hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
31222d4dd9b6497970fa409892c445d62bea94556c2eb7d182808b989375304b
|
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.basic import Basic
from sympy.core.compatibility import string_types, range, Callable
from sympy.core.cache import cacheit
from sympy.core import S, Dummy, Lambda
from sympy import symbols, MatrixBase, ImmutableDenseMatrix
from sympy.solvers import solve
from sympy.vector.scalar import BaseScalar
from sympy import eye, trigsimp, ImmutableMatrix as Matrix, Symbol, sin, cos,\
sqrt, diff, Tuple, acos, atan2, simplify
import sympy.vector
from sympy.vector.orienters import (Orienter, AxisOrienter, BodyOrienter,
SpaceOrienter, QuaternionOrienter)
def CoordSysCartesian(*args, **kwargs):
SymPyDeprecationWarning(
feature="CoordSysCartesian",
useinstead="CoordSys3D",
issue=12865,
deprecated_since_version="1.1"
).warn()
return CoordSys3D(*args, **kwargs)
class CoordSys3D(Basic):
"""
Represents a coordinate system in 3-D space.
"""
def __new__(cls, name, transformation=None, parent=None, location=None,
rotation_matrix=None, vector_names=None, variable_names=None):
"""
The orientation/location parameters are necessary if this system
is being defined at a certain orientation or location wrt another.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
transformation : Lambda, Tuple, str
Transformation defined by transformation equations or chosen
from predefined ones.
location : Vector
The position vector of the new system's origin wrt the parent
instance.
rotation_matrix : SymPy ImmutableMatrix
The rotation matrix of the new coordinate system with respect
to the parent. In other words, the output of
new_system.rotation_matrix(parent).
parent : CoordSys3D
The coordinate system wrt which the orientation/location
(or both) is being defined.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
"""
name = str(name)
Vector = sympy.vector.Vector
BaseVector = sympy.vector.BaseVector
Point = sympy.vector.Point
if not isinstance(name, string_types):
raise TypeError("name should be a string")
if transformation is not None:
if (location is not None) or (rotation_matrix is not None):
raise ValueError("specify either `transformation` or "
"`location`/`rotation_matrix`")
if isinstance(transformation, (Tuple, tuple, list)):
if isinstance(transformation[0], MatrixBase):
rotation_matrix = transformation[0]
location = transformation[1]
else:
transformation = Lambda(transformation[0],
transformation[1])
elif isinstance(transformation, Callable):
x1, x2, x3 = symbols('x1 x2 x3', cls=Dummy)
transformation = Lambda((x1, x2, x3),
transformation(x1, x2, x3))
elif isinstance(transformation, string_types):
transformation = Symbol(transformation)
elif isinstance(transformation, (Symbol, Lambda)):
pass
else:
raise TypeError("transformation: "
"wrong type {0}".format(type(transformation)))
# If orientation information has been provided, store
# the rotation matrix accordingly
if rotation_matrix is None:
rotation_matrix = ImmutableDenseMatrix(eye(3))
else:
if not isinstance(rotation_matrix, MatrixBase):
raise TypeError("rotation_matrix should be an Immutable" +
"Matrix instance")
rotation_matrix = rotation_matrix.as_immutable()
# If location information is not given, adjust the default
# location as Vector.zero
if parent is not None:
if not isinstance(parent, CoordSys3D):
raise TypeError("parent should be a " +
"CoordSys3D/None")
if location is None:
location = Vector.zero
else:
if not isinstance(location, Vector):
raise TypeError("location should be a Vector")
# Check that location does not contain base
# scalars
for x in location.free_symbols:
if isinstance(x, BaseScalar):
raise ValueError("location should not contain" +
" BaseScalars")
origin = parent.origin.locate_new(name + '.origin',
location)
else:
location = Vector.zero
origin = Point(name + '.origin')
if transformation is None:
transformation = Tuple(rotation_matrix, location)
if isinstance(transformation, Tuple):
lambda_transformation = CoordSys3D._compose_rotation_and_translation(
transformation[0],
transformation[1],
parent
)
r, l = transformation
l = l._projections
lambda_lame = CoordSys3D._get_lame_coeff('cartesian')
lambda_inverse = lambda x, y, z: r.inv()*Matrix(
[x-l[0], y-l[1], z-l[2]])
elif isinstance(transformation, Symbol):
trname = transformation.name
lambda_transformation = CoordSys3D._get_transformation_lambdas(trname)
if parent is not None:
if parent.lame_coefficients() != (S(1), S(1), S(1)):
raise ValueError('Parent for pre-defined coordinate '
'system should be Cartesian.')
lambda_lame = CoordSys3D._get_lame_coeff(trname)
lambda_inverse = CoordSys3D._set_inv_trans_equations(trname)
elif isinstance(transformation, Lambda):
if not CoordSys3D._check_orthogonality(transformation):
raise ValueError("The transformation equation does not "
"create orthogonal coordinate system")
lambda_transformation = transformation
lambda_lame = CoordSys3D._calculate_lame_coeff(lambda_transformation)
lambda_inverse = None
else:
lambda_transformation = lambda x, y, z: transformation(x, y, z)
lambda_lame = CoordSys3D._get_lame_coeff(transformation)
lambda_inverse = None
if variable_names is None:
if isinstance(transformation, Lambda):
variable_names = ["x1", "x2", "x3"]
elif isinstance(transformation, Symbol):
if transformation.name is 'spherical':
variable_names = ["r", "theta", "phi"]
elif transformation.name is 'cylindrical':
variable_names = ["r", "theta", "z"]
else:
variable_names = ["x", "y", "z"]
else:
variable_names = ["x", "y", "z"]
if vector_names is None:
vector_names = ["i", "j", "k"]
# All systems that are defined as 'roots' are unequal, unless
# they have the same name.
# Systems defined at same orientation/position wrt the same
# 'parent' are equal, irrespective of the name.
# This is true even if the same orientation is provided via
# different methods like Axis/Body/Space/Quaternion.
# However, coincident systems may be seen as unequal if
# positioned/oriented wrt different parents, even though
# they may actually be 'coincident' wrt the root system.
if parent is not None:
obj = super(CoordSys3D, cls).__new__(
cls, Symbol(name), transformation, parent)
else:
obj = super(CoordSys3D, cls).__new__(
cls, Symbol(name), transformation)
obj._name = name
# Initialize the base vectors
_check_strings('vector_names', vector_names)
vector_names = list(vector_names)
latex_vects = [(r'\mathbf{\hat{%s}_{%s}}' % (x, name)) for
x in vector_names]
pretty_vects = [(name + '_' + x) for x in vector_names]
obj._vector_names = vector_names
v1 = BaseVector(0, obj, pretty_vects[0], latex_vects[0])
v2 = BaseVector(1, obj, pretty_vects[1], latex_vects[1])
v3 = BaseVector(2, obj, pretty_vects[2], latex_vects[2])
obj._base_vectors = (v1, v2, v3)
# Initialize the base scalars
_check_strings('variable_names', vector_names)
variable_names = list(variable_names)
latex_scalars = [(r"\mathbf{{%s}_{%s}}" % (x, name)) for
x in variable_names]
pretty_scalars = [(name + '_' + x) for x in variable_names]
obj._variable_names = variable_names
obj._vector_names = vector_names
x1 = BaseScalar(0, obj, pretty_scalars[0], latex_scalars[0])
x2 = BaseScalar(1, obj, pretty_scalars[1], latex_scalars[1])
x3 = BaseScalar(2, obj, pretty_scalars[2], latex_scalars[2])
obj._base_scalars = (x1, x2, x3)
obj._transformation = transformation
obj._transformation_lambda = lambda_transformation
obj._lame_coefficients = lambda_lame(x1, x2, x3)
obj._transformation_from_parent_lambda = lambda_inverse
setattr(obj, variable_names[0], x1)
setattr(obj, variable_names[1], x2)
setattr(obj, variable_names[2], x3)
setattr(obj, vector_names[0], v1)
setattr(obj, vector_names[1], v2)
setattr(obj, vector_names[2], v3)
# Assign params
obj._parent = parent
if obj._parent is not None:
obj._root = obj._parent._root
else:
obj._root = obj
obj._parent_rotation_matrix = rotation_matrix
obj._origin = origin
# Return the instance
return obj
def __str__(self, printer=None):
return self._name
__repr__ = __str__
_sympystr = __str__
def __iter__(self):
return iter(self.base_vectors())
@staticmethod
def _check_orthogonality(equations):
"""
Helper method for _connect_to_cartesian. It checks if
set of transformation equations create orthogonal curvilinear
coordinate system
Parameters
==========
equations : Lambda
Lambda of transformation equations
"""
x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy)
equations = equations(x1, x2, x3)
v1 = Matrix([diff(equations[0], x1),
diff(equations[1], x1), diff(equations[2], x1)])
v2 = Matrix([diff(equations[0], x2),
diff(equations[1], x2), diff(equations[2], x2)])
v3 = Matrix([diff(equations[0], x3),
diff(equations[1], x3), diff(equations[2], x3)])
if any(simplify(i[0] + i[1] + i[2]) == 0 for i in (v1, v2, v3)):
return False
else:
if simplify(v1.dot(v2)) == 0 and simplify(v2.dot(v3)) == 0 \
and simplify(v3.dot(v1)) == 0:
return True
else:
return False
@staticmethod
def _set_inv_trans_equations(curv_coord_name):
"""
Store information about inverse transformation equations for
pre-defined coordinate systems.
Parameters
==========
curv_coord_name : str
Name of coordinate system
"""
if curv_coord_name == 'cartesian':
return lambda x, y, z: (x, y, z)
if curv_coord_name == 'spherical':
return lambda x, y, z: (
sqrt(x**2 + y**2 + z**2),
acos(z/sqrt(x**2 + y**2 + z**2)),
atan2(y, x)
)
if curv_coord_name == 'cylindrical':
return lambda x, y, z: (
sqrt(x**2 + y**2),
atan2(y, x),
z
)
raise ValueError('Wrong set of parameters.'
'Type of coordinate system is defined')
def _calculate_inv_trans_equations(self):
"""
Helper method for set_coordinate_type. It calculates inverse
transformation equations for given transformations equations.
"""
x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy, reals=True)
x, y, z = symbols("x, y, z", cls=Dummy)
equations = self._transformation(x1, x2, x3)
try:
solved = solve([equations[0] - x,
equations[1] - y,
equations[2] - z], (x1, x2, x3), dict=True)[0]
solved = solved[x1], solved[x2], solved[x3]
self._transformation_from_parent_lambda = \
lambda x1, x2, x3: tuple(i.subs(list(zip((x, y, z), (x1, x2, x3)))) for i in solved)
except:
raise ValueError('Wrong set of parameters.')
@staticmethod
def _get_lame_coeff(curv_coord_name):
"""
Store information about Lame coefficients for pre-defined
coordinate systems.
Parameters
==========
curv_coord_name : str
Name of coordinate system
"""
if isinstance(curv_coord_name, string_types):
if curv_coord_name == 'cartesian':
return lambda x, y, z: (S.One, S.One, S.One)
if curv_coord_name == 'spherical':
return lambda r, theta, phi: (S.One, r, r*sin(theta))
if curv_coord_name == 'cylindrical':
return lambda r, theta, h: (S.One, r, S.One)
raise ValueError('Wrong set of parameters.'
' Type of coordinate system is not defined')
return CoordSys3D._calculate_lame_coefficients(curv_coord_name)
@staticmethod
def _calculate_lame_coeff(equations):
"""
It calculates Lame coefficients
for given transformations equations.
Parameters
==========
equations : Lambda
Lambda of transformation equations.
"""
return lambda x1, x2, x3: (
sqrt(diff(equations(x1, x2, x3)[0], x1)**2 +
diff(equations(x1, x2, x3)[1], x1)**2 +
diff(equations(x1, x2, x3)[2], x1)**2),
sqrt(diff(equations(x1, x2, x3)[0], x2)**2 +
diff(equations(x1, x2, x3)[1], x2)**2 +
diff(equations(x1, x2, x3)[2], x2)**2),
sqrt(diff(equations(x1, x2, x3)[0], x3)**2 +
diff(equations(x1, x2, x3)[1], x3)**2 +
diff(equations(x1, x2, x3)[2], x3)**2)
)
def _inverse_rotation_matrix(self):
"""
Returns inverse rotation matrix.
"""
return simplify(self._parent_rotation_matrix**-1)
@staticmethod
def _get_transformation_lambdas(curv_coord_name):
"""
Store information about transformation equations for pre-defined
coordinate systems.
Parameters
==========
curv_coord_name : str
Name of coordinate system
"""
if isinstance(curv_coord_name, string_types):
if curv_coord_name == 'cartesian':
return lambda x, y, z: (x, y, z)
if curv_coord_name == 'spherical':
return lambda r, theta, phi: (
r*sin(theta)*cos(phi),
r*sin(theta)*sin(phi),
r*cos(theta)
)
if curv_coord_name == 'cylindrical':
return lambda r, theta, h: (
r*cos(theta),
r*sin(theta),
h
)
raise ValueError('Wrong set of parameters.'
'Type of coordinate system is defined')
@classmethod
def _rotation_trans_equations(cls, matrix, equations):
"""
Returns the transformation equations obtained from rotation matrix.
Parameters
==========
matrix : Matrix
Rotation matrix
equations : tuple
Transformation equations
"""
return tuple(matrix * Matrix(equations))
@property
def origin(self):
return self._origin
@property
def delop(self):
SymPyDeprecationWarning(
feature="coord_system.delop has been replaced.",
useinstead="Use the Del() class",
deprecated_since_version="1.1",
issue=12866,
).warn()
from sympy.vector.deloperator import Del
return Del()
def base_vectors(self):
return self._base_vectors
def base_scalars(self):
return self._base_scalars
def lame_coefficients(self):
return self._lame_coefficients
def transformation_to_parent(self):
return self._transformation_lambda(*self.base_scalars())
def transformation_from_parent(self):
if self._parent is None:
raise ValueError("no parent coordinate system, use "
"`transformation_from_parent_function()`")
return self._transformation_from_parent_lambda(
*self._parent.base_scalars())
def transformation_from_parent_function(self):
return self._transformation_from_parent_lambda
def rotation_matrix(self, other):
"""
Returns the direction cosine matrix(DCM), also known as the
'rotation matrix' of this coordinate system with respect to
another system.
If v_a is a vector defined in system 'A' (in matrix format)
and v_b is the same vector defined in system 'B', then
v_a = A.rotation_matrix(B) * v_b.
A SymPy Matrix is returned.
Parameters
==========
other : CoordSys3D
The system which the DCM is generated to.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = CoordSys3D('N')
>>> A = N.orient_new_axis('A', q1, N.i)
>>> N.rotation_matrix(A)
Matrix([
[1, 0, 0],
[0, cos(q1), -sin(q1)],
[0, sin(q1), cos(q1)]])
"""
from sympy.vector.functions import _path
if not isinstance(other, CoordSys3D):
raise TypeError(str(other) +
" is not a CoordSys3D")
# Handle special cases
if other == self:
return eye(3)
elif other == self._parent:
return self._parent_rotation_matrix
elif other._parent == self:
return other._parent_rotation_matrix.T
# Else, use tree to calculate position
rootindex, path = _path(self, other)
result = eye(3)
i = -1
for i in range(rootindex):
result *= path[i]._parent_rotation_matrix
i += 2
while i < len(path):
result *= path[i]._parent_rotation_matrix.T
i += 1
return result
@cacheit
def position_wrt(self, other):
"""
Returns the position vector of the origin of this coordinate
system with respect to another Point/CoordSys3D.
Parameters
==========
other : Point/CoordSys3D
If other is a Point, the position of this system's origin
wrt it is returned. If its an instance of CoordSyRect,
the position wrt its origin is returned.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N1 = N.locate_new('N1', 10 * N.i)
>>> N.position_wrt(N1)
(-10)*N.i
"""
return self.origin.position_wrt(other)
def scalar_map(self, other):
"""
Returns a dictionary which expresses the coordinate variables
(base scalars) of this frame in terms of the variables of
otherframe.
Parameters
==========
otherframe : CoordSys3D
The other system to map the variables to.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import Symbol
>>> A = CoordSys3D('A')
>>> q = Symbol('q')
>>> B = A.orient_new_axis('B', q, A.k)
>>> A.scalar_map(B)
{A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}
"""
relocated_scalars = []
origin_coords = tuple(self.position_wrt(other).to_matrix(other))
for i, x in enumerate(other.base_scalars()):
relocated_scalars.append(x - origin_coords[i])
vars_matrix = (self.rotation_matrix(other) *
Matrix(relocated_scalars))
mapping = {}
for i, x in enumerate(self.base_scalars()):
mapping[x] = trigsimp(vars_matrix[i])
return mapping
def locate_new(self, name, position, vector_names=None,
variable_names=None):
"""
Returns a CoordSys3D with its origin located at the given
position wrt this coordinate system's origin.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
position : Vector
The position vector of the new system's origin wrt this
one.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> A = CoordSys3D('A')
>>> B = A.locate_new('B', 10 * A.i)
>>> B.origin.position_wrt(A.origin)
10*A.i
"""
if variable_names is None:
variable_names = self._variable_names
if vector_names is None:
vector_names = self._vector_names
return CoordSys3D(name, location=position,
vector_names=vector_names,
variable_names=variable_names,
parent=self)
def orient_new(self, name, orienters, location=None,
vector_names=None, variable_names=None):
"""
Creates a new CoordSys3D oriented in the user-specified way
with respect to this system.
Please refer to the documentation of the orienter classes
for more information about the orientation procedure.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
orienters : iterable/Orienter
An Orienter or an iterable of Orienters for orienting the
new coordinate system.
If an Orienter is provided, it is applied to get the new
system.
If an iterable is provided, the orienters will be applied
in the order in which they appear in the iterable.
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSys3D('N')
Using an AxisOrienter
>>> from sympy.vector import AxisOrienter
>>> axis_orienter = AxisOrienter(q1, N.i + 2 * N.j)
>>> A = N.orient_new('A', (axis_orienter, ))
Using a BodyOrienter
>>> from sympy.vector import BodyOrienter
>>> body_orienter = BodyOrienter(q1, q2, q3, '123')
>>> B = N.orient_new('B', (body_orienter, ))
Using a SpaceOrienter
>>> from sympy.vector import SpaceOrienter
>>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
>>> C = N.orient_new('C', (space_orienter, ))
Using a QuaternionOrienter
>>> from sympy.vector import QuaternionOrienter
>>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
>>> D = N.orient_new('D', (q_orienter, ))
"""
if variable_names is None:
variable_names = self._variable_names
if vector_names is None:
vector_names = self._vector_names
if isinstance(orienters, Orienter):
if isinstance(orienters, AxisOrienter):
final_matrix = orienters.rotation_matrix(self)
else:
final_matrix = orienters.rotation_matrix()
# TODO: trigsimp is needed here so that the matrix becomes
# canonical (scalar_map also calls trigsimp; without this, you can
# end up with the same CoordinateSystem that compares differently
# due to a differently formatted matrix). However, this is
# probably not so good for performance.
final_matrix = trigsimp(final_matrix)
else:
final_matrix = Matrix(eye(3))
for orienter in orienters:
if isinstance(orienter, AxisOrienter):
final_matrix *= orienter.rotation_matrix(self)
else:
final_matrix *= orienter.rotation_matrix()
return CoordSys3D(name, rotation_matrix=final_matrix,
vector_names=vector_names,
variable_names=variable_names,
location=location,
parent=self)
def orient_new_axis(self, name, angle, axis, location=None,
vector_names=None, variable_names=None):
"""
Axis rotation is a rotation about an arbitrary axis by
some angle. The angle is supplied as a SymPy expr scalar, and
the axis is supplied as a Vector.
Parameters
==========
name : string
The name of the new coordinate system
angle : Expr
The angle by which the new system is to be rotated
axis : Vector
The axis around which the rotation has to be performed
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1 = symbols('q1')
>>> N = CoordSys3D('N')
>>> B = N.orient_new_axis('B', q1, N.i + 2 * N.j)
"""
if variable_names is None:
variable_names = self._variable_names
if vector_names is None:
vector_names = self._vector_names
orienter = AxisOrienter(angle, axis)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def orient_new_body(self, name, angle1, angle2, angle3,
rotation_order, location=None,
vector_names=None, variable_names=None):
"""
Body orientation takes this coordinate system through three
successive simple rotations.
Body fixed rotations include both Euler Angles and
Tait-Bryan Angles, see https://en.wikipedia.org/wiki/Euler_angles.
Parameters
==========
name : string
The name of the new coordinate system
angle1, angle2, angle3 : Expr
Three successive angles to rotate the coordinate system by
rotation_order : string
String defining the order of axes for rotation
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')
A 'Body' fixed rotation is described by three angles and
three body-fixed rotation axes. To orient a coordinate system D
with respect to N, each sequential rotation is always about
the orthogonal unit vectors fixed to D. For example, a '123'
rotation will specify rotations about N.i, then D.j, then
D.k. (Initially, D.i is same as N.i)
Therefore,
>>> D = N.orient_new_body('D', q1, q2, q3, '123')
is same as
>>> D = N.orient_new_axis('D', q1, N.i)
>>> D = D.orient_new_axis('D', q2, D.j)
>>> D = D.orient_new_axis('D', q3, D.k)
Acceptable rotation orders are of length 3, expressed in XYZ or
123, and cannot have a rotation about about an axis twice in a row.
>>> B = N.orient_new_body('B', q1, q2, q3, '123')
>>> B = N.orient_new_body('B', q1, q2, 0, 'ZXZ')
>>> B = N.orient_new_body('B', 0, 0, 0, 'XYX')
"""
orienter = BodyOrienter(angle1, angle2, angle3, rotation_order)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def orient_new_space(self, name, angle1, angle2, angle3,
rotation_order, location=None,
vector_names=None, variable_names=None):
"""
Space rotation is similar to Body rotation, but the rotations
are applied in the opposite order.
Parameters
==========
name : string
The name of the new coordinate system
angle1, angle2, angle3 : Expr
Three successive angles to rotate the coordinate system by
rotation_order : string
String defining the order of axes for rotation
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
See Also
========
CoordSys3D.orient_new_body : method to orient via Euler
angles
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q1, q2, q3 = symbols('q1 q2 q3')
>>> N = CoordSys3D('N')
To orient a coordinate system D with respect to N, each
sequential rotation is always about N's orthogonal unit vectors.
For example, a '123' rotation will specify rotations about
N.i, then N.j, then N.k.
Therefore,
>>> D = N.orient_new_space('D', q1, q2, q3, '312')
is same as
>>> B = N.orient_new_axis('B', q1, N.i)
>>> C = B.orient_new_axis('C', q2, N.j)
>>> D = C.orient_new_axis('D', q3, N.k)
"""
orienter = SpaceOrienter(angle1, angle2, angle3, rotation_order)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def orient_new_quaternion(self, name, q0, q1, q2, q3, location=None,
vector_names=None, variable_names=None):
"""
Quaternion orientation orients the new CoordSys3D with
Quaternions, defined as a finite rotation about lambda, a unit
vector, by some amount theta.
This orientation is described by four parameters:
q0 = cos(theta/2)
q1 = lambda_x sin(theta/2)
q2 = lambda_y sin(theta/2)
q3 = lambda_z sin(theta/2)
Quaternion does not take in a rotation order.
Parameters
==========
name : string
The name of the new coordinate system
q0, q1, q2, q3 : Expr
The quaternions to rotate the coordinate system by
location : Vector(optional)
The location of the new coordinate system's origin wrt this
system's origin. If not specified, the origins are taken to
be coincident.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy import symbols
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = CoordSys3D('N')
>>> B = N.orient_new_quaternion('B', q0, q1, q2, q3)
"""
orienter = QuaternionOrienter(q0, q1, q2, q3)
return self.orient_new(name, orienter,
location=location,
vector_names=vector_names,
variable_names=variable_names)
def create_new(self, name, transformation, variable_names=None, vector_names=None):
"""
Returns a CoordSys3D which is connected to self by transformation.
Parameters
==========
name : str
The name of the new CoordSys3D instance.
transformation : Lambda, Tuple, str
Transformation defined by transformation equations or chosen
from predefined ones.
vector_names, variable_names : iterable(optional)
Iterables of 3 strings each, with custom names for base
vectors and base scalars of the new system respectively.
Used for simple str printing.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> a = CoordSys3D('a')
>>> b = a.create_new('b', transformation='spherical')
>>> b.transformation_to_parent()
(b.r*sin(b.theta)*cos(b.phi), b.r*sin(b.phi)*sin(b.theta), b.r*cos(b.theta))
>>> b.transformation_from_parent()
(sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x))
"""
return CoordSys3D(name, parent=self, transformation=transformation,
variable_names=variable_names, vector_names=vector_names)
def __init__(self, name, location=None, rotation_matrix=None,
parent=None, vector_names=None, variable_names=None,
latex_vects=None, pretty_vects=None, latex_scalars=None,
pretty_scalars=None, transformation=None):
# Dummy initializer for setting docstring
pass
__init__.__doc__ = __new__.__doc__
@staticmethod
def _compose_rotation_and_translation(rot, translation, parent):
r = lambda x, y, z: CoordSys3D._rotation_trans_equations(rot, (x, y, z))
if parent is None:
return r
dx, dy, dz = [translation.dot(i) for i in parent.base_vectors()]
t = lambda x, y, z: (
x + dx,
y + dy,
z + dz,
)
return lambda x, y, z: t(*r(x, y, z))
def _check_strings(arg_name, arg):
errorstr = arg_name + " must be an iterable of 3 string-types"
if len(arg) != 3:
raise ValueError(errorstr)
for s in arg:
if not isinstance(s, string_types):
raise TypeError(errorstr)
|
efd39b1d886e6d7bf93051a64248a793f885ff127c621ae371d3546f6c1500a6
|
from sympy.simplify import simplify as simp, trigsimp as tsimp
from sympy.core.decorators import call_highest_priority, _sympifyit
from sympy.core.assumptions import StdFactKB
from sympy import factor as fctr, diff as df, Integral
from sympy.core import S, Add, Mul, count_ops
from sympy.core.expr import Expr
class BasisDependent(Expr):
"""
Super class containing functionality common to vectors and
dyadics.
Named so because the representation of these quantities in
sympy.vector is dependent on the basis they are expressed in.
"""
@call_highest_priority('__radd__')
def __add__(self, other):
return self._add_func(self, other)
@call_highest_priority('__add__')
def __radd__(self, other):
return self._add_func(other, self)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return self._add_func(self, -other)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return self._add_func(other, -self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return self._mul_func(self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self._mul_func(other, self)
def __neg__(self):
return self._mul_func(S(-1), self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rdiv__')
def __div__(self, other):
return self._div_helper(other)
@call_highest_priority('__div__')
def __rdiv__(self, other):
return TypeError("Invalid divisor for division")
__truediv__ = __div__
__rtruediv__ = __rdiv__
def evalf(self, prec=None, **options):
"""
Implements the SymPy evalf routine for this quantity.
evalf's documentation
=====================
"""
vec = self.zero
for k, v in self.components.items():
vec += v.evalf(prec, **options) * k
return vec
evalf.__doc__ += Expr.evalf.__doc__
n = evalf
def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False):
"""
Implements the SymPy simplify routine for this quantity.
simplify's documentation
========================
"""
simp_components = [simp(v, ratio=ratio, measure=measure,
rational=rational, inverse=inverse) * k for
k, v in self.components.items()]
return self._add_func(*simp_components)
simplify.__doc__ += simp.__doc__
def trigsimp(self, **opts):
"""
Implements the SymPy trigsimp routine, for this quantity.
trigsimp's documentation
========================
"""
trig_components = [tsimp(v, **opts) * k for
k, v in self.components.items()]
return self._add_func(*trig_components)
trigsimp.__doc__ += tsimp.__doc__
def _eval_simplify(self, ratio, measure, rational, inverse):
return self.simplify(ratio=ratio, measure=measure, rational=rational, inverse=inverse)
def _eval_trigsimp(self, **opts):
return self.trigsimp(**opts)
def _eval_derivative(self, wrt):
return self.diff(wrt)
def _eval_Integral(self, *symbols, **assumptions):
integral_components = [Integral(v, *symbols, **assumptions) * k
for k, v in self.components.items()]
return self._add_func(*integral_components)
def as_numer_denom(self):
"""
Returns the expression as a tuple wrt the following
transformation -
expression -> a/b -> a, b
"""
return self, 1
def factor(self, *args, **kwargs):
"""
Implements the SymPy factor routine, on the scalar parts
of a basis-dependent expression.
factor's documentation
========================
"""
fctr_components = [fctr(v, *args, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*fctr_components)
factor.__doc__ += fctr.__doc__
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return (S(1), self)
def as_coeff_add(self, *deps):
"""Efficiently extract the coefficient of a summation. """
l = [x * self.components[x] for x in self.components]
return 0, tuple(l)
def diff(self, *args, **kwargs):
"""
Implements the SymPy diff routine, for vectors.
diff's documentation
========================
"""
for x in args:
if isinstance(x, BasisDependent):
raise TypeError("Invalid arg for differentiation")
diff_components = [df(v, *args, **kwargs) * k for
k, v in self.components.items()]
return self._add_func(*diff_components)
diff.__doc__ += df.__doc__
def doit(self, **hints):
"""Calls .doit() on each term in the Dyadic"""
doit_components = [self.components[x].doit(**hints) * x
for x in self.components]
return self._add_func(*doit_components)
class BasisDependentAdd(BasisDependent, Add):
"""
Denotes sum of basis dependent quantities such that they cannot
be expressed as base or Mul instances.
"""
def __new__(cls, *args, **options):
components = {}
# Check each arg and simultaneously learn the components
for i, arg in enumerate(args):
if not isinstance(arg, cls._expr_type):
if isinstance(arg, Mul):
arg = cls._mul_func(*(arg.args))
elif isinstance(arg, Add):
arg = cls._add_func(*(arg.args))
else:
raise TypeError(str(arg) +
" cannot be interpreted correctly")
# If argument is zero, ignore
if arg == cls.zero:
continue
# Else, update components accordingly
if hasattr(arg, "components"):
for x in arg.components:
components[x] = components.get(x, 0) + arg.components[x]
temp = list(components.keys())
for x in temp:
if components[x] == 0:
del components[x]
# Handle case of zero vector
if len(components) == 0:
return cls.zero
# Build object
newargs = [x * components[x] for x in components]
obj = super(BasisDependentAdd, cls).__new__(cls,
*newargs, **options)
if isinstance(obj, Mul):
return cls._mul_func(*obj.args)
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
obj._components = components
obj._sys = (list(components.keys()))[0]._sys
return obj
__init__ = Add.__init__
class BasisDependentMul(BasisDependent, Mul):
"""
Denotes product of base- basis dependent quantity with a scalar.
"""
def __new__(cls, *args, **options):
from sympy.vector import Cross, Dot, Curl, Gradient
count = 0
measure_number = S(1)
zeroflag = False
extra_args = []
# Determine the component and check arguments
# Also keep a count to ensure two vectors aren't
# being multiplied
for arg in args:
if isinstance(arg, cls._zero_func):
count += 1
zeroflag = True
elif arg == S(0):
zeroflag = True
elif isinstance(arg, (cls._base_func, cls._mul_func)):
count += 1
expr = arg._base_instance
measure_number *= arg._measure_number
elif isinstance(arg, cls._add_func):
count += 1
expr = arg
elif isinstance(arg, (Cross, Dot, Curl, Gradient)):
extra_args.append(arg)
else:
measure_number *= arg
# Make sure incompatible types weren't multiplied
if count > 1:
raise ValueError("Invalid multiplication")
elif count == 0:
return Mul(*args, **options)
# Handle zero vector case
if zeroflag:
return cls.zero
# If one of the args was a VectorAdd, return an
# appropriate VectorAdd instance
if isinstance(expr, cls._add_func):
newargs = [cls._mul_func(measure_number, x) for
x in expr.args]
return cls._add_func(*newargs)
obj = super(BasisDependentMul, cls).__new__(cls, measure_number,
expr._base_instance,
*extra_args,
**options)
if isinstance(obj, Add):
return cls._add_func(*obj.args)
obj._base_instance = expr._base_instance
obj._measure_number = measure_number
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
obj._components = {expr._base_instance: measure_number}
obj._sys = expr._base_instance._sys
return obj
__init__ = Mul.__init__
def __str__(self, printer=None):
measure_str = self._measure_number.__str__()
if ('(' in measure_str or '-' in measure_str or
'+' in measure_str):
measure_str = '(' + measure_str + ')'
return measure_str + '*' + self._base_instance.__str__(printer)
__repr__ = __str__
_sympystr = __str__
class BasisDependentZero(BasisDependent):
"""
Class to denote a zero basis dependent instance.
"""
components = {}
def __new__(cls):
obj = super(BasisDependentZero, cls).__new__(cls)
# Pre-compute a specific hash value for the zero vector
# Use the same one always
obj._hash = tuple([S(0), cls]).__hash__()
return obj
def __hash__(self):
return self._hash
@call_highest_priority('__req__')
def __eq__(self, other):
return isinstance(other, self._zero_func)
__req__ = __eq__
@call_highest_priority('__radd__')
def __add__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for addition")
@call_highest_priority('__add__')
def __radd__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for addition")
@call_highest_priority('__rsub__')
def __sub__(self, other):
if isinstance(other, self._expr_type):
return -other
else:
raise TypeError("Invalid argument types for subtraction")
@call_highest_priority('__sub__')
def __rsub__(self, other):
if isinstance(other, self._expr_type):
return other
else:
raise TypeError("Invalid argument types for subtraction")
def __neg__(self):
return self
def normalize(self):
"""
Returns the normalized version of this vector.
"""
return self
def __str__(self, printer=None):
return '0'
__repr__ = __str__
_sympystr = __str__
|
621a12ca25d999780de8469a17a292db870bd1520e263a73cbb70f3bff7713fe
|
from sympy.vector.basisdependent import (BasisDependent, BasisDependentAdd,
BasisDependentMul, BasisDependentZero)
from sympy.core import S, Pow
from sympy.core.expr import AtomicExpr
from sympy import ImmutableMatrix as Matrix
import sympy.vector
class Dyadic(BasisDependent):
"""
Super class for all Dyadic-classes.
References
==========
.. [1] https://en.wikipedia.org/wiki/Dyadic_tensor
.. [2] Kane, T., Levinson, D. Dynamics Theory and Applications. 1985
McGraw-Hill
"""
_op_priority = 13.0
@property
def components(self):
"""
Returns the components of this dyadic in the form of a
Python dictionary mapping BaseDyadic instances to the
corresponding measure numbers.
"""
# The '_components' attribute is defined according to the
# subclass of Dyadic the instance belongs to.
return self._components
def dot(self, other):
"""
Returns the dot product(also called inner product) of this
Dyadic, with another Dyadic or Vector.
If 'other' is a Dyadic, this returns a Dyadic. Else, it returns
a Vector (unless an error is encountered).
Parameters
==========
other : Dyadic/Vector
The other Dyadic or Vector to take the inner product with
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> D1 = N.i.outer(N.j)
>>> D2 = N.j.outer(N.j)
>>> D1.dot(D2)
(N.i|N.j)
>>> D1.dot(N.j)
N.i
"""
Vector = sympy.vector.Vector
if isinstance(other, BasisDependentZero):
return Vector.zero
elif isinstance(other, Vector):
outvec = Vector.zero
for k, v in self.components.items():
vect_dot = k.args[1].dot(other)
outvec += vect_dot * v * k.args[0]
return outvec
elif isinstance(other, Dyadic):
outdyad = Dyadic.zero
for k1, v1 in self.components.items():
for k2, v2 in other.components.items():
vect_dot = k1.args[1].dot(k2.args[0])
outer_product = k1.args[0].outer(k2.args[1])
outdyad += vect_dot * v1 * v2 * outer_product
return outdyad
else:
raise TypeError("Inner product is not defined for " +
str(type(other)) + " and Dyadics.")
def __and__(self, other):
return self.dot(other)
__and__.__doc__ = dot.__doc__
def cross(self, other):
"""
Returns the cross product between this Dyadic, and a Vector, as a
Vector instance.
Parameters
==========
other : Vector
The Vector that we are crossing this Dyadic with
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> d = N.i.outer(N.i)
>>> d.cross(N.j)
(N.i|N.k)
"""
Vector = sympy.vector.Vector
if other == Vector.zero:
return Dyadic.zero
elif isinstance(other, Vector):
outdyad = Dyadic.zero
for k, v in self.components.items():
cross_product = k.args[1].cross(other)
outer = k.args[0].outer(cross_product)
outdyad += v * outer
return outdyad
else:
raise TypeError(str(type(other)) + " not supported for " +
"cross with dyadics")
def __xor__(self, other):
return self.cross(other)
__xor__.__doc__ = cross.__doc__
def to_matrix(self, system, second_system=None):
"""
Returns the matrix form of the dyadic with respect to one or two
coordinate systems.
Parameters
==========
system : CoordSys3D
The coordinate system that the rows and columns of the matrix
correspond to. If a second system is provided, this
only corresponds to the rows of the matrix.
second_system : CoordSys3D, optional, default=None
The coordinate system that the columns of the matrix correspond
to.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> v = N.i + 2*N.j
>>> d = v.outer(N.i)
>>> d.to_matrix(N)
Matrix([
[1, 0, 0],
[2, 0, 0],
[0, 0, 0]])
>>> from sympy import Symbol
>>> q = Symbol('q')
>>> P = N.orient_new_axis('P', q, N.k)
>>> d.to_matrix(N, P)
Matrix([
[ cos(q), -sin(q), 0],
[2*cos(q), -2*sin(q), 0],
[ 0, 0, 0]])
"""
if second_system is None:
second_system = system
return Matrix([i.dot(self).dot(j) for i in system for j in
second_system]).reshape(3, 3)
class BaseDyadic(Dyadic, AtomicExpr):
"""
Class to denote a base dyadic tensor component.
"""
def __new__(cls, vector1, vector2):
Vector = sympy.vector.Vector
BaseVector = sympy.vector.BaseVector
VectorZero = sympy.vector.VectorZero
# Verify arguments
if not isinstance(vector1, (BaseVector, VectorZero)) or \
not isinstance(vector2, (BaseVector, VectorZero)):
raise TypeError("BaseDyadic cannot be composed of non-base " +
"vectors")
# Handle special case of zero vector
elif vector1 == Vector.zero or vector2 == Vector.zero:
return Dyadic.zero
# Initialize instance
obj = super(BaseDyadic, cls).__new__(cls, vector1, vector2)
obj._base_instance = obj
obj._measure_number = 1
obj._components = {obj: S(1)}
obj._sys = vector1._sys
obj._pretty_form = (u'(' + vector1._pretty_form + '|' +
vector2._pretty_form + ')')
obj._latex_form = ('(' + vector1._latex_form + "{|}" +
vector2._latex_form + ')')
return obj
def __str__(self, printer=None):
return "(" + str(self.args[0]) + "|" + str(self.args[1]) + ")"
_sympystr = __str__
_sympyrepr = _sympystr
class DyadicMul(BasisDependentMul, Dyadic):
""" Products of scalars and BaseDyadics """
def __new__(cls, *args, **options):
obj = BasisDependentMul.__new__(cls, *args, **options)
return obj
@property
def base_dyadic(self):
""" The BaseDyadic involved in the product. """
return self._base_instance
@property
def measure_number(self):
""" The scalar expression involved in the definition of
this DyadicMul.
"""
return self._measure_number
class DyadicAdd(BasisDependentAdd, Dyadic):
""" Class to hold dyadic sums """
def __new__(cls, *args, **options):
obj = BasisDependentAdd.__new__(cls, *args, **options)
return obj
def __str__(self, printer=None):
ret_str = ''
items = list(self.components.items())
items.sort(key=lambda x: x[0].__str__())
for k, v in items:
temp_dyad = k * v
ret_str += temp_dyad.__str__(printer) + " + "
return ret_str[:-3]
__repr__ = __str__
_sympystr = __str__
class DyadicZero(BasisDependentZero, Dyadic):
"""
Class to denote a zero dyadic
"""
_op_priority = 13.1
_pretty_form = u'(0|0)'
_latex_form = r'(\mathbf{\hat{0}}|\mathbf{\hat{0}})'
def __new__(cls):
obj = BasisDependentZero.__new__(cls)
return obj
def _dyad_div(one, other):
""" Helper for division involving dyadics """
if isinstance(one, Dyadic) and isinstance(other, Dyadic):
raise TypeError("Cannot divide two dyadics")
elif isinstance(one, Dyadic):
return DyadicMul(one, Pow(other, S.NegativeOne))
else:
raise TypeError("Cannot divide by a dyadic")
Dyadic._expr_type = Dyadic
Dyadic._mul_func = DyadicMul
Dyadic._add_func = DyadicAdd
Dyadic._zero_func = DyadicZero
Dyadic._base_func = BaseDyadic
Dyadic._div_helper = _dyad_div
Dyadic.zero = DyadicZero()
|
18761aba2dba38d11594f51dc0403829918a976585b55473632dfe2dfe12a299
|
"""Geometrical Points.
Contains
========
Point
Point2D
Point3D
When methods of Point require 1 or more points as arguments, they
can be passed as a sequence of coordinates or Points:
>>> from sympy.geometry.point import Point
>>> Point(1, 1).is_collinear((2, 2), (3, 4))
False
>>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4))
False
"""
from __future__ import division, print_function
import warnings
from sympy.core import S, sympify, Expr
from sympy.core.numbers import Number
from sympy.core.compatibility import iterable, is_sequence, as_int
from sympy.core.containers import Tuple
from sympy.simplify import nsimplify, simplify
from sympy.geometry.exceptions import GeometryError
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.complexes import im
from sympy.matrices import Matrix
from sympy.core.relational import Eq
from sympy.core.numbers import Float
from sympy.core.evaluate import global_evaluate
from sympy.core.add import Add
from sympy.sets import FiniteSet
from sympy.utilities.iterables import uniq
from sympy.utilities.misc import filldedent, func_name, Undecidable
from .entity import GeometryEntity
class Point(GeometryEntity):
"""A point in a n-dimensional Euclidean space.
Parameters
==========
coords : sequence of n-coordinate values. In the special
case where n=2 or 3, a Point2D or Point3D will be created
as appropriate.
evaluate : if `True` (default), all floats are turn into
exact types.
dim : number of coordinates the point should have. If coordinates
are unspecified, they are padded with zeros.
on_morph : indicates what should happen when the number of
coordinates of a point need to be changed by adding or
removing zeros. Possible values are `'warn'`, `'error'`, or
`ignore` (default). No warning or error is given when `*args`
is empty and `dim` is given. An error is always raised when
trying to remove nonzero coordinates.
Attributes
==========
length
origin: A `Point` representing the origin of the
appropriately-dimensioned space.
Raises
======
TypeError : When instantiating with anything but a Point or sequence
ValueError : when instantiating with a sequence with length < 2 or
when trying to reduce dimensions if keyword `on_morph='error'` is
set.
See Also
========
sympy.geometry.line.Segment : Connects two Points
Examples
========
>>> from sympy.geometry import Point
>>> from sympy.abc import x
>>> Point(1, 2, 3)
Point3D(1, 2, 3)
>>> Point([1, 2])
Point2D(1, 2)
>>> Point(0, x)
Point2D(0, x)
>>> Point(dim=4)
Point(0, 0, 0, 0)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
"""
is_Point = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
on_morph = kwargs.get('on_morph', 'ignore')
# unpack into coords
coords = args[0] if len(args) == 1 else args
# check args and handle quickly handle Point instances
if isinstance(coords, Point):
# even if we're mutating the dimension of a point, we
# don't reevaluate its coordinates
evaluate = False
if len(coords) == kwargs.get('dim', len(coords)):
return coords
if not is_sequence(coords):
raise TypeError(filldedent('''
Expecting sequence of coordinates, not `{}`'''
.format(func_name(coords))))
# A point where only `dim` is specified is initialized
# to zeros.
if len(coords) == 0 and kwargs.get('dim', None):
coords = (S.Zero,)*kwargs.get('dim')
coords = Tuple(*coords)
dim = kwargs.get('dim', len(coords))
if len(coords) < 2:
raise ValueError(filldedent('''
Point requires 2 or more coordinates or
keyword `dim` > 1.'''))
if len(coords) != dim:
message = ("Dimension of {} needs to be changed"
"from {} to {}.").format(coords, len(coords), dim)
if on_morph == 'ignore':
pass
elif on_morph == "error":
raise ValueError(message)
elif on_morph == 'warn':
warnings.warn(message)
else:
raise ValueError(filldedent('''
on_morph value should be 'error',
'warn' or 'ignore'.'''))
if any(i for i in coords[dim:]):
raise ValueError('Nonzero coordinates cannot be removed.')
if any(a.is_number and im(a) for a in coords):
raise ValueError('Imaginary coordinates are not permitted.')
if not all(isinstance(a, Expr) for a in coords):
raise TypeError('Coordinates must be valid SymPy expressions.')
# pad with zeros appropriately
coords = coords[:dim] + (S.Zero,)*(dim - len(coords))
# Turn any Floats into rationals and simplify
# any expressions before we instantiate
if evaluate:
coords = coords.xreplace(dict(
[(f, simplify(nsimplify(f, rational=True)))
for f in coords.atoms(Float)]))
# return 2D or 3D instances
if len(coords) == 2:
kwargs['_nocheck'] = True
return Point2D(*coords, **kwargs)
elif len(coords) == 3:
kwargs['_nocheck'] = True
return Point3D(*coords, **kwargs)
# the general Point
return GeometryEntity.__new__(cls, *coords)
def __abs__(self):
"""Returns the distance between this point and the origin."""
origin = Point([0]*len(self))
return Point.distance(origin, self)
def __add__(self, other):
"""Add other to self by incrementing self's coordinates by
those of other.
Notes
=====
>>> from sympy.geometry.point import Point
When sequences of coordinates are passed to Point methods, they
are converted to a Point internally. This __add__ method does
not do that so if floating point values are used, a floating
point result (in terms of SymPy Floats) will be returned.
>>> Point(1, 2) + (.1, .2)
Point2D(1.1, 2.2)
If this is not desired, the `translate` method can be used or
another Point can be added:
>>> Point(1, 2).translate(.1, .2)
Point2D(11/10, 11/5)
>>> Point(1, 2) + Point(.1, .2)
Point2D(11/10, 11/5)
See Also
========
sympy.geometry.point.Point.translate
"""
try:
s, o = Point._normalize_dimension(self, Point(other, evaluate=False))
except TypeError:
raise GeometryError("Don't know how to add {} and a Point object".format(other))
coords = [simplify(a + b) for a, b in zip(s, o)]
return Point(coords, evaluate=False)
def __contains__(self, item):
return item in self.args
def __div__(self, divisor):
"""Divide point's coordinates by a factor."""
divisor = sympify(divisor)
coords = [simplify(x/divisor) for x in self.args]
return Point(coords, evaluate=False)
def __eq__(self, other):
if not isinstance(other, Point) or len(self.args) != len(other.args):
return False
return self.args == other.args
def __getitem__(self, key):
return self.args[key]
def __hash__(self):
return hash(self.args)
def __iter__(self):
return self.args.__iter__()
def __len__(self):
return len(self.args)
def __mul__(self, factor):
"""Multiply point's coordinates by a factor.
Notes
=====
>>> from sympy.geometry.point import Point
When multiplying a Point by a floating point number,
the coordinates of the Point will be changed to Floats:
>>> Point(1, 2)*0.1
Point2D(0.1, 0.2)
If this is not desired, the `scale` method can be used or
else only multiply or divide by integers:
>>> Point(1, 2).scale(1.1, 1.1)
Point2D(11/10, 11/5)
>>> Point(1, 2)*11/10
Point2D(11/10, 11/5)
See Also
========
sympy.geometry.point.Point.scale
"""
factor = sympify(factor)
coords = [simplify(x*factor) for x in self.args]
return Point(coords, evaluate=False)
def __neg__(self):
"""Negate the point."""
coords = [-x for x in self.args]
return Point(coords, evaluate=False)
def __sub__(self, other):
"""Subtract two points, or subtract a factor from this point's
coordinates."""
return self + [-x for x in other]
@classmethod
def _normalize_dimension(cls, *points, **kwargs):
"""Ensure that points have the same dimension.
By default `on_morph='warn'` is passed to the
`Point` constructor."""
# if we have a built-in ambient dimension, use it
dim = getattr(cls, '_ambient_dimension', None)
# override if we specified it
dim = kwargs.get('dim', dim)
# if no dim was given, use the highest dimensional point
if dim is None:
dim = max(i.ambient_dimension for i in points)
if all(i.ambient_dimension == dim for i in points):
return list(points)
kwargs['dim'] = dim
kwargs['on_morph'] = kwargs.get('on_morph', 'warn')
return [Point(i, **kwargs) for i in points]
@staticmethod
def affine_rank(*args):
"""The affine rank of a set of points is the dimension
of the smallest affine space containing all the points.
For example, if the points lie on a line (and are not all
the same) their affine rank is 1. If the points lie on a plane
but not a line, their affine rank is 2. By convention, the empty
set has affine rank -1."""
if len(args) == 0:
return -1
# make sure we're genuinely points
# and translate every point to the origin
points = Point._normalize_dimension(*[Point(i) for i in args])
origin = points[0]
points = [i - origin for i in points[1:]]
m = Matrix([i.args for i in points])
return m.rank()
@property
def ambient_dimension(self):
"""Number of components this point has."""
return getattr(self, '_ambient_dimension', len(self))
@classmethod
def are_coplanar(cls, *points):
"""Return True if there exists a plane in which all the points
lie. A trivial True value is returned if `len(points) < 3` or
all Points are 2-dimensional.
Parameters
==========
A set of points
Raises
======
ValueError : if less than 3 unique points are given
Returns
=======
boolean
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 2)
>>> p2 = Point3D(2, 7, 2)
>>> p3 = Point3D(0, 0, 2)
>>> p4 = Point3D(1, 1, 2)
>>> Point3D.are_coplanar(p1, p2, p3, p4)
True
>>> p5 = Point3D(0, 1, 3)
>>> Point3D.are_coplanar(p1, p2, p3, p5)
False
"""
if len(points) <= 1:
return True
points = cls._normalize_dimension(*[Point(i) for i in points])
# quick exit if we are in 2D
if points[0].ambient_dimension == 2:
return True
points = list(uniq(points))
return Point.affine_rank(*points) <= 2
def distance(self, other):
"""The Euclidean distance between self and another GeometricEntity.
Returns
=======
distance : number or symbolic expression.
Raises
======
AttributeError : if other is a GeometricEntity for which
distance is not defined.
TypeError : if other is not recognized as a GeometricEntity.
See Also
========
sympy.geometry.line.Segment.length
sympy.geometry.point.Point.taxicab_distance
Examples
========
>>> from sympy.geometry import Point, Line
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> l = Line((3, 1), (2, 2))
>>> p1.distance(p2)
5
>>> p1.distance(l)
sqrt(2)
The computed distance may be symbolic, too:
>>> from sympy.abc import x, y
>>> p3 = Point(x, y)
>>> p3.distance((0, 0))
sqrt(x**2 + y**2)
"""
if not isinstance(other , GeometryEntity) :
try :
other = Point(other, dim=self.ambient_dimension)
except TypeError :
raise TypeError("not recognized as a GeometricEntity: %s" % type(other))
if isinstance(other , Point) :
s, p = Point._normalize_dimension(self, Point(other))
return sqrt(Add(*((a - b)**2 for a, b in zip(s, p))))
try :
return other.distance(self)
except AttributeError :
raise AttributeError("distance between Point and %s is not defined" % type(other))
def dot(self, p):
"""Return dot product of self with another Point."""
if not is_sequence(p):
p = Point(p) # raise the error via Point
return Add(*(a*b for a, b in zip(self, p)))
def equals(self, other):
"""Returns whether the coordinates of self and other agree."""
# a point is equal to another point if all its components are equal
if not isinstance(other, Point) or len(self) != len(other):
return False
return all(a.equals(b) for a,b in zip(self, other))
def evalf(self, prec=None, **options):
"""Evaluate the coordinates of the point.
This method will, where possible, create and return a new Point
where the coordinates are evaluated as floating point numbers to
the precision indicated (default=15).
Parameters
==========
prec : int
Returns
=======
point : Point
Examples
========
>>> from sympy import Point, Rational
>>> p1 = Point(Rational(1, 2), Rational(3, 2))
>>> p1
Point2D(1/2, 3/2)
>>> p1.evalf()
Point2D(0.5, 1.5)
"""
coords = [x.evalf(prec, **options) for x in self.args]
return Point(*coords, evaluate=False)
def intersection(self, other):
"""The intersection between this point and another GeometryEntity.
Parameters
==========
other : Point
Returns
=======
intersection : list of Points
Notes
=====
The return value will either be an empty list if there is no
intersection, otherwise it will contain this point.
Examples
========
>>> from sympy import Point
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point2D(0, 0)]
"""
if not isinstance(other, GeometryEntity):
other = Point(other)
if isinstance(other, Point):
if self == other:
return [self]
p1, p2 = Point._normalize_dimension(self, other)
if p1 == self and p1 == p2:
return [self]
return []
return other.intersection(self)
def is_collinear(self, *args):
"""Returns `True` if there exists a line
that contains `self` and `points`. Returns `False` otherwise.
A trivially True value is returned if no points are given.
Parameters
==========
args : sequence of Points
Returns
=======
is_collinear : boolean
See Also
========
sympy.geometry.line.Line
Examples
========
>>> from sympy import Point
>>> from sympy.abc import x
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
>>> Point.is_collinear(p1, p2, p3, p4)
True
>>> Point.is_collinear(p1, p2, p3, p5)
False
"""
points = (self,) + args
points = Point._normalize_dimension(*[Point(i) for i in points])
points = list(uniq(points))
return Point.affine_rank(*points) <= 1
def is_concyclic(self, *args):
"""Do `self` and the given sequence of points lie in a circle?
Returns True if the set of points are concyclic and
False otherwise. A trivial value of True is returned
if there are fewer than 2 other points.
Parameters
==========
args : sequence of Points
Returns
=======
is_concyclic : boolean
Examples
========
>>> from sympy import Point
Define 4 points that are on the unit circle:
>>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)
>>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
True
Define a point not on that circle:
>>> p = Point(1, 1)
>>> p.is_concyclic(p1, p2, p3)
False
"""
points = (self,) + args
points = Point._normalize_dimension(*[Point(i) for i in points])
points = list(uniq(points))
if not Point.affine_rank(*points) <= 2:
return False
origin = points[0]
points = [p - origin for p in points]
# points are concyclic if they are coplanar and
# there is a point c so that ||p_i-c|| == ||p_j-c|| for all
# i and j. Rearranging this equation gives us the following
# condition: the matrix `mat` must not a pivot in the last
# column.
mat = Matrix([list(i) + [i.dot(i)] for i in points])
rref, pivots = mat.rref()
if len(origin) not in pivots:
return True
return False
@property
def is_nonzero(self):
"""True if any coordinate is nonzero, False if every coordinate is zero,
and None if it cannot be determined."""
is_zero = self.is_zero
if is_zero is None:
return None
return not is_zero
def is_scalar_multiple(self, p):
"""Returns whether each coordinate of `self` is a scalar
multiple of the corresponding coordinate in point p.
"""
s, o = Point._normalize_dimension(self, Point(p))
# 2d points happen a lot, so optimize this function call
if s.ambient_dimension == 2:
(x1, y1), (x2, y2) = s.args, o.args
rv = (x1*y2 - x2*y1).equals(0)
if rv is None:
raise Undecidable(filldedent(
'''can't determine if %s is a scalar multiple of
%s''' % (s, o)))
# if the vectors p1 and p2 are linearly dependent, then they must
# be scalar multiples of each other
m = Matrix([s.args, o.args])
return m.rank() < 2
@property
def is_zero(self):
"""True if every coordinate is zero, False if any coordinate is not zero,
and None if it cannot be determined."""
nonzero = [x.is_nonzero for x in self.args]
if any(nonzero):
return False
if any(x is None for x in nonzero):
return None
return True
@property
def length(self):
"""
Treating a Point as a Line, this returns 0 for the length of a Point.
Examples
========
>>> from sympy import Point
>>> p = Point(0, 1)
>>> p.length
0
"""
return S.Zero
def midpoint(self, p):
"""The midpoint between self and point p.
Parameters
==========
p : Point
Returns
=======
midpoint : Point
See Also
========
sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(13, 5)
>>> p1.midpoint(p2)
Point2D(7, 3)
"""
s, p = Point._normalize_dimension(self, Point(p))
return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)])
@property
def origin(self):
"""A point of all zeros of the same ambient dimension
as the current point"""
return Point([0]*len(self), evaluate=False)
@property
def orthogonal_direction(self):
"""Returns a non-zero point that is orthogonal to the
line containing `self` and the origin.
Examples
========
>>> from sympy.geometry import Line, Point
>>> a = Point(1, 2, 3)
>>> a.orthogonal_direction
Point3D(-2, 1, 0)
>>> b = _
>>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
True
"""
dim = self.ambient_dimension
# if a coordinate is zero, we can put a 1 there and zeros elsewhere
if self[0] == S.Zero:
return Point([1] + (dim - 1)*[0])
if self[1] == S.Zero:
return Point([0,1] + (dim - 2)*[0])
# if the first two coordinates aren't zero, we can create a non-zero
# orthogonal vector by swapping them, negating one, and padding with zeros
return Point([-self[1], self[0]] + (dim - 2)*[0])
@staticmethod
def project(a, b):
"""Project the point `a` onto the line between the origin
and point `b` along the normal direction.
Parameters
==========
a : Point
b : Point
Returns
=======
p : Point
See Also
========
sympy.geometry.line.LinearEntity.projection
Examples
========
>>> from sympy.geometry import Line, Point
>>> a = Point(1, 2)
>>> b = Point(2, 5)
>>> z = a.origin
>>> p = Point.project(a, b)
>>> Line(p, a).is_perpendicular(Line(p, b))
True
>>> Point.is_collinear(z, p, b)
True
"""
a, b = Point._normalize_dimension(Point(a), Point(b))
if b.is_zero:
raise ValueError("Cannot project to the zero vector.")
return b*(a.dot(b) / b.dot(b))
def taxicab_distance(self, p):
"""The Taxicab Distance from self to point p.
Returns the sum of the horizontal and vertical distances to point p.
Parameters
==========
p : Point
Returns
=======
taxicab_distance : The sum of the horizontal
and vertical distances to point p.
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(4, 5)
>>> p1.taxicab_distance(p2)
7
"""
s, p = Point._normalize_dimension(self, Point(p))
return Add(*(abs(a - b) for a, b in zip(s, p)))
def canberra_distance(self, p):
"""The Canberra Distance from self to point p.
Returns the weighted sum of horizontal and vertical distances to
point p.
Parameters
==========
p : Point
Returns
=======
canberra_distance : The weighted sum of horizontal and vertical
distances to point p. The weight used is the sum of absolute values
of the coordinates.
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy.geometry import Point
>>> p1, p2 = Point(1, 1), Point(3, 3)
>>> p1.canberra_distance(p2)
1
>>> p1, p2 = Point(0, 0), Point(3, 3)
>>> p1.canberra_distance(p2)
2
Raises
======
ValueError when both vectors are zero.
See Also
========
sympy.geometry.point.Point.distance
"""
s, p = Point._normalize_dimension(self, Point(p))
if self.is_zero and p.is_zero:
raise ValueError("Cannot project to the zero vector.")
return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p)))
@property
def unit(self):
"""Return the Point that is in the same direction as `self`
and a distance of 1 from the origin"""
return self / abs(self)
n = evalf
__truediv__ = __div__
class Point2D(Point):
"""A point in a 2-dimensional Euclidean space.
Parameters
==========
coords : sequence of 2 coordinate values.
Attributes
==========
x
y
length
Raises
======
TypeError
When trying to add or subtract points with different dimensions.
When trying to create a point with more than two dimensions.
When `intersection` is called with object other than a Point.
See Also
========
sympy.geometry.line.Segment : Connects two Points
Examples
========
>>> from sympy.geometry import Point2D
>>> from sympy.abc import x
>>> Point2D(1, 2)
Point2D(1, 2)
>>> Point2D([1, 2])
Point2D(1, 2)
>>> Point2D(0, x)
Point2D(0, x)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point2D(0.5, 0.25)
Point2D(1/2, 1/4)
>>> Point2D(0.5, 0.25, evaluate=False)
Point2D(0.5, 0.25)
"""
_ambient_dimension = 2
def __new__(cls, *args, **kwargs):
if not kwargs.pop('_nocheck', False):
kwargs['dim'] = 2
args = Point(*args, **kwargs)
return GeometryEntity.__new__(cls, *args)
def __contains__(self, item):
return item == self
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
return (self.x, self.y, self.x, self.y)
def rotate(self, angle, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
See Also
========
rotate, scale
Examples
========
>>> from sympy import Point2D, pi
>>> t = Point2D(1, 0)
>>> t.rotate(pi/2)
Point2D(0, 1)
>>> t.rotate(pi/2, (2, 0))
Point2D(2, -1)
"""
from sympy import cos, sin, Point
c = cos(angle)
s = sin(angle)
rv = self
if pt is not None:
pt = Point(pt, dim=2)
rv -= pt
x, y = rv.args
rv = Point(c*x - s*y, s*x + c*y)
if pt is not None:
rv += pt
return rv
def scale(self, x=1, y=1, pt=None):
"""Scale the coordinates of the Point by multiplying by
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
and then adding ``pt`` back again (i.e. ``pt`` is the point of
reference for the scaling).
See Also
========
rotate, translate
Examples
========
>>> from sympy import Point2D
>>> t = Point2D(1, 1)
>>> t.scale(2)
Point2D(2, 1)
>>> t.scale(2, 2)
Point2D(2, 2)
"""
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
return Point(self.x*x, self.y*y)
def transform(self, matrix):
"""Return the point after applying the transformation described
by the 3x3 Matrix, ``matrix``.
See Also
========
geometry.entity.rotate
geometry.entity.scale
geometry.entity.translate
"""
try:
col, row = matrix.shape
valid_matrix = matrix.is_square and col == 3
except AttributeError:
# We hit this block if matrix argument is not actually a Matrix.
valid_matrix = False
if not valid_matrix:
raise ValueError("The argument to the transform function must be " \
+ "a 3x3 matrix")
x, y = self.args
return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2])
def translate(self, x=0, y=0):
"""Shift the Point by adding x and y to the coordinates of the Point.
See Also
========
rotate, scale
Examples
========
>>> from sympy import Point2D
>>> t = Point2D(0, 1)
>>> t.translate(2)
Point2D(2, 1)
>>> t.translate(2, 2)
Point2D(2, 3)
>>> t + Point2D(2, 2)
Point2D(2, 3)
"""
return Point(self.x + x, self.y + y)
@property
def x(self):
"""
Returns the X coordinate of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.x
0
"""
return self.args[0]
@property
def y(self):
"""
Returns the Y coordinate of the Point.
Examples
========
>>> from sympy import Point2D
>>> p = Point2D(0, 1)
>>> p.y
1
"""
return self.args[1]
class Point3D(Point):
"""A point in a 3-dimensional Euclidean space.
Parameters
==========
coords : sequence of 3 coordinate values.
Attributes
==========
x
y
z
length
Raises
======
TypeError
When trying to add or subtract points with different dimensions.
When `intersection` is called with object other than a Point.
Examples
========
>>> from sympy import Point3D
>>> from sympy.abc import x
>>> Point3D(1, 2, 3)
Point3D(1, 2, 3)
>>> Point3D([1, 2, 3])
Point3D(1, 2, 3)
>>> Point3D(0, x, 3)
Point3D(0, x, 3)
Floats are automatically converted to Rational unless the
evaluate flag is False:
>>> Point3D(0.5, 0.25, 2)
Point3D(1/2, 1/4, 2)
>>> Point3D(0.5, 0.25, 3, evaluate=False)
Point3D(0.5, 0.25, 3)
"""
_ambient_dimension = 3
def __new__(cls, *args, **kwargs):
if not kwargs.pop('_nocheck', False):
kwargs['dim'] = 3
args = Point(*args, **kwargs)
return GeometryEntity.__new__(cls, *args)
def __contains__(self, item):
return item == self
@staticmethod
def are_collinear(*points):
"""Is a sequence of points collinear?
Test whether or not a set of points are collinear. Returns True if
the set of points are collinear, or False otherwise.
Parameters
==========
points : sequence of Point
Returns
=======
are_collinear : boolean
See Also
========
sympy.geometry.line.Line3D
Examples
========
>>> from sympy import Point3D, Matrix
>>> from sympy.abc import x
>>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
>>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
>>> Point3D.are_collinear(p1, p2, p3, p4)
True
>>> Point3D.are_collinear(p1, p2, p3, p5)
False
"""
return Point.is_collinear(*points)
def direction_cosine(self, point):
"""
Gives the direction cosine between 2 points
Parameters
==========
p : Point3D
Returns
=======
list
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_cosine(Point3D(2, 3, 5))
[sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
"""
a = self.direction_ratio(point)
b = sqrt(Add(*(i**2 for i in a)))
return [(point.x - self.x) / b,(point.y - self.y) / b,
(point.z - self.z) / b]
def direction_ratio(self, point):
"""
Gives the direction ratio between 2 points
Parameters
==========
p : Point3D
Returns
=======
list
Examples
========
>>> from sympy import Point3D
>>> p1 = Point3D(1, 2, 3)
>>> p1.direction_ratio(Point3D(2, 3, 5))
[1, 1, 2]
"""
return [(point.x - self.x),(point.y - self.y),(point.z - self.z)]
def intersection(self, other):
"""The intersection between this point and another point.
Parameters
==========
other : Point
Returns
=======
intersection : list of Points
Notes
=====
The return value will either be an empty list if there is no
intersection, otherwise it will contain this point.
Examples
========
>>> from sympy import Point3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
>>> p1.intersection(p2)
[]
>>> p1.intersection(p3)
[Point3D(0, 0, 0)]
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=3)
if isinstance(other, Point3D):
if self == other:
return [self]
return []
return other.intersection(self)
def scale(self, x=1, y=1, z=1, pt=None):
"""Scale the coordinates of the Point by multiplying by
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
and then adding ``pt`` back again (i.e. ``pt`` is the point of
reference for the scaling).
See Also
========
translate
Examples
========
>>> from sympy import Point3D
>>> t = Point3D(1, 1, 1)
>>> t.scale(2)
Point3D(2, 1, 1)
>>> t.scale(2, 2)
Point3D(2, 2, 1)
"""
if pt:
pt = Point3D(pt)
return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args)
return Point3D(self.x*x, self.y*y, self.z*z)
def transform(self, matrix):
"""Return the point after applying the transformation described
by the 4x4 Matrix, ``matrix``.
See Also
========
geometry.entity.rotate
geometry.entity.scale
geometry.entity.translate
"""
try:
col, row = matrix.shape
valid_matrix = matrix.is_square and col == 4
except AttributeError:
# We hit this block if matrix argument is not actually a Matrix.
valid_matrix = False
if not valid_matrix:
raise ValueError("The argument to the transform function must be " \
+ "a 4x4 matrix")
from sympy.matrices.expressions import Transpose
x, y, z = self.args
m = Transpose(matrix)
return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3])
def translate(self, x=0, y=0, z=0):
"""Shift the Point by adding x and y to the coordinates of the Point.
See Also
========
rotate, scale
Examples
========
>>> from sympy import Point3D
>>> t = Point3D(0, 1, 1)
>>> t.translate(2)
Point3D(2, 1, 1)
>>> t.translate(2, 2)
Point3D(2, 3, 1)
>>> t + Point3D(2, 2, 2)
Point3D(2, 3, 3)
"""
return Point3D(self.x + x, self.y + y, self.z + z)
@property
def x(self):
"""
Returns the X coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 3)
>>> p.x
0
"""
return self.args[0]
@property
def y(self):
"""
Returns the Y coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 2)
>>> p.y
1
"""
return self.args[1]
@property
def z(self):
"""
Returns the Z coordinate of the Point.
Examples
========
>>> from sympy import Point3D
>>> p = Point3D(0, 1, 1)
>>> p.z
1
"""
return self.args[2]
|
d2a4b859d73fda221e923070f9e9ce7cbcdb6717de2480132e5e399bedf079b1
|
"""Utility functions for geometrical entities.
Contains
========
intersection
convex_hull
closest_points
farthest_points
are_coplanar
are_similar
"""
from __future__ import division, print_function
from sympy import Function, Symbol, solve
from sympy.core.compatibility import (
is_sequence, range, string_types, ordered)
from sympy.core.containers import OrderedSet
from .point import Point, Point2D
def find(x, equation):
"""
Checks whether the parameter 'x' is present in 'equation' or not.
If it is present then it returns the passed parameter 'x' as a free
symbol, else, it returns a ValueError.
"""
free = equation.free_symbols
xs = [i for i in free if (i.name if type(x) is str else i) == x]
if not xs:
raise ValueError('could not find %s' % x)
if len(xs) != 1:
raise ValueError('ambiguous %s' % x)
return xs[0]
def _ordered_points(p):
"""Return the tuple of points sorted numerically according to args"""
return tuple(sorted(p, key=lambda x: x.args))
def are_coplanar(*e):
""" Returns True if the given entities are coplanar otherwise False
Parameters
==========
e: entities to be checked for being coplanar
Returns
=======
Boolean
Examples
========
>>> from sympy import Point3D, Line3D
>>> from sympy.geometry.util import are_coplanar
>>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
>>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
>>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
>>> are_coplanar(a, b, c)
False
"""
from sympy.geometry.line import LinearEntity3D
from sympy.geometry.point import Point3D
from sympy.geometry.plane import Plane
# XXX update tests for coverage
e = set(e)
# first work with a Plane if present
for i in list(e):
if isinstance(i, Plane):
e.remove(i)
return all(p.is_coplanar(i) for p in e)
if all(isinstance(i, Point3D) for i in e):
if len(e) < 3:
return False
# remove pts that are collinear with 2 pts
a, b = e.pop(), e.pop()
for i in list(e):
if Point3D.are_collinear(a, b, i):
e.remove(i)
if not e:
return False
else:
# define a plane
p = Plane(a, b, e.pop())
for i in e:
if i not in p:
return False
return True
else:
pt3d = []
for i in e:
if isinstance(i, Point3D):
pt3d.append(i)
elif isinstance(i, LinearEntity3D):
pt3d.extend(i.args)
elif isinstance(i, GeometryEntity): # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't hanlde above, an error should be raised
# all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0
for p in i.args:
if isinstance(p, Point):
pt3d.append(Point3D(*(p.args + (0,))))
return are_coplanar(*pt3d)
def are_similar(e1, e2):
"""Are two geometrical entities similar.
Can one geometrical entity be uniformly scaled to the other?
Parameters
==========
e1 : GeometryEntity
e2 : GeometryEntity
Returns
=======
are_similar : boolean
Raises
======
GeometryError
When `e1` and `e2` cannot be compared.
Notes
=====
If the two objects are equal then they are similar.
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar
Examples
========
>>> from sympy import Point, Circle, Triangle, are_similar
>>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3)
>>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
>>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2))
>>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1))
>>> are_similar(t1, t2)
True
>>> are_similar(t1, t3)
False
"""
from .exceptions import GeometryError
if e1 == e2:
return True
try:
return e1.is_similar(e2)
except AttributeError:
try:
return e2.is_similar(e1)
except AttributeError:
n1 = e1.__class__.__name__
n2 = e2.__class__.__name__
raise GeometryError(
"Cannot test similarity between %s and %s" % (n1, n2))
def centroid(*args):
"""Find the centroid (center of mass) of the collection containing only Points,
Segments or Polygons. The centroid is the weighted average of the individual centroid
where the weights are the lengths (of segments) or areas (of polygons).
Overlapping regions will add to the weight of that region.
If there are no objects (or a mixture of objects) then None is returned.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment,
sympy.geometry.polygon.Polygon
Examples
========
>>> from sympy import Point, Segment, Polygon
>>> from sympy.geometry.util import centroid
>>> p = Polygon((0, 0), (10, 0), (10, 10))
>>> q = p.translate(0, 20)
>>> p.centroid, q.centroid
(Point2D(20/3, 10/3), Point2D(20/3, 70/3))
>>> centroid(p, q)
Point2D(20/3, 40/3)
>>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
>>> centroid(p, q)
Point2D(1, -sqrt(2) + 2)
>>> centroid(Point(0, 0), Point(2, 0))
Point2D(1, 0)
Stacking 3 polygons on top of each other effectively triples the
weight of that polygon:
>>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
>>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
>>> centroid(p, q)
Point2D(3/2, 1/2)
>>> centroid(p, p, p, q) # centroid x-coord shifts left
Point2D(11/10, 1/2)
Stacking the squares vertically above and below p has the same
effect:
>>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
Point2D(11/10, 1/2)
"""
from sympy.geometry import Polygon, Segment, Point
if args:
if all(isinstance(g, Point) for g in args):
c = Point(0, 0)
for g in args:
c += g
den = len(args)
elif all(isinstance(g, Segment) for g in args):
c = Point(0, 0)
L = 0
for g in args:
l = g.length
c += g.midpoint*l
L += l
den = L
elif all(isinstance(g, Polygon) for g in args):
c = Point(0, 0)
A = 0
for g in args:
a = g.area
c += g.centroid*a
A += a
den = A
c /= den
return c.func(*[i.simplify() for i in c.args])
def closest_points(*args):
"""Return the subset of points from a set of points that were
the closest to each other in the 2D plane.
Parameters
==========
args : a collection of Points on 2D plane.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line. If there are no ties then a single
pair of Points will be in the set.
References
==========
[1] http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html
[2] Sweep line algorithm
https://en.wikipedia.org/wiki/Sweep_line_algorithm
Examples
========
>>> from sympy.geometry import closest_points, Point2D, Triangle
>>> Triangle(sss=(3, 4, 5)).args
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> closest_points(*_)
{(Point2D(0, 0), Point2D(3, 0))}
"""
from collections import deque
from math import hypot, sqrt as _sqrt
from sympy.functions.elementary.miscellaneous import sqrt
p = [Point2D(i) for i in set(args)]
if len(p) < 2:
raise ValueError('At least 2 distinct points must be given.')
try:
p.sort(key=lambda x: x.args)
except TypeError:
raise ValueError("The points could not be sorted.")
if any(not i.is_Rational for j in p for i in j.args):
def hypot(x, y):
arg = x*x + y*y
if arg.is_Rational:
return _sqrt(arg)
return sqrt(arg)
rv = [(0, 1)]
best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y)
i = 2
left = 0
box = deque([0, 1])
while i < len(p):
while left < i and p[i][0] - p[left][0] > best_dist:
box.popleft()
left += 1
for j in box:
d = hypot(p[i].x - p[j].x, p[i].y - p[j].y)
if d < best_dist:
rv = [(j, i)]
elif d == best_dist:
rv.append((j, i))
else:
continue
best_dist = d
box.append(i)
i += 1
return {tuple([p[i] for i in pair]) for pair in rv}
def convex_hull(*args, **kwargs):
"""The convex hull surrounding the Points contained in the list of entities.
Parameters
==========
args : a collection of Points, Segments and/or Polygons
Returns
=======
convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where ``L`` and ``U`` are the lower and upper hulls, respectively.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line.
References
==========
[1] https://en.wikipedia.org/wiki/Graham_scan
[2] Andrew's Monotone Chain Algorithm
(A.M. Andrew,
"Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979)
http://geomalgorithms.com/a10-_hull-1.html
See Also
========
sympy.geometry.point.Point, sympy.geometry.polygon.Polygon
Examples
========
>>> from sympy.geometry import Point, convex_hull
>>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
>>> convex_hull(*points)
Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4))
>>> convex_hull(*points, **dict(polygon=False))
([Point2D(-5, 2), Point2D(15, 4)],
[Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)])
"""
from .entity import GeometryEntity
from .point import Point
from .line import Segment
from .polygon import Polygon
polygon = kwargs.get('polygon', True)
p = OrderedSet()
for e in args:
if not isinstance(e, GeometryEntity):
try:
e = Point(e)
except NotImplementedError:
raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e))
if isinstance(e, Point):
p.add(e)
elif isinstance(e, Segment):
p.update(e.points)
elif isinstance(e, Polygon):
p.update(e.vertices)
else:
raise NotImplementedError(
'Convex hull for %s not implemented.' % type(e))
# make sure all our points are of the same dimension
if any(len(x) != 2 for x in p):
raise ValueError('Can only compute the convex hull in two dimensions')
p = list(p)
if len(p) == 1:
return p[0] if polygon else (p[0], None)
elif len(p) == 2:
s = Segment(p[0], p[1])
return s if polygon else (s, None)
def _orientation(p, q, r):
'''Return positive if p-q-r are clockwise, neg if ccw, zero if
collinear.'''
return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y)
# scan to find upper and lower convex hulls of a set of 2d points.
U = []
L = []
try:
p.sort(key=lambda x: x.args)
except TypeError:
raise ValueError("The points could not be sorted.")
for p_i in p:
while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0:
U.pop()
while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0:
L.pop()
U.append(p_i)
L.append(p_i)
U.reverse()
convexHull = tuple(L + U[1:-1])
if len(convexHull) == 2:
s = Segment(convexHull[0], convexHull[1])
return s if polygon else (s, None)
if polygon:
return Polygon(*convexHull)
else:
U.reverse()
return (U, L)
def farthest_points(*args):
"""Return the subset of points from a set of points that were
the furthest apart from each other in the 2D plane.
Parameters
==========
args : a collection of Points on 2D plane.
Notes
=====
This can only be performed on a set of points whose coordinates can
be ordered on the number line. If there are no ties then a single
pair of Points will be in the set.
References
==========
[1] http://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/
[2] Rotating Callipers Technique
https://en.wikipedia.org/wiki/Rotating_calipers
Examples
========
>>> from sympy.geometry import farthest_points, Point2D, Triangle
>>> Triangle(sss=(3, 4, 5)).args
(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> farthest_points(*_)
{(Point2D(0, 0), Point2D(3, 4))}
"""
from math import hypot, sqrt as _sqrt
def rotatingCalipers(Points):
U, L = convex_hull(*Points, **dict(polygon=False))
if L is None:
if isinstance(U, Point):
raise ValueError('At least two distinct points must be given.')
yield U.args
else:
i = 0
j = len(L) - 1
while i < len(U) - 1 or j > 0:
yield U[i], L[j]
# if all the way through one side of hull, advance the other side
if i == len(U) - 1:
j -= 1
elif j == 0:
i += 1
# still points left on both lists, compare slopes of next hull edges
# being careful to avoid divide-by-zero in slope calculation
elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \
(L[j].y - L[j-1].y) * (U[i+1].x - U[i].x):
i += 1
else:
j -= 1
p = [Point2D(i) for i in set(args)]
if any(not i.is_Rational for j in p for i in j.args):
def hypot(x, y):
arg = x*x + y*y
if arg.is_Rational:
return _sqrt(arg)
return sqrt(arg)
rv = []
diam = 0
for pair in rotatingCalipers(args):
h, q = _ordered_points(pair)
d = hypot(h.x - q.x, h.y - q.y)
if d > diam:
rv = [(h, q)]
elif d == diam:
rv.append((h, q))
else:
continue
diam = d
return set(rv)
def idiff(eq, y, x, n=1):
"""Return ``dy/dx`` assuming that ``eq == 0``.
Parameters
==========
y : the dependent variable or a list of dependent variables (with y first)
x : the variable that the derivative is being taken with respect to
n : the order of the derivative (default is 1)
Examples
========
>>> from sympy.abc import x, y, a
>>> from sympy.geometry.util import idiff
>>> circ = x**2 + y**2 - 4
>>> idiff(circ, y, x)
-x/y
>>> idiff(circ, y, x, 2).simplify()
-(x**2 + y**2)/y**3
Here, ``a`` is assumed to be independent of ``x``:
>>> idiff(x + a + y, y, x)
-1
Now the x-dependence of ``a`` is made explicit by listing ``a`` after
``y`` in a list.
>>> idiff(x + a + y, [y, a], x)
-Derivative(a, x) - 1
See Also
========
sympy.core.function.Derivative: represents unevaluated derivatives
sympy.core.function.diff: explicitly differentiates wrt symbols
"""
if is_sequence(y):
dep = set(y)
y = y[0]
elif isinstance(y, Symbol):
dep = {y}
else:
raise ValueError("expecting x-dependent symbol(s) but got: %s" % y)
f = dict([(s, Function(
s.name)(x)) for s in eq.free_symbols if s != x and s in dep])
dydx = Function(y.name)(x).diff(x)
eq = eq.subs(f)
derivs = {}
for i in range(n):
yp = solve(eq.diff(x), dydx)[0].subs(derivs)
if i == n - 1:
return yp.subs([(v, k) for k, v in f.items()])
derivs[dydx] = yp
eq = dydx - yp
dydx = dydx.diff(x)
def intersection(*entities, **kwargs):
"""The intersection of a collection of GeometryEntity instances.
Parameters
==========
entities : sequence of GeometryEntity
pairwise (keyword argument) : Can be either True or False
Returns
=======
intersection : list of GeometryEntity
Raises
======
NotImplementedError
When unable to calculate intersection.
Notes
=====
The intersection of any geometrical entity with itself should return
a list with one item: the entity in question.
An intersection requires two or more entities. If only a single
entity is given then the function will return an empty list.
It is possible for `intersection` to miss intersections that one
knows exists because the required quantities were not fully
simplified internally.
Reals should be converted to Rationals, e.g. Rational(str(real_num))
or else failures due to floating point issues may result.
Case 1: When the keyword argument 'pairwise' is False (default value):
In this case, the function returns a list of intersections common to
all entities.
Case 2: When the keyword argument 'pairwise' is True:
In this case, the functions returns a list intersections that occur
between any pair of entities.
See Also
========
sympy.geometry.entity.GeometryEntity.intersection
Examples
========
>>> from sympy.geometry import Ray, Circle, intersection
>>> c = Circle((0, 1), 1)
>>> intersection(c, c.center)
[]
>>> right = Ray((0, 0), (1, 0))
>>> up = Ray((0, 0), (0, 1))
>>> intersection(c, right, up)
[Point2D(0, 0)]
>>> intersection(c, right, up, pairwise=True)
[Point2D(0, 0), Point2D(0, 2)]
>>> left = Ray((1, 0), (0, 0))
>>> intersection(right, left)
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
"""
from .entity import GeometryEntity
from .point import Point
pairwise = kwargs.pop('pairwise', False)
if len(entities) <= 1:
return []
# entities may be an immutable tuple
entities = list(entities)
for i, e in enumerate(entities):
if not isinstance(e, GeometryEntity):
entities[i] = Point(e)
if not pairwise:
# find the intersection common to all objects
res = entities[0].intersection(entities[1])
for entity in entities[2:]:
newres = []
for x in res:
newres.extend(x.intersection(entity))
res = newres
return res
# find all pairwise intersections
ans = []
for j in range(0, len(entities)):
for k in range(j + 1, len(entities)):
ans.extend(intersection(entities[j], entities[k]))
return list(ordered(set(ans)))
|
464ec8020a6d6edaf2939f4afef49d495ec83ed11556e75ffeec96525dbdc5ba
|
from __future__ import division, print_function
from sympy.core import Expr, S, Symbol, oo, pi, sympify
from sympy.core.compatibility import as_int, range, ordered
from sympy.core.symbol import _symbol, Dummy
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cos, sin, tan
from sympy.geometry.exceptions import GeometryError
from sympy.logic import And
from sympy.matrices import Matrix
from sympy.simplify import simplify
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import has_dups, has_variety, uniq
from sympy.utilities.misc import func_name
from .entity import GeometryEntity, GeometrySet
from .point import Point
from .ellipse import Circle
from .line import Line, Segment, Ray
from sympy import sqrt
import warnings
class Polygon(GeometrySet):
"""A two-dimensional polygon.
A simple polygon in space. Can be constructed from a sequence of points
or from a center, radius, number of sides and rotation angle.
Parameters
==========
vertices : sequence of Points
Attributes
==========
area
angles
perimeter
vertices
centroid
sides
Raises
======
GeometryError
If all parameters are not Points.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle
Notes
=====
Polygons are treated as closed paths rather than 2D areas so
some calculations can be be negative or positive (e.g., area)
based on the orientation of the points.
Any consecutive identical points are reduced to a single point
and any points collinear and between two points will be removed
unless they are needed to define an explicit intersection (see examples).
A Triangle, Segment or Point will be returned when there are 3 or
fewer points provided.
Examples
========
>>> from sympy import Point, Polygon, pi
>>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
>>> Polygon(p1, p2, p3, p4)
Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1))
>>> Polygon(p1, p2)
Segment2D(Point2D(0, 0), Point2D(1, 0))
>>> Polygon(p1, p2, p5)
Segment2D(Point2D(0, 0), Point2D(3, 0))
The area of a polygon is calculated as positive when vertices are
traversed in a ccw direction. When the sides of a polygon cross the
area will have positive and negative contributions. The following
defines a Z shape where the bottom right connects back to the top
left.
>>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area
0
When the the keyword `n` is used to define the number of sides of the
Polygon then a RegularPolygon is created and the other arguments are
interpreted as center, radius and rotation. The unrotated RegularPolygon
will always have a vertex at Point(r, 0) where `r` is the radius of the
circle that circumscribes the RegularPolygon. Its method `spin` can be
used to increment that angle.
>>> p = Polygon((0,0), 1, n=3)
>>> p
RegularPolygon(Point2D(0, 0), 1, 3, 0)
>>> p.vertices[0]
Point2D(1, 0)
>>> p.args[0]
Point2D(0, 0)
>>> p.spin(pi/2)
>>> p.vertices[0]
Point2D(0, 1)
"""
def __new__(cls, *args, **kwargs):
if kwargs.get('n', 0):
n = kwargs.pop('n')
args = list(args)
# return a virtual polygon with n sides
if len(args) == 2: # center, radius
args.append(n)
elif len(args) == 3: # center, radius, rotation
args.insert(2, n)
return RegularPolygon(*args, **kwargs)
vertices = [Point(a, dim=2, **kwargs) for a in args]
# remove consecutive duplicates
nodup = []
for p in vertices:
if nodup and p == nodup[-1]:
continue
nodup.append(p)
if len(nodup) > 1 and nodup[-1] == nodup[0]:
nodup.pop() # last point was same as first
# remove collinear points
i = -3
while i < len(nodup) - 3 and len(nodup) > 2:
a, b, c = nodup[i], nodup[i + 1], nodup[i + 2]
if Point.is_collinear(a, b, c):
nodup.pop(i + 1)
if a == c:
nodup.pop(i)
else:
i += 1
vertices = list(nodup)
if len(vertices) > 3:
return GeometryEntity.__new__(cls, *vertices, **kwargs)
elif len(vertices) == 3:
return Triangle(*vertices, **kwargs)
elif len(vertices) == 2:
return Segment(*vertices, **kwargs)
else:
return Point(*vertices, **kwargs)
@property
def area(self):
"""
The area of the polygon.
Notes
=====
The area calculation can be positive or negative based on the
orientation of the points. If any side of the polygon crosses
any other side, there will be areas having opposite signs.
See Also
========
sympy.geometry.ellipse.Ellipse.area
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.area
3
In the Z shaped polygon (with the lower right connecting back
to the upper left) the areas cancel out:
>>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0))
>>> Z.area
0
In the M shaped polygon, areas do not cancel because no side
crosses any other (though there is a point of contact).
>>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0))
>>> M.area
-3/2
"""
area = 0
args = self.args
for i in range(len(args)):
x1, y1 = args[i - 1].args
x2, y2 = args[i].args
area += x1*y2 - x2*y1
return simplify(area) / 2
@staticmethod
def _isright(a, b, c):
"""Return True/False for cw/ccw orientation.
Examples
========
>>> from sympy import Point, Polygon
>>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]]
>>> Polygon._isright(a, b, c)
True
>>> Polygon._isright(a, c, b)
False
"""
ba = b - a
ca = c - a
t_area = simplify(ba.x*ca.y - ca.x*ba.y)
res = t_area.is_nonpositive
if res is None:
raise ValueError("Can't determine orientation")
return res
@property
def angles(self):
"""The internal angle at each vertex.
Returns
=======
angles : dict
A dictionary where each key is a vertex and each value is the
internal angle at that vertex. The vertices are represented as
Points.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.angles[p1]
pi/2
>>> poly.angles[p2]
acos(-4*sqrt(17)/17)
"""
# Determine orientation of points
args = self.vertices
cw = self._isright(args[-1], args[0], args[1])
ret = {}
for i in range(len(args)):
a, b, c = args[i - 2], args[i - 1], args[i]
ang = Ray(b, a).angle_between(Ray(b, c))
if cw ^ self._isright(a, b, c):
ret[b] = 2*S.Pi - ang
else:
ret[b] = ang
return ret
@property
def ambient_dimension(self):
return self.vertices[0].ambient_dimension
@property
def perimeter(self):
"""The perimeter of the polygon.
Returns
=======
perimeter : number or Basic instance
See Also
========
sympy.geometry.line.Segment.length
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.perimeter
sqrt(17) + 7
"""
p = 0
args = self.vertices
for i in range(len(args)):
p += args[i - 1].distance(args[i])
return simplify(p)
@property
def vertices(self):
"""The vertices of the polygon.
Returns
=======
vertices : list of Points
Notes
=====
When iterating over the vertices, it is more efficient to index self
rather than to request the vertices and index them. Only use the
vertices when you want to process all of them at once. This is even
more important with RegularPolygons that calculate each vertex.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.vertices
[Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)]
>>> poly.vertices[0]
Point2D(0, 0)
"""
return list(self.args)
@property
def centroid(self):
"""The centroid of the polygon.
Returns
=======
centroid : Point
See Also
========
sympy.geometry.point.Point, sympy.geometry.util.centroid
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.centroid
Point2D(31/18, 11/18)
"""
A = 1/(6*self.area)
cx, cy = 0, 0
args = self.args
for i in range(len(args)):
x1, y1 = args[i - 1].args
x2, y2 = args[i].args
v = x1*y2 - x2*y1
cx += v*(x1 + x2)
cy += v*(y1 + y2)
return Point(simplify(A*cx), simplify(A*cy))
def second_moment_of_area(self, point=None):
"""Returns the second moment and product moment of area of a two dimensional polygon.
Parameters
==========
point : Point, two-tuple of sympifiable objects, or None(default=None)
point is the point about which second moment of area is to be found.
If "point=None" it will be calculated about the axis passing through the
centroid of the polygon.
Returns
=======
I_xx, I_yy, I_xy : number or sympy expression
I_xx, I_yy are second moment of area of a two dimensional polygon.
I_xy is product moment of area of a two dimensional polygon.
Examples
========
>>> from sympy import Point, Polygon, symbols
>>> a, b = symbols('a, b')
>>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)]
>>> rectangle = Polygon(p1, p2, p3, p4)
>>> rectangle.second_moment_of_area()
(a*b**3/12, a**3*b/12, 0)
>>> rectangle.second_moment_of_area(p5)
(a*b**3/9, a**3*b/9, a**2*b**2/36)
References
==========
https://en.wikipedia.org/wiki/Second_moment_of_area
"""
I_xx, I_yy, I_xy = 0, 0, 0
args = self.args
for i in range(len(args)):
x1, y1 = args[i-1].args
x2, y2 = args[i].args
v = x1*y2 - x2*y1
I_xx += (y1**2 + y1*y2 + y2**2)*v
I_yy += (x1**2 + x1*x2 + x2**2)*v
I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v
A = self.area
c_x = self.centroid[0]
c_y = self.centroid[1]
# parallel axis theorem
I_xx_c = (I_xx/12) - (A*(c_y**2))
I_yy_c = (I_yy/12) - (A*(c_x**2))
I_xy_c = (I_xy/24) - (A*(c_x*c_y))
if point is None:
return I_xx_c, I_yy_c, I_xy_c
I_xx = (I_xx_c + A*((point[1]-c_y)**2))
I_yy = (I_yy_c + A*((point[0]-c_x)**2))
I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y)))
return I_xx, I_yy, I_xy
@property
def sides(self):
"""The directed line segments that form the sides of the polygon.
Returns
=======
sides : list of sides
Each side is a directed Segment.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.sides
[Segment2D(Point2D(0, 0), Point2D(1, 0)),
Segment2D(Point2D(1, 0), Point2D(5, 1)),
Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))]
"""
res = []
args = self.vertices
for i in range(-len(args), 0):
res.append(Segment(args[i], args[i + 1]))
return res
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
verts = self.vertices
xs = [p.x for p in verts]
ys = [p.y for p in verts]
return (min(xs), min(ys), max(xs), max(ys))
def is_convex(self):
"""Is the polygon convex?
A polygon is convex if all its interior angles are less than 180
degrees and there are no intersections between sides.
Returns
=======
is_convex : boolean
True if this polygon is convex, False otherwise.
See Also
========
sympy.geometry.util.convex_hull
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.is_convex()
True
"""
# Determine orientation of points
args = self.vertices
cw = self._isright(args[-2], args[-1], args[0])
for i in range(1, len(args)):
if cw ^ self._isright(args[i - 2], args[i - 1], args[i]):
return False
# check for intersecting sides
sides = self.sides
for i, si in enumerate(sides):
pts = si.args
# exclude the sides connected to si
for j in range(1 if i == len(sides) - 1 else 0, i - 1):
sj = sides[j]
if sj.p1 not in pts and sj.p2 not in pts:
hit = si.intersection(sj)
if hit:
return False
return True
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
=====
Being on the border of self is considered False.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point
Examples
========
>>> from sympy import Polygon, Point
>>> from sympy.abc import t
>>> p = Polygon((0, 0), (4, 0), (4, 4))
>>> p.encloses_point(Point(2, 1))
True
>>> p.encloses_point(Point(2, 2))
False
>>> p.encloses_point(Point(5, 5))
False
References
==========
[1] http://paulbourke.net/geometry/polygonmesh/#insidepoly
"""
p = Point(p, dim=2)
if p in self.vertices or any(p in s for s in self.sides):
return False
# move to p, checking that the result is numeric
lit = []
for v in self.vertices:
lit.append(v - p) # the difference is simplified
if lit[-1].free_symbols:
return None
poly = Polygon(*lit)
# polygon closure is assumed in the following test but Polygon removes duplicate pts so
# the last point has to be added so all sides are computed. Using Polygon.sides is
# not good since Segments are unordered.
args = poly.args
indices = list(range(-len(args), 1))
if poly.is_convex():
orientation = None
for i in indices:
a = args[i]
b = args[i + 1]
test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative
if orientation is None:
orientation = test
elif test is not orientation:
return False
return True
hit_odd = False
p1x, p1y = args[0].args
for i in indices[1:]:
p2x, p2y = args[i].args
if 0 > min(p1y, p2y):
if 0 <= max(p1y, p2y):
if 0 <= max(p1x, p2x):
if p1y != p2y:
xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x
if p1x == p2x or 0 <= xinters:
hit_odd = not hit_odd
p1x, p1y = p2x, p2y
return hit_odd
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the polygon.
The parameter, varying from 0 to 1, assigns points to the position on
the perimeter that is that fraction of the total perimeter. So the
point evaluated at t=1/2 would return the point from the first vertex
that is 1/2 way around the polygon.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
arbitrary_point : Point
Raises
======
ValueError
When `parameter` already appears in the Polygon's definition.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Polygon, S, Symbol
>>> t = Symbol('t', real=True)
>>> tri = Polygon((0, 0), (1, 0), (1, 1))
>>> p = tri.arbitrary_point('t')
>>> perimeter = tri.perimeter
>>> s1, s2 = [s.length for s in tri.sides[:2]]
>>> p.subs(t, (s1 + s2/2)/perimeter)
Point2D(1, 1/2)
"""
t = _symbol(parameter, real=True)
if t.name in (f.name for f in self.free_symbols):
raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
sides = []
perimeter = self.perimeter
perim_fraction_start = 0
for s in self.sides:
side_perim_fraction = s.length/perimeter
perim_fraction_end = perim_fraction_start + side_perim_fraction
pt = s.arbitrary_point(parameter).subs(
t, (t - perim_fraction_start)/side_perim_fraction)
sides.append(
(pt, (And(perim_fraction_start <= t, t < perim_fraction_end))))
perim_fraction_start = perim_fraction_end
return Piecewise(*sides)
def parameter_value(self, other, t):
from sympy.solvers.solvers import solve
if not isinstance(other,GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if not isinstance(other,Point):
raise ValueError("other must be a point")
if other.free_symbols:
raise NotImplementedError('non-numeric coordinates')
unknown = False
T = Dummy('t', real=True)
p = self.arbitrary_point(T)
for pt, cond in p.args:
sol = solve(pt - other, T, dict=True)
if not sol:
continue
value = sol[0][T]
if simplify(cond.subs(T, value)) == True:
return {t: value}
unknown = True
if unknown:
raise ValueError("Given point may not be on %s" % func_name(self))
raise ValueError("Given point is not on %s" % func_name(self))
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the polygon.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list (plot interval)
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Polygon
>>> p = Polygon((0, 0), (1, 0), (1, 1))
>>> p.plot_interval()
[t, 0, 1]
"""
t = Symbol(parameter, real=True)
return [t, 0, 1]
def intersection(self, o):
"""The intersection of polygon and geometry entity.
The intersection may be empty and can contain individual Points and
complete Line Segments.
Parameters
==========
other: GeometryEntity
Returns
=======
intersection : list
The list of Segments and Points
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy import Point, Polygon, Line
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly1 = Polygon(p1, p2, p3, p4)
>>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
>>> poly2 = Polygon(p5, p6, p7)
>>> poly1.intersection(poly2)
[Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)]
>>> poly1.intersection(Line(p1, p2))
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
>>> poly1.intersection(p1)
[Point2D(0, 0)]
"""
intersection_result = []
k = o.sides if isinstance(o, Polygon) else [o]
for side in self.sides:
for side1 in k:
intersection_result.extend(side.intersection(side1))
intersection_result = list(uniq(intersection_result))
points = [entity for entity in intersection_result if isinstance(entity, Point)]
segments = [entity for entity in intersection_result if isinstance(entity, Segment)]
if points and segments:
points_in_segments = list(uniq([point for point in points for segment in segments if point in segment]))
if points_in_segments:
for i in points_in_segments:
points.remove(i)
return list(ordered(segments + points))
else:
return list(ordered(intersection_result))
def distance(self, o):
"""
Returns the shortest distance between self and o.
If o is a point, then self does not need to be convex.
If o is another polygon self and o must be complex.
Examples
========
>>> from sympy import Point, Polygon, RegularPolygon
>>> p1, p2 = map(Point, [(0, 0), (7, 5)])
>>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices)
>>> poly.distance(p2)
sqrt(61)
"""
if isinstance(o, Point):
dist = oo
for side in self.sides:
current = side.distance(o)
if current == 0:
return S.Zero
elif current < dist:
dist = current
return dist
elif isinstance(o, Polygon) and self.is_convex() and o.is_convex():
return self._do_poly_distance(o)
raise NotImplementedError()
def _do_poly_distance(self, e2):
"""
Calculates the least distance between the exteriors of two
convex polygons e1 and e2. Does not check for the convexity
of the polygons as this is checked by Polygon.distance.
Notes
=====
- Prints a warning if the two polygons possibly intersect as the return
value will not be valid in such a case. For a more through test of
intersection use intersection().
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy.geometry import Point, Polygon
>>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
>>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
>>> square._do_poly_distance(triangle)
sqrt(2)/2
Description of method used
==========================
Method:
[1] http://cgm.cs.mcgill.ca/~orm/mind2p.html
Uses rotating calipers:
[2] https://en.wikipedia.org/wiki/Rotating_calipers
and antipodal points:
[3] https://en.wikipedia.org/wiki/Antipodal_point
"""
e1 = self
'''Tests for a possible intersection between the polygons and outputs a warning'''
e1_center = e1.centroid
e2_center = e2.centroid
e1_max_radius = S.Zero
e2_max_radius = S.Zero
for vertex in e1.vertices:
r = Point.distance(e1_center, vertex)
if e1_max_radius < r:
e1_max_radius = r
for vertex in e2.vertices:
r = Point.distance(e2_center, vertex)
if e2_max_radius < r:
e2_max_radius = r
center_dist = Point.distance(e1_center, e2_center)
if center_dist <= e1_max_radius + e2_max_radius:
warnings.warn("Polygons may intersect producing erroneous output")
'''
Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2
'''
e1_ymax = Point(0, -oo)
e2_ymin = Point(0, oo)
for vertex in e1.vertices:
if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x):
e1_ymax = vertex
for vertex in e2.vertices:
if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x):
e2_ymin = vertex
min_dist = Point.distance(e1_ymax, e2_ymin)
'''
Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points
to which the vertex is connected as its value. The same is then done for e2.
'''
e1_connections = {}
e2_connections = {}
for side in e1.sides:
if side.p1 in e1_connections:
e1_connections[side.p1].append(side.p2)
else:
e1_connections[side.p1] = [side.p2]
if side.p2 in e1_connections:
e1_connections[side.p2].append(side.p1)
else:
e1_connections[side.p2] = [side.p1]
for side in e2.sides:
if side.p1 in e2_connections:
e2_connections[side.p1].append(side.p2)
else:
e2_connections[side.p1] = [side.p2]
if side.p2 in e2_connections:
e2_connections[side.p2].append(side.p1)
else:
e2_connections[side.p2] = [side.p1]
e1_current = e1_ymax
e2_current = e2_ymin
support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero))
'''
Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax,
this information combined with the above produced dictionaries determines the
path that will be taken around the polygons
'''
point1 = e1_connections[e1_ymax][0]
point2 = e1_connections[e1_ymax][1]
angle1 = support_line.angle_between(Line(e1_ymax, point1))
angle2 = support_line.angle_between(Line(e1_ymax, point2))
if angle1 < angle2:
e1_next = point1
elif angle2 < angle1:
e1_next = point2
elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2):
e1_next = point2
else:
e1_next = point1
point1 = e2_connections[e2_ymin][0]
point2 = e2_connections[e2_ymin][1]
angle1 = support_line.angle_between(Line(e2_ymin, point1))
angle2 = support_line.angle_between(Line(e2_ymin, point2))
if angle1 > angle2:
e2_next = point1
elif angle2 > angle1:
e2_next = point2
elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2):
e2_next = point2
else:
e2_next = point1
'''
Loop which determines the distance between anti-podal pairs and updates the
minimum distance accordingly. It repeats until it reaches the starting position.
'''
while True:
e1_angle = support_line.angle_between(Line(e1_current, e1_next))
e2_angle = pi - support_line.angle_between(Line(
e2_current, e2_next))
if (e1_angle < e2_angle) is True:
support_line = Line(e1_current, e1_next)
e1_segment = Segment(e1_current, e1_next)
min_dist_current = e1_segment.distance(e2_current)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e1_connections[e1_next][0] != e1_current:
e1_current = e1_next
e1_next = e1_connections[e1_next][0]
else:
e1_current = e1_next
e1_next = e1_connections[e1_next][1]
elif (e1_angle > e2_angle) is True:
support_line = Line(e2_next, e2_current)
e2_segment = Segment(e2_current, e2_next)
min_dist_current = e2_segment.distance(e1_current)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e2_connections[e2_next][0] != e2_current:
e2_current = e2_next
e2_next = e2_connections[e2_next][0]
else:
e2_current = e2_next
e2_next = e2_connections[e2_next][1]
else:
support_line = Line(e1_current, e1_next)
e1_segment = Segment(e1_current, e1_next)
e2_segment = Segment(e2_current, e2_next)
min1 = e1_segment.distance(e2_next)
min2 = e2_segment.distance(e1_next)
min_dist_current = min(min1, min2)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e1_connections[e1_next][0] != e1_current:
e1_current = e1_next
e1_next = e1_connections[e1_next][0]
else:
e1_current = e1_next
e1_next = e1_connections[e1_next][1]
if e2_connections[e2_next][0] != e2_current:
e2_current = e2_next
e2_next = e2_connections[e2_next][0]
else:
e2_current = e2_next
e2_next = e2_connections[e2_next][1]
if e1_current == e1_ymax and e2_current == e2_ymin:
break
return min_dist
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the Polygon.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
from sympy.core.evalf import N
verts = map(N, self.vertices)
coords = ["{0},{1}".format(p.x, p.y) for p in verts]
path = "M {0} L {1} z".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" />'
).format(2. * scale_factor, path, fill_color)
def __eq__(self, o):
if not isinstance(o, Polygon) or len(self.args) != len(o.args):
return False
# See if self can ever be traversed (cw or ccw) from any of its
# vertices to match all points of o
args = self.args
oargs = o.args
n = len(args)
o0 = oargs[0]
for i0 in range(n):
if args[i0] == o0:
if all(args[(i0 + i) % n] == oargs[i] for i in range(1, n)):
return True
if all(args[(i0 - i) % n] == oargs[i] for i in range(1, n)):
return True
return False
def __hash__(self):
return super(Polygon, self).__hash__()
def __contains__(self, o):
"""
Return True if o is contained within the boundary lines of self.altitudes
Parameters
==========
other : GeometryEntity
Returns
=======
contained in : bool
The points (and sides, if applicable) are contained in self.
See Also
========
sympy.geometry.entity.GeometryEntity.encloses
Examples
========
>>> from sympy import Line, Segment, Point
>>> p = Point(0, 0)
>>> q = Point(1, 1)
>>> s = Segment(p, q*2)
>>> l = Line(p, q)
>>> p in q
False
>>> p in s
True
>>> q*3 in s
False
>>> s in l
True
"""
if isinstance(o, Polygon):
return self == o
elif isinstance(o, Segment):
return any(o in s for s in self.sides)
elif isinstance(o, Point):
if o in self.vertices:
return True
for side in self.sides:
if o in side:
return True
return False
class RegularPolygon(Polygon):
"""
A regular polygon.
Such a polygon has all internal angles equal and all sides the same length.
Parameters
==========
center : Point
radius : number or Basic instance
The distance from the center to a vertex
n : int
The number of sides
Attributes
==========
vertices
center
radius
rotation
apothem
interior_angle
exterior_angle
circumcircle
incircle
angles
Raises
======
GeometryError
If the `center` is not a Point, or the `radius` is not a number or Basic
instance, or the number of sides, `n`, is less than three.
Notes
=====
A RegularPolygon can be instantiated with Polygon with the kwarg n.
Regular polygons are instantiated with a center, radius, number of sides
and a rotation angle. Whereas the arguments of a Polygon are vertices, the
vertices of the RegularPolygon must be obtained with the vertices method.
See Also
========
sympy.geometry.point.Point, Polygon
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r
RegularPolygon(Point2D(0, 0), 5, 3, 0)
>>> r.vertices[0]
Point2D(5, 0)
"""
__slots__ = ['_n', '_center', '_radius', '_rot']
def __new__(self, c, r, n, rot=0, **kwargs):
r, n, rot = map(sympify, (r, n, rot))
c = Point(c, dim=2, **kwargs)
if not isinstance(r, Expr):
raise GeometryError("r must be an Expr object, not %s" % r)
if n.is_Number:
as_int(n) # let an error raise if necessary
if n < 3:
raise GeometryError("n must be a >= 3, not %s" % n)
obj = GeometryEntity.__new__(self, c, r, n, **kwargs)
obj._n = n
obj._center = c
obj._radius = r
obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot
return obj
@property
def args(self):
"""
Returns the center point, the radius,
the number of sides, and the orientation angle.
Examples
========
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.args
(Point2D(0, 0), 5, 3, 0)
"""
return self._center, self._radius, self._n, self._rot
def __str__(self):
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
def __repr__(self):
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
@property
def area(self):
"""Returns the area.
Examples
========
>>> from sympy.geometry import RegularPolygon
>>> square = RegularPolygon((0, 0), 1, 4)
>>> square.area
2
>>> _ == square.length**2
True
"""
c, r, n, rot = self.args
return sign(r)*n*self.length**2/(4*tan(pi/n))
@property
def length(self):
"""Returns the length of the sides.
The half-length of the side and the apothem form two legs
of a right triangle whose hypotenuse is the radius of the
regular polygon.
Examples
========
>>> from sympy.geometry import RegularPolygon
>>> from sympy import sqrt
>>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4)
>>> s.length
sqrt(2)
>>> sqrt((_/2)**2 + s.apothem**2) == s.radius
True
"""
return self.radius*2*sin(pi/self._n)
@property
def center(self):
"""The center of the RegularPolygon
This is also the center of the circumscribing circle.
Returns
=======
center : Point
See Also
========
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.center
Point2D(0, 0)
"""
return self._center
centroid = center
@property
def circumcenter(self):
"""
Alias for center.
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.circumcenter
Point2D(0, 0)
"""
return self.center
@property
def radius(self):
"""Radius of the RegularPolygon
This is also the radius of the circumscribing circle.
Returns
=======
radius : number or instance of Basic
See Also
========
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.radius
r
"""
return self._radius
@property
def circumradius(self):
"""
Alias for radius.
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.circumradius
r
"""
return self.radius
@property
def rotation(self):
"""CCW angle by which the RegularPolygon is rotated
Returns
=======
rotation : number or instance of Basic
Examples
========
>>> from sympy import pi
>>> from sympy.abc import a
>>> from sympy.geometry import RegularPolygon, Point
>>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation
pi/4
Numerical rotation angles are made canonical:
>>> RegularPolygon(Point(0, 0), 3, 4, a).rotation
a
>>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
0
"""
return self._rot
@property
def apothem(self):
"""The inradius of the RegularPolygon.
The apothem/inradius is the radius of the inscribed circle.
Returns
=======
apothem : number or instance of Basic
See Also
========
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.apothem
sqrt(2)*r/2
"""
return self.radius * cos(S.Pi/self._n)
@property
def inradius(self):
"""
Alias for apothem.
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.inradius
sqrt(2)*r/2
"""
return self.apothem
@property
def interior_angle(self):
"""Measure of the interior angles.
Returns
=======
interior_angle : number
See Also
========
sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.interior_angle
3*pi/4
"""
return (self._n - 2)*S.Pi/self._n
@property
def exterior_angle(self):
"""Measure of the exterior angles.
Returns
=======
exterior_angle : number
See Also
========
sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.exterior_angle
pi/4
"""
return 2*S.Pi/self._n
@property
def circumcircle(self):
"""The circumcircle of the RegularPolygon.
Returns
=======
circumcircle : Circle
See Also
========
circumcenter, sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.circumcircle
Circle(Point2D(0, 0), 4)
"""
return Circle(self.center, self.radius)
@property
def incircle(self):
"""The incircle of the RegularPolygon.
Returns
=======
incircle : Circle
See Also
========
inradius, sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 7)
>>> rp.incircle
Circle(Point2D(0, 0), 4*cos(pi/7))
"""
return Circle(self.center, self.apothem)
@property
def angles(self):
"""
Returns a dictionary with keys, the vertices of the Polygon,
and values, the interior angle at each vertex.
Examples
========
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.angles
{Point2D(-5/2, -5*sqrt(3)/2): pi/3,
Point2D(-5/2, 5*sqrt(3)/2): pi/3,
Point2D(5, 0): pi/3}
"""
ret = {}
ang = self.interior_angle
for v in self.vertices:
ret[v] = ang
return ret
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
=====
Being on the border of self is considered False.
The general Polygon.encloses_point method is called only if
a point is not within or beyond the incircle or circumcircle,
respectively.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.ellipse.Ellipse.encloses_point
Examples
========
>>> from sympy import RegularPolygon, S, Point, Symbol
>>> p = RegularPolygon((0, 0), 3, 4)
>>> p.encloses_point(Point(0, 0))
True
>>> r, R = p.inradius, p.circumradius
>>> p.encloses_point(Point((r + R)/2, 0))
True
>>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
False
>>> t = Symbol('t', real=True)
>>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
False
>>> p.encloses_point(Point(5, 5))
False
"""
c = self.center
d = Segment(c, p).length
if d >= self.radius:
return False
elif d < self.inradius:
return True
else:
# now enumerate the RegularPolygon like a general polygon.
return Polygon.encloses_point(self, p)
def spin(self, angle):
"""Increment *in place* the virtual Polygon's rotation by ccw angle.
See also: rotate method which moves the center.
>>> from sympy import Polygon, Point, pi
>>> r = Polygon(Point(0,0), 1, n=3)
>>> r.vertices[0]
Point2D(1, 0)
>>> r.spin(pi/6)
>>> r.vertices[0]
Point2D(sqrt(3)/2, 1/2)
See Also
========
rotation
rotate : Creates a copy of the RegularPolygon rotated about a Point
"""
self._rot += angle
def rotate(self, angle, pt=None):
"""Override GeometryEntity.rotate to first rotate the RegularPolygon
about its center.
>>> from sympy import Point, RegularPolygon, Polygon, pi
>>> t = RegularPolygon(Point(1, 0), 1, 3)
>>> t.vertices[0] # vertex on x-axis
Point2D(2, 0)
>>> t.rotate(pi/2).vertices[0] # vertex on y axis now
Point2D(0, 2)
See Also
========
rotation
spin : Rotates a RegularPolygon in place
"""
r = type(self)(*self.args) # need a copy or else changes are in-place
r._rot += angle
return GeometryEntity.rotate(r, angle, pt)
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since it is the radius that must be
scaled (if x == y) or else a new Polygon must be returned.
>>> from sympy import RegularPolygon
Symmetric scaling returns a RegularPolygon:
>>> RegularPolygon((0, 0), 1, 4).scale(2, 2)
RegularPolygon(Point2D(0, 0), 2, 4, 0)
Asymmetric scaling returns a kite as a Polygon:
>>> RegularPolygon((0, 0), 1, 4).scale(2, 1)
Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1))
"""
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
if x != y:
return Polygon(*self.vertices).scale(x, y)
c, r, n, rot = self.args
r *= x
return self.func(c, r, n, rot)
def reflect(self, line):
"""Override GeometryEntity.reflect since this is not made of only
points.
Examples
========
>>> from sympy import RegularPolygon, Line
>>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2))
RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3))
"""
c, r, n, rot = self.args
v = self.vertices[0]
d = v - c
cc = c.reflect(line)
vv = v.reflect(line)
dd = vv - cc
# calculate rotation about the new center
# which will align the vertices
l1 = Ray((0, 0), dd)
l2 = Ray((0, 0), d)
ang = l1.closing_angle(l2)
rot += ang
# change sign of radius as point traversal is reversed
return self.func(cc, -r, n, rot)
@property
def vertices(self):
"""The vertices of the RegularPolygon.
Returns
=======
vertices : list
Each vertex is a Point.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.vertices
[Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)]
"""
c = self._center
r = abs(self._radius)
rot = self._rot
v = 2*S.Pi/self._n
return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot))
for k in range(self._n)]
def __eq__(self, o):
if not isinstance(o, Polygon):
return False
elif not isinstance(o, RegularPolygon):
return Polygon.__eq__(o, self)
return self.args == o.args
def __hash__(self):
return super(RegularPolygon, self).__hash__()
class Triangle(Polygon):
"""
A polygon with three vertices and three sides.
Parameters
==========
points : sequence of Points
keyword: asa, sas, or sss to specify sides/angles of the triangle
Attributes
==========
vertices
altitudes
orthocenter
circumcenter
circumradius
circumcircle
inradius
incircle
exradii
medians
medial
nine_point_circle
Raises
======
GeometryError
If the number of vertices is not equal to three, or one of the vertices
is not a Point, or a valid keyword is not given.
See Also
========
sympy.geometry.point.Point, Polygon
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
Keywords sss, sas, or asa can be used to give the desired
side lengths (in order) and interior angles (in degrees) that
define the triangle:
>>> Triangle(sss=(3, 4, 5))
Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> Triangle(asa=(30, 1, 30))
Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6))
>>> Triangle(sas=(1, 45, 2))
Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2))
"""
def __new__(cls, *args, **kwargs):
if len(args) != 3:
if 'sss' in kwargs:
return _sss(*[simplify(a) for a in kwargs['sss']])
if 'asa' in kwargs:
return _asa(*[simplify(a) for a in kwargs['asa']])
if 'sas' in kwargs:
return _sas(*[simplify(a) for a in kwargs['sas']])
msg = "Triangle instantiates with three points or a valid keyword."
raise GeometryError(msg)
vertices = [Point(a, dim=2, **kwargs) for a in args]
# remove consecutive duplicates
nodup = []
for p in vertices:
if nodup and p == nodup[-1]:
continue
nodup.append(p)
if len(nodup) > 1 and nodup[-1] == nodup[0]:
nodup.pop() # last point was same as first
# remove collinear points
i = -3
while i < len(nodup) - 3 and len(nodup) > 2:
a, b, c = sorted(
[nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key)
if Point.is_collinear(a, b, c):
nodup[i] = a
nodup[i + 1] = None
nodup.pop(i + 1)
i += 1
vertices = list(filter(lambda x: x is not None, nodup))
if len(vertices) == 3:
return GeometryEntity.__new__(cls, *vertices, **kwargs)
elif len(vertices) == 2:
return Segment(*vertices, **kwargs)
else:
return Point(*vertices, **kwargs)
@property
def vertices(self):
"""The triangle's vertices
Returns
=======
vertices : tuple
Each element in the tuple is a Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t.vertices
(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
"""
return self.args
def is_similar(t1, t2):
"""Is another triangle similar to this one.
Two triangles are similar if one can be uniformly scaled to the other.
Parameters
==========
other: Triangle
Returns
=======
is_similar : boolean
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
>>> t1.is_similar(t2)
True
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
>>> t1.is_similar(t2)
False
"""
if not isinstance(t2, Polygon):
return False
s1_1, s1_2, s1_3 = [side.length for side in t1.sides]
s2 = [side.length for side in t2.sides]
def _are_similar(u1, u2, u3, v1, v2, v3):
e1 = simplify(u1/v1)
e2 = simplify(u2/v2)
e3 = simplify(u3/v3)
return bool(e1 == e2) and bool(e2 == e3)
# There's only 6 permutations, so write them out
return _are_similar(s1_1, s1_2, s1_3, *s2) or \
_are_similar(s1_1, s1_3, s1_2, *s2) or \
_are_similar(s1_2, s1_1, s1_3, *s2) or \
_are_similar(s1_2, s1_3, s1_1, *s2) or \
_are_similar(s1_3, s1_1, s1_2, *s2) or \
_are_similar(s1_3, s1_2, s1_1, *s2)
def is_equilateral(self):
"""Are all the sides the same length?
Returns
=======
is_equilateral : boolean
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon
is_isosceles, is_right, is_scalene
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_equilateral()
False
>>> from sympy import sqrt
>>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
>>> t2.is_equilateral()
True
"""
return not has_variety(s.length for s in self.sides)
def is_isosceles(self):
"""Are two or more of the sides the same length?
Returns
=======
is_isosceles : boolean
See Also
========
is_equilateral, is_right, is_scalene
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
>>> t1.is_isosceles()
True
"""
return has_dups(s.length for s in self.sides)
def is_scalene(self):
"""Are all the sides of the triangle of different lengths?
Returns
=======
is_scalene : boolean
See Also
========
is_equilateral, is_isosceles, is_right
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
>>> t1.is_scalene()
True
"""
return not has_dups(s.length for s in self.sides)
def is_right(self):
"""Is the triangle right-angled.
Returns
=======
is_right : boolean
See Also
========
sympy.geometry.line.LinearEntity.is_perpendicular
is_equilateral, is_isosceles, is_scalene
Examples
========
>>> from sympy.geometry import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_right()
True
"""
s = self.sides
return Segment.is_perpendicular(s[0], s[1]) or \
Segment.is_perpendicular(s[1], s[2]) or \
Segment.is_perpendicular(s[0], s[2])
@property
def altitudes(self):
"""The altitudes of the triangle.
An altitude of a triangle is a segment through a vertex,
perpendicular to the opposite side, with length being the
height of the vertex measured from the line containing the side.
Returns
=======
altitudes : dict
The dictionary consists of keys which are vertices and values
which are Segments.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment.length
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.altitudes[p1]
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
s = self.sides
v = self.vertices
return {v[0]: s[1].perpendicular_segment(v[0]),
v[1]: s[2].perpendicular_segment(v[1]),
v[2]: s[0].perpendicular_segment(v[2])}
@property
def orthocenter(self):
"""The orthocenter of the triangle.
The orthocenter is the intersection of the altitudes of a triangle.
It may lie inside, outside or on the triangle.
Returns
=======
orthocenter : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.orthocenter
Point2D(0, 0)
"""
a = self.altitudes
v = self.vertices
return Line(a[v[0]]).intersection(Line(a[v[1]]))[0]
@property
def circumcenter(self):
"""The circumcenter of the triangle
The circumcenter is the center of the circumcircle.
Returns
=======
circumcenter : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcenter
Point2D(1/2, 1/2)
"""
a, b, c = [x.perpendicular_bisector() for x in self.sides]
if not a.intersection(b):
print(a,b,a.intersection(b))
return a.intersection(b)[0]
@property
def circumradius(self):
"""The radius of the circumcircle of the triangle.
Returns
=======
circumradius : number of Basic instance
See Also
========
sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy.geometry import Point, Triangle
>>> a = Symbol('a')
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
>>> t = Triangle(p1, p2, p3)
>>> t.circumradius
sqrt(a**2/4 + 1/4)
"""
return Point.distance(self.circumcenter, self.vertices[0])
@property
def circumcircle(self):
"""The circle which passes through the three vertices of the triangle.
Returns
=======
circumcircle : Circle
See Also
========
sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcircle
Circle(Point2D(1/2, 1/2), sqrt(2)/2)
"""
return Circle(self.circumcenter, self.circumradius)
def bisectors(self):
"""The angle bisectors of the triangle.
An angle bisector of a triangle is a straight line through a vertex
which cuts the corresponding angle in half.
Returns
=======
bisectors : dict
Each key is a vertex (Point) and each value is the corresponding
bisector (Segment).
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy.geometry import Point, Triangle, Segment
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> from sympy import sqrt
>>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
True
"""
s = self.sides
v = self.vertices
c = self.incenter
l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0])
l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0])
l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0])
return {v[0]: l1, v[1]: l2, v[2]: l3}
@property
def incenter(self):
"""The center of the incircle.
The incircle is the circle which lies inside the triangle and touches
all three sides.
Returns
=======
incenter : Point
See Also
========
incircle, sympy.geometry.point.Point
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.incenter
Point2D(-sqrt(2)/2 + 1, -sqrt(2)/2 + 1)
"""
s = self.sides
l = Matrix([s[i].length for i in [1, 2, 0]])
p = sum(l)
v = self.vertices
x = simplify(l.dot(Matrix([vi.x for vi in v]))/p)
y = simplify(l.dot(Matrix([vi.y for vi in v]))/p)
return Point(x, y)
@property
def inradius(self):
"""The radius of the incircle.
Returns
=======
inradius : number of Basic instance
See Also
========
incircle, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
>>> t = Triangle(p1, p2, p3)
>>> t.inradius
1
"""
return simplify(2 * self.area / self.perimeter)
@property
def incircle(self):
"""The incircle of the triangle.
The incircle is the circle which lies inside the triangle and touches
all three sides.
Returns
=======
incircle : Circle
See Also
========
sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.incircle
Circle(Point2D(-sqrt(2) + 2, -sqrt(2) + 2), -sqrt(2) + 2)
"""
return Circle(self.incenter, self.inradius)
@property
def exradii(self):
"""The radius of excircles of a triangle.
An excircle of the triangle is a circle lying outside the triangle,
tangent to one of its sides and tangent to the extensions of the
other two.
Returns
=======
exradii : dict
See Also
========
sympy.geometry.polygon.Triangle.inradius
Examples
========
The exradius touches the side of the triangle to which it is keyed, e.g.
the exradius touching side 2 is:
>>> from sympy.geometry import Point, Triangle, Segment2D, Point2D
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.exradii[t.sides[2]]
-2 + sqrt(10)
References
==========
[1] http://mathworld.wolfram.com/Exradius.html
[2] http://mathworld.wolfram.com/Excircles.html
"""
side = self.sides
a = side[0].length
b = side[1].length
c = side[2].length
s = (a+b+c)/2
area = self.area
exradii = {self.sides[0]: simplify(area/(s-a)),
self.sides[1]: simplify(area/(s-b)),
self.sides[2]: simplify(area/(s-c))}
return exradii
@property
def medians(self):
"""The medians of the triangle.
A median of a triangle is a straight line through a vertex and the
midpoint of the opposite side, and divides the triangle into two
equal areas.
Returns
=======
medians : dict
Each key is a vertex (Point) and each value is the median (Segment)
at that point.
See Also
========
sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medians[p1]
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
s = self.sides
v = self.vertices
return {v[0]: Segment(v[0], s[1].midpoint),
v[1]: Segment(v[1], s[2].midpoint),
v[2]: Segment(v[2], s[0].midpoint)}
@property
def medial(self):
"""The medial triangle of the triangle.
The triangle which is formed from the midpoints of the three sides.
Returns
=======
medial : Triangle
See Also
========
sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medial
Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2))
"""
s = self.sides
return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint)
@property
def nine_point_circle(self):
"""The nine-point circle of the triangle.
Nine-point circle is the circumcircle of the medial triangle, which
passes through the feet of altitudes and the middle points of segments
connecting the vertices and the orthocenter.
Returns
=======
nine_point_circle : Circle
See also
========
sympy.geometry.line.Segment.midpoint
sympy.geometry.polygon.Triangle.medial
sympy.geometry.polygon.Triangle.orthocenter
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.nine_point_circle
Circle(Point2D(1/4, 1/4), sqrt(2)/4)
"""
return Circle(*self.medial.vertices)
@property
def eulerline(self):
"""The Euler line of the triangle.
The line which passes through circumcenter, centroid and orthocenter.
Returns
=======
eulerline : Line (or Point for equilateral triangles in which case all
centers coincide)
Examples
========
>>> from sympy.geometry import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.eulerline
Line2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
if self.is_equilateral():
return self.orthocenter
return Line(self.orthocenter, self.circumcenter)
def rad(d):
"""Return the radian value for the given degrees (pi = 180 degrees)."""
return d*pi/180
def deg(r):
"""Return the degree value for the given radians (pi = 180 degrees)."""
return r/pi*180
def _slope(d):
rv = tan(rad(d))
return rv
def _asa(d1, l, d2):
"""Return triangle having side with length l on the x-axis."""
xy = Line((0, 0), slope=_slope(d1)).intersection(
Line((l, 0), slope=_slope(180 - d2)))[0]
return Triangle((0, 0), (l, 0), xy)
def _sss(l1, l2, l3):
"""Return triangle having side of length l1 on the x-axis."""
c1 = Circle((0, 0), l3)
c2 = Circle((l1, 0), l2)
inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative]
if not inter:
return None
pt = inter[0]
return Triangle((0, 0), (l1, 0), pt)
def _sas(l1, d, l2):
"""Return triangle having side with length l2 on the x-axis."""
p1 = Point(0, 0)
p2 = Point(l2, 0)
p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1)
return Triangle(p1, p2, p3)
|
5f7357d468d265f00efe92d77e83d590b391187951f3dba56b4fc6aab56c63d6
|
"""
This module implements Holonomic Functions and
various operations on them.
"""
from __future__ import print_function, division
from sympy import (Symbol, diff, S, Dummy, Order, rf, meijerint, I,
solve, limit, Float, nsimplify, gamma)
from sympy.printing import sstr
from sympy.core.compatibility import range, ordered
from sympy.functions.combinatorial.factorials import binomial, factorial
from sympy.core.sympify import sympify
from sympy.simplify.hyperexpand import hyperexpand
from sympy.functions.special.hyper import hyper, meijerg
from sympy.core.numbers import NaN, Infinity, NegativeInfinity
from sympy.matrices import Matrix
from sympy.functions.elementary.exponential import exp_polar, exp
from .linearsolver import NewMatrix
from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError,
SingularityError, NotHolonomicError)
from sympy.polys.rings import PolyElement
from sympy.polys.fields import FracElement
from sympy.polys.domains import QQ, ZZ, RR
from sympy.polys.domains.pythonrational import PythonRational
from sympy.polys.polyclasses import DMF
from sympy.polys.polyroots import roots
from sympy.polys.polytools import Poly
def DifferentialOperators(base, generator):
r"""
This function is used to create annihilators using ``Dx``.
Returns an Algebra of Differential Operators also called Weyl Algebra
and the operator for differentiation i.e. the ``Dx`` operator.
Parameters
==========
base:
Base polynomial ring for the algebra.
The base polynomial ring is the ring of polynomials in :math:`x` that
will appear as coefficients in the operators.
generator:
Generator of the algebra which can
be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D".
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.abc import x
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x]
>>> Dx*x
(1) + (x)*Dx
"""
ring = DifferentialOperatorAlgebra(base, generator)
return (ring, ring.derivative_operator)
class DifferentialOperatorAlgebra(object):
r"""
An Ore Algebra is a set of noncommutative polynomials in the
intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`.
It follows the commutation rule:
.. math ::
Dxa = \sigma(a)Dx + \delta(a)
for :math:`a \subset A`.
Where :math:`\sigma: A --> A` is an endomorphism and :math:`\delta: A --> A`
is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) * b + \sigma(a) * \delta(b)`.
If one takes the sigma as identity map and delta as the standard derivation
then it becomes the algebra of Differential Operators also called
a Weyl Algebra i.e. an algebra whose elements are Differential Operators.
This class represents a Weyl Algebra and serves as the parent ring for
Differential Operators.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring
ZZ[x]
See Also
========
DifferentialOperator
"""
def __init__(self, base, generator):
# the base polynomial ring for the algebra
self.base = base
# the operator representing differentiation i.e. `Dx`
self.derivative_operator = DifferentialOperator(
[base.zero, base.one], self)
if generator is None:
self.gen_symbol = Symbol('Dx', commutative=False)
else:
if isinstance(generator, str):
self.gen_symbol = Symbol(generator, commutative=False)
elif isinstance(generator, Symbol):
self.gen_symbol = generator
def __str__(self):
string = 'Univariate Differential Operator Algebra in intermediate '\
+ sstr(self.gen_symbol) + ' over the base ring ' + \
(self.base).__str__()
return string
__repr__ = __str__
def __eq__(self, other):
if self.base == other.base and self.gen_symbol == other.gen_symbol:
return True
else:
return False
class DifferentialOperator(object):
"""
Differential Operators are elements of Weyl Algebra. The Operators
are defined by a list of polynomials in the base ring and the
parent ring of the Operator i.e. the algebra it belongs to.
Takes a list of polynomials for each power of ``Dx`` and the
parent ring which must be an instance of DifferentialOperatorAlgebra.
A Differential Operator can be created easily using
the operator ``Dx``. See examples below.
Examples
========
>>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> DifferentialOperator([0, 1, x**2], R)
(1)*Dx + (x**2)*Dx**2
>>> (x*Dx*x + 1 - Dx**2)**2
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4
See Also
========
DifferentialOperatorAlgebra
"""
_op_priority = 20
def __init__(self, list_of_poly, parent):
"""
Parameters
==========
list_of_poly:
List of polynomials belonging to the base ring of the algebra.
parent:
Parent algebra of the operator.
"""
# the parent ring for this operator
# must be an DifferentialOperatorAlgebra object
self.parent = parent
base = self.parent.base
self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0]
# sequence of polynomials in x for each power of Dx
# the list should not have trailing zeroes
# represents the operator
# convert the expressions into ring elements using from_sympy
for i, j in enumerate(list_of_poly):
if not isinstance(j, base.dtype):
list_of_poly[i] = base.from_sympy(sympify(j))
else:
list_of_poly[i] = base.from_sympy(base.to_sympy(j))
self.listofpoly = list_of_poly
# highest power of `Dx`
self.order = len(self.listofpoly) - 1
def __mul__(self, other):
"""
Multiplies two DifferentialOperator and returns another
DifferentialOperator instance using the commutation rule
Dx*a = a*Dx + a'
"""
listofself = self.listofpoly
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
listofother = [self.parent.base.from_sympy(sympify(other))]
else:
listofother = [other]
else:
listofother = other.listofpoly
# multiplies a polynomial `b` with a list of polynomials
def _mul_dmp_diffop(b, listofother):
if isinstance(listofother, list):
sol = []
for i in listofother:
sol.append(i * b)
return sol
else:
return [b * listofother]
sol = _mul_dmp_diffop(listofself[0], listofother)
# compute Dx^i * b
def _mul_Dxi_b(b):
sol1 = [self.parent.base.zero]
sol2 = []
if isinstance(b, list):
for i in b:
sol1.append(i)
sol2.append(i.diff())
else:
sol1.append(self.parent.base.from_sympy(b))
sol2.append(self.parent.base.from_sympy(b).diff())
return _add_lists(sol1, sol2)
for i in range(1, len(listofself)):
# find Dx^i * b in ith iteration
listofother = _mul_Dxi_b(listofother)
# solution = solution + listofself[i] * (Dx^i * b)
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))
return DifferentialOperator(sol, self.parent)
def __rmul__(self, other):
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
other = (self.parent.base).from_sympy(sympify(other))
sol = []
for j in self.listofpoly:
sol.append(other * j)
return DifferentialOperator(sol, self.parent)
def __add__(self, other):
if isinstance(other, DifferentialOperator):
sol = _add_lists(self.listofpoly, other.listofpoly)
return DifferentialOperator(sol, self.parent)
else:
list_self = self.listofpoly
if not isinstance(other, self.parent.base.dtype):
list_other = [((self.parent).base).from_sympy(sympify(other))]
else:
list_other = [other]
sol = []
sol.append(list_self[0] + list_other[0])
sol += list_self[1:]
return DifferentialOperator(sol, self.parent)
__radd__ = __add__
def __sub__(self, other):
return self + (-1) * other
def __rsub__(self, other):
return (-1) * self + other
def __neg__(self):
return -1 * self
def __div__(self, other):
return self * (S.One / other)
def __truediv__(self, other):
return self.__div__(other)
def __pow__(self, n):
if n == 1:
return self
if n == 0:
return DifferentialOperator([self.parent.base.one], self.parent)
# if self is `Dx`
if self.listofpoly == self.parent.derivative_operator.listofpoly:
sol = []
for i in range(0, n):
sol.append(self.parent.base.zero)
sol.append(self.parent.base.one)
return DifferentialOperator(sol, self.parent)
# the general case
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def __str__(self):
listofpoly = self.listofpoly
print_str = ''
for i, j in enumerate(listofpoly):
if j == self.parent.base.zero:
continue
if i == 0:
print_str += '(' + sstr(j) + ')'
continue
if print_str:
print_str += ' + '
if i == 1:
print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol)
continue
print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i)
return print_str
__repr__ = __str__
def __eq__(self, other):
if isinstance(other, DifferentialOperator):
if self.listofpoly == other.listofpoly and self.parent == other.parent:
return True
else:
return False
else:
if self.listofpoly[0] == other:
for i in listofpoly[1:]:
if i is not self.parent.base.zero:
return False
return True
else:
return False
def is_singular(self, x0):
"""
Checks if the differential equation is singular at x0.
"""
base = self.parent.base
return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x)
class HolonomicFunction(object):
r"""
A Holonomic Function is a solution to a linear homogeneous ordinary
differential equation with polynomial coefficients. This differential
equation can also be represented by an annihilator i.e. a Differential
Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions,
initial conditions can also be provided along with the annihilator.
Holonomic functions have closure properties and thus forms a ring.
Given two Holonomic Functions f and g, their sum, product,
integral and derivative is also a Holonomic Function.
For ordinary points initial condition should be a vector of values of
the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`.
For regular singular points initial conditions can also be provided in this
format:
:math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}`
where s0, s1, ... are the roots of indicial equation and vectors
:math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial
terms of the associated power series. See Examples below.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x)
>>> p + q # annihilator of e^x + sin(x)
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1])
>>> p * q # annihilator of e^x * sin(x)
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])
An example of initial conditions for regular singular points,
the indicial equation has only one root `1/2`.
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]})
HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]})
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr()
sqrt(x)
To plot a Holonomic Function, one can use `.evalf()` for numerical
computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib.
>>> import sympy.holonomic # doctest: +SKIP
>>> from sympy import var, sin # doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> import numpy as np # doctest: +SKIP
>>> var("x") # doctest: +SKIP
>>> r = np.linspace(1, 5, 100) # doctest: +SKIP
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP
>>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP
>>> plt.show() # doctest: +SKIP
"""
_op_priority = 20
def __init__(self, annihilator, x, x0=0, y0=None):
"""
Parameters
==========
annihilator:
Annihilator of the Holonomic Function, represented by a
`DifferentialOperator` object.
x:
Variable of the function.
x0:
The point at which initial conditions are stored.
Generally an integer.
y0:
The initial condition. The proper format for the initial condition
is described in class docstring. To make the function unique,
length of the vector `y0` should be equal to or greater than the
order of differential equation.
"""
# initial condition
self.y0 = y0
# the point for initial conditions, default is zero.
self.x0 = x0
# differential operator L such that L.f = 0
self.annihilator = annihilator
self.x = x
def __str__(self):
if self._have_init_cond():
str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\
sstr(self.x), sstr(self.x0), sstr(self.y0))
else:
str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\
sstr(self.x))
return str_sol
__repr__ = __str__
def unify(self, other):
"""
Unifies the base polynomial ring of a given two Holonomic
Functions.
"""
R1 = self.annihilator.parent.base
R2 = other.annihilator.parent.base
dom1 = R1.dom
dom2 = R2.dom
if R1 == R2:
return (self, other)
R = (dom1.unify(dom2)).old_poly_ring(self.x)
newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol))
sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly]
sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly]
sol1 = DifferentialOperator(sol1, newparent)
sol2 = DifferentialOperator(sol2, newparent)
sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0)
sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0)
return (sol1, sol2)
def is_singularics(self):
"""
Returns True if the function have singular initial condition
in the dictionary format.
Returns False if the function have ordinary initial condition
in the list format.
Returns None for all other cases.
"""
if isinstance(self.y0, dict):
return True
elif isinstance(self.y0, list):
return False
def _have_init_cond(self):
"""
Checks if the function have initial condition.
"""
return bool(self.y0)
def _singularics_to_ord(self):
"""
Converts a singular initial condition to ordinary if possible.
"""
a = list(self.y0)[0]
b = self.y0[a]
if len(self.y0) == 1 and a == int(a) and a > 0:
y0 = []
a = int(a)
for i in range(a):
y0.append(S(0))
y0 += [j * factorial(a + i) for i, j in enumerate(b)]
return HolonomicFunction(self.annihilator, self.x, self.x0, y0)
def __add__(self, other):
# if the ground domains are different
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a + b
deg1 = self.annihilator.order
deg2 = other.annihilator.order
dim = max(deg1, deg2)
R = self.annihilator.parent.base
K = R.get_field()
rowsself = [self.annihilator]
rowsother = [other.annihilator]
gen = self.annihilator.parent.derivative_operator
# constructing annihilators up to order dim
for i in range(dim - deg1):
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
for i in range(dim - deg2):
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
# constructing the matrix of the ansatz
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(0)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
r = NewMatrix(r).transpose()
homosys = [[S(0) for q in range(dim + 1)]]
homosys = NewMatrix(homosys).transpose()
# solving the linear system using gauss jordan solver
solcomp = r.gauss_jordan_solve(homosys)
sol = solcomp[0]
# if a solution is not obtained then increasing the order by 1 in each
# iteration
while sol.is_zero:
dim += 1
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(S(0))
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
r = NewMatrix(r).transpose()
homosys = [[S(0) for q in range(dim + 1)]]
homosys = NewMatrix(homosys).transpose()
solcomp = r.gauss_jordan_solve(homosys)
sol = solcomp[0]
# taking only the coefficients needed to multiply with `self`
# can be also be done the other way by taking R.H.S and multiplying with
# `other`
sol = sol[:dim + 1 - deg1]
sol1 = _normalize(sol, self.annihilator.parent)
# annihilator of the solution
sol = sol1 * (self.annihilator)
sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol, self.x)
# both the functions have ordinary initial conditions
if self.is_singularics() == False and other.is_singularics() == False:
# directly add the corresponding value
if self.x0 == other.x0:
# try to extended the initial conditions
# using the annihilator
y1 = _extend_y0(self, sol.order)
y2 = _extend_y0(other, sol.order)
y0 = [a + b for a, b in zip(y1, y2)]
return HolonomicFunction(sol, self.x, self.x0, y0)
else:
# change the intiial conditions to a same point
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self + other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) + other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self + other.change_ics(self.x0)
else:
return self.change_ics(other.x0) + other
if self.x0 != other.x0:
return HolonomicFunction(sol, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
# convert the ordinary initial condition to singular.
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S(0): _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S(0): _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
# computing singular initial condition for the result
# taking union of the series terms of both functions
y0 = {}
for i in y1:
# add corresponding initial terms if the power
# on `x` is same
if i in y2:
y0[i] = [a + b for a, b in zip(y1[i], y2[i])]
else:
y0[i] = y1[i]
for i in y2:
if not i in y1:
y0[i] = y2[i]
return HolonomicFunction(sol, self.x, self.x0, y0)
def integrate(self, limits, initcond=False):
"""
Integrates the given holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1])
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x))
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0])
"""
# to get the annihilator, just multiply by Dx from right
D = self.annihilator.parent.derivative_operator
# if the function have initial conditions of the series format
if self.is_singularics() == True:
r = self._singularics_to_ord()
if r:
return r.integrate(limits, initcond=initcond)
# computing singular initial condition for the function
# produced after integration.
y0 = {}
for i in self.y0:
c = self.y0[i]
c2 = []
for j in range(len(c)):
if c[j] == 0:
c2.append(S(0))
# if power on `x` is -1, the integration becomes log(x)
# TODO: Implement this case
elif i + j + 1 == 0:
raise NotImplementedError("logarithmic terms in the series are not supported")
else:
c2.append(c[j] / S(i + j + 1))
y0[i + 1] = c2
if hasattr(limits, "__iter__"):
raise NotImplementedError("Definite integration for singular initial conditions")
return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
# if no initial conditions are available for the function
if not self._have_init_cond():
if initcond:
return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S(0)])
return HolonomicFunction(self.annihilator * D, self.x)
# definite integral
# initial conditions for the answer will be stored at point `a`,
# where `a` is the lower limit of the integrand
if hasattr(limits, "__iter__"):
if len(limits) == 3 and limits[0] == self.x:
x0 = self.x0
a = limits[1]
b = limits[2]
definite = True
else:
definite = False
y0 = [S(0)]
y0 += self.y0
indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
if not definite:
return indefinite_integral
# use evalf to get the values at `a`
if x0 != a:
try:
indefinite_expr = indefinite_integral.to_expr()
except (NotHyperSeriesError, NotPowerSeriesError):
indefinite_expr = None
if indefinite_expr:
lower = indefinite_expr.subs(self.x, a)
if isinstance(lower, NaN):
lower = indefinite_expr.limit(self.x, a)
else:
lower = indefinite_integral.evalf(a)
if b == self.x:
y0[0] = y0[0] - lower
return HolonomicFunction(self.annihilator * D, self.x, x0, y0)
elif S(b).is_Number:
if indefinite_expr:
upper = indefinite_expr.subs(self.x, b)
if isinstance(upper, NaN):
upper = indefinite_expr.limit(self.x, b)
else:
upper = indefinite_integral.evalf(b)
return upper - lower
# if the upper limit is `x`, the answer will be a function
if b == self.x:
return HolonomicFunction(self.annihilator * D, self.x, a, y0)
# if the upper limits is a Number, a numerical value will be returned
elif S(b).is_Number:
try:
s = HolonomicFunction(self.annihilator * D, self.x, a,\
y0).to_expr()
indefinite = s.subs(self.x, b)
if not isinstance(indefinite, NaN):
return indefinite
else:
return s.limit(self.x, b)
except (NotHyperSeriesError, NotPowerSeriesError):
return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b)
return HolonomicFunction(self.annihilator * D, self.x)
def diff(self, *args, **kwargs):
r"""
Differentiation of the given Holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr()
cos(x)
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr()
2*exp(2*x)
See Also
========
.integrate()
"""
kwargs.setdefault('evaluate', True)
if args:
if args[0] != self.x:
return S(0)
elif len(args) == 2:
sol = self
for i in range(args[1]):
sol = sol.diff(args[0])
return sol
ann = self.annihilator
dx = ann.parent.derivative_operator
# if the function is constant.
if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1:
return S(0)
# if the coefficient of y in the differential equation is zero.
# a shifting is done to compute the answer in this case.
elif ann.listofpoly[0] == ann.parent.base.zero:
sol = DifferentialOperator(ann.listofpoly[1:], ann.parent)
if self._have_init_cond():
# if ordinary initial condition
if self.is_singularics() == False:
return HolonomicFunction(sol, self.x, self.x0, self.y0[1:])
# TODO: support for singular initial condition
return HolonomicFunction(sol, self.x)
else:
return HolonomicFunction(sol, self.x)
# the general algorithm
R = ann.parent.base
K = R.get_field()
seq_dmf = [K.new(i.rep) for i in ann.listofpoly]
# -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0
rhs = [i / seq_dmf[0] for i in seq_dmf[1:]]
rhs.insert(0, K.zero)
# differentiate both lhs and rhs
sol = _derivate_diff_eq(rhs)
# add the term y' in lhs to rhs
sol = _add_lists(sol, [K.zero, K.one])
sol = _normalize(sol[1:], self.annihilator.parent, negative=False)
if not self._have_init_cond() or self.is_singularics() == True:
return HolonomicFunction(sol, self.x)
y0 = _extend_y0(self, sol.order + 1)[1:]
return HolonomicFunction(sol, self.x, self.x0, y0)
def __eq__(self, other):
if self.annihilator == other.annihilator:
if self.x == other.x:
if self._have_init_cond() and other._have_init_cond():
if self.x0 == other.x0 and self.y0 == other.y0:
return True
else:
return False
else:
return True
else:
return False
else:
return False
def __mul__(self, other):
ann_self = self.annihilator
if not isinstance(other, HolonomicFunction):
other = sympify(other)
if other.has(self.x):
raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.")
if not self._have_init_cond():
return self
else:
y0 = _extend_y0(self, ann_self.order)
y1 = []
for j in y0:
y1.append((Poly.new(j, self.x) * other).rep)
return HolonomicFunction(ann_self, self.x, self.x0, y1)
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a * b
ann_other = other.annihilator
list_self = []
list_other = []
a = ann_self.order
b = ann_other.order
R = ann_self.parent.base
K = R.get_field()
for j in ann_self.listofpoly:
list_self.append(K.new(j.rep))
for j in ann_other.listofpoly:
list_other.append(K.new(j.rep))
# will be used to reduce the degree
self_red = [-list_self[i] / list_self[a] for i in range(a)]
other_red = [-list_other[i] / list_other[b] for i in range(b)]
# coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
coeff_mul = [[S(0) for i in range(b + 1)] for j in range(a + 1)]
coeff_mul[0][0] = S(1)
# making the ansatz
lin_sys = [[coeff_mul[i][j] for i in range(a) for j in range(b)]]
homo_sys = [[S(0) for q in range(a * b)]]
homo_sys = NewMatrix(homo_sys).transpose()
sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
# until a non trivial solution is found
while sol[0].is_zero:
# updating the coefficients Dx^i(f).Dx^j(g) for next degree
for i in range(a - 1, -1, -1):
for j in range(b - 1, -1, -1):
coeff_mul[i][j + 1] += coeff_mul[i][j]
coeff_mul[i + 1][j] += coeff_mul[i][j]
if isinstance(coeff_mul[i][j], K.dtype):
coeff_mul[i][j] = DMFdiff(coeff_mul[i][j])
else:
coeff_mul[i][j] = coeff_mul[i][j].diff(self.x)
# reduce the terms to lower power using annihilators of f, g
for i in range(a + 1):
if not coeff_mul[i][b] == S(0):
for j in range(b):
coeff_mul[i][j] += other_red[j] * \
coeff_mul[i][b]
coeff_mul[i][b] = S(0)
# not d2 + 1, as that is already covered in previous loop
for j in range(b):
if not coeff_mul[a][j] == 0:
for i in range(a):
coeff_mul[i][j] += self_red[i] * \
coeff_mul[a][j]
coeff_mul[a][j] = S(0)
lin_sys.append([coeff_mul[i][j] for i in range(a)
for j in range(b)])
sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
sol_ann = _normalize(sol[0][0:], self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol_ann, self.x)
if self.is_singularics() == False and other.is_singularics() == False:
# if both the conditions are at same point
if self.x0 == other.x0:
# try to find more initial conditions
y0_self = _extend_y0(self, sol_ann.order)
y0_other = _extend_y0(other, sol_ann.order)
# h(x0) = f(x0) * g(x0)
y0 = [y0_self[0] * y0_other[0]]
# coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
for i in range(1, min(len(y0_self), len(y0_other))):
coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
for j in range(i + 1):
for k in range(i + 1):
if j + k == i:
coeff[j][k] = binomial(i, j)
sol = 0
for j in range(i + 1):
for k in range(i + 1):
sol += coeff[j][k]* y0_self[j] * y0_other[k]
y0.append(sol)
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
# if the points are different, consider one
else:
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self * other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) * other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self * other.change_ics(self.x0)
else:
return self.change_ics(other.x0) * other
if self.x0 != other.x0:
return HolonomicFunction(sol_ann, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S(0): _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S(0): _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
y0 = {}
# multiply every possible pair of the series terms
for i in y1:
for j in y2:
k = min(len(y1[i]), len(y2[j]))
c = []
for a in range(k):
s = S(0)
for b in range(a + 1):
s += y1[i][b] * y2[j][a - b]
c.append(s)
if not i + j in y0:
y0[i + j] = c
else:
y0[i + j] = [a + b for a, b in zip(c, y0[i + j])]
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
__rmul__ = __mul__
def __sub__(self, other):
return self + other * -1
def __rsub__(self, other):
return self * -1 + other
def __neg__(self):
return -1 * self
def __div__(self, other):
return self * (S.One / other)
def __truediv__(self, other):
return self.__div__(other)
def __pow__(self, n):
if self.annihilator.order <= 1:
ann = self.annihilator
parent = ann.parent
if self.y0 is None:
y0 = None
else:
y0 = [list(self.y0)[0] ** n]
p0 = ann.listofpoly[0]
p1 = ann.listofpoly[1]
p0 = (Poly.new(p0, self.x) * n).rep
sol = [parent.base.to_sympy(i) for i in [p0, p1]]
dd = DifferentialOperator(sol, parent)
return HolonomicFunction(dd, self.x, self.x0, y0)
if n < 0:
raise NotHolonomicError("Negative Power on a Holonomic Function")
if n == 0:
Dx = self.annihilator.parent.derivative_operator
return HolonomicFunction(Dx, self.x, S(0), [S(1)])
if n == 1:
return self
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def degree(self):
"""
Returns the highest power of `x` in the annihilator.
"""
sol = [i.degree() for i in self.annihilator.listofpoly]
return max(sol)
def composition(self, expr, *args, **kwargs):
"""
Returns function after composition of a holonomic
function with an algebraic function. The method can't compute
initial conditions for the result by itself, so they can be also be
provided.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1])
>>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0])
HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0])
See Also
========
from_hyper()
"""
R = self.annihilator.parent
a = self.annihilator.order
diff = expr.diff(self.x)
listofpoly = self.annihilator.listofpoly
for i, j in enumerate(listofpoly):
if isinstance(j, self.annihilator.parent.base.dtype):
listofpoly[i] = self.annihilator.parent.base.to_sympy(j)
r = listofpoly[a].subs({self.x:expr})
subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)]
coeffs = [S(0) for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a))
coeffs[0] = S(1)
system = [coeffs]
homogeneous = Matrix([[S(0) for i in range(a)]]).transpose()
sol = S(0)
while sol.is_zero:
coeffs_next = [p.diff(self.x) for p in coeffs]
for i in range(a - 1):
coeffs_next[i + 1] += (coeffs[i] * diff)
for i in range(a):
coeffs_next[i] += (coeffs[-1] * subs[i] * diff)
coeffs = coeffs_next
# check for linear relations
system.append(coeffs)
sol, taus = (Matrix(system).transpose()
).gauss_jordan_solve(homogeneous)
tau = list(taus)[0]
sol = sol.subs(tau, 1)
sol = _normalize(sol[0:], R, negative=False)
# if initial conditions are given for the resulting function
if args:
return HolonomicFunction(sol, self.x, args[0], args[1])
return HolonomicFunction(sol, self.x)
def to_sequence(self, lb=True):
r"""
Finds recurrence relation for the coefficients in the series expansion
of the function about :math:`x_0`, where :math:`x_0` is the point at
which the initial condition is stored.
If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]`
is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the
smallest ``n`` for which the recurrence holds true.
If the point :math:`x_0` is regular singular, a list of solutions in
the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`.
Each tuple in this vector represents a recurrence relation :math:`R`
associated with a root of the indicial equation ``p``. Conditions of
a different format can also be provided in this case, see the
docstring of HolonomicFunction class.
If it's not possible to numerically compute a initial condition,
it is returned as a symbol :math:`C_j`, denoting the coefficient of
:math:`(x - x_0)^j` in the power series about :math:`x_0`.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)]
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence()
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)]
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence()
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)]
See Also
========
HolonomicFunction.series()
References
==========
.. [1] https://hal.inria.fr/inria-00070025/document
.. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf
"""
if self.x0 != 0:
return self.shift_x(self.x0).to_sequence()
# check whether a power series exists if the point is singular
if self.annihilator.is_singular(self.x0):
return self._frobenius(lb=lb)
dict1 = {}
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
# substituting each term of the form `x^k Dx^j` in the
# annihilator, according to the formula below:
# x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo))
# for explanation see [2].
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k) in dict1:
dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i))
else:
dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = self.degree()
# the recurrence relation holds for all values of
# n greater than smallest_n, i.e. n >= smallest_n
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
# an appropriate shift of the recurrence
for j in range(lower, upper + 1):
if j in keylist:
temp = S(0)
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S(0))
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
y0 = _extend_y0(self, order)
u0 = []
# u(n) = y^n(0)/factorial(n)
for i, j in enumerate(y0):
u0.append(j / factorial(i))
# if sufficient conditions can't be computed then
# try to use the series method i.e.
# equate the coefficients of x^k in the equation formed by
# substituting the series in differential equation, to zero.
if len(u0) < order:
for i in range(degree):
eq = S(0)
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S(0)
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
dummys[i + j[0]] = Symbol('C_%s' %(i + j[0]))
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
def _frobenius(self, lb=True):
# compute the roots of indicial equation
indicialroots = self._indicial()
reals = []
compl = []
for i in ordered(indicialroots.keys()):
if i.is_real:
reals.extend([i] * indicialroots[i])
else:
a, b = i.as_real_imag()
compl.extend([(i, a, b)] * indicialroots[i])
# sort the roots for a fixed ordering of solution
compl.sort(key=lambda x : x[1])
compl.sort(key=lambda x : x[2])
reals.sort()
x = self.x
# grouping the roots, roots differ by an integer are put in the same group.
grp = []
for i in reals:
intdiff = False
if len(grp) == 0:
grp.append([i])
continue
for j in grp:
if int(j[0] - i) == j[0] - i:
j.append(i)
intdiff = True
break
if not intdiff:
grp.append([i])
# True if none of the roots differ by an integer i.e.
# each element in group have only one member
independent = True if all(len(i) == 1 for i in grp) else False
allpos = all(i >= 0 for i in reals)
allint = all(int(i) == i for i in reals)
# if initial conditions are provided
# then use them.
if self.is_singularics() == True:
rootstoconsider = []
for i in ordered(self.y0.keys()):
for j in ordered(indicialroots.keys()):
if j == i:
rootstoconsider.append(i)
elif allpos and allint:
rootstoconsider = [min(reals)]
elif independent:
rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl]
elif not allint:
rootstoconsider = []
for i in reals:
if not int(i) == i:
rootstoconsider.append(i)
elif not allpos:
if not self._have_init_cond() or S(self.y0[0]).is_finite == False:
rootstoconsider = [min(reals)]
else:
posroots = []
for i in reals:
if i >= 0:
posroots.append(i)
rootstoconsider = [min(posroots)]
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
finalsol = []
char = ord('C')
for p in rootstoconsider:
dict1 = {}
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k - i) in dict1:
dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
else:
dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = max([i[1] for i in dict1])
degree2 = min([i[1] for i in dict1])
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
for j in range(lower, upper + 1):
if j in keylist:
temp = S(0)
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S(0))
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
u0 = []
if self.is_singularics() == True:
u0 = self.y0[p]
elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1:
y0 = _extend_y0(self, order + int(p))
# u(n) = y^n(0)/factorial(n)
if len(y0) > int(p):
for i in range(int(p), len(y0)):
u0.append(y0[i] / factorial(i))
if len(u0) < order:
for i in range(degree2, degree):
eq = S(0)
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S(0)
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
letter = chr(char) + '_%s' %(i + j[0])
dummys[i + j[0]] = Symbol(letter)
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
continue
else:
finalsol.append((HolonomicSequence(sol, u0), p))
continue
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
else:
finalsol.append((HolonomicSequence(sol, u0), p))
char += 1
return finalsol
def series(self, n=6, coefficient=False, order=True, _recur=None):
r"""
Finds the power series expansion of given holonomic function about :math:`x_0`.
A list of series might be returned if :math:`x_0` is a regular point with
multiple roots of the indicial equation.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x)
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)
See Also
========
HolonomicFunction.to_sequence()
"""
if _recur == None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = []
for i in recurrence:
sol.append(self.series(_recur=i))
return sol
n = n - int(constantpower)
l = len(recurrence.u0) - 1
k = recurrence.recurrence.order
x = self.x
x0 = self.x0
seq_dmp = recurrence.recurrence.listofpoly
R = recurrence.recurrence.parent.base
K = R.get_field()
seq = []
for i, j in enumerate(seq_dmp):
seq.append(K.new(j.rep))
sub = [-seq[i] / seq[k] for i in range(k)]
sol = [i for i in recurrence.u0]
if l + 1 >= n:
pass
else:
# use the initial conditions to find the next term
for i in range(l + 1 - k, n - k):
coeff = S(0)
for j in range(k):
if i + j >= 0:
coeff += DMFsubs(sub[j], i) * sol[i + j]
sol.append(coeff)
if coefficient:
return sol
ser = S(0)
for i, j in enumerate(sol):
ser += x**(i + constantpower) * j
if order:
ser += Order(x**(n + int(constantpower)), x)
if x0 != 0:
return ser.subs(x, x - x0)
return ser
def _indicial(self):
"""
Computes roots of the Indicial equation.
"""
if self.x0 != 0:
return self.shift_x(self.x0)._indicial()
list_coeff = self.annihilator.listofpoly
R = self.annihilator.parent.base
x = self.x
s = R.zero
y = R.one
def _pole_degree(poly):
root_all = roots(R.to_sympy(poly), x, filter='Z')
if 0 in root_all.keys():
return root_all[0]
else:
return 0
degree = [j.degree() for j in list_coeff]
degree = max(degree)
inf = 10 * (max(1, degree) + max(1, self.annihilator.order))
deg = lambda q: inf if q.is_zero else _pole_degree(q)
b = deg(list_coeff[0])
for j in range(1, len(list_coeff)):
b = min(b, deg(list_coeff[j]) - j)
for i, j in enumerate(list_coeff):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
if - i - b <= 0 and degree - i - b >= 0:
s = s + listofdmp[degree - i - b] * y
y *= x - i
return roots(R.to_sympy(s), x)
def evalf(self, points, method='RK4', h=0.05, derivatives=False):
r"""
Finds numerical value of a holonomic function using numerical methods.
(RK4 by default). A set of points (real or complex) must be provided
which will be the path for the numerical integration.
The path should be given as a list :math:`[x_1, x_2, ... x_n]`. The numerical
values will be computed at each point in this order
:math:`x_1 --> x_2 --> x_3 ... --> x_n`.
Returns values of the function at :math:`x_1, x_2, ... x_n` in a list.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
A straight line on the real axis from (0 to 1)
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
Runge-Kutta 4th order on e^x from 0.1 to 1.
Exact solution at 1 is 2.71828182845905
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r)
[1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069,
1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232,
2.45960141378007, 2.71827974413517]
Euler's method for the same
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler')
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881,
2.357947691, 2.5937424601]
One can also observe that the value obtained using Runge-Kutta 4th order
is much more accurate than Euler's method.
"""
from sympy.holonomic.numerical import _evalf
lp = False
# if a point `b` is given instead of a mesh
if not hasattr(points, "__iter__"):
lp = True
b = S(points)
if self.x0 == b:
return _evalf(self, [b], method=method, derivatives=derivatives)[-1]
if not b.is_Number:
raise NotImplementedError
a = self.x0
if a > b:
h = -h
n = int((b - a) / h)
points = [a + h]
for i in range(n - 1):
points.append(points[-1] + h)
for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x):
if i == self.x0 or i in points:
raise SingularityError(self, i)
if lp:
return _evalf(self, points, method=method, derivatives=derivatives)[-1]
return _evalf(self, points, method=method, derivatives=derivatives)
def change_x(self, z):
"""
Changes only the variable of Holonomic Function, for internal
purposes. For composition use HolonomicFunction.composition()
"""
dom = self.annihilator.parent.base.dom
R = dom.old_poly_ring(z)
parent, _ = DifferentialOperators(R, 'Dx')
sol = []
for j in self.annihilator.listofpoly:
sol.append(R(j.rep))
sol = DifferentialOperator(sol, parent)
return HolonomicFunction(sol, z, self.x0, self.y0)
def shift_x(self, a):
"""
Substitute `x + a` for `x`.
"""
x = self.x
listaftershift = self.annihilator.listofpoly
base = self.annihilator.parent.base
sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift]
sol = DifferentialOperator(sol, self.annihilator.parent)
x0 = self.x0 - a
if not self._have_init_cond():
return HolonomicFunction(sol, x)
return HolonomicFunction(sol, x, x0, self.y0)
def to_hyper(self, as_list=False, _recur=None):
r"""
Returns a hypergeometric function (or linear combination of them)
representing the given holonomic function.
Returns an answer of the form:
`a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} ...`
This is very useful as one can now use ``hyperexpand`` to find the
symbolic expressions/functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> # sin(x)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper()
x*hyper((), (3/2,), -x**2/4)
>>> # exp(x)
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper()
hyper((), (), x)
See Also
========
from_hyper, from_meijerg
"""
if _recur == None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
smallest_n = recurrence[1]
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
smallest_n = recurrence[2]
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
smallest_n = recurrence[0][1]
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
smallest_n = recurrence[0][2]
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = self.to_hyper(as_list=as_list, _recur=recurrence[0])
for i in recurrence[1:]:
sol += self.to_hyper(as_list=as_list, _recur=i)
return sol
u0 = recurrence.u0
r = recurrence.recurrence
x = self.x
x0 = self.x0
# order of the recurrence relation
m = r.order
# when no recurrence exists, and the power series have finite terms
if m == 0:
nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R')
sol = S(0)
for j, i in enumerate(nonzeroterms):
if i < 0 or int(i) != i:
continue
i = int(i)
if i < len(u0):
if isinstance(u0[i], (PolyElement, FracElement)):
u0[i] = u0[i].as_expr()
sol += u0[i] * x**i
else:
sol += Symbol('C_%s' %j) * x**i
if isinstance(sol, (PolyElement, FracElement)):
sol = sol.as_expr() * x**constantpower
else:
sol = sol * x**constantpower
if as_list:
if x0 != 0:
return [(sol.subs(x, x - x0), )]
return [(sol, )]
if x0 != 0:
return sol.subs(x, x - x0)
return sol
if smallest_n + m > len(u0):
raise NotImplementedError("Can't compute sufficient Initial Conditions")
# check if the recurrence represents a hypergeometric series
is_hyper = True
for i in range(1, len(r.listofpoly)-1):
if r.listofpoly[i] != r.parent.base.zero:
is_hyper = False
break
if not is_hyper:
raise NotHyperSeriesError(self, self.x0)
a = r.listofpoly[0]
b = r.listofpoly[-1]
# the constant multiple of argument of hypergeometric function
if isinstance(a.rep[0], (PolyElement, FracElement)):
c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree()))
else:
c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree()))
sol = 0
arg1 = roots(r.parent.base.to_sympy(a), recurrence.n)
arg2 = roots(r.parent.base.to_sympy(b), recurrence.n)
# iterate thorugh the initial conditions to find
# the hypergeometric representation of the given
# function.
# The answer will be a linear combination
# of different hypergeometric series which satisfies
# the recurrence.
if as_list:
listofsol = []
for i in range(smallest_n + m):
# if the recurrence relation doesn't hold for `n = i`,
# then a Hypergeometric representation doesn't exist.
# add the algebraic term a * x**i to the solution,
# where a is u0[i]
if i < smallest_n:
if as_list:
listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), ))
else:
sol += S(u0[i]) * x**i
continue
# if the coefficient u0[i] is zero, then the
# independent hypergeomtric series starting with
# x**i is not a part of the answer.
if S(u0[i]) == 0:
continue
ap = []
bq = []
# substitute m * n + i for n
for k in ordered(arg1.keys()):
ap.extend([nsimplify((i - k) / m)] * arg1[k])
for k in ordered(arg2.keys()):
bq.extend([nsimplify((i - k) / m)] * arg2[k])
# convention of (k + 1) in the denominator
if 1 in bq:
bq.remove(1)
else:
ap.append(1)
if as_list:
listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0)))
else:
sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i
if as_list:
return listofsol
sol = sol * x**constantpower
if x0 != 0:
return sol.subs(x, x - x0)
return sol
def to_expr(self):
"""
Converts a Holonomic Function back to elementary functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ, QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr()
besselj(1, x)
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr()
x*log(x + 1) + log(x + 1) + 1
"""
return hyperexpand(self.to_hyper()).simplify()
def change_ics(self, b, lenics=None):
"""
Changes the point `x0` to `b` for initial conditions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import symbols, sin, cos, exp
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x)).change_ics(1)
HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)])
>>> expr_to_holonomic(exp(x)).change_ics(2)
HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)])
"""
symbolic = True
if lenics == None and len(self.y0) > self.annihilator.order:
lenics = len(self.y0)
dom = self.annihilator.parent.base.domain
try:
sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom)
except (NotPowerSeriesError, NotHyperSeriesError):
symbolic = False
if symbolic and sol.x0 == b:
return sol
y0 = self.evalf(b, derivatives=True)
return HolonomicFunction(self.annihilator, self.x, b, y0)
def to_meijerg(self):
"""
Returns a linear combination of Meijer G-functions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import sin, cos, hyperexpand, log, symbols
>>> x = symbols('x')
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg())
sin(x) + cos(x)
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify()
log(x)
See Also
========
to_hyper()
"""
# convert to hypergeometric first
rep = self.to_hyper(as_list=True)
sol = S(0)
for i in rep:
if len(i) == 1:
sol += i[0]
elif len(i) == 2:
sol += i[0] * _hyper_to_meijerg(i[1])
return sol
def from_hyper(func, x0=0, evalf=False):
r"""
Converts a hypergeometric function to holonomic.
``func`` is the Hypergeometric Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_hyper, DifferentialOperators
>>> from sympy import symbols, hyper, S
>>> x = symbols('x')
>>> from_hyper(hyper([], [S(3)/2], x**2/4))
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)])
"""
a = func.ap
b = func.bq
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
# generalized hypergeometric differential equation
r1 = 1
for i in range(len(a)):
r1 = r1 * (x * Dx + a[i])
r2 = Dx
for i in range(len(b)):
r2 = r2 * (x * Dx + b[i] - 1)
sol = r1 - r2
simp = hyperexpand(func)
if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
# return None if it is Infinite or NaN
if (val.is_finite is not None and not val.is_finite) or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# if the function is known symbolically
if not isinstance(simp, hyper):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
# if values don't exist at 0, then try to find initial
# conditions at 1. If it doesn't exist at 1 too then
# try 2 and so on.
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, hyper):
x0 = 1
# use evalf if the function can't be simpified
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ):
"""
Converts a Meijer G-function to Holonomic.
``func`` is the G-Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_meijerg, DifferentialOperators
>>> from sympy import symbols, meijerg, S
>>> x = symbols('x')
>>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)])
"""
a = func.ap
b = func.bq
n = len(func.an)
m = len(func.bm)
p = len(a)
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx')
# compute the differential equation satisfied by the
# Meijer G-function.
mnp = (-1)**(m + n - p)
r1 = x * mnp
for i in range(len(a)):
r1 *= x * Dx + 1 - a[i]
r2 = 1
for i in range(len(b)):
r2 *= x * Dx - b[i]
sol = r1 - r2
if not initcond:
return HolonomicFunction(sol, x).composition(z)
simp = hyperexpand(func)
if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
if (val.is_finite is not None and not val.is_finite) or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# computing initial conditions
if not isinstance(simp, meijerg):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, meijerg):
x0 = 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
x_1 = Dummy('x_1')
_lookup_table = None
domain_for_table = None
from sympy.integrals.meijerint import _mytype
def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True):
"""
Converts a function or an expression to a holonomic function.
Parameters
==========
func:
The expression to be converted.
x:
variable for the function.
x0:
point at which initial condition must be computed.
y0:
One can optionally provide initial condition if the method
isn't able to do it automatically.
lenics:
Number of terms in the initial condition. By default it is
equal to the order of the annihilator.
domain:
Ground domain for the polynomials in `x` appearing as coefficients
in the annihilator.
initcond:
Set it false if you don't want the initial conditions to be computed.
Examples
========
>>> from sympy.holonomic.holonomic import expr_to_holonomic
>>> from sympy import sin, exp, symbols
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1])
>>> expr_to_holonomic(exp(x))
HolonomicFunction((-1) + (1)*Dx, x, 0, [1])
See Also
========
meijerint._rewrite1, _convert_poly_rat_alg, _create_table
"""
func = sympify(func)
syms = func.free_symbols
if not x:
if len(syms) == 1:
x= syms.pop()
else:
raise ValueError("Specify the variable for the function")
elif x in syms:
syms.remove(x)
extra_syms = list(syms)
if domain == None:
if func.has(Float):
domain = RR
else:
domain = QQ
if len(extra_syms) != 0:
domain = domain[extra_syms].get_field()
# try to convert if the function is polynomial or rational
solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond)
if solpoly:
return solpoly
# create the lookup table
global _lookup_table, domain_for_table
if not _lookup_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
elif domain != domain_for_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
# use the table directly to convert to Holonomic
if func.is_Function:
f = func.subs(x, x_1)
t = _mytype(f, x_1)
if t in _lookup_table:
l = _lookup_table[t]
sol = l[0][1].change_x(x)
else:
sol = _convert_meijerint(func, x, initcond=False, domain=domain)
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
if y0 or not initcond:
sol = sol.composition(func.args[0])
if y0:
sol.y0 = y0
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return sol.composition(func.args[0], x0, _y0)
# iterate through the expression recursively
args = func.args
f = func.func
from sympy.core import Add, Mul, Pow
sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain)
if f is Add:
for i in range(1, len(args)):
sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Mul:
for i in range(1, len(args)):
sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Pow:
sol = sol**args[1]
sol.x0 = x0
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
return sol
if sol.y0:
return sol
if not lenics:
lenics = sol.annihilator.order
if sol.annihilator.is_singular(x0):
r = sol._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S(1):
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol.annihilator, x, x0, y0)
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
## Some helper functions ##
def _normalize(list_of, parent, negative=True):
"""
Normalize a given annihilator
"""
num = []
denom = []
base = parent.base
K = base.get_field()
lcm_denom = base.from_sympy(S(1))
list_of_coeff = []
# convert polynomials to the elements of associated
# fraction field
for i, j in enumerate(list_of):
if isinstance(j, base.dtype):
list_of_coeff.append(K.new(j.rep))
elif not isinstance(j, K.dtype):
list_of_coeff.append(K.from_sympy(sympify(j)))
else:
list_of_coeff.append(j)
# corresponding numerators of the sequence of polynomials
num.append(list_of_coeff[i].numer())
# corresponding denominators
denom.append(list_of_coeff[i].denom())
# lcm of denominators in the coefficients
for i in denom:
lcm_denom = i.lcm(lcm_denom)
if negative:
lcm_denom = -lcm_denom
lcm_denom = K.new(lcm_denom.rep)
# multiply the coefficients with lcm
for i, j in enumerate(list_of_coeff):
list_of_coeff[i] = j * lcm_denom
gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep)
# gcd of numerators in the coefficients
for i in num:
gcd_numer = i.gcd(gcd_numer)
gcd_numer = K.new(gcd_numer.rep)
# divide all the coefficients by the gcd
for i, j in enumerate(list_of_coeff):
frac_ans = j / gcd_numer
list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep)
return DifferentialOperator(list_of_coeff, parent)
def _derivate_diff_eq(listofpoly):
"""
Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0
where a0, a1,... are polynomials or rational functions. The function
returns b0, b1, b2... such that the differential equation
b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the
former equation.
"""
sol = []
a = len(listofpoly) - 1
sol.append(DMFdiff(listofpoly[0]))
for i, j in enumerate(listofpoly[1:]):
sol.append(DMFdiff(j) + listofpoly[i])
sol.append(listofpoly[a])
return sol
def _hyper_to_meijerg(func):
"""
Converts a `hyper` to meijerg.
"""
ap = func.ap
bq = func.bq
p = len(ap)
q = len(bq)
ispoly = any(i <= 0 and int(i) == i for i in ap)
if ispoly:
return hyperexpand(func)
z = func.args[2]
# parameters of the `meijerg` function.
an = (1 - i for i in ap)
anp = ()
bm = (S(0), )
bmq = (1 - i for i in bq)
k = S(1)
for i in bq:
k = k * gamma(i)
for i in ap:
k = k / gamma(i)
return k * meijerg(an, anp, bm, bmq, -z)
def _add_lists(list1, list2):
"""Takes polynomial sequences of two annihilators a and b and returns
the list of polynomials of sum of a and b.
"""
if len(list1) <= len(list2):
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
else:
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
return sol
def _extend_y0(Holonomic, n):
"""
Tries to find more initial conditions by substituting the initial
value point in the differential equation.
"""
if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True:
return Holonomic.y0
annihilator = Holonomic.annihilator
a = annihilator.order
x = Holonomic.x
listofpoly = []
y0 = Holonomic.y0
R = annihilator.parent.base
K = R.get_field()
for i, j in enumerate(annihilator.listofpoly):
if isinstance(j, annihilator.parent.base.dtype):
listofpoly.append(K.new(j.rep))
if len(y0) < a or n <= len(y0):
return y0
else:
list_red = [-listofpoly[i] / listofpoly[a]
for i in range(a)]
if len(y0) > a:
y1 = [y0[i] for i in range(a)]
else:
y1 = [i for i in y0]
for i in range(n - a):
sol = 0
for a, b in zip(y1, list_red):
r = DMFsubs(b, Holonomic.x0)
try:
if not r.is_finite:
return y0
except AttributeError:
pass
if isinstance(r, (PolyElement, FracElement)):
r = r.as_expr()
sol += a * r
y1.append(sol)
list_red = _derivate_diff_eq(list_red)
return y0 + y1[len(y0):]
def DMFdiff(frac):
# differentiate a DMF object represented as p/q
if not isinstance(frac, DMF):
return frac.diff()
K = frac.ring
p = K.numer(frac)
q = K.denom(frac)
sol_num = - p * q.diff() + q * p.diff()
sol_denom = q**2
return K((sol_num.rep, sol_denom.rep))
def DMFsubs(frac, x0, mpm=False):
# substitute the point x0 in DMF object of the form p/q
if not isinstance(frac, DMF):
return frac
p = frac.num
q = frac.den
sol_p = S(0)
sol_q = S(0)
if mpm:
from mpmath import mp
for i, j in enumerate(reversed(p)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_p += j * x0**i
for i, j in enumerate(reversed(q)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_q += j * x0**i
if isinstance(sol_p, (PolyElement, FracElement)):
sol_p = sol_p.as_expr()
if isinstance(sol_q, (PolyElement, FracElement)):
sol_q = sol_q.as_expr()
return sol_p / sol_q
def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True):
"""
Converts polynomials, rationals and algebraic functions to holonomic.
"""
ispoly = func.is_polynomial()
if not ispoly:
israt = func.is_rational_function()
else:
israt = True
if not (ispoly or israt):
basepoly, ratexp = func.as_base_exp()
if basepoly.is_polynomial() and ratexp.is_Number:
if isinstance(ratexp, Float):
ratexp = nsimplify(ratexp)
m, n = ratexp.p, ratexp.q
is_alg = True
else:
is_alg = False
else:
is_alg = True
if not (ispoly or israt or is_alg):
return None
R = domain.old_poly_ring(x)
_, Dx = DifferentialOperators(R, 'Dx')
# if the function is constant
if not func.has(x):
return HolonomicFunction(Dx, x, 0, [func])
if ispoly:
# differential equation satisfied by polynomial
sol = func * Dx - func.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 == None and x0 == 0 and is_singular:
rep = R.from_sympy(func).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
else:
coeff = list(reversed(rep))[i:]
indicial = i
break
for i, j in enumerate(coeff):
if isinstance(j, (PolyElement, FracElement)):
coeff[i] = j.as_expr()
y0 = {indicial: S(coeff)}
elif israt:
order = 1
p, q = func.as_numer_denom()
# differential equation satisfied by rational
sol = p * q * Dx + p * q.diff(x) - q * p.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
elif is_alg:
sol = n * (x / m) * Dx - 1
sol = HolonomicFunction(sol, x).composition(basepoly).annihilator
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 == None and x0 == 0 and is_singular and \
(lenics == None or lenics <= 1):
rep = R.from_sympy(basepoly).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
if isinstance(j, (PolyElement, FracElement)):
j = j.as_expr()
coeff = S(j)**ratexp
indicial = S(i) * ratexp
break
if isinstance(coeff, (PolyElement, FracElement)):
coeff = coeff.as_expr()
y0 = {indicial: S([coeff])}
if y0 or not initcond:
return HolonomicFunction(sol, x, x0, y0)
if not lenics:
lenics = sol.order
if sol.is_singular(x0):
r = HolonomicFunction(sol, x, x0)._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S(1):
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol, x, x0, y0)
y0 = _find_conditions(func, x, x0, lenics)
while not y0:
x0 += 1
y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol, x, x0, y0)
def _convert_meijerint(func, x, initcond=True, domain=QQ):
args = meijerint._rewrite1(func, x)
if args:
fac, po, g, _ = args
else:
return None
# lists for sum of meijerg functions
fac_list = [fac * i[0] for i in g]
t = po.as_base_exp()
s = t[1] if t[0] is x else S(0)
po_list = [s + i[1] for i in g]
G_list = [i[2] for i in g]
# finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z)
def _shift(func, s):
z = func.args[-1]
if z.has(I):
z = z.subs(exp_polar, exp)
d = z.collect(x, evaluate=False)
b = list(d)[0]
a = d[b]
t = b.as_base_exp()
b = t[1] if t[0] is x else S(0)
r = s / b
an = (i + r for i in func.args[0][0])
ap = (i + r for i in func.args[0][1])
bm = (i + r for i in func.args[1][0])
bq = (i + r for i in func.args[1][1])
return a**-r, meijerg((an, ap), (bm, bq), z)
coeff, m = _shift(G_list[0], po_list[0])
sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
# add all the meijerg functions after converting to holonomic
for i in range(1, len(G_list)):
coeff, m = _shift(G_list[i], po_list[i])
sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
return sol
def _create_table(table, domain=QQ):
"""
Creates the look-up table. For a similar implementation
see meijerint._create_lookup_table.
"""
def add(formula, annihilator, arg, x0=0, y0=[]):
"""
Adds a formula in the dictionary
"""
table.setdefault(_mytype(formula, x_1), []).append((formula,
HolonomicFunction(annihilator, arg, x0, y0)))
R = domain.old_poly_ring(x_1)
_, Dx = DifferentialOperators(R, 'Dx')
from sympy import (sin, cos, exp, log, erf, sqrt, pi,
sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi)
# add some basic functions
add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
add(exp(x_1), Dx - 1, x_1, 0, 1)
add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])
add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])
add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)
add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
def _find_conditions(func, x, x0, order):
y0 = []
for i in range(order):
val = func.subs(x, x0)
if isinstance(val, NaN):
val = limit(func, x, x0)
if (val.is_finite is not None and not val.is_finite) or isinstance(val, NaN):
return None
y0.append(val)
func = func.diff(x)
return y0
|
b7dda8c149b3d4235e68ed26ae326c0f5524ff337c393188e4b608de3ea9a404
|
"""Transform a string with Python-like source code into SymPy expression. """
from __future__ import print_function, division
from tokenize import (generate_tokens, untokenize, TokenError,
NUMBER, STRING, NAME, OP, ENDMARKER, ERRORTOKEN, NEWLINE)
from keyword import iskeyword
import ast
import unicodedata
from sympy.core.compatibility import exec_, StringIO
from sympy.core.basic import Basic
from sympy.core import Symbol
def _token_splittable(token):
"""
Predicate for whether a token name can be split into multiple tokens.
A token is splittable if it does not contain an underscore character and
it is not the name of a Greek letter. This is used to implicitly convert
expressions like 'xyz' into 'x*y*z'.
"""
if '_' in token:
return False
else:
try:
return not unicodedata.lookup('GREEK SMALL LETTER ' + token)
except KeyError:
pass
if len(token) > 1:
return True
return False
def _token_callable(token, local_dict, global_dict, nextToken=None):
"""
Predicate for whether a token name represents a callable function.
Essentially wraps ``callable``, but looks up the token name in the
locals and globals.
"""
func = local_dict.get(token[1])
if not func:
func = global_dict.get(token[1])
return callable(func) and not isinstance(func, Symbol)
def _add_factorial_tokens(name, result):
if result == [] or result[-1][1] == '(':
raise TokenError()
beginning = [(NAME, name), (OP, '(')]
end = [(OP, ')')]
diff = 0
length = len(result)
for index, token in enumerate(result[::-1]):
toknum, tokval = token
i = length - index - 1
if tokval == ')':
diff += 1
elif tokval == '(':
diff -= 1
if diff == 0:
if i - 1 >= 0 and result[i - 1][0] == NAME:
return result[:i - 1] + beginning + result[i - 1:] + end
else:
return result[:i] + beginning + result[i:] + end
return result
class AppliedFunction(object):
"""
A group of tokens representing a function and its arguments.
`exponent` is for handling the shorthand sin^2, ln^2, etc.
"""
def __init__(self, function, args, exponent=None):
if exponent is None:
exponent = []
self.function = function
self.args = args
self.exponent = exponent
self.items = ['function', 'args', 'exponent']
def expand(self):
"""Return a list of tokens representing the function"""
result = []
result.append(self.function)
result.extend(self.args)
return result
def __getitem__(self, index):
return getattr(self, self.items[index])
def __repr__(self):
return "AppliedFunction(%s, %s, %s)" % (self.function, self.args,
self.exponent)
class ParenthesisGroup(list):
"""List of tokens representing an expression in parentheses."""
pass
def _flatten(result):
result2 = []
for tok in result:
if isinstance(tok, AppliedFunction):
result2.extend(tok.expand())
else:
result2.append(tok)
return result2
def _group_parentheses(recursor):
def _inner(tokens, local_dict, global_dict):
"""Group tokens between parentheses with ParenthesisGroup.
Also processes those tokens recursively.
"""
result = []
stacks = []
stacklevel = 0
for token in tokens:
if token[0] == OP:
if token[1] == '(':
stacks.append(ParenthesisGroup([]))
stacklevel += 1
elif token[1] == ')':
stacks[-1].append(token)
stack = stacks.pop()
if len(stacks) > 0:
# We don't recurse here since the upper-level stack
# would reprocess these tokens
stacks[-1].extend(stack)
else:
# Recurse here to handle nested parentheses
# Strip off the outer parentheses to avoid an infinite loop
inner = stack[1:-1]
inner = recursor(inner,
local_dict,
global_dict)
parenGroup = [stack[0]] + inner + [stack[-1]]
result.append(ParenthesisGroup(parenGroup))
stacklevel -= 1
continue
if stacklevel:
stacks[-1].append(token)
else:
result.append(token)
if stacklevel:
raise TokenError("Mismatched parentheses")
return result
return _inner
def _apply_functions(tokens, local_dict, global_dict):
"""Convert a NAME token + ParenthesisGroup into an AppliedFunction.
Note that ParenthesisGroups, if not applied to any function, are
converted back into lists of tokens.
"""
result = []
symbol = None
for tok in tokens:
if tok[0] == NAME:
symbol = tok
result.append(tok)
elif isinstance(tok, ParenthesisGroup):
if symbol and _token_callable(symbol, local_dict, global_dict):
result[-1] = AppliedFunction(symbol, tok)
symbol = None
else:
result.extend(tok)
else:
symbol = None
result.append(tok)
return result
def _implicit_multiplication(tokens, local_dict, global_dict):
"""Implicitly adds '*' tokens.
Cases:
- Two AppliedFunctions next to each other ("sin(x)cos(x)")
- AppliedFunction next to an open parenthesis ("sin x (cos x + 1)")
- A close parenthesis next to an AppliedFunction ("(x+2)sin x")\
- A close parenthesis next to an open parenthesis ("(x+2)(x+3)")
- AppliedFunction next to an implicitly applied function ("sin(x)cos x")
"""
result = []
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if (isinstance(tok, AppliedFunction) and
isinstance(nextTok, AppliedFunction)):
result.append((OP, '*'))
elif (isinstance(tok, AppliedFunction) and
nextTok[0] == OP and nextTok[1] == '('):
# Applied function followed by an open parenthesis
if tok.function[1] == "Function":
result[-1].function = (result[-1].function[0], 'Symbol')
result.append((OP, '*'))
elif (tok[0] == OP and tok[1] == ')' and
isinstance(nextTok, AppliedFunction)):
# Close parenthesis followed by an applied function
result.append((OP, '*'))
elif (tok[0] == OP and tok[1] == ')' and
nextTok[0] == NAME):
# Close parenthesis followed by an implicitly applied function
result.append((OP, '*'))
elif (tok[0] == nextTok[0] == OP
and tok[1] == ')' and nextTok[1] == '('):
# Close parenthesis followed by an open parenthesis
result.append((OP, '*'))
elif (isinstance(tok, AppliedFunction) and nextTok[0] == NAME):
# Applied function followed by implicitly applied function
result.append((OP, '*'))
elif (tok[0] == NAME and
not _token_callable(tok, local_dict, global_dict) and
nextTok[0] == OP and nextTok[1] == '('):
# Constant followed by parenthesis
result.append((OP, '*'))
elif (tok[0] == NAME and
not _token_callable(tok, local_dict, global_dict) and
nextTok[0] == NAME and
not _token_callable(nextTok, local_dict, global_dict)):
# Constant followed by constant
result.append((OP, '*'))
elif (tok[0] == NAME and
not _token_callable(tok, local_dict, global_dict) and
(isinstance(nextTok, AppliedFunction) or nextTok[0] == NAME)):
# Constant followed by (implicitly applied) function
result.append((OP, '*'))
if tokens:
result.append(tokens[-1])
return result
def _implicit_application(tokens, local_dict, global_dict):
"""Adds parentheses as needed after functions."""
result = []
appendParen = 0 # number of closing parentheses to add
skip = 0 # number of tokens to delay before adding a ')' (to
# capture **, ^, etc.)
exponentSkip = False # skipping tokens before inserting parentheses to
# work with function exponentiation
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if (tok[0] == NAME and nextTok[0] not in [OP, ENDMARKER, NEWLINE]):
if _token_callable(tok, local_dict, global_dict, nextTok):
result.append((OP, '('))
appendParen += 1
# name followed by exponent - function exponentiation
elif (tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**'):
if _token_callable(tok, local_dict, global_dict):
exponentSkip = True
elif exponentSkip:
# if the last token added was an applied function (i.e. the
# power of the function exponent) OR a multiplication (as
# implicit multiplication would have added an extraneous
# multiplication)
if (isinstance(tok, AppliedFunction)
or (tok[0] == OP and tok[1] == '*')):
# don't add anything if the next token is a multiplication
# or if there's already a parenthesis (if parenthesis, still
# stop skipping tokens)
if not (nextTok[0] == OP and nextTok[1] == '*'):
if not(nextTok[0] == OP and nextTok[1] == '('):
result.append((OP, '('))
appendParen += 1
exponentSkip = False
elif appendParen:
if nextTok[0] == OP and nextTok[1] in ('^', '**', '*'):
skip = 1
continue
if skip:
skip -= 1
continue
result.append((OP, ')'))
appendParen -= 1
if tokens:
result.append(tokens[-1])
if appendParen:
result.extend([(OP, ')')] * appendParen)
return result
def function_exponentiation(tokens, local_dict, global_dict):
"""Allows functions to be exponentiated, e.g. ``cos**2(x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, function_exponentiation)
>>> transformations = standard_transformations + (function_exponentiation,)
>>> parse_expr('sin**4(x)', transformations=transformations)
sin(x)**4
"""
result = []
exponent = []
consuming_exponent = False
level = 0
for tok, nextTok in zip(tokens, tokens[1:]):
if tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**':
if _token_callable(tok, local_dict, global_dict):
consuming_exponent = True
elif consuming_exponent:
if tok[0] == NAME and tok[1] == 'Function':
tok = (NAME, 'Symbol')
exponent.append(tok)
# only want to stop after hitting )
if tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '(':
consuming_exponent = False
# if implicit multiplication was used, we may have )*( instead
if tok[0] == nextTok[0] == OP and tok[1] == '*' and nextTok[1] == '(':
consuming_exponent = False
del exponent[-1]
continue
elif exponent and not consuming_exponent:
if tok[0] == OP:
if tok[1] == '(':
level += 1
elif tok[1] == ')':
level -= 1
if level == 0:
result.append(tok)
result.extend(exponent)
exponent = []
continue
result.append(tok)
if tokens:
result.append(tokens[-1])
if exponent:
result.extend(exponent)
return result
def split_symbols_custom(predicate):
"""Creates a transformation that splits symbol names.
``predicate`` should return True if the symbol name is to be split.
For instance, to retain the default behavior but avoid splitting certain
symbol names, a predicate like this would work:
>>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable,
... standard_transformations, implicit_multiplication,
... split_symbols_custom)
>>> def can_split(symbol):
... if symbol not in ('list', 'of', 'unsplittable', 'names'):
... return _token_splittable(symbol)
... return False
...
>>> transformation = split_symbols_custom(can_split)
>>> parse_expr('unsplittable', transformations=standard_transformations +
... (transformation, implicit_multiplication))
unsplittable
"""
def _split_symbols(tokens, local_dict, global_dict):
result = []
split = False
split_previous=False
for tok in tokens:
if split_previous:
# throw out closing parenthesis of Symbol that was split
split_previous=False
continue
split_previous=False
if tok[0] == NAME and tok[1] in ['Symbol', 'Function']:
split = True
elif split and tok[0] == NAME:
symbol = tok[1][1:-1]
if predicate(symbol):
tok_type = result[-2][1] # Symbol or Function
del result[-2:] # Get rid of the call to Symbol
for char in symbol[:-1]:
if char in local_dict or char in global_dict:
result.extend([(NAME, "%s" % char)])
else:
result.extend([(NAME, 'Symbol'), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
char = symbol[-1]
if char in local_dict or char in global_dict:
result.extend([(NAME, "%s" % char)])
else:
result.extend([(NAME, tok_type), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
# Set split_previous=True so will skip
# the closing parenthesis of the original Symbol
split = False
split_previous = True
continue
else:
split = False
result.append(tok)
return result
return _split_symbols
#: Splits symbol names for implicit multiplication.
#:
#: Intended to let expressions like ``xyz`` be parsed as ``x*y*z``. Does not
#: split Greek character names, so ``theta`` will *not* become
#: ``t*h*e*t*a``. Generally this should be used with
#: ``implicit_multiplication``.
split_symbols = split_symbols_custom(_token_splittable)
def implicit_multiplication(result, local_dict, global_dict):
"""Makes the multiplication operator optional in most cases.
Use this before :func:`implicit_application`, otherwise expressions like
``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication)
>>> transformations = standard_transformations + (implicit_multiplication,)
>>> parse_expr('3 x y', transformations=transformations)
3*x*y
"""
# These are interdependent steps, so we don't expose them separately
for step in (_group_parentheses(implicit_multiplication),
_apply_functions,
_implicit_multiplication):
result = step(result, local_dict, global_dict)
result = _flatten(result)
return result
def implicit_application(result, local_dict, global_dict):
"""Makes parentheses optional in some cases for function calls.
Use this after :func:`implicit_multiplication`, otherwise expressions
like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than
``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_application)
>>> transformations = standard_transformations + (implicit_application,)
>>> parse_expr('cot z + csc z', transformations=transformations)
cot(z) + csc(z)
"""
for step in (_group_parentheses(implicit_application),
_apply_functions,
_implicit_application,):
result = step(result, local_dict, global_dict)
result = _flatten(result)
return result
def implicit_multiplication_application(result, local_dict, global_dict):
"""Allows a slightly relaxed syntax.
- Parentheses for single-argument method calls are optional.
- Multiplication is implicit.
- Symbol names can be split (i.e. spaces are not needed between
symbols).
- Functions can be exponentiated.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication_application)
>>> parse_expr("10sin**2 x**2 + 3xyz + tan theta",
... transformations=(standard_transformations +
... (implicit_multiplication_application,)))
3*x*y*z + 10*sin(x**2)**2 + tan(theta)
"""
for step in (split_symbols, implicit_multiplication,
implicit_application, function_exponentiation):
result = step(result, local_dict, global_dict)
return result
def auto_symbol(tokens, local_dict, global_dict):
"""Inserts calls to ``Symbol``/``Function`` for undefined variables."""
result = []
prevTok = (None, None)
tokens.append((None, None)) # so zip traverses all tokens
for tok, nextTok in zip(tokens, tokens[1:]):
tokNum, tokVal = tok
nextTokNum, nextTokVal = nextTok
if tokNum == NAME:
name = tokVal
if (name in ['True', 'False', 'None']
or iskeyword(name)
# Don't convert attribute access
or (prevTok[0] == OP and prevTok[1] == '.')
# Don't convert keyword arguments
or (prevTok[0] == OP and prevTok[1] in ('(', ',')
and nextTokNum == OP and nextTokVal == '=')):
result.append((NAME, name))
continue
elif name in local_dict:
if isinstance(local_dict[name], Symbol) and nextTokVal == '(':
result.extend([(NAME, 'Function'),
(OP, '('),
(NAME, repr(str(local_dict[name]))),
(OP, ')')])
else:
result.append((NAME, name))
continue
elif name in global_dict:
obj = global_dict[name]
if isinstance(obj, (Basic, type)) or callable(obj):
result.append((NAME, name))
continue
result.extend([
(NAME, 'Symbol' if nextTokVal != '(' else 'Function'),
(OP, '('),
(NAME, repr(str(name))),
(OP, ')'),
])
else:
result.append((tokNum, tokVal))
prevTok = (tokNum, tokVal)
return result
def lambda_notation(tokens, local_dict, global_dict):
"""Substitutes "lambda" with its Sympy equivalent Lambda().
However, the conversion doesn't take place if only "lambda"
is passed because that is a syntax error.
"""
result = []
flag = False
toknum, tokval = tokens[0]
tokLen = len(tokens)
if toknum == NAME and tokval == 'lambda':
if tokLen == 2 or tokLen == 3 and tokens[1][0] == NEWLINE:
# In Python 3.6.7+, inputs without a newline get NEWLINE added to
# the tokens
result.extend(tokens)
elif tokLen > 2:
result.extend([
(NAME, 'Lambda'),
(OP, '('),
(OP, '('),
(OP, ')'),
(OP, ')'),
])
for tokNum, tokVal in tokens[1:]:
if tokNum == OP and tokVal == ':':
tokVal = ','
flag = True
if not flag and tokNum == OP and tokVal in ['*', '**']:
raise TokenError("Starred arguments in lambda not supported")
if flag:
result.insert(-1, (tokNum, tokVal))
else:
result.insert(-2, (tokNum, tokVal))
else:
result.extend(tokens)
return result
def factorial_notation(tokens, local_dict, global_dict):
"""Allows standard notation for factorial."""
result = []
nfactorial = 0
for toknum, tokval in tokens:
if toknum == ERRORTOKEN:
op = tokval
if op == '!':
nfactorial += 1
else:
nfactorial = 0
result.append((OP, op))
else:
if nfactorial == 1:
result = _add_factorial_tokens('factorial', result)
elif nfactorial == 2:
result = _add_factorial_tokens('factorial2', result)
elif nfactorial > 2:
raise TokenError
nfactorial = 0
result.append((toknum, tokval))
return result
def convert_xor(tokens, local_dict, global_dict):
"""Treats XOR, ``^``, as exponentiation, ``**``."""
result = []
for toknum, tokval in tokens:
if toknum == OP:
if tokval == '^':
result.append((OP, '**'))
else:
result.append((toknum, tokval))
else:
result.append((toknum, tokval))
return result
def repeated_decimals(tokens, local_dict, global_dict):
"""
Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90)
Run this before auto_number.
"""
result = []
def is_digit(s):
return all(i in '0123456789_' for i in s)
# num will running match any DECIMAL [ INTEGER ]
num = []
for toknum, tokval in tokens:
if toknum == NUMBER:
if (not num and '.' in tokval and 'e' not in tokval.lower() and
'j' not in tokval.lower()):
num.append((toknum, tokval))
elif is_digit(tokval)and len(num) == 2:
num.append((toknum, tokval))
elif is_digit(tokval) and len(num) == 3 and is_digit(num[-1][1]):
# Python 2 tokenizes 00123 as '00', '123'
# Python 3 tokenizes 01289 as '012', '89'
num.append((toknum, tokval))
else:
num = []
elif toknum == OP:
if tokval == '[' and len(num) == 1:
num.append((OP, tokval))
elif tokval == ']' and len(num) >= 3:
num.append((OP, tokval))
elif tokval == '.' and not num:
# handle .[1]
num.append((NUMBER, '0.'))
else:
num = []
else:
num = []
result.append((toknum, tokval))
if num and num[-1][1] == ']':
# pre.post[repetend] = a + b/c + d/e where a = pre, b/c = post,
# and d/e = repetend
result = result[:-len(num)]
pre, post = num[0][1].split('.')
repetend = num[2][1]
if len(num) == 5:
repetend += num[3][1]
pre = pre.replace('_', '')
post = post.replace('_', '')
repetend = repetend.replace('_', '')
zeros = '0'*len(post)
post, repetends = [w.lstrip('0') for w in [post, repetend]]
# or else interpreted as octal
a = pre or '0'
b, c = post or '0', '1' + zeros
d, e = repetends, ('9'*len(repetend)) + zeros
seq = [
(OP, '('),
(NAME, 'Integer'),
(OP, '('),
(NUMBER, a),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, b),
(OP, ','),
(NUMBER, c),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, d),
(OP, ','),
(NUMBER, e),
(OP, ')'),
(OP, ')'),
]
result.extend(seq)
num = []
return result
def auto_number(tokens, local_dict, global_dict):
"""
Converts numeric literals to use SymPy equivalents.
Complex numbers use ``I``, integer literals use ``Integer``, and float
literals use ``Float``.
"""
result = []
for toknum, tokval in tokens:
if toknum == NUMBER:
number = tokval
postfix = []
if number.endswith('j') or number.endswith('J'):
number = number[:-1]
postfix = [(OP, '*'), (NAME, 'I')]
if '.' in number or (('e' in number or 'E' in number) and
not (number.startswith('0x') or number.startswith('0X'))):
seq = [(NAME, 'Float'), (OP, '('),
(NUMBER, repr(str(number))), (OP, ')')]
else:
seq = [(NAME, 'Integer'), (OP, '('), (
NUMBER, number), (OP, ')')]
result.extend(seq + postfix)
else:
result.append((toknum, tokval))
return result
def rationalize(tokens, local_dict, global_dict):
"""Converts floats into ``Rational``. Run AFTER ``auto_number``."""
result = []
passed_float = False
for toknum, tokval in tokens:
if toknum == NAME:
if tokval == 'Float':
passed_float = True
tokval = 'Rational'
result.append((toknum, tokval))
elif passed_float == True and toknum == NUMBER:
passed_float = False
result.append((STRING, tokval))
else:
result.append((toknum, tokval))
return result
def _transform_equals_sign(tokens, local_dict, global_dict):
"""Transforms the equals sign ``=`` to instances of Eq.
This is a helper function for `convert_equals_signs`.
Works with expressions containing one equals sign and no
nesting. Expressions like `(1=2)=False` won't work with this
and should be used with `convert_equals_signs`.
Examples: 1=2 to Eq(1,2)
1*2=x to Eq(1*2, x)
This does not deal with function arguments yet.
"""
result = []
if (OP, "=") in tokens:
result.append((NAME, "Eq"))
result.append((OP, "("))
for index, token in enumerate(tokens):
if token == (OP, "="):
result.append((OP, ","))
continue
result.append(token)
result.append((OP, ")"))
else:
result = tokens
return result
def convert_equals_signs(result, local_dict, global_dict):
""" Transforms all the equals signs ``=`` to instances of Eq.
Parses the equals signs in the expression and replaces them with
appropriate Eq instances.Also works with nested equals signs.
Does not yet play well with function arguments.
For example, the expression `(x=y)` is ambiguous and can be interpreted
as x being an argument to a function and `convert_equals_signs` won't
work for this.
See also
========
convert_equality_operators
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, convert_equals_signs)
>>> parse_expr("1*2=x", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(2, x)
>>> parse_expr("(1*2=x)=False", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(Eq(2, x), False)
"""
for step in (_group_parentheses(convert_equals_signs),
_apply_functions,
_transform_equals_sign):
result = step(result, local_dict, global_dict)
result = _flatten(result)
return result
#: Standard transformations for :func:`parse_expr`.
#: Inserts calls to :class:`Symbol`, :class:`Integer`, and other SymPy
#: datatypes and allows the use of standard factorial notation (e.g. ``x!``).
standard_transformations = (lambda_notation, auto_symbol, repeated_decimals, auto_number,
factorial_notation)
def stringify_expr(s, local_dict, global_dict, transformations):
"""
Converts the string ``s`` to Python code, in ``local_dict``
Generally, ``parse_expr`` should be used.
"""
tokens = []
input_code = StringIO(s.strip())
for toknum, tokval, _, _, _ in generate_tokens(input_code.readline):
tokens.append((toknum, tokval))
for transform in transformations:
tokens = transform(tokens, local_dict, global_dict)
return untokenize(tokens)
def eval_expr(code, local_dict, global_dict):
"""
Evaluate Python code generated by ``stringify_expr``.
Generally, ``parse_expr`` should be used.
"""
expr = eval(
code, global_dict, local_dict) # take local objects in preference
return expr
def parse_expr(s, local_dict=None, transformations=standard_transformations,
global_dict=None, evaluate=True):
"""Converts the string ``s`` to a SymPy expression, in ``local_dict``
Parameters
==========
s : str
The string to parse.
local_dict : dict, optional
A dictionary of local variables to use when parsing.
global_dict : dict, optional
A dictionary of global variables. By default, this is initialized
with ``from sympy import *``; provide this parameter to override
this behavior (for instance, to parse ``"Q & S"``).
transformations : tuple, optional
A tuple of transformation functions used to modify the tokens of the
parsed expression before evaluation. The default transformations
convert numeric literals into their SymPy equivalents, convert
undefined variables into SymPy symbols, and allow the use of standard
mathematical factorial notation (e.g. ``x!``).
evaluate : bool, optional
When False, the order of the arguments will remain as they were in the
string and automatic simplification that would normally occur is
suppressed. (see examples)
Examples
========
>>> from sympy.parsing.sympy_parser import parse_expr
>>> parse_expr("1/2")
1/2
>>> type(_)
<class 'sympy.core.numbers.Half'>
>>> from sympy.parsing.sympy_parser import standard_transformations,\\
... implicit_multiplication_application
>>> transformations = (standard_transformations +
... (implicit_multiplication_application,))
>>> parse_expr("2x", transformations=transformations)
2*x
When evaluate=False, some automatic simplifications will not occur:
>>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
(8, 2**3)
In addition the order of the arguments will not be made canonical.
This feature allows one to tell exactly how the expression was entered:
>>> a = parse_expr('1 + x', evaluate=False)
>>> b = parse_expr('x + 1', evaluate=0)
>>> a == b
False
>>> a.args
(1, x)
>>> b.args
(x, 1)
See Also
========
stringify_expr, eval_expr, standard_transformations,
implicit_multiplication_application
"""
if local_dict is None:
local_dict = {}
if global_dict is None:
global_dict = {}
exec_('from sympy import *', global_dict)
code = stringify_expr(s, local_dict, global_dict, transformations)
if not evaluate:
code = compile(evaluateFalse(code), '<string>', 'eval')
return eval_expr(code, local_dict, global_dict)
def evaluateFalse(s):
"""
Replaces operators with the SymPy equivalent and sets evaluate=False.
"""
node = ast.parse(s)
node = EvaluateFalseTransformer().visit(node)
# node is a Module, we want an Expression
node = ast.Expression(node.body[0].value)
return ast.fix_missing_locations(node)
class EvaluateFalseTransformer(ast.NodeTransformer):
operators = {
ast.Add: 'Add',
ast.Mult: 'Mul',
ast.Pow: 'Pow',
ast.Sub: 'Add',
ast.Div: 'Mul',
ast.BitOr: 'Or',
ast.BitAnd: 'And',
ast.BitXor: 'Not',
}
def flatten(self, args, func):
result = []
for arg in args:
if isinstance(arg, ast.Call) and arg.func.id == func:
result.extend(self.flatten(arg.args, func))
else:
result.append(arg)
return result
def visit_BinOp(self, node):
if node.op.__class__ in self.operators:
sympy_class = self.operators[node.op.__class__]
right = self.visit(node.right)
left = self.visit(node.left)
if isinstance(node.left, ast.UnaryOp) and (isinstance(node.right, ast.UnaryOp) == 0) and sympy_class in ('Mul',):
left, right = right, left
if isinstance(node.op, ast.Sub):
right = ast.Call(
func=ast.Name(id='Mul', ctx=ast.Load()),
args=[ast.UnaryOp(op=ast.USub(), operand=ast.Num(1)), right],
keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))],
starargs=None,
kwargs=None
)
if isinstance(node.op, ast.Div):
if isinstance(node.left, ast.UnaryOp):
if isinstance(node.right,ast.UnaryOp):
left, right = right, left
left = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))],
starargs=None,
kwargs=None
)
else:
right = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))],
starargs=None,
kwargs=None
)
new_node = ast.Call(
func=ast.Name(id=sympy_class, ctx=ast.Load()),
args=[left, right],
keywords=[ast.keyword(arg='evaluate', value=ast.Name(id='False', ctx=ast.Load()))],
starargs=None,
kwargs=None
)
if sympy_class in ('Add', 'Mul'):
# Denest Add or Mul as appropriate
new_node.args = self.flatten(new_node.args, sympy_class)
return new_node
return node
|
389138e7051e8cd3f60c9e04a423fd253e82ce38172d3d5f2ec1b51941d1bded
|
"""
This module implements Pauli algebra by subclassing Symbol. Only algebraic
properties of Pauli matrices are used (we don't use the Matrix class).
See the documentation to the class Pauli for examples.
References
~~~~~~~~~~
.. [1] https://en.wikipedia.org/wiki/Pauli_matrices
"""
from __future__ import print_function, division
from sympy import Symbol, I, Mul, Pow, Add
from sympy.physics.quantum import TensorProduct
__all__ = ['evaluate_pauli_product']
def delta(i, j):
"""
Returns 1 if i == j, else 0.
This is used in the multiplication of Pauli matrices.
Examples
========
>>> from sympy.physics.paulialgebra import delta
>>> delta(1, 1)
1
>>> delta(2, 3)
0
"""
if i == j:
return 1
else:
return 0
def epsilon(i, j, k):
"""
Return 1 if i,j,k is equal to (1,2,3), (2,3,1), or (3,1,2);
-1 if i,j,k is equal to (1,3,2), (3,2,1), or (2,1,3);
else return 0.
This is used in the multiplication of Pauli matrices.
Examples
========
>>> from sympy.physics.paulialgebra import epsilon
>>> epsilon(1, 2, 3)
1
>>> epsilon(1, 3, 2)
-1
"""
if (i, j, k) in [(1, 2, 3), (2, 3, 1), (3, 1, 2)]:
return 1
elif (i, j, k) in [(1, 3, 2), (3, 2, 1), (2, 1, 3)]:
return -1
else:
return 0
class Pauli(Symbol):
"""The class representing algebraic properties of Pauli matrices
If the left multiplication of symbol or number with Pauli matrix is needed,
please use parentheses to separate Pauli and symbolic multiplication
(for example: 2*I*(Pauli(3)*Pauli(2)))
Another variant is to use evaluate_pauli_product function to evaluate
the product of Pauli matrices and other symbols (with commutative
multiply rules)
See Also
=======
evaluate_pauli_product
Examples
========
>>> from sympy.physics.paulialgebra import Pauli
>>> Pauli(1)
sigma1
>>> Pauli(1)*Pauli(2)
I*sigma3
>>> Pauli(1)*Pauli(1)
1
>>> Pauli(3)**4
1
>>> Pauli(1)*Pauli(2)*Pauli(3)
I
>>> from sympy import I
>>> I*(Pauli(2)*Pauli(3))
-sigma1
>>> from sympy.physics.paulialgebra import evaluate_pauli_product
>>> f = I*Pauli(2)*Pauli(3)
>>> f
I*sigma2*sigma3
>>> evaluate_pauli_product(f)
-sigma1
"""
__slots__ = ["i"]
def __new__(cls, i):
if not i in [1, 2, 3]:
raise IndexError("Invalid Pauli index")
obj = Symbol.__new__(cls, "sigma%d" % i, commutative=False)
obj.i = i
return obj
def __getnewargs__(self):
return (self.i,)
# FIXME don't work for -I*Pauli(2)*Pauli(3)
def __mul__(self, other):
if isinstance(other, Pauli):
j = self.i
k = other.i
return delta(j, k) \
+ I*epsilon(j, k, 1)*Pauli(1) \
+ I*epsilon(j, k, 2)*Pauli(2) \
+ I*epsilon(j, k, 3)*Pauli(3)
return super(Pauli, self).__mul__(other)
def _eval_power(b, e):
if e.is_Integer and e.is_positive:
return super(Pauli, b).__pow__(int(e) % 2)
def evaluate_pauli_product(arg):
'''Help function to evaluate Pauli matrices product
with symbolic objects
Parameters
==========
arg: symbolic expression that contains Paulimatrices
Examples
========
>>> from sympy.physics.paulialgebra import Pauli, evaluate_pauli_product
>>> from sympy import I
>>> evaluate_pauli_product(I*Pauli(1)*Pauli(2))
-sigma3
>>> from sympy.abc import x,y
>>> evaluate_pauli_product(x**2*Pauli(2)*Pauli(1))
-I*x**2*sigma3
'''
start = arg
end = arg
if isinstance(arg, Pow) and isinstance(arg.args[0], Pauli):
if arg.args[1].is_odd:
return arg.args[0]
else:
return 1
if isinstance(arg, Add):
return Add(*[evaluate_pauli_product(part) for part in arg.args])
if isinstance(arg, TensorProduct):
return TensorProduct(*[evaluate_pauli_product(part) for part in arg.args])
elif not(isinstance(arg, Mul)):
return arg
while ((not(start == end)) | ((start == arg) & (end == arg))):
start = end
tmp = start.as_coeff_mul()
sigma_product = 1
com_product = 1
keeper = 1
for el in tmp[1]:
if isinstance(el, Pauli):
sigma_product *= el
elif not(el.is_commutative):
if isinstance(el, Pow) and isinstance(el.args[0], Pauli):
if el.args[1].is_odd:
sigma_product *= el.args[0]
elif isinstance(el, TensorProduct):
keeper = keeper*sigma_product*\
TensorProduct(
*[evaluate_pauli_product(part) for part in el.args]
)
sigma_product = 1
else:
keeper = keeper*sigma_product*el
sigma_product = 1
else:
com_product *= el
end = (tmp[0]*keeper*sigma_product*com_product)
if end == arg: break
return end
|
5768b987e60c03c4a48cafae3c23c111a9e9f246d6d266ba655a9ffbef28de09
|
from __future__ import print_function, division
from sympy.core import S, pi, Rational
from sympy.functions import hermite, sqrt, exp, factorial, Abs
from sympy.physics.quantum.constants import hbar
def psi_n(n, x, m, omega):
"""
Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator.
``n``
the "nodal" quantum number. Corresponds to the number of nodes in the
wavefunction. n >= 0
``x``
x coordinate
``m``
mass of the particle
``omega``
angular frequency of the oscillator
Examples
========
>>> from sympy.physics.qho_1d import psi_n
>>> from sympy import var
>>> var("x m omega")
(x, m, omega)
>>> psi_n(0, x, m, omega)
(m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4))
"""
# sympify arguments
n, x, m, omega = map(S, [n, x, m, omega])
nu = m * omega / hbar
# normalization coefficient
C = (nu/pi)**(S(1)/4) * sqrt(1/(2**n*factorial(n)))
return C * exp(-nu* x**2 /2) * hermite(n, sqrt(nu)*x)
def E_n(n, omega):
"""
Returns the Energy of the One-dimensional harmonic oscillator
``n``
the "nodal" quantum number
``omega``
the harmonic oscillator angular frequency
The unit of the returned value matches the unit of hw, since the energy is
calculated as:
E_n = hbar * omega*(n + 1/2)
Examples
========
>>> from sympy.physics.qho_1d import E_n
>>> from sympy import var
>>> var("x omega")
(x, omega)
>>> E_n(x, omega)
hbar*omega*(x + 1/2)
"""
return hbar * omega*(n + Rational(1, 2))
def coherent_state(n, alpha):
"""
Returns <n|alpha> for the coherent states of 1D harmonic oscillator.
See https://en.wikipedia.org/wiki/Coherent_states
``n``
the "nodal" quantum number
``alpha``
the eigen value of annihilation operator
"""
return exp(- Abs(alpha)**2/2)*(alpha**n)/sqrt(factorial(n))
|
a749aab8093a3641e59ef4ba8f215f26cc71e62c691cda1948042ee0621bb673
|
"""Known matrices related to physics"""
from __future__ import print_function, division
from sympy import Matrix, I, pi, sqrt
from sympy.functions import exp
from sympy.core.compatibility import range
def msigma(i):
r"""Returns a Pauli matrix `\sigma_i` with `i=1,2,3`
References
==========
.. [1] https://en.wikipedia.org/wiki/Pauli_matrices
Examples
========
>>> from sympy.physics.matrices import msigma
>>> msigma(1)
Matrix([
[0, 1],
[1, 0]])
"""
if i == 1:
mat = ( (
(0, 1),
(1, 0)
) )
elif i == 2:
mat = ( (
(0, -I),
(I, 0)
) )
elif i == 3:
mat = ( (
(1, 0),
(0, -1)
) )
else:
raise IndexError("Invalid Pauli index")
return Matrix(mat)
def pat_matrix(m, dx, dy, dz):
"""Returns the Parallel Axis Theorem matrix to translate the inertia
matrix a distance of `(dx, dy, dz)` for a body of mass m.
Examples
========
To translate a body having a mass of 2 units a distance of 1 unit along
the `x`-axis we get:
>>> from sympy.physics.matrices import pat_matrix
>>> pat_matrix(2, 1, 0, 0)
Matrix([
[0, 0, 0],
[0, 2, 0],
[0, 0, 2]])
"""
dxdy = -dx*dy
dydz = -dy*dz
dzdx = -dz*dx
dxdx = dx**2
dydy = dy**2
dzdz = dz**2
mat = ((dydy + dzdz, dxdy, dzdx),
(dxdy, dxdx + dzdz, dydz),
(dzdx, dydz, dydy + dxdx))
return m*Matrix(mat)
def mgamma(mu, lower=False):
r"""Returns a Dirac gamma matrix `\gamma^\mu` in the standard
(Dirac) representation.
If you want `\gamma_\mu`, use ``gamma(mu, True)``.
We use a convention:
`\gamma^5 = i \cdot \gamma^0 \cdot \gamma^1 \cdot \gamma^2 \cdot \gamma^3`
`\gamma_5 = i \cdot \gamma_0 \cdot \gamma_1 \cdot \gamma_2 \cdot \gamma_3 = - \gamma^5`
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_matrices
Examples
========
>>> from sympy.physics.matrices import mgamma
>>> mgamma(1)
Matrix([
[ 0, 0, 0, 1],
[ 0, 0, 1, 0],
[ 0, -1, 0, 0],
[-1, 0, 0, 0]])
"""
if not mu in [0, 1, 2, 3, 5]:
raise IndexError("Invalid Dirac index")
if mu == 0:
mat = (
(1, 0, 0, 0),
(0, 1, 0, 0),
(0, 0, -1, 0),
(0, 0, 0, -1)
)
elif mu == 1:
mat = (
(0, 0, 0, 1),
(0, 0, 1, 0),
(0, -1, 0, 0),
(-1, 0, 0, 0)
)
elif mu == 2:
mat = (
(0, 0, 0, -I),
(0, 0, I, 0),
(0, I, 0, 0),
(-I, 0, 0, 0)
)
elif mu == 3:
mat = (
(0, 0, 1, 0),
(0, 0, 0, -1),
(-1, 0, 0, 0),
(0, 1, 0, 0)
)
elif mu == 5:
mat = (
(0, 0, 1, 0),
(0, 0, 0, 1),
(1, 0, 0, 0),
(0, 1, 0, 0)
)
m = Matrix(mat)
if lower:
if mu in [1, 2, 3, 5]:
m = -m
return m
#Minkowski tensor using the convention (+,-,-,-) used in the Quantum Field
#Theory
minkowski_tensor = Matrix( (
(1, 0, 0, 0),
(0, -1, 0, 0),
(0, 0, -1, 0),
(0, 0, 0, -1)
))
def mdft(n):
r"""
Returns an expression of a discrete Fourier transform as a matrix multiplication.
It is an n X n matrix.
References
==========
.. [1] https://en.wikipedia.org/wiki/DFT_matrix
Examples
========
>>> from sympy.physics.matrices import mdft
>>> mdft(3)
Matrix([
[sqrt(3)/3, sqrt(3)/3, sqrt(3)/3],
[sqrt(3)/3, sqrt(3)*exp(-2*I*pi/3)/3, sqrt(3)*exp(-4*I*pi/3)/3],
[sqrt(3)/3, sqrt(3)*exp(-4*I*pi/3)/3, sqrt(3)*exp(-8*I*pi/3)/3]])
"""
mat = [[None for x in range(n)] for y in range(n)]
base = exp(-2*pi*I/n)
mat[0] = [1]*n
for i in range(n):
mat[i][0] = 1
for i in range(1, n):
for j in range(i, n):
mat[i][j] = mat[j][i] = base**(i*j)
return (1/sqrt(n))*Matrix(mat)
|
ee83640bebf887c5c2c90200fdcc0db6da1ade771b73459b50ef7f7624966c8e
|
"""
This module defines tensors with abstract index notation.
The abstract index notation has been first formalized by Penrose.
Tensor indices are formal objects, with a tensor type; there is no
notion of index range, it is only possible to assign the dimension,
used to trace the Kronecker delta; the dimension can be a Symbol.
The Einstein summation convention is used.
The covariant indices are indicated with a minus sign in front of the index.
For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
contracted.
A tensor expression ``t`` can be called; called with its
indices in sorted order it is equal to itself:
in the above example ``t(a, b) == t``;
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.
The contracted indices are dummy indices, internally they have no name,
the indices being represented by a graph-like structure.
Tensors are put in canonical form using ``canon_bp``, which uses
the Butler-Portugal algorithm for canonicalization using the monoterm
symmetries of the tensors.
If there is a (anti)symmetric metric, the indices can be raised and
lowered when the tensor is put in canonical form.
"""
from __future__ import print_function, division
from collections import defaultdict
import operator
import itertools
from sympy import Rational, prod, Integer
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \
bsgs_direct_product, canonicalize, riemann_bsgs
from sympy.core import Basic, Expr, sympify, Add, Mul, S
from sympy.core.compatibility import string_types, reduce, range, SYMPY_INTS
from sympy.core.containers import Tuple, Dict
from sympy.core.decorators import deprecated
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import CantSympify, _sympify
from sympy.core.operations import AssocOp
from sympy.matrices import eye
from sympy.utilities.exceptions import SymPyDeprecationWarning
import warnings
@deprecated(useinstead=".replace_with_arrays", issue=15276, deprecated_since_version="1.4")
def deprecate_data():
pass
class _IndexStructure(CantSympify):
"""
This class handles the indices (free and dummy ones). It contains the
algorithms to manage the dummy indices replacements and contractions of
free indices under multiplications of tensor expressions, as well as stuff
related to canonicalization sorting, getting the permutation of the
expression and so on. It also includes tools to get the ``TensorIndex``
objects corresponding to the given index structure.
"""
def __init__(self, free, dum, index_types, indices, canon_bp=False):
self.free = free
self.dum = dum
self.index_types = index_types
self.indices = indices
self._ext_rank = len(self.free) + 2*len(self.dum)
self.dum.sort(key=lambda x: x[0])
@staticmethod
def from_indices(*indices):
"""
Create a new ``_IndexStructure`` object from a list of ``indices``
``indices`` ``TensorIndex`` objects, the indices. Contractions are
detected upon construction.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
In case of many components the same indices have slightly different
indexes:
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
"""
free, dum = _IndexStructure._free_dum_from_indices(*indices)
index_types = [i.tensor_index_type for i in indices]
indices = _IndexStructure._replace_dummy_names(indices, free, dum)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def from_components_free_dum(components, free, dum):
index_types = []
for component in components:
index_types.extend(component.index_types)
indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def _free_dum_from_indices(*indices):
"""
Convert ``indices`` into ``free``, ``dum`` for single component tensor
``free`` list of tuples ``(index, pos, 0)``,
where ``pos`` is the position of index in
the list of indices formed by the component tensors
``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \
_IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3)
([(m0, 0), (m3, 3)], [(1, 2)])
"""
n = len(indices)
if n == 1:
return [(indices[0], 0)], []
# find the positions of the free indices and of the dummy indices
free = [True]*len(indices)
index_dict = {}
dum = []
for i, index in enumerate(indices):
name = index._name
typ = index.tensor_index_type
contr = index._is_up
if (name, typ) in index_dict:
# found a pair of dummy indices
is_contr, pos = index_dict[(name, typ)]
# check consistency and update free
if is_contr:
if contr:
raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
else:
free[pos] = False
free[i] = False
else:
if contr:
free[pos] = False
free[i] = False
else:
raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
if contr:
dum.append((i, pos))
else:
dum.append((pos, i))
else:
index_dict[(name, typ)] = index._is_up, i
free = [(index, i) for i, index in enumerate(indices) if free[i]]
free.sort()
return free, dum
def get_indices(self):
"""
Get a list of indices, creating new tensor indices to complete dummy indices.
"""
return self.indices[:]
@staticmethod
def generate_indices_from_free_dum_index_types(free, dum, index_types):
indices = [None]*(len(free)+2*len(dum))
for idx, pos in free:
indices[pos] = idx
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for pos1, pos2 in dum:
typ1 = index_types[pos1]
indname = generate_dummy_name(typ1)
indices[pos1] = TensorIndex(indname, typ1, True)
indices[pos2] = TensorIndex(indname, typ1, False)
return _IndexStructure._replace_dummy_names(indices, free, dum)
@staticmethod
def _get_generator_for_dummy_indices(free):
cdt = defaultdict(int)
# if the free indices have names with dummy_fmt, start with an
# index higher than those for the dummy indices
# to avoid name collisions
for indx, ipos in free:
if indx._name.split('_')[0] == indx.tensor_index_type.dummy_fmt[:-3]:
cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx._name.split('_')[1]) + 1)
def dummy_fmt_gen(tensor_index_type):
fmt = tensor_index_type.dummy_fmt
nd = cdt[tensor_index_type]
cdt[tensor_index_type] += 1
return fmt % nd
return dummy_fmt_gen
@staticmethod
def _replace_dummy_names(indices, free, dum):
dum.sort(key=lambda x: x[0])
new_indices = [ind for ind in indices]
assert len(indices) == len(free) + 2*len(dum)
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for ipos1, ipos2 in dum:
typ1 = new_indices[ipos1].tensor_index_type
indname = generate_dummy_name(typ1)
new_indices[ipos1] = TensorIndex(indname, typ1, True)
new_indices[ipos2] = TensorIndex(indname, typ1, False)
return new_indices
def get_free_indices(self):
"""
Get a list of free indices.
"""
# get sorted indices according to their position:
free = sorted(self.free, key=lambda x: x[1])
return [i[0] for i in free]
def __str__(self):
return "_IndexStructure({0}, {1}, {2})".format(self.free, self.dum, self.index_types)
def __repr__(self):
return self.__str__()
def _get_sorted_free_indices_for_canon(self):
sorted_free = self.free[:]
sorted_free.sort(key=lambda x: x[0])
return sorted_free
def _get_sorted_dum_indices_for_canon(self):
return sorted(self.dum, key=lambda x: x[0])
def _get_lexicographically_sorted_index_types(self):
permutation = self.indices_canon_args()[0]
index_types = [None]*self._ext_rank
for i, it in enumerate(self.index_types):
index_types[permutation(i)] = it
return index_types
def _get_lexicographically_sorted_indices(self):
permutation = self.indices_canon_args()[0]
indices = [None]*self._ext_rank
for i, it in enumerate(self.indices):
indices[permutation(i)] = it
return indices
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``
``g`` permutation corresponding to the tensor in the representation
used in canonicalization
``is_canon_bp`` if True, then ``g`` is the permutation
corresponding to the canonical form of the tensor
"""
sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()]
lex_index_types = self._get_lexicographically_sorted_index_types()
lex_indices = self._get_lexicographically_sorted_indices()
nfree = len(sorted_free)
rank = self._ext_rank
dum = [[None]*2 for i in range((rank - nfree)//2)]
free = []
index_types = [None]*rank
indices = [None]*rank
for i in range(rank):
gi = g[i]
index_types[i] = lex_index_types[gi]
indices[i] = lex_indices[gi]
if gi < nfree:
ind = sorted_free[gi]
assert index_types[i] == sorted_free[gi].tensor_index_type
free.append((ind, i))
else:
j = gi - nfree
idum, cov = divmod(j, 2)
if cov:
dum[idum][1] = i
else:
dum[idum][0] = i
dum = [tuple(x) for x in dum]
return _IndexStructure(free, dum, index_types, indices)
def indices_canon_args(self):
"""
Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``
see ``canonicalize`` in ``tensor_can.py``
"""
# to be called after sorted_components
from sympy.combinatorics.permutations import _af_new
n = self._ext_rank
g = [None]*n + [n, n+1]
# ordered indices: first the free indices, ordered by types
# then the dummy indices, ordered by types and contravariant before
# covariant
# g[position in tensor] = position in ordered indices
for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()):
g[ipos] = i
pos = len(self.free)
j = len(self.free)
dummies = []
prev = None
a = []
msym = []
for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon():
g[ipos1] = j
g[ipos2] = j + 1
j += 2
typ = self.index_types[ipos1]
if typ != prev:
if a:
dummies.append(a)
a = [pos, pos + 1]
prev = typ
msym.append(typ.metric_antisym)
else:
a.extend([pos, pos + 1])
pos += 2
if a:
dummies.append(a)
return _af_new(g), dummies, msym
def components_canon_args(components):
numtyp = []
prev = None
for t in components:
if t == prev:
numtyp[-1][1] += 1
else:
prev = t
numtyp.append([prev, 1])
v = []
for h, n in numtyp:
if h._comm == 0 or h._comm == 1:
comm = h._comm
else:
comm = TensorManager.get_comm(h._comm, h._comm)
v.append((h._symmetry.base, h._symmetry.generators, n, comm))
return v
class _TensorDataLazyEvaluator(CantSympify):
"""
EXPERIMENTAL: do not rely on this class, it may change without deprecation
warnings in future versions of SymPy.
This object contains the logic to associate components data to a tensor
expression. Components data are set via the ``.data`` property of tensor
expressions, is stored inside this class as a mapping between the tensor
expression and the ``ndarray``.
Computations are executed lazily: whereas the tensor expressions can have
contractions, tensor products, and additions, components data are not
computed until they are accessed by reading the ``.data`` property
associated to the tensor expression.
"""
_substitutions_dict = dict()
_substitutions_dict_tensmul = dict()
def __getitem__(self, key):
dat = self._get(key)
if dat is None:
return None
from .array import NDimArray
if not isinstance(dat, NDimArray):
return dat
if dat.rank() == 0:
return dat[()]
elif dat.rank() == 1 and len(dat) == 1:
return dat[0]
return dat
def _get(self, key):
"""
Retrieve ``data`` associated with ``key``.
This algorithm looks into ``self._substitutions_dict`` for all
``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a
TensorHead instance). It reconstructs the components data that the
tensor expression should have by performing on components data the
operations that correspond to the abstract tensor operations applied.
Metric tensor is handled in a different manner: it is pre-computed in
``self._substitutions_dict_tensmul``.
"""
if key in self._substitutions_dict:
return self._substitutions_dict[key]
if isinstance(key, TensorHead):
return None
if isinstance(key, Tensor):
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in key.get_indices()])
srch = (key.component,) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
array_list = [self.data_from_tensor(key)]
return self.data_contract_dum(array_list, key.dum, key.ext_rank)
if isinstance(key, TensMul):
tensmul_args = key.args
if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1:
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in tensmul_args[0].get_indices()])
srch = (tensmul_args[0].components[0],) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
#data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)]
data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)]
coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)])
if all([i is None for i in data_list]):
return None
if any([i is None for i in data_list]):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank)
return coeff*data_result
if isinstance(key, TensAdd):
data_list = []
free_args_list = []
for arg in key.args:
if isinstance(arg, TensExpr):
data_list.append(arg.data)
free_args_list.append([x[0] for x in arg.free])
else:
data_list.append(arg)
free_args_list.append([])
if all([i is None for i in data_list]):
return None
if any([i is None for i in data_list]):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
sum_list = []
from .array import permutedims
for data, free_args in zip(data_list, free_args_list):
if len(free_args) < 2:
sum_list.append(data)
else:
free_args_pos = {y: x for x, y in enumerate(free_args)}
axes = [free_args_pos[arg] for arg in key.free_args]
sum_list.append(permutedims(data, axes))
return reduce(lambda x, y: x+y, sum_list)
return None
@staticmethod
def data_contract_dum(ndarray_list, dum, ext_rank):
from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray
arrays = list(map(MutableDenseNDimArray, ndarray_list))
prodarr = tensorproduct(*arrays)
return tensorcontraction(prodarr, *dum)
def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead):
"""
This method is used when assigning components data to a ``TensMul``
object, it converts components data to a fully contravariant ndarray,
which is then stored according to the ``TensorHead`` key.
"""
if data is None:
return None
return self._correct_signature_from_indices(
data,
tensmul.get_indices(),
tensmul.free,
tensmul.dum,
True)
def data_from_tensor(self, tensor):
"""
This method corrects the components data to the right signature
(covariant/contravariant) using the metric associated with each
``TensorIndexType``.
"""
tensorhead = tensor.component
if tensorhead.data is None:
return None
return self._correct_signature_from_indices(
tensorhead.data,
tensor.get_indices(),
tensor.free,
tensor.dum)
def _assign_data_to_tensor_expr(self, key, data):
if isinstance(key, TensAdd):
raise ValueError('cannot assign data to TensAdd')
# here it is assumed that `key` is a `TensMul` instance.
if len(key.components) != 1:
raise ValueError('cannot assign data to TensMul with multiple components')
tensorhead = key.components[0]
newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead)
return tensorhead, newdata
def _check_permutations_on_data(self, tens, data):
from .array import permutedims
if isinstance(tens, TensorHead):
rank = tens.rank
generators = tens.symmetry.generators
elif isinstance(tens, Tensor):
rank = tens.rank
generators = tens.components[0].symmetry.generators
elif isinstance(tens, TensorIndexType):
rank = tens.metric.rank
generators = tens.metric.symmetry.generators
# Every generator is a permutation, check that by permuting the array
# by that permutation, the array will be the same, except for a
# possible sign change if the permutation admits it.
for gener in generators:
sign_change = +1 if (gener(rank) == rank) else -1
data_swapped = data
last_data = data
permute_axes = list(map(gener, list(range(rank))))
# the order of a permutation is the number of times to get the
# identity by applying that permutation.
for i in range(gener.order()-1):
data_swapped = permutedims(data_swapped, permute_axes)
# if any value in the difference array is non-zero, raise an error:
if any(last_data - sign_change*data_swapped):
raise ValueError("Component data symmetry structure error")
last_data = data_swapped
def __setitem__(self, key, value):
"""
Set the components data of a tensor object/expression.
Components data are transformed to the all-contravariant form and stored
with the corresponding ``TensorHead`` object. If a ``TensorHead`` object
cannot be uniquely identified, it will raise an error.
"""
data = _TensorDataLazyEvaluator.parse_data(value)
self._check_permutations_on_data(key, data)
# TensorHead and TensorIndexType can be assigned data directly, while
# TensMul must first convert data to a fully contravariant form, and
# assign it to its corresponding TensorHead single component.
if not isinstance(key, (TensorHead, TensorIndexType)):
key, data = self._assign_data_to_tensor_expr(key, data)
if isinstance(key, TensorHead):
for dim, indextype in zip(data.shape, key.index_types):
if indextype.data is None:
raise ValueError("index type {} has no components data"\
" associated (needed to raise/lower index)".format(indextype))
if indextype.dim is None:
continue
if dim != indextype.dim:
raise ValueError("wrong dimension of ndarray")
self._substitutions_dict[key] = data
def __delitem__(self, key):
del self._substitutions_dict[key]
def __contains__(self, key):
return key in self._substitutions_dict
def add_metric_data(self, metric, data):
"""
Assign data to the ``metric`` tensor. The metric tensor behaves in an
anomalous way when raising and lowering indices.
A fully covariant metric is the inverse transpose of the fully
contravariant metric (it is meant matrix inverse). If the metric is
symmetric, the transpose is not necessary and mixed
covariant/contravariant metrics are Kronecker deltas.
"""
# hard assignment, data should not be added to `TensorHead` for metric:
# the problem with `TensorHead` is that the metric is anomalous, i.e.
# raising and lowering the index means considering the metric or its
# inverse, this is not the case for other tensors.
self._substitutions_dict_tensmul[metric, True, True] = data
inverse_transpose = self.inverse_transpose_matrix(data)
# in symmetric spaces, the traspose is the same as the original matrix,
# the full covariant metric tensor is the inverse transpose, so this
# code will be able to handle non-symmetric metrics.
self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose
# now mixed cases, these are identical to the unit matrix if the metric
# is symmetric.
m = data.tomatrix()
invt = inverse_transpose.tomatrix()
self._substitutions_dict_tensmul[metric, True, False] = m * invt
self._substitutions_dict_tensmul[metric, False, True] = invt * m
@staticmethod
def _flip_index_by_metric(data, metric, pos):
from .array import tensorproduct, tensorcontraction, permutedims, MutableDenseNDimArray, NDimArray
mdim = metric.rank()
ddim = data.rank()
if pos == 0:
data = tensorcontraction(
tensorproduct(
metric,
data
),
(1, mdim+pos)
)
else:
data = tensorcontraction(
tensorproduct(
data,
metric
),
(pos, ddim)
)
return data
@staticmethod
def inverse_matrix(ndarray):
m = ndarray.tomatrix().inv()
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def inverse_transpose_matrix(ndarray):
m = ndarray.tomatrix().inv().T
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def _correct_signature_from_indices(data, indices, free, dum, inverse=False):
"""
Utility function to correct the values inside the components data
ndarray according to whether indices are covariant or contravariant.
It uses the metric matrix to lower values of covariant indices.
"""
# change the ndarray values according covariantness/contravariantness of the indices
# use the metric
for i, indx in enumerate(indices):
if not indx.is_up and not inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i)
elif not indx.is_up and inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(
data,
_TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data),
i
)
return data
@staticmethod
def _sort_data_axes(old, new):
from .array import permutedims
new_data = old.data.copy()
old_free = [i[0] for i in old.free]
new_free = [i[0] for i in new.free]
for i in range(len(new_free)):
for j in range(i, len(old_free)):
if old_free[j] == new_free[i]:
old_free[i], old_free[j] = old_free[j], old_free[i]
new_data = permutedims(new_data, (i, j))
break
return new_data
@staticmethod
def add_rearrange_tensmul_parts(new_tensmul, old_tensmul):
def sorted_compo():
return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul)
_TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo()
@staticmethod
def parse_data(data):
"""
Transform ``data`` to array. The parameter ``data`` may
contain data in various formats, e.g. nested lists, sympy ``Matrix``,
and so on.
Examples
========
>>> from sympy.tensor.tensor import _TensorDataLazyEvaluator
>>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12])
[1, 3, -6, 12]
>>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]])
[[1, 2], [4, 7]]
"""
from .array import MutableDenseNDimArray
if not isinstance(data, MutableDenseNDimArray):
if len(data) == 2 and hasattr(data[0], '__call__'):
data = MutableDenseNDimArray(data[0], data[1])
else:
data = MutableDenseNDimArray(data)
return data
_tensor_data_substitution_dict = _TensorDataLazyEvaluator()
class _TensorManager(object):
"""
Class to manage tensor properties.
Notes
=====
Tensors belong to tensor commutation groups; each group has a label
``comm``; there are predefined labels:
``0`` tensors commuting with any other tensor
``1`` tensors anticommuting among themselves
``2`` tensors not commuting, apart with those with ``comm=0``
Other groups can be defined using ``set_comm``; tensors in those
groups commute with those with ``comm=0``; by default they
do not commute with any other group.
"""
def __init__(self):
self._comm_init()
def _comm_init(self):
self._comm = [{} for i in range(3)]
for i in range(3):
self._comm[0][i] = 0
self._comm[i][0] = 0
self._comm[1][1] = 1
self._comm[2][1] = None
self._comm[1][2] = None
self._comm_symbols2i = {0:0, 1:1, 2:2}
self._comm_i2symbol = {0:0, 1:1, 2:2}
@property
def comm(self):
return self._comm
def comm_symbols2i(self, i):
"""
get the commutation group number corresponding to ``i``
``i`` can be a symbol or a number or a string
If ``i`` is not already defined its commutation group number
is set.
"""
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
return n
return self._comm_symbols2i[i]
def comm_i2symbol(self, i):
"""
Returns the symbol corresponding to the commutation group number.
"""
return self._comm_i2symbol[i]
def set_comm(self, i, j, c):
"""
set the commutation parameter ``c`` for commutation groups ``i, j``
Parameters
==========
i, j : symbols representing commutation groups
c : group commutation number
Notes
=====
``i, j`` can be symbols, strings or numbers,
apart from ``0, 1`` and ``2`` which are reserved respectively
for commuting, anticommuting tensors and tensors not commuting
with any other group apart with the commuting tensors.
For the remaining cases, use this method to set the commutation rules;
by default ``c=None``.
The group commutation number ``c`` is assigned in correspondence
to the group commutation symbols; it can be
0 commuting
1 anticommuting
None no commutation property
Examples
========
``G`` and ``GH`` do not commute with themselves and commute with
each other; A is commuting.
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead, TensorManager
>>> Lorentz = TensorIndexType('Lorentz')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = tensorhead('A', [Lorentz], [[1]])
>>> G = tensorhead('G', [Lorentz], [[1]], 'Gcomm')
>>> GH = tensorhead('GH', [Lorentz], [[1]], 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)
"""
if c not in (0, 1, None):
raise ValueError('`c` can assume only the values 0, 1 or None')
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
if j not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[0][n] = 0
self._comm[n][0] = 0
self._comm_symbols2i[j] = n
self._comm_i2symbol[n] = j
ni = self._comm_symbols2i[i]
nj = self._comm_symbols2i[j]
self._comm[ni][nj] = c
self._comm[nj][ni] = c
def set_comms(self, *args):
"""
set the commutation group numbers ``c`` for symbols ``i, j``
Parameters
==========
args : sequence of ``(i, j, c)``
"""
for i, j, c in args:
self.set_comm(i, j, c)
def get_comm(self, i, j):
"""
Return the commutation parameter for commutation group numbers ``i, j``
see ``_TensorManager.set_comm``
"""
return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)
def clear(self):
"""
Clear the TensorManager.
"""
self._comm_init()
TensorManager = _TensorManager()
class TensorIndexType(Basic):
"""
A TensorIndexType is characterized by its name and its metric.
Parameters
==========
name : name of the tensor type
metric : metric symmetry or metric object or ``None``
dim : dimension, it can be a symbol or an integer or ``None``
eps_dim : dimension of the epsilon tensor
dummy_fmt : name of the head of dummy indices
Attributes
==========
``name``
``metric_name`` : it is 'metric' or metric.name
``metric_antisym``
``metric`` : the metric tensor
``delta`` : ``Kronecker delta``
``epsilon`` : the ``Levi-Civita epsilon`` tensor
``dim``
``eps_dim``
``dummy_fmt``
``data`` : a property to add ``ndarray`` values, to work in a specified basis.
Notes
=====
The ``metric`` parameter can be:
``metric = False`` symmetric metric (in Riemannian geometry)
``metric = True`` antisymmetric metric (for spinor calculus)
``metric = None`` there is no metric
``metric`` can be an object having ``name`` and ``antisym`` attributes.
If there is a metric the metric is used to raise and lower indices.
In the case of antisymmetric metric, the following raising and
lowering conventions will be adopted:
``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``
``g(-a, b) = delta(-a, b); g(b, -a) = -delta(a, -b)``
where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
(see ``TensorIndex`` for the conventions on indices).
If there is no metric it is not possible to raise or lower indices;
e.g. the index of the defining representation of ``SU(N)``
is 'covariant' and the conjugate representation is
'contravariant'; for ``N > 2`` they are linearly independent.
``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
else it can be assigned (for use in naive dimensional regularization);
if ``eps_dim`` is not an integer ``epsilon`` is ``None``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> Lorentz.metric
metric(Lorentz,Lorentz)
"""
def __new__(cls, name, metric=False, dim=None, eps_dim=None,
dummy_fmt=None):
if isinstance(name, string_types):
name = Symbol(name)
obj = Basic.__new__(cls, name, S.One if metric else S.Zero)
obj._name = str(name)
if not dummy_fmt:
obj._dummy_fmt = '%s_%%d' % obj.name
else:
obj._dummy_fmt = '%s_%%d' % dummy_fmt
if metric is None:
obj.metric_antisym = None
obj.metric = None
else:
if metric in (True, False, 0, 1):
metric_name = 'metric'
obj.metric_antisym = metric
else:
metric_name = metric.name
obj.metric_antisym = metric.antisym
sym2 = TensorSymmetry(get_symmetric_group_sgs(2, obj.metric_antisym))
S2 = TensorType([obj]*2, sym2)
obj.metric = S2(metric_name)
obj._dim = dim
obj._delta = obj.get_kronecker_delta()
obj._eps_dim = eps_dim if eps_dim else dim
obj._epsilon = obj.get_epsilon()
obj._autogenerated = []
return obj
@property
@deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1")
def auto_right(self):
if not hasattr(self, '_auto_right'):
self._auto_right = TensorIndex("auto_right", self)
return self._auto_right
@property
@deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1")
def auto_left(self):
if not hasattr(self, '_auto_left'):
self._auto_left = TensorIndex("auto_left", self)
return self._auto_left
@property
@deprecated(useinstead="TensorIndex", issue=12857, deprecated_since_version="1.1")
def auto_index(self):
if not hasattr(self, '_auto_index'):
self._auto_index = TensorIndex("auto_index", self)
return self._auto_index
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# This assignment is a bit controversial, should metric components be assigned
# to the metric only or also to the TensorIndexType object? The advantage here
# is the ability to assign a 1D array and transform it to a 2D diagonal array.
from .array import MutableDenseNDimArray
data = _TensorDataLazyEvaluator.parse_data(data)
if data.rank() > 2:
raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
if data.rank() == 1:
if self.dim is not None:
nda_dim = data.shape[0]
if nda_dim != self.dim:
raise ValueError("Dimension mismatch")
dim = data.shape[0]
newndarray = MutableDenseNDimArray.zeros(dim, dim)
for i, val in enumerate(data):
newndarray[i, i] = val
data = newndarray
dim1, dim2 = data.shape
if dim1 != dim2:
raise ValueError("Non-square matrix tensor.")
if self.dim is not None:
if self.dim != dim1:
raise ValueError("Dimension mismatch")
_tensor_data_substitution_dict[self] = data
_tensor_data_substitution_dict.add_metric_data(self.metric, data)
delta = self.get_kronecker_delta()
i1 = TensorIndex('i1', self)
i2 = TensorIndex('i2', self)
delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1))
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
def _get_matrix_fmt(self, number):
return ("m" + self.dummy_fmt) % (number)
@property
def name(self):
return self._name
@property
def dim(self):
return self._dim
@property
def delta(self):
return self._delta
@property
def eps_dim(self):
return self._eps_dim
@property
def epsilon(self):
return self._epsilon
@property
def dummy_fmt(self):
return self._dummy_fmt
def get_kronecker_delta(self):
sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
S2 = TensorType([self]*2, sym2)
delta = S2('KD')
return delta
def get_epsilon(self):
if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)):
return None
sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
Sdim = TensorType([self]*self._eps_dim, sym)
epsilon = Sdim('Eps')
return epsilon
def __lt__(self, other):
return self.name < other.name
def __str__(self):
return self.name
__repr__ = __str__
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
This destroys components data associated to the ``TensorIndexType``, if
any, specifically:
* metric tensor data
* Kronecker tensor data
"""
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def delete_tensmul_data(key):
if key in _tensor_data_substitution_dict._substitutions_dict_tensmul:
del _tensor_data_substitution_dict._substitutions_dict_tensmul[key]
# delete metric data:
delete_tensmul_data((self.metric, True, True))
delete_tensmul_data((self.metric, True, False))
delete_tensmul_data((self.metric, False, True))
delete_tensmul_data((self.metric, False, False))
# delete delta tensor data:
delta = self.get_kronecker_delta()
if delta in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[delta]
class TensorIndex(Basic):
"""
Represents an abstract tensor index.
