == '312': return [q1d - (-w1 * s3 + w3 * c3) / c2, q2d - w1 * c3 - w3 * s3, q3d - (w1 * s3 - w3 * c3) * s2 / c2 - w2] if rot_order == '132': return [q1d - (w1 * c3 + w3 * s3) / c2, q2d + w1 * s3 - w3 * c3, q3d - (w1 * c3 + w3 * s3) * s2 / c2 - w2] if rot_order == '213': return [q1d - (w1 * s3 + w2 * c3) / c2, q2d - w1 * c3 + w2 * s3, q3d - (w1 * s3 + w2 * c3) * s2 / c2 - w3] if rot_order == '321': return [q1d - (w2 * s3 + w3 * c3) / c2, q2d - w2 * c3 + w3 * s3, q3d - w1 - (w2 * s3 + w3 * c3) * s2 / c2] if rot_order == '121': return [q1d - (w2 * s3 + w3 * c3) / s2, q2d - w2 * c3 + w3 * s3, q3d - w1 + (w2 * s3 + w3 * c3) * c2 / s2] if rot_order == '131': return [q1d - (-w2 * c3 + w3 * s3) / s2, q2d - w2 * s3 - w3 * c3, q3d - w1 - (w2 * c3 - w3 * s3) * c2 / s2] if rot_order == '212': return [q1d - (w1 * s3 - w3 * c3) / s2, q2d - w1 * c3 - w3 * s3, q3d - (-w1 * s3 + w3 * c3) * c2 / s2 - w2] if rot_order == '232': return [q1d - (w1 * c3 + w3 * s3) / s2, q2d + w1 * s3 - w3 * c3, q3d + (w1 * c3 + w3 * s3) * c2 / s2 - w2] if rot_order == '313': return [q1d - (w1 * s3 + w2 * c3) / s2, q2d - w1 * c3 + w2 * s3, q3d + (w1 * s3 + w2 * c3) * c2 / s2 - w3] if rot_order == '323': return [q1d - (-w1 * c3 + w2 * s3) / s2, q2d - w1 * s3 - w2 * c3, q3d - (w1 * c3 - w2 * s3) * c2 / s2 - w3] if rot_type.lower() == 'space': if rot_order == '123': return [q1d - w1 - (w2 * s1 + w3 * c1) * s2 / c2, q2d - w2 * c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / c2] if rot_order == '231': return [q1d - (w1 * c1 + w3 * s1) * s2 / c2 - w2, q2d + w1 * s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / c2] if rot_order == '312': return [q1d - (w1 * s1 + w2 * c1) * s2 / c2 - w3, q2d - w1 * c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / c2] if rot_order == '132': return [q1d - w1 - (-w2 * c1 + w3 * s1) * s2 / c2, q2d - w2 * s1 - w3 * c1, q3d - (w2 * c1 - w3 * s1) / c2] if rot_order == '213': return [q1d - (w1 * s1 - w3 * c1) * s2 / c2 - w2, q2d - w1 * c1 - w3 * s1, q3d - (-w1 * s1 + w3 * c1) / c2] if rot_order == '321': return [q1d - (-w1 * c1 + w2 * s1) * s2 / c2 - w3, q2d - w1 * s1 - w2 * c1, q3d - (w1 * c1 - w2 * s1) / c2] if rot_order == '121': return [q1d - w1 + (w2 * s1 + w3 * c1) * c2 / s2, q2d - w2 * c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / s2] if rot_order == '131': return [q1d - w1 - (w2 * c1 - w3 * s1) * c2 / s2, q2d - w2 * s1 - w3 * c1, q3d - (-w2 * c1 + w3 * s1) / s2] if rot_order == '212': return [q1d - (-w1 * s1 + w3 * c1) * c2 / s2 - w2, q2d - w1 * c1 - w3 * s1, q3d - (w1 * s1 - w3 * c1) / s2] if rot_order == '232': return [q1d + (w1 * c1 + w3 * s1) * c2 / s2 - w2, q2d + w1 * s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / s2] if rot_order == '313': return [q1d + (w1 * s1 + w2 * c1) * c2 / s2 - w3, q2d - w1 * c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / s2] if rot_order == '323': return [q1d - (w1 * c1 - w2 * s1) * c2 / s2 - w3, q2d - w1 * s1 - w2 * c1, q3d - (-w1 * c1 + w2 * s1) / s2] elif rot_type.lower() == 'quaternion': if rot_order != '': raise ValueError('Cannot have rotation order for quaternion') if len(coords) != 4: raise ValueError('Need 4 coordinates for quaternion') # Actual hard-coded kinematic differential equations e0, e1, e2, e3 = coords w = Matrix(speeds + [0]) E = Matrix([[e0, -e3, e2, e1], [e3, e0, -e1, e2], [-e2, e1, e0, e3], [-e1, -e2, -e3, e0]]) edots = Matrix([diff(i, dynamicsymbols._t) for i in [e1, e2, e3, e0]]) return list(edots.T - 0.5 * w.T * E.T) else: raise ValueError('Not an approved rotation type for this function') def get_motion_params(frame, **kwargs): """ Returns the three motion parameters - (acceleration, velocity, and position) as vectorial functions of time in the given frame. If a higher order differential function is provided, the lower order functions are used as boundary conditions. For example, given the acceleration, the velocity and position parameters are taken as boundary conditions. The values of time at which the boundary conditions are specified are taken from timevalue1(for position boundary condition) and timevalue2(for velocity boundary condition). If any of the boundary conditions are not provided, they are taken to be zero by default (zero vectors, in case of vectorial inputs). If the boundary conditions are also functions of time, they are converted to constants by substituting the time values in the dynamicsymbols._t time Symbol. This function can also be used for calculating rotational motion parameters. Have a look at the Parameters and Examples for more clarity. Parameters ========== frame : ReferenceFrame The frame to express the motion parameters in acceleration : Vector Acceleration of the object/frame as a function of time velocity : Vector Velocity as function of time or as boundary condition of velocity at time = timevalue1 position : Vector Velocity as function of time or as boundary condition of velocity at time = timevalue1 timevalue1 : sympyfiable Value of time for position boundary condition timevalue2 : sympyfiable Value of time for velocity boundary condition Examples ======== >>> from sympy.physics.vector import ReferenceFrame, get_motion_params, dynamicsymbols >>> from sympy import symbols >>> R = ReferenceFrame('R') >>> v1, v2, v3 = dynamicsymbols('v1 v2 v3') >>> v = v1*R.x + v2*R.y + v3*R.z >>> get_motion_params(R, position = v) (v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z) >>> a, b, c = symbols('a b c') >>> v = a*R.x + b*R.y + c*R.z >>> get_motion_params(R, velocity = v) (0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z) >>> parameters = get_motion_params(R, acceleration = v) >>> parameters[1] a*t*R.x + b*t*R.y + c*t*R.z >>> parameters[2] a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z """ ##Helper functions def _process_vector_differential(vectdiff, condition, \ variable, ordinate, frame): """ Helper function for get_motion methods. Finds derivative of vectdiff wrt variable, and its integral using the specified boundary condition at value of variable = ordinate. Returns a tuple of - (derivative, function and integral) wrt vectdiff """ #Make sure boundary condition is independent of 'variable' if condition != 0: condition = express(condition, frame, variables=True) #Special case of vectdiff == 0 if vectdiff == Vector(0): return (0, 0, condition) #Express vectdiff completely in condition's frame to give vectdiff1 vectdiff1 = express(vectdiff, frame) #Find derivative of vectdiff vectdiff2 = time_derivative(vectdiff, frame) #Integrate and use boundary condition vectdiff0 = Vector(0) lims = (variable, ordinate, variable) for dim in frame: function1 = vectdiff1.dot(dim) abscissa = dim.dot(condition).subs({variable : ordinate}) # Indefinite integral of 'function1' wrt 'variable', using # the given initial condition (ordinate, abscissa). vectdiff0 += (integrate(function1, lims) + abscissa) * dim #Return tuple return (vectdiff2, vectdiff, vectdiff0) ##Function body _check_frame(frame) #Decide mode of operation based on user's input if 'acceleration' in kwargs: mode = 2 elif 'velocity' in kwargs: mode = 1 else: mode = 0 #All the possible parameters in kwargs #Not all are required for every case #If not specified, set to default values(may or may not be used in #calculations) conditions = ['acceleration', 'velocity', 'position', 'timevalue', 'timevalue1', 'timevalue2'] for i, x in enumerate(conditions): if x not in kwargs: if i < 3: kwargs[x] = Vector(0) else: kwargs[x] = S(0) elif i < 3: _check_vector(kwargs[x]) else: kwargs[x] = sympify(kwargs[x]) if mode == 2: vel = _process_vector_differential(kwargs['acceleration'], kwargs['velocity'], dynamicsymbols._t, kwargs['timevalue2'], frame)[2] pos = _process_vector_differential(vel, kwargs['position'], dynamicsymbols._t, kwargs['timevalue1'], frame)[2] return (kwargs['acceleration'], vel, pos) elif mode == 1: return _process_vector_differential(kwargs['velocity'], kwargs['position'], dynamicsymbols._t, kwargs['timevalue1'], frame) else: vel = time_derivative(kwargs['position'], frame) acc = time_derivative(vel, frame) return (acc, vel, kwargs['position']) def partial_velocity(vel_vecs, gen_speeds, frame): """Returns a list of partial velocities with respect to the provided generalized speeds in the given reference frame for each of the supplied velocity vectors. The output is a list of lists. The outer list has a number of elements equal to the number of supplied velocity vectors. The inner lists are, for each velocity vector, the partial derivatives of that velocity vector with respect to the generalized speeds supplied. Parameters ========== vel_vecs : iterable An iterable of velocity vectors (angular or linear). gen_speeds : iterable An iterable of generalized speeds. frame : ReferenceFrame The reference frame that the partial derivatives are going to be taken in. Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> from sympy.physics.vector import dynamicsymbols >>> from sympy.physics.vector import partial_velocity >>> u = dynamicsymbols('u') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, u * N.x) >>> vel_vecs = [P.vel(N)] >>> gen_speeds = [u] >>> partial_velocity(vel_vecs, gen_speeds, N) [[N.x]] """ if not iterable(vel_vecs): raise TypeError('Velocity vectors must be contained in an iterable.') if not iterable(gen_speeds): raise TypeError('Generalized speeds must be contained in an iterable') vec_partials = [] for vec in vel_vecs: partials = [] for speed in gen_speeds: partials.append(vec.diff(speed, frame, var_in_dcm=False)) vec_partials.append(partials) return vec_partials def dynamicsymbols(names, level=0): """Uses symbols and Function for functions of time. Creates a SymPy UndefinedFunction, which is then initialized as a function of a variable, the default being Symbol('t'). Parameters ========== names : str Names of the dynamic symbols you want to create; works the same way as inputs to symbols level : int Level of differentiation of the returned function; d/dt once of t, twice of t, etc. Examples ======== >>> from sympy.physics.vector import dynamicsymbols >>> from sympy import diff, Symbol >>> q1 = dynamicsymbols('q1') >>> q1 q1(t) >>> diff(q1, Symbol('t')) Derivative(q1(t), t) """ esses = symbols(names, cls=Function) t = dynamicsymbols._t if iterable(esses): esses = [reduce(diff, [t] * level, e(t)) for e in esses] return esses else: return reduce(diff, [t] * level, esses(t)) dynamicsymbols._t = Symbol('t') dynamicsymbols._str = '\''
93095f194175bb2c8dca25db60fed1c2d1bb8ad9ff8319781af595e77665f154
from sympy.core.backend import sympify, Add, ImmutableMatrix as Matrix from sympy.core.compatibility import unicode from .printing import (VectorLatexPrinter, VectorPrettyPrinter, VectorStrPrinter) __all__ = ['Dyadic'] class Dyadic(object): """A Dyadic object. See: https://en.wikipedia.org/wiki/Dyadic_tensor Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill A more powerful way to represent a rigid body's inertia. While it is more complex, by choosing Dyadic components to be in body fixed basis vectors, the resulting matrix is equivalent to the inertia tensor. """ def __init__(self, inlist): """ Just like Vector's init, you shouldn't call this unless creating a zero dyadic. zd = Dyadic(0) Stores a Dyadic as a list of lists; the inner list has the measure number and the two unit vectors; the outerlist holds each unique unit vector pair. """ self.args = [] if inlist == 0: inlist = [] while len(inlist) != 0: added = 0 for i, v in enumerate(self.args): if ((str(inlist[0][1]) == str(self.args[i][1])) and (str(inlist[0][2]) == str(self.args[i][2]))): self.args[i] = (self.args[i][0] + inlist[0][0], inlist[0][1], inlist[0][2]) inlist.remove(inlist[0]) added = 1 break if added != 1: self.args.append(inlist[0]) inlist.remove(inlist[0]) i = 0 # This code is to remove empty parts from the list while i < len(self.args): if ((self.args[i][0] == 0) | (self.args[i][1] == 0) | (self.args[i][2] == 0)): self.args.remove(self.args[i]) i -= 1 i += 1 def __add__(self, other): """The add operator for Dyadic. """ other = _check_dyadic(other) return Dyadic(self.args + other.args) def __and__(self, other): """The inner product operator for a Dyadic and a Dyadic or Vector. Parameters ========== other : Dyadic or Vector The other Dyadic or Vector to take the inner product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> D1 = outer(N.x, N.y) >>> D2 = outer(N.y, N.y) >>> D1.dot(D2) (N.x|N.y) >>> D1.dot(N.y) N.x """ from sympy.physics.vector.vector import Vector, _check_vector if isinstance(other, Dyadic): other = _check_dyadic(other) ol = Dyadic(0) for i, v in enumerate(self.args): for i2, v2 in enumerate(other.args): ol += v[0] * v2[0] * (v[2] & v2[1]) * (v[1] | v2[2]) else: other = _check_vector(other) ol = Vector(0) for i, v in enumerate(self.args): ol += v[0] * v[1] * (v[2] & other) return ol def __div__(self, other): """Divides the Dyadic by a sympifyable expression. """ return self.__mul__(1 / other) __truediv__ = __div__ def __eq__(self, other): """Tests for equality. Is currently weak; needs stronger comparison testing """ if other == 0: other = Dyadic(0) other = _check_dyadic(other) if (self.args == []) and (other.args == []): return True elif (self.args == []) or (other.args == []): return False return set(self.args) == set(other.args) def __mul__(self, other): """Multiplies the Dyadic by a sympifyable expression. Parameters ========== other : Sympafiable The scalar to multiply this Dyadic with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> 5 * d 5*(N.x|N.x) """ newlist = [v for v in self.args] for i, v in enumerate(newlist): newlist[i] = (sympify(other) * newlist[i][0], newlist[i][1], newlist[i][2]) return Dyadic(newlist) def __ne__(self, other): return not self == other def __neg__(self): return self * -1 def _latex(self, printer=None): ar = self.args # just to shorten things if len(ar) == 0: return str(0) ol = [] # output list, to be concatenated to a string mlp = VectorLatexPrinter() for i, v in enumerate(ar): # if the coef of the dyadic is 1, we skip the 1 if ar[i][0] == 1: ol.append(' + ' + mlp.doprint(ar[i][1]) + r"\otimes " + mlp.doprint(ar[i][2])) # if the coef of the dyadic is -1, we skip the 1 elif ar[i][0] == -1: ol.append(' - ' + mlp.doprint(ar[i][1]) + r"\otimes " + mlp.doprint(ar[i][2])) # If the coefficient of the dyadic is not 1 or -1, # we might wrap it in parentheses, for readability. elif ar[i][0] != 0: arg_str = mlp.doprint(ar[i][0]) if isinstance(ar[i][0], Add): arg_str = '(%s)' % arg_str if arg_str.startswith('-'): arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + mlp.doprint(ar[i][1]) + r"\otimes " + mlp.doprint(ar[i][2])) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def _pretty(self, printer=None): e = self class Fake(object): baseline = 0 def render(self, *args, **kwargs): ar = e.args # just to shorten things settings = printer._settings if printer else {} if printer: use_unicode = printer._use_unicode else: from sympy.printing.pretty.pretty_symbology import ( pretty_use_unicode) use_unicode = pretty_use_unicode() mpp = printer if printer else VectorPrettyPrinter(settings) if len(ar) == 0: return unicode(0) bar = u"\N{CIRCLED TIMES}" if use_unicode else "|" ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): # if the coef of the dyadic is 1, we skip the 1 if ar[i][0] == 1: ol.extend([u" + ", mpp.doprint(ar[i][1]), bar, mpp.doprint(ar[i][2])]) # if the coef of the dyadic is -1, we skip the 1 elif ar[i][0] == -1: ol.extend([u" - ", mpp.doprint(ar[i][1]), bar, mpp.doprint(ar[i][2])]) # If the coefficient of the dyadic is not 1 or -1, # we might wrap it in parentheses, for readability. elif ar[i][0] != 0: if isinstance(ar[i][0], Add): arg_str = mpp._print( ar[i][0]).parens()[0] else: arg_str = mpp.doprint(ar[i][0]) if arg_str.startswith(u"-"): arg_str = arg_str[1:] str_start = u" - " else: str_start = u" + " ol.extend([str_start, arg_str, u" ", mpp.doprint(ar[i][1]), bar, mpp.doprint(ar[i][2])]) outstr = u"".join(ol) if outstr.startswith(u" + "): outstr = outstr[3:] elif outstr.startswith(" "): outstr = outstr[1:] return outstr return Fake() def __rand__(self, other): """The inner product operator for a Vector or Dyadic, and a Dyadic This is for: Vector dot Dyadic Parameters ========== other : Vector The vector we are dotting with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dot, outer >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> dot(N.x, d) N.x """ from sympy.physics.vector.vector import Vector, _check_vector other = _check_vector(other) ol = Vector(0) for i, v in enumerate(self.args): ol += v[0] * v[2] * (v[1] & other) return ol def __rsub__(self, other): return (-1 * self) + other def __rxor__(self, other): """For a cross product in the form: Vector x Dyadic Parameters ========== other : Vector The Vector that we are crossing this Dyadic with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, cross >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> cross(N.y, d) - (N.z|N.x) """ from sympy.physics.vector.vector import _check_vector other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(self.args): ol += v[0] * ((other ^ v[1]) | v[2]) return ol def __str__(self, printer=None): """Printing method. """ ar = self.args # just to shorten things if len(ar) == 0: return str(0) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): # if the coef of the dyadic is 1, we skip the 1 if ar[i][0] == 1: ol.append(' + (' + str(ar[i][1]) + '|' + str(ar[i][2]) + ')') # if the coef of the dyadic is -1, we skip the 1 elif ar[i][0] == -1: ol.append(' - (' + str(ar[i][1]) + '|' + str(ar[i][2]) + ')') # If the coefficient of the dyadic is not 1 or -1, # we might wrap it in parentheses, for readability. elif ar[i][0] != 0: arg_str = VectorStrPrinter().doprint(ar[i][0]) if isinstance(ar[i][0], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + '*(' + str(ar[i][1]) + '|' + str(ar[i][2]) + ')') outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def __sub__(self, other): """The subtraction operator. """ return self.__add__(other * -1) def __xor__(self, other): """For a cross product in the form: Dyadic x Vector. Parameters ========== other : Vector The Vector that we are crossing this Dyadic with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, cross >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> cross(d, N.y) (N.x|N.z) """ from sympy.physics.vector.vector import _check_vector other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(self.args): ol += v[0] * (v[1] | (v[2] ^ other)) return ol # We don't define _repr_png_ here because it would add a large amount of # data to any notebook containing SymPy expressions, without adding # anything useful to the notebook. It can still enabled manually, e.g., # for the qtconsole, with init_printing(). def _repr_latex_(self): """ IPython/Jupyter LaTeX printing To change the behavior of this (e.g., pass in some settings to LaTeX), use init_printing(). init_printing() will also enable LaTeX printing for built in numeric types like ints and container types that contain SymPy objects, like lists and dictionaries of expressions. """ from sympy.printing.latex import latex s = latex(self, mode='equation*') s = s.strip('$') return "$$%s$$" % s _repr_latex_orig = _repr_latex_ _sympystr = __str__ _sympyrepr = _sympystr __repr__ = __str__ __radd__ = __add__ __rmul__ = __mul__ def express(self, frame1, frame2=None): """Expresses this Dyadic in alternate frame(s) The first frame is the list side expression, the second frame is the right side; if Dyadic is in form A.x|B.y, you can express it in two different frames. If no second frame is given, the Dyadic is expressed in only one frame. Calls the global express function Parameters ========== frame1 : ReferenceFrame The frame to express the left side of the Dyadic in frame2 : ReferenceFrame If provided, the frame to express the right side of the Dyadic in Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> d.express(B, N) cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x) """ from sympy.physics.vector.functions import express return express(self, frame1, frame2) def to_matrix(self, reference_frame, second_reference_frame=None): """Returns the matrix form of the dyadic with respect to one or two reference frames. Parameters ---------- reference_frame : ReferenceFrame The reference frame that the rows and columns of the matrix correspond to. If a second reference frame is provided, this only corresponds to the rows of the matrix. second_reference_frame : ReferenceFrame, optional, default=None The reference frame that the columns of the matrix correspond to. Returns ------- matrix : ImmutableMatrix, shape(3,3) The matrix that gives the 2D tensor form. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame, Vector >>> Vector.simp = True >>> from sympy.physics.mechanics import inertia >>> Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('Ixx, Iyy, Izz, Ixy, Iyz, Ixz') >>> N = ReferenceFrame('N') >>> inertia_dyadic = inertia(N, Ixx, Iyy, Izz, Ixy, Iyz, Ixz) >>> inertia_dyadic.to_matrix(N) Matrix([ [Ixx, Ixy, Ixz], [Ixy, Iyy, Iyz], [Ixz, Iyz, Izz]]) >>> beta = symbols('beta') >>> A = N.orientnew('A', 'Axis', (beta, N.x)) >>> inertia_dyadic.to_matrix(A) Matrix([ [ Ixx, Ixy*cos(beta) + Ixz*sin(beta), -Ixy*sin(beta) + Ixz*cos(beta)], [ Ixy*cos(beta) + Ixz*sin(beta), Iyy*cos(2*beta)/2 + Iyy/2 + Iyz*sin(2*beta) - Izz*cos(2*beta)/2 + Izz/2, -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2], [-Ixy*sin(beta) + Ixz*cos(beta), -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2, -Iyy*cos(2*beta)/2 + Iyy/2 - Iyz*sin(2*beta) + Izz*cos(2*beta)/2 + Izz/2]]) """ if second_reference_frame is None: second_reference_frame = reference_frame return Matrix([i.dot(self).dot(j) for i in reference_frame for j in second_reference_frame]).reshape(3, 3) def doit(self, **hints): """Calls .doit() on each term in the Dyadic""" return sum([Dyadic([(v[0].doit(**hints), v[1], v[2])]) for v in self.args], Dyadic(0)) def dt(self, frame): """Take the time derivative of this Dyadic in a frame. This function calls the global time_derivative method Parameters ========== frame : ReferenceFrame The frame to take the time derivative in Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> d.dt(B) - q'*(N.y|N.x) - q'*(N.x|N.y) """ from sympy.physics.vector.functions import time_derivative return time_derivative(self, frame) def simplify(self): """Returns a simplified Dyadic.""" out = Dyadic(0) for v in self.args: out += Dyadic([(v[0].simplify(), v[1], v[2])]) return out def subs(self, *args, **kwargs): """Substitution on the Dyadic. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> s = Symbol('s') >>> a = s * (N.x|N.x) >>> a.subs({s: 2}) 2*(N.x|N.x) """ return sum([Dyadic([(v[0].subs(*args, **kwargs), v[1], v[2])]) for v in self.args], Dyadic(0)) def applyfunc(self, f): """Apply a function to each component of a Dyadic.""" if not callable(f): raise TypeError("`f` must be callable.") out = Dyadic(0) for a, b, c in self.args: out += f(a) * (b|c) return out dot = __and__ cross = __xor__ def _check_dyadic(other): if not isinstance(other, Dyadic): raise TypeError('A Dyadic must be supplied') return other
8e525e0cb52458c115ab38876e4b259401da8d275b8d0db7da3c7462bd2a1434
""" This module can be used to solve 2D beam bending problems with singularity functions in mechanics. """ from __future__ import print_function, division from sympy.core import S, Symbol, diff, symbols from sympy.solvers import linsolve from sympy.printing import sstr from sympy.functions import SingularityFunction, Piecewise, factorial from sympy.core import sympify from sympy.integrals import integrate from sympy.series import limit from sympy.plotting import plot from sympy.external import import_module from sympy.utilities.decorator import doctest_depends_on from sympy import lambdify matplotlib = import_module('matplotlib', __import__kwargs={'fromlist':['pyplot']}) numpy = import_module('numpy', __import__kwargs={'fromlist':['linspace']}) class Beam(object): """ A Beam is a structural element that is capable of withstanding load primarily by resisting against bending. Beams are characterized by their cross sectional profile(Second moment of area), their length and their material. .. note:: While solving a beam bending problem, a user should choose its own sign convention and should stick to it. The results will automatically follow the chosen sign convention. Examples ======== There is a beam of length 4 meters. A constant distributed load of 6 N/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. The deflection of the beam at the end is restricted. Using the sign convention of downwards forces being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols, Piecewise >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(4, E, I) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(6, 2, 0) >>> b.apply_load(R2, 4, -1) >>> b.bc_deflection = [(0, 0), (4, 0)] >>> b.boundary_conditions {'deflection': [(0, 0), (4, 0)], 'slope': []} >>> b.load R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0) >>> b.solve_for_reaction_loads(R1, R2) >>> b.load -3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1) >>> b.shear_force() -3*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 2, 1) - 9*SingularityFunction(x, 4, 0) >>> b.bending_moment() -3*SingularityFunction(x, 0, 1) + 3*SingularityFunction(x, 2, 2) - 9*SingularityFunction(x, 4, 1) >>> b.slope() (-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I) >>> b.deflection() (7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I) >>> b.deflection().rewrite(Piecewise) (7*x - Piecewise((x**3, x > 0), (0, True))/2 - 3*Piecewise(((x - 4)**3, x - 4 > 0), (0, True))/2 + Piecewise(((x - 2)**4, x - 2 > 0), (0, True))/4)/(E*I) """ def __init__(self, length, elastic_modulus, second_moment, variable=Symbol('x'), base_char='C'): """Initializes the class. Parameters ========== length : Sympifyable A Symbol or value representing the Beam's length. elastic_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of Elasticity. It is a measure of the stiffness of the Beam material. It can also be a continuous function of position along the beam. second_moment : Sympifyable A SymPy expression representing the Beam's Second moment of area. It is a geometrical property of an area which reflects how its points are distributed with respect to its neutral axis. It can also be a continuous function of position along the beam. variable : Symbol, optional A Symbol object that will be used as the variable along the beam while representing the load, shear, moment, slope and deflection curve. By default, it is set to ``Symbol('x')``. base_char : String, optional A String that will be used as base character to generate sequential symbols for integration constants in cases where boundary conditions are not sufficient to solve them. """ self.length = length self.elastic_modulus = elastic_modulus self.second_moment = second_moment self.variable = variable self._base_char = base_char self._boundary_conditions = {'deflection': [], 'slope': []} self._load = 0 self._applied_loads = [] self._reaction_loads = {} self._composite_type = None self._hinge_position = None def __str__(self): str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(self._second_moment)) return str_sol @property def reaction_loads(self): """ Returns the reaction forces in a dictionary.""" return self._reaction_loads @property def length(self): """Length of the Beam.""" return self._length @length.setter def length(self, l): self._length = sympify(l) @property def variable(self): """ A symbol that can be used as a variable along the length of the beam while representing load distribution, shear force curve, bending moment, slope curve and the deflection curve. By default, it is set to ``Symbol('x')``, but this property is mutable. Examples ======== >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> x, y, z = symbols('x, y, z') >>> b = Beam(4, E, I) >>> b.variable x >>> b.variable = y >>> b.variable y >>> b = Beam(4, E, I, z) >>> b.variable z """ return self._variable @variable.setter def variable(self, v): if isinstance(v, Symbol): self._variable = v else: raise TypeError("""The variable should be a Symbol object.""") @property def elastic_modulus(self): """Young's Modulus of the Beam. """ return self._elastic_modulus @elastic_modulus.setter def elastic_modulus(self, e): self._elastic_modulus = sympify(e) @property def second_moment(self): """Second moment of area of the Beam. """ return self._second_moment @second_moment.setter def second_moment(self, i): self._second_moment = sympify(i) @property def boundary_conditions(self): """ Returns a dictionary of boundary conditions applied on the beam. The dictionary has three kewwords namely moment, slope and deflection. The value of each keyword is a list of tuple, where each tuple contains loaction and value of a boundary condition in the format (location, value). Examples ======== There is a beam of length 4 meters. The bending moment at 0 should be 4 and at 4 it should be 0. The slope of the beam should be 1 at 0. The deflection should be 2 at 0. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.bc_deflection = [(0, 2)] >>> b.bc_slope = [(0, 1)] >>> b.boundary_conditions {'deflection': [(0, 2)], 'slope': [(0, 1)]} Here the deflection of the beam should be ``2`` at ``0``. Similarly, the slope of the beam should be ``1`` at ``0``. """ return self._boundary_conditions @property def bc_slope(self): return self._boundary_conditions['slope'] @bc_slope.setter def bc_slope(self, s_bcs): self._boundary_conditions['slope'] = s_bcs @property def bc_deflection(self): return self._boundary_conditions['deflection'] @bc_deflection.setter def bc_deflection(self, d_bcs): self._boundary_conditions['deflection'] = d_bcs def join(self, beam, via="fixed"): """ This method joins two beams to make a new composite beam system. Passed Beam class instance is attached to the right end of calling object. This method can be used to form beams having Discontinuous values of Elastic modulus or Second moment. Parameters ========== beam : Beam class object The Beam object which would be connected to the right of calling object. via : String States the way two Beam object would get connected - For axially fixed Beams, via="fixed" - For Beams connected via hinge, via="hinge" Examples ======== There is a cantilever beam of length 4 meters. For first 2 meters its moment of inertia is `1.5*I` and `I` for the other end. A pointload of magnitude 4 N is applied from the top at its free end. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b1 = Beam(2, E, 1.5*I) >>> b2 = Beam(2, E, I) >>> b = b1.join(b2, "fixed") >>> b.apply_load(20, 4, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 0, -2) >>> b.bc_slope = [(0, 0)] >>> b.bc_deflection = [(0, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.load 80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1) >>> b.slope() (((80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))/I - 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0) + 0.666666666666667*(80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I) - 0.666666666666667*(80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I) """ x = self.variable E = self.elastic_modulus new_length = self.length + beam.length if self.second_moment != beam.second_moment: new_second_moment = Piecewise((self.second_moment, x<=self.length), (beam.second_moment, x<=new_length)) else: new_second_moment = self.second_moment if via == "fixed": new_beam = Beam(new_length, E, new_second_moment, x) new_beam._composite_type = "fixed" return new_beam if via == "hinge": new_beam = Beam(new_length, E, new_second_moment, x) new_beam._composite_type = "hinge" new_beam._hinge_position = self.length return new_beam def apply_support(self, loc, type="fixed"): """ This method applies support to a particular beam object. Parameters ========== loc : Sympifyable Location of point at which support is applied. type : String Determines type of Beam support applied. To apply support structure with - zero degree of freedom, type = "fixed" - one degree of freedom, type = "pin" - two degrees of freedom, type = "roller" Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(30, E, I) >>> b.apply_support(10, 'roller') >>> b.apply_support(30, 'roller') >>> b.apply_load(-8, 0, -1) >>> b.apply_load(120, 30, -2) >>> R_10, R_30 = symbols('R_10, R_30') >>> b.solve_for_reaction_loads(R_10, R_30) >>> b.load -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) >>> b.slope() (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I) """ if type == "pin" or type == "roller": reaction_load = Symbol('R_'+str(loc)) self.apply_load(reaction_load, loc, -1) self.bc_deflection.append((loc, 0)) else: reaction_load = Symbol('R_'+str(loc)) reaction_moment = Symbol('M_'+str(loc)) self.apply_load(reaction_load, loc, -1) self.apply_load(reaction_moment, loc, -2) self.bc_deflection = [(loc, 0)] self.bc_slope.append((loc, 0)) def apply_load(self, value, start, order, end=None): """ This method adds up the loads given to a particular beam object. Parameters ========== value : Sympifyable The magnitude of an applied load. start : Sympifyable The starting point of the applied load. For point moments and point forces this is the location of application. order : Integer The order of the applied load. - For moments, order = -2 - For point loads, order =-1 - For constant distributed load, order = 0 - For ramp loads, order = 1 - For parabolic ramp loads, order = 2 - ... so on. end : Sympifyable, optional An optional argument that can be used if the load has an end point within the length of the beam. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A point load of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 2 meters to 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 2, 2, end=3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) self._applied_loads.append((value, start, order, end)) self._load += value*SingularityFunction(x, start, order) if end: if order.is_negative: msg = ("If 'end' is provided the 'order' of the load cannot " "be negative, i.e. 'end' is only valid for distributed " "loads.") raise ValueError(msg) # NOTE : A Taylor series can be used to define the summation of # singularity functions that subtract from the load past the end # point such that it evaluates to zero past 'end'. f = value * x**order for i in range(0, order + 1): self._load -= (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i) / factorial(i)) def remove_load(self, value, start, order, end=None): """ This method removes a particular load present on the beam object. Returns a ValueError if the load passed as an argument is not present on the beam. Parameters ========== value : Sympifyable The magnitude of an applied load. start : Sympifyable The starting point of the applied load. For point moments and point forces this is the location of application. order : Integer The order of the applied load. - For moments, order= -2 - For point loads, order=-1 - For constant distributed load, order=0 - For ramp loads, order=1 - For parabolic ramp loads, order=2 - ... so on. end : Sympifyable, optional An optional argument that can be used if the load has an end point within the length of the beam. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A pointload of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 2 meters to 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 2, 2, end=3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) >>> b.remove_load(-2, 2, 2, end = 3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if (value, start, order, end) in self._applied_loads: self._load -= value*SingularityFunction(x, start, order) self._applied_loads.remove((value, start, order, end)) else: msg = "No such load distribution exists on the beam object." raise ValueError(msg) if end: # TODO : This is essentially duplicate code wrt to apply_load, # would be better to move it to one location and both methods use # it. if order.is_negative: msg = ("If 'end' is provided the 'order' of the load cannot " "be negative, i.e. 'end' is only valid for distributed " "loads.") raise ValueError(msg) # NOTE : A Taylor series can be used to define the summation of # singularity functions that subtract from the load past the end # point such that it evaluates to zero past 'end'. f = value * x**order for i in range(0, order + 1): self._load += (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i) / factorial(i)) @property def load(self): """ Returns a Singularity Function expression which represents the load distribution curve of the Beam object. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A point load of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 3, 2) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2) """ return self._load @property def applied_loads(self): """ Returns a list of all loads applied on the beam object. Each load in the list is a tuple of form (value, start, order, end). Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A pointload of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point. Another pointload of magnitude 5 N is applied at same position. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(5, 2, -1) >>> b.load -3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1) >>> b.applied_loads [(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)] """ return self._applied_loads def _solve_hinge_beams(self, *reactions): """Method to find integration constants and reactional variables in a composite beam connected via hinge. This method resolves the composite Beam into its sub-beams and then equations of shear force, bending moment, slope and deflection are evaluated for both of them separately. These equations are then solved for unknown reactions and integration constants using the boundary conditions applied on the Beam. Equal deflection of both sub-beams at the hinge joint gives us another equation to solve the system. Examples ======== A combined beam, with constant fkexural rigidity E*I, is formed by joining a Beam of length 2*l to the right of another Beam of length l. The whole beam is fixed at both of its both end. A point load of magnitude P is also applied from the top at a distance of 2*l from starting point. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> l=symbols('l', positive=True) >>> b1=Beam(l ,E,I) >>> b2=Beam(2*l ,E,I) >>> b=b1.join(b2,"hinge") >>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P') >>> b.apply_load(A1,0,-1) >>> b.apply_load(M1,0,-2) >>> b.apply_load(P,2*l,-1) >>> b.apply_load(A2,3*l,-1) >>> b.apply_load(M2,3*l,-2) >>> b.bc_slope=[(0,0), (3*l, 0)] >>> b.bc_deflection=[(0,0), (3*l, 0)] >>> b.solve_for_reaction_loads(M1, A1, M2, A2) >>> b.reaction_loads {A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9} >>> b.slope() (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I) - (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I) + (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2 - 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I) >>> b.deflection() (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I) - (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I) + (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6 - 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I) """ x = self.variable l = self._hinge_position E = self._elastic_modulus I = self._second_moment if isinstance(I, Piecewise): I1 = I.args[0][0] I2 = I.args[1][0] else: I1 = I2 = I load_1 = 0 # Load equation on first segment of composite beam load_2 = 0 # Load equation on second segment of composite beam # Distributing load on both segments for load in self.applied_loads: if load[1] < l: load_1 += load[0]*SingularityFunction(x, load[1], load[2]) if load[2] == 0: load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) elif load[2] > 0: load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0) elif load[1] == l: load_1 += load[0]*SingularityFunction(x, load[1], load[2]) load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2]) elif load[1] > l: load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2]) if load[2] == 0: load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) elif load[2] > 0: load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0) h = Symbol('h') # Force due to hinge load_1 += h*SingularityFunction(x, l, -1) load_2 -= h*SingularityFunction(x, 0, -1) eq = [] shear_1 = integrate(load_1, x) shear_curve_1 = limit(shear_1, x, l) eq.append(shear_curve_1) bending_1 = integrate(shear_1, x) moment_curve_1 = limit(bending_1, x, l) eq.append(moment_curve_1) shear_2 = integrate(load_2, x) shear_curve_2 = limit(shear_2, x, self.length - l) eq.append(shear_curve_2) bending_2 = integrate(shear_2, x) moment_curve_2 = limit(bending_2, x, self.length - l) eq.append(moment_curve_2) C1 = Symbol('C1') C2 = Symbol('C2') C3 = Symbol('C3') C4 = Symbol('C4') slope_1 = S(1)/(E*I1)*(integrate(bending_1, x) + C1) def_1 = S(1)/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2) slope_2 = S(1)/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3) def_2 = S(1)/(E*I2)*(integrate((E*I)*slope_2, x) + C4) for position, value in self.bc_slope: if position<l: eq.append(slope_1.subs(x, position) - value) else: eq.append(slope_2.subs(x, position - l) - value) for position, value in self.bc_deflection: if position<l: eq.append(def_1.subs(x, position) - value) else: eq.append(def_2.subs(x, position - l) - value) eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions)) reaction_values = list(constants[0])[5:] self._reaction_loads = dict(zip(reactions, reaction_values)) self._load = self._load.subs(self._reaction_loads) # Substituting constants and reactional load and moments with their corresponding values slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads) def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads) slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads) def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads) self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0) self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0) def solve_for_reaction_loads(self, *reactions): """ Solves for the reaction forces. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols, linsolve, limit >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) # Reaction force at x = 10 >>> b.apply_load(R2, 30, -1) # Reaction force at x = 30 >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.load R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1) - 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2) >>> b.solve_for_reaction_loads(R1, R2) >>> b.reaction_loads {R1: 6, R2: 2} >>> b.load -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) """ if self._composite_type == "hinge": return self._solve_hinge_beams(*reactions) x = self.variable l = self.length C3 = Symbol('C3') C4 = Symbol('C4') shear_curve = limit(self.shear_force(), x, l) moment_curve = limit(self.bending_moment(), x, l) slope_eqs = [] deflection_eqs = [] slope_curve = integrate(self.bending_moment(), x) + C3 for position, value in self._boundary_conditions['slope']: eqs = slope_curve.subs(x, position) - value slope_eqs.append(eqs) deflection_curve = integrate(slope_curve, x) + C4 for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value deflection_eqs.append(eqs) solution = list((linsolve([shear_curve, moment_curve] + slope_eqs + deflection_eqs, (C3, C4) + reactions).args)[0]) solution = solution[2:] self._reaction_loads = dict(zip(reactions, solution)) self._load = self._load.subs(self._reaction_loads) def shear_force(self): """ Returns a Singularity Function expression which represents the shear force curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.shear_force() -8*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 10, 0) + 120*SingularityFunction(x, 30, -1) + 2*SingularityFunction(x, 30, 0) """ x = self.variable return integrate(self.load, x) def max_shear_force(self): """Returns maximum Shear force and its coordinate in the Beam object.""" from sympy import solve, Mul, Interval shear_curve = self.shear_force() x = self.variable terms = shear_curve.args singularity = [] # Points at which shear function changes for term in terms: if isinstance(term, Mul): term = term.args[-1] # SingularityFunction in the term singularity.append(term.args[1]) singularity.sort() singularity = list(set(singularity)) intervals = [] # List of Intervals with discrete value of shear force shear_values = [] # List of values of shear force in each interval for i, s in enumerate(singularity): if s == 0: continue try: shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True)) points = solve(shear_slope, x) val = [] for point in points: val.append(shear_curve.subs(x, point)) points.extend([singularity[i-1], s]) val.extend([limit(shear_curve, x, singularity[i-1], '+'), limit(shear_curve, x, s, '-')]) val = list(map(abs, val)) max_shear = max(val) shear_values.append(max_shear) intervals.append(points[val.index(max_shear)]) # If shear force in a particular Interval has zero or constant # slope, then above block gives NotImplementedError as # solve can't represent Interval solutions. except NotImplementedError: initial_shear = limit(shear_curve, x, singularity[i-1], '+') final_shear = limit(shear_curve, x, s, '-') # If shear_curve has a constant slope(it is a line). if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear: shear_values.extend([initial_shear, final_shear]) intervals.extend([singularity[i-1], s]) else: # shear_curve has same value in whole Interval shear_values.append(final_shear) intervals.append(Interval(singularity[i-1], s)) shear_values = list(map(abs, shear_values)) maximum_shear = max(shear_values) point = intervals[shear_values.index(maximum_shear)] return (point, maximum_shear) def bending_moment(self): """ Returns a Singularity Function expression which represents the bending moment curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.bending_moment() -8*SingularityFunction(x, 0, 1) + 6*SingularityFunction(x, 10, 1) + 120*SingularityFunction(x, 30, 0) + 2*SingularityFunction(x, 30, 1) """ x = self.variable return integrate(self.shear_force(), x) def max_bmoment(self): """Returns maximum Shear force and its coordinate in the Beam object.""" from sympy import solve, Mul, Interval bending_curve = self.bending_moment() x = self.variable terms = bending_curve.args singularity = [] # Points at which bending moment changes for term in terms: if isinstance(term, Mul): term = term.args[-1] # SingularityFunction in the term singularity.append(term.args[1]) singularity.sort() singularity = list(set(singularity)) intervals = [] # List of Intervals with discrete value of bending moment moment_values = [] # List of values of bending moment in each interval for i, s in enumerate(singularity): if s == 0: continue try: moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True)) points = solve(moment_slope, x) val = [] for point in points: val.append(bending_curve.subs(x, point)) points.extend([singularity[i-1], s]) val.extend([limit(bending_curve, x, singularity[i-1], '+'), limit(bending_curve, x, s, '-')]) val = list(map(abs, val)) max_moment = max(val) moment_values.append(max_moment) intervals.append(points[val.index(max_moment)]) # If bending moment in a particular Interval has zero or constant # slope, then above block gives NotImplementedError as solve # can't represent Interval solutions. except NotImplementedError: initial_moment = limit(bending_curve, x, singularity[i-1], '+') final_moment = limit(bending_curve, x, s, '-') # If bending_curve has a constant slope(it is a line). if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment: moment_values.extend([initial_moment, final_moment]) intervals.extend([singularity[i-1], s]) else: # bending_curve has same value in whole Interval moment_values.append(final_moment) intervals.append(Interval(singularity[i-1], s)) moment_values = list(map(abs, moment_values)) maximum_moment = max(moment_values) point = intervals[moment_values.index(maximum_moment)] return (point, maximum_moment) def point_cflexure(self): """ Returns a Set of point(s) with zero bending moment and where bending moment curve of the beam object changes its sign from negative to positive or vice versa. Examples ======== There is is 10 meter long overhanging beam. There are two simple supports below the beam. One at the start and another one at a distance of 6 meters from the start. Point loads of magnitude 10KN and 20KN are applied at 2 meters and 4 meters from start respectively. A Uniformly distribute load of magnitude of magnitude 3KN/m is also applied on top starting from 6 meters away from starting point till end. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(10, E, I) >>> b.apply_load(-4, 0, -1) >>> b.apply_load(-46, 6, -1) >>> b.apply_load(10, 2, -1) >>> b.apply_load(20, 4, -1) >>> b.apply_load(3, 6, 0) >>> b.point_cflexure() [10/3] """ from sympy import solve, Piecewise # To restrict the range within length of the Beam moment_curve = Piecewise((float("nan"), self.variable<=0), (self.bending_moment(), self.variable<self.length), (float("nan"), True)) points = solve(moment_curve.rewrite(Piecewise), self.variable, domain=S.Reals) return points def slope(self): """ Returns a Singularity Function expression which represents the slope the elastic curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.slope() (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I) """ x = self.variable E = self.elastic_modulus I = self.second_moment if self._composite_type == "hinge": return self._hinge_beam_slope if not self._boundary_conditions['slope']: return diff(self.deflection(), x) if self._composite_type == "fixed": args = I.args slope = 0 conditions = [] prev_slope = 0 prev_end = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) if i != len(args) - 1: slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \ (prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0) else: slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) return slope C3 = Symbol('C3') slope_curve = integrate(S(1)/(E*I)*self.bending_moment(), x) + C3 bc_eqs = [] for position, value in self._boundary_conditions['slope']: eqs = slope_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, C3)) slope_curve = slope_curve.subs({C3: constants[0][0]}) return slope_curve def deflection(self): """ Returns a Singularity Function expression which represents the elastic curve or deflection of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.deflection() (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I) """ x = self.variable E = self.elastic_modulus I = self.second_moment if self._composite_type == "hinge": return self._hinge_beam_deflection if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']: if self._composite_type == "fixed": args = I.args conditions = [] prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection base_char = self._base_char constants = symbols(base_char + '3:5') return S(1)/(E*I)*integrate(integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1] elif not self._boundary_conditions['deflection']: base_char = self._base_char constant = symbols(base_char + '4') return integrate(self.slope(), x) + constant elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']: if self._composite_type == "fixed": args = I.args conditions = [] prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection base_char = self._base_char C3, C4 = symbols(base_char + '3:5') # Integration constants slope_curve = integrate(self.bending_moment(), x) + C3 deflection_curve = integrate(slope_curve, x) + C4 bc_eqs = [] for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, (C3, C4))) deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]}) return S(1)/(E*I)*deflection_curve if self._composite_type == "fixed": args = I.args conditions = [] prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = S(1)/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection C4 = Symbol('C4') deflection_curve = integrate(self.slope(), x) + C4 bc_eqs = [] for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, C4)) deflection_curve = deflection_curve.subs({C4: constants[0][0]}) return deflection_curve def max_deflection(self): """ Returns point of max deflection and its coresponding deflection value in a Beam object. """ from sympy import solve, Piecewise # To restrict the range within length of the Beam slope_curve = Piecewise((float("nan"), self.variable<=0), (self.slope(), self.variable<self.length), (float("nan"), True)) points = solve(slope_curve.rewrite(Piecewise), self.variable, domain=S.Reals) deflection_curve = self.deflection() deflections = [deflection_curve.subs(self.variable, x) for x in points] deflections = list(map(abs, deflections)) if len(deflections) != 0: max_def = max(deflections) return (points[deflections.index(max_def)], max_def) else: return None def plot_shear_force(self, subs=None): """ Returns a plot for Shear force present in the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_shear_force() Plot object containing: [0]: cartesian line: -13750*SingularityFunction(x, 0, 0) + 5000*SingularityFunction(x, 2, 0) + 10000*SingularityFunction(x, 4, 1) - 31250*SingularityFunction(x, 8, 0) - 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0) """ shear_force = self.shear_force() if subs is None: subs = {} for sym in shear_force.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force', xlabel='position', ylabel='Value', line_color='g') def plot_bending_moment(self, subs=None): """ Returns a plot for Bending moment present in the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_bending_moment() Plot object containing: [0]: cartesian line: -13750*SingularityFunction(x, 0, 1) + 5000*SingularityFunction(x, 2, 1) + 5000*SingularityFunction(x, 4, 2) - 31250*SingularityFunction(x, 8, 1) - 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0) """ bending_moment = self.bending_moment() if subs is None: subs = {} for sym in bending_moment.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment', xlabel='position', ylabel='Value', line_color='b') def plot_slope(self, subs=None): """ Returns a plot for slope of deflection curve of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_slope() Plot object containing: [0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2) + 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2) - 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0) """ slope = self.slope() if subs is None: subs = {} for sym in slope.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(slope.subs(subs), (self.variable, 0, length), title='Slope', xlabel='position', ylabel='Value', line_color='m') def plot_deflection(self, subs=None): """ Returns a plot for deflection curve of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_deflection() Plot object containing: [0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3) + 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4) - 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4) for x over (0.0, 8.0) """ deflection = self.deflection() if subs is None: subs = {} for sym in deflection.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(deflection.subs(subs), (self.variable, 0, length), title='Deflection', xlabel='position', ylabel='Value', line_color='r') @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot_loading_results(self, subs=None): """ Returns Axes object containing subplots of Shear Force, Bending Moment, Slope and Deflection of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. .. note:: This method only works if numpy and matplotlib libraries are installed on the system. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> axes = b.plot_loading_results() """ if matplotlib is None: raise ImportError('Install matplotlib to use this method.') else: plt = matplotlib.pyplot if numpy is None: raise ImportError('Install numpy to use this method.') else: linspace = numpy.linspace length = self.length variable = self.variable if subs is None: subs = {} for sym in self.deflection().atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' % sym) if self.length in subs: length = subs[self.length] else: length = self.length # As we are using matplotlib directly in this method, we need to change # SymPy methods to numpy functions. shear = lambdify(variable, self.shear_force().subs(subs).rewrite(Piecewise), 'numpy') moment = lambdify(variable, self.bending_moment().subs(subs).rewrite(Piecewise), 'numpy') slope = lambdify(variable, self.slope().subs(subs).rewrite(Piecewise), 'numpy') deflection = lambdify(variable, self.deflection().subs(subs).rewrite(Piecewise), 'numpy') points = linspace(0, float(length), num=100*length) # Creating a grid for subplots with 2 rows and 2 columns fig, axs = plt.subplots(4, 1) # axs is a 2D-numpy array containing axes axs[0].plot(points, shear(points)) axs[0].set_title("Shear Force") axs[1].plot(points, moment(points)) axs[1].set_title("Bending Moment") axs[2].plot(points, slope(points)) axs[2].set_title("Slope") axs[3].plot(points, deflection(points)) axs[3].set_title("Deflection") fig.tight_layout() # For better spacing between subplots return axs class Beam3D(Beam): """ This class handles loads applied in any direction of a 3D space along with unequal values of Second moment along different axes. .. note:: While solving a beam bending problem, a user should choose its own sign convention and should stick to it. The results will automatically follow the chosen sign convention. This class assumes that any kind of distributed load/moment is applied through out the span of a beam. Examples ======== There is a beam of l meters long. A constant distributed load of magnitude q is applied along y-axis from start till the end of beam. A constant distributed moment of magnitude m is also applied along z-axis from start till the end of beam. Beam is fixed at both of its end. So, deflection of the beam at the both ends is restricted. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols, simplify >>> l, E, G, I, A = symbols('l, E, G, I, A') >>> b = Beam3D(l, E, G, I, A) >>> x, q, m = symbols('x, q, m') >>> b.apply_load(q, 0, 0, dir="y") >>> b.apply_moment_load(m, 0, -1, dir="z") >>> b.shear_force() [0, -q*x, 0] >>> b.bending_moment() [0, 0, -m*x + q*x**2/2] >>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])] >>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])] >>> b.solve_slope_deflection() >>> b.slope() [0, 0, l*x*(-l*q + 3*l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(2*(A*G*l**2 + 12*E*I)) + 3*m)/(6*E*I) + q*x**3/(6*E*I) + x**2*(-l*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(2*(A*G*l**2 + 12*E*I)) - m)/(2*E*I)] >>> dx, dy, dz = b.deflection() >>> dx 0 >>> dz 0 >>> expectedy = ( ... -l**2*q*x**2/(12*E*I) + l**2*x**2*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(8*E*I*(A*G*l**2 + 12*E*I)) ... + l*m*x**2/(4*E*I) - l*x**3*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(12*E*I*(A*G*l**2 + 12*E*I)) - m*x**3/(6*E*I) ... + q*x**4/(24*E*I) + l*x*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(2*A*G*(A*G*l**2 + 12*E*I)) - q*x**2/(2*A*G) ... ) >>> simplify(dy - expectedy) 0 References ========== .. [1] http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf """ def __init__(self, length, elastic_modulus, shear_modulus , second_moment, area, variable=Symbol('x')): """Initializes the class. Parameters ========== length : Sympifyable A Symbol or value representing the Beam's length. elastic_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of Elasticity. It is a measure of the stiffness of the Beam material. shear_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of rigidity. It is a measure of rigidity of the Beam material. second_moment : Sympifyable or list A list of two elements having SymPy expression representing the Beam's Second moment of area. First value represent Second moment across y-axis and second across z-axis. Single SymPy expression can be passed if both values are same area : Sympifyable A SymPy expression representing the Beam's cross-sectional area in a plane prependicular to length of the Beam. variable : Symbol, optional A Symbol object that will be used as the variable along the beam while representing the load, shear, moment, slope and deflection curve. By default, it is set to ``Symbol('x')``. """ self.length = length self.elastic_modulus = elastic_modulus self.shear_modulus = shear_modulus self.second_moment = second_moment self.area = area self.variable = variable self._boundary_conditions = {'deflection': [], 'slope': []} self._load_vector = [0, 0, 0] self._moment_load_vector = [0, 0, 0] self._load_Singularity = [0, 0, 0] self._reaction_loads = {} self._slope = [0, 0, 0] self._deflection = [0, 0, 0] @property def shear_modulus(self): """Young's Modulus of the Beam. """ return self._shear_modulus @shear_modulus.setter def shear_modulus(self, e): self._shear_modulus = sympify(e) @property def second_moment(self): """Second moment of area of the Beam. """ return self._second_moment @second_moment.setter def second_moment(self, i): if isinstance(i, list): i = [sympify(x) for x in i] self._second_moment = i else: self._second_moment = sympify(i) @property def area(self): """Cross-sectional area of the Beam. """ return self._area @area.setter def area(self, a): self._area = sympify(a) @property def load_vector(self): """ Returns a three element list representing the load vector. """ return self._load_vector @property def moment_load_vector(self): """ Returns a three element list representing moment loads on Beam. """ return self._moment_load_vector @property def boundary_conditions(self): """ Returns a dictionary of boundary conditions applied on the beam. The dictionary has two keywords namely slope and deflection. The value of each keyword is a list of tuple, where each tuple contains loaction and value of a boundary condition in the format (location, value). Further each value is a list corresponding to slope or deflection(s) values along three axes at that location. Examples ======== There is a beam of length 4 meters. The slope at 0 should be 4 along the x-axis and 0 along others. At the other end of beam, deflection along all the three axes should be zero. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(30, E, G, I, A, x) >>> b.bc_slope = [(0, (4, 0, 0))] >>> b.bc_deflection = [(4, [0, 0, 0])] >>> b.boundary_conditions {'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]} Here the deflection of the beam should be ``0`` along all the three axes at ``4``. Similarly, the slope of the beam should be ``4`` along x-axis and ``0`` along y and z axis at ``0``. """ return self._boundary_conditions def apply_load(self, value, start, order, dir="y"): """ This method adds up the force load to a particular beam object. Parameters ========== value : Sympifyable The magnitude of an applied load. dir : String Axis along which load is applied. order : Integer The order of the applied load. - For point loads, order=-1 - For constant distributed load, order=0 - For ramp loads, order=1 - For parabolic ramp loads, order=2 - ... so on. """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if dir == "x": if not order == -1: self._load_vector[0] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) elif dir == "y": if not order == -1: self._load_vector[1] += value self._load_Singularity[1] += value*SingularityFunction(x, start, order) else: if not order == -1: self._load_vector[2] += value self._load_Singularity[2] += value*SingularityFunction(x, start, order) def apply_moment_load(self, value, start, order, dir="y"): """ This method adds up the moment loads to a particular beam object. Parameters ========== value : Sympifyable The magnitude of an applied moment. dir : String Axis along which moment is applied. order : Integer The order of the applied load. - For point moments, order=-2 - For constant distributed moment, order=-1 - For ramp moments, order=0 - For parabolic ramp moments, order=1 - ... so on. """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if dir == "x": if not order == -2: self._moment_load_vector[0] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) elif dir == "y": if not order == -2: self._moment_load_vector[1] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) else: if not order == -2: self._moment_load_vector[2] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) def apply_support(self, loc, type="fixed"): if type == "pin" or type == "roller": reaction_load = Symbol('R_'+str(loc)) self._reaction_loads[reaction_load] = reaction_load self.bc_deflection.append((loc, [0, 0, 0])) else: reaction_load = Symbol('R_'+str(loc)) reaction_moment = Symbol('M_'+str(loc)) self._reaction_loads[reaction_load] = [reaction_load, reaction_moment] self.bc_deflection = [(loc, [0, 0, 0])] self.bc_slope.append((loc, [0, 0, 0])) def solve_for_reaction_loads(self, *reaction): """ Solves for the reaction forces. Examples ======== There is a beam of length 30 meters. It it supported by rollers at of its end. A constant distributed load of magnitude 8 N is applied from start till its end along y-axis. Another linear load having slope equal to 9 is applied along z-axis. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(30, E, G, I, A, x) >>> b.apply_load(8, start=0, order=0, dir="y") >>> b.apply_load(9*x, start=0, order=0, dir="z") >>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="y") >>> b.apply_load(R2, start=30, order=-1, dir="y") >>> b.apply_load(R3, start=0, order=-1, dir="z") >>> b.apply_load(R4, start=30, order=-1, dir="z") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.reaction_loads {R1: -120, R2: -120, R3: -1350, R4: -2700} """ x = self.variable l=self.length q = self._load_Singularity m = self._moment_load_vector shear_curves = [integrate(load, x) for load in q] moment_curves = [integrate(shear, x) for shear in shear_curves] for i in range(3): react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))] if len(react) == 0: continue shear_curve = limit(shear_curves[i], x, l) moment_curve = limit(moment_curves[i], x, l) sol = list((linsolve([shear_curve, moment_curve], react).args)[0]) sol_dict = dict(zip(react, sol)) reaction_loads = self._reaction_loads # Check if any of the evaluated rection exists in another direction # and if it exists then it should have same value. for key in sol_dict: if key in reaction_loads and sol_dict[key] != reaction_loads[key]: raise ValueError("Ambiguous solution for %s in different directions." % key) self._reaction_loads.update(sol_dict) def shear_force(self): """ Returns a list of three expressions which represents the shear force curve of the Beam object along all three axes. """ x = self.variable q = self._load_vector m = self._moment_load_vector return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)] def axial_force(self): """ Returns expression of Axial shear force present inside the Beam object. """ return self.shear_force()[0] def bending_moment(self): """ Returns a list of three expressions which represents the bending moment curve of the Beam object along all three axes. """ x = self.variable q = self._load_vector m = self._moment_load_vector shear = self.shear_force() return [integrate(-m[0], x), integrate(-m[1] + shear[2], x), integrate(-m[2] - shear[1], x) ] def torsional_moment(): """ Returns expression of Torsional moment present inside the Beam object. """ return self.bending_moment()[0] def solve_slope_deflection(self): from sympy import dsolve, Function, Derivative, Eq x = self.variable l = self.length E = self.elastic_modulus G = self.shear_modulus I = self.second_moment if isinstance(I, list): I_y, I_z = I[0], I[1] else: I_y = I_z = I A = self.area load = self._load_vector moment = self._moment_load_vector defl = Function('defl') theta = Function('theta') # Finding deflection along x-axis(and corresponding slope value by differentiating it) # Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0 eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0] def_x = dsolve(Eq(eq, 0), defl(x)).args[1] # Solving constants originated from dsolve C1 = Symbol('C1') C2 = Symbol('C2') constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0]) def_x = def_x.subs({C1:constants[0], C2:constants[1]}) slope_x = def_x.diff(x) self._deflection[0] = def_x self._slope[0] = slope_x # Finding deflection along y-axis and slope across z-axis. System of equation involved: # 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0 # 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0 C_i = Symbol('C_i') # Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1) eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2] slope_z = dsolve(Eq(eq1, 0)).args[1] # Solve for constants originated from using dsolve on eq1 constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0]) slope_z = slope_z.subs({C1:constants[0], C2:constants[1]}) # Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z def_y = dsolve(Eq(eq2, 0), defl(x)).args[1] # Solve for constants originated from using dsolve on eq2 constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0]) self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]}) self._slope[2] = slope_z.subs(C_i, constants[1]) # Finding deflection along z-axis and slope across y-axis. System of equation involved: # 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0 # 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0 # Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1) eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1] slope_y = dsolve(Eq(eq1, 0)).args[1] # Solve for constants originated from using dsolve on eq1 constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0]) slope_y = slope_y.subs({C1:constants[0], C2:constants[1]}) # Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y def_z = dsolve(Eq(eq2,0)).args[1] # Solve for constants originated from using dsolve on eq2 constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0]) self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]}) self._slope[1] = slope_y.subs(C_i, constants[1]) def slope(self): """ Returns a three element list representing slope of deflection curve along all the three axes. """ return self._slope def deflection(self): """ Returns a three element list representing deflection curve along all the three axes. """ return self._deflection