Parameters
==========
name : name of the index, or ``True`` if you want it to be automatically assigned
tensortype : ``TensorIndexType`` of the index
is_up : flag for contravariant index
Attributes
==========
``name``
``tensortype``
``is_up``
Notes
=====
Tensor indices are contracted with the Einstein summation convention.
An index can be in contravariant or in covariant form; in the latter
case it is represented prepending a ``-`` to the index name.
Dummy indices have a name with head given by ``tensortype._dummy_fmt``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorSymmetry, TensorType, get_symmetric_group_sgs
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i = TensorIndex('i', Lorentz); i
i
>>> sym1 = TensorSymmetry(*get_symmetric_group_sgs(1))
>>> S1 = TensorType([Lorentz], sym1)
>>> A, B = S1('A,B')
>>> A(i)*B(-i)
A(L_0)*B(-L_0)
If you want the index name to be automatically assigned, just put ``True``
in the ``name`` field, it will be generated using the reserved character
``_`` in front of its name, in order to avoid conflicts with possible
existing indices:
>>> i0 = TensorIndex(True, Lorentz)
>>> i0
_i0
>>> i1 = TensorIndex(True, Lorentz)
>>> i1
_i1
>>> A(i0)*B(-i1)
A(_i0)*B(-_i1)
>>> A(i0)*B(-i0)
A(L_0)*B(-L_0)
"""
def __new__(cls, name, tensortype, is_up=True):
if isinstance(name, string_types):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
elif name is True:
name = "_i{0}".format(len(tensortype._autogenerated))
name_symbol = Symbol(name)
tensortype._autogenerated.append(name_symbol)
else:
raise ValueError("invalid name")
is_up = sympify(is_up)
obj = Basic.__new__(cls, name_symbol, tensortype, is_up)
obj._name = str(name)
obj._tensor_index_type = tensortype
obj._is_up = is_up
return obj
@property
def name(self):
return self._name
@property
@deprecated(useinstead="tensor_index_type", issue=12857, deprecated_since_version="1.1")
def tensortype(self):
return self.tensor_index_type
@property
def tensor_index_type(self):
return self._tensor_index_type
@property
def is_up(self):
return self._is_up
def _print(self):
s = self._name
if not self._is_up:
s = '-%s' % s
return s
def __lt__(self, other):
return (self.tensor_index_type, self._name) < (other.tensor_index_type, other._name)
def __neg__(self):
t1 = TensorIndex(self.name, self.tensor_index_type,
(not self.is_up))
return t1
def tensor_indices(s, typ):
"""
Returns list of tensor indices given their names and their types
Parameters
==========
s : string of comma separated names of indices
typ : ``TensorIndexType`` of the indices
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
"""
if isinstance(s, str):
a = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
tilist = [TensorIndex(i, typ) for i in a]
if len(tilist) == 1:
return tilist[0]
return tilist
class TensorSymmetry(Basic):
"""
Monoterm symmetry of a tensor
Parameters
==========
bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor
Attributes
==========
``base`` : base of the BSGS
``generators`` : generators of the BSGS
``rank`` : rank of the tensor
Notes
=====
A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
Multiterm symmetries, like the cyclic symmetry of the Riemann tensor,
are not covered.
See Also
========
sympy.combinatorics.tensor_can.get_symmetric_group_sgs
Examples
========
Define a symmetric tensor
>>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, TensorType, get_symmetric_group_sgs
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
"""
def __new__(cls, *args, **kw_args):
if len(args) == 1:
base, generators = args[0]
elif len(args) == 2:
base, generators = args
else:
raise TypeError("bsgs required, either two separate parameters or one tuple")
if not isinstance(base, Tuple):
base = Tuple(*base)
if not isinstance(generators, Tuple):
generators = Tuple(*generators)
obj = Basic.__new__(cls, base, generators, **kw_args)
return obj
@property
def base(self):
return self.args[0]
@property
def generators(self):
return self.args[1]
@property
def rank(self):
return self.args[1][0].size - 2
def tensorsymmetry(*args):
"""
Return a ``TensorSymmetry`` object.
One can represent a tensor with any monoterm slot symmetry group
using a BSGS.
``args`` can be a BSGS
``args[0]`` base
``args[1]`` sgs
Usually tensors are in (direct products of) representations
of the symmetric group;
``args`` can be a list of lists representing the shapes of Young tableaux
Notes
=====
For instance:
``[[1]]`` vector
``[[1]*n]`` symmetric tensor of rank ``n``
``[[n]]`` antisymmetric tensor of rank ``n``
``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor
``[[1],[1]]`` vector*vector
``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector
Notice that with the shape ``[2, 2]`` we associate only the monoterm
symmetries of the Riemann tensor; this is an abuse of notation,
since the shape ``[2, 2]`` corresponds usually to the irreducible
representation characterized by the monoterm symmetries and by the
cyclic symmetry.
Examples
========
Symmetric tensor using a Young tableau
>>> from sympy.tensor.tensor import TensorIndexType, TensorType, tensorsymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1, 1])
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
Symmetric tensor using a ``BSGS`` (base, strong generator set)
>>> from sympy.tensor.tensor import get_symmetric_group_sgs
>>> sym2 = tensorsymmetry(*get_symmetric_group_sgs(2))
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
"""
from sympy.combinatorics import Permutation
def tableau2bsgs(a):
if len(a) == 1:
# antisymmetric vector
n = a[0]
bsgs = get_symmetric_group_sgs(n, 1)
else:
if all(x == 1 for x in a):
# symmetric vector
n = len(a)
bsgs = get_symmetric_group_sgs(n)
elif a == [2, 2]:
bsgs = riemann_bsgs
else:
raise NotImplementedError
return bsgs
if not args:
return TensorSymmetry(Tuple(), Tuple(Permutation(1)))
if len(args) == 2 and isinstance(args[1][0], Permutation):
return TensorSymmetry(args)
base, sgs = tableau2bsgs(args[0])
for a in args[1:]:
basex, sgsx = tableau2bsgs(a)
base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
return TensorSymmetry(Tuple(base, sgs))
class TensorType(Basic):
"""
Class of tensor types.
Parameters
==========
index_types : list of ``TensorIndexType`` of the tensor indices
symmetry : ``TensorSymmetry`` of the tensor
Attributes
==========
``index_types``
``symmetry``
``types`` : list of ``TensorIndexType`` without repetitions
Examples
========
Define a symmetric tensor
>>> from sympy.tensor.tensor import TensorIndexType, tensorsymmetry, TensorType
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> sym2 = tensorsymmetry([1, 1])
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
"""
is_commutative = False
def __new__(cls, index_types, symmetry, **kw_args):
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
return obj
@property
def index_types(self):
return self.args[0]
@property
def symmetry(self):
return self.args[1]
@property
def types(self):
return sorted(set(self.index_types), key=lambda x: x.name)
def __str__(self):
return 'TensorType(%s)' % ([str(x) for x in self.index_types])
def __call__(self, s, comm=0):
"""
Return a TensorHead object or a list of TensorHead objects.
``s`` name or string of names
``comm``: commutation group number
see ``_TensorManager.set_comm``
Examples
========
Define symmetric tensors ``V``, ``W`` and ``G``, respectively
commuting, anticommuting and with no commutation symmetry
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorsymmetry, TensorType, canon_bp
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> sym2 = tensorsymmetry([1]*2)
>>> S2 = TensorType([Lorentz]*2, sym2)
>>> V = S2('V')
>>> W = S2('W', 1)
>>> G = S2('G', 2)
>>> canon_bp(V(a, b)*V(-b, -a))
V(L_0, L_1)*V(-L_0, -L_1)
>>> canon_bp(W(a, b)*W(-b, -a))
0
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
if len(names) == 1:
return TensorHead(names[0], self, comm)
else:
return [TensorHead(name, self, comm) for name in names]
def tensorhead(name, typ, sym=None, comm=0):
"""
Function generating tensorhead(s).
Parameters
==========
name : name or sequence of names (as in ``symbol``)
typ : index types
sym : same as ``*args`` in ``tensorsymmetry``
comm : commutation group number
see ``_TensorManager.set_comm``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = tensorhead('A', [Lorentz]*2, [[1]*2])
>>> A(a, -b)
A(a, -b)
If no symmetry parameter is provided, assume there are not index
symmetries:
>>> B = tensorhead('B', [Lorentz, Lorentz])
>>> B(a, -b)
B(a, -b)
"""
if sym is None:
sym = [[1] for i in range(len(typ))]
sym = tensorsymmetry(*sym)
S = TensorType(typ, sym)
th = S(name, comm)
return th
class TensorHead(Basic):
r"""
Tensor head of the tensor
Parameters
==========
name : name of the tensor
typ : list of TensorIndexType
comm : commutation group number
Attributes
==========
``name``
``index_types``
``rank``
``types`` : equal to ``typ.types``
``symmetry`` : equal to ``typ.symmetry``
``comm`` : commutation group
Notes
=====
A ``TensorHead`` belongs to a commutation group, defined by a
symbol on number ``comm`` (see ``_TensorManager.set_comm``);
tensors in a commutation group have the same commutation properties;
by default ``comm`` is ``0``, the group of the commuting tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensorhead, TensorType
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> A = tensorhead('A', [Lorentz, Lorentz], [[1],[1]])
Examples with ndarray values, the components data assigned to the
``TensorHead`` object are assumed to be in a fully-contravariant
representation. In case it is necessary to assign components data which
represents the values of a non-fully covariant tensor, see the other
examples.
>>> from sympy.tensor.tensor import tensor_indices, tensorhead
>>> from sympy import diag
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
Specify a replacement dictionary to keep track of the arrays to use for
replacements in the tensorial expression. The ``TensorIndexType`` is
associated to the metric used for contractions (in fully covariant form):
>>> repl = {Lorentz: diag(1, -1, -1, -1)}
Let's see some examples of working with components with the electromagnetic
tensor:
>>> from sympy import symbols
>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
>>> c = symbols('c', positive=True)
Let's define `F`, an antisymmetric tensor, we have to assign an
antisymmetric matrix to it, because `[[2]]` stands for the Young tableau
representation of an antisymmetric set of two elements:
>>> F = tensorhead('F', [Lorentz, Lorentz], [[2]])
Let's update the dictionary to contain the matrix to use in the
replacements:
>>> repl.update({F(-i0, -i1): [
... [0, Ex/c, Ey/c, Ez/c],
... [-Ex/c, 0, -Bz, By],
... [-Ey/c, Bz, 0, -Bx],
... [-Ez/c, -By, Bx, 0]]})
Now it is possible to retrieve the contravariant form of the Electromagnetic
tensor:
>>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
[[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]
and the mixed contravariant-covariant form:
>>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
[[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]
Energy-momentum of a particle may be represented as:
>>> from sympy import symbols
>>> P = tensorhead('P', [Lorentz], [[1]])
>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
>>> repl.update({P(i0): [E, px, py, pz]})
The contravariant and covariant components are, respectively:
>>> P(i0).replace_with_arrays(repl, [i0])
[E, p_x, p_y, p_z]
>>> P(-i0).replace_with_arrays(repl, [-i0])
[E, -p_x, -p_y, -p_z]
The contraction of a 1-index tensor by itself:
>>> expr = P(i0)*P(-i0)
>>> expr.replace_with_arrays(repl, [])
E**2 - p_x**2 - p_y**2 - p_z**2
"""
is_commutative = False
def __new__(cls, name, typ, comm=0, **kw_args):
if isinstance(name, string_types):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
else:
raise ValueError("invalid name")
comm2i = TensorManager.comm_symbols2i(comm)
obj = Basic.__new__(cls, name_symbol, typ, **kw_args)
obj._name = obj.args[0].name
obj._rank = len(obj.index_types)
obj._symmetry = typ.symmetry
obj._comm = comm2i
return obj
@property
def name(self):
return self._name
@property
def rank(self):
return self._rank
@property
def symmetry(self):
return self._symmetry
@property
def typ(self):
return self.args[1]
@property
def comm(self):
return self._comm
@property
def types(self):
return self.args[1].types[:]
@property
def index_types(self):
return self.args[1].index_types[:]
def __lt__(self, other):
return (self.name, self.index_types) < (other.name, other.index_types)
def commutes_with(self, other):
"""
Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.
Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
"""
r = TensorManager.get_comm(self._comm, other._comm)
return r
def _print(self):
return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))
def __call__(self, *indices, **kw_args):
"""
Returns a tensor with indices.
There is a special behavior in case of indices denoted by ``True``,
they are considered auto-matrix indices, their slots are automatically
filled, and confer to the tensor the behavior of a matrix or vector
upon multiplication with another tensor containing auto-matrix indices
of the same ``TensorIndexType``. This means indices get summed over the
same way as in matrix multiplication. For matrix behavior, define two
auto-matrix indices, for vector behavior define just one.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = tensorhead('A', [Lorentz]*2, [[1]*2])
>>> t = A(a, -b)
>>> t
A(a, -b)
"""
tensor = Tensor(self, indices, **kw_args)
return tensor.doit()
def __pow__(self, other):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
if self.data is None:
raise ValueError("No power on abstract tensors.")
deprecate_data()
from .array import tensorproduct, tensorcontraction
metrics = [_.data for _ in self.args[1].args[0]]
marray = self.data
marraydim = marray.rank()
for metric in metrics:
marray = tensorproduct(marray, metric, marray)
marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2))
return marray ** (Rational(1, 2) * other)
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
return self.data.__iter__()
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
Destroy components data associated to the ``TensorHead`` object, this
checks for attached components data, and destroys components data too.
"""
# do not garbage collect Kronecker tensor (it should be done by
# ``TensorIndexType`` garbage collection)
if self.name == "KD":
return
# the data attached to a tensor must be deleted only by the TensorHead
# destructor. If the TensorHead is deleted, it means that there are no
# more instances of that tensor anywhere.
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def _get_argtree_pos(expr, pos):
for p in pos:
expr = expr.args[p]
return expr
class TensExpr(Expr):
"""
Abstract base class for tensor expressions
Notes
=====
A tensor expression is an expression formed by tensors;
currently the sums of tensors are distributed.
A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.
``TensAdd`` objects are put in canonical form using the Butler-Portugal
algorithm for canonicalization under monoterm symmetries.
``TensMul`` objects are formed by products of component tensors,
and include a coefficient, which is a SymPy expression.
In the internal representation contracted indices are represented
by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
of the component tensor with contravariant index, ``ipos1`` is the
slot which the index occupies in that component tensor.
Contracted indices are therefore nameless in the internal representation.
"""
_op_priority = 12.0
is_commutative = False
def __neg__(self):
return self*S.NegativeOne
def __abs__(self):
raise NotImplementedError
def __add__(self, other):
return TensAdd(self, other).doit()
def __radd__(self, other):
return TensAdd(other, self).doit()
def __sub__(self, other):
return TensAdd(self, -other).doit()
def __rsub__(self, other):
return TensAdd(other, -self).doit()
def __mul__(self, other):
"""
Multiply two tensors using Einstein summation convention.
If the two tensors have an index in common, one contravariant
and the other covariant, in their product the indices are summed
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t1 = p(m0)
>>> t2 = q(-m0)
>>> t1*t2
p(L_0)*q(-L_0)
"""
return TensMul(self, other).doit()
def __rmul__(self, other):
return TensMul(other, self).doit()
def __div__(self, other):
other = _sympify(other)
if isinstance(other, TensExpr):
raise ValueError('cannot divide by a tensor')
return TensMul(self, S.One/other).doit()
def __rdiv__(self, other):
raise ValueError('cannot divide by a tensor')
def __pow__(self, other):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
if self.data is None:
raise ValueError("No power without ndarray data.")
deprecate_data()
from .array import tensorproduct, tensorcontraction
free = self.free
marray = self.data
mdim = marray.rank()
for metric in free:
marray = tensorcontraction(
tensorproduct(
marray,
metric[0].tensor_index_type.data,
marray),
(0, mdim), (mdim+1, mdim+2)
)
return marray ** (Rational(1, 2) * other)
def __rpow__(self, other):
raise NotImplementedError
__truediv__ = __div__
__rtruediv__ = __rdiv__
def fun_eval(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
``index_types`` list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.fun_eval((i, k),(-j, l))
A(k, L_0)*B(-L_0, l)
"""
expr = self.xreplace(dict(index_tuples))
expr = expr.replace(lambda x: isinstance(x, Tensor), lambda x: x.args[0](*x.args[1]))
# For some reason, `TensMul` gets replaced by `Mul`, correct it:
expr = expr.replace(lambda x: isinstance(x, (Mul, TensMul)), lambda x: TensMul(*x.args).doit())
return expr
def get_matrix(self):
"""
DEPRECATED: do not use.
Returns ndarray components data as a matrix, if components data are
available and ndarray dimension does not exceed 2.
"""
from sympy import Matrix
deprecate_data()
if 0 < self.rank <= 2:
rows = self.data.shape[0]
columns = self.data.shape[1] if self.rank == 2 else 1
if self.rank == 2:
mat_list = [] * rows
for i in range(rows):
mat_list.append([])
for j in range(columns):
mat_list[i].append(self[i, j])
else:
mat_list = [None] * rows
for i in range(rows):
mat_list[i] = self[i]
return Matrix(mat_list)
else:
raise NotImplementedError(
"missing multidimensional reduction to matrix.")
@staticmethod
def _get_indices_permutation(indices1, indices2):
return [indices1.index(i) for i in indices2]
def expand(self, **hints):
return _expand(self, **hints).doit()
def _expand(self, **kwargs):
return self
def _get_free_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_free_indices_set())
return indset
def _get_dummy_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_dummy_indices_set())
return indset
def _get_indices_set(self):
indset = set([])
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_indices_set())
return indset
@property
def _iterate_dummy_indices(self):
dummy_set = self._get_dummy_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in dummy_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@property
def _iterate_free_indices(self):
free_set = self._get_free_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in free_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@property
def _iterate_indices(self):
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
for i in recursor(arg, pos+(p,)):
yield i
return recursor(self, ())
@staticmethod
def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict):
from .array import Array, tensorcontraction, tensorproduct, permutedims
index_types1 = [i.tensor_index_type for i in free_ind1]
# Check if variance of indices needs to be fixed:
pos2up = []
pos2down = []
free2remaining = free_ind2[:]
for pos1, index1 in enumerate(free_ind1):
if index1 in free2remaining:
pos2 = free2remaining.index(index1)
free2remaining[pos2] = None
continue
if -index1 in free2remaining:
pos2 = free2remaining.index(-index1)
free2remaining[pos2] = None
free_ind2[pos2] = index1
if index1.is_up:
pos2up.append(pos2)
else:
pos2down.append(pos2)
else:
index2 = free2remaining[pos1]
if index2 is None:
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
free2remaining[pos1] = None
free_ind2[pos1] = index1
if index1.is_up ^ index2.is_up:
if index1.is_up:
pos2up.append(pos1)
else:
pos2down.append(pos1)
if len(set(free_ind1) & set(free_ind2)) < len(free_ind1):
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
# TODO: add possibility of metric after (spinors)
def contract_and_permute(metric, array, pos):
array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos))
permu = list(range(len(free_ind1)))
permu[0], permu[pos] = permu[pos], permu[0]
return permutedims(array, permu)
# Raise indices:
for pos in pos2up:
metric = replacement_dict[index_types1[pos]]
metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = contract_and_permute(metric_inverse, array, pos)
# Lower indices:
for pos in pos2down:
metric = replacement_dict[index_types1[pos]]
array = contract_and_permute(metric, array, pos)
if free_ind1:
permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1)
array = permutedims(array, permutation)
if hasattr(array, "rank") and array.rank() == 0:
array = array[()]
return free_ind2, array
def replace_with_arrays(self, replacement_dict, indices):
"""
Replace the tensorial expressions with arrays. The final array will
correspond to the N-dimensional array with indices arranged according
to ``indices``.
Parameters
==========
replacement_dict
dictionary containing the replacement rules for tensors.
indices
the index order with respect to which the array is read.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> from sympy.tensor.tensor import tensorhead
>>> from sympy import symbols, diag
>>> L = TensorIndexType("L")
>>> i, j = tensor_indices("i j", L)
>>> A = tensorhead("A", [L], [[1]])
>>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
[1, 2]
>>> expr = A(i)*A(j)
>>> expr.replace_with_arrays({A(i): [1, 2]}, [i, j])
[[1, 2], [2, 4]]
For contractions, specify the metric of the ``TensorIndexType``, which
in this case is ``L``, in its covariant form:
>>> expr = A(i)*A(-i)
>>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)}, [])
-3
Symmetrization of an array:
>>> H = tensorhead("H", [L, L], [[1], [1]])
>>> a, b, c, d = symbols("a b c d")
>>> expr = H(i, j)/2 + H(j, i)/2
>>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]}, [i, j])
[[a, b/2 + c/2], [b/2 + c/2, d]]
Anti-symmetrization of an array:
>>> expr = H(i, j)/2 - H(j, i)/2
>>> repl = {H(i, j): [[a, b], [c, d]]}
>>> expr.replace_with_arrays(repl, [i, j])
[[0, b/2 - c/2], [-b/2 + c/2, 0]]
The same expression can be read as the transpose by inverting ``i`` and
``j``:
>>> expr.replace_with_arrays(repl, [j, i])
[[0, -b/2 + c/2], [b/2 - c/2, 0]]
"""
from .array import Array, permutedims
replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()}
# Check dimensions of replaced arrays:
for tensor, array in replacement_dict.items():
if isinstance(tensor, TensorIndexType):
expected_shape = [tensor.dim for i in range(2)]
else:
expected_shape = [index_type.dim for index_type in tensor.index_types]
if len(expected_shape) != array.rank() or (not all([dim1 == dim2 if
dim1 is not None else True for dim1, dim2 in zip(expected_shape,
array.shape)])):
raise ValueError("shapes for tensor %s expected to be %s, "\
"replacement array shape is %s" % (tensor, expected_shape,
array.shape))
ret_indices, array = self._extract_data(replacement_dict)
last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict)
#permutation = self._get_indices_permutation(indices, ret_indices)
#if not hasattr(array, "rank"):
#return array
#if array.rank() == 0:
#array = array[()]
#return array
#array = permutedims(array, permutation)
return array
def _check_add_Sum(self, expr, index_symbols):
from sympy import Sum
indices = self.get_indices()
dum = self.dum
sum_indices = [ (index_symbols[i], 0,
indices[i].tensor_index_type.dim-1) for i, j in dum]
if sum_indices:
expr = Sum(expr, *sum_indices)
return expr
class TensAdd(TensExpr, AssocOp):
"""
Sum of tensors
Parameters
==========
free_args : list of the free indices
Attributes
==========
``args`` : tuple of addends
``rank`` : rank of the tensor
``free_args`` : list of the free indices in sorted order
Notes
=====
Sum of more than one tensor are put automatically in canonical form.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensorhead, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(a) + q(a); t
p(a) + q(a)
>>> t(b)
p(b) + q(b)
Examples with components data added to the tensor expression:
>>> from sympy import symbols, diag
>>> x, y, z, t = symbols("x y z t")
>>> repl = {}
>>> repl[Lorentz] = diag(1, -1, -1, -1)
>>> repl[p(a)] = [1, 2, 3, 4]
>>> repl[q(a)] = [x, y, z, t]
The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58
>>> expr = p(a) + q(a)
>>> expr.replace_with_arrays(repl, [a])
[x + 1, y + 2, z + 3, t + 4]
"""
def __new__(cls, *args, **kw_args):
args = [_sympify(x) for x in args if x]
args = TensAdd._tensAdd_flatten(args)
obj = Basic.__new__(cls, *args, **kw_args)
return obj
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
if not args:
return S.Zero
if len(args) == 1 and not isinstance(args[0], TensExpr):
return args[0]
# now check that all addends have the same indices:
TensAdd._tensAdd_check(args)
# if TensAdd has only 1 element in its `args`:
if len(args) == 1: # and isinstance(args[0], TensMul):
return args[0]
# Remove zeros:
args = [x for x in args if x]
# if there are no more args (i.e. have cancelled out),
# just return zero:
if not args:
return S.Zero
if len(args) == 1:
return args[0]
# Collect terms appearing more than once, differing by their coefficients:
args = TensAdd._tensAdd_collect_terms(args)
# collect canonicalized terms
def sort_key(t):
x = get_index_structure(t)
if not isinstance(t, TensExpr):
return ([], [], [])
return (t.components, x.free, x.dum)
args.sort(key=sort_key)
if not args:
return S.Zero
# it there is only a component tensor return it
if len(args) == 1:
return args[0]
obj = self.func(*args)
return obj
@staticmethod
def _tensAdd_flatten(args):
# flatten TensAdd, coerce terms which are not tensors to tensors
a = []
for x in args:
if isinstance(x, (Add, TensAdd)):
a.extend(list(x.args))
else:
a.append(x)
args = [x for x in a if x.coeff]
return args
@staticmethod
def _tensAdd_check(args):
# check that all addends have the same free indices
indices0 = set([x[0] for x in get_index_structure(args[0]).free])
list_indices = [set([y[0] for y in get_index_structure(x).free]) for x in args[1:]]
if not all(x == indices0 for x in list_indices):
raise ValueError('all tensors must have the same indices')
@staticmethod
def _tensAdd_collect_terms(args):
# collect TensMul terms differing at most by their coefficient
terms_dict = defaultdict(list)
scalars = S.Zero
if isinstance(args[0], TensExpr):
free_indices = set(args[0].get_free_indices())
else:
free_indices = set([])
for arg in args:
if not isinstance(arg, TensExpr):
if free_indices != set([]):
raise ValueError("wrong valence")
scalars += arg
continue
if free_indices != set(arg.get_free_indices()):
raise ValueError("wrong valence")
# TODO: what is the part which is not a coeff?
# needs an implementation similar to .as_coeff_Mul()
terms_dict[arg.nocoeff].append(arg.coeff)
new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0]
if isinstance(scalars, Add):
new_args = list(scalars.args) + new_args
elif scalars != 0:
new_args = [scalars] + new_args
return new_args
def get_indices(self):
indices = []
for arg in self.args:
indices.extend([i for i in get_indices(arg) if i not in indices])
return indices
@property
def rank(self):
return self.args[0].rank
@property
def free_args(self):
return self.args[0].free_args
def _expand(self, **hints):
return TensAdd(*[_expand(i, **hints) for i in self.args])
def __call__(self, *indices):
"""Returns tensor with ordered free indices replaced by ``indices``
Parameters
==========
indices
Examples
========
>>> from sympy import Symbol
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> D = Symbol('D')
>>> Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> g = Lorentz.metric
>>> t = p(i0)*p(i1) + g(i0,i1)*q(i2)*q(-i2)
>>> t(i0,i2)
metric(i0, i2)*q(L_0)*q(-L_0) + p(i0)*p(i2)
>>> from sympy.tensor.tensor import canon_bp
>>> canon_bp(t(i0,i1) - t(i1,i0))
0
"""
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
index_tuples = list(zip(free_args, indices))
a = [x.func(*x.fun_eval(*index_tuples).args) for x in self.args]
res = TensAdd(*a).doit()
return res
def canon_bp(self):
"""
canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
"""
expr = self.expand()
args = [canon_bp(x) for x in expr.args]
res = TensAdd(*args).doit()
return res
def equals(self, other):
other = _sympify(other)
if isinstance(other, TensMul) and other._coeff == 0:
return all(x._coeff == 0 for x in self.args)
if isinstance(other, TensExpr):
if self.rank != other.rank:
return False
if isinstance(other, TensAdd):
if set(self.args) != set(other.args):
return False
else:
return True
t = self - other
if not isinstance(t, TensExpr):
return t == 0
else:
if isinstance(t, TensMul):
return t._coeff == 0
else:
return all(x._coeff == 0 for x in t.args)
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def contract_delta(self, delta):
args = [x.contract_delta(delta) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
contract_all : if True, eliminate all ``g`` which are contracted
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
"""
args = [contract_metric(x, g) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def fun_eval(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
Parameters
==========
index_types : list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j) + A(i, -j)
>>> t.fun_eval((i, k),(-j, l))
A(k, L_0)*B(-L_0, l) + A(k, l)
"""
args = self.args
args1 = []
for x in args:
y = x.fun_eval(*index_tuples)
args1.append(y)
return TensAdd(*args1).doit()
def substitute_indices(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
Parameters
==========
index_types : list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i,j), (j, k))
A(j, L_0)*B(-L_0, -k)
"""
args = self.args
args1 = []
for x in args:
y = x.substitute_indices(*index_tuples)
args1.append(y)
return TensAdd(*args1).doit()
def _print(self):
a = []
args = self.args
for x in args:
a.append(str(x))
a.sort()
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _extract_data(self, replacement_dict):
from sympy.tensor.array import Array, permutedims
args_indices, arrays = zip(*[
arg._extract_data(replacement_dict) if
isinstance(arg, TensExpr) else ([], arg) for arg in self.args
])
arrays = [Array(i) for i in arrays]
ref_indices = args_indices[0]
for i in range(1, len(args_indices)):
indices = args_indices[i]
array = arrays[i]
permutation = TensMul._get_indices_permutation(indices, ref_indices)
arrays[i] = permutedims(array, permutation)
return ref_indices, sum(arrays, Array.zeros(*array.shape))
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self.expand()]
@data.setter
def data(self, data):
deprecate_data()
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
if not self.data:
raise ValueError("No iteration on abstract tensors")
return self.data.flatten().__iter__()
def _eval_rewrite_as_Indexed(self, *args):
return Add.fromiter(args)
class Tensor(TensExpr):
"""
Base tensor class, i.e. this represents a tensor, the single unit to be
put into an expression.
This object is usually created from a ``TensorHead``, by attaching indices
to it. Indices preceded by a minus sign are considered contravariant,
otherwise covariant.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType("Lorentz", dummy_fmt="L")
>>> mu, nu = tensor_indices('mu nu', Lorentz)
>>> A = tensorhead("A", [Lorentz, Lorentz], [[1], [1]])
>>> A(mu, -nu)
A(mu, -nu)
>>> A(mu, -mu)
A(L_0, -L_0)
"""
is_commutative = False
def __new__(cls, tensor_head, indices, **kw_args):
is_canon_bp = kw_args.pop('is_canon_bp', False)
indices = cls._parse_indices(tensor_head, indices)
obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args)
obj._index_structure = _IndexStructure.from_indices(*indices)
obj._free_indices_set = set(obj._index_structure.get_free_indices())
if tensor_head.rank != len(indices):
raise ValueError("wrong number of indices")
obj._indices = indices
obj._is_canon_bp = is_canon_bp
obj._index_map = Tensor._build_index_map(indices, obj._index_structure)
return obj
@staticmethod
def _build_index_map(indices, index_structure):
index_map = {}
for idx in indices:
index_map[idx] = (indices.index(idx),)
return index_map
def doit(self, **kwargs):
args, indices, free, dum = TensMul._tensMul_contract_indices([self])
return args[0]
@staticmethod
def _parse_indices(tensor_head, indices):
if not isinstance(indices, (tuple, list, Tuple)):
raise TypeError("indices should be an array, got %s" % type(indices))
indices = list(indices)
for i, index in enumerate(indices):
if isinstance(index, Symbol):
indices[i] = TensorIndex(index, tensor_head.index_types[i], True)
elif isinstance(index, Mul):
c, e = index.as_coeff_Mul()
if c == -1 and isinstance(e, Symbol):
indices[i] = TensorIndex(e, tensor_head.index_types[i], False)
else:
raise ValueError("index not understood: %s" % index)
elif not isinstance(index, TensorIndex):
raise TypeError("wrong type for index: %s is %s" % (index, type(index)))
return indices
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
return self.func(self.args[0], indices, is_canon_bp=kw_args.pop('is_canon_bp', False)).doit()
def _get_free_indices_set(self):
return set([i[0] for i in self._index_structure.free])
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self._index_structure.dum))
return set(idx for i, idx in enumerate(self.args[1]) if i in dummy_pos)
def _get_indices_set(self):
return set(self.args[1].args)
@property
def is_canon_bp(self):
return self._is_canon_bp
@property
def indices(self):
return self._indices
@property
def free(self):
return self._index_structure.free[:]
@property
def free_in_args(self):
return [(ind, pos, 0) for ind, pos in self.free]
@property
def dum(self):
return self._index_structure.dum[:]
@property
def dum_in_args(self):
return [(p1, p2, 0, 0) for p1, p2 in self.dum]
@property
def rank(self):
return len(self.free)
@property
def ext_rank(self):
return self._index_structure._ext_rank
@property
def free_args(self):
return sorted([x[0] for x in self.free])
def commutes_with(self, other):
"""
:param other:
:return:
0 commute
1 anticommute
None neither commute nor anticommute
"""
if not isinstance(other, TensExpr):
return 0
elif isinstance(other, Tensor):
return self.component.commutes_with(other.component)
return NotImplementedError
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp)
def canon_bp(self):
if self._is_canon_bp:
return self
expr = self.expand()
g, dummies, msym = expr._index_structure.indices_canon_args()
v = components_canon_args([expr.component])
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tensor = self.perm2tensor(can, True)
return tensor
@property
def index_types(self):
return list(self.component.index_types)
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
@property
def component(self):
return self.args[0]
@property
def components(self):
return [self.args[0]]
def split(self):
return [self]
def _expand(self, **kwargs):
return self
def sorted_components(self):
return self
def get_indices(self):
"""
Get a list of indices, corresponding to those of the tensor.
"""
return list(self.args[1])
def get_free_indices(self):
"""
Get a list of free indices, corresponding to those of the tensor.
"""
return self._index_structure.get_free_indices()
def as_base_exp(self):
return self, S.One
def substitute_indices(self, *index_tuples):
return substitute_indices(self, *index_tuples)
def __call__(self, *indices):
"""Returns tensor with ordered free indices replaced by ``indices``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = tensorhead('A', [Lorentz]*5, [[1]*5])
>>> t = A(i2, i1, -i2, -i3, i4)
>>> t
A(L_0, i1, -L_0, -i3, i4)
>>> t(i1, i2, i3)
A(L_0, i1, -L_0, i2, i3)
"""
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.fun_eval(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len(set(i if i.is_up else -i for i in indices)) != len(indices):
return t.func(*t.args)
return t
# TODO: put this into TensExpr?
def __iter__(self):
deprecate_data()
return self.data.__iter__()
# TODO: put this into TensExpr?
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def _extract_data(self, replacement_dict):
from .array import Array, tensorcontraction, tensorproduct, permutedims
for k, v in replacement_dict.items():
if isinstance(k, Tensor) and k.args[0] == self.args[0]:
other = k
array = v
break
else:
raise ValueError("%s not found in %s" % (self, replacement_dict))
# TODO: inefficient, this should be done at root level only:
replacement_dict = {k: Array(v) for k, v in replacement_dict.items()}
array = Array(array)
dum1 = self.dum
dum2 = other.dum
if len(dum2) > 0:
for pair in dum2:
# allow `dum2` if the contained values are also in `dum1`.
if pair not in dum1:
raise NotImplementedError("%s with contractions is not implemented" % other)
# Remove elements in `dum2` from `dum1`:
dum1 = [pair for pair in dum1 if pair not in dum2]
if len(dum1) > 0:
indices2 = other.get_indices()
repl = {}
for p1, p2 in dum1:
repl[indices2[p2]] = -indices2[p1]
other = other.xreplace(repl).doit()
array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2))
free_ind1 = self.get_free_indices()
free_ind2 = other.get_free_indices()
index_types1 = self.index_types
return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict)
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# TODO: check data compatibility with properties of tensor.
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
def _print(self):
indices = [str(ind) for ind in self.indices]
component = self.component
if component.rank > 0:
return ('%s(%s)' % (component.name, ', '.join(indices)))
else:
return ('%s' % component.name)
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return S.One == other
def _get_compar_comp(self):
t = self.canon_bp()
r = (t.coeff, tuple(t.components), \
tuple(sorted(t.free)), tuple(sorted(t.dum)))
return r
return _get_compar_comp(self) == _get_compar_comp(other)
def contract_metric(self, g):
# if metric is not the same, ignore this step:
if self.component != g:
return self
# in case there are free components, do not perform anything:
if len(self.free) != 0:
return self
antisym = g.index_types[0].metric_antisym
sign = S.One
typ = g.index_types[0]
if not antisym:
# g(i, -i)
if typ._dim is None:
raise ValueError('dimension not assigned')
sign = sign*typ._dim
else:
# g(i, -i)
if typ._dim is None:
raise ValueError('dimension not assigned')
sign = sign*typ._dim
dp0, dp1 = self.dum[0]
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
return sign
def contract_delta(self, metric):
return self.contract_metric(metric)
def _eval_rewrite_as_Indexed(self, tens, indices):
from sympy import Indexed
# TODO: replace .args[0] with .name:
index_symbols = [i.args[0] for i in self.get_indices()]
expr = Indexed(tens.args[0], *index_symbols)
return self._check_add_Sum(expr, index_symbols)
class TensMul(TensExpr, AssocOp):
"""
Product of tensors
Parameters
==========
coeff : SymPy coefficient of the tensor
args
Attributes
==========
``components`` : list of ``TensorHead`` of the component tensors
``types`` : list of nonrepeated ``TensorIndexType``
``free`` : list of ``(ind, ipos, icomp)``, see Notes
``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
``ext_rank`` : rank of the tensor counting the dummy indices
``rank`` : rank of the tensor
``coeff`` : SymPy coefficient of the tensor
``free_args`` : list of the free indices in sorted order
``is_canon_bp`` : ``True`` if the tensor in in canonical form
Notes
=====
``args[0]`` list of ``TensorHead`` of the component tensors.
``args[1]`` list of ``(ind, ipos, icomp)``
where ``ind`` is a free index, ``ipos`` is the slot position
of ``ind`` in the ``icomp``-th component tensor.
``args[2]`` list of tuples representing dummy indices.
``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
component tensor; the corresponding covariant index is
in the ``ipos2`` slot position in the ``icomp2``-th component tensor.
"""
identity = S.One
def __new__(cls, *args, **kw_args):
is_canon_bp = kw_args.get('is_canon_bp', False)
args = list(map(_sympify, args))
# Flatten:
args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])]
args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj._index_types = index_types
obj._index_structure = index_structure
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = S.One
obj._is_canon_bp = is_canon_bp
return obj
@staticmethod
def _indices_to_free_dum(args_indices):
free2pos1 = {}
free2pos2 = {}
dummy_data = []
indices = []
# Notation for positions (to better understand the code):
# `pos1`: position in the `args`.
# `pos2`: position in the indices.
# Example:
# A(i, j)*B(k, m, n)*C(p)
# `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul).
# `pos2` of `n` is 4 because it's the fifth overall index.
# Counter for the index position wrt the whole expression:
pos2 = 0
for pos1, arg_indices in enumerate(args_indices):
for index_pos, index in enumerate(arg_indices):
if not isinstance(index, TensorIndex):
raise TypeError("expected TensorIndex")
if -index in free2pos1:
# Dummy index detected:
other_pos1 = free2pos1.pop(-index)
other_pos2 = free2pos2.pop(-index)
if index.is_up:
dummy_data.append((index, pos1, other_pos1, pos2, other_pos2))
else:
dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2))
indices.append(index)
elif index in free2pos1:
raise ValueError("Repeated index: %s" % index)
else:
free2pos1[index] = pos1
free2pos2[index] = pos2
indices.append(index)
pos2 += 1
free = [(i, p) for (i, p) in free2pos2.items()]
free_names = [i.name for i in free2pos2.keys()]
dummy_data.sort(key=lambda x: x[3])
return indices, free, free_names, dummy_data
@staticmethod
def _dummy_data_to_dum(dummy_data):
return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data]
@staticmethod
def _tensMul_contract_indices(args, replace_indices=True):
replacements = [{} for arg in args]
#_index_order = all([_has_index_order(arg) for arg in args])
args_indices = [get_indices(arg) for arg in args]
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
cdt = defaultdict(int)
def dummy_fmt_gen(tensor_index_type):
fmt = tensor_index_type.dummy_fmt
nd = cdt[tensor_index_type]
cdt[tensor_index_type] += 1
return fmt % nd
if replace_indices:
for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data:
index_type = old_index.tensor_index_type
while True:
dummy_name = dummy_fmt_gen(index_type)
if dummy_name not in free_names:
break
dummy = TensorIndex(dummy_name, index_type, True)
replacements[pos1cov][old_index] = dummy
replacements[pos1contra][-old_index] = -dummy
indices[pos2cov] = dummy
indices[pos2contra] = -dummy
args = [arg.xreplace(repl) for arg, repl in zip(args, replacements)]
dum = TensMul._dummy_data_to_dum(dummy_data)
return args, indices, free, dum
@staticmethod
def _get_components_from_args(args):
"""
Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied
by one another.
"""
components = []
for arg in args:
if not isinstance(arg, TensExpr):
continue
if isinstance(arg, TensAdd):
continue
components.extend(arg.components)
return components
@staticmethod
def _rebuild_tensors_list(args, index_structure):
indices = index_structure.get_indices()
#tensors = [None for i in components] # pre-allocate list
ind_pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
prev_pos = ind_pos
ind_pos += arg.ext_rank
args[i] = Tensor(arg.component, indices[prev_pos:ind_pos])
def doit(self, **kwargs):
is_canon_bp = self._is_canon_bp
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
args = [arg for arg in args if arg != self.identity]
# Extract non-tensor coefficients:
coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One)
args = [arg for arg in args if isinstance(arg, TensExpr)]
if len(args) == 0:
return coeff
if coeff != self.identity:
args = [coeff] + args
if coeff == 0:
return S.Zero
if len(args) == 1:
return args[0]
args, indices, free, dum = TensMul._tensMul_contract_indices(args)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = self.func(*args)
obj._index_types = index_types
obj._index_structure = index_structure
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = coeff
obj._is_canon_bp = is_canon_bp
return obj
# TODO: this method should be private
# TODO: should this method be renamed _from_components_free_dum ?
@staticmethod
def from_data(coeff, components, free, dum, **kw_args):
return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit()
@staticmethod
def _get_tensors_from_components_free_dum(components, free, dum):
"""
Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``.
"""
index_structure = _IndexStructure.from_components_free_dum(components, free, dum)
indices = index_structure.get_indices()
tensors = [None for i in components] # pre-allocate list
# distribute indices on components to build a list of tensors:
ind_pos = 0
for i, component in enumerate(components):
prev_pos = ind_pos
ind_pos += component.rank
tensors[i] = Tensor(component, indices[prev_pos:ind_pos])
return tensors
def _get_free_indices_set(self):
return set([i[0] for i in self.free])
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self.dum))
return set(idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos)
def _get_position_offset_for_indices(self):
arg_offset = [None for i in range(self.ext_rank)]
counter = 0
for i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
for j in range(arg.ext_rank):
arg_offset[j + counter] = counter
counter += arg.ext_rank
return arg_offset
@property
def free_args(self):
return sorted([x[0] for x in self.free])
@property
def components(self):
return self._get_components_from_args(self.args)
@property
def free(self):
return self._index_structure.free[:]
@property
def free_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free]
@property
def coeff(self):
return self._coeff
@property
def nocoeff(self):
return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit()
@property
def dum(self):
return self._index_structure.dum[:]
@property
def dum_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum]
@property
def rank(self):
return len(self.free)
@property
def ext_rank(self):
return self._ext_rank
@property
def index_types(self):
return self._index_types[:]
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return self._coeff == other
return self.canon_bp() == other.canon_bp()
def get_indices(self):
"""
Returns the list of indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
The dummy indices are given a name which does not collide with
the names of the free indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(m1)*g(m0,m2)
>>> t.get_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_indices()
[L_0, -L_0, m2]
"""
return self._indices
def get_free_indices(self):
"""
Returns the list of free indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(m1)*g(m0,m2)
>>> t.get_free_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_free_indices()
[m2]
"""
return self._index_structure.get_free_indices()
def split(self):
"""
Returns a list of tensors, whose product is ``self``
Dummy indices contracted among different tensor components
become free indices with the same name as the one used to
represent the dummy indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(a,b)*B(-b,c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]
"""
if self.args == ():
return [self]
splitp = []
res = 1
for arg in self.args:
if isinstance(arg, Tensor):
splitp.append(res*arg)
res = 1
else:
res *= arg
return splitp
def _expand(self, **hints):
# TODO: temporary solution, in the future this should be linked to
# `Expr.expand`.
args = [_expand(arg, **hints) for arg in self.args]
args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args]
return TensAdd(*[
TensMul(*i) for i in itertools.product(*args1)]
)
def __neg__(self):
return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit()
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def _get_args_for_traditional_printer(self):
args = list(self.args)
if (self.coeff < 0) == True:
# expressions like "-A(a)"
sign = "-"
if self.coeff == S.NegativeOne:
args = args[1:]
else:
args[0] = -args[0]
else:
sign = ""
return sign, args
def _sort_args_for_sorted_components(self):
"""
Returns the ``args`` sorted according to the components commutation
properties.
The sorting is done taking into account the commutation group
of the component tensors.
"""
cv = [arg for arg in self.args if isinstance(arg, TensExpr)]
sign = 1
n = len(cv) - 1
for i in range(n):
for j in range(n, i, -1):
c = cv[j-1].commutes_with(cv[j])
# if `c` is `None`, it does neither commute nor anticommute, skip:
if c not in [0, 1]:
continue
if (cv[j-1].component.types, cv[j-1].component.name) > \
(cv[j].component.types, cv[j].component.name):
cv[j-1], cv[j] = cv[j], cv[j-1]
# if `c` is 1, the anticommute, so change sign:
if c:
sign = -sign
coeff = sign * self.coeff
if coeff != 1:
return [coeff] + cv
return cv
def sorted_components(self):
"""
Returns a tensor product with sorted components.
"""
return TensMul(*self._sort_args_for_sorted_components()).doit()
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp=is_canon_bp)
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> A = tensorhead('A', [Lorentz]*2, [[2]])
>>> t = A(m0,-m1)*A(m1,-m0)
>>> t.canon_bp()
-A(L_0, L_1)*A(-L_0, -L_1)
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
>>> t.canon_bp()
0
"""
if self._is_canon_bp:
return self
expr = self.expand()
if isinstance(expr, TensAdd):
return expr.canon_bp()
if not expr.components:
return expr
t = expr.sorted_components()
g, dummies, msym = t._index_structure.indices_canon_args()
v = components_canon_args(t.components)
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tmul = t.perm2tensor(can, True)
return tmul
def contract_delta(self, delta):
t = self.contract_metric(delta)
return t
def _get_indices_to_args_pos(self):
"""
Get a dict mapping the index position to TensMul's argument number.
"""
pos_map = dict()
pos_counter = 0
for arg_i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
for i in range(arg.ext_rank):
pos_map[pos_counter] = arg_i
pos_counter += 1
return pos_map
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_0)*q(-L_1)
>>> t.contract_metric(g).canon_bp()
p(L_0)*q(-L_0)
"""
expr = self.expand()
if self != expr:
expr = expr.canon_bp()
return expr.contract_metric(g)
pos_map = self._get_indices_to_args_pos()
args = list(self.args)
antisym = g.index_types[0].metric_antisym
# list of positions of the metric ``g`` inside ``args``
gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
if not gpos:
return self
# Sign is either 1 or -1, to correct the sign after metric contraction
# (for spinor indices).
sign = 1
dum = self.dum[:]
free = self.free[:]
elim = set()
for gposx in gpos:
if gposx in elim:
continue
free1 = [x for x in free if pos_map[x[1]] == gposx]
dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
if not dum1:
continue
elim.add(gposx)
# subs with the multiplication neutral element, that is, remove it:
args[gposx] = 1
if len(dum1) == 2:
if not antisym:
dum10, dum11 = dum1
if pos_map[dum10[1]] == gposx:
# the index with pos p0 contravariant
p0 = dum10[0]
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
else:
dum10, dum11 = dum1
# change the sign to bring the indices of the metric to contravariant
# form; change the sign if dum10 has the metric index in position 0
if pos_map[dum10[1]] == gposx:
# the index with pos p0 is contravariant
p0 = dum10[0]
if dum10[1] == 1:
sign = -sign
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if dum10[0] == 0:
sign = -sign
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
sign = -sign
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
elif len(dum1) == 1:
if not antisym:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
if typ._dim is None:
raise ValueError('dimension not assigned')
sign = sign*typ._dim
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
else:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
if typ._dim is None:
raise ValueError('dimension not assigned')
sign = sign*typ._dim
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
if dp0 == 0:
sign = -sign
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
dum = [x for x in dum if x not in dum1]
free = [x for x in free if x not in free1]
# shift positions:
shift = 0
shifts = [0]*len(args)
for i in range(len(args)):
if i in elim:
shift += 2
continue
shifts[i] = shift
free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim]
res = sign*TensMul(*args).doit()
if not isinstance(res, TensExpr):
return res
im = _IndexStructure.from_components_free_dum(res.components, free, dum)
return res._set_new_index_structure(im)
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
args = list(self.args)[:]
pos = 0
is_canon_bp = kw_args.pop('is_canon_bp', False)
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
ext_rank = arg.ext_rank
args[i] = arg._set_indices(*indices[pos:pos+ext_rank])
pos += ext_rank
return TensMul(*args, is_canon_bp=is_canon_bp).doit()
@staticmethod
def _index_replacement_for_contract_metric(args, free, dum):
for arg in args:
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
def substitute_indices(self, *index_tuples):
return substitute_indices(self, *index_tuples)
def __call__(self, *indices):
"""Returns tensor product with ordered free indices replaced by ``indices``
Examples
========
>>> from sympy import Symbol
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> D = Symbol('D')
>>> Lorentz = TensorIndexType('Lorentz', dim=D, dummy_fmt='L')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensorhead('p,q', [Lorentz], [[1]])
>>> t = p(i0)*q(i1)*q(-i1)
>>> t(i1)
p(i1)*q(L_0)*q(-L_0)
"""
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.fun_eval(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len(set(i if i.is_up else -i for i in indices)) != len(indices):
return t.func(*t.args)
return t
def _extract_data(self, replacement_dict):
args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)])
coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One)
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
dum = TensMul._dummy_data_to_dum(dummy_data)
ext_rank = self.ext_rank
free.sort(key=lambda x: x[1])
free_indices = [i[0] for i in free]
return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank)
@property
def data(self):
deprecate_data()
dat = _tensor_data_substitution_dict[self.expand()]
return dat
@data.setter
def data(self, data):
deprecate_data()
raise ValueError("Not possible to set component data to a tensor expression")
@data.deleter
def data(self):
deprecate_data()
raise ValueError("Not possible to delete component data to a tensor expression")
def __iter__(self):
deprecate_data()
if self.data is None:
raise ValueError("No iteration on abstract tensors")
return self.data.__iter__()
def _eval_rewrite_as_Indexed(self, *args):
from sympy import Sum
index_symbols = [i.args[0] for i in self.get_indices()]
args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args]
expr = Mul.fromiter(args)
return self._check_add_Sum(expr, index_symbols)
class TensorElement(TensExpr):
"""
Tensor with evaluated components.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensorhead
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> i, j, k = symbols("i j k")
>>> A = tensorhead("A", [L, L], [[1], [1]])
>>> A(i, j).get_free_indices()
[i, j]
If we want to set component ``i`` to a specific value, use the
``TensorElement`` class:
>>> from sympy.tensor.tensor import TensorElement
>>> te = TensorElement(A(i, j), {i: 2})
As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd
element), the free indices will only contain ``j``:
>>> te.get_free_indices()
[j]
"""
def __new__(cls, expr, index_map):
if not isinstance(expr, Tensor):
# remap
if not isinstance(expr, TensExpr):
raise TypeError("%s is not a tensor expression" % expr)
return expr.func(*[TensorElement(arg, index_map) for arg in expr.args])
expr_free_indices = expr.get_free_indices()
name_translation = {i.args[0]: i for i in expr_free_indices}
index_map = {name_translation.get(index, index): value for index, value in index_map.items()}
index_map = {index: value for index, value in index_map.items() if index in expr_free_indices}
if len(index_map) == 0:
return expr
free_indices = [i for i in expr_free_indices if i not in index_map.keys()]
index_map = Dict(index_map)
obj = TensExpr.__new__(cls, expr, index_map)
obj._free_indices = free_indices
return obj
@property
def free(self):
return [(index, i) for i, index in enumerate(self.get_free_indices())]
@property
def dum(self):
# TODO: inherit dummies from expr
return []
@property
def expr(self):
return self._args[0]
@property
def index_map(self):
return self._args[1]
def get_free_indices(self):
return self._free_indices
def get_indices(self):
return self.get_free_indices()
def _extract_data(self, replacement_dict):
ret_indices, array = self.expr._extract_data(replacement_dict)
index_map = self.index_map
slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices)
ret_indices = [i for i in ret_indices if i not in index_map]
array = array.__getitem__(slice_tuple)
return ret_indices, array
def canon_bp(p):
"""
Butler-Portugal canonicalization
"""
if isinstance(p, TensExpr):
return p.canon_bp()
return p
def tensor_mul(*a):
"""
product of tensors
"""
if not a:
return TensMul.from_data(S.One, [], [], [])
t = a[0]
for tx in a[1:]:
t = t*tx
return t
def riemann_cyclic_replace(t_r):
"""
replace Riemann tensor with an equivalent expression
``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``
"""
free = sorted(t_r.free, key=lambda x: x[1])
m, n, p, q = [x[0] for x in free]
t0 = S(2)/3*t_r
t1 = - S(1)/3*t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))
t2 = S(1)/3*t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))
t3 = t0 + t1 + t2
return t3
def riemann_cyclic(t2):
"""
replace each Riemann tensor with an equivalent expression
satisfying the cyclic identity.
This trick is discussed in the reference guide to Cadabra.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead, riemann_cyclic
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> R = tensorhead('R', [Lorentz]*4, [[2, 2]])
>>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
>>> riemann_cyclic(t)
0
"""
t2 = t2.expand()
if isinstance(t2, (TensMul, Tensor)):
args = [t2]
else:
args = t2.args
a1 = [x.split() for x in args]
a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
a3 = [tensor_mul(*v) for v in a2]
t3 = TensAdd(*a3).doit()
if not t3:
return t3
else:
return canon_bp(t3)
def get_lines(ex, index_type):
"""
returns ``(lines, traces, rest)`` for an index type,
where ``lines`` is the list of list of positions of a matrix line,
``traces`` is the list of list of traced matrix lines,
``rest`` is the rest of the elements ot the tensor.
"""
def _join_lines(a):
i = 0
while i < len(a):
x = a[i]
xend = x[-1]
xstart = x[0]
hit = True
while hit:
hit = False
for j in range(i + 1, len(a)):
if j >= len(a):
break
if a[j][0] == xend:
hit = True
x.extend(a[j][1:])
xend = x[-1]
a.pop(j)
continue
if a[j][0] == xstart:
hit = True
a[i] = reversed(a[j][1:]) + x
x = a[i]
xstart = a[i][0]
a.pop(j)
continue
if a[j][-1] == xend:
hit = True
x.extend(reversed(a[j][:-1]))
xend = x[-1]
a.pop(j)
continue
if a[j][-1] == xstart:
hit = True
a[i] = a[j][:-1] + x
x = a[i]
xstart = x[0]
a.pop(j)
continue
i += 1
return a
arguments = ex.args
dt = {}
for c in ex.args:
if not isinstance(c, TensExpr):
continue
if c in dt:
continue
index_types = c.index_types
a = []
for i in range(len(index_types)):
if index_types[i] is index_type:
a.append(i)
if len(a) > 2:
raise ValueError('at most two indices of type %s allowed' % index_type)
if len(a) == 2:
dt[c] = a
#dum = ex.dum
lines = []
traces = []
traces1 = []
#indices_to_args_pos = ex._get_indices_to_args_pos()
# TODO: add a dum_to_components_map ?
for p0, p1, c0, c1 in ex.dum_in_args:
if arguments[c0] not in dt:
continue
if c0 == c1:
traces.append([c0])
continue
ta0 = dt[arguments[c0]]
ta1 = dt[arguments[c1]]
if p0 not in ta0:
continue
if ta0.index(p0) == ta1.index(p1):
# case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1;
# to deal with this case one could add to the position
# a flag for transposition;
# one could write [(c0, False), (c1, True)]
raise NotImplementedError
# if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
# if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
ta0 = dt[arguments[c0]]
b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0)
lines1 = lines[:]
for line in lines:
if line[-1] == b0:
if line[0] == b1:
n = line.index(min(line))
traces1.append(line)
traces.append(line[n:] + line[:n])
else:
line.append(b1)
break
elif line[0] == b1:
line.insert(0, b0)
break
else:
lines1.append([b0, b1])
lines = [x for x in lines1 if x not in traces1]
lines = _join_lines(lines)
rest = []
for line in lines:
for y in line:
rest.append(y)
for line in traces:
for y in line:
rest.append(y)
rest = [x for x in range(len(arguments)) if x not in rest]
return lines, traces, rest
def get_free_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_free_indices()
def get_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_indices()
def get_index_structure(t):
if isinstance(t, TensExpr):
return t._index_structure
return _IndexStructure([], [], [], [])
def get_coeff(t):
if isinstance(t, Tensor):
return S.One
if isinstance(t, TensMul):
return t.coeff
if isinstance(t, TensExpr):
raise ValueError("no coefficient associated to this tensor expression")
return t
def contract_metric(t, g):
if isinstance(t, TensExpr):
return t.contract_metric(g)
return t
def perm2tensor(t, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
if not isinstance(t, TensExpr):
return t
elif isinstance(t, (Tensor, TensMul)):
nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp)
res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp)
if g[-1] != len(g) - 1:
return -res
return res
raise NotImplementedError()
def substitute_indices(t, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
``index_types`` list of tuples ``(old_index, new_index)``
Note: this method will neither raise or lower the indices, it will just replace their symbol.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensorhead
>>> Lorentz = TensorIndexType('Lorentz', dummy_fmt='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensorhead('A,B', [Lorentz]*2, [[1]*2])
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i,j), (j, k))
A(j, L_0)*B(-L_0, -k)
"""
if not isinstance(t, TensExpr):
return t
free = t.free
free1 = []
for j, ipos in free:
for i, v in index_tuples:
if i._name == j._name and i.tensor_index_type == j.tensor_index_type:
if i._is_up == j._is_up:
free1.append((v, ipos))
else:
free1.append((-v, ipos))
break
else:
free1.append((j, ipos))
t = TensMul.from_data(t.coeff, t.components, free1, t.dum)
return t
def _expand(expr, **kwargs):
if isinstance(expr, TensExpr):
return expr._expand(**kwargs)
else:
return expr.expand(**kwargs)
|
2a701ceb9c03b4df14356cbf7281acd8eedf436b5f96af1f7d7e8522800f4348
|
r"""Module that defines indexed objects
The classes ``IndexedBase``, ``Indexed``, and ``Idx`` represent a
matrix element ``M[i, j]`` as in the following diagram::
1) The Indexed class represents the entire indexed object.
|
___|___
' '
M[i, j]
/ \__\______
| |
| |
| 2) The Idx class represents indices; each Idx can
| optionally contain information about its range.
|
3) IndexedBase represents the 'stem' of an indexed object, here `M`.
The stem used by itself is usually taken to represent the entire
array.
There can be any number of indices on an Indexed object. No
transformation properties are implemented in these Base objects, but
implicit contraction of repeated indices is supported.
Note that the support for complicated (i.e. non-atomic) integer
expressions as indices is limited. (This should be improved in
future releases.)
Examples
========
To express the above matrix element example you would write:
>>> from sympy import symbols, IndexedBase, Idx
>>> M = IndexedBase('M')
>>> i, j = symbols('i j', cls=Idx)
>>> M[i, j]
M[i, j]
Repeated indices in a product implies a summation, so to express a
matrix-vector product in terms of Indexed objects:
>>> x = IndexedBase('x')
>>> M[i, j]*x[j]
M[i, j]*x[j]
If the indexed objects will be converted to component based arrays, e.g.
with the code printers or the autowrap framework, you also need to provide
(symbolic or numerical) dimensions. This can be done by passing an
optional shape parameter to IndexedBase upon construction:
>>> dim1, dim2 = symbols('dim1 dim2', integer=True)
>>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2))
>>> A.shape
(dim1, 2*dim1, dim2)
>>> A[i, j, 3].shape
(dim1, 2*dim1, dim2)
If an IndexedBase object has no shape information, it is assumed that the
array is as large as the ranges of its indices:
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> M[i, j].shape
(m, n)
>>> M[i, j].ranges
[(0, m - 1), (0, n - 1)]
The above can be compared with the following:
>>> A[i, 2, j].shape
(dim1, 2*dim1, dim2)
>>> A[i, 2, j].ranges
[(0, m - 1), None, (0, n - 1)]
To analyze the structure of indexed expressions, you can use the methods
get_indices() and get_contraction_structure():
>>> from sympy.tensor import get_indices, get_contraction_structure
>>> get_indices(A[i, j, j])
({i}, {})
>>> get_contraction_structure(A[i, j, j])
{(j,): {A[i, j, j]}}
See the appropriate docstrings for a detailed explanation of the output.
"""
# TODO: (some ideas for improvement)
#
# o test and guarantee numpy compatibility
# - implement full support for broadcasting
# - strided arrays
#
# o more functions to analyze indexed expressions
# - identify standard constructs, e.g matrix-vector product in a subexpression
#
# o functions to generate component based arrays (numpy and sympy.Matrix)
# - generate a single array directly from Indexed
# - convert simple sub-expressions
#
# o sophisticated indexing (possibly in subclasses to preserve simplicity)
# - Idx with range smaller than dimension of Indexed
# - Idx with stepsize != 1
# - Idx with step determined by function call
from __future__ import print_function, division
from sympy.core.sympify import _sympify
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.core import Expr, Tuple, Symbol, sympify, S
from sympy.core.compatibility import (is_sequence, string_types, NotIterable,
range, Iterable)
class IndexException(Exception):
pass
class Indexed(Expr):
"""Represents a mathematical object with indices.
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j)
A[i, j]
It is recommended that ``Indexed`` objects be created via ``IndexedBase``:
>>> A = IndexedBase('A')
>>> Indexed('A', i, j) == A[i, j]
True
"""
is_commutative = True
is_Indexed = True
is_symbol = True
is_Atom = True
def __new__(cls, base, *args, **kw_args):
from sympy.utilities.misc import filldedent
from sympy.tensor.array.ndim_array import NDimArray
from sympy.matrices.matrices import MatrixBase
if not args:
raise IndexException("Indexed needs at least one index.")
if isinstance(base, (string_types, Symbol)):
base = IndexedBase(base)
elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase):
raise TypeError(filldedent("""
Indexed expects string, Symbol, or IndexedBase as base."""))
args = list(map(sympify, args))
if isinstance(base, (NDimArray, Iterable, Tuple, MatrixBase)) and all([i.is_number for i in args]):
if len(args) == 1:
return base[args[0]]
else:
return base[args]
return Expr.__new__(cls, base, *args, **kw_args)
@property
def name(self):
return str(self)
@property
def _diff_wrt(self):
"""Allow derivatives with respect to an ``Indexed`` object."""
return True
def _eval_derivative(self, wrt):
from sympy.tensor.array.ndim_array import NDimArray
if isinstance(wrt, Indexed) and wrt.base == self.base:
if len(self.indices) != len(wrt.indices):
msg = "Different # of indices: d({!s})/d({!s})".format(self,
wrt)
raise IndexException(msg)
result = S.One
for index1, index2 in zip(self.indices, wrt.indices):
result *= KroneckerDelta(index1, index2)
return result
elif isinstance(self.base, NDimArray):
from sympy.tensor.array import derive_by_array
return Indexed(derive_by_array(self.base, wrt), *self.args[1:])
else:
if Tuple(self.indices).has(wrt):
return S.NaN
return S.Zero
@property
def base(self):
"""Returns the ``IndexedBase`` of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).base
A
>>> B = IndexedBase('B')
>>> B == B[i, j].base
True
"""
return self.args[0]
@property
def indices(self):
"""
Returns the indices of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).indices
(i, j)
"""
return self.args[1:]
@property
def rank(self):
"""
Returns the rank of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j, k, l, m = symbols('i:m', cls=Idx)
>>> Indexed('A', i, j).rank
2
>>> q = Indexed('A', i, j, k, l, m)
>>> q.rank
5
>>> q.rank == len(q.indices)
True
"""
return len(self.args) - 1
@property
def shape(self):
"""Returns a list with dimensions of each index.
Dimensions is a property of the array, not of the indices. Still, if
the ``IndexedBase`` does not define a shape attribute, it is assumed
that the ranges of the indices correspond to the shape of the array.
>>> from sympy import IndexedBase, Idx, symbols
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', m)
>>> A = IndexedBase('A', shape=(n, n))
>>> B = IndexedBase('B')
>>> A[i, j].shape
(n, n)
>>> B[i, j].shape
(m, m)
"""
from sympy.utilities.misc import filldedent
if self.base.shape:
return self.base.shape
try:
return Tuple(*[i.upper - i.lower + 1 for i in self.indices])
except AttributeError:
raise IndexException(filldedent("""
Range is not defined for all indices in: %s""" % self))
except TypeError:
raise IndexException(filldedent("""
Shape cannot be inferred from Idx with
undefined range: %s""" % self))
@property
def ranges(self):
"""Returns a list of tuples with lower and upper range of each index.
If an index does not define the data members upper and lower, the
corresponding slot in the list contains ``None`` instead of a tuple.
Examples
========
>>> from sympy import Indexed,Idx, symbols
>>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges
[(0, 1), (0, 3), (0, 7)]
>>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges
[(0, 2), (0, 2), (0, 2)]
>>> x, y, z = symbols('x y z', integer=True)
>>> Indexed('A', x, y, z).ranges
[None, None, None]
"""
ranges = []
for i in self.indices:
try:
ranges.append(Tuple(i.lower, i.upper))
except AttributeError:
ranges.append(None)
return ranges
def _sympystr(self, p):
indices = list(map(p.doprint, self.indices))
return "%s[%s]" % (p.doprint(self.base), ", ".join(indices))
@property
def free_symbols(self):
base_free_symbols = self.base.free_symbols
indices_free_symbols = {
fs for i in self.indices for fs in i.free_symbols}
if base_free_symbols:
return {self} | base_free_symbols | indices_free_symbols
else:
return indices_free_symbols
@property
def expr_free_symbols(self):
return {self}
class IndexedBase(Expr, NotIterable):
"""Represent the base or stem of an indexed object
The IndexedBase class represent an array that contains elements. The main purpose
of this class is to allow the convenient creation of objects of the Indexed
class. The __getitem__ method of IndexedBase returns an instance of
Indexed. Alone, without indices, the IndexedBase class can be used as a
notation for e.g. matrix equations, resembling what you could do with the
Symbol class. But, the IndexedBase class adds functionality that is not
available for Symbol instances:
- An IndexedBase object can optionally store shape information. This can
be used in to check array conformance and conditions for numpy
broadcasting. (TODO)
- An IndexedBase object implements syntactic sugar that allows easy symbolic
representation of array operations, using implicit summation of
repeated indices.
- The IndexedBase object symbolizes a mathematical structure equivalent
to arrays, and is recognized as such for code generation and automatic
compilation and wrapping.
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> A = IndexedBase('A'); A
A
>>> type(A)
<class 'sympy.tensor.indexed.IndexedBase'>
When an IndexedBase object receives indices, it returns an array with named
axes, represented by an Indexed object:
>>> i, j = symbols('i j', integer=True)
>>> A[i, j, 2]
A[i, j, 2]
>>> type(A[i, j, 2])
<class 'sympy.tensor.indexed.Indexed'>
The IndexedBase constructor takes an optional shape argument. If given,
it overrides any shape information in the indices. (But not the index
ranges!)
>>> m, n, o, p = symbols('m n o p', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> A[i, j].shape
(m, n)
>>> B = IndexedBase('B', shape=(o, p))
>>> B[i, j].shape
(o, p)
"""
is_commutative = True
is_symbol = True
is_Atom = True
def __new__(cls, label, shape=None, **kw_args):
from sympy import MatrixBase, NDimArray
if isinstance(label, string_types):
label = Symbol(label)
elif isinstance(label, Symbol):
pass
elif isinstance(label, (MatrixBase, NDimArray)):
return label
elif isinstance(label, Iterable):
return _sympify(label)
else:
label = _sympify(label)
if is_sequence(shape):
shape = Tuple(*shape)
elif shape is not None:
shape = Tuple(shape)
offset = kw_args.pop('offset', S.Zero)
strides = kw_args.pop('strides', None)
if shape is not None:
obj = Expr.__new__(cls, label, shape)
else:
obj = Expr.__new__(cls, label)
obj._shape = shape
obj._offset = offset
obj._strides = strides
obj._name = str(label)
return obj
@property
def name(self):
return self._name
def __getitem__(self, indices, **kw_args):
if is_sequence(indices):
# Special case needed because M[*my_tuple] is a syntax error.
if self.shape and len(self.shape) != len(indices):
raise IndexException("Rank mismatch.")
return Indexed(self, *indices, **kw_args)
else:
if self.shape and len(self.shape) != 1:
raise IndexException("Rank mismatch.")
return Indexed(self, indices, **kw_args)
@property
def shape(self):
"""Returns the shape of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase, Idx, Symbol
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).shape
(x, y)
Note: If the shape of the ``IndexedBase`` is specified, it will override
any shape information given by the indices.
>>> A = IndexedBase('A', shape=(x, y))
>>> B = IndexedBase('B')
>>> i = Idx('i', 2)
>>> j = Idx('j', 1)
>>> A[i, j].shape
(x, y)
>>> B[i, j].shape
(2, 1)
"""
return self._shape
@property
def strides(self):
"""Returns the strided scheme for the ``IndexedBase`` object.
Normally this is a tuple denoting the number of
steps to take in the respective dimension when traversing
an array. For code generation purposes strides='C' and
strides='F' can also be used.
strides='C' would mean that code printer would unroll
in row-major order and 'F' means unroll in column major
order.
"""
return self._strides
@property
def offset(self):
"""Returns the offset for the ``IndexedBase`` object.
This is the value added to the resulting index when the
2D Indexed object is unrolled to a 1D form. Used in code
generation.
Examples
==========
>>> from sympy.printing import ccode
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> l, m, n, o = symbols('l m n o', integer=True)
>>> A = IndexedBase('A', strides=(l, m, n), offset=o)
>>> i, j, k = map(Idx, 'ijk')
>>> ccode(A[i, j, k])
'A[l*i + m*j + n*k + o]'
"""
return self._offset
@property
def label(self):
"""Returns the label of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).label
A
"""
return self.args[0]
def _sympystr(self, p):
return p.doprint(self.label)
class Idx(Expr):
"""Represents an integer index as an ``Integer`` or integer expression.
There are a number of ways to create an ``Idx`` object. The constructor
takes two arguments:
``label``
An integer or a symbol that labels the index.
``range``
Optionally you can specify a range as either
* ``Symbol`` or integer: This is interpreted as a dimension. Lower and
upper bounds are set to ``0`` and ``range - 1``, respectively.
* ``tuple``: The two elements are interpreted as the lower and upper
bounds of the range, respectively.
Note: bounds of the range are assumed to be either integer or infinite (oo
and -oo are allowed to specify an unbounded range). If ``n`` is given as a
bound, then ``n.is_integer`` must not return false.
For convenience, if the label is given as a string it is automatically
converted to an integer symbol. (Note: this conversion is not done for
range or dimension arguments.)
Examples
========
>>> from sympy import IndexedBase, Idx, symbols, oo
>>> n, i, L, U = symbols('n i L U', integer=True)
If a string is given for the label an integer ``Symbol`` is created and the
bounds are both ``None``:
>>> idx = Idx('qwerty'); idx
qwerty
>>> idx.lower, idx.upper
(None, None)
Both upper and lower bounds can be specified:
>>> idx = Idx(i, (L, U)); idx
i
>>> idx.lower, idx.upper
(L, U)
When only a single bound is given it is interpreted as the dimension
and the lower bound defaults to 0:
>>> idx = Idx(i, n); idx.lower, idx.upper
(0, n - 1)
>>> idx = Idx(i, 4); idx.lower, idx.upper
(0, 3)
>>> idx = Idx(i, oo); idx.lower, idx.upper
(0, oo)
"""
is_integer = True
is_finite = True
is_real = True
is_symbol = True
is_Atom = True
_diff_wrt = True
def __new__(cls, label, range=None, **kw_args):
from sympy.utilities.misc import filldedent
if isinstance(label, string_types):
label = Symbol(label, integer=True)
label, range = list(map(sympify, (label, range)))
if label.is_Number:
if not label.is_integer:
raise TypeError("Index is not an integer number.")
return label
if not label.is_integer:
raise TypeError("Idx object requires an integer label.")
elif is_sequence(range):
if len(range) != 2:
raise ValueError(filldedent("""
Idx range tuple must have length 2, but got %s""" % len(range)))
for bound in range:
if bound.is_integer is False:
raise TypeError("Idx object requires integer bounds.")
args = label, Tuple(*range)
elif isinstance(range, Expr):
if not (range.is_integer or range is S.Infinity):
raise TypeError("Idx object requires an integer dimension.")
args = label, Tuple(0, range - 1)
elif range:
raise TypeError(filldedent("""
The range must be an ordered iterable or
integer SymPy expression."""))
else:
args = label,
obj = Expr.__new__(cls, *args, **kw_args)
obj._assumptions["finite"] = True
obj._assumptions["real"] = True
return obj
@property
def label(self):
"""Returns the label (Integer or integer expression) of the Idx object.
Examples
========
>>> from sympy import Idx, Symbol
>>> x = Symbol('x', integer=True)
>>> Idx(x).label
x
>>> j = Symbol('j', integer=True)
>>> Idx(j).label
j
>>> Idx(j + 1).label
j + 1
"""
return self.args[0]
@property
def lower(self):
"""Returns the lower bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).lower
0
>>> Idx('j', 5).lower
0
>>> Idx('j').lower is None
True
"""
try:
return self.args[1][0]
except IndexError:
return
@property
def upper(self):
"""Returns the upper bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).upper
1
>>> Idx('j', 5).upper
4
>>> Idx('j').upper is None
True
"""
try:
return self.args[1][1]
except IndexError:
return
def _sympystr(self, p):
return p.doprint(self.label)
@property
def name(self):
return self.label.name if self.label.is_Symbol else str(self.label)
@property
def free_symbols(self):
return {self}
def __le__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.upper is not None and (self.upper <= other_lower) == True:
return True
if self.lower is not None and (self.lower > other_upper) == True:
return False
return super(Idx, self).__le__(other)
def __ge__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.lower is not None and (self.lower >= other_upper) == True:
return True
if self.upper is not None and (self.upper < other_lower) == True:
return False
return super(Idx, self).__ge__(other)
def __lt__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.upper is not None and (self.upper < other_lower) == True:
return True
if self.lower is not None and (self.lower >= other_upper) == True:
return False
return super(Idx, self).__lt__(other)
def __gt__(self, other):
if isinstance(other, Idx):
other_upper = other if other.upper is None else other.upper
other_lower = other if other.lower is None else other.lower
else:
other_upper = other
other_lower = other
if self.lower is not None and (self.lower > other_upper) == True:
return True
if self.upper is not None and (self.upper <= other_lower) == True:
return False
return super(Idx, self).__gt__(other)
|
3249d993edba593970a2fbeca92c5bb271d2b4913f6816a15d66afa0fc2a8795
|
def expand_tuples(L):
"""
>>> from sympy.multipledispatch.utils import expand_tuples
>>> expand_tuples([1, (2, 3)])
[(1, 2), (1, 3)]
>>> expand_tuples([1, 2])
[(1, 2)]
"""
if not L:
return [()]
elif not isinstance(L[0], tuple):
rest = expand_tuples(L[1:])
return [(L[0],) + t for t in rest]
else:
rest = expand_tuples(L[1:])
return [(item,) + t for t in rest for item in L[0]]
# Taken from theano/theano/gof/sched.py
# Avoids licensing issues because this was written by Matthew Rocklin
def _toposort(edges):
""" Topological sort algorithm by Kahn [1] - O(nodes + vertices)
inputs:
edges - a dict of the form {a: {b, c}} where b and c depend on a
outputs:
L - an ordered list of nodes that satisfy the dependencies of edges
>>> from sympy.multipledispatch.utils import _toposort
>>> _toposort({1: (2, 3), 2: (3, )})
[1, 2, 3]
Closely follows the wikipedia page [2]
[1] Kahn, Arthur B. (1962), "Topological sorting of large networks",
Communications of the ACM
[2] https://en.wikipedia.org/wiki/Toposort#Algorithms
"""
incoming_edges = reverse_dict(edges)
incoming_edges = dict((k, set(val)) for k, val in incoming_edges.items())
S = set((v for v in edges if v not in incoming_edges))
L = []
while S:
n = S.pop()
L.append(n)
for m in edges.get(n, ()):
assert n in incoming_edges[m]
incoming_edges[m].remove(n)
if not incoming_edges[m]:
S.add(m)
if any(incoming_edges.get(v, None) for v in edges):
raise ValueError("Input has cycles")
return L
def reverse_dict(d):
"""Reverses direction of dependence dict
>>> d = {'a': (1, 2), 'b': (2, 3), 'c':()}
>>> reverse_dict(d) # doctest: +SKIP
{1: ('a',), 2: ('a', 'b'), 3: ('b',)}
:note: dict order are not deterministic. As we iterate on the
input dict, it make the output of this function depend on the
dict order. So this function output order should be considered
as undeterministic.
"""
result = {}
for key in d:
for val in d[key]:
result[val] = result.get(val, tuple()) + (key, )
return result
# Taken from toolz
# Avoids licensing issues because this version was authored by Matthew Rocklin
def groupby(func, seq):
""" Group a collection by a key function
>>> from sympy.multipledispatch.utils import groupby
>>> names = ['Alice', 'Bob', 'Charlie', 'Dan', 'Edith', 'Frank']
>>> groupby(len, names) # doctest: +SKIP
{3: ['Bob', 'Dan'], 5: ['Alice', 'Edith', 'Frank'], 7: ['Charlie']}
>>> iseven = lambda x: x % 2 == 0
>>> groupby(iseven, [1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP
{False: [1, 3, 5, 7], True: [2, 4, 6, 8]}
See Also:
``countby``
"""
d = dict()
for item in seq:
key = func(item)
if key not in d:
d[key] = list()
d[key].append(item)
return d
|
af3b81ca21cab523c9c1d54a64a534295e4dbbbf8b5e549e524eff82e5a2f054
|
"""
Boolean algebra module for SymPy
"""
from __future__ import print_function, division
from collections import defaultdict
from itertools import combinations, product
from sympy.core.add import Add
from sympy.core.basic import Basic, as_Basic
from sympy.core.cache import cacheit
from sympy.core.numbers import Number, oo
from sympy.core.operations import LatticeOp
from sympy.core.function import Application, Derivative, count_ops
from sympy.core.compatibility import (ordered, range, with_metaclass,
as_int, reduce)
from sympy.core.sympify import converter, _sympify, sympify
from sympy.core.singleton import Singleton, S
from sympy.utilities.misc import filldedent
from sympy.utilities.iterables import sift
def as_Boolean(e):
"""Like bool, return the Boolean value of an expression, e,
which can be any instance of Boolean or bool.
Examples
========
>>> from sympy import true, false, nan
>>> from sympy.logic.boolalg import as_Boolean
>>> from sympy.abc import x
>>> as_Boolean(1) is true
True
>>> as_Boolean(x)
x
>>> as_Boolean(2)
Traceback (most recent call last):
...
TypeError: expecting bool or Boolean, not `2`.
"""
from sympy.core.symbol import Symbol
if e == True:
return S.true
if e == False:
return S.false
if isinstance(e, Symbol):
z = e.is_zero
if z is None:
return e
return S.false if z else S.true
if isinstance(e, Boolean):
return e
raise TypeError('expecting bool or Boolean, not `%s`.' % e)
class Boolean(Basic):
"""A boolean object is an object for which logic operations make sense."""
__slots__ = []
def __and__(self, other):
"""Overloading for & operator"""
return And(self, other)
__rand__ = __and__
def __or__(self, other):
"""Overloading for |"""
return Or(self, other)
__ror__ = __or__
def __invert__(self):
"""Overloading for ~"""
return Not(self)
def __rshift__(self, other):
"""Overloading for >>"""
return Implies(self, other)
def __lshift__(self, other):
"""Overloading for <<"""
return Implies(other, self)
__rrshift__ = __lshift__
__rlshift__ = __rshift__
def __xor__(self, other):
return Xor(self, other)
__rxor__ = __xor__
def equals(self, other):
"""
Returns True if the given formulas have the same truth table.
For two formulas to be equal they must have the same literals.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import And, Or, Not
>>> (A >> B).equals(~B >> ~A)
True
>>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C)))
False
>>> Not(And(A, Not(A))).equals(Or(B, Not(B)))
False
"""
from sympy.logic.inference import satisfiable
from sympy.core.relational import Relational
if self.has(Relational) or other.has(Relational):
raise NotImplementedError('handling of relationals')
return self.atoms() == other.atoms() and \
not satisfiable(Not(Equivalent(self, other)))
def to_nnf(self, simplify=True):
# override where necessary
return self
def as_set(self):
"""
Rewrites Boolean expression in terms of real sets.
Examples
========
>>> from sympy import Symbol, Eq, Or, And
>>> x = Symbol('x', real=True)
>>> Eq(x, 0).as_set()
{0}
>>> (x > 0).as_set()
Interval.open(0, oo)
>>> And(-2 < x, x < 2).as_set()
Interval.open(-2, 2)
>>> Or(x < -2, 2 < x).as_set()
Union(Interval.open(-oo, -2), Interval.open(2, oo))
"""
from sympy.calculus.util import periodicity
from sympy.core.relational import Relational
free = self.free_symbols
if len(free) == 1:
x = free.pop()
reps = {}
for r in self.atoms(Relational):
if periodicity(r, x) not in (0, None):
s = r._eval_as_set()
if s in (S.EmptySet, S.UniversalSet, S.Reals):
reps[r] = s.as_relational(x)
continue
raise NotImplementedError(filldedent('''
as_set is not implemented for relationals
with periodic solutions
'''))
return self.subs(reps)._eval_as_set()
else:
raise NotImplementedError("Sorry, as_set has not yet been"
" implemented for multivariate"
" expressions")
@property
def binary_symbols(self):
from sympy.core.relational import Eq, Ne
return set().union(*[i.binary_symbols for i in self.args
if i.is_Boolean or i.is_Symbol
or isinstance(i, (Eq, Ne))])
class BooleanAtom(Boolean):
"""
Base class of BooleanTrue and BooleanFalse.
"""
is_Boolean = True
is_Atom = True
_op_priority = 11 # higher than Expr
def simplify(self, *a, **kw):
return self
def expand(self, *a, **kw):
return self
@property
def canonical(self):
return self
def _noop(self, other=None):
raise TypeError('BooleanAtom not allowed in this context.')
__add__ = _noop
__radd__ = _noop
__sub__ = _noop
__rsub__ = _noop
__mul__ = _noop
__rmul__ = _noop
__pow__ = _noop
__rpow__ = _noop
__rdiv__ = _noop
__truediv__ = _noop
__div__ = _noop
__rtruediv__ = _noop
__mod__ = _noop
__rmod__ = _noop
_eval_power = _noop
# /// drop when Py2 is no longer supported
def __lt__(self, other):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__gt__ = __lt__
__ge__ = __lt__
# \\\
class BooleanTrue(with_metaclass(Singleton, BooleanAtom)):
"""
SymPy version of True, a singleton that can be accessed via S.true.
This is the SymPy version of True, for use in the logic module. The
primary advantage of using true instead of True is that shorthand boolean
operations like ~ and >> will work as expected on this class, whereas with
True they act bitwise on 1. Functions in the logic module will return this
class when they evaluate to true.
Notes
=====
There is liable to be some confusion as to when ``True`` should
be used and when ``S.true`` should be used in various contexts
throughout SymPy. An important thing to remember is that
``sympify(True)`` returns ``S.true``. This means that for the most
part, you can just use ``True`` and it will automatically be converted
to ``S.true`` when necessary, similar to how you can generally use 1
instead of ``S.One``.
The rule of thumb is:
"If the boolean in question can be replaced by an arbitrary symbolic
``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``.
Otherwise, use ``True``"
In other words, use ``S.true`` only on those contexts where the
boolean is being used as a symbolic representation of truth.
For example, if the object ends up in the ``.args`` of any expression,
then it must necessarily be ``S.true`` instead of ``True``, as
elements of ``.args`` must be ``Basic``. On the other hand,
``==`` is not a symbolic operation in SymPy, since it always returns
``True`` or ``False``, and does so in terms of structural equality
rather than mathematical, so it should return ``True``. The assumptions
system should use ``True`` and ``False``. Aside from not satisfying
the above rule of thumb, the
assumptions system uses a three-valued logic (``True``, ``False``, ``None``),
whereas ``S.true`` and ``S.false`` represent a two-valued logic. When in
doubt, use ``True``.
"``S.true == True is True``."
While "``S.true is True``" is ``False``, "``S.true == True``"
is ``True``, so if there is any doubt over whether a function or
expression will return ``S.true`` or ``True``, just use ``==``
instead of ``is`` to do the comparison, and it will work in either
case. Finally, for boolean flags, it's better to just use ``if x``
instead of ``if x is True``. To quote PEP 8:
Don't compare boolean values to ``True`` or ``False``
using ``==``.
* Yes: ``if greeting:``
* No: ``if greeting == True:``
* Worse: ``if greeting is True:``
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(True)
True
>>> _ is True, _ is true
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanFalse
"""
def __nonzero__(self):
return True
__bool__ = __nonzero__
def __hash__(self):
return hash(True)
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import true
>>> true.as_set()
UniversalSet()
"""
return S.UniversalSet
class BooleanFalse(with_metaclass(Singleton, BooleanAtom)):
"""
SymPy version of False, a singleton that can be accessed via S.false.
This is the SymPy version of False, for use in the logic module. The
primary advantage of using false instead of False is that shorthand boolean
operations like ~ and >> will work as expected on this class, whereas with
False they act bitwise on 0. Functions in the logic module will return this
class when they evaluate to false.
Notes
======
See note in :py:class`sympy.logic.boolalg.BooleanTrue`
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(False)
False
>>> _ is False, _ is false
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for false but a
bitwise result for False
>>> ~false, ~False
(True, -1)
>>> false >> false, False >> False
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanTrue
"""
def __nonzero__(self):
return False
__bool__ = __nonzero__
def __hash__(self):
return hash(False)
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import false
>>> false.as_set()
EmptySet()
"""
return S.EmptySet
true = BooleanTrue()
false = BooleanFalse()
# We want S.true and S.false to work, rather than S.BooleanTrue and
# S.BooleanFalse, but making the class and instance names the same causes some
# major issues (like the inability to import the class directly from this
# file).
S.true = true
S.false = false
converter[bool] = lambda x: S.true if x else S.false
class BooleanFunction(Application, Boolean):
"""Boolean function is a function that lives in a boolean space
It is used as base class for And, Or, Not, etc.
"""
is_Boolean = True
def _eval_simplify(self, ratio, measure, rational, inverse):
rv = self.func(*[a._eval_simplify(ratio=ratio, measure=measure,
rational=rational, inverse=inverse) for a in self.args])
return simplify_logic(rv)
def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False):
return self._eval_simplify(ratio, measure, rational, inverse)
# /// drop when Py2 is no longer supported
def __lt__(self, other):
from sympy.utilities.misc import filldedent
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__ge__ = __lt__
__gt__ = __lt__
# \\\
@classmethod
def binary_check_and_simplify(self, *args):
from sympy.core.relational import Relational, Eq, Ne
args = [as_Boolean(i) for i in args]
bin = set().union(*[i.binary_symbols for i in args])
rel = set().union(*[i.atoms(Relational) for i in args])
reps = {}
for x in bin:
for r in rel:
if x in bin and x in r.free_symbols:
if isinstance(r, (Eq, Ne)):
if not (
S.true in r.args or
S.false in r.args):
reps[r] = S.false
else:
raise TypeError(filldedent('''
Incompatible use of binary symbol `%s` as a
real variable in `%s`
''' % (x, r)))
return [i.subs(reps) for i in args]
def to_nnf(self, simplify=True):
return self._to_nnf(*self.args, simplify=simplify)
@classmethod
def _to_nnf(cls, *args, **kwargs):
simplify = kwargs.get('simplify', True)
argset = set([])
for arg in args:
if not is_literal(arg):
arg = arg.to_nnf(simplify)
if simplify:
if isinstance(arg, cls):
arg = arg.args
else:
arg = (arg,)
for a in arg:
if Not(a) in argset:
return cls.zero
argset.add(a)
else:
argset.add(arg)
return cls(*argset)
# the diff method below is copied from Expr class
def diff(self, *symbols, **assumptions):
assumptions.setdefault("evaluate", True)
return Derivative(self, *symbols, **assumptions)
def _eval_derivative(self, x):
from sympy.core.relational import Eq, Relational
from sympy.functions.elementary.piecewise import Piecewise
if x in self.binary_symbols:
return Piecewise(
(0, Eq(self.subs(x, 0), self.subs(x, 1))),
(1, True))
elif x in self.free_symbols:
# not implemented, see https://www.encyclopediaofmath.org/
# index.php/Boolean_differential_calculus
pass
else:
return S.Zero
class And(LatticeOp, BooleanFunction):
"""
Logical AND function.
It evaluates its arguments in order, giving False immediately
if any of them are False, and True if they are all True.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.abc import x, y
>>> from sympy.logic.boolalg import And
>>> x & y
x & y
Notes
=====
The ``&`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
and. Hence, ``And(a, b)`` and ``a & b`` will return different things if
``a`` and ``b`` are integers.
>>> And(x, y).subs(x, 1)
y
"""
zero = false
identity = true
nargs = None
@classmethod
def _new_args_filter(cls, args):
newargs = []
rel = []
args = BooleanFunction.binary_check_and_simplify(*args)
for x in reversed(args):
if x.is_Relational:
c = x.canonical
if c in rel:
continue
nc = (~c).canonical
if any(r == nc for r in rel):
return [S.false]
rel.append(c)
newargs.append(x)
return LatticeOp._new_args_filter(newargs, And)
def _eval_simplify(self, ratio, measure, rational, inverse):
from sympy.core.relational import Equality, Relational
from sympy.solvers.solveset import linear_coeffs
# standard simplify
rv = super(And, self)._eval_simplify(
ratio, measure, rational, inverse)
if not isinstance(rv, And):
return rv
# simplify args that are equalities involving
# symbols so x == 0 & x == y -> x==0 & y == 0
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True)
if not Rel:
return rv
eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True)
if not eqs:
return rv
reps = {}
sifted = {}
if eqs:
# group by length of free symbols
sifted = sift(ordered([
(i.free_symbols, i) for i in eqs]),
lambda x: len(x[0]))
eqs = []
while 1 in sifted:
for free, e in sifted.pop(1):
x = free.pop()
if e.lhs != x or x in e.rhs.free_symbols:
try:
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
enew = e.func(x, -b/m)
if measure(enew) <= ratio*measure(e):
e = enew
else:
eqs.append(e)
continue
except ValueError:
pass
if x in reps:
eqs.append(e.func(e.rhs, reps[x]))
else:
reps[x] = e.rhs
eqs.append(e)
resifted = defaultdict(list)
for k in sifted:
for f, e in sifted[k]:
e = e.subs(reps)
f = e.free_symbols
resifted[len(f)].append((f, e))
sifted = resifted
for k in sifted:
eqs.extend([e for f, e in sifted[k]])
other = [ei.subs(reps) for ei in other]
rv = rv.func(*([i.canonical for i in (eqs + other)] + nonRel))
return rv
def _eval_as_set(self):
from sympy.sets.sets import Intersection
return Intersection(*[arg.as_set() for arg in self.args])
class Or(LatticeOp, BooleanFunction):
"""
Logical OR function
It evaluates its arguments in order, giving True immediately
if any of them are True, and False if they are all False.
Examples
========
>>> from sympy.core import symbols
>>> from sympy.abc import x, y
>>> from sympy.logic.boolalg import Or
>>> x | y
x | y
Notes
=====
The ``|`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if
``a`` and ``b`` are integers.
>>> Or(x, y).subs(x, 0)
y
"""
zero = true
identity = false
@classmethod
def _new_args_filter(cls, args):
newargs = []
rel = []
args = BooleanFunction.binary_check_and_simplify(*args)
for x in args:
if x.is_Relational:
c = x.canonical
if c in rel:
continue
nc = (~c).canonical
if any(r == nc for r in rel):
return [S.true]
rel.append(c)
newargs.append(x)
return LatticeOp._new_args_filter(newargs, Or)
def _eval_as_set(self):
from sympy.sets.sets import Union
return Union(*[arg.as_set() for arg in self.args])
class Not(BooleanFunction):
"""
Logical Not function (negation)
Returns True if the statement is False
Returns False if the statement is True
Examples
========
>>> from sympy.logic.boolalg import Not, And, Or
>>> from sympy.abc import x, A, B
>>> Not(True)
False
>>> Not(False)
True
>>> Not(And(True, False))
True
>>> Not(Or(True, False))
False
>>> Not(And(And(True, x), Or(x, False)))
~x
>>> ~x
~x
>>> Not(And(Or(A, B), Or(~A, ~B)))
~((A | B) & (~A | ~B))
Notes
=====
- The ``~`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is
an integer. Furthermore, since bools in Python subclass from ``int``,
``~True`` is the same as ``~1`` which is ``-2``, which has a boolean
value of True. To avoid this issue, use the SymPy boolean types
``true`` and ``false``.
>>> from sympy import true
>>> ~True
-2
>>> ~true
False
"""
is_Not = True
@classmethod
def eval(cls, arg):
from sympy import (
Equality, GreaterThan, LessThan,
StrictGreaterThan, StrictLessThan, Unequality)
if isinstance(arg, Number) or arg in (True, False):
return false if arg else true
if arg.is_Not:
return arg.args[0]
# Simplify Relational objects.
if isinstance(arg, Equality):
return Unequality(*arg.args)
if isinstance(arg, Unequality):
return Equality(*arg.args)
if isinstance(arg, StrictLessThan):
return GreaterThan(*arg.args)
if isinstance(arg, StrictGreaterThan):
return LessThan(*arg.args)
if isinstance(arg, LessThan):
return StrictGreaterThan(*arg.args)
if isinstance(arg, GreaterThan):
return StrictLessThan(*arg.args)
def _eval_as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import Not, Symbol
>>> x = Symbol('x')
>>> Not(x > 0).as_set()
Interval(-oo, 0)
"""
return self.args[0].as_set().complement(S.Reals)
def to_nnf(self, simplify=True):
if is_literal(self):
return self
expr = self.args[0]
func, args = expr.func, expr.args
if func == And:
return Or._to_nnf(*[~arg for arg in args], simplify=simplify)
if func == Or:
return And._to_nnf(*[~arg for arg in args], simplify=simplify)
if func == Implies:
a, b = args
return And._to_nnf(a, ~b, simplify=simplify)
if func == Equivalent:
return And._to_nnf(Or(*args), Or(*[~arg for arg in args]), simplify=simplify)
if func == Xor:
result = []
for i in range(1, len(args)+1, 2):
for neg in combinations(args, i):
clause = [~s if s in neg else s for s in args]
result.append(Or(*clause))
return And._to_nnf(*result, simplify=simplify)
if func == ITE:
a, b, c = args
return And._to_nnf(Or(a, ~c), Or(~a, ~b), simplify=simplify)
raise ValueError("Illegal operator %s in expression" % func)
class Xor(BooleanFunction):
"""
Logical XOR (exclusive OR) function.
Returns True if an odd number of the arguments are True and the rest are
False.
Returns False if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xor(True, False)
True
>>> Xor(True, True)
False
>>> Xor(True, False, True, True, False)
True
>>> Xor(True, False, True, False)
False
>>> x ^ y
Xor(x, y)
Notes
=====
The ``^`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise xor. In
particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and
``b`` are integers.
>>> Xor(x, y).subs(y, 0)
x
"""
def __new__(cls, *args, **kwargs):
argset = set([])
obj = super(Xor, cls).__new__(cls, *args, **kwargs)
for arg in obj._args:
if isinstance(arg, Number) or arg in (True, False):
if arg:
arg = true
else:
continue
if isinstance(arg, Xor):
for a in arg.args:
argset.remove(a) if a in argset else argset.add(a)
elif arg in argset:
argset.remove(arg)
else:
argset.add(arg)
rel = [(r, r.canonical, (~r).canonical) for r in argset if r.is_Relational]
odd = False # is number of complimentary pairs odd? start 0 -> False
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
odd = ~odd
break
elif cj == c:
break
else:
continue
remove.append((r, rj))
if odd:
argset.remove(true) if true in argset else argset.add(true)
for a, b in remove:
argset.remove(a)
argset.remove(b)
if len(argset) == 0:
return false
elif len(argset) == 1:
return argset.pop()
elif True in argset:
argset.remove(True)
return Not(Xor(*argset))
else:
obj._args = tuple(ordered(argset))
obj._argset = frozenset(argset)
return obj
@property
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for i in range(0, len(self.args)+1, 2):
for neg in combinations(self.args, i):
clause = [~s if s in neg else s for s in self.args]
args.append(Or(*clause))
return And._to_nnf(*args, simplify=simplify)
class Nand(BooleanFunction):
"""
Logical NAND function.
It evaluates its arguments in order, giving True immediately if any
of them are False, and False if they are all True.
Returns True if any of the arguments are False
Returns False if all arguments are True
Examples
========
>>> from sympy.logic.boolalg import Nand
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nand(False, True)
True
>>> Nand(True, True)
False
>>> Nand(x, y)
~(x & y)
"""
@classmethod
def eval(cls, *args):
return Not(And(*args))
class Nor(BooleanFunction):
"""
Logical NOR function.
It evaluates its arguments in order, giving False immediately if any
of them are True, and True if they are all False.
Returns False if any argument is True
Returns True if all arguments are False
Examples
========
>>> from sympy.logic.boolalg import Nor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nor(True, False)
False
>>> Nor(True, True)
False
>>> Nor(False, True)
False
>>> Nor(False, False)
True
>>> Nor(x, y)
~(x | y)
"""
@classmethod
def eval(cls, *args):
return Not(Or(*args))
class Xnor(BooleanFunction):
"""
Logical XNOR function.
Returns False if an odd number of the arguments are True and the rest are
False.
Returns True if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xnor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xnor(True, False)
False
>>> Xnor(True, True)
True
>>> Xnor(True, False, True, True, False)
False
>>> Xnor(True, False, True, False)
True
"""
@classmethod
def eval(cls, *args):
return Not(Xor(*args))
class Implies(BooleanFunction):
"""
Logical implication.
A implies B is equivalent to !A v B
Accepts two Boolean arguments; A and B.
Returns False if A is True and B is False
Returns True otherwise.
Examples
========
>>> from sympy.logic.boolalg import Implies
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Implies(True, False)
False
>>> Implies(False, False)
True
>>> Implies(True, True)
True
>>> Implies(False, True)
True
>>> x >> y
Implies(x, y)
>>> y << x
Implies(x, y)
Notes
=====
The ``>>`` and ``<<`` operators are provided as a convenience, but note
that their use here is different from their normal use in Python, which is
bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different
things if ``a`` and ``b`` are integers. In particular, since Python
considers ``True`` and ``False`` to be integers, ``True >> True`` will be
the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To
avoid this issue, use the SymPy objects ``true`` and ``false``.
>>> from sympy import true, false
>>> True >> False
1
>>> true >> false
False
"""
@classmethod
def eval(cls, *args):
try:
newargs = []
for x in args:
if isinstance(x, Number) or x in (0, 1):
newargs.append(True if x else False)
else:
newargs.append(x)
A, B = newargs
except ValueError:
raise ValueError(
"%d operand(s) used for an Implies "
"(pairs are required): %s" % (len(args), str(args)))
if A == True or A == False or B == True or B == False:
return Or(Not(A), B)
elif A == B:
return S.true
elif A.is_Relational and B.is_Relational:
if A.canonical == B.canonical:
return S.true
if (~A).canonical == B.canonical:
return B
else:
return Basic.__new__(cls, *args)
def to_nnf(self, simplify=True):
a, b = self.args
return Or._to_nnf(~a, b, simplify=simplify)
class Equivalent(BooleanFunction):
"""
Equivalence relation.
Equivalent(A, B) is True iff A and B are both True or both False
Returns True if all of the arguments are logically equivalent.
Returns False otherwise.
Examples
========
>>> from sympy.logic.boolalg import Equivalent, And
>>> from sympy.abc import x, y
>>> Equivalent(False, False, False)
True
>>> Equivalent(True, False, False)
False
>>> Equivalent(x, And(x, True))
True
"""
def __new__(cls, *args, **options):
from sympy.core.relational import Relational
args = [_sympify(arg) for arg in args]
argset = set(args)
for x in args:
if isinstance(x, Number) or x in [True, False]: # Includes 0, 1
argset.discard(x)
argset.add(True if x else False)
rel = []
for r in argset:
if isinstance(r, Relational):
rel.append((r, r.canonical, (~r).canonical))
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
return false
elif cj == c:
remove.append((r, rj))
break
for a, b in remove:
argset.remove(a)
argset.remove(b)
argset.add(True)
if len(argset) <= 1:
return true
if True in argset:
argset.discard(True)
return And(*argset)
if False in argset:
argset.discard(False)
return And(*[~arg for arg in argset])
_args = frozenset(argset)
obj = super(Equivalent, cls).__new__(cls, _args)
obj._argset = _args
return obj
@property
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for a, b in zip(self.args, self.args[1:]):
args.append(Or(~a, b))
args.append(Or(~self.args[-1], self.args[0]))
return And._to_nnf(*args, simplify=simplify)
class ITE(BooleanFunction):
"""
If then else clause.
ITE(A, B, C) evaluates and returns the result of B if A is true
else it returns the result of C. All args must be Booleans.
Examples
========
>>> from sympy.logic.boolalg import ITE, And, Xor, Or
>>> from sympy.abc import x, y, z
>>> ITE(True, False, True)
False
>>> ITE(Or(True, False), And(True, True), Xor(True, True))
True
>>> ITE(x, y, z)
ITE(x, y, z)
>>> ITE(True, x, y)
x
>>> ITE(False, x, y)
y
>>> ITE(x, y, y)
y
Trying to use non-Boolean args will generate a TypeError:
>>> ITE(True, [], ())
Traceback (most recent call last):
...
TypeError: expecting bool, Boolean or ITE, not `[]`
"""
def __new__(cls, *args, **kwargs):
from sympy.core.relational import Eq, Ne
if len(args) != 3:
raise ValueError('expecting exactly 3 args')
a, b, c = args
# check use of binary symbols
if isinstance(a, (Eq, Ne)):
# in this context, we can evaluate the Eq/Ne
# if one arg is a binary symbol and the other
# is true/false
b, c = map(as_Boolean, (b, c))
bin = set().union(*[i.binary_symbols for i in (b, c)])
if len(set(a.args) - bin) == 1:
# one arg is a binary_symbols
_a = a
if a.lhs is S.true:
a = a.rhs
elif a.rhs is S.true:
a = a.lhs
elif a.lhs is S.false:
a = ~a.rhs
elif a.rhs is S.false:
a = ~a.lhs
else:
# binary can only equal True or False
a = S.false
if isinstance(_a, Ne):
a = ~a
else:
a, b, c = BooleanFunction.binary_check_and_simplify(
a, b, c)
rv = None
if kwargs.get('evaluate', True):
rv = cls.eval(a, b, c)
if rv is None:
rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False)
return rv
@classmethod
def eval(cls, *args):
from sympy.core.relational import Eq, Ne
# do the args give a singular result?
a, b, c = args
if isinstance(a, (Ne, Eq)):
_a = a
if S.true in a.args:
a = a.lhs if a.rhs is S.true else a.rhs
elif S.false in a.args:
a = ~a.lhs if a.rhs is S.false else ~a.rhs
else:
_a = None
if _a is not None and isinstance(_a, Ne):
a = ~a
if a is S.true:
return b
if a is S.false:
return c
if b == c:
return b
else:
# or maybe the results allow the answer to be expressed
# in terms of the condition
if b is S.true and c is S.false:
return a
if b is S.false and c is S.true:
return Not(a)
if [a, b, c] != args:
return cls(a, b, c, evaluate=False)
def to_nnf(self, simplify=True):
a, b, c = self.args
return And._to_nnf(Or(~a, b), Or(a, c), simplify=simplify)
def _eval_as_set(self):
return self.to_nnf().as_set()
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
from sympy.functions import Piecewise
return Piecewise((args[1], args[0]), (args[2], True))
### end class definitions. Some useful methods
def conjuncts(expr):
"""Return a list of the conjuncts in the expr s.
Examples
========
>>> from sympy.logic.boolalg import conjuncts
>>> from sympy.abc import A, B
>>> conjuncts(A & B)
frozenset({A, B})
>>> conjuncts(A | B)
frozenset({A | B})
"""
return And.make_args(expr)
def disjuncts(expr):
"""Return a list of the disjuncts in the sentence s.
Examples
========
>>> from sympy.logic.boolalg import disjuncts
>>> from sympy.abc import A, B
>>> disjuncts(A | B)
frozenset({A, B})
>>> disjuncts(A & B)
frozenset({A & B})
"""
return Or.make_args(expr)
def distribute_and_over_or(expr):
"""
Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
Examples
========
>>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_and_over_or(Or(A, And(Not(B), Not(C))))
(A | ~B) & (A | ~C)
"""
return _distribute((expr, And, Or))
def distribute_or_over_and(expr):
"""
Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in DNF.
Note that the output is NOT simplified.
Examples
========
>>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_or_over_and(And(Or(Not(A), B), C))
(B & C) | (C & ~A)
"""
return _distribute((expr, Or, And))
def _distribute(info):
"""
Distributes info[1] over info[2] with respect to info[0].
"""
if isinstance(info[0], info[2]):
for arg in info[0].args:
if isinstance(arg, info[1]):
conj = arg
break
else:
return info[0]
rest = info[2](*[a for a in info[0].args if a is not conj])
return info[1](*list(map(_distribute,
[(info[2](c, rest), info[1], info[2]) for c in conj.args])))
elif isinstance(info[0], info[1]):
return info[1](*list(map(_distribute,
[(x, info[1], info[2]) for x in info[0].args])))
else:
return info[0]
def to_nnf(expr, simplify=True):
"""
Converts expr to Negation Normal Form.
A logical expression is in Negation Normal Form (NNF) if it
contains only And, Or and Not, and Not is applied only to literals.
If simplify is True, the result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C, D
>>> from sympy.logic.boolalg import Not, Equivalent, to_nnf
>>> to_nnf(Not((~A & ~B) | (C & D)))
(A | B) & (~C | ~D)
>>> to_nnf(Equivalent(A >> B, B >> A))
(A | ~B | (A & ~B)) & (B | ~A | (B & ~A))
"""
if is_nnf(expr, simplify):
return expr
return expr.to_nnf(simplify)
def to_cnf(expr, simplify=False):
"""
Convert a propositional logical sentence s to conjunctive normal form.
That is, of the form ((A | ~B | ...) & (B | C | ...) & ...)
If simplify is True, the expr is evaluated to its simplest CNF form.
Examples
========
>>> from sympy.logic.boolalg import to_cnf
>>> from sympy.abc import A, B, D
>>> to_cnf(~(A | B) | D)
(D | ~A) & (D | ~B)
>>> to_cnf((A | B) & (A | ~A), True)
A | B
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
return simplify_logic(expr, 'cnf', True)
# Don't convert unless we have to
if is_cnf(expr):
return expr
expr = eliminate_implications(expr)
return distribute_and_over_or(expr)
def to_dnf(expr, simplify=False):
"""
Convert a propositional logical sentence s to disjunctive normal form.
That is, of the form ((A & ~B & ...) | (B & C & ...) | ...)
If simplify is True, the expr is evaluated to its simplest DNF form.
Examples
========
>>> from sympy.logic.boolalg import to_dnf
>>> from sympy.abc import A, B, C
>>> to_dnf(B & (A | C))
(A & B) | (B & C)
>>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True)
A | C
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
return simplify_logic(expr, 'dnf', True)
# Don't convert unless we have to
if is_dnf(expr):
return expr
expr = eliminate_implications(expr)
return distribute_or_over_and(expr)
def is_nnf(expr, simplified=True):
"""
Checks if expr is in Negation Normal Form.
A logical expression is in Negation Normal Form (NNF) if it
contains only And, Or and Not, and Not is applied only to literals.
If simpified is True, checks if result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import Not, is_nnf
>>> is_nnf(A & B | ~C)
True
>>> is_nnf((A | ~A) & (B | C))
False
>>> is_nnf((A | ~A) & (B | C), False)
True
>>> is_nnf(Not(A & B) | C)
False
>>> is_nnf((A >> B) & (B >> A))
False
"""
expr = sympify(expr)
if is_literal(expr):
return True
stack = [expr]
while stack:
expr = stack.pop()
if expr.func in (And, Or):
if simplified:
args = expr.args
for arg in args:
if Not(arg) in args:
return False
stack.extend(expr.args)
elif not is_literal(expr):
return False
return True
def is_cnf(expr):
"""
Test whether or not an expression is in conjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_cnf
>>> from sympy.abc import A, B, C
>>> is_cnf(A | B | C)
True
>>> is_cnf(A & B & C)
True
>>> is_cnf((A & B) | C)
False
"""
return _is_form(expr, And, Or)
def is_dnf(expr):
"""
Test whether or not an expression is in disjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_dnf
>>> from sympy.abc import A, B, C
>>> is_dnf(A | B | C)
True
>>> is_dnf(A & B & C)
True
>>> is_dnf((A & B) | C)
True
>>> is_dnf(A & (B | C))
False
"""
return _is_form(expr, Or, And)
def _is_form(expr, function1, function2):
"""
Test whether or not an expression is of the required form.
"""
expr = sympify(expr)
# Special case of an Atom
if expr.is_Atom:
return True
# Special case of a single expression of function2
if isinstance(expr, function2):
for lit in expr.args:
if isinstance(lit, Not):
if not lit.args[0].is_Atom:
return False
else:
if not lit.is_Atom:
return False
return True
# Special case of a single negation
if isinstance(expr, Not):
if not expr.args[0].is_Atom:
return False
if not isinstance(expr, function1):
return False
for cls in expr.args:
if cls.is_Atom:
continue
if isinstance(cls, Not):
if not cls.args[0].is_Atom:
return False
elif not isinstance(cls, function2):
return False
for lit in cls.args:
if isinstance(lit, Not):
if not lit.args[0].is_Atom:
return False
else:
if not lit.is_Atom:
return False
return True
def eliminate_implications(expr):
"""
Change >>, <<, and Equivalent into &, |, and ~. That is, return an
expression that is equivalent to s, but has only &, |, and ~ as logical
operators.
Examples
========
>>> from sympy.logic.boolalg import Implies, Equivalent, \
eliminate_implications
>>> from sympy.abc import A, B, C
>>> eliminate_implications(Implies(A, B))
B | ~A
>>> eliminate_implications(Equivalent(A, B))
(A | ~B) & (B | ~A)
>>> eliminate_implications(Equivalent(A, B, C))
(A | ~C) & (B | ~A) & (C | ~B)
"""
return to_nnf(expr, simplify=False)
def is_literal(expr):
"""
Returns True if expr is a literal, else False.
Examples
========
>>> from sympy import Or, Q
>>> from sympy.abc import A, B
>>> from sympy.logic.boolalg import is_literal
>>> is_literal(A)
True
>>> is_literal(~A)
True
>>> is_literal(Q.zero(A))
True
>>> is_literal(A + B)
True
>>> is_literal(Or(A, B))
False
"""
if isinstance(expr, Not):
return not isinstance(expr.args[0], BooleanFunction)
else:
return not isinstance(expr, BooleanFunction)
def to_int_repr(clauses, symbols):
"""
Takes clauses in CNF format and puts them into an integer representation.
Examples
========
>>> from sympy.logic.boolalg import to_int_repr
>>> from sympy.abc import x, y
>>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}]
True
"""
# Convert the symbol list into a dict
symbols = dict(list(zip(symbols, list(range(1, len(symbols) + 1)))))
def append_symbol(arg, symbols):
if isinstance(arg, Not):
return -symbols[arg.args[0]]
else:
return symbols[arg]
return [set(append_symbol(arg, symbols) for arg in Or.make_args(c))
for c in clauses]
def term_to_integer(term):
"""
Return an integer corresponding to the base-2 digits given by ``term``.
Parameters
==========
term : a string or list of ones and zeros
Examples
========
>>> from sympy.logic.boolalg import term_to_integer
>>> term_to_integer([1, 0, 0])
4
>>> term_to_integer('100')
4
"""
return int(''.join(list(map(str, list(term)))), 2)
def integer_to_term(k, n_bits=None):
"""
Return a list of the base-2 digits in the integer, ``k``.
Parameters
==========
k : int
n_bits : int
If ``n_bits`` is given and the number of digits in the binary
representation of ``k`` is smaller than ``n_bits`` then left-pad the
list with 0s.
Examples
========
>>> from sympy.logic.boolalg import integer_to_term
>>> integer_to_term(4)
[1, 0, 0]
>>> integer_to_term(4, 6)
[0, 0, 0, 1, 0, 0]
"""
s = '{0:0{1}b}'.format(abs(as_int(k)), as_int(abs(n_bits or 0)))
return list(map(int, s))
def truth_table(expr, variables, input=True):
"""
Return a generator of all possible configurations of the input variables,
and the result of the boolean expression for those values.
Parameters
==========
expr : string or boolean expression
variables : list of variables
input : boolean (default True)
indicates whether to return the input combinations.
Examples
========
>>> from sympy.logic.boolalg import truth_table
>>> from sympy.abc import x,y
>>> table = truth_table(x >> y, [x, y])
>>> for t in table:
... print('{0} -> {1}'.format(*t))
[0, 0] -> True
[0, 1] -> True
[1, 0] -> False
[1, 1] -> True
>>> table = truth_table(x | y, [x, y])
>>> list(table)
[([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)]
If input is false, truth_table returns only a list of truth values.
In this case, the corresponding input values of variables can be
deduced from the index of a given output.
>>> from sympy.logic.boolalg import integer_to_term
>>> vars = [y, x]
>>> values = truth_table(x >> y, vars, input=False)
>>> values = list(values)
>>> values
[True, False, True, True]
>>> for i, value in enumerate(values):
... print('{0} -> {1}'.format(list(zip(
... vars, integer_to_term(i, len(vars)))), value))
[(y, 0), (x, 0)] -> True
[(y, 0), (x, 1)] -> False
[(y, 1), (x, 0)] -> True
[(y, 1), (x, 1)] -> True
"""
variables = [sympify(v) for v in variables]
expr = sympify(expr)
if not isinstance(expr, BooleanFunction) and not is_literal(expr):
return
table = product([0, 1], repeat=len(variables))
for term in table:
term = list(term)
value = expr.xreplace(dict(zip(variables, term)))
if input:
yield term, value
else:
yield value
def _check_pair(minterm1, minterm2):
"""
Checks if a pair of minterms differs by only one bit. If yes, returns
index, else returns -1.
"""
index = -1
for x, (i, j) in enumerate(zip(minterm1, minterm2)):
if i != j:
if index == -1:
index = x
else:
return -1
return index
def _convert_to_varsSOP(minterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for SOP).
"""
temp = []
for i, m in enumerate(minterm):
if m == 0:
temp.append(Not(variables[i]))
elif m == 1:
temp.append(variables[i])
else:
pass # ignore the 3s
return And(*temp)
def _convert_to_varsPOS(maxterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for POS).
"""
temp = []
for i, m in enumerate(maxterm):
if m == 1:
temp.append(Not(variables[i]))
elif m == 0:
temp.append(variables[i])
else:
pass # ignore the 3s
return Or(*temp)
def _simplified_pairs(terms):
"""
Reduces a set of minterms, if possible, to a simplified set of minterms
with one less variable in the terms using QM method.
"""
simplified_terms = []
todo = list(range(len(terms)))
for i, ti in enumerate(terms[:-1]):
for j_i, tj in enumerate(terms[(i + 1):]):
index = _check_pair(ti, tj)
if index != -1:
todo[i] = todo[j_i + i + 1] = None
newterm = ti[:]
newterm[index] = 3
if newterm not in simplified_terms:
simplified_terms.append(newterm)
simplified_terms.extend(
[terms[i] for i in [_ for _ in todo if _ is not None]])
return simplified_terms
def _compare_term(minterm, term):
"""
Return True if a binary term is satisfied by the given term. Used
for recognizing prime implicants.
"""
for i, x in enumerate(term):
if x != 3 and x != minterm[i]:
return False
return True
def _rem_redundancy(l1, terms):
"""
After the truth table has been sufficiently simplified, use the prime
implicant table method to recognize and eliminate redundant pairs,
and return the essential arguments.
"""
essential = []
for x in terms:
temporary = []
for y in l1:
if _compare_term(x, y):
temporary.append(y)
if len(temporary) == 1:
if temporary[0] not in essential:
essential.append(temporary[0])
for x in terms:
for y in essential:
if _compare_term(x, y):
break
else:
for z in l1:
if _compare_term(x, z):
if z not in essential:
essential.append(z)
break
return essential
def SOPform(variables, minterms, dontcares=None):
"""
The SOPform function uses simplified_pairs and a redundant group-
eliminating algorithm to convert the list of all input combos that
generate '1' (the minterms) into the smallest Sum of Products form.
The variables must be given as the first argument.
Return a logical Or function (i.e., the "sum of products" or "SOP"
form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import SOPform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1],
... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (z & ~w)
References
==========
.. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm
"""
variables = [sympify(v) for v in variables]
if minterms == []:
return false
minterms = [list(i) for i in minterms]
dontcares = [list(i) for i in (dontcares or [])]
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
old = None
new = minterms + dontcares
while new != old:
old = new
new = _simplified_pairs(old)
essential = _rem_redundancy(new, minterms)
return Or(*[_convert_to_varsSOP(x, variables) for x in essential])
def POSform(variables, minterms, dontcares=None):
"""
The POSform function uses simplified_pairs and a redundant-group
eliminating algorithm to convert the list of all input combinations
that generate '1' (the minterms) into the smallest Product of Sums form.
The variables must be given as the first argument.
Return a logical And function (i.e., the "product of sums" or "POS"
form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import POSform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
... [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
References
==========
.. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm
"""
variables = [sympify(v) for v in variables]
if minterms == []:
return false
minterms = [list(i) for i in minterms]
dontcares = [list(i) for i in (dontcares or [])]
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
maxterms = []
for t in product([0, 1], repeat=len(variables)):
t = list(t)
if (t not in minterms) and (t not in dontcares):
maxterms.append(t)
old = None
new = maxterms + dontcares
while new != old:
old = new
new = _simplified_pairs(old)
essential = _rem_redundancy(new, maxterms)
return And(*[_convert_to_varsPOS(x, variables) for x in essential])
def _find_predicates(expr):
"""Helper to find logical predicates in BooleanFunctions.
A logical predicate is defined here as anything within a BooleanFunction
that is not a BooleanFunction itself.
"""
if not isinstance(expr, BooleanFunction):
return {expr}
return set().union(*(_find_predicates(i) for i in expr.args))
def simplify_logic(expr, form=None, deep=True):
"""
This function simplifies a boolean function to its simplified version
in SOP or POS form. The return type is an Or or And object in SymPy.
Parameters
==========
expr : string or boolean expression
form : string ('cnf' or 'dnf') or None (default).
If 'cnf' or 'dnf', the simplest expression in the corresponding
normal form is returned; if None, the answer is returned
according to the form with fewest args (in CNF by default).
deep : boolean (default True)
indicates whether to recursively simplify any
non-boolean functions contained within the input.
Examples
========
>>> from sympy.logic import simplify_logic
>>> from sympy.abc import x, y, z
>>> from sympy import S
>>> b = (~x & ~y & ~z) | ( ~x & ~y & z)
>>> simplify_logic(b)
~x & ~y
>>> S(b)
(z & ~x & ~y) | (~x & ~y & ~z)
>>> simplify_logic(_)
~x & ~y
"""
if form not in (None, 'cnf', 'dnf'):
raise ValueError("form can be cnf or dnf only")
expr = sympify(expr)
if deep:
variables = _find_predicates(expr)
from sympy.simplify.simplify import simplify
s = [simplify(v) for v in variables]
expr = expr.xreplace(dict(zip(variables, s)))
if not isinstance(expr, BooleanFunction):
return expr
# get variables in case not deep or after doing
# deep simplification since they may have changed
variables = _find_predicates(expr)
truthtable = []
for t in product([0, 1], repeat=len(variables)):
t = list(t)
if expr.xreplace(dict(zip(variables, t))) == True:
truthtable.append(t)
big = len(truthtable) >= (2 ** (len(variables) - 1))
if form == 'dnf' or form is None and big:
return SOPform(variables, truthtable)
return POSform(variables, truthtable)
def _finger(eq):
"""
Assign a 5-item fingerprint to each symbol in the equation:
[
# of times it appeared as a Symbol,
# of times it appeared as a Not(symbol),
# of times it appeared as a Symbol in an And or Or,
# of times it appeared as a Not(Symbol) in an And or Or,
sum of the number of arguments with which it appeared
as a Symbol, counting Symbol as 1 and Not(Symbol) as 2
and counting self as 1
]
>>> from sympy.logic.boolalg import _finger as finger
>>> from sympy import And, Or, Not
>>> from sympy.abc import a, b, x, y
>>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y))
>>> dict(finger(eq))
{(0, 0, 1, 0, 2): [x], (0, 0, 1, 0, 3): [a, b], (0, 0, 1, 2, 2): [y]}
>>> dict(finger(x & ~y))
{(0, 1, 0, 0, 0): [y], (1, 0, 0, 0, 0): [x]}
The equation must not have more than one level of nesting:
>>> dict(finger(And(Or(x, y), y)))
{(0, 0, 1, 0, 2): [x], (1, 0, 1, 0, 2): [y]}
>>> dict(finger(And(Or(x, And(a, x)), y)))
Traceback (most recent call last):
...
NotImplementedError: unexpected level of nesting
So y and x have unique fingerprints, but a and b do not.
"""
f = eq.free_symbols
d = dict(list(zip(f, [[0] * 5 for fi in f])))
for a in eq.args:
if a.is_Symbol:
d[a][0] += 1
elif a.is_Not:
d[a.args[0]][1] += 1
else:
o = len(a.args) + sum(isinstance(ai, Not) for ai in a.args)
for ai in a.args:
if ai.is_Symbol:
d[ai][2] += 1
d[ai][-1] += o
elif ai.is_Not:
d[ai.args[0]][3] += 1
else:
raise NotImplementedError('unexpected level of nesting')
inv = defaultdict(list)
for k, v in ordered(iter(d.items())):
inv[tuple(v)].append(k)
return inv
def bool_map(bool1, bool2):
"""
Return the simplified version of bool1, and the mapping of variables
that makes the two expressions bool1 and bool2 represent the same
logical behaviour for some correspondence between the variables
of each.
If more than one mappings of this sort exist, one of them
is returned.
For example, And(x, y) is logically equivalent to And(a, b) for
the mapping {x: a, y:b} or {x: b, y:a}.
If no such mapping exists, return False.
Examples
========
>>> from sympy import SOPform, bool_map, Or, And, Not, Xor
>>> from sympy.abc import w, x, y, z, a, b, c, d
>>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]])
>>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]])
>>> bool_map(function1, function2)
(y & ~z, {y: a, z: b})
The results are not necessarily unique, but they are canonical. Here,
``(w, z)`` could be ``(a, d)`` or ``(d, a)``:
>>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y))
>>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c))
>>> bool_map(eq, eq2)
((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d})
>>> eq = And(Xor(a, b), c, And(c,d))
>>> bool_map(eq, eq.subs(c, x))
(c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x})
"""
def match(function1, function2):
"""Return the mapping that equates variables between two
simplified boolean expressions if possible.
By "simplified" we mean that a function has been denested
and is either an And (or an Or) whose arguments are either
symbols (x), negated symbols (Not(x)), or Or (or an And) whose
arguments are only symbols or negated symbols. For example,
And(x, Not(y), Or(w, Not(z))).
Basic.match is not robust enough (see issue 4835) so this is
a workaround that is valid for simplified boolean expressions
"""
# do some quick checks
if function1.__class__ != function2.__class__:
return None # maybe simplification would make them the same
if len(function1.args) != len(function2.args):
return None # maybe simplification would make them the same
if function1.is_Symbol:
return {function1: function2}
# get the fingerprint dictionaries
f1 = _finger(function1)
f2 = _finger(function2)
# more quick checks
if len(f1) != len(f2):
return False
# assemble the match dictionary if possible
matchdict = {}
for k in f1.keys():
if k not in f2:
return False
if len(f1[k]) != len(f2[k]):
return False
for i, x in enumerate(f1[k]):
matchdict[x] = f2[k][i]
return matchdict
a = simplify_logic(bool1)
b = simplify_logic(bool2)
m = match(a, b)
if m:
return a, m
return m
|
7294c377f5b91102f7f2769d3f43082748700c7bd9fd1286b8a03a6f0390316d
|
"""Inference in propositional logic"""
from __future__ import print_function, division
from sympy.logic.boolalg import And, Not, conjuncts, to_cnf
from sympy.core.compatibility import ordered
from sympy.core.sympify import sympify
def literal_symbol(literal):
"""
The symbol in this literal (without the negation).
Examples
========
>>> from sympy.abc import A
>>> from sympy.logic.inference import literal_symbol
>>> literal_symbol(A)
A
>>> literal_symbol(~A)
A
"""
if literal is True or literal is False:
return literal
try:
if literal.is_Symbol:
return literal
if literal.is_Not:
return literal_symbol(literal.args[0])
else:
raise ValueError
except (AttributeError, ValueError):
raise ValueError("Argument must be a boolean literal.")
def satisfiable(expr, algorithm="dpll2", all_models=False):
"""
Check satisfiability of a propositional sentence.
Returns a model when it succeeds.
Returns {true: true} for trivially true expressions.
On setting all_models to True, if given expr is satisfiable then
returns a generator of models. However, if expr is unsatisfiable
then returns a generator containing the single element False.
Examples
========
>>> from sympy.abc import A, B
>>> from sympy.logic.inference import satisfiable
>>> satisfiable(A & ~B)
{A: True, B: False}
>>> satisfiable(A & ~A)
False
>>> satisfiable(True)
{True: True}
>>> next(satisfiable(A & ~A, all_models=True))
False
>>> models = satisfiable((A >> B) & B, all_models=True)
>>> next(models)
{A: False, B: True}
>>> next(models)
{A: True, B: True}
>>> def use_models(models):
... for model in models:
... if model:
... # Do something with the model.
... print(model)
... else:
... # Given expr is unsatisfiable.
... print("UNSAT")
>>> use_models(satisfiable(A >> ~A, all_models=True))
{A: False}
>>> use_models(satisfiable(A ^ A, all_models=True))
UNSAT
"""
expr = to_cnf(expr)
if algorithm == "dpll":
from sympy.logic.algorithms.dpll import dpll_satisfiable
return dpll_satisfiable(expr)
elif algorithm == "dpll2":
from sympy.logic.algorithms.dpll2 import dpll_satisfiable
return dpll_satisfiable(expr, all_models)
raise NotImplementedError
def valid(expr):
"""
Check validity of a propositional sentence.
A valid propositional sentence is True under every assignment.
Examples
========
>>> from sympy.abc import A, B
>>> from sympy.logic.inference import valid
>>> valid(A | ~A)
True
>>> valid(A | B)
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Validity
"""
return not satisfiable(Not(expr))
def pl_true(expr, model={}, deep=False):
"""
Returns whether the given assignment is a model or not.
If the assignment does not specify the value for every proposition,
this may return None to indicate 'not obvious'.
Parameters
==========
model : dict, optional, default: {}
Mapping of symbols to boolean values to indicate assignment.
deep: boolean, optional, default: False
Gives the value of the expression under partial assignments
correctly. May still return None to indicate 'not obvious'.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.inference import pl_true
>>> pl_true( A & B, {A: True, B: True})
True
>>> pl_true(A & B, {A: False})
False
>>> pl_true(A & B, {A: True})
>>> pl_true(A & B, {A: True}, deep=True)
>>> pl_true(A >> (B >> A))
>>> pl_true(A >> (B >> A), deep=True)
True
>>> pl_true(A & ~A)
>>> pl_true(A & ~A, deep=True)
False
>>> pl_true(A & B & (~A | ~B), {A: True})
>>> pl_true(A & B & (~A | ~B), {A: True}, deep=True)
False
"""
from sympy.core.symbol import Symbol
from sympy.logic.boolalg import BooleanFunction
boolean = (True, False)
def _validate(expr):
if isinstance(expr, Symbol) or expr in boolean:
return True
if not isinstance(expr, BooleanFunction):
return False
return all(_validate(arg) for arg in expr.args)
if expr in boolean:
return expr
expr = sympify(expr)
if not _validate(expr):
raise ValueError("%s is not a valid boolean expression" % expr)
model = dict((k, v) for k, v in model.items() if v in boolean)
result = expr.subs(model)
if result in boolean:
return bool(result)
if deep:
model = dict((k, True) for k in result.atoms())
if pl_true(result, model):
if valid(result):
return True
else:
if not satisfiable(result):
return False
return None
def entails(expr, formula_set={}):
"""
Check whether the given expr_set entail an expr.
If formula_set is empty then it returns the validity of expr.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.inference import entails
>>> entails(A, [A >> B, B >> C])
False
>>> entails(C, [A >> B, B >> C, A])
True
>>> entails(A >> B)
False
>>> entails(A >> (B >> A))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Logical_consequence
"""
formula_set = list(formula_set)
formula_set.append(Not(expr))
return not satisfiable(And(*formula_set))
class KB(object):
"""Base class for all knowledge bases"""
def __init__(self, sentence=None):
self.clauses_ = set()
if sentence:
self.tell(sentence)
def tell(self, sentence):
raise NotImplementedError
def ask(self, query):
raise NotImplementedError
def retract(self, sentence):
raise NotImplementedError
@property
def clauses(self):
return list(ordered(self.clauses_))
class PropKB(KB):
"""A KB for Propositional Logic. Inefficient, with no indexing."""
def tell(self, sentence):
"""Add the sentence's clauses to the KB
Examples
========
>>> from sympy.logic.inference import PropKB
>>> from sympy.abc import x, y
>>> l = PropKB()
>>> l.clauses
[]
>>> l.tell(x | y)
>>> l.clauses
[x | y]
>>> l.tell(y)
>>> l.clauses
[y, x | y]
"""
for c in conjuncts(to_cnf(sentence)):
self.clauses_.add(c)
def ask(self, query):
"""Checks if the query is true given the set of clauses.
Examples
========
>>> from sympy.logic.inference import PropKB
>>> from sympy.abc import x, y
>>> l = PropKB()
>>> l.tell(x & ~y)
>>> l.ask(x)
True
>>> l.ask(y)
False
"""
return entails(query, self.clauses_)
def retract(self, sentence):
"""Remove the sentence's clauses from the KB
Examples
========
>>> from sympy.logic.inference import PropKB
>>> from sympy.abc import x, y
>>> l = PropKB()
>>> l.clauses
[]
>>> l.tell(x | y)
>>> l.clauses
[x | y]
>>> l.retract(x | y)
>>> l.clauses
[]
"""
for c in conjuncts(to_cnf(sentence)):
self.clauses_.discard(c)
|
a340d4a8f6fe7cad38b7d33cd1c5337c4bd03855eddc5ceb4d9cee550b6ce65b
|
from __future__ import print_function, division
import random
from sympy import Derivative
from sympy.core import SympifyError
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.compatibility import is_sequence, as_int, range, reduce
from sympy.core.function import count_ops, expand_mul
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.simplify import simplify as _simplify
from sympy.utilities.misc import filldedent
from sympy.utilities.decorator import doctest_depends_on
from sympy.matrices.matrices import MatrixBase, ShapeError
from sympy.matrices.common import a2idx, classof
def _iszero(x):
"""Returns True if x is zero."""
return x.is_zero
def _compare_sequence(a, b):
"""Compares the elements of a list/tuple `a`
and a list/tuple `b`. `_compare_sequence((1,2), [1, 2])`
is True, whereas `(1,2) == [1, 2]` is False"""
if type(a) is type(b):
# if they are the same type, compare directly
return a == b
# there is no overhead for calling `tuple` on a
# tuple
return tuple(a) == tuple(b)
class DenseMatrix(MatrixBase):
is_MatrixExpr = False
_op_priority = 10.01
_class_priority = 4
def __eq__(self, other):
try:
other = sympify(other)
if self.shape != other.shape:
return False
if isinstance(other, Matrix):
return _compare_sequence(self._mat, other._mat)
elif isinstance(other, MatrixBase):
return _compare_sequence(self._mat, Matrix(other)._mat)
except AttributeError:
return False
def __getitem__(self, key):
"""Return portion of self defined by key. If the key involves a slice
then a list will be returned (if key is a single slice) or a matrix
(if key was a tuple involving a slice).
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix([
... [1, 2 + I],
... [3, 4 ]])
If the key is a tuple that doesn't involve a slice then that element
is returned:
>>> m[1, 0]
3
When a tuple key involves a slice, a matrix is returned. Here, the
first column is selected (all rows, column 0):
>>> m[:, 0]
Matrix([
[1],
[3]])
If the slice is not a tuple then it selects from the underlying
list of elements that are arranged in row order and a list is
returned if a slice is involved:
>>> m[0]
1
>>> m[::2]
[1, 3]
"""
if isinstance(key, tuple):
i, j = key
try:
i, j = self.key2ij(key)
return self._mat[i*self.cols + j]
except (TypeError, IndexError):
if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number):
if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\
((i < 0) is True) or ((i >= self.shape[0]) is True):
raise ValueError("index out of boundary")
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
if isinstance(i, slice):
# XXX remove list() when PY2 support is dropped
i = list(range(self.rows))[i]
elif is_sequence(i):
pass
else:
i = [i]
if isinstance(j, slice):
# XXX remove list() when PY2 support is dropped
j = list(range(self.cols))[j]
elif is_sequence(j):
pass
else:
j = [j]
return self.extract(i, j)
else:
# row-wise decomposition of matrix
if isinstance(key, slice):
return self._mat[key]
return self._mat[a2idx(key)]
def __setitem__(self, key, value):
raise NotImplementedError()
def _cholesky(self, hermitian=True):
"""Helper function of cholesky.
Without the error checks.
To be used privately.
Implements the Cholesky-Banachiewicz algorithm.
Returns L such that L*L.H == self if hermitian flag is True,
or L*L.T == self if hermitian is False.
"""
L = zeros(self.rows, self.rows)
if hermitian:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / L[j, j])*expand_mul(self[i, j] -
sum(L[i, k]*L[j, k].conjugate() for k in range(j)))
Lii2 = expand_mul(self[i, i] -
sum(L[i, k]*L[i, k].conjugate() for k in range(i)))
if Lii2.is_positive is False:
raise ValueError("Matrix must be positive-definite")
L[i, i] = sqrt(Lii2)
else:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / L[j, j])*(self[i, j] -
sum(L[i, k]*L[j, k] for k in range(j)))
L[i, i] = sqrt(self[i, i] -
sum(L[i, k]**2 for k in range(i)))
return self._new(L)
def _diagonal_solve(self, rhs):
"""Helper function of function diagonal_solve,
without the error checks, to be used privately.
"""
return self._new(rhs.rows, rhs.cols, lambda i, j: rhs[i, j] / self[i, i])
def _eval_add(self, other):
# we assume both arguments are dense matrices since
# sparse matrices have a higher priority
mat = [a + b for a,b in zip(self._mat, other._mat)]
return classof(self, other)._new(self.rows, self.cols, mat, copy=False)
def _eval_extract(self, rowsList, colsList):
mat = self._mat
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices), copy=False)
def _eval_matrix_mul(self, other):
from sympy import Add
# cache attributes for faster access
self_rows, self_cols = self.rows, self.cols
other_rows, other_cols = other.rows, other.cols
other_len = other_rows * other_cols
new_mat_rows = self.rows
new_mat_cols = other.cols
# preallocate the array
new_mat = [S.Zero]*new_mat_rows*new_mat_cols
# if we multiply an n x 0 with a 0 x m, the
# expected behavior is to produce an n x m matrix of zeros
if self.cols != 0 and other.rows != 0:
# cache self._mat and other._mat for performance
mat = self._mat
other_mat = other._mat
for i in range(len(new_mat)):
row, col = i // new_mat_cols, i % new_mat_cols
row_indices = range(self_cols*row, self_cols*(row+1))
col_indices = range(col, other_len, other_cols)
vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices))
try:
new_mat[i] = Add(*vec)
except (TypeError, SympifyError):
# Block matrices don't work with `sum` or `Add` (ISSUE #11599)
# They don't work with `sum` because `sum` tries to add `0`
# initially, and for a matrix, that is a mix of a scalar and
# a matrix, which raises a TypeError. Fall back to a
# block-matrix-safe way to multiply if the `sum` fails.
vec = (mat[a]*other_mat[b] for a,b in zip(row_indices, col_indices))
new_mat[i] = reduce(lambda a,b: a + b, vec)
return classof(self, other)._new(new_mat_rows, new_mat_cols, new_mat, copy=False)
def _eval_matrix_mul_elementwise(self, other):
mat = [a*b for a,b in zip(self._mat, other._mat)]
return classof(self, other)._new(self.rows, self.cols, mat, copy=False)
def _eval_inverse(self, **kwargs):
"""Return the matrix inverse using the method indicated (default
is Gauss elimination).
kwargs
======
method : ('GE', 'LU', or 'ADJ')
iszerofunc
try_block_diag
Notes
=====
According to the ``method`` keyword, it calls the appropriate method:
GE .... inverse_GE(); default
LU .... inverse_LU()
ADJ ... inverse_ADJ()
According to the ``try_block_diag`` keyword, it will try to form block
diagonal matrices using the method get_diag_blocks(), invert these
individually, and then reconstruct the full inverse matrix.
Note, the GE and LU methods may require the matrix to be simplified
before it is inverted in order to properly detect zeros during
pivoting. In difficult cases a custom zero detection function can
be provided by setting the ``iszerosfunc`` argument to a function that
should return True if its argument is zero. The ADJ routine computes
the determinant and uses that to detect singular matrices in addition
to testing for zeros on the diagonal.
See Also
========
inverse_LU
inverse_GE
inverse_ADJ
"""
from sympy.matrices import diag
method = kwargs.get('method', 'GE')
iszerofunc = kwargs.get('iszerofunc', _iszero)
if kwargs.get('try_block_diag', False):
blocks = self.get_diag_blocks()
r = []
for block in blocks:
r.append(block.inv(method=method, iszerofunc=iszerofunc))
return diag(*r)
M = self.as_mutable()
if method == "GE":
rv = M.inverse_GE(iszerofunc=iszerofunc)
elif method == "LU":
rv = M.inverse_LU(iszerofunc=iszerofunc)
elif method == "ADJ":
rv = M.inverse_ADJ(iszerofunc=iszerofunc)
else:
# make sure to add an invertibility check (as in inverse_LU)
# if a new method is added.
raise ValueError("Inversion method unrecognized")
return self._new(rv)
def _eval_scalar_mul(self, other):
mat = [other*a for a in self._mat]
return self._new(self.rows, self.cols, mat, copy=False)
def _eval_scalar_rmul(self, other):
mat = [a*other for a in self._mat]
return self._new(self.rows, self.cols, mat, copy=False)
def _eval_tolist(self):
mat = list(self._mat)
cols = self.cols
return [mat[i*cols:(i + 1)*cols] for i in range(self.rows)]
def _LDLdecomposition(self, hermitian=True):
"""Helper function of LDLdecomposition.
Without the error checks.
To be used privately.
Returns L and D such that L*D*L.H == self if hermitian flag is True,
or L*D*L.T == self if hermitian is False.
"""
# https://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition_2
D = zeros(self.rows, self.rows)
L = eye(self.rows)
if hermitian:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / D[j, j])*expand_mul(self[i, j] - sum(
L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j)))
D[i, i] = expand_mul(self[i, i] -
sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i)))
if D[i, i].is_positive is False:
raise ValueError("Matrix must be positive-definite")
else:
for i in range(self.rows):
for j in range(i):
L[i, j] = (1 / D[j, j])*(self[i, j] - sum(
L[i, k]*L[j, k]*D[k, k] for k in range(j)))
D[i, i] = self[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i))
return self._new(L), self._new(D)
def _lower_triangular_solve(self, rhs):
"""Helper function of function lower_triangular_solve.
Without the error checks.
To be used privately.
"""
X = zeros(self.rows, rhs.cols)
for j in range(rhs.cols):
for i in range(self.rows):
if self[i, i] == 0:
raise TypeError("Matrix must be non-singular.")
X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j]
for k in range(i))) / self[i, i]
return self._new(X)
def _upper_triangular_solve(self, rhs):
"""Helper function of function upper_triangular_solve.
Without the error checks, to be used privately. """
X = zeros(self.rows, rhs.cols)
for j in range(rhs.cols):
for i in reversed(range(self.rows)):
if self[i, i] == 0:
raise ValueError("Matrix must be non-singular.")
X[i, j] = (rhs[i, j] - sum(self[i, k]*X[k, j]
for k in range(i + 1, self.rows))) / self[i, i]
return self._new(X)
def as_immutable(self):
"""Returns an Immutable version of this Matrix
"""
from .immutable import ImmutableDenseMatrix as cls
if self.rows and self.cols:
return cls._new(self.tolist())
return cls._new(self.rows, self.cols, [])
def as_mutable(self):
"""Returns a mutable version of this matrix
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return Matrix(self)
def equals(self, other, failing_expression=False):
"""Applies ``equals`` to corresponding elements of the matrices,
trying to prove that the elements are equivalent, returning True
if they are, False if any pair is not, and None (or the first
failing expression if failing_expression is True) if it cannot
be decided if the expressions are equivalent or not. This is, in
general, an expensive operation.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x
>>> from sympy import cos
>>> A = Matrix([x*(x - 1), 0])
>>> B = Matrix([x**2 - x, 0])
>>> A == B
False
>>> A.simplify() == B.simplify()
True
>>> A.equals(B)
True
>>> A.equals(2)
False
See Also
========
sympy.core.expr.equals
"""
try:
if self.shape != other.shape:
return False
rv = True
for i in range(self.rows):
for j in range(self.cols):
ans = self[i, j].equals(other[i, j], failing_expression)
if ans is False:
return False
elif ans is not True and rv is True:
rv = ans
return rv
except AttributeError:
return False
def _force_mutable(x):
"""Return a matrix as a Matrix, otherwise return x."""
if getattr(x, 'is_Matrix', False):
return x.as_mutable()
elif isinstance(x, Basic):
return x
elif hasattr(x, '__array__'):
a = x.__array__()
if len(a.shape) == 0:
return sympify(a)
return Matrix(x)
return x
class MutableDenseMatrix(DenseMatrix, MatrixBase):
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
@classmethod
def _new(cls, *args, **kwargs):
# if the `copy` flag is set to False, the input
# was rows, cols, [list]. It should be used directly
# without creating a copy.
if kwargs.get('copy', True) is False:
if len(args) != 3:
raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
rows, cols, flat_list = args
else:
rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
flat_list = list(flat_list) # create a shallow copy
self = object.__new__(cls)
self.rows = rows
self.cols = cols
self._mat = flat_list
return self
def __setitem__(self, key, value):
"""
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
rv = self._setitem(key, value)
if rv is not None:
i, j, value = rv
self._mat[i*self.cols + j] = value
def as_mutable(self):
return self.copy()
def col_del(self, i):
"""Delete the given column.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.col_del(1)
>>> M
Matrix([
[1, 0],
[0, 0],
[0, 1]])
See Also
========
col
row_del
"""
if i < -self.cols or i >= self.cols:
raise IndexError("Index out of range: 'i=%s', valid -%s <= i < %s"
% (i, self.cols, self.cols))
for j in range(self.rows - 1, -1, -1):
del self._mat[i + j*self.cols]
self.cols -= 1
def col_op(self, j, f):
"""In-place operation on col j using two-arg functor whose args are
interpreted as (self[i, j], i).
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
Matrix([
[1, 2, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
col
row_op
"""
self._mat[j::self.cols] = [f(*t) for t in list(zip(self._mat[j::self.cols], list(range(self.rows))))]
def col_swap(self, i, j):
"""Swap the two given columns of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[1, 0], [1, 0]])
>>> M
Matrix([
[1, 0],
[1, 0]])
>>> M.col_swap(0, 1)
>>> M
Matrix([
[0, 1],
[0, 1]])
See Also
========
col
row_swap
"""
for k in range(0, self.rows):
self[k, i], self[k, j] = self[k, j], self[k, i]
def copyin_list(self, key, value):
"""Copy in elements from a list.
Parameters
==========
key : slice
The section of this matrix to replace.
value : iterable
The iterable to copy values from.
Examples
========
>>> from sympy.matrices import eye
>>> I = eye(3)
>>> I[:2, 0] = [1, 2] # col
>>> I
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
>>> I[1, :2] = [[3, 4]]
>>> I
Matrix([
[1, 0, 0],
[3, 4, 0],
[0, 0, 1]])
See Also
========
copyin_matrix
"""
if not is_sequence(value):
raise TypeError("`value` must be an ordered iterable, not %s." % type(value))
return self.copyin_matrix(key, Matrix(value))
def copyin_matrix(self, key, value):
"""Copy in values from a matrix into the given bounds.
Parameters
==========
key : slice
The section of this matrix to replace.
value : Matrix
The matrix to copy values from.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> M = Matrix([[0, 1], [2, 3], [4, 5]])
>>> I = eye(3)
>>> I[:3, :2] = M
>>> I
Matrix([
[0, 1, 0],
[2, 3, 0],
[4, 5, 1]])
>>> I[0, 1] = M
>>> I
Matrix([
[0, 0, 1],
[2, 2, 3],
[4, 4, 5]])
See Also
========
copyin_list
"""
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(filldedent("The Matrix `value` doesn't have the "
"same dimensions "
"as the in sub-Matrix given by `key`."))
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
def fill(self, value):
"""Fill the matrix with the scalar value.
See Also
========
zeros
ones
"""
self._mat = [value]*len(self)
def row_del(self, i):
"""Delete the given row.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.row_del(1)
>>> M
Matrix([
[1, 0, 0],
[0, 0, 1]])
See Also
========
row
col_del
"""
if i < -self.rows or i >= self.rows:
raise IndexError("Index out of range: 'i = %s', valid -%s <= i"
" < %s" % (i, self.rows, self.rows))
if i < 0:
i += self.rows
del self._mat[i*self.cols:(i+1)*self.cols]
self.rows -= 1
def row_op(self, i, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], j)``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
zip_row_op
col_op
"""
i0 = i*self.cols
ri = self._mat[i0: i0 + self.cols]
self._mat[i0: i0 + self.cols] = [f(x, j) for x, j in zip(ri, list(range(self.cols)))]
def row_swap(self, i, j):
"""Swap the two given rows of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[0, 1], [1, 0]])
>>> M
Matrix([
[0, 1],
[1, 0]])
>>> M.row_swap(0, 1)
>>> M
Matrix([
[1, 0],
[0, 1]])
See Also
========
row
col_swap
"""
for k in range(0, self.cols):
self[i, k], self[j, k] = self[j, k], self[i, k]
def simplify(self, ratio=1.7, measure=count_ops, rational=False, inverse=False):
"""Applies simplify to the elements of a matrix in place.
This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
See Also
========
sympy.simplify.simplify.simplify
"""
for i in range(len(self._mat)):
self._mat[i] = _simplify(self._mat[i], ratio=ratio, measure=measure,
rational=rational, inverse=inverse)
def zip_row_op(self, i, k, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], self[k, j])``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
row_op
col_op
"""
i0 = i*self.cols
k0 = k*self.cols
ri = self._mat[i0: i0 + self.cols]
rk = self._mat[k0: k0 + self.cols]
self._mat[i0: i0 + self.cols] = [f(x, y) for x, y in zip(ri, rk)]
# Utility functions
MutableMatrix = Matrix = MutableDenseMatrix
###########
# Numpy Utility Functions:
# list2numpy, matrix2numpy, symmarray, rot_axis[123]
###########
def list2numpy(l, dtype=object): # pragma: no cover
"""Converts python list of SymPy expressions to a NumPy array.
See Also
========
matrix2numpy
"""
from numpy import empty
a = empty(len(l), dtype)
for i, s in enumerate(l):
a[i] = s
return a
def matrix2numpy(m, dtype=object): # pragma: no cover
"""Converts SymPy's matrix to a NumPy array.
See Also
========
list2numpy
"""
from numpy import empty
a = empty(m.shape, dtype)
for i in range(m.rows):
for j in range(m.cols):
a[i, j] = m[i, j]
return a
def rot_axis3(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 3-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis3(theta)
Matrix([
[ 1/2, sqrt(3)/2, 0],
[-sqrt(3)/2, 1/2, 0],
[ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis3(pi/2)
Matrix([
[ 0, 1, 0],
[-1, 0, 0],
[ 0, 0, 1]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, st, 0),
(-st, ct, 0),
(0, 0, 1))
return Matrix(lil)
def rot_axis2(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 2-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis2
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis2(theta)
Matrix([
[ 1/2, 0, -sqrt(3)/2],
[ 0, 1, 0],
[sqrt(3)/2, 0, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis2(pi/2)
Matrix([
[0, 0, -1],
[0, 1, 0],
[1, 0, 0]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, 0, -st),
(0, 1, 0),
(st, 0, ct))
return Matrix(lil)
def rot_axis1(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 1-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis1
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis1(theta)
Matrix([
[1, 0, 0],
[0, 1/2, sqrt(3)/2],
[0, -sqrt(3)/2, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis1(pi/2)
Matrix([
[1, 0, 0],
[0, 0, 1],
[0, -1, 0]])
See Also
========
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((1, 0, 0),
(0, ct, st),
(0, -st, ct))
return Matrix(lil)
@doctest_depends_on(modules=('numpy',))
def symarray(prefix, shape, **kwargs): # pragma: no cover
r"""Create a numpy ndarray of symbols (as an object array).
The created symbols are named ``prefix_i1_i2_``... You should thus provide a
non-empty prefix if you want your symbols to be unique for different output
arrays, as SymPy symbols with identical names are the same object.
Parameters
----------
prefix : string
A prefix prepended to the name of every symbol.
shape : int or tuple
Shape of the created array. If an int, the array is one-dimensional; for
more than one dimension the shape must be a tuple.
\*\*kwargs : dict
keyword arguments passed on to Symbol
Examples
========
These doctests require numpy.
>>> from sympy import symarray
>>> symarray('', 3)
[_0 _1 _2]
If you want multiple symarrays to contain distinct symbols, you *must*
provide unique prefixes:
>>> a = symarray('', 3)
>>> b = symarray('', 3)
>>> a[0] == b[0]
True
>>> a = symarray('a', 3)
>>> b = symarray('b', 3)
>>> a[0] == b[0]
False
Creating symarrays with a prefix:
>>> symarray('a', 3)
[a_0 a_1 a_2]
For more than one dimension, the shape must be given as a tuple:
>>> symarray('a', (2, 3))
[[a_0_0 a_0_1 a_0_2]
[a_1_0 a_1_1 a_1_2]]
>>> symarray('a', (2, 3, 2))
[[[a_0_0_0 a_0_0_1]
[a_0_1_0 a_0_1_1]
[a_0_2_0 a_0_2_1]]
<BLANKLINE>
[[a_1_0_0 a_1_0_1]
[a_1_1_0 a_1_1_1]
[a_1_2_0 a_1_2_1]]]
For setting assumptions of the underlying Symbols:
>>> [s.is_real for s in symarray('a', 2, real=True)]
[True, True]
"""
from numpy import empty, ndindex
arr = empty(shape, dtype=object)
for index in ndindex(shape):
arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))),
**kwargs)
return arr
###############
# Functions
###############
def casoratian(seqs, n, zero=True):
"""Given linear difference operator L of order 'k' and homogeneous
equation Ly = 0 we want to compute kernel of L, which is a set
of 'k' sequences: a(n), b(n), ... z(n).
Solutions of L are linearly independent iff their Casoratian,
denoted as C(a, b, ..., z), do not vanish for n = 0.
Casoratian is defined by k x k determinant::
+ a(n) b(n) . . . z(n) +
| a(n+1) b(n+1) . . . z(n+1) |
| . . . . |
| . . . . |
| . . . . |
+ a(n+k-1) b(n+k-1) . . . z(n+k-1) +
It proves very useful in rsolve_hyper() where it is applied
to a generating set of a recurrence to factor out linearly
dependent solutions and return a basis:
>>> from sympy import Symbol, casoratian, factorial
>>> n = Symbol('n', integer=True)
Exponential and factorial are linearly independent:
>>> casoratian([2**n, factorial(n)], n) != 0
True
"""
from .dense import Matrix
seqs = list(map(sympify, seqs))
if not zero:
f = lambda i, j: seqs[j].subs(n, n + i)
else:
f = lambda i, j: seqs[j].subs(n, i)
k = len(seqs)
return Matrix(k, k, f).det()
def eye(*args, **kwargs):
"""Create square identity matrix n x n
See Also
========
diag
zeros
ones
"""
from .dense import Matrix
return Matrix.eye(*args, **kwargs)
def diag(*values, **kwargs):
"""Create a sparse, diagonal matrix from a list of diagonal values.
Notes
=====
When arguments are matrices they are fitted in resultant matrix.
The returned matrix is a mutable, dense matrix. To make it a different
type, send the desired class for keyword ``cls``.
Examples
========
>>> from sympy.matrices import diag, Matrix, ones
>>> diag(1, 2, 3)
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> diag(*[1, 2, 3])
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
The diagonal elements can be matrices; diagonal filling will
continue on the diagonal from the last element of the matrix:
>>> from sympy.abc import x, y, z
>>> a = Matrix([x, y, z])
>>> b = Matrix([[1, 2], [3, 4]])
>>> c = Matrix([[5, 6]])
>>> diag(a, 7, b, c)
Matrix([
[x, 0, 0, 0, 0, 0],
[y, 0, 0, 0, 0, 0],
[z, 0, 0, 0, 0, 0],
[0, 7, 0, 0, 0, 0],
[0, 0, 1, 2, 0, 0],
[0, 0, 3, 4, 0, 0],
[0, 0, 0, 0, 5, 6]])
When diagonal elements are lists, they will be treated as arguments
to Matrix:
>>> diag([1, 2, 3], 4)
Matrix([
[1, 0],
[2, 0],
[3, 0],
[0, 4]])
>>> diag([[1, 2, 3]], 4)
Matrix([
[1, 2, 3, 0],
[0, 0, 0, 4]])
A given band off the diagonal can be made by padding with a
vertical or horizontal "kerning" vector:
>>> hpad = ones(0, 2)
>>> vpad = ones(2, 0)
>>> diag(vpad, 1, 2, 3, hpad) + diag(hpad, 4, 5, 6, vpad)
Matrix([
[0, 0, 4, 0, 0],
[0, 0, 0, 5, 0],
[1, 0, 0, 0, 6],
[0, 2, 0, 0, 0],
[0, 0, 3, 0, 0]])
The type is mutable by default but can be made immutable by setting
the ``mutable`` flag to False:
>>> type(diag(1))
<class 'sympy.matrices.dense.MutableDenseMatrix'>
>>> from sympy.matrices import ImmutableMatrix
>>> type(diag(1, cls=ImmutableMatrix))
<class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
See Also
========
eye
"""
from .dense import Matrix
# diag assumes any lists passed in are to be interpreted
# as arguments to Matrix, so apply Matrix to any list arguments
def normalize(m):
if is_sequence(m) and not isinstance(m, MatrixBase):
return Matrix(m)
return m
values = (normalize(m) for m in values)
return Matrix.diag(*values, **kwargs)
def GramSchmidt(vlist, orthonormal=False):
"""
Apply the Gram-Schmidt process to a set of vectors.
see: https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
"""
out = []
m = len(vlist)
for i in range(m):
tmp = vlist[i]
for j in range(i):
tmp -= vlist[i].project(out[j])
if not tmp.values():
raise ValueError(
"GramSchmidt: vector set not linearly independent")
out.append(tmp)
if orthonormal:
for i in range(len(out)):
out[i] = out[i].normalized()
return out
def hessian(f, varlist, constraints=[]):
"""Compute Hessian matrix for a function f wrt parameters in varlist
which may be given as a sequence or a row/column vector. A list of
constraints may optionally be given.
Examples
========
>>> from sympy import Function, hessian, pprint
>>> from sympy.abc import x, y
>>> f = Function('f')(x, y)
>>> g1 = Function('g')(x, y)
>>> g2 = x**2 + 3*y
>>> pprint(hessian(f, (x, y), [g1, g2]))
[ d d ]
[ 0 0 --(g(x, y)) --(g(x, y)) ]
[ dx dy ]
[ ]
[ 0 0 2*x 3 ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))]
[dx 2 dy dx ]
[ dx ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ]
[dy dy dx 2 ]
[ dy ]
References
==========
https://en.wikipedia.org/wiki/Hessian_matrix
See Also
========
sympy.matrices.mutable.Matrix.jacobian
wronskian
"""
# f is the expression representing a function f, return regular matrix
if isinstance(varlist, MatrixBase):
if 1 not in varlist.shape:
raise ShapeError("`varlist` must be a column or row vector.")
if varlist.cols == 1:
varlist = varlist.T
varlist = varlist.tolist()[0]
if is_sequence(varlist):
n = len(varlist)
if not n:
raise ShapeError("`len(varlist)` must not be zero.")
else:
raise ValueError("Improper variable list in hessian function")
if not getattr(f, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
m = len(constraints)
N = m + n
out = zeros(N)
for k, g in enumerate(constraints):
if not getattr(g, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
for i in range(n):
out[k, i + m] = g.diff(varlist[i])
for i in range(n):
for j in range(i, n):
out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j])
for i in range(N):
for j in range(i + 1, N):
out[j, i] = out[i, j]
return out
def jordan_cell(eigenval, n):
"""
Create a Jordan block:
Examples
========
>>> from sympy.matrices import jordan_cell
>>> from sympy.abc import x
>>> jordan_cell(x, 4)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
"""
from .dense import Matrix
return Matrix.jordan_block(size=n, eigenvalue=eigenval)
def matrix_multiply_elementwise(A, B):
"""Return the Hadamard product (elementwise product) of A and B
>>> from sympy.matrices import matrix_multiply_elementwise
>>> from sympy.matrices import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> matrix_multiply_elementwise(A, B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
__mul__
"""
if A.shape != B.shape:
raise ShapeError()
shape = A.shape
return classof(A, B)._new(shape[0], shape[1],
lambda i, j: A[i, j]*B[i, j])
def ones(*args, **kwargs):
"""Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
zeros
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
from .dense import Matrix
return Matrix.ones(*args, **kwargs)
def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False,
percent=100, prng=None):
"""Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
the matrix will be square. If ``symmetric`` is True the matrix must be
square. If ``percent`` is less than 100 then only approximately the given
percentage of elements will be non-zero.
The pseudo-random number generator used to generate matrix is chosen in the
following way.
* If ``prng`` is supplied, it will be used as random number generator.
It should be an instance of :class:`random.Random`, or at least have
``randint`` and ``shuffle`` methods with same signatures.
* if ``prng`` is not supplied but ``seed`` is supplied, then new
:class:`random.Random` with given ``seed`` will be created;
* otherwise, a new :class:`random.Random` with default seed will be used.
Examples
========
>>> from sympy.matrices import randMatrix
>>> randMatrix(3) # doctest:+SKIP
[25, 45, 27]
[44, 54, 9]
[23, 96, 46]
>>> randMatrix(3, 2) # doctest:+SKIP
[87, 29]
[23, 37]
[90, 26]
>>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
[0, 2, 0]
[2, 0, 1]
[0, 0, 1]
>>> randMatrix(3, symmetric=True) # doctest:+SKIP
[85, 26, 29]
[26, 71, 43]
[29, 43, 57]
>>> A = randMatrix(3, seed=1)
>>> B = randMatrix(3, seed=2)
>>> A == B # doctest:+SKIP
False
>>> A == randMatrix(3, seed=1)
True
>>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
[77, 70, 0],
[70, 0, 0],
[ 0, 0, 88]
"""
if c is None:
c = r
# Note that ``Random()`` is equivalent to ``Random(None)``
prng = prng or random.Random(seed)
if not symmetric:
m = Matrix._new(r, c, lambda i, j: prng.randint(min, max))
if percent == 100:
return m
z = int(r*c*(100 - percent) // 100)
m._mat[:z] = [S.Zero]*z
prng.shuffle(m._mat)
return m
# Symmetric case
if r != c:
raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
m = zeros(r)
ij = [(i, j) for i in range(r) for j in range(i, r)]
if percent != 100:
ij = prng.sample(ij, int(len(ij)*percent // 100))
for i, j in ij:
value = prng.randint(min, max)
m[i, j] = m[j, i] = value
return m
def wronskian(functions, var, method='bareiss'):
"""
Compute Wronskian for [] of functions
::
| f1 f2 ... fn |
| f1' f2' ... fn' |
| . . . . |
W(f1, ..., fn) = | . . . . |
| . . . . |
| (n) (n) (n) |
| D (f1) D (f2) ... D (fn) |
see: https://en.wikipedia.org/wiki/Wronskian
See Also
========
sympy.matrices.mutable.Matrix.jacobian
hessian
"""
from .dense import Matrix
for index in range(0, len(functions)):
functions[index] = sympify(functions[index])
n = len(functions)
if n == 0:
return 1
W = Matrix(n, n, lambda i, j: functions[i].diff(var, j))
return W.det(method)
def zeros(*args, **kwargs):
"""Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
ones
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
from .dense import Matrix
return Matrix.zeros(*args, **kwargs)
|
48f90b178c46d2606e97ec1040c295c20a79ec0c57340c3ebf4939c98068345c
|
from __future__ import print_function, division
from mpmath.libmp.libmpf import prec_to_dps
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.function import expand_mul
from sympy.core.power import Pow
from sympy.core.symbol import (Symbol, Dummy, symbols,
_uniquely_named_symbol)
from sympy.core.numbers import Integer, mod_inverse, Float
from sympy.core.singleton import S
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt, Max, Min
from sympy.functions import exp, factorial
from sympy.polys import PurePoly, roots, cancel
from sympy.printing import sstr
from sympy.simplify import simplify as _simplify, nsimplify
from sympy.core.compatibility import reduce, as_int, string_types, Callable
from sympy.utilities.iterables import flatten, numbered_symbols
from sympy.core.compatibility import (is_sequence, default_sort_key, range,
NotIterable)
from sympy.utilities.exceptions import SymPyDeprecationWarning
from types import FunctionType
from .common import (a2idx, MatrixError, ShapeError,
NonSquareMatrixError, MatrixCommon)
from sympy.core.decorators import deprecated
def _iszero(x):
"""Returns True if x is zero."""
try:
return x.is_zero
except AttributeError:
return None
def _is_zero_after_expand_mul(x):
"""Tests by expand_mul only, suitable for polynomials and rational
functions."""
return expand_mul(x) == 0
class DeferredVector(Symbol, NotIterable):
"""A vector whose components are deferred (e.g. for use with lambdify)
Examples
========
>>> from sympy import DeferredVector, lambdify
>>> X = DeferredVector( 'X' )
>>> X
X
>>> expr = (X[0] + 2, X[2] + 3)
>>> func = lambdify( X, expr)
>>> func( [1, 2, 3] )
(3, 6)
"""
def __getitem__(self, i):
if i == -0:
i = 0
if i < 0:
raise IndexError('DeferredVector index out of range')
component_name = '%s[%d]' % (self.name, i)
return Symbol(component_name)
def __str__(self):
return sstr(self)
def __repr__(self):
return "DeferredVector('%s')" % self.name
class MatrixDeterminant(MatrixCommon):
"""Provides basic matrix determinant operations.
Should not be instantiated directly."""
def _eval_berkowitz_toeplitz_matrix(self):
"""Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm
corresponding to `self` and A is the first principal submatrix."""
# the 0 x 0 case is trivial
if self.rows == 0 and self.cols == 0:
return self._new(1,1, [S.One])
#
# Partition self = [ a_11 R ]
# [ C A ]
#
a, R = self[0,0], self[0, 1:]
C, A = self[1:, 0], self[1:,1:]
#
# The Toeplitz matrix looks like
#
# [ 1 ]
# [ -a 1 ]
# [ -RC -a 1 ]
# [ -RAC -RC -a 1 ]
# [ -RA**2C -RAC -RC -a 1 ]
# etc.
# Compute the diagonal entries.
# Because multiplying matrix times vector is so much
# more efficient than matrix times matrix, recursively
# compute -R * A**n * C.
diags = [C]
for i in range(self.rows - 2):
diags.append(A * diags[i])
diags = [(-R*d)[0, 0] for d in diags]
diags = [S.One, -a] + diags
def entry(i,j):
if j > i:
return S.Zero
return diags[i - j]
toeplitz = self._new(self.cols + 1, self.rows, entry)
return (A, toeplitz)
def _eval_berkowitz_vector(self):
""" Run the Berkowitz algorithm and return a vector whose entries
are the coefficients of the characteristic polynomial of `self`.
Given N x N matrix, efficiently compute
coefficients of characteristic polynomials of 'self'
without division in the ground domain.
This method is particularly useful for computing determinant,
principal minors and characteristic polynomial when 'self'
has complicated coefficients e.g. polynomials. Semi-direct
usage of this algorithm is also important in computing
efficiently sub-resultant PRS.
Assuming that M is a square matrix of dimension N x N and
I is N x N identity matrix, then the Berkowitz vector is
an N x 1 vector whose entries are coefficients of the
polynomial
charpoly(M) = det(t*I - M)
As a consequence, all polynomials generated by Berkowitz
algorithm are monic.
For more information on the implemented algorithm refer to:
[1] S.J. Berkowitz, On computing the determinant in small
parallel time using a small number of processors, ACM,
Information Processing Letters 18, 1984, pp. 147-150
[2] M. Keber, Division-Free computation of sub-resultants
using Bezout matrices, Tech. Report MPI-I-2006-1-006,
Saarbrucken, 2006
"""
# handle the trivial cases
if self.rows == 0 and self.cols == 0:
return self._new(1, 1, [S.One])
elif self.rows == 1 and self.cols == 1:
return self._new(2, 1, [S.One, -self[0,0]])
submat, toeplitz = self._eval_berkowitz_toeplitz_matrix()
return toeplitz * submat._eval_berkowitz_vector()
def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul):
"""Compute matrix determinant using Bareiss' fraction-free
algorithm which is an extension of the well known Gaussian
elimination method. This approach is best suited for dense
symbolic matrices and will result in a determinant with
minimal number of fractions. It means that less term
rewriting is needed on resulting formulae.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
"""
# Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's
# thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
def bareiss(mat, cumm=1):
if mat.rows == 0:
return S.One
elif mat.rows == 1:
return mat[0, 0]
# find a pivot and extract the remaining matrix
# With the default iszerofunc, _find_reasonable_pivot slows down
# the computation by the factor of 2.5 in one test.
# Relevant issues: #10279 and #13877.
pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0],
iszerofunc=iszerofunc)
if pivot_pos == None:
return S.Zero
# if we have a valid pivot, we'll do a "row swap", so keep the
# sign of the det
sign = (-1) ** (pivot_pos % 2)
# we want every row but the pivot row and every column
rows = list(i for i in range(mat.rows) if i != pivot_pos)
cols = list(range(mat.cols))
tmp_mat = mat.extract(rows, cols)
def entry(i, j):
ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm
if not ret.is_Atom:
cancel(ret)
return ret
return sign*bareiss(self._new(mat.rows - 1, mat.cols - 1, entry), pivot_val)
return cancel(bareiss(self))
def _eval_det_berkowitz(self):
""" Use the Berkowitz algorithm to compute the determinant."""
berk_vector = self._eval_berkowitz_vector()
return (-1)**(len(berk_vector) - 1) * berk_vector[-1]
def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None):
""" Computes the determinant of a matrix from its LU decomposition.
This function uses the LU decomposition computed by
LUDecomposition_Simple().
The keyword arguments iszerofunc and simpfunc are passed to
LUDecomposition_Simple().
iszerofunc is a callable that returns a boolean indicating if its
input is zero, or None if it cannot make the determination.
simpfunc is a callable that simplifies its input.
The default is simpfunc=None, which indicate that the pivot search
algorithm should not attempt to simplify any candidate pivots.
If simpfunc fails to simplify its input, then it must return its input
instead of a copy."""
if self.rows == 0:
return S.One
# sympy/matrices/tests/test_matrices.py contains a test that
# suggests that the determinant of a 0 x 0 matrix is one, by
# convention.
lu, row_swaps = self.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=None)
# P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U).
# Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1.
# P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P).
# LUdecomposition_Simple() returns a list of row exchange index pairs, rather
# than a permutation matrix, but det(P) = (-1)**len(row_swaps).
# Avoid forming the potentially time consuming product of U's diagonal entries
# if the product is zero.
# Bottom right entry of U is 0 => det(A) = 0.
# It may be impossible to determine if this entry of U is zero when it is symbolic.
if iszerofunc(lu[lu.rows-1, lu.rows-1]):
return S.Zero
# Compute det(P)
det = -S.One if len(row_swaps)%2 else S.One
# Compute det(U) by calculating the product of U's diagonal entries.
# The upper triangular portion of lu is the upper triangular portion of the
# U factor in the LU decomposition.
for k in range(lu.rows):
det *= lu[k, k]
# return det(P)*det(U)
return det
def _eval_determinant(self):
"""Assumed to exist by matrix expressions; If we subclass
MatrixDeterminant, we can fully evaluate determinants."""
return self.det()
def adjugate(self, method="berkowitz"):
"""Returns the adjugate, or classical adjoint, of
a matrix. That is, the transpose of the matrix of cofactors.
https://en.wikipedia.org/wiki/Adjugate
See Also
========
cofactor_matrix
transpose
"""
return self.cofactor_matrix(method).transpose()
def charpoly(self, x='lambda', simplify=_simplify):
"""Computes characteristic polynomial det(x*I - self) where I is
the identity matrix.
A PurePoly is returned, so using different variables for ``x`` does
not affect the comparison or the polynomials:
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> A = Matrix([[1, 3], [2, 0]])
>>> A.charpoly(x) == A.charpoly(y)
True
Specifying ``x`` is optional; a symbol named ``lambda`` is used by
default (which looks good when pretty-printed in unicode):
>>> A.charpoly().as_expr()
lambda**2 - lambda - 6
And if ``x`` clashes with an existing symbol, underscores will
be preppended to the name to make it unique:
>>> A = Matrix([[1, 2], [x, 0]])
>>> A.charpoly(x).as_expr()
_x**2 - _x - 2*x
Whether you pass a symbol or not, the generator can be obtained
with the gen attribute since it may not be the same as the symbol
that was passed:
>>> A.charpoly(x).gen
_x
>>> A.charpoly(x).gen == x
False
Notes
=====
The Samuelson-Berkowitz algorithm is used to compute
the characteristic polynomial efficiently and without any
division operations. Thus the characteristic polynomial over any
commutative ring without zero divisors can be computed.
See Also
========
det
"""
if self.rows != self.cols:
raise NonSquareMatrixError()
berk_vector = self._eval_berkowitz_vector()
x = _uniquely_named_symbol(x, berk_vector)
return PurePoly([simplify(a) for a in berk_vector], x)
def cofactor(self, i, j, method="berkowitz"):
"""Calculate the cofactor of an element.
See Also
========
cofactor_matrix
minor
minor_submatrix
"""
if self.rows != self.cols or self.rows < 1:
raise NonSquareMatrixError()
return (-1)**((i + j) % 2) * self.minor(i, j, method)
def cofactor_matrix(self, method="berkowitz"):
"""Return a matrix containing the cofactor of each element.
See Also
========
cofactor
minor
minor_submatrix
adjugate
"""
if self.rows != self.cols or self.rows < 1:
raise NonSquareMatrixError()
return self._new(self.rows, self.cols,
lambda i, j: self.cofactor(i, j, method))
def det(self, method="bareiss", iszerofunc=None):
"""Computes the determinant of a matrix.
Parameters
==========
method : string, optional
Specifies the algorithm used for computing the matrix determinant.
If the matrix is at most 3x3, a hard-coded formula is used and the
specified method is ignored. Otherwise, it defaults to
``'bareiss'``.
If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will
be used.
If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used.
Otherwise, if it is set to ``'lu'``, LU decomposition will be used.
.. note::
For backward compatibility, legacy keys like "bareis" and
"det_lu" can still be used to indicate the corresponding
methods.
And the keys are also case-insensitive for now. However, it is
suggested to use the precise keys for specifying the method.
iszerofunc : FunctionType or None, optional
If it is set to ``None``, it will be defaulted to ``_iszero`` if the
method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if
the method is set to ``'lu'``.
It can also accept any user-specified zero testing function, if it
is formatted as a function which accepts a single symbolic argument
and returns ``True`` if it is tested as zero and ``False`` if it
tested as non-zero, and also ``None`` if it is undecidable.
Returns
=======
det : Basic
Result of determinant.
Raises
======
ValueError
If unrecognized keys are given for ``method`` or ``iszerofunc``.
NonSquareMatrixError
If attempted to calculate determinant from a non-square matrix.
"""
# sanitize `method`
method = method.lower()
if method == "bareis":
method = "bareiss"
if method == "det_lu":
method = "lu"
if method not in ("bareiss", "berkowitz", "lu"):
raise ValueError("Determinant method '%s' unrecognized" % method)
if iszerofunc is None:
if method == "bareiss":
iszerofunc = _is_zero_after_expand_mul
elif method == "lu":
iszerofunc = _iszero
elif not isinstance(iszerofunc, FunctionType):
raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc)
# if methods were made internal and all determinant calculations
# passed through here, then these lines could be factored out of
# the method routines
if self.rows != self.cols:
raise NonSquareMatrixError()
n = self.rows
if n == 0:
return S.One
elif n == 1:
return self[0,0]
elif n == 2:
return self[0, 0] * self[1, 1] - self[0, 1] * self[1, 0]
elif n == 3:
return (self[0, 0] * self[1, 1] * self[2, 2]
+ self[0, 1] * self[1, 2] * self[2, 0]
+ self[0, 2] * self[1, 0] * self[2, 1]
- self[0, 2] * self[1, 1] * self[2, 0]
- self[0, 0] * self[1, 2] * self[2, 1]
- self[0, 1] * self[1, 0] * self[2, 2])
if method == "bareiss":
return self._eval_det_bareiss(iszerofunc=iszerofunc)
elif method == "berkowitz":
return self._eval_det_berkowitz()
elif method == "lu":
return self._eval_det_lu(iszerofunc=iszerofunc)
def minor(self, i, j, method="berkowitz"):
"""Return the (i,j) minor of `self`. That is,
return the determinant of the matrix obtained by deleting
the `i`th row and `j`th column from `self`.
See Also
========
minor_submatrix
cofactor
det
"""
if self.rows != self.cols or self.rows < 1:
raise NonSquareMatrixError()
return self.minor_submatrix(i, j).det(method=method)
def minor_submatrix(self, i, j):
"""Return the submatrix obtained by removing the `i`th row
and `j`th column from `self`.
See Also
========
minor
cofactor
"""
if i < 0:
i += self.rows
if j < 0:
j += self.cols
if not 0 <= i < self.rows or not 0 <= j < self.cols:
raise ValueError("`i` and `j` must satisfy 0 <= i < `self.rows` "
"(%d)" % self.rows + "and 0 <= j < `self.cols` (%d)." % self.cols)
rows = [a for a in range(self.rows) if a != i]
cols = [a for a in range(self.cols) if a != j]
return self.extract(rows, cols)
class MatrixReductions(MatrixDeterminant):
"""Provides basic matrix row/column operations.
Should not be instantiated directly."""
def _eval_col_op_swap(self, col1, col2):
def entry(i, j):
if j == col1:
return self[i, col2]
elif j == col2:
return self[i, col1]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_multiply_col_by_const(self, col, k):
def entry(i, j):
if j == col:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_add_multiple_to_other_col(self, col, k, col2):
def entry(i, j):
if j == col:
return self[i, j] + k * self[i, col2]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_swap(self, row1, row2):
def entry(i, j):
if i == row1:
return self[row2, j]
elif i == row2:
return self[row1, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_multiply_row_by_const(self, row, k):
def entry(i, j):
if i == row:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_add_multiple_to_other_row(self, row, k, row2):
def entry(i, j):
if i == row:
return self[i, j] + k * self[row2, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_echelon_form(self, iszerofunc, simpfunc):
"""Returns (mat, swaps) where `mat` is a row-equivalent matrix
in echelon form and `swaps` is a list of row-swaps performed."""
reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc,
normalize_last=True,
normalize=False,
zero_above=False)
return reduced, pivot_cols, swaps
def _eval_is_echelon(self, iszerofunc):
if self.rows <= 0 or self.cols <= 0:
return True
zeros_below = all(iszerofunc(t) for t in self[1:, 0])
if iszerofunc(self[0, 0]):
return zeros_below and self[:, 1:]._eval_is_echelon(iszerofunc)
return zeros_below and self[1:, 1:]._eval_is_echelon(iszerofunc)
def _eval_rref(self, iszerofunc, simpfunc, normalize_last=True):
reduced, pivot_cols, swaps = self._row_reduce(iszerofunc, simpfunc,
normalize_last, normalize=True,
zero_above=True)
return reduced, pivot_cols
def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"):
"""Validate the arguments for a row/column operation. `error_str`
can be one of "row" or "col" depending on the arguments being parsed."""
if op not in ["n->kn", "n<->m", "n->n+km"]:
raise ValueError("Unknown {} operation '{}'. Valid col operations "
"are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op))
# normalize and validate the arguments
if op == "n->kn":
col = col if col is not None else col1
if col is None or k is None:
raise ValueError("For a {0} operation 'n->kn' you must provide the "
"kwargs `{0}` and `k`".format(error_str))
if not 0 <= col <= self.cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col))
if op == "n<->m":
# we need two cols to swap. It doesn't matter
# how they were specified, so gather them together and
# remove `None`
cols = set((col, k, col1, col2)).difference([None])
if len(cols) > 2:
# maybe the user left `k` by mistake?
cols = set((col, col1, col2)).difference([None])
if len(cols) != 2:
raise ValueError("For a {0} operation 'n<->m' you must provide the "
"kwargs `{0}1` and `{0}2`".format(error_str))
col1, col2 = cols
if not 0 <= col1 <= self.cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1))
if not 0 <= col2 <= self.cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2))
if op == "n->n+km":
col = col1 if col is None else col
col2 = col1 if col2 is None else col2
if col is None or col2 is None or k is None:
raise ValueError("For a {0} operation 'n->n+km' you must provide the "
"kwargs `{0}`, `k`, and `{0}2`".format(error_str))
if col == col2:
raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must "
"be different.".format(error_str))
if not 0 <= col <= self.cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col))
if not 0 <= col2 <= self.cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2))
return op, col, k, col1, col2
def _permute_complexity_right(self, iszerofunc):
"""Permute columns with complicated elements as
far right as they can go. Since the `sympy` row reduction
algorithms start on the left, having complexity right-shifted
speeds things up.
Returns a tuple (mat, perm) where perm is a permutation
of the columns to perform to shift the complex columns right, and mat
is the permuted matrix."""
def complexity(i):
# the complexity of a column will be judged by how many
# element's zero-ness cannot be determined
return sum(1 if iszerofunc(e) is None else 0 for e in self[:, i])
complex = [(complexity(i), i) for i in range(self.cols)]
perm = [j for (i, j) in sorted(complex)]
return (self.permute(perm, orientation='cols'), perm)
def _row_reduce(self, iszerofunc, simpfunc, normalize_last=True,
normalize=True, zero_above=True):
"""Row reduce `self` and return a tuple (rref_matrix,
pivot_cols, swaps) where pivot_cols are the pivot columns
and swaps are any row swaps that were used in the process
of row reduction.
Parameters
==========
iszerofunc : determines if an entry can be used as a pivot
simpfunc : used to simplify elements and test if they are
zero if `iszerofunc` returns `None`
normalize_last : indicates where all row reduction should
happen in a fraction-free manner and then the rows are
normalized (so that the pivots are 1), or whether
rows should be normalized along the way (like the naive
row reduction algorithm)
normalize : whether pivot rows should be normalized so that
the pivot value is 1
zero_above : whether entries above the pivot should be zeroed.
If `zero_above=False`, an echelon matrix will be returned.
"""
rows, cols = self.rows, self.cols
mat = list(self)
def get_col(i):
return mat[i::cols]
def row_swap(i, j):
mat[i*cols:(i + 1)*cols], mat[j*cols:(j + 1)*cols] = \
mat[j*cols:(j + 1)*cols], mat[i*cols:(i + 1)*cols]
def cross_cancel(a, i, b, j):
"""Does the row op row[i] = a*row[i] - b*row[j]"""
q = (j - i)*cols
for p in range(i*cols, (i + 1)*cols):
mat[p] = a*mat[p] - b*mat[p + q]
piv_row, piv_col = 0, 0
pivot_cols = []
swaps = []
# use a fraction free method to zero above and below each pivot
while piv_col < cols and piv_row < rows:
pivot_offset, pivot_val, \
assumed_nonzero, newly_determined = _find_reasonable_pivot(
get_col(piv_col)[piv_row:], iszerofunc, simpfunc)
# _find_reasonable_pivot may have simplified some things
# in the process. Let's not let them go to waste
for (offset, val) in newly_determined:
offset += piv_row
mat[offset*cols + piv_col] = val
if pivot_offset is None:
piv_col += 1
continue
pivot_cols.append(piv_col)
if pivot_offset != 0:
row_swap(piv_row, pivot_offset + piv_row)
swaps.append((piv_row, pivot_offset + piv_row))
# if we aren't normalizing last, we normalize
# before we zero the other rows
if normalize_last is False:
i, j = piv_row, piv_col
mat[i*cols + j] = S.One
for p in range(i*cols + j + 1, (i + 1)*cols):
mat[p] = mat[p] / pivot_val
# after normalizing, the pivot value is 1
pivot_val = S.One
# zero above and below the pivot
for row in range(rows):
# don't zero our current row
if row == piv_row:
continue
# don't zero above the pivot unless we're told.
if zero_above is False and row < piv_row:
continue
# if we're already a zero, don't do anything
val = mat[row*cols + piv_col]
if iszerofunc(val):
continue
cross_cancel(pivot_val, row, val, piv_row)
piv_row += 1
# normalize each row
if normalize_last is True and normalize is True:
for piv_i, piv_j in enumerate(pivot_cols):
pivot_val = mat[piv_i*cols + piv_j]
mat[piv_i*cols + piv_j] = S.One
for p in range(piv_i*cols + piv_j + 1, (piv_i + 1)*cols):
mat[p] = mat[p] / pivot_val
return self._new(self.rows, self.cols, mat), tuple(pivot_cols), tuple(swaps)
def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False):
"""Returns a matrix row-equivalent to `self` that is
in echelon form. Note that echelon form of a matrix
is *not* unique, however, properties like the row
space and the null space are preserved."""
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
mat, pivots, swaps = self._eval_echelon_form(iszerofunc, simpfunc)
if with_pivots:
return mat, pivots
return mat
def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None):
"""Performs the elementary column operation `op`.
`op` may be one of
* "n->kn" (column n goes to k*n)
* "n<->m" (swap column n and column m)
* "n->n+km" (column n goes to column n + k*column m)
Parameters
==========
op : string; the elementary row operation
col : the column to apply the column operation
k : the multiple to apply in the column operation
col1 : one column of a column swap
col2 : second column of a column swap or column "m" in the column operation
"n->n+km"
"""
op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_col_op_multiply_col_by_const(col, k)
if op == "n<->m":
return self._eval_col_op_swap(col1, col2)
if op == "n->n+km":
return self._eval_col_op_add_multiple_to_other_col(col, k, col2)
def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None):
"""Performs the elementary row operation `op`.
`op` may be one of
* "n->kn" (row n goes to k*n)
* "n<->m" (swap row n and row m)
* "n->n+km" (row n goes to row n + k*row m)
Parameters
==========
op : string; the elementary row operation
row : the row to apply the row operation
k : the multiple to apply in the row operation
row1 : one row of a row swap
row2 : second row of a row swap or row "m" in the row operation
"n->n+km"
"""
op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_row_op_multiply_row_by_const(row, k)
if op == "n<->m":
return self._eval_row_op_swap(row1, row2)
if op == "n->n+km":
return self._eval_row_op_add_multiple_to_other_row(row, k, row2)
@property
def is_echelon(self, iszerofunc=_iszero):
"""Returns `True` if the matrix is in echelon form.
That is, all rows of zeros are at the bottom, and below
each leading non-zero in a row are exclusively zeros."""
return self._eval_is_echelon(iszerofunc)
def rank(self, iszerofunc=_iszero, simplify=False):
"""
Returns the rank of a matrix
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rank()
2
>>> n = Matrix(3, 3, range(1, 10))
>>> n.rank()
2
"""
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
# for small matrices, we compute the rank explicitly
# if is_zero on elements doesn't answer the question
# for small matrices, we fall back to the full routine.
if self.rows <= 0 or self.cols <= 0:
return 0
if self.rows <= 1 or self.cols <= 1:
zeros = [iszerofunc(x) for x in self]
if False in zeros:
return 1
if self.rows == 2 and self.cols == 2:
zeros = [iszerofunc(x) for x in self]
if not False in zeros and not None in zeros:
return 0
det = self.det()
if iszerofunc(det) and False in zeros:
return 1
if iszerofunc(det) is False:
return 2
mat, _ = self._permute_complexity_right(iszerofunc=iszerofunc)
echelon_form, pivots, swaps = mat._eval_echelon_form(iszerofunc=iszerofunc, simpfunc=simpfunc)
return len(pivots)
def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, normalize_last=True):
"""Return reduced row-echelon form of matrix and indices of pivot vars.
Parameters
==========
iszerofunc : Function
A function used for detecting whether an element can
act as a pivot. ``lambda x: x.is_zero`` is used by default.
simplify : Function
A function used to simplify elements when looking for a pivot.
By default SymPy's ``simplify`` is used.
pivots : True or False
If ``True``, a tuple containing the row-reduced matrix and a tuple
of pivot columns is returned. If ``False`` just the row-reduced
matrix is returned.
normalize_last : True or False
If ``True``, no pivots are normalized to `1` until after all
entries above and below each pivot are zeroed. This means the row
reduction algorithm is fraction free until the very last step.
If ``False``, the naive row reduction procedure is used where
each pivot is normalized to be `1` before row operations are
used to zero above and below the pivot.
Notes
=====
The default value of ``normalize_last=True`` can provide significant
speedup to row reduction, especially on matrices with symbols. However,
if you depend on the form row reduction algorithm leaves entries
of the matrix, set ``noramlize_last=False``
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> m = Matrix([[1, 2], [x, 1 - 1/x]])
>>> m.rref()
(Matrix([
[1, 0],
[0, 1]]), (0, 1))
>>> rref_matrix, rref_pivots = m.rref()
>>> rref_matrix
Matrix([
[1, 0],
[0, 1]])
>>> rref_pivots
(0, 1)
"""
simpfunc = simplify if isinstance(
simplify, FunctionType) else _simplify
ret, pivot_cols = self._eval_rref(iszerofunc=iszerofunc,
simpfunc=simpfunc,
normalize_last=normalize_last)
if pivots:
ret = (ret, pivot_cols)
return ret
class MatrixSubspaces(MatrixReductions):
"""Provides methods relating to the fundamental subspaces
of a matrix. Should not be instantiated directly."""
def columnspace(self, simplify=False):
"""Returns a list of vectors (Matrix objects) that span columnspace of self
Examples
========
>>> from sympy.matrices import Matrix
>>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> m
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> m.columnspace()
[Matrix([
[ 1],
[-2],
[ 3]]), Matrix([
[0],
[0],
[6]])]
See Also
========
nullspace
rowspace
"""
reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True)
return [self.col(i) for i in pivots]
def nullspace(self, simplify=False, iszerofunc=_iszero):
"""Returns list of vectors (Matrix objects) that span nullspace of self
Examples
========
>>> from sympy.matrices import Matrix
>>> m = Matrix(3, 3, [1, 3, 0, -2, -6, 0, 3, 9, 6])
>>> m
Matrix([
[ 1, 3, 0],
[-2, -6, 0],
[ 3, 9, 6]])
>>> m.nullspace()
[Matrix([
[-3],
[ 1],
[ 0]])]
See Also
========
columnspace
rowspace
"""
reduced, pivots = self.rref(iszerofunc=iszerofunc, simplify=simplify)
free_vars = [i for i in range(self.cols) if i not in pivots]
basis = []
for free_var in free_vars:
# for each free variable, we will set it to 1 and all others
# to 0. Then, we will use back substitution to solve the system
vec = [S.Zero]*self.cols
vec[free_var] = S.One
for piv_row, piv_col in enumerate(pivots):
vec[piv_col] -= reduced[piv_row, free_var]
basis.append(vec)
return [self._new(self.cols, 1, b) for b in basis]
def rowspace(self, simplify=False):
"""Returns a list of vectors that span the row space of self."""
reduced, pivots = self.echelon_form(simplify=simplify, with_pivots=True)
return [reduced.row(i) for i in range(len(pivots))]
@classmethod
def orthogonalize(cls, *vecs, **kwargs):
"""Apply the Gram-Schmidt orthogonalization procedure
to vectors supplied in `vecs`.
Parameters
==========
vecs
vectors to be made orthogonal
normalize : bool
If true, return an orthonormal basis.
"""
normalize = kwargs.get('normalize', False)
def project(a, b):
return b * (a.dot(b) / b.dot(b))
def perp_to_subspace(vec, basis):
"""projects vec onto the subspace given
by the orthogonal basis `basis`"""
components = [project(vec, b) for b in basis]
if len(basis) == 0:
return vec
return vec - reduce(lambda a, b: a + b, components)
ret = []
# make sure we start with a non-zero vector
while len(vecs) > 0 and vecs[0].is_zero:
del vecs[0]
for vec in vecs:
perp = perp_to_subspace(vec, ret)
if not perp.is_zero:
ret.append(perp)
if normalize:
ret = [vec / vec.norm() for vec in ret]
return ret
class MatrixEigen(MatrixSubspaces):
"""Provides basic matrix eigenvalue/vector operations.
Should not be instantiated directly."""
_cache_is_diagonalizable = None
_cache_eigenvects = None
def diagonalize(self, reals_only=False, sort=False, normalize=False):
"""
Return (P, D), where D is diagonal and
D = P^-1 * M * P
where M is current matrix.
Parameters
==========
reals_only : bool. Whether to throw an error if complex numbers are need
to diagonalize. (Default: False)
sort : bool. Sort the eigenvalues along the diagonal. (Default: False)
normalize : bool. If True, normalize the columns of P. (Default: False)
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> m
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> (P, D) = m.diagonalize()
>>> D
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> P
Matrix([
[-1, 0, -1],
[ 0, 0, -1],
[ 2, 1, 2]])
>>> P.inv() * m * P
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
See Also
========
is_diagonal
is_diagonalizable
"""
if not self.is_square:
raise NonSquareMatrixError()
if not self.is_diagonalizable(reals_only=reals_only, clear_cache=False):
raise MatrixError("Matrix is not diagonalizable")
eigenvecs = self._cache_eigenvects
if eigenvecs is None:
eigenvecs = self.eigenvects(simplify=True)
if sort:
eigenvecs = sorted(eigenvecs, key=default_sort_key)
p_cols, diag = [], []
for val, mult, basis in eigenvecs:
diag += [val] * mult
p_cols += basis
if normalize:
p_cols = [v / v.norm() for v in p_cols]
return self.hstack(*p_cols), self.diag(*diag)
def eigenvals(self, error_when_incomplete=True, **flags):
r"""Return eigenvalues using the Berkowitz agorithm to compute
the characteristic polynomial.
Parameters
==========
error_when_incomplete : bool, optional
If it is set to ``True``, it will raise an error if not all
eigenvalues are computed. This is caused by ``roots`` not returning
a full list of eigenvalues.
simplify : bool or function, optional
If it is set to ``True``, it attempts to return the most
simplified form of expressions returned by applying default
simplification method in every routine.
If it is set to ``False``, it will skip simplification in this
particular routine to save computation resources.
If a function is passed to, it will attempt to apply
the particular function as simplification method.
rational : bool, optional
If it is set to ``True``, every floating point numbers would be
replaced with rationals before computation. It can solve some
issues of ``roots`` routine not working well with floats.
multiple : bool, optional
If it is set to ``True``, the result will be in the form of a
list.
If it is set to ``False``, the result will be in the form of a
dictionary.
Returns
=======
eigs : list or dict
Eigenvalues of a matrix. The return format would be specified by
the key ``multiple``.
Raises
======
MatrixError
If not enough roots had got computed.
NonSquareMatrixError
If attempted to compute eigenvalues from a non-square matrix.
See Also
========
MatrixDeterminant.charpoly
eigenvects
Notes
=====
Eigenvalues of a matrix `A` can be computed by solving a matrix
equation `\det(A - \lambda I) = 0`
"""
simplify = flags.get('simplify', False) # Collect simplify flag before popped up, to reuse later in the routine.
multiple = flags.get('multiple', False) # Collect multiple flag to decide whether return as a dict or list.
mat = self
if not mat:
return {}
if flags.pop('rational', True):
if any(v.has(Float) for v in mat):
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
if mat.is_upper or mat.is_lower:
if not self.is_square:
raise NonSquareMatrixError()
diagonal_entries = [mat[i, i] for i in range(mat.rows)]
if multiple:
eigs = diagonal_entries
else:
eigs = {}
for diagonal_entry in diagonal_entries:
if diagonal_entry not in eigs:
eigs[diagonal_entry] = 0
eigs[diagonal_entry] += 1
else:
flags.pop('simplify', None) # pop unsupported flag
if isinstance(simplify, FunctionType):
eigs = roots(mat.charpoly(x=Dummy('x'), simplify=simplify), **flags)
else:
eigs = roots(mat.charpoly(x=Dummy('x')), **flags)
# make sure the algebraic multiplicty sums to the
# size of the matrix
if error_when_incomplete and (sum(eigs.values()) if
isinstance(eigs, dict) else len(eigs)) != self.cols:
raise MatrixError("Could not compute eigenvalues for {}".format(self))
# Since 'simplify' flag is unsupported in roots()
# simplify() function will be applied once at the end of the routine.
if not simplify:
return eigs
if not isinstance(simplify, FunctionType):
simplify = _simplify
# With 'multiple' flag set true, simplify() will be mapped for the list
# Otherwise, simplify() will be mapped for the keys of the dictionary
if not multiple:
return {simplify(key): value for key, value in eigs.items()}
else:
return [simplify(value) for value in eigs]
def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags):
"""Return list of triples (eigenval, multiplicity, basis).
The flag ``simplify`` has two effects:
1) if bool(simplify) is True, as_content_primitive()
will be used to tidy up normalization artifacts;
2) if nullspace needs simplification to compute the
basis, the simplify flag will be passed on to the
nullspace routine which will interpret it there.
Parameters
==========
error_when_incomplete : bool
Raise an error when not all eigenvalues are computed. This is
caused by ``roots`` not returning a full list of eigenvalues.
If the matrix contains any Floats, they will be changed to Rationals
for computation purposes, but the answers will be returned after being
evaluated with evalf. If it is desired to removed small imaginary
portions during the evalf step, pass a value for the ``chop`` flag.
"""
from sympy.matrices import eye
simplify = flags.get('simplify', True)
if not isinstance(simplify, FunctionType):
simpfunc = _simplify if simplify else lambda x: x
primitive = flags.get('simplify', False)
chop = flags.pop('chop', False)
flags.pop('multiple', None) # remove this if it's there
mat = self
# roots doesn't like Floats, so replace them with Rationals
has_floats = any(v.has(Float) for v in self)
if has_floats:
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
def eigenspace(eigenval):
"""Get a basis for the eigenspace for a particular eigenvalue"""
m = mat - self.eye(mat.rows) * eigenval
ret = m.nullspace(iszerofunc=iszerofunc)
# the nullspace for a real eigenvalue should be
# non-trivial. If we didn't find an eigenvector, try once
# more a little harder
if len(ret) == 0 and simplify:
ret = m.nullspace(iszerofunc=iszerofunc, simplify=True)
if len(ret) == 0:
raise NotImplementedError(
"Can't evaluate eigenvector for eigenvalue %s" % eigenval)
return ret
eigenvals = mat.eigenvals(rational=False,
error_when_incomplete=error_when_incomplete,
**flags)
ret = [(val, mult, eigenspace(val)) for val, mult in
sorted(eigenvals.items(), key=default_sort_key)]
if primitive:
# if the primitive flag is set, get rid of any common
# integer denominators
def denom_clean(l):
from sympy import gcd
return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l]
ret = [(val, mult, denom_clean(es)) for val, mult, es in ret]
if has_floats:
# if we had floats to start with, turn the eigenvectors to floats
ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es]) for val, mult, es in ret]
return ret
def is_diagonalizable(self, reals_only=False, **kwargs):
"""Returns true if a matrix is diagonalizable.
Parameters
==========
reals_only : bool. If reals_only=True, determine whether the matrix can be
diagonalized without complex numbers. (Default: False)
kwargs
======
clear_cache : bool. If True, clear the result of any computations when finished.
(Default: True)
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
>>> m
Matrix([
[1, 2, 0],
[0, 3, 0],
[2, -4, 2]])
>>> m.is_diagonalizable()
True
>>> m = Matrix(2, 2, [0, 1, 0, 0])
>>> m
Matrix([
[0, 1],
[0, 0]])
>>> m.is_diagonalizable()
False
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_diagonalizable()
True
>>> m.is_diagonalizable(reals_only=True)
False
See Also
========
is_diagonal
diagonalize
"""
clear_cache = kwargs.get('clear_cache', True)
if 'clear_subproducts' in kwargs:
clear_cache = kwargs.get('clear_subproducts')
def cleanup():
"""Clears any cached values if requested"""
if clear_cache:
self._cache_eigenvects = None
self._cache_is_diagonalizable = None
if not self.is_square:
cleanup()
return False
# use the cached value if we have it
if self._cache_is_diagonalizable is not None:
ret = self._cache_is_diagonalizable
cleanup()
return ret
if all(e.is_real for e in self) and self.is_symmetric():
# every real symmetric matrix is real diagonalizable
self._cache_is_diagonalizable = True
cleanup()
return True
self._cache_eigenvects = self.eigenvects(simplify=True)
ret = True
for val, mult, basis in self._cache_eigenvects:
# if we have a complex eigenvalue
if reals_only and not val.is_real:
ret = False
# if the geometric multiplicity doesn't equal the algebraic
if mult != len(basis):
ret = False
cleanup()
return ret
def jordan_form(self, calc_transform=True, **kwargs):
"""Return `(P, J)` where `J` is a Jordan block
matrix and `P` is a matrix such that
`self == P*J*P**-1`
Parameters
==========
calc_transform : bool
If ``False``, then only `J` is returned.
chop : bool
All matrices are convered to exact types when computing
eigenvalues and eigenvectors. As a result, there may be
approximation errors. If ``chop==True``, these errors
will be truncated.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]])
>>> P, J = m.jordan_form()
>>> J
Matrix([
[2, 1, 0, 0],
[0, 2, 0, 0],
[0, 0, 2, 1],
[0, 0, 0, 2]])
See Also
========
jordan_block
"""
if not self.is_square:
raise NonSquareMatrixError("Only square matrices have Jordan forms")
chop = kwargs.pop('chop', False)
mat = self
has_floats = any(v.has(Float) for v in self)
if has_floats:
try:
max_prec = max(term._prec for term in self._mat if isinstance(term, Float))
except ValueError:
# if no term in the matrix is explicitly a Float calling max()
# will throw a error so setting max_prec to default value of 53
max_prec = 53
# setting minimum max_dps to 15 to prevent loss of precision in
# matrix containing non evaluated expressions
max_dps = max(prec_to_dps(max_prec), 15)
def restore_floats(*args):
"""If `has_floats` is `True`, cast all `args` as
matrices of floats."""
if has_floats:
args = [m.evalf(prec=max_dps, chop=chop) for m in args]
if len(args) == 1:
return args[0]
return args
# cache calculations for some speedup
mat_cache = {}
def eig_mat(val, pow):
"""Cache computations of (self - val*I)**pow for quick
retrieval"""
if (val, pow) in mat_cache:
return mat_cache[(val, pow)]
if (val, pow - 1) in mat_cache:
mat_cache[(val, pow)] = mat_cache[(val, pow - 1)] * mat_cache[(val, 1)]
else:
mat_cache[(val, pow)] = (mat - val*self.eye(self.rows))**pow
return mat_cache[(val, pow)]
# helper functions
def nullity_chain(val):
"""Calculate the sequence [0, nullity(E), nullity(E**2), ...]
until it is constant where `E = self - val*I`"""
# mat.rank() is faster than computing the null space,
# so use the rank-nullity theorem
cols = self.cols
ret = [0]
nullity = cols - eig_mat(val, 1).rank()
i = 2
while nullity != ret[-1]:
ret.append(nullity)
nullity = cols - eig_mat(val, i).rank()
i += 1
return ret
def blocks_from_nullity_chain(d):
"""Return a list of the size of each Jordan block.
If d_n is the nullity of E**n, then the number
of Jordan blocks of size n is
2*d_n - d_(n-1) - d_(n+1)"""
# d[0] is always the number of columns, so skip past it
mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)]
# d is assumed to plateau with "d[ len(d) ] == d[-1]", so
# 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1)
end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]]
return mid + end
def pick_vec(small_basis, big_basis):
"""Picks a vector from big_basis that isn't in
the subspace spanned by small_basis"""
if len(small_basis) == 0:
return big_basis[0]
for v in big_basis:
_, pivots = self.hstack(*(small_basis + [v])).echelon_form(with_pivots=True)
if pivots[-1] == len(small_basis):
return v
# roots doesn't like Floats, so replace them with Rationals
if has_floats:
mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
# first calculate the jordan block structure
eigs = mat.eigenvals()
# make sure that we found all the roots by counting
# the algebraic multiplicity
if sum(m for m in eigs.values()) != mat.cols:
raise MatrixError("Could not compute eigenvalues for {}".format(mat))
# most matrices have distinct eigenvalues
# and so are diagonalizable. In this case, don't
# do extra work!
if len(eigs.keys()) == mat.cols:
blocks = list(sorted(eigs.keys(), key=default_sort_key))
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
jordan_basis = [eig_mat(eig, 1).nullspace()[0] for eig in blocks]
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
block_structure = []
for eig in sorted(eigs.keys(), key=default_sort_key):
chain = nullity_chain(eig)
block_sizes = blocks_from_nullity_chain(chain)
# if block_sizes == [a, b, c, ...], then the number of
# Jordan blocks of size 1 is a, of size 2 is b, etc.
# create an array that has (eig, block_size) with one
# entry for each block
size_nums = [(i+1, num) for i, num in enumerate(block_sizes)]
# we expect larger Jordan blocks to come earlier
size_nums.reverse()
block_structure.extend(
(eig, size) for size, num in size_nums for _ in range(num))
blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure)
jordan_mat = mat.diag(*blocks)
if not calc_transform:
return restore_floats(jordan_mat)
# For each generalized eigenspace, calculate a basis.
# We start by looking for a vector in null( (A - eig*I)**n )
# which isn't in null( (A - eig*I)**(n-1) ) where n is
# the size of the Jordan block
#
# Ideally we'd just loop through block_structure and
# compute each generalized eigenspace. However, this
# causes a lot of unneeded computation. Instead, we
# go through the eigenvalues separately, since we know
# their generalized eigenspaces must have bases that
# are linearly independent.
jordan_basis = []
for eig in sorted(eigs.keys(), key=default_sort_key):
eig_basis = []
for block_eig, size in block_structure:
if block_eig != eig:
continue
null_big = (eig_mat(eig, size)).nullspace()
null_small = (eig_mat(eig, size - 1)).nullspace()
# we want to pick something that is in the big basis
# and not the small, but also something that is independent
# of any other generalized eigenvectors from a different
# generalized eigenspace sharing the same eigenvalue.
vec = pick_vec(null_small + eig_basis, null_big)
new_vecs = [(eig_mat(eig, i))*vec for i in range(size)]
eig_basis.extend(new_vecs)
jordan_basis.extend(reversed(new_vecs))
basis_mat = mat.hstack(*jordan_basis)
return restore_floats(basis_mat, jordan_mat)
def left_eigenvects(self, **flags):
"""Returns left eigenvectors and eigenvalues.
This function returns the list of triples (eigenval, multiplicity,
basis) for the left eigenvectors. Options are the same as for
eigenvects(), i.e. the ``**flags`` arguments gets passed directly to
eigenvects().
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
>>> M.eigenvects()
[(-1, 1, [Matrix([
[-1],
[ 1],
[ 0]])]), (0, 1, [Matrix([
[ 0],
[-1],
[ 1]])]), (2, 1, [Matrix([
[2/3],
[1/3],
[ 1]])])]
>>> M.left_eigenvects()
[(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2,
1, [Matrix([[1, 1, 1]])])]
"""
eigs = self.transpose().eigenvects(**flags)
return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs]
def singular_values(self):
"""Compute the singular values of a Matrix
Examples
========
>>> from sympy import Matrix, Symbol
>>> x = Symbol('x', real=True)
>>> A = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
>>> A.singular_values()
[sqrt(x**2 + 1), 1, 0]
See Also
========
condition_number
"""
mat = self
# Compute eigenvalues of A.H A
valmultpairs = (mat.H * mat).eigenvals()
# Expands result from eigenvals into a simple list
vals = []
for k, v in valmultpairs.items():
vals += [sqrt(k)] * v # dangerous! same k in several spots!
# sort them in descending order
vals.sort(reverse=True, key=default_sort_key)
return vals
class MatrixCalculus(MatrixCommon):
"""Provides calculus-related matrix operations."""
def diff(self, *args, **kwargs):
"""Calculate the derivative of each element in the matrix.
``args`` will be passed to the ``integrate`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.diff(x)
Matrix([
[1, 0],
[0, 0]])
See Also
========
integrate
limit
"""
# XXX this should be handled here rather than in Derivative
from sympy import Derivative
kwargs.setdefault('evaluate', True)
deriv = Derivative(self, *args, evaluate=True)
if not isinstance(self, Basic):
return deriv.as_mutable()
else:
return deriv
def _eval_derivative(self, arg):
return self.applyfunc(lambda x: x.diff(arg))
def _accept_eval_derivative(self, s):
return s._visit_eval_derivative_array(self)
def _visit_eval_derivative_scalar(self, base):
# Types are (base: scalar, self: matrix)
return self.applyfunc(lambda x: base.diff(x))
def _visit_eval_derivative_array(self, base):
# Types are (base: array/matrix, self: matrix)
from sympy import derive_by_array
return derive_by_array(base, self)
def integrate(self, *args):
"""Integrate each element of the matrix. ``args`` will
be passed to the ``integrate`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.integrate((x, ))
Matrix([
[x**2/2, x*y],
[ x, 0]])
>>> M.integrate((x, 0, 2))
Matrix([
[2, 2*y],
[2, 0]])
See Also
========
limit
diff
"""
return self.applyfunc(lambda x: x.integrate(*args))
def jacobian(self, X):
"""Calculates the Jacobian matrix (derivative of a vector-valued function).
Parameters
==========
self : vector of expressions representing functions f_i(x_1, ..., x_n).
X : set of x_i's in order, it can be a list or a Matrix
Both self and X can be a row or a column matrix in any order
(i.e., jacobian() should always work).
Examples
========
>>> from sympy import sin, cos, Matrix
>>> from sympy.abc import rho, phi
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
>>> Y = Matrix([rho, phi])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0]])
>>> X = Matrix([rho*cos(phi), rho*sin(phi)])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)]])
See Also
========
hessian
wronskian
"""
if not isinstance(X, MatrixBase):
X = self._new(X)
# Both X and self can be a row or a column matrix, so we need to make
# sure all valid combinations work, but everything else fails:
if self.shape[0] == 1:
m = self.shape[1]
elif self.shape[1] == 1:
m = self.shape[0]
else:
raise TypeError("self must be a row or a column matrix")
if X.shape[0] == 1:
n = X.shape[1]
elif X.shape[1] == 1:
n = X.shape[0]
else:
raise TypeError("X must be a row or a column matrix")
# m is the number of functions and n is the number of variables
# computing the Jacobian is now easy:
return self._new(m, n, lambda j, i: self[j].diff(X[i]))
def limit(self, *args):
"""Calculate the limit of each element in the matrix.
``args`` will be passed to the ``limit`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([
[2, y],
[1, 0]])
See Also
========
integrate
diff
"""
return self.applyfunc(lambda x: x.limit(*args))
# https://github.com/sympy/sympy/pull/12854
class MatrixDeprecated(MatrixCommon):
"""A class to house deprecated matrix methods."""
def _legacy_array_dot(self, b):
"""Compatibility function for deprecated behavior of ``matrix.dot(vector)``
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if mat.cols == b.rows:
if b.cols != 1:
mat = mat.T
b = b.T
prod = flatten((mat * b).tolist())
return prod
if mat.cols == b.cols:
return mat.dot(b.T)
elif mat.rows == b.rows:
return mat.T.dot(b)
else:
raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (
self.shape, b.shape))
def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify):
return self.charpoly(x=x)
def berkowitz_det(self):
"""Computes determinant using Berkowitz method.
See Also
========
det
berkowitz
"""
return self.det(method='berkowitz')
def berkowitz_eigenvals(self, **flags):
"""Computes eigenvalues of a Matrix using Berkowitz method.
See Also
========
berkowitz
"""
return self.eigenvals(**flags)
def berkowitz_minors(self):
"""Computes principal minors using Berkowitz method.
See Also
========
berkowitz
"""
sign, minors = S.One, []
for poly in self.berkowitz():
minors.append(sign * poly[-1])
sign = -sign
return tuple(minors)
def berkowitz(self):
from sympy.matrices import zeros
berk = ((1,),)
if not self:
return berk
if not self.is_square:
raise NonSquareMatrixError()
A, N = self, self.rows
transforms = [0] * (N - 1)
for n in range(N, 1, -1):
T, k = zeros(n + 1, n), n - 1
R, C = -A[k, :k], A[:k, k]
A, a = A[:k, :k], -A[k, k]
items = [C]
for i in range(0, n - 2):
items.append(A * items[i])
for i, B in enumerate(items):
items[i] = (R * B)[0, 0]
items = [S.One, a] + items
for i in range(n):
T[i:, i] = items[:n - i + 1]
transforms[k - 1] = T
polys = [self._new([S.One, -A[0, 0]])]
for i, T in enumerate(transforms):
polys.append(T * polys[i])
return berk + tuple(map(tuple, polys))
def cofactorMatrix(self, method="berkowitz"):
return self.cofactor_matrix(method=method)
def det_bareis(self):
return self.det(method='bareiss')
def det_bareiss(self):
"""Compute matrix determinant using Bareiss' fraction-free
algorithm which is an extension of the well known Gaussian
elimination method. This approach is best suited for dense
symbolic matrices and will result in a determinant with
minimal number of fractions. It means that less term
rewriting is needed on resulting formulae.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
berkowitz_det
"""
return self.det(method='bareiss')
def det_LU_decomposition(self):
"""Compute matrix determinant using LU decomposition
Note that this method fails if the LU decomposition itself
fails. In particular, if the matrix has no inverse this method
will fail.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
det_bareiss
berkowitz_det
"""
return self.det(method='lu')
def jordan_cell(self, eigenval, n):
return self.jordan_block(size=n, eigenvalue=eigenval)
def jordan_cells(self, calc_transformation=True):
P, J = self.jordan_form()
return P, J.get_diag_blocks()
def minorEntry(self, i, j, method="berkowitz"):
return self.minor(i, j, method=method)
def minorMatrix(self, i, j):
return self.minor_submatrix(i, j)
def permuteBkwd(self, perm):
"""Permute the rows of the matrix with the given permutation in reverse."""
return self.permute_rows(perm, direction='backward')
def permuteFwd(self, perm):
"""Permute the rows of the matrix with the given permutation."""
return self.permute_rows(perm, direction='forward')
class MatrixBase(MatrixDeprecated,
MatrixCalculus,
MatrixEigen,
MatrixCommon):
"""Base class for matrix objects."""
# Added just for numpy compatibility
__array_priority__ = 11
is_Matrix = True
_class_priority = 3
_sympify = staticmethod(sympify)
__hash__ = None # Mutable
# Defined here the same as on Basic.
# We don't define _repr_png_ here because it would add a large amount of
# data to any notebook containing SymPy expressions, without adding
# anything useful to the notebook. It can still enabled manually, e.g.,
# for the qtconsole, with init_printing().
def _repr_latex_(self):
"""
IPython/Jupyter LaTeX printing
To change the behavior of this (e.g., pass in some settings to LaTeX),
use init_printing(). init_printing() will also enable LaTeX printing
for built in numeric types like ints and container types that contain
SymPy objects, like lists and dictionaries of expressions.
"""
from sympy.printing.latex import latex
s = latex(self, mode='equation*')
s = s.strip('$')
return "$$%s$$" % s
_repr_latex_orig = _repr_latex_
def __array__(self, dtype=object):
from .dense import matrix2numpy
return matrix2numpy(self, dtype=dtype)
def __getattr__(self, attr):
if attr in ('diff', 'integrate', 'limit'):
def doit(*args):
item_doit = lambda item: getattr(item, attr)(*args)
return self.applyfunc(item_doit)
return doit
else:
raise AttributeError(
"%s has no attribute %s." % (self.__class__.__name__, attr))
def __len__(self):
"""Return the number of elements of self.
Implemented mainly so bool(Matrix()) == False.
"""
return self.rows * self.cols
def __mathml__(self):
mml = ""
for i in range(self.rows):
mml += "<matrixrow>"
for j in range(self.cols):
mml += self[i, j].__mathml__()
mml += "</matrixrow>"
return "<matrix>" + mml + "</matrix>"
# needed for python 2 compatibility
def __ne__(self, other):
return not self == other
def _matrix_pow_by_jordan_blocks(self, num):
from sympy.matrices import diag, MutableMatrix
from sympy import binomial
def jordan_cell_power(jc, n):
N = jc.shape[0]
l = jc[0, 0]
if l == 0 and (n < N - 1) != False:
raise ValueError("Matrix det == 0; not invertible")
elif l == 0 and N > 1 and n % 1 != 0:
raise ValueError("Non-integer power cannot be evaluated")
for i in range(N):
for j in range(N-i):
bn = binomial(n, i)
if isinstance(bn, binomial):
bn = bn._eval_expand_func()
jc[j, i+j] = l**(n-i)*bn
P, J = self.jordan_form()
jordan_cells = J.get_diag_blocks()
# Make sure jordan_cells matrices are mutable:
jordan_cells = [MutableMatrix(j) for j in jordan_cells]
for j in jordan_cells:
jordan_cell_power(j, num)
return self._new(P*diag(*jordan_cells)*P.inv())
def __repr__(self):
return sstr(self)
def __str__(self):
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
return "Matrix(%s)" % str(self.tolist())
def _diagonalize_clear_subproducts(self):
del self._is_symbolic
del self._is_symmetric
del self._eigenvects
def _format_str(self, printer=None):
if not printer:
from sympy.printing.str import StrPrinter
printer = StrPrinter()
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
if self.rows == 1:
return "Matrix([%s])" % self.table(printer, rowsep=',\n')
return "Matrix([\n%s])" % self.table(printer, rowsep=',\n')
@classmethod
def _handle_creation_inputs(cls, *args, **kwargs):
"""Return the number of rows, cols and flat matrix elements.
Examples
========
>>> from sympy import Matrix, I
Matrix can be constructed as follows:
* from a nested list of iterables
>>> Matrix( ((1, 2+I), (3, 4)) )
Matrix([
[1, 2 + I],
[3, 4]])
* from un-nested iterable (interpreted as a column)
>>> Matrix( [1, 2] )
Matrix([
[1],
[2]])
* from un-nested iterable with dimensions
>>> Matrix(1, 2, [1, 2] )
Matrix([[1, 2]])
* from no arguments (a 0 x 0 matrix)
>>> Matrix()
Matrix(0, 0, [])
* from a rule
>>> Matrix(2, 2, lambda i, j: i/(j + 1) )
Matrix([
[0, 0],
[1, 1/2]])
"""
from sympy.matrices.sparse import SparseMatrix
flat_list = None
if len(args) == 1:
# Matrix(SparseMatrix(...))
if isinstance(args[0], SparseMatrix):
return args[0].rows, args[0].cols, flatten(args[0].tolist())
# Matrix(Matrix(...))
elif isinstance(args[0], MatrixBase):
return args[0].rows, args[0].cols, args[0]._mat
# Matrix(MatrixSymbol('X', 2, 2))
elif isinstance(args[0], Basic) and args[0].is_Matrix:
return args[0].rows, args[0].cols, args[0].as_explicit()._mat
# Matrix(numpy.ones((2, 2)))
elif hasattr(args[0], "__array__"):
# NumPy array or matrix or some other object that implements
# __array__. So let's first use this method to get a
# numpy.array() and then make a python list out of it.
arr = args[0].__array__()
if len(arr.shape) == 2:
rows, cols = arr.shape[0], arr.shape[1]
flat_list = [cls._sympify(i) for i in arr.ravel()]
return rows, cols, flat_list
elif len(arr.shape) == 1:
rows, cols = arr.shape[0], 1
flat_list = [S.Zero] * rows
for i in range(len(arr)):
flat_list[i] = cls._sympify(arr[i])
return rows, cols, flat_list
else:
raise NotImplementedError(
"SymPy supports just 1D and 2D matrices")
# Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]])
elif is_sequence(args[0]) \
and not isinstance(args[0], DeferredVector):
in_mat = []
ncol = set()
for row in args[0]:
if isinstance(row, MatrixBase):
in_mat.extend(row.tolist())
if row.cols or row.rows: # only pay attention if it's not 0x0
ncol.add(row.cols)
else:
in_mat.append(row)
try:
ncol.add(len(row))
except TypeError:
ncol.add(1)
if len(ncol) > 1:
raise ValueError("Got rows of variable lengths: %s" %
sorted(list(ncol)))
cols = ncol.pop() if ncol else 0
rows = len(in_mat) if cols else 0
if rows:
if not is_sequence(in_mat[0]):
cols = 1
flat_list = [cls._sympify(i) for i in in_mat]
return rows, cols, flat_list
flat_list = []
for j in range(rows):
for i in range(cols):
flat_list.append(cls._sympify(in_mat[j][i]))
elif len(args) == 3:
rows = as_int(args[0])
cols = as_int(args[1])
if rows < 0 or cols < 0:
raise ValueError("Cannot create a {} x {} matrix. "
"Both dimensions must be positive".format(rows, cols))
# Matrix(2, 2, lambda i, j: i+j)
if len(args) == 3 and isinstance(args[2], Callable):
op = args[2]
flat_list = []
for i in range(rows):
flat_list.extend(
[cls._sympify(op(cls._sympify(i), cls._sympify(j)))
for j in range(cols)])
# Matrix(2, 2, [1, 2, 3, 4])
elif len(args) == 3 and is_sequence(args[2]):
flat_list = args[2]
if len(flat_list) != rows * cols:
raise ValueError(
'List length should be equal to rows*columns')
flat_list = [cls._sympify(i) for i in flat_list]
# Matrix()
elif len(args) == 0:
# Empty Matrix
rows = cols = 0
flat_list = []
if flat_list is None:
raise TypeError("Data type not understood")
return rows, cols, flat_list
def _setitem(self, key, value):
"""Helper to set value at location given by key.
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
from .dense import Matrix
is_slice = isinstance(key, slice)
i, j = key = self.key2ij(key)
is_mat = isinstance(value, MatrixBase)
if type(i) is slice or type(j) is slice:
if is_mat:
self.copyin_matrix(key, value)
return
if not isinstance(value, Expr) and is_sequence(value):
self.copyin_list(key, value)
return
raise ValueError('unexpected value: %s' % value)
else:
if (not is_mat and
not isinstance(value, Basic) and is_sequence(value)):
value = Matrix(value)
is_mat = True
if is_mat:
if is_slice:
key = (slice(*divmod(i, self.cols)),
slice(*divmod(j, self.cols)))
else:
key = (slice(i, i + value.rows),
slice(j, j + value.cols))
self.copyin_matrix(key, value)
else:
return i, j, self._sympify(value)
return
def add(self, b):
"""Return self + b """
return self + b
def cholesky_solve(self, rhs):
"""Solves Ax = B using Cholesky decomposition,
for a general square non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
hermitian = True
if self.is_symmetric():
hermitian = False
L = self._cholesky(hermitian=hermitian)
elif self.is_hermitian:
L = self._cholesky(hermitian=hermitian)
elif self.rows >= self.cols:
L = (self.H * self)._cholesky(hermitian=hermitian)
rhs = self.H * rhs
else:
raise NotImplementedError('Under-determined System. '
'Try M.gauss_jordan_solve(rhs)')
Y = L._lower_triangular_solve(rhs)
if hermitian:
return (L.H)._upper_triangular_solve(Y)
else:
return (L.T)._upper_triangular_solve(Y)
def cholesky(self, hermitian=True):
"""Returns the Cholesky-type decomposition L of a matrix A
such that L * L.H == A if hermitian flag is True,
or L * L.T == A if hermitian is False.
A must be a Hermitian positive-definite matrix if hermitian is True,
or a symmetric matrix if it is False.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T
Matrix([
[25, 15, -5],
[15, 18, 0],
[-5, 0, 11]])
The matrix can have complex entries:
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> A.cholesky()
Matrix([
[ 3, 0],
[-I, 2]])
>>> A.cholesky() * A.cholesky().H
Matrix([
[ 9, 3*I],
[-3*I, 5]])
Non-hermitian Cholesky-type decomposition may be useful when the
matrix is not positive-definite.
>>> A = Matrix([[1, 2], [2, 1]])
>>> L = A.cholesky(hermitian=False)
>>> L
Matrix([
[1, 0],
[2, sqrt(3)*I]])
>>> L*L.T == A
True
See Also
========
LDLdecomposition
LUdecomposition
QRdecomposition
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not self.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not self.is_symmetric():
raise ValueError("Matrix must be symmetric.")
return self._cholesky(hermitian=hermitian)
def condition_number(self):
"""Returns the condition number of a matrix.
This is the maximum singular value divided by the minimum singular value
Examples
========
>>> from sympy import Matrix, S
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]])
>>> A.condition_number()
100
See Also
========
singular_values
"""
if not self:
return S.Zero
singularvalues = self.singular_values()
return Max(*singularvalues) / Min(*singularvalues)
def copy(self):
"""
Returns the copy of a matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.copy()
Matrix([
[1, 2],
[3, 4]])
"""
return self._new(self.rows, self.cols, self._mat)
def cross(self, b):
r"""
Return the cross product of ``self`` and ``b`` relaxing the condition
of compatible dimensions: if each has 3 elements, a matrix of the
same type and shape as ``self`` will be returned. If ``b`` has the same
shape as ``self`` then common identities for the cross product (like
`a \times b = - b \times a`) will hold.
Parameters
==========
b : 3x1 or 1x3 Matrix
See Also
========
dot
multiply
multiply_elementwise
"""
if not is_sequence(b):
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
if not (self.rows * self.cols == b.rows * b.cols == 3):
raise ShapeError("Dimensions incorrect for cross product: %s x %s" %
((self.rows, self.cols), (b.rows, b.cols)))
else:
return self._new(self.rows, self.cols, (
(self[1] * b[2] - self[2] * b[1]),
(self[2] * b[0] - self[0] * b[2]),
(self[0] * b[1] - self[1] * b[0])))
@property
def D(self):
"""Return Dirac conjugate (if self.rows == 4).
Examples
========
>>> from sympy import Matrix, I, eye
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m.D
Matrix([[0, 1 - I, -2, -3]])
>>> m = (eye(4) + I*eye(4))
>>> m[0, 3] = 2
>>> m.D
Matrix([
[1 - I, 0, 0, 0],
[ 0, 1 - I, 0, 0],
[ 0, 0, -1 + I, 0],
[ 2, 0, 0, -1 + I]])
If the matrix does not have 4 rows an AttributeError will be raised
because this property is only defined for matrices with 4 rows.
>>> Matrix(eye(2)).D
Traceback (most recent call last):
...
AttributeError: Matrix has no attribute D.
See Also
========
conjugate: By-element conjugation
H: Hermite conjugation
"""
from sympy.physics.matrices import mgamma
if self.rows != 4:
# In Python 3.2, properties can only return an AttributeError
# so we can't raise a ShapeError -- see commit which added the
# first line of this inline comment. Also, there is no need
# for a message since MatrixBase will raise the AttributeError
raise AttributeError
return self.H * mgamma(0)
def diagonal_solve(self, rhs):
"""Solves Ax = B efficiently, where A is a diagonal Matrix,
with non-zero diagonal entries.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.diagonal_solve(B) == B/2
True
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_diagonal:
raise TypeError("Matrix should be diagonal")
if rhs.rows != self.rows:
raise TypeError("Size mis-match")
return self._diagonal_solve(rhs)
def dot(self, b, hermitian=None, conjugate_convention=None):
"""Return the dot or inner product of two vectors of equal length.
Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b``
must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n.
A scalar is returned.
By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are
complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``)
to compute the hermitian inner product.
Possible kwargs are ``hermitian`` and ``conjugate_convention``.
If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``,
the conjugate of the first vector (``self``) is used. If ``"right"``
or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> v = Matrix([1, 1, 1])
>>> M.row(0).dot(v)
6
>>> M.col(0).dot(v)
12
>>> v = [3, 2, 1]
>>> M.row(0).dot(v)
10
>>> from sympy import I
>>> q = Matrix([1*I, 1*I, 1*I])
>>> q.dot(q, hermitian=False)
-3
>>> q.dot(q, hermitian=True)
3
>>> q1 = Matrix([1, 1, 1*I])
>>> q.dot(q1, hermitian=True, conjugate_convention="maths")
1 - 2*I
>>> q.dot(q1, hermitian=True, conjugate_convention="physics")
1 + 2*I
See Also
========
cross
multiply
multiply_elementwise
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if (1 not in mat.shape) or (1 not in b.shape) :
SymPyDeprecationWarning(
feature="Dot product of non row/column vectors",
issue=13815,
deprecated_since_version="1.2",
useinstead="* to take matrix products").warn()
return mat._legacy_array_dot(b)
if len(mat) != len(b):
raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape))
n = len(mat)
if mat.shape != (1, n):
mat = mat.reshape(1, n)
if b.shape != (n, 1):
b = b.reshape(n, 1)
# Now ``mat`` is a row vector and ``b`` is a column vector.
# If it so happens that only conjugate_convention is passed
# then automatically set hermitian to True. If only hermitian
# is true but no conjugate_convention is not passed then
# automatically set it to ``"maths"``
if conjugate_convention is not None and hermitian is None:
hermitian = True
if hermitian and conjugate_convention is None:
conjugate_convention = "maths"
if hermitian == True:
if conjugate_convention in ("maths", "left", "math"):
mat = mat.conjugate()
elif conjugate_convention in ("physics", "right"):
b = b.conjugate()
else:
raise ValueError("Unknown conjugate_convention was entered."
" conjugate_convention must be one of the"
" following: math, maths, left, physics or right.")
return (mat * b)[0]
def dual(self):
"""Returns the dual of a matrix, which is:
`(1/2)*levicivita(i, j, k, l)*M(k, l)` summed over indices `k` and `l`
Since the levicivita method is anti_symmetric for any pairwise
exchange of indices, the dual of a symmetric matrix is the zero
matrix. Strictly speaking the dual defined here assumes that the
'matrix' `M` is a contravariant anti_symmetric second rank tensor,
so that the dual is a covariant second rank tensor.
"""
from sympy import LeviCivita
from sympy.matrices import zeros
M, n = self[:, :], self.rows
work = zeros(n)
if self.is_symmetric():
return work
for i in range(1, n):
for j in range(1, n):
acum = 0
for k in range(1, n):
acum += LeviCivita(i, j, 0, k) * M[0, k]
work[i, j] = acum
work[j, i] = -acum
for l in range(1, n):
acum = 0
for a in range(1, n):
for b in range(1, n):
acum += LeviCivita(0, l, a, b) * M[a, b]
acum /= 2
work[0, l] = -acum
work[l, 0] = acum
return work
def exp(self):
"""Return the exponentiation of a square matrix."""
if not self.is_square:
raise NonSquareMatrixError(
"Exponentiation is valid only for square matrices")
try:
P, J = self.jordan_form()
cells = J.get_diag_blocks()
except MatrixError:
raise NotImplementedError(
"Exponentiation is implemented only for matrices for which the Jordan normal form can be computed")
def _jblock_exponential(b):
# This function computes the matrix exponential for one single Jordan block
nr = b.rows
l = b[0, 0]
if nr == 1:
res = exp(l)
else:
from sympy import eye
# extract the diagonal part
d = b[0, 0] * eye(nr)
# and the nilpotent part
n = b - d
# compute its exponential
nex = eye(nr)
for i in range(1, nr):
nex = nex + n ** i / factorial(i)
# combine the two parts
res = exp(b[0, 0]) * nex
return (res)
blocks = list(map(_jblock_exponential, cells))
from sympy.matrices import diag
from sympy import re
eJ = diag(*blocks)
# n = self.rows
ret = P * eJ * P.inv()
if all(value.is_real for value in self.values()):
return type(self)(re(ret))
else:
return type(self)(ret)
def gauss_jordan_solve(self, b, freevar=False):
"""
Solves Ax = b using Gauss Jordan elimination.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, it will
be returned parametrically. If no solutions exist, It will throw
ValueError.
Parameters
==========
b : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
freevar : List
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
values of free variables. Then the index of the free variables
in the solutions (column Matrix) will be returned by freevar, if
the flag `freevar` is set to `True`.
Returns
=======
x : Matrix
The matrix that will satisfy Ax = B. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
params : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
parameters. These arbitrary parameters are returned as params
Matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> b = Matrix([7, 12, 4])
>>> sol, params = A.gauss_jordan_solve(b)
>>> sol
Matrix([
[-2*tau0 - 3*tau1 + 2],
[ tau0],
[ 2*tau1 + 5],
[ tau1]])
>>> params
Matrix([
[tau0],
[tau1]])
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> b = Matrix([3, 6, 9])
>>> sol, params = A.gauss_jordan_solve(b)
>>> sol
Matrix([
[-1],
[ 2],
[ 0]])
>>> params
Matrix(0, 1, [])
See Also
========
lower_triangular_solve
upper_triangular_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
References
==========
.. [1] https://en.wikipedia.org/wiki/Gaussian_elimination
"""
from sympy.matrices import Matrix, zeros
aug = self.hstack(self.copy(), b.copy())
row, col = aug[:, :-1].shape
# solve by reduced row echelon form
A, pivots = aug.rref(simplify=True)
A, v = A[:, :-1], A[:, -1]
pivots = list(filter(lambda p: p < col, pivots))
rank = len(pivots)
# Bring to block form
permutation = Matrix(range(col)).T
A = A.vstack(A, permutation)
for i, c in enumerate(pivots):
A.col_swap(i, c)
A, permutation = A[:-1, :], A[-1, :]
# check for existence of solutions
# rank of aug Matrix should be equal to rank of coefficient matrix
if not v[rank:, 0].is_zero:
raise ValueError("Linear system has no solution")
# Get index of free symbols (free parameters)
free_var_index = permutation[
len(pivots):] # non-pivots columns are free variables
# Free parameters
# what are current unnumbered free symbol names?
name = _uniquely_named_symbol('tau', aug,
compare=lambda i: str(i).rstrip('1234567890')).name
gen = numbered_symbols(name)
tau = Matrix([next(gen) for k in range(col - rank)]).reshape(col - rank, 1)
# Full parametric solution
V = A[:rank, rank:]
vt = v[:rank, 0]
free_sol = tau.vstack(vt - V * tau, tau)
# Undo permutation
sol = zeros(col, 1)
for k, v in enumerate(free_sol):
sol[permutation[k], 0] = v
if freevar:
return sol, tau, free_var_index
else:
return sol, tau
def inv_mod(self, m):
r"""
Returns the inverse of the matrix `K` (mod `m`), if it exists.
Method to find the matrix inverse of `K` (mod `m`) implemented in this function:
* Compute `\mathrm{adj}(K) = \mathrm{cof}(K)^t`, the adjoint matrix of `K`.
* Compute `r = 1/\mathrm{det}(K) \pmod m`.
* `K^{-1} = r\cdot \mathrm{adj}(K) \pmod m`.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.inv_mod(5)
Matrix([
[3, 1],
[4, 2]])
>>> A.inv_mod(3)
Matrix([
[1, 1],
[0, 1]])
"""
if not self.is_square:
raise NonSquareMatrixError()
N = self.cols
det_K = self.det()
det_inv = None
try:
det_inv = mod_inverse(det_K, m)
except ValueError:
raise ValueError('Matrix is not invertible (mod %d)' % m)
K_adj = self.adjugate()
K_inv = self.__class__(N, N,
[det_inv * K_adj[i, j] % m for i in range(N) for
j in range(N)])
return K_inv
def inverse_ADJ(self, iszerofunc=_iszero):
"""Calculates the inverse using the adjugate matrix and a determinant.
See Also
========
inv
inverse_LU
inverse_GE
"""
if not self.is_square:
raise NonSquareMatrixError("A Matrix must be square to invert.")
d = self.det(method='berkowitz')
zero = d.equals(0)
if zero is None:
# if equals() can't decide, will rref be able to?
ok = self.rref(simplify=True)[0]
zero = any(iszerofunc(ok[j, j]) for j in range(ok.rows))
if zero:
raise ValueError("Matrix det == 0; not invertible.")
return self.adjugate() / d
def inverse_GE(self, iszerofunc=_iszero):
"""Calculates the inverse using Gaussian elimination.
See Also
========
inv
inverse_LU
inverse_ADJ
"""
from .dense import Matrix
if not self.is_square:
raise NonSquareMatrixError("A Matrix must be square to invert.")
big = Matrix.hstack(self.as_mutable(), Matrix.eye(self.rows))
red = big.rref(iszerofunc=iszerofunc, simplify=True)[0]
if any(iszerofunc(red[j, j]) for j in range(red.rows)):
raise ValueError("Matrix det == 0; not invertible.")
return self._new(red[:, big.rows:])
def inverse_LU(self, iszerofunc=_iszero):
"""Calculates the inverse using LU decomposition.
See Also
========
inv
inverse_GE
inverse_ADJ
"""
if not self.is_square:
raise NonSquareMatrixError()
ok = self.rref(simplify=True)[0]
if any(iszerofunc(ok[j, j]) for j in range(ok.rows)):
raise ValueError("Matrix det == 0; not invertible.")
return self.LUsolve(self.eye(self.rows), iszerofunc=_iszero)
def inv(self, method=None, **kwargs):
"""
Return the inverse of a matrix.
CASE 1: If the matrix is a dense matrix.
Return the matrix inverse using the method indicated (default
is Gauss elimination).
Parameters
==========
method : ('GE', 'LU', or 'ADJ')
Notes
=====
According to the ``method`` keyword, it calls the appropriate method:
GE .... inverse_GE(); default
LU .... inverse_LU()
ADJ ... inverse_ADJ()
See Also
========
inverse_LU
inverse_GE
inverse_ADJ
Raises
------
ValueError
If the determinant of the matrix is zero.
CASE 2: If the matrix is a sparse matrix.
Return the matrix inverse using Cholesky or LDL (default).
kwargs
======
method : ('CH', 'LDL')
Notes
=====
According to the ``method`` keyword, it calls the appropriate method:
LDL ... inverse_LDL(); default
CH .... inverse_CH()
Raises
------
ValueError
If the determinant of the matrix is zero.
"""
if not self.is_square:
raise NonSquareMatrixError()
if method is not None:
kwargs['method'] = method
return self._eval_inverse(**kwargs)
def is_nilpotent(self):
"""Checks if a matrix is nilpotent.
A matrix B is nilpotent if for some integer k, B**k is
a zero matrix.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
True
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
False
"""
if not self:
return True
if not self.is_square:
raise NonSquareMatrixError(
"Nilpotency is valid only for square matrices")
x = _uniquely_named_symbol('x', self)
p = self.charpoly(x)
if p.args[0] == x ** self.rows:
return True
return False
def key2bounds(self, keys):
"""Converts a key with potentially mixed types of keys (integer and slice)
into a tuple of ranges and raises an error if any index is out of self's
range.
See Also
========
key2ij
"""
from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py
islice, jslice = [isinstance(k, slice) for k in keys]
if islice:
if not self.rows:
rlo = rhi = 0
else:
rlo, rhi = keys[0].indices(self.rows)[:2]
else:
rlo = a2idx_(keys[0], self.rows)
rhi = rlo + 1
if jslice:
if not self.cols:
clo = chi = 0
else:
clo, chi = keys[1].indices(self.cols)[:2]
else:
clo = a2idx_(keys[1], self.cols)
chi = clo + 1
return rlo, rhi, clo, chi
def key2ij(self, key):
"""Converts key into canonical form, converting integers or indexable
items into valid integers for self's range or returning slices
unchanged.
See Also
========
key2bounds
"""
from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py
if is_sequence(key):
if not len(key) == 2:
raise TypeError('key must be a sequence of length 2')
return [a2idx_(i, n) if not isinstance(i, slice) else i
for i, n in zip(key, self.shape)]
elif isinstance(key, slice):
return key.indices(len(self))[:2]
else:
return divmod(a2idx_(key, len(self)), self.cols)
def LDLdecomposition(self, hermitian=True):
"""Returns the LDL Decomposition (L, D) of matrix A,
such that L * D * L.H == A if hermitian flag is True, or
L * D * L.T == A if hermitian is False.
This method eliminates the use of square root.
Further this ensures that all the diagonal entries of L are 1.
A must be a Hermitian positive-definite matrix if hermitian is True,
or a symmetric matrix otherwise.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T * A.inv() == eye(A.rows)
True
The matrix can have complex entries:
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0],
[-I/3, 1]])
>>> D
Matrix([
[9, 0],
[0, 4]])
>>> L*D*L.H == A
True
See Also
========
cholesky
LUdecomposition
QRdecomposition
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not self.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not self.is_symmetric():
raise ValueError("Matrix must be symmetric.")
return self._LDLdecomposition(hermitian=hermitian)
def LDLsolve(self, rhs):
"""Solves Ax = B using LDL decomposition,
for a general square and non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.LDLsolve(B) == B/2
True
See Also
========
LDLdecomposition
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LUsolve
QRsolve
pinv_solve
"""
hermitian = True
if self.is_symmetric():
hermitian = False
L, D = self.LDLdecomposition(hermitian=hermitian)
elif self.is_hermitian:
L, D = self.LDLdecomposition(hermitian=hermitian)
elif self.rows >= self.cols:
L, D = (self.H * self).LDLdecomposition(hermitian=hermitian)
rhs = self.H * rhs
else:
raise NotImplementedError('Under-determined System. '
'Try M.gauss_jordan_solve(rhs)')
Y = L._lower_triangular_solve(rhs)
Z = D._diagonal_solve(Y)
if hermitian:
return (L.H)._upper_triangular_solve(Z)
else:
return (L.T)._upper_triangular_solve(Z)
def lower_triangular_solve(self, rhs):
"""Solves Ax = B, where A is a lower triangular matrix.
See Also
========
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != self.rows:
raise ShapeError("Matrices size mismatch.")
if not self.is_lower:
raise ValueError("Matrix must be lower triangular.")
return self._lower_triangular_solve(rhs)
def LUdecomposition(self,
iszerofunc=_iszero,
simpfunc=None,
rankcheck=False):
"""Returns (L, U, perm) where L is a lower triangular matrix with unit
diagonal, U is an upper triangular matrix, and perm is a list of row
swap index pairs. If A is the original matrix, then
A = (L*U).permuteBkwd(perm), and the row permutation matrix P such
that P*A = L*U can be computed by P=eye(A.row).permuteFwd(perm).
See documentation for LUCombined for details about the keyword argument
rankcheck, iszerofunc, and simpfunc.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[4, 3], [6, 3]])
>>> L, U, _ = a.LUdecomposition()
>>> L
Matrix([
[ 1, 0],
[3/2, 1]])
>>> U
Matrix([
[4, 3],
[0, -3/2]])
See Also
========
cholesky
LDLdecomposition
QRdecomposition
LUdecomposition_Simple
LUdecompositionFF
LUsolve
"""
combined, p = self.LUdecomposition_Simple(iszerofunc=iszerofunc,
simpfunc=simpfunc,
rankcheck=rankcheck)
# L is lower triangular self.rows x self.rows
# U is upper triangular self.rows x self.cols
# L has unit diagonal. For each column in combined, the subcolumn
# below the diagonal of combined is shared by L.
# If L has more columns than combined, then the remaining subcolumns
# below the diagonal of L are zero.
# The upper triangular portion of L and combined are equal.
def entry_L(i, j):
if i < j:
# Super diagonal entry
return S.Zero
elif i == j:
return S.One
elif j < combined.cols:
return combined[i, j]
# Subdiagonal entry of L with no corresponding
# entry in combined
return S.Zero
def entry_U(i, j):
return S.Zero if i > j else combined[i, j]
L = self._new(combined.rows, combined.rows, entry_L)
U = self._new(combined.rows, combined.cols, entry_U)
return L, U, p
def LUdecomposition_Simple(self,
iszerofunc=_iszero,
simpfunc=None,
rankcheck=False):
"""Compute an lu decomposition of m x n matrix A, where P*A = L*U
* L is m x m lower triangular with unit diagonal
* U is m x n upper triangular
* P is an m x m permutation matrix
Returns an m x n matrix lu, and an m element list perm where each
element of perm is a pair of row exchange indices.
The factors L and U are stored in lu as follows:
The subdiagonal elements of L are stored in the subdiagonal elements
of lu, that is lu[i, j] = L[i, j] whenever i > j.
The elements on the diagonal of L are all 1, and are not explicitly
stored.
U is stored in the upper triangular portion of lu, that is
lu[i ,j] = U[i, j] whenever i <= j.
The output matrix can be visualized as:
Matrix([
[u, u, u, u],
[l, u, u, u],
[l, l, u, u],
[l, l, l, u]])
where l represents a subdiagonal entry of the L factor, and u
represents an entry from the upper triangular entry of the U
factor.
perm is a list row swap index pairs such that if A is the original
matrix, then A = (L*U).permuteBkwd(perm), and the row permutation
matrix P such that ``P*A = L*U`` can be computed by
``P=eye(A.row).permuteFwd(perm)``.
The keyword argument rankcheck determines if this function raises a
ValueError when passed a matrix whose rank is strictly less than
min(num rows, num cols). The default behavior is to decompose a rank
deficient matrix. Pass rankcheck=True to raise a
ValueError instead. (This mimics the previous behavior of this function).
The keyword arguments iszerofunc and simpfunc are used by the pivot
search algorithm.
iszerofunc is a callable that returns a boolean indicating if its
input is zero, or None if it cannot make the determination.
simpfunc is a callable that simplifies its input.
The default is simpfunc=None, which indicate that the pivot search
algorithm should not attempt to simplify any candidate pivots.
If simpfunc fails to simplify its input, then it must return its input
instead of a copy.
When a matrix contains symbolic entries, the pivot search algorithm
differs from the case where every entry can be categorized as zero or
nonzero.
The algorithm searches column by column through the submatrix whose
top left entry coincides with the pivot position.
If it exists, the pivot is the first entry in the current search
column that iszerofunc guarantees is nonzero.
If no such candidate exists, then each candidate pivot is simplified
if simpfunc is not None.
The search is repeated, with the difference that a candidate may be
the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero.
In the second search the pivot is the first candidate that
iszerofunc can guarantee is nonzero.
If no such candidate exists, then the pivot is the first candidate
for which iszerofunc returns None.
If no such candidate exists, then the search is repeated in the next
column to the right.
The pivot search algorithm differs from the one in `rref()`, which
relies on ``_find_reasonable_pivot()``.
Future versions of ``LUdecomposition_simple()`` may use
``_find_reasonable_pivot()``.
See Also
========
LUdecomposition
LUdecompositionFF
LUsolve
"""
if rankcheck:
# https://github.com/sympy/sympy/issues/9796
pass
if self.rows == 0 or self.cols == 0:
# Define LU decomposition of a matrix with no entries as a matrix
# of the same dimensions with all zero entries.
return self.zeros(self.rows, self.cols), []
lu = self.as_mutable()
row_swaps = []
pivot_col = 0
for pivot_row in range(0, lu.rows - 1):
# Search for pivot. Prefer entry that iszeropivot determines
# is nonzero, over entry that iszeropivot cannot guarantee
# is zero.
# XXX `_find_reasonable_pivot` uses slow zero testing. Blocked by bug #10279
# Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc
# to _find_reasonable_pivot().
# In pass 3 of _find_reasonable_pivot(), the predicate in `if x.equals(S.Zero):`
# calls sympy.simplify(), and not the simplification function passed in via
# the keyword argument simpfunc.
iszeropivot = True
while pivot_col != self.cols and iszeropivot:
sub_col = (lu[r, pivot_col] for r in range(pivot_row, self.rows))
pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\
_find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc)
iszeropivot = pivot_value is None
if iszeropivot:
# All candidate pivots in this column are zero.
# Proceed to next column.
pivot_col += 1
if rankcheck and pivot_col != pivot_row:
# All entries including and below the pivot position are
# zero, which indicates that the rank of the matrix is
# strictly less than min(num rows, num cols)
# Mimic behavior of previous implementation, by throwing a
# ValueError.
raise ValueError("Rank of matrix is strictly less than"
" number of rows or columns."
" Pass keyword argument"
" rankcheck=False to compute"
" the LU decomposition of this matrix.")
candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset
if candidate_pivot_row is None and iszeropivot:
# If candidate_pivot_row is None and iszeropivot is True
# after pivot search has completed, then the submatrix
# below and to the right of (pivot_row, pivot_col) is
# all zeros, indicating that Gaussian elimination is
# complete.
return lu, row_swaps
# Update entries simplified during pivot search.
for offset, val in ind_simplified_pairs:
lu[pivot_row + offset, pivot_col] = val
if pivot_row != candidate_pivot_row:
# Row swap book keeping:
# Record which rows were swapped.
# Update stored portion of L factor by multiplying L on the
# left and right with the current permutation.
# Swap rows of U.
row_swaps.append([pivot_row, candidate_pivot_row])
# Update L.
lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \
lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row]
# Swap pivot row of U with candidate pivot row.
lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \
lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols]
# Introduce zeros below the pivot by adding a multiple of the
# pivot row to a row under it, and store the result in the
# row under it.
# Only entries in the target row whose index is greater than
# start_col may be nonzero.
start_col = pivot_col + 1
for row in range(pivot_row + 1, lu.rows):
# Store factors of L in the subcolumn below
# (pivot_row, pivot_row).
lu[row, pivot_row] =\
lu[row, pivot_col]/lu[pivot_row, pivot_col]
# Form the linear combination of the pivot row and the current
# row below the pivot row that zeros the entries below the pivot.
# Employing slicing instead of a loop here raises
# NotImplementedError: Cannot add Zero to MutableSparseMatrix
# in sympy/matrices/tests/test_sparse.py.
# c = pivot_row + 1 if pivot_row == pivot_col else pivot_col
for c in range(start_col, lu.cols):
lu[row, c] = lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c]
if pivot_row != pivot_col:
# matrix rank < min(num rows, num cols),
# so factors of L are not stored directly below the pivot.
# These entries are zero by construction, so don't bother
# computing them.
for row in range(pivot_row + 1, lu.rows):
lu[row, pivot_col] = S.Zero
pivot_col += 1
if pivot_col == lu.cols:
# All candidate pivots are zero implies that Gaussian
# elimination is complete.
return lu, row_swaps
return lu, row_swaps
def LUdecompositionFF(self):
"""Compute a fraction-free LU decomposition.
Returns 4 matrices P, L, D, U such that PA = L D**-1 U.
If the elements of the matrix belong to some integral domain I, then all
elements of L, D and U are guaranteed to belong to I.
**Reference**
- W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms
for LU and QR factors". Frontiers in Computer Science in China,
Vol 2, no. 1, pp. 67-80, 2008.
See Also
========
LUdecomposition
LUdecomposition_Simple
LUsolve
"""
from sympy.matrices import SparseMatrix
zeros = SparseMatrix.zeros
eye = SparseMatrix.eye
n, m = self.rows, self.cols
U, L, P = self.as_mutable(), eye(n), eye(n)
DD = zeros(n, n)
oldpivot = 1
for k in range(n - 1):
if U[k, k] == 0:
for kpivot in range(k + 1, n):
if U[kpivot, k]:
break
else:
raise ValueError("Matrix is not full rank")
U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:]
L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k]
P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :]
L[k, k] = Ukk = U[k, k]
DD[k, k] = oldpivot * Ukk
for i in range(k + 1, n):
L[i, k] = Uik = U[i, k]
for j in range(k + 1, m):
U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot
U[i, k] = 0
oldpivot = Ukk
DD[n - 1, n - 1] = oldpivot
return P, L, DD, U
def LUsolve(self, rhs, iszerofunc=_iszero):
"""Solve the linear system Ax = rhs for x where A = self.
This is for symbolic matrices, for real or complex ones use
mpmath.lu_solve or mpmath.qr_solve.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
QRsolve
pinv_solve
LUdecomposition
"""
if rhs.rows != self.rows:
raise ShapeError(
"`self` and `rhs` must have the same number of rows.")
m = self.rows
n = self.cols
if m < n:
raise NotImplementedError("Underdetermined systems not supported.")
A, perm = self.LUdecomposition_Simple(iszerofunc=_iszero)
b = rhs.permute_rows(perm).as_mutable()
# forward substitution, all diag entries are scaled to 1
for i in range(m):
for j in range(min(i, n)):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: x - y * scale)
# consistency check for overdetermined systems
if m > n:
for i in range(n, m):
for j in range(b.cols):
if not iszerofunc(b[i, j]):
raise ValueError("The system is inconsistent.")
b = b[0:n, :] # truncate zero rows if consistent
# backward substitution
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: x - y * scale)
scale = A[i, i]
b.row_op(i, lambda x, _: x / scale)
return rhs.__class__(b)
def multiply(self, b):
"""Returns self*b
See Also
========
dot
cross
multiply_elementwise
"""
return self * b
def normalized(self):
"""Return the normalized version of ``self``.
See Also
========
norm
"""
if self.rows != 1 and self.cols != 1:
raise ShapeError("A Matrix must be a vector to normalize.")
norm = self.norm()
out = self.applyfunc(lambda i: i / norm)
return out
def norm(self, ord=None):
"""Return the Norm of a Matrix or Vector.
In the simplest case this is the geometric size of the vector
Other norms can be specified by the ord parameter
===== ============================ ==========================
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm - does not exist
inf maximum row sum max(abs(x))
-inf -- min(abs(x))
1 maximum column sum as below
-1 -- as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other - does not exist sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
Examples
========
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo
>>> x = Symbol('x', real=True)
>>> v = Matrix([cos(x), sin(x)])
>>> trigsimp( v.norm() )
1
>>> v.norm(10)
(sin(x)**10 + cos(x)**10)**(1/10)
>>> A = Matrix([[1, 1], [1, 1]])
>>> A.norm(1) # maximum sum of absolute values of A is 2
2
>>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm)
2
>>> A.norm(-2) # Inverse spectral norm (smallest singular value)
0
>>> A.norm() # Frobenius Norm
2
>>> A.norm(oo) # Infinity Norm
2
>>> Matrix([1, -2]).norm(oo)
2
>>> Matrix([-1, 2]).norm(-oo)
1
See Also
========
normalized
"""
# Row or Column Vector Norms
vals = list(self.values()) or [0]
if self.rows == 1 or self.cols == 1:
if ord == 2 or ord is None: # Common case sqrt(<x, x>)
return sqrt(Add(*(abs(i) ** 2 for i in vals)))
elif ord == 1: # sum(abs(x))
return Add(*(abs(i) for i in vals))
elif ord == S.Infinity: # max(abs(x))
return Max(*[abs(i) for i in vals])
elif ord == S.NegativeInfinity: # min(abs(x))
return Min(*[abs(i) for i in vals])
# Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord)
# Note that while useful this is not mathematically a norm
try:
return Pow(Add(*(abs(i) ** ord for i in vals)), S(1) / ord)
except (NotImplementedError, TypeError):
raise ValueError("Expected order to be Number, Symbol, oo")
# Matrix Norms
else:
if ord == 1: # Maximum column sum
m = self.applyfunc(abs)
return Max(*[sum(m.col(i)) for i in range(m.cols)])
elif ord == 2: # Spectral Norm
# Maximum singular value
return Max(*self.singular_values())
elif ord == -2:
# Minimum singular value
return Min(*self.singular_values())
elif ord == S.Infinity: # Infinity Norm - Maximum row sum
m = self.applyfunc(abs)
return Max(*[sum(m.row(i)) for i in range(m.rows)])
elif (ord is None or isinstance(ord,
string_types) and ord.lower() in
['f', 'fro', 'frobenius', 'vector']):
# Reshape as vector and send back to norm function
return self.vec().norm(ord=2)
else:
raise NotImplementedError("Matrix Norms under development")
def pinv_solve(self, B, arbitrary_matrix=None):
"""Solve Ax = B using the Moore-Penrose pseudoinverse.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, one will
be returned based on the value of arbitrary_matrix. If no solutions
exist, the least-squares solution is returned.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
arbitrary_matrix : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of an arbitrary
matrix. This parameter may be set to a specific matrix to use
for that purpose; if so, it must be the same shape as x, with as
many rows as matrix A has columns, and as many columns as matrix
B. If left as None, an appropriate matrix containing dummy
symbols in the form of ``wn_m`` will be used, with n and m being
row and column position of each symbol.
Returns
=======
x : Matrix
The matrix that will satisfy Ax = B. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> B = Matrix([7, 8])
>>> A.pinv_solve(B)
Matrix([
[ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18],
[-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9],
[ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]])
>>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0]))
Matrix([
[-55/18],
[ 1/9],
[ 59/18]])
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
Notes
=====
This may return either exact solutions or least squares solutions.
To determine which, check ``A * A.pinv() * B == B``. It will be
True if exact solutions exist, and False if only a least-squares
solution exists. Be aware that the left hand side of that equation
may need to be simplified to correctly compare to the right hand
side.
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system
"""
from sympy.matrices import eye
A = self
A_pinv = self.pinv()
if arbitrary_matrix is None:
rows, cols = A.cols, B.cols
w = symbols('w:{0}_:{1}'.format(rows, cols), cls=Dummy)
arbitrary_matrix = self.__class__(cols, rows, w).T
return A_pinv * B + (eye(A.cols) - A_pinv * A) * arbitrary_matrix
def pinv(self):
"""Calculate the Moore-Penrose pseudoinverse of the matrix.
The Moore-Penrose pseudoinverse exists and is unique for any matrix.
If the matrix is invertible, the pseudoinverse is the same as the
inverse.
Examples
========
>>> from sympy import Matrix
>>> Matrix([[1, 2, 3], [4, 5, 6]]).pinv()
Matrix([
[-17/18, 4/9],
[ -1/9, 1/9],
[ 13/18, -2/9]])
See Also
========
inv
pinv_solve
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse
"""
A = self
AH = self.H
# Trivial case: pseudoinverse of all-zero matrix is its transpose.
if A.is_zero:
return AH
try:
if self.rows >= self.cols:
return (AH * A).inv() * AH
else:
return AH * (A * AH).inv()
except ValueError:
# Matrix is not full rank, so A*AH cannot be inverted.
pass
try:
# However, A*AH is Hermitian, so we can diagonalize it.
if self.rows >= self.cols:
P, D = (AH * A).diagonalize(normalize=True)
D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x)
return P * D_pinv * P.H * AH
else:
P, D = (A * AH).diagonalize(normalize=True)
D_pinv = D.applyfunc(lambda x: 0 if _iszero(x) else 1 / x)
return AH * P * D_pinv * P.H
except MatrixError:
raise NotImplementedError('pinv for rank-deficient matrices where diagonalization '
'of A.H*A fails is not supported yet.')
def print_nonzero(self, symb="X"):
"""Shows location of non-zero entries for fast shape lookup.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> m = Matrix(2, 3, lambda i, j: i*3+j)
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5]])
>>> m.print_nonzero()
[ XX]
[XXX]
>>> m = eye(4)
>>> m.print_nonzero("x")
[x ]
[ x ]
[ x ]
[ x]
"""
s = []
for i in range(self.rows):
line = []
for j in range(self.cols):
if self[i, j] == 0:
line.append(" ")
else:
line.append(str(symb))
s.append("[%s]" % ''.join(line))
print('\n'.join(s))
def project(self, v):
"""Return the projection of ``self`` onto the line containing ``v``.
Examples
========
>>> from sympy import Matrix, S, sqrt
>>> V = Matrix([sqrt(3)/2, S.Half])
>>> x = Matrix([[1, 0]])
>>> V.project(x)
Matrix([[sqrt(3)/2, 0]])
>>> V.project(-x)
Matrix([[sqrt(3)/2, 0]])
"""
return v * (self.dot(v) / v.dot(v))
def QRdecomposition(self):
"""Return Q, R where A = Q*R, Q is orthogonal and R is upper triangular.
Examples
========
This is the example from wikipedia:
>>> from sympy import Matrix
>>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[ 6/7, -69/175, -58/175],
[ 3/7, 158/175, 6/175],
[-2/7, 6/35, -33/35]])
>>> R
Matrix([
[14, 21, -14],
[ 0, 175, -70],
[ 0, 0, 35]])
>>> A == Q*R
True
QR factorization of an identity matrix:
>>> A = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> R
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
cholesky
LDLdecomposition
LUdecomposition
QRsolve
"""
cls = self.__class__
mat = self.as_mutable()
if not mat.rows >= mat.cols:
raise MatrixError(
"The number of rows must be greater than columns")
n = mat.rows
m = mat.cols
rank = n
row_reduced = mat.rref()[0]
for i in range(row_reduced.rows):
if row_reduced.row(i).norm() == 0:
rank -= 1
if not rank == mat.cols:
raise MatrixError("The rank of the matrix must match the columns")
Q, R = mat.zeros(n, m), mat.zeros(m)
for j in range(m): # for each column vector
tmp = mat[:, j] # take original v
for i in range(j):
# subtract the project of mat on new vector
tmp -= Q[:, i] * mat[:, j].dot(Q[:, i])
tmp.expand()
# normalize it
R[j, j] = tmp.norm()
Q[:, j] = tmp / R[j, j]
if Q[:, j].norm() != 1:
raise NotImplementedError(
"Could not normalize the vector %d." % j)
for i in range(j):
R[i, j] = Q[:, i].dot(mat[:, j])
return cls(Q), cls(R)
def QRsolve(self, b):
"""Solve the linear system 'Ax = b'.
'self' is the matrix 'A', the method argument is the vector
'b'. The method returns the solution vector 'x'. If 'b' is a
matrix, the system is solved for each column of 'b' and the
return value is a matrix of the same shape as 'b'.
This method is slower (approximately by a factor of 2) but
more stable for floating-point arithmetic than the LUsolve method.
However, LUsolve usually uses an exact arithmetic, so you don't need
to use QRsolve.
This is mainly for educational purposes and symbolic matrices, for real
(or complex) matrices use mpmath.qr_solve.
See Also
========
lower_triangular_solve
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
pinv_solve
QRdecomposition
"""
Q, R = self.as_mutable().QRdecomposition()
y = Q.T * b
# back substitution to solve R*x = y:
# We build up the result "backwards" in the vector 'x' and reverse it
# only in the end.
x = []
n = R.rows
for j in range(n - 1, -1, -1):
tmp = y[j, :]
for k in range(j + 1, n):
tmp -= R[j, k] * x[n - 1 - k]
x.append(tmp / R[j, j])
return self._new([row._mat for row in reversed(x)])
def solve_least_squares(self, rhs, method='CH'):
"""Return the least-square fit to the data.
By default the cholesky_solve routine is used (method='CH'); other
methods of matrix inversion can be used. To find out which are
available, see the docstring of the .inv() method.
Examples
========
>>> from sympy.matrices import Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = Matrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
if method == 'CH':
return self.cholesky_solve(rhs)
t = self.H
return (t * self).inv(method=method) * t * rhs
def solve(self, rhs, method='GJ'):
"""Return the unique soln making self*soln = rhs.
If there is not a unique solution then a ValueError will be raised. If `self` is not
square, a ValueError and a different routine for solving the system will be suggested.
When the method is GJ, the Gauss-Jordan elimination will be used. To use a different
method and to compute the solution via the inverse, use a method defined in the
.inv() docstring.
"""
if method == 'GJ':
try:
soln, param = self.gauss_jordan_solve(rhs)
if param:
raise ValueError("Matrix det == 0; not invertible. "
"Try `self.gauss_jordan_solve(rhs)` to obtain a parametric solution.")
except ValueError:
# raise same error as in inv:
self.zeros(1).inv()
return soln
else:
return self.inv(method=method)*rhs
def table(self, printer, rowstart='[', rowend=']', rowsep='\n',
colsep=', ', align='right'):
r"""
String form of Matrix as a table.
``printer`` is the printer to use for on the elements (generally
something like StrPrinter())
``rowstart`` is the string used to start each row (by default '[').
``rowend`` is the string used to end each row (by default ']').
``rowsep`` is the string used to separate rows (by default a newline).
``colsep`` is the string used to separate columns (by default ', ').
``align`` defines how the elements are aligned. Must be one of 'left',
'right', or 'center'. You can also use '<', '>', and '^' to mean the
same thing, respectively.
This is used by the string printer for Matrix.
Examples
========
>>> from sympy import Matrix
>>> from sympy.printing.str import StrPrinter
>>> M = Matrix([[1, 2], [-33, 4]])
>>> printer = StrPrinter()
>>> M.table(printer)
'[ 1, 2]\n[-33, 4]'
>>> print(M.table(printer))
[ 1, 2]
[-33, 4]
>>> print(M.table(printer, rowsep=',\n'))
[ 1, 2],
[-33, 4]
>>> print('[%s]' % M.table(printer, rowsep=',\n'))
[[ 1, 2],
[-33, 4]]
>>> print(M.table(printer, colsep=' '))
[ 1 2]
[-33 4]
>>> print(M.table(printer, align='center'))
[ 1 , 2]
[-33, 4]
>>> print(M.table(printer, rowstart='{', rowend='}'))
{ 1, 2}
{-33, 4}
"""
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return '[]'
# Build table of string representations of the elements
res = []
# Track per-column max lengths for pretty alignment
maxlen = [0] * self.cols
for i in range(self.rows):
res.append([])
for j in range(self.cols):
s = printer._print(self[i, j])
res[-1].append(s)
maxlen[j] = max(len(s), maxlen[j])
# Patch strings together
align = {
'left': 'ljust',
'right': 'rjust',
'center': 'center',
'<': 'ljust',
'>': 'rjust',
'^': 'center',
}[align]
for i, row in enumerate(res):
for j, elem in enumerate(row):
row[j] = getattr(elem, align)(maxlen[j])
res[i] = rowstart + colsep.join(row) + rowend
return rowsep.join(res)
def upper_triangular_solve(self, rhs):
"""Solves Ax = B, where A is an upper triangular matrix.
See Also
========
lower_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not self.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != self.rows:
raise TypeError("Matrix size mismatch.")
if not self.is_upper:
raise TypeError("Matrix is not upper triangular.")
return self._upper_triangular_solve(rhs)
def vech(self, diagonal=True, check_symmetry=True):
"""Return the unique elements of a symmetric Matrix as a one column matrix
by stacking the elements in the lower triangle.
Arguments:
diagonal -- include the diagonal cells of self or not
check_symmetry -- checks symmetry of self but not completely reliably
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 2], [2, 3]])
>>> m
Matrix([
[1, 2],
[2, 3]])
>>> m.vech()
Matrix([
[1],
[2],
[3]])
>>> m.vech(diagonal=False)
Matrix([[2]])
See Also
========
vec
"""
from sympy.matrices import zeros
c = self.cols
if c != self.rows:
raise ShapeError("Matrix must be square")
if check_symmetry:
self.simplify()
if self != self.transpose():
raise ValueError(
"Matrix appears to be asymmetric; consider check_symmetry=False")
count = 0
if diagonal:
v = zeros(c * (c + 1) // 2, 1)
for j in range(c):
for i in range(j, c):
v[count] = self[i, j]
count += 1
else:
v = zeros(c * (c - 1) // 2, 1)
for j in range(c):
for i in range(j + 1, c):
v[count] = self[i, j]
count += 1
return v
@deprecated(
issue=15109,
useinstead="from sympy.matrices.common import classof",
deprecated_since_version="1.3")
def classof(A, B):
from sympy.matrices.common import classof as classof_
return classof_(A, B)
@deprecated(
issue=15109,
deprecated_since_version="1.3",
useinstead="from sympy.matrices.common import a2idx")
def a2idx(j, n=None):
from sympy.matrices.common import a2idx as a2idx_
return a2idx_(j, n)
def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify):
""" Find the lowest index of an item in `col` that is
suitable for a pivot. If `col` consists only of
Floats, the pivot with the largest norm is returned.
Otherwise, the first element where `iszerofunc` returns
False is used. If `iszerofunc` doesn't return false,
items are simplified and retested until a suitable
pivot is found.
Returns a 4-tuple
(pivot_offset, pivot_val, assumed_nonzero, newly_determined)
where pivot_offset is the index of the pivot, pivot_val is
the (possibly simplified) value of the pivot, assumed_nonzero
is True if an assumption that the pivot was non-zero
was made without being proved, and newly_determined are
elements that were simplified during the process of pivot
finding."""
newly_determined = []
col = list(col)
# a column that contains a mix of floats and integers
# but at least one float is considered a numerical
# column, and so we do partial pivoting
if all(isinstance(x, (Float, Integer)) for x in col) and any(
isinstance(x, Float) for x in col):
col_abs = [abs(x) for x in col]
max_value = max(col_abs)
if iszerofunc(max_value):
# just because iszerofunc returned True, doesn't
# mean the value is numerically zero. Make sure
# to replace all entries with numerical zeros
if max_value != 0:
newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0]
return (None, None, False, newly_determined)
index = col_abs.index(max_value)
return (index, col[index], False, newly_determined)
# PASS 1 (iszerofunc directly)
possible_zeros = []
for i, x in enumerate(col):
is_zero = iszerofunc(x)
# is someone wrote a custom iszerofunc, it may return
# BooleanFalse or BooleanTrue instead of True or False,
# so use == for comparison instead of `is`
if is_zero == False:
# we found something that is definitely not zero
return (i, x, False, newly_determined)
possible_zeros.append(is_zero)
# by this point, we've found no certain non-zeros
if all(possible_zeros):
# if everything is definitely zero, we have
# no pivot
return (None, None, False, newly_determined)
# PASS 2 (iszerofunc after simplify)
# we haven't found any for-sure non-zeros, so
# go through the elements iszerofunc couldn't
# make a determination about and opportunistically
# simplify to see if we find something
for i, x in enumerate(col):
if possible_zeros[i] is not None:
continue
simped = simpfunc(x)
is_zero = iszerofunc(simped)
if is_zero == True or is_zero == False:
newly_determined.append((i, simped))
if is_zero == False:
return (i, simped, False, newly_determined)
possible_zeros[i] = is_zero
# after simplifying, some things that were recognized
# as zeros might be zeros
if all(possible_zeros):
# if everything is definitely zero, we have
# no pivot
return (None, None, False, newly_determined)
# PASS 3 (.equals(0))
# some expressions fail to simplify to zero, but
# `.equals(0)` evaluates to True. As a last-ditch
# attempt, apply `.equals` to these expressions
for i, x in enumerate(col):
if possible_zeros[i] is not None:
continue
if x.equals(S.Zero):
# `.iszero` may return False with
# an implicit assumption (e.g., `x.equals(0)`
# when `x` is a symbol), so only treat it
# as proved when `.equals(0)` returns True
possible_zeros[i] = True
newly_determined.append((i, S.Zero))
if all(possible_zeros):
return (None, None, False, newly_determined)
# at this point there is nothing that could definitely
# be a pivot. To maintain compatibility with existing
# behavior, we'll assume that an illdetermined thing is
# non-zero. We should probably raise a warning in this case
i = possible_zeros.index(None)
return (i, col[i], True, newly_determined)
def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None):
"""
Helper that computes the pivot value and location from a
sequence of contiguous matrix column elements. As a side effect
of the pivot search, this function may simplify some of the elements
of the input column. A list of these simplified entries and their
indices are also returned.
This function mimics the behavior of _find_reasonable_pivot(),
but does less work trying to determine if an indeterminate candidate
pivot simplifies to zero. This more naive approach can be much faster,
with the trade-off that it may erroneously return a pivot that is zero.
`col` is a sequence of contiguous column entries to be searched for
a suitable pivot.
`iszerofunc` is a callable that returns a Boolean that indicates
if its input is zero, or None if no such determination can be made.
`simpfunc` is a callable that simplifies its input. It must return
its input if it does not simplify its input. Passing in
`simpfunc=None` indicates that the pivot search should not attempt
to simplify any candidate pivots.
Returns a 4-tuple:
(pivot_offset, pivot_val, assumed_nonzero, newly_determined)
`pivot_offset` is the sequence index of the pivot.
`pivot_val` is the value of the pivot.
pivot_val and col[pivot_index] are equivalent, but will be different
when col[pivot_index] was simplified during the pivot search.
`assumed_nonzero` is a boolean indicating if the pivot cannot be
guaranteed to be zero. If assumed_nonzero is true, then the pivot
may or may not be non-zero. If assumed_nonzero is false, then
the pivot is non-zero.
`newly_determined` is a list of index-value pairs of pivot candidates
that were simplified during the pivot search.
"""
# indeterminates holds the index-value pairs of each pivot candidate
# that is neither zero or non-zero, as determined by iszerofunc().
# If iszerofunc() indicates that a candidate pivot is guaranteed
# non-zero, or that every candidate pivot is zero then the contents
# of indeterminates are unused.
# Otherwise, the only viable candidate pivots are symbolic.
# In this case, indeterminates will have at least one entry,
# and all but the first entry are ignored when simpfunc is None.
indeterminates = []
for i, col_val in enumerate(col):
col_val_is_zero = iszerofunc(col_val)
if col_val_is_zero == False:
# This pivot candidate is non-zero.
return i, col_val, False, []
elif col_val_is_zero is None:
# The candidate pivot's comparison with zero
# is indeterminate.
indeterminates.append((i, col_val))
if len(indeterminates) == 0:
# All candidate pivots are guaranteed to be zero, i.e. there is
# no pivot.
return None, None, False, []
if simpfunc is None:
# Caller did not pass in a simplification function that might
# determine if an indeterminate pivot candidate is guaranteed
# to be nonzero, so assume the first indeterminate candidate
# is non-zero.
return indeterminates[0][0], indeterminates[0][1], True, []
# newly_determined holds index-value pairs of candidate pivots
# that were simplified during the search for a non-zero pivot.
newly_determined = []
for i, col_val in indeterminates:
tmp_col_val = simpfunc(col_val)
if id(col_val) != id(tmp_col_val):
# simpfunc() simplified this candidate pivot.
newly_determined.append((i, tmp_col_val))
if iszerofunc(tmp_col_val) == False:
# Candidate pivot simplified to a guaranteed non-zero value.
return i, tmp_col_val, False, newly_determined
return indeterminates[0][0], indeterminates[0][1], True, newly_determined
|
4fab318c81229a4b70fa4be2eb16777715fed93ce5a96550e2582810e4186cc3
|
from __future__ import print_function, division
from sympy.core import Basic, S
from sympy.core.relational import Eq, Ne
from sympy.logic.boolalg import BooleanFunction
class Contains(BooleanFunction):
"""
Asserts that x is an element of the set S
Examples
========
>>> from sympy import Symbol, Integer, S
>>> from sympy.sets.contains import Contains
>>> Contains(Integer(2), S.Integers)
True
>>> Contains(Integer(-2), S.Naturals)
False
>>> i = Symbol('i', integer=True)
>>> Contains(i, S.Naturals)
Contains(i, Naturals)
References
==========
.. [1] https://en.wikipedia.org/wiki/Element_%28mathematics%29
"""
@classmethod
def eval(cls, x, s):
from sympy.sets.sets import Set
if not isinstance(x, Basic):
raise TypeError
if not isinstance(s, Set):
raise TypeError
ret = s.contains(x)
if not isinstance(ret, Contains) and (
ret in (S.true, S.false) or isinstance(ret, Set)):
return ret
@property
def binary_symbols(self):
return set().union(*[i.binary_symbols
for i in self.args[1].args
if i.is_Boolean or i.is_Symbol or
isinstance(i, (Eq, Ne))])
def as_set(self):
return self
|
95c42d0bb91b0879476167cbab00b786e6ad91a03addef6039da47602d2c546e
|
from __future__ import print_function, division
from itertools import product
from sympy.core.sympify import (_sympify, sympify, converter,
SympifyError)
from sympy.core.basic import Basic
from sympy.core.expr import Expr
from sympy.core.singleton import Singleton, S
from sympy.core.evalf import EvalfMixin
from sympy.core.logic import fuzzy_bool
from sympy.core.numbers import Float
from sympy.core.compatibility import (iterable, with_metaclass,
ordered, range, PY3)
from sympy.core.evaluate import global_evaluate
from sympy.core.function import FunctionClass
from sympy.core.mul import Mul
from sympy.core.relational import Eq, Ne
from sympy.core.symbol import Symbol, Dummy, _uniquely_named_symbol
from sympy.sets.contains import Contains
from sympy.utilities.iterables import sift
from sympy.utilities.misc import func_name, filldedent
from mpmath import mpi, mpf
from sympy.logic.boolalg import And, Or, Not, true, false
from sympy.utilities import subsets
from sympy.multipledispatch import dispatch
class Set(Basic):
"""
The base class for any kind of set.
This is not meant to be used directly as a container of items. It does not
behave like the builtin ``set``; see :class:`FiniteSet` for that.
Real intervals are represented by the :class:`Interval` class and unions of
sets by the :class:`Union` class. The empty set is represented by the
:class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
"""
is_number = False
is_iterable = False
is_interval = False
is_FiniteSet = False
is_Interval = False
is_ProductSet = False
is_Union = False
is_Intersection = None
is_EmptySet = None
is_UniversalSet = None
is_Complement = None
is_ComplexRegion = False
@staticmethod
def _infimum_key(expr):
"""
Return infimum (if possible) else S.Infinity.
"""
try:
infimum = expr.inf
assert infimum.is_comparable
except (NotImplementedError,
AttributeError, AssertionError, ValueError):
infimum = S.Infinity
return infimum
def union(self, other):
"""
Returns the union of 'self' and 'other'.
Examples
========
As a shortcut it is possible to use the '+' operator:
>>> from sympy import Interval, FiniteSet
>>> Interval(0, 1).union(Interval(2, 3))
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(0, 1) + Interval(2, 3)
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
Union(Interval.Lopen(1, 2), {3})
Similarly it is possible to use the '-' operator for set differences:
>>> Interval(0, 2) - Interval(0, 1)
Interval.Lopen(1, 2)
>>> Interval(1, 3) - FiniteSet(2)
Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
"""
return Union(self, other)
def intersect(self, other):
"""
Returns the intersection of 'self' and 'other'.
>>> from sympy import Interval
>>> Interval(1, 3).intersect(Interval(1, 2))
Interval(1, 2)
>>> from sympy import imageset, Lambda, symbols, S
>>> n, m = symbols('n m')
>>> a = imageset(Lambda(n, 2*n), S.Integers)
>>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
EmptySet()
"""
return Intersection(self, other)
def intersection(self, other):
"""
Alias for :meth:`intersect()`
"""
return self.intersect(other)
def is_disjoint(self, other):
"""
Returns True if 'self' and 'other' are disjoint
Examples
========
>>> from sympy import Interval
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
False
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Disjoint_sets
"""
return self.intersect(other) == S.EmptySet
def isdisjoint(self, other):
"""
Alias for :meth:`is_disjoint()`
"""
return self.is_disjoint(other)
def complement(self, universe):
r"""
The complement of 'self' w.r.t the given universe.
Examples
========
>>> from sympy import Interval, S
>>> Interval(0, 1).complement(S.Reals)
Union(Interval.open(-oo, 0), Interval.open(1, oo))
>>> Interval(0, 1).complement(S.UniversalSet)
UniversalSet() \ Interval(0, 1)
"""
return Complement(universe, self)
def _complement(self, other):
# this behaves as other - self
if isinstance(other, ProductSet):
# For each set consider it or it's complement
# We need at least one of the sets to be complemented
# Consider all 2^n combinations.
# We can conveniently represent these options easily using a
# ProductSet
# XXX: this doesn't work if the dimensions of the sets isn't same.
# A - B is essentially same as A if B has a different
# dimensionality than A
switch_sets = ProductSet(FiniteSet(o, o - s) for s, o in
zip(self.sets, other.sets))
product_sets = (ProductSet(*set) for set in switch_sets)
# Union of all combinations but this one
return Union(p for p in product_sets if p != other)
elif isinstance(other, Interval):
if isinstance(self, Interval) or isinstance(self, FiniteSet):
return Intersection(other, self.complement(S.Reals))
elif isinstance(other, Union):
return Union(o - self for o in other.args)
elif isinstance(other, Complement):
return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
elif isinstance(other, EmptySet):
return S.EmptySet
elif isinstance(other, FiniteSet):
from sympy.utilities.iterables import sift
sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
# ignore those that are contained in self
return Union(FiniteSet(*(sifted[False])),
Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
if sifted[None] else S.EmptySet)
def symmetric_difference(self, other):
"""
Returns symmetric difference of `self` and `other`.
Examples
========
>>> from sympy import Interval, S
>>> Interval(1, 3).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(3, oo))
>>> Interval(1, 10).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(10, oo))
>>> from sympy import S, EmptySet
>>> S.Reals.symmetric_difference(EmptySet())
Reals
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
return SymmetricDifference(self, other)
def _symmetric_difference(self, other):
return Union(Complement(self, other), Complement(other, self))
@property
def inf(self):
"""
The infimum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).inf
0
>>> Union(Interval(0, 1), Interval(2, 3)).inf
0
"""
return self._inf
@property
def _inf(self):
raise NotImplementedError("(%s)._inf" % self)
@property
def sup(self):
"""
The supremum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).sup
1
>>> Union(Interval(0, 1), Interval(2, 3)).sup
3
"""
return self._sup
@property
def _sup(self):
raise NotImplementedError("(%s)._sup" % self)
def contains(self, other):
"""
Returns True if 'other' is contained in 'self' as an element.
As a shortcut it is possible to use the 'in' operator:
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).contains(0.5)
True
>>> 0.5 in Interval(0, 1)
True
"""
other = sympify(other, strict=True)
ret = sympify(self._contains(other))
if ret is None:
ret = Contains(other, self, evaluate=False)
return ret
def _contains(self, other):
raise NotImplementedError("(%s)._contains(%s)" % (self, other))
def is_subset(self, other):
"""
Returns True if 'self' is a subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
False
"""
if isinstance(other, Set):
return self.intersect(other) == self
else:
raise ValueError("Unknown argument '%s'" % other)
def issubset(self, other):
"""
Alias for :meth:`is_subset()`
"""
return self.is_subset(other)
def is_proper_subset(self, other):
"""
Returns True if 'self' is a proper subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_subset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def is_superset(self, other):
"""
Returns True if 'self' is a superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
False
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
True
"""
if isinstance(other, Set):
return other.is_subset(self)
else:
raise ValueError("Unknown argument '%s'" % other)
def issuperset(self, other):
"""
Alias for :meth:`is_superset()`
"""
return self.is_superset(other)
def is_proper_superset(self, other):
"""
Returns True if 'self' is a proper superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
True
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_superset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def _eval_powerset(self):
raise NotImplementedError('Power set not defined for: %s' % self.func)
def powerset(self):
"""
Find the Power set of 'self'.
Examples
========
>>> from sympy import FiniteSet, EmptySet
>>> A = EmptySet()
>>> A.powerset()
{EmptySet()}
>>> A = FiniteSet(1, 2)
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
>>> A.powerset() == FiniteSet(a, b, c, EmptySet())
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
"""
return self._eval_powerset()
@property
def measure(self):
"""
The (Lebesgue) measure of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).measure
1
>>> Union(Interval(0, 1), Interval(2, 3)).measure
2
"""
return self._measure
@property
def boundary(self):
"""
The boundary or frontier of a set
A point x is on the boundary of a set S if
1. x is in the closure of S.
I.e. Every neighborhood of x contains a point in S.
2. x is not in the interior of S.
I.e. There does not exist an open set centered on x contained
entirely within S.
There are the points on the outer rim of S. If S is open then these
points need not actually be contained within S.
For example, the boundary of an interval is its start and end points.
This is true regardless of whether or not the interval is open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).boundary
{0, 1}
>>> Interval(0, 1, True, False).boundary
{0, 1}
"""
return self._boundary
@property
def is_open(self):
"""
Property method to check whether a set is open.
A set is open if and only if it has an empty intersection with its
boundary.
Examples
========
>>> from sympy import S
>>> S.Reals.is_open
True
"""
if not Intersection(self, self.boundary):
return True
# We can't confidently claim that an intersection exists
return None
@property
def is_closed(self):
"""
A property method to check whether a set is closed. A set is closed
if it's complement is an open set.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_closed
True
"""
return self.boundary.is_subset(self)
@property
def closure(self):
"""
Property method which returns the closure of a set.
The closure is defined as the union of the set itself and its
boundary.
Examples
========
>>> from sympy import S, Interval
>>> S.Reals.closure
Reals
>>> Interval(0, 1).closure
Interval(0, 1)
"""
return self + self.boundary
@property
def interior(self):
"""
Property method which returns the interior of a set.
The interior of a set S consists all points of S that do not
belong to the boundary of S.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).interior
Interval.open(0, 1)
>>> Interval(0, 1).boundary.interior
EmptySet()
"""
return self - self.boundary
@property
def _boundary(self):
raise NotImplementedError()
@property
def _measure(self):
raise NotImplementedError("(%s)._measure" % self)
def __add__(self, other):
return self.union(other)
def __or__(self, other):
return self.union(other)
def __and__(self, other):
return self.intersect(other)
def __mul__(self, other):
return ProductSet(self, other)
def __xor__(self, other):
return SymmetricDifference(self, other)
def __pow__(self, exp):
if not sympify(exp).is_Integer and exp >= 0:
raise ValueError("%s: Exponent must be a positive Integer" % exp)
return ProductSet([self]*exp)
def __sub__(self, other):
return Complement(self, other)
def __contains__(self, other):
symb = sympify(self.contains(other))
if not (symb is S.true or symb is S.false):
raise TypeError('contains did not evaluate to a bool: %r' % symb)
return bool(symb)
class ProductSet(Set):
"""
Represents a Cartesian Product of Sets.
Returns a Cartesian product given several sets as either an iterable
or individual arguments.
Can use '*' operator on any sets for convenient shorthand.
Examples
========
>>> from sympy import Interval, FiniteSet, ProductSet
>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
>>> ProductSet(I, S)
Interval(0, 5) x {1, 2, 3}
>>> (2, 2) in ProductSet(I, S)
True
>>> Interval(0, 1) * Interval(0, 1) # The unit square
Interval(0, 1) x Interval(0, 1)
>>> coin = FiniteSet('H', 'T')
>>> set(coin**2)
{(H, H), (H, T), (T, H), (T, T)}
Notes
=====
- Passes most operations down to the argument sets
- Flattens Products of ProductSets
References
==========
.. [1] https://en.wikipedia.org/wiki/Cartesian_product
"""
is_ProductSet = True
def __new__(cls, *sets, **assumptions):
def flatten(arg):
if isinstance(arg, Set):
if arg.is_ProductSet:
return sum(map(flatten, arg.args), [])
else:
return [arg]
elif iterable(arg):
return sum(map(flatten, arg), [])
raise TypeError("Input must be Sets or iterables of Sets")
sets = flatten(list(sets))
if EmptySet() in sets or len(sets) == 0:
return EmptySet()
if len(sets) == 1:
return sets[0]
return Basic.__new__(cls, *sets, **assumptions)
def _eval_Eq(self, other):
if not other.is_ProductSet:
return
if len(self.args) != len(other.args):
return false
return And(*(Eq(x, y) for x, y in zip(self.args, other.args)))
def _contains(self, element):
"""
'in' operator for ProductSets
Examples
========
>>> from sympy import Interval
>>> (2, 3) in Interval(0, 5) * Interval(0, 5)
True
>>> (10, 10) in Interval(0, 5) * Interval(0, 5)
False
Passes operation on to constituent sets
"""
try:
if len(element) != len(self.args):
return false
except TypeError: # maybe element isn't an iterable
return false
return And(*
[set.contains(item) for set, item in zip(self.sets, element)])
@property
def sets(self):
return self.args
@property
def _boundary(self):
return Union(ProductSet(b + b.boundary if i != j else b.boundary
for j, b in enumerate(self.sets))
for i, a in enumerate(self.sets))
@property
def is_iterable(self):
"""
A property method which tests whether a set is iterable or not.
Returns True if set is iterable, otherwise returns False.
Examples
========
>>> from sympy import FiniteSet, Interval, ProductSet
>>> I = Interval(0, 1)
>>> A = FiniteSet(1, 2, 3, 4, 5)
>>> I.is_iterable
False
>>> A.is_iterable
True
"""
return all(set.is_iterable for set in self.sets)
def __iter__(self):
"""
A method which implements is_iterable property method.
If self.is_iterable returns True (both constituent sets are iterable),
then return the Cartesian Product. Otherwise, raise TypeError.
"""
if self.is_iterable:
return product(*self.sets)
else:
raise TypeError("Not all constituent sets are iterable")
@property
def _measure(self):
measure = 1
for set in self.sets:
measure *= set.measure
return measure
def __len__(self):
return Mul(*[len(s) for s in self.args])
def __bool__(self):
return all([bool(s) for s in self.args])
__nonzero__ = __bool__
class Interval(Set, EvalfMixin):
"""
Represents a real interval as a Set.
Usage:
Returns an interval with end points "start" and "end".
For left_open=True (default left_open is False) the interval
will be open on the left. Similarly, for right_open=True the interval
will be open on the right.
Examples
========
>>> from sympy import Symbol, Interval
>>> Interval(0, 1)
Interval(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Lopen(0, 1)
Interval.Lopen(0, 1)
>>> Interval.open(0, 1)
Interval.open(0, 1)
>>> a = Symbol('a', real=True)
>>> Interval(0, a)
Interval(0, a)
Notes
=====
- Only real end points are supported
- Interval(a, b) with a > b will return the empty set
- Use the evalf() method to turn an Interval into an mpmath
'mpi' interval instance
References
==========
.. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
"""
is_Interval = True
def __new__(cls, start, end, left_open=False, right_open=False):
start = _sympify(start)
end = _sympify(end)
left_open = _sympify(left_open)
right_open = _sympify(right_open)
if not all(isinstance(a, (type(true), type(false)))
for a in [left_open, right_open]):
raise NotImplementedError(
"left_open and right_open can have only true/false values, "
"got %s and %s" % (left_open, right_open))
inftys = [S.Infinity, S.NegativeInfinity]
# Only allow real intervals (use symbols with 'is_real=True').
if not all(i.is_real is not False or i in inftys for i in (start, end)):
raise ValueError("Non-real intervals are not supported")
# evaluate if possible
if (end < start) == True:
return S.EmptySet
elif (end - start).is_negative:
return S.EmptySet
if end == start and (left_open or right_open):
return S.EmptySet
if end == start and not (left_open or right_open):
if start == S.Infinity or start == S.NegativeInfinity:
return S.EmptySet
return FiniteSet(end)
# Make sure infinite interval end points are open.
if start == S.NegativeInfinity:
left_open = true
if end == S.Infinity:
right_open = true
return Basic.__new__(cls, start, end, left_open, right_open)
@property
def start(self):
"""
The left end point of 'self'.
This property takes the same value as the 'inf' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).start
0
"""
return self._args[0]
_inf = left = start
@classmethod
def open(cls, a, b):
"""Return an interval including neither boundary."""
return cls(a, b, True, True)
@classmethod
def Lopen(cls, a, b):
"""Return an interval not including the left boundary."""
return cls(a, b, True, False)
@classmethod
def Ropen(cls, a, b):
"""Return an interval not including the right boundary."""
return cls(a, b, False, True)
@property
def end(self):
"""
The right end point of 'self'.
This property takes the same value as the 'sup' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).end
1
"""
return self._args[1]
_sup = right = end
@property
def left_open(self):
"""
True if 'self' is left-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, left_open=True).left_open
True
>>> Interval(0, 1, left_open=False).left_open
False
"""
return self._args[2]
@property
def right_open(self):
"""
True if 'self' is right-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, right_open=True).right_open
True
>>> Interval(0, 1, right_open=False).right_open
False
"""
return self._args[3]
def _complement(self, other):
if other == S.Reals:
a = Interval(S.NegativeInfinity, self.start,
True, not self.left_open)
b = Interval(self.end, S.Infinity, not self.right_open, True)
return Union(a, b)
if isinstance(other, FiniteSet):
nums = [m for m in other.args if m.is_number]
if nums == []:
return None
return Set._complement(self, other)
@property
def _boundary(self):
finite_points = [p for p in (self.start, self.end)
if abs(p) != S.Infinity]
return FiniteSet(*finite_points)
def _contains(self, other):
if not isinstance(other, Expr) or (
other is S.Infinity or
other is S.NegativeInfinity or
other is S.NaN or
other is S.ComplexInfinity) or other.is_real is False:
return false
if self.start is S.NegativeInfinity and self.end is S.Infinity:
if not other.is_real is None:
return other.is_real
if self.left_open:
expr = other > self.start
else:
expr = other >= self.start
if self.right_open:
expr = And(expr, other < self.end)
else:
expr = And(expr, other <= self.end)
return _sympify(expr)
@property
def _measure(self):
return self.end - self.start
def to_mpi(self, prec=53):
return mpi(mpf(self.start._eval_evalf(prec)),
mpf(self.end._eval_evalf(prec)))
def _eval_evalf(self, prec):
return Interval(self.left._eval_evalf(prec),
self.right._eval_evalf(prec),
left_open=self.left_open, right_open=self.right_open)
def _is_comparable(self, other):
is_comparable = self.start.is_comparable
is_comparable &= self.end.is_comparable
is_comparable &= other.start.is_comparable
is_comparable &= other.end.is_comparable
return is_comparable
@property
def is_left_unbounded(self):
"""Return ``True`` if the left endpoint is negative infinity. """
return self.left is S.NegativeInfinity or self.left == Float("-inf")
@property
def is_right_unbounded(self):
"""Return ``True`` if the right endpoint is positive infinity. """
return self.right is S.Infinity or self.right == Float("+inf")
def as_relational(self, x):
"""Rewrite an interval in terms of inequalities and logic operators."""
x = sympify(x)
if self.right_open:
right = x < self.end
else:
right = x <= self.end
if self.left_open:
left = self.start < x
else:
left = self.start <= x
return And(left, right)
def _eval_Eq(self, other):
if not other.is_Interval:
if (other.is_Union or other.is_Complement or
other.is_Intersection or other.is_ProductSet):
return
return false
return And(Eq(self.left, other.left),
Eq(self.right, other.right),
self.left_open == other.left_open,
self.right_open == other.right_open)
class Union(Set, EvalfMixin):
"""
Represents a union of sets as a :class:`Set`.
Examples
========
>>> from sympy import Union, Interval
>>> Union(Interval(1, 2), Interval(3, 4))
Union(Interval(1, 2), Interval(3, 4))
The Union constructor will always try to merge overlapping intervals,
if possible. For example:
>>> Union(Interval(1, 2), Interval(2, 3))
Interval(1, 3)
See Also
========
Intersection
References
==========
.. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
"""
is_Union = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
# flatten inputs to merge intersections and iterables
args = list(args)
def flatten(arg):
if isinstance(arg, Set):
if arg.is_Union:
return sum(map(flatten, arg.args), [])
else:
return [arg]
if iterable(arg): # and not isinstance(arg, Set) (implicit)
return sum(map(flatten, arg), [])
raise TypeError("Input must be Sets or iterables of Sets")
args = flatten(args)
# Union of no sets is EmptySet
if len(args) == 0:
return S.EmptySet
# Reduce sets using known rules
if evaluate:
return simplify_union(args)
args = list(ordered(args, Set._infimum_key))
return Basic.__new__(cls, *args)
def _complement(self, universe):
# DeMorgan's Law
return Intersection(s.complement(universe) for s in self.args)
@property
def _inf(self):
# We use Min so that sup is meaningful in combination with symbolic
# interval end points.
from sympy.functions.elementary.miscellaneous import Min
return Min(*[set.inf for set in self.args])
@property
def _sup(self):
# We use Max so that sup is meaningful in combination with symbolic
# end points.
from sympy.functions.elementary.miscellaneous import Max
return Max(*[set.sup for set in self.args])
def _contains(self, other):
return Or(*[set.contains(other) for set in self.args])
@property
def _measure(self):
# Measure of a union is the sum of the measures of the sets minus
# the sum of their pairwise intersections plus the sum of their
# triple-wise intersections minus ... etc...
# Sets is a collection of intersections and a set of elementary
# sets which made up those intersections (called "sos" for set of sets)
# An example element might of this list might be:
# ( {A,B,C}, A.intersect(B).intersect(C) )
# Start with just elementary sets ( ({A}, A), ({B}, B), ... )
# Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
sets = [(FiniteSet(s), s) for s in self.args]
measure = 0
parity = 1
while sets:
# Add up the measure of these sets and add or subtract it to total
measure += parity * sum(inter.measure for sos, inter in sets)
# For each intersection in sets, compute the intersection with every
# other set not already part of the intersection.
sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
for sos, intersection in sets for newset in self.args
if newset not in sos)
# Clear out sets with no measure
sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
# Clear out duplicates
sos_list = []
sets_list = []
for set in sets:
if set[0] in sos_list:
continue
else:
sos_list.append(set[0])
sets_list.append(set)
sets = sets_list
# Flip Parity - next time subtract/add if we added/subtracted here
parity *= -1
return measure
@property
def _boundary(self):
def boundary_of_set(i):
""" The boundary of set i minus interior of all other sets """
b = self.args[i].boundary
for j, a in enumerate(self.args):
if j != i:
b = b - a.interior
return b
return Union(map(boundary_of_set, range(len(self.args))))
def as_relational(self, symbol):
"""Rewrite a Union in terms of equalities and logic operators. """
if len(self.args) == 2:
a, b = self.args
if (a.sup == b.inf and a.inf is S.NegativeInfinity
and b.sup is S.Infinity):
return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf)
return Or(*[set.as_relational(symbol) for set in self.args])
@property
def is_iterable(self):
return all(arg.is_iterable for arg in self.args)
def _eval_evalf(self, prec):
try:
return Union(set._eval_evalf(prec) for set in self.args)
except (TypeError, ValueError, NotImplementedError):
import sys
raise (TypeError("Not all sets are evalf-able"),
None,
sys.exc_info()[2])
def __iter__(self):
import itertools
# roundrobin recipe taken from itertools documentation:
# https://docs.python.org/2/library/itertools.html#recipes
def roundrobin(*iterables):
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
# Recipe credited to George Sakkis
pending = len(iterables)
if PY3:
nexts = itertools.cycle(iter(it).__next__ for it in iterables)
else:
nexts = itertools.cycle(iter(it).next for it in iterables)
while pending:
try:
for next in nexts:
yield next()
except StopIteration:
pending -= 1
nexts = itertools.cycle(itertools.islice(nexts, pending))
if all(set.is_iterable for set in self.args):
return roundrobin(*(iter(arg) for arg in self.args))
else:
raise TypeError("Not all constituent sets are iterable")
class Intersection(Set):
"""
Represents an intersection of sets as a :class:`Set`.
Examples
========
>>> from sympy import Intersection, Interval
>>> Intersection(Interval(1, 3), Interval(2, 4))
Interval(2, 3)
We often use the .intersect method
>>> Interval(1,3).intersect(Interval(2,4))
Interval(2, 3)
See Also
========
Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
"""
is_Intersection = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
# flatten inputs to merge intersections and iterables
args = list(args)
def flatten(arg):
if isinstance(arg, Set):
if arg.is_Intersection:
return sum(map(flatten, arg.args), [])
else:
return [arg]
if iterable(arg): # and not isinstance(arg, Set) (implicit)
return sum(map(flatten, arg), [])
raise TypeError("Input must be Sets or iterables of Sets")
args = flatten(args)
if len(args) == 0:
return S.UniversalSet
# args can't be ordered for Partition see issue #9608
if 'Partition' not in [type(a).__name__ for a in args]:
args = list(ordered(args, Set._infimum_key))
# Reduce sets using known rules
if evaluate:
return simplify_intersection(args)
return Basic.__new__(cls, *args)
@property
def is_iterable(self):
return any(arg.is_iterable for arg in self.args)
@property
def _inf(self):
raise NotImplementedError()
@property
def _sup(self):
raise NotImplementedError()
def _contains(self, other):
return And(*[set.contains(other) for set in self.args])
def __iter__(self):
no_iter = True
for s in self.args:
if s.is_iterable:
no_iter = False
other_sets = set(self.args) - set((s,))
other = Intersection(other_sets, evaluate=False)
for x in s:
c = sympify(other.contains(x))
if c is S.true:
yield x
elif c is S.false:
pass
else:
yield c
if no_iter:
raise ValueError("None of the constituent sets are iterable")
@staticmethod
def _handle_finite_sets(args):
from sympy.core.logic import fuzzy_and, fuzzy_bool
from sympy.core.compatibility import zip_longest
fs_args, other = sift(args, lambda x: x.is_FiniteSet,
binary=True)
if not fs_args:
return
s = fs_args[0]
fs_args = fs_args[1:]
res = []
unk = []
for x in s:
c = fuzzy_and(fuzzy_bool(o.contains(x))
for o in fs_args + other)
if c:
res.append(x)
elif c is None:
unk.append(x)
else:
pass # drop arg
res = FiniteSet(
*res, evaluate=False) if res else S.EmptySet
if unk:
symbolic_s_list = [x for x in s if x.has(Symbol)]
non_symbolic_s = s - FiniteSet(
*symbolic_s_list, evaluate=False)
while fs_args:
v = fs_args.pop()
if all(i == j for i, j in zip_longest(
symbolic_s_list,
(x for x in v if x.has(Symbol)))):
# all the symbolic elements of `v` are the same
# as in `s` so remove the non-symbol containing
# expressions from `unk`, since they cannot be
# contained
for x in non_symbolic_s:
if x in unk:
unk.remove(x)
else:
# if only a subset of elements in `s` are
# contained in `v` then remove them from `v`
# and add this as a new arg
contained = [x for x in symbolic_s_list
if sympify(v.contains(x)) is S.true]
if contained != symbolic_s_list:
other.append(
v - FiniteSet(
*contained, evaluate=False))
else:
pass # for coverage
other_sets = Intersection(*other)
if not other_sets:
return S.EmptySet # b/c we use evaluate=False below
res += Intersection(
FiniteSet(*unk),
other_sets, evaluate=False)
return res
def as_relational(self, symbol):
"""Rewrite an Intersection in terms of equalities and logic operators"""
return And(*[set.as_relational(symbol) for set in self.args])
class Complement(Set, EvalfMixin):
r"""Represents the set difference or relative complement of a set with
another set.
`A - B = \{x \in A| x \\notin B\}`
Examples
========
>>> from sympy import Complement, FiniteSet
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
{0, 2}
See Also
=========
Intersection, Union
References
==========
.. [1] http://mathworld.wolfram.com/ComplementSet.html
"""
is_Complement = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return Complement.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
"""
Simplify a :class:`Complement`.
"""
if B == S.UniversalSet or A.is_subset(B):
return EmptySet()
if isinstance(B, Union):
return Intersection(s.complement(A) for s in B.args)
result = B._complement(A)
if result is not None:
return result
else:
return Complement(A, B, evaluate=False)
def _contains(self, other):
A = self.args[0]
B = self.args[1]
return And(A.contains(other), Not(B.contains(other)))
class EmptySet(with_metaclass(Singleton, Set)):
"""
Represents the empty set. The empty set is available as a singleton
as S.EmptySet.
Examples
========
>>> from sympy import S, Interval
>>> S.EmptySet
EmptySet()
>>> Interval(1, 2).intersect(S.EmptySet)
EmptySet()
See Also
========
UniversalSet
References
==========
.. [1] https://en.wikipedia.org/wiki/Empty_set
"""
is_EmptySet = True
is_FiniteSet = True
@property
def _measure(self):
return 0
def _contains(self, other):
return false
def as_relational(self, symbol):
return false
def __len__(self):
return 0
def __iter__(self):
return iter([])
def _eval_powerset(self):
return FiniteSet(self)
@property
def _boundary(self):
return self
def _complement(self, other):
return other
def _symmetric_difference(self, other):
return other
class UniversalSet(with_metaclass(Singleton, Set)):
"""
Represents the set of all things.
The universal set is available as a singleton as S.UniversalSet
Examples
========
>>> from sympy import S, Interval
>>> S.UniversalSet
UniversalSet()
>>> Interval(1, 2).intersect(S.UniversalSet)
Interval(1, 2)
See Also
========
EmptySet
References
==========
.. [1] https://en.wikipedia.org/wiki/Universal_set
"""
is_UniversalSet = True
def _complement(self, other):
return S.EmptySet
def _symmetric_difference(self, other):
return other
@property
def _measure(self):
return S.Infinity
def _contains(self, other):
return true
def as_relational(self, symbol):
return true
@property
def _boundary(self):
return EmptySet()
class FiniteSet(Set, EvalfMixin):
"""
Represents a finite set of discrete numbers
Examples
========
>>> from sympy import FiniteSet
>>> FiniteSet(1, 2, 3, 4)
{1, 2, 3, 4}
>>> 3 in FiniteSet(1, 2, 3, 4)
True
>>> members = [1, 2, 3, 4]
>>> f = FiniteSet(*members)
>>> f
{1, 2, 3, 4}
>>> f - FiniteSet(2)
{1, 3, 4}
>>> f + FiniteSet(2, 5)
{1, 2, 3, 4, 5}
References
==========
.. [1] https://en.wikipedia.org/wiki/Finite_set
"""
is_FiniteSet = True
is_iterable = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_evaluate[0])
if evaluate:
args = list(map(sympify, args))
if len(args) == 0:
return EmptySet()
else:
args = list(map(sympify, args))
args = list(ordered(frozenset(tuple(args)), Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._elements = frozenset(args)
return obj
def _eval_Eq(self, other):
if not other.is_FiniteSet:
if (other.is_Union or other.is_Complement or
other.is_Intersection or other.is_ProductSet):
return
return false
if len(self) != len(other):
return false
return And(*(Eq(x, y) for x, y in zip(self.args, other.args)))
def __iter__(self):
return iter(self.args)
def _complement(self, other):
if isinstance(other, Interval):
nums = sorted(m for m in self.args if m.is_number)
if other == S.Reals and nums != []:
syms = [m for m in self.args if m.is_Symbol]
# Reals cannot contain elements other than numbers and symbols.
intervals = [] # Build up a list of intervals between the elements
intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
for a, b in zip(nums[:-1], nums[1:]):
intervals.append(Interval(a, b, True, True)) # both open
intervals.append(Interval(nums[-1], S.Infinity, True, True))
if syms != []:
return Complement(Union(intervals, evaluate=False),
FiniteSet(*syms), evaluate=False)
else:
return Union(intervals, evaluate=False)
elif nums == []:
return None
elif isinstance(other, FiniteSet):
unk = []
for i in self:
c = sympify(other.contains(i))
if c is not S.true and c is not S.false:
unk.append(i)
unk = FiniteSet(*unk)
if unk == self:
return
not_true = []
for i in other:
c = sympify(self.contains(i))
if c is not S.true:
not_true.append(i)
return Complement(FiniteSet(*not_true), unk)
return Set._complement(self, other)
def _contains(self, other):
"""
Tests whether an element, other, is in the set.
Relies on Python's set class. This tests for object equality
All inputs are sympified
Examples
========
>>> from sympy import FiniteSet
>>> 1 in FiniteSet(1, 2)
True
>>> 5 in FiniteSet(1, 2)
False
"""
r = false
for e in self._elements:
# override global evaluation so we can use Eq to do
# do the evaluation
t = Eq(e, other, evaluate=True)
if t is true:
return t
elif t is not false:
r = None
return r
@property
def _boundary(self):
return self
@property
def _inf(self):
from sympy.functions.elementary.miscellaneous import Min
return Min(*self)
@property
def _sup(self):
from sympy.functions.elementary.miscellaneous import Max
return Max(*self)
@property
def measure(self):
return 0
def __len__(self):
return len(self.args)
def as_relational(self, symbol):
"""Rewrite a FiniteSet in terms of equalities and logic operators. """
from sympy.core.relational import Eq
return Or(*[Eq(symbol, elem) for elem in self])
def compare(self, other):
return (hash(self) - hash(other))
def _eval_evalf(self, prec):
return FiniteSet(*[elem._eval_evalf(prec) for elem in self])
def _hashable_content(self):
return (self._elements,)
@property
def _sorted_args(self):
return tuple(ordered(self.args, Set._infimum_key))
def _eval_powerset(self):
return self.func(*[self.func(*s) for s in subsets(self.args)])
def __ge__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return other.is_subset(self)
def __gt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_superset(other)
def __le__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_subset(other)
def __lt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_subset(other)
converter[set] = lambda x: FiniteSet(*x)
converter[frozenset] = lambda x: FiniteSet(*x)
class SymmetricDifference(Set):
"""Represents the set of elements which are in either of the
sets and not in their intersection.
Examples
========
>>> from sympy import SymmetricDifference, FiniteSet
>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
{1, 2, 4, 5}
See Also
========
Complement, Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
is_SymmetricDifference = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return SymmetricDifference.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
result = B._symmetric_difference(A)
if result is not None:
return result
else:
return SymmetricDifference(A, B, evaluate=False)
def imageset(*args):
r"""
Return an image of the set under transformation ``f``.
If this function can't compute the image, it returns an
unevaluated ImageSet object.
.. math::
{ f(x) | x \in self }
Examples
========
>>> from sympy import S, Interval, Symbol, imageset, sin, Lambda
>>> from sympy.abc import x, y
>>> imageset(x, 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(lambda x: 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(sin, Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(lambda y: x + y, Interval(-2, 1))
ImageSet(Lambda(_x, _x + x), Interval(-2, 1))
Expressions applied to the set of Integers are simplified
to show as few negatives as possible and linear expressions
are converted to a canonical form. If this is not desirable
then the unevaluated ImageSet should be used.
>>> imageset(x, -2*x + 5, S.Integers)
ImageSet(Lambda(x, 2*x + 1), Integers)
See Also
========
sympy.sets.fancysets.ImageSet
"""
from sympy.core import Lambda
from sympy.sets.fancysets import ImageSet
from sympy.sets.setexpr import set_function
if len(args) < 2:
raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
f = Lambda(args[0], args[1])
set_list = args[2:]
else:
f = args[0]
set_list = args[1:]
if isinstance(f, Lambda):
pass
elif (
isinstance(f, FunctionClass) # like cos
or func_name(f) == '<lambda>'
):
# TODO: should we support a way to sympify `lambda`?
if len(set_list) == 1:
var = _uniquely_named_symbol(Symbol('x'), f(Dummy()))
expr = f(var)
else:
var = [Symbol('x%i' % (i+1)) for i in range(len(set_list))]
expr = f(*var)
f = Lambda(var, expr)
else:
raise TypeError(filldedent('''
expecting lambda, Lambda, or FunctionClass, not \'%s\'.''' %
func_name(f)))
if any(not isinstance(s, Set) for s in set_list):
name = [func_name(s) for s in set_list]
raise ValueError(
'arguments after mapping should be sets, not %s' % name)
if len(set_list) == 1:
set = set_list[0]
r = set_function(f, set)
if r is None:
r = ImageSet(f, set)
if isinstance(r, ImageSet):
f, set = r.args
if f.variables[0] == f.expr:
return set
if isinstance(set, ImageSet):
if len(set.lamda.variables) == 1 and len(f.variables) == 1:
return imageset(Lambda(set.lamda.variables[0],
f.expr.subs(f.variables[0], set.lamda.expr)),
set.base_set)
if r is not None:
return r
return ImageSet(f, *set_list)
def is_function_invertible_in_set(func, setv):
"""
Checks whether function ``func`` is invertible when the domain is
restricted to set ``setv``.
"""
from sympy import exp, log
# Functions known to always be invertible:
if func in (exp, log):
return True
u = Dummy("u")
fdiff = func(u).diff(u)
# monotonous functions:
# TODO: check subsets (`func` in `setv`)
if (fdiff > 0) == True or (fdiff < 0) == True:
return True
# TODO: support more
return None
def simplify_union(args):
"""
Simplify a :class:`Union` using known rules
We first start with global rules like 'Merge all FiniteSets'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent. This process depends
on ``union_sets(a, b)`` functions.
"""
from sympy.sets.handlers.union import union_sets
# ===== Global Rules =====
# Merge all finite sets
finite_sets = [x for x in args if x.is_FiniteSet]
if len(finite_sets) > 1:
a = (x for set in finite_sets for x in set)
finite_set = FiniteSet(*a)
args = [finite_set] + [x for x in args if not x.is_FiniteSet]
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while(new_args):
for s in args:
new_args = False
for t in args - set((s,)):
new_set = union_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
if not isinstance(new_set, set):
new_set = set((new_set, ))
new_args = (args - set((s, t))).union(new_set)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Union(args, evaluate=False)
def simplify_intersection(args):
"""
Simplify an intersection using known rules
We first start with global rules like
'if any empty sets return empty set' and 'distribute any unions'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent
"""
# ===== Global Rules =====
# If any EmptySets return EmptySet
if any(s.is_EmptySet for s in args):
return S.EmptySet
# Handle Finite sets
rv = Intersection._handle_finite_sets(args)
if rv is not None:
return rv
# If any of the sets are unions, return a Union of Intersections
for s in args:
if s.is_Union:
other_sets = set(args) - set((s,))
if len(other_sets) > 0:
other = Intersection(other_sets)
return Union(Intersection(arg, other) for arg in s.args)
else:
return Union(*[arg for arg in s.args])
for s in args:
if s.is_Complement:
args.remove(s)
other_sets = args + [s.args[0]]
return Complement(Intersection(*other_sets), s.args[1])
from sympy.sets.handlers.intersection import intersection_sets
# At this stage we are guaranteed not to have any
# EmptySets, FiniteSets, or Unions in the intersection
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while(new_args):
for s in args:
new_args = False
for t in args - set((s,)):
new_set = intersection_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
new_args = (args - set((s, t))).union(set((new_set, )))
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Intersection(args, evaluate=False)
def _handle_finite_sets(op, x, y, commutative):
# Handle finite sets:
fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
if len(fs_args) == 2:
return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
elif len(fs_args) == 1:
sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
return Union(*sets)
else:
return None
def _apply_operation(op, x, y, commutative):
from sympy.sets import ImageSet
from sympy import symbols,Lambda
d = Dummy('d')
out = _handle_finite_sets(op, x, y, commutative)
if out is None:
out = op(x, y)
if out is None and commutative:
out = op(y, x)
if out is None:
_x, _y = symbols("x y")
if isinstance(x, Set) and not isinstance(y, Set):
out = ImageSet(Lambda(d, op(d, y)), x).doit()
elif not isinstance(x, Set) and isinstance(y, Set):
out = ImageSet(Lambda(d, op(x, d)), y).doit()
else:
out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
return out
def set_add(x, y):
from sympy.sets.handlers.add import _set_add
return _apply_operation(_set_add, x, y, commutative=True)
def set_sub(x, y):
from sympy.sets.handlers.add import _set_sub
return _apply_operation(_set_sub, x, y, commutative=False)
def set_mul(x, y):
from sympy.sets.handlers.mul import _set_mul
return _apply_operation(_set_mul, x, y, commutative=True)
def set_div(x, y):
from sympy.sets.handlers.mul import _set_div
return _apply_operation(_set_div, x, y, commutative=False)
def set_pow(x, y):
from sympy.sets.handlers.power import _set_pow
return _apply_operation(_set_pow, x, y, commutative=False)
def set_function(f, x):
from sympy.sets.handlers.functions import _set_function
return _set_function(f, x)
|
b2609e92fe5aa5266d2bd60c20a92f025292b2324fac5bdb73318402a4277e8d
|
"""Plotting module for Sympy.
A plot is represented by the ``Plot`` class that contains a reference to the
backend and a list of the data series to be plotted. The data series are
instances of classes meant to simplify getting points and meshes from sympy
expressions. ``plot_backends`` is a dictionary with all the backends.
This module gives only the essential. For all the fancy stuff use directly
the backend. You can get the backend wrapper for every plot from the
``_backend`` attribute. Moreover the data series classes have various useful
methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may
be useful if you wish to use another plotting library.
Especially if you need publication ready graphs and this module is not enough
for you - just get the ``_backend`` attribute and add whatever you want
directly to it. In the case of matplotlib (the common way to graph data in
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
which is the axis and work on them as you would on any other matplotlib object.
Simplicity of code takes much greater importance than performance. Don't use it
if you care at all about performance. A new backend instance is initialized
every time you call ``show()`` and the old one is left to the garbage collector.
"""
from __future__ import print_function, division
import inspect
import warnings
import sys
from sympy import sympify, Expr, Tuple, Dummy, Symbol
from sympy.external import import_module
from sympy.core.compatibility import range, Callable
from sympy.utilities.iterables import is_sequence
from .experimental_lambdify import (vectorized_lambdify, lambdify)
# N.B.
# When changing the minimum module version for matplotlib, please change
# the same in the `SymPyDocTestFinder`` in `sympy/utilities/runtests.py`
# Backend specific imports - textplot
from sympy.plotting.textplot import textplot
# Global variable
# Set to False when running tests / doctests so that the plots don't show.
_show = True
def unset_show():
"""
Disable show(). For use in the tests.
"""
global _show
_show = False
##############################################################################
# The public interface
##############################################################################
def _arity(f):
"""
Python 2 and 3 compatible version that do not raise a Deprecation warning.
"""
if sys.version_info < (3,):
return len(inspect.getargspec(f)[0])
else:
param = inspect.signature(f).parameters.values()
return len([p for p in param if p.kind == p.POSITIONAL_OR_KEYWORD])
class Plot(object):
"""The central class of the plotting module.
For interactive work the function ``plot`` is better suited.
This class permits the plotting of sympy expressions using numerous
backends (matplotlib, textplot, the old pyglet module for sympy, Google
charts api, etc).
The figure can contain an arbitrary number of plots of sympy expressions,
lists of coordinates of points, etc. Plot has a private attribute _series that
contains all data series to be plotted (expressions for lines or surfaces,
lists of points, etc (all subclasses of BaseSeries)). Those data series are
instances of classes not imported by ``from sympy import *``.
The customization of the figure is on two levels. Global options that
concern the figure as a whole (eg title, xlabel, scale, etc) and
per-data series options (eg name) and aesthetics (eg. color, point shape,
line type, etc.).
The difference between options and aesthetics is that an aesthetic can be
a function of the coordinates (or parameters in a parametric plot). The
supported values for an aesthetic are:
- None (the backend uses default values)
- a constant
- a function of one variable (the first coordinate or parameter)
- a function of two variables (the first and second coordinate or
parameters)
- a function of three variables (only in nonparametric 3D plots)
Their implementation depends on the backend so they may not work in some
backends.
If the plot is parametric and the arity of the aesthetic function permits
it the aesthetic is calculated over parameters and not over coordinates.
If the arity does not permit calculation over parameters the calculation is
done over coordinates.
Only cartesian coordinates are supported for the moment, but you can use
the parametric plots to plot in polar, spherical and cylindrical
coordinates.
The arguments for the constructor Plot must be subclasses of BaseSeries.
Any global option can be specified as a keyword argument.
The global options for a figure are:
- title : str
- xlabel : str
- ylabel : str
- legend : bool
- xscale : {'linear', 'log'}
- yscale : {'linear', 'log'}
- axis : bool
- axis_center : tuple of two floats or {'center', 'auto'}
- xlim : tuple of two floats
- ylim : tuple of two floats
- aspect_ratio : tuple of two floats or {'auto'}
- autoscale : bool
- margin : float in [0, 1]
The per data series options and aesthetics are:
There are none in the base series. See below for options for subclasses.
Some data series support additional aesthetics or options:
ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries,
Parametric3DLineSeries support the following:
Aesthetics:
- line_color : function which returns a float.
options:
- label : str
- steps : bool
- integers_only : bool
SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following:
aesthetics:
- surface_color : function which returns a float.
"""
def __init__(self, *args, **kwargs):
super(Plot, self).__init__()
# Options for the graph as a whole.
# The possible values for each option are described in the docstring of
# Plot. They are based purely on convention, no checking is done.
self.title = None
self.xlabel = None
self.ylabel = None
self.aspect_ratio = 'auto'
self.xlim = None
self.ylim = None
self.axis_center = 'auto'
self.axis = True
self.xscale = 'linear'
self.yscale = 'linear'
self.legend = False
self.autoscale = True
self.margin = 0
# Contains the data objects to be plotted. The backend should be smart
# enough to iterate over this list.
self._series = []
self._series.extend(args)
# The backend type. On every show() a new backend instance is created
# in self._backend which is tightly coupled to the Plot instance
# (thanks to the parent attribute of the backend).
self.backend = DefaultBackend
# The keyword arguments should only contain options for the plot.
for key, val in kwargs.items():
if hasattr(self, key):
setattr(self, key, val)
def show(self):
# TODO move this to the backend (also for save)
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.show()
def save(self, path):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.save(path)
def __str__(self):
series_strs = [('[%d]: ' % i) + str(s)
for i, s in enumerate(self._series)]
return 'Plot object containing:\n' + '\n'.join(series_strs)
def __getitem__(self, index):
return self._series[index]
def __setitem__(self, index, *args):
if len(args) == 1 and isinstance(args[0], BaseSeries):
self._series[index] = args
def __delitem__(self, index):
del self._series[index]
def append(self, arg):
"""Adds an element from a plot's series to an existing plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot's first series object to the first, use the
``append`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x*x, show=False)
>>> p2 = plot(x, show=False)
>>> p1.append(p2[0])
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
>>> p1.show()
See Also
========
extend
"""
if isinstance(arg, BaseSeries):
self._series.append(arg)
else:
raise TypeError('Must specify element of plot to append.')
def extend(self, arg):
"""Adds all series from another plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot to the first, use the ``extend`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x**2, show=False)
>>> p2 = plot(x, -x, show=False)
>>> p1.extend(p2)
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
[2]: cartesian line: -x for x over (-10.0, 10.0)
>>> p1.show()
"""
if isinstance(arg, Plot):
self._series.extend(arg._series)
elif is_sequence(arg):
self._series.extend(arg)
else:
raise TypeError('Expecting Plot or sequence of BaseSeries')
##############################################################################
# Data Series
##############################################################################
#TODO more general way to calculate aesthetics (see get_color_array)
### The base class for all series
class BaseSeries(object):
"""Base class for the data objects containing stuff to be plotted.
The backend should check if it supports the data series that it's given.
(eg TextBackend supports only LineOver1DRange).
It's the backend responsibility to know how to use the class of
data series that it's given.
Some data series classes are grouped (using a class attribute like is_2Dline)
according to the api they present (based only on convention). The backend is
not obliged to use that api (eg. The LineOver1DRange belongs to the
is_2Dline group and presents the get_points method, but the
TextBackend does not use the get_points method).
"""
# Some flags follow. The rationale for using flags instead of checking base
# classes is that setting multiple flags is simpler than multiple
# inheritance.
is_2Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y
# - get_segments returning np.array (done in Line2DBaseSeries)
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y, list_y
# - get_segments returning np.array (done in Line2DBaseSeries)
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dsurface = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_contour = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_implicit = False
# Some of the backends expect:
# - get_meshes returning mesh_x (1D array), mesh_y(1D array,
# mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
#Different from is_contour as the colormap in backend will be
#different
is_parametric = False
# The calculation of aesthetics expects:
# - get_parameter_points returning one or two np.arrays (1D or 2D)
# used for calculation aesthetics
def __init__(self):
super(BaseSeries, self).__init__()
@property
def is_3D(self):
flags3D = [
self.is_3Dline,
self.is_3Dsurface
]
return any(flags3D)
@property
def is_line(self):
flagslines = [
self.is_2Dline,
self.is_3Dline
]
return any(flagslines)
### 2D lines
class Line2DBaseSeries(BaseSeries):
"""A base class for 2D lines.
- adding the label, steps and only_integers options
- making is_2Dline true
- defining get_segments and get_color_array
"""
is_2Dline = True
_dim = 2
def __init__(self):
super(Line2DBaseSeries, self).__init__()
self.label = None
self.steps = False
self.only_integers = False
self.line_color = None
def get_segments(self):
np = import_module('numpy')
points = self.get_points()
if self.steps is True:
x = np.array((points[0], points[0])).T.flatten()[1:]
y = np.array((points[1], points[1])).T.flatten()[:-1]
points = (x, y)
points = np.ma.array(points).T.reshape(-1, 1, self._dim)
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
def get_color_array(self):
np = import_module('numpy')
c = self.line_color
if hasattr(c, '__call__'):
f = np.vectorize(c)
arity = _arity(c)
if arity == 1 and self.is_parametric:
x = self.get_parameter_points()
return f(centers_of_segments(x))
else:
variables = list(map(centers_of_segments, self.get_points()))
if arity == 1:
return f(variables[0])
elif arity == 2:
return f(*variables[:2])
else: # only if the line is 3D (otherwise raises an error)
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class List2DSeries(Line2DBaseSeries):
"""Representation for a line consisting of list of points."""
def __init__(self, list_x, list_y):
np = import_module('numpy')
super(List2DSeries, self).__init__()
self.list_x = np.array(list_x)
self.list_y = np.array(list_y)
self.label = 'list'
def __str__(self):
return 'list plot'
def get_points(self):
return (self.list_x, self.list_y)
class LineOver1DRangeSeries(Line2DBaseSeries):
"""Representation for a line consisting of a SymPy expression over a range."""
def __init__(self, expr, var_start_end, **kwargs):
super(LineOver1DRangeSeries, self).__init__()
self.expr = sympify(expr)
self.label = str(self.expr)
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return 'cartesian line: %s for %s over %s' % (
str(self.expr), str(self.var), str((self.start, self.end)))
def get_segments(self):
"""
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
[1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if self.only_integers or not self.adaptive:
return super(LineOver1DRangeSeries, self).get_segments()
else:
f = lambdify([self.var], self.expr)
list_segments = []
def sample(p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
np = import_module('numpy')
#Randomly sample to avoid aliasing.
random = 0.45 + np.random.rand() * 0.1
xnew = p[0] + random * (q[0] - p[0])
ynew = f(xnew)
new_point = np.array([xnew, ynew])
#Maximum depth
if depth > self.depth:
list_segments.append([p, q])
#Sample irrespective of whether the line is flat till the
#depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
#Sample ten points if complex values are encountered
#at both ends. If there is a real value in between, then
#sample those points further.
elif p[1] is None and q[1] is None:
xarray = np.linspace(p[0], q[0], 10)
yarray = list(map(f, xarray))
if any(y is not None for y in yarray):
for i in range(len(yarray) - 1):
if yarray[i] is not None or yarray[i + 1] is not None:
sample([xarray[i], yarray[i]],
[xarray[i + 1], yarray[i + 1]], depth + 1)
#Sample further if one of the end points in None( i.e. a complex
#value) or the three points are not almost collinear.
elif (p[1] is None or q[1] is None or new_point[1] is None
or not flat(p, new_point, q)):
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
else:
list_segments.append([p, q])
f_start = f(self.start)
f_end = f(self.end)
sample([self.start, f_start], [self.end, f_end], 0)
return list_segments
def get_points(self):
np = import_module('numpy')
if self.only_integers is True:
list_x = np.linspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
list_x = np.linspace(self.start, self.end, num=self.nb_of_points)
f = vectorized_lambdify([self.var], self.expr)
list_y = f(list_x)
return (list_x, list_y)
class Parametric2DLineSeries(Line2DBaseSeries):
"""Representation for a line consisting of two parametric sympy expressions
over a range."""
is_parametric = True
def __init__(self, expr_x, expr_y, var_start_end, **kwargs):
super(Parametric2DLineSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y))
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return 'parametric cartesian line: (%s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.var),
str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
list_x = fx(param)
list_y = fy(param)
return (list_x, list_y)
def get_segments(self):
"""
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
[1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if not self.adaptive:
return super(Parametric2DLineSeries, self).get_segments()
f_x = lambdify([self.var], self.expr_x)
f_y = lambdify([self.var], self.expr_y)
list_segments = []
def sample(param_p, param_q, p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
#Randomly sample to avoid aliasing.
np = import_module('numpy')
random = 0.45 + np.random.rand() * 0.1
param_new = param_p + random * (param_q - param_p)
xnew = f_x(param_new)
ynew = f_y(param_new)
new_point = np.array([xnew, ynew])
#Maximum depth
if depth > self.depth:
list_segments.append([p, q])
#Sample irrespective of whether the line is flat till the
#depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
#Sample ten points if complex values are encountered
#at both ends. If there is a real value in between, then
#sample those points further.
elif ((p[0] is None and q[1] is None) or
(p[1] is None and q[1] is None)):
param_array = np.linspace(param_p, param_q, 10)
x_array = list(map(f_x, param_array))
y_array = list(map(f_y, param_array))
if any(x is not None and y is not None
for x, y in zip(x_array, y_array)):
for i in range(len(y_array) - 1):
if ((x_array[i] is not None and y_array[i] is not None) or
(x_array[i + 1] is not None and y_array[i + 1] is not None)):
point_a = [x_array[i], y_array[i]]
point_b = [x_array[i + 1], y_array[i + 1]]
sample(param_array[i], param_array[i], point_a,
point_b, depth + 1)
#Sample further if one of the end points in None( ie a complex
#value) or the three points are not almost collinear.
elif (p[0] is None or p[1] is None
or q[1] is None or q[0] is None
or not flat(p, new_point, q)):
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
else:
list_segments.append([p, q])
f_start_x = f_x(self.start)
f_start_y = f_y(self.start)
start = [f_start_x, f_start_y]
f_end_x = f_x(self.end)
f_end_y = f_y(self.end)
end = [f_end_x, f_end_y]
sample(self.start, self.end, start, end, 0)
return list_segments
### 3D lines
class Line3DBaseSeries(Line2DBaseSeries):
"""A base class for 3D lines.
Most of the stuff is derived from Line2DBaseSeries."""
is_2Dline = False
is_3Dline = True
_dim = 3
def __init__(self):
super(Line3DBaseSeries, self).__init__()
class Parametric3DLineSeries(Line3DBaseSeries):
"""Representation for a 3D line consisting of two parametric sympy
expressions and a range."""
def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs):
super(Parametric3DLineSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y))
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.expr_z),
str(self.var), str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
fz = vectorized_lambdify([self.var], self.expr_z)
list_x = fx(param)
list_y = fy(param)
list_z = fz(param)
return (list_x, list_y, list_z)
### Surfaces
class SurfaceBaseSeries(BaseSeries):
"""A base class for 3D surfaces."""
is_3Dsurface = True
def __init__(self):
super(SurfaceBaseSeries, self).__init__()
self.surface_color = None
def get_color_array(self):
np = import_module('numpy')
c = self.surface_color
if isinstance(c, Callable):
f = np.vectorize(c)
arity = _arity(c)
if self.is_parametric:
variables = list(map(centers_of_faces, self.get_parameter_meshes()))
if arity == 1:
return f(variables[0])
elif arity == 2:
return f(*variables)
variables = list(map(centers_of_faces, self.get_meshes()))
if arity == 1:
return f(variables[0])
elif arity == 2:
return f(*variables[:2])
else:
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of a sympy expression and 2D
range."""
def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs):
super(SurfaceOver2DRangeSeries, self).__init__()
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.nb_of_points_x = kwargs.get('nb_of_points_x', 50)
self.nb_of_points_y = kwargs.get('nb_of_points_y', 50)
self.surface_color = kwargs.get('surface_color', None)
def __str__(self):
return ('cartesian surface: %s for'
' %s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
class ParametricSurfaceSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of three parametric sympy
expressions and a range."""
is_parametric = True
def __init__(
self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v,
**kwargs):
super(ParametricSurfaceSeries, self).__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.var_u = sympify(var_start_end_u[0])
self.start_u = float(var_start_end_u[1])
self.end_u = float(var_start_end_u[2])
self.var_v = sympify(var_start_end_v[0])
self.start_v = float(var_start_end_v[1])
self.end_v = float(var_start_end_v[2])
self.nb_of_points_u = kwargs.get('nb_of_points_u', 50)
self.nb_of_points_v = kwargs.get('nb_of_points_v', 50)
self.surface_color = kwargs.get('surface_color', None)
def __str__(self):
return ('parametric cartesian surface: (%s, %s, %s) for'
' %s over %s and %s over %s') % (
str(self.expr_x),
str(self.expr_y),
str(self.expr_z),
str(self.var_u),
str((self.start_u, self.end_u)),
str(self.var_v),
str((self.start_v, self.end_v)))
def get_parameter_meshes(self):
np = import_module('numpy')
return np.meshgrid(np.linspace(self.start_u, self.end_u,
num=self.nb_of_points_u),
np.linspace(self.start_v, self.end_v,
num=self.nb_of_points_v))
def get_meshes(self):
mesh_u, mesh_v = self.get_parameter_meshes()
fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x)
fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y)
fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z)
return (fx(mesh_u, mesh_v), fy(mesh_u, mesh_v), fz(mesh_u, mesh_v))
### Contours
class ContourSeries(BaseSeries):
"""Representation for a contour plot."""
# The code is mostly repetition of SurfaceOver2DRange.
# Presently used in contour_plot function
is_contour = True
def __init__(self, expr, var_start_end_x, var_start_end_y):
super(ContourSeries, self).__init__()
self.nb_of_points_x = 50
self.nb_of_points_y = 50
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.get_points = self.get_meshes
def __str__(self):
return ('contour: %s for '
'%s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
##############################################################################
# Backends
##############################################################################
class BaseBackend(object):
def __init__(self, parent):
super(BaseBackend, self).__init__()
self.parent = parent
## don't have to check for the success of importing matplotlib in each case;
## we will only be using this backend if we can successfully import matploblib
class MatplotlibBackend(BaseBackend):
def __init__(self, parent):
super(MatplotlibBackend, self).__init__(parent)
are_3D = [s.is_3D for s in self.parent._series]
self.matplotlib = import_module('matplotlib',
__import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']},
min_module_version='1.1.0', catch=(RuntimeError,))
self.plt = self.matplotlib.pyplot
self.cm = self.matplotlib.cm
self.LineCollection = self.matplotlib.collections.LineCollection
if any(are_3D) and not all(are_3D):
raise ValueError('The matplotlib backend can not mix 2D and 3D.')
elif not any(are_3D):
self.fig = self.plt.figure()
self.ax = self.fig.add_subplot(111)
self.ax.spines['left'].set_position('zero')
self.ax.spines['right'].set_color('none')
self.ax.spines['bottom'].set_position('zero')
self.ax.spines['top'].set_color('none')
self.ax.spines['left'].set_smart_bounds(True)
self.ax.spines['bottom'].set_smart_bounds(False)
self.ax.xaxis.set_ticks_position('bottom')
self.ax.yaxis.set_ticks_position('left')
elif all(are_3D):
## mpl_toolkits.mplot3d is necessary for
## projection='3d'
mpl_toolkits = import_module('mpl_toolkits',
__import__kwargs={'fromlist': ['mplot3d']})
self.fig = self.plt.figure()
self.ax = self.fig.add_subplot(111, projection='3d')
def process_series(self):
parent = self.parent
for s in self.parent._series:
# Create the collections
if s.is_2Dline:
collection = self.LineCollection(s.get_segments())
self.ax.add_collection(collection)
elif s.is_contour:
self.ax.contour(*s.get_meshes())
elif s.is_3Dline:
# TODO too complicated, I blame matplotlib
mpl_toolkits = import_module('mpl_toolkits',
__import__kwargs={'fromlist': ['mplot3d']})
art3d = mpl_toolkits.mplot3d.art3d
collection = art3d.Line3DCollection(s.get_segments())
self.ax.add_collection(collection)
x, y, z = s.get_points()
self.ax.set_xlim((min(x), max(x)))
self.ax.set_ylim((min(y), max(y)))
self.ax.set_zlim((min(z), max(z)))
elif s.is_3Dsurface:
x, y, z = s.get_meshes()
collection = self.ax.plot_surface(x, y, z,
cmap=getattr(self.cm, 'viridis', self.cm.jet),
rstride=1, cstride=1, linewidth=0.1)
elif s.is_implicit:
#Smart bounds have to be set to False for implicit plots.
self.ax.spines['left'].set_smart_bounds(False)
self.ax.spines['bottom'].set_smart_bounds(False)
points = s.get_raster()
if len(points) == 2:
#interval math plotting
x, y = _matplotlib_list(points[0])
self.ax.fill(x, y, facecolor=s.line_color, edgecolor='None')
else:
# use contourf or contour depending on whether it is
# an inequality or equality.
#XXX: ``contour`` plots multiple lines. Should be fixed.
ListedColormap = self.matplotlib.colors.ListedColormap
colormap = ListedColormap(["white", s.line_color])
xarray, yarray, zarray, plot_type = points
if plot_type == 'contour':
self.ax.contour(xarray, yarray, zarray, cmap=colormap)
else:
self.ax.contourf(xarray, yarray, zarray, cmap=colormap)
else:
raise ValueError('The matplotlib backend supports only '
'is_2Dline, is_3Dline, is_3Dsurface and '
'is_contour objects.')
# Customise the collections with the corresponding per-series
# options.
if hasattr(s, 'label'):
collection.set_label(s.label)
if s.is_line and s.line_color:
if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable):
color_array = s.get_color_array()
collection.set_array(color_array)
else:
collection.set_color(s.line_color)
if s.is_3Dsurface and s.surface_color:
if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check
warnings.warn('The version of matplotlib is too old to use surface coloring.')
elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable):
color_array = s.get_color_array()
color_array = color_array.reshape(color_array.size)
collection.set_array(color_array)
else:
collection.set_color(s.surface_color)
# Set global options.
# TODO The 3D stuff
# XXX The order of those is important.
mpl_toolkits = import_module('mpl_toolkits',
__import__kwargs={'fromlist': ['mplot3d']})
Axes3D = mpl_toolkits.mplot3d.Axes3D
if parent.xscale and not isinstance(self.ax, Axes3D):
self.ax.set_xscale(parent.xscale)
if parent.yscale and not isinstance(self.ax, Axes3D):
self.ax.set_yscale(parent.yscale)
if parent.xlim:
from sympy.core.basic import Basic
xlim = parent.xlim
if any(isinstance(i,Basic) and not i.is_real for i in xlim):
raise ValueError(
"All numbers from xlim={} must be real".format(xlim))
if any(isinstance(i,Basic) and not i.is_finite for i in xlim):
raise ValueError(
"All numbers from xlim={} must be finite".format(xlim))
xlim = (float(i) for i in xlim)
self.ax.set_xlim(xlim)
else:
if all(isinstance(s, LineOver1DRangeSeries) for s in parent._series):
starts = [s.start for s in parent._series]
ends = [s.end for s in parent._series]
self.ax.set_xlim(min(starts), max(ends))
if parent.ylim:
from sympy.core.basic import Basic
ylim = parent.ylim
if any(isinstance(i,Basic) and not i.is_real for i in ylim):
raise ValueError(
"All numbers from ylim={} must be real".format(ylim))
if any(isinstance(i,Basic) and not i.is_finite for i in ylim):
raise ValueError(
"All numbers from ylim={} must be finite".format(ylim))
ylim = (float(i) for i in ylim)
self.ax.set_ylim(ylim)
if not isinstance(self.ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check
self.ax.set_autoscale_on(parent.autoscale)
if parent.axis_center:
val = parent.axis_center
if isinstance(self.ax, Axes3D):
pass
elif val == 'center':
self.ax.spines['left'].set_position('center')
self.ax.spines['bottom'].set_position('center')
elif val == 'auto':
xl, xh = self.ax.get_xlim()
yl, yh = self.ax.get_ylim()
pos_left = ('data', 0) if xl*xh <= 0 else 'center'
pos_bottom = ('data', 0) if yl*yh <= 0 else 'center'
self.ax.spines['left'].set_position(pos_left)
self.ax.spines['bottom'].set_position(pos_bottom)
else:
self.ax.spines['left'].set_position(('data', val[0]))
self.ax.spines['bottom'].set_position(('data', val[1]))
if not parent.axis:
self.ax.set_axis_off()
if parent.legend:
if self.ax.legend():
self.ax.legend_.set_visible(parent.legend)
if parent.margin:
self.ax.set_xmargin(parent.margin)
self.ax.set_ymargin(parent.margin)
if parent.title:
self.ax.set_title(parent.title)
if parent.xlabel:
self.ax.set_xlabel(parent.xlabel, position=(1, 0))
if parent.ylabel:
self.ax.set_ylabel(parent.ylabel, position=(0, 1))
def show(self):
self.process_series()
#TODO after fixing https://github.com/ipython/ipython/issues/1255
# you can uncomment the next line and remove the pyplot.show() call
#self.fig.show()
if _show:
self.plt.show()
else:
self.close()
def save(self, path):
self.process_series()
self.fig.savefig(path)
def close(self):
self.plt.close(self.fig)
class TextBackend(BaseBackend):
def __init__(self, parent):
super(TextBackend, self).__init__(parent)
def show(self):
if not _show:
return
if len(self.parent._series) != 1:
raise ValueError(
'The TextBackend supports only one graph per Plot.')
elif not isinstance(self.parent._series[0], LineOver1DRangeSeries):
raise ValueError(
'The TextBackend supports only expressions over a 1D range')
else:
ser = self.parent._series[0]
textplot(ser.expr, ser.start, ser.end)
def close(self):
pass
class DefaultBackend(BaseBackend):
def __new__(cls, parent):
matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
if matplotlib:
return MatplotlibBackend(parent)
else:
return TextBackend(parent)
plot_backends = {
'matplotlib': MatplotlibBackend,
'text': TextBackend,
'default': DefaultBackend
}
##############################################################################
# Finding the centers of line segments or mesh faces
##############################################################################
def centers_of_segments(array):
np = import_module('numpy')
return np.mean(np.vstack((array[:-1], array[1:])), 0)
def centers_of_faces(array):
np = import_module('numpy')
return np.mean(np.dstack((array[:-1, :-1],
array[1:, :-1],
array[:-1, 1: ],
array[:-1, :-1],
)), 2)
def flat(x, y, z, eps=1e-3):
"""Checks whether three points are almost collinear"""
np = import_module('numpy')
# Workaround plotting piecewise (#8577):
# workaround for `lambdify` in `.experimental_lambdify` fails
# to return numerical values in some cases. Lower-level fix
# in `lambdify` is possible.
vector_a = (x - y).astype(np.float)
vector_b = (z - y).astype(np.float)
dot_product = np.dot(vector_a, vector_b)
vector_a_norm = np.linalg.norm(vector_a)
vector_b_norm = np.linalg.norm(vector_b)
cos_theta = dot_product / (vector_a_norm * vector_b_norm)
return abs(cos_theta + 1) < eps
def _matplotlib_list(interval_list):
"""
Returns lists for matplotlib ``fill`` command from a list of bounding
rectangular intervals
"""
xlist = []
ylist = []
if len(interval_list):
for intervals in interval_list:
intervalx = intervals[0]
intervaly = intervals[1]
xlist.extend([intervalx.start, intervalx.start,
intervalx.end, intervalx.end, None])
ylist.extend([intervaly.start, intervaly.end,
intervaly.end, intervaly.start, None])
else:
#XXX Ugly hack. Matplotlib does not accept empty lists for ``fill``
xlist.extend([None, None, None, None])
ylist.extend([None, None, None, None])
return xlist, ylist
####New API for plotting module ####
# TODO: Add color arrays for plots.
# TODO: Add more plotting options for 3d plots.
# TODO: Adaptive sampling for 3D plots.
def plot(*args, **kwargs):
"""
Plots a function of a single variable and returns an instance of
the ``Plot`` class (also, see the description of the
``show`` keyword argument below).
The plotting uses an adaptive algorithm which samples recursively to
accurately plot the plot. The adaptive algorithm uses a random point near
the midpoint of two points that has to be further sampled. Hence the same
plots can appear slightly different.
Usage
=====
Single Plot
``plot(expr, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with same range.
``plot(expr1, expr2, ..., range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot((expr1, range), (expr2, range), ..., **kwargs)``
Range has to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function of single variable
``range``: (x, 0, 5), A 3-tuple denoting the range of the free variable.
Keyword Arguments
=================
Arguments for ``plot`` function:
``show``: Boolean. The default value is set to ``True``. Set show to
``False`` and the function will not display the plot. The returned
instance of the ``Plot`` class can then be used to save or display
the plot by calling the ``save()`` and ``show()`` methods
respectively.
Arguments for ``LineOver1DRangeSeries`` class:
``adaptive``: Boolean. The default value is set to True. Set adaptive to False and
specify ``nb_of_points`` if uniform sampling is required.
``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n``
samples a maximum of `2^{n}` points.
``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function
is uniformly sampled at ``nb_of_points`` number of points.
Aesthetics options:
``line_color``: float. Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
If there are multiple plots, then the same series series are applied to
all the plots. If you want to set these options separately, you can index
the ``Plot`` object returned and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot. It is set to the latex representation of
the expression, if the plot has only one expression.
``xlabel`` : str. Label for the x-axis.
``ylabel`` : str. Label for the y-axis.
``xscale``: {'linear', 'log'} Sets the scaling of the x-axis.
``yscale``: {'linear', 'log'} Sets the scaling if the y-axis.
``axis_center``: tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
``xlim`` : tuple of two floats, denoting the x-axis limits.
``ylim`` : tuple of two floats, denoting the y-axis limits.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
Single Plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
Multiple plots with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x, x**2, x**3, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
No adaptive sampling.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, adaptive=False, nb_of_points=400)
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
See Also
========
Plot, LineOver1DRangeSeries.
"""
args = list(map(sympify, args))
free = set()
for a in args:
if isinstance(a, Expr):
free |= a.free_symbols
if len(free) > 1:
raise ValueError(
'The same variable should be used in all '
'univariate expressions being plotted.')
x = free.pop() if free else Symbol('x')
kwargs.setdefault('xlabel', x.name)
kwargs.setdefault('ylabel', 'f(%s)' % x.name)
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 1, 1)
series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_parametric(*args, **kwargs):
"""
Plots a 2D parametric plot.
The plotting uses an adaptive algorithm which samples recursively to
accurately plot the plot. The adaptive algorithm uses a random point near
the midpoint of two points that has to be further sampled. Hence the same
plots can appear slightly different.
Usage
=====
Single plot.
``plot_parametric(expr_x, expr_y, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with same range.
``plot_parametric((expr1_x, expr1_y), (expr2_x, expr2_y), range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot_parametric((expr_x, expr_y, range), ..., **kwargs)``
Range has to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x`` : Expression representing the function along x.
``expr_y`` : Expression representing the function along y.
``range``: (u, 0, 5), A 3-tuple denoting the range of the parameter
variable.
Keyword Arguments
=================
Arguments for ``Parametric2DLineSeries`` class:
``adaptive``: Boolean. The default value is set to True. Set adaptive to
False and specify ``nb_of_points`` if uniform sampling is required.
``depth``: int Recursion depth of the adaptive algorithm. A depth of
value ``n`` samples a maximum of `2^{n}` points.
``nb_of_points``: int. Used when the ``adaptive`` is set to False. The
function is uniformly sampled at ``nb_of_points`` number of points.
Aesthetics
----------
``line_color``: function which returns a float. Specifies the color for the
plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same Series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``xlabel`` : str. Label for the x-axis.
``ylabel`` : str. Label for the y-axis.
``xscale``: {'linear', 'log'} Sets the scaling of the x-axis.
``yscale``: {'linear', 'log'} Sets the scaling if the y-axis.
``axis_center``: tuple of two floats denoting the coordinates of the center
or {'center', 'auto'}
``xlim`` : tuple of two floats, denoting the x-axis limits.
``ylim`` : tuple of two floats, denoting the y-axis limits.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot_parametric
>>> u = symbols('u')
Single Parametric plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric(cos(u), sin(u), (u, -5, 5))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
Multiple parametric plot with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
Multiple parametric plots.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
... (cos(u), u, (u, -5, 5)))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
See Also
========
Plot, Parametric2DLineSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 2, 1)
series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_line(*args, **kwargs):
"""
Plots a 3D parametric line plot.
Usage
=====
Single plot:
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x`` : Expression representing the function along x.
``expr_y`` : Expression representing the function along y.
``expr_z`` : Expression representing the function along z.
``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter
variable.
Keyword Arguments
=================
Arguments for ``Parametric3DLineSeries`` class.
``nb_of_points``: The range is uniformly sampled at ``nb_of_points``
number of points.
Aesthetics:
``line_color``: function which returns a float. Specifies the color for the
plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class.
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_line
>>> u = symbols('u')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
Multiple plots.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
... (sin(u), u**2, u, (u, -5, 5)))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
See Also
========
Plot, Parametric3DLineSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 3, 1)
series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d(*args, **kwargs):
"""
Plots a 3D surface plot.
Usage
=====
Single plot
``plot3d(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function along x.
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
variable.
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
variable.
Keyword Arguments
=================
Arguments for ``SurfaceOver2DRangeSeries`` class:
``nb_of_points_x``: int. The x range is sampled uniformly at
``nb_of_points_x`` of points.
``nb_of_points_y``: int. The y range is sampled uniformly at
``nb_of_points_y`` of points.
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot3d
>>> x, y = symbols('x y')
Single plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with same range
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
... (x*y, (x, -3, 3), (y, -3, 3)))
Plot object containing:
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
See Also
========
Plot, SurfaceOver2DRangeSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 1, 2)
series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_surface(*args, **kwargs):
"""
Plots a 3D parametric surface plot.
Usage
=====
Single plot.
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
If the ranges is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x``: Expression representing the function along ``x``.
``expr_y``: Expression representing the function along ``y``.
``expr_z``: Expression representing the function along ``z``.
``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u``
variable.
``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v
variable.
Keyword Arguments
=================
Arguments for ``ParametricSurfaceSeries`` class:
``nb_of_points_u``: int. The ``u`` range is sampled uniformly at
``nb_of_points_v`` of points
``nb_of_points_y``: int. The ``v`` range is sampled uniformly at
``nb_of_points_y`` of points
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied for
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_surface
>>> u, v = symbols('u v')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
... (u, -5, 5), (v, -5, 5))
Plot object containing:
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
See Also
========
Plot, ParametricSurfaceSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
series = []
plot_expr = check_arguments(args, 3, 2)
series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_contour(*args, **kwargs):
"""
Draws contour plot of a function
Usage
=====
Single plot
``plot_contour(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function along x.
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
variable.
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
variable.
Keyword Arguments
=================
Arguments for ``ContourSeries`` class:
``nb_of_points_x``: int. The x range is sampled uniformly at
``nb_of_points_x`` of points.
``nb_of_points_y``: int. The y range is sampled uniformly at
``nb_of_points_y`` of points.
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
See Also
========
Plot, ContourSeries
"""
args = list(map(sympify, args))
show = kwargs.pop('show', True)
plot_expr = check_arguments(args, 1, 2)
series = [ContourSeries(*arg) for arg in plot_expr]
plot_contours = Plot(*series, **kwargs)
if len(plot_expr[0].free_symbols) > 2:
raise ValueError('Contour Plot cannot Plot for more than two variables.')
if show:
plot_contours.show()
return plot_contours
def check_arguments(args, expr_len, nb_of_free_symbols):
"""
Checks the arguments and converts into tuples of the
form (exprs, ranges)
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import plot, cos, sin, symbols
>>> from sympy.plotting.plot import check_arguments
>>> x = symbols('x')
>>> check_arguments([cos(x), sin(x)], 2, 1)
[(cos(x), sin(x), (x, -10, 10))]
>>> check_arguments([x, x**2], 1, 1)
[(x, (x, -10, 10)), (x**2, (x, -10, 10))]
"""
if expr_len > 1 and isinstance(args[0], Expr):
# Multiple expressions same range.
# The arguments are tuples when the expression length is
# greater than 1.
if len(args) < expr_len:
raise ValueError("len(args) should not be less than expr_len")
for i in range(len(args)):
if isinstance(args[i], Tuple):
break
else:
i = len(args) + 1
exprs = Tuple(*args[:i])
free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
if len(args) == expr_len + nb_of_free_symbols:
#Ranges given
plots = [exprs + Tuple(*args[expr_len:])]
else:
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(len(free_symbols) - nb_of_free_symbols):
ranges.append(Tuple(Dummy()) + default_range)
plots = [exprs + Tuple(*ranges)]
return plots
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
len(args[0]) == expr_len and
expr_len != 3):
# Cannot handle expressions with number of expression = 3. It is
# not possible to differentiate between expressions and ranges.
#Series of plots with same range
for i in range(len(args)):
if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
break
if not isinstance(args[i], Tuple):
args[i] = Tuple(args[i])
else:
i = len(args) + 1
exprs = args[:i]
assert all(isinstance(e, Expr) for expr in exprs for e in expr)
free_symbols = list(set().union(*[e.free_symbols for expr in exprs
for e in expr]))
if len(free_symbols) > nb_of_free_symbols:
raise ValueError("The number of free_symbols in the expression "
"is greater than %d" % nb_of_free_symbols)
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
ranges = Tuple(*[range_expr for range_expr in args[
i:i + nb_of_free_symbols]])
plots = [expr + ranges for expr in exprs]
return plots
else:
#Use default ranges.
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(nb_of_free_symbols - len(free_symbols)):
ranges.append(Tuple(Dummy()) + default_range)
ranges = Tuple(*ranges)
plots = [expr + ranges for expr in exprs]
return plots
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
#Multiple plots with different ranges.
for arg in args:
for i in range(expr_len):
if not isinstance(arg[i], Expr):
raise ValueError("Expected an expression, given %s" %
str(arg[i]))
for i in range(nb_of_free_symbols):
if not len(arg[i + expr_len]) == 3:
raise ValueError("The ranges should be a tuple of "
"length 3, got %s" % str(arg[i + expr_len]))
return args
|
371e5d896bda64446198f0cdd896f5d0abda3710657c624b58375210a396cd93
|
from sympy import symbols, pi, oo, S, exp, sqrt, besselk, Indexed, erf
from sympy.stats import density
from sympy.stats.joint_rv import marginal_distribution
from sympy.stats.joint_rv_types import JointRV
from sympy.stats.crv_types import Normal
from sympy.utilities.pytest import raises, XFAIL
from sympy.integrals.integrals import integrate
from sympy.matrices import Matrix
x, y, z, a, b = symbols('x y z a b')
def test_Normal():
m = Normal('A', [1, 2], [[1, 0], [0, 1]])
assert density(m)(1, 2) == 1/(2*pi)
raises (ValueError, lambda:m[2])
raises (ValueError,\
lambda: Normal('M',[1, 2], [[0, 0], [0, 1]]))
n = Normal('B', [1, 2, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
p = Normal('C', Matrix([1, 2]), Matrix([[1, 0], [0, 1]]))
assert density(m)(x, y) == density(p)(x, y)
assert marginal_distribution(n, 0, 1)(1, 2) == 1/(2*pi)
assert integrate(density(m)(x, y), (x, -oo, oo), (y, -oo, oo)).evalf() == 1
N = Normal('N', [1, 2], [[x, 0], [0, y]])
assert density(N)(0, 0) == exp(-2/y - 1/(2*x))/(2*pi*sqrt(x*y))
raises (ValueError, lambda: Normal('M', [1, 2], [[1, 1], [1, -1]]))
def test_MultivariateTDist():
from sympy.stats.joint_rv_types import MultivariateT
t1 = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2)
assert(density(t1))(1, 1) == 1/(8*pi)
assert integrate(density(t1)(x, y), (x, -oo, oo), \
(y, -oo, oo)).evalf() == 1
raises(ValueError, lambda: MultivariateT('T', [1, 2], [[1, 1], [1, -1]], 1))
t2 = MultivariateT('t2', [1, 2], [[x, 0], [0, y]], 1)
assert density(t2)(1, 2) == 1/(2*pi*sqrt(x*y))
def test_multivariate_laplace():
from sympy.stats.crv_types import Laplace
raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]]))
L = Laplace('L', [1, 0], [[1, 2], [0, 1]])
assert density(L)(2, 3) == exp(2)*besselk(0, sqrt(3))/pi
L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]])
assert density(L1)(0, 1) == \
exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y))
def test_NormalGamma():
from sympy.stats.joint_rv_types import NormalGamma
from sympy import gamma
ng = NormalGamma('G', 1, 2, 3, 4)
assert density(ng)(1, 1) == 32*exp(-4)/sqrt(pi)
raises(ValueError, lambda:NormalGamma('G', 1, 2, 3, -1))
assert marginal_distribution(ng, 0)(1) == \
3*sqrt(10)*gamma(S(7)/4)/(10*sqrt(pi)*gamma(S(5)/4))
assert marginal_distribution(ng, y)(1) == exp(-S(1)/4)/128
def test_JointPSpace_margial_distribution():
from sympy.stats.joint_rv_types import MultivariateT
from sympy import polar_lift
T = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2)
assert marginal_distribution(T, T[1])(x) == sqrt(2)*(x**2 + 2)/(
8*polar_lift(x**2/2 + 1)**(S(5)/2))
assert integrate(marginal_distribution(T, 1)(x), (x, -oo, oo)) == 1
def test_JointRV():
from sympy.stats.joint_rv import JointDistributionHandmade
x1, x2 = (Indexed('x', i) for i in (1, 2))
pdf = exp(-x1**2/2 + x1 - x2**2/2 - S(1)/2)/(2*pi)
X = JointRV('x', pdf)
assert density(X)(1, 2) == exp(-2)/(2*pi)
assert isinstance(X.pspace.distribution, JointDistributionHandmade)
assert marginal_distribution(X, 0)(2) == sqrt(2)*exp(-S(1)/2)/(2*sqrt(pi))
def test_expectation():
from sympy import simplify
from sympy.stats import E
m = Normal('A', [x, y], [[1, 0], [0, 1]])
assert simplify(E(m[1])) == y
@XFAIL
def test_joint_vector_expectation():
from sympy.stats import E
m = Normal('A', [x, y], [[1, 0], [0, 1]])
assert E(m) == (x, y)
|
480704bb21f5b9e4d94ff67171ccd664437a621f0acff58e574446d8d4029b07
|
from sympy.stats.drv_types import (PoissonDistribution, GeometricDistribution,
Poisson, Geometric, Logarithmic, NegativeBinomial, YuleSimon, Zeta)
from sympy.abc import x
from sympy import S, Sum, I, lambdify, re, im, log, simplify, zeta, pi
from sympy.stats import (P, E, variance, density, characteristic_function,
where, moment_generating_function)
from sympy.stats.rv import sample
from sympy.stats.symbolic_probability import Probability
from sympy.core.relational import Eq, Ne
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.piecewise import Piecewise
from sympy.sets.fancysets import Range
from sympy.logic.boolalg import Or
def test_PoissonDistribution():
l = 3
p = PoissonDistribution(l)
assert abs(p.cdf(10).evalf() - 1) < .001
assert p.expectation(x, x) == l
assert p.expectation(x**2, x) - p.expectation(x, x)**2 == l
def test_Poisson():
l = 3
x = Poisson('x', l)
assert E(x) == l
assert variance(x) == l
assert density(x) == PoissonDistribution(l)
assert isinstance(E(x, evaluate=False), Sum)
assert isinstance(E(2*x, evaluate=False), Sum)
def test_GeometricDistribution():
p = S.One / 5
d = GeometricDistribution(p)
t = S('t')
assert d.expectation(x, x) == 1/p
assert d.expectation(x**2, x) - d.expectation(x, x)**2 == (1-p)/p**2
assert abs(d.cdf(20000).evalf() - 1) < .001
def test_Logarithmic():
p = S.One / 2
x = Logarithmic('x', p)
assert E(x) == -p / ((1 - p) * log(1 - p))
assert variance(x) == -1/log(2)**2 + 2/log(2)
assert E(2*x**2 + 3*x + 4) == 4 + 7 / log(2)
assert isinstance(E(x, evaluate=False), Sum)
def test_negative_binomial():
r = 5
p = S(1) / 3
x = NegativeBinomial('x', r, p)
assert E(x) == p*r / (1-p)
assert variance(x) == p*r / (1-p)**2
assert E(x**5 + 2*x + 3) == S(9207)/4
assert isinstance(E(x, evaluate=False), Sum)
def test_yule_simon():
rho = S(3)
x = YuleSimon('x', rho)
assert simplify(E(x)) == rho / (rho - 1)
assert simplify(variance(x)) == rho**2 / ((rho - 1)**2 * (rho - 2))
assert isinstance(E(x, evaluate=False), Sum)
def test_zeta():
s = S(5)
x = Zeta('x', s)
assert E(x) == zeta(s-1) / zeta(s)
assert simplify(variance(x)) == (zeta(s) * zeta(s-2) - zeta(s-1)**2) / zeta(s)**2
def test_sample():
X, Y, Z = Geometric('X', S(1)/2), Poisson('Y', 4), Poisson('Z', 1000)
W = Poisson('W', S(1)/100)
assert sample(X) in X.pspace.domain.set
assert sample(Y) in Y.pspace.domain.set
assert sample(Z) in Z.pspace.domain.set
assert sample(W) in W.pspace.domain.set
def test_discrete_probability():
X = Geometric('X', S(1)/5)
Y = Poisson('Y', 4)
G = Geometric('e', x)
assert P(Eq(X, 3)) == S(16)/125
assert P(X < 3) == S(9)/25
assert P(X > 3) == S(64)/125
assert P(X >= 3) == S(16)/25
assert P(X <= 3) == S(61)/125
assert P(Ne(X, 3)) == S(109)/125
assert P(Eq(Y, 3)) == 32*exp(-4)/3
assert P(Y < 3) == 13*exp(-4)
assert P(Y > 3).equals(32*(-S(71)/32 + 3*exp(4)/32)*exp(-4)/3)
assert P(Y >= 3).equals(32*(-S(39)/32 + 3*exp(4)/32)*exp(-4)/3)
assert P(Y <= 3) == 71*exp(-4)/3
assert P(Ne(Y, 3)).equals(
13*exp(-4) + 32*(-S(71)/32 + 3*exp(4)/32)*exp(-4)/3)
assert P(X < S.Infinity) is S.One
assert P(X > S.Infinity) is S.Zero
assert P(G < 3) == x*(-x + 1) + x
assert P(Eq(G, 3)) == x*(-x + 1)**2
def test_precomputed_characteristic_functions():
import mpmath
def test_cf(dist, support_lower_limit, support_upper_limit):
pdf = density(dist)
t = S('t')
x = S('x')
# first function is the hardcoded CF of the distribution
cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
# second function is the Fourier transform of the density function
f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
cf2 = lambda t: mpmath.nsum(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)
# compare the two functions at various points
for test_point in [2, 5, 8, 11]:
n1 = cf1(test_point)
n2 = cf2(test_point)
assert abs(re(n1) - re(n2)) < 1e-12
assert abs(im(n1) - im(n2)) < 1e-12
test_cf(Geometric('g', S(1)/3), 1, mpmath.inf)
test_cf(Logarithmic('l', S(1)/5), 1, mpmath.inf)
test_cf(NegativeBinomial('n', 5, S(1)/7), 0, mpmath.inf)
test_cf(Poisson('p', 5), 0, mpmath.inf)
test_cf(YuleSimon('y', 5), 1, mpmath.inf)
test_cf(Zeta('z', 5), 1, mpmath.inf)
def test_moment_generating_functions():
t = S('t')
geometric_mgf = moment_generating_function(Geometric('g', S(1)/2))(t)
assert geometric_mgf.diff(t).subs(t, 0) == 2
logarithmic_mgf = moment_generating_function(Logarithmic('l', S(1)/2))(t)
assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2)
negative_binomial_mgf = moment_generating_function(NegativeBinomial('n', 5, S(1)/3))(t)
assert negative_binomial_mgf.diff(t).subs(t, 0) == S(5)/2
poisson_mgf = moment_generating_function(Poisson('p', 5))(t)
assert poisson_mgf.diff(t).subs(t, 0) == 5
yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t)
assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == S(3)/2
zeta_mgf = moment_generating_function(Zeta('z', 5))(t)
assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5))
def test_Or():
X = Geometric('X', S(1)/2)
P(Or(X < 3, X > 4)) == S(13)/16
P(Or(X > 2, X > 1)) == P(X > 1)
P(Or(X >= 3, X < 3)) == 1
def test_where():
X = Geometric('X', S(1)/5)
Y = Poisson('Y', 4)
assert where(X**2 > 4).set == Range(3, S.Infinity, 1)
assert where(X**2 >= 4).set == Range(2, S.Infinity, 1)
assert where(Y**2 < 9).set == Range(0, 3, 1)
assert where(Y**2 <= 9).set == Range(0, 4, 1)
def test_conditional():
X = Geometric('X', S(2)/3)
Y = Poisson('Y', 3)
assert P(X > 2, X > 3) == 1
assert P(X > 3, X > 2) == S(1)/3
assert P(Y > 2, Y < 2) == 0
assert P(Eq(Y, 3), Y >= 0) == 9*exp(-3)/2
assert P(Eq(Y, 3), Eq(Y, 2)) == 0
assert P(X < 2, Eq(X, 2)) == 0
assert P(X > 2, Eq(X, 3)) == 1
def test_product_spaces():
X1 = Geometric('X1', S(1)/2)
X2 = Geometric('X2', S(1)/3)
assert str(P(X1 + X2 < 3, evaluate=False)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """\
+ """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, -oo, -1))"""
assert str(P(X1 + X2 > 3)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """ +\
"""(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, 1, oo))"""
assert str(P(Eq(X1 + X2, 3))) == """Sum(Piecewise((2**(X2 - 2)*(2/3)**(X2 - 1)/6, """ +\
"""X2 <= 2), (0, True)), (X2, 1, oo))"""
|
1852ee8ba9cdb55de0cae8ba5dc721c8273c91f1f2abd2e72f36860c31d59f70
|
from sympy.utilities.randtest import verify_numerically as tn
from sympy.stats import (P, E, where, density, variance, covariance, skewness,
given, pspace, cdf, characteristic_function, ContinuousRV, sample,
Arcsin, Benini, Beta, BetaPrime, Cauchy,
Chi, ChiSquared,
ChiNoncentral, Dagum, Erlang, Exponential,
FDistribution, FisherZ, Frechet, Gamma, GammaInverse,
Gompertz, Gumbel, Kumaraswamy, Laplace, Logistic,
LogNormal, Maxwell, Nakagami, Normal, Pareto,
QuadraticU, RaisedCosine, Rayleigh, ShiftedGompertz,
StudentT, Trapezoidal, Triangular, Uniform, UniformSum,
VonMises, Weibull, WignerSemicircle, correlation,
moment, cmoment, smoment)
from sympy import (Symbol, Abs, exp, S, N, pi, simplify, Interval, erf, erfc, Ne,
Eq, log, lowergamma, uppergamma, Sum, symbols, sqrt, And, gamma, beta,
Piecewise, Integral, sin, cos, besseli, factorial, binomial,
floor, expand_func, Rational, I, re, im, lambdify, hyper, diff, Or, Mul)
from sympy.stats.crv_types import NormalDistribution
from sympy.stats.joint_rv import JointPSpace
from sympy.utilities.pytest import raises, XFAIL, slow, skip
from sympy.external import import_module
from sympy.core.compatibility import range
oo = S.Infinity
x, y, z = map(Symbol, 'xyz')
def test_single_normal():
mu = Symbol('mu', real=True, finite=True)
sigma = Symbol('sigma', real=True, positive=True, finite=True)
X = Normal('x', 0, 1)
Y = X*sigma + mu
assert simplify(E(Y)) == mu
assert simplify(variance(Y)) == sigma**2
pdf = density(Y)
x = Symbol('x')
assert (pdf(x) ==
2**S.Half*exp(-(mu - x)**2/(2*sigma**2))/(2*pi**S.Half*sigma))
assert P(X**2 < 1) == erf(2**S.Half/2)
assert E(X, Eq(X, mu)) == mu
@XFAIL
def test_conditional_1d():
X = Normal('x', 0, 1)
Y = given(X, X >= 0)
assert density(Y) == 2 * density(X)
assert Y.pspace.domain.set == Interval(0, oo)
assert E(Y) == sqrt(2) / sqrt(pi)
assert E(X**2) == E(Y**2)
def test_ContinuousDomain():
X = Normal('x', 0, 1)
assert where(X**2 <= 1).set == Interval(-1, 1)
assert where(X**2 <= 1).symbol == X.symbol
where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
raises(ValueError, lambda: where(sin(X) > 1))
Y = given(X, X >= 0)
assert Y.pspace.domain.set == Interval(0, oo)
@slow
def test_multiple_normal():
X, Y = Normal('x', 0, 1), Normal('y', 0, 1)
assert E(X + Y) == 0
assert variance(X + Y) == 2
assert variance(X + X) == 4
assert covariance(X, Y) == 0
assert covariance(2*X + Y, -X) == -2*variance(X)
assert skewness(X) == 0
assert skewness(X + Y) == 0
assert correlation(X, Y) == 0
assert correlation(X, X + Y) == correlation(X, X - Y)
assert moment(X, 2) == 1
assert cmoment(X, 3) == 0
assert moment(X + Y, 4) == 12
assert cmoment(X, 2) == variance(X)
assert smoment(X*X, 2) == 1
assert smoment(X + Y, 3) == skewness(X + Y)
assert E(X, Eq(X + Y, 0)) == 0
assert variance(X, Eq(X + Y, 0)) == S.Half
@slow
def test_symbolic():
mu1, mu2 = symbols('mu1 mu2', real=True, finite=True)
s1, s2 = symbols('sigma1 sigma2', real=True, finite=True, positive=True)
rate = Symbol('lambda', real=True, positive=True, finite=True)
X = Normal('x', mu1, s1)
Y = Normal('y', mu2, s2)
Z = Exponential('z', rate)
a, b, c = symbols('a b c', real=True, finite=True)
assert E(X) == mu1
assert E(X + Y) == mu1 + mu2
assert E(a*X + b) == a*E(X) + b
assert variance(X) == s1**2
assert simplify(variance(X + a*Y + b)) == variance(X) + a**2*variance(Y)
assert E(Z) == 1/rate
assert E(a*Z + b) == a*E(Z) + b
assert E(X + a*Z + b) == mu1 + a/rate + b
def test_cdf():
X = Normal('x', 0, 1)
d = cdf(X)
assert P(X < 1) == d(1).rewrite(erfc)
assert d(0) == S.Half
d = cdf(X, X > 0) # given X>0
assert d(0) == 0
Y = Exponential('y', 10)
d = cdf(Y)
assert d(-5) == 0
assert P(Y > 3) == 1 - d(3)
raises(ValueError, lambda: cdf(X + Y))
Z = Exponential('z', 1)
f = cdf(Z)
z = Symbol('z')
assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True))
def test_characteristic_function():
X = Uniform('x', 0, 1)
cf = characteristic_function(X)
assert cf(1) == -I*(-1 + exp(I))
Y = Normal('y', 1, 1)
cf = characteristic_function(Y)
assert cf(0) == 1
assert simplify(cf(1)) == exp(I - S(1)/2)
Z = Exponential('z', 5)
cf = characteristic_function(Z)
assert cf(0) == 1
assert simplify(cf(1)) == S(25)/26 + 5*I/26
def test_sample():
z = Symbol('z')
Z = ContinuousRV(z, exp(-z), set=Interval(0, oo))
assert sample(Z) in Z.pspace.domain.set
sym, val = list(Z.pspace.sample().items())[0]
assert sym == Z and val in Interval(0, oo)
assert density(Z)(-1) == 0
def test_ContinuousRV():
x = Symbol('x')
pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
# X and Y should be equivalent
X = ContinuousRV(x, pdf)
Y = Normal('y', 0, 1)
assert variance(X) == variance(Y)
assert P(X > 0) == P(Y > 0)
def test_arcsin():
from sympy import asin
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = Arcsin('x', a, b)
assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a)))
assert cdf(X)(x) == Piecewise((0, a > x),
(2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x),
(1, True))
def test_benini():
alpha = Symbol("alpha", positive=True)
b = Symbol("beta", positive=True)
sigma = Symbol("sigma", positive=True)
X = Benini('x', alpha, b, sigma)
assert density(X)(x) == ((alpha/x + 2*b*log(x/sigma)/x)
*exp(-alpha*log(x/sigma) - b*log(x/sigma)**2))
def test_beta():
a, b = symbols('alpha beta', positive=True)
B = Beta('x', a, b)
assert pspace(B).domain.set == Interval(0, 1)
dens = density(B)
x = Symbol('x')
assert dens(x) == x**(a - 1)*(1 - x)**(b - 1) / beta(a, b)
assert simplify(E(B)) == a / (a + b)
assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2)
# Full symbolic solution is too much, test with numeric version
a, b = 1, 2
B = Beta('x', a, b)
assert expand_func(E(B)) == a / S(a + b)
assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1))
def test_betaprime():
alpha = Symbol("alpha", positive=True)
betap = Symbol("beta", positive=True)
X = BetaPrime('x', alpha, betap)
assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap)
def test_cauchy():
x0 = Symbol("x0")
gamma = Symbol("gamma", positive=True)
X = Cauchy('x', x0, gamma)
assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2))
def test_chi():
k = Symbol("k", integer=True)
X = Chi('x', k)
assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
def test_chi_noncentral():
k = Symbol("k", integer=True)
l = Symbol("l")
X = ChiNoncentral("x", k, l)
assert density(X)(x) == (x**k*l*(x*l)**(-k/2)*
exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l))
def test_chi_squared():
k = Symbol("k", integer=True)
X = ChiSquared('x', k)
assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
X = ChiSquared('x', 15)
assert cdf(X)(3) == -14873*sqrt(6)*exp(-S(3)/2)/(5005*sqrt(pi)) + erf(sqrt(6)/2)
def test_dagum():
p = Symbol("p", positive=True)
b = Symbol("b", positive=True)
a = Symbol("a", positive=True)
X = Dagum('x', p, a, b)
assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x
assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0),
(0, True))
def test_erlang():
k = Symbol("k", integer=True, positive=True)
l = Symbol("l", positive=True)
X = Erlang("x", k, l)
assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k)
assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0),
(0, True))
def test_exponential():
rate = Symbol('lambda', positive=True, real=True, finite=True)
X = Exponential('x', rate)
assert E(X) == 1/rate
assert variance(X) == 1/rate**2
assert skewness(X) == 2
assert skewness(X) == smoment(X, 3)
assert smoment(2*X, 4) == smoment(X, 4)
assert moment(X, 3) == 3*2*1/rate**3
assert P(X > 0) == S(1)
assert P(X > 1) == exp(-rate)
assert P(X > 10) == exp(-10*rate)
assert where(X <= 1).set == Interval(0, 1)
def test_f_distribution():
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=True)
X = FDistribution("x", d1, d2)
assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2))
/(x*beta(d1/2, d2/2)))
def test_fisher_z():
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=True)
X = FisherZ("x", d1, d2)
assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2)
**(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2))
def test_frechet():
a = Symbol("a", positive=True)
s = Symbol("s", positive=True)
m = Symbol("m", real=True)
X = Frechet("x", a, s=s, m=m)
assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s
assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True))
def test_gamma():
k = Symbol("k", positive=True)
theta = Symbol("theta", positive=True)
X = Gamma('x', k, theta)
assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k)
assert cdf(X, meijerg=True)(z) == Piecewise(
(-k*lowergamma(k, 0)/gamma(k + 1) +
k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0),
(0, True))
# assert simplify(variance(X)) == k*theta**2 # handled numerically below
assert E(X) == moment(X, 1)
k, theta = symbols('k theta', real=True, finite=True, positive=True)
X = Gamma('x', k, theta)
assert E(X) == k*theta
assert variance(X) == k*theta**2
assert simplify(skewness(X)) == 2/sqrt(k)
def test_gamma_inverse():
a = Symbol("a", positive=True)
b = Symbol("b", positive=True)
X = GammaInverse("x", a, b)
assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a)
assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True))
def test_sampling_gamma_inverse():
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for sampling of gamma inverse.')
X = GammaInverse("x", 1, 1)
assert sample(X) in X.pspace.domain.set
def test_gompertz():
b = Symbol("b", positive=True)
eta = Symbol("eta", positive=True)
X = Gompertz("x", b, eta)
assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x))
def test_gumbel():
beta = Symbol("beta", positive=True)
mu = Symbol("mu")
x = Symbol("x")
X = Gumbel("x", beta, mu)
assert simplify(density(X)(x)) == exp((beta*exp((mu - x)/beta) + mu - x)/beta)/beta
def test_kumaraswamy():
a = Symbol("a", positive=True)
b = Symbol("b", positive=True)
X = Kumaraswamy("x", a, b)
assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1)
assert cdf(X)(x) == Piecewise((0, x < 0),
(-(-x**a + 1)**b + 1, x <= 1),
(1, True))
def test_laplace():
mu = Symbol("mu")
b = Symbol("b", positive=True)
X = Laplace('x', mu, b)
assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b)
assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x),
(-exp((mu - x)/b)/2 + 1, True))
def test_logistic():
mu = Symbol("mu", real=True)
s = Symbol("s", positive=True)
X = Logistic('x', mu, s)
assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2)
assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1)
def test_lognormal():
mean = Symbol('mu', real=True, finite=True)
std = Symbol('sigma', positive=True, real=True, finite=True)
X = LogNormal('x', mean, std)
# The sympy integrator can't do this too well
#assert E(X) == exp(mean+std**2/2)
#assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2)
# Right now, only density function and sampling works
# Test sampling: Only e^mean in sample std of 0
for i in range(3):
X = LogNormal('x', i, 0)
assert S(sample(X)) == N(exp(i))
# The sympy integrator can't do this too well
#assert E(X) ==
mu = Symbol("mu", real=True)
sigma = Symbol("sigma", positive=True)
X = LogNormal('x', mu, sigma)
assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2
/(2*sigma**2))/(2*x*sqrt(pi)*sigma))
X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi))
def test_maxwell():
a = Symbol("a", positive=True)
X = Maxwell('x', a)
assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/
(sqrt(pi)*a**3))
assert E(X) == 2*sqrt(2)*a/sqrt(pi)
assert simplify(variance(X)) == a**2*(-8 + 3*pi)/pi
def test_nakagami():
mu = Symbol("mu", positive=True)
omega = Symbol("omega", positive=True)
X = Nakagami('x', mu, omega)
assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu)
*exp(-x**2*mu/omega)/gamma(mu))
assert simplify(E(X)) == (sqrt(mu)*sqrt(omega)
*gamma(mu + S.Half)/gamma(mu + 1))
assert simplify(variance(X)) == (
omega - omega*gamma(mu + S(1)/2)**2/(gamma(mu)*gamma(mu + 1)))
assert cdf(X)(x) == Piecewise(
(lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0),
(0, True))
def test_pareto():
xm, beta = symbols('xm beta', positive=True, finite=True)
alpha = beta + 5
X = Pareto('x', xm, alpha)
dens = density(X)
x = Symbol('x')
assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha)
assert simplify(E(X)) == alpha*xm/(alpha-1)
# computation of taylor series for MGF still too slow
#assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2))
def test_pareto_numeric():
xm, beta = 3, 2
alpha = beta + 5
X = Pareto('x', xm, alpha)
assert E(X) == alpha*xm/S(alpha - 1)
assert variance(X) == xm**2*alpha / S(((alpha - 1)**2*(alpha - 2)))
# Skewness tests too slow. Try shortcutting function?
def test_raised_cosine():
mu = Symbol("mu", real=True)
s = Symbol("s", positive=True)
X = RaisedCosine("x", mu, s)
assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s),
And(x <= mu + s, mu - s <= x)), (0, True)))
def test_rayleigh():
sigma = Symbol("sigma", positive=True)
X = Rayleigh('x', sigma)
assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2
assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
def test_shiftedgompertz():
b = Symbol("b", positive=True)
eta = Symbol("eta", positive=True)
X = ShiftedGompertz("x", b, eta)
assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
def test_studentt():
nu = Symbol("nu", positive=True)
X = StudentT('x', nu)
assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S(1)/2)/(sqrt(nu)*beta(S(1)/2, nu/2))
assert cdf(X)(x) == S(1)/2 + x*gamma(nu/2 + S(1)/2)*hyper((S(1)/2, nu/2 + S(1)/2),
(S(3)/2,), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
def test_trapezoidal():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
c = Symbol("c", real=True)
d = Symbol("d", real=True)
X = Trapezoidal('x', a, b, c, d)
assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)),
(2/(-a - b + c + d), (b <= x) & (x < c)),
((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)),
(0, True))
X = Trapezoidal('x', 0, 1, 2, 3)
assert E(X) == S(3)/2
assert variance(X) == S(5)/12
assert P(X < 2) == S(3)/4
@XFAIL
def test_triangular():
a = Symbol("a")
b = Symbol("b")
c = Symbol("c")
X = Triangular('x', a, b, c)
assert density(X)(x) == Piecewise(
((2*x - 2*a)/((-a + b)*(-a + c)), And(a <= x, x < c)),
(2/(-a + b), x == c),
((-2*x + 2*b)/((-a + b)*(b - c)), And(x <= b, c < x)),
(0, True))
def test_quadratic_u():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = QuadraticU("x", a, b)
assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3,
And(x <= b, a <= x)), (0, True)))
def test_uniform():
l = Symbol('l', real=True, finite=True)
w = Symbol('w', positive=True, finite=True)
X = Uniform('x', l, l + w)
assert simplify(E(X)) == l + w/2
assert simplify(variance(X)) == w**2/12
# With numbers all is well
X = Uniform('x', 3, 5)
assert P(X < 3) == 0 and P(X > 5) == 0
assert P(X < 4) == P(X > 4) == S.Half
z = Symbol('z')
p = density(X)(z)
assert p.subs(z, 3.7) == S(1)/2
assert p.subs(z, -1) == 0
assert p.subs(z, 6) == 0
c = cdf(X)
assert c(2) == 0 and c(3) == 0
assert c(S(7)/2) == S(1)/4
assert c(5) == 1 and c(6) == 1
def test_uniform_P():
""" This stopped working because SingleContinuousPSpace.compute_density no
longer calls integrate on a DiracDelta but rather just solves directly.
integrate used to call UniformDistribution.expectation which special-cased
subsed out the Min and Max terms that Uniform produces
I decided to regress on this class for general cleanliness (and I suspect
speed) of the algorithm.
"""
l = Symbol('l', real=True, finite=True)
w = Symbol('w', positive=True, finite=True)
X = Uniform('x', l, l + w)
assert P(X < l) == 0 and P(X > l + w) == 0
@XFAIL
def test_uniformsum():
n = Symbol("n", integer=True)
_k = Symbol("k")
X = UniformSum('x', n)
assert density(X)(x) == (Sum((-1)**_k*(-_k + x)**(n - 1)
*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1))
def test_von_mises():
mu = Symbol("mu")
k = Symbol("k", positive=True)
X = VonMises("x", mu, k)
assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k))
def test_weibull():
a, b = symbols('a b', positive=True)
X = Weibull('x', a, b)
assert simplify(E(X)) == simplify(a * gamma(1 + 1/b))
assert simplify(variance(X)) == simplify(a**2 * gamma(1 + 2/b) - E(X)**2)
assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**(S(3)/2)
def test_weibull_numeric():
# Test for integers and rationals
a = 1
bvals = [S.Half, 1, S(3)/2, 5]
for b in bvals:
X = Weibull('x', a, b)
assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b)))
assert simplify(variance(X)) == simplify(
a**2 * gamma(1 + 2/S(b)) - E(X)**2)
# Not testing Skew... it's slow with int/frac values > 3/2
def test_wignersemicircle():
R = Symbol("R", positive=True)
X = WignerSemicircle('x', R)
assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2)
assert E(X) == 0
def test_prefab_sampling():
N = Normal('X', 0, 1)
L = LogNormal('L', 0, 1)
E = Exponential('Ex', 1)
P = Pareto('P', 1, 3)
W = Weibull('W', 1, 1)
U = Uniform('U', 0, 1)
B = Beta('B', 2, 5)
G = Gamma('G', 1, 3)
variables = [N, L, E, P, W, U, B, G]
niter = 10
for var in variables:
for i in range(niter):
assert sample(var) in var.pspace.domain.set
def test_input_value_assertions():
a, b = symbols('a b')
p, q = symbols('p q', positive=True)
m, n = symbols('m n', positive=False, real=True)
raises(ValueError, lambda: Normal('x', 3, 0))
raises(ValueError, lambda: Normal('x', m, n))
Normal('X', a, p) # No error raised
raises(ValueError, lambda: Exponential('x', m))
Exponential('Ex', p) # No error raised
for fn in [Pareto, Weibull, Beta, Gamma]:
raises(ValueError, lambda: fn('x', m, p))
raises(ValueError, lambda: fn('x', p, n))
fn('x', p, q) # No error raised
@XFAIL
def test_unevaluated():
X = Normal('x', 0, 1)
assert E(X, evaluate=False) == (
Integral(sqrt(2)*x*exp(-x**2/2)/(2*sqrt(pi)), (x, -oo, oo)))
assert E(X + 1, evaluate=False) == (
Integral(sqrt(2)*x*exp(-x**2/2)/(2*sqrt(pi)), (x, -oo, oo)) + 1)
assert P(X > 0, evaluate=False) == (
Integral(sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)), (x, 0, oo)))
assert P(X > 0, X**2 < 1, evaluate=False) == (
Integral(sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)*
Integral(sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)),
(x, -1, 1))), (x, 0, 1)))
def test_probability_unevaluated():
T = Normal('T', 30, 3)
assert type(P(T > 33, evaluate=False)) == Integral
def test_density_unevaluated():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 2)
assert isinstance(density(X+Y, evaluate=False)(z), Integral)
def test_NormalDistribution():
nd = NormalDistribution(0, 1)
x = Symbol('x')
assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.One/2
assert isinstance(nd.sample(), float) or nd.sample().is_Number
assert nd.expectation(1, x) == 1
assert nd.expectation(x, x) == 0
assert nd.expectation(x**2, x) == 1
def test_random_parameters():
mu = Normal('mu', 2, 3)
meas = Normal('T', mu, 1)
assert density(meas, evaluate=False)(z)
assert isinstance(pspace(meas), JointPSpace)
#assert density(meas, evaluate=False)(z) == Integral(mu.pspace.pdf *
# meas.pspace.pdf, (mu.symbol, -oo, oo)).subs(meas.symbol, z)
def test_random_parameters_given():
mu = Normal('mu', 2, 3)
meas = Normal('T', mu, 1)
assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1)
def test_conjugate_priors():
mu = Normal('mu', 2, 3)
x = Normal('x', mu, 1)
assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)),
Mul)
def test_difficult_univariate():
""" Since using solve in place of deltaintegrate we're able to perform
substantially more complex density computations on single continuous random
variables """
x = Normal('x', 0, 1)
assert density(x**3)
assert density(exp(x**2))
assert density(log(x))
def test_issue_10003():
X = Exponential('x', 3)
G = Gamma('g', 1, 2)
assert P(X < -1) == S.Zero
assert P(G < -1) == S.Zero
def test_precomputed_cdf():
x = symbols("x", real=True, finite=True)
mu = symbols("mu", real=True, finite=True)
sigma, xm, alpha = symbols("sigma xm alpha", positive=True, finite=True)
n = symbols("n", integer=True, positive=True, finite=True)
distribs = [
Normal("X", mu, sigma),
Pareto("P", xm, alpha),
ChiSquared("C", n),
Exponential("E", sigma),
# LogNormal("L", mu, sigma),
]
for X in distribs:
compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x))
compdiff = simplify(compdiff.rewrite(erfc))
assert compdiff == 0
def test_precomputed_characteristic_functions():
import mpmath
def test_cf(dist, support_lower_limit, support_upper_limit):
pdf = density(dist)
t = Symbol('t')
x = Symbol('x')
# first function is the hardcoded CF of the distribution
cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
# second function is the Fourier transform of the density function
f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)
# compare the two functions at various points
for test_point in [2, 5, 8, 11]:
n1 = cf1(test_point)
n2 = cf2(test_point)
assert abs(re(n1) - re(n2)) < 1e-12
assert abs(im(n1) - im(n2)) < 1e-12
test_cf(Beta('b', 1, 2), 0, 1)
test_cf(Chi('c', 3), 0, mpmath.inf)
test_cf(ChiSquared('c', 2), 0, mpmath.inf)
test_cf(Exponential('e', 6), 0, mpmath.inf)
test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf)
test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf)
test_cf(RaisedCosine('r', 3, 1), 2, 4)
test_cf(Rayleigh('r', 0.5), 0, mpmath.inf)
test_cf(Uniform('u', -1, 1), -1, 1)
test_cf(WignerSemicircle('w', 3), -3, 3)
def test_long_precomputed_cdf():
x = symbols("x", real=True, finite=True)
distribs = [
Arcsin("A", -5, 9),
Dagum("D", 4, 10, 3),
Erlang("E", 14, 5),
Frechet("F", 2, 6, -3),
Gamma("G", 2, 7),
GammaInverse("GI", 3, 5),
Kumaraswamy("K", 6, 8),
Laplace("LA", -5, 4),
Logistic("L", -6, 7),
Nakagami("N", 2, 7),
StudentT("S", 4)
]
for distr in distribs:
for _ in range(5):
assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0)
US = UniformSum("US", 5)
pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1)
cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1)
assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0)
def test_issue_13324():
X = Uniform('X', 0, 1)
assert E(X, X > Rational(1, 2)) == Rational(3, 4)
assert E(X, X > 0) == Rational(1, 2)
def test_FiniteSet_prob():
x = symbols('x')
E = Exponential('E', 3)
N = Normal('N', 5, 7)
assert P(Eq(E, 1)) is S.Zero
assert P(Eq(N, 2)) is S.Zero
assert P(Eq(N, x)) is S.Zero
def test_prob_neq():
E = Exponential('E', 4)
X = ChiSquared('X', 4)
x = symbols('x')
assert P(Ne(E, 2)) == 1
assert P(Ne(X, 4)) == 1
assert P(Ne(X, 4)) == 1
assert P(Ne(X, 5)) == 1
assert P(Ne(E, x)) == 1
def test_union():
N = Normal('N', 3, 2)
assert simplify(P(N**2 - N > 2)) == \
-erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + S(3)/2
assert simplify(P(N**2 - 4 > 0)) == \
-erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + S(3)/2
def test_Or():
N = Normal('N', 0, 1)
assert simplify(P(Or(N > 2, N < 1))) == \
-erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + S(3)/2
assert P(Or(N < 0, N < 1)) == P(N < 1)
assert P(Or(N > 0, N < 0)) == 1
def test_conditional_eq():
E = Exponential('E', 1)
assert P(Eq(E, 1), Eq(E, 1)) == 1
assert P(Eq(E, 1), Eq(E, 2)) == 0
assert P(E > 1, Eq(E, 2)) == 1
assert P(E < 1, Eq(E, 2)) == 0
|
aefcd7ed8be601c31dd2b916f3d55f05b5e64c2f55499cb0359e47388248df68
|
from sympy.core.compatibility import range
from sympy.ntheory.generate import Sieve, sieve
from sympy.ntheory.primetest import (mr, is_lucas_prp, is_square,
is_strong_lucas_prp, is_extra_strong_lucas_prp, isprime, is_euler_pseudoprime)
from sympy.utilities.pytest import slow
def test_euler_pseudoprimes():
assert is_euler_pseudoprime(9, 1) == True
assert is_euler_pseudoprime(341, 2) == False
assert is_euler_pseudoprime(121, 3) == True
assert is_euler_pseudoprime(341, 4) == True
assert is_euler_pseudoprime(217, 5) == False
assert is_euler_pseudoprime(185, 6) == False
assert is_euler_pseudoprime(55, 111) == True
assert is_euler_pseudoprime(115, 114) == True
assert is_euler_pseudoprime(49, 117) == True
assert is_euler_pseudoprime(85, 84) == True
assert is_euler_pseudoprime(87, 88) == True
assert is_euler_pseudoprime(49, 128) == True
assert is_euler_pseudoprime(39, 77) == True
assert is_euler_pseudoprime(9881, 30) == True
assert is_euler_pseudoprime(8841, 29) == False
assert is_euler_pseudoprime(8421, 29) == False
assert is_euler_pseudoprime(9997, 19) == True
@slow
def test_prps():
oddcomposites = [n for n in range(1, 10**5) if
n % 2 and not isprime(n)]
# A checksum would be better.
assert sum(oddcomposites) == 2045603465
assert [n for n in oddcomposites if mr(n, [2])] == [
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141,
52633, 65281, 74665, 80581, 85489, 88357, 90751]
assert [n for n in oddcomposites if mr(n, [3])] == [
121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531,
18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139,
74593, 79003, 82513, 87913, 88573, 97567]
assert [n for n in oddcomposites if mr(n, [325])] == [
9, 25, 27, 49, 65, 81, 325, 341, 343, 697, 1141, 2059,
2149, 3097, 3537, 4033, 4681, 4941, 5833, 6517, 7987, 8911,
12403, 12913, 15043, 16021, 20017, 22261, 23221, 24649,
24929, 31841, 35371, 38503, 43213, 44173, 47197, 50041,
55909, 56033, 58969, 59089, 61337, 65441, 68823, 72641,
76793, 78409, 85879]
assert not any(mr(n, [9345883071009581737]) for n in oddcomposites)
assert [n for n in oddcomposites if is_lucas_prp(n)] == [
323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877,
11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971,
19043, 22499, 23407, 24569, 25199, 25877, 26069, 27323,
32759, 34943, 35207, 39059, 39203, 39689, 40309, 44099,
46979, 47879, 50183, 51983, 53663, 56279, 58519, 60377,
63881, 69509, 72389, 73919, 75077, 77219, 79547, 79799,
82983, 84419, 86063, 90287, 94667, 97019, 97439]
assert [n for n in oddcomposites if is_strong_lucas_prp(n)] == [
5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309,
58519, 75077, 97439]
assert [n for n in oddcomposites if is_extra_strong_lucas_prp(n)
] == [
989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059,
72389, 73919, 75077]
def test_isprime():
s = Sieve()
s.extend(100000)
ps = set(s.primerange(2, 100001))
for n in range(100001):
# if (n in ps) != isprime(n): print n
assert (n in ps) == isprime(n)
assert isprime(179424673)
assert isprime(20678048681)
assert isprime(1968188556461)
assert isprime(2614941710599)
assert isprime(65635624165761929287)
assert isprime(1162566711635022452267983)
assert isprime(77123077103005189615466924501)
assert isprime(3991617775553178702574451996736229)
assert isprime(273952953553395851092382714516720001799)
assert isprime(int('''
531137992816767098689588206552468627329593117727031923199444138200403\
559860852242739162502265229285668889329486246501015346579337652707239\
409519978766587351943831270835393219031728127'''))
# Some Mersenne primes
assert isprime(2**61 - 1)
assert isprime(2**89 - 1)
assert isprime(2**607 - 1)
# (but not all Mersenne's are primes
assert not isprime(2**601 - 1)
# pseudoprimes
#-------------
# to some small bases
assert not isprime(2152302898747)
assert not isprime(3474749660383)
assert not isprime(341550071728321)
assert not isprime(3825123056546413051)
# passes the base set [2, 3, 7, 61, 24251]
assert not isprime(9188353522314541)
# large examples
assert not isprime(877777777777777777777777)
# conjectured psi_12 given at http://mathworld.wolfram.com/StrongPseudoprime.html
assert not isprime(318665857834031151167461)
# conjectured psi_17 given at http://mathworld.wolfram.com/StrongPseudoprime.html
assert not isprime(564132928021909221014087501701)
# Arnault's 1993 number; a factor of it is
# 400958216639499605418306452084546853005188166041132508774506\
# 204738003217070119624271622319159721973358216316508535816696\
# 9145233813917169287527980445796800452592031836601
assert not isprime(int('''
803837457453639491257079614341942108138837688287558145837488917522297\
427376533365218650233616396004545791504202360320876656996676098728404\
396540823292873879185086916685732826776177102938969773947016708230428\
687109997439976544144845341155872450633409279022275296229414984230688\
1685404326457534018329786111298960644845216191652872597534901'''))
# Arnault's 1995 number; can be factored as
# p1*(313*(p1 - 1) + 1)*(353*(p1 - 1) + 1) where p1 is
# 296744956686855105501541746429053327307719917998530433509950\
# 755312768387531717701995942385964281211880336647542183455624\
# 93168782883
assert not isprime(int('''
288714823805077121267142959713039399197760945927972270092651602419743\
230379915273311632898314463922594197780311092934965557841894944174093\
380561511397999942154241693397290542371100275104208013496673175515285\
922696291677532547504444585610194940420003990443211677661994962953925\
045269871932907037356403227370127845389912612030924484149472897688540\
6024976768122077071687938121709811322297802059565867'''))
sieve.extend(3000)
assert isprime(2819)
assert not isprime(2931)
def test_is_square():
assert [i for i in range(25) if is_square(i)] == [0, 1, 4, 9, 16]
|
aa420e8e221a29b684b1bb44534af9e3c1494e01de477a41d0dfc65e027aa1e4
|
from sympy import (Sieve, binomial_coefficients, binomial_coefficients_list,
Mul, S, Pow, sieve, Symbol, summation, Dummy,
factorial as fac)
from sympy.core.evalf import bitcount
from sympy.core.numbers import Integer, Rational
from sympy.core.compatibility import long, range
from sympy.ntheory import (isprime, n_order, is_primitive_root,
is_quad_residue, legendre_symbol, jacobi_symbol, npartitions, totient,
factorint, primefactors, divisors, randprime, nextprime, prevprime,
primerange, primepi, prime, pollard_rho, perfect_power, multiplicity,
trailing, divisor_count, primorial, pollard_pm1, divisor_sigma,
factorrat, reduced_totient)
from sympy.ntheory.factor_ import (smoothness, smoothness_p,
antidivisors, antidivisor_count, core, digits, udivisors, udivisor_sigma,
udivisor_count, primenu, primeomega, small_trailing)
from sympy.ntheory.generate import cycle_length
from sympy.ntheory.multinomial import (
multinomial_coefficients, multinomial_coefficients_iterator)
from sympy.ntheory.bbp_pi import pi_hex_digits
from sympy.ntheory.modular import crt, crt1, crt2, solve_congruence
from sympy.utilities.pytest import raises, slow
from sympy.utilities.iterables import capture
def fac_multiplicity(n, p):
"""Return the power of the prime number p in the
factorization of n!"""
if p > n:
return 0
if p > n//2:
return 1
q, m = n, 0
while q >= p:
q //= p
m += q
return m
def multiproduct(seq=(), start=1):
"""
Return the product of a sequence of factors with multiplicities,
times the value of the parameter ``start``. The input may be a
sequence of (factor, exponent) pairs or a dict of such pairs.
>>> multiproduct({3:7, 2:5}, 4) # = 3**7 * 2**5 * 4
279936
"""
if not seq:
return start
if isinstance(seq, dict):
seq = iter(seq.items())
units = start
multi = []
for base, exp in seq:
if not exp:
continue
elif exp == 1:
units *= base
else:
if exp % 2:
units *= base
multi.append((base, exp//2))
return units * multiproduct(multi)**2
def test_trailing_bitcount():
assert trailing(0) == 0
assert trailing(1) == 0
assert trailing(-1) == 0
assert trailing(2) == 1
assert trailing(7) == 0
assert trailing(-7) == 0
for i in range(100):
assert trailing((1 << i)) == i
assert trailing((1 << i) * 31337) == i
assert trailing((1 << 1000001)) == 1000001
assert trailing((1 << 273956)*7**37) == 273956
# issue 12709
big = small_trailing[-1]*2
assert trailing(-big) == trailing(big)
assert bitcount(-big) == bitcount(big)
def test_multiplicity():
for b in range(2, 20):
for i in range(100):
assert multiplicity(b, b**i) == i
assert multiplicity(b, (b**i) * 23) == i
assert multiplicity(b, (b**i) * 1000249) == i
# Should be fast
assert multiplicity(10, 10**10023) == 10023
# Should exit quickly
assert multiplicity(10**10, 10**10) == 1
# Should raise errors for bad input
raises(ValueError, lambda: multiplicity(1, 1))
raises(ValueError, lambda: multiplicity(1, 2))
raises(ValueError, lambda: multiplicity(1.3, 2))
raises(ValueError, lambda: multiplicity(2, 0))
raises(ValueError, lambda: multiplicity(1.3, 0))
# handles Rationals
assert multiplicity(10, Rational(30, 7)) == 0
assert multiplicity(Rational(2, 7), Rational(4, 7)) == 1
assert multiplicity(Rational(1, 7), Rational(3, 49)) == 2
assert multiplicity(Rational(2, 7), Rational(7, 2)) == -1
assert multiplicity(3, Rational(1, 9)) == -2
def test_perfect_power():
assert perfect_power(0) is False
assert perfect_power(1) is False
assert perfect_power(2) is False
assert perfect_power(3) is False
assert perfect_power(4) == (2, 2)
assert perfect_power(14) is False
assert perfect_power(25) == (5, 2)
assert perfect_power(22) is False
assert perfect_power(22, [2]) is False
assert perfect_power(137**(3*5*13)) == (137, 3*5*13)
assert perfect_power(137**(3*5*13) + 1) is False
assert perfect_power(137**(3*5*13) - 1) is False
assert perfect_power(103005006004**7) == (103005006004, 7)
assert perfect_power(103005006004**7 + 1) is False
assert perfect_power(103005006004**7 - 1) is False
assert perfect_power(103005006004**12) == (103005006004, 12)
assert perfect_power(103005006004**12 + 1) is False
assert perfect_power(103005006004**12 - 1) is False
assert perfect_power(2**10007) == (2, 10007)
assert perfect_power(2**10007 + 1) is False
assert perfect_power(2**10007 - 1) is False
assert perfect_power((9**99 + 1)**60) == (9**99 + 1, 60)
assert perfect_power((9**99 + 1)**60 + 1) is False
assert perfect_power((9**99 + 1)**60 - 1) is False
assert perfect_power((10**40000)**2, big=False) == (10**40000, 2)
assert perfect_power(10**100000) == (10, 100000)
assert perfect_power(10**100001) == (10, 100001)
assert perfect_power(13**4, [3, 5]) is False
assert perfect_power(3**4, [3, 10], factor=0) is False
assert perfect_power(3**3*5**3) == (15, 3)
assert perfect_power(2**3*5**5) is False
assert perfect_power(2*13**4) is False
assert perfect_power(2**5*3**3) is False
def test_factorint():
assert primefactors(123456) == [2, 3, 643]
assert factorint(0) == {0: 1}
assert factorint(1) == {}
assert factorint(-1) == {-1: 1}
assert factorint(-2) == {-1: 1, 2: 1}
assert factorint(-16) == {-1: 1, 2: 4}
assert factorint(2) == {2: 1}
assert factorint(126) == {2: 1, 3: 2, 7: 1}
assert factorint(123456) == {2: 6, 3: 1, 643: 1}
assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1}
assert factorint(64015937) == {7993: 1, 8009: 1}
assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1}
assert factorint(0, multiple=True) == [0]
assert factorint(1, multiple=True) == []
assert factorint(-1, multiple=True) == [-1]
assert factorint(-2, multiple=True) == [-1, 2]
assert factorint(-16, multiple=True) == [-1, 2, 2, 2, 2]
assert factorint(2, multiple=True) == [2]
assert factorint(24, multiple=True) == [2, 2, 2, 3]
assert factorint(126, multiple=True) == [2, 3, 3, 7]
assert factorint(123456, multiple=True) == [2, 2, 2, 2, 2, 2, 3, 643]
assert factorint(5951757, multiple=True) == [3, 7, 29, 29, 337]
assert factorint(64015937, multiple=True) == [7993, 8009]
assert factorint(2**(2**6) + 1, multiple=True) == [274177, 67280421310721]
assert factorint(fac(1, evaluate=False)) == {}
assert factorint(fac(7, evaluate=False)) == {2: 4, 3: 2, 5: 1, 7: 1}
assert factorint(fac(15, evaluate=False)) == \
{2: 11, 3: 6, 5: 3, 7: 2, 11: 1, 13: 1}
assert factorint(fac(20, evaluate=False)) == \
{2: 18, 3: 8, 5: 4, 7: 2, 11: 1, 13: 1, 17: 1, 19: 1}
assert factorint(fac(23, evaluate=False)) == \
{2: 19, 3: 9, 5: 4, 7: 3, 11: 2, 13: 1, 17: 1, 19: 1, 23: 1}
assert multiproduct(factorint(fac(200))) == fac(200)
assert multiproduct(factorint(fac(200, evaluate=False))) == fac(200)
for b, e in factorint(fac(150)).items():
assert e == fac_multiplicity(150, b)
for b, e in factorint(fac(150, evaluate=False)).items():
assert e == fac_multiplicity(150, b)
assert factorint(103005006059**7) == {103005006059: 7}
assert factorint(31337**191) == {31337: 191}
assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \
{2: 1000, 3: 500, 257: 127, 383: 60}
assert len(factorint(fac(10000))) == 1229
assert len(factorint(fac(10000, evaluate=False))) == 1229
assert factorint(12932983746293756928584532764589230) == \
{2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1}
assert factorint(727719592270351) == {727719592270351: 1}
assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1)
for n in range(60000):
assert multiproduct(factorint(n)) == n
assert pollard_rho(2**64 + 1, seed=1) == 274177
assert pollard_rho(19, seed=1) is None
assert factorint(3, limit=2) == {3: 1}
assert factorint(12345) == {3: 1, 5: 1, 823: 1}
assert factorint(
12345, limit=3) == {4115: 1, 3: 1} # the 5 is greater than the limit
assert factorint(1, limit=1) == {}
assert factorint(0, 3) == {0: 1}
assert factorint(12, limit=1) == {12: 1}
assert factorint(30, limit=2) == {2: 1, 15: 1}
assert factorint(16, limit=2) == {2: 4}
assert factorint(124, limit=3) == {2: 2, 31: 1}
assert factorint(4*31**2, limit=3) == {2: 2, 31: 2}
p1 = nextprime(2**32)
p2 = nextprime(2**16)
p3 = nextprime(p2)
assert factorint(p1*p2*p3) == {p1: 1, p2: 1, p3: 1}
assert factorint(13*17*19, limit=15) == {13: 1, 17*19: 1}
assert factorint(1951*15013*15053, limit=2000) == {225990689: 1, 1951: 1}
assert factorint(primorial(17) + 1, use_pm1=0) == \
{long(19026377261): 1, 3467: 1, 277: 1, 105229: 1}
# when prime b is closer than approx sqrt(8*p) to prime p then they are
# "close" and have a trivial factorization
a = nextprime(2**2**8) # 78 digits
b = nextprime(a + 2**2**4)
assert 'Fermat' in capture(lambda: factorint(a*b, verbose=1))
raises(ValueError, lambda: pollard_rho(4))
raises(ValueError, lambda: pollard_pm1(3))
raises(ValueError, lambda: pollard_pm1(10, B=2))
# verbose coverage
n = nextprime(2**16)*nextprime(2**17)*nextprime(1901)
assert 'with primes' in capture(lambda: factorint(n, verbose=1))
capture(lambda: factorint(nextprime(2**16)*1012, verbose=1))
n = nextprime(2**17)
capture(lambda: factorint(n**3, verbose=1)) # perfect power termination
capture(lambda: factorint(2*n, verbose=1)) # factoring complete msg
# exceed 1st
n = nextprime(2**17)
n *= nextprime(n)
assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1))
n *= nextprime(n)
assert len(factorint(n)) == 3
assert len(factorint(n, limit=p1)) == 3
n *= nextprime(2*n)
# exceed 2nd
assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1))
assert capture(
lambda: factorint(n, limit=4000, verbose=1)).count('Pollard') == 2
# non-prime pm1 result
n = nextprime(8069)
n *= nextprime(2*n)*nextprime(2*n, 2)
capture(lambda: factorint(n, verbose=1)) # non-prime pm1 result
# factor fermat composite
p1 = nextprime(2**17)
p2 = nextprime(2*p1)
assert factorint((p1*p2**2)**3) == {p1: 3, p2: 6}
# Test for non integer input
raises(ValueError, lambda: factorint(4.5))
def test_divisors_and_divisor_count():
assert divisors(-1) == [1]
assert divisors(0) == []
assert divisors(1) == [1]
assert divisors(2) == [1, 2]
assert divisors(3) == [1, 3]
assert divisors(17) == [1, 17]
assert divisors(10) == [1, 2, 5, 10]
assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100]
assert divisors(101) == [1, 101]
assert divisor_count(0) == 0
assert divisor_count(-1) == 1
assert divisor_count(1) == 1
assert divisor_count(6) == 4
assert divisor_count(12) == 6
assert divisor_count(180, 3) == divisor_count(180//3)
assert divisor_count(2*3*5, 7) == 0
def test_udivisors_and_udivisor_count():
assert udivisors(-1) == [1]
assert udivisors(0) == []
assert udivisors(1) == [1]
assert udivisors(2) == [1, 2]
assert udivisors(3) == [1, 3]
assert udivisors(17) == [1, 17]
assert udivisors(10) == [1, 2, 5, 10]
assert udivisors(100) == [1, 4, 25, 100]
assert udivisors(101) == [1, 101]
assert udivisors(1000) == [1, 8, 125, 1000]
assert udivisor_count(0) == 0
assert udivisor_count(-1) == 1
assert udivisor_count(1) == 1
assert udivisor_count(6) == 4
assert udivisor_count(12) == 4
assert udivisor_count(180) == 8
assert udivisor_count(2*3*5*7) == 16
def test_issue_6981():
S = set(divisors(4)).union(set(divisors(Integer(2))))
assert S == {1,2,4}
def test_totient():
assert [totient(k) for k in range(1, 12)] == \
[1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
assert totient(5005) == 2880
assert totient(5006) == 2502
assert totient(5009) == 5008
assert totient(2**100) == 2**99
raises(ValueError, lambda: totient(30.1))
raises(ValueError, lambda: totient(20.001))
m = Symbol("m", integer=True)
assert totient(m)
assert totient(m).subs(m, 3**10) == 3**10 - 3**9
assert summation(totient(m), (m, 1, 11)) == 42
n = Symbol("n", integer=True, positive=True)
assert totient(n).is_integer
x=Symbol("x", integer=False)
raises(ValueError, lambda: totient(x))
y=Symbol("y", positive=False)
raises(ValueError, lambda: totient(y))
z=Symbol("z", positive=True, integer=True)
raises(ValueError, lambda: totient(2**(-z)))
def test_reduced_totient():
assert [reduced_totient(k) for k in range(1, 16)] == \
[1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4]
assert reduced_totient(5005) == 60
assert reduced_totient(5006) == 2502
assert reduced_totient(5009) == 5008
assert reduced_totient(2**100) == 2**98
m = Symbol("m", integer=True)
assert reduced_totient(m)
assert reduced_totient(m).subs(m, 2**3*3**10) == 3**10 - 3**9
assert summation(reduced_totient(m), (m, 1, 16)) == 68
n = Symbol("n", integer=True, positive=True)
assert reduced_totient(n).is_integer
def test_divisor_sigma():
assert [divisor_sigma(k) for k in range(1, 12)] == \
[1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12]
assert [divisor_sigma(k, 2) for k in range(1, 12)] == \
[1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122]
assert divisor_sigma(23450) == 50592
assert divisor_sigma(23450, 0) == 24
assert divisor_sigma(23450, 1) == 50592
assert divisor_sigma(23450, 2) == 730747500
assert divisor_sigma(23450, 3) == 14666785333344
m = Symbol("m", integer=True)
k = Symbol("k", integer=True)
assert divisor_sigma(m)
assert divisor_sigma(m, k)
assert divisor_sigma(m).subs(m, 3**10) == 88573
assert divisor_sigma(m, k).subs([(m, 3**10), (k, 3)]) == 213810021790597
assert summation(divisor_sigma(m), (m, 1, 11)) == 99
def test_udivisor_sigma():
assert [udivisor_sigma(k) for k in range(1, 12)] == \
[1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12]
assert [udivisor_sigma(k, 3) for k in range(1, 12)] == \
[1, 9, 28, 65, 126, 252, 344, 513, 730, 1134, 1332]
assert udivisor_sigma(23450) == 42432
assert udivisor_sigma(23450, 0) == 16
assert udivisor_sigma(23450, 1) == 42432
assert udivisor_sigma(23450, 2) == 702685000
assert udivisor_sigma(23450, 4) == 321426961814978248
m = Symbol("m", integer=True)
k = Symbol("k", integer=True)
assert udivisor_sigma(m)
assert udivisor_sigma(m, k)
assert udivisor_sigma(m).subs(m, 4**9) == 262145
assert udivisor_sigma(m, k).subs([(m, 4**9), (k, 2)]) == 68719476737
assert summation(udivisor_sigma(m), (m, 2, 15)) == 169
def test_issue_4356():
assert factorint(1030903) == {53: 2, 367: 1}
def test_divisors():
assert divisors(28) == [1, 2, 4, 7, 14, 28]
assert [x for x in divisors(3*5*7, 1)] == [1, 3, 5, 15, 7, 21, 35, 105]
assert divisors(0) == []
def test_divisor_count():
assert divisor_count(0) == 0
assert divisor_count(6) == 4
def test_antidivisors():
assert antidivisors(-1) == []
assert antidivisors(-3) == [2]
assert antidivisors(14) == [3, 4, 9]
assert antidivisors(237) == [2, 5, 6, 11, 19, 25, 43, 95, 158]
assert antidivisors(12345) == [2, 6, 7, 10, 30, 1646, 3527, 4938, 8230]
assert antidivisors(393216) == [262144]
assert sorted(x for x in antidivisors(3*5*7, 1)) == \
[2, 6, 10, 11, 14, 19, 30, 42, 70]
assert antidivisors(1) == []
def test_antidivisor_count():
assert antidivisor_count(0) == 0
assert antidivisor_count(-1) == 0
assert antidivisor_count(-4) == 1
assert antidivisor_count(20) == 3
assert antidivisor_count(25) == 5
assert antidivisor_count(38) == 7
assert antidivisor_count(180) == 6
assert antidivisor_count(2*3*5) == 3
def test_smoothness_and_smoothness_p():
assert smoothness(1) == (1, 1)
assert smoothness(2**4*3**2) == (3, 16)
assert smoothness_p(10431, m=1) == \
(1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
assert smoothness_p(10431) == \
(-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
assert smoothness_p(10431, power=1) == \
(-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])
assert smoothness_p(21477639576571, visual=1) == \
'p**i=4410317**1 has p-1 B=1787, B-pow=1787\n' + \
'p**i=4869863**1 has p-1 B=2434931, B-pow=2434931'
def test_visual_factorint():
assert factorint(1, visual=1) == 1
forty2 = factorint(42, visual=True)
assert type(forty2) == Mul
assert str(forty2) == '2**1*3**1*7**1'
assert factorint(1, visual=True) is S.One
no = dict(evaluate=False)
assert factorint(42**2, visual=True) == Mul(Pow(2, 2, **no),
Pow(3, 2, **no),
Pow(7, 2, **no), **no)
assert -1 in factorint(-42, visual=True).args
def test_factorrat():
assert str(factorrat(S(12)/1, visual=True)) == '2**2*3**1'
assert str(factorrat(S(1)/1, visual=True)) == '1'
assert str(factorrat(S(25)/14, visual=True)) == '5**2/(2*7)'
assert str(factorrat(S(-25)/14/9, visual=True)) == '-5**2/(2*3**2*7)'
assert factorrat(S(12)/1, multiple=True) == [2, 2, 3]
assert factorrat(S(1)/1, multiple=True) == []
assert factorrat(S(25)/14, multiple=True) == [S(1)/7, S(1)/2, 5, 5]
assert factorrat(S(12)/1, multiple=True) == [2, 2, 3]
assert factorrat(S(-25)/14/9, multiple=True) == \
[-1, S(1)/7, S(1)/3, S(1)/3, S(1)/2, 5, 5]
def test_visual_io():
sm = smoothness_p
fi = factorint
# with smoothness_p
n = 124
d = fi(n)
m = fi(d, visual=True)
t = sm(n)
s = sm(t)
for th in [d, s, t, n, m]:
assert sm(th, visual=True) == s
assert sm(th, visual=1) == s
for th in [d, s, t, n, m]:
assert sm(th, visual=False) == t
assert [sm(th, visual=None) for th in [d, s, t, n, m]] == [s, d, s, t, t]
assert [sm(th, visual=2) for th in [d, s, t, n, m]] == [s, d, s, t, t]
# with factorint
for th in [d, m, n]:
assert fi(th, visual=True) == m
assert fi(th, visual=1) == m
for th in [d, m, n]:
assert fi(th, visual=False) == d
assert [fi(th, visual=None) for th in [d, m, n]] == [m, d, d]
assert [fi(th, visual=0) for th in [d, m, n]] == [m, d, d]
# test reevaluation
no = dict(evaluate=False)
assert sm({4: 2}, visual=False) == sm(16)
assert sm(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no),
visual=False) == sm(2**10)
assert fi({4: 2}, visual=False) == fi(16)
assert fi(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no),
visual=False) == fi(2**10)
def test_core():
assert core(35**13, 10) == 42875
assert core(210**2) == 1
assert core(7776, 3) == 36
assert core(10**27, 22) == 10**5
assert core(537824) == 14
assert core(1, 6) == 1
def test_digits():
assert all([digits(n, 2)[1:] == [int(d) for d in format(n, 'b')]
for n in range(20)])
assert all([digits(n, 8)[1:] == [int(d) for d in format(n, 'o')]
for n in range(20)])
assert all([digits(n, 16)[1:] == [int(d, 16) for d in format(n, 'x')]
for n in range(20)])
assert digits(2345, 34) == [34, 2, 0, 33]
assert digits(384753, 71) == [71, 1, 5, 23, 4]
assert digits(93409) == [10, 9, 3, 4, 0, 9]
assert digits(-92838, 11) == [-11, 6, 3, 8, 2, 9]
def test_primenu():
assert primenu(2) == 1
assert primenu(2 * 3) == 2
assert primenu(2 * 3 * 5) == 3
assert primenu(3 * 25) == primenu(3) + primenu(25)
assert [primenu(p) for p in primerange(1, 10)] == [1, 1, 1, 1]
assert primenu(fac(50)) == 15
assert primenu(2 ** 9941 - 1) == 1
n = Symbol('n', integer=True)
assert primenu(n)
assert primenu(n).subs(n, 2 ** 31 - 1) == 1
assert summation(primenu(n), (n, 2, 30)) == 43
def test_primeomega():
assert primeomega(2) == 1
assert primeomega(2 * 2) == 2
assert primeomega(2 * 2 * 3) == 3
assert primeomega(3 * 25) == primeomega(3) + primeomega(25)
assert [primeomega(p) for p in primerange(1, 10)] == [1, 1, 1, 1]
assert primeomega(fac(50)) == 108
assert primeomega(2 ** 9941 - 1) == 1
n = Symbol('n', integer=True)
assert primeomega(n)
assert primeomega(n).subs(n, 2 ** 31 - 1) == 1
assert summation(primeomega(n), (n, 2, 30)) == 59
|
e5f23431c78b1c001a049821f9300dd706f21dbbaf2b33940f668605cd939239
|
from sympy import Sieve, sieve, Symbol, S, limit, I, zoo, nan
from sympy.core.compatibility import range
from sympy.ntheory import isprime, totient, mobius, randprime, nextprime, prevprime, \
primerange, primepi, prime, primorial, composite, compositepi, reduced_totient
from sympy.ntheory.generate import cycle_length
from sympy.ntheory.primetest import mr
from sympy.utilities.pytest import raises
from array import array as _array
def test_prime():
assert prime(1) == 2
assert prime(2) == 3
assert prime(5) == 11
assert prime(11) == 31
assert prime(57) == 269
assert prime(296) == 1949
assert prime(559) == 4051
assert prime(3000) == 27449
assert prime(4096) == 38873
assert prime(9096) == 94321
assert prime(25023) == 287341
raises(ValueError, lambda: prime(0))
sieve.extend(3000)
assert prime(401) == 2749
def test_primepi():
assert primepi(-1) == 0
assert primepi(1) == 0
assert primepi(2) == 1
assert primepi(S(7)/2) == 2
assert primepi(3.5) == 2
assert primepi(5) == 3
assert primepi(11) == 5
assert primepi(57) == 16
assert primepi(296) == 62
assert primepi(559) == 102
assert primepi(3000) == 430
assert primepi(4096) == 564
assert primepi(9096) == 1128
assert primepi(25023) == 2763
assert primepi(10**8) == 5761455
assert primepi(253425253) == 13856396
assert primepi(8769575643) == 401464322
sieve.extend(3000)
assert primepi(2000) == 303
n = Symbol('n')
assert primepi(n).subs(n, 2) == 1
r = Symbol('r', real=True)
assert primepi(r).subs(r, 2) == 1
assert primepi(S.Infinity) == S.Infinity
assert primepi(-S.Infinity) == 0
assert limit(primepi(n), n, 100) == 25
raises(ValueError, lambda: primepi(I))
raises(ValueError, lambda: primepi(1 + I))
raises(ValueError, lambda: primepi(zoo))
raises(ValueError, lambda: primepi(nan))
def test_composite():
from sympy.ntheory.generate import sieve
sieve._reset()
assert composite(1) == 4
assert composite(2) == 6
assert composite(5) == 10
assert composite(11) == 20
assert composite(41) == 58
assert composite(57) == 80
assert composite(296) == 370
assert composite(559) == 684
assert composite(3000) == 3488
assert composite(4096) == 4736
assert composite(9096) == 10368
assert composite(25023) == 28088
sieve.extend(3000)
assert composite(1957) == 2300
assert composite(2568) == 2998
raises(ValueError, lambda: composite(0))
def test_compositepi():
assert compositepi(1) == 0
assert compositepi(2) == 0
assert compositepi(5) == 1
assert compositepi(11) == 5
assert compositepi(57) == 40
assert compositepi(296) == 233
assert compositepi(559) == 456
assert compositepi(3000) == 2569
assert compositepi(4096) == 3531
assert compositepi(9096) == 7967
assert compositepi(25023) == 22259
assert compositepi(10**8) == 94238544
assert compositepi(253425253) == 239568856
assert compositepi(8769575643) == 8368111320
sieve.extend(3000)
assert compositepi(2321) == 1976
def test_generate():
from sympy.ntheory.generate import sieve
sieve._reset()
assert nextprime(-4) == 2
assert nextprime(2) == 3
assert nextprime(5) == 7
assert nextprime(12) == 13
assert prevprime(3) == 2
assert prevprime(7) == 5
assert prevprime(13) == 11
assert prevprime(19) == 17
assert prevprime(20) == 19
sieve.extend_to_no(9)
assert sieve._list[-1] == 23
assert sieve._list[-1] < 31
assert 31 in sieve
assert nextprime(90) == 97
assert nextprime(10**40) == (10**40 + 121)
assert prevprime(97) == 89
assert prevprime(10**40) == (10**40 - 17)
assert list(sieve.primerange(10, 1)) == []
assert list(sieve.primerange(5, 9)) == [5, 7]
sieve._reset(prime=True)
assert list(sieve.primerange(2, 12)) == [2, 3, 5, 7, 11]
assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
sieve._reset(totient=True)
assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
assert list(sieve.totientrange(0, 1)) == []
assert list(sieve.totientrange(1, 2)) == [1]
assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
sieve._reset(mobius=True)
assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
assert list(sieve.mobiusrange(0, 1)) == []
assert list(sieve.mobiusrange(1, 2)) == [1]
assert list(primerange(10, 1)) == []
assert list(primerange(2, 7)) == [2, 3, 5]
assert list(primerange(2, 10)) == [2, 3, 5, 7]
assert list(primerange(1050, 1100)) == [1051, 1061,
1063, 1069, 1087, 1091, 1093, 1097]
s = Sieve()
for i in range(30, 2350, 376):
for j in range(2, 5096, 1139):
A = list(s.primerange(i, i + j))
B = list(primerange(i, i + j))
assert A == B
s = Sieve()
assert s[10] == 29
assert nextprime(2, 2) == 5
raises(ValueError, lambda: totient(0))
raises(ValueError, lambda: reduced_totient(0))
raises(ValueError, lambda: primorial(0))
assert mr(1, [2]) is False
func = lambda i: (i**2 + 1) % 51
assert next(cycle_length(func, 4)) == (6, 2)
assert list(cycle_length(func, 4, values=True)) == \
[17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
assert next(cycle_length(func, 4, nmax=5)) == (5, None)
assert list(cycle_length(func, 4, nmax=5, values=True)) == \
[17, 35, 2, 5, 26]
sieve.extend(3000)
assert nextprime(2968) == 2969
assert prevprime(2930) == 2927
raises(ValueError, lambda: prevprime(1))
def test_randprime():
assert randprime(10, 1) is None
assert randprime(2, 3) == 2
assert randprime(1, 3) == 2
assert randprime(3, 5) == 3
raises(ValueError, lambda: randprime(20, 22))
for a in [100, 300, 500, 250000]:
for b in [100, 300, 500, 250000]:
p = randprime(a, a + b)
assert a <= p < (a + b) and isprime(p)
def test_primorial():
assert primorial(1) == 2
assert primorial(1, nth=0) == 1
assert primorial(2) == 6
assert primorial(2, nth=0) == 2
assert primorial(4, nth=0) == 6
def test_search():
assert 2 in sieve
assert 2.1 not in sieve
assert 1 not in sieve
assert 2**1000 not in sieve
raises(ValueError, lambda: sieve.search(1))
def test_sieve_slice():
assert sieve[5] == 11
assert list(sieve[5:10]) == [sieve[x] for x in range(5, 10)]
assert list(sieve[5:10:2]) == [sieve[x] for x in range(5, 10, 2)]
|
acf6ce652e87e1a21bb636111d143dda690bb009dacfd59221419d95fb4acb0d
|
from sympy import (
Abs, And, binomial, Catalan, cos, Derivative, E, Eq, exp, EulerGamma,
factorial, Function, harmonic, I, Integral, KroneckerDelta, log,
nan, Ne, Or, oo, pi, Piecewise, Product, product, Rational, S, simplify,
sin, sqrt, Sum, summation, Symbol, symbols, sympify, zeta, gamma, Le,
Indexed, Idx, IndexedBase, prod, Dummy)
from sympy.abc import a, b, c, d, f, k, m, x, y, z
from sympy.concrete.summations import telescopic
from sympy.utilities.pytest import XFAIL, raises
from sympy import simplify
from sympy.matrices import Matrix
from sympy.core.mod import Mod
from sympy.core.compatibility import range
n = Symbol('n', integer=True)
def test_karr_convention():
# Test the Karr summation convention that we want to hold.
# See his paper "Summation in Finite Terms" for a detailed
# reasoning why we really want exactly this definition.
# The convention is described on page 309 and essentially
# in section 1.4, definition 3:
#
# \sum_{m <= i < n} f(i) 'has the obvious meaning' for m < n
# \sum_{m <= i < n} f(i) = 0 for m = n
# \sum_{m <= i < n} f(i) = - \sum_{n <= i < m} f(i) for m > n
#
# It is important to note that he defines all sums with
# the upper limit being *exclusive*.
# In contrast, sympy and the usual mathematical notation has:
#
# sum_{i = a}^b f(i) = f(a) + f(a+1) + ... + f(b-1) + f(b)
#
# with the upper limit *inclusive*. So translating between
# the two we find that:
#
# \sum_{m <= i < n} f(i) = \sum_{i = m}^{n-1} f(i)
#
# where we intentionally used two different ways to typeset the
# sum and its limits.
i = Symbol("i", integer=True)
k = Symbol("k", integer=True)
j = Symbol("j", integer=True)
# A simple example with a concrete summand and symbolic limits.
# The normal sum: m = k and n = k + j and therefore m < n:
m = k
n = k + j
a = m
b = n - 1
S1 = Sum(i**2, (i, a, b)).doit()
# The reversed sum: m = k + j and n = k and therefore m > n:
m = k + j
n = k
a = m
b = n - 1
S2 = Sum(i**2, (i, a, b)).doit()
assert simplify(S1 + S2) == 0
# Test the empty sum: m = k and n = k and therefore m = n:
m = k
n = k
a = m
b = n - 1
Sz = Sum(i**2, (i, a, b)).doit()
assert Sz == 0
# Another example this time with an unspecified summand and
# numeric limits. (We can not do both tests in the same example.)
f = Function("f")
# The normal sum with m < n:
m = 2
n = 11
a = m
b = n - 1
S1 = Sum(f(i), (i, a, b)).doit()
# The reversed sum with m > n:
m = 11
n = 2
a = m
b = n - 1
S2 = Sum(f(i), (i, a, b)).doit()
assert simplify(S1 + S2) == 0
# Test the empty sum with m = n:
m = 5
n = 5
a = m
b = n - 1
Sz = Sum(f(i), (i, a, b)).doit()
assert Sz == 0
e = Piecewise((exp(-i), Mod(i, 2) > 0), (0, True))
s = Sum(e, (i, 0, 11))
assert s.n(3) == s.doit().n(3)
def test_karr_proposition_2a():
# Test Karr, page 309, proposition 2, part a
i = Symbol("i", integer=True)
u = Symbol("u", integer=True)
v = Symbol("v", integer=True)
def test_the_sum(m, n):
# g
g = i**3 + 2*i**2 - 3*i
# f = Delta g
f = simplify(g.subs(i, i+1) - g)
# The sum
a = m
b = n - 1
S = Sum(f, (i, a, b)).doit()
# Test if Sum_{m <= i < n} f(i) = g(n) - g(m)
assert simplify(S - (g.subs(i, n) - g.subs(i, m))) == 0
# m < n
test_the_sum(u, u+v)
# m = n
test_the_sum(u, u )
# m > n
test_the_sum(u+v, u )
def test_karr_proposition_2b():
# Test Karr, page 309, proposition 2, part b
i = Symbol("i", integer=True)
u = Symbol("u", integer=True)
v = Symbol("v", integer=True)
w = Symbol("w", integer=True)
def test_the_sum(l, n, m):
# Summand
s = i**3
# First sum
a = l
b = n - 1
S1 = Sum(s, (i, a, b)).doit()
# Second sum
a = l
b = m - 1
S2 = Sum(s, (i, a, b)).doit()
# Third sum
a = m
b = n - 1
S3 = Sum(s, (i, a, b)).doit()
# Test if S1 = S2 + S3 as required
assert S1 - (S2 + S3) == 0
# l < m < n
test_the_sum(u, u+v, u+v+w)
# l < m = n
test_the_sum(u, u+v, u+v )
# l < m > n
test_the_sum(u, u+v+w, v )
# l = m < n
test_the_sum(u, u, u+v )
# l = m = n
test_the_sum(u, u, u )
# l = m > n
test_the_sum(u+v, u+v, u )
# l > m < n
test_the_sum(u+v, u, u+w )
# l > m = n
test_the_sum(u+v, u, u )
# l > m > n
test_the_sum(u+v+w, u+v, u )
def test_arithmetic_sums():
assert summation(1, (n, a, b)) == b - a + 1
assert Sum(S.NaN, (n, a, b)) is S.NaN
assert Sum(x, (n, a, a)).doit() == x
assert Sum(x, (x, a, a)).doit() == a
assert Sum(x, (n, 1, a)).doit() == a*x
lo, hi = 1, 2
s1 = Sum(n, (n, lo, hi))
s2 = Sum(n, (n, hi, lo))
assert s1 != s2
assert s1.doit() == 3 and s2.doit() == 0
lo, hi = x, x + 1
s1 = Sum(n, (n, lo, hi))
s2 = Sum(n, (n, hi, lo))
assert s1 != s2
assert s1.doit() == 2*x + 1 and s2.doit() == 0
assert Sum(Integral(x, (x, 1, y)) + x, (x, 1, 2)).doit() == \
y**2 + 2
assert summation(1, (n, 1, 10)) == 10
assert summation(2*n, (n, 0, 10**10)) == 100000000010000000000
assert summation(4*n*m, (n, a, 1), (m, 1, d)).expand() == \
2*d + 2*d**2 + a*d + a*d**2 - d*a**2 - a**2*d**2
assert summation(cos(n), (n, -2, 1)) == cos(-2) + cos(-1) + cos(0) + cos(1)
assert summation(cos(n), (n, x, x + 2)) == cos(x) + cos(x + 1) + cos(x + 2)
assert isinstance(summation(cos(n), (n, x, x + S.Half)), Sum)
assert summation(k, (k, 0, oo)) == oo
def test_polynomial_sums():
assert summation(n**2, (n, 3, 8)) == 199
assert summation(n, (n, a, b)) == \
((a + b)*(b - a + 1)/2).expand()
assert summation(n**2, (n, 1, b)) == \
((2*b**3 + 3*b**2 + b)/6).expand()
assert summation(n**3, (n, 1, b)) == \
((b**4 + 2*b**3 + b**2)/4).expand()
assert summation(n**6, (n, 1, b)) == \
((6*b**7 + 21*b**6 + 21*b**5 - 7*b**3 + b)/42).expand()
def test_geometric_sums():
assert summation(pi**n, (n, 0, b)) == (1 - pi**(b + 1)) / (1 - pi)
assert summation(2 * 3**n, (n, 0, b)) == 3**(b + 1) - 1
assert summation(Rational(1, 2)**n, (n, 1, oo)) == 1
assert summation(2**n, (n, 0, b)) == 2**(b + 1) - 1
assert summation(2**n, (n, 1, oo)) == oo
assert summation(2**(-n), (n, 1, oo)) == 1
assert summation(3**(-n), (n, 4, oo)) == Rational(1, 54)
assert summation(2**(-4*n + 3), (n, 1, oo)) == Rational(8, 15)
assert summation(2**(n + 1), (n, 1, b)).expand() == 4*(2**b - 1)
# issue 6664:
assert summation(x**n, (n, 0, oo)) == \
Piecewise((1/(-x + 1), Abs(x) < 1), (Sum(x**n, (n, 0, oo)), True))
assert summation(-2**n, (n, 0, oo)) == -oo
assert summation(I**n, (n, 0, oo)) == Sum(I**n, (n, 0, oo))
# issue 6802:
assert summation((-1)**(2*x + 2), (x, 0, n)) == n + 1
assert summation((-2)**(2*x + 2), (x, 0, n)) == 4*4**(n + 1)/S(3) - S(4)/3
assert summation((-1)**x, (x, 0, n)) == -(-1)**(n + 1)/S(2) + S(1)/2
assert summation(y**x, (x, a, b)) == \
Piecewise((-a + b + 1, Eq(y, 1)), ((y**a - y**(b + 1))/(-y + 1), True))
assert summation((-2)**(y*x + 2), (x, 0, n)) == \
4*Piecewise((n + 1, Eq((-2)**y, 1)),
((-(-2)**(y*(n + 1)) + 1)/(-(-2)**y + 1), True))
# issue 8251:
assert summation((1/(n + 1)**2)*n**2, (n, 0, oo)) == oo
#issue 9908:
assert Sum(1/(n**3 - 1), (n, -oo, -2)).doit() == summation(1/(n**3 - 1), (n, -oo, -2))
#issue 11642:
result = Sum(0.5**n, (n, 1, oo)).doit()
assert result == 1
assert result.is_Float
result = Sum(0.25**n, (n, 1, oo)).doit()
assert result == S(1)/3
assert result.is_Float
result = Sum(0.99999**n, (n, 1, oo)).doit()
assert result == 99999
assert result.is_Float
result = Sum(Rational(1, 2)**n, (n, 1, oo)).doit()
assert result == 1
assert not result.is_Float
result = Sum(Rational(3, 5)**n, (n, 1, oo)).doit()
assert result == S(3)/2
assert not result.is_Float
assert Sum(1.0**n, (n, 1, oo)).doit() == oo
assert Sum(2.43**n, (n, 1, oo)).doit() == oo
# Issue 13979:
i, k, q = symbols('i k q', integer=True)
result = summation(
exp(-2*I*pi*k*i/n) * exp(2*I*pi*q*i/n) / n, (i, 0, n - 1)
)
assert result.simplify() == Piecewise(
(1, Eq(exp(2*I*pi*(-k + q)/n), 1)), (0, True)
)
def test_harmonic_sums():
assert summation(1/k, (k, 0, n)) == Sum(1/k, (k, 0, n))
assert summation(1/k, (k, 1, n)) == harmonic(n)
assert summation(n/k, (k, 1, n)) == n*harmonic(n)
assert summation(1/k, (k, 5, n)) == harmonic(n) - harmonic(4)
def test_composite_sums():
f = Rational(1, 2)*(7 - 6*n + Rational(1, 7)*n**3)
s = summation(f, (n, a, b))
assert not isinstance(s, Sum)
A = 0
for i in range(-3, 5):
A += f.subs(n, i)
B = s.subs(a, -3).subs(b, 4)
assert A == B
def test_hypergeometric_sums():
assert summation(
binomial(2*k, k)/4**k, (k, 0, n)) == (1 + 2*n)*binomial(2*n, n)/4**n
def test_other_sums():
f = m**2 + m*exp(m)
g = 3*exp(S(3)/2)/2 + exp(S(1)/2)/2 - exp(-S(1)/2)/2 - 3*exp(-S(3)/2)/2 + 5
assert summation(f, (m, -S(3)/2, S(3)/2)).expand() == g
assert summation(f, (m, -1.5, 1.5)).evalf().epsilon_eq(g.evalf(), 1e-10)
fac = factorial
def NS(e, n=15, **options):
return str(sympify(e).evalf(n, **options))
def test_evalf_fast_series():
# Euler transformed series for sqrt(1+x)
assert NS(Sum(
fac(2*n + 1)/fac(n)**2/2**(3*n + 1), (n, 0, oo)), 100) == NS(sqrt(2), 100)
# Some series for exp(1)
estr = NS(E, 100)
assert NS(Sum(1/fac(n), (n, 0, oo)), 100) == estr
assert NS(1/Sum((1 - 2*n)/fac(2*n), (n, 0, oo)), 100) == estr
assert NS(Sum((2*n + 1)/fac(2*n), (n, 0, oo)), 100) == estr
assert NS(Sum((4*n + 3)/2**(2*n + 1)/fac(2*n + 1), (n, 0, oo))**2, 100) == estr
pistr = NS(pi, 100)
# Ramanujan series for pi
assert NS(9801/sqrt(8)/Sum(fac(
4*n)*(1103 + 26390*n)/fac(n)**4/396**(4*n), (n, 0, oo)), 100) == pistr
assert NS(1/Sum(
binomial(2*n, n)**3 * (42*n + 5)/2**(12*n + 4), (n, 0, oo)), 100) == pistr
# Machin's formula for pi
assert NS(16*Sum((-1)**n/(2*n + 1)/5**(2*n + 1), (n, 0, oo)) -
4*Sum((-1)**n/(2*n + 1)/239**(2*n + 1), (n, 0, oo)), 100) == pistr
# Apery's constant
astr = NS(zeta(3), 100)
P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \
n + 12463
assert NS(Sum((-1)**n * P / 24 * (fac(2*n + 1)*fac(2*n)*fac(
n))**3 / fac(3*n + 2) / fac(4*n + 3)**3, (n, 0, oo)), 100) == astr
assert NS(Sum((-1)**n * (205*n**2 + 250*n + 77)/64 * fac(n)**10 /
fac(2*n + 1)**5, (n, 0, oo)), 100) == astr
def test_evalf_fast_series_issue_4021():
# Catalan's constant
assert NS(Sum((-1)**(n - 1)*2**(8*n)*(40*n**2 - 24*n + 3)*fac(2*n)**3*
fac(n)**2/n**3/(2*n - 1)/fac(4*n)**2, (n, 1, oo))/64, 100) == \
NS(Catalan, 100)
astr = NS(zeta(3), 100)
assert NS(5*Sum(
(-1)**(n - 1)*fac(n)**2 / n**3 / fac(2*n), (n, 1, oo))/2, 100) == astr
assert NS(Sum((-1)**(n - 1)*(56*n**2 - 32*n + 5) / (2*n - 1)**2 * fac(n - 1)
**3 / fac(3*n), (n, 1, oo))/4, 100) == astr
def test_evalf_slow_series():
assert NS(Sum((-1)**n / n, (n, 1, oo)), 15) == NS(-log(2), 15)
assert NS(Sum((-1)**n / n, (n, 1, oo)), 50) == NS(-log(2), 50)
assert NS(Sum(1/n**2, (n, 1, oo)), 15) == NS(pi**2/6, 15)
assert NS(Sum(1/n**2, (n, 1, oo)), 100) == NS(pi**2/6, 100)
assert NS(Sum(1/n**2, (n, 1, oo)), 500) == NS(pi**2/6, 500)
assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 15) == NS(pi**3/32, 15)
assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 50) == NS(pi**3/32, 50)
def test_euler_maclaurin():
# Exact polynomial sums with E-M
def check_exact(f, a, b, m, n):
A = Sum(f, (k, a, b))
s, e = A.euler_maclaurin(m, n)
assert (e == 0) and (s.expand() == A.doit())
check_exact(k**4, a, b, 0, 2)
check_exact(k**4 + 2*k, a, b, 1, 2)
check_exact(k**4 + k**2, a, b, 1, 5)
check_exact(k**5, 2, 6, 1, 2)
check_exact(k**5, 2, 6, 1, 3)
assert Sum(x-1, (x, 0, 2)).euler_maclaurin(m=30, n=30, eps=2**-15) == (0, 0)
# Not exact
assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0
# Numerical test
for m, n in [(2, 4), (2, 20), (10, 20), (18, 20)]:
A = Sum(1/k**3, (k, 1, oo))
s, e = A.euler_maclaurin(m, n)
assert abs((s - zeta(3)).evalf()) < e.evalf()
def test_evalf_euler_maclaurin():
assert NS(Sum(1/k**k, (k, 1, oo)), 15) == '1.29128599706266'
assert NS(Sum(1/k**k, (k, 1, oo)),
50) == '1.2912859970626635404072825905956005414986193682745'
assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 15) == NS(EulerGamma, 15)
assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 50) == NS(EulerGamma, 50)
assert NS(Sum(log(k)/k**2, (k, 1, oo)), 15) == '0.937548254315844'
assert NS(Sum(log(k)/k**2, (k, 1, oo)),
50) == '0.93754825431584375370257409456786497789786028861483'
assert NS(Sum(1/k, (k, 1000000, 2000000)), 15) == '0.693147930560008'
assert NS(Sum(1/k, (k, 1000000, 2000000)),
50) == '0.69314793056000780941723211364567656807940638436025'
def test_evalf_symbolic():
f, g = symbols('f g', cls=Function)
# issue 6328
expr = Sum(f(x), (x, 1, 3)) + Sum(g(x), (x, 1, 3))
assert expr.evalf() == expr
def test_evalf_issue_3273():
assert Sum(0, (k, 1, oo)).evalf() == 0
def test_simple_products():
assert Product(S.NaN, (x, 1, 3)) is S.NaN
assert product(S.NaN, (x, 1, 3)) is S.NaN
assert Product(x, (n, a, a)).doit() == x
assert Product(x, (x, a, a)).doit() == a
assert Product(x, (y, 1, a)).doit() == x**a
lo, hi = 1, 2
s1 = Product(n, (n, lo, hi))
s2 = Product(n, (n, hi, lo))
assert s1 != s2
# This IS correct according to Karr product convention
assert s1.doit() == 2
assert s2.doit() == 1
lo, hi = x, x + 1
s1 = Product(n, (n, lo, hi))
s2 = Product(n, (n, hi, lo))
s3 = 1 / Product(n, (n, hi + 1, lo - 1))
assert s1 != s2
# This IS correct according to Karr product convention
assert s1.doit() == x*(x + 1)
assert s2.doit() == 1
assert s3.doit() == x*(x + 1)
assert Product(Integral(2*x, (x, 1, y)) + 2*x, (x, 1, 2)).doit() == \
(y**2 + 1)*(y**2 + 3)
assert product(2, (n, a, b)) == 2**(b - a + 1)
assert product(n, (n, 1, b)) == factorial(b)
assert product(n**3, (n, 1, b)) == factorial(b)**3
assert product(3**(2 + n), (n, a, b)) \
== 3**(2*(1 - a + b) + b/2 + (b**2)/2 + a/2 - (a**2)/2)
assert product(cos(n), (n, 3, 5)) == cos(3)*cos(4)*cos(5)
assert product(cos(n), (n, x, x + 2)) == cos(x)*cos(x + 1)*cos(x + 2)
assert isinstance(product(cos(n), (n, x, x + S.Half)), Product)
# If Product managed to evaluate this one, it most likely got it wrong!
assert isinstance(Product(n**n, (n, 1, b)), Product)
def test_rational_products():
assert simplify(product(1 + 1/n, (n, a, b))) == (1 + b)/a
assert simplify(product(n + 1, (n, a, b))) == gamma(2 + b)/gamma(1 + a)
assert simplify(product((n + 1)/(n - 1), (n, a, b))) == b*(1 + b)/(a*(a - 1))
assert simplify(product(n/(n + 1)/(n + 2), (n, a, b))) == \
a*gamma(a + 2)/(b + 1)/gamma(b + 3)
assert simplify(product(n*(n + 1)/(n - 1)/(n - 2), (n, a, b))) == \
b**2*(b - 1)*(1 + b)/(a - 1)**2/(a*(a - 2))
def test_wallis_product():
# Wallis product, given in two different forms to ensure that Product
# can factor simple rational expressions
A = Product(4*n**2 / (4*n**2 - 1), (n, 1, b))
B = Product((2*n)*(2*n)/(2*n - 1)/(2*n + 1), (n, 1, b))
R = pi*gamma(b + 1)**2/(2*gamma(b + S(1)/2)*gamma(b + S(3)/2))
assert simplify(A.doit()) == R
assert simplify(B.doit()) == R
# This one should eventually also be doable (Euler's product formula for sin)
# assert Product(1+x/n**2, (n, 1, b)) == ...
def test_telescopic_sums():
#checks also input 2 of comment 1 issue 4127
assert Sum(1/k - 1/(k + 1), (k, 1, n)).doit() == 1 - 1/(1 + n)
f = Function("f")
assert Sum(
f(k) - f(k + 2), (k, m, n)).doit() == -f(1 + n) - f(2 + n) + f(m) + f(1 + m)
assert Sum(cos(k) - cos(k + 3), (k, 1, n)).doit() == -cos(1 + n) - \
cos(2 + n) - cos(3 + n) + cos(1) + cos(2) + cos(3)
# dummy variable shouldn't matter
assert telescopic(1/m, -m/(1 + m), (m, n - 1, n)) == \
telescopic(1/k, -k/(1 + k), (k, n - 1, n))
assert Sum(1/x/(x - 1), (x, a, b)).doit() == -((a - b - 1)/(b*(a - 1)))
def test_sum_reconstruct():
s = Sum(n**2, (n, -1, 1))
assert s == Sum(*s.args)
raises(ValueError, lambda: Sum(x, x))
raises(ValueError, lambda: Sum(x, (x, 1)))
def test_limit_subs():
for F in (Sum, Product, Integral):
assert F(a*exp(a), (a, -2, 2)) == F(a*exp(a), (a, -b, b)).subs(b, 2)
assert F(a, (a, F(b, (b, 1, 2)), 4)).subs(F(b, (b, 1, 2)), c) == \
F(a, (a, c, 4))
assert F(x, (x, 1, x + y)).subs(x, 1) == F(x, (x, 1, y + 1))
def test_function_subs():
f = Function("f")
S = Sum(x*f(y),(x,0,oo),(y,0,oo))
assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo))
assert S.subs(f(x),x) == S
raises(ValueError, lambda: S.subs(f(y),x+y) )
S = Sum(x*log(y),(x,0,oo),(y,0,oo))
assert S.subs(log(y),y) == S
S = Sum(x*f(y),(x,0,oo),(y,0,oo))
assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo))
def test_equality():
# if this fails remove special handling below
raises(ValueError, lambda: Sum(x, x))
r = symbols('x', real=True)
for F in (Sum, Product, Integral):
try:
assert F(x, x) != F(y, y)
assert F(x, (x, 1, 2)) != F(x, x)
assert F(x, (x, x)) != F(x, x) # or else they print the same
assert F(1, x) != F(1, y)
except ValueError:
pass
assert F(a, (x, 1, 2)) != F(a, (x, 1, 3)) # diff limit
assert F(a, (x, 1, x)) != F(a, (y, 1, y))
assert F(a, (x, 1, 2)) != F(b, (x, 1, 2)) # diff expression
assert F(x, (x, 1, 2)) != F(r, (r, 1, 2)) # diff assumptions
assert F(1, (x, 1, x)) != F(1, (y, 1, x)) # only dummy is diff
assert F(1, (x, 1, x)).dummy_eq(F(1, (y, 1, x)))
# issue 5265
assert Sum(x, (x, 1, x)).subs(x, a) == Sum(x, (x, 1, a))
def test_Sum_doit():
f = Function('f')
assert Sum(n*Integral(a**2), (n, 0, 2)).doit() == a**3
assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \
3*Integral(a**2)
assert summation(n*Integral(a**2), (n, 0, 2)) == 3*Integral(a**2)
# test nested sum evaluation
s = Sum( Sum( Sum(2,(z,1,n+1)), (y,x+1,n)), (x,1,n))
assert 0 == (s.doit() - n*(n+1)*(n-1)).factor()
assert Sum(KroneckerDelta(m, n), (m, -oo, oo)).doit() == Piecewise((1, And(-oo < n, n < oo)), (0, True))
assert Sum(x*KroneckerDelta(m, n), (m, -oo, oo)).doit() == Piecewise((x, And(-oo < n, n < oo)), (0, True))
assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3
assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \
3 * Piecewise((1, And(S(1) <= k, k <= 3)), (0, True))
assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \
f(1) + f(2) + f(3)
assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \
Sum(Piecewise((f(n), And(Le(0, n), n < oo)), (0, True)), (n, 1, oo))
l = Symbol('l', integer=True, positive=True)
assert Sum(f(l) * Sum(KroneckerDelta(m, l), (m, 0, oo)), (l, 1, oo)).doit() == \
Sum(f(l), (l, 1, oo))
# issue 2597
nmax = symbols('N', integer=True, positive=True)
pw = Piecewise((1, And(S(1) <= n, n <= nmax)), (0, True))
assert Sum(pw, (n, 1, nmax)).doit() == Sum(pw, (n, 1, nmax))
q, s = symbols('q, s')
assert summation(1/n**(2*s), (n, 1, oo)) == Piecewise((zeta(2*s), 2*s > 1),
(Sum(n**(-2*s), (n, 1, oo)), True))
assert summation(1/(n+1)**s, (n, 0, oo)) == Piecewise((zeta(s), s > 1),
(Sum((n + 1)**(-s), (n, 0, oo)), True))
assert summation(1/(n+q)**s, (n, 0, oo)) == Piecewise(
(zeta(s, q), And(q > 0, s > 1)),
(Sum((n + q)**(-s), (n, 0, oo)), True))
assert summation(1/(n+q)**s, (n, q, oo)) == Piecewise(
(zeta(s, 2*q), And(2*q > 0, s > 1)),
(Sum((n + q)**(-s), (n, q, oo)), True))
assert summation(1/n**2, (n, 1, oo)) == zeta(2)
assert summation(1/n**s, (n, 0, oo)) == Sum(n**(-s), (n, 0, oo))
def test_Product_doit():
assert Product(n*Integral(a**2), (n, 1, 3)).doit() == 2 * a**9 / 9
assert Product(n*Integral(a**2), (n, 1, 3)).doit(deep=False) == \
6*Integral(a**2)**3
assert product(n*Integral(a**2), (n, 1, 3)) == 6*Integral(a**2)**3
def test_Sum_interface():
assert isinstance(Sum(0, (n, 0, 2)), Sum)
assert Sum(nan, (n, 0, 2)) is nan
assert Sum(nan, (n, 0, oo)) is nan
assert Sum(0, (n, 0, 2)).doit() == 0
assert isinstance(Sum(0, (n, 0, oo)), Sum)
assert Sum(0, (n, 0, oo)).doit() == 0
raises(ValueError, lambda: Sum(1))
raises(ValueError, lambda: summation(1))
def test_diff():
assert Sum(x, (x, 1, 2)).diff(x) == 0
assert Sum(x*y, (x, 1, 2)).diff(x) == 0
assert Sum(x*y, (y, 1, 2)).diff(x) == Sum(y, (y, 1, 2))
e = Sum(x*y, (x, 1, a))
assert e.diff(a) == Derivative(e, a)
assert Sum(x*y, (x, 1, 3), (a, 2, 5)).diff(y).doit() == \
Sum(x*y, (x, 1, 3), (a, 2, 5)).doit().diff(y) == 24
def test_hypersum():
from sympy import sin
assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x)
assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x)
assert simplify(summation((-1)**n*x**(2*n + 1) /
factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120
assert summation(1/(n + 2)**3, (n, 1, oo)) == -S(9)/8 + zeta(3)
assert summation(1/n**4, (n, 1, oo)) == pi**4/90
s = summation(x**n*n, (n, -oo, 0))
assert s.is_Piecewise
assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2)
assert s.args[0].args[1] == (abs(1/x) < 1)
m = Symbol('n', integer=True, positive=True)
assert summation(binomial(m, k), (k, 0, m)) == 2**m
def test_issue_4170():
assert summation(1/factorial(k), (k, 0, oo)) == E
def test_is_commutative():
from sympy.physics.secondquant import NO, F, Fd
m = Symbol('m', commutative=False)
for f in (Sum, Product, Integral):
assert f(z, (z, 1, 1)).is_commutative is True
assert f(z*y, (z, 1, 6)).is_commutative is True
assert f(m*x, (x, 1, 2)).is_commutative is False
assert f(NO(Fd(x)*F(y))*z, (z, 1, 2)).is_commutative is False
def test_is_zero():
for func in [Sum, Product]:
assert func(0, (x, 1, 1)).is_zero is True
assert func(x, (x, 1, 1)).is_zero is None
def test_is_number():
# is number should not rely on evaluation or assumptions,
# it should be equivalent to `not foo.free_symbols`
assert Sum(1, (x, 1, 1)).is_number is True
assert Sum(1, (x, 1, x)).is_number is False
assert Sum(0, (x, y, z)).is_number is False
assert Sum(x, (y, 1, 2)).is_number is False
assert Sum(x, (y, 1, 1)).is_number is False
assert Sum(x, (x, 1, 2)).is_number is True
assert Sum(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Product(2, (x, 1, 1)).is_number is True
assert Product(2, (x, 1, y)).is_number is False
assert Product(0, (x, y, z)).is_number is False
assert Product(1, (x, y, z)).is_number is False
assert Product(x, (y, 1, x)).is_number is False
assert Product(x, (y, 1, 2)).is_number is False
assert Product(x, (y, 1, 1)).is_number is False
assert Product(x, (x, 1, 2)).is_number is True
def test_free_symbols():
for func in [Sum, Product]:
assert func(1, (x, 1, 2)).free_symbols == set()
assert func(0, (x, 1, y)).free_symbols == {y}
assert func(2, (x, 1, y)).free_symbols == {y}
assert func(x, (x, 1, 2)).free_symbols == set()
assert func(x, (x, 1, y)).free_symbols == {y}
assert func(x, (y, 1, y)).free_symbols == {x, y}
assert func(x, (y, 1, 2)).free_symbols == {x}
assert func(x, (y, 1, 1)).free_symbols == {x}
assert func(x, (y, 1, z)).free_symbols == {x, z}
assert func(x, (x, 1, y), (y, 1, 2)).free_symbols == set()
assert func(x, (x, 1, y), (y, 1, z)).free_symbols == {z}
assert func(x, (x, 1, y), (y, 1, y)).free_symbols == {y}
assert func(x, (y, 1, y), (y, 1, z)).free_symbols == {x, z}
assert Sum(1, (x, 1, y)).free_symbols == {y}
# free_symbols answers whether the object *as written* has free symbols,
# not whether the evaluated expression has free symbols
assert Product(1, (x, 1, y)).free_symbols == {y}
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
p = Sum(A*B**n, (n, 1, 3))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
def test_issue_4171():
assert summation(factorial(2*k + 1)/factorial(2*k), (k, 0, oo)) == oo
assert summation(2*k + 1, (k, 0, oo)) == oo
def test_issue_6273():
assert Sum(x, (x, 1, n)).n(2, subs={n: 1}) == 1
def test_issue_6274():
assert Sum(x, (x, 1, 0)).doit() == 0
assert NS(Sum(x, (x, 1, 0))) == '0'
assert Sum(n, (n, 10, 5)).doit() == -30
assert NS(Sum(n, (n, 10, 5))) == '-30.0000000000000'
def test_simplify():
y, t, v = symbols('y, t, v')
assert simplify(Sum(x*y, (x, n, m), (y, a, k)) + \
Sum(y, (x, n, m), (y, a, k))) == Sum(y * (x + 1), (x, n, m), (y, a, k))
assert simplify(Sum(x, (x, n, m)) + Sum(x, (x, m + 1, a))) == \
Sum(x, (x, n, a))
assert simplify(Sum(x, (x, k + 1, a)) + Sum(x, (x, n, k))) == \
Sum(x, (x, n, a))
assert simplify(Sum(x, (x, k + 1, a)) + Sum(x + 1, (x, n, k))) == \
Sum(x, (x, n, a)) + Sum(1, (x, n, k))
assert simplify(Sum(x, (x, 0, 3)) * 3 + 3 * Sum(x, (x, 4, 6)) + \
4 * Sum(z, (z, 0, 1))) == 4*Sum(z, (z, 0, 1)) + 3*Sum(x, (x, 0, 6))
assert simplify(3*Sum(x**2, (x, a, b)) + Sum(x, (x, a, b))) == \
Sum(x*(3*x + 1), (x, a, b))
assert simplify(Sum(x**3, (x, n, k)) * 3 + 3 * Sum(x, (x, n, k)) + \
4 * y * Sum(z, (z, n, k))) + 1 == \
4*y*Sum(z, (z, n, k)) + 3*Sum(x**3 + x, (x, n, k)) + 1
assert simplify(Sum(x, (x, a, b)) + 1 + Sum(x, (x, b + 1, c))) == \
1 + Sum(x, (x, a, c))
assert simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + \
Sum(x, (t, b+1, c))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b))
assert simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + \
Sum(y, (t, a, b))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b))
assert simplify(Sum(x, (t, a, b)) + 2 * Sum(x, (t, b+1, c))) == \
simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + Sum(x, (t, b+1, c)))
assert simplify(Sum(x, (x, a, b))*Sum(x**2, (x, a, b))) == \
Sum(x, (x, a, b)) * Sum(x**2, (x, a, b))
assert simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b))) \
== (x + y + z) * Sum(1, (t, a, b)) # issue 8596
assert simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b)) + \
Sum(v, (t, a, b))) == (x + y + z + v) * Sum(1, (t, a, b)) # issue 8596
assert simplify(Sum(x * y, (x, a, b)) / (3 * y)) == \
(Sum(x, (x, a, b)) / 3)
assert simplify(Sum(Function('f')(x) * y * z, (x, a, b)) / (y * z)) \
== Sum(Function('f')(x), (x, a, b))
assert simplify(Sum(c * x, (x, a, b)) - c * Sum(x, (x, a, b))) == 0
assert simplify(c * (Sum(x, (x, a, b)) + y)) == c * (y + Sum(x, (x, a, b)))
assert simplify(c * (Sum(x, (x, a, b)) + y * Sum(x, (x, a, b)))) == \
c * (y + 1) * Sum(x, (x, a, b))
assert simplify(Sum(Sum(c * x, (x, a, b)), (y, a, b))) == \
c * Sum(x, (x, a, b), (y, a, b))
assert simplify(Sum((3 + y) * Sum(c * x, (x, a, b)), (y, a, b))) == \
c * Sum((3 + y), (y, a, b)) * Sum(x, (x, a, b))
assert simplify(Sum((3 + t) * Sum(c * t, (x, a, b)), (y, a, b))) == \
c*t*(t + 3)*Sum(1, (x, a, b))*Sum(1, (y, a, b))
assert simplify(Sum(Sum(d * t, (x, a, b - 1)) + \
Sum(d * t, (x, b, c)), (t, a, b))) == \
d * Sum(1, (x, a, c)) * Sum(t, (t, a, b))
def test_change_index():
b, v = symbols('b, v', integer = True)
assert Sum(x, (x, a, b)).change_index(x, x + 1, y) == \
Sum(y - 1, (y, a + 1, b + 1))
assert Sum(x**2, (x, a, b)).change_index( x, x - 1) == \
Sum((x+1)**2, (x, a - 1, b - 1))
assert Sum(x**2, (x, a, b)).change_index( x, -x, y) == \
Sum((-y)**2, (y, -b, -a))
assert Sum(x, (x, a, b)).change_index( x, -x - 1) == \
Sum(-x - 1, (x, -b - 1, -a - 1))
assert Sum(x*y, (x, a, b), (y, c, d)).change_index( x, x - 1, z) == \
Sum((z + 1)*y, (z, a - 1, b - 1), (y, c, d))
assert Sum(x, (x, a, b)).change_index( x, x + v) == \
Sum(-v + x, (x, a + v, b + v))
assert Sum(x, (x, a, b)).change_index( x, -x - v) == \
Sum(-v - x, (x, -b - v, -a - v))
def test_reorder():
b, y, c, d, z = symbols('b, y, c, d, z', integer = True)
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \
Sum(x*y, (y, c, d), (x, a, b))
assert Sum(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \
Sum(x, (x, c, d), (x, a, b))
assert Sum(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\
(2, 0), (0, 1)) == Sum(x*y + z, (z, m, n), (y, c, d), (x, a, b))
assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
(0, 1), (1, 2), (0, 2)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d))
assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\
(x, y), (y, z), (x, z)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d))
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \
Sum(x*y, (y, c, d), (x, a, b))
assert Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \
Sum(x*y, (y, c, d), (x, a, b))
def test_reverse_order():
assert Sum(x, (x, 0, 3)).reverse_order(0) == Sum(-x, (x, 4, -1))
assert Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \
Sum(x*y, (x, 6, 0), (y, 7, -1))
assert Sum(x, (x, 1, 2)).reverse_order(0) == Sum(-x, (x, 3, 0))
assert Sum(x, (x, 1, 3)).reverse_order(0) == Sum(-x, (x, 4, 0))
assert Sum(x, (x, 1, a)).reverse_order(0) == Sum(-x, (x, a + 1, 0))
assert Sum(x, (x, a, 5)).reverse_order(0) == Sum(-x, (x, 6, a - 1))
assert Sum(x, (x, a + 1, a + 5)).reverse_order(0) == \
Sum(-x, (x, a + 6, a))
assert Sum(x, (x, a + 1, a + 2)).reverse_order(0) == \
Sum(-x, (x, a + 3, a))
assert Sum(x, (x, a + 1, a + 1)).reverse_order(0) == \
Sum(-x, (x, a + 2, a))
assert Sum(x, (x, a, b)).reverse_order(0) == Sum(-x, (x, b + 1, a - 1))
assert Sum(x, (x, a, b)).reverse_order(x) == Sum(-x, (x, b + 1, a - 1))
assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \
Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
def test_issue_7097():
assert sum(x**n/n for n in range(1, 401)) == summation(x**n/n, (n, 1, 400))
def test_factor_expand_subs():
# test factoring
assert Sum(4 * x, (x, 1, y)).factor() == 4 * Sum(x, (x, 1, y))
assert Sum(x * a, (x, 1, y)).factor() == a * Sum(x, (x, 1, y))
assert Sum(4 * x * a, (x, 1, y)).factor() == 4 * a * Sum(x, (x, 1, y))
assert Sum(4 * x * y, (x, 1, y)).factor() == 4 * y * Sum(x, (x, 1, y))
# test expand
assert Sum(x+1,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(1,(x,1,y))
assert Sum(x+a*x**2,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(a*x**2,(x,1,y))
assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand() \
== Sum(x*x**n, (n, -1, oo)) + Sum(n*x*x**n, (n, -1, oo))
assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand(power_exp=False) \
== Sum(n*x**(n+1), (n, -1, oo)) + Sum(x**(n+1), (n, -1, oo))
assert Sum(a*n+a*n**2,(n,0,4)).expand() \
== Sum(a*n,(n,0,4)) + Sum(a*n**2,(n,0,4))
assert Sum(x**a*x**n,(x,0,3)) \
== Sum(x**(a+n),(x,0,3)).expand(power_exp=True)
assert Sum(x**(a+n),(x,0,3)) \
== Sum(x**(a+n),(x,0,3)).expand(power_exp=False)
# test subs
assert Sum(1/(1+a*x**2),(x,0,3)).subs([(a,3)]) == Sum(1/(1+3*x**2),(x,0,3))
assert Sum(x*y,(x,0,y),(y,0,x)).subs([(x,3)]) == Sum(x*y,(x,0,y),(y,0,3))
assert Sum(x,(x,1,10)).subs([(x,y-2)]) == Sum(x,(x,1,10))
assert Sum(1/x,(x,1,10)).subs([(x,(3+n)**3)]) == Sum(1/x,(x,1,10))
assert Sum(1/x,(x,1,10)).subs([(x,3*x-2)]) == Sum(1/x,(x,1,10))
def test_distribution_over_equality():
f = Function('f')
assert Product(Eq(x*2, f(x)), (x, 1, 3)).doit() == Eq(48, f(1)*f(2)*f(3))
assert Sum(Eq(f(x), x**2), (x, 0, y)) == \
Eq(Sum(f(x), (x, 0, y)), Sum(x**2, (x, 0, y)))
def test_issue_2787():
n, k = symbols('n k', positive=True, integer=True)
p = symbols('p', positive=True)
binomial_dist = binomial(n, k)*p**k*(1 - p)**(n - k)
s = Sum(binomial_dist*k, (k, 0, n))
res = s.doit().simplify()
assert res == Piecewise(
(n*p, p/Abs(p - 1) <= 1),
((-p + 1)**n*Sum(k*p**k*(-p + 1)**(-k)*binomial(n, k), (k, 0, n)),
True))
def test_issue_4668():
assert summation(1/n, (n, 2, oo)) == oo
def test_matrix_sum():
A = Matrix([[0,1],[n,0]])
assert Sum(A,(n,0,3)).doit() == Matrix([[0, 4], [6, 0]])
def test_indexed_idx_sum():
i = symbols('i', cls=Idx)
r = Indexed('r', i)
assert Sum(r, (i, 0, 3)).doit() == sum([r.xreplace({i: j}) for j in range(4)])
assert Product(r, (i, 0, 3)).doit() == prod([r.xreplace({i: j}) for j in range(4)])
j = symbols('j', integer=True)
assert Sum(r, (i, j, j+2)).doit() == sum([r.xreplace({i: j+k}) for k in range(3)])
assert Product(r, (i, j, j+2)).doit() == prod([r.xreplace({i: j+k}) for k in range(3)])
k = Idx('k', range=(1, 3))
A = IndexedBase('A')
assert Sum(A[k], k).doit() == sum([A[Idx(j, (1, 3))] for j in range(1, 4)])
assert Product(A[k], k).doit() == prod([A[Idx(j, (1, 3))] for j in range(1, 4)])
raises(ValueError, lambda: Sum(A[k], (k, 1, 4)))
raises(ValueError, lambda: Sum(A[k], (k, 0, 3)))
raises(ValueError, lambda: Sum(A[k], (k, 2, oo)))
raises(ValueError, lambda: Product(A[k], (k, 1, 4)))
raises(ValueError, lambda: Product(A[k], (k, 0, 3)))
raises(ValueError, lambda: Product(A[k], (k, 2, oo)))
def test_is_convergent():
# divergence tests --
assert Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() is S.false
assert Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() is S.false
assert Sum(3**(-2*n - 1)*n**n, (n, 1, oo)).is_convergent() is S.false
assert Sum((-1)**n*n, (n, 3, oo)).is_convergent() is S.false
assert Sum((-1)**n, (n, 1, oo)).is_convergent() is S.false
assert Sum(log(1/n), (n, 2, oo)).is_convergent() is S.false
# root test --
assert Sum((-12)**n/n, (n, 1, oo)).is_convergent() is S.false
# integral test --
# p-series test --
assert Sum(1/(n**2 + 1), (n, 1, oo)).is_convergent() is S.true
assert Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent() is S.true
assert Sum(2/(n*sqrt(n - 1)), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(sqrt(n)*sqrt(n)), (n, 2, oo)).is_convergent() is S.false
# comparison test --
assert Sum(1/(n + log(n)), (n, 1, oo)).is_convergent() is S.false
assert Sum(1/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(n*log(n)), (n, 2, oo)).is_convergent() is S.false
assert Sum(2/(n*log(n)*log(log(n))**2), (n, 5, oo)).is_convergent() is S.true
assert Sum(2/(n*log(n)**2), (n, 2, oo)).is_convergent() is S.true
assert Sum((n - 1)/(n**2*log(n)**3), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(n*log(n)*log(log(n))), (n, 5, oo)).is_convergent() is S.false
assert Sum((n - 1)/(n*log(n)**3), (n, 3, oo)).is_convergent() is S.false
assert Sum(2/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true
assert Sum(1/(n*sqrt(log(n))*log(log(n))), (n, 100, oo)).is_convergent() is S.false
assert Sum(log(log(n))/(n*log(n)**2), (n, 100, oo)).is_convergent() is S.true
assert Sum(log(n)/n**2, (n, 5, oo)).is_convergent() is S.true
# alternating series tests --
assert Sum((-1)**(n - 1)/(n**2 - 1), (n, 3, oo)).is_convergent() is S.true
# with -negativeInfinite Limits
assert Sum(1/(n**2 + 1), (n, -oo, 1)).is_convergent() is S.true
assert Sum(1/(n - 1), (n, -oo, -1)).is_convergent() is S.false
assert Sum(1/(n**2 - 1), (n, -oo, -5)).is_convergent() is S.true
assert Sum(1/(n**2 - 1), (n, -oo, 2)).is_convergent() is S.true
assert Sum(1/(n**2 - 1), (n, -oo, oo)).is_convergent() is S.true
# piecewise functions
f = Piecewise((n**(-2), n <= 1), (n**2, n > 1))
assert Sum(f, (n, 1, oo)).is_convergent() is S.false
assert Sum(f, (n, -oo, oo)).is_convergent() is S.false
#assert Sum(f, (n, -oo, 1)).is_convergent() is S.true
# integral test
assert Sum(log(n)/n**3, (n, 1, oo)).is_convergent() is S.true
assert Sum(-log(n)/n**3, (n, 1, oo)).is_convergent() is S.true
# the following function has maxima located at (x, y) =
# (1.2, 0.43), (3.0, -0.25) and (6.8, 0.050)
eq = (x - 2)*(x**2 - 6*x + 4)*exp(-x)
assert Sum(eq, (x, 1, oo)).is_convergent() is S.true
def test_is_absolutely_convergent():
assert Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() is S.false
assert Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() is S.true
@XFAIL
def test_convergent_failing():
# dirichlet tests
assert Sum(sin(n)/n, (n, 1, oo)).is_convergent() is S.true
assert Sum(sin(2*n)/n, (n, 1, oo)).is_convergent() is S.true
def test_issue_6966():
i, k, m = symbols('i k m', integer=True)
z_i, q_i = symbols('z_i q_i')
a_k = Sum(-q_i*z_i/k,(i,1,m))
b_k = a_k.diff(z_i)
assert isinstance(b_k, Sum)
assert b_k == Sum(-q_i/k,(i,1,m))
def test_issue_10156():
cx = Sum(2*y**2*x, (x, 1,3))
e = 2*y*Sum(2*cx*x**2, (x, 1, 9))
assert e.factor() == \
8*y**3*Sum(x, (x, 1, 3))*Sum(x**2, (x, 1, 9))
def test_issue_14129():
assert Sum( k*x**k, (k, 0, n-1)).doit() == \
Piecewise((n**2/2 - n/2, Eq(x, 1)), ((n*x*x**n -
n*x**n - x*x**n + x)/(x - 1)**2, True))
assert Sum( x**k, (k, 0, n-1)).doit() == \
Piecewise((n, Eq(x, 1)), ((-x**n + 1)/(-x + 1), True))
assert Sum( k*(x/y+x)**k, (k, 0, n-1)).doit() == \
Piecewise((n*(n - 1)/2, Eq(x, y/(y + 1))),
(x*(y + 1)*(n*x*y*(x + x/y)**n/(x + x/y)
+ n*x*(x + x/y)**n/(x + x/y) - n*y*(x
+ x/y)**n/(x + x/y) - x*y*(x + x/y)**n/(x
+ x/y) - x*(x + x/y)**n/(x + x/y) + y)/(x*y
+ x - y)**2, True))
def test_issue_14112():
assert Sum((-1)**n/sqrt(n), (n, 1, oo)).is_absolutely_convergent() is S.false
assert Sum((-1)**(2*n)/n, (n, 1, oo)).is_convergent() is S.false
assert Sum((-2)**n + (-3)**n, (n, 1, oo)).is_convergent() is S.false
def test_sin_times_absolutely_convergent():
assert Sum(sin(n) / n**3, (n, 1, oo)).is_convergent() is S.true
assert Sum(sin(n) * log(n) / n**3, (n, 1, oo)).is_convergent() is S.true
def test_issue_14111():
assert Sum(1/log(log(n)), (n, 22, oo)).is_convergent() is S.false
def test_issue_14484():
raises(NotImplementedError, lambda: Sum(sin(n)/log(log(n)), (n, 22, oo)).is_convergent())
def test_issue_14640():
i, n = symbols("i n", integer=True)
a, b, c = symbols("a b c")
assert Sum(a**-i/(a - b), (i, 0, n)).doit() == Sum(
1/(a*a**i - a**i*b), (i, 0, n)).doit() == Piecewise(
(n + 1, Eq(1/a, 1)),
((-a**(-n - 1) + 1)/(1 - 1/a), True))/(a - b)
assert Sum((b*a**i - c*a**i)**-2, (i, 0, n)).doit() == Piecewise(
(n + 1, Eq(a**(-2), 1)),
((-a**(-2*n - 2) + 1)/(1 - 1/a**2), True))/(b - c)**2
s = Sum(i*(a**(n - i) - b**(n - i))/(a - b), (i, 0, n)).doit()
assert not s.has(Sum)
assert s.subs({a: 2, b: 3, n: 5}) == 122
def test_Sum_dummy_eq():
assert not Sum(x, (x, a, b)).dummy_eq(1)
assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b), (a, 1, 2)))
assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, c)))
assert Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b)))
d = Dummy()
assert Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)), c)
assert not Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)))
assert Sum(x, (x, a, c)).dummy_eq(Sum(y, (y, a, c)))
assert Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)), c)
assert not Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)))
|
b00d40d3537db99f348abe9f86500e23e23d09232d402df6e44002195797a80d
|
import sympy
import tempfile
import os
from sympy import symbols, Eq, Mod
from sympy.external import import_module
from sympy.tensor import IndexedBase, Idx
from sympy.utilities.autowrap import autowrap, ufuncify, CodeWrapError
from sympy.utilities.pytest import skip
numpy = import_module('numpy', min_module_version='1.6.1')
Cython = import_module('Cython', min_module_version='0.15.1')
f2py = import_module('numpy.f2py', __import__kwargs={'fromlist': ['f2py']})
f2pyworks = False
if f2py:
try:
autowrap(symbols('x'), 'f95', 'f2py')
except (CodeWrapError, ImportError, OSError):
f2pyworks = False
else:
f2pyworks = True
a, b, c = symbols('a b c')
n, m, d = symbols('n m d', integer=True)
A, B, C = symbols('A B C', cls=IndexedBase)
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', d)
def has_module(module):
"""
Return True if module exists, otherwise run skip().
module should be a string.