1e019f8df39b418490c478ec3a2f4b39a371431937067b2d2df96ebad1e80767
""" **Contains** * Medium """ from __future__ import division from sympy.physics.units import second, meter, kilogram, ampere __all__ = ['Medium'] from sympy import Symbol, sympify, sqrt from sympy.physics.units import speed_of_light, u0, e0 c = speed_of_light.convert_to(meter/second) _e0mksa = e0.convert_to(ampere**2*second**4/(kilogram*meter**3)) _u0mksa = u0.convert_to(meter*kilogram/(ampere**2*second**2)) class Medium(Symbol): """ This class represents an optical medium. The prime reason to implement this is to facilitate refraction, Fermat's principle, etc. An optical medium is a material through which electromagnetic waves propagate. The permittivity and permeability of the medium define how electromagnetic waves propagate in it. Parameters ========== name: string The display name of the Medium. permittivity: Sympifyable Electric permittivity of the space. permeability: Sympifyable Magnetic permeability of the space. n: Sympifyable Index of refraction of the medium. Examples ======== >>> from sympy.abc import epsilon, mu >>> from sympy.physics.optics import Medium >>> m1 = Medium('m1') >>> m2 = Medium('m2', epsilon, mu) >>> m1.intrinsic_impedance 149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3) >>> m2.refractive_index 299792458*meter*sqrt(epsilon*mu)/second References ========== .. [1] https://en.wikipedia.org/wiki/Optical_medium """ def __new__(cls, name, permittivity=None, permeability=None, n=None): obj = super(Medium, cls).__new__(cls, name) obj._permittivity = sympify(permittivity) obj._permeability = sympify(permeability) obj._n = sympify(n) if n is not None: if permittivity != None and permeability == None: obj._permeability = n**2/(c**2*obj._permittivity) if permeability != None and permittivity == None: obj._permittivity = n**2/(c**2*obj._permeability) if permittivity != None and permittivity != None: if abs(n - c*sqrt(obj._permittivity*obj._permeability)) > 1e-6: raise ValueError("Values are not consistent.") elif permittivity is not None and permeability is not None: obj._n = c*sqrt(permittivity*permeability) elif permittivity is None and permeability is None: obj._permittivity = _e0mksa obj._permeability = _u0mksa return obj @property def intrinsic_impedance(self): """ Returns intrinsic impedance of the medium. The intrinsic impedance of a medium is the ratio of the transverse components of the electric and magnetic fields of the electromagnetic wave travelling in the medium. In a region with no electrical conductivity it simplifies to the square root of ratio of magnetic permeability to electric permittivity. Examples ======== >>> from sympy.physics.optics import Medium >>> m = Medium('m') >>> m.intrinsic_impedance 149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3) """ return sqrt(self._permeability/self._permittivity) @property def speed(self): """ Returns speed of the electromagnetic wave travelling in the medium. Examples ======== >>> from sympy.physics.optics import Medium >>> m = Medium('m') >>> m.speed 299792458*meter/second """ return 1/sqrt(self._permittivity*self._permeability) @property def refractive_index(self): """ Returns refractive index of the medium. Examples ======== >>> from sympy.physics.optics import Medium >>> m = Medium('m') >>> m.refractive_index 1 """ return (c/self.speed) @property def permittivity(self): """ Returns electric permittivity of the medium. Examples ======== >>> from sympy.physics.optics import Medium >>> m = Medium('m') >>> m.permittivity 625000*ampere**2*second**4/(22468879468420441*pi*kilogram*meter**3) """ return self._permittivity @property def permeability(self): """ Returns magnetic permeability of the medium. Examples ======== >>> from sympy.physics.optics import Medium >>> m = Medium('m') >>> m.permeability pi*kilogram*meter/(2500000*ampere**2*second**2) """ return self._permeability def __str__(self): from sympy.printing import sstr return type(self).__name__ + sstr(self.args) def __lt__(self, other): """ Compares based on refractive index of the medium. """ return self.refractive_index < other.refractive_index def __gt__(self, other): return not self < other def __eq__(self, other): return self.refractive_index == other.refractive_index def __ne__(self, other): return not self == other
64c9e594dd2bc973e8357aa1d74bca2576087978e66dd598b2f27cc87b678451
# -*- encoding: utf-8 -*- """ Gaussian optics. The module implements: - Ray transfer matrices for geometrical and gaussian optics. See RayTransferMatrix, GeometricRay and BeamParameter - Conjugation relations for geometrical and gaussian optics. See geometric_conj*, gauss_conj and conjugate_gauss_beams The conventions for the distances are as follows: focal distance positive for convergent lenses object distance positive for real objects image distance positive for real images """ from __future__ import print_function, division __all__ = [ 'RayTransferMatrix', 'FreeSpace', 'FlatRefraction', 'CurvedRefraction', 'FlatMirror', 'CurvedMirror', 'ThinLens', 'GeometricRay', 'BeamParameter', 'waist2rayleigh', 'rayleigh2waist', 'geometric_conj_ab', 'geometric_conj_af', 'geometric_conj_bf', 'gaussian_conj', 'conjugate_gauss_beams', ] from sympy import (atan2, Expr, I, im, Matrix, oo, pi, re, sqrt, sympify, together) from sympy.utilities.misc import filldedent ### # A, B, C, D matrices ### class RayTransferMatrix(Matrix): """ Base class for a Ray Transfer Matrix. It should be used if there isn't already a more specific subclass mentioned in See Also. Parameters ========== parameters : A, B, C and D or 2x2 matrix (Matrix(2, 2, [A, B, C, D])) Examples ======== >>> from sympy.physics.optics import RayTransferMatrix, ThinLens >>> from sympy import Symbol, Matrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat Matrix([ [1, 2], [3, 4]]) >>> RayTransferMatrix(Matrix([[1, 2], [3, 4]])) Matrix([ [1, 2], [3, 4]]) >>> mat.A 1 >>> f = Symbol('f') >>> lens = ThinLens(f) >>> lens Matrix([ [ 1, 0], [-1/f, 1]]) >>> lens.C -1/f See Also ======== GeometricRay, BeamParameter, FreeSpace, FlatRefraction, CurvedRefraction, FlatMirror, CurvedMirror, ThinLens References ========== .. [1] https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis """ def __new__(cls, *args): if len(args) == 4: temp = ((args[0], args[1]), (args[2], args[3])) elif len(args) == 1 \ and isinstance(args[0], Matrix) \ and args[0].shape == (2, 2): temp = args[0] else: raise ValueError(filldedent(''' Expecting 2x2 Matrix or the 4 elements of the Matrix but got %s''' % str(args))) return Matrix.__new__(cls, temp) def __mul__(self, other): if isinstance(other, RayTransferMatrix): return RayTransferMatrix(Matrix.__mul__(self, other)) elif isinstance(other, GeometricRay): return GeometricRay(Matrix.__mul__(self, other)) elif isinstance(other, BeamParameter): temp = self*Matrix(((other.q,), (1,))) q = (temp[0]/temp[1]).expand(complex=True) return BeamParameter(other.wavelen, together(re(q)), z_r=together(im(q))) else: return Matrix.__mul__(self, other) @property def A(self): """ The A parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.A 1 """ return self[0, 0] @property def B(self): """ The B parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.B 2 """ return self[0, 1] @property def C(self): """ The C parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.C 3 """ return self[1, 0] @property def D(self): """ The D parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.D 4 """ return self[1, 1] class FreeSpace(RayTransferMatrix): """ Ray Transfer Matrix for free space. Parameters ========== distance See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import FreeSpace >>> from sympy import symbols >>> d = symbols('d') >>> FreeSpace(d) Matrix([ [1, d], [0, 1]]) """ def __new__(cls, d): return RayTransferMatrix.__new__(cls, 1, d, 0, 1) class FlatRefraction(RayTransferMatrix): """ Ray Transfer Matrix for refraction. Parameters ========== n1 : refractive index of one medium n2 : refractive index of other medium See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import FlatRefraction >>> from sympy import symbols >>> n1, n2 = symbols('n1 n2') >>> FlatRefraction(n1, n2) Matrix([ [1, 0], [0, n1/n2]]) """ def __new__(cls, n1, n2): n1, n2 = map(sympify, (n1, n2)) return RayTransferMatrix.__new__(cls, 1, 0, 0, n1/n2) class CurvedRefraction(RayTransferMatrix): """ Ray Transfer Matrix for refraction on curved interface. Parameters ========== R : radius of curvature (positive for concave) n1 : refractive index of one medium n2 : refractive index of other medium See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import CurvedRefraction >>> from sympy import symbols >>> R, n1, n2 = symbols('R n1 n2') >>> CurvedRefraction(R, n1, n2) Matrix([ [ 1, 0], [(n1 - n2)/(R*n2), n1/n2]]) """ def __new__(cls, R, n1, n2): R, n1, n2 = map(sympify, (R, n1, n2)) return RayTransferMatrix.__new__(cls, 1, 0, (n1 - n2)/R/n2, n1/n2) class FlatMirror(RayTransferMatrix): """ Ray Transfer Matrix for reflection. See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import FlatMirror >>> FlatMirror() Matrix([ [1, 0], [0, 1]]) """ def __new__(cls): return RayTransferMatrix.__new__(cls, 1, 0, 0, 1) class CurvedMirror(RayTransferMatrix): """ Ray Transfer Matrix for reflection from curved surface. Parameters ========== R : radius of curvature (positive for concave) See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import CurvedMirror >>> from sympy import symbols >>> R = symbols('R') >>> CurvedMirror(R) Matrix([ [ 1, 0], [-2/R, 1]]) """ def __new__(cls, R): R = sympify(R) return RayTransferMatrix.__new__(cls, 1, 0, -2/R, 1) class ThinLens(RayTransferMatrix): """ Ray Transfer Matrix for a thin lens. Parameters ========== f : the focal distance See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import ThinLens >>> from sympy import symbols >>> f = symbols('f') >>> ThinLens(f) Matrix([ [ 1, 0], [-1/f, 1]]) """ def __new__(cls, f): f = sympify(f) return RayTransferMatrix.__new__(cls, 1, 0, -1/f, 1) ### # Representation for geometric ray ### class GeometricRay(Matrix): """ Representation for a geometric ray in the Ray Transfer Matrix formalism. Parameters ========== h : height, and angle : angle, or matrix : a 2x1 matrix (Matrix(2, 1, [height, angle])) Examples ======== >>> from sympy.physics.optics import GeometricRay, FreeSpace >>> from sympy import symbols, Matrix >>> d, h, angle = symbols('d, h, angle') >>> GeometricRay(h, angle) Matrix([ [ h], [angle]]) >>> FreeSpace(d)*GeometricRay(h, angle) Matrix([ [angle*d + h], [ angle]]) >>> GeometricRay( Matrix( ((h,), (angle,)) ) ) Matrix([ [ h], [angle]]) See Also ======== RayTransferMatrix """ def __new__(cls, *args): if len(args) == 1 and isinstance(args[0], Matrix) \ and args[0].shape == (2, 1): temp = args[0] elif len(args) == 2: temp = ((args[0],), (args[1],)) else: raise ValueError(filldedent(''' Expecting 2x1 Matrix or the 2 elements of the Matrix but got %s''' % str(args))) return Matrix.__new__(cls, temp) @property def height(self): """ The distance from the optical axis. Examples ======== >>> from sympy.physics.optics import GeometricRay >>> from sympy import symbols >>> h, angle = symbols('h, angle') >>> gRay = GeometricRay(h, angle) >>> gRay.height h """ return self[0] @property def angle(self): """ The angle with the optical axis. Examples ======== >>> from sympy.physics.optics import GeometricRay >>> from sympy import symbols >>> h, angle = symbols('h, angle') >>> gRay = GeometricRay(h, angle) >>> gRay.angle angle """ return self[1] ### # Representation for gauss beam ### class BeamParameter(Expr): """ Representation for a gaussian ray in the Ray Transfer Matrix formalism. Parameters ========== wavelen : the wavelength, z : the distance to waist, and w : the waist, or z_r : the rayleigh range Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.q 1 + 1.88679245283019*I*pi >>> p.q.n() 1.0 + 5.92753330865999*I >>> p.w_0.n() 0.00100000000000000 >>> p.z_r.n() 5.92753330865999 >>> from sympy.physics.optics import FreeSpace >>> fs = FreeSpace(10) >>> p1 = fs*p >>> p.w.n() 0.00101413072159615 >>> p1.w.n() 0.00210803120913829 See Also ======== RayTransferMatrix References ========== .. [1] https://en.wikipedia.org/wiki/Complex_beam_parameter .. [2] https://en.wikipedia.org/wiki/Gaussian_beam """ #TODO A class Complex may be implemented. The BeamParameter may # subclass it. See: # https://groups.google.com/d/topic/sympy/7XkU07NRBEs/discussion __slots__ = ['z', 'z_r', 'wavelen'] def __new__(cls, wavelen, z, **kwargs): wavelen, z = map(sympify, (wavelen, z)) inst = Expr.__new__(cls, wavelen, z) inst.wavelen = wavelen inst.z = z if len(kwargs) != 1: raise ValueError('Constructor expects exactly one named argument.') elif 'z_r' in kwargs: inst.z_r = sympify(kwargs['z_r']) elif 'w' in kwargs: inst.z_r = waist2rayleigh(sympify(kwargs['w']), wavelen) else: raise ValueError('The constructor needs named argument w or z_r') return inst @property def q(self): """ The complex parameter representing the beam. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.q 1 + 1.88679245283019*I*pi """ return self.z + I*self.z_r @property def radius(self): """ The radius of curvature of the phase front. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.radius 1 + 3.55998576005696*pi**2 """ return self.z*(1 + (self.z_r/self.z)**2) @property def w(self): """ The beam radius at `1/e^2` intensity. See Also ======== w_0 : the minimal radius of beam Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.w 0.001*sqrt(0.2809/pi**2 + 1) """ return self.w_0*sqrt(1 + (self.z/self.z_r)**2) @property def w_0(self): """ The beam waist (minimal radius). See Also ======== w : the beam radius at `1/e^2` intensity Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.w_0 0.00100000000000000 """ return sqrt(self.z_r/pi*self.wavelen) @property def divergence(self): """ Half of the total angular spread. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.divergence 0.00053/pi """ return self.wavelen/pi/self.w_0 @property def gouy(self): """ The Gouy phase. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.gouy atan(0.53/pi) """ return atan2(self.z, self.z_r) @property def waist_approximation_limit(self): """ The minimal waist for which the gauss beam approximation is valid. The gauss beam is a solution to the paraxial equation. For curvatures that are too great it is not a valid approximation. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.waist_approximation_limit 1.06e-6/pi """ return 2*self.wavelen/pi ### # Utilities ### def waist2rayleigh(w, wavelen): """ Calculate the rayleigh range from the waist of a gaussian beam. See Also ======== rayleigh2waist, BeamParameter Examples ======== >>> from sympy.physics.optics import waist2rayleigh >>> from sympy import symbols >>> w, wavelen = symbols('w wavelen') >>> waist2rayleigh(w, wavelen) pi*w**2/wavelen """ w, wavelen = map(sympify, (w, wavelen)) return w**2*pi/wavelen def rayleigh2waist(z_r, wavelen): """Calculate the waist from the rayleigh range of a gaussian beam. See Also ======== waist2rayleigh, BeamParameter Examples ======== >>> from sympy.physics.optics import rayleigh2waist >>> from sympy import symbols >>> z_r, wavelen = symbols('z_r wavelen') >>> rayleigh2waist(z_r, wavelen) sqrt(wavelen*z_r)/sqrt(pi) """ z_r, wavelen = map(sympify, (z_r, wavelen)) return sqrt(z_r/pi*wavelen) def geometric_conj_ab(a, b): """ Conjugation relation for geometrical beams under paraxial conditions. Takes the distances to the optical element and returns the needed focal distance. See Also ======== geometric_conj_af, geometric_conj_bf Examples ======== >>> from sympy.physics.optics import geometric_conj_ab >>> from sympy import symbols >>> a, b = symbols('a b') >>> geometric_conj_ab(a, b) a*b/(a + b) """ a, b = map(sympify, (a, b)) if abs(a) == oo or abs(b) == oo: return a if abs(b) == oo else b else: return a*b/(a + b) def geometric_conj_af(a, f): """ Conjugation relation for geometrical beams under paraxial conditions. Takes the object distance (for geometric_conj_af) or the image distance (for geometric_conj_bf) to the optical element and the focal distance. Then it returns the other distance needed for conjugation. See Also ======== geometric_conj_ab Examples ======== >>> from sympy.physics.optics.gaussopt import geometric_conj_af, geometric_conj_bf >>> from sympy import symbols >>> a, b, f = symbols('a b f') >>> geometric_conj_af(a, f) a*f/(a - f) >>> geometric_conj_bf(b, f) b*f/(b - f) """ a, f = map(sympify, (a, f)) return -geometric_conj_ab(a, -f) geometric_conj_bf = geometric_conj_af def gaussian_conj(s_in, z_r_in, f): """ Conjugation relation for gaussian beams. Parameters ========== s_in : the distance to optical element from the waist z_r_in : the rayleigh range of the incident beam f : the focal length of the optical element Returns ======= a tuple containing (s_out, z_r_out, m) s_out : the distance between the new waist and the optical element z_r_out : the rayleigh range of the emergent beam m : the ration between the new and the old waists Examples ======== >>> from sympy.physics.optics import gaussian_conj >>> from sympy import symbols >>> s_in, z_r_in, f = symbols('s_in z_r_in f') >>> gaussian_conj(s_in, z_r_in, f)[0] 1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f) >>> gaussian_conj(s_in, z_r_in, f)[1] z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2) >>> gaussian_conj(s_in, z_r_in, f)[2] 1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2) """ s_in, z_r_in, f = map(sympify, (s_in, z_r_in, f)) s_out = 1 / ( -1/(s_in + z_r_in**2/(s_in - f)) + 1/f ) m = 1/sqrt((1 - (s_in/f)**2) + (z_r_in/f)**2) z_r_out = z_r_in / ((1 - (s_in/f)**2) + (z_r_in/f)**2) return (s_out, z_r_out, m) def conjugate_gauss_beams(wavelen, waist_in, waist_out, **kwargs): """ Find the optical setup conjugating the object/image waists. Parameters ========== wavelen : the wavelength of the beam waist_in and waist_out : the waists to be conjugated f : the focal distance of the element used in the conjugation Returns ======= a tuple containing (s_in, s_out, f) s_in : the distance before the optical element s_out : the distance after the optical element f : the focal distance of the optical element Examples ======== >>> from sympy.physics.optics import conjugate_gauss_beams >>> from sympy import symbols, factor >>> l, w_i, w_o, f = symbols('l w_i w_o f') >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[0] f*(-sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)) + 1) >>> factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1]) f*w_o**2*(w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))/w_i**2 >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[2] f """ #TODO add the other possible arguments wavelen, waist_in, waist_out = map(sympify, (wavelen, waist_in, waist_out)) m = waist_out / waist_in z = waist2rayleigh(waist_in, wavelen) if len(kwargs) != 1: raise ValueError("The function expects only one named argument") elif 'dist' in kwargs: raise NotImplementedError(filldedent(''' Currently only focal length is supported as a parameter''')) elif 'f' in kwargs: f = sympify(kwargs['f']) s_in = f * (1 - sqrt(1/m**2 - z**2/f**2)) s_out = gaussian_conj(s_in, z, f)[0] elif 's_in' in kwargs: raise NotImplementedError(filldedent(''' Currently only focal length is supported as a parameter''')) else: raise ValueError(filldedent(''' The functions expects the focal length as a named argument''')) return (s_in, s_out, f) #TODO #def plot_beam(): # """Plot the beam radius as it propagates in space.""" # pass #TODO #def plot_beam_conjugation(): # """ # Plot the intersection of two beams. # # Represents the conjugation relation. # # See Also # ======== # # conjugate_gauss_beams # """ # pass
333987eda47aaacea8cf0846b137a8d80df49bf8e74c5686b1931f9eab172a1e
from sympy import exp, symbols, sqrt, I, pi, Mul, Integer, Wild, Rational from sympy.core.compatibility import range from sympy.matrices import Matrix, ImmutableMatrix from sympy.physics.quantum.gate import (XGate, YGate, ZGate, random_circuit, CNOT, IdentityGate, H, X, Y, S, T, Z, SwapGate, gate_simp, gate_sort, CNotGate, TGate, HadamardGate, PhaseGate, UGate, CGate) from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.represent import represent from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.qubit import Qubit, IntQubit, qubit_to_matrix, \ matrix_to_qubit from sympy.physics.quantum.matrixutils import matrix_to_zero from sympy.physics.quantum.matrixcache import sqrt2_inv from sympy.physics.quantum import Dagger def test_gate(): """Test a basic gate.""" h = HadamardGate(1) assert h.min_qubits == 2 assert h.nqubits == 1 i0 = Wild('i0') i1 = Wild('i1') h0_w1 = HadamardGate(i0) h0_w2 = HadamardGate(i0) h1_w1 = HadamardGate(i1) assert h0_w1 == h0_w2 assert h0_w1 != h1_w1 assert h1_w1 != h0_w2 cnot_10_w1 = CNOT(i1, i0) cnot_10_w2 = CNOT(i1, i0) cnot_01_w1 = CNOT(i0, i1) assert cnot_10_w1 == cnot_10_w2 assert cnot_10_w1 != cnot_01_w1 assert cnot_10_w2 != cnot_01_w1 def test_UGate(): a, b, c, d = symbols('a,b,c,d') uMat = Matrix([[a, b], [c, d]]) # Test basic case where gate exists in 1-qubit space u1 = UGate((0,), uMat) assert represent(u1, nqubits=1) == uMat assert qapply(u1*Qubit('0')) == a*Qubit('0') + c*Qubit('1') assert qapply(u1*Qubit('1')) == b*Qubit('0') + d*Qubit('1') # Test case where gate exists in a larger space u2 = UGate((1,), uMat) u2Rep = represent(u2, nqubits=2) for i in range(4): assert u2Rep*qubit_to_matrix(IntQubit(i, 2)) == \ qubit_to_matrix(qapply(u2*IntQubit(i, 2))) def test_cgate(): """Test the general CGate.""" # Test single control functionality CNOTMatrix = Matrix( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) assert represent(CGate(1, XGate(0)), nqubits=2) == CNOTMatrix # Test multiple control bit functionality ToffoliGate = CGate((1, 2), XGate(0)) assert represent(ToffoliGate, nqubits=3) == \ Matrix( [[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]) ToffoliGate = CGate((3, 0), XGate(1)) assert qapply(ToffoliGate*Qubit('1001')) == \ matrix_to_qubit(represent(ToffoliGate*Qubit('1001'), nqubits=4)) assert qapply(ToffoliGate*Qubit('0000')) == \ matrix_to_qubit(represent(ToffoliGate*Qubit('0000'), nqubits=4)) CYGate = CGate(1, YGate(0)) CYGate_matrix = Matrix( ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, -I), (0, 0, I, 0))) # Test 2 qubit controlled-Y gate decompose method. assert represent(CYGate.decompose(), nqubits=2) == CYGate_matrix CZGate = CGate(0, ZGate(1)) CZGate_matrix = Matrix( ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, -1))) assert qapply(CZGate*Qubit('11')) == -Qubit('11') assert matrix_to_qubit(represent(CZGate*Qubit('11'), nqubits=2)) == \ -Qubit('11') # Test 2 qubit controlled-Z gate decompose method. assert represent(CZGate.decompose(), nqubits=2) == CZGate_matrix CPhaseGate = CGate(0, PhaseGate(1)) assert qapply(CPhaseGate*Qubit('11')) == \ I*Qubit('11') assert matrix_to_qubit(represent(CPhaseGate*Qubit('11'), nqubits=2)) == \ I*Qubit('11') # Test that the dagger, inverse, and power of CGate is evaluated properly assert Dagger(CZGate) == CZGate assert pow(CZGate, 1) == Dagger(CZGate) assert Dagger(CZGate) == CZGate.inverse() assert Dagger(CPhaseGate) != CPhaseGate assert Dagger(CPhaseGate) == CPhaseGate.inverse() assert Dagger(CPhaseGate) == pow(CPhaseGate, -1) assert pow(CPhaseGate, -1) == CPhaseGate.inverse() def test_UGate_CGate_combo(): a, b, c, d = symbols('a,b,c,d') uMat = Matrix([[a, b], [c, d]]) cMat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, a, b], [0, 0, c, d]]) # Test basic case where gate exists in 1-qubit space. u1 = UGate((0,), uMat) cu1 = CGate(1, u1) assert represent(cu1, nqubits=2) == cMat assert qapply(cu1*Qubit('10')) == a*Qubit('10') + c*Qubit('11') assert qapply(cu1*Qubit('11')) == b*Qubit('10') + d*Qubit('11') assert qapply(cu1*Qubit('01')) == Qubit('01') assert qapply(cu1*Qubit('00')) == Qubit('00') # Test case where gate exists in a larger space. u2 = UGate((1,), uMat) u2Rep = represent(u2, nqubits=2) for i in range(4): assert u2Rep*qubit_to_matrix(IntQubit(i, 2)) == \ qubit_to_matrix(qapply(u2*IntQubit(i, 2))) def test_UGate_OneQubitGate_combo(): v, w, f, g = symbols('v w f g') uMat1 = ImmutableMatrix([[v, w], [f, g]]) cMat1 = Matrix([[v, w + 1, 0, 0], [f + 1, g, 0, 0], [0, 0, v, w + 1], [0, 0, f + 1, g]]) u1 = X(0) + UGate(0, uMat1) assert represent(u1, nqubits=2) == cMat1 uMat2 = ImmutableMatrix([[1/sqrt(2), 1/sqrt(2)], [I/sqrt(2), -I/sqrt(2)]]) cMat2_1 = Matrix([[Rational(1,2) + I/2, Rational(1, 2) - I/2], [Rational(1, 2) - I/2, Rational(1, 2) + I/2]]) cMat2_2 = Matrix([[1, 0], [0, I]]) u2 = UGate(0, uMat2) assert represent(H(0)*u2, nqubits=1) == cMat2_1 assert represent(u2*H(0), nqubits=1) == cMat2_2 def test_represent_hadamard(): """Test the representation of the hadamard gate.""" circuit = HadamardGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) # Check that the answers are same to within an epsilon. assert answer == Matrix([sqrt2_inv, sqrt2_inv, 0, 0]) def test_represent_xgate(): """Test the representation of the X gate.""" circuit = XGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert Matrix([0, 1, 0, 0]) == answer def test_represent_ygate(): """Test the representation of the Y gate.""" circuit = YGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert answer[0] == 0 and answer[1] == I and \ answer[2] == 0 and answer[3] == 0 def test_represent_zgate(): """Test the representation of the Z gate.""" circuit = ZGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert Matrix([1, 0, 0, 0]) == answer def test_represent_phasegate(): """Test the representation of the S gate.""" circuit = PhaseGate(0)*Qubit('01') answer = represent(circuit, nqubits=2) assert Matrix([0, I, 0, 0]) == answer def test_represent_tgate(): """Test the representation of the T gate.""" circuit = TGate(0)*Qubit('01') assert Matrix([0, exp(I*pi/4), 0, 0]) == represent(circuit, nqubits=2) def test_compound_gates(): """Test a compound gate representation.""" circuit = YGate(0)*ZGate(0)*XGate(0)*HadamardGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert Matrix([I/sqrt(2), I/sqrt(2), 0, 0]) == answer def test_cnot_gate(): """Test the CNOT gate.""" circuit = CNotGate(1, 0) assert represent(circuit, nqubits=2) == \ Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) circuit = circuit*Qubit('111') assert matrix_to_qubit(represent(circuit, nqubits=3)) == \ qapply(circuit) circuit = CNotGate(1, 0) assert Dagger(circuit) == circuit assert Dagger(Dagger(circuit)) == circuit assert circuit*circuit == 1 def test_gate_sort(): """Test gate_sort.""" for g in (X, Y, Z, H, S, T): assert gate_sort(g(2)*g(1)*g(0)) == g(0)*g(1)*g(2) e = gate_sort(X(1)*H(0)**2*CNOT(0, 1)*X(1)*X(0)) assert e == H(0)**2*CNOT(0, 1)*X(0)*X(1)**2 assert gate_sort(Z(0)*X(0)) == -X(0)*Z(0) assert gate_sort(Z(0)*X(0)**2) == X(0)**2*Z(0) assert gate_sort(Y(0)*H(0)) == -H(0)*Y(0) assert gate_sort(Y(0)*X(0)) == -X(0)*Y(0) assert gate_sort(Z(0)*Y(0)) == -Y(0)*Z(0) assert gate_sort(T(0)*S(0)) == S(0)*T(0) assert gate_sort(Z(0)*S(0)) == S(0)*Z(0) assert gate_sort(Z(0)*T(0)) == T(0)*Z(0) assert gate_sort(Z(0)*CNOT(0, 1)) == CNOT(0, 1)*Z(0) assert gate_sort(S(0)*CNOT(0, 1)) == CNOT(0, 1)*S(0) assert gate_sort(T(0)*CNOT(0, 1)) == CNOT(0, 1)*T(0) assert gate_sort(X(1)*CNOT(0, 1)) == CNOT(0, 1)*X(1) # This takes a long time and should only be uncommented once in a while. # nqubits = 5 # ngates = 10 # trials = 10 # for i in range(trials): # c = random_circuit(ngates, nqubits) # assert represent(c, nqubits=nqubits) == \ # represent(gate_sort(c), nqubits=nqubits) def test_gate_simp(): """Test gate_simp.""" e = H(0)*X(1)*H(0)**2*CNOT(0, 1)*X(1)**3*X(0)*Z(3)**2*S(4)**3 assert gate_simp(e) == H(0)*CNOT(0, 1)*S(4)*X(0)*Z(4) assert gate_simp(X(0)*X(0)) == 1 assert gate_simp(Y(0)*Y(0)) == 1 assert gate_simp(Z(0)*Z(0)) == 1 assert gate_simp(H(0)*H(0)) == 1 assert gate_simp(T(0)*T(0)) == S(0) assert gate_simp(S(0)*S(0)) == Z(0) assert gate_simp(Integer(1)) == Integer(1) assert gate_simp(X(0)**2 + Y(0)**2) == Integer(2) def test_swap_gate(): """Test the SWAP gate.""" swap_gate_matrix = Matrix( ((1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1))) assert represent(SwapGate(1, 0).decompose(), nqubits=2) == swap_gate_matrix assert qapply(SwapGate(1, 3)*Qubit('0010')) == Qubit('1000') nqubits = 4 for i in range(nqubits): for j in range(i): assert represent(SwapGate(i, j), nqubits=nqubits) == \ represent(SwapGate(i, j).decompose(), nqubits=nqubits) def test_one_qubit_commutators(): """Test single qubit gate commutation relations.""" for g1 in (IdentityGate, X, Y, Z, H, T, S): for g2 in (IdentityGate, X, Y, Z, H, T, S): e = Commutator(g1(0), g2(0)) a = matrix_to_zero(represent(e, nqubits=1, format='sympy')) b = matrix_to_zero(represent(e.doit(), nqubits=1, format='sympy')) assert a == b e = Commutator(g1(0), g2(1)) assert e.doit() == 0 def test_one_qubit_anticommutators(): """Test single qubit gate anticommutation relations.""" for g1 in (IdentityGate, X, Y, Z, H): for g2 in (IdentityGate, X, Y, Z, H): e = AntiCommutator(g1(0), g2(0)) a = matrix_to_zero(represent(e, nqubits=1, format='sympy')) b = matrix_to_zero(represent(e.doit(), nqubits=1, format='sympy')) assert a == b e = AntiCommutator(g1(0), g2(1)) a = matrix_to_zero(represent(e, nqubits=2, format='sympy')) b = matrix_to_zero(represent(e.doit(), nqubits=2, format='sympy')) assert a == b def test_cnot_commutators(): """Test commutators of involving CNOT gates.""" assert Commutator(CNOT(0, 1), Z(0)).doit() == 0 assert Commutator(CNOT(0, 1), T(0)).doit() == 0 assert Commutator(CNOT(0, 1), S(0)).doit() == 0 assert Commutator(CNOT(0, 1), X(1)).doit() == 0 assert Commutator(CNOT(0, 1), CNOT(0, 1)).doit() == 0 assert Commutator(CNOT(0, 1), CNOT(0, 2)).doit() == 0 assert Commutator(CNOT(0, 2), CNOT(0, 1)).doit() == 0 assert Commutator(CNOT(1, 2), CNOT(1, 0)).doit() == 0 def test_random_circuit(): c = random_circuit(10, 3) assert isinstance(c, Mul) m = represent(c, nqubits=3) assert m.shape == (8, 8) assert isinstance(m, Matrix) def test_hermitian_XGate(): x = XGate(1, 2) x_dagger = Dagger(x) assert (x == x_dagger) def test_hermitian_YGate(): y = YGate(1, 2) y_dagger = Dagger(y) assert (y == y_dagger) def test_hermitian_ZGate(): z = ZGate(1, 2) z_dagger = Dagger(z) assert (z == z_dagger) def test_unitary_XGate(): x = XGate(1, 2) x_dagger = Dagger(x) assert (x*x_dagger == 1) def test_unitary_YGate(): y = YGate(1, 2) y_dagger = Dagger(y) assert (y*y_dagger == 1) def test_unitary_ZGate(): z = ZGate(1, 2) z_dagger = Dagger(z) assert (z*z_dagger == 1)
868c3e012825839f392420f4a63556952950340bf298ef91c4a149f6e737827c
from sympy import cos, exp, expand, I, Matrix, pi, S, sin, sqrt, Sum, symbols from sympy.abc import alpha, beta, gamma, j, m from sympy.physics.quantum import hbar, represent, Commutator, InnerProduct from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.cg import CG from sympy.physics.quantum.spin import ( Jx, Jy, Jz, Jplus, Jminus, J2, JxBra, JyBra, JzBra, JxKet, JyKet, JzKet, JxKetCoupled, JyKetCoupled, JzKetCoupled, couple, uncouple, Rotation, WignerD ) from sympy.utilities.pytest import raises, slow j1, j2, j3, j4, m1, m2, m3, m4 = symbols('j1:5 m1:5') j12, j13, j24, j34, j123, j134, mi, mi1, mp = symbols( 'j12 j13 j24 j34 j123 j134 mi mi1 mp') def test_represent_spin_operators(): assert represent(Jx) == hbar*Matrix([[0, 1], [1, 0]])/2 assert represent( Jx, j=1) == hbar*sqrt(2)*Matrix([[0, 1, 0], [1, 0, 1], [0, 1, 0]])/2 assert represent(Jy) == hbar*I*Matrix([[0, -1], [1, 0]])/2 assert represent(Jy, j=1) == hbar*I*sqrt(2)*Matrix([[0, -1, 0], [1, 0, -1], [0, 1, 0]])/2 assert represent(Jz) == hbar*Matrix([[1, 0], [0, -1]])/2 assert represent( Jz, j=1) == hbar*Matrix([[1, 0, 0], [0, 0, 0], [0, 0, -1]]) def test_represent_spin_states(): # Jx basis assert represent(JxKet(S(1)/2, S(1)/2), basis=Jx) == Matrix([1, 0]) assert represent(JxKet(S(1)/2, -S(1)/2), basis=Jx) == Matrix([0, 1]) assert represent(JxKet(1, 1), basis=Jx) == Matrix([1, 0, 0]) assert represent(JxKet(1, 0), basis=Jx) == Matrix([0, 1, 0]) assert represent(JxKet(1, -1), basis=Jx) == Matrix([0, 0, 1]) assert represent( JyKet(S(1)/2, S(1)/2), basis=Jx) == Matrix([exp(-I*pi/4), 0]) assert represent( JyKet(S(1)/2, -S(1)/2), basis=Jx) == Matrix([0, exp(I*pi/4)]) assert represent(JyKet(1, 1), basis=Jx) == Matrix([-I, 0, 0]) assert represent(JyKet(1, 0), basis=Jx) == Matrix([0, 1, 0]) assert represent(JyKet(1, -1), basis=Jx) == Matrix([0, 0, I]) assert represent( JzKet(S(1)/2, S(1)/2), basis=Jx) == sqrt(2)*Matrix([-1, 1])/2 assert represent( JzKet(S(1)/2, -S(1)/2), basis=Jx) == sqrt(2)*Matrix([-1, -1])/2 assert represent(JzKet(1, 1), basis=Jx) == Matrix([1, -sqrt(2), 1])/2 assert represent(JzKet(1, 0), basis=Jx) == sqrt(2)*Matrix([1, 0, -1])/2 assert represent(JzKet(1, -1), basis=Jx) == Matrix([1, sqrt(2), 1])/2 # Jy basis assert represent( JxKet(S(1)/2, S(1)/2), basis=Jy) == Matrix([exp(-3*I*pi/4), 0]) assert represent( JxKet(S(1)/2, -S(1)/2), basis=Jy) == Matrix([0, exp(3*I*pi/4)]) assert represent(JxKet(1, 1), basis=Jy) == Matrix([I, 0, 0]) assert represent(JxKet(1, 0), basis=Jy) == Matrix([0, 1, 0]) assert represent(JxKet(1, -1), basis=Jy) == Matrix([0, 0, -I]) assert represent(JyKet(S(1)/2, S(1)/2), basis=Jy) == Matrix([1, 0]) assert represent(JyKet(S(1)/2, -S(1)/2), basis=Jy) == Matrix([0, 1]) assert represent(JyKet(1, 1), basis=Jy) == Matrix([1, 0, 0]) assert represent(JyKet(1, 0), basis=Jy) == Matrix([0, 1, 0]) assert represent(JyKet(1, -1), basis=Jy) == Matrix([0, 0, 1]) assert represent( JzKet(S(1)/2, S(1)/2), basis=Jy) == sqrt(2)*Matrix([-1, I])/2 assert represent( JzKet(S(1)/2, -S(1)/2), basis=Jy) == sqrt(2)*Matrix([I, -1])/2 assert represent(JzKet(1, 1), basis=Jy) == Matrix([1, -I*sqrt(2), -1])/2 assert represent( JzKet(1, 0), basis=Jy) == Matrix([-sqrt(2)*I, 0, -sqrt(2)*I])/2 assert represent(JzKet(1, -1), basis=Jy) == Matrix([-1, -sqrt(2)*I, 1])/2 # Jz basis assert represent( JxKet(S(1)/2, S(1)/2), basis=Jz) == sqrt(2)*Matrix([1, 1])/2 assert represent( JxKet(S(1)/2, -S(1)/2), basis=Jz) == sqrt(2)*Matrix([-1, 1])/2 assert represent(JxKet(1, 1), basis=Jz) == Matrix([1, sqrt(2), 1])/2 assert represent(JxKet(1, 0), basis=Jz) == sqrt(2)*Matrix([-1, 0, 1])/2 assert represent(JxKet(1, -1), basis=Jz) == Matrix([1, -sqrt(2), 1])/2 assert represent( JyKet(S(1)/2, S(1)/2), basis=Jz) == sqrt(2)*Matrix([-1, -I])/2 assert represent( JyKet(S(1)/2, -S(1)/2), basis=Jz) == sqrt(2)*Matrix([-I, -1])/2 assert represent(JyKet(1, 1), basis=Jz) == Matrix([1, sqrt(2)*I, -1])/2 assert represent(JyKet(1, 0), basis=Jz) == sqrt(2)*Matrix([I, 0, I])/2 assert represent(JyKet(1, -1), basis=Jz) == Matrix([-1, sqrt(2)*I, 1])/2 assert represent(JzKet(S(1)/2, S(1)/2), basis=Jz) == Matrix([1, 0]) assert represent(JzKet(S(1)/2, -S(1)/2), basis=Jz) == Matrix([0, 1]) assert represent(JzKet(1, 1), basis=Jz) == Matrix([1, 0, 0]) assert represent(JzKet(1, 0), basis=Jz) == Matrix([0, 1, 0]) assert represent(JzKet(1, -1), basis=Jz) == Matrix([0, 0, 1]) def test_represent_uncoupled_states(): # Jx basis assert represent(TensorProduct(JxKet(S(1)/2, S(1)/2), JxKet(S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(TensorProduct(JxKet(S(1)/2, S(1)/2), JxKet(S(1)/2, -S(1)/2)), basis=Jx) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JxKet(S(1)/2, -S(1)/2), JxKet(S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JxKet(S(1)/2, -S(1)/2), JxKet(S(1)/2, -S(1)/2)), basis=Jx) == \ Matrix([0, 0, 0, 1]) assert represent(TensorProduct(JyKet(S(1)/2, S(1)/2), JyKet(S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([-I, 0, 0, 0]) assert represent(TensorProduct(JyKet(S(1)/2, S(1)/2), JyKet(S(1)/2, -S(1)/2)), basis=Jx) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JyKet(S(1)/2, -S(1)/2), JyKet(S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JyKet(S(1)/2, -S(1)/2), JyKet(S(1)/2, -S(1)/2)), basis=Jx) == \ Matrix([0, 0, 0, I]) assert represent(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([S(1)/2, -S(1)/2, -S(1)/2, S(1)/2]) assert represent(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2)), basis=Jx) == \ Matrix([S(1)/2, S(1)/2, -S(1)/2, -S(1)/2]) assert represent(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([S(1)/2, -S(1)/2, S(1)/2, -S(1)/2]) assert represent(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2)), basis=Jx) == \ Matrix([S(1)/2, S(1)/2, S(1)/2, S(1)/2]) # Jy basis assert represent(TensorProduct(JxKet(S(1)/2, S(1)/2), JxKet(S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([I, 0, 0, 0]) assert represent(TensorProduct(JxKet(S(1)/2, S(1)/2), JxKet(S(1)/2, -S(1)/2)), basis=Jy) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JxKet(S(1)/2, -S(1)/2), JxKet(S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JxKet(S(1)/2, -S(1)/2), JxKet(S(1)/2, -S(1)/2)), basis=Jy) == \ Matrix([0, 0, 0, -I]) assert represent(TensorProduct(JyKet(S(1)/2, S(1)/2), JyKet(S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(TensorProduct(JyKet(S(1)/2, S(1)/2), JyKet(S(1)/2, -S(1)/2)), basis=Jy) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JyKet(S(1)/2, -S(1)/2), JyKet(S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JyKet(S(1)/2, -S(1)/2), JyKet(S(1)/2, -S(1)/2)), basis=Jy) == \ Matrix([0, 0, 0, 1]) assert represent(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([S(1)/2, -I/2, -I/2, -S(1)/2]) assert represent(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2)), basis=Jy) == \ Matrix([-I/2, S(1)/2, -S(1)/2, -I/2]) assert represent(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([-I/2, -S(1)/2, S(1)/2, -I/2]) assert represent(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2)), basis=Jy) == \ Matrix([-S(1)/2, -I/2, -I/2, S(1)/2]) # Jz basis assert represent(TensorProduct(JxKet(S(1)/2, S(1)/2), JxKet(S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([S(1)/2, S(1)/2, S(1)/2, S(1)/2]) assert represent(TensorProduct(JxKet(S(1)/2, S(1)/2), JxKet(S(1)/2, -S(1)/2)), basis=Jz) == \ Matrix([-S(1)/2, S(1)/2, -S(1)/2, S(1)/2]) assert represent(TensorProduct(JxKet(S(1)/2, -S(1)/2), JxKet(S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([-S(1)/2, -S(1)/2, S(1)/2, S(1)/2]) assert represent(TensorProduct(JxKet(S(1)/2, -S(1)/2), JxKet(S(1)/2, -S(1)/2)), basis=Jz) == \ Matrix([S(1)/2, -S(1)/2, -S(1)/2, S(1)/2]) assert represent(TensorProduct(JyKet(S(1)/2, S(1)/2), JyKet(S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([S(1)/2, I/2, I/2, -S(1)/2]) assert represent(TensorProduct(JyKet(S(1)/2, S(1)/2), JyKet(S(1)/2, -S(1)/2)), basis=Jz) == \ Matrix([I/2, S(1)/2, -S(1)/2, I/2]) assert represent(TensorProduct(JyKet(S(1)/2, -S(1)/2), JyKet(S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([I/2, -S(1)/2, S(1)/2, I/2]) assert represent(TensorProduct(JyKet(S(1)/2, -S(1)/2), JyKet(S(1)/2, -S(1)/2)), basis=Jz) == \ Matrix([-S(1)/2, I/2, I/2, S(1)/2]) assert represent(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2)), basis=Jz) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2)), basis=Jz) == \ Matrix([0, 0, 0, 1]) def test_represent_coupled_states(): # Jx basis assert represent(JxKetCoupled(0, 0, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(JxKetCoupled(1, 1, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, 1, 0, 0]) assert represent(JxKetCoupled(1, 0, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(JxKetCoupled(1, -1, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, 0, 0, 1]) assert represent(JyKetCoupled(0, 0, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(JyKetCoupled(1, 1, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, -I, 0, 0]) assert represent(JyKetCoupled(1, 0, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(JyKetCoupled(1, -1, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, 0, 0, I]) assert represent(JzKetCoupled(0, 0, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(JzKetCoupled(1, 1, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, S(1)/2, -sqrt(2)/2, S(1)/2]) assert represent(JzKetCoupled(1, 0, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, sqrt(2)/2, 0, -sqrt(2)/2]) assert represent(JzKetCoupled(1, -1, (S(1)/2, S(1)/2)), basis=Jx) == \ Matrix([0, S(1)/2, sqrt(2)/2, S(1)/2]) # Jy basis assert represent(JxKetCoupled(0, 0, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(JxKetCoupled(1, 1, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, I, 0, 0]) assert represent(JxKetCoupled(1, 0, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(JxKetCoupled(1, -1, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, 0, 0, -I]) assert represent(JyKetCoupled(0, 0, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(JyKetCoupled(1, 1, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, 1, 0, 0]) assert represent(JyKetCoupled(1, 0, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(JyKetCoupled(1, -1, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, 0, 0, 1]) assert represent(JzKetCoupled(0, 0, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(JzKetCoupled(1, 1, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, S(1)/2, -I*sqrt(2)/2, -S(1)/2]) assert represent(JzKetCoupled(1, 0, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, -I*sqrt(2)/2, 0, -I*sqrt(2)/2]) assert represent(JzKetCoupled(1, -1, (S(1)/2, S(1)/2)), basis=Jy) == \ Matrix([0, -S(1)/2, -I*sqrt(2)/2, S(1)/2]) # Jz basis assert represent(JxKetCoupled(0, 0, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(JxKetCoupled(1, 1, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([0, S(1)/2, sqrt(2)/2, S(1)/2]) assert represent(JxKetCoupled(1, 0, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([0, -sqrt(2)/2, 0, sqrt(2)/2]) assert represent(JxKetCoupled(1, -1, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([0, S(1)/2, -sqrt(2)/2, S(1)/2]) assert represent(JyKetCoupled(0, 0, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(JyKetCoupled(1, 1, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([0, S(1)/2, I*sqrt(2)/2, -S(1)/2]) assert represent(JyKetCoupled(1, 0, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([0, I*sqrt(2)/2, 0, I*sqrt(2)/2]) assert represent(JyKetCoupled(1, -1, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([0, -S(1)/2, I*sqrt(2)/2, S(1)/2]) assert represent(JzKetCoupled(0, 0, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(JzKetCoupled(1, 1, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([0, 1, 0, 0]) assert represent(JzKetCoupled(1, 0, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([0, 0, 1, 0]) assert represent(JzKetCoupled(1, -1, (S(1)/2, S(1)/2)), basis=Jz) == \ Matrix([0, 0, 0, 1]) def test_represent_rotation(): assert represent(Rotation(0, pi/2, 0)) == \ Matrix( [[WignerD( S( 1)/2, S( 1)/2, S( 1)/2, 0, pi/2, 0), WignerD( S(1)/2, S(1)/2, -S(1)/2, 0, pi/2, 0)], [WignerD(S(1)/2, -S(1)/2, S(1)/2, 0, pi/2, 0), WignerD(S(1)/2, -S(1)/2, -S(1)/2, 0, pi/2, 0)]]) assert represent(Rotation(0, pi/2, 0), doit=True) == \ Matrix([[sqrt(2)/2, -sqrt(2)/2], [sqrt(2)/2, sqrt(2)/2]]) def test_rewrite_same(): # Rewrite to same basis assert JxBra(1, 1).rewrite('Jx') == JxBra(1, 1) assert JxBra(j, m).rewrite('Jx') == JxBra(j, m) assert JxKet(1, 1).rewrite('Jx') == JxKet(1, 1) assert JxKet(j, m).rewrite('Jx') == JxKet(j, m) def test_rewrite_Bra(): # Numerical assert JxBra(1, 1).rewrite('Jy') == -I*JyBra(1, 1) assert JxBra(1, 0).rewrite('Jy') == JyBra(1, 0) assert JxBra(1, -1).rewrite('Jy') == I*JyBra(1, -1) assert JxBra(1, 1).rewrite( 'Jz') == JzBra(1, 1)/2 + JzBra(1, 0)/sqrt(2) + JzBra(1, -1)/2 assert JxBra( 1, 0).rewrite('Jz') == -sqrt(2)*JzBra(1, 1)/2 + sqrt(2)*JzBra(1, -1)/2 assert JxBra(1, -1).rewrite( 'Jz') == JzBra(1, 1)/2 - JzBra(1, 0)/sqrt(2) + JzBra(1, -1)/2 assert JyBra(1, 1).rewrite('Jx') == I*JxBra(1, 1) assert JyBra(1, 0).rewrite('Jx') == JxBra(1, 0) assert JyBra(1, -1).rewrite('Jx') == -I*JxBra(1, -1) assert JyBra(1, 1).rewrite( 'Jz') == JzBra(1, 1)/2 - sqrt(2)*I*JzBra(1, 0)/2 - JzBra(1, -1)/2 assert JyBra(1, 0).rewrite( 'Jz') == -sqrt(2)*I*JzBra(1, 1)/2 - sqrt(2)*I*JzBra(1, -1)/2 assert JyBra(1, -1).rewrite( 'Jz') == -JzBra(1, 1)/2 - sqrt(2)*I*JzBra(1, 0)/2 + JzBra(1, -1)/2 assert JzBra(1, 1).rewrite( 'Jx') == JxBra(1, 1)/2 - sqrt(2)*JxBra(1, 0)/2 + JxBra(1, -1)/2 assert JzBra( 1, 0).rewrite('Jx') == sqrt(2)*JxBra(1, 1)/2 - sqrt(2)*JxBra(1, -1)/2 assert JzBra(1, -1).rewrite( 'Jx') == JxBra(1, 1)/2 + sqrt(2)*JxBra(1, 0)/2 + JxBra(1, -1)/2 assert JzBra(1, 1).rewrite( 'Jy') == JyBra(1, 1)/2 + sqrt(2)*I*JyBra(1, 0)/2 - JyBra(1, -1)/2 assert JzBra(1, 0).rewrite( 'Jy') == sqrt(2)*I*JyBra(1, 1)/2 + sqrt(2)*I*JyBra(1, -1)/2 assert JzBra(1, -1).rewrite( 'Jy') == -JyBra(1, 1)/2 + sqrt(2)*I*JyBra(1, 0)/2 + JyBra(1, -1)/2 # Symbolic assert JxBra(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, 3*pi/2, 0, 0) * JyBra(j, mi), (mi, -j, j)) assert JxBra(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, 0, pi/2, 0) * JzBra(j, mi), (mi, -j, j)) assert JyBra(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, 0, pi/2) * JxBra(j, mi), (mi, -j, j)) assert JyBra(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, 3*pi/2, -pi/2, pi/2) * JzBra(j, mi), (mi, -j, j)) assert JzBra(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, 3*pi/2, 0) * JxBra(j, mi), (mi, -j, j)) assert JzBra(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, 3*pi/2, pi/2, pi/2) * JyBra(j, mi), (mi, -j, j)) def test_rewrite_Ket(): # Numerical assert JxKet(1, 1).rewrite('Jy') == I*JyKet(1, 1) assert JxKet(1, 0).rewrite('Jy') == JyKet(1, 0) assert JxKet(1, -1).rewrite('Jy') == -I*JyKet(1, -1) assert JxKet(1, 1).rewrite( 'Jz') == JzKet(1, 1)/2 + JzKet(1, 0)/sqrt(2) + JzKet(1, -1)/2 assert JxKet( 1, 0).rewrite('Jz') == -sqrt(2)*JzKet(1, 1)/2 + sqrt(2)*JzKet(1, -1)/2 assert JxKet(1, -1).rewrite( 'Jz') == JzKet(1, 1)/2 - JzKet(1, 0)/sqrt(2) + JzKet(1, -1)/2 assert JyKet(1, 1).rewrite('Jx') == -I*JxKet(1, 1) assert JyKet(1, 0).rewrite('Jx') == JxKet(1, 0) assert JyKet(1, -1).rewrite('Jx') == I*JxKet(1, -1) assert JyKet(1, 1).rewrite( 'Jz') == JzKet(1, 1)/2 + sqrt(2)*I*JzKet(1, 0)/2 - JzKet(1, -1)/2 assert JyKet(1, 0).rewrite( 'Jz') == sqrt(2)*I*JzKet(1, 1)/2 + sqrt(2)*I*JzKet(1, -1)/2 assert JyKet(1, -1).rewrite( 'Jz') == -JzKet(1, 1)/2 + sqrt(2)*I*JzKet(1, 0)/2 + JzKet(1, -1)/2 assert JzKet(1, 1).rewrite( 'Jx') == JxKet(1, 1)/2 - sqrt(2)*JxKet(1, 0)/2 + JxKet(1, -1)/2 assert JzKet( 1, 0).rewrite('Jx') == sqrt(2)*JxKet(1, 1)/2 - sqrt(2)*JxKet(1, -1)/2 assert JzKet(1, -1).rewrite( 'Jx') == JxKet(1, 1)/2 + sqrt(2)*JxKet(1, 0)/2 + JxKet(1, -1)/2 assert JzKet(1, 1).rewrite( 'Jy') == JyKet(1, 1)/2 - sqrt(2)*I*JyKet(1, 0)/2 - JyKet(1, -1)/2 assert JzKet(1, 0).rewrite( 'Jy') == -sqrt(2)*I*JyKet(1, 1)/2 - sqrt(2)*I*JyKet(1, -1)/2 assert JzKet(1, -1).rewrite( 'Jy') == -JyKet(1, 1)/2 - sqrt(2)*I*JyKet(1, 0)/2 + JyKet(1, -1)/2 # Symbolic assert JxKet(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, 3*pi/2, 0, 0) * JyKet(j, mi), (mi, -j, j)) assert JxKet(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, 0, pi/2, 0) * JzKet(j, mi), (mi, -j, j)) assert JyKet(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, 0, pi/2) * JxKet(j, mi), (mi, -j, j)) assert JyKet(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, 3*pi/2, -pi/2, pi/2) * JzKet(j, mi), (mi, -j, j)) assert JzKet(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, 3*pi/2, 0) * JxKet(j, mi), (mi, -j, j)) assert JzKet(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, 3*pi/2, pi/2, pi/2) * JyKet(j, mi), (mi, -j, j)) def test_rewrite_uncoupled_state(): # Numerical assert TensorProduct(JyKet(1, 1), JxKet( 1, 1)).rewrite('Jx') == -I*TensorProduct(JxKet(1, 1), JxKet(1, 1)) assert TensorProduct(JyKet(1, 0), JxKet( 1, 1)).rewrite('Jx') == TensorProduct(JxKet(1, 0), JxKet(1, 1)) assert TensorProduct(JyKet(1, -1), JxKet( 1, 1)).rewrite('Jx') == I*TensorProduct(JxKet(1, -1), JxKet(1, 1)) assert TensorProduct(JzKet(1, 1), JxKet(1, 1)).rewrite('Jx') == \ TensorProduct(JxKet(1, -1), JxKet(1, 1))/2 - sqrt(2)*TensorProduct(JxKet( 1, 0), JxKet(1, 1))/2 + TensorProduct(JxKet(1, 1), JxKet(1, 1))/2 assert TensorProduct(JzKet(1, 0), JxKet(1, 1)).rewrite('Jx') == \ -sqrt(2)*TensorProduct(JxKet(1, -1), JxKet(1, 1))/2 + sqrt( 2)*TensorProduct(JxKet(1, 1), JxKet(1, 1))/2 assert TensorProduct(JzKet(1, -1), JxKet(1, 1)).rewrite('Jx') == \ TensorProduct(JxKet(1, -1), JxKet(1, 1))/2 + sqrt(2)*TensorProduct(JxKet(1, 0), JxKet(1, 1))/2 + TensorProduct(JxKet(1, 1), JxKet(1, 1))/2 assert TensorProduct(JxKet(1, 1), JyKet( 1, 1)).rewrite('Jy') == I*TensorProduct(JyKet(1, 1), JyKet(1, 1)) assert TensorProduct(JxKet(1, 0), JyKet( 1, 1)).rewrite('Jy') == TensorProduct(JyKet(1, 0), JyKet(1, 1)) assert TensorProduct(JxKet(1, -1), JyKet( 1, 1)).rewrite('Jy') == -I*TensorProduct(JyKet(1, -1), JyKet(1, 1)) assert TensorProduct(JzKet(1, 1), JyKet(1, 1)).rewrite('Jy') == \ -TensorProduct(JyKet(1, -1), JyKet(1, 1))/2 - sqrt(2)*I*TensorProduct(JyKet(1, 0), JyKet(1, 1))/2 + TensorProduct(JyKet(1, 1), JyKet(1, 1))/2 assert TensorProduct(JzKet(1, 0), JyKet(1, 1)).rewrite('Jy') == \ -sqrt(2)*I*TensorProduct(JyKet(1, -1), JyKet( 1, 1))/2 - sqrt(2)*I*TensorProduct(JyKet(1, 1), JyKet(1, 1))/2 assert TensorProduct(JzKet(1, -1), JyKet(1, 1)).rewrite('Jy') == \ TensorProduct(JyKet(1, -1), JyKet(1, 1))/2 - sqrt(2)*I*TensorProduct(JyKet(1, 0), JyKet(1, 1))/2 - TensorProduct(JyKet(1, 1), JyKet(1, 1))/2 assert TensorProduct(JxKet(1, 1), JzKet(1, 1)).rewrite('Jz') == \ TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 + sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 + TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JxKet(1, 0), JzKet(1, 1)).rewrite('Jz') == \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet( 1, 1))/2 - sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JxKet(1, -1), JzKet(1, 1)).rewrite('Jz') == \ TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 - sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 + TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JyKet(1, 1), JzKet(1, 1)).rewrite('Jz') == \ -TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 + sqrt(2)*I*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 + TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JyKet(1, 0), JzKet(1, 1)).rewrite('Jz') == \ sqrt(2)*I*TensorProduct(JzKet(1, -1), JzKet( 1, 1))/2 + sqrt(2)*I*TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JyKet(1, -1), JzKet(1, 1)).rewrite('Jz') == \ TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 + sqrt(2)*I*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 - TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 # Symbolic assert TensorProduct(JyKet(j1, m1), JxKet(j2, m2)).rewrite('Jy') == \ TensorProduct(JyKet(j1, m1), Sum( WignerD(j2, mi, m2, 3*pi/2, 0, 0) * JyKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JzKet(j1, m1), JxKet(j2, m2)).rewrite('Jz') == \ TensorProduct(JzKet(j1, m1), Sum( WignerD(j2, mi, m2, 0, pi/2, 0) * JzKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JxKet(j1, m1), JyKet(j2, m2)).rewrite('Jx') == \ TensorProduct(JxKet(j1, m1), Sum( WignerD(j2, mi, m2, 0, 0, pi/2) * JxKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JzKet(j1, m1), JyKet(j2, m2)).rewrite('Jz') == \ TensorProduct(JzKet(j1, m1), Sum(WignerD( j2, mi, m2, 3*pi/2, -pi/2, pi/2) * JzKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JxKet(j1, m1), JzKet(j2, m2)).rewrite('Jx') == \ TensorProduct(JxKet(j1, m1), Sum( WignerD(j2, mi, m2, 0, 3*pi/2, 0) * JxKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JyKet(j1, m1), JzKet(j2, m2)).rewrite('Jy') == \ TensorProduct(JyKet(j1, m1), Sum(WignerD( j2, mi, m2, 3*pi/2, pi/2, pi/2) * JyKet(j2, mi), (mi, -j2, j2))) def test_rewrite_coupled_state(): # Numerical assert JyKetCoupled(0, 0, (S(1)/2, S(1)/2)).rewrite('Jx') == \ JxKetCoupled(0, 0, (S(1)/2, S(1)/2)) assert JyKetCoupled(1, 1, (S(1)/2, S(1)/2)).rewrite('Jx') == \ -I*JxKetCoupled(1, 1, (S(1)/2, S(1)/2)) assert JyKetCoupled(1, 0, (S(1)/2, S(1)/2)).rewrite('Jx') == \ JxKetCoupled(1, 0, (S(1)/2, S(1)/2)) assert JyKetCoupled(1, -1, (S(1)/2, S(1)/2)).rewrite('Jx') == \ I*JxKetCoupled(1, -1, (S(1)/2, S(1)/2)) assert JzKetCoupled(0, 0, (S(1)/2, S(1)/2)).rewrite('Jx') == \ JxKetCoupled(0, 0, (S(1)/2, S(1)/2)) assert JzKetCoupled(1, 1, (S(1)/2, S(1)/2)).rewrite('Jx') == \ JxKetCoupled(1, 1, (S(1)/2, S(1)/2))/2 - sqrt(2)*JxKetCoupled(1, 0, ( S(1)/2, S(1)/2))/2 + JxKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JzKetCoupled(1, 0, (S(1)/2, S(1)/2)).rewrite('Jx') == \ sqrt(2)*JxKetCoupled(1, 1, (S( 1)/2, S(1)/2))/2 - sqrt(2)*JxKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JzKetCoupled(1, -1, (S(1)/2, S(1)/2)).rewrite('Jx') == \ JxKetCoupled(1, 1, (S(1)/2, S(1)/2))/2 + sqrt(2)*JxKetCoupled(1, 0, ( S(1)/2, S(1)/2))/2 + JxKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JxKetCoupled(0, 0, (S(1)/2, S(1)/2)).rewrite('Jy') == \ JyKetCoupled(0, 0, (S(1)/2, S(1)/2)) assert JxKetCoupled(1, 1, (S(1)/2, S(1)/2)).rewrite('Jy') == \ I*JyKetCoupled(1, 1, (S(1)/2, S(1)/2)) assert JxKetCoupled(1, 0, (S(1)/2, S(1)/2)).rewrite('Jy') == \ JyKetCoupled(1, 0, (S(1)/2, S(1)/2)) assert JxKetCoupled(1, -1, (S(1)/2, S(1)/2)).rewrite('Jy') == \ -I*JyKetCoupled(1, -1, (S(1)/2, S(1)/2)) assert JzKetCoupled(0, 0, (S(1)/2, S(1)/2)).rewrite('Jy') == \ JyKetCoupled(0, 0, (S(1)/2, S(1)/2)) assert JzKetCoupled(1, 1, (S(1)/2, S(1)/2)).rewrite('Jy') == \ JyKetCoupled(1, 1, (S(1)/2, S(1)/2))/2 - I*sqrt(2)*JyKetCoupled(1, 0, ( S(1)/2, S(1)/2))/2 - JyKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JzKetCoupled(1, 0, (S(1)/2, S(1)/2)).rewrite('Jy') == \ -I*sqrt(2)*JyKetCoupled(1, 1, (S(1)/2, S(1)/2))/2 - I*sqrt( 2)*JyKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JzKetCoupled(1, -1, (S(1)/2, S(1)/2)).rewrite('Jy') == \ -JyKetCoupled(1, 1, (S(1)/2, S(1)/2))/2 - I*sqrt(2)*JyKetCoupled(1, 0, (S(1)/2, S(1)/2))/2 + JyKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JxKetCoupled(0, 0, (S(1)/2, S(1)/2)).rewrite('Jz') == \ JzKetCoupled(0, 0, (S(1)/2, S(1)/2)) assert JxKetCoupled(1, 1, (S(1)/2, S(1)/2)).rewrite('Jz') == \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2))/2 + sqrt(2)*JzKetCoupled(1, 0, ( S(1)/2, S(1)/2))/2 + JzKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JxKetCoupled(1, 0, (S(1)/2, S(1)/2)).rewrite('Jz') == \ -sqrt(2)*JzKetCoupled(1, 1, (S( 1)/2, S(1)/2))/2 + sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JxKetCoupled(1, -1, (S(1)/2, S(1)/2)).rewrite('Jz') == \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2))/2 - sqrt(2)*JzKetCoupled(1, 0, ( S(1)/2, S(1)/2))/2 + JzKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JyKetCoupled(0, 0, (S(1)/2, S(1)/2)).rewrite('Jz') == \ JzKetCoupled(0, 0, (S(1)/2, S(1)/2)) assert JyKetCoupled(1, 1, (S(1)/2, S(1)/2)).rewrite('Jz') == \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2))/2 + I*sqrt(2)*JzKetCoupled(1, 0, ( S(1)/2, S(1)/2))/2 - JzKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JyKetCoupled(1, 0, (S(1)/2, S(1)/2)).rewrite('Jz') == \ I*sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2))/2 + I*sqrt( 2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 assert JyKetCoupled(1, -1, (S(1)/2, S(1)/2)).rewrite('Jz') == \ -JzKetCoupled(1, 1, (S(1)/2, S(1)/2))/2 + I*sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2))/2 + JzKetCoupled(1, -1, (S(1)/2, S(1)/2))/2 # Symbolic assert JyKetCoupled(j, m, (j1, j2)).rewrite('Jx') == \ Sum(WignerD(j, mi, m, 0, 0, pi/2) * JxKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JzKetCoupled(j, m, (j1, j2)).rewrite('Jx') == \ Sum(WignerD(j, mi, m, 0, 3*pi/2, 0) * JxKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JxKetCoupled(j, m, (j1, j2)).rewrite('Jy') == \ Sum(WignerD(j, mi, m, 3*pi/2, 0, 0) * JyKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JzKetCoupled(j, m, (j1, j2)).rewrite('Jy') == \ Sum(WignerD(j, mi, m, 3*pi/2, pi/2, pi/2) * JyKetCoupled(j, mi, (j1, j2)), (mi, -j, j)) assert JxKetCoupled(j, m, (j1, j2)).rewrite('Jz') == \ Sum(WignerD(j, mi, m, 0, pi/2, 0) * JzKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JyKetCoupled(j, m, (j1, j2)).rewrite('Jz') == \ Sum(WignerD(j, mi, m, 3*pi/2, -pi/2, pi/2) * JzKetCoupled( j, mi, (j1, j2)), (mi, -j, j)) def test_innerproducts_of_rewritten_states(): # Numerical assert qapply(JxBra(1, 1)*JxKet(1, 1).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, 0)*JxKet(1, 0).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, -1)*JxKet(1, -1).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, 1)*JxKet(1, 1).rewrite('Jz')).doit() == 1 assert qapply(JxBra(1, 0)*JxKet(1, 0).rewrite('Jz')).doit() == 1 assert qapply(JxBra(1, -1)*JxKet(1, -1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 1)*JyKet(1, 1).rewrite('Jx')).doit() == 1 assert qapply(JyBra(1, 0)*JyKet(1, 0).rewrite('Jx')).doit() == 1 assert qapply(JyBra(1, -1)*JyKet(1, -1).rewrite('Jx')).doit() == 1 assert qapply(JyBra(1, 1)*JyKet(1, 1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 0)*JyKet(1, 0).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, -1)*JyKet(1, -1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 1)*JyKet(1, 1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 0)*JyKet(1, 0).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, -1)*JyKet(1, -1).rewrite('Jz')).doit() == 1 assert qapply(JzBra(1, 1)*JzKet(1, 1).rewrite('Jy')).doit() == 1 assert qapply(JzBra(1, 0)*JzKet(1, 0).rewrite('Jy')).doit() == 1 assert qapply(JzBra(1, -1)*JzKet(1, -1).