"""
# To give a string of the module name to skip(), this function takes a
# string. So we don't waste time running import_module() more than once,
# just map the three modules tested here in this dict.
modnames = {'numpy': numpy, 'Cython': Cython, 'f2py': f2py}
if modnames[module]:
if module == 'f2py' and not f2pyworks:
skip("Couldn't run f2py.")
return True
skip("Couldn't import %s." % module)
#
# test runners used by several language-backend combinations
#
def runtest_autowrap_twice(language, backend):
f = autowrap((((a + b)/c)**5).expand(), language, backend)
g = autowrap((((a + b)/c)**4).expand(), language, backend)
# check that autowrap updates the module name. Else, g gives the same as f
assert f(1, -2, 1) == -1.0
assert g(1, -2, 1) == 1.0
def runtest_autowrap_trace(language, backend):
has_module('numpy')
trace = autowrap(A[i, i], language, backend)
assert trace(numpy.eye(100)) == 100
def runtest_autowrap_matrix_vector(language, backend):
has_module('numpy')
x, y = symbols('x y', cls=IndexedBase)
expr = Eq(y[i], A[i, j]*x[j])
mv = autowrap(expr, language, backend)
# compare with numpy's dot product
M = numpy.random.rand(10, 20)
x = numpy.random.rand(20)
y = numpy.dot(M, x)
assert numpy.sum(numpy.abs(y - mv(M, x))) < 1e-13
def runtest_autowrap_matrix_matrix(language, backend):
has_module('numpy')
expr = Eq(C[i, j], A[i, k]*B[k, j])
matmat = autowrap(expr, language, backend)
# compare with numpy's dot product
M1 = numpy.random.rand(10, 20)
M2 = numpy.random.rand(20, 15)
M3 = numpy.dot(M1, M2)
assert numpy.sum(numpy.abs(M3 - matmat(M1, M2))) < 1e-13
def runtest_ufuncify(language, backend):
has_module('numpy')
a, b, c = symbols('a b c')
fabc = ufuncify([a, b, c], a*b + c, backend=backend)
facb = ufuncify([a, c, b], a*b + c, backend=backend)
grid = numpy.linspace(-2, 2, 50)
b = numpy.linspace(-5, 4, 50)
c = numpy.linspace(-1, 1, 50)
expected = grid*b + c
numpy.testing.assert_allclose(fabc(grid, b, c), expected)
numpy.testing.assert_allclose(facb(grid, c, b), expected)
def runtest_issue_10274(language, backend):
expr = (a - b + c)**(13)
tmp = tempfile.mkdtemp()
f = autowrap(expr, language, backend, tempdir=tmp,
helpers=('helper', a - b + c, (a, b, c)))
assert f(1, 1, 1) == 1
for file in os.listdir(tmp):
if file.startswith("wrapped_code_") and file.endswith(".c"):
fil = open(tmp + '/' + file)
lines = fil.readlines()
assert lines[0] == "/******************************************************************************\n"
assert "Code generated with sympy " + sympy.__version__ in lines[1]
assert lines[2:] == [
" * *\n",
" * See http://www.sympy.org/ for more information. *\n",
" * *\n",
" * This file is part of 'autowrap' *\n",
" ******************************************************************************/\n",
"#include " + '"' + file[:-1]+ 'h"' + "\n",
"#include <math.h>\n",
"\n",
"double helper(double a, double b, double c) {\n",
"\n",
" double helper_result;\n",
" helper_result = a - b + c;\n",
" return helper_result;\n",
"\n",
"}\n",
"\n",
"double autofunc(double a, double b, double c) {\n",
"\n",
" double autofunc_result;\n",
" autofunc_result = pow(helper(a, b, c), 13);\n",
" return autofunc_result;\n",
"\n",
"}\n",
]
def runtest_issue_15337(language, backend):
# NOTE : autowrap was originally designed to only accept an iterable for
# the kwarg "helpers", but in issue 10274 the user mistakenly thought that
# if there was only a single helper it did not need to be passed via an
# iterable that wrapped the helper tuple. There were no tests for this
# behavior so when the code was changed to accept a single tuple it broke
# the original behavior. These tests below ensure that both now work.
a, b, c, d, e = symbols('a, b, c, d, e')
expr = (a - b + c - d + e)**13
exp_res = (1. - 2. + 3. - 4. + 5.)**13
f = autowrap(expr, language, backend, args=(a, b, c, d, e),
helpers=('f1', a - b + c, (a, b, c)))
numpy.testing.assert_allclose(f(1, 2, 3, 4, 5), exp_res)
f = autowrap(expr, language, backend, args=(a, b, c, d, e),
helpers=(('f1', a - b, (a, b)), ('f2', c - d, (c, d))))
numpy.testing.assert_allclose(f(1, 2, 3, 4, 5), exp_res)
def test_issue_15230():
has_module('f2py')
x, y = symbols('x, y')
expr = Mod(x, 3.0) - Mod(y, -2.0)
f = autowrap(expr, args=[x, y], language='F95')
exp_res = float(expr.xreplace({x: 3.5, y: 2.7}).evalf())
assert abs(f(3.5, 2.7) - exp_res) < 1e-14
x, y = symbols('x, y', integer=True)
expr = Mod(x, 3) - Mod(y, -2)
f = autowrap(expr, args=[x, y], language='F95')
assert f(3, 2) == expr.xreplace({x: 3, y: 2})
#
# tests of language-backend combinations
#
# f2py
def test_wrap_twice_f95_f2py():
has_module('f2py')
runtest_autowrap_twice('f95', 'f2py')
def test_autowrap_trace_f95_f2py():
has_module('f2py')
runtest_autowrap_trace('f95', 'f2py')
def test_autowrap_matrix_vector_f95_f2py():
has_module('f2py')
runtest_autowrap_matrix_vector('f95', 'f2py')
def test_autowrap_matrix_matrix_f95_f2py():
has_module('f2py')
runtest_autowrap_matrix_matrix('f95', 'f2py')
def test_ufuncify_f95_f2py():
has_module('f2py')
runtest_ufuncify('f95', 'f2py')
def test_issue_15337_f95_f2py():
has_module('f2py')
runtest_issue_15337('f95', 'f2py')
# Cython
def test_wrap_twice_c_cython():
has_module('Cython')
runtest_autowrap_twice('C', 'cython')
def test_autowrap_trace_C_Cython():
has_module('Cython')
runtest_autowrap_trace('C99', 'cython')
def test_autowrap_matrix_vector_C_cython():
has_module('Cython')
runtest_autowrap_matrix_vector('C99', 'cython')
def test_autowrap_matrix_matrix_C_cython():
has_module('Cython')
runtest_autowrap_matrix_matrix('C99', 'cython')
def test_ufuncify_C_Cython():
has_module('Cython')
runtest_ufuncify('C99', 'cython')
def test_issue_10274_C_cython():
has_module('Cython')
runtest_issue_10274('C89', 'cython')
def test_issue_15337_C_cython():
has_module('Cython')
runtest_issue_15337('C89', 'cython')
def test_autowrap_custom_printer():
has_module('Cython')
from sympy import pi
from sympy.utilities.codegen import C99CodeGen
from sympy.printing.ccode import C99CodePrinter
from sympy.functions.elementary.exponential import exp
class PiPrinter(C99CodePrinter):
def _print_Pi(self, expr):
return "S_PI"
printer = PiPrinter()
gen = C99CodeGen(printer=printer)
gen.preprocessor_statements.append('#include "shortpi.h"')
expr = pi * a
expected = (
'#include "%s"\n'
'#include <math.h>\n'
'#include "shortpi.h"\n'
'\n'
'double autofunc(double a) {\n'
'\n'
' double autofunc_result;\n'
' autofunc_result = S_PI*a;\n'
' return autofunc_result;\n'
'\n'
'}\n'
)
tmpdir = tempfile.mkdtemp()
# write a trivial header file to use in the generated code
open(os.path.join(tmpdir, 'shortpi.h'), 'w').write('#define S_PI 3.14')
func = autowrap(expr, backend='cython', tempdir=tmpdir, code_gen=gen)
assert func(4.2) == 3.14 * 4.2
# check that the generated code is correct
for filename in os.listdir(tmpdir):
if filename.startswith('wrapped_code') and filename.endswith('.c'):
with open(os.path.join(tmpdir, filename)) as f:
lines = f.readlines()
expected = expected % filename.replace('.c', '.h')
assert ''.join(lines[7:]) == expected
# Numpy
def test_ufuncify_numpy():
# This test doesn't use Cython, but if Cython works, then there is a valid
# C compiler, which is needed.
has_module('Cython')
runtest_ufuncify('C99', 'numpy')
|
67530ce63e4f36f03eb3674ebbb030b30000d3dd9fa974ac0bdd2ca5c79cf725
|
# This testfile tests SymPy <-> NumPy compatibility
# Don't test any SymPy features here. Just pure interaction with NumPy.
# Always write regular SymPy tests for anything, that can be tested in pure
# Python (without numpy). Here we test everything, that a user may need when
# using SymPy with NumPy
from sympy.external import import_module
numpy = import_module('numpy')
if numpy:
array, matrix, ndarray = numpy.array, numpy.matrix, numpy.ndarray
else:
#bin/test will not execute any tests now
disabled = True
from sympy import (Rational, Symbol, list2numpy, matrix2numpy, sin, Float,
Matrix, lambdify, symarray, symbols, Integer)
import sympy
import mpmath
from sympy.abc import x, y, z
from sympy.utilities.decorator import conserve_mpmath_dps
# first, systematically check, that all operations are implemented and don't
# raise an exception
def test_systematic_basic():
def s(sympy_object, numpy_array):
x = sympy_object + numpy_array
x = numpy_array + sympy_object
x = sympy_object - numpy_array
x = numpy_array - sympy_object
x = sympy_object * numpy_array
x = numpy_array * sympy_object
x = sympy_object / numpy_array
x = numpy_array / sympy_object
x = sympy_object ** numpy_array
x = numpy_array ** sympy_object
x = Symbol("x")
y = Symbol("y")
sympy_objs = [
Rational(2, 3),
Float("1.3"),
x,
y,
pow(x, y)*y,
Integer(5),
Float(5.5),
]
numpy_objs = [
array([1]),
array([3, 8, -1]),
array([x, x**2, Rational(5)]),
array([x/y*sin(y), 5, Rational(5)]),
]
for x in sympy_objs:
for y in numpy_objs:
s(x, y)
# now some random tests, that test particular problems and that also
# check that the results of the operations are correct
def test_basics():
one = Rational(1)
zero = Rational(0)
assert array(1) == array(one)
assert array([one]) == array([one])
assert array([x]) == array([x])
assert array(x) == array(Symbol("x"))
assert array(one + x) == array(1 + x)
X = array([one, zero, zero])
assert (X == array([one, zero, zero])).all()
assert (X == array([one, 0, 0])).all()
def test_arrays():
one = Rational(1)
zero = Rational(0)
X = array([one, zero, zero])
Y = one*X
X = array([Symbol("a") + Rational(1, 2)])
Y = X + X
assert Y == array([1 + 2*Symbol("a")])
Y = Y + 1
assert Y == array([2 + 2*Symbol("a")])
Y = X - X
assert Y == array([0])
def test_conversion1():
a = list2numpy([x**2, x])
#looks like an array?
assert isinstance(a, ndarray)
assert a[0] == x**2
assert a[1] == x
assert len(a) == 2
#yes, it's the array
def test_conversion2():
a = 2*list2numpy([x**2, x])
b = list2numpy([2*x**2, 2*x])
assert (a == b).all()
one = Rational(1)
zero = Rational(0)
X = list2numpy([one, zero, zero])
Y = one*X
X = list2numpy([Symbol("a") + Rational(1, 2)])
Y = X + X
assert Y == array([1 + 2*Symbol("a")])
Y = Y + 1
assert Y == array([2 + 2*Symbol("a")])
Y = X - X
assert Y == array([0])
def test_list2numpy():
assert (array([x**2, x]) == list2numpy([x**2, x])).all()
def test_Matrix1():
m = Matrix([[x, x**2], [5, 2/x]])
assert (array(m.subs(x, 2)) == array([[2, 4], [5, 1]])).all()
m = Matrix([[sin(x), x**2], [5, 2/x]])
assert (array(m.subs(x, 2)) == array([[sin(2), 4], [5, 1]])).all()
def test_Matrix2():
m = Matrix([[x, x**2], [5, 2/x]])
assert (matrix(m.subs(x, 2)) == matrix([[2, 4], [5, 1]])).all()
m = Matrix([[sin(x), x**2], [5, 2/x]])
assert (matrix(m.subs(x, 2)) == matrix([[sin(2), 4], [5, 1]])).all()
def test_Matrix3():
a = array([[2, 4], [5, 1]])
assert Matrix(a) == Matrix([[2, 4], [5, 1]])
assert Matrix(a) != Matrix([[2, 4], [5, 2]])
a = array([[sin(2), 4], [5, 1]])
assert Matrix(a) == Matrix([[sin(2), 4], [5, 1]])
assert Matrix(a) != Matrix([[sin(0), 4], [5, 1]])
def test_Matrix4():
a = matrix([[2, 4], [5, 1]])
assert Matrix(a) == Matrix([[2, 4], [5, 1]])
assert Matrix(a) != Matrix([[2, 4], [5, 2]])
a = matrix([[sin(2), 4], [5, 1]])
assert Matrix(a) == Matrix([[sin(2), 4], [5, 1]])
assert Matrix(a) != Matrix([[sin(0), 4], [5, 1]])
def test_Matrix_sum():
M = Matrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]])
m = matrix([[2, 3, 4], [x, 5, 6], [x, y, z**2]])
assert M + m == Matrix([[3, 5, 7], [2*x, y + 5, x + 6], [2*y + x, y - 50, z*x + z**2]])
assert m + M == Matrix([[3, 5, 7], [2*x, y + 5, x + 6], [2*y + x, y - 50, z*x + z**2]])
assert M + m == M.add(m)
def test_Matrix_mul():
M = Matrix([[1, 2, 3], [x, y, x]])
m = matrix([[2, 4], [x, 6], [x, z**2]])
assert M*m == Matrix([
[ 2 + 5*x, 16 + 3*z**2],
[2*x + x*y + x**2, 4*x + 6*y + x*z**2],
])
assert m*M == Matrix([
[ 2 + 4*x, 4 + 4*y, 6 + 4*x],
[ 7*x, 2*x + 6*y, 9*x],
[x + x*z**2, 2*x + y*z**2, 3*x + x*z**2],
])
a = array([2])
assert a[0] * M == 2 * M
assert M * a[0] == 2 * M
def test_Matrix_array():
class matarray(object):
def __array__(self):
from numpy import array
return array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
matarr = matarray()
assert Matrix(matarr) == Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
def test_matrix2numpy():
a = matrix2numpy(Matrix([[1, x**2], [3*sin(x), 0]]))
assert isinstance(a, ndarray)
assert a.shape == (2, 2)
assert a[0, 0] == 1
assert a[0, 1] == x**2
assert a[1, 0] == 3*sin(x)
assert a[1, 1] == 0
def test_matrix2numpy_conversion():
a = Matrix([[1, 2, sin(x)], [x**2, x, Rational(1, 2)]])
b = array([[1, 2, sin(x)], [x**2, x, Rational(1, 2)]])
assert (matrix2numpy(a) == b).all()
assert matrix2numpy(a).dtype == numpy.dtype('object')
c = matrix2numpy(Matrix([[1, 2], [10, 20]]), dtype='int8')
d = matrix2numpy(Matrix([[1, 2], [10, 20]]), dtype='float64')
assert c.dtype == numpy.dtype('int8')
assert d.dtype == numpy.dtype('float64')
def test_issue_3728():
assert (Rational(1, 2)*array([2*x, 0]) == array([x, 0])).all()
assert (Rational(1, 2) + array(
[2*x, 0]) == array([2*x + Rational(1, 2), Rational(1, 2)])).all()
assert (Float("0.5")*array([2*x, 0]) == array([Float("1.0")*x, 0])).all()
assert (Float("0.5") + array(
[2*x, 0]) == array([2*x + Float("0.5"), Float("0.5")])).all()
@conserve_mpmath_dps
def test_lambdify():
mpmath.mp.dps = 16
sin02 = mpmath.mpf("0.198669330795061215459412627")
f = lambdify(x, sin(x), "numpy")
prec = 1e-15
assert -prec < f(0.2) - sin02 < prec
try:
f(x) # if this succeeds, it can't be a numpy function
assert False
except AttributeError:
pass
def test_lambdify_matrix():
f = lambdify(x, Matrix([[x, 2*x], [1, 2]]), [{'ImmutableMatrix': numpy.array}, "numpy"])
assert (f(1) == array([[1, 2], [1, 2]])).all()
def test_lambdify_matrix_multi_input():
M = sympy.Matrix([[x**2, x*y, x*z],
[y*x, y**2, y*z],
[z*x, z*y, z**2]])
f = lambdify((x, y, z), M, [{'ImmutableMatrix': numpy.array}, "numpy"])
xh, yh, zh = 1.0, 2.0, 3.0
expected = array([[xh**2, xh*yh, xh*zh],
[yh*xh, yh**2, yh*zh],
[zh*xh, zh*yh, zh**2]])
actual = f(xh, yh, zh)
assert numpy.allclose(actual, expected)
def test_lambdify_matrix_vec_input():
X = sympy.DeferredVector('X')
M = Matrix([
[X[0]**2, X[0]*X[1], X[0]*X[2]],
[X[1]*X[0], X[1]**2, X[1]*X[2]],
[X[2]*X[0], X[2]*X[1], X[2]**2]])
f = lambdify(X, M, [{'ImmutableMatrix': numpy.array}, "numpy"])
Xh = array([1.0, 2.0, 3.0])
expected = array([[Xh[0]**2, Xh[0]*Xh[1], Xh[0]*Xh[2]],
[Xh[1]*Xh[0], Xh[1]**2, Xh[1]*Xh[2]],
[Xh[2]*Xh[0], Xh[2]*Xh[1], Xh[2]**2]])
actual = f(Xh)
assert numpy.allclose(actual, expected)
def test_lambdify_transl():
from sympy.utilities.lambdify import NUMPY_TRANSLATIONS
for sym, mat in NUMPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert mat in numpy.__dict__
def test_symarray():
"""Test creation of numpy arrays of sympy symbols."""
import numpy as np
import numpy.testing as npt
syms = symbols('_0,_1,_2')
s1 = symarray("", 3)
s2 = symarray("", 3)
npt.assert_array_equal(s1, np.array(syms, dtype=object))
assert s1[0] == s2[0]
a = symarray('a', 3)
b = symarray('b', 3)
assert not(a[0] == b[0])
asyms = symbols('a_0,a_1,a_2')
npt.assert_array_equal(a, np.array(asyms, dtype=object))
# Multidimensional checks
a2d = symarray('a', (2, 3))
assert a2d.shape == (2, 3)
a00, a12 = symbols('a_0_0,a_1_2')
assert a2d[0, 0] == a00
assert a2d[1, 2] == a12
a3d = symarray('a', (2, 3, 2))
assert a3d.shape == (2, 3, 2)
a000, a120, a121 = symbols('a_0_0_0,a_1_2_0,a_1_2_1')
assert a3d[0, 0, 0] == a000
assert a3d[1, 2, 0] == a120
assert a3d[1, 2, 1] == a121
def test_vectorize():
assert (numpy.vectorize(
sin)([1, 2, 3]) == numpy.array([sin(1), sin(2), sin(3)])).all()
|
458b7a5c707c6ef787a425eb4f7a9d60cbbc009046a6fd6afeba94d73e6835eb
|
from sympy.external import import_module
from sympy.utilities.pytest import warns
# fixes issue that arose in addressing issue 6533
def test_no_stdlib_collections():
'''
make sure we get the right collections when it is not part of a
larger list
'''
import collections
matplotlib = import_module('matplotlib',
__import__kwargs={'fromlist': ['cm', 'collections']},
min_module_version='1.1.0', catch=(RuntimeError,))
if matplotlib:
assert collections != matplotlib.collections
def test_no_stdlib_collections2():
'''
make sure we get the right collections when it is not part of a
larger list
'''
import collections
matplotlib = import_module('matplotlib',
__import__kwargs={'fromlist': ['collections']},
min_module_version='1.1.0', catch=(RuntimeError,))
if matplotlib:
assert collections != matplotlib.collections
def test_no_stdlib_collections3():
'''make sure we get the right collections with no catch'''
import collections
matplotlib = import_module('matplotlib',
__import__kwargs={'fromlist': ['cm', 'collections']},
min_module_version='1.1.0')
if matplotlib:
assert collections != matplotlib.collections
def test_min_module_version_python3_basestring_error():
with warns(UserWarning):
import_module('mpmath', min_module_version='1000.0.1')
|
b25e3c40a8a668ede45841606467d0c5c4c6fb2949eaaae3a9caafd3eb987a34
|
from sympy import (symbols, Symbol, oo, Sum, harmonic, Add, S, binomial,
factorial, log, fibonacci)
from sympy.series.limitseq import limit_seq
from sympy.series.limitseq import difference_delta as dd
from sympy.utilities.pytest import raises, XFAIL
n, m, k = symbols('n m k', integer=True)
def test_difference_delta():
e = n*(n + 1)
e2 = e * k
assert dd(e) == 2*n + 2
assert dd(e2, n, 2) == k*(4*n + 6)
raises(ValueError, lambda: dd(e2))
raises(ValueError, lambda: dd(e2, n, oo))
def test_difference_delta__Sum():
e = Sum(1/k, (k, 1, n))
assert dd(e, n) == 1/(n + 1)
assert dd(e, n, 5) == Add(*[1/(i + n + 1) for i in range(5)])
e = Sum(1/k, (k, 1, 3*n))
assert dd(e, n) == Add(*[1/(i + 3*n + 1) for i in range(3)])
e = n * Sum(1/k, (k, 1, n))
assert dd(e, n) == 1 + Sum(1/k, (k, 1, n))
e = Sum(1/k, (k, 1, n), (m, 1, n))
assert dd(e, n) == harmonic(n)
def test_difference_delta__Add():
e = n + n*(n + 1)
assert dd(e, n) == 2*n + 3
assert dd(e, n, 2) == 4*n + 8
e = n + Sum(1/k, (k, 1, n))
assert dd(e, n) == 1 + 1/(n + 1)
assert dd(e, n, 5) == 5 + Add(*[1/(i + n + 1) for i in range(5)])
def test_difference_delta__Pow():
e = 4**n
assert dd(e, n) == 3*4**n
assert dd(e, n, 2) == 15*4**n
e = 4**(2*n)
assert dd(e, n) == 15*4**(2*n)
assert dd(e, n, 2) == 255*4**(2*n)
e = n**4
assert dd(e, n) == (n + 1)**4 - n**4
e = n**n
assert dd(e, n) == (n + 1)**(n + 1) - n**n
def test_limit_seq():
e = binomial(2*n, n) / Sum(binomial(2*k, k), (k, 1, n))
assert limit_seq(e) == S(3) / 4
assert limit_seq(e, m) == e
e = (5*n**3 + 3*n**2 + 4) / (3*n**3 + 4*n - 5)
assert limit_seq(e, n) == S(5) / 3
e = (harmonic(n) * Sum(harmonic(k), (k, 1, n))) / (n * harmonic(2*n)**2)
assert limit_seq(e, n) == 1
e = Sum(k**2 * Sum(2**m/m, (m, 1, k)), (k, 1, n)) / (2**n*n)
assert limit_seq(e, n) == 4
e = (Sum(binomial(3*k, k) * binomial(5*k, k), (k, 1, n)) /
(binomial(3*n, n) * binomial(5*n, n)))
assert limit_seq(e, n) == S(84375) / 83351
e = Sum(harmonic(k)**2/k, (k, 1, 2*n)) / harmonic(n)**3
assert limit_seq(e, n) == S(1) / 3
raises(ValueError, lambda: limit_seq(e * m))
def test_alternating_sign():
assert limit_seq((-1)**n/n**2, n) == 0
assert limit_seq((-2)**(n+1)/(n + 3**n), n) == 0
assert limit_seq((2*n + (-1)**n)/(n + 1), n) == 2
assert limit_seq((-3)**n/(n + 3**n), n) is None
def test_limitseq_sum():
from sympy.abc import x, y, z
assert limit_seq(Sum(1/x, (x, 1, y)) - log(y), y) == S.EulerGamma
assert limit_seq(Sum(1/x, (x, 1, y)) - 1/y, y) == S.Infinity
assert (limit_seq(binomial(2*x, x) / Sum(binomial(2*y, y), (y, 1, x)), x) ==
S(3) / 4)
assert (limit_seq(Sum(y**2 * Sum(2**z/z, (z, 1, y)), (y, 1, x)) /
(2**x*x), x) == 4)
def test_issue_10382():
n = Symbol('n', integer=True)
assert limit_seq(fibonacci(n+1)/fibonacci(n), n) == S.GoldenRatio
@XFAIL
def test_limit_seq_fail():
# improve Summation algorithm or add ad-hoc criteria
e = (harmonic(n)**3 * Sum(1/harmonic(k), (k, 1, n)) /
(n * Sum(harmonic(k)/k, (k, 1, n))))
assert limit_seq(e, n) == 2
# No unique dominant term
e = (Sum(2**k * binomial(2*k, k) / k**2, (k, 1, n)) /
(Sum(2**k/k*2, (k, 1, n)) * Sum(binomial(2*k, k), (k, 1, n))))
assert limit_seq(e, n) == S(3) / 7
# Simplifications of summations needs to be improved.
e = n**3*Sum(2**k/k**2, (k, 1, n))**2 / (2**n * Sum(2**k/k, (k, 1, n)))
assert limit_seq(e, n) == 2
e = (harmonic(n) * Sum(2**k/k, (k, 1, n)) /
(n * Sum(2**k*harmonic(k)/k**2, (k, 1, n))))
assert limit_seq(e, n) == 1
e = (Sum(2**k*factorial(k) / k**2, (k, 1, 2*n)) /
(Sum(4**k/k**2, (k, 1, n)) * Sum(factorial(k), (k, 1, 2*n))))
assert limit_seq(e, n) == S(3) / 16
|
5742c37a1f8c2f5c77e399aa0e11ee84832979ef9f7227eb9467fd29886c47aa
|
from sympy import (S, Tuple, symbols, Interval, EmptySequence, oo, SeqPer,
SeqFormula, sequence, SeqAdd, SeqMul, Indexed, Idx, sqrt,
fibonacci, tribonacci)
from sympy.series.sequences import SeqExpr, SeqExprOp
from sympy.utilities.pytest import raises
x, y, z = symbols('x y z')
n, m = symbols('n m')
def test_EmptySequence():
assert isinstance(S.EmptySequence, EmptySequence)
assert S.EmptySequence.interval is S.EmptySet
assert S.EmptySequence.length is S.Zero
assert list(S.EmptySequence) == []
def test_SeqExpr():
s = SeqExpr((1, n, y), (x, 0, 10))
assert isinstance(s, SeqExpr)
assert s.gen == (1, n, y)
assert s.interval == Interval(0, 10)
assert s.start == 0
assert s.stop == 10
assert s.length == 11
assert s.variables == (x,)
assert SeqExpr((1, 2, 3), (x, 0, oo)).length is oo
def test_SeqPer():
s = SeqPer((1, n, 3), (x, 0, 5))
assert isinstance(s, SeqPer)
assert s.periodical == Tuple(1, n, 3)
assert s.period == 3
assert s.coeff(3) == 1
assert s.free_symbols == {n}
assert list(s) == [1, n, 3, 1, n, 3]
assert s[:] == [1, n, 3, 1, n, 3]
assert SeqPer((1, n, 3), (x, -oo, 0))[0:6] == [1, n, 3, 1, n, 3]
raises(ValueError, lambda: SeqPer((1, 2, 3), (0, 1, 2)))
raises(ValueError, lambda: SeqPer((1, 2, 3), (x, -oo, oo)))
raises(ValueError, lambda: SeqPer(n**2, (0, oo)))
assert SeqPer((n, n**2, n**3), (m, 0, oo))[:6] == \
[n, n**2, n**3, n, n**2, n**3]
assert SeqPer((n, n**2, n**3), (n, 0, oo))[:6] == [0, 1, 8, 3, 16, 125]
assert SeqPer((n, m), (n, 0, oo))[:6] == [0, m, 2, m, 4, m]
def test_SeqFormula():
s = SeqFormula(n**2, (n, 0, 5))
assert isinstance(s, SeqFormula)
assert s.formula == n**2
assert s.coeff(3) == 9
assert list(s) == [i**2 for i in range(6)]
assert s[:] == [i**2 for i in range(6)]
assert SeqFormula(n**2, (n, -oo, 0))[0:6] == [i**2 for i in range(6)]
assert SeqFormula(n**2, (0, oo)) == SeqFormula(n**2, (n, 0, oo))
assert SeqFormula(n**2, (0, m)).subs(m, x) == SeqFormula(n**2, (0, x))
assert SeqFormula(m*n**2, (n, 0, oo)).subs(m, x) == \
SeqFormula(x*n**2, (n, 0, oo))
raises(ValueError, lambda: SeqFormula(n**2, (0, 1, 2)))
raises(ValueError, lambda: SeqFormula(n**2, (n, -oo, oo)))
raises(ValueError, lambda: SeqFormula(m*n**2, (0, oo)))
def test_sequence():
form = SeqFormula(n**2, (n, 0, 5))
per = SeqPer((1, 2, 3), (n, 0, 5))
inter = SeqFormula(n**2)
assert sequence(n**2, (n, 0, 5)) == form
assert sequence((1, 2, 3), (n, 0, 5)) == per
assert sequence(n**2) == inter
def test_SeqExprOp():
form = SeqFormula(n**2, (n, 0, 10))
per = SeqPer((1, 2, 3), (m, 5, 10))
s = SeqExprOp(form, per)
assert s.gen == (n**2, (1, 2, 3))
assert s.interval == Interval(5, 10)
assert s.start == 5
assert s.stop == 10
assert s.length == 6
assert s.variables == (n, m)
def test_SeqAdd():
per = SeqPer((1, 2, 3), (n, 0, oo))
form = SeqFormula(n**2)
per_bou = SeqPer((1, 2), (n, 1, 5))
form_bou = SeqFormula(n**2, (6, 10))
form_bou2 = SeqFormula(n**2, (1, 5))
assert SeqAdd() == S.EmptySequence
assert SeqAdd(S.EmptySequence) == S.EmptySequence
assert SeqAdd(per) == per
assert SeqAdd(per, S.EmptySequence) == per
assert SeqAdd(per_bou, form_bou) == S.EmptySequence
s = SeqAdd(per_bou, form_bou2, evaluate=False)
assert s.args == (form_bou2, per_bou)
assert s[:] == [2, 6, 10, 18, 26]
assert list(s) == [2, 6, 10, 18, 26]
assert isinstance(SeqAdd(per, per_bou, evaluate=False), SeqAdd)
s1 = SeqAdd(per, per_bou)
assert isinstance(s1, SeqPer)
assert s1 == SeqPer((2, 4, 4, 3, 3, 5), (n, 1, 5))
s2 = SeqAdd(form, form_bou)
assert isinstance(s2, SeqFormula)
assert s2 == SeqFormula(2*n**2, (6, 10))
assert SeqAdd(form, form_bou, per) == \
SeqAdd(per, SeqFormula(2*n**2, (6, 10)))
assert SeqAdd(form, SeqAdd(form_bou, per)) == \
SeqAdd(per, SeqFormula(2*n**2, (6, 10)))
assert SeqAdd(per, SeqAdd(form, form_bou), evaluate=False) == \
SeqAdd(per, SeqFormula(2*n**2, (6, 10)))
assert SeqAdd(SeqPer((1, 2), (n, 0, oo)), SeqPer((1, 2), (m, 0, oo))) == \
SeqPer((2, 4), (n, 0, oo))
def test_SeqMul():
per = SeqPer((1, 2, 3), (n, 0, oo))
form = SeqFormula(n**2)
per_bou = SeqPer((1, 2), (n, 1, 5))
form_bou = SeqFormula(n**2, (n, 6, 10))
form_bou2 = SeqFormula(n**2, (1, 5))
assert SeqMul() == S.EmptySequence
assert SeqMul(S.EmptySequence) == S.EmptySequence
assert SeqMul(per) == per
assert SeqMul(per, S.EmptySequence) == S.EmptySequence
assert SeqMul(per_bou, form_bou) == S.EmptySequence
s = SeqMul(per_bou, form_bou2, evaluate=False)
assert s.args == (form_bou2, per_bou)
assert s[:] == [1, 8, 9, 32, 25]
assert list(s) == [1, 8, 9, 32, 25]
assert isinstance(SeqMul(per, per_bou, evaluate=False), SeqMul)
s1 = SeqMul(per, per_bou)
assert isinstance(s1, SeqPer)
assert s1 == SeqPer((1, 4, 3, 2, 2, 6), (n, 1, 5))
s2 = SeqMul(form, form_bou)
assert isinstance(s2, SeqFormula)
assert s2 == SeqFormula(n**4, (6, 10))
assert SeqMul(form, form_bou, per) == \
SeqMul(per, SeqFormula(n**4, (6, 10)))
assert SeqMul(form, SeqMul(form_bou, per)) == \
SeqMul(per, SeqFormula(n**4, (6, 10)))
assert SeqMul(per, SeqMul(form, form_bou2,
evaluate=False), evaluate=False) == \
SeqMul(form, per, form_bou2, evaluate=False)
assert SeqMul(SeqPer((1, 2), (n, 0, oo)), SeqPer((1, 2), (n, 0, oo))) == \
SeqPer((1, 4), (n, 0, oo))
def test_add():
per = SeqPer((1, 2), (n, 0, oo))
form = SeqFormula(n**2)
assert per + (SeqPer((2, 3))) == SeqPer((3, 5), (n, 0, oo))
assert form + SeqFormula(n**3) == SeqFormula(n**2 + n**3)
assert per + form == SeqAdd(per, form)
raises(TypeError, lambda: per + n)
raises(TypeError, lambda: n + per)
def test_sub():
per = SeqPer((1, 2), (n, 0, oo))
form = SeqFormula(n**2)
assert per - (SeqPer((2, 3))) == SeqPer((-1, -1), (n, 0, oo))
assert form - (SeqFormula(n**3)) == SeqFormula(n**2 - n**3)
assert per - form == SeqAdd(per, -form)
raises(TypeError, lambda: per - n)
raises(TypeError, lambda: n - per)
def test_mul__coeff_mul():
assert SeqPer((1, 2), (n, 0, oo)).coeff_mul(2) == SeqPer((2, 4), (n, 0, oo))
assert SeqFormula(n**2).coeff_mul(2) == SeqFormula(2*n**2)
assert S.EmptySequence.coeff_mul(100) == S.EmptySequence
assert SeqPer((1, 2), (n, 0, oo)) * (SeqPer((2, 3))) == \
SeqPer((2, 6), (n, 0, oo))
assert SeqFormula(n**2) * SeqFormula(n**3) == SeqFormula(n**5)
assert S.EmptySequence * SeqFormula(n**2) == S.EmptySequence
assert SeqFormula(n**2) * S.EmptySequence == S.EmptySequence
raises(TypeError, lambda: sequence(n**2) * n)
raises(TypeError, lambda: n * sequence(n**2))
def test_neg():
assert -SeqPer((1, -2), (n, 0, oo)) == SeqPer((-1, 2), (n, 0, oo))
assert -SeqFormula(n**2) == SeqFormula(-n**2)
def test_operations():
per = SeqPer((1, 2), (n, 0, oo))
per2 = SeqPer((2, 4), (n, 0, oo))
form = SeqFormula(n**2)
form2 = SeqFormula(n**3)
assert per + form + form2 == SeqAdd(per, form, form2)
assert per + form - form2 == SeqAdd(per, form, -form2)
assert per + form - S.EmptySequence == SeqAdd(per, form)
assert per + per2 + form == SeqAdd(SeqPer((3, 6), (n, 0, oo)), form)
assert S.EmptySequence - per == -per
assert form + form == SeqFormula(2*n**2)
assert per * form * form2 == SeqMul(per, form, form2)
assert form * form == SeqFormula(n**4)
assert form * -form == SeqFormula(-n**4)
assert form * (per + form2) == SeqMul(form, SeqAdd(per, form2))
assert form * (per + per) == SeqMul(form, per2)
assert form.coeff_mul(m) == SeqFormula(m*n**2, (n, 0, oo))
assert per.coeff_mul(m) == SeqPer((m, 2*m), (n, 0, oo))
def test_Idx_limits():
i = symbols('i', cls=Idx)
r = Indexed('r', i)
assert SeqFormula(r, (i, 0, 5))[:] == [r.subs(i, j) for j in range(6)]
assert SeqPer((1, 2), (i, 0, 5))[:] == [1, 2, 1, 2, 1, 2]
def test_find_linear_recurrence():
assert sequence((0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55), \
(n, 0, 10)).find_linear_recurrence(11) == [1, 1]
assert sequence((1, 2, 4, 7, 28, 128, 582, 2745, 13021, 61699, 292521, \
1387138), (n, 0, 11)).find_linear_recurrence(12) == [5, -2, 6, -11]
assert sequence(x*n**3+y*n, (n, 0, oo)).find_linear_recurrence(10) \
== [4, -6, 4, -1]
assert sequence(x**n, (n,0,20)).find_linear_recurrence(21) == [x]
assert sequence((1,2,3)).find_linear_recurrence(10, 5) == [0, 0, 1]
assert sequence(((1 + sqrt(5))/2)**n + \
(-(1 + sqrt(5))/2)**(-n)).find_linear_recurrence(10) == [1, 1]
assert sequence(x*((1 + sqrt(5))/2)**n + y*(-(1 + sqrt(5))/2)**(-n), \
(n,0,oo)).find_linear_recurrence(10) == [1, 1]
assert sequence((1,2,3,4,6),(n, 0, 4)).find_linear_recurrence(5) == []
assert sequence((2,3,4,5,6,79),(n, 0, 5)).find_linear_recurrence(6,gfvar=x) \
== ([], None)
assert sequence((2,3,4,5,8,30),(n, 0, 5)).find_linear_recurrence(6,gfvar=x) \
== ([S(19)/2, -20, S(27)/2], (-31*x**2 + 32*x - 4)/(27*x**3 - 40*x**2 + 19*x -2))
assert sequence(fibonacci(n)).find_linear_recurrence(30,gfvar=x) \
== ([1, 1], -x/(x**2 + x - 1))
assert sequence(tribonacci(n)).find_linear_recurrence(30,gfvar=x) \
== ([1, 1, 1], -x/(x**3 + x**2 + x - 1))
|
76ca1f1360fc01c376fa39bd51dd2e24be801cac9e4654eb3d01e907ca56b772
|
from sympy import sin, cos, exp, E, series, oo, S, Derivative, O, Integral, \
Function, log, sqrt, Symbol, Subs, pi, symbols, IndexedBase, atan
from sympy.abc import x, y, n, k
from sympy.utilities.pytest import raises
from sympy.core.compatibility import range
from sympy.series.gruntz import calculate_series
def test_sin():
e1 = sin(x).series(x, 0)
e2 = series(sin(x), x, 0)
assert e1 == e2
def test_cos():
e1 = cos(x).series(x, 0)
e2 = series(cos(x), x, 0)
assert e1 == e2
def test_exp():
e1 = exp(x).series(x, 0)
e2 = series(exp(x), x, 0)
assert e1 == e2
def test_exp2():
e1 = exp(cos(x)).series(x, 0)
e2 = series(exp(cos(x)), x, 0)
assert e1 == e2
def test_issue_5223():
assert series(1, x) == 1
assert next(S(0).lseries(x)) == 0
assert cos(x).series() == cos(x).series(x)
raises(ValueError, lambda: cos(x + y).series())
raises(ValueError, lambda: x.series(dir=""))
assert (cos(x).series(x, 1) -
cos(x + 1).series(x).subs(x, x - 1)).removeO() == 0
e = cos(x).series(x, 1, n=None)
assert [next(e) for i in range(2)] == [cos(1), -((x - 1)*sin(1))]
e = cos(x).series(x, 1, n=None, dir='-')
assert [next(e) for i in range(2)] == [cos(1), (1 - x)*sin(1)]
# the following test is exact so no need for x -> x - 1 replacement
assert abs(x).series(x, 1, dir='-') == x
assert exp(x).series(x, 1, dir='-', n=3).removeO() == \
E - E*(-x + 1) + E*(-x + 1)**2/2
D = Derivative
assert D(x**2 + x**3*y**2, x, 2, y, 1).series(x).doit() == 12*x*y
assert next(D(cos(x), x).lseries()) == D(1, x)
assert D(
exp(x), x).series(n=3) == D(1, x) + D(x, x) + D(x**2/2, x) + D(x**3/6, x) + O(x**3)
assert Integral(x, (x, 1, 3), (y, 1, x)).series(x) == -4 + 4*x
assert (1 + x + O(x**2)).getn() == 2
assert (1 + x).getn() is None
assert ((1/sin(x))**oo).series() == oo
logx = Symbol('logx')
assert ((sin(x))**y).nseries(x, n=1, logx=logx) == \
exp(y*logx) + O(x*exp(y*logx), x)
assert sin(1/x).series(x, oo, n=5) == 1/x - 1/(6*x**3) + O(x**(-5), (x, oo))
assert abs(x).series(x, oo, n=5, dir='+') == x
assert abs(x).series(x, -oo, n=5, dir='-') == -x
assert abs(-x).series(x, oo, n=5, dir='+') == x
assert abs(-x).series(x, -oo, n=5, dir='-') == -x
assert exp(x*log(x)).series(n=3) == \
1 + x*log(x) + x**2*log(x)**2/2 + O(x**3*log(x)**3)
# XXX is this right? If not, fix "ngot > n" handling in expr.
p = Symbol('p', positive=True)
assert exp(sqrt(p)**3*log(p)).series(n=3) == \
1 + p**S('3/2')*log(p) + O(p**3*log(p)**3)
assert exp(sin(x)*log(x)).series(n=2) == 1 + x*log(x) + O(x**2*log(x)**2)
def test_issue_11313():
assert Integral(cos(x), x).series(x) == sin(x).series(x)
assert Derivative(sin(x), x).series(x, n=3).doit() == cos(x).series(x, n=3)
assert Derivative(x**3, x).as_leading_term(x) == 3*x**2
assert Derivative(x**3, y).as_leading_term(x) == 0
assert Derivative(sin(x), x).as_leading_term(x) == 1
assert Derivative(cos(x), x).as_leading_term(x) == -x
# This result is equivalent to zero, zero is not return because
# `Expr.series` doesn't currently detect an `x` in its `free_symbol`s.
assert Derivative(1, x).as_leading_term(x) == Derivative(1, x)
assert Derivative(exp(x), x).series(x).doit() == exp(x).series(x)
assert 1 + Integral(exp(x), x).series(x) == exp(x).series(x)
assert Derivative(log(x), x).series(x).doit() == (1/x).series(x)
assert Integral(log(x), x).series(x) == Integral(log(x), x).doit().series(x)
def test_series_of_Subs():
from sympy.abc import x, y, z
subs1 = Subs(sin(x), x, y)
subs2 = Subs(sin(x) * cos(z), x, y)
subs3 = Subs(sin(x * z), (x, z), (y, x))
assert subs1.series(x) == subs1
subs1_series = (Subs(x, x, y) + Subs(-x**3/6, x, y) +
Subs(x**5/120, x, y) + O(y**6))
assert subs1.series() == subs1_series
assert subs1.series(y) == subs1_series
assert subs1.series(z) == subs1
assert subs2.series(z) == (Subs(z**4*sin(x)/24, x, y) +
Subs(-z**2*sin(x)/2, x, y) + Subs(sin(x), x, y) + O(z**6))
assert subs3.series(x).doit() == subs3.doit().series(x)
assert subs3.series(z).doit() == sin(x*y)
raises(ValueError, lambda: Subs(x + 2*y, y, z).series())
assert Subs(x + y, y, z).series(x).doit() == x + z
def test_issue_3978():
f = Function('f')
assert f(x).series(x, 0, 3, dir='-') == \
f(0) + x*Subs(Derivative(f(x), x), x, 0) + \
x**2*Subs(Derivative(f(x), x, x), x, 0)/2 + O(x**3)
assert f(x).series(x, 0, 3) == \
f(0) + x*Subs(Derivative(f(x), x), x, 0) + \
x**2*Subs(Derivative(f(x), x, x), x, 0)/2 + O(x**3)
assert f(x**2).series(x, 0, 3) == \
f(0) + x**2*Subs(Derivative(f(x), x), x, 0) + O(x**3)
assert f(x**2+1).series(x, 0, 3) == \
f(1) + x**2*Subs(Derivative(f(x), x), x, 1) + O(x**3)
class TestF(Function):
pass
assert TestF(x).series(x, 0, 3) == TestF(0) + \
x*Subs(Derivative(TestF(x), x), x, 0) + \
x**2*Subs(Derivative(TestF(x), x, x), x, 0)/2 + O(x**3)
from sympy.series.acceleration import richardson, shanks
from sympy import Sum, Integer
def test_acceleration():
e = (1 + 1/n)**n
assert round(richardson(e, n, 10, 20).evalf(), 10) == round(E.evalf(), 10)
A = Sum(Integer(-1)**(k + 1) / k, (k, 1, n))
assert round(shanks(A, n, 25).evalf(), 4) == round(log(2).evalf(), 4)
assert round(shanks(A, n, 25, 5).evalf(), 10) == round(log(2).evalf(), 10)
def test_issue_5852():
assert series(1/cos(x/log(x)), x, 0) == 1 + x**2/(2*log(x)**2) + \
5*x**4/(24*log(x)**4) + O(x**6)
def test_issue_4583():
assert cos(1 + x + x**2).series(x, 0, 5) == cos(1) - x*sin(1) + \
x**2*(-sin(1) - cos(1)/2) + x**3*(-cos(1) + sin(1)/6) + \
x**4*(-11*cos(1)/24 + sin(1)/2) + O(x**5)
def test_issue_6318():
eq = (1/x)**(S(2)/3)
assert (eq + 1).as_leading_term(x) == eq
def test_x_is_base_detection():
eq = (x**2)**(S(2)/3)
assert eq.series() == x**(S(4)/3)
def test_sin_power():
e = sin(x)**1.2
assert calculate_series(e, x) == x**1.2
def test_issue_7203():
assert series(cos(x), x, pi, 3) == \
-1 + (x - pi)**2/2 + O((x - pi)**3, (x, pi))
def test_exp_product_positive_factors():
a, b = symbols('a, b', positive=True)
x = a * b
assert series(exp(x), x, n=8) == 1 + a*b + a**2*b**2/2 + \
a**3*b**3/6 + a**4*b**4/24 + a**5*b**5/120 + a**6*b**6/720 + \
a**7*b**7/5040 + O(a**8*b**8, a, b)
def test_issue_8805():
assert series(1, n=8) == 1
def test_issue_10761():
assert series(1/(x**-2 + x**-3), x, 0) == x**3 - x**4 + x**5 + O(x**6)
def test_issue_14885():
assert series(x**(-S(3)/2)*exp(x), x, 0) == (x**(-S(3)/2) + 1/sqrt(x) +
sqrt(x)/2 + x**(S(3)/2)/6 + x**(S(5)/2)/24 + x**(S(7)/2)/120 +
x**(S(9)/2)/720 + x**(S(11)/2)/5040 + O(x**6))
def test_issue_15539():
assert series(atan(x), x, -oo) == (-1/(5*x**5) + 1/(3*x**3) - 1/x - pi/2
+ O(x**(-6), (x, -oo)))
assert series(atan(x), x, oo) == (-1/(5*x**5) + 1/(3*x**3) - 1/x + pi/2
+ O(x**(-6), (x, oo)))
|
491b025f8b852cc1d99b44a79867e6d8d6584eb6ab815da95a1ae3fe33160028
|
from sympy import (Symbol, Rational, Order, exp, ln, log, nan, oo, O, pi, I,
S, Integral, sin, cos, sqrt, conjugate, expand, transpose, symbols,
Function, Add)
from sympy.utilities.pytest import raises
from sympy.abc import w, x, y, z
def test_caching_bug():
#needs to be a first test, so that all caches are clean
#cache it
e = O(w)
#and test that this won't raise an exception
O(w**(-1/x/log(3)*log(5)), w)
def test_free_symbols():
assert Order(1).free_symbols == set()
assert Order(x).free_symbols == {x}
assert Order(1, x).free_symbols == {x}
assert Order(x*y).free_symbols == {x, y}
assert Order(x, x, y).free_symbols == {x, y}
def test_simple_1():
o = Rational(0)
assert Order(2*x) == Order(x)
assert Order(x)*3 == Order(x)
assert -28*Order(x) == Order(x)
assert Order(Order(x)) == Order(x)
assert Order(Order(x), y) == Order(Order(x), x, y)
assert Order(-23) == Order(1)
assert Order(exp(x)) == Order(1, x)
assert Order(exp(1/x)).expr == exp(1/x)
assert Order(x*exp(1/x)).expr == x*exp(1/x)
assert Order(x**(o/3)).expr == x**(o/3)
assert Order(x**(5*o/3)).expr == x**(5*o/3)
assert Order(x**2 + x + y, x) == O(1, x)
assert Order(x**2 + x + y, y) == O(1, y)
raises(ValueError, lambda: Order(exp(x), x, x))
raises(TypeError, lambda: Order(x, 2 - x))
def test_simple_2():
assert Order(2*x)*x == Order(x**2)
assert Order(2*x)/x == Order(1, x)
assert Order(2*x)*x*exp(1/x) == Order(x**2*exp(1/x))
assert (Order(2*x)*x*exp(1/x)/ln(x)**3).expr == x**2*exp(1/x)*ln(x)**-3
def test_simple_3():
assert Order(x) + x == Order(x)
assert Order(x) + 2 == 2 + Order(x)
assert Order(x) + x**2 == Order(x)
assert Order(x) + 1/x == 1/x + Order(x)
assert Order(1/x) + 1/x**2 == 1/x**2 + Order(1/x)
assert Order(x) + exp(1/x) == Order(x) + exp(1/x)
def test_simple_4():
assert Order(x)**2 == Order(x**2)
def test_simple_5():
assert Order(x) + Order(x**2) == Order(x)
assert Order(x) + Order(x**-2) == Order(x**-2)
assert Order(x) + Order(1/x) == Order(1/x)
def test_simple_6():
assert Order(x) - Order(x) == Order(x)
assert Order(x) + Order(1) == Order(1)
assert Order(x) + Order(x**2) == Order(x)
assert Order(1/x) + Order(1) == Order(1/x)
assert Order(x) + Order(exp(1/x)) == Order(exp(1/x))
assert Order(x**3) + Order(exp(2/x)) == Order(exp(2/x))
assert Order(x**-3) + Order(exp(2/x)) == Order(exp(2/x))
def test_simple_7():
assert 1 + O(1) == O(1)
assert 2 + O(1) == O(1)
assert x + O(1) == O(1)
assert 1/x + O(1) == 1/x + O(1)
def test_simple_8():
assert O(sqrt(-x)) == O(sqrt(x))
assert O(x**2*sqrt(x)) == O(x**(S(5)/2))
assert O(x**3*sqrt(-(-x)**3)) == O(x**(S(9)/2))
assert O(x**(S(3)/2)*sqrt((-x)**3)) == O(x**3)
assert O(x*(-2*x)**(I/2)) == O(x*(-x)**(I/2))
def test_as_expr_variables():
assert Order(x).as_expr_variables(None) == (x, ((x, 0),))
assert Order(x).as_expr_variables((((x, 0),))) == (x, ((x, 0),))
assert Order(y).as_expr_variables(((x, 0),)) == (y, ((x, 0), (y, 0)))
assert Order(y).as_expr_variables(((x, 0), (y, 0))) == (y, ((x, 0), (y, 0)))
def test_contains_0():
assert Order(1, x).contains(Order(1, x))
assert Order(1, x).contains(Order(1))
assert Order(1).contains(Order(1, x)) is False
def test_contains_1():
assert Order(x).contains(Order(x))
assert Order(x).contains(Order(x**2))
assert not Order(x**2).contains(Order(x))
assert not Order(x).contains(Order(1/x))
assert not Order(1/x).contains(Order(exp(1/x)))
assert not Order(x).contains(Order(exp(1/x)))
assert Order(1/x).contains(Order(x))
assert Order(exp(1/x)).contains(Order(x))
assert Order(exp(1/x)).contains(Order(1/x))
assert Order(exp(1/x)).contains(Order(exp(1/x)))
assert Order(exp(2/x)).contains(Order(exp(1/x)))
assert not Order(exp(1/x)).contains(Order(exp(2/x)))
def test_contains_2():
assert Order(x).contains(Order(y)) is None
assert Order(x).contains(Order(y*x))
assert Order(y*x).contains(Order(x))
assert Order(y).contains(Order(x*y))
assert Order(x).contains(Order(y**2*x))
def test_contains_3():
assert Order(x*y**2).contains(Order(x**2*y)) is None
assert Order(x**2*y).contains(Order(x*y**2)) is None
def test_contains_4():
assert Order(sin(1/x**2)).contains(Order(cos(1/x**2))) is None
assert Order(cos(1/x**2)).contains(Order(sin(1/x**2))) is None
def test_contains():
assert Order(1, x) not in Order(1)
assert Order(1) in Order(1, x)
raises(TypeError, lambda: Order(x*y**2) in Order(x**2*y))
def test_add_1():
assert Order(x + x) == Order(x)
assert Order(3*x - 2*x**2) == Order(x)
assert Order(1 + x) == Order(1, x)
assert Order(1 + 1/x) == Order(1/x)
assert Order(ln(x) + 1/ln(x)) == Order(ln(x))
assert Order(exp(1/x) + x) == Order(exp(1/x))
assert Order(exp(1/x) + 1/x**20) == Order(exp(1/x))
def test_ln_args():
assert O(log(x)) + O(log(2*x)) == O(log(x))
assert O(log(x)) + O(log(x**3)) == O(log(x))
assert O(log(x*y)) + O(log(x) + log(y)) == O(log(x*y))
def test_multivar_0():
assert Order(x*y).expr == x*y
assert Order(x*y**2).expr == x*y**2
assert Order(x*y, x).expr == x
assert Order(x*y**2, y).expr == y**2
assert Order(x*y*z).expr == x*y*z
assert Order(x/y).expr == x/y
assert Order(x*exp(1/y)).expr == x*exp(1/y)
assert Order(exp(x)*exp(1/y)).expr == exp(1/y)
def test_multivar_0a():
assert Order(exp(1/x)*exp(1/y)).expr == exp(1/x + 1/y)
def test_multivar_1():
assert Order(x + y).expr == x + y
assert Order(x + 2*y).expr == x + y
assert (Order(x + y) + x).expr == (x + y)
assert (Order(x + y) + x**2) == Order(x + y)
assert (Order(x + y) + 1/x) == 1/x + Order(x + y)
assert Order(x**2 + y*x).expr == x**2 + y*x
def test_multivar_2():
assert Order(x**2*y + y**2*x, x, y).expr == x**2*y + y**2*x
def test_multivar_mul_1():
assert Order(x + y)*x == Order(x**2 + y*x, x, y)
def test_multivar_3():
assert (Order(x) + Order(y)).args in [
(Order(x), Order(y)),
(Order(y), Order(x))]
assert Order(x) + Order(y) + Order(x + y) == Order(x + y)
assert (Order(x**2*y) + Order(y**2*x)).args in [
(Order(x*y**2), Order(y*x**2)),
(Order(y*x**2), Order(x*y**2))]
assert (Order(x**2*y) + Order(y*x)) == Order(x*y)
def test_issue_3468():
y = Symbol('y', negative=True)
z = Symbol('z', complex=True)
# check that Order does not modify assumptions about symbols
Order(x)
Order(y)
Order(z)
assert x.is_positive is None
assert y.is_positive is False
assert z.is_positive is None
def test_leading_order():
assert (x + 1 + 1/x**5).extract_leading_order(x) == ((1/x**5, O(1/x**5)),)
assert (1 + 1/x).extract_leading_order(x) == ((1/x, O(1/x)),)
assert (1 + x).extract_leading_order(x) == ((1, O(1, x)),)
assert (1 + x**2).extract_leading_order(x) == ((1, O(1, x)),)
assert (2 + x**2).extract_leading_order(x) == ((2, O(1, x)),)
assert (x + x**2).extract_leading_order(x) == ((x, O(x)),)
def test_leading_order2():
assert set((2 + pi + x**2).extract_leading_order(x)) == set(((pi, O(1, x)),
(S(2), O(1, x))))
assert set((2*x + pi*x + x**2).extract_leading_order(x)) == set(((2*x, O(x)),
(x*pi, O(x))))
def test_order_leadterm():
assert O(x**2)._eval_as_leading_term(x) == O(x**2)
def test_order_symbols():
e = x*y*sin(x)*Integral(x, (x, 1, 2))
assert O(e) == O(x**2*y, x, y)
assert O(e, x) == O(x**2)
def test_nan():
assert O(nan) == nan
assert not O(x).contains(nan)
def test_O1():
assert O(1, x) * x == O(x)
assert O(1, y) * x == O(1, y)
def test_getn():
# other lines are tested incidentally by the suite
assert O(x).getn() == 1
assert O(x/log(x)).getn() == 1
assert O(x**2/log(x)**2).getn() == 2
assert O(x*log(x)).getn() == 1
raises(NotImplementedError, lambda: (O(x) + O(y)).getn())
def test_diff():
assert O(x**2).diff(x) == O(x)
def test_getO():
assert (x).getO() is None
assert (x).removeO() == x
assert (O(x)).getO() == O(x)
assert (O(x)).removeO() == 0
assert (z + O(x) + O(y)).getO() == O(x) + O(y)
assert (z + O(x) + O(y)).removeO() == z
raises(NotImplementedError, lambda: (O(x) + O(y)).getn())
def test_leading_term():
from sympy import digamma
assert O(1/digamma(1/x)) == O(1/log(x))
def test_eval():
assert Order(x).subs(Order(x), 1) == 1
assert Order(x).subs(x, y) == Order(y)
assert Order(x).subs(y, x) == Order(x)
assert Order(x).subs(x, x + y) == Order(x + y, (x, -y))
assert (O(1)**x).is_Pow
def test_issue_4279():
a, b = symbols('a b')
assert O(a, a, b) + O(1, a, b) == O(1, a, b)
assert O(b, a, b) + O(1, a, b) == O(1, a, b)
assert O(a + b, a, b) + O(1, a, b) == O(1, a, b)
assert O(1, a, b) + O(a, a, b) == O(1, a, b)
assert O(1, a, b) + O(b, a, b) == O(1, a, b)
assert O(1, a, b) + O(a + b, a, b) == O(1, a, b)
def test_issue_4855():
assert 1/O(1) != O(1)
assert 1/O(x) != O(1/x)
assert 1/O(x, (x, oo)) != O(1/x, (x, oo))
f = Function('f')
assert 1/O(f(x)) != O(1/x)
def test_order_conjugate_transpose():
x = Symbol('x', real=True)
y = Symbol('y', imaginary=True)
assert conjugate(Order(x)) == Order(conjugate(x))
assert conjugate(Order(y)) == Order(conjugate(y))
assert conjugate(Order(x**2)) == Order(conjugate(x)**2)
assert conjugate(Order(y**2)) == Order(conjugate(y)**2)
assert transpose(Order(x)) == Order(transpose(x))
assert transpose(Order(y)) == Order(transpose(y))
assert transpose(Order(x**2)) == Order(transpose(x)**2)
assert transpose(Order(y**2)) == Order(transpose(y)**2)
def test_order_noncommutative():
A = Symbol('A', commutative=False)
assert Order(A + A*x, x) == Order(1, x)
assert (A + A*x)*Order(x) == Order(x)
assert (A*x)*Order(x) == Order(x**2, x)
assert expand((1 + Order(x))*A*A*x) == A*A*x + Order(x**2, x)
assert expand((A*A + Order(x))*x) == A*A*x + Order(x**2, x)
assert expand((A + Order(x))*A*x) == A*A*x + Order(x**2, x)
def test_issue_6753():
assert (1 + x**2)**10000*O(x) == O(x)
def test_order_at_infinity():
assert Order(1 + x, (x, oo)) == Order(x, (x, oo))
assert Order(3*x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo))*3 == Order(x, (x, oo))
assert -28*Order(x, (x, oo)) == Order(x, (x, oo))
assert Order(Order(x, (x, oo)), (x, oo)) == Order(x, (x, oo))
assert Order(Order(x, (x, oo)), (y, oo)) == Order(x, (x, oo), (y, oo))
assert Order(3, (x, oo)) == Order(1, (x, oo))
assert Order(x**2 + x + y, (x, oo)) == O(x**2, (x, oo))
assert Order(x**2 + x + y, (y, oo)) == O(y, (y, oo))
assert Order(2*x, (x, oo))*x == Order(x**2, (x, oo))
assert Order(2*x, (x, oo))/x == Order(1, (x, oo))
assert Order(2*x, (x, oo))*x*exp(1/x) == Order(x**2*exp(1/x), (x, oo))
assert Order(2*x, (x, oo))*x*exp(1/x)/ln(x)**3 == Order(x**2*exp(1/x)*ln(x)**-3, (x, oo))
assert Order(x, (x, oo)) + 1/x == 1/x + Order(x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + 1 == 1 + Order(x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + x == x + Order(x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + x**2 == x**2 + Order(x, (x, oo))
assert Order(1/x, (x, oo)) + 1/x**2 == 1/x**2 + Order(1/x, (x, oo)) == Order(1/x, (x, oo))
assert Order(x, (x, oo)) + exp(1/x) == exp(1/x) + Order(x, (x, oo))
assert Order(x, (x, oo))**2 == Order(x**2, (x, oo))
assert Order(x, (x, oo)) + Order(x**2, (x, oo)) == Order(x**2, (x, oo))
assert Order(x, (x, oo)) + Order(x**-2, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + Order(1/x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) - Order(x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + Order(1, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + Order(x**2, (x, oo)) == Order(x**2, (x, oo))
assert Order(1/x, (x, oo)) + Order(1, (x, oo)) == Order(1, (x, oo))
assert Order(x, (x, oo)) + Order(exp(1/x), (x, oo)) == Order(x, (x, oo))
assert Order(x**3, (x, oo)) + Order(exp(2/x), (x, oo)) == Order(x**3, (x, oo))
assert Order(x**-3, (x, oo)) + Order(exp(2/x), (x, oo)) == Order(exp(2/x), (x, oo))
# issue 7207
assert Order(exp(x), (x, oo)).expr == Order(2*exp(x), (x, oo)).expr == exp(x)
assert Order(y**x, (x, oo)).expr == Order(2*y**x, (x, oo)).expr == exp(log(y)*x)
def test_mixing_order_at_zero_and_infinity():
assert (Order(x, (x, 0)) + Order(x, (x, oo))).is_Add
assert Order(x, (x, 0)) + Order(x, (x, oo)) == Order(x, (x, oo)) + Order(x, (x, 0))
assert Order(Order(x, (x, oo))) == Order(x, (x, oo))
# not supported (yet)
raises(NotImplementedError, lambda: Order(x, (x, 0))*Order(x, (x, oo)))
raises(NotImplementedError, lambda: Order(x, (x, oo))*Order(x, (x, 0)))
raises(NotImplementedError, lambda: Order(Order(x, (x, oo)), y))
raises(NotImplementedError, lambda: Order(Order(x), (x, oo)))
def test_order_at_some_point():
assert Order(x, (x, 1)) == Order(1, (x, 1))
assert Order(2*x - 2, (x, 1)) == Order(x - 1, (x, 1))
assert Order(-x + 1, (x, 1)) == Order(x - 1, (x, 1))
assert Order(x - 1, (x, 1))**2 == Order((x - 1)**2, (x, 1))
assert Order(x - 2, (x, 2)) - O(x - 2, (x, 2)) == Order(x - 2, (x, 2))
def test_order_subs_limits():
# issue 3333
assert (1 + Order(x)).subs(x, 1/x) == 1 + Order(1/x, (x, oo))
assert (1 + Order(x)).limit(x, 0) == 1
# issue 5769
assert ((x + Order(x**2))/x).limit(x, 0) == 1
assert Order(x**2).subs(x, y - 1) == Order((y - 1)**2, (y, 1))
assert Order(10*x**2, (x, 2)).subs(x, y - 1) == Order(1, (y, 3))
def test_issue_9351():
assert exp(x).series(x, 10, 1) == exp(10) + Order(x - 10, (x, 10))
def test_issue_9192():
assert O(1)*O(1) == O(1)
assert O(1)**O(1) == O(1)
def test_performance_of_adding_order():
l = list(x**i for i in range(1000))
l.append(O(x**1001))
assert Add(*l).subs(x,1) == O(1)
def test_issue_14622():
assert (x**(-4) + x**(-3) + x**(-1) + O(x**(-6), (x, oo))).as_numer_denom() == (
x**4 + x**5 + x**7 + O(x**2, (x, oo)), x**8)
assert (x**3 + O(x**2, (x, oo))).is_Add
assert O(x**2, (x, oo)).contains(x**3) is False
assert O(x, (x, oo)).contains(O(x, (x, 0))) is None
assert O(x, (x, 0)).contains(O(x, (x, oo))) is None
raises(NotImplementedError, lambda: O(x**3).contains(x**w))
def test_issue_15539():
assert O(1/x**2 + 1/x**4, (x, -oo)) == O(1/x**2, (x, -oo))
assert O(1/x**4 + exp(x), (x, -oo)) == O(1/x**4, (x, -oo))
assert O(1/x**4 + exp(-x), (x, -oo)) == O(exp(-x), (x, -oo))
assert O(1/x, (x, oo)).subs(x, -x) == O(-1/x, (x, -oo))
|
d11e5e7fd7f17c6f6ce570a901973822c56c1242695c23b97600a64442c37eb1
|
from itertools import product as cartes
from sympy import (
limit, exp, oo, log, sqrt, Limit, sin, floor, cos, ceiling,
atan, gamma, Symbol, S, pi, Integral, Rational, I, EulerGamma,
tan, cot, integrate, Sum, sign, Function, subfactorial, symbols,
binomial, simplify, frac, Float, sec, zoo, fresnelc, fresnels)
from sympy.calculus.util import AccumBounds
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.series.limits import heuristics
from sympy.series.order import Order
from sympy.utilities.pytest import XFAIL, raises
from sympy.core.numbers import GoldenRatio
from sympy.functions.combinatorial.numbers import fibonacci
from sympy.abc import x, y, z, k
n = Symbol('n', integer=True, positive=True)
def test_basic1():
assert limit(x, x, oo) == oo
assert limit(x, x, -oo) == -oo
assert limit(-x, x, oo) == -oo
assert limit(x**2, x, -oo) == oo
assert limit(-x**2, x, oo) == -oo
assert limit(x*log(x), x, 0, dir="+") == 0
assert limit(1/x, x, oo) == 0
assert limit(exp(x), x, oo) == oo
assert limit(-exp(x), x, oo) == -oo
assert limit(exp(x)/x, x, oo) == oo
assert limit(1/x - exp(-x), x, oo) == 0
assert limit(x + 1/x, x, oo) == oo
assert limit(x - x**2, x, oo) == -oo
assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1
assert limit((1 + x)**oo, x, 0) == oo
assert limit((1 + x)**oo, x, 0, dir='-') == 0
assert limit((1 + x + y)**oo, x, 0, dir='-') == (1 + y)**(oo)
assert limit(y/x/log(x), x, 0) == -oo*sign(y)
assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo
assert limit(gamma(1/x + 3), x, oo) == 2
assert limit(S.NaN, x, -oo) == S.NaN
assert limit(Order(2)*x, x, S.NaN) == S.NaN
assert limit(1/(x - 1), x, 1, dir="+") == oo
assert limit(1/(x - 1), x, 1, dir="-") == -oo
assert limit(1/(5 - x)**3, x, 5, dir="+") == -oo
assert limit(1/(5 - x)**3, x, 5, dir="-") == oo
assert limit(1/sin(x), x, pi, dir="+") == -oo
assert limit(1/sin(x), x, pi, dir="-") == oo
assert limit(1/cos(x), x, pi/2, dir="+") == -oo
assert limit(1/cos(x), x, pi/2, dir="-") == oo
assert limit(1/tan(x**3), x, (2*pi)**(S(1)/3), dir="+") == oo
assert limit(1/tan(x**3), x, (2*pi)**(S(1)/3), dir="-") == -oo
assert limit(1/cot(x)**3, x, (3*pi/2), dir="+") == -oo
assert limit(1/cot(x)**3, x, (3*pi/2), dir="-") == oo
# test bi-directional limits
assert limit(sin(x)/x, x, 0, dir="+-") == 1
assert limit(x**2, x, 0, dir="+-") == 0
assert limit(1/x**2, x, 0, dir="+-") == oo
# test failing bi-directional limits
raises(ValueError, lambda: limit(1/x, x, 0, dir="+-"))
# approaching 0
# from dir="+"
assert limit(1 + 1/x, x, 0) == oo
# from dir='-'
# Add
assert limit(1 + 1/x, x, 0, dir='-') == -oo
# Pow
assert limit(x**(-2), x, 0, dir='-') == oo
assert limit(x**(-3), x, 0, dir='-') == -oo
assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I
assert limit(x**2, x, 0, dir='-') == 0
assert limit(sqrt(x), x, 0, dir='-') == 0
assert limit(x**-pi, x, 0, dir='-') == oo*sign((-1)**(-pi))
assert limit((1 + cos(x))**oo, x, 0) == oo
def test_basic2():
assert limit(x**x, x, 0, dir="+") == 1
assert limit((exp(x) - 1)/x, x, 0) == 1
assert limit(1 + 1/x, x, oo) == 1
assert limit(-exp(1/x), x, oo) == -1
assert limit(x + exp(-x), x, oo) == oo
assert limit(x + exp(-x**2), x, oo) == oo
assert limit(x + exp(-exp(x)), x, oo) == oo
assert limit(13 + 1/x - exp(-x), x, oo) == 13
def test_basic3():
assert limit(1/x, x, 0, dir="+") == oo
assert limit(1/x, x, 0, dir="-") == -oo
def test_basic4():
assert limit(2*x + y*x, x, 0) == 0
assert limit(2*x + y*x, x, 1) == 2 + y
assert limit(2*x**8 + y*x**(-3), x, -2) == 512 - y/8
assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0
assert integrate(1/(x**3 + 1), (x, 0, oo)) == 2*pi*sqrt(3)/9
def test_basic5():
class my(Function):
@classmethod
def eval(cls, arg):
if arg is S.Infinity:
return S.NaN
assert limit(my(x), x, oo) == Limit(my(x), x, oo)
def test_issue_3885():
assert limit(x*y + x*z, z, 2) == x*y + 2*x
def test_Limit():
assert Limit(sin(x)/x, x, 0) != 1
assert Limit(sin(x)/x, x, 0).doit() == 1
assert Limit(x, x, 0, dir='+-').args == (x, x, 0, Symbol('+-'))
def test_floor():
assert limit(floor(x), x, -2, "+") == -2
assert limit(floor(x), x, -2, "-") == -3
assert limit(floor(x), x, -1, "+") == -1
assert limit(floor(x), x, -1, "-") == -2
assert limit(floor(x), x, 0, "+") == 0
assert limit(floor(x), x, 0, "-") == -1
assert limit(floor(x), x, 1, "+") == 1
assert limit(floor(x), x, 1, "-") == 0
assert limit(floor(x), x, 2, "+") == 2
assert limit(floor(x), x, 2, "-") == 1
assert limit(floor(x), x, 248, "+") == 248
assert limit(floor(x), x, 248, "-") == 247
def test_floor_requires_robust_assumptions():
assert limit(floor(sin(x)), x, 0, "+") == 0
assert limit(floor(sin(x)), x, 0, "-") == -1
assert limit(floor(cos(x)), x, 0, "+") == 0
assert limit(floor(cos(x)), x, 0, "-") == 0
assert limit(floor(5 + sin(x)), x, 0, "+") == 5
assert limit(floor(5 + sin(x)), x, 0, "-") == 4
assert limit(floor(5 + cos(x)), x, 0, "+") == 5
assert limit(floor(5 + cos(x)), x, 0, "-") == 5
def test_ceiling():
assert limit(ceiling(x), x, -2, "+") == -1
assert limit(ceiling(x), x, -2, "-") == -2
assert limit(ceiling(x), x, -1, "+") == 0
assert limit(ceiling(x), x, -1, "-") == -1
assert limit(ceiling(x), x, 0, "+") == 1
assert limit(ceiling(x), x, 0, "-") == 0
assert limit(ceiling(x), x, 1, "+") == 2
assert limit(ceiling(x), x, 1, "-") == 1
assert limit(ceiling(x), x, 2, "+") == 3
assert limit(ceiling(x), x, 2, "-") == 2
assert limit(ceiling(x), x, 248, "+") == 249
assert limit(ceiling(x), x, 248, "-") == 248
def test_ceiling_requires_robust_assumptions():
assert limit(ceiling(sin(x)), x, 0, "+") == 1
assert limit(ceiling(sin(x)), x, 0, "-") == 0
assert limit(ceiling(cos(x)), x, 0, "+") == 1
assert limit(ceiling(cos(x)), x, 0, "-") == 1
assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6
assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5
assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6
assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6
def test_atan():
x = Symbol("x", real=True)
assert limit(atan(x)*sin(1/x), x, 0) == 0
assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi/2
def test_abs():
assert limit(abs(x), x, 0) == 0
assert limit(abs(sin(x)), x, 0) == 0
assert limit(abs(cos(x)), x, 0) == 1
assert limit(abs(sin(x + 1)), x, 0) == sin(1)
def test_heuristic():
x = Symbol("x", real=True)
assert heuristics(sin(1/x) + atan(x), x, 0, '+') == AccumBounds(-1, 1)
assert limit(log(2 + sqrt(atan(x))*sqrt(sin(1/x))), x, 0) == log(2)
def test_issue_3871():
z = Symbol("z", positive=True)
f = -1/z*exp(-z*x)
assert limit(f, x, oo) == 0
assert f.limit(x, oo) == 0
def test_exponential():
n = Symbol('n')
x = Symbol('x', real=True)
assert limit((1 + x/n)**n, n, oo) == exp(x)
assert limit((1 + x/(2*n))**n, n, oo) == exp(x/2)
assert limit((1 + x/(2*n + 1))**n, n, oo) == exp(x/2)
assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2)
assert limit(1 + (1 + 1/x)**x, x, oo) == 1 + S.Exp1
@XFAIL
def test_exponential2():
n = Symbol('n')
assert limit((1 + x/(n + sin(n)))**n, n, oo) == exp(x)
def test_doit():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
assert l.doit() == oo
def test_AccumBounds():
assert limit(sin(k) - sin(k + 1), k, oo) == AccumBounds(-2, 2)
assert limit(cos(k) - cos(k + 1) + 1, k, oo) == AccumBounds(-1, 3)
# not the exact bound
assert limit(sin(k) - sin(k)*cos(k), k, oo) == AccumBounds(-2, 2)
# test for issue #9934
t1 = Mul(S(1)/2, 1/(-1 + cos(1)), Add(AccumBounds(-3, 1), cos(1)))
assert limit(simplify(Sum(cos(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t1
t2 = Mul(S(1)/2, Add(AccumBounds(-2, 2), sin(1)), 1/(-cos(1) + 1))
assert limit(simplify(Sum(sin(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t2
assert limit(frac(x)**x, x, oo) == AccumBounds(0, oo)
assert limit(((sin(x) + 1)/2)**x, x, oo) == AccumBounds(0, oo)
# Possible improvement: AccumBounds(0, 1)
@XFAIL
def test_doit2():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
# limit() breaks on the contained Integral.
assert l.doit(deep=False) == l
def test_issue_3792():
assert limit((1 - cos(x))/x**2, x, S(1)/2) == 4 - 4*cos(S(1)/2)
assert limit(sin(sin(x + 1) + 1), x, 0) == sin(1 + sin(1))
assert limit(abs(sin(x + 1) + 1), x, 0) == 1 + sin(1)
def test_issue_4090():
assert limit(1/(x + 3), x, 2) == S(1)/5
assert limit(1/(x + pi), x, 2) == S(1)/(2 + pi)
assert limit(log(x)/(x**2 + 3), x, 2) == log(2)/7
assert limit(log(x)/(x**2 + pi), x, 2) == log(2)/(4 + pi)
def test_issue_4547():
assert limit(cot(x), x, 0, dir='+') == oo
assert limit(cot(x), x, pi/2, dir='+') == 0
def test_issue_5164():
assert limit(x**0.5, x, oo) == oo**0.5 == oo
assert limit(x**0.5, x, 16) == S(16)**0.5
assert limit(x**0.5, x, 0) == 0
assert limit(x**(-0.5), x, oo) == 0
assert limit(x**(-0.5), x, 4) == S(4)**(-0.5)
def test_issue_5183():
# using list(...) so py.test can recalculate values
tests = list(cartes([x, -x],
[-1, 1],
[2, 3, Rational(1, 2), Rational(2, 3)],
['-', '+']))
results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo,
0, 0, 0, 0, 0, 0, 0, 0,
oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3),
0, 0, 0, 0, 0, 0, 0, 0)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
y, s, e, d = args
eq = y**(s*e)
try:
assert limit(eq, x, 0, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, d, limit(eq, x, 0, dir=d))
else:
assert None
def test_issue_5184():
assert limit(sin(x)/x, x, oo) == 0
assert limit(atan(x), x, oo) == pi/2
assert limit(gamma(x), x, oo) == oo
assert limit(cos(x)/x, x, oo) == 0
assert limit(gamma(x), x, Rational(1, 2)) == sqrt(pi)
r = Symbol('r', real=True, finite=True)
assert limit(r*sin(1/r), r, 0) == 0
def test_issue_5229():
assert limit((1 + y)**(1/y) - S.Exp1, y, 0) == 0
def test_issue_4546():
# using list(...) so py.test can recalculate values
tests = list(cartes([cot, tan],
[-pi/2, 0, pi/2, pi, 3*pi/2],
['-', '+']))
results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0,
oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
f, l, d = args
eq = f(x)
try:
assert limit(eq, x, l, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, l, d, limit(eq, x, l, dir=d))
else:
assert None
def test_issue_3934():
assert limit((1 + x**log(3))**(1/x), x, 0) == 1
assert limit((5**(1/x) + 3**(1/x))**x, x, 0) == 5
def test_calculate_series():
# needs gruntz calculate_series to go to n = 32
assert limit(x**(S(77)/3)/(1 + x**(S(77)/3)), x, oo) == 1
# needs gruntz calculate_series to go to n = 128
assert limit(x**101.1/(1 + x**101.1), x, oo) == 1
def test_issue_5955():
assert limit((x**16)/(1 + x**16), x, oo) == 1
assert limit((x**100)/(1 + x**100), x, oo) == 1
assert limit((x**1885)/(1 + x**1885), x, oo) == 1
assert limit((x**1000/((x + 1)**1000 + exp(-x))), x, oo) == 1
def test_newissue():
assert limit(exp(1/sin(x))/exp(cot(x)), x, 0) == 1
def test_extended_real_line():
assert limit(x - oo, x, oo) == -oo
assert limit(oo - x, x, -oo) == oo
assert limit(x**2/(x - 5) - oo, x, oo) == -oo
assert limit(1/(x + sin(x)) - oo, x, 0) == -oo
assert limit(oo/x, x, oo) == oo
assert limit(x - oo + 1/x, x, oo) == -oo
assert limit(x - oo + 1/x, x, 0) == -oo
@XFAIL
def test_order_oo():
x = Symbol('x', positive=True, finite=True)
assert Order(x)*oo != Order(1, x)
assert limit(oo/(x**2 - 4), x, oo) == oo
def test_issue_5436():
raises(NotImplementedError, lambda: limit(exp(x*y), x, oo))
raises(NotImplementedError, lambda: limit(exp(-x*y), x, oo))
def test_Limit_dir():
raises(TypeError, lambda: Limit(x, x, 0, dir=0))
raises(ValueError, lambda: Limit(x, x, 0, dir='0'))
def test_polynomial():
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, oo) == 1
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, -oo) == 1
def test_rational():
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, oo) == (z - 1)/(y*z)
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, -oo) == (z - 1)/(y*z)
def test_issue_5740():
assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z)
def test_issue_6366():
n = Symbol('n', integer=True, positive=True)
r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1)
assert limit(r, x, 1).simplify() == n/2
def test_factorial():
from sympy import factorial, E
f = factorial(x)
assert limit(f, x, oo) == oo
assert limit(x/f, x, oo) == 0
# see Stirling's approximation:
# https://en.wikipedia.org/wiki/Stirling's_approximation
assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1
assert limit(f, x, -oo) == factorial(-oo)
assert limit(f, x, x**2) == factorial(x**2)
assert limit(f, x, -x**2) == factorial(-x**2)
def test_issue_6560():
e = (5*x**3/4 - 3*x/4 + (y*(3*x**2/2 - S(1)/2) +
35*x**4/8 - 15*x**2/4 + S(3)/8)/(2*(y + 1)))
assert limit(e, y, oo) == (5*x**3 + 3*x**2 - 3*x - 1)/4
def test_issue_5172():
n = Symbol('n')
r = Symbol('r', positive=True)
c = Symbol('c')
p = Symbol('p', positive=True)
m = Symbol('m', negative=True)
expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c +
(r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n)
expr = expr.subs(c, c + 1)
raises(NotImplementedError, lambda: limit(expr, n, oo))
assert limit(expr.subs(c, m), n, oo) == 1
assert limit(expr.subs(c, p), n, oo).simplify() == \
(2**(p + 1) + r - 1)/(r + 1)**(p + 1)
def test_issue_7088():
a = Symbol('a')
assert limit(sqrt(x/(x + a)), x, oo) == 1
def test_issue_6364():
a = Symbol('a')
e = z/(1 - sqrt(1 + z)*sin(a)**2 - sqrt(1 - z)*cos(a)**2)
assert limit(e, z, 0).simplify() == 2/cos(2*a)
def test_issue_4099():
a = Symbol('a')
assert limit(a/x, x, 0) == oo*sign(a)
assert limit(-a/x, x, 0) == -oo*sign(a)
assert limit(-a*x, x, oo) == -oo*sign(a)
assert limit(a*x, x, oo) == oo*sign(a)
def test_issue_4503():
dx = Symbol('dx')
assert limit((sqrt(1 + exp(x + dx)) - sqrt(1 + exp(x)))/dx, dx, 0) == \
exp(x)/(2*sqrt(exp(x) + 1))
def test_issue_8730():
assert limit(subfactorial(x), x, oo) == oo
def test_issue_10801():
# make sure limits work with binomial
assert limit(16**k / (k * binomial(2*k, k)**2), k, oo) == pi
def test_issue_9205():
x, y, a = symbols('x, y, a')
assert Limit(x, x, a).free_symbols == {a}
assert Limit(x, x, a, '-').free_symbols == {a}
assert Limit(x + y, x + y, a).free_symbols == {a}
assert Limit(-x**2 + y, x**2, a).free_symbols == {y, a}
def test_issue_11879():
assert simplify(limit(((x+y)**n-x**n)/y, y, 0)) == n*x**(n-1)
def test_limit_with_Float():
k = symbols("k")
assert limit(1.0 ** k, k, oo) == 1
assert limit(0.3*1.0**k, k, oo) == Float(0.3)
def test_issue_10610():
assert limit(3**x*3**(-x - 1)*(x + 1)**2/x**2, x, oo) == S(1)/3
def test_issue_6599():
assert limit((n + cos(n))/n, n, oo) == 1
def test_issue_12555():
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, -oo) == 2
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, oo) == oo
def test_issue_12564():
assert limit(x**2 + x*sin(x) + cos(x), x, -oo) == oo
assert limit(x**2 + x*sin(x) + cos(x), x, oo) == oo
assert limit(((x + cos(x))**2).expand(), x, oo) == oo
assert limit(((x + sin(x))**2).expand(), x, oo) == oo
assert limit(((x + cos(x))**2).expand(), x, -oo) == oo
assert limit(((x + sin(x))**2).expand(), x, -oo) == oo
def test_issue_14456():
raises(NotImplementedError, lambda: Limit(exp(x), x, zoo).doit())
raises(NotImplementedError, lambda: Limit(x**2/(x+1), x, zoo).doit())
def test_issue_14411():
assert limit(3*sec(4*pi*x - x/3), x, 3*pi/(24*pi - 2)) == -oo
def test_issue_14574():
assert limit(sqrt(x)*cos(x - x**2) / (x + 1), x, oo) == 0
def test_issue_10102():
assert limit(fresnels(x), x, oo) == S.Half
assert limit(3 + fresnels(x), x, oo) == 3 + S.Half
assert limit(5*fresnels(x), x, oo) == 5*S.Half
assert limit(fresnelc(x), x, oo) == S.Half
assert limit(fresnels(x), x, -oo) == -S.Half
assert limit(4*fresnelc(x), x, -oo) == -2
def test_issue_14377():
raises(NotImplementedError, lambda: limit(exp(I*x)*sin(pi*x), x, oo))
|
8da04776aabce54accfb4497984470670c9e68a1576bab73136c79b889875c3a
|
from sympy import (
symbols, sin, simplify, cos, trigsimp, rad, tan, exptrigsimp,sinh,
cosh, diff, cot, Subs, exp, tanh, exp, S, integrate, I,Matrix,
Symbol, coth, pi, log, count_ops, sqrt, E, expand, Piecewise , Rational
)
from sympy.core.compatibility import long
from sympy.utilities.pytest import XFAIL
from sympy.abc import x, y, z, t, a, b, c, d, e, f, g, h, i, k
def test_trigsimp1():
x, y = symbols('x,y')
assert trigsimp(1 - sin(x)**2) == cos(x)**2
assert trigsimp(1 - cos(x)**2) == sin(x)**2
assert trigsimp(sin(x)**2 + cos(x)**2) == 1
assert trigsimp(1 + tan(x)**2) == 1/cos(x)**2
assert trigsimp(1/cos(x)**2 - 1) == tan(x)**2
assert trigsimp(1/cos(x)**2 - tan(x)**2) == 1
assert trigsimp(1 + cot(x)**2) == 1/sin(x)**2
assert trigsimp(1/sin(x)**2 - 1) == 1/tan(x)**2
assert trigsimp(1/sin(x)**2 - cot(x)**2) == 1
assert trigsimp(5*cos(x)**2 + 5*sin(x)**2) == 5
assert trigsimp(5*cos(x/2)**2 + 2*sin(x/2)**2) == 3*cos(x)/2 + S(7)/2
assert trigsimp(sin(x)/cos(x)) == tan(x)
assert trigsimp(2*tan(x)*cos(x)) == 2*sin(x)
assert trigsimp(cot(x)**3*sin(x)**3) == cos(x)**3
assert trigsimp(y*tan(x)**2/sin(x)**2) == y/cos(x)**2
assert trigsimp(cot(x)/cos(x)) == 1/sin(x)
assert trigsimp(sin(x + y) + sin(x - y)) == 2*sin(x)*cos(y)
assert trigsimp(sin(x + y) - sin(x - y)) == 2*sin(y)*cos(x)
assert trigsimp(cos(x + y) + cos(x - y)) == 2*cos(x)*cos(y)
assert trigsimp(cos(x + y) - cos(x - y)) == -2*sin(x)*sin(y)
assert trigsimp(tan(x + y) - tan(x)/(1 - tan(x)*tan(y))) == \
sin(y)/(-sin(y)*tan(x) + cos(y)) # -tan(y)/(tan(x)*tan(y) - 1)
assert trigsimp(sinh(x + y) + sinh(x - y)) == 2*sinh(x)*cosh(y)
assert trigsimp(sinh(x + y) - sinh(x - y)) == 2*sinh(y)*cosh(x)
assert trigsimp(cosh(x + y) + cosh(x - y)) == 2*cosh(x)*cosh(y)
assert trigsimp(cosh(x + y) - cosh(x - y)) == 2*sinh(x)*sinh(y)
assert trigsimp(tanh(x + y) - tanh(x)/(1 + tanh(x)*tanh(y))) == \
sinh(y)/(sinh(y)*tanh(x) + cosh(y))
assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2) == 1
e = 2*sin(x)**2 + 2*cos(x)**2
assert trigsimp(log(e)) == log(2)
def test_trigsimp1a():
assert trigsimp(sin(2)**2*cos(3)*exp(2)/cos(2)**2) == tan(2)**2*cos(3)*exp(2)
assert trigsimp(tan(2)**2*cos(3)*exp(2)*cos(2)**2) == sin(2)**2*cos(3)*exp(2)
assert trigsimp(cot(2)*cos(3)*exp(2)*sin(2)) == cos(3)*exp(2)*cos(2)
assert trigsimp(tan(2)*cos(3)*exp(2)/sin(2)) == cos(3)*exp(2)/cos(2)
assert trigsimp(cot(2)*cos(3)*exp(2)/cos(2)) == cos(3)*exp(2)/sin(2)
assert trigsimp(cot(2)*cos(3)*exp(2)*tan(2)) == cos(3)*exp(2)
assert trigsimp(sinh(2)*cos(3)*exp(2)/cosh(2)) == tanh(2)*cos(3)*exp(2)
assert trigsimp(tanh(2)*cos(3)*exp(2)*cosh(2)) == sinh(2)*cos(3)*exp(2)
assert trigsimp(coth(2)*cos(3)*exp(2)*sinh(2)) == cosh(2)*cos(3)*exp(2)
assert trigsimp(tanh(2)*cos(3)*exp(2)/sinh(2)) == cos(3)*exp(2)/cosh(2)
assert trigsimp(coth(2)*cos(3)*exp(2)/cosh(2)) == cos(3)*exp(2)/sinh(2)
assert trigsimp(coth(2)*cos(3)*exp(2)*tanh(2)) == cos(3)*exp(2)
def test_trigsimp2():
x, y = symbols('x,y')
assert trigsimp(cos(x)**2*sin(y)**2 + cos(x)**2*cos(y)**2 + sin(x)**2,
recursive=True) == 1
assert trigsimp(sin(x)**2*sin(y)**2 + sin(x)**2*cos(y)**2 + cos(x)**2,
recursive=True) == 1
assert trigsimp(
Subs(x, x, sin(y)**2 + cos(y)**2)) == Subs(x, x, 1)
def test_issue_4373():
x = Symbol("x")
assert abs(trigsimp(2.0*sin(x)**2 + 2.0*cos(x)**2) - 2.0) < 1e-10
def test_trigsimp3():
x, y = symbols('x,y')
assert trigsimp(sin(x)/cos(x)) == tan(x)
assert trigsimp(sin(x)**2/cos(x)**2) == tan(x)**2
assert trigsimp(sin(x)**3/cos(x)**3) == tan(x)**3
assert trigsimp(sin(x)**10/cos(x)**10) == tan(x)**10
assert trigsimp(cos(x)/sin(x)) == 1/tan(x)
assert trigsimp(cos(x)**2/sin(x)**2) == 1/tan(x)**2
assert trigsimp(cos(x)**10/sin(x)**10) == 1/tan(x)**10
assert trigsimp(tan(x)) == trigsimp(sin(x)/cos(x))
def test_issue_4661():
a, x, y = symbols('a x y')
eq = -4*sin(x)**4 + 4*cos(x)**4 - 8*cos(x)**2
assert trigsimp(eq) == -4
n = sin(x)**6 + 4*sin(x)**4*cos(x)**2 + 5*sin(x)**2*cos(x)**4 + 2*cos(x)**6
d = -sin(x)**2 - 2*cos(x)**2
assert simplify(n/d) == -1
assert trigsimp(-2*cos(x)**2 + cos(x)**4 - sin(x)**4) == -1
eq = (- sin(x)**3/4)*cos(x) + (cos(x)**3/4)*sin(x) - sin(2*x)*cos(2*x)/8
assert trigsimp(eq) == 0
def test_issue_4494():
a, b = symbols('a b')
eq = sin(a)**2*sin(b)**2 + cos(a)**2*cos(b)**2*tan(a)**2 + cos(a)**2
assert trigsimp(eq) == 1
def test_issue_5948():
a, x, y = symbols('a x y')
assert trigsimp(diff(integrate(cos(x)/sin(x)**7, x), x)) == \
cos(x)/sin(x)**7
def test_issue_4775():
a, x, y = symbols('a x y')
assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)) == sin(x + y)
assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)+3) == sin(x + y) + 3
def test_issue_4280():
a, x, y = symbols('a x y')
assert trigsimp(cos(x)**2 + cos(y)**2*sin(x)**2 + sin(y)**2*sin(x)**2) == 1
assert trigsimp(a**2*sin(x)**2 + a**2*cos(y)**2*cos(x)**2 + a**2*cos(x)**2*sin(y)**2) == a**2
assert trigsimp(a**2*cos(y)**2*sin(x)**2 + a**2*sin(y)**2*sin(x)**2) == a**2*sin(x)**2
def test_issue_3210():
eqs = (sin(2)*cos(3) + sin(3)*cos(2),
-sin(2)*sin(3) + cos(2)*cos(3),
sin(2)*cos(3) - sin(3)*cos(2),
sin(2)*sin(3) + cos(2)*cos(3),
sin(2)*sin(3) + cos(2)*cos(3) + cos(2),
sinh(2)*cosh(3) + sinh(3)*cosh(2),
sinh(2)*sinh(3) + cosh(2)*cosh(3),
)
assert [trigsimp(e) for e in eqs] == [
sin(5),
cos(5),
-sin(1),
cos(1),
cos(1) + cos(2),
sinh(5),
cosh(5),
]
def test_trigsimp_issues():
a, x, y = symbols('a x y')
# issue 4625 - factor_terms works, too
assert trigsimp(sin(x)**3 + cos(x)**2*sin(x)) == sin(x)
# issue 5948
assert trigsimp(diff(integrate(cos(x)/sin(x)**3, x), x)) == \
cos(x)/sin(x)**3
assert trigsimp(diff(integrate(sin(x)/cos(x)**3, x), x)) == \
sin(x)/cos(x)**3
# check integer exponents
e = sin(x)**y/cos(x)**y
assert trigsimp(e) == e
assert trigsimp(e.subs(y, 2)) == tan(x)**2
assert trigsimp(e.subs(x, 1)) == tan(1)**y
# check for multiple patterns
assert (cos(x)**2/sin(x)**2*cos(y)**2/sin(y)**2).trigsimp() == \
1/tan(x)**2/tan(y)**2
assert trigsimp(cos(x)/sin(x)*cos(x+y)/sin(x+y)) == \
1/(tan(x)*tan(x + y))
eq = cos(2)*(cos(3) + 1)**2/(cos(3) - 1)**2
assert trigsimp(eq) == eq.factor() # factor makes denom (-1 + cos(3))**2
assert trigsimp(cos(2)*(cos(3) + 1)**2*(cos(3) - 1)**2) == \
cos(2)*sin(3)**4
# issue 6789; this generates an expression that formerly caused
# trigsimp to hang
assert cot(x).equals(tan(x)) is False
# nan or the unchanged expression is ok, but not sin(1)
z = cos(x)**2 + sin(x)**2 - 1
z1 = tan(x)**2 - 1/cot(x)**2
n = (1 + z1/z)
assert trigsimp(sin(n)) != sin(1)
eq = x*(n - 1) - x*n
assert trigsimp(eq) is S.NaN
assert trigsimp(eq, recursive=True) is S.NaN
assert trigsimp(1).is_Integer
assert trigsimp(-sin(x)**4 - 2*sin(x)**2*cos(x)**2 - cos(x)**4) == -1
def test_trigsimp_issue_2515():
x = Symbol('x')
assert trigsimp(x*cos(x)*tan(x)) == x*sin(x)
assert trigsimp(-sin(x) + cos(x)*tan(x)) == 0
def test_trigsimp_issue_3826():
assert trigsimp(tan(2*x).expand(trig=True)) == tan(2*x)
def test_trigsimp_issue_4032():
n = Symbol('n', integer=True, positive=True)
assert trigsimp(2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2) == \
2**(n/2)*cos(pi*n/4)/2 + 2**n/4
def test_trigsimp_issue_7761():
assert trigsimp(cosh(pi/4)) == cosh(pi/4)
def test_trigsimp_noncommutative():
x, y = symbols('x,y')
A, B = symbols('A,B', commutative=False)
assert trigsimp(A - A*sin(x)**2) == A*cos(x)**2
assert trigsimp(A - A*cos(x)**2) == A*sin(x)**2
assert trigsimp(A*sin(x)**2 + A*cos(x)**2) == A
assert trigsimp(A + A*tan(x)**2) == A/cos(x)**2
assert trigsimp(A/cos(x)**2 - A) == A*tan(x)**2
assert trigsimp(A/cos(x)**2 - A*tan(x)**2) == A
assert trigsimp(A + A*cot(x)**2) == A/sin(x)**2
assert trigsimp(A/sin(x)**2 - A) == A/tan(x)**2
assert trigsimp(A/sin(x)**2 - A*cot(x)**2) == A
assert trigsimp(y*A*cos(x)**2 + y*A*sin(x)**2) == y*A
assert trigsimp(A*sin(x)/cos(x)) == A*tan(x)
assert trigsimp(A*tan(x)*cos(x)) == A*sin(x)
assert trigsimp(A*cot(x)**3*sin(x)**3) == A*cos(x)**3
assert trigsimp(y*A*tan(x)**2/sin(x)**2) == y*A/cos(x)**2
assert trigsimp(A*cot(x)/cos(x)) == A/sin(x)
assert trigsimp(A*sin(x + y) + A*sin(x - y)) == 2*A*sin(x)*cos(y)
assert trigsimp(A*sin(x + y) - A*sin(x - y)) == 2*A*sin(y)*cos(x)
assert trigsimp(A*cos(x + y) + A*cos(x - y)) == 2*A*cos(x)*cos(y)
assert trigsimp(A*cos(x + y) - A*cos(x - y)) == -2*A*sin(x)*sin(y)
assert trigsimp(A*sinh(x + y) + A*sinh(x - y)) == 2*A*sinh(x)*cosh(y)
assert trigsimp(A*sinh(x + y) - A*sinh(x - y)) == 2*A*sinh(y)*cosh(x)
assert trigsimp(A*cosh(x + y) + A*cosh(x - y)) == 2*A*cosh(x)*cosh(y)
assert trigsimp(A*cosh(x + y) - A*cosh(x - y)) == 2*A*sinh(x)*sinh(y)
assert trigsimp(A*cos(0.12345)**2 + A*sin(0.12345)**2) == 1.0*A
def test_hyperbolic_simp():
x, y = symbols('x,y')
assert trigsimp(sinh(x)**2 + 1) == cosh(x)**2
assert trigsimp(cosh(x)**2 - 1) == sinh(x)**2
assert trigsimp(cosh(x)**2 - sinh(x)**2) == 1
assert trigsimp(1 - tanh(x)**2) == 1/cosh(x)**2
assert trigsimp(1 - 1/cosh(x)**2) == tanh(x)**2
assert trigsimp(tanh(x)**2 + 1/cosh(x)**2) == 1
assert trigsimp(coth(x)**2 - 1) == 1/sinh(x)**2
assert trigsimp(1/sinh(x)**2 + 1) == 1/tanh(x)**2
assert trigsimp(coth(x)**2 - 1/sinh(x)**2) == 1
assert trigsimp(5*cosh(x)**2 - 5*sinh(x)**2) == 5
assert trigsimp(5*cosh(x/2)**2 - 2*sinh(x/2)**2) == 3*cosh(x)/2 + S(7)/2
assert trigsimp(sinh(x)/cosh(x)) == tanh(x)
assert trigsimp(tanh(x)) == trigsimp(sinh(x)/cosh(x))
assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x)
assert trigsimp(2*tanh(x)*cosh(x)) == 2*sinh(x)
assert trigsimp(coth(x)**3*sinh(x)**3) == cosh(x)**3
assert trigsimp(y*tanh(x)**2/sinh(x)**2) == y/cosh(x)**2
assert trigsimp(coth(x)/cosh(x)) == 1/sinh(x)
for a in (pi/6*I, pi/4*I, pi/3*I):
assert trigsimp(sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x + a)
assert trigsimp(-sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x - a)
e = 2*cosh(x)**2 - 2*sinh(x)**2
assert trigsimp(log(e)) == log(2)
assert trigsimp(cosh(x)**2*cosh(y)**2 - cosh(x)**2*sinh(y)**2 - sinh(x)**2,
recursive=True) == 1
assert trigsimp(sinh(x)**2*sinh(y)**2 - sinh(x)**2*cosh(y)**2 + cosh(x)**2,
recursive=True) == 1
assert abs(trigsimp(2.0*cosh(x)**2 - 2.0*sinh(x)**2) - 2.0) < 1e-10
assert trigsimp(sinh(x)**2/cosh(x)**2) == tanh(x)**2
assert trigsimp(sinh(x)**3/cosh(x)**3) == tanh(x)**3
assert trigsimp(sinh(x)**10/cosh(x)**10) == tanh(x)**10
assert trigsimp(cosh(x)**3/sinh(x)**3) == 1/tanh(x)**3
assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x)
assert trigsimp(cosh(x)**2/sinh(x)**2) == 1/tanh(x)**2
assert trigsimp(cosh(x)**10/sinh(x)**10) == 1/tanh(x)**10
assert trigsimp(x*cosh(x)*tanh(x)) == x*sinh(x)
assert trigsimp(-sinh(x) + cosh(x)*tanh(x)) == 0
assert tan(x) != 1/cot(x) # cot doesn't auto-simplify
assert trigsimp(tan(x) - 1/cot(x)) == 0
assert trigsimp(3*tanh(x)**7 - 2/coth(x)**7) == tanh(x)**7
def test_trigsimp_groebner():
from sympy.simplify.trigsimp import trigsimp_groebner
c = cos(x)
s = sin(x)
ex = (4*s*c + 12*s + 5*c**3 + 21*c**2 + 23*c + 15)/(
-s*c**2 + 2*s*c + 15*s + 7*c**3 + 31*c**2 + 37*c + 21)
resnum = (5*s - 5*c + 1)
resdenom = (8*s - 6*c)
results = [resnum/resdenom, (-resnum)/(-resdenom)]
assert trigsimp_groebner(ex) in results
assert trigsimp_groebner(s/c, hints=[tan]) == tan(x)
assert trigsimp_groebner(c*s) == c*s
assert trigsimp((-s + 1)/c + c/(-s + 1),
method='groebner') == 2/c
assert trigsimp((-s + 1)/c + c/(-s + 1),
method='groebner', polynomial=True) == 2/c
# Test quick=False works
assert trigsimp_groebner(ex, hints=[2]) in results
assert trigsimp_groebner(ex, hints=[long(2)]) in results
# test "I"
assert trigsimp_groebner(sin(I*x)/cos(I*x), hints=[tanh]) == I*tanh(x)
# test hyperbolic / sums
assert trigsimp_groebner((tanh(x)+tanh(y))/(1+tanh(x)*tanh(y)),
hints=[(tanh, x, y)]) == tanh(x + y)
def test_issue_2827_trigsimp_methods():
measure1 = lambda expr: len(str(expr))
measure2 = lambda expr: -count_ops(expr)
# Return the most complicated result
expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
ans = Matrix([1])
M = Matrix([expr])
assert trigsimp(M, method='fu', measure=measure1) == ans
assert trigsimp(M, method='fu', measure=measure2) != ans
# all methods should work with Basic expressions even if they
# aren't Expr
M = Matrix.eye(1)
assert all(trigsimp(M, method=m) == M for m in
'fu matching groebner old'.split())
# watch for E in exptrigsimp, not only exp()
eq = 1/sqrt(E) + E
assert exptrigsimp(eq) == eq
def test_issue_15129_trigsimp_methods():
t1 = Matrix([sin(Rational(1, 50)), cos(Rational(1, 50)), 0])
t2 = Matrix([sin(Rational(1, 25)), cos(Rational(1, 25)), 0])
t3 = Matrix([cos(Rational(1, 25)), sin(Rational(1, 25)), 0])
r1 = t1.dot(t2)
r2 = t1.dot(t3)
assert trigsimp(r1) == cos(S(1)/50)
assert trigsimp(r2) == sin(S(3)/50)
def test_exptrigsimp():
def valid(a, b):
from sympy.utilities.randtest import verify_numerically as tn
if not (tn(a, b) and a == b):
return False
return True
assert exptrigsimp(exp(x) + exp(-x)) == 2*cosh(x)
assert exptrigsimp(exp(x) - exp(-x)) == 2*sinh(x)
assert exptrigsimp((2*exp(x)-2*exp(-x))/(exp(x)+exp(-x))) == 2*tanh(x)
assert exptrigsimp((2*exp(2*x)-2)/(exp(2*x)+1)) == 2*tanh(x)
e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
cosh(x) - sinh(x), cosh(x) + sinh(x)]
ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
assert all(valid(i, j) for i, j in zip(
[exptrigsimp(ei) for ei in e], ok))
ue = [cos(x) + sin(x), cos(x) - sin(x),
cosh(x) + I*sinh(x), cosh(x) - I*sinh(x)]
assert [exptrigsimp(ei) == ei for ei in ue]
res = []
ok = [y*tanh(1), 1/(y*tanh(1)), I*y*tan(1), -I/(y*tan(1)),
y*tanh(x), 1/(y*tanh(x)), I*y*tan(x), -I/(y*tan(x)),
y*tanh(1 + I), 1/(y*tanh(1 + I))]
for a in (1, I, x, I*x, 1 + I):
w = exp(a)
eq = y*(w - 1/w)/(w + 1/w)
res.append(simplify(eq))
res.append(simplify(1/eq))
assert all(valid(i, j) for i, j in zip(res, ok))
for a in range(1, 3):
w = exp(a)
e = w + 1/w
s = simplify(e)
assert s == exptrigsimp(e)
assert valid(s, 2*cosh(a))
e = w - 1/w
s = simplify(e)
assert s == exptrigsimp(e)
assert valid(s, 2*sinh(a))
def test_powsimp_on_numbers():
assert 2**(S(1)/3 - 2) == 2**(S(1)/3)/4
@XFAIL
def test_issue_6811_fail():
# from doc/src/modules/physics/mechanics/examples.rst, the current `eq`
# at Line 576 (in different variables) was formerly the equivalent and
# shorter expression given below...it would be nice to get the short one
# back again
xp, y, x, z = symbols('xp, y, x, z')
eq = 4*(-19*sin(x)*y + 5*sin(3*x)*y + 15*cos(2*x)*z - 21*z)*xp/(9*cos(x) - 5*cos(3*x))
assert trigsimp(eq) == -2*(2*cos(x)*tan(x)*y + 3*z)*xp/cos(x)
def test_Piecewise():
e1 = x*(x + y) - y*(x + y)
e2 = sin(x)**2 + cos(x)**2
e3 = expand((x + y)*y/x)
s1 = simplify(e1)
s2 = simplify(e2)
s3 = simplify(e3)
# trigsimp tries not to touch non-trig containing args
assert trigsimp(Piecewise((e1, e3 < e2), (e3, True))) == \
Piecewise((e1, e3 < s2), (e3, True))
|
488385240c2d74001cbb7d6b4ed187cbc0fd148d4b1defe97130abf240154f62
|
from sympy import (
sqrt, Derivative, symbols, collect, Function, factor, Wild, S,
collect_const, log, fraction, I, cos, Add, O,sin, rcollect,
Mul, radsimp, diff, root, Symbol, Rational, exp)
from sympy.core.mul import _unevaluated_Mul as umul
from sympy.simplify.radsimp import _unevaluated_Add, collect_sqrt, fraction_expand
from sympy.utilities.pytest import XFAIL, raises
from sympy.abc import x, y, z, t, a, b, c, d, e, f, g, h, i, k
def test_radsimp():
r2 = sqrt(2)
r3 = sqrt(3)
r5 = sqrt(5)
r7 = sqrt(7)
assert fraction(radsimp(1/r2)) == (sqrt(2), 2)
assert radsimp(1/(1 + r2)) == \
-1 + sqrt(2)
assert radsimp(1/(r2 + r3)) == \
-sqrt(2) + sqrt(3)
assert fraction(radsimp(1/(1 + r2 + r3))) == \
(-sqrt(6) + sqrt(2) + 2, 4)
assert fraction(radsimp(1/(r2 + r3 + r5))) == \
(-sqrt(30) + 2*sqrt(3) + 3*sqrt(2), 12)
assert fraction(radsimp(1/(1 + r2 + r3 + r5))) == (
(-34*sqrt(10) - 26*sqrt(15) - 55*sqrt(3) - 61*sqrt(2) + 14*sqrt(30) +
93 + 46*sqrt(6) + 53*sqrt(5), 71))
assert fraction(radsimp(1/(r2 + r3 + r5 + r7))) == (
(-50*sqrt(42) - 133*sqrt(5) - 34*sqrt(70) - 145*sqrt(3) + 22*sqrt(105)
+ 185*sqrt(2) + 62*sqrt(30) + 135*sqrt(7), 215))
z = radsimp(1/(1 + r2/3 + r3/5 + r5 + r7))
assert len((3616791619821680643598*z).args) == 16
assert radsimp(1/z) == 1/z
assert radsimp(1/z, max_terms=20).expand() == 1 + r2/3 + r3/5 + r5 + r7
assert radsimp(1/(r2*3)) == \
sqrt(2)/6
assert radsimp(1/(r2*a + r3 + r5 + r7)) == (
(8*sqrt(2)*a**7 - 8*sqrt(7)*a**6 - 8*sqrt(5)*a**6 - 8*sqrt(3)*a**6 -
180*sqrt(2)*a**5 + 8*sqrt(30)*a**5 + 8*sqrt(42)*a**5 + 8*sqrt(70)*a**5
- 24*sqrt(105)*a**4 + 84*sqrt(3)*a**4 + 100*sqrt(5)*a**4 +
116*sqrt(7)*a**4 - 72*sqrt(70)*a**3 - 40*sqrt(42)*a**3 -
8*sqrt(30)*a**3 + 782*sqrt(2)*a**3 - 462*sqrt(3)*a**2 -
302*sqrt(7)*a**2 - 254*sqrt(5)*a**2 + 120*sqrt(105)*a**2 -
795*sqrt(2)*a - 62*sqrt(30)*a + 82*sqrt(42)*a + 98*sqrt(70)*a -
118*sqrt(105) + 59*sqrt(7) + 295*sqrt(5) + 531*sqrt(3))/(16*a**8 -
480*a**6 + 3128*a**4 - 6360*a**2 + 3481))
assert radsimp(1/(r2*a + r2*b + r3 + r7)) == (
(sqrt(2)*a*(a + b)**2 - 5*sqrt(2)*a + sqrt(42)*a + sqrt(2)*b*(a +
b)**2 - 5*sqrt(2)*b + sqrt(42)*b - sqrt(7)*(a + b)**2 - sqrt(3)*(a +
b)**2 - 2*sqrt(3) + 2*sqrt(7))/(2*a**4 + 8*a**3*b + 12*a**2*b**2 -
20*a**2 + 8*a*b**3 - 40*a*b + 2*b**4 - 20*b**2 + 8))
assert radsimp(1/(r2*a + r2*b + r2*c + r2*d)) == \
sqrt(2)/(2*a + 2*b + 2*c + 2*d)
assert radsimp(1/(1 + r2*a + r2*b + r2*c + r2*d)) == (
(sqrt(2)*a + sqrt(2)*b + sqrt(2)*c + sqrt(2)*d - 1)/(2*a**2 + 4*a*b +
4*a*c + 4*a*d + 2*b**2 + 4*b*c + 4*b*d + 2*c**2 + 4*c*d + 2*d**2 - 1))
assert radsimp((y**2 - x)/(y - sqrt(x))) == \
sqrt(x) + y
assert radsimp(-(y**2 - x)/(y - sqrt(x))) == \
-(sqrt(x) + y)
assert radsimp(1/(1 - I + a*I)) == \
(-I*a + 1 + I)/(a**2 - 2*a + 2)
assert radsimp(1/((-x + y)*(x - sqrt(y)))) == \
(-x - sqrt(y))/((x - y)*(x**2 - y))
e = (3 + 3*sqrt(2))*x*(3*x - 3*sqrt(y))
assert radsimp(e) == x*(3 + 3*sqrt(2))*(3*x - 3*sqrt(y))
assert radsimp(1/e) == (
(-9*x + 9*sqrt(2)*x - 9*sqrt(y) + 9*sqrt(2)*sqrt(y))/(9*x*(9*x**2 -
9*y)))
assert radsimp(1 + 1/(1 + sqrt(3))) == \
Mul(S.Half, -1 + sqrt(3), evaluate=False) + 1
A = symbols("A", commutative=False)
assert radsimp(x**2 + sqrt(2)*x**2 - sqrt(2)*x*A) == \
x**2 + sqrt(2)*x**2 - sqrt(2)*x*A
assert radsimp(1/sqrt(5 + 2 * sqrt(6))) == -sqrt(2) + sqrt(3)
assert radsimp(1/sqrt(5 + 2 * sqrt(6))**3) == -(-sqrt(3) + sqrt(2))**3
# issue 6532
assert fraction(radsimp(1/sqrt(x))) == (sqrt(x), x)
assert fraction(radsimp(1/sqrt(2*x + 3))) == (sqrt(2*x + 3), 2*x + 3)
assert fraction(radsimp(1/sqrt(2*(x + 3)))) == (sqrt(2*x + 6), 2*x + 6)
# issue 5994
e = S('-(2 + 2*sqrt(2) + 4*2**(1/4))/'
'(1 + 2**(3/4) + 3*2**(1/4) + 3*sqrt(2))')
assert radsimp(e).expand() == -2*2**(S(3)/4) - 2*2**(S(1)/4) + 2 + 2*sqrt(2)
# issue 5986 (modifications to radimp didn't initially recognize this so
# the test is included here)
assert radsimp(1/(-sqrt(5)/2 - S(1)/2 + (-sqrt(5)/2 - S(1)/2)**2)) == 1
# from issue 5934
eq = (
(-240*sqrt(2)*sqrt(sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) -
360*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) -
120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) +
120*sqrt(2)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) +
120*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5) +
120*sqrt(10)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) +
120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5))/(-36000 -
7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) +
24*sqrt(10)*sqrt(-sqrt(5) + 5))**2))
assert radsimp(eq) is S.NaN # it's 0/0
# work with normal form
e = 1/sqrt(sqrt(7)/7 + 2*sqrt(2) + 3*sqrt(3) + 5*sqrt(5)) + 3
assert radsimp(e) == (
-sqrt(sqrt(7) + 14*sqrt(2) + 21*sqrt(3) +
35*sqrt(5))*(-11654899*sqrt(35) - 1577436*sqrt(210) - 1278438*sqrt(15)
- 1346996*sqrt(10) + 1635060*sqrt(6) + 5709765 + 7539830*sqrt(14) +
8291415*sqrt(21))/1300423175 + 3)
# obey power rules
base = sqrt(3) - sqrt(2)
assert radsimp(1/base**3) == (sqrt(3) + sqrt(2))**3
assert radsimp(1/(-base)**3) == -(sqrt(2) + sqrt(3))**3
assert radsimp(1/(-base)**x) == (-base)**(-x)
assert radsimp(1/base**x) == (sqrt(2) + sqrt(3))**x
assert radsimp(root(1/(-1 - sqrt(2)), -x)) == (-1)**(-1/x)*(1 + sqrt(2))**(1/x)
# recurse
e = cos(1/(1 + sqrt(2)))
assert radsimp(e) == cos(-sqrt(2) + 1)
assert radsimp(e/2) == cos(-sqrt(2) + 1)/2
assert radsimp(1/e) == 1/cos(-sqrt(2) + 1)
assert radsimp(2/e) == 2/cos(-sqrt(2) + 1)
assert fraction(radsimp(e/sqrt(x))) == (sqrt(x)*cos(-sqrt(2)+1), x)
# test that symbolic denominators are not processed
r = 1 + sqrt(2)
assert radsimp(x/r, symbolic=False) == -x*(-sqrt(2) + 1)
assert radsimp(x/(y + r), symbolic=False) == x/(y + 1 + sqrt(2))
assert radsimp(x/(y + r)/r, symbolic=False) == \
-x*(-sqrt(2) + 1)/(y + 1 + sqrt(2))
# issue 7408
eq = sqrt(x)/sqrt(y)
assert radsimp(eq) == umul(sqrt(x), sqrt(y), 1/y)
assert radsimp(eq, symbolic=False) == eq
# issue 7498
assert radsimp(sqrt(x)/sqrt(y)**3) == umul(sqrt(x), sqrt(y**3), 1/y**3)
# for coverage
eq = sqrt(x)/y**2
assert radsimp(eq) == eq
def test_radsimp_issue_3214():
c, p = symbols('c p', positive=True)
s = sqrt(c**2 - p**2)
b = (c + I*p - s)/(c + I*p + s)
assert radsimp(b) == -I*(c + I*p - sqrt(c**2 - p**2))**2/(2*c*p)
def test_collect_1():
"""Collect with respect to a Symbol"""
x, y, z, n = symbols('x,y,z,n')
assert collect(1, x) == 1
assert collect( x + y*x, x ) == x * (1 + y)
assert collect( x + x**2, x ) == x + x**2
assert collect( x**2 + y*x**2, x ) == (x**2)*(1 + y)
assert collect( x**2 + y*x, x ) == x*y + x**2
assert collect( 2*x**2 + y*x**2 + 3*x*y, [x] ) == x**2*(2 + y) + 3*x*y
assert collect( 2*x**2 + y*x**2 + 3*x*y, [y] ) == 2*x**2 + y*(x**2 + 3*x)
assert collect( ((1 + y + x)**4).expand(), x) == ((1 + y)**4).expand() + \
x*(4*(1 + y)**3).expand() + x**2*(6*(1 + y)**2).expand() + \
x**3*(4*(1 + y)).expand() + x**4
# symbols can be given as any iterable
expr = x + y
assert collect(expr, expr.free_symbols) == expr
def test_collect_2():
"""Collect with respect to a sum"""
a, b, x = symbols('a,b,x')
assert collect(a*(cos(x) + sin(x)) + b*(cos(x) + sin(x)),
sin(x) + cos(x)) == (a + b)*(cos(x) + sin(x))
def test_collect_3():
"""Collect with respect to a product"""
a, b, c = symbols('a,b,c')
f = Function('f')
x, y, z, n = symbols('x,y,z,n')
assert collect(-x/8 + x*y, -x) == x*(y - S(1)/8)
assert collect( 1 + x*(y**2), x*y ) == 1 + x*(y**2)
assert collect( x*y + a*x*y, x*y) == x*y*(1 + a)
assert collect( 1 + x*y + a*x*y, x*y) == 1 + x*y*(1 + a)
assert collect(a*x*f(x) + b*(x*f(x)), x*f(x)) == x*(a + b)*f(x)
assert collect(a*x*log(x) + b*(x*log(x)), x*log(x)) == x*(a + b)*log(x)
assert collect(a*x**2*log(x)**2 + b*(x*log(x))**2, x*log(x)) == \
x**2*log(x)**2*(a + b)
# with respect to a product of three symbols
assert collect(y*x*z + a*x*y*z, x*y*z) == (1 + a)*x*y*z
def test_collect_4():
"""Collect with respect to a power"""
a, b, c, x = symbols('a,b,c,x')
assert collect(a*x**c + b*x**c, x**c) == x**c*(a + b)
# issue 6096: 2 stays with c (unless c is integer or x is positive0
assert collect(a*x**(2*c) + b*x**(2*c), x**c) == x**(2*c)*(a + b)
def test_collect_5():
"""Collect with respect to a tuple"""
a, x, y, z, n = symbols('a,x,y,z,n')
assert collect(x**2*y**4 + z*(x*y**2)**2 + z + a*z, [x*y**2, z]) in [
z*(1 + a + x**2*y**4) + x**2*y**4,
z*(1 + a) + x**2*y**4*(1 + z) ]
assert collect((1 + (x + y) + (x + y)**2).expand(),
[x, y]) == 1 + y + x*(1 + 2*y) + x**2 + y**2
def test_collect_D():
D = Derivative
f = Function('f')
x, a, b = symbols('x,a,b')
fx = D(f(x), x)
fxx = D(f(x), x, x)
assert collect(a*fx + b*fx, fx) == (a + b)*fx
assert collect(a*D(fx, x) + b*D(fx, x), fx) == (a + b)*D(fx, x)
assert collect(a*fxx + b*fxx, fx) == (a + b)*D(fx, x)
# issue 4784
assert collect(5*f(x) + 3*fx, fx) == 5*f(x) + 3*fx
assert collect(f(x) + f(x)*diff(f(x), x) + x*diff(f(x), x)*f(x), f(x).diff(x)) == \
(x*f(x) + f(x))*D(f(x), x) + f(x)
assert collect(f(x) + f(x)*diff(f(x), x) + x*diff(f(x), x)*f(x), f(x).diff(x), exact=True) == \
(x*f(x) + f(x))*D(f(x), x) + f(x)
assert collect(1/f(x) + 1/f(x)*diff(f(x), x) + x*diff(f(x), x)/f(x), f(x).diff(x), exact=True) == \
(1/f(x) + x/f(x))*D(f(x), x) + 1/f(x)
e = (1 + x*fx + fx)/f(x)
assert collect(e.expand(), fx) == fx*(x/f(x) + 1/f(x)) + 1/f(x)
def test_collect_func():
f = ((x + a + 1)**3).expand()
assert collect(f, x) == a**3 + 3*a**2 + 3*a + x**3 + x**2*(3*a + 3) + \
x*(3*a**2 + 6*a + 3) + 1
assert collect(f, x, factor) == x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + \
(a + 1)**3
assert collect(f, x, evaluate=False) == {
S.One: a**3 + 3*a**2 + 3*a + 1,
x: 3*a**2 + 6*a + 3, x**2: 3*a + 3,
x**3: 1
}
assert collect(f, x, factor, evaluate=False) == {
S.One: (a + 1)**3, x: 3*(a + 1)**2,
x**2: umul(S(3), a + 1), x**3: 1}
def test_collect_order():
a, b, x, t = symbols('a,b,x,t')
assert collect(t + t*x + t*x**2 + O(x**3), t) == t*(1 + x + x**2 + O(x**3))
assert collect(t + t*x + x**2 + O(x**3), t) == \
t*(1 + x + O(x**3)) + x**2 + O(x**3)
f = a*x + b*x + c*x**2 + d*x**2 + O(x**3)
g = x*(a + b) + x**2*(c + d) + O(x**3)
assert collect(f, x) == g
assert collect(f, x, distribute_order_term=False) == g
f = sin(a + b).series(b, 0, 10)
assert collect(f, [sin(a), cos(a)]) == \
sin(a)*cos(b).series(b, 0, 10) + cos(a)*sin(b).series(b, 0, 10)
assert collect(f, [sin(a), cos(a)], distribute_order_term=False) == \
sin(a)*cos(b).series(b, 0, 10).removeO() + \
cos(a)*sin(b).series(b, 0, 10).removeO() + O(b**10)
def test_rcollect():
assert rcollect((x**2*y + x*y + x + y)/(x + y), y) == \
(x + y*(1 + x + x**2))/(x + y)
assert rcollect(sqrt(-((x + 1)*(y + 1))), z) == sqrt(-((x + 1)*(y + 1)))
@XFAIL
def test_collect_D_0():
D = Derivative
f = Function('f')
x, a, b = symbols('x,a,b')
fxx = D(f(x), x, x)
# collect does not distinguish nested derivatives, so it returns
# -- (a + b)*D(D(f, x), x)
assert collect(a*fxx + b*fxx, fxx) == (a + b)*fxx
def test_collect_Wild():
"""Collect with respect to functions with Wild argument"""
a, b, x, y = symbols('a b x y')
f = Function('f')
w1 = Wild('.1')
w2 = Wild('.2')
assert collect(f(x) + a*f(x), f(w1)) == (1 + a)*f(x)
assert collect(f(x, y) + a*f(x, y), f(w1)) == f(x, y) + a*f(x, y)
assert collect(f(x, y) + a*f(x, y), f(w1, w2)) == (1 + a)*f(x, y)
assert collect(f(x, y) + a*f(x, y), f(w1, w1)) == f(x, y) + a*f(x, y)
assert collect(f(x, x) + a*f(x, x), f(w1, w1)) == (1 + a)*f(x, x)
assert collect(a*(x + 1)**y + (x + 1)**y, w1**y) == (1 + a)*(x + 1)**y
assert collect(a*(x + 1)**y + (x + 1)**y, w1**b) == \
a*(x + 1)**y + (x + 1)**y
assert collect(a*(x + 1)**y + (x + 1)**y, (x + 1)**w2) == \
(1 + a)*(x + 1)**y
assert collect(a*(x + 1)**y + (x + 1)**y, w1**w2) == (1 + a)*(x + 1)**y
def test_collect_const():
# coverage not provided by above tests
assert collect_const(2*sqrt(3) + 4*a*sqrt(5)) == \
2*(2*sqrt(5)*a + sqrt(3)) # let the primitive reabsorb
assert collect_const(2*sqrt(3) + 4*a*sqrt(5), sqrt(3)) == \
2*sqrt(3) + 4*a*sqrt(5)
assert collect_const(sqrt(2)*(1 + sqrt(2)) + sqrt(3) + x*sqrt(2)) == \
sqrt(2)*(x + 1 + sqrt(2)) + sqrt(3)
# issue 5290
assert collect_const(2*x + 2*y + 1, 2) == \
collect_const(2*x + 2*y + 1) == \
Add(S(1), Mul(2, x + y, evaluate=False), evaluate=False)
assert collect_const(-y - z) == Mul(-1, y + z, evaluate=False)
assert collect_const(2*x - 2*y - 2*z, 2) == \
Mul(2, x - y - z, evaluate=False)
assert collect_const(2*x - 2*y - 2*z, -2) == \
_unevaluated_Add(2*x, Mul(-2, y + z, evaluate=False))
# this is why the content_primitive is used
eq = (sqrt(15 + 5*sqrt(2))*x + sqrt(3 + sqrt(2))*y)*2
assert collect_sqrt(eq + 2) == \
2*sqrt(sqrt(2) + 3)*(sqrt(5)*x + y) + 2
def test_issue_13143():
f = Function('f')
fx = f(x).diff(x)
e = f(x) + fx + f(x)*fx
# collect function before derivative
assert collect(e, Wild('w')) == f(x)*(fx + 1) + fx
e = f(x) + f(x)*fx + x*fx*f(x)
assert collect(e, fx) == (x*f(x) + f(x))*fx + f(x)
assert collect(e, f(x)) == (x*fx + fx + 1)*f(x)
e = f(x) + fx + f(x)*fx
assert collect(e, [f(x), fx]) == f(x)*(1 + fx) + fx
assert collect(e, [fx, f(x)]) == fx*(1 + f(x)) + f(x)
def test_issue_6097():
assert collect(a*y**(2.0*x) + b*y**(2.0*x), y**x) == y**(2.0*x)*(a + b)
assert collect(a*2**(2.0*x) + b*2**(2.0*x), 2**x) == 2**(2.0*x)*(a + b)
def test_fraction_expand():
eq = (x + y)*y/x
assert eq.expand(frac=True) == fraction_expand(eq) == (x*y + y**2)/x
assert eq.expand() == y + y**2/x
def test_fraction():
x, y, z = map(Symbol, 'xyz')
A = Symbol('A', commutative=False)
assert fraction(Rational(1, 2)) == (1, 2)
assert fraction(x) == (x, 1)
assert fraction(1/x) == (1, x)
assert fraction(x/y) == (x, y)
assert fraction(x/2) == (x, 2)
assert fraction(x*y/z) == (x*y, z)
assert fraction(x/(y*z)) == (x, y*z)
assert fraction(1/y**2) == (1, y**2)
assert fraction(x/y**2) == (x, y**2)
assert fraction((x**2 + 1)/y) == (x**2 + 1, y)
assert fraction(x*(y + 1)/y**7) == (x*(y + 1), y**7)
assert fraction(exp(-x), exact=True) == (exp(-x), 1)
assert fraction((1/(x + y))/2, exact=True) == (1, Mul(2,(x + y), evaluate=False))
assert fraction(x*A/y) == (x*A, y)
assert fraction(x*A**-1/y) == (x*A**-1, y)
n = symbols('n', negative=True)
assert fraction(exp(n)) == (1, exp(-n))
assert fraction(exp(-n)) == (exp(-n), 1)
p = symbols('p', positive=True)
assert fraction(exp(-p)*log(p), exact=True) == (exp(-p)*log(p), 1)
def test_issue_5615():
aA, Re, a, b, D = symbols('aA Re a b D')
e = ((D**3*a + b*aA**3)/Re).expand()
assert collect(e, [aA**3/Re, a]) == e
def test_issue_5933():
from sympy import Polygon, RegularPolygon, denom
x = Polygon(*RegularPolygon((0, 0), 1, 5).vertices).centroid.x
assert abs(denom(x).n()) > 1e-12
assert abs(denom(radsimp(x))) > 1e-12 # in case simplify didn't handle it
def test_issue_14608():
a, b = symbols('a b', commutative=False)
x, y = symbols('x y')
raises(AttributeError, lambda: collect(a*b + b*a, a))
assert collect(x*y + y*(x+1), a) == x*y + y*(x+1)
assert collect(x*y + y*(x+1) + a*b + b*a, y) == y*(2*x + 1) + a*b + b*a
|
fbf1ca1fc9239cc5c076b0153269a439c11ad6ee14d23ab0ef19a772016e81a8
|
from functools import reduce
import itertools
from operator import add
from sympy import (
Add, Mul, Pow, Symbol, exp, sqrt, symbols, sympify, cse,
Matrix, S, cos, sin, Eq, Function, Tuple, CRootOf,
IndexedBase, Idx, Piecewise, O
)
from sympy.core.function import count_ops
from sympy.simplify.cse_opts import sub_pre, sub_post
from sympy.functions.special.hyper import meijerg
from sympy.simplify import cse_main, cse_opts
from sympy.utilities.iterables import subsets
from sympy.utilities.pytest import XFAIL, raises
from sympy.matrices import (eye, SparseMatrix, MutableDenseMatrix,
MutableSparseMatrix, ImmutableDenseMatrix, ImmutableSparseMatrix)
from sympy.matrices.expressions import MatrixSymbol
from sympy.core.compatibility import range
w, x, y, z = symbols('w,x,y,z')
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = symbols('x:13')
def test_numbered_symbols():
ns = cse_main.numbered_symbols(prefix='y')
assert list(itertools.islice(
ns, 0, 10)) == [Symbol('y%s' % i) for i in range(0, 10)]
ns = cse_main.numbered_symbols(prefix='y')
assert list(itertools.islice(
ns, 10, 20)) == [Symbol('y%s' % i) for i in range(10, 20)]
ns = cse_main.numbered_symbols()
assert list(itertools.islice(
ns, 0, 10)) == [Symbol('x%s' % i) for i in range(0, 10)]
# Dummy "optimization" functions for testing.
def opt1(expr):
return expr + y
def opt2(expr):
return expr*z
def test_preprocess_for_cse():
assert cse_main.preprocess_for_cse(x, [(opt1, None)]) == x + y
assert cse_main.preprocess_for_cse(x, [(None, opt1)]) == x
assert cse_main.preprocess_for_cse(x, [(None, None)]) == x
assert cse_main.preprocess_for_cse(x, [(opt1, opt2)]) == x + y
assert cse_main.preprocess_for_cse(
x, [(opt1, None), (opt2, None)]) == (x + y)*z
def test_postprocess_for_cse():
assert cse_main.postprocess_for_cse(x, [(opt1, None)]) == x
assert cse_main.postprocess_for_cse(x, [(None, opt1)]) == x + y
assert cse_main.postprocess_for_cse(x, [(None, None)]) == x
assert cse_main.postprocess_for_cse(x, [(opt1, opt2)]) == x*z
# Note the reverse order of application.
assert cse_main.postprocess_for_cse(
x, [(None, opt1), (None, opt2)]) == x*z + y
def test_cse_single():
# Simple substitution.
e = Add(Pow(x + y, 2), sqrt(x + y))
substs, reduced = cse([e])
assert substs == [(x0, x + y)]
assert reduced == [sqrt(x0) + x0**2]
subst42, (red42,) = cse([42]) # issue_15082
assert len(subst42) == 0 and red42 == 42
subst_half, (red_half,) = cse([0.5])
assert len(subst_half) == 0 and red_half == 0.5
def test_cse_single2():
# Simple substitution, test for being able to pass the expression directly
e = Add(Pow(x + y, 2), sqrt(x + y))
substs, reduced = cse(e)
assert substs == [(x0, x + y)]
assert reduced == [sqrt(x0) + x0**2]
substs, reduced = cse(Matrix([[1]]))
assert isinstance(reduced[0], Matrix)
subst42, (red42,) = cse(42) # issue 15082
assert len(subst42) == 0 and red42 == 42
subst_half, (red_half,) = cse(0.5) # issue 15082
assert len(subst_half) == 0 and red_half == 0.5
def test_cse_not_possible():
# No substitution possible.
e = Add(x, y)
substs, reduced = cse([e])
assert substs == []
assert reduced == [x + y]
# issue 6329
eq = (meijerg((1, 2), (y, 4), (5,), [], x) +
meijerg((1, 3), (y, 4), (5,), [], x))
assert cse(eq) == ([], [eq])
def test_nested_substitution():
# Substitution within a substitution.
e = Add(Pow(w*x + y, 2), sqrt(w*x + y))
substs, reduced = cse([e])
assert substs == [(x0, w*x + y)]
assert reduced == [sqrt(x0) + x0**2]
def test_subtraction_opt():
# Make sure subtraction is optimized.
e = (x - y)*(z - y) + exp((x - y)*(z - y))
substs, reduced = cse(
[e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)])
assert substs == [(x0, (x - y)*(y - z))]
assert reduced == [-x0 + exp(-x0)]
e = -(x - y)*(z - y) + exp(-(x - y)*(z - y))
substs, reduced = cse(
[e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)])
assert substs == [(x0, (x - y)*(y - z))]
assert reduced == [x0 + exp(x0)]
# issue 4077
n = -1 + 1/x
e = n/x/(-n)**2 - 1/n/x
assert cse(e, optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) == \
([], [0])
def test_multiple_expressions():
e1 = (x + y)*z
e2 = (x + y)*w
substs, reduced = cse([e1, e2])
assert substs == [(x0, x + y)]
assert reduced == [x0*z, x0*w]
l = [w*x*y + z, w*y]
substs, reduced = cse(l)
rsubsts, _ = cse(reversed(l))
assert substs == rsubsts
assert reduced == [z + x*x0, x0]
l = [w*x*y, w*x*y + z, w*y]
substs, reduced = cse(l)
rsubsts, _ = cse(reversed(l))
assert substs == rsubsts
assert reduced == [x1, x1 + z, x0]
l = [(x - z)*(y - z), x - z, y - z]
substs, reduced = cse(l)
rsubsts, _ = cse(reversed(l))
assert substs == [(x0, -z), (x1, x + x0), (x2, x0 + y)]
assert rsubsts == [(x0, -z), (x1, x0 + y), (x2, x + x0)]
assert reduced == [x1*x2, x1, x2]
l = [w*y + w + x + y + z, w*x*y]
assert cse(l) == ([(x0, w*y)], [w + x + x0 + y + z, x*x0])
assert cse([x + y, x + y + z]) == ([(x0, x + y)], [x0, z + x0])
assert cse([x + y, x + z]) == ([], [x + y, x + z])
assert cse([x*y, z + x*y, x*y*z + 3]) == \
([(x0, x*y)], [x0, z + x0, 3 + x0*z])
@XFAIL # CSE of non-commutative Mul terms is disabled
def test_non_commutative_cse():
A, B, C = symbols('A B C', commutative=False)
l = [A*B*C, A*C]
assert cse(l) == ([], l)
l = [A*B*C, A*B]
assert cse(l) == ([(x0, A*B)], [x0*C, x0])
# Test if CSE of non-commutative Mul terms is disabled
def test_bypass_non_commutatives():
A, B, C = symbols('A B C', commutative=False)
l = [A*B*C, A*C]
assert cse(l) == ([], l)
l = [A*B*C, A*B]
assert cse(l) == ([], l)
l = [B*C, A*B*C]
assert cse(l) == ([], l)
@XFAIL # CSE fails when replacing non-commutative sub-expressions
def test_non_commutative_order():
A, B, C = symbols('A B C', commutative=False)
x0 = symbols('x0', commutative=False)
l = [B+C, A*(B+C)]
assert cse(l) == ([(x0, B+C)], [x0, A*x0])
@XFAIL # Worked in gh-11232, but was reverted due to performance considerations
def test_issue_10228():
assert cse([x*y**2 + x*y]) == ([(x0, x*y)], [x0*y + x0])
assert cse([x + y, 2*x + y]) == ([(x0, x + y)], [x0, x + x0])
assert cse((w + 2*x + y + z, w + x + 1)) == (
[(x0, w + x)], [x0 + x + y + z, x0 + 1])
assert cse(((w + x + y + z)*(w - x))/(w + x)) == (
[(x0, w + x)], [(x0 + y + z)*(w - x)/x0])
a, b, c, d, f, g, j, m = symbols('a, b, c, d, f, g, j, m')
exprs = (d*g**2*j*m, 4*a*f*g*m, a*b*c*f**2)
assert cse(exprs) == (
[(x0, g*m), (x1, a*f)], [d*g*j*x0, 4*x0*x1, b*c*f*x1]
)
@XFAIL
def test_powers():
assert cse(x*y**2 + x*y) == ([(x0, x*y)], [x0*y + x0])
def test_issue_4498():
assert cse(w/(x - y) + z/(y - x), optimizations='basic') == \
([], [(w - z)/(x - y)])
def test_issue_4020():
assert cse(x**5 + x**4 + x**3 + x**2, optimizations='basic') \
== ([(x0, x**2)], [x0*(x**3 + x + x0 + 1)])
def test_issue_4203():
assert cse(sin(x**x)/x**x) == ([(x0, x**x)], [sin(x0)/x0])
def test_issue_6263():
e = Eq(x*(-x + 1) + x*(x - 1), 0)
assert cse(e, optimizations='basic') == ([], [True])
def test_dont_cse_tuples():
from sympy import Subs
f = Function("f")
g = Function("g")
name_val, (expr,) = cse(
Subs(f(x, y), (x, y), (0, 1))
+ Subs(g(x, y), (x, y), (0, 1)))
assert name_val == []
assert expr == (Subs(f(x, y), (x, y), (0, 1))
+ Subs(g(x, y), (x, y), (0, 1)))
name_val, (expr,) = cse(
Subs(f(x, y), (x, y), (0, x + y))
+ Subs(g(x, y), (x, y), (0, x + y)))
assert name_val == [(x0, x + y)]
assert expr == Subs(f(x, y), (x, y), (0, x0)) + \
Subs(g(x, y), (x, y), (0, x0))
def test_pow_invpow():
assert cse(1/x**2 + x**2) == \
([(x0, x**2)], [x0 + 1/x0])
assert cse(x**2 + (1 + 1/x**2)/x**2) == \
([(x0, x**2), (x1, 1/x0)], [x0 + x1*(x1 + 1)])
assert cse(1/x**2 + (1 + 1/x**2)*x**2) == \
([(x0, x**2), (x1, 1/x0)], [x0*(x1 + 1) + x1])
assert cse(cos(1/x**2) + sin(1/x**2)) == \
([(x0, x**(-2))], [sin(x0) + cos(x0)])
assert cse(cos(x**2) + sin(x**2)) == \
([(x0, x**2)], [sin(x0) + cos(x0)])
assert cse(y/(2 + x**2) + z/x**2/y) == \
([(x0, x**2)], [y/(x0 + 2) + z/(x0*y)])
assert cse(exp(x**2) + x**2*cos(1/x**2)) == \
([(x0, x**2)], [x0*cos(1/x0) + exp(x0)])
assert cse((1 + 1/x**2)/x**2) == \
([(x0, x**(-2))], [x0*(x0 + 1)])
assert cse(x**(2*y) + x**(-2*y)) == \
([(x0, x**(2*y))], [x0 + 1/x0])
def test_postprocess():
eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1))
assert cse([eq, Eq(x, z + 1), z - 2, (z + 1)*(x + 1)],
postprocess=cse_main.cse_separate) == \
[[(x0, y + 1), (x2, z + 1), (x, x2), (x1, x + 1)],
[x1 + exp(x1/x0) + cos(x0), z - 2, x1*x2]]
def test_issue_4499():
# previously, this gave 16 constants
from sympy.abc import a, b
B = Function('B')
G = Function('G')
t = Tuple(*
(a, a + S(1)/2, 2*a, b, 2*a - b + 1, (sqrt(z)/2)**(-2*a + 1)*B(2*a -
b, sqrt(z))*B(b - 1, sqrt(z))*G(b)*G(2*a - b + 1),
sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b,
sqrt(z))*G(b)*G(2*a - b + 1), sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b - 1,
sqrt(z))*B(2*a - b + 1, sqrt(z))*G(b)*G(2*a - b + 1),
(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b + 1,
sqrt(z))*G(b)*G(2*a - b + 1), 1, 0, S(1)/2, z/2, -b + 1, -2*a + b,
-2*a))
c = cse(t)
ans = (
[(x0, 2*a), (x1, -b), (x2, x0 + x1), (x3, x2 + 1), (x4, sqrt(z)), (x5,
B(b - 1, x4)), (x6, -x0), (x7, (x4/2)**(x6 + 1)*G(b)*G(x3)), (x8,
x7*B(x2, x4)), (x9, B(b, x4)), (x10, x7*B(x3, x4))],
[(a, a + S(1)/2, x0, b, x3, x5*x8, x4*x8*x9, x10*x4*x5, x10*x9,
1, 0, S(1)/2, z/2, x1 + 1, b + x6, x6)])
assert ans == c
def test_issue_6169():
r = CRootOf(x**6 - 4*x**5 - 2, 1)
assert cse(r) == ([], [r])
# and a check that the right thing is done with the new
# mechanism
assert sub_post(sub_pre((-x - y)*z - x - y)) == -z*(x + y) - x - y
def test_cse_Indexed():
len_y = 5
y = IndexedBase('y', shape=(len_y,))
x = IndexedBase('x', shape=(len_y,))
Dy = IndexedBase('Dy', shape=(len_y-1,))
i = Idx('i', len_y-1)
expr1 = (y[i+1]-y[i])/(x[i+1]-x[i])
expr2 = 1/(x[i+1]-x[i])
replacements, reduced_exprs = cse([expr1, expr2])
assert len(replacements) > 0
def test_cse_MatrixSymbol():
# MatrixSymbols have non-Basic args, so make sure that works
A = MatrixSymbol("A", 3, 3)
assert cse(A) == ([], [A])
n = symbols('n', integer=True)
B = MatrixSymbol("B", n, n)
assert cse(B) == ([], [B])
def test_cse_MatrixExpr():
from sympy import MatrixSymbol
A = MatrixSymbol('A', 3, 3)
y = MatrixSymbol('y', 3, 1)
expr1 = (A.T*A).I * A * y
expr2 = (A.T*A) * A * y
replacements, reduced_exprs = cse([expr1, expr2])
assert len(replacements) > 0
replacements, reduced_exprs = cse([expr1 + expr2, expr1])
assert replacements
replacements, reduced_exprs = cse([A**2, A + A**2])
assert replacements
def test_Piecewise():
f = Piecewise((-z + x*y, Eq(y, 0)), (-z - x*y, True))
ans = cse(f)
actual_ans = ([(x0, -z), (x1, x*y)],
[Piecewise((x0 + x1, Eq(y, 0)), (x0 - x1, True))])
assert ans == actual_ans
def test_ignore_order_terms():
eq = exp(x).series(x,0,3) + sin(y+x**3) - 1
assert cse(eq) == ([], [sin(x**3 + y) + x + x**2/2 + O(x**3)])
def test_name_conflict():
z1 = x0 + y
z2 = x2 + x3
l = [cos(z1) + z1, cos(z2) + z2, x0 + x2]
substs, reduced = cse(l)
assert [e.subs(reversed(substs)) for e in reduced] == l
def test_name_conflict_cust_symbols():
z1 = x0 + y
z2 = x2 + x3
l = [cos(z1) + z1, cos(z2) + z2, x0 + x2]
substs, reduced = cse(l, symbols("x:10"))
assert [e.subs(reversed(substs)) for e in reduced] == l
def test_symbols_exhausted_error():
l = cos(x+y)+x+y+cos(w+y)+sin(w+y)
sym = [x, y, z]
with raises(ValueError) as excinfo:
cse(l, symbols=sym)
def test_issue_7840():
# daveknippers' example
C393 = sympify( \
'Piecewise((C391 - 1.65, C390 < 0.5), (Piecewise((C391 - 1.65, \
C391 > 2.35), (C392, True)), True))'
)
C391 = sympify( \
'Piecewise((2.05*C390**(-1.03), C390 < 0.5), (2.5*C390**(-0.625), True))'
)
C393 = C393.subs('C391',C391)
# simple substitution
sub = {}
sub['C390'] = 0.703451854
sub['C392'] = 1.01417794
ss_answer = C393.subs(sub)
# cse
substitutions,new_eqn = cse(C393)
for pair in substitutions:
sub[pair[0].name] = pair[1].subs(sub)
cse_answer = new_eqn[0].subs(sub)
# both methods should be the same
assert ss_answer == cse_answer
# GitRay's example
expr = sympify(
"Piecewise((Symbol('ON'), Equality(Symbol('mode'), Symbol('ON'))), \
(Piecewise((Piecewise((Symbol('OFF'), StrictLessThan(Symbol('x'), \
Symbol('threshold'))), (Symbol('ON'), true)), Equality(Symbol('mode'), \
Symbol('AUTO'))), (Symbol('OFF'), true)), true))"
)
substitutions, new_eqn = cse(expr)
# this Piecewise should be exactly the same
assert new_eqn[0] == expr
# there should not be any replacements
assert len(substitutions) < 1
def test_issue_8891():
for cls in (MutableDenseMatrix, MutableSparseMatrix,
ImmutableDenseMatrix, ImmutableSparseMatrix):
m = cls(2, 2, [x + y, 0, 0, 0])
res = cse([x + y, m])
ans = ([(x0, x + y)], [x0, cls([[x0, 0], [0, 0]])])
assert res == ans
assert isinstance(res[1][-1], cls)
def test_issue_11230():
# a specific test that always failed
a, b, f, k, l, i = symbols('a b f k l i')
p = [a*b*f*k*l, a*i*k**2*l, f*i*k**2*l]
R, C = cse(p)
assert not any(i.is_Mul for a in C for i in a.args)
# random tests for the issue
from random import choice
from sympy.core.function import expand_mul
s = symbols('a:m')
# 35 Mul tests, none of which should ever fail
ex = [Mul(*[choice(s) for i in range(5)]) for i in range(7)]
for p in subsets(ex, 3):
p = list(p)
R, C = cse(p)
assert not any(i.is_Mul for a in C for i in a.args)
for ri in reversed(R):
for i in range(len(C)):
C[i] = C[i].subs(*ri)
assert p == C
# 35 Add tests, none of which should ever fail
ex = [Add(*[choice(s[:7]) for i in range(5)]) for i in range(7)]
for p in subsets(ex, 3):
p = list(p)
was = R, C = cse(p)
assert not any(i.is_Add for a in C for i in a.args)
for ri in reversed(R):
for i in range(len(C)):
C[i] = C[i].subs(*ri)
# use expand_mul to handle cases like this:
# p = [a + 2*b + 2*e, 2*b + c + 2*e, b + 2*c + 2*g]
# x0 = 2*(b + e) is identified giving a rebuilt p that
# is now `[a + 2*(b + e), c + 2*(b + e), b + 2*c + 2*g]`
assert p == [expand_mul(i) for i in C]
@XFAIL
def test_issue_11577():
def check(eq):
r, c = cse(eq)
assert eq.count_ops() >= \
len(r) + sum([i[1].count_ops() for i in r]) + \
count_ops(c)
eq = x**5*y**2 + x**5*y + x**5
assert cse(eq) == (
[(x0, x**4), (x1, x*y)], [x**5 + x0*x1*y + x0*x1])
# ([(x0, x**5*y)], [x0*y + x0 + x**5]) or
# ([(x0, x**5)], [x0*y**2 + x0*y + x0])
check(eq)
eq = x**2/(y + 1)**2 + x/(y + 1)
assert cse(eq) == (
[(x0, y + 1)], [x**2/x0**2 + x/x0])
# ([(x0, x/(y + 1))], [x0**2 + x0])
check(eq)
def test_hollow_rejection():
eq = [x + 3, x + 4]
assert cse(eq) == ([], eq)
def test_cse_ignore():
exprs = [exp(y)*(3*y + 3*sqrt(x+1)), exp(y)*(5*y + 5*sqrt(x+1))]
subst1, red1 = cse(exprs)
assert any(y in sub.free_symbols for _, sub in subst1), "cse failed to identify any term with y"
subst2, red2 = cse(exprs, ignore=(y,)) # y is not allowed in substitutions
assert not any(y in sub.free_symbols for _, sub in subst2), "Sub-expressions containing y must be ignored"
assert any(sub - sqrt(x + 1) == 0 for _, sub in subst2), "cse failed to identify sqrt(x + 1) as sub-expression"
def test_cse_ignore_issue_15002():
l = [
w*exp(x)*exp(-z),
exp(y)*exp(x)*exp(-z)
]
substs, reduced = cse(l, ignore=(x,))
rl = [e.subs(reversed(substs)) for e in reduced]
assert rl == l
def test_cse__performance():
import time
nexprs, nterms = 3, 20
x = symbols('x:%d' % nterms)
exprs = [
reduce(add, [x[j]*(-1)**(i+j) for j in range(nterms)])
for i in range(nexprs)
]
assert (exprs[0] + exprs[1]).simplify() == 0
subst, red = cse(exprs)
assert len(subst) > 0, "exprs[0] == -exprs[2], i.e. a CSE"
for i, e in enumerate(red):
assert (e.subs(reversed(subst)) - exprs[i]).simplify() == 0
def test_issue_12070():
exprs = [x + y, 2 + x + y, x + y + z, 3 + x + y + z]
subst, red = cse(exprs)
assert 6 >= (len(subst) + sum([v.count_ops() for k, v in subst]) +
count_ops(red))
def test_issue_13000():
eq = x/(-4*x**2 + y**2)
cse_eq = cse(eq)[1][0]
assert cse_eq == eq
def test_unevaluated_mul():
eq = Mul(x + y, x + y, evaluate=False)
assert cse(eq) == ([(x0, x + y)], [x0**2])
|
ea50966ea6b308a99b568e0bef1d3cff9c24d78868989c7034e839440e8b6bcd
|
from sympy import (
Rational, gammasimp, factorial, gamma, binomial, Symbol, pi, S,
sin, exp, powsimp, sqrt, simplify, symbols, cos, rf)
from sympy.abc import x, y, n, k
def test_gammasimp():
R = Rational
# was part of test_combsimp_gamma() in test_combsimp.py
assert gammasimp(gamma(x)) == gamma(x)
assert gammasimp(gamma(x + 1)/x) == gamma(x)
assert gammasimp(gamma(x)/(x - 1)) == gamma(x - 1)
assert gammasimp(x*gamma(x)) == gamma(x + 1)
assert gammasimp((x + 1)*gamma(x + 1)) == gamma(x + 2)
assert gammasimp(gamma(x + y)*(x + y)) == gamma(x + y + 1)
assert gammasimp(x/gamma(x + 1)) == 1/gamma(x)
assert gammasimp((x + 1)**2/gamma(x + 2)) == (x + 1)/gamma(x + 1)
assert gammasimp(x*gamma(x) + gamma(x + 3)/(x + 2)) == \
(x + 2)*gamma(x + 1)
assert gammasimp(gamma(2*x)*x) == gamma(2*x + 1)/2
assert gammasimp(gamma(2*x)/(x - S(1)/2)) == 2*gamma(2*x - 1)
assert gammasimp(gamma(x)*gamma(1 - x)) == pi/sin(pi*x)
assert gammasimp(gamma(x)*gamma(-x)) == -pi/(x*sin(pi*x))
assert gammasimp(1/gamma(x + 3)/gamma(1 - x)) == \
sin(pi*x)/(pi*x*(x + 1)*(x + 2))
assert gammasimp(factorial(n + 2)) == gamma(n + 3)
assert gammasimp(binomial(n, k)) == \
gamma(n + 1)/(gamma(k + 1)*gamma(-k + n + 1))
assert powsimp(gammasimp(
gamma(x)*gamma(x + S(1)/2)*gamma(y)/gamma(x + y))) == \
2**(-2*x + 1)*sqrt(pi)*gamma(2*x)*gamma(y)/gamma(x + y)
assert gammasimp(1/gamma(x)/gamma(x - S(1)/3)/gamma(x + S(1)/3)) == \
3**(3*x - S(3)/2)/(2*pi*gamma(3*x - 1))
assert simplify(
gamma(S(1)/2 + x/2)*gamma(1 + x/2)/gamma(1 + x)/sqrt(pi)*2**x) == 1
assert gammasimp(gamma(S(-1)/4)*gamma(S(-3)/4)) == 16*sqrt(2)*pi/3
assert powsimp(gammasimp(gamma(2*x)/gamma(x))) == \
2**(2*x - 1)*gamma(x + S(1)/2)/sqrt(pi)
# issue 6792
e = (-gamma(k)*gamma(k + 2) + gamma(k + 1)**2)/gamma(k)**2
assert gammasimp(e) == -k
assert gammasimp(1/e) == -1/k
e = (gamma(x) + gamma(x + 1))/gamma(x)
assert gammasimp(e) == x + 1
assert gammasimp(1/e) == 1/(x + 1)
e = (gamma(x) + gamma(x + 2))*(gamma(x - 1) + gamma(x))/gamma(x)
assert gammasimp(e) == (x**2 + x + 1)*gamma(x + 1)/(x - 1)
e = (-gamma(k)*gamma(k + 2) + gamma(k + 1)**2)/gamma(k)**2
assert gammasimp(e**2) == k**2
assert gammasimp(e**2/gamma(k + 1)) == k/gamma(k)
a = R(1, 2) + R(1, 3)
b = a + R(1, 3)
assert gammasimp(gamma(2*k)/gamma(k)*gamma(k + a)*gamma(k + b))
3*2**(2*k + 1)*3**(-3*k - 2)*sqrt(pi)*gamma(3*k + R(3, 2))/2
# issue 9699
assert gammasimp((x + 1)*factorial(x)/gamma(y)) == gamma(x + 2)/gamma(y)
assert gammasimp(rf(x + n, k)*binomial(n, k)) == gamma(n + 1)*gamma(k + n
+ x)/(gamma(k + 1)*gamma(n + x)*gamma(-k + n + 1))
A, B = symbols('A B', commutative=False)
assert gammasimp(e*B*A) == gammasimp(e)*B*A
# check iteration
assert gammasimp(gamma(2*k)/gamma(k)*gamma(-k - R(1, 2))) == (
-2**(2*k + 1)*sqrt(pi)/(2*((2*k + 1)*cos(pi*k))))
assert gammasimp(
gamma(k)*gamma(k + R(1, 3))*gamma(k + R(2, 3))/gamma(3*k/2)) == (
3*2**(3*k + 1)*3**(-3*k - S.Half)*sqrt(pi)*gamma(3*k/2 + S.Half)/2)
# issue 6153
assert gammasimp(gamma(S(1)/4)/gamma(S(5)/4)) == 4
# was part of test_combsimp() in test_combsimp.py
assert gammasimp(binomial(n + 2, k + S(1)/2)) == gamma(n + 3)/ \
(gamma(k + S(3)/2)*gamma(-k + n + S(5)/2))
assert gammasimp(binomial(n + 2, k + 2.0)) == \
gamma(n + 3)/(gamma(k + 3.0)*gamma(-k + n + 1))
# issue 11548
assert gammasimp(binomial(0, x)) == sin(pi*x)/(pi*x)
e = gamma(n + S(1)/3)*gamma(n + S(2)/3)
assert gammasimp(e) == e
assert gammasimp(gamma(4*n + S(1)/2)/gamma(2*n - S(3)/4)) == \
2**(4*n - S(5)/2)*(8*n - 3)*gamma(2*n + S(3)/4)/sqrt(pi)
i, m = symbols('i m', integer = True)
e = gamma(exp(i))
assert gammasimp(e) == e
e = gamma(m + 3)
assert gammasimp(e) == e
e = gamma(m + 1)/(gamma(i + 1)*gamma(-i + m + 1))
assert gammasimp(e) == e
p = symbols("p", integer=True, positive=True)
assert gammasimp(gamma(-p+4)) == gamma(-p+4)
|
bd44e104fdec614cca58a291b0487b0f6e3a6791ee9e48388eeb72d0aa8bde5c
|
from sympy.algebras.quaternion import Quaternion
from sympy import symbols, re, im, Add, Mul, I, Abs
from sympy import cos, sin, sqrt, conjugate, exp, log, acos, E, pi
from sympy.utilities.pytest import raises
from sympy import Matrix
from sympy import diff, integrate, trigsimp
from sympy import S, Rational
x, y, z, w = symbols("x y z w")
def test_quaternion_construction():
q = Quaternion(x, y, z, w)
assert q + q == Quaternion(2*x, 2*y, 2*z, 2*w)
q2 = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3)
assert q2 == Quaternion(Rational(1, 2), Rational(1, 2),
Rational(1, 2), Rational(1, 2))
M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
q3 = trigsimp(Quaternion.from_rotation_matrix(M))
assert q3 == Quaternion(sqrt(2)*sqrt(cos(x) + 1)/2, 0, 0, sqrt(-2*cos(x) + 2)/2)
def test_quaternion_complex_real_addition():
a = symbols("a", complex=True)
b = symbols("b", real=True)
# This symbol is not complex:
c = symbols("c", commutative=False)
q = Quaternion(x, y, z, w)
assert a + q == Quaternion(x + re(a), y + im(a), z, w)
assert 1 + q == Quaternion(1 + x, y, z, w)
assert I + q == Quaternion(x, 1 + y, z, w)
assert b + q == Quaternion(x + b, y, z, w)
assert c + q == Add(c, Quaternion(x, y, z, w), evaluate=False)
assert q * c == Mul(Quaternion(x, y, z, w), c, evaluate=False)
assert c * q == Mul(c, Quaternion(x, y, z, w), evaluate=False)
assert -q == Quaternion(-x, -y, -z, -w)
q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
q2 = Quaternion(1, 4, 7, 8)
assert q1 + (2 + 3*I) == Quaternion(5 + 7*I, 2 + 5*I, 0, 7 + 8*I)
assert q2 + (2 + 3*I) == Quaternion(3, 7, 7, 8)
assert q1 * (2 + 3*I) == \
Quaternion((2 + 3*I)*(3 + 4*I), (2 + 3*I)*(2 + 5*I), 0, (2 + 3*I)*(7 + 8*I))
assert q2 * (2 + 3*I) == Quaternion(-10, 11, 38, -5)
def test_quaternion_functions():
q = Quaternion(x, y, z, w)
q1 = Quaternion(1, 2, 3, 4)
q0 = Quaternion(0, 0, 0, 0)
assert conjugate(q) == Quaternion(x, -y, -z, -w)
assert q.norm() == sqrt(w**2 + x**2 + y**2 + z**2)
assert q.normalize() == Quaternion(x, y, z, w) / sqrt(w**2 + x**2 + y**2 + z**2)
assert q.inverse() == Quaternion(x, -y, -z, -w) / (w**2 + x**2 + y**2 + z**2)
raises(ValueError, lambda: q0.inverse())
assert q.pow(2) == Quaternion(-w**2 + x**2 - y**2 - z**2, 2*x*y, 2*x*z, 2*w*x)
assert q1.pow(-2) == Quaternion(-S(7)/225, -S(1)/225, -S(1)/150, -S(2)/225)
assert q1.pow(-0.5) == NotImplemented
assert q1.exp() == \
Quaternion(E * cos(sqrt(29)),
2 * sqrt(29) * E * sin(sqrt(29)) / 29,
3 * sqrt(29) * E * sin(sqrt(29)) / 29,
4 * sqrt(29) * E * sin(sqrt(29)) / 29)
assert q1._ln() == \
Quaternion(log(sqrt(30)),
2 * sqrt(29) * acos(sqrt(30)/30) / 29,
3 * sqrt(29) * acos(sqrt(30)/30) / 29,
4 * sqrt(29) * acos(sqrt(30)/30) / 29)
assert q1.pow_cos_sin(2) == \
Quaternion(30 * cos(2 * acos(sqrt(30)/30)),
60 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
90 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
120 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29)
assert diff(Quaternion(x, x, x, x), x) == Quaternion(1, 1, 1, 1)
assert integrate(Quaternion(x, x, x, x), x) == \
Quaternion(x**2 / 2, x**2 / 2, x**2 / 2, x**2 / 2)
assert Quaternion.rotate_point((1, 1, 1), q1) == (S(1) / 5, 1, S(7) / 5)
def test_quaternion_conversions():
q1 = Quaternion(1, 2, 3, 4)
assert q1.to_axis_angle() == ((2 * sqrt(29)/29,
3 * sqrt(29)/29,
4 * sqrt(29)/29),
2 * acos(sqrt(30)/30))
assert q1.to_rotation_matrix() == Matrix([[-S(2)/3, S(2)/15, S(11)/15],
[S(2)/3, -S(1)/3, S(2)/3],
[S(1)/3, S(14)/15, S(2)/15]])
assert q1.to_rotation_matrix((1, 1, 1)) == Matrix([[-S(2)/3, S(2)/15, S(11)/15, S(4)/5],
[S(2)/3, -S(1)/3, S(2)/3, S(0)],
[S(1)/3, S(14)/15, S(2)/15, -S(2)/5],
[S(0), S(0), S(0), S(1)]])
theta = symbols("theta", real=True)
q2 = Quaternion(cos(theta/2), 0, 0, sin(theta/2))
assert trigsimp(q2.to_rotation_matrix()) == Matrix([
[cos(theta), -sin(theta), 0],
[sin(theta), cos(theta), 0],
[0, 0, 1]])
assert q2.to_axis_angle() == ((0, 0, sin(theta/2)/Abs(sin(theta/2))),
2*acos(cos(theta/2)))
assert trigsimp(q2.to_rotation_matrix((1, 1, 1))) == Matrix([
[cos(theta), -sin(theta), 0, sin(theta) - cos(theta) + 1],
[sin(theta), cos(theta), 0, -sin(theta) - cos(theta) + 1],
[0, 0, 1, 0],
[0, 0, 0, 1]])
def test_quaternion_rotation_iss1593():
"""
There was a sign mistake in the definition,
of the rotation matrix. This tests that particular sign mistake.
See issue 1593 for reference.
See wikipedia
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix
for the correct definition
"""
q = Quaternion(cos(x/2), sin(x/2), 0, 0)
assert(trigsimp(q.to_rotation_matrix()) == Matrix([
[1, 0, 0],
[0, cos(x), -sin(x)],
[0, sin(x), cos(x)]]))
|
739f705a7a8f3fc10f1dc0e0afaacbdb0e51d8bea0b3be82b120444824900d18
|
# -*- coding: utf-8 -*-
from __future__ import (absolute_import, print_function)
import math
from sympy import symbols, exp, S, Poly
from sympy.codegen.rewriting import optimize
from sympy.codegen.approximations import SumApprox, SeriesApprox
def test_SumApprox_trivial():
x = symbols('x')
expr1 = 1 + x
sum_approx = SumApprox(bounds={x: (-1e-20, 1e-20)}, reltol=1e-16)
apx1 = optimize(expr1, [sum_approx])
assert apx1 - 1 == 0
def test_SumApprox_monotone_terms():
x, y, z = symbols('x y z')
expr1 = exp(z)*(x**2 + y**2 + 1)
bnds1 = {x: (0, 1e-3), y: (100, 1000)}
sum_approx_m2 = SumApprox(bounds=bnds1, reltol=1e-2)
sum_approx_m5 = SumApprox(bounds=bnds1, reltol=1e-5)
sum_approx_m11 = SumApprox(bounds=bnds1, reltol=1e-11)
assert (optimize(expr1, [sum_approx_m2])/exp(z) - (y**2)).simplify() == 0
assert (optimize(expr1, [sum_approx_m5])/exp(z) - (y**2 + 1)).simplify() == 0
assert (optimize(expr1, [sum_approx_m11])/exp(z) - (y**2 + 1 + x**2)).simplify() == 0
def test_SeriesApprox_trivial():
x, z = symbols('x z')
for factor in [1, exp(z)]:
x = symbols('x')
expr1 = exp(x)*factor
bnds1 = {x: (-1, 1)}
series_approx_50 = SeriesApprox(bounds=bnds1, reltol=0.50)
series_approx_10 = SeriesApprox(bounds=bnds1, reltol=0.10)
series_approx_05 = SeriesApprox(bounds=bnds1, reltol=0.05)
c = (bnds1[x][1] + bnds1[x][0])/2 # 0.0
f0 = math.exp(c) # 1.0
ref_50 = f0 + x + x**2/2
ref_10 = f0 + x + x**2/2 + x**3/6
ref_05 = f0 + x + x**2/2 + x**3/6 + x**4/24
res_50 = optimize(expr1, [series_approx_50])
res_10 = optimize(expr1, [series_approx_10])
res_05 = optimize(expr1, [series_approx_05])
assert (res_50/factor - ref_50).simplify() == 0
assert (res_10/factor - ref_10).simplify() == 0
assert (res_05/factor - ref_05).simplify() == 0
max_ord3 = SeriesApprox(bounds=bnds1, reltol=0.05, max_order=3)
assert optimize(expr1, [max_ord3]) == expr1
|
baf110501833e218ca00cfacba333710a03537cc0c4b950c9f10c8d14ba3036e
|
# -*- coding: utf-8 -*-
from __future__ import (absolute_import, print_function)
from sympy import log, exp, Symbol, Pow, sin
from sympy.printing.ccode import ccode
from sympy.codegen.cfunctions import log2, exp2, expm1, log1p
from sympy.codegen.rewriting import (
optimize, log2_opt, exp2_opt, expm1_opt, log1p_opt, optims_c99,
create_expand_pow_optimization
)
from sympy.utilities.pytest import XFAIL
def test_log2_opt():
x = Symbol('x')
expr1 = 7*log(3*x + 5)/(log(2))
opt1 = optimize(expr1, [log2_opt])
assert opt1 == 7*log2(3*x + 5)
assert opt1.rewrite(log) == expr1
expr2 = 3*log(5*x + 7)/(13*log(2))
opt2 = optimize(expr2, [log2_opt])
assert opt2 == 3*log2(5*x + 7)/13
assert opt2.rewrite(log) == expr2
expr3 = log(x)/log(2)
opt3 = optimize(expr3, [log2_opt])
assert opt3 == log2(x)
assert opt3.rewrite(log) == expr3
expr4 = log(x)/log(2) + log(x+1)
opt4 = optimize(expr4, [log2_opt])
assert opt4 == log2(x) + log(2)*log2(x+1)
assert opt4.rewrite(log) == expr4
expr5 = log(17)
opt5 = optimize(expr5, [log2_opt])
assert opt5 == expr5
expr6 = log(x + 3)/log(2)
opt6 = optimize(expr6, [log2_opt])
assert str(opt6) == 'log2(x + 3)'
assert opt6.rewrite(log) == expr6
def test_exp2_opt():
x = Symbol('x')
expr1 = 1 + 2**x
opt1 = optimize(expr1, [exp2_opt])
assert opt1 == 1 + exp2(x)
assert opt1.rewrite(Pow) == expr1
expr2 = 1 + 3**x
assert expr2 == optimize(expr2, [exp2_opt])
def test_expm1_opt():
x = Symbol('x')
expr1 = exp(x) - 1
opt1 = optimize(expr1, [expm1_opt])
assert expm1(x) - opt1 == 0
assert opt1.rewrite(exp) == expr1
expr2 = 3*exp(x) - 3
opt2 = optimize(expr2, [expm1_opt])
assert 3*expm1(x) == opt2
assert opt2.rewrite(exp) == expr2
expr3 = 3*exp(x) - 5
assert expr3 == optimize(expr3, [expm1_opt])
expr4 = 3*exp(x) + log(x) - 3
opt4 = optimize(expr4, [expm1_opt])
assert 3*expm1(x) + log(x) == opt4
assert opt4.rewrite(exp) == expr4
expr5 = 3*exp(2*x) - 3
opt5 = optimize(expr5, [expm1_opt])
assert 3*expm1(2*x) == opt5
assert opt5.rewrite(exp) == expr5
@XFAIL
def test_expm1_two_exp_terms():
x, y = map(Symbol, 'x y'.split())
expr1 = exp(x) + exp(y) - 2
opt1 = optimize(expr1, [expm1_opt])
assert opt1 == expm1(x) + expm1(y)
def test_log1p_opt():
x = Symbol('x')
expr1 = log(x + 1)
opt1 = optimize(expr1, [log1p_opt])
assert log1p(x) - opt1 == 0
assert opt1.rewrite(log) == expr1
expr2 = log(3*x + 3)
opt2 = optimize(expr2, [log1p_opt])
assert log1p(x) + log(3) == opt2
assert (opt2.rewrite(log) - expr2).simplify() == 0
expr3 = log(2*x + 1)
opt3 = optimize(expr3, [log1p_opt])
assert log1p(2*x) - opt3 == 0
assert opt3.rewrite(log) == expr3
expr4 = log(x+3)
opt4 = optimize(expr4, [log1p_opt])
assert str(opt4) == 'log(x + 3)'
def test_optims_c99():
x = Symbol('x')
expr1 = 2**x + log(x)/log(2) + log(x + 1) + exp(x) - 1
opt1 = optimize(expr1, optims_c99).simplify()
assert opt1 == exp2(x) + log2(x) + log1p(x) + expm1(x)
assert opt1.rewrite(exp).rewrite(log).rewrite(Pow) == expr1
expr2 = log(x)/log(2) + log(x + 1)
opt2 = optimize(expr2, optims_c99)
assert opt2 == log2(x) + log1p(x)
assert opt2.rewrite(log) == expr2
expr3 = log(x)/log(2) + log(17*x + 17)
opt3 = optimize(expr3, optims_c99)
delta3 = opt3 - (log2(x) + log(17) + log1p(x))
assert delta3 == 0
assert (opt3.rewrite(log) - expr3).simplify() == 0
expr4 = 2**x + 3*log(5*x + 7)/(13*log(2)) + 11*exp(x) - 11 + log(17*x + 17)
opt4 = optimize(expr4, optims_c99).simplify()
delta4 = opt4 - (exp2(x) + 3*log2(5*x + 7)/13 + 11*expm1(x) + log(17) + log1p(x))
assert delta4 == 0
assert (opt4.rewrite(exp).rewrite(log).rewrite(Pow) - expr4).simplify() == 0
expr5 = 3*exp(2*x) - 3
opt5 = optimize(expr5, optims_c99)
delta5 = opt5 - 3*expm1(2*x)
assert delta5 == 0
assert opt5.rewrite(exp) == expr5
expr6 = exp(2*x) - 3
opt6 = optimize(expr6, optims_c99)
delta6 = opt6 - (exp(2*x) - 3)
assert delta6 == 0
expr7 = log(3*x + 3)
opt7 = optimize(expr7, optims_c99)
delta7 = opt7 - (log(3) + log1p(x))
assert delta7 == 0
assert (opt7.rewrite(log) - expr7).simplify() == 0
expr8 = log(2*x + 3)
opt8 = optimize(expr8, optims_c99)
assert opt8 == expr8
def test_create_expand_pow_optimization():
my_opt = create_expand_pow_optimization(4)
x = Symbol('x')
assert ccode(optimize(x**4, [my_opt])) == 'x*x*x*x'
x5x4 = x**5 + x**4
assert ccode(optimize(x5x4, [my_opt])) == 'pow(x, 5) + x*x*x*x'
sin4x = sin(x)**4
assert ccode(optimize(sin4x, [my_opt])) == 'pow(sin(x), 4)'
assert ccode(optimize((x**(-4)), [my_opt])) == 'pow(x, -4)'
|
9f0aeaec2029e539a5633cc67634b3bf7fe931dee13e72519cc2cebcc2e64afd
|
from sympy import symbols, IndexedBase
from sympy.codegen.array_utils import (CodegenArrayContraction,
CodegenArrayTensorProduct, CodegenArrayDiagonal,
CodegenArrayPermuteDims, CodegenArrayElementwiseAdd,
_codegen_array_parse, _recognize_matrix_expression, _RecognizeMatOp,
_RecognizeMatMulLines, _unfold_recognized_expr,
parse_indexed_expression, recognize_matrix_expression)
from sympy import (MatrixSymbol, Sum)
from sympy.combinatorics import Permutation
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.matrices import (Trace, MatAdd, MatMul, Transpose)
from sympy.utilities.pytest import raises, XFAIL
A, B = symbols("A B", cls=IndexedBase)
i, j, k, l, m, n = symbols("i j k l m n")
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
P = MatrixSymbol("P", k, k)
Q = MatrixSymbol("Q", k, k)
def test_codegen_array_contraction_construction():
cg = CodegenArrayContraction(A)
assert cg == A
s = Sum(A[i]*B[i], (i, 0, 3))
cg = parse_indexed_expression(s)
assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1))
cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 0))
assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1))
expr = M*N
result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2))
assert CodegenArrayContraction.from_MatMul(expr) == result
elem = expr[i, j]
assert parse_indexed_expression(elem) == result
expr = M*N*M
result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, M), (1, 2), (3, 4))
assert CodegenArrayContraction.from_MatMul(expr) == result
elem = expr[i, j]
result = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5))
cg = parse_indexed_expression(elem)
cg = cg.sort_args_by_name()
assert cg == result
def test_codegen_array_contraction_indices_types():
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 0), (0, 1)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)]
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 1), (1, 0)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)]
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 1), (2, 0)], [(1, 0), (2, 1)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 4), (2, 5)]
def test_codegen_array_recognize_matrix_mul_lines():
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M), (0, 1))
assert recognize_matrix_expression(cg) == Trace(M)
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1), (2, 3))
assert recognize_matrix_expression(cg) == [Trace(M), Trace(N)]
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2))
assert recognize_matrix_expression(cg) == Trace(M*N)
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 2), (1, 3))
assert recognize_matrix_expression(cg) == Trace(M*N.T)
cg = parse_indexed_expression((M*N*P)[i,j])
assert recognize_matrix_expression(cg) == M*N*P
cg = CodegenArrayContraction.from_MatMul(M*N*P)
assert recognize_matrix_expression(cg) == M*N*P
cg = parse_indexed_expression((M*N.T*P)[i,j])
assert recognize_matrix_expression(cg) == M*N.T*P
cg = CodegenArrayContraction.from_MatMul(M*N.T*P)
assert recognize_matrix_expression(cg) == M*N.T*P
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M,N,P,Q), (1, 2), (5, 6))
assert recognize_matrix_expression(cg) == [M*N, P*Q]
def test_codegen_array_flatten():
# Flatten nested CodegenArrayTensorProduct objects:
expr1 = CodegenArrayTensorProduct(M, N)
expr2 = CodegenArrayTensorProduct(P, Q)
expr = CodegenArrayTensorProduct(expr1, expr2)
assert expr == CodegenArrayTensorProduct(M, N, P, Q)
assert expr.args == (M, N, P, Q)
# Flatten mixed CodegenArrayTensorProduct and CodegenArrayContraction objects:
cg1 = CodegenArrayContraction(expr1, (1, 2))
cg2 = CodegenArrayContraction(expr2, (0, 3))
expr = CodegenArrayTensorProduct(cg1, cg2)
assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 2), (4, 7))
expr = CodegenArrayTensorProduct(M, cg1)
assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (3, 4))
# Flatten nested CodegenArrayContraction objects:
cgnested = CodegenArrayContraction(cg1, (0, 1))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2))
cgnested = CodegenArrayContraction(CodegenArrayTensorProduct(cg1, cg2), (0, 3))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 6), (1, 2), (4, 7))
cg3 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4))
cgnested = CodegenArrayContraction(cg3, (0, 1))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 5), (1, 3), (2, 4))
cgnested = CodegenArrayContraction(cg3, (0, 3), (1, 2))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6))
cg4 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7))
cgnested = CodegenArrayContraction(cg4, (0, 1))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7))
cgnested = CodegenArrayContraction(cg4, (0, 1), (2, 3))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6))
# Flatten nested CodegenArrayDiagonal objects:
cg1 = CodegenArrayDiagonal(expr1, (1, 2))
cg2 = CodegenArrayDiagonal(expr2, (0, 3))
cg3 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4))
cg4 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7))
cgnested = CodegenArrayDiagonal(cg1, (0, 1))
assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2), (0, 3))
cgnested = CodegenArrayDiagonal(cg3, (1, 2))
assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4), (5, 6))
cgnested = CodegenArrayDiagonal(cg4, (1, 2))
assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7), (2, 4))
def test_codegen_array_parse():
expr = M[i, j]
assert _codegen_array_parse(expr) == (M, (i, j))
expr = M[i, j]*N[k, l]
assert _codegen_array_parse(expr) == (CodegenArrayTensorProduct(M, N), (i, j, k, l))
expr = M[i, j]*N[j, k]
assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)), (i, k, j))
expr = Sum(M[i, j]*N[j, k], (j, 0, k-1))
assert _codegen_array_parse(expr) == (CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), (i, k))
expr = M[i, j] + N[i, j]
assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, N), (i, j))
expr = M[i, j] + N[j, i]
assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(N, Permutation([1,0]))), (i, j))
expr = M[i, j] + M[j, i]
assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, Permutation([1,0]))), (i, j))
expr = (M*N*P)[i, j]
assert _codegen_array_parse(expr) == (CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), (i, j))
expr = expr.function # Disregard summation in previous expression
ret1, ret2 = _codegen_array_parse(expr)
assert ret1 == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4))
assert str(ret2) == "(i, j, _i_1, _i_2)"
expr = KroneckerDelta(i, j)*M[i, k]
assert _codegen_array_parse(expr) == (M, ({i, j}, k))
expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*M[i, l]
assert _codegen_array_parse(expr) == (M, ({i, j, k}, l))
expr = KroneckerDelta(j, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l])
assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayElementwiseAdd(
CodegenArrayTensorProduct(M, N),
CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3))
), (1, 2)), (i, l, frozenset({j, k})))
expr = KroneckerDelta(j, m)*KroneckerDelta(m, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l])
assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayElementwiseAdd(
CodegenArrayTensorProduct(M, N),
CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3))
), (1, 2)), (i, l, frozenset({j, m, k})))
expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*KroneckerDelta(k,m)*M[i, 0]*KroneckerDelta(m, n)
assert _codegen_array_parse(expr) == (M, ({i,j,k,m,n}, 0))
expr = M[i, i]
assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(M, (0, 1)), (i,))
def test_codegen_array_diagonal():
cg = CodegenArrayDiagonal(M, (1, 0))
assert cg == CodegenArrayDiagonal(M, (0, 1))
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (4, 1), (2, 0))
assert cg == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 4), (0, 2))
def test_codegen_recognize_matrix_expression():
expr = CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, [1, 0]))
rec = _recognize_matrix_expression(expr)
assert rec == _RecognizeMatOp(MatAdd, [M, _RecognizeMatOp(Transpose, [M])])
assert _unfold_recognized_expr(rec) == M + Transpose(M)
expr = M[i,j] + N[i,j]
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatOp(MatAdd, [M, N])
assert _unfold_recognized_expr(rec) == M + N
expr = M[i,j] + N[j,i]
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatOp(MatAdd, [M, _RecognizeMatOp(Transpose, [N])])
assert _unfold_recognized_expr(rec) == M + N.T
expr = M[i,j]*N[k,l] + N[i,j]*M[k,l]
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatOp(MatAdd, [_RecognizeMatMulLines([M, N]), _RecognizeMatMulLines([N, M])])
#assert _unfold_recognized_expr(rec) == TensorProduct(M, N) + TensorProduct(N, M) maybe?
expr = (M*N*P)[i, j]
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatMulLines([_RecognizeMatOp(MatMul, [M, N, P])])
assert _unfold_recognized_expr(rec) == M*N*P
expr = Sum(M[i,j]*(N*P)[j,m], (j, 0, k-1))
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatOp(MatMul, [M, N, P])
assert _unfold_recognized_expr(rec) == M*N*P
expr = Sum((P[j, m] + P[m, j])*(M[i,j]*N[m,n] + N[i,j]*M[m,n]), (j, 0, k-1), (m, 0, k-1))
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatOp(MatAdd, [
_RecognizeMatOp(MatMul, [M, _RecognizeMatOp(MatAdd, [P, _RecognizeMatOp(Transpose, [P])]), N]),
_RecognizeMatOp(MatMul, [N, _RecognizeMatOp(MatAdd, [P, _RecognizeMatOp(Transpose, [P])]), M])
])
assert _unfold_recognized_expr(rec) == M*(P + P.T)*N + N*(P + P.T)*M
def test_codegen_array_shape():
expr = CodegenArrayTensorProduct(M, N, P, Q)
assert expr.shape == (k, k, k, k, k, k, k, k)
Z = MatrixSymbol("Z", m, n)
expr = CodegenArrayTensorProduct(M, Z)
assert expr.shape == (k, k, m, n)
expr2 = CodegenArrayContraction(expr, (0, 1))
assert expr2.shape == (m, n)
expr2 = CodegenArrayDiagonal(expr, (0, 1))
assert expr2.shape == (m, n, k)
exprp = CodegenArrayPermuteDims(expr, [2, 1, 3, 0])
assert exprp.shape == (m, k, n, k)
expr3 = CodegenArrayTensorProduct(N, Z)
expr2 = CodegenArrayElementwiseAdd(expr, expr3)
assert expr2.shape == (k, k, m, n)
# Contraction along axes with discordant dimensions:
raises(ValueError, lambda: CodegenArrayContraction(expr, (1, 2)))
# Also diagonal needs the same dimensions:
raises(ValueError, lambda: CodegenArrayDiagonal(expr, (1, 2)))
def test_codegen_array_parse_out_of_bounds():
expr = Sum(M[i, i], (i, 0, 4))
raises(ValueError, lambda: parse_indexed_expression(expr))
expr = Sum(M[i, i], (i, 0, k))
raises(ValueError, lambda: parse_indexed_expression(expr))
expr = Sum(M[i, i], (i, 1, k-1))
raises(ValueError, lambda: parse_indexed_expression(expr))
expr = Sum(M[i, j]*N[j,m], (j, 0, 4))
raises(ValueError, lambda: parse_indexed_expression(expr))
expr = Sum(M[i, j]*N[j,m], (j, 0, k))
raises(ValueError, lambda: parse_indexed_expression(expr))
expr = Sum(M[i, j]*N[j,m], (j, 1, k-1))
raises(ValueError, lambda: parse_indexed_expression(expr))
def test_codegen_permutedims_sink():
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [0, 1, 3, 2])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0]))
assert recognize_matrix_expression(sunk) == [M, N.T]
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0]))
assert recognize_matrix_expression(sunk) == [M.T, N.T]
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [3, 2, 1, 0])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(N, [1, 0]), CodegenArrayPermuteDims(M, [1, 0]))
assert recognize_matrix_expression(sunk) == [N.T, M.T]
cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), [1, 0])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [[0, 3]]), (1, 2))
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0]))
cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), [1, 0])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P), [[0, 5]]), (1, 2), (3, 4))
sunk2 = sunk.expr.nest_permutation()
|
e3f22bb10cd19bfd959372c48198c7ffb1526d7ef9c3f6ef198abaff2b335fac
|
from __future__ import (absolute_import, print_function)
import sys
import sympy as sp
from sympy.core.compatibility import exec_
from sympy.codegen.ast import Assignment
from sympy.codegen.algorithms import newtons_method, newtons_method_function
from sympy.codegen.fnodes import bind_C
from sympy.codegen.futils import render_as_module as f_module
from sympy.codegen.pyutils import render_as_module as py_module
from sympy.external import import_module
from sympy.printing.ccode import ccode
from sympy.utilities._compilation import compile_link_import_strings, has_c, has_fortran
from sympy.utilities._compilation.util import TemporaryDirectory, may_xfail
from sympy.utilities.pytest import skip, USE_PYTEST, raises
cython = import_module('cython')
wurlitzer = import_module('wurlitzer')
def test_newtons_method():
x, dx, atol = sp.symbols('x dx atol')
expr = sp.cos(x) - x**3
algo = newtons_method(expr, x, atol, dx)
assert algo.has(Assignment(dx, -expr/expr.diff(x)))
@may_xfail
def test_newtons_method_function__ccode():
x = sp.Symbol('x', real=True)
expr = sp.cos(x) - x**3
func = newtons_method_function(expr, x)
if not cython:
skip("cython not installed.")
if not has_c():
skip("No C compiler found.")
compile_kw = dict(std='c99')
with TemporaryDirectory() as folder:
mod, info = compile_link_import_strings([
('newton.c', ('#include <math.h>\n'
'#include <stdio.h>\n') + ccode(func)),
('_newton.pyx', ("cdef extern double newton(double)\n"
"def py_newton(x):\n"
" return newton(x)\n"))
], build_dir=folder, compile_kwargs=compile_kw)
assert abs(mod.py_newton(0.5) - 0.865474033102) < 1e-12
@may_xfail
def test_newtons_method_function__fcode():
x = sp.Symbol('x', real=True)
expr = sp.cos(x) - x**3
func = newtons_method_function(expr, x, attrs=[bind_C(name='newton')])
if not cython:
skip("cython not installed.")
if not has_fortran():
skip("No Fortran compiler found.")
f_mod = f_module([func], 'mod_newton')
with TemporaryDirectory() as folder:
mod, info = compile_link_import_strings([
('newton.f90', f_mod),
('_newton.pyx', ("cdef extern double newton(double*)\n"
"def py_newton(double x):\n"
" return newton(&x)\n"))
], build_dir=folder)
assert abs(mod.py_newton(0.5) - 0.865474033102) < 1e-12
def test_newtons_method_function__pycode():
x = sp.Symbol('x', real=True)
expr = sp.cos(x) - x**3
func = newtons_method_function(expr, x)
py_mod = py_module(func)
namespace = {}
exec_(py_mod, namespace, namespace)
res = eval('newton(0.5)', namespace)
assert abs(res - 0.865474033102) < 1e-12
@may_xfail
def test_newtons_method_function__ccode_parameters():
args = x, A, k, p = sp.symbols('x A k p')
expr = A*sp.cos(k*x) - p*x**3
raises(ValueError, lambda: newtons_method_function(expr, x))
use_wurlitzer = wurlitzer
func = newtons_method_function(expr, x, args, debug=use_wurlitzer)
if not has_c():
skip("No C compiler found.")
if not cython:
skip("cython not installed.")
compile_kw = dict(std='c99')
with TemporaryDirectory() as folder:
mod, info = compile_link_import_strings([
('newton_par.c', ('#include <math.h>\n'
'#include <stdio.h>\n') + ccode(func)),
('_newton_par.pyx', ("cdef extern double newton(double, double, double, double)\n"
"def py_newton(x, A=1, k=1, p=1):\n"
" return newton(x, A, k, p)\n"))
], compile_kwargs=compile_kw, build_dir=folder)
if use_wurlitzer:
with wurlitzer.pipes() as (out, err):
result = mod.py_newton(0.5)
else:
result = mod.py_newton(0.5)
assert abs(result - 0.865474033102) < 1e-12
if not use_wurlitzer:
skip("C-level output only tested when package 'wurlitzer' is available.")
out, err = out.read(), err.read()
assert err == ''
assert out == """\
x= 0.5 d_x= 0.61214
x= 1.1121 d_x= -0.20247
x= 0.90967 d_x= -0.042409
x= 0.86726 d_x= -0.0017867
x= 0.86548 d_x= -3.1022e-06
x= 0.86547 d_x= -9.3421e-12
x= 0.86547 d_x= 3.6902e-17
""" # try to run tests with LC_ALL=C if this assertion fails
|
5f3ecb3fe41848180f22ed07408c6a7530c53236b238e70c520923fe384f3198
|
from sympy.abc import t, w, x, y, z, n, k, m, p, i
from sympy.assumptions import (ask, AssumptionsContext, Q, register_handler,
remove_handler)
from sympy.assumptions.assume import global_assumptions
from sympy.assumptions.ask import compute_known_facts, single_fact_lookup
from sympy.assumptions.handlers import AskHandler
from sympy.core.add import Add
from sympy.core.numbers import (I, Integer, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.power import Pow
from sympy.core.symbol import symbols
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import (Abs, im, re, sign)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (
acos, acot, asin, atan, cos, cot, sin, tan)
from sympy.logic.boolalg import Equivalent, Implies, Xor, And, to_cnf
from sympy.utilities.pytest import XFAIL, slow, raises, warns_deprecated_sympy
from sympy.assumptions.assume import assuming
import math
def test_int_1():
z = 1
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is True
assert ask(Q.rational(z)) is True
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is False
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is True
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
def test_int_11():
z = 11
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is True
assert ask(Q.rational(z)) is True
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is False
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is True
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is True
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
def test_int_12():
z = 12
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is True
assert ask(Q.rational(z)) is True
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is False
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is True
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is True
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
def test_float_1():
z = 1.0
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is None
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is None
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
z = 7.2123
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is None
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is None
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
# test for issue #12168
assert ask(Q.rational(math.pi)) is None
def test_zero_0():
z = Integer(0)
assert ask(Q.nonzero(z)) is False
assert ask(Q.zero(z)) is True
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is True
assert ask(Q.rational(z)) is True
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is False
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is True
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
def test_negativeone():
z = Integer(-1)
assert ask(Q.nonzero(z)) is True
assert ask(Q.zero(z)) is False
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is True
assert ask(Q.rational(z)) is True
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is False
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is False
assert ask(Q.negative(z)) is True
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is True
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
def test_infinity():
assert ask(Q.commutative(oo)) is True
assert ask(Q.integer(oo)) is False
assert ask(Q.rational(oo)) is False
assert ask(Q.algebraic(oo)) is False
assert ask(Q.real(oo)) is False
assert ask(Q.extended_real(oo)) is True
assert ask(Q.complex(oo)) is False
assert ask(Q.irrational(oo)) is False
assert ask(Q.imaginary(oo)) is False
assert ask(Q.positive(oo)) is True
assert ask(Q.negative(oo)) is False
assert ask(Q.even(oo)) is False
assert ask(Q.odd(oo)) is False
assert ask(Q.finite(oo)) is False
assert ask(Q.prime(oo)) is False
assert ask(Q.composite(oo)) is False
assert ask(Q.hermitian(oo)) is False
assert ask(Q.antihermitian(oo)) is False
def test_neg_infinity():
mm = S.NegativeInfinity
assert ask(Q.commutative(mm)) is True
assert ask(Q.integer(mm)) is False
assert ask(Q.rational(mm)) is False
assert ask(Q.algebraic(mm)) is False
assert ask(Q.real(mm)) is False
assert ask(Q.extended_real(mm)) is True
assert ask(Q.complex(mm)) is False
assert ask(Q.irrational(mm)) is False
assert ask(Q.imaginary(mm)) is False
assert ask(Q.positive(mm)) is False
assert ask(Q.negative(mm)) is True
assert ask(Q.even(mm)) is False
assert ask(Q.odd(mm)) is False
assert ask(Q.finite(mm)) is False
assert ask(Q.prime(mm)) is False
assert ask(Q.composite(mm)) is False
assert ask(Q.hermitian(mm)) is False
assert ask(Q.antihermitian(mm)) is False
def test_nan():
nan = S.NaN
assert ask(Q.commutative(nan)) is True
assert ask(Q.integer(nan)) is False
assert ask(Q.rational(nan)) is False
assert ask(Q.algebraic(nan)) is False
assert ask(Q.real(nan)) is False
assert ask(Q.extended_real(nan)) is False
assert ask(Q.complex(nan)) is False
assert ask(Q.irrational(nan)) is False
assert ask(Q.imaginary(nan)) is False
assert ask(Q.positive(nan)) is False
assert ask(Q.nonzero(nan)) is True
assert ask(Q.zero(nan)) is False
assert ask(Q.even(nan)) is False
assert ask(Q.odd(nan)) is False
assert ask(Q.finite(nan)) is False
assert ask(Q.prime(nan)) is False
assert ask(Q.composite(nan)) is False
assert ask(Q.hermitian(nan)) is False
assert ask(Q.antihermitian(nan)) is False
def test_Rational_number():
r = Rational(3, 4)
assert ask(Q.commutative(r)) is True
assert ask(Q.integer(r)) is False
assert ask(Q.rational(r)) is True
assert ask(Q.real(r)) is True
assert ask(Q.complex(r)) is True
assert ask(Q.irrational(r)) is False
assert ask(Q.imaginary(r)) is False
assert ask(Q.positive(r)) is True
assert ask(Q.negative(r)) is False
assert ask(Q.even(r)) is False
assert ask(Q.odd(r)) is False
assert ask(Q.finite(r)) is True
assert ask(Q.prime(r)) is False
assert ask(Q.composite(r)) is False
assert ask(Q.hermitian(r)) is True
assert ask(Q.antihermitian(r)) is False
r = Rational(1, 4)
assert ask(Q.positive(r)) is True
assert ask(Q.negative(r)) is False
r = Rational(5, 4)
assert ask(Q.negative(r)) is False
assert ask(Q.positive(r)) is True
r = Rational(5, 3)
assert ask(Q.positive(r)) is True
assert ask(Q.negative(r)) is False
r = Rational(-3, 4)
assert ask(Q.positive(r)) is False
assert ask(Q.negative(r)) is True
r = Rational(-1, 4)
assert ask(Q.positive(r)) is False
assert ask(Q.negative(r)) is True
r = Rational(-5, 4)
assert ask(Q.negative(r)) is True
assert ask(Q.positive(r)) is False
r = Rational(-5, 3)
assert ask(Q.positive(r)) is False
assert ask(Q.negative(r)) is True
def test_sqrt_2():
z = sqrt(2)
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is True
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
def test_pi():
z = S.Pi
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is False
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is True
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
z = S.Pi + 1
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is False
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is True
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
z = 2*S.Pi
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is False
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is True
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
z = S.Pi ** 2
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is False
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is True
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
z = (1 + S.Pi) ** 2
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is False
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is True
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
def test_E():
z = S.Exp1
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is False
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is True
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
def test_GoldenRatio():
z = S.GoldenRatio
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is True
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is True
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
def test_TribonacciConstant():
z = S.TribonacciConstant
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is True
assert ask(Q.real(z)) is True
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is True
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is True
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is True
assert ask(Q.antihermitian(z)) is False
def test_I():
z = I
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is True
assert ask(Q.real(z)) is False
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is False
assert ask(Q.imaginary(z)) is True
assert ask(Q.positive(z)) is False
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is False
assert ask(Q.antihermitian(z)) is True
z = 1 + I
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is True
assert ask(Q.real(z)) is False
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is False
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is False
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is False
assert ask(Q.antihermitian(z)) is False
z = I*(1 + I)
assert ask(Q.commutative(z)) is True
assert ask(Q.integer(z)) is False
assert ask(Q.rational(z)) is False
assert ask(Q.algebraic(z)) is True
assert ask(Q.real(z)) is False
assert ask(Q.complex(z)) is True
assert ask(Q.irrational(z)) is False
assert ask(Q.imaginary(z)) is False
assert ask(Q.positive(z)) is False
assert ask(Q.negative(z)) is False
assert ask(Q.even(z)) is False
assert ask(Q.odd(z)) is False
assert ask(Q.finite(z)) is True
assert ask(Q.prime(z)) is False
assert ask(Q.composite(z)) is False
assert ask(Q.hermitian(z)) is False
assert ask(Q.antihermitian(z)) is False
z = I**(I)
assert ask(Q.imaginary(z)) is False
assert ask(Q.real(z)) is True
z = (-I)**(I)
assert ask(Q.imaginary(z)) is False
assert ask(Q.real(z)) is True
z = (3*I)**(I)
assert ask(Q.imaginary(z)) is False
assert ask(Q.real(z)) is False
z = (1)**(I)
assert ask(Q.imaginary(z)) is False
assert ask(Q.real(z)) is True
z = (-1)**(I)
assert ask(Q.imaginary(z)) is False
assert ask(Q.real(z)) is True
z = (1+I)**(I)
assert ask(Q.imaginary(z)) is False
assert ask(Q.real(z)) is False
z = (I)**(I+3)
assert ask(Q.imaginary(z)) is True
assert ask(Q.real(z)) is False
z = (I)**(I+2)
assert ask(Q.imaginary(z)) is False
assert ask(Q.real(z)) is True
z = (I)**(2)
assert ask(Q.imaginary(z)) is False
assert ask(Q.real(z)) is True
z = (I)**(3)
assert ask(Q.imaginary(z)) is True
assert ask(Q.real(z)) is False
z = (3)**(I)
assert ask(Q.imaginary(z)) is False
assert ask(Q.real(z)) is False
z = (I)**(0)
assert ask(Q.imaginary(z)) is False
assert ask(Q.real(z)) is True
@slow
def test_bounded1():
x, y, z = symbols('x,y,z')
assert ask(Q.finite(x)) is None
assert ask(Q.finite(x), Q.finite(x)) is True
assert ask(Q.finite(x), Q.finite(y)) is None
assert ask(Q.finite(x), Q.complex(x)) is None
assert ask(Q.finite(x + 1)) is None
assert ask(Q.finite(x + 1), Q.finite(x)) is True
a = x + y
x, y = a.args
# B + B
assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is True
assert ask(
Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(x)) is True
assert ask(
Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(y)) is True
assert ask(Q.finite(a),
Q.finite(x) & Q.finite(y) & Q.positive(x) & Q.positive(y)) is True
assert ask(Q.finite(a),
Q.finite(x) & Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is True
assert ask(Q.finite(a),
Q.finite(x) & Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is True
assert ask(Q.finite(a),
Q.finite(x) & Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is True
# B + U
assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is False
assert ask(
Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x)) is False
assert ask(
Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(y)) is False
assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x) &
Q.positive(y)) is False
assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(x) &
~Q.positive(y)) is False
assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) &
Q.positive(y)) is False
assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) &
~Q.positive(y)) is False
# B + ?
assert ask(Q.finite(a), Q.finite(x)) is None
assert ask(Q.finite(a), Q.finite(x) & Q.positive(x)) is None
assert ask(Q.finite(a), Q.finite(x) & Q.positive(y)) is None
assert ask(
Q.finite(a), Q.finite(x) & Q.positive(x) & Q.positive(y)) is None
assert ask(
Q.finite(a), Q.finite(x) & Q.positive(x) & ~Q.positive(y)) is None
assert ask(
Q.finite(a), Q.finite(x) & ~Q.positive(x) & Q.positive(y)) is None
assert ask(
Q.finite(a), Q.finite(x) & ~Q.positive(x) & ~Q.positive(y)) is None
# U + U
assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(y)) is None
assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x) &
Q.positive(y)) is False
assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(x) &
~Q.positive(y)) is None
assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) &
Q.positive(y)) is None
assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.positive(x) &
~Q.positive(y)) is False
# U + ?
assert ask(Q.finite(a), ~Q.finite(y)) is None
assert ask(Q.finite(a), ~Q.finite(y) & Q.positive(x)) is None
assert ask(Q.finite(a), ~Q.finite(y) & Q.positive(y)) is None
assert ask(
Q.finite(a), ~Q.finite(y) & Q.positive(x) & Q.positive(y)) is False
assert ask(
Q.finite(a), ~Q.finite(y) & Q.positive(x) & ~Q.positive(y)) is None
assert ask(
Q.finite(a), ~Q.finite(y) & ~Q.positive(x) & Q.positive(y)) is None
assert ask(
Q.finite(a), ~Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is False
# ? + ?
assert ask(Q.finite(a),) is None
assert ask(Q.finite(a), Q.positive(x)) is None
assert ask(Q.finite(a), Q.positive(y)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.positive(y)) is None
assert ask(Q.finite(a), Q.positive(x) & ~Q.positive(y)) is None
assert ask(Q.finite(a), ~Q.positive(x) & Q.positive(y)) is None
assert ask(Q.finite(a), ~Q.positive(x) & ~Q.positive(y)) is None
@slow
def test_bounded2a():
x, y, z = symbols('x,y,z')
a = x + y + z
x, y, z = a.args
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) &
Q.finite(y) & Q.negative(z) & Q.finite(z)) is True
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.negative(y) & Q.finite(y) & Q.finite(z)) is True
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) &
Q.finite(y) & Q.positive(z) & Q.finite(z)) is True
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) &
Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.negative(y) & Q.finite(y) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) &
Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.negative(y) & Q.finite(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.negative(y) & Q.finite(y)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.negative(y) & Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.finite(y) & Q.finite(z)) is True
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.finite(y) & Q.positive(z) & Q.finite(z)) is True
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.finite(y) & Q.negative(z)) is None
assert ask(
Q.finite(a), Q.negative(x) & Q.finite(x) & Q.finite(y)) is None
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) &
Q.finite(y) & Q.positive(z) & Q.finite(z)) is True
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) &
Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) &
Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.positive(y) & Q.finite(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.positive(y) & Q.finite(y)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.positive(y) & Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) &
~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(
Q.finite(a), Q.negative(x) & Q.finite(x) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(y) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.negative(y) & Q.negative(z)) is None
assert ask(
Q.finite(a), Q.negative(x) & Q.finite(x) & Q.negative(y)) is None
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.negative(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.finite(x)) is None
assert ask(
Q.finite(a), Q.negative(x) & Q.finite(x) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
Q.finite(x) & Q.positive(y) & Q.positive(z)) is None
assert ask(
Q.finite(a), Q.finite(x) & Q.finite(y) & Q.finite(z)) is True
assert ask(Q.finite(a),
Q.finite(x) & Q.finite(y) & Q.positive(z) & Q.finite(z)) is True
assert ask(Q.finite(a), Q.finite(x) &
Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False
assert ask(
Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.finite(x) &
Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False
assert ask(
Q.finite(a), Q.finite(x) & Q.finite(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is None
assert ask(
Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) &
Q.finite(y) & Q.positive(z) & Q.finite(z)) is True
assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) &
Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.finite(x) &
Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) &
Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.finite(x) &
Q.positive(y) & Q.finite(y) & Q.negative(z)) is None
assert ask(
Q.finite(a), Q.finite(x) & Q.positive(y) & Q.finite(y)) is None
assert ask(Q.finite(a), Q.finite(x) &
Q.positive(y) & Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) &
~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.finite(x) & Q.negative(y) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False
assert ask(
Q.finite(a), Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(
Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.finite(x) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(
Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is None
assert ask(
Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False
@slow
def test_bounded2b():
x, y, z = symbols('x,y,z')
a = x + y + z
x, y, z = a.args
assert ask(Q.finite(a), Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(
Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False
assert ask(
Q.finite(a), Q.finite(x) & Q.negative(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.finite(x) & Q.negative(y)) is None
assert ask(
Q.finite(a), Q.finite(x) & Q.negative(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.finite(x)) is None
assert ask(Q.finite(a), Q.finite(x) & Q.positive(z)) is None
assert ask(
Q.finite(a), Q.finite(x) & Q.positive(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) &
Q.finite(y) & Q.positive(z) & Q.finite(z)) is True
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) &
Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) &
Q.positive(y) & Q.finite(y) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) &
Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) &
Q.positive(y) & Q.finite(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.positive(x) &
Q.finite(x) & Q.positive(y) & Q.finite(y)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) &
Q.positive(y) & Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) &
~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False
assert ask(Q.finite(a), Q.positive(x) &
Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.positive(x) &
Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.positive(x) &
Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(
Q.finite(a), Q.positive(x) & Q.finite(x) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.positive(x) &
Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(y) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.positive(x) &
Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False
assert ask(Q.finite(a), Q.positive(x) &
Q.finite(x) & Q.negative(y) & Q.negative(z)) is None
assert ask(
Q.finite(a), Q.positive(x) & Q.finite(x) & Q.negative(y)) is None
assert ask(Q.finite(a), Q.positive(x) &
Q.finite(x) & Q.negative(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.positive(x) & Q.finite(x)) is None
assert ask(
Q.finite(a), Q.positive(x) & Q.finite(x) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.positive(x) &
Q.finite(x) & Q.positive(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) &
~Q.finite(y) & Q.negative(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & Q.negative(z)) is False
assert ask(Q.finite(a), Q.negative(x) &
~Q.finite(x) & Q.negative(y) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) &
Q.negative(y) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
~Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(
Q.finite(a), Q.negative(x) & ~Q.finite(x) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.negative(x) &
~Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(y) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
~Q.finite(x) & Q.negative(y) & Q.negative(z)) is False
assert ask(
Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.negative(y)) is None
assert ask(Q.finite(a), Q.negative(x) &
~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(x)) is None
assert ask(
Q.finite(a), Q.negative(x) & ~Q.finite(x) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x) &
~Q.finite(x) & Q.positive(y) & Q.positive(z)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), ~Q.finite(x) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(y) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is None
assert ask(Q.finite(a), ~Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None
assert ask(Q.finite(a), ~Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & Q.negative(y) & Q.negative(z)) is None
assert ask(Q.finite(a), ~Q.finite(x) & Q.negative(y)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None
assert ask(Q.finite(a), ~Q.finite(x)) is None
assert ask(Q.finite(a), ~Q.finite(x) & Q.positive(z)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & Q.positive(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(y) &
~Q.finite(y) & Q.positive(z) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.positive(x) &
~Q.finite(x) & Q.positive(y) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x) &
Q.positive(y) & ~Q.finite(y) & Q.positive(z)) is False
assert ask(Q.finite(a), Q.positive(x) &
~Q.finite(x) & Q.negative(y) & Q.negative(z)) is None
assert ask(
Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.negative(y)) is None
assert ask(Q.finite(a), Q.positive(x) &
~Q.finite(x) & Q.negative(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(x)) is None
assert ask(
Q.finite(a), Q.positive(x) & ~Q.finite(x) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.positive(x) &
~Q.finite(x) & Q.positive(y) & Q.positive(z)) is False
assert ask(
Q.finite(a), Q.negative(x) & Q.negative(y) & Q.negative(z)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.negative(y)) is None
assert ask(
Q.finite(a), Q.negative(x) & Q.negative(y) & Q.positive(z)) is None
assert ask(Q.finite(a), Q.negative(x)) is None
assert ask(Q.finite(a), Q.negative(x) & Q.positive(z)) is None
assert ask(
Q.finite(a), Q.negative(x) & Q.positive(y) & Q.positive(z)) is None
assert ask(Q.finite(a)) is None
assert ask(Q.finite(a), Q.positive(z)) is None
assert ask(Q.finite(a), Q.positive(y) & Q.positive(z)) is None
assert ask(
Q.finite(a), Q.positive(x) & Q.positive(y) & Q.positive(z)) is None
assert ask(Q.finite(2*x)) is None
assert ask(Q.finite(2*x), Q.finite(x)) is True
@slow
def test_bounded3():
x, y, z = symbols('x,y,z')
a = x*y
x, y = a.args
assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is True
assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is False
assert ask(Q.finite(a), Q.finite(x)) is None
assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y)) is False
assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is False
assert ask(Q.finite(a), ~Q.finite(x)) is None
assert ask(Q.finite(a), Q.finite(y)) is None
assert ask(Q.finite(a), ~Q.finite(y)) is None
assert ask(Q.finite(a)) is None
a = x*y*z
x, y, z = a.args
assert ask(
Q.finite(a), Q.finite(x) & Q.finite(y) & Q.finite(z)) is True
assert ask(
Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is None
assert ask(
Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.finite(z)) is False
assert ask(
Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is False
assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.finite(x) & Q.finite(z)) is None
assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.finite(x)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & Q.finite(y) & Q.finite(z)) is False
assert ask(
Q.finite(a), ~Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False
assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y)) is None
assert ask(
Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.finite(z)) is False
assert ask(
Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is False
assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None
assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(z)) is None
assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(z)) is None
assert ask(Q.finite(a), ~Q.finite(x)) is None
assert ask(Q.finite(a), Q.finite(y) & Q.finite(z)) is None
assert ask(Q.finite(a), Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), Q.finite(y)) is None
assert ask(Q.finite(a), ~Q.finite(y) & Q.finite(z)) is None
assert ask(Q.finite(a), ~Q.finite(y) & ~Q.finite(z)) is None
assert ask(Q.finite(a), ~Q.finite(y)) is None
assert ask(Q.finite(a), Q.finite(z)) is None
assert ask(Q.finite(a), ~Q.finite(z)) is None
assert ask(Q.finite(a), ~Q.finite(z) &
Q.nonzero(x) & Q.nonzero(y) & Q.nonzero(z)) is None
assert ask(Q.finite(a), ~Q.finite(y) & ~Q.finite(z) &
Q.nonzero(x) & Q.nonzero(y) & Q.nonzero(z)) is False
x, y, z = symbols('x,y,z')
assert ask(Q.finite(x**2)) is None
assert ask(Q.finite(2**x)) is None
assert ask(Q.finite(2**x), Q.finite(x)) is True
assert ask(Q.finite(x**x)) is None
assert ask(Q.finite(Rational(1, 2) ** x)) is None
assert ask(Q.finite(Rational(1, 2) ** x), Q.positive(x)) is True
assert ask(Q.finite(Rational(1, 2) ** x), Q.negative(x)) is None
assert ask(Q.finite(2**x), Q.negative(x)) is True
assert ask(Q.finite(sqrt(x))) is None
assert ask(Q.finite(2**x), ~Q.finite(x)) is False
assert ask(Q.finite(x**2), ~Q.finite(x)) is False
# sign function
assert ask(Q.finite(sign(x))) is True
assert ask(Q.finite(sign(x)), ~Q.finite(x)) is True
# exponential functions
assert ask(Q.finite(log(x))) is None
assert ask(Q.finite(log(x)), Q.finite(x)) is True
assert ask(Q.finite(exp(x))) is None
assert ask(Q.finite(exp(x)), Q.finite(x)) is True
assert ask(Q.finite(exp(2))) is True
# trigonometric functions
assert ask(Q.finite(sin(x))) is True
assert ask(Q.finite(sin(x)), ~Q.finite(x)) is True
assert ask(Q.finite(cos(x))) is True
assert ask(Q.finite(cos(x)), ~Q.finite(x)) is True
assert ask(Q.finite(2*sin(x))) is True
assert ask(Q.finite(sin(x)**2)) is True
assert ask(Q.finite(cos(x)**2)) is True
assert ask(Q.finite(cos(x) + sin(x))) is True
@XFAIL
def test_bounded_xfail():
"""We need to support relations in ask for this to work"""
assert ask(Q.finite(sin(x)**x)) is True
assert ask(Q.finite(cos(x)**x)) is True
def test_commutative():
"""By default objects are Q.commutative that is why it returns True
for both key=True and key=False"""
assert ask(Q.commutative(x)) is True
assert ask(Q.commutative(x), ~Q.commutative(x)) is False
assert ask(Q.commutative(x), Q.complex(x)) is True
assert ask(Q.commutative(x), Q.imaginary(x)) is True
assert ask(Q.commutative(x), Q.real(x)) is True
assert ask(Q.commutative(x), Q.positive(x)) is True
assert ask(Q.commutative(x), ~Q.commutative(y)) is True
assert ask(Q.commutative(2*x)) is True
assert ask(Q.commutative(2*x), ~Q.commutative(x)) is False
assert ask(Q.commutative(x + 1)) is True
assert ask(Q.commutative(x + 1), ~Q.commutative(x)) is False
assert ask(Q.commutative(x**2)) is True
assert ask(Q.commutative(x**2), ~Q.commutative(x)) is False
assert ask(Q.commutative(log(x))) is True
def test_complex():
assert ask(Q.complex(x)) is None
assert ask(Q.complex(x), Q.complex(x)) is True
assert ask(Q.complex(x), Q.complex(y)) is None
assert ask(Q.complex(x), ~Q.complex(x)) is False
assert ask(Q.complex(x), Q.real(x)) is True
assert ask(Q.complex(x), ~Q.real(x)) is None
assert ask(Q.complex(x), Q.rational(x)) is True
assert ask(Q.complex(x), Q.irrational(x)) is True
assert ask(Q.complex(x), Q.positive(x)) is True
assert ask(Q.complex(x), Q.imaginary(x)) is True
assert ask(Q.complex(x), Q.algebraic(x)) is True
# a+b
assert ask(Q.complex(x + 1), Q.complex(x)) is True
assert ask(Q.complex(x + 1), Q.real(x)) is True
assert ask(Q.complex(x + 1), Q.rational(x)) is True
assert ask(Q.complex(x + 1), Q.irrational(x)) is True
assert ask(Q.complex(x + 1), Q.imaginary(x)) is True
assert ask(Q.complex(x + 1), Q.integer(x)) is True
assert ask(Q.complex(x + 1), Q.even(x)) is True
assert ask(Q.complex(x + 1), Q.odd(x)) is True
assert ask(Q.complex(x + y), Q.complex(x) & Q.complex(y)) is True
assert ask(Q.complex(x + y), Q.real(x) & Q.imaginary(y)) is True
# a*x +b
assert ask(Q.complex(2*x + 1), Q.complex(x)) is True
assert ask(Q.complex(2*x + 1), Q.real(x)) is True
assert ask(Q.complex(2*x + 1), Q.positive(x)) is True
assert ask(Q.complex(2*x + 1), Q.rational(x)) is True
assert ask(Q.complex(2*x + 1), Q.irrational(x)) is True
assert ask(Q.complex(2*x + 1), Q.imaginary(x)) is True
assert ask(Q.complex(2*x + 1), Q.integer(x)) is True
assert ask(Q.complex(2*x + 1), Q.even(x)) is True
assert ask(Q.complex(2*x + 1), Q.odd(x)) is True
# x**2
assert ask(Q.complex(x**2), Q.complex(x)) is True
assert ask(Q.complex(x**2), Q.real(x)) is True
assert ask(Q.complex(x**2), Q.positive(x)) is True
assert ask(Q.complex(x**2), Q.rational(x)) is True
assert ask(Q.complex(x**2), Q.irrational(x)) is True
assert ask(Q.complex(x**2), Q.imaginary(x)) is True
assert ask(Q.complex(x**2), Q.integer(x)) is True
assert ask(Q.complex(x**2), Q.even(x)) is True
assert ask(Q.complex(x**2), Q.odd(x)) is True
# 2**x
assert ask(Q.complex(2**x), Q.complex(x)) is True
assert ask(Q.complex(2**x), Q.real(x)) is True
assert ask(Q.complex(2**x), Q.positive(x)) is True
assert ask(Q.complex(2**x), Q.rational(x)) is True
assert ask(Q.complex(2**x), Q.irrational(x)) is True
assert ask(Q.complex(2**x), Q.imaginary(x)) is True
assert ask(Q.complex(2**x), Q.integer(x)) is True
assert ask(Q.complex(2**x), Q.even(x)) is True
assert ask(Q.complex(2**x), Q.odd(x)) is True
assert ask(Q.complex(x**y), Q.complex(x) & Q.complex(y)) is True
# trigonometric expressions
assert ask(Q.complex(sin(x))) is True
assert ask(Q.complex(sin(2*x + 1))) is True
assert ask(Q.complex(cos(x))) is True
assert ask(Q.complex(cos(2*x + 1))) is True
# exponential
assert ask(Q.complex(exp(x))) is True
assert ask(Q.complex(exp(x))) is True
# Q.complexes
assert ask(Q.complex(Abs(x))) is True
assert ask(Q.complex(re(x))) is True
assert ask(Q.complex(im(x))) is True
def test_even():
assert ask(Q.even(x)) is None
assert ask(Q.even(x), Q.integer(x)) is None
assert ask(Q.even(x), ~Q.integer(x)) is False
assert ask(Q.even(x), Q.rational(x)) is None
assert ask(Q.even(x), Q.positive(x)) is None
assert ask(Q.even(2*x)) is None
assert ask(Q.even(2*x), Q.integer(x)) is True
assert ask(Q.even(2*x), Q.even(x)) is True
assert ask(Q.even(2*x), Q.irrational(x)) is False
assert ask(Q.even(2*x), Q.odd(x)) is True
assert ask(Q.even(2*x), ~Q.integer(x)) is None
assert ask(Q.even(3*x), Q.integer(x)) is None
assert ask(Q.even(3*x), Q.even(x)) is True
assert ask(Q.even(3*x), Q.odd(x)) is False
assert ask(Q.even(x + 1), Q.odd(x)) is True
assert ask(Q.even(x + 1), Q.even(x)) is False
assert ask(Q.even(x + 2), Q.odd(x)) is False
assert ask(Q.even(x + 2), Q.even(x)) is True
assert ask(Q.even(7 - x), Q.odd(x)) is True
assert ask(Q.even(7 + x), Q.odd(x)) is True
assert ask(Q.even(x + y), Q.odd(x) & Q.odd(y)) is True
assert ask(Q.even(x + y), Q.odd(x) & Q.even(y)) is False
assert ask(Q.even(x + y), Q.even(x) & Q.even(y)) is True
assert ask(Q.even(2*x + 1), Q.integer(x)) is False
assert ask(Q.even(2*x*y), Q.rational(x) & Q.rational(x)) is None
assert ask(Q.even(2*x*y), Q.irrational(x) & Q.irrational(x)) is None
assert ask(Q.even(x + y + z), Q.odd(x) & Q.odd(y) & Q.even(z)) is True
assert ask(Q.even(x + y + z + t),
Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) is None
assert ask(Q.even(Abs(x)), Q.even(x)) is True
assert ask(Q.even(Abs(x)), ~Q.even(x)) is None
assert ask(Q.even(re(x)), Q.even(x)) is True
assert ask(Q.even(re(x)), ~Q.even(x)) is None
assert ask(Q.even(im(x)), Q.even(x)) is True
assert ask(Q.even(im(x)), Q.real(x)) is True
assert ask(Q.even((-1)**n), Q.integer(n)) is False
assert ask(Q.even(k**2), Q.even(k)) is True
assert ask(Q.even(n**2), Q.odd(n)) is False
assert ask(Q.even(2**k), Q.even(k)) is None
assert ask(Q.even(x**2)) is None
assert ask(Q.even(k**m), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None
assert ask(Q.even(n**m), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is False
assert ask(Q.even(k**p), Q.even(k) & Q.integer(p) & Q.positive(p)) is True
assert ask(Q.even(n**p), Q.odd(n) & Q.integer(p) & Q.positive(p)) is False
assert ask(Q.even(m**k), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None
assert ask(Q.even(p**k), Q.even(k) & Q.integer(p) & Q.positive(p)) is None
assert ask(Q.even(m**n), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is None
assert ask(Q.even(p**n), Q.odd(n) & Q.integer(p) & Q.positive(p)) is None
assert ask(Q.even(k**x), Q.even(k)) is None
assert ask(Q.even(n**x), Q.odd(n)) is None
assert ask(Q.even(x*y), Q.integer(x) & Q.integer(y)) is None
assert ask(Q.even(x*x), Q.integer(x)) is None
assert ask(Q.even(x*(x + y)), Q.integer(x) & Q.odd(y)) is True
assert ask(Q.even(x*(x + y)), Q.integer(x) & Q.even(y)) is None
@XFAIL
def test_evenness_in_ternary_integer_product_with_odd():
# Tests that oddness inference is independent of term ordering.
# Term ordering at the point of testing depends on SymPy's symbol order, so
# we try to force a different order by modifying symbol names.
assert ask(Q.even(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is True
assert ask(Q.even(y*x*(x + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is True
def test_evenness_in_ternary_integer_product_with_even():
assert ask(Q.even(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.even(z)) is None
def test_extended_real():
assert ask(Q.extended_real(x), Q.positive(x)) is True
assert ask(Q.extended_real(-x), Q.positive(x)) is True
assert ask(Q.extended_real(-x), Q.negative(x)) is True
assert ask(Q.extended_real(x + S.Infinity), Q.real(x)) is True
def test_rational():
assert ask(Q.rational(x), Q.integer(x)) is True
assert ask(Q.rational(x), Q.irrational(x)) is False
assert ask(Q.rational(x), Q.real(x)) is None
assert ask(Q.rational(x), Q.positive(x)) is None
assert ask(Q.rational(x), Q.negative(x)) is None
assert ask(Q.rational(x), Q.nonzero(x)) is None
assert ask(Q.rational(x), ~Q.algebraic(x)) is False
assert ask(Q.rational(2*x), Q.rational(x)) is True
assert ask(Q.rational(2*x), Q.integer(x)) is True
assert ask(Q.rational(2*x), Q.even(x)) is True
assert ask(Q.rational(2*x), Q.odd(x)) is True
assert ask(Q.rational(2*x), Q.irrational(x)) is False
assert ask(Q.rational(x/2), Q.rational(x)) is True
assert ask(Q.rational(x/2), Q.integer(x)) is True
assert ask(Q.rational(x/2), Q.even(x)) is True
assert ask(Q.rational(x/2), Q.odd(x)) is True
assert ask(Q.rational(x/2), Q.irrational(x)) is False
assert ask(Q.rational(1/x), Q.rational(x)) is True
assert ask(Q.rational(1/x), Q.integer(x)) is True
assert ask(Q.rational(1/x), Q.even(x)) is True
assert ask(Q.rational(1/x), Q.odd(x)) is True
assert ask(Q.rational(1/x), Q.irrational(x)) is False
assert ask(Q.rational(2/x), Q.rational(x)) is True
assert ask(Q.rational(2/x), Q.integer(x)) is True
assert ask(Q.rational(2/x), Q.even(x)) is True
assert ask(Q.rational(2/x), Q.odd(x)) is True
assert ask(Q.rational(2/x), Q.irrational(x)) is False
assert ask(Q.rational(x), ~Q.algebraic(x)) is False
# with multiple symbols
assert ask(Q.rational(x*y), Q.irrational(x) & Q.irrational(y)) is None
assert ask(Q.rational(y/x), Q.rational(x) & Q.rational(y)) is True
assert ask(Q.rational(y/x), Q.integer(x) & Q.rational(y)) is True
assert ask(Q.rational(y/x), Q.even(x) & Q.rational(y)) is True
assert ask(Q.rational(y/x), Q.odd(x) & Q.rational(y)) is True
assert ask(Q.rational(y/x), Q.irrational(x) & Q.rational(y)) is False
for f in [exp, sin, tan, asin, atan, cos]:
assert ask(Q.rational(f(7))) is False
assert ask(Q.rational(f(7, evaluate=False))) is False
assert ask(Q.rational(f(0, evaluate=False))) is True
assert ask(Q.rational(f(x)), Q.rational(x)) is None
assert ask(Q.rational(f(x)), Q.rational(x) & Q.nonzero(x)) is False
for g in [log, acos]:
assert ask(Q.rational(g(7))) is False
assert ask(Q.rational(g(7, evaluate=False))) is False
assert ask(Q.rational(g(1, evaluate=False))) is True
assert ask(Q.rational(g(x)), Q.rational(x)) is None
assert ask(Q.rational(g(x)), Q.rational(x) & Q.nonzero(x - 1)) is False
for h in [cot, acot]:
assert ask(Q.rational(h(7))) is False
assert ask(Q.rational(h(7, evaluate=False))) is False
assert ask(Q.rational(h(x)), Q.rational(x)) is False
def test_hermitian():
assert ask(Q.hermitian(x)) is None
assert ask(Q.hermitian(x), Q.antihermitian(x)) is False
assert ask(Q.hermitian(x), Q.imaginary(x)) is False
assert ask(Q.hermitian(x), Q.prime(x)) is True
assert ask(Q.hermitian(x), Q.real(x)) is True
assert ask(Q.hermitian(x + 1), Q.antihermitian(x)) is False
assert ask(Q.hermitian(x + 1), Q.complex(x)) is None
assert ask(Q.hermitian(x + 1), Q.hermitian(x)) is True
assert ask(Q.hermitian(x + 1), Q.imaginary(x)) is False
assert ask(Q.hermitian(x + 1), Q.real(x)) is True
assert ask(Q.hermitian(x + I), Q.antihermitian(x)) is None
assert ask(Q.hermitian(x + I), Q.complex(x)) is None
assert ask(Q.hermitian(x + I), Q.hermitian(x)) is False
assert ask(Q.hermitian(x + I), Q.imaginary(x)) is None
assert ask(Q.hermitian(x + I), Q.real(x)) is False
assert ask(
Q.hermitian(x + y), Q.antihermitian(x) & Q.antihermitian(y)) is None
assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.complex(y)) is None
assert ask(
Q.hermitian(x + y), Q.antihermitian(x) & Q.hermitian(y)) is False
assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.imaginary(y)) is None
assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.real(y)) is False
assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.complex(y)) is None
assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.hermitian(y)) is True
assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.imaginary(y)) is False
assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.real(y)) is True
assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.complex(y)) is None
assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.imaginary(y)) is None
assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.real(y)) is False
assert ask(Q.hermitian(x + y), Q.real(x) & Q.complex(y)) is None
assert ask(Q.hermitian(x + y), Q.real(x) & Q.real(y)) is True
assert ask(Q.hermitian(I*x), Q.antihermitian(x)) is True
assert ask(Q.hermitian(I*x), Q.complex(x)) is None
assert ask(Q.hermitian(I*x), Q.hermitian(x)) is False
assert ask(Q.hermitian(I*x), Q.imaginary(x)) is True
assert ask(Q.hermitian(I*x), Q.real(x)) is False
assert ask(Q.hermitian(x*y), Q.hermitian(x) & Q.real(y)) is True
assert ask(
Q.hermitian(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is True
assert ask(Q.hermitian(x + y + z),
Q.real(x) & Q.real(y) & Q.imaginary(z)) is False
assert ask(Q.hermitian(x + y + z),
Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is None
assert ask(Q.hermitian(x + y + z),
Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) is None
assert ask(Q.antihermitian(x)) is None
assert ask(Q.antihermitian(x), Q.real(x)) is False
assert ask(Q.antihermitian(x), Q.prime(x)) is False
assert ask(Q.antihermitian(x + 1), Q.antihermitian(x)) is False
assert ask(Q.antihermitian(x + 1), Q.complex(x)) is None
assert ask(Q.antihermitian(x + 1), Q.hermitian(x)) is None
assert ask(Q.antihermitian(x + 1), Q.imaginary(x)) is False
assert ask(Q.antihermitian(x + 1), Q.real(x)) is False
assert ask(Q.antihermitian(x + I), Q.antihermitian(x)) is True
assert ask(Q.antihermitian(x + I), Q.complex(x)) is None
assert ask(Q.antihermitian(x + I), Q.hermitian(x)) is False
assert ask(Q.antihermitian(x + I), Q.imaginary(x)) is True
assert ask(Q.antihermitian(x + I), Q.real(x)) is False
assert ask(
Q.antihermitian(x + y), Q.antihermitian(x) & Q.antihermitian(y)
) is True
assert ask(
Q.antihermitian(x + y), Q.antihermitian(x) & Q.complex(y)) is None
assert ask(
Q.antihermitian(x + y), Q.antihermitian(x) & Q.hermitian(y)) is False
assert ask(
Q.antihermitian(x + y), Q.antihermitian(x) & Q.imaginary(y)) is True
assert ask(Q.antihermitian(x + y), Q.antihermitian(x) & Q.real(y)
) is False
assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.complex(y)) is None
assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.hermitian(y)
) is None
assert ask(
Q.antihermitian(x + y), Q.hermitian(x) & Q.imaginary(y)) is False
assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.real(y)) is None
assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.complex(y)) is None
assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.imaginary(y)) is True
assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.real(y)) is False
assert ask(Q.antihermitian(x + y), Q.real(x) & Q.complex(y)) is None
assert ask(Q.antihermitian(x + y), Q.real(x) & Q.real(y)) is False
assert ask(Q.antihermitian(I*x), Q.real(x)) is True
assert ask(Q.antihermitian(I*x), Q.antihermitian(x)) is False
assert ask(Q.antihermitian(I*x), Q.complex(x)) is None
assert ask(Q.antihermitian(x*y), Q.antihermitian(x) & Q.real(y)) is True
assert ask(Q.antihermitian(x + y + z),
Q.real(x) & Q.real(y) & Q.real(z)) is False
assert ask(Q.antihermitian(x + y + z),
Q.real(x) & Q.real(y) & Q.imaginary(z)) is None
assert ask(Q.antihermitian(x + y + z),
Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is False
assert ask(Q.antihermitian(x + y + z),
Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) is True
@slow
def test_imaginary():
assert ask(Q.imaginary(x)) is None
assert ask(Q.imaginary(x), Q.real(x)) is False
assert ask(Q.imaginary(x), Q.prime(x)) is False
assert ask(Q.imaginary(x + 1), Q.real(x)) is False
assert ask(Q.imaginary(x + 1), Q.imaginary(x)) is False
assert ask(Q.imaginary(x + I), Q.real(x)) is False
assert ask(Q.imaginary(x + I), Q.imaginary(x)) is True
assert ask(Q.imaginary(x + y), Q.imaginary(x) & Q.imaginary(y)) is True
assert ask(Q.imaginary(x + y), Q.real(x) & Q.real(y)) is False
assert ask(Q.imaginary(x + y), Q.imaginary(x) & Q.real(y)) is False
assert ask(Q.imaginary(x + y), Q.complex(x) & Q.real(y)) is None
assert ask(
Q.imaginary(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is False
assert ask(Q.imaginary(x + y + z),
Q.real(x) & Q.real(y) & Q.imaginary(z)) is None
assert ask(Q.imaginary(x + y + z),
Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is False
assert ask(Q.imaginary(I*x), Q.real(x)) is True
assert ask(Q.imaginary(I*x), Q.imaginary(x)) is False
assert ask(Q.imaginary(I*x), Q.complex(x)) is None
assert ask(Q.imaginary(x*y), Q.imaginary(x) & Q.real(y)) is True
assert ask(Q.imaginary(x*y), Q.real(x) & Q.real(y)) is False
assert ask(Q.imaginary(I**x), Q.negative(x)) is None
assert ask(Q.imaginary(I**x), Q.positive(x)) is None
assert ask(Q.imaginary(I**x), Q.even(x)) is False
assert ask(Q.imaginary(I**x), Q.odd(x)) is True
assert ask(Q.imaginary(I**x), Q.imaginary(x)) is False
assert ask(Q.imaginary((2*I)**x), Q.imaginary(x)) is False
assert ask(Q.imaginary(x**0), Q.imaginary(x)) is False
assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.imaginary(y)) is None
assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.real(y)) is None
assert ask(Q.imaginary(x**y), Q.real(x) & Q.imaginary(y)) is None
assert ask(Q.imaginary(x**y), Q.real(x) & Q.real(y)) is None
assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.integer(y)) is None
assert ask(Q.imaginary(x**y), Q.imaginary(y) & Q.integer(x)) is None
assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.odd(y)) is True
assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.rational(y)) is None
assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.even(y)) is False
assert ask(Q.imaginary(x**y), Q.real(x) & Q.integer(y)) is False
assert ask(Q.imaginary(x**y), Q.positive(x) & Q.real(y)) is False
assert ask(Q.imaginary(x**y), Q.negative(x) & Q.real(y)) is None
assert ask(Q.imaginary(x**y), Q.negative(x) & Q.real(y) & ~Q.rational(y)) is False
assert ask(Q.imaginary(x**y), Q.integer(x) & Q.imaginary(y)) is None
assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y) & Q.integer(2*y)) is True
assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y) & ~Q.integer(2*y)) is False
assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y)) is None
assert ask(Q.imaginary(x**y), Q.real(x) & Q.rational(y) & ~Q.integer(2*y)) is False
assert ask(Q.imaginary(x**y), Q.real(x) & Q.rational(y) & Q.integer(2*y)) is None
# logarithm
assert ask(Q.imaginary(log(I))) is True
assert ask(Q.imaginary(log(2*I))) is False
assert ask(Q.imaginary(log(I + 1))) is False
assert ask(Q.imaginary(log(x)), Q.complex(x)) is None
assert ask(Q.imaginary(log(x)), Q.imaginary(x)) is None
assert ask(Q.imaginary(log(x)), Q.positive(x)) is False
assert ask(Q.imaginary(log(exp(x))), Q.complex(x)) is None
assert ask(Q.imaginary(log(exp(x))), Q.imaginary(x)) is None # zoo/I/a+I*b
assert ask(Q.imaginary(log(exp(I)))) is True
# exponential
assert ask(Q.imaginary(exp(x)**x), Q.imaginary(x)) is False
eq = Pow(exp(pi*I*x, evaluate=False), x, evaluate=False)
assert ask(Q.imaginary(eq), Q.even(x)) is False
eq = Pow(exp(pi*I*x/2, evaluate=False), x, evaluate=False)
assert ask(Q.imaginary(eq), Q.odd(x)) is True
assert ask(Q.imaginary(exp(3*I*pi*x)**x), Q.integer(x)) is False
assert ask(Q.imaginary(exp(2*pi*I, evaluate=False))) is False
assert ask(Q.imaginary(exp(pi*I/2, evaluate=False))) is True
# issue 7886
assert ask(Q.imaginary(Pow(x, S.One/4)), Q.real(x) & Q.negative(x)) is False
def test_integer():
assert ask(Q.integer(x)) is None
assert ask(Q.integer(x), Q.integer(x)) is True
assert ask(Q.integer(x), ~Q.integer(x)) is False
assert ask(Q.integer(x), ~Q.real(x)) is False
assert ask(Q.integer(x), ~Q.positive(x)) is None
assert ask(Q.integer(x), Q.even(x) | Q.odd(x)) is True
assert ask(Q.integer(2*x), Q.integer(x)) is True
assert ask(Q.integer(2*x), Q.even(x)) is True
assert ask(Q.integer(2*x), Q.prime(x)) is True
assert ask(Q.integer(2*x), Q.rational(x)) is None
assert ask(Q.integer(2*x), Q.real(x)) is None
assert ask(Q.integer(sqrt(2)*x), Q.integer(x)) is False
assert ask(Q.integer(sqrt(2)*x), Q.irrational(x)) is None
assert ask(Q.integer(x/2), Q.odd(x)) is False
assert ask(Q.integer(x/2), Q.even(x)) is True
assert ask(Q.integer(x/3), Q.odd(x)) is None
assert ask(Q.integer(x/3), Q.even(x)) is None
def test_negative():
assert ask(Q.negative(x), Q.negative(x)) is True
assert ask(Q.negative(x), Q.positive(x)) is False
assert ask(Q.negative(x), ~Q.real(x)) is False
assert ask(Q.negative(x), Q.prime(x)) is False
assert ask(Q.negative(x), ~Q.prime(x)) is None
assert ask(Q.negative(-x), Q.positive(x)) is True
assert ask(Q.negative(-x), ~Q.positive(x)) is None
assert ask(Q.negative(-x), Q.negative(x)) is False
assert ask(Q.negative(-x), Q.positive(x)) is True
assert ask(Q.negative(x - 1), Q.negative(x)) is True
assert ask(Q.negative(x + y)) is None
assert ask(Q.negative(x + y), Q.negative(x)) is None
assert ask(Q.negative(x + y), Q.negative(x) & Q.negative(y)) is True
assert ask(Q.negative(x + y), Q.negative(x) & Q.nonpositive(y)) is True
assert ask(Q.negative(2 + I)) is False
# although this could be False, it is representative of expressions
# that don't evaluate to a zero with precision
assert ask(Q.negative(cos(I)**2 + sin(I)**2 - 1)) is None
assert ask(Q.negative(-I + I*(cos(2)**2 + sin(2)**2))) is None
assert ask(Q.negative(x**2)) is None
assert ask(Q.negative(x**2), Q.real(x)) is False
assert ask(Q.negative(x**1.4), Q.real(x)) is None
assert ask(Q.negative(x**I), Q.positive(x)) is None
assert ask(Q.negative(x*y)) is None
assert ask(Q.negative(x*y), Q.positive(x) & Q.positive(y)) is False
assert ask(Q.negative(x*y), Q.positive(x) & Q.negative(y)) is True
assert ask(Q.negative(x*y), Q.complex(x) & Q.complex(y)) is None
assert ask(Q.negative(x**y)) is None
assert ask(Q.negative(x**y), Q.negative(x) & Q.even(y)) is False
assert ask(Q.negative(x**y), Q.negative(x) & Q.odd(y)) is True
assert ask(Q.negative(x**y), Q.positive(x) & Q.integer(y)) is False
assert ask(Q.negative(Abs(x))) is False
def test_nonzero():
assert ask(Q.nonzero(x)) is None
assert ask(Q.nonzero(x), Q.real(x)) is None
assert ask(Q.nonzero(x), Q.positive(x)) is True
assert ask(Q.nonzero(x), Q.negative(x)) is True
assert ask(Q.nonzero(x), Q.negative(x) | Q.positive(x)) is True
assert ask(Q.nonzero(x + y)) is None
assert ask(Q.nonzero(x + y), Q.positive(x) & Q.positive(y)) is True
assert ask(Q.nonzero(x + y), Q.positive(x) & Q.negative(y)) is None
assert ask(Q.nonzero(x + y), Q.negative(x) & Q.negative(y)) is True
assert ask(Q.nonzero(2*x)) is None
assert ask(Q.nonzero(2*x), Q.positive(x)) is True
assert ask(Q.nonzero(2*x), Q.negative(x)) is True
assert ask(Q.nonzero(x*y), Q.nonzero(x)) is None
assert ask(Q.nonzero(x*y), Q.nonzero(x) & Q.nonzero(y)) is True
assert ask(Q.nonzero(x**y), Q.nonzero(x)) is True
assert ask(Q.nonzero(Abs(x))) is None
assert ask(Q.nonzero(Abs(x)), Q.nonzero(x)) is True
assert ask(Q.nonzero(log(exp(2*I)))) is False
# although this could be False, it is representative of expressions
# that don't evaluate to a zero with precision
assert ask(Q.nonzero(cos(1)**2 + sin(1)**2 - 1)) is None
def test_zero():
assert ask(Q.zero(x)) is None
assert ask(Q.zero(x), Q.real(x)) is None
assert ask(Q.zero(x), Q.positive(x)) is False
assert ask(Q.zero(x), Q.negative(x)) is False
assert ask(Q.zero(x), Q.negative(x) | Q.positive(x)) is False
assert ask(Q.zero(x), Q.nonnegative(x) & Q.nonpositive(x)) is True
assert ask(Q.zero(x + y)) is None
assert ask(Q.zero(x + y), Q.positive(x) & Q.positive(y)) is False
assert ask(Q.zero(x + y), Q.positive(x) & Q.negative(y)) is None
assert ask(Q.zero(x + y), Q.negative(x) & Q.negative(y)) is False
assert ask(Q.zero(2*x)) is None
assert ask(Q.zero(2*x), Q.positive(x)) is False
assert ask(Q.zero(2*x), Q.negative(x)) is False
assert ask(Q.zero(x*y), Q.nonzero(x)) is None
assert ask(Q.zero(Abs(x))) is None
assert ask(Q.zero(Abs(x)), Q.zero(x)) is True
assert ask(Q.integer(x), Q.zero(x)) is True
assert ask(Q.even(x), Q.zero(x)) is True
assert ask(Q.odd(x), Q.zero(x)) is False
assert ask(Q.zero(x), Q.even(x)) is None
assert ask(Q.zero(x), Q.odd(x)) is False
assert ask(Q.zero(x) | Q.zero(y), Q.zero(x*y)) is True
def test_odd():
assert ask(Q.odd(x)) is None
assert ask(Q.odd(x), Q.odd(x)) is True
assert ask(Q.odd(x), Q.integer(x)) is None
assert ask(Q.odd(x), ~Q.integer(x)) is False
assert ask(Q.odd(x), Q.rational(x)) is None
assert ask(Q.odd(x), Q.positive(x)) is None
assert ask(Q.odd(-x), Q.odd(x)) is True
assert ask(Q.odd(2*x)) is None
assert ask(Q.odd(2*x), Q.integer(x)) is False
assert ask(Q.odd(2*x), Q.odd(x)) is False
assert ask(Q.odd(2*x), Q.irrational(x)) is False
assert ask(Q.odd(2*x), ~Q.integer(x)) is None
assert ask(Q.odd(3*x), Q.integer(x)) is None
assert ask(Q.odd(x/3), Q.odd(x)) is None
assert ask(Q.odd(x/3), Q.even(x)) is None
assert ask(Q.odd(x + 1), Q.even(x)) is True
assert ask(Q.odd(x + 2), Q.even(x)) is False
assert ask(Q.odd(x + 2), Q.odd(x)) is True
assert ask(Q.odd(3 - x), Q.odd(x)) is False
assert ask(Q.odd(3 - x), Q.even(x)) is True
assert ask(Q.odd(3 + x), Q.odd(x)) is False
assert ask(Q.odd(3 + x), Q.even(x)) is True
assert ask(Q.odd(x + y), Q.odd(x) & Q.odd(y)) is False
assert ask(Q.odd(x + y), Q.odd(x) & Q.even(y)) is True
assert ask(Q.odd(x - y), Q.even(x) & Q.odd(y)) is True
assert ask(Q.odd(x - y), Q.odd(x) & Q.odd(y)) is False
assert ask(Q.odd(x + y + z), Q.odd(x) & Q.odd(y) & Q.even(z)) is False
assert ask(Q.odd(x + y + z + t),
Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) is None
assert ask(Q.odd(2*x + 1), Q.integer(x)) is True
assert ask(Q.odd(2*x + y), Q.integer(x) & Q.odd(y)) is True
assert ask(Q.odd(2*x + y), Q.integer(x) & Q.even(y)) is False
assert ask(Q.odd(2*x + y), Q.integer(x) & Q.integer(y)) is None
assert ask(Q.odd(x*y), Q.odd(x) & Q.even(y)) is False
assert ask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True
assert ask(Q.odd(2*x*y), Q.rational(x) & Q.rational(x)) is None
assert ask(Q.odd(2*x*y), Q.irrational(x) & Q.irrational(x)) is None
assert ask(Q.odd(Abs(x)), Q.odd(x)) is True
assert ask(Q.odd((-1)**n), Q.integer(n)) is True
assert ask(Q.odd(k**2), Q.even(k)) is False
assert ask(Q.odd(n**2), Q.odd(n)) is True
assert ask(Q.odd(3**k), Q.even(k)) is None
assert ask(Q.odd(k**m), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None
assert ask(Q.odd(n**m), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is True
assert ask(Q.odd(k**p), Q.even(k) & Q.integer(p) & Q.positive(p)) is False
assert ask(Q.odd(n**p), Q.odd(n) & Q.integer(p) & Q.positive(p)) is True
assert ask(Q.odd(m**k), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None
assert ask(Q.odd(p**k), Q.even(k) & Q.integer(p) & Q.positive(p)) is None
assert ask(Q.odd(m**n), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is None
assert ask(Q.odd(p**n), Q.odd(n) & Q.integer(p) & Q.positive(p)) is None
assert ask(Q.odd(k**x), Q.even(k)) is None
assert ask(Q.odd(n**x), Q.odd(n)) is None
assert ask(Q.odd(x*y), Q.integer(x) & Q.integer(y)) is None
assert ask(Q.odd(x*x), Q.integer(x)) is None
assert ask(Q.odd(x*(x + y)), Q.integer(x) & Q.odd(y)) is False
assert ask(Q.odd(x*(x + y)), Q.integer(x) & Q.even(y)) is None
@XFAIL
def test_oddness_in_ternary_integer_product_with_odd():
# Tests that oddness inference is independent of term ordering.
# Term ordering at the point of testing depends on SymPy's symbol order, so
# we try to force a different order by modifying symbol names.
assert ask(Q.odd(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is False
assert ask(Q.odd(y*x*(x + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is False
def test_oddness_in_ternary_integer_product_with_even():
assert ask(Q.odd(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.even(z)) is None
def test_prime():
assert ask(Q.prime(x), Q.prime(x)) is True
assert ask(Q.prime(x), ~Q.prime(x)) is False
assert ask(Q.prime(x), Q.integer(x)) is None
assert ask(Q.prime(x), ~Q.integer(x)) is False
assert ask(Q.prime(2*x), Q.integer(x)) is None
assert ask(Q.prime(x*y)) is None
assert ask(Q.prime(x*y), Q.prime(x)) is None
assert ask(Q.prime(x*y), Q.integer(x) & Q.integer(y)) is None
assert ask(Q.prime(4*x), Q.integer(x)) is False
assert ask(Q.prime(4*x)) is None
assert ask(Q.prime(x**2), Q.integer(x)) is False
assert ask(Q.prime(x**2), Q.prime(x)) is False
assert ask(Q.prime(x**y), Q.integer(x) & Q.integer(y)) is False
def test_positive():
assert ask(Q.positive(x), Q.positive(x)) is True
assert ask(Q.positive(x), Q.negative(x)) is False
assert ask(Q.positive(x), Q.nonzero(x)) is None
assert ask(Q.positive(-x), Q.positive(x)) is False
assert ask(Q.positive(-x), Q.negative(x)) is True
assert ask(Q.positive(x + y), Q.positive(x) & Q.positive(y)) is True
assert ask(Q.positive(x + y), Q.positive(x) & Q.nonnegative(y)) is True
assert ask(Q.positive(x + y), Q.positive(x) & Q.negative(y)) is None
assert ask(Q.positive(x + y), Q.positive(x) & Q.imaginary(y)) is False
assert ask(Q.positive(2*x), Q.positive(x)) is True
assumptions = Q.positive(x) & Q.negative(y) & Q.negative(z) & Q.positive(w)
assert ask(Q.positive(x*y*z)) is None
assert ask(Q.positive(x*y*z), assumptions) is True
assert ask(Q.positive(-x*y*z), assumptions) is False
assert ask(Q.positive(x**I), Q.positive(x)) is None
assert ask(Q.positive(x**2), Q.positive(x)) is True
assert ask(Q.positive(x**2), Q.negative(x)) is True
assert ask(Q.positive(x**3), Q.negative(x)) is False
assert ask(Q.positive(1/(1 + x**2)), Q.real(x)) is True
assert ask(Q.positive(2**I)) is False
assert ask(Q.positive(2 + I)) is False
# although this could be False, it is representative of expressions
# that don't evaluate to a zero with precision
assert ask(Q.positive(cos(I)**2 + sin(I)**2 - 1)) is None
assert ask(Q.positive(-I + I*(cos(2)**2 + sin(2)**2))) is None
#exponential
assert ask(Q.positive(exp(x)), Q.real(x)) is True
assert ask(~Q.negative(exp(x)), Q.real(x)) is True
assert ask(Q.positive(x + exp(x)), Q.real(x)) is None
assert ask(Q.positive(exp(x)), Q.imaginary(x)) is None
assert ask(Q.positive(exp(2*pi*I, evaluate=False)), Q.imaginary(x)) is True
assert ask(Q.negative(exp(pi*I, evaluate=False)), Q.imaginary(x)) is True
assert ask(Q.positive(exp(x*pi*I)), Q.even(x)) is True
assert ask(Q.positive(exp(x*pi*I)), Q.odd(x)) is False
assert ask(Q.positive(exp(x*pi*I)), Q.real(x)) is None
# logarithm
assert ask(Q.positive(log(x)), Q.imaginary(x)) is False
assert ask(Q.positive(log(x)), Q.negative(x)) is False
assert ask(Q.positive(log(x)), Q.positive(x)) is None
assert ask(Q.positive(log(x + 2)), Q.positive(x)) is True
# factorial
assert ask(Q.positive(factorial(x)), Q.integer(x) & Q.positive(x))
assert ask(Q.positive(factorial(x)), Q.integer(x)) is None
#absolute value
assert ask(Q.positive(Abs(x))) is None # Abs(0) = 0
assert ask(Q.positive(Abs(x)), Q.positive(x)) is True
def test_nonpositive():
assert ask(Q.nonpositive(-1))
assert ask(Q.nonpositive(0))
assert ask(Q.nonpositive(1)) is False
assert ask(~Q.positive(x), Q.nonpositive(x))
assert ask(Q.nonpositive(x), Q.positive(x)) is False
assert ask(Q.nonpositive(sqrt(-1))) is False
assert ask(Q.nonpositive(x), Q.imaginary(x)) is False
def test_nonnegative():
assert ask(Q.nonnegative(-1)) is False
assert ask(Q.nonnegative(0))
assert ask(Q.nonnegative(1))
assert ask(~Q.negative(x), Q.nonnegative(x))
assert ask(Q.nonnegative(x), Q.negative(x)) is False
assert ask(Q.nonnegative(sqrt(-1))) is False
assert ask(Q.nonnegative(x), Q.imaginary(x)) is False
def test_real_basic():
assert ask(Q.real(x)) is None
assert ask(Q.real(x), Q.real(x)) is True
assert ask(Q.real(x), Q.nonzero(x)) is True
assert ask(Q.real(x), Q.positive(x)) is True
assert ask(Q.real(x), Q.negative(x)) is True
assert ask(Q.real(x), Q.integer(x)) is True
assert ask(Q.real(x), Q.even(x)) is True
assert ask(Q.real(x), Q.prime(x)) is True
assert ask(Q.real(x/sqrt(2)), Q.real(x)) is True
assert ask(Q.real(x/sqrt(-2)), Q.real(x)) is False
assert ask(Q.real(x + 1), Q.real(x)) is True
assert ask(Q.real(x + I), Q.real(x)) is False
assert ask(Q.real(x + I), Q.complex(x)) is None
assert ask(Q.real(2*x), Q.real(x)) is True
assert ask(Q.real(I*x), Q.real(x)) is False
assert ask(Q.real(I*x), Q.imaginary(x)) is True
assert ask(Q.real(I*x), Q.complex(x)) is None
@slow
def test_real_pow():
assert ask(Q.real(x**2), Q.real(x)) is True
assert ask(Q.real(sqrt(x)), Q.negative(x)) is False
assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) is True
assert ask(Q.real(x**y), Q.real(x) & Q.real(y)) is None
assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) is True
assert ask(Q.real(x**y), Q.imaginary(x) & Q.imaginary(y)) is None # I**I or (2*I)**I
assert ask(Q.real(x**y), Q.imaginary(x) & Q.real(y)) is None # I**1 or I**0
assert ask(Q.real(x**y), Q.real(x) & Q.imaginary(y)) is None # could be exp(2*pi*I) or 2**I
assert ask(Q.real(x**0), Q.imaginary(x)) is True
assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) is True
assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) is True
assert ask(Q.real(x**y), Q.real(x) & Q.rational(y)) is None
assert ask(Q.real(x**y), Q.imaginary(x) & Q.integer(y)) is None
assert ask(Q.real(x**y), Q.imaginary(x) & Q.odd(y)) is False
assert ask(Q.real(x**y), Q.imaginary(x) & Q.even(y)) is True
assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.rational(y/z) & Q.even(z) & Q.positive(x)) is True
assert ask(Q.real(x**(y/z)), Q.real(x) & Q.rational(y/z) & Q.even(z) & Q.negative(x)) is False
assert ask(Q.real(x**(y/z)), Q.real(x) & Q.integer(y/z)) is True
assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.positive(x)) is True
assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.negative(x)) is False
assert ask(Q.real((-I)**i), Q.imaginary(i)) is True
assert ask(Q.real(I**i), Q.imaginary(i)) is True
assert ask(Q.real(i**i), Q.imaginary(i)) is None # i might be 2*I
assert ask(Q.real(x**i), Q.imaginary(i)) is None # x could be 0
assert ask(Q.real(x**(I*pi/log(x))), Q.real(x)) is True
def test_real_functions():
# trigonometric functions
assert ask(Q.real(sin(x))) is None
assert ask(Q.real(cos(x))) is None
assert ask(Q.real(sin(x)), Q.real(x)) is True
assert ask(Q.real(cos(x)), Q.real(x)) is True
# exponential function
assert ask(Q.real(exp(x))) is None
assert ask(Q.real(exp(x)), Q.real(x)) is True
assert ask(Q.real(x + exp(x)), Q.real(x)) is True
assert ask(Q.real(exp(2*pi*I, evaluate=False))) is True
assert ask(Q.real(exp(pi*I, evaluate=False))) is True
assert ask(Q.real(exp(pi*I/2, evaluate=False))) is False
# logarithm
assert ask(Q.real(log(I))) is False
assert ask(Q.real(log(2*I))) is False
assert ask(Q.real(log(I + 1))) is False
assert ask(Q.real(log(x)), Q.complex(x)) is None
assert ask(Q.real(log(x)), Q.imaginary(x)) is False
assert ask(Q.real(log(exp(x))), Q.imaginary(x)) is None # exp(2*pi*I) is 1, log(exp(pi*I)) is pi*I (disregarding periodicity)
assert ask(Q.real(log(exp(x))), Q.complex(x)) is None
eq = Pow(exp(2*pi*I*x, evaluate=False), x, evaluate=False)
assert ask(Q.real(eq), Q.integer(x)) is True
assert ask(Q.real(exp(x)**x), Q.imaginary(x)) is True
assert ask(Q.real(exp(x)**x), Q.complex(x)) is None
# Q.complexes
assert ask(Q.real(re(x))) is True
assert ask(Q.real(im(x))) is True
def test_algebraic():
assert ask(Q.algebraic(x)) is None
assert ask(Q.algebraic(I)) is True
assert ask(Q.algebraic(2*I)) is True
assert ask(Q.algebraic(I/3)) is True
assert ask(Q.algebraic(sqrt(7))) is True
assert ask(Q.algebraic(2*sqrt(7))) is True
assert ask(Q.algebraic(sqrt(7)/3)) is True
assert ask(Q.algebraic(I*sqrt(3))) is True
assert ask(Q.algebraic(sqrt(1 + I*sqrt(3)))) is True
assert ask(Q.algebraic((1 + I*sqrt(3)**(S(17)/31)))) is True
assert ask(Q.algebraic((1 + I*sqrt(3)**(S(17)/pi)))) is False
for f in [exp, sin, tan, asin, atan, cos]:
assert ask(Q.algebraic(f(7))) is False
assert ask(Q.algebraic(f(7, evaluate=False))) is False
assert ask(Q.algebraic(f(0, evaluate=False))) is True
assert ask(Q.algebraic(f(x)), Q.algebraic(x)) is None
assert ask(Q.algebraic(f(x)), Q.algebraic(x) & Q.nonzero(x)) is False
for g in [log, acos]:
assert ask(Q.algebraic(g(7))) is False
assert ask(Q.algebraic(g(7, evaluate=False))) is False
assert ask(Q.algebraic(g(1, evaluate=False))) is True
assert ask(Q.algebraic(g(x)), Q.algebraic(x)) is None
assert ask(Q.algebraic(g(x)), Q.algebraic(x) & Q.nonzero(x - 1)) is False
for h in [cot, acot]:
assert ask(Q.algebraic(h(7))) is False
assert ask(Q.algebraic(h(7, evaluate=False))) is False
assert ask(Q.algebraic(h(x)), Q.algebraic(x)) is False
assert ask(Q.algebraic(sqrt(sin(7)))) is False
assert ask(Q.algebraic(sqrt(y + I*sqrt(7)))) is None
assert ask(Q.algebraic(2.47)) is True
assert ask(Q.algebraic(x), Q.transcendental(x)) is False
assert ask(Q.transcendental(x), Q.algebraic(x)) is False
def test_global():
"""Test ask with global assumptions"""
assert ask(Q.integer(x)) is None
global_assumptions.add(Q.integer(x))
assert ask(Q.integer(x)) is True
global_assumptions.clear()
assert ask(Q.integer(x)) is None
def test_custom_context():
"""Test ask with custom assumptions context"""
assert ask(Q.integer(x)) is None
local_context = AssumptionsContext()
local_context.add(Q.integer(x))
assert ask(Q.integer(x), context=local_context) is True
assert ask(Q.integer(x)) is None
def test_functions_in_assumptions():
assert ask(Q.negative(x), Q.real(x) >> Q.positive(x)) is False
assert ask(Q.negative(x), Equivalent(Q.real(x), Q.positive(x))) is False
assert ask(Q.negative(x), Xor(Q.real(x), Q.negative(x))) is False
def test_composite_ask():
assert ask(Q.negative(x) & Q.integer(x),
assumptions=Q.real(x) >> Q.positive(x)) is False
def test_composite_proposition():
assert ask(True) is True
assert ask(False) is False
assert ask(~Q.negative(x), Q.positive(x)) is True
assert ask(~Q.real(x), Q.commutative(x)) is None
assert ask(Q.negative(x) & Q.integer(x), Q.positive(x)) is False
assert ask(Q.negative(x) & Q.integer(x)) is None
assert ask(Q.real(x) | Q.integer(x), Q.positive(x)) is True
assert ask(Q.real(x) | Q.integer(x)) is None
assert ask(Q.real(x) >> Q.positive(x), Q.negative(x)) is False
assert ask(Implies(
Q.real(x), Q.positive(x), evaluate=False), Q.negative(x)) is False
assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False)) is None
assert ask(Equivalent(Q.integer(x), Q.even(x)), Q.even(x)) is True
assert ask(Equivalent(Q.integer(x), Q.even(x))) is None
assert ask(Equivalent(Q.positive(x), Q.integer(x)), Q.integer(x)) is None
assert ask(Q.real(x) | Q.integer(x), Q.real(x) | Q.integer(x)) is True
def test_tautology():
assert ask(Q.real(x) | ~Q.real(x)) is True
assert ask(Q.real(x) & ~Q.real(x)) is False
def test_composite_assumptions():
assert ask(Q.real(x), Q.real(x) & Q.real(y)) is True
assert ask(Q.positive(x), Q.positive(x) | Q.positive(y)) is None
assert ask(Q.positive(x), Q.real(x) >> Q.positive(y)) is None
assert ask(Q.real(x), ~(Q.real(x) >> Q.real(y))) is True
def test_incompatible_resolutors():
class Prime2AskHandler(AskHandler):
@staticmethod
def Number(expr, assumptions):
return True
register_handler('prime', Prime2AskHandler)
raises(ValueError, lambda: ask(Q.prime(4)))
remove_handler('prime', Prime2AskHandler)
class InconclusiveHandler(AskHandler):
@staticmethod
def Number(expr, assumptions):
return None
register_handler('prime', InconclusiveHandler)
assert ask(Q.prime(3)) is True
remove_handler('prime', InconclusiveHandler)
def test_key_extensibility():
"""test that you can add keys to the ask system at runtime"""
# make sure the key is not defined
raises(AttributeError, lambda: ask(Q.my_key(x)))
class MyAskHandler(AskHandler):
@staticmethod
def Symbol(expr, assumptions):
return True
register_handler('my_key', MyAskHandler)
assert ask(Q.my_key(x)) is True
assert ask(Q.my_key(x + 1)) is None
remove_handler('my_key', MyAskHandler)
del Q.my_key
raises(AttributeError, lambda: ask(Q.my_key(x)))
def test_type_extensibility():
"""test that new types can be added to the ask system at runtime
We create a custom type MyType, and override ask Q.prime=True with handler
MyAskHandler for this type
TODO: test incompatible resolutors
"""
from sympy.core import Basic
class MyType(Basic):
pass
class MyAskHandler(AskHandler):
@staticmethod
def MyType(expr, assumptions):
return True
a = MyType()
register_handler(Q.prime, MyAskHandler)
assert ask(Q.prime(a)) is True
def test_single_fact_lookup():
known_facts = And(Implies(Q.integer, Q.rational),
Implies(Q.rational, Q.real),
Implies(Q.real, Q.complex))
known_facts_keys = {Q.integer, Q.rational, Q.real, Q.complex}
known_facts_cnf = to_cnf(known_facts)
mapping = single_fact_lookup(known_facts_keys, known_facts_cnf)
assert mapping[Q.rational] == {Q.real, Q.rational, Q.complex}
def test_compute_known_facts():
known_facts = And(Implies(Q.integer, Q.rational),
Implies(Q.rational, Q.real),
Implies(Q.real, Q.complex))
known_facts_keys = {Q.integer, Q.rational, Q.real, Q.complex}
s = compute_known_facts(known_facts, known_facts_keys)
@slow
def test_known_facts_consistent():
""""Test that ask_generated.py is up-to-date"""
from sympy.assumptions.ask import get_known_facts, get_known_facts_keys
from os.path import abspath, dirname, join
filename = join(dirname(dirname(abspath(__file__))), 'ask_generated.py')
with open(filename, 'r') as f:
assert f.read() == \
compute_known_facts(get_known_facts(), get_known_facts_keys())
def test_Add_queries():
assert ask(Q.prime(12345678901234567890 + (cos(1)**2 + sin(1)**2))) is True
assert ask(Q.even(Add(S(2), S(2), evaluate=0))) is True
assert ask(Q.prime(Add(S(2), S(2), evaluate=0))) is False
assert ask(Q.integer(Add(S(2), S(2), evaluate=0))) is True
def test_positive_assuming():
with assuming(Q.positive(x + 1)):
assert not ask(Q.positive(x))
def test_issue_5421():
raises(TypeError, lambda: ask(pi/log(x), Q.real))
def test_issue_3906():
raises(TypeError, lambda: ask(Q.positive))
def test_issue_5833():
assert ask(Q.positive(log(x)**2), Q.positive(x)) is None
assert ask(~Q.negative(log(x)**2), Q.positive(x)) is True
def test_issue_6732():
raises(ValueError, lambda: ask(Q.positive(x), Q.positive(x) & Q.negative(x)))
raises(ValueError, lambda: ask(Q.negative(x), Q.positive(x) & Q.negative(x)))
def test_issue_7246():
assert ask(Q.positive(atan(p)), Q.positive(p)) is True
assert ask(Q.positive(atan(p)), Q.negative(p)) is False
assert ask(Q.positive(atan(p)), Q.zero(p)) is False
assert ask(Q.positive(atan(x))) is None
assert ask(Q.positive(asin(p)), Q.positive(p)) is None
assert ask(Q.positive(asin(p)), Q.zero(p)) is None
assert ask(Q.positive(asin(Rational(1, 7)))) is True
assert ask(Q.positive(asin(x)), Q.positive(x) & Q.nonpositive(x - 1)) is True
assert ask(Q.positive(asin(x)), Q.negative(x) & Q.nonnegative(x + 1)) is False
assert ask(Q.positive(acos(p)), Q.positive(p)) is None
assert ask(Q.positive(acos(Rational(1, 7)))) is True
assert ask(Q.positive(acos(x)), Q.nonnegative(x + 1) & Q.nonpositive(x - 1)) is True
assert ask(Q.positive(acos(x)), Q.nonnegative(x - 1)) is None
assert ask(Q.positive(acot(x)), Q.positive(x)) is True
assert ask(Q.positive(acot(x)), Q.real(x)) is True
assert ask(Q.positive(acot(x)), Q.imaginary(x)) is False
assert ask(Q.positive(acot(x))) is None
@XFAIL
def test_issue_7246_failing():
#Move this test to test_issue_7246 once
#the new assumptions module is improved.
assert ask(Q.positive(acos(x)), Q.zero(x)) is True
def test_deprecated_Q_bounded():
with warns_deprecated_sympy():
Q.bounded
def test_deprecated_Q_infinity():
with warns_deprecated_sympy():
Q.infinity
def test_check_old_assumption():
x = symbols('x', real=True)
assert ask(Q.real(x)) is True
assert ask(Q.imaginary(x)) is False
assert ask(Q.complex(x)) is True
x = symbols('x', imaginary=True)
assert ask(Q.real(x)) is False
assert ask(Q.imaginary(x)) is True
assert ask(Q.complex(x)) is True
x = symbols('x', complex=True)
assert ask(Q.real(x)) is None
assert ask(Q.complex(x)) is True
x = symbols('x', positive=True)
assert ask(Q.positive(x)) is True
assert ask(Q.negative(x)) is False
assert ask(Q.real(x)) is True
x = symbols('x', commutative=False)
assert ask(Q.commutative(x)) is False
x = symbols('x', negative=True)
assert ask(Q.positive(x)) is False
assert ask(Q.negative(x)) is True
x = symbols('x', nonnegative=True)
assert ask(Q.negative(x)) is False
assert ask(Q.positive(x)) is None
assert ask(Q.zero(x)) is None
x = symbols('x', finite=True)
assert ask(Q.finite(x)) is True
x = symbols('x', prime=True)
assert ask(Q.prime(x)) is True
assert ask(Q.composite(x)) is False
x = symbols('x', composite=True)
assert ask(Q.prime(x)) is False
assert ask(Q.composite(x)) is True
x = symbols('x', even=True)
assert ask(Q.even(x)) is True
assert ask(Q.odd(x)) is False
x = symbols('x', odd=True)
assert ask(Q.even(x)) is False
assert ask(Q.odd(x)) is True
x = symbols('x', nonzero=True)
assert ask(Q.nonzero(x)) is True
assert ask(Q.zero(x)) is False
x = symbols('x', zero=True)
assert ask(Q.zero(x)) is True
x = symbols('x', integer=True)
assert ask(Q.integer(x)) is True
x = symbols('x', rational=True)
assert ask(Q.rational(x)) is True
assert ask(Q.irrational(x)) is False
x = symbols('x', irrational=True)
assert ask(Q.irrational(x)) is True
assert ask(Q.rational(x)) is False
def test_issue_9636():
assert ask(Q.integer(1.0)) is False
assert ask(Q.prime(3.0)) is False
assert ask(Q.composite(4.0)) is False
assert ask(Q.even(2.0)) is False
assert ask(Q.odd(3.0)) is False
@XFAIL
def test_autosimp_fails():
# Unxfail after fixing issue #9807
assert ask(Q.imaginary(0**I)) is False
assert ask(Q.imaginary(0**(-I))) is False
assert ask(Q.real(0**I)) is False
assert ask(Q.real(0**(-I))) is False
|
103b799aa46f4ebdf4a0db63849d5369a320012a4f2d9b54754c550aedf4a9a0
|
"""
This module implements some special functions that commonly appear in
combinatorial contexts (e.g. in power series); in particular,
sequences of rational numbers such as Bernoulli and Fibonacci numbers.
Factorials, binomial coefficients and related functions are located in
the separate 'factorials' module.
"""
from __future__ import print_function, division
from sympy.core import S, Symbol, Rational, Integer, Add, Dummy
from sympy.core.compatibility import as_int, SYMPY_INTS, range
from sympy.core.cache import cacheit
from sympy.core.function import Function, expand_mul
from sympy.core.numbers import E, pi
from sympy.core.relational import LessThan, StrictGreaterThan
from sympy.functions.combinatorial.factorials import binomial, factorial
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.trigonometric import sin, cos, cot
from sympy.functions.elementary.miscellaneous import sqrt, cbrt
from sympy.utilities.memoization import recurrence_memo
from sympy.ntheory import isprime
from mpmath import bernfrac, workprec
from mpmath.libmp import ifib as _ifib
def _product(a, b):
p = 1
for k in range(a, b + 1):
p *= k
return p
# Dummy symbol used for computing polynomial sequences
_sym = Symbol('x')
_symbols = Function('x')
#----------------------------------------------------------------------------#
# #
# Carmichael numbers #
# #
#----------------------------------------------------------------------------#
class carmichael(Function):
"""
Carmichael Numbers:
Certain cryptographic algorithms make use of big prime numbers.
However, checking whether a big number is prime is not so easy.
Randomized prime number checking tests exist that offer a high degree of confidence of
accurate determination at low cost, such as the Fermat test.
Let 'a' be a random number between 2 and n - 1, where n is the number whose primality we are testing.
Then, n is probably prime if it satisfies the modular arithmetic congruence relation :
a^(n-1) = 1(mod n).
(where mod refers to the modulo operation)
If a number passes the Fermat test several times, then it is prime with a
high probability.
Unfortunately, certain composite numbers (non-primes) still pass the Fermat test
with every number smaller than themselves.
These numbers are called Carmichael numbers.
A Carmichael number will pass a Fermat primality test to every base b relatively prime to the number,
even though it is not actually prime. This makes tests based on Fermat's Little Theorem less effective than
strong probable prime tests such as the Baillie-PSW primality test and the Miller-Rabin primality test.
mr functions given in sympy/sympy/ntheory/primetest.py will produce wrong results for each and every
carmichael number.
Examples
========
>>> from sympy import carmichael
>>> carmichael.find_first_n_carmichaels(5)
[561, 1105, 1729, 2465, 2821]
>>> carmichael.is_prime(2465)
False
>>> carmichael.is_prime(1729)
False
>>> carmichael.find_carmichael_numbers_in_range(0, 562)
[561]
>>> carmichael.find_carmichael_numbers_in_range(0,1000)
[561]
>>> carmichael.find_carmichael_numbers_in_range(0,2000)
[561, 1105, 1729]
References
==========
.. [1] https://en.wikipedia.org/wiki/Carmichael_number
.. [2] https://en.wikipedia.org/wiki/Fermat_primality_test
.. [3] https://www.jstor.org/stable/23248683?seq=1#metadata_info_tab_contents
"""
@staticmethod
def is_perfect_square(n):
from sympy.ntheory.primetest import is_square
if is_square(n):
return True
else:
return False
@staticmethod
def divides(p, n):
return n % p == 0
@staticmethod
def is_prime(n):
return isprime(n)
@staticmethod
def is_carmichael(n):
if n >= 0:
if (n == 1) or (carmichael.is_prime(n)) or (n % 2 == 0):
return False
divisors = list([1, n])
# get divisors
for i in range(3, n // 2 + 1, 2):
if n % i == 0:
divisors.append(i)
for i in divisors:
if carmichael.is_perfect_square(i) and i != 1:
return False
if carmichael.is_prime(i):
if not carmichael.divides(i - 1, n - 1):
return False
return True
else:
raise ValueError('The provided number must be greater than or equal to 0')
@staticmethod
def find_carmichael_numbers_in_range(x, y):
if 0 <= x <= y:
if x % 2 == 0:
return list([i for i in range(x + 1, y, 2) if carmichael.is_carmichael(i)])
else:
return list([i for i in range(x, y, 2) if carmichael.is_carmichael(i)])
else:
raise ValueError('The provided range is not valid. x and y must be non-negative integers and x <= y')
@staticmethod
def find_first_n_carmichaels(n):
i = 1
carmichaels = list()
while len(carmichaels) < n:
if carmichael.is_carmichael(i):
carmichaels.append(i)
i += 2
return carmichaels
#----------------------------------------------------------------------------#
# #
# Fibonacci numbers #
# #
#----------------------------------------------------------------------------#
class fibonacci(Function):
r"""
Fibonacci numbers / Fibonacci polynomials
The Fibonacci numbers are the integer sequence defined by the
initial terms `F_0 = 0`, `F_1 = 1` and the two-term recurrence
relation `F_n = F_{n-1} + F_{n-2}`. This definition
extended to arbitrary real and complex arguments using
the formula
.. math :: F_z = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5}
The Fibonacci polynomials are defined by `F_1(x) = 1`,
`F_2(x) = x`, and `F_n(x) = x*F_{n-1}(x) + F_{n-2}(x)` for `n > 2`.
For all positive integers `n`, `F_n(1) = F_n`.
* ``fibonacci(n)`` gives the `n^{th}` Fibonacci number, `F_n`
* ``fibonacci(n, x)`` gives the `n^{th}` Fibonacci polynomial in `x`, `F_n(x)`
Examples
========
>>> from sympy import fibonacci, Symbol
>>> [fibonacci(x) for x in range(11)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fibonacci(5, Symbol('t'))
t**4 + 3*t**2 + 1
References
==========
.. [1] https://en.wikipedia.org/wiki/Fibonacci_number
.. [2] http://mathworld.wolfram.com/FibonacciNumber.html
See Also
========
bell, bernoulli, catalan, euler, harmonic, lucas, genocchi, partition, tribonacci
"""
@staticmethod
def _fib(n):
return _ifib(n)
@staticmethod
@recurrence_memo([None, S.One, _sym])
def _fibpoly(n, prev):
return (prev[-2] + _sym*prev[-1]).expand()
@classmethod
def eval(cls, n, sym=None):
if n is S.Infinity:
return S.Infinity
if n.is_Integer:
n = int(n)
if n < 0:
return S.NegativeOne**(n + 1) * fibonacci(-n)
if sym is None:
return Integer(cls._fib(n))
else:
if n < 1:
raise ValueError("Fibonacci polynomials are defined "
"only for positive integer indices.")
return cls._fibpoly(n).subs(_sym, sym)
def _eval_rewrite_as_sqrt(self, n, **kwargs):
return 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5
def _eval_rewrite_as_GoldenRatio(self,n, **kwargs):
return (S.GoldenRatio**n - 1/(-S.GoldenRatio)**n)/(2*S.GoldenRatio-1)
#----------------------------------------------------------------------------#
# #
# Lucas numbers #
# #
#----------------------------------------------------------------------------#
class lucas(Function):
"""
Lucas numbers
Lucas numbers satisfy a recurrence relation similar to that of
the Fibonacci sequence, in which each term is the sum of the
preceding two. They are generated by choosing the initial
values `L_0 = 2` and `L_1 = 1`.
* ``lucas(n)`` gives the `n^{th}` Lucas number
Examples
========
>>> from sympy import lucas
>>> [lucas(x) for x in range(11)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
References
==========
.. [1] https://en.wikipedia.org/wiki/Lucas_number
.. [2] http://mathworld.wolfram.com/LucasNumber.html
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, genocchi, partition, tribonacci
"""
@classmethod
def eval(cls, n):
if n is S.Infinity:
return S.Infinity
if n.is_Integer:
return fibonacci(n + 1) + fibonacci(n - 1)
def _eval_rewrite_as_sqrt(self, n, **kwargs):
return 2**(-n)*((1 + sqrt(5))**n + (-sqrt(5) + 1)**n)
#----------------------------------------------------------------------------#
# #
# Tribonacci numbers #
# #
#----------------------------------------------------------------------------#
class tribonacci(Function):
r"""
Tribonacci numbers / Tribonacci polynomials
The Fibonacci numbers are the integer sequence defined by the
initial terms `T_0 = 0`, `T_1 = 1`, `T_2 = 1` and the three-term
recurrence relation `T_n = T_{n-1} + T_{n-2} + T_{n-3}`.
The Tribonacci polynomials are defined by `T_0(x) = 0`, `T_1(x) = 1`,
`T_2(x) = x^2`, and `T_n(x) = x^2 T_{n-1}(x) + x T_{n-2}(x) + T_{n-3}(x)`
for `n > 2`. For all positive integers `n`, `T_n(1) = T_n`.
* ``tribonacci(n)`` gives the `n^{th}` Tribonacci number, `T_n`
* ``tribonacci(n, x)`` gives the `n^{th}` Tribonacci polynomial in `x`, `T_n(x)`
Examples
========
>>> from sympy import tribonacci, Symbol
>>> [tribonacci(x) for x in range(11)]
[0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149]
>>> tribonacci(5, Symbol('t'))
t**8 + 3*t**5 + 3*t**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
.. [2] http://mathworld.wolfram.com/TribonacciNumber.html
.. [3] https://oeis.org/A000073
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition
"""
@staticmethod
@recurrence_memo([S.Zero, S.One, S.One])
def _trib(n, prev):
return (prev[-3] + prev[-2] + prev[-1])
@staticmethod
@recurrence_memo([S.Zero, S.One, _sym**2])
def _tribpoly(n, prev):
return (prev[-3] + _sym*prev[-2] + _sym**2*prev[-1]).expand()
@classmethod
def eval(cls, n, sym=None):
if n is S.Infinity:
return S.Infinity
if n.is_Integer:
n = int(n)
if n < 0:
raise NotImplementedError
if sym is None:
return Integer(cls._trib(n))
else:
if n < 0:
raise ValueError("Tribonacci polynomials are defined "
"only for non-negative integer indices.")
return cls._tribpoly(n).subs(_sym, sym)
def _eval_rewrite_as_sqrt(self, n, **kwargs):
w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2
a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3
b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3
c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3
Tn = (a**(n + 1)/((a - b)*(a - c))
+ b**(n + 1)/((b - a)*(b - c))
+ c**(n + 1)/((c - a)*(c - b)))
return Tn
def _eval_rewrite_as_TribonacciConstant(self, n, **kwargs):
b = cbrt(586 + 102*sqrt(33))
Tn = 3 * b * S.TribonacciConstant**n / (b**2 - 2*b + 4)
return floor(Tn + S.Half)
#----------------------------------------------------------------------------#
# #
# Bernoulli numbers #
# #
#----------------------------------------------------------------------------#
class bernoulli(Function):
r"""
Bernoulli numbers / Bernoulli polynomials
The Bernoulli numbers are a sequence of rational numbers
defined by `B_0 = 1` and the recursive relation (`n > 0`):
.. math :: 0 = \sum_{k=0}^n \binom{n+1}{k} B_k
They are also commonly defined by their exponential generating
function, which is `\frac{x}{e^x - 1}`. For odd indices > 1, the
Bernoulli numbers are zero.
The Bernoulli polynomials satisfy the analogous formula:
.. math :: B_n(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k}
Bernoulli numbers and Bernoulli polynomials are related as
`B_n(0) = B_n`.
We compute Bernoulli numbers using Ramanujan's formula:
.. math :: B_n = \frac{A(n) - S(n)}{\binom{n+3}{n}}
where:
.. math :: A(n) = \begin{cases} \frac{n+3}{3} &
n \equiv 0\ \text{or}\ 2 \pmod{6} \\
-\frac{n+3}{6} & n \equiv 4 \pmod{6} \end{cases}
and:
.. math :: S(n) = \sum_{k=1}^{[n/6]} \binom{n+3}{n-6k} B_{n-6k}
This formula is similar to the sum given in the definition, but
cuts 2/3 of the terms. For Bernoulli polynomials, we use the
formula in the definition.
* ``bernoulli(n)`` gives the nth Bernoulli number, `B_n`
* ``bernoulli(n, x)`` gives the nth Bernoulli polynomial in `x`, `B_n(x)`
Examples
========
>>> from sympy import bernoulli
>>> [bernoulli(n) for n in range(11)]
[1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
>>> bernoulli(1000001)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_number
.. [2] https://en.wikipedia.org/wiki/Bernoulli_polynomial
.. [3] http://mathworld.wolfram.com/BernoulliNumber.html
.. [4] http://mathworld.wolfram.com/BernoulliPolynomial.html
See Also
========
bell, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci
"""
# Calculates B_n for positive even n
@staticmethod
def _calc_bernoulli(n):
s = 0
a = int(binomial(n + 3, n - 6))
for j in range(1, n//6 + 1):
s += a * bernoulli(n - 6*j)
# Avoid computing each binomial coefficient from scratch
a *= _product(n - 6 - 6*j + 1, n - 6*j)
a //= _product(6*j + 4, 6*j + 9)
if n % 6 == 4:
s = -Rational(n + 3, 6) - s
else:
s = Rational(n + 3, 3) - s
return s / binomial(n + 3, n)
# We implement a specialized memoization scheme to handle each
# case modulo 6 separately
_cache = {0: S.One, 2: Rational(1, 6), 4: Rational(-1, 30)}
_highest = {0: 0, 2: 2, 4: 4}
@classmethod
def eval(cls, n, sym=None):
if n.is_Number:
if n.is_Integer and n.is_nonnegative:
if n is S.Zero:
return S.One
elif n is S.One:
if sym is None:
return -S.Half
else:
return sym - S.Half
# Bernoulli numbers
elif sym is None:
if n.is_odd:
return S.Zero
n = int(n)
# Use mpmath for enormous Bernoulli numbers
if n > 500:
p, q = bernfrac(n)
return Rational(int(p), int(q))
case = n % 6
highest_cached = cls._highest[case]
if n <= highest_cached:
return cls._cache[n]
# To avoid excessive recursion when, say, bernoulli(1000) is
# requested, calculate and cache the entire sequence ... B_988,
# B_994, B_1000 in increasing order
for i in range(highest_cached + 6, n + 6, 6):
b = cls._calc_bernoulli(i)
cls._cache[i] = b
cls._highest[case] = i
return b
# Bernoulli polynomials
else:
n, result = int(n), []
for k in range(n + 1):
result.append(binomial(n, k)*cls(k)*sym**(n - k))
return Add(*result)
else:
raise ValueError("Bernoulli numbers are defined only"
" for nonnegative integer indices.")
if sym is None:
if n.is_odd and (n - 1).is_positive:
return S.Zero
#----------------------------------------------------------------------------#
# #
# Bell numbers #
# #
#----------------------------------------------------------------------------#
class bell(Function):
r"""
Bell numbers / Bell polynomials
The Bell numbers satisfy `B_0 = 1` and
.. math:: B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k.
They are also given by:
.. math:: B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}.
The Bell polynomials are given by `B_0(x) = 1` and
.. math:: B_n(x) = x \sum_{k=1}^{n-1} \binom{n-1}{k-1} B_{k-1}(x).
The second kind of Bell polynomials (are sometimes called "partial" Bell
polynomials or incomplete Bell polynomials) are defined as
.. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) =
\sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n}
\frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!}
\left(\frac{x_1}{1!} \right)^{j_1}
\left(\frac{x_2}{2!} \right)^{j_2} \dotsb
\left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}.
* ``bell(n)`` gives the `n^{th}` Bell number, `B_n`.
* ``bell(n, x)`` gives the `n^{th}` Bell polynomial, `B_n(x)`.
* ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind,
`B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`.
Notes
=====
Not to be confused with Bernoulli numbers and Bernoulli polynomials,
which use the same notation.
Examples
========
>>> from sympy import bell, Symbol, symbols
>>> [bell(n) for n in range(11)]
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975]
>>> bell(30)
846749014511809332450147
>>> bell(4, Symbol('t'))
t**4 + 6*t**3 + 7*t**2 + t
>>> bell(6, 2, symbols('x:6')[1:])
6*x1*x5 + 15*x2*x4 + 10*x3**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Bell_number
.. [2] http://mathworld.wolfram.com/BellNumber.html
.. [3] http://mathworld.wolfram.com/BellPolynomial.html
See Also
========
bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci
"""
@staticmethod
@recurrence_memo([1, 1])
def _bell(n, prev):
s = 1
a = 1
for k in range(1, n):
a = a * (n - k) // k
s += a * prev[k]
return s
@staticmethod
@recurrence_memo([S.One, _sym])
def _bell_poly(n, prev):
s = 1
a = 1
for k in range(2, n + 1):
a = a * (n - k + 1) // (k - 1)
s += a * prev[k - 1]
return expand_mul(_sym * s)
@staticmethod
def _bell_incomplete_poly(n, k, symbols):
r"""
The second kind of Bell polynomials (incomplete Bell polynomials).
Calculated by recurrence formula:
.. math:: B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) =
\sum_{m=1}^{n-k+1}
\x_m \binom{n-1}{m-1} B_{n-m,k-1}(x_1, x_2, \dotsc, x_{n-m-k})
where
`B_{0,0} = 1;`
`B_{n,0} = 0; for n \ge 1`
`B_{0,k} = 0; for k \ge 1`
"""
if (n == 0) and (k == 0):
return S.One
elif (n == 0) or (k == 0):
return S.Zero
s = S.Zero
a = S.One
for m in range(1, n - k + 2):
s += a * bell._bell_incomplete_poly(
n - m, k - 1, symbols) * symbols[m - 1]
a = a * (n - m) / m
return expand_mul(s)
@classmethod
def eval(cls, n, k_sym=None, symbols=None):
if n is S.Infinity:
if k_sym is None:
return S.Infinity
else:
raise ValueError("Bell polynomial is not defined")
if n.is_negative or n.is_integer is False:
raise ValueError("a non-negative integer expected")
if n.is_Integer and n.is_nonnegative:
if k_sym is None:
return Integer(cls._bell(int(n)))
elif symbols is None:
return cls._bell_poly(int(n)).subs(_sym, k_sym)
else:
r = cls._bell_incomplete_poly(int(n), int(k_sym), symbols)
return r
def _eval_rewrite_as_Sum(self, n, k_sym=None, symbols=None, **kwargs):
from sympy import Sum
if (k_sym is not None) or (symbols is not None):
return self
# Dobinski's formula
if not n.is_nonnegative:
return self
k = Dummy('k', integer=True, nonnegative=True)
return 1 / E * Sum(k**n / factorial(k), (k, 0, S.Infinity))
#----------------------------------------------------------------------------#
# #
# Harmonic numbers #
# #
#----------------------------------------------------------------------------#
class harmonic(Function):
r"""
Harmonic numbers
The nth harmonic number is given by `\operatorname{H}_{n} =
1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}`.
More generally:
.. math:: \operatorname{H}_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m}
As `n \rightarrow \infty`, `\operatorname{H}_{n,m} \rightarrow \zeta(m)`,
the Riemann zeta function.
* ``harmonic(n)`` gives the nth harmonic number, `\operatorname{H}_n`
* ``harmonic(n, m)`` gives the nth generalized harmonic number
of order `m`, `\operatorname{H}_{n,m}`, where
``harmonic(n) == harmonic(n, 1)``
Examples
========
>>> from sympy import harmonic, oo
>>> [harmonic(n) for n in range(6)]
[0, 1, 3/2, 11/6, 25/12, 137/60]
>>> [harmonic(n, 2) for n in range(6)]
[0, 1, 5/4, 49/36, 205/144, 5269/3600]
>>> harmonic(oo, 2)
pi**2/6
>>> from sympy import Symbol, Sum
>>> n = Symbol("n")
>>> harmonic(n).rewrite(Sum)
Sum(1/_k, (_k, 1, n))
We can evaluate harmonic numbers for all integral and positive
rational arguments:
>>> from sympy import S, expand_func, simplify
>>> harmonic(8)
761/280
>>> harmonic(11)
83711/27720
>>> H = harmonic(1/S(3))
>>> H
harmonic(1/3)
>>> He = expand_func(H)
>>> He
-log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(_k*pi/3))*cos(2*_k*pi/3), (_k, 1, 1))
+ 3*Sum(1/(3*_k + 1), (_k, 0, 0))
>>> He.doit()
-log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3
>>> H = harmonic(25/S(7))
>>> He = simplify(expand_func(H).doit())
>>> He
log(sin(pi/7)**(-2*cos(pi/7))*sin(2*pi/7)**(2*cos(16*pi/7))*cos(pi/14)**(-2*sin(pi/14))/14)
+ pi*tan(pi/14)/2 + 30247/9900
>>> He.n(40)
1.983697455232980674869851942390639915940
>>> harmonic(25/S(7)).n(40)
1.983697455232980674869851942390639915940
We can rewrite harmonic numbers in terms of polygamma functions:
>>> from sympy import digamma, polygamma
>>> m = Symbol("m")
>>> harmonic(n).rewrite(digamma)
polygamma(0, n + 1) + EulerGamma
>>> harmonic(n).rewrite(polygamma)
polygamma(0, n + 1) + EulerGamma
>>> harmonic(n,3).rewrite(polygamma)
polygamma(2, n + 1)/2 - polygamma(2, 1)/2
>>> harmonic(n,m).rewrite(polygamma)
(-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1)
Integer offsets in the argument can be pulled out:
>>> from sympy import expand_func
>>> expand_func(harmonic(n+4))
harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)
>>> expand_func(harmonic(n-4))
harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n
Some limits can be computed as well:
>>> from sympy import limit, oo
>>> limit(harmonic(n), n, oo)
oo
>>> limit(harmonic(n, 2), n, oo)
pi**2/6
>>> limit(harmonic(n, 3), n, oo)
-polygamma(2, 1)/2
However we can not compute the general relation yet:
>>> limit(harmonic(n, m), n, oo)
harmonic(oo, m)
which equals ``zeta(m)`` for ``m > 1``.
References
==========
.. [1] https://en.wikipedia.org/wiki/Harmonic_number
.. [2] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber/
.. [3] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/
See Also
========
bell, bernoulli, catalan, euler, fibonacci, lucas, genocchi, partition, tribonacci
"""
# Generate one memoized Harmonic number-generating function for each
# order and store it in a dictionary
_functions = {}
@classmethod
def eval(cls, n, m=None):
from sympy import zeta
if m is S.One:
return cls(n)
if m is None:
m = S.One
if m.is_zero:
return n
if n is S.Infinity and m.is_Number:
# TODO: Fix for symbolic values of m
if m.is_negative:
return S.NaN
elif LessThan(m, S.One):
return S.Infinity
elif StrictGreaterThan(m, S.One):
return zeta(m)
else:
return cls
if n == 0:
return S.Zero
if n.is_Integer and n.is_nonnegative and m.is_Integer:
if not m in cls._functions:
@recurrence_memo([0])
def f(n, prev):
return prev[-1] + S.One / n**m
cls._functions[m] = f
return cls._functions[m](int(n))
def _eval_rewrite_as_polygamma(self, n, m=1, **kwargs):
from sympy.functions.special.gamma_functions import polygamma
return S.NegativeOne**m/factorial(m - 1) * (polygamma(m - 1, 1) - polygamma(m - 1, n + 1))
def _eval_rewrite_as_digamma(self, n, m=1, **kwargs):
from sympy.functions.special.gamma_functions import polygamma
return self.rewrite(polygamma)
def _eval_rewrite_as_trigamma(self, n, m=1, **kwargs):
from sympy.functions.special.gamma_functions import polygamma
return self.rewrite(polygamma)
def _eval_rewrite_as_Sum(self, n, m=None, **kwargs):
from sympy import Sum
k = Dummy("k", integer=True)
if m is None:
m = S.One
return Sum(k**(-m), (k, 1, n))
def _eval_expand_func(self, **hints):
from sympy import Sum
n = self.args[0]
m = self.args[1] if len(self.args) == 2 else 1
if m == S.One:
if n.is_Add:
off = n.args[0]
nnew = n - off
if off.is_Integer and off.is_positive:
result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)]
return Add(*result)
elif off.is_Integer and off.is_negative:
result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)]
return Add(*result)
if n.is_Rational:
# Expansions for harmonic numbers at general rational arguments (u + p/q)
# Split n as u + p/q with p < q
p, q = n.as_numer_denom()
u = p // q
p = p - u * q
if u.is_nonnegative and p.is_positive and q.is_positive and p < q:
k = Dummy("k")
t1 = q * Sum(1 / (q * k + p), (k, 0, u))
t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) *
log(sin((pi * k) / S(q))),
(k, 1, floor((q - 1) / S(2))))
t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q)
return t1 + t2 - t3
return self
def _eval_rewrite_as_tractable(self, n, m=1, **kwargs):
from sympy import polygamma
return self.rewrite(polygamma).rewrite("tractable", deep=True)
def _eval_evalf(self, prec):
from sympy import polygamma
if all(i.is_number for i in self.args):
return self.rewrite(polygamma)._eval_evalf(prec)
#----------------------------------------------------------------------------#
# #
# Euler numbers #
# #
#----------------------------------------------------------------------------#
class euler(Function):
r"""
Euler numbers / Euler polynomials
The Euler numbers are given by:
.. math:: E_{2n} = I \sum_{k=1}^{2n+1} \sum_{j=0}^k \binom{k}{j}
\frac{(-1)^j (k-2j)^{2n+1}}{2^k I^k k}
.. math:: E_{2n+1} = 0
Euler numbers and Euler polynomials are related by
.. math:: E_n = 2^n E_n\left(\frac{1}{2}\right).
We compute symbolic Euler polynomials using [5]_
.. math:: E_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{E_k}{2^k}
\left(x - \frac{1}{2}\right)^{n-k}.
However, numerical evaluation of the Euler polynomial is computed
more efficiently (and more accurately) using the mpmath library.
* ``euler(n)`` gives the `n^{th}` Euler number, `E_n`.
* ``euler(n, x)`` gives the `n^{th}` Euler polynomial, `E_n(x)`.
Examples
========
>>> from sympy import Symbol, S
>>> from sympy.functions import euler
>>> [euler(n) for n in range(10)]
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0]
>>> n = Symbol("n")
>>> euler(n + 2*n)
euler(3*n)
>>> x = Symbol("x")
>>> euler(n, x)
euler(n, x)
>>> euler(0, x)
1
>>> euler(1, x)
x - 1/2
>>> euler(2, x)
x**2 - x
>>> euler(3, x)
x**3 - 3*x**2/2 + 1/4
>>> euler(4, x)
x**4 - 2*x**3 + x
>>> euler(12, S.Half)
2702765/4096
>>> euler(12)
2702765
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler_numbers
.. [2] http://mathworld.wolfram.com/EulerNumber.html
.. [3] https://en.wikipedia.org/wiki/Alternating_permutation
.. [4] http://mathworld.wolfram.com/AlternatingPermutation.html
.. [5] http://dlmf.nist.gov/24.2#ii
See Also
========
bell, bernoulli, catalan, fibonacci, harmonic, lucas, genocchi, partition, tribonacci
"""
@classmethod
def eval(cls, m, sym=None):
if m.is_Number:
if m.is_Integer and m.is_nonnegative:
# Euler numbers
if sym is None:
if m.is_odd:
return S.Zero
from mpmath import mp
m = m._to_mpmath(mp.prec)
res = mp.eulernum(m, exact=True)
return Integer(res)
# Euler polynomial
else:
from sympy.core.evalf import pure_complex
reim = pure_complex(sym, or_real=True)
# Evaluate polynomial numerically using mpmath
if reim and all(a.is_Float or a.is_Integer for a in reim) \
and any(a.is_Float for a in reim):
from mpmath import mp
from sympy import Expr
m = int(m)
# XXX ComplexFloat (#12192) would be nice here, above
prec = min([a._prec for a in reim if a.is_Float])
with workprec(prec):
res = mp.eulerpoly(m, sym)
return Expr._from_mpmath(res, prec)
# Construct polynomial symbolically from definition
m, result = int(m), []
for k in range(m + 1):
result.append(binomial(m, k)*cls(k)/(2**k)*(sym - S.Half)**(m - k))
return Add(*result).expand()
else:
raise ValueError("Euler numbers are defined only"
" for nonnegative integer indices.")
if sym is None:
if m.is_odd and m.is_positive:
return S.Zero
def _eval_rewrite_as_Sum(self, n, x=None, **kwargs):
from sympy import Sum
if x is None and n.is_even:
k = Dummy("k", integer=True)
j = Dummy("j", integer=True)
n = n / 2
Em = (S.ImaginaryUnit * Sum(Sum(binomial(k, j) * ((-1)**j * (k - 2*j)**(2*n + 1)) /
(2**k*S.ImaginaryUnit**k * k), (j, 0, k)), (k, 1, 2*n + 1)))
return Em
if x:
k = Dummy("k", integer=True)
return Sum(binomial(n, k)*euler(k)/2**k*(x-S.Half)**(n-k), (k, 0, n))
def _eval_evalf(self, prec):
m, x = (self.args[0], None) if len(self.args) == 1 else self.args
if x is None and m.is_Integer and m.is_nonnegative:
from mpmath import mp
from sympy import Expr
m = m._to_mpmath(prec)
with workprec(prec):
res = mp.eulernum(m)
return Expr._from_mpmath(res, prec)
if x and x.is_number and m.is_Integer and m.is_nonnegative:
from mpmath import mp
from sympy import Expr
m = int(m)
x = x._to_mpmath(prec)
with workprec(prec):
res = mp.eulerpoly(m, x)
return Expr._from_mpmath(res, prec)
#----------------------------------------------------------------------------#
# #
# Catalan numbers #
# #
#----------------------------------------------------------------------------#
class catalan(Function):
r"""
Catalan numbers
The `n^{th}` catalan number is given by:
.. math :: C_n = \frac{1}{n+1} \binom{2n}{n}
* ``catalan(n)`` gives the `n^{th}` Catalan number, `C_n`
Examples
========
>>> from sympy import (Symbol, binomial, gamma, hyper, polygamma,
... catalan, diff, combsimp, Rational, I)
>>> [catalan(i) for i in range(1,10)]
[1, 2, 5, 14, 42, 132, 429, 1430, 4862]
>>> n = Symbol("n", integer=True)
>>> catalan(n)
catalan(n)
Catalan numbers can be transformed into several other, identical
expressions involving other mathematical functions
>>> catalan(n).rewrite(binomial)
binomial(2*n, n)/(n + 1)
>>> catalan(n).rewrite(gamma)
4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2))
>>> catalan(n).rewrite(hyper)
hyper((-n + 1, -n), (2,), 1)
For some non-integer values of n we can get closed form
expressions by rewriting in terms of gamma functions:
>>> catalan(Rational(1,2)).rewrite(gamma)
8/(3*pi)
We can differentiate the Catalan numbers C(n) interpreted as a
continuous real function in n:
>>> diff(catalan(n), n)
(polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n)
As a more advanced example consider the following ratio
between consecutive numbers:
>>> combsimp((catalan(n + 1)/catalan(n)).rewrite(binomial))
2*(2*n + 1)/(n + 2)
The Catalan numbers can be generalized to complex numbers:
>>> catalan(I).rewrite(gamma)
4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I))
and evaluated with arbitrary precision:
>>> catalan(I).evalf(20)
0.39764993382373624267 - 0.020884341620842555705*I
References
==========
.. [1] https://en.wikipedia.org/wiki/Catalan_number
.. [2] http://mathworld.wolfram.com/CatalanNumber.html
.. [3] http://functions.wolfram.com/GammaBetaErf/CatalanNumber/
.. [4] http://geometer.org/mathcircles/catalan.pdf
See Also
========
bell, bernoulli, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci
sympy.functions.combinatorial.factorials.binomial
"""
@classmethod
def eval(cls, n):
from sympy import gamma
if (n.is_Integer and n.is_nonnegative) or \
(n.is_noninteger and n.is_negative):
return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2))
if (n.is_integer and n.is_negative):
if (n + 1).is_negative:
return S.Zero
if (n + 1).is_zero:
return -S.Half
def fdiff(self, argindex=1):
from sympy import polygamma, log
n = self.args[0]
return catalan(n)*(polygamma(0, n + Rational(1, 2)) - polygamma(0, n + 2) + log(4))
def _eval_rewrite_as_binomial(self, n, **kwargs):
return binomial(2*n, n)/(n + 1)
def _eval_rewrite_as_factorial(self, n, **kwargs):
return factorial(2*n) / (factorial(n+1) * factorial(n))
def _eval_rewrite_as_gamma(self, n, **kwargs):
from sympy import gamma
# The gamma function allows to generalize Catalan numbers to complex n
return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2))
def _eval_rewrite_as_hyper(self, n, **kwargs):
from sympy import hyper
return hyper([1 - n, -n], [2], 1)
def _eval_rewrite_as_Product(self, n, **kwargs):
from sympy import Product
if not (n.is_integer and n.is_nonnegative):
return self
k = Dummy('k', integer=True, positive=True)
return Product((n + k) / k, (k, 2, n))
def _eval_is_integer(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_positive(self):
if self.args[0].is_nonnegative:
return True
def _eval_is_composite(self):
if self.args[0].is_integer and (self.args[0] - 3).is_positive:
return True
def _eval_evalf(self, prec):
from sympy import gamma
if self.args[0].is_number:
return self.rewrite(gamma)._eval_evalf(prec)
#----------------------------------------------------------------------------#
# #
# Genocchi numbers #
# #
#----------------------------------------------------------------------------#
class genocchi(Function):
r"""
Genocchi numbers
The Genocchi numbers are a sequence of integers `G_n` that satisfy the
relation:
.. math:: \frac{2t}{e^t + 1} = \sum_{n=1}^\infty \frac{G_n t^n}{n!}
Examples
========
>>> from sympy import Symbol
>>> from sympy.functions import genocchi
>>> [genocchi(n) for n in range(1, 9)]
[1, -1, 0, 1, 0, -3, 0, 17]
>>> n = Symbol('n', integer=True, positive=True)
>>> genocchi(2*n + 1)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/Genocchi_number
.. [2] http://mathworld.wolfram.com/GenocchiNumber.html
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, partition, tribonacci
"""
@classmethod
def eval(cls, n):
if n.is_Number:
if (not n.is_Integer) or n.is_nonpositive:
raise ValueError("Genocchi numbers are defined only for " +
"positive integers")
return 2 * (1 - S(2) ** n) * bernoulli(n)
if n.is_odd and (n - 1).is_positive:
return S.Zero
if (n - 1).is_zero:
return S.One
def _eval_rewrite_as_bernoulli(self, n, **kwargs):
if n.is_integer and n.is_nonnegative:
return (1 - S(2) ** n) * bernoulli(n) * 2
def _eval_is_integer(self):
if self.args[0].is_integer and self.args[0].is_positive:
return True
def _eval_is_negative(self):
n = self.args[0]
if n.is_integer and n.is_positive:
if n.is_odd:
return False
return (n / 2).is_odd
def _eval_is_positive(self):
n = self.args[0]
if n.is_integer and n.is_positive:
if n.is_odd:
return fuzzy_not((n - 1).is_positive)
return (n / 2).is_even
def _eval_is_even(self):
n = self.args[0]
if n.is_integer and n.is_positive:
if n.is_even:
return False
return (n - 1).is_positive
def _eval_is_odd(self):
n = self.args[0]
if n.is_integer and n.is_positive:
if n.is_even:
return True
return fuzzy_not((n - 1).is_positive)
def _eval_is_prime(self):
n = self.args[0]
# only G_6 = -3 and G_8 = 17 are prime,
# but SymPy does not consider negatives as prime
# so only n=8 is tested
return (n - 8).is_zero
#----------------------------------------------------------------------------#
# #
# Partition numbers #
# #
#----------------------------------------------------------------------------#
class partition(Function):
r"""
Partition numbers
The Partition numbers are a sequence of integers `p_n` that represent the
number of distinct ways of representing `n` as a sum of natural numbers
(with order irrelevant). The generating function for `p_n` is given by:
.. math:: \sum_{n=0}^\infty p_n x^n = \prod_{k=1}^\infty (1 - x^k)^{-1}
Examples
========
>>> from sympy import Symbol
>>> from sympy.functions import partition
>>> [partition(n) for n in range(9)]
[1, 1, 2, 3, 5, 7, 11, 15, 22]
>>> n = Symbol('n', integer=True, negative=True)
>>> partition(n)
0
References
==========
.. [1] https://en.wikipedia.org/wiki/Partition_(number_theory%29
.. [2] https://en.wikipedia.org/wiki/Pentagonal_number_theorem
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, tribonacci
"""
@staticmethod
@recurrence_memo([1, 1])
def _partition(n, prev):
v, g, i = 0, 0, 0
while 1:
s = 0
i += 1
g = i * (3*i - 1) // 2
if n >= g:
s += prev[n - g]
g = i * (3*i + 1) // 2
if n >= g:
s += prev[n - g]
if s == 0:
break
else:
v += s if i%2 == 1 else -s
return v
@classmethod
def eval(cls, n):
is_int = n.is_integer
if is_int == False:
raise ValueError("Partition numbers are defined only for "
"integers")
elif is_int:
if n.is_negative:
return S.Zero
if n.is_zero or (n - 1).is_zero:
return S.One
if n.is_Integer:
return Integer(cls._partition(n))
def _eval_is_integer(self):
if self.args[0].is_integer:
return True
def _eval_is_negative(self):
if self.args[0].is_integer:
return False
def _eval_is_positive(self):
n = self.args[0]
if n.is_nonnegative and n.is_integer:
return True
#######################################################################
###
### Functions for enumerating partitions, permutations and combinations
###
#######################################################################
class _MultisetHistogram(tuple):
pass
_N = -1
_ITEMS = -2
_M = slice(None, _ITEMS)
def _multiset_histogram(n):
"""Return tuple used in permutation and combination counting. Input
is a dictionary giving items with counts as values or a sequence of
items (which need not be sorted).
The data is stored in a class deriving from tuple so it is easily
recognized and so it can be converted easily to a list.
"""
if isinstance(n, dict): # item: count
if not all(isinstance(v, int) and v >= 0 for v in n.values()):
raise ValueError
tot = sum(n.values())
items = sum(1 for k in n if n[k] > 0)
return _MultisetHistogram([n[k] for k in n if n[k] > 0] + [items, tot])
else:
n = list(n)
s = set(n)
if len(s) == len(n):
n = [1]*len(n)
n.extend([len(n), len(n)])
return _MultisetHistogram(n)
m = dict(zip(s, range(len(s))))
d = dict(zip(range(len(s)), [0]*len(s)))
for i in n:
d[m[i]] += 1
return _multiset_histogram(d)
def nP(n, k=None, replacement=False):
"""Return the number of permutations of ``n`` items taken ``k`` at a time.
Possible values for ``n``::
integer - set of length ``n``
sequence - converted to a multiset internally
multiset - {element: multiplicity}
If ``k`` is None then the total of all permutations of length 0
through the number of items represented by ``n`` will be returned.
If ``replacement`` is True then a given item can appear more than once
in the ``k`` items. (For example, for 'ab' permutations of 2 would
include 'aa', 'ab', 'ba' and 'bb'.) The multiplicity of elements in
``n`` is ignored when ``replacement`` is True but the total number
of elements is considered since no element can appear more times than
the number of elements in ``n``.
Examples
========
>>> from sympy.functions.combinatorial.numbers import nP
>>> from sympy.utilities.iterables import multiset_permutations, multiset
>>> nP(3, 2)
6
>>> nP('abc', 2) == nP(multiset('abc'), 2) == 6
True
>>> nP('aab', 2)
3
>>> nP([1, 2, 2], 2)
3
>>> [nP(3, i) for i in range(4)]
[1, 3, 6, 6]
>>> nP(3) == sum(_)
True
When ``replacement`` is True, each item can have multiplicity
equal to the length represented by ``n``:
>>> nP('aabc', replacement=True)
121
>>> [len(list(multiset_permutations('aaaabbbbcccc', i))) for i in range(5)]
[1, 3, 9, 27, 81]
>>> sum(_)
121
References
==========
.. [1] https://en.wikipedia.org/wiki/Permutation
See Also
========
sympy.utilities.iterables.multiset_permutations
"""
try:
n = as_int(n)
except ValueError:
return Integer(_nP(_multiset_histogram(n), k, replacement))
return Integer(_nP(n, k, replacement))
@cacheit
def _nP(n, k=None, replacement=False):
from sympy.functions.combinatorial.factorials import factorial
from sympy.core.mul import prod
if k == 0:
return 1
if isinstance(n, SYMPY_INTS): # n different items
# assert n >= 0
if k is None:
return sum(_nP(n, i, replacement) for i in range(n + 1))
elif replacement:
return n**k
elif k > n:
return 0
elif k == n:
return factorial(k)
elif k == 1:
return n
else:
# assert k >= 0
return _product(n - k + 1, n)
elif isinstance(n, _MultisetHistogram):
if k is None:
return sum(_nP(n, i, replacement) for i in range(n[_N] + 1))
elif replacement:
return n[_ITEMS]**k
elif k == n[_N]:
return factorial(k)/prod([factorial(i) for i in n[_M] if i > 1])
elif k > n[_N]:
return 0
elif k == 1:
return n[_ITEMS]
else:
# assert k >= 0
tot = 0
n = list(n)
for i in range(len(n[_M])):
if not n[i]:
continue
n[_N] -= 1
if n[i] == 1:
n[i] = 0
n[_ITEMS] -= 1
tot += _nP(_MultisetHistogram(n), k - 1)
n[_ITEMS] += 1
n[i] = 1
else:
n[i] -= 1
tot += _nP(_MultisetHistogram(n), k - 1)
n[i] += 1
n[_N] += 1
return tot
@cacheit
def _AOP_product(n):
"""for n = (m1, m2, .., mk) return the coefficients of the polynomial,
prod(sum(x**i for i in range(nj + 1)) for nj in n); i.e. the coefficients
of the product of AOPs (all-one polynomials) or order given in n. The
resulting coefficient corresponding to x**r is the number of r-length
combinations of sum(n) elements with multiplicities given in n.
The coefficients are given as a default dictionary (so if a query is made
for a key that is not present, 0 will be returned).
Examples
========
>>> from sympy.functions.combinatorial.numbers import _AOP_product
>>> from sympy.abc import x
>>> n = (2, 2, 3) # e.g. aabbccc
>>> prod = ((x**2 + x + 1)*(x**2 + x + 1)*(x**3 + x**2 + x + 1)).expand()
>>> c = _AOP_product(n); dict(c)
{0: 1, 1: 3, 2: 6, 3: 8, 4: 8, 5: 6, 6: 3, 7: 1}
>>> [c[i] for i in range(8)] == [prod.coeff(x, i) for i in range(8)]
True
The generating poly used here is the same as that listed in
http://tinyurl.com/cep849r, but in a refactored form.
"""
from collections import defaultdict
n = list(n)
ord = sum(n)
need = (ord + 2)//2
rv = [1]*(n.pop() + 1)
rv.extend([0]*(need - len(rv)))
rv = rv[:need]
while n:
ni = n.pop()
N = ni + 1
was = rv[:]
for i in range(1, min(N, len(rv))):
rv[i] += rv[i - 1]
for i in range(N, need):
rv[i] += rv[i - 1] - was[i - N]
rev = list(reversed(rv))
if ord % 2:
rv = rv + rev
else:
rv[-1:] = rev
d = defaultdict(int)
for i in range(len(rv)):
d[i] = rv[i]
return d
def nC(n, k=None, replacement=False):
"""Return the number of combinations of ``n`` items taken ``k`` at a time.
Possible values for ``n``::
integer - set of length ``n``
sequence - converted to a multiset internally
multiset - {element: multiplicity}
If ``k`` is None then the total of all combinations of length 0
through the number of items represented in ``n`` will be returned.
If ``replacement`` is True then a given item can appear more than once
in the ``k`` items. (For example, for 'ab' sets of 2 would include 'aa',
'ab', and 'bb'.) The multiplicity of elements in ``n`` is ignored when
``replacement`` is True but the total number of elements is considered
since no element can appear more times than the number of elements in
``n``.
Examples
========
>>> from sympy.functions.combinatorial.numbers import nC
>>> from sympy.utilities.iterables import multiset_combinations
>>> nC(3, 2)
3
>>> nC('abc', 2)
3
>>> nC('aab', 2)
2
When ``replacement`` is True, each item can have multiplicity
equal to the length represented by ``n``:
>>> nC('aabc', replacement=True)
35
>>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)]
[1, 3, 6, 10, 15]
>>> sum(_)
35
If there are ``k`` items with multiplicities ``m_1, m_2, ..., m_k``
then the total of all combinations of length 0 through ``k`` is the
product, ``(m_1 + 1)*(m_2 + 1)*...*(m_k + 1)``. When the multiplicity
of each item is 1 (i.e., k unique items) then there are 2**k
combinations. For example, if there are 4 unique items, the total number
of combinations is 16:
>>> sum(nC(4, i) for i in range(5))
16
References
==========
.. [1] https://en.wikipedia.org/wiki/Combination
.. [2] http://tinyurl.com/cep849r
See Also
========
sympy.utilities.iterables.multiset_combinations
"""
from sympy.functions.combinatorial.factorials import binomial
from sympy.core.mul import prod
if isinstance(n, SYMPY_INTS):
if k is None:
if not replacement:
return 2**n
return sum(nC(n, i, replacement) for i in range(n + 1))
if k < 0:
raise ValueError("k cannot be negative")
if replacement:
return binomial(n + k - 1, k)
return binomial(n, k)
if isinstance(n, _MultisetHistogram):
N = n[_N]
if k is None:
if not replacement:
return prod(m + 1 for m in n[_M])
return sum(nC(n, i, replacement) for i in range(N + 1))
elif replacement:
return nC(n[_ITEMS], k, replacement)
# assert k >= 0
elif k in (1, N - 1):
return n[_ITEMS]
elif k in (0, N):
return 1
return _AOP_product(tuple(n[_M]))[k]
else:
return nC(_multiset_histogram(n), k, replacement)
@cacheit
def _stirling1(n, k):
if n == k == 0:
return S.One
if 0 in (n, k):
return S.Zero
n1 = n - 1
# some special values
if n == k:
return S.One
elif k == 1:
return factorial(n1)
elif k == n1:
return binomial(n, 2)
elif k == n - 2:
return (3*n - 1)*binomial(n, 3)/4
elif k == n - 3:
return binomial(n, 2)*binomial(n, 4)
# general recurrence
return n1*_stirling1(n1, k) + _stirling1(n1, k - 1)
@cacheit
def _stirling2(n, k):
if n == k == 0:
return S.One
if 0 in (n, k):
return S.Zero
n1 = n - 1
# some special values
if k == n1:
return binomial(n, 2)
elif k == 2:
return 2**n1 - 1
# general recurrence
return k*_stirling2(n1, k) + _stirling2(n1, k - 1)
def stirling(n, k, d=None, kind=2, signed=False):
r"""Return Stirling number `S(n, k)` of the first or second (default) kind.
The sum of all Stirling numbers of the second kind for `k = 1`
through `n` is ``bell(n)``. The recurrence relationship for these numbers
is:
.. math :: {0 \brace 0} = 1; {n \brace 0} = {0 \brace k} = 0;
.. math :: {{n+1} \brace k} = j {n \brace k} + {n \brace {k-1}}
where `j` is:
`n` for Stirling numbers of the first kind
`-n` for signed Stirling numbers of the first kind
`k` for Stirling numbers of the second kind
The first kind of Stirling number counts the number of permutations of
``n`` distinct items that have ``k`` cycles; the second kind counts the
ways in which ``n`` distinct items can be partitioned into ``k`` parts.
If ``d`` is given, the "reduced Stirling number of the second kind" is
returned: ``S^{d}(n, k) = S(n - d + 1, k - d + 1)`` with ``n >= k >= d``.
(This counts the ways to partition ``n`` consecutive integers into
``k`` groups with no pairwise difference less than ``d``. See example
below.)
To obtain the signed Stirling numbers of the first kind, use keyword
``signed=True``. Using this keyword automatically sets ``kind`` to 1.
Examples
========
>>> from sympy.functions.combinatorial.numbers import stirling, bell
>>> from sympy.combinatorics import Permutation
>>> from sympy.utilities.iterables import multiset_partitions, permutations
First kind (unsigned by default):
>>> [stirling(6, i, kind=1) for i in range(7)]
[0, 120, 274, 225, 85, 15, 1]
>>> perms = list(permutations(range(4)))
>>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)]
[0, 6, 11, 6, 1]
>>> [stirling(4, i, kind=1) for i in range(5)]
[0, 6, 11, 6, 1]
First kind (signed):
>>> [stirling(4, i, signed=True) for i in range(5)]
[0, -6, 11, -6, 1]
Second kind:
>>> [stirling(10, i) for i in range(12)]
[0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0]
>>> sum(_) == bell(10)
True
>>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2)
True
Reduced second kind:
>>> from sympy import subsets, oo
>>> def delta(p):
... if len(p) == 1:
... return oo
... return min(abs(i[0] - i[1]) for i in subsets(p, 2))
>>> parts = multiset_partitions(range(5), 3)
>>> d = 2
>>> sum(1 for p in parts if all(delta(i) >= d for i in p))
7
>>> stirling(5, 3, 2)
7
References
==========
.. [1] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
.. [2] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
See Also
========
sympy.utilities.iterables.multiset_partitions
"""
# TODO: make this a class like bell()
n = as_int(n)
k = as_int(k)
if n < 0:
raise ValueError('n must be nonnegative')
if k > n:
return S.Zero
if d:
# assert k >= d
# kind is ignored -- only kind=2 is supported
return _stirling2(n - d + 1, k - d + 1)
elif signed:
# kind is ignored -- only kind=1 is supported
return (-1)**(n - k)*_stirling1(n, k)
if kind == 1:
return _stirling1(n, k)
elif kind == 2:
return _stirling2(n, k)
else:
raise ValueError('kind must be 1 or 2, not %s' % k)
@cacheit
def _nT(n, k):
"""Return the partitions of ``n`` items into ``k`` parts. This
is used by ``nT`` for the case when ``n`` is an integer."""
if k == 0:
return 1 if k == n else 0
return sum(_nT(n - k, j) for j in range(min(k, n - k) + 1))
def nT(n, k=None):
"""Return the number of ``k``-sized partitions of ``n`` items.
Possible values for ``n``::
integer - ``n`` identical items
sequence - converted to a multiset internally
multiset - {element: multiplicity}
Note: the convention for ``nT`` is different than that of ``nC`` and
``nP`` in that
here an integer indicates ``n`` *identical* items instead of a set of
length ``n``; this is in keeping with the ``partitions`` function which
treats its integer-``n`` input like a list of ``n`` 1s. One can use
``range(n)`` for ``n`` to indicate ``n`` distinct items.
If ``k`` is None then the total number of ways to partition the elements
represented in ``n`` will be returned.
Examples
========
>>> from sympy.functions.combinatorial.numbers import nT
Partitions of the given multiset:
>>> [nT('aabbc', i) for i in range(1, 7)]
[1, 8, 11, 5, 1, 0]
>>> nT('aabbc') == sum(_)
True
>>> [nT("mississippi", i) for i in range(1, 12)]
[1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1]
Partitions when all items are identical:
>>> [nT(5, i) for i in range(1, 6)]
[1, 2, 2, 1, 1]
>>> nT('1'*5) == sum(_)
True
When all items are different:
>>> [nT(range(5), i) for i in range(1, 6)]
[1, 15, 25, 10, 1]
>>> nT(range(5)) == sum(_)
True
Partitions of an integer expressed as a sum of positive integers:
>>> from sympy.functions.combinatorial.numbers import partition
>>> partition(4)
5
>>> sum([nT(4, i) for i in range(4 + 1)])
5
>>> nT('1'*4)
5
References
==========
.. [1] http://undergraduate.csse.uwa.edu.au/units/CITS7209/partition.pdf
See Also
========
sympy.utilities.iterables.partitions
sympy.utilities.iterables.multiset_partitions
sympy.functions.combinatorial.numbers.partition
"""
from sympy.utilities.enumerative import MultisetPartitionTraverser
if isinstance(n, SYMPY_INTS):
# assert n >= 0
# all the same
if k is None:
return partition(n)
elif n == 0:
return S.One if k == 0 else S.Zero
return _nT(n, k)
if not isinstance(n, _MultisetHistogram):
try:
# if n contains hashable items there is some
# quick handling that can be done
u = len(set(n))
if u <= 1:
return nT(len(n), k)
elif u == len(n):
n = range(u)
raise TypeError
except TypeError:
n = _multiset_histogram(n)
N = n[_N]
if k is None and N == 1:
return 1
if k in (1, N):
return 1
if k == 2 or N == 2 and k is None:
m, r = divmod(N, 2)
rv = sum(nC(n, i) for i in range(1, m + 1))
if not r:
rv -= nC(n, m)//2
if k is None:
rv += 1 # for k == 1
return rv
if N == n[_ITEMS]:
# all distinct
if k is None:
return bell(N)
return stirling(N, k)
m = MultisetPartitionTraverser()
if k is None:
return m.count_partitions(n[_M])
# MultisetPartitionTraverser does not have a range-limited count
# method, so need to enumerate and count
tot = 0
for discard in m.enum_range(n[_M], k-1, k):
tot += 1
return tot
|
9daddf5a262219123afd916279bb00a240b2c346e9ca4dbb349f5717e969b9f9
|
from __future__ import print_function, division
from sympy.core import S, sympify, Dummy, Mod
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_and
from sympy.core.numbers import Integer, pi
from sympy.core.relational import Eq
from sympy.ntheory import sieve
from math import sqrt as _sqrt
from sympy.core.compatibility import reduce, range, HAS_GMPY
from sympy.core.cache import cacheit
from sympy.polys.polytools import Poly
class CombinatorialFunction(Function):
"""Base class for combinatorial functions. """
def _eval_simplify(self, ratio, measure, rational, inverse):
from sympy.simplify.combsimp import combsimp
# combinatorial function with non-integer arguments is
# automatically passed to gammasimp
expr = combsimp(self)
if measure(expr) <= ratio*measure(self):
return expr
return self
###############################################################################
######################## FACTORIAL and MULTI-FACTORIAL ########################
###############################################################################
class factorial(CombinatorialFunction):
r"""Implementation of factorial function over nonnegative integers.
By convention (consistent with the gamma function and the binomial
coefficients), factorial of a negative integer is complex infinity.
The factorial is very important in combinatorics where it gives
the number of ways in which `n` objects can be permuted. It also
arises in calculus, probability, number theory, etc.
There is strict relation of factorial with gamma function. In
fact `n! = gamma(n+1)` for nonnegative integers. Rewrite of this
kind is very useful in case of combinatorial simplification.
Computation of the factorial is done using two algorithms. For
small arguments a precomputed look up table is used. However for bigger
input algorithm Prime-Swing is used. It is the fastest algorithm
known and computes `n!` via prime factorization of special class
of numbers, called here the 'Swing Numbers'.
Examples
========
>>> from sympy import Symbol, factorial, S
>>> n = Symbol('n', integer=True)
>>> factorial(0)
1
>>> factorial(7)
5040
>>> factorial(-2)
zoo
>>> factorial(n)
factorial(n)
>>> factorial(2*n)
factorial(2*n)
>>> factorial(S(1)/2)
factorial(1/2)
See Also
========
factorial2, RisingFactorial, FallingFactorial
"""
def fdiff(self, argindex=1):
from sympy import gamma, polygamma
if argindex == 1:
return gamma(self.args[0] + 1)*polygamma(0, self.args[0] + 1)
else:
raise ArgumentIndexError(self, argindex)
_small_swing = [
1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395,
12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075,
35102025, 5014575, 145422675, 9694845, 300540195, 300540195
]
_small_factorials = []
@classmethod
def _swing(cls, n):
if n < 33:
return cls._small_swing[n]
else:
N, primes = int(_sqrt(n)), []
for prime in sieve.primerange(3, N + 1):
p, q = 1, n
while True:
q //= prime
if q > 0:
if q & 1 == 1:
p *= prime
else:
break
if p > 1:
primes.append(p)
for prime in sieve.primerange(N + 1, n//3 + 1):
if (n // prime) & 1 == 1:
primes.append(prime)
L_product = R_product = 1
for prime in sieve.primerange(n//2 + 1, n + 1):
L_product *= prime
for prime in primes:
R_product *= prime
return L_product*R_product
@classmethod
def _recursive(cls, n):
if n < 2:
return 1
else:
return (cls._recursive(n//2)**2)*cls._swing(n)
@classmethod
def eval(cls, n):
n = sympify(n)
if n.is_Number:
if n is S.Zero:
return S.One
elif n is S.Infinity:
return S.Infinity
elif n.is_Integer:
if n.is_negative:
return S.ComplexInfinity
else:
n = n.p
if n < 20:
if not cls._small_factorials:
result = 1
for i in range(1, 20):
result *= i
cls._small_factorials.append(result)
result = cls._small_factorials[n-1]
# GMPY factorial is faster, use it when available
elif HAS_GMPY:
from sympy.core.compatibility import gmpy
result = gmpy.fac(n)
else:
bits = bin(n).count('1')
result = cls._recursive(n)*2**(n - bits)
return Integer(result)
def _facmod(self, n, q):
res, N = 1, int(_sqrt(n))
# Exponent of prime p in n! is e_p(n) = [n/p] + [n/p**2] + ...
# for p > sqrt(n), e_p(n) < sqrt(n), the primes with [n/p] = m,
# occur consecutively and are grouped together in pw[m] for
# simultaneous exponentiation at a later stage
pw = [1]*N
m = 2 # to initialize the if condition below
for prime in sieve.primerange(2, n + 1):
if m > 1:
m, y = 0, n // prime
while y:
m += y
y //= prime
if m < N:
pw[m] = pw[m]*prime % q
else:
res = res*pow(prime, m, q) % q
for ex, bs in enumerate(pw):
if ex == 0 or bs == 1:
continue
if bs == 0:
return 0
res = res*pow(bs, ex, q) % q
return res
def _eval_Mod(self, q):
n = self.args[0]
if n.is_integer and n.is_nonnegative and q.is_integer:
aq = abs(q)
d = aq - n
if d.is_nonpositive:
return 0
else:
isprime = aq.is_prime
if d == 1:
# Apply Wilson's theorem (if a natural number n > 1
# is a prime number, then (n-1)! = -1 mod n) and
# its inverse (if n > 4 is a composite number, then
# (n-1)! = 0 mod n)
if isprime:
return -1 % q
elif isprime is False and (aq - 6).is_nonnegative:
return 0
elif n.is_Integer and q.is_Integer:
n, d, aq = map(int, (n, d, aq))
if isprime and (d - 1 < n):
fc = self._facmod(d - 1, aq)
fc = pow(fc, aq - 2, aq)
if d%2:
fc = -fc
else:
fc = self._facmod(n, aq)
return Integer(fc % q)
def _eval_rewrite_as_gamma(self, n, **kwargs):
from sympy import gamma
return gamma(n + 1)
def _eval_rewrite_as_Product(self, n, **kwargs):
from sympy import Product
if n.is_nonnegative and n.is_integer:
i = Dummy('i', integer=True)
return Product(i, (i, 1, n))
def _eval_is_integer(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_positive(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_even(self):
x = self.args[0]
if x.is_integer and x.is_nonnegative:
return (x - 2).is_nonnegative
def _eval_is_composite(self):
x = self.args[0]
if x.is_integer and x.is_nonnegative:
return (x - 3).is_nonnegative
def _eval_is_real(self):
x = self.args[0]
if x.is_nonnegative or x.is_noninteger:
return True
class MultiFactorial(CombinatorialFunction):
pass
class subfactorial(CombinatorialFunction):
r"""The subfactorial counts the derangements of n items and is
defined for non-negative integers as:
.. math:: !n = \begin{cases} 1 & n = 0 \\ 0 & n = 1 \\
(n-1)(!(n-1) + !(n-2)) & n > 1 \end{cases}
It can also be written as ``int(round(n!/exp(1)))`` but the
recursive definition with caching is implemented for this function.
An interesting analytic expression is the following [2]_
.. math:: !x = \Gamma(x + 1, -1)/e
which is valid for non-negative integers `x`. The above formula
is not very useful incase of non-integers. :math:`\Gamma(x + 1, -1)` is
single-valued only for integral arguments `x`, elsewhere on the positive
real axis it has an infinite number of branches none of which are real.
References
==========
.. [1] https://en.wikipedia.org/wiki/Subfactorial
.. [2] http://mathworld.wolfram.com/Subfactorial.html
Examples
========
>>> from sympy import subfactorial
>>> from sympy.abc import n
>>> subfactorial(n + 1)
subfactorial(n + 1)
>>> subfactorial(5)
44
See Also
========
sympy.functions.combinatorial.factorials.factorial,
sympy.utilities.iterables.generate_derangements,
sympy.functions.special.gamma_functions.uppergamma
"""
@classmethod
@cacheit
def _eval(self, n):
if not n:
return S.One
elif n == 1:
return S.Zero
return (n - 1)*(self._eval(n - 1) + self._eval(n - 2))
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg.is_Integer and arg.is_nonnegative:
return cls._eval(arg)
elif arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
def _eval_is_even(self):
if self.args[0].is_odd and self.args[0].is_nonnegative:
return True
def _eval_is_integer(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_rewrite_as_uppergamma(self, arg, **kwargs):
from sympy import uppergamma
return uppergamma(arg + 1, -1)/S.Exp1
def _eval_is_nonnegative(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_odd(self):
if self.args[0].is_even and self.args[0].is_nonnegative:
return True
class factorial2(CombinatorialFunction):
r"""The double factorial `n!!`, not to be confused with `(n!)!`
The double factorial is defined for nonnegative integers and for odd
negative integers as:
.. math:: n!! = \begin{cases} 1 & n = 0 \\
n(n-2)(n-4) \cdots 1 & n\ \text{positive odd} \\
n(n-2)(n-4) \cdots 2 & n\ \text{positive even} \\
(n+2)!!/(n+2) & n\ \text{negative odd} \end{cases}
References
==========
.. [1] https://en.wikipedia.org/wiki/Double_factorial
Examples
========
>>> from sympy import factorial2, var
>>> var('n')
n
>>> factorial2(n + 1)
factorial2(n + 1)
>>> factorial2(5)
15
>>> factorial2(-1)
1
>>> factorial2(-5)
1/3
See Also
========
factorial, RisingFactorial, FallingFactorial
"""
@classmethod
def eval(cls, arg):
# TODO: extend this to complex numbers?
if arg.is_Number:
if not arg.is_Integer:
raise ValueError("argument must be nonnegative integer "
"or negative odd integer")
# This implementation is faster than the recursive one
# It also avoids "maximum recursion depth exceeded" runtime error
if arg.is_nonnegative:
if arg.is_even:
k = arg / 2
return 2**k * factorial(k)
return factorial(arg) / factorial2(arg - 1)
if arg.is_odd:
return arg*(S.NegativeOne)**((1 - arg)/2) / factorial2(-arg)
raise ValueError("argument must be nonnegative integer "
"or negative odd integer")
def _eval_is_even(self):
# Double factorial is even for every positive even input
n = self.args[0]
if n.is_integer:
if n.is_odd:
return False
if n.is_even:
if n.is_positive:
return True
if n.is_zero:
return False
def _eval_is_integer(self):
# Double factorial is an integer for every nonnegative input, and for
# -1 and -3
n = self.args[0]
if n.is_integer:
if (n + 1).is_nonnegative:
return True
if n.is_odd:
return (n + 3).is_nonnegative
def _eval_is_odd(self):
# Double factorial is odd for every odd input not smaller than -3, and
# for 0
n = self.args[0]
if n.is_odd:
return (n + 3).is_nonnegative
if n.is_even:
if n.is_positive:
return False
if n.is_zero:
return True
def _eval_is_positive(self):
# Double factorial is positive for every nonnegative input, and for
# every odd negative input which is of the form -1-4k for an
# nonnegative integer k
n = self.args[0]
if n.is_integer:
if (n + 1).is_nonnegative:
return True
if n.is_odd:
return ((n + 1) / 2).is_even
def _eval_rewrite_as_gamma(self, n, **kwargs):
from sympy import gamma, Piecewise, sqrt
return 2**(n/2)*gamma(n/2 + 1) * Piecewise((1, Eq(Mod(n, 2), 0)),
(sqrt(2/pi), Eq(Mod(n, 2), 1)))
###############################################################################
######################## RISING and FALLING FACTORIALS ########################
###############################################################################
class RisingFactorial(CombinatorialFunction):
r"""
Rising factorial (also called Pochhammer symbol) is a double valued
function arising in concrete mathematics, hypergeometric functions
and series expansions. It is defined by:
.. math:: rf(x,k) = x \cdot (x+1) \cdots (x+k-1)
where `x` can be arbitrary expression and `k` is an integer. For
more information check "Concrete mathematics" by Graham, pp. 66
or visit http://mathworld.wolfram.com/RisingFactorial.html page.
When `x` is a Poly instance of degree >= 1 with a single variable,
`rf(x,k) = x(y) \cdot x(y+1) \cdots x(y+k-1)`, where `y` is the
variable of `x`. This is as described in Peter Paule, "Greatest
Factorial Factorization and Symbolic Summation", Journal of
Symbolic Computation, vol. 20, pp. 235-268, 1995.
Examples
========
>>> from sympy import rf, symbols, factorial, ff, binomial, Poly
>>> from sympy.abc import x
>>> n, k = symbols('n k', integer=True)
>>> rf(x, 0)
1
>>> rf(1, 5)
120
>>> rf(x, 5) == x*(1 + x)*(2 + x)*(3 + x)*(4 + x)
True
>>> rf(Poly(x**3, x), 2)
Poly(x**6 + 3*x**5 + 3*x**4 + x**3, x, domain='ZZ')
Rewrite
>>> rf(x, k).rewrite(ff)
FallingFactorial(k + x - 1, k)
>>> rf(x, k).rewrite(binomial)
binomial(k + x - 1, k)*factorial(k)
>>> rf(n, k).rewrite(factorial)
factorial(k + n - 1)/factorial(n - 1)
See Also
========
factorial, factorial2, FallingFactorial
References
==========
.. [1] https://en.wikipedia.org/wiki/Pochhammer_symbol
"""
@classmethod
def eval(cls, x, k):
x = sympify(x)
k = sympify(k)
if x is S.NaN or k is S.NaN:
return S.NaN
elif x is S.One:
return factorial(k)
elif k.is_Integer:
if k is S.Zero:
return S.One
else:
if k.is_positive:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
if k.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("rf only defined for "
"polynomials on one generator")
else:
return reduce(lambda r, i:
r*(x.shift(i).expand()),
range(0, int(k)), 1)
else:
return reduce(lambda r, i: r*(x + i),
range(0, int(k)), 1)
else:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("rf only defined for "
"polynomials on one generator")
else:
return 1/reduce(lambda r, i:
r*(x.shift(-i).expand()),
range(1, abs(int(k)) + 1), 1)
else:
return 1/reduce(lambda r, i:
r*(x - i),
range(1, abs(int(k)) + 1), 1)
def _eval_rewrite_as_gamma(self, x, k, **kwargs):
from sympy import gamma
return gamma(x + k) / gamma(x)
def _eval_rewrite_as_FallingFactorial(self, x, k, **kwargs):
return FallingFactorial(x + k - 1, k)
def _eval_rewrite_as_factorial(self, x, k, **kwargs):
if x.is_integer and k.is_integer:
return factorial(k + x - 1) / factorial(x - 1)
def _eval_rewrite_as_binomial(self, x, k, **kwargs):
if k.is_integer:
return factorial(k) * binomial(x + k - 1, k)
def _eval_is_integer(self):
return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer,
self.args[1].is_nonnegative))
def _sage_(self):
import sage.all as sage
return sage.rising_factorial(self.args[0]._sage_(),
self.args[1]._sage_())
class FallingFactorial(CombinatorialFunction):
r"""
Falling factorial (related to rising factorial) is a double valued
function arising in concrete mathematics, hypergeometric functions
and series expansions. It is defined by
.. math:: ff(x,k) = x \cdot (x-1) \cdots (x-k+1)
where `x` can be arbitrary expression and `k` is an integer. For
more information check "Concrete mathematics" by Graham, pp. 66
or visit http://mathworld.wolfram.com/FallingFactorial.html page.
When `x` is a Poly instance of degree >= 1 with single variable,
`ff(x,k) = x(y) \cdot x(y-1) \cdots x(y-k+1)`, where `y` is the
variable of `x`. This is as described in Peter Paule, "Greatest
Factorial Factorization and Symbolic Summation", Journal of
Symbolic Computation, vol. 20, pp. 235-268, 1995.
>>> from sympy import ff, factorial, rf, gamma, polygamma, binomial, symbols, Poly
>>> from sympy.abc import x, k
>>> n, m = symbols('n m', integer=True)
>>> ff(x, 0)
1
>>> ff(5, 5)
120
>>> ff(x, 5) == x*(x-1)*(x-2)*(x-3)*(x-4)
True
>>> ff(Poly(x**2, x), 2)
Poly(x**4 - 2*x**3 + x**2, x, domain='ZZ')
>>> ff(n, n)
factorial(n)
Rewrite
>>> ff(x, k).rewrite(gamma)
(-1)**k*gamma(k - x)/gamma(-x)
>>> ff(x, k).rewrite(rf)
RisingFactorial(-k + x + 1, k)
>>> ff(x, m).rewrite(binomial)
binomial(x, m)*factorial(m)
>>> ff(n, m).rewrite(factorial)
factorial(n)/factorial(-m + n)
See Also
========
factorial, factorial2, RisingFactorial
References
==========
.. [1] http://mathworld.wolfram.com/FallingFactorial.html
"""
@classmethod
def eval(cls, x, k):
x = sympify(x)
k = sympify(k)
if x is S.NaN or k is S.NaN:
return S.NaN
elif k.is_integer and x == k:
return factorial(x)
elif k.is_Integer:
if k is S.Zero:
return S.One
else:
if k.is_positive:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
if k.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("ff only defined for "
"polynomials on one generator")
else:
return reduce(lambda r, i:
r*(x.shift(-i).expand()),
range(0, int(k)), 1)
else:
return reduce(lambda r, i: r*(x - i),
range(0, int(k)), 1)
else:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("rf only defined for "
"polynomials on one generator")
else:
return 1/reduce(lambda r, i:
r*(x.shift(i).expand()),
range(1, abs(int(k)) + 1), 1)
else:
return 1/reduce(lambda r, i: r*(x + i),
range(1, abs(int(k)) + 1), 1)
def _eval_rewrite_as_gamma(self, x, k, **kwargs):
from sympy import gamma
return (-1)**k*gamma(k - x) / gamma(-x)
def _eval_rewrite_as_RisingFactorial(self, x, k, **kwargs):
return rf(x - k + 1, k)
def _eval_rewrite_as_binomial(self, x, k, **kwargs):
if k.is_integer:
return factorial(k) * binomial(x, k)
def _eval_rewrite_as_factorial(self, x, k, **kwargs):
if x.is_integer and k.is_integer:
return factorial(x) / factorial(x - k)
def _eval_is_integer(self):
return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer,
self.args[1].is_nonnegative))
def _sage_(self):
import sage.all as sage
return sage.falling_factorial(self.args[0]._sage_(),
self.args[1]._sage_())
rf = RisingFactorial
ff = FallingFactorial
###############################################################################
########################### BINOMIAL COEFFICIENTS #############################
###############################################################################
class binomial(CombinatorialFunction):
r"""Implementation of the binomial coefficient. It can be defined
in two ways depending on its desired interpretation:
.. math:: \binom{n}{k} = \frac{n!}{k!(n-k)!}\ \text{or}\
\binom{n}{k} = \frac{ff(n, k)}{k!}
First, in a strict combinatorial sense it defines the
number of ways we can choose `k` elements from a set of
`n` elements. In this case both arguments are nonnegative
integers and binomial is computed using an efficient
algorithm based on prime factorization.
The other definition is generalization for arbitrary `n`,
however `k` must also be nonnegative. This case is very
useful when evaluating summations.
For the sake of convenience for negative integer `k` this function
will return zero no matter what valued is the other argument.
To expand the binomial when `n` is a symbol, use either
``expand_func()`` or ``expand(func=True)``. The former will keep
the polynomial in factored form while the latter will expand the
polynomial itself. See examples for details.
Examples
========
>>> from sympy import Symbol, Rational, binomial, expand_func
>>> n = Symbol('n', integer=True, positive=True)
>>> binomial(15, 8)
6435
>>> binomial(n, -1)
0
Rows of Pascal's triangle can be generated with the binomial function:
>>> for N in range(8):
... print([binomial(N, i) for i in range(N + 1)])
...
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
[1, 6, 15, 20, 15, 6, 1]
[1, 7, 21, 35, 35, 21, 7, 1]
As can a given diagonal, e.g. the 4th diagonal:
>>> N = -4
>>> [binomial(N, i) for i in range(1 - N)]
[1, -4, 10, -20, 35]
>>> binomial(Rational(5, 4), 3)
-5/128
>>> binomial(Rational(-5, 4), 3)
-195/128
>>> binomial(n, 3)
binomial(n, 3)
>>> binomial(n, 3).expand(func=True)
n**3/6 - n**2/2 + n/3
>>> expand_func(binomial(n, 3))
n*(n - 2)*(n - 1)/6
References
==========
.. [1] https://www.johndcook.com/blog/binomial_coefficients/
"""
def fdiff(self, argindex=1):
from sympy import polygamma
if argindex == 1:
# http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/
n, k = self.args
return binomial(n, k)*(polygamma(0, n + 1) - \
polygamma(0, n - k + 1))
elif argindex == 2:
# http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/
n, k = self.args
return binomial(n, k)*(polygamma(0, n - k + 1) - \
polygamma(0, k + 1))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def _eval(self, n, k):
# n.is_Number and k.is_Integer and k != 1 and n != k
from sympy.functions.elementary.exponential import log
from sympy.core import N
if k.is_Integer:
if n.is_Integer and n >= 0:
n, k = int(n), int(k)
if k > n:
return S.Zero
elif k > n // 2:
k = n - k
if HAS_GMPY:
from sympy.core.compatibility import gmpy
return Integer(gmpy.bincoef(n, k))
d, result = n - k, 1
for i in range(1, k + 1):
d += 1
result = result * d // i
return Integer(result)
else:
d, result = n - k, 1
for i in range(1, k + 1):
d += 1
result *= d
result /= i
return result
@classmethod
def eval(cls, n, k):
n, k = map(sympify, (n, k))
d = n - k
n_nonneg, n_isint = n.is_nonnegative, n.is_integer
if k.is_zero or ((n_nonneg or n_isint is False)
and d.is_zero):
return S.One
if (k - 1).is_zero or ((n_nonneg or n_isint is False)
and (d - 1).is_zero):
return n
if k.is_integer:
if k.is_negative or (n_nonneg and n_isint and d.is_negative):
return S.Zero
elif n.is_number:
res = cls._eval(n, k)
return res.expand(basic=True) if res else res
elif n_nonneg is False and n_isint:
# a special case when binomial evaluates to complex infinity
return S.ComplexInfinity
elif k.is_number:
from sympy import gamma
return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
def _eval_Mod(self, q):
n, k = self.args
if any(x.is_integer is False for x in (n, k, q)):
raise ValueError("Integers expected for binomial Mod")
if all(x.is_Integer for x in (n, k, q)):
n, k = map(int, (n, k))
aq, res = abs(q), 1
# handle negative integers k or n
if k < 0:
return 0
if n < 0:
n = -n + k - 1
res = -1 if k%2 else 1
# non negative integers k and n
if k > n:
return 0
isprime = aq.is_prime
aq = int(aq)
if isprime:
if aq < n:
# use Lucas Theorem
N, K = n, k
while N or K:
res = res*binomial(N % aq, K % aq) % aq
N, K = N // aq, K // aq
else:
# use Factorial Modulo
d = n - k
if k > d:
k, d = d, k
kf = 1
for i in range(2, k + 1):
kf = kf*i % aq
df = kf
for i in range(k + 1, d + 1):
df = df*i % aq
res *= df
for i in range(d + 1, n + 1):
res = res*i % aq
res *= pow(kf*df % aq, aq - 2, aq)
res %= aq
else:
# Binomial Factorization is performed by calculating the
# exponents of primes <= n in `n! /(k! (n - k)!)`,
# for non-negative integers n and k. As the exponent of
# prime in n! is e_p(n) = [n/p] + [n/p**2] + ...
# the exponent of prime in binomial(n, k) would be
# e_p(n) - e_p(k) - e_p(n - k)
M = int(_sqrt(n))
for prime in sieve.primerange(2, n + 1):
if prime > n - k:
res = res*prime % aq
elif prime > n // 2:
continue
elif prime > M:
if n % prime < k % prime:
res = res*prime % aq
else:
N, K = n, k
exp = a = 0
while N > 0:
a = int((N % prime) < (K % prime + a))
N, K = N // prime, K // prime
exp += a
if exp > 0:
res *= pow(prime, exp, aq)
res %= aq
return Integer(res % q)
def _eval_expand_func(self, **hints):
"""
Function to expand binomial(n, k) when m is positive integer
Also,
n is self.args[0] and k is self.args[1] while using binomial(n, k)
"""
n = self.args[0]
if n.is_Number:
return binomial(*self.args)
k = self.args[1]
if k.is_Add and n in k.args:
k = n - k
if k.is_Integer:
if k == S.Zero:
return S.One
elif k < 0:
return S.Zero
else:
n, result = self.args[0], 1
for i in range(1, k + 1):
result *= n - k + i
result /= i
return result
else:
return binomial(*self.args)
def _eval_rewrite_as_factorial(self, n, k, **kwargs):
return factorial(n)/(factorial(k)*factorial(n - k))
def _eval_rewrite_as_gamma(self, n, k, **kwargs):
from sympy import gamma
return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
def _eval_rewrite_as_tractable(self, n, k, **kwargs):
return self._eval_rewrite_as_gamma(n, k).rewrite('tractable')
def _eval_rewrite_as_FallingFactorial(self, n, k, **kwargs):
if k.is_integer:
return ff(n, k) / factorial(k)
def _eval_is_integer(self):
n, k = self.args
if n.is_integer and k.is_integer:
return True
elif k.is_integer is False:
return False
def _eval_is_nonnegative(self):
n, k = self.args
if n.is_integer and k.is_integer:
if n.is_nonnegative or k.is_negative or k.is_even:
return True
elif k.is_even is False:
return False
|
6f23244167465fc2f95f7dd7acf733656407d3eb2c70e28e9b2adb2ab1a2d07b
|
from __future__ import print_function, division
from sympy.core.add import Add
from sympy.core.basic import sympify, cacheit
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.numbers import igcdex, Rational, pi
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, Wild
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.functions.combinatorial.factorials import factorial, RisingFactorial
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.exponential import log, exp
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh,
coth, HyperbolicFunction, sinh, tanh)
from sympy.sets.sets import FiniteSet
from sympy.utilities.iterables import numbered_symbols
from sympy.core.compatibility import range
from sympy.core.relational import Ne
from sympy.functions.elementary.piecewise import Piecewise
###############################################################################
########################## TRIGONOMETRIC FUNCTIONS ############################
###############################################################################
class TrigonometricFunction(Function):
"""Base class for trigonometric functions. """
unbranched = True
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
pi_coeff = _pi_coeff(self.args[0])
if pi_coeff is not None and pi_coeff.is_rational:
return True
else:
return s.is_algebraic
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def _as_real_imag(self, deep=True, **hints):
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.args[0].expand(deep, **hints), S.Zero)
else:
return (self.args[0], S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (re, im)
def _period(self, general_period, symbol=None):
f = self.args[0]
if symbol is None:
symbol = tuple(f.free_symbols)[0]
if not f.has(symbol):
return S.Zero
if f == symbol:
return general_period
if symbol in f.free_symbols:
p, q = Wild('p'), Wild('q')
if f.is_Mul:
g, h = f.as_independent(symbol)
if h == symbol:
return general_period/abs(g)
if f.is_Add:
a, h = f.as_independent(symbol)
g, h = h.as_independent(symbol, as_Add=False)
if h == symbol:
return general_period/abs(g)
raise NotImplementedError("Use the periodicity function instead.")
def _peeloff_pi(arg):
"""
Split ARG into two parts, a "rest" and a multiple of pi/2.
This assumes ARG to be an Add.
The multiple of pi returned in the second position is always a Rational.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _peeloff_pi as peel
>>> from sympy import pi
>>> from sympy.abc import x, y
>>> peel(x + pi/2)
(x, pi/2)
>>> peel(x + 2*pi/3 + pi*y)
(x + pi*y + pi/6, pi/2)
"""
for a in Add.make_args(arg):
if a is S.Pi:
K = S.One
break
elif a.is_Mul:
K, p = a.as_two_terms()
if p is S.Pi and K.is_Rational:
break
else:
return arg, S.Zero
m1 = (K % S.Half) * S.Pi
m2 = K*S.Pi - m1
return arg - m2, m2
def _pi_coeff(arg, cycles=1):
"""
When arg is a Number times pi (e.g. 3*pi/2) then return the Number
normalized to be in the range [0, 2], else None.
When an even multiple of pi is encountered, if it is multiplying
something with known parity then the multiple is returned as 0 otherwise
as 2.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _pi_coeff as coeff
>>> from sympy import pi, Dummy
>>> from sympy.abc import x, y
>>> coeff(3*x*pi)
3*x
>>> coeff(11*pi/7)
11/7
>>> coeff(-11*pi/7)
3/7
>>> coeff(4*pi)
0
>>> coeff(5*pi)
1
>>> coeff(5.0*pi)
1
>>> coeff(5.5*pi)
3/2
>>> coeff(2 + pi)
>>> coeff(2*Dummy(integer=True)*pi)
2
>>> coeff(2*Dummy(even=True)*pi)
0
"""
arg = sympify(arg)
if arg is S.Pi:
return S.One
elif not arg:
return S.Zero
elif arg.is_Mul:
cx = arg.coeff(S.Pi)
if cx:
c, x = cx.as_coeff_Mul() # pi is not included as coeff
if c.is_Float:
# recast exact binary fractions to Rationals
f = abs(c) % 1
if f != 0:
p = -int(round(log(f, 2).evalf()))
m = 2**p
cm = c*m
i = int(cm)
if i == cm:
c = Rational(i, m)
cx = c*x
else:
c = Rational(int(c))
cx = c*x
if x.is_integer:
c2 = c % 2
if c2 == 1:
return x
elif not c2:
if x.is_even is not None: # known parity
return S.Zero
return S(2)
else:
return c2*x
return cx
class sin(TrigonometricFunction):
"""
The sine function.
Returns the sine of x (measured in radians).
Notes
=====
This function will evaluate automatically in the
case x/pi is some rational number [4]_. For example,
if x is a multiple of pi, pi/2, pi/3, pi/4 and pi/6.
Examples
========
>>> from sympy import sin, pi
>>> from sympy.abc import x
>>> sin(x**2).diff(x)
2*x*cos(x**2)
>>> sin(1).diff(x)
0
>>> sin(pi)
0
>>> sin(pi/2)
1
>>> sin(pi/6)
1/2
>>> sin(pi/12)
-sqrt(2)/4 + sqrt(6)/4
See Also
========
csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sin
.. [4] http://mathworld.wolfram.com/TrigonometryAngles.html
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return cos(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Zero:
return S.Zero
elif arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
min, max = arg.min, arg.max
d = floor(min/(2*S.Pi))
if min is not S.NegativeInfinity:
min = min - d*2*S.Pi
if max is not S.Infinity:
max = max - d*2*S.Pi
if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, 5*S.Pi/2)) \
is not S.EmptySet and \
AccumBounds(min, max).intersection(FiniteSet(3*S.Pi/2,
7*S.Pi/2)) is not S.EmptySet:
return AccumBounds(-1, 1)
elif AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, 5*S.Pi/2)) \
is not S.EmptySet:
return AccumBounds(Min(sin(min), sin(max)), 1)
elif AccumBounds(min, max).intersection(FiniteSet(3*S.Pi/2, 8*S.Pi/2)) \
is not S.EmptySet:
return AccumBounds(-1, Max(sin(min), sin(max)))
else:
return AccumBounds(Min(sin(min), sin(max)),
Max(sin(min), sin(max)))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * sinh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if (2*pi_coeff).is_integer:
if pi_coeff.is_even:
return S.Zero
elif pi_coeff.is_even is False:
return S.NegativeOne**(pi_coeff - S.Half)
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
# https://github.com/sympy/sympy/issues/6048
# transform a sine to a cosine, to avoid redundant code
if pi_coeff.is_Rational:
x = pi_coeff % 2
if x > 1:
return -cls((x % 1)*S.Pi)
if 2*x > 1:
return cls((1 - x)*S.Pi)
narg = ((pi_coeff + Rational(3, 2)) % 2)*S.Pi
result = cos(narg)
if not isinstance(result, cos):
return result
if pi_coeff*S.Pi != arg:
return cls(pi_coeff*S.Pi)
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
return sin(m)*cos(x) + cos(m)*sin(x)
if isinstance(arg, asin):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return x / sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return y / sqrt(x**2 + y**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2)
if isinstance(arg, acot):
x = arg.args[0]
return 1 / (sqrt(1 + 1 / x**2) * x)
if isinstance(arg, acsc):
x = arg.args[0]
return 1 / x
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1 / x**2)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p * x**2 / (n*(n - 1))
else:
return (-1)**(n//2) * x**(n)/factorial(n)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) - exp(-arg*I)) / (2*I)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*x**-I / 2 - I*x**I /2
def _eval_rewrite_as_cos(self, arg, **kwargs):
return cos(arg - S.Pi / 2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)
return 2*tan_half/(1 + tan_half**2)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)
return 2*cot_half/(1 + cot_half**2)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self.rewrite(cos).rewrite(pow)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self.rewrite(cos).rewrite(sqrt)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1/csc(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1 / sec(arg - S.Pi / 2, evaluate=False)
def _eval_rewrite_as_sinc(self, arg, **kwargs):
return arg*sinc(arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
return (sin(re)*cosh(im), cos(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy import expand_mul
from sympy.functions.special.polynomials import chebyshevt, chebyshevu
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
# TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return sx*cy + sy*cx
else:
n, x = arg.as_coeff_Mul(rational=True)
if n.is_Integer: # n will be positive because of .eval
# canonicalization
# See http://mathworld.wolfram.com/Multiple-AngleFormulas.html
if n.is_odd:
return (-1)**((n - 1)/2)*chebyshevt(n, sin(x))
else:
return expand_mul((-1)**(n/2 - 1)*cos(x)*chebyshevu(n -
1, sin(x)), deep=False)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return sin(arg)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
if self.args[0].is_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real:
return True
class cos(TrigonometricFunction):
"""
The cosine function.
Returns the cosine of x (measured in radians).
Notes
=====
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cos, pi
>>> from sympy.abc import x
>>> cos(x**2).diff(x)
-2*x*sin(x**2)
>>> cos(1).diff(x)
0
>>> cos(pi)
-1
>>> cos(pi/2)
0
>>> cos(2*pi/3)
-1/2
>>> cos(pi/12)
sqrt(2)/4 + sqrt(6)/4
See Also
========
sin, csc, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cos
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return -sin(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.functions.special.polynomials import chebyshevt
from sympy.calculus.util import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Zero:
return S.One
elif arg is S.Infinity or arg is S.NegativeInfinity:
# In this case it is better to return AccumBounds(-1, 1)
# rather than returning S.NaN, since AccumBounds(-1, 1)
# preserves the information that sin(oo) is between
# -1 and 1, where S.NaN does not do that.
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return sin(arg + S.Pi/2)
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.could_extract_minus_sign():
return cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return cosh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return (S.NegativeOne)**pi_coeff
if (2*pi_coeff).is_integer:
if pi_coeff.is_even:
return (S.NegativeOne)**(pi_coeff/2)
elif pi_coeff.is_even is False:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
# cosine formula #####################
# https://github.com/sympy/sympy/issues/6048
# explicit calculations are preformed for
# cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120
# Some other exact values like cos(k pi/240) can be
# calculated using a partial-fraction decomposition
# by calling cos( X ).rewrite(sqrt)
cst_table_some = {
3: S.Half,
5: (sqrt(5) + 1)/4,
}
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*S.Pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*S.Pi
return -cls(narg)
# If nested sqrt's are worse than un-evaluation
# you can require q to be in (1, 2, 3, 4, 6, 12)
# q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return
# expressions with 2 or fewer sqrt nestings.
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
if q in table2:
a, b = p*S.Pi/table2[q][0], p*S.Pi/table2[q][1]
nvala, nvalb = cls(a), cls(b)
if None == nvala or None == nvalb:
return None
return nvala*nvalb + cls(S.Pi/2 - a)*cls(S.Pi/2 - b)
if q > 12:
return None
if q in cst_table_some:
cts = cst_table_some[pi_coeff.q]
return chebyshevt(pi_coeff.p, cts).expand()
if 0 == q % 2:
narg = (pi_coeff*2)*S.Pi
nval = cls(narg)
if None == nval:
return None
x = (2*pi_coeff + 1)/2
sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x)))
return sign_cos*sqrt( (1 + nval)/2 )
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
return cos(m)*cos(x) - sin(m)*sin(x)
if isinstance(arg, acos):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1 / sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return x / sqrt(x**2 + y**2)
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x ** 2)
if isinstance(arg, acot):
x = arg.args[0]
return 1 / sqrt(1 + 1 / x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1 / x**2)
if isinstance(arg, asec):
x = arg.args[0]
return 1 / x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p * x**2 / (n*(n - 1))
else:
return (-1)**(n//2)*x**(n)/factorial(n)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) + exp(-arg*I)) / 2
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return x**I/2 + x**-I/2
def _eval_rewrite_as_sin(self, arg, **kwargs):
return sin(arg + S.Pi / 2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)**2
return (1 - tan_half)/(1 + tan_half)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/sin(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)**2
return (cot_half - 1)/(cot_half + 1)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._eval_rewrite_as_sqrt(arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.special.polynomials import chebyshevt
def migcdex(x):
# recursive calcuation of gcd and linear combination
# for a sequence of integers.
# Given (x1, x2, x3)
# Returns (y1, y1, y3, g)
# such that g is the gcd and x1*y1+x2*y2+x3*y3 - g = 0
# Note, that this is only one such linear combination.
if len(x) == 1:
return (1, x[0])
if len(x) == 2:
return igcdex(x[0], x[-1])
g = migcdex(x[1:])
u, v, h = igcdex(x[0], g[-1])
return tuple([u] + [v*i for i in g[0:-1] ] + [h])
def ipartfrac(r, factors=None):
from sympy.ntheory import factorint
if isinstance(r, int):
return r
if not isinstance(r, Rational):
raise TypeError("r is not rational")
n = r.q
if 2 > r.q*r.q:
return r.q
if None == factors:
a = [n//x**y for x, y in factorint(r.q).items()]
else:
a = [n//x for x in factors]
if len(a) == 1:
return [ r ]
h = migcdex(a)
ans = [ r.p*Rational(i*j, r.q) for i, j in zip(h[:-1], a) ]
assert r == sum(ans)
return ans
pi_coeff = _pi_coeff(arg)
if pi_coeff is None:
return None
if pi_coeff.is_integer:
# it was unevaluated
return self.func(pi_coeff*S.Pi)
if not pi_coeff.is_Rational:
return None
def _cospi257():
""" Express cos(pi/257) explicitly as a function of radicals
Based upon the equations in
http://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals
See also http://www.susqu.edu/brakke/constructions/257-gon.m.txt
"""
def f1(a, b):
return (a + sqrt(a**2 + b))/2, (a - sqrt(a**2 + b))/2
def f2(a, b):
return (a - sqrt(a**2 + b))/2
t1, t2 = f1(-1, 256)
z1, z3 = f1(t1, 64)
z2, z4 = f1(t2, 64)
y1, y5 = f1(z1, 4*(5 + t1 + 2*z1))
y6, y2 = f1(z2, 4*(5 + t2 + 2*z2))
y3, y7 = f1(z3, 4*(5 + t1 + 2*z3))
y8, y4 = f1(z4, 4*(5 + t2 + 2*z4))
x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6))
x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7))
x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8))
x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1))
x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2))
x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3))
x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4))
x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5))
v1 = f2(x1, -4*(x1 + x2 + x3 + x6))
v2 = f2(x2, -4*(x2 + x3 + x4 + x7))
v3 = f2(x8, -4*(x8 + x9 + x10 + x13))
v4 = f2(x9, -4*(x9 + x10 + x11 + x14))
v5 = f2(x10, -4*(x10 + x11 + x12 + x15))
v6 = f2(x16, -4*(x16 + x1 + x2 + x5))
u1 = -f2(-v1, -4*(v2 + v3))
u2 = -f2(-v4, -4*(v5 + v6))
w1 = -2*f2(-u1, -4*u2)
return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half)
cst_table_some = {
3: S.Half,
5: (sqrt(5) + 1)/4,
17: sqrt((15 + sqrt(17))/32 + sqrt(2)*(sqrt(17 - sqrt(17)) +
sqrt(sqrt(2)*(-8*sqrt(17 + sqrt(17)) - (1 - sqrt(17))
*sqrt(17 - sqrt(17))) + 6*sqrt(17) + 34))/32),
257: _cospi257()
# 65537 is the only other known Fermat prime and the very
# large expression is intentionally omitted from SymPy; see
# http://www.susqu.edu/brakke/constructions/65537-gon.m.txt
}
def _fermatCoords(n):
# if n can be factored in terms of Fermat primes with
# multiplicity of each being 1, return those primes, else
# False
primes = []
for p_i in cst_table_some:
quotient, remainder = divmod(n, p_i)
if remainder == 0:
n = quotient
primes.append(p_i)
if n == 1:
return tuple(primes)
return False
if pi_coeff.q in cst_table_some:
rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q])
if pi_coeff.q < 257:
rv = rv.expand()
return rv
if not pi_coeff.q % 2: # recursively remove factors of 2
pico2 = pi_coeff*2
nval = cos(pico2*S.Pi).rewrite(sqrt)
x = (pico2 + 1)/2
sign_cos = -1 if int(x) % 2 else 1
return sign_cos*sqrt( (1 + nval)/2 )
FC = _fermatCoords(pi_coeff.q)
if FC:
decomp = ipartfrac(pi_coeff, FC)
X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls.rewrite(sqrt)
else:
decomp = ipartfrac(pi_coeff)
X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1/sec(arg)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1 / sec(arg)._eval_rewrite_as_csc(arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
return (cos(re)*cosh(im), -sin(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy.functions.special.polynomials import chebyshevt
arg = self.args[0]
x = None
if arg.is_Add: # TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return cx*cy - sx*sy
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer:
return chebyshevt(coeff, cos(terms))
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return cos(arg)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return S.One
else:
return self.func(arg)
def _eval_is_real(self):
if self.args[0].is_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real:
return True
class tan(TrigonometricFunction):
"""
The tangent function.
Returns the tangent of x (measured in radians).
Notes
=====
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import tan, pi
>>> from sympy.abc import x
>>> tan(x**2).diff(x)
2*x*(tan(x**2)**2 + 1)
>>> tan(1).diff(x)
0
>>> tan(pi/8).expand()
-1 + sqrt(2)
See Also
========
sin, csc, cos, sec, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Tan
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.One + self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return atan
@classmethod
def eval(cls, arg):
from sympy.calculus.util import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Zero:
return S.Zero
elif arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(S.NegativeInfinity, S.Infinity)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
min, max = arg.min, arg.max
d = floor(min/S.Pi)
if min is not S.NegativeInfinity:
min = min - d*S.Pi
if max is not S.Infinity:
max = max - d*S.Pi
if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, 3*S.Pi/2)):
return AccumBounds(S.NegativeInfinity, S.Infinity)
else:
return AccumBounds(tan(min), tan(max))
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * tanh(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
if not pi_coeff.q % 2:
narg = pi_coeff*S.Pi*2
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return (1 - cresult)/sresult
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
q = pi_coeff.q
p = pi_coeff.p % q
if q in table2:
nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1])
if None == nvala or None == nvalb:
return None
return (nvala - nvalb)/(1 + nvala*nvalb)
narg = ((pi_coeff + S.Half) % 1 - S.Half)*S.Pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if cresult == 0:
return S.ComplexInfinity
return (sresult/cresult)
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
tanm = tan(m)
if tanm is S.ComplexInfinity:
return -cot(x)
else: # tanm == 0
return tan(x)
if isinstance(arg, atan):
return arg.args[0]
if isinstance(arg, atan2):
y, x = arg.args
return y/x
if isinstance(arg, asin):
x = arg.args[0]
return x / sqrt(1 - x**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2) / x
if isinstance(arg, acot):
x = arg.args[0]
return 1 / x
if isinstance(arg, acsc):
x = arg.args[0]
return 1 / (sqrt(1 - 1 / x**2) * x)
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1 / x**2) * x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
a, b = ((n - 1)//2), 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return (-1)**a * b*(b - 1) * B/F * x**n
def _eval_nseries(self, x, n, logx):
i = self.args[0].limit(x, 0)*2/S.Pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return Function._eval_nseries(self, x, n=n, logx=logx)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*(x**-I - x**I)/(x**-I + x**I)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
denom = cos(2*re) + cosh(2*im)
return (sin(2*re)/denom, sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_expand_trig(self, **hints):
from sympy import im, re
arg = self.args[0]
x = None
if arg.is_Add:
from sympy import symmetric_poly
n = len(arg.args)
TX = []
for x in arg.args:
tx = tan(x, evaluate=False)._eval_expand_trig()
TX.append(tx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n + 1):
p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, TX)))
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((1 + I*z)**coeff).expand()
return (im(P)/re(P)).subs([(z, tan(terms))])
return tan(arg)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(neg_exp - pos_exp)/(neg_exp + pos_exp)
def _eval_rewrite_as_sin(self, x, **kwargs):
return 2*sin(x)**2/sin(2*x)
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x - S.Pi / 2, evaluate=False) / cos(x)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
return 1/cot(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
sin_in_sec_form = sin(arg)._eval_rewrite_as_sec(arg)
cos_in_sec_form = cos(arg)._eval_rewrite_as_sec(arg)
return sin_in_sec_form / cos_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
sin_in_csc_form = sin(arg)._eval_rewrite_as_csc(arg)
cos_in_csc_form = cos(arg)._eval_rewrite_as_csc(arg)
return sin_in_csc_form / cos_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
return self.args[0].is_real
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_imaginary:
return True
class cot(TrigonometricFunction):
"""
The cotangent function.
Returns the cotangent of x (measured in radians).
Notes
=====
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cot, pi
>>> from sympy.abc import x
>>> cot(x**2).diff(x)
2*x*(-cot(x**2)**2 - 1)
>>> cot(1).diff(x)
0
>>> cot(pi/12)
sqrt(3) + 2
See Also
========
sin, csc, cos, sec, tan
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cot
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.NegativeOne - self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return acot
@classmethod
def eval(cls, arg):
from sympy.calculus.util import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
if arg is S.Zero:
return S.ComplexInfinity
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return -tan(arg + S.Pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return -S.ImaginaryUnit * coth(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.ComplexInfinity
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
if pi_coeff.q > 2 and not pi_coeff.q % 2:
narg = pi_coeff*S.Pi*2
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
return (1 + cresult)/sresult
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
q = pi_coeff.q
p = pi_coeff.p % q
if q in table2:
nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1])
if None == nvala or None == nvalb:
return None
return (1 + nvala*nvalb)/(nvalb - nvala)
narg = (((pi_coeff + S.Half) % 1) - S.Half)*S.Pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return cresult / sresult
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
cotm = cot(m)
if cotm is S.ComplexInfinity:
return cot(x)
else: # cotm == 0
return -tan(x)
if isinstance(arg, acot):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1 / x
if isinstance(arg, atan2):
y, x = arg.args
return x/y
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x**2) / x
if isinstance(arg, acos):
x = arg.args[0]
return x / sqrt(1 - x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1 / x**2) * x
if isinstance(arg, asec):
x = arg.args[0]
return 1 / (sqrt(1 - 1 / x**2) * x)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n == 0:
return 1 / sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return (-1)**((n + 1)//2) * 2**(n + 1) * B/F * x**n
def _eval_nseries(self, x, n, logx):
i = self.args[0].limit(x, 0)/S.Pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
denom = cos(2*re) - cosh(2*im)
return (-sin(2*re)/denom, -sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return -I*(x**-I + x**I)/(x**-I - x**I)
def _eval_rewrite_as_sin(self, x, **kwargs):
return sin(2*x)/(2*(sin(x)**2))
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x) / cos(x - S.Pi / 2, evaluate=False)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/sin(arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return 1/tan(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
cos_in_sec_form = cos(arg)._eval_rewrite_as_sec(arg)
sin_in_sec_form = sin(arg)._eval_rewrite_as_sec(arg)
return cos_in_sec_form / sin_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
cos_in_csc_form = cos(arg)._eval_rewrite_as_csc(arg)
sin_in_csc_form = sin(arg)._eval_rewrite_as_csc(arg)
return cos_in_csc_form / sin_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return 1/arg
else:
return self.func(arg)
def _eval_is_real(self):
return self.args[0].is_real
def _eval_expand_trig(self, **hints):
from sympy import im, re
arg = self.args[0]
x = None
if arg.is_Add:
from sympy import symmetric_poly
n = len(arg.args)
CX = []
for x in arg.args:
cx = cot(x, evaluate=False)._eval_expand_trig()
CX.append(cx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n, -1, -1):
p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, CX)))
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((z + I)**coeff).expand()
return (re(P)/im(P)).subs([(z, cot(terms))])
return cot(arg)
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_imaginary:
return True
def _eval_subs(self, old, new):
if self == old:
return new
arg = self.args[0]
argnew = arg.subs(old, new)
if arg != argnew and (argnew/S.Pi).is_integer:
return S.ComplexInfinity
return cot(argnew)
class ReciprocalTrigonometricFunction(TrigonometricFunction):
"""Base class for reciprocal functions of trigonometric functions. """
_reciprocal_of = None # mandatory, to be defined in subclass
# _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x)
# TODO refactor into TrigonometricFunction common parts of
# trigonometric functions eval() like even/odd, func(x+2*k*pi), etc.
_is_even = None # optional, to be defined in subclass
_is_odd = None # optional, to be defined in subclass
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
if cls._is_odd:
return -cls(-arg)
pi_coeff = _pi_coeff(arg)
if (pi_coeff is not None
and not (2*pi_coeff).is_integer
and pi_coeff.is_Rational):
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*S.Pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*S.Pi
if cls._is_odd:
return cls(narg)
elif cls._is_even:
return -cls(narg)
if hasattr(arg, 'inverse') and arg.inverse() == cls:
return arg.args[0]
t = cls._reciprocal_of.eval(arg)
if t == None:
return t
elif any(isinstance(i, cos) for i in (t, -t)):
return (1/t).rewrite(sec)
elif any(isinstance(i, sin) for i in (t, -t)):
return (1/t).rewrite(csc)
else:
return 1/t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _calculate_reciprocal(self, method_name, *args, **kwargs):
# If calling method_name on _reciprocal_of returns a value != None
# then return the reciprocal of that value
t = self._call_reciprocal(method_name, *args, **kwargs)
return 1/t if t != None else t
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
if t != None and t != self._reciprocal_of(arg):
return 1/t
def _period(self, symbol):
f = self.args[0]
return self._reciprocal_of(f).period(symbol)
def fdiff(self, argindex=1):
return -self._calculate_reciprocal("fdiff", argindex)/self**2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep,
**hints)
def _eval_expand_trig(self, **hints):
return self._calculate_reciprocal("_eval_expand_trig", **hints)
def _eval_is_real(self):
return self._reciprocal_of(self.args[0])._eval_is_real()
def _eval_as_leading_term(self, x):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
def _eval_nseries(self, x, n, logx):
return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx)
class sec(ReciprocalTrigonometricFunction):
"""
The secant function.
Returns the secant of x (measured in radians).
Notes
=====
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import sec
>>> from sympy.abc import x
>>> sec(x**2).diff(x)
2*x*tan(x**2)*sec(x**2)
>>> sec(1).diff(x)
0
See Also
========
sin, csc, cos, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sec
"""
_reciprocal_of = cos
_is_even = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half_sq = cot(arg/2)**2
return (cot_half_sq + 1)/(cot_half_sq - 1)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return (1/cos(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/(cos(arg)*sin(arg))
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1 / cos(arg)._eval_rewrite_as_sin(arg))
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1 / cos(arg)._eval_rewrite_as_tan(arg))
def _eval_rewrite_as_csc(self, arg, **kwargs):
return csc(pi / 2 - arg, evaluate=False)
def fdiff(self, argindex=1):
if argindex == 1:
return tan(self.args[0])*sec(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
# Reference Formula:
# http://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/
from sympy.functions.combinatorial.numbers import euler
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
k = n//2
return (-1)**k*euler(2*k)/factorial(2*k)*x**(2*k)
class csc(ReciprocalTrigonometricFunction):
"""
The cosecant function.
Returns the cosecant of x (measured in radians).
Notes
=====
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import csc
>>> from sympy.abc import x
>>> csc(x**2).diff(x)
-2*x*cot(x**2)*csc(x**2)
>>> csc(1).diff(x)
0
See Also
========
sin, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Csc
"""
_reciprocal_of = sin
_is_odd = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1/sin(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/(sin(arg)*cos(arg))
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(arg/2)
return (1 + cot_half**2)/(2*cot_half)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return (1 / sin(arg)._eval_rewrite_as_cos(arg))
def _eval_rewrite_as_sec(self, arg, **kwargs):
return sec(pi / 2 - arg, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1 / sin(arg)._eval_rewrite_as_tan(arg))
def fdiff(self, argindex=1):
if argindex == 1:
return -cot(self.args[0])*csc(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = n//2 + 1
return ((-1)**(k - 1)*2*(2**(2*k - 1) - 1)*
bernoulli(2*k)*x**(2*k - 1)/factorial(2*k))
class sinc(Function):
r"""Represents unnormalized sinc function
Examples
========
>>> from sympy import sinc, oo, jn, Product, Symbol
>>> from sympy.abc import x
>>> sinc(x)
sinc(x)
* Automated Evaluation
>>> sinc(0)
1
>>> sinc(oo)
0
* Differentiation
>>> sinc(x).diff()
(x*cos(x) - sin(x))/x**2
* Series Expansion
>>> sinc(x).series()
1 - x**2/6 + x**4/120 + O(x**6)
* As zero'th order spherical Bessel Function
>>> sinc(x).rewrite(jn)
jn(0, x)
References
==========
.. [1] https://en.wikipedia.org/wiki/Sinc_function
"""
def fdiff(self, argindex=1):
x = self.args[0]
if argindex == 1:
return (x*cos(x) - sin(x)) / x**2
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.One
if arg.is_Number:
if arg in [S.Infinity, -S.Infinity]:
return S.Zero
elif arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.NaN
if arg.could_extract_minus_sign():
return cls(-arg)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
if fuzzy_not(arg.is_zero):
return S.Zero
elif (2*pi_coeff).is_integer:
return S.NegativeOne**(pi_coeff - S.Half) / arg
def _eval_nseries(self, x, n, logx):
x = self.args[0]
return (sin(x)/x)._eval_nseries(x, n, logx)
def _eval_rewrite_as_jn(self, arg, **kwargs):
from sympy.functions.special.bessel import jn
return jn(0, arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return Piecewise((sin(arg)/arg, Ne(arg, 0)), (1, True))
###############################################################################
########################### TRIGONOMETRIC INVERSES ############################
###############################################################################
class InverseTrigonometricFunction(Function):
"""Base class for inverse trigonometric functions."""
pass
class asin(InverseTrigonometricFunction):
"""
The inverse sine function.
Returns the arcsine of x in radians.
Notes
=====
asin(x) will evaluate automatically in the cases oo, -oo, 0, 1,
-1 and for some instances when the result is a rational multiple
of pi (see the eval class method).
Examples
========
>>> from sympy import asin, oo, pi
>>> asin(1)
pi/2
>>> asin(-1)
-pi/2
See Also
========
sin, csc, cos, sec, tan, cot
acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSin
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self._eval_is_real() and self.args[0].is_positive
def _eval_is_negative(self):
return self._eval_is_real() and self.args[0].is_negative
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.NegativeInfinity * S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.Infinity * S.ImaginaryUnit
elif arg is S.Zero:
return S.Zero
elif arg is S.One:
return S.Pi / 2
elif arg is S.NegativeOne:
return -S.Pi / 2
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
cst_table = {
sqrt(3)/2: 3,
-sqrt(3)/2: -3,
sqrt(2)/2: 4,
-sqrt(2)/2: -4,
1/sqrt(2): 4,
-1/sqrt(2): -4,
sqrt((5 - sqrt(5))/8): 5,
-sqrt((5 - sqrt(5))/8): -5,
S.Half: 6,
-S.Half: -6,
sqrt(2 - sqrt(2))/2: 8,
-sqrt(2 - sqrt(2))/2: -8,
(sqrt(5) - 1)/4: 10,
(1 - sqrt(5))/4: -10,
(sqrt(3) - 1)/sqrt(2**3): 12,
(1 - sqrt(3))/sqrt(2**3): -12,
(sqrt(5) + 1)/4: S(10)/3,
-(sqrt(5) + 1)/4: -S(10)/3
}
if arg in cst_table:
return S.Pi / cst_table[arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * asinh(i_coeff)
if isinstance(arg, sin):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, cos): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acos(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return R / F * x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_rewrite_as_acos(self, x, **kwargs):
return S.Pi/2 - acos(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return 2*atan(x/(1 + sqrt(1 - x**2)))
def _eval_rewrite_as_log(self, x, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return S.Pi/2 - asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return acsc(1/arg)
def _eval_is_real(self):
x = self.args[0]
return x.is_real and (1 - abs(x)).is_nonnegative
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sin
class acos(InverseTrigonometricFunction):
"""
The inverse cosine function.
Returns the arc cosine of x (measured in radians).
Notes
=====
``acos(x)`` will evaluate automatically in the cases
``oo``, ``-oo``, ``0``, ``1``, ``-1``.
``acos(zoo)`` evaluates to ``zoo``
(see note in :py:class`sympy.functions.elementary.trigonometric.asec`)
Examples
========
>>> from sympy import acos, oo, pi
>>> acos(1)
0
>>> acos(0)
pi/2
>>> acos(oo)
oo*I
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCos
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity * S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.NegativeInfinity * S.ImaginaryUnit
elif arg is S.Zero:
return S.Pi / 2
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.is_number:
cst_table = {
S.Half: S.Pi/3,
-S.Half: 2*S.Pi/3,
sqrt(2)/2: S.Pi/4,
-sqrt(2)/2: 3*S.Pi/4,
1/sqrt(2): S.Pi/4,
-1/sqrt(2): 3*S.Pi/4,
sqrt(3)/2: S.Pi/6,
-sqrt(3)/2: 5*S.Pi/6,
}
if arg in cst_table:
return cst_table[arg]
if isinstance(arg, cos):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, sin): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asin(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi / 2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return -R / F * x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
x = self.args[0]
return x.is_real and (1 - abs(x)).is_nonnegative
def _eval_is_nonnegative(self):
return self._eval_is_real()
def _eval_nseries(self, x, n, logx):
return self._eval_rewrite_as_log(self.args[0])._eval_nseries(x, n, logx)
def _eval_rewrite_as_log(self, x, **kwargs):
return S.Pi/2 + S.ImaginaryUnit * \
log(S.ImaginaryUnit * x + sqrt(1 - x**2))
def _eval_rewrite_as_asin(self, x, **kwargs):
return S.Pi/2 - asin(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return atan(sqrt(1 - x**2)/x) + (S.Pi/2)*(1 - x*sqrt(1/x**2))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cos
def _eval_rewrite_as_acot(self, arg, **kwargs):
return S.Pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return S.Pi/2 - acsc(1/arg)
def _eval_conjugate(self):
z = self.args[0]
r = self.func(self.args[0].conjugate())
if z.is_real is False:
return r
elif z.is_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive:
return r
class atan(InverseTrigonometricFunction):
"""
The inverse tangent function.
Returns the arc tangent of x (measured in radians).
Notes
=====
atan(x) will evaluate automatically in the cases
oo, -oo, 0, 1, -1.
Examples
========
>>> from sympy import atan, oo, pi
>>> atan(0)
0
>>> atan(1)
pi/4
>>> atan(oo)
pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_positive
def _eval_is_nonnegative(self):
return self.args[0].is_nonnegative
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Pi / 2
elif arg is S.NegativeInfinity:
return -S.Pi / 2
elif arg is S.Zero:
return S.Zero
elif arg is S.One:
return S.Pi / 4
elif arg is S.NegativeOne:
return -S.Pi / 4
if arg is S.ComplexInfinity:
from sympy.calculus.util import AccumBounds
return AccumBounds(-S.Pi/2, S.Pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
cst_table = {
sqrt(3)/3: 6,
-sqrt(3)/3: -6,
1/sqrt(3): 6,
-1/sqrt(3): -6,
sqrt(3): 3,
-sqrt(3): -3,
(1 + sqrt(2)): S(8)/3,
-(1 + sqrt(2)): S(8)/3,
(sqrt(2) - 1): 8,
(1 - sqrt(2)): -8,
sqrt((5 + 2*sqrt(5))): S(5)/2,
-sqrt((5 + 2*sqrt(5))): -S(5)/2,
(2 - sqrt(3)): 12,
-(2 - sqrt(3)): -12
}
if arg in cst_table:
return S.Pi / cst_table[arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * atanh(i_coeff)
if isinstance(arg, tan):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
if isinstance(arg, cot): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - acot(arg)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return (-1)**((n - 1)//2) * x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
return self.args[0].is_real
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2 * (log(S(1) - S.ImaginaryUnit * x)
- log(S(1) + S.ImaginaryUnit * x))
def _eval_aseries(self, n, args0, x, logx):
if args0[0] == S.Infinity:
return (S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] == S.NegativeInfinity:
return (-S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super(atan, self)._eval_aseries(n, args0, x, logx)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return tan
def _eval_rewrite_as_asin(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - asin(1/sqrt(1 + arg**2)))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return acot(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - acsc(sqrt(1 + arg**2)))
class acot(InverseTrigonometricFunction):
"""
The inverse cotangent function.
Returns the arc cotangent of x (measured in radians).
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCot
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1 / (1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_nonnegative
def _eval_is_negative(self):
return self.args[0].is_negative
def _eval_is_real(self):
return self.args[0].is_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.Zero:
return S.Pi/ 2
elif arg is S.One:
return S.Pi / 4
elif arg is S.NegativeOne:
return -S.Pi / 4
if arg is S.ComplexInfinity:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
cst_table = {
sqrt(3)/3: 3,
-sqrt(3)/3: -3,
1/sqrt(3): 3,
-1/sqrt(3): -3,
sqrt(3): 6,
-sqrt(3): -6,
(1 + sqrt(2)): 8,
-(1 + sqrt(2)): -8,
(1 - sqrt(2)): -S(8)/3,
(sqrt(2) - 1): S(8)/3,
sqrt(5 + 2*sqrt(5)): 10,
-sqrt(5 + 2*sqrt(5)): -10,
(2 + sqrt(3)): 12,
-(2 + sqrt(3)): -12,
(2 - sqrt(3)): S(12)/5,
-(2 - sqrt(3)): -S(12)/5,
}
if arg in cst_table:
return S.Pi / cst_table[arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return -S.ImaginaryUnit * acoth(i_coeff)
if isinstance(arg, cot):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi;
return ang
if isinstance(arg, tan): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - atan(arg)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi / 2 # FIX THIS
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return (-1)**((n + 1)//2) * x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
return self.args[0].is_real
def _eval_aseries(self, n, args0, x, logx):
if args0[0] == S.Infinity:
return (S.Pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] == S.NegativeInfinity:
return (3*S.Pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super(atan, self)._eval_aseries(n, args0, x, logx)
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2 * (log(1 - S.ImaginaryUnit/x)
- log(1 + S.ImaginaryUnit/x))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cot
def _eval_rewrite_as_asin(self, arg, **kwargs):
return (arg*sqrt(1/arg**2)*
(S.Pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1))))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1))
def _eval_rewrite_as_atan(self, arg, **kwargs):
return atan(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*(S.Pi/2 - acsc(sqrt((1 + arg**2)/arg**2)))
class asec(InverseTrigonometricFunction):
r"""
The inverse secant function.
Returns the arc secant of x (measured in radians).
Notes
=====
``asec(x)`` will evaluate automatically in the cases
``oo``, ``-oo``, ``0``, ``1``, ``-1``.
``asec(x)`` has branch cut in the interval [-1, 1]. For complex arguments,
it can be defined [4]_ as
.. math::
sec^{-1}(z) = -i*(log(\sqrt{1 - z^2} + 1) / z)
At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For
negative branch cut, the limit
.. math::
\lim_{z \to 0}-i*(log(-\sqrt{1 - z^2} + 1) / z)
simplifies to :math:`-i*log(z/2 + O(z^3))` which ultimately evaluates to
``zoo``.
As ``asex(x)`` = ``asec(1/x)``, a similar argument can be given for
``acos(x)``.
Examples
========
>>> from sympy import asec, oo, pi
>>> asec(1)
0
>>> asec(-1)
pi
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSec
.. [4] http://reference.wolfram.com/language/ref/ArcSec.html
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return S.Pi/2
if isinstance(arg, sec):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acsc(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sec
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if Order(1,x).contains(arg):
return log(arg)
else:
return self.func(arg)
def _eval_is_real(self):
x = self.args[0]
if x.is_real is False:
return False
return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative))
def _eval_rewrite_as_log(self, arg, **kwargs):
return S.Pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
def _eval_rewrite_as_asin(self, arg, **kwargs):
return S.Pi/2 - asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return acos(1/arg)
def _eval_rewrite_as_atan(self, arg, **kwargs):
return sqrt(arg**2)/arg*(-S.Pi/2 + 2*atan(arg + sqrt(arg**2 - 1)))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return sqrt(arg**2)/arg*(-S.Pi/2 + 2*acot(arg - sqrt(arg**2 - 1)))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return S.Pi/2 - acsc(arg)
class acsc(InverseTrigonometricFunction):
"""
The inverse cosecant function.
Returns the arc cosecant of x (measured in radians).
Notes
=====
acsc(x) will evaluate automatically in the cases
oo, -oo, 0, 1, -1.
Examples
========
>>> from sympy import acsc, oo, pi
>>> acsc(1)
pi/2
>>> acsc(-1)
-pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsc
"""
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return S.Pi/2
elif arg is S.NegativeOne:
return -S.Pi/2
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return S.Zero
if isinstance(arg, csc):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asec(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return csc
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if Order(1,x).contains(arg):
return log(arg)
else:
return self.func(arg)
def _eval_rewrite_as_log(self, arg, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
def _eval_rewrite_as_asin(self, arg, **kwargs):
return asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return S.Pi/2 - acos(1/arg)
def _eval_rewrite_as_atan(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - atan(sqrt(arg**2 - 1)))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - acot(1/sqrt(arg**2 - 1)))
def _eval_rewrite_as_asec(self, arg, **kwargs):
return S.Pi/2 - asec(arg)
class atan2(InverseTrigonometricFunction):
r"""
The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking
two arguments `y` and `x`. Signs of both `y` and `x` are considered to
determine the appropriate quadrant of `\operatorname{atan}(y/x)`.
The range is `(-\pi, \pi]`. The complete definition reads as follows:
.. math::
\operatorname{atan2}(y, x) =
\begin{cases}
\arctan\left(\frac y x\right) & \qquad x > 0 \\
\arctan\left(\frac y x\right) + \pi& \qquad y \ge 0 , x < 0 \\
\arctan\left(\frac y x\right) - \pi& \qquad y < 0 , x < 0 \\
+\frac{\pi}{2} & \qquad y > 0 , x = 0 \\
-\frac{\pi}{2} & \qquad y < 0 , x = 0 \\
\text{undefined} & \qquad y = 0, x = 0
\end{cases}
Attention: Note the role reversal of both arguments. The `y`-coordinate
is the first argument and the `x`-coordinate the second.
Examples
========
Going counter-clock wise around the origin we find the
following angles:
>>> from sympy import atan2
>>> atan2(0, 1)
0
>>> atan2(1, 1)
pi/4
>>> atan2(1, 0)
pi/2
>>> atan2(1, -1)
3*pi/4
>>> atan2(0, -1)
pi
>>> atan2(-1, -1)
-3*pi/4
>>> atan2(-1, 0)
-pi/2
>>> atan2(-1, 1)
-pi/4
which are all correct. Compare this to the results of the ordinary
`\operatorname{atan}` function for the point `(x, y) = (-1, 1)`
>>> from sympy import atan, S
>>> atan(S(1) / -1)
-pi/4
>>> atan2(1, -1)
3*pi/4
where only the `\operatorname{atan2}` function reurns what we expect.
We can differentiate the function with respect to both arguments:
>>> from sympy import diff
>>> from sympy.abc import x, y
>>> diff(atan2(y, x), x)
-y/(x**2 + y**2)
>>> diff(atan2(y, x), y)
x/(x**2 + y**2)
We can express the `\operatorname{atan2}` function in terms of
complex logarithms:
>>> from sympy import log
>>> atan2(y, x).rewrite(log)
-I*log((x + I*y)/sqrt(x**2 + y**2))
and in terms of `\operatorname(atan)`:
>>> from sympy import atan
>>> atan2(y, x).rewrite(atan)
2*atan(y/(x + sqrt(x**2 + y**2)))
but note that this form is undefined on the negative real axis.
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] https://en.wikipedia.org/wiki/Atan2
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan2
"""
@classmethod
def eval(cls, y, x):
from sympy import Heaviside, im, re
if x is S.NegativeInfinity:
if y.is_zero:
# Special case y = 0 because we define Heaviside(0) = 1/2
return S.Pi
return 2*S.Pi*(Heaviside(re(y))) - S.Pi
elif x is S.Infinity:
return S.Zero
elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number:
x = im(x)
y = im(y)
if x.is_real and y.is_real:
if x.is_positive:
return atan(y / x)
elif x.is_negative:
if y.is_negative:
return atan(y / x) - S.Pi
elif y.is_nonnegative:
return atan(y / x) + S.Pi
elif x.is_zero:
if y.is_positive:
return S.Pi/2
elif y.is_negative:
return -S.Pi/2
elif y.is_zero:
return S.NaN
if y.is_zero and x.is_real and fuzzy_not(x.is_zero):
return S.Pi * (S.One - Heaviside(x))
if x.is_number and y.is_number:
return -S.ImaginaryUnit*log(
(x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2))
def _eval_rewrite_as_log(self, y, x, **kwargs):
return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y) / sqrt(x**2 + y**2))
def _eval_rewrite_as_atan(self, y, x, **kwargs):
return 2*atan(y / (sqrt(x**2 + y**2) + x))
def _eval_rewrite_as_arg(self, y, x, **kwargs):
from sympy import arg
if x.is_real and y.is_real:
return arg(x + y*S.ImaginaryUnit)
I = S.ImaginaryUnit
n = x + I*y
d = x**2 + y**2
return arg(n/sqrt(d)) - I*log(abs(n)/sqrt(abs(d)))
def _eval_is_real(self):
return self.args[0].is_real and self.args[1].is_real
def _eval_conjugate(self):
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
def fdiff(self, argindex):
y, x = self.args
if argindex == 1:
# Diff wrt y
return x/(x**2 + y**2)
elif argindex == 2:
# Diff wrt x
return -y/(x**2 + y**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
y, x = self.args
if x.is_real and y.is_real:
super(atan2, self)._eval_evalf(prec)
|
4e64417a112cfdca0bac221b3bf1a0bb093b8a2faee89326de2d4f17a59d8111
|
from __future__ import print_function, division
from sympy.core import S, sympify
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.operations import LatticeOp, ShortCircuit
from sympy.core.function import (Application, Lambda,
ArgumentIndexError)
from sympy.core.expr import Expr
from sympy.core.mod import Mod
from sympy.core.mul import Mul
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.core.relational import Eq, Relational
from sympy.core.singleton import Singleton
from sympy.core.symbol import Dummy
from sympy.core.rules import Transform
from sympy.core.compatibility import as_int, with_metaclass, range
from sympy.core.logic import fuzzy_and, fuzzy_or, _torf
from sympy.functions.elementary.integers import floor
from sympy.logic.boolalg import And, Or
def _minmax_as_Piecewise(op, *args):
# helper for Min/Max rewrite as Piecewise
from sympy.functions.elementary.piecewise import Piecewise
ec = []
for i, a in enumerate(args):
c = []
for j in range(i + 1, len(args)):
c.append(Relational(a, args[j], op))
ec.append((a, And(*c)))
return Piecewise(*ec)
class IdentityFunction(with_metaclass(Singleton, Lambda)):
"""
The identity function
Examples
========
>>> from sympy import Id, Symbol
>>> x = Symbol('x')
>>> Id(x)
x
"""
def __new__(cls):
from sympy.sets.sets import FiniteSet
x = Dummy('x')
#construct "by hand" to avoid infinite loop
obj = Expr.__new__(cls, Tuple(x), x)
obj.nargs = FiniteSet(1)
return obj
Id = S.IdentityFunction
###############################################################################
############################# ROOT and SQUARE ROOT FUNCTION ###################
###############################################################################
def sqrt(arg, evaluate=None):
"""The square root function
sqrt(x) -> Returns the principal square root of x.
The parameter evaluate determines if the expression should be evaluated.
If None, its value is taken from global_evaluate
Examples
========
>>> from sympy import sqrt, Symbol
>>> x = Symbol('x')
>>> sqrt(x)
sqrt(x)
>>> sqrt(x)**2
x
Note that sqrt(x**2) does not simplify to x.
>>> sqrt(x**2)
sqrt(x**2)
This is because the two are not equal to each other in general.
For example, consider x == -1:
>>> from sympy import Eq
>>> Eq(sqrt(x**2), x).subs(x, -1)
False
This is because sqrt computes the principal square root, so the square may
put the argument in a different branch. This identity does hold if x is
positive:
>>> y = Symbol('y', positive=True)
>>> sqrt(y**2)
y
You can force this simplification by using the powdenest() function with
the force option set to True:
>>> from sympy import powdenest
>>> sqrt(x**2)
sqrt(x**2)
>>> powdenest(sqrt(x**2), force=True)
x
To get both branches of the square root you can use the rootof function:
>>> from sympy import rootof
>>> [rootof(x**2-3,i) for i in (0,1)]
[-sqrt(3), sqrt(3)]
See Also
========
sympy.polys.rootoftools.rootof, root, real_root
References
==========
.. [1] https://en.wikipedia.org/wiki/Square_root
.. [2] https://en.wikipedia.org/wiki/Principal_value
"""
# arg = sympify(arg) is handled by Pow
return Pow(arg, S.Half, evaluate=evaluate)
def cbrt(arg, evaluate=None):
"""This function computes the principal cube root of `arg`, so
it's just a shortcut for `arg**Rational(1, 3)`.
The parameter evaluate determines if the expression should be evaluated.
If None, its value is taken from global_evaluate.
Examples
========
>>> from sympy import cbrt, Symbol
>>> x = Symbol('x')
>>> cbrt(x)
x**(1/3)
>>> cbrt(x)**3
x
Note that cbrt(x**3) does not simplify to x.
>>> cbrt(x**3)
(x**3)**(1/3)
This is because the two are not equal to each other in general.
For example, consider `x == -1`:
>>> from sympy import Eq
>>> Eq(cbrt(x**3), x).subs(x, -1)
False
This is because cbrt computes the principal cube root, this
identity does hold if `x` is positive:
>>> y = Symbol('y', positive=True)
>>> cbrt(y**3)
y
See Also
========
sympy.polys.rootoftools.rootof, root, real_root
References
==========
* https://en.wikipedia.org/wiki/Cube_root
* https://en.wikipedia.org/wiki/Principal_value
"""
return Pow(arg, Rational(1, 3), evaluate=evaluate)
def root(arg, n, k=0, evaluate=None):
"""root(x, n, k) -> Returns the k-th n-th root of x, defaulting to the
principal root (k=0).
The parameter evaluate determines if the expression should be evaluated.
If None, its value is taken from global_evaluate.
Examples
========
>>> from sympy import root, Rational
>>> from sympy.abc import x, n
>>> root(x, 2)
sqrt(x)
>>> root(x, 3)
x**(1/3)
>>> root(x, n)
x**(1/n)
>>> root(x, -Rational(2, 3))
x**(-3/2)
To get the k-th n-th root, specify k:
>>> root(-2, 3, 2)
-(-1)**(2/3)*2**(1/3)
To get all n n-th roots you can use the rootof function.
The following examples show the roots of unity for n
equal 2, 3 and 4:
>>> from sympy import rootof, I
>>> [rootof(x**2 - 1, i) for i in range(2)]
[-1, 1]
>>> [rootof(x**3 - 1,i) for i in range(3)]
[1, -1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2]
>>> [rootof(x**4 - 1,i) for i in range(4)]
[-1, 1, -I, I]
SymPy, like other symbolic algebra systems, returns the
complex root of negative numbers. This is the principal
root and differs from the text-book result that one might
be expecting. For example, the cube root of -8 does not
come back as -2:
>>> root(-8, 3)
2*(-1)**(1/3)
The real_root function can be used to either make the principal
result real (or simply to return the real root directly):
>>> from sympy import real_root
>>> real_root(_)
-2
>>> real_root(-32, 5)
-2
Alternatively, the n//2-th n-th root of a negative number can be
computed with root:
>>> root(-32, 5, 5//2)
-2
See Also
========
sympy.polys.rootoftools.rootof
sympy.core.power.integer_nthroot
sqrt, real_root
References
==========
* https://en.wikipedia.org/wiki/Square_root
* https://en.wikipedia.org/wiki/Real_root
* https://en.wikipedia.org/wiki/Root_of_unity
* https://en.wikipedia.org/wiki/Principal_value
* http://mathworld.wolfram.com/CubeRoot.html
"""
n = sympify(n)
if k:
return Mul(Pow(arg, S.One/n, evaluate=evaluate), S.NegativeOne**(2*k/n), evaluate=evaluate)
return Pow(arg, 1/n, evaluate=evaluate)
def real_root(arg, n=None, evaluate=None):
"""Return the real nth-root of arg if possible. If n is omitted then
all instances of (-n)**(1/odd) will be changed to -n**(1/odd); this
will only create a real root of a principal root -- the presence of
other factors may cause the result to not be real.
The parameter evaluate determines if the expression should be evaluated.
If None, its value is taken from global_evaluate.
Examples
========
>>> from sympy import root, real_root, Rational
>>> from sympy.abc import x, n
>>> real_root(-8, 3)
-2
>>> root(-8, 3)
2*(-1)**(1/3)
>>> real_root(_)
-2
If one creates a non-principal root and applies real_root, the
result will not be real (so use with caution):
>>> root(-8, 3, 2)
-2*(-1)**(2/3)
>>> real_root(_)
-2*(-1)**(2/3)
See Also
========
sympy.polys.rootoftools.rootof
sympy.core.power.integer_nthroot
root, sqrt
"""
from sympy.functions.elementary.complexes import Abs, im, sign
from sympy.functions.elementary.piecewise import Piecewise
if n is not None:
return Piecewise(
(root(arg, n, evaluate=evaluate), Or(Eq(n, S.One), Eq(n, S.NegativeOne))),
(Mul(sign(arg), root(Abs(arg), n, evaluate=evaluate), evaluate=evaluate),
And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One))),
(root(arg, n, evaluate=evaluate), True))
rv = sympify(arg)
n1pow = Transform(lambda x: -(-x.base)**x.exp,
lambda x:
x.is_Pow and
x.base.is_negative and
x.exp.is_Rational and
x.exp.p == 1 and x.exp.q % 2)
return rv.xreplace(n1pow)
###############################################################################
############################# MINIMUM and MAXIMUM #############################
###############################################################################
class MinMaxBase(Expr, LatticeOp):
def __new__(cls, *args, **assumptions):
if not args:
raise ValueError("The Max/Min functions must have arguments.")
args = (sympify(arg) for arg in args)
# first standard filter, for cls.zero and cls.identity
# also reshape Max(a, Max(b, c)) to Max(a, b, c)
try:
args = frozenset(cls._new_args_filter(args))
except ShortCircuit:
return cls.zero
if assumptions.pop('evaluate', True):
# remove redundant args that are easily identified
args = cls._collapse_arguments(args, **assumptions)
# find local zeros
args = cls._find_localzeros(args, **assumptions)
if not args:
return cls.identity
if len(args) == 1:
return list(args).pop()
# base creation
_args = frozenset(args)
obj = Expr.__new__(cls, _args, **assumptions)
obj._argset = _args
return obj
@classmethod
def _collapse_arguments(cls, args, **assumptions):
"""Remove redundant args.
Examples
========
>>> from sympy import Min, Max
>>> from sympy.abc import a, b, c, d, e
Any arg in parent that appears in any
parent-like function in any of the flat args
of parent can be removed from that sub-arg:
>>> Min(a, Max(b, Min(a, c, d)))
Min(a, Max(b, Min(c, d)))
If the arg of parent appears in an opposite-than parent
function in any of the flat args of parent that function
can be replaced with the arg:
>>> Min(a, Max(b, Min(c, d, Max(a, e))))
Min(a, Max(b, Min(a, c, d)))
"""
from sympy.utilities.iterables import ordered
from sympy.utilities.iterables import sift
from sympy.simplify.simplify import walk
if not args:
return args
args = list(ordered(args))
if cls == Min:
other = Max
else:
other = Min
# find global comparable max of Max and min of Min if a new
# value is being introduced in these args at position 0 of
# the ordered args
if args[0].is_number:
sifted = mins, maxs = [], []
for i in args:
for v in walk(i, Min, Max):
if v.args[0].is_comparable:
sifted[isinstance(v, Max)].append(v)
small = Min.identity
for i in mins:
v = i.args[0]
if v.is_number and (v < small) == True:
small = v
big = Max.identity
for i in maxs:
v = i.args[0]
if v.is_number and (v > big) == True:
big = v
# at the point when this function is called from __new__,
# there may be more than one numeric arg present since
# local zeros have not been handled yet, so look through
# more than the first arg
if cls == Min:
for i in range(len(args)):
if not args[i].is_number:
break
if (args[i] < small) == True:
small = args[i]
elif cls == Max:
for i in range(len(args)):
if not args[i].is_number:
break
if (args[i] > big) == True:
big = args[i]
T = None
if cls == Min:
if small != Min.identity:
other = Max
T = small
elif big != Max.identity:
other = Min
T = big
if T is not None:
# remove numerical redundancy
for i in range(len(args)):
a = args[i]
if isinstance(a, other):
a0 = a.args[0]
if ((a0 > T) if other == Max else (a0 < T)) == True:
args[i] = cls.identity
# remove redundant symbolic args
def do(ai, a):
if not isinstance(ai, (Min, Max)):
return ai
cond = a in ai.args
if not cond:
return ai.func(*[do(i, a) for i in ai.args],
evaluate=False)
if isinstance(ai, cls):
return ai.func(*[do(i, a) for i in ai.args if i != a],
evaluate=False)
return a
for i, a in enumerate(args):
args[i + 1:] = [do(ai, a) for ai in args[i + 1:]]
# factor out common elements as for
# Min(Max(x, y), Max(x, z)) -> Max(x, Min(y, z))
# and vice versa when swapping Min/Max -- do this only for the
# easy case where all functions contain something in common;
# trying to find some optimal subset of args to modify takes
# too long
if len(args) > 1:
common = None
remove = []
sets = []
for i in range(len(args)):
a = args[i]
if not isinstance(a, other):
continue
s = set(a.args)
common = s if common is None else (common & s)
if not common:
break
sets.append(s)
remove.append(i)
if common:
sets = filter(None, [s - common for s in sets])
sets = [other(*s, evaluate=False) for s in sets]
for i in reversed(remove):
args.pop(i)
oargs = [cls(*sets)] if sets else []
oargs.extend(common)
args.append(other(*oargs, evaluate=False))
return args
@classmethod
def _new_args_filter(cls, arg_sequence):
"""
Generator filtering args.
first standard filter, for cls.zero and cls.identity.
Also reshape Max(a, Max(b, c)) to Max(a, b, c),
and check arguments for comparability
"""
for arg in arg_sequence:
# pre-filter, checking comparability of arguments
if not isinstance(arg, Expr) or arg.is_real is False or (
arg.is_number and
not arg.is_comparable):
raise ValueError("The argument '%s' is not comparable." % arg)
if arg == cls.zero:
raise ShortCircuit(arg)
elif arg == cls.identity:
continue
elif arg.func == cls:
for x in arg.args:
yield x
else:
yield arg
@classmethod
def _find_localzeros(cls, values, **options):
"""
Sequentially allocate values to localzeros.
When a value is identified as being more extreme than another member it
replaces that member; if this is never true, then the value is simply
appended to the localzeros.
"""
localzeros = set()
for v in values:
is_newzero = True
localzeros_ = list(localzeros)
for z in localzeros_:
if id(v) == id(z):
is_newzero = False
else:
con = cls._is_connected(v, z)
if con:
is_newzero = False
if con is True or con == cls:
localzeros.remove(z)
localzeros.update([v])
if is_newzero:
localzeros.update([v])
return localzeros
@classmethod
def _is_connected(cls, x, y):
"""
Check if x and y are connected somehow.
"""
from sympy.core.exprtools import factor_terms
def hit(v, t, f):
if not v.is_Relational:
return t if v else f
for i in range(2):
if x == y:
return True
r = hit(x >= y, Max, Min)
if r is not None:
return r
r = hit(y <= x, Max, Min)
if r is not None:
return r
r = hit(x <= y, Min, Max)
if r is not None:
return r
r = hit(y >= x, Min, Max)
if r is not None:
return r
# simplification can be expensive, so be conservative
# in what is attempted
x = factor_terms(x - y)
y = S.Zero
return False
def _eval_derivative(self, s):
# f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s)
i = 0
l = []
for a in self.args:
i += 1
da = a.diff(s)
if da is S.Zero:
continue
try:
df = self.fdiff(i)
except ArgumentIndexError:
df = Function.fdiff(self, i)
l.append(df * da)
return Add(*l)
def _eval_rewrite_as_Abs(self, *args, **kwargs):
from sympy.functions.elementary.complexes import Abs
s = (args[0] + self.func(*args[1:]))/2
d = abs(args[0] - self.func(*args[1:]))/2
return (s + d if isinstance(self, Max) else s - d).rewrite(Abs)
def evalf(self, prec=None, **options):
return self.func(*[a.evalf(prec, **options) for a in self.args])
n = evalf
_eval_is_algebraic = lambda s: _torf(i.is_algebraic for i in s.args)
_eval_is_antihermitian = lambda s: _torf(i.is_antihermitian for i in s.args)
_eval_is_commutative = lambda s: _torf(i.is_commutative for i in s.args)
_eval_is_complex = lambda s: _torf(i.is_complex for i in s.args)
_eval_is_composite = lambda s: _torf(i.is_composite for i in s.args)
_eval_is_even = lambda s: _torf(i.is_even for i in s.args)
_eval_is_finite = lambda s: _torf(i.is_finite for i in s.args)
_eval_is_hermitian = lambda s: _torf(i.is_hermitian for i in s.args)
_eval_is_imaginary = lambda s: _torf(i.is_imaginary for i in s.args)
_eval_is_infinite = lambda s: _torf(i.is_infinite for i in s.args)
_eval_is_integer = lambda s: _torf(i.is_integer for i in s.args)
_eval_is_irrational = lambda s: _torf(i.is_irrational for i in s.args)
_eval_is_negative = lambda s: _torf(i.is_negative for i in s.args)
_eval_is_noninteger = lambda s: _torf(i.is_noninteger for i in s.args)
_eval_is_nonnegative = lambda s: _torf(i.is_nonnegative for i in s.args)
_eval_is_nonpositive = lambda s: _torf(i.is_nonpositive for i in s.args)
_eval_is_nonzero = lambda s: _torf(i.is_nonzero for i in s.args)
_eval_is_odd = lambda s: _torf(i.is_odd for i in s.args)
_eval_is_polar = lambda s: _torf(i.is_polar for i in s.args)
_eval_is_positive = lambda s: _torf(i.is_positive for i in s.args)
_eval_is_prime = lambda s: _torf(i.is_prime for i in s.args)
_eval_is_rational = lambda s: _torf(i.is_rational for i in s.args)
_eval_is_real = lambda s: _torf(i.is_real for i in s.args)
_eval_is_transcendental = lambda s: _torf(i.is_transcendental for i in s.args)
_eval_is_zero = lambda s: _torf(i.is_zero for i in s.args)
class Max(MinMaxBase, Application):
"""
Return, if possible, the maximum value of the list.
When number of arguments is equal one, then
return this argument.
When number of arguments is equal two, then
return, if possible, the value from (a, b) that is >= the other.
In common case, when the length of list greater than 2, the task
is more complicated. Return only the arguments, which are greater
than others, if it is possible to determine directional relation.
If is not possible to determine such a relation, return a partially
evaluated result.
Assumptions are used to make the decision too.
Also, only comparable arguments are permitted.
It is named ``Max`` and not ``max`` to avoid conflicts
with the built-in function ``max``.
Examples
========
>>> from sympy import Max, Symbol, oo
>>> from sympy.abc import x, y
>>> p = Symbol('p', positive=True)
>>> n = Symbol('n', negative=True)
>>> Max(x, -2) #doctest: +SKIP
Max(x, -2)
>>> Max(x, -2).subs(x, 3)
3
>>> Max(p, -2)
p
>>> Max(x, y)
Max(x, y)
>>> Max(x, y) == Max(y, x)
True
>>> Max(x, Max(y, z)) #doctest: +SKIP
Max(x, y, z)
>>> Max(n, 8, p, 7, -oo) #doctest: +SKIP
Max(8, p)
>>> Max (1, x, oo)
oo
* Algorithm
The task can be considered as searching of supremums in the
directed complete partial orders [1]_.
The source values are sequentially allocated by the isolated subsets
in which supremums are searched and result as Max arguments.
If the resulted supremum is single, then it is returned.
The isolated subsets are the sets of values which are only the comparable
with each other in the current set. E.g. natural numbers are comparable with
each other, but not comparable with the `x` symbol. Another example: the
symbol `x` with negative assumption is comparable with a natural number.
Also there are "least" elements, which are comparable with all others,
and have a zero property (maximum or minimum for all elements). E.g. `oo`.
In case of it the allocation operation is terminated and only this value is
returned.
Assumption:
- if A > B > C then A > C
- if A == B then B can be removed
References
==========
.. [1] https://en.wikipedia.org/wiki/Directed_complete_partial_order
.. [2] https://en.wikipedia.org/wiki/Lattice_%28order%29
See Also
========
Min : find minimum values
"""
zero = S.Infinity
identity = S.NegativeInfinity
def fdiff( self, argindex ):
from sympy import Heaviside
n = len(self.args)
if 0 < argindex and argindex <= n:
argindex -= 1
if n == 2:
return Heaviside(self.args[argindex] - self.args[1 - argindex])
newargs = tuple([self.args[i] for i in range(n) if i != argindex])
return Heaviside(self.args[argindex] - Max(*newargs))
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_Heaviside(self, *args, **kwargs):
from sympy import Heaviside
return Add(*[j*Mul(*[Heaviside(j - i) for i in args if i!=j]) \
for j in args])
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
is_real = all(i.is_real for i in args)
if is_real:
return _minmax_as_Piecewise('>=', *args)
def _eval_is_positive(self):
return fuzzy_or(a.is_positive for a in self.args)
def _eval_is_nonnegative(self):
return fuzzy_or(a.is_nonnegative for a in self.args)
def _eval_is_negative(self):
return fuzzy_and(a.is_negative for a in self.args)
class Min(MinMaxBase, Application):
"""
Return, if possible, the minimum value of the list.
It is named ``Min`` and not ``min`` to avoid conflicts
with the built-in function ``min``.
Examples
========
>>> from sympy import Min, Symbol, oo
>>> from sympy.abc import x, y
>>> p = Symbol('p', positive=True)
>>> n = Symbol('n', negative=True)
>>> Min(x, -2) #doctest: +SKIP
Min(x, -2)
>>> Min(x, -2).subs(x, 3)
-2
>>> Min(p, -3)
-3
>>> Min(x, y) #doctest: +SKIP
Min(x, y)
>>> Min(n, 8, p, -7, p, oo) #doctest: +SKIP
Min(n, -7)
See Also
========
Max : find maximum values
"""
zero = S.NegativeInfinity
identity = S.Infinity
def fdiff( self, argindex ):
from sympy import Heaviside
n = len(self.args)
if 0 < argindex and argindex <= n:
argindex -= 1
if n == 2:
return Heaviside( self.args[1-argindex] - self.args[argindex] )
newargs = tuple([ self.args[i] for i in range(n) if i != argindex])
return Heaviside( Min(*newargs) - self.args[argindex] )
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_Heaviside(self, *args, **kwargs):
from sympy import Heaviside
return Add(*[j*Mul(*[Heaviside(i-j) for i in args if i!=j]) \
for j in args])
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
is_real = all(i.is_real for i in args)
if is_real:
return _minmax_as_Piecewise('<=', *args)
def _eval_is_positive(self):
return fuzzy_and(a.is_positive for a in self.args)
def _eval_is_nonnegative(self):
return fuzzy_and(a.is_nonnegative for a in self.args)
def _eval_is_negative(self):
return fuzzy_or(a.is_negative for a in self.args)
|
1d50e3b77e551c04ba02b2dc5e20e8183caa5a62c5a2fabd34cba70805c667c8
|
from __future__ import print_function, division
from sympy.core import Basic, S, Function, diff, Tuple, Dummy, Number, Symbol
from sympy.core.basic import as_Basic
from sympy.core.sympify import SympifyError
from sympy.core.relational import (Equality, Unequality, Relational,
_canonical)
from sympy.core.function import UndefinedFunction
from sympy.core.numbers import Rational, NumberSymbol
from sympy.functions.elementary.miscellaneous import Max, Min
from sympy.logic.boolalg import (And, Boolean, distribute_and_over_or,
true, false, Not, Or, ITE, simplify_logic)
from sympy.utilities.iterables import cartes
from sympy.core.compatibility import default_sort_key, range
from sympy.utilities.iterables import uniq, is_sequence, ordered, product, sift
from sympy.utilities.misc import filldedent, Undecidable, func_name
Undefined = S.NaN # Piecewise()
class ExprCondPair(Tuple):
"""Represents an expression, condition pair."""
def __new__(cls, expr, cond):
expr = as_Basic(expr)
if cond == True:
return Tuple.__new__(cls, expr, true)
elif cond == False:
return Tuple.__new__(cls, expr, false)
elif isinstance(cond, Basic) and cond.has(Piecewise):
cond = piecewise_fold(cond)
if isinstance(cond, Piecewise):
cond = cond.rewrite(ITE)
if not isinstance(cond, Boolean):
raise TypeError(filldedent('''
Second argument must be a Boolean,
not `%s`''' % func_name(cond)))
return Tuple.__new__(cls, expr, cond)
@property
def expr(self):
"""
Returns the expression of this pair.
"""
return self.args[0]
@property
def cond(self):
"""
Returns the condition of this pair.
"""
return self.args[1]
@property
def is_commutative(self):
return self.expr.is_commutative
def __iter__(self):
yield self.expr
yield self.cond
def _eval_simplify(self, ratio, measure, rational, inverse):
return self.func(*[a.simplify(
ratio=ratio,
measure=measure,
rational=rational,
inverse=inverse) for a in self.args])
class Piecewise(Function):
"""
Represents a piecewise function.
Usage:
Piecewise( (expr,cond), (expr,cond), ... )
- Each argument is a 2-tuple defining an expression and condition
- The conds are evaluated in turn returning the first that is True.
If any of the evaluated conds are not determined explicitly False,
e.g. x < 1, the function is returned in symbolic form.
- If the function is evaluated at a place where all conditions are False,
nan will be returned.
- Pairs where the cond is explicitly False, will be removed.
Examples
========
>>> from sympy import Piecewise, log, ITE, piecewise_fold
>>> from sympy.abc import x, y
>>> f = x**2
>>> g = log(x)
>>> p = Piecewise((0, x < -1), (f, x <= 1), (g, True))
>>> p.subs(x,1)
1
>>> p.subs(x,5)
log(5)
Booleans can contain Piecewise elements:
>>> cond = (x < y).subs(x, Piecewise((2, x < 0), (3, True))); cond
Piecewise((2, x < 0), (3, True)) < y
The folded version of this results in a Piecewise whose
expressions are Booleans:
>>> folded_cond = piecewise_fold(cond); folded_cond
Piecewise((2 < y, x < 0), (3 < y, True))
When a Boolean containing Piecewise (like cond) or a Piecewise
with Boolean expressions (like folded_cond) is used as a condition,
it is converted to an equivalent ITE object:
>>> Piecewise((1, folded_cond))
Piecewise((1, ITE(x < 0, y > 2, y > 3)))
When a condition is an ITE, it will be converted to a simplified
Boolean expression:
>>> piecewise_fold(_)
Piecewise((1, ((x >= 0) | (y > 2)) & ((y > 3) | (x < 0))))
See Also
========
piecewise_fold, ITE
"""
nargs = None
is_Piecewise = True
def __new__(cls, *args, **options):
if len(args) == 0:
raise TypeError("At least one (expr, cond) pair expected.")
# (Try to) sympify args first
newargs = []
for ec in args:
# ec could be a ExprCondPair or a tuple
pair = ExprCondPair(*getattr(ec, 'args', ec))
cond = pair.cond
if cond is false:
continue
newargs.append(pair)
if cond is true:
break
if options.pop('evaluate', True):
r = cls.eval(*newargs)
else:
r = None
if r is None:
return Basic.__new__(cls, *newargs, **options)
else:
return r
@classmethod
def eval(cls, *_args):
"""Either return a modified version of the args or, if no
modifications were made, return None.
Modifications that are made here:
1) relationals are made canonical
2) any False conditions are dropped
3) any repeat of a previous condition is ignored
3) any args past one with a true condition are dropped
If there are no args left, nan will be returned.
If there is a single arg with a True condition, its
corresponding expression will be returned.
"""
if not _args:
return Undefined
if len(_args) == 1 and _args[0][-1] == True:
return _args[0][0]
newargs = [] # the unevaluated conditions
current_cond = set() # the conditions up to a given e, c pair
# make conditions canonical
args = []
for e, c in _args:
if not c.is_Atom and not isinstance(c, Relational):
free = c.free_symbols
if len(free) == 1:
funcs = [i for i in c.atoms(Function)
if not isinstance(i, Boolean)]
if len(funcs) == 1 and len(
c.xreplace({list(funcs)[0]: Dummy()}
).free_symbols) == 1:
# we can treat function like a symbol
free = funcs
_c = c
x = free.pop()
try:
c = c.as_set().as_relational(x)
except NotImplementedError:
pass
else:
reps = {}
for i in c.atoms(Relational):
ic = i.canonical
if ic.rhs in (S.Infinity, S.NegativeInfinity):
if not _c.has(ic.rhs):
# don't accept introduction of
# new Relationals with +/-oo
reps[i] = S.true
elif ('=' not in ic.rel_op and
c.xreplace({x: i.rhs}) !=
_c.xreplace({x: i.rhs})):
reps[i] = Relational(
i.lhs, i.rhs, i.rel_op + '=')
c = c.xreplace(reps)
args.append((e, _canonical(c)))
for expr, cond in args:
# Check here if expr is a Piecewise and collapse if one of
# the conds in expr matches cond. This allows the collapsing
# of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)).
# This is important when using piecewise_fold to simplify
# multiple Piecewise instances having the same conds.
# Eventually, this code should be able to collapse Piecewise's
# having different intervals, but this will probably require
# using the new assumptions.
if isinstance(expr, Piecewise):
unmatching = []
for i, (e, c) in enumerate(expr.args):
if c in current_cond:
# this would already have triggered
continue
if c == cond:
if c != True:
# nothing past this condition will ever
# trigger and only those args before this
# that didn't match a previous condition
# could possibly trigger
if unmatching:
expr = Piecewise(*(
unmatching + [(e, c)]))
else:
expr = e
break
else:
unmatching.append((e, c))
# check for condition repeats
got = False
# -- if an And contains a condition that was
# already encountered, then the And will be
# False: if the previous condition was False
# then the And will be False and if the previous
# condition is True then then we wouldn't get to
# this point. In either case, we can skip this condition.
for i in ([cond] +
(list(cond.args) if isinstance(cond, And) else
[])):
if i in current_cond:
got = True
break
if got:
continue
# -- if not(c) is already in current_cond then c is
# a redundant condition in an And. This does not
# apply to Or, however: (e1, c), (e2, Or(~c, d))
# is not (e1, c), (e2, d) because if c and d are
# both False this would give no results when the
# true answer should be (e2, True)
if isinstance(cond, And):
nonredundant = []
for c in cond.args:
if (isinstance(c, Relational) and
(~c).canonical in current_cond):
continue
nonredundant.append(c)
cond = cond.func(*nonredundant)
elif isinstance(cond, Relational):
if (~cond).canonical in current_cond:
cond = S.true
current_cond.add(cond)
# collect successive e,c pairs when exprs or cond match
if newargs:
if newargs[-1].expr == expr:
orcond = Or(cond, newargs[-1].cond)
if isinstance(orcond, (And, Or)):
orcond = distribute_and_over_or(orcond)
newargs[-1] = ExprCondPair(expr, orcond)
continue
elif newargs[-1].cond == cond:
orexpr = Or(expr, newargs[-1].expr)
if isinstance(orexpr, (And, Or)):
orexpr = distribute_and_over_or(orexpr)
newargs[-1] == ExprCondPair(orexpr, cond)
continue
newargs.append(ExprCondPair(expr, cond))
# some conditions may have been redundant
missing = len(newargs) != len(_args)
# some conditions may have changed
same = all(a == b for a, b in zip(newargs, _args))
# if either change happened we return the expr with the
# updated args
if not newargs:
raise ValueError(filldedent('''
There are no conditions (or none that
are not trivially false) to define an
expression.'''))
if missing or not same:
return cls(*newargs)
def doit(self, **hints):
"""
Evaluate this piecewise function.
"""
newargs = []
for e, c in self.args:
if hints.get('deep', True):
if isinstance(e, Basic):
e = e.doit(**hints)
if isinstance(c, Basic):
c = c.doit(**hints)
newargs.append((e, c))
return self.func(*newargs)
def _eval_simplify(self, ratio, measure, rational, inverse):
args = [a._eval_simplify(ratio, measure, rational, inverse)
for a in self.args]
for i, (expr, cond) in enumerate(args):
# try to simplify conditions and the expression for
# equalities that are part of the condition, e.g.
# Piecewise((n, And(Eq(n,0), Eq(n + m, 0))), (1, True))
# -> Piecewise((0, And(Eq(n, 0), Eq(m, 0))), (1, True))
if isinstance(cond, And):
eqs, other = sift(cond.args,
lambda i: isinstance(i, Equality), binary=True)
elif isinstance(cond, Equality):
eqs, other = [cond], []
else:
eqs = other = []
if eqs:
eqs = list(ordered(eqs))
for j, e in enumerate(eqs):
# these blessed lhs objects behave like Symbols
# and the rhs are simple replacements for the "symbols"
if isinstance(e.lhs, (Symbol, UndefinedFunction)) and \
isinstance(e.rhs,
(Rational, NumberSymbol,
Symbol, UndefinedFunction)):
expr = expr.subs(*e.args)
eqs[j + 1:] = [ei.subs(*e.args) for ei in eqs[j + 1:]]
other = [ei.subs(*e.args) for ei in other]
cond = And(*(eqs + other))
args[i] = args[i].func(expr, cond)
return self.func(*args)
def _eval_as_leading_term(self, x):
for e, c in self.args:
if c == True or c.subs(x, 0) == True:
return e.as_leading_term(x)
def _eval_adjoint(self):
return self.func(*[(e.adjoint(), c) for e, c in self.args])
def _eval_conjugate(self):
return self.func(*[(e.conjugate(), c) for e, c in self.args])
def _eval_derivative(self, x):
return self.func(*[(diff(e, x), c) for e, c in self.args])
def _eval_evalf(self, prec):
return self.func(*[(e._evalf(prec), c) for e, c in self.args])
def piecewise_integrate(self, x, **kwargs):
"""Return the Piecewise with each expression being
replaced with its antiderivative. To obtain a continuous
antiderivative, use the `integrate` function or method.
Examples
========
>>> from sympy import Piecewise
>>> from sympy.abc import x
>>> p = Piecewise((0, x < 0), (1, x < 1), (2, True))
>>> p.piecewise_integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x, True))
Note that this does not give a continuous function, e.g.
at x = 1 the 3rd condition applies and the antiderivative
there is 2*x so the value of the antiderivative is 2:
>>> anti = _
>>> anti.subs(x, 1)
2
The continuous derivative accounts for the integral *up to*
the point of interest, however:
>>> p.integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True))
>>> _.subs(x, 1)
1
See Also
========
Piecewise._eval_integral
"""
from sympy.integrals import integrate
return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args])
def _handle_irel(self, x, handler):
"""Return either None (if the conditions of self depend only on x) else
a Piecewise expression whose expressions (handled by the handler that
was passed) are paired with the governing x-independent relationals,
e.g. Piecewise((A, a(x) & b(y)), (B, c(x) | c(y)) ->
Piecewise(
(handler(Piecewise((A, a(x) & True), (B, c(x) | True)), b(y) & c(y)),
(handler(Piecewise((A, a(x) & True), (B, c(x) | False)), b(y)),
(handler(Piecewise((A, a(x) & False), (B, c(x) | True)), c(y)),
(handler(Piecewise((A, a(x) & False), (B, c(x) | False)), True))
"""
# identify governing relationals
rel = self.atoms(Relational)
irel = list(ordered([r for r in rel if x not in r.free_symbols
and r not in (S.true, S.false)]))
if irel:
args = {}
exprinorder = []
for truth in product((1, 0), repeat=len(irel)):
reps = dict(zip(irel, truth))
# only store the true conditions since the false are implied
# when they appear lower in the Piecewise args
if 1 not in truth:
cond = None # flag this one so it doesn't get combined
else:
andargs = Tuple(*[i for i in reps if reps[i]])
free = list(andargs.free_symbols)
if len(free) == 1:
from sympy.solvers.inequalities import (
reduce_inequalities, _solve_inequality)
try:
t = reduce_inequalities(andargs, free[0])
# ValueError when there are potentially
# nonvanishing imaginary parts
except (ValueError, NotImplementedError):
# at least isolate free symbol on left
t = And(*[_solve_inequality(
a, free[0], linear=True)
for a in andargs])
else:
t = And(*andargs)
if t is S.false:
continue # an impossible combination
cond = t
expr = handler(self.xreplace(reps))
if isinstance(expr, self.func) and len(expr.args) == 1:
expr, econd = expr.args[0]
cond = And(econd, True if cond is None else cond)
# the ec pairs are being collected since all possibilities
# are being enumerated, but don't put the last one in since
# its expr might match a previous expression and it
# must appear last in the args
if cond is not None:
args.setdefault(expr, []).append(cond)
# but since we only store the true conditions we must maintain
# the order so that the expression with the most true values
# comes first
exprinorder.append(expr)
# convert collected conditions as args of Or
for k in args:
args[k] = Or(*args[k])
# take them in the order obtained
args = [(e, args[e]) for e in uniq(exprinorder)]
# add in the last arg
args.append((expr, True))
# if any condition reduced to True, it needs to go last
# and there should only be one of them or else the exprs
# should agree
trues = [i for i in range(len(args)) if args[i][1] is S.true]
if not trues:
# make the last one True since all cases were enumerated
e, c = args[-1]
args[-1] = (e, S.true)
else:
assert len(set([e for e, c in [args[i] for i in trues]])) == 1
args.append(args.pop(trues.pop()))
while trues:
args.pop(trues.pop())
return Piecewise(*args)
def _eval_integral(self, x, _first=True, **kwargs):
"""Return the indefinite integral of the
Piecewise such that subsequent substitution of x with a
value will give the value of the integral (not including
the constant of integration) up to that point. To only
integrate the individual parts of Piecewise, use the
`piecewise_integrate` method.
Examples
========
>>> from sympy import Piecewise
>>> from sympy.abc import x
>>> p = Piecewise((0, x < 0), (1, x < 1), (2, True))
>>> p.integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True))
>>> p.piecewise_integrate(x)
Piecewise((0, x < 0), (x, x < 1), (2*x, True))
See Also
========
Piecewise.piecewise_integrate
"""
from sympy.integrals.integrals import integrate
if _first:
def handler(ipw):
if isinstance(ipw, self.func):
return ipw._eval_integral(x, _first=False, **kwargs)
else:
return ipw.integrate(x, **kwargs)
irv = self._handle_irel(x, handler)
if irv is not None:
return irv
# handle a Piecewise from -oo to oo with and no x-independent relationals
# -----------------------------------------------------------------------
try:
abei = self._intervals(x)
except NotImplementedError:
from sympy import Integral
return Integral(self, x) # unevaluated
pieces = [(a, b) for a, b, _, _ in abei]
oo = S.Infinity
done = [(-oo, oo, -1)]
for k, p in enumerate(pieces):
if p == (-oo, oo):
# all undone intervals will get this key
for j, (a, b, i) in enumerate(done):
if i == -1:
done[j] = a, b, k
break # nothing else to consider
N = len(done) - 1
for j, (a, b, i) in enumerate(reversed(done)):
if i == -1:
j = N - j
done[j: j + 1] = _clip(p, (a, b), k)
done = [(a, b, i) for a, b, i in done if a != b]
# append an arg if there is a hole so a reference to
# argument -1 will give Undefined
if any(i == -1 for (a, b, i) in done):
abei.append((-oo, oo, Undefined, -1))
# return the sum of the intervals
args = []
sum = None
for a, b, i in done:
anti = integrate(abei[i][-2], x, **kwargs)
if sum is None:
sum = anti
else:
sum = sum.subs(x, a)
if sum == Undefined:
sum = 0
sum += anti._eval_interval(x, a, x)
# see if we know whether b is contained in original
# condition
if b is S.Infinity:
cond = True
elif self.args[abei[i][-1]].cond.subs(x, b) == False:
cond = (x < b)
else:
cond = (x <= b)
args.append((sum, cond))
return Piecewise(*args)
def _eval_interval(self, sym, a, b, _first=True):
"""Evaluates the function along the sym in a given interval [a, b]"""
# FIXME: Currently complex intervals are not supported. A possible
# replacement algorithm, discussed in issue 5227, can be found in the
# following papers;
# http://portal.acm.org/citation.cfm?id=281649
# http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4127&rep=rep1&type=pdf
from sympy.core.symbol import Dummy
if a is None or b is None:
# In this case, it is just simple substitution
return super(Piecewise, self)._eval_interval(sym, a, b)
else:
x, lo, hi = map(as_Basic, (sym, a, b))
if _first: # get only x-dependent relationals
def handler(ipw):
if isinstance(ipw, self.func):
return ipw._eval_interval(x, lo, hi, _first=None)
else:
return ipw._eval_interval(x, lo, hi)
irv = self._handle_irel(x, handler)
if irv is not None:
return irv
if (lo < hi) is S.false or (
lo is S.Infinity or hi is S.NegativeInfinity):
rv = self._eval_interval(x, hi, lo, _first=False)
if isinstance(rv, Piecewise):
rv = Piecewise(*[(-e, c) for e, c in rv.args])
else:
rv = -rv
return rv
if (lo < hi) is S.true or (
hi is S.Infinity or lo is S.NegativeInfinity):
pass
else:
_a = Dummy('lo')
_b = Dummy('hi')
a = lo if lo.is_comparable else _a
b = hi if hi.is_comparable else _b
pos = self._eval_interval(x, a, b, _first=False)
if a == _a and b == _b:
# it's purely symbolic so just swap lo and hi and
# change the sign to get the value for when lo > hi
neg, pos = (-pos.xreplace({_a: hi, _b: lo}),
pos.xreplace({_a: lo, _b: hi}))
else:
# at least one of the bounds was comparable, so allow
# _eval_interval to use that information when computing
# the interval with lo and hi reversed
neg, pos = (-self._eval_interval(x, hi, lo, _first=False),
pos.xreplace({_a: lo, _b: hi}))
# allow simplification based on ordering of lo and hi
p = Dummy('', positive=True)
if lo.is_Symbol:
pos = pos.xreplace({lo: hi - p}).xreplace({p: hi - lo})
neg = neg.xreplace({lo: hi + p}).xreplace({p: lo - hi})
elif hi.is_Symbol:
pos = pos.xreplace({hi: lo + p}).xreplace({p: hi - lo})
neg = neg.xreplace({hi: lo - p}).xreplace({p: lo - hi})
# assemble return expression; make the first condition be Lt
# b/c then the first expression will look the same whether
# the lo or hi limit is symbolic
if a == _a: # the lower limit was symbolic
rv = Piecewise(
(pos,
lo < hi),
(neg,
True))
else:
rv = Piecewise(
(neg,
hi < lo),
(pos,
True))
if rv == Undefined:
raise ValueError("Can't integrate across undefined region.")
if any(isinstance(i, Piecewise) for i in (pos, neg)):
rv = piecewise_fold(rv)
return rv
# handle a Piecewise with lo <= hi and no x-independent relationals
# -----------------------------------------------------------------
try:
abei = self._intervals(x)
except NotImplementedError:
from sympy import Integral
# not being able to do the interval of f(x) can
# be stated as not being able to do the integral
# of f'(x) over the same range
return Integral(self.diff(x), (x, lo, hi)) # unevaluated
pieces = [(a, b) for a, b, _, _ in abei]
done = [(lo, hi, -1)]
oo = S.Infinity
for k, p in enumerate(pieces):
if p[:2] == (-oo, oo):
# all undone intervals will get this key
for j, (a, b, i) in enumerate(done):
if i == -1:
done[j] = a, b, k
break # nothing else to consider
N = len(done) - 1
for j, (a, b, i) in enumerate(reversed(done)):
if i == -1:
j = N - j
done[j: j + 1] = _clip(p, (a, b), k)
done = [(a, b, i) for a, b, i in done if a != b]
# return the sum of the intervals
sum = S.Zero
upto = None
for a, b, i in done:
if i == -1:
if upto is None:
return Undefined
# TODO simplify hi <= upto
return Piecewise((sum, hi <= upto), (Undefined, True))
sum += abei[i][-2]._eval_interval(x, a, b)
upto = b
return sum
def _intervals(self, sym):
"""Return a list of unique tuples, (a, b, e, i), where a and b
are the lower and upper bounds in which the expression e of
argument i in self is defined and a < b (when involving
numbers) or a <= b when involving symbols.
If there are any relationals not involving sym, or any
relational cannot be solved for sym, NotImplementedError is
raised. The calling routine should have removed such
relationals before calling this routine.
The evaluated conditions will be returned as ranges.
Discontinuous ranges will be returned separately with
identical expressions. The first condition that evaluates to
True will be returned as the last tuple with a, b = -oo, oo.
"""
from sympy.solvers.inequalities import _solve_inequality
from sympy.logic.boolalg import to_cnf, distribute_or_over_and
assert isinstance(self, Piecewise)
def _solve_relational(r):
if sym not in r.free_symbols:
nonsymfail(r)
rv = _solve_inequality(r, sym)
if isinstance(rv, Relational):
free = rv.args[1].free_symbols
if rv.args[0] != sym or sym in free:
raise NotImplementedError(filldedent('''
Unable to solve relational
%s for %s.''' % (r, sym)))
if rv.rel_op == '==':
# this equality has been affirmed to have the form
# Eq(sym, rhs) where rhs is sym-free; it represents
# a zero-width interval which will be ignored
# whether it is an isolated condition or contained
# within an And or an Or
rv = S.false
elif rv.rel_op == '!=':
try:
rv = Or(sym < rv.rhs, sym > rv.rhs)
except TypeError:
# e.g. x != I ==> all real x satisfy
rv = S.true
elif rv == (S.NegativeInfinity < sym) & (sym < S.Infinity):
rv = S.true
return rv
def nonsymfail(cond):
raise NotImplementedError(filldedent('''
A condition not involving
%s appeared: %s''' % (sym, cond)))
# make self canonical wrt Relationals
reps = dict([
(r, _solve_relational(r)) for r in self.atoms(Relational)])
# process args individually so if any evaluate, their position
# in the original Piecewise will be known
args = [i.xreplace(reps) for i in self.args]
# precondition args
expr_cond = []
default = idefault = None
for i, (expr, cond) in enumerate(args):
if cond is S.false:
continue
elif cond is S.true:
default = expr
idefault = i
break
cond = to_cnf(cond)
if isinstance(cond, And):
cond = distribute_or_over_and(cond)
if isinstance(cond, Or):
expr_cond.extend(
[(i, expr, o) for o in cond.args
if not isinstance(o, Equality)])
elif cond is not S.false:
expr_cond.append((i, expr, cond))
# determine intervals represented by conditions
int_expr = []
for iarg, expr, cond in expr_cond:
if isinstance(cond, And):
lower = S.NegativeInfinity
upper = S.Infinity
for cond2 in cond.args:
if isinstance(cond2, Equality):
lower = upper # ignore
break
elif cond2.lts == sym:
upper = Min(cond2.gts, upper)
elif cond2.gts == sym:
lower = Max(cond2.lts, lower)
else:
nonsymfail(cond2) # should never get here
elif isinstance(cond, Relational):
lower, upper = cond.lts, cond.gts # part 1: initialize with givens
if cond.lts == sym: # part 1a: expand the side ...
lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0
elif cond.gts == sym: # part 1a: ... that can be expanded
upper = S.Infinity # e.g. x >= 0 ---> oo >= 0
else:
nonsymfail(cond)
else:
raise NotImplementedError(
'unrecognized condition: %s' % cond)
lower, upper = lower, Max(lower, upper)
if (lower >= upper) is not S.true:
int_expr.append((lower, upper, expr, iarg))
if default is not None:
int_expr.append(
(S.NegativeInfinity, S.Infinity, default, idefault))
return list(uniq(int_expr))
def _eval_nseries(self, x, n, logx):
args = [(ec.expr._eval_nseries(x, n, logx), ec.cond) for ec in self.args]
return self.func(*args)
def _eval_power(self, s):
return self.func(*[(e**s, c) for e, c in self.args])
def _eval_subs(self, old, new):
# this is strictly not necessary, but we can keep track
# of whether True or False conditions arise and be
# somewhat more efficient by avoiding other substitutions
# and avoiding invalid conditions that appear after a
# True condition
args = list(self.args)
args_exist = False
for i, (e, c) in enumerate(args):
c = c._subs(old, new)
if c != False:
args_exist = True
e = e._subs(old, new)
args[i] = (e, c)
if c == True:
break
if not args_exist:
args = ((Undefined, True),)
return self.func(*args)
def _eval_transpose(self):
return self.func(*[(e.transpose(), c) for e, c in self.args])
def _eval_template_is_attr(self, is_attr):
b = None
for expr, _ in self.args:
a = getattr(expr, is_attr)
if a is None:
return
if b is None:
b = a
elif b is not a:
return
return b
_eval_is_finite = lambda self: self._eval_template_is_attr(
'is_finite')
_eval_is_complex = lambda self: self._eval_template_is_attr('is_complex')
_eval_is_even = lambda self: self._eval_template_is_attr('is_even')
_eval_is_imaginary = lambda self: self._eval_template_is_attr(
'is_imaginary')
_eval_is_integer = lambda self: self._eval_template_is_attr('is_integer')
_eval_is_irrational = lambda self: self._eval_template_is_attr(
'is_irrational')
_eval_is_negative = lambda self: self._eval_template_is_attr('is_negative')
_eval_is_nonnegative = lambda self: self._eval_template_is_attr(
'is_nonnegative')
_eval_is_nonpositive = lambda self: self._eval_template_is_attr(
'is_nonpositive')
_eval_is_nonzero = lambda self: self._eval_template_is_attr(
'is_nonzero')
_eval_is_odd = lambda self: self._eval_template_is_attr('is_odd')
_eval_is_polar = lambda self: self._eval_template_is_attr('is_polar')
_eval_is_positive = lambda self: self._eval_template_is_attr('is_positive')
_eval_is_real = lambda self: self._eval_template_is_attr('is_real')
_eval_is_zero = lambda self: self._eval_template_is_attr(
'is_zero')
@classmethod
def __eval_cond(cls, cond):
"""Return the truth value of the condition."""
from sympy.solvers.solvers import checksol
if cond == True:
return True
if isinstance(cond, Equality):
try:
diff = cond.lhs - cond.rhs
if diff.is_commutative:
return diff.is_zero
except TypeError:
pass
def as_expr_set_pairs(self, domain=S.Reals):
"""Return tuples for each argument of self that give
the expression and the interval in which it is valid
which is contained within the given domain.
If a condition cannot be converted to a set, an error
will be raised. The variable of the conditions is
assumed to be real; sets of real values are returned.
Examples
========
>>> from sympy import Piecewise, Interval
>>> from sympy.abc import x
>>> p = Piecewise(
... (1, x < 2),
... (2,(x > 0) & (x < 4)),
... (3, True))
>>> p.as_expr_set_pairs()
[(1, Interval.open(-oo, 2)),
(2, Interval.Ropen(2, 4)),
(3, Interval(4, oo))]
>>> p.as_expr_set_pairs(Interval(0, 3))
[(1, Interval.Ropen(0, 2)),
(2, Interval(2, 3)), (3, EmptySet())]
"""
exp_sets = []
U = domain
complex = not domain.is_subset(S.Reals)
for expr, cond in self.args:
if complex:
for i in cond.atoms(Relational):
if not isinstance(i, (Equality, Unequality)):
raise ValueError(filldedent('''
Inequalities in the complex domain are
not supported. Try the real domain by
setting domain=S.Reals'''))
cond_int = U.intersect(cond.as_set())
U = U - cond_int
exp_sets.append((expr, cond_int))
return exp_sets
def _eval_rewrite_as_ITE(self, *args, **kwargs):
byfree = {}
args = list(args)
default = any(c == True for b, c in args)
for i, (b, c) in enumerate(args):
if not isinstance(b, Boolean) and b != True:
raise TypeError(filldedent('''
Expecting Boolean or bool but got `%s`
''' % func_name(b)))
if c == True:
break
# loop over independent conditions for this b
for c in c.args if isinstance(c, Or) else [c]:
free = c.free_symbols
x = free.pop()
try:
byfree[x] = byfree.setdefault(
x, S.EmptySet).union(c.as_set())
except NotImplementedError:
if not default:
raise NotImplementedError(filldedent('''
A method to determine whether a multivariate
conditional is consistent with a complete coverage
of all variables has not been implemented so the
rewrite is being stopped after encountering `%s`.
This error would not occur if a default expression
like `(foo, True)` were given.
''' % c))
if byfree[x] in (S.UniversalSet, S.Reals):
# collapse the ith condition to True and break
args[i] = list(args[i])
c = args[i][1] = True
break
if c == True:
break
if c != True:
raise ValueError(filldedent('''
Conditions must cover all reals or a final default
condition `(foo, True)` must be given.
'''))
last, _ = args[i] # ignore all past ith arg
for a, c in reversed(args[:i]):
last = ITE(c, a, last)
return _canonical(last)
def piecewise_fold(expr):
"""
Takes an expression containing a piecewise function and returns the
expression in piecewise form. In addition, any ITE conditions are
rewritten in negation normal form and simplified.
Examples
========
>>> from sympy import Piecewise, piecewise_fold, sympify as S
>>> from sympy.abc import x
>>> p = Piecewise((x, x < 1), (1, S(1) <= x))
>>> piecewise_fold(x*p)
Piecewise((x**2, x < 1), (x, True))
See Also
========
Piecewise
"""
if not isinstance(expr, Basic) or not expr.has(Piecewise):
return expr
new_args = []
if isinstance(expr, (ExprCondPair, Piecewise)):
for e, c in expr.args:
if not isinstance(e, Piecewise):
e = piecewise_fold(e)
# we don't keep Piecewise in condition because
# it has to be checked to see that it's complete
# and we convert it to ITE at that time
assert not c.has(Piecewise) # pragma: no cover
if isinstance(c, ITE):
c = c.to_nnf()
c = simplify_logic(c, form='cnf')
if isinstance(e, Piecewise):
new_args.extend([(piecewise_fold(ei), And(ci, c))
for ei, ci in e.args])
else:
new_args.append((e, c))
else:
from sympy.utilities.iterables import cartes, sift, common_prefix
# Given
# P1 = Piecewise((e11, c1), (e12, c2), A)
# P2 = Piecewise((e21, c1), (e22, c2), B)
# ...
# the folding of f(P1, P2) is trivially
# Piecewise(
# (f(e11, e21), c1),
# (f(e12, e22), c2),
# (f(Piecewise(A), Piecewise(B)), True))
# Certain objects end up rewriting themselves as thus, so
# we do that grouping before the more generic folding.
# The following applies this idea when f = Add or f = Mul
# (and the expression is commutative).
if expr.is_Add or expr.is_Mul and expr.is_commutative:
p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True)
pc = sift(p, lambda x: tuple([c for e,c in x.args]))
for c in list(ordered(pc)):
if len(pc[c]) > 1:
pargs = [list(i.args) for i in pc[c]]
# the first one is the same; there may be more
com = common_prefix(*[
[i.cond for i in j] for j in pargs])
n = len(com)
collected = []
for i in range(n):
collected.append((
expr.func(*[ai[i].expr for ai in pargs]),
com[i]))
remains = []
for a in pargs:
if n == len(a): # no more args
continue
if a[n].cond == True: # no longer Piecewise
remains.append(a[n].expr)
else: # restore the remaining Piecewise
remains.append(
Piecewise(*a[n:], evaluate=False))
if remains:
collected.append((expr.func(*remains), True))
args.append(Piecewise(*collected, evaluate=False))
continue
args.extend(pc[c])
else:
args = expr.args
# fold
folded = list(map(piecewise_fold, args))
for ec in cartes(*[
(i.args if isinstance(i, Piecewise) else
[(i, true)]) for i in folded]):
e, c = zip(*ec)
new_args.append((expr.func(*e), And(*c)))
return Piecewise(*new_args)
def _clip(A, B, k):
"""Return interval B as intervals that are covered by A (keyed
to k) and all other intervals of B not covered by A keyed to -1.
The reference point of each interval is the rhs; if the lhs is
greater than the rhs then an interval of zero width interval will
result, e.g. (4, 1) is treated like (1, 1).
Examples
========
>>> from sympy.functions.elementary.piecewise import _clip
>>> from sympy import Tuple
>>> A = Tuple(1, 3)
>>> B = Tuple(2, 4)
>>> _clip(A, B, 0)
[(2, 3, 0), (3, 4, -1)]
Interpretation: interval portion (2, 3) of interval (2, 4) is
covered by interval (1, 3) and is keyed to 0 as requested;
interval (3, 4) was not covered by (1, 3) and is keyed to -1.
"""
a, b = B
c, d = A
c, d = Min(Max(c, a), b), Min(Max(d, a), b)
a, b = Min(a, b), b
p = []
if a != c:
p.append((a, c, -1))
else:
pass
if c != d:
p.append((c, d, k))
else:
pass
if b != d:
if d == c and p and p[-1][-1] == -1:
p[-1] = p[-1][0], b, -1
else:
p.append((d, b, -1))
else:
pass
return p
|
568ab4b75b8a166d7a75505189b09971f1a52cf4f79a35d4ba064c00b56dc5ce
|
from __future__ import print_function, division
from sympy.core.singleton import S
from sympy.core.function import Function
from sympy.core import Add
from sympy.core.evalf import get_integer_part, PrecisionExhausted
from sympy.core.numbers import Integer
from sympy.core.relational import Gt, Lt, Ge, Le
from sympy.core.symbol import Symbol
###############################################################################
######################### FLOOR and CEILING FUNCTIONS #########################
###############################################################################
class RoundFunction(Function):
"""The base class for rounding functions."""
@classmethod
def eval(cls, arg):
from sympy import im
if arg.is_integer or arg.is_finite is False:
return arg
if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
i = im(arg)
if not i.has(S.ImaginaryUnit):
return cls(i)*S.ImaginaryUnit
return cls(arg, evaluate=False)
v = cls._eval_number(arg)
if v is not None:
return v
# Integral, numerical, symbolic part
ipart = npart = spart = S.Zero
# Extract integral (or complex integral) terms
terms = Add.make_args(arg)
for t in terms:
if t.is_integer or (t.is_imaginary and im(t).is_integer):
ipart += t
elif t.has(Symbol):
spart += t
else:
npart += t
if not (npart or spart):
return ipart
# Evaluate npart numerically if independent of spart
if npart and (
not spart or
npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or
npart.is_imaginary and spart.is_real):
try:
r, i = get_integer_part(
npart, cls._dir, {}, return_ints=True)
ipart += Integer(r) + Integer(i)*S.ImaginaryUnit
npart = S.Zero
except (PrecisionExhausted, NotImplementedError):
pass
spart += npart
if not spart:
return ipart
elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real:
return ipart + cls(im(spart), evaluate=False)*S.ImaginaryUnit
else:
return ipart + cls(spart, evaluate=False)
def _eval_is_finite(self):
return self.args[0].is_finite
def _eval_is_real(self):
return self.args[0].is_real
def _eval_is_integer(self):
return self.args[0].is_real
class floor(RoundFunction):
"""
Floor is a univariate function which returns the largest integer
value not greater than its argument. This implementation
generalizes floor to complex numbers by taking the floor of the
real and imaginary parts separately.
Examples
========
>>> from sympy import floor, E, I, S, Float, Rational
>>> floor(17)
17
>>> floor(Rational(23, 10))
2
>>> floor(2*E)
5
>>> floor(-Float(0.567))
-1
>>> floor(-I/2)
-I
>>> floor(S(5)/2 + 5*I/2)
2 + 2*I
See Also
========
sympy.functions.elementary.integers.ceiling
References
==========
.. [1] "Concrete mathematics" by Graham, pp. 87
.. [2] http://mathworld.wolfram.com/FloorFunction.html
"""
_dir = -1
@classmethod
def _eval_number(cls, arg):
if arg.is_Number:
return arg.floor()
elif any(isinstance(i, j)
for i in (arg, -arg) for j in (floor, ceiling)):
return arg
if arg.is_NumberSymbol:
return arg.approximation_interval(Integer)[0]
def _eval_nseries(self, x, n, logx):
r = self.subs(x, 0)
args = self.args[0]
args0 = args.subs(x, 0)
if args0 == r:
direction = (args - args0).leadterm(x)[0]
if direction.is_positive:
return r
else:
return r - 1
else:
return r
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
return -ceiling(-arg)
def _eval_rewrite_as_frac(self, arg, **kwargs):
return arg - frac(arg)
def _eval_Eq(self, other):
if isinstance(self, floor):
if (self.rewrite(ceiling) == other) or \
(self.rewrite(frac) == other):
return S.true
def __le__(self, other):
if self.args[0] == other and other.is_real:
return S.true
return Le(self, other, evaluate=False)
def __gt__(self, other):
if self.args[0] == other and other.is_real:
return S.false
return Gt(self, other, evaluate=False)
class ceiling(RoundFunction):
"""
Ceiling is a univariate function which returns the smallest integer
value not less than its argument. This implementation
generalizes ceiling to complex numbers by taking the ceiling of the
real and imaginary parts separately.
Examples
========
>>> from sympy import ceiling, E, I, S, Float, Rational
>>> ceiling(17)
17
>>> ceiling(Rational(23, 10))
3
>>> ceiling(2*E)
6
>>> ceiling(-Float(0.567))
0
>>> ceiling(I/2)
I
>>> ceiling(S(5)/2 + 5*I/2)
3 + 3*I
See Also
========
sympy.functions.elementary.integers.floor
References
==========
.. [1] "Concrete mathematics" by Graham, pp. 87
.. [2] http://mathworld.wolfram.com/CeilingFunction.html
"""
_dir = 1
@classmethod
def _eval_number(cls, arg):
if arg.is_Number:
return arg.ceiling()
elif any(isinstance(i, j)
for i in (arg, -arg) for j in (floor, ceiling)):
return arg
if arg.is_NumberSymbol:
return arg.approximation_interval(Integer)[1]
def _eval_nseries(self, x, n, logx):
r = self.subs(x, 0)
args = self.args[0]
args0 = args.subs(x, 0)
if args0 == r:
direction = (args - args0).leadterm(x)[0]
if direction.is_positive:
return r + 1
else:
return r
else:
return r
def _eval_rewrite_as_floor(self, arg, **kwargs):
return -floor(-arg)
def _eval_rewrite_as_frac(self, arg, **kwargs):
return arg + frac(-arg)
def _eval_Eq(self, other):
if isinstance(self, ceiling):
if (self.rewrite(floor) == other) or \
(self.rewrite(frac) == other):
return S.true
def __lt__(self, other):
if self.args[0] == other and other.is_real:
return S.false
return Lt(self, other, evaluate=False)
def __ge__(self, other):
if self.args[0] == other and other.is_real:
return S.true
return Ge(self, other, evaluate=False)
class frac(Function):
r"""Represents the fractional part of x
For real numbers it is defined [1]_ as
.. math::
x - \lfloor{x}\rfloor
Examples
========
>>> from sympy import Symbol, frac, Rational, floor, ceiling, I
>>> frac(Rational(4, 3))
1/3
>>> frac(-Rational(4, 3))
2/3
returns zero for integer arguments
>>> n = Symbol('n', integer=True)
>>> frac(n)
0
rewrite as floor
>>> x = Symbol('x')
>>> frac(x).rewrite(floor)
x - floor(x)
for complex arguments
>>> r = Symbol('r', real=True)
>>> t = Symbol('t', real=True)
>>> frac(t + I*r)
I*frac(r) + frac(t)
See Also
========
sympy.functions.elementary.integers.floor
sympy.functions.elementary.integers.ceiling
References
===========
.. [1] https://en.wikipedia.org/wiki/Fractional_part
.. [2] http://mathworld.wolfram.com/FractionalPart.html
"""
@classmethod
def eval(cls, arg):
from sympy import AccumBounds, im
def _eval(arg):
if arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(0, 1)
if arg.is_integer:
return S.Zero
if arg.is_number:
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return None
else:
return arg - floor(arg)
return cls(arg, evaluate=False)
terms = Add.make_args(arg)
real, imag = S.Zero, S.Zero
for t in terms:
# Two checks are needed for complex arguments
# see issue-7649 for details
if t.is_imaginary or (S.ImaginaryUnit*t).is_real:
i = im(t)
if not i.has(S.ImaginaryUnit):
imag += i
else:
real += t
else:
real += t
real = _eval(real)
imag = _eval(imag)
return real + S.ImaginaryUnit*imag
def _eval_rewrite_as_floor(self, arg, **kwargs):
return arg - floor(arg)
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
return arg + ceiling(-arg)
def _eval_Eq(self, other):
if isinstance(self, frac):
if (self.rewrite(floor) == other) or \
(self.rewrite(ceiling) == other):
return S.true
|
ca46442587cd82bc86e8bd382f7ba6464051630034746e2c0d89921081157052
|
from __future__ import print_function, division
from sympy.core import sympify
from sympy.core.add import Add
from sympy.core.function import Lambda, Function, ArgumentIndexError
from sympy.core.cache import cacheit
from sympy.core.numbers import Integer
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Wild, Dummy
from sympy.core.mul import Mul
from sympy.core.logic import fuzzy_not
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.ntheory import multiplicity, perfect_power
from sympy.core.compatibility import range
# NOTE IMPORTANT
# The series expansion code in this file is an important part of the gruntz
# algorithm for determining limits. _eval_nseries has to return a generalized
# power series with coefficients in C(log(x), log).
# In more detail, the result of _eval_nseries(self, x, n) must be
# c_0*x**e_0 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i involve only
# numbers, the function log, and log(x). [This also means it must not contain
# log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and
# p.is_positive.]
class ExpBase(Function):
unbranched = True
def inverse(self, argindex=1):
"""
Returns the inverse function of ``exp(x)``.
"""
return log
def as_numer_denom(self):
"""
Returns this with a positive exponent as a 2-tuple (a fraction).
Examples
========
>>> from sympy.functions import exp
>>> from sympy.abc import x
>>> exp(-x).as_numer_denom()
(1, exp(x))
>>> exp(x).as_numer_denom()
(exp(x), 1)
"""
# this should be the same as Pow.as_numer_denom wrt
# exponent handling
exp = self.exp
neg_exp = exp.is_negative
if not neg_exp and not (-exp).is_negative:
neg_exp = _coeff_isneg(exp)
if neg_exp:
return S.One, self.func(-exp)
return self, S.One
@property
def exp(self):
"""
Returns the exponent of the function.
"""
return self.args[0]
def as_base_exp(self):
"""
Returns the 2-tuple (base, exponent).
"""
return self.func(1), Mul(*self.args)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_infinite:
if arg.is_negative:
return True
if arg.is_positive:
return False
if arg.is_finite:
return True
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.exp is S.Zero:
return True
elif s.exp.is_rational and fuzzy_not(s.exp.is_zero):
return False
else:
return s.is_rational
def _eval_is_zero(self):
return (self.args[0] is S.NegativeInfinity)
def _eval_power(self, other):
"""exp(arg)**e -> exp(arg*e) if assumptions allow it.
"""
b, e = self.as_base_exp()
return Pow._eval_power(Pow(b, e, evaluate=False), other)
def _eval_expand_power_exp(self, **hints):
arg = self.args[0]
if arg.is_Add and arg.is_commutative:
expr = 1
for x in arg.args:
expr *= self.func(x)
return expr
return self.func(arg)
class exp_polar(ExpBase):
r"""
Represent a 'polar number' (see g-function Sphinx documentation).
``exp_polar`` represents the function
`Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number
`z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of
the main functions to construct polar numbers.
>>> from sympy import exp_polar, pi, I, exp
The main difference is that polar numbers don't "wrap around" at `2 \pi`:
>>> exp(2*pi*I)
1
>>> exp_polar(2*pi*I)
exp_polar(2*I*pi)
apart from that they behave mostly like classical complex numbers:
>>> exp_polar(2)*exp_polar(3)
exp_polar(5)
See also
========
sympy.simplify.simplify.powsimp
sympy.functions.elementary.complexes.polar_lift
sympy.functions.elementary.complexes.periodic_argument
sympy.functions.elementary.complexes.principal_branch
"""
is_polar = True
is_comparable = False # cannot be evalf'd
def _eval_Abs(self): # Abs is never a polar number
from sympy.functions.elementary.complexes import re
return exp(re(self.args[0]))
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
from sympy import im, pi, re
i = im(self.args[0])
try:
bad = (i <= -pi or i > pi)
except TypeError:
bad = True
if bad:
return self # cannot evalf for this argument
res = exp(self.args[0])._eval_evalf(prec)
if i > 0 and im(res) < 0:
# i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi
return re(res)
return res
def _eval_power(self, other):
return self.func(self.args[0]*other)
def _eval_is_real(self):
if self.args[0].is_real:
return True
def as_base_exp(self):
# XXX exp_polar(0) is special!
if self.args[0] == 0:
return self, S(1)
return ExpBase.as_base_exp(self)
class exp(ExpBase):
"""
The exponential function, :math:`e^x`.
See Also
========
log
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return self
else:
raise ArgumentIndexError(self, argindex)
def _eval_refine(self, assumptions):
from sympy.assumptions import ask, Q
arg = self.args[0]
if arg.is_Mul:
Ioo = S.ImaginaryUnit*S.Infinity
if arg in [Ioo, -Ioo]:
return S.NaN
coeff = arg.as_coefficient(S.Pi*S.ImaginaryUnit)
if coeff:
if ask(Q.integer(2*coeff)):
if ask(Q.even(coeff)):
return S.One
elif ask(Q.odd(coeff)):
return S.NegativeOne
elif ask(Q.even(coeff + S.Half)):
return -S.ImaginaryUnit
elif ask(Q.odd(coeff + S.Half)):
return S.ImaginaryUnit
@classmethod
def eval(cls, arg):
from sympy.assumptions import ask, Q
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
from sympy.matrices.matrices import MatrixBase
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Zero:
return S.One
elif arg is S.One:
return S.Exp1
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.ComplexInfinity:
return S.NaN
elif isinstance(arg, log):
return arg.args[0]
elif isinstance(arg, AccumBounds):
return AccumBounds(exp(arg.min), exp(arg.max))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
elif arg.is_Mul:
if arg.is_number or arg.is_Symbol:
coeff = arg.coeff(S.Pi*S.ImaginaryUnit)
if coeff:
if ask(Q.integer(2*coeff)):
if ask(Q.even(coeff)):
return S.One
elif ask(Q.odd(coeff)):
return S.NegativeOne
elif ask(Q.even(coeff + S.Half)):
return -S.ImaginaryUnit
elif ask(Q.odd(coeff + S.Half)):
return S.ImaginaryUnit
# Warning: code in risch.py will be very sensitive to changes
# in this (see DifferentialExtension).
# look for a single log factor
coeff, terms = arg.as_coeff_Mul()
# but it can't be multiplied by oo
if coeff in [S.NegativeInfinity, S.Infinity]:
return None
coeffs, log_term = [coeff], None
for term in Mul.make_args(terms):
if isinstance(term, log):
if log_term is None:
log_term = term.args[0]
else:
return None
elif term.is_comparable:
coeffs.append(term)
else:
return None
return log_term**Mul(*coeffs) if log_term else None
elif arg.is_Add:
out = []
add = []
for a in arg.args:
if a is S.One:
add.append(a)
continue
newa = cls(a)
if isinstance(newa, cls):
add.append(a)
else:
out.append(newa)
if out:
return Mul(*out)*cls(Add(*add), evaluate=False)
elif isinstance(arg, MatrixBase):
return arg.exp()
@property
def base(self):
"""
Returns the base of the exponential function.
"""
return S.Exp1
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Calculates the next term in the Taylor series expansion.
"""
if n < 0:
return S.Zero
if n == 0:
return S.One
x = sympify(x)
if previous_terms:
p = previous_terms[-1]
if p is not None:
return p * x / n
return x**n/factorial(n)
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a 2-tuple representing a complex number.
Examples
========
>>> from sympy import I
>>> from sympy.abc import x
>>> from sympy.functions import exp
>>> exp(x).as_real_imag()
(exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
>>> exp(1).as_real_imag()
(E, 0)
>>> exp(I).as_real_imag()
(cos(1), sin(1))
>>> exp(1+I).as_real_imag()
(E*cos(1), E*sin(1))
See Also
========
sympy.functions.elementary.complexes.re
sympy.functions.elementary.complexes.im
"""
import sympy
re, im = self.args[0].as_real_imag()
if deep:
re = re.expand(deep, **hints)
im = im.expand(deep, **hints)
cos, sin = sympy.cos(im), sympy.sin(im)
return (exp(re)*cos, exp(re)*sin)
def _eval_subs(self, old, new):
# keep processing of power-like args centralized in Pow
if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2)
old = exp(old.exp*log(old.base))
elif old is S.Exp1 and new.is_Function:
old = exp
if isinstance(old, exp) or old is S.Exp1:
f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if (
a.is_Pow or isinstance(a, exp)) else a
return Pow._eval_subs(f(self), f(old), new)
if old is exp and not new.is_Function:
return new**self.exp._subs(old, new)
return Function._eval_subs(self, old, new)
def _eval_is_real(self):
if self.args[0].is_real:
return True
elif self.args[0].is_imaginary:
arg2 = -S(2) * S.ImaginaryUnit * self.args[0] / S.Pi
return arg2.is_even
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.exp.is_zero):
if self.exp.is_algebraic:
return False
elif (self.exp/S.Pi).is_rational:
return False
else:
return s.is_algebraic
def _eval_is_positive(self):
if self.args[0].is_real:
return not self.args[0] is S.NegativeInfinity
elif self.args[0].is_imaginary:
arg2 = -S.ImaginaryUnit * self.args[0] / S.Pi
return arg2.is_even
def _eval_nseries(self, x, n, logx):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy import limit, oo, Order, powsimp
arg = self.args[0]
arg_series = arg._eval_nseries(x, n=n, logx=logx)
if arg_series.is_Order:
return 1 + arg_series
arg0 = limit(arg_series.removeO(), x, 0)
if arg0 in [-oo, oo]:
return self
t = Dummy("t")
exp_series = exp(t)._taylor(t, n)
o = exp_series.getO()
exp_series = exp_series.removeO()
r = exp(arg0)*exp_series.subs(t, arg_series - arg0)
r += Order(o.expr.subs(t, (arg_series - arg0)), x)
r = r.expand()
return powsimp(r, deep=True, combine='exp')
def _taylor(self, x, n):
from sympy import Order
l = []
g = None
for i in range(n):
g = self.taylor_term(i, self.args[0], g)
g = g.nseries(x, n=n)
l.append(g)
return Add(*l) + Order(x**n, x)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0]
if arg.is_Add:
return Mul(*[exp(f).as_leading_term(x) for f in arg.args])
arg = self.args[0].as_leading_term(x)
if Order(1, x).contains(arg):
return S.One
return exp(arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
from sympy import sin
I = S.ImaginaryUnit
return sin(I*arg + S.Pi/2) - I*sin(I*arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
from sympy import cos
I = S.ImaginaryUnit
return cos(I*arg) + I*cos(I*arg + S.Pi/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
from sympy import tanh
return (1 + tanh(arg/2))/(1 - tanh(arg/2))
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import sin, cos
if arg.is_Mul:
coeff = arg.coeff(S.Pi*S.ImaginaryUnit)
if coeff and coeff.is_number:
cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff)
if not isinstance(cosine, cos) and not isinstance (sine, sin):
return cosine + S.ImaginaryUnit*sine
class log(Function):
r"""
The natural logarithm function `\ln(x)` or `\log(x)`.
Logarithms are taken with the natural base, `e`. To get
a logarithm of a different base ``b``, use ``log(x, b)``,
which is essentially short-hand for ``log(x)/log(b)``.
See Also
========
exp
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of the function.
"""
if argindex == 1:
return 1/self.args[0]
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
r"""
Returns `e^x`, the inverse function of `\log(x)`.
"""
return exp
@classmethod
def eval(cls, arg, base=None):
from sympy import unpolarify
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
arg = sympify(arg)
if base is not None:
base = sympify(base)
if base == 1:
if arg == 1:
return S.NaN
else:
return S.ComplexInfinity
try:
# handle extraction of powers of the base now
# or else expand_log in Mul would have to handle this
n = multiplicity(base, arg)
if n:
den = base**n
if den.is_Integer:
return n + log(arg // den) / log(base)
else:
return n + log(arg / den) / log(base)
else:
return log(arg)/log(base)
except ValueError:
pass
if base is not S.Exp1:
return cls(arg)/cls(base)
else:
return cls(arg)
if arg.is_Number:
if arg is S.Zero:
return S.ComplexInfinity
elif arg is S.One:
return S.Zero
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg is S.NaN:
return S.NaN
elif arg.is_Rational and arg.p == 1:
return -cls(arg.q)
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if isinstance(arg, exp) and arg.args[0].is_real:
return arg.args[0]
elif isinstance(arg, exp_polar):
return unpolarify(arg.exp)
elif isinstance(arg, AccumBounds):
if arg.min.is_positive:
return AccumBounds(log(arg.min), log(arg.max))
else:
return
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.is_number:
if arg.is_negative:
return S.Pi * S.ImaginaryUnit + cls(-arg)
elif arg is S.ComplexInfinity:
return S.ComplexInfinity
elif arg is S.Exp1:
return S.One
# don't autoexpand Pow or Mul (see the issue 3351):
if not arg.is_Add:
coeff = arg.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if coeff is S.Infinity:
return S.Infinity
elif coeff is S.NegativeInfinity:
return S.Infinity
elif coeff.is_Rational:
if coeff.is_nonnegative:
return S.Pi * S.ImaginaryUnit * S.Half + cls(coeff)
else:
return -S.Pi * S.ImaginaryUnit * S.Half + cls(-coeff)
def as_base_exp(self):
"""
Returns this function in the form (base, exponent).
"""
return self, S.One
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms): # of log(1+x)
r"""
Returns the next term in the Taylor series expansion of `\log(1+x)`.
"""
from sympy import powsimp
if n < 0:
return S.Zero
x = sympify(x)
if n == 0:
return x
if previous_terms:
p = previous_terms[-1]
if p is not None:
return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp')
return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1)
def _eval_expand_log(self, deep=True, **hints):
from sympy import unpolarify, expand_log
from sympy.concrete import Sum, Product
force = hints.get('force', False)
if (len(self.args) == 2):
return expand_log(self.func(*self.args), deep=deep, force=force)
arg = self.args[0]
if arg.is_Integer:
# remove perfect powers
p = perfect_power(int(arg))
if p is not False:
return p[1]*self.func(p[0])
elif arg.is_Rational:
return log(arg.p) - log(arg.q)
elif arg.is_Mul:
expr = []
nonpos = []
for x in arg.args:
if force or x.is_positive or x.is_polar:
a = self.func(x)
if isinstance(a, log):
expr.append(self.func(x)._eval_expand_log(**hints))
else:
expr.append(a)
elif x.is_negative:
a = self.func(-x)
expr.append(a)
nonpos.append(S.NegativeOne)
else:
nonpos.append(x)
return Add(*expr) + log(Mul(*nonpos))
elif arg.is_Pow or isinstance(arg, exp):
if force or (arg.exp.is_real and (arg.base.is_positive or ((arg.exp+1)
.is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar:
b = arg.base
e = arg.exp
a = self.func(b)
if isinstance(a, log):
return unpolarify(e) * a._eval_expand_log(**hints)
else:
return unpolarify(e) * a
elif isinstance(arg, Product):
if arg.function.is_positive:
return Sum(log(arg.function), *arg.limits)
return self.func(arg)
def _eval_simplify(self, ratio, measure, rational, inverse):
from sympy.simplify.simplify import expand_log, simplify, inversecombine
if (len(self.args) == 2):
return simplify(self.func(*self.args), ratio=ratio, measure=measure,
rational=rational, inverse=inverse)
expr = self.func(simplify(self.args[0], ratio=ratio, measure=measure,
rational=rational, inverse=inverse))
if inverse:
expr = inversecombine(expr)
expr = expand_log(expr, deep=True)
return min([expr, self], key=measure)
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a complex coordinate.
Examples
========
>>> from sympy import I
>>> from sympy.abc import x
>>> from sympy.functions import log
>>> log(x).as_real_imag()
(log(Abs(x)), arg(x))
>>> log(I).as_real_imag()
(0, pi/2)
>>> log(1 + I).as_real_imag()
(log(sqrt(2)), pi/4)
>>> log(I*x).as_real_imag()
(log(Abs(x)), arg(I*x))
"""
from sympy import Abs, arg
if deep:
abs = Abs(self.args[0].expand(deep, **hints))
arg = arg(self.args[0].expand(deep, **hints))
else:
abs = Abs(self.args[0])
arg = arg(self.args[0])
if hints.get('log', False): # Expand the log
hints['complex'] = False
return (log(abs).expand(deep, **hints), arg)
else:
return (log(abs), arg)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
elif fuzzy_not((self.args[0] - 1).is_zero):
if self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
def _eval_is_real(self):
return self.args[0].is_positive
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_zero:
return False
return arg.is_finite
def _eval_is_positive(self):
return (self.args[0] - 1).is_positive
def _eval_is_zero(self):
return (self.args[0] - 1).is_zero
def _eval_is_nonnegative(self):
return (self.args[0] - 1).is_nonnegative
def _eval_nseries(self, x, n, logx):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy import cancel, Order
if not logx:
logx = log(x)
if self.args[0] == x:
return logx
arg = self.args[0]
k, l = Wild("k"), Wild("l")
r = arg.match(k*x**l)
if r is not None:
k, l = r[k], r[l]
if l != 0 and not l.has(x) and not k.has(x):
r = log(k) + l*logx # XXX true regardless of assumptions?
return r
# TODO new and probably slow
s = self.args[0].nseries(x, n=n, logx=logx)
while s.is_Order:
n += 1
s = self.args[0].nseries(x, n=n, logx=logx)
a, b = s.leadterm(x)
p = cancel(s/(a*x**b) - 1)
g = None
l = []
for i in range(n + 2):
g = log.taylor_term(i, p, g)
g = g.nseries(x, n=n, logx=logx)
l.append(g)
return log(a) + b*logx + Add(*l) + Order(p**n, x)
def _eval_as_leading_term(self, x):
arg = self.args[0].as_leading_term(x)
if arg is S.One:
return (self.args[0] - 1).as_leading_term(x)
return self.func(arg)
class LambertW(Function):
r"""
The Lambert W function `W(z)` is defined as the inverse
function of `w \exp(w)` [1]_.
In other words, the value of `W(z)` is such that `z = W(z) \exp(W(z))`
for any complex number `z`. The Lambert W function is a multivalued
function with infinitely many branches `W_k(z)`, indexed by
`k \in \mathbb{Z}`. Each branch gives a different solution `w`
of the equation `z = w \exp(w)`.
The Lambert W function has two partially real branches: the
principal branch (`k = 0`) is real for real `z > -1/e`, and the
`k = -1` branch is real for `-1/e < z < 0`. All branches except
`k = 0` have a logarithmic singularity at `z = 0`.
Examples
========
>>> from sympy import LambertW
>>> LambertW(1.2)
0.635564016364870
>>> LambertW(1.2, -1).n()
-1.34747534407696 - 4.41624341514535*I
>>> LambertW(-1).is_real
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Lambert_W_function
"""
@classmethod
def eval(cls, x, k=None):
if k is S.Zero:
return cls(x)
elif k is None:
k = S.Zero
if k is S.Zero:
if x is S.Zero:
return S.Zero
if x is S.Exp1:
return S.One
if x == -1/S.Exp1:
return S.NegativeOne
if x == -log(2)/2:
return -log(2)
if x is S.Infinity:
return S.Infinity
if fuzzy_not(k.is_zero):
if x is S.Zero:
return S.NegativeInfinity
if k is S.NegativeOne:
if x == -S.Pi/2:
return -S.ImaginaryUnit*S.Pi/2
elif x == -1/S.Exp1:
return S.NegativeOne
elif x == -2*exp(-2):
return -Integer(2)
def fdiff(self, argindex=1):
"""
Return the first derivative of this function.
"""
x = self.args[0]
if len(self.args) == 1:
if argindex == 1:
return LambertW(x)/(x*(1 + LambertW(x)))
else:
k = self.args[1]
if argindex == 1:
return LambertW(x, k)/(x*(1 + LambertW(x, k)))
raise ArgumentIndexError(self, argindex)
def _eval_is_real(self):
x = self.args[0]
if len(self.args) == 1:
k = S.Zero
else:
k = self.args[1]
if k.is_zero:
if (x + 1/S.Exp1).is_positive:
return True
elif (x + 1/S.Exp1).is_nonpositive:
return False
elif (k + 1).is_zero:
if x.is_negative and (x + 1/S.Exp1).is_positive:
return True
elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative:
return False
elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero):
if x.is_real:
return False
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
from sympy.core.function import _coeff_isneg
|
1766e0e71de4cdce97791210e680be6ba295d1495a1ee8bcc54a686611cfe97d
|
from __future__ import print_function, division
from sympy.core import S, sympify, cacheit
from sympy.core.add import Add
from sympy.core.function import Function, ArgumentIndexError, _coeff_isneg
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.combinatorial.factorials import factorial, RisingFactorial
def _rewrite_hyperbolics_as_exp(expr):
expr = sympify(expr)
return expr.xreplace(dict([(h, h.rewrite(exp))
for h in expr.atoms(HyperbolicFunction)]))
###############################################################################
########################### HYPERBOLIC FUNCTIONS ##############################
###############################################################################
class HyperbolicFunction(Function):
"""
Base class for hyperbolic functions.
See Also
========
sinh, cosh, tanh, coth
"""
unbranched = True
def _peeloff_ipi(arg):
"""
Split ARG into two parts, a "rest" and a multiple of I*pi/2.
This assumes ARG to be an Add.
The multiple of I*pi returned in the second position is always a Rational.
Examples
========
>>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel
>>> from sympy import pi, I
>>> from sympy.abc import x, y
>>> peel(x + I*pi/2)
(x, I*pi/2)
>>> peel(x + I*2*pi/3 + I*pi*y)
(x + I*pi*y + I*pi/6, I*pi/2)
"""
for a in Add.make_args(arg):
if a == S.Pi*S.ImaginaryUnit:
K = S.One
break
elif a.is_Mul:
K, p = a.as_two_terms()
if p == S.Pi*S.ImaginaryUnit and K.is_Rational:
break
else:
return arg, S.Zero
m1 = (K % S.Half)*S.Pi*S.ImaginaryUnit
m2 = K*S.Pi*S.ImaginaryUnit - m1
return arg - m2, m2
class sinh(HyperbolicFunction):
r"""
The hyperbolic sine function, `\frac{e^x - e^{-x}}{2}`.
* sinh(x) -> Returns the hyperbolic sine of x
See Also
========
cosh, tanh, asinh
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return cosh(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return asinh
@classmethod
def eval(cls, arg):
from sympy import sin
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.NegativeInfinity
elif arg is S.Zero:
return S.Zero
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * sin(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
return sinh(m)*cosh(x) + cosh(m)*sinh(x)
if arg.func == asinh:
return arg.args[0]
if arg.func == acosh:
x = arg.args[0]
return sqrt(x - 1) * sqrt(x + 1)
if arg.func == atanh:
x = arg.args[0]
return x/sqrt(1 - x**2)
if arg.func == acoth:
x = arg.args[0]
return 1/(sqrt(x - 1) * sqrt(x + 1))
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Returns the next term in the Taylor series expansion.
"""
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return p * x**2 / (n*(n - 1))
else:
return x**(n) / factorial(n)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a complex coordinate.
"""
from sympy import cos, sin
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (sinh(re)*cos(im), cosh(re)*sin(im))
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def _eval_expand_trig(self, deep=True, **hints):
if deep:
arg = self.args[0].expand(deep, **hints)
else:
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
x, y = arg.as_two_terms()
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
x = terms
y = (coeff - 1)*x
if x is not None:
return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True)
return sinh(arg)
def _eval_rewrite_as_tractable(self, arg, **kwargs):
return (exp(arg) - exp(-arg)) / 2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return (exp(arg) - exp(-arg)) / 2
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return -S.ImaginaryUnit*cosh(arg + S.Pi*S.ImaginaryUnit/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
tanh_half = tanh(S.Half*arg)
return 2*tanh_half/(1 - tanh_half**2)
def _eval_rewrite_as_coth(self, arg, **kwargs):
coth_half = coth(S.Half*arg)
return 2*coth_half/(coth_half**2 - 1)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
if self.args[0].is_real:
return True
def _eval_is_positive(self):
if self.args[0].is_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_real:
return self.args[0].is_negative
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_imaginary:
return True
class cosh(HyperbolicFunction):
r"""
The hyperbolic cosine function, `\frac{e^x + e^{-x}}{2}`.
* cosh(x) -> Returns the hyperbolic cosine of x
See Also
========
sinh, tanh, acosh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return sinh(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy import cos
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg is S.Zero:
return S.One
elif arg.is_negative:
return cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return cos(i_coeff)
else:
if _coeff_isneg(arg):
return cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
return cosh(m)*cosh(x) + sinh(m)*sinh(x)
if arg.func == asinh:
return sqrt(1 + arg.args[0]**2)
if arg.func == acosh:
return arg.args[0]
if arg.func == atanh:
return 1/sqrt(1 - arg.args[0]**2)
if arg.func == acoth:
x = arg.args[0]
return x/(sqrt(x - 1) * sqrt(x + 1))
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return p * x**2 / (n*(n - 1))
else:
return x**(n)/factorial(n)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy import cos, sin
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (cosh(re)*cos(im), sinh(re)*sin(im))
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def _eval_expand_trig(self, deep=True, **hints):
if deep:
arg = self.args[0].expand(deep, **hints)
else:
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
x, y = arg.as_two_terms()
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
x = terms
y = (coeff - 1)*x
if x is not None:
return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True)
return cosh(arg)
def _eval_rewrite_as_tractable(self, arg, **kwargs):
return (exp(arg) + exp(-arg)) / 2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return (exp(arg) + exp(-arg)) / 2
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return -S.ImaginaryUnit*sinh(arg + S.Pi*S.ImaginaryUnit/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
tanh_half = tanh(S.Half*arg)**2
return (1 + tanh_half)/(1 - tanh_half)
def _eval_rewrite_as_coth(self, arg, **kwargs):
coth_half = coth(S.Half*arg)**2
return (coth_half + 1)/(coth_half - 1)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return S.One
else:
return self.func(arg)
def _eval_is_positive(self):
if self.args[0].is_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_imaginary:
return True
class tanh(HyperbolicFunction):
r"""
The hyperbolic tangent function, `\frac{\sinh(x)}{\cosh(x)}`.
* tanh(x) -> Returns the hyperbolic tangent of x
See Also
========
sinh, cosh, atanh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return S.One - tanh(self.args[0])**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return atanh
@classmethod
def eval(cls, arg):
from sympy import tan
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.One
elif arg is S.NegativeInfinity:
return S.NegativeOne
elif arg is S.Zero:
return S.Zero
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
if _coeff_isneg(i_coeff):
return -S.ImaginaryUnit * tan(-i_coeff)
return S.ImaginaryUnit * tan(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
tanhm = tanh(m)
if tanhm is S.ComplexInfinity:
return coth(x)
else: # tanhm == 0
return tanh(x)
if arg.func == asinh:
x = arg.args[0]
return x/sqrt(1 + x**2)
if arg.func == acosh:
x = arg.args[0]
return sqrt(x - 1) * sqrt(x + 1) / x
if arg.func == atanh:
return arg.args[0]
if arg.func == acoth:
return 1/arg.args[0]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
a = 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return a*(a - 1) * B/F * x**n
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy import cos, sin
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + cos(im)**2
return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom)
def _eval_rewrite_as_tractable(self, arg, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
def _eval_rewrite_as_exp(self, arg, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return S.ImaginaryUnit*sinh(arg)/sinh(S.Pi*S.ImaginaryUnit/2 - arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return S.ImaginaryUnit*cosh(S.Pi*S.ImaginaryUnit/2 - arg)/cosh(arg)
def _eval_rewrite_as_coth(self, arg, **kwargs):
return 1/coth(arg)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
if self.args[0].is_real:
return True
def _eval_is_positive(self):
if self.args[0].is_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_real:
return self.args[0].is_negative
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real:
return True
class coth(HyperbolicFunction):
r"""
The hyperbolic cotangent function, `\frac{\cosh(x)}{\sinh(x)}`.
* coth(x) -> Returns the hyperbolic cotangent of x
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sinh(self.args[0])**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return acoth
@classmethod
def eval(cls, arg):
from sympy import cot
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.One
elif arg is S.NegativeInfinity:
return S.NegativeOne
elif arg is S.Zero:
return S.ComplexInfinity
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
if _coeff_isneg(i_coeff):
return S.ImaginaryUnit * cot(-i_coeff)
return -S.ImaginaryUnit * cot(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
cothm = coth(m)
if cothm is S.ComplexInfinity:
return coth(x)
else: # cothm == 0
return tanh(x)
if arg.func == asinh:
x = arg.args[0]
return sqrt(1 + x**2)/x
if arg.func == acosh:
x = arg.args[0]
return x/(sqrt(x - 1) * sqrt(x + 1))
if arg.func == atanh:
return 1/arg.args[0]
if arg.func == acoth:
return arg.args[0]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n == 0:
return 1 / sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return 2**(n + 1) * B/F * x**n
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy import cos, sin
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + sin(im)**2
return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom)
def _eval_rewrite_as_tractable(self, arg, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_exp(self, arg, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return -S.ImaginaryUnit*sinh(S.Pi*S.ImaginaryUnit/2 - arg)/sinh(arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return -S.ImaginaryUnit*cosh(arg)/cosh(S.Pi*S.ImaginaryUnit/2 - arg)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
return 1/tanh(arg)
def _eval_is_positive(self):
if self.args[0].is_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_real:
return self.args[0].is_negative
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return 1/arg
else:
return self.func(arg)
class ReciprocalHyperbolicFunction(HyperbolicFunction):
"""Base class for reciprocal functions of hyperbolic functions. """
#To be defined in class
_reciprocal_of = None
_is_even = None
_is_odd = None
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
if cls._is_odd:
return -cls(-arg)
t = cls._reciprocal_of.eval(arg)
if hasattr(arg, 'inverse') and arg.inverse() == cls:
return arg.args[0]
return 1/t if t != None else t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _calculate_reciprocal(self, method_name, *args, **kwargs):
# If calling method_name on _reciprocal_of returns a value != None
# then return the reciprocal of that value
t = self._call_reciprocal(method_name, *args, **kwargs)
return 1/t if t != None else t
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
if t != None and t != self._reciprocal_of(arg):
return 1/t
def _eval_rewrite_as_exp(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_tractable(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg)
def _eval_rewrite_as_coth(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg)
def as_real_imag(self, deep = True, **hints):
return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=True, **hints)
return re_part + S.ImaginaryUnit*im_part
def _eval_as_leading_term(self, x):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_real(self):
return self._reciprocal_of(self.args[0]).is_real
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
class csch(ReciprocalHyperbolicFunction):
r"""
The hyperbolic cosecant function, `\frac{2}{e^x - e^{-x}}`
* csch(x) -> Returns the hyperbolic cosecant of x
See Also
========
sinh, cosh, tanh, sech, asinh, acosh
"""
_reciprocal_of = sinh
_is_odd = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function
"""
if argindex == 1:
return -coth(self.args[0]) * csch(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Returns the next term in the Taylor series expansion
"""
from sympy import bernoulli
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return 2 * (1 - 2**n) * B/F * x**n
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return S.ImaginaryUnit / cosh(arg + S.ImaginaryUnit * S.Pi / 2)
def _eval_is_positive(self):
if self.args[0].is_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_real:
return self.args[0].is_negative
def _sage_(self):
import sage.all as sage
return sage.csch(self.args[0]._sage_())
class sech(ReciprocalHyperbolicFunction):
r"""
The hyperbolic secant function, `\frac{2}{e^x + e^{-x}}`
* sech(x) -> Returns the hyperbolic secant of x
See Also
========
sinh, cosh, tanh, coth, csch, asinh, acosh
"""
_reciprocal_of = cosh
_is_even = True
def fdiff(self, argindex=1):
if argindex == 1:
return - tanh(self.args[0])*sech(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy.functions.combinatorial.numbers import euler
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
return euler(n) / factorial(n) * x**(n)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return S.ImaginaryUnit / sinh(arg + S.ImaginaryUnit * S.Pi /2)
def _eval_is_positive(self):
if self.args[0].is_real:
return True
def _sage_(self):
import sage.all as sage
return sage.sech(self.args[0]._sage_())
###############################################################################
############################# HYPERBOLIC INVERSES #############################
###############################################################################
class InverseHyperbolicFunction(Function):
"""Base class for inverse hyperbolic functions."""
pass
class asinh(InverseHyperbolicFunction):
"""
The inverse hyperbolic sine function.
* asinh(x) -> Returns the inverse hyperbolic sine of x
See Also
========
acosh, atanh, sinh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(self.args[0]**2 + 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy import asin
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.NegativeInfinity
elif arg is S.Zero:
return S.Zero
elif arg is S.One:
return log(sqrt(2) + 1)
elif arg is S.NegativeOne:
return log(sqrt(2) - 1)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.ComplexInfinity
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * asin(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return -p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return (-1)**k * R / F * x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_rewrite_as_log(self, x, **kwargs):
return log(x + sqrt(x**2 + 1))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sinh
class acosh(InverseHyperbolicFunction):
"""
The inverse hyperbolic cosine function.
* acosh(x) -> Returns the inverse hyperbolic cosine of x
See Also
========
asinh, atanh, cosh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(self.args[0]**2 - 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg is S.Zero:
return S.Pi*S.ImaginaryUnit / 2
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi*S.ImaginaryUnit
if arg.is_number:
cst_table = {
S.ImaginaryUnit: log(S.ImaginaryUnit*(1 + sqrt(2))),
-S.ImaginaryUnit: log(-S.ImaginaryUnit*(1 + sqrt(2))),
S.Half: S.Pi/3,
-S.Half: 2*S.Pi/3,
sqrt(2)/2: S.Pi/4,
-sqrt(2)/2: 3*S.Pi/4,
1/sqrt(2): S.Pi/4,
-1/sqrt(2): 3*S.Pi/4,
sqrt(3)/2: S.Pi/6,
-sqrt(3)/2: 5*S.Pi/6,
(sqrt(3) - 1)/sqrt(2**3): 5*S.Pi/12,
-(sqrt(3) - 1)/sqrt(2**3): 7*S.Pi/12,
sqrt(2 + sqrt(2))/2: S.Pi/8,
-sqrt(2 + sqrt(2))/2: 7*S.Pi/8,
sqrt(2 - sqrt(2))/2: 3*S.Pi/8,
-sqrt(2 - sqrt(2))/2: 5*S.Pi/8,
(1 + sqrt(3))/(2*sqrt(2)): S.Pi/12,
-(1 + sqrt(3))/(2*sqrt(2)): 11*S.Pi/12,
(sqrt(5) + 1)/4: S.Pi/5,
-(sqrt(5) + 1)/4: 4*S.Pi/5
}
if arg in cst_table:
if arg.is_real:
return cst_table[arg]*S.ImaginaryUnit
return cst_table[arg]
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg == S.ImaginaryUnit*S.Infinity:
return S.Infinity + S.ImaginaryUnit*S.Pi/2
if arg == -S.ImaginaryUnit*S.Infinity:
return S.Infinity - S.ImaginaryUnit*S.Pi/2
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi*S.ImaginaryUnit / 2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return -R / F * S.ImaginaryUnit * x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return S.ImaginaryUnit*S.Pi/2
else:
return self.func(arg)
def _eval_rewrite_as_log(self, x, **kwargs):
return log(x + sqrt(x + 1) * sqrt(x - 1))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cosh
class atanh(InverseHyperbolicFunction):
"""
The inverse hyperbolic tangent function.
* atanh(x) -> Returns the inverse hyperbolic tangent of x
See Also
========
asinh, acosh, tanh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy import atan
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Zero:
return S.Zero
elif arg is S.One:
return S.Infinity
elif arg is S.NegativeOne:
return S.NegativeInfinity
elif arg is S.Infinity:
return -S.ImaginaryUnit * atan(arg)
elif arg is S.NegativeInfinity:
return S.ImaginaryUnit * atan(-arg)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
from sympy.calculus.util import AccumBounds
return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit * atan(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_rewrite_as_log(self, x, **kwargs):
return (log(1 + x) - log(1 - x)) / 2
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return tanh
class acoth(InverseHyperbolicFunction):
"""
The inverse hyperbolic cotangent function.
* acoth(x) -> Returns the inverse hyperbolic cotangent of x
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy import acot
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.Zero:
return S.Pi*S.ImaginaryUnit / 2
elif arg is S.One:
return S.Infinity
elif arg is S.NegativeOne:
return S.NegativeInfinity
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.Zero
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return -S.ImaginaryUnit * acot(i_coeff)
else:
if _coeff_isneg(arg):
return -cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi*S.ImaginaryUnit / 2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return x**n / n
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return S.ImaginaryUnit*S.Pi/2
else:
return self.func(arg)
def _eval_rewrite_as_log(self, x, **kwargs):
return (log(1 + 1/x) - log(1 - 1/x)) / 2
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return coth
class asech(InverseHyperbolicFunction):
"""
The inverse hyperbolic secant function.
* asech(x) -> Returns the inverse hyperbolic secant of x
Examples
========
>>> from sympy import asech, sqrt, S
>>> from sympy.abc import x
>>> asech(x).diff(x)
-1/(x*sqrt(-x**2 + 1))
>>> asech(1).diff(x)
0
>>> asech(1)
0
>>> asech(S(2))
I*pi/3
>>> asech(-sqrt(2))
3*I*pi/4
>>> asech((sqrt(6) - sqrt(2)))
I*pi/12
See Also
========
asinh, atanh, cosh, acoth
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
.. [2] http://dlmf.nist.gov/4.37
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSech/
"""
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return -1/(z*sqrt(1 - z**2))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Pi*S.ImaginaryUnit / 2
elif arg is S.NegativeInfinity:
return S.Pi*S.ImaginaryUnit / 2
elif arg is S.Zero:
return S.Infinity
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi*S.ImaginaryUnit
if arg.is_number:
cst_table = {
S.ImaginaryUnit: - (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)),
-S.ImaginaryUnit: (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)),
(sqrt(6) - sqrt(2)): S.Pi / 12,
(sqrt(2) - sqrt(6)): 11*S.Pi / 12,
sqrt(2 - 2/sqrt(5)): S.Pi / 10,
-sqrt(2 - 2/sqrt(5)): 9*S.Pi / 10,
2 / sqrt(2 + sqrt(2)): S.Pi / 8,
-2 / sqrt(2 + sqrt(2)): 7*S.Pi / 8,
2 / sqrt(3): S.Pi / 6,
-2 / sqrt(3): 5*S.Pi / 6,
(sqrt(5) - 1): S.Pi / 5,
(1 - sqrt(5)): 4*S.Pi / 5,
sqrt(2): S.Pi / 4,
-sqrt(2): 3*S.Pi / 4,
sqrt(2 + 2/sqrt(5)): 3*S.Pi / 10,
-sqrt(2 + 2/sqrt(5)): 7*S.Pi / 10,
S(2): S.Pi / 3,
-S(2): 2*S.Pi / 3,
sqrt(2*(2 + sqrt(2))): 3*S.Pi / 8,
-sqrt(2*(2 + sqrt(2))): 5*S.Pi / 8,
(1 + sqrt(5)): 2*S.Pi / 5,
(-1 - sqrt(5)): 3*S.Pi / 5,
(sqrt(6) + sqrt(2)): 5*S.Pi / 12,
(-sqrt(6) - sqrt(2)): 7*S.Pi / 12,
}
if arg in cst_table:
if arg.is_real:
return cst_table[arg]*S.ImaginaryUnit
return cst_table[arg]
if arg is S.ComplexInfinity:
from sympy.calculus.util import AccumBounds
return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2)
@staticmethod
@cacheit
def expansion_term(n, x, *previous_terms):
if n == 0:
return log(2 / x)
elif n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2 and n > 2:
p = previous_terms[-2]
return p * (n - 1)**2 // (n // 2)**2 * x**2 / 4
else:
k = n // 2
R = RisingFactorial(S.Half , k) * n
F = factorial(k) * n // 2 * n // 2
return -1 * R / F * x**n / 4
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sech
def _eval_rewrite_as_log(self, arg, **kwargs):
return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1))
class acsch(InverseHyperbolicFunction):
"""
The inverse hyperbolic cosecant function.
* acsch(x) -> Returns the inverse hyperbolic cosecant of x
Examples
========
>>> from sympy import acsch, sqrt, S
>>> from sympy.abc import x
>>> acsch(x).diff(x)
-1/(x**2*sqrt(1 + x**(-2)))
>>> acsch(1).diff(x)
0
>>> acsch(1)
log(1 + sqrt(2))
>>> acsch(S.ImaginaryUnit)
-I*pi/2
>>> acsch(-2*S.ImaginaryUnit)
I*pi/6
>>> acsch(S.ImaginaryUnit*(sqrt(6) - sqrt(2)))
-5*I*pi/12
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
.. [2] http://dlmf.nist.gov/4.37
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsch/
"""
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return -1/(z**2*sqrt(1 + 1/z**2))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
arg = sympify(arg)
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.Zero:
return S.ComplexInfinity
elif arg is S.One:
return log(1 + sqrt(2))
elif arg is S.NegativeOne:
return - log(1 + sqrt(2))
if arg.is_number:
cst_table = {
S.ImaginaryUnit: -S.Pi / 2,
S.ImaginaryUnit*(sqrt(2) + sqrt(6)): -S.Pi / 12,
S.ImaginaryUnit*(1 + sqrt(5)): -S.Pi / 10,
S.ImaginaryUnit*2 / sqrt(2 - sqrt(2)): -S.Pi / 8,
S.ImaginaryUnit*2: -S.Pi / 6,
S.ImaginaryUnit*sqrt(2 + 2/sqrt(5)): -S.Pi / 5,
S.ImaginaryUnit*sqrt(2): -S.Pi / 4,
S.ImaginaryUnit*(sqrt(5)-1): -3*S.Pi / 10,
S.ImaginaryUnit*2 / sqrt(3): -S.Pi / 3,
S.ImaginaryUnit*2 / sqrt(2 + sqrt(2)): -3*S.Pi / 8,
S.ImaginaryUnit*sqrt(2 - 2/sqrt(5)): -2*S.Pi / 5,
S.ImaginaryUnit*(sqrt(6) - sqrt(2)): -5*S.Pi / 12,
S(2): -S.ImaginaryUnit*log((1+sqrt(5))/2),
}
if arg in cst_table:
return cst_table[arg]*S.ImaginaryUnit
if arg is S.ComplexInfinity:
return S.Zero
if _coeff_isneg(arg):
return -cls(-arg)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return csch
def _eval_rewrite_as_log(self, arg, **kwargs):
return log(1/arg + sqrt(1/arg**2 + 1))
|
0e50a26f4ea1a05ff32dfcf569d10098611346e6db4434ee672b04a19711ea38
|
from __future__ import print_function, division
from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic
from sympy.core.exprtools import factor_terms
from sympy.core.function import (Function, Derivative, ArgumentIndexError,
AppliedUndef)
from sympy.core.numbers import pi, I, oo
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.core.expr import Expr
from sympy.core.relational import Eq
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.functions.elementary.exponential import exp, exp_polar, log
from sympy.functions.elementary.trigonometric import atan, atan2
from sympy.functions.elementary.integers import ceiling
###############################################################################
######################### REAL and IMAGINARY PARTS ############################
###############################################################################
class re(Function):
"""
Returns real part of expression. This function performs only
elementary analysis and so it will fail to decompose properly
more complicated expressions. If completely simplified result
is needed then use Basic.as_real_imag() or perform complex
expansion on instance of this function.
Examples
========
>>> from sympy import re, im, I, E
>>> from sympy.abc import x, y
>>> re(2*E)
2*E
>>> re(2*I + 17)
17
>>> re(2*I)
0
>>> re(im(x) + x*I + 2)
2
See Also
========
im
"""
is_real = True
unbranched = True # implicitly works on the projection to C
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_real:
return arg
elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
return S.Zero
elif arg.is_Matrix:
return arg.as_real_imag()[0]
elif arg.is_Function and isinstance(arg, conjugate):
return re(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if not coeff.is_real:
reverted.append(coeff)
elif not term.has(S.ImaginaryUnit) and term.is_real:
excluded.append(term)
else:
# Try to do some advanced expansion. If
# impossible, don't try to do re(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[0])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) - im(b) + c
def as_real_imag(self, deep=True, **hints):
"""
Returns the real number with a zero imaginary part.
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_real or self.args[0].is_real:
return re(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -S.ImaginaryUnit \
* im(Derivative(self.args[0], x, evaluate=True))
def _eval_rewrite_as_im(self, arg, **kwargs):
return self.args[0] - S.ImaginaryUnit*im(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
# is_imaginary implies nonzero
return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero])
def _sage_(self):
import sage.all as sage
return sage.real_part(self.args[0]._sage_())
class im(Function):
"""
Returns imaginary part of expression. This function performs only
elementary analysis and so it will fail to decompose properly more
complicated expressions. If completely simplified result is needed then
use Basic.as_real_imag() or perform complex expansion on instance of
this function.
Examples
========
>>> from sympy import re, im, E, I
>>> from sympy.abc import x, y
>>> im(2*E)
0
>>> re(2*I + 17)
17
>>> im(x*I)
re(x)
>>> im(re(x) + y)
im(y)
See Also
========
re
"""
is_real = True
unbranched = True # implicitly works on the projection to C
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_real:
return S.Zero
elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
return -S.ImaginaryUnit * arg
elif arg.is_Matrix:
return arg.as_real_imag()[1]
elif arg.is_Function and isinstance(arg, conjugate):
return -im(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if not coeff.is_real:
reverted.append(coeff)
else:
excluded.append(coeff)
elif term.has(S.ImaginaryUnit) or not term.is_real:
# Try to do some advanced expansion. If
# impossible, don't try to do im(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[1])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) + re(b) + c
def as_real_imag(self, deep=True, **hints):
"""
Return the imaginary part with a zero real part.
Examples
========
>>> from sympy.functions import im
>>> from sympy import I
>>> im(2 + 3*I).as_real_imag()
(3, 0)
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_real or self.args[0].is_real:
return im(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -S.ImaginaryUnit \
* re(Derivative(self.args[0], x, evaluate=True))
def _sage_(self):
import sage.all as sage
return sage.imag_part(self.args[0]._sage_())
def _eval_rewrite_as_re(self, arg, **kwargs):
return -S.ImaginaryUnit*(self.args[0] - re(self.args[0]))
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
return self.args[0].is_real
###############################################################################
############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################
###############################################################################
class sign(Function):
"""
Returns the complex sign of an expression:
If the expression is real the sign will be:
* 1 if expression is positive
* 0 if expression is equal to zero
* -1 if expression is negative
If the expression is imaginary the sign will be:
* I if im(expression) is positive
* -I if im(expression) is negative
Otherwise an unevaluated expression will be returned. When evaluated, the
result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``.
Examples
========
>>> from sympy.functions import sign
>>> from sympy.core.numbers import I
>>> sign(-1)
-1
>>> sign(0)
0
>>> sign(-3*I)
-I
>>> sign(1 + I)
sign(1 + I)
>>> _.evalf()
0.707106781186548 + 0.707106781186548*I
See Also
========
Abs, conjugate
"""
is_finite = True
is_complex = True
def doit(self, **hints):
if self.args[0].is_zero is False:
return self.args[0] / Abs(self.args[0])
return self
@classmethod
def eval(cls, arg):
# handle what we can
if arg.is_Mul:
c, args = arg.as_coeff_mul()
unk = []
s = sign(c)
for a in args:
if a.is_negative:
s = -s
elif a.is_positive:
pass
else:
ai = im(a)
if a.is_imaginary and ai.is_comparable: # i.e. a = I*real
s *= S.ImaginaryUnit
if ai.is_negative:
# can't use sign(ai) here since ai might not be
# a Number
s = -s
else:
unk.append(a)
if c is S.One and len(unk) == len(args):
return None
return s * cls(arg._new_rawargs(*unk))
if arg is S.NaN:
return S.NaN
if arg.is_zero: # it may be an Expr that is zero
return S.Zero
if arg.is_positive:
return S.One
if arg.is_negative:
return S.NegativeOne
if arg.is_Function:
if isinstance(arg, sign):
return arg
if arg.is_imaginary:
if arg.is_Pow and arg.exp is S.Half:
# we catch this because non-trivial sqrt args are not expanded
# e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1)
return S.ImaginaryUnit
arg2 = -S.ImaginaryUnit * arg
if arg2.is_positive:
return S.ImaginaryUnit
if arg2.is_negative:
return -S.ImaginaryUnit
def _eval_Abs(self):
if fuzzy_not(self.args[0].is_zero):
return S.One
def _eval_conjugate(self):
return sign(conjugate(self.args[0]))
def _eval_derivative(self, x):
if self.args[0].is_real:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(self.args[0])
elif self.args[0].is_imaginary:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(-S.ImaginaryUnit * self.args[0])
def _eval_is_nonnegative(self):
if self.args[0].is_nonnegative:
return True
def _eval_is_nonpositive(self):
if self.args[0].is_nonpositive:
return True
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def _eval_is_integer(self):
return self.args[0].is_real
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_power(self, other):
if (
fuzzy_not(self.args[0].is_zero) and
other.is_integer and
other.is_even
):
return S.One
def _sage_(self):
import sage.all as sage
return sage.sgn(self.args[0]._sage_())
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_real:
return Piecewise((1, arg > 0), (-1, arg < 0), (0, True))
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
from sympy.functions.special.delta_functions import Heaviside
if arg.is_real:
return Heaviside(arg)*2-1
def _eval_simplify(self, ratio, measure, rational, inverse):
return self.func(self.args[0].factor())
class Abs(Function):
"""
Return the absolute value of the argument.
This is an extension of the built-in function abs() to accept symbolic
values. If you pass a SymPy expression to the built-in abs(), it will
pass it automatically to Abs().
Examples
========
>>> from sympy import Abs, Symbol, S
>>> Abs(-1)
1
>>> x = Symbol('x', real=True)
>>> Abs(-x)
Abs(x)
>>> Abs(x**2)
x**2
>>> abs(-x) # The Python built-in
Abs(x)
Note that the Python built-in will return either an Expr or int depending on
the argument::
>>> type(abs(-1))
<... 'int'>
>>> type(abs(S.NegativeOne))
<class 'sympy.core.numbers.One'>
Abs will always return a sympy object.
See Also
========
sign, conjugate
"""
is_real = True
is_negative = False
unbranched = True
def fdiff(self, argindex=1):
"""
Get the first derivative of the argument to Abs().
Examples
========
>>> from sympy.abc import x
>>> from sympy.functions import Abs
>>> Abs(-x).fdiff()
sign(x)
"""
if argindex == 1:
return sign(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.simplify.simplify import signsimp
from sympy.core.function import expand_mul
if hasattr(arg, '_eval_Abs'):
obj = arg._eval_Abs()
if obj is not None:
return obj
if not isinstance(arg, Expr):
raise TypeError("Bad argument type for Abs(): %s" % type(arg))
# handle what we can
arg = signsimp(arg, evaluate=False)
if arg.is_Mul:
known = []
unk = []
for t in arg.args:
tnew = cls(t)
if isinstance(tnew, cls):
unk.append(tnew.args[0])
else:
known.append(tnew)
known = Mul(*known)
unk = cls(Mul(*unk), evaluate=False) if unk else S.One
return known*unk
if arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.Infinity
if arg.is_Pow:
base, exponent = arg.as_base_exp()
if base.is_real:
if exponent.is_integer:
if exponent.is_even:
return arg
if base is S.NegativeOne:
return S.One
if isinstance(base, cls) and exponent is S.NegativeOne:
return arg
return Abs(base)**exponent
if base.is_nonnegative:
return base**re(exponent)
if base.is_negative:
return (-base)**re(exponent)*exp(-S.Pi*im(exponent))
return
elif not base.has(Symbol): # complex base
# express base**exponent as exp(exponent*log(base))
a, b = log(base).as_real_imag()
z = a + I*b
return exp(re(exponent*z))
if isinstance(arg, exp):
return exp(re(arg.args[0]))
if isinstance(arg, AppliedUndef):
return
if arg.is_Add and arg.has(S.Infinity, S.NegativeInfinity):
if any(a.is_infinite for a in arg.as_real_imag()):
return S.Infinity
if arg.is_zero:
return S.Zero
if arg.is_nonnegative:
return arg
if arg.is_nonpositive:
return -arg
if arg.is_imaginary:
arg2 = -S.ImaginaryUnit * arg
if arg2.is_nonnegative:
return arg2
# reject result if all new conjugates are just wrappers around
# an expression that was already in the arg
conj = signsimp(arg.conjugate(), evaluate=False)
new_conj = conj.atoms(conjugate) - arg.atoms(conjugate)
if new_conj and all(arg.has(i.args[0]) for i in new_conj):
return
if arg != conj and arg != -conj:
ignore = arg.atoms(Abs)
abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore})
unk = [a for a in abs_free_arg.free_symbols if a.is_real is None]
if not unk or not all(conj.has(conjugate(u)) for u in unk):
return sqrt(expand_mul(arg*conj))
def _eval_is_integer(self):
if self.args[0].is_real:
return self.args[0].is_integer
def _eval_is_nonzero(self):
return fuzzy_not(self._args[0].is_zero)
def _eval_is_zero(self):
return self._args[0].is_zero
def _eval_is_positive(self):
is_z = self.is_zero
if is_z is not None:
return not is_z
def _eval_is_rational(self):
if self.args[0].is_real:
return self.args[0].is_rational
def _eval_is_even(self):
if self.args[0].is_real:
return self.args[0].is_even
def _eval_is_odd(self):
if self.args[0].is_real:
return self.args[0].is_odd
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_power(self, exponent):
if self.args[0].is_real and exponent.is_integer:
if exponent.is_even:
return self.args[0]**exponent
elif exponent is not S.NegativeOne and exponent.is_Integer:
return self.args[0]**(exponent - 1)*self
return
def _eval_nseries(self, x, n, logx):
direction = self.args[0].leadterm(x)[0]
s = self.args[0]._eval_nseries(x, n=n, logx=logx)
when = Eq(direction, 0)
return Piecewise(
((s.subs(direction, 0)), when),
(sign(direction)*s, True),
)
def _sage_(self):
import sage.all as sage
return sage.abs_symbolic(self.args[0]._sage_())
def _eval_derivative(self, x):
if self.args[0].is_real or self.args[0].is_imaginary:
return Derivative(self.args[0], x, evaluate=True) \
* sign(conjugate(self.args[0]))
return (re(self.args[0]) * Derivative(re(self.args[0]), x,
evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]),
x, evaluate=True)) / Abs(self.args[0])
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
# Note this only holds for real arg (since Heaviside is not defined
# for complex arguments).
from sympy.functions.special.delta_functions import Heaviside
if arg.is_real:
return arg*(Heaviside(arg) - Heaviside(-arg))
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_real:
return Piecewise((arg, arg >= 0), (-arg, True))
def _eval_rewrite_as_sign(self, arg, **kwargs):
return arg/sign(arg)
class arg(Function):
"""
Returns the argument (in radians) of a complex number. For a positive
number, the argument is always 0.
Examples
========
>>> from sympy.functions import arg
>>> from sympy import I, sqrt
>>> arg(2.0)
0
>>> arg(I)
pi/2
>>> arg(sqrt(2) + I*sqrt(2))
pi/4
"""
is_real = True
is_finite = True
@classmethod
def eval(cls, arg):
if isinstance(arg, exp_polar):
return periodic_argument(arg, oo)
if not arg.is_Atom:
c, arg_ = factor_terms(arg).as_coeff_Mul()
if arg_.is_Mul:
arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else
sign(a) for a in arg_.args])
arg_ = sign(c)*arg_
else:
arg_ = arg
if arg_.atoms(AppliedUndef):
return
x, y = arg_.as_real_imag()
rv = atan2(y, x)
if rv.is_number:
return rv
if arg_ != arg:
return cls(arg_, evaluate=False)
def _eval_derivative(self, t):
x, y = self.args[0].as_real_imag()
return (x * Derivative(y, t, evaluate=True) - y *
Derivative(x, t, evaluate=True)) / (x**2 + y**2)
def _eval_rewrite_as_atan2(self, arg, **kwargs):
x, y = self.args[0].as_real_imag()
return atan2(y, x)
class conjugate(Function):
"""
Returns the `complex conjugate` Ref[1] of an argument.
In mathematics, the complex conjugate of a complex number
is given by changing the sign of the imaginary part.