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, 1)*JxKet(1, 0).rewrite('Jy')).doit() == 0 assert qapply(JxBra(1, 1)*JxKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 1)*JxKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JxBra(1, 1)*JxKet(1, -1).rewrite('Jz')) == 0 assert qapply(JyBra(1, 1)*JyKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JyBra(1, 1)*JyKet(1, -1).rewrite('Jx')) == 0 assert qapply(JyBra(1, 1)*JyKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JyBra(1, 1)*JyKet(1, -1).rewrite('Jz')) == 0 assert qapply(JzBra(1, 1)*JzKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JzBra(1, 1)*JzKet(1, -1).rewrite('Jx')) == 0 assert qapply(JzBra(1, 1)*JzKet(1, 0).rewrite('Jy')).doit() == 0 assert qapply(JzBra(1, 1)*JzKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, 1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, 1).rewrite('Jz')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, -1).rewrite('Jz')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, 1).rewrite('Jx')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, -1).rewrite('Jx')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, 1).rewrite('Jz')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, -1).rewrite('Jz')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, 1).rewrite('Jx')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, -1).rewrite('Jx')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, 1).rewrite('Jy')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, -1)*JxKet(1, 1).rewrite('Jy')) == 0 assert qapply(JxBra(1, -1)*JxKet(1, 0).rewrite('Jy')).doit() == 0 assert qapply(JxBra(1, -1)*JxKet(1, 1).rewrite('Jz')) == 0 assert qapply(JxBra(1, -1)*JxKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JyBra(1, -1)*JyKet(1, 1).rewrite('Jx')) == 0 assert qapply(JyBra(1, -1)*JyKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JyBra(1, -1)*JyKet(1, 1).rewrite('Jz')) == 0 assert qapply(JyBra(1, -1)*JyKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JzBra(1, -1)*JzKet(1, 1).rewrite('Jx')) == 0 assert qapply(JzBra(1, -1)*JzKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JzBra(1, -1)*JzKet(1, 1).rewrite('Jy')) == 0 assert qapply(JzBra(1, -1)*JzKet(1, 0).rewrite('Jy')).doit() == 0 def test_uncouple_2_coupled_states(): # j1=1/2, j2=1/2 assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2)) ))) # j1=1/2, j2=1 assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0)) == \ expand(uncouple( couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0)) == \ expand(uncouple( couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1)) ))) # j1=1, j2=1 assert TensorProduct(JzKet(1, 1), JzKet(1, 1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 1), JzKet(1, 1)) ))) assert TensorProduct(JzKet(1, 1), JzKet(1, 0)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 1), JzKet(1, 0)) ))) assert TensorProduct(JzKet(1, 1), JzKet(1, -1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 1), JzKet(1, -1)) ))) assert TensorProduct(JzKet(1, 0), JzKet(1, 1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 0), JzKet(1, 1)) ))) assert TensorProduct(JzKet(1, 0), JzKet(1, 0)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 0), JzKet(1, 0)) ))) assert TensorProduct(JzKet(1, 0), JzKet(1, -1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 0), JzKet(1, -1)) ))) assert TensorProduct(JzKet(1, -1), JzKet(1, 1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, -1), JzKet(1, 1)) ))) assert TensorProduct(JzKet(1, -1), JzKet(1, 0)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, -1), JzKet(1, 0)) ))) assert TensorProduct(JzKet(1, -1), JzKet(1, -1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, -1), JzKet(1, -1)) ))) def test_uncouple_3_coupled_states(): # Default coupling # j1=1/2, j2=1/2, j3=1/2 assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/ 2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) ))) # j1=1/2, j2=1, j3=1/2 assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct( JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) ))) # Coupling j1+j3=j13, j13+j2=j # j1=1/2, j2=1/2, j3=1/2 assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ))) # j1=1/2, j2=1, j3=1/2 assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( 1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( 1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( 1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( 1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( 1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( 1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( -1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( -1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( -1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( -1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S( -1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/ 2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ))) @slow def test_uncouple_4_coupled_states(): # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S( 1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S( 1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S( 1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S( 1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S( 1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S( 1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) ))) # j1=1/2, j2=1/2, j3=1, j4=1/2 assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet( S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet( S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet( S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) ))) # Couple j1+j3=j13, j2+j4=j24, j13+j24=j # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) # j1=1/2, j2=1/2, j3=1, j4=1/2 assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(1)/2)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)) == \ expand(uncouple(couple( TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (2, 4), (1, 2)) ))) def test_uncouple_2_coupled_states_numerical(): # j1=1/2, j2=1/2 assert uncouple(JzKetCoupled(0, 0, (S(1)/2, S(1)/2))) == \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2))/2 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2))/2 assert uncouple(JzKetCoupled(1, 1, (S(1)/2, S(1)/2))) == \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) assert uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2))) == \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2))/2 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2))/2 assert uncouple(JzKetCoupled(1, -1, (S(1)/2, S(1)/2))) == \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2)) # j1=1, j2=1/2 assert uncouple(JzKetCoupled(S(1)/2, S(1)/2, (1, S(1)/2))) == \ -sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(S(1)/2, S(1)/2))/3 + \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(S(1)/2, -S(1)/2))/3 assert uncouple(JzKetCoupled(S(1)/2, -S(1)/2, (1, S(1)/2))) == \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(S(1)/2, -S(1)/2))/3 - \ sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(S(1)/2, S(1)/2))/3 assert uncouple(JzKetCoupled(S(3)/2, S(3)/2, (1, S(1)/2))) == \ TensorProduct(JzKet(1, 1), JzKet(S(1)/2, S(1)/2)) assert uncouple(JzKetCoupled(S(3)/2, S(1)/2, (1, S(1)/2))) == \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(S(1)/2, -S(1)/2))/3 + \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(S(1)/2, S(1)/2))/3 assert uncouple(JzKetCoupled(S(3)/2, -S(1)/2, (1, S(1)/2))) == \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(S(1)/2, -S(1)/2))/3 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(S(1)/2, S(1)/2))/3 assert uncouple(JzKetCoupled(S(3)/2, -S(3)/2, (1, S(1)/2))) == \ TensorProduct(JzKet(1, -1), JzKet(S(1)/2, -S(1)/2)) # j1=1, j2=1 assert uncouple(JzKetCoupled(0, 0, (1, 1))) == \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1))/3 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1))/3 assert uncouple(JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 - \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert uncouple(JzKetCoupled(1, 0, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 assert uncouple(JzKetCoupled(1, -1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 2, (1, 1))) == \ TensorProduct(JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(2, 1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 + \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert uncouple(JzKetCoupled(2, 0, (1, 1))) == \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(1, 1))/6 assert uncouple(JzKetCoupled(2, -1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 + \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, -2, (1, 1))) == \ TensorProduct(JzKet(1, -1), JzKet(1, -1)) def test_uncouple_3_coupled_states_numerical(): # Default coupling # j1=1/2, j2=1/2, j3=1/2 assert uncouple(JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2))) == \ TensorProduct(JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)) assert uncouple(JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2))) == \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))/3 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2))/3 + \ sqrt(3)*TensorProduct(JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2))/3 assert uncouple(JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2))) == \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2))/3 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2))/3 + \ sqrt(3)*TensorProduct(JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2))/3 assert uncouple(JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2))) == \ TensorProduct(JzKet( S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2)) # j1=1/2, j2=1/2, j3=1 assert uncouple(JzKetCoupled(2, 2, (S(1)/2, S(1)/2, 1))) == \ TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1)) assert uncouple(JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1))) == \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 0, (S(1)/2, S(1)/2, 1))) == \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -1, (S(1)/2, S(1)/2, 1))) == \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1))/2 + \ TensorProduct( JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -2, (S(1)/2, S(1)/2, 1))) == \ TensorProduct( JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1)) assert uncouple(JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1))) == \ -TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1))) == \ -sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1))) == \ -sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))/2 + \ TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1))/2 # j1=1/2, j2=1, j3=1 assert uncouple(JzKetCoupled(S(5)/2, S(5)/2, (S(1)/2, 1, 1))) == \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, 1, 1))) == \ sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/5 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/5 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/5 assert uncouple(JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, 1, 1))) == \ sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/5 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/5 + \ sqrt(5)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(S(5)/2, -S(5)/2, (S(1)/2, 1, 1))) == \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1))) == \ -sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/15 - \ 2*sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/5 assert uncouple(JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1))) == \ -4*sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/15 - \ 2*sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/15 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1))) == \ -sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/5 - \ sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 + \ 2*sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/15 - \ sqrt(5)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/15 + \ 4*sqrt(5)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1))) == \ -sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/5 + \ 2*sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1))) == \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/3 - \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/6 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1))) == \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/2 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/6 - \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/3 + \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/3 # j1=1, j2=1, j3=1 assert uncouple(JzKetCoupled(3, 3, (1, 1, 1))) == \ TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(3, 2, (1, 1, 1))) == \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(3, 1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, 0, (1, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(3, -1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, -2, (1, 1, 1))) == \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(3, -3, (1, 1, 1))) == \ TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(2, 2, (1, 1, 1))) == \ -sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(2, 1, (1, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, 0, (1, 1, 1))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -1, (1, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -2, (1, 1, 1))) == \ -sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(1, 1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/30 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/15 - \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(1, 0, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/10 - \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/10 - \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/10 - \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(1, -1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/5 - \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/30 # Defined j13 # j1=1/2, j2=1/2, j3=1, j13=1/2 assert uncouple(JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )) == \ -sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )) == \ -sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1))/3 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))/6 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )) == \ -sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1))/3 # j1=1/2, j2=1, j3=1, j13=1/2 assert uncouple(JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)))) == \ -sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)))) == \ -2*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/3 - \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)))) == \ -sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/3 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/3 + \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/3 + \ 2*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)))) == \ -sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct( JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/3 # j1=1, j2=1, j3=1, j13=1 assert uncouple(JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/2 + \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))/2 + \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)))) == \ TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/2 - \ TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)))) == \ TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/2 def test_uncouple_4_coupled_states_numerical(): # j1=1/2, j2=1/2, j3=1, j4=1, default coupling assert uncouple(JzKetCoupled(3, 3, (S(1)/2, S(1)/2, 1, 1))) == \ TensorProduct(JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(3, 2, (S(1)/2, S(1)/2, 1, 1))) == \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(3, 1, (S(1)/2, S(1)/2, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, 0, (S(1)/2, S(1)/2, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(3, -1, (S(1)/2, S(1)/2, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, -2, (S(1)/2, S(1)/2, 1, 1))) == \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(3, -3, (S(1)/2, S(1)/2, 1, 1))) == \ TensorProduct(JzKet(S(1)/2, -S( 1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(2, 2, (S(1)/2, S(1)/2, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/12 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/12 - \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, 0, (S(1)/2, S(1)/2, 1, 1))) == \ -TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/2 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/4 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/4 + \ TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -1, (S(1)/2, S(1)/2, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/6 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -2, (S(1)/2, S(1)/2, 1, 1))) == \ -sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/30 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/20 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/20 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/10 - \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/20 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/20 - \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/5 - \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/20 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/20 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/30 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/30 # j1=1/2, j2=1/2, j3=1, j4=1, j12=1, j34=1 assert uncouple(JzKetCoupled(2, 2, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/4 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/4 - \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, 0, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/6 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -1, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/4 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/4 assert uncouple(JzKetCoupled(2, -2, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/2 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 1)))) == \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/4 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/4 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/4 - \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 1)))) == \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/2 - \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 1)))) == \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/4 - \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/4 # j1=1/2, j2=1/2, j3=1, j4=1, j12=1, j34=2 assert uncouple(JzKetCoupled(3, 3, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ TensorProduct(JzKet( S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(3, 2, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(3, 1, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, 0, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(3, -1, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, -2, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(3, -3, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ TensorProduct(JzKet(S(1)/2, -S( 1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(2, 2, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/3 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/6 assert uncouple(JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/3 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/12 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/12 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/12 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/12 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, 0, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S( 1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -1, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/6 - \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/3 - \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/12 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/12 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, -2, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/6 - \ sqrt(6)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/3 + \ sqrt(3)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 1)))) == \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 1))/5 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))/20 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/20 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/30 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/30 assert uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 1)))) == \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, 0))/10 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/30 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 1)))) == \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 1))/30 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))/20 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))/20 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1), JzKet(1, 0))/20 - \ sqrt(30)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0), JzKet(1, -1))/20 + \ sqrt(15)*TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))/5 def test_uncouple_symbolic(): assert uncouple(JzKetCoupled(j, m, (j1, j2) )) == \ Sum(CG(j1, m1, j2, m2, j, m) * TensorProduct(JzKet(j1, m1), JzKet(j2, m2)), (m1, -j1, j1), (m2, -j2, j2)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3) )) == \ Sum(CG(j1, m1, j2, m2, j1 + j2, m1 + m2) * CG(j1 + j2, m1 + m2, j3, m3, j, m) * TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3), ((1, 3, j13), (1, 2, j)) )) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j13, m1 + m3, j2, m2, j, m) * TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3, j4) )) == \ Sum(CG(j1, m1, j2, m2, j1 + j2, m1 + m2) * CG(j1 + j2, m1 + m2, j3, m3, j1 + j2 + j3, m1 + m2 + m3) * CG(j1 + j2 + j3, m1 + m2 + m3, j4, m4, j, m) * TensorProduct( JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3), (m4, -j4, j4)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3, j4), ((1, 3, j13), (2, 4, j24), (1, 2, j)) )) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j2, m2, j4, m4, j24, m2 + m4) * CG(j13, m1 + m3, j24, m2 + m4, j, m) * TensorProduct( JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3), (m4, -j4, j4)) def test_couple_2_states(): # j1=1/2, j2=1/2 assert JzKetCoupled(0, 0, (S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (S(1)/2, S(1)/2)) ))) assert JzKetCoupled(1, 1, (S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S(1)/2, S(1)/2)) ))) assert JzKetCoupled(1, 0, (S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S(1)/2, S(1)/2)) ))) assert JzKetCoupled(1, -1, (S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S(1)/2, S(1)/2)) ))) # j1=1, j2=1/2 assert JzKetCoupled(S(1)/2, S(1)/2, (1, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(1)/2, (1, S(1)/2)) ))) assert JzKetCoupled(S(1)/2, -S(1)/2, (1, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, -S(1)/2, (1, S(1)/2)) ))) assert JzKetCoupled(S(3)/2, S(3)/2, (1, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(3)/2, (1, S(1)/2)) ))) assert JzKetCoupled(S(3)/2, S(1)/2, (1, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(1)/2, (1, S(1)/2)) ))) assert JzKetCoupled(S(3)/2, -S(1)/2, (1, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, -S(1)/2, (1, S(1)/2)) ))) assert JzKetCoupled(S(3)/2, -S(3)/2, (1, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, -S(3)/2, (1, S(1)/2)) ))) # j1=1, j2=1 assert JzKetCoupled(0, 0, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (1, 1)) ))) assert JzKetCoupled(1, 1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (1, 1)) ))) assert JzKetCoupled(1, 0, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (1, 1)) ))) assert JzKetCoupled(1, -1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (1, 1)) ))) assert JzKetCoupled(2, 2, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (1, 1)) ))) assert JzKetCoupled(2, 1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (1, 1)) ))) assert JzKetCoupled(2, 0, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (1, 1)) ))) assert JzKetCoupled(2, -1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (1, 1)) ))) assert JzKetCoupled(2, -2, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (1, 1)) ))) # j1=1/2, j2=3/2 assert JzKetCoupled(1, 1, (S(1)/2, S(3)/2)) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S(1)/2, S(3)/2)) ))) assert JzKetCoupled(1, 0, (S(1)/2, S(3)/2)) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S(1)/2, S(3)/2)) ))) assert JzKetCoupled(1, -1, (S(1)/2, S(3)/2)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S(1)/2, S(3)/2)) ))) assert JzKetCoupled(2, 2, (S(1)/2, S(3)/2)) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (S(1)/2, S(3)/2)) ))) assert JzKetCoupled(2, 1, (S(1)/2, S(3)/2)) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (S(1)/2, S(3)/2)) ))) assert JzKetCoupled(2, 0, (S(1)/2, S(3)/2)) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (S(1)/2, S(3)/2)) ))) assert JzKetCoupled(2, -1, (S(1)/2, S(3)/2)) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S(1)/2, S(3)/2)) ))) assert JzKetCoupled(2, -2, (S(1)/2, S(3)/2)) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S(1)/2, S(3)/2)) ))) def test_couple_3_states(): # Default coupling # j1=1/2, j2=1/2, j3=1/2 assert JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(S(1)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(S(3)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(S(3)/2, S(-3)/2, (S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(-3)/2, (S(1)/2, S(1)/2, S(1)/2)) ))) # j1=1/2, j2=1/2, j3=1 assert JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(2, 2, (S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(2, 0, (S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(2, -1, (S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(2, -2, (S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S(1)/2, S(1)/2, 1)) ))) # Couple j1+j3=j13, j13+j2=j # j1=1/2, j2=1/2, j3=1/2, j13=0 assert JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 0), (1, 2, S(1)/2))) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2), ((1, 3, 0), (1, 2, S(1)/2))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(S(1)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 0), (1, 2, S(1)/2))) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(-1)/2, (S(1)/2, S( 1)/2, S(1)/2), ((1, 3, 0), (1, 2, S(1)/2))) ), ((1, 3), (1, 2)) )) # j1=1, j2=1/2, j3=1, j13=1 assert JzKetCoupled(S(1)/2, S(1)/2, (1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(1)/2))) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(1)/2, ( 1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(1)/2))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(S(1)/2, S(-1)/2, (1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(1)/2))) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(-1)/2, ( 1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(1)/2))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(S(3)/2, S(3)/2, (1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(3)/2))) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(3)/2, ( 1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(3)/2))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(S(3)/2, S(1)/2, (1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(3)/2))) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(1)/2, ( 1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(3)/2))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(S(3)/2, S(-1)/2, (1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(3)/2))) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(-1)/2, ( 1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(3)/2))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(S(3)/2, S(-3)/2, (1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(3)/2))) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(-3)/2, ( 1, S(1)/2, 1), ((1, 3, 1), (1, 2, S(3)/2))) ), ((1, 3), (1, 2)) )) def test_couple_4_states(): # Default coupling # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple( uncouple( JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple( uncouple( JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(2, 2, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple( uncouple( JzKetCoupled(2, 2, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(2, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple( uncouple( JzKetCoupled(2, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(2, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple( uncouple( JzKetCoupled(2, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(2, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) ))) assert JzKetCoupled(2, -2, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S(1)/2, S(1)/2, S(1)/2, S(1)/2)) ))) # j1=1/2, j2=1/2, j3=1/2, j4=1 assert JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(1)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(3)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(3)/2, S(-3)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(-3)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(5)/2, S(5)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(5)/2, S(5)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(5)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(5)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(5)/2, S(-3)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(5)/2, S(-3)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) assert JzKetCoupled(S(5)/2, S(-5)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) == \ expand(couple(uncouple( JzKetCoupled(S(5)/2, S(-5)/2, (S(1)/2, S(1)/2, S(1)/2, 1)) ))) # Coupling j1+j3=j13, j2+j4=j24, j13+j24=j # j1=1/2, j2=1/2, j3=1/2, j4=1/2, j13=1, j24=0 assert JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) ), ((1, 3), (2, 4), (1, 2)) )) # j1=1/2, j2=1/2, j3=1/2, j4=1, j13=1, j24=1/2 assert JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(1)/2)) ) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(1)/2)) )), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(S(1)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(1)/2)) ) == \ expand(couple(uncouple( JzKetCoupled(S(1)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(1)/2)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(3)/2)) ) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(3)/2)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(3)/2)) ) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(3)/2)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(S(3)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(3)/2)) ) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(-1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(3)/2)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(S(3)/2, S(-3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(3)/2)) ) == \ expand(couple(uncouple( JzKetCoupled(S(3)/2, S(-3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 3, 1), (2, 4, S(1)/2), (1, 2, S(3)/2)) ) ), ((1, 3), (2, 4), (1, 2)) )) # j1=1/2, j2=1, j3=1/2, j4=1, j13=0, j24=1 assert JzKetCoupled(1, 1, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 0), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 0), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 0, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 0), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 0), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, -1, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 0), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 0), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) # j1=1/2, j2=1, j3=1/2, j4=1, j13=1, j24=1 assert JzKetCoupled(0, 0, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 0)) ) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 0))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 1, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 0, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, -1, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, 2, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, 1, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, 0, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, -1, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, -2, (S(1)/2, 1, S(1)/2, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S(1)/2, 1, S(1)/2, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) def test_couple_2_states_numerical(): # j1=1/2, j2=1/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2)) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2))) == \ sqrt(2)*JzKetCoupled(0, 0, (S( 1)/2, S(1)/2))/2 + sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(2)*JzKetCoupled(0, 0, (S( 1)/2, S(1)/2))/2 + sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2))) == \ JzKetCoupled(1, -1, (S(1)/2, S(1)/2)) # j1=1, j2=1/2 assert couple(TensorProduct(JzKet(1, 1), JzKet(S(1)/2, S(1)/2))) == \ JzKetCoupled(S(3)/2, S(3)/2, (1, S(1)/2)) assert couple(TensorProduct(JzKet(1, 1), JzKet(S(1)/2, -S(1)/2))) == \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (1, S(1)/2))/3 + sqrt( 3)*JzKetCoupled(S(3)/2, S(1)/2, (1, S(1)/2))/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(3)*JzKetCoupled(S(1)/2, S(1)/2, (1, S(1)/2))/3 + \ sqrt(6)*JzKetCoupled(S(3)/2, S(1)/2, (1, S(1)/2))/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(S(1)/2, -S(1)/2))) == \ sqrt(3)*JzKetCoupled(S(1)/2, -S(1)/2, (1, S(1)/2))/3 + \ sqrt(6)*JzKetCoupled(S(3)/2, -S(1)/2, (1, S(1)/2))/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (1, S( 1)/2))/3 + sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (1, S(1)/2))/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(S(1)/2, -S(1)/2))) == \ JzKetCoupled(S(3)/2, -S(3)/2, (1, S(1)/2)) # j1=1, j2=1 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ JzKetCoupled(2, 2, (1, 1)) assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled( 1, 1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, 1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(0, 0, (1, 1))/3 + sqrt(2)*JzKetCoupled( 1, 0, (1, 1))/2 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/6 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled( 1, 1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, 1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0))) == \ -sqrt(3)*JzKetCoupled( 0, 0, (1, 1))/3 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled( 1, -1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, -1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(0, 0, (1, 1))/3 - sqrt(2)*JzKetCoupled( 1, 0, (1, 1))/2 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/6 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled( 1, -1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, -1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1))) == \ JzKetCoupled(2, -2, (1, 1)) # j1=3/2, j2=1/2 assert couple(TensorProduct(JzKet(S(3)/2, S(3)/2), JzKet(S(1)/2, S(1)/2))) == \ JzKetCoupled(2, 2, (S(3)/2, S(1)/2)) assert couple(TensorProduct(JzKet(S(3)/2, S(3)/2), JzKet(S(1)/2, -S(1)/2))) == \ sqrt(3)*JzKetCoupled( 1, 1, (S(3)/2, S(1)/2))/2 + JzKetCoupled(2, 1, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ -JzKetCoupled(1, 1, (S( 3)/2, S(1)/2))/2 + sqrt(3)*JzKetCoupled(2, 1, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2))) == \ sqrt(2)*JzKetCoupled(1, 0, (S( 3)/2, S(1)/2))/2 + sqrt(2)*JzKetCoupled(2, 0, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(2)*JzKetCoupled(1, 0, (S( 3)/2, S(1)/2))/2 + sqrt(2)*JzKetCoupled(2, 0, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2))) == \ JzKetCoupled(1, -1, (S( 3)/2, S(1)/2))/2 + sqrt(3)*JzKetCoupled(2, -1, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, -S(3)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(3)*JzKetCoupled(1, -1, (S(3)/2, S(1)/2))/2 + \ JzKetCoupled(2, -1, (S(3)/2, S(1)/2))/2 assert couple(TensorProduct(JzKet(S(3)/2, -S(3)/2), JzKet(S(1)/2, -S(1)/2))) == \ JzKetCoupled(2, -2, (S(3)/2, S(1)/2)) def test_couple_3_states_numerical(): # Default coupling # j1=1/2,j2=1/2,j3=1/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ JzKetCoupled(S(3)/2, S( 3)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2))) == \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/3 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2))) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2)) )/2 - \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2))) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2)) )/2 + \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1) /2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2)) )/2 - \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2))) == \ -sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2)) )/2 + \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1) /2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/3 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1) /2), ((1, 2, 1), (1, 3, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2))) == \ JzKetCoupled(S(3)/2, -S( 3)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2)) ) # j1=S(1)/2, j2=S(1)/2, j3=1 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))) == \ JzKetCoupled(2, 2, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(2)*JzKetCoupled( 2, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 0)) )/3 + \ sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ sqrt(3)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 0)) )/6 - \ sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ sqrt(3)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 0)) )/3 - \ sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(2)*JzKetCoupled( 2, -1, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, -S(1)/2), JzKet(S(1)/2, -S(1)/2), JzKet(1, -1))) == \ JzKetCoupled(2, -2, (S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, 2)) ) # j1=S(1)/2, j2=1, j3=1 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 1))) == \ JzKetCoupled( S(5)/2, S(5)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0))) == \ sqrt(15)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/2 + \ sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 - \ 2*sqrt(15)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 + \ sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(1)/2)) )/3 + \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/3 + \ JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 + \ 4*sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1))) == \ -2*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/6 + \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 - \ 2*sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(1)/2)) )/3 - \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/3 + \ 2*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 - \ sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1))) == \ sqrt(6)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(1, 1))) == \ -sqrt(6)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(1)/2)) )/3 - \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/3 - \ 2*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 + \ sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(1, -1))) == \ -2*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 + \ 2*sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(1)/2)) )/3 + \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/3 - \ JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 - \ 4*sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 - \ sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(1, -1))) == \ -sqrt(3)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(1)/2), (1, 3, S(3)/2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(1)/2)) )/2 - \ sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(15)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(1, -1))) == \ JzKetCoupled(S( 5)/2, -S(5)/2, (S(1)/2, 1, 1), ((1, 2, S(3)/2), (1, 3, S(5)/2)) ) # j1=1, j2=1, j3=1 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 1))) == \ JzKetCoupled(3, 3, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) ) assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))) == \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/5 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))) == \ -JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))) == \ -sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0))) == \ -sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ 2*sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/5 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))) == \ -sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))) == \ -JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1))) == \ -sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/5 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, -1))) == \ JzKetCoupled(3, -3, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) ) # j1=S(1)/2, j2=S(1)/2, j3=S(3)/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(3)/2))) == \ JzKetCoupled(S(5)/2, S( 5)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(5)/2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(1)/2))) == \ sqrt(10)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/5 + \ sqrt(15)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S(1)/2, S(3) /2), ((1, 2, 1), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(-1)/2))) == \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ 2*sqrt(30)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/15 + \ sqrt(30)*JzKetCoupled(S(5)/2, S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(-3)/2))) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/2 + \ sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(3)/2))) == \ sqrt(2)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 0), (1, 3, S(3)/2)) )/2 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/10 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/ 2), ((1, 2, 1), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(1)/2))) == \ -sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 0), (1, 3, S(3)/2)) )/2 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/30 + \ sqrt(30)*JzKetCoupled(S(5)/2, S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(-1)/2))) == \ -sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 + \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 0), (1, 3, S(3)/2)) )/2 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/30 + \ sqrt(30)*JzKetCoupled(S(5)/2, -S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(-3)/2))) == \ sqrt(2)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 0), (1, 3, S(3)/2)) )/2 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/10 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3) /2), ((1, 2, 1), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(3)/2))) == \ -sqrt(2)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 0), (1, 3, S(3)/2)) )/2 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/10 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/ 2), ((1, 2, 1), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(1)/2))) == \ -sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 0), (1, 3, S(3)/2)) )/2 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/30 + \ sqrt(30)*JzKetCoupled(S(5)/2, S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(-1)/2))) == \ -sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 0), (1, 3, S(3)/2)) )/2 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/30 + \ sqrt(30)*JzKetCoupled(S(5)/2, -S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(-3)/2))) == \ -sqrt(2)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 0), (1, 3, S(3)/2)) )/2 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/10 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3) /2), ((1, 2, 1), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(3)/2))) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/2 - \ sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(1)/2))) == \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(1)/2)) )/6 - \ 2*sqrt(30)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/15 + \ sqrt(30)*JzKetCoupled(S(5)/2, -S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(-1)/2))) == \ -sqrt(10)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(3)/2)) )/5 + \ sqrt(15)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S(1)/2, S( 3)/2), ((1, 2, 1), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(-3)/2))) == \ JzKetCoupled(S(5)/2, -S( 5)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 2, 1), (1, 3, S(5)/2)) ) # Couple j1 to j3 # j1=1/2, j2=1/2, j3=1/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S(3)/2, S( 3)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (1, 2, S(3)/2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 0), (1, 2, S(1)/2)) )/2 - \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/ 2), ((1, 3, 1), (1, 2, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/3 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/ 2), ((1, 3, 1), (1, 2, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 0), (1, 2, S(1)/2)) )/2 + \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1) /2), ((1, 3, 1), (1, 2, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 0), (1, 2, S(1)/2)) )/2 - \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/ 2), ((1, 3, 1), (1, 2, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/3 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1) /2), ((1, 3, 1), (1, 2, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 0), (1, 2, S(1)/2)) )/2 + \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1) /2), ((1, 3, 1), (1, 2, S(3)/2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S(3)/2, -S( 3)/2, (S(1)/2, S(1)/2, S(1)/2), ((1, 3, 1), (1, 2, S(3)/2)) ) # j1=1/2, j2=1/2, j3=1 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(2, 2, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )/3 - \ sqrt(6)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 1)) )/6 + \ sqrt(2)*JzKetCoupled( 2, 1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 0)) )/3 + \ sqrt(3)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )/3 - \ sqrt(6)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 1)) )/6 + \ sqrt(6)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 1)) )/2 + \ JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 0)) )/6 + \ sqrt(6)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 1)) )/3 + \ sqrt(3)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )/3 + \ sqrt(3)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 1)) )/6 + \ JzKetCoupled( 2, -1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )/3 - \ sqrt(3)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 1)) )/6 + \ JzKetCoupled(2, 1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 0)) )/6 - \ sqrt(6)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )/6 - \ sqrt(3)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 1)) )/3 + \ sqrt(3)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) )/3 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 1)) )/2 + \ JzKetCoupled( 2, -1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 0)) )/3 - \ sqrt(3)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )/3 + \ sqrt(6)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 1)) )/6 + \ sqrt(6)*JzKetCoupled( 2, 0, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 3, S(1)/2), (1, 2, 1)) )/3 + \ sqrt(6)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 1)) )/6 + \ sqrt(2)*JzKetCoupled( 2, -1, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(2, -2, (S(1)/2, S(1)/2, 1), ((1, 3, S(3)/2), (1, 2, 2)) ) # j 1=1/2, j 2=1, j 3=1 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled( S(5)/2, S(5)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 - \ 2*sqrt(15)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -2*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(1)/2)) )/6 + \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 - \ 2*sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(15)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 + \ sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(1)/2)) )/3 - \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(1)/2)) )/3 + \ 2*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 - \ sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(1)/2)) )/2 + \ sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(1)/2)) )/3 + \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(1)/2)) )/3 + \ JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 + \ 4*sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(1)/2)) )/3 + \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(1)/2)) )/3 - \ JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 - \ 4*sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(1)/2)) )/2 - \ sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(1)/2)) )/3 - \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(1)/2)) )/3 - \ 2*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 + \ sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 - \ sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(15)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -2*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 + \ 2*sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(1)/2), (1, 2, S(3)/2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S( 5)/2, -S(5)/2, (S(1)/2, 1, 1), ((1, 3, S(3)/2), (1, 2, S(5)/2)) ) # j1=1, 1, 1 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(3, 3, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) ) assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/5 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ 2*sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/5 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/5 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(3, -3, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) ) # j1=1/2, j2=1/2, j3=3/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(3)/2)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S(5)/2, S( 5)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(5)/2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(1)/2)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/2 - \ sqrt(15)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/10 + \ sqrt(15)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S(1)/2, S(3) /2), ((1, 3, 2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(-1)/2)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/3 - \ sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/5 + \ sqrt(30)*JzKetCoupled(S(5)/2, S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(-3)/2)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/2 + \ JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/2 - \ sqrt(15)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/10 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(3)/2)), ((1, 3), (1, 2)) ) == \ 2*sqrt(5)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/5 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/ 2), ((1, 3, 2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(1)/2)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/6 + \ 3*sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/10 + \ sqrt(30)*JzKetCoupled(S(5)/2, S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(-1)/2)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/6 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/3 + \ sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/5 + \ sqrt(30)*JzKetCoupled(S(5)/2, -S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(-3)/2)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/2 + \ sqrt(5)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/10 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3) /2), ((1, 3, 2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(3)/2)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/2 - \ sqrt(5)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/10 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S(1)/2, S(3)/ 2), ((1, 3, 2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(1)/2)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/6 - \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/3 - \ sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/5 + \ sqrt(30)*JzKetCoupled(S(5)/2, S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(-1)/2)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/6 - \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/6 - \ 3*sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/10 + \ sqrt(30)*JzKetCoupled(S(5)/2, -S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(3)/2, S(-3)/2)), ((1, 3), (1, 2)) ) == \ -2*sqrt(5)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/5 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3) /2), ((1, 3, 2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(3)/2)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/2 - \ JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/2 + \ sqrt(15)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/10 + \ sqrt(10)*JzKetCoupled(S(5)/2, S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(1)/2)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(1)/2)) )/6 - \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/3 + \ sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/5 + \ sqrt(30)*JzKetCoupled(S(5)/2, -S( 1)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(-1)/2)), ((1, 3), (1, 2)) ) == \ -JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 1), (1, 2, S(3)/2)) )/2 + \ sqrt(15)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(3)/2)) )/10 + \ sqrt(15)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S(1)/2, S( 3)/2), ((1, 3, 2), (1, 2, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(3)/2, S(-3)/2)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S(5)/2, -S( 5)/2, (S(1)/2, S(1)/2, S(3)/2), ((1, 3, 2), (1, 2, S(5)/2)) ) def test_couple_4_states_numerical(): # Default coupling # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ JzKetCoupled(2, 2, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2))) == \ sqrt(3)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/2 + \ JzKetCoupled(2, 1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2))) == \ sqrt(6)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/3 - \ sqrt(3)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ JzKetCoupled(2, 1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2))) == \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 0)) )/3 + \ sqrt(3)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/3 + \ sqrt(6)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 1)) )/2 - \ sqrt(6)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/6 - \ sqrt(3)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ JzKetCoupled(2, 1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2))) == \ JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 0)))/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 0)))/6 + \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 1)))/2 - \ sqrt(3)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)))/6 + \ sqrt(6)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)))/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)))/6 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2))) == \ -JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 0)) )/6 + \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 1)) )/2 + \ sqrt(3)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/6 - \ sqrt(6)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2))) == \ sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 1)) )/2 + \ sqrt(6)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/6 + \ sqrt(3)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ JzKetCoupled(2, -1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 1)) )/2 - \ sqrt(6)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/6 - \ sqrt(3)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ JzKetCoupled(2, 1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2))) == \ -JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 0)) )/6 - \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 1)) )/2 - \ sqrt(3)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2))) == \ JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 0)) )/6 - \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 1)) )/2 + \ sqrt(3)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/6 - \ sqrt(6)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, 1)) )/2 + \ sqrt(6)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/6 + \ sqrt(3)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ JzKetCoupled(2, -1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2))) == \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 0)) )/3 - \ sqrt(3)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/3 - \ sqrt(6)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2))) == \ -sqrt(6)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, 1)) )/3 + \ sqrt(3)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/6 + \ JzKetCoupled(2, -1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2))) == \ -sqrt(3)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 1)) )/2 + \ JzKetCoupled(2, -1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2))) == \ JzKetCoupled(2, -2, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, 2)) ) # j1=S(1)/2, S(1)/2, S(1)/2, 1 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))) == \ JzKetCoupled(S(5)/2, S(5)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))) == \ sqrt(15)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/2 + \ sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1))) == \ sqrt(6)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 - \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/3 + \ 2*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 + \ sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1))) == \ 2*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/6 + \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 + \ 2*sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/2 - \ sqrt(6)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/6 - \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/3 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 - \ JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 + \ sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 - \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/6 + \ sqrt(6)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 + \ 2*sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1))) == \ -sqrt(3)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 - \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/6 + \ sqrt(6)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 + \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 - \ 2*sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/6 - \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/3 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 + \ JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 - \ sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/2 + \ sqrt(6)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/2 - \ sqrt(6)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/6 - \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/3 - \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 - \ JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 + \ sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))) == \ -sqrt(3)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 - \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/6 - \ sqrt(6)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 + \ 2*sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 - \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/6 - \ sqrt(6)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 + \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 - \ 2*sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/6 - \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/3 - \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 + \ JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 - \ sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1))) == \ -sqrt(2)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/2 + \ sqrt(6)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/6 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1))) == \ 2*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 - \ 2*sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(1)/2)) )/3 - \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/3 - \ 2*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 - \ sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1))) == \ -sqrt(6)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(1)/2), (1, 4, S(3)/2)) )/3 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(1)/2)) )/2 - \ sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0))) == \ -sqrt(15)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1))) == \ JzKetCoupled(S(5)/2, -S(5)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (1, 3, S(3)/2), (1, 4, S(5)/2)) ) # Couple j1 to j2, j3 to j4 # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(2, 2, (S( 1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/3 + \ sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ -JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ -JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(0, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/3 - \ sqrt(2)*JzKetCoupled(1, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S(1)/2, S(1)/2, S(1)/2, S(1)/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, -1, (S(1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S(1)/2, S( 1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(2, -2, (S( 1)/2, S(1)/2, S(1)/2, S(1)/2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) ) # j1=S(1)/2, S(1)/2, S(1)/2, 1 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(S(5)/2, S(5)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) ) assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ 2*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/6 + \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 + \ 2*sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(6)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 + \ sqrt(30)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 + \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/3 - \ JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 + \ 4*sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/2 + \ sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/2 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/10 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/6 - \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/3 + \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/3 + \ JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 - \ sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 + \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/6 + \ sqrt(6)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/6 + \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 + \ sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/30 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(3)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 + \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/6 + \ sqrt(6)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 - \ sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/30 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/6 - \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/3 + \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/3 - \ JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 + \ sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/2 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/10 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/2 - \ sqrt(30)*JzKetCoupled(S(3)/2, S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/10 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(6)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/6 - \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/3 - \ sqrt(3)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/3 + \ JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 - \ sqrt(5)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(3)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 + \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/6 - \ sqrt(6)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/6 + \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 + \ sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/30 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 + \ JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 - \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/6 - \ sqrt(6)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 - \ sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/30 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(6)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/6 - \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/3 - \ sqrt(3)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/3 - \ JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 + \ sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 0), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/2 + \ sqrt(30)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/10 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(S(1)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/2 - \ sqrt(10)*JzKetCoupled(S(3)/2, S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/5 + \ sqrt(10)*JzKetCoupled(S(5)/2, S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 + \ JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/3 + \ JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 - \ 4*sqrt(5)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(1)/2), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(6)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 - \ sqrt(30)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(5)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ 2*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(1)/2)) )/3 + \ sqrt(2)*JzKetCoupled(S(1)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(1)/2)) )/6 - \ sqrt(2)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 - \ 2*sqrt(10)*JzKetCoupled(S(3)/2, -S(1)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(1)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/10 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(3)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(1)/2), (1, 3, S(3)/2)) )/3 - \ 2*sqrt(15)*JzKetCoupled(S(3)/2, -S(3)/2, (S(1)/2, S(1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(3)/2)) )/15 + \ sqrt(10)*JzKetCoupled(S(5)/2, -S(3)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) )/5 assert couple(TensorProduct(JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(S(1)/2, S(-1)/2), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(S(5)/2, -S(5)/2, (S(1)/2, S( 1)/2, S(1)/2, 1), ((1, 2, 1), (3, 4, S(3)/2), (1, 3, S(5)/2)) ) def test_couple_symbolic(): assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ Sum(CG(j1, m1, j2, m2, j, m1 + m2) * JzKetCoupled(j, m1 + m2, ( j1, j2)), (j, m1 + m2, j1 + j2)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3))) == \ Sum(CG(j1, m1, j2, m2, j12, m1 + m2) * CG(j12, m1 + m2, j3, m3, j, m1 + m2 + m3) * JzKetCoupled(j, m1 + m2 + m3, (j1, j2, j3), ((1, 2, j12), (1, 3, j)) ), (j12, m1 + m2, j1 + j2), (j, m1 + m2 + m3, j12 + j3)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3)), ((1, 3), (1, 2)) ) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j13, m1 + m3, j2, m2, j, m1 + m2 + m3) * JzKetCoupled(j, m1 + m2 + m3, (j1, j2, j3), ((1, 3, j13), (1, 2, j)) ), (j13, m1 + m3, j1 + j3), (j, m1 + m2 + m3, j13 + j2)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4))) == \ Sum(CG(j1, m1, j2, m2, j12, m1 + m2) * CG(j12, m1 + m2, j3, m3, j123, m1 + m2 + m3) * CG(j123, m1 + m2 + m3, j4, m4, j, m1 + m2 + m3 + m4) * JzKetCoupled(j, m1 + m2 + m3 + m4, ( j1, j2, j3, j4), ((1, 2, j12), (1, 3, j123), (1, 4, j)) ), (j12, m1 + m2, j1 + j2), (j123, m1 + m2 + m3, j12 + j3), (j, m1 + m2 + m3 + m4, j123 + j4)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), ((1, 2), (3, 4), (1, 3)) ) == \ Sum(CG(j1, m1, j2, m2, j12, m1 + m2) * CG(j3, m3, j4, m4, j34, m3 + m4) * CG(j12, m1 + m2, j34, m3 + m4, j, m1 + m2 + m3 + m4) * JzKetCoupled(j, m1 + m2 + m3 + m4, ( j1, j2, j3, j4), ((1, 2, j12), (3, 4, j34), (1, 3, j)) ), (j12, m1 + m2, j1 + j2), (j34, m3 + m4, j3 + j4), (j, m1 + m2 + m3 + m4, j12 + j34)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), ((1, 3), (1, 4), (1, 2)) ) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j13, m1 + m3, j4, m4, j134, m1 + m3 + m4) * CG(j134, m1 + m3 + m4, j2, m2, j, m1 + m2 + m3 + m4) * JzKetCoupled(j, m1 + m2 + m3 + m4, ( j1, j2, j3, j4), ((1, 3, j13), (1, 4, j134), (1, 2, j)) ), (j13, m1 + m3, j1 + j3), (j134, m1 + m3 + m4, j13 + j4), (j, m1 + m2 + m3 + m4, j134 + j2)) def test_innerproduct(): assert InnerProduct(JzBra(1, 1), JzKet(1, 1)).doit() == 1 assert InnerProduct( JzBra(S(1)/2, S(1)/2), JzKet(S(1)/2, -S(1)/2)).doit() == 0 assert InnerProduct(JzBra(j, m), JzKet(j, m)).doit() == 1 assert InnerProduct(JzBra(1, 0), JyKet(1, 1)).doit() == I/sqrt(2) assert InnerProduct( JxBra(S(1)/2, S(1)/2), JzKet(S(1)/2, S(1)/2)).doit() == -sqrt(2)/2 assert InnerProduct(JyBra(1, 1), JzKet(1, 1)).doit() == S(1)/2 assert InnerProduct(JxBra(1, -1), JyKet(1, 1)).doit() == 0 def test_rotation_small_d(): # Symbolic tests # j = 1/2 assert Rotation.d(S(1)/2, S(1)/2, S(1)/2, beta).doit() == cos(beta/2) assert Rotation.d(S(1)/2, S(1)/2, -S(1)/2, beta).doit() == -sin(beta/2) assert Rotation.d(S(1)/2, -S(1)/2, S(1)/2, beta).doit() == sin(beta/2) assert Rotation.d(S(1)/2, -S(1)/2, -S(1)/2, beta).doit() == cos(beta/2) # j = 1 assert Rotation.d(1, 1, 1, beta).doit() == (1 + cos(beta))/2 assert Rotation.d(1, 1, 0, beta).doit() == -sin(beta)/sqrt(2) assert Rotation.d(1, 1, -1, beta).doit() == (1 - cos(beta))/2 assert Rotation.d(1, 0, 1, beta).doit() == sin(beta)/sqrt(2) assert Rotation.d(1, 0, 0, beta).doit() == cos(beta) assert Rotation.d(1, 0, -1, beta).doit() == -sin(beta)/sqrt(2) assert Rotation.d(1, -1, 1, beta).doit() == (1 - cos(beta))/2 assert Rotation.d(1, -1, 0, beta).doit() == sin(beta)/sqrt(2) assert Rotation.d(1, -1, -1, beta).doit() == (1 + cos(beta))/2 # j = 3/2 assert Rotation.d(S( 3)/2, S(3)/2, S(3)/2, beta).doit() == (3*cos(beta/2) + cos(3*beta/2))/4 assert Rotation.d(S(3)/2, S( 3)/2, S(1)/2, beta).doit() == -sqrt(3)*(sin(beta/2) + sin(3*beta/2))/4 assert Rotation.d(S(3)/2, S( 3)/2, -S(1)/2, beta).doit() == sqrt(3)*(cos(beta/2) - cos(3*beta/2))/4 assert Rotation.d(S(3)/2, S( 3)/2, -S(3)/2, beta).doit() == (-3*sin(beta/2) + sin(3*beta/2))/4 assert Rotation.d(S(3)/2, S( 1)/2, S(3)/2, beta).doit() == sqrt(3)*(sin(beta/2) + sin(3*beta/2))/4 assert Rotation.d(S( 3)/2, S(1)/2, S(1)/2, beta).doit() == (cos(beta/2) + 3*cos(3*beta/2))/4 assert Rotation.d(S( 3)/2, S(1)/2, -S(1)/2, beta).doit() == (sin(beta/2) - 3*sin(3*beta/2))/4 assert Rotation.d(S(3)/2, S( 1)/2, -S(3)/2, beta).doit() == sqrt(3)*(cos(beta/2) - cos(3*beta/2))/4 assert Rotation.d(S(3)/2, -S( 1)/2, S(3)/2, beta).doit() == sqrt(3)*(cos(beta/2) - cos(3*beta/2))/4 assert Rotation.d(S(3)/2, -S( 1)/2, S(1)/2, beta).doit() == (-sin(beta/2) + 3*sin(3*beta/2))/4 assert Rotation.d(S(3)/2, -S( 1)/2, -S(1)/2, beta).doit() == (cos(beta/2) + 3*cos(3*beta/2))/4 assert Rotation.d(S(3)/2, -S( 1)/2, -S(3)/2, beta).doit() == -sqrt(3)*(sin(beta/2) + sin(3*beta/2))/4 assert Rotation.d(S( 3)/2, -S(3)/2, S(3)/2, beta).doit() == (3*sin(beta/2) - sin(3*beta/2))/4 assert Rotation.d(S(3)/2, -S( 3)/2, S(1)/2, beta).doit() == sqrt(3)*(cos(beta/2) - cos(3*beta/2))/4 assert Rotation.d(S(3)/2, -S( 3)/2, -S(1)/2, beta).doit() == sqrt(3)*(sin(beta/2) + sin(3*beta/2))/4 assert Rotation.d(S(3)/2, -S( 3)/2, -S(3)/2, beta).doit() == (3*cos(beta/2) + cos(3*beta/2))/4 # j = 2 assert Rotation.d(2, 2, 2, beta).doit() == (3 + 4*cos(beta) + cos(2*beta))/8 assert Rotation.d(2, 2, 1, beta).doit() == -((cos(beta) + 1)*sin(beta))/2 assert Rotation.d(2, 2, 0, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, 2, -1, beta).doit() == (cos(beta) - 1)*sin(beta)/2 assert Rotation.d(2, 2, -2, beta).doit() == (3 - 4*cos(beta) + cos(2*beta))/8 assert Rotation.d(2, 1, 2, beta).doit() == (cos(beta) + 1)*sin(beta)/2 assert Rotation.d(2, 1, 1, beta).doit() == (cos(beta) + cos(2*beta))/2 assert Rotation.d(2, 1, 0, beta).doit() == -sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, 1, -1, beta).doit() == (cos(beta) - cos(2*beta))/2 assert Rotation.d(2, 1, -2, beta).doit() == (cos(beta) - 1)*sin(beta)/2 assert Rotation.d(2, 0, 2, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, 0, 1, beta).doit() == sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, 0, 0, beta).doit() == (1 + 3*cos(2*beta))/4 assert Rotation.d(2, 0, -1, beta).doit() == -sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, 0, -2, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, -1, 2, beta).doit() == (2*sin(beta) - sin(2*beta))/4 assert Rotation.d(2, -1, 1, beta).doit() == (cos(beta) - cos(2*beta))/2 assert Rotation.d(2, -1, 0, beta).doit() == sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, -1, -1, beta).doit() == (cos(beta) + cos(2*beta))/2 assert Rotation.d(2, -1, -2, beta).doit() == -((cos(beta) + 1)*sin(beta))/2 assert Rotation.d(2, -2, 2, beta).doit() == (3 - 4*cos(beta) + cos(2*beta))/8 assert Rotation.d(2, -2, 1, beta).doit() == (2*sin(beta) - sin(2*beta))/4 assert Rotation.d(2, -2, 0, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, -2, -1, beta).doit() == (cos(beta) + 