Thus, the conjugate of the complex number
:math:`a + ib` (where a and b are real numbers) is :math:`a - ib`
Examples
========
>>> from sympy import conjugate, I
>>> conjugate(2)
2
>>> conjugate(I)
-I
See Also
========
sign, Abs
References
==========
.. [1] https://en.wikipedia.org/wiki/Complex_conjugation
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_conjugate()
if obj is not None:
return obj
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
def _eval_adjoint(self):
return transpose(self.args[0])
def _eval_conjugate(self):
return self.args[0]
def _eval_derivative(self, x):
if x.is_real:
return conjugate(Derivative(self.args[0], x, evaluate=True))
elif x.is_imaginary:
return -conjugate(Derivative(self.args[0], x, evaluate=True))
def _eval_transpose(self):
return adjoint(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
class transpose(Function):
"""
Linear map transposition.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_transpose()
if obj is not None:
return obj
def _eval_adjoint(self):
return conjugate(self.args[0])
def _eval_conjugate(self):
return adjoint(self.args[0])
def _eval_transpose(self):
return self.args[0]
class adjoint(Function):
"""
Conjugate transpose or Hermite conjugation.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_adjoint()
if obj is not None:
return obj
obj = arg._eval_transpose()
if obj is not None:
return conjugate(obj)
def _eval_adjoint(self):
return self.args[0]
def _eval_conjugate(self):
return transpose(self.args[0])
def _eval_transpose(self):
return conjugate(self.args[0])
def _latex(self, printer, exp=None, *args):
arg = printer._print(self.args[0])
tex = r'%s^{\dagger}' % arg
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, printer._print(exp))
return tex
def _pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
pform = printer._print(self.args[0], *args)
if printer._use_unicode:
pform = pform**prettyForm(u'\N{DAGGER}')
else:
pform = pform**prettyForm('+')
return pform
###############################################################################
############### HANDLING OF POLAR NUMBERS #####################################
###############################################################################
class polar_lift(Function):
"""
Lift argument to the Riemann surface of the logarithm, using the
standard branch.
>>> from sympy import Symbol, polar_lift, I
>>> p = Symbol('p', polar=True)
>>> x = Symbol('x')
>>> polar_lift(4)
4*exp_polar(0)
>>> polar_lift(-4)
4*exp_polar(I*pi)
>>> polar_lift(-I)
exp_polar(-I*pi/2)
>>> polar_lift(I + 2)
polar_lift(2 + I)
>>> polar_lift(4*x)
4*polar_lift(x)
>>> polar_lift(4*p)
4*p
See Also
========
sympy.functions.elementary.exponential.exp_polar
periodic_argument
"""
is_polar = True
is_comparable = False # Cannot be evalf'd.
@classmethod
def eval(cls, arg):
from sympy.functions.elementary.complexes import arg as argument
if arg.is_number:
ar = argument(arg)
# In general we want to affirm that something is known,
# e.g. `not ar.has(argument) and not ar.has(atan)`
# but for now we will just be more restrictive and
# see that it has evaluated to one of the known values.
if ar in (0, pi/2, -pi/2, pi):
return exp_polar(I*ar)*abs(arg)
if arg.is_Mul:
args = arg.args
else:
args = [arg]
included = []
excluded = []
positive = []
for arg in args:
if arg.is_polar:
included += [arg]
elif arg.is_positive:
positive += [arg]
else:
excluded += [arg]
if len(excluded) < len(args):
if excluded:
return Mul(*(included + positive))*polar_lift(Mul(*excluded))
elif included:
return Mul(*(included + positive))
else:
return Mul(*positive)*exp_polar(0)
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
return self.args[0]._eval_evalf(prec)
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
class periodic_argument(Function):
"""
Represent the argument on a quotient of the Riemann surface of the
logarithm. That is, given a period P, always return a value in
(-P/2, P/2], by using exp(P*I) == 1.
>>> from sympy import exp, exp_polar, periodic_argument, unbranched_argument
>>> from sympy import I, pi
>>> unbranched_argument(exp(5*I*pi))
pi
>>> unbranched_argument(exp_polar(5*I*pi))
5*pi
>>> periodic_argument(exp_polar(5*I*pi), 2*pi)
pi
>>> periodic_argument(exp_polar(5*I*pi), 3*pi)
-pi
>>> periodic_argument(exp_polar(5*I*pi), pi)
0
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
principal_branch
"""
@classmethod
def _getunbranched(cls, ar):
if ar.is_Mul:
args = ar.args
else:
args = [ar]
unbranched = 0
for a in args:
if not a.is_polar:
unbranched += arg(a)
elif isinstance(a, exp_polar):
unbranched += a.exp.as_real_imag()[1]
elif a.is_Pow:
re, im = a.exp.as_real_imag()
unbranched += re*unbranched_argument(
a.base) + im*log(abs(a.base))
elif isinstance(a, polar_lift):
unbranched += arg(a.args[0])
else:
return None
return unbranched
@classmethod
def eval(cls, ar, period):
# Our strategy is to evaluate the argument on the Riemann surface of the
# logarithm, and then reduce.
# NOTE evidently this means it is a rather bad idea to use this with
# period != 2*pi and non-polar numbers.
if not period.is_positive:
return None
if period == oo and isinstance(ar, principal_branch):
return periodic_argument(*ar.args)
if isinstance(ar, polar_lift) and period >= 2*pi:
return periodic_argument(ar.args[0], period)
if ar.is_Mul:
newargs = [x for x in ar.args if not x.is_positive]
if len(newargs) != len(ar.args):
return periodic_argument(Mul(*newargs), period)
unbranched = cls._getunbranched(ar)
if unbranched is None:
return None
if unbranched.has(periodic_argument, atan2, atan):
return None
if period == oo:
return unbranched
if period != oo:
n = ceiling(unbranched/period - S(1)/2)*period
if not n.has(ceiling):
return unbranched - n
def _eval_evalf(self, prec):
z, period = self.args
if period == oo:
unbranched = periodic_argument._getunbranched(z)
if unbranched is None:
return self
return unbranched._eval_evalf(prec)
ub = periodic_argument(z, oo)._eval_evalf(prec)
return (ub - ceiling(ub/period - S(1)/2)*period)._eval_evalf(prec)
def unbranched_argument(arg):
return periodic_argument(arg, oo)
class principal_branch(Function):
"""
Represent a polar number reduced to its principal branch on a quotient
of the Riemann surface of the logarithm.
This is a function of two arguments. The first argument is a polar
number `z`, and the second one a positive real number of infinity, `p`.
The result is "z mod exp_polar(I*p)".
>>> from sympy import exp_polar, principal_branch, oo, I, pi
>>> from sympy.abc import z
>>> principal_branch(z, oo)
z
>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
3*exp_polar(0)
>>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
3*principal_branch(z, 2*pi)
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
periodic_argument
"""
is_polar = True
is_comparable = False # cannot always be evalf'd
@classmethod
def eval(self, x, period):
from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol
if isinstance(x, polar_lift):
return principal_branch(x.args[0], period)
if period == oo:
return x
ub = periodic_argument(x, oo)
barg = periodic_argument(x, period)
if ub != barg and not ub.has(periodic_argument) \
and not barg.has(periodic_argument):
pl = polar_lift(x)
def mr(expr):
if not isinstance(expr, Symbol):
return polar_lift(expr)
return expr
pl = pl.replace(polar_lift, mr)
# Recompute unbranched argument
ub = periodic_argument(pl, oo)
if not pl.has(polar_lift):
if ub != barg:
res = exp_polar(I*(barg - ub))*pl
else:
res = pl
if not res.is_polar and not res.has(exp_polar):
res *= exp_polar(0)
return res
if not x.free_symbols:
c, m = x, ()
else:
c, m = x.as_coeff_mul(*x.free_symbols)
others = []
for y in m:
if y.is_positive:
c *= y
else:
others += [y]
m = tuple(others)
arg = periodic_argument(c, period)
if arg.has(periodic_argument):
return None
if arg.is_number and (unbranched_argument(c) != arg or
(arg == 0 and m != () and c != 1)):
if arg == 0:
return abs(c)*principal_branch(Mul(*m), period)
return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c)
if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \
and m == ():
return exp_polar(arg*I)*abs(c)
def _eval_evalf(self, prec):
from sympy import exp, pi, I
z, period = self.args
p = periodic_argument(z, period)._eval_evalf(prec)
if abs(p) > pi or p == -pi:
return self # Cannot evalf for this argument.
return (abs(z)*exp(I*p))._eval_evalf(prec)
def _polarify(eq, lift, pause=False):
from sympy import Integral
if eq.is_polar:
return eq
if eq.is_number and not pause:
return polar_lift(eq)
if isinstance(eq, Symbol) and not pause and lift:
return polar_lift(eq)
elif eq.is_Atom:
return eq
elif eq.is_Add:
r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args])
if lift:
return polar_lift(r)
return r
elif eq.is_Function:
return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args])
elif isinstance(eq, Integral):
# Don't lift the integration variable
func = _polarify(eq.function, lift, pause=pause)
limits = []
for limit in eq.args[1:]:
var = _polarify(limit[0], lift=False, pause=pause)
rest = _polarify(limit[1:], lift=lift, pause=pause)
limits.append((var,) + rest)
return Integral(*((func,) + tuple(limits)))
else:
return eq.func(*[_polarify(arg, lift, pause=pause)
if isinstance(arg, Expr) else arg for arg in eq.args])
def polarify(eq, subs=True, lift=False):
"""
Turn all numbers in eq into their polar equivalents (under the standard
choice of argument).
Note that no attempt is made to guess a formal convention of adding
polar numbers, expressions like 1 + x will generally not be altered.
Note also that this function does not promote exp(x) to exp_polar(x).
If ``subs`` is True, all symbols which are not already polar will be
substituted for polar dummies; in this case the function behaves much
like posify.
If ``lift`` is True, both addition statements and non-polar symbols are
changed to their polar_lift()ed versions.
Note that lift=True implies subs=False.
>>> from sympy import polarify, sin, I
>>> from sympy.abc import x, y
>>> expr = (-x)**y
>>> expr.expand()
(-x)**y
>>> polarify(expr)
((_x*exp_polar(I*pi))**_y, {_x: x, _y: y})
>>> polarify(expr)[0].expand()
_x**_y*exp_polar(_y*I*pi)
>>> polarify(x, lift=True)
polar_lift(x)
>>> polarify(x*(1+y), lift=True)
polar_lift(x)*polar_lift(y + 1)
Adds are treated carefully:
>>> polarify(1 + sin((1 + I)*x))
(sin(_x*polar_lift(1 + I)) + 1, {_x: x})
"""
if lift:
subs = False
eq = _polarify(sympify(eq), lift)
if not subs:
return eq
reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols}
eq = eq.subs(reps)
return eq, {r: s for s, r in reps.items()}
def _unpolarify(eq, exponents_only, pause=False):
if not isinstance(eq, Basic) or eq.is_Atom:
return eq
if not pause:
if isinstance(eq, exp_polar):
return exp(_unpolarify(eq.exp, exponents_only))
if isinstance(eq, principal_branch) and eq.args[1] == 2*pi:
return _unpolarify(eq.args[0], exponents_only)
if (
eq.is_Add or eq.is_Mul or eq.is_Boolean or
eq.is_Relational and (
eq.rel_op in ('==', '!=') and 0 in eq.args or
eq.rel_op not in ('==', '!='))
):
return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args])
if isinstance(eq, polar_lift):
return _unpolarify(eq.args[0], exponents_only)
if eq.is_Pow:
expo = _unpolarify(eq.exp, exponents_only)
base = _unpolarify(eq.base, exponents_only,
not (expo.is_integer and not pause))
return base**expo
if eq.is_Function and getattr(eq.func, 'unbranched', False):
return eq.func(*[_unpolarify(x, exponents_only, exponents_only)
for x in eq.args])
return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args])
def unpolarify(eq, subs={}, exponents_only=False):
"""
If p denotes the projection from the Riemann surface of the logarithm to
the complex line, return a simplified version eq' of `eq` such that
p(eq') == p(eq).
Also apply the substitution subs in the end. (This is a convenience, since
``unpolarify``, in a certain sense, undoes polarify.)
>>> from sympy import unpolarify, polar_lift, sin, I
>>> unpolarify(polar_lift(I + 2))
2 + I
>>> unpolarify(sin(polar_lift(I + 7)))
sin(7 + I)
"""
if isinstance(eq, bool):
return eq
eq = sympify(eq)
if subs != {}:
return unpolarify(eq.subs(subs))
changed = True
pause = False
if exponents_only:
pause = True
while changed:
changed = False
res = _unpolarify(eq, exponents_only, pause)
if res != eq:
changed = True
eq = res
if isinstance(res, bool):
return res
# Finally, replacing Exp(0) by 1 is always correct.
# So is polar_lift(0) -> 0.
return res.subs({exp_polar(0): 1, polar_lift(0): 0})
# /cyclic/
from sympy.core import basic as _
_.abs_ = Abs
del _
|
3598b09d2b39ea29214eb4520f79bff74ce30adc1263268bc31acaaa1fd51390
|
"""Hypergeometric and Meijer G-functions"""
from __future__ import print_function, division
from sympy.core import S, I, pi, oo, zoo, ilcm, Mod
from sympy.core.function import Function, Derivative, ArgumentIndexError
from sympy.core.containers import Tuple
from sympy.core.compatibility import reduce, range
from sympy.core.mul import Mul
from sympy.core.symbol import Dummy
from sympy.functions import (sqrt, exp, log, sin, cos, asin, atan,
sinh, cosh, asinh, acosh, atanh, acoth, Abs)
from sympy.utilities.iterables import default_sort_key
class TupleArg(Tuple):
def limit(self, x, xlim, dir='+'):
""" Compute limit x->xlim.
"""
from sympy.series.limits import limit
return TupleArg(*[limit(f, x, xlim, dir) for f in self.args])
# TODO should __new__ accept **options?
# TODO should constructors should check if parameters are sensible?
def _prep_tuple(v):
"""
Turn an iterable argument V into a Tuple and unpolarify, since both
hypergeometric and meijer g-functions are unbranched in their parameters.
Examples
========
>>> from sympy.functions.special.hyper import _prep_tuple
>>> _prep_tuple([1, 2, 3])
(1, 2, 3)
>>> _prep_tuple((4, 5))
(4, 5)
>>> _prep_tuple((7, 8, 9))
(7, 8, 9)
"""
from sympy import unpolarify
return TupleArg(*[unpolarify(x) for x in v])
class TupleParametersBase(Function):
""" Base class that takes care of differentiation, when some of
the arguments are actually tuples. """
# This is not deduced automatically since there are Tuples as arguments.
is_commutative = True
def _eval_derivative(self, s):
try:
res = 0
if self.args[0].has(s) or self.args[1].has(s):
for i, p in enumerate(self._diffargs):
m = self._diffargs[i].diff(s)
if m != 0:
res += self.fdiff((1, i))*m
return res + self.fdiff(3)*self.args[2].diff(s)
except (ArgumentIndexError, NotImplementedError):
return Derivative(self, s)
class hyper(TupleParametersBase):
r"""
The (generalized) hypergeometric function is defined by a series where
the ratios of successive terms are a rational function of the summation
index. When convergent, it is continued analytically to the largest
possible domain.
The hypergeometric function depends on two vectors of parameters, called
the numerator parameters :math:`a_p`, and the denominator parameters
:math:`b_q`. It also has an argument :math:`z`. The series definition is
.. math ::
{}_pF_q\left(\begin{matrix} a_1, \cdots, a_p \\ b_1, \cdots, b_q \end{matrix}
\middle| z \right)
= \sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n}
\frac{z^n}{n!},
where :math:`(a)_n = (a)(a+1)\cdots(a+n-1)` denotes the rising factorial.
If one of the :math:`b_q` is a non-positive integer then the series is
undefined unless one of the `a_p` is a larger (i.e. smaller in
magnitude) non-positive integer. If none of the :math:`b_q` is a
non-positive integer and one of the :math:`a_p` is a non-positive
integer, then the series reduces to a polynomial. To simplify the
following discussion, we assume that none of the :math:`a_p` or
:math:`b_q` is a non-positive integer. For more details, see the
references.
The series converges for all :math:`z` if :math:`p \le q`, and thus
defines an entire single-valued function in this case. If :math:`p =
q+1` the series converges for :math:`|z| < 1`, and can be continued
analytically into a half-plane. If :math:`p > q+1` the series is
divergent for all :math:`z`.
Note: The hypergeometric function constructor currently does *not* check
if the parameters actually yield a well-defined function.
Examples
========
The parameters :math:`a_p` and :math:`b_q` can be passed as arbitrary
iterables, for example:
>>> from sympy.functions import hyper
>>> from sympy.abc import x, n, a
>>> hyper((1, 2, 3), [3, 4], x)
hyper((1, 2, 3), (3, 4), x)
There is also pretty printing (it looks better using unicode):
>>> from sympy import pprint
>>> pprint(hyper((1, 2, 3), [3, 4], x), use_unicode=False)
_
|_ /1, 2, 3 | \
| | | x|
3 2 \ 3, 4 | /
The parameters must always be iterables, even if they are vectors of
length one or zero:
>>> hyper((1, ), [], x)
hyper((1,), (), x)
But of course they may be variables (but if they depend on x then you
should not expect much implemented functionality):
>>> hyper((n, a), (n**2,), x)
hyper((n, a), (n**2,), x)
The hypergeometric function generalizes many named special functions.
The function hyperexpand() tries to express a hypergeometric function
using named special functions.
For example:
>>> from sympy import hyperexpand
>>> hyperexpand(hyper([], [], x))
exp(x)
You can also use expand_func:
>>> from sympy import expand_func
>>> expand_func(x*hyper([1, 1], [2], -x))
log(x + 1)
More examples:
>>> from sympy import S
>>> hyperexpand(hyper([], [S(1)/2], -x**2/4))
cos(x)
>>> hyperexpand(x*hyper([S(1)/2, S(1)/2], [S(3)/2], x**2))
asin(x)
We can also sometimes hyperexpand parametric functions:
>>> from sympy.abc import a
>>> hyperexpand(hyper([-a], [], x))
(-x + 1)**a
See Also
========
sympy.simplify.hyperexpand
sympy.functions.special.gamma_functions.gamma
meijerg
References
==========
.. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations,
Volume 1
.. [2] https://en.wikipedia.org/wiki/Generalized_hypergeometric_function
"""
def __new__(cls, ap, bq, z):
# TODO should we check convergence conditions?
return Function.__new__(cls, _prep_tuple(ap), _prep_tuple(bq), z)
@classmethod
def eval(cls, ap, bq, z):
from sympy import unpolarify
if len(ap) <= len(bq) or (len(ap) == len(bq) + 1 and (Abs(z) <= 1) == True):
nz = unpolarify(z)
if z != nz:
return hyper(ap, bq, nz)
def fdiff(self, argindex=3):
if argindex != 3:
raise ArgumentIndexError(self, argindex)
nap = Tuple(*[a + 1 for a in self.ap])
nbq = Tuple(*[b + 1 for b in self.bq])
fac = Mul(*self.ap)/Mul(*self.bq)
return fac*hyper(nap, nbq, self.argument)
def _eval_expand_func(self, **hints):
from sympy import gamma, hyperexpand
if len(self.ap) == 2 and len(self.bq) == 1 and self.argument == 1:
a, b = self.ap
c = self.bq[0]
return gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b)
return hyperexpand(self)
def _eval_rewrite_as_Sum(self, ap, bq, z, **kwargs):
from sympy.functions import factorial, RisingFactorial, Piecewise
from sympy import Sum
n = Dummy("n", integer=True)
rfap = Tuple(*[RisingFactorial(a, n) for a in ap])
rfbq = Tuple(*[RisingFactorial(b, n) for b in bq])
coeff = Mul(*rfap) / Mul(*rfbq)
return Piecewise((Sum(coeff * z**n / factorial(n), (n, 0, oo)),
self.convergence_statement), (self, True))
@property
def argument(self):
""" Argument of the hypergeometric function. """
return self.args[2]
@property
def ap(self):
""" Numerator parameters of the hypergeometric function. """
return Tuple(*self.args[0])
@property
def bq(self):
""" Denominator parameters of the hypergeometric function. """
return Tuple(*self.args[1])
@property
def _diffargs(self):
return self.ap + self.bq
@property
def eta(self):
""" A quantity related to the convergence of the series. """
return sum(self.ap) - sum(self.bq)
@property
def radius_of_convergence(self):
"""
Compute the radius of convergence of the defining series.
Note that even if this is not oo, the function may still be evaluated
outside of the radius of convergence by analytic continuation. But if
this is zero, then the function is not actually defined anywhere else.
>>> from sympy.functions import hyper
>>> from sympy.abc import z
>>> hyper((1, 2), [3], z).radius_of_convergence
1
>>> hyper((1, 2, 3), [4], z).radius_of_convergence
0
>>> hyper((1, 2), (3, 4), z).radius_of_convergence
oo
"""
if any(a.is_integer and (a <= 0) == True for a in self.ap + self.bq):
aints = [a for a in self.ap if a.is_Integer and (a <= 0) == True]
bints = [a for a in self.bq if a.is_Integer and (a <= 0) == True]
if len(aints) < len(bints):
return S(0)
popped = False
for b in bints:
cancelled = False
while aints:
a = aints.pop()
if a >= b:
cancelled = True
break
popped = True
if not cancelled:
return S(0)
if aints or popped:
# There are still non-positive numerator parameters.
# This is a polynomial.
return oo
if len(self.ap) == len(self.bq) + 1:
return S(1)
elif len(self.ap) <= len(self.bq):
return oo
else:
return S(0)
@property
def convergence_statement(self):
""" Return a condition on z under which the series converges. """
from sympy import And, Or, re, Ne, oo
R = self.radius_of_convergence
if R == 0:
return False
if R == oo:
return True
# The special functions and their approximations, page 44
e = self.eta
z = self.argument
c1 = And(re(e) < 0, abs(z) <= 1)
c2 = And(0 <= re(e), re(e) < 1, abs(z) <= 1, Ne(z, 1))
c3 = And(re(e) >= 1, abs(z) < 1)
return Or(c1, c2, c3)
def _eval_simplify(self, ratio, measure, rational, inverse):
from sympy.simplify.hyperexpand import hyperexpand
return hyperexpand(self)
def _sage_(self):
import sage.all as sage
ap = [arg._sage_() for arg in self.args[0]]
bq = [arg._sage_() for arg in self.args[1]]
return sage.hypergeometric(ap, bq, self.argument._sage_())
class meijerg(TupleParametersBase):
r"""
The Meijer G-function is defined by a Mellin-Barnes type integral that
resembles an inverse Mellin transform. It generalizes the hypergeometric
functions.
The Meijer G-function depends on four sets of parameters. There are
"*numerator parameters*"
:math:`a_1, \ldots, a_n` and :math:`a_{n+1}, \ldots, a_p`, and there are
"*denominator parameters*"
:math:`b_1, \ldots, b_m` and :math:`b_{m+1}, \ldots, b_q`.
Confusingly, it is traditionally denoted as follows (note the position
of `m`, `n`, `p`, `q`, and how they relate to the lengths of the four
parameter vectors):
.. math ::
G_{p,q}^{m,n} \left(\begin{matrix}a_1, \cdots, a_n & a_{n+1}, \cdots, a_p \\
b_1, \cdots, b_m & b_{m+1}, \cdots, b_q
\end{matrix} \middle| z \right).
However, in sympy the four parameter vectors are always available
separately (see examples), so that there is no need to keep track of the
decorating sub- and super-scripts on the G symbol.
The G function is defined as the following integral:
.. math ::
\frac{1}{2 \pi i} \int_L \frac{\prod_{j=1}^m \Gamma(b_j - s)
\prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1- b_j +s)
\prod_{j=n+1}^p \Gamma(a_j - s)} z^s \mathrm{d}s,
where :math:`\Gamma(z)` is the gamma function. There are three possible
contours which we will not describe in detail here (see the references).
If the integral converges along more than one of them the definitions
agree. The contours all separate the poles of :math:`\Gamma(1-a_j+s)`
from the poles of :math:`\Gamma(b_k-s)`, so in particular the G function
is undefined if :math:`a_j - b_k \in \mathbb{Z}_{>0}` for some
:math:`j \le n` and :math:`k \le m`.
The conditions under which one of the contours yields a convergent integral
are complicated and we do not state them here, see the references.
Note: Currently the Meijer G-function constructor does *not* check any
convergence conditions.
Examples
========
You can pass the parameters either as four separate vectors:
>>> from sympy.functions import meijerg
>>> from sympy.abc import x, a
>>> from sympy.core.containers import Tuple
>>> from sympy import pprint
>>> pprint(meijerg((1, 2), (a, 4), (5,), [], x), use_unicode=False)
__1, 2 /1, 2 a, 4 | \
/__ | | x|
\_|4, 1 \ 5 | /
or as two nested vectors:
>>> pprint(meijerg([(1, 2), (3, 4)], ([5], Tuple()), x), use_unicode=False)
__1, 2 /1, 2 3, 4 | \
/__ | | x|
\_|4, 1 \ 5 | /
As with the hypergeometric function, the parameters may be passed as
arbitrary iterables. Vectors of length zero and one also have to be
passed as iterables. The parameters need not be constants, but if they
depend on the argument then not much implemented functionality should be
expected.
All the subvectors of parameters are available:
>>> from sympy import pprint
>>> g = meijerg([1], [2], [3], [4], x)
>>> pprint(g, use_unicode=False)
__1, 1 /1 2 | \
/__ | | x|
\_|2, 2 \3 4 | /
>>> g.an
(1,)
>>> g.ap
(1, 2)
>>> g.aother
(2,)
>>> g.bm
(3,)
>>> g.bq
(3, 4)
>>> g.bother
(4,)
The Meijer G-function generalizes the hypergeometric functions.
In some cases it can be expressed in terms of hypergeometric functions,
using Slater's theorem. For example:
>>> from sympy import hyperexpand
>>> from sympy.abc import a, b, c
>>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True)
x**c*gamma(-a + c + 1)*hyper((-a + c + 1,),
(-b + c + 1,), -x)/gamma(-b + c + 1)
Thus the Meijer G-function also subsumes many named functions as special
cases. You can use expand_func or hyperexpand to (try to) rewrite a
Meijer G-function in terms of named special functions. For example:
>>> from sympy import expand_func, S
>>> expand_func(meijerg([[],[]], [[0],[]], -x))
exp(x)
>>> hyperexpand(meijerg([[],[]], [[S(1)/2],[0]], (x/2)**2))
sin(x)/sqrt(pi)
See Also
========
hyper
sympy.simplify.hyperexpand
References
==========
.. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations,
Volume 1
.. [2] https://en.wikipedia.org/wiki/Meijer_G-function
"""
def __new__(cls, *args):
if len(args) == 5:
args = [(args[0], args[1]), (args[2], args[3]), args[4]]
if len(args) != 3:
raise TypeError("args must be either as, as', bs, bs', z or "
"as, bs, z")
def tr(p):
if len(p) != 2:
raise TypeError("wrong argument")
return TupleArg(_prep_tuple(p[0]), _prep_tuple(p[1]))
arg0, arg1 = tr(args[0]), tr(args[1])
if Tuple(arg0, arg1).has(oo, zoo, -oo):
raise ValueError("G-function parameters must be finite")
if any((a - b).is_Integer and a - b > 0
for a in arg0[0] for b in arg1[0]):
raise ValueError("no parameter a1, ..., an may differ from "
"any b1, ..., bm by a positive integer")
# TODO should we check convergence conditions?
return Function.__new__(cls, arg0, arg1, args[2])
def fdiff(self, argindex=3):
if argindex != 3:
return self._diff_wrt_parameter(argindex[1])
if len(self.an) >= 1:
a = list(self.an)
a[0] -= 1
G = meijerg(a, self.aother, self.bm, self.bother, self.argument)
return 1/self.argument * ((self.an[0] - 1)*self + G)
elif len(self.bm) >= 1:
b = list(self.bm)
b[0] += 1
G = meijerg(self.an, self.aother, b, self.bother, self.argument)
return 1/self.argument * (self.bm[0]*self - G)
else:
return S.Zero
def _diff_wrt_parameter(self, idx):
# Differentiation wrt a parameter can only be done in very special
# cases. In particular, if we want to differentiate with respect to
# `a`, all other gamma factors have to reduce to rational functions.
#
# Let MT denote mellin transform. Suppose T(-s) is the gamma factor
# appearing in the definition of G. Then
#
# MT(log(z)G(z)) = d/ds T(s) = d/da T(s) + ...
#
# Thus d/da G(z) = log(z)G(z) - ...
# The ... can be evaluated as a G function under the above conditions,
# the formula being most easily derived by using
#
# d Gamma(s + n) Gamma(s + n) / 1 1 1 \
# -- ------------ = ------------ | - + ---- + ... + --------- |
# ds Gamma(s) Gamma(s) \ s s + 1 s + n - 1 /
#
# which follows from the difference equation of the digamma function.
# (There is a similar equation for -n instead of +n).
# We first figure out how to pair the parameters.
an = list(self.an)
ap = list(self.aother)
bm = list(self.bm)
bq = list(self.bother)
if idx < len(an):
an.pop(idx)
else:
idx -= len(an)
if idx < len(ap):
ap.pop(idx)
else:
idx -= len(ap)
if idx < len(bm):
bm.pop(idx)
else:
bq.pop(idx - len(bm))
pairs1 = []
pairs2 = []
for l1, l2, pairs in [(an, bq, pairs1), (ap, bm, pairs2)]:
while l1:
x = l1.pop()
found = None
for i, y in enumerate(l2):
if not Mod((x - y).simplify(), 1):
found = i
break
if found is None:
raise NotImplementedError('Derivative not expressible '
'as G-function?')
y = l2[i]
l2.pop(i)
pairs.append((x, y))
# Now build the result.
res = log(self.argument)*self
for a, b in pairs1:
sign = 1
n = a - b
base = b
if n < 0:
sign = -1
n = b - a
base = a
for k in range(n):
res -= sign*meijerg(self.an + (base + k + 1,), self.aother,
self.bm, self.bother + (base + k + 0,),
self.argument)
for a, b in pairs2:
sign = 1
n = b - a
base = a
if n < 0:
sign = -1
n = a - b
base = b
for k in range(n):
res -= sign*meijerg(self.an, self.aother + (base + k + 1,),
self.bm + (base + k + 0,), self.bother,
self.argument)
return res
def get_period(self):
"""
Return a number P such that G(x*exp(I*P)) == G(x).
>>> from sympy.functions.special.hyper import meijerg
>>> from sympy.abc import z
>>> from sympy import pi, S
>>> meijerg([1], [], [], [], z).get_period()
2*pi
>>> meijerg([pi], [], [], [], z).get_period()
oo
>>> meijerg([1, 2], [], [], [], z).get_period()
oo
>>> meijerg([1,1], [2], [1, S(1)/2, S(1)/3], [1], z).get_period()
12*pi
"""
# This follows from slater's theorem.
def compute(l):
# first check that no two differ by an integer
for i, b in enumerate(l):
if not b.is_Rational:
return oo
for j in range(i + 1, len(l)):
if not Mod((b - l[j]).simplify(), 1):
return oo
return reduce(ilcm, (x.q for x in l), 1)
beta = compute(self.bm)
alpha = compute(self.an)
p, q = len(self.ap), len(self.bq)
if p == q:
if beta == oo or alpha == oo:
return oo
return 2*pi*ilcm(alpha, beta)
elif p < q:
return 2*pi*beta
else:
return 2*pi*alpha
def _eval_expand_func(self, **hints):
from sympy import hyperexpand
return hyperexpand(self)
def _eval_evalf(self, prec):
# The default code is insufficient for polar arguments.
# mpmath provides an optional argument "r", which evaluates
# G(z**(1/r)). I am not sure what its intended use is, but we hijack it
# here in the following way: to evaluate at a number z of |argument|
# less than (say) n*pi, we put r=1/n, compute z' = root(z, n)
# (carefully so as not to loose the branch information), and evaluate
# G(z'**(1/r)) = G(z'**n) = G(z).
from sympy.functions import exp_polar, ceiling
from sympy import Expr
import mpmath
z = self.argument
znum = self.argument._eval_evalf(prec)
if znum.has(exp_polar):
znum, branch = znum.as_coeff_mul(exp_polar)
if len(branch) != 1:
return
branch = branch[0].args[0]/I
else:
branch = S(0)
n = ceiling(abs(branch/S.Pi)) + 1
znum = znum**(S(1)/n)*exp(I*branch / n)
# Convert all args to mpf or mpc
try:
[z, r, ap, bq] = [arg._to_mpmath(prec)
for arg in [znum, 1/n, self.args[0], self.args[1]]]
except ValueError:
return
with mpmath.workprec(prec):
v = mpmath.meijerg(ap, bq, z, r)
return Expr._from_mpmath(v, prec)
def integrand(self, s):
""" Get the defining integrand D(s). """
from sympy import gamma
return self.argument**s \
* Mul(*(gamma(b - s) for b in self.bm)) \
* Mul(*(gamma(1 - a + s) for a in self.an)) \
/ Mul(*(gamma(1 - b + s) for b in self.bother)) \
/ Mul(*(gamma(a - s) for a in self.aother))
@property
def argument(self):
""" Argument of the Meijer G-function. """
return self.args[2]
@property
def an(self):
""" First set of numerator parameters. """
return Tuple(*self.args[0][0])
@property
def ap(self):
""" Combined numerator parameters. """
return Tuple(*(self.args[0][0] + self.args[0][1]))
@property
def aother(self):
""" Second set of numerator parameters. """
return Tuple(*self.args[0][1])
@property
def bm(self):
""" First set of denominator parameters. """
return Tuple(*self.args[1][0])
@property
def bq(self):
""" Combined denominator parameters. """
return Tuple(*(self.args[1][0] + self.args[1][1]))
@property
def bother(self):
""" Second set of denominator parameters. """
return Tuple(*self.args[1][1])
@property
def _diffargs(self):
return self.ap + self.bq
@property
def nu(self):
""" A quantity related to the convergence region of the integral,
c.f. references. """
return sum(self.bq) - sum(self.ap)
@property
def delta(self):
""" A quantity related to the convergence region of the integral,
c.f. references. """
return len(self.bm) + len(self.an) - S(len(self.ap) + len(self.bq))/2
@property
def is_number(self):
""" Returns true if expression has numeric data only. """
return not self.free_symbols
class HyperRep(Function):
"""
A base class for "hyper representation functions".
This is used exclusively in hyperexpand(), but fits more logically here.
pFq is branched at 1 if p == q+1. For use with slater-expansion, we want
define an "analytic continuation" to all polar numbers, which is
continuous on circles and on the ray t*exp_polar(I*pi). Moreover, we want
a "nice" expression for the various cases.
This base class contains the core logic, concrete derived classes only
supply the actual functions.
"""
@classmethod
def eval(cls, *args):
from sympy import unpolarify
newargs = tuple(map(unpolarify, args[:-1])) + args[-1:]
if args != newargs:
return cls(*newargs)
@classmethod
def _expr_small(cls, x):
""" An expression for F(x) which holds for |x| < 1. """
raise NotImplementedError
@classmethod
def _expr_small_minus(cls, x):
""" An expression for F(-x) which holds for |x| < 1. """
raise NotImplementedError
@classmethod
def _expr_big(cls, x, n):
""" An expression for F(exp_polar(2*I*pi*n)*x), |x| > 1. """
raise NotImplementedError
@classmethod
def _expr_big_minus(cls, x, n):
""" An expression for F(exp_polar(2*I*pi*n + pi*I)*x), |x| > 1. """
raise NotImplementedError
def _eval_rewrite_as_nonrep(self, *args, **kwargs):
from sympy import Piecewise
x, n = self.args[-1].extract_branch_factor(allow_half=True)
minus = False
newargs = self.args[:-1] + (x,)
if not n.is_Integer:
minus = True
n -= S(1)/2
newerargs = newargs + (n,)
if minus:
small = self._expr_small_minus(*newargs)
big = self._expr_big_minus(*newerargs)
else:
small = self._expr_small(*newargs)
big = self._expr_big(*newerargs)
if big == small:
return small
return Piecewise((big, abs(x) > 1), (small, True))
def _eval_rewrite_as_nonrepsmall(self, *args, **kwargs):
x, n = self.args[-1].extract_branch_factor(allow_half=True)
args = self.args[:-1] + (x,)
if not n.is_Integer:
return self._expr_small_minus(*args)
return self._expr_small(*args)
class HyperRep_power1(HyperRep):
""" Return a representative for hyper([-a], [], z) == (1 - z)**a. """
@classmethod
def _expr_small(cls, a, x):
return (1 - x)**a
@classmethod
def _expr_small_minus(cls, a, x):
return (1 + x)**a
@classmethod
def _expr_big(cls, a, x, n):
if a.is_integer:
return cls._expr_small(a, x)
return (x - 1)**a*exp((2*n - 1)*pi*I*a)
@classmethod
def _expr_big_minus(cls, a, x, n):
if a.is_integer:
return cls._expr_small_minus(a, x)
return (1 + x)**a*exp(2*n*pi*I*a)
class HyperRep_power2(HyperRep):
""" Return a representative for hyper([a, a - 1/2], [2*a], z). """
@classmethod
def _expr_small(cls, a, x):
return 2**(2*a - 1)*(1 + sqrt(1 - x))**(1 - 2*a)
@classmethod
def _expr_small_minus(cls, a, x):
return 2**(2*a - 1)*(1 + sqrt(1 + x))**(1 - 2*a)
@classmethod
def _expr_big(cls, a, x, n):
sgn = -1
if n.is_odd:
sgn = 1
n -= 1
return 2**(2*a - 1)*(1 + sgn*I*sqrt(x - 1))**(1 - 2*a) \
*exp(-2*n*pi*I*a)
@classmethod
def _expr_big_minus(cls, a, x, n):
sgn = 1
if n.is_odd:
sgn = -1
return sgn*2**(2*a - 1)*(sqrt(1 + x) + sgn)**(1 - 2*a)*exp(-2*pi*I*a*n)
class HyperRep_log1(HyperRep):
""" Represent -z*hyper([1, 1], [2], z) == log(1 - z). """
@classmethod
def _expr_small(cls, x):
return log(1 - x)
@classmethod
def _expr_small_minus(cls, x):
return log(1 + x)
@classmethod
def _expr_big(cls, x, n):
return log(x - 1) + (2*n - 1)*pi*I
@classmethod
def _expr_big_minus(cls, x, n):
return log(1 + x) + 2*n*pi*I
class HyperRep_atanh(HyperRep):
""" Represent hyper([1/2, 1], [3/2], z) == atanh(sqrt(z))/sqrt(z). """
@classmethod
def _expr_small(cls, x):
return atanh(sqrt(x))/sqrt(x)
def _expr_small_minus(cls, x):
return atan(sqrt(x))/sqrt(x)
def _expr_big(cls, x, n):
if n.is_even:
return (acoth(sqrt(x)) + I*pi/2)/sqrt(x)
else:
return (acoth(sqrt(x)) - I*pi/2)/sqrt(x)
def _expr_big_minus(cls, x, n):
if n.is_even:
return atan(sqrt(x))/sqrt(x)
else:
return (atan(sqrt(x)) - pi)/sqrt(x)
class HyperRep_asin1(HyperRep):
""" Represent hyper([1/2, 1/2], [3/2], z) == asin(sqrt(z))/sqrt(z). """
@classmethod
def _expr_small(cls, z):
return asin(sqrt(z))/sqrt(z)
@classmethod
def _expr_small_minus(cls, z):
return asinh(sqrt(z))/sqrt(z)
@classmethod
def _expr_big(cls, z, n):
return S(-1)**n*((S(1)/2 - n)*pi/sqrt(z) + I*acosh(sqrt(z))/sqrt(z))
@classmethod
def _expr_big_minus(cls, z, n):
return S(-1)**n*(asinh(sqrt(z))/sqrt(z) + n*pi*I/sqrt(z))
class HyperRep_asin2(HyperRep):
""" Represent hyper([1, 1], [3/2], z) == asin(sqrt(z))/sqrt(z)/sqrt(1-z). """
# TODO this can be nicer
@classmethod
def _expr_small(cls, z):
return HyperRep_asin1._expr_small(z) \
/HyperRep_power1._expr_small(S(1)/2, z)
@classmethod
def _expr_small_minus(cls, z):
return HyperRep_asin1._expr_small_minus(z) \
/HyperRep_power1._expr_small_minus(S(1)/2, z)
@classmethod
def _expr_big(cls, z, n):
return HyperRep_asin1._expr_big(z, n) \
/HyperRep_power1._expr_big(S(1)/2, z, n)
@classmethod
def _expr_big_minus(cls, z, n):
return HyperRep_asin1._expr_big_minus(z, n) \
/HyperRep_power1._expr_big_minus(S(1)/2, z, n)
class HyperRep_sqrts1(HyperRep):
""" Return a representative for hyper([-a, 1/2 - a], [1/2], z). """
@classmethod
def _expr_small(cls, a, z):
return ((1 - sqrt(z))**(2*a) + (1 + sqrt(z))**(2*a))/2
@classmethod
def _expr_small_minus(cls, a, z):
return (1 + z)**a*cos(2*a*atan(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
if n.is_even:
return ((sqrt(z) + 1)**(2*a)*exp(2*pi*I*n*a) +
(sqrt(z) - 1)**(2*a)*exp(2*pi*I*(n - 1)*a))/2
else:
n -= 1
return ((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) +
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))/2
@classmethod
def _expr_big_minus(cls, a, z, n):
if n.is_even:
return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)))
else:
return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)) - 2*pi*a)
class HyperRep_sqrts2(HyperRep):
""" Return a representative for
sqrt(z)/2*[(1-sqrt(z))**2a - (1 + sqrt(z))**2a]
== -2*z/(2*a+1) d/dz hyper([-a - 1/2, -a], [1/2], z)"""
@classmethod
def _expr_small(cls, a, z):
return sqrt(z)*((1 - sqrt(z))**(2*a) - (1 + sqrt(z))**(2*a))/2
@classmethod
def _expr_small_minus(cls, a, z):
return sqrt(z)*(1 + z)**a*sin(2*a*atan(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
if n.is_even:
return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n - 1)) -
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))
else:
n -= 1
return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) -
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))
def _expr_big_minus(cls, a, z, n):
if n.is_even:
return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z)*sin(2*a*atan(sqrt(z)))
else:
return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z) \
*sin(2*a*atan(sqrt(z)) - 2*pi*a)
class HyperRep_log2(HyperRep):
""" Represent log(1/2 + sqrt(1 - z)/2) == -z/4*hyper([3/2, 1, 1], [2, 2], z) """
@classmethod
def _expr_small(cls, z):
return log(S(1)/2 + sqrt(1 - z)/2)
@classmethod
def _expr_small_minus(cls, z):
return log(S(1)/2 + sqrt(1 + z)/2)
@classmethod
def _expr_big(cls, z, n):
if n.is_even:
return (n - S(1)/2)*pi*I + log(sqrt(z)/2) + I*asin(1/sqrt(z))
else:
return (n - S(1)/2)*pi*I + log(sqrt(z)/2) - I*asin(1/sqrt(z))
def _expr_big_minus(cls, z, n):
if n.is_even:
return pi*I*n + log(S(1)/2 + sqrt(1 + z)/2)
else:
return pi*I*n + log(sqrt(1 + z)/2 - S(1)/2)
class HyperRep_cosasin(HyperRep):
""" Represent hyper([a, -a], [1/2], z) == cos(2*a*asin(sqrt(z))). """
# Note there are many alternative expressions, e.g. as powers of a sum of
# square roots.
@classmethod
def _expr_small(cls, a, z):
return cos(2*a*asin(sqrt(z)))
@classmethod
def _expr_small_minus(cls, a, z):
return cosh(2*a*asinh(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
return cosh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1))
@classmethod
def _expr_big_minus(cls, a, z, n):
return cosh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n)
class HyperRep_sinasin(HyperRep):
""" Represent 2*a*z*hyper([1 - a, 1 + a], [3/2], z)
== sqrt(z)/sqrt(1-z)*sin(2*a*asin(sqrt(z))) """
@classmethod
def _expr_small(cls, a, z):
return sqrt(z)/sqrt(1 - z)*sin(2*a*asin(sqrt(z)))
@classmethod
def _expr_small_minus(cls, a, z):
return -sqrt(z)/sqrt(1 + z)*sinh(2*a*asinh(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
return -1/sqrt(1 - 1/z)*sinh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1))
@classmethod
def _expr_big_minus(cls, a, z, n):
return -1/sqrt(1 + 1/z)*sinh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n)
class appellf1(Function):
r"""
This is the Appell hypergeometric function of two variables as:
.. math ::
F_1(a,b_1,b_2,c,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
\frac{(a)_{m+n} (b_1)_m (b_2)_n}{(c)_{m+n}}
\frac{x^m y^n}{m! n!}.
References
==========
.. [1] https://en.wikipedia.org/wiki/Appell_series
.. [2] http://functions.wolfram.com/HypergeometricFunctions/AppellF1/
"""
@classmethod
def eval(cls, a, b1, b2, c, x, y):
if default_sort_key(b1) > default_sort_key(b2):
b1, b2 = b2, b1
x, y = y, x
return cls(a, b1, b2, c, x, y)
elif b1 == b2 and default_sort_key(x) > default_sort_key(y):
x, y = y, x
return cls(a, b1, b2, c, x, y)
if x == 0 and y == 0:
return S.One
def fdiff(self, argindex=5):
a, b1, b2, c, x, y = self.args
if argindex == 5:
return (a*b1/c)*appellf1(a + 1, b1 + 1, b2, c + 1, x, y)
elif argindex == 6:
return (a*b2/c)*appellf1(a + 1, b1, b2 + 1, c + 1, x, y)
elif argindex in (1, 2, 3, 4):
return Derivative(self, self.args[argindex-1])
else:
raise ArgumentIndexError(self, argindex)
|
0b234162cde5cd3964557cbd0b66588a90485c9e65c55846f3437fcb00d00aa6
|
from __future__ import print_function, division
from sympy.core import Add, S, sympify, oo, pi, Dummy, expand_func
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.core.compatibility import range
from .zeta_functions import zeta
from .error_functions import erf, erfc
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin, cos, cot
from sympy.functions.combinatorial.numbers import bernoulli, harmonic
from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial
###############################################################################
############################ COMPLETE GAMMA FUNCTION ##########################
###############################################################################
class gamma(Function):
r"""
The gamma function
.. math::
\Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t.
The ``gamma`` function implements the function which passes through the
values of the factorial function, i.e. `\Gamma(n) = (n - 1)!` when n is
an integer. More general, `\Gamma(z)` is defined in the whole complex
plane except at the negative integers where there are simple poles.
Examples
========
>>> from sympy import S, I, pi, oo, gamma
>>> from sympy.abc import x
Several special values are known:
>>> gamma(1)
1
>>> gamma(4)
6
>>> gamma(S(3)/2)
sqrt(pi)/2
The Gamma function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(gamma(x))
gamma(conjugate(x))
Differentiation with respect to x is supported:
>>> from sympy import diff
>>> diff(gamma(x), x)
gamma(x)*polygamma(0, x)
Series expansion is also supported:
>>> from sympy import series
>>> series(gamma(x), x, 0, 3)
1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 + polygamma(2, 1)/6 - EulerGamma**3/6) + O(x**3)
We can numerically evaluate the gamma function to arbitrary precision
on the whole complex plane:
>>> gamma(pi).evalf(40)
2.288037795340032417959588909060233922890
>>> gamma(1+I).evalf(20)
0.49801566811835604271 - 0.15494982830181068512*I
See Also
========
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_function
.. [2] http://dlmf.nist.gov/5
.. [3] http://mathworld.wolfram.com/GammaFunction.html
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma/
"""
unbranched = True
def fdiff(self, argindex=1):
if argindex == 1:
return self.func(self.args[0])*polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg.is_Integer:
if arg.is_positive:
return factorial(arg - 1)
else:
return S.ComplexInfinity
elif arg.is_Rational:
if arg.q == 2:
n = abs(arg.p) // arg.q
if arg.is_positive:
k, coeff = n, S.One
else:
n = k = n + 1
if n & 1 == 0:
coeff = S.One
else:
coeff = S.NegativeOne
for i in range(3, 2*k, 2):
coeff *= i
if arg.is_positive:
return coeff*sqrt(S.Pi) / 2**n
else:
return 2**n*sqrt(S.Pi) / coeff
def _eval_expand_func(self, **hints):
arg = self.args[0]
if arg.is_Rational:
if abs(arg.p) > arg.q:
x = Dummy('x')
n = arg.p // arg.q
p = arg.p - n*arg.q
return self.func(x + n)._eval_expand_func().subs(x, Rational(p, arg.q))
if arg.is_Add:
coeff, tail = arg.as_coeff_add()
if coeff and coeff.q != 1:
intpart = floor(coeff)
tail = (coeff - intpart,) + tail
coeff = intpart
tail = arg._new_rawargs(*tail, reeval=False)
return self.func(tail)*RisingFactorial(tail, coeff)
return self.func(*self.args)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
x = self.args[0]
if x.is_positive or x.is_noninteger:
return True
def _eval_is_positive(self):
x = self.args[0]
if x.is_positive:
return True
elif x.is_noninteger:
return floor(x).is_even
def _eval_rewrite_as_tractable(self, z, **kwargs):
return exp(loggamma(z))
def _eval_rewrite_as_factorial(self, z, **kwargs):
return factorial(z - 1)
def _eval_nseries(self, x, n, logx):
x0 = self.args[0].limit(x, 0)
if not (x0.is_Integer and x0 <= 0):
return super(gamma, self)._eval_nseries(x, n, logx)
t = self.args[0] - x0
return (self.func(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx)
###############################################################################
################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS #################
###############################################################################
class lowergamma(Function):
r"""
The lower incomplete gamma function.
It can be defined as the meromorphic continuation of
.. math::
\gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x).
This can be shown to be the same as
.. math::
\gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
where :math:`{}_1F_1` is the (confluent) hypergeometric function.
Examples
========
>>> from sympy import lowergamma, S
>>> from sympy.abc import s, x
>>> lowergamma(s, x)
lowergamma(s, x)
>>> lowergamma(3, x)
-2*(x**2/2 + x + 1)*exp(-x) + 2
>>> lowergamma(-S(1)/2, x)
-2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x)
See Also
========
gamma: Gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
.. [3] http://dlmf.nist.gov/8
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/
"""
def fdiff(self, argindex=2):
from sympy import meijerg, unpolarify
if argindex == 2:
a, z = self.args
return exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \
- meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, a, x):
# For lack of a better place, we use this one to extract branching
# information. The following can be
# found in the literature (c/f references given above), albeit scattered:
# 1) For fixed x != 0, lowergamma(s, x) is an entire function of s
# 2) For fixed positive integers s, lowergamma(s, x) is an entire
# function of x.
# 3) For fixed non-positive integers s,
# lowergamma(s, exp(I*2*pi*n)*x) =
# 2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x)
# (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)).
# 4) For fixed non-integral s,
# lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x),
# where lowergamma_unbranched(s, x) is an entire function (in fact
# of both s and x), i.e.
# lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x)
from sympy import unpolarify, I
if x == 0:
return S.Zero
nx, n = x.extract_branch_factor()
if a.is_integer and a.is_positive:
nx = unpolarify(x)
if nx != x:
return lowergamma(a, nx)
elif a.is_integer and a.is_nonpositive:
if n != 0:
return 2*pi*I*n*(-1)**(-a)/factorial(-a) + lowergamma(a, nx)
elif n != 0:
return exp(2*pi*I*n*a)*lowergamma(a, nx)
# Special values.
if a.is_Number:
if a is S.One:
return S.One - exp(-x)
elif a is S.Half:
return sqrt(pi)*erf(sqrt(x))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
if a.is_integer:
return factorial(b) - exp(-x) * factorial(b) * Add(*[x ** k / factorial(k) for k in range(a)])
else:
return gamma(a) * (lowergamma(S.Half, x)/sqrt(pi) - exp(-x) * Add(*[x**(k-S.Half) / gamma(S.Half+k) for k in range(1, a+S.Half)]))
if not a.is_Integer:
return (-1)**(S.Half - a) * pi*erf(sqrt(x)) / gamma(1-a) + exp(-x) * Add(*[x**(k+a-1)*gamma(a) / gamma(a+k) for k in range(1, S(3)/2-a)])
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
if all(x.is_number for x in self.args):
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, 0, z)
return Expr._from_mpmath(res, prec)
else:
return self
def _eval_conjugate(self):
z = self.args[1]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), z.conjugate())
def _eval_rewrite_as_uppergamma(self, s, x, **kwargs):
return gamma(s) - uppergamma(s, x)
def _eval_rewrite_as_expint(self, s, x, **kwargs):
from sympy import expint
if s.is_integer and s.is_nonpositive:
return self
return self.rewrite(uppergamma).rewrite(expint)
class uppergamma(Function):
r"""
The upper incomplete gamma function.
It can be defined as the meromorphic continuation of
.. math::
\Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x).
where `\gamma(s, x)` is the lower incomplete gamma function,
:class:`lowergamma`. This can be shown to be the same as
.. math::
\Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
where :math:`{}_1F_1` is the (confluent) hypergeometric function.
The upper incomplete gamma function is also essentially equivalent to the
generalized exponential integral:
.. math::
\operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x).
Examples
========
>>> from sympy import uppergamma, S
>>> from sympy.abc import s, x
>>> uppergamma(s, x)
uppergamma(s, x)
>>> uppergamma(3, x)
2*(x**2/2 + x + 1)*exp(-x)
>>> uppergamma(-S(1)/2, x)
-2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x)
>>> uppergamma(-2, x)
expint(3, x)/x**2
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_Gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6, Section 5,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
.. [3] http://dlmf.nist.gov/8
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/
.. [6] https://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions
"""
def fdiff(self, argindex=2):
from sympy import meijerg, unpolarify
if argindex == 2:
a, z = self.args
return -exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
if all(x.is_number for x in self.args):
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, z, mp.inf)
return Expr._from_mpmath(res, prec)
return self
@classmethod
def eval(cls, a, z):
from sympy import unpolarify, I, expint
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is S.Infinity:
return S.Zero
elif z is S.Zero:
# TODO: Holds only for Re(a) > 0:
return gamma(a)
# We extract branching information here. C/f lowergamma.
nx, n = z.extract_branch_factor()
if a.is_integer and (a > 0) == True:
nx = unpolarify(z)
if z != nx:
return uppergamma(a, nx)
elif a.is_integer and (a <= 0) == True:
if n != 0:
return -2*pi*I*n*(-1)**(-a)/factorial(-a) + uppergamma(a, nx)
elif n != 0:
return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx)
# Special values.
if a.is_Number:
if a is S.One:
return exp(-z)
elif a is S.Half:
return sqrt(pi)*erfc(sqrt(z))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
if a.is_integer:
return exp(-z) * factorial(b) * Add(*[z**k / factorial(k) for k in range(a)])
else:
return gamma(a) * erfc(sqrt(z)) + (-1)**(a - S(3)/2) * exp(-z) * sqrt(z) * Add(*[gamma(-S.Half - k) * (-z)**k / gamma(1-a) for k in range(a - S.Half)])
elif b.is_Integer:
return expint(-b, z)*unpolarify(z)**(b + 1)
if not a.is_Integer:
return (-1)**(S.Half - a) * pi*erfc(sqrt(z))/gamma(1-a) - z**a * exp(-z) * Add(*[z**k * gamma(a) / gamma(a+k+1) for k in range(S.Half - a)])
def _eval_conjugate(self):
z = self.args[1]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), z.conjugate())
def _eval_rewrite_as_lowergamma(self, s, x, **kwargs):
return gamma(s) - lowergamma(s, x)
def _eval_rewrite_as_expint(self, s, x, **kwargs):
from sympy import expint
return expint(1 - s, x)*x**s
###############################################################################
###################### POLYGAMMA and LOGGAMMA FUNCTIONS #######################
###############################################################################
class polygamma(Function):
r"""
The function ``polygamma(n, z)`` returns ``log(gamma(z)).diff(n + 1)``.
It is a meromorphic function on `\mathbb{C}` and defined as the (n+1)-th
derivative of the logarithm of the gamma function:
.. math::
\psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z).
Examples
========
Several special values are known:
>>> from sympy import S, polygamma
>>> polygamma(0, 1)
-EulerGamma
>>> polygamma(0, 1/S(2))
-2*log(2) - EulerGamma
>>> polygamma(0, 1/S(3))
-log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
>>> polygamma(0, 1/S(4))
-pi/2 - log(4) - log(2) - EulerGamma
>>> polygamma(0, 2)
-EulerGamma + 1
>>> polygamma(0, 23)
-EulerGamma + 19093197/5173168
>>> from sympy import oo, I
>>> polygamma(0, oo)
oo
>>> polygamma(0, -oo)
oo
>>> polygamma(0, I*oo)
oo
>>> polygamma(0, -I*oo)
oo
Differentiation with respect to x is supported:
>>> from sympy import Symbol, diff
>>> x = Symbol("x")
>>> diff(polygamma(0, x), x)
polygamma(1, x)
>>> diff(polygamma(0, x), x, 2)
polygamma(2, x)
>>> diff(polygamma(0, x), x, 3)
polygamma(3, x)
>>> diff(polygamma(1, x), x)
polygamma(2, x)
>>> diff(polygamma(1, x), x, 2)
polygamma(3, x)
>>> diff(polygamma(2, x), x)
polygamma(3, x)
>>> diff(polygamma(2, x), x, 2)
polygamma(4, x)
>>> n = Symbol("n")
>>> diff(polygamma(n, x), x)
polygamma(n + 1, x)
>>> diff(polygamma(n, x), x, 2)
polygamma(n + 2, x)
We can rewrite polygamma functions in terms of harmonic numbers:
>>> from sympy import harmonic
>>> polygamma(0, x).rewrite(harmonic)
harmonic(x - 1) - EulerGamma
>>> polygamma(2, x).rewrite(harmonic)
2*harmonic(x - 1, 3) - 2*zeta(3)
>>> ni = Symbol("n", integer=True)
>>> polygamma(ni, x).rewrite(harmonic)
(-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Polygamma_function
.. [2] http://mathworld.wolfram.com/PolygammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma/
.. [4] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
def fdiff(self, argindex=2):
if argindex == 2:
n, z = self.args[:2]
return polygamma(n + 1, z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_positive(self):
if self.args[1].is_positive and (self.args[0] > 0) == True:
return self.args[0].is_odd
def _eval_is_negative(self):
if self.args[1].is_positive and (self.args[0] > 0) == True:
return self.args[0].is_even
def _eval_is_real(self):
return self.args[0].is_real
def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
if args0[1] != oo or not \
(self.args[0].is_Integer and self.args[0].is_nonnegative):
return super(polygamma, self)._eval_aseries(n, args0, x, logx)
z = self.args[1]
N = self.args[0]
if N == 0:
# digamma function series
# Abramowitz & Stegun, p. 259, 6.3.18
r = log(z) - 1/(2*z)
o = None
if n < 2:
o = Order(1/z, x)
else:
m = ceiling((n + 1)//2)
l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)]
r -= Add(*l)
o = Order(1/z**(2*m), x)
return r._eval_nseries(x, n, logx) + o
else:
# proper polygamma function
# Abramowitz & Stegun, p. 260, 6.4.10
# We return terms to order higher than O(x**n) on purpose
# -- otherwise we would not be able to return any terms for
# quite a long time!
fac = gamma(N)
e0 = fac + N*fac/(2*z)
m = ceiling((n + 1)//2)
for k in range(1, m):
fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1))
e0 += bernoulli(2*k)*fac/z**(2*k)
o = Order(1/z**(2*m), x)
if n == 0:
o = Order(1/z, x)
elif n == 1:
o = Order(1/z**2, x)
r = e0._eval_nseries(z, n, logx) + o
return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx)
@classmethod
def eval(cls, n, z):
n, z = list(map(sympify, (n, z)))
from sympy import unpolarify
if n.is_integer:
if n.is_nonnegative:
nz = unpolarify(z)
if z != nz:
return polygamma(n, nz)
if n == -1:
return loggamma(z)
else:
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is S.Infinity:
if n.is_Number:
if n is S.Zero:
return S.Infinity
else:
return S.Zero
elif z.is_Integer:
if z.is_nonpositive:
return S.ComplexInfinity
else:
if n is S.Zero:
return -S.EulerGamma + harmonic(z - 1, 1)
elif n.is_odd:
return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z)
if n == 0:
if z is S.NaN:
return S.NaN
elif z.is_Rational:
p, q = z.as_numer_denom()
# only expand for small denominators to avoid creating long expressions
if q <= 5:
return expand_func(polygamma(n, z, evaluate=False))
elif z in (S.Infinity, S.NegativeInfinity):
return S.Infinity
else:
t = z.extract_multiplicatively(S.ImaginaryUnit)
if t in (S.Infinity, S.NegativeInfinity):
return S.Infinity
# TODO n == 1 also can do some rational z
def _eval_expand_func(self, **hints):
n, z = self.args
if n.is_Integer and n.is_nonnegative:
if z.is_Add:
coeff = z.args[0]
if coeff.is_Integer:
e = -(n + 1)
if coeff > 0:
tail = Add(*[Pow(
z - i, e) for i in range(1, int(coeff) + 1)])
else:
tail = -Add(*[Pow(
z + i, e) for i in range(0, int(-coeff))])
return polygamma(n, z - coeff) + (-1)**n*factorial(n)*tail
elif z.is_Mul:
coeff, z = z.as_two_terms()
if coeff.is_Integer and coeff.is_positive:
tail = [ polygamma(n, z + Rational(
i, coeff)) for i in range(0, int(coeff)) ]
if n == 0:
return Add(*tail)/coeff + log(coeff)
else:
return Add(*tail)/coeff**(n + 1)
z *= coeff
if n == 0 and z.is_Rational:
p, q = z.as_numer_denom()
# Reference:
# Values of the polygamma functions at rational arguments, J. Choi, 2007
part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add(
*[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)])
if z > 0:
n = floor(z)
z0 = z - n
return part_1 + Add(*[1 / (z0 + k) for k in range(n)])
elif z < 0:
n = floor(1 - z)
z0 = z + n
return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)])
return polygamma(n, z)
def _eval_rewrite_as_zeta(self, n, z, **kwargs):
if n >= S.One:
return (-1)**(n + 1)*factorial(n)*zeta(n + 1, z)
else:
return self
def _eval_rewrite_as_harmonic(self, n, z, **kwargs):
if n.is_integer:
if n == S.Zero:
return harmonic(z - 1) - S.EulerGamma
else:
return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1))
def _eval_as_leading_term(self, x):
from sympy import Order
n, z = [a.as_leading_term(x) for a in self.args]
o = Order(z, x)
if n == 0 and o.contains(1/x):
return o.getn() * log(x)
else:
return self.func(n, z)
class loggamma(Function):
r"""
The ``loggamma`` function implements the logarithm of the
gamma function i.e, `\log\Gamma(x)`.
Examples
========
Several special values are known. For numerical integral
arguments we have:
>>> from sympy import loggamma
>>> loggamma(-2)
oo
>>> loggamma(0)
oo
>>> loggamma(1)
0
>>> loggamma(2)
0
>>> loggamma(3)
log(2)
and for symbolic values:
>>> from sympy import Symbol
>>> n = Symbol("n", integer=True, positive=True)
>>> loggamma(n)
log(gamma(n))
>>> loggamma(-n)
oo
for half-integral values:
>>> from sympy import S, pi
>>> loggamma(S(5)/2)
log(3*sqrt(pi)/4)
>>> loggamma(n/2)
log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))
and general rational arguments:
>>> from sympy import expand_func
>>> L = loggamma(S(16)/3)
>>> expand_func(L).doit()
-5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13)
>>> L = loggamma(S(19)/4)
>>> expand_func(L).doit()
-4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15)
>>> L = loggamma(S(23)/7)
>>> expand_func(L).doit()
-3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16)
The loggamma function has the following limits towards infinity:
>>> from sympy import oo
>>> loggamma(oo)
oo
>>> loggamma(-oo)
zoo
The loggamma function obeys the mirror symmetry
if `x \in \mathbb{C} \setminus \{-\infty, 0\}`:
>>> from sympy.abc import x
>>> from sympy import conjugate
>>> conjugate(loggamma(x))
loggamma(conjugate(x))
Differentiation with respect to x is supported:
>>> from sympy import diff
>>> diff(loggamma(x), x)
polygamma(0, x)
Series expansion is also supported:
>>> from sympy import series
>>> series(loggamma(x), x, 0, 4)
-log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + O(x**4)
We can numerically evaluate the gamma function to arbitrary precision
on the whole complex plane:
>>> from sympy import I
>>> loggamma(5).evalf(30)
3.17805383034794561964694160130
>>> loggamma(I).evalf(20)
-0.65092319930185633889 - 1.8724366472624298171*I
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
digamma: Digamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_function
.. [2] http://dlmf.nist.gov/5
.. [3] http://mathworld.wolfram.com/LogGammaFunction.html
.. [4] http://functions.wolfram.com/GammaBetaErf/LogGamma/
"""
@classmethod
def eval(cls, z):
z = sympify(z)
if z.is_integer:
if z.is_nonpositive:
return S.Infinity
elif z.is_positive:
return log(gamma(z))
elif z.is_rational:
p, q = z.as_numer_denom()
# Half-integral values:
if p.is_positive and q == 2:
return log(sqrt(S.Pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half))
if z is S.Infinity:
return S.Infinity
elif abs(z) is S.Infinity:
return S.ComplexInfinity
if z is S.NaN:
return S.NaN
def _eval_expand_func(self, **hints):
from sympy import Sum
z = self.args[0]
if z.is_Rational:
p, q = z.as_numer_denom()
# General rational arguments (u + p/q)
# Split z as n + p/q with p < q
n = p // q
p = p - n*q
if p.is_positive and q.is_positive and p < q:
k = Dummy("k")
if n.is_positive:
return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n))
elif n.is_negative:
return loggamma(p / q) - n*log(q) + S.Pi*S.ImaginaryUnit*n - Sum(log(k*q - p), (k, 1, -n))
elif n.is_zero:
return loggamma(p / q)
return self
def _eval_nseries(self, x, n, logx=None):
x0 = self.args[0].limit(x, 0)
if x0 is S.Zero:
f = self._eval_rewrite_as_intractable(*self.args)
return f._eval_nseries(x, n, logx)
return super(loggamma, self)._eval_nseries(x, n, logx)
def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
if args0[0] != oo:
return super(loggamma, self)._eval_aseries(n, args0, x, logx)
z = self.args[0]
m = min(n, ceiling((n + S(1))/2))
r = log(z)*(z - S(1)/2) - z + log(2*pi)/2
l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, m)]
o = None
if m == 0:
o = Order(1, x)
else:
o = Order(1/z**(2*m - 1), x)
# It is very inefficient to first add the order and then do the nseries
return (r + Add(*l))._eval_nseries(x, n, logx) + o
def _eval_rewrite_as_intractable(self, z, **kwargs):
return log(gamma(z))
def _eval_is_real(self):
return self.args[0].is_real
def _eval_conjugate(self):
z = self.args[0]
if not z in (S.Zero, S.NegativeInfinity):
return self.func(z.conjugate())
def fdiff(self, argindex=1):
if argindex == 1:
return polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _sage_(self):
import sage.all as sage
return sage.log_gamma(self.args[0]._sage_())
def digamma(x):
r"""
The digamma function is the first derivative of the loggamma function i.e,
.. math::
\psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z)
= \frac{\Gamma'(z)}{\Gamma(z) }
In this case, ``digamma(z) = polygamma(0, z)``.
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
trigamma: Trigamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Digamma_function
.. [2] http://mathworld.wolfram.com/DigammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
return polygamma(0, x)
def trigamma(x):
r"""
The trigamma function is the second derivative of the loggamma function i.e,
.. math::
\psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z).
In this case, ``trigamma(z) = polygamma(1, z)``.
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
sympy.functions.special.beta_functions.beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigamma_function
.. [2] http://mathworld.wolfram.com/TrigammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
return polygamma(1, x)
|
21a7072448acd4330da2d04ce8945bc7b24e54ace61ae9d8660a545e278242bb
|
from __future__ import print_function, division
from sympy import pi, I
from sympy.core.singleton import S
from sympy.core import Dummy, sympify
from sympy.core.function import Function, ArgumentIndexError
from sympy.functions import assoc_legendre
from sympy.functions.elementary.trigonometric import sin, cos, cot
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
_x = Dummy("x")
class Ynm(Function):
r"""
Spherical harmonics defined as
.. math::
Y_n^m(\theta, \varphi) := \sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}}
\exp(i m \varphi)
\mathrm{P}_n^m\left(\cos(\theta)\right)
Ynm() gives the spherical harmonic function of order `n` and `m`
in `\theta` and `\varphi`, `Y_n^m(\theta, \varphi)`. The four
parameters are as follows: `n \geq 0` an integer and `m` an integer
such that `-n \leq m \leq n` holds. The two angles are real-valued
with `\theta \in [0, \pi]` and `\varphi \in [0, 2\pi]`.
Examples
========
>>> from sympy import Ynm, Symbol
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> Ynm(n, m, theta, phi)
Ynm(n, m, theta, phi)
Several symmetries are known, for the order
>>> from sympy import Ynm, Symbol
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> Ynm(n, -m, theta, phi)
(-1)**m*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
as well as for the angles
>>> from sympy import Ynm, Symbol, simplify
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> Ynm(n, m, -theta, phi)
Ynm(n, m, theta, phi)
>>> Ynm(n, m, theta, -phi)
exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
For specific integers n and m we can evaluate the harmonics
to more useful expressions
>>> simplify(Ynm(0, 0, theta, phi).expand(func=True))
1/(2*sqrt(pi))
>>> simplify(Ynm(1, -1, theta, phi).expand(func=True))
sqrt(6)*exp(-I*phi)*sin(theta)/(4*sqrt(pi))
>>> simplify(Ynm(1, 0, theta, phi).expand(func=True))
sqrt(3)*cos(theta)/(2*sqrt(pi))
>>> simplify(Ynm(1, 1, theta, phi).expand(func=True))
-sqrt(6)*exp(I*phi)*sin(theta)/(4*sqrt(pi))
>>> simplify(Ynm(2, -2, theta, phi).expand(func=True))
sqrt(30)*exp(-2*I*phi)*sin(theta)**2/(8*sqrt(pi))
>>> simplify(Ynm(2, -1, theta, phi).expand(func=True))
sqrt(30)*exp(-I*phi)*sin(2*theta)/(8*sqrt(pi))
>>> simplify(Ynm(2, 0, theta, phi).expand(func=True))
sqrt(5)*(3*cos(theta)**2 - 1)/(4*sqrt(pi))
>>> simplify(Ynm(2, 1, theta, phi).expand(func=True))
-sqrt(30)*exp(I*phi)*sin(2*theta)/(8*sqrt(pi))
>>> simplify(Ynm(2, 2, theta, phi).expand(func=True))
sqrt(30)*exp(2*I*phi)*sin(theta)**2/(8*sqrt(pi))
We can differentiate the functions with respect
to both angles
>>> from sympy import Ynm, Symbol, diff
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> diff(Ynm(n, m, theta, phi), theta)
m*cot(theta)*Ynm(n, m, theta, phi) + sqrt((-m + n)*(m + n + 1))*exp(-I*phi)*Ynm(n, m + 1, theta, phi)
>>> diff(Ynm(n, m, theta, phi), phi)
I*m*Ynm(n, m, theta, phi)
Further we can compute the complex conjugation
>>> from sympy import Ynm, Symbol, conjugate
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> conjugate(Ynm(n, m, theta, phi))
(-1)**(2*m)*exp(-2*I*m*phi)*Ynm(n, m, theta, phi)
To get back the well known expressions in spherical
coordinates we use full expansion
>>> from sympy import Ynm, Symbol, expand_func
>>> from sympy.abc import n,m
>>> theta = Symbol("theta")
>>> phi = Symbol("phi")
>>> expand_func(Ynm(n, m, theta, phi))
sqrt((2*n + 1)*factorial(-m + n)/factorial(m + n))*exp(I*m*phi)*assoc_legendre(n, m, cos(theta))/(2*sqrt(pi))
See Also
========
Ynm_c, Znm
References
==========
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics
.. [2] http://mathworld.wolfram.com/SphericalHarmonic.html
.. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/
.. [4] http://dlmf.nist.gov/14.30
"""
@classmethod
def eval(cls, n, m, theta, phi):
n, m, theta, phi = [sympify(x) for x in (n, m, theta, phi)]
# Handle negative index m and arguments theta, phi
if m.could_extract_minus_sign():
m = -m
return S.NegativeOne**m * exp(-2*I*m*phi) * Ynm(n, m, theta, phi)
if theta.could_extract_minus_sign():
theta = -theta
return Ynm(n, m, theta, phi)
if phi.could_extract_minus_sign():
phi = -phi
return exp(-2*I*m*phi) * Ynm(n, m, theta, phi)
# TODO Add more simplififcation here
def _eval_expand_func(self, **hints):
n, m, theta, phi = self.args
rv = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) *
exp(I*m*phi) * assoc_legendre(n, m, cos(theta)))
# We can do this because of the range of theta
return rv.subs(sqrt(-cos(theta)**2 + 1), sin(theta))
def fdiff(self, argindex=4):
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt m
raise ArgumentIndexError(self, argindex)
elif argindex == 3:
# Diff wrt theta
n, m, theta, phi = self.args
return (m * cot(theta) * Ynm(n, m, theta, phi) +
sqrt((n - m)*(n + m + 1)) * exp(-I*phi) * Ynm(n, m + 1, theta, phi))
elif argindex == 4:
# Diff wrt phi
n, m, theta, phi = self.args
return I * m * Ynm(n, m, theta, phi)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, m, theta, phi, **kwargs):
# TODO: Make sure n \in N
# TODO: Assert |m| <= n ortherwise we should return 0
return self.expand(func=True)
def _eval_rewrite_as_sin(self, n, m, theta, phi, **kwargs):
return self.rewrite(cos)
def _eval_rewrite_as_cos(self, n, m, theta, phi, **kwargs):
# This method can be expensive due to extensive use of simplification!
from sympy.simplify import simplify, trigsimp
# TODO: Make sure n \in N
# TODO: Assert |m| <= n ortherwise we should return 0
term = simplify(self.expand(func=True))
# We can do this because of the range of theta
term = term.xreplace({Abs(sin(theta)):sin(theta)})
return simplify(trigsimp(term))
def _eval_conjugate(self):
# TODO: Make sure theta \in R and phi \in R
n, m, theta, phi = self.args
return S.NegativeOne**m * self.func(n, -m, theta, phi)
def as_real_imag(self, deep=True, **hints):
# TODO: Handle deep and hints
n, m, theta, phi = self.args
re = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) *
cos(m*phi) * assoc_legendre(n, m, cos(theta)))
im = (sqrt((2*n + 1)/(4*pi) * factorial(n - m)/factorial(n + m)) *
sin(m*phi) * assoc_legendre(n, m, cos(theta)))
return (re, im)
def _eval_evalf(self, prec):
# Note: works without this function by just calling
# mpmath for Legendre polynomials. But using
# the dedicated function directly is cleaner.
from mpmath import mp, workprec
from sympy import Expr
n = self.args[0]._to_mpmath(prec)
m = self.args[1]._to_mpmath(prec)
theta = self.args[2]._to_mpmath(prec)
phi = self.args[3]._to_mpmath(prec)
with workprec(prec):
res = mp.spherharm(n, m, theta, phi)
return Expr._from_mpmath(res, prec)
def _sage_(self):
import sage.all as sage
return sage.spherical_harmonic(self.args[0]._sage_(),
self.args[1]._sage_(),
self.args[2]._sage_(),
self.args[3]._sage_())
def Ynm_c(n, m, theta, phi):
r"""Conjugate spherical harmonics defined as
.. math::
\overline{Y_n^m(\theta, \varphi)} := (-1)^m Y_n^{-m}(\theta, \varphi)
See Also
========
Ynm, Znm
References
==========
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics
.. [2] http://mathworld.wolfram.com/SphericalHarmonic.html
.. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/
"""
from sympy import conjugate
return conjugate(Ynm(n, m, theta, phi))
class Znm(Function):
r"""
Real spherical harmonics defined as
.. math::
Z_n^m(\theta, \varphi) :=
\begin{cases}
\frac{Y_n^m(\theta, \varphi) + \overline{Y_n^m(\theta, \varphi)}}{\sqrt{2}} &\quad m > 0 \\
Y_n^m(\theta, \varphi) &\quad m = 0 \\
\frac{Y_n^m(\theta, \varphi) - \overline{Y_n^m(\theta, \varphi)}}{i \sqrt{2}} &\quad m < 0 \\
\end{cases}
which gives in simplified form
.. math::
Z_n^m(\theta, \varphi) =
\begin{cases}
\frac{Y_n^m(\theta, \varphi) + (-1)^m Y_n^{-m}(\theta, \varphi)}{\sqrt{2}} &\quad m > 0 \\
Y_n^m(\theta, \varphi) &\quad m = 0 \\
\frac{Y_n^m(\theta, \varphi) - (-1)^m Y_n^{-m}(\theta, \varphi)}{i \sqrt{2}} &\quad m < 0 \\
\end{cases}
See Also
========
Ynm, Ynm_c
References
==========
.. [1] https://en.wikipedia.org/wiki/Spherical_harmonics
.. [2] http://mathworld.wolfram.com/SphericalHarmonic.html
.. [3] http://functions.wolfram.com/Polynomials/SphericalHarmonicY/
"""
@classmethod
def eval(cls, n, m, theta, phi):
n, m, th, ph = [sympify(x) for x in (n, m, theta, phi)]
if m.is_positive:
zz = (Ynm(n, m, th, ph) + Ynm_c(n, m, th, ph)) / sqrt(2)
return zz
elif m.is_zero:
return Ynm(n, m, th, ph)
elif m.is_negative:
zz = (Ynm(n, m, th, ph) - Ynm_c(n, m, th, ph)) / (sqrt(2)*I)
return zz
|
2e1b41bd887f3df639c09adbf9372ede15c3d5fd7d5fe417fcd2f1fa292a390c
|
from __future__ import print_function, division
from sympy.core import S, sympify
from sympy.core.compatibility import range
from sympy.functions import Piecewise, piecewise_fold
from sympy.sets.sets import Interval
def _add_splines(c, b1, d, b2):
"""Construct c*b1 + d*b2."""
if b1 == S.Zero or c == S.Zero:
rv = piecewise_fold(d*b2)
elif b2 == S.Zero or d == S.Zero:
rv = piecewise_fold(c*b1)
else:
new_args = []
n_intervals = len(b1.args)
if n_intervals != len(b2.args):
# Args of b1 and b2 are not equal. Just combining the
# Piecewise without any fancy optimization
p1 = piecewise_fold(c*b1)
p2 = piecewise_fold(d*b2)
# Search all Piecewise arguments except (0, True)
p2args = list(p2.args[:-1])
# This merging algorithm assumes the conditions in
# p1 and p2 are sorted
for arg in p1.args[:-1]:
# Conditional of Piecewise are And objects
# the args of the And object is a tuple of two
# Relational objects the numerical value is in the .rhs
# of the Relational object
expr = arg.expr
cond = arg.cond
lower = cond.args[0].rhs
# Check p2 for matching conditions that can be merged
for i, arg2 in enumerate(p2args):
expr2 = arg2.expr
cond2 = arg2.cond
lower_2 = cond2.args[0].rhs
upper_2 = cond2.args[1].rhs
if cond2 == cond:
# Conditions match, join expressions
expr += expr2
# Remove matching element
del p2args[i]
# No need to check the rest
break
elif lower_2 < lower and upper_2 <= lower:
# Check if arg2 condition smaller than arg1,
# add to new_args by itself (no match expected
# in p1)
new_args.append(arg2)
del p2args[i]
break
# Checked all, add expr and cond
new_args.append((expr, cond))
# Add remaining items from p2args
new_args.extend(p2args)
# Add final (0, True)
new_args.append((0, True))
else:
new_args.append((c*b1.args[0].expr, b1.args[0].cond))
for i in range(1, n_intervals - 1):
new_args.append((
c*b1.args[i].expr + d*b2.args[i - 1].expr,
b1.args[i].cond
))
new_args.append((d*b2.args[-2].expr, b2.args[-2].cond))
new_args.append(b2.args[-1])
rv = Piecewise(*new_args)
return rv.expand()
def bspline_basis(d, knots, n, x):
"""The `n`-th B-spline at `x` of degree `d` with knots.
B-Splines are piecewise polynomials of degree `d` [1]_. They are
defined on a set of knots, which is a sequence of integers or
floats.
The 0th degree splines have a value of one on a single interval:
>>> from sympy import bspline_basis
>>> from sympy.abc import x
>>> d = 0
>>> knots = range(5)
>>> bspline_basis(d, knots, 0, x)
Piecewise((1, (x >= 0) & (x <= 1)), (0, True))
For a given ``(d, knots)`` there are ``len(knots)-d-1`` B-splines
defined, that are indexed by ``n`` (starting at 0).
Here is an example of a cubic B-spline:
>>> bspline_basis(3, range(5), 0, x)
Piecewise((x**3/6, (x >= 0) & (x <= 1)),
(-x**3/2 + 2*x**2 - 2*x + 2/3,
(x >= 1) & (x <= 2)),
(x**3/2 - 4*x**2 + 10*x - 22/3,
(x >= 2) & (x <= 3)),
(-x**3/6 + 2*x**2 - 8*x + 32/3,
(x >= 3) & (x <= 4)),
(0, True))
By repeating knot points, you can introduce discontinuities in the
B-splines and their derivatives:
>>> d = 1
>>> knots = [0, 0, 2, 3, 4]
>>> bspline_basis(d, knots, 0, x)
Piecewise((-x/2 + 1, (x >= 0) & (x <= 2)), (0, True))
It is quite time consuming to construct and evaluate B-splines. If
you need to evaluate a B-splines many times, it is best to
lambdify them first:
>>> from sympy import lambdify
>>> d = 3
>>> knots = range(10)
>>> b0 = bspline_basis(d, knots, 0, x)
>>> f = lambdify(x, b0)
>>> y = f(0.5)
See Also
========
bsplines_basis_set
References
==========
.. [1] https://en.wikipedia.org/wiki/B-spline
"""
knots = [sympify(k) for k in knots]
d = int(d)
n = int(n)
n_knots = len(knots)
n_intervals = n_knots - 1
if n + d + 1 > n_intervals:
raise ValueError('n + d + 1 must not exceed len(knots) - 1')
if d == 0:
result = Piecewise(
(S.One, Interval(knots[n], knots[n + 1]).contains(x)),
(0, True)
)
elif d > 0:
denom = knots[n + d + 1] - knots[n + 1]
if denom != S.Zero:
B = (knots[n + d + 1] - x)/denom
b2 = bspline_basis(d - 1, knots, n + 1, x)
else:
b2 = B = S.Zero
denom = knots[n + d] - knots[n]
if denom != S.Zero:
A = (x - knots[n])/denom
b1 = bspline_basis(d - 1, knots, n, x)
else:
b1 = A = S.Zero
result = _add_splines(A, b1, B, b2)
else:
raise ValueError('degree must be non-negative: %r' % n)
return result
def bspline_basis_set(d, knots, x):
"""Return the ``len(knots)-d-1`` B-splines at ``x`` of degree ``d``
with ``knots``.
This function returns a list of Piecewise polynomials that are the
``len(knots)-d-1`` B-splines of degree ``d`` for the given knots.
This function calls ``bspline_basis(d, knots, n, x)`` for different
values of ``n``.
Examples
========
>>> from sympy import bspline_basis_set
>>> from sympy.abc import x
>>> d = 2
>>> knots = range(5)
>>> splines = bspline_basis_set(d, knots, x)
>>> splines
[Piecewise((x**2/2, (x >= 0) & (x <= 1)),
(-x**2 + 3*x - 3/2, (x >= 1) & (x <= 2)),
(x**2/2 - 3*x + 9/2, (x >= 2) & (x <= 3)),
(0, True)),
Piecewise((x**2/2 - x + 1/2, (x >= 1) & (x <= 2)),
(-x**2 + 5*x - 11/2, (x >= 2) & (x <= 3)),
(x**2/2 - 4*x + 8, (x >= 3) & (x <= 4)),
(0, True))]
See Also
========
bsplines_basis
"""
n_splines = len(knots) - d - 1
return [bspline_basis(d, knots, i, x) for i in range(n_splines)]
def interpolating_spline(d, x, X, Y):
"""Return spline of degree ``d``, passing through the given ``X``
and ``Y`` values.
This function returns a piecewise function such that each part is
a polynomial of degree not greater than ``d``. The value of ``d``
must be 1 or greater and the values of ``X`` must be strictly
increasing.
Examples
========
>>> from sympy import interpolating_spline
>>> from sympy.abc import x
>>> interpolating_spline(1, x, [1, 2, 4, 7], [3, 6, 5, 7])
Piecewise((3*x, (x >= 1) & (x <= 2)),
(-x/2 + 7, (x >= 2) & (x <= 4)),
(2*x/3 + 7/3, (x >= 4) & (x <= 7)))
>>> interpolating_spline(3, x, [-2, 0, 1, 3, 4], [4, 2, 1, 1, 3])
Piecewise((-x**3/36 - x**2/36 - 17*x/18 + 2, (x >= -2) & (x <= 1)),
(5*x**3/36 - 13*x**2/36 - 11*x/18 + 7/3, (x >= 1) & (x <= 4)))
See Also
========
bsplines_basis_set, sympy.polys.specialpolys.interpolating_poly
"""
from sympy import symbols, Number, Dummy, Rational
from sympy.solvers.solveset import linsolve
from sympy.matrices.dense import Matrix
# Input sanitization
d = sympify(d)
if not(d.is_Integer and d.is_positive):
raise ValueError(
"Spline degree must be a positive integer, not %s." % d)
if len(X) != len(Y):
raise ValueError(
"Number of X and Y coordinates must be the same.")
if len(X) < d + 1:
raise ValueError(
"Degree must be less than the number of control points.")
if not all(a < b for a, b in zip(X, X[1:])):
raise ValueError(
"The x-coordinates must be strictly increasing.")
# Evaluating knots value
if d.is_odd:
j = (d + 1) // 2
interior_knots = X[j:-j]
else:
j = d // 2
interior_knots = [Rational(a + b, 2) for a, b in
zip(X[j:-j - 1], X[j + 1:-j])]
knots = [X[0]] * (d + 1) + list(interior_knots) + [X[-1]] * (d + 1)
basis = bspline_basis_set(d, knots, x)
A = [[b.subs(x, v) for b in basis] for v in X]
coeff = linsolve((Matrix(A), Matrix(Y)), symbols('c0:{}'.format(
len(X)), cls=Dummy))
coeff = list(coeff)[0]
intervals = set([c for b in basis for (e, c) in b.args
if c != True])
# Sorting the intervals
# ival contains the end-points of each interval
ival = [e.atoms(Number) for e in intervals]
ival = [list(sorted(e))[0] for e in ival]
com = zip(ival, intervals)
com = sorted(com, key=lambda x: x[0])
intervals = [y for x, y in com]
basis_dicts = [dict((c, e) for (e, c) in b.args) for b in basis]
spline = []
for i in intervals:
piece = sum([c*d.get(i, S.Zero) for (c, d) in
zip(coeff, basis_dicts)], S.Zero)
spline.append((piece, i))
return(Piecewise(*spline))
|
0c924d6f9682fe930b905f8c4c3b8f8c791b6d47c52b884d9165436ade0a5d09
|
from __future__ import print_function, division
from sympy.core.function import Function, ArgumentIndexError
from sympy.functions.special.gamma_functions import gamma, digamma
###############################################################################
############################ COMPLETE BETA FUNCTION ##########################
###############################################################################
class beta(Function):
r"""
The beta integral is called the Eulerian integral of the first kind by
Legendre:
.. math::
\mathrm{B}(x,y) := \int^{1}_{0} t^{x-1} (1-t)^{y-1} \mathrm{d}t.
Beta function or Euler's first integral is closely associated with gamma function.
The Beta function often used in probability theory and mathematical statistics.
It satisfies properties like:
.. math::
\mathrm{B}(a,1) = \frac{1}{a} \\
\mathrm{B}(a,b) = \mathrm{B}(b,a) \\
\mathrm{B}(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
Therefore for integral values of a and b:
.. math::
\mathrm{B} = \frac{(a-1)! (b-1)!}{(a+b-1)!}
Examples
========
>>> from sympy import I, pi
>>> from sympy.abc import x,y
The Beta function obeys the mirror symmetry:
>>> from sympy import beta
>>> from sympy import conjugate
>>> conjugate(beta(x,y))
beta(conjugate(x), conjugate(y))
Differentiation with respect to both x and y is supported:
>>> from sympy import beta
>>> from sympy import diff
>>> diff(beta(x,y), x)
(polygamma(0, x) - polygamma(0, x + y))*beta(x, y)
>>> from sympy import beta
>>> from sympy import diff
>>> diff(beta(x,y), y)
(polygamma(0, y) - polygamma(0, x + y))*beta(x, y)
We can numerically evaluate the gamma function to arbitrary precision
on the whole complex plane:
>>> from sympy import beta
>>> beta(pi,pi).evalf(40)
0.02671848900111377452242355235388489324562
>>> beta(1+I,1+I).evalf(20)
-0.2112723729365330143 - 0.7655283165378005676*I
See Also
========
sympy.functions.special.gamma_functions.gamma: Gamma function.
sympy.functions.special.gamma_functions.uppergamma: Upper incomplete gamma function.
sympy.functions.special.gamma_functions.lowergamma: Lower incomplete gamma function.
sympy.functions.special.gamma_functions.polygamma: Polygamma function.
sympy.functions.special.gamma_functions.loggamma: Log Gamma function.
sympy.functions.special.gamma_functions.digamma: Digamma function.
sympy.functions.special.gamma_functions.trigamma: Trigamma function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_function
.. [2] http://mathworld.wolfram.com/BetaFunction.html
.. [3] http://dlmf.nist.gov/5.12
"""
nargs = 2
unbranched = True
def fdiff(self, argindex):
x, y = self.args
if argindex == 1:
# Diff wrt x
return beta(x, y)*(digamma(x) - digamma(x + y))
elif argindex == 2:
# Diff wrt y
return beta(x, y)*(digamma(y) - digamma(x + y))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, x, y):
pass
def _eval_expand_func(self, **hints):
x, y = self.args
return gamma(x)*gamma(y) / gamma(x + y)
def _eval_is_real(self):
return self.args[0].is_real and self.args[1].is_real
def _eval_conjugate(self):
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
|
1b388d7e6a51e280039e9e590fcd06f6200ad59c029f02b4fd63360d56966f95
|
""" Riemann zeta and related function. """
from __future__ import print_function, division
from sympy.core import Function, S, sympify, pi, I
from sympy.core.function import ArgumentIndexError
from sympy.core.compatibility import range
from sympy.functions.combinatorial.numbers import bernoulli, factorial, harmonic
from sympy.functions.elementary.exponential import log, exp_polar
from sympy.functions.elementary.miscellaneous import sqrt
###############################################################################
###################### LERCH TRANSCENDENT #####################################
###############################################################################
class lerchphi(Function):
r"""
Lerch transcendent (Lerch phi function).
For :math:`\operatorname{Re}(a) > 0`, `|z| < 1` and `s \in \mathbb{C}`, the
Lerch transcendent is defined as
.. math :: \Phi(z, s, a) = \sum_{n=0}^\infty \frac{z^n}{(n + a)^s},
where the standard branch of the argument is used for :math:`n + a`,
and by analytic continuation for other values of the parameters.
A commonly used related function is the Lerch zeta function, defined by
.. math:: L(q, s, a) = \Phi(e^{2\pi i q}, s, a).
**Analytic Continuation and Branching Behavior**
It can be shown that
.. math:: \Phi(z, s, a) = z\Phi(z, s, a+1) + a^{-s}.
This provides the analytic continuation to `\operatorname{Re}(a) \le 0`.
Assume now `\operatorname{Re}(a) > 0`. The integral representation
.. math:: \Phi_0(z, s, a) = \int_0^\infty \frac{t^{s-1} e^{-at}}{1 - ze^{-t}}
\frac{\mathrm{d}t}{\Gamma(s)}
provides an analytic continuation to :math:`\mathbb{C} - [1, \infty)`.
Finally, for :math:`x \in (1, \infty)` we find
.. math:: \lim_{\epsilon \to 0^+} \Phi_0(x + i\epsilon, s, a)
-\lim_{\epsilon \to 0^+} \Phi_0(x - i\epsilon, s, a)
= \frac{2\pi i \log^{s-1}{x}}{x^a \Gamma(s)},
using the standard branch for both :math:`\log{x}` and
:math:`\log{\log{x}}` (a branch of :math:`\log{\log{x}}` is needed to
evaluate :math:`\log{x}^{s-1}`).
This concludes the analytic continuation. The Lerch transcendent is thus
branched at :math:`z \in \{0, 1, \infty\}` and
:math:`a \in \mathbb{Z}_{\le 0}`. For fixed :math:`z, a` outside these
branch points, it is an entire function of :math:`s`.
See Also
========
polylog, zeta
References
==========
.. [1] Bateman, H.; Erdelyi, A. (1953), Higher Transcendental Functions,
Vol. I, New York: McGraw-Hill. Section 1.11.
.. [2] http://dlmf.nist.gov/25.14
.. [3] https://en.wikipedia.org/wiki/Lerch_transcendent
Examples
========
The Lerch transcendent is a fairly general function, for this reason it does
not automatically evaluate to simpler functions. Use expand_func() to
achieve this.
If :math:`z=1`, the Lerch transcendent reduces to the Hurwitz zeta function:
>>> from sympy import lerchphi, expand_func
>>> from sympy.abc import z, s, a
>>> expand_func(lerchphi(1, s, a))
zeta(s, a)
More generally, if :math:`z` is a root of unity, the Lerch transcendent
reduces to a sum of Hurwitz zeta functions:
>>> expand_func(lerchphi(-1, s, a))
2**(-s)*zeta(s, a/2) - 2**(-s)*zeta(s, a/2 + 1/2)
If :math:`a=1`, the Lerch transcendent reduces to the polylogarithm:
>>> expand_func(lerchphi(z, s, 1))
polylog(s, z)/z
More generally, if :math:`a` is rational, the Lerch transcendent reduces
to a sum of polylogarithms:
>>> from sympy import S
>>> expand_func(lerchphi(z, s, S(1)/2))
2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) -
polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))
>>> expand_func(lerchphi(z, s, S(3)/2))
-2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) -
polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z
The derivatives with respect to :math:`z` and :math:`a` can be computed in
closed form:
>>> lerchphi(z, s, a).diff(z)
(-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z
>>> lerchphi(z, s, a).diff(a)
-s*lerchphi(z, s + 1, a)
"""
def _eval_expand_func(self, **hints):
from sympy import exp, I, floor, Add, Poly, Dummy, exp_polar, unpolarify
z, s, a = self.args
if z == 1:
return zeta(s, a)
if s.is_Integer and s <= 0:
t = Dummy('t')
p = Poly((t + a)**(-s), t)
start = 1/(1 - t)
res = S(0)
for c in reversed(p.all_coeffs()):
res += c*start
start = t*start.diff(t)
return res.subs(t, z)
if a.is_Rational:
# See section 18 of
# Kelly B. Roach. Hypergeometric Function Representations.
# In: Proceedings of the 1997 International Symposium on Symbolic and
# Algebraic Computation, pages 205-211, New York, 1997. ACM.
# TODO should something be polarified here?
add = S(0)
mul = S(1)
# First reduce a to the interaval (0, 1]
if a > 1:
n = floor(a)
if n == a:
n -= 1
a -= n
mul = z**(-n)
add = Add(*[-z**(k - n)/(a + k)**s for k in range(n)])
elif a <= 0:
n = floor(-a) + 1
a += n
mul = z**n
add = Add(*[z**(n - 1 - k)/(a - k - 1)**s for k in range(n)])
m, n = S([a.p, a.q])
zet = exp_polar(2*pi*I/n)
root = z**(1/n)
return add + mul*n**(s - 1)*Add(
*[polylog(s, zet**k*root)._eval_expand_func(**hints)
/ (unpolarify(zet)**k*root)**m for k in range(n)])
# TODO use minpoly instead of ad-hoc methods when issue 5888 is fixed
if isinstance(z, exp) and (z.args[0]/(pi*I)).is_Rational or z in [-1, I, -I]:
# TODO reference?
if z == -1:
p, q = S([1, 2])
elif z == I:
p, q = S([1, 4])
elif z == -I:
p, q = S([-1, 4])
else:
arg = z.args[0]/(2*pi*I)
p, q = S([arg.p, arg.q])
return Add(*[exp(2*pi*I*k*p/q)/q**s*zeta(s, (k + a)/q)
for k in range(q)])
return lerchphi(z, s, a)
def fdiff(self, argindex=1):
z, s, a = self.args
if argindex == 3:
return -s*lerchphi(z, s + 1, a)
elif argindex == 1:
return (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z
else:
raise ArgumentIndexError
def _eval_rewrite_helper(self, z, s, a, target):
res = self._eval_expand_func()
if res.has(target):
return res
else:
return self
def _eval_rewrite_as_zeta(self, z, s, a, **kwargs):
return self._eval_rewrite_helper(z, s, a, zeta)
def _eval_rewrite_as_polylog(self, z, s, a, **kwargs):
return self._eval_rewrite_helper(z, s, a, polylog)
###############################################################################
###################### POLYLOGARITHM ##########################################
###############################################################################
class polylog(Function):
r"""
Polylogarithm function.
For :math:`|z| < 1` and :math:`s \in \mathbb{C}`, the polylogarithm is
defined by
.. math:: \operatorname{Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s},
where the standard branch of the argument is used for :math:`n`. It admits
an analytic continuation which is branched at :math:`z=1` (notably not on the
sheet of initial definition), :math:`z=0` and :math:`z=\infty`.
The name polylogarithm comes from the fact that for :math:`s=1`, the
polylogarithm is related to the ordinary logarithm (see examples), and that
.. math:: \operatorname{Li}_{s+1}(z) =
\int_0^z \frac{\operatorname{Li}_s(t)}{t} \mathrm{d}t.
The polylogarithm is a special case of the Lerch transcendent:
.. math:: \operatorname{Li}_{s}(z) = z \Phi(z, s, 1)
See Also
========
zeta, lerchphi
Examples
========
For :math:`z \in \{0, 1, -1\}`, the polylogarithm is automatically expressed
using other functions:
>>> from sympy import polylog
>>> from sympy.abc import s
>>> polylog(s, 0)
0
>>> polylog(s, 1)
zeta(s)
>>> polylog(s, -1)
-dirichlet_eta(s)
If :math:`s` is a negative integer, :math:`0` or :math:`1`, the
polylogarithm can be expressed using elementary functions. This can be
done using expand_func():
>>> from sympy import expand_func
>>> from sympy.abc import z
>>> expand_func(polylog(1, z))
-log(-z + 1)
>>> expand_func(polylog(0, z))
z/(-z + 1)
The derivative with respect to :math:`z` can be computed in closed form:
>>> polylog(s, z).diff(z)
polylog(s - 1, z)/z
The polylogarithm can be expressed in terms of the lerch transcendent:
>>> from sympy import lerchphi
>>> polylog(s, z).rewrite(lerchphi)
z*lerchphi(z, s, 1)
"""
@classmethod
def eval(cls, s, z):
s, z = sympify((s, z))
if z == 1:
return zeta(s)
elif z == -1:
return -dirichlet_eta(s)
elif z == 0:
return S.Zero
elif s == 2:
if z == S.Half:
return pi**2/12 - log(2)**2/2
elif z == 2:
return pi**2/4 - I*pi*log(2)
elif z == -(sqrt(5) - 1)/2:
return -pi**2/15 + log((sqrt(5)-1)/2)**2/2
elif z == -(sqrt(5) + 1)/2:
return -pi**2/10 - log((sqrt(5)+1)/2)**2
elif z == (3 - sqrt(5))/2:
return pi**2/15 - log((sqrt(5)-1)/2)**2
elif z == (sqrt(5) - 1)/2:
return pi**2/10 - log((sqrt(5)-1)/2)**2
# For s = 0 or -1 use explicit formulas to evaluate, but
# automatically expanding polylog(1, z) to -log(1-z) seems undesirable
# for summation methods based on hypergeometric functions
elif s == 0:
return z/(1 - z)
elif s == -1:
return z/(1 - z)**2
# polylog is branched, but not over the unit disk
from sympy.functions.elementary.complexes import (Abs, unpolarify,
polar_lift)
if z.has(exp_polar, polar_lift) and (Abs(z) <= S.One) == True:
return cls(s, unpolarify(z))
def fdiff(self, argindex=1):
s, z = self.args
if argindex == 2:
return polylog(s - 1, z)/z
raise ArgumentIndexError
def _eval_rewrite_as_lerchphi(self, s, z, **kwargs):
return z*lerchphi(z, s, 1)
def _eval_expand_func(self, **hints):
from sympy import log, expand_mul, Dummy, exp_polar, I
s, z = self.args
if s == 1:
return -log(1 - z)
if s.is_Integer and s <= 0:
u = Dummy('u')
start = u/(1 - u)
for _ in range(-s):
start = u*start.diff(u)
return expand_mul(start).subs(u, z)
return polylog(s, z)
###############################################################################
###################### HURWITZ GENERALIZED ZETA FUNCTION ######################
###############################################################################
class zeta(Function):
r"""
Hurwitz zeta function (or Riemann zeta function).
For `\operatorname{Re}(a) > 0` and `\operatorname{Re}(s) > 1`, this function is defined as
.. math:: \zeta(s, a) = \sum_{n=0}^\infty \frac{1}{(n + a)^s},
where the standard choice of argument for :math:`n + a` is used. For fixed
:math:`a` with `\operatorname{Re}(a) > 0` the Hurwitz zeta function admits a
meromorphic continuation to all of :math:`\mathbb{C}`, it is an unbranched
function with a simple pole at :math:`s = 1`.
Analytic continuation to other :math:`a` is possible under some circumstances,
but this is not typically done.
The Hurwitz zeta function is a special case of the Lerch transcendent:
.. math:: \zeta(s, a) = \Phi(1, s, a).
This formula defines an analytic continuation for all possible values of
:math:`s` and :math:`a` (also `\operatorname{Re}(a) < 0`), see the documentation of
:class:`lerchphi` for a description of the branching behavior.
If no value is passed for :math:`a`, by this function assumes a default value
of :math:`a = 1`, yielding the Riemann zeta function.
See Also
========
dirichlet_eta, lerchphi, polylog
References
==========
.. [1] http://dlmf.nist.gov/25.11
.. [2] https://en.wikipedia.org/wiki/Hurwitz_zeta_function
Examples
========
For :math:`a = 1` the Hurwitz zeta function reduces to the famous Riemann
zeta function:
.. math:: \zeta(s, 1) = \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}.
>>> from sympy import zeta
>>> from sympy.abc import s
>>> zeta(s, 1)
zeta(s)
>>> zeta(s)
zeta(s)
The Riemann zeta function can also be expressed using the Dirichlet eta
function:
>>> from sympy import dirichlet_eta
>>> zeta(s).rewrite(dirichlet_eta)
dirichlet_eta(s)/(-2**(-s + 1) + 1)
The Riemann zeta function at positive even integer and negative odd integer
values is related to the Bernoulli numbers:
>>> zeta(2)
pi**2/6
>>> zeta(4)
pi**4/90
>>> zeta(-1)
-1/12
The specific formulae are:
.. math:: \zeta(2n) = (-1)^{n+1} \frac{B_{2n} (2\pi)^{2n}}{2(2n)!}
.. math:: \zeta(-n) = -\frac{B_{n+1}}{n+1}
At negative even integers the Riemann zeta function is zero:
>>> zeta(-4)
0
No closed-form expressions are known at positive odd integers, but
numerical evaluation is possible:
>>> zeta(3).n()
1.20205690315959
The derivative of :math:`\zeta(s, a)` with respect to :math:`a` is easily
computed:
>>> from sympy.abc import a
>>> zeta(s, a).diff(a)
-s*zeta(s + 1, a)
However the derivative with respect to :math:`s` has no useful closed form
expression:
>>> zeta(s, a).diff(s)
Derivative(zeta(s, a), s)
The Hurwitz zeta function can be expressed in terms of the Lerch transcendent,
:class:`sympy.functions.special.lerchphi`:
>>> from sympy import lerchphi
>>> zeta(s, a).rewrite(lerchphi)
lerchphi(1, s, a)
"""
@classmethod
def eval(cls, z, a_=None):
if a_ is None:
z, a = list(map(sympify, (z, 1)))
else:
z, a = list(map(sympify, (z, a_)))
if a.is_Number:
if a is S.NaN:
return S.NaN
elif a is S.One and a_ is not None:
return cls(z)
# TODO Should a == 0 return S.NaN as well?
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is S.Infinity:
return S.One
elif z is S.Zero:
return S.Half - a
elif z is S.One:
return S.ComplexInfinity
if z.is_integer:
if a.is_Integer:
if z.is_negative:
zeta = (-1)**z * bernoulli(-z + 1)/(-z + 1)
elif z.is_even and z.is_positive:
B, F = bernoulli(z), factorial(z)
zeta = ((-1)**(z/2+1) * 2**(z - 1) * B * pi**z) / F
else:
return
if a.is_negative:
return zeta + harmonic(abs(a), z)
else:
return zeta - harmonic(a - 1, z)
def _eval_rewrite_as_dirichlet_eta(self, s, a=1, **kwargs):
if a != 1:
return self
s = self.args[0]
return dirichlet_eta(s)/(1 - 2**(1 - s))
def _eval_rewrite_as_lerchphi(self, s, a=1, **kwargs):
return lerchphi(1, s, a)
def _eval_is_finite(self):
arg_is_one = (self.args[0] - 1).is_zero
if arg_is_one is not None:
return not arg_is_one
def fdiff(self, argindex=1):
if len(self.args) == 2:
s, a = self.args
else:
s, a = self.args + (1,)
if argindex == 2:
return -s*zeta(s + 1, a)
else:
raise ArgumentIndexError
class dirichlet_eta(Function):
r"""
Dirichlet eta function.
For `\operatorname{Re}(s) > 0`, this function is defined as
.. math:: \eta(s) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}.
It admits a unique analytic continuation to all of :math:`\mathbb{C}`.
It is an entire, unbranched function.
See Also
========
zeta
References
==========
.. [1] https://en.wikipedia.org/wiki/Dirichlet_eta_function
Examples
========
The Dirichlet eta function is closely related to the Riemann zeta function:
>>> from sympy import dirichlet_eta, zeta
>>> from sympy.abc import s
>>> dirichlet_eta(s).rewrite(zeta)
(-2**(-s + 1) + 1)*zeta(s)
"""
@classmethod
def eval(cls, s):
if s == 1:
return log(2)
z = zeta(s)
if not z.has(zeta):
return (1 - 2**(1 - s))*z
def _eval_rewrite_as_zeta(self, s, **kwargs):
return (1 - 2**(1 - s)) * zeta(s)
class stieltjes(Function):
r"""Represents Stieltjes constants, :math:`\gamma_{k}` that occur in
Laurent Series expansion of the Riemann zeta function.
Examples
========
>>> from sympy import stieltjes
>>> from sympy.abc import n, m
>>> stieltjes(n)
stieltjes(n)
zero'th stieltjes constant
>>> stieltjes(0)
EulerGamma
>>> stieltjes(0, 1)
EulerGamma
For generalized stieltjes constants
>>> stieltjes(n, m)
stieltjes(n, m)
Constants are only defined for integers >= 0
>>> stieltjes(-1)
zoo
References
==========
.. [1] https://en.wikipedia.org/wiki/Stieltjes_constants
"""
@classmethod
def eval(cls, n, a=None):
n = sympify(n)
if a != None:
a = sympify(a)
if a is S.NaN:
return S.NaN
if a.is_Integer and a.is_nonpositive:
return S.ComplexInfinity
if n.is_Number:
if n is S.NaN:
return S.NaN
elif n < 0:
return S.ComplexInfinity
elif not n.is_Integer:
return S.ComplexInfinity
elif n == 0 and a in [None, 1]:
return S.EulerGamma
|
61fd4ccbd525739b3546b8962a231d5bd071ea9e17dbe78d20b7068eacb59223
|
""" This module contains the Mathieu functions.
"""
from __future__ import print_function, division
from sympy.core import S
from sympy.core.function import Function, ArgumentIndexError
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin, cos
class MathieuBase(Function):
"""
Abstract base class for Mathieu functions.
This class is meant to reduce code duplication.
"""
unbranched = True
def _eval_conjugate(self):
a, q, z = self.args
return self.func(a.conjugate(), q.conjugate(), z.conjugate())
class mathieus(MathieuBase):
r"""
The Mathieu Sine function `S(a,q,z)`. This function is one solution
of the Mathieu differential equation:
.. math ::
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
The other solution is the Mathieu Cosine function.
Examples
========
>>> from sympy import diff, mathieus
>>> from sympy.abc import a, q, z
>>> mathieus(a, q, z)
mathieus(a, q, z)
>>> mathieus(a, 0, z)
sin(sqrt(a)*z)
>>> diff(mathieus(a, q, z), z)
mathieusprime(a, q, z)
See Also
========
mathieuc: Mathieu cosine function.
mathieusprime: Derivative of Mathieu sine function.
mathieucprime: Derivative of Mathieu cosine function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Mathieu_function
.. [2] http://dlmf.nist.gov/28
.. [3] http://mathworld.wolfram.com/MathieuBase.html
.. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuS/
"""
def fdiff(self, argindex=1):
if argindex == 3:
a, q, z = self.args
return mathieusprime(a, q, z)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, a, q, z):
if q.is_Number and q is S.Zero:
return sin(sqrt(a)*z)
# Try to pull out factors of -1
if z.could_extract_minus_sign():
return -cls(a, q, -z)
class mathieuc(MathieuBase):
r"""
The Mathieu Cosine function `C(a,q,z)`. This function is one solution
of the Mathieu differential equation:
.. math ::
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
The other solution is the Mathieu Sine function.
Examples
========
>>> from sympy import diff, mathieuc
>>> from sympy.abc import a, q, z
>>> mathieuc(a, q, z)
mathieuc(a, q, z)
>>> mathieuc(a, 0, z)
cos(sqrt(a)*z)
>>> diff(mathieuc(a, q, z), z)
mathieucprime(a, q, z)
See Also
========
mathieus: Mathieu sine function
mathieusprime: Derivative of Mathieu sine function
mathieucprime: Derivative of Mathieu cosine function
References
==========
.. [1] https://en.wikipedia.org/wiki/Mathieu_function
.. [2] http://dlmf.nist.gov/28
.. [3] http://mathworld.wolfram.com/MathieuBase.html
.. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuC/
"""
def fdiff(self, argindex=1):
if argindex == 3:
a, q, z = self.args
return mathieucprime(a, q, z)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, a, q, z):
if q.is_Number and q is S.Zero:
return cos(sqrt(a)*z)
# Try to pull out factors of -1
if z.could_extract_minus_sign():
return cls(a, q, -z)
class mathieusprime(MathieuBase):
r"""
The derivative `S^{\prime}(a,q,z)` of the Mathieu Sine function.
This function is one solution of the Mathieu differential equation:
.. math ::
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
The other solution is the Mathieu Cosine function.
Examples
========
>>> from sympy import diff, mathieusprime
>>> from sympy.abc import a, q, z
>>> mathieusprime(a, q, z)
mathieusprime(a, q, z)
>>> mathieusprime(a, 0, z)
sqrt(a)*cos(sqrt(a)*z)
>>> diff(mathieusprime(a, q, z), z)
(-a + 2*q*cos(2*z))*mathieus(a, q, z)
See Also
========
mathieus: Mathieu sine function
mathieuc: Mathieu cosine function
mathieucprime: Derivative of Mathieu cosine function
References
==========
.. [1] https://en.wikipedia.org/wiki/Mathieu_function
.. [2] http://dlmf.nist.gov/28
.. [3] http://mathworld.wolfram.com/MathieuBase.html
.. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuSPrime/
"""
def fdiff(self, argindex=1):
if argindex == 3:
a, q, z = self.args
return (2*q*cos(2*z) - a)*mathieus(a, q, z)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, a, q, z):
if q.is_Number and q is S.Zero:
return sqrt(a)*cos(sqrt(a)*z)
# Try to pull out factors of -1
if z.could_extract_minus_sign():
return cls(a, q, -z)
class mathieucprime(MathieuBase):
r"""
The derivative `C^{\prime}(a,q,z)` of the Mathieu Cosine function.
This function is one solution of the Mathieu differential equation:
.. math ::
y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0
The other solution is the Mathieu Sine function.
Examples
========
>>> from sympy import diff, mathieucprime
>>> from sympy.abc import a, q, z
>>> mathieucprime(a, q, z)
mathieucprime(a, q, z)
>>> mathieucprime(a, 0, z)
-sqrt(a)*sin(sqrt(a)*z)
>>> diff(mathieucprime(a, q, z), z)
(-a + 2*q*cos(2*z))*mathieuc(a, q, z)
See Also
========
mathieus: Mathieu sine function
mathieuc: Mathieu cosine function
mathieusprime: Derivative of Mathieu sine function
References
==========
.. [1] https://en.wikipedia.org/wiki/Mathieu_function
.. [2] http://dlmf.nist.gov/28
.. [3] http://mathworld.wolfram.com/MathieuBase.html
.. [4] http://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuCPrime/
"""
def fdiff(self, argindex=1):
if argindex == 3:
a, q, z = self.args
return (2*q*cos(2*z) - a)*mathieuc(a, q, z)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, a, q, z):
if q.is_Number and q is S.Zero:
return -sqrt(a)*sin(sqrt(a)*z)
# Try to pull out factors of -1
if z.could_extract_minus_sign():
return -cls(a, q, -z)
|
be0c2657dd397e8b70a6f46f4d00955a1d18da01de6d1968898f241760636f9e
|
from __future__ import print_function, division
from functools import wraps
from sympy import S, pi, I, Rational, Wild, cacheit, sympify
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.power import Pow
from sympy.core.compatibility import range
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.trigonometric import sin, cos, csc, cot
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import sqrt, root
from sympy.functions.elementary.complexes import re, im
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper
from sympy.polys.orthopolys import spherical_bessel_fn as fn
# TODO
# o Scorer functions G1 and G2
# o Asymptotic expansions
# These are possible, e.g. for fixed order, but since the bessel type
# functions are oscillatory they are not actually tractable at
# infinity, so this is not particularly useful right now.
# o Series Expansions for functions of the second kind about zero
# o Nicer series expansions.
# o More rewriting.
# o Add solvers to ode.py (or rather add solvers for the hypergeometric equation).
class BesselBase(Function):
"""
Abstract base class for bessel-type functions.
This class is meant to reduce code duplication.
All Bessel type functions can 1) be differentiated, and the derivatives
expressed in terms of similar functions and 2) be rewritten in terms
of other bessel-type functions.
Here "bessel-type functions" are assumed to have one complex parameter.
To use this base class, define class attributes ``_a`` and ``_b`` such that
``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``.
"""
@property
def order(self):
""" The order of the bessel-type function. """
return self.args[0]
@property
def argument(self):
""" The argument of the bessel-type function. """
return self.args[1]
@classmethod
def eval(cls, nu, z):
return
def fdiff(self, argindex=2):
if argindex != 2:
raise ArgumentIndexError(self, argindex)
return (self._b/2 * self.__class__(self.order - 1, self.argument) -
self._a/2 * self.__class__(self.order + 1, self.argument))
def _eval_conjugate(self):
z = self.argument
if (z.is_real and z.is_negative) is False:
return self.__class__(self.order.conjugate(), z.conjugate())
def _eval_expand_func(self, **hints):
nu, z, f = self.order, self.argument, self.__class__
if nu.is_real:
if (nu - 1).is_positive:
return (-self._a*self._b*f(nu - 2, z)._eval_expand_func() +
2*self._a*(nu - 1)*f(nu - 1, z)._eval_expand_func()/z)
elif (nu + 1).is_negative:
return (2*self._b*(nu + 1)*f(nu + 1, z)._eval_expand_func()/z -
self._a*self._b*f(nu + 2, z)._eval_expand_func())
return self
def _eval_simplify(self, ratio, measure, rational, inverse):
from sympy.simplify.simplify import besselsimp
return besselsimp(self)
class besselj(BesselBase):
r"""
Bessel function of the first kind.
The Bessel `J` function of order `\nu` is defined to be the function
satisfying Bessel's differential equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0,
with Laurent expansion
.. math ::
J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right),
if :math:`\nu` is not a negative integer. If :math:`\nu=-n \in \mathbb{Z}_{<0}`
*is* a negative integer, then the definition is
.. math ::
J_{-n}(z) = (-1)^n J_n(z).
Examples
========
Create a Bessel function object:
>>> from sympy import besselj, jn
>>> from sympy.abc import z, n
>>> b = besselj(n, z)
Differentiate it:
>>> b.diff(z)
besselj(n - 1, z)/2 - besselj(n + 1, z)/2
Rewrite in terms of spherical Bessel functions:
>>> b.rewrite(jn)
sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)
Access the parameter and argument:
>>> b.order
n
>>> b.argument
z
See Also
========
bessely, besseli, besselk
References
==========
.. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9",
Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables
.. [2] Luke, Y. L. (1969), The Special Functions and Their
Approximations, Volume 1
.. [3] https://en.wikipedia.org/wiki/Bessel_function
.. [4] http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/
"""
_a = S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.One
elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive:
return S.Zero
elif re(nu).is_negative and not (nu.is_integer is True):
return S.ComplexInfinity
elif nu.is_imaginary:
return S.NaN
if z is S.Infinity or (z is S.NegativeInfinity):
return S.Zero
if z.could_extract_minus_sign():
return (z)**nu*(-z)**(-nu)*besselj(nu, -z)
if nu.is_integer:
if nu.could_extract_minus_sign():
return S(-1)**(-nu)*besselj(-nu, z)
newz = z.extract_multiplicatively(I)
if newz: # NOTE we don't want to change the function if z==0
return I**(nu)*besseli(nu, newz)
# branch handling:
from sympy import unpolarify, exp
if nu.is_integer:
newz = unpolarify(z)
if newz != z:
return besselj(nu, newz)
else:
newz, n = z.extract_branch_factor()
if n != 0:
return exp(2*n*pi*nu*I)*besselj(nu, newz)
nnu = unpolarify(nu)
if nu != nnu:
return besselj(nnu, z)
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
from sympy import polar_lift, exp
return exp(I*pi*nu/2)*besseli(nu, polar_lift(-I)*z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
if nu.is_integer is False:
return csc(pi*nu)*bessely(-nu, z) - cot(pi*nu)*bessely(nu, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return sqrt(2*z/pi)*jn(nu - S.Half, self.argument)
def _eval_is_real(self):
nu, z = self.args
if nu.is_integer and z.is_real:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_J(self.args[0]._sage_(), self.args[1]._sage_())
class bessely(BesselBase):
r"""
Bessel function of the second kind.
The Bessel `Y` function of order `\nu` is defined as
.. math ::
Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu)
- J_{-\mu}(z)}{\sin(\pi \mu)},
where :math:`J_\mu(z)` is the Bessel function of the first kind.
It is a solution to Bessel's equation, and linearly independent from
:math:`J_\nu`.
Examples
========
>>> from sympy import bessely, yn
>>> from sympy.abc import z, n
>>> b = bessely(n, z)
>>> b.diff(z)
bessely(n - 1, z)/2 - bessely(n + 1, z)/2
>>> b.rewrite(yn)
sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)
See Also
========
besselj, besseli, besselk
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/
"""
_a = S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.NegativeInfinity
elif re(nu).is_zero is False:
return S.ComplexInfinity
elif re(nu).is_zero:
return S.NaN
if z is S.Infinity or z is S.NegativeInfinity:
return S.Zero
if nu.is_integer:
if nu.could_extract_minus_sign():
return S(-1)**(-nu)*bessely(-nu, z)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
if nu.is_integer is False:
return csc(pi*nu)*(cos(pi*nu)*besselj(nu, z) - besselj(-nu, z))
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(besseli)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
return sqrt(2*z/pi) * yn(nu - S.Half, self.argument)
def _eval_is_real(self):
nu, z = self.args
if nu.is_integer and z.is_positive:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_Y(self.args[0]._sage_(), self.args[1]._sage_())
class besseli(BesselBase):
r"""
Modified Bessel function of the first kind.
The Bessel I function is a solution to the modified Bessel equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.
It can be defined as
.. math ::
I_\nu(z) = i^{-\nu} J_\nu(iz),
where :math:`J_\nu(z)` is the Bessel function of the first kind.
Examples
========
>>> from sympy import besseli
>>> from sympy.abc import z, n
>>> besseli(n, z).diff(z)
besseli(n - 1, z)/2 + besseli(n + 1, z)/2
See Also
========
besselj, bessely, besselk
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/
"""
_a = -S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.One
elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive:
return S.Zero
elif re(nu).is_negative and not (nu.is_integer is True):
return S.ComplexInfinity
elif nu.is_imaginary:
return S.NaN
if z.is_imaginary:
if im(z) is S.Infinity or im(z) is S.NegativeInfinity:
return S.Zero
if z.could_extract_minus_sign():
return (z)**nu*(-z)**(-nu)*besseli(nu, -z)
if nu.is_integer:
if nu.could_extract_minus_sign():
return besseli(-nu, z)
newz = z.extract_multiplicatively(I)
if newz: # NOTE we don't want to change the function if z==0
return I**(-nu)*besselj(nu, -newz)
# branch handling:
from sympy import unpolarify, exp
if nu.is_integer:
newz = unpolarify(z)
if newz != z:
return besseli(nu, newz)
else:
newz, n = z.extract_branch_factor()
if n != 0:
return exp(2*n*pi*nu*I)*besseli(nu, newz)
nnu = unpolarify(nu)
if nu != nnu:
return besseli(nnu, z)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
from sympy import polar_lift, exp
return exp(-I*pi*nu/2)*besselj(nu, polar_lift(I)*z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(bessely)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return self._eval_rewrite_as_besselj(*self.args).rewrite(jn)
def _eval_is_real(self):
nu, z = self.args
if nu.is_integer and z.is_real:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_I(self.args[0]._sage_(), self.args[1]._sage_())
class besselk(BesselBase):
r"""
Modified Bessel function of the second kind.
The Bessel K function of order :math:`\nu` is defined as
.. math ::
K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2}
\frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)},
where :math:`I_\mu(z)` is the modified Bessel function of the first kind.
It is a solution of the modified Bessel equation, and linearly independent
from :math:`Y_\nu`.
Examples
========
>>> from sympy import besselk
>>> from sympy.abc import z, n
>>> besselk(n, z).diff(z)
-besselk(n - 1, z)/2 - besselk(n + 1, z)/2
See Also
========
besselj, besseli, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/
"""
_a = S.One
_b = -S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.Infinity
elif re(nu).is_zero is False:
return S.ComplexInfinity
elif re(nu).is_zero:
return S.NaN
if z.is_imaginary:
if im(z) is S.Infinity or im(z) is S.NegativeInfinity:
return S.Zero
if nu.is_integer:
if nu.could_extract_minus_sign():
return besselk(-nu, z)
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
if nu.is_integer is False:
return pi*csc(pi*nu)*(besseli(-nu, z) - besseli(nu, z))/2
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
ai = self._eval_rewrite_as_besseli(*self.args)
if ai:
return ai.rewrite(besselj)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(bessely)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
ay = self._eval_rewrite_as_bessely(*self.args)
if ay:
return ay.rewrite(yn)
def _eval_is_real(self):
nu, z = self.args
if nu.is_integer and z.is_positive:
return True
def _sage_(self):
import sage.all as sage
return sage.bessel_K(self.args[0]._sage_(), self.args[1]._sage_())
class hankel1(BesselBase):
r"""
Hankel function of the first kind.
This function is defined as
.. math ::
H_\nu^{(1)} = J_\nu(z) + iY_\nu(z),
where :math:`J_\nu(z)` is the Bessel function of the first kind, and
:math:`Y_\nu(z)` is the Bessel function of the second kind.
It is a solution to Bessel's equation.
Examples
========
>>> from sympy import hankel1
>>> from sympy.abc import z, n
>>> hankel1(n, z).diff(z)
hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
See Also
========
hankel2, besselj, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/
"""
_a = S.One
_b = S.One
def _eval_conjugate(self):
z = self.argument
if (z.is_real and z.is_negative) is False:
return hankel2(self.order.conjugate(), z.conjugate())
class hankel2(BesselBase):
r"""
Hankel function of the second kind.
This function is defined as
.. math ::
H_\nu^{(2)} = J_\nu(z) - iY_\nu(z),
where :math:`J_\nu(z)` is the Bessel function of the first kind, and
:math:`Y_\nu(z)` is the Bessel function of the second kind.
It is a solution to Bessel's equation, and linearly independent from
:math:`H_\nu^{(1)}`.
Examples
========
>>> from sympy import hankel2
>>> from sympy.abc import z, n
>>> hankel2(n, z).diff(z)
hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
See Also
========
hankel1, besselj, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/
"""
_a = S.One
_b = S.One
def _eval_conjugate(self):
z = self.argument
if (z.is_real and z.is_negative) is False:
return hankel1(self.order.conjugate(), z.conjugate())
def assume_integer_order(fn):
@wraps(fn)
def g(self, nu, z):
if nu.is_integer:
return fn(self, nu, z)
return g
class SphericalBesselBase(BesselBase):
"""
Base class for spherical Bessel functions.
These are thin wrappers around ordinary Bessel functions,
since spherical Bessel functions differ from the ordinary
ones just by a slight change in order.
To use this class, define the ``_rewrite`` and ``_expand`` methods.
"""
def _expand(self, **hints):
""" Expand self into a polynomial. Nu is guaranteed to be Integer. """
raise NotImplementedError('expansion')
def _rewrite(self):
""" Rewrite self in terms of ordinary Bessel functions. """
raise NotImplementedError('rewriting')
def _eval_expand_func(self, **hints):
if self.order.is_Integer:
return self._expand(**hints)
return self
def _eval_evalf(self, prec):
if self.order.is_Integer:
return self._rewrite()._eval_evalf(prec)
def fdiff(self, argindex=2):
if argindex != 2:
raise ArgumentIndexError(self, argindex)
return self.__class__(self.order - 1, self.argument) - \
self * (self.order + 1)/self.argument
def _jn(n, z):
return fn(n, z)*sin(z) + (-1)**(n + 1)*fn(-n - 1, z)*cos(z)
def _yn(n, z):
# (-1)**(n + 1) * _jn(-n - 1, z)
return (-1)**(n + 1) * fn(-n - 1, z)*sin(z) - fn(n, z)*cos(z)
class jn(SphericalBesselBase):
r"""
Spherical Bessel function of the first kind.
This function is a solution to the spherical Bessel equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.
It can be defined as
.. math ::
j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),
where :math:`J_\nu(z)` is the Bessel function of the first kind.
The spherical Bessel functions of integral order are
calculated using the formula:
.. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},
where the coefficients :math:`f_n(z)` are available as
:func:`polys.orthopolys.spherical_bessel_fn`.
Examples
========
>>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely
>>> from sympy import simplify
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(jn(0, z)))
sin(z)/z
>>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
True
>>> expand_func(jn(3, z))
(-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
>>> jn(nu, z).rewrite(besselj)
sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
>>> jn(nu, z).rewrite(bessely)
(-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
>>> jn(2, 5.2+0.3j).evalf(20)
0.099419756723640344491 - 0.054525080242173562897*I
See Also
========
besselj, bessely, besselk, yn
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
def _rewrite(self):
return self._eval_rewrite_as_besselj(self.order, self.argument)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
return sqrt(pi/(2*z)) * besselj(nu + S.Half, z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
return (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
return (-1)**(nu) * yn(-nu - 1, z)
def _expand(self, **hints):
return _jn(self.order, self.argument)
class yn(SphericalBesselBase):
r"""
Spherical Bessel function of the second kind.
This function is another solution to the spherical Bessel equation, and
linearly independent from :math:`j_n`. It can be defined as
.. math ::
y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),
where :math:`Y_\nu(z)` is the Bessel function of the second kind.
For integral orders :math:`n`, :math:`y_n` is calculated using the formula:
.. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(yn(0, z)))
-cos(z)/z
>>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z
True
>>> yn(nu, z).rewrite(besselj)
(-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
>>> yn(nu, z).rewrite(bessely)
sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
>>> yn(2, 5.2+0.3j).evalf(20)
0.18525034196069722536 + 0.014895573969924817587*I
See Also
========
besselj, bessely, besselk, jn
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
def _rewrite(self):
return self._eval_rewrite_as_bessely(self.order, self.argument)
@assume_integer_order
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
return (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z)
@assume_integer_order
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
return sqrt(pi/(2*z)) * bessely(nu + S.Half, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return (-1)**(nu + 1) * jn(-nu - 1, z)
def _expand(self, **hints):
return _yn(self.order, self.argument)
class SphericalHankelBase(SphericalBesselBase):
def _rewrite(self):
return self._eval_rewrite_as_besselj(self.order, self.argument)
@assume_integer_order
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
# jn +- I*yn
# jn as beeselj: sqrt(pi/(2*z)) * besselj(nu + S.Half, z)
# yn as besselj: (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z)
hks = self._hankel_kind_sign
return sqrt(pi/(2*z))*(besselj(nu + S.Half, z) +
hks*I*(-1)**(nu+1)*besselj(-nu - S.Half, z))
@assume_integer_order
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
# jn +- I*yn
# jn as bessely: (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z)
# yn as bessely: sqrt(pi/(2*z)) * bessely(nu + S.Half, z)
hks = self._hankel_kind_sign
return sqrt(pi/(2*z))*((-1)**nu*bessely(-nu - S.Half, z) +
hks*I*bessely(nu + S.Half, z))
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
hks = self._hankel_kind_sign
return jn(nu, z).rewrite(yn) + hks*I*yn(nu, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
hks = self._hankel_kind_sign
return jn(nu, z) + hks*I*yn(nu, z).rewrite(jn)
def _eval_expand_func(self, **hints):
if self.order.is_Integer:
return self._expand(**hints)
else:
nu = self.order
z = self.argument
hks = self._hankel_kind_sign
return jn(nu, z) + hks*I*yn(nu, z)
def _expand(self, **hints):
n = self.order
z = self.argument
hks = self._hankel_kind_sign
# fully expanded version
# return ((fn(n, z) * sin(z) +
# (-1)**(n + 1) * fn(-n - 1, z) * cos(z)) + # jn
# (hks * I * (-1)**(n + 1) *
# (fn(-n - 1, z) * hk * I * sin(z) +
# (-1)**(-n) * fn(n, z) * I * cos(z))) # +-I*yn
# )
return (_jn(n, z) + hks*I*_yn(n, z)).expand()
class hn1(SphericalHankelBase):
r"""
Spherical Hankel function of the first kind.
This function is defined as
.. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z),
where :math:`j_\nu(z)` and :math:`y_\nu(z)` are the spherical
Bessel function of the first and second kinds.
For integral orders :math:`n`, :math:`h_n^(1)` is calculated using the formula:
.. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(hn1(nu, z)))
jn(nu, z) + I*yn(nu, z)
>>> print(expand_func(hn1(0, z)))
sin(z)/z - I*cos(z)/z
>>> print(expand_func(hn1(1, z)))
-I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2
>>> hn1(nu, z).rewrite(jn)
(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
>>> hn1(nu, z).rewrite(yn)
(-1)**nu*yn(-nu - 1, z) + I*yn(nu, z)
>>> hn1(nu, z).rewrite(hankel1)
sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2
See Also
========
hn2, jn, yn, hankel1, hankel2
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
_hankel_kind_sign = S.One
@assume_integer_order
def _eval_rewrite_as_hankel1(self, nu, z, **kwargs):
return sqrt(pi/(2*z))*hankel1(nu, z)
class hn2(SphericalHankelBase):
r"""
Spherical Hankel function of the second kind.
This function is defined as
.. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z),
where :math:`j_\nu(z)` and :math:`y_\nu(z)` are the spherical
Bessel function of the first and second kinds.
For integral orders :math:`n`, :math:`h_n^(2)` is calculated using the formula:
.. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(hn2(nu, z)))
jn(nu, z) - I*yn(nu, z)
>>> print(expand_func(hn2(0, z)))
sin(z)/z + I*cos(z)/z
>>> print(expand_func(hn2(1, z)))
I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2
>>> hn2(nu, z).rewrite(hankel2)
sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2
>>> hn2(nu, z).rewrite(jn)
-(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
>>> hn2(nu, z).rewrite(yn)
(-1)**nu*yn(-nu - 1, z) - I*yn(nu, z)
See Also
========
hn1, jn, yn, hankel1, hankel2
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
_hankel_kind_sign = -S.One
@assume_integer_order
def _eval_rewrite_as_hankel2(self, nu, z, **kwargs):
return sqrt(pi/(2*z))*hankel2(nu, z)
def jn_zeros(n, k, method="sympy", dps=15):
"""
Zeros of the spherical Bessel function of the first kind.
This returns an array of zeros of jn up to the k-th zero.
* method = "sympy": uses :func:`mpmath.besseljzero`
* method = "scipy": uses the
`SciPy's sph_jn <http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_
and
`newton <http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_
to find all
roots, which is faster than computing the zeros using a general
numerical solver, but it requires SciPy and only works with low
precision floating point numbers. [The function used with
method="sympy" is a recent addition to mpmath, before that a general
solver was used.]
Examples
========
>>> from sympy import jn_zeros
>>> jn_zeros(2, 4, dps=5)
[5.7635, 9.095, 12.323, 15.515]
See Also
========
jn, yn, besselj, besselk, bessely
"""
from math import pi
if method == "sympy":
from mpmath import besseljzero
from mpmath.libmp.libmpf import dps_to_prec
from sympy import Expr
prec = dps_to_prec(dps)
return [Expr._from_mpmath(besseljzero(S(n + 0.5)._to_mpmath(prec),
int(l)), prec)
for l in range(1, k + 1)]
elif method == "scipy":
from scipy.optimize import newton
try:
from scipy.special import spherical_jn
f = lambda x: spherical_jn(n, x)
except ImportError:
from scipy.special import sph_jn
f = lambda x: sph_jn(n, x)[0][-1]
else:
raise NotImplementedError("Unknown method.")
def solver(f, x):
if method == "scipy":
root = newton(f, x)
else:
raise NotImplementedError("Unknown method.")
return root
# we need to approximate the position of the first root:
root = n + pi
# determine the first root exactly:
root = solver(f, root)
roots = [root]
for i in range(k - 1):
# estimate the position of the next root using the last root + pi:
root = solver(f, root + pi)
roots.append(root)
return roots
class AiryBase(Function):
"""
Abstract base class for Airy functions.
This class is meant to reduce code duplication.
"""
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
return self.args[0].is_real
def _as_real_imag(self, deep=True, **hints):
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (re, im)
def as_real_imag(self, deep=True, **hints):
x, y = self._as_real_imag(deep=deep, **hints)
sq = -y**2/x**2
re = S.Half*(self.func(x+x*sqrt(sq))+self.func(x-x*sqrt(sq)))
im = x/(2*y) * sqrt(sq) * (self.func(x-x*sqrt(sq)) - self.func(x+x*sqrt(sq)))
return (re, im)
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
class airyai(AiryBase):
r"""
The Airy function `\operatorname{Ai}` of the first kind.
The Airy function `\operatorname{Ai}(z)` is defined to be the function
satisfying Airy's differential equation
.. math::
\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.
Equivalently, for real `z`
.. math::
\operatorname{Ai}(z) := \frac{1}{\pi}
\int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.
Examples
========
Create an Airy function object:
>>> from sympy import airyai
>>> from sympy.abc import z
>>> airyai(z)
airyai(z)
Several special values are known:
>>> airyai(0)
3**(1/3)/(3*gamma(2/3))
>>> from sympy import oo
>>> airyai(oo)
0
>>> airyai(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airyai(z))
airyai(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(airyai(z), z)
airyaiprime(z)
>>> diff(airyai(z), z, 2)
z*airyai(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airyai(z), z, 0, 3)
3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airyai(-2).evalf(50)
0.22740742820168557599192443603787379946077222541710
Rewrite Ai(z) in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airyai(z).rewrite(hyper)
-3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
See Also
========
airybi: Airy function of the second kind.
airyaiprime: Derivative of the Airy function of the first kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.Zero:
return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return airyaiprime(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return ((3**(S(1)/3)*x)**(-n)*(3**(S(1)/3)*x)**(n + 1)*sin(pi*(2*n/3 + S(4)/3))*factorial(n) *
gamma(n/3 + S(2)/3)/(sin(pi*(2*n/3 + S(2)/3))*factorial(n + 1)*gamma(n/3 + S(1)/3)) * p)
else:
return (S.One/(3**(S(2)/3)*pi) * gamma((n+S.One)/S(3)) * sin(2*pi*(n+S.One)/S(3)) /
factorial(n) * (root(3, 3)*x)**n)
def _eval_rewrite_as_besselj(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return ot*sqrt(-z) * (besselj(-ot, tt*a) + besselj(ot, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(z, Rational(3, 2))
if re(z).is_positive:
return ot*sqrt(z) * (besseli(-ot, tt*a) - besseli(ot, tt*a))
else:
return ot*(Pow(a, ot)*besseli(-ot, tt*a) - z*Pow(a, -ot)*besseli(ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = S.One / (3**(S(2)/3)*gamma(S(2)/3))
pf2 = z / (root(3, 3)*gamma(S(1)/3))
return pf1 * hyper([], [S(2)/3], z**3/9) - pf2 * hyper([], [S(4)/3], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is given by 03.05.16.0001.01
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryAi/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d * z**n)**m / (d**m * z**(m*n))
newarg = c * d**m * z**(m*n)
return S.Half * ((pf + S.One)*airyai(newarg) - (pf - S.One)/sqrt(3)*airybi(newarg))
class airybi(AiryBase):
r"""
The Airy function `\operatorname{Bi}` of the second kind.
The Airy function `\operatorname{Bi}(z)` is defined to be the function
satisfying Airy's differential equation
.. math::
\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.
Equivalently, for real `z`
.. math::
\operatorname{Bi}(z) := \frac{1}{\pi}
\int_0^\infty
\exp\left(-\frac{t^3}{3} + z t\right)
+ \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.
Examples
========
Create an Airy function object:
>>> from sympy import airybi
>>> from sympy.abc import z
>>> airybi(z)
airybi(z)
Several special values are known:
>>> airybi(0)
3**(5/6)/(3*gamma(2/3))
>>> from sympy import oo
>>> airybi(oo)
oo
>>> airybi(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airybi(z))
airybi(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(airybi(z), z)
airybiprime(z)
>>> diff(airybi(z), z, 2)
z*airybi(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airybi(z), z, 0, 3)
3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airybi(-2).evalf(50)
-0.41230258795639848808323405461146104203453483447240
Rewrite Bi(z) in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airybi(z).rewrite(hyper)
3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
See Also
========
airyai: Airy function of the first kind.
airyaiprime: Derivative of the Airy function of the first kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.Zero:
return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return airybiprime(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return (3**(S(1)/3)*x * Abs(sin(2*pi*(n + S.One)/S(3))) * factorial((n - S.One)/S(3)) /
((n + S.One) * Abs(cos(2*pi*(n + S.Half)/S(3))) * factorial((n - 2)/S(3))) * p)
else:
return (S.One/(root(3, 6)*pi) * gamma((n + S.One)/S(3)) * Abs(sin(2*pi*(n + S.One)/S(3))) /
factorial(n) * (root(3, 3)*x)**n)
def _eval_rewrite_as_besselj(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return sqrt(-z/3) * (besselj(-ot, tt*a) - besselj(ot, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(z, Rational(3, 2))
if re(z).is_positive:
return sqrt(z)/sqrt(3) * (besseli(-ot, tt*a) + besseli(ot, tt*a))
else:
b = Pow(a, ot)
c = Pow(a, -ot)
return sqrt(ot)*(b*besseli(-ot, tt*a) + z*c*besseli(ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = S.One / (root(3, 6)*gamma(S(2)/3))
pf2 = z*root(3, 6) / gamma(S(1)/3)
return pf1 * hyper([], [S(2)/3], z**3/9) + pf2 * hyper([], [S(4)/3], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is given by 03.06.16.0001.01
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryBi/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d * z**n)**m / (d**m * z**(m*n))
newarg = c * d**m * z**(m*n)
return S.Half * (sqrt(3)*(S.One - pf)*airyai(newarg) + (S.One + pf)*airybi(newarg))
class airyaiprime(AiryBase):
r"""
The derivative `\operatorname{Ai}^\prime` of the Airy function of the first kind.
The Airy function `\operatorname{Ai}^\prime(z)` is defined to be the function
.. math::
\operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}.
Examples
========
Create an Airy function object:
>>> from sympy import airyaiprime
>>> from sympy.abc import z
>>> airyaiprime(z)
airyaiprime(z)
Several special values are known:
>>> airyaiprime(0)
-3**(2/3)/(3*gamma(1/3))
>>> from sympy import oo
>>> airyaiprime(oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airyaiprime(z))
airyaiprime(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(airyaiprime(z), z)
z*airyai(z)
>>> diff(airyaiprime(z), z, 2)
z*airyaiprime(z) + airyai(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airyaiprime(z), z, 0, 3)
-3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airyaiprime(-2).evalf(50)
0.61825902074169104140626429133247528291577794512415
Rewrite Ai'(z) in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airyaiprime(z).rewrite(hyper)
3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))
See Also
========
airyai: Airy function of the first kind.
airybi: Airy function of the second kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.Zero:
return -S.One / (3**Rational(1, 3) * gamma(Rational(1, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return self.args[0]*airyai(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
z = self.args[0]._to_mpmath(prec)
with workprec(prec):
res = mp.airyai(z, derivative=1)
return Expr._from_mpmath(res, prec)
def _eval_rewrite_as_besselj(self, z, **kwargs):
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return z/3 * (besselj(-tt, tt*a) - besselj(tt, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = tt * Pow(z, Rational(3, 2))
if re(z).is_positive:
return z/3 * (besseli(tt, a) - besseli(-tt, a))
else:
a = Pow(z, Rational(3, 2))
b = Pow(a, tt)
c = Pow(a, -tt)
return ot * (z**2*c*besseli(tt, tt*a) - b*besseli(-ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = z**2 / (2*3**(S(2)/3)*gamma(S(2)/3))
pf2 = 1 / (root(3, 3)*gamma(S(1)/3))
return pf1 * hyper([], [S(5)/3], z**3/9) - pf2 * hyper([], [S(1)/3], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is in principle
# given by 03.07.16.0001.01 but note
# that there is an error in this formula.
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryAiPrime/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d**m * z**(n*m)) / (d * z**n)**m
newarg = c * d**m * z**(n*m)
return S.Half * ((pf + S.One)*airyaiprime(newarg) + (pf - S.One)/sqrt(3)*airybiprime(newarg))
class airybiprime(AiryBase):
r"""
The derivative `\operatorname{Bi}^\prime` of the Airy function of the first kind.
The Airy function `\operatorname{Bi}^\prime(z)` is defined to be the function
.. math::
\operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}.
Examples
========
Create an Airy function object:
>>> from sympy import airybiprime
>>> from sympy.abc import z
>>> airybiprime(z)
airybiprime(z)
Several special values are known:
>>> airybiprime(0)
3**(1/6)/gamma(1/3)
>>> from sympy import oo
>>> airybiprime(oo)
oo
>>> airybiprime(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airybiprime(z))
airybiprime(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(airybiprime(z), z)
z*airybi(z)
>>> diff(airybiprime(z), z, 2)
z*airybiprime(z) + airybi(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airybiprime(z), z, 0, 3)
3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airybiprime(-2).evalf(50)
0.27879516692116952268509756941098324140300059345163
Rewrite Bi'(z) in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airybiprime(z).rewrite(hyper)
3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)
See Also
========
airyai: Airy function of the first kind.
airybi: Airy function of the second kind.
airyaiprime: Derivative of the Airy function of the first kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.Zero:
return 3**Rational(1, 6) / gamma(Rational(1, 3))
def fdiff(self, argindex=1):
if argindex == 1:
return self.args[0]*airybi(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
from mpmath import mp, workprec
from sympy import Expr
z = self.args[0]._to_mpmath(prec)
with workprec(prec):
res = mp.airybi(z, derivative=1)
return Expr._from_mpmath(res, prec)
def _eval_rewrite_as_besselj(self, z, **kwargs):
tt = Rational(2, 3)
a = tt * Pow(-z, Rational(3, 2))
if re(z).is_negative:
return -z/sqrt(3) * (besselj(-tt, a) + besselj(tt, a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = tt * Pow(z, Rational(3, 2))
if re(z).is_positive:
return z/sqrt(3) * (besseli(-tt, a) + besseli(tt, a))
else:
a = Pow(z, Rational(3, 2))
b = Pow(a, tt)
c = Pow(a, -tt)
return sqrt(ot) * (b*besseli(-tt, tt*a) + z**2*c*besseli(tt, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = z**2 / (2*root(3, 6)*gamma(S(2)/3))
pf2 = root(3, 6) / gamma(S(1)/3)
return pf1 * hyper([], [S(5)/3], z**3/9) + pf2 * hyper([], [S(1)/3], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is in principle
# given by 03.08.16.0001.01 but note
# that there is an error in this formula.
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryBiPrime/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d**m * z**(n*m)) / (d * z**n)**m
newarg = c * d**m * z**(n*m)
return S.Half * (sqrt(3)*(pf - S.One)*airyaiprime(newarg) + (pf + S.One)*airybiprime(newarg))
|
286b7db8bf68a72287f33739ad71523514ee592218f87f8a4f8490d904b6d2b1
|
from __future__ import print_function, division
from sympy.core.function import Function
from sympy.core import S, Integer
from sympy.core.mul import prod
from sympy.core.logic import fuzzy_not
from sympy.utilities.iterables import (has_dups, default_sort_key)
from sympy.core.compatibility import range, SYMPY_INTS
###############################################################################
###################### Kronecker Delta, Levi-Civita etc. ######################
###############################################################################
def Eijk(*args, **kwargs):
"""
Represent the Levi-Civita symbol.
This is just compatibility wrapper to ``LeviCivita()``.
See Also
========
LeviCivita
"""
return LeviCivita(*args, **kwargs)
def eval_levicivita(*args):
"""Evaluate Levi-Civita symbol."""
from sympy import factorial
n = len(args)
return prod(
prod(args[j] - args[i] for j in range(i + 1, n))
/ factorial(i) for i in range(n))
# converting factorial(i) to int is slightly faster
class LeviCivita(Function):
"""Represent the Levi-Civita symbol.
For even permutations of indices it returns 1, for odd permutations -1, and
for everything else (a repeated index) it returns 0.
Thus it represents an alternating pseudotensor.
Examples
========
>>> from sympy import LeviCivita
>>> from sympy.abc import i, j, k
>>> LeviCivita(1, 2, 3)
1
>>> LeviCivita(1, 3, 2)
-1
>>> LeviCivita(1, 2, 2)
0
>>> LeviCivita(i, j, k)
LeviCivita(i, j, k)
>>> LeviCivita(i, j, i)
0
See Also
========
Eijk
"""
is_integer = True
@classmethod
def eval(cls, *args):
if all(isinstance(a, (SYMPY_INTS, Integer)) for a in args):
return eval_levicivita(*args)
if has_dups(args):
return S.Zero
def doit(self):
return eval_levicivita(*self.args)
class KroneckerDelta(Function):
"""The discrete, or Kronecker, delta function.
A function that takes in two integers `i` and `j`. It returns `0` if `i` and `j` are
not equal or it returns `1` if `i` and `j` are equal.
Parameters
==========
i : Number, Symbol
The first index of the delta function.
j : Number, Symbol
The second index of the delta function.
Examples
========
A simple example with integer indices::
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> KroneckerDelta(1, 2)
0
>>> KroneckerDelta(3, 3)
1
Symbolic indices::
>>> from sympy.abc import i, j, k
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
>>> KroneckerDelta(i, i)
1
>>> KroneckerDelta(i, i + 1)
0
>>> KroneckerDelta(i, i + 1 + k)
KroneckerDelta(i, i + k + 1)
See Also
========
eval
sympy.functions.special.delta_functions.DiracDelta
References
==========
.. [1] https://en.wikipedia.org/wiki/Kronecker_delta
"""
is_integer = True
@classmethod
def eval(cls, i, j):
"""
Evaluates the discrete delta function.
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy.abc import i, j, k
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
>>> KroneckerDelta(i, i)
1
>>> KroneckerDelta(i, i + 1)
0
>>> KroneckerDelta(i, i + 1 + k)
KroneckerDelta(i, i + k + 1)
# indirect doctest
"""
diff = i - j
if diff.is_zero:
return S.One
elif fuzzy_not(diff.is_zero):
return S.Zero
if i.assumptions0.get("below_fermi") and \
j.assumptions0.get("above_fermi"):
return S.Zero
if j.assumptions0.get("below_fermi") and \
i.assumptions0.get("above_fermi"):
return S.Zero
# to make KroneckerDelta canonical
# following lines will check if inputs are in order
# if not, will return KroneckerDelta with correct order
if i is not min(i, j, key=default_sort_key):
return cls(j, i)
def _eval_power(self, expt):
if expt.is_positive:
return self
if expt.is_negative and not -expt is S.One:
return 1/self
@property
def is_above_fermi(self):
"""
True if Delta can be non-zero above fermi
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_above_fermi
True
>>> KroneckerDelta(p, i).is_above_fermi
False
>>> KroneckerDelta(p, q).is_above_fermi
True
See Also
========
is_below_fermi, is_only_below_fermi, is_only_above_fermi
"""
if self.args[0].assumptions0.get("below_fermi"):
return False
if self.args[1].assumptions0.get("below_fermi"):
return False
return True
@property
def is_below_fermi(self):
"""
True if Delta can be non-zero below fermi
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_below_fermi
False
>>> KroneckerDelta(p, i).is_below_fermi
True
>>> KroneckerDelta(p, q).is_below_fermi
True
See Also
========
is_above_fermi, is_only_above_fermi, is_only_below_fermi
"""
if self.args[0].assumptions0.get("above_fermi"):
return False
if self.args[1].assumptions0.get("above_fermi"):
return False
return True
@property
def is_only_above_fermi(self):
"""
True if Delta is restricted to above fermi
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, a).is_only_above_fermi
True
>>> KroneckerDelta(p, q).is_only_above_fermi
False
>>> KroneckerDelta(p, i).is_only_above_fermi
False
See Also
========
is_above_fermi, is_below_fermi, is_only_below_fermi
"""
return ( self.args[0].assumptions0.get("above_fermi")
or
self.args[1].assumptions0.get("above_fermi")
) or False
@property
def is_only_below_fermi(self):
"""
True if Delta is restricted to below fermi
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, i).is_only_below_fermi
True
>>> KroneckerDelta(p, q).is_only_below_fermi
False
>>> KroneckerDelta(p, a).is_only_below_fermi
False
See Also
========
is_above_fermi, is_below_fermi, is_only_above_fermi
"""
return ( self.args[0].assumptions0.get("below_fermi")
or
self.args[1].assumptions0.get("below_fermi")
) or False
@property
def indices_contain_equal_information(self):
"""
Returns True if indices are either both above or below fermi.
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> q = Symbol('q')
>>> KroneckerDelta(p, q).indices_contain_equal_information
True
>>> KroneckerDelta(p, q+1).indices_contain_equal_information
True
>>> KroneckerDelta(i, p).indices_contain_equal_information
False
"""
if (self.args[0].assumptions0.get("below_fermi") and
self.args[1].assumptions0.get("below_fermi")):
return True
if (self.args[0].assumptions0.get("above_fermi")
and self.args[1].assumptions0.get("above_fermi")):
return True
# if both indices are general we are True, else false
return self.is_below_fermi and self.is_above_fermi
@property
def preferred_index(self):
"""
Returns the index which is preferred to keep in the final expression.
The preferred index is the index with more information regarding fermi
level. If indices contain same information, 'a' is preferred before
'b'.
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> j = Symbol('j', below_fermi=True)
>>> p = Symbol('p')
>>> KroneckerDelta(p, i).preferred_index
i
>>> KroneckerDelta(p, a).preferred_index
a
>>> KroneckerDelta(i, j).preferred_index
i
See Also
========
killable_index
"""
if self._get_preferred_index():
return self.args[1]
else:
return self.args[0]
@property
def killable_index(self):
"""
Returns the index which is preferred to substitute in the final
expression.
The index to substitute is the index with less information regarding
fermi level. If indices contain same information, 'a' is preferred
before 'b'.
Examples
========
>>> from sympy.functions.special.tensor_functions import KroneckerDelta
>>> from sympy import Symbol
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> j = Symbol('j', below_fermi=True)
>>> p = Symbol('p')
>>> KroneckerDelta(p, i).killable_index
p
>>> KroneckerDelta(p, a).killable_index
p
>>> KroneckerDelta(i, j).killable_index
j
See Also
========
preferred_index
"""
if self._get_preferred_index():
return self.args[0]
else:
return self.args[1]
def _get_preferred_index(self):
"""
Returns the index which is preferred to keep in the final expression.
The preferred index is the index with more information regarding fermi
level. If indices contain same information, index 0 is returned.
"""
if not self.is_above_fermi:
if self.args[0].assumptions0.get("below_fermi"):
return 0
else:
return 1
elif not self.is_below_fermi:
if self.args[0].assumptions0.get("above_fermi"):
return 0
else:
return 1
else:
return 0
@property
def indices(self):
return self.args[0:2]
def _sage_(self):
import sage.all as sage
return sage.kronecker_delta(self.args[0]._sage_(), self.args[1]._sage_())
|
609ad0082291814995dc2e748683a1239a13324e1033e9467fc11fb601a41541
|
""" Elliptic integrals. """
from __future__ import print_function, division
from sympy.core import S, pi, I
from sympy.core.function import Function, ArgumentIndexError
from sympy.functions.elementary.hyperbolic import atanh
from sympy.functions.elementary.trigonometric import sin, tan
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.complexes import sign
from sympy.functions.special.hyper import hyper, meijerg
from sympy.functions.special.gamma_functions import gamma
class elliptic_k(Function):
r"""
The complete elliptic integral of the first kind, defined by
.. math:: K(m) = F\left(\tfrac{\pi}{2}\middle| m\right)
where `F\left(z\middle| m\right)` is the Legendre incomplete
elliptic integral of the first kind.
The function `K(m)` is a single-valued function on the complex
plane with branch cut along the interval `(1, \infty)`.
Note that our notation defines the incomplete elliptic integral
in terms of the parameter `m` instead of the elliptic modulus
(eccentricity) `k`.
In this case, the parameter `m` is defined as `m=k^2`.
Examples
========
>>> from sympy import elliptic_k, I, pi
>>> from sympy.abc import m
>>> elliptic_k(0)
pi/2
>>> elliptic_k(1.0 + I)
1.50923695405127 + 0.625146415202697*I
>>> elliptic_k(m).series(n=3)
pi/2 + pi*m/8 + 9*pi*m**2/128 + O(m**3)
References
==========
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals
.. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticK
See Also
========
elliptic_f
"""
@classmethod
def eval(cls, m):
if m is S.Zero:
return pi/2
elif m is S.Half:
return 8*pi**(S(3)/2)/gamma(-S(1)/4)**2
elif m is S.One:
return S.ComplexInfinity
elif m is S.NegativeOne:
return gamma(S(1)/4)**2/(4*sqrt(2*pi))
elif m in (S.Infinity, S.NegativeInfinity, I*S.Infinity,
I*S.NegativeInfinity, S.ComplexInfinity):
return S.Zero
def fdiff(self, argindex=1):
m = self.args[0]
return (elliptic_e(m) - (1 - m)*elliptic_k(m))/(2*m*(1 - m))
def _eval_conjugate(self):
m = self.args[0]
if (m.is_real and (m - 1).is_positive) is False:
return self.func(m.conjugate())
def _eval_nseries(self, x, n, logx):
from sympy.simplify import hyperexpand
return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx))
def _eval_rewrite_as_hyper(self, m, **kwargs):
return (pi/2)*hyper((S.Half, S.Half), (S.One,), m)
def _eval_rewrite_as_meijerg(self, m, **kwargs):
return meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -m)/2
def _sage_(self):
import sage.all as sage
return sage.elliptic_kc(self.args[0]._sage_())
class elliptic_f(Function):
r"""
The Legendre incomplete elliptic integral of the first
kind, defined by
.. math:: F\left(z\middle| m\right) =
\int_0^z \frac{dt}{\sqrt{1 - m \sin^2 t}}
This function reduces to a complete elliptic integral of
the first kind, `K(m)`, when `z = \pi/2`.
Note that our notation defines the incomplete elliptic integral
in terms of the parameter `m` instead of the elliptic modulus
(eccentricity) `k`.
In this case, the parameter `m` is defined as `m=k^2`.
Examples
========
>>> from sympy import elliptic_f, I, O
>>> from sympy.abc import z, m
>>> elliptic_f(z, m).series(z)
z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6)
>>> elliptic_f(3.0 + I/2, 1.0 + I)
2.909449841483 + 1.74720545502474*I
References
==========
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals
.. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticF
See Also
========
elliptic_k
"""
@classmethod
def eval(cls, z, m):
k = 2*z/pi
if m.is_zero:
return z
elif z.is_zero:
return S.Zero
elif k.is_integer:
return k*elliptic_k(m)
elif m in (S.Infinity, S.NegativeInfinity):
return S.Zero
elif z.could_extract_minus_sign():
return -elliptic_f(-z, m)
def fdiff(self, argindex=1):
z, m = self.args
fm = sqrt(1 - m*sin(z)**2)
if argindex == 1:
return 1/fm
elif argindex == 2:
return (elliptic_e(z, m)/(2*m*(1 - m)) - elliptic_f(z, m)/(2*m) -
sin(2*z)/(4*(1 - m)*fm))
raise ArgumentIndexError(self, argindex)
def _eval_conjugate(self):
z, m = self.args
if (m.is_real and (m - 1).is_positive) is False:
return self.func(z.conjugate(), m.conjugate())
class elliptic_e(Function):
r"""
Called with two arguments `z` and `m`, evaluates the
incomplete elliptic integral of the second kind, defined by
.. math:: E\left(z\middle| m\right) = \int_0^z \sqrt{1 - m \sin^2 t} dt
Called with a single argument `m`, evaluates the Legendre complete
elliptic integral of the second kind
.. math:: E(m) = E\left(\tfrac{\pi}{2}\middle| m\right)
The function `E(m)` is a single-valued function on the complex
plane with branch cut along the interval `(1, \infty)`.
Note that our notation defines the incomplete elliptic integral
in terms of the parameter `m` instead of the elliptic modulus
(eccentricity) `k`.
In this case, the parameter `m` is defined as `m=k^2`.
Examples
========
>>> from sympy import elliptic_e, I, pi, O
>>> from sympy.abc import z, m
>>> elliptic_e(z, m).series(z)
z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6)
>>> elliptic_e(m).series(n=4)
pi/2 - pi*m/8 - 3*pi*m**2/128 - 5*pi*m**3/512 + O(m**4)
>>> elliptic_e(1 + I, 2 - I/2).n()
1.55203744279187 + 0.290764986058437*I
>>> elliptic_e(0)
pi/2
>>> elliptic_e(2.0 - I)
0.991052601328069 + 0.81879421395609*I
References
==========
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals
.. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticE2
.. [3] http://functions.wolfram.com/EllipticIntegrals/EllipticE
"""
@classmethod
def eval(cls, m, z=None):
if z is not None:
z, m = m, z
k = 2*z/pi
if m.is_zero:
return z
if z.is_zero:
return S.Zero
elif k.is_integer:
return k*elliptic_e(m)
elif m in (S.Infinity, S.NegativeInfinity):
return S.ComplexInfinity
elif z.could_extract_minus_sign():
return -elliptic_e(-z, m)
else:
if m.is_zero:
return pi/2
elif m is S.One:
return S.One
elif m is S.Infinity:
return I*S.Infinity
elif m is S.NegativeInfinity:
return S.Infinity
elif m is S.ComplexInfinity:
return S.ComplexInfinity
def fdiff(self, argindex=1):
if len(self.args) == 2:
z, m = self.args
if argindex == 1:
return sqrt(1 - m*sin(z)**2)
elif argindex == 2:
return (elliptic_e(z, m) - elliptic_f(z, m))/(2*m)
else:
m = self.args[0]
if argindex == 1:
return (elliptic_e(m) - elliptic_k(m))/(2*m)
raise ArgumentIndexError(self, argindex)
def _eval_conjugate(self):
if len(self.args) == 2:
z, m = self.args
if (m.is_real and (m - 1).is_positive) is False:
return self.func(z.conjugate(), m.conjugate())
else:
m = self.args[0]
if (m.is_real and (m - 1).is_positive) is False:
return self.func(m.conjugate())
def _eval_nseries(self, x, n, logx):
from sympy.simplify import hyperexpand
if len(self.args) == 1:
return hyperexpand(self.rewrite(hyper)._eval_nseries(x, n=n, logx=logx))
return super(elliptic_e, self)._eval_nseries(x, n=n, logx=logx)
def _eval_rewrite_as_hyper(self, *args, **kwargs):
if len(args) == 1:
m = args[0]
return (pi/2)*hyper((-S.Half, S.Half), (S.One,), m)
def _eval_rewrite_as_meijerg(self, *args, **kwargs):
if len(args) == 1:
m = args[0]
return -meijerg(((S.Half, S(3)/2), []), \
((S.Zero,), (S.Zero,)), -m)/4
class elliptic_pi(Function):
r"""
Called with three arguments `n`, `z` and `m`, evaluates the
Legendre incomplete elliptic integral of the third kind, defined by
.. math:: \Pi\left(n; z\middle| m\right) = \int_0^z \frac{dt}
{\left(1 - n \sin^2 t\right) \sqrt{1 - m \sin^2 t}}
Called with two arguments `n` and `m`, evaluates the complete
elliptic integral of the third kind:
.. math:: \Pi\left(n\middle| m\right) =
\Pi\left(n; \tfrac{\pi}{2}\middle| m\right)
Note that our notation defines the incomplete elliptic integral
in terms of the parameter `m` instead of the elliptic modulus
(eccentricity) `k`.
In this case, the parameter `m` is defined as `m=k^2`.
Examples
========
>>> from sympy import elliptic_pi, I, pi, O, S
>>> from sympy.abc import z, n, m
>>> elliptic_pi(n, z, m).series(z, n=4)
z + z**3*(m/6 + n/3) + O(z**4)
>>> elliptic_pi(0.5 + I, 1.0 - I, 1.2)
2.50232379629182 - 0.760939574180767*I
>>> elliptic_pi(0, 0)
pi/2
>>> elliptic_pi(1.0 - I/3, 2.0 + I)
3.29136443417283 + 0.32555634906645*I
References
==========
.. [1] https://en.wikipedia.org/wiki/Elliptic_integrals
.. [2] http://functions.wolfram.com/EllipticIntegrals/EllipticPi3
.. [3] http://functions.wolfram.com/EllipticIntegrals/EllipticPi
"""
@classmethod
def eval(cls, n, m, z=None):
if z is not None:
n, z, m = n, m, z
k = 2*z/pi
if n == S.Zero:
return elliptic_f(z, m)
elif n == S.One:
return (elliptic_f(z, m) +
(sqrt(1 - m*sin(z)**2)*tan(z) -
elliptic_e(z, m))/(1 - m))
elif k.is_integer:
return k*elliptic_pi(n, m)
elif m == S.Zero:
return atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1)
elif n == m:
return (elliptic_f(z, n) - elliptic_pi(1, z, n) +
tan(z)/sqrt(1 - n*sin(z)**2))
elif n in (S.Infinity, S.NegativeInfinity):
return S.Zero
elif m in (S.Infinity, S.NegativeInfinity):
return S.Zero
elif z.could_extract_minus_sign():
return -elliptic_pi(n, -z, m)
else:
if n == S.Zero:
return elliptic_k(m)
elif n == S.One:
return S.ComplexInfinity
elif m == S.Zero:
return pi/(2*sqrt(1 - n))
elif m == S.One:
return -S.Infinity/sign(n - 1)
elif n == m:
return elliptic_e(n)/(1 - n)
elif n in (S.Infinity, S.NegativeInfinity):
return S.Zero
elif m in (S.Infinity, S.NegativeInfinity):
return S.Zero
def _eval_conjugate(self):
if len(self.args) == 3:
n, z, m = self.args
if (n.is_real and (n - 1).is_positive) is False and \
(m.is_real and (m - 1).is_positive) is False:
return self.func(n.conjugate(), z.conjugate(), m.conjugate())
else:
n, m = self.args
return self.func(n.conjugate(), m.conjugate())
def fdiff(self, argindex=1):
if len(self.args) == 3:
n, z, m = self.args
fm, fn = sqrt(1 - m*sin(z)**2), 1 - n*sin(z)**2
if argindex == 1:
return (elliptic_e(z, m) + (m - n)*elliptic_f(z, m)/n +
(n**2 - m)*elliptic_pi(n, z, m)/n -
n*fm*sin(2*z)/(2*fn))/(2*(m - n)*(n - 1))
elif argindex == 2:
return 1/(fm*fn)
elif argindex == 3:
return (elliptic_e(z, m)/(m - 1) +
elliptic_pi(n, z, m) -
m*sin(2*z)/(2*(m - 1)*fm))/(2*(n - m))
else:
n, m = self.args
if argindex == 1:
return (elliptic_e(m) + (m - n)*elliptic_k(m)/n +
(n**2 - m)*elliptic_pi(n, m)/n)/(2*(m - n)*(n - 1))
elif argindex == 2:
return (elliptic_e(m)/(m - 1) + elliptic_pi(n, m))/(2*(n - m))
raise ArgumentIndexError(self, argindex)
|
fb3578bbfc135b17a9e01e8911bdb86504f35630d2710b9e0de13f02dc2cc288
|
""" This module contains various functions that are special cases
of incomplete gamma functions. It should probably be renamed. """
from __future__ import print_function, division
from sympy.core import Add, S, sympify, cacheit, pi, I
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt, root
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.complexes import polar_lift
from sympy.functions.elementary.hyperbolic import cosh, sinh
from sympy.functions.elementary.trigonometric import cos, sin, sinc
from sympy.functions.special.hyper import hyper, meijerg
from sympy.core.compatibility import range
# TODO series expansions
# TODO see the "Note:" in Ei
###############################################################################
################################ ERROR FUNCTION ###############################
###############################################################################
class erf(Function):
r"""
The Gauss error function. This function is defined as:
.. math ::
\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t.
Examples
========
>>> from sympy import I, oo, erf
>>> from sympy.abc import z
Several special values are known:
>>> erf(0)
0
>>> erf(oo)
1
>>> erf(-oo)
-1
>>> erf(I*oo)
oo*I
>>> erf(-I*oo)
-oo*I
In general one can pull out factors of -1 and I from the argument:
>>> erf(-z)
-erf(z)
The error function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(erf(z))
erf(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(erf(z), z)
2*exp(-z**2)/sqrt(pi)
We can numerically evaluate the error function to arbitrary precision
on the whole complex plane:
>>> erf(4).evalf(30)
0.999999984582742099719981147840
>>> erf(-4*I).evalf(30)
-1296959.73071763923152794095062*I
See Also
========
erfc: Complementary error function.
erfi: Imaginary error function.
erf2: Two-argument error function.
erfinv: Inverse error function.
erfcinv: Inverse Complementary error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Error_function
.. [2] http://dlmf.nist.gov/7
.. [3] http://mathworld.wolfram.com/Erf.html
.. [4] http://functions.wolfram.com/GammaBetaErf/Erf
"""
unbranched = True
def fdiff(self, argindex=1):
if argindex == 1:
return 2*exp(-self.args[0]**2)/sqrt(S.Pi)
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return erfinv
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.One
elif arg is S.NegativeInfinity:
return S.NegativeOne
elif arg is S.Zero:
return S.Zero
if isinstance(arg, erfinv):
return arg.args[0]
if isinstance(arg, erfcinv):
return S.One - arg.args[0]
if isinstance(arg, erf2inv) and arg.args[0] is S.Zero:
return arg.args[1]
# Try to pull out factors of I
t = arg.extract_multiplicatively(S.ImaginaryUnit)
if t is S.Infinity or t is S.NegativeInfinity:
return arg
# Try to pull out factors of -1
if arg.could_extract_minus_sign():
return -cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = floor((n - 1)/S(2))
if len(previous_terms) > 2:
return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
else:
return 2*(-1)**k * x**n/(n*factorial(k)*sqrt(S.Pi))
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
return self.args[0].is_real
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy import uppergamma
return sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(S.Pi))
def _eval_rewrite_as_fresnels(self, z, **kwargs):
arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi)
return (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_fresnelc(self, z, **kwargs):
arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi)
return (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return z/sqrt(pi)*meijerg([S.Half], [], [0], [-S.Half], z**2)
def _eval_rewrite_as_hyper(self, z, **kwargs):
return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2)
def _eval_rewrite_as_expint(self, z, **kwargs):
return sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi)
def _eval_rewrite_as_tractable(self, z, **kwargs):
return S.One - _erfs(z)*exp(-z**2)
def _eval_rewrite_as_erfc(self, z, **kwargs):
return S.One - erfc(z)
def _eval_rewrite_as_erfi(self, z, **kwargs):
return -I*erfi(I*z)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return 2*x/sqrt(pi)
else:
return self.func(arg)
def as_real_imag(self, deep=True, **hints):
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
x, y = self.args[0].expand(deep, **hints).as_real_imag()
else:
x, y = self.args[0].as_real_imag()
sq = -y**2/x**2
re = S.Half*(self.func(x + x*sqrt(sq)) + self.func(x - x*sqrt(sq)))
im = x/(2*y) * sqrt(sq) * (self.func(x - x*sqrt(sq)) -
self.func(x + x*sqrt(sq)))
return (re, im)
class erfc(Function):
r"""
Complementary Error Function. The function is defined as:
.. math ::
\mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t
Examples
========
>>> from sympy import I, oo, erfc
>>> from sympy.abc import z
Several special values are known:
>>> erfc(0)
1
>>> erfc(oo)
0
>>> erfc(-oo)
2
>>> erfc(I*oo)
-oo*I
>>> erfc(-I*oo)
oo*I
The error function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(erfc(z))
erfc(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(erfc(z), z)
-2*exp(-z**2)/sqrt(pi)
It also follows
>>> erfc(-z)
-erfc(z) + 2
We can numerically evaluate the complementary error function to arbitrary precision
on the whole complex plane:
>>> erfc(4).evalf(30)
0.0000000154172579002800188521596734869
>>> erfc(4*I).evalf(30)
1.0 - 1296959.73071763923152794095062*I
See Also
========
erf: Gaussian error function.
erfi: Imaginary error function.
erf2: Two-argument error function.
erfinv: Inverse error function.
erfcinv: Inverse Complementary error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Error_function
.. [2] http://dlmf.nist.gov/7
.. [3] http://mathworld.wolfram.com/Erfc.html
.. [4] http://functions.wolfram.com/GammaBetaErf/Erfc
"""
unbranched = True
def fdiff(self, argindex=1):
if argindex == 1:
return -2*exp(-self.args[0]**2)/sqrt(S.Pi)
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return erfcinv
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.Zero:
return S.One
if isinstance(arg, erfinv):
return S.One - arg.args[0]
if isinstance(arg, erfcinv):
return arg.args[0]
# Try to pull out factors of I
t = arg.extract_multiplicatively(S.ImaginaryUnit)
if t is S.Infinity or t is S.NegativeInfinity:
return -arg
# Try to pull out factors of -1
if arg.could_extract_minus_sign():
return S(2) - cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.One
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = floor((n - 1)/S(2))
if len(previous_terms) > 2:
return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
else:
return -2*(-1)**k * x**n/(n*factorial(k)*sqrt(S.Pi))
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
return self.args[0].is_real
def _eval_rewrite_as_tractable(self, z, **kwargs):
return self.rewrite(erf).rewrite("tractable", deep=True)
def _eval_rewrite_as_erf(self, z, **kwargs):
return S.One - erf(z)
def _eval_rewrite_as_erfi(self, z, **kwargs):
return S.One + I*erfi(I*z)
def _eval_rewrite_as_fresnels(self, z, **kwargs):
arg = (S.One - S.ImaginaryUnit)*z/sqrt(pi)
return S.One - (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_fresnelc(self, z, **kwargs):
arg = (S.One-S.ImaginaryUnit)*z/sqrt(pi)
return S.One - (S.One + S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return S.One - z/sqrt(pi)*meijerg([S.Half], [], [0], [-S.Half], z**2)
def _eval_rewrite_as_hyper(self, z, **kwargs):
return S.One - 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2)
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy import uppergamma
return S.One - sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(S.Pi))
def _eval_rewrite_as_expint(self, z, **kwargs):
return S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(S.Pi)
def _eval_expand_func(self, **hints):
return self.rewrite(erf)
def _eval_as_leading_term(self, x):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return S.One
else:
return self.func(arg)
def as_real_imag(self, deep=True, **hints):
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
x, y = self.args[0].expand(deep, **hints).as_real_imag()
else:
x, y = self.args[0].as_real_imag()
sq = -y**2/x**2
re = S.Half*(self.func(x + x*sqrt(sq)) + self.func(x - x*sqrt(sq)))
im = x/(2*y) * sqrt(sq) * (self.func(x - x*sqrt(sq)) -
self.func(x + x*sqrt(sq)))
return (re, im)
class erfi(Function):
r"""
Imaginary error function. The function erfi is defined as:
.. math ::
\mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t
Examples
========
>>> from sympy import I, oo, erfi
>>> from sympy.abc import z
Several special values are known:
>>> erfi(0)
0
>>> erfi(oo)
oo
>>> erfi(-oo)
-oo
>>> erfi(I*oo)
I
>>> erfi(-I*oo)
-I
In general one can pull out factors of -1 and I from the argument:
>>> erfi(-z)
-erfi(z)
>>> from sympy import conjugate
>>> conjugate(erfi(z))
erfi(conjugate(z))
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(erfi(z), z)
2*exp(z**2)/sqrt(pi)
We can numerically evaluate the imaginary error function to arbitrary precision
on the whole complex plane:
>>> erfi(2).evalf(30)
18.5648024145755525987042919132
>>> erfi(-2*I).evalf(30)
-0.995322265018952734162069256367*I
See Also
========
erf: Gaussian error function.
erfc: Complementary error function.
erf2: Two-argument error function.
erfinv: Inverse error function.
erfcinv: Inverse Complementary error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Error_function
.. [2] http://mathworld.wolfram.com/Erfi.html
.. [3] http://functions.wolfram.com/GammaBetaErf/Erfi
"""
unbranched = True
def fdiff(self, argindex=1):
if argindex == 1:
return 2*exp(self.args[0]**2)/sqrt(S.Pi)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, z):
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is S.Zero:
return S.Zero
elif z is S.Infinity:
return S.Infinity
# Try to pull out factors of -1
if z.could_extract_minus_sign():
return -cls(-z)
# Try to pull out factors of I
nz = z.extract_multiplicatively(I)
if nz is not None:
if nz is S.Infinity:
return I
if isinstance(nz, erfinv):
return I*nz.args[0]
if isinstance(nz, erfcinv):
return I*(S.One - nz.args[0])
if isinstance(nz, erf2inv) and nz.args[0] is S.Zero:
return I*nz.args[1]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = floor((n - 1)/S(2))
if len(previous_terms) > 2:
return previous_terms[-2] * x**2 * (n - 2)/(n*k)
else:
return 2 * x**n/(n*factorial(k)*sqrt(S.Pi))
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
return self.args[0].is_real
def _eval_rewrite_as_tractable(self, z, **kwargs):
return self.rewrite(erf).rewrite("tractable", deep=True)
def _eval_rewrite_as_erf(self, z, **kwargs):
return -I*erf(I*z)
def _eval_rewrite_as_erfc(self, z, **kwargs):
return I*erfc(I*z) - I
def _eval_rewrite_as_fresnels(self, z, **kwargs):
arg = (S.One + S.ImaginaryUnit)*z/sqrt(pi)
return (S.One - S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_fresnelc(self, z, **kwargs):
arg = (S.One + S.ImaginaryUnit)*z/sqrt(pi)
return (S.One - S.ImaginaryUnit)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return z/sqrt(pi)*meijerg([S.Half], [], [0], [-S.Half], -z**2)
def _eval_rewrite_as_hyper(self, z, **kwargs):
return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], z**2)
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy import uppergamma
return sqrt(-z**2)/z*(uppergamma(S.Half, -z**2)/sqrt(S.Pi) - S.One)
def _eval_rewrite_as_expint(self, z, **kwargs):
return sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(S.Pi)
def _eval_expand_func(self, **hints):
return self.rewrite(erf)
def as_real_imag(self, deep=True, **hints):
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
x, y = self.args[0].expand(deep, **hints).as_real_imag()
else:
x, y = self.args[0].as_real_imag()
sq = -y**2/x**2
re = S.Half*(self.func(x + x*sqrt(sq)) + self.func(x - x*sqrt(sq)))
im = x/(2*y) * sqrt(sq) * (self.func(x - x*sqrt(sq)) -
self.func(x + x*sqrt(sq)))
return (re, im)
class erf2(Function):
r"""
Two-argument error function. This function is defined as:
.. math ::
\mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t
Examples
========
>>> from sympy import I, oo, erf2
>>> from sympy.abc import x, y
Several special values are known:
>>> erf2(0, 0)
0
>>> erf2(x, x)
0
>>> erf2(x, oo)
-erf(x) + 1
>>> erf2(x, -oo)
-erf(x) - 1
>>> erf2(oo, y)
erf(y) - 1
>>> erf2(-oo, y)
erf(y) + 1
In general one can pull out factors of -1:
>>> erf2(-x, -y)
-erf2(x, y)
The error function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(erf2(x, y))
erf2(conjugate(x), conjugate(y))
Differentiation with respect to x, y is supported:
>>> from sympy import diff
>>> diff(erf2(x, y), x)
-2*exp(-x**2)/sqrt(pi)
>>> diff(erf2(x, y), y)
2*exp(-y**2)/sqrt(pi)
See Also
========
erf: Gaussian error function.
erfc: Complementary error function.
erfi: Imaginary error function.
erfinv: Inverse error function.
erfcinv: Inverse Complementary error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] http://functions.wolfram.com/GammaBetaErf/Erf2/
"""
def fdiff(self, argindex):
x, y = self.args
if argindex == 1:
return -2*exp(-x**2)/sqrt(S.Pi)
elif argindex == 2:
return 2*exp(-y**2)/sqrt(S.Pi)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, x, y):
I = S.Infinity
N = S.NegativeInfinity
O = S.Zero
if x is S.NaN or y is S.NaN:
return S.NaN
elif x == y:
return S.Zero
elif (x is I or x is N or x is O) or (y is I or y is N or y is O):
return erf(y) - erf(x)
if isinstance(y, erf2inv) and y.args[0] == x:
return y.args[1]
#Try to pull out -1 factor
sign_x = x.could_extract_minus_sign()
sign_y = y.could_extract_minus_sign()
if (sign_x and sign_y):
return -cls(-x, -y)
elif (sign_x or sign_y):
return erf(y)-erf(x)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
def _eval_is_real(self):
return self.args[0].is_real and self.args[1].is_real
def _eval_rewrite_as_erf(self, x, y, **kwargs):
return erf(y) - erf(x)
def _eval_rewrite_as_erfc(self, x, y, **kwargs):
return erfc(x) - erfc(y)
def _eval_rewrite_as_erfi(self, x, y, **kwargs):
return I*(erfi(I*x)-erfi(I*y))
def _eval_rewrite_as_fresnels(self, x, y, **kwargs):
return erf(y).rewrite(fresnels) - erf(x).rewrite(fresnels)
def _eval_rewrite_as_fresnelc(self, x, y, **kwargs):
return erf(y).rewrite(fresnelc) - erf(x).rewrite(fresnelc)
def _eval_rewrite_as_meijerg(self, x, y, **kwargs):
return erf(y).rewrite(meijerg) - erf(x).rewrite(meijerg)
def _eval_rewrite_as_hyper(self, x, y, **kwargs):
return erf(y).rewrite(hyper) - erf(x).rewrite(hyper)
def _eval_rewrite_as_uppergamma(self, x, y, **kwargs):
from sympy import uppergamma
return (sqrt(y**2)/y*(S.One - uppergamma(S.Half, y**2)/sqrt(S.Pi)) -
sqrt(x**2)/x*(S.One - uppergamma(S.Half, x**2)/sqrt(S.Pi)))
def _eval_rewrite_as_expint(self, x, y, **kwargs):
return erf(y).rewrite(expint) - erf(x).rewrite(expint)
def _eval_expand_func(self, **hints):
return self.rewrite(erf)
class erfinv(Function):
r"""
Inverse Error Function. The erfinv function is defined as:
.. math ::
\mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x
Examples
========
>>> from sympy import I, oo, erfinv
>>> from sympy.abc import x
Several special values are known:
>>> erfinv(0)
0
>>> erfinv(1)
oo
Differentiation with respect to x is supported:
>>> from sympy import diff
>>> diff(erfinv(x), x)
sqrt(pi)*exp(erfinv(x)**2)/2
We can numerically evaluate the inverse error function to arbitrary precision
on [-1, 1]:
>>> erfinv(0.2).evalf(30)
0.179143454621291692285822705344
See Also
========
erf: Gaussian error function.
erfc: Complementary error function.
erfi: Imaginary error function.
erf2: Two-argument error function.
erfcinv: Inverse Complementary error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
.. [2] http://functions.wolfram.com/GammaBetaErf/InverseErf/
"""
def fdiff(self, argindex =1):
if argindex == 1:
return sqrt(S.Pi)*exp(self.func(self.args[0])**2)*S.Half
else :
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return erf
@classmethod
def eval(cls, z):
if z is S.NaN:
return S.NaN
elif z is S.NegativeOne:
return S.NegativeInfinity
elif z is S.Zero:
return S.Zero
elif z is S.One:
return S.Infinity
if isinstance(z, erf) and z.args[0].is_real:
return z.args[0]
# Try to pull out factors of -1
nz = z.extract_multiplicatively(-1)
if nz is not None and (isinstance(nz, erf) and (nz.args[0]).is_real):
return -nz.args[0]
def _eval_rewrite_as_erfcinv(self, z, **kwargs):
return erfcinv(1-z)
class erfcinv (Function):
r"""
Inverse Complementary Error Function. The erfcinv function is defined as:
.. math ::
\mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x
Examples
========
>>> from sympy import I, oo, erfcinv
>>> from sympy.abc import x
Several special values are known:
>>> erfcinv(1)
0
>>> erfcinv(0)
oo
Differentiation with respect to x is supported:
>>> from sympy import diff
>>> diff(erfcinv(x), x)
-sqrt(pi)*exp(erfcinv(x)**2)/2
See Also
========
erf: Gaussian error function.
erfc: Complementary error function.
erfi: Imaginary error function.
erf2: Two-argument error function.
erfinv: Inverse error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
.. [2] http://functions.wolfram.com/GammaBetaErf/InverseErfc/
"""
def fdiff(self, argindex =1):
if argindex == 1:
return -sqrt(S.Pi)*exp(self.func(self.args[0])**2)*S.Half
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return erfc
@classmethod
def eval(cls, z):
if z is S.NaN:
return S.NaN
elif z is S.Zero:
return S.Infinity
elif z is S.One:
return S.Zero
elif z == 2:
return S.NegativeInfinity
def _eval_rewrite_as_erfinv(self, z, **kwargs):
return erfinv(1-z)
class erf2inv(Function):
r"""
Two-argument Inverse error function. The erf2inv function is defined as:
.. math ::
\mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w
Examples
========
>>> from sympy import I, oo, erf2inv, erfinv, erfcinv
>>> from sympy.abc import x, y
Several special values are known:
>>> erf2inv(0, 0)
0
>>> erf2inv(1, 0)
1
>>> erf2inv(0, 1)
oo
>>> erf2inv(0, y)
erfinv(y)
>>> erf2inv(oo, y)
erfcinv(-y)
Differentiation with respect to x and y is supported:
>>> from sympy import diff
>>> diff(erf2inv(x, y), x)
exp(-x**2 + erf2inv(x, y)**2)
>>> diff(erf2inv(x, y), y)
sqrt(pi)*exp(erf2inv(x, y)**2)/2
See Also
========
erf: Gaussian error function.
erfc: Complementary error function.
erfi: Imaginary error function.
erf2: Two-argument error function.
erfinv: Inverse error function.
erfcinv: Inverse complementary error function.
References
==========
.. [1] http://functions.wolfram.com/GammaBetaErf/InverseErf2/
"""
def fdiff(self, argindex):
x, y = self.args
if argindex == 1:
return exp(self.func(x,y)**2-x**2)
elif argindex == 2:
return sqrt(S.Pi)*S.Half*exp(self.func(x,y)**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, x, y):
if x is S.NaN or y is S.NaN:
return S.NaN
elif x is S.Zero and y is S.Zero:
return S.Zero
elif x is S.Zero and y is S.One:
return S.Infinity
elif x is S.One and y is S.Zero:
return S.One
elif x is S.Zero:
return erfinv(y)
elif x is S.Infinity:
return erfcinv(-y)
elif y is S.Zero:
return x
elif y is S.Infinity:
return erfinv(x)
###############################################################################
#################### EXPONENTIAL INTEGRALS ####################################
###############################################################################
class Ei(Function):
r"""
The classical exponential integral.
For use in SymPy, this function is defined as
.. math:: \operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!}
+ \log(x) + \gamma,
where `\gamma` is the Euler-Mascheroni constant.
If `x` is a polar number, this defines an analytic function on the
Riemann surface of the logarithm. Otherwise this defines an analytic
function in the cut plane `\mathbb{C} \setminus (-\infty, 0]`.
**Background**
The name *exponential integral* comes from the following statement:
.. math:: \operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t
If the integral is interpreted as a Cauchy principal value, this statement
holds for `x > 0` and `\operatorname{Ei}(x)` as defined above.
Examples
========
>>> from sympy import Ei, polar_lift, exp_polar, I, pi
>>> from sympy.abc import x
>>> Ei(-1)
Ei(-1)
This yields a real value:
>>> Ei(-1).n(chop=True)
-0.219383934395520
On the other hand the analytic continuation is not real:
>>> Ei(polar_lift(-1)).n(chop=True)
-0.21938393439552 + 3.14159265358979*I
The exponential integral has a logarithmic branch point at the origin:
>>> Ei(x*exp_polar(2*I*pi))
Ei(x) + 2*I*pi
Differentiation is supported:
>>> Ei(x).diff(x)
exp(x)/x
The exponential integral is related to many other special functions.
For example:
>>> from sympy import uppergamma, expint, Shi
>>> Ei(x).rewrite(expint)
-expint(1, x*exp_polar(I*pi)) - I*pi
>>> Ei(x).rewrite(Shi)
Chi(x) + Shi(x)
See Also
========
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
sympy.functions.special.gamma_functions.uppergamma: Upper incomplete gamma function.
References
==========
.. [1] http://dlmf.nist.gov/6.6
.. [2] https://en.wikipedia.org/wiki/Exponential_integral
.. [3] Abramowitz & Stegun, section 5: http://people.math.sfu.ca/~cbm/aands/page_228.htm
"""
@classmethod
def eval(cls, z):
if z is S.Zero:
return S.NegativeInfinity
elif z is S.Infinity:
return S.Infinity
elif z is S.NegativeInfinity:
return S.Zero
nz, n = z.extract_branch_factor()
if n:
return Ei(nz) + 2*I*pi*n
def fdiff(self, argindex=1):
from sympy import unpolarify
arg = unpolarify(self.args[0])
if argindex == 1:
return exp(arg)/arg
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
if (self.args[0]/polar_lift(-1)).is_positive:
return Function._eval_evalf(self, prec) + (I*pi)._eval_evalf(prec)
return Function._eval_evalf(self, prec)
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy import uppergamma
# XXX this does not currently work usefully because uppergamma
# immediately turns into expint
return -uppergamma(0, polar_lift(-1)*z) - I*pi
def _eval_rewrite_as_expint(self, z, **kwargs):
return -expint(1, polar_lift(-1)*z) - I*pi
def _eval_rewrite_as_li(self, z, **kwargs):
if isinstance(z, log):
return li(z.args[0])
# TODO:
# Actually it only holds that:
# Ei(z) = li(exp(z))
# for -pi < imag(z) <= pi
return li(exp(z))
def _eval_rewrite_as_Si(self, z, **kwargs):
return Shi(z) + Chi(z)
_eval_rewrite_as_Ci = _eval_rewrite_as_Si
_eval_rewrite_as_Chi = _eval_rewrite_as_Si
_eval_rewrite_as_Shi = _eval_rewrite_as_Si
def _eval_rewrite_as_tractable(self, z, **kwargs):
return exp(z) * _eis(z)
def _eval_nseries(self, x, n, logx):
x0 = self.args[0].limit(x, 0)
if x0 is S.Zero:
f = self._eval_rewrite_as_Si(*self.args)
return f._eval_nseries(x, n, logx)
return super(Ei, self)._eval_nseries(x, n, logx)
class expint(Function):
r"""
Generalized exponential integral.
This function is defined as
.. math:: \operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z),
where `\Gamma(1 - \nu, z)` is the upper incomplete gamma function
(``uppergamma``).
Hence for :math:`z` with positive real part we have
.. math:: \operatorname{E}_\nu(z)
= \int_1^\infty \frac{e^{-zt}}{z^\nu} \mathrm{d}t,
which explains the name.
The representation as an incomplete gamma function provides an analytic
continuation for :math:`\operatorname{E}_\nu(z)`. If :math:`\nu` is a
non-positive integer the exponential integral is thus an unbranched
function of :math:`z`, otherwise there is a branch point at the origin.
Refer to the incomplete gamma function documentation for details of the
branching behavior.
Examples
========
>>> from sympy import expint, S
>>> from sympy.abc import nu, z
Differentiation is supported. Differentiation with respect to z explains
further the name: for integral orders, the exponential integral is an
iterated integral of the exponential function.
>>> expint(nu, z).diff(z)
-expint(nu - 1, z)
Differentiation with respect to nu has no classical expression:
>>> expint(nu, z).diff(nu)
-z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, -nu + 1), ()), z)
At non-postive integer orders, the exponential integral reduces to the
exponential function:
>>> expint(0, z)
exp(-z)/z
>>> expint(-1, z)
exp(-z)/z + exp(-z)/z**2
At half-integers it reduces to error functions:
>>> expint(S(1)/2, z)
sqrt(pi)*erfc(sqrt(z))/sqrt(z)
At positive integer orders it can be rewritten in terms of exponentials
and expint(1, z). Use expand_func() to do this:
>>> from sympy import expand_func
>>> expand_func(expint(5, z))
z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24
The generalised exponential integral is essentially equivalent to the
incomplete gamma function:
>>> from sympy import uppergamma
>>> expint(nu, z).rewrite(uppergamma)
z**(nu - 1)*uppergamma(-nu + 1, z)
As such it is branched at the origin:
>>> from sympy import exp_polar, pi, I
>>> expint(4, z*exp_polar(2*pi*I))
I*pi*z**3/3 + expint(4, z)
>>> expint(nu, z*exp_polar(2*pi*I))
z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(-nu + 1) + expint(nu, z)
See Also
========
Ei: Another related function called exponential integral.
E1: The classical case, returns expint(1, z).
li: Logarithmic integral.
Li: Offset logarithmic integral.
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
sympy.functions.special.gamma_functions.uppergamma
References
==========
.. [1] http://dlmf.nist.gov/8.19
.. [2] http://functions.wolfram.com/GammaBetaErf/ExpIntegralE/
.. [3] https://en.wikipedia.org/wiki/Exponential_integral
"""
@classmethod
def eval(cls, nu, z):
from sympy import (unpolarify, expand_mul, uppergamma, exp, gamma,
factorial)
nu2 = unpolarify(nu)
if nu != nu2:
return expint(nu2, z)
if nu.is_Integer and nu <= 0 or (not nu.is_Integer and (2*nu).is_Integer):
return unpolarify(expand_mul(z**(nu - 1)*uppergamma(1 - nu, z)))
# Extract branching information. This can be deduced from what is
# explained in lowergamma.eval().
z, n = z.extract_branch_factor()
if n == 0:
return
if nu.is_integer:
if (nu > 0) != True:
return
return expint(nu, z) \
- 2*pi*I*n*(-1)**(nu - 1)/factorial(nu - 1)*unpolarify(z)**(nu - 1)
else:
return (exp(2*I*pi*nu*n) - 1)*z**(nu - 1)*gamma(1 - nu) + expint(nu, z)
def fdiff(self, argindex):
from sympy import meijerg
nu, z = self.args
if argindex == 1:
return -z**(nu - 1)*meijerg([], [1, 1], [0, 0, 1 - nu], [], z)
elif argindex == 2:
return -expint(nu - 1, z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_uppergamma(self, nu, z, **kwargs):
from sympy import uppergamma
return z**(nu - 1)*uppergamma(1 - nu, z)
def _eval_rewrite_as_Ei(self, nu, z, **kwargs):
from sympy import exp_polar, unpolarify, exp, factorial
if nu == 1:
return -Ei(z*exp_polar(-I*pi)) - I*pi
elif nu.is_Integer and nu > 1:
# DLMF, 8.19.7
x = -unpolarify(z)
return x**(nu - 1)/factorial(nu - 1)*E1(z).rewrite(Ei) + \
exp(x)/factorial(nu - 1) * \
Add(*[factorial(nu - k - 2)*x**k for k in range(nu - 1)])
else:
return self
def _eval_expand_func(self, **hints):
return self.rewrite(Ei).rewrite(expint, **hints)
def _eval_rewrite_as_Si(self, nu, z, **kwargs):
if nu != 1:
return self
return Shi(z) - Chi(z)
_eval_rewrite_as_Ci = _eval_rewrite_as_Si
_eval_rewrite_as_Chi = _eval_rewrite_as_Si
_eval_rewrite_as_Shi = _eval_rewrite_as_Si
def _eval_nseries(self, x, n, logx):
if not self.args[0].has(x):
nu = self.args[0]
if nu == 1:
f = self._eval_rewrite_as_Si(*self.args)
return f._eval_nseries(x, n, logx)
elif nu.is_Integer and nu > 1:
f = self._eval_rewrite_as_Ei(*self.args)
return f._eval_nseries(x, n, logx)
return super(expint, self)._eval_nseries(x, n, logx)
def _sage_(self):
import sage.all as sage
return sage.exp_integral_e(self.args[0]._sage_(), self.args[1]._sage_())
def E1(z):
"""
Classical case of the generalized exponential integral.
This is equivalent to ``expint(1, z)``.
See Also
========
Ei: Exponential integral.
expint: Generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
"""
return expint(1, z)
class li(Function):
r"""
The classical logarithmic integral.
For the use in SymPy, this function is defined as
.. math:: \operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,.
Examples
========
>>> from sympy import I, oo, li
>>> from sympy.abc import z
Several special values are known:
>>> li(0)
0
>>> li(1)
-oo
>>> li(oo)
oo
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(li(z), z)
1/log(z)
Defining the `li` function via an integral:
The logarithmic integral can also be defined in terms of Ei:
>>> from sympy import Ei
>>> li(z).rewrite(Ei)
Ei(log(z))
>>> diff(li(z).rewrite(Ei), z)
1/log(z)
We can numerically evaluate the logarithmic integral to arbitrary precision
on the whole complex plane (except the singular points):
>>> li(2).evalf(30)
1.04516378011749278484458888919
>>> li(2*I).evalf(30)
1.0652795784357498247001125598 + 3.08346052231061726610939702133*I
We can even compute Soldner's constant by the help of mpmath:
>>> from mpmath import findroot
>>> findroot(li, 2)
1.45136923488338
Further transformations include rewriting `li` in terms of
the trigonometric integrals `Si`, `Ci`, `Shi` and `Chi`:
>>> from sympy import Si, Ci, Shi, Chi
>>> li(z).rewrite(Si)
-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
>>> li(z).rewrite(Ci)
-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
>>> li(z).rewrite(Shi)
-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
>>> li(z).rewrite(Chi)
-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
See Also
========
Li: Offset logarithmic integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
.. [2] http://mathworld.wolfram.com/LogarithmicIntegral.html
.. [3] http://dlmf.nist.gov/6
.. [4] http://mathworld.wolfram.com/SoldnersConstant.html
"""
@classmethod
def eval(cls, z):
if z is S.Zero:
return S.Zero
elif z is S.One:
return S.NegativeInfinity
elif z is S.Infinity:
return S.Infinity
def fdiff(self, argindex=1):
arg = self.args[0]
if argindex == 1:
return S.One / log(arg)
else:
raise ArgumentIndexError(self, argindex)
def _eval_conjugate(self):
z = self.args[0]
# Exclude values on the branch cut (-oo, 0)
if not (z.is_real and z.is_negative):
return self.func(z.conjugate())
def _eval_rewrite_as_Li(self, z, **kwargs):
return Li(z) + li(2)
def _eval_rewrite_as_Ei(self, z, **kwargs):
return Ei(log(z))
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy import uppergamma
return (-uppergamma(0, -log(z)) +
S.Half*(log(log(z)) - log(S.One/log(z))) - log(-log(z)))
def _eval_rewrite_as_Si(self, z, **kwargs):
return (Ci(I*log(z)) - I*Si(I*log(z)) -
S.Half*(log(S.One/log(z)) - log(log(z))) - log(I*log(z)))
_eval_rewrite_as_Ci = _eval_rewrite_as_Si
def _eval_rewrite_as_Shi(self, z, **kwargs):
return (Chi(log(z)) - Shi(log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))))
_eval_rewrite_as_Chi = _eval_rewrite_as_Shi
def _eval_rewrite_as_hyper(self, z, **kwargs):
return (log(z)*hyper((1, 1), (2, 2), log(z)) +
S.Half*(log(log(z)) - log(S.One/log(z))) + S.EulerGamma)
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return (-log(-log(z)) - S.Half*(log(S.One/log(z)) - log(log(z)))
- meijerg(((), (1,)), ((0, 0), ()), -log(z)))
def _eval_rewrite_as_tractable(self, z, **kwargs):
return z * _eis(log(z))
class Li(Function):
r"""
The offset logarithmic integral.
For the use in SymPy, this function is defined as
.. math:: \operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2)
Examples
========
>>> from sympy import I, oo, Li
>>> from sympy.abc import z
The following special value is known:
>>> Li(2)
0
Differentiation with respect to z is supported:
>>> from sympy import diff
>>> diff(Li(z), z)
1/log(z)
The shifted logarithmic integral can be written in terms of `li(z)`:
>>> from sympy import li
>>> Li(z).rewrite(li)
li(z) - li(2)
We can numerically evaluate the logarithmic integral to arbitrary precision
on the whole complex plane (except the singular points):
>>> Li(2).evalf(30)
0
>>> Li(4).evalf(30)
1.92242131492155809316615998938
See Also
========
li: Logarithmic integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
.. [2] http://mathworld.wolfram.com/LogarithmicIntegral.html
.. [3] http://dlmf.nist.gov/6
"""
@classmethod
def eval(cls, z):
if z is S.Infinity:
return S.Infinity
elif z is 2*S.One:
return S.Zero
def fdiff(self, argindex=1):
arg = self.args[0]
if argindex == 1:
return S.One / log(arg)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
return self.rewrite(li).evalf(prec)
def _eval_rewrite_as_li(self, z, **kwargs):
return li(z) - li(2)
def _eval_rewrite_as_tractable(self, z, **kwargs):
return self.rewrite(li).rewrite("tractable", deep=True)
###############################################################################
#################### TRIGONOMETRIC INTEGRALS ##################################
###############################################################################
class TrigonometricIntegral(Function):
""" Base class for trigonometric integrals. """
@classmethod
def eval(cls, z):
if z == 0:
return cls._atzero
elif z is S.Infinity:
return cls._atinf()
elif z is S.NegativeInfinity:
return cls._atneginf()
nz = z.extract_multiplicatively(polar_lift(I))
if nz is None and cls._trigfunc(0) == 0:
nz = z.extract_multiplicatively(I)
if nz is not None:
return cls._Ifactor(nz, 1)
nz = z.extract_multiplicatively(polar_lift(-I))
if nz is not None:
return cls._Ifactor(nz, -1)
nz = z.extract_multiplicatively(polar_lift(-1))
if nz is None and cls._trigfunc(0) == 0:
nz = z.extract_multiplicatively(-1)
if nz is not None:
return cls._minusfactor(nz)
nz, n = z.extract_branch_factor()
if n == 0 and nz == z:
return
return 2*pi*I*n*cls._trigfunc(0) + cls(nz)
def fdiff(self, argindex=1):
from sympy import unpolarify
arg = unpolarify(self.args[0])
if argindex == 1:
return self._trigfunc(arg)/arg
def _eval_rewrite_as_Ei(self, z, **kwargs):
return self._eval_rewrite_as_expint(z).rewrite(Ei)
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy import uppergamma
return self._eval_rewrite_as_expint(z).rewrite(uppergamma)
def _eval_nseries(self, x, n, logx):
# NOTE this is fairly inefficient
from sympy import log, EulerGamma, Pow
n += 1
if self.args[0].subs(x, 0) != 0:
return super(TrigonometricIntegral, self)._eval_nseries(x, n, logx)
baseseries = self._trigfunc(x)._eval_nseries(x, n, logx)
if self._trigfunc(0) != 0:
baseseries -= 1
baseseries = baseseries.replace(Pow, lambda t, n: t**n/n, simultaneous=False)
if self._trigfunc(0) != 0:
baseseries += EulerGamma + log(x)
return baseseries.subs(x, self.args[0])._eval_nseries(x, n, logx)
class Si(TrigonometricIntegral):
r"""
Sine integral.
This function is defined by
.. math:: \operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t.
It is an entire function.
Examples
========
>>> from sympy import Si
>>> from sympy.abc import z
The sine integral is an antiderivative of sin(z)/z:
>>> Si(z).diff(z)
sin(z)/z
It is unbranched:
>>> from sympy import exp_polar, I, pi
>>> Si(z*exp_polar(2*I*pi))
Si(z)
Sine integral behaves much like ordinary sine under multiplication by ``I``:
>>> Si(I*z)
I*Shi(z)
>>> Si(-z)
-Si(z)
It can also be expressed in terms of exponential integrals, but beware
that the latter is branched:
>>> from sympy import expint
>>> Si(z).rewrite(expint)
-I*(-expint(1, z*exp_polar(-I*pi/2))/2 +
expint(1, z*exp_polar(I*pi/2))/2) + pi/2
It can be rewritten in the form of sinc function (By definition)
>>> from sympy import sinc
>>> Si(z).rewrite(sinc)
Integral(sinc(t), (t, 0, z))
See Also
========
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
sinc: unnormalized sinc function
E1: Special case of the generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
"""
_trigfunc = sin
_atzero = S(0)
@classmethod
def _atinf(cls):
return pi*S.Half
@classmethod
def _atneginf(cls):
return -pi*S.Half
@classmethod
def _minusfactor(cls, z):
return -Si(z)
@classmethod
def _Ifactor(cls, z, sign):
return I*Shi(z)*sign
def _eval_rewrite_as_expint(self, z, **kwargs):
# XXX should we polarify z?
return pi/2 + (E1(polar_lift(I)*z) - E1(polar_lift(-I)*z))/2/I
def _eval_rewrite_as_sinc(self, z, **kwargs):
from sympy import Integral
t = Symbol('t', Dummy=True)
return Integral(sinc(t), (t, 0, z))
def _sage_(self):
import sage.all as sage
return sage.sin_integral(self.args[0]._sage_())
class Ci(TrigonometricIntegral):
r"""
Cosine integral.
This function is defined for positive `x` by
.. math:: \operatorname{Ci}(x) = \gamma + \log{x}
+ \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t
= -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t,
where `\gamma` is the Euler-Mascheroni constant.
We have
.. math:: \operatorname{Ci}(z) =
-\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right)
+ \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2}
which holds for all polar `z` and thus provides an analytic
continuation to the Riemann surface of the logarithm.
The formula also holds as stated
for `z \in \mathbb{C}` with `\Re(z) > 0`.
By lifting to the principal branch we obtain an analytic function on the
cut complex plane.
Examples
========
>>> from sympy import Ci
>>> from sympy.abc import z
The cosine integral is a primitive of `\cos(z)/z`:
>>> Ci(z).diff(z)
cos(z)/z
It has a logarithmic branch point at the origin:
>>> from sympy import exp_polar, I, pi
>>> Ci(z*exp_polar(2*I*pi))
Ci(z) + 2*I*pi
The cosine integral behaves somewhat like ordinary `\cos` under multiplication by `i`:
>>> from sympy import polar_lift
>>> Ci(polar_lift(I)*z)
Chi(z) + I*pi/2
>>> Ci(polar_lift(-1)*z)
Ci(z) + I*pi
It can also be expressed in terms of exponential integrals:
>>> from sympy import expint
>>> Ci(z).rewrite(expint)
-expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2
See Also
========
Si: Sine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
"""
_trigfunc = cos
_atzero = S.ComplexInfinity
@classmethod
def _atinf(cls):
return S.Zero
@classmethod
def _atneginf(cls):
return I*pi
@classmethod
def _minusfactor(cls, z):
return Ci(z) + I*pi
@classmethod
def _Ifactor(cls, z, sign):
return Chi(z) + I*pi/2*sign
def _eval_rewrite_as_expint(self, z, **kwargs):
return -(E1(polar_lift(I)*z) + E1(polar_lift(-I)*z))/2
def _sage_(self):
import sage.all as sage
return sage.cos_integral(self.args[0]._sage_())
class Shi(TrigonometricIntegral):
r"""
Sinh integral.
This function is defined by
.. math:: \operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t.
It is an entire function.
Examples
========
>>> from sympy import Shi
>>> from sympy.abc import z
The Sinh integral is a primitive of `\sinh(z)/z`:
>>> Shi(z).diff(z)
sinh(z)/z
It is unbranched:
>>> from sympy import exp_polar, I, pi
>>> Shi(z*exp_polar(2*I*pi))
Shi(z)
The `\sinh` integral behaves much like ordinary `\sinh` under multiplication by `i`:
>>> Shi(I*z)
I*Si(z)
>>> Shi(-z)
-Shi(z)
It can also be expressed in terms of exponential integrals, but beware
that the latter is branched:
>>> from sympy import expint
>>> Shi(z).rewrite(expint)
expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
See Also
========
Si: Sine integral.
Ci: Cosine integral.
Chi: Hyperbolic cosine integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
"""
_trigfunc = sinh
_atzero = S(0)
@classmethod
def _atinf(cls):
return S.Infinity
@classmethod
def _atneginf(cls):
return S.NegativeInfinity
@classmethod
def _minusfactor(cls, z):
return -Shi(z)
@classmethod
def _Ifactor(cls, z, sign):
return I*Si(z)*sign
def _eval_rewrite_as_expint(self, z, **kwargs):
from sympy import exp_polar
# XXX should we polarify z?
return (E1(z) - E1(exp_polar(I*pi)*z))/2 - I*pi/2
def _sage_(self):
import sage.all as sage
return sage.sinh_integral(self.args[0]._sage_())
class Chi(TrigonometricIntegral):
r"""
Cosh integral.
This function is defined for positive :math:`x` by
.. math:: \operatorname{Chi}(x) = \gamma + \log{x}
+ \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t,
where :math:`\gamma` is the Euler-Mascheroni constant.
We have
.. math:: \operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right)
- i\frac{\pi}{2},
which holds for all polar :math:`z` and thus provides an analytic
continuation to the Riemann surface of the logarithm.
By lifting to the principal branch we obtain an analytic function on the
cut complex plane.
Examples
========
>>> from sympy import Chi
>>> from sympy.abc import z
The `\cosh` integral is a primitive of `\cosh(z)/z`:
>>> Chi(z).diff(z)
cosh(z)/z
It has a logarithmic branch point at the origin:
>>> from sympy import exp_polar, I, pi
>>> Chi(z*exp_polar(2*I*pi))
Chi(z) + 2*I*pi
The `\cosh` integral behaves somewhat like ordinary `\cosh` under multiplication by `i`:
>>> from sympy import polar_lift
>>> Chi(polar_lift(I)*z)
Ci(z) + I*pi/2
>>> Chi(polar_lift(-1)*z)
Chi(z) + I*pi
It can also be expressed in terms of exponential integrals:
>>> from sympy import expint
>>> Chi(z).rewrite(expint)
-expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
See Also
========
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
"""
_trigfunc = cosh
_atzero = S.ComplexInfinity
@classmethod
def _atinf(cls):
return S.Infinity
@classmethod
def _atneginf(cls):
return S.Infinity
@classmethod
def _minusfactor(cls, z):
return Chi(z) + I*pi
@classmethod
def _Ifactor(cls, z, sign):
return Ci(z) + I*pi/2*sign
def _eval_rewrite_as_expint(self, z, **kwargs):
from sympy import exp_polar
return -I*pi/2 - (E1(z) + E1(exp_polar(I*pi)*z))/2
def _sage_(self):
import sage.all as sage
return sage.cosh_integral(self.args[0]._sage_())
###############################################################################
#################### FRESNEL INTEGRALS ########################################
###############################################################################
class FresnelIntegral(Function):
""" Base class for the Fresnel integrals."""
unbranched = True
@classmethod
def eval(cls, z):
# Value at zero
if z is S.Zero:
return S(0)
# Try to pull out factors of -1 and I
prefact = S.One
newarg = z
changed = False
nz = newarg.extract_multiplicatively(-1)
if nz is not None:
prefact = -prefact
newarg = nz
changed = True
nz = newarg.extract_multiplicatively(I)
if nz is not None:
prefact = cls._sign*I*prefact
newarg = nz
changed = True
if changed:
return prefact*cls(newarg)
# Values at positive infinities signs
# if any were extracted automatically
if z is S.Infinity:
return S.Half
elif z is I*S.Infinity:
return cls._sign*I*S.Half
def fdiff(self, argindex=1):
if argindex == 1:
return self._trigfunc(S.Half*pi*self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_real(self):
return self.args[0].is_real
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _as_real_imag(self, deep=True, **hints):
if self.args[0].is_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (re, im)
def as_real_imag(self, deep=True, **hints):
# Fresnel S
# http://functions.wolfram.com/06.32.19.0003.01
# http://functions.wolfram.com/06.32.19.0006.01
# Fresnel C
# http://functions.wolfram.com/06.33.19.0003.01
# http://functions.wolfram.com/06.33.19.0006.01
x, y = self._as_real_imag(deep=deep, **hints)
sq = -y**2/x**2
re = S.Half*(self.func(x + x*sqrt(sq)) + self.func(x - x*sqrt(sq)))
im = x/(2*y) * sqrt(sq) * (self.func(x - x*sqrt(sq)) -
self.func(x + x*sqrt(sq)))
return (re, im)
class fresnels(FresnelIntegral):
r"""
Fresnel integral S.
This function is defined by
.. math:: \operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t.
It is an entire function.
Examples
========
>>> from sympy import I, oo, fresnels
>>> from sympy.abc import z
Several special values are known:
>>> fresnels(0)
0
>>> fresnels(oo)
1/2
>>> fresnels(-oo)
-1/2
>>> fresnels(I*oo)
-I/2
>>> fresnels(-I*oo)
I/2
In general one can pull out factors of -1 and `i` from the argument:
>>> fresnels(-z)
-fresnels(z)
>>> fresnels(I*z)
-I*fresnels(z)
The Fresnel S integral obeys the mirror symmetry
`\overline{S(z)} = S(\bar{z})`:
>>> from sympy import conjugate
>>> conjugate(fresnels(z))
fresnels(conjugate(z))
Differentiation with respect to `z` is supported:
>>> from sympy import diff
>>> diff(fresnels(z), z)
sin(pi*z**2/2)
Defining the Fresnel functions via an integral
>>> from sympy import integrate, pi, sin, gamma, expand_func
>>> integrate(sin(pi*z**2/2), z)
3*fresnels(z)*gamma(3/4)/(4*gamma(7/4))
>>> expand_func(integrate(sin(pi*z**2/2), z))
fresnels(z)
We can numerically evaluate the Fresnel integral to arbitrary precision
on the whole complex plane:
>>> fresnels(2).evalf(30)
0.343415678363698242195300815958
>>> fresnels(-2*I).evalf(30)
0.343415678363698242195300815958*I
See Also
========
fresnelc: Fresnel cosine integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Fresnel_integral
.. [2] http://dlmf.nist.gov/7
.. [3] http://mathworld.wolfram.com/FresnelIntegrals.html
.. [4] http://functions.wolfram.com/GammaBetaErf/FresnelS
.. [5] The converging factors for the fresnel integrals
by John W. Wrench Jr. and Vicki Alley
"""
_trigfunc = sin
_sign = -S.One
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return (-pi**2*x**4*(4*n - 1)/(8*n*(2*n + 1)*(4*n + 3))) * p
else:
return x**3 * (-x**4)**n * (S(2)**(-2*n - 1)*pi**(2*n + 1)) / ((4*n + 3)*factorial(2*n + 1))
def _eval_rewrite_as_erf(self, z, **kwargs):
return (S.One + I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z))
def _eval_rewrite_as_hyper(self, z, **kwargs):
return pi*z**3/6 * hyper([S(3)/4], [S(3)/2, S(7)/4], -pi**2*z**4/16)
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return (pi*z**(S(9)/4) / (sqrt(2)*(z**2)**(S(3)/4)*(-z)**(S(3)/4))
* meijerg([], [1], [S(3)/4], [S(1)/4, 0], -pi**2*z**4/16))
def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
point = args0[0]
# Expansion at oo and -oo
if point in [S.Infinity, -S.Infinity]:
z = self.args[0]
# expansion of S(x) = S1(x*sqrt(pi/2)), see reference[5] page 1-8
# as only real infinities are dealt with, sin and cos are O(1)
p = [(-1)**k * factorial(4*k + 1) /
(2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k))
for k in range(0, n) if 4*k + 3 < n]
q = [1/(2*z)] + [(-1)**k * factorial(4*k - 1) /
(2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1))
for k in range(1, n) if 4*k + 1 < n]
p = [-sqrt(2/pi)*t for t in p]
q = [-sqrt(2/pi)*t for t in q]
s = 1 if point is S.Infinity else -1
# The expansion at oo is 1/2 + some odd powers of z
# To get the expansion at -oo, replace z by -z and flip the sign
# The result -1/2 + the same odd powers of z as before.
return s*S.Half + (sin(z**2)*Add(*p) + cos(z**2)*Add(*q)
).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x)
# All other points are not handled
return super(fresnels, self)._eval_aseries(n, args0, x, logx)
class fresnelc(FresnelIntegral):
r"""
Fresnel integral C.
This function is defined by
.. math:: \operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t.
It is an entire function.
Examples
========
>>> from sympy import I, oo, fresnelc
>>> from sympy.abc import z
Several special values are known:
>>> fresnelc(0)
0
>>> fresnelc(oo)
1/2
>>> fresnelc(-oo)
-1/2
>>> fresnelc(I*oo)
I/2
>>> fresnelc(-I*oo)
-I/2
In general one can pull out factors of -1 and `i` from the argument:
>>> fresnelc(-z)
-fresnelc(z)
>>> fresnelc(I*z)
I*fresnelc(z)
The Fresnel C integral obeys the mirror symmetry
`\overline{C(z)} = C(\bar{z})`:
>>> from sympy import conjugate
>>> conjugate(fresnelc(z))
fresnelc(conjugate(z))
Differentiation with respect to `z` is supported:
>>> from sympy import diff
>>> diff(fresnelc(z), z)
cos(pi*z**2/2)
Defining the Fresnel functions via an integral
>>> from sympy import integrate, pi, cos, gamma, expand_func
>>> integrate(cos(pi*z**2/2), z)
fresnelc(z)*gamma(1/4)/(4*gamma(5/4))
>>> expand_func(integrate(cos(pi*z**2/2), z))
fresnelc(z)
We can numerically evaluate the Fresnel integral to arbitrary precision
on the whole complex plane:
>>> fresnelc(2).evalf(30)
0.488253406075340754500223503357
>>> fresnelc(-2*I).evalf(30)
-0.488253406075340754500223503357*I
See Also
========
fresnels: Fresnel sine integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Fresnel_integral
.. [2] http://dlmf.nist.gov/7
.. [3] http://mathworld.wolfram.com/FresnelIntegrals.html
.. [4] http://functions.wolfram.com/GammaBetaErf/FresnelC
.. [5] The converging factors for the fresnel integrals
by John W. Wrench Jr. and Vicki Alley
"""
_trigfunc = cos
_sign = S.One
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return (-pi**2*x**4*(4*n - 3)/(8*n*(2*n - 1)*(4*n + 1))) * p
else:
return x * (-x**4)**n * (S(2)**(-2*n)*pi**(2*n)) / ((4*n + 1)*factorial(2*n))
def _eval_rewrite_as_erf(self, z, **kwargs):
return (S.One - I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z))
def _eval_rewrite_as_hyper(self, z, **kwargs):
return z * hyper([S.One/4], [S.One/2, S(5)/4], -pi**2*z**4/16)
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return (pi*z**(S(3)/4) / (sqrt(2)*root(z**2, 4)*root(-z, 4))
* meijerg([], [1], [S(1)/4], [S(3)/4, 0], -pi**2*z**4/16))
def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
point = args0[0]
# Expansion at oo
if point in [S.Infinity, -S.Infinity]:
z = self.args[0]
# expansion of C(x) = C1(x*sqrt(pi/2)), see reference[5] page 1-8
# as only real infinities are dealt with, sin and cos are O(1)
p = [(-1)**k * factorial(4*k + 1) /
(2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k))
for k in range(0, n) if 4*k + 3 < n]
q = [1/(2*z)] + [(-1)**k * factorial(4*k - 1) /
(2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1))
for k in range(1, n) if 4*k + 1 < n]
p = [-sqrt(2/pi)*t for t in p]
q = [ sqrt(2/pi)*t for t in q]
s = 1 if point is S.Infinity else -1
# The expansion at oo is 1/2 + some odd powers of z
# To get the expansion at -oo, replace z by -z and flip the sign
# The result -1/2 + the same odd powers of z as before.
return s*S.Half + (cos(z**2)*Add(*p) + sin(z**2)*Add(*q)
).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x)
# All other points are not handled
return super(fresnelc, self)._eval_aseries(n, args0, x, logx)
###############################################################################
#################### HELPER FUNCTIONS #########################################
###############################################################################
class _erfs(Function):
"""
Helper function to make the `\\mathrm{erf}(z)` function
tractable for the Gruntz algorithm.
"""
def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
point = args0[0]
# Expansion at oo
if point is S.Infinity:
z = self.args[0]
l = [ 1/sqrt(S.Pi) * factorial(2*k)*(-S(
4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(0, n) ]
o = Order(1/z**(2*n + 1), x)
# It is very inefficient to first add the order and then do the nseries
return (Add(*l))._eval_nseries(x, n, logx) + o
# Expansion at I*oo
t = point.extract_multiplicatively(S.ImaginaryUnit)
if t is S.Infinity:
z = self.args[0]
# TODO: is the series really correct?
l = [ 1/sqrt(S.Pi) * factorial(2*k)*(-S(
4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(0, n) ]
o = Order(1/z**(2*n + 1), x)
# It is very inefficient to first add the order and then do the nseries
return (Add(*l))._eval_nseries(x, n, logx) + o
# All other points are not handled
return super(_erfs, self)._eval_aseries(n, args0, x, logx)
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return -2/sqrt(S.Pi) + 2*z*_erfs(z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_intractable(self, z, **kwargs):
return (S.One - erf(z))*exp(z**2)
class _eis(Function):
"""
Helper function to make the `\\mathrm{Ei}(z)` and `\\mathrm{li}(z)` functions
tractable for the Gruntz algorithm.
"""
def _eval_aseries(self, n, args0, x, logx):
from sympy import Order
if args0[0] != S.Infinity:
return super(_erfs, self)._eval_aseries(n, args0, x, logx)
z = self.args[0]
l = [ factorial(k) * (1/z)**(k + 1) for k in range(0, n) ]
o = Order(1/z**(n + 1), x)
# It is very inefficient to first add the order and then do the nseries
return (Add(*l))._eval_nseries(x, n, logx) + o
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return S.One / z - _eis(z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_intractable(self, z, **kwargs):
return exp(-z)*Ei(z)
def _eval_nseries(self, x, n, logx):
x0 = self.args[0].limit(x, 0)
if x0 is S.Zero:
f = self._eval_rewrite_as_intractable(*self.args)
return f._eval_nseries(x, n, logx)
return super(_eis, self)._eval_nseries(x, n, logx)
|
e89193b7900507d57b0a788f8ce6f81b6667b60d71b22f004da00c7c7a5341e0
|
"""
This module mainly implements special orthogonal polynomials.
See also functions.combinatorial.numbers which contains some
combinatorial polynomials.
"""
from __future__ import print_function, division
from sympy.core.singleton import S
from sympy.core import Rational
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.symbol import Dummy
from sympy.functions.combinatorial.factorials import binomial, factorial, RisingFactorial
from sympy.functions.elementary.complexes import re
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import cos
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper
from sympy.polys.orthopolys import (
jacobi_poly,
gegenbauer_poly,
chebyshevt_poly,
chebyshevu_poly,
laguerre_poly,
hermite_poly,
legendre_poly
)
_x = Dummy('x')
class OrthogonalPolynomial(Function):
"""Base class for orthogonal polynomials.
"""
@classmethod
def _eval_at_order(cls, n, x):
if n.is_integer and n >= 0:
return cls._ortho_poly(int(n), _x).subs(_x, x)
def _eval_conjugate(self):
return self.func(self.args[0], self.args[1].conjugate())
#----------------------------------------------------------------------------
# Jacobi polynomials
#
class jacobi(OrthogonalPolynomial):
r"""
Jacobi polynomial :math:`P_n^{\left(\alpha, \beta\right)}(x)`
jacobi(n, alpha, beta, x) gives the nth Jacobi polynomial
in x, :math:`P_n^{\left(\alpha, \beta\right)}(x)`.
The Jacobi polynomials are orthogonal on :math:`[-1, 1]` with respect
to the weight :math:`\left(1-x\right)^\alpha \left(1+x\right)^\beta`.
Examples
========
>>> from sympy import jacobi, S, conjugate, diff
>>> from sympy.abc import n,a,b,x
>>> jacobi(0, a, b, x)
1
>>> jacobi(1, a, b, x)
a/2 - b/2 + x*(a/2 + b/2 + 1)
>>> jacobi(2, a, b, x) # doctest:+SKIP
(a**2/8 - a*b/4 - a/8 + b**2/8 - b/8 + x**2*(a**2/8 + a*b/4 + 7*a/8 +
b**2/8 + 7*b/8 + 3/2) + x*(a**2/4 + 3*a/4 - b**2/4 - 3*b/4) - 1/2)
>>> jacobi(n, a, b, x)
jacobi(n, a, b, x)
>>> jacobi(n, a, a, x)
RisingFactorial(a + 1, n)*gegenbauer(n,
a + 1/2, x)/RisingFactorial(2*a + 1, n)
>>> jacobi(n, 0, 0, x)
legendre(n, x)
>>> jacobi(n, S(1)/2, S(1)/2, x)
RisingFactorial(3/2, n)*chebyshevu(n, x)/factorial(n + 1)
>>> jacobi(n, -S(1)/2, -S(1)/2, x)
RisingFactorial(1/2, n)*chebyshevt(n, x)/factorial(n)
>>> jacobi(n, a, b, -x)
(-1)**n*jacobi(n, b, a, x)
>>> jacobi(n, a, b, 0)
2**(-n)*gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
>>> jacobi(n, a, b, 1)
RisingFactorial(a + 1, n)/factorial(n)
>>> conjugate(jacobi(n, a, b, x))
jacobi(n, conjugate(a), conjugate(b), conjugate(x))
>>> diff(jacobi(n,a,b,x), x)
(a/2 + b/2 + n/2 + 1/2)*jacobi(n - 1, a + 1, b + 1, x)
See Also
========
gegenbauer,
chebyshevt_root, chebyshevu, chebyshevu_root,
legendre, assoc_legendre,
hermite,
laguerre, assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly,
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials
.. [2] http://mathworld.wolfram.com/JacobiPolynomial.html
.. [3] http://functions.wolfram.com/Polynomials/JacobiP/
"""
@classmethod
def eval(cls, n, a, b, x):
# Simplify to other polynomials
# P^{a, a}_n(x)
if a == b:
if a == -S.Half:
return RisingFactorial(S.Half, n) / factorial(n) * chebyshevt(n, x)
elif a == S.Zero:
return legendre(n, x)
elif a == S.Half:
return RisingFactorial(3*S.Half, n) / factorial(n + 1) * chebyshevu(n, x)
else:
return RisingFactorial(a + 1, n) / RisingFactorial(2*a + 1, n) * gegenbauer(n, a + S.Half, x)
elif b == -a:
# P^{a, -a}_n(x)
return gamma(n + a + 1) / gamma(n + 1) * (1 + x)**(a/2) / (1 - x)**(a/2) * assoc_legendre(n, -a, x)
elif a == -b:
# P^{-b, b}_n(x)
return gamma(n - b + 1) / gamma(n + 1) * (1 - x)**(b/2) / (1 + x)**(b/2) * assoc_legendre(n, b, x)
if not n.is_Number:
# Symbolic result P^{a,b}_n(x)
# P^{a,b}_n(-x) ---> (-1)**n * P^{b,a}_n(-x)
if x.could_extract_minus_sign():
return S.NegativeOne**n * jacobi(n, b, a, -x)
# We can evaluate for some special values of x
if x == S.Zero:
return (2**(-n) * gamma(a + n + 1) / (gamma(a + 1) * factorial(n)) *
hyper([-b - n, -n], [a + 1], -1))
if x == S.One:
return RisingFactorial(a + 1, n) / factorial(n)
elif x == S.Infinity:
if n.is_positive:
# Make sure a+b+2*n \notin Z
if (a + b + 2*n).is_integer:
raise ValueError("Error. a + b + 2*n should not be an integer.")
return RisingFactorial(a + b + n + 1, n) * S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial
return jacobi_poly(n, a, b, x)
def fdiff(self, argindex=4):
from sympy import Sum
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt a
n, a, b, x = self.args
k = Dummy("k")
f1 = 1 / (a + b + n + k + 1)
f2 = ((a + b + 2*k + 1) * RisingFactorial(b + k + 1, n - k) /
((n - k) * RisingFactorial(a + b + k + 1, n - k)))
return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1))
elif argindex == 3:
# Diff wrt b
n, a, b, x = self.args
k = Dummy("k")
f1 = 1 / (a + b + n + k + 1)
f2 = (-1)**(n - k) * ((a + b + 2*k + 1) * RisingFactorial(a + k + 1, n - k) /
((n - k) * RisingFactorial(a + b + k + 1, n - k)))
return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1))
elif argindex == 4:
# Diff wrt x
n, a, b, x = self.args
return S.Half * (a + b + n + 1) * jacobi(n - 1, a + 1, b + 1, x)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, a, b, x, **kwargs):
from sympy import Sum
# Make sure n \in N
if n.is_negative or n.is_integer is False:
raise ValueError("Error: n should be a non-negative integer.")
k = Dummy("k")
kern = (RisingFactorial(-n, k) * RisingFactorial(a + b + n + 1, k) * RisingFactorial(a + k + 1, n - k) /
factorial(k) * ((1 - x)/2)**k)
return 1 / factorial(n) * Sum(kern, (k, 0, n))
def _eval_conjugate(self):
n, a, b, x = self.args
return self.func(n, a.conjugate(), b.conjugate(), x.conjugate())
def jacobi_normalized(n, a, b, x):
r"""
Jacobi polynomial :math:`P_n^{\left(\alpha, \beta\right)}(x)`
jacobi_normalized(n, alpha, beta, x) gives the nth Jacobi polynomial
in x, :math:`P_n^{\left(\alpha, \beta\right)}(x)`.
The Jacobi polynomials are orthogonal on :math:`[-1, 1]` with respect
to the weight :math:`\left(1-x\right)^\alpha \left(1+x\right)^\beta`.
This functions returns the polynomials normilzed:
.. math::
\int_{-1}^{1}
P_m^{\left(\alpha, \beta\right)}(x)
P_n^{\left(\alpha, \beta\right)}(x)
(1-x)^{\alpha} (1+x)^{\beta} \mathrm{d}x
= \delta_{m,n}
Examples
========
>>> from sympy import jacobi_normalized
>>> from sympy.abc import n,a,b,x
>>> jacobi_normalized(n, a, b, x)
jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)/((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1)))
See Also
========
gegenbauer,
chebyshevt_root, chebyshevu, chebyshevu_root,
legendre, assoc_legendre,
hermite,
laguerre, assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly,
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials
.. [2] http://mathworld.wolfram.com/JacobiPolynomial.html
.. [3] http://functions.wolfram.com/Polynomials/JacobiP/
"""
nfactor = (S(2)**(a + b + 1) * (gamma(n + a + 1) * gamma(n + b + 1))
/ (2*n + a + b + 1) / (factorial(n) * gamma(n + a + b + 1)))
return jacobi(n, a, b, x) / sqrt(nfactor)
#----------------------------------------------------------------------------
# Gegenbauer polynomials
#
class gegenbauer(OrthogonalPolynomial):
r"""
Gegenbauer polynomial :math:`C_n^{\left(\alpha\right)}(x)`
gegenbauer(n, alpha, x) gives the nth Gegenbauer polynomial
in x, :math:`C_n^{\left(\alpha\right)}(x)`.
The Gegenbauer polynomials are orthogonal on :math:`[-1, 1]` with
respect to the weight :math:`\left(1-x^2\right)^{\alpha-\frac{1}{2}}`.
Examples
========
>>> from sympy import gegenbauer, conjugate, diff
>>> from sympy.abc import n,a,x
>>> gegenbauer(0, a, x)
1
>>> gegenbauer(1, a, x)
2*a*x
>>> gegenbauer(2, a, x)
-a + x**2*(2*a**2 + 2*a)
>>> gegenbauer(3, a, x)
x**3*(4*a**3/3 + 4*a**2 + 8*a/3) + x*(-2*a**2 - 2*a)
>>> gegenbauer(n, a, x)
gegenbauer(n, a, x)
>>> gegenbauer(n, a, -x)
(-1)**n*gegenbauer(n, a, x)
>>> gegenbauer(n, a, 0)
2**n*sqrt(pi)*gamma(a + n/2)/(gamma(a)*gamma(-n/2 + 1/2)*gamma(n + 1))
>>> gegenbauer(n, a, 1)
gamma(2*a + n)/(gamma(2*a)*gamma(n + 1))
>>> conjugate(gegenbauer(n, a, x))
gegenbauer(n, conjugate(a), conjugate(x))
>>> diff(gegenbauer(n, a, x), x)
2*a*gegenbauer(n - 1, a + 1, x)
See Also
========
jacobi,
chebyshevt_root, chebyshevu, chebyshevu_root,
legendre, assoc_legendre,
hermite,
laguerre, assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Gegenbauer_polynomials
.. [2] http://mathworld.wolfram.com/GegenbauerPolynomial.html
.. [3] http://functions.wolfram.com/Polynomials/GegenbauerC3/
"""
@classmethod
def eval(cls, n, a, x):
# For negative n the polynomials vanish
# See http://functions.wolfram.com/Polynomials/GegenbauerC3/03/01/03/0012/
if n.is_negative:
return S.Zero
# Some special values for fixed a
if a == S.Half:
return legendre(n, x)
elif a == S.One:
return chebyshevu(n, x)
elif a == S.NegativeOne:
return S.Zero
if not n.is_Number:
# Handle this before the general sign extraction rule
if x == S.NegativeOne:
if (re(a) > S.Half) == True:
return S.ComplexInfinity
else:
# No sec function available yet
#return (cos(S.Pi*(a+n)) * sec(S.Pi*a) * gamma(2*a+n) /
# (gamma(2*a) * gamma(n+1)))
return None
# Symbolic result C^a_n(x)
# C^a_n(-x) ---> (-1)**n * C^a_n(x)
if x.could_extract_minus_sign():
return S.NegativeOne**n * gegenbauer(n, a, -x)
# We can evaluate for some special values of x
if x == S.Zero:
return (2**n * sqrt(S.Pi) * gamma(a + S.Half*n) /
(gamma((1 - n)/2) * gamma(n + 1) * gamma(a)) )
if x == S.One:
return gamma(2*a + n) / (gamma(2*a) * gamma(n + 1))
elif x == S.Infinity:
if n.is_positive:
return RisingFactorial(a, n) * S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial
return gegenbauer_poly(n, a, x)
def fdiff(self, argindex=3):
from sympy import Sum
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt a
n, a, x = self.args
k = Dummy("k")
factor1 = 2 * (1 + (-1)**(n - k)) * (k + a) / ((k +
n + 2*a) * (n - k))
factor2 = 2*(k + 1) / ((k + 2*a) * (2*k + 2*a + 1)) + \
2 / (k + n + 2*a)
kern = factor1*gegenbauer(k, a, x) + factor2*gegenbauer(n, a, x)
return Sum(kern, (k, 0, n - 1))
elif argindex == 3:
# Diff wrt x
n, a, x = self.args
return 2*a*gegenbauer(n - 1, a + 1, x)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, a, x, **kwargs):
from sympy import Sum
k = Dummy("k")
kern = ((-1)**k * RisingFactorial(a, n - k) * (2*x)**(n - 2*k) /
(factorial(k) * factorial(n - 2*k)))
return Sum(kern, (k, 0, floor(n/2)))
def _eval_conjugate(self):
n, a, x = self.args
return self.func(n, a.conjugate(), x.conjugate())
#----------------------------------------------------------------------------
# Chebyshev polynomials of first and second kind
#
class chebyshevt(OrthogonalPolynomial):
r"""
Chebyshev polynomial of the first kind, :math:`T_n(x)`
chebyshevt(n, x) gives the nth Chebyshev polynomial (of the first
kind) in x, :math:`T_n(x)`.
The Chebyshev polynomials of the first kind are orthogonal on
:math:`[-1, 1]` with respect to the weight :math:`\frac{1}{\sqrt{1-x^2}}`.
Examples
========
>>> from sympy import chebyshevt, chebyshevu, diff
>>> from sympy.abc import n,x
>>> chebyshevt(0, x)
1
>>> chebyshevt(1, x)
x
>>> chebyshevt(2, x)
2*x**2 - 1
>>> chebyshevt(n, x)
chebyshevt(n, x)
>>> chebyshevt(n, -x)
(-1)**n*chebyshevt(n, x)
>>> chebyshevt(-n, x)
chebyshevt(n, x)
>>> chebyshevt(n, 0)
cos(pi*n/2)
>>> chebyshevt(n, -1)
(-1)**n
>>> diff(chebyshevt(n, x), x)
n*chebyshevu(n - 1, x)
See Also
========
jacobi, gegenbauer,
chebyshevt_root, chebyshevu, chebyshevu_root,
legendre, assoc_legendre,
hermite,
laguerre, assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Chebyshev_polynomial
.. [2] http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
.. [3] http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
.. [4] http://functions.wolfram.com/Polynomials/ChebyshevT/
.. [5] http://functions.wolfram.com/Polynomials/ChebyshevU/
"""
_ortho_poly = staticmethod(chebyshevt_poly)
@classmethod
def eval(cls, n, x):
if not n.is_Number:
# Symbolic result T_n(x)
# T_n(-x) ---> (-1)**n * T_n(x)
if x.could_extract_minus_sign():
return S.NegativeOne**n * chebyshevt(n, -x)
# T_{-n}(x) ---> T_n(x)
if n.could_extract_minus_sign():
return chebyshevt(-n, x)
# We can evaluate for some special values of x
if x == S.Zero:
return cos(S.Half * S.Pi * n)
if x == S.One:
return S.One
elif x == S.Infinity:
return S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial
if n.is_negative:
# T_{-n}(x) == T_n(x)
return cls._eval_at_order(-n, x)
else:
return cls._eval_at_order(n, x)
def fdiff(self, argindex=2):
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt x
n, x = self.args
return n * chebyshevu(n - 1, x)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, x, **kwargs):
from sympy import Sum
k = Dummy("k")
kern = binomial(n, 2*k) * (x**2 - 1)**k * x**(n - 2*k)
return Sum(kern, (k, 0, floor(n/2)))
class chebyshevu(OrthogonalPolynomial):
r"""
Chebyshev polynomial of the second kind, :math:`U_n(x)`
chebyshevu(n, x) gives the nth Chebyshev polynomial of the second
kind in x, :math:`U_n(x)`.
The Chebyshev polynomials of the second kind are orthogonal on
:math:`[-1, 1]` with respect to the weight :math:`\sqrt{1-x^2}`.
Examples
========
>>> from sympy import chebyshevt, chebyshevu, diff
>>> from sympy.abc import n,x
>>> chebyshevu(0, x)
1
>>> chebyshevu(1, x)
2*x
>>> chebyshevu(2, x)
4*x**2 - 1
>>> chebyshevu(n, x)
chebyshevu(n, x)
>>> chebyshevu(n, -x)
(-1)**n*chebyshevu(n, x)
>>> chebyshevu(-n, x)
-chebyshevu(n - 2, x)
>>> chebyshevu(n, 0)
cos(pi*n/2)
>>> chebyshevu(n, 1)
n + 1
>>> diff(chebyshevu(n, x), x)
(-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
See Also
========
jacobi, gegenbauer,
chebyshevt, chebyshevt_root, chebyshevu_root,
legendre, assoc_legendre,
hermite,
laguerre, assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Chebyshev_polynomial
.. [2] http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
.. [3] http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
.. [4] http://functions.wolfram.com/Polynomials/ChebyshevT/
.. [5] http://functions.wolfram.com/Polynomials/ChebyshevU/
"""
_ortho_poly = staticmethod(chebyshevu_poly)
@classmethod
def eval(cls, n, x):
if not n.is_Number:
# Symbolic result U_n(x)
# U_n(-x) ---> (-1)**n * U_n(x)
if x.could_extract_minus_sign():
return S.NegativeOne**n * chebyshevu(n, -x)
# U_{-n}(x) ---> -U_{n-2}(x)
if n.could_extract_minus_sign():
if n == S.NegativeOne:
return S.Zero
else:
return -chebyshevu(-n - 2, x)
# We can evaluate for some special values of x
if x == S.Zero:
return cos(S.Half * S.Pi * n)
if x == S.One:
return S.One + n
elif x == S.Infinity:
return S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial
if n.is_negative:
# U_{-n}(x) ---> -U_{n-2}(x)
if n == S.NegativeOne:
return S.Zero
else:
return -cls._eval_at_order(-n - 2, x)
else:
return cls._eval_at_order(n, x)
def fdiff(self, argindex=2):
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt x
n, x = self.args
return ((n + 1) * chebyshevt(n + 1, x) - x * chebyshevu(n, x)) / (x**2 - 1)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, x, **kwargs):
from sympy import Sum
k = Dummy("k")
kern = S.NegativeOne**k * factorial(
n - k) * (2*x)**(n - 2*k) / (factorial(k) * factorial(n - 2*k))
return Sum(kern, (k, 0, floor(n/2)))
class chebyshevt_root(Function):
r"""
chebyshev_root(n, k) returns the kth root (indexed from zero) of
the nth Chebyshev polynomial of the first kind; that is, if
0 <= k < n, chebyshevt(n, chebyshevt_root(n, k)) == 0.
Examples
========
>>> from sympy import chebyshevt, chebyshevt_root
>>> chebyshevt_root(3, 2)
-sqrt(3)/2
>>> chebyshevt(3, chebyshevt_root(3, 2))
0
See Also
========
jacobi, gegenbauer,
chebyshevt, chebyshevu, chebyshevu_root,
legendre, assoc_legendre,
hermite,
laguerre, assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
"""
@classmethod
def eval(cls, n, k):
if not ((0 <= k) and (k < n)):
raise ValueError("must have 0 <= k < n, "
"got k = %s and n = %s" % (k, n))
return cos(S.Pi*(2*k + 1)/(2*n))
class chebyshevu_root(Function):
r"""
chebyshevu_root(n, k) returns the kth root (indexed from zero) of the
nth Chebyshev polynomial of the second kind; that is, if 0 <= k < n,
chebyshevu(n, chebyshevu_root(n, k)) == 0.
Examples
========
>>> from sympy import chebyshevu, chebyshevu_root
>>> chebyshevu_root(3, 2)
-sqrt(2)/2
>>> chebyshevu(3, chebyshevu_root(3, 2))
0
See Also
========
chebyshevt, chebyshevt_root, chebyshevu,
legendre, assoc_legendre,
hermite,
laguerre, assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
"""
@classmethod
def eval(cls, n, k):
if not ((0 <= k) and (k < n)):
raise ValueError("must have 0 <= k < n, "
"got k = %s and n = %s" % (k, n))
return cos(S.Pi*(k + 1)/(n + 1))
#----------------------------------------------------------------------------
# Legendre polynomials and Associated Legendre polynomials
#
class legendre(OrthogonalPolynomial):
r"""
legendre(n, x) gives the nth Legendre polynomial of x, :math:`P_n(x)`
The Legendre polynomials are orthogonal on [-1, 1] with respect to
the constant weight 1. They satisfy :math:`P_n(1) = 1` for all n; further,
:math:`P_n` is odd for odd n and even for even n.
Examples
========
>>> from sympy import legendre, diff
>>> from sympy.abc import x, n
>>> legendre(0, x)
1
>>> legendre(1, x)
x
>>> legendre(2, x)
3*x**2/2 - 1/2
>>> legendre(n, x)
legendre(n, x)
>>> diff(legendre(n,x), x)
n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1)
See Also
========
jacobi, gegenbauer,
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root,
assoc_legendre,
hermite,
laguerre, assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Legendre_polynomial
.. [2] http://mathworld.wolfram.com/LegendrePolynomial.html
.. [3] http://functions.wolfram.com/Polynomials/LegendreP/
.. [4] http://functions.wolfram.com/Polynomials/LegendreP2/
"""
_ortho_poly = staticmethod(legendre_poly)
@classmethod
def eval(cls, n, x):
if not n.is_Number:
# Symbolic result L_n(x)
# L_n(-x) ---> (-1)**n * L_n(x)
if x.could_extract_minus_sign():
return S.NegativeOne**n * legendre(n, -x)
# L_{-n}(x) ---> L_{n-1}(x)
if n.could_extract_minus_sign():
return legendre(-n - S.One, x)
# We can evaluate for some special values of x
if x == S.Zero:
return sqrt(S.Pi)/(gamma(S.Half - n/2)*gamma(S.One + n/2))
elif x == S.One:
return S.One
elif x == S.Infinity:
return S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial;
# L_{-n}(x) ---> L_{n-1}(x)
if n.is_negative:
n = -n - S.One
return cls._eval_at_order(n, x)
def fdiff(self, argindex=2):
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt x
# Find better formula, this is unsuitable for x = 1
n, x = self.args
return n/(x**2 - 1)*(x*legendre(n, x) - legendre(n - 1, x))
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, x, **kwargs):
from sympy import Sum
k = Dummy("k")
kern = (-1)**k*binomial(n, k)**2*((1 + x)/2)**(n - k)*((1 - x)/2)**k
return Sum(kern, (k, 0, n))
class assoc_legendre(Function):
r"""
assoc_legendre(n,m, x) gives :math:`P_n^m(x)`, where n and m are
the degree and order or an expression which is related to the nth
order Legendre polynomial, :math:`P_n(x)` in the following manner:
.. math::
P_n^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}}
\frac{\mathrm{d}^m P_n(x)}{\mathrm{d} x^m}
Associated Legendre polynomial are orthogonal on [-1, 1] with:
- weight = 1 for the same m, and different n.
- weight = 1/(1-x**2) for the same n, and different m.
Examples
========
>>> from sympy import assoc_legendre
>>> from sympy.abc import x, m, n
>>> assoc_legendre(0,0, x)
1
>>> assoc_legendre(1,0, x)
x
>>> assoc_legendre(1,1, x)
-sqrt(-x**2 + 1)
>>> assoc_legendre(n,m,x)
assoc_legendre(n, m, x)
See Also
========
jacobi, gegenbauer,
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root,
legendre,
hermite,
laguerre, assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
.. [2] http://mathworld.wolfram.com/LegendrePolynomial.html
.. [3] http://functions.wolfram.com/Polynomials/LegendreP/
.. [4] http://functions.wolfram.com/Polynomials/LegendreP2/
"""
@classmethod
def _eval_at_order(cls, n, m):
P = legendre_poly(n, _x, polys=True).diff((_x, m))
return (-1)**m * (1 - _x**2)**Rational(m, 2) * P.as_expr()
@classmethod
def eval(cls, n, m, x):
if m.could_extract_minus_sign():
# P^{-m}_n ---> F * P^m_n
return S.NegativeOne**(-m) * (factorial(m + n)/factorial(n - m)) * assoc_legendre(n, -m, x)
if m == 0:
# P^0_n ---> L_n
return legendre(n, x)
if x == 0:
return 2**m*sqrt(S.Pi) / (gamma((1 - m - n)/2)*gamma(1 - (m - n)/2))
if n.is_Number and m.is_Number and n.is_integer and m.is_integer:
if n.is_negative:
raise ValueError("%s : 1st index must be nonnegative integer (got %r)" % (cls, n))
if abs(m) > n:
raise ValueError("%s : abs('2nd index') must be <= '1st index' (got %r, %r)" % (cls, n, m))
return cls._eval_at_order(int(n), abs(int(m))).subs(_x, x)
def fdiff(self, argindex=3):
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt m
raise ArgumentIndexError(self, argindex)
elif argindex == 3:
# Diff wrt x
# Find better formula, this is unsuitable for x = 1
n, m, x = self.args
return 1/(x**2 - 1)*(x*n*assoc_legendre(n, m, x) - (m + n)*assoc_legendre(n - 1, m, x))
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, m, x, **kwargs):
from sympy import Sum
k = Dummy("k")
kern = factorial(2*n - 2*k)/(2**n*factorial(n - k)*factorial(
k)*factorial(n - 2*k - m))*(-1)**k*x**(n - m - 2*k)
return (1 - x**2)**(m/2) * Sum(kern, (k, 0, floor((n - m)*S.Half)))
def _eval_conjugate(self):
n, m, x = self.args
return self.func(n, m.conjugate(), x.conjugate())
#----------------------------------------------------------------------------
# Hermite polynomials
#
class hermite(OrthogonalPolynomial):
r"""
hermite(n, x) gives the nth Hermite polynomial in x, :math:`H_n(x)`
The Hermite polynomials are orthogonal on :math:`(-\infty, \infty)`
with respect to the weight :math:`\exp\left(-x^2\right)`.