1)*sin(beta)/2 assert Rotation.d(2, -2, -2, beta).doit() == (3 + 4*cos(beta) + cos(2*beta))/8 # Numerical tests # j = 1/2 assert Rotation.d(S(1)/2, S(1)/2, S(1)/2, pi/2).doit() == sqrt(2)/2 assert Rotation.d(S(1)/2, S(1)/2, -S(1)/2, pi/2).doit() == -sqrt(2)/2 assert Rotation.d(S(1)/2, -S(1)/2, S(1)/2, pi/2).doit() == sqrt(2)/2 assert Rotation.d(S(1)/2, -S(1)/2, -S(1)/2, pi/2).doit() == sqrt(2)/2 # j = 1 assert Rotation.d(1, 1, 1, pi/2).doit() == S(1)/2 assert Rotation.d(1, 1, 0, pi/2).doit() == -sqrt(2)/2 assert Rotation.d(1, 1, -1, pi/2).doit() == S(1)/2 assert Rotation.d(1, 0, 1, pi/2).doit() == sqrt(2)/2 assert Rotation.d(1, 0, 0, pi/2).doit() == 0 assert Rotation.d(1, 0, -1, pi/2).doit() == -sqrt(2)/2 assert Rotation.d(1, -1, 1, pi/2).doit() == S(1)/2 assert Rotation.d(1, -1, 0, pi/2).doit() == sqrt(2)/2 assert Rotation.d(1, -1, -1, pi/2).doit() == S(1)/2 # j = 3/2 assert Rotation.d(S(3)/2, S(3)/2, S(3)/2, pi/2).doit() == sqrt(2)/4 assert Rotation.d(S(3)/2, S(3)/2, S(1)/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.d(S(3)/2, S(3)/2, -S(1)/2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(S(3)/2, S(3)/2, -S(3)/2, pi/2).doit() == -sqrt(2)/4 assert Rotation.d(S(3)/2, S(1)/2, S(3)/2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(S(3)/2, S(1)/2, S(1)/2, pi/2).doit() == -sqrt(2)/4 assert Rotation.d(S(3)/2, S(1)/2, -S(1)/2, pi/2).doit() == -sqrt(2)/4 assert Rotation.d(S(3)/2, S(1)/2, -S(3)/2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(S(3)/2, -S(1)/2, S(3)/2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(S(3)/2, -S(1)/2, S(1)/2, pi/2).doit() == sqrt(2)/4 assert Rotation.d(S(3)/2, -S(1)/2, -S(1)/2, pi/2).doit() == -sqrt(2)/4 assert Rotation.d(S(3)/2, -S(1)/2, -S(3)/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.d(S(3)/2, -S(3)/2, S(3)/2, pi/2).doit() == sqrt(2)/4 assert Rotation.d(S(3)/2, -S(3)/2, S(1)/2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(S(3)/2, -S(3)/2, -S(1)/2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(S(3)/2, -S(3)/2, -S(3)/2, pi/2).doit() == sqrt(2)/4 # j = 2 assert Rotation.d(2, 2, 2, pi/2).doit() == S(1)/4 assert Rotation.d(2, 2, 1, pi/2).doit() == -S(1)/2 assert Rotation.d(2, 2, 0, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, 2, -1, pi/2).doit() == -S(1)/2 assert Rotation.d(2, 2, -2, pi/2).doit() == S(1)/4 assert Rotation.d(2, 1, 2, pi/2).doit() == S(1)/2 assert Rotation.d(2, 1, 1, pi/2).doit() == -S(1)/2 assert Rotation.d(2, 1, 0, pi/2).doit() == 0 assert Rotation.d(2, 1, -1, pi/2).doit() == S(1)/2 assert Rotation.d(2, 1, -2, pi/2).doit() == -S(1)/2 assert Rotation.d(2, 0, 2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, 0, 1, pi/2).doit() == 0 assert Rotation.d(2, 0, 0, pi/2).doit() == -S(1)/2 assert Rotation.d(2, 0, -1, pi/2).doit() == 0 assert Rotation.d(2, 0, -2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, -1, 2, pi/2).doit() == S(1)/2 assert Rotation.d(2, -1, 1, pi/2).doit() == S(1)/2 assert Rotation.d(2, -1, 0, pi/2).doit() == 0 assert Rotation.d(2, -1, -1, pi/2).doit() == -S(1)/2 assert Rotation.d(2, -1, -2, pi/2).doit() == -S(1)/2 assert Rotation.d(2, -2, 2, pi/2).doit() == S(1)/4 assert Rotation.d(2, -2, 1, pi/2).doit() == S(1)/2 assert Rotation.d(2, -2, 0, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, -2, -1, pi/2).doit() == S(1)/2 assert Rotation.d(2, -2, -2, pi/2).doit() == S(1)/4 def test_rotation_d(): # Symbolic tests # j = 1/2 assert Rotation.D(S(1)/2, S(1)/2, S(1)/2, alpha, beta, gamma).doit() == \ cos(beta/2)*exp(-I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(S(1)/2, S(1)/2, -S(1)/2, alpha, beta, gamma).doit() == \ -sin(beta/2)*exp(-I*alpha/2)*exp(I*gamma/2) assert Rotation.D(S(1)/2, -S(1)/2, S(1)/2, alpha, beta, gamma).doit() == \ sin(beta/2)*exp(I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(S(1)/2, -S(1)/2, -S(1)/2, alpha, beta, gamma).doit() == \ cos(beta/2)*exp(I*alpha/2)*exp(I*gamma/2) # j = 1 assert Rotation.D(1, 1, 1, alpha, beta, gamma).doit() == \ (1 + cos(beta))/2*exp(-I*alpha)*exp(-I*gamma) assert Rotation.D(1, 1, 0, alpha, beta, gamma).doit() == -sin( beta)/sqrt(2)*exp(-I*alpha) assert Rotation.D(1, 1, -1, alpha, beta, gamma).doit() == \ (1 - cos(beta))/2*exp(-I*alpha)*exp(I*gamma) assert Rotation.D(1, 0, 1, alpha, beta, gamma).doit() == \ sin(beta)/sqrt(2)*exp(-I*gamma) assert Rotation.D(1, 0, 0, alpha, beta, gamma).doit() == cos(beta) assert Rotation.D(1, 0, -1, alpha, beta, gamma).doit() == \ -sin(beta)/sqrt(2)*exp(I*gamma) assert Rotation.D(1, -1, 1, alpha, beta, gamma).doit() == \ (1 - cos(beta))/2*exp(I*alpha)*exp(-I*gamma) assert Rotation.D(1, -1, 0, alpha, beta, gamma).doit() == \ sin(beta)/sqrt(2)*exp(I*alpha) assert Rotation.D(1, -1, -1, alpha, beta, gamma).doit() == \ (1 + cos(beta))/2*exp(I*alpha)*exp(I*gamma) # j = 3/2 assert Rotation.D(S(3)/2, S(3)/2, S(3)/2, alpha, beta, gamma).doit() == \ (3*cos(beta/2) + cos(3*beta/2))/4*exp(-3*I*alpha/2)*exp(-3*I*gamma/2) assert Rotation.D(S(3)/2, S(3)/2, S(1)/2, alpha, beta, gamma).doit() == \ -sqrt(3)*(sin(beta/2) + sin(3*beta/2))/4*exp(-3*I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(S(3)/2, S(3)/2, -S(1)/2, alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(3*beta/2))/4*exp(-3*I*alpha/2)*exp(I*gamma/2) assert Rotation.D(S(3)/2, S(3)/2, -S(3)/2, alpha, beta, gamma).doit() == \ (-3*sin(beta/2) + sin(3*beta/2))/4*exp(-3*I*alpha/2)*exp(3*I*gamma/2) assert Rotation.D(S(3)/2, S(1)/2, S(3)/2, alpha, beta, gamma).doit() == \ sqrt(3)*(sin(beta/2) + sin(3*beta/2))/4*exp(-I*alpha/2)*exp(-3*I*gamma/2) assert Rotation.D(S(3)/2, S(1)/2, S(1)/2, alpha, beta, gamma).doit() == \ (cos(beta/2) + 3*cos(3*beta/2))/4*exp(-I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(S(3)/2, S(1)/2, -S(1)/2, alpha, beta, gamma).doit() == \ (sin(beta/2) - 3*sin(3*beta/2))/4*exp(-I*alpha/2)*exp(I*gamma/2) assert Rotation.D(S(3)/2, S(1)/2, -S(3)/2, alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(3*beta/2))/4*exp(-I*alpha/2)*exp(3*I*gamma/2) assert Rotation.D(S(3)/2, -S(1)/2, S(3)/2, alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(3*beta/2))/4*exp(I*alpha/2)*exp(-3*I*gamma/2) assert Rotation.D(S(3)/2, -S(1)/2, S(1)/2, alpha, beta, gamma).doit() == \ (-sin(beta/2) + 3*sin(3*beta/2))/4*exp(I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(S(3)/2, -S(1)/2, -S(1)/2, alpha, beta, gamma).doit() == \ (cos(beta/2) + 3*cos(3*beta/2))/4*exp(I*alpha/2)*exp(I*gamma/2) assert Rotation.D(S(3)/2, -S(1)/2, -S(3)/2, alpha, beta, gamma).doit() == \ -sqrt(3)*(sin(beta/2) + sin(3*beta/2))/4*exp(I*alpha/2)*exp(3*I*gamma/2) assert Rotation.D(S(3)/2, -S(3)/2, S(3)/2, alpha, beta, gamma).doit() == \ (3*sin(beta/2) - sin(3*beta/2))/4*exp(3*I*alpha/2)*exp(-3*I*gamma/2) assert Rotation.D(S(3)/2, -S(3)/2, S(1)/2, alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(3*beta/2))/4*exp(3*I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(S(3)/2, -S(3)/2, -S(1)/2, alpha, beta, gamma).doit() == \ sqrt(3)*(sin(beta/2) + sin(3*beta/2))/4*exp(3*I*alpha/2)*exp(I*gamma/2) assert Rotation.D(S(3)/2, -S(3)/2, -S(3)/2, alpha, beta, gamma).doit() == \ (3*cos(beta/2) + cos(3*beta/2))/4*exp(3*I*alpha/2)*exp(3*I*gamma/2) # j = 2 assert Rotation.D(2, 2, 2, alpha, beta, gamma).doit() == \ (3 + 4*cos(beta) + cos(2*beta))/8*exp(-2*I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, 2, 1, alpha, beta, gamma).doit() == \ -((cos(beta) + 1)*exp(-2*I*alpha)*exp(-I*gamma)*sin(beta))/2 assert Rotation.D(2, 2, 0, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(-2*I*alpha) assert Rotation.D(2, 2, -1, alpha, beta, gamma).doit() == \ (cos(beta) - 1)*sin(beta)/2*exp(-2*I*alpha)*exp(I*gamma) assert Rotation.D(2, 2, -2, alpha, beta, gamma).doit() == \ (3 - 4*cos(beta) + cos(2*beta))/8*exp(-2*I*alpha)*exp(2*I*gamma) assert Rotation.D(2, 1, 2, alpha, beta, gamma).doit() == \ (cos(beta) + 1)*sin(beta)/2*exp(-I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, 1, 1, alpha, beta, gamma).doit() == \ (cos(beta) + cos(2*beta))/2*exp(-I*alpha)*exp(-I*gamma) assert Rotation.D(2, 1, 0, alpha, beta, gamma).doit() == -sqrt(6)* \ sin(2*beta)/4*exp(-I*alpha) assert Rotation.D(2, 1, -1, alpha, beta, gamma).doit() == \ (cos(beta) - cos(2*beta))/2*exp(-I*alpha)*exp(I*gamma) assert Rotation.D(2, 1, -2, alpha, beta, gamma).doit() == \ (cos(beta) - 1)*sin(beta)/2*exp(-I*alpha)*exp(2*I*gamma) assert Rotation.D(2, 0, 2, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(-2*I*gamma) assert Rotation.D(2, 0, 1, alpha, beta, gamma).doit() == sqrt(6)* \ sin(2*beta)/4*exp(-I*gamma) assert Rotation.D( 2, 0, 0, alpha, beta, gamma).doit() == (1 + 3*cos(2*beta))/4 assert Rotation.D(2, 0, -1, alpha, beta, gamma).doit() == -sqrt(6)* \ sin(2*beta)/4*exp(I*gamma) assert Rotation.D(2, 0, -2, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(2*I*gamma) assert Rotation.D(2, -1, 2, alpha, beta, gamma).doit() == \ (2*sin(beta) - sin(2*beta))/4*exp(I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, -1, 1, alpha, beta, gamma).doit() == \ (cos(beta) - cos(2*beta))/2*exp(I*alpha)*exp(-I*gamma) assert Rotation.D(2, -1, 0, alpha, beta, gamma).doit() == sqrt(6)* \ sin(2*beta)/4*exp(I*alpha) assert Rotation.D(2, -1, -1, alpha, beta, gamma).doit() == \ (cos(beta) + cos(2*beta))/2*exp(I*alpha)*exp(I*gamma) assert Rotation.D(2, -1, -2, alpha, beta, gamma).doit() == \ -((cos(beta) + 1)*sin(beta))/2*exp(I*alpha)*exp(2*I*gamma) assert Rotation.D(2, -2, 2, alpha, beta, gamma).doit() == \ (3 - 4*cos(beta) + cos(2*beta))/8*exp(2*I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, -2, 1, alpha, beta, gamma).doit() == \ (2*sin(beta) - sin(2*beta))/4*exp(2*I*alpha)*exp(-I*gamma) assert Rotation.D(2, -2, 0, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(2*I*alpha) assert Rotation.D(2, -2, -1, alpha, beta, gamma).doit() == \ (cos(beta) + 1)*sin(beta)/2*exp(2*I*alpha)*exp(I*gamma) assert Rotation.D(2, -2, -2, alpha, beta, gamma).doit() == \ (3 + 4*cos(beta) + cos(2*beta))/8*exp(2*I*alpha)*exp(2*I*gamma) # Numerical tests # j = 1/2 assert Rotation.D( S(1)/2, S(1)/2, S(1)/2, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/2 assert Rotation.D( S(1)/2, S(1)/2, -S(1)/2, pi/2, pi/2, pi/2).doit() == -sqrt(2)/2 assert Rotation.D( S(1)/2, -S(1)/2, S(1)/2, pi/2, pi/2, pi/2).doit() == sqrt(2)/2 assert Rotation.D( S(1)/2, -S(1)/2, -S(1)/2, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/2 # j = 1 assert Rotation.D(1, 1, 1, pi/2, pi/2, pi/2).doit() == -S(1)/2 assert Rotation.D(1, 1, 0, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/2 assert Rotation.D(1, 1, -1, pi/2, pi/2, pi/2).doit() == S(1)/2 assert Rotation.D(1, 0, 1, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/2 assert Rotation.D(1, 0, 0, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(1, 0, -1, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/2 assert Rotation.D(1, -1, 1, pi/2, pi/2, pi/2).doit() == S(1)/2 assert Rotation.D(1, -1, 0, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/2 assert Rotation.D(1, -1, -1, pi/2, pi/2, pi/2).doit() == -S(1)/2 # j = 3/2 assert Rotation.D( S(3)/2, S(3)/2, S(3)/2, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/4 assert Rotation.D( S(3)/2, S(3)/2, S(1)/2, pi/2, pi/2, pi/2).doit() == sqrt(6)/4 assert Rotation.D( S(3)/2, S(3)/2, -S(1)/2, pi/2, pi/2, pi/2).doit() == -I*sqrt(6)/4 assert Rotation.D( S(3)/2, S(3)/2, -S(3)/2, pi/2, pi/2, pi/2).doit() == -sqrt(2)/4 assert Rotation.D( S(3)/2, S(1)/2, S(3)/2, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D( S(3)/2, S(1)/2, S(1)/2, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/4 assert Rotation.D( S(3)/2, S(1)/2, -S(1)/2, pi/2, pi/2, pi/2).doit() == -sqrt(2)/4 assert Rotation.D( S(3)/2, S(1)/2, -S(3)/2, pi/2, pi/2, pi/2).doit() == I*sqrt(6)/4 assert Rotation.D( S(3)/2, -S(1)/2, S(3)/2, pi/2, pi/2, pi/2).doit() == -I*sqrt(6)/4 assert Rotation.D( S(3)/2, -S(1)/2, S(1)/2, pi/2, pi/2, pi/2).doit() == sqrt(2)/4 assert Rotation.D( S(3)/2, -S(1)/2, -S(1)/2, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/4 assert Rotation.D( S(3)/2, -S(1)/2, -S(3)/2, pi/2, pi/2, pi/2).doit() == sqrt(6)/4 assert Rotation.D( S(3)/2, -S(3)/2, S(3)/2, pi/2, pi/2, pi/2).doit() == sqrt(2)/4 assert Rotation.D( S(3)/2, -S(3)/2, S(1)/2, pi/2, pi/2, pi/2).doit() == I*sqrt(6)/4 assert Rotation.D( S(3)/2, -S(3)/2, -S(1)/2, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D( S(3)/2, -S(3)/2, -S(3)/2, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/4 # j = 2 assert Rotation.D(2, 2, 2, pi/2, pi/2, pi/2).doit() == S(1)/4 assert Rotation.D(2, 2, 1, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, 2, 0, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, 2, -1, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, 2, -2, pi/2, pi/2, pi/2).doit() == S(1)/4 assert Rotation.D(2, 1, 2, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, 1, 1, pi/2, pi/2, pi/2).doit() == S(1)/2 assert Rotation.D(2, 1, 0, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, 1, -1, pi/2, pi/2, pi/2).doit() == S(1)/2 assert Rotation.D(2, 1, -2, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, 0, 2, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, 0, 1, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, 0, 0, pi/2, pi/2, pi/2).doit() == -S(1)/2 assert Rotation.D(2, 0, -1, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, 0, -2, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, -1, 2, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, -1, 1, pi/2, pi/2, pi/2).doit() == S(1)/2 assert Rotation.D(2, -1, 0, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, -1, -1, pi/2, pi/2, pi/2).doit() == S(1)/2 assert Rotation.D(2, -1, -2, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, -2, 2, pi/2, pi/2, pi/2).doit() == S(1)/4 assert Rotation.D(2, -2, 1, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, -2, 0, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, -2, -1, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, -2, -2, pi/2, pi/2, pi/2).doit() == S(1)/4 def test_wignerd(): assert Rotation.D( j, m, mp, alpha, beta, gamma) == WignerD(j, m, mp, alpha, beta, gamma) assert Rotation.d(j, m, mp, beta) == WignerD(j, m, mp, 0, beta, 0) def test_jplus(): assert Commutator(Jplus, Jminus).doit() == 2*hbar*Jz assert Jplus.matrix_element(1, 1, 1, 1) == 0 assert Jplus.rewrite('xyz') == Jx + I*Jy # Normal operators, normal states # Numerical assert qapply(Jplus*JxKet(1, 1)) == \ -hbar*sqrt(2)*JxKet(1, 0)/2 + hbar*JxKet(1, 1) assert qapply(Jplus*JyKet(1, 1)) == \ hbar*sqrt(2)*JyKet(1, 0)/2 + I*hbar*JyKet(1, 1) assert qapply(Jplus*JzKet(1, 1)) == 0 # Symbolic assert qapply(Jplus*JxKet(j, m)) == \ Sum(hbar * sqrt(-mi**2 - mi + j**2 + j) * WignerD(j, mi, m, 0, pi/2, 0) * Sum(WignerD(j, mi1, mi + 1, 0, 3*pi/2, 0) * JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JyKet(j, m)) == \ Sum(hbar * sqrt(j**2 + j - mi**2 - mi) * WignerD(j, mi, m, 3*pi/2, -pi/2, pi/2) * Sum(WignerD(j, mi1, mi + 1, 3*pi/2, pi/2, pi/2) * JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JzKet(j, m)) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKet(j, m + 1) # Normal operators, coupled states # Numerical assert qapply(Jplus*JxKetCoupled(1, 1, (1, 1))) == -hbar*sqrt(2) * \ JxKetCoupled(1, 0, (1, 1))/2 + hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jplus*JyKetCoupled(1, 1, (1, 1))) == hbar*sqrt(2) * \ JyKetCoupled(1, 0, (1, 1))/2 + I*hbar*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jplus*JzKet(1, 1)) == 0 # Symbolic assert qapply(Jplus*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar * sqrt(-mi**2 - mi + j**2 + j) * WignerD(j, mi, m, 0, pi/2, 0) * Sum( WignerD( j, mi1, mi + 1, 0, 3*pi/2, 0) * JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar * sqrt(j**2 + j - mi**2 - mi) * WignerD(j, mi, m, 3*pi/2, -pi/2, pi/2) * Sum( WignerD(j, mi1, mi + 1, 3*pi/2, pi/2, pi/2) * JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JzKetCoupled(j, m, (j1, j2))) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKetCoupled(j, m + 1, (j1, j2)) # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*sqrt(2)*TensorProduct(JxKet(1, 0), JxKet(1, -1))/2 + \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) + \ hbar*sqrt(2)*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JyKet(1, 0), JyKet(1, -1))/2 + \ hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) + \ hbar*sqrt(2)*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 assert qapply( TensorProduct(Jplus, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == 0 assert qapply(TensorProduct(1, Jplus)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0)) # Symbolic assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar * sqrt(-mi**2 - mi + j1**2 + j1) * WignerD(j1, mi, m1, 0, pi/2, 0) * Sum(WignerD(j1, mi1, mi + 1, 0, 3*pi/2, 0) * JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar * sqrt(-mi**2 - mi + j2**2 + j2) * WignerD(j2, mi, m2, 0, pi/2, 0) * Sum(WignerD(j2, mi1, mi + 1, 0, 3*pi/2, 0) * JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar * sqrt(j1**2 + j1 - mi**2 - mi) * WignerD(j1, mi, m1, 3*pi/2, -pi/2, pi/2) * Sum(WignerD(j1, mi1, mi + 1, 3*pi/2, pi/2, pi/2) * JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar * sqrt(j2**2 + j2 - mi**2 - mi) * WignerD(j2, mi, m2, 3*pi/2, -pi/2, pi/2) * Sum(WignerD(j2, mi1, mi + 1, 3*pi/2, pi/2, pi/2) * JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1)) def test_jminus(): assert qapply(Jminus*JzKet(1, -1)) == 0 assert Jminus.matrix_element(1, 0, 1, 1) == sqrt(2)*hbar assert Jminus.rewrite('xyz') == Jx - I*Jy # Normal operators, normal states # Numerical assert qapply(Jminus*JxKet(1, 1)) == \ hbar*sqrt(2)*JxKet(1, 0)/2 + hbar*JxKet(1, 1) assert qapply(Jminus*JyKet(1, 1)) == \ hbar*sqrt(2)*JyKet(1, 0)/2 - hbar*I*JyKet(1, 1) assert qapply(Jminus*JzKet(1, 1)) == sqrt(2)*hbar*JzKet(1, 0) # Symbolic assert qapply(Jminus*JxKet(j, m)) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, 0, pi/2, 0) * Sum(WignerD(j, mi1, mi - 1, 0, 3*pi/2, 0)*JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JyKet(j, m)) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, 3*pi/2, -pi/2, pi/2) * Sum(WignerD(j, mi1, mi - 1, 3*pi/2, pi/2, pi/2)*JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JzKet(j, m)) == \ hbar*sqrt(j**2 + j - m**2 + m)*JzKet(j, m - 1) # Normal operators, coupled states # Numerical assert qapply(Jminus*JxKetCoupled(1, 1, (1, 1))) == \ hbar*sqrt(2)*JxKetCoupled(1, 0, (1, 1))/2 + \ hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jminus*JyKetCoupled(1, 1, (1, 1))) == \ hbar*sqrt(2)*JyKetCoupled(1, 0, (1, 1))/2 - \ hbar*I*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jminus*JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*hbar*JzKetCoupled(1, 0, (1, 1)) # Symbolic assert qapply(Jminus*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, 0, pi/2, 0) * Sum(WignerD(j, mi1, mi - 1, 0, 3*pi/2, 0)*JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, 3*pi/2, -pi/2, pi/2) * Sum( WignerD(j, mi1, mi - 1, 3*pi/2, pi/2, pi/2)* JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JzKetCoupled(j, m, (j1, j2))) == \ hbar*sqrt(j**2 + j - m**2 + m)*JzKetCoupled(j, m - 1, (j1, j2)) # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JxKet(1, 0), JxKet(1, -1))/2 + \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) - \ hbar*sqrt(2)*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JyKet(1, 0), JyKet(1, -1))/2 - \ hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) + \ hbar*sqrt(2)*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ sqrt(2)*hbar*TensorProduct(JzKet(1, 0), JzKet(1, -1)) assert qapply(TensorProduct( 1, Jminus)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == 0 # Symbolic assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar*sqrt(j1**2 + j1 - mi**2 + mi)*WignerD(j1, mi, m1, 0, pi/2, 0) * Sum(WignerD(j1, mi1, mi - 1, 0, 3*pi/2, 0)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*sqrt(j2**2 + j2 - mi**2 + mi)*WignerD(j2, mi, m2, 0, pi/2, 0) * Sum(WignerD(j2, mi1, mi - 1, 0, 3*pi/2, 0)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*sqrt(j1**2 + j1 - mi**2 + mi)*WignerD(j1, mi, m1, 3*pi/2, -pi/2, pi/2) * Sum(WignerD(j1, mi1, mi - 1, 3*pi/2, pi/2, pi/2)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*sqrt(j2**2 + j2 - mi**2 + mi)*WignerD(j2, mi, m2, 3*pi/2, -pi/2, pi/2) * Sum(WignerD(j2, mi1, mi - 1, 3*pi/2, pi/2, pi/2)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1)) def test_j2(): assert Commutator(J2, Jz).doit() == 0 assert J2.matrix_element(1, 1, 1, 1) == 2*hbar**2 # Normal operators, normal states # Numerical assert qapply(J2*JxKet(1, 1)) == 2*hbar**2*JxKet(1, 1) assert qapply(J2*JyKet(1, 1)) == 2*hbar**2*JyKet(1, 1) assert qapply(J2*JzKet(1, 1)) == 2*hbar**2*JzKet(1, 1) # Symbolic assert qapply(J2*JxKet(j, m)) == \ hbar**2*j**2*JxKet(j, m) + hbar**2*j*JxKet(j, m) assert qapply(J2*JyKet(j, m)) == \ hbar**2*j**2*JyKet(j, m) + hbar**2*j*JyKet(j, m) assert qapply(J2*JzKet(j, m)) == \ hbar**2*j**2*JzKet(j, m) + hbar**2*j*JzKet(j, m) # Normal operators, coupled states # Numerical assert qapply(J2*JxKetCoupled(1, 1, (1, 1))) == \ 2*hbar**2*JxKetCoupled(1, 1, (1, 1)) assert qapply(J2*JyKetCoupled(1, 1, (1, 1))) == \ 2*hbar**2*JyKetCoupled(1, 1, (1, 1)) assert qapply(J2*JzKetCoupled(1, 1, (1, 1))) == \ 2*hbar**2*JzKetCoupled(1, 1, (1, 1)) # Symbolic assert qapply(J2*JxKetCoupled(j, m, (j1, j2))) == \ hbar**2*j**2*JxKetCoupled(j, m, (j1, j2)) + \ hbar**2*j*JxKetCoupled(j, m, (j1, j2)) assert qapply(J2*JyKetCoupled(j, m, (j1, j2))) == \ hbar**2*j**2*JyKetCoupled(j, m, (j1, j2)) + \ hbar**2*j*JyKetCoupled(j, m, (j1, j2)) assert qapply(J2*JzKetCoupled(j, m, (j1, j2))) == \ hbar**2*j**2*JzKetCoupled(j, m, (j1, j2)) + \ hbar**2*j*JzKetCoupled(j, m, (j1, j2)) # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(J2, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ 2*hbar**2*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, J2)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ 2*hbar**2*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ 2*hbar**2*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, J2)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ 2*hbar**2*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ 2*hbar**2*TensorProduct(JzKet(1, 1), JzKet(1, -1)) assert qapply(TensorProduct(1, J2)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ 2*hbar**2*TensorProduct(JzKet(1, 1), JzKet(1, -1)) # Symbolic assert qapply(TensorProduct(J2, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar**2*j1**2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) + \ hbar**2*j1*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(1, J2)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar**2*j2**2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) + \ hbar**2*j2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar**2*j1**2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) + \ hbar**2*j1*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(1, J2)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar**2*j2**2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) + \ hbar**2*j2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar**2*j1**2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) + \ hbar**2*j1*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) assert qapply(TensorProduct(1, J2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar**2*j2**2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) + \ hbar**2*j2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) def test_jx(): assert Commutator(Jx, Jz).doit() == -I*hbar*Jy assert Jx.rewrite('plusminus') == (Jminus + Jplus)/2 assert represent(Jx, basis=Jz, j=1) == ( represent(Jplus, basis=Jz, j=1) + represent(Jminus, basis=Jz, j=1))/2 # Normal operators, normal states # Numerical assert qapply(Jx*JxKet(1, 1)) == hbar*JxKet(1, 1) assert qapply(Jx*JyKet(1, 1)) == hbar*JyKet(1, 1) assert qapply(Jx*JzKet(1, 1)) == sqrt(2)*hbar*JzKet(1, 0)/2 # Symbolic assert qapply(Jx*JxKet(j, m)) == hbar*m*JxKet(j, m) assert qapply(Jx*JyKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, 0, pi/2)*Sum(WignerD(j, mi1, mi, 3*pi/2, 0, 0)*JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jx*JzKet(j, m)) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKet(j, m + 1)/2 + hbar*sqrt(j**2 + j - m**2 + m)*JzKet(j, m - 1)/2 # Normal operators, coupled states # Numerical assert qapply(Jx*JxKetCoupled(1, 1, (1, 1))) == \ hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jx*JyKetCoupled(1, 1, (1, 1))) == \ hbar*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jx*JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*hbar*JzKetCoupled(1, 0, (1, 1))/2 # Symbolic assert qapply(Jx*JxKetCoupled(j, m, (j1, j2))) == \ hbar*m*JxKetCoupled(j, m, (j1, j2)) assert qapply(Jx*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, 0, pi/2)*Sum(WignerD(j, mi1, mi, 3*pi/2, 0, 0)*JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jx*JzKetCoupled(j, m, (j1, j2))) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKetCoupled(j, m + 1, (j1, j2))/2 + \ hbar*sqrt(j**2 + j - m**2 + m)*JzKetCoupled(j, m - 1, (j1, j2))/2 # Normal operators, uncoupled states # Numerical assert qapply(Jx*TensorProduct(JxKet(1, 1), JxKet(1, 1))) == \ 2*hbar*TensorProduct(JxKet(1, 1), JxKet(1, 1)) assert qapply(Jx*TensorProduct(JyKet(1, 1), JyKet(1, 1))) == \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, 1)) + \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, 1)) assert qapply(Jx*TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ sqrt(2)*hbar*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 + \ sqrt(2)*hbar*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert qapply(Jx*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == 0 # Symbolic assert qapply(Jx*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar*m1*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) + \ hbar*m2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(Jx*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, 0, pi/2)*Sum(WignerD(j1, mi1, mi, 3*pi/2, 0, 0)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) + \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, 0, pi/2)*Sum(WignerD(j2, mi1, mi, 3*pi/2, 0, 0)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(Jx*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*sqrt(j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 + \ hbar*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jx, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 assert qapply(TensorProduct(1, Jx)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 # Symbolic assert qapply(TensorProduct(Jx, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar*m1*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar*m2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, 0, pi/2) * Sum(WignerD(j1, mi1, mi, 3*pi/2, 0, 0)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, 0, pi/2) * Sum(WignerD(j2, mi1, mi, 3*pi/2, 0, 0)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*sqrt( j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 assert qapply(TensorProduct(1, Jx)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 def test_jy(): assert Commutator(Jy, Jz).doit() == I*hbar*Jx assert Jy.rewrite('plusminus') == (Jplus - Jminus)/(2*I) assert represent(Jy, basis=Jz) == ( represent(Jplus, basis=Jz) - represent(Jminus, basis=Jz))/(2*I) # Normal operators, normal states # Numerical assert qapply(Jy*JxKet(1, 1)) == hbar*JxKet(1, 1) assert qapply(Jy*JyKet(1, 1)) == hbar*JyKet(1, 1) assert qapply(Jy*JzKet(1, 1)) == sqrt(2)*hbar*I*JzKet(1, 0)/2 # Symbolic assert qapply(Jy*JxKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, 3*pi/2, 0, 0)*Sum(WignerD( j, mi1, mi, 0, 0, pi/2)*JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jy*JyKet(j, m)) == hbar*m*JyKet(j, m) assert qapply(Jy*JzKet(j, m)) == \ -hbar*I*sqrt(j**2 + j - m**2 - m)*JzKet( j, m + 1)/2 + hbar*I*sqrt(j**2 + j - m**2 + m)*JzKet(j, m - 1)/2 # Normal operators, coupled states # Numerical assert qapply(Jy*JxKetCoupled(1, 1, (1, 1))) == \ hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jy*JyKetCoupled(1, 1, (1, 1))) == \ hbar*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jy*JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*hbar*I*JzKetCoupled(1, 0, (1, 1))/2 # Symbolic assert qapply(Jy*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, 3*pi/2, 0, 0)*Sum(WignerD(j, mi1, mi, 0, 0, pi/2)*JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jy*JyKetCoupled(j, m, (j1, j2))) == \ hbar*m*JyKetCoupled(j, m, (j1, j2)) assert qapply(Jy*JzKetCoupled(j, m, (j1, j2))) == \ -hbar*I*sqrt(j**2 + j - m**2 - m)*JzKetCoupled(j, m + 1, (j1, j2))/2 + \ hbar*I*sqrt(j**2 + j - m**2 + m)*JzKetCoupled(j, m - 1, (j1, j2))/2 # Normal operators, uncoupled states # Numerical assert qapply(Jy*TensorProduct(JxKet(1, 1), JxKet(1, 1))) == \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, 1)) + \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, 1)) assert qapply(Jy*TensorProduct(JyKet(1, 1), JyKet(1, 1))) == \ 2*hbar*TensorProduct(JyKet(1, 1), JyKet(1, 1)) assert qapply(Jy*TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ sqrt(2)*hbar*I*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 + \ sqrt(2)*hbar*I*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert qapply(Jy*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == 0 # Symbolic assert qapply(Jy*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 3*pi/2, 0, 0)*Sum(WignerD(j2, mi1, mi, 0, 0, pi/2)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) + \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 3*pi/2, 0, 0)*Sum(WignerD(j1, mi1, mi, 0, 0, pi/2)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(Jy*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar*m1*TensorProduct(JyKet(j1, m1), JyKet( j2, m2)) + hbar*m2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(Jy*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ -hbar*I*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*I*sqrt(j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 + \ -hbar*I*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*I*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jy, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*I*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 assert qapply(TensorProduct(1, Jy)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ -hbar*sqrt(2)*I*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 # Symbolic assert qapply(TensorProduct(Jy, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 3*pi/2, 0, 0) * Sum(WignerD(j1, mi1, mi, 0, 0, pi/2)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 3*pi/2, 0, 0) * Sum(WignerD(j2, mi1, mi, 0, 0, pi/2)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar*m1*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar*m2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ -hbar*I*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*I*sqrt( j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 assert qapply(TensorProduct(1, Jy)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ -hbar*I*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*I*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 def test_jz(): assert Commutator(Jz, Jminus).doit() == -hbar*Jminus # Normal operators, normal states # Numerical assert qapply(Jz*JxKet(1, 1)) == -sqrt(2)*hbar*JxKet(1, 0)/2 assert qapply(Jz*JyKet(1, 1)) == -sqrt(2)*hbar*I*JyKet(1, 0)/2 assert qapply(Jz*JzKet(2, 1)) == hbar*JzKet(2, 1) # Symbolic assert qapply(Jz*JxKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, pi/2, 0)*Sum(WignerD(j, mi1, mi, 0, 3*pi/2, 0)*JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JyKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, 3*pi/2, -pi/2, pi/2)*Sum(WignerD(j, mi1, mi, 3*pi/2, pi/2, pi/2)*JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JzKet(j, m)) == hbar*m*JzKet(j, m) # Normal operators, coupled states # Numerical assert qapply(Jz*JxKetCoupled(1, 1, (1, 1))) == \ -sqrt(2)*hbar*JxKetCoupled(1, 0, (1, 1))/2 assert qapply(Jz*JyKetCoupled(1, 1, (1, 1))) == \ -sqrt(2)*hbar*I*JyKetCoupled(1, 0, (1, 1))/2 assert qapply(Jz*JzKetCoupled(1, 1, (1, 1))) == \ hbar*JzKetCoupled(1, 1, (1, 1)) # Symbolic assert qapply(Jz*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, pi/2, 0)*Sum(WignerD(j, mi1, mi, 0, 3*pi/2, 0)*JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, 3*pi/2, -pi/2, pi/2)*Sum(WignerD(j, mi1, mi, 3*pi/2, pi/2, pi/2)*JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JzKetCoupled(j, m, (j1, j2))) == \ hbar*m*JzKetCoupled(j, m, (j1, j2)) # Normal operators, uncoupled states # Numerical assert qapply(Jz*TensorProduct(JxKet(1, 1), JxKet(1, 1))) == \ -sqrt(2)*hbar*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 - \ sqrt(2)*hbar*TensorProduct(JxKet(1, 0), JxKet(1, 1))/2 assert qapply(Jz*TensorProduct(JyKet(1, 1), JyKet(1, 1))) == \ -sqrt(2)*hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 - \ sqrt(2)*hbar*I*TensorProduct(JyKet(1, 0), JyKet(1, 1))/2 assert qapply(Jz*TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ 2*hbar*TensorProduct(JzKet(1, 1), JzKet(1, 1)) assert qapply(Jz*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == 0 # Symbolic assert qapply(Jz*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, pi/2, 0)*Sum(WignerD(j2, mi1, mi, 0, 3*pi/2, 0)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) + \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, pi/2, 0)*Sum(WignerD(j1, mi1, mi, 0, 3*pi/2, 0)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(Jz*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 3*pi/2, -pi/2, pi/2)*Sum(WignerD(j2, mi1, mi, 3*pi/2, pi/2, pi/2)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) + \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 3*pi/2, -pi/2, pi/2)*Sum(WignerD(j1, mi1, mi, 3*pi/2, pi/2, pi/2)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(Jz*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*m1*TensorProduct(JzKet(j1, m1), JzKet( j2, m2)) + hbar*m2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) # Uncoupled Operators # Numerical assert qapply(TensorProduct(Jz, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -sqrt(2)*hbar*TensorProduct(JxKet(1, 0), JxKet(1, -1))/2 assert qapply(TensorProduct(1, Jz)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -sqrt(2)*hbar*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 assert qapply(TensorProduct(Jz, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -sqrt(2)*I*hbar*TensorProduct(JyKet(1, 0), JyKet(1, -1))/2 assert qapply(TensorProduct(1, Jz)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ sqrt(2)*I*hbar*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 assert qapply(TensorProduct(Jz, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*TensorProduct(JzKet(1, 1), JzKet(1, -1)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ -hbar*TensorProduct(JzKet(1, 1), JzKet(1, -1)) # Symbolic assert qapply(TensorProduct(Jz, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, pi/2, 0)*Sum(WignerD(j1, mi1, mi, 0, 3*pi/2, 0)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, pi/2, 0)*Sum(WignerD(j2, mi1, mi, 0, 3*pi/2, 0)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jz, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 3*pi/2, -pi/2, pi/2)*Sum(WignerD(j1, mi1, mi, 3*pi/2, pi/2, pi/2)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 3*pi/2, -pi/2, pi/2)*Sum(WignerD(j2, mi1, mi, 3*pi/2, pi/2, pi/2)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jz, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*m1*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*m2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) def test_rotation(): a, b, g = symbols('a b g') j, m = symbols('j m') #Uncoupled answ = [JxKet(1,-1)/2 - sqrt(2)*JxKet(1,0)/2 + JxKet(1,1)/2 , JyKet(1,-1)/2 - sqrt(2)*JyKet(1,0)/2 + JyKet(1,1)/2 , JzKet(1,-1)/2 - sqrt(2)*JzKet(1,0)/2 + JzKet(1,1)/2] fun = [state(1, 1) for state in (JxKet, JyKet, JzKet)] for state in fun: got = qapply(Rotation(0, pi/2, 0)*state) assert got in answ answ.remove(got) assert not answ arg = Rotation(a, b, g)*fun[0] assert qapply(arg) == (-exp(-I*a)*exp(I*g)*cos(b)*JxKet(1,-1)/2 + exp(-I*a)*exp(I*g)*JxKet(1,-1)/2 - sqrt(2)*exp(-I*a)*sin(b)*JxKet(1,0)/2 + exp(-I*a)*exp(-I*g)*cos(b)*JxKet(1,1)/2 + exp(-I*a)*exp(-I*g)*JxKet(1,1)/2) #dummy effective assert str(qapply(Rotation(a, b, g)*JzKet(j, m), dummy=False)) == str( qapply(Rotation(a, b, g)*JzKet(j, m), dummy=True)).replace('_','') #Coupled ans = [JxKetCoupled(1,-1,(1,1))/2 - sqrt(2)*JxKetCoupled(1,0,(1,1))/2 + JxKetCoupled(1,1,(1,1))/2 , JyKetCoupled(1,-1,(1,1))/2 - sqrt(2)*JyKetCoupled(1,0,(1,1))/2 + JyKetCoupled(1,1,(1,1))/2 , JzKetCoupled(1,-1,(1,1))/2 - sqrt(2)*JzKetCoupled(1,0,(1,1))/2 + JzKetCoupled(1,1,(1,1))/2] fun = [state(1, 1, (1,1)) for state in (JxKetCoupled, JyKetCoupled, JzKetCoupled)] for state in fun: got = qapply(Rotation(0, pi/2, 0)*state) assert got in ans ans.remove(got) assert not ans arg = Rotation(a, b, g)*fun[0] assert qapply(arg) == ( -exp(-I*a)*exp(I*g)*cos(b)*JxKetCoupled(1,-1,(1,1))/2 + exp(-I*a)*exp(I*g)*JxKetCoupled(1,-1,(1,1))/2 - sqrt(2)*exp(-I*a)*sin(b)*JxKetCoupled(1,0,(1,1))/2 + exp(-I*a)*exp(-I*g)*cos(b)*JxKetCoupled(1,1,(1,1))/2 + exp(-I*a)*exp(-I*g)*JxKetCoupled(1,1,(1,1))/2) #dummy effective assert str(qapply(Rotation(a,b,g)*JzKetCoupled(j,m,(j1,j2)), dummy=False)) == str( qapply(Rotation(a,b,g)*JzKetCoupled(j,m,(j1,j2)), dummy=True)).replace('_','') def test_jzket(): j, m = symbols('j m') # j not integer or half integer raises(ValueError, lambda: JzKet(S(2)/3, -S(1)/3)) raises(ValueError, lambda: JzKet(S(2)/3, m)) # j < 0 raises(ValueError, lambda: JzKet(-1, 1)) raises(ValueError, lambda: JzKet(-1, m)) # m not integer or half integer raises(ValueError, lambda: JzKet(j, -S(1)/3)) # abs(m) > j raises(ValueError, lambda: JzKet(1, 2)) raises(ValueError, lambda: JzKet(1, -2)) # j-m not integer raises(ValueError, lambda: JzKet(1, S(1)/2)) def test_jzketcoupled(): j, m = symbols('j m') # j not integer or half integer raises(ValueError, lambda: JzKetCoupled(S(2)/3, -S(1)/3, (1,))) raises(ValueError, lambda: JzKetCoupled(S(2)/3, m, (1,))) # j < 0 raises(ValueError, lambda: JzKetCoupled(-1, 1, (1,))) raises(ValueError, lambda: JzKetCoupled(-1, m, (1,))) # m not integer or half integer raises(ValueError, lambda: JzKetCoupled(j, -S(1)/3, (1,))) # abs(m) > j raises(ValueError, lambda: JzKetCoupled(1, 2, (1,))) raises(ValueError, lambda: JzKetCoupled(1, -2, (1,))) # j-m not integer raises(ValueError, lambda: JzKetCoupled(1, S(1)/2, (1,))) # checks types on coupling scheme raises(TypeError, lambda: JzKetCoupled(1, 1, 1)) raises(TypeError, lambda: JzKetCoupled(1, 1, (1,), 1)) raises(TypeError, lambda: JzKetCoupled(1, 1, (1, 1), (1,))) raises(TypeError, lambda: JzKetCoupled(1, 1, (1, 1, 1), (1, 2, 1), (1, 3, 1))) # checks length of coupling terms raises(ValueError, lambda: JzKetCoupled(1, 1, (1,), ((1, 2, 1),))) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 2),))) # all jn are integer or half-integer raises(ValueError, lambda: JzKetCoupled(1, 1, (S(1)/3, S(2)/3))) # indices in coupling scheme must be integers raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((S(1)/2, 1, 2),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, S(1)/2, 2),) )) # indices out of range raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((0, 2, 1),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((3, 2, 1),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 0, 1),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 3, 1),) )) # all j values in coupling scheme must by integer or half-integer raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, S( 4)/3), (1, 3, 1)) )) # each coupling must satisfy |j1-j2| <= j3 <= j1+j2 raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 5))) raises(ValueError, lambda: JzKetCoupled(5, 1, (1, 1))) # final j of coupling must be j of the state raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 2, 2),) ))
49f401c261ed2072c11100dfa21e25e1dbe9b0d7f078d449e32b6aa2da5a64f2
from sympy import S, sqrt, Sum, symbols from sympy.physics.quantum.cg import Wigner3j, Wigner6j, Wigner9j, CG, cg_simp from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.utilities.pytest import slow @slow def test_cg_simp_add(): j, m1, m1p, m2, m2p = symbols('j m1 m1p m2 m2p') # Test Varshalovich 8.7.1 Eq 1 a = CG(S(1)/2, S(1)/2, 0, 0, S(1)/2, S(1)/2) b = CG(S(1)/2, -S(1)/2, 0, 0, S(1)/2, -S(1)/2) c = CG(1, 1, 0, 0, 1, 1) d = CG(1, 0, 0, 0, 1, 0) e = CG(1, -1, 0, 0, 1, -1) assert cg_simp(a + b) == 2 assert cg_simp(c + d + e) == 3 assert cg_simp(a + b + c + d + e) == 5 assert cg_simp(a + b + c) == 2 + c assert cg_simp(2*a + b) == 2 + a assert cg_simp(2*c + d + e) == 3 + c assert cg_simp(5*a + 5*b) == 10 assert cg_simp(5*c + 5*d + 5*e) == 15 assert cg_simp(-a - b) == -2 assert cg_simp(-c - d - e) == -3 assert cg_simp(-6*a - 6*b) == -12 assert cg_simp(-4*c - 4*d - 4*e) == -12 a = CG(S(1)/2, S(1)/2, j, 0, S(1)/2, S(1)/2) b = CG(S(1)/2, -S(1)/2, j, 0, S(1)/2, -S(1)/2) c = CG(1, 1, j, 0, 1, 1) d = CG(1, 0, j, 0, 1, 0) e = CG(1, -1, j, 0, 1, -1) assert cg_simp(a + b) == 2*KroneckerDelta(j, 0) assert cg_simp(c + d + e) == 3*KroneckerDelta(j, 0) assert cg_simp(a + b + c + d + e) == 5*KroneckerDelta(j, 0) assert cg_simp(a + b + c) == 2*KroneckerDelta(j, 0) + c assert cg_simp(2*a + b) == 2*KroneckerDelta(j, 0) + a assert cg_simp(2*c + d + e) == 3*KroneckerDelta(j, 0) + c assert cg_simp(5*a + 5*b) == 10*KroneckerDelta(j, 0) assert cg_simp(5*c + 5*d + 5*e) == 15*KroneckerDelta(j, 0) assert cg_simp(-a - b) == -2*KroneckerDelta(j, 0) assert cg_simp(-c - d - e) == -3*KroneckerDelta(j, 0) assert cg_simp(-6*a - 6*b) == -12*KroneckerDelta(j, 0) assert cg_simp(-4*c - 4*d - 4*e) == -12*KroneckerDelta(j, 0) # Test Varshalovich 8.7.1 Eq 2 a = CG(S(1)/2, S(1)/2, S(1)/2, -S(1)/2, 0, 0) b = CG(S(1)/2, -S(1)/2, S(1)/2, S(1)/2, 0, 0) c = CG(1, 1, 1, -1, 0, 0) d = CG(1, 0, 1, 0, 0, 0) e = CG(1, -1, 1, 1, 0, 0) assert cg_simp(a - b) == sqrt(2) assert cg_simp(c - d + e) == sqrt(3) assert cg_simp(a - b + c - d + e) == sqrt(2) + sqrt(3) assert cg_simp(a - b + c) == sqrt(2) + c assert cg_simp(2*a - b) == sqrt(2) + a assert cg_simp(2*c - d + e) == sqrt(3) + c assert cg_simp(5*a - 5*b) == 5*sqrt(2) assert cg_simp(5*c - 5*d + 5*e) == 5*sqrt(3) assert cg_simp(-a + b) == -sqrt(2) assert cg_simp(-c + d - e) == -sqrt(3) assert cg_simp(-6*a + 6*b) == -6*sqrt(2) assert cg_simp(-4*c + 4*d - 4*e) == -4*sqrt(3) a = CG(S(1)/2, S(1)/2, S(1)/2, -S(1)/2, j, 0) b = CG(S(1)/2, -S(1)/2, S(1)/2, S(1)/2, j, 0) c = CG(1, 1, 1, -1, j, 0) d = CG(1, 0, 1, 0, j, 0) e = CG(1, -1, 1, 1, j, 0) assert cg_simp(a - b) == sqrt(2)*KroneckerDelta(j, 0) assert cg_simp(c - d + e) == sqrt(3)*KroneckerDelta(j, 0) assert cg_simp(a - b + c - d + e) == sqrt( 2)*KroneckerDelta(j, 0) + sqrt(3)*KroneckerDelta(j, 0) assert cg_simp(a - b + c) == sqrt(2)*KroneckerDelta(j, 0) + c assert cg_simp(2*a - b) == sqrt(2)*KroneckerDelta(j, 0) + a assert cg_simp(2*c - d + e) == sqrt(3)*KroneckerDelta(j, 0) + c assert cg_simp(5*a - 5*b) == 5*sqrt(2)*KroneckerDelta(j, 0) assert cg_simp(5*c - 5*d + 5*e) == 5*sqrt(3)*KroneckerDelta(j, 0) assert cg_simp(-a + b) == -sqrt(2)*KroneckerDelta(j, 0) assert cg_simp(-c + d - e) == -sqrt(3)*KroneckerDelta(j, 0) assert cg_simp(-6*a + 6*b) == -6*sqrt(2)*KroneckerDelta(j, 0) assert cg_simp(-4*c + 4*d - 4*e) == -4*sqrt(3)*KroneckerDelta(j, 0) # Test Varshalovich 8.7.2 Eq 9 # alpha=alphap,beta=betap case # numerical a = CG(S(1)/2, S(1)/2, S(1)/2, -S(1)/2, 1, 0)**2 b = CG(S(1)/2, S(1)/2, S(1)/2, -S(1)/2, 0, 0)**2 c = CG(1, 0, 1, 1, 1, 1)**2 d = CG(1, 0, 1, 1, 2, 1)**2 assert cg_simp(a + b) == 1 assert cg_simp(c + d) == 1 assert cg_simp(a + b + c + d) == 2 assert cg_simp(4*a + 4*b) == 4 assert cg_simp(4*c + 4*d) == 4 assert cg_simp(5*a + 3*b) == 3 + 2*a assert cg_simp(5*c + 3*d) == 3 + 2*c assert cg_simp(-a - b) == -1 assert cg_simp(-c - d) == -1 # symbolic a = CG(S(1)/2, m1, S(1)/2, m2, 1, 1)**2 b = CG(S(1)/2, m1, S(1)/2, m2, 1, 0)**2 c = CG(S(1)/2, m1, S(1)/2, m2, 1, -1)**2 d = CG(S(1)/2, m1, S(1)/2, m2, 0, 0)**2 assert cg_simp(a + b + c + d) == 1 assert cg_simp(4*a + 4*b + 4*c + 4*d) == 4 assert cg_simp(3*a + 5*b + 3*c + 4*d) == 3 + 2*b + d assert cg_simp(-a - b - c - d) == -1 a = CG(1, m1, 1, m2, 2, 2)**2 b = CG(1, m1, 1, m2, 2, 1)**2 c = CG(1, m1, 1, m2, 2, 0)**2 d = CG(1, m1, 1, m2, 2, -1)**2 e = CG(1, m1, 1, m2, 2, -2)**2 f = CG(1, m1, 1, m2, 1, 1)**2 g = CG(1, m1, 1, m2, 1, 0)**2 h = CG(1, m1, 1, m2, 1, -1)**2 i = CG(1, m1, 1, m2, 0, 0)**2 assert cg_simp(a + b + c + d + e + f + g + h + i) == 1 assert cg_simp(4*(a + b + c + d + e + f + g + h + i)) == 4 assert cg_simp(a + b + 2*c + d + 4*e + f + g + h + i) == 1 + c + 3*e assert cg_simp(-a - b - c - d - e - f - g - h - i) == -1 # alpha!=alphap or beta!=betap case # numerical a = CG(S(1)/2, S( 1)/2, S(1)/2, -S(1)/2, 1, 0)*CG(S(1)/2, -S(1)/2, S(1)/2, S(1)/2, 1, 0) b = CG(S(1)/2, S( 1)/2, S(1)/2, -S(1)/2, 0, 0)*CG(S(1)/2, -S(1)/2, S(1)/2, S(1)/2, 0, 0) c = CG(1, 1, 1, 0, 2, 1)*CG(1, 0, 1, 1, 2, 1) d = CG(1, 1, 1, 0, 1, 1)*CG(1, 0, 1, 1, 1, 1) assert cg_simp(a + b) == 0 assert cg_simp(c + d) == 0 # symbolic a = CG(S(1)/2, m1, S(1)/2, m2, 1, 1)*CG(S(1)/2, m1p, S(1)/2, m2p, 1, 1) b = CG(S(1)/2, m1, S(1)/2, m2, 1, 0)*CG(S(1)/2, m1p, S(1)/2, m2p, 1, 0) c = CG(S(1)/2, m1, S(1)/2, m2, 1, -1)*CG(S(1)/2, m1p, S(1)/2, m2p, 1, -1) d = CG(S(1)/2, m1, S(1)/2, m2, 0, 0)*CG(S(1)/2, m1p, S(1)/2, m2p, 0, 0) assert cg_simp(a + b + c + d) == KroneckerDelta(m1, m1p)*KroneckerDelta(m2, m2p) a = CG(1, m1, 1, m2, 2, 2)*CG(1, m1p, 1, m2p, 2, 2) b = CG(1, m1, 1, m2, 2, 1)*CG(1, m1p, 1, m2p, 2, 1) c = CG(1, m1, 1, m2, 2, 0)*CG(1, m1p, 1, m2p, 2, 0) d = CG(1, m1, 1, m2, 2, -1)*CG(1, m1p, 1, m2p, 2, -1) e = CG(1, m1, 1, m2, 2, -2)*CG(1, m1p, 1, m2p, 2, -2) f = CG(1, m1, 1, m2, 1, 1)*CG(1, m1p, 1, m2p, 1, 1) g = CG(1, m1, 1, m2, 1, 0)*CG(1, m1p, 1, m2p, 1, 0) h = CG(1, m1, 1, m2, 1, -1)*CG(1, m1p, 1, m2p, 1, -1) i = CG(1, m1, 1, m2, 0, 0)*CG(1, m1p, 1, m2p, 0, 0) assert cg_simp( a + b + c + d + e + f + g + h + i) == KroneckerDelta(m1, m1p)*KroneckerDelta(m2, m2p) def test_cg_simp_sum(): x, a, b, c, cp, alpha, beta, gamma, gammap = symbols( 'x a b c cp alpha beta gamma gammap') # Varshalovich 8.7.1 Eq 1 assert cg_simp(x * Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a) )) == x*(2*a + 1)*KroneckerDelta(b, 0) assert cg_simp(x * Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)) + CG(1, 0, 1, 0, 1, 0)) == x*(2*a + 1)*KroneckerDelta(b, 0) + CG(1, 0, 1, 0, 1, 0) assert cg_simp(2 * Sum(CG(1, alpha, 0, 0, 1, alpha), (alpha, -1, 1))) == 6 # Varshalovich 8.7.1 Eq 2 assert cg_simp(x*Sum((-1)**(a - alpha) * CG(a, alpha, a, -alpha, c, 0), (alpha, -a, a))) == x*sqrt(2*a + 1)*KroneckerDelta(c, 0) assert cg_simp(3*Sum((-1)**(2 - alpha) * CG( 2, alpha, 2, -alpha, 0, 0), (alpha, -2, 2))) == 3*sqrt(5) # Varshalovich 8.7.2 Eq 4 assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, cp, gammap), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap) assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, c, gammap), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(gamma, gammap) assert cg_simp(Sum(CG(a, alpha, b, beta, c, gamma)*CG(a, alpha, b, beta, cp, gamma), (alpha, -a, a), (beta, -b, b))) == KroneckerDelta(c, cp) assert cg_simp(Sum(CG( a, alpha, b, beta, c, gamma)**2, (alpha, -a, a), (beta, -b, b))) == 1 assert cg_simp(Sum(CG(2, alpha, 1, beta, 2, gamma)*CG(2, alpha, 1, beta, 2, gammap), (alpha, -2, 2), (beta, -1, 1))) == KroneckerDelta(gamma, gammap) def test_doit(): assert Wigner3j(S(1)/2, -S(1)/2, S(1)/2, S(1)/2, 0, 0).doit() == -sqrt(2)/2 assert Wigner6j(1, 2, 3, 2, 1, 2).doit() == sqrt(21)/105 assert Wigner6j(3, 1, 2, 2, 2, 1).doit() == sqrt(21) / 105 assert Wigner9j( 2, 1, 1, S(3)/2, S(1)/2, 1, S(1)/2, S(1)/2, 0).doit() == sqrt(2)/12 assert CG(S(1)/2, S(1)/2, S(1)/2, -S(1)/2, 1, 0).doit() == sqrt(2)/2
519a76f76dad0832e7a0d5e9c3d33e870c807fdf1d4a27b5ba9cca3c94cdaa9a
from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point, RigidBody, LagrangesMethod, Particle, inertia, Lagrangian) from sympy import symbols, pi, sin, cos, tan, simplify, Function, \ Derivative, Matrix def test_disc_on_an_incline_plane(): # Disc rolling on an inclined plane # First the generalized coordinates are created. The mass center of the # disc is located from top vertex of the inclined plane by the generalized # coordinate 'y'. The orientation of the disc is defined by the angle # 'theta'. The mass of the disc is 'm' and its radius is 'R'. The length of # the inclined path is 'l', the angle of inclination is 'alpha'. 'g' is the # gravitational constant. y, theta = dynamicsymbols('y theta') yd, thetad = dynamicsymbols('y theta', 1) m, g, R, l, alpha = symbols('m g R l alpha') # Next, we create the inertial reference frame 'N'. A reference frame 'A' # is attached to the inclined plane. Finally a frame is created which is attached to the disk. N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [pi/2 - alpha, N.z]) B = A.orientnew('B', 'Axis', [-theta, A.z]) # Creating the disc 'D'; we create the point that represents the mass # center of the disc and set its velocity. The inertia dyadic of the disc # is created. Finally, we create the disc. Do = Point('Do') Do.set_vel(N, yd * A.x) I = m * R**2 / 2 * B.z | B.z D = RigidBody('D', Do, B, m, (I, Do)) # To construct the Lagrangian, 'L', of the disc, we determine its kinetic # and potential energies, T and U, respectively. L is defined as the # difference between T and U. D.potential_energy = m * g * (l - y) * sin(alpha) L = Lagrangian(N, D) # We then create the list of generalized coordinates and constraint # equations. The constraint arises due to the disc rolling without slip on # on the inclined path. We then invoke the 'LagrangesMethod' class and # supply it the necessary arguments and generate the equations of motion. # The'rhs' method solves for the q_double_dots (i.e. the second derivative # with respect to time of the generalized coordinates and the lagrange # multipliers. q = [y, theta] hol_coneqs = [y - R * theta] m = LagrangesMethod(L, q, hol_coneqs=hol_coneqs) m.form_lagranges_equations() rhs = m.rhs() rhs.simplify() assert rhs[2] == 2*g*sin(alpha)/3 def test_simp_pen(): # This tests that the equations generated by LagrangesMethod are identical # to those obtained by hand calculations. The system under consideration is # the simple pendulum. # We begin by creating the generalized coordinates as per the requirements # of LagrangesMethod. Also we created the associate symbols # that characterize the system: 'm' is the mass of the bob, l is the length # of the massless rigid rod connecting the bob to a point O fixed in the # inertial frame. q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u ', 1) l, m, g = symbols('l m g') # We then create the inertial frame and a frame attached to the massless # string following which we define the inertial angular velocity of the # string. N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q, N.z]) A.set_ang_vel(N, qd * N.z) # Next, we create the point O and fix it in the inertial frame. We then # locate the point P to which the bob is attached. Its corresponding # velocity is then determined by the 'two point formula'. O = Point('O') O.set_vel(N, 0) P = O.locatenew('P', l * A.x) P.v2pt_theory(O, N, A) # The 'Particle' which represents the bob is then created and its # Lagrangian generated. Pa = Particle('Pa', P, m) Pa.potential_energy = - m * g * l * cos(q) L = Lagrangian(N, Pa) # The 'LagrangesMethod' class is invoked to obtain equations of motion. lm = LagrangesMethod(L, [q]) lm.form_lagranges_equations() RHS = lm.rhs() assert RHS[1] == -g*sin(q)/l def test_nonminimal_pendulum(): q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose World Frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # Create point P, the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) P.set_vel(N, P.pos_from(pN).dt(N)) pP = Particle('pP', P, m) # Constraint Equations f_c = Matrix([q1**2 + q2**2 - L**2]) # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Check solution lam1 = LM.lam_vec[0, 0] eom_sol = Matrix([[m*Derivative(q1, t, t) - 9.8*m + 2*lam1*q1], [m*Derivative(q2, t, t) + 2*lam1*q2]]) assert LM.eom == eom_sol # Check multiplier solution lam_sol = Matrix([(19.6*q1 + 2*q1d**2 + 2*q2d**2)/(4*q1**2/m + 4*q2**2/m)]) assert LM.solve_multipliers(sol_type='Matrix') == lam_sol def test_dub_pen(): # The system considered is the double pendulum. Like in the # test of the simple pendulum above, we begin by creating the generalized # coordinates and the simple generalized speeds and accelerations which # will be used later. Following this we create frames and points necessary # for the kinematics. The procedure isn't explicitly explained as this is # similar to the simple pendulum. Also this is documented on the pydy.org # website. q1, q2 = dynamicsymbols('q1 q2') q1d, q2d = dynamicsymbols('q1 q2', 1) q1dd, q2dd = dynamicsymbols('q1 q2', 2) u1, u2 = dynamicsymbols('u1 u2') u1d, u2d = dynamicsymbols('u1 u2', 1) l, m, g = symbols('l m g') N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q1, N.z]) B = N.orientnew('B', 'Axis', [q2, N.z]) A.set_ang_vel(N, q1d * A.z) B.set_ang_vel(N, q2d * A.z) O = Point('O') P = O.locatenew('P', l * A.x) R = P.locatenew('R', l * B.x) O.set_vel(N, 0) P.v2pt_theory(O, N, A) R.v2pt_theory(P, N, B) ParP = Particle('ParP', P, m) ParR = Particle('ParR', R, m) ParP.potential_energy = - m * g * l * cos(q1) ParR.potential_energy = - m * g * l * cos(q1) - m * g * l * cos(q2) L = Lagrangian(N, ParP, ParR) lm = LagrangesMethod(L, [q1, q2], bodies=[ParP, ParR]) lm.form_lagranges_equations() assert simplify(l*m*(2*g*sin(q1) + l*sin(q1)*sin(q2)*q2dd + l*sin(q1)*cos(q2)*q2d**2 - l*sin(q2)*cos(q1)*q2d**2 + l*cos(q1)*cos(q2)*q2dd + 2*l*q1dd) - lm.eom[0]) == 0 assert simplify(l*m*(g*sin(q2) + l*sin(q1)*sin(q2)*q1dd - l*sin(q1)*cos(q2)*q1d**2 + l*sin(q2)*cos(q1)*q1d**2 + l*cos(q1)*cos(q2)*q1dd + l*q2dd) - lm.eom[1]) == 0 assert lm.bodies == [ParP, ParR] def test_rolling_disc(): # Rolling Disc Example # Here the rolling disc is formed from the contact point up, removing the # need to introduce generalized speeds. Only 3 configuration and 3 # speed variables are need to describe this system, along with the # disc's mass and radius, and the local gravity. q1, q2, q3 = dynamicsymbols('q1 q2 q3') q1d, q2d, q3d = dynamicsymbols('q1 q2 q3', 1) r, m, g = symbols('r m g') # The kinematics are formed by a series of simple rotations. Each simple # rotation creates a new frame, and the next rotation is defined by the new # frame's basis vectors. This example uses a 3-1-2 series of rotations, or # Z, X, Y series of rotations. Angular velocity for this is defined using # the second frame's basis (the lean frame). N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) # This is the translational kinematics. We create a point with no velocity # in N; this is the contact point between the disc and ground. Next we form # the position vector from the contact point to the disc's center of mass. # Finally we form the velocity and acceleration of the disc. C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) # Forming the inertia dyadic. I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) # Finally we form the equations of motion, using the same steps we did # before. Supply the Lagrangian, the generalized speeds. BodyD.potential_energy = - m * g * r * cos(q2) Lag = Lagrangian(N, BodyD) q = [q1, q2, q3] q1 = Function('q1') q2 = Function('q2') q3 = Function('q3') l = LagrangesMethod(Lag, q) l.form_lagranges_equations() RHS = l.rhs() RHS.simplify() t = symbols('t') assert (l.mass_matrix[3:6] == [0, 5*m*r**2/4, 0]) assert RHS[4].simplify() == ( (-8*g*sin(q2(t)) + r*(5*sin(2*q2(t))*Derivative(q1(t), t) + 12*cos(q2(t))*Derivative(q3(t), t))*Derivative(q1(t), t))/(10*r)) assert RHS[5] == (-5*cos(q2(t))*Derivative(q1(t), t) + 6*tan(q2(t) )*Derivative(q3(t), t) + 4*Derivative(q1(t), t)/cos(q2(t)) )*Derivative(q2(t), t)
011718ce767f3043a97884415554157d8619083d9aed5fd12d5bfe8325412eb4
from sympy.utilities.pytest import warns_deprecated_sympy from sympy.core.backend import (cos, expand, Matrix, sin, symbols, tan, sqrt, S, zeros) from sympy import simplify from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point, RigidBody, KanesMethod, inertia, Particle, dot) def test_one_dof(): # This is for a 1 dof spring-mass-damper case. # It is described in more detail in the KanesMethod docstring. q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u', 1) m, c, k = symbols('m c k') N = ReferenceFrame('N') P = Point('P') P.set_vel(N, u * N.x) kd = [qd - u] FL = [(P, (-k * q - c * u) * N.x)] pa = Particle('pa', P, m) BL = [pa] KM = KanesMethod(N, [q], [u], kd) # The old input format raises a deprecation warning, so catch it here so # it doesn't cause py.test to fail. with warns_deprecated_sympy(): KM.kanes_equations(FL, BL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand(-(q * k + u * c) / m) assert simplify(KM.rhs() - KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1) assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]])) def test_two_dof(): # This is for a 2 d.o.f., 2 particle spring-mass-damper. # The first coordinate is the displacement of the first particle, and the # second is the relative displacement between the first and second # particles. Speeds are defined as the time derivatives of the particles. q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2') q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1) m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2') N = ReferenceFrame('N') P1 = Point('P1') P2 = Point('P2') P1.set_vel(N, u1 * N.x) P2.set_vel(N, (u1 + u2) * N.x) kd = [q1d - u1, q2d - u2] # Now we create the list of forces, then assign properties to each # particle, then create a list of all particles. FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 * q2 - c2 * u2) * N.x)] pa1 = Particle('pa1', P1, m) pa2 = Particle('pa2', P2, m) BL = [pa1, pa2] # Finally we create the KanesMethod object, specify the inertial frame, # pass relevant information, and form Fr & Fr*. Then we calculate the mass # matrix and forcing terms, and finally solve for the udots. KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd) # The old input format raises a deprecation warning, so catch it here so # it doesn't cause py.test to fail. with warns_deprecated_sympy(): KM.kanes_equations(FL, BL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m) assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * c2 * u2) / m) assert simplify(KM.rhs() - KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1) def test_pend(): q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u', 1) m, l, g = symbols('m l g') N = ReferenceFrame('N') P = Point('P') P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y) kd = [qd - u] FL = [(P, m * g * N.x)] pa = Particle('pa', P, m) BL = [pa] KM = KanesMethod(N, [q], [u], kd) with warns_deprecated_sympy(): KM.kanes_equations(FL, BL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing rhs.simplify() assert expand(rhs[0]) == expand(-g / l * sin(q)) assert simplify(KM.rhs() - KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1) def test_rolling_disc(): # Rolling Disc Example # Here the rolling disc is formed from the contact point up, removing the # need to introduce generalized speeds. Only 3 configuration and three # speed variables are need to describe this system, along with the disc's # mass and radius, and the local gravity (note that mass will drop out). q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) r, m, g = symbols('r m g') # The kinematics are formed by a series of simple rotations. Each simple # rotation creates a new frame, and the next rotation is defined by the new # frame's basis vectors. This example uses a 3-1-2 series of rotations, or # Z, X, Y series of rotations. Angular velocity for this is defined using # the second frame's basis (the lean frame). N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) w_R_N_qd = R.ang_vel_in(N) R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) # This is the translational kinematics. We create a point with no velocity # in N; this is the contact point between the disc and ground. Next we form # the position vector from the contact point to the disc's center of mass. # Finally we form the velocity and acceleration of the disc. C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) # This is a simple way to form the inertia dyadic. I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) # Kinematic differential equations; how the generalized coordinate time # derivatives relate to generalized speeds. kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L] # Creation of the force list; it is the gravitational force at the mass # center of the disc. Then we create the disc by assigning a Point to the # center of mass attribute, a ReferenceFrame to the frame attribute, and mass # and inertia. Then we form the body list. ForceList = [(Dmc, - m * g * Y.z)] BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) BodyList = [BodyD] # Finally we form the equations of motion, using the same steps we did # before. Specify inertial frame, supply generalized speeds, supply # kinematic differential equation dictionary, compute Fr from the force # list and Fr* from the body list, compute the mass matrix and forcing # terms, then solve for the u dots (time derivatives of the generalized # speeds). KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd) with warns_deprecated_sympy(): KM.kanes_equations(ForceList, BodyList) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing kdd = KM.kindiffdict() rhs = rhs.subs(kdd) rhs.simplify() assert rhs.expand() == Matrix([(6*u2*u3*r - u3**2*r*tan(q2) + 4*g*sin(q2))/(5*r), -2*u1*u3/3, u1*(-2*u2 + u3*tan(q2))]).expand() assert simplify(KM.rhs() - KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(6, 1) # This code tests our output vs. benchmark values. When r=g=m=1, the # critical speed (where all eigenvalues of the linearized equations are 0) # is 1 / sqrt(3) for the upright case. A = KM.linearize(A_and_B=True)[0] A_upright = A.subs({r: 1, g: 1, m: 1}).subs({q1: 0, q2: 0, q3: 0, u1: 0, u3: 0}) import sympy assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {S(0): 6} def test_aux(): # Same as above, except we have 2 auxiliary speeds for the ground contact # point, which is known to be zero. In one case, we go through then # substitute the aux. speeds in at the end (they are zero, as well as their # derivative), in the other case, we use the built-in auxiliary speed part # of KanesMethod. The equations from each should be the same. q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2') u4d, u5d = dynamicsymbols('u4, u5', 1) r, m, g = symbols('r m g') N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) w_R_N_qd = R.ang_vel_in(N) R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) C = Point('C') C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x)) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) Dmc.a2pt_theory(C, N, R) I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L] ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))] BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) BodyList = [BodyD] KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5], kd_eqs=kd) with warns_deprecated_sympy(): (fr, frstar) = KM.kanes_equations(ForceList, BodyList) fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd, u_auxiliary=[u4, u5]) with warns_deprecated_sympy(): (fr2, frstar2) = KM2.kanes_equations(ForceList, BodyList) fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) frstar.simplify() frstar2.simplify() assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0]) assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0]) def test_parallel_axis(): # This is for a 2 dof inverted pendulum on a cart. # This tests the parallel axis code in KanesMethod. The inertia of the # pendulum is defined about the hinge, not about the center of mass. # Defining the constants and knowns of the system gravity = symbols('g') k, ls = symbols('k ls') a, mA, mC = symbols('a mA mC') F = dynamicsymbols('F') Ix, Iy, Iz = symbols('Ix Iy Iz') # Declaring the Generalized coordinates and speeds q1, q2 = dynamicsymbols('q1 q2') q1d, q2d = dynamicsymbols('q1 q2', 1) u1, u2 = dynamicsymbols('u1 u2') u1d, u2d = dynamicsymbols('u1 u2', 1) # Creating reference frames N = ReferenceFrame('N') A = ReferenceFrame('A') A.orient(N, 'Axis', [-q2, N.z]) A.set_ang_vel(N, -u2 * N.z) # Origin of Newtonian reference frame O = Point('O') # Creating and Locating the positions of the cart, C, and the # center of mass of the pendulum, A C = O.locatenew('C', q1 * N.x) Ao = C.locatenew('Ao', a * A.y) # Defining velocities of the points O.set_vel(N, 0) C.set_vel(N, u1 * N.x) Ao.v2pt_theory(C, N, A) Cart = Particle('Cart', C, mC) Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C)) # kinematical differential equations kindiffs = [q1d - u1, q2d - u2] bodyList = [Cart, Pendulum] forceList = [(Ao, -N.y * gravity * mA), (C, -N.y * gravity * mC), (C, -N.x * k * (q1 - ls)), (C, N.x * F)] km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs) with warns_deprecated_sympy(): (fr, frstar) = km.kanes_equations(forceList, bodyList) mm = km.mass_matrix_full assert mm[3, 3] == Iz def test_input_format(): # 1 dof problem from test_one_dof q, u = dynamicsymbols('q u') qd, ud = dynamicsymbols('q u', 1) m, c, k = symbols('m c k') N = ReferenceFrame('N') P = Point('P') P.set_vel(N, u * N.x) kd = [qd - u] FL = [(P, (-k * q - c * u) * N.x)] pa = Particle('pa', P, m) BL = [pa] KM = KanesMethod(N, [q], [u], kd) # test for input format kane.kanes_equations((body1, body2, particle1)) assert KM.kanes_equations(BL)[0] == Matrix([0]) # test for input format kane.kanes_equations(bodies=(body1, body 2), loads=(load1,load2)) assert KM.kanes_equations(bodies=BL, loads=None)[0] == Matrix([0]) # test for input format kane.kanes_equations(bodies=(body1, body 2), loads=None) assert KM.kanes_equations(BL, loads=None)[0] == Matrix([0]) # test for input format kane.kanes_equations(bodies=(body1, body 2)) assert KM.kanes_equations(BL)[0] == Matrix([0]) # test for error raised when a wrong force list (in this case a string) is provided from sympy.utilities.pytest import raises raises(ValueError, lambda: KM._form_fr('bad input')) # 2 dof problem from test_two_dof q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2') q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1) m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2') N = ReferenceFrame('N') P1 = Point('P1') P2 = Point('P2') P1.set_vel(N, u1 * N.x) P2.set_vel(N, (u1 + u2) * N.x) kd = [q1d - u1, q2d - u2] FL = ((P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 * q2 - c2 * u2) * N.x)) pa1 = Particle('pa1', P1, m) pa2 = Particle('pa2', P2, m) BL = (pa1, pa2) KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd) # test for input format # kane.kanes_equations((body1, body2), (load1, load2)) KM.kanes_equations(BL, FL) MM = KM.mass_matrix forcing = KM.forcing rhs = MM.inv() * forcing assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m) assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * c2 * u2) / m)
949cdd0064af78c02a24c62bcb2d485dac75a80c9ccf4f3b9461cef3a205f1fc