Examples
========
>>> from sympy import hermite, diff
>>> from sympy.abc import x, n
>>> hermite(0, x)
1
>>> hermite(1, x)
2*x
>>> hermite(2, x)
4*x**2 - 2
>>> hermite(n, x)
hermite(n, x)
>>> diff(hermite(n,x), x)
2*n*hermite(n - 1, x)
>>> hermite(n, -x)
(-1)**n*hermite(n, x)
See Also
========
jacobi, gegenbauer,
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root,
legendre, assoc_legendre,
laguerre, assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Hermite_polynomial
.. [2] http://mathworld.wolfram.com/HermitePolynomial.html
.. [3] http://functions.wolfram.com/Polynomials/HermiteH/
"""
_ortho_poly = staticmethod(hermite_poly)
@classmethod
def eval(cls, n, x):
if not n.is_Number:
# Symbolic result H_n(x)
# H_n(-x) ---> (-1)**n * H_n(x)
if x.could_extract_minus_sign():
return S.NegativeOne**n * hermite(n, -x)
# We can evaluate for some special values of x
if x == S.Zero:
return 2**n * sqrt(S.Pi) / gamma((S.One - n)/2)
elif x == S.Infinity:
return S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial
if n.is_negative:
raise ValueError(
"The index n must be nonnegative integer (got %r)" % n)
else:
return cls._eval_at_order(n, x)
def fdiff(self, argindex=2):
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt x
n, x = self.args
return 2*n*hermite(n - 1, x)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, x, **kwargs):
from sympy import Sum
k = Dummy("k")
kern = (-1)**k / (factorial(k)*factorial(n - 2*k)) * (2*x)**(n - 2*k)
return factorial(n)*Sum(kern, (k, 0, floor(n/2)))
#----------------------------------------------------------------------------
# Laguerre polynomials
#
class laguerre(OrthogonalPolynomial):
r"""
Returns the nth Laguerre polynomial in x, :math:`L_n(x)`.
Parameters
==========
n : int
Degree of Laguerre polynomial. Must be ``n >= 0``.
Examples
========
>>> from sympy import laguerre, diff
>>> from sympy.abc import x, n
>>> laguerre(0, x)
1
>>> laguerre(1, x)
-x + 1
>>> laguerre(2, x)
x**2/2 - 2*x + 1
>>> laguerre(3, x)
-x**3/6 + 3*x**2/2 - 3*x + 1
>>> laguerre(n, x)
laguerre(n, x)
>>> diff(laguerre(n, x), x)
-assoc_laguerre(n - 1, 1, x)
See Also
========
jacobi, gegenbauer,
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root,
legendre, assoc_legendre,
hermite,
assoc_laguerre,
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Laguerre_polynomial
.. [2] http://mathworld.wolfram.com/LaguerrePolynomial.html
.. [3] http://functions.wolfram.com/Polynomials/LaguerreL/
.. [4] http://functions.wolfram.com/Polynomials/LaguerreL3/
"""
_ortho_poly = staticmethod(laguerre_poly)
@classmethod
def eval(cls, n, x):
if not n.is_Number:
# Symbolic result L_n(x)
# L_{n}(-x) ---> exp(-x) * L_{-n-1}(x)
# L_{-n}(x) ---> exp(x) * L_{n-1}(-x)
if n.could_extract_minus_sign():
return exp(x) * laguerre(n - 1, -x)
# We can evaluate for some special values of x
if x == S.Zero:
return S.One
elif x == S.NegativeInfinity:
return S.Infinity
elif x == S.Infinity:
return S.NegativeOne**n * S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial
if n.is_negative:
raise ValueError(
"The index n must be nonnegative integer (got %r)" % n)
else:
return cls._eval_at_order(n, x)
def fdiff(self, argindex=2):
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt x
n, x = self.args
return -assoc_laguerre(n - 1, 1, x)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, x, **kwargs):
from sympy import Sum
# Make sure n \in N_0
if n.is_negative or n.is_integer is False:
raise ValueError("Error: n should be a non-negative integer.")
k = Dummy("k")
kern = RisingFactorial(-n, k) / factorial(k)**2 * x**k
return Sum(kern, (k, 0, n))
class assoc_laguerre(OrthogonalPolynomial):
r"""
Returns the nth generalized Laguerre polynomial in x, :math:`L_n(x)`.
Parameters
==========
n : int
Degree of Laguerre polynomial. Must be ``n >= 0``.
alpha : Expr
Arbitrary expression. For ``alpha=0`` regular Laguerre
polynomials will be generated.
Examples
========
>>> from sympy import laguerre, assoc_laguerre, diff
>>> from sympy.abc import x, n, a
>>> assoc_laguerre(0, a, x)
1
>>> assoc_laguerre(1, a, x)
a - x + 1
>>> assoc_laguerre(2, a, x)
a**2/2 + 3*a/2 + x**2/2 + x*(-a - 2) + 1
>>> assoc_laguerre(3, a, x)
a**3/6 + a**2 + 11*a/6 - x**3/6 + x**2*(a/2 + 3/2) +
x*(-a**2/2 - 5*a/2 - 3) + 1
>>> assoc_laguerre(n, a, 0)
binomial(a + n, a)
>>> assoc_laguerre(n, a, x)
assoc_laguerre(n, a, x)
>>> assoc_laguerre(n, 0, x)
laguerre(n, x)
>>> diff(assoc_laguerre(n, a, x), x)
-assoc_laguerre(n - 1, a + 1, x)
>>> diff(assoc_laguerre(n, a, x), a)
Sum(assoc_laguerre(_k, a, x)/(-a + n), (_k, 0, n - 1))
See Also
========
jacobi, gegenbauer,
chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root,
legendre, assoc_legendre,
hermite,
laguerre,
sympy.polys.orthopolys.jacobi_poly
sympy.polys.orthopolys.gegenbauer_poly
sympy.polys.orthopolys.chebyshevt_poly
sympy.polys.orthopolys.chebyshevu_poly
sympy.polys.orthopolys.hermite_poly
sympy.polys.orthopolys.legendre_poly
sympy.polys.orthopolys.laguerre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Laguerre_polynomial#Assoc_laguerre_polynomials
.. [2] http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html
.. [3] http://functions.wolfram.com/Polynomials/LaguerreL/
.. [4] http://functions.wolfram.com/Polynomials/LaguerreL3/
"""
@classmethod
def eval(cls, n, alpha, x):
# L_{n}^{0}(x) ---> L_{n}(x)
if alpha == S.Zero:
return laguerre(n, x)
if not n.is_Number:
# We can evaluate for some special values of x
if x == S.Zero:
return binomial(n + alpha, alpha)
elif x == S.Infinity and n > S.Zero:
return S.NegativeOne**n * S.Infinity
elif x == S.NegativeInfinity and n > S.Zero:
return S.Infinity
else:
# n is a given fixed integer, evaluate into polynomial
if n.is_negative:
raise ValueError(
"The index n must be nonnegative integer (got %r)" % n)
else:
return laguerre_poly(n, x, alpha)
def fdiff(self, argindex=3):
from sympy import Sum
if argindex == 1:
# Diff wrt n
raise ArgumentIndexError(self, argindex)
elif argindex == 2:
# Diff wrt alpha
n, alpha, x = self.args
k = Dummy("k")
return Sum(assoc_laguerre(k, alpha, x) / (n - alpha), (k, 0, n - 1))
elif argindex == 3:
# Diff wrt x
n, alpha, x = self.args
return -assoc_laguerre(n - 1, alpha + 1, x)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_polynomial(self, n, x, **kwargs):
from sympy import Sum
# Make sure n \in N_0
if n.is_negative or n.is_integer is False:
raise ValueError("Error: n should be a non-negative integer.")
k = Dummy("k")
kern = RisingFactorial(
-n, k) / (gamma(k + alpha + 1) * factorial(k)) * x**k
return gamma(n + alpha + 1) / factorial(n) * Sum(kern, (k, 0, n))
def _eval_conjugate(self):
n, alpha, x = self.args
return self.func(n, alpha.conjugate(), x.conjugate())
|
aa5485bda1f80af663a9217fea2cc625d1867e034f662156ae5fd110c67c87fc
|
from sympy import (S, Symbol, symbols, factorial, factorial2, Float, binomial,
rf, ff, gamma, polygamma, EulerGamma, O, pi, nan,
oo, zoo, simplify, expand_func, Product, Mul, Piecewise, Mod,
Eq, sqrt, Poly)
from sympy.functions.combinatorial.factorials import subfactorial
from sympy.functions.special.gamma_functions import uppergamma
from sympy.utilities.pytest import XFAIL, raises
#Solves and Fixes Issue #10388 - This is the updated test for the same solved issue
def test_rf_eval_apply():
x, y = symbols('x,y')
n, k = symbols('n k', integer=True)
m = Symbol('m', integer=True, nonnegative=True)
assert rf(nan, y) == nan
assert rf(x, nan) == nan
assert rf(x, y) == rf(x, y)
assert rf(oo, 0) == 1
assert rf(-oo, 0) == 1
assert rf(oo, 6) == oo
assert rf(-oo, 7) == -oo
assert rf(oo, -6) == oo
assert rf(-oo, -7) == oo
assert rf(x, 0) == 1
assert rf(x, 1) == x
assert rf(x, 2) == x*(x + 1)
assert rf(x, 3) == x*(x + 1)*(x + 2)
assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4)
assert rf(x, -1) == 1/(x - 1)
assert rf(x, -2) == 1/((x - 1)*(x - 2))
assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3))
assert rf(1, 100) == factorial(100)
assert rf(x**2 + 3*x, 2) == (x**2 + 3*x)*(x**2 + 3*x + 1)
assert isinstance(rf(x**2 + 3*x, 2), Mul)
assert rf(x**3 + x, -2) == 1/((x**3 + x - 1)*(x**3 + x - 2))
assert rf(Poly(x**2 + 3*x, x), 2) == Poly(x**4 + 8*x**3 + 19*x**2 + 12*x, x)
assert isinstance(rf(Poly(x**2 + 3*x, x), 2), Poly)
raises(ValueError, lambda: rf(Poly(x**2 + 3*x, x, y), 2))
assert rf(Poly(x**3 + x, x), -2) == 1/(x**6 - 9*x**5 + 35*x**4 - 75*x**3 + 94*x**2 - 66*x + 20)
raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2))
assert rf(x, m).is_integer is None
assert rf(n, k).is_integer is None
assert rf(n, m).is_integer is True
assert rf(n, k + pi).is_integer is False
assert rf(n, m + pi).is_integer is False
assert rf(pi, m).is_integer is False
assert rf(x, k).rewrite(ff) == ff(x + k - 1, k)
assert rf(x, k).rewrite(binomial) == factorial(k)*binomial(x + k - 1, k)
assert rf(n, k).rewrite(factorial) == \
factorial(n + k - 1) / factorial(n - 1)
import random
from mpmath import rf as mpmath_rf
for i in range(100):
x = -500 + 500 * random.random()
k = -500 + 500 * random.random()
assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15))
def test_ff_eval_apply():
x, y = symbols('x,y')
n, k = symbols('n k', integer=True)
m = Symbol('m', integer=True, nonnegative=True)
assert ff(nan, y) == nan
assert ff(x, nan) == nan
assert ff(x, y) == ff(x, y)
assert ff(oo, 0) == 1
assert ff(-oo, 0) == 1
assert ff(oo, 6) == oo
assert ff(-oo, 7) == -oo
assert ff(oo, -6) == oo
assert ff(-oo, -7) == oo
assert ff(x, 0) == 1
assert ff(x, 1) == x
assert ff(x, 2) == x*(x - 1)
assert ff(x, 3) == x*(x - 1)*(x - 2)
assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)
assert ff(x, -1) == 1/(x + 1)
assert ff(x, -2) == 1/((x + 1)*(x + 2))
assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3))
assert ff(100, 100) == factorial(100)
assert ff(2*x**2 - 5*x, 2) == (2*x**2 - 5*x)*(2*x**2 - 5*x - 1)
assert isinstance(ff(2*x**2 - 5*x, 2), Mul)
assert ff(x**2 + 3*x, -2) == 1/((x**2 + 3*x + 1)*(x**2 + 3*x + 2))
assert ff(Poly(2*x**2 - 5*x, x), 2) == Poly(4*x**4 - 28*x**3 + 59*x**2 - 35*x, x)
assert isinstance(ff(Poly(2*x**2 - 5*x, x), 2), Poly)
raises(ValueError, lambda: ff(Poly(2*x**2 - 5*x, x, y), 2))
assert ff(Poly(x**2 + 3*x, x), -2) == 1/(x**4 + 12*x**3 + 49*x**2 + 78*x + 40)
raises(ValueError, lambda: ff(Poly(x**2 + 3*x, x, y), -2))
assert ff(x, m).is_integer is None
assert ff(n, k).is_integer is None
assert ff(n, m).is_integer is True
assert ff(n, k + pi).is_integer is False
assert ff(n, m + pi).is_integer is False
assert ff(pi, m).is_integer is False
assert isinstance(ff(x, x), ff)
assert ff(n, n) == factorial(n)
assert ff(x, k).rewrite(rf) == rf(x - k + 1, k)
assert ff(x, k).rewrite(gamma) == (-1)**k*gamma(k - x) / gamma(-x)
assert ff(n, k).rewrite(factorial) == factorial(n) / factorial(n - k)
assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k)
import random
from mpmath import ff as mpmath_ff
for i in range(100):
x = -500 + 500 * random.random()
k = -500 + 500 * random.random()
assert (abs(mpmath_ff(x, k) - ff(x, k)) < 10**(-15))
def test_rf_ff_eval_hiprec():
maple = Float('6.9109401292234329956525265438452')
us = ff(18, S(2)/3).evalf(32)
assert abs(us - maple)/us < 1e-31
maple = Float('6.8261540131125511557924466355367')
us = rf(18, S(2)/3).evalf(32)
assert abs(us - maple)/us < 1e-31
maple = Float('34.007346127440197150854651814225')
us = rf(Float('4.4', 32), Float('2.2', 32));
assert abs(us - maple)/us < 1e-31
def test_rf_lambdify_mpmath():
from sympy import lambdify
x, y = symbols('x,y')
f = lambdify((x,y), rf(x, y), 'mpmath')
maple = Float('34.007346127440197')
us = f(4.4, 2.2)
assert abs(us - maple)/us < 1e-15
def test_factorial():
x = Symbol('x')
n = Symbol('n', integer=True)
k = Symbol('k', integer=True, nonnegative=True)
r = Symbol('r', integer=False)
s = Symbol('s', integer=False, negative=True)
t = Symbol('t', nonnegative=True)
u = Symbol('u', noninteger=True)
assert factorial(-2) == zoo
assert factorial(0) == 1
assert factorial(7) == 5040
assert factorial(19) == 121645100408832000
assert factorial(31) == 8222838654177922817725562880000000
assert factorial(n).func == factorial
assert factorial(2*n).func == factorial
assert factorial(x).is_integer is None
assert factorial(n).is_integer is None
assert factorial(k).is_integer
assert factorial(r).is_integer is None
assert factorial(n).is_positive is None
assert factorial(k).is_positive
assert factorial(x).is_real is None
assert factorial(n).is_real is None
assert factorial(k).is_real is True
assert factorial(r).is_real is None
assert factorial(s).is_real is True
assert factorial(t).is_real is True
assert factorial(u).is_real is True
assert factorial(x).is_composite is None
assert factorial(n).is_composite is None
assert factorial(k).is_composite is None
assert factorial(k + 3).is_composite is True
assert factorial(r).is_composite is None
assert factorial(s).is_composite is None
assert factorial(t).is_composite is None
assert factorial(u).is_composite is None
assert factorial(oo) == oo
def test_factorial_Mod():
pr = Symbol('pr', prime=True)
p, q = 10**9 + 9, 10**9 + 33 # prime modulo
r, s = 10**7 + 5, 33333333 # composite modulo
assert Mod(factorial(pr - 1), pr) == pr - 1
assert Mod(factorial(pr - 1), -pr) == -1
assert Mod(factorial(r - 1, evaluate=False), r) == 0
assert Mod(factorial(s - 1, evaluate=False), s) == 0
assert Mod(factorial(p - 1, evaluate=False), p) == p - 1
assert Mod(factorial(q - 1, evaluate=False), q) == q - 1
assert Mod(factorial(p - 50, evaluate=False), p) == 854928834
assert Mod(factorial(q - 1800, evaluate=False), q) == 905504050
assert Mod(factorial(153, evaluate=False), r) == Mod(factorial(153), r)
assert Mod(factorial(255, evaluate=False), s) == Mod(factorial(255), s)
def test_factorial_diff():
n = Symbol('n', integer=True)
assert factorial(n).diff(n) == \
gamma(1 + n)*polygamma(0, 1 + n)
assert factorial(n**2).diff(n) == \
2*n*gamma(1 + n**2)*polygamma(0, 1 + n**2)
def test_factorial_series():
n = Symbol('n', integer=True)
assert factorial(n).series(n, 0, 3) == \
1 - n*EulerGamma + n**2*(EulerGamma**2/2 + pi**2/12) + O(n**3)
def test_factorial_rewrite():
n = Symbol('n', integer=True)
k = Symbol('k', integer=True, nonnegative=True)
assert factorial(n).rewrite(gamma) == gamma(n + 1)
assert str(factorial(k).rewrite(Product)) == 'Product(_i, (_i, 1, k))'
def test_factorial2():
n = Symbol('n', integer=True)
assert factorial2(-1) == 1
assert factorial2(0) == 1
assert factorial2(7) == 105
assert factorial2(8) == 384
# The following is exhaustive
tt = Symbol('tt', integer=True, nonnegative=True)
tte = Symbol('tte', even=True, nonnegative=True)
tpe = Symbol('tpe', even=True, positive=True)
tto = Symbol('tto', odd=True, nonnegative=True)
tf = Symbol('tf', integer=True, nonnegative=False)
tfe = Symbol('tfe', even=True, nonnegative=False)
tfo = Symbol('tfo', odd=True, nonnegative=False)
ft = Symbol('ft', integer=False, nonnegative=True)
ff = Symbol('ff', integer=False, nonnegative=False)
fn = Symbol('fn', integer=False)
nt = Symbol('nt', nonnegative=True)
nf = Symbol('nf', nonnegative=False)
nn = Symbol('nn')
#Solves and Fixes Issue #10388 - This is the updated test for the same solved issue
raises (ValueError, lambda: factorial2(oo))
raises (ValueError, lambda: factorial2(S(5)/2))
assert factorial2(n).is_integer is None
assert factorial2(tt - 1).is_integer
assert factorial2(tte - 1).is_integer
assert factorial2(tpe - 3).is_integer
assert factorial2(tto - 4).is_integer
assert factorial2(tto - 2).is_integer
assert factorial2(tf).is_integer is None
assert factorial2(tfe).is_integer is None
assert factorial2(tfo).is_integer is None
assert factorial2(ft).is_integer is None
assert factorial2(ff).is_integer is None
assert factorial2(fn).is_integer is None
assert factorial2(nt).is_integer is None
assert factorial2(nf).is_integer is None
assert factorial2(nn).is_integer is None
assert factorial2(n).is_positive is None
assert factorial2(tt - 1).is_positive is True
assert factorial2(tte - 1).is_positive is True
assert factorial2(tpe - 3).is_positive is True
assert factorial2(tpe - 1).is_positive is True
assert factorial2(tto - 2).is_positive is True
assert factorial2(tto - 1).is_positive is True
assert factorial2(tf).is_positive is None
assert factorial2(tfe).is_positive is None
assert factorial2(tfo).is_positive is None
assert factorial2(ft).is_positive is None
assert factorial2(ff).is_positive is None
assert factorial2(fn).is_positive is None
assert factorial2(nt).is_positive is None
assert factorial2(nf).is_positive is None
assert factorial2(nn).is_positive is None
assert factorial2(tt).is_even is None
assert factorial2(tt).is_odd is None
assert factorial2(tte).is_even is None
assert factorial2(tte).is_odd is None
assert factorial2(tte + 2).is_even is True
assert factorial2(tpe).is_even is True
assert factorial2(tto).is_odd is True
assert factorial2(tf).is_even is None
assert factorial2(tf).is_odd is None
assert factorial2(tfe).is_even is None
assert factorial2(tfe).is_odd is None
assert factorial2(tfo).is_even is False
assert factorial2(tfo).is_odd is None
def test_factorial2_rewrite():
n = Symbol('n', integer=True)
assert factorial2(n).rewrite(gamma) == \
2**(n/2)*Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2)/sqrt(pi), Eq(Mod(n, 2), 1)))*gamma(n/2 + 1)
assert factorial2(2*n).rewrite(gamma) == 2**n*gamma(n + 1)
assert factorial2(2*n + 1).rewrite(gamma) == \
sqrt(2)*2**(n + S(1)/2)*gamma(n + S(3)/2)/sqrt(pi)
def test_binomial():
x = Symbol('x')
n = Symbol('n', integer=True)
nz = Symbol('nz', integer=True, nonzero=True)
k = Symbol('k', integer=True)
kp = Symbol('kp', integer=True, positive=True)
kn = Symbol('kn', integer=True, negative=True)
u = Symbol('u', negative=True)
v = Symbol('v', nonnegative=True)
p = Symbol('p', positive=True)
z = Symbol('z', zero=True)
nt = Symbol('nt', integer=False)
kt = Symbol('kt', integer=False)
a = Symbol('a', integer=True, nonnegative=True)
b = Symbol('b', integer=True, nonnegative=True)
assert binomial(0, 0) == 1
assert binomial(1, 1) == 1
assert binomial(10, 10) == 1
assert binomial(n, z) == 1
assert binomial(1, 2) == 0
assert binomial(-1, 2) == 1
assert binomial(1, -1) == 0
assert binomial(-1, 1) == -1
assert binomial(-1, -1) == 0
assert binomial(S.Half, S.Half) == 1
assert binomial(-10, 1) == -10
assert binomial(-10, 7) == -11440
assert binomial(n, -1) == 0 # holds for all integers (negative, zero, positive)
assert binomial(kp, -1) == 0
assert binomial(nz, 0) == 1
assert expand_func(binomial(n, 1)) == n
assert expand_func(binomial(n, 2)) == n*(n - 1)/2
assert expand_func(binomial(n, n - 2)) == n*(n - 1)/2
assert expand_func(binomial(n, n - 1)) == n
assert binomial(n, 3).func == binomial
assert binomial(n, 3).expand(func=True) == n**3/6 - n**2/2 + n/3
assert expand_func(binomial(n, 3)) == n*(n - 2)*(n - 1)/6
assert binomial(n, n).func == binomial # e.g. (-1, -1) == 0, (2, 2) == 1
assert binomial(n, n + 1).func == binomial # e.g. (-1, 0) == 1
assert binomial(kp, kp + 1) == 0
assert binomial(kn, kn) == 0 # issue #14529
assert binomial(n, u).func == binomial
assert binomial(kp, u).func == binomial
assert binomial(n, p).func == binomial
assert binomial(n, k).func == binomial
assert binomial(n, n + p).func == binomial
assert binomial(kp, kp + p).func == binomial
assert expand_func(binomial(n, n - 3)) == n*(n - 2)*(n - 1)/6
assert binomial(n, k).is_integer
assert binomial(nt, k).is_integer is None
assert binomial(x, nt).is_integer is False
assert binomial(gamma(25), 6) == 79232165267303928292058750056084441948572511312165380965440075720159859792344339983120618959044048198214221915637090855535036339620413440000
assert binomial(1324, 47) == 906266255662694632984994480774946083064699457235920708992926525848438478406790323869952
assert binomial(1735, 43) == 190910140420204130794758005450919715396159959034348676124678207874195064798202216379800
assert binomial(2512, 53) == 213894469313832631145798303740098720367984955243020898718979538096223399813295457822575338958939834177325304000
assert binomial(3383, 52) == 27922807788818096863529701501764372757272890613101645521813434902890007725667814813832027795881839396839287659777235
assert binomial(4321, 51) == 124595639629264868916081001263541480185227731958274383287107643816863897851139048158022599533438936036467601690983780576
assert binomial(a, b).is_nonnegative is True
assert binomial(-1, 2, evaluate=False).is_nonnegative is True
assert binomial(10, 5, evaluate=False).is_nonnegative is True
assert binomial(10, -3, evaluate=False).is_nonnegative is True
assert binomial(-10, -3, evaluate=False).is_nonnegative is True
assert binomial(-10, 2, evaluate=False).is_nonnegative is True
assert binomial(-10, 1, evaluate=False).is_nonnegative is False
assert binomial(-10, 7, evaluate=False).is_nonnegative is False
# issue #14625
for _ in (pi, -pi, nt, v, a):
assert binomial(_, _) == 1
assert binomial(_, _ - 1) == _
assert isinstance(binomial(u, u), binomial)
assert isinstance(binomial(u, u - 1), binomial)
assert isinstance(binomial(x, x), binomial)
assert isinstance(binomial(x, x - 1), binomial)
# issue #13980 and #13981
assert binomial(-7, -5) == 0
assert binomial(-23, -12) == 0
assert binomial(S(13)/2, -10) == 0
assert binomial(-49, -51) == 0
assert binomial(19, S(-7)/2) == S(-68719476736)/(911337863661225*pi)
assert binomial(0, S(3)/2) == S(-2)/(3*pi)
assert binomial(-3, S(-7)/2) == zoo
assert binomial(kn, kt) == zoo
assert binomial(nt, kt).func == binomial
assert binomial(nt, S(15)/6) == 8*gamma(nt + 1)/(15*sqrt(pi)*gamma(nt - S(3)/2))
assert binomial(S(20)/3, S(-10)/8) == gamma(S(23)/3)/(gamma(S(-1)/4)*gamma(S(107)/12))
assert binomial(S(19)/2, S(-7)/2) == S(-1615)/8388608
assert binomial(S(-13)/5, S(-7)/8) == gamma(S(-8)/5)/(gamma(S(-29)/40)*gamma(S(1)/8))
assert binomial(S(-19)/8, S(-13)/5) == gamma(S(-11)/8)/(gamma(S(-8)/5)*gamma(S(49)/40))
# binomial for complexes
from sympy import I
assert binomial(I, S(-89)/8) == gamma(1 + I)/(gamma(S(-81)/8)*gamma(S(97)/8 + I))
assert binomial(I, 2*I) == gamma(1 + I)/(gamma(1 - I)*gamma(1 + 2*I))
assert binomial(-7, I) == zoo
assert binomial(-7/S(6), I) == gamma(-1/S(6))/(gamma(-1/S(6) - I)*gamma(1 + I))
assert binomial((1+2*I), (1+3*I)) == gamma(2 + 2*I)/(gamma(1 - I)*gamma(2 + 3*I))
assert binomial(I, 5) == S(1)/3 - I/S(12)
assert binomial((2*I + 3), 7) == -13*I/S(63)
assert isinstance(binomial(I, n), binomial)
def test_binomial_Mod():
p, q = 10**5 + 3, 10**9 + 33 # prime modulo
r, s = 10**7 + 5, 33333333 # composite modulo
n, k, m = symbols('n k m')
assert (binomial(n, k) % q).subs({n: s, k: p}) == Mod(binomial(s, p), q)
assert (binomial(n, k) % m).subs({n: 8, k: 5, m: 13}) == 4
assert (binomial(9, k) % 7).subs(k, 2) == 1
# Lucas Theorem
assert Mod(binomial(156675, 4433, evaluate=False), p) == Mod(binomial(156675, 4433), p)
assert Mod(binomial(123456, 43253, evaluate=False), p) == Mod(binomial(123456, 43253), p)
assert Mod(binomial(-178911, 237, evaluate=False), p) == Mod(-binomial(178911 + 237 - 1, 237), p)
assert Mod(binomial(-178911, 238, evaluate=False), p) == Mod(binomial(178911 + 238 - 1, 238), p)
# factorial Mod
assert Mod(binomial(1234, 432, evaluate=False), q) == Mod(binomial(1234, 432), q)
assert Mod(binomial(9734, 451, evaluate=False), q) == Mod(binomial(9734, 451), q)
assert Mod(binomial(-10733, 4459, evaluate=False), q) == Mod(binomial(-10733, 4459), q)
assert Mod(binomial(-15733, 4458, evaluate=False), q) == Mod(binomial(-15733, 4458), q)
# binomial factorize
assert Mod(binomial(253, 113, evaluate=False), r) == Mod(binomial(253, 113), r)
assert Mod(binomial(753, 119, evaluate=False), r) == Mod(binomial(753, 119), r)
assert Mod(binomial(3781, 948, evaluate=False), s) == Mod(binomial(3781, 948), s)
assert Mod(binomial(25773, 1793, evaluate=False), s) == Mod(binomial(25773, 1793), s)
assert Mod(binomial(-753, 118, evaluate=False), r) == Mod(binomial(-753, 118), r)
assert Mod(binomial(-25773, 1793, evaluate=False), s) == Mod(binomial(-25773, 1793), s)
def test_binomial_diff():
n = Symbol('n', integer=True)
k = Symbol('k', integer=True)
assert binomial(n, k).diff(n) == \
(-polygamma(0, 1 + n - k) + polygamma(0, 1 + n))*binomial(n, k)
assert binomial(n**2, k**3).diff(n) == \
2*n*(-polygamma(
0, 1 + n**2 - k**3) + polygamma(0, 1 + n**2))*binomial(n**2, k**3)
assert binomial(n, k).diff(k) == \
(-polygamma(0, 1 + k) + polygamma(0, 1 + n - k))*binomial(n, k)
assert binomial(n**2, k**3).diff(k) == \
3*k**2*(-polygamma(
0, 1 + k**3) + polygamma(0, 1 + n**2 - k**3))*binomial(n**2, k**3)
def test_binomial_rewrite():
n = Symbol('n', integer=True)
k = Symbol('k', integer=True)
assert binomial(n, k).rewrite(
factorial) == factorial(n)/(factorial(k)*factorial(n - k))
assert binomial(
n, k).rewrite(gamma) == gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
assert binomial(n, k).rewrite(ff) == ff(n, k) / factorial(k)
@XFAIL
def test_factorial_simplify_fail():
# simplify(factorial(x + 1).diff(x) - ((x + 1)*factorial(x)).diff(x))) == 0
from sympy.abc import x
assert simplify(x*polygamma(0, x + 1) - x*polygamma(0, x + 2) +
polygamma(0, x + 1) - polygamma(0, x + 2) + 1) == 0
def test_subfactorial():
assert all(subfactorial(i) == ans for i, ans in enumerate(
[1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496]))
assert subfactorial(oo) == oo
assert subfactorial(nan) == nan
x = Symbol('x')
assert subfactorial(x).rewrite(uppergamma) == uppergamma(x + 1, -1)/S.Exp1
tt = Symbol('tt', integer=True, nonnegative=True)
tf = Symbol('tf', integer=True, nonnegative=False)
tn = Symbol('tf', integer=True)
ft = Symbol('ft', integer=False, nonnegative=True)
ff = Symbol('ff', integer=False, nonnegative=False)
fn = Symbol('ff', integer=False)
nt = Symbol('nt', nonnegative=True)
nf = Symbol('nf', nonnegative=False)
nn = Symbol('nf')
te = Symbol('te', even=True, nonnegative=True)
to = Symbol('to', odd=True, nonnegative=True)
assert subfactorial(tt).is_integer
assert subfactorial(tf).is_integer is None
assert subfactorial(tn).is_integer is None
assert subfactorial(ft).is_integer is None
assert subfactorial(ff).is_integer is None
assert subfactorial(fn).is_integer is None
assert subfactorial(nt).is_integer is None
assert subfactorial(nf).is_integer is None
assert subfactorial(nn).is_integer is None
assert subfactorial(tt).is_nonnegative
assert subfactorial(tf).is_nonnegative is None
assert subfactorial(tn).is_nonnegative is None
assert subfactorial(ft).is_nonnegative is None
assert subfactorial(ff).is_nonnegative is None
assert subfactorial(fn).is_nonnegative is None
assert subfactorial(nt).is_nonnegative is None
assert subfactorial(nf).is_nonnegative is None
assert subfactorial(nn).is_nonnegative is None
assert subfactorial(tt).is_even is None
assert subfactorial(tt).is_odd is None
assert subfactorial(te).is_odd is True
assert subfactorial(to).is_even is True
|
307a5319c6129f681cac3f0ffbd6bc4cccfa7de67f3f87004540a3c67713e4b0
|
import string
from sympy import (
Symbol, symbols, Dummy, S, Sum, Rational, oo, pi, I,
expand_func, diff, EulerGamma, cancel, re, im, Product, carmichael)
from sympy.functions import (
bernoulli, harmonic, bell, fibonacci, tribonacci, lucas, euler, catalan,
genocchi, partition, binomial, gamma, sqrt, cbrt, hyper, log, digamma,
trigamma, polygamma, factorial, sin, cos, cot, zeta)
from sympy.core.compatibility import range
from sympy.utilities.pytest import XFAIL, raises
from sympy.core.numbers import GoldenRatio
x = Symbol('x')
def test_carmichael():
assert carmichael.find_carmichael_numbers_in_range(0, 561) == []
assert carmichael.find_carmichael_numbers_in_range(561, 562) == [561]
assert carmichael.find_carmichael_numbers_in_range(561, 1105) == carmichael.find_carmichael_numbers_in_range(561,
562)
assert carmichael.find_first_n_carmichaels(5) == [561, 1105, 1729, 2465, 2821]
assert carmichael.is_prime(2821) == False
assert carmichael.is_prime(2465) == False
assert carmichael.is_prime(1729) == False
assert carmichael.is_prime(1105) == False
assert carmichael.is_prime(561) == False
def test_bernoulli():
assert bernoulli(0) == 1
assert bernoulli(1) == Rational(-1, 2)
assert bernoulli(2) == Rational(1, 6)
assert bernoulli(3) == 0
assert bernoulli(4) == Rational(-1, 30)
assert bernoulli(5) == 0
assert bernoulli(6) == Rational(1, 42)
assert bernoulli(7) == 0
assert bernoulli(8) == Rational(-1, 30)
assert bernoulli(10) == Rational(5, 66)
assert bernoulli(1000001) == 0
assert bernoulli(0, x) == 1
assert bernoulli(1, x) == x - Rational(1, 2)
assert bernoulli(2, x) == x**2 - x + Rational(1, 6)
assert bernoulli(3, x) == x**3 - (3*x**2)/2 + x/2
# Should be fast; computed with mpmath
b = bernoulli(1000)
assert b.p % 10**10 == 7950421099
assert b.q == 342999030
b = bernoulli(10**6, evaluate=False).evalf()
assert str(b) == '-2.23799235765713e+4767529'
# Issue #8527
l = Symbol('l', integer=True)
m = Symbol('m', integer=True, nonnegative=True)
n = Symbol('n', integer=True, positive=True)
assert isinstance(bernoulli(2 * l + 1), bernoulli)
assert isinstance(bernoulli(2 * m + 1), bernoulli)
assert bernoulli(2 * n + 1) == 0
def test_fibonacci():
assert [fibonacci(n) for n in range(-3, 5)] == [2, -1, 1, 0, 1, 1, 2, 3]
assert fibonacci(100) == 354224848179261915075
assert [lucas(n) for n in range(-3, 5)] == [-4, 3, -1, 2, 1, 3, 4, 7]
assert lucas(100) == 792070839848372253127
assert fibonacci(1, x) == 1
assert fibonacci(2, x) == x
assert fibonacci(3, x) == x**2 + 1
assert fibonacci(4, x) == x**3 + 2*x
# issue #8800
n = Dummy('n')
assert fibonacci(n).limit(n, S.Infinity) == S.Infinity
assert lucas(n).limit(n, S.Infinity) == S.Infinity
assert fibonacci(n).rewrite(sqrt) == \
2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5
assert fibonacci(n).rewrite(sqrt).subs(n, 10).expand() == fibonacci(10)
assert fibonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \
fibonacci(10)
assert lucas(n).rewrite(sqrt) == \
(fibonacci(n-1).rewrite(sqrt) + fibonacci(n+1).rewrite(sqrt)).simplify()
assert lucas(n).rewrite(sqrt).subs(n, 10).expand() == lucas(10)
def test_tribonacci():
assert [tribonacci(n) for n in range(8)] == [0, 1, 1, 2, 4, 7, 13, 24]
assert tribonacci(100) == 98079530178586034536500564
assert tribonacci(0, x) == 0
assert tribonacci(1, x) == 1
assert tribonacci(2, x) == x**2
assert tribonacci(3, x) == x**4 + x
assert tribonacci(4, x) == x**6 + 2*x**3 + 1
assert tribonacci(5, x) == x**8 + 3*x**5 + 3*x**2
n = Dummy('n')
assert tribonacci(n).limit(n, S.Infinity) == S.Infinity
w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2
a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3
b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3
c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3
assert tribonacci(n).rewrite(sqrt) == \
(a**(n + 1)/((a - b)*(a - c))
+ b**(n + 1)/((b - a)*(b - c))
+ c**(n + 1)/((c - a)*(c - b)))
assert tribonacci(n).rewrite(sqrt).subs(n, 4).simplify() == tribonacci(4)
assert tribonacci(n).rewrite(GoldenRatio).subs(n,10).evalf() == \
tribonacci(10)
def test_bell():
assert [bell(n) for n in range(8)] == [1, 1, 2, 5, 15, 52, 203, 877]
assert bell(0, x) == 1
assert bell(1, x) == x
assert bell(2, x) == x**2 + x
assert bell(5, x) == x**5 + 10*x**4 + 25*x**3 + 15*x**2 + x
assert bell(oo) == S.Infinity
raises(ValueError, lambda: bell(oo, x))
raises(ValueError, lambda: bell(-1))
raises(ValueError, lambda: bell(S(1)/2))
X = symbols('x:6')
# X = (x0, x1, .. x5)
# at the same time: X[1] = x1, X[2] = x2 for standard readablity.
# but we must supply zero-based indexed object X[1:] = (x1, .. x5)
assert bell(6, 2, X[1:]) == 6*X[5]*X[1] + 15*X[4]*X[2] + 10*X[3]**2
assert bell(
6, 3, X[1:]) == 15*X[4]*X[1]**2 + 60*X[3]*X[2]*X[1] + 15*X[2]**3
X = (1, 10, 100, 1000, 10000)
assert bell(6, 2, X) == (6 + 15 + 10)*10000
X = (1, 2, 3, 3, 5)
assert bell(6, 2, X) == 6*5 + 15*3*2 + 10*3**2
X = (1, 2, 3, 5)
assert bell(6, 3, X) == 15*5 + 60*3*2 + 15*2**3
# Dobinski's formula
n = Symbol('n', integer=True, nonnegative=True)
# For large numbers, this is too slow
# For nonintegers, there are significant precision errors
for i in [0, 2, 3, 7, 13, 42, 55]:
assert bell(i).evalf() == bell(n).rewrite(Sum).evalf(subs={n: i})
# issue 9184
n = Dummy('n')
assert bell(n).limit(n, S.Infinity) == S.Infinity
def test_harmonic():
n = Symbol("n")
m = Symbol("m")
assert harmonic(n, 0) == n
assert harmonic(n).evalf() == harmonic(n)
assert harmonic(n, 1) == harmonic(n)
assert harmonic(1, n).evalf() == harmonic(1, n)
assert harmonic(0, 1) == 0
assert harmonic(1, 1) == 1
assert harmonic(2, 1) == Rational(3, 2)
assert harmonic(3, 1) == Rational(11, 6)
assert harmonic(4, 1) == Rational(25, 12)
assert harmonic(0, 2) == 0
assert harmonic(1, 2) == 1
assert harmonic(2, 2) == Rational(5, 4)
assert harmonic(3, 2) == Rational(49, 36)
assert harmonic(4, 2) == Rational(205, 144)
assert harmonic(0, 3) == 0
assert harmonic(1, 3) == 1
assert harmonic(2, 3) == Rational(9, 8)
assert harmonic(3, 3) == Rational(251, 216)
assert harmonic(4, 3) == Rational(2035, 1728)
assert harmonic(oo, -1) == S.NaN
assert harmonic(oo, 0) == oo
assert harmonic(oo, S.Half) == oo
assert harmonic(oo, 1) == oo
assert harmonic(oo, 2) == (pi**2)/6
assert harmonic(oo, 3) == zeta(3)
assert harmonic(0, m) == 0
def test_harmonic_rational():
ne = S(6)
no = S(5)
pe = S(8)
po = S(9)
qe = S(10)
qo = S(13)
Heee = harmonic(ne + pe/qe)
Aeee = (-log(10) + 2*(-1/S(4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 - 1/S(4))*log(sqrt(sqrt(5)/8 + 5/S(8)))
+ pi*(1/S(4) + sqrt(5)/4)/(2*sqrt(-sqrt(5)/8 + 5/S(8)))
+ 13944145/S(4720968))
Heeo = harmonic(ne + pe/qo)
Aeeo = (-log(26) + 2*log(sin(3*pi/13))*cos(4*pi/13) + 2*log(sin(2*pi/13))*cos(32*pi/13)
+ 2*log(sin(5*pi/13))*cos(80*pi/13) - 2*log(sin(6*pi/13))*cos(5*pi/13)
- 2*log(sin(4*pi/13))*cos(pi/13) + pi*cot(5*pi/13)/2 - 2*log(sin(pi/13))*cos(3*pi/13)
+ 2422020029/S(702257080))
Heoe = harmonic(ne + po/qe)
Aeoe = (-log(20) + 2*(1/S(4) + sqrt(5)/4)*log(-1/S(4) + sqrt(5)/4)
+ 2*(-1/S(4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 - 1/S(4))*log(sqrt(sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 + 1/S(4))*log(1/S(4) + sqrt(5)/4)
+ 11818877030/S(4286604231) + pi*(sqrt(5)/8 + 5/S(8))/sqrt(-sqrt(5)/8 + 5/S(8)))
Heoo = harmonic(ne + po/qo)
Aeoo = (-log(26) + 2*log(sin(3*pi/13))*cos(54*pi/13) + 2*log(sin(4*pi/13))*cos(6*pi/13)
+ 2*log(sin(6*pi/13))*cos(108*pi/13) - 2*log(sin(5*pi/13))*cos(pi/13)
- 2*log(sin(pi/13))*cos(5*pi/13) + pi*cot(4*pi/13)/2
- 2*log(sin(2*pi/13))*cos(3*pi/13) + 11669332571/S(3628714320))
Hoee = harmonic(no + pe/qe)
Aoee = (-log(10) + 2*(-1/S(4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 - 1/S(4))*log(sqrt(sqrt(5)/8 + 5/S(8)))
+ pi*(1/S(4) + sqrt(5)/4)/(2*sqrt(-sqrt(5)/8 + 5/S(8)))
+ 779405/S(277704))
Hoeo = harmonic(no + pe/qo)
Aoeo = (-log(26) + 2*log(sin(3*pi/13))*cos(4*pi/13) + 2*log(sin(2*pi/13))*cos(32*pi/13)
+ 2*log(sin(5*pi/13))*cos(80*pi/13) - 2*log(sin(6*pi/13))*cos(5*pi/13)
- 2*log(sin(4*pi/13))*cos(pi/13) + pi*cot(5*pi/13)/2
- 2*log(sin(pi/13))*cos(3*pi/13) + 53857323/S(16331560))
Hooe = harmonic(no + po/qe)
Aooe = (-log(20) + 2*(1/S(4) + sqrt(5)/4)*log(-1/S(4) + sqrt(5)/4)
+ 2*(-1/S(4) + sqrt(5)/4)*log(sqrt(-sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 - 1/S(4))*log(sqrt(sqrt(5)/8 + 5/S(8)))
+ 2*(-sqrt(5)/4 + 1/S(4))*log(1/S(4) + sqrt(5)/4)
+ 486853480/S(186374097) + pi*(sqrt(5)/8 + 5/S(8))/sqrt(-sqrt(5)/8 + 5/S(8)))
Hooo = harmonic(no + po/qo)
Aooo = (-log(26) + 2*log(sin(3*pi/13))*cos(54*pi/13) + 2*log(sin(4*pi/13))*cos(6*pi/13)
+ 2*log(sin(6*pi/13))*cos(108*pi/13) - 2*log(sin(5*pi/13))*cos(pi/13)
- 2*log(sin(pi/13))*cos(5*pi/13) + pi*cot(4*pi/13)/2
- 2*log(sin(2*pi/13))*cos(3*pi/13) + 383693479/S(125128080))
H = [Heee, Heeo, Heoe, Heoo, Hoee, Hoeo, Hooe, Hooo]
A = [Aeee, Aeeo, Aeoe, Aeoo, Aoee, Aoeo, Aooe, Aooo]
for h, a in zip(H, A):
e = expand_func(h).doit()
assert cancel(e/a) == 1
assert abs(h.n() - a.n()) < 1e-12
def test_harmonic_evalf():
assert str(harmonic(1.5).evalf(n=10)) == '1.280372306'
assert str(harmonic(1.5, 2).evalf(n=10)) == '1.154576311' # issue 7443
def test_harmonic_rewrite_polygamma():
n = Symbol("n")
m = Symbol("m")
assert harmonic(n).rewrite(digamma) == polygamma(0, n + 1) + EulerGamma
assert harmonic(n).rewrite(trigamma) == polygamma(0, n + 1) + EulerGamma
assert harmonic(n).rewrite(polygamma) == polygamma(0, n + 1) + EulerGamma
assert harmonic(n,3).rewrite(polygamma) == polygamma(2, n + 1)/2 - polygamma(2, 1)/2
assert harmonic(n,m).rewrite(polygamma) == (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1)
assert expand_func(harmonic(n+4)) == harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)
assert expand_func(harmonic(n-4)) == harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n
assert harmonic(n, m).rewrite("tractable") == harmonic(n, m).rewrite(polygamma)
@XFAIL
def test_harmonic_limit_fail():
n = Symbol("n")
m = Symbol("m")
# For m > 1:
assert limit(harmonic(n, m), n, oo) == zeta(m)
@XFAIL
def test_harmonic_rewrite_sum_fail():
n = Symbol("n")
m = Symbol("m")
_k = Dummy("k")
assert harmonic(n).rewrite(Sum) == Sum(1/_k, (_k, 1, n))
assert harmonic(n, m).rewrite(Sum) == Sum(_k**(-m), (_k, 1, n))
def replace_dummy(expr, sym):
dum = expr.atoms(Dummy)
if not dum:
return expr
assert len(dum) == 1
return expr.xreplace({dum.pop(): sym})
def test_harmonic_rewrite_sum():
n = Symbol("n")
m = Symbol("m")
_k = Dummy("k")
assert replace_dummy(harmonic(n).rewrite(Sum), _k) == Sum(1/_k, (_k, 1, n))
assert replace_dummy(harmonic(n, m).rewrite(Sum), _k) == Sum(_k**(-m), (_k, 1, n))
def test_euler():
assert euler(0) == 1
assert euler(1) == 0
assert euler(2) == -1
assert euler(3) == 0
assert euler(4) == 5
assert euler(6) == -61
assert euler(8) == 1385
assert euler(20, evaluate=False) != 370371188237525
n = Symbol('n', integer=True)
assert euler(n) != -1
assert euler(n).subs(n, 2) == -1
raises(ValueError, lambda: euler(-2))
raises(ValueError, lambda: euler(-3))
raises(ValueError, lambda: euler(2.3))
assert euler(20).evalf() == 370371188237525.0
assert euler(20, evaluate=False).evalf() == 370371188237525.0
assert euler(n).rewrite(Sum) == euler(n)
# XXX: Not sure what the guy who wrote this test was trying to do with the _j and _k stuff
n = Symbol('n', integer=True, nonnegative=True)
assert euler(2*n + 1).rewrite(Sum) == 0
@XFAIL
def test_euler_failing():
# depends on dummy variables being implemented https://github.com/sympy/sympy/issues/5665
assert euler(2*n).rewrite(Sum) == I*Sum(Sum((-1)**_j*2**(-_k)*I**(-_k)*(-2*_j + _k)**(2*n + 1)*binomial(_k, _j)/_k, (_j, 0, _k)), (_k, 1, 2*n + 1))
def test_euler_odd():
n = Symbol('n', odd=True, positive=True)
assert euler(n) == 0
n = Symbol('n', odd=True)
assert euler(n) != 0
def test_euler_polynomials():
assert euler(0, x) == 1
assert euler(1, x) == x - Rational(1, 2)
assert euler(2, x) == x**2 - x
assert euler(3, x) == x**3 - (3*x**2)/2 + Rational(1, 4)
m = Symbol('m')
assert isinstance(euler(m, x), euler)
from sympy import Float
A = Float('-0.46237208575048694923364757452876131e8') # from Maple
B = euler(19, S.Pi.evalf(32))
assert abs((A - B)/A) < 1e-31 # expect low relative error
C = euler(19, S.Pi, evaluate=False).evalf(32)
assert abs((A - C)/A) < 1e-31
def test_euler_polynomial_rewrite():
m = Symbol('m')
A = euler(m, x).rewrite('Sum');
assert A.subs({m:3, x:5}).doit() == euler(3, 5)
def test_catalan():
n = Symbol('n', integer=True)
m = Symbol('m', integer=True, positive=True)
k = Symbol('k', integer=True, nonnegative=True)
p = Symbol('p', nonnegative=True)
catalans = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786]
for i, c in enumerate(catalans):
assert catalan(i) == c
assert catalan(n).rewrite(factorial).subs(n, i) == c
assert catalan(n).rewrite(Product).subs(n, i).doit() == c
assert catalan(x) == catalan(x)
assert catalan(2*x).rewrite(binomial) == binomial(4*x, 2*x)/(2*x + 1)
assert catalan(Rational(1, 2)).rewrite(gamma) == 8/(3*pi)
assert catalan(Rational(1, 2)).rewrite(factorial).rewrite(gamma) ==\
8 / (3 * pi)
assert catalan(3*x).rewrite(gamma) == 4**(
3*x)*gamma(3*x + Rational(1, 2))/(sqrt(pi)*gamma(3*x + 2))
assert catalan(x).rewrite(hyper) == hyper((-x + 1, -x), (2,), 1)
assert catalan(n).rewrite(factorial) == factorial(2*n) / (factorial(n + 1)
* factorial(n))
assert isinstance(catalan(n).rewrite(Product), catalan)
assert isinstance(catalan(m).rewrite(Product), Product)
assert diff(catalan(x), x) == (polygamma(
0, x + Rational(1, 2)) - polygamma(0, x + 2) + log(4))*catalan(x)
assert catalan(x).evalf() == catalan(x)
c = catalan(S.Half).evalf()
assert str(c) == '0.848826363156775'
c = catalan(I).evalf(3)
assert str((re(c), im(c))) == '(0.398, -0.0209)'
# Assumptions
assert catalan(p).is_positive is True
assert catalan(k).is_integer is True
assert catalan(m+3).is_composite is True
def test_genocchi():
genocchis = [1, -1, 0, 1, 0, -3, 0, 17]
for n, g in enumerate(genocchis):
assert genocchi(n + 1) == g
m = Symbol('m', integer=True)
n = Symbol('n', integer=True, positive=True)
assert genocchi(m) == genocchi(m)
assert genocchi(n).rewrite(bernoulli) == (1 - 2 ** n) * bernoulli(n) * 2
assert genocchi(2 * n).is_odd
assert genocchi(4 * n).is_positive
# these are the only 2 prime Genocchi numbers
assert genocchi(6, evaluate=False).is_prime == S(-3).is_prime
assert genocchi(8, evaluate=False).is_prime
assert genocchi(4 * n + 2).is_negative
assert genocchi(4 * n - 2).is_negative
def test_partition():
partition_nums = [1, 1, 2, 3, 5, 7, 11, 15, 22]
for n, p in enumerate(partition_nums):
assert partition(n) == p
x = Symbol('x')
y = Symbol('y', real=True)
m = Symbol('m', integer=True)
n = Symbol('n', integer=True, negative=True)
p = Symbol('p', integer=True, nonnegative=True)
assert partition(m).is_integer
assert not partition(m).is_negative
assert partition(m).is_nonnegative
assert partition(n).is_zero
assert partition(p).is_positive
assert partition(x).subs(x, 7) == 15
assert partition(y).subs(y, 8) == 22
raises(ValueError, lambda: partition(S(5)/4))
def test_nC_nP_nT():
from sympy.utilities.iterables import (
multiset_permutations, multiset_combinations, multiset_partitions,
partitions, subsets, permutations)
from sympy.functions.combinatorial.numbers import (
nP, nC, nT, stirling, _multiset_histogram, _AOP_product)
from sympy.combinatorics.permutations import Permutation
from sympy.core.numbers import oo
from random import choice
c = string.ascii_lowercase
for i in range(100):
s = ''.join(choice(c) for i in range(7))
u = len(s) == len(set(s))
try:
tot = 0
for i in range(8):
check = nP(s, i)
tot += check
assert len(list(multiset_permutations(s, i))) == check
if u:
assert nP(len(s), i) == check
assert nP(s) == tot
except AssertionError:
print(s, i, 'failed perm test')
raise ValueError()
for i in range(100):
s = ''.join(choice(c) for i in range(7))
u = len(s) == len(set(s))
try:
tot = 0
for i in range(8):
check = nC(s, i)
tot += check
assert len(list(multiset_combinations(s, i))) == check
if u:
assert nC(len(s), i) == check
assert nC(s) == tot
if u:
assert nC(len(s)) == tot
except AssertionError:
print(s, i, 'failed combo test')
raise ValueError()
for i in range(1, 10):
tot = 0
for j in range(1, i + 2):
check = nT(i, j)
tot += check
assert sum(1 for p in partitions(i, j, size=True) if p[0] == j) == check
assert nT(i) == tot
for i in range(1, 10):
tot = 0
for j in range(1, i + 2):
check = nT(range(i), j)
tot += check
assert len(list(multiset_partitions(list(range(i)), j))) == check
assert nT(range(i)) == tot
for i in range(100):
s = ''.join(choice(c) for i in range(7))
u = len(s) == len(set(s))
try:
tot = 0
for i in range(1, 8):
check = nT(s, i)
tot += check
assert len(list(multiset_partitions(s, i))) == check
if u:
assert nT(range(len(s)), i) == check
if u:
assert nT(range(len(s))) == tot
assert nT(s) == tot
except AssertionError:
print(s, i, 'failed partition test')
raise ValueError()
# tests for Stirling numbers of the first kind that are not tested in the
# above
assert [stirling(9, i, kind=1) for i in range(11)] == [
0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0]
perms = list(permutations(range(4)))
assert [sum(1 for p in perms if Permutation(p).cycles == i)
for i in range(5)] == [0, 6, 11, 6, 1] == [
stirling(4, i, kind=1) for i in range(5)]
# http://oeis.org/A008275
assert [stirling(n, k, signed=1)
for n in range(10) for k in range(1, n + 1)] == [
1, -1,
1, 2, -3,
1, -6, 11, -6,
1, 24, -50, 35, -10,
1, -120, 274, -225, 85, -15,
1, 720, -1764, 1624, -735, 175, -21,
1, -5040, 13068, -13132, 6769, -1960, 322, -28,
1, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1]
# https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
assert [stirling(n, k, kind=1)
for n in range(10) for k in range(n+1)] == [
1,
0, 1,
0, 1, 1,
0, 2, 3, 1,
0, 6, 11, 6, 1,
0, 24, 50, 35, 10, 1,
0, 120, 274, 225, 85, 15, 1,
0, 720, 1764, 1624, 735, 175, 21, 1,
0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1,
0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1]
# https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
assert [stirling(n, k, kind=2)
for n in range(10) for k in range(n+1)] == [
1,
0, 1,
0, 1, 1,
0, 1, 3, 1,
0, 1, 7, 6, 1,
0, 1, 15, 25, 10, 1,
0, 1, 31, 90, 65, 15, 1,
0, 1, 63, 301, 350, 140, 21, 1,
0, 1, 127, 966, 1701, 1050, 266, 28, 1,
0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1]
assert stirling(3, 4, kind=1) == stirling(3, 4, kind=1) == 0
raises(ValueError, lambda: stirling(-2, 2))
def delta(p):
if len(p) == 1:
return oo
return min(abs(i[0] - i[1]) for i in subsets(p, 2))
parts = multiset_partitions(range(5), 3)
d = 2
assert (sum(1 for p in parts if all(delta(i) >= d for i in p)) ==
stirling(5, 3, d=d) == 7)
# other coverage tests
assert nC('abb', 2) == nC('aab', 2) == 2
assert nP(3, 3, replacement=True) == nP('aabc', 3, replacement=True) == 27
assert nP(3, 4) == 0
assert nP('aabc', 5) == 0
assert nC(4, 2, replacement=True) == nC('abcdd', 2, replacement=True) == \
len(list(multiset_combinations('aabbccdd', 2))) == 10
assert nC('abcdd') == sum(nC('abcdd', i) for i in range(6)) == 24
assert nC(list('abcdd'), 4) == 4
assert nT('aaaa') == nT(4) == len(list(partitions(4))) == 5
assert nT('aaab') == len(list(multiset_partitions('aaab'))) == 7
assert nC('aabb'*3, 3) == 4 # aaa, bbb, abb, baa
assert dict(_AOP_product((4,1,1,1))) == {
0: 1, 1: 4, 2: 7, 3: 8, 4: 8, 5: 7, 6: 4, 7: 1}
# the following was the first t that showed a problem in a previous form of
# the function, so it's not as random as it may appear
t = (3, 9, 4, 6, 6, 5, 5, 2, 10, 4)
assert sum(_AOP_product(t)[i] for i in range(55)) == 58212000
raises(ValueError, lambda: _multiset_histogram({1:'a'}))
def test_PR_14617():
from sympy.functions.combinatorial.numbers import nT
for n in (0, []):
for k in (-1, 0, 1):
if k == 0:
assert nT(n, k) == 1
else:
assert nT(n, k) == 0
def test_issue_8496():
n = Symbol("n")
k = Symbol("k")
raises(TypeError, lambda: catalan(n, k))
def test_issue_8601():
n = Symbol('n', integer=True, negative=True)
assert catalan(n - 1) == S.Zero
assert catalan(-S.Half) == S.ComplexInfinity
assert catalan(-S.One) == -S.Half
c1 = catalan(-5.6).evalf()
assert str(c1) == '6.93334070531408e-5'
c2 = catalan(-35.4).evalf()
assert str(c2) == '-4.14189164517449e-24'
|
59baa45ad8a6d7fd5d670c86f964946c54304e765d5522cb9dfebb666eebfd27
|
from sympy import (
symbols, log, ln, Float, nan, oo, zoo, I, pi, E, exp, Symbol,
LambertW, sqrt, Rational, expand_log, S, sign, conjugate, refine,
sin, cos, sinh, cosh, tanh, exp_polar, re, Function, simplify,
AccumBounds, MatrixSymbol)
from sympy.abc import x, y, z
def test_exp_values():
k = Symbol('k', integer=True)
assert exp(nan) == nan
assert exp(oo) == oo
assert exp(-oo) == 0
assert exp(0) == 1
assert exp(1) == E
assert exp(-1 + x).as_base_exp() == (S.Exp1, x - 1)
assert exp(1 + x).as_base_exp() == (S.Exp1, x + 1)
assert exp(pi*I/2) == I
assert exp(pi*I) == -1
assert exp(3*pi*I/2) == -I
assert exp(2*pi*I) == 1
assert refine(exp(pi*I*2*k)) == 1
assert refine(exp(pi*I*2*(k + Rational(1, 2)))) == -1
assert refine(exp(pi*I*2*(k + Rational(1, 4)))) == I
assert refine(exp(pi*I*2*(k + Rational(3, 4)))) == -I
assert exp(log(x)) == x
assert exp(2*log(x)) == x**2
assert exp(pi*log(x)) == x**pi
assert exp(17*log(x) + E*log(y)) == x**17 * y**E
assert exp(x*log(x)) != x**x
assert exp(sin(x)*log(x)) != x
assert exp(3*log(x) + oo*x) == exp(oo*x) * x**3
assert exp(4*log(x)*log(y) + 3*log(x)) == x**3 * exp(4*log(x)*log(y))
def test_exp_log():
x = Symbol("x", real=True)
assert log(exp(x)) == x
assert exp(log(x)) == x
assert log(x).inverse() == exp
assert exp(x).inverse() == log
y = Symbol("y", polar=True)
assert log(exp_polar(z)) == z
assert exp(log(y)) == y
def test_exp_expand():
e = exp(log(Rational(2))*(1 + x) - log(Rational(2))*x)
assert e.expand() == 2
assert exp(x + y) != exp(x)*exp(y)
assert exp(x + y).expand() == exp(x)*exp(y)
def test_exp__as_base_exp():
assert exp(x).as_base_exp() == (E, x)
assert exp(2*x).as_base_exp() == (E, 2*x)
assert exp(x*y).as_base_exp() == (E, x*y)
assert exp(-x).as_base_exp() == (E, -x)
# Pow( *expr.as_base_exp() ) == expr invariant should hold
assert E**x == exp(x)
assert E**(2*x) == exp(2*x)
assert E**(x*y) == exp(x*y)
assert exp(x).base is S.Exp1
assert exp(x).exp == x
def test_exp_infinity():
assert exp(I*y) != nan
assert refine(exp(I*oo)) == nan
assert refine(exp(-I*oo)) == nan
assert exp(y*I*oo) != nan
assert exp(zoo) == nan
def test_exp_subs():
x = Symbol('x')
e = (exp(3*log(x), evaluate=False)) # evaluates to x**3
assert e.subs(x**3, y**3) == e
assert e.subs(x**2, 5) == e
assert (x**3).subs(x**2, y) != y**(3/S(2))
assert exp(exp(x) + exp(x**2)).subs(exp(exp(x)), y) == y * exp(exp(x**2))
assert exp(x).subs(E, y) == y**x
x = symbols('x', real=True)
assert exp(5*x).subs(exp(7*x), y) == y**Rational(5, 7)
assert exp(2*x + 7).subs(exp(3*x), y) == y**Rational(2, 3) * exp(7)
x = symbols('x', positive=True)
assert exp(3*log(x)).subs(x**2, y) == y**Rational(3, 2)
# differentiate between E and exp
assert exp(exp(x + E)).subs(exp, 3) == 3**(3**(x + E))
assert exp(exp(x + E)).subs(E, 3) == 3**(3**(x + 3))
assert exp(3).subs(E, sin) == sin(3)
def test_exp_conjugate():
assert conjugate(exp(x)) == exp(conjugate(x))
def test_exp_rewrite():
from sympy.concrete.summations import Sum
assert exp(x).rewrite(sin) == sinh(x) + cosh(x)
assert exp(x*I).rewrite(cos) == cos(x) + I*sin(x)
assert exp(1).rewrite(cos) == sinh(1) + cosh(1)
assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
assert exp(x).rewrite(tanh) == (1 + tanh(x/2))/(1 - tanh(x/2))
assert exp(pi*I/4).rewrite(sqrt) == sqrt(2)/2 + sqrt(2)*I/2
assert exp(pi*I/3).rewrite(sqrt) == S(1)/2 + sqrt(3)*I/2
n = Symbol('n', integer=True)
assert Sum((exp(pi*I/2)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == S(4)/5 + 2*I/5
assert Sum((exp(pi*I/4)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(1 - sqrt(2)*(1 + I)/4)
assert Sum((exp(pi*I/3)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(S(3)/4 - sqrt(3)*I/4)
def test_exp_leading_term():
assert exp(x).as_leading_term(x) == 1
assert exp(1/x).as_leading_term(x) == exp(1/x)
assert exp(2 + x).as_leading_term(x) == exp(2)
def test_exp_taylor_term():
x = symbols('x')
assert exp(x).taylor_term(1, x) == x
assert exp(x).taylor_term(3, x) == x**3/6
assert exp(x).taylor_term(4, x) == x**4/24
def test_exp_MatrixSymbol():
A = MatrixSymbol("A", 2, 2)
assert exp(A).has(exp)
def test_log_values():
assert log(nan) == nan
assert log(oo) == oo
assert log(-oo) == oo
assert log(zoo) == zoo
assert log(-zoo) == zoo
assert log(0) == zoo
assert log(1) == 0
assert log(-1) == I*pi
assert log(E) == 1
assert log(-E).expand() == 1 + I*pi
assert log(pi) == log(pi)
assert log(-pi).expand() == log(pi) + I*pi
assert log(17) == log(17)
assert log(-17) == log(17) + I*pi
assert log(I) == I*pi/2
assert log(-I) == -I*pi/2
assert log(17*I) == I*pi/2 + log(17)
assert log(-17*I).expand() == -I*pi/2 + log(17)
assert log(oo*I) == oo
assert log(-oo*I) == oo
assert log(0, 2) == zoo
assert log(0, 5) == zoo
assert exp(-log(3))**(-1) == 3
assert log(S.Half) == -log(2)
assert log(2*3).func is log
assert log(2*3**2).func is log
def test_log_base():
assert log(1, 2) == 0
assert log(2, 2) == 1
assert log(3, 2) == log(3)/log(2)
assert log(6, 2) == 1 + log(3)/log(2)
assert log(6, 3) == 1 + log(2)/log(3)
assert log(2**3, 2) == 3
assert log(3**3, 3) == 3
assert log(5, 1) == zoo
assert log(1, 1) == nan
assert log(Rational(2, 3), 10) == log(S(2)/3)/log(10)
assert log(Rational(2, 3), Rational(1, 3)) == -log(2)/log(3) + 1
assert log(Rational(2, 3), Rational(2, 5)) == \
log(S(2)/3)/log(S(2)/5)
def test_log_symbolic():
assert log(x, exp(1)) == log(x)
assert log(exp(x)) != x
assert log(x, exp(1)) == log(x)
assert log(x*y) != log(x) + log(y)
assert log(x/y).expand() != log(x) - log(y)
assert log(x/y).expand(force=True) == log(x) - log(y)
assert log(x**y).expand() != y*log(x)
assert log(x**y).expand(force=True) == y*log(x)
assert log(x, 2) == log(x)/log(2)
assert log(E, 2) == 1/log(2)
p, q = symbols('p,q', positive=True)
r = Symbol('r', real=True)
assert log(p**2) != 2*log(p)
assert log(p**2).expand() == 2*log(p)
assert log(x**2).expand() != 2*log(x)
assert log(p**q) != q*log(p)
assert log(exp(p)) == p
assert log(p*q) != log(p) + log(q)
assert log(p*q).expand() == log(p) + log(q)
assert log(-sqrt(3)) == log(sqrt(3)) + I*pi
assert log(-exp(p)) != p + I*pi
assert log(-exp(x)).expand() != x + I*pi
assert log(-exp(r)).expand() == r + I*pi
assert log(x**y) != y*log(x)
assert (log(x**-5)**-1).expand() != -1/log(x)/5
assert (log(p**-5)**-1).expand() == -1/log(p)/5
assert log(-x).func is log and log(-x).args[0] == -x
assert log(-p).func is log and log(-p).args[0] == -p
def test_exp_assumptions():
r = Symbol('r', real=True)
i = Symbol('i', imaginary=True)
for e in exp, exp_polar:
assert e(x).is_real is None
assert e(x).is_imaginary is None
assert e(i).is_real is None
assert e(i).is_imaginary is None
assert e(r).is_real is True
assert e(r).is_imaginary is False
assert e(re(x)).is_real is True
assert e(re(x)).is_imaginary is False
assert exp(0, evaluate=False).is_algebraic
a = Symbol('a', algebraic=True)
an = Symbol('an', algebraic=True, nonzero=True)
r = Symbol('r', rational=True)
rn = Symbol('rn', rational=True, nonzero=True)
assert exp(a).is_algebraic is None
assert exp(an).is_algebraic is False
assert exp(pi*r).is_algebraic is None
assert exp(pi*rn).is_algebraic is False
def test_exp_AccumBounds():
assert exp(AccumBounds(1, 2)) == AccumBounds(E, E**2)
def test_log_assumptions():
p = symbols('p', positive=True)
n = symbols('n', negative=True)
z = symbols('z', zero=True)
x = symbols('x', infinite=True, positive=True)
assert log(z).is_positive is False
assert log(x).is_positive is True
assert log(2) > 0
assert log(1, evaluate=False).is_zero
assert log(1 + z).is_zero
assert log(p).is_zero is None
assert log(n).is_zero is False
assert log(0.5).is_negative is True
assert log(exp(p) + 1).is_positive
assert log(1, evaluate=False).is_algebraic
assert log(42, evaluate=False).is_algebraic is False
assert log(1 + z).is_rational
def test_log_hashing():
assert x != log(log(x))
assert hash(x) != hash(log(log(x)))
assert log(x) != log(log(log(x)))
e = 1/log(log(x) + log(log(x)))
assert e.base.func is log
e = 1/log(log(x) + log(log(log(x))))
assert e.base.func is log
e = log(log(x))
assert e.func is log
assert not x.func is log
assert hash(log(log(x))) != hash(x)
assert e != x
def test_log_sign():
assert sign(log(2)) == 1
def test_log_expand_complex():
assert log(1 + I).expand(complex=True) == log(2)/2 + I*pi/4
assert log(1 - sqrt(2)).expand(complex=True) == log(sqrt(2) - 1) + I*pi
def test_log_apply_evalf():
value = (log(3)/log(2) - 1).evalf()
assert value.epsilon_eq(Float("0.58496250072115618145373"))
def test_log_expand():
w = Symbol("w", positive=True)
e = log(w**(log(5)/log(3)))
assert e.expand() == log(5)/log(3) * log(w)
x, y, z = symbols('x,y,z', positive=True)
assert log(x*(y + z)).expand(mul=False) == log(x) + log(y + z)
assert log(log(x**2)*log(y*z)).expand() in [log(2*log(x)*log(y) +
2*log(x)*log(z)), log(log(x)*log(z) + log(y)*log(x)) + log(2),
log((log(y) + log(z))*log(x)) + log(2)]
assert log(x**log(x**2)).expand(deep=False) == log(x)*log(x**2)
assert log(x**log(x**2)).expand() == 2*log(x)**2
assert (log(x*(y + z))*(x + y)), expand(mul=True, log=True) == y*log(
x) + y*log(y + z) + z*log(x) + z*log(y + z)
x, y = symbols('x,y')
assert log(x*y).expand(force=True) == log(x) + log(y)
assert log(x**y).expand(force=True) == y*log(x)
assert log(exp(x)).expand(force=True) == x
# there's generally no need to expand out logs since this requires
# factoring and if simplification is sought, it's cheaper to put
# logs together than it is to take them apart.
assert log(2*3**2).expand() != 2*log(3) + log(2)
def test_log_simplify():
x = Symbol("x", positive=True)
assert log(x**2).expand() == 2*log(x)
assert expand_log(log(x**(2 + log(2)))) == (2 + log(2))*log(x)
z = Symbol('z')
assert log(sqrt(z)).expand() == log(z)/2
assert expand_log(log(z**(log(2) - 1))) == (log(2) - 1)*log(z)
assert log(z**(-1)).expand() != -log(z)
assert log(z**(x/(x+1))).expand() == x*log(z)/(x + 1)
def test_log_AccumBounds():
assert log(AccumBounds(1, E)) == AccumBounds(0, 1)
def test_lambertw():
k = Symbol('k')
assert LambertW(x, 0) == LambertW(x)
assert LambertW(x, 0, evaluate=False) != LambertW(x)
assert LambertW(0) == 0
assert LambertW(E) == 1
assert LambertW(-1/E) == -1
assert LambertW(-log(2)/2) == -log(2)
assert LambertW(oo) == oo
assert LambertW(0, 1) == -oo
assert LambertW(0, 42) == -oo
assert LambertW(-pi/2, -1) == -I*pi/2
assert LambertW(-1/E, -1) == -1
assert LambertW(-2*exp(-2), -1) == -2
assert LambertW(x**2).diff(x) == 2*LambertW(x**2)/x/(1 + LambertW(x**2))
assert LambertW(x, k).diff(x) == LambertW(x, k)/x/(1 + LambertW(x, k))
assert LambertW(sqrt(2)).evalf(30).epsilon_eq(
Float("0.701338383413663009202120278965", 30), 1e-29)
assert re(LambertW(2, -1)).evalf().epsilon_eq(Float("-0.834310366631110"))
assert LambertW(-1).is_real is False # issue 5215
assert LambertW(2, evaluate=False).is_real
p = Symbol('p', positive=True)
assert LambertW(p, evaluate=False).is_real
assert LambertW(p - 1, evaluate=False).is_real is None
assert LambertW(-p - 2/S.Exp1, evaluate=False).is_real is False
assert LambertW(S.Half, -1, evaluate=False).is_real is False
assert LambertW(-S.One/10, -1, evaluate=False).is_real
assert LambertW(-10, -1, evaluate=False).is_real is False
assert LambertW(-2, 2, evaluate=False).is_real is False
assert LambertW(0, evaluate=False).is_algebraic
na = Symbol('na', nonzero=True, algebraic=True)
assert LambertW(na).is_algebraic is False
def test_issue_5673():
e = LambertW(-1)
assert e.is_comparable is False
assert e.is_positive is not True
e2 = 1 - 1/(1 - exp(-1000))
assert e.is_positive is not True
e3 = -2 + exp(exp(LambertW(log(2)))*LambertW(log(2)))
assert e3.is_nonzero is not True
def test_exp_expand_NC():
A, B, C = symbols('A,B,C', commutative=False)
assert exp(A + B).expand() == exp(A + B)
assert exp(A + B + C).expand() == exp(A + B + C)
assert exp(x + y).expand() == exp(x)*exp(y)
assert exp(x + y + z).expand() == exp(x)*exp(y)*exp(z)
def test_as_numer_denom():
n = symbols('n', negative=True)
assert exp(x).as_numer_denom() == (exp(x), 1)
assert exp(-x).as_numer_denom() == (1, exp(x))
assert exp(-2*x).as_numer_denom() == (1, exp(2*x))
assert exp(-2).as_numer_denom() == (1, exp(2))
assert exp(n).as_numer_denom() == (1, exp(-n))
assert exp(-n).as_numer_denom() == (exp(-n), 1)
assert exp(-I*x).as_numer_denom() == (1, exp(I*x))
assert exp(-I*n).as_numer_denom() == (1, exp(I*n))
assert exp(-n).as_numer_denom() == (exp(-n), 1)
def test_polar():
x, y = symbols('x y', polar=True)
assert abs(exp_polar(I*4)) == 1
assert abs(exp_polar(0)) == 1
assert abs(exp_polar(2 + 3*I)) == exp(2)
assert exp_polar(I*10).n() == exp_polar(I*10)
assert log(exp_polar(z)) == z
assert log(x*y).expand() == log(x) + log(y)
assert log(x**z).expand() == z*log(x)
assert exp_polar(3).exp == 3
# Compare exp(1.0*pi*I).
assert (exp_polar(1.0*pi*I).n(n=5)).as_real_imag()[1] >= 0
assert exp_polar(0).is_rational is True # issue 8008
def test_log_product():
from sympy.abc import n, m
i, j = symbols('i,j', positive=True, integer=True)
x, y = symbols('x,y', positive=True)
from sympy.concrete import Product, Sum
f, g = Function('f'), Function('g')
assert simplify(log(Product(x**i, (i, 1, n)))) == Sum(i*log(x), (i, 1, n))
assert simplify(log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))) == \
log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))
expr = log(Product(-2, (n, 0, 4)))
assert simplify(expr) == expr
def test_issue_8866():
assert simplify(log(x, 10, evaluate=False)) == simplify(log(x, 10))
assert expand_log(log(x, 10, evaluate=False)) == expand_log(log(x, 10))
y = Symbol('y', positive=True)
l1 = log(exp(y), exp(10))
b1 = log(exp(y), exp(5))
l2 = log(exp(y), exp(10), evaluate=False)
b2 = log(exp(y), exp(5), evaluate=False)
assert simplify(log(l1, b1)) == simplify(log(l2, b2))
assert expand_log(log(l1, b1)) == expand_log(log(l2, b2))
def test_issue_9116():
n = Symbol('n', positive=True, integer=True)
assert ln(n).is_nonnegative is True
assert log(n).is_nonnegative is True
|
b9a5b08b257c09ee7c7fe9b8065c159c7dbbcf6a0a4e217dcdaccf08ee7992cf
|
from sympy import (
adjoint, And, Basic, conjugate, diff, expand, Eq, Function, I, ITE,
Integral, integrate, Interval, lambdify, log, Max, Min, oo, Or, pi,
Piecewise, piecewise_fold, Rational, solve, symbols, transpose,
cos, sin, exp, Abs, Ne, Not, Symbol, S, sqrt, Tuple, zoo,
factor_terms, DiracDelta, Heaviside, Add, Mul, factorial)
from sympy.printing import srepr
from sympy.utilities.pytest import XFAIL, raises
from sympy.functions.elementary.piecewise import Undefined
a, b, c, d, x, y = symbols('a:d, x, y')
z = symbols('z', nonzero=True)
def test_piecewise():
# Test canonicalization
assert Piecewise((x, x < 1), (0, True)) == Piecewise((x, x < 1), (0, True))
assert Piecewise((x, x < 1), (0, True), (1, True)) == \
Piecewise((x, x < 1), (0, True))
assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \
Piecewise((x, x < 1))
assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \
Piecewise((x, x < 1), (0, True))
assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \
Piecewise((x, x < 1), (0, True))
assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \
Piecewise((x, Or(x < 1, x < 2)), (0, True))
assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x
assert Piecewise((x, True)) == x
# Explicitly constructed empty Piecewise not accepted
raises(TypeError, lambda: Piecewise())
# False condition is never retained
assert Piecewise((2*x, x < 0), (x, False)) == \
Piecewise((2*x, x < 0), (x, False), evaluate=False) == \
Piecewise((2*x, x < 0))
assert Piecewise((x, False)) == Undefined
raises(TypeError, lambda: Piecewise(x))
assert Piecewise((x, 1)) == x # 1 and 0 are accepted as True/False
raises(TypeError, lambda: Piecewise((x, 2)))
raises(TypeError, lambda: Piecewise((x, x**2)))
raises(TypeError, lambda: Piecewise(([1], True)))
assert Piecewise(((1, 2), True)) == Tuple(1, 2)
cond = (Piecewise((1, x < 0), (2, True)) < y)
assert Piecewise((1, cond)
) == Piecewise((1, ITE(x < 0, y > 1, y > 2)))
assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1))
) == Piecewise((1, x > 0), (2, x > -1))
# Test subs
p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0))
p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0))
assert p.subs(x, x**2) == p_x2
assert p.subs(x, -5) == -1
assert p.subs(x, -1) == 1
assert p.subs(x, 1) == log(1)
# More subs tests
p2 = Piecewise((1, x < pi), (-1, x < 2*pi), (0, x > 2*pi))
p3 = Piecewise((1, Eq(x, 0)), (1/x, True))
p4 = Piecewise((1, Eq(x, 0)), (2, 1/x>2))
assert p2.subs(x, 2) == 1
assert p2.subs(x, 4) == -1
assert p2.subs(x, 10) == 0
assert p3.subs(x, 0.0) == 1
assert p4.subs(x, 0.0) == 1
f, g, h = symbols('f,g,h', cls=Function)
pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1))
pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1))
assert pg.subs(g, f) == pf
assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1
assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0
assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1
assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1
assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \
Piecewise((1, Eq(exp(z), cos(z))), (0, True))
p5 = Piecewise( (0, Eq(cos(x) + y, 0)), (1, True))
assert p5.subs(y, 0) == Piecewise( (0, Eq(cos(x), 0)), (1, True))
assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)), (2, True)
).subs(x, 1) == Piecewise((-1, y < 1), (2, True))
assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1
p6 = Piecewise((x, x > 0))
n = symbols('n', negative=True)
assert p6.subs(x, n) == Undefined
# Test evalf
assert p.evalf() == p
assert p.evalf(subs={x: -2}) == -1
assert p.evalf(subs={x: -1}) == 1
assert p.evalf(subs={x: 1}) == log(1)
assert p6.evalf(subs={x: -5}) == Undefined
# Test doit
f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1))
assert f_int.doit() == Piecewise( (S(1)/2, x < 1) )
# Test differentiation
f = x
fp = x*p
dp = Piecewise((0, x < -1), (2*x, x < 0), (1/x, x >= 0))
fp_dx = x*dp + p
assert diff(p, x) == dp
assert diff(f*p, x) == fp_dx
# Test simple arithmetic
assert x*p == fp
assert x*p + p == p + x*p
assert p + f == f + p
assert p + dp == dp + p
assert p - dp == -(dp - p)
# Test power
dp2 = Piecewise((0, x < -1), (4*x**2, x < 0), (1/x**2, x >= 0))
assert dp**2 == dp2
# Test _eval_interval
f1 = x*y + 2
f2 = x*y**2 + 3
peval = Piecewise((f1, x < 0), (f2, x > 0))
peval_interval = f1.subs(
x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(x, 0)
assert peval._eval_interval(x, 0, 0) == 0
assert peval._eval_interval(x, -1, 1) == peval_interval
peval2 = Piecewise((f1, x < 0), (f2, True))
assert peval2._eval_interval(x, 0, 0) == 0
assert peval2._eval_interval(x, 1, -1) == -peval_interval
assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1)
assert peval2._eval_interval(x, -1, 1) == peval_interval
assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0)
assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1)
# Test integration
assert p.integrate() == Piecewise(
(-x, x < -1),
(x**3/3 + S(4)/3, x < 0),
(x*log(x) - x + S(4)/3, True))
p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
assert integrate(p, (x, -2, 2)) == 5/6.0
assert integrate(p, (x, 2, -2)) == -5/6.0
p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True))
assert integrate(p, (x, -oo, oo)) == 2
p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
assert integrate(p, (x, -2, 2)) == Undefined
# Test commutativity
assert isinstance(p, Piecewise) and p.is_commutative is True
def test_piecewise_free_symbols():
f = Piecewise((x, a < 0), (y, True))
assert f.free_symbols == {x, y, a}
def test_piecewise_integrate1():
x, y = symbols('x y', real=True, finite=True)
f = Piecewise(((x - 2)**2, x >= 0), (1, True))
assert integrate(f, (x, -2, 2)) == Rational(14, 3)
g = Piecewise(((x - 5)**5, x >= 4), (f, True))
assert integrate(g, (x, -2, 2)) == Rational(14, 3)
assert integrate(g, (x, -2, 5)) == Rational(43, 6)
assert g == Piecewise(((x - 5)**5, x >= 4), (f, x < 4))
g = Piecewise(((x - 5)**5, 2 <= x), (f, x < 2))
assert integrate(g, (x, -2, 2)) == Rational(14, 3)
assert integrate(g, (x, -2, 5)) == -Rational(701, 6)
assert g == Piecewise(((x - 5)**5, 2 <= x), (f, True))
g = Piecewise(((x - 5)**5, 2 <= x), (2*f, True))
assert integrate(g, (x, -2, 2)) == 2 * Rational(14, 3)
assert integrate(g, (x, -2, 5)) == -Rational(673, 6)
def test_piecewise_integrate1b():
g = Piecewise((1, x > 0), (0, Eq(x, 0)), (-1, x < 0))
assert integrate(g, (x, -1, 1)) == 0
g = Piecewise((1, x - y < 0), (0, True))
assert integrate(g, (y, -oo, 0)) == -Min(0, x)
assert g.subs(x, -3).integrate((y, -oo, 0)) == 3
assert integrate(g, (y, 0, -oo)) == Min(0, x)
assert integrate(g, (y, 0, oo)) == -Max(0, x) + oo
assert integrate(g, (y, -oo, 42)) == -Min(42, x) + 42
assert integrate(g, (y, -oo, oo)) == -x + oo
g = Piecewise((0, x < 0), (x, x <= 1), (1, True))
gy1 = g.integrate((x, y, 1))
g1y = g.integrate((x, 1, y))
for yy in (-1, S.Half, 2):
assert g.integrate((x, yy, 1)) == gy1.subs(y, yy)
assert g.integrate((x, 1, yy)) == g1y.subs(y, yy)
assert gy1 == Piecewise(
(-Min(1, Max(0, y))**2/2 + S(1)/2, y < 1),
(-y + 1, True))
assert g1y == Piecewise(
(Min(1, Max(0, y))**2/2 - S(1)/2, y < 1),
(y - 1, True))
def test_piecewise_integrate1c():
y = symbols('y', real=True)
for i, g in enumerate([
Piecewise((1 - x, Interval(0, 1).contains(x)),
(1 + x, Interval(-1, 0).contains(x)), (0, True)),
Piecewise((0, Or(x <= -1, x >= 1)), (1 - x, x > 0),
(1 + x, True))]):
gy1 = g.integrate((x, y, 1))
g1y = g.integrate((x, 1, y))
for yy in (-2, 0, 2):
assert g.integrate((x, yy, 1)) == gy1.subs(y, yy)
assert g.integrate((x, 1, yy)) == g1y.subs(y, yy)
assert piecewise_fold(gy1.rewrite(Piecewise)) == Piecewise(
(1, y <= -1),
(-y**2/2 - y + S(1)/2, y <= 0),
(y**2/2 - y + S(1)/2, y < 1),
(0, True))
assert piecewise_fold(g1y.rewrite(Piecewise)) == Piecewise(
(-1, y <= -1),
(y**2/2 + y - S(1)/2, y <= 0),
(-y**2/2 + y - S(1)/2, y < 1),
(0, True))
# g1y and gy1 should simplify if the condition that y < 1
# is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y)
assert gy1 == Piecewise(
(-Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) +
Min(1, Max(0, y))**2 + S(1)/2, y < 1),
(0, True))
assert g1y == Piecewise(
(Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) -
Min(1, Max(0, y))**2 - S(1)/2, y < 1),
(0, True))
def test_piecewise_integrate2():
from itertools import permutations
lim = Tuple(x, c, d)
p = Piecewise((1, x < a), (2, x > b), (3, True))
q = p.integrate(lim)
assert q == Piecewise(
(-c + 2*d - 2*Min(d, Max(a, c)) + Min(d, Max(a, b, c)), c < d),
(-2*c + d + 2*Min(c, Max(a, d)) - Min(c, Max(a, b, d)), True))
for v in permutations((1, 2, 3, 4)):
r = dict(zip((a, b, c, d), v))
assert p.subs(r).integrate(lim.subs(r)) == q.subs(r)
def test_meijer_bypass():
# totally bypass meijerg machinery when dealing
# with Piecewise in integrate
assert Piecewise((1, x < 4), (0, True)).integrate((x, oo, 1)) == -3
def test_piecewise_integrate3_inequality_conditions():
from sympy.utilities.iterables import cartes
lim = (x, 0, 5)
# set below includes two pts below range, 2 pts in range,
# 2 pts above range, and the boundaries
N = (-2, -1, 0, 1, 2, 5, 6, 7)
p = Piecewise((1, x > a), (2, x > b), (0, True))
ans = p.integrate(lim)
for i, j in cartes(N, repeat=2):
reps = dict(zip((a, b), (i, j)))
assert ans.subs(reps) == p.subs(reps).integrate(lim)
assert ans.subs(a, 4).subs(b, 1) == 0 + 2*3 + 1
p = Piecewise((1, x > a), (2, x < b), (0, True))
ans = p.integrate(lim)
for i, j in cartes(N, repeat=2):
reps = dict(zip((a, b), (i, j)))
assert ans.subs(reps) == p.subs(reps).integrate(lim)
# delete old tests that involved c1 and c2 since those
# reduce to the above except that a value of 0 was used
# for two expressions whereas the above uses 3 different
# values
def test_piecewise_integrate4_symbolic_conditions():
a = Symbol('a', real=True, finite=True)
b = Symbol('b', real=True, finite=True)
x = Symbol('x', real=True, finite=True)
y = Symbol('y', real=True, finite=True)
p0 = Piecewise((0, Or(x < a, x > b)), (1, True))
p1 = Piecewise((0, x < a), (0, x > b), (1, True))
p2 = Piecewise((0, x > b), (0, x < a), (1, True))
p3 = Piecewise((0, x < a), (1, x < b), (0, True))
p4 = Piecewise((0, x > b), (1, x > a), (0, True))
p5 = Piecewise((1, And(a < x, x < b)), (0, True))
# check values of a=1, b=3 (and reversed) with values
# of y of 0, 1, 2, 3, 4
lim = Tuple(x, -oo, y)
for p in (p0, p1, p2, p3, p4, p5):
ans = p.integrate(lim)
for i in range(5):
reps = {a:1, b:3, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
reps = {a: 3, b:1, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
lim = Tuple(x, y, oo)
for p in (p0, p1, p2, p3, p4, p5):
ans = p.integrate(lim)
for i in range(5):
reps = {a:1, b:3, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
reps = {a:3, b:1, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
ans = Piecewise(
(0, x <= Min(a, b)),
(x - Min(a, b), x <= b),
(b - Min(a, b), True))
for i in (p0, p1, p2, p4):
assert i.integrate(x) == ans
assert p3.integrate(x) == Piecewise(
(0, x < a),
(-a + x, x <= Max(a, b)),
(-a + Max(a, b), True))
assert p5.integrate(x) == Piecewise(
(0, x <= a),
(-a + x, x <= Max(a, b)),
(-a + Max(a, b), True))
p1 = Piecewise((0, x < a), (0.5, x > b), (1, True))
p2 = Piecewise((0.5, x > b), (0, x < a), (1, True))
p3 = Piecewise((0, x < a), (1, x < b), (0.5, True))
p4 = Piecewise((0.5, x > b), (1, x > a), (0, True))
p5 = Piecewise((1, And(a < x, x < b)), (0.5, x > b), (0, True))
# check values of a=1, b=3 (and reversed) with values
# of y of 0, 1, 2, 3, 4
lim = Tuple(x, -oo, y)
for p in (p1, p2, p3, p4, p5):
ans = p.integrate(lim)
for i in range(5):
reps = {a:1, b:3, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
reps = {a: 3, b:1, y:i}
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
def test_piecewise_integrate5_independent_conditions():
p = Piecewise((0, Eq(y, 0)), (x*y, True))
assert integrate(p, (x, 1, 3)) == Piecewise((0, Eq(y, 0)), (4*y, True))
def test_piecewise_simplify():
p = Piecewise(((x**2 + 1)/x**2, Eq(x*(1 + x) - x**2, 0)),
((-1)**x*(-1), True))
assert p.simplify() == \
Piecewise((zoo, Eq(x, 0)), ((-1)**(x + 1), True))
# simplify when there are Eq in conditions
assert Piecewise(
(a, And(Eq(a, 0), Eq(a + b, 0))), (1, True)).simplify(
) == Piecewise(
(0, And(Eq(a, 0), Eq(b, 0))), (1, True))
assert Piecewise((2*x*factorial(a)/(factorial(y)*factorial(-y + a)),
Eq(y, 0) & Eq(-y + a, 0)), (2*factorial(a)/(factorial(y)*factorial(-y
+ a)), Eq(y, 0) & Eq(-y + a, 1)), (0, True)).simplify(
) == Piecewise(
(2*x, And(Eq(a, 0), Eq(y, 0))),
(2, And(Eq(a, 1), Eq(y, 0))),
(0, True))
def test_piecewise_solve():
abs2 = Piecewise((-x, x <= 0), (x, x > 0))
f = abs2.subs(x, x - 2)
assert solve(f, x) == [2]
assert solve(f - 1, x) == [1, 3]
f = Piecewise(((x - 2)**2, x >= 0), (1, True))
assert solve(f, x) == [2]
g = Piecewise(((x - 5)**5, x >= 4), (f, True))
assert solve(g, x) == [2, 5]
g = Piecewise(((x - 5)**5, x >= 4), (f, x < 4))
assert solve(g, x) == [2, 5]
g = Piecewise(((x - 5)**5, x >= 2), (f, x < 2))
assert solve(g, x) == [5]
g = Piecewise(((x - 5)**5, x >= 2), (f, True))
assert solve(g, x) == [5]
g = Piecewise(((x - 5)**5, x >= 2), (f, True), (10, False))
assert solve(g, x) == [5]
g = Piecewise(((x - 5)**5, x >= 2),
(-x + 2, x - 2 <= 0), (x - 2, x - 2 > 0))
assert solve(g, x) == [5]
# if no symbol is given the piecewise detection must still work
assert solve(Piecewise((x - 2, x > 2), (2 - x, True)) - 3) == [-1, 5]
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
raises(NotImplementedError, lambda: solve(f, x))
def nona(ans):
return list(filter(lambda x: x is not S.NaN, ans))
p = Piecewise((x**2 - 4, x < y), (x - 2, True))
ans = solve(p, x)
assert nona([i.subs(y, -2) for i in ans]) == [2]
assert nona([i.subs(y, 2) for i in ans]) == [-2, 2]
assert nona([i.subs(y, 3) for i in ans]) == [-2, 2]
assert ans == [
Piecewise((-2, y > -2), (S.NaN, True)),
Piecewise((2, y <= 2), (S.NaN, True)),
Piecewise((2, y > 2), (S.NaN, True))]
# issue 6060
absxm3 = Piecewise(
(x - 3, S(0) <= x - 3),
(3 - x, S(0) > x - 3)
)
assert solve(absxm3 - y, x) == [
Piecewise((-y + 3, -y < 0), (S.NaN, True)),
Piecewise((y + 3, y >= 0), (S.NaN, True))]
p = Symbol('p', positive=True)
assert solve(absxm3 - p, x) == [-p + 3, p + 3]
# issue 6989
f = Function('f')
assert solve(Eq(-f(x), Piecewise((1, x > 0), (0, True))), f(x)) == \
[Piecewise((-1, x > 0), (0, True))]
# issue 8587
f = Piecewise((2*x**2, And(S(0) < x, x < 1)), (2, True))
assert solve(f - 1) == [1/sqrt(2)]
def test_piecewise_fold():
p = Piecewise((x, x < 1), (1, 1 <= x))
assert piecewise_fold(x*p) == Piecewise((x**2, x < 1), (x, 1 <= x))
assert piecewise_fold(p + p) == Piecewise((2*x, x < 1), (2, 1 <= x))
assert piecewise_fold(Piecewise((1, x < 0), (2, True))
+ Piecewise((10, x < 0), (-10, True))) == \
Piecewise((11, x < 0), (-8, True))
p1 = Piecewise((0, x < 0), (x, x <= 1), (0, True))
p2 = Piecewise((0, x < 0), (1 - x, x <= 1), (0, True))
p = 4*p1 + 2*p2
assert integrate(
piecewise_fold(p), (x, -oo, oo)) == integrate(2*x + 2, (x, 0, 1))
assert piecewise_fold(
Piecewise((1, y <= 0), (-Piecewise((2, y >= 0)), True)
)) == Piecewise((1, y <= 0), (-2, y >= 0))
assert piecewise_fold(Piecewise((x, ITE(x > 0, y < 1, y > 1)))
) == Piecewise((x, ((x <= 0) | (y < 1)) & ((x > 0) | (y > 1))))
a, b = (Piecewise((2, Eq(x, 0)), (0, True)),
Piecewise((x, Eq(-x + y, 0)), (1, Eq(-x + y, 1)), (0, True)))
assert piecewise_fold(Mul(a, b, evaluate=False)
) == piecewise_fold(Mul(b, a, evaluate=False))
def test_piecewise_fold_piecewise_in_cond():
p1 = Piecewise((cos(x), x < 0), (0, True))
p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True))
p3 = piecewise_fold(p2)
assert(p2.subs(x, -pi/2) == 0.0)
assert(p2.subs(x, 1) == 0.0)
assert(p2.subs(x, -pi/4) == 1.0)
p4 = Piecewise((0, Eq(p1, 0)), (1,True))
ans = piecewise_fold(p4)
for i in range(-1, 1):
assert ans.subs(x, i) == p4.subs(x, i)
r1 = 1 < Piecewise((1, x < 1), (3, True))
ans = piecewise_fold(r1)
for i in range(2):
assert ans.subs(x, i) == r1.subs(x, i)
p5 = Piecewise((1, x < 0), (3, True))
p6 = Piecewise((1, x < 1), (3, True))
p7 = Piecewise((1, p5 < p6), (0, True))
ans = piecewise_fold(p7)
for i in range(-1, 2):
assert ans.subs(x, i) == p7.subs(x, i)
def test_piecewise_fold_piecewise_in_cond_2():
p1 = Piecewise((cos(x), x < 0), (0, True))
p2 = Piecewise((0, Eq(p1, 0)), (1 / p1, True))
p3 = Piecewise(
(0, (x >= 0) | Eq(cos(x), 0)),
(1/cos(x), x < 0),
(zoo, True)) # redundant b/c all x are already covered
assert(piecewise_fold(p2) == p3)
def test_piecewise_fold_expand():
p1 = Piecewise((1, Interval(0, 1, False, True).contains(x)), (0, True))
p2 = piecewise_fold(expand((1 - x)*p1))
assert p2 == Piecewise((1 - x, (x >= 0) & (x < 1)), (0, True))
assert p2 == expand(piecewise_fold((1 - x)*p1))
def test_piecewise_duplicate():
p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
assert p == Piecewise(*p.args)
def test_doit():
p1 = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
p2 = Piecewise((x, x < 1), (Integral(2 * x), -1 <= x), (x, 3 < x))
assert p2.doit() == p1
assert p2.doit(deep=False) == p2
def test_piecewise_interval():
p1 = Piecewise((x, Interval(0, 1).contains(x)), (0, True))
assert p1.subs(x, -0.5) == 0
assert p1.subs(x, 0.5) == 0.5
assert p1.diff(x) == Piecewise((1, Interval(0, 1).contains(x)), (0, True))
assert integrate(p1, x) == Piecewise(
(0, x <= 0),
(x**2/2, x <= 1),
(S(1)/2, True))
def test_piecewise_collapse():
assert Piecewise((x, True)) == x
a = x < 1
assert Piecewise((x, a), (x + 1, a)) == Piecewise((x, a))
assert Piecewise((x, a), (x + 1, a.reversed)) == Piecewise((x, a))
b = x < 5
def canonical(i):
if isinstance(i, Piecewise):
return Piecewise(*i.args)
return i
for args in [
((1, a), (Piecewise((2, a), (3, b)), b)),
((1, a), (Piecewise((2, a), (3, b.reversed)), b)),
((1, a), (Piecewise((2, a), (3, b)), b), (4, True)),
((1, a), (Piecewise((2, a), (3, b), (4, True)), b)),
((1, a), (Piecewise((2, a), (3, b), (4, True)), b), (5, True))]:
for i in (0, 2, 10):
assert canonical(
Piecewise(*args, evaluate=False).subs(x, i)
) == canonical(Piecewise(*args).subs(x, i))
r1, r2, r3, r4 = symbols('r1:5')
a = x < r1
b = x < r2
c = x < r3
d = x < r4
assert Piecewise((1, a), (Piecewise(
(2, a), (3, b), (4, c)), b), (5, c)
) == Piecewise((1, a), (3, b), (5, c))
assert Piecewise((1, a), (Piecewise(
(2, a), (3, b), (4, c), (6, True)), c), (5, d)
) == Piecewise((1, a), (Piecewise(
(3, b), (4, c)), c), (5, d))
assert Piecewise((1, Or(a, d)), (Piecewise(
(2, d), (3, b), (4, c)), b), (5, c)
) == Piecewise((1, Or(a, d)), (Piecewise(
(2, d), (3, b)), b), (5, c))
assert Piecewise((1, c), (2, ~c), (3, S.true)
) == Piecewise((1, c), (2, S.true))
assert Piecewise((1, c), (2, And(~c, b)), (3,True)
) == Piecewise((1, c), (2, b), (3, True))
assert Piecewise((1, c), (2, Or(~c, b)), (3,True)
).subs(dict(zip((r1, r2, r3, r4, x), (1, 2, 3, 4, 3.5)))) == 2
assert Piecewise((1, c), (2, ~c)) == Piecewise((1, c), (2, True))
def test_piecewise_lambdify():
p = Piecewise(
(x**2, x < 0),
(x, Interval(0, 1, False, True).contains(x)),
(2 - x, x >= 1),
(0, True)
)
f = lambdify(x, p)
assert f(-2.0) == 4.0
assert f(0.0) == 0.0
assert f(0.5) == 0.5
assert f(2.0) == 0.0
def test_piecewise_series():
from sympy import sin, cos, O
p1 = Piecewise((sin(x), x < 0), (cos(x), x > 0))
p2 = Piecewise((x + O(x**2), x < 0), (1 + O(x**2), x > 0))
assert p1.nseries(x, n=2) == p2
def test_piecewise_as_leading_term():
p1 = Piecewise((1/x, x > 1), (0, True))
p2 = Piecewise((x, x > 1), (0, True))
p3 = Piecewise((1/x, x > 1), (x, True))
p4 = Piecewise((x, x > 1), (1/x, True))
p5 = Piecewise((1/x, x > 1), (x, True))
p6 = Piecewise((1/x, x < 1), (x, True))
p7 = Piecewise((x, x < 1), (1/x, True))
p8 = Piecewise((x, x > 1), (1/x, True))
assert p1.as_leading_term(x) == 0
assert p2.as_leading_term(x) == 0
assert p3.as_leading_term(x) == x
assert p4.as_leading_term(x) == 1/x
assert p5.as_leading_term(x) == x
assert p6.as_leading_term(x) == 1/x
assert p7.as_leading_term(x) == x
assert p8.as_leading_term(x) == 1/x
def test_piecewise_complex():
p1 = Piecewise((2, x < 0), (1, 0 <= x))
p2 = Piecewise((2*I, x < 0), (I, 0 <= x))
p3 = Piecewise((I*x, x > 1), (1 + I, True))
p4 = Piecewise((-I*conjugate(x), x > 1), (1 - I, True))
assert conjugate(p1) == p1
assert conjugate(p2) == piecewise_fold(-p2)
assert conjugate(p3) == p4
assert p1.is_imaginary is False
assert p1.is_real is True
assert p2.is_imaginary is True
assert p2.is_real is False
assert p3.is_imaginary is None
assert p3.is_real is None
assert p1.as_real_imag() == (p1, 0)
assert p2.as_real_imag() == (0, -I*p2)
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
p = Piecewise((A*B**2, x > 0), (A**2*B, True))
assert p.adjoint() == \
Piecewise((adjoint(A*B**2), x > 0), (adjoint(A**2*B), True))
assert p.conjugate() == \
Piecewise((conjugate(A*B**2), x > 0), (conjugate(A**2*B), True))
assert p.transpose() == \
Piecewise((transpose(A*B**2), x > 0), (transpose(A**2*B), True))
def test_piecewise_evaluate():
assert Piecewise((x, True)) == x
assert Piecewise((x, True), evaluate=True) == x
p = Piecewise((x, True), evaluate=False)
assert p != x
assert p.is_Piecewise
assert all(isinstance(i, Basic) for i in p.args)
assert Piecewise((1, Eq(1, x))).args == ((1, Eq(x, 1)),)
assert Piecewise((1, Eq(1, x)), evaluate=False).args == (
(1, Eq(1, x)),)
def test_as_expr_set_pairs():
assert Piecewise((x, x > 0), (-x, x <= 0)).as_expr_set_pairs() == \
[(x, Interval(0, oo, True, True)), (-x, Interval(-oo, 0))]
assert Piecewise(((x - 2)**2, x >= 0), (0, True)).as_expr_set_pairs() == \
[((x - 2)**2, Interval(0, oo)), (0, Interval(-oo, 0, True, True))]
def test_S_srepr_is_identity():
p = Piecewise((10, Eq(x, 0)), (12, True))
q = S(srepr(p))
assert p == q
def test_issue_12587():
# sort holes into intervals
p = Piecewise((1, x > 4), (2, Not((x <= 3) & (x > -1))), (3, True))
assert p.integrate((x, -5, 5)) == 23
p = Piecewise((1, x > 1), (2, x < y), (3, True))
lim = x, -3, 3
ans = p.integrate(lim)
for i in range(-1, 3):
assert ans.subs(y, i) == p.subs(y, i).integrate(lim)
def test_issue_11045():
assert integrate(1/(x*sqrt(x**2 - 1)), (x, 1, 2)) == pi/3
# handle And with Or arguments
assert Piecewise((1, And(Or(x < 1, x > 3), x < 2)), (0, True)
).integrate((x, 0, 3)) == 1
# hidden false
assert Piecewise((1, x > 1), (2, x > x + 1), (3, True)
).integrate((x, 0, 3)) == 5
# targetcond is Eq
assert Piecewise((1, x > 1), (2, Eq(1, x)), (3, True)
).integrate((x, 0, 4)) == 6
# And has Relational needing to be solved
assert Piecewise((1, And(2*x > x + 1, x < 2)), (0, True)
).integrate((x, 0, 3)) == 1
# Or has Relational needing to be solved
assert Piecewise((1, Or(2*x > x + 2, x < 1)), (0, True)
).integrate((x, 0, 3)) == 2
# ignore hidden false (handled in canonicalization)
assert Piecewise((1, x > 1), (2, x > x + 1), (3, True)
).integrate((x, 0, 3)) == 5
# watch for hidden True Piecewise
assert Piecewise((2, Eq(1 - x, x*(1/x - 1))), (0, True)
).integrate((x, 0, 3)) == 6
# overlapping conditions of targetcond are recognized and ignored;
# the condition x > 3 will be pre-empted by the first condition
assert Piecewise((1, Or(x < 1, x > 2)), (2, x > 3), (3, True)
).integrate((x, 0, 4)) == 6
# convert Ne to Or
assert Piecewise((1, Ne(x, 0)), (2, True)
).integrate((x, -1, 1)) == 2
# no default but well defined
assert Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4))
).integrate((x, 1, 4)) == 5
p = Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4)))
nan = Undefined
i = p.integrate((x, 1, y))
assert i == Piecewise(
(y - 1, y < 1),
(Min(3, y)**2/2 - Min(3, y) + Min(4, y) - S(1)/2,
y <= Min(4, y)),
(nan, True))
assert p.integrate((x, 1, -1)) == i.subs(y, -1)
assert p.integrate((x, 1, 4)) == 5
assert p.integrate((x, 1, 5)) == nan
# handle Not
p = Piecewise((1, x > 1), (2, Not(And(x > 1, x< 3))), (3, True))
assert p.integrate((x, 0, 3)) == 4
# handle updating of int_expr when there is overlap
p = Piecewise(
(1, And(5 > x, x > 1)),
(2, Or(x < 3, x > 7)),
(4, x < 8))
assert p.integrate((x, 0, 10)) == 20
# And with Eq arg handling
assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1))
).integrate((x, 0, 3)) == S.NaN
assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)), (3, True)
).integrate((x, 0, 3)) == 7
assert Piecewise((1, x < 0), (2, And(Eq(x, 3), x < 1)), (3, True)
).integrate((x, -1, 1)) == 4
# middle condition doesn't matter: it's a zero width interval
assert Piecewise((1, x < 1), (2, Eq(x, 3) & (y < x)), (3, True)
).integrate((x, 0, 3)) == 7
def test_holes():
nan = Undefined
assert Piecewise((1, x < 2)).integrate(x) == Piecewise(
(x, x < 2), (nan, True))
assert Piecewise((1, And(x > 1, x < 2))).integrate(x) == Piecewise(
(nan, x < 1), (x - 1, x < 2), (nan, True))
assert Piecewise((1, And(x > 1, x < 2))).integrate((x, 0, 3)) == nan
assert Piecewise((1, And(x > 0, x < 4))).integrate((x, 1, 3)) == 2
# this also tests that the integrate method is used on non-Piecwise
# arguments in _eval_integral
A, B = symbols("A B")
a, b = symbols('a b', finite=True)
assert Piecewise((A, And(x < 0, a < 1)), (B, Or(x < 1, a > 2))
).integrate(x) == Piecewise(
(B*x, a > 2),
(Piecewise((A*x, x < 0), (B*x, x < 1), (nan, True)), a < 1),
(Piecewise((B*x, x < 1), (nan, True)), True))
def test_issue_11922():
def f(x):
return Piecewise((0, x < -1), (1 - x**2, x < 1), (0, True))
autocorr = lambda k: (
f(x) * f(x + k)).integrate((x, -1, 1))
assert autocorr(1.9) > 0
k = symbols('k')
good_autocorr = lambda k: (
(1 - x**2) * f(x + k)).integrate((x, -1, 1))
a = good_autocorr(k)
assert a.subs(k, 3) == 0
k = symbols('k', positive=True)
a = good_autocorr(k)
assert a.subs(k, 3) == 0
assert Piecewise((0, x < 1), (10, (x >= 1))
).integrate() == Piecewise((0, x < 1), (10*x - 10, True))
def test_issue_5227():
f = 0.0032513612725229*Piecewise((0, x < -80.8461538461539),
(-0.0160799238820171*x + 1.33215984776403, x < 2),
(Piecewise((0.3, x > 123), (0.7, True)) +
Piecewise((0.4, x > 2), (0.6, True)), x <=
123), (-0.00817409766454352*x + 2.10541401273885, x <
380.571428571429), (0, True))
i = integrate(f, (x, -oo, oo))
assert i == Integral(f, (x, -oo, oo)).doit()
assert str(i) == '1.00195081676351'
assert Piecewise((1, x - y < 0), (0, True)
).integrate(y) == Piecewise((0, y <= x), (-x + y, True))
def test_issue_10137():
a = Symbol('a', real=True, finite=True)
b = Symbol('b', real=True, finite=True)
x = Symbol('x', real=True, finite=True)
y = Symbol('y', real=True, finite=True)
p0 = Piecewise((0, Or(x < a, x > b)), (1, True))
p1 = Piecewise((0, Or(a > x, b < x)), (1, True))
assert integrate(p0, (x, y, oo)) == integrate(p1, (x, y, oo))
p3 = Piecewise((1, And(0 < x, x < a)), (0, True))
p4 = Piecewise((1, And(a > x, x > 0)), (0, True))
ip3 = integrate(p3, x)
assert ip3 == Piecewise(
(0, x <= 0),
(x, x <= Max(0, a)),
(Max(0, a), True))
ip4 = integrate(p4, x)
assert ip4 == ip3
assert p3.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2
assert p4.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2
def test_stackoverflow_43852159():
f = lambda x: Piecewise((1 , (x >= -1) & (x <= 1)) , (0, True))
Conv = lambda x: integrate(f(x - y)*f(y), (y, -oo, +oo))
cx = Conv(x)
assert cx.subs(x, -1.5) == cx.subs(x, 1.5)
assert cx.subs(x, 3) == 0
assert piecewise_fold(f(x - y)*f(y)) == Piecewise(
(1, (y >= -1) & (y <= 1) & (x - y >= -1) & (x - y <= 1)),
(0, True))
def test_issue_12557():
'''
# 3200 seconds to compute the fourier part of issue
import sympy as sym
x,y,z,t = sym.symbols('x y z t')
k = sym.symbols("k", integer=True)
fourier = sym.fourier_series(sym.cos(k*x)*sym.sqrt(x**2),
(x, -sym.pi, sym.pi))
assert fourier == FourierSeries(
sqrt(x**2)*cos(k*x), (x, -pi, pi), (Piecewise((pi**2,
Eq(k, 0)), (2*(-1)**k/k**2 - 2/k**2, True))/(2*pi),
SeqFormula(Piecewise((pi**2, (Eq(_n, 0) & Eq(k, 0)) | (Eq(_n, 0) &
Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(k, 0) & Eq(_n, -k)) | (Eq(_n,
0) & Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), (pi**2/2, Eq(_n, k) | Eq(_n,
-k) | (Eq(_n, 0) & Eq(_n, k)) | (Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) &
Eq(_n, -k)) | (Eq(_n, k) & Eq(_n, -k)) | (Eq(k, 0) & Eq(_n, -k)) |
(Eq(_n, 0) & Eq(_n, k) & Eq(_n, -k)) | (Eq(_n, k) & Eq(k, 0) & Eq(_n,
-k))), ((-1)**k*pi**2*_n**3*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
pi*k**4) - (-1)**k*pi**2*_n**3*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2
- pi*k**4) + (-1)**k*pi*_n**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
pi*k**4) - (-1)**k*pi*_n**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
pi*k**4) - (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(pi*_n**4 -
2*pi*_n**2*k**2 + pi*k**4) +
(-1)**k*pi**2*_n*k**2*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
pi*k**4) + (-1)**k*pi*k**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
pi*k**4) - (-1)**k*pi*k**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
pi*k**4) - (2*_n**2 + 2*k**2)/(_n**4 - 2*_n**2*k**2 + k**4),
True))*cos(_n*x)/pi, (_n, 1, oo)), SeqFormula(0, (_k, 1, oo))))
'''
x = symbols("x", real=True)
k = symbols('k', integer=True, finite=True)
abs2 = lambda x: Piecewise((-x, x <= 0), (x, x > 0))
assert integrate(abs2(x), (x, -pi, pi)) == pi**2
func = cos(k*x)*sqrt(x**2)
assert integrate(func, (x, -pi, pi)) == Piecewise(
(2*(-1)**k/k**2 - 2/k**2, Ne(k, 0)), (pi**2, True))
def test_issue_6900():
from itertools import permutations
t0, t1, T, t = symbols('t0, t1 T t')
f = Piecewise((0, t < t0), (x, And(t0 <= t, t < t1)), (0, t >= t1))
g = f.integrate(t)
assert g == Piecewise(
(0, t <= t0),
(t*x - t0*x, t <= Max(t0, t1)),
(-t0*x + x*Max(t0, t1), True))
for i in permutations(range(2)):
reps = dict(zip((t0,t1), i))
for tt in range(-1,3):
assert (g.xreplace(reps).subs(t,tt) ==
f.xreplace(reps).integrate(t).subs(t,tt))
lim = Tuple(t, t0, T)
g = f.integrate(lim)
ans = Piecewise(
(-t0*x + x*Min(T, Max(t0, t1)), T > t0),
(0, True))
for i in permutations(range(3)):
reps = dict(zip((t0,t1,T), i))
tru = f.xreplace(reps).integrate(lim.xreplace(reps))
assert tru == ans.xreplace(reps)
assert g == ans
def test_issue_10122():
assert solve(abs(x) + abs(x - 1) - 1 > 0, x
) == Or(And(-oo < x, x < 0), And(S.One < x, x < oo))
def test_issue_4313():
u = Piecewise((0, x <= 0), (1, x >= a), (x/a, True))
e = (u - u.subs(x, y))**2/(x - y)**2
M = Max(0, a)
assert integrate(e, x).expand() == Piecewise(
(Piecewise(
(0, x <= 0),
(-y**2/(a**2*x - a**2*y) + x/a**2 - 2*y*log(-y)/a**2 +
2*y*log(x - y)/a**2 - y/a**2, x <= M),
(-y**2/(-a**2*y + a**2*M) + 1/(-y + M) -
1/(x - y) - 2*y*log(-y)/a**2 + 2*y*log(-y +
M)/a**2 - y/a**2 + M/a**2, True)),
((a <= y) & (y <= 0)) | ((y <= 0) & (y > -oo))),
(Piecewise(
(-1/(x - y), x <= 0),
(-a**2/(a**2*x - a**2*y) + 2*a*y/(a**2*x - a**2*y) -
y**2/(a**2*x - a**2*y) + 2*log(-y)/a - 2*log(x - y)/a +
2/a + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 -
y/a**2, x <= M),
(-a**2/(-a**2*y + a**2*M) + 2*a*y/(-a**2*y +
a**2*M) - y**2/(-a**2*y + a**2*M) +
2*log(-y)/a - 2*log(-y + M)/a + 2/a -
2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 -
y/a**2 + M/a**2, True)),
a <= y),
(Piecewise(
(-y**2/(a**2*x - a**2*y), x <= 0),
(x/a**2 + y/a**2, x <= M),
(a**2/(-a**2*y + a**2*M) -
a**2/(a**2*x - a**2*y) - 2*a*y/(-a**2*y + a**2*M) +
2*a*y/(a**2*x - a**2*y) + y**2/(-a**2*y + a**2*M) -
y**2/(a**2*x - a**2*y) + y/a**2 + M/a**2, True)),
True))
def test__intervals():
assert Piecewise((x + 2, Eq(x, 3)))._intervals(x) == []
assert Piecewise(
(1, x > x + 1),
(Piecewise((1, x < x + 1)), 2*x < 2*x + 1),
(1, True))._intervals(x) == [(-oo, oo, 1, 1)]
assert Piecewise((1, Ne(x, I)), (0, True))._intervals(x) == [
(-oo, oo, 1, 0)]
assert Piecewise((-cos(x), sin(x) >= 0), (cos(x), True)
)._intervals(x) == [(0, pi, -cos(x), 0), (-oo, oo, cos(x), 1)]
# the following tests that duplicates are removed and that non-Eq
# generated zero-width intervals are removed
assert Piecewise((1, Abs(x**(-2)) > 1), (0, True)
)._intervals(x) == [(-1, 0, 1, 0), (0, 1, 1, 0), (-oo, oo, 0, 1)]
def test_containment():
a, b, c, d, e = [1, 2, 3, 4, 5]
p = (Piecewise((d, x > 1), (e, True))*
Piecewise((a, Abs(x - 1) < 1), (b, Abs(x - 2) < 2), (c, True)))
assert p.integrate(x).diff(x) == Piecewise(
(c*e, x <= 0),
(a*e, x <= 1),
(a*d, x < 2), # this is what we want to get right
(b*d, x < 4),
(c*d, True))
def test_piecewise_with_DiracDelta():
d1 = DiracDelta(x - 1)
assert integrate(d1, (x, -oo, oo)) == 1
assert integrate(d1, (x, 0, 2)) == 1
assert Piecewise((d1, Eq(x, 2)), (0, True)).integrate(x) == 0
assert Piecewise((d1, x < 2), (0, True)).integrate(x) == Piecewise(
(Heaviside(x - 1), x < 2), (1, True))
# TODO raise error if function is discontinuous at limit of
# integration, e.g. integrate(d1, (x, -2, 1)) or Piecewise(
# (d1, Eq(x ,1)
def test_issue_10258():
assert Piecewise((0, x < 1), (1, True)).is_zero is None
assert Piecewise((-1, x < 1), (1, True)).is_zero is False
a = Symbol('a', zero=True)
assert Piecewise((0, x < 1), (a, True)).is_zero
assert Piecewise((1, x < 1), (a, x < 3)).is_zero is None
a = Symbol('a')
assert Piecewise((0, x < 1), (a, True)).is_zero is None
assert Piecewise((0, x < 1), (1, True)).is_nonzero is None
assert Piecewise((1, x < 1), (2, True)).is_nonzero
assert Piecewise((0, x < 1), (oo, True)).is_finite is None
assert Piecewise((0, x < 1), (1, True)).is_finite
b = Basic()
assert Piecewise((b, x < 1)).is_finite is None
# 10258
c = Piecewise((1, x < 0), (2, True)) < 3
assert c != True
assert piecewise_fold(c) == True
def test_issue_10087():
a, b = Piecewise((x, x > 1), (2, True)), Piecewise((x, x > 3), (3, True))
m = a*b
f = piecewise_fold(m)
for i in (0, 2, 4):
assert m.subs(x, i) == f.subs(x, i)
m = a + b
f = piecewise_fold(m)
for i in (0, 2, 4):
assert m.subs(x, i) == f.subs(x, i)
def test_issue_8919():
c = symbols('c:5')
x = symbols("x")
f1 = Piecewise((c[1], x < 1), (c[2], True))
f2 = Piecewise((c[3], x < S(1)/3), (c[4], True))
assert integrate(f1*f2, (x, 0, 2)
) == c[1]*c[3]/3 + 2*c[1]*c[4]/3 + c[2]*c[4]
f1 = Piecewise((0, x < 1), (2, True))
f2 = Piecewise((3, x < 2), (0, True))
assert integrate(f1*f2, (x, 0, 3)) == 6
y = symbols("y", positive=True)
a, b, c, x, z = symbols("a,b,c,x,z", real=True)
I = Integral(Piecewise(
(0, (x >= y) | (x < 0) | (b > c)),
(a, True)), (x, 0, z))
ans = I.doit()
assert ans == Piecewise((0, b > c), (a*Min(y, z) - a*Min(0, z), True))
for cond in (True, False):
for yy in range(1, 3):
for zz in range(-yy, 0, yy):
reps = [(b > c, cond), (y, yy), (z, zz)]
assert ans.subs(reps) == I.subs(reps).doit()
def test_unevaluated_integrals():
f = Function('f')
p = Piecewise((1, Eq(f(x) - 1, 0)), (2, x - 10 < 0), (0, True))
assert p.integrate(x) == Integral(p, x)
assert p.integrate((x, 0, 5)) == Integral(p, (x, 0, 5))
# test it by replacing f(x) with x%2 which will not
# affect the answer: the integrand is essentially 2 over
# the domain of integration
assert Integral(p, (x, 0, 5)).subs(f(x), x%2).n() == 10
# this is a test of using _solve_inequality when
# solve_univariate_inequality fails
assert p.integrate(y) == Piecewise(
(y, Eq(f(x), 1) | ((x < 10) & Eq(f(x), 1))),
(2*y, (x >= -oo) & (x < 10)), (0, True))
def test_conditions_as_alternate_booleans():
a, b, c = symbols('a:c')
assert Piecewise((x, Piecewise((y < 1, x > 0), (y > 1, True)))
) == Piecewise((x, ITE(x > 0, y < 1, y > 1)))
def test_Piecewise_rewrite_as_ITE():
a, b, c, d = symbols('a:d')
def _ITE(*args):
return Piecewise(*args).rewrite(ITE)
assert _ITE((a, x < 1), (b, x >= 1)) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, x < oo)) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, Or(y < 1, x < oo)), (c, y > 0)
) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, True)) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (b, x < 2), (c, True)
) == ITE(x < 1, a, ITE(x < 2, b, c))
assert _ITE((a, x < 1), (b, y < 2), (c, True)
) == ITE(x < 1, a, ITE(y < 2, b, c))
assert _ITE((a, x < 1), (b, x < oo), (c, y < 1)
) == ITE(x < 1, a, b)
assert _ITE((a, x < 1), (c, y < 1), (b, x < oo), (d, True)
) == ITE(x < 1, a, ITE(y < 1, c, b))
assert _ITE((a, x < 0), (b, Or(x < oo, y < 1))
) == ITE(x < 0, a, b)
raises(TypeError, lambda: _ITE((x + 1, x < 1), (x, True)))
# if `a` in the following were replaced with y then the coverage
# is complete but something other than as_set would need to be
# used to detect this
raises(NotImplementedError, lambda: _ITE((x, x < y), (y, x >= a)))
raises(ValueError, lambda: _ITE((a, x < 2), (b, x > 3)))
def test_issue_14052():
assert integrate(abs(sin(x)), (x, 0, 2*pi)) == 4
def test_issue_14240():
assert piecewise_fold(
Piecewise((1, a), (2, b), (4, True)) +
Piecewise((8, a), (16, True))
) == Piecewise((9, a), (18, b), (20, True))
assert piecewise_fold(
Piecewise((2, a), (3, b), (5, True)) *
Piecewise((7, a), (11, True))
) == Piecewise((14, a), (33, b), (55, True))
# these will hang if naive folding is used
assert piecewise_fold(Add(*[
Piecewise((i, a), (0, True)) for i in range(40)])
) == Piecewise((780, a), (0, True))
assert piecewise_fold(Mul(*[
Piecewise((i, a), (0, True)) for i in range(1, 41)])
) == Piecewise((factorial(40), a), (0, True))
def test_issue_14787():
x = Symbol('x')
f = Piecewise((x, x < 1), ((S(58) / 7), True))
assert str(f.evalf()) == "Piecewise((x, x < 1), (8.28571428571429, True))"
|
ff7532c0d4096f1f8b9afd337fce5ab49a03f68c54b1bc294aeb6eec143c43b8
|
import itertools as it
from sympy.core.function import Function
from sympy.core.numbers import I, oo, Rational
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.miscellaneous import (sqrt, cbrt, root, Min,
Max, real_root)
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.integers import floor, ceiling
from sympy.functions.special.delta_functions import Heaviside
from sympy.utilities.lambdify import lambdify
from sympy.utilities.pytest import raises, skip, warns
from sympy.external import import_module
def test_Min():
from sympy.abc import x, y, z
n = Symbol('n', negative=True)
n_ = Symbol('n_', negative=True)
nn = Symbol('nn', nonnegative=True)
nn_ = Symbol('nn_', nonnegative=True)
p = Symbol('p', positive=True)
p_ = Symbol('p_', positive=True)
np = Symbol('np', nonpositive=True)
np_ = Symbol('np_', nonpositive=True)
r = Symbol('r', real=True)
assert Min(5, 4) == 4
assert Min(-oo, -oo) == -oo
assert Min(-oo, n) == -oo
assert Min(n, -oo) == -oo
assert Min(-oo, np) == -oo
assert Min(np, -oo) == -oo
assert Min(-oo, 0) == -oo
assert Min(0, -oo) == -oo
assert Min(-oo, nn) == -oo
assert Min(nn, -oo) == -oo
assert Min(-oo, p) == -oo
assert Min(p, -oo) == -oo
assert Min(-oo, oo) == -oo
assert Min(oo, -oo) == -oo
assert Min(n, n) == n
assert Min(n, np) == Min(n, np)
assert Min(np, n) == Min(np, n)
assert Min(n, 0) == n
assert Min(0, n) == n
assert Min(n, nn) == n
assert Min(nn, n) == n
assert Min(n, p) == n
assert Min(p, n) == n
assert Min(n, oo) == n
assert Min(oo, n) == n
assert Min(np, np) == np
assert Min(np, 0) == np
assert Min(0, np) == np
assert Min(np, nn) == np
assert Min(nn, np) == np
assert Min(np, p) == np
assert Min(p, np) == np
assert Min(np, oo) == np
assert Min(oo, np) == np
assert Min(0, 0) == 0
assert Min(0, nn) == 0
assert Min(nn, 0) == 0
assert Min(0, p) == 0
assert Min(p, 0) == 0
assert Min(0, oo) == 0
assert Min(oo, 0) == 0
assert Min(nn, nn) == nn
assert Min(nn, p) == Min(nn, p)
assert Min(p, nn) == Min(p, nn)
assert Min(nn, oo) == nn
assert Min(oo, nn) == nn
assert Min(p, p) == p
assert Min(p, oo) == p
assert Min(oo, p) == p
assert Min(oo, oo) == oo
assert Min(n, n_).func is Min
assert Min(nn, nn_).func is Min
assert Min(np, np_).func is Min
assert Min(p, p_).func is Min
# lists
raises(ValueError, lambda: Min())
assert Min(x, y) == Min(y, x)
assert Min(x, y, z) == Min(z, y, x)
assert Min(x, Min(y, z)) == Min(z, y, x)
assert Min(x, Max(y, -oo)) == Min(x, y)
assert Min(p, oo, n, p, p, p_) == n
assert Min(p_, n_, p) == n_
assert Min(n, oo, -7, p, p, 2) == Min(n, -7)
assert Min(2, x, p, n, oo, n_, p, 2, -2, -2) == Min(-2, x, n, n_)
assert Min(0, x, 1, y) == Min(0, x, y)
assert Min(1000, 100, -100, x, p, n) == Min(n, x, -100)
assert Min(cos(x), sin(x)) == Min(cos(x), sin(x))
assert Min(cos(x), sin(x)).subs(x, 1) == cos(1)
assert Min(cos(x), sin(x)).subs(x, S(1)/2) == sin(S(1)/2)
raises(ValueError, lambda: Min(cos(x), sin(x)).subs(x, I))
raises(ValueError, lambda: Min(I))
raises(ValueError, lambda: Min(I, x))
raises(ValueError, lambda: Min(S.ComplexInfinity, x))
assert Min(1, x).diff(x) == Heaviside(1 - x)
assert Min(x, 1).diff(x) == Heaviside(1 - x)
assert Min(0, -x, 1 - 2*x).diff(x) == -Heaviside(x + Min(0, -2*x + 1)) \
- 2*Heaviside(2*x + Min(0, -x) - 1)
# issue 7619
f = Function('f')
assert Min(1, 2*Min(f(1), 2)) # doesn't fail
# issue 7233
e = Min(0, x)
assert e.evalf == e.n
assert e.n().args == (0, x)
# issue 8643
m = Min(n, p_, n_, r)
assert m.is_positive is False
assert m.is_nonnegative is False
assert m.is_negative is True
m = Min(p, p_)
assert m.is_positive is True
assert m.is_nonnegative is True
assert m.is_negative is False
m = Min(p, nn_, p_)
assert m.is_positive is None
assert m.is_nonnegative is True
assert m.is_negative is False
m = Min(nn, p, r)
assert m.is_positive is None
assert m.is_nonnegative is None
assert m.is_negative is None
def test_Max():
from sympy.abc import x, y, z
n = Symbol('n', negative=True)
n_ = Symbol('n_', negative=True)
nn = Symbol('nn', nonnegative=True)
nn_ = Symbol('nn_', nonnegative=True)
p = Symbol('p', positive=True)
p_ = Symbol('p_', positive=True)
np = Symbol('np', nonpositive=True)
np_ = Symbol('np_', nonpositive=True)
r = Symbol('r', real=True)
assert Max(5, 4) == 5
# lists
raises(ValueError, lambda: Max())
assert Max(x, y) == Max(y, x)
assert Max(x, y, z) == Max(z, y, x)
assert Max(x, Max(y, z)) == Max(z, y, x)
assert Max(x, Min(y, oo)) == Max(x, y)
assert Max(n, -oo, n_, p, 2) == Max(p, 2)
assert Max(n, -oo, n_, p) == p
assert Max(2, x, p, n, -oo, S.NegativeInfinity, n_, p, 2) == Max(2, x, p)
assert Max(0, x, 1, y) == Max(1, x, y)
assert Max(r, r + 1, r - 1) == 1 + r
assert Max(1000, 100, -100, x, p, n) == Max(p, x, 1000)
assert Max(cos(x), sin(x)) == Max(sin(x), cos(x))
assert Max(cos(x), sin(x)).subs(x, 1) == sin(1)
assert Max(cos(x), sin(x)).subs(x, S(1)/2) == cos(S(1)/2)
raises(ValueError, lambda: Max(cos(x), sin(x)).subs(x, I))
raises(ValueError, lambda: Max(I))
raises(ValueError, lambda: Max(I, x))
raises(ValueError, lambda: Max(S.ComplexInfinity, 1))
assert Max(n, -oo, n_, p, 2) == Max(p, 2)
assert Max(n, -oo, n_, p, 1000) == Max(p, 1000)
assert Max(1, x).diff(x) == Heaviside(x - 1)
assert Max(x, 1).diff(x) == Heaviside(x - 1)
assert Max(x**2, 1 + x, 1).diff(x) == \
2*x*Heaviside(x**2 - Max(1, x + 1)) \
+ Heaviside(x - Max(1, x**2) + 1)
e = Max(0, x)
assert e.evalf == e.n
assert e.n().args == (0, x)
# issue 8643
m = Max(p, p_, n, r)
assert m.is_positive is True
assert m.is_nonnegative is True
assert m.is_negative is False
m = Max(n, n_)
assert m.is_positive is False
assert m.is_nonnegative is False
assert m.is_negative is True
m = Max(n, n_, r)
assert m.is_positive is None
assert m.is_nonnegative is None
assert m.is_negative is None
m = Max(n, nn, r)
assert m.is_positive is None
assert m.is_nonnegative is True
assert m.is_negative is False
def test_minmax_assumptions():
r = Symbol('r', real=True)
a = Symbol('a', real=True, algebraic=True)
t = Symbol('t', real=True, transcendental=True)
q = Symbol('q', rational=True)
p = Symbol('p', real=True, rational=False)
n = Symbol('n', rational=True, integer=False)
i = Symbol('i', integer=True)
o = Symbol('o', odd=True)
e = Symbol('e', even=True)
k = Symbol('k', prime=True)
reals = [r, a, t, q, p, n, i, o, e, k]
for ext in (Max, Min):
for x, y in it.product(reals, repeat=2):
# Must be real
assert ext(x, y).is_real
# Algebraic?
if x.is_algebraic and y.is_algebraic:
assert ext(x, y).is_algebraic
elif x.is_transcendental and y.is_transcendental:
assert ext(x, y).is_transcendental
else:
assert ext(x, y).is_algebraic is None
# Rational?
if x.is_rational and y.is_rational:
assert ext(x, y).is_rational
elif x.is_irrational and y.is_irrational:
assert ext(x, y).is_irrational
else:
assert ext(x, y).is_rational is None
# Integer?
if x.is_integer and y.is_integer:
assert ext(x, y).is_integer
elif x.is_noninteger and y.is_noninteger:
assert ext(x, y).is_noninteger
else:
assert ext(x, y).is_integer is None
# Odd?
if x.is_odd and y.is_odd:
assert ext(x, y).is_odd
elif x.is_odd is False and y.is_odd is False:
assert ext(x, y).is_odd is False
else:
assert ext(x, y).is_odd is None
# Even?
if x.is_even and y.is_even:
assert ext(x, y).is_even
elif x.is_even is False and y.is_even is False:
assert ext(x, y).is_even is False
else:
assert ext(x, y).is_even is None
# Prime?
if x.is_prime and y.is_prime:
assert ext(x, y).is_prime
elif x.is_prime is False and y.is_prime is False:
assert ext(x, y).is_prime is False
else:
assert ext(x, y).is_prime is None
def test_issue_8413():
x = Symbol('x', real=True)
# we can't evaluate in general because non-reals are not
# comparable: Min(floor(3.2 + I), 3.2 + I) -> ValueError
assert Min(floor(x), x) == floor(x)
assert Min(ceiling(x), x) == x
assert Max(floor(x), x) == x
assert Max(ceiling(x), x) == ceiling(x)
def test_root():
from sympy.abc import x
n = Symbol('n', integer=True)
k = Symbol('k', integer=True)
assert root(2, 2) == sqrt(2)
assert root(2, 1) == 2
assert root(2, 3) == 2**Rational(1, 3)
assert root(2, 3) == cbrt(2)
assert root(2, -5) == 2**Rational(4, 5)/2
assert root(-2, 1) == -2
assert root(-2, 2) == sqrt(2)*I
assert root(-2, 1) == -2
assert root(x, 2) == sqrt(x)
assert root(x, 1) == x
assert root(x, 3) == x**Rational(1, 3)
assert root(x, 3) == cbrt(x)
assert root(x, -5) == x**Rational(-1, 5)
assert root(x, n) == x**(1/n)
assert root(x, -n) == x**(-1/n)
assert root(x, n, k) == (-1)**(2*k/n)*x**(1/n)
def test_real_root():
assert real_root(-8, 3) == -2
assert real_root(-16, 4) == root(-16, 4)
r = root(-7, 4)
assert real_root(r) == r
r1 = root(-1, 3)
r2 = r1**2
r3 = root(-1, 4)
assert real_root(r1 + r2 + r3) == -1 + r2 + r3
assert real_root(root(-2, 3)) == -root(2, 3)
assert real_root(-8., 3) == -2
x = Symbol('x')
n = Symbol('n')
g = real_root(x, n)
assert g.subs(dict(x=-8, n=3)) == -2
assert g.subs(dict(x=8, n=3)) == 2
# give principle root if there is no real root -- if this is not desired
# then maybe a Root class is needed to raise an error instead
assert g.subs(dict(x=I, n=3)) == cbrt(I)
assert g.subs(dict(x=-8, n=2)) == sqrt(-8)
assert g.subs(dict(x=I, n=2)) == sqrt(I)
def test_issue_11463():
numpy = import_module('numpy')
if not numpy:
skip("numpy not installed.")
x = Symbol('x')
f = lambdify(x, real_root((log(x/(x-2))), 3), 'numpy')
# numpy.select evaluates all options before considering conditions,
# so it raises a warning about root of negative number which does
# not affect the outcome. This warning is suppressed here
with warns(RuntimeWarning):
assert f(numpy.array(-1)) < -1
def test_rewrite_MaxMin_as_Heaviside():
from sympy.abc import x
assert Max(0, x).rewrite(Heaviside) == x*Heaviside(x)
assert Max(3, x).rewrite(Heaviside) == x*Heaviside(x - 3) + \
3*Heaviside(-x + 3)
assert Max(0, x+2, 2*x).rewrite(Heaviside) == \
2*x*Heaviside(2*x)*Heaviside(x - 2) + \
(x + 2)*Heaviside(-x + 2)*Heaviside(x + 2)
assert Min(0, x).rewrite(Heaviside) == x*Heaviside(-x)
assert Min(3, x).rewrite(Heaviside) == x*Heaviside(-x + 3) + \
3*Heaviside(x - 3)
assert Min(x, -x, -2).rewrite(Heaviside) == \
x*Heaviside(-2*x)*Heaviside(-x - 2) - \
x*Heaviside(2*x)*Heaviside(x - 2) \
- 2*Heaviside(-x + 2)*Heaviside(x + 2)
def test_rewrite_MaxMin_as_Piecewise():
from sympy import symbols, Piecewise
x, y, z, a, b = symbols('x y z a b', real=True)
vx, vy, va = symbols('vx vy va')
assert Max(a, b).rewrite(Piecewise) == Piecewise((a, a >= b), (b, True))
assert Max(x, y, z).rewrite(Piecewise) == Piecewise((x, (x >= y) & (x >= z)), (y, y >= z), (z, True))
assert Max(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a >= b) & (a >= x) & (a >= y)),
(b, (b >= x) & (b >= y)), (x, x >= y), (y, True))
assert Min(a, b).rewrite(Piecewise) == Piecewise((a, a <= b), (b, True))
assert Min(x, y, z).rewrite(Piecewise) == Piecewise((x, (x <= y) & (x <= z)), (y, y <= z), (z, True))
assert Min(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a <= b) & (a <= x) & (a <= y)),
(b, (b <= x) & (b <= y)), (x, x <= y), (y, True))
# Piecewise rewriting of Min/Max does not takes place for non-real arguments
assert Max(vx, vy).rewrite(Piecewise) == Max(vx, vy)
assert Min(va, vx, vy).rewrite(Piecewise) == Min(va, vx, vy)
def test_issue_11099():
from sympy.abc import x, y
# some fixed value tests
fixed_test_data = {x: -2, y: 3}
assert Min(x, y).evalf(subs=fixed_test_data) == \
Min(x, y).subs(fixed_test_data).evalf()
assert Max(x, y).evalf(subs=fixed_test_data) == \
Max(x, y).subs(fixed_test_data).evalf()
# randomly generate some test data
from random import randint
for i in range(20):
random_test_data = {x: randint(-100, 100), y: randint(-100, 100)}
assert Min(x, y).evalf(subs=random_test_data) == \
Min(x, y).subs(random_test_data).evalf()
assert Max(x, y).evalf(subs=random_test_data) == \
Max(x, y).subs(random_test_data).evalf()
def test_issue_12638():
from sympy.abc import a, b, c, d
assert Min(a, b, c, Max(a, b)) == Min(a, b, c)
assert Min(a, b, Max(a, b, c)) == Min(a, b)
assert Min(a, b, Max(a, c)) == Min(a, b)
def test_instantiation_evaluation():
from sympy.abc import v, w, x, y, z
assert Min(1, Max(2, x)) == 1
assert Max(3, Min(2, x)) == 3
assert Min(Max(x, y), Max(x, z)) == Max(x, Min(y, z))
assert set(Min(Max(w, x), Max(y, z)).args) == set(
[Max(w, x), Max(y, z)])
assert Min(Max(x, y), Max(x, z), w) == Min(
w, Max(x, Min(y, z)))
A, B = Min, Max
for i in range(2):
assert A(x, B(x, y)) == x
assert A(x, B(y, A(x, w, z))) == A(x, B(y, A(w, z)))
A, B = B, A
assert Min(w, Max(x, y), Max(v, x, z)) == Min(
w, Max(x, Min(y, Max(v, z))))
def test_rewrite_as_Abs():
from itertools import permutations
from sympy.functions.elementary.complexes import Abs
from sympy.abc import x, y, z, w
def test(e):
free = e.free_symbols
a = e.rewrite(Abs)
assert not a.has(Min, Max)
for i in permutations(range(len(free))):
reps = dict(zip(free, i))
assert a.xreplace(reps) == e.xreplace(reps)
test(Min(x, y))
test(Max(x, y))
test(Min(x, y, z))
test(Min(Max(w, x), Max(y, z)))
def test_issue_14000():
assert isinstance(sqrt(4, evaluate=False), Pow) == True
assert isinstance(cbrt(3.5, evaluate=False), Pow) == True
assert isinstance(root(16, 4, evaluate=False), Pow) == True
assert sqrt(4, evaluate=False) == Pow(4, S.Half, evaluate=False)
assert cbrt(3.5, evaluate=False) == Pow(3.5, Rational(1, 3), evaluate=False)
assert root(4, 2, evaluate=False) == Pow(4, Rational(1, 2), evaluate=False)
assert root(16, 4, 2, evaluate=False).has(Pow) == True
assert real_root(-8, 3, evaluate=False).has(Pow) == True
|
6c253bfc81f61ea57031c394b2bb27635dc79c764ed18ab6ef374899c3fb3604
|
from sympy import (
adjoint, conjugate, DiracDelta, Heaviside, nan, pi, sign, sqrt,
symbols, transpose, Symbol, Piecewise, I, S, Eq, oo,
SingularityFunction, signsimp
)
from sympy.utilities.pytest import raises, warns_deprecated_sympy
from sympy.core.function import ArgumentIndexError
from sympy.utilities.misc import filldedent
x, y = symbols('x y')
i = symbols('t', nonzero=True)
j = symbols('j', positive=True)
k = symbols('k', negative=True)
def test_DiracDelta():
assert DiracDelta(1) == 0
assert DiracDelta(5.1) == 0
assert DiracDelta(-pi) == 0
assert DiracDelta(5, 7) == 0
assert DiracDelta(i) == 0
assert DiracDelta(j) == 0
assert DiracDelta(k) == 0
assert DiracDelta(nan) == nan
assert DiracDelta(0).func is DiracDelta
assert DiracDelta(x).func is DiracDelta
# FIXME: this is generally undefined @ x=0
# But then limit(Delta(c)*Heaviside(x),x,-oo)
# need's to be implemented.
# assert 0*DiracDelta(x) == 0
assert adjoint(DiracDelta(x)) == DiracDelta(x)
assert adjoint(DiracDelta(x - y)) == DiracDelta(x - y)
assert conjugate(DiracDelta(x)) == DiracDelta(x)
assert conjugate(DiracDelta(x - y)) == DiracDelta(x - y)
assert transpose(DiracDelta(x)) == DiracDelta(x)
assert transpose(DiracDelta(x - y)) == DiracDelta(x - y)
assert DiracDelta(x).diff(x) == DiracDelta(x, 1)
assert DiracDelta(x, 1).diff(x) == DiracDelta(x, 2)
assert DiracDelta(x).is_simple(x) is True
assert DiracDelta(3*x).is_simple(x) is True
assert DiracDelta(x**2).is_simple(x) is False
assert DiracDelta(sqrt(x)).is_simple(x) is False
assert DiracDelta(x).is_simple(y) is False
assert DiracDelta(x*y).expand(diracdelta=True, wrt=x) == DiracDelta(x)/abs(y)
assert DiracDelta(x*y).expand(diracdelta=True, wrt=y) == DiracDelta(y)/abs(x)
assert DiracDelta(x**2*y).expand(diracdelta=True, wrt=x) == DiracDelta(x**2*y)
assert DiracDelta(y).expand(diracdelta=True, wrt=x) == DiracDelta(y)
assert DiracDelta((x - 1)*(x - 2)*(x - 3)).expand(diracdelta=True, wrt=x) == (
DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2)
assert DiracDelta(2*x) != DiracDelta(x) # scaling property
assert DiracDelta(x) == DiracDelta(-x) # even function
assert DiracDelta(-x, 2) == DiracDelta(x, 2)
assert DiracDelta(-x, 1) == -DiracDelta(x, 1) # odd deriv is odd
assert DiracDelta(-oo*x) == DiracDelta(oo*x)
assert DiracDelta(x - y) != DiracDelta(y - x)
assert signsimp(DiracDelta(x - y) - DiracDelta(y - x)) == 0
with warns_deprecated_sympy():
assert DiracDelta(x*y).simplify(x) == DiracDelta(x)/abs(y)
with warns_deprecated_sympy():
assert DiracDelta(x*y).simplify(y) == DiracDelta(y)/abs(x)
with warns_deprecated_sympy():
assert DiracDelta(x**2*y).simplify(x) == DiracDelta(x**2*y)
with warns_deprecated_sympy():
assert DiracDelta(y).simplify(x) == DiracDelta(y)
with warns_deprecated_sympy():
assert DiracDelta((x - 1)*(x - 2)*(x - 3)).simplify(x) == (
DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2)
raises(ArgumentIndexError, lambda: DiracDelta(x).fdiff(2))
raises(ValueError, lambda: DiracDelta(x, -1))
raises(ValueError, lambda: DiracDelta(I))
raises(ValueError, lambda: DiracDelta(2 + 3*I))
def test_heaviside():
assert Heaviside(0).func == Heaviside
assert Heaviside(-5) == 0
assert Heaviside(1) == 1
assert Heaviside(nan) == nan
assert Heaviside(0, x) == x
assert Heaviside(0, nan) == nan
assert Heaviside(x, None) == Heaviside(x)
assert Heaviside(0, None) == Heaviside(0)
# we do not want None in the args:
assert None not in Heaviside(x, None).args
assert adjoint(Heaviside(x)) == Heaviside(x)
assert adjoint(Heaviside(x - y)) == Heaviside(x - y)
assert conjugate(Heaviside(x)) == Heaviside(x)
assert conjugate(Heaviside(x - y)) == Heaviside(x - y)
assert transpose(Heaviside(x)) == Heaviside(x)
assert transpose(Heaviside(x - y)) == Heaviside(x - y)
assert Heaviside(x).diff(x) == DiracDelta(x)
assert Heaviside(x + I).is_Function is True
assert Heaviside(I*x).is_Function is True
raises(ArgumentIndexError, lambda: Heaviside(x).fdiff(2))
raises(ValueError, lambda: Heaviside(I))
raises(ValueError, lambda: Heaviside(2 + 3*I))
def test_rewrite():
x, y = Symbol('x', real=True), Symbol('y')
assert Heaviside(x).rewrite(Piecewise) == (
Piecewise((0, x < 0), (Heaviside(0), Eq(x, 0)), (1, x > 0)))
assert Heaviside(y).rewrite(Piecewise) == (
Piecewise((0, y < 0), (Heaviside(0), Eq(y, 0)), (1, y > 0)))
assert Heaviside(x, y).rewrite(Piecewise) == (
Piecewise((0, x < 0), (y, Eq(x, 0)), (1, x > 0)))
assert Heaviside(x, 0).rewrite(Piecewise) == (
Piecewise((0, x <= 0), (1, x > 0)))
assert Heaviside(x, 1).rewrite(Piecewise) == (
Piecewise((0, x < 0), (1, x >= 0)))
assert Heaviside(x).rewrite(sign) == (sign(x)+1)/2
assert Heaviside(y).rewrite(sign) == Heaviside(y)
assert Heaviside(x, S.Half).rewrite(sign) == (sign(x)+1)/2
assert Heaviside(x, y).rewrite(sign) == Heaviside(x, y)
assert DiracDelta(y).rewrite(Piecewise) == Piecewise((DiracDelta(0), Eq(y, 0)), (0, True))
assert DiracDelta(y, 1).rewrite(Piecewise) == DiracDelta(y, 1)
assert DiracDelta(x - 5).rewrite(Piecewise) == (
Piecewise((DiracDelta(0), Eq(x - 5, 0)), (0, True)))
assert (x*DiracDelta(x - 10)).rewrite(SingularityFunction) == x*SingularityFunction(x, 10, -1)
assert 5*x*y*DiracDelta(y, 1).rewrite(SingularityFunction) == 5*x*y*SingularityFunction(y, 0, -2)
assert DiracDelta(0).rewrite(SingularityFunction) == SingularityFunction(0, 0, -1)
assert DiracDelta(0, 1).rewrite(SingularityFunction) == SingularityFunction(0, 0, -2)
assert Heaviside(x).rewrite(SingularityFunction) == SingularityFunction(x, 0, 0)
assert 5*x*y*Heaviside(y + 1).rewrite(SingularityFunction) == 5*x*y*SingularityFunction(y, -1, 0)
assert ((x - 3)**3*Heaviside(x - 3)).rewrite(SingularityFunction) == (x - 3)**3*SingularityFunction(x, 3, 0)
assert Heaviside(0).rewrite(SingularityFunction) == SingularityFunction(0, 0, 0)
def test_issue_15923():
x = Symbol('x', real=True)
assert Heaviside(x).rewrite(Piecewise, H0=0) == (
Piecewise((0, x <= 0), (1, True)))
assert Heaviside(x).rewrite(Piecewise, H0=1) == (
Piecewise((0, x < 0), (1, True)))
assert Heaviside(x).rewrite(Piecewise, H0=S(1)/2) == (
Piecewise((0, x < 0), (S(1)/2, Eq(x, 0)), (1, x > 0)))
|
95080f50282e83f52a8652d1b41bef2dff3038b8f4d0fcd76b940dd510e0197e
|
from sympy import Symbol, sqrt, pi, sin, cos, cot, exp, I, diff, conjugate
from sympy.functions.special.spherical_harmonics import Ynm, Znm, Ynm_c
def test_Ynm():
# https://en.wikipedia.org/wiki/Spherical_harmonics
th, ph = Symbol("theta", real=True), Symbol("phi", real=True)
from sympy.abc import n,m
assert Ynm(0, 0, th, ph).expand(func=True) == 1/(2*sqrt(pi))
assert Ynm(1, -1, th, ph) == -exp(-2*I*ph)*Ynm(1, 1, th, ph)
assert Ynm(1, -1, th, ph).expand(func=True) == sqrt(6)*sin(th)*exp(-I*ph)/(4*sqrt(pi))
assert Ynm(1, 0, th, ph).expand(func=True) == sqrt(3)*cos(th)/(2*sqrt(pi))
assert Ynm(1, 1, th, ph).expand(func=True) == -sqrt(6)*sin(th)*exp(I*ph)/(4*sqrt(pi))
assert Ynm(2, 0, th, ph).expand(func=True) == 3*sqrt(5)*cos(th)**2/(4*sqrt(pi)) - sqrt(5)/(4*sqrt(pi))
assert Ynm(2, 1, th, ph).expand(func=True) == -sqrt(30)*sin(th)*exp(I*ph)*cos(th)/(4*sqrt(pi))
assert Ynm(2, -2, th, ph).expand(func=True) == (-sqrt(30)*exp(-2*I*ph)*cos(th)**2/(8*sqrt(pi))
+ sqrt(30)*exp(-2*I*ph)/(8*sqrt(pi)))
assert Ynm(2, 2, th, ph).expand(func=True) == (-sqrt(30)*exp(2*I*ph)*cos(th)**2/(8*sqrt(pi))
+ sqrt(30)*exp(2*I*ph)/(8*sqrt(pi)))
assert diff(Ynm(n, m, th, ph), th) == (m*cot(th)*Ynm(n, m, th, ph)
+ sqrt((-m + n)*(m + n + 1))*exp(-I*ph)*Ynm(n, m + 1, th, ph))
assert diff(Ynm(n, m, th, ph), ph) == I*m*Ynm(n, m, th, ph)
assert conjugate(Ynm(n, m, th, ph)) == (-1)**(2*m)*exp(-2*I*m*ph)*Ynm(n, m, th, ph)
assert Ynm(n, m, -th, ph) == Ynm(n, m, th, ph)
assert Ynm(n, m, th, -ph) == exp(-2*I*m*ph)*Ynm(n, m, th, ph)
assert Ynm(n, -m, th, ph) == (-1)**m*exp(-2*I*m*ph)*Ynm(n, m, th, ph)
def test_Ynm_c():
th, ph = Symbol("theta", real=True), Symbol("phi", real=True)
from sympy.abc import n,m
assert Ynm_c(n, m, th, ph) == (-1)**(2*m)*exp(-2*I*m*ph)*Ynm(n, m, th, ph)
def test_Znm():
# https://en.wikipedia.org/wiki/Solid_harmonics#List_of_lowest_functions
th, ph = Symbol("theta", real=True), Symbol("phi", real=True)
assert Znm(0, 0, th, ph) == Ynm(0, 0, th, ph)
assert Znm(1, -1, th, ph) == (-sqrt(2)*I*(Ynm(1, 1, th, ph)
- exp(-2*I*ph)*Ynm(1, 1, th, ph))/2)
assert Znm(1, 0, th, ph) == Ynm(1, 0, th, ph)
assert Znm(1, 1, th, ph) == (sqrt(2)*(Ynm(1, 1, th, ph)
+ exp(-2*I*ph)*Ynm(1, 1, th, ph))/2)
assert Znm(0, 0, th, ph).expand(func=True) == 1/(2*sqrt(pi))
assert Znm(1, -1, th, ph).expand(func=True) == (sqrt(3)*I*sin(th)*exp(I*ph)/(4*sqrt(pi))
- sqrt(3)*I*sin(th)*exp(-I*ph)/(4*sqrt(pi)))
assert Znm(1, 0, th, ph).expand(func=True) == sqrt(3)*cos(th)/(2*sqrt(pi))
assert Znm(1, 1, th, ph).expand(func=True) == (-sqrt(3)*sin(th)*exp(I*ph)/(4*sqrt(pi))
- sqrt(3)*sin(th)*exp(-I*ph)/(4*sqrt(pi)))
assert Znm(2, -1, th, ph).expand(func=True) == (sqrt(15)*I*sin(th)*exp(I*ph)*cos(th)/(4*sqrt(pi))
- sqrt(15)*I*sin(th)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))
assert Znm(2, 0, th, ph).expand(func=True) == 3*sqrt(5)*cos(th)**2/(4*sqrt(pi)) - sqrt(5)/(4*sqrt(pi))
assert Znm(2, 1, th, ph).expand(func=True) == (-sqrt(15)*sin(th)*exp(I*ph)*cos(th)/(4*sqrt(pi))
- sqrt(15)*sin(th)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))
|
27f5b3e06ddfe8b50b32bfc78053bef92b6bbcc766867fe3071d98250c45f720
|
from sympy import (
Symbol, gamma, I, oo, nan, zoo, factorial, sqrt, Rational, log,
polygamma, EulerGamma, pi, uppergamma, S, expand_func, loggamma, sin,
cos, O, lowergamma, exp, erf, erfc, exp_polar, harmonic, zeta,conjugate)
from sympy.core.function import ArgumentIndexError
from sympy.utilities.randtest import (test_derivative_numerically as td,
random_complex_number as randcplx,
verify_numerically as tn)
from sympy.utilities.pytest import raises
x = Symbol('x')
y = Symbol('y')
n = Symbol('n', integer=True)
w = Symbol('w', real=True)
def test_gamma():
assert gamma(nan) == nan
assert gamma(oo) == oo
assert gamma(-100) == zoo
assert gamma(0) == zoo
assert gamma(1) == 1
assert gamma(2) == 1
assert gamma(3) == 2
assert gamma(102) == factorial(101)
assert gamma(Rational(1, 2)) == sqrt(pi)
assert gamma(Rational(3, 2)) == Rational(1, 2)*sqrt(pi)
assert gamma(Rational(5, 2)) == Rational(3, 4)*sqrt(pi)
assert gamma(Rational(7, 2)) == Rational(15, 8)*sqrt(pi)
assert gamma(Rational(-1, 2)) == -2*sqrt(pi)
assert gamma(Rational(-3, 2)) == Rational(4, 3)*sqrt(pi)
assert gamma(Rational(-5, 2)) == -Rational(8, 15)*sqrt(pi)
assert gamma(Rational(-15, 2)) == Rational(256, 2027025)*sqrt(pi)
assert gamma(Rational(
-11, 8)).expand(func=True) == Rational(64, 33)*gamma(Rational(5, 8))
assert gamma(Rational(
-10, 3)).expand(func=True) == Rational(81, 280)*gamma(Rational(2, 3))
assert gamma(Rational(
14, 3)).expand(func=True) == Rational(880, 81)*gamma(Rational(2, 3))
assert gamma(Rational(
17, 7)).expand(func=True) == Rational(30, 49)*gamma(Rational(3, 7))
assert gamma(Rational(
19, 8)).expand(func=True) == Rational(33, 64)*gamma(Rational(3, 8))
assert gamma(x).diff(x) == gamma(x)*polygamma(0, x)
assert gamma(x - 1).expand(func=True) == gamma(x)/(x - 1)
assert gamma(x + 2).expand(func=True, mul=False) == x*(x + 1)*gamma(x)
assert conjugate(gamma(x)) == gamma(conjugate(x))
assert expand_func(gamma(x + Rational(3, 2))) == \
(x + Rational(1, 2))*gamma(x + Rational(1, 2))
assert expand_func(gamma(x - Rational(1, 2))) == \
gamma(Rational(1, 2) + x)/(x - Rational(1, 2))
# Test a bug:
assert expand_func(gamma(x + Rational(3, 4))) == gamma(x + Rational(3, 4))
assert gamma(3*exp_polar(I*pi)/4).is_nonnegative is False
assert gamma(3*exp_polar(I*pi)/4).is_nonpositive is True
def test_gamma_rewrite():
assert gamma(n).rewrite(factorial) == factorial(n - 1)
def test_gamma_series():
assert gamma(x + 1).series(x, 0, 3) == \
1 - EulerGamma*x + x**2*(EulerGamma**2/2 + pi**2/12) + O(x**3)
assert gamma(x).series(x, -1, 3) == \
-1/(x + 1) + EulerGamma - 1 + (x + 1)*(-1 - pi**2/12 - EulerGamma**2/2 + \
EulerGamma) + (x + 1)**2*(-1 - pi**2/12 - EulerGamma**2/2 + EulerGamma**3/6 - \
polygamma(2, 1)/6 + EulerGamma*pi**2/12 + EulerGamma) + O((x + 1)**3, (x, -1))
def tn_branch(s, func):
from sympy import I, pi, exp_polar
from random import uniform
c = uniform(1, 5)
expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi))
eps = 1e-15
expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I)
return abs(expr.n() - expr2.n()).n() < 1e-10
def test_lowergamma():
from sympy import meijerg, exp_polar, I, expint
assert lowergamma(x, 0) == 0
assert lowergamma(x, y).diff(y) == y**(x - 1)*exp(-y)
assert td(lowergamma(randcplx(), y), y)
assert td(lowergamma(x, randcplx()), x)
assert lowergamma(x, y).diff(x) == \
gamma(x)*polygamma(0, x) - uppergamma(x, y)*log(y) \
- meijerg([], [1, 1], [0, 0, x], [], y)
assert lowergamma(S.Half, x) == sqrt(pi)*erf(sqrt(x))
assert not lowergamma(S.Half - 3, x).has(lowergamma)
assert not lowergamma(S.Half + 3, x).has(lowergamma)
assert lowergamma(S.Half, x, evaluate=False).has(lowergamma)
assert tn(lowergamma(S.Half + 3, x, evaluate=False),
lowergamma(S.Half + 3, x), x)
assert tn(lowergamma(S.Half - 3, x, evaluate=False),
lowergamma(S.Half - 3, x), x)
assert tn_branch(-3, lowergamma)
assert tn_branch(-4, lowergamma)
assert tn_branch(S(1)/3, lowergamma)
assert tn_branch(pi, lowergamma)
assert lowergamma(3, exp_polar(4*pi*I)*x) == lowergamma(3, x)
assert lowergamma(y, exp_polar(5*pi*I)*x) == \
exp(4*I*pi*y)*lowergamma(y, x*exp_polar(pi*I))
assert lowergamma(-2, exp_polar(5*pi*I)*x) == \
lowergamma(-2, x*exp_polar(I*pi)) + 2*pi*I
assert conjugate(lowergamma(x, y)) == lowergamma(conjugate(x), conjugate(y))
assert conjugate(lowergamma(x, 0)) == conjugate(lowergamma(x, 0))
assert conjugate(lowergamma(x, -oo)) == conjugate(lowergamma(x, -oo))
assert lowergamma(
x, y).rewrite(expint) == -y**x*expint(-x + 1, y) + gamma(x)
k = Symbol('k', integer=True)
assert lowergamma(
k, y).rewrite(expint) == -y**k*expint(-k + 1, y) + gamma(k)
k = Symbol('k', integer=True, positive=False)
assert lowergamma(k, y).rewrite(expint) == lowergamma(k, y)
assert lowergamma(x, y).rewrite(uppergamma) == gamma(x) - uppergamma(x, y)
assert lowergamma(70, 6) == factorial(69) - 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320 * exp(-6)
assert (lowergamma(S(77) / 2, 6) - lowergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
assert (lowergamma(-S(77) / 2, 6) - lowergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
def test_uppergamma():
from sympy import meijerg, exp_polar, I, expint
assert uppergamma(4, 0) == 6
assert uppergamma(x, y).diff(y) == -y**(x - 1)*exp(-y)
assert td(uppergamma(randcplx(), y), y)
assert uppergamma(x, y).diff(x) == \
uppergamma(x, y)*log(y) + meijerg([], [1, 1], [0, 0, x], [], y)
assert td(uppergamma(x, randcplx()), x)
assert uppergamma(S.Half, x) == sqrt(pi)*erfc(sqrt(x))
assert not uppergamma(S.Half - 3, x).has(uppergamma)
assert not uppergamma(S.Half + 3, x).has(uppergamma)
assert uppergamma(S.Half, x, evaluate=False).has(uppergamma)
assert tn(uppergamma(S.Half + 3, x, evaluate=False),
uppergamma(S.Half + 3, x), x)
assert tn(uppergamma(S.Half - 3, x, evaluate=False),
uppergamma(S.Half - 3, x), x)
assert tn_branch(-3, uppergamma)
assert tn_branch(-4, uppergamma)
assert tn_branch(S(1)/3, uppergamma)
assert tn_branch(pi, uppergamma)
assert uppergamma(3, exp_polar(4*pi*I)*x) == uppergamma(3, x)
assert uppergamma(y, exp_polar(5*pi*I)*x) == \
exp(4*I*pi*y)*uppergamma(y, x*exp_polar(pi*I)) + \
gamma(y)*(1 - exp(4*pi*I*y))
assert uppergamma(-2, exp_polar(5*pi*I)*x) == \
uppergamma(-2, x*exp_polar(I*pi)) - 2*pi*I
assert uppergamma(-2, x) == expint(3, x)/x**2
assert conjugate(uppergamma(x, y)) == uppergamma(conjugate(x), conjugate(y))
assert conjugate(uppergamma(x, 0)) == gamma(conjugate(x))
assert conjugate(uppergamma(x, -oo)) == conjugate(uppergamma(x, -oo))
assert uppergamma(x, y).rewrite(expint) == y**x*expint(-x + 1, y)
assert uppergamma(x, y).rewrite(lowergamma) == gamma(x) - lowergamma(x, y)
assert uppergamma(70, 6) == 69035724522603011058660187038367026272747334489677105069435923032634389419656200387949342530805432320*exp(-6)
assert (uppergamma(S(77) / 2, 6) - uppergamma(S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
assert (uppergamma(-S(77) / 2, 6) - uppergamma(-S(77) / 2, 6, evaluate=False)).evalf() < 1e-16
def test_polygamma():
from sympy import I
assert polygamma(n, nan) == nan
assert polygamma(0, oo) == oo
assert polygamma(0, -oo) == oo
assert polygamma(0, I*oo) == oo
assert polygamma(0, -I*oo) == oo
assert polygamma(1, oo) == 0
assert polygamma(5, oo) == 0
assert polygamma(0, -9) == zoo
assert polygamma(0, -9) == zoo
assert polygamma(0, -1) == zoo
assert polygamma(0, 0) == zoo
assert polygamma(0, 1) == -EulerGamma
assert polygamma(0, 7) == Rational(49, 20) - EulerGamma
assert polygamma(1, 1) == pi**2/6
assert polygamma(1, 2) == pi**2/6 - 1
assert polygamma(1, 3) == pi**2/6 - Rational(5, 4)
assert polygamma(3, 1) == pi**4 / 15
assert polygamma(3, 5) == 6*(Rational(-22369, 20736) + pi**4/90)
assert polygamma(5, 1) == 8 * pi**6 / 63
def t(m, n):
x = S(m)/n
r = polygamma(0, x)
if r.has(polygamma):
return False
return abs(polygamma(0, x.n()).n() - r.n()).n() < 1e-10
assert t(1, 2)
assert t(3, 2)
assert t(-1, 2)
assert t(1, 4)
assert t(-3, 4)
assert t(1, 3)
assert t(4, 3)
assert t(3, 4)
assert t(2, 3)
assert t(123, 5)
assert polygamma(0, x).rewrite(zeta) == polygamma(0, x)
assert polygamma(1, x).rewrite(zeta) == zeta(2, x)
assert polygamma(2, x).rewrite(zeta) == -2*zeta(3, x)
assert polygamma(3, 7*x).diff(x) == 7*polygamma(4, 7*x)
assert polygamma(0, x).rewrite(harmonic) == harmonic(x - 1) - EulerGamma
assert polygamma(2, x).rewrite(harmonic) == 2*harmonic(x - 1, 3) - 2*zeta(3)
ni = Symbol("n", integer=True)
assert polygamma(ni, x).rewrite(harmonic) == (-1)**(ni + 1)*(-harmonic(x - 1, ni + 1)
+ zeta(ni + 1))*factorial(ni)
# Polygamma of non-negative integer order is unbranched:
from sympy import exp_polar
k = Symbol('n', integer=True, nonnegative=True)
assert polygamma(k, exp_polar(2*I*pi)*x) == polygamma(k, x)
# but negative integers are branched!
k = Symbol('n', integer=True)
assert polygamma(k, exp_polar(2*I*pi)*x).args == (k, exp_polar(2*I*pi)*x)
# Polygamma of order -1 is loggamma:
assert polygamma(-1, x) == loggamma(x)
# But smaller orders are iterated integrals and don't have a special name
assert polygamma(-2, x).func is polygamma
# Test a bug
assert polygamma(0, -x).expand(func=True) == polygamma(0, -x)
def test_polygamma_expand_func():
assert polygamma(0, x).expand(func=True) == polygamma(0, x)
assert polygamma(0, 2*x).expand(func=True) == \
polygamma(0, x)/2 + polygamma(0, Rational(1, 2) + x)/2 + log(2)
assert polygamma(1, 2*x).expand(func=True) == \
polygamma(1, x)/4 + polygamma(1, Rational(1, 2) + x)/4
assert polygamma(2, x).expand(func=True) == \
polygamma(2, x)
assert polygamma(0, -1 + x).expand(func=True) == \
polygamma(0, x) - 1/(x - 1)
assert polygamma(0, 1 + x).expand(func=True) == \
1/x + polygamma(0, x )
assert polygamma(0, 2 + x).expand(func=True) == \
1/x + 1/(1 + x) + polygamma(0, x)
assert polygamma(0, 3 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x)
assert polygamma(0, 4 + x).expand(func=True) == \
polygamma(0, x) + 1/x + 1/(1 + x) + 1/(2 + x) + 1/(3 + x)
assert polygamma(1, 1 + x).expand(func=True) == \
polygamma(1, x) - 1/x**2
assert polygamma(1, 2 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2
assert polygamma(1, 3 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - 1/(2 + x)**2
assert polygamma(1, 4 + x).expand(func=True, multinomial=False) == \
polygamma(1, x) - 1/x**2 - 1/(1 + x)**2 - \
1/(2 + x)**2 - 1/(3 + x)**2
assert polygamma(0, x + y).expand(func=True) == \
polygamma(0, x + y)
assert polygamma(1, x + y).expand(func=True) == \
polygamma(1, x + y)
assert polygamma(1, 3 + 4*x + y).expand(func=True, multinomial=False) == \
polygamma(1, y + 4*x) - 1/(y + 4*x)**2 - \
1/(1 + y + 4*x)**2 - 1/(2 + y + 4*x)**2
assert polygamma(3, 3 + 4*x + y).expand(func=True, multinomial=False) == \
polygamma(3, y + 4*x) - 6/(y + 4*x)**4 - \
6/(1 + y + 4*x)**4 - 6/(2 + y + 4*x)**4
assert polygamma(3, 4*x + y + 1).expand(func=True, multinomial=False) == \
polygamma(3, y + 4*x) - 6/(y + 4*x)**4
e = polygamma(3, 4*x + y + S(3)/2)
assert e.expand(func=True) == e
e = polygamma(3, x + y + S(3)/4)
assert e.expand(func=True, basic=False) == e
def test_loggamma():
raises(TypeError, lambda: loggamma(2, 3))
raises(ArgumentIndexError, lambda: loggamma(x).fdiff(2))
assert loggamma(-1) == oo
assert loggamma(-2) == oo
assert loggamma(0) == oo
assert loggamma(1) == 0
assert loggamma(2) == 0
assert loggamma(3) == log(2)
assert loggamma(4) == log(6)
n = Symbol("n", integer=True, positive=True)
assert loggamma(n) == log(gamma(n))
assert loggamma(-n) == oo
assert loggamma(n/2) == log(2**(-n + 1)*sqrt(pi)*gamma(n)/gamma(n/2 + S.Half))
from sympy import I
assert loggamma(oo) == oo
assert loggamma(-oo) == zoo
assert loggamma(I*oo) == zoo
assert loggamma(-I*oo) == zoo
assert loggamma(zoo) == zoo
assert loggamma(nan) == nan
L = loggamma(S(16)/3)
E = -5*log(3) + loggamma(S(1)/3) + log(4) + log(7) + log(10) + log(13)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(19/S(4))
E = -4*log(4) + loggamma(S(3)/4) + log(3) + log(7) + log(11) + log(15)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(S(23)/7)
E = -3*log(7) + log(2) + loggamma(S(2)/7) + log(9) + log(16)
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(19/S(4)-7)
E = -log(9) - log(5) + loggamma(S(3)/4) + 3*log(4) - 3*I*pi
assert expand_func(L).doit() == E
assert L.n() == E.n()
L = loggamma(23/S(7)-6)
E = -log(19) - log(12) - log(5) + loggamma(S(2)/7) + 3*log(7) - 3*I*pi
assert expand_func(L).doit() == E
assert L.n() == E.n()
assert loggamma(x).diff(x) == polygamma(0, x)
s1 = loggamma(1/(x + sin(x)) + cos(x)).nseries(x, n=4)
s2 = (-log(2*x) - 1)/(2*x) - log(x/pi)/2 + (4 - log(2*x))*x/24 + O(x**2) + \
log(x)*x**2/2
assert (s1 - s2).expand(force=True).removeO() == 0
s1 = loggamma(1/x).series(x)
s2 = (1/x - S(1)/2)*log(1/x) - 1/x + log(2*pi)/2 + \
x/12 - x**3/360 + x**5/1260 + O(x**7)
assert ((s1 - s2).expand(force=True)).removeO() == 0
assert loggamma(x).rewrite('intractable') == log(gamma(x))
s1 = loggamma(x).series(x)
assert s1 == -log(x) - EulerGamma*x + pi**2*x**2/12 + x**3*polygamma(2, 1)/6 + \
pi**4*x**4/360 + x**5*polygamma(4, 1)/120 + O(x**6)
assert s1 == loggamma(x).rewrite('intractable').series(x)
assert conjugate(loggamma(x)) == loggamma(conjugate(x))
assert conjugate(loggamma(0)) == conjugate(loggamma(0))
assert conjugate(loggamma(1)) == loggamma(conjugate(1))
assert conjugate(loggamma(-oo)) == conjugate(loggamma(-oo))
assert loggamma(x).is_real is None
y, z = Symbol('y', real=True), Symbol('z', imaginary=True)
assert loggamma(y).is_real
assert loggamma(z).is_real is False
def tN(N, M):
assert loggamma(1/x)._eval_nseries(x, n=N).getn() == M
tN(0, 0)
tN(1, 1)
tN(2, 3)
tN(3, 3)
tN(4, 5)
tN(5, 5)
def test_polygamma_expansion():
# A. & S., pa. 259 and 260
assert polygamma(0, 1/x).nseries(x, n=3) == \
-log(x) - x/2 - x**2/12 + O(x**4)
assert polygamma(1, 1/x).series(x, n=5) == \
x + x**2/2 + x**3/6 + O(x**5)
assert polygamma(3, 1/x).nseries(x, n=11) == \
2*x**3 + 3*x**4 + 2*x**5 - x**7 + 4*x**9/3 + O(x**11)
def test_issue_8657():
n = Symbol('n', negative=True, integer=True)
m = Symbol('m', integer=True)
o = Symbol('o', positive=True)
p = Symbol('p', negative=True, integer=False)
assert gamma(n).is_real is None
assert gamma(m).is_real is None
assert gamma(o).is_real is True
assert gamma(p).is_real is True
assert gamma(w).is_real is None
def test_issue_8524():
x = Symbol('x', positive=True)
y = Symbol('y', negative=True)
z = Symbol('z', positive=False)
p = Symbol('p', negative=False)
q = Symbol('q', integer=True)
r = Symbol('r', integer=False)
e = Symbol('e', even=True, negative=True)
assert gamma(x).is_positive is True
assert gamma(y).is_positive is None
assert gamma(z).is_positive is None
assert gamma(p).is_positive is None
assert gamma(q).is_positive is None
assert gamma(r).is_positive is None
assert gamma(e + S.Half).is_positive is True
assert gamma(e - S.Half).is_positive is False
def test_issue_14450():
assert uppergamma(S(3)/8, x).evalf() == uppergamma(0.375, x)
assert lowergamma(x, S(3)/8).evalf() == lowergamma(x, 0.375)
# some values from Wolfram Alpha for comparison
assert abs(uppergamma(S(3)/8, 2).evalf() - 0.07105675881) < 1e-9
assert abs(lowergamma(S(3)/8, 2).evalf() - 2.2993794256) < 1e-9
def test_issue_14528():
k = Symbol('k', integer=True, nonpositive=True)
assert isinstance(gamma(k), gamma)
|
f6644bb75622654fbffc5c855c5e4f6ad3cf3d897f3a5c936692253d9e9b79ae
|
from sympy import (
symbols, expand, expand_func, nan, oo, Float, conjugate, diff,
re, im, Abs, O, exp_polar, polar_lift, gruntz, limit,
Symbol, I, integrate, Integral, S,
sqrt, sin, cos, sinc, sinh, cosh, exp, log, pi, EulerGamma,
erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv,
gamma, uppergamma,
Ei, expint, E1, li, Li, Si, Ci, Shi, Chi,
fresnels, fresnelc,
hyper, meijerg)
from sympy.functions.special.error_functions import _erfs, _eis
from sympy.core.function import ArgumentIndexError
from sympy.utilities.pytest import raises
x, y, z = symbols('x,y,z')
w = Symbol("w", real=True)
n = Symbol("n", integer=True)
def test_erf():
assert erf(nan) == nan
assert erf(oo) == 1
assert erf(-oo) == -1
assert erf(0) == 0
assert erf(I*oo) == oo*I
assert erf(-I*oo) == -oo*I
assert erf(-2) == -erf(2)
assert erf(-x*y) == -erf(x*y)
assert erf(-x - y) == -erf(x + y)
assert erf(erfinv(x)) == x
assert erf(erfcinv(x)) == 1 - x
assert erf(erf2inv(0, x)) == x
assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x
assert erf(I).is_real is False
assert erf(0).is_real is True
assert conjugate(erf(z)) == erf(conjugate(z))
assert erf(x).as_leading_term(x) == 2*x/sqrt(pi)
assert erf(1/x).as_leading_term(x) == erf(1/x)
assert erf(z).rewrite('uppergamma') == sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z
assert erf(z).rewrite('erfc') == S.One - erfc(z)
assert erf(z).rewrite('erfi') == -I*erfi(I*z)
assert erf(z).rewrite('fresnels') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erf(z).rewrite('fresnelc') == (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erf(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi)
assert erf(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [-S.Half], z**2)/sqrt(pi)
assert erf(z).rewrite('expint') == sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(S.Pi)
assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
2/sqrt(pi)
assert limit((1 - erf(z))*exp(z**2)*z, z, oo) == 1/sqrt(pi)
assert limit((1 - erf(x))*exp(x**2)*sqrt(pi)*x, x, oo) == 1
assert limit(((1 - erf(x))*exp(x**2)*sqrt(pi)*x - 1)*2*x**2, x, oo) == -1
assert erf(x).as_real_imag() == \
((erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
I*(erf(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
erf(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
raises(ArgumentIndexError, lambda: erf(x).fdiff(2))
def test_erf_series():
assert erf(x).series(x, 0, 7) == 2*x/sqrt(pi) - \
2*x**3/3/sqrt(pi) + x**5/5/sqrt(pi) + O(x**7)
def test_erf_evalf():
assert abs( erf(Float(2.0)) - 0.995322265 ) < 1E-8 # XXX
def test__erfs():
assert _erfs(z).diff(z) == -2/sqrt(S.Pi) + 2*z*_erfs(z)
assert _erfs(1/z).series(z) == \
z/sqrt(pi) - z**3/(2*sqrt(pi)) + 3*z**5/(4*sqrt(pi)) + O(z**6)
assert expand(erf(z).rewrite('tractable').diff(z).rewrite('intractable')) \
== erf(z).diff(z)
assert _erfs(z).rewrite("intractable") == (-erf(z) + 1)*exp(z**2)
def test_erfc():
assert erfc(nan) == nan
assert erfc(oo) == 0
assert erfc(-oo) == 2
assert erfc(0) == 1
assert erfc(I*oo) == -oo*I
assert erfc(-I*oo) == oo*I
assert erfc(-x) == S(2) - erfc(x)
assert erfc(erfcinv(x)) == x
assert erfc(I).is_real is False
assert erfc(0).is_real is True
assert conjugate(erfc(z)) == erfc(conjugate(z))
assert erfc(x).as_leading_term(x) == S.One
assert erfc(1/x).as_leading_term(x) == erfc(1/x)
assert erfc(z).rewrite('erf') == 1 - erf(z)
assert erfc(z).rewrite('erfi') == 1 + I*erfi(I*z)
assert erfc(z).rewrite('fresnels') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erfc(z).rewrite('fresnelc') == 1 - (1 + I)*(fresnelc(z*(1 - I)/sqrt(pi)) -
I*fresnels(z*(1 - I)/sqrt(pi)))
assert erfc(z).rewrite('hyper') == 1 - 2*z*hyper([S.Half], [3*S.Half], -z**2)/sqrt(pi)
assert erfc(z).rewrite('meijerg') == 1 - z*meijerg([S.Half], [], [0], [-S.Half], z**2)/sqrt(pi)
assert erfc(z).rewrite('uppergamma') == 1 - sqrt(z**2)*(1 - erfc(sqrt(z**2)))/z
assert erfc(z).rewrite('expint') == S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(S.Pi)
assert expand_func(erf(x) + erfc(x)) == S.One
assert erfc(x).as_real_imag() == \
((erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
I*(erfc(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
erfc(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
raises(ArgumentIndexError, lambda: erfc(x).fdiff(2))
def test_erfc_series():
assert erfc(x).series(x, 0, 7) == 1 - 2*x/sqrt(pi) + \
2*x**3/3/sqrt(pi) - x**5/5/sqrt(pi) + O(x**7)
def test_erfc_evalf():
assert abs( erfc(Float(2.0)) - 0.00467773 ) < 1E-8 # XXX
def test_erfi():
assert erfi(nan) == nan
assert erfi(oo) == S.Infinity
assert erfi(-oo) == S.NegativeInfinity
assert erfi(0) == S.Zero
assert erfi(I*oo) == I
assert erfi(-I*oo) == -I
assert erfi(-x) == -erfi(x)
assert erfi(I*erfinv(x)) == I*x
assert erfi(I*erfcinv(x)) == I*(1 - x)
assert erfi(I*erf2inv(0, x)) == I*x
assert erfi(I).is_real is False
assert erfi(0).is_real is True
assert conjugate(erfi(z)) == erfi(conjugate(z))
assert erfi(z).rewrite('erf') == -I*erf(I*z)
assert erfi(z).rewrite('erfc') == I*erfc(I*z) - I
assert erfi(z).rewrite('fresnels') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
I*fresnels(z*(1 + I)/sqrt(pi)))
assert erfi(z).rewrite('fresnelc') == (1 - I)*(fresnelc(z*(1 + I)/sqrt(pi)) -
I*fresnels(z*(1 + I)/sqrt(pi)))
assert erfi(z).rewrite('hyper') == 2*z*hyper([S.Half], [3*S.Half], z**2)/sqrt(pi)
assert erfi(z).rewrite('meijerg') == z*meijerg([S.Half], [], [0], [-S.Half], -z**2)/sqrt(pi)
assert erfi(z).rewrite('uppergamma') == (sqrt(-z**2)/z*(uppergamma(S.Half,
-z**2)/sqrt(S.Pi) - S.One))
assert erfi(z).rewrite('expint') == sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(S.Pi)
assert expand_func(erfi(I*z)) == I*erf(z)
assert erfi(x).as_real_imag() == \
((erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x)))/2 +
erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))/2,
I*(erfi(re(x) - I*re(x)*Abs(im(x))/Abs(re(x))) -
erfi(re(x) + I*re(x)*Abs(im(x))/Abs(re(x)))) *
re(x)*Abs(im(x))/(2*im(x)*Abs(re(x)))))
raises(ArgumentIndexError, lambda: erfi(x).fdiff(2))
def test_erfi_series():
assert erfi(x).series(x, 0, 7) == 2*x/sqrt(pi) + \
2*x**3/3/sqrt(pi) + x**5/5/sqrt(pi) + O(x**7)
def test_erfi_evalf():
assert abs( erfi(Float(2.0)) - 18.5648024145756 ) < 1E-13 # XXX
def test_erf2():
assert erf2(0, 0) == S.Zero
assert erf2(x, x) == S.Zero
assert erf2(nan, 0) == nan
assert erf2(-oo, y) == erf(y) + 1
assert erf2( oo, y) == erf(y) - 1
assert erf2( x, oo) == 1 - erf(x)
assert erf2( x,-oo) == -1 - erf(x)
assert erf2(x, erf2inv(x, y)) == y
assert erf2(-x, -y) == -erf2(x,y)
assert erf2(-x, y) == erf(y) + erf(x)
assert erf2( x, -y) == -erf(y) - erf(x)
assert erf2(x, y).rewrite('fresnels') == erf(y).rewrite(fresnels)-erf(x).rewrite(fresnels)
assert erf2(x, y).rewrite('fresnelc') == erf(y).rewrite(fresnelc)-erf(x).rewrite(fresnelc)
assert erf2(x, y).rewrite('hyper') == erf(y).rewrite(hyper)-erf(x).rewrite(hyper)
assert erf2(x, y).rewrite('meijerg') == erf(y).rewrite(meijerg)-erf(x).rewrite(meijerg)
assert erf2(x, y).rewrite('uppergamma') == erf(y).rewrite(uppergamma) - erf(x).rewrite(uppergamma)
assert erf2(x, y).rewrite('expint') == erf(y).rewrite(expint)-erf(x).rewrite(expint)
assert erf2(I, 0).is_real is False
assert erf2(0, 0).is_real is True
assert expand_func(erf(x) + erf2(x, y)) == erf(y)
assert conjugate(erf2(x, y)) == erf2(conjugate(x), conjugate(y))
assert erf2(x, y).rewrite('erf') == erf(y) - erf(x)
assert erf2(x, y).rewrite('erfc') == erfc(x) - erfc(y)
assert erf2(x, y).rewrite('erfi') == I*(erfi(I*x) - erfi(I*y))
raises(ArgumentIndexError, lambda: erfi(x).fdiff(3))
def test_erfinv():
assert erfinv(0) == 0
assert erfinv(1) == S.Infinity
assert erfinv(nan) == S.NaN
assert erfinv(erf(w)) == w
assert erfinv(erf(-w)) == -w
assert erfinv(x).diff() == sqrt(pi)*exp(erfinv(x)**2)/2
assert erfinv(z).rewrite('erfcinv') == erfcinv(1-z)
def test_erfinv_evalf():
assert abs( erfinv(Float(0.2)) - 0.179143454621292 ) < 1E-13
def test_erfcinv():
assert erfcinv(1) == 0
assert erfcinv(0) == S.Infinity
assert erfcinv(nan) == S.NaN
assert erfcinv(x).diff() == -sqrt(pi)*exp(erfcinv(x)**2)/2
assert erfcinv(z).rewrite('erfinv') == erfinv(1-z)
def test_erf2inv():
assert erf2inv(0, 0) == S.Zero
assert erf2inv(0, 1) == S.Infinity
assert erf2inv(1, 0) == S.One
assert erf2inv(0, y) == erfinv(y)
assert erf2inv(oo,y) == erfcinv(-y)
assert erf2inv(x, y).diff(x) == exp(-x**2 + erf2inv(x, y)**2)
assert erf2inv(x, y).diff(y) == sqrt(pi)*exp(erf2inv(x, y)**2)/2
# NOTE we multiply by exp_polar(I*pi) and need this to be on the principal
# branch, hence take x in the lower half plane (d=0).
def mytn(expr1, expr2, expr3, x, d=0):
from sympy.utilities.randtest import verify_numerically, random_complex_number
subs = {}
for a in expr1.free_symbols:
if a != x:
subs[a] = random_complex_number()
return expr2 == expr3 and verify_numerically(expr1.subs(subs),
expr2.subs(subs), x, d=d)
def mytd(expr1, expr2, x):
from sympy.utilities.randtest import test_derivative_numerically, \
random_complex_number
subs = {}
for a in expr1.free_symbols:
if a != x:
subs[a] = random_complex_number()
return expr1.diff(x) == expr2 and test_derivative_numerically(expr1.subs(subs), x)
def tn_branch(func, s=None):
from sympy import I, pi, exp_polar
from random import uniform
def fn(x):
if s is None:
return func(x)
return func(s, x)
c = uniform(1, 5)
expr = fn(c*exp_polar(I*pi)) - fn(c*exp_polar(-I*pi))
eps = 1e-15
expr2 = fn(-c + eps*I) - fn(-c - eps*I)
return abs(expr.n() - expr2.n()).n() < 1e-10
def test_ei():
assert tn_branch(Ei)
assert mytd(Ei(x), exp(x)/x, x)
assert mytn(Ei(x), Ei(x).rewrite(uppergamma),
-uppergamma(0, x*polar_lift(-1)) - I*pi, x)
assert mytn(Ei(x), Ei(x).rewrite(expint),
-expint(1, x*polar_lift(-1)) - I*pi, x)
assert Ei(x).rewrite(expint).rewrite(Ei) == Ei(x)
assert Ei(x*exp_polar(2*I*pi)) == Ei(x) + 2*I*pi
assert Ei(x*exp_polar(-2*I*pi)) == Ei(x) - 2*I*pi
assert mytn(Ei(x), Ei(x).rewrite(Shi), Chi(x) + Shi(x), x)
assert mytn(Ei(x*polar_lift(I)), Ei(x*polar_lift(I)).rewrite(Si),
Ci(x) + I*Si(x) + I*pi/2, x)
assert Ei(log(x)).rewrite(li) == li(x)
assert Ei(2*log(x)).rewrite(li) == li(x**2)
assert gruntz(Ei(x+exp(-x))*exp(-x)*x, x, oo) == 1
assert Ei(x).series(x) == EulerGamma + log(x) + x + x**2/4 + \
x**3/18 + x**4/96 + x**5/600 + O(x**6)
assert str(Ei(cos(2)).evalf(n=10)) == '-0.6760647401'
def test_expint():
assert mytn(expint(x, y), expint(x, y).rewrite(uppergamma),
y**(x - 1)*uppergamma(1 - x, y), x)
assert mytd(
expint(x, y), -y**(x - 1)*meijerg([], [1, 1], [0, 0, 1 - x], [], y), x)
assert mytd(expint(x, y), -expint(x - 1, y), y)
assert mytn(expint(1, x), expint(1, x).rewrite(Ei),
-Ei(x*polar_lift(-1)) + I*pi, x)
assert expint(-4, x) == exp(-x)/x + 4*exp(-x)/x**2 + 12*exp(-x)/x**3 \
+ 24*exp(-x)/x**4 + 24*exp(-x)/x**5
assert expint(-S(3)/2, x) == \
exp(-x)/x + 3*exp(-x)/(2*x**2) + 3*sqrt(pi)*erfc(sqrt(x))/(4*x**S('5/2'))
assert tn_branch(expint, 1)
assert tn_branch(expint, 2)
assert tn_branch(expint, 3)
assert tn_branch(expint, 1.7)
assert tn_branch(expint, pi)
assert expint(y, x*exp_polar(2*I*pi)) == \
x**(y - 1)*(exp(2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
assert expint(y, x*exp_polar(-2*I*pi)) == \
x**(y - 1)*(exp(-2*I*pi*y) - 1)*gamma(-y + 1) + expint(y, x)
assert expint(2, x*exp_polar(2*I*pi)) == 2*I*pi*x + expint(2, x)
assert expint(2, x*exp_polar(-2*I*pi)) == -2*I*pi*x + expint(2, x)
assert expint(1, x).rewrite(Ei).rewrite(expint) == expint(1, x)
assert mytn(E1(x), E1(x).rewrite(Shi), Shi(x) - Chi(x), x)
assert mytn(E1(polar_lift(I)*x), E1(polar_lift(I)*x).rewrite(Si),
-Ci(x) + I*Si(x) - I*pi/2, x)
assert mytn(expint(2, x), expint(2, x).rewrite(Ei).rewrite(expint),
-x*E1(x) + exp(-x), x)
assert mytn(expint(3, x), expint(3, x).rewrite(Ei).rewrite(expint),
x**2*E1(x)/2 + (1 - x)*exp(-x)/2, x)
assert expint(S(3)/2, z).nseries(z) == \
2 + 2*z - z**2/3 + z**3/15 - z**4/84 + z**5/540 - \
2*sqrt(pi)*sqrt(z) + O(z**6)
assert E1(z).series(z) == -EulerGamma - log(z) + z - \
z**2/4 + z**3/18 - z**4/96 + z**5/600 + O(z**6)
assert expint(4, z).series(z) == S(1)/3 - z/2 + z**2/2 + \
z**3*(log(z)/6 - S(11)/36 + EulerGamma/6) - z**4/24 + \
z**5/240 + O(z**6)
def test__eis():
assert _eis(z).diff(z) == -_eis(z) + 1/z
assert _eis(1/z).series(z) == \
z + z**2 + 2*z**3 + 6*z**4 + 24*z**5 + O(z**6)
assert Ei(z).rewrite('tractable') == exp(z)*_eis(z)
assert li(z).rewrite('tractable') == z*_eis(log(z))
assert _eis(z).rewrite('intractable') == exp(-z)*Ei(z)
assert expand(li(z).rewrite('tractable').diff(z).rewrite('intractable')) \
== li(z).diff(z)
assert expand(Ei(z).rewrite('tractable').diff(z).rewrite('intractable')) \
== Ei(z).diff(z)
assert _eis(z).series(z, n=3) == EulerGamma + log(z) + z*(-log(z) - \
EulerGamma + 1) + z**2*(log(z)/2 - S(3)/4 + EulerGamma/2) + O(z**3*log(z))
def tn_arg(func):
def test(arg, e1, e2):
from random import uniform
v = uniform(1, 5)
v1 = func(arg*x).subs(x, v).n()
v2 = func(e1*v + e2*1e-15).n()
return abs(v1 - v2).n() < 1e-10
return test(exp_polar(I*pi/2), I, 1) and \
test(exp_polar(-I*pi/2), -I, 1) and \
test(exp_polar(I*pi), -1, I) and \
test(exp_polar(-I*pi), -1, -I)
def test_li():
z = Symbol("z")
zr = Symbol("z", real=True)
zp = Symbol("z", positive=True)
zn = Symbol("z", negative=True)
assert li(0) == 0
assert li(1) == -oo
assert li(oo) == oo
assert isinstance(li(z), li)
assert diff(li(z), z) == 1/log(z)
assert conjugate(li(z)) == li(conjugate(z))
assert conjugate(li(-zr)) == li(-zr)
assert conjugate(li(-zp)) == conjugate(li(-zp))
assert conjugate(li(zn)) == conjugate(li(zn))
assert li(z).rewrite(Li) == Li(z) + li(2)
assert li(z).rewrite(Ei) == Ei(log(z))
assert li(z).rewrite(uppergamma) == (-log(1/log(z))/2 - log(-log(z)) +
log(log(z))/2 - expint(1, -log(z)))
assert li(z).rewrite(Si) == (-log(I*log(z)) - log(1/log(z))/2 +
log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
assert li(z).rewrite(Ci) == (-log(I*log(z)) - log(1/log(z))/2 +
log(log(z))/2 + Ci(I*log(z)) + Shi(log(z)))
assert li(z).rewrite(Shi) == (-log(1/log(z))/2 + log(log(z))/2 +
Chi(log(z)) - Shi(log(z)))
assert li(z).rewrite(Chi) == (-log(1/log(z))/2 + log(log(z))/2 +
Chi(log(z)) - Shi(log(z)))
assert li(z).rewrite(hyper) ==(log(z)*hyper((1, 1), (2, 2), log(z)) -
log(1/log(z))/2 + log(log(z))/2 + EulerGamma)
assert li(z).rewrite(meijerg) == (-log(1/log(z))/2 - log(-log(z)) + log(log(z))/2 -
meijerg(((), (1,)), ((0, 0), ()), -log(z)))
assert gruntz(1/li(z), z, oo) == 0
def test_Li():
assert Li(2) == 0
assert Li(oo) == oo
assert isinstance(Li(z), Li)
assert diff(Li(z), z) == 1/log(z)
assert gruntz(1/Li(z), z, oo) == 0
assert Li(z).rewrite(li) == li(z) - li(2)
def test_si():
assert Si(I*x) == I*Shi(x)
assert Shi(I*x) == I*Si(x)
assert Si(-I*x) == -I*Shi(x)
assert Shi(-I*x) == -I*Si(x)
assert Si(-x) == -Si(x)
assert Shi(-x) == -Shi(x)
assert Si(exp_polar(2*pi*I)*x) == Si(x)
assert Si(exp_polar(-2*pi*I)*x) == Si(x)
assert Shi(exp_polar(2*pi*I)*x) == Shi(x)
assert Shi(exp_polar(-2*pi*I)*x) == Shi(x)
assert Si(oo) == pi/2
assert Si(-oo) == -pi/2
assert Shi(oo) == oo
assert Shi(-oo) == -oo
assert mytd(Si(x), sin(x)/x, x)
assert mytd(Shi(x), sinh(x)/x, x)
assert mytn(Si(x), Si(x).rewrite(Ei),
-I*(-Ei(x*exp_polar(-I*pi/2))/2
+ Ei(x*exp_polar(I*pi/2))/2 - I*pi) + pi/2, x)
assert mytn(Si(x), Si(x).rewrite(expint),
-I*(-expint(1, x*exp_polar(-I*pi/2))/2 +
expint(1, x*exp_polar(I*pi/2))/2) + pi/2, x)
assert mytn(Shi(x), Shi(x).rewrite(Ei),
Ei(x)/2 - Ei(x*exp_polar(I*pi))/2 + I*pi/2, x)
assert mytn(Shi(x), Shi(x).rewrite(expint),
expint(1, x)/2 - expint(1, x*exp_polar(I*pi))/2 - I*pi/2, x)
assert tn_arg(Si)
assert tn_arg(Shi)
assert Si(x).nseries(x, n=8) == \
x - x**3/18 + x**5/600 - x**7/35280 + O(x**9)
assert Shi(x).nseries(x, n=8) == \
x + x**3/18 + x**5/600 + x**7/35280 + O(x**9)
assert Si(sin(x)).nseries(x, n=5) == x - 2*x**3/9 + 17*x**5/450 + O(x**6)
assert Si(x).nseries(x, 1, n=3) == \
Si(1) + (x - 1)*sin(1) + (x - 1)**2*(-sin(1)/2 + cos(1)/2) + O((x - 1)**3, (x, 1))
t = Symbol('t', Dummy=True)
assert Si(x).rewrite(sinc) == Integral(sinc(t), (t, 0, x))
def test_ci():
m1 = exp_polar(I*pi)
m1_ = exp_polar(-I*pi)
pI = exp_polar(I*pi/2)
mI = exp_polar(-I*pi/2)
assert Ci(m1*x) == Ci(x) + I*pi
assert Ci(m1_*x) == Ci(x) - I*pi
assert Ci(pI*x) == Chi(x) + I*pi/2
assert Ci(mI*x) == Chi(x) - I*pi/2
assert Chi(m1*x) == Chi(x) + I*pi
assert Chi(m1_*x) == Chi(x) - I*pi
assert Chi(pI*x) == Ci(x) + I*pi/2
assert Chi(mI*x) == Ci(x) - I*pi/2
assert Ci(exp_polar(2*I*pi)*x) == Ci(x) + 2*I*pi
assert Chi(exp_polar(-2*I*pi)*x) == Chi(x) - 2*I*pi
assert Chi(exp_polar(2*I*pi)*x) == Chi(x) + 2*I*pi
assert Ci(exp_polar(-2*I*pi)*x) == Ci(x) - 2*I*pi
assert Ci(oo) == 0
assert Ci(-oo) == I*pi
assert Chi(oo) == oo
assert Chi(-oo) == oo
assert mytd(Ci(x), cos(x)/x, x)
assert mytd(Chi(x), cosh(x)/x, x)
assert mytn(Ci(x), Ci(x).rewrite(Ei),
Ei(x*exp_polar(-I*pi/2))/2 + Ei(x*exp_polar(I*pi/2))/2, x)
assert mytn(Chi(x), Chi(x).rewrite(Ei),
Ei(x)/2 + Ei(x*exp_polar(I*pi))/2 - I*pi/2, x)
assert tn_arg(Ci)
assert tn_arg(Chi)
from sympy import O, EulerGamma, log, limit
assert Ci(x).nseries(x, n=4) == \
EulerGamma + log(x) - x**2/4 + x**4/96 + O(x**5)
assert Chi(x).nseries(x, n=4) == \
EulerGamma + log(x) + x**2/4 + x**4/96 + O(x**5)
assert limit(log(x) - Ci(2*x), x, 0) == -log(2) - EulerGamma
def test_fresnel():
assert fresnels(0) == 0
assert fresnels(oo) == S.Half
assert fresnels(-oo) == -S.Half
assert fresnels(z) == fresnels(z)
assert fresnels(-z) == -fresnels(z)
assert fresnels(I*z) == -I*fresnels(z)
assert fresnels(-I*z) == I*fresnels(z)
assert conjugate(fresnels(z)) == fresnels(conjugate(z))
assert fresnels(z).diff(z) == sin(pi*z**2/2)
assert fresnels(z).rewrite(erf) == (S.One + I)/4 * (
erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z))
assert fresnels(z).rewrite(hyper) == \
pi*z**3/6 * hyper([S(3)/4], [S(3)/2, S(7)/4], -pi**2*z**4/16)
assert fresnels(z).series(z, n=15) == \
pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15)
assert fresnels(w).is_real is True
assert fresnels(z).as_real_imag() == \
((fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 +
fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2,
I*(fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) -
fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) *
re(z)*Abs(im(z))/(2*im(z)*Abs(re(z)))))
assert fresnels(2 + 3*I).as_real_imag() == (
fresnels(2 + 3*I)/2 + fresnels(2 - 3*I)/2,
I*(fresnels(2 - 3*I) - fresnels(2 + 3*I))/2
)
assert expand_func(integrate(fresnels(z), z)) == \
z*fresnels(z) + cos(pi*z**2/2)/pi
assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(9)/4) * \
meijerg(((), (1,)), ((S(3)/4,),
(S(1)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(3)/4)*(z**2)**(S(3)/4))
assert fresnelc(0) == 0
assert fresnelc(oo) == S.Half
assert fresnelc(-oo) == -S.Half
assert fresnelc(z) == fresnelc(z)
assert fresnelc(-z) == -fresnelc(z)
assert fresnelc(I*z) == I*fresnelc(z)
assert fresnelc(-I*z) == -I*fresnelc(z)
assert conjugate(fresnelc(z)) == fresnelc(conjugate(z))
assert fresnelc(z).diff(z) == cos(pi*z**2/2)
assert fresnelc(z).rewrite(erf) == (S.One - I)/4 * (
erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z))
assert fresnelc(z).rewrite(hyper) == \
z * hyper([S.One/4], [S.One/2, S(5)/4], -pi**2*z**4/16)
assert fresnelc(z).series(z, n=15) == \
z - pi**2*z**5/40 + pi**4*z**9/3456 - pi**6*z**13/599040 + O(z**15)
# issues 6510, 10102
fs = (S.Half - sin(pi*z**2/2)/(pi**2*z**3)
+ (-1/(pi*z) + 3/(pi**3*z**5))*cos(pi*z**2/2))
fc = (S.Half - cos(pi*z**2/2)/(pi**2*z**3)
+ (1/(pi*z) - 3/(pi**3*z**5))*sin(pi*z**2/2))
assert fresnels(z).series(z, oo) == fs + O(z**(-6), (z, oo))
assert fresnelc(z).series(z, oo) == fc + O(z**(-6), (z, oo))
assert (fresnels(z).series(z, -oo) + fs.subs(z, -z)).expand().is_Order
assert (fresnelc(z).series(z, -oo) + fc.subs(z, -z)).expand().is_Order
assert (fresnels(1/z).series(z) - fs.subs(z, 1/z)).expand().is_Order
assert (fresnelc(1/z).series(z) - fc.subs(z, 1/z)).expand().is_Order
assert ((2*fresnels(3*z)).series(z, oo) - 2*fs.subs(z, 3*z)).expand().is_Order
assert ((3*fresnelc(2*z)).series(z, oo) - 3*fc.subs(z, 2*z)).expand().is_Order
assert fresnelc(w).is_real is True
assert fresnelc(z).as_real_imag() == \
((fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 +
fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2,
I*(fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) -
fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) *
re(z)*Abs(im(z))/(2*im(z)*Abs(re(z)))))
assert fresnelc(2 + 3*I).as_real_imag() == (
fresnelc(2 - 3*I)/2 + fresnelc(2 + 3*I)/2,
I*(fresnelc(2 - 3*I) - fresnelc(2 + 3*I))/2
)
assert expand_func(integrate(fresnelc(z), z)) == \
z*fresnelc(z) - sin(pi*z**2/2)/pi
assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(3)/4) * \
meijerg(((), (1,)), ((S(1)/4,),
(S(3)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(1)/4)*(z**2)**(S(1)/4))
from sympy.utilities.randtest import verify_numerically
verify_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z)
verify_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z)
verify_numerically(fresnels(z), fresnels(z).rewrite(hyper), z)
verify_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z)
verify_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z)
verify_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z)
verify_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z)
verify_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z)
|
e03687f707ef57920f2bed2b8350abbdcf8f42015e74d5b8ca4060ae1ea0c38f
|
from sympy.core.containers import Tuple
from sympy.core.function import (Function, Lambda, nfloat)
from sympy.core.mod import Mod
from sympy.core.numbers import (E, I, Rational, oo, pi)
from sympy.core.relational import (Eq, Gt,
Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (HyperbolicFunction,
atanh, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2,
cos, cot, csc, sec, sin, tan)
from sympy.functions.special.error_functions import (erf, erfc,
erfcinv, erfinv)
from sympy.logic.boolalg import And
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.polys.polytools import Poly
from sympy.polys.rootoftools import CRootOf
from sympy.sets.contains import Contains
from sympy.sets.conditionset import ConditionSet
from sympy.sets.fancysets import ImageSet
from sympy.sets.sets import (Complement, EmptySet, FiniteSet,
Intersection, Interval, Union, imageset)
from sympy.tensor.indexed import Indexed
from sympy.utilities.iterables import numbered_symbols
from sympy.utilities.pytest import XFAIL, raises, skip, slow, SKIP
from sympy.utilities.randtest import verify_numerically as tn
from sympy.physics.units import cm
from sympy.core.containers import Dict
from sympy.solvers.solveset import (
solveset_real, domain_check, solveset_complex, linear_eq_to_matrix,
linsolve, _is_function_class_equation, invert_real, invert_complex,
solveset, solve_decomposition, substitution, nonlinsolve, solvify,
_is_finite_with_finite_vars, _transolve, _is_exponential,
_solve_exponential, _is_logarithmic,
_solve_logarithm, _term_factors)
a = Symbol('a', real=True)
b = Symbol('b', real=True)
c = Symbol('c', real=True)
x = Symbol('x', real=True)
y = Symbol('y', real=True)
z = Symbol('z', real=True)
q = Symbol('q', real=True)
m = Symbol('m', real=True)
n = Symbol('n', real=True)
def test_invert_real():
x = Symbol('x', real=True)
y = Symbol('y')
n = Symbol('n')
def ireal(x, s=S.Reals):
return Intersection(s, x)
# issue 14223
assert invert_real(x, 0, x, Interval(1, 2)) == (x, S.EmptySet)
assert invert_real(exp(x), y, x) == (x, ireal(FiniteSet(log(y))))
y = Symbol('y', positive=True)
n = Symbol('n', real=True)
assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))
assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3))))
assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))
assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))
assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y))
assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2)))))
assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
assert invert_real(x**Rational(1, 2), y, x) == (x, FiniteSet(y**2))
raises(ValueError, lambda: invert_real(x, x, x))
raises(ValueError, lambda: invert_real(x**pi, y, x))
raises(ValueError, lambda: invert_real(S.One, y, x))
assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))
lhs = x**31 + x
conditions = Contains(y, Interval(0, oo), evaluate=False)
base_values = FiniteSet(y - 1, -y - 1)
assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values)
assert invert_real(sin(x), y, x) == \
(x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers))
assert invert_real(sin(exp(x)), y, x) == \
(x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers))
assert invert_real(csc(x), y, x) == \
(x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers))
assert invert_real(csc(exp(x)), y, x) == \
(x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers))
assert invert_real(cos(x), y, x) == \
(x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers)))
assert invert_real(cos(exp(x)), y, x) == \
(x, Union(imageset(Lambda(n, log(2*n*pi + Mod(acos(y), 2*pi))), S.Integers), \
imageset(Lambda(n, log(2*n*pi + Mod(-acos(y), 2*pi))), S.Integers)))
assert invert_real(sec(x), y, x) == \
(x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers)))
assert invert_real(sec(exp(x)), y, x) == \
(x, Union(imageset(Lambda(n, log(2*n*pi + Mod(asec(y), 2*pi))), S.Integers), \
imageset(Lambda(n, log(2*n*pi + Mod(-asec(y), 2*pi))), S.Integers)))
assert invert_real(tan(x), y, x) == \
(x, imageset(Lambda(n, n*pi + atan(y) % pi), S.Integers))
assert invert_real(tan(exp(x)), y, x) == \
(x, imageset(Lambda(n, log(n*pi + atan(y) % pi)), S.Integers))
assert invert_real(cot(x), y, x) == \
(x, imageset(Lambda(n, n*pi + acot(y) % pi), S.Integers))
assert invert_real(cot(exp(x)), y, x) == \
(x, imageset(Lambda(n, log(n*pi + acot(y) % pi)), S.Integers))
assert invert_real(tan(tan(x)), y, x) == \
(tan(x), imageset(Lambda(n, n*pi + atan(y) % pi), S.Integers))
x = Symbol('x', positive=True)
assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
def test_invert_complex():
assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_complex(exp(x), y, x) == \
(x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers))
assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y)))
raises(ValueError, lambda: invert_real(1, y, x))
raises(ValueError, lambda: invert_complex(x, x, x))
raises(ValueError, lambda: invert_complex(x, x, 1))
# https://github.com/skirpichev/omg/issues/16
assert invert_complex(sinh(x), 0, x) != (x, FiniteSet(0))
def test_domain_check():
assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False
assert domain_check(x**2, x, 0) is True
assert domain_check(x, x, oo) is False
assert domain_check(0, x, oo) is False
def test_issue_11536():
assert solveset(0**x - 100, x, S.Reals) == S.EmptySet
assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0)
def test_is_function_class_equation():
from sympy.abc import x, a
assert _is_function_class_equation(TrigonometricFunction,
tan(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x) - a, x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x + a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x*a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
a*tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**2 + sin(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + x, x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2) + sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(sin(x)) + sin(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x) - a, x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x + a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x*a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
a*tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**2 + sinh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + x, x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2) + sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(sinh(x)) + sinh(x), x) is False
def test_garbage_input():
raises(ValueError, lambda: solveset_real([x], x))
assert solveset_real(x, 1) == S.EmptySet
assert solveset_real(x - 1, 1) == FiniteSet(x)
assert solveset_real(x, pi) == S.EmptySet
assert solveset_real(x, x**2) == S.EmptySet
raises(ValueError, lambda: solveset_complex([x], x))
assert solveset_complex(x, pi) == S.EmptySet
raises(ValueError, lambda: solveset((x, y), x))
raises(ValueError, lambda: solveset(x + 1, S.Reals))
raises(ValueError, lambda: solveset(x + 1, x, 2))
def test_solve_mul():
assert solveset_real((a*x + b)*(exp(x) - 3), x) == \
FiniteSet(-b/a, log(3))
assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4))
assert solveset_real(x/log(x), x) == EmptySet()
def test_solve_invert():
assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))
assert solveset_real(3**(x + 2), x) == FiniteSet()
assert solveset_real(3**(2 - x), x) == FiniteSet()
assert solveset_real(y - b*exp(a/x), x) == Intersection(
S.Reals, FiniteSet(a/log(y/b)))
# issue 4504
assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2))
def test_errorinverses():
assert solveset_real(erf(x) - S.One/2, x) == \
FiniteSet(erfinv(S.One/2))
assert solveset_real(erfinv(x) - 2, x) == \
FiniteSet(erf(2))
assert solveset_real(erfc(x) - S.One, x) == \
FiniteSet(erfcinv(S.One))
assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))
def test_solve_polynomial():
assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3))
assert solveset_real(x**2 - 1, x) == FiniteSet(-S(1), S(1))
assert solveset_real(x - y**3, x) == FiniteSet(y ** 3)
a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2')
assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet(
-2 + 3 ** Rational(1, 2),
S(4),
-2 - 3 ** Rational(1, 2))
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert len(solveset_real(x**5 + x**3 + 1, x)) == 1
assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0
assert solveset_real(x**6 + x**4 + I, x) == ConditionSet(x,
Eq(x**6 + x**4 + I, 0), S.Reals)
def test_return_root_of():
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get CRootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0],
exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n()
sol = list(solveset_complex(x**6 - 2*x + 2, x))
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
s = x**5 + 4*x**3 + 3*x**2 + S(7)/4
assert solveset_complex(s, x) == \
FiniteSet(*Poly(s*4, domain='ZZ').all_roots())
# Refer issue #7876
eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1)
assert solveset_complex(eq, x) == \
FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0),
CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2),
CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4),
CRootOf(x**6 - x + 1, 5))
def test__has_rational_power():
from sympy.solvers.solveset import _has_rational_power
assert _has_rational_power(sqrt(2), x)[0] is False
assert _has_rational_power(x*sqrt(2), x)[0] is False
assert _has_rational_power(x**2*sqrt(x), x) == (True, 2)
assert _has_rational_power(sqrt(2)*x**(S(1)/3), x) == (True, 3)
assert _has_rational_power(sqrt(x)*x**(S(1)/3), x) == (True, 6)
def test_solveset_sqrt_1():
assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S(1), S(2))
assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10)
assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27)
assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49)
assert solveset_real(sqrt(x**3), x) == FiniteSet(0)
assert solveset_real(sqrt(x - 1), x) == FiniteSet(1)
def test_solveset_sqrt_2():
# http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \
FiniteSet(S(5), S(13))
assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \
FiniteSet(-6)
# http://www.purplemath.com/modules/solverad.htm
assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \
FiniteSet(3)
eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4)
assert solveset_real(eq, x) == FiniteSet(-S(1)/2, -S(1)/3)
eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)
assert solveset_real(eq, x) == FiniteSet(0)
eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)
assert solveset_real(eq, x) == FiniteSet(5)
eq = sqrt(x)*sqrt(x - 7) - 12
assert solveset_real(eq, x) == FiniteSet(16)
eq = sqrt(x - 3) + sqrt(x) - 3
assert solveset_real(eq, x) == FiniteSet(4)
eq = sqrt(2*x**2 - 7) - (3 - x)
assert solveset_real(eq, x) == FiniteSet(-S(8), S(2))
# others
eq = sqrt(9*x**2 + 4) - (3*x + 2)
assert solveset_real(eq, x) == FiniteSet(0)
assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet()
eq = (2*x - 5)**Rational(1, 3) - 3
assert solveset_real(eq, x) == FiniteSet(16)
assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \
FiniteSet((-S.Half + sqrt(17)/2)**4)
eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))
assert solveset_real(eq, x) == FiniteSet()
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
ans = solveset_real(eq, x)
ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 +
114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 +
sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''')
rb = S(4)/5
assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \
len(ans) == 2 and \
set([i.n(chop=True) for i in ans]) == \
set([i.n(chop=True) for i in (ra, rb)])
assert solveset_real(sqrt(x) + x**Rational(1, 3) +
x**Rational(1, 4), x) == FiniteSet(0)
assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0)
eq = (x - y**3)/((y**2)*sqrt(1 - y**2))
assert solveset_real(eq, x) == FiniteSet(y**3)
# issue 4497
assert solveset_real(1/(5 + x)**(S(1)/5) - 9, x) == \
FiniteSet(-295244/S(59049))
@XFAIL
def test_solve_sqrt_fail():
# this only works if we check real_root(eq.subs(x, S(1)/3))
# but checksol doesn't work like that
eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x
assert solveset_real(eq, x) == FiniteSet(S(1)/3)
@slow
def test_solve_sqrt_3():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solveset_complex(eq, R)
fset = [S(5)/3 + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3,
-sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 +
40*re(1/((-S(1)/2 - sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9 +
sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + S(5)/3 +
I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
40*im(1/((-S(1)/2 - sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9)]
cset = [40*re(1/((-S(1)/2 + sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9 -
sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 +
S(5)/3 +
I*(40*im(1/((-S(1)/2 + sqrt(3)*I/2)*(S(251)/27 + sqrt(111)*I/9)**(S(1)/3)))/9 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)]
assert sol._args[0] == FiniteSet(*fset)
assert sol._args[1] == ConditionSet(
R,
Eq(sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1), 0),
FiniteSet(*cset))
# the number of real roots will depend on the value of m: for m=1 there are 4
# and for m=-1 there are none.
eq = -sqrt((m - q)**2 + (-m/(2*q) + S(1)/2)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2)
unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + 1/2)**2) -
sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - 1/4)**2 + (m**2/2 - m -
sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - 1/4)**2), 0), S.Reals)
assert solveset_real(eq, q) == unsolved_object
def test_solve_polynomial_symbolic_param():
assert solveset_complex((x**2 - 1)**2 - a, x) == \
FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a)))
# issue 4507
assert solveset_complex(y - b/(1 + a*x), x) == \
FiniteSet((b/y - 1)/a) - FiniteSet(-1/a)
# issue 4508
assert solveset_complex(y - b*x/(a + x), x) == \
FiniteSet(-a*y/(y - b)) - FiniteSet(-a)
def test_solve_rational():
assert solveset_real(1/x + 1, x) == FiniteSet(-S.One)
assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0)
assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5)
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
assert solveset_real((x**2/(7 - x)).diff(x), x) == \
FiniteSet(S(0), S(14))
def test_solveset_real_gen_is_pow():
assert solveset_real(sqrt(1) + 1, x) == EmptySet()
def test_no_sol():
assert solveset(1 - oo*x) == EmptySet()
assert solveset(oo*x, x) == EmptySet()
assert solveset(oo*x - oo, x) == EmptySet()
assert solveset_real(4, x) == EmptySet()
assert solveset_real(exp(x), x) == EmptySet()
assert solveset_real(x**2 + 1, x) == EmptySet()
assert solveset_real(-3*a/sqrt(x), x) == EmptySet()
assert solveset_real(1/x, x) == EmptySet()
assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \
EmptySet()
def test_sol_zero_real():
assert solveset_real(0, x) == S.Reals
assert solveset(0, x, Interval(1, 2)) == Interval(1, 2)
assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals
def test_no_sol_rational_extragenous():
assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet()
assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet()
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to
a polynomial equation using the change of variable y -> x**Rational(p, q)
"""
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert solveset_real(x*(x**(S(1) / 3) - 3), x) == \
FiniteSet(S(0), S(27))
def test_solveset_real_rational():
"""Test solveset_real for rational functions"""
assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \
== FiniteSet(y**3)
# issue 4486
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
def test_solveset_real_log():
assert solveset_real(log((x-1)*(x+1)), x) == \
FiniteSet(sqrt(2), -sqrt(2))
def test_poly_gens():
assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \
FiniteSet(-Rational(3, 2), S.Half)
def test_solve_abs():
x = Symbol('x')
n = Dummy('n')
raises(ValueError, lambda: solveset(Abs(x) - 1, x))
assert solveset(Abs(x) - n, x, S.Reals) == ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n})
assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
assert solveset_real(Abs(x) + 2, x) is S.EmptySet
assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
FiniteSet(1, 9)
assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
FiniteSet(-1, Rational(1, 3))
sol = ConditionSet(
x,
And(
Contains(b, Interval(0, oo)),
Contains(a + b, Interval(0, oo)),
Contains(a - b, Interval(0, oo))),
FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3))
eq = Abs(Abs(x + 3) - a) - b
assert invert_real(eq, 0, x)[1] == sol
reps = {a: 3, b: 1}
eqab = eq.subs(reps)
for i in sol.subs(reps):
assert not eqab.subs(x, i)
assert solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals) == Union(
Intersection(Interval(0, oo),
ImageSet(Lambda(n, (-1)**n*pi/2 + n*pi), S.Integers)),
Intersection(Interval(-oo, 0),
ImageSet(Lambda(n, n*pi - (-1)**(-n)*pi/2), S.Integers)))
def test_issue_9565():
assert solveset_real(Abs((x - 1)/(x - 5)) <= S(1)/3, x) == Interval(-1, 2)
def test_issue_10069():
eq = abs(1/(x - 1)) - 1 > 0
u = Union(Interval.open(0, 1), Interval.open(1, 2))
assert solveset_real(eq, x) == u
@XFAIL
def test_rewrite_trigh():
# if this import passes then the test below should also pass
from sympy import sech
assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(
2*atanh(-S.Half + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-S.Half + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half))
def test_real_imag_splitting():
a, b = symbols('a b', real=True, finite=True)
assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \
FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9))
assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \
S.EmptySet
def test_units():
assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm)
def test_solve_only_exp_1():
y = Symbol('y', positive=True, finite=True)
assert solveset_real(exp(x) - y, x) == FiniteSet(log(y))
assert solveset_real(exp(x) + exp(-x) - 4, x) == \
FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2))
assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet
def test_atan2():
# The .inverse() method on atan2 works only if x.is_real is True and the
# second argument is a real constant
assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3))
def test_piecewise_solveset():
eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
absxm3 = Piecewise(
(x - 3, S(0) <= x - 3),
(3 - x, S(0) > x - 3))
y = Symbol('y', positive=True)
assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))
assert solveset(
Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals
) == Interval(-oo, 0)
assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1)
def test_solveset_complex_polynomial():
from sympy.abc import x, a, b, c
assert solveset_complex(a*x**2 + b*x + c, x) == \
FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a),
-b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))
assert solveset_complex(x - y**3, y) == FiniteSet(
(-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2,
x**Rational(1, 3),
(-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2)
assert solveset_complex(x + 1/x - 1, x) == \
FiniteSet(Rational(1, 2) + I*sqrt(3)/2, Rational(1, 2) - I*sqrt(3)/2)
def test_sol_zero_complex():
assert solveset_complex(0, x) == S.Complexes
def test_solveset_complex_rational():
assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \
FiniteSet(1, I)
assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \
FiniteSet(y**3)
assert solveset_complex(-x**2 - I, x) == \
FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2)
def test_solve_quintics():
skip("This test is too slow")
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
f = x**5 + 15*x + 12
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
def test_solveset_complex_exp():
from sympy.abc import x, n
assert solveset_complex(exp(x) - 1, x) == \
imageset(Lambda(n, I*2*n*pi), S.Integers)
assert solveset_complex(exp(x) - I, x) == \
imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers)
assert solveset_complex(1/exp(x), x) == S.EmptySet
assert solveset_complex(sinh(x).rewrite(exp), x) == \
imageset(Lambda(n, n*pi*I), S.Integers)
def test_solveset_real_exp():
from sympy.abc import x, y
assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2)
assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet
assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3)
assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42)
assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2)))
assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2))
def test_solve_complex_log():
assert solveset_complex(log(x), x) == FiniteSet(1)
assert solveset_complex(1 - log(a + 4*x**2), x) == \
FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2)
def test_solve_complex_sqrt():
assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S(1), S(2))
assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \
FiniteSet(-S(2), 3 - 4*I)
assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \
FiniteSet(S(0), 1 / a ** 2)
def test_solveset_complex_tan():
s = solveset_complex(tan(x).rewrite(exp), x)
assert s == imageset(Lambda(n, pi*n), S.Integers) - \
imageset(Lambda(n, pi*n + pi/2), S.Integers)
def test_solve_trig():
from sympy.abc import n
assert solveset_real(sin(x), x) == \
Union(imageset(Lambda(n, 2*pi*n), S.Integers),
imageset(Lambda(n, 2*pi*n + pi), S.Integers))
assert solveset_real(sin(x) - 1, x) == \
imageset(Lambda(n, 2*pi*n + pi/2), S.Integers)
assert solveset_real(cos(x), x) == \
Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers),
imageset(Lambda(n, 2*pi*n + 3*pi/2), S.Integers))
assert solveset_real(sin(x) + cos(x), x) == \
Union(imageset(Lambda(n, 2*n*pi + 3*pi/4), S.Integers),
imageset(Lambda(n, 2*n*pi + 7*pi/4), S.Integers))
assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet
assert solveset_complex(cos(x) - S.Half, x) == \
Union(imageset(Lambda(n, 2*n*pi + 5*pi/3), S.Integers),
imageset(Lambda(n, 2*n*pi + pi/3), S.Integers))
y, a = symbols('y,a')
assert solveset(sin(y + a) - sin(y), a, domain=S.Reals) == \
imageset(Lambda(n, 2*n*pi), S.Integers)
assert solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x) == \
ImageSet(Lambda(n, 2*n*pi/3 + pi/6), S.Integers)
# Tests for _solve_trig2() function
assert solveset_real(2*cos(x)*cos(2*x) - 1, x) == \
Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**(S(1)/3)*(67 +
9*sqrt(57))**(S(2)/3) + 8*2**(S(2)/3) + 11*(67 +
9*sqrt(57))**(S(1)/3))/(3*(67 + 9*sqrt(57))**(S(1)/6)))), S.Integers),
ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**(S(1)/3)*(67 +
9*sqrt(57))**(S(2)/3) + 8*2**(S(2)/3) + 11*(67 +
9*sqrt(57))**(S(1)/3))/(3*(67 + 9*sqrt(57))**(S(1)/6))) +
2*pi), S.Integers))
assert solveset_real(2*tan(x)*sin(x) + 1, x) == Union(
ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 + sqrt(17))/
(-sqrt(17) + 1)) + pi), S.Integers),
ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/
(-sqrt(17) + 1)) + pi), S.Integers))
assert solveset_real(cos(2*x)*cos(4*x) - 1, x) == \
ImageSet(Lambda(n, n*pi), S.Integers)
def test_solve_invalid_sol():
assert 0 not in solveset_real(sin(x)/x, x)
assert 0 not in solveset_complex((exp(x) - 1)/x, x)
@XFAIL
def test_solve_trig_simplified():
from sympy.abc import n
assert solveset_real(sin(x), x) == \
imageset(Lambda(n, n*pi), S.Integers)
assert solveset_real(cos(x), x) == \
imageset(Lambda(n, n*pi + pi/2), S.Integers)
assert solveset_real(cos(x) + sin(x), x) == \
imageset(Lambda(n, n*pi - pi/4), S.Integers)
@XFAIL
def test_solve_lambert():
assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1))
assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1))
assert solveset_real(x + 2**x, x) == \
FiniteSet(-LambertW(log(2))/log(2))
# issue 4739
ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x)
assert ans == FiniteSet(-Rational(5, 3) +
LambertW(-10240*2**(S(1)/3)*log(2)/3)/(5*log(2)))
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solveset_real(eq, x)
ans = FiniteSet((log(2401) +
5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1)
assert result == ans
assert solveset_real(eq.expand(), x) == result
assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \
FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7)
assert solveset_real(2*x + 5 + log(3*x - 2), x) == \
FiniteSet(Rational(2, 3) + LambertW(2*exp(-Rational(19, 3))/3)/2)
assert solveset_real(3*x + log(4*x), x) == \
FiniteSet(LambertW(Rational(3, 4))/3)
assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2))))
a = Symbol('a')
assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2))
a = Symbol('a', real=True)
assert solveset_real(a/x + exp(x/2), x) == \
FiniteSet(2*LambertW(-a/2))
assert solveset_real((a/x + exp(x/2)).diff(x), x) == \
FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4))
# coverage test
assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet()
assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*S.Exp1)/3)
assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \
FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3)
assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3)
assert solveset_real(x*log(x) + 3*x + 1, x) == \
FiniteSet(exp(-3 + LambertW(-exp(3))))
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solveset_real(eq, x) == \
FiniteSet(LambertW(3*exp(-LambertW(3))))
assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \
FiniteSet(-((log(a**5) + LambertW(S(1)/3))/(3*log(a))))
p = symbols('p', positive=True)
assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \
FiniteSet(
log((-3**(S(1)/3) - 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p),
log((-3**(S(1)/3) + 3**(S(5)/6)*I)*LambertW(S(1)/3)**(S(1)/3)/(2*p**(S(5)/3)))/log(p),
log((3*LambertW(S(1)/3)/p**5)**(1/(3*log(p)))),) # checked numerically
# check collection
b = Symbol('b')
eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5)
assert solveset_real(eq, x) == FiniteSet(
-((log(a**5) + LambertW(1/(b + 3)))/(3*log(a))))
# issue 4271
assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet(
6*LambertW((-1)**(S(1)/3)*a**(S(1)/3)/3))
assert solveset_real(x**3 - 3**x, x) == \
FiniteSet(-3/log(3)*LambertW(-log(3)/3))
assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet(
acos(-3*LambertW(-log(3)/3)/log(3)))
assert solveset_real(x**2 - 2**x, x) == \
solveset_real(-x**2 + 2**x, x)
assert solveset_real(3*log(x) - x*log(3)) == FiniteSet(
-3*LambertW(-log(3)/3)/log(3),
-3*LambertW(-log(3)/3, -1)/log(3))
assert solveset_real(LambertW(2*x) - y) == FiniteSet(
y*exp(y)/2)
@XFAIL
def test_other_lambert():
a = S(6)/5
assert solveset_real(x**a - a**x, x) == FiniteSet(
a, -a*LambertW(-log(a)/a)/log(a))
def test_solveset():
x = Symbol('x')
f = Function('f')
raises(ValueError, lambda: solveset(x + y))
assert solveset(x, 1) == S.EmptySet
assert solveset(f(1)**2 + y + 1, f(1)
) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1))
assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1)
assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I)
assert solveset(x - 1, 1) == FiniteSet(x)
assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x))
assert solveset(0, domain=S.Reals) == S.Reals
assert solveset(1) == S.EmptySet
assert solveset(True, domain=S.Reals) == S.Reals # issue 10197
assert solveset(False, domain=S.Reals) == S.EmptySet
assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1)
A = Indexed('A', x)
assert solveset(A - 1, A, S.Reals) == FiniteSet(1)
assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)
assert solveset(exp(x) - 1, x) == imageset(Lambda(n, 2*I*pi*n), S.Integers)
assert solveset(Eq(exp(x), 1), x) == imageset(Lambda(n, 2*I*pi*n),
S.Integers)
# issue 13825
assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)}
def test_conditionset():
assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals) == \
ConditionSet(x, True, S.Reals)
assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals
) == ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals)
assert solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x
) == imageset(Lambda(n, 2*n*pi + pi/2), S.Integers)
assert solveset(x + sin(x) > 1, x, domain=S.Reals
) == ConditionSet(x, x + sin(x) > 1, S.Reals)
assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals
) == ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals)
assert solveset(y**x-z, x, S.Reals) == \
ConditionSet(x, Eq(y**x - z, 0), S.Reals)
@XFAIL
def test_conditionset_equality():
''' Checking equality of different representations of ConditionSet'''
assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes)
def test_solveset_domain():
x = Symbol('x')
assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3)
assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1)
assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2)
def test_improve_coverage():
from sympy.solvers.solveset import _has_rational_power
x = Symbol('x')
solution = solveset(exp(x) + sin(x), x, S.Reals)
unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals)
assert solution == unsolved_object
assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
def test_issue_9522():
x = Symbol('x')
expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2)
expr2 = Eq(1/x + x, 1/x)
assert solveset(expr1, x, S.Reals) == EmptySet()
assert solveset(expr2, x, S.Reals) == EmptySet()
def test_solvify():
x = Symbol('x')
assert solvify(x**2 + 10, x, S.Reals) == []
assert solvify(x**3 + 1, x, S.Complexes) == [-1, S(1)/2 - sqrt(3)*I/2,
S(1)/2 + sqrt(3)*I/2]
assert solvify(log(x), x, S.Reals) == [1]
assert solvify(cos(x), x, S.Reals) == [pi/2, 3*pi/2]
assert solvify(sin(x) + 1, x, S.Reals) == [3*pi/2]
raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes))
@XFAIL
def test_abs_invert_solvify():
assert solvify(sin(Abs(x)), x, S.Reals) is None
def test_linear_eq_to_matrix():
x, y, z = symbols('x, y, z')
a, b, c, d, e, f, g, h, i, j, k, l = symbols('a:l')
eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12]
eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z]
A, B = linear_eq_to_matrix(eqns1, x, y, z)
assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]])
assert B == Matrix([[3], [0], [12]])
A, B = linear_eq_to_matrix(eqns2, x, y, z)
assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]])
assert B == Matrix([[1], [-2], [0]])
# Pure symbolic coefficients
eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l]
A, B = linear_eq_to_matrix(eqns3, x, y, z)
assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]])
assert B == Matrix([[d], [h], [l]])
# raise ValueError if
# 1) no symbols are given
raises(ValueError, lambda: linear_eq_to_matrix(eqns3))
# 2) there are duplicates
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y]))
# 3) there are non-symbols
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, 1/a, y]))
# 4) a nonlinear term is detected in the original expression
raises(ValueError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x)))
assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]]))
# issue 15195
assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == (
Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]]))
assert linear_eq_to_matrix(Matrix(
[[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == (
Matrix([[a, b], [5, 6]]), Matrix([[7], [c]]))
# issue 15312
assert linear_eq_to_matrix(Eq(x + 2, 1), x) == (
Matrix([[1]]), Matrix([[-1]]))
def test_linsolve():
x, y, z, u, v, w = symbols("x, y, z, u, v, w")
x1, x2, x3, x4 = symbols('x1, x2, x3, x4')
# Test for different input forms
M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]])
system1 = A, b = M[:, :-1], M[:, -1]
Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12,
2*x1 + 4*x2 + 6*x4 - 4]
sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
assert linsolve(Eqns, (x1, x2, x3, x4)) == sol
assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol
assert linsolve(system1, (x1, x2, x3, x4)) == sol
assert linsolve(system1, *(x1, x2, x3, x4)) == sol
# issue 9667 - symbols can be Dummy symbols
x1, x2, x3, x4 = symbols('x:4', cls=Dummy)
assert linsolve(system1, x1, x2, x3, x4) == FiniteSet(
(-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
# raise ValueError for garbage value
raises(ValueError, lambda: linsolve(Eqns))
raises(ValueError, lambda: linsolve(x1))
raises(ValueError, lambda: linsolve(x1, x2))
raises(ValueError, lambda: linsolve((A,), x1, x2))
raises(ValueError, lambda: linsolve(A, b, x1, x2))
#raise ValueError if equations are non-linear in given variables
raises(ValueError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y]))
raises(ValueError, lambda: linsolve([cos(x) + y, x + y], [x, y]))
assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)}
# Fully symbolic test
a, b, c, d, e, f = symbols('a, b, c, d, e, f')
A = Matrix([[a, b], [c, d]])
B = Matrix([[e], [f]])
system2 = (A, B)
sol = FiniteSet(((-b*f + d*e)/(a*d - b*c), (a*f - c*e)/(a*d - b*c)))
assert linsolve(system2, [x, y]) == sol
# No solution
A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]])
b = Matrix([0, 0, 1])
assert linsolve((A, b), (x, y, z)) == EmptySet()
# Issue #10056
A, B, J1, J2 = symbols('A B J1 J2')
Augmatrix = Matrix([
[2*I*J1, 2*I*J2, -2/J1],
[-2*I*J2, -2*I*J1, 2/J2],
[0, 2, 2*I/(J1*J2)],
[2, 0, 0],
])
assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2)))
# Issue #10121 - Assignment of free variables
a, b, c, d, e = symbols('a, b, c, d, e')
Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]])
assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e))
raises(IndexError, lambda: linsolve(Augmatrix, a, b, c))
x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('_tau0 _tau1 _tau2 tau1')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
# symbols can be given as generators
x0, x2, x4 = symbols('x0, x2, x4')
assert linsolve(Augmatrix, numbered_symbols('x')
) == FiniteSet((x0, 0, x2, 0, x4))
Augmatrix[-1, -1] = x0
# use Dummy to avoid clash; the names may clash but the symbols
# will not
Augmatrix[-1, -1] = symbols('_x0')
assert len(linsolve(
Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4
# Issue #12604
f = Function('f')
assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,))
# Issue #14860
from sympy.physics.units import meter, newton, kilo
Eqns = [8*kilo*newton + x + y, 28*kilo*newton*meter + 3*x*meter]
assert linsolve(Eqns, x, y) == {(-28000*newton/3, 4000*newton/3)}
# linsolve fully expands expressions, so removable singularities
# and other nonlinearity does not raise an error
assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(1/x, 1/x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(y/x, y/x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(x*(x + 1), x**2 + y)], [x, y]) == {(y, y)}
def test_solve_decomposition():
x = Symbol('x')
n = Dummy('n')
f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6
f2 = sin(x)**2 - 2*sin(x) + 1
f3 = sin(x)**2 - sin(x)
f4 = sin(x + 1)
f5 = exp(x + 2) - 1
f6 = 1/log(x)
f7 = 1/x
s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers)
s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers)
s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers)
s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers)
assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3))
assert solve_decomposition(f2, x, S.Reals) == s3
assert solve_decomposition(f3, x, S.Reals) == Union(s1, s2, s3)
assert solve_decomposition(f4, x, S.Reals) == Union(s4, s5)
assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2)
assert solve_decomposition(f6, x, S.Reals) == S.EmptySet
assert solve_decomposition(f7, x, S.Reals) == S.EmptySet
assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet
# nonlinsolve testcases
def test_nonlinsolve_basic():
assert nonlinsolve([],[]) == S.EmptySet
assert nonlinsolve([],[x, y]) == S.EmptySet
system = [x, y - x - 5]
assert nonlinsolve([x],[x, y]) == FiniteSet((0, y))
assert nonlinsolve(system, [y]) == FiniteSet((x + 5,))
soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
assert nonlinsolve([sin(x) - 1], [x]) == FiniteSet(tuple(soln))
assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,))
soln = FiniteSet((y, y))
assert nonlinsolve([x - y, 0], x, y) == soln
assert nonlinsolve([0, x - y], x, y) == soln
assert nonlinsolve([x - y, x - y], x, y) == soln
assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y))
f = Function('f')
assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y))
assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y)))
A = Indexed('A', x)
assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y))
assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,))
assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,))
def test_nonlinsolve_abs():
soln = FiniteSet((x, Abs(x)))
assert nonlinsolve([Abs(x) - y], x, y) == soln
def test_raise_exception_nonlinsolve():
raises(IndexError, lambda: nonlinsolve([x**2 -1], []))
raises(ValueError, lambda: nonlinsolve([x**2 -1]))
def test_trig_system():
# TODO: add more simple testcases when solveset returns
# simplified soln for Trig eq
assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet
soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
soln = FiniteSet(soln1)
assert nonlinsolve([sin(x) - 1, cos(x)], x) == soln
@XFAIL
def test_trig_system_fail():
# fails because solveset trig solver is not much smart.
sys = [x + y - pi/2, sin(x) + sin(y) - 1]
# solveset returns conditonset for sin(x) + sin(y) - 1
soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers),
ImageSet(Lambda(n, n*pi)), S.Integers)
soln_1 = FiniteSet(soln_1)
soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers),
ImageSet(Lambda(n, n*pi+ pi/2), S.Integers))
soln_2 = FiniteSet(soln_2)
soln = soln_1 + soln_2
assert nonlinsolve(sys, [x, y]) == soln
# Add more cases from here
# http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno
sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2]
soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers),
ImageSet(Lambda(n, 2*n*pi + 2*pi/3), S.Integers))
soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + 5*pi/6), S.Integers))
assert nonlinsolve(sys, [x, y]) ==FiniteSet((soln_x, soln_y))
def test_nonlinsolve_positive_dimensional():
x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', real = True)
assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y))
system = [a**2 + a*c, a - b]
assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c))
# here (a= 0, b = 0) is independent soln so both is printed.
# if symbols = [a, b, c] then only {a : -c ,b : -c}
eq1 = a + b + c + d
eq2 = a*b + b*c + c*d + d*a
eq3 = a*b*c + b*c*d + c*d*a + d*a*b
eq4 = a*b*c*d - 1
system = [eq1, eq2, eq3, eq4]
sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0))
sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0))
soln = FiniteSet(sol1, sol2)
assert nonlinsolve(system, [a, b, c, d]) == soln
def test_nonlinsolve_polysys():
x, y, z = symbols('x, y, z', real = True)
assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet
s = (-y + 2, y)
assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s)
system = [x**2 - y**2]
soln_real = FiniteSet((-y, y), (y, y))
soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y))
soln =soln_real + soln_complex
assert nonlinsolve(system, [x, y]) == soln
system = [x**2 - y**2]
soln_real= FiniteSet((y, -y), (y, y))
soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y)))
soln = soln_real + soln_complex
assert nonlinsolve(system, [y, x]) == soln
system = [x**2 + y - 3, x - y - 4]
assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x))
def test_nonlinsolve_using_substitution():
x, y, z, n = symbols('x, y, z, n', real = True)
system = [(x + y)*n - y**2 + 2]
s_x = (n*y - y**2 + 2)/n
soln = (-s_x, y)
assert nonlinsolve(system, [x, y]) == FiniteSet(soln)
system = [z**2*x**2 - z**2*y**2/exp(x)]
soln_real_1 = (y, x, 0)
soln_real_2 = (-exp(x/2)*Abs(x), x, z)
soln_real_3 = (exp(x/2)*Abs(x), x, z)
soln_complex_1 = (-x*exp(x/2), x, z)
soln_complex_2 = (x*exp(x/2), x, z)
syms = [y, x, z]
soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\
soln_real_2, soln_real_3)
assert nonlinsolve(system,syms) == soln
def test_nonlinsolve_complex():
x, y, z = symbols('x, y, z')
n = Dummy('n')
real_soln = (log(sin(S(1)/3)), S(1)/3)
img_lamda = Lambda(n, 2*n*I*pi + Mod(log(sin(S(1)/3)), 2*I*pi))
complex_soln = (ImageSet(img_lamda, S.Integers), S(1)/3)
soln = FiniteSet(real_soln, complex_soln)
assert nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]) == soln
system = [exp(x) - sin(y), 1/exp(y) - 3]
soln_x = ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(log(3)))), S.Integers)
soln_real = FiniteSet((soln_x, -log(S(3))))
# Mod(-log(3), 2*I*pi) is equal to -log(3).
expr_x = I*(2*n*pi + arg(sin(2*n*I*pi + Mod(-log(3), 2*I*pi)))) + \
log(Abs(sin(2*n*I*pi + Mod(-log(3), 2*I*pi))))
soln_x = ImageSet(Lambda(n, expr_x), S.Integers)
expr_y = 2*n*I*pi + Mod(-log(3), 2*I*pi)
soln_y = ImageSet(Lambda(n, expr_y), S.Integers)
soln_complex = FiniteSet((soln_x, soln_y))
soln = soln_real + soln_complex
assert nonlinsolve(system, [x, y]) == soln
system = [exp(x) - sin(y), y**2 - 4]
s1 = (log(sin(2)), 2)
s2 = (ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2 )
img = ImageSet(Lambda(n, 2*n*I*pi + Mod(log(sin(2)), 2*I*pi)), S.Integers)
s3 = (img, 2)
assert nonlinsolve(system, [x, y]) == FiniteSet(s1, s2, s3)
@XFAIL
def test_solve_nonlinear_trans():
# After the transcendental equation solver these will work
x, y, z = symbols('x, y, z', real=True)
soln1 = FiniteSet((2*LambertW(y/2), y))
soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y))
soln3 = FiniteSet((x*exp(x/2), x))
soln4 = FiniteSet(2*LambertW(y/2), y)
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4
def test_issue_5132_1():
system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4]
assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1))
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + Mod(-log(3), 2*I*pi))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2)
)
soln = soln_real + soln_complex
assert nonlinsolve(eqs, [y, z]) == soln
def test_issue_5132_2():
x, y = symbols('x, y', real=True)
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
n = Dummy('n')
soln_real = (log(-z**2 + sin(y))/2, z)
lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2)
img = ImageSet(lam, S.Integers)
# not sure about the complex soln. But it looks correct.
soln_complex = (img, z)
soln = FiniteSet(soln_real, soln_complex)
assert nonlinsolve(eqs, [x, z]) == soln
r, t = symbols('r, t')
system = [r - x**2 - y**2, tan(t) - y/x]
s_x = sqrt(r/(tan(t)**2 + 1))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x, s_y), (-s_x, -s_y))
assert nonlinsolve(system, [x, y]) == soln
def test_issue_6752():
a,b,c,d = symbols('a, b, c, d', real=True)
assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)}
@SKIP("slow")
def test_issue_5114():
# slow testcase
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = [a, b, c, f, h, k, n]
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(nonlinsolve(eqs, syms)) == 1
@SKIP("Hangs")
def _test_issue_5335():
# Not able to check zero dimensional system.
# is_zero_dimensional Hangs
lam, a0, conc = symbols('lam a0 conc')
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions but only two are valid
assert len(nonlinsolve(eqs, sym)) == 2
# float
lam, a0, conc = symbols('lam a0 conc')
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
assert len(nonlinsolve(eqs, sym)) == 2
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = 191/S(20), 3*sqrt(391)/20
ans = {(a, -b), (a, b)}
assert nonlinsolve((e1, e2), (x, y)) == ans
assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet
# make the 2nd circle's radius be -3
e2 += 6
assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = [x, y, z]
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = [f1, f2, f3]
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = [g1, g2, g3]
# both soln same
A = nonlinsolve(F, v)
B = nonlinsolve(G, v)
assert A == B
def test_nonlinsolve_conditionset():
# when solveset failed to solve all the eq
# return conditionset
f = Function('f')
f1 = f(x) - pi/2
f2 = f(y) - 3*pi/2
intermediate_system = FiniteSet(2*f(x) - pi, 2*f(y) - 3*pi)
symbols = Tuple(x, y)
soln = ConditionSet(
symbols,
intermediate_system,
S.Complexes)
assert nonlinsolve([f1, f2], [x, y]) == soln
def test_substitution_basic():
assert substitution([], [x, y]) == S.EmptySet
assert substitution([], []) == S.EmptySet
system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19]
soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2))
assert substitution(system, [x, y]) == soln
soln = FiniteSet((-1, 1))
assert substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) == soln
assert substitution(
[x + y], [x], [{y: 1}], [y],
set([x + 1]), [y, x]) == S.EmptySet
def test_issue_5132_substitution():
x, y, z, r, t = symbols('x, y, z, r, t', real=True)
system = [r - x**2 - y**2, tan(t) - y/x]
s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y))
assert substitution(system, [x, y]) == soln
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + Mod(-log(3), 2*I*pi))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + Mod(-log(3), 2*I*pi))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2)
)
soln = soln_real + soln_complex
assert substitution(eqs, [y, z]) == soln
def test_raises_substitution():
raises(ValueError, lambda: substitution([x**2 -1], []))
raises(TypeError, lambda: substitution([x**2 -1]))
raises(ValueError, lambda: substitution([x**2 -1], [sin(x)]))
raises(TypeError, lambda: substitution([x**2 -1], x))
raises(TypeError, lambda: substitution([x**2 -1], 1))
# end of tests for nonlinsolve
def test_issue_9556():
x = Symbol('x')
b = Symbol('b', positive=True)
assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet()
assert solveset(Abs(x) + b, x, S.Reals) == EmptySet()
assert solveset(Eq(b, -1), b, S.Reals) == EmptySet()
def test_issue_9611():
x = Symbol('x')
a = Symbol('a')
y = Symbol('y')
assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals
assert solveset(Eq(y - y + a, a), y) == S.Complexes
def test_issue_9557():
x = Symbol('x')
a = Symbol('a')
assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals,
FiniteSet(-sqrt(-a), sqrt(-a)))
def test_issue_9778():
assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1)
assert solveset(x**(S(3)/5) + 1, x, S.Reals) == S.EmptySet
assert solveset(x**3 + y, x, S.Reals) == \
FiniteSet(-Abs(y)**(S(1)/3)*sign(y))
def test_issue_10214():
assert solveset(x**(S(3)/2) + 4, x, S.Reals) == S.EmptySet
assert solveset(x**(S(-3)/2) + 4, x, S.Reals) == S.EmptySet
ans = FiniteSet(-2**(S(2)/3))
assert solveset(x**(S(3)) + 4, x, S.Reals) == ans
assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result.