from sympy.core.backend import symbols, Matrix, cos, sin, atan, sqrt from sympy import solve, simplify from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point,\ dot, cross, inertia, KanesMethod, Particle, RigidBody, Lagrangian,\ LagrangesMethod from sympy.utilities.pytest import slow, warns_deprecated_sympy @slow def test_linearize_rolling_disc_kane(): # Symbols for time and constant parameters t, r, m, g, v = symbols('t r m g v') # Configuration variables and their time derivatives q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7') q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q] # Generalized speeds and their time derivatives u = dynamicsymbols('u:6') u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7') u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u] # Reference frames N = ReferenceFrame('N') # Inertial frame NO = Point('NO') # Inertial origin A = N.orientnew('A', 'Axis', [q1, N.z]) # Yaw intermediate frame B = A.orientnew('B', 'Axis', [q2, A.x]) # Lean intermediate frame C = B.orientnew('C', 'Axis', [q3, B.y]) # Disc fixed frame CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z) # Disc center # Disc angular velocity in N expressed using time derivatives of coordinates w_c_n_qd = C.ang_vel_in(N) w_b_n_qd = B.ang_vel_in(N) # Inertial angular velocity and angular acceleration of disc fixed frame C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z) # Disc center velocity in N expressed using time derivatives of coordinates v_co_n_qd = CO.pos_from(NO).dt(N) # Disc center velocity in N expressed using generalized speeds CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z) # Disc Ground Contact Point P = CO.locatenew('P', r*B.z) P.v2pt_theory(CO, N, C) # Configuration constraint f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)]) # Velocity level constraints f_v = Matrix([dot(P.vel(N), uv) for uv in C]) # Kinematic differential equations kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] + [dot(v_co_n_qd - CO.vel(N), uv) for uv in N]) qdots = solve(kindiffs, qd) # Set angular velocity of remaining frames B.set_ang_vel(N, w_b_n_qd.subs(qdots)) C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N))) # Active forces F_CO = m*g*A.z # Create inertia dyadic of disc C about point CO I = (m * r**2) / 4 J = (m * r**2) / 2 I_C_CO = inertia(C, I, J, I) Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO)) BL = [Disc] FL = [(CO, F_CO)] KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs, q_dependent=[q6], configuration_constraints=f_c, u_dependent=[u4, u5, u6], velocity_constraints=f_v) with warns_deprecated_sympy(): (fr, fr_star) = KM.kanes_equations(FL, BL) # Test generalized form equations linearizer = KM.to_linearizer() assert linearizer.f_c == f_c assert linearizer.f_v == f_v assert linearizer.f_a == f_v.diff(t) sol = solve(linearizer.f_0 + linearizer.f_1, qd) for qi in qd: assert sol[qi] == qdots[qi] assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0]) # Perform the linearization # Precomputed operating point q_op = {q6: -r*cos(q2)} u_op = {u1: 0, u2: sin(q2)*q1d + q3d, u3: cos(q2)*q1d, u4: -r*(sin(q2)*q1d + q3d)*cos(q3), u5: 0, u6: -r*(sin(q2)*q1d + q3d)*sin(q3)} qd_op = {q2d: 0, q4d: -r*(sin(q2)*q1d + q3d)*cos(q1), q5d: -r*(sin(q2)*q1d + q3d)*sin(q1), q6d: 0} ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5, u2d: 0, u3d: 0, u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2), u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5), u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)} A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True) upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1} # Precomputed solution A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0], [-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0], [0, 4/5, 0, 0, 0, 0, 0, 6*q3d/5], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -2*q3d, 0, 0]]) B_sol = Matrix([]) # Check that linearization is correct assert A.subs(upright_nominal) == A_sol assert B.subs(upright_nominal) == B_sol # Check eigenvalues at critical speed are all zero: assert A.subs(upright_nominal).subs(q3d, 1/sqrt(3)).eigenvals() == {0: 8} def test_linearize_pendulum_kane_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum u1 = dynamicsymbols('u1') # Angular velocity q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, u1*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Create Kinematic Differential Equations kde = Matrix([q1d - u1]) # Input the force resultant at P R = m*g*N.x # Solve for eom with kanes method KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde) with warns_deprecated_sympy(): (fr, frstar) = KM.kanes_equations([(P, R)], [pP]) # Linearize A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True) assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_kane_nonminimal(): # Create generalized coordinates and speeds for this non-minimal realization # q1, q2 = N.x and N.y coordinates of pendulum # u1, u2 = N.x and N.y velocities of pendulum q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) u1, u2 = dynamicsymbols('u1:3') u1d, u2d = dynamicsymbols('u1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Locate the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) pP = Particle('pP', P, m) # Calculate the kinematic differential equations kde = Matrix([q1d - u1, q2d - u2]) dq_dict = solve(kde, [q1d, q2d]) # Set velocity of point P P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict)) # Configuration constraint is length of pendulum f_c = Matrix([P.pos_from(pN).magnitude() - L]) # Velocity constraint is that the velocity in the A.x direction is # always zero (the pendulum is never getting longer). f_v = Matrix([P.vel(N).express(A).dot(A.x)]) f_v.simplify() # Acceleration constraints is the time derivative of the velocity constraint f_a = f_v.diff(t) f_a.simplify() # Input the force resultant at P R = m*g*N.x # Derive the equations of motion using the KanesMethod class. KM = KanesMethod(N, q_ind=[q2], u_ind=[u2], q_dependent=[q1], u_dependent=[u1], configuration_constraints=f_c, velocity_constraints=f_v, acceleration_constraints=f_a, kd_eqs=kde) with warns_deprecated_sympy(): (fr, frstar) = KM.kanes_equations([(P, R)], [pP]) # Set the operating point to be straight down, and non-moving q_op = {q1: L, q2: 0} u_op = {u1: 0, u2: 0} ud_op = {u1d: 0, u2d: 0} A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True, simplify=True) assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, q1d*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Solve for eom with Lagranges method Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Linearize A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True) assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_nonminimal(): q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose World Frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Create point P, the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) P.set_vel(N, P.pos_from(pN).dt(N)) pP = Particle('pP', P, m) # Constraint Equations f_c = Matrix([q1**2 + q2**2 - L**2]) # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Compose operating point op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0} # Solve for multiplier operating point lam_op = LM.solve_multipliers(op_point=op_point) op_point.update(lam_op) # Perform the Linearization A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d], op_point=op_point, A_and_B=True) assert A == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_rolling_disc_lagrange(): q1, q2, q3 = q = dynamicsymbols('q1 q2 q3') q1d, q2d, q3d = qd = dynamicsymbols('q1 q2 q3', 1) r, m, g = symbols('r m g') N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) BodyD.potential_energy = - m * g * r * cos(q2) Lag = Lagrangian(N, BodyD) l = LagrangesMethod(Lag, q) l.form_lagranges_equations() # Linearize about steady-state upright rolling op_point = {q1: 0, q2: 0, q3: 0, q1d: 0, q2d: 0, q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0} A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0] sol = Matrix([[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -6*q3d, 0], [0, -4*g/(5*r), 0, 6*q3d/5, 0, 0], [0, 0, 0, 0, 0, 0]]) assert A == sol
1ae971b51f93d3c0891e2beaadf038f3c73b9678083b904d0f94e51cc962d582
from sympy.core.compatibility import range from sympy import evalf, symbols, pi, sin, cos, sqrt, acos, Matrix from sympy.physics.mechanics import (ReferenceFrame, dynamicsymbols, inertia, KanesMethod, RigidBody, Point, dot, msubs) from sympy.utilities.pytest import slow, ON_TRAVIS, skip, warns_deprecated_sympy @slow def test_bicycle(): if ON_TRAVIS: skip("Too slow for travis.") # Code to get equations of motion for a bicycle modeled as in: # J.P Meijaard, Jim M Papadopoulos, Andy Ruina and A.L Schwab. Linearized # dynamics equations for the balance and steer of a bicycle: a benchmark # and review. Proceedings of The Royal Society (2007) 463, 1955-1982 # doi: 10.1098/rspa.2007.1857 # Note that this code has been crudely ported from Autolev, which is the # reason for some of the unusual naming conventions. It was purposefully as # similar as possible in order to aide debugging. # Declare Coordinates & Speeds # Simple definitions for qdots - qd = u # Speeds are: yaw frame ang. rate, roll frame ang. rate, rear wheel frame # ang. rate (spinning motion), frame ang. rate (pitching motion), steering # frame ang. rate, and front wheel ang. rate (spinning motion). # Wheel positions are ignorable coordinates, so they are not introduced. q1, q2, q4, q5 = dynamicsymbols('q1 q2 q4 q5') q1d, q2d, q4d, q5d = dynamicsymbols('q1 q2 q4 q5', 1) u1, u2, u3, u4, u5, u6 = dynamicsymbols('u1 u2 u3 u4 u5 u6') u1d, u2d, u3d, u4d, u5d, u6d = dynamicsymbols('u1 u2 u3 u4 u5 u6', 1) # Declare System's Parameters WFrad, WRrad, htangle, forkoffset = symbols('WFrad WRrad htangle forkoffset') forklength, framelength, forkcg1 = symbols('forklength framelength forkcg1') forkcg3, framecg1, framecg3, Iwr11 = symbols('forkcg3 framecg1 framecg3 Iwr11') Iwr22, Iwf11, Iwf22, Iframe11 = symbols('Iwr22 Iwf11 Iwf22 Iframe11') Iframe22, Iframe33, Iframe31, Ifork11 = symbols('Iframe22 Iframe33 Iframe31 Ifork11') Ifork22, Ifork33, Ifork31, g = symbols('Ifork22 Ifork33 Ifork31 g') mframe, mfork, mwf, mwr = symbols('mframe mfork mwf mwr') # Set up reference frames for the system # N - inertial # Y - yaw # R - roll # WR - rear wheel, rotation angle is ignorable coordinate so not oriented # Frame - bicycle frame # TempFrame - statically rotated frame for easier reference inertia definition # Fork - bicycle fork # TempFork - statically rotated frame for easier reference inertia definition # WF - front wheel, again posses a ignorable coordinate N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) R = Y.orientnew('R', 'Axis', [q2, Y.x]) Frame = R.orientnew('Frame', 'Axis', [q4 + htangle, R.y]) WR = ReferenceFrame('WR') TempFrame = Frame.orientnew('TempFrame', 'Axis', [-htangle, Frame.y]) Fork = Frame.orientnew('Fork', 'Axis', [q5, Frame.x]) TempFork = Fork.orientnew('TempFork', 'Axis', [-htangle, Fork.y]) WF = ReferenceFrame('WF') # Kinematics of the Bicycle First block of code is forming the positions of # the relevant points # rear wheel contact -> rear wheel mass center -> frame mass center + # frame/fork connection -> fork mass center + front wheel mass center -> # front wheel contact point WR_cont = Point('WR_cont') WR_mc = WR_cont.locatenew('WR_mc', WRrad * R.z) Steer = WR_mc.locatenew('Steer', framelength * Frame.z) Frame_mc = WR_mc.locatenew('Frame_mc', - framecg1 * Frame.x + framecg3 * Frame.z) Fork_mc = Steer.locatenew('Fork_mc', - forkcg1 * Fork.x + forkcg3 * Fork.z) WF_mc = Steer.locatenew('WF_mc', forklength * Fork.x + forkoffset * Fork.z) WF_cont = WF_mc.locatenew('WF_cont', WFrad * (dot(Fork.y, Y.z) * Fork.y - Y.z).normalize()) # Set the angular velocity of each frame. # Angular accelerations end up being calculated automatically by # differentiating the angular velocities when first needed. # u1 is yaw rate # u2 is roll rate # u3 is rear wheel rate # u4 is frame pitch rate # u5 is fork steer rate # u6 is front wheel rate Y.set_ang_vel(N, u1 * Y.z) R.set_ang_vel(Y, u2 * R.x) WR.set_ang_vel(Frame, u3 * Frame.y) Frame.set_ang_vel(R, u4 * Frame.y) Fork.set_ang_vel(Frame, u5 * Fork.x) WF.set_ang_vel(Fork, u6 * Fork.y) # Form the velocities of the previously defined points, using the 2 - point # theorem (written out by hand here). Accelerations again are calculated # automatically when first needed. WR_cont.set_vel(N, 0) WR_mc.v2pt_theory(WR_cont, N, WR) Steer.v2pt_theory(WR_mc, N, Frame) Frame_mc.v2pt_theory(WR_mc, N, Frame) Fork_mc.v2pt_theory(Steer, N, Fork) WF_mc.v2pt_theory(Steer, N, Fork) WF_cont.v2pt_theory(WF_mc, N, WF) # Sets the inertias of each body. Uses the inertia frame to construct the # inertia dyadics. Wheel inertias are only defined by principle moments of # inertia, and are in fact constant in the frame and fork reference frames; # it is for this reason that the orientations of the wheels does not need # to be defined. The frame and fork inertias are defined in the 'Temp' # frames which are fixed to the appropriate body frames; this is to allow # easier input of the reference values of the benchmark paper. Note that # due to slightly different orientations, the products of inertia need to # have their signs flipped; this is done later when entering the numerical # value. Frame_I = (inertia(TempFrame, Iframe11, Iframe22, Iframe33, 0, 0, Iframe31), Frame_mc) Fork_I = (inertia(TempFork, Ifork11, Ifork22, Ifork33, 0, 0, Ifork31), Fork_mc) WR_I = (inertia(Frame, Iwr11, Iwr22, Iwr11), WR_mc) WF_I = (inertia(Fork, Iwf11, Iwf22, Iwf11), WF_mc) # Declaration of the RigidBody containers. :: BodyFrame = RigidBody('BodyFrame', Frame_mc, Frame, mframe, Frame_I) BodyFork = RigidBody('BodyFork', Fork_mc, Fork, mfork, Fork_I) BodyWR = RigidBody('BodyWR', WR_mc, WR, mwr, WR_I) BodyWF = RigidBody('BodyWF', WF_mc, WF, mwf, WF_I) # The kinematic differential equations; they are defined quite simply. Each # entry in this list is equal to zero. kd = [q1d - u1, q2d - u2, q4d - u4, q5d - u5] # The nonholonomic constraints are the velocity of the front wheel contact # point dotted into the X, Y, and Z directions; the yaw frame is used as it # is "closer" to the front wheel (1 less DCM connecting them). These # constraints force the velocity of the front wheel contact point to be 0 # in the inertial frame; the X and Y direction constraints enforce a # "no-slip" condition, and the Z direction constraint forces the front # wheel contact point to not move away from the ground frame, essentially # replicating the holonomic constraint which does not allow the frame pitch # to change in an invalid fashion. conlist_speed = [WF_cont.vel(N) & Y.x, WF_cont.vel(N) & Y.y, WF_cont.vel(N) & Y.z] # The holonomic constraint is that the position from the rear wheel contact # point to the front wheel contact point when dotted into the # normal-to-ground plane direction must be zero; effectively that the front # and rear wheel contact points are always touching the ground plane. This # is actually not part of the dynamic equations, but instead is necessary # for the lineraization process. conlist_coord = [WF_cont.pos_from(WR_cont) & Y.z] # The force list; each body has the appropriate gravitational force applied # at its mass center. FL = [(Frame_mc, -mframe * g * Y.z), (Fork_mc, -mfork * g * Y.z), (WF_mc, -mwf * g * Y.z), (WR_mc, -mwr * g * Y.z)] BL = [BodyFrame, BodyFork, BodyWR, BodyWF] # The N frame is the inertial frame, coordinates are supplied in the order # of independent, dependent coordinates, as are the speeds. The kinematic # differential equation are also entered here. Here the dependent speeds # are specified, in the same order they were provided in earlier, along # with the non-holonomic constraints. The dependent coordinate is also # provided, with the holonomic constraint. Again, this is only provided # for the linearization process. KM = KanesMethod(N, q_ind=[q1, q2, q5], q_dependent=[q4], configuration_constraints=conlist_coord, u_ind=[u2, u3, u5], u_dependent=[u1, u4, u6], velocity_constraints=conlist_speed, kd_eqs=kd) with warns_deprecated_sympy(): (fr, frstar) = KM.kanes_equations(FL, BL) # This is the start of entering in the numerical values from the benchmark # paper to validate the eigen values of the linearized equations from this # model to the reference eigen values. Look at the aforementioned paper for # more information. Some of these are intermediate values, used to # transform values from the paper into the coordinate systems used in this # model. PaperRadRear = 0.3 PaperRadFront = 0.35 HTA = evalf.N(pi / 2 - pi / 10) TrailPaper = 0.08 rake = evalf.N(-(TrailPaper*sin(HTA)-(PaperRadFront*cos(HTA)))) PaperWb = 1.02 PaperFrameCgX = 0.3 PaperFrameCgZ = 0.9 PaperForkCgX = 0.9 PaperForkCgZ = 0.7 FrameLength = evalf.N(PaperWb*sin(HTA)-(rake-(PaperRadFront-PaperRadRear)*cos(HTA))) FrameCGNorm = evalf.N((PaperFrameCgZ - PaperRadRear-(PaperFrameCgX/sin(HTA))*cos(HTA))*sin(HTA)) FrameCGPar = evalf.N((PaperFrameCgX / sin(HTA) + (PaperFrameCgZ - PaperRadRear - PaperFrameCgX / sin(HTA) * cos(HTA)) * cos(HTA))) tempa = evalf.N((PaperForkCgZ - PaperRadFront)) tempb = evalf.N((PaperWb-PaperForkCgX)) tempc = evalf.N(sqrt(tempa**2+tempb**2)) PaperForkL = evalf.N((PaperWb*cos(HTA)-(PaperRadFront-PaperRadRear)*sin(HTA))) ForkCGNorm = evalf.N(rake+(tempc * sin(pi/2-HTA-acos(tempa/tempc)))) ForkCGPar = evalf.N(tempc * cos((pi/2-HTA)-acos(tempa/tempc))-PaperForkL) # Here is the final assembly of the numerical values. The symbol 'v' is the # forward speed of the bicycle (a concept which only makes sense in the # upright, static equilibrium case?). These are in a dictionary which will # later be substituted in. Again the sign on the *product* of inertia # values is flipped here, due to different orientations of coordinate # systems. v = symbols('v') val_dict = {WFrad: PaperRadFront, WRrad: PaperRadRear, htangle: HTA, forkoffset: rake, forklength: PaperForkL, framelength: FrameLength, forkcg1: ForkCGPar, forkcg3: ForkCGNorm, framecg1: FrameCGNorm, framecg3: FrameCGPar, Iwr11: 0.0603, Iwr22: 0.12, Iwf11: 0.1405, Iwf22: 0.28, Ifork11: 0.05892, Ifork22: 0.06, Ifork33: 0.00708, Ifork31: 0.00756, Iframe11: 9.2, Iframe22: 11, Iframe33: 2.8, Iframe31: -2.4, mfork: 4, mframe: 85, mwf: 3, mwr: 2, g: 9.81, q1: 0, q2: 0, q4: 0, q5: 0, u1: 0, u2: 0, u3: v / PaperRadRear, u4: 0, u5: 0, u6: v / PaperRadFront} # Linearizes the forcing vector; the equations are set up as MM udot = # forcing, where MM is the mass matrix, udot is the vector representing the # time derivatives of the generalized speeds, and forcing is a vector which # contains both external forcing terms and internal forcing terms, such as # centripital or coriolis forces. This actually returns a matrix with as # many rows as *total* coordinates and speeds, but only as many columns as # independent coordinates and speeds. forcing_lin = KM.linearize()[0] # As mentioned above, the size of the linearized forcing terms is expanded # to include both q's and u's, so the mass matrix must have this done as # well. This will likely be changed to be part of the linearized process, # for future reference. MM_full = KM.mass_matrix_full MM_full_s = msubs(MM_full, val_dict) forcing_lin_s = msubs(forcing_lin, KM.kindiffdict(), val_dict) MM_full_s = MM_full_s.evalf() forcing_lin_s = forcing_lin_s.evalf() # Finally, we construct an "A" matrix for the form xdot = A x (x being the # state vector, although in this case, the sizes are a little off). The # following line extracts only the minimum entries required for eigenvalue # analysis, which correspond to rows and columns for lean, steer, lean # rate, and steer rate. Amat = MM_full_s.inv() * forcing_lin_s A = Amat.extract([1, 2, 4, 6], [1, 2, 3, 5]) # Precomputed for comparison Res = Matrix([[ 0, 0, 1.0, 0], [ 0, 0, 0, 1.0], [9.48977444677355, -0.891197738059089*v**2 - 0.571523173729245, -0.105522449805691*v, -0.330515398992311*v], [11.7194768719633, -1.97171508499972*v**2 + 30.9087533932407, 3.67680523332152*v, -3.08486552743311*v]]) # Actual eigenvalue comparison eps = 1.e-12 for i in range(6): error = Res.subs(v, i) - A.subs(v, i) assert all(abs(x) < eps for x in error)
92277812a08dbdddd5eabaa968c6880b6bb50a71deaa49fc1207b8f3d2e4ec6f
from sympy.core.compatibility import range from sympy.core.backend import cos, Matrix, sin, zeros, tan, pi, symbols from sympy import trigsimp, simplify, solve from sympy.physics.mechanics import (cross, dot, dynamicsymbols, KanesMethod, inertia, inertia_of_point_mass, Point, ReferenceFrame, RigidBody) from sympy.utilities.pytest import warns_deprecated_sympy def test_aux_dep(): # This test is about rolling disc dynamics, comparing the results found # with KanesMethod to those found when deriving the equations "manually" # with SymPy. # The terms Fr, Fr*, and Fr*_steady are all compared between the two # methods. Here, Fr*_steady refers to the generalized inertia forces for an # equilibrium configuration. # Note: comparing to the test of test_rolling_disc() in test_kane.py, this # test also tests auxiliary speeds and configuration and motion constraints #, seen in the generalized dependent coordinates q[3], and depend speeds # u[3], u[4] and u[5]. # First, manual derivation of Fr, Fr_star, Fr_star_steady. # Symbols for time and constant parameters. # Symbols for contact forces: Fx, Fy, Fz. t, r, m, g, I, J = symbols('t r m g I J') Fx, Fy, Fz = symbols('Fx Fy Fz') # Configuration variables and their time derivatives: # q[0] -- yaw # q[1] -- lean # q[2] -- spin # q[3] -- dot(-r*B.z, A.z) -- distance from ground plane to disc center in # A.z direction # Generalized speeds and their time derivatives: # u[0] -- disc angular velocity component, disc fixed x direction # u[1] -- disc angular velocity component, disc fixed y direction # u[2] -- disc angular velocity component, disc fixed z direction # u[3] -- disc velocity component, A.x direction # u[4] -- disc velocity component, A.y direction # u[5] -- disc velocity component, A.z direction # Auxiliary generalized speeds: # ua[0] -- contact point auxiliary generalized speed, A.x direction # ua[1] -- contact point auxiliary generalized speed, A.y direction # ua[2] -- contact point auxiliary generalized speed, A.z direction q = dynamicsymbols('q:4') qd = [qi.diff(t) for qi in q] u = dynamicsymbols('u:6') ud = [ui.diff(t) for ui in u] ud_zero = dict(zip(ud, [0.]*len(ud))) ua = dynamicsymbols('ua:3') ua_zero = dict(zip(ua, [0.]*len(ua))) # Reference frames: # Yaw intermediate frame: A. # Lean intermediate frame: B. # Disc fixed frame: C. N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q[0], N.z]) B = A.orientnew('B', 'Axis', [q[1], A.x]) C = B.orientnew('C', 'Axis', [q[2], B.y]) # Angular velocity and angular acceleration of disc fixed frame # u[0], u[1] and u[2] are generalized independent speeds. C.set_ang_vel(N, u[0]*B.x + u[1]*B.y + u[2]*B.z) C.set_ang_acc(N, C.ang_vel_in(N).diff(t, B) + cross(B.ang_vel_in(N), C.ang_vel_in(N))) # Velocity and acceleration of points: # Disc-ground contact point: P. # Center of disc: O, defined from point P with depend coordinate: q[3] # u[3], u[4] and u[5] are generalized dependent speeds. P = Point('P') P.set_vel(N, ua[0]*A.x + ua[1]*A.y + ua[2]*A.z) O = P.locatenew('O', q[3]*A.z + r*sin(q[1])*A.y) O.set_vel(N, u[3]*A.x + u[4]*A.y + u[5]*A.z) O.set_acc(N, O.vel(N).diff(t, A) + cross(A.ang_vel_in(N), O.vel(N))) # Kinematic differential equations: # Two equalities: one is w_c_n_qd = C.ang_vel_in(N) in three coordinates # directions of B, for qd0, qd1 and qd2. # the other is v_o_n_qd = O.vel(N) in A.z direction for qd3. # Then, solve for dq/dt's in terms of u's: qd_kd. w_c_n_qd = qd[0]*A.z + qd[1]*B.x + qd[2]*B.y v_o_n_qd = O.pos_from(P).diff(t, A) + cross(A.ang_vel_in(N), O.pos_from(P)) kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] + [dot(v_o_n_qd - O.vel(N), A.z)]) qd_kd = solve(kindiffs, qd) # Values of generalized speeds during a steady turn for later substitution # into the Fr_star_steady. steady_conditions = solve(kindiffs.subs({qd[1] : 0, qd[3] : 0}), u) steady_conditions.update({qd[1] : 0, qd[3] : 0}) # Partial angular velocities and velocities. partial_w_C = [C.ang_vel_in(N).diff(ui, N) for ui in u + ua] partial_v_O = [O.vel(N).diff(ui, N) for ui in u + ua] partial_v_P = [P.vel(N).diff(ui, N) for ui in u + ua] # Configuration constraint: f_c, the projection of radius r in A.z direction # is q[3]. # Velocity constraints: f_v, for u3, u4 and u5. # Acceleration constraints: f_a. f_c = Matrix([dot(-r*B.z, A.z) - q[3]]) f_v = Matrix([dot(O.vel(N) - (P.vel(N) + cross(C.ang_vel_in(N), O.pos_from(P))), ai).expand() for ai in A]) v_o_n = cross(C.ang_vel_in(N), O.pos_from(P)) a_o_n = v_o_n.diff(t, A) + cross(A.ang_vel_in(N), v_o_n) f_a = Matrix([dot(O.acc(N) - a_o_n, ai) for ai in A]) # Solve for constraint equations in the form of # u_dependent = A_rs * [u_i; u_aux]. # First, obtain constraint coefficient matrix: M_v * [u; ua] = 0; # Second, taking u[0], u[1], u[2] as independent, # taking u[3], u[4], u[5] as dependent, # rearranging the matrix of M_v to be A_rs for u_dependent. # Third, u_aux ==0 for u_dep, and resulting dictionary of u_dep_dict. M_v = zeros(3, 9) for i in range(3): for j, ui in enumerate(u + ua): M_v[i, j] = f_v[i].diff(ui) M_v_i = M_v[:, :3] M_v_d = M_v[:, 3:6] M_v_aux = M_v[:, 6:] M_v_i_aux = M_v_i.row_join(M_v_aux) A_rs = - M_v_d.inv() * M_v_i_aux u_dep = A_rs[:, :3] * Matrix(u[:3]) u_dep_dict = dict(zip(u[3:], u_dep)) # Active forces: F_O acting on point O; F_P acting on point P. # Generalized active forces (unconstrained): Fr_u = F_point * pv_point. F_O = m*g*A.z F_P = Fx * A.x + Fy * A.y + Fz * A.z Fr_u = Matrix([dot(F_O, pv_o) + dot(F_P, pv_p) for pv_o, pv_p in zip(partial_v_O, partial_v_P)]) # Inertia force: R_star_O. # Inertia of disc: I_C_O, where J is a inertia component about principal axis. # Inertia torque: T_star_C. # Generalized inertia forces (unconstrained): Fr_star_u. R_star_O = -m*O.acc(N) I_C_O = inertia(B, I, J, I) T_star_C = -(dot(I_C_O, C.ang_acc_in(N)) \ + cross(C.ang_vel_in(N), dot(I_C_O, C.ang_vel_in(N)))) Fr_star_u = Matrix([dot(R_star_O, pv) + dot(T_star_C, pav) for pv, pav in zip(partial_v_O, partial_w_C)]) # Form nonholonomic Fr: Fr_c, and nonholonomic Fr_star: Fr_star_c. # Also, nonholonomic Fr_star in steady turning condition: Fr_star_steady. Fr_c = Fr_u[:3, :].col_join(Fr_u[6:, :]) + A_rs.T * Fr_u[3:6, :] Fr_star_c = Fr_star_u[:3, :].col_join(Fr_star_u[6:, :])\ + A_rs.T * Fr_star_u[3:6, :] Fr_star_steady = Fr_star_c.subs(ud_zero).subs(u_dep_dict)\ .subs(steady_conditions).subs({q[3]: -r*cos(q[1])}).expand() # Second, using KaneMethod in mechanics for fr, frstar and frstar_steady. # Rigid Bodies: disc, with inertia I_C_O. iner_tuple = (I_C_O, O) disc = RigidBody('disc', O, C, m, iner_tuple) bodyList = [disc] # Generalized forces: Gravity: F_o; Auxiliary forces: F_p. F_o = (O, F_O) F_p = (P, F_P) forceList = [F_o, F_p] # KanesMethod. kane = KanesMethod( N, q_ind= q[:3], u_ind= u[:3], kd_eqs=kindiffs, q_dependent=q[3:], configuration_constraints = f_c, u_dependent=u[3:], velocity_constraints= f_v, u_auxiliary=ua ) # fr, frstar, frstar_steady and kdd(kinematic differential equations). with warns_deprecated_sympy(): (fr, frstar)= kane.kanes_equations(forceList, bodyList) frstar_steady = frstar.subs(ud_zero).subs(u_dep_dict).subs(steady_conditions)\ .subs({q[3]: -r*cos(q[1])}).expand() kdd = kane.kindiffdict() assert Matrix(Fr_c).expand() == fr.expand() assert Matrix(Fr_star_c.subs(kdd)).expand() == frstar.expand() assert (simplify(Matrix(Fr_star_steady).expand()) == simplify(frstar_steady.expand())) def test_non_central_inertia(): # This tests that the calculation of Fr* does not depend the point # about which the inertia of a rigid body is defined. This test solves # exercises 8.12, 8.17 from Kane 1985. # Declare symbols q1, q2, q3 = dynamicsymbols('q1:4') q1d, q2d, q3d = dynamicsymbols('q1:4', level=1) u1, u2, u3, u4, u5 = dynamicsymbols('u1:6') u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta') a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t') Q1, Q2, Q3 = symbols('Q1, Q2 Q3') IA22, IA23, IA33 = symbols('IA22 IA23 IA33') # Reference Frames F = ReferenceFrame('F') P = F.orientnew('P', 'axis', [-theta, F.y]) A = P.orientnew('A', 'axis', [q1, P.x]) A.set_ang_vel(F, u1*A.x + u3*A.z) # define frames for wheels B = A.orientnew('B', 'axis', [q2, A.z]) C = A.orientnew('C', 'axis', [q3, A.z]) B.set_ang_vel(A, u4 * A.z) C.set_ang_vel(A, u5 * A.z) # define points D, S*, Q on frame A and their velocities pD = Point('D') pD.set_vel(A, 0) # u3 will not change v_D_F since wheels are still assumed to roll without slip. pD.set_vel(F, u2 * A.y) pS_star = pD.locatenew('S*', e*A.y) pQ = pD.locatenew('Q', f*A.y - R*A.x) for p in [pS_star, pQ]: p.v2pt_theory(pD, F, A) # masscenters of bodies A, B, C pA_star = pD.locatenew('A*', a*A.y) pB_star = pD.locatenew('B*', b*A.z) pC_star = pD.locatenew('C*', -b*A.z) for p in [pA_star, pB_star, pC_star]: p.v2pt_theory(pD, F, A) # points of B, C touching the plane P pB_hat = pB_star.locatenew('B^', -R*A.x) pC_hat = pC_star.locatenew('C^', -R*A.x) pB_hat.v2pt_theory(pB_star, F, B) pC_hat.v2pt_theory(pC_star, F, C) # the velocities of B^, C^ are zero since B, C are assumed to roll without slip kde = [q1d - u1, q2d - u4, q3d - u5] vc = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]] # inertias of bodies A, B, C # IA22, IA23, IA33 are not specified in the problem statement, but are # necessary to define an inertia object. Although the values of # IA22, IA23, IA33 are not known in terms of the variables given in the # problem statement, they do not appear in the general inertia terms. inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0) inertia_B = inertia(B, K, K, J) inertia_C = inertia(C, K, K, J) # define the rigid bodies A, B, C rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star)) rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star)) rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star)) km = KanesMethod(F, q_ind=[q1, q2, q3], u_ind=[u1, u2], kd_eqs=kde, u_dependent=[u4, u5], velocity_constraints=vc, u_auxiliary=[u3]) forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)] bodies = [rbA, rbB, rbC] with warns_deprecated_sympy(): fr, fr_star = km.kanes_equations(forces, bodies) vc_map = solve(vc, [u4, u5]) # KanesMethod returns the negative of Fr, Fr* as defined in Kane1985. fr_star_expected = Matrix([ -(IA + 2*J*b**2/R**2 + 2*K + mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2, -(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2, 0]) t = trigsimp(fr_star.subs(vc_map).subs({u3: 0})).doit().expand() assert ((fr_star_expected - t).expand() == zeros(3, 1)) # define inertias of rigid bodies A, B, C about point D # I_S/O = I_S/S* + I_S*/O bodies2 = [] for rb, I_star in zip([rbA, rbB, rbC], [inertia_A, inertia_B, inertia_C]): I = I_star + inertia_of_point_mass(rb.mass, rb.masscenter.pos_from(pD), rb.frame) bodies2.append(RigidBody('', rb.masscenter, rb.frame, rb.mass, (I, pD))) with warns_deprecated_sympy(): fr2, fr_star2 = km.kanes_equations(forces, bodies2) t = trigsimp(fr_star2.subs(vc_map).subs({u3: 0})).doit() assert (fr_star_expected - t).expand() == zeros(3, 1) def test_sub_qdot(): # This test solves exercises 8.12, 8.17 from Kane 1985 and defines # some velocities in terms of q, qdot. ## --- Declare symbols --- q1, q2, q3 = dynamicsymbols('q1:4') q1d, q2d, q3d = dynamicsymbols('q1:4', level=1) u1, u2, u3 = dynamicsymbols('u1:4') u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta') a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t') IA22, IA23, IA33 = symbols('IA22 IA23 IA33') Q1, Q2, Q3 = symbols('Q1 Q2 Q3') # --- Reference Frames --- F = ReferenceFrame('F') P = F.orientnew('P', 'axis', [-theta, F.y]) A = P.orientnew('A', 'axis', [q1, P.x]) A.set_ang_vel(F, u1*A.x + u3*A.z) # define frames for wheels B = A.orientnew('B', 'axis', [q2, A.z]) C = A.orientnew('C', 'axis', [q3, A.z]) ## --- define points D, S*, Q on frame A and their velocities --- pD = Point('D') pD.set_vel(A, 0) # u3 will not change v_D_F since wheels are still assumed to roll w/o slip pD.set_vel(F, u2 * A.y) pS_star = pD.locatenew('S*', e*A.y) pQ = pD.locatenew('Q', f*A.y - R*A.x) # masscenters of bodies A, B, C pA_star = pD.locatenew('A*', a*A.y) pB_star = pD.locatenew('B*', b*A.z) pC_star = pD.locatenew('C*', -b*A.z) for p in [pS_star, pQ, pA_star, pB_star, pC_star]: p.v2pt_theory(pD, F, A) # points of B, C touching the plane P pB_hat = pB_star.locatenew('B^', -R*A.x) pC_hat = pC_star.locatenew('C^', -R*A.x) pB_hat.v2pt_theory(pB_star, F, B) pC_hat.v2pt_theory(pC_star, F, C) # --- relate qdot, u --- # the velocities of B^, C^ are zero since B, C are assumed to roll w/o slip kde = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]] kde += [u1 - q1d] kde_map = solve(kde, [q1d, q2d, q3d]) for k, v in list(kde_map.items()): kde_map[k.diff(t)] = v.diff(t) # inertias of bodies A, B, C # IA22, IA23, IA33 are not specified in the problem statement, but are # necessary to define an inertia object. Although the values of # IA22, IA23, IA33 are not known in terms of the variables given in the # problem statement, they do not appear in the general inertia terms. inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0) inertia_B = inertia(B, K, K, J) inertia_C = inertia(C, K, K, J) # define the rigid bodies A, B, C rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star)) rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star)) rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star)) ## --- use kanes method --- km = KanesMethod(F, [q1, q2, q3], [u1, u2], kd_eqs=kde, u_auxiliary=[u3]) forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)] bodies = [rbA, rbB, rbC] # Q2 = -u_prime * u2 * Q1 / sqrt(u2**2 + f**2 * u1**2) # -u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2) = R / Q1 * Q2 fr_expected = Matrix([ f*Q3 + M*g*e*sin(theta)*cos(q1), Q2 + M*g*sin(theta)*sin(q1), e*M*g*cos(theta) - Q1*f - Q2*R]) #Q1 * (f - u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2)))]) fr_star_expected = Matrix([ -(IA + 2*J*b**2/R**2 + 2*K + mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2, -(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2, 0]) with warns_deprecated_sympy(): fr, fr_star = km.kanes_equations(forces, bodies) assert (fr.expand() == fr_expected.expand()) assert ((fr_star_expected - trigsimp(fr_star)).expand() == zeros(3, 1)) def test_sub_qdot2(): # This test solves exercises 8.3 from Kane 1985 and defines # all velocities in terms of q, qdot. We check that the generalized active # forces are correctly computed if u terms are only defined in the # kinematic differential equations. # # This functionality was added in PR 8948. Without qdot/u substitution, the # KanesMethod constructor will fail during the constraint initialization as # the B matrix will be poorly formed and inversion of the dependent part # will fail. g, m, Px, Py, Pz, R, t = symbols('g m Px Py Pz R t') q = dynamicsymbols('q:5') qd = dynamicsymbols('q:5', level=1) u = dynamicsymbols('u:5') ## Define inertial, intermediate, and rigid body reference frames A = ReferenceFrame('A') B_prime = A.orientnew('B_prime', 'Axis', [q[0], A.z]) B = B_prime.orientnew('B', 'Axis', [pi/2 - q[1], B_prime.x]) C = B.orientnew('C', 'Axis', [q[2], B.z]) ## Define points of interest and their velocities pO = Point('O') pO.set_vel(A, 0) # R is the point in plane H that comes into contact with disk C. pR = pO.locatenew('R', q[3]*A.x + q[4]*A.y) pR.set_vel(A, pR.pos_from(pO).diff(t, A)) pR.set_vel(B, 0) # C^ is the point in disk C that comes into contact with plane H. pC_hat = pR.locatenew('C^', 0) pC_hat.set_vel(C, 0) # C* is the point at the center of disk C. pCs = pC_hat.locatenew('C*', R*B.y) pCs.set_vel(C, 0) pCs.set_vel(B, 0) # calculate velocites of points C* and C^ in frame A pCs.v2pt_theory(pR, A, B) # points C* and R are fixed in frame B pC_hat.v2pt_theory(pCs, A, C) # points C* and C^ are fixed in frame C ## Define forces on each point of the system R_C_hat = Px*A.x + Py*A.y + Pz*A.z R_Cs = -m*g*A.z forces = [(pC_hat, R_C_hat), (pCs, R_Cs)] ## Define kinematic differential equations # let ui = omega_C_A & bi (i = 1, 2, 3) # u4 = qd4, u5 = qd5 u_expr = [C.ang_vel_in(A) & uv for uv in B] u_expr += qd[3:] kde = [ui - e for ui, e in zip(u, u_expr)] km1 = KanesMethod(A, q, u, kde) with warns_deprecated_sympy(): fr1, _ = km1.kanes_equations(forces, []) ## Calculate generalized active forces if we impose the condition that the # disk C is rolling without slipping u_indep = u[:3] u_dep = list(set(u) - set(u_indep)) vc = [pC_hat.vel(A) & uv for uv in [A.x, A.y]] km2 = KanesMethod(A, q, u_indep, kde, u_dependent=u_dep, velocity_constraints=vc) with warns_deprecated_sympy(): fr2, _ = km2.kanes_equations(forces, []) fr1_expected = Matrix([ -R*g*m*sin(q[1]), -R*(Px*cos(q[0]) + Py*sin(q[0]))*tan(q[1]), R*(Px*cos(q[0]) + Py*sin(q[0])), Px, Py]) fr2_expected = Matrix([ -R*g*m*sin(q[1]), 0, 0]) assert (trigsimp(fr1.expand()) == trigsimp(fr1_expected.expand())) assert (trigsimp(fr2.expand()) == trigsimp(fr2_expected.expand()))
cbe8c93424266df1f3b62092e89e07b19391c5cfdf9787b9be41f0dcc0f5accd
# -*- coding: utf-8 -*- from sympy import (Abs, Add, Basic, Function, Number, Rational, S, Symbol, diff, exp, integrate, log, sin, sqrt, symbols) from sympy.physics.units import (amount_of_substance, convert_to, find_unit, volume) from sympy.physics.units.definitions import (amu, au, centimeter, coulomb, day, energy, foot, grams, hour, inch, kg, km, m, meter, mile, millimeter, minute, pressure, quart, s, second, speed_of_light, temperature, bit, byte, kibibyte, mebibyte, gibibyte, tebibyte, pebibyte, exbibyte, kilogram, gravitational_constant) from sympy.physics.units.dimensions import Dimension, charge, length, time, dimsys_default from sympy.physics.units.prefixes import PREFIXES, kilo from sympy.physics.units.quantities import Quantity from sympy.utilities.pytest import XFAIL, raises, warns_deprecated_sympy k = PREFIXES["k"] def test_str_repr(): assert str(kg) == "kilogram" def test_eq(): # simple test assert 10*m == 10*m assert 10*m != 10*s def test_convert_to(): q = Quantity("q1") q.set_dimension(length) q.set_scale_factor(S(5000)) assert q.convert_to(m) == 5000*m assert speed_of_light.convert_to(m / s) == 299792458 * m / s # TODO: eventually support this kind of conversion: # assert (2*speed_of_light).convert_to(m / s) == 2 * 299792458 * m / s assert day.convert_to(s) == 86400*s # Wrong dimension to convert: assert q.convert_to(s) == q assert speed_of_light.convert_to(m) == speed_of_light def test_Quantity_definition(): q = Quantity("s10", abbrev="sabbr") q.set_dimension(time) q.set_scale_factor(10) u = Quantity("u", abbrev="dam") u.set_dimension(length) u.set_scale_factor(10) km = Quantity("km") km.set_dimension(length) km.set_scale_factor(kilo) v = Quantity("u") v.set_dimension(length) v.set_scale_factor(5*kilo) assert q.scale_factor == 10 assert q.dimension == time assert q.abbrev == Symbol("sabbr") assert u.dimension == length assert u.scale_factor == 10 assert u.abbrev == Symbol("dam") assert km.scale_factor == 1000 assert km.func(*km.args) == km assert km.func(*km.args).args == km.args assert v.dimension == length assert v.scale_factor == 5000 with warns_deprecated_sympy(): Quantity('invalid', 'dimension', 1) with warns_deprecated_sympy(): Quantity('mismatch', dimension=length, scale_factor=kg) def test_abbrev(): u = Quantity("u") u.set_dimension(length) u.set_scale_factor(S.One) assert u.name == Symbol("u") assert u.abbrev == Symbol("u") u = Quantity("u", abbrev="om") u.set_dimension(length) u.set_scale_factor(S(2)) assert u.name == Symbol("u") assert u.abbrev == Symbol("om") assert u.scale_factor == 2 assert isinstance(u.scale_factor, Number) u = Quantity("u", abbrev="ikm") u.set_dimension(length) u.set_scale_factor(3*kilo) assert u.abbrev == Symbol("ikm") assert u.scale_factor == 3000 def test_print(): u = Quantity("unitname", abbrev="dam") assert repr(u) == "unitname" assert str(u) == "unitname" def test_Quantity_eq(): u = Quantity("u", abbrev="dam") v = Quantity("v1") assert u != v v = Quantity("v2", abbrev="ds") assert u != v v = Quantity("v3", abbrev="dm") assert u != v def test_add_sub(): u = Quantity("u") v = Quantity("v") w = Quantity("w") u.set_dimension(length) v.set_dimension(length) w.set_dimension(time) u.set_scale_factor(S(10)) v.set_scale_factor(S(5)) w.set_scale_factor(S(2)) assert isinstance(u + v, Add) assert (u + v.convert_to(u)) == (1 + S.Half)*u # TODO: eventually add this: # assert (u + v).convert_to(u) == (1 + S.Half)*u assert isinstance(u - v, Add) assert (u - v.convert_to(u)) == S.Half*u # TODO: eventually add this: # assert (u - v).convert_to(u) == S.Half*u def test_quantity_abs(): v_w1 = Quantity('v_w1') v_w2 = Quantity('v_w2') v_w3 = Quantity('v_w3') v_w1.set_dimension(length/time) v_w2.set_dimension(length/time) v_w3.set_dimension(length/time) v_w1.set_scale_factor(meter/second) v_w2.set_scale_factor(meter/second) v_w3.set_scale_factor(meter/second) expr = v_w3 - Abs(v_w1 - v_w2) Dq = Dimension(Quantity.get_dimensional_expr(expr)) assert dimsys_default.get_dimensional_dependencies(Dq) == { 'length': 1, 'time': -1, } assert meter == sqrt(meter**2) def test_check_unit_consistency(): u = Quantity("u") v = Quantity("v") w = Quantity("w") u.set_dimension(length) v.set_dimension(length) w.set_dimension(time) u.set_scale_factor(S(10)) v.set_scale_factor(S(5)) w.set_scale_factor(S(2)) def check_unit_consistency(expr): Quantity._collect_factor_and_dimension(expr) raises(ValueError, lambda: check_unit_consistency(u + w)) raises(ValueError, lambda: check_unit_consistency(u - w)) raises(ValueError, lambda: check_unit_consistency(u + 1)) raises(ValueError, lambda: check_unit_consistency(u - 1)) def test_mul_div(): u = Quantity("u") v = Quantity("v") t = Quantity("t") ut = Quantity("ut") v2 = Quantity("v") u.set_dimension(length) v.set_dimension(length) t.set_dimension(time) ut.set_dimension(length*time) v2.set_dimension(length/time) u.set_scale_factor(S(10)) v.set_scale_factor(S(5)) t.set_scale_factor(S(2)) ut.set_scale_factor(S(20)) v2.set_scale_factor(S(5)) assert 1 / u == u**(-1) assert u / 1 == u v1 = u / t v2 = v # Pow only supports structural equality: assert v1 != v2 assert v1 == v2.convert_to(v1) # TODO: decide whether to allow such expression in the future # (requires somehow manipulating the core). # assert u / Quantity('l2', dimension=length, scale_factor=2) == 5 assert u * 1 == u ut1 = u * t ut2 = ut # Mul only supports structural equality: assert ut1 != ut2 assert ut1 == ut2.convert_to(ut1) # Mul only supports structural equality: lp1 = Quantity("lp1") lp1.set_dimension(length**-1) lp1.set_scale_factor(S(2)) assert u * lp1 != 20 assert u**0 == 1 assert u**1 == u # TODO: Pow only support structural equality: u2 = Quantity("u2") u3 = Quantity("u3") u2.set_dimension(length**2) u3.set_dimension(length**-1) u2.set_scale_factor(S(100)) u3.set_scale_factor(S(1)/10) assert u ** 2 != u2 assert u ** -1 != u3 assert u ** 2 == u2.convert_to(u) assert u ** -1 == u3.convert_to(u) def test_units(): assert convert_to((5*m/s * day) / km, 1) == 432 assert convert_to(foot / meter, meter) == Rational(3048, 10000) # amu is a pure mass so mass/mass gives a number, not an amount (mol) # TODO: need better simplification routine: assert str(convert_to(grams/amu, grams).n(2)) == '6.0e+23' # Light from the sun needs about 8.3 minutes to reach earth t = (1*au / speed_of_light) / minute # TODO: need a better way to simplify expressions containing units: t = convert_to(convert_to(t, meter / minute), meter) assert t == S(49865956897)/5995849160 # TODO: fix this, it should give `m` without `Abs` assert sqrt(m**2) == Abs(m) assert (sqrt(m))**2 == m t = Symbol('t') assert integrate(t*m/s, (t, 1*s, 5*s)) == 12*m*s assert (t * m/s).integrate((t, 1*s, 5*s)) == 12*m*s def test_issue_quart(): assert convert_to(4 * quart / inch ** 3, meter) == 231 assert convert_to(4 * quart / inch ** 3, millimeter) == 231 def test_issue_5565(): assert (m < s).is_Relational def test_find_unit(): assert find_unit('coulomb') == ['coulomb', 'coulombs', 'coulomb_constant'] assert find_unit(coulomb) == ['C', 'coulomb', 'coulombs', 'planck_charge'] assert find_unit(charge) == ['C', 'coulomb', 'coulombs', 'planck_charge'] assert find_unit(inch) == [ 'm', 'au', 'cm', 'dm', 'ft', 'km', 'ly', 'mi', 'mm', 'nm', 'pm', 'um', 'yd', 'nmi', 'feet', 'foot', 'inch', 'mile', 'yard', 'meter', 'miles', 'yards', 'inches', 'meters', 'micron', 'microns', 'decimeter', 'kilometer', 'lightyear', 'nanometer', 'picometer', 'centimeter', 'decimeters', 'kilometers', 'lightyears', 'micrometer', 'millimeter', 'nanometers', 'picometers', 'centimeters', 'micrometers', 'millimeters', 'nautical_mile', 'planck_length', 'nautical_miles', 'astronomical_unit', 'astronomical_units'] assert find_unit(inch**-1) == ['D', 'dioptre', 'optical_power'] assert find_unit(length**-1) == ['D', 'dioptre', 'optical_power'] assert find_unit(inch ** 3) == [ 'l', 'cl', 'dl', 'ml', 'liter', 'quart', 'liters', 'quarts', 'deciliter', 'centiliter', 'deciliters', 'milliliter', 'centiliters', 'milliliters', 'planck_volume'] assert find_unit('voltage') == ['V', 'v', 'volt', 'volts', 'planck_voltage'] def test_Quantity_derivative(): x = symbols("x") assert diff(x*meter, x) == meter assert diff(x**3*meter**2, x) == 3*x**2*meter**2 assert diff(meter, meter) == 1 assert diff(meter**2, meter) == 2*meter def test_quantity_postprocessing(): q1 = Quantity('q1') q2 = Quantity('q2') q1.set_dimension(length*pressure**2*temperature/time) q2.set_dimension(energy*pressure*temperature/(length**2*time)) assert q1 + q2 q = q1 + q2 Dq = Dimension(Quantity.get_dimensional_expr(q)) assert dimsys_default.get_dimensional_dependencies(Dq) == { 'length': -1, 'mass': 2, 'temperature': 1, 'time': -5, } def test_factor_and_dimension(): assert (3000, Dimension(1)) == Quantity._collect_factor_and_dimension(3000) assert (1001, length) == Quantity._collect_factor_and_dimension(meter + km) assert (2, length/time) == Quantity._collect_factor_and_dimension( meter/second + 36*km/(10*hour)) x, y = symbols('x y') assert (x + y/100, length) == Quantity._collect_factor_and_dimension( x*m + y*centimeter) cH = Quantity('cH') cH.set_dimension(amount_of_substance/volume) pH = -log(cH) assert (1, volume/amount_of_substance) == Quantity._collect_factor_and_dimension( exp(pH)) v_w1 = Quantity('v_w1') v_w2 = Quantity('v_w2') v_w1.set_dimension(length/time) v_w2.set_dimension(length/time) v_w1.set_scale_factor(S(3)/2*meter/second) v_w2.set_scale_factor(2*meter/second) expr = Abs(v_w1/2 - v_w2) assert (S(5)/4, length/time) == \ Quantity._collect_factor_and_dimension(expr) expr = S(5)/2*second/meter*v_w1 - 3000 assert (-(2996 + S(1)/4), Dimension(1)) == \ Quantity._collect_factor_and_dimension(expr) expr = v_w1**(v_w2/v_w1) assert ((S(3)/2)**(S(4)/3), (length/time)**(S(4)/3)) == \ Quantity._collect_factor_and_dimension(expr) @XFAIL def test_factor_and_dimension_with_Abs(): with warns_deprecated_sympy(): v_w1 = Quantity('v_w1', length/time, S(3)/2*meter/second) v_w1.set_dimension(length/time) v_w1.set_scale_factor(S(3)/2*meter/second) expr = v_w1 - Abs(v_w1) assert (0, length/time) == Quantity._collect_factor_and_dimension(expr) def test_dimensional_expr_of_derivative(): l = Quantity('l') t = Quantity('t') t1 = Quantity('t1') l.set_dimension(length) t.set_dimension(time) t1.set_dimension(time) l.set_scale_factor(36*km) t.set_scale_factor(hour) t1.set_scale_factor(second) x = Symbol('x') y = Symbol('y') f = Function('f') dfdx = f(x, y).diff(x, y) dl_dt = dfdx.subs({f(x, y): l, x: t, y: t1}) assert Quantity.get_dimensional_expr(dl_dt) ==\ Quantity.get_dimensional_expr(l / t / t1) ==\ Symbol("length")/Symbol("time")**2 assert Quantity._collect_factor_and_dimension(dl_dt) ==\ Quantity._collect_factor_and_dimension(l / t / t1) ==\ (10, length/time**2) def test_get_dimensional_expr_with_function(): v_w1 = Quantity('v_w1') v_w2 = Quantity('v_w2') v_w1.set_dimension(length/time) v_w2.set_dimension(length/time) v_w1.set_scale_factor(meter/second) v_w2.set_scale_factor(meter/second) assert Quantity.get_dimensional_expr(sin(v_w1)) == \ sin(Quantity.get_dimensional_expr(v_w1)) assert Quantity.get_dimensional_expr(sin(v_w1/v_w2)) == 1 def test_binary_information(): assert convert_to(kibibyte, byte) == 1024*byte assert convert_to(mebibyte, byte) == 1024**2*byte assert convert_to(gibibyte, byte) == 1024**3*byte assert convert_to(tebibyte, byte) == 1024**4*byte assert convert_to(pebibyte, byte) == 1024**5*byte assert convert_to(exbibyte, byte) == 1024**6*byte assert kibibyte.convert_to(bit) == 8*1024*bit assert byte.convert_to(bit) == 8*bit a = 10*kibibyte*hour assert convert_to(a, byte) == 10240*byte*hour assert convert_to(a, minute) == 600*kibibyte*minute assert convert_to(a, [byte, minute]) == 614400*byte*minute def test_eval_subs(): energy, mass, force = symbols('energy mass force') expr1 = energy/mass units = {energy: kilogram*meter**2/second**2, mass: kilogram} assert expr1.subs(units) == meter**2/second**2 expr2 = force/mass units = {force:gravitational_constant*kilogram**2/meter**2, mass:kilogram} assert expr2.subs(units) == gravitational_constant*kilogram/meter**2 def test_issue_14932(): assert (log(inch) - log(2)).simplify() == log(inch/2) assert (log(inch) - log(foot)).simplify() == -log(12) p = symbols('p', positive=True) assert (log(inch) - log(p)).simplify() == log(inch/p) def test_issue_14547(): # the root issue is that an argument with dimensions should # not raise an error when the the `arg - 1` calculation is # performed in the assumptions system from sympy.physics.units import foot, inch from sympy import Eq assert log(foot).is_zero is None assert log(foot).is_positive is None assert log(foot).is_nonnegative is None assert log(foot).is_negative is None assert log(foot).is_algebraic is None assert log(foot).is_rational is None # doesn't raise error assert Eq(log(foot), log(inch)) is not None # might be False or unevaluated x = Symbol('x') e = foot + x assert e.is_Add and set(e.args) == {foot, x} e = foot + 1 assert e.is_Add and set(e.args) == {foot, 1}
caf446919116c054b324722c5a23ee4361847edb1313297778737cdaad847dd0
# -*- coding: utf-8 -*- from sympy.utilities.pytest import warns_deprecated_sympy from sympy import Rational, S from sympy.physics.units.definitions import c, kg, m, s from sympy.physics.units.dimensions import ( Dimension, DimensionSystem, action, current, length, mass, time, velocity) from sympy.physics.units.quantities import Quantity from sympy.physics.units.unitsystem import UnitSystem from sympy.utilities.pytest import raises def test_definition(): # want to test if the system can have several units of the same dimension dm = Quantity("dm") dm.set_dimension(length) dm.set_scale_factor(Rational(1, 10)) base = (m, s) base_dim = (m.dimension, s.dimension) ms = UnitSystem(base, (c, dm), "MS", "MS system") assert set(ms._base_units) == set(base) assert set(ms._units) == set((m, s, c, dm)) #assert ms._units == DimensionSystem._sort_dims(base + (velocity,)) assert ms.name == "MS" assert ms.descr == "MS system" assert ms._system.base_dims == base_dim assert ms._system.derived_dims == (velocity,) def test_error_definition(): raises(ValueError, lambda: UnitSystem((m, s, c))) def test_str_repr(): assert str(UnitSystem((m, s), name="MS")) == "MS" assert str(UnitSystem((m, s))) == "UnitSystem((meter, second))" assert repr(UnitSystem((m, s))) == "<UnitSystem: (%s, %s)>" % (m, s) def test_print_unit_base(): A = Quantity("A") A.set_dimension(current) A.set_scale_factor(S.One) Js = Quantity("Js") Js.set_dimension(action) Js.set_scale_factor(S.One) mksa = UnitSystem((m, kg, s, A), (Js,)) with warns_deprecated_sympy(): assert mksa.print_unit_base(Js) == m**2*kg*s**-1/1000 def test_extend(): ms = UnitSystem((m, s), (c,)) Js = Quantity("Js") Js.set_dimension(action) Js.set_scale_factor(1) mks = ms.extend((kg,), (Js,)) res = UnitSystem((m, s, kg), (c, Js)) assert set(mks._base_units) == set(res._base_units) assert set(mks._units) == set(res._units) def test_dim(): dimsys = UnitSystem((m, kg, s), (c,)) assert dimsys.dim == 3 def test_is_consistent(): assert UnitSystem((m, s)).is_consistent is True
d4b9824e862201b35b3f51b257e6280ef306beb5c11efb0483601f7f96829bf8
# -*- coding: utf-8 -*- from sympy.utilities.pytest import warns_deprecated_sympy from sympy import S, Symbol, sqrt from sympy.physics.units.dimensions import Dimension, length, time, dimsys_default from sympy.physics.units import foot from sympy.utilities.pytest import raises def test_Dimension_definition(): with warns_deprecated_sympy(): assert length.get_dimensional_dependencies() == {"length": 1} assert dimsys_default.get_dimensional_dependencies(length) == {"length": 1} assert length.name == Symbol("length") assert length.symbol == Symbol("L") halflength = sqrt(length) with warns_deprecated_sympy(): assert halflength.get_dimensional_dependencies() == {"length": S.Half} assert dimsys_default.get_dimensional_dependencies(halflength) == {"length": S.Half} def test_Dimension_error_definition(): # tuple with more or less than two entries raises(TypeError, lambda: Dimension(("length", 1, 2))) raises(TypeError, lambda: Dimension(["length"])) # non-number power raises(TypeError, lambda: Dimension({"length": "a"})) # non-number with named argument raises(TypeError, lambda: Dimension({"length": (1, 2)})) # symbol should by Symbol or str raises(AssertionError, lambda: Dimension("length", symbol=1)) def test_Dimension_error_regisration(): with warns_deprecated_sympy(): # tuple with more or less than two entries raises(IndexError, lambda: length._register_as_base_dim()) with warns_deprecated_sympy(): one = Dimension(1) raises(TypeError, lambda: one._register_as_base_dim()) def test_str(): assert str(Dimension("length")) == "Dimension(length)" assert str(Dimension("length", "L")) == "Dimension(length, L)" def test_Dimension_properties(): assert dimsys_default.is_dimensionless(length) is False assert dimsys_default.is_dimensionless(length/length) is True assert dimsys_default.is_dimensionless(Dimension("undefined")) is True assert length.has_integer_powers(dimsys_default) is True assert (length**(-1)).has_integer_powers(dimsys_default) is True assert (length**1.5).has_integer_powers(dimsys_default) is False def test_Dimension_add_sub(): assert length + length == length assert length - length == length assert -length == length assert length + foot == foot + length == length assert length - foot == foot - length == length assert length + time == length - time != length # issue 14547 - only raise error for dimensional args; allow # others to pass x = Symbol('x') e = length + x assert e == x + length and e.is_Add and set(e.args) == {length, x} e = length + 1 assert e == 1 + length == 1 - length and e.is_Add and set(e.args) == {length, 1} def test_Dimension_mul_div_exp(): assert 2*length == length*2 == length/2 == length assert 2/length == 1/length x = Symbol('x') m = x*length assert m == length*x and m.is_Mul and set(m.args) == {x, length} d = x/length assert d == x*length**-1 and d.is_Mul and set(d.args) == {x, 1/length} d = length/x assert d == length*x**-1 and d.is_Mul and set(d.args) == {1/x, length} velo = length / time assert (length * length) == length ** 2 assert dimsys_default.get_dimensional_dependencies(length * length) == {"length": 2} assert dimsys_default.get_dimensional_dependencies(length ** 2) == {"length": 2} assert dimsys_default.get_dimensional_dependencies(length * time) == { "length": 1, "time": 1} assert dimsys_default.get_dimensional_dependencies(velo) == { "length": 1, "time": -1} assert dimsys_default.get_dimensional_dependencies(velo ** 2) == {"length": 2, "time": -2} assert dimsys_default.get_dimensional_dependencies(length / length) == {} assert dimsys_default.get_dimensional_dependencies(velo / length * time) == {} assert dimsys_default.get_dimensional_dependencies(length ** -1) == {"length": -1} assert dimsys_default.get_dimensional_dependencies(velo ** -1.5) == {"length": -1.5, "time": 1.5} length_a = length**"a" assert dimsys_default.get_dimensional_dependencies(length_a) == {"length": Symbol("a")} assert length != 1 assert length / length != 1 length_0 = length ** 0 assert dimsys_default.get_dimensional_dependencies(length_0) == {}
a728ad4393bddcb7048bf34a507fba3db433f27a7f9c83506a11ba6dd10f3ad8
# -*- coding: utf-8 -*- from sympy import symbols, log, Mul, Symbol, S from sympy.physics.units import Quantity, Dimension, length from sympy.physics.units.prefixes import PREFIXES, Prefix, prefix_unit, kilo, \ kibi x = Symbol('x') def test_prefix_operations(): m = PREFIXES['m'] k = PREFIXES['k'] M = PREFIXES['M'] dodeca = Prefix('dodeca', 'dd', 1, base=12) assert m * k == 1 assert k * k == M assert 1 / m == k assert k / m == M assert dodeca * dodeca == 144 assert 1 / dodeca == S(1) / 12 assert k / dodeca == S(1000) / 12 assert dodeca / dodeca == 1 m = Quantity("fake_meter") m.set_dimension(S.One) m.set_scale_factor(S.One) assert dodeca * m == 12 * m assert dodeca / m == 12 / m expr1 = kilo * 3 assert isinstance(expr1, Mul) assert (expr1).args == (3, kilo) expr2 = kilo * x assert isinstance(expr2, Mul) assert (expr2).args == (x, kilo) expr3 = kilo / 3 assert isinstance(expr3, Mul) assert (expr3).args == (S(1)/3, kilo) expr4 = kilo / x assert isinstance(expr4, Mul) assert (expr4).args == (1/x, kilo) def test_prefix_unit(): m = Quantity("fake_meter", abbrev="m") m.set_dimension(length) m.set_scale_factor(1) pref = {"m": PREFIXES["m"], "c": PREFIXES["c"], "d": PREFIXES["d"]} q1 = Quantity("millifake_meter", abbrev="mm") q2 = Quantity("centifake_meter", abbrev="cm") q3 = Quantity("decifake_meter", abbrev="dm") q1.set_dimension(length) q1.set_dimension(length) q1.set_dimension(length) q1.set_scale_factor(PREFIXES["m"]) q1.set_scale_factor(PREFIXES["c"]) q1.set_scale_factor(PREFIXES["d"]) res = [q1, q2, q3] prefs = prefix_unit(m, pref) assert set(prefs) == set(res) assert set(map(lambda x: x.abbrev, prefs)) == set(symbols("mm,cm,dm")) def test_bases(): assert kilo.base == 10 assert kibi.base == 2 def test_repr(): assert eval(repr(kilo)) == kilo assert eval(repr(kibi)) == kibi
18cecb0f58884c2dcc78db11d93b1dc06926eb9ee8ed7b25d2654e45fac04f93
# -*- coding: utf-8 -*- from sympy.utilities.pytest import warns_deprecated_sympy from sympy import (Add, Mul, Pow, Tuple, pi, sin, sqrt, sstr, sympify, symbols) from sympy.physics.units import ( G, centimeter, coulomb, day, degree, gram, hbar, hour, inch, joule, kelvin, kilogram, kilometer, length, meter, mile, minute, newton, planck, planck_length, planck_mass, planck_temperature, planck_time, radians, second, speed_of_light, steradian, time, km) from sympy.physics.units.dimensions import dimsys_default from sympy.physics.units.util import convert_to, dim_simplify, check_dimensions from sympy.utilities.pytest import raises def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) L = length T = time def test_dim_simplify_add(): with warns_deprecated_sympy(): assert dim_simplify(Add(L, L)) == L with warns_deprecated_sympy(): assert dim_simplify(L + L) == L def test_dim_simplify_mul(): with warns_deprecated_sympy(): assert dim_simplify(Mul(L, T)) == L*T with warns_deprecated_sympy(): assert dim_simplify(L*T) == L*T def test_dim_simplify_pow(): with warns_deprecated_sympy(): assert dim_simplify(Pow(L, 2)) == L**2 with warns_deprecated_sympy(): assert dim_simplify(L**2) == L**2 def test_dim_simplify_rec(): with warns_deprecated_sympy(): assert dim_simplify(Mul(Add(L, L), T)) == L*T with warns_deprecated_sympy(): assert dim_simplify((L + L) * T) == L*T def test_dim_simplify_dimless(): # TODO: this should be somehow simplified on its own, # without the need of calling `dim_simplify`: with warns_deprecated_sympy(): assert dim_simplify(sin(L*L**-1)**2*L).get_dimensional_dependencies()\ == dimsys_default.get_dimensional_dependencies(L) with warns_deprecated_sympy(): assert dim_simplify(sin(L * L**(-1))**2 * L).get_dimensional_dependencies()\ == dimsys_default.get_dimensional_dependencies(L) def test_convert_to_quantities(): assert convert_to(3, meter) == 3 assert convert_to(mile, kilometer) == 1.609344*kilometer assert convert_to(meter/second, speed_of_light) == speed_of_light/299792458 assert convert_to(299792458*meter/second, speed_of_light) == speed_of_light assert convert_to(2*299792458*meter/second, speed_of_light) == 2*speed_of_light assert convert_to(speed_of_light, meter/second) == 299792458*meter/second assert convert_to(2*speed_of_light, meter/second) == 599584916*meter/second assert convert_to(day, second) == 86400*second assert convert_to(2*hour, minute) == 120*minute assert convert_to(mile, meter) == 1609.344*meter assert convert_to(mile/hour, kilometer/hour) == 25146*kilometer/(15625*hour) assert convert_to(3*newton, meter/second) == 3*newton assert convert_to(3*newton, kilogram*meter/second**2) == 3*meter*kilogram/second**2 assert convert_to(kilometer + mile, meter) == 2609.344*meter assert convert_to(2*kilometer + 3*mile, meter) == 6828.032*meter assert convert_to(inch**2, meter**2) == 16129*meter**2/25000000 assert convert_to(3*inch**2, meter) == 48387*meter**2/25000000 assert convert_to(2*kilometer/hour + 3*mile/hour, meter/second) == 53344*meter/(28125*second) assert convert_to(2*kilometer/hour + 3*mile/hour, centimeter/second) == 213376*centimeter/(1125*second) assert convert_to(kilometer * (mile + kilometer), meter) == 2609344 * meter ** 2 assert convert_to(steradian, coulomb) == steradian assert convert_to(radians, degree) == 180*degree/pi assert convert_to(radians, [meter, degree]) == 180*degree/pi assert convert_to(pi*radians, degree) == 180*degree assert convert_to(pi, degree) == 180*degree def test_convert_to_tuples_of_quantities(): assert convert_to(speed_of_light, [meter, second]) == 299792458 * meter / second assert convert_to(speed_of_light, (meter, second)) == 299792458 * meter / second assert convert_to(speed_of_light, Tuple(meter, second)) == 299792458 * meter / second assert convert_to(joule, [meter, kilogram, second]) == kilogram*meter**2/second**2 assert convert_to(joule, [centimeter, gram, second]) == 10000000*centimeter**2*gram/second**2 assert convert_to(299792458*meter/second, [speed_of_light]) == speed_of_light assert convert_to(speed_of_light / 2, [meter, second, kilogram]) == meter/second*299792458 / 2 # This doesn't make physically sense, but let's keep it as a conversion test: assert convert_to(2 * speed_of_light, [meter, second, kilogram]) == 2 * 299792458 * meter / second assert convert_to(G, [G, speed_of_light, planck]) == 1.0*G assert NS(convert_to(meter, [G, speed_of_light, hbar]), n=7) == '6.187242e+34*gravitational_constant**0.5000000*hbar**0.5000000*speed_of_light**(-1.500000)' assert NS(convert_to(planck_mass, kilogram), n=7) == '2.176471e-8*kilogram' assert NS(convert_to(planck_length, meter), n=7) == '1.616229e-35*meter' assert NS(convert_to(planck_time, second), n=6) == '5.39116e-44*second' assert NS(convert_to(planck_temperature, kelvin), n=7) == '1.416809e+32*kelvin' assert NS(convert_to(convert_to(meter, [G, speed_of_light, planck]), meter), n=10) == '1.000000000*meter' def test_eval_simplify(): from sympy.physics.units import cm, mm, km, m, K, Quantity, kilo, foot from sympy.simplify.simplify import simplify from sympy.core.symbol import symbols from sympy.utilities.pytest import raises from sympy.core.function import Lambda x, y = symbols('x y') assert ((cm/mm).simplify()) == 10 assert ((km/m).simplify()) == 1000 assert ((km/cm).simplify()) == 100000 assert ((10*x*K*km**2/m/cm).simplify()) == 1000000000*x*kelvin assert ((cm/km/m).simplify()) == 1/(10000000*centimeter) assert (3*kilo*meter).simplify() == 3000*meter assert (4*kilo*meter/(2*kilometer)).simplify() == 2 assert (4*kilometer**2/(kilo*meter)**2).simplify() == 4 def test_quantity_simplify(): from sympy.physics.units.util import quantity_simplify from sympy.physics.units import kilo, foot from sympy.core.symbol import symbols x, y = symbols('x y') assert quantity_simplify(x*(8*kilo*newton*meter + y)) == x*(8000*meter*newton + y) assert quantity_simplify(foot*inch*(foot + inch)) == foot**2*(foot + foot/12)/12 assert quantity_simplify(foot*inch*(foot*foot + inch*(foot + inch))) == foot**2*(foot**2 + foot/12*(foot + foot/12))/12 assert quantity_simplify(2**(foot/inch*kilo/1000)*inch) == 4096*foot/12 assert quantity_simplify(foot**2*inch + inch**2*foot) == 13*foot**3/144 def test_check_dimensions(): x = symbols('x') assert check_dimensions(inch + x) == inch + x assert check_dimensions(length + x) == length + x # after subs we get 2*length; check will clear the constant assert check_dimensions((length + x).subs(x, length)) == length raises(ValueError, lambda: check_dimensions(inch + 1)) raises(ValueError, lambda: check_dimensions(length + 1)) raises(ValueError, lambda: check_dimensions(length + time)) raises(ValueError, lambda: check_dimensions(meter + second)) raises(ValueError, lambda: check_dimensions(2 * meter + second)) raises(ValueError, lambda: check_dimensions(2 * meter + 3 * second)) raises(ValueError, lambda: check_dimensions(1 / second + 1 / meter)) raises(ValueError, lambda: check_dimensions(2 * meter*(mile + centimeter) + km))
4e73f23717fff7a4794faa3918338ff34edd88183556a6b963c02da8a2bde258
# -*- coding: utf-8 -*- from sympy.utilities.pytest import warns_deprecated_sympy from sympy import Matrix, eye, symbols from sympy.physics.units.dimensions import ( Dimension, DimensionSystem, action, charge, current, length, mass, time, velocity) from sympy.utilities.pytest import raises def test_call(): mksa = DimensionSystem((length, time, mass, current), (action,)) with warns_deprecated_sympy(): assert mksa(action) == mksa.print_dim_base(action) def test_extend(): ms = DimensionSystem((length, time), (velocity,)) mks = ms.extend((mass,), (action,)) res = DimensionSystem((length, time, mass), (velocity, action)) assert mks.base_dims == res.base_dims assert mks.derived_dims == res.derived_dims def test_sort_dims(): with warns_deprecated_sympy(): assert (DimensionSystem.sort_dims((length, velocity, time)) == (length, time, velocity)) def test_list_dims(): dimsys = DimensionSystem((length, time, mass)) assert dimsys.list_can_dims == ("length", "mass", "time") def test_dim_can_vector(): dimsys = DimensionSystem((length, mass, time), (velocity, action)) assert dimsys.dim_can_vector(length) == Matrix([1, 0, 0]) assert dimsys.dim_can_vector(velocity) == Matrix([1, 0, -1]) dimsys = DimensionSystem((length, velocity, action), (mass, time)) assert dimsys.dim_can_vector(length) == Matrix([1, 0, 0]) assert dimsys.dim_can_vector(velocity) == Matrix([1, 0, -1]) def test_dim_vector(): dimsys = DimensionSystem( (length, mass, time), (velocity, action), {velocity: {length: 1, time: -1}, action: {mass: 1, length: 2, time: -1}}) assert dimsys.dim_vector(length) == Matrix([1, 0, 0]) assert dimsys.dim_vector(velocity) == Matrix([1, 0, -1]) dimsys = DimensionSystem((length, velocity, action), (mass, time)) assert dimsys.dim_vector(length) == Matrix([0, 1, 0]) assert dimsys.dim_vector(velocity) == Matrix([0, 0, 1]) assert dimsys.dim_vector(time) == Matrix([0, 1, -1]) def test_inv_can_transf_matrix(): dimsys = DimensionSystem((length, mass, time)) assert dimsys.inv_can_transf_matrix == eye(3) dimsys = DimensionSystem((length, velocity, action)) assert dimsys.inv_can_transf_matrix == Matrix([[1, 2, 1], [0, 1, 0], [-1, -1, 0]]) def test_can_transf_matrix(): dimsys = DimensionSystem((length, mass, time)) assert dimsys.can_transf_matrix == eye(3) dimsys = DimensionSystem((length, velocity, action)) assert dimsys.can_transf_matrix == Matrix([[0, 1, 0], [1, -1, 1], [0, -1, -1]]) def test_is_consistent(): assert DimensionSystem((length, time)).is_consistent is True #assert DimensionSystem((length, time, velocity)).is_consistent is False def test_print_dim_base(): mksa = DimensionSystem( (length, time, mass, current), (action,), {action: {mass: 1, length: 2, time: -1}}) L, M, T = symbols("L M T") assert mksa.print_dim_base(action) == L**2*M/T def test_dim(): dimsys = DimensionSystem( (length, mass, time), (velocity, action), {velocity: {length: 1, time: -1}, action: {mass: 1, length: 2, time: -1}} ) assert dimsys.dim == 3
c6b64486f775ccc6108c0a948f9ee6c75a4c64d102f04f2b3667421c129d95f3
from sympy import Symbol, symbols, S, simplify from sympy.physics.continuum_mechanics.beam import Beam from sympy.functions import SingularityFunction, Piecewise, meijerg, Abs, log from sympy.utilities.pytest import raises from sympy.physics.units import meter, newton, kilo, giga, milli from sympy.physics.continuum_mechanics.beam import Beam3D x = Symbol('x') y = Symbol('y') R1, R2 = symbols('R1, R2') def test_Beam(): E = Symbol('E') E_1 = Symbol('E_1') I = Symbol('I') I_1 = Symbol('I_1') b = Beam(1, E, I) assert b.length == 1 assert b.elastic_modulus == E assert b.second_moment == I assert b.variable == x # Test the length setter b.length = 4 assert b.length == 4 # Test the E setter b.elastic_modulus = E_1 assert b.elastic_modulus == E_1 # Test the I setter b.second_moment = I_1 assert b.second_moment is I_1 # Test the variable setter b.variable = y assert b.variable is y # Test for all boundary conditions. b.bc_deflection = [(0, 2)] b.bc_slope = [(0, 1)] assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]} # Test for slope boundary condition method b.bc_slope.extend([(4, 3), (5, 0)]) s_bcs = b.bc_slope assert s_bcs == [(0, 1), (4, 3), (5, 0)] # Test for deflection boundary condition method b.bc_deflection.extend([(4, 3), (5, 0)]) d_bcs = b.bc_deflection assert d_bcs == [(0, 2), (4, 3), (5, 0)] # Test for updated boundary conditions bcs_new = b.boundary_conditions assert bcs_new == { 'deflection': [(0, 2), (4, 3), (5, 0)], 'slope': [(0, 1), (4, 3), (5, 0)]} b1 = Beam(30, E, I) b1.apply_load(-8, 0, -1) b1.apply_load(R1, 10, -1) b1.apply_load(R2, 30, -1) b1.apply_load(120, 30, -2) b1.bc_deflection = [(10, 0), (30, 0)] b1.solve_for_reaction_loads(R1, R2) # Test for finding reaction forces p = b1.reaction_loads q = {R1: 6, R2: 2} assert p == q # Test for load distribution function. p = b1.load q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) assert p == q # Test for shear force distribution function p = b1.shear_force() q = -8*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 10, 0) + 120*SingularityFunction(x, 30, -1) + 2*SingularityFunction(x, 30, 0) assert p == q # Test for bending moment distribution function p = b1.bending_moment() q = -8*SingularityFunction(x, 0, 1) + 6*SingularityFunction(x, 10, 1) + 120*SingularityFunction(x, 30, 0) + 2*SingularityFunction(x, 30, 1) assert p == q # Test for slope distribution function p = b1.slope() q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + S(4000)/3 assert p == q/(E*I) # Test for deflection distribution function p = b1.deflection() q = 4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000 assert p == q/(E*I) # Test using symbols l = Symbol('l') w0 = Symbol('w0') w2 = Symbol('w2') a1 = Symbol('a1') c = Symbol('c') c1 = Symbol('c1') d = Symbol('d') e = Symbol('e') f = Symbol('f') b2 = Beam(l, E, I) b2.apply_load(w0, a1, 1) b2.apply_load(w2, c1, -1) b2.bc_deflection = [(c, d)] b2.bc_slope = [(e, f)] # Test for load distribution function. p = b2.load q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1) assert p == q # Test for shear force distribution function p = b2.shear_force() q = w0*SingularityFunction(x, a1, 2)/2 + w2*SingularityFunction(x, c1, 0) assert p == q # Test for bending moment distribution function p = b2.bending_moment() q = w0*SingularityFunction(x, a1, 3)/6 + w2*SingularityFunction(x, c1, 1) assert p == q # Test for slope distribution function p = b2.slope() q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I) assert p == q # Test for deflection distribution function p = b2.deflection() q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I) + (w0*SingularityFunction(x, a1, 5)/120 + w2*SingularityFunction(x, c1, 3)/6)/(E*I) + (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 + c*w2*SingularityFunction(e, c1, 2)/2 - w0*SingularityFunction(c, a1, 5)/120 - w2*SingularityFunction(c, c1, 3)/6)/(E*I) assert p == q b3 = Beam(9, E, I) b3.apply_load(value=-2, start=2, order=2, end=3) b3.bc_slope.append((0, 2)) C3 = symbols('C3') C4 = symbols('C4') p = b3.load q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) assert p == q p = b3.slope() q = 2 + (-SingularityFunction(x, 2, 5)/30 + SingularityFunction(x, 3, 3)/3 + SingularityFunction(x, 3, 4)/6 + SingularityFunction(x, 3, 5)/30)/(E*I) assert p == q p = b3.deflection() q = 2*x + (-SingularityFunction(x, 2, 6)/180 + SingularityFunction(x, 3, 4)/12 + SingularityFunction(x, 3, 5)/30 + SingularityFunction(x, 3, 6)/180)/(E*I) assert p == q + C4 b4 = Beam(4, E, I) b4.apply_load(-3, 0, 0, end=3) p = b4.load q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0) assert p == q p = b4.slope() q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6 assert p == q/(E*I) + C3 p = b4.deflection() q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24 assert p == q/(E*I) + C3*x + C4 # can't use end with point loads raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3)) with raises(TypeError): b4.variable = 1 def test_insufficient_bconditions(): # Test cases when required number of boundary conditions # are not provided to solve the integration constants. L = symbols('L', positive=True) E, I, P, a3, a4 = symbols('E I P a3 a4') b = Beam(L, E, I, base_char='a') b.apply_load(R2, L, -1) b.apply_load(R1, 0, -1) b.apply_load(-P, L/2, -1) b.solve_for_reaction_loads(R1, R2) p = b.slope() q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4 assert p == q/(E*I) + a3 p = b.deflection() q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) + a3*x + a4 b.bc_deflection = [(0, 0)] p = b.deflection() q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) b.bc_deflection = [(0, 0), (L, 0)] p = b.deflection() q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12 assert p == q/(E*I) def test_statically_indeterminate(): E = Symbol('E') I = Symbol('I') M1, M2 = symbols('M1, M2') F = Symbol('F') l = Symbol('l', positive=True) b5 = Beam(l, E, I) b5.bc_deflection = [(0, 0),(l, 0)] b5.bc_slope = [(0, 0),(l, 0)] b5.apply_load(R1, 0, -1) b5.apply_load(M1, 0, -2) b5.apply_load(R2, l, -1) b5.apply_load(M2, l, -2) b5.apply_load(-F, l/2, -1) b5.solve_for_reaction_loads(R1, R2, M1, M2) p = b5.reaction_loads q = {R1: F/2, R2: F/2, M1: -F*l/8, M2: F*l/8} assert p == q def test_beam_units(): E = Symbol('E') I = Symbol('I') R1, R2 = symbols('R1, R2') b = Beam(8*meter, 200*giga*newton/meter**2, 400*1000000*(milli*meter)**4) b.apply_load(5*kilo*newton, 2*meter, -1) b.apply_load(R1, 0*meter, -1) b.apply_load(R2, 8*meter, -1) b.apply_load(10*kilo*newton/meter, 4*meter, 0, end=8*meter) b.bc_deflection = [(0*meter, 0*meter), (8*meter, 0*meter)] b.solve_for_reaction_loads(R1, R2) assert b.reaction_loads == {R1: -13750*newton, R2: -31250*newton} b = Beam(3*meter, E*newton/meter**2, I*meter**4) b.apply_load(8*kilo*newton, 1*meter, -1) b.apply_load(R1, 0*meter, -1) b.apply_load(R2, 3*meter, -1) b.apply_load(12*kilo*newton*meter, 2*meter, -2) b.bc_deflection = [(0*meter, 0*meter), (3*meter, 0*meter)] b.solve_for_reaction_loads(R1, R2) assert b.reaction_loads == {R1: -28000*newton/3, R2: 4000*newton/3} assert b.deflection().subs(x, 1*meter) == 62000*meter/(9*E*I) def test_variable_moment(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, 2*(4 - x)) b.apply_load(20, 4, -1) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.bc_deflection = [(0, 0)] b.bc_slope = [(0, 0)] b.solve_for_reaction_loads(R, M) assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0) - 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand() assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0) - 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True)) + 40*SingularityFunction(x, 4, 1))/E).expand() b = Beam(4, E - x, I) b.apply_load(20, 4, -1) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.bc_deflection = [(0, 0)] b.bc_slope = [(0, 0)] b.solve_for_reaction_loads(R, M) assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0) + 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E) + E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x) + x - 4)*SingularityFunction(x, 4, 0))/I).expand() def test_composite_beam(): E = Symbol('E') I = Symbol('I') b1 = Beam(2, E, 1.5*I) b2 = Beam(2, E, I) b = b1.join(b2, "fixed") b.apply_load(-20, 0, -1) b.apply_load(80, 0, -2) b.apply_load(20, 4, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0)] assert b.length == 4 assert b.second_moment == Piecewise((1.5*I, x <= 2), (I, x <= 4)) assert b.slope().subs(x, 4) == 120.0/(E*I) assert b.slope().subs(x, 2) == 80.0/(E*I) assert int(b.deflection().subs(x, 4).args[0]) == 302 # Coefficient of 1/(E*I) l = symbols('l', positive=True) R1, M1, R2, R3, P = symbols('R1 M1 R2 R3 P') b1 = Beam(2*l, E, I) b2 = Beam(2*l, E, I) b = b1.join(b2,"hinge") b.apply_load(M1, 0, -2) b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(R3, 4*l, -1) b.apply_load(P, 3*l, -1) b.bc_slope = [(0, 0)] b.bc_deflection = [(0, 0), (l, 0), (4*l, 0)] b.solve_for_reaction_loads(M1, R1, R2, R3) assert b.reaction_loads == {R3: -P/2, R2: -5*P/4, M1: -P*l/4, R1: 3*P/4} assert b.slope().subs(x, 3*l) == -7*P*l**2/(48*E*I) assert b.deflection().subs(x, 2*l) == 7*P*l**3/(24*E*I) assert b.deflection().subs(x, 3*l) == 5*P*l**3/(16*E*I) def test_point_cflexure(): E = Symbol('E') I = Symbol('I') b = Beam(10, E, I) b.apply_load(-4, 0, -1) b.apply_load(-46, 6, -1) b.apply_load(10, 2, -1) b.apply_load(20, 4, -1) b.apply_load(3, 6, 0) assert b.point_cflexure() == [S(10)/3] def test_remove_load(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, I) try: b.remove_load(2, 1, -1) # As no load is applied on beam, ValueError should be returned. except ValueError: assert True else: assert False b.apply_load(-3, 0, -2) b.apply_load(4, 2, -1) b.apply_load(-2, 2, 2, end = 3) b.remove_load(-2, 2, 2, end = 3) assert b.load == -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) assert b.applied_loads == [(-3, 0, -2, None), (4, 2, -1, None)] try: b.remove_load(1, 2, -1) # As load of this magnitude was never applied at # this position, method should return a ValueError. except ValueError: assert True else: assert False b.remove_load(-3, 0, -2) b.remove_load(4, 2, -1) assert b.load == 0 assert b.applied_loads == [] def test_apply_support(): E = Symbol('E') I = Symbol('I') b = Beam(4, E, I) b.apply_support(0, "cantilever") b.apply_load(20, 4, -1) M_0, R_0 = symbols('M_0, R_0') b.solve_for_reaction_loads(R_0, M_0) assert b.slope() == (80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2) + 10*SingularityFunction(x, 4, 2))/(E*I) assert b.deflection() == (40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3 + 10*SingularityFunction(x, 4, 3)/3)/(E*I) b = Beam(30, E, I) b.apply_support(10, "pin") b.apply_support(30, "roller") b.apply_load(-8, 0, -1) b.apply_load(120, 30, -2) R_10, R_30 = symbols('R_10, R_30') b.solve_for_reaction_loads(R_10, R_30) assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + S(4000)/3)/(E*I) assert b.deflection() == (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I) def max_shear_force(self): E = Symbol('E') I = Symbol('I') b = Beam(3, E, I) R, M = symbols('R, M') b.apply_load(R, 0, -1) b.apply_load(M, 0, -2) b.apply_load(2, 3, -1) b.apply_load(4, 2, -1) b.apply_load(2, 2, 0, end=3) b.solve_for_reaction_loads(R, M) assert b.max_shear_force() == (Interval(0, 2), 8) l = symbols('l', positive=True) P = Symbol('P') b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, 0, 0, end=l) b.solve_for_reaction_loads(R1, R2) assert b.max_shear_force() == (0, l*Abs(P)/2) def test_max_bmoment(): E = Symbol('E') I = Symbol('I') l, P = symbols('l, P', positive=True) b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, l/2, -1) b.solve_for_reaction_loads(R1, R2) b.reaction_loads assert b.max_bmoment() == (l/2, P*l/4) b = Beam(l, E, I) R1, R2 = symbols('R1, R2') b.apply_load(R1, 0, -1) b.apply_load(R2, l, -1) b.apply_load(P, 0, 0, end=l) b.solve_for_reaction_loads(R1, R2) assert b.max_bmoment() == (l/2, P*l**2/8) def test_max_deflection(): E, I, l, F = symbols('E, I, l, F', positive=True) b = Beam(l, E, I) b.bc_deflection = [(0, 0),(l, 0)] b.bc_slope = [(0, 0),(l, 0)] b.apply_load(F/2, 0, -1) b.apply_load(-F*l/8, 0, -2) b.apply_load(F/2, l, -1) b.apply_load(F*l/8, l, -2) b.apply_load(-F, l/2, -1) assert b.max_deflection() == (l/2, F*l**3/(192*E*I)) def test_Beam3D(): l, E, G, I, A = symbols('l, E, G, I, A') R1, R2, R3, R4 = symbols('R1, R2, R3, R4') b = Beam3D(l, E, G, I, A) m, q = symbols('m, q') b.apply_load(q, 0, 0, dir="y") b.apply_moment_load(m, 0, 0, dir="z") b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])] b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])] b.solve_slope_deflection() assert b.shear_force() == [0, -q*x, 0] assert b.bending_moment() == [0, 0, -m*x + q*x**2/2] expected_deflection = (-l**2*q*x**2/(12*E*I) + l**2*x**2*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(8*E*I*(A*G*l**2 + 12*E*I)) + l*m*x**2/(4*E*I) - l*x**3*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(12*E*I*(A*G*l**2 + 12*E*I)) - m*x**3/(6*E*I) + q*x**4/(24*E*I) + l*x*(A*G*l*(l*q - 2*m) + 12*E*I*q)/(2*A*G*(A*G*l**2 + 12*E*I)) - q*x**2/(2*A*G) ) dx, dy, dz = b.deflection() assert dx == dz == 0 assert simplify(dy - expected_deflection) == 0 # == doesn't work b2 = Beam3D(30, E, G, I, A, x) b2.apply_load(50, start=0, order=0, dir="y") b2.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])] b2.apply_load(R1, start=0, order=-1, dir="y") b2.apply_load(R2, start=30, order=-1, dir="y") b2.solve_for_reaction_loads(R1, R2) assert b2.reaction_loads == {R1: -750, R2: -750} b2.solve_slope_deflection() assert b2.slope() == [0, 0, 25*x**3/(3*E*I) - 375*x**2/(E*I) + 3750*x/(E*I)] expected_deflection = (25*x**4/(12*E*I) - 125*x**3/(E*I) + 1875*x**2/(E*I) - 25*x**2/(A*G) + 750*x/(A*G)) dx, dy, dz = b2.deflection() assert dx == dz == 0 assert simplify(dy - expected_deflection) == 0 # == doesn't work # Test for solve_for_reaction_loads b3 = Beam3D(30, E, G, I, A, x) b3.apply_load(8, start=0, order=0, dir="y") b3.apply_load(9*x, start=0, order=0, dir="z") b3.apply_load(R1, start=0, order=-1, dir="y") b3.apply_load(R2, start=30, order=-1, dir="y") b3.apply_load(R3, start=0, order=-1, dir="z") b3.apply_load(R4, start=30, order=-1, dir="z") b3.solve_for_reaction_loads(R1, R2, R3, R4) assert b3.reaction_loads == {R1: -120, R2: -120, R3: -1350, R4: -2700} def test_parabolic_loads(): E, I, L = symbols('E, I, L', positive=True, real=True) R, M, P = symbols('R, M, P', real=True) # cantilever beam fixed at x=0 and parabolic distributed loading across # length of beam beam = Beam(L, E, I) beam.bc_deflection.append((0, 0)) beam.bc_slope.append((0, 0)) beam.apply_load(R, 0, -1) beam.apply_load(M, 0, -2) # parabolic load beam.apply_load(1, 0, 2) beam.solve_for_reaction_loads(R, M) assert beam.reaction_loads[R] == -L**3 / 3 # cantilever beam fixed at x=0 and parabolic distributed loading across # first half of beam beam = Beam(2 * L, E, I) beam.bc_deflection.append((0, 0)) beam.bc_slope.append((0, 0)) beam.apply_load(R, 0, -1) beam.apply_load(M, 0, -2) # parabolic load from x=0 to x=L beam.apply_load(1, 0, 2, end=L) beam.solve_for_reaction_loads(R, M) # result should be the same as the prior example assert beam.reaction_loads[R] == -L**3 / 3 # check constant load beam = Beam(2 * L, E, I) beam.apply_load(P, 0, 0, end=L) loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40}) assert loading.xreplace({x: 5}) == 40 assert loading.xreplace({x: 15}) == 0 # check ramp load beam = Beam(2 * L, E, I) beam.apply_load(P, 0, 1, end=L) assert beam.load == (P*SingularityFunction(x, 0, 1) - P*SingularityFunction(x, L, 1) - P*L*SingularityFunction(x, L, 0)) # check higher order load: x**8 load from x=0 to x=L beam = Beam(2 * L, E, I) beam.apply_load(P, 0, 8, end=L) loading = beam.load.xreplace({L: 10, E: 20, I: 30, P: 40}) assert loading.xreplace({x: 5}) == 40 * 5**8 assert loading.xreplace({x: 15}) == 0
da9e21f228db3d15856f8fe23c85026870e40bb754c26e820562b3ae6b88c098
from sympy import sqrt, simplify from sympy.physics.optics import Medium from sympy.abc import epsilon, mu from sympy.physics.units import speed_of_light, u0, e0, m, kg, s, A c = speed_of_light.convert_to(m/s) e0 = e0.convert_to(A**2*s**4/(kg*m**3)) u0 = u0.convert_to(m*kg/(A**2*s**2)) def test_medium(): m1 = Medium('m1') assert m1.intrinsic_impedance == sqrt(u0/e0) assert m1.speed == 1/sqrt(e0*u0) assert m1.refractive_index == c*sqrt(e0*u0) assert m1.permittivity == e0 assert m1.permeability == u0 m2 = Medium('m2', epsilon, mu) assert m2.intrinsic_impedance == sqrt(mu/epsilon) assert m2.speed == 1/sqrt(epsilon*mu) assert m2.refractive_index == c*sqrt(epsilon*mu) assert m2.permittivity == epsilon assert m2.permeability == mu # Increasing electric permittivity and magnetic permeability # by small amount from its value in vacuum. m3 = Medium('m3', 9.0*10**(-12)*s**4*A**2/(m**3*kg), 1.45*10**(-6)*kg*m/(A**2*s**2)) assert m3.refractive_index > m1.refractive_index assert m3 > m1 # Decreasing electric permittivity and magnetic permeability # by small amount from its value in vacuum. m4 = Medium('m4', 7.0*10**(-12)*s**4*A**2/(m**3*kg), 1.15*10**(-6)*kg*m/(A**2*s**2)) assert m4.refractive_index < m1.refractive_index assert m4 < m1 m5 = Medium('m5', permittivity=710*10**(-12)*s**4*A**2/(m**3*kg), n=1.33) assert abs(m5.intrinsic_impedance - 6.24845417765552*kg*m**2/(A**2*s**3)) \ < 1e-12*kg*m**2/(A**2*s**3) assert abs(m5.speed - 225407863.157895*m/s) < 1e-6*m/s assert abs(m5.refractive_index - 1.33000000000000) < 1e-12 assert abs(m5.permittivity - 7.1e-10*A**2*s**4/(kg*m**3)) \ < 1e-20*A**2*s**4/(kg*m**3) assert abs(m5.permeability - 2.77206575232851e-8*kg*m/(A**2*s**2)) \ < 1e-20*kg*m/(A**2*s**2)
c687eb0316cc68783ba5e730b220ee6ff4e31314b8c7bb3eff880d3a9451c154
from sympy.physics.optics.utils import (refraction_angle, deviation, brewster_angle, lens_makers_formula, mirror_formula, lens_formula, hyperfocal_distance, transverse_magnification) from sympy.physics.optics.medium import Medium from sympy.physics.units import e0 from sympy import symbols, sqrt, Matrix, oo from sympy.geometry.point import Point3D from sympy.geometry.line import Ray3D from sympy.geometry.plane import Plane from sympy.core import S def test_refraction_angle(): n1, n2 = symbols('n1, n2') m1 = Medium('m1') m2 = Medium('m2') r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0)) i = Matrix([1, 1, 1]) n = Matrix([0, 0, 1]) normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1)) P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1]) assert refraction_angle(r1, 1, 1, n) == Matrix([ [ 1], [ 1], [-1]]) assert refraction_angle([1, 1, 1], 1, 1, n) == Matrix([ [ 1], [ 1], [-1]]) assert refraction_angle((1, 1, 1), 1, 1, n) == Matrix([ [ 1], [ 1], [-1]]) assert refraction_angle(i, 1, 1, [0, 0, 1]) == Matrix([ [ 1], [ 1], [-1]]) assert refraction_angle(i, 1, 1, (0, 0, 1)) == Matrix([ [ 1], [ 1], [-1]]) assert refraction_angle(i, 1, 1, normal_ray) == Matrix([ [ 1], [ 1], [-1]]) assert refraction_angle(i, 1, 1, plane=P) == Matrix([ [ 1], [ 1], [-1]]) assert refraction_angle(r1, 1, 1, plane=P) == \ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1)) assert refraction_angle(r1, m1, 1.33, plane=P) == \ Ray3D(Point3D(0, 0, 0), Point3D(S(100)/133, S(100)/133, -789378201649271*sqrt(3)/1000000000000000)) assert refraction_angle(r1, 1, m2, plane=P) == \ Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1)) assert refraction_angle(r1, n1, n2, plane=P) == \ Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1))) assert refraction_angle(r1, 1.33, 1, plane=P) == 0 # TIR assert refraction_angle(r1, 1, 1, normal_ray) == \ Ray3D(Point3D(0, 0, 0), direction_ratio=[1, 1, -1]) def test_deviation(): n1, n2 = symbols('n1, n2') m1 = Medium('m1') m2 = Medium('m2') r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0)) n = Matrix([0, 0, 1]) i = Matrix([-1, -1, -1]) normal_ray = Ray3D(Point3D(0, 0, 0), Point3D(0, 0, 1)) P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1]) assert deviation(r1, 1, 1, normal=n) == 0 assert deviation(r1, 1, 1, plane=P) == 0 assert deviation(r1, 1, 1.1, plane=P).evalf(3) + 0.119 < 1e-3 assert deviation(i, 1, 1.1, normal=normal_ray).evalf(3) + 0.119 < 1e-3 assert deviation(r1, 1.33, 1, plane=P) is None # TIR assert deviation(r1, 1, 1, normal=[0, 0, 1]) == 0 assert deviation([-1, -1, -1], 1, 1, normal=[0, 0, 1]) == 0 def test_brewster_angle(): m1 = Medium('m1', permittivity=e0, n=1) m2 = Medium('m2', permittivity=e0, n=1.33) assert round(brewster_angle(m1, m2), 2) == 0.93 def test_lens_makers_formula(): n1, n2 = symbols('n1, n2') m1 = Medium('m1', permittivity=e0, n=1) m2 = Medium('m2', permittivity=e0, n=1.33) assert lens_makers_formula(n1, n2, 10, -10) == 5*n2/(n1 - n2) assert round(lens_makers_formula(m1, m2, 10, -10), 2) == -20.15 assert round(lens_makers_formula(1.33, 1, 10, -10), 2) == 15.15 def test_mirror_formula(): u, v, f = symbols('u, v, f') assert mirror_formula(focal_length=f, u=u) == f*u/(-f + u) assert mirror_formula(focal_length=f, v=v) == f*v/(-f + v) assert mirror_formula(u=u, v=v) == u*v/(u + v) assert mirror_formula(u=oo, v=v) == v assert mirror_formula(u=oo, v=oo) == oo def test_lens_formula(): u, v, f = symbols('u, v, f') assert lens_formula(focal_length=f, u=u) == f*u/(f + u) assert lens_formula(focal_length=f, v=v) == f*v/(f - v) assert lens_formula(u=u, v=v) == u*v/(u - v) assert lens_formula(u=oo, v=v) == v assert lens_formula(u=oo, v=oo) == oo def test_hyperfocal_distance(): f, N, c = symbols('f, N, c') assert hyperfocal_distance(f=f, N=N, c=c) == f**2/(N*c) assert round(hyperfocal_distance(f=0.5, N=8, c=0.0033), 2) == 9.47 def test_transverse_magnification(): si, so = symbols('si, so') assert transverse_magnification(si, so) == -si/so assert transverse_magnification(30, 15) == -2
3abb4d9ffd33ef51337a8c34ef0562dbc4a193509ba24899e05d7655564f8e62
from __future__ import print_function, division from sympy import Basic from sympy.core.compatibility import SYMPY_INTS, Iterable import itertools class NDimArray(object): """ Examples ======== Create an N-dim array of zeros: >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 3, 4) >>> a [[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]] Create an N-dim array from a list; >>> a = MutableDenseNDimArray([[2, 3], [4, 5]]) >>> a [[2, 3], [4, 5]] >>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]) >>> b [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]] Create an N-dim array from a flat list with dimension shape: >>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3)) >>> a [[1, 2, 3], [4, 5, 6]] Create an N-dim array from a matrix: >>> from sympy import Matrix >>> a = Matrix([[1,2],[3,4]]) >>> a Matrix([ [1, 2], [3, 4]]) >>> b = MutableDenseNDimArray(a) >>> b [[1, 2], [3, 4]] Arithmetic operations on N-dim arrays >>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2)) >>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2)) >>> c = a + b >>> c [[5, 5], [5, 5]] >>> a - b [[-3, -3], [-3, -3]] """ _diff_wrt = True def __new__(cls, iterable, shape=None, **kwargs): from sympy.tensor.array import ImmutableDenseNDimArray return ImmutableDenseNDimArray(iterable, shape, **kwargs) def _parse_index(self, index): if isinstance(index, (SYMPY_INTS, Integer)): if index >= self._loop_size: raise ValueError("index out of range") return index if len(index) != self._rank: raise ValueError('Wrong number of array axes') real_index = 0 # check if input index can exist in current indexing for i in range(self._rank): if index[i] >= self.shape[i]: raise ValueError('Index ' + str(index) + ' out of border') real_index = real_index*self.shape[i] + index[i] return real_index def _get_tuple_index(self, integer_index): index = [] for i, sh in enumerate(reversed(self.shape)): index.append(integer_index % sh) integer_index //= sh index.reverse() return tuple(index) def _check_symbolic_index(self, index): # Check if any index is symbolic: tuple_index = (index if isinstance(index, tuple) else (index,)) if any([(isinstance(i, Expr) and (not i.is_number)) for i in tuple_index]): for i, nth_dim in zip(tuple_index, self.shape): if ((i < 0) == True) or ((i >= nth_dim) == True): raise ValueError("index out of range") from sympy.tensor import Indexed return Indexed(self, *tuple_index) return None def _setter_iterable_check(self, value): from sympy.matrices.matrices import MatrixBase if isinstance(value, (Iterable, MatrixBase, NDimArray)): raise NotImplementedError @classmethod def _scan_iterable_shape(cls, iterable): def f(pointer): if not isinstance(pointer, Iterable): return [pointer], () result = [] elems, shapes = zip(*[f(i) for i in pointer]) if len(set(shapes)) != 1: raise ValueError("could not determine shape unambiguously") for i in elems: result.extend(i) return result, (len(shapes),)+shapes[0] return f(iterable) @classmethod def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs): from sympy.matrices.matrices import MatrixBase if shape is None and iterable is None: shape = () iterable = () # Construction from another `NDimArray`: elif shape is None and isinstance(iterable, NDimArray): shape = iterable.shape iterable = list(iterable) # Construct N-dim array from an iterable (numpy arrays included): elif shape is None and isinstance(iterable, Iterable): iterable, shape = cls._scan_iterable_shape(iterable) # Construct N-dim array from a Matrix: elif shape is None and isinstance(iterable, MatrixBase): shape = iterable.shape # Construct N-dim array from another N-dim array: elif shape is None and isinstance(iterable, NDimArray): shape = iterable.shape # Construct NDimArray(iterable, shape) elif shape is not None: pass else: shape = () iterable = (iterable,) if isinstance(shape, (SYMPY_INTS, Integer)): shape = (shape,) if any([not isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape]): raise TypeError("Shape should contain integers only.") return tuple(shape), iterable def __len__(self): """Overload common function len(). Returns number of elements in array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a [[0, 0, 0], [0, 0, 0], [0, 0, 0]] >>> len(a) 9 """ return self._loop_size @property def shape(self): """ Returns array shape (dimension). Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3, 3) >>> a.shape (3, 3) """ return self._shape def rank(self): """ Returns rank of array. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(3,4,5,6,3) >>> a.rank() 5 """ return self._rank def diff(self, *args, **kwargs): """ Calculate the derivative of each element in the array. Examples ======== >>> from sympy import ImmutableDenseNDimArray >>> from sympy.abc import x, y >>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]]) >>> M.diff(x) [[1, 0], [0, y]] """ from sympy import Derivative kwargs.setdefault('evaluate', True) return Derivative(self.as_immutable(), *args, **kwargs) def _accept_eval_derivative(self, s): return s._visit_eval_derivative_array(self) def _visit_eval_derivative_scalar(self, base): # Types are (base: scalar, self: array) return self.applyfunc(lambda x: base.diff(x)) def _visit_eval_derivative_array(self, base): # Types are (base: array/matrix, self: array) from sympy import derive_by_array return derive_by_array(base, self) def _eval_derivative_n_times(self, s, n): return Basic._eval_derivative_n_times(self, s, n) def _eval_derivative(self, arg): from sympy import derive_by_array from sympy import Derivative, Tuple from sympy.matrices.common import MatrixCommon if isinstance(arg, (Iterable, Tuple, MatrixCommon, NDimArray)): return derive_by_array(self, arg) else: return self.applyfunc(lambda x: x.diff(arg)) def applyfunc(self, f): """Apply a function to each element of the N-dim array. Examples ======== >>> from sympy import ImmutableDenseNDimArray >>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2)) >>> m [[0, 1], [2, 3]] >>> m.applyfunc(lambda i: 2*i) [[0, 2], [4, 6]] """ return type(self)(map(f, self), self.shape) def __str__(self): """Returns string, allows to use standard functions print() and str(). Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 2) >>> a [[0, 0], [0, 0]] """ def f(sh, shape_left, i, j): if len(shape_left) == 1: return "["+", ".join([str(self[e]) for e in range(i, j)])+"]" sh //= shape_left[0] return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" # + "\n"*len(shape_left) if self.rank() == 0: return self[()].__str__() return f(self._loop_size, self.shape, 0, self._loop_size) def __repr__(self): return self.__str__() # We don't define _repr_png_ here because it would add a large amount of # data to any notebook containing SymPy expressions, without adding # anything useful to the notebook. It can still enabled manually, e.g., # for the qtconsole, with init_printing(). def _repr_latex_(self): """ IPython/Jupyter LaTeX printing To change the behavior of this (e.g., pass in some settings to LaTeX), use init_printing(). init_printing() will also enable LaTeX printing for built in numeric types like ints and container types that contain SymPy objects, like lists and dictionaries of expressions. """ from sympy.printing.latex import latex s = latex(self, mode='equation*') s = s.strip('$') return "$$%s$$" % s _repr_latex_orig = _repr_latex_ def tolist(self): """ Converting MutableDenseNDimArray to one-dim list Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2)) >>> a [[1, 2], [3, 4]] >>> b = a.tolist() >>> b [[1, 2], [3, 4]] """ def f(sh, shape_left, i, j): if len(shape_left) == 1: return [self[e] for e in range(i, j)] result = [] sh //= shape_left[0] for e in range(shape_left[0]): result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh)) return result return f(self._loop_size, self.shape, 0, self._loop_size) def __add__(self, other): if not isinstance(other, NDimArray): raise TypeError(str(other)) if self.shape != other.shape: raise ValueError("array shape mismatch") result_list = [i+j for i,j in zip(self, other)] return type(self)(result_list, self.shape) def __sub__(self, other): if not isinstance(other, NDimArray): raise TypeError(str(other)) if self.shape != other.shape: raise ValueError("array shape mismatch") result_list = [i-j for i,j in zip(self, other)] return type(self)(result_list, self.shape) def __mul__(self, other): from sympy.matrices.matrices import MatrixBase if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") other = sympify(other) result_list = [i*other for i in self] return type(self)(result_list, self.shape) def __rmul__(self, other): from sympy.matrices.matrices import MatrixBase if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected, use tensorproduct(...) for tensorial product") other = sympify(other) result_list = [other*i for i in self] return type(self)(result_list, self.shape) def __div__(self, other): from sympy.matrices.matrices import MatrixBase if isinstance(other, (Iterable, NDimArray, MatrixBase)): raise ValueError("scalar expected") other = sympify(other) result_list = [i/other for i in self] return type(self)(result_list, self.shape) def __rdiv__(self, other): raise NotImplementedError('unsupported operation on NDimArray') def __neg__(self): result_list = [-i for i in self] return type(self)(result_list, self.shape) def __eq__(self, other): """ NDimArray instances can be compared to each other. Instances equal if they have same shape and data. Examples ======== >>> from sympy import MutableDenseNDimArray >>> a = MutableDenseNDimArray.zeros(2, 3) >>> b = MutableDenseNDimArray.zeros(2, 3) >>> a == b True >>> c = a.reshape(3, 2) >>> c == b False >>> a[0,0] = 1 >>> b[0,0] = 2 >>> a == b False """ if not isinstance(other, NDimArray): return False return (self.shape == other.shape) and (list(self) == list(other)) def __ne__(self, other): return not self == other __truediv__ = __div__ __rtruediv__ = __rdiv__ def _eval_transpose(self): if self.rank() != 2: raise ValueError("array rank not 2") from .arrayop import permutedims return permutedims(self, (1, 0)) def transpose(self): return self._eval_transpose() def _eval_conjugate(self): return self.func([i.conjugate() for i in self], self.shape) def conjugate(self): return self._eval_conjugate() def _eval_adjoint(self): return self.transpose().conjugate() def adjoint(self): return self._eval_adjoint() def _slice_expand(self, s, dim): if not isinstance(s, slice): return (s,) start, stop, step = s.indices(dim) return [start + i*step for i in range((stop-start)//step)] def _get_slice_data_for_array_access(self, index): sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)] eindices = itertools.product(*sl_factors) return sl_factors, eindices def _get_slice_data_for_array_assignment(self, index, value): if not isinstance(value, NDimArray): value = type(self)(value) sl_factors, eindices = self._get_slice_data_for_array_access(index) slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors] # TODO: add checks for dimensions for `value`? return value, eindices, slice_offsets @classmethod def _check_special_bounds(cls, flat_list, shape): if shape == () and len(flat_list) != 1: raise ValueError("arrays without shape need one scalar value") if shape == (0,) and len(flat_list) > 0: raise ValueError("if array shape is (0,) there cannot be elements") class ImmutableNDimArray(NDimArray, Basic): _op_priority = 11.0 def __hash__(self): return Basic.__hash__(self) def as_immutable(self): return self def as_mutable(self): raise NotImplementedError("abstract method") from sympy.core.numbers import Integer from sympy.core.sympify import sympify from sympy.core.function import Derivative from sympy.core.expr import Expr
fbfff4e0730c06752c9cfa42453ba0b6218923438b4ada3923cb3a9978ebff18
from sympy import Matrix, eye, Integer, expand, Indexed, Sum from sympy.combinatorics import Permutation from sympy.core import S, Rational, Symbol, Basic, Add from sympy.core.containers import Tuple from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.printing.pretty.pretty import pretty from sympy.tensor.array import Array from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, \ get_symmetric_group_sgs, TensorType, TensorIndex, tensor_mul, TensAdd, \ riemann_cyclic_replace, riemann_cyclic, TensMul, tensorsymmetry, tensorhead, \ TensorManager, TensExpr, TensorHead, canon_bp from sympy.utilities.pytest import raises, XFAIL from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.core.compatibility import range from sympy.matrices import diag import warnings def filter_warnings_decorator(f): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) f() def _is_equal(arg1, arg2): if isinstance(arg1, TensExpr): return arg1.equals(arg2) elif isinstance(arg2, TensExpr): return arg2.equals(arg1) return arg1 == arg2 #################### Tests from tensor_can.py ####################### def test_canonicalize_no_slot_sym(): # A_d0 * B^d0; T_c = A^d0*B_d0 Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b, d0, d1 = tensor_indices('a,b,d0,d1', Lorentz) sym1 = tensorsymmetry([1]) S1 = TensorType([Lorentz], sym1) A, B = S1('A,B') t = A(-d0)*B(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*B(-L_0)' # A^a * B^b; T_c = T t = A(a)*B(b) tc = t.canon_bp() assert tc == t # B^b * A^a t1 = B(b)*A(a) tc = t1.canon_bp() assert str(tc) == 'A(a)*B(b)' # A symmetric # A^{b}_{d0}*A^{d0, a}; T_c = A^{a d0}*A{b}_{d0} sym2 = tensorsymmetry([1]*2) S2 = TensorType([Lorentz]*2, sym2) A = S2('A') t = A(b, -d0)*A(d0, a) tc = t.canon_bp() assert str(tc) == 'A(a, L_0)*A(b, -L_0)' # A^{d1}_{d0}*B^d0*C_d1 # T_c = A^{d0 d1}*B_d0*C_d1 B, C = S1('B,C') t = A(d1, -d0)*B(d0)*C(-d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_0)*C(-L_1)' # A without symmetry # A^{d1}_{d0}*B^d0*C_d1 ord=[d0,-d0,d1,-d1]; g = [2,1,0,3,4,5] # T_c = A^{d0 d1}*B_d1*C_d0; can = [0,2,3,1,4,5] nsym2 = tensorsymmetry([1],[1]) NS2 = TensorType([Lorentz]*2, nsym2) A = NS2('A') B, C = S1('B, C') t = A(d1, -d0)*B(d0)*C(-d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_1)*C(-L_0)' # A, B without symmetry # A^{d1}_{d0}*B_{d1}^{d0} # T_c = A^{d0 d1}*B_{d0 d1} B = NS2('B') t = A(d1, -d0)*B(-d1, d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_0, -L_1)' # A_{d0}^{d1}*B_{d1}^{d0} # T_c = A^{d0 d1}*B_{d1 d0} t = A(-d0, d1)*B(-d1, d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_1, -L_0)' # A, B, C without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} # T_c=A^{d0 d1}*B_{a d1}*C_{d0 b} C = NS2('C') t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_1)*C(-L_0, -b)' # A symmetric, B and C without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} # T_c = A^{d0 d1}*B_{a d0}*C_{d1 b} A = S2('A') t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-L_1, -b)' # A and C symmetric, B without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} ord=[a,b,d0,-d0,d1,-d1] # T_c = A^{d0 d1}*B_{a d0}*C_{b d1} C = S2('C') t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-b, -L_1)' def test_canonicalize_no_dummies(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b, c, d = tensor_indices('a, b, c, d', Lorentz) sym1 = tensorsymmetry([1]) sym2 = tensorsymmetry([1]*2) sym2a = tensorsymmetry([2]) # A commuting # A^c A^b A^a # T_c = A^a A^b A^c S1 = TensorType([Lorentz], sym1) A = S1('A') t = A(c)*A(b)*A(a) tc = t.canon_bp() assert str(tc) == 'A(a)*A(b)*A(c)' # A anticommuting # A^c A^b A^a # T_c = -A^a A^b A^c A = S1('A', 1) t = A(c)*A(b)*A(a) tc = t.canon_bp() assert str(tc) == '-A(a)*A(b)*A(c)' # A commuting and symmetric # A^{b,d}*A^{c,a} # T_c = A^{a c}*A^{b d} S2 = TensorType([Lorentz]*2, sym2) A = S2('A') t = A(b, d)*A(c, a) tc = t.canon_bp() assert str(tc) == 'A(a, c)*A(b, d)' # A anticommuting and symmetric # A^{b,d}*A^{c,a} # T_c = -A^{a c}*A^{b d} A = S2('A', 1) t = A(b, d)*A(c, a) tc = t.canon_bp() assert str(tc) == '-A(a, c)*A(b, d)' # A^{c,a}*A^{b,d} # T_c = A^{a c}*A^{b d} t = A(c, a)*A(b, d) tc = t.canon_bp() assert str(tc) == 'A(a, c)*A(b, d)' def test_tensorhead_construction_without_symmetry(): L = Lorentz = TensorIndexType('Lorentz') A1 = tensorhead('A', [L, L]) A2 = tensorhead('A', [L, L], [[1], [1]]) assert A1 == A2 A3 = tensorhead('A', [L, L], [[1, 1]]) # Symmetric assert A1 != A3 def test_no_metric_symmetry(): # no metric symmetry; A no symmetry # A^d1_d0 * A^d0_d1 # T_c = A^d0_d1 * A^d1_d0 Lorentz = TensorIndexType('Lorentz', metric=None, dummy_fmt='L') d0, d1, d2, d3 = tensor_indices('d:4', Lorentz) A = tensorhead('A', [Lorentz]*2, [[1], [1]]) t = A(d1, -d0)*A(d0, -d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)' # A^d1_d2 * A^d0_d3 * A^d2_d1 * A^d3_d0 # T_c = A^d0_d1 * A^d1_d0 * A^d2_d3 * A^d3_d2 t = A(d1, -d2)*A(d0, -d3)*A(d2,-d1)*A(d3,-d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)*A(L_2, -L_3)*A(L_3, -L_2)' # A^d0_d2 * A^d1_d3 * A^d3_d0 * A^d2_d1 # T_c = A^d0_d1 * A^d1_d2 * A^d2_d3 * A^d3_d0 t = A(d0, -d1)*A(d1, -d2)*A(d2, -d3)*A(d3,-d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_2)*A(L_2, -L_3)*A(L_3, -L_0)' def test_canonicalize1(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Lorentz) sym1 = tensorsymmetry([1]) base3, gens3 = get_symmetric_group_sgs(3) sym2 = tensorsymmetry([1]*2) sym2a = tensorsymmetry([2]) sym3 = tensorsymmetry([1]*3) sym3a = tensorsymmetry([3]) # A_d0*A^d0; ord = [d0,-d0] # T_c = A^d0*A_d0 S1 = TensorType([Lorentz], sym1) A = S1('A') t = A(-d0)*A(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*A(-L_0)' # A commuting # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0 # T_c = A^d0*A_d0*A^d1*A_d1*A^d2*A_d2 t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*A(-L_0)*A(L_1)*A(-L_1)*A(L_2)*A(-L_2)' # A anticommuting # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0 # T_c 0 A = S1('A', 1) t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0) tc = t.canon_bp() assert tc == 0 # A commuting symmetric # A^{d0 b}*A^a_d1*A^d1_d0 # T_c = A^{a d0}*A^{b d1}*A_{d0 d1} S2 = TensorType([Lorentz]*2, sym2) A = S2('A') t = A(d0, b)*A(a, -d1)*A(d1, -d0) tc = t.canon_bp() assert str(tc) == 'A(a, L_0)*A(b, L_1)*A(-L_0, -L_1)' # A, B commuting symmetric # A^{d0 b}*A^d1_d0*B^a_d1 # T_c = A^{b d0}*A_d0^d1*B^a_d1 B = S2('B') t = A(d0, b)*A(d1, -d0)*B(a, -d1) tc = t.canon_bp() assert str(tc) == 'A(b, L_0)*A(-L_0, L_1)*B(a, -L_1)' # A commuting symmetric # A^{d1 d0 b}*A^{a}_{d1 d0}; ord=[a,b, d0,-d0,d1,-d1] # T_c = A^{a d0 d1}*A^{b}_{d0 d1} S3 = TensorType([Lorentz]*3, sym3) A = S3('A') t = A(d1, d0, b)*A(a, -d1, -d0) tc = t.canon_bp() assert str(tc) == 'A(a, L_0, L_1)*A(b, -L_0, -L_1)' # A^{d3 d0 d2}*A^a0_{d1 d2}*A^d1_d3^a1*A^{a2 a3}_d0 # T_c = A^{a0 d0 d1}*A^a1_d0^d2*A^{a2 a3 d3}*A_{d1 d2 d3} t = A(d3, d0, d2)*A(a0, -d1, -d2)*A(d1, -d3, a1)*A(a2, a3, -d0) tc = t.canon_bp() assert str(tc) == 'A(a0, L_0, L_1)*A(a1, -L_0, L_2)*A(a2, a3, L_3)*A(-L_1, -L_2, -L_3)' # A commuting symmetric, B antisymmetric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # in this esxample and in the next three, # renaming dummy indices and using symmetry of A, # T = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3 # can = 0 S2a = TensorType([Lorentz]*2, sym2a) A = S3('A') B = S2a('B') t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert tc == 0 # A anticommuting symmetric, B anticommuting # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3} A = S3('A', 1) B = S2a('B') t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1, L_2)*A(-L_0, -L_1, L_3)*B(-L_2, -L_3)' # A anticommuting symmetric, B antisymmetric commuting, antisymmetric metric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = -A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3} Spinor = TensorIndexType('Spinor', metric=1, dummy_fmt='S') a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Spinor) S3 = TensorType([Spinor]*3, sym3) S2a = TensorType([Spinor]*2, sym2a) A = S3('A', 1) B = S2a('B') t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == '-A(S_0, S_1, S_2)*A(-S_0, -S_1, S_3)*B(-S_2, -S_3)' # A anticommuting symmetric, B antisymmetric anticommuting, # no metric symmetry # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3 Mat = TensorIndexType('Mat', metric=None, dummy_fmt='M') a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Mat) S3 = TensorType([Mat]*3, sym3) S2a = TensorType([Mat]*2, sym2a) A = S3('A', 1) B = S2a('B') t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == 'A(M_0, M_1, M_2)*A(-M_0, -M_1, -M_3)*B(-M_2, M_3)' # Gamma anticommuting # Gamma_{mu nu} * gamma^rho * Gamma^{nu mu alpha} # T_c = -Gamma^{mu nu} * gamma^rho * Gamma_{alpha mu nu} S1 = TensorType([Lorentz], sym1) S2a = TensorType([Lorentz]*2, sym2a) S3a = TensorType([Lorentz]*3, sym3a) alpha, beta, gamma, mu, nu, rho = \ tensor_indices('alpha,beta,gamma,mu,nu,rho', Lorentz) Gamma = S1('Gamma', 2) Gamma2 = S2a('Gamma', 2) Gamma3 = S3a('Gamma', 2) t = Gamma2(-mu,-nu)*Gamma(rho)*Gamma3(nu, mu, alpha) tc = t.canon_bp() assert str(tc) == '-Gamma(L_0, L_1)*Gamma(rho)*Gamma(alpha, -L_0, -L_1)' # Gamma_{mu nu} * Gamma^{gamma beta} * gamma_rho * Gamma^{nu mu alpha} # T_c = Gamma^{mu nu} * Gamma^{beta gamma} * gamma_rho * Gamma^alpha_{mu nu} t = Gamma2(mu, nu)*Gamma2(beta, gamma)*Gamma(-rho)*Gamma3(alpha, -mu, -nu) tc = t.canon_bp() assert str(tc) == 'Gamma(L_0, L_1)*Gamma(beta, gamma)*Gamma(-rho)*Gamma(alpha, -L_0, -L_1)' # f^a_{b,c} antisymmetric in b,c; A_mu^a no symmetry # f^c_{d a} * f_{c e b} * A_mu^d * A_nu^a * A^{nu e} * A^{mu b} # g = [8,11,5, 9,13,7, 1,10, 3,4, 2,12, 0,6, 14,15] # T_c = -f^{a b c} * f_a^{d e} * A^mu_b * A_{mu d} * A^nu_c * A_{nu e} Flavor = TensorIndexType('Flavor', dummy_fmt='F') a, b, c, d, e, ff = tensor_indices('a,b,c,d,e,f', Flavor) mu, nu = tensor_indices('mu,nu', Lorentz) sym_f = tensorsymmetry([1], [2]) S_f = TensorType([Flavor]*3, sym_f) sym_A = tensorsymmetry([1], [1]) S_A = TensorType([Lorentz, Flavor], sym_A) f = S_f('f') A = S_A('A') t = f(c, -d, -a)*f(-c, -e, -b)*A(-mu, d)*A(-nu, a)*A(nu, e)*A(mu, b) tc = t.canon_bp() assert str(tc) == '-f(F_0, F_1, F_2)*f(-F_0, F_3, F_4)*A(L_0, -F_1)*A(-L_0, -F_3)*A(L_1, -F_2)*A(-L_1, -F_4)' def test_bug_correction_tensor_indices(): # to make sure that tensor_indices does not return a list if creating # only one index: from sympy.tensor.tensor import tensor_indices, TensorIndexType, TensorIndex A = TensorIndexType("A") i = tensor_indices('i', A) assert not isinstance(i, (tuple, list)) assert isinstance(i, TensorIndex) def test_riemann_invariants(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11 = \ tensor_indices('d0:12', Lorentz) # R^{d0 d1}_{d1 d0}; ord = [d0,-d0,d1,-d1] # T_c = -R^{d0 d1}_{d0 d1} R = tensorhead('R', [Lorentz]*4, [[2, 2]]) t = R(d0, d1, -d1, -d0) tc = t.canon_bp() assert str(tc) == '-R(L_0, L_1, -L_0, -L_1)' # R_d11^d1_d0^d5 * R^{d6 d4 d0}_d5 * R_{d7 d2 d8 d9} * # R_{d10 d3 d6 d4} * R^{d2 d7 d11}_d1 * R^{d8 d9 d3 d10} # can = [0,2,4,6, 1,3,8,10, 5,7,12,14, 9,11,16,18, 13,15,20,22, # 17,19,21<F10,23, 24,25] # T_c = R^{d0 d1 d2 d3} * R_{d0 d1}^{d4 d5} * R_{d2 d3}^{d6 d7} * # R_{d4 d5}^{d8 d9} * R_{d6 d7}^{d10 d11} * R_{d8 d9 d10 d11} t = R(-d11,d1,-d0,d5)*R(d6,d4,d0,-d5)*R(-d7,-d2,-d8,-d9)* \ R(-d10,-d3,-d6,-d4)*R(d2,d7,d11,-d1)*R(d8,d9,d3,d10) tc = t.canon_bp() assert str(tc) == 'R(L_0, L_1, L_2, L_3)*R(-L_0, -L_1, L_4, L_5)*R(-L_2, -L_3, L_6, L_7)*R(-L_4, -L_5, L_8, L_9)*R(-L_6, -L_7, L_10, L_11)*R(-L_8, -L_9, -L_10, -L_11)' def test_riemann_products(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') d0, d1, d2, d3, d4, d5, d6 = tensor_indices('d0:7', Lorentz) a0, a1, a2, a3, a4, a5 = tensor_indices('a0:6', Lorentz) a, b = tensor_indices('a,b', Lorentz) R = tensorhead('R', [Lorentz]*4, [[2, 2]]) # R^{a b d0}_d0 = 0 t = R(a, b, d0, -d0) tc = t.canon_bp() assert tc == 0 # R^{d0 b a}_d0 # T_c = -R^{a d0 b}_d0 t = R(d0, b, a, -d0) tc = t.canon_bp() assert str(tc) == '-R(a, L_0, b, -L_0)' # R^d1_d2^b_d0 * R^{d0 a}_d1^d2; ord=[a,b,d0,-d0,d1,-d1,d2,-d2] # T_c = -R^{a d0 d1 d2}* R^b_{d0 d1 d2} t = R(d1, -d2, b, -d0)*R(d0, a, -d1, d2) tc = t.canon_bp() assert str(tc) == '-R(a, L_0, L_1, L_2)*R(b, -L_0, -L_1, -L_2)' # A symmetric commuting # R^{d6 d5}_d2^d1 * R^{d4 d0 d2 d3} * A_{d6 d0} A_{d3 d1} * A_{d4 d5} # g = [12,10,5,2, 8,0,4,6, 13,1, 7,3, 9,11,14,15] # T_c = -R^{d0 d1 d2 d3} * R_d0^{d4 d5 d6} * A_{d1 d4}*A_{d2 d5}*A_{d3 d6} V = tensorhead('V', [Lorentz]*2, [[1]*2]) t = R(d6, d5, -d2, d1)*R(d4, d0, d2, d3)*V(-d6, -d0)*V(-d3, -d1)*V(-d4, -d5) tc = t.canon_bp() assert str(tc) == '-R(L_0, L_1, L_2, L_3)*R(-L_0, L_4, L_5, L_6)*V(-L_1, -L_4)*V(-L_2, -L_5)*V(-L_3, -L_6)' # R^{d2 a0 a2 d0} * R^d1_d2^{a1 a3} * R^{a4 a5}_{d0 d1} # T_c = R^{a0 d0 a2 d1}*R^{a1 a3}_d0^d2*R^{a4 a5}_{d1 d2} t = R(d2, a0, a2, d0)*R(d1, -d2, a1, a3)*R(a4, a5, -d0, -d1) tc = t.canon_bp() assert str(tc) == 'R(a0, L_0, a2, L_1)*R(a1, a3, -L_0, L_2)*R(a4, a5, -L_1, -L_2)' ###################################################################### def test_canonicalize2(): D = Symbol('D') Eucl = TensorIndexType('Eucl', metric=0, dim=D, dummy_fmt='E') i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14 = \ tensor_indices('i0:15', Eucl) A = tensorhead('A', [Eucl]*3, [[3]]) # two examples from Cvitanovic, Group Theory page 59 # of identities for antisymmetric tensors of rank 3 # contracted according to the Kuratowski graph eq.(6.59) t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i3,i7,i5)*A(-i2,-i5,i6)*A(-i4,-i6,i8) t1 = t.canon_bp() assert t1 == 0 # eq.(6.60) #t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)* # A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i3,-i12,i14) t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)*\ A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i9,-i12,i14) t1 = t.canon_bp() assert t1 == 0 def test_canonicalize3(): D = Symbol('D') Spinor = TensorIndexType('Spinor', dim=D, metric=True, dummy_fmt='S') a0,a1,a2,a3,a4 = tensor_indices('a0:5', Spinor) C = Spinor.metric chi, psi = tensorhead('chi,psi', [Spinor], [[1]], 1) t = chi(a1)*psi(a0) t1 = t.canon_bp() assert t1 == t t = psi(a1)*chi(a0) t1 = t.canon_bp() assert t1 == -chi(a0)*psi(a1) class Metric(Basic): def __new__(cls, name, antisym, **kwargs): obj = Basic.__new__(cls, name, antisym, **kwargs) obj.name = name obj.antisym = antisym return obj def test_TensorIndexType(): D = Symbol('D') G = Metric('g', False) Lorentz = TensorIndexType('Lorentz', metric=G, dim=D, dummy_fmt='L') m0, m1, m2, m3, m4 = tensor_indices('m0:5', Lorentz) sym2 = tensorsymmetry([1]*2) sym2n = tensorsymmetry(*get_symmetric_group_sgs(2)) assert sym2 == sym2n g = Lorentz.metric assert str(g) == 'g(Lorentz,Lorentz)' assert Lorentz.eps_dim == Lorentz.dim TSpace = TensorIndexType('TSpace') i0, i1 = tensor_indices('i0 i1', TSpace) g = TSpace.metric A = tensorhead('A', [TSpace]*2, [[1]*2]) assert str(A(i0,-i0).canon_bp()) == 'A(TSpace_0, -TSpace_0)' def test_indices(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) assert a.tensor_index_type == Lorentz assert a != -a A, B = tensorhead('A B', [Lorentz]*2, [[1]*2]) t = A(a,b)*B(-b,c) indices = t.get_indices() L_0 = TensorIndex('L_0', Lorentz) assert indices == [a, L_0, -L_0, c] raises(ValueError, lambda: tensor_indices(3, Lorentz)) raises(ValueError, lambda: A(a,b,c)) def test_tensorsymmetry(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') sym = tensorsymmetry([1]*2) sym1 = TensorSymmetry(get_symmetric_group_sgs(2)) assert sym == sym1 sym = tensorsymmetry([2]) sym1 = TensorSymmetry(get_symmetric_group_sgs(2, 1)) assert sym == sym1 sym2 = tensorsymmetry() assert sym2.base == Tuple() and sym2.generators == Tuple(Permutation(1)) raises(NotImplementedError, lambda: tensorsymmetry([2, 1])) def test_TensorType(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') sym = tensorsymmetry([1]*2) A = tensorhead('A', [Lorentz]*2, [[1]*2]) assert A.typ == TensorType([Lorentz]*2, sym) assert A.types == [Lorentz] assert A.index_types == Tuple(*[Lorentz, Lorentz]) typ = TensorType([Lorentz]*2, sym) assert str(typ) == "TensorType(['Lorentz', 'Lorentz'])" raises(ValueError, lambda: typ(2)) def test_TensExpr(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) g = Lorentz.metric A, B = tensorhead('A B', [Lorentz]*2, [[1]*2]) raises(ValueError, lambda: g(c, d)/g(a, b)) raises(ValueError, lambda: S.One/g(a, b)) raises(ValueError, lambda: (A(c, d) + g(c, d))/g(a, b)) raises(ValueError, lambda: S.One/(A(c, d) + g(c, d))) raises(ValueError, lambda: A(a, b) + A(a, c)) t = A(a, b) + B(a, b) #raises(NotImplementedError, lambda: TensExpr.__mul__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__add__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__radd__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__sub__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__rsub__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__div__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__rdiv__(t, 'a')) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=SymPyDeprecationWarning) # DO NOT REMOVE THIS AFTER DEFRECATION REMOVED: raises(ValueError, lambda: A(a, b)**2) raises(NotImplementedError, lambda: 2**A(a, b)) raises(NotImplementedError, lambda: abs(A(a, b))) def test_TensorHead(): # simple example of algebraic expression Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a,b = tensor_indices('a,b', Lorentz) # A, B symmetric A = tensorhead('A', [Lorentz]*2, [[1]*2]) assert A.rank == 2 assert A.symmetry == tensorsymmetry([1]*2) def test_add1(): assert TensAdd().args == () assert TensAdd().doit() == 0 # simple example of algebraic expression Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a,b,d0,d1,i,j,k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz) # A, B symmetric A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2]) t1 = A(b,-d0)*B(d0,a) assert TensAdd(t1).equals(t1) t2a = B(d0,a) + A(d0, a) t2 = A(b,-d0)*t2a assert str(t2) == 'A(b, -L_0)*(A(L_0, a) + B(L_0, a))' t2 = t2.expand() assert str(t2) == 'A(b, -L_0)*A(L_0, a) + A(b, -L_0)*B(L_0, a)' t2 = t2.canon_bp() assert str(t2) == 'A(a, L_0)*A(b, -L_0) + A(b, L_0)*B(a, -L_0)' t2b = t2 + t1 assert str(t2b) == 'A(a, L_0)*A(b, -L_0) + A(b, -L_0)*B(L_0, a) + A(b, L_0)*B(a, -L_0)' t2b = t2b.canon_bp() assert str(t2b) == '2*A(b, L_0)*B(a, -L_0) + A(a, L_0)*A(b, -L_0)' p, q, r = tensorhead('p,q,r', [Lorentz], [[1]]) t = q(d0)*2 assert str(t) == '2*q(d0)' t = 2*q(d0) assert str(t) == '2*q(d0)' t1 = p(d0) + 2*q(d0) assert str(t1) == '2*q(d0) + p(d0)' t2 = p(-d0) + 2*q(-d0) assert str(t2) == '2*q(-d0) + p(-d0)' t1 = p(d0) t3 = t1*t2 assert str(t3) == 'p(L_0)*(2*q(-L_0) + p(-L_0))' t3 = t3.expand() assert str(t3) == '2*p(L_0)*q(-L_0) + p(L_0)*p(-L_0)' t3 = t2*t1 t3 = t3.expand() assert str(t3) == '2*q(-L_0)*p(L_0) + p(-L_0)*p(L_0)' t3 = t3.canon_bp() assert str(t3) == '2*p(L_0)*q(-L_0) + p(L_0)*p(-L_0)' t1 = p(d0) + 2*q(d0) t3 = t1*t2 t3 = t3.canon_bp() assert str(t3) == '4*p(L_0)*q(-L_0) + 4*q(L_0)*q(-L_0) + p(L_0)*p(-L_0)' t1 = p(d0) - 2*q(d0) assert str(t1) == '-2*q(d0) + p(d0)' t2 = p(-d0) + 2*q(-d0) t3 = t1*t2 t3 = t3.canon_bp() assert t3 == p(d0)*p(-d0) - 4*q(d0)*q(-d0) t = p(i)*p(j)*(p(k) + q(k)) + p(i)*(p(j) + q(j))*(p(k) - 3*q(k)) t = t.canon_bp() assert t == 2*p(i)*p(j)*p(k) - 2*p(i)*p(j)*q(k) + p(i)*p(k)*q(j) - 3*p(i)*q(j)*q(k) t1 = (p(i) + q(i) + 2*r(i))*(p(j) - q(j)) t2 = (p(j) + q(j) + 2*r(j))*(p(i) - q(i)) t = t1 + t2 t = t.canon_bp() assert t == 2*p(i)*p(j) + 2*p(i)*r(j) + 2*p(j)*r(i) - 2*q(i)*q(j) - 2*q(i)*r(j) - 2*q(j)*r(i) t = p(i)*q(j)/2 assert 2*t == p(i)*q(j) t = (p(i) + q(i))/2 assert 2*t == p(i) + q(i) t = S.One - p(i)*p(-i) t = t.canon_bp() tz1 = t + p(-j)*p(j) assert tz1 != 1 tz1 = tz1.canon_bp() assert tz1.equals(1) t = S.One + p(i)*p(-i) assert (t - p(-j)*p(j)).canon_bp().equals(1) t = A(a, b) + B(a, b) assert t.rank == 2 t1 = t - A(a, b) - B(a, b) assert t1 == 0 t = 1 - (A(a, -a) + B(a, -a)) t1 = 1 + (A(a, -a) + B(a, -a)) assert (t + t1).expand().equals(2) t2 = 1 + A(a, -a) assert t1 != t2 assert t2 != TensMul.from_data(0, [], [], []) t = p(i) + q(i) raises(ValueError, lambda: t(i, j)) def test_special_eq_ne(): # test special equality cases: Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a,b,d0,d1,i,j,k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz) # A, B symmetric A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2]) p, q, r = tensorhead('p,q,r', [Lorentz], [[1]]) t = 0*A(a, b) assert _is_equal(t, 0) assert _is_equal(t, S.Zero) assert p(i) != A(a, b) assert A(a, -a) != A(a, b) assert 0*(A(a, b) + B(a, b)) == 0 assert 0*(A(a, b) + B(a, b)) == S.Zero assert 3*(A(a, b) - A(a, b)) == S.Zero assert p(i) + q(i) != A(a, b) assert p(i) + q(i) != A(a, b) + B(a, b) assert p(i) - p(i) == 0 assert p(i) - p(i) == S.Zero assert _is_equal(A(a, b), A(b, a)) def test_add2(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') m, n, p, q = tensor_indices('m,n,p,q', Lorentz) R = tensorhead('R', [Lorentz]*4, [[2, 2]]) A = tensorhead('A', [Lorentz]*3, [[3]]) t1 = 2*R(m, n, p, q) - R(m, q, n, p) + R(m, p, n, q) t2 = t1*A(-n, -p, -q) t2 = t2.canon_bp() assert t2 == 0 t1 = S(2)/3*R(m,n,p,q) - S(1)/3*R(m,q,n,p) + S(1)/3*R(m,p,n,q) t2 = t1*A(-n, -p, -q) t2 = t2.canon_bp() assert t2 == 0 t = A(m, -m, n) + A(n, p, -p) t = t.canon_bp() assert t == 0 def test_add3(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') i0, i1 = tensor_indices('i0:2', Lorentz) E, px, py, pz = symbols('E px py pz') A = tensorhead('A', [Lorentz], [[1]]) B = tensorhead('B', [Lorentz], [[1]]) expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2) assert expr1.args == (px**2, py**2, pz**2, -E**2, A(i0)*A(-i0)) expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0) assert expr2.args == (E**2, -px**2, -py**2, -pz**2, -A(i0)*A(-i0)) expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2 assert expr3.args == (px**2, py**2, pz**2, -E**2, A(i0)*A(-i0)) expr4 = B(i1)*B(-i1) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0) assert expr4.args == (-2*px**2, -2*py**2, -2*pz**2, 2*E**2, -A(i0)*A(-i0), B(i1)*B(-i1)) def test_mul(): from sympy.abc import x Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) sym = tensorsymmetry([1]*2) t = TensMul.from_data(S.One, [], [], []) assert str(t) == '1' A, B = tensorhead('A B', [Lorentz]*2, [[1]*2]) t = (1 + x)*A(a, b) assert str(t) == '(x + 1)*A(a, b)' assert t.index_types == [Lorentz, Lorentz] assert t.rank == 2 assert t.dum == [] assert t.coeff == 1 + x assert sorted(t.free) == [(a, 0), (b, 1)] assert t.components == [A] ts = A(a, b) assert str(ts) == 'A(a, b)' assert ts.index_types == [Lorentz, Lorentz] assert ts.rank == 2 assert ts.dum == [] assert ts.coeff == 1 assert sorted(ts.free) == [(a, 0), (b, 1)] assert ts.components == [A] t = A(-b, a)*B(-a, c)*A(-c, d) t1 = tensor_mul(*t.split()) assert t == t(-b, d) assert t == t1 assert tensor_mul(*[]) == TensMul.from_data(S.One, [], [], []) t = TensMul.from_data(1, [], [], []) zsym = tensorsymmetry() typ = TensorType([], zsym) C = typ('C') assert str(C()) == 'C' assert str(t) == '1' assert t == 1 raises(ValueError, lambda: A(a, b)*A(a, c)) t = A(a, b)*A(-a, c) raises(ValueError, lambda: t(a, b, c)) def test_substitute_indices(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz) A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2]) t = A(i, k)*B(-k, -j) t1 = t.substitute_indices((i, j), (j, k)) t1a = A(j, l)*B(-l, -k) assert t1 == t1a p = tensorhead('p', [Lorentz], [[1]]) t = p(i) t1 = t.substitute_indices((j, k)) assert t1 == t t1 = t.substitute_indices((i, j)) assert t1 == p(j) t1 = t.substitute_indices((i, -j)) assert t1 == p(-j) t1 = t.substitute_indices((-i, j)) assert t1 == p(-j) t1 = t.substitute_indices((-i, -j)) assert t1 == p(j) A_tmul = A(m, n) A_c = A_tmul(m, -m) assert _is_equal(A_c, A(n, -n)) ABm = A(i, j)*B(m, n) ABc1 = ABm(i, j, -i, -j) assert _is_equal(ABc1, A(i, -j)*B(-i, j)) ABc2 = ABm(i, -i, j, -j) assert _is_equal(ABc2, A(m, -m)*B(-n, n)) asum = A(i, j) + B(i, j) asc1 = asum(i, -i) assert _is_equal(asc1, A(i, -i) + B(i, -i)) assert A(i, -i) == A(i, -i)() assert canon_bp(A(i, -i) + B(-j, j) - (A(i, -i) + B(i, -i))()) == 0 assert _is_equal(A(i, j)*B(-j, k), (A(m, -j)*B(j, n))(i, k)) raises(ValueError, lambda: A(i, -i)(j, k)) def test_riemann_cyclic_replace(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') m0, m1, m2, m3 = tensor_indices('m:4', Lorentz) symr = tensorsymmetry([2, 2]) R = tensorhead('R', [Lorentz]*4, [[2, 2]]) t = R(m0, m2, m1, m3) t1 = riemann_cyclic_replace(t) t1a = -S.One/3*R(m0, m3, m2, m1) + S.One/3*R(m0, m1, m2, m3) + Rational(2, 3)*R(m0, m2, m1, m3) assert t1 == t1a def test_riemann_cyclic(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz) R = tensorhead('R', [Lorentz]*4, [[2, 2]]) t = R(i,j,k,l) + R(i,l,j,k) + R(i,k,l,j) - \ R(i,j,l,k) - R(i,l,k,j) - R(i,k,j,l) t2 = t*R(-i,-j,-k,-l) t3 = riemann_cyclic(t2) assert t3 == 0 t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l)) t1 = riemann_cyclic(t) assert t1 == 0 t = R(i,j,k,l) t1 = riemann_cyclic(t) assert t1 == -S(1)/3*R(i, l, j, k) + S(1)/3*R(i, k, j, l) + S(2)/3*R(i, j, k, l) t = R(i,j,k,l)*R(-k,-l,m,n)*(R(-m,-n,-i,-j) + 2*R(-m,-j,-n,-i)) t1 = riemann_cyclic(t) assert t1 == 0 @XFAIL def test_div(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') m0,m1,m2,m3 = tensor_indices('m0:4', Lorentz) R = tensorhead('R', [Lorentz]*4, [[2, 2]]) t = R(m0,m1,-m1,m3) t1 = t/S(4) assert str(t1) == '(1/4)*R(m0, L_0, -L_0, m3)' t = t.canon_bp() assert not t1._is_canon_bp t1 = t*4 assert t1._is_canon_bp t1 = t1/4 assert t1._is_canon_bp def test_contract_metric1(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p = tensorhead('p', [Lorentz], [[1]]) t = g(a, b)*p(-b) t1 = t.contract_metric(g) assert t1 == p(a) A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2]) # case with g with all free indices t1 = A(a,b)*B(-b,c)*g(d, e) t2 = t1.contract_metric(g) assert t1 == t2 # case of g(d, -d) t1 = A(a,b)*B(-b,c)*g(-d, d) t2 = t1.contract_metric(g) assert t2 == D*A(a, d)*B(-d, c) # g with one free index t1 = A(a,b)*B(-b,-c)*g(c, d) t2 = t1.contract_metric(g) assert t2 == A(a, c)*B(-c, d) # g with both indices contracted with another tensor t1 = A(a,b)*B(-b,-c)*g(c, -a) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a, b)*B(-b, -a)) t1 = A(a,b)*B(-b,-c)*g(c, d)*g(-a, -d) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a,b)*B(-b,-a)) t1 = A(a,b)*g(-a,-b) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a, -a)) assert not t2.free Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') a, b = tensor_indices('a,b', Lorentz) g = Lorentz.metric raises(ValueError, lambda: g(a, -a).contract_metric(g)) # no dim def test_contract_metric2(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L') a, b, c, d, e, L_0 = tensor_indices('a,b,c,d,e,L_0', Lorentz) g = Lorentz.metric p, q = tensorhead('p,q', [Lorentz], [[1]]) t1 = g(a,b)*p(c)*p(-c) t2 = 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) assert t == 3*D*p(a)*p(-a)*q(b)*q(-b) t1 = g(a,b)*p(c)*p(-c) t2 = 3*q(-a)*q(-b) t = t1*t2 t = t.contract_metric(g) t = t.canon_bp() assert t == 3*p(a)*p(-a)*q(b)*q(-b) t1 = 2*g(a,b)*p(c)*p(-c) t2 = - 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) t = 6*g(a,b)*g(-a,-b)*p(c)*p(-c)*q(d)*q(-d) t = t.contract_metric(g) t1 = 2*g(a,b)*p(c)*p(-c) t2 = q(-a)*q(-b) + 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) assert t == (2 + 6*D)*p(a)*p(-a)*q(b)*q(-b) t1 = p(a)*p(b) + p(a)*q(b) + 2*g(a,b)*p(c)*p(-c) t2 = q(-a)*q(-b) - g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) t1 = (1 - 2*D)*p(a)*p(-a)*q(b)*q(-b) + p(a)*q(-a)*p(b)*q(-b) assert canon_bp(t - t1) == 0 t = g(a,b)*g(c,d)*g(-b,-c) t1 = t.contract_metric(g) assert t1 == g(a, d) t1 = g(a,b)*g(c,d) + g(a,c)*g(b,d) + g(a,d)*g(b,c) t2 = t1.substitute_indices((a,-a),(b,-b),(c,-c),(d,-d)) t = t1*t2 t = t.contract_metric(g) assert t.equals(3*D**2 + 6*D) t = 2*p(a)*g(b,-b) t1 = t.contract_metric(g) assert t1.equals(2*D*p(a)) t = 2*p(a)*g(b,-a) t1 = t.contract_metric(g) assert t1 == 2*p(b) M = Symbol('M') t = (p(a)*p(b) + g(a, b)*M**2)*g(-a, -b) - D*M**2 t1 = t.contract_metric(g) assert t1 == p(a)*p(-a) A = tensorhead('A', [Lorentz]*2, [[1]*2]) t = A(a, b)*p(L_0)*g(-a, -b) t1 = t.contract_metric(g) assert str(t1) == 'A(L_1, -L_1)*p(L_0)' or str(t1) == 'A(-L_1, L_1)*p(L_0)' def test_metric_contract3(): D = Symbol('D') Spinor = TensorIndexType('Spinor', dim=D, metric=True, dummy_fmt='S') a0,a1,a2,a3,a4 = tensor_indices('a0:5', Spinor) C = Spinor.metric chi, psi = tensorhead('chi,psi', [Spinor], [[1]], 1) B = tensorhead('B', [Spinor]*2, [[1],[1]]) t = C(a0, -a0) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(-a0, a0) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a0,a1)*C(-a0,-a1) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a1,a0)*C(-a0,-a1) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(-a0,a1)*C(a0,-a1) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(a1,-a0)*C(a0,-a1) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a0,a1)*B(-a1,-a0) t1 = t.contract_metric(C) t1 = t1.canon_bp() assert _is_equal(t1, B(a0, -a0)) t = C(a1,a0)*B(-a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0, -a0)) t = C(a0,-a1)*B(a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0, -a0)) t = C(-a0,a1)*B(-a1,a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0, -a0)) t = C(-a0,-a1)*B(a1,a0) t1 = t.contract_metric(C) assert _is_equal(t1, B(a0, -a0)) t = C(-a1, a0)*B(a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, B(a0, -a0)) t = C(a0,a1)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, psi(a0)) t = C(a1,a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, -psi(a0)) t = C(a0,a1)*chi(-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(a1)*psi(-a1)) t = C(a1,a0)*chi(-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(a1)*psi(-a1)) t = C(-a1,a0)*chi(-a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(-a1)*psi(a1)) t = C(a0, -a1)*chi(-a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(-a1)*psi(a1)) t = C(-a0,-a1)*chi(a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(-a1)*psi(a1)) t = C(-a1,-a0)*chi(a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(-a1)*psi(a1)) t = C(-a1,-a0)*B(a0,a2)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -B(-a1,a2)*psi(a1)) t = C(a1,a0)*B(-a2,-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, B(-a2,a1)*psi(-a1)) def test_epsilon(): Lorentz = TensorIndexType('Lorentz', dim=4, dummy_fmt='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric epsilon = Lorentz.epsilon p, q, r, s = tensorhead('p,q,r,s', [Lorentz], [[1]]) t = epsilon(b,a,c,d) t1 = t.canon_bp() assert t1 == -epsilon(a,b,c,d) t = epsilon(c,b,d,a) t1 = t.canon_bp() assert t1 == epsilon(a,b,c,d) t = epsilon(c,a,d,b) t1 = t.canon_bp() assert t1 == -epsilon(a,b,c,d) t = epsilon(a,b,c,d)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == epsilon(c, d, a, b)*p(-a)*q(-b) t = epsilon(c,b,d,a)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == epsilon(c, d, a, b)*p(-a)*q(-b) t = epsilon(c,a,d,b)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == -epsilon(c, d, a, b)*p(-a)*q(-b) t = epsilon(c,a,d,b)*p(-a)*p(-b) t1 = t.canon_bp() assert t1 == 0 t = epsilon(c,a,d,b)*p(-a)*q(-b) + epsilon(a,b,c,d)*p(-b)*q(-a) t1 = t.canon_bp() assert t1 == -2*epsilon(c, d, a, b)*p(-a)*q(-b) # Test that epsilon can be create with a SymPy integer: Lorentz = TensorIndexType('Lorentz', dim=Integer(4), dummy_fmt='L') epsilon = Lorentz.epsilon assert isinstance(epsilon, TensorHead) def test_contract_delta1(): # see Group Theory by Cvitanovic page 9 n = Symbol('n') Color = TensorIndexType('Color', metric=None, dim=n, dummy_fmt='C') a, b, c, d, e, f = tensor_indices('a,b,c,d,e,f', Color) delta = Color.delta def idn(a, b, d, c): assert a.is_up and d.is_up assert not (b.is_up or c.is_up) return delta(a, c)*delta(d, b) def T(a, b, d, c): assert a.is_up and d.is_up assert not (b.is_up or c.is_up) return delta(a, b)*delta(d, c) def P1(a, b, c, d): return idn(a,b,c,d) - 1/n*T(a,b,c,d) def P2(a, b, c, d): return 1/n*T(a,b,c,d) t = P1(a, -b, e, -f)*P1(f, -e, d, -c) t1 = t.contract_delta(delta) assert canon_bp(t1 - P1(a, -b, d, -c)) == 0 t = P2(a, -b, e, -f)*P2(f, -e, d, -c) t1 = t.contract_delta(delta) assert t1 == P2(a, -b, d, -c) t = P1(a, -b, e, -f)*P2(f, -e, d, -c) t1 = t.contract_delta(delta) assert t1 == 0 t = P1(a, -b, b, -a) t1 = t.contract_delta(delta) assert t1.equals(n**2 - 1) def test_fun(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L') a,b,c,d,e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p, q = tensorhead('p q', [Lorentz], [[1]]) t = q(c)*p(a)*q(b) + g(a,b)*g(c,d)*q(-d) assert t(a,b,c) == t assert canon_bp(t - t(b,a,c) - q(c)*p(a)*q(b) + q(c)*p(b)*q(a)) == 0 assert t(b,c,d) == q(d)*p(b)*q(c) + g(b,c)*g(d,e)*q(-e) t1 = t.fun_eval((a,b),(b,a)) assert canon_bp(t1 - q(c)*p(b)*q(a) - g(a,b)*g(c,d)*q(-d)) == 0 # check that g_{a b; c} = 0 # example taken from L. Brewin # "A brief introduction to Cadabra" arxiv:0903.2085 # dg_{a b c} = \partial_{a} g_{b c} is symmetric in b, c dg = tensorhead('dg', [Lorentz]*3, [[1], [1]*2]) # gamma^a_{b c} is the Christoffel symbol gamma = S.Half*g(a,d)*(dg(-b,-d,-c) + dg(-c,-b,-d) - dg(-d,-b,-c)) # t = g_{a b; c} t = dg(-c,-a,-b) - g(-a,-d)*gamma(d,-b,-c) - g(-b,-d)*gamma(d,-a,-c) t = t.contract_metric(g) assert t == 0 t = q(c)*p(a)*q(b) assert t(b,c,d) == q(d)*p(b)*q(c) def test_TensorManager(): Lorentz = TensorIndexType('Lorentz', dummy_fmt='L') LorentzH = TensorIndexType('LorentzH', dummy_fmt='LH') i, j = tensor_indices('i,j', Lorentz) ih, jh = tensor_indices('ih,jh', LorentzH) p, q = tensorhead('p q', [Lorentz], [[1]]) ph, qh = tensorhead('ph qh', [LorentzH], [[1]]) Gsymbol = Symbol('Gsymbol') GHsymbol = Symbol('GHsymbol') TensorManager.set_comm(Gsymbol, GHsymbol, 0) G = tensorhead('G', [Lorentz], [[1]], Gsymbol) assert TensorManager._comm_i2symbol[G.comm] == Gsymbol GH = tensorhead('GH', [LorentzH], [[1]], GHsymbol) ps = G(i)*p(-i) psh = GH(ih)*ph(-ih) t = ps + psh t1 = t*t assert canon_bp(t1 - ps*ps - 2*ps*psh - psh*psh) == 0 qs = G(i)*q(-i) qsh = GH(ih)*qh(-ih) assert _is_equal(ps*qsh, qsh*ps) assert not _is_equal(ps*qs, qs*ps) n = TensorManager.comm_symbols2i(Gsymbol) assert TensorManager.comm_i2symbol(n) == Gsymbol assert GHsymbol in TensorManager._comm_symbols2i raises(ValueError, lambda: TensorManager.set_comm(GHsymbol, 1, 2)) TensorManager.set_comms((Gsymbol,GHsymbol,0),(Gsymbol,1,1)) assert TensorManager.get_comm(n, 1) == TensorManager.get_comm(1, n) == 1 TensorManager.clear() assert TensorManager.comm == [{0:0, 1:0, 2:0}, {0:0, 1:1, 2:None}, {0:0, 1:None}] assert GHsymbol not in TensorManager._comm_symbols2i nh = TensorManager.comm_symbols2i(GHsymbol) assert GHsymbol in TensorManager._comm_symbols2i def test_hash(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L') a,b,c,d,e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p, q = tensorhead('p q', [Lorentz], [[1]]) p_type = p.args[1] t1 = p(a)*q(b) t2 = p(a)*p(b) assert hash(t1) != hash(t2) t3 = p(a)*p(b) + g(a,b) t4 = p(a)*p(b) - g(a,b) assert hash(t3) != hash(t4) assert a.func(*a.args) == a assert Lorentz.func(*Lorentz.args) == Lorentz assert g.func(*g.args) == g assert p.func(*p.args) == p assert p_type.func(*p_type.args) == p_type assert p(a).func(*(p(a)).args) == p(a) assert t1.func(*t1.args) == t1 assert t2.func(*t2.args) == t2 assert t3.func(*t3.args) == t3 assert t4.func(*t4.args) == t4 assert hash(a.func(*a.args)) == hash(a) assert hash(Lorentz.func(*Lorentz.args)) == hash(Lorentz) assert hash(g.func(*g.args)) == hash(g) assert hash(p.func(*p.args)) == hash(p) assert hash(p_type.func(*p_type.args)) == hash(p_type) assert hash(p(a).func(*(p(a)).args)) == hash(p(a)) assert hash(t1.func(*t1.args)) == hash(t1) assert hash(t2.func(*t2.args)) == hash(t2) assert hash(t3.func(*t3.args)) == hash(t3) assert hash(t4.func(*t4.args)) == hash(t4) def check_all(obj): return all([isinstance(_, Basic) for _ in obj.args]) assert check_all(a) assert check_all(Lorentz) assert check_all(g) assert check_all(p) assert check_all(p_type) assert check_all(p(a)) assert check_all(t1) assert check_all(t2) assert check_all(t3) assert check_all(t4) tsymmetry = tensorsymmetry([2], [1], [1, 1, 1]) assert tsymmetry.func(*tsymmetry.args) == tsymmetry assert hash(tsymmetry.func(*tsymmetry.args)) == hash(tsymmetry) assert check_all(tsymmetry) ### TEST VALUED TENSORS ### def _get_valued_base_test_variables(): minkowski = Matrix(( (1, 0, 0, 0), (0, -1, 0, 0), (0, 0, -1, 0), (0, 0, 0, -1), )) Lorentz = TensorIndexType('Lorentz', dim=4) Lorentz.data = minkowski i0, i1, i2, i3, i4 = tensor_indices('i0:5', Lorentz) E, px, py, pz = symbols('E px py pz') A = tensorhead('A', [Lorentz], [[1]]) A.data = [E, px, py, pz] B = tensorhead('B', [Lorentz], [[1]], 'Gcomm') B.data = range(4) AB = tensorhead("AB", [Lorentz] * 2, [[1]]*2) AB.data = minkowski ba_matrix = Matrix(( (1, 2, 3, 4), (5, 6, 7, 8), (9, 0, -1, -2), (-3, -4, -5, -6), )) BA = tensorhead("BA", [Lorentz] * 2, [[1]]*2) BA.data = ba_matrix # Let's test the diagonal metric, with inverted Minkowski metric: LorentzD = TensorIndexType('LorentzD') LorentzD.data = [-1, 1, 1, 1] mu0, mu1, mu2 = tensor_indices('mu0:3', LorentzD) C = tensorhead('C', [LorentzD], [[1]]) C.data = [E, px, py, pz] ### non-diagonal metric ### ndm_matrix = ( (1, 1, 0,), (1, 0, 1), (0, 1, 0,), ) ndm = TensorIndexType("ndm") ndm.data = ndm_matrix n0, n1, n2 = tensor_indices('n0:3', ndm) NA = tensorhead('NA', [ndm], [[1]]) NA.data = range(10, 13) NB = tensorhead('NB', [ndm]*2, [[1]]*2) NB.data = [[i+j for j in range(10, 13)] for i in range(10, 13)] NC = tensorhead('NC', [ndm]*3, [[1]]*3) NC.data = [[[i+j+k for k in range(4, 7)] for j in range(1, 4)] for i in range(2, 5)] return (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) @filter_warnings_decorator def test_valued_tensor_iter(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # iteration on VTensorHead assert list(A) == [E, px, py, pz] assert list(ba_matrix) == list(BA) # iteration on VTensMul assert list(A(i1)) == [E, px, py, pz] assert list(BA(i1, i2)) == list(ba_matrix) assert list(3 * BA(i1, i2)) == [3 * i for i in list(ba_matrix)] assert list(-5 * BA(i1, i2)) == [-5 * i for i in list(ba_matrix)] # iteration on VTensAdd # A(i1) + A(i1) assert list(A(i1) + A(i1)) == [2*E, 2*px, 2*py, 2*pz] assert BA(i1, i2) - BA(i1, i2) == 0 assert list(BA(i1, i2) - 2 * BA(i1, i2)) == [-i for i in list(ba_matrix)] @filter_warnings_decorator def test_valued_tensor_covariant_contravariant_elements(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert A(-i0)[0] == A(i0)[0] assert A(-i0)[1] == -A(i0)[1] assert AB(i0, i1)[1, 1] == -1 assert AB(i0, -i1)[1, 1] == 1 assert AB(-i0, -i1)[1, 1] == -1 assert AB(-i0, i1)[1, 1] == 1 @filter_warnings_decorator def test_valued_tensor_get_matrix(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() matab = AB(i0, i1).get_matrix() assert matab == Matrix([ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1], ]) # when alternating contravariant/covariant with [1, -1, -1, -1] metric # it becomes the identity matrix: assert AB(i0, -i1).get_matrix() == eye(4) # covariant and contravariant forms: assert A(i0).get_matrix() == Matrix([E, px, py, pz]) assert A(-i0).get_matrix() == Matrix([E, -px, -py, -pz]) @filter_warnings_decorator def test_valued_tensor_contraction(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert (A(i0) * A(-i0)).data == E ** 2 - px ** 2 - py ** 2 - pz ** 2 assert (A(i0) * A(-i0)).data == A ** 2 assert (A(i0) * A(-i0)).data == A(i0) ** 2 assert (A(i0) * B(-i0)).data == -px - 2 * py - 3 * pz for i in range(4): for j in range(4): assert (A(i0) * B(-i1))[i, j] == [E, px, py, pz][i] * [0, -1, -2, -3][j] # test contraction on the alternative Minkowski metric: [-1, 1, 1, 1] assert (C(mu0) * C(-mu0)).data == -E ** 2 + px ** 2 + py ** 2 + pz ** 2 contrexp = A(i0) * AB(i1, -i0) assert A(i0).rank == 1 assert AB(i1, -i0).rank == 2 assert contrexp.rank == 1 for i in range(4): assert contrexp[i] == [E, px, py, pz][i] @filter_warnings_decorator def test_valued_tensor_self_contraction(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert AB(i0, -i0).data == 4 assert BA(i0, -i0).data == 2 @filter_warnings_decorator def test_valued_tensor_pow(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert C**2 == -E**2 + px**2 + py**2 + pz**2 assert C**1 == sqrt(-E**2 + px**2 + py**2 + pz**2) assert C(mu0)**2 == C**2 assert C(mu0)**1 == C**1 @filter_warnings_decorator def test_valued_tensor_expressions(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() x1, x2, x3 = symbols('x1:4') # test coefficient in contraction: rank2coeff = x1 * A(i3) * B(i2) assert rank2coeff[1, 1] == x1 * px assert rank2coeff[3, 3] == 3 * pz * x1 coeff_expr = ((x1 * A(i4)) * (B(-i4) / x2)).data assert coeff_expr.expand() == -px*x1/x2 - 2*py*x1/x2 - 3*pz*x1/x2 add_expr = A(i0) + B(i0) assert add_expr[0] == E assert add_expr[1] == px + 1 assert add_expr[2] == py + 2 assert add_expr[3] == pz + 3 sub_expr = A(i0) - B(i0) assert sub_expr[0] == E assert sub_expr[1] == px - 1 assert sub_expr[2] == py - 2 assert sub_expr[3] == pz - 3 assert (add_expr * B(-i0)).data == -px - 2*py - 3*pz - 14 expr1 = x1*A(i0) + x2*B(i0) expr2 = expr1 * B(i1) * (-4) expr3 = expr2 + 3*x3*AB(i0, i1) expr4 = expr3 / 2 assert expr4 * 2 == expr3 expr5 = (expr4 * BA(-i1, -i0)) assert expr5.data.expand() == 28*E*x1 + 12*px*x1 + 20*py*x1 + 28*pz*x1 + 136*x2 + 3*x3 @filter_warnings_decorator def test_valued_tensor_add_scalar(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # one scalar summand after the contracted tensor expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2) assert expr1.data == 0 # multiple scalar summands in front of the contracted tensor expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0) assert expr2.data == 0 # multiple scalar summands after the contracted tensor expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2 assert expr3.data == 0 # multiple scalar summands and multiple tensors expr4 = C(mu0)*C(-mu0) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0) assert expr4.data == 0 @filter_warnings_decorator def test_noncommuting_components(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() euclid = TensorIndexType('Euclidean') euclid.data = [1, 1] i1, i2, i3 = tensor_indices('i1:4', euclid) a, b, c, d = symbols('a b c d', commutative=False) V1 = tensorhead('V1', [euclid] * 2, [[1]]*2) V1.data = [[a, b], (c, d)] V2 = tensorhead('V2', [euclid] * 2, [[1]]*2) V2.data = [[a, c], [b, d]] vtp = V1(i1, i2) * V2(-i2, -i1) assert vtp.data == a**2 + b**2 + c**2 + d**2 assert vtp.data != a**2 + 2*b*c + d**2 vtp2 = V1(i1, i2)*V1(-i2, -i1) assert vtp2.data == a**2 + b*c + c*b + d**2 assert vtp2.data != a**2 + 2*b*c + d**2 Vc = (b * V1(i1, -i1)).data assert Vc.expand() == b * a + b * d @filter_warnings_decorator def test_valued_non_diagonal_metric(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() mmatrix = Matrix(ndm_matrix) assert (NA(n0)*NA(-n0)).data == (NA(n0).get_matrix().T * mmatrix * NA(n0).get_matrix())[0, 0] @filter_warnings_decorator def test_valued_assign_numpy_ndarray(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # this is needed to make sure that a numpy.ndarray can be assigned to a # tensor. arr = [E+1, px-1, py, pz] A.data = Array(arr) for i in range(4): assert A(i0).data[i] == arr[i] qx, qy, qz = symbols('qx qy qz') A(-i0).data = Array([E, qx, qy, qz]) for i in range(4): assert A(i0).data[i] == [E, -qx, -qy, -qz][i] assert A.data[i] == [E, -qx, -qy, -qz][i] # test on multi-indexed tensors. random_4x4_data = [[(i**3-3*i**2)%(j+7) for i in range(4)] for j in range(4)] AB(-i0, -i1).data = random_4x4_data for i in range(4): for j in range(4): assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1) assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1) assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1) assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j] AB(-i0, i1).data = random_4x4_data for i in range(4): for j in range(4): assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1) assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j] assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1) assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1) @filter_warnings_decorator def test_valued_metric_inverse(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # let's assign some fancy matrix, just to verify it: # (this has no physical sense, it's just testing sympy); # it is symmetrical: md = [[2, 2, 2, 1], [2, 3, 1, 0], [2, 1, 2, 3], [1, 0, 3, 2]] Lorentz.data = md m = Matrix(md) metric = Lorentz.metric minv = m.inv() meye = eye(4) # the Kronecker Delta: KD = Lorentz.get_kronecker_delta() for i in range(4): for j in range(4): assert metric(i0, i1).data[i, j] == m[i, j] assert metric(-i0, -i1).data[i, j] == minv[i, j] assert metric(i0, -i1).data[i, j] == meye[i, j] assert metric(-i0, i1).data[i, j] == meye[i, j] assert metric(i0, i1)[i, j] == m[i, j] assert metric(-i0, -i1)[i, j] == minv[i, j] assert metric(i0, -i1)[i, j] == meye[i, j] assert metric(-i0, i1)[i, j] == meye[i, j] assert KD(i0, -i1)[i, j] == meye[i, j] @filter_warnings_decorator def test_valued_canon_bp_swapaxes(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() e1 = A(i1)*A(i0) e2 = e1.canon_bp() assert e2 == A(i0)*A(i1) for i in range(4): for j in range(4): assert e1[i, j] == e2[j, i] o1 = B(i2)*A(i1)*B(i0) o2 = o1.canon_bp() for i in range(4): for j in range(4): for k in range(4): assert o1[i, j, k] == o2[j, i, k] def test_pprint(): Lorentz = TensorIndexType('Lorentz') A = tensorhead('A', [Lorentz], [[1]]) assert pretty(A) == "A(Lorentz)" @filter_warnings_decorator def test_valued_components_with_wrong_symmetry(): IT = TensorIndexType('IT', dim=3) i0, i1, i2, i3 = tensor_indices('i0:4', IT) IT.data = [1, 1, 1] A_nosym = tensorhead('A', [IT]*2, [[1]]*2) A_sym = tensorhead('A', [IT]*2, [[1]*2]) A_antisym = tensorhead('A', [IT]*2, [[2]]) mat_nosym = Matrix([[1,2,3],[4,5,6],[7,8,9]]) mat_sym = mat_nosym + mat_nosym.T mat_antisym = mat_nosym - mat_nosym.T A_nosym.data = mat_nosym A_nosym.data = mat_sym A_nosym.data = mat_antisym def assign(A, dat): A.data = dat A_sym.data = mat_sym raises(ValueError, lambda: assign(A_sym, mat_nosym)) raises(ValueError, lambda: assign(A_sym, mat_antisym)) A_antisym.data = mat_antisym raises(ValueError, lambda: assign(A_antisym, mat_sym)) raises(ValueError, lambda: assign(A_antisym, mat_nosym)) A_sym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] A_antisym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] @filter_warnings_decorator def test_issue_10972_TensMul_data(): Lorentz = TensorIndexType('Lorentz', metric=False, dummy_fmt='i', dim=2) Lorentz.data = [-1, 1] mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta', Lorentz) Vec = TensorType([Lorentz], tensorsymmetry([1])) A2 = TensorType([Lorentz] * 2, tensorsymmetry([2])) u = Vec('u') u.data = [1, 0] F = A2('F') F.data = [[0, 1], [-1, 0]] mul_1 = F(mu, alpha) * u(-alpha) * F(nu, beta) * u(-beta) assert (mul_1.data == Array([[0, 0], [0, 1]])) mul_2 = F(mu, alpha) * F(nu, beta) * u(-alpha) * u(-beta) assert (mul_2.data == mul_1.data) assert ((mul_1 + mul_1).data == 2 * mul_1.data) @filter_warnings_decorator def test_TensMul_data(): Lorentz = TensorIndexType('Lorentz', metric=False, dummy_fmt='L', dim=4) Lorentz.data = [-1, 1, 1, 1] mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta', Lorentz) Vec = TensorType([Lorentz], tensorsymmetry([1])) A2 = TensorType([Lorentz] * 2, tensorsymmetry([2])) u = Vec('u') u.data = [1, 0, 0, 0] F = A2('F') Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z') F.data = [ [0, Ex, Ey, Ez], [-Ex, 0, Bz, -By], [-Ey, -Bz, 0, Bx], [-Ez, By, -Bx, 0]] E = F(mu, nu) * u(-nu) assert ((E(mu) * E(nu)).data == Array([[0, 0, 0, 0], [0, Ex ** 2, Ex * Ey, Ex * Ez], [0, Ex * Ey, Ey ** 2, Ey * Ez], [0, Ex * Ez, Ey * Ez, Ez ** 2]]) ) assert ((E(mu) * E(nu)).canon_bp().data == (E(mu) * E(nu)).data) assert ((F(mu, alpha) * F(beta, nu) * u(-alpha) * u(-beta)).data == - (E(mu) * E(nu)).data ) assert ((F(alpha, mu) * F(beta, nu) * u(-alpha) * u(-beta)).data == (E(mu) * E(nu)).data ) S2 = TensorType([Lorentz] * 2, tensorsymmetry([1] * 2)) g = S2('g') g.data = Lorentz.data # tensor 'perp' is orthogonal to vector 'u' perp = u(mu) * u(nu) + g(mu, nu) mul_1 = u(-mu) * perp(mu, nu) assert (mul_1.data == Array([0, 0, 0, 0])) mul_2 = u(-mu) * perp(mu, alpha) * perp(nu, beta) assert (mul_2.data == Array.zeros(4, 4, 4)) Fperp = perp(mu, alpha) * perp(nu, beta) * F(-alpha, -beta) assert (Fperp.data[0, :] == Array([0, 0, 0, 0])) assert (Fperp.data[:, 0] == Array([0, 0, 0, 0])) mul_3 = u(-mu) * Fperp(mu, nu) assert (mul_3.data == Array([0, 0, 0, 0])) @filter_warnings_decorator def test_issue_11020_TensAdd_data(): Lorentz = TensorIndexType('Lorentz', metric=False, dummy_fmt='i', dim=2) Lorentz.data = [-1, 1] a, b, c, d = tensor_indices('a, b, c, d', Lorentz) i0, i1 = tensor_indices('i_0:2', Lorentz) Vec = TensorType([Lorentz], tensorsymmetry([1])) S2 = TensorType([Lorentz] * 2, tensorsymmetry([1] * 2)) # metric tensor g = S2('g') g.data = Lorentz.data u = Vec('u') u.data = [1, 0] add_1 = g(b, c) * g(d, i0) * u(-i0) - g(b, c) * u(d) assert (add_1.data == Array.zeros(2, 2, 2)) # Now let us replace index `d` with `a`: add_2 = g(b, c) * g(a, i0) * u(-i0) - g(b, c) * u(a) assert (add_2.data == Array.zeros(2, 2, 2)) # some more tests # perp is tensor orthogonal to u^\mu perp = u(a) * u(b) + g(a, b) mul_1 = u(-a) * perp(a, b) assert (mul_1.data == Array([0, 0])) mul_2 = u(-c) * perp(c, a) * perp(d, b) assert (mul_2.data == Array.zeros(2, 2, 2)) def test_index_iteration(): L = TensorIndexType("Lorentz", dummy_fmt="L") i0,i1,i2,i3,i4 = tensor_indices('i0:5', L) L0 = tensor_indices('L_0', L) L1 = tensor_indices('L_1', L) A = tensorhead("A", [L, L], [[1], [1]]) B = tensorhead("B", [L, L], [[1, 1]]) C = tensorhead("C", [L], [[1]]) e1 = A(i0, i2) e2 = A(i0, -i0) e3 = A(i0, i1)*B(i2, i3) e4 = A(i0, i1)*B(i2, -i1) e5 = A(i0, i1)*B(-i0, -i1) e6 = e1 + e4 assert list(e1._iterate_free_indices) == [(i0, (1, 0)), (i2, (1, 1))] assert list(e1._iterate_dummy_indices) == [] assert list(e1._iterate_indices) == [(i0, (1, 0)), (i2, (1, 1))] assert list(e2._iterate_free_indices) == [] assert list(e2._iterate_dummy_indices) == [(L0, (1, 0)), (-L0, (1, 1))] assert list(e2._iterate_indices) == [(L0, (1, 0)), (-L0, (1, 1))] assert list(e3._iterate_free_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))] assert list(e3._iterate_dummy_indices) == [] assert list(e3._iterate_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))] assert list(e4._iterate_free_indices) == [(i0, (0, 1, 0)), (i2, (1, 1, 0))] assert list(e4._iterate_dummy_indices) == [(L0, (0, 1, 1)), (-L0, (1, 1, 1))] assert list(e4._iterate_indices) == [(i0, (0, 1, 0)), (L0, (0, 1, 1)), (i2, (1, 1, 0)), (-L0, (1, 1, 1))] assert list(e5._iterate_free_indices) == [] assert list(e5._iterate_dummy_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))] assert list(e5._iterate_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))] assert list(e6._iterate_free_indices) == [(i0, (0, 1, 0)), (i2, (0, 1, 1)), (i0, (1, 0, 1, 0)), (i2, (1, 1, 1, 0))] assert list(e6._iterate_dummy_indices) == [(L0, (1, 0, 1, 1)), (-L0, (1, 1, 1, 1))] assert list(e6._iterate_indices) == [(i0, (0, 1, 0)), (i2, (0, 1, 1)), (i0, (1, 0, 1, 0)), (L0, (1, 0, 1, 1)), (i2, (1, 1, 1, 0)), (-L0, (1, 1, 1, 1))] assert e1.get_indices() == [i0, i2] assert e1.get_free_indices() == [i0, i2] assert e2.get_indices() == [L0, -L0] assert e2.get_free_indices() == [] assert e3.get_indices() == [i0, i1, i2, i3] assert e3.get_free_indices() == [i0, i1, i2, i3] assert e4.get_indices() == [i0, L0, i2, -L0] assert e4.get_free_indices() == [i0, i2] assert e5.get_indices() == [L0, L1, -L0, -L1] assert e5.get_free_indices() == [] def test_tensor_expand(): L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) i0 = tensor_indices("i0", L) L_0 = TensorIndex("L_0", L) L_1 = TensorIndex("L_1", L) A, B, C, D = tensorhead("A B C D", [L], [[1]]) H = tensorhead("H", [L, L], [[1], [1]]) assert isinstance(Add(A(i), B(i)), TensAdd) assert isinstance(expand(A(i)+B(i)), TensAdd) expr = A(i)*(A(-i)+B(-i)) assert expr.args == (A(L_0), A(-L_0) + B(-L_0)) assert expr != A(i)*A(-i) + A(i)*B(-i) assert expr.expand() == A(i)*A(-i) + A(i)*B(-i) assert str(expr) == "A(L_0)*(A(-L_0) + B(-L_0))" expr = A(i)*A(j) + A(i)*B(j) assert str(expr) == "A(i)*A(j) + A(i)*B(j)" expr = A(-i)*(A(i)*A(j) + A(i)*B(j)*C(k)*C(-k)) assert expr != A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k) assert expr.expand() == A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k) assert str(expr) == "A(-L_0)*(A(L_0)*A(j) + A(L_0)*B(j)*C(L_1)*C(-L_1))" assert str(expr.canon_bp()) == 'A(L_0)*A(-L_0)*B(j)*C(L_1)*C(-L_1) + A(j)*A(L_0)*A(-L_0)' expr = A(-i)*(2*A(i)*A(j) + A(i)*B(j)) assert expr.expand() == 2*A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j) expr = 2*A(i)*A(-i) assert expr.coeff == 2 expr = A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k))) assert str(expr) == "A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k)))" assert str(expr.expand()) == "A(i)*B(j)*C(k) + A(i)*C(j)*A(k) + A(i)*C(j)*D(k)" assert isinstance(TensMul(3), TensMul) tm = TensMul(3).doit() assert tm == 3 assert isinstance(tm, Integer) p1 = B(j)*B(-j) + B(j)*C(-j) p2 = C(-i)*p1 p3 = A(i)*p2 expr = A(i)*(B(-i) + C(-i)*(B(j)*B(-j) + B(j)*C(-j))) assert expr.expand() == A(i)*B(-i) + A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j) expr = C(-i)*(B(j)*B(-j) + B(j)*C(-j)) assert expr.expand() == C(-i)*B(j)*B(-j) + C(-i)*B(j)*C(-j) def test_tensor_alternative_construction(): L = TensorIndexType("L") i0, i1, i2, i3 = tensor_indices('i0:4', L) A = tensorhead("A", [L], [[1]]) x, y = symbols("x y") assert A(i0) == A(Symbol("i0")) assert A(-i0) == A(-Symbol("i0")) raises(TypeError, lambda: A(x+y)) raises(ValueError, lambda: A(2*x)) def test_tensor_replacement(): L = TensorIndexType("L") L2 = TensorIndexType("L2", dim=2) i, j, k, l = tensor_indices("i j k l", L) i0 = tensor_indices("i0", L) A, B, C, D = tensorhead("A B C D", [L], [[1]]) H = tensorhead("H", [L, L], [[1], [1]]) K = tensorhead("K", [L, L, L, L], [[1], [1], [1], [1]]) expr = H(i, j) repl = {H(i,-j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, j], Array([[1, -2], [3, -4]])) assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, -2], [-3, 4]]) assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, 2], [-3, -4]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [-2, -4]]) assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [-2, 4]]) assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [2, 4]]) assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [2, -4]]) expr = H(i,j) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]])) assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, 2], [-3, -4]]) assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, -2], [-3, 4]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [2, 4]]) assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [2, -4]]) assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [-2, -4]]) assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [-2, 4]]) # Not the same indices: expr = H(i,k) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, k], Array([[1, 2], [3, 4]])) expr = A(i)*A(-i) repl = {A(i): [1,2], L: diag(1, -1)} assert expr._extract_data(repl) == ([], -3) assert expr.replace_with_arrays(repl, []) == -3 expr = K(i, j, -j, k)*A(-i)*A(-k) repl = {A(i): [1, 2], K(i,j,k,l): Array([1]*2**4).reshape(2,2,2,2), L: diag(1, -1)} assert expr._extract_data(repl) expr = H(j, k) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} raises(ValueError, lambda: expr._extract_data(repl)) expr = A(i) repl = {B(i): [1, 2]} raises(ValueError, lambda: expr._extract_data(repl)) expr = A(i) repl = {A(i): [[1, 2], [3, 4]]} raises(ValueError, lambda: expr._extract_data(repl)) # TensAdd: expr = A(k)*H(i, j) + B(k)*H(i, j) repl = {A(k): [1], B(k): [1], H(i, j): [[1, 2],[3,4]], L:diag(1,1)} assert expr._extract_data(repl) == ([k, i, j], Array([[[2, 4], [6, 8]]])) assert expr.replace_with_arrays(repl, [k, i, j]) == Array([[[2, 4], [6, 8]]]) assert expr.replace_with_arrays(repl, [k, j, i]) == Array([[[2, 6], [4, 8]]]) expr = A(k)*A(-k) + 100 repl = {A(k): [2, 3], L: diag(1, 1)} assert expr.replace_with_arrays(repl, []) == 113 ## Symmetrization: expr = H(i, j) + H(j, i) repl = {H(i, j): [[1, 2], [3, 4]]} assert expr._extract_data(repl) == ([i, j], Array([[2, 5], [5, 8]])) assert expr.replace_with_arrays(repl, [i, j]) == Array([[2, 5], [5, 8]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[2, 5], [5, 8]]) ## Anti-symmetrization: expr = H(i, j) - H(j, i) repl = {H(i, j): [[1, 2], [3, 4]]} assert expr.replace_with_arrays(repl, [i, j]) == Array([[0, -1], [1, 0]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[0, 1], [-1, 0]]) # Tensors with contractions in replacements: expr = K(i, j, k, -k) repl = {K(i, j, k, -k): [[1, 2], [3, 4]]} assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]])) expr = H(i, -i) repl = {H(i, -i): 42} assert expr._extract_data(repl) == ([], 42) # Replace with array, raise exception if indices are not compatible: expr = A(i)*A(j) repl = {A(i): [1, 2]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [j])) # Raise exception if array dimension is not compatible: expr = A(i) repl = {A(i): [[1, 2]]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [i])) # TensorIndexType with dimension, wrong dimension in replacement array: u1, u2, u3 = tensor_indices("u1:4", L2) U = tensorhead("U", [L2], [[1]]) expr = U(u1)*U(-u2) repl = {U(u1): [[1]]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [u1, -u2])) def test_rewrite_tensor_to_Indexed(): L = TensorIndexType("L", dim=4) A = tensorhead("A", [L, L, L, L], [[1], [1], [1], [1]]) B = tensorhead("B", [L], [[1]]) i0, i1, i2, i3 = symbols("i0:4") L_0, L_1 = symbols("L_0:2") a1 = A(i0, i1, i2, i3) assert a1.rewrite(Indexed) == Indexed(Symbol("A"), i0, i1, i2, i3) a2 = A(i0, -i0, i2, i3) assert a2.rewrite(Indexed) == Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3)) a3 = a2 + A(i2, i3, i0, -i0) assert a3.rewrite(Indexed) == \ Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3)) +\ Sum(Indexed(Symbol("A"), i2, i3, L_0, L_0), (L_0, 0, 3)) b1 = B(-i0)*a1 assert b1.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_0)*Indexed(Symbol("A"), L_0, i1, i2, i3), (L_0, 0, 3)) b2 = B(-i3)*a2 assert b2.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_1)*Indexed(Symbol("A"), L_0, L_0, i2, L_1), (L_0, 0, 3), (L_1, 0, 3))
4d97d8824bc1e9f50ca2e9aa1a9f7757b050aaf0c872a3ab5aa443ca3d05b974
from sympy.core import symbols, Symbol, Tuple, oo, Dummy from sympy.core.compatibility import iterable, range from sympy.tensor.indexed import IndexException from sympy.utilities.pytest import raises, XFAIL # import test: from sympy import IndexedBase, Idx, Indexed, S, sin, cos, Sum, Piecewise, And, Order, LessThan, StrictGreaterThan, \ GreaterThan, StrictLessThan, Range, Array, Subs, Function, KroneckerDelta, Derivative def test_Idx_construction(): i, a, b = symbols('i a b', integer=True) assert Idx(i) != Idx(i, 1) assert Idx(i, a) == Idx(i, (0, a - 1)) assert Idx(i, oo) == Idx(i, (0, oo)) x = symbols('x', integer=False) raises(TypeError, lambda: Idx(x)) raises(TypeError, lambda: Idx(0.5)) raises(TypeError, lambda: Idx(i, x)) raises(TypeError, lambda: Idx(i, 0.5)) raises(TypeError, lambda: Idx(i, (x, 5))) raises(TypeError, lambda: Idx(i, (2, x))) raises(TypeError, lambda: Idx(i, (2, 3.5))) def test_Idx_properties(): i, a, b = symbols('i a b', integer=True) assert Idx(i).is_integer assert Idx(i).name == 'i' assert Idx(i + 2).name == 'i + 2' assert Idx('foo').name == 'foo' def test_Idx_bounds(): i, a, b = symbols('i a b', integer=True) assert Idx(i).lower is None assert Idx(i).upper is None assert Idx(i, a).lower == 0 assert Idx(i, a).upper == a - 1 assert Idx(i, 5).lower == 0 assert Idx(i, 5).upper == 4 assert Idx(i, oo).lower == 0 assert Idx(i, oo).upper == oo assert Idx(i, (a, b)).lower == a assert Idx(i, (a, b)).upper == b assert Idx(i, (1, 5)).lower == 1 assert Idx(i, (1, 5)).upper == 5 assert Idx(i, (-oo, oo)).lower == -oo assert Idx(i, (-oo, oo)).upper == oo def test_Idx_fixed_bounds(): i, a, b, x = symbols('i a b x', integer=True) assert Idx(x).lower is None assert Idx(x).upper is None assert Idx(x, a).lower == 0 assert Idx(x, a).upper == a - 1 assert Idx(x, 5).lower == 0 assert Idx(x, 5).upper == 4 assert Idx(x, oo).lower == 0 assert Idx(x, oo).upper == oo assert Idx(x, (a, b)).lower == a assert Idx(x, (a, b)).upper == b assert Idx(x, (1, 5)).lower == 1 assert Idx(x, (1, 5)).upper == 5 assert Idx(x, (-oo, oo)).lower == -oo assert Idx(x, (-oo, oo)).upper == oo def test_Idx_inequalities(): i14 = Idx("i14", (1, 4)) i79 = Idx("i79", (7, 9)) i46 = Idx("i46", (4, 6)) i35 = Idx("i35", (3, 5)) assert i14 <= 5 assert i14 < 5 assert not (i14 >= 5) assert not (i14 > 5) assert 5 >= i14 assert 5 > i14 assert not (5 <= i14) assert not (5 < i14) assert LessThan(i14, 5) assert StrictLessThan(i14, 5) assert not GreaterThan(i14, 5) assert not StrictGreaterThan(i14, 5) assert i14 <= 4 assert isinstance(i14 < 4, StrictLessThan) assert isinstance(i14 >= 4, GreaterThan) assert not (i14 > 4) assert isinstance(i14 <= 1, LessThan) assert not (i14 < 1) assert i14 >= 1 assert isinstance(i14 > 1, StrictGreaterThan) assert not (i14 <= 0) assert not (i14 < 0) assert i14 >= 0 assert i14 > 0 from sympy.abc import x assert isinstance(i14 < x, StrictLessThan) assert isinstance(i14 > x, StrictGreaterThan) assert isinstance(i14 <= x, LessThan) assert isinstance(i14 >= x, GreaterThan) assert i14 < i79 assert i14 <= i79 assert not (i14 > i79) assert not (i14 >= i79) assert i14 <= i46 assert isinstance(i14 < i46, StrictLessThan) assert isinstance(i14 >= i46, GreaterThan) assert not (i14 > i46) assert isinstance(i14 < i35, StrictLessThan) assert isinstance(i14 > i35, StrictGreaterThan) assert isinstance(i14 <= i35, LessThan) assert isinstance(i14 >= i35, GreaterThan) iNone1 = Idx("iNone1") iNone2 = Idx("iNone2") assert isinstance(iNone1 < iNone2, StrictLessThan) assert isinstance(iNone1 > iNone2, StrictGreaterThan) assert isinstance(iNone1 <= iNone2, LessThan) assert isinstance(iNone1 >= iNone2, GreaterThan) @XFAIL def test_Idx_inequalities_current_fails(): i14 = Idx("i14", (1, 4)) assert S(5) >= i14 assert S(5) > i14 assert not (S(5) <= i14) assert not (S(5) < i14) def test_Idx_func_args(): i, a, b = symbols('i a b', integer=True) ii = Idx(i) assert ii.func(*ii.args) == ii ii = Idx(i, a) assert ii.func(*ii.args) == ii ii = Idx(i, (a, b)) assert ii.func(*ii.args) == ii def test_Idx_subs(): i, a, b = symbols('i a b', integer=True) assert Idx(i, a).subs(a, b) == Idx(i, b) assert Idx(i, a).subs(i, b) == Idx(b, a) assert Idx(i).subs(i, 2) == Idx(2) assert Idx(i, a).subs(a, 2) == Idx(i, 2) assert Idx(i, (a, b)).subs(i, 2) == Idx(2, (a, b)) def test_IndexedBase_sugar(): i, j = symbols('i j', integer=True) a = symbols('a') A1 = Indexed(a, i, j) A2 = IndexedBase(a) assert A1 == A2[i, j] assert A1 == A2[(i, j)] assert A1 == A2[[i, j]] assert A1 == A2[Tuple(i, j)] assert all(a.is_Integer for a in A2[1, 0].args[1:]) def test_IndexedBase_subs(): i, j, k = symbols('i j k', integer=True) a, b, c = symbols('a b c') A = IndexedBase(a) B = IndexedBase(b) C = IndexedBase(c) assert A[i] == B[i].subs(b, a) assert isinstance(C[1].subs(C, {1: 2}), type(A[1])) def test_IndexedBase_shape(): i, j, m, n = symbols('i j m n', integer=True) a = IndexedBase('a', shape=(m, m)) b = IndexedBase('a', shape=(m, n)) assert b.shape == Tuple(m, n) assert a[i, j] != b[i, j] assert a[i, j] == b[i, j].subs(n, m) assert b.func(*b.args) == b assert b[i, j].func(*b[i, j].args) == b[i, j] raises(IndexException, lambda: b[i]) raises(IndexException, lambda: b[i, i, j]) F = IndexedBase("F", shape=m) assert F.shape == Tuple(m) assert F[i].subs(i, j) == F[j] raises(IndexException, lambda: F[i, j]) def test_Indexed_constructor(): i, j = symbols('i j', integer=True) A = Indexed('A', i, j) assert A == Indexed(Symbol('A'), i, j) assert A == Indexed(IndexedBase('A'), i, j) raises(TypeError, lambda: Indexed(A, i, j)) raises(IndexException, lambda: Indexed("A")) assert A.free_symbols == {A, A.base.label, i, j} def test_Indexed_func_args(): i, j = symbols('i j', integer=True) a = symbols('a') A = Indexed(a, i, j) assert A == A.func(*A.args) def test_Indexed_subs(): i, j, k = symbols('i j k', integer=True) a, b = symbols('a b') A = IndexedBase(a) B = IndexedBase(b) assert A[i, j] == B[i, j].subs(b, a) assert A[i, j] == A[i, k].subs(k, j) def test_Indexed_properties(): i, j = symbols('i j', integer=True) A = Indexed('A', i, j) assert A.name == 'A[i, j]' assert A.rank == 2 assert A.indices == (i, j) assert A.base == IndexedBase('A') assert A.ranges == [None, None] raises(IndexException, lambda: A.shape) n, m = symbols('n m', integer=True) assert Indexed('A', Idx( i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)] assert Indexed('A', Idx(i, m), Idx(j, n)).shape == Tuple(m, n) raises(IndexException, lambda: Indexed("A", Idx(i, m), Idx(j)).shape) def test_Indexed_shape_precedence(): i, j = symbols('i j', integer=True) o, p = symbols('o p', integer=True) n, m = symbols('n m', integer=True) a = IndexedBase('a', shape=(o, p)) assert a.shape == Tuple(o, p) assert Indexed( a, Idx(i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)] assert Indexed(a, Idx(i, m), Idx(j, n)).shape == Tuple(o, p) assert Indexed( a, Idx(i, m), Idx(j)).ranges == [Tuple(0, m - 1), Tuple(None, None)] assert Indexed(a, Idx(i, m), Idx(j)).shape == Tuple(o, p) def test_complex_indices(): i, j = symbols('i j', integer=True) A = Indexed('A', i, i + j) assert A.rank == 2 assert A.indices == (i, i + j) def test_not_interable(): i, j = symbols('i j', integer=True) A = Indexed('A', i, i + j) assert not iterable(A) def test_Indexed_coeff(): N = Symbol('N', integer=True) len_y = N i = Idx('i', len_y-1) y = IndexedBase('y', shape=(len_y,)) a = (1/y[i+1]*y[i]).coeff(y[i]) b = (y[i]/y[i+1]).coeff(y[i]) assert a == b def test_differentiation(): from sympy.functions.special.tensor_functions import KroneckerDelta i, j, k, l = symbols('i j k l', cls=Idx) a = symbols('a') m, n = symbols("m, n", integer=True, finite=True) assert m.is_real h, L = symbols('h L', cls=IndexedBase) hi, hj = h[i], h[j] expr = hi assert expr.diff(hj) == KroneckerDelta(i, j) assert expr.diff(hi) == KroneckerDelta(i, i) expr = S(2) * hi assert expr.diff(hj) == S(2) * KroneckerDelta(i, j) assert expr.diff(hi) == S(2) * KroneckerDelta(i, i) assert expr.diff(a) == S.Zero assert Sum(expr, (i, -oo, oo)).diff(hj) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo)) assert Sum(expr.diff(hj), (i, -oo, oo)) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo)) assert Sum(expr, (i, -oo, oo)).diff(hj).doit() == 2 assert Sum(expr.diff(hi), (i, -oo, oo)).doit() == Sum(2, (i, -oo, oo)).doit() assert Sum(expr, (i, -oo, oo)).diff(hi).doit() == oo expr = a * hj * hj / S(2) assert expr.diff(hi) == a * h[j] * KroneckerDelta(i, j) assert expr.diff(a) == hj * hj / S(2) assert expr.diff(a, 2) == S.Zero assert Sum(expr, (i, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo)) assert Sum(expr.diff(hi), (i, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo)) assert Sum(expr, (i, -oo, oo)).diff(hi).doit() == a*h[j] assert Sum(expr, (j, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo)) assert Sum(expr.diff(hi), (j, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo)) assert Sum(expr, (j, -oo, oo)).diff(hi).doit() == a*h[i] expr = a * sin(hj * hj) assert expr.diff(hi) == 2*a*cos(hj * hj) * hj * KroneckerDelta(i, j) assert expr.diff(hj) == 2*a*cos(hj * hj) * hj expr = a * L[i, j] * h[j] assert expr.diff(hi) == a*L[i, j]*KroneckerDelta(i, j) assert expr.diff(hj) == a*L[i, j] assert expr.diff(L[i, j]) == a*h[j] assert expr.diff(L[k, l]) == a*KroneckerDelta(i, k)*KroneckerDelta(j, l)*h[j] assert expr.diff(L[i, l]) == a*KroneckerDelta(j, l)*h[j] assert Sum(expr, (j, -oo, oo)).diff(L[k, l]) == Sum(a * KroneckerDelta(i, k) * KroneckerDelta(j, l) * h[j], (j, -oo, oo)) assert Sum(expr, (j, -oo, oo)).diff(L[k, l]).doit() == a * KroneckerDelta(i, k) * h[l] assert h[m].diff(h[m]) == 1 assert h[m].diff(h[n]) == KroneckerDelta(m, n) assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (m, -oo, oo)) assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]).doit() == a assert Sum(a*h[m], (n, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (n, -oo, oo)) assert Sum(a*h[m], (m, -oo, oo)).diff(h[m]).doit() == oo*a def test_indexed_series(): A = IndexedBase("A") i = symbols("i", integer=True) assert sin(A[i]).series(A[i]) == A[i] - A[i]**3/6 + A[i]**5/120 + Order(A[i]**6, A[i]) def test_indexed_is_constant(): A = IndexedBase("A") i, j, k = symbols("i,j,k") assert not A[i].is_constant() assert A[i].is_constant(j) assert not A[1+2*i, k].is_constant() assert not A[1+2*i, k].is_constant(i) assert A[1+2*i, k].is_constant(j) assert not A[1+2*i, k].is_constant(k) def test_issue_12533(): d = IndexedBase('d') assert IndexedBase(range(5)) == Range(0, 5, 1) assert d[0].subs(Symbol("d"), range(5)) == 0 assert d[0].subs(d, range(5)) == 0 assert d[1].subs(d, range(5)) == 1 assert Indexed(Range(5), 2) == 2 def test_issue_12780(): n = symbols("n") i = Idx("i", (0, n)) raises(TypeError, lambda: i.subs(n, 1.5)) def test_Subs_with_Indexed(): A = IndexedBase("A") i, j, k = symbols("i,j,k") x, y, z = symbols("x,y,z") f = Function("f") assert Subs(A[i], A[i], A[j]).diff(A[j]) == 1 assert Subs(A[i], A[i], x).diff(A[i]) == 0 assert Subs(A[i], A[i], x).diff(A[j]) == 0 assert Subs(A[i], A[i], x).diff(x) == 1 assert Subs(A[i], A[i], x).diff(y) == 0 assert Subs(A[i], A[i], A[j]).diff(A[k]) == KroneckerDelta(j, k) assert Subs(x, x, A[i]).diff(A[j]) == KroneckerDelta(i, j) assert Subs(f(A[i]), A[i], x).diff(A[j]) == 0 assert Subs(f(A[i]), A[i], A[k]).diff(A[j]) == Derivative(f(A[k]), A[k])*KroneckerDelta(j, k) assert Subs(x, x, A[i]**2).diff(A[j]) == 2*KroneckerDelta(i, j)*A[i] assert Subs(A[i], A[i], A[j]**2).diff(A[k]) == 2*KroneckerDelta(j, k)*A[j] assert Subs(A[i]*x, x, A[i]).diff(A[i]) == 2*A[i] assert Subs(A[i]*x, x, A[i]).diff(A[j]) == 2*A[i]*KroneckerDelta(i, j) assert Subs(A[i]*x, x, A[j]).diff(A[i]) == A[j] + A[i]*KroneckerDelta(i, j) assert Subs(A[i]*x, x, A[j]).diff(A[j]) == A[i] + A[j]*KroneckerDelta(i, j) assert Subs(A[i]*x, x, A[i]).diff(A[k]) == 2*A[i]*KroneckerDelta(i, k) assert Subs(A[i]*x, x, A[j]).diff(A[k]) == KroneckerDelta(i, k)*A[j] + KroneckerDelta(j, k)*A[i] assert Subs(A[i]*x, A[i], x).diff(A[i]) == 0 assert Subs(A[i]*x, A[i], x).diff(A[j]) == 0 assert Subs(A[i]*x, A[j], x).diff(A[i]) == x assert Subs(A[i]*x, A[j], x).diff(A[j]) == x*KroneckerDelta(i, j) assert Subs(A[i]*x, A[i], x).diff(A[k]) == 0 assert Subs(A[i]*x, A[j], x).diff(A[k]) == x*KroneckerDelta(i, k) def test_complicated_derivative_with_Indexed(): x, y = symbols("x,y", cls=IndexedBase) sigma = symbols("sigma") i, j, k = symbols("i,j,k") m0,m1,m2,m3,m4,m5 = symbols("m0:6") f = Function("f") expr = f((x[i] - y[i])**2/sigma) _xi_1 = symbols("xi_1", cls=Dummy) assert expr.diff(x[m0]).dummy_eq( (x[i] - y[i])*KroneckerDelta(i, m0)*\ 2*Subs( Derivative(f(_xi_1), _xi_1), (_xi_1,), ((x[i] - y[i])**2/sigma,) )/sigma ) assert expr.diff(x[m0]).diff(x[m1]).dummy_eq( 2*KroneckerDelta(i, m0)*\ KroneckerDelta(i, m1)*Subs( Derivative(f(_xi_1), _xi_1), (_xi_1,), ((x[i] - y[i])**2/sigma,) )/sigma + \ 4*(x[i] - y[i])**2*KroneckerDelta(i, m0)*KroneckerDelta(i, m1)*\ Subs( Derivative(f(_xi_1), _xi_1, _xi_1), (_xi_1,), ((x[i] - y[i])**2/sigma,) )/sigma**2 )
27a91d25d093e82df39f76a10e5faf6a07aaa9d79e3ce57f82a5bfb828f96388
from sympy.multipledispatch import dispatch from sympy.multipledispatch.conflict import AmbiguityWarning from sympy.utilities.pytest import raises, XFAIL, warns from functools import partial test_namespace = dict() orig_dispatch = dispatch dispatch = partial(dispatch, namespace=test_namespace) @XFAIL def test_singledispatch(): @dispatch(int) def f(x): return x + 1 @dispatch(int) def g(x): return x + 2 @dispatch(float) def f(x): return x - 1 assert f(1) == 2 assert g(1) == 3 assert f(1.0) == 0 assert raises(NotImplementedError, lambda: f('hello')) def test_multipledispatch(): @dispatch(int, int) def f(x, y): return x + y @dispatch(float, float) def f(x, y): return x - y assert f(1, 2) == 3 assert f(1.0, 2.0) == -1.0 class A(object): pass class B(object): pass class C(A): pass class D(C): pass class E(C): pass def test_inheritance(): @dispatch(A) def f(x): return 'a' @dispatch(B) def f(x): return 'b' assert f(A()) == 'a' assert f(B()) == 'b' assert f(C()) == 'a' @XFAIL def test_inheritance_and_multiple_dispatch(): @dispatch(A, A) def f(x, y): return type(x), type(y) @dispatch(A, B) def f(x, y): return 0 assert f(A(), A()) == (A, A) assert f(A(), C()) == (A, C) assert f(A(), B()) == 0 assert f(C(), B()) == 0 assert raises(NotImplementedError, lambda: f(B(), B())) def test_competing_solutions(): @dispatch(A) def h(x): return 1 @dispatch(C) def h(x): return 2 assert h(D()) == 2 def test_competing_multiple(): @dispatch(A, B) def h(x, y): return 1 @dispatch(C, B) def h(x, y): return 2 assert h(D(), B()) == 2 def test_competing_ambiguous(): test_namespace = dict() dispatch = partial(orig_dispatch, namespace=test_namespace) @dispatch(A, C) def f(x, y): return 2 with warns(AmbiguityWarning): @dispatch(C, A) def f(x, y): return 2 assert f(A(), C()) == f(C(), A()) == 2 # assert raises(Warning, lambda : f(C(), C())) def test_caching_correct_behavior(): @dispatch(A) def f(x): return 1 assert f(C()) == 1 @dispatch(C) def f(x): return 2 assert f(C()) == 2 def test_union_types(): @dispatch((A, C)) def f(x): return 1 assert f(A()) == 1 assert f(C()) == 1 def test_namespaces(): ns1 = dict() ns2 = dict() def foo(x): return 1 foo1 = orig_dispatch(int, namespace=ns1)(foo) def foo(x): return 2 foo2 = orig_dispatch(int, namespace=ns2)(foo) assert foo1(0) == 1 assert foo2(0) == 2 """ Fails def test_dispatch_on_dispatch(): @dispatch(A) @dispatch(C) def q(x): return 1 assert q(A()) == 1 assert q(C()) == 1 """ def test_methods(): class Foo(object): @dispatch(float) def f(self, x): return x - 1 @dispatch(int) def f(self, x): return x + 1 @dispatch(int) def g(self, x): return x + 3 foo = Foo() assert foo.f(1) == 2 assert foo.f(1.0) == 0.0 assert foo.g(1) == 4 def test_methods_multiple_dispatch(): class Foo(object): @dispatch(A, A) def f(x, y): return 1 @dispatch(A, C) def f(x, y): return 2 foo = Foo() assert foo.f(A(), A()) == 1 assert foo.f(A(), C()) == 2 assert foo.f(C(), C()) == 2
0d449e9a85295379181aa67cba3a835127b5d6d40df47da14ee37c9df94b34f1
from sympy.multipledispatch.dispatcher import (Dispatcher, MDNotImplementedError, MethodDispatcher, halt_ordering, restart_ordering) from sympy.utilities.pytest import raises, XFAIL, warns def identity(x): return x def inc(x): return x + 1 def dec(x): return x - 1 def test_dispatcher(): f = Dispatcher('f') f.add((int,), inc) f.add((float,), dec) with warns(DeprecationWarning): assert f.resolve((int,)) == inc assert f.dispatch(int) is inc assert f(1) == 2 assert f(1.0) == 0.0 def test_union_types(): f = Dispatcher('f') f.register((int, float))(inc) assert f(1) == 2 assert f(1.0) == 2.0 def test_dispatcher_as_decorator(): f = Dispatcher('f') @f.register(int) def inc(x): return x + 1 @f.register(float) def inc(x): return x - 1 assert f(1) == 2 assert f(1.0) == 0.0 def test_register_instance_method(): class Test(object): __init__ = MethodDispatcher('f') @__init__.register(list) def _init_list(self, data): self.data = data @__init__.register(object) def _init_obj(self, datum): self.data = [datum] a = Test(3) b = Test([3]) assert a.data == b.data def test_on_ambiguity(): f = Dispatcher('f') def identity(x): return x ambiguities = [False] def on_ambiguity(dispatcher, amb): ambiguities[0] = True f.add((object, object), identity, on_ambiguity=on_ambiguity) assert not ambiguities[0] f.add((object, float), identity, on_ambiguity=on_ambiguity) assert not ambiguities[0] f.add((float, object), identity, on_ambiguity=on_ambiguity) assert ambiguities[0] @XFAIL def test_raise_error_on_non_class(): f = Dispatcher('f') assert raises(TypeError, lambda: f.add((1,), inc)) def test_docstring(): def one(x, y): """ Docstring number one """ return x + y def two(x, y): """ Docstring number two """ return x + y def three(x, y): return x + y master_doc = 'Doc of the multimethod itself' f = Dispatcher('f', doc=master_doc) f.add((object, object), one) f.add((int, int), two) f.add((float, float), three) assert one.__doc__.strip() in f.__doc__ assert two.__doc__.strip() in f.__doc__ assert f.__doc__.find(one.__doc__.strip()) < \ f.__doc__.find(two.__doc__.strip()) assert 'object, object' in f.__doc__ assert master_doc in f.__doc__ def test_help(): def one(x, y): """ Docstring number one """ return x + y def two(x, y): """ Docstring number two """ return x + y def three(x, y): """ Docstring number three """ return x + y master_doc = 'Doc of the multimethod itself' f = Dispatcher('f', doc=master_doc) f.add((object, object), one) f.add((int, int), two) f.add((float, float), three) assert f._help(1, 1) == two.__doc__ assert f._help(1.0, 2.0) == three.__doc__ def test_source(): def one(x, y): """ Docstring number one """ return x + y def two(x, y): """ Docstring number two """ return x - y master_doc = 'Doc of the multimethod itself' f = Dispatcher('f', doc=master_doc) f.add((int, int), one) f.add((float, float), two) assert 'x + y' in f._source(1, 1) assert 'x - y' in f._source(1.0, 1.0) @XFAIL def test_source_raises_on_missing_function(): f = Dispatcher('f') assert raises(TypeError, lambda: f.source(1)) def test_halt_method_resolution(): g = [0] def on_ambiguity(a, b): g[0] += 1 f = Dispatcher('f') halt_ordering() def func(*args): pass f.add((int, object), func) f.add((object, int), func) assert g == [0] restart_ordering(on_ambiguity=on_ambiguity) assert g == [1] assert set(f.ordering) == set([(int, object), (object, int)]) @XFAIL def test_no_implementations(): f = Dispatcher('f') assert raises(NotImplementedError, lambda: f('hello')) @XFAIL def test_register_stacking(): f = Dispatcher('f') @f.register(list) @f.register(tuple) def rev(x): return x[::-1] assert f((1, 2, 3)) == (3, 2, 1) assert f([1, 2, 3]) == [3, 2, 1] assert raises(NotImplementedError, lambda: f('hello')) assert rev('hello') == 'olleh' def test_dispatch_method(): f = Dispatcher('f') @f.register(list) def rev(x): return x[::-1] @f.register(int, int) def add(x, y): return x + y class MyList(list): pass assert f.dispatch(list) is rev assert f.dispatch(MyList) is rev assert f.dispatch(int, int) is add @XFAIL def test_not_implemented(): f = Dispatcher('f') @f.register(object) def _(x): return 'default' @f.register(int) def _(x): if x % 2 == 0: return 'even' else: raise MDNotImplementedError() assert f('hello') == 'default' # default behavior assert f(2) == 'even' # specialized behavior assert f(3) == 'default' # fall bac to default behavior assert raises(NotImplementedError, lambda: f(1, 2)) @XFAIL def test_not_implemented_error(): f = Dispatcher('f') @f.register(float) def _(a): raise MDNotImplementedError() assert raises(NotImplementedError, lambda: f(1.0))
7191505d3530313e456f644f3906f4961e98df8071b2cf119d5842afd2e729f6
from sympy.utilities.pytest import warns_deprecated_sympy def test_C(): from sympy.deprecated.class_registry import C with warns_deprecated_sympy(): C.Add
f231f54eb39e72be680076638be6370d1bd9b7e806556275582b1d65e5567c19
"""Implementation of DPLL algorithm Features: - Clause learning - Watch literal scheme - VSIDS heuristic References: - https://en.wikipedia.org/wiki/DPLL_algorithm """ from __future__ import print_function, division from collections import defaultdict from heapq import heappush, heappop from sympy.core.compatibility import range from sympy import default_sort_key, ordered from sympy.logic.boolalg import conjuncts, to_cnf, to_int_repr, _find_predicates def dpll_satisfiable(expr, all_models=False): """ Check satisfiability of a propositional sentence. It returns a model rather than True when it succeeds. Returns a generator of all models if all_models is True. Examples ======== >>> from sympy.abc import A, B >>> from sympy.logic.algorithms.dpll2 import dpll_satisfiable >>> dpll_satisfiable(A & ~B) {A: True, B: False} >>> dpll_satisfiable(A & ~A) False """ clauses = conjuncts(to_cnf(expr)) if False in clauses: if all_models: return (f for f in [False]) return False symbols = sorted(_find_predicates(expr), key=default_sort_key) symbols_int_repr = range(1, len(symbols) + 1) clauses_int_repr = to_int_repr(clauses, symbols) solver = SATSolver(clauses_int_repr, symbols_int_repr, set(), symbols) models = solver._find_model() if all_models: return _all_models(models) try: return next(models) except StopIteration: return False # Uncomment to confirm the solution is valid (hitting set for the clauses) #else: #for cls in clauses_int_repr: #assert solver.var_settings.intersection(cls) def _all_models(models): satisfiable = False try: while True: yield next(models) satisfiable = True except StopIteration: if not satisfiable: yield False class SATSolver(object): """ Class for representing a SAT solver capable of finding a model to a boolean theory in conjunctive normal form. """ def __init__(self, clauses, variables, var_settings, symbols=None, heuristic='vsids', clause_learning='none', INTERVAL=500): self.var_settings = var_settings self.heuristic = heuristic self.is_unsatisfied = False self._unit_prop_queue = [] self.update_functions = [] self.INTERVAL = INTERVAL if symbols is None: self.symbols = list(ordered(variables)) else: self.symbols = symbols self._initialize_variables(variables) self._initialize_clauses(clauses) if 'vsids' == heuristic: self._vsids_init() self.heur_calculate = self._vsids_calculate self.heur_lit_assigned = self._vsids_lit_assigned self.heur_lit_unset = self._vsids_lit_unset self.heur_clause_added = self._vsids_clause_added # Note: Uncomment this if/when clause learning is enabled #self.update_functions.append(self._vsids_decay) else: raise NotImplementedError if 'simple' == clause_learning: self.add_learned_clause = self._simple_add_learned_clause self.compute_conflict = self.simple_compute_conflict self.update_functions.append(self.simple_clean_clauses) elif 'none' == clause_learning: self.add_learned_clause = lambda x: None self.compute_conflict = lambda: None else: raise NotImplementedError # Create the base level self.levels = [Level(0)] self._current_level.varsettings = var_settings # Keep stats self.num_decisions = 0 self.num_learned_clauses = 0 self.original_num_clauses = len(self.clauses) def _initialize_variables(self, variables): """Set up the variable data structures needed.""" self.sentinels = defaultdict(set) self.occurrence_count = defaultdict(int) self.variable_set = [False] * (len(variables) + 1) def _initialize_clauses(self, clauses): """Set up the clause data structures needed. For each clause, the following changes are made: - Unit clauses are queued for propagation right away. - Non-unit clauses have their first and last literals set as sentinels. - The number of clauses a literal appears in is computed. """ self.clauses = [] for cls in clauses: self.clauses.append(list(cls)) for i in range(len(self.clauses)): # Handle the unit clauses if 1 == len(self.clauses[i]): self._unit_prop_queue.append(self.clauses[i][0]) continue self.sentinels[self.clauses[i][0]].add(i) self.sentinels[self.clauses[i][-1]].add(i) for lit in self.clauses[i]: self.occurrence_count[lit] += 1 def _find_model(self): """ Main DPLL loop. Returns a generator of models. Variables are chosen successively, and assigned to be either True or False. If a solution is not found with this setting, the opposite is chosen and the search continues. The solver halts when every variable has a setting. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> list(l._find_model()) [{1: True, 2: False, 3: False}, {1: True, 2: True, 3: True}] >>> from sympy.abc import A, B, C >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set(), [A, B, C]) >>> list(l._find_model()) [{A: True, B: False, C: False}, {A: True, B: True, C: True}] """ # We use this variable to keep track of if we should flip a # variable setting in successive rounds flip_var = False # Check if unit prop says the theory is unsat right off the bat self._simplify() if self.is_unsatisfied: return # While the theory still has clauses remaining while True: # Perform cleanup / fixup at regular intervals if self.num_decisions % self.INTERVAL == 0: for func in self.update_functions: func() if flip_var: # We have just backtracked and we are trying to opposite literal flip_var = False lit = self._current_level.decision else: # Pick a literal to set lit = self.heur_calculate() self.num_decisions += 1 # Stopping condition for a satisfying theory if 0 == lit: yield dict((self.symbols[abs(lit) - 1], lit > 0) for lit in self.var_settings) while self._current_level.flipped: self._undo() if len(self.levels) == 1: return flip_lit = -self._current_level.decision self._undo() self.levels.append(Level(flip_lit, flipped=True)) flip_var = True continue # Start the new decision level self.levels.append(Level(lit)) # Assign the literal, updating the clauses it satisfies self._assign_literal(lit) # _simplify the theory self._simplify() # Check if we've made the theory unsat if self.is_unsatisfied: self.is_unsatisfied = False # We unroll all of the decisions until we can flip a literal while self._current_level.flipped: self._undo() # If we've unrolled all the way, the theory is unsat if 1 == len(self.levels): return # Detect and add a learned clause self.add_learned_clause(self.compute_conflict()) # Try the opposite setting of the most recent decision flip_lit = -self._current_level.decision self._undo() self.levels.append(Level(flip_lit, flipped=True)) flip_var = True ######################## # Helper Methods # ######################## @property def _current_level(self): """The current decision level data structure Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{1}, {2}], {1, 2}, set()) >>> next(l._find_model()) {1: True, 2: True} >>> l._current_level.decision 0 >>> l._current_level.flipped False >>> l._current_level.var_settings {1, 2} """ return self.levels[-1] def _clause_sat(self, cls): """Check if a clause is satisfied by the current variable setting. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{1}, {-1}], {1}, set()) >>> try: ... next(l._find_model()) ... except StopIteration: ... pass >>> l._clause_sat(0) False >>> l._clause_sat(1) True """ for lit in self.clauses[cls]: if lit in self.var_settings: return True return False def _is_sentinel(self, lit, cls): """Check if a literal is a sentinel of a given clause. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> next(l._find_model()) {1: True, 2: False, 3: False} >>> l._is_sentinel(2, 3) True >>> l._is_sentinel(-3, 1) False """ return cls in self.sentinels[lit] def _assign_literal(self, lit): """Make a literal assignment. The literal assignment must be recorded as part of the current decision level. Additionally, if the literal is marked as a sentinel of any clause, then a new sentinel must be chosen. If this is not possible, then unit propagation is triggered and another literal is added to the queue to be set in the future. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> next(l._find_model()) {1: True, 2: False, 3: False} >>> l.var_settings {-3, -2, 1} >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l._assign_literal(-1) >>> try: ... next(l._find_model()) ... except StopIteration: ... pass >>> l.var_settings {-1} """ self.var_settings.add(lit) self._current_level.var_settings.add(lit) self.variable_set[abs(lit)] = True self.heur_lit_assigned(lit) sentinel_list = list(self.sentinels[-lit]) for cls in sentinel_list: if not self._clause_sat(cls): other_sentinel = None for newlit in self.clauses[cls]: if newlit != -lit: if self._is_sentinel(newlit, cls): other_sentinel = newlit elif not self.variable_set[abs(newlit)]: self.sentinels[-lit].remove(cls) self.sentinels[newlit].add(cls) other_sentinel = None break # Check if no sentinel update exists if other_sentinel: self._unit_prop_queue.append(other_sentinel) def _undo(self): """ _undo the changes of the most recent decision level. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> next(l._find_model()) {1: True, 2: False, 3: False} >>> level = l._current_level >>> level.decision, level.var_settings, level.flipped (-3, {-3, -2}, False) >>> l._undo() >>> level = l._current_level >>> level.decision, level.var_settings, level.flipped (0, {1}, False) """ # Undo the variable settings for lit in self._current_level.var_settings: self.var_settings.remove(lit) self.heur_lit_unset(lit) self.variable_set[abs(lit)] = False # Pop the level off the stack self.levels.pop() ######################### # Propagation # ######################### """ Propagation methods should attempt to soundly simplify the boolean theory, and return True if any simplification occurred and False otherwise. """ def _simplify(self): """Iterate over the various forms of propagation to simplify the theory. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.variable_set [False, False, False, False] >>> l.sentinels {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4}} >>> l._simplify() >>> l.variable_set [False, True, False, False] >>> l.sentinels {-3: {0, 2}, -2: {3, 4}, -1: set(), 2: {0, 3}, ...3: {2, 4}} """ changed = True while changed: changed = False changed |= self._unit_prop() changed |= self._pure_literal() def _unit_prop(self): """Perform unit propagation on the current theory.""" result = len(self._unit_prop_queue) > 0 while self._unit_prop_queue: next_lit = self._unit_prop_queue.pop() if -next_lit in self.var_settings: self.is_unsatisfied = True self._unit_prop_queue = [] return False else: self._assign_literal(next_lit) return result def _pure_literal(self): """Look for pure literals and assign them when found.""" return False ######################### # Heuristics # ######################### def _vsids_init(self): """Initialize the data structures needed for the VSIDS heuristic.""" self.lit_heap = [] self.lit_scores = {} for var in range(1, len(self.variable_set)): self.lit_scores[var] = float(-self.occurrence_count[var]) self.lit_scores[-var] = float(-self.occurrence_count[-var]) heappush(self.lit_heap, (self.lit_scores[var], var)) heappush(self.lit_heap, (self.lit_scores[-var], -var)) def _vsids_decay(self): """Decay the VSIDS scores for every literal. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.lit_scores {-3: -2.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -2.0, 3: -2.0} >>> l._vsids_decay() >>> l.lit_scores {-3: -1.0, -2: -1.0, -1: 0.0, 1: 0.0, 2: -1.0, 3: -1.0} """ # We divide every literal score by 2 for a decay factor # Note: This doesn't change the heap property for lit in self.lit_scores.keys(): self.lit_scores[lit] /= 2.0 def _vsids_calculate(self): """ VSIDS Heuristic Calculation Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.lit_heap [(-2.0, -3), (-2.0, 2), (-2.0, -2), (0.0, 1), (-2.0, 3), (0.0, -1)] >>> l._vsids_calculate() -3 >>> l.lit_heap [(-2.0, -2), (-2.0, 2), (0.0, -1), (0.0, 1), (-2.0, 3)] """ if len(self.lit_heap) == 0: return 0 # Clean out the front of the heap as long the variables are set while self.variable_set[abs(self.lit_heap[0][1])]: heappop(self.lit_heap) if len(self.lit_heap) == 0: return 0 return heappop(self.lit_heap)[1] def _vsids_lit_assigned(self, lit): """Handle the assignment of a literal for the VSIDS heuristic.""" pass def _vsids_lit_unset(self, lit): """Handle the unsetting of a literal for the VSIDS heuristic. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.lit_heap [(-2.0, -3), (-2.0, 2), (-2.0, -2), (0.0, 1), (-2.0, 3), (0.0, -1)] >>> l._vsids_lit_unset(2) >>> l.lit_heap [(-2.0, -3), (-2.0, -2), (-2.0, -2), (-2.0, 2), (-2.0, 3), (0.0, -1), ...(-2.0, 2), (0.0, 1)] """ var = abs(lit) heappush(self.lit_heap, (self.lit_scores[var], var)) heappush(self.lit_heap, (self.lit_scores[-var], -var)) def _vsids_clause_added(self, cls): """Handle the addition of a new clause for the VSIDS heuristic. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.num_learned_clauses 0 >>> l.lit_scores {-3: -2.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -2.0, 3: -2.0} >>> l._vsids_clause_added({2, -3}) >>> l.num_learned_clauses 1 >>> l.lit_scores {-3: -1.0, -2: -2.0, -1: 0.0, 1: 0.0, 2: -1.0, 3: -2.0} """ self.num_learned_clauses += 1 for lit in cls: self.lit_scores[lit] += 1 ######################## # Clause Learning # ######################## def _simple_add_learned_clause(self, cls): """Add a new clause to the theory. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> l.num_learned_clauses 0 >>> l.clauses [[2, -3], [1], [3, -3], [2, -2], [3, -2]] >>> l.sentinels {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4}} >>> l._simple_add_learned_clause([3]) >>> l.clauses [[2, -3], [1], [3, -3], [2, -2], [3, -2], [3]] >>> l.sentinels {-3: {0, 2}, -2: {3, 4}, 2: {0, 3}, 3: {2, 4, 5}} """ cls_num = len(self.clauses) self.clauses.append(cls) for lit in cls: self.occurrence_count[lit] += 1 self.sentinels[cls[0]].add(cls_num) self.sentinels[cls[-1]].add(cls_num) self.heur_clause_added(cls) def _simple_compute_conflict(self): """ Build a clause representing the fact that at least one decision made so far is wrong. Examples ======== >>> from sympy.logic.algorithms.dpll2 import SATSolver >>> l = SATSolver([{2, -3}, {1}, {3, -3}, {2, -2}, ... {3, -2}], {1, 2, 3}, set()) >>> next(l._find_model()) {1: True, 2: False, 3: False} >>> l._simple_compute_conflict() [3] """ return [-(level.decision) for level in self.levels[1:]] def _simple_clean_clauses(self): """Clean up learned clauses.""" pass class Level(object): """ Represents a single level in the DPLL algorithm, and contains enough information for a sound backtracking procedure. """ def __init__(self, decision, flipped=False): self.decision = decision self.var_settings = set() self.flipped = flipped
3e694735d06254f5c9ccd5de6d97c549d75dbe6a64e1fa6bea95c50b88386d5c
"""Implementation of DPLL algorithm Further improvements: eliminate calls to pl_true, implement branching rules, efficient unit propagation. References: - https://en.wikipedia.org/wiki/DPLL_algorithm - https://www.researchgate.net/publication/242384772_Implementations_of_the_DPLL_Algorithm """ from __future__ import print_function, division from sympy.core.compatibility import range from sympy import default_sort_key from sympy.logic.boolalg import Or, Not, conjuncts, disjuncts, to_cnf, \ to_int_repr, _find_predicates from sympy.logic.inference import pl_true, literal_symbol def dpll_satisfiable(expr): """ Check satisfiability of a propositional sentence. It returns a model rather than True when it succeeds >>> from sympy.abc import A, B >>> from sympy.logic.algorithms.dpll import dpll_satisfiable >>> dpll_satisfiable(A & ~B) {A: True, B: False} >>> dpll_satisfiable(A & ~A) False """ clauses = conjuncts(to_cnf(expr)) if False in clauses: return False symbols = sorted(_find_predicates(expr), key=default_sort_key) symbols_int_repr = set(range(1, len(symbols) + 1)) clauses_int_repr = to_int_repr(clauses, symbols) result = dpll_int_repr(clauses_int_repr, symbols_int_repr, {}) if not result: return result output = {} for key in result: output.update({symbols[key - 1]: result[key]}) return output def dpll(clauses, symbols, model): """ Compute satisfiability in a partial model. Clauses is an array of conjuncts. >>> from sympy.abc import A, B, D >>> from sympy.logic.algorithms.dpll import dpll >>> dpll([A, B, D], [A, B], {D: False}) False """ # compute DP kernel P, value = find_unit_clause(clauses, model) while P: model.update({P: value}) symbols.remove(P) if not value: P = ~P clauses = unit_propagate(clauses, P) P, value = find_unit_clause(clauses, model) P, value = find_pure_symbol(symbols, clauses) while P: model.update({P: value}) symbols.remove(P) if not value: P = ~P clauses = unit_propagate(clauses, P) P, value = find_pure_symbol(symbols, clauses) # end DP kernel unknown_clauses = [] for c in clauses: val = pl_true(c, model) if val is False: return False if val is not True: unknown_clauses.append(c) if not unknown_clauses: return model if not clauses: return model P = symbols.pop() model_copy = model.copy() model.update({P: True}) model_copy.update({P: False}) symbols_copy = symbols[:] return (dpll(unit_propagate(unknown_clauses, P), symbols, model) or dpll(unit_propagate(unknown_clauses, Not(P)), symbols_copy, model_copy)) def dpll_int_repr(clauses, symbols, model): """ Compute satisfiability in a partial model. Arguments are expected to be in integer representation >>> from sympy.logic.algorithms.dpll import dpll_int_repr >>> dpll_int_repr([{1}, {2}, {3}], {1, 2}, {3: False}) False """ # compute DP kernel P, value = find_unit_clause_int_repr(clauses, model) while P: model.update({P: value}) symbols.remove(P) if not value: P = -P clauses = unit_propagate_int_repr(clauses, P) P, value = find_unit_clause_int_repr(clauses, model) P, value = find_pure_symbol_int_repr(symbols, clauses) while P: model.update({P: value}) symbols.remove(P) if not value: P = -P clauses = unit_propagate_int_repr(clauses, P) P, value = find_pure_symbol_int_repr(symbols, clauses) # end DP kernel unknown_clauses = [] for c in clauses: val = pl_true_int_repr(c, model) if val is False: return False if val is not True: unknown_clauses.append(c) if not unknown_clauses: return model P = symbols.pop() model_copy = model.copy() model.update({P: True}) model_copy.update({P: False}) symbols_copy = symbols.copy() return (dpll_int_repr(unit_propagate_int_repr(unknown_clauses, P), symbols, model) or dpll_int_repr(unit_propagate_int_repr(unknown_clauses, -P), symbols_copy, model_copy)) ### helper methods for DPLL def pl_true_int_repr(clause, model={}): """ Lightweight version of pl_true. Argument clause represents the set of args of an Or clause. This is used inside dpll_int_repr, it is not meant to be used directly. >>> from sympy.logic.algorithms.dpll import pl_true_int_repr >>> pl_true_int_repr({1, 2}, {1: False}) >>> pl_true_int_repr({1, 2}, {1: False, 2: False}) False """ result = False for lit in clause: if lit < 0: p = model.get(-lit) if p is not None: p = not p else: p = model.get(lit) if p is True: return True elif p is None: result = None return result def unit_propagate(clauses, symbol): """ Returns an equivalent set of clauses If a set of clauses contains the unit clause l, the other clauses are simplified by the application of the two following rules: 1. every clause containing l is removed 2. in every clause that contains ~l this literal is deleted Arguments are expected to be in CNF. >>> from sympy import symbols >>> from sympy.abc import A, B, D >>> from sympy.logic.algorithms.dpll import unit_propagate >>> unit_propagate([A | B, D | ~B, B], B) [D, B] """ output = [] for c in clauses: if c.func != Or: output.append(c) continue for arg in c.args: if arg == ~symbol: output.append(Or(*[x for x in c.args if x != ~symbol])) break if arg == symbol: break else: output.append(c) return output def unit_propagate_int_repr(clauses, s): """ Same as unit_propagate, but arguments are expected to be in integer representation >>> from sympy.logic.algorithms.dpll import unit_propagate_int_repr >>> unit_propagate_int_repr([{1, 2}, {3, -2}, {2}], 2) [{3}] """ negated = {-s} return [clause - negated for clause in clauses if s not in clause] def find_pure_symbol(symbols, unknown_clauses): """ Find a symbol and its value if it appears only as a positive literal (or only as a negative) in clauses. >>> from sympy import symbols >>> from sympy.abc import A, B, D >>> from sympy.logic.algorithms.dpll import find_pure_symbol >>> find_pure_symbol([A, B, D], [A|~B,~B|~D,D|A]) (A, True) """ for sym in symbols: found_pos, found_neg = False, False for c in unknown_clauses: if not found_pos and sym in disjuncts(c): found_pos = True if not found_neg and Not(sym) in disjuncts(c): found_neg = True if found_pos != found_neg: return sym, found_pos return None, None def find_pure_symbol_int_repr(symbols, unknown_clauses): """ Same as find_pure_symbol, but arguments are expected to be in integer representation >>> from sympy.logic.algorithms.dpll import find_pure_symbol_int_repr >>> find_pure_symbol_int_repr({1,2,3}, ... [{1, -2}, {-2, -3}, {3, 1}]) (1, True) """ all_symbols = set().union(*unknown_clauses) found_pos = all_symbols.intersection(symbols) found_neg = all_symbols.intersection([-s for s in symbols]) for p in found_pos: if -p not in found_neg: return p, True for p in found_neg: if -p not in found_pos: return -p, False return None, None def find_unit_clause(clauses, model): """ A unit clause has only 1 variable that is not bound in the model. >>> from sympy import symbols >>> from sympy.abc import A, B, D >>> from sympy.logic.algorithms.dpll import find_unit_clause >>> find_unit_clause([A | B | D, B | ~D, A | ~B], {A:True}) (B, False) """ for clause in clauses: num_not_in_model = 0 for literal in disjuncts(clause): sym = literal_symbol(literal) if sym not in model: num_not_in_model += 1 P, value = sym, not isinstance(literal, Not) if num_not_in_model == 1: return P, value return None, None def find_unit_clause_int_repr(clauses, model): """ Same as find_unit_clause, but arguments are expected to be in integer representation. >>> from sympy.logic.algorithms.dpll import find_unit_clause_int_repr >>> find_unit_clause_int_repr([{1, 2, 3}, ... {2, -3}, {1, -2}], {1: True}) (2, False) """ bound = set(model) | set(-sym for sym in model) for clause in clauses: unbound = clause - bound if len(unbound) == 1: p = unbound.pop() if p < 0: return -p, False else: return p, True return None, None
437463dc3afd7624bda5bbe827f9812714de41ee89e1a7dd20cf13a2520ccd9f
from sympy.assumptions.ask import Q from sympy.core.containers import Tuple from sympy.core.numbers import oo from sympy.core.relational import Equality, Eq, Ne from sympy.core.singleton import S from sympy.core.symbol import (Dummy, symbols) from sympy.functions import Piecewise from sympy.functions.elementary.trigonometric import sin from sympy.sets.sets import (EmptySet, Interval, Union) from sympy.simplify.simplify import simplify from sympy.logic.boolalg import ( And, Boolean, Equivalent, ITE, Implies, Nand, Nor, Not, Or, POSform, SOPform, Xor, Xnor, conjuncts, disjuncts, distribute_or_over_and, distribute_and_over_or, eliminate_implications, is_nnf, is_cnf, is_dnf, simplify_logic, to_nnf, to_cnf, to_dnf, to_int_repr, bool_map, true, false, BooleanAtom, is_literal, term_to_integer, integer_to_term, truth_table, as_Boolean) from sympy.utilities.pytest import raises, XFAIL from sympy.utilities import cartes A, B, C, D = symbols('A:D') a, b, c, d, e, w, x, y, z = symbols('a:e w:z') def test_overloading(): """Test that |, & are overloaded as expected""" assert A & B == And(A, B) assert A | B == Or(A, B) assert (A & B) | C == Or(And(A, B), C) assert A >> B == Implies(A, B) assert A << B == Implies(B, A) assert ~A == Not(A) assert A ^ B == Xor(A, B) def test_And(): assert And() is true assert And(A) == A assert And(True) is true assert And(False) is false assert And(True, True ) is true assert And(True, False) is false assert And(False, False) is false assert And(True, A) == A assert And(False, A) is false assert And(True, True, True) is true assert And(True, True, A) == A assert And(True, False, A) is false assert And(1, A) == A raises(TypeError, lambda: And(2, A)) raises(TypeError, lambda: And(A < 2, A)) assert And(A < 1, A >= 1) is false e = A > 1 assert And(e, e.canonical) == e.canonical g, l, ge, le = A > B, B < A, A >= B, B <= A assert And(g, l, ge, le) == And(l, le) def test_Or(): assert Or() is false assert Or(A) == A assert Or(True) is true assert Or(False) is false assert Or(True, True ) is true assert Or(True, False) is true assert Or(False, False) is false assert Or(True, A) is true assert Or(False, A) == A assert Or(True, False, False) is true assert Or(True, False, A) is true assert Or(False, False, A) == A assert Or(1, A) is true raises(TypeError, lambda: Or(2, A)) raises(TypeError, lambda: Or(A < 2, A)) assert Or(A < 1, A >= 1) is true e = A > 1 assert Or(e, e.canonical) == e g, l, ge, le = A > B, B < A, A >= B, B <= A assert Or(g, l, ge, le) == Or(g, ge) def test_Xor(): assert Xor() is false assert Xor(A) == A assert Xor(A, A) is false assert Xor(True, A, A) is true assert Xor(A, A, A, A, A) == A assert Xor(True, False, False, A, B) == ~Xor(A, B) assert Xor(True) is true assert Xor(False) is false assert Xor(True, True ) is false assert Xor(True, False) is true assert Xor(False, False) is false assert Xor(True, A) == ~A assert Xor(False, A) == A assert Xor(True, False, False) is true assert Xor(True, False, A) == ~A assert Xor(False, False, A) == A assert isinstance(Xor(A, B), Xor) assert Xor(A, B, Xor(C, D)) == Xor(A, B, C, D) assert Xor(A, B, Xor(B, C)) == Xor(A, C) assert Xor(A < 1, A >= 1, B) == Xor(0, 1, B) == Xor(1, 0, B) e = A > 1 assert Xor(e, e.canonical) == Xor(0, 0) == Xor(1, 1) def test_Not(): raises(TypeError, lambda: Not(True, False)) assert Not(True) is false assert Not(False) is true assert Not(0) is true assert Not(1) is false assert Not(2) is false def test_Nand(): assert Nand() is false assert Nand(A) == ~A assert Nand(True) is false assert Nand(False) is true assert Nand(True, True ) is false assert Nand(True, False) is true assert Nand(False, False) is true assert Nand(True, A) == ~A assert Nand(False, A) is true assert Nand(True, True, True) is false assert Nand(True, True, A) == ~A assert Nand(True, False, A) is true def test_Nor(): assert Nor() is true assert Nor(A) == ~A assert Nor(True) is false assert Nor(False) is true assert Nor(True, True ) is false assert Nor(True, False) is false assert Nor(False, False) is true assert Nor(True, A) is false assert Nor(False, A) == ~A assert Nor(True, True, True) is false assert Nor(True, True, A) is false assert Nor(True, False, A) is false def test_Xnor(): assert Xnor() is true assert Xnor(A) == ~A assert Xnor(A, A) is true assert Xnor(True, A, A) is false assert Xnor(A, A, A, A, A) == ~A assert Xnor(True) is false assert Xnor(False) is true assert Xnor(True, True ) is true assert Xnor(True, False) is false assert Xnor(False, False) is true assert Xnor(True, A) == A assert Xnor(False, A) == ~A assert Xnor(True, False, False) is false assert Xnor(True, False, A) == A assert Xnor(False, False, A) == ~A def test_Implies(): raises(ValueError, lambda: Implies(A, B, C)) assert Implies(True, True) is true assert Implies(True, False) is false assert Implies(False, True) is true assert Implies(False, False) is true assert Implies(0, A) is true assert Implies(1, 1) is true assert Implies(1, 0) is false assert A >> B == B << A assert (A < 1) >> (A >= 1) == (A >= 1) assert (A < 1) >> (S(1) > A) is true assert A >> A is true def test_Equivalent(): assert Equivalent(A, B) == Equivalent(B, A) == Equivalent(A, B, A) assert Equivalent() is true assert Equivalent(A, A) == Equivalent(A) is true assert Equivalent(True, True) == Equivalent(False, False) is true assert Equivalent(True, False) == Equivalent(False, True) is false assert Equivalent(A, True) == A assert Equivalent(A, False) == Not(A) assert Equivalent(A, B, True) == A & B assert Equivalent(A, B, False) == ~A & ~B assert Equivalent(1, A) == A assert Equivalent(0, A) == Not(A) assert Equivalent(A, Equivalent(B, C)) != Equivalent(Equivalent(A, B), C) assert Equivalent(A < 1, A >= 1) is false assert Equivalent(A < 1, A >= 1, 0) is false assert Equivalent(A < 1, A >= 1, 1) is false assert Equivalent(A < 1, S(1) > A) == Equivalent(1, 1) == Equivalent(0, 0) assert Equivalent(Equality(A, B), Equality(B, A)) is true def test_equals(): assert Not(Or(A, B)).equals( And(Not(A), Not(B)) ) is True assert Equivalent(A, B).equals((A >> B) & (B >> A)) is True assert ((A | ~B) & (~A | B)).equals((~A & ~B) | (A & B)) is True assert (A >> B).equals(~A >> ~B) is False assert (A >> (B >> A)).equals(A >> (C >> A)) is False def test_simplification(): """ Test working of simplification methods. """ set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]] set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]] assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x)) assert Not(SOPform([x, y, z], set2)) == Not(Or(And(Not(x), Not(z)), And(x, z))) assert POSform([x, y, z], set1 + set2) is true assert SOPform([x, y, z], set1 + set2) is true assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(Not(w), z), And(y, z))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) # test simplification ans = And(A, Or(B, C)) assert simplify_logic(A & (B | C)) == ans assert simplify_logic((A & B) | (A & C)) == ans assert simplify_logic(Implies(A, B)) == Or(Not(A), B) assert simplify_logic(Equivalent(A, B)) == \ Or(And(A, B), And(Not(A), Not(B))) assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C) assert simplify_logic(And(Equality(A, 2), A)) is S.false assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A) assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C) assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \ == And(Equality(A, 3), Or(B, C)) b = (~x & ~y & ~z) | ( ~x & ~y & z) e = And(A, b) assert simplify_logic(e) == A & ~x & ~y # check input ans = SOPform([x, y], [[1, 0]]) assert SOPform([x, y], [[1, 0]]) == ans assert POSform([x, y], [[1, 0]]) == ans raises(ValueError, lambda: SOPform([x], [[1]], [[1]])) assert SOPform([x], [[1]], [[0]]) is true assert SOPform([x], [[0]], [[1]]) is true assert SOPform([x], [], []) is false raises(ValueError, lambda: POSform([x], [[1]], [[1]])) assert POSform([x], [[1]], [[0]]) is true assert POSform([x], [[0]], [[1]]) is true assert POSform([x], [], []) is false # check working of simplify assert simplify((A & B) | (A & C)) == And(A, Or(B, C)) assert simplify(And(x, Not(x))) == False assert simplify(Or(x, Not(x))) == True assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0)) assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1)) assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y)) assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1)) assert And(Eq(x - 1, 0), Eq(x, z + y), Eq(y + x, 0)).simplify( ) == And(Eq(x, 1), Eq(y, -1), Eq(z, 2)) assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1) assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1) assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False assert And(Ne(x - 1, 0), Ne(x + 2, 2)).simplify( ) == And(Ne(x, 1), Ne(x, 0)) def test_bool_map(): """ Test working of bool_map function. """ minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] assert bool_map(Not(Not(a)), a) == (a, {a: a}) assert bool_map(SOPform([w, x, y, z], minterms), POSform([w, x, y, z], minterms)) == \ (And(Or(Not(w), y), Or(Not(x), y), z), {x: x, w: w, z: z, y: y}) assert bool_map(SOPform([x, z, y],[[1, 0, 1]]), SOPform([a, b, c],[[1, 0, 1]])) != False function1 = SOPform([x,z,y],[[1, 0, 1], [0, 0, 1]]) function2 = SOPform([a,b,c],[[1, 0, 1], [1, 0, 0]]) assert bool_map(function1, function2) == \ (function1, {y: a, z: b}) assert bool_map(Xor(x, y), ~Xor(x, y)) == False def test_bool_symbol(): """Test that mixing symbols with boolean values works as expected""" assert And(A, True) == A assert And(A, True, True) == A assert And(A, False) is false assert And(A, True, False) is false assert Or(A, True) is true assert Or(A, False) == A def test_is_boolean(): assert true.is_Boolean assert (A & B).is_Boolean assert (A | B).is_Boolean assert (~A).is_Boolean assert (A ^ B).is_Boolean def test_subs(): assert (A & B).subs(A, True) == B assert (A & B).subs(A, False) is false assert (A & B).subs(B, True) == A assert (A & B).subs(B, False) is false assert (A & B).subs({A: True, B: True}) is true assert (A | B).subs(A, True) is true assert (A | B).subs(A, False) == B assert (A | B).subs(B, True) is true assert (A | B).subs(B, False) == A assert (A | B).subs({A: True, B: True}) is true """ we test for axioms of boolean algebra see https://en.wikipedia.org/wiki/Boolean_algebra_(structure) """ def test_commutative(): """Test for commutativity of And and Or""" A, B = map(Boolean, symbols('A,B')) assert A & B == B & A assert A | B == B | A def test_and_associativity(): """Test for associativity of And""" assert (A & B) & C == A & (B & C) def test_or_assicativity(): assert ((A | B) | C) == (A | (B | C)) def test_double_negation(): a = Boolean() assert ~(~a) == a # test methods def test_eliminate_implications(): assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B assert eliminate_implications( A >> (C >> Not(B))) == Or(Or(Not(B), Not(C)), Not(A)) assert eliminate_implications(Equivalent(A, B, C, D)) == \ (~A | B) & (~B | C) & (~C | D) & (~D | A) def test_conjuncts(): assert conjuncts(A & B & C) == {A, B, C} assert conjuncts((A | B) & C) == {A | B, C} assert conjuncts(A) == {A} assert conjuncts(True) == {True} assert conjuncts(False) == {False} def test_disjuncts(): assert disjuncts(A | B | C) == {A, B, C} assert disjuncts((A | B) & C) == {(A | B) & C} assert disjuncts(A) == {A} assert disjuncts(True) == {True} assert disjuncts(False) == {False} def test_distribute(): assert distribute_and_over_or(Or(And(A, B), C)) == And(Or(A, C), Or(B, C)) assert distribute_or_over_and(And(A, Or(B, C))) == Or(And(A, B), And(A, C)) def test_to_nnf(): assert to_nnf(true) is true assert to_nnf(false) is false assert to_nnf(A) == A assert to_nnf(A | ~A | B) is true assert to_nnf(A & ~A & B) is false assert to_nnf(A >> B) == ~A | B assert to_nnf(Equivalent(A, B, C)) == (~A | B) & (~B | C) & (~C | A) assert to_nnf(A ^ B ^ C) == \ (A | B | C) & (~A | ~B | C) & (A | ~B | ~C) & (~A | B | ~C) assert to_nnf(ITE(A, B, C)) == (~A | B) & (A | C) assert to_nnf(Not(A | B | C)) == ~A & ~B & ~C assert to_nnf(Not(A & B & C)) == ~A | ~B | ~C assert to_nnf(Not(A >> B)) == A & ~B assert to_nnf(Not(Equivalent(A, B, C))) == And(Or(A, B, C), Or(~A, ~B, ~C)) assert to_nnf(Not(A ^ B ^ C)) == \ (~A | B | C) & (A | ~B | C) & (A | B | ~C) & (~A | ~B | ~C) assert to_nnf(Not(ITE(A, B, C))) == (~A | ~B) & (A | ~C) assert to_nnf((A >> B) ^ (B >> A)) == (A & ~B) | (~A & B) assert to_nnf((A >> B) ^ (B >> A), False) == \ (~A | ~B | A | B) & ((A & ~B) | (~A & B)) assert ITE(A, 1, 0).to_nnf() == A assert ITE(A, 0, 1).to_nnf() == ~A # although ITE can hold non-Boolean, it will complain if # an attempt is made to convert the ITE to Boolean nnf raises(TypeError, lambda: ITE(A < 1, [1], B).to_nnf()) def test_to_cnf(): assert to_cnf(~(B | C)) == And(Not(B), Not(C)) assert to_cnf((A & B) | C) == And(Or(A, C), Or(B, C)) assert to_cnf(A >> B) == (~A) | B assert to_cnf(A >> (B & C)) == (~A | B) & (~A | C) assert to_cnf(A & (B | C) | ~A & (B | C), True) == B | C assert to_cnf(Equivalent(A, B)) == And(Or(A, Not(B)), Or(B, Not(A))) assert to_cnf(Equivalent(A, B & C)) == \ (~A | B) & (~A | C) & (~B | ~C | A) assert to_cnf(Equivalent(A, B | C), True) == \ And(Or(Not(B), A), Or(Not(C), A), Or(B, C, Not(A))) def test_to_dnf(): assert to_dnf(~(B | C)) == And(Not(B), Not(C)) assert to_dnf(A & (B | C)) == Or(And(A, B), And(A, C)) assert to_dnf(A >> B) == (~A) | B assert to_dnf(A >> (B & C)) == (~A) | (B & C) assert to_dnf(Equivalent(A, B), True) == \ Or(And(A, B), And(Not(A), Not(B))) assert to_dnf(Equivalent(A, B & C), True) == \ Or(And(A, B, C), And(Not(A), Not(B)), And(Not(A), Not(C))) def test_to_int_repr(): x, y, z = map(Boolean, symbols('x,y,z')) def sorted_recursive(arg): try: return sorted(sorted_recursive(x) for x in arg) except TypeError: # arg is not a sequence return arg assert sorted_recursive(to_int_repr([x | y, z | x], [x, y, z])) == \ sorted_recursive([[1, 2], [1, 3]]) assert sorted_recursive(to_int_repr([x | y, z | ~x], [x, y, z])) == \ sorted_recursive([[1, 2], [3, -1]]) def test_is_nnf(): assert is_nnf(true) is True assert is_nnf(A) is True assert is_nnf(~A) is True assert is_nnf(A & B) is True assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), False) is True assert is_nnf((A | B) & (~A | ~B)) is True assert is_nnf(Not(Or(A, B))) is False assert is_nnf(A ^ B) is False assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), True) is False def test_is_cnf(): assert is_cnf(x) is True assert is_cnf(x | y | z) is True assert is_cnf(x & y & z) is True assert is_cnf((x | y) & z) is True assert is_cnf((x & y) | z) is False def test_is_dnf(): assert is_dnf(x) is True assert is_dnf(x | y | z) is True assert is_dnf(x & y & z) is True assert is_dnf((x & y) | z) is True assert is_dnf((x | y) & z) is False def test_ITE(): A, B, C = symbols('A:C') assert ITE(True, False, True) is false assert ITE(True, True, False) is true assert ITE(False, True, False) is false assert ITE(False, False, True) is true assert isinstance(ITE(A, B, C), ITE) A = True assert ITE(A, B, C) == B A = False assert ITE(A, B, C) == C B = True assert ITE(And(A, B), B, C) == C assert ITE(Or(A, False), And(B, True), False) is false assert ITE(x, A, B) == Not(x) assert ITE(x, B, A) == x assert ITE(1, x, y) == x assert ITE(0, x, y) == y raises(TypeError, lambda: ITE(2, x, y)) raises(TypeError, lambda: ITE(1, [], y)) raises(TypeError, lambda: ITE(1, (), y)) raises(TypeError, lambda: ITE(1, y, [])) assert ITE(1, 1, 1) is S.true assert isinstance(ITE(1, 1, 1, evaluate=False), ITE) raises(TypeError, lambda: ITE(x > 1, y, x)) assert ITE(Eq(x, True), y, x) == ITE(x, y, x) assert ITE(Eq(x, False), y, x) == ITE(~x, y, x) assert ITE(Ne(x, True), y, x) == ITE(~x, y, x) assert ITE(Ne(x, False), y, x) == ITE(x, y, x) # 0 and 1 in the context are not treated as True/False # so the equality must always be False since dissimilar # objects cannot be equal assert ITE(Eq(x, 0), y, x) == x assert ITE(Eq(x, 1), y, x) == x assert ITE(Ne(x, 0), y, x) == y assert ITE(Ne(x, 1), y, x) == y assert ITE(Eq(x, 0), y, z).subs(x, 0) == y assert ITE(Eq(x, 0), y, z).subs(x, 1) == z def test_is_literal(): assert is_literal(True) is True assert is_literal(False) is True assert is_literal(A) is True assert is_literal(~A) is True assert is_literal(Or(A, B)) is False assert is_literal(Q.zero(A)) is True assert is_literal(Not(Q.zero(A))) is True assert is_literal(Or(A, B)) is False assert is_literal(And(Q.zero(A), Q.zero(B))) is False def test_operators(): # Mostly test __and__, __rand__, and so on assert True & A == A & True == A assert False & A == A & False == False assert A & B == And(A, B) assert True | A == A | True == True assert False | A == A | False == A assert A | B == Or(A, B) assert ~A == Not(A) assert True >> A == A << True == A assert False >> A == A << False == True assert A >> True == True << A == True assert A >> False == False << A == ~A assert A >> B == B << A == Implies(A, B) assert True ^ A == A ^ True == ~A assert False ^ A == A ^ False == A assert A ^ B == Xor(A, B) def test_true_false(): assert true is S.true assert false is S.false assert true is not True assert false is not False assert true assert not false assert true == True assert false == False assert not (true == False) assert not (false == True) assert not (true == false) assert hash(true) == hash(True) assert hash(false) == hash(False) assert len({true, True}) == len({false, False}) == 1 assert isinstance(true, BooleanAtom) assert isinstance(false, BooleanAtom) # We don't want to subclass from bool, because bool subclasses from # int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and # 1 then we want them to on true and false. See the docstrings of the # various And, Or, etc. functions for examples. assert not isinstance(true, bool) assert not isinstance(false, bool) # Note: using 'is' comparison is important here. We want these to return # true and false, not True and False assert Not(true) is false assert Not(True) is false assert Not(false) is true assert Not(False) is true assert ~true is false assert ~false is true for T, F in cartes([True, true], [False, false]): assert And(T, F) is false assert And(F, T) is false assert And(F, F) is false assert And(T, T) is true assert And(T, x) == x assert And(F, x) is false if not (T is True and F is False): assert T & F is false assert F & T is false if not F is False: assert F & F is false if not T is True: assert T & T is true assert Or(T, F) is true assert Or(F, T) is true assert Or(F, F) is false assert Or(T, T) is true assert Or(T, x) is true assert Or(F, x) == x if not (T is True and F is False): assert T | F is true assert F | T is true if not F is False: assert F | F is false if not T is True: assert T | T is true assert Xor(T, F) is true assert Xor(F, T) is true assert Xor(F, F) is false assert Xor(T, T) is false assert Xor(T, x) == ~x assert Xor(F, x) == x if not (T is True and F is False): assert T ^ F is true assert F ^ T is true if not F is False: assert F ^ F is false if not T is True: assert T ^ T is false assert Nand(T, F) is true assert Nand(F, T) is true assert Nand(F, F) is true assert Nand(T, T) is false assert Nand(T, x) == ~x assert Nand(F, x) is true assert Nor(T, F) is false assert Nor(F, T) is false assert Nor(F, F) is true assert Nor(T, T) is false assert Nor(T, x) is false assert Nor(F, x) == ~x assert Implies(T, F) is false assert Implies(F, T) is true assert Implies(F, F) is true assert Implies(T, T) is true assert Implies(T, x) == x assert Implies(F, x) is true assert Implies(x, T) is true assert Implies(x, F) == ~x if not (T is True and F is False): assert T >> F is false assert F << T is false assert F >> T is true assert T << F is true if not F is False: assert F >> F is true assert F << F is true if not T is True: assert T >> T is true assert T << T is true assert Equivalent(T, F) is false assert Equivalent(F, T) is false assert Equivalent(F, F) is true assert Equivalent(T, T) is true assert Equivalent(T, x) == x assert Equivalent(F, x) == ~x assert Equivalent(x, T) == x assert Equivalent(x, F) == ~x assert ITE(T, T, T) is true assert ITE(T, T, F) is true assert ITE(T, F, T) is false assert ITE(T, F, F) is false assert ITE(F, T, T) is true assert ITE(F, T, F) is false assert ITE(F, F, T) is true assert ITE(F, F, F) is false assert all(i.simplify(1, 2) is i for i in (S.true, S.false)) def test_bool_as_set(): assert ITE(y <= 0, False, y >= 1).as_set() == Interval(1, oo) assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2) assert Or(x >= 2, x <= -2).as_set() == Interval(-oo, -2) + Interval(2, oo) assert Not(x > 2).as_set() == Interval(-oo, 2) # issue 10240 assert Not(And(x > 2, x < 3)).as_set() == \ Union(Interval(-oo,2),Interval(3,oo)) assert true.as_set() == S.UniversalSet assert false.as_set() == EmptySet() assert x.as_set() == S.UniversalSet assert And(Or(x < 1, x > 3), x < 2 ).as_set() == Interval.open(-oo, 1) assert And(x < 1, sin(x) < 3).as_set() == (x < 1).as_set() raises(NotImplementedError, lambda: (sin(x) < 1).as_set()) @XFAIL def test_multivariate_bool_as_set(): x, y = symbols('x,y') assert And(x >= 0, y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) assert Or(x >= 0, y >= 0).as_set() == S.Reals*S.Reals - \ Interval(-oo, 0, True, True)*Interval(-oo, 0, True, True) def test_all_or_nothing(): x = symbols('x', real=True) args = x >=- oo, x <= oo v = And(*args) if v.func is And: assert len(v.args) == len(args) - args.count(S.true) else: assert v == True v = Or(*args) if v.func is Or: assert len(v.args) == 2 else: assert v == True def test_canonical_atoms(): assert true.canonical == true assert false.canonical == false def test_issue_8777(): assert And(x > 2, x < oo).as_set() == Interval(2, oo, left_open=True) assert And(x >= 1, x < oo).as_set() == Interval(1, oo) assert (x < oo).as_set() == Interval(-oo, oo) assert (x > -oo).as_set() == Interval(-oo, oo) def test_issue_8975(): assert Or(And(-oo < x, x <= -2), And(2 <= x, x < oo)).as_set() == \ Interval(-oo, -2) + Interval(2, oo) def test_term_to_integer(): assert term_to_integer([1, 0, 1, 0, 0, 1, 0]) == 82 assert term_to_integer('0010101000111001') == 10809 def test_integer_to_term(): assert integer_to_term(777) == [1, 1, 0, 0, 0, 0, 1, 0, 0, 1] assert integer_to_term(123, 3) == [1, 1, 1, 1, 0, 1, 1] assert integer_to_term(456, 16) == [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0] def test_truth_table(): assert list(truth_table(And(x, y), [x, y], input=False)) == [False, False, False, True] assert list(truth_table(x | y, [x, y], input=False)) == [False, True, True, True] assert list(truth_table(x >> y, [x, y], input=False)) == [True, True, False, True] def test_issue_8571(): for t in (S.true, S.false): raises(TypeError, lambda: +t) raises(TypeError, lambda: -t) raises(TypeError, lambda: abs(t)) # use int(bool(t)) to get 0 or 1 raises(TypeError, lambda: int(t)) for o in [S.Zero, S.One, x]: for _ in range(2): raises(TypeError, lambda: o + t) raises(TypeError, lambda: o - t) raises(TypeError, lambda: o % t) raises(TypeError, lambda: o*t) raises(TypeError, lambda: o/t) raises(TypeError, lambda: o**t) o, t = t, o # do again in reversed order def test_expand_relational(): n = symbols('n', negative=True) p, q = symbols('p q', positive=True) r = ((n + q*(-n/q + 1))/(q*(-n/q + 1)) < 0) assert r is not S.false assert r.expand() is S.false assert (q > 0).expand() is S.true def test_issue_12717(): assert S.true.is_Atom == True assert S.false.is_Atom == True def test_as_Boolean(): nz = symbols('nz', nonzero=True) assert all(as_Boolean(i) is S.true for i in (True, S.true, 1, nz)) z = symbols('z', zero=True) assert all(as_Boolean(i) is S.false for i in (False, S.false, 0, z)) assert all(as_Boolean(i) == i for i in (x, x < 0)) for i in (2, S(2), x + 1, []): raises(TypeError, lambda: as_Boolean(i)) def test_binary_symbols(): assert ITE(x < 1, y, z).binary_symbols == set((y, z)) for f in (Eq, Ne): assert f(x, 1).binary_symbols == set() assert f(x, True).binary_symbols == set([x]) assert f(x, False).binary_symbols == set([x]) assert S.true.binary_symbols == set() assert S.false.binary_symbols == set() assert x.binary_symbols == set([x]) assert And(x, Eq(y, False), Eq(z, 1)).binary_symbols == set([x, y]) assert Q.prime(x).binary_symbols == set() assert Q.is_true(x < 1).binary_symbols == set() assert Q.is_true(x).binary_symbols == set([x]) assert Q.is_true(Eq(x, True)).binary_symbols == set([x]) assert Q.prime(x).binary_symbols == set() def test_BooleanFunction_diff(): assert And(x, y).diff(x) == Piecewise((0, Eq(y, False)), (1, True))
44b4a39270b35b0ecb913d59de6c531f980e3f09c03ae10c3eb56af85fec3bcb
import collections import random from sympy import ( Abs, Add, E, Float, Function, I, Integer, Max, Min, N, Poly, Pow, PurePoly, Rational, S, Symbol, cos, exp, oo, pi, signsimp, simplify, sin, sqrt, symbols, sympify, trigsimp, tan, sstr, diff) from sympy.matrices.common import (ShapeError, MatrixError, NonSquareMatrixError, _MinimalMatrix, MatrixShaping, MatrixProperties, MatrixOperations, MatrixArithmetic, MatrixSpecial) from sympy.matrices.matrices import (DeferredVector, MatrixDeterminant, MatrixReductions, MatrixSubspaces, MatrixEigen, MatrixCalculus) from sympy.matrices import ( GramSchmidt, ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix, casoratian, diag, eye, hessian, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, wronskian, zeros, MutableDenseMatrix, ImmutableDenseMatrix) from sympy.core.compatibility import long, iterable, range from sympy.utilities.iterables import flatten, capture from sympy.utilities.pytest import raises, XFAIL, slow, skip from sympy.solvers import solve from sympy.assumptions import Q from sympy.abc import a, b, c, d, x, y, z # classes to test the basic matrix classes class ShapingOnlyMatrix(_MinimalMatrix, MatrixShaping): pass def eye_Shaping(n): return ShapingOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Shaping(n): return ShapingOnlyMatrix(n, n, lambda i, j: 0) class PropertiesOnlyMatrix(_MinimalMatrix, MatrixProperties): pass def eye_Properties(n): return PropertiesOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Properties(n): return PropertiesOnlyMatrix(n, n, lambda i, j: 0) class OperationsOnlyMatrix(_MinimalMatrix, MatrixOperations): pass def eye_Operations(n): return OperationsOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Operations(n): return OperationsOnlyMatrix(n, n, lambda i, j: 0) class ArithmeticOnlyMatrix(_MinimalMatrix, MatrixArithmetic): pass def eye_Arithmetic(n): return ArithmeticOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Arithmetic(n): return ArithmeticOnlyMatrix(n, n, lambda i, j: 0) class DeterminantOnlyMatrix(_MinimalMatrix, MatrixDeterminant): pass def eye_Determinant(n): return DeterminantOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Determinant(n): return DeterminantOnlyMatrix(n, n, lambda i, j: 0) class ReductionsOnlyMatrix(_MinimalMatrix, MatrixReductions): pass def eye_Reductions(n): return ReductionsOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Reductions(n): return ReductionsOnlyMatrix(n, n, lambda i, j: 0) class SpecialOnlyMatrix(_MinimalMatrix, MatrixSpecial): pass class SubspaceOnlyMatrix(_MinimalMatrix, MatrixSubspaces): pass class EigenOnlyMatrix(_MinimalMatrix, MatrixEigen): pass class CalculusOnlyMatrix(_MinimalMatrix, MatrixCalculus): pass def test__MinimalMatrix(): x = _MinimalMatrix(2,3,[1,2,3,4,5,6]) assert x.rows == 2 assert x.cols == 3 assert x[2] == 3 assert x[1,1] == 5 assert list(x) == [1,2,3,4,5,6] assert list(x[1,:]) == [4,5,6] assert list(x[:,1]) == [2,5] assert list(x[:,:]) == list(x) assert x[:,:] == x assert _MinimalMatrix(x) == x assert _MinimalMatrix([[1, 2, 3], [4, 5, 6]]) == x assert not (_MinimalMatrix([[1, 2], [3, 4], [5, 6]]) == x) # ShapingOnlyMatrix tests def test_vec(): m = ShapingOnlyMatrix(2, 2, [1, 3, 2, 4]) m_vec = m.vec() assert m_vec.cols == 1 for i in range(4): assert m_vec[i] == i + 1 def test_tolist(): lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]] flat_lst = [S.One, S.Half, x*y, S.Zero, x, y, z, x**2, y, -S.One, z*x, 3] m = ShapingOnlyMatrix(3, 4, flat_lst) assert m.tolist() == lst def test_row_col_del(): e = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) raises(ValueError, lambda: e.row_del(5)) raises(ValueError, lambda: e.row_del(-5)) raises(ValueError, lambda: e.col_del(5)) raises(ValueError, lambda: e.col_del(-5)) assert e.row_del(2) == e.row_del(-1) == Matrix([[1, 2, 3], [4, 5, 6]]) assert e.col_del(2) == e.col_del(-1) == Matrix([[1, 2], [4, 5], [7, 8]]) assert e.row_del(1) == e.row_del(-2) == Matrix([[1, 2, 3], [7, 8, 9]]) assert e.col_del(1) == e.col_del(-2) == Matrix([[1, 3], [4, 6], [7, 9]]) def test_get_diag_blocks1(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert a.get_diag_blocks() == [a] assert b.get_diag_blocks() == [b] assert c.get_diag_blocks() == [c] def test_get_diag_blocks2(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) A, B, C, D = diag(a, b, b), diag(a, b, c), diag(a, c, b), diag(c, c, b) A = ShapingOnlyMatrix(A.rows, A.cols, A) B = ShapingOnlyMatrix(B.rows, B.cols, B) C = ShapingOnlyMatrix(C.rows, C.cols, C) D = ShapingOnlyMatrix(D.rows, D.cols, D) assert A.get_diag_blocks() == [a, b, b] assert B.get_diag_blocks() == [a, b, c] assert C.get_diag_blocks() == [a, c, b] assert D.get_diag_blocks() == [c, c, b] def test_shape(): m = ShapingOnlyMatrix(1, 2, [0, 0]) m.shape == (1, 2) def test_reshape(): m0 = eye_Shaping(3) assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) m1 = ShapingOnlyMatrix(3, 4, lambda i, j: i + j) assert m1.reshape( 4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5))) assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5))) def test_row_col(): m = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) assert m.row(0) == Matrix(1, 3, [1, 2, 3]) assert m.col(0) == Matrix(3, 1, [1, 4, 7]) def test_row_join(): assert eye_Shaping(3).row_join(Matrix([7, 7, 7])) == \ Matrix([[1, 0, 0, 7], [0, 1, 0, 7], [0, 0, 1, 7]]) def test_col_join(): assert eye_Shaping(3).col_join(Matrix([[7, 7, 7]])) == \ Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1], [7, 7, 7]]) def test_row_insert(): r4 = Matrix([[4, 4, 4]]) for i in range(-4, 5): l = [1, 0, 0] l.insert(i, 4) assert flatten(eye_Shaping(3).row_insert(i, r4).col(0).tolist()) == l def test_col_insert(): c4 = Matrix([4, 4, 4]) for i in range(-4, 5): l = [0, 0, 0] l.insert(i, 4) assert flatten(zeros_Shaping(3).col_insert(i, c4).row(0).tolist()) == l # issue 13643 assert eye_Shaping(6).col_insert(3, Matrix([[2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]])) == \ Matrix([[1, 0, 0, 2, 2, 0, 0, 0], [0, 1, 0, 2, 2, 0, 0, 0], [0, 0, 1, 2, 2, 0, 0, 0], [0, 0, 0, 2, 2, 1, 0, 0], [0, 0, 0, 2, 2, 0, 1, 0], [0, 0, 0, 2, 2, 0, 0, 1]]) def test_extract(): m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j) assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10]) assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11]) assert m.extract(range(4), range(3)) == m raises(IndexError, lambda: m.extract([4], [0])) raises(IndexError, lambda: m.extract([0], [3])) def test_hstack(): m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j) m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j) assert m == m.hstack(m) assert m.hstack(m, m, m) == ShapingOnlyMatrix.hstack(m, m, m) == Matrix([ [0, 1, 2, 0, 1, 2, 0, 1, 2], [3, 4, 5, 3, 4, 5, 3, 4, 5], [6, 7, 8, 6, 7, 8, 6, 7, 8], [9, 10, 11, 9, 10, 11, 9, 10, 11]]) raises(ShapeError, lambda: m.hstack(m, m2)) assert Matrix.hstack() == Matrix() # test regression #12938 M1 = Matrix.zeros(0, 0) M2 = Matrix.zeros(0, 1) M3 = Matrix.zeros(0, 2) M4 = Matrix.zeros(0, 3) m = ShapingOnlyMatrix.hstack(M1, M2, M3, M4) assert m.rows == 0 and m.cols == 6 def test_vstack(): m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j) m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j) assert m == m.vstack(m) assert m.vstack(m, m, m) == ShapingOnlyMatrix.vstack(m, m, m) == Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) raises(ShapeError, lambda: m.vstack(m, m2)) assert Matrix.vstack() == Matrix() # PropertiesOnlyMatrix tests def test_atoms(): m = PropertiesOnlyMatrix(2, 2, [1, 2, x, 1 - 1/x]) assert m.atoms() == {S(1),S(2),S(-1), x} assert m.atoms(Symbol) == {x} def test_free_symbols(): assert PropertiesOnlyMatrix([[x], [0]]).free_symbols == {x} def test_has(): A = PropertiesOnlyMatrix(((x, y), (2, 3))) assert A.has(x) assert not A.has(z) assert A.has(Symbol) A = PropertiesOnlyMatrix(((2, y), (2, 3))) assert not A.has(x) def test_is_anti_symmetric(): x = symbols('x') assert PropertiesOnlyMatrix(2, 1, [1, 2]).is_anti_symmetric() is False m = PropertiesOnlyMatrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0]) assert m.is_anti_symmetric() is True assert m.is_anti_symmetric(simplify=False) is False assert m.is_anti_symmetric(simplify=lambda x: x) is False m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in m]) assert m.is_anti_symmetric(simplify=False) is True m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in [S.One] + list(m)[1:]]) assert m.is_anti_symmetric() is False def test_diagonal_symmetrical(): m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0]) assert not m.is_diagonal() assert m.is_symmetric() assert m.is_symmetric(simplify=False) m = PropertiesOnlyMatrix(2, 2, [1, 0, 0, 1]) assert m.is_diagonal() m = PropertiesOnlyMatrix(3, 3, diag(1, 2, 3)) assert m.is_diagonal() assert m.is_symmetric() m = PropertiesOnlyMatrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3]) assert m == diag(1, 2, 3) m = PropertiesOnlyMatrix(2, 3, zeros(2, 3)) assert not m.is_symmetric() assert m.is_diagonal() m = PropertiesOnlyMatrix(((5, 0), (0, 6), (0, 0))) assert m.is_diagonal() m = PropertiesOnlyMatrix(((5, 0, 0), (0, 6, 0))) assert m.is_diagonal() m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3]) assert m.is_symmetric() assert not m.is_symmetric(simplify=False) assert m.expand().is_symmetric(simplify=False) def test_is_hermitian(): a = PropertiesOnlyMatrix([[1, I], [-I, 1]]) assert a.is_hermitian a = PropertiesOnlyMatrix([[2*I, I], [-I, 1]]) assert a.is_hermitian is False a = PropertiesOnlyMatrix([[x, I], [-I, 1]]) assert a.is_hermitian is None a = PropertiesOnlyMatrix([[x, 1], [-I, 1]]) assert a.is_hermitian is False def test_is_Identity(): assert eye_Properties(3).is_Identity assert not PropertiesOnlyMatrix(zeros(3)).is_Identity assert not PropertiesOnlyMatrix(ones(3)).is_Identity # issue 6242 assert not PropertiesOnlyMatrix([[1, 0, 0]]).is_Identity def test_is_symbolic(): a = PropertiesOnlyMatrix([[x, x], [x, x]]) assert a.is_symbolic() is True a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, 7, 8]]) assert a.is_symbolic() is False a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, x, 8]]) assert a.is_symbolic() is True a = PropertiesOnlyMatrix([[1, x, 3]]) assert a.is_symbolic() is True a = PropertiesOnlyMatrix([[1, 2, 3]]) assert a.is_symbolic() is False a = PropertiesOnlyMatrix([[1], [x], [3]]) assert a.is_symbolic() is True a = PropertiesOnlyMatrix([[1], [2], [3]]) assert a.is_symbolic() is False def test_is_upper(): a = PropertiesOnlyMatrix([[1, 2, 3]]) assert a.is_upper is True a = PropertiesOnlyMatrix([[1], [2], [3]]) assert a.is_upper is False def test_is_lower(): a = PropertiesOnlyMatrix([[1, 2, 3]]) assert a.is_lower is False a = PropertiesOnlyMatrix([[1], [2], [3]]) assert a.is_lower is True def test_is_square(): m = PropertiesOnlyMatrix([[1],[1]]) m2 = PropertiesOnlyMatrix([[2,2],[2,2]]) assert not m.is_square assert m2.is_square def test_is_symmetric(): m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0]) assert m.is_symmetric() m = PropertiesOnlyMatrix(2, 2, [0, 1, 0, 1]) assert not m.is_symmetric() def test_is_hessenberg(): A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]]) assert A.is_upper_hessenberg A = PropertiesOnlyMatrix(3, 3, [3, 2, 0, 4, 4, 1, 1, 5, 2]) assert A.is_lower_hessenberg A = PropertiesOnlyMatrix(3, 3, [3, 2, -1, 4, 4, 1, 1, 5, 2]) assert A.is_lower_hessenberg is False assert A.is_upper_hessenberg is False A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]]) assert not A.is_upper_hessenberg def test_is_zero(): assert PropertiesOnlyMatrix(0, 0, []).is_zero assert PropertiesOnlyMatrix([[0, 0], [0, 0]]).is_zero assert PropertiesOnlyMatrix(zeros(3, 4)).is_zero assert not PropertiesOnlyMatrix(eye(3)).is_zero assert PropertiesOnlyMatrix([[x, 0], [0, 0]]).is_zero == None assert PropertiesOnlyMatrix([[x, 1], [0, 0]]).is_zero == False a = Symbol('a', nonzero=True) assert PropertiesOnlyMatrix([[a, 0], [0, 0]]).is_zero == False def test_values(): assert set(PropertiesOnlyMatrix(2,2,[0,1,2,3]).values()) == set([1,2,3]) x = Symbol('x', real=True) assert set(PropertiesOnlyMatrix(2,2,[x,0,0,1]).values()) == set([x,1]) # OperationsOnlyMatrix tests def test_applyfunc(): m0 = OperationsOnlyMatrix(eye(3)) assert m0.applyfunc(lambda x: 2*x) == eye(3)*2 assert m0.applyfunc(lambda x: 0) == zeros(3) assert m0.applyfunc(lambda x: 1) == ones(3) def test_adjoint(): dat = [[0, I], [1, 0]] ans = OperationsOnlyMatrix([[0, 1], [-I, 0]]) assert ans.adjoint() == Matrix(dat) def test_as_real_imag(): m1 = OperationsOnlyMatrix(2,2,[1,2,3,4]) m3 = OperationsOnlyMatrix(2,2,[1+S.ImaginaryUnit,2+2*S.ImaginaryUnit,3+3*S.ImaginaryUnit,4+4*S.ImaginaryUnit]) a,b = m3.as_real_imag() assert a == m1 assert b == m1 def test_conjugate(): M = OperationsOnlyMatrix([[0, I, 5], [1, 2, 0]]) assert M.T == Matrix([[0, 1], [I, 2], [5, 0]]) assert M.C == Matrix([[0, -I, 5], [1, 2, 0]]) assert M.C == M.conjugate() assert M.H == M.T.C assert M.H == Matrix([[ 0, 1], [-I, 2], [ 5, 0]]) def test_doit(): a = OperationsOnlyMatrix([[Add(x,x, evaluate=False)]]) assert a[0] != 2*x assert a.doit() == Matrix([[2*x]]) def test_evalf(): a = OperationsOnlyMatrix(2, 1, [sqrt(5), 6]) assert all(a.evalf()[i] == a[i].evalf() for i in range(2)) assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2)) assert all(a.n(2)[i] == a[i].n(2) for i in range(2)) def test_expand(): m0 = OperationsOnlyMatrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]]) # Test if expand() returns a matrix m1 = m0.expand() assert m1 == Matrix( [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]]) a = Symbol('a', real=True) assert OperationsOnlyMatrix(1, 1, [exp(I*a)]).expand(complex=True) == \ Matrix([cos(a) + I*sin(a)]) def test_refine(): m0 = OperationsOnlyMatrix([[Abs(x)**2, sqrt(x**2)], [sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]]) m1 = m0.refine(Q.real(x) & Q.real(y)) assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]]) m1 = m0.refine(Q.positive(x) & Q.positive(y)) assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]]) m1 = m0.refine(Q.negative(x) & Q.negative(y)) assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]]) def test_replace(): F, G = symbols('F, G', cls=Function) K = OperationsOnlyMatrix(2, 2, lambda i, j: G(i+j)) M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j)) N = M.replace(F, G) assert N == K def test_replace_map(): F, G = symbols('F, G', cls=Function) K = OperationsOnlyMatrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), (G(1), {F(1) \ : G(1)}), (G(2), {F(2): G(2)})]) M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j)) N = M.replace(F, G, True) assert N == K def test_simplify(): n = Symbol('n') f = Function('f') M = OperationsOnlyMatrix([[ 1/x + 1/y, (x + x*y) / x ], [ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]]) assert M.simplify() == Matrix([[ (x + y)/(x * y), 1 + y ], [ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]]) eq = (1 + x)**2 M = OperationsOnlyMatrix([[eq]]) assert M.simplify() == Matrix([[eq]]) assert M.simplify(ratio=oo) == Matrix([[eq.simplify(ratio=oo)]]) def test_subs(): assert OperationsOnlyMatrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]]) assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \ Matrix([[-1, 2], [-3, 4]]) assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \ Matrix([[-1, 2], [-3, 4]]) assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) assert OperationsOnlyMatrix([[x*y]]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \ Matrix([[(x - 1)*(y - 1)]]) def test_trace(): M = OperationsOnlyMatrix([[1, 0, 0], [0, 5, 0], [0, 0, 8]]) assert M.trace() == 14 def test_xreplace(): assert OperationsOnlyMatrix([[1, x], [x, 4]]).xreplace({x: 5}) == \ Matrix([[1, 5], [5, 4]]) assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) def test_permute(): a = OperationsOnlyMatrix(3, 4, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) raises(IndexError, lambda: a.permute([[0,5]])) b = a.permute_rows([[0, 2], [0, 1]]) assert a.permute([[0, 2], [0, 1]]) == b == Matrix([ [5, 6, 7, 8], [9, 10, 11, 12], [1, 2, 3, 4]]) b = a.permute_cols([[0, 2], [0, 1]]) assert a.permute([[0, 2], [0, 1]], orientation='cols') == b ==\ Matrix([ [ 2, 3, 1, 4], [ 6, 7, 5, 8], [10, 11, 9, 12]]) b = a.permute_cols([[0, 2], [0, 1]], direction='backward') assert a.permute([[0, 2], [0, 1]], orientation='cols', direction='backward') == b ==\ Matrix([ [ 3, 1, 2, 4], [ 7, 5, 6, 8], [11, 9, 10, 12]]) assert a.permute([1, 2, 0, 3]) == Matrix([ [5, 6, 7, 8], [9, 10, 11, 12], [1, 2, 3, 4]]) from sympy.combinatorics import Permutation assert a.permute(Permutation([1, 2, 0, 3])) == Matrix([ [5, 6, 7, 8], [9, 10, 11, 12], [1, 2, 3, 4]]) # ArithmeticOnlyMatrix tests def test_abs(): m = ArithmeticOnlyMatrix([[1, -2], [x, y]]) assert abs(m) == ArithmeticOnlyMatrix([[1, 2], [Abs(x), Abs(y)]]) def test_add(): m = ArithmeticOnlyMatrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]]) assert m + m == ArithmeticOnlyMatrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]]) n = ArithmeticOnlyMatrix(1, 2, [1, 2]) raises(ShapeError, lambda: m + n) def test_multiplication(): a = ArithmeticOnlyMatrix(( (1, 2), (3, 1), (0, 6), )) b = ArithmeticOnlyMatrix(( (1, 2), (3, 0), )) raises(ShapeError, lambda: b*a) raises(TypeError, lambda: a*{}) c = a*b assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 try: eval('c = a @ b') except SyntaxError: pass else: assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 h = a.multiply_elementwise(c) assert h == matrix_multiply_elementwise(a, c) assert h[0, 0] == 7 assert h[0, 1] == 4 assert h[1, 0] == 18 assert h[1, 1] == 6 assert h[2, 0] == 0 assert h[2, 1] == 0 raises(ShapeError, lambda: a.multiply_elementwise(b)) c = b * Symbol("x") assert isinstance(c, ArithmeticOnlyMatrix) assert c[0, 0] == x assert c[0, 1] == 2*x assert c[1, 0] == 3*x assert c[1, 1] == 0 c2 = x * b assert c == c2 c = 5 * b assert isinstance(c, ArithmeticOnlyMatrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 try: eval('c = 5 @ b') except SyntaxError: pass else: assert isinstance(c, ArithmeticOnlyMatrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 def test_matmul(): a = Matrix([[1, 2], [3, 4]]) assert a.__matmul__(2) == NotImplemented assert a.__rmatmul__(2) == NotImplemented #This is done this way because @ is only supported in Python 3.5+ #To check 2@a case try: eval('2 @ a') except SyntaxError: pass except TypeError: #TypeError is raised in case of NotImplemented is returned pass #Check a@2 case try: eval('a @ 2') except SyntaxError: pass except TypeError: #TypeError is raised in case of NotImplemented is returned pass def test_power(): raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2) A = ArithmeticOnlyMatrix([[2, 3], [4, 5]]) assert (A**5)[:] == (6140, 8097, 10796, 14237) A = ArithmeticOnlyMatrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) assert (A**3)[:] == (290, 262, 251, 448, 440, 368, 702, 954, 433) assert A**0 == eye(3) assert A**1 == A assert (ArithmeticOnlyMatrix([[2]]) ** 100)[0, 0] == 2**100 assert ArithmeticOnlyMatrix([[1, 2], [3, 4]])**Integer(2) == ArithmeticOnlyMatrix([[7, 10], [15, 22]]) def test_neg(): n = ArithmeticOnlyMatrix(1, 2, [1, 2]) assert -n == ArithmeticOnlyMatrix(1, 2, [-1, -2]) def test_sub(): n = ArithmeticOnlyMatrix(1, 2, [1, 2]) assert n - n == ArithmeticOnlyMatrix(1, 2, [0, 0]) def test_div(): n = ArithmeticOnlyMatrix(1, 2, [1, 2]) assert n/2 == ArithmeticOnlyMatrix(1, 2, [S(1)/2, S(2)/2]) # DeterminantOnlyMatrix tests def test_det(): a = DeterminantOnlyMatrix(2,3,[1,2,3,4,5,6]) raises(NonSquareMatrixError, lambda: a.det()) z = zeros_Determinant(2) ey = eye_Determinant(2) assert z.det() == 0 assert ey.det() == 1 x = Symbol('x') a = DeterminantOnlyMatrix(0,0,[]) b = DeterminantOnlyMatrix(1,1,[5]) c = DeterminantOnlyMatrix(2,2,[1,2,3,4]) d = DeterminantOnlyMatrix(3,3,[1,2,3,4,5,6,7,8,8]) e = DeterminantOnlyMatrix(4,4,[x,1,2,3,4,5,6,7,2,9,10,11,12,13,14,14]) # the method keyword for `det` doesn't kick in until 4x4 matrices, # so there is no need to test all methods on smaller ones assert a.det() == 1 assert b.det() == 5 assert c.det() == -2 assert d.det() == 3 assert e.det() == 4*x - 24 assert e.det(method='bareiss') == 4*x - 24 assert e.det(method='berkowitz') == 4*x - 24 def test_adjugate(): x = Symbol('x') e = DeterminantOnlyMatrix(4,4,[x,1,2,3,4,5,6,7,2,9,10,11,12,13,14,14]) adj = Matrix([ [ 4, -8, 4, 0], [ 76, -14*x - 68, 14*x - 8, -4*x + 24], [-122, 17*x + 142, -21*x + 4, 8*x - 48], [ 48, -4*x - 72, 8*x, -4*x + 24]]) assert e.adjugate() == adj assert e.adjugate(method='bareiss') == adj assert e.adjugate(method='berkowitz') == adj a = DeterminantOnlyMatrix(2,3,[1,2,3,4,5,6]) raises(NonSquareMatrixError, lambda: a.adjugate()) def test_cofactor_and_minors(): x = Symbol('x') e = DeterminantOnlyMatrix(4,4,[x,1,2,3,4,5,6,7,2,9,10,11,12,13,14,14]) m = Matrix([ [ x, 1, 3], [ 2, 9, 11], [12, 13, 14]]) cm = Matrix([ [ 4, 76, -122, 48], [-8, -14*x - 68, 17*x + 142, -4*x - 72], [ 4, 14*x - 8, -21*x + 4, 8*x], [ 0, -4*x + 24, 8*x - 48, -4*x + 24]]) sub = Matrix([ [x, 1, 2], [4, 5, 6], [2, 9, 10]]) assert e.minor_submatrix(1,2) == m assert e.minor_submatrix(-1,-1) == sub assert e.minor(1,2) == -17*x - 142 assert e.cofactor(1,2) == 17*x + 142 assert e.cofactor_matrix() == cm assert e.cofactor_matrix(method="bareiss") == cm assert e.cofactor_matrix(method="berkowitz") == cm raises(ValueError, lambda: e.cofactor(4,5)) raises(ValueError, lambda: e.minor(4,5)) raises(ValueError, lambda: e.minor_submatrix(4,5)) a = DeterminantOnlyMatrix(2,3,[1,2,3,4,5,6]) assert a.minor_submatrix(0,0) == Matrix([[5, 6]]) raises(ValueError, lambda: DeterminantOnlyMatrix(0,0,[]).minor_submatrix(0,0)) raises(NonSquareMatrixError, lambda: a.cofactor(0,0)) raises(NonSquareMatrixError, lambda: a.minor(0,0)) raises(NonSquareMatrixError, lambda: a.cofactor_matrix()) def test_charpoly(): x, y = Symbol('x'), Symbol('y') m = DeterminantOnlyMatrix(3,3,[1,2,3,4,5,6,7,8,9]) assert eye_Determinant(3).charpoly(x) == Poly((x - 1)**3, x) assert eye_Determinant(3).charpoly(y) == Poly((y - 1)**3, y) assert m.charpoly() == Poly(x**3 - 15*x**2 - 18*x, x) # ReductionsOnlyMatrix tests def test_row_op(): e = eye_Reductions(3) raises(ValueError, lambda: e.elementary_row_op("abc")) raises(ValueError, lambda: e.elementary_row_op()) raises(ValueError, lambda: e.elementary_row_op('n->kn', row=5, k=5)) raises(ValueError, lambda: e.elementary_row_op('n->kn', row=-5, k=5)) raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=1, row2=5)) raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=5, row2=1)) raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=-5, row2=1)) raises(ValueError, lambda: e.elementary_row_op('n<->m', row1=1, row2=-5)) raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=1, row2=5, k=5)) raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=5, row2=1, k=5)) raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=-5, row2=1, k=5)) raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=1, row2=-5, k=5)) raises(ValueError, lambda: e.elementary_row_op('n->n+km', row1=1, row2=1, k=5)) # test various ways to set arguments assert e.elementary_row_op("n->kn", 0, 5) == Matrix([[5, 0, 0], [0, 1, 0], [0, 0, 1]]) assert e.elementary_row_op("n->kn", 1, 5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_row_op("n->kn", row=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_row_op("n->kn", row1=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_row_op("n<->m", 0, 1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_row_op("n<->m", row1=0, row2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_row_op("n<->m", row=0, row2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_row_op("n->n+km", 0, 5, 1) == Matrix([[1, 5, 0], [0, 1, 0], [0, 0, 1]]) assert e.elementary_row_op("n->n+km", row=0, k=5, row2=1) == Matrix([[1, 5, 0], [0, 1, 0], [0, 0, 1]]) assert e.elementary_row_op("n->n+km", row1=0, k=5, row2=1) == Matrix([[1, 5, 0], [0, 1, 0], [0, 0, 1]]) # make sure the matrix doesn't change size a = ReductionsOnlyMatrix(2, 3, [0]*6) assert a.elementary_row_op("n->kn", 1, 5) == Matrix(2, 3, [0]*6) assert a.elementary_row_op("n<->m", 0, 1) == Matrix(2, 3, [0]*6) assert a.elementary_row_op("n->n+km", 0, 5, 1) == Matrix(2, 3, [0]*6) def test_col_op(): e = eye_Reductions(3) raises(ValueError, lambda: e.elementary_col_op("abc")) raises(ValueError, lambda: e.elementary_col_op()) raises(ValueError, lambda: e.elementary_col_op('n->kn', col=5, k=5)) raises(ValueError, lambda: e.elementary_col_op('n->kn', col=-5, k=5)) raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=1, col2=5)) raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=5, col2=1)) raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=-5, col2=1)) raises(ValueError, lambda: e.elementary_col_op('n<->m', col1=1, col2=-5)) raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=1, col2=5, k=5)) raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=5, col2=1, k=5)) raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=-5, col2=1, k=5)) raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=1, col2=-5, k=5)) raises(ValueError, lambda: e.elementary_col_op('n->n+km', col1=1, col2=1, k=5)) # test various ways to set arguments assert e.elementary_col_op("n->kn", 0, 5) == Matrix([[5, 0, 0], [0, 1, 0], [0, 0, 1]]) assert e.elementary_col_op("n->kn", 1, 5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_col_op("n->kn", col=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_col_op("n->kn", col1=1, k=5) == Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 1]]) assert e.elementary_col_op("n<->m", 0, 1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_col_op("n<->m", col1=0, col2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_col_op("n<->m", col=0, col2=1) == Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) assert e.elementary_col_op("n->n+km", 0, 5, 1) == Matrix([[1, 0, 0], [5, 1, 0], [0, 0, 1]]) assert e.elementary_col_op("n->n+km", col=0, k=5, col2=1) == Matrix([[1, 0, 0], [5, 1, 0], [0, 0, 1]]) assert e.elementary_col_op("n->n+km", col1=0, k=5, col2=1) == Matrix([[1, 0, 0], [5, 1, 0], [0, 0, 1]]) # make sure the matrix doesn't change size a = ReductionsOnlyMatrix(2, 3, [0]*6) assert a.elementary_col_op("n->kn", 1, 5) == Matrix(2, 3, [0]*6) assert a.elementary_col_op("n<->m", 0, 1) == Matrix(2, 3, [0]*6) assert a.elementary_col_op("n->n+km", 0, 5, 1) == Matrix(2, 3, [0]*6) def test_is_echelon(): zro = zeros_Reductions(3) ident = eye_Reductions(3) assert zro.is_echelon assert ident.is_echelon a = ReductionsOnlyMatrix(0, 0, []) assert a.is_echelon a = ReductionsOnlyMatrix(2, 3, [3, 2, 1, 0, 0, 6]) assert a.is_echelon a = ReductionsOnlyMatrix(2, 3, [0, 0, 6, 3, 2, 1]) assert not a.is_echelon x = Symbol('x') a = ReductionsOnlyMatrix(3, 1, [x, 0, 0]) assert a.is_echelon a = ReductionsOnlyMatrix(3, 1, [x, x, 0]) assert not a.is_echelon a = ReductionsOnlyMatrix(3, 3, [0, 0, 0, 1, 2, 3, 0, 0, 0]) assert not a.is_echelon def test_echelon_form(): # echelon form is not unique, but the result # must be row-equivalent to the original matrix # and it must be in echelon form. a = zeros_Reductions(3) e = eye_Reductions(3) # we can assume the zero matrix and the identity matrix shouldn't change assert a.echelon_form() == a assert e.echelon_form() == e a = ReductionsOnlyMatrix(0, 0, []) assert a.echelon_form() == a a = ReductionsOnlyMatrix(1, 1, [5]) assert a.echelon_form() == a # now we get to the real tests def verify_row_null_space(mat, rows, nulls): for v in nulls: assert all(t.is_zero for t in a_echelon*v) for v in rows: if not all(t.is_zero for t in v): assert not all(t.is_zero for t in a_echelon*v.transpose()) a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) nulls = [Matrix([ [ 1], [-2], [ 1]])] rows = [a[i,:] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 8]) nulls = [] rows = [a[i,:] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) a = ReductionsOnlyMatrix(3, 3, [2, 1, 3, 0, 0, 0, 2, 1, 3]) nulls = [Matrix([ [-S(1)/2], [ 1], [ 0]]), Matrix([ [-S(3)/2], [ 0], [ 1]])] rows = [a[i,:] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) # this one requires a row swap a = ReductionsOnlyMatrix(3, 3, [2, 1, 3, 0, 0, 0, 1, 1, 3]) nulls = [Matrix([ [ 0], [ -3], [ 1]])] rows = [a[i,:] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) a = ReductionsOnlyMatrix(3, 3, [0, 3, 3, 0, 2, 2, 0, 1, 1]) nulls = [Matrix([ [1], [0], [0]]), Matrix([ [ 0], [-1], [ 1]])] rows = [a[i,:] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) a = ReductionsOnlyMatrix(2, 3, [2, 2, 3, 3, 3, 0]) nulls = [Matrix([ [-1], [1], [0]])] rows = [a[i,:] for i in range(a.rows)] a_echelon = a.echelon_form() assert a_echelon.is_echelon verify_row_null_space(a, rows, nulls) def test_rref(): e = ReductionsOnlyMatrix(0, 0, []) assert e.rref(pivots=False) == e e = ReductionsOnlyMatrix(1, 1, [1]) a = ReductionsOnlyMatrix(1, 1, [5]) assert e.rref(pivots=False) == a.rref(pivots=False) == e a = ReductionsOnlyMatrix(3, 1, [1, 2, 3]) assert a.rref(pivots=False) == Matrix([[1], [0], [0]]) a = ReductionsOnlyMatrix(1, 3, [1, 2, 3]) assert a.rref(pivots=False) == Matrix([[1, 2, 3]]) a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) assert a.rref(pivots=False) == Matrix([ [1, 0, -1], [0, 1, 2], [0, 0, 0]]) a = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 1, 2, 3, 1, 2, 3]) b = ReductionsOnlyMatrix(3, 3, [1, 2, 3, 0, 0, 0, 0, 0, 0]) c = ReductionsOnlyMatrix(3, 3, [0, 0, 0, 1, 2, 3, 0, 0, 0]) d = ReductionsOnlyMatrix(3, 3, [0, 0, 0, 0, 0, 0, 1, 2, 3]) assert a.rref(pivots=False) == \ b.rref(pivots=False) == \ c.rref(pivots=False) == \ d.rref(pivots=False) == b e = eye_Reductions(3) z = zeros_Reductions(3) assert e.rref(pivots=False) == e assert z.rref(pivots=False) == z a = ReductionsOnlyMatrix([ [ 0, 0, 1, 2, 2, -5, 3], [-1, 5, 2, 2, 1, -7, 5], [ 0, 0, -2, -3, -3, 8, -5], [-1, 5, 0, -1, -2, 1, 0]]) mat, pivot_offsets = a.rref() assert mat == Matrix([ [1, -5, 0, 0, 1, 1, -1], [0, 0, 1, 0, 0, -1, 1], [0, 0, 0, 1, 1, -2, 1], [0, 0, 0, 0, 0, 0, 0]]) assert pivot_offsets == (0, 2, 3) a = ReductionsOnlyMatrix([[S(1)/19, S(1)/5, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [ 12, 13, 14, 15]]) assert a.rref(pivots=False) == Matrix([ [1, 0, 0, -S(76)/157], [0, 1, 0, -S(5)/157], [0, 0, 1, S(238)/157], [0, 0, 0, 0]]) x = Symbol('x') a = ReductionsOnlyMatrix(2, 3, [x, 1, 1, sqrt(x), x, 1]) for i, j in zip(a.rref(pivots=False), [1, 0, sqrt(x)*(-x + 1)/(-x**(S(5)/2) + x), 0, 1, 1/(sqrt(x) + x + 1)]): assert simplify(i - j).is_zero # SpecialOnlyMatrix tests def test_eye(): assert list(SpecialOnlyMatrix.eye(2,2)) == [1, 0, 0, 1] assert list(SpecialOnlyMatrix.eye(2)) == [1, 0, 0, 1] assert type(SpecialOnlyMatrix.eye(2)) == SpecialOnlyMatrix assert type(SpecialOnlyMatrix.eye(2, cls=Matrix)) == Matrix def test_ones(): assert list(SpecialOnlyMatrix.ones(2,2)) == [1, 1, 1, 1] assert list(SpecialOnlyMatrix.ones(2)) == [1, 1, 1, 1] assert SpecialOnlyMatrix.ones(2,3) == Matrix([[1, 1, 1], [1, 1, 1]]) assert type(SpecialOnlyMatrix.ones(2)) == SpecialOnlyMatrix assert type(SpecialOnlyMatrix.ones(2, cls=Matrix)) == Matrix def test_zeros(): assert list(SpecialOnlyMatrix.zeros(2,2)) == [0, 0, 0, 0] assert list(SpecialOnlyMatrix.zeros(2)) == [0, 0, 0, 0] assert SpecialOnlyMatrix.zeros(2,3) == Matrix([[0, 0, 0], [0, 0, 0]]) assert type(SpecialOnlyMatrix.zeros(2)) == SpecialOnlyMatrix assert type(SpecialOnlyMatrix.zeros(2, cls=Matrix)) == Matrix def test_diag(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert SpecialOnlyMatrix.diag(a, b, b) == Matrix([ [1, 2, 0, 0, 0, 0], [2, 3, 0, 0, 0, 0], [0, 0, 3, x, 0, 0], [0, 0, y, 3, 0, 0], [0, 0, 0, 0, 3, x], [0, 0, 0, 0, y, 3], ]) assert SpecialOnlyMatrix.diag(a, b, c) == Matrix([ [1, 2, 0, 0, 0, 0, 0], [2, 3, 0, 0, 0, 0, 0], [0, 0, 3, x, 0, 0, 0], [0, 0, y, 3, 0, 0, 0], [0, 0, 0, 0, 3, x, 3], [0, 0, 0, 0, y, 3, z], [0, 0, 0, 0, x, y, z], ]) assert SpecialOnlyMatrix.diag(a, c, b) == Matrix([ [1, 2, 0, 0, 0, 0, 0], [2, 3, 0, 0, 0, 0, 0], [0, 0, 3, x, 3, 0, 0], [0, 0, y, 3, z, 0, 0], [0, 0, x, y, z, 0, 0], [0, 0, 0, 0, 0, 3, x], [0, 0, 0, 0, 0, y, 3], ]) a = Matrix([x, y, z]) b = Matrix([[1, 2], [3, 4]]) c = Matrix([[5, 6]]) assert SpecialOnlyMatrix.diag(a, 7, b, c) == Matrix([ [x, 0, 0, 0, 0, 0], [y, 0, 0, 0, 0, 0], [z, 0, 0, 0, 0, 0], [0, 7, 0, 0, 0, 0], [0, 0, 1, 2, 0, 0], [0, 0, 3, 4, 0, 0], [0, 0, 0, 0, 5, 6], ]) assert SpecialOnlyMatrix.diag([2, 3]) == Matrix([ [2, 0], [0, 3]]) assert SpecialOnlyMatrix.diag(Matrix([2, 3])) == Matrix([ [2], [3]]) assert SpecialOnlyMatrix.diag(1, rows=3, cols=2) == Matrix([ [1, 0], [0, 0], [0, 0]]) assert type(SpecialOnlyMatrix.diag(1)) == SpecialOnlyMatrix assert type(SpecialOnlyMatrix.diag(1, cls=Matrix)) == Matrix def test_jordan_block(): assert SpecialOnlyMatrix.jordan_block(3, 2) == SpecialOnlyMatrix.jordan_block(3, eigenvalue=2) \ == SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) \ == SpecialOnlyMatrix.jordan_block(rows=3, eigenvalue=2) \ == SpecialOnlyMatrix.jordan_block(cols=3, eigenvalue=2) \ == SpecialOnlyMatrix.jordan_block(3, 2, band='upper') == Matrix([ [2, 1, 0], [0, 2, 1], [0, 0, 2]]) assert SpecialOnlyMatrix.jordan_block(3, 2, band='lower') == Matrix([ [2, 0, 0], [1, 2, 0], [0, 1, 2]]) # missing eigenvalue raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(2)) # non-integral size raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(3.5, 2)) # SubspaceOnlyMatrix tests def test_columnspace(): m = SubspaceOnlyMatrix([[ 1, 2, 0, 2, 5], [-2, -5, 1, -1, -8], [ 0, -3, 3, 4, 1], [ 3, 6, 0, -7, 2]]) basis = m.columnspace() assert basis[0] == Matrix([1, -2, 0, 3]) assert basis[1] == Matrix([2, -5, -3, 6]) assert basis[2] == Matrix([2, -1, 4, -7]) assert len(basis) == 3 assert Matrix.hstack(m, *basis).columnspace() == basis def test_rowspace(): m = SubspaceOnlyMatrix([[ 1, 2, 0, 2, 5], [-2, -5, 1, -1, -8], [ 0, -3, 3, 4, 1], [ 3, 6, 0, -7, 2]]) basis = m.rowspace() assert basis[0] == Matrix([[1, 2, 0, 2, 5]]) assert basis[1] == Matrix([[0, -1, 1, 3, 2]]) assert basis[2] == Matrix([[0, 0, 0, 5, 5]]) assert len(basis) == 3 def test_nullspace(): m = SubspaceOnlyMatrix([[ 1, 2, 0, 2, 5], [-2, -5, 1, -1, -8], [ 0, -3, 3, 4, 1], [ 3, 6, 0, -7, 2]]) basis = m.nullspace() assert basis[0] == Matrix([-2, 1, 1, 0, 0]) assert basis[1] == Matrix([-1, -1, 0, -1, 1]) # make sure the null space is really gets zeroed assert all(e.is_zero for e in m*basis[0]) assert all(e.is_zero for e in m*basis[1]) # EigenOnlyMatrix tests def test_eigenvals(): M = EigenOnlyMatrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) assert M.eigenvals() == {2*S.One: 1, -S.One: 1, S.Zero: 1} # if we cannot factor the char poly, we raise an error m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) raises(MatrixError, lambda: m.eigenvals()) def test_eigenvects(): M = EigenOnlyMatrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) vecs = M.eigenvects() for val, mult, vec_list in vecs: assert len(vec_list) == 1 assert M*vec_list[0] == val*vec_list[0] def test_left_eigenvects(): M = EigenOnlyMatrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) vecs = M.left_eigenvects() for val, mult, vec_list in vecs: assert len(vec_list) == 1 assert vec_list[0]*M == val*vec_list[0] def test_diagonalize(): m = EigenOnlyMatrix(2, 2, [0, -1, 1, 0]) raises(MatrixError, lambda: m.diagonalize(reals_only=True)) P, D = m.diagonalize() assert D.is_diagonal() assert D == Matrix([ [-I, 0], [ 0, I]]) # make sure we use floats out if floats are passed in m = EigenOnlyMatrix(2, 2, [0, .5, .5, 0]) P, D = m.diagonalize() assert all(isinstance(e, Float) for e in D.values()) assert all(isinstance(e, Float) for e in P.values()) _, D2 = m.diagonalize(reals_only=True) assert D == D2 def test_is_diagonalizable(): a, b, c = symbols('a b c') m = EigenOnlyMatrix(2, 2, [a, c, c, b]) assert m.is_symmetric() assert m.is_diagonalizable() assert not EigenOnlyMatrix(2, 2, [1, 1, 0, 1]).is_diagonalizable() m = EigenOnlyMatrix(2, 2, [0, -1, 1, 0]) assert m.is_diagonalizable() assert not m.is_diagonalizable(reals_only=True) def test_jordan_form(): m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) raises(NonSquareMatrixError, lambda: m.jordan_form()) # the next two tests test the cases where the old # algorithm failed due to the fact that the block structure can # *NOT* be determined from algebraic and geometric multiplicity alone # This can be seen most easily when one lets compute the J.c.f. of a matrix that # is in J.c.f already. m = EigenOnlyMatrix(4, 4, [2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2 ]) P, J = m.jordan_form() assert m == J m = EigenOnlyMatrix(4, 4, [2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2 ]) P, J = m.jordan_form() assert m == J A = Matrix([[ 2, 4, 1, 0], [-4, 2, 0, 1], [ 0, 0, 2, 4], [ 0, 0, -4, 2]]) P, J = A.jordan_form() assert simplify(P*J*P.inv()) == A assert EigenOnlyMatrix(1,1,[1]).jordan_form() == (Matrix([1]), Matrix([1])) assert EigenOnlyMatrix(1,1,[1]).jordan_form(calc_transform=False) == Matrix([1]) # make sure if we cannot factor the characteristic polynomial, we raise an error m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) raises(MatrixError, lambda: m.jordan_form()) # make sure that if the input has floats, the output does too m = Matrix([ [ 0.6875, 0.125 + 0.1875*sqrt(3)], [0.125 + 0.1875*sqrt(3), 0.3125]]) P, J = m.jordan_form() assert all(isinstance(x, Float) or x == 0 for x in P) assert all(isinstance(x, Float) or x == 0 for x in J) def test_singular_values(): x = Symbol('x', real=True) A = EigenOnlyMatrix([[0, 1*I], [2, 0]]) # if singular values can be sorted, they should be in decreasing order assert A.singular_values() == [2, 1] A = eye(3) A[1, 1] = x A[2, 2] = 5 vals = A.singular_values() # since Abs(x) cannot be sorted, test set equality assert set(vals) == set([5, 1, Abs(x)]) A = EigenOnlyMatrix([[sin(x), cos(x)], [-cos(x), sin(x)]]) vals = [sv.trigsimp() for sv in A.singular_values()] assert vals == [S(1), S(1)] # CalculusOnlyMatrix tests @XFAIL def test_diff(): x, y = symbols('x y') m = CalculusOnlyMatrix(2, 1, [x, y]) # TODO: currently not working as ``_MinimalMatrix`` cannot be sympified: assert m.diff(x) == Matrix(2, 1, [1, 0]) def test_integrate(): x, y = symbols('x y') m = CalculusOnlyMatrix(2, 1, [x, y]) assert m.integrate(x) == Matrix(2, 1, [x**2/2, y*x]) def test_jacobian2(): rho, phi = symbols("rho,phi") X = CalculusOnlyMatrix(3, 1, [rho*cos(phi), rho*sin(phi), rho**2]) Y = CalculusOnlyMatrix(2, 1, [rho, phi]) J = Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0], ]) assert X.jacobian(Y) == J m = CalculusOnlyMatrix(2, 2, [1, 2, 3, 4]) m2 = CalculusOnlyMatrix(4, 1, [1, 2, 3, 4]) raises(TypeError, lambda: m.jacobian(Matrix([1,2]))) raises(TypeError, lambda: m2.jacobian(m)) def test_limit(): x, y = symbols('x y') m = CalculusOnlyMatrix(2, 1, [1/x, y]) assert m.limit(x, 5) == Matrix(2, 1, [S(1)/5, y]) def test_issue_13774(): M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) v = [1,1,1] raises(TypeError, lambda: M*v) raises(TypeError, lambda: v*M)
59226fe3c47495459feb92018c2d822fc6c09b69cd5f7437b9498463223d373a
from sympy.utilities.pytest import ignore_warnings from sympy.utilities.exceptions import SymPyDeprecationWarning with ignore_warnings(SymPyDeprecationWarning): from sympy.matrices.densesolve import LU_solve, rref_solve, cholesky_solve from sympy import Dummy from sympy import QQ def test_LU_solve(): x, y, z = Dummy('x'), Dummy('y'), Dummy('z') assert LU_solve([[QQ(2), QQ(-1), QQ(-2)], [QQ(-4), QQ(6), QQ(3)], [QQ(-4), QQ(-2), QQ(8)]], [[x], [y], [z]], [[QQ(-1)], [QQ(13)], [QQ(-6)]], QQ) == [[QQ(2,1)], [QQ(3, 1)], [QQ(1, 1)]] def test_cholesky_solve(): x, y, z = Dummy('x'), Dummy('y'), Dummy('z') assert cholesky_solve([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], [[x], [y], [z]], [[QQ(2)], [QQ(3)], [QQ(1)]], QQ) == [[QQ(-1, 225)], [QQ(23, 135)], [QQ(4, 45)]] def test_rref_solve(): x, y, z = Dummy('x'), Dummy('y'), Dummy('z') assert rref_solve([[QQ(25), QQ(15), QQ(-5)], [QQ(15), QQ(18), QQ(0)], [QQ(-5), QQ(0), QQ(11)]], [[x], [y], [z]], [[QQ(2)], [QQ(3)], [QQ(1)]], QQ) == [[QQ(-1, 225)], [QQ(23, 135)], [QQ(4, 45)]]
fd28882bd1542bed530b0cad3bc05864eaf25614143fb1b28be77281d1c9301a
from sympy import Symbol, Poly from sympy.polys.solvers import RawMatrix as Matrix from sympy.matrices.normalforms import invariant_factors, smith_normal_form from sympy.polys.domains import ZZ, QQ def test_smith_normal(): m = Matrix([[12, 6, 4,8],[3,9,6,12],[2,16,14,28],[20,10,10,20]]) setattr(m, 'ring', ZZ) smf = Matrix([[1, 0, 0, 0], [0, 10, 0, 0], [0, 0, -30, 0], [0, 0, 0, 0]]) assert smith_normal_form(m) == smf x = Symbol('x') m = Matrix([[Poly(x-1), Poly(1, x),Poly(-1,x)], [0, Poly(x), Poly(-1,x)], [Poly(0,x),Poly(-1,x),Poly(x)]]) setattr(m, 'ring', QQ[x]) invs = (Poly(1, x), Poly(x - 1), Poly(x**2 - 1)) assert invariant_factors(m) == invs