assert (x**(S(3)) + 4).subs(x,-(-2)**(2/S(3))) == 0
def test_issue_9849():
assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet
def test_issue_9953():
assert linsolve([ ], x) == S.EmptySet
def test_issue_9913():
assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \
FiniteSet(-(3*sqrt(24081)/4 + S(4027)/4)**(S(1)/3)/3 - 100/
(3*(3*sqrt(24081)/4 + S(4027)/4)**(S(1)/3)) + S(20)/3)
def test_issue_10397():
assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0)
def test_issue_14987():
raises(ValueError, lambda: linear_eq_to_matrix(
[x**2], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(-3/x + 1) + 2*y - a], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x**2 - 3*x)/(x - 3) - 3], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)**3 - x**3 - 3*x**2 + 7], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(1/x + 1) + y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)*y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(1/x, 1/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(y/x, y/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(x*(x + 1), x**2 + y)], [x, y]))
def test_simplification():
eq = x + (a - b)/(-2*a + 2*b)
assert solveset(eq, x) == FiniteSet(S.Half)
assert solveset(eq, x, S.Reals) == FiniteSet(S.Half)
def test_issue_10555():
f = Function('f')
g = Function('g')
assert solveset(f(x) - pi/2, x, S.Reals) == \
ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals)
assert solveset(f(g(x)) - pi/2, g(x), S.Reals) == \
ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals)
def test_issue_8715():
eq = x + 1/x > -2 + 1/x
assert solveset(eq, x, S.Reals) == \
(Interval.open(-2, oo) - FiniteSet(0))
assert solveset(eq.subs(x,log(x)), x, S.Reals) == \
Interval.open(exp(-2), oo) - FiniteSet(1)
def test_issue_11174():
r, t = symbols('r t')
eq = z**2 + exp(2*x) - sin(y)
soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2))
assert solveset(eq, x, S.Reals) == soln
eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t)
s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t))
soln = Intersection(S.Reals, FiniteSet(s))
assert solveset(eq, x, S.Reals) == soln
def test_issue_11534():
# eq and eq2 should give the same solution as a Complement
eq = -y + x/sqrt(-x**2 + 1)
eq2 = -y**2 + x**2/(-x**2 + 1)
soln = Complement(FiniteSet(-y/sqrt(y**2 + 1), y/sqrt(y**2 + 1)), FiniteSet(-1, 1))
assert solveset(eq, x, S.Reals) == soln
assert solveset(eq2, x, S.Reals) == soln
def test_issue_10477():
assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \
Union(Interval.open(-oo, -3), Interval.open(0, 1))
def test_issue_10671():
assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
i = Interval(1, 10)
assert solveset((1/x).diff(x) < 0, x, i) == i
def test_issue_11064():
eq = x + sqrt(x**2 - 5)
assert solveset(eq > 0, x, S.Reals) == \
Interval(sqrt(5), oo)
assert solveset(eq < 0, x, S.Reals) == \
Interval(-oo, -sqrt(5))
assert solveset(eq > sqrt(5), x, S.Reals) == \
Interval.Lopen(sqrt(5), oo)
def test_issue_12478():
eq = sqrt(x - 2) + 2
soln = solveset_real(eq, x)
assert soln is S.EmptySet
assert solveset(eq < 0, x, S.Reals) is S.EmptySet
assert solveset(eq > 0, x, S.Reals) == Interval(2, oo)
def test_issue_12429():
eq = solveset(log(x)/x <= 0, x, S.Reals)
sol = Interval.Lopen(0, 1)
assert eq == sol
def test_solveset_arg():
assert solveset(arg(x), x, S.Reals) == Interval.open(0, oo)
assert solveset(arg(4*x -3), x) == Interval.open(S(3)/4, oo)
def test__is_finite_with_finite_vars():
f = _is_finite_with_finite_vars
# issue 12482
assert all(f(1/x) is None for x in (
Dummy(), Dummy(real=True), Dummy(complex=True)))
assert f(1/Dummy(real=False)) is True # b/c it's finite but not 0
def test_issue_13550():
assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3)
def test_issue_13849():
t = symbols('t')
assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == EmptySet()
def test_issue_14223():
x = Symbol('x')
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
S.Reals) == FiniteSet(-1, 1)
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
Interval(0, 2)) == FiniteSet(1)
def test_issue_10158():
x = Symbol('x')
dom = S.Reals
assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(2/S(3))
assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10))
assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1)
assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1)
assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(-4/S(3), -4/S(5))
assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2)
dom = S.Complexes
assert solveset(x*Max(x, 15) - 10, x, dom) == \
ConditionSet(x, Eq(x*Max(15, x) - 10, 0), dom)
assert solveset(x*Min(x, 15) - 10, x, dom) == \
ConditionSet(x, Eq(x*Min(15, x) - 10, 0), dom)
raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom))
raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom))
raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom))
def test_issue_14300():
x, y, n = symbols('x y n')
f = 1 - exp(-18000000*x) - y
a1 = FiniteSet(-log(-y + 1)/18000000)
assert solveset(f, x, S.Reals) == \
Intersection(S.Reals, a1)
assert solveset(f, x) == \
ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 -
log(Abs(y - 1))/18000000), S.Integers)
def test_issue_14454():
x = Symbol('x')
number = CRootOf(x**4 + x - 1, 2)
raises(ValueError, lambda: invert_real(number, 0, x, S.Reals))
assert invert_real(x**2, number, x, S.Reals) # no error
def test_term_factors():
assert list(_term_factors(3**x - 2)) == [-2, 3**x]
expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
assert set(_term_factors(expr)) == set([
3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)])
#################### tests for transolve and its helpers ###############
def test_transolve():
assert _transolve(3**x, x, S.Reals) == S.EmptySet
assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10)
# exponential tests
def test_exponential_real():
from sympy.abc import x, y, z
e1 = 3**(2*x) - 2**(x + 3)
e2 = 4**(5 - 9*x) - 8**(2 - x)
e3 = 2**x + 4**x
e4 = exp(log(5)*x) - 2**x
e5 = exp(x/y)*exp(-z/y) - 2
e6 = 5**(x/2) - 2**(x/3)
e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1)
e9 = 2**x + 4**x + 8**x - 84
assert solveset(e1, x, S.Reals) == FiniteSet(
-3*log(2)/(-2*log(3) + log(2)))
assert solveset(e2, x, S.Reals) == FiniteSet(4/S(15))
assert solveset(e3, x, S.Reals) == S.EmptySet
assert solveset(e4, x, S.Reals) == FiniteSet(0)
assert solveset(e5, x, S.Reals) == Intersection(
S.Reals, FiniteSet(y*log(2*exp(z/y))))
assert solveset(e6, x, S.Reals) == FiniteSet(0)
assert solveset(e7, x, S.Reals) == FiniteSet(2)
assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + S(4)/5)
assert solveset(e9, x, S.Reals) == FiniteSet(2)
assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet(
-((-5 - 2*log(3) + log(2))/(log(2) + 2)))
assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0)
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b)
# coverage test
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection(
S.Reals, FiniteSet(-log(C1 + C2/x**2)))
y = symbols('y', positive=True)
assert solveset_real(x**2 - y**2/exp(x), y) == Intersection(
S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x))))
p = Symbol('p', positive=True)
assert solveset_real((1/p + 1)**(p + 1), p) == EmptySet()
@XFAIL
def test_exponential_complex():
from sympy.abc import x
from sympy import Dummy
n = Dummy('n')
assert solveset_complex(2**x + 4**x, x) == imageset(
Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers)
assert solveset_complex(x**z*y**z - 2, z) == FiniteSet(
log(2)/(log(x) + log(y)))
assert solveset_complex(4**(x/2) - 2**(x/3), x) == imageset(
Lambda(n, 3*n*I*pi/log(2)), S.Integers)
assert solveset(2**x + 32, x) == imageset(
Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers)
eq = (2**exp(y**2/x) + 2)/(x**2 + 15)
a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi))
assert solveset_complex(eq, y) == FiniteSet(-a, a)
union1 = imageset(Lambda(n, I*(2*n*pi - 2*pi/3)/log(2)), S.Integers)
union2 = imageset(Lambda(n, I*(2*n*pi + 2*pi/3)/log(2)), S.Integers)
assert solveset(2**x + 4**x + 8**x, x) == Union(union1, union2)
eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
res = solveset(eq, x)
num = 2*n*I*pi - 4*log(2) + 2*log(3)
den = -2*log(2) + log(3)
ans = imageset(Lambda(n, num/den), S.Integers)
assert res == ans
def test_expo_conditionset():
from sympy.abc import x, y
f1 = (exp(x) + 1)**x - 2
f2 = (x + 2)**y*x - 3
f3 = 2**x - exp(x) - 3
f4 = log(x) - exp(x)
f5 = 2**x + 3**x - 5**x
assert solveset(f1, x, S.Reals) == ConditionSet(
x, Eq((exp(x) + 1)**x - 2, 0), S.Reals)
assert solveset(f2, x, S.Reals) == ConditionSet(
x, Eq(x*(x + 2)**y - 3, 0), S.Reals)
assert solveset(f3, x, S.Reals) == ConditionSet(
x, Eq(2**x - exp(x) - 3, 0), S.Reals)
assert solveset(f4, x, S.Reals) == ConditionSet(
x, Eq(-exp(x) + log(x), 0), S.Reals)
assert solveset(f5, x, S.Reals) == ConditionSet(
x, Eq(2**x + 3**x - 5**x, 0), S.Reals)
def test_exponential_symbols():
x, y, z = symbols('x y z', positive=True)
from sympy import simplify
assert solveset(z**x - y, x, S.Reals) == Intersection(
S.Reals, FiniteSet(log(y)/log(z)))
w = symbols('w')
f1 = 2*x**w - 4*y**w
f2 = (x/y)**w - 2
ans1 = solveset(f1, w, S.Reals)
ans2 = solveset(f2, w, S.Reals)
assert ans1 == simplify(ans2)
assert solveset(x**x, x, S.Reals) == S.EmptySet
assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0)
assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == FiniteSet(
(x - z)/log(2)) - FiniteSet(0)
a, b, x, y = symbols('a b x y')
assert solveset_real(a**x - b**x, x) == ConditionSet(
x, (a > 0) & (b > 0), FiniteSet(0))
assert solveset(a**x - b**x, x) == ConditionSet(
x, Ne(a, 0) & Ne(b, 0), FiniteSet(0))
@XFAIL
def test_issue_10864():
assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1)
@XFAIL
def test_solve_only_exp_2():
assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \
FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2))
def test_is_exponential():
x, y, z = symbols('x y z')
assert _is_exponential(y, x) is False
assert _is_exponential(3**x - 2, x) is True
assert _is_exponential(5**x - 7**(2 - x), x) is True
assert _is_exponential(sin(2**x) - 4*x, x) is False
assert _is_exponential(x**y - z, y) is True
assert _is_exponential(x**y - z, x) is False
assert _is_exponential(2**x + 4**x - 1, x) is True
assert _is_exponential(x**(y*z) - x, x) is False
assert _is_exponential(x**(2*x) - 3**x, x) is False
assert _is_exponential(x**y - y*z, y) is False
assert _is_exponential(x**y - x*z, y) is True
def test_solve_exponential():
assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \
FiniteSet(-3*log(2)/(-2*log(3) + log(2)))
assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \
FiniteSet(log(-S(1)/2 + sqrt(5)/2)/log(2))
assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \
S.EmptySet
assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \
ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals)
# end of exponential tests
# logarithmic tests
def test_logarithmic():
assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet(
-sqrt(10), sqrt(10))
assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet(
-3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2)
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solveset_real(eq, x) == \
Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)),
sqrt(y**2 - y*exp(z)))) - \
Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2)))
assert solveset_real(
log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(-S(1)/2, S(1)/2)
assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals
@XFAIL
def test_uselogcombine_2():
eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)
assert solveset_real(eq, x) == EmptySet()
eq = log(8*x) - log(sqrt(x) + 1) - 2
assert solveset_real(eq, x) == EmptySet()
def test_is_logarithmic():
assert _is_logarithmic(y, x) is False
assert _is_logarithmic(log(x), x) is True
assert _is_logarithmic(log(x) - 3, x) is True
assert _is_logarithmic(log(x)*log(y), x) is True
assert _is_logarithmic(log(x)**2, x) is False
assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True
assert _is_logarithmic(log(x**y) - y*log(x), x) is True
assert _is_logarithmic(sin(log(x)), x) is False
assert _is_logarithmic(x + y, x) is False
assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True
assert _is_logarithmic(log(x) + log(y) + x, x) is False
assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True
assert _is_logarithmic(log(log(3) + x) + log(x), x) is True
assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False
def test_solve_logarithm():
y = Symbol('y')
assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals
y = Symbol('y', positive=True)
assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1)
# end of logarithmic tests
def test_linear_coeffs():
from sympy.solvers.solveset import linear_coeffs
assert linear_coeffs(0, x) == [0, 0]
assert all(i is S.Zero for i in linear_coeffs(0, x))
assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3]
assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3]
assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3]
raises(ValueError, lambda:
linear_coeffs(x + 2*x**2 + x**3, x, x**2))
raises(ValueError, lambda:
linear_coeffs(1/x*(x - 1) + 1/x, x))
|
201975a48d8eeae36dd92bf2da32345b00ac21fda95ebce4854d9956ffa76e9c
|
from sympy import (
Abs, And, Derivative, Dummy, Eq, Float, Function, Gt, I, Integral,
LambertW, Lt, Matrix, Or, Poly, Q, Rational, S, Symbol, Ne,
Wild, acos, asin, atan, atanh, cos, cosh, diff, erf, erfinv, erfc,
erfcinv, exp, im, log, pi, re, sec, sin,
sinh, solve, solve_linear, sqrt, sstr, symbols, sympify, tan, tanh,
root, simplify, atan2, arg, Mul, SparseMatrix, ask, Tuple, nsolve, oo,
E, cbrt, denom, Add)
from sympy.core.compatibility import range
from sympy.core.function import nfloat
from sympy.solvers import solve_linear_system, solve_linear_system_LU, \
solve_undetermined_coeffs
from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \
det_quick, det_perm, det_minor, _simple_dens, check_assumptions, denoms, \
failing_assumptions
from sympy.physics.units import cm
from sympy.polys.rootoftools import CRootOf
from sympy.utilities.pytest import slow, XFAIL, SKIP, raises, skip, ON_TRAVIS
from sympy.utilities.randtest import verify_numerically as tn
from sympy.abc import a, b, c, d, k, h, p, x, y, z, t, q, m
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_swap_back():
f, g = map(Function, 'fg')
fx, gx = f(x), g(x)
assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \
{fx: gx + 5, y: -gx - 3}
assert solve(fx + gx*x - 2, [fx, gx], dict=True)[0] == {fx: 2, gx: 0}
assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y - gx**2*x}]
assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}]
def guess_solve_strategy(eq, symbol):
try:
solve(eq, symbol)
return True
except (TypeError, NotImplementedError):
return False
def test_guess_poly():
# polynomial equations
assert guess_solve_strategy( S(4), x ) # == GS_POLY
assert guess_solve_strategy( x, x ) # == GS_POLY
assert guess_solve_strategy( x + a, x ) # == GS_POLY
assert guess_solve_strategy( 2*x, x ) # == GS_POLY
assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY
assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY
assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY
assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY
assert guess_solve_strategy( x*y + y, x ) # == GS_POLY
assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY
def test_guess_poly_cv():
# polynomial equations via a change of variable
assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy(
x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1
# polynomial equation multiplying both sides by x**n
assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2
def test_guess_rational_cv():
# rational functions
assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1
# rational functions via the change of variable y -> x**n
assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \
#== GS_RATIONAL_CV_1
def test_guess_transcendental():
#transcendental functions
assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(
exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL
def test_solve_args():
# equation container, issue 5113
ans = {x: -3, y: 1}
eqs = (x + 5*y - 2, -3*x + 6*y - 15)
assert all(solve(container(eqs), x, y) == ans for container in
(tuple, list, set, frozenset))
assert solve(Tuple(*eqs), x, y) == ans
# implicit symbol to solve for
assert set(solve(x**2 - 4)) == set([S(2), -S(2)])
assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1}
assert solve(x - exp(x), x, implicit=True) == [exp(x)]
# no symbol to solve for
assert solve(42) == solve(42, x) == []
assert solve([1, 2]) == []
# duplicate symbols removed
assert solve((x - 3, y + 2), x, y, x) == {x: 3, y: -2}
# unordered symbols
# only 1
assert solve(y - 3, set([y])) == [3]
# more than 1
assert solve(y - 3, set([x, y])) == [{y: 3}]
# multiple symbols: take the first linear solution+
# - return as tuple with values for all requested symbols
assert solve(x + y - 3, [x, y]) == [(3 - y, y)]
# - unless dict is True
assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}]
# - or no symbols are given
assert solve(x + y - 3) == [{x: 3 - y}]
# multiple symbols might represent an undetermined coefficients system
assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0}
args = (a + b)*x - b**2 + 2, a, b
assert solve(*args) == \
[(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]
assert solve(*args, set=True) == \
([a, b], set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]))
assert solve(*args, dict=True) == \
[{b: sqrt(2), a: -sqrt(2)}, {b: -sqrt(2), a: sqrt(2)}]
eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p
flags = dict(dict=True)
assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \
[{k: c - b**2/(4*a), h: -b/(2*a), p: 1/(4*a)}]
flags.update(dict(simplify=False))
assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \
[{k: (4*a*c - b**2)/(4*a), h: -b/(2*a), p: 1/(4*a)}]
# failing undetermined system
assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \
[{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}]
# failed single equation
assert solve(1/(1/x - y + exp(y))) == []
raises(
NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y)))
# failed system
# -- when no symbols given, 1 fails
assert solve([y, exp(x) + x]) == [{x: -LambertW(1), y: 0}]
# both fail
assert solve(
(exp(x) - x, exp(y) - y)) == [{x: -LambertW(-1), y: -LambertW(-1)}]
# -- when symbols given
solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)]
# symbol is a number
assert solve(x**2 - pi, pi) == [x**2]
# no equations
assert solve([], [x]) == []
# overdetermined system
# - nonlinear
assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}]
# - linear
assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2}
def test_solve_polynomial1():
assert solve(3*x - 2, x) == [Rational(2, 3)]
assert solve(Eq(3*x, 2), x) == [Rational(2, 3)]
assert set(solve(x**2 - 1, x)) == set([-S(1), S(1)])
assert set(solve(Eq(x**2, 1), x)) == set([-S(1), S(1)])
assert solve(x - y**3, x) == [y**3]
rx = root(x, 3)
assert solve(x - y**3, y) == [
rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2]
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \
{
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
solution = {y: S.Zero, x: S.Zero}
assert solve((x - y, x + y), x, y ) == solution
assert solve((x - y, x + y), (x, y)) == solution
assert solve((x - y, x + y), [x, y]) == solution
assert set(solve(x**3 - 15*x - 4, x)) == set([
-2 + 3**Rational(1, 2),
S(4),
-2 - 3**Rational(1, 2)
])
assert set(solve((x**2 - 1)**2 - a, x)) == \
set([sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))])
def test_solve_polynomial2():
assert solve(4, x) == []
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to a polynomial equation
using the change of variable y -> x**Rational(p, q)
"""
assert solve( sqrt(x) - 1, x) == [1]
assert solve( sqrt(x) - 2, x) == [4]
assert solve( x**Rational(1, 4) - 2, x) == [16]
assert solve( x**Rational(1, 3) - 3, x) == [27]
assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0]
def test_solve_polynomial_cv_1b():
assert set(solve(4*x*(1 - a*sqrt(x)), x)) == set([S(0), 1/a**2])
assert set(solve(x*(root(x, 3) - 3), x)) == set([S(0), S(27)])
def test_solve_polynomial_cv_2():
"""
Test for solving on equations that can be converted to a polynomial equation
multiplying both sides of the equation by x**m
"""
assert solve(x + 1/x - 1, x) in \
[[ Rational(1, 2) + I*sqrt(3)/2, Rational(1, 2) - I*sqrt(3)/2],
[ Rational(1, 2) - I*sqrt(3)/2, Rational(1, 2) + I*sqrt(3)/2]]
def test_quintics_1():
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solve(f, check=False)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for root in s:
assert root.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get RootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \
CRootOf(x**5 + 3*x**3 + 7, 0).n()
def test_highorder_poly():
# just testing that the uniq generator is unpacked
sol = solve(x**6 - 2*x + 2)
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
@slow
def test_quintics_2():
f = x**5 + 15*x + 12
s = solve(f, check=False)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for root in s:
assert root.func == CRootOf
def test_solve_rational():
"""Test solve for rational functions"""
assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3]
def test_solve_nonlinear():
assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}]
assert solve(x**2 - y**2/exp(x), x, y, dict=True) == [{x: 2*LambertW(y/2)}]
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))},
{y: x*sqrt(exp(x))}]
def test_issue_8666():
x = symbols('x')
assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == []
assert solve(Eq(x + 1/x, 1/x), x) == []
def test_issue_7228():
assert solve(4**(2*(x**2) + 2*x) - 8, x) == [-Rational(3, 2), S.Half]
def test_issue_7190():
assert solve(log(x-3) + log(x+3), x) == [sqrt(10)]
def test_linear_system():
x, y, z, t, n = symbols('x, y, z, t, n')
assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == []
assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == []
assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == []
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1}
M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0],
[n + 1, n + 1, -2*n - 1, -(n + 1), 0],
[-1, 0, 1, 0, 0]])
assert solve_linear_system(M, x, y, z, t) == \
{x: -t - t/n, z: -t - t/n, y: 0}
assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t}
def test_linear_system_function():
a = Function('a')
assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)],
a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)}
def test_linear_systemLU():
n = Symbol('n')
M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]])
assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n),
x: 1 - 12*n/(n**2 + 18*n),
y: 6*n/(n**2 + 18*n)}
# Note: multiple solutions exist for some of these equations, so the tests
# should be expected to break if the implementation of the solver changes
# in such a way that a different branch is chosen
def test_solve_transcendental():
from sympy.abc import a, b
assert solve(exp(x) - 3, x) == [log(3)]
assert set(solve((a*x + b)*(exp(x) - 3), x)) == set([-b/a, log(3)])
assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)]
assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)]
assert solve(Eq(cos(x), sin(x)), x) == [-3*pi/4, pi/4]
assert set(solve(exp(x) + exp(-x) - y, x)) in [set([
log(y/2 - sqrt(y**2 - 4)/2),
log(y/2 + sqrt(y**2 - 4)/2),
]), set([
log(y - sqrt(y**2 - 4)) - log(2),
log(y + sqrt(y**2 - 4)) - log(2)]),
set([
log(y/2 - sqrt((y - 2)*(y + 2))/2),
log(y/2 + sqrt((y - 2)*(y + 2))/2)])]
assert solve(exp(x) - 3, x) == [log(3)]
assert solve(Eq(exp(x), 3), x) == [log(3)]
assert solve(log(x) - 3, x) == [exp(3)]
assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)]
assert solve(3**(x + 2), x) == []
assert solve(3**(2 - x), x) == []
assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)]
ans = solve(3*x + 5 + 2**(-5*x + 3), x)
assert len(ans) == 1 and ans[0].expand() == \
-Rational(5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2))
assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \
[Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7]
assert solve(2*x + 5 + log(3*x - 2), x) == \
[Rational(2, 3) + LambertW(2*exp(-Rational(19, 3))/3)/2]
assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3]
assert set(solve((2*x + 8)*(8 + exp(x)), x)) == set([S(-4), log(8) + pi*I])
eq = 2*exp(3*x + 4) - 3
ans = solve(eq, x) # this generated a failure in flatten
assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3]
assert solve(exp(x) + 1, x) == [pi*I]
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solve(eq, x)
ans = [(log(2401) + 5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1]
assert result == ans
# it works if expanded, too
assert solve(eq.expand(), x) == result
assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)]
assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2]
assert solve(z*cos(sin(x)) - y, x) == [
asin(acos(y/z) - 2*pi) + pi, -asin(acos(y/z)) + pi,
-asin(acos(y/z) - 2*pi), asin(acos(y/z))]
assert solve(z*cos(x), x) == [pi/2, 3*pi/2]
# issue 4508
assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]]
assert solve(y - b*exp(a/x), x) == [a/log(y/b)]
# issue 4507
assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]]
# issue 4506
assert solve(y - a*x**b, x) == [(y/a)**(1/b)]
# issue 4505
assert solve(z**x - y, x) == [log(y)/log(z)]
# issue 4504
assert solve(2**x - 10, x) == [log(10)/log(2)]
# issue 6744
assert solve(x*y) == [{x: 0}, {y: 0}]
assert solve([x*y]) == [{x: 0}, {y: 0}]
assert solve(x**y - 1) == [{x: 1}, {y: 0}]
assert solve([x**y - 1]) == [{x: 1}, {y: 0}]
assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
# issue 4739
assert solve(exp(log(5)*x) - 2**x, x) == [0]
# issue 14791
assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0]
f = Function('f')
assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0]
assert solve(f(x) - f(0), x) == [0]
assert solve(f(x) - f(2 - x), x) == [1]
raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x))
raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x))
raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x))
raises(ValueError, lambda: solve(f(x, y) - f(1), x))
# misc
# make sure that the right variables is picked up in tsolve
raises(NotImplementedError, lambda: solve((exp(x) + 1)**x - 2))
# shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated
# for eq_down. Actual answers, as determined numerically are approx. +/- 0.83
raises(NotImplementedError, lambda:
solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3))
# watch out for recursive loop in tsolve
raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x))
# issue 7245
assert solve(sin(sqrt(x))) == [0, pi**2]
# issue 7602
a, b = symbols('a, b', real=True, negative=False)
assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \
'[-0.318309886183791*acos(-2.0*a + 1.0) + 2.0, 0.318309886183791*acos(-2.0*a + 1.0)]'
# issue 15325
assert solve(y**(1/x) - z, x) == [log(y)/log(z)]
def test_solve_for_functions_derivatives():
t = Symbol('t')
x = Function('x')(t)
y = Function('y')(t)
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y)
assert soln == {
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
assert solve(x - 1, x) == [1]
assert solve(3*x - 2, x) == [Rational(2, 3)]
soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) +
a22*y.diff(t) - b2], x.diff(t), y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
assert solve(x.diff(t) - 1, x.diff(t)) == [1]
assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)]
eqns = set((3*x - 1, 2*y - 4))
assert solve(eqns, set((x, y))) == { x: Rational(1, 3), y: 2 }
x = Symbol('x')
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)]
# Mixed cased with a Symbol and a Function
x = Symbol('x')
y = Function('y')(t)
soln = solve([a11*x + a12*y.diff(t) - b1, a21*x +
a22*y.diff(t) - b2], x, y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
def test_issue_3725():
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
e = F.diff(x)
assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]]
def test_issue_3870():
a, b, c, d = symbols('a b c d')
A = Matrix(2, 2, [a, b, c, d])
B = Matrix(2, 2, [0, 2, -3, 0])
C = Matrix(2, 2, [1, 2, 3, 4])
assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: -S(1)/3, c: 2, d: -1}
assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: -S(1)/3, c: 2, d: -1}
assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: -S(1)/3, c: 2, d: -1}
assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: -S(2)/3*c}
assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: S(2)/3*c}
assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0}
assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: -S(2)/3*c}
assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: S(2)/3*c}
assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0}
def test_solve_linear():
w = Wild('w')
assert solve_linear(x, x) == (0, 1)
assert solve_linear(x, exclude=[x]) == (0, 1)
assert solve_linear(x, symbols=[w]) == (0, 1)
assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)]
assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x)
assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)]
assert solve_linear(3*x - y, 0, [x]) == (x, y/3)
assert solve_linear(3*x - y, 0, [y]) == (y, 3*x)
assert solve_linear(x**2/y, 1) == (y, x**2)
assert solve_linear(w, x) in [(w, x), (x, w)]
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \
(y, -2 - cos(x)**2 - sin(x)**2)
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1)
assert solve_linear(Eq(x, 3)) == (x, 3)
assert solve_linear(1/(1/x - 2)) == (0, 0)
assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1)
assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1)
assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0)
assert solve_linear(0**x - 1) == (0**x - 1, 1)
assert solve_linear(1 + 1/(x - 1)) == (x, 0)
eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
assert solve_linear(eq) == (0, 1)
eq = cos(x)**2 + sin(x)**2 # = 1
assert solve_linear(eq) == (0, 1)
raises(ValueError, lambda: solve_linear(Eq(x, 3), 3))
def test_solve_undetermined_coeffs():
assert solve_undetermined_coeffs(a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x) == \
{a: -2, b: 2, c: -1}
# Test that rational functions work
assert solve_undetermined_coeffs(a/x + b/(x + 1) - (2*x + 1)/(x**2 + x), [a, b], x) == \
{a: 1, b: 1}
# Test cancellation in rational functions
assert solve_undetermined_coeffs(((c + 1)*a*x**2 + (c + 1)*b*x**2 +
(c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1), [a, b, c], x) == \
{a: -2, b: 2, c: -1}
def test_solve_inequalities():
x = Symbol('x')
sol = And(S(0) < x, x < oo)
assert solve(x + 1 > 1) == sol
assert solve([x + 1 > 1]) == sol
assert solve([x + 1 > 1], x) == sol
assert solve([x + 1 > 1], [x]) == sol
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)),
And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0))
x = Symbol('x', real=True)
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2))))
# issues 6627, 3448
assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3))
assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1))
assert solve(sin(x) > S.Half) == And(pi/6 < x, x < 5*pi/6)
assert solve(Eq(False, x < 1)) == (S(1) <= x) & (x < oo)
assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1)
assert solve(Eq(x < 1, False)) == (S(1) <= x) & (x < oo)
assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1)
assert solve(Eq(False, x)) == False
assert solve(Eq(True, x)) == True
assert solve(Eq(False, ~x)) == True
assert solve(Eq(True, ~x)) == False
assert solve(Ne(True, x)) == False
def test_issue_4793():
assert solve(1/x) == []
assert solve(x*(1 - 5/x)) == [5]
assert solve(x + sqrt(x) - 2) == [1]
assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == []
assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == []
assert solve((x/(x + 1) + 3)**(-2)) == []
assert solve(x/sqrt(x**2 + 1), x) == [0]
assert solve(exp(x) - y, x) == [log(y)]
assert solve(exp(x)) == []
assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]]
eq = 4*3**(5*x + 2) - 7
ans = solve(eq, x)
assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == (
[x, y],
{(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))})
assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}]
assert solve((x - 1)/(1 + 1/(x - 1))) == []
assert solve(x**(y*z) - x, x) == [1]
raises(NotImplementedError, lambda: solve(log(x) - exp(x), x))
raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3))
def test_PR1964():
# issue 5171
assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0]
assert solve(sqrt(x - 1)) == [1]
# issue 4462
a = Symbol('a')
assert solve(-3*a/sqrt(x), x) == []
# issue 4486
assert solve(2*x/(x + 2) - 1, x) == [2]
# issue 4496
assert set(solve((x**2/(7 - x)).diff(x))) == set([S(0), S(14)])
# issue 4695
f = Function('f')
assert solve((3 - 5*x/f(x))*f(x), f(x)) == [5*x/3]
# issue 4497
assert solve(1/root(5 + x, 5) - 9, x) == [-295244/S(59049)]
assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(-S.Half + sqrt(17)/2)**4]
assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \
[
set([log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)]),
set([2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)]),
set([log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)]),
]
assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \
set([log(-sqrt(3) + 2), log(sqrt(3) + 2)])
assert set(solve(x**y + x**(2*y) - 1, x)) == \
set([(-S.Half + sqrt(5)/2)**(1/y), (-S.Half - sqrt(5)/2)**(1/y)])
assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)]
assert solve(
x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]]
# if you do inversion too soon then multiple roots (as for the following)
# will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3
E = S.Exp1
assert solve(exp(3*x) - exp(3), x) in [
[1, log(E*(-S.Half - sqrt(3)*I/2)), log(E*(-S.Half + sqrt(3)*I/2))],
[1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)],
]
# coverage test
p = Symbol('p', positive=True)
assert solve((1/p + 1)**(p + 1)) == []
def test_issue_5197():
x = Symbol('x', real=True)
assert solve(x**2 + 1, x) == []
n = Symbol('n', integer=True, positive=True)
assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1]
x = Symbol('x', positive=True)
y = Symbol('y')
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == []
# not {x: -3, y: 1} b/c x is positive
# The solution following should not contain (-sqrt(2), sqrt(2))
assert solve((x + y)*n - y**2 + 2, x, y) == [(sqrt(2), -sqrt(2))]
y = Symbol('y', positive=True)
# The solution following should not contain {y: -x*exp(x/2)}
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}]
assert solve(x**2 - y**2/exp(x), x, y, dict=True) == [{x: 2*LambertW(y/2)}]
x, y, z = symbols('x y z', positive=True)
assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}]
def test_checking():
assert set(
solve(x*(x - y/x), x, check=False)) == set([sqrt(y), S(0), -sqrt(y)])
assert set(solve(x*(x - y/x), x, check=True)) == set([sqrt(y), -sqrt(y)])
# {x: 0, y: 4} sets denominator to 0 in the following so system should return None
assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == []
# 0 sets denominator of 1/x to zero so None is returned
assert solve(1/(1/x + 2)) == []
def test_issue_4671_4463_4467():
assert solve((sqrt(x**2 - 1) - 2)) in ([sqrt(5), -sqrt(5)],
[-sqrt(5), sqrt(5)])
assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [
-sqrt(x)*sqrt(-log(log(2)) + log(log(2) + I*pi)),
sqrt(x)*sqrt(-log(log(2)) + log(log(2) + I*pi))]
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))]
a = Symbol('a')
E = S.Exp1
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2]
)
assert solve(log(a**(-3) - x**2)/a, x) in (
[-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))],
[sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],)
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2],)
assert set(solve((
a**2 + 1) * (sin(a*x) + cos(a*x)), x)) == set([-pi/(4*a), 3*pi/(4*a)])
assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a]
assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \
set([log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a,
log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a])
assert solve(atan(x) - 1) == [tan(1)]
def test_issue_5132():
r, t = symbols('r,t')
assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \
set([(
-sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)),
(sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))])
assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \
[(log(sin(S(1)/3)), S(1)/3)]
assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \
[(log(-sin(log(3))), -log(3))]
assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \
set([(log(-sin(2)), -S(2)), (log(sin(2)), S(2))])
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
assert solve(eqs, set=True) == \
([x, y], set([
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))]))
assert solve(eqs, x, z, set=True) == (
[x, z],
{(log(-z**2 + sin(y))/2, z), (log(-sqrt(-z**2 + sin(y))), z)})
assert set(solve(eqs, x, y)) == \
set([
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))])
assert set(solve(eqs, y, z)) == \
set([
(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3))))])
eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3]
assert solve(eqs, set=True) == ([x, y], set(
[
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))]))
assert solve(eqs, x, z, set=True) == (
[x, z],
{(log(-sqrt(-z + sin(y))), z), (log(-z + sin(y))/2, z)})
assert set(solve(eqs, x, y)) == set(
[
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))])
assert solve(eqs, z, y) == \
[(-exp(2*x) - sin(log(3)), -log(3))]
assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == (
[x, y], set([(S(1), S(3)), (S(3), S(1))]))
assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \
set([(S(1), S(3)), (S(3), S(1))])
def test_issue_5335():
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions obtained manually but only two are valid
assert len(solve(eqs, sym, manual=True, minimal=True)) == 2
assert len(solve(eqs, sym)) == 2 # cf below with rational=False
@SKIP("Hangs")
def _test_issue_5335_float():
# gives ZeroDivisionError: polynomial division
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
assert len(solve(eqs, sym, rational=False)) == 2
def test_issue_5767():
assert set(solve([x**2 + y + 4], [x])) == \
set([(-sqrt(-y - 4),), (sqrt(-y - 4),)])
def test_polysys():
assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \
set([(S(1), S(2)), (1 + sqrt(5), 2 - sqrt(5)),
(1 - sqrt(5), 2 + sqrt(5))])
assert solve([x**2 + y - 2, x**2 + y]) == []
# the ordering should be whatever the user requested
assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 +
y - 3, x - y - 4], (y, x))
@slow
def test_unrad1():
raises(NotImplementedError, lambda:
unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3))
raises(NotImplementedError, lambda:
unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y)))
s = symbols('s', cls=Dummy)
# checkers to deal with possibility of answer coming
# back with a sign change (cf issue 5203)
def check(rv, ans):
assert bool(rv[1]) == bool(ans[1])
if ans[1]:
return s_check(rv, ans)
e = rv[0].expand()
a = ans[0].expand()
return e in [a, -a] and rv[1] == ans[1]
def s_check(rv, ans):
# get the dummy
rv = list(rv)
d = rv[0].atoms(Dummy)
reps = list(zip(d, [s]*len(d)))
# replace s with this dummy
rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)])
ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)])
return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \
str(rv[1]) == str(ans[1])
assert check(unrad(sqrt(x)),
(x, []))
assert check(unrad(sqrt(x) + 1),
(x - 1, []))
assert check(unrad(sqrt(x) + root(x, 3) + 2),
(s**3 + s**2 + 2, [s, s**6 - x]))
assert check(unrad(sqrt(x)*root(x, 3) + 2),
(x**5 - 64, []))
assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)),
(x**3 - (x + 1)**2, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)),
(-2*sqrt(2)*x - 2*x + 1, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + 2),
(16*x - 9, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)),
(5*x**2 - 4*x, []))
assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)),
((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, []))
assert check(unrad(sqrt(x) + sqrt(1 - x)),
(2*x - 1, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) - 3),
(x**2 - x + 16, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)),
(5*x**2 - 2*x + 1, []))
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [
(25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []),
(25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])]
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \
(41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487
assert check(unrad(sqrt(x) + sqrt(x + 1)), (S(1), []))
eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x))
assert check(unrad(eq),
(16*x**2 - 9*x, []))
assert set(solve(eq, check=False)) == set([S(0), S(9)/16])
assert solve(eq) == []
# but this one really does have those solutions
assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \
set([S.Zero, S(9)/16])
assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y),
(S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), []))
assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)),
(x**5 - x**4 - x**3 + 2*x**2 + x - 1, []))
assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y),
(4*x*y + x - 4*y, []))
assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x),
(x**2 - x + 4, []))
# http://tutorial.math.lamar.edu/
# Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solve(Eq(x, sqrt(x + 6))) == [3]
assert solve(Eq(x + sqrt(x - 4), 4)) == [4]
assert solve(Eq(1, x + sqrt(2*x - 3))) == []
assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == set([-S(1), S(2)])
assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == set([S(5), S(13)])
assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6]
# http://www.purplemath.com/modules/solverad.htm
assert solve((2*x - 5)**Rational(1, 3) - 3) == [16]
assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \
set([-S(1)/2, -S(1)/3])
assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == set([-S(8), S(2)])
assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0]
assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5]
assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16]
assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4]
assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0]
assert solve(sqrt(x) - 2 - 5) == [49]
assert solve(sqrt(x - 3) - sqrt(x) - 3) == []
assert solve(sqrt(x - 1) - x + 7) == [10]
assert solve(sqrt(x - 2) - 5) == [27]
assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3]
assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == []
# don't posify the expression in unrad and do use _mexpand
z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x)
p = posify(z)[0]
assert solve(p) == []
assert solve(z) == []
assert solve(z + 6*I) == [-S(1)/11]
assert solve(p + 6*I) == []
# issue 8622
assert unrad((root(x + 1, 5) - root(x, 3))) == (
x**5 - x**3 - 3*x**2 - 3*x - 1, [])
# issue #8679
assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x),
(s**3 + s**2 + s + sqrt(y), [s, s**3 - x]))
# for coverage
assert check(unrad(sqrt(x) + root(x, 3) + y),
(s**3 + s**2 + y, [s, s**6 - x]))
assert solve(sqrt(x) + root(x, 3) - 2) == [1]
raises(NotImplementedError, lambda:
solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2))
# fails through a different code path
raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x))
# unrad some
assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [
x + (x**(S(1)/3) + x)**(S(5)/2)]
assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2),
(s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 -
192*s - 56, [s, s**2 - x]))
e = root(x + 1, 3) + root(x, 3)
assert unrad(e) == (2*x + 1, [])
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
(15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, []))
assert check(unrad(root(x, 4) + root(x, 4)**3 - 1),
(s**3 + s - 1, [s, s**4 - x]))
assert check(unrad(root(x, 2) + root(x, 2)**3 - 1),
(x**3 + 2*x**2 + x - 1, []))
assert unrad(x**0.5) is None
assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3),
(s**3 + s + t, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y),
(s**3 + s + x, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x),
(s**5 + s**3 + s - y, [s, s**5 - x - y]))
assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)),
(s**5 + 5*2**(S(1)/5)*s**4 + s**3 + 10*2**(S(2)/5)*s**3 +
10*2**(S(3)/5)*s**2 + 5*2**(S(4)/5)*s + 4, [s, s**3 - x + 1]))
raises(NotImplementedError, lambda:
unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1)))
# the simplify flag should be reset to False for unrad results;
# if it's not then this next test will take a long time
assert solve(root(x, 3) + root(x, 5) - 2) == [1]
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), []))
ans = S('''
[4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 +
12459439/52734375)**(1/3)) +
4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''')
assert solve(eq) == ans
# duplicate radical handling
assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2),
(s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1]))
# cov post-processing
e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2
assert check(unrad(e),
(s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30,
[s, s**3 - x**2 - 1]))
e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2
assert check(unrad(e),
(s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25,
[s, s**3 - x - 1]))
assert check(unrad(e, _reverse=True),
(s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89,
[s, s**2 - x - sqrt(x + 1)]))
# this one needs r0, r1 reversal to work
assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2),
(s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 +
32*s + 17, [s, s**6 - x]))
# is this needed?
#assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == (
# x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5 - cosh(x)**5, [])
raises(NotImplementedError, lambda:
unrad(sqrt(cosh(x)/x) + root(x + 1,3)*sqrt(x) - 1))
assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None
assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x),
(s**(2*y) + s + 1, [s, s**3 - x - y]))
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests that the use of
# composite
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**(S(1)/3)*y**2 -
1176*(x + 2)**(S(2)/3)*y - 169*x + 686, y, _unrad=False)) == 3
# watch out for when the cov doesn't involve the symbol of interest
eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1')
assert solve(eq, y) == [
4*2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)/21 - (-S(1)/2 -
sqrt(3)*I/2)*(-6912*x/343 + sqrt((-13824*x/343 - S(13824)/343)**2)/2 -
S(6912)/343)**(S(1)/3)/3, 4*2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)/21 -
(-S(1)/2 + sqrt(3)*I/2)*(-6912*x/343 + sqrt((-13824*x/343 -
S(13824)/343)**2)/2 - S(6912)/343)**(S(1)/3)/3, 4*2**(S(2)/3)*(27*x +
27*sqrt(x**2))**(S(1)/3)/21 - (-6912*x/343 + sqrt((-13824*x/343 -
S(13824)/343)**2)/2 - S(6912)/343)**(S(1)/3)/3]
eq = root(x + 1, 3) - (root(x, 3) + root(x, 5))
assert check(unrad(eq),
(3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x]))
assert check(unrad(eq - 2),
(3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 +
12*s**3 + 7, [s, s**15 - x]))
assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)),
(4096*s**13 + 960*s**12 + 48*s**11 - s**10 - 1728*s**4,
[s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389
assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2),
(343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 -
3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x -
1])) # orig expr has one real root: -0.048
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)),
(729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 -
3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x -
1])) # orig expr has 2 real roots: -0.91, -0.15
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2),
(729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 +
453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3
- 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1]))
# orig expr has 1 real root: 19.53
ans = solve(sqrt(x) + sqrt(x + 1) -
sqrt(1 - x) - sqrt(2 + x))
assert len(ans) == 1 and NS(ans[0])[:4] == '0.73'
# the fence optimization problem
# https://github.com/sympy/sympy/issues/4793#issuecomment-36994519
F = Symbol('F')
eq = F - (2*x + 2*y + sqrt(x**2 + y**2))
ans = 2*F/7 - sqrt(2)*F/14
X = solve(eq, x, check=False)
for xi in reversed(X): # reverse since currently, ans is the 2nd one
Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False)
if any((a - ans).expand().is_zero for a in Y):
break
else:
assert None # no answer was found
assert solve(sqrt(x + 1) + root(x, 3) - 2) == S('''
[(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 +
sqrt(93)/6)**(1/3))**3]''')
assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S('''
[(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 +
sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 +
sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 +
sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 +
sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''')
assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S('''
[(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) +
2)**2]''')
eq = S('''
-x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3
+ x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 -
sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2
- 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''')
assert check(unrad(eq),
(-s*(-s**6 + sqrt(3)*s**6*I - 153*2**(S(2)/3)*3**(S(1)/3)*s**4 +
51*12**(S(1)/3)*s**4 - 102*2**(S(2)/3)*3**(S(5)/6)*s**4*I - 1620*s**3 +
1620*sqrt(3)*s**3*I + 13872*18**(S(1)/3)*s**2 - 471648 +
471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 -
165240*x + 61484) + 810]))
assert solve(eq) == [] # not other code errors
@slow
def test_unrad_slow():
# this has roots with multiplicity > 1; there should be no
# repeats in roots obtained, however
eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*((1 + sqrt(1 + 2*sqrt(1 - 4*x**2)))))
assert solve(eq) == [S.Half]
@XFAIL
def test_unrad_fail():
# this only works if we check real_root(eq.subs(x, S(1)/3))
# but checksol doesn't work like that
assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [S(1)/3]
assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [
-1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3]
def test_checksol():
x, y, r, t = symbols('x, y, r, t')
eq = r - x**2 - y**2
dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1),
x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)}
assert checksol(eq, dict_var_soln) == True
assert checksol(Eq(x, False), {x: False}) is True
assert checksol(Ne(x, False), {x: False}) is False
assert checksol(Eq(x < 1, True), {x: 0}) is True
assert checksol(Eq(x < 1, True), {x: 1}) is False
assert checksol(Eq(x < 1, False), {x: 1}) is True
assert checksol(Eq(x < 1, False), {x: 0}) is False
assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True
def test__invert():
assert _invert(x - 2) == (2, x)
assert _invert(2) == (2, 0)
assert _invert(exp(1/x) - 3, x) == (1/log(3), x)
assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x)
assert _invert(a, x) == (a, 0)
def test_issue_4463():
assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)]
assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)]
assert solve(x**x) == []
assert solve(x**x - 2) == [exp(LambertW(log(2)))]
assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2]
assert solve(
(a/x + exp(x/2)).diff(x), x) == [4*LambertW(sqrt(2)*sqrt(a)/4)]
def test_issue_5114():
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = a, b, c, f, h, k, n
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1
def test_issue_5849():
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
ans = [{
dQ4: I3 - I5,
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
I4: I3 - I5,
dQ2: I2,
Q2: 2*I3 + 2*I5 + 3*I6,
I1: I2 + I3,
Q4: -I3/2 + 3*I5/2 - dI4/2}]
v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4
assert solve(e, *v, manual=True, check=False, dict=True) == ans
assert solve(e, *v, manual=True) == []
# the matrix solver (tested below) doesn't like this because it produces
# a zero row in the matrix. Is this related to issue 4551?
assert [ei.subs(
ans[0]) for ei in e] == [0, 0, I3 - I6, -I3 + I6, 0, 0, 0, 0, 0]
def test_issue_5849_matrix():
'''Same as test_2750 but solved with the matrix solver.'''
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == {
dI4: -I3 + 3*I5 - 2*Q4,
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
dQ2: I2,
I1: I2 + I3,
Q2: 2*I3 + 2*I5 + 3*I6,
dQ4: I3 - I5,
I4: I3 - I5}
def test_issue_5901():
f, g, h = map(Function, 'fgh')
a = Symbol('a')
D = Derivative(f(x), x)
G = Derivative(g(a), a)
assert solve(f(x) + f(x).diff(x), f(x)) == \
[-D]
assert solve(f(x) - 3, f(x)) == \
[3]
assert solve(f(x) - 3*f(x).diff(x), f(x)) == \
[3*D]
assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \
{f(x): 3*D}
assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \
[{f(x): 3*D, y: 9*D**2 + 4}]
assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
h(a), g(a), set=True) == \
([g(a)], set([
(-sqrt(h(a)**2*f(a)**2 + G)/f(a),),
(sqrt(h(a)**2*f(a)**2+ G)/f(a),)]))
args = [f(x).diff(x, 2)*(f(x) + g(x)) - g(x)**2 + 2, f(x), g(x)]
assert set(solve(*args)) == \
set([(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))])
eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4]
assert solve(eqs, f(x), g(x), set=True) == \
([f(x), g(x)], set([
(-sqrt(2*D - 2), S(2)),
(sqrt(2*D - 2), S(2)),
(-sqrt(2*D + 2), -S(2)),
(sqrt(2*D + 2), -S(2))]))
# the underlying problem was in solve_linear that was not masking off
# anything but a Mul or Add; it now raises an error if it gets anything
# but a symbol and solve handles the substitutions necessary so solve_linear
# won't make this error
raises(
ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)]))
assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \
(f(x) + Derivative(f(x), x), 1)
assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \
(f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x + f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x, -f(y) - Integral(x, (x, y)))
assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \
(x, 1/a)
assert solve_linear(x + Derivative(2*x, x)) == \
(x, -2)
assert solve_linear(x + Integral(x, y), symbols=[x]) == \
(x, 0)
assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \
(x, 2/(y + 1))
assert set(solve(x + exp(x)**2, exp(x))) == \
set([-sqrt(-x), sqrt(-x)])
assert solve(x + exp(x), x, implicit=True) == \
[-exp(x)]
assert solve(cos(x) - sin(x), x, implicit=True) == []
assert solve(x - sin(x), x, implicit=True) == \
[sin(x)]
assert solve(x**2 + x - 3, x, implicit=True) == \
[-x**2 + 3]
assert solve(x**2 + x - 3, x**2, implicit=True) == \
[-x + 3]
def test_issue_5912():
assert set(solve(x**2 - x - 0.1, rational=True)) == \
set([S(1)/2 + sqrt(35)/10, -sqrt(35)/10 + S(1)/2])
ans = solve(x**2 - x - 0.1, rational=False)
assert len(ans) == 2 and all(a.is_Number for a in ans)
ans = solve(x**2 - x - 0.1)
assert len(ans) == 2 and all(a.is_Number for a in ans)
def test_float_handling():
def test(e1, e2):
return len(e1.atoms(Float)) == len(e2.atoms(Float))
assert solve(x - 0.5, rational=True)[0].is_Rational
assert solve(x - 0.5, rational=False)[0].is_Float
assert solve(x - S.Half, rational=False)[0].is_Rational
assert solve(x - 0.5, rational=None)[0].is_Float
assert solve(x - S.Half, rational=None)[0].is_Rational
assert test(nfloat(1 + 2*x), 1.0 + 2.0*x)
for contain in [list, tuple, set]:
ans = nfloat(contain([1 + 2*x]))
assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x)
k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0]
assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x)
assert test(nfloat(cos(2*x)), cos(2.0*x))
assert test(nfloat(3*x**2), 3.0*x**2)
assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0)
assert test(nfloat(exp(2*x)), exp(2.0*x))
assert test(nfloat(x/3), x/3.0)
assert test(nfloat(x**4 + 2*x + cos(S(1)/3) + 1),
x**4 + 2.0*x + 1.94495694631474)
# don't call nfloat if there is no solution
tot = 100 + c + z + t
assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == []
def test_check_assumptions():
x = symbols('x', positive=True)
assert solve(x**2 - 1) == [1]
assert check_assumptions(1, x) == True
raises(AssertionError, lambda: check_assumptions(2*x, x, positive=True))
raises(TypeError, lambda: check_assumptions(1, 1))
def test_failing_assumptions():
x = Symbol('x', real=True, positive=True)
y = Symbol('y')
assert failing_assumptions(6*x + y, **x.assumptions0) == \
{'real': None, 'imaginary': None, 'complex': None, 'hermitian': None,
'positive': None, 'nonpositive': None, 'nonnegative': None, 'nonzero': None,
'negative': None, 'zero': None}
def test_issue_6056():
assert solve(tanh(x + 3)*tanh(x - 3) - 1) == []
assert set([simplify(w) for w in solve(tanh(x - 1)*tanh(x + 1) + 1)]) == set([
-log(2)/2 + log(1 - I),
-log(2)/2 + log(-1 - I),
-log(2)/2 + log(1 + I),
-log(2)/2 + log(-1 + I),])
assert set([simplify(w) for w in solve((tanh(x + 3)*tanh(x - 3) + 1)**2)]) == set([
-log(2)/2 + log(1 - I),
-log(2)/2 + log(-1 - I),
-log(2)/2 + log(1 + I),
-log(2)/2 + log(-1 + I),])
def test_issue_5673():
eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x)))
assert checksol(eq, x, 2) is True
assert checksol(eq, x, 2, numerical=False) is None
def test_exclude():
R, C, Ri, Vout, V1, Vminus, Vplus, s = \
symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s')
Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln
eqs = [C*V1*s + Vplus*(-2*C*s - 1/R),
Vminus*(-1/Ri - 1/Rf) + Vout/Rf,
C*Vplus*s + V1*(-C*s - 1/R) + Vout/R,
-Vminus + Vplus]
assert solve(eqs, exclude=s*C*R) == [
{
Rf: Ri*(C*R*s + 1)**2/(C*R*s),
Vminus: Vplus,
V1: 2*Vplus + Vplus/(C*R*s),
Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)},
{
Vplus: 0,
Vminus: 0,
V1: 0,
Vout: 0},
]
# TODO: Investigate why currently solution [0] is preferred over [1].
assert solve(eqs, exclude=[Vplus, s, C]) in [[{
Vminus: Vplus,
V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}, {
Vminus: Vplus,
V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}], [{
Vminus: Vplus,
Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus),
Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)),
R: Vplus/(C*s*(V1 - 2*Vplus)),
}]]
def test_high_order_roots():
s = x**5 + 4*x**3 + 3*x**2 + S(7)/4
assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots())
def test_minsolve_linear_system():
def count(dic):
return len([x for x in dic.values() if x == 0])
assert count(solve([x + y + z, y + z + a + t], particular=True, quick=True)) \
== 3
assert count(solve([x + y + z, y + z + a + t], particular=True, quick=False)) \
== 3
assert count(solve([x + y + z, y + z + a], particular=True, quick=True)) == 1
assert count(solve([x + y + z, y + z + a], particular=True, quick=False)) == 2
def test_real_roots():
# cf. issue 6650
x = Symbol('x', real=True)
assert len(solve(x**5 + x**3 + 1)) == 1
def test_issue_6528():
eqs = [
327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626,
895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000]
# two expressions encountered are > 1400 ops long so if this hangs
# it is likely because simplification is being done
assert len(solve(eqs, y, x, check=False)) == 4
def test_overdetermined():
x = symbols('x', real=True)
eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1]
assert solve(eqs, x) == [(S.Half,)]
assert solve(eqs, x, manual=True) == [(S.Half,)]
assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)]
def test_issue_6605():
x = symbols('x')
assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)]
# while the first one passed, this one failed
x = symbols('x', real=True)
assert solve(5**(x/2) - 2**(x/3)) == [0]
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solve(5**(x/2) - 2**(3/x)) == [-b, b]
def test__ispow():
assert _ispow(x**2)
assert not _ispow(x)
assert not _ispow(True)
def test_issue_6644():
eq = -sqrt((m - q)**2 + (-m/(2*q) + S(1)/2)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - S(1)/4)**2)
sol = solve(eq, q, simplify=False, check=False)
assert len(sol) == 5
def test_issue_6752():
assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)]
assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)]
def test_issue_6792():
assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [
-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)]
def test_issues_6819_6820_6821_6248_8692():
# issue 6821
x, y = symbols('x y', real=True)
assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9]
assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,), (2,)]
assert set(solve(abs(x - 7) - 8)) == set([-S(1), S(15)])
# issue 8692
assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [
-S(1)/2 + sqrt(61)/2, -sqrt(69)/2 + S(1)/2]
# issue 7145
assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)]
x = symbols('x')
assert solve([re(x) - 1, im(x) - 2], x) == [
{re(x): 1, x: 1 + 2*I, im(x): 2}]
# check for 'dict' handling of solution
eq = sqrt(re(x)**2 + im(x)**2) - 3
assert solve(eq) == solve(eq, x)
i = symbols('i', imaginary=True)
assert solve(abs(i) - 3) == [-3*I, 3*I]
raises(NotImplementedError, lambda: solve(abs(x) - 3))
w = symbols('w', integer=True)
assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w)
x, y = symbols('x y', real=True)
assert solve(x + y*I + 3) == {y: 0, x: -3}
# issue 2642
assert solve(x*(1 + I)) == [0]
x, y = symbols('x y', imaginary=True)
assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I}
x = symbols('x', real=True)
assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I}
# issue 6248
f = Function('f')
assert solve(f(x + 1) - f(2*x - 1)) == [2]
assert solve(log(x + 1) - log(2*x - 1)) == [2]
x = symbols('x')
assert solve(2**x + 4**x) == [I*pi/log(2)]
def test_issue_14607():
# issue 14607
s, tau_c, tau_1, tau_2, phi, K = symbols(
's, tau_c, tau_1, tau_2, phi, K')
target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c))
K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D',
positive=True, nonzero=True)
PID = K_C*(1 + 1/(tau_I*s) + tau_D*s)
eq = (target - PID).together()
eq *= denom(eq).simplify()
eq = Poly(eq, s)
c = eq.coeffs()
vars = [K_C, tau_I, tau_D]
s = solve(c, vars, dict=True)
assert len(s) == 1
knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)),
tau_I: tau_1 + tau_2,
tau_D: tau_1*tau_2/(tau_1 + tau_2)}
for var in vars:
assert s[0][var].simplify() == knownsolution[var].simplify()
def test_lambert_multivariate():
from sympy.abc import a, x, y
from sympy.solvers.bivariate import _filtered_gens, _lambert, _solve_lambert
assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == set([x, exp(x)])
assert _lambert(x, x) == []
assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3]
assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \
[LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3]
assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \
[LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3]
assert solve(x*log(x) + 3*x + 1, x) == [exp(-3 + LambertW(-exp(3)))]
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solve(eq) == [LambertW(3*exp(-LambertW(3)))]
# coverage test
raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x))
_13 = S(1)/3
_56 = S(5)/6
_53 = S(5)/3
K = (a**(-5))**(_13)*LambertW(_13)**(_13)/-2
assert solve(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == [
(log(a**(-5)) + log(3*LambertW(_13)))/(3*log(a)),
log((3**(_13) - 3**(_56)*I)*K)/log(a),
log((3**(_13) + 3**(_56)*I)*K)/log(a)]
# check collection
K = ((b + 3)*LambertW(1/(b + 3))/a**5)**(_13)
assert solve(
3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5),
x) == [
log(K*(1 - sqrt(3)*I)/-2)/log(a),
log(K*(1 + sqrt(3)*I)/-2)/log(a),
log((b + 3)*LambertW(1/(b + 3))/a**5)/(3*log(a))]
p = symbols('p', positive=True)
eq = 4*2**(2*p + 3) - 2*p - 3
assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [
-S(3)/2 - LambertW(-4*log(2))/(2*log(2))]
# issue 4271
assert solve((a/x + exp(x/2)).diff(x, 2), x) == [
6*LambertW(root(-1, 3)*root(a, 3)/3)]
assert solve((log(x) + x).subs(x, x**2 + 1)) == [
-I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))]
assert solve(x**3 - 3**x, x) == [-3/log(3)*LambertW(-log(3)/3),
-3*LambertW(-log(3)/3, -1)/log(3)]
assert solve(x**2 - 2**x, x) == [2, -2*LambertW(-log(2)/2, -1)/log(2)]
assert solve(-x**2 + 2**x, x) == [2, -2*LambertW(-log(2)/2, -1)/log(2)]
assert solve(3**cos(x) - cos(x)**3) == [
acos(-3*LambertW(-log(3)/3)/log(3)),
acos(-3*LambertW(-log(3)/3, -1)/log(3))]
assert set(solve(3*log(x) - x*log(3))) == set( # 2.478... and 3
[-3*LambertW(-log(3)/3)/log(3),
-3*LambertW(-log(3)/3, -1)/log(3)])
assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2]
@XFAIL
def test_other_lambert():
from sympy.abc import x
assert solve(3*sin(x) - x*sin(3), x) == [3]
a = S(6)/5
assert set(solve(x**a - a**x)) == set(
[a, -a*LambertW(-log(a)/a)/log(a)])
assert set(solve(3**cos(x) - cos(x)**3)) == set(
[acos(3), acos(-3*LambertW(-log(3)/3)/log(3))])
def test_rewrite_trig():
assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi]
assert solve(sin(x) + sec(x)) == [
-2*atan(-S.Half + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2),
2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half
+ sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half -
sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)]
assert solve(sinh(x) + tanh(x)) == [0, I*pi]
# issue 6157
assert solve(2*sin(x) - cos(x), x) == [-2*atan(2 + sqrt(5)),
-2*atan(-sqrt(5) + 2)]
@XFAIL
def test_rewrite_trigh():
# if this import passes then the test below should also pass
from sympy import sech
assert solve(sinh(x) + sech(x)) == [
2*atanh(-S.Half + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-S.Half + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)]
def test_uselogcombine():
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))]
assert solve(log(x + 3) + log(1 + 3/x) - 3) in [
[-3 + sqrt(-12 + exp(3))*exp(S(3)/2)/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(S(3)/2)/2 - 3 + exp(3)/2],
[-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2,
-3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2],
]
assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == []
def test_atan2():
assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)]
def test_errorinverses():
assert solve(erf(x) - y, x) == [erfinv(y)]
assert solve(erfinv(x) - y, x) == [erf(y)]
assert solve(erfc(x) - y, x) == [erfcinv(y)]
assert solve(erfcinv(x) - y, x) == [erfc(y)]
def test_issue_2725():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solve(eq, R, set=True)[1]
assert sol == set([(S(5)/3 + (-S(1)/2 - sqrt(3)*I/2)*(S(251)/27 +
sqrt(111)*I/9)**(S(1)/3) + 40/(9*((-S(1)/2 - sqrt(3)*I/2)*(S(251)/27 +
sqrt(111)*I/9)**(S(1)/3))),), (S(5)/3 + 40/(9*(S(251)/27 +
sqrt(111)*I/9)**(S(1)/3)) + (S(251)/27 + sqrt(111)*I/9)**(S(1)/3),)])
def test_issue_5114_6611():
# See that it doesn't hang; this solves in about 2 seconds.
# Also check that the solution is relatively small.
# Note: the system in issue 6611 solves in about 5 seconds and has
# an op-count of 138336 (with simplify=False).
b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r')
eqs = Matrix([
[b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d],
[-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m],
[-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]])
v = Matrix([f, h, k, n, b, c])
ans = solve(list(eqs), list(v), simplify=False)
# If time is taken to simplify then then 2617 below becomes
# 1168 and the time is about 50 seconds instead of 2.
assert sum([s.count_ops() for s in ans.values()]) <= 2617
def test_det_quick():
m = Matrix(3, 3, symbols('a:9'))
assert m.det() == det_quick(m) # calls det_perm
m[0, 0] = 1
assert m.det() == det_quick(m) # calls det_minor
m = Matrix(3, 3, list(range(9)))
assert m.det() == det_quick(m) # defaults to .det()
# make sure they work with Sparse
s = SparseMatrix(2, 2, (1, 2, 1, 4))
assert det_perm(s) == det_minor(s) == s.det()
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == \
[-sqrt(-b**2 + 9), sqrt(-b**2 + 9)]
a, b = symbols('a b', imaginary=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == []
def test_issue_7110():
y = -2*x**3 + 4*x**2 - 2*x + 5
assert any(ask(Q.real(i)) for i in solve(y))
def test_units():
assert solve(1/x - 1/(2*cm)) == [2*cm]
def test_issue_7547():
A, B, V = symbols('A,B,V')
eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0)
eq2 = Eq(B, 1.36*10**8*(V - 39))
eq3 = Eq(A, 5.75*10**5*V*(V + 39.0))
sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0)))
assert str(sol) == str(Matrix(
[['4442890172.68209'],
['4289299466.1432'],
['70.5389666628177']]))
def test_issue_7895():
r = symbols('r', real=True)
assert solve(sqrt(r) - 2) == [4]
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = 191/S(20), 3*sqrt(391)/20
ans = [(a, -b), (a, b)]
assert solve((e1, e2), (x, y)) == ans
assert solve((e1, e2/(x - a)), (x, y)) == []
# make the 2nd circle's radius be -3
e2 += 6
assert solve((e1, e2), (x, y)) == []
assert solve((e1, e2), (x, y), check=False) == ans
def test_issue_7322():
number = 5.62527e-35
assert solve(x - number, x)[0] == number
def test_nsolve():
raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect'))
raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50)))
raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1)))
def test_high_order_multivariate():
assert len(solve(a*x**3 - x + 1, x)) == 3
assert len(solve(a*x**4 - x + 1, x)) == 4
assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed
raises(NotImplementedError, lambda:
solve(a*x**5 - x + 1, x, incomplete=False))
# result checking must always consider the denominator and CRootOf
# must be checked, too
d = x**5 - x + 1
assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)]
d = x - 1
assert solve(d*(2 + 1/d)) == [S.Half]
def test_base_0_exp_0():
assert solve(0**x - 1) == [0]
assert solve(0**(x - 2) - 1) == [2]
assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \
[0, 1]
def test__simple_dens():
assert _simple_dens(1/x**0, [x]) == set()
assert _simple_dens(1/x**y, [x]) == set([x**y])
assert _simple_dens(1/root(x, 3), [x]) == set([x])
def test_issue_8755():
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests the use of
# keyword `composite`.
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**(S(1)/3)*y**2 -
1176*(x + 2)**(S(2)/3)*y - 169*x + 686, y, _unrad=False)) == 3
@slow
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = x, y, z
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = f1,f2,f3
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = g1,g2,g3
A = solve(F, v)
B = solve(G, v)
C = solve(G, v, manual=True)
p, q, r = [set([tuple(i.evalf(2) for i in j) for j in R]) for R in [A, B, C]]
assert p == q == r
def test_issue_2840_8155():
assert solve(sin(3*x) + sin(6*x)) == [
0, -pi, pi, 14*pi/9, 16*pi/9, 2*pi, 2*I*(log(2) - log(-1 - sqrt(3)*I)),
2*I*(log(2) - log(-1 + sqrt(3)*I)), 2*I*(log(2) - log(1 - sqrt(3)*I)),
2*I*(log(2) - log(1 + sqrt(3)*I)), 2*I*(log(2) - log(-sqrt(3) - I)),
2*I*(log(2) - log(-sqrt(3) + I)), 2*I*(log(2) - log(sqrt(3) - I)),
2*I*(log(2) - log(sqrt(3) + I)), -2*I*log(-(-1)**(S(1)/9)), -2*I*log(
-(-1)**(S(2)/9)), -2*I*log(-sin(pi/18) - I*cos(pi/18)), -2*I*log(-sin(
pi/18) + I*cos(pi/18)), -2*I*log(sin(pi/18) - I*cos(pi/18)), -2*I*log(
sin(pi/18) + I*cos(pi/18)), -2*I*log(exp(-2*I*pi/9)), -2*I*log(exp(
-I*pi/9)), -2*I*log(exp(I*pi/9)), -2*I*log(exp(2*I*pi/9))]
assert solve(2*sin(x) - 2*sin(2*x)) == [
0, -pi, pi, 2*I*(log(2) - log(-sqrt(3) - I)), 2*I*(log(2) -
log(-sqrt(3) + I)), 2*I*(log(2) - log(sqrt(3) - I)), 2*I*(log(2) -
log(sqrt(3) + I))]
def test_issue_9567():
assert solve(1 + 1/(x - 1)) == [0]
def test_issue_11538():
assert solve(x + E) == [-E]
assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)]
assert solve(x**3 + 2*E) == [
-cbrt(2 * E),
cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2,
cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2]
assert solve([x + 4, y + E], x, y) == {x: -4, y: -E}
assert solve([x**2 + 4, y + E], x, y) == [
(-2*I, -E), (2*I, -E)]
e1 = x - y**3 + 4
e2 = x + y + 4 + 4 * E
assert len(solve([e1, e2], x, y)) == 3
def test_issue_12114():
a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g')
terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f,
g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2]
s = solve(terms, [a, b, c, d, e, f, g], dict=True)
assert s == [{a: -sqrt(-f**2 - 1), b: -sqrt(-f**2 - 1),
c: -sqrt(-f**2 - 1), d: f, e: f, g: -1},
{a: sqrt(-f**2 - 1), b: sqrt(-f**2 - 1),
c: sqrt(-f**2 - 1), d: f, e: f, g: -1},
{a: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2,
b: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2),
d: -f/2 + sqrt(-3*f**2 + 6)/2,
e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2,
b: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2),
d: -f/2 - sqrt(-3*f**2 + 6)/2,
e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2,
b: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2),
d: -f/2 - sqrt(-3*f**2 + 6)/2,
e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2,
b: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2),
d: -f/2 + sqrt(-3*f**2 + 6)/2,
e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}]
def test_inf():
assert solve(1 - oo*x) == []
assert solve(oo*x, x) == []
assert solve(oo*x - oo, x) == []
def test_issue_12448():
f = Function('f')
fun = [f(i) for i in range(15)]
sym = symbols('x:15')
reps = dict(zip(fun, sym))
(x, y, z), c = sym[:3], sym[3:]
ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
(x, y, z), c = fun[:3], fun[3:]
sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
assert sfun[fun[0]].xreplace(reps).count_ops() == \
ssym[sym[0]].count_ops()
def test_denoms():
assert denoms(x/2 + 1/y) == set([2, y])
assert denoms(x/2 + 1/y, y) == set([y])
assert denoms(x/2 + 1/y, [y]) == set([y])
assert denoms(1/x + 1/y + 1/z, [x, y]) == set([x, y])
assert denoms(1/x + 1/y + 1/z, x, y) == set([x, y])
assert denoms(1/x + 1/y + 1/z, set([x, y])) == set([x, y])
def test_issue_12476():
x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5')
eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5,
x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3,
x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2,
x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3,
x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6,
-x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3,
-x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3,
-x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5,
x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1]
sols = [{x0: 1, x3: S(1)/6, x2: S(1)/6, x4: -S(2)/3, x1: -S(2)/3, x5: 1},
{x0: 1, x3: S(1)/2, x2: -S(1)/2, x4: 0, x1: 0, x5: -1},
{x0: 1, x3: -S(1)/3, x2: -S(1)/3, x4: S(1)/3, x1: S(1)/3, x5: 1},
{x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1},
{x0: 1, x3: -S(1)/3, x2: S(1)/3, x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1},
{x0: 1, x3: -S(1)/3, x2: S(1)/3, x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}]
assert solve(eqns) == sols
def test_issue_13849():
t = symbols('t')
assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == []
def test_issue_14860():
from sympy.physics.units import newton, kilo
assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y]
def test_issue_14721():
k, h, a, b = symbols(':4')
assert solve([
-1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2,
-1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2,
h, k + 2], h, k, a, b) == [
(0, -2, -b*sqrt(1/(b**2 - 9)), b),
(0, -2, b*sqrt(1/(b**2 - 9)), b)]
assert solve([
h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [
(a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)]
assert solve((a + b**2 - 1, a + b**2 - 2)) == []
def test_issue_14779():
x = symbols('x', real=True)
assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2
+ 3969) - 96*Abs(x)/x,x) == [sqrt(130)]
def test_issue_15307():
assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \
[{x: -3, y: 2}, {x: 2, y: 2}]
assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \
{x: 2, y: 2}
assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \
{x: -1, y: 2}
eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y)
eq2 = Eq(-2*x + 8, 2*x - 40)
assert solve([eq1, eq2]) == {x:12, y:75}
def test_issue_15415():
assert solve(x - 3, x) == [3]
assert solve([x - 3], x) == {x:3}
assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == []
|
c2bb2dfb04b422e6c402f5be668e8df66053893d9c6834637c17b5a65810fddd
|
from sympy import (Add, factor_list, igcd, Matrix, Mul, S, simplify,
Symbol, symbols, Eq, pi, factorint, oo, powsimp)
from sympy.core.function import _mexpand
from sympy.core.compatibility import range
from sympy.functions.elementary.trigonometric import sin
from sympy.solvers.diophantine import (descent, diop_bf_DN, diop_DN,
diop_solve, diophantine, divisible, equivalent, find_DN, ldescent, length,
reconstruct, partition, power_representation,
prime_as_sum_of_two_squares, square_factor, sum_of_four_squares,
sum_of_three_squares, transformation_to_DN, transformation_to_normal,
classify_diop, base_solution_linear, cornacchia, sqf_normal,
diop_ternary_quadratic_normal, _diop_ternary_quadratic_normal,
gaussian_reduce, holzer,diop_general_pythagorean,
_diop_general_sum_of_squares, _nint_or_floor, _odd, _even,
_remove_gcd, check_param, parametrize_ternary_quadratic,
diop_ternary_quadratic, diop_linear, diop_quadratic,
diop_general_sum_of_squares, sum_of_powers, sum_of_squares,
diop_general_sum_of_even_powers, _can_do_sum_of_squares)
from sympy.utilities import default_sort_key
from sympy.utilities.pytest import slow, raises, XFAIL
from sympy.utilities.iterables import (
permute_signs,
signed_permutations)
a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols(
"a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True)
t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True)
m1, m2, m3 = symbols('m1:4', integer=True)
n1 = symbols('n1', integer=True)
def diop_simplify(eq):
return _mexpand(powsimp(_mexpand(eq)))
def test_input_format():
raises(TypeError, lambda: diophantine(sin(x)))
raises(TypeError, lambda: diophantine(3))
raises(TypeError, lambda: diophantine(x/pi - 3))
def test_univariate():
assert diop_solve((x - 1)*(x - 2)**2) == set([(1,), (2,)])
assert diop_solve((x - 1)*(x - 2)) == set([(1,), (2,)])
def test_classify_diop():
raises(TypeError, lambda: classify_diop(x**2/3 - 1))
raises(ValueError, lambda: classify_diop(1))
raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1))
raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90))
assert classify_diop(14*x**2 + 15*x - 42) == (
[x], {1: -42, x: 15, x**2: 14}, 'univariate')
assert classify_diop(x*y + z) == (
[x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic')
assert classify_diop(x*y + z + w + x**2) == (
[w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + x*z + x**2 + 1) == (
[x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + z + w + 42) == (
[w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + z*w) == (
[w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic')
assert classify_diop(x*y**2 + 1) == (
[x, y], {x*y**2: 1, 1: 1}, 'cubic_thue')
assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == (
[x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers')
def test_linear():
assert diop_solve(x) == (0,)
assert diop_solve(1*x) == (0,)
assert diop_solve(3*x) == (0,)
assert diop_solve(x + 1) == (-1,)
assert diop_solve(2*x + 1) == (None,)
assert diop_solve(2*x + 4) == (-2,)
assert diop_solve(y + x) == (t_0, -t_0)
assert diop_solve(y + x + 0) == (t_0, -t_0)
assert diop_solve(y + x - 0) == (t_0, -t_0)
assert diop_solve(0*x - y - 5) == (-5,)
assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5)
assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5)
assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5)
assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0)
assert diop_solve(2*x + 4*y) == (2*t_0, -t_0)
assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2)
assert diop_solve(4*x + 6*y - 3) == (None, None)
assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5)
assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5)
assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None)
assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18)
assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1)
assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2)
# to ignore constant factors, use diophantine
raises(TypeError, lambda: diop_solve(x/2))
def test_quadratic_simple_hyperbolic_case():
# Simple Hyperbolic case: A = C = 0 and B != 0
assert diop_solve(3*x*y + 34*x - 12*y + 1) == \
set([(-133, -11), (5, -57)])
assert diop_solve(6*x*y + 2*x + 3*y + 1) == set([])
assert diop_solve(-13*x*y + 2*x - 4*y - 54) == set([(27, 0)])
assert diop_solve(-27*x*y - 30*x - 12*y - 54) == set([(-14, -1)])
assert diop_solve(2*x*y + 5*x + 56*y + 7) == set([(-161, -3),\
(-47,-6), (-35, -12), (-29, -69),\
(-27, 64), (-21, 7),(-9, 1),\
(105, -2)])
assert diop_solve(6*x*y + 9*x + 2*y + 3) == set([])
assert diop_solve(x*y + x + y + 1) == set([(-1, t), (t, -1)])
assert diophantine(48*x*y)
def test_quadratic_elliptical_case():
# Elliptical case: B**2 - 4AC < 0
# Two test cases highlighted require lot of memory due to quadratic_congruence() method.
# This above method should be replaced by Pernici's square_mod() method when his PR gets merged.
#assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == set([(-11, -1)])
assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set([])
assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == set([(-1, -1)])
#assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == set([(-15, 6)])
assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \
set([(-1, -1), (-1, 2), (1, -2), (1, 1)])
def test_quadratic_parabolic_case():
# Parabolic case: B**2 - 4AC = 0
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16)
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6)
assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7)
assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3)
assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1)
assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1)
assert check_solutions(y**2 - 41*x + 40)
def test_quadratic_perfect_square():
# B**2 - 4*A*C > 0
# B**2 - 4*A*C is a perfect square
assert check_solutions(48*x*y)
assert check_solutions(4*x**2 - 5*x*y + y**2 + 2)
assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25)
assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12)
assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23)
assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3)
assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10)
assert check_solutions(x**2 - y**2 - 2*x - 2*y)
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3)
def test_quadratic_non_perfect_square():
# B**2 - 4*A*C is not a perfect square
# Used check_solutions() since the solutions are complex expressions involving
# square roots and exponents
assert check_solutions(x**2 - 2*x - 5*y**2)
assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y)
assert check_solutions(x**2 - x*y - y**2 - 3*y)
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
def test_issue_9106():
eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1)
v = (x, y)
for sol in diophantine(eq):
assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
@slow
def test_quadratic_non_perfect_slow():
assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23)
# This leads to very large numbers.
# assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15)
assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7)
assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2)
assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2)
def test_DN():
# Most of the test cases were adapted from,
# Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004.
# http://www.jpr2718.org/pell.pdf
# others are verified using Wolfram Alpha.
# Covers cases where D <= 0 or D > 0 and D is a square or N = 0
# Solutions are straightforward in these cases.
assert diop_DN(3, 0) == [(0, 0)]
assert diop_DN(-17, -5) == []
assert diop_DN(-19, 23) == [(2, 1)]
assert diop_DN(-13, 17) == [(2, 1)]
assert diop_DN(-15, 13) == []
assert diop_DN(0, 5) == []
assert diop_DN(0, 9) == [(3, t)]
assert diop_DN(9, 0) == [(3*t, t)]
assert diop_DN(16, 24) == []
assert diop_DN(9, 180) == [(18, 4)]
assert diop_DN(9, -180) == [(12, 6)]
assert diop_DN(7, 0) == [(0, 0)]
# When equation is x**2 + y**2 = N
# Solutions are interchangeable
assert diop_DN(-1, 5) == [(2, 1), (1, 2)]
assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)]
# D > 0 and D is not a square
# N = 1
assert diop_DN(13, 1) == [(649, 180)]
assert diop_DN(980, 1) == [(51841, 1656)]
assert diop_DN(981, 1) == [(158070671986249, 5046808151700)]
assert diop_DN(986, 1) == [(49299, 1570)]
assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)]
assert diop_DN(17, 1) == [(33, 8)]
assert diop_DN(19, 1) == [(170, 39)]
# N = -1
assert diop_DN(13, -1) == [(18, 5)]
assert diop_DN(991, -1) == []
assert diop_DN(41, -1) == [(32, 5)]
assert diop_DN(290, -1) == [(17, 1)]
assert diop_DN(21257, -1) == [(13913102721304, 95427381109)]
assert diop_DN(32, -1) == []
# |N| > 1
# Some tests were created using calculator at
# http://www.numbertheory.org/php/patz.html
assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)]
# Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions
# So (-3, 1) and (393, 109) should be in the same equivalent class
assert equivalent(-3, 1, 393, 109, 13, -4) == True
assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)]
assert set(diop_DN(157, 12)) == \
set([(13, 1), (10663, 851), (579160, 46222), \
(483790960,38610722), (26277068347, 2097138361), (21950079635497, 1751807067011)])
assert diop_DN(13, 25) == [(3245, 900)]
assert diop_DN(192, 18) == []
assert diop_DN(23, 13) == [(-6, 1), (6, 1)]
assert diop_DN(167, 2) == [(13, 1)]
assert diop_DN(167, -2) == []
assert diop_DN(123, -2) == [(11, 1)]
# One calculator returned [(11, 1), (-11, 1)] but both of these are in
# the same equivalence class
assert equivalent(11, 1, -11, 1, 123, -2)
assert diop_DN(123, -23) == [(-10, 1), (10, 1)]
assert diop_DN(0, 0, t) == [(0, t)]
assert diop_DN(0, -1, t) == []
def test_bf_pell():
assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)]
assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)]
assert diop_bf_DN(167, -2) == []
assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)]
assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)]
assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)]
assert diop_bf_DN(340, -4) == [(756, 41)]
assert diop_bf_DN(-1, 0, t) == [(0, 0)]
assert diop_bf_DN(0, 0, t) == [(0, t)]
assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)]
assert diop_bf_DN(3, 0, t) == [(0, 0)]
assert diop_bf_DN(1, -2, t) == []
def test_length():
assert length(2, 1, 0) == 1
assert length(-2, 4, 5) == 3
assert length(-5, 4, 17) == 5
assert length(0, 4, 13) == 6
assert length(-31, 8, 613) == 69
assert length(7, 13, 11) == 23
assert length(-40, 5, 23) == 4
assert length(1, 6, 4) == 2
def is_pell_transformation_ok(eq):
"""
Test whether X*Y, X, or Y terms are present in the equation
after transforming the equation using the transformation returned
by transformation_to_pell(). If they are not present we are good.
Moreover, coefficient of X**2 should be a divisor of coefficient of
Y**2 and the constant term.
"""
A, B = transformation_to_DN(eq)
u = (A*Matrix([X, Y]) + B)[0]
v = (A*Matrix([X, Y]) + B)[1]
simplified = diop_simplify(eq.subs(zip((x, y), (u, v))))
coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args])
for term in [X*Y, X, Y]:
if term in coeff.keys():
return False
for term in [X**2, Y**2, 1]:
if term not in coeff.keys():
coeff[term] = 0
if coeff[X**2] != 0:
return divisible(coeff[Y**2], coeff[X**2]) and \
divisible(coeff[1], coeff[X**2])
return True
def test_transformation_to_pell():
assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14)
assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23)
assert is_pell_transformation_ok(x**2 - y**2 + 17)
assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23)
assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5)
assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130)
assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89)
assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950)
def test_find_DN():
assert find_DN(x**2 - 2*x - y**2) == (1, 1)
assert find_DN(x**2 - 3*y**2 - 5) == (3, 5)
assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7)
assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36)
assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84)
assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0)
assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480)
def test_ldescent():
# Equations which have solutions
u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1),
(4, 32), (17, 13), (123689, 1), (19, -570)])
for a, b in u:
w, x, y = ldescent(a, b)
assert a*x**2 + b*y**2 == w**2
assert ldescent(-1, -1) is None
def test_diop_ternary_quadratic_normal():
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
assert check_solutions(23*x**2 + 616*y**2 - z**2)
assert check_solutions(5*x**2 + 4*y**2 - z**2)
assert check_solutions(3*x**2 + 6*y**2 - 3*z**2)
assert check_solutions(x**2 + 3*y**2 - z**2)
assert check_solutions(4*x**2 + 5*y**2 - z**2)
assert check_solutions(x**2 + y**2 - z**2)
assert check_solutions(16*x**2 + y**2 - 25*z**2)
assert check_solutions(6*x**2 - y**2 + 10*z**2)
assert check_solutions(213*x**2 + 12*y**2 - 9*z**2)
assert check_solutions(34*x**2 - 3*y**2 - 301*z**2)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
def is_normal_transformation_ok(eq):
A = transformation_to_normal(eq)
X, Y, Z = A*Matrix([x, y, z])
simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z))))
coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args])
for term in [X*Y, Y*Z, X*Z]:
if term in coeff.keys():
return False
return True
def test_transformation_to_normal():
assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2)
assert is_normal_transformation_ok(x**2 + 23*y*z)
assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y)
assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z)
assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z)
assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z)
assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2)
assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z)
assert is_normal_transformation_ok(2*x*z + 3*y*z)
def test_diop_ternary_quadratic():
assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y)
assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z)
assert check_solutions(3*x**2 - x*y - y*z - x*z)
assert check_solutions(x**2 - y*z - x*z)
assert check_solutions(5*x**2 - 3*x*y - x*z)
assert check_solutions(4*x**2 - 5*y**2 - x*z)
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
assert check_solutions(8*x**2 - 12*y*z)
assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2)
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
assert check_solutions(x*y - 7*y*z + 13*x*z)
assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None)
assert diop_ternary_quadratic_normal(x**2 + y**2) is None
raises(ValueError, lambda:
_diop_ternary_quadratic_normal((x, y, z),
{x*y: 1, x**2: 2, y**2: 3, z**2: 0}))
eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2
assert diop_ternary_quadratic(eq) == (7, 2, 0)
assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \
(1, 0, 2)
assert diop_ternary_quadratic(x*y + 2*y*z) == \
(-2, 0, n1)
eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2
assert parametrize_ternary_quadratic(eq) == \
(64*p**2 - 24*p*q, -64*p*q + 64*q**2, 40*p*q)
# this cannot be tested with diophantine because it will
# factor into a product
assert diop_solve(x*y + 2*y*z) == (-4*p*q, -2*n1*p**2 + 2*p**2, 2*p*q)
def test_square_factor():
assert square_factor(1) == square_factor(-1) == 1
assert square_factor(0) == 1
assert square_factor(5) == square_factor(-5) == 1
assert square_factor(4) == square_factor(-4) == 2
assert square_factor(12) == square_factor(-12) == 2
assert square_factor(6) == 1
assert square_factor(18) == 3
assert square_factor(52) == 2
assert square_factor(49) == 7
assert square_factor(392) == 14
assert square_factor(factorint(-12)) == 2
def test_parametrize_ternary_quadratic():
assert check_solutions(x**2 + y**2 - z**2)
assert check_solutions(x**2 + 2*x*y + z**2)
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
assert check_solutions(x**2 - y**2 - z**2)
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
assert check_solutions(8*x*y + z**2)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z)
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
def test_no_square_ternary_quadratic():
assert check_solutions(2*x*y + y*z - 3*x*z)
assert check_solutions(189*x*y - 345*y*z - 12*x*z)
assert check_solutions(23*x*y + 34*y*z)
assert check_solutions(x*y + y*z + z*x)
assert check_solutions(23*x*y + 23*y*z + 23*x*z)
def test_descent():
u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)])
for a, b in u:
w, x, y = descent(a, b)
assert a*x**2 + b*y**2 == w**2
# the docstring warns against bad input, so these are expected results
# - can't both be negative
raises(TypeError, lambda: descent(-1, -3))
# A can't be zero unless B != 1
raises(ZeroDivisionError, lambda: descent(0, 3))
# supposed to be square-free
raises(TypeError, lambda: descent(4, 3))
def test_diophantine():
assert check_solutions((x - y)*(y - z)*(z - x))
assert check_solutions((x - y)*(x**2 + y**2 - z**2))
assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2))
assert check_solutions((x**2 - 3*y**2 - 1))
assert check_solutions(y**2 + 7*x*y)
assert check_solutions(x**2 - 3*x*y + y**2)
assert check_solutions(z*(x**2 - y**2 - 15))
assert check_solutions(x*(2*y - 2*z + 5))
assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15))
assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z))
assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w))
# Following test case caused problems in parametric representation
# But this can be solved by factroing out y.
# No need to use methods for ternary quadratic equations.
assert check_solutions(y**2 - 7*x*y + 4*y*z)
assert check_solutions(x**2 - 2*x + 1)
assert diophantine(x - y) == diophantine(Eq(x, y))
assert diophantine(3*x*pi - 2*y*pi) == set([(2*t_0, 3*t_0)])
eq = x**2 + y**2 + z**2 - 14
base_sol = set([(1, 2, 3)])
assert diophantine(eq) == base_sol
complete_soln = set(signed_permutations(base_sol.pop()))
assert diophantine(eq, permute=True) == complete_soln
assert diophantine(x**2 + 15*x/14 - 3) == set()
# test issue 11049
eq = 92*x**2 - 99*y**2 - z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(9, 7, 51)
assert diophantine(eq) == set([(
891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2,
5049*p**2 - 1386*p*q - 51*q**2)])
eq = 2*x**2 + 2*y**2 - z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(1, 1, 2)
assert diophantine(eq) == set([(
2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
4*p**2 - 4*p*q + 2*q**2)])
eq = 411*x**2+57*y**2-221*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(2021, 2645, 3066)
assert diophantine(eq) == \
set([(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q -
584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)])
eq = 573*x**2+267*y**2-984*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(49, 233, 127)
assert diophantine(eq) == \
set([(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2,
11303*p**2 - 41474*p*q + 41656*q**2)])
# this produces factors during reconstruction
eq = x**2 + 3*y**2 - 12*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
(0, 2, 1)
assert diophantine(eq) == \
set([(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)])
# solvers have not been written for every type
raises(NotImplementedError, lambda: diophantine(x*y**2 + 1))
# rational expressions
assert diophantine(1/x) == set()
assert diophantine(1/x + 1/y - S.Half)
set([(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)])
def test_general_pythagorean():
from sympy.abc import a, b, c, d, e
assert check_solutions(a**2 + b**2 + c**2 - d**2)
assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2)
assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2)
assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 )
assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2)
assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2)
assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2)
def test_diop_general_sum_of_squares_quick():
for i in range(3, 10):
assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i)
raises(ValueError, lambda: _diop_general_sum_of_squares((x, y), 2))
assert _diop_general_sum_of_squares((x, y, z), -2) == set()
eq = x**2 + y**2 + z**2 - (1 + 4 + 9)
assert diop_general_sum_of_squares(eq) == \
set([(1, 2, 3)])
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313
assert len(diop_general_sum_of_squares(eq, 3)) == 3
# issue 11016
var = symbols(':5') + (symbols('6', negative=True),)
eq = Add(*[i**2 for i in var]) - 112
base_soln = set(
[(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7),
(0, 1, 1, 1, 3, -10), (0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8),
(0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6), (1, 1, 3, 4, 6, -7),
(0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9),
(0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6),
(0, 2, 2, 2, 6, -8), (0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7),
(0, 1, 5, 5, 5, -6)])
assert diophantine(eq) == base_soln
assert len(diophantine(eq, permute=True)) == 196800
# handle negated squares with signsimp
assert diophantine(12 - x**2 - y**2 - z**2) == set([(2, 2, 2)])
# diophantine handles simplification, so classify_diop should
# not have to look for additional patterns that are removed
# by diophantine
eq = a**2 + b**2 + c**2 + d**2 - 4
raises(NotImplementedError, lambda: classify_diop(-eq))
def test_diop_partition():
for n in [8, 10]:
for k in range(1, 8):
for p in partition(n, k):
assert len(p) == k
assert [p for p in partition(3, 5)] == []
assert [list(p) for p in partition(3, 5, 1)] == [
[0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]]
assert list(partition(0)) == [()]
assert list(partition(1, 0)) == [()]
assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]]
def test_prime_as_sum_of_two_squares():
for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]:
a, b = prime_as_sum_of_two_squares(i)
assert a**2 + b**2 == i
assert prime_as_sum_of_two_squares(7) is None
ans = prime_as_sum_of_two_squares(800029)
assert ans == (450, 773) and type(ans[0]) is int
def test_sum_of_three_squares():
for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344,
800, 801, 802, 803, 804, 805, 806]:
a, b, c = sum_of_three_squares(i)
assert a**2 + b**2 + c**2 == i
assert sum_of_three_squares(7) is None
assert sum_of_three_squares((4**5)*15) is None
assert sum_of_three_squares(25) == (5, 0, 0)
assert sum_of_three_squares(4) == (0, 0, 2)
def test_sum_of_four_squares():
from random import randint
# this should never fail
n = randint(1, 100000000000000)
assert sum(i**2 for i in sum_of_four_squares(n)) == n
assert sum_of_four_squares(0) == (0, 0, 0, 0)
assert sum_of_four_squares(14) == (0, 1, 2, 3)
assert sum_of_four_squares(15) == (1, 1, 2, 3)
assert sum_of_four_squares(18) == (1, 2, 2, 3)
assert sum_of_four_squares(19) == (0, 1, 3, 3)
assert sum_of_four_squares(48) == (0, 4, 4, 4)
def test_power_representation():
tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
(32760, 2, 3)]
for test in tests:
n, p, k = test
f = power_representation(n, p, k)
while True:
try:
l = next(f)
assert len(l) == k
chk_sum = 0
for l_i in l:
chk_sum = chk_sum + l_i**p
assert chk_sum == n
except StopIteration:
break
assert list(power_representation(20, 2, 4, True)) == \
[(1, 1, 3, 3), (0, 0, 2, 4)]
raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
raises(ValueError, lambda: list(power_representation(2, 0, 2)))
raises(ValueError, lambda: list(power_representation(2, 2, 0)))
assert list(power_representation(-1, 2, 2)) == []
assert list(power_representation(1, 1, 1)) == [(1,)]
assert list(power_representation(3, 2, 1)) == []
assert list(power_representation(4, 2, 1)) == [(2,)]
assert list(power_representation(3**4, 4, 6, zeros=True)) == \
[(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
assert list(power_representation(3**4, 4, 5, zeros=False)) == []
assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
assert list(power_representation(-2, 4, 2)) == []
assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
assert list(power_representation(0, 3, 2, False)) == []
# when we are dealing with squares, do feasibility checks
assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0
# there will be a recursion error if these aren't recognized
big = 2**30
for i in [13, 10, 7, 5, 4, 2, 1]:
assert list(sum_of_powers(big, 2, big - i)) == []
def test_assumptions():
"""
Test whether diophantine respects the assumptions.
"""
#Test case taken from the below so question regarding assumptions in diophantine module
#https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy
m, n = symbols('m n', integer=True, positive=True)
diof = diophantine(n ** 2 + m * n - 500)
assert diof == set([(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)])
a, b = symbols('a b', integer=True, positive=False)
diof = diophantine(a*b + 2*a + 3*b - 6)
assert diof == set([(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)])
def check_solutions(eq):
"""
Determines whether solutions returned by diophantine() satisfy the original
equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
check_solutions_normal, check_solutions()
"""
s = diophantine(eq)
factors = Mul.make_args(eq)
var = list(eq.free_symbols)
var.sort(key=default_sort_key)
while s:
solution = s.pop()
for f in factors:
if diop_simplify(f.subs(zip(var, solution))) == 0:
break
else:
return False
return True
def test_diopcoverage():
eq = (2*x + y + 1)**2
assert diop_solve(eq) == set([(t_0, -2*t_0 - 1)])
eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18
assert diop_solve(eq) == set([(t_0, -t_0 - 3), (2*t_0 - 3, -t_0)])
assert diop_quadratic(x + y**2 - 3) == set([(-t**2 + 3, -t)])
assert diop_linear(x + y - 3) == (t_0, 3 - t_0)
assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
ans = (3*t - 1, -2*t + 1)
assert base_solution_linear(4, 8, 12, t) == ans
assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans)
assert cornacchia(1, 1, 20) is None
assert cornacchia(1, 1, 5) == set([(2, 1)])
assert cornacchia(1, 2, 17) == set([(3, 2)])
raises(ValueError, lambda: reconstruct(4, 20, 1))
assert gaussian_reduce(4, 1, 3) == (1, 1)
eq = -w**2 - x**2 - y**2 + z**2
assert diop_general_pythagorean(eq) == \
diop_general_pythagorean(-eq) == \
(m1**2 + m2**2 - m3**2, 2*m1*m3,
2*m2*m3, m1**2 + m2**2 + m3**2)
assert check_param(S(3) + x/3, S(4) + x/2, S(2), x) == (None, None)
assert check_param(S(3)/2, S(4) + x, S(2), x) == (None, None)
assert check_param(S(4) + x, S(3)/2, S(2), x) == (None, None)
assert _nint_or_floor(16, 10) == 2
assert _odd(1) == (not _even(1)) == True
assert _odd(0) == (not _even(0)) == False
assert _remove_gcd(2, 4, 6) == (1, 2, 3)
raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
assert sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11) == \
(11, 1, 5)
# it's ok if these pass some day when the solvers are implemented
raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12))
raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
set([(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)])
def test_holzer():
# if the input is good, don't let it diverge in holzer()
# (but see test_fail_holzer below)
assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13)
# None in uv condition met; solution is not Holzer reduced
# so this will hopefully change but is here for coverage
assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2)
raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23))
@XFAIL
def test_fail_holzer():
eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2
a, b, c = 4, 79, 23
x, y, z = xyz = 26, 1, 11
X, Y, Z = ans = 2, 7, 13
assert eq(*xyz) == 0
assert eq(*ans) == 0
assert max(a*x**2, b*y**2, c*z**2) <= a*b*c
assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c
h = holzer(x, y, z, a, b, c)
assert h == ans # it would be nice to get the smaller soln
def test_issue_9539():
assert diophantine(6*w + 9*y + 20*x - z) == \
set([(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)])
def test_issue_8943():
assert diophantine(
(3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x))) == \
set([(0, 0, 0)])
def test_diop_sum_of_even_powers():
eq = x**4 + y**4 + z**4 - 2673
assert diop_solve(eq) == set([(3, 6, 6), (2, 4, 7)])
assert diop_general_sum_of_even_powers(eq, 2) == set(
[(3, 6, 6), (2, 4, 7)])
raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2))
neg = symbols('neg', negative=True)
eq = x**4 + y**4 + neg**4 - 2673
assert diop_general_sum_of_even_powers(eq) == set([(-3, 6, 6)])
assert diophantine(x**4 + y**4 + 2) == set()
assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set()
def test_sum_of_squares_powers():
tru = set([
(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9),
(0, 3, 4, 7, 7), (0, 3, 5, 5, 8), (1, 1, 2, 6, 9), (1, 1, 6, 6, 7),
(1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9),
(2, 3, 5, 6, 7), (3, 3, 4, 5, 8)])
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123
ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used
assert len(ans) == 14
raises(ValueError, lambda: list(sum_of_squares(10, -1)))
assert list(sum_of_squares(-10, 2)) == []
assert list(sum_of_squares(2, 3)) == []
assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)]
assert list(sum_of_squares(0, 3)) == []
assert list(sum_of_squares(4, 1)) == [(2,)]
assert list(sum_of_squares(5, 1)) == []
assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)]
assert list(sum_of_squares(11, 5, True)) == [
(1, 1, 1, 2, 2), (0, 0, 1, 1, 3)]
assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)]
assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [
1, 1, 1, 1, 2,
2, 1, 1, 2, 2,
2, 2, 2, 3, 2,
1, 3, 3, 3, 3,
4, 3, 3, 2, 2,
4, 4, 4, 4, 5]
assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [
0, 0, 0, 0, 0,
1, 0, 0, 1, 0,
0, 1, 0, 1, 1,
0, 1, 1, 0, 1,
2, 1, 1, 1, 1,
1, 1, 1, 1, 3]
for i in range(30):
s1 = set(sum_of_squares(i, 5, True))
assert not s1 or all(sum(j**2 for j in t) == i for t in s1)
s2 = set(sum_of_squares(i, 5))
assert all(sum(j**2 for j in t) == i for t in s2)
raises(ValueError, lambda: list(sum_of_powers(2, -1, 1)))
raises(ValueError, lambda: list(sum_of_powers(2, 1, -1)))
assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)]
assert list(sum_of_powers(-2, 4, 2)) == []
assert list(sum_of_powers(2, 1, 1)) == [(2,)]
assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)]
assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)]
assert list(sum_of_powers(6, 2, 2)) == []
assert list(sum_of_powers(3**5, 3, 1)) == []
assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6)
assert list(sum_of_powers(2**1000, 5, 2)) == []
def test__can_do_sum_of_squares():
assert _can_do_sum_of_squares(3, -1) is False
assert _can_do_sum_of_squares(-3, 1) is False
assert _can_do_sum_of_squares(0, 1)
assert _can_do_sum_of_squares(4, 1)
assert _can_do_sum_of_squares(1, 2)
assert _can_do_sum_of_squares(2, 2)
assert _can_do_sum_of_squares(3, 2) is False
def test_diophantine_permute_sign():
from sympy.abc import a, b, c, d, e
eq = a**4 + b**4 - (2**4 + 3**4)
base_sol = set([(2, 3)])
assert diophantine(eq) == base_sol
complete_soln = set(signed_permutations(base_sol.pop()))
assert diophantine(eq, permute=True) == complete_soln
eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234
assert len(diophantine(eq)) == 35
assert len(diophantine(eq, permute=True)) == 62000
soln = set([(-1, -1), (-1, 2), (1, -2), (1, 1)])
assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln
@XFAIL
def test_not_implemented():
eq = x**2 + y**4 - 1**2 - 3**4
assert diophantine(eq, syms=[x, y]) == set([(9, 1), (1, 3)])
def test_issue_9538():
eq = x - 3*y + 2
assert diophantine(eq, syms=[y,x]) == set([(t_0, 3*t_0 - 2)])
raises(TypeError, lambda: diophantine(eq, syms=set([y,x])))
|
bddfce9a9bdb2919834715faa85f21b19e3e7f81f35c3dbc9ce8429d7e9b2a82
|
"""Tests for tools for solving inequalities and systems of inequalities. """
from sympy import (And, Eq, FiniteSet, Ge, Gt, Interval, Le, Lt, Ne, oo, I,
Or, S, sin, cos, tan, sqrt, Symbol, Union, Integral, Sum,
Function, Poly, PurePoly, pi, root, log, exp, Dummy, Abs)
from sympy.solvers.inequalities import (reduce_inequalities,
solve_poly_inequality as psolve,
reduce_rational_inequalities,
solve_univariate_inequality as isolve,
reduce_abs_inequality,
_solve_inequality)
from sympy.polys.rootoftools import rootof
from sympy.solvers.solvers import solve
from sympy.solvers.solveset import solveset
from sympy.abc import x, y
from sympy.utilities.pytest import raises, slow, XFAIL
inf = oo.evalf()
def test_solve_poly_inequality():
assert psolve(Poly(0, x), '==') == [S.Reals]
assert psolve(Poly(1, x), '==') == [S.EmptySet]
assert psolve(PurePoly(x + 1, x), ">") == [Interval(-1, oo, True, False)]
def test_reduce_poly_inequalities_real_interval():
assert reduce_rational_inequalities(
[[Eq(x**2, 0)]], x, relational=False) == FiniteSet(0)
assert reduce_rational_inequalities(
[[Le(x**2, 0)]], x, relational=False) == FiniteSet(0)
assert reduce_rational_inequalities(
[[Lt(x**2, 0)]], x, relational=False) == S.EmptySet
assert reduce_rational_inequalities(
[[Ge(x**2, 0)]], x, relational=False) == \
S.Reals if x.is_real else Interval(-oo, oo)
assert reduce_rational_inequalities(
[[Gt(x**2, 0)]], x, relational=False) == \
FiniteSet(0).complement(S.Reals)
assert reduce_rational_inequalities(
[[Ne(x**2, 0)]], x, relational=False) == \
FiniteSet(0).complement(S.Reals)
assert reduce_rational_inequalities(
[[Eq(x**2, 1)]], x, relational=False) == FiniteSet(-1, 1)
assert reduce_rational_inequalities(
[[Le(x**2, 1)]], x, relational=False) == Interval(-1, 1)
assert reduce_rational_inequalities(
[[Lt(x**2, 1)]], x, relational=False) == Interval(-1, 1, True, True)
assert reduce_rational_inequalities(
[[Ge(x**2, 1)]], x, relational=False) == \
Union(Interval(-oo, -1), Interval(1, oo))
assert reduce_rational_inequalities(
[[Gt(x**2, 1)]], x, relational=False) == \
Interval(-1, 1).complement(S.Reals)
assert reduce_rational_inequalities(
[[Ne(x**2, 1)]], x, relational=False) == \
FiniteSet(-1, 1).complement(S.Reals)
assert reduce_rational_inequalities([[Eq(
x**2, 1.0)]], x, relational=False) == FiniteSet(-1.0, 1.0).evalf()
assert reduce_rational_inequalities(
[[Le(x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0)
assert reduce_rational_inequalities([[Lt(
x**2, 1.0)]], x, relational=False) == Interval(-1.0, 1.0, True, True)
assert reduce_rational_inequalities(
[[Ge(x**2, 1.0)]], x, relational=False) == \
Union(Interval(-inf, -1.0), Interval(1.0, inf))
assert reduce_rational_inequalities(
[[Gt(x**2, 1.0)]], x, relational=False) == \
Union(Interval(-inf, -1.0, right_open=True),
Interval(1.0, inf, left_open=True))
assert reduce_rational_inequalities([[Ne(
x**2, 1.0)]], x, relational=False) == \
FiniteSet(-1.0, 1.0).complement(S.Reals)
s = sqrt(2)
assert reduce_rational_inequalities([[Lt(
x**2 - 1, 0), Gt(x**2 - 1, 0)]], x, relational=False) == S.EmptySet
assert reduce_rational_inequalities([[Le(x**2 - 1, 0), Ge(
x**2 - 1, 0)]], x, relational=False) == FiniteSet(-1, 1)
assert reduce_rational_inequalities(
[[Le(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, False, False), Interval(1, s, False, False))
assert reduce_rational_inequalities(
[[Le(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, False, True), Interval(1, s, True, False))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Ge(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, False), Interval(1, s, False, True))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, True), Interval(1, s, True, True))
assert reduce_rational_inequalities(
[[Lt(x**2 - 2, 0), Ne(x**2 - 1, 0)]], x, relational=False
) == Union(Interval(-s, -1, True, True), Interval(-1, 1, True, True),
Interval(1, s, True, True))
assert reduce_rational_inequalities([[Lt(x**2, -1.)]], x) is S.false
def test_reduce_poly_inequalities_complex_relational():
assert reduce_rational_inequalities(
[[Eq(x**2, 0)]], x, relational=True) == Eq(x, 0)
assert reduce_rational_inequalities(
[[Le(x**2, 0)]], x, relational=True) == Eq(x, 0)
assert reduce_rational_inequalities(
[[Lt(x**2, 0)]], x, relational=True) == False
assert reduce_rational_inequalities(
[[Ge(x**2, 0)]], x, relational=True) == And(Lt(-oo, x), Lt(x, oo))
assert reduce_rational_inequalities(
[[Gt(x**2, 0)]], x, relational=True) == \
And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
assert reduce_rational_inequalities(
[[Ne(x**2, 0)]], x, relational=True) == \
And(Gt(x, -oo), Lt(x, oo), Ne(x, 0))
for one in (S(1), S(1.0)):
inf = one*oo
assert reduce_rational_inequalities(
[[Eq(x**2, one)]], x, relational=True) == \
Or(Eq(x, -one), Eq(x, one))
assert reduce_rational_inequalities(
[[Le(x**2, one)]], x, relational=True) == \
And(And(Le(-one, x), Le(x, one)))
assert reduce_rational_inequalities(
[[Lt(x**2, one)]], x, relational=True) == \
And(And(Lt(-one, x), Lt(x, one)))
assert reduce_rational_inequalities(
[[Ge(x**2, one)]], x, relational=True) == \
And(Or(And(Le(one, x), Lt(x, inf)), And(Le(x, -one), Lt(-inf, x))))
assert reduce_rational_inequalities(
[[Gt(x**2, one)]], x, relational=True) == \
And(Or(And(Lt(-inf, x), Lt(x, -one)), And(Lt(one, x), Lt(x, inf))))
assert reduce_rational_inequalities(
[[Ne(x**2, one)]], x, relational=True) == \
Or(And(Lt(-inf, x), Lt(x, -one)),
And(Lt(-one, x), Lt(x, one)),
And(Lt(one, x), Lt(x, inf)))
def test_reduce_rational_inequalities_real_relational():
assert reduce_rational_inequalities([], x) == False
assert reduce_rational_inequalities(
[[(x**2 + 3*x + 2)/(x**2 - 16) >= 0]], x, relational=False) == \
Union(Interval.open(-oo, -4), Interval(-2, -1), Interval.open(4, oo))
assert reduce_rational_inequalities(
[[((-2*x - 10)*(3 - x))/((x**2 + 5)*(x - 2)**2) < 0]], x,
relational=False) == \
Union(Interval.open(-5, 2), Interval.open(2, 3))
assert reduce_rational_inequalities([[(x + 1)/(x - 5) <= 0]], x,
relational=False) == \
Interval.Ropen(-1, 5)
assert reduce_rational_inequalities([[(x**2 + 4*x + 3)/(x - 1) > 0]], x,
relational=False) == \
Union(Interval.open(-3, -1), Interval.open(1, oo))
assert reduce_rational_inequalities([[(x**2 - 16)/(x - 1)**2 < 0]], x,
relational=False) == \
Union(Interval.open(-4, 1), Interval.open(1, 4))
assert reduce_rational_inequalities([[(3*x + 1)/(x + 4) >= 1]], x,
relational=False) == \
Union(Interval.open(-oo, -4), Interval.Ropen(S(3)/2, oo))
assert reduce_rational_inequalities([[(x - 8)/x <= 3 - x]], x,
relational=False) == \
Union(Interval.Lopen(-oo, -2), Interval.Lopen(0, 4))
# issue sympy/sympy#10237
assert reduce_rational_inequalities(
[[x < oo, x >= 0, -oo < x]], x, relational=False) == Interval(0, oo)
def test_reduce_abs_inequalities():
e = abs(x - 5) < 3
ans = And(Lt(2, x), Lt(x, 8))
assert reduce_inequalities(e) == ans
assert reduce_inequalities(e, x) == ans
assert reduce_inequalities(abs(x - 5)) == Eq(x, 5)
assert reduce_inequalities(
abs(2*x + 3) >= 8) == Or(And(Le(S(5)/2, x), Lt(x, oo)),
And(Le(x, -S(11)/2), Lt(-oo, x)))
assert reduce_inequalities(abs(x - 4) + abs(
3*x - 5) < 7) == And(Lt(S(1)/2, x), Lt(x, 4))
assert reduce_inequalities(abs(x - 4) + abs(3*abs(x) - 5) < 7) == \
Or(And(S(-2) < x, x < -1), And(S(1)/2 < x, x < 4))
nr = Symbol('nr', real=False)
raises(TypeError, lambda: reduce_inequalities(abs(nr - 5) < 3))
assert reduce_inequalities(x < 3, symbols=[x, nr]) == And(-oo < x, x < 3)
def test_reduce_inequalities_general():
assert reduce_inequalities(Ge(sqrt(2)*x, 1)) == And(sqrt(2)/2 <= x, x < oo)
assert reduce_inequalities(PurePoly(x + 1, x) > 0) == And(S(-1) < x, x < oo)
def test_reduce_inequalities_boolean():
assert reduce_inequalities(
[Eq(x**2, 0), True]) == Eq(x, 0)
assert reduce_inequalities([Eq(x**2, 0), False]) == False
assert reduce_inequalities(x**2 >= 0) is S.true # issue 10196
def test_reduce_inequalities_multivariate():
assert reduce_inequalities([Ge(x**2, 1), Ge(y**2, 1)]) == And(
Or(And(Le(1, x), Lt(x, oo)), And(Le(x, -1), Lt(-oo, x))),
Or(And(Le(1, y), Lt(y, oo)), And(Le(y, -1), Lt(-oo, y))))
def test_reduce_inequalities_errors():
raises(NotImplementedError, lambda: reduce_inequalities(Ge(sin(x) + x, 1)))
raises(NotImplementedError, lambda: reduce_inequalities(Ge(x**2*y + y, 1)))
def test__solve_inequalities():
assert reduce_inequalities(x + y < 1, symbols=[x]) == (x < 1 - y)
assert reduce_inequalities(x + y >= 1, symbols=[x]) == (x < oo) & (x >= -y + 1)
assert reduce_inequalities(Eq(0, x - y), symbols=[x]) == Eq(x, y)
assert reduce_inequalities(Ne(0, x - y), symbols=[x]) == Ne(x, y)
def test_issue_6343():
eq = -3*x**2/2 - 45*x/4 + S(33)/2 > 0
assert reduce_inequalities(eq) == \
And(x < -S(15)/4 + sqrt(401)/4, -sqrt(401)/4 - S(15)/4 < x)
def test_issue_8235():
assert reduce_inequalities(x**2 - 1 < 0) == \
And(S(-1) < x, x < S(1))
assert reduce_inequalities(x**2 - 1 <= 0) == \
And(S(-1) <= x, x <= 1)
assert reduce_inequalities(x**2 - 1 > 0) == \
Or(And(-oo < x, x < -1), And(x < oo, S(1) < x))
assert reduce_inequalities(x**2 - 1 >= 0) == \
Or(And(-oo < x, x <= S(-1)), And(S(1) <= x, x < oo))
eq = x**8 + x - 9 # we want CRootOf solns here
sol = solve(eq >= 0)
tru = Or(And(rootof(eq, 1) <= x, x < oo), And(-oo < x, x <= rootof(eq, 0)))
assert sol == tru
# recast vanilla as real
assert solve(sqrt((-x + 1)**2) < 1) == And(S(0) < x, x < 2)
def test_issue_5526():
assert reduce_inequalities(S(0) <=
x + Integral(y**2, (y, 1, 3)) - 1, [x]) == \
(x >= -Integral(y**2, (y, 1, 3)) + 1)
f = Function('f')
e = Sum(f(x), (x, 1, 3))
assert reduce_inequalities(S(0) <= x + e + y**2, [x]) == \
(x >= -y**2 - Sum(f(x), (x, 1, 3)))
def test_solve_univariate_inequality():
assert isolve(x**2 >= 4, x, relational=False) == Union(Interval(-oo, -2),
Interval(2, oo))
assert isolve(x**2 >= 4, x) == Or(And(Le(2, x), Lt(x, oo)), And(Le(x, -2),
Lt(-oo, x)))
assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x, relational=False) == \
Union(Interval(1, 2), Interval(3, oo))
assert isolve((x - 1)*(x - 2)*(x - 3) >= 0, x) == \
Or(And(Le(1, x), Le(x, 2)), And(Le(3, x), Lt(x, oo)))
assert isolve((x - 1)*(x - 2)*(x - 4) < 0, x, domain = FiniteSet(0, 3)) == \
Or(Eq(x, 0), Eq(x, 3))
# issue 2785:
assert isolve(x**3 - 2*x - 1 > 0, x, relational=False) == \
Union(Interval(-1, -sqrt(5)/2 + S(1)/2, True, True),
Interval(S(1)/2 + sqrt(5)/2, oo, True, True))
# issue 2794:
assert isolve(x**3 - x**2 + x - 1 > 0, x, relational=False) == \
Interval(1, oo, True)
#issue 13105
assert isolve((x + I)*(x + 2*I) < 0, x) == Eq(x, 0)
assert isolve(((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I) < 0, x) == Or(Eq(x, 1), Eq(x, 2))
assert isolve((((x - 1)*(x - 2) + I)*((x - 1)*(x - 2) + 2*I))/(x - 2) > 0, x) == Eq(x, 1)
raises (ValueError, lambda: isolve((x**2 - 3*x*I + 2)/x < 0, x))
# numerical testing in valid() is needed
assert isolve(x**7 - x - 2 > 0, x) == \
And(rootof(x**7 - x - 2, 0) < x, x < oo)
# handle numerator and denominator; although these would be handled as
# rational inequalities, these test confirm that the right thing is done
# when the domain is EX (e.g. when 2 is replaced with sqrt(2))
assert isolve(1/(x - 2) > 0, x) == And(S(2) < x, x < oo)
den = ((x - 1)*(x - 2)).expand()
assert isolve((x - 1)/den <= 0, x) == \
Or(And(-oo < x, x < 1), And(S(1) < x, x < 2))
n = Dummy('n')
raises(NotImplementedError, lambda: isolve(Abs(x) <= n, x, relational=False))
c1 = Dummy("c1", positive=True)
raises(NotImplementedError, lambda: isolve(n/c1 < 0, c1))
n = Dummy('n', negative=True)
assert isolve(n/c1 > -2, c1) == (-n/2 < c1)
assert isolve(n/c1 < 0, c1) == True
assert isolve(n/c1 > 0, c1) == False
zero = cos(1)**2 + sin(1)**2 - 1
raises(NotImplementedError, lambda: isolve(x**2 < zero, x))
raises(NotImplementedError, lambda: isolve(
x**2 < zero*I, x))
raises(NotImplementedError, lambda: isolve(1/(x - y) < 2, x))
raises(NotImplementedError, lambda: isolve(1/(x - y) < 0, x))
raises(TypeError, lambda: isolve(x - I < 0, x))
zero = x**2 + x - x*(x + 1)
assert isolve(zero < 0, x, relational=False) is S.EmptySet
assert isolve(zero <= 0, x, relational=False) is S.Reals
# make sure iter_solutions gets a default value
raises(NotImplementedError, lambda: isolve(
Eq(cos(x)**2 + sin(x)**2, 1), x))
def test_trig_inequalities():
# all the inequalities are solved in a periodic interval.
assert isolve(sin(x) < S.Half, x, relational=False) == \
Union(Interval(0, pi/6, False, True), Interval(5*pi/6, 2*pi, True, False))
assert isolve(sin(x) > S.Half, x, relational=False) == \
Interval(pi/6, 5*pi/6, True, True)
assert isolve(cos(x) < S.Zero, x, relational=False) == \
Interval(pi/2, 3*pi/2, True, True)
assert isolve(cos(x) >= S.Zero, x, relational=False) == \
Union(Interval(0, pi/2), Interval(3*pi/2, 2*pi))
assert isolve(tan(x) < S.One, x, relational=False) == \
Union(Interval.Ropen(0, pi/4), Interval.Lopen(pi/2, pi))
assert isolve(sin(x) <= S.Zero, x, relational=False) == \
Union(FiniteSet(S(0)), Interval(pi, 2*pi))
assert isolve(sin(x) <= S(1), x, relational=False) == S.Reals
assert isolve(cos(x) < S(-2), x, relational=False) == S.EmptySet
assert isolve(sin(x) >= S(-1), x, relational=False) == S.Reals
assert isolve(cos(x) > S(1), x, relational=False) == S.EmptySet
def test_issue_9954():
assert isolve(x**2 >= 0, x, relational=False) == S.Reals
assert isolve(x**2 >= 0, x, relational=True) == S.Reals.as_relational(x)
assert isolve(x**2 < 0, x, relational=False) == S.EmptySet
assert isolve(x**2 < 0, x, relational=True) == S.EmptySet.as_relational(x)
@XFAIL
def test_slow_general_univariate():
r = rootof(x**5 - x**2 + 1, 0)
assert solve(sqrt(x) + 1/root(x, 3) > 1) == \
Or(And(S(0) < x, x < r**6), And(r**6 < x, x < oo))
def test_issue_8545():
eq = 1 - x - abs(1 - x)
ans = And(Lt(1, x), Lt(x, oo))
assert reduce_abs_inequality(eq, '<', x) == ans
eq = 1 - x - sqrt((1 - x)**2)
assert reduce_inequalities(eq < 0) == ans
def test_issue_8974():
assert isolve(-oo < x, x) == And(-oo < x, x < oo)
assert isolve(oo > x, x) == And(-oo < x, x < oo)
def test_issue_10198():
assert reduce_inequalities(
-1 + 1/abs(1/x - 1) < 0) == Or(
And(-oo < x, x < 0), And(S(0) < x, x < S(1)/2)
)
assert reduce_inequalities(abs(1/sqrt(x)) - 1, x) == Eq(x, 1)
assert reduce_abs_inequality(-3 + 1/abs(1 - 1/x), '<', x) == \
Or(And(-oo < x, x < 0),
And(S(0) < x, x < S(3)/4), And(S(3)/2 < x, x < oo))
raises(ValueError,lambda: reduce_abs_inequality(-3 + 1/abs(
1 - 1/sqrt(x)), '<', x))
def test_issue_10047():
# this must remain an inequality, not True, since if x
# is not real the inequality is invalid
assert solve(sin(x) < 2) == (x <= oo)
def test_issue_10268():
assert solve(log(x) < 1000) == And(S(0) < x, x < exp(1000))
@XFAIL
def test_isolve_Sets():
n = Dummy('n')
assert isolve(Abs(x) <= n, x, relational=False) == \
Piecewise((S.EmptySet, n < 0), (Interval(-n, n), True))
def test_issue_10671_12466():
assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
i = Interval(1, 10)
assert solveset((1/x).diff(x) < 0, x, i) == i
assert solveset((log(x - 6)/x) <= 0, x, S.Reals) == \
Interval.Lopen(6, 7)
def test__solve_inequality():
for op in (Gt, Lt, Le, Ge, Eq, Ne):
assert _solve_inequality(op(x, 1), x).lhs == x
assert _solve_inequality(op(S.One, x), x).lhs == x
# don't get tricked by symbol on right: solve it
assert _solve_inequality(Eq(2*x - 1, x), x) == Eq(x, 1)
ie = Eq(S.One, y)
assert _solve_inequality(ie, x) == ie
for fx in (x**2, exp(x), sin(x) + cos(x), x*(1 + x)):
for c in (0, 1):
e = 2*fx - c > 0
assert _solve_inequality(e, x, linear=True) == (
fx > c/S(2))
assert _solve_inequality(2*x**2 + 2*x - 1 < 0, x, linear=True) == (
x*(x + 1) < S.Half)
assert _solve_inequality(Eq(x*y, 1), x) == Eq(x*y, 1)
nz = Symbol('nz', nonzero=True)
assert _solve_inequality(Eq(x*nz, 1), x) == Eq(x, 1/nz)
assert _solve_inequality(x*nz < 1, x) == (x*nz < 1)
a = Symbol('a', positive=True)
assert _solve_inequality(a/x > 1, x) == (S.Zero < x) & (x < a)
assert _solve_inequality(a/x > 1, x, linear=True) == (1/x > 1/a)
# make sure to include conditions under which solution is valid
e = Eq(1 - x, x*(1/x - 1))
assert _solve_inequality(e, x) == Ne(x, 0)
assert _solve_inequality(x < x*(1/x - 1), x) == (x < S.Half) & Ne(x, 0)
def test__pt():
from sympy.solvers.inequalities import _pt
assert _pt(-oo, oo) == 0
assert _pt(S(1), S(3)) == 2
assert _pt(S(1), oo) == _pt(oo, S(1)) == 2
assert _pt(S(1), -oo) == _pt(-oo, S(1)) == S.Half
assert _pt(S(-1), oo) == _pt(oo, S(-1)) == -S.Half
assert _pt(S(-1), -oo) == _pt(-oo, S(-1)) == -2
assert _pt(x, oo) == _pt(oo, x) == x + 1
assert _pt(x, -oo) == _pt(-oo, x) == x - 1
raises(ValueError, lambda: _pt(Dummy('i', infinite=True), S(1)))
|
781c0ce8d4664fed38b3b8b27e2bc6557f3c31a3eae82af39fbda2c3e4badf9b
|
from sympy import (Eq, Matrix, pi, sin, sqrt, Symbol, Integral, Piecewise,
symbols, Float, I, Rational)
from mpmath import mnorm, mpf
from sympy.solvers import nsolve
from sympy.utilities.lambdify import lambdify
from sympy.utilities.pytest import raises, XFAIL
from sympy.utilities.decorator import conserve_mpmath_dps
@XFAIL
def test_nsolve_fail():
x = symbols('x')
# Sometimes it is better to use the numerator (issue 4829)
# but sometimes it is not (issue 11768) so leave this to
# the discretion of the user
ans = nsolve(x**2/(1 - x)/(1 - 2*x)**2 - 100, x, 0)
assert ans > 0.46 and ans < 0.47
def test_nsolve_denominator():
x = symbols('x')
# Test that nsolve uses the full expression (numerator and denominator).
ans = nsolve((x**2 + 3*x + 2)/(x + 2), -2.1)
# The root -2 was divided out, so make sure we don't find it.
assert ans == -1.0
def test_nsolve():
# onedimensional
x = Symbol('x')
assert nsolve(sin(x), 2) - pi.evalf() < 1e-15
assert nsolve(Eq(2*x, 2), x, -10) == nsolve(2*x - 2, -10)
# Testing checks on number of inputs
raises(TypeError, lambda: nsolve(Eq(2*x, 2)))
raises(TypeError, lambda: nsolve(Eq(2*x, 2), x, 1, 2))
# multidimensional
x1 = Symbol('x1')
x2 = Symbol('x2')
f1 = 3 * x1**2 - 2 * x2**2 - 1
f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
f = Matrix((f1, f2)).T
F = lambdify((x1, x2), f.T, modules='mpmath')
for x0 in [(-1, 1), (1, -2), (4, 4), (-4, -4)]:
x = nsolve(f, (x1, x2), x0, tol=1.e-8)
assert mnorm(F(*x), 1) <= 1.e-10
# The Chinese mathematician Zhu Shijie was the very first to solve this
# nonlinear system 700 years ago (z was added to make it 3-dimensional)
x = Symbol('x')
y = Symbol('y')
z = Symbol('z')
f1 = -x + 2*y
f2 = (x**2 + x*(y**2 - 2) - 4*y) / (x + 4)
f3 = sqrt(x**2 + y**2)*z
f = Matrix((f1, f2, f3)).T
F = lambdify((x, y, z), f.T, modules='mpmath')
def getroot(x0):
root = nsolve(f, (x, y, z), x0)
assert mnorm(F(*root), 1) <= 1.e-8
return root
assert list(map(round, getroot((1, 1, 1)))) == [2.0, 1.0, 0.0]
assert nsolve([Eq(
f1), Eq(f2), Eq(f3)], [x, y, z], (1, 1, 1)) # just see that it works
a = Symbol('a')
assert abs(nsolve(1/(0.001 + a)**3 - 6/(0.9 - a)**3, a, 0.3) -
mpf('0.31883011387318591')) < 1e-15
def test_issue_6408():
x = Symbol('x')
assert nsolve(Piecewise((x, x < 1), (x**2, True)), x, 2) == 0.0
@XFAIL
def test_issue_6408_fail():
x, y = symbols('x y')
assert nsolve(Integral(x*y, (x, 0, 5)), y, 2) == 0.0
@conserve_mpmath_dps
def test_increased_dps():
# Issue 8564
import mpmath
mpmath.mp.dps = 128
x = Symbol('x')
e1 = x**2 - pi
q = nsolve(e1, x, 3.0)
assert abs(sqrt(pi).evalf(128) - q) < 1e-128
def test_nsolve_precision():
x, y = symbols('x y')
sol = nsolve(x**2 - pi, x, 3, prec=128)
assert abs(sqrt(pi).evalf(128) - sol) < 1e-128
assert isinstance(sol, Float)
sols = nsolve((y**2 - x, x**2 - pi), (x, y), (3, 3), prec=128)
assert isinstance(sols, Matrix)
assert sols.shape == (2, 1)
assert abs(sqrt(pi).evalf(128) - sols[0]) < 1e-128
assert abs(sqrt(sqrt(pi)).evalf(128) - sols[1]) < 1e-128
assert all(isinstance(i, Float) for i in sols)
def test_nsolve_complex():
x, y = symbols('x y')
assert nsolve(x**2 + 2, 1j) == sqrt(2.)*I
assert nsolve(x**2 + 2, I) == sqrt(2.)*I
assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I])
assert nsolve([x**2 + 2, y**2 + 2], [x, y], [I, I]) == Matrix([sqrt(2.)*I, sqrt(2.)*I])
def test_nsolve_dict_kwarg():
x, y = symbols('x y')
# one variable
assert nsolve(x**2 - 2, 1, dict = True) == \
[{x: sqrt(2.)}]
# one variable with complex solution
assert nsolve(x**2 + 2, I, dict = True) == \
[{x: sqrt(2.)*I}]
# two variables
assert nsolve([x**2 + y**2 - 5, x**2 - y**2 + 1], [x, y], [1, 1], dict = True) == \
[{x: sqrt(2.), y: sqrt(3.)}]
def test_nsolve_rational():
x = symbols('x')
assert nsolve(x - Rational(1, 3), 0, prec=100) == Rational(1, 3).evalf(100)
def test_issue_14950():
x = Matrix(symbols('t s'))
x0 = Matrix([17, 23])
eqn = x + x0
assert nsolve(eqn, x, x0) == -x0
assert nsolve(eqn.T, x.T, x0.T) == -x0
|
43bc446fb8d03f6f818b7ad3ea88ae80f9ddb2e3074035fa0b190e2ab2e6610e
|
from sympy import (acos, acosh, asinh, atan, cos, Derivative, diff, dsolve,
Dummy, Eq, Ne, erf, erfi, exp, Function, I, Integral, LambertW, log, O, pi,
Rational, rootof, S, simplify, sin, sqrt, Subs, Symbol, tan, asin, sinh,
Piecewise, symbols, Poly, sec, Ei)
from sympy.solvers.ode import (_undetermined_coefficients_match,
checkodesol, classify_ode, classify_sysode, constant_renumber,
constantsimp, homogeneous_order, infinitesimals, checkinfsol,
checksysodesol, solve_ics, dsolve, get_numbered_constants)
from sympy.solvers.deutils import ode_order
from sympy.utilities.pytest import XFAIL, skip, raises, slow, ON_TRAVIS
C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11')
u, x, y, z = symbols('u,x:z', real=True)
f = Function('f')
g = Function('g')
h = Function('h')
# Note: the tests below may fail (but still be correct) if ODE solver,
# the integral engine, solve(), or even simplify() changes. Also, in
# differently formatted solutions, the arbitrary constants might not be
# equal. Using specific hints in tests can help to avoid this.
# Tests of order higher than 1 should run the solutions through
# constant_renumber because it will normalize it (constant_renumber causes
# dsolve() to return different results on different machines)
def test_linear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
k, l, m, n = symbols('k, l, m, n', Integer=True)
t = Symbol('t')
x0, y0 = symbols('x0, y0', cls=Function)
eq1 = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t)))
sol1 = [Eq(x(t), 9*C1*exp(6*sqrt(3)*t) + 9*C2*exp(-6*sqrt(3)*t)), \
Eq(y(t), 6*sqrt(3)*C1*exp(6*sqrt(3)*t) - 6*sqrt(3)*C2*exp(-6*sqrt(3)*t))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t)))
sol2 = [Eq(x(t), 4*C1*exp(t*(sqrt(1713)/2 + S(43)/2)) + 4*C2*exp(t*(-sqrt(1713)/2 + S(43)/2))), \
Eq(y(t), C1*(S(39)/2 + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + S(43)/2)) + \
C2*(-sqrt(1713)/2 + S(39)/2)*exp(t*(-sqrt(1713)/2 + S(43)/2)))]
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t)))
sol3 = [Eq(x(t), (C1*cos(sqrt(7)*t/2) + C2*sin(sqrt(7)*t/2))*exp(3*t/2)), \
Eq(y(t), (C1*(-sqrt(7)*sin(sqrt(7)*t/2)/2 + cos(sqrt(7)*t/2)/2) + \
C2*(sin(sqrt(7)*t/2)/2 + sqrt(7)*cos(sqrt(7)*t/2)/2))*exp(3*t/2))]
assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol4 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - S(22)/3), \
Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - S(5)/3)]
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol5 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - S(58)/3), \
Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - S(185)/3)]
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol6 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(S(5)/2*t**2)), \
Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(S(5)/2*t**2))]
s = dsolve(eq6)
assert checksysodesol(eq6, sol6) == (True, [0, 0])
eq7 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol7 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(S(5)/2*t**2)), \
Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(S(5)/2*t**2))]
assert checksysodesol(eq7, sol7) == (True, [0, 0])
eq8 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol8 = [Eq(x(t), (C1*exp((sqrt(77)/2 + S(9)/2)*(t**3)/3) + \
C2*exp((-sqrt(77)/2 + S(9)/2)*(t**3)/3))*exp(S(5)/2*t**2)), \
Eq(y(t), (C1*(sqrt(77)/2 + S(9)/2)*exp((sqrt(77)/2 + S(9)/2)*(t**3)/3) + \
C2*(-sqrt(77)/2 + S(9)/2)*exp((-sqrt(77)/2 + S(9)/2)*(t**3)/3))*exp(S(5)/2*t**2))]
assert checksysodesol(eq8, sol8) == (True, [0, 0])
eq10 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t)))
sol10 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \
exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
s = dsolve(eq10)
assert s == sol10 # too complicated to test with subs and simplify
def test_linear_2eq_order1_nonhomog_linear():
e = [Eq(diff(f(x), x), f(x) + g(x) + 5*x),
Eq(diff(g(x), x), f(x) - g(x))]
raises(NotImplementedError, lambda: dsolve(e))
def test_linear_2eq_order1_nonhomog():
# Note: once implemented, add some tests esp. with resonance
e = [Eq(diff(f(x), x), f(x) + exp(x)),
Eq(diff(g(x), x), f(x) + g(x) + x*exp(x))]
raises(NotImplementedError, lambda: dsolve(e))
def test_linear_2eq_order1_type2_degen():
e = [Eq(diff(f(x), x), f(x) + 5),
Eq(diff(g(x), x), f(x) + 7)]
s1 = [Eq(f(x), C1*exp(x) - 5), Eq(g(x), C1*exp(x) - C2 + 2*x - 5)]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_dsolve_linear_2eq_order1_diag_triangular():
e = [Eq(diff(f(x), x), f(x)),
Eq(diff(g(x), x), g(x))]
s1 = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x))]
assert checksysodesol(e, s1) == (True, [0, 0])
e = [Eq(diff(f(x), x), 2*f(x)),
Eq(diff(g(x), x), 3*f(x) + 7*g(x))]
s1 = [Eq(f(x), -5*C2*exp(2*x)),
Eq(g(x), 5*C1*exp(7*x) + 3*C2*exp(2*x))]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_sysode_linear_2eq_order1_type1_D_lt_0():
e = [Eq(diff(f(x), x), -9*I*f(x) - 4*g(x)),
Eq(diff(g(x), x), -4*I*g(x))]
s1 = [Eq(f(x), -4*C1*exp(-4*I*x) - 4*C2*exp(-9*I*x)), \
Eq(g(x), 5*I*C1*exp(-4*I*x))]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_sysode_linear_2eq_order1_type1_D_lt_0_b_eq_0():
e = [Eq(diff(f(x), x), -9*I*f(x)),
Eq(diff(g(x), x), -4*I*g(x))]
s1 = [Eq(f(x), -5*I*C2*exp(-9*I*x)), Eq(g(x), 5*I*C1*exp(-4*I*x))]
assert checksysodesol(e, s1) == (True, [0, 0])
def test_sysode_linear_2eq_order1_many_zeros():
t = Symbol('t')
corner_cases = [(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, I),
(I, 0, 0, -I), (0, I, 0, 0), (0, I, I, 0)]
s1 = [[Eq(f(t), C1), Eq(g(t), C2)],
[Eq(f(t), C1*exp(t)), Eq(g(t), -C2)],
[Eq(f(t), C1 + C2*t), Eq(g(t), C2)],
[Eq(f(t), C2), Eq(g(t), C1 + C2*t)],
[Eq(f(t), -C2), Eq(g(t), C1*exp(t))],
[Eq(f(t), C1*(1 - I)*exp(t)), Eq(g(t), C2*(-1 + I)*exp(I*t))],
[Eq(f(t), 2*I*C1*exp(I*t)), Eq(g(t), -2*I*C2*exp(-I*t))],
[Eq(f(t), I*C1 + I*C2*t), Eq(g(t), C2)],
[Eq(f(t), I*C1*exp(I*t) + I*C2*exp(-I*t)), \
Eq(g(t), I*C1*exp(I*t) - I*C2*exp(-I*t))]
]
for r, sol in zip(corner_cases, s1):
eq = [Eq(diff(f(t), t), r[0]*f(t) + r[1]*g(t)),
Eq(diff(g(t), t), r[2]*f(t) + r[3]*g(t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
def test_dsolve_linsystem_symbol_piecewise():
u = Symbol('u') # XXX it's more complicated with real u
eq = (Eq(diff(f(x), x), 2*f(x) + g(x)),
Eq(diff(g(x), x), u*f(x)))
s1 = [Eq(f(x), Piecewise((C1*exp(x*(sqrt(4*u + 4)/2 + 1)) +
C2*exp(x*(-sqrt(4*u + 4)/2 + 1)), Ne(4*u + 4, 0)), ((C1 + C2*(x +
Piecewise((0, Eq(sqrt(4*u + 4)/2 + 1, 2)), (1/(-sqrt(4*u + 4)/2 + 1),
True))))*exp(x*(sqrt(4*u + 4)/2 + 1)), True))), Eq(g(x),
Piecewise((C1*(sqrt(4*u + 4)/2 - 1)*exp(x*(sqrt(4*u + 4)/2 + 1)) +
C2*(-sqrt(4*u + 4)/2 - 1)*exp(x*(-sqrt(4*u + 4)/2 + 1)), Ne(4*u + 4,
0)), ((C1*(sqrt(4*u + 4)/2 - 1) + C2*(x*(sqrt(4*u + 4)/2 - 1) +
Piecewise((1, Eq(sqrt(4*u + 4)/2 + 1, 2)), (0,
True))))*exp(x*(sqrt(4*u + 4)/2 + 1)), True)))]
s = dsolve(eq)
assert s == s1
s = [(l.lhs, l.rhs) for l in s]
for v in [0, 7, -42, 5*I, 3 + 4*I]:
assert eq[0].subs(s).subs(u, v).doit().simplify()
assert eq[1].subs(s).subs(u, v).doit().simplify()
# example from https://groups.google.com/d/msg/sympy/xmzoqW6tWaE/sf0bgQrlCgAJ
i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t')
x1 = Function('x1')
x2 = Function('x2')
eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i
eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i
sol = dsolve((eq1, eq2))
# it's a complicated formula, was previously a TypeError
assert all(s.has(Piecewise) for s in sol)
def test_linear_2eq_order2():
x, y, z = symbols('x, y, z', cls=Function)
k, l, m, n = symbols('k, l, m, n', Integer=True)
t, l = symbols('t, l')
x0, y0 = symbols('x0, y0', cls=Function)
eq1 = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t)))
sol1 = [Eq(x(t), 43*C1*exp(t*rootof(l**4 - 14*l**2 + 2, 0)) + 43*C2*exp(t*rootof(l**4 - 14*l**2 + 2, 1)) + \
43*C3*exp(t*rootof(l**4 - 14*l**2 + 2, 2)) + 43*C4*exp(t*rootof(l**4 - 14*l**2 + 2, 3))), \
Eq(y(t), C1*(rootof(l**4 - 14*l**2 + 2, 0)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 0)) + \
C2*(rootof(l**4 - 14*l**2 + 2, 1)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 1)) + \
C3*(rootof(l**4 - 14*l**2 + 2, 2)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 2)) + \
C4*(rootof(l**4 - 14*l**2 + 2, 3)**2 - 5)*exp(t*rootof(l**4 - 14*l**2 + 2, 3)))]
assert dsolve(eq1) == sol1
eq2 = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12))
sol2 = [Eq(x(t), 3*C1*exp(t*rootof(l**4 - 15*l**2 + 29, 0)) + 3*C2*exp(t*rootof(l**4 - 15*l**2 + 29, 1)) + \
3*C3*exp(t*rootof(l**4 - 15*l**2 + 29, 2)) + 3*C4*exp(t*rootof(l**4 - 15*l**2 + 29, 3)) - S(181)/29), \
Eq(y(t), C1*(rootof(l**4 - 15*l**2 + 29, 0)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 0)) + \
C2*(rootof(l**4 - 15*l**2 + 29, 1)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 1)) + \
C3*(rootof(l**4 - 15*l**2 + 29, 2)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 2)) + \
C4*(rootof(l**4 - 15*l**2 + 29, 3)**2 - 8)*exp(t*rootof(l**4 - 15*l**2 + 29, 3)) + S(183)/29)]
assert dsolve(eq2) == sol2
eq3 = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0))
sol3 = [Eq(x(t), C1*cos(t*(S(9)/2 + sqrt(109)/2)) + C2*sin(t*(S(9)/2 + sqrt(109)/2)) + C3*cos(t*(-sqrt(109)/2 + S(9)/2)) + \
C4*sin(t*(-sqrt(109)/2 + S(9)/2))), Eq(y(t), -C1*sin(t*(S(9)/2 + sqrt(109)/2)) + C2*cos(t*(S(9)/2 + sqrt(109)/2)) - \
C3*sin(t*(-sqrt(109)/2 + S(9)/2)) + C4*cos(t*(-sqrt(109)/2 + S(9)/2)))]
assert dsolve(eq3) == sol3
eq4 = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t)))
sol4 = [Eq(x(t), C3*t + t*Integral((9*C1*exp(3*sqrt(7)*t**2/2) + 9*C2*exp(-3*sqrt(7)*t**2/2))/t**2, t)), \
Eq(y(t), C4*t + t*Integral((3*sqrt(7)*C1*exp(3*sqrt(7)*t**2/2) - 3*sqrt(7)*C2*exp(-3*sqrt(7)*t**2/2))/t**2, t))]
assert dsolve(eq4) == sol4
eq5 = (Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)), Eq(diff(y(t),t,t), \
(log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t)))
sol5 = [Eq(x(t), -sqrt(22)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C2 - \
C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) - C4 - \
(sqrt(22) + 5)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C2) + \
(-sqrt(22) + 5)*(C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + C4))/88), \
Eq(y(t), -sqrt(22)*(C1*Integral(exp((-sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) + \
C2 - C3*Integral(exp((sqrt(22) + 5)*Integral(t**2 + log(t), t)), t) - C4)/44)]
assert dsolve(eq5) == sol5
eq6 = (Eq(diff(x(t),t,t), log(t)*t*diff(y(t),t) - log(t)*y(t)), Eq(diff(y(t),t,t), log(t)*t*diff(x(t),t) - log(t)*x(t)))
sol6 = [Eq(x(t), C3*t + t*Integral((C1*exp(Integral(t*log(t), t)) + \
C2*exp(-Integral(t*log(t), t)))/t**2, t)), Eq(y(t), C4*t + t*Integral((C1*exp(Integral(t*log(t), t)) - \
C2*exp(-Integral(t*log(t), t)))/t**2, t))]
assert dsolve(eq6) == sol6
eq7 = (Eq(diff(x(t),t,t), log(t)*(t*diff(x(t),t) - x(t)) + exp(t)*(t*diff(y(t),t) - y(t))), \
Eq(diff(y(t),t,t), (t**2)*(t*diff(x(t),t) - x(t)) + (t)*(t*diff(y(t),t) - y(t))))
sol7 = [Eq(x(t), C3*t + t*Integral((C1*x0(t) + C2*x0(t)*Integral(t*exp(t)*exp(Integral(t**2, t))*\
exp(Integral(t*log(t), t))/x0(t)**2, t))/t**2, t)), Eq(y(t), C4*t + t*Integral((C1*y0(t) + \
C2*(y0(t)*Integral(t*exp(t)*exp(Integral(t**2, t))*exp(Integral(t*log(t), t))/x0(t)**2, t) + \
exp(Integral(t**2, t))*exp(Integral(t*log(t), t))/x0(t)))/t**2, t))]
assert dsolve(eq7) == sol7
eq8 = (Eq(diff(x(t),t,t), t*(4*x(t) + 9*y(t))), Eq(diff(y(t),t,t), t*(12*x(t) - 6*y(t))))
sol8 = ("[Eq(x(t), -sqrt(133)*((-sqrt(133) - 1)*(C2*(133*t**8/24 - t**3/6 + sqrt(133)*t**3/2 + 1) + "
"C1*t*(sqrt(133)*t**4/6 - t**3/12 + 1) + O(t**6)) - (-1 + sqrt(133))*(C2*(-sqrt(133)*t**3/6 - t**3/6 + 1) + "
"C1*t*(-sqrt(133)*t**3/12 - t**3/12 + 1) + O(t**6)) - 4*C2*(133*t**8/24 - t**3/6 + sqrt(133)*t**3/2 + 1) + "
"4*C2*(-sqrt(133)*t**3/6 - t**3/6 + 1) - 4*C1*t*(sqrt(133)*t**4/6 - t**3/12 + 1) + "
"4*C1*t*(-sqrt(133)*t**3/12 - t**3/12 + 1) + O(t**6))/3192), Eq(y(t), -sqrt(133)*(-C2*(133*t**8/24 - t**3/6 + "
"sqrt(133)*t**3/2 + 1) + C2*(-sqrt(133)*t**3/6 - t**3/6 + 1) - C1*t*(sqrt(133)*t**4/6 - t**3/12 + 1) + "
"C1*t*(-sqrt(133)*t**3/12 - t**3/12 + 1) + O(t**6))/266)]")
assert str(dsolve(eq8)) == sol8
eq9 = (Eq(diff(x(t),t,t), t*(4*diff(x(t),t) + 9*diff(y(t),t))), Eq(diff(y(t),t,t), t*(12*diff(x(t),t) - 6*diff(y(t),t))))
sol9 = [Eq(x(t), -sqrt(133)*(4*C1*Integral(exp((-sqrt(133) - 1)*Integral(t, t)), t) + 4*C2 - \
4*C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) - 4*C4 - (-1 + sqrt(133))*(C1*Integral(exp((-sqrt(133) - \
1)*Integral(t, t)), t) + C2) + (-sqrt(133) - 1)*(C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) + \
C4))/3192), Eq(y(t), -sqrt(133)*(C1*Integral(exp((-sqrt(133) - 1)*Integral(t, t)), t) + C2 - \
C3*Integral(exp((-1 + sqrt(133))*Integral(t, t)), t) - C4)/266)]
assert dsolve(eq9) == sol9
eq10 = (t**2*diff(x(t),t,t) + 3*t*diff(x(t),t) + 4*t*diff(y(t),t) + 12*x(t) + 9*y(t), \
t**2*diff(y(t),t,t) + 2*t*diff(x(t),t) - 5*t*diff(y(t),t) + 15*x(t) + 8*y(t))
sol10 = [Eq(x(t), -C1*(-2*sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 13 + 2*sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + \
346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))))*exp((-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)))/2)*log(t)) - \
C2*(-2*sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
13 - 2*sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))))*exp((-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)*log(t)) - C3*t**(1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2 + sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)*(2*sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 13 + 2*sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))) - C4*t**(-sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2 + 1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))/2)*(-2*sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))) + 2*sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 13)), Eq(y(t), C1*(-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 14 + (-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)**2 + sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))))*exp((-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 + sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)*log(t)) + C2*(-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 14 - sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))) + (-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)**2)*exp((-sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))/2 + 1 - sqrt(-284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) - 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)*log(t)) + C3*t**(1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + \
2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2 + sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)*(sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))) + 14 + (1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3))/2 + sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + 346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)))/2)**2) + C4*t**(-sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + \
346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)))/2 + 1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2)*(-sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + \
8 + 346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))) + (-sqrt(-2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3) + 8 + \
346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 284/sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)))/2 + 1 + sqrt(-346/(3*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + \
4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3))/2)**2 + sqrt(-346/(3*(S(4333)/4 + \
5*sqrt(70771857)/36)**(S(1)/3)) + 4 + 2*(S(4333)/4 + 5*sqrt(70771857)/36)**(S(1)/3)) + 14))]
assert dsolve(eq10) == sol10
def test_linear_3eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq1 = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t)))
sol1 = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \
Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))]
assert checksysodesol(eq1, sol1) == (True, [0, 0, 0])
eq2 = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t)))
sol2 = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \
Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \
Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))]
assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
eq3 = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t))))
sol3 = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \
Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \
Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))]
assert checksysodesol(eq3, sol3) == (True, [0, 0, 0])
f = t**3 + log(t)
g = t**2 + sin(t)
eq4 = (Eq(diff(x(t),t),(4*f+g)*x(t)-f*y(t)-2*f*z(t)), Eq(diff(y(t),t),2*f*x(t)+(f+g)*y(t)-2*f*z(t)), Eq(diff(z(t),t),5*f*x(t)+f*y(t)+(-3*f+g)*z(t)))
sol4 = [Eq(x(t), (C1*exp(-2*Integral(t**3 + log(t), t)) + C2*(sqrt(3)*sin(sqrt(3)*Integral(t**3 + log(t), t))/6 \
+ cos(sqrt(3)*Integral(t**3 + log(t), t))/2) + C3*(sin(sqrt(3)*Integral(t**3 + log(t), t))/2 - \
sqrt(3)*cos(sqrt(3)*Integral(t**3 + log(t), t))/6))*exp(Integral(-t**2 - sin(t), t))), Eq(y(t), \
(C2*(sqrt(3)*sin(sqrt(3)*Integral(t**3 + log(t), t))/6 + cos(sqrt(3)*Integral(t**3 + log(t), t))/2) + \
C3*(sin(sqrt(3)*Integral(t**3 + log(t), t))/2 - sqrt(3)*cos(sqrt(3)*Integral(t**3 + log(t), t))/6))*\
exp(Integral(-t**2 - sin(t), t))), Eq(z(t), (C1*exp(-2*Integral(t**3 + log(t), t)) + C2*cos(sqrt(3)*\
Integral(t**3 + log(t), t)) + C3*sin(sqrt(3)*Integral(t**3 + log(t), t)))*exp(Integral(-t**2 - sin(t), t)))]
assert dsolve(eq4) == sol4
eq5 = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t)))
sol5 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \
Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \
Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))]
assert checksysodesol(eq5, sol5) == (True, [0, 0, 0])
eq6 = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t)))
sol6 = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t)/5 + 3*cos(t)/5) + C3*(3*sin(t)/5 + cos(t)/5)),
Eq(y(t), C2*(-sin(t)/5 + 3*cos(t)/5) + C3*(3*sin(t)/5 + cos(t)/5)),
Eq(z(t), C1*exp(2*t) + C2*cos(t) + C3*sin(t))]
assert checksysodesol(eq5, sol5) == (True, [0, 0, 0])
def test_linear_3eq_order1_nonhomog():
e = [Eq(diff(f(x), x), -9*f(x) - 4*g(x)),
Eq(diff(g(x), x), -4*g(x)),
Eq(diff(h(x), x), h(x) + exp(x))]
raises(NotImplementedError, lambda: dsolve(e))
@XFAIL
def test_linear_3eq_order1_diagonal():
# code makes assumptions about coefficients being nonzero, breaks when assumptions are not true
e = [Eq(diff(f(x), x), f(x)),
Eq(diff(g(x), x), g(x)),
Eq(diff(h(x), x), h(x))]
s1 = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x)), Eq(h(x), C3*exp(x))]
s = dsolve(e)
assert s == s1
def test_nonlinear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol1 = [
Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(-S(1)/4))),
Eq(y(t), -(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), (-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**(S(1)/4))]
assert dsolve(eq1) == sol1
eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol2 = [
Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**(S(1)/4))/3),
Eq(y(t), -(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**(S(1)/4))/3),
Eq(y(t), (-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**(S(1)/4))/3),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**(S(1)/4))/3),
Eq(y(t), I*(-1/(4*C2 + 4*t))**(S(1)/4))]
assert dsolve(eq2) == sol2
eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3))
tt = S(2)/3
sol3 = [
Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)),
Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)]
assert dsolve(eq3) == sol3
eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2))
sol4 = set([Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))])
assert dsolve(eq4) == sol4
eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol5 = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)])
assert dsolve(eq5) == sol5
eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol6 = [
Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), -(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(-S(1)/4))),
Eq(y(t), (-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**(S(1)/4)),
Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**(S(1)/4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**(S(1)/4))]
assert dsolve(eq6) == sol6
def test_checksysodesol():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t)))
sol = [Eq(x(t), 9*C1*exp(-6*sqrt(3)*t) + 9*C2*exp(6*sqrt(3)*t)), \
Eq(y(t), -6*sqrt(3)*C1*exp(-6*sqrt(3)*t) + 6*sqrt(3)*C2*exp(6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t)))
sol = [Eq(x(t), 4*C1*exp(t*(-sqrt(1713)/2 + S(43)/2)) + 4*C2*exp(t*(sqrt(1713)/2 + \
S(43)/2))), Eq(y(t), C1*(-sqrt(1713)/2 + S(39)/2)*exp(t*(-sqrt(1713)/2 + \
S(43)/2)) + C2*(S(39)/2 + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + S(43)/2)))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t)))
sol = [Eq(x(t), (C1*sin(sqrt(7)*t/2) + C2*cos(sqrt(7)*t/2))*exp(3*t/2)), \
Eq(y(t), ((C1/2 - sqrt(7)*C2/2)*sin(sqrt(7)*t/2) + (sqrt(7)*C1/2 + \
C2/2)*cos(sqrt(7)*t/2))*exp(3*t/2))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol = [Eq(x(t), C1*exp(t*(-sqrt(6) + 3)) + C2*exp(t*(sqrt(6) + 3)) - \
S(22)/3), Eq(y(t), C1*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) + C2*(2 + \
sqrt(6))*exp(t*(sqrt(6) + 3)) - S(5)/3)]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - S(58)/3), \
Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - S(185)/3)]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol = [Eq(x(t), (C1*exp((Integral(2, t).doit())) + C2*exp(-(Integral(2, t)).doit()))*\
exp((Integral(5*t, t)).doit())), Eq(y(t), (C1*exp((Integral(2, t)).doit()) - \
C2*exp(-(Integral(2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol = [Eq(x(t), (C1*cos((Integral(t**2, t)).doit()) + C2*sin((Integral(t**2, t)).doit()))*\
exp((Integral(5*t, t)).doit())), Eq(y(t), (-C1*sin((Integral(t**2, t)).doit()) + \
C2*cos((Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol = [Eq(x(t), (C1*exp((-sqrt(77)/2 + S(9)/2)*(Integral(t**2, t)).doit()) + \
C2*exp((sqrt(77)/2 + S(9)/2)*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit())), \
Eq(y(t), (C1*(-sqrt(77)/2 + S(9)/2)*exp((-sqrt(77)/2 + S(9)/2)*(Integral(t**2, t)).doit()) + \
C2*(sqrt(77)/2 + S(9)/2)*exp((sqrt(77)/2 + S(9)/2)*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t)))
root0 = -sqrt(-sqrt(47) + 7)
root1 = sqrt(-sqrt(47) + 7)
root2 = -sqrt(sqrt(47) + 7)
root3 = sqrt(sqrt(47) + 7)
sol = [Eq(x(t), 43*C1*exp(t*root0) + 43*C2*exp(t*root1) + 43*C3*exp(t*root2) + 43*C4*exp(t*root3)), \
Eq(y(t), C1*(root0**2 - 5)*exp(t*root0) + C2*(root1**2 - 5)*exp(t*root1) + \
C3*(root2**2 - 5)*exp(t*root2) + C4*(root3**2 - 5)*exp(t*root3))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12))
root0 = -sqrt(-sqrt(109)/2 + S(15)/2)
root1 = sqrt(-sqrt(109)/2 + S(15)/2)
root2 = -sqrt(sqrt(109)/2 + S(15)/2)
root3 = sqrt(sqrt(109)/2 + S(15)/2)
sol = [Eq(x(t), 3*C1*exp(t*root0) + 3*C2*exp(t*root1) + 3*C3*exp(t*root2) + 3*C4*exp(t*root3) - S(181)/29), \
Eq(y(t), C1*(root0**2 - 8)*exp(t*root0) + C2*(root1**2 - 8)*exp(t*root1) + \
C3*(root2**2 - 8)*exp(t*root2) + C4*(root3**2 - 8)*exp(t*root3) + S(183)/29)]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0))
sol = [Eq(x(t), C1*cos(t*(S(9)/2 + sqrt(109)/2)) + C2*sin(t*(S(9)/2 + sqrt(109)/2)) + \
C3*cos(t*(-sqrt(109)/2 + S(9)/2)) + C4*sin(t*(-sqrt(109)/2 + S(9)/2))), Eq(y(t), -C1*sin(t*(S(9)/2 + sqrt(109)/2)) \
+ C2*cos(t*(S(9)/2 + sqrt(109)/2)) - C3*sin(t*(-sqrt(109)/2 + S(9)/2)) + C4*cos(t*(-sqrt(109)/2 + S(9)/2)))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t)))
I1 = sqrt(6)*7**(S(1)/4)*sqrt(pi)*erfi(sqrt(6)*7**(S(1)/4)*t/2)/2 - exp(3*sqrt(7)*t**2/2)/t
I2 = -sqrt(6)*7**(S(1)/4)*sqrt(pi)*erf(sqrt(6)*7**(S(1)/4)*t/2)/2 - exp(-3*sqrt(7)*t**2/2)/t
sol = [Eq(x(t), C3*t + t*(9*C1*I1 + 9*C2*I2)), Eq(y(t), C4*t + t*(3*sqrt(7)*C1*I1 - 3*sqrt(7)*C2*I2))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t)))
sol = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \
Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t)))
sol = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \
Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \
Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t))))
sol = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \
Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \
Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t)))
sol = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \
Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \
Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t)))
sol = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), \
Eq(y(t), C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), Eq(z(t), C1*exp(2*t) + 5*C2*cos(t) + 5*C3*sin(t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol = [Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(-S(1)/4))), Eq(y(t), -(-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**(S(1)/4))), Eq(y(t), (-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**(S(1)/4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**(S(1)/4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**(S(1)/4))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol = [Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**(S(1)/4))/3), Eq(y(t), -(-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**(S(1)/4))/3), Eq(y(t), (-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**(S(1)/4))/3), Eq(y(t), -I*(-1/(4*C2 + 4*t))**(S(1)/4)), \
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**(S(1)/4))/3), Eq(y(t), I*(-1/(4*C2 + 4*t))**(S(1)/4))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol = set([Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)])
assert checksysodesol(eq, sol) == (True, [0, 0])
@slow
def test_nonlinear_3eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t, u = symbols('t u')
eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t))
sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))),
C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)),
(u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)]
eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t))
sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 +
sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)),
(u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)]
def test_checkodesol():
from sympy import Ei
# For the most part, checkodesol is well tested in the tests below.
# These tests only handle cases not checked below.
raises(ValueError, lambda: checkodesol(f(x, y).diff(x), Eq(f(x, y), x)))
raises(ValueError, lambda: checkodesol(f(x).diff(x), Eq(f(x, y),
x), f(x, y)))
assert checkodesol(f(x).diff(x), Eq(f(x, y), x)) == \
(False, -f(x).diff(x) + f(x, y).diff(x) - 1)
assert checkodesol(f(x).diff(x), Eq(f(x), x)) is not True
assert checkodesol(f(x).diff(x), Eq(f(x), x)) == (False, 1)
sol1 = Eq(f(x)**5 + 11*f(x) - 2*f(x) + x, 0)
assert checkodesol(diff(sol1.lhs, x), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 2), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 2)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3), Eq(f(x), x*log(x))) == \
(False, 60*x**4*((log(x) + 1)**2 + log(x))*(
log(x) + 1)*log(x)**2 - 5*x**4*log(x)**4 - 9)
assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x)) == \
(True, 0)
assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x),
solve_for_func=False) == (True, 0)
assert checkodesol(f(x).diff(x, 2), [Eq(f(x), C1 + C2*x),
Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)]) == \
[(True, 0), (True, 0), (False, C2)]
assert checkodesol(f(x).diff(x, 2), set([Eq(f(x), C1 + C2*x),
Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)])) == \
set([(True, 0), (True, 0), (False, C2)])
assert checkodesol(f(x).diff(x) - 1/f(x)/2, Eq(f(x)**2, x)) == \
[(True, 0), (True, 0)]
assert checkodesol(f(x).diff(x) - f(x), Eq(C1*exp(x), f(x))) == (True, 0)
# Based on test_1st_homogeneous_coeff_ode2_eq3sol. Make sure that
# checkodesol tries back substituting f(x) when it can.
eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
sol3 = Eq(f(x), log(log(C1/x)**(-x)))
assert not checkodesol(eq3, sol3)[1].has(f(x))
# This case was failing intermittently depending on hash-seed:
eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
@slow
def test_dsolve_options():
eq = x*f(x).diff(x) + f(x)
a = dsolve(eq, hint='all')
b = dsolve(eq, hint='all', simplify=False)
c = dsolve(eq, hint='all_Integral')
keys = ['1st_exact', '1st_exact_Integral', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear',
'1st_linear_Integral', 'almost_linear', 'almost_linear_Integral',
'best', 'best_hint', 'default', 'lie_group',
'nth_linear_euler_eq_homogeneous', 'order',
'separable', 'separable_Integral']
Integral_keys = ['1st_exact_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear_Integral',
'almost_linear_Integral', 'best', 'best_hint', 'default',
'nth_linear_euler_eq_homogeneous',
'order', 'separable_Integral']
assert sorted(a.keys()) == keys
assert a['order'] == ode_order(eq, f(x))
assert a['best'] == Eq(f(x), C1/x)
assert dsolve(eq, hint='best') == Eq(f(x), C1/x)
assert a['default'] == 'separable'
assert a['best_hint'] == 'separable'
assert not a['1st_exact'].has(Integral)
assert not a['separable'].has(Integral)
assert not a['1st_homogeneous_coeff_best'].has(Integral)
assert not a['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral)
assert not a['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral)
assert not a['1st_linear'].has(Integral)
assert a['1st_linear_Integral'].has(Integral)
assert a['1st_exact_Integral'].has(Integral)
assert a['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral)
assert a['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral)
assert a['separable_Integral'].has(Integral)
assert sorted(b.keys()) == keys
assert b['order'] == ode_order(eq, f(x))
assert b['best'] == Eq(f(x), C1/x)
assert dsolve(eq, hint='best', simplify=False) == Eq(f(x), C1/x)
assert b['default'] == 'separable'
assert b['best_hint'] == '1st_linear'
assert a['separable'] != b['separable']
assert a['1st_homogeneous_coeff_subs_dep_div_indep'] != \
b['1st_homogeneous_coeff_subs_dep_div_indep']
assert a['1st_homogeneous_coeff_subs_indep_div_dep'] != \
b['1st_homogeneous_coeff_subs_indep_div_dep']
assert not b['1st_exact'].has(Integral)
assert not b['separable'].has(Integral)
assert not b['1st_homogeneous_coeff_best'].has(Integral)
assert not b['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral)
assert not b['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral)
assert not b['1st_linear'].has(Integral)
assert b['1st_linear_Integral'].has(Integral)
assert b['1st_exact_Integral'].has(Integral)
assert b['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral)
assert b['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral)
assert b['separable_Integral'].has(Integral)
assert sorted(c.keys()) == Integral_keys
raises(ValueError, lambda: dsolve(eq, hint='notarealhint'))
raises(ValueError, lambda: dsolve(eq, hint='Liouville'))
assert dsolve(f(x).diff(x) - 1/f(x)**2, hint='all')['best'] == \
dsolve(f(x).diff(x) - 1/f(x)**2, hint='best')
assert dsolve(f(x) + f(x).diff(x) + sin(x).diff(x) + 1, f(x),
hint="1st_linear_Integral") == \
Eq(f(x), (C1 + Integral((-sin(x).diff(x) - 1)*
exp(Integral(1, x)), x))*exp(-Integral(1, x)))
def test_classify_ode():
assert classify_ode(f(x).diff(x, 2), f(x)) == \
('nth_algebraic',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'Liouville',
'2nd_power_series_ordinary',
'nth_algebraic_Integral',
'Liouville_Integral',
)
assert classify_ode(f(x), f(x)) == ()
assert classify_ode(Eq(f(x).diff(x), 0), f(x)) == (
'nth_algebraic',
'separable',
'1st_linear', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral',
'separable_Integral',
'1st_linear_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
assert classify_ode(f(x).diff(x)**2, f(x)) == (
'nth_algebraic',
'lie_group',
'nth_algebraic_Integral')
# issue 4749: f(x) should be cleared from highest derivative before classifying
a = classify_ode(Eq(f(x).diff(x) + f(x), x), f(x))
b = classify_ode(f(x).diff(x)*f(x) + f(x)*f(x) - x*f(x), f(x))
c = classify_ode(f(x).diff(x)/f(x) + f(x)/f(x) - x/f(x), f(x))
assert a == ('1st_linear',
'Bernoulli',
'almost_linear',
'1st_power_series', "lie_group",
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'almost_linear_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert b == c != ()
assert classify_ode(
2*x*f(x)*f(x).diff(x) + (1 + x)*f(x)**2 - exp(x), f(x)
) == ('Bernoulli', 'almost_linear', 'lie_group',
'Bernoulli_Integral', 'almost_linear_Integral')
assert 'Riccati_special_minus2' in \
classify_ode(2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), f(x))
raises(ValueError, lambda: classify_ode(x + f(x, y).diff(x).diff(
y), f(x, y)))
# issue 5176
k = Symbol('k')
assert classify_ode(f(x).diff(x)/(k*f(x) + k*x*f(x)) + 2*f(x)/(k*f(x) +
k*x*f(x)) + x*f(x).diff(x)/(k*f(x) + k*x*f(x)) + z, f(x)) == \
('separable', '1st_exact', '1st_power_series', 'lie_group',
'separable_Integral', '1st_exact_Integral')
# preprocessing
ans = ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters',
'nth_algebraic_Integral',
'separable_Integral', '1st_exact_Integral',
'1st_linear_Integral',
'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral')
# w/o f(x) given
assert classify_ode(diff(f(x) + x, x) + diff(f(x), x)) == ans
# w/ f(x) and prep=True
assert classify_ode(diff(f(x) + x, x) + diff(f(x), x), f(x),
prep=True) == ans
assert classify_ode(Eq(2*x**3*f(x).diff(x), 0), f(x)) == \
('nth_algebraic', 'separable', '1st_linear', '1st_power_series',
'lie_group', 'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral', 'separable_Integral',
'1st_linear_Integral')
assert classify_ode(Eq(2*f(x)**3*f(x).diff(x), 0), f(x)) == \
('nth_algebraic', 'separable', '1st_power_series', 'lie_group',
'nth_algebraic_Integral', 'separable_Integral')
# test issue 13864
assert classify_ode(Eq(diff(f(x), x) - f(x)**x, 0), f(x)) == \
('1st_power_series', 'lie_group')
assert isinstance(classify_ode(Eq(f(x), 5), f(x), dict=True), dict)
def test_classify_ode_ics():
# Dummy
eq = f(x).diff(x, x) - f(x)
# Not f(0) or f'(0)
ics = {x: 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
############################
# f(0) type (AppliedUndef) #
############################
# Wrong function
ics = {g(0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(0, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(0): f(1)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(0): 1}
classify_ode(eq, f(x), ics=ics)
#####################
# f'(0) type (Subs) #
#####################
# Wrong function
ics = {g(x).diff(x).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(y).diff(y).subs(y, x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Wrong variable
ics = {f(y).diff(y).subs(y, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(x, y).diff(x).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Derivative wrt wrong vars
ics = {Derivative(f(x), x, y).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(x).diff(x).subs(x, 0): f(0)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(x).diff(x).subs(x, 0): 1}
classify_ode(eq, f(x), ics=ics)
###########################
# f'(y) type (Derivative) #
###########################
# Wrong function
ics = {g(x).diff(x).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(y).diff(y).subs(y, x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(x, y).diff(x).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Derivative wrt wrong vars
ics = {Derivative(f(x), x, z).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(x).diff(x).subs(x, y): f(0)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(x).diff(x).subs(x, y): 1}
classify_ode(eq, f(x), ics=ics)
def test_classify_sysode():
# Here x is assumed to be x(t) and y as y(t) for simplicity.
# Similarly diff(x,t) and diff(y,y) is assumed to be x1 and y1 respectively.
k, l, m, n = symbols('k, l, m, n', Integer=True)
k1, k2, k3, l1, l2, l3, m1, m2, m3 = symbols('k1, k2, k3, l1, l2, l3, m1, m2, m3', Integer=True)
P, Q, R, p, q, r = symbols('P, Q, R, p, q, r', cls=Function)
P1, P2, P3, Q1, Q2, R1, R2 = symbols('P1, P2, P3, Q1, Q2, R1, R2', cls=Function)
x, y, z = symbols('x, y, z', cls=Function)
t = symbols('t')
x1 = diff(x(t),t) ; y1 = diff(y(t),t) ; z1 = diff(z(t),t)
x2 = diff(x(t),t,t) ; y2 = diff(y(t),t,t) ; z2 = diff(z(t),t,t)
eq1 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol1 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -5*t, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): -5*t, (1, x(t), 0): -2, (0, y(t), 1): 0, (0, y(t), 0): -2, (1, y(t), 1): 1}, \
'type_of_equation': 'type3', 'func': [x(t), y(t)], 'is_linear': True, 'eq': [-5*t*x(t) - 2*y(t) + \
Derivative(x(t), t), -5*t*y(t) - 2*x(t) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq1) == sol1
eq2 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t)))
sol2 = {'order': {y(t): 2, x(t): 2}, 'type_of_equation': 'type3', 'is_linear': True, 'eq': \
[-k*x(t) + l*Derivative(y(t), t) + Derivative(x(t), t, t), -k*y(t) - l*Derivative(x(t), t) + \
Derivative(y(t), t, t)], 'no_of_equation': 2, 'func_coeff': {(0, y(t), 0): 0, (0, x(t), 2): 1, \
(1, y(t), 1): 0, (1, y(t), 2): 1, (1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -k, (1, x(t), 1): \
-l, (0, x(t), 1): 0, (0, y(t), 1): l, (1, x(t), 0): 0, (1, y(t), 0): -k}, 'func': [x(t), y(t)]}
assert classify_sysode(eq2) == sol2
eq3 = (Eq(x2+4*x1+3*y1+9*x(t)+7*y(t), 11*exp(I*t)), Eq(y2+5*x1+8*y1+3*x(t)+12*y(t), 2*exp(I*t)))
sol3 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): 9, \
(1, x(t), 1): 5, (0, x(t), 1): 4, (0, y(t), 1): 3, (1, x(t), 0): 3, (1, y(t), 0): 12, (0, y(t), 0): 7, \
(0, x(t), 2): 1, (1, y(t), 2): 1, (1, y(t), 1): 8}, 'type_of_equation': 'type4', 'func': [x(t), y(t)], \
'is_linear': True, 'eq': [9*x(t) + 7*y(t) - 11*exp(I*t) + 4*Derivative(x(t), t) + 3*Derivative(y(t), t) + \
Derivative(x(t), t, t), 3*x(t) + 12*y(t) - 2*exp(I*t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + \
Derivative(y(t), t, t)], 'order': {y(t): 2, x(t): 2}}
assert classify_sysode(eq3) == sol3
eq4 = (Eq((4*t**2 + 7*t + 1)**2*x2, 5*x(t) + 35*y(t)), Eq((4*t**2 + 7*t + 1)**2*y2, x(t) + 9*y(t)))
sol4 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -5, \
(1, x(t), 1): 0, (0, x(t), 1): 0, (0, y(t), 1): 0, (1, x(t), 0): -1, (1, y(t), 0): -9, (0, y(t), 0): -35, \
(0, x(t), 2): 16*t**4 + 56*t**3 + 57*t**2 + 14*t + 1, (1, y(t), 2): 16*t**4 + 56*t**3 + 57*t**2 + 14*t + 1, \
(1, y(t), 1): 0}, 'type_of_equation': 'type10', 'func': [x(t), y(t)], 'is_linear': True, \
'eq': [(4*t**2 + 7*t + 1)**2*Derivative(x(t), t, t) - 5*x(t) - 35*y(t), (4*t**2 + 7*t + 1)**2*Derivative(y(t), t, t)\
- x(t) - 9*y(t)], 'order': {y(t): 2, x(t): 2}}
assert classify_sysode(eq4) == sol4
eq5 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol5 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -1, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): -5, \
(1, x(t), 0): -2, (0, y(t), 1): 0, (0, y(t), 0): -1, (1, y(t), 1): 1}, 'type_of_equation': 'type2', \
'func': [x(t), y(t)], 'is_linear': True, 'eq': [-x(t) - y(t) + Derivative(x(t), t) - 9, -2*x(t) - 5*y(t) + \
Derivative(y(t), t) - 23], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq5) == sol5
eq6 = (Eq(x1, exp(k*x(t))*P(x(t),y(t))), Eq(y1,r(y(t))*P(x(t),y(t))))
sol6 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': \
[x(t), y(t)], 'is_linear': False, 'eq': [-P(x(t), y(t))*exp(k*x(t)) + Derivative(x(t), t), -P(x(t), \
y(t))*r(y(t)) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq6) == sol6
eq7 = (Eq(x1, x(t)**2+y(t)/x(t)), Eq(y1, x(t)/y(t)))
sol7 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): -1/y(t), (0, y(t), 1): 0, (0, y(t), 0): -1/x(t), (1, y(t), 1): 1}, 'type_of_equation': 'type3', \
'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)**2 + Derivative(x(t), t) - y(t)/x(t), -x(t)/y(t) + \
Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq7) == sol7
eq8 = (Eq(x1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)), Eq(y1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)))
sol8 = {'func': [x(t), y(t)], 'is_linear': False, 'type_of_equation': 'type4', 'eq': \
[-P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + Derivative(x(t), t), -P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + \
Derivative(y(t), t)], 'func_coeff': {(0, y(t), 1): 0, (1, y(t), 1): 1, (1, x(t), 1): 0, (0, y(t), 0): 0, \
(1, x(t), 0): 0, (0, x(t), 0): 0, (1, y(t), 0): 0, (0, x(t), 1): 1}, 'order': {y(t): 1, x(t): 1}, 'no_of_equation': 2}
assert classify_sysode(eq8) == sol8
eq9 = (Eq(x1,3*y(t)-11*z(t)),Eq(y1,7*z(t)-3*x(t)),Eq(z1,11*x(t)-7*y(t)))
sol9 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): 0, (2, y(t), 1): 0, (2, z(t), 1): 1, \
(0, x(t), 0): 0, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): 7, (0, x(t), 1): 1, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): 3, (0, z(t), 0): 11, (0, y(t), 0): -3, (1, z(t), 0): -7, (0, z(t), 1): 0, \
(2, x(t), 0): -11, (2, z(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': [x(t), y(t), z(t)], \
'is_linear': True, 'eq': [-3*y(t) + 11*z(t) + Derivative(x(t), t), 3*x(t) - 7*z(t) + Derivative(y(t), t), \
-11*x(t) + 7*y(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq9) == sol9
eq10 = (x2 + log(t)*(t*x1 - x(t)) + exp(t)*(t*y1 - y(t)), y2 + (t**2)*(t*x1 - x(t)) + (t)*(t*y1 - y(t)))
sol10 = {'no_of_equation': 2, 'func_coeff': {(1, x(t), 2): 0, (0, y(t), 2): 0, (0, x(t), 0): -log(t), \
(1, x(t), 1): t**3, (0, x(t), 1): t*log(t), (0, y(t), 1): t*exp(t), (1, x(t), 0): -t**2, (1, y(t), 0): -t, \
(0, y(t), 0): -exp(t), (0, x(t), 2): 1, (1, y(t), 2): 1, (1, y(t), 1): t**2}, 'type_of_equation': 'type11', \
'func': [x(t), y(t)], 'is_linear': True, 'eq': [(t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - \
y(t))*exp(t) + Derivative(x(t), t, t), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) \
+ Derivative(y(t), t, t)], 'order': {y(t): 2, x(t): 2}}
assert classify_sysode(eq10) == sol10
eq11 = (Eq(x1,x(t)*y(t)**3), Eq(y1,y(t)**5))
sol11 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)**3, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': \
'type1', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)**3 + Derivative(x(t), t), \
-y(t)**5 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq11) == sol11
eq12 = (Eq(x1, y(t)), Eq(y1, x(t)))
sol12 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): -1, (0, y(t), 1): 0, (0, y(t), 0): -1, (1, y(t), 1): 1}, 'type_of_equation': 'type1', 'func': \
[x(t), y(t)], 'is_linear': True, 'eq': [-y(t) + Derivative(x(t), t), -x(t) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq12) == sol12
eq13 = (Eq(x1,x(t)*y(t)*sin(t)**2), Eq(y1,y(t)**2*sin(t)**2))
sol13 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)*sin(t)**2, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): -x(t)*sin(t)**2, (1, y(t), 1): 1}, \
'type_of_equation': 'type4', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)*sin(t)**2 + \
Derivative(x(t), t), -y(t)**2*sin(t)**2 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq13) == sol13
eq14 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t)+3*y(t)), Eq(z1, 5*x(t)+7*y(t)+9*z(t)))
sol14 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): -3, (2, y(t), 1): 0, (2, z(t), 1): 1, \
(0, x(t), 0): -21, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): -7, (0, x(t), 1): 1, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): -17, (0, z(t), 0): 0, (0, y(t), 0): 0, (1, z(t), 0): 0, (0, z(t), 1): 0, \
(2, x(t), 0): -5, (2, z(t), 0): -9, (1, y(t), 1): 1}, 'type_of_equation': 'type1', 'func': [x(t), y(t), z(t)], \
'is_linear': True, 'eq': [-21*x(t) + Derivative(x(t), t), -17*x(t) - 3*y(t) + Derivative(y(t), t), -5*x(t) - \
7*y(t) - 9*z(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq14) == sol14
eq15 = (Eq(x1,4*x(t)+5*y(t)+2*z(t)),Eq(y1,x(t)+13*y(t)+9*z(t)),Eq(z1,32*x(t)+41*y(t)+11*z(t)))
sol15 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): -13, (2, y(t), 1): 0, (2, z(t), 1): 1, \
(0, x(t), 0): -4, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): -41, (0, x(t), 1): 1, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): -1, (0, z(t), 0): -2, (0, y(t), 0): -5, (1, z(t), 0): -9, (0, z(t), 1): 0, \
(2, x(t), 0): -32, (2, z(t), 0): -11, (1, y(t), 1): 1}, 'type_of_equation': 'type6', 'func': \
[x(t), y(t), z(t)], 'is_linear': True, 'eq': [-4*x(t) - 5*y(t) - 2*z(t) + Derivative(x(t), t), -x(t) - 13*y(t) - \
9*z(t) + Derivative(y(t), t), -32*x(t) - 41*y(t) - 11*z(t) + Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq15) == sol15
eq16 = (Eq(3*x1,4*5*(y(t)-z(t))),Eq(4*y1,3*5*(z(t)-x(t))),Eq(5*z1,3*4*(x(t)-y(t))))
sol16 = {'no_of_equation': 3, 'func_coeff': {(1, y(t), 0): 0, (2, y(t), 1): 0, (2, z(t), 1): 5, \
(0, x(t), 0): 0, (2, x(t), 1): 0, (1, x(t), 1): 0, (2, y(t), 0): 12, (0, x(t), 1): 3, (1, z(t), 1): 0, \
(0, y(t), 1): 0, (1, x(t), 0): 15, (0, z(t), 0): 20, (0, y(t), 0): -20, (1, z(t), 0): -15, (0, z(t), 1): 0, \
(2, x(t), 0): -12, (2, z(t), 0): 0, (1, y(t), 1): 4}, 'type_of_equation': 'type3', 'func': [x(t), y(t), z(t)], \
'is_linear': True, 'eq': [-20*y(t) + 20*z(t) + 3*Derivative(x(t), t), 15*x(t) - 15*z(t) + 4*Derivative(y(t), t), \
-12*x(t) + 12*y(t) + 5*Derivative(z(t), t)], 'order': {z(t): 1, y(t): 1, x(t): 1}}
assert classify_sysode(eq16) == sol16
# issue 8193: funcs parameter for classify_sysode has to actually work
assert classify_sysode(eq1, funcs=[x(t), y(t)]) == sol1
def test_solve_ics():
# Basic tests that things work from dsolve.
assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(0): 1}) == Eq(f(x), exp(x))
assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), exp(x))
assert dsolve(f(x).diff(x, x) + f(x), f(x), ics={f(0): 1,
f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), sin(x) + cos(x))
assert dsolve([f(x).diff(x) - f(x) + g(x), g(x).diff(x) - g(x) - f(x)],
[f(x), g(x)], ics={f(0): 1, g(0): 0}) == [Eq(f(x), exp(x)*cos(x)),
Eq(g(x), exp(x)*sin(x))]
# Test cases where dsolve returns two solutions.
eq = (x**2*f(x)**2 - x).diff(x)
assert dsolve(eq, f(x), ics={f(1): 0}) == [Eq(f(x),
-sqrt(x - 1)/x), Eq(f(x), sqrt(x - 1)/x)]
assert dsolve(eq, f(x), ics={f(x).diff(x).subs(x, 1): 0}) == [Eq(f(x),
-sqrt(x - S(1)/2)/x), Eq(f(x), sqrt(x - S(1)/2)/x)]
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
assert dsolve(eq, f(x),
ics={f(0):1}, hint='1st_exact', simplify=False) == Eq(x*cos(f(x)) + f(x)**3/3, S(1)/3)
assert dsolve(eq, f(x),
ics={f(0):1}, hint='1st_exact', simplify=True) == Eq(x*cos(f(x)) + f(x)**3/3, S(1)/3)
assert solve_ics([Eq(f(x), C1*exp(x))], [f(x)], [C1], {f(0): 1}) == {C1: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2],
{f(0): 1, f(pi/2): 1}) == {C1: 1, C2: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2],
{f(0): 1, f(x).diff(x).subs(x, 0): 1}) == {C1: 1, C2: 1}
# XXX: Ought to be ValueError
raises(NotImplementedError, lambda: solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi): 1}))
# XXX: Ought to be ValueError
raises(ValueError, lambda: solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1}))
# Degenerate case. f'(0) is identically 0.
raises(ValueError, lambda: solve_ics([Eq(f(x), sqrt(C1 - x**2))], [f(x)], [C1], {f(x).diff(x).subs(x, 0): 0}))
EI, q, L = symbols('EI q L')
# eq = Eq(EI*diff(f(x), x, 4), q)
sols = [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3 + q*x**4/(24*EI))]
funcs = [f(x)]
constants = [C1, C2, C3, C4]
# Test both cases, Derivative (the default from f(x).diff(x).subs(x, L)),
# and Subs
ics1 = {f(0): 0,
f(x).diff(x).subs(x, 0): 0,
f(L).diff(L, 2): 0,
f(L).diff(L, 3): 0}
ics2 = {f(0): 0,
f(x).diff(x).subs(x, 0): 0,
Subs(f(x).diff(x, 2), x, L): 0,
Subs(f(x).diff(x, 3), x, L): 0}
solved_constants1 = solve_ics(sols, funcs, constants, ics1)
solved_constants2 = solve_ics(sols, funcs, constants, ics2)
assert solved_constants1 == solved_constants2 == {
C1: 0,
C2: 0,
C3: L**2*q/(4*EI),
C4: -L*q/(6*EI)}
def test_ode_order():
f = Function('f')
g = Function('g')
x = Symbol('x')
assert ode_order(3*x*exp(f(x)), f(x)) == 0
assert ode_order(x*diff(f(x), x) + 3*x*f(x) - sin(x)/x, f(x)) == 1
assert ode_order(x**2*f(x).diff(x, x) + x*diff(f(x), x) - f(x), f(x)) == 2
assert ode_order(diff(x*exp(f(x)), x, x), f(x)) == 2
assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), f(x)) == 3
assert ode_order(diff(f(x), x, x), g(x)) == 0
assert ode_order(diff(f(x), x, x)*diff(g(x), x), f(x)) == 2
assert ode_order(diff(f(x), x, x)*diff(g(x), x), g(x)) == 1
assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), g(x)) == 0
# issue 5835: ode_order has to also work for unevaluated derivatives
# (ie, without using doit()).
assert ode_order(Derivative(x*f(x), x), f(x)) == 1
assert ode_order(x*sin(Derivative(x*f(x)**2, x, x)), f(x)) == 2
assert ode_order(Derivative(x*Derivative(x*exp(f(x)), x, x), x), g(x)) == 0
assert ode_order(Derivative(f(x), x, x), g(x)) == 0
assert ode_order(Derivative(x*exp(f(x)), x, x), f(x)) == 2
assert ode_order(Derivative(f(x), x, x)*Derivative(g(x), x), g(x)) == 1
assert ode_order(Derivative(x*Derivative(f(x), x, x), x), f(x)) == 3
assert ode_order(
x*sin(Derivative(x*Derivative(f(x), x)**2, x, x)), f(x)) == 3
# In all tests below, checkodesol has the order option set to prevent
# superfluous calls to ode_order(), and the solve_for_func flag set to False
# because dsolve() already tries to solve for the function, unless the
# simplify=False option is set.
def test_old_ode_tests():
# These are simple tests from the old ode module
eq1 = Eq(f(x).diff(x), 0)
eq2 = Eq(3*f(x).diff(x) - 5, 0)
eq3 = Eq(3*f(x).diff(x), 5)
eq4 = Eq(9*f(x).diff(x, x) + f(x), 0)
eq5 = Eq(9*f(x).diff(x, x), f(x))
# Type: a(x)f'(x)+b(x)*f(x)+c(x)=0
eq6 = Eq(x**2*f(x).diff(x) + 3*x*f(x) - sin(x)/x, 0)
eq7 = Eq(f(x).diff(x, x) - 3*diff(f(x), x) + 2*f(x), 0)
# Type: 2nd order, constant coefficients (two real different roots)
eq8 = Eq(f(x).diff(x, x) - 4*diff(f(x), x) + 4*f(x), 0)
# Type: 2nd order, constant coefficients (two real equal roots)
eq9 = Eq(f(x).diff(x, x) + 2*diff(f(x), x) + 3*f(x), 0)
# Type: 2nd order, constant coefficients (two complex roots)
eq10 = Eq(3*f(x).diff(x) - 1, 0)
eq11 = Eq(x*f(x).diff(x) - 1, 0)
sol1 = Eq(f(x), C1)
sol2 = Eq(f(x), C1 + 5*x/3)
sol3 = Eq(f(x), C1 + 5*x/3)
sol4 = Eq(f(x), C1*sin(x/3) + C2*cos(x/3))
sol5 = Eq(f(x), C1*exp(-x/3) + C2*exp(x/3))
sol6 = Eq(f(x), (C1 - cos(x))/x**3)
sol7 = Eq(f(x), (C1 + C2*exp(x))*exp(x))
sol8 = Eq(f(x), (C1 + C2*x)*exp(2*x))
sol9 = Eq(f(x), (C1*sin(x*sqrt(2)) + C2*cos(x*sqrt(2)))*exp(-x))
sol10 = Eq(f(x), C1 + x/3)
sol11 = Eq(f(x), C1 + log(x))
assert dsolve(eq1) == sol1
assert dsolve(eq1.lhs) == sol1
assert dsolve(eq2) == sol2
assert dsolve(eq3) == sol3
assert dsolve(eq4) == sol4
assert dsolve(eq5) == sol5
assert dsolve(eq6) == sol6
assert dsolve(eq7) == sol7
assert dsolve(eq8) == sol8
assert dsolve(eq9) == sol9
assert dsolve(eq10) == sol10
assert dsolve(eq11) == sol11
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0]
@slow
def test_1st_linear():
# Type: first order linear form f'(x)+p(x)f(x)=q(x)
eq = Eq(f(x).diff(x) + x*f(x), x**2)
sol = Eq(f(x), (C1 + x*exp(x**2/2)
- sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)/2)*exp(-x**2/2))
assert dsolve(eq, hint='1st_linear') == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_Bernoulli():
# Type: Bernoulli, f'(x) + p(x)*f(x) == q(x)*f(x)**n
eq = Eq(x*f(x).diff(x) + f(x) - f(x)**2, 0)
sol = dsolve(eq, f(x), hint='Bernoulli')
assert sol == Eq(f(x), 1/(x*(C1 + 1/x)))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_Riccati_special_minus2():
# Type: Riccati special alpha = -2, a*dy/dx + b*y**2 + c*y/x +d/x**2
eq = 2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2)
sol = dsolve(eq, f(x), hint='Riccati_special_minus2')
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_1st_exact1():
# Type: Exact differential equation, p(x,f) + q(x,f)*f' == 0,
# where dp/df == dq/dx
eq1 = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x)
eq2 = (2*x*f(x) + 1)/f(x) + (f(x) - x)/f(x)**2*f(x).diff(x)
eq3 = 2*x + f(x)*cos(x) + (2*f(x) + sin(x) - sin(f(x)))*f(x).diff(x)
eq4 = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
eq5 = 2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x)
sol1 = [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
sol2 = Eq(f(x), exp(C1 - x**2 + LambertW(-x*exp(-C1 + x**2))))
sol2b = Eq(log(f(x)) + x/f(x) + x**2, C1)
sol3 = Eq(f(x)*sin(x) + cos(f(x)) + x**2 + f(x)**2, C1)
sol4 = Eq(x*cos(f(x)) + f(x)**3/3, C1)
sol5 = Eq(x**2*f(x) + f(x)**3/3, C1)
assert dsolve(eq1, f(x), hint='1st_exact') == sol1
assert dsolve(eq2, f(x), hint='1st_exact') == sol2
assert dsolve(eq3, f(x), hint='1st_exact') == sol3
assert dsolve(eq4, hint='1st_exact') == sol4
assert dsolve(eq5, hint='1st_exact', simplify=False) == sol5
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
# issue 5080 blocks the testing of this solution
#assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2b, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0]
@slow
@XFAIL
def test_1st_exact2():
"""
This is an exact equation that fails under the exact engine. It is caught
by first order homogeneous albeit with a much contorted solution. The
exact engine fails because of a poorly simplified integral of q(0,y)dy,
where q is the function multiplying f'. The solutions should be
Eq(sqrt(x**2+f(x)**2)**3+y**3, C1). The equation below is
equivalent, but it is so complex that checkodesol fails, and takes a long
time to do so.
"""
if ON_TRAVIS:
skip("Too slow for travis.")
eq = (x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) -
sqrt(x**2 + f(x)**2)))*f(x).diff(x))
sol = dsolve(eq)
assert sol == Eq(log(x),
C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x +
27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)*
log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) +
9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) +
9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_separable1():
# test_separable1-5 are from Ordinary Differential Equations, Tenenbaum and
# Pollard, pg. 55
eq1 = f(x).diff(x) - f(x)
eq2 = x*f(x).diff(x) - f(x)
eq3 = f(x).diff(x) + sin(x)
eq4 = f(x)**2 + 1 - (x**2 + 1)*f(x).diff(x)
eq5 = f(x).diff(x)/tan(x) - f(x) - 2
eq6 = f(x).diff(x) * (1 - sin(f(x))) - 1
sol1 = Eq(f(x), C1*exp(x))
sol2 = Eq(f(x), C1*x)
sol3 = Eq(f(x), C1 + cos(x))
sol4 = Eq(atan(f(x)), C1 + atan(x))
sol5 = Eq(f(x), C1/cos(x) - 2)
sol6 = Eq(-x + f(x) + cos(f(x)), C1)
assert dsolve(eq1, hint='separable') == sol1
assert dsolve(eq2, hint='separable') == sol2
assert dsolve(eq3, hint='separable') == sol3
assert dsolve(eq4, hint='separable', simplify=False) == sol4
assert dsolve(eq5, hint='separable') == sol5
assert dsolve(eq6, hint='separable') == sol6
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
def test_separable2():
a = Symbol('a')
eq6 = f(x)*x**2*f(x).diff(x) - f(x)**3 - 2*x**2*f(x).diff(x)
eq7 = f(x)**2 - 1 - (2*f(x) + x*f(x))*f(x).diff(x)
eq8 = x*log(x)*f(x).diff(x) + sqrt(1 + f(x)**2)
eq9 = exp(x + 1)*tan(f(x)) + cos(f(x))*f(x).diff(x)
eq10 = (x*cos(f(x)) + x**2*sin(f(x))*f(x).diff(x) -
a**2*sin(f(x))*f(x).diff(x))
sol6 = Eq(Integral((u - 2)/u**3, (u, f(x))),
C1 + Integral(x**(-2), x))
sol7 = Eq(-log(-1 + f(x)**2)/2, C1 - log(2 + x))
sol8 = Eq(asinh(f(x)), C1 - log(log(x)))
# integrate cannot handle the integral on the lhs (cos/tan)
sol9 = Eq(Integral(cos(u)/tan(u), (u, f(x))),
C1 + Integral(-exp(1)*exp(x), x))
sol10 = Eq(-log(cos(f(x))), C1 - log(- a**2 + x**2)/2)
assert dsolve(eq6, hint='separable_Integral').dummy_eq(sol6)
assert dsolve(eq7, hint='separable', simplify=False) == sol7
assert dsolve(eq8, hint='separable', simplify=False) == sol8
assert dsolve(eq9, hint='separable_Integral').dummy_eq(sol9)
assert dsolve(eq10, hint='separable', simplify=False) == sol10
assert checkodesol(eq7, sol7, order=1, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0]
def test_separable3():
eq11 = f(x).diff(x) - f(x)*tan(x)
eq12 = (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x))
eq13 = f(x).diff(x) - f(x)*log(f(x))/tan(x)
sol11 = Eq(f(x), C1/cos(x))
sol12 = Eq(log(sin(f(x))), C1 + 2*x + 2*log(x - 1))
sol13 = Eq(log(log(f(x))), C1 + log(sin(x)))
assert dsolve(eq11, hint='separable') == sol11
assert dsolve(eq12, hint='separable', simplify=False) == sol12
assert dsolve(eq13, hint='separable', simplify=False) == sol13
assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=1, solve_for_func=False)[0]
def test_separable4():
# This has a slow integral (1/((1 + y**2)*atan(y))), so we isolate it.
eq14 = x*f(x).diff(x) + (1 + f(x)**2)*atan(f(x))
sol14 = Eq(log(atan(f(x))), C1 - log(x))
assert dsolve(eq14, hint='separable', simplify=False) == sol14
assert checkodesol(eq14, sol14, order=1, solve_for_func=False)[0]
def test_separable5():
eq15 = f(x).diff(x) + x*(f(x) + 1)
eq16 = exp(f(x)**2)*(x**2 + 2*x + 1) + (x*f(x) + f(x))*f(x).diff(x)
eq17 = f(x).diff(x) + f(x)
eq18 = sin(x)*cos(2*f(x)) + cos(x)*sin(2*f(x))*f(x).diff(x)
eq19 = (1 - x)*f(x).diff(x) - x*(f(x) + 1)
eq20 = f(x)*diff(f(x), x) + x - 3*x*f(x)**2
eq21 = f(x).diff(x) - exp(x + f(x))
sol15 = Eq(f(x), -1 + C1*exp(-x**2/2))
sol16 = Eq(-exp(-f(x)**2)/2, C1 - x - x**2/2)
sol17 = Eq(f(x), C1*exp(-x))
sol18 = Eq(-log(cos(2*f(x)))/2, C1 + log(cos(x)))
sol19 = Eq(f(x), (C1*exp(-x) - x + 1)/(x - 1))
sol20 = Eq(log(-1 + 3*f(x)**2)/6, C1 + x**2/2)
sol21 = Eq(-exp(-f(x)), C1 + exp(x))
assert dsolve(eq15, hint='separable') == sol15
assert dsolve(eq16, hint='separable', simplify=False) == sol16
assert dsolve(eq17, hint='separable') == sol17
assert dsolve(eq18, hint='separable', simplify=False) == sol18
assert dsolve(eq19, hint='separable') == sol19
assert dsolve(eq20, hint='separable', simplify=False) == sol20
assert dsolve(eq21, hint='separable', simplify=False) == sol21
assert checkodesol(eq15, sol15, order=1, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=1, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=1, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=1, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=1, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=1, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=1, solve_for_func=False)[0]
def test_separable_1_5_checkodesol():
eq12 = (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x))
sol12 = Eq(-log(1 - cos(f(x))**2)/2, C1 - 2*x - 2*log(1 - x))
assert checkodesol(eq12, sol12, order=1, solve_for_func=False)[0]
def test_homogeneous_order():
assert homogeneous_order(exp(y/x) + tan(y/x), x, y) == 0
assert homogeneous_order(x**2 + sin(x)*cos(y), x, y) is None
assert homogeneous_order(x - y - x*sin(y/x), x, y) == 1
assert homogeneous_order((x*y + sqrt(x**4 + y**4) + x**2*(log(x) - log(y)))/
(pi*x**Rational(2, 3)*sqrt(y)**3), x, y) == Rational(-1, 6)
assert homogeneous_order(y/x*cos(y/x) - x/y*sin(y/x) + cos(y/x), x, y) == 0
assert homogeneous_order(f(x), x, f(x)) == 1
assert homogeneous_order(f(x)**2, x, f(x)) == 2
assert homogeneous_order(x*y*z, x, y) == 2
assert homogeneous_order(x*y*z, x, y, z) == 3
assert homogeneous_order(x**2*f(x)/sqrt(x**2 + f(x)**2), f(x)) is None
assert homogeneous_order(f(x, y)**2, x, f(x, y), y) == 2
assert homogeneous_order(f(x, y)**2, x, f(x), y) is None
assert homogeneous_order(f(x, y)**2, x, f(x, y)) is None
assert homogeneous_order(f(y, x)**2, x, y, f(x, y)) is None
assert homogeneous_order(f(y), f(x), x) is None
assert homogeneous_order(-f(x)/x + 1/sin(f(x)/ x), f(x), x) == 0
assert homogeneous_order(log(1/y) + log(x**2), x, y) is None
assert homogeneous_order(log(1/y) + log(x), x, y) == 0
assert homogeneous_order(log(x/y), x, y) == 0
assert homogeneous_order(2*log(1/y) + 2*log(x), x, y) == 0
a = Symbol('a')
assert homogeneous_order(a*log(1/y) + a*log(x), x, y) == 0
assert homogeneous_order(f(x).diff(x), x, y) is None
assert homogeneous_order(-f(x).diff(x) + x, x, y) is None
assert homogeneous_order(O(x), x, y) is None
assert homogeneous_order(x + O(x**2), x, y) is None
assert homogeneous_order(x**pi, x) == pi
assert homogeneous_order(x**x, x) is None
raises(ValueError, lambda: homogeneous_order(x*y))
@slow
def test_1st_homogeneous_coeff_ode():
# Type: First order homogeneous, y'=f(y/x)
eq1 = f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x)
eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x)
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
eq4 = 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x)
eq5 = 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x)
eq6 = x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x)
eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x)
eq8 = x + f(x) - (x - f(x))*f(x).diff(x)
sol1 = Eq(log(x), C1 - log(f(x)*sin(f(x)/x)/x))
sol2 = Eq(log(x), log(C1) + log(cos(f(x)/x) - 1)/2 - log(cos(f(x)/x) + 1)/2)
sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(-C1 + 1)))
sol4 = Eq(log(f(x)), C1 - 2*exp(x/f(x)))
sol5 = Eq(f(x), exp(2*C1 + LambertW(-2*x**4*exp(-4*C1))/2)/x)
sol6 = Eq(log(x),
C1 + exp(-f(x)/x)*sin(f(x)/x)/2 + exp(-f(x)/x)*cos(f(x)/x)/2)
sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1))
sol8 = Eq(log(x), C1 - log(sqrt(1 + f(x)**2/x**2)) + atan(f(x)/x))
assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == \
sol1
# indep_div_dep actually has a simpler solution for eq2,
# but it runs too slow
assert dsolve(eq2, hint='1st_homogeneous_coeff_subs_dep_div_indep',
simplify=False) == sol2
assert dsolve(eq3, hint='1st_homogeneous_coeff_best') == sol3
assert dsolve(eq4, hint='1st_homogeneous_coeff_best') == sol4
assert dsolve(eq5, hint='1st_homogeneous_coeff_best') == sol5
assert dsolve(eq6, hint='1st_homogeneous_coeff_subs_dep_div_indep') == \
sol6
assert dsolve(eq7, hint='1st_homogeneous_coeff_best') == sol7
assert dsolve(eq8, hint='1st_homogeneous_coeff_best') == sol8
# checks are below
@slow
def test_1st_homogeneous_coeff_ode_check134568():
# These are the checkodesols from test_homogeneous_coeff_ode().
eq1 = f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x)
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
eq4 = 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x)
eq5 = 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x)
eq6 = x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x)
eq8 = x + f(x) - (x - f(x))*f(x).diff(x)
sol1 = Eq(f(x)*sin(f(x)/x), C1)
sol4 = Eq(log(C1*f(x)) + 2*exp(x/f(x)), 0)
sol3 = Eq(-f(x)/(1 + log(x/f(x))), C1)
sol5 = Eq(log(C1*x*sqrt(1/x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0)
sol6 = Eq(-exp(-f(x)/x)*sin(f(x)/x)/2 + log(C1*x) -
cos(f(x)/x)*exp(-f(x)/x)/2, 0)
sol8 = Eq(-atan(f(x)/x) + log(C1*x*sqrt(1 + f(x)**2/x**2)), 0)
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=1, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check2():
eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x)
sol2 = Eq(x/tan(f(x)/(2*x)), C1)
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
@XFAIL
def test_1st_homogeneous_coeff_ode_check3():
skip('This is a known issue.')
# checker cannot determine that the following expression is zero:
# (False,
# x*(log(exp(-LambertW(C1*x))) +
# LambertW(C1*x))*exp(-LambertW(C1*x) + 1))
# This is blocked by issue 5080.
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
sol3a = Eq(f(x), x*exp(1 - LambertW(C1*x)))
assert checkodesol(eq3, sol3a, solve_for_func=True)[0]
# Checker can't verify this form either
# (False,
# C1*(log(C1*LambertW(C2*x)/x) + LambertW(C2*x) - 1)*LambertW(C2*x))
# It is because a = W(a)*exp(W(a)), so log(a) == log(W(a)) + W(a) and C2 =
# -E/C1 (which can be verified by solving with simplify=False).
sol3b = Eq(f(x), C1*LambertW(C2*x))
assert checkodesol(eq3, sol3b, solve_for_func=True)[0]
def test_1st_homogeneous_coeff_ode_check7():
eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x)
sol7 = Eq(log(C1*f(x)) + 2*sqrt(1 - x/f(x)), 0)
assert checkodesol(eq7, sol7, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode2():
eq1 = f(x).diff(x) - f(x)/x + 1/sin(f(x)/x)
eq2 = x**2 + f(x)**2 - 2*x*f(x)*f(x).diff(x)
eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
sol1 = [Eq(f(x), x*(-acos(C1 + log(x)) + 2*pi)), Eq(f(x), x*acos(C1 + log(x)))]
sol2 = Eq(log(f(x)), log(C1) + log(x/f(x)) - log(x**2/f(x)**2 - 1))
sol3 = Eq(f(x), log((1/(C1 - log(x)))**x))
# specific hints are applied for speed reasons
assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1
assert dsolve(eq2, hint='1st_homogeneous_coeff_best', simplify=False) == sol2
assert dsolve(eq3, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol3
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
# test for eq3 is in test_1st_homogeneous_coeff_ode2_check3 below
def test_1st_homogeneous_coeff_ode2_check3():
eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
sol3 = Eq(f(x), log(log(C1/x)**(-x)))
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check9():
_u2 = Dummy('u2')
__a = Dummy('a')
eq9 = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x)
sol9 = Eq(-Integral(-1/(-(1 - sqrt(1 - _u2**2))*_u2 + _u2), (_u2, __a,
x/f(x))) + log(C1*f(x)), 0)
assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode3():
# The standard integration engine cannot handle one of the integrals
# involved (see issue 4551). meijerg code comes up with an answer, but in
# unconventional form.
# checkodesol fails for this equation, so its test is in
# test_1st_homogeneous_coeff_ode_check9 above. It has to compare string
# expressions because u2 is a dummy variable.
eq = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x)
sol = Eq(log(f(x)), C1 + Piecewise(
(acosh(f(x)/x), abs(f(x)**2)/x**2 > 1),
(-I*asin(f(x)/x), True)))
assert dsolve(eq, hint='1st_homogeneous_coeff_subs_indep_div_dep') == sol
def test_1st_homogeneous_coeff_corner_case():
eq1 = f(x).diff(x) - f(x)/x
c1 = classify_ode(eq1, f(x))
eq2 = x*f(x).diff(x) - f(x)
c2 = classify_ode(eq2, f(x))
sdi = "1st_homogeneous_coeff_subs_dep_div_indep"
sid = "1st_homogeneous_coeff_subs_indep_div_dep"
assert sid not in c1 and sdi not in c1
assert sid not in c2 and sdi not in c2
@slow
def test_nth_linear_constant_coeff_homogeneous():
# From Exercise 20, in Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 220
a = Symbol('a', positive=True)
k = Symbol('k', real=True)
eq1 = f(x).diff(x, 2) + 2*f(x).diff(x)
eq2 = f(x).diff(x, 2) - 3*f(x).diff(x) + 2*f(x)
eq3 = f(x).diff(x, 2) - f(x)
eq4 = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x)
eq5 = 6*f(x).diff(x, 2) - 11*f(x).diff(x) + 4*f(x)
eq6 = Eq(f(x).diff(x, 2) + 2*f(x).diff(x) - f(x), 0)
eq7 = diff(f(x), x, 3) + diff(f(x), x, 2) - 10*diff(f(x), x) - 6*f(x)
eq8 = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \
4*f(x).diff(x)
eq9 = f(x).diff(x, 4) + 4*f(x).diff(x, 3) + f(x).diff(x, 2) - \
4*f(x).diff(x) - 2*f(x)
eq10 = f(x).diff(x, 4) - a**2*f(x)
eq11 = f(x).diff(x, 2) - 2*k*f(x).diff(x) - 2*f(x)
eq12 = f(x).diff(x, 2) + 4*k*f(x).diff(x) - 12*k**2*f(x)
eq13 = f(x).diff(x, 4)
eq14 = f(x).diff(x, 2) + 4*f(x).diff(x) + 4*f(x)
eq15 = 3*f(x).diff(x, 3) + 5*f(x).diff(x, 2) + f(x).diff(x) - f(x)
eq16 = f(x).diff(x, 3) - 6*f(x).diff(x, 2) + 12*f(x).diff(x) - 8*f(x)
eq17 = f(x).diff(x, 2) - 2*a*f(x).diff(x) + a**2*f(x)
eq18 = f(x).diff(x, 4) + 3*f(x).diff(x, 3)
eq19 = f(x).diff(x, 4) - 2*f(x).diff(x, 2)
eq20 = f(x).diff(x, 4) + 2*f(x).diff(x, 3) - 11*f(x).diff(x, 2) - \
12*f(x).diff(x) + 36*f(x)
eq21 = 36*f(x).diff(x, 4) - 37*f(x).diff(x, 2) + 4*f(x).diff(x) + 5*f(x)
eq22 = f(x).diff(x, 4) - 8*f(x).diff(x, 2) + 16*f(x)
eq23 = f(x).diff(x, 2) - 2*f(x).diff(x) + 5*f(x)
eq24 = f(x).diff(x, 2) - f(x).diff(x) + f(x)
eq25 = f(x).diff(x, 4) + 5*f(x).diff(x, 2) + 6*f(x)
eq26 = f(x).diff(x, 2) - 4*f(x).diff(x) + 20*f(x)
eq27 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + 4*f(x)
eq28 = f(x).diff(x, 3) + 8*f(x)
eq29 = f(x).diff(x, 4) + 4*f(x).diff(x, 2)
eq30 = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x)
eq31 = f(x).diff(x, 4) + f(x).diff(x, 2) + f(x)
eq32 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + f(x)
sol1 = Eq(f(x), C1 + C2*exp(-2*x))
sol2 = Eq(f(x), (C1 + C2*exp(x))*exp(x))
sol3 = Eq(f(x), C1*exp(x) + C2*exp(-x))
sol4 = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))
sol5 = Eq(f(x), C1*exp(x/2) + C2*exp(4*x/3))
sol6 = Eq(f(x), C1*exp(x*(-1 + sqrt(2))) + C2*exp(x*(-sqrt(2) - 1)))
sol7 = Eq(f(x),
C1*exp(3*x) + C2*exp(x*(-2 - sqrt(2))) + C3*exp(x*(-2 + sqrt(2))))
sol8 = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x))
sol9 = Eq(f(x),
C1*exp(x) + C2*exp(-x) + C3*exp(x*(-2 + sqrt(2))) +
C4*exp(x*(-2 - sqrt(2))))
sol10 = Eq(f(x),
C1*sin(x*sqrt(a)) + C2*cos(x*sqrt(a)) + C3*exp(x*sqrt(a)) +
C4*exp(-x*sqrt(a)))
sol11 = Eq(f(x),
C1*exp(x*(k - sqrt(k**2 + 2))) + C2*exp(x*(k + sqrt(k**2 + 2))))
sol12 = Eq(f(x), C1*exp(-6*k*x) + C2*exp(2*k*x))
sol13 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3)
sol14 = Eq(f(x), (C1 + C2*x)*exp(-2*x))
sol15 = Eq(f(x), (C1 + C2*x)*exp(-x) + C3*exp(x/3))
sol16 = Eq(f(x), (C1 + C2*x + C3*x**2)*exp(2*x))
sol17 = Eq(f(x), (C1 + C2*x)*exp(a*x))
sol18 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))
sol19 = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2)))
sol20 = Eq(f(x), (C1 + C2*x)*exp(-3*x) + (C3 + C4*x)*exp(2*x))
sol21 = Eq(f(x), C1*exp(x/2) + C2*exp(-x) + C3*exp(-x/3) + C4*exp(5*x/6))
sol22 = Eq(f(x), (C1 + C2*x)*exp(-2*x) + (C3 + C4*x)*exp(2*x))
sol23 = Eq(f(x), (C1*sin(2*x) + C2*cos(2*x))*exp(x))
sol24 = Eq(f(x), (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(x/2))
sol25 = Eq(f(x),
C1*cos(x*sqrt(3)) + C2*sin(x*sqrt(3)) + C3*sin(x*sqrt(2)) +
C4*cos(x*sqrt(2)))
sol26 = Eq(f(x), (C1*sin(4*x) + C2*cos(4*x))*exp(2*x))
sol27 = Eq(f(x), (C1 + C2*x)*sin(x*sqrt(2)) + (C3 + C4*x)*cos(x*sqrt(2)))
sol28 = Eq(f(x),
(C1*sin(x*sqrt(3)) + C2*cos(x*sqrt(3)))*exp(x) + C3*exp(-2*x))
sol29 = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x)
sol30 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))
sol31 = Eq(f(x), (C1*sin(sqrt(3)*x/2) + C2*cos(sqrt(3)*x/2))/sqrt(exp(x))
+ (C3*sin(sqrt(3)*x/2) + C4*cos(sqrt(3)*x/2))*sqrt(exp(x)))
sol32 = Eq(f(x), C1*sin(x*sqrt(-sqrt(3) + 2)) + C2*sin(x*sqrt(sqrt(3) + 2))
+ C3*cos(x*sqrt(-sqrt(3) + 2)) + C4*cos(x*sqrt(sqrt(3) + 2)))
sol1s = constant_renumber(sol1, 'C', 1, 2)
sol2s = constant_renumber(sol2, 'C', 1, 2)
sol3s = constant_renumber(sol3, 'C', 1, 2)
sol4s = constant_renumber(sol4, 'C', 1, 3)
sol5s = constant_renumber(sol5, 'C', 1, 2)
sol6s = constant_renumber(sol6, 'C', 1, 2)
sol7s = constant_renumber(sol7, 'C', 1, 3)
sol8s = constant_renumber(sol8, 'C', 1, 4)
sol9s = constant_renumber(sol9, 'C', 1, 4)
sol10s = constant_renumber(sol10, 'C', 1, 4)
sol11s = constant_renumber(sol11, 'C', 1, 2)
sol12s = constant_renumber(sol12, 'C', 1, 2)
sol13s = constant_renumber(sol13, 'C', 1, 4)
sol14s = constant_renumber(sol14, 'C', 1, 2)
sol15s = constant_renumber(sol15, 'C', 1, 3)
sol16s = constant_renumber(sol16, 'C', 1, 3)
sol17s = constant_renumber(sol17, 'C', 1, 2)
sol18s = constant_renumber(sol18, 'C', 1, 4)
sol19s = constant_renumber(sol19, 'C', 1, 4)
sol20s = constant_renumber(sol20, 'C', 1, 4)
sol21s = constant_renumber(sol21, 'C', 1, 4)
sol22s = constant_renumber(sol22, 'C', 1, 4)
sol23s = constant_renumber(sol23, 'C', 1, 2)
sol24s = constant_renumber(sol24, 'C', 1, 2)
sol25s = constant_renumber(sol25, 'C', 1, 4)
sol26s = constant_renumber(sol26, 'C', 1, 2)
sol27s = constant_renumber(sol27, 'C', 1, 4)
sol28s = constant_renumber(sol28, 'C', 1, 3)
sol29s = constant_renumber(sol29, 'C', 1, 4)
sol30s = constant_renumber(sol30, 'C', 1, 5)
assert dsolve(eq1) in (sol1, sol1s)
assert dsolve(eq2) in (sol2, sol2s)
assert dsolve(eq3) in (sol3, sol3s)
assert dsolve(eq4) in (sol4, sol4s)
assert dsolve(eq5) in (sol5, sol5s)
assert dsolve(eq6) in (sol6, sol6s)
assert dsolve(eq7) in (sol7, sol7s)
assert dsolve(eq8) in (sol8, sol8s)
assert dsolve(eq9) in (sol9, sol9s)
assert dsolve(eq10) in (sol10, sol10s)
assert dsolve(eq11) in (sol11, sol11s)
assert dsolve(eq12) in (sol12, sol12s)
assert dsolve(eq13) in (sol13, sol13s)
assert dsolve(eq14) in (sol14, sol14s)
assert dsolve(eq15) in (sol15, sol15s)
assert dsolve(eq16) in (sol16, sol16s)
assert dsolve(eq17) in (sol17, sol17s)
assert dsolve(eq18) in (sol18, sol18s)
assert dsolve(eq19) in (sol19, sol19s)
assert dsolve(eq20) in (sol20, sol20s)
assert dsolve(eq21) in (sol21, sol21s)
assert dsolve(eq22) in (sol22, sol22s)
assert dsolve(eq23) in (sol23, sol23s)
assert dsolve(eq24) in (sol24, sol24s)
assert dsolve(eq25) in (sol25, sol25s)
assert dsolve(eq26) in (sol26, sol26s)
assert dsolve(eq27) in (sol27, sol27s)
assert dsolve(eq28) in (sol28, sol28s)
assert dsolve(eq29) in (sol29, sol29s)
assert dsolve(eq30) in (sol30, sol30s)
assert dsolve(eq31) in (sol31,)
assert dsolve(eq32) in (sol32,)
assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=3, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=3, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=4, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=4, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=4, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=2, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=4, solve_for_func=False)[0]
assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0]
assert checkodesol(eq15, sol15, order=3, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=3, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=4, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=4, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=4, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=4, solve_for_func=False)[0]
assert checkodesol(eq22, sol22, order=4, solve_for_func=False)[0]
assert checkodesol(eq23, sol23, order=2, solve_for_func=False)[0]
assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0]
assert checkodesol(eq25, sol25, order=4, solve_for_func=False)[0]
assert checkodesol(eq26, sol26, order=2, solve_for_func=False)[0]
assert checkodesol(eq27, sol27, order=4, solve_for_func=False)[0]
assert checkodesol(eq28, sol28, order=3, solve_for_func=False)[0]
assert checkodesol(eq29, sol29, order=4, solve_for_func=False)[0]
assert checkodesol(eq30, sol30, order=5, solve_for_func=False)[0]
assert checkodesol(eq31, sol31, order=4, solve_for_func=False)[0]
assert checkodesol(eq32, sol32, order=4, solve_for_func=False)[0]
# Issue #15237
eqn = Derivative(x*f(x), x, x, x)
hint = 'nth_linear_constant_coeff_homogeneous'
raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=True))
raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=False))
def test_nth_linear_constant_coeff_homogeneous_rootof():
eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x)
sol = Eq(f(x),
C1*exp(x*rootof(x**5 + 11*x - 2, 0)) +
C2*exp(x*rootof(x**5 + 11*x - 2, 1)) +
C3*exp(x*rootof(x**5 + 11*x - 2, 2)) +
C4*exp(x*rootof(x**5 + 11*x - 2, 3)) +
C5*exp(x*rootof(x**5 + 11*x - 2, 4)))
assert dsolve(eq) == sol
eq = f(x).diff(x, 6) - 6*f(x).diff(x, 5) + 5*f(x).diff(x, 4) + 10*f(x).diff(x) - 50 * f(x)
sol = Eq(f(x),
C1*exp(5*x)
+ C2*exp(x*rootof(x**5 - x**4 + 10, 0))
+ C3*exp(x*rootof(x**5 - x**4 + 10, 1))
+ C4*exp(x*rootof(x**5 - x**4 + 10, 2))
+ C5*exp(x*rootof(x**5 - x**4 + 10, 3))
+ C6*exp(x*rootof(x**5 - x**4 + 10, 4))
)
assert dsolve(eq) == sol
def test_nth_linear_constant_coeff_homogeneous_irrational():
our_hint='nth_linear_constant_coeff_homogeneous'
eq = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(2**(S(3)/4)*x/2) + C3*cos(2**(S(3)/4)*x/2))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
E = exp(1)
eq = Eq(E * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(x/sqrt(E)) + C3*cos(x/sqrt(E)))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
eq = Eq(pi * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(x/sqrt(pi)) + C3*cos(x/sqrt(pi)))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
eq = Eq(I * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*exp(-sqrt(I)*x) + C3*exp(sqrt(I)*x))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
@XFAIL
@slow
def test_nth_linear_constant_coeff_homogeneous_rootof_sol():
if ON_TRAVIS:
skip("Too slow for travis.")
eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x)
sol = Eq(f(x),
C1*exp(x*rootof(x**5 + 11*x - 2, 0)) +
C2*exp(x*rootof(x**5 + 11*x - 2, 1)) +
C3*exp(x*rootof(x**5 + 11*x - 2, 2)) +
C4*exp(x*rootof(x**5 + 11*x - 2, 3)) +
C5*exp(x*rootof(x**5 + 11*x - 2, 4)))
assert checkodesol(eq, sol, order=5, solve_for_func=False)[0]
@XFAIL
def test_noncircularized_real_imaginary_parts():
# If this passes, lines numbered 3878-3882 (at the time of this commit)
# of sympy/solvers/ode.py for nth_linear_constant_coeff_homogeneous
# should be removed.
y = sqrt(1+x)
i, r = im(y), re(y)
assert not (i.has(atan2) and r.has(atan2))
@XFAIL
def test_collect_respecting_exponentials():
# If this test passes, lines 1306-1311 (at the time of this commit)
# of sympy/solvers/ode.py should be removed.
sol = 1 + exp(x/2)
assert sol == collect( sol, exp(x/3))
def test_undetermined_coefficients_match():
assert _undetermined_coefficients_match(g(x), x) == {'test': False}
assert _undetermined_coefficients_match(sin(2*x + sqrt(5)), x) == \
{'test': True, 'trialset':
set([cos(2*x + sqrt(5)), sin(2*x + sqrt(5))])}
assert _undetermined_coefficients_match(sin(x)*cos(x), x) == \
{'test': False}
s = set([cos(x), x*cos(x), x**2*cos(x), x**2*sin(x), x*sin(x), sin(x)])
assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': s}
assert _undetermined_coefficients_match(
sin(x)*x**2 + sin(x)*x + sin(x), x) == {'test': True, 'trialset': s}
assert _undetermined_coefficients_match(
exp(2*x)*sin(x)*(x**2 + x + 1), x
) == {
'test': True, 'trialset': set([exp(2*x)*sin(x), x**2*exp(2*x)*sin(x),
cos(x)*exp(2*x), x**2*cos(x)*exp(2*x), x*cos(x)*exp(2*x),
x*exp(2*x)*sin(x)])}
assert _undetermined_coefficients_match(1/sin(x), x) == {'test': False}
assert _undetermined_coefficients_match(log(x), x) == {'test': False}
assert _undetermined_coefficients_match(2**(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': set([2**x, x*2**x, x**2*2**x])}
assert _undetermined_coefficients_match(x**y, x) == {'test': False}
assert _undetermined_coefficients_match(exp(x)*exp(2*x + 1), x) == \
{'test': True, 'trialset': set([exp(1 + 3*x)])}
assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': set([x*cos(x), x*sin(x), x**2*cos(x),
x**2*sin(x), cos(x), sin(x)])}
assert _undetermined_coefficients_match(sin(x)*(x + sin(x)), x) == \
{'test': False}
assert _undetermined_coefficients_match(sin(x)*(x + sin(2*x)), x) == \
{'test': False}
assert _undetermined_coefficients_match(sin(x)*tan(x), x) == \
{'test': False}
assert _undetermined_coefficients_match(
x**2*sin(x)*exp(x) + x*sin(x) + x, x
) == {
'test': True, 'trialset': set([x**2*cos(x)*exp(x), x, cos(x), S(1),
exp(x)*sin(x), sin(x), x*exp(x)*sin(x), x*cos(x), x*cos(x)*exp(x),
x*sin(x), cos(x)*exp(x), x**2*exp(x)*sin(x)])}
assert _undetermined_coefficients_match(4*x*sin(x - 2), x) == {
'trialset': set([x*cos(x - 2), x*sin(x - 2), cos(x - 2), sin(x - 2)]),
'test': True,
}
assert _undetermined_coefficients_match(2**x*x, x) == \
{'test': True, 'trialset': set([2**x, x*2**x])}
assert _undetermined_coefficients_match(2**x*exp(2*x), x) == \
{'test': True, 'trialset': set([2**x*exp(2*x)])}
assert _undetermined_coefficients_match(exp(-x)/x, x) == \
{'test': False}
# Below are from Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 231
assert _undetermined_coefficients_match(S(4), x) == \
{'test': True, 'trialset': set([S(1)])}
assert _undetermined_coefficients_match(12*exp(x), x) == \
{'test': True, 'trialset': set([exp(x)])}
assert _undetermined_coefficients_match(exp(I*x), x) == \
{'test': True, 'trialset': set([exp(I*x)])}
assert _undetermined_coefficients_match(sin(x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x)])}
assert _undetermined_coefficients_match(cos(x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x)])}
assert _undetermined_coefficients_match(8 + 6*exp(x) + 2*sin(x), x) == \
{'test': True, 'trialset': set([S(1), cos(x), sin(x), exp(x)])}
assert _undetermined_coefficients_match(x**2, x) == \
{'test': True, 'trialset': set([S(1), x, x**2])}
assert _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(x), exp(x), exp(-x)])}
assert _undetermined_coefficients_match(2*exp(2*x)*sin(x), x) == \
{'test': True, 'trialset': set([exp(2*x)*sin(x), cos(x)*exp(2*x)])}
assert _undetermined_coefficients_match(x - sin(x), x) == \
{'test': True, 'trialset': set([S(1), x, cos(x), sin(x)])}
assert _undetermined_coefficients_match(x**2 + 2*x, x) == \
{'test': True, 'trialset': set([S(1), x, x**2])}
assert _undetermined_coefficients_match(4*x*sin(x), x) == \
{'test': True, 'trialset': set([x*cos(x), x*sin(x), cos(x), sin(x)])}
assert _undetermined_coefficients_match(x*sin(2*x), x) == \
{'test': True, 'trialset':
set([x*cos(2*x), x*sin(2*x), cos(2*x), sin(2*x)])}
assert _undetermined_coefficients_match(x**2*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(2*exp(-x) - x**2*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), x**2*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(exp(-2*x) + x**2, x) == \
{'test': True, 'trialset': set([S(1), x, x**2, exp(-2*x)])}
assert _undetermined_coefficients_match(x*exp(-x), x) == \
{'test': True, 'trialset': set([x*exp(-x), exp(-x)])}
assert _undetermined_coefficients_match(x + exp(2*x), x) == \
{'test': True, 'trialset': set([S(1), x, exp(2*x)])}
assert _undetermined_coefficients_match(sin(x) + exp(-x), x) == \
{'test': True, 'trialset': set([cos(x), sin(x), exp(-x)])}
assert _undetermined_coefficients_match(exp(x), x) == \
{'test': True, 'trialset': set([exp(x)])}
# converted from sin(x)**2
assert _undetermined_coefficients_match(S(1)/2 - cos(2*x)/2, x) == \
{'test': True, 'trialset': set([S(1), cos(2*x), sin(2*x)])}
# converted from exp(2*x)*sin(x)**2
assert _undetermined_coefficients_match(
exp(2*x)*(S(1)/2 + cos(2*x)/2), x
) == {
'test': True, 'trialset': set([exp(2*x)*sin(2*x), cos(2*x)*exp(2*x),
exp(2*x)])}
assert _undetermined_coefficients_match(2*x + sin(x) + cos(x), x) == \
{'test': True, 'trialset': set([S(1), x, cos(x), sin(x)])}
# converted from sin(2*x)*sin(x)
assert _undetermined_coefficients_match(cos(x)/2 - cos(3*x)/2, x) == \
{'test': True, 'trialset': set([cos(x), cos(3*x), sin(x), sin(3*x)])}
assert _undetermined_coefficients_match(cos(x**2), x) == {'test': False}
assert _undetermined_coefficients_match(2**(x**2), x) == {'test': False}
@slow
def test_nth_linear_constant_coeff_undetermined_coefficients():
hint = 'nth_linear_constant_coeff_undetermined_coefficients'
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
eq1 = c - x*g
eq2 = c - g
# 3-27 below are from Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 231
eq3 = f2 + 3*f(x).diff(x) + 2*f(x) - 4
eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x)
eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - exp(I*x)
eq6 = f2 + 3*f(x).diff(x) + 2*f(x) - sin(x)
eq7 = f2 + 3*f(x).diff(x) + 2*f(x) - cos(x)
eq8 = f2 + 3*f(x).diff(x) + 2*f(x) - (8 + 6*exp(x) + 2*sin(x))
eq9 = f2 + f(x).diff(x) + f(x) - x**2
eq10 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x)
eq11 = f2 - 3*f(x).diff(x) - 2*exp(2*x)*sin(x)
eq12 = f(x).diff(x, 4) - 2*f2 + f(x) - x + sin(x)
eq13 = f2 + f(x).diff(x) - x**2 - 2*x
eq14 = f2 + f(x).diff(x) - x - sin(2*x)
eq15 = f2 + f(x) - 4*x*sin(x)
eq16 = f2 + 4*f(x) - x*sin(2*x)
eq17 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x)
eq18 = f(x).diff(x, 3) + 3*f2 + 3*f(x).diff(x) + f(x) - 2*exp(-x) + \
x**2*exp(-x)
eq19 = f2 + 3*f(x).diff(x) + 2*f(x) - exp(-2*x) - x**2
eq20 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x)
eq21 = f2 + f(x).diff(x) - 6*f(x) - x - exp(2*x)
eq22 = f2 + f(x) - sin(x) - exp(-x)
eq23 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x)
# sin(x)**2
eq24 = f2 + f(x) - S(1)/2 - cos(2*x)/2
# exp(2*x)*sin(x)**2
eq25 = f(x).diff(x, 3) - f(x).diff(x) - exp(2*x)*(S(1)/2 - cos(2*x)/2)
eq26 = (f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x -
sin(x) - cos(x))
# sin(2*x)*sin(x), skip 3127 for now, match bug
eq27 = f2 + f(x) - cos(x)/2 + cos(3*x)/2
eq28 = f(x).diff(x) - 1
sol1 = Eq(f(x),
-1 - x + (C1 + C2*x - 3*x**2/32 - x**3/24)*exp(-x) + C3*exp(x/3))
sol2 = Eq(f(x), -1 - x + (C1 + C2*x - x**2/8)*exp(-x) + C3*exp(x/3))
sol3 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x))
sol4 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x))
sol5 = Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + exp(I*x)/10 - 3*I*exp(I*x)/10)
sol6 = Eq(f(x), -3*cos(x)/10 + sin(x)/10 + C1*exp(-x) + C2*exp(-2*x))
sol7 = Eq(f(x), cos(x)/10 + 3*sin(x)/10 + C1*exp(-x) + C2*exp(-2*x))
sol8 = Eq(f(x),
4 - 3*cos(x)/5 + sin(x)/5 + exp(x) + C1*exp(-x) + C2*exp(-2*x))
sol9 = Eq(f(x),
-2*x + x**2 + (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(-x/2))
sol10 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))
sol11 = Eq(f(x), C1 + C2*exp(3*x) + (-3*sin(x) - cos(x))*exp(2*x)/5)
sol12 = Eq(f(x), x - sin(x)/4 + (C1 + C2*x)*exp(-x) + (C3 + C4*x)*exp(x))
sol13 = Eq(f(x), C1 + x**3/3 + C2*exp(-x))
sol14 = Eq(f(x), C1 - x - sin(2*x)/5 - cos(2*x)/10 + x**2/2 + C2*exp(-x))
sol15 = Eq(f(x), (C1 + x)*sin(x) + (C2 - x**2)*cos(x))
sol16 = Eq(f(x), (C1 + x/16)*sin(2*x) + (C2 - x**2/8)*cos(2*x))
sol17 = Eq(f(x), (C1 + C2*x + x**4/12)*exp(-x))
sol18 = Eq(f(x), (C1 + C2*x + C3*x**2 - x**5/60 + x**3/3)*exp(-x))
sol19 = Eq(f(x), S(7)/4 - 3*x/2 + x**2/2 + C1*exp(-x) + (C2 - x)*exp(-2*x))
sol20 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)
sol21 = Eq(f(x), -S(1)/36 - x/6 + C1*exp(-3*x) + (C2 + x/5)*exp(2*x))
sol22 = Eq(f(x), C1*sin(x) + (C2 - x/2)*cos(x) + exp(-x)/2)
sol23 = Eq(f(x), (C1 + C2*x + C3*x**2 + x**3/6)*exp(x))
sol24 = Eq(f(x), S(1)/2 - cos(2*x)/6 + C1*sin(x) + C2*cos(x))
sol25 = Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) +
(-21*sin(2*x) + 27*cos(2*x) + 130)*exp(2*x)/1560)
sol26 = Eq(f(x),
C1 + (C2 + C3*x - x**2/8)*sin(x) + (C4 + C5*x + x**2/8)*cos(x) + x**2)
sol27 = Eq(f(x), cos(3*x)/16 + C1*cos(x) + (C2 + x/4)*sin(x))
sol28 = Eq(f(x), C1 + x)
sol1s = constant_renumber(sol1, 'C', 1, 3)
sol2s = constant_renumber(sol2, 'C', 1, 3)
sol3s = constant_renumber(sol3, 'C', 1, 2)
sol4s = constant_renumber(sol4, 'C', 1, 2)
sol5s = constant_renumber(sol5, 'C', 1, 2)
sol6s = constant_renumber(sol6, 'C', 1, 2)
sol7s = constant_renumber(sol7, 'C', 1, 2)
sol8s = constant_renumber(sol8, 'C', 1, 2)
sol9s = constant_renumber(sol9, 'C', 1, 2)
sol10s = constant_renumber(sol10, 'C', 1, 2)
sol11s = constant_renumber(sol11, 'C', 1, 2)
sol12s = constant_renumber(sol12, 'C', 1, 2)
sol13s = constant_renumber(sol13, 'C', 1, 4)
sol14s = constant_renumber(sol14, 'C', 1, 2)
sol15s = constant_renumber(sol15, 'C', 1, 2)
sol16s = constant_renumber(sol16, 'C', 1, 2)
sol17s = constant_renumber(sol17, 'C', 1, 2)
sol18s = constant_renumber(sol18, 'C', 1, 3)
sol19s = constant_renumber(sol19, 'C', 1, 2)
sol20s = constant_renumber(sol20, 'C', 1, 2)
sol21s = constant_renumber(sol21, 'C', 1, 2)
sol22s = constant_renumber(sol22, 'C', 1, 2)
sol23s = constant_renumber(sol23, 'C', 1, 3)
sol24s = constant_renumber(sol24, 'C', 1, 2)
sol25s = constant_renumber(sol25, 'C', 1, 3)
sol26s = constant_renumber(sol26, 'C', 1, 5)
sol27s = constant_renumber(sol27, 'C', 1, 2)
assert dsolve(eq1, hint=hint) in (sol1, sol1s)
assert dsolve(eq2, hint=hint) in (sol2, sol2s)
assert dsolve(eq3, hint=hint) in (sol3, sol3s)
assert dsolve(eq4, hint=hint) in (sol4, sol4s)
assert dsolve(eq5, hint=hint) in (sol5, sol5s)
assert dsolve(eq6, hint=hint) in (sol6, sol6s)
assert dsolve(eq7, hint=hint) in (sol7, sol7s)
assert dsolve(eq8, hint=hint) in (sol8, sol8s)
assert dsolve(eq9, hint=hint) in (sol9, sol9s)
assert dsolve(eq10, hint=hint) in (sol10, sol10s)
assert dsolve(eq11, hint=hint) in (sol11, sol11s)
assert dsolve(eq12, hint=hint) in (sol12, sol12s)
assert dsolve(eq13, hint=hint) in (sol13, sol13s)
assert dsolve(eq14, hint=hint) in (sol14, sol14s)
assert dsolve(eq15, hint=hint) in (sol15, sol15s)
assert dsolve(eq16, hint=hint) in (sol16, sol16s)
assert dsolve(eq17, hint=hint) in (sol17, sol17s)
assert dsolve(eq18, hint=hint) in (sol18, sol18s)
assert dsolve(eq19, hint=hint) in (sol19, sol19s)
assert dsolve(eq20, hint=hint) in (sol20, sol20s)
assert dsolve(eq21, hint=hint) in (sol21, sol21s)
assert dsolve(eq22, hint=hint) in (sol22, sol22s)
assert dsolve(eq23, hint=hint) in (sol23, sol23s)
assert dsolve(eq24, hint=hint) in (sol24, sol24s)
assert dsolve(eq25, hint=hint) in (sol25, sol25s)
assert dsolve(eq26, hint=hint) in (sol26, sol26s)
assert dsolve(eq27, hint=hint) in (sol27, sol27s)
assert dsolve(eq28, hint=hint) == sol28
assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=2, solve_for_func=False)[0]
assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0]
assert checkodesol(eq15, sol15, order=2, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=2, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=3, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=2, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=2, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=2, solve_for_func=False)[0]
assert checkodesol(eq22, sol22, order=2, solve_for_func=False)[0]
assert checkodesol(eq23, sol23, order=3, solve_for_func=False)[0]
assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0]
assert checkodesol(eq25, sol25, order=3, solve_for_func=False)[0]
assert checkodesol(eq26, sol26, order=5, solve_for_func=False)[0]
assert checkodesol(eq27, sol27, order=2, solve_for_func=False)[0]
assert checkodesol(eq28, sol28, order=1, solve_for_func=False)[0]
def test_issue_5787():
# This test case is to show the classification of imaginary constants under
# nth_linear_constant_coeff_undetermined_coefficients
eq = Eq(diff(f(x), x), I*f(x) + S(1)/2 - I)
out_hint = 'nth_linear_constant_coeff_undetermined_coefficients'
assert out_hint in classify_ode(eq)
@XFAIL
def test_nth_linear_constant_coeff_undetermined_coefficients_imaginary_exp():
# Equivalent to eq26 in
# test_nth_linear_constant_coeff_undetermined_coefficients above.
# This fails because the algorithm for undetermined coefficients
# doesn't know to multiply exp(I*x) by sufficient x because it is linearly
# dependent on sin(x) and cos(x).
hint = 'nth_linear_constant_coeff_undetermined_coefficients'
eq26a = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol26 = Eq(f(x),
C1 + (C2 + C3*x - x**2/8)*sin(x) + (C4 + C5*x + x**2/8)*cos(x) + x**2)
assert dsolve(eq26a, hint=hint) == sol26
assert checkodesol(eq26a, sol26, order=5, solve_for_func=False)[0]
@slow
def test_nth_linear_constant_coeff_variation_of_parameters():
hint = 'nth_linear_constant_coeff_variation_of_parameters'
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
eq1 = c - x*g
eq2 = c - g
eq3 = f(x).diff(x) - 1
eq4 = f2 + 3*f(x).diff(x) + 2*f(x) - 4
eq5 = f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x)
eq6 = f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x)
eq7 = f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x)
eq8 = f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x)
eq9 = f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x)
eq10 = f2 + 2*f(x).diff(x) + f(x) - exp(-x)/x
eq11 = f2 + f(x) - 1/sin(x)*1/cos(x)
eq12 = f(x).diff(x, 4) - 1/x
sol1 = Eq(f(x),
-1 - x + (C1 + C2*x - 3*x**2/32 - x**3/24)*exp(-x) + C3*exp(x/3))
sol2 = Eq(f(x), -1 - x + (C1 + C2*x - x**2/8)*exp(-x) + C3*exp(x/3))
sol3 = Eq(f(x), C1 + x)
sol4 = Eq(f(x), 2 + C1*exp(-x) + C2*exp(-2*x))
sol5 = Eq(f(x), 2*exp(x) + C1*exp(-x) + C2*exp(-2*x))
sol6 = Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))
sol7 = Eq(f(x), (C1 + C2*x + x**4/12)*exp(-x))
sol8 = Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)
sol9 = Eq(f(x), (C1 + C2*x + C3*x**2 + x**3/6)*exp(x))
sol10 = Eq(f(x), (C1 + x*(C2 + log(x)))*exp(-x))
sol11 = Eq(f(x), cos(x)*(C2 - Integral(1/cos(x), x)) + sin(x)*(C1 +
Integral(1/sin(x), x)))
sol12 = Eq(f(x), C1 + C2*x + x**3*(C3 + log(x)/6) + C4*x**2)
sol1s = constant_renumber(sol1, 'C', 1, 3)
sol2s = constant_renumber(sol2, 'C', 1, 3)
sol3s = constant_renumber(sol3, 'C', 1, 2)
sol4s = constant_renumber(sol4, 'C', 1, 2)
sol5s = constant_renumber(sol5, 'C', 1, 2)
sol6s = constant_renumber(sol6, 'C', 1, 2)
sol7s = constant_renumber(sol7, 'C', 1, 2)
sol8s = constant_renumber(sol8, 'C', 1, 2)
sol9s = constant_renumber(sol9, 'C', 1, 3)
sol10s = constant_renumber(sol10, 'C', 1, 2)
sol11s = constant_renumber(sol11, 'C', 1, 2)
sol12s = constant_renumber(sol12, 'C', 1, 4)
assert dsolve(eq1, hint=hint) in (sol1, sol1s)
assert dsolve(eq2, hint=hint) in (sol2, sol2s)
assert dsolve(eq3, hint=hint) in (sol3, sol3s)
assert dsolve(eq4, hint=hint) in (sol4, sol4s)
assert dsolve(eq5, hint=hint) in (sol5, sol5s)
assert dsolve(eq6, hint=hint) in (sol6, sol6s)
assert dsolve(eq7, hint=hint) in (sol7, sol7s)
assert dsolve(eq8, hint=hint) in (sol8, sol8s)
assert dsolve(eq9, hint=hint) in (sol9, sol9s)
assert dsolve(eq10, hint=hint) in (sol10, sol10s)
assert dsolve(eq11, hint=hint + '_Integral') in (sol11, sol11s)
assert dsolve(eq12, hint=hint) in (sol12, sol12s)
assert checkodesol(eq1, sol1, order=3, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=3, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=3, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=4, solve_for_func=False)[0]
@slow
def test_nth_linear_constant_coeff_variation_of_parameters_simplify_False():
# solve_variation_of_parameters shouldn't attempt to simplify the
# Wronskian if simplify=False. If wronskian() ever gets good enough
# to simplify the result itself, this test might fail.
hint = 'nth_linear_constant_coeff_variation_of_parameters'
assert dsolve(f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) -
2*x - exp(I*x), f(x), hint + "_Integral", simplify=False) != \
dsolve(f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) -
2*x - exp(I*x), f(x), hint + "_Integral", simplify=True)
def test_Liouville_ODE():
hint = 'Liouville'
# The first part here used to be test_ODE_1() from test_solvers.py
eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2
eq1a = diff(x*exp(-f(x)), x, x)
# compare to test_unexpanded_Liouville_ODE() below
eq2 = (eq1*exp(-f(x))/exp(f(x))).expand()
eq3 = diff(f(x), x, x) + 1/f(x)*(diff(f(x), x))**2 + 1/x*diff(f(x), x)
eq4 = x*diff(f(x), x, x) + x/f(x)*diff(f(x), x)**2 + x*diff(f(x), x)
eq5 = Eq((x*exp(f(x))).diff(x, x), 0)
sol1 = Eq(f(x), log(x/(C1 + C2*x)))
sol1a = Eq(C1 + C2/x - exp(-f(x)), 0)
sol2 = sol1
sol3 = set(
[Eq(f(x), -sqrt(C1 + C2*log(x))),
Eq(f(x), sqrt(C1 + C2*log(x)))])
sol4 = set([Eq(f(x), sqrt(C1 + C2*exp(x))*exp(-x/2)),
Eq(f(x), -sqrt(C1 + C2*exp(x))*exp(-x/2))])
sol5 = Eq(f(x), log(C1 + C2/x))
sol1s = constant_renumber(sol1, 'C', 1, 2)
sol2s = constant_renumber(sol2, 'C', 1, 2)
sol3s = constant_renumber(sol3, 'C', 1, 2)
sol4s = constant_renumber(sol4, 'C', 1, 2)
sol5s = constant_renumber(sol5, 'C', 1, 2)
assert dsolve(eq1, hint=hint) in (sol1, sol1s)
assert dsolve(eq1a, hint=hint) in (sol1, sol1s)
assert dsolve(eq2, hint=hint) in (sol2, sol2s)
assert set(dsolve(eq3, hint=hint)) in (sol3, sol3s)
assert set(dsolve(eq4, hint=hint)) in (sol4, sol4s)
assert dsolve(eq5, hint=hint) in (sol5, sol5s)
assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0]
assert checkodesol(eq1a, sol1a, order=2, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
assert all(i[0] for i in checkodesol(eq3, sol3, order=2,
solve_for_func=False))
assert all(i[0] for i in checkodesol(eq4, sol4, order=2,
solve_for_func=False))
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
not_Liouville1 = classify_ode(diff(f(x), x)/x + f(x)*diff(f(x), x, x)/2 -
diff(f(x), x)**2/2, f(x))
not_Liouville2 = classify_ode(diff(f(x), x)/x + diff(f(x), x, x)/2 -
x*diff(f(x), x)**2/2, f(x))
assert hint not in not_Liouville1
assert hint not in not_Liouville2
assert hint + '_Integral' not in not_Liouville1
assert hint + '_Integral' not in not_Liouville2
def test_unexpanded_Liouville_ODE():
# This is the same as eq1 from test_Liouville_ODE() above.
eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2
eq2 = eq1*exp(-f(x))/exp(f(x))
sol2 = Eq(f(x), log(x/(C1 + C2*x)))
sol2s = constant_renumber(sol2, 'C', 1, 2)
assert dsolve(eq2) in (sol2, sol2s)
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
def test_issue_4785():
from sympy.abc import A
eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2
assert classify_ode(eq, f(x)) == ('1st_linear', 'almost_linear',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral', 'almost_linear_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
# issue 4864
eq = (x**2 + f(x)**2)*f(x).diff(x) - 2*x*f(x)
assert classify_ode(eq, f(x)) == ('1st_exact',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series',
'lie_group', '1st_exact_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
def test_issue_4825():
raises(ValueError, lambda: dsolve(f(x, y).diff(x) - y*f(x, y), f(x)))
assert classify_ode(f(x, y).diff(x) - y*f(x, y), f(x), dict=True) == \
{'default': None, 'order': 0}
# See also issue 3793, test Z13.
raises(ValueError, lambda: dsolve(f(x).diff(x), f(y)))
assert classify_ode(f(x).diff(x), f(y), dict=True) == \
{'default': None, 'order': 0}
def test_constant_renumber_order_issue_5308():
from sympy.utilities.iterables import variations
assert constant_renumber(C1*x + C2*y, "C", 1, 2) == \
constant_renumber(C1*y + C2*x, "C", 1, 2) == \
C1*x + C2*y
e = C1*(C2 + x)*(C3 + y)
for a, b, c in variations([C1, C2, C3], 3):
assert constant_renumber(a*(b + x)*(c + y), "C", 1, 3) == e
def test_issue_5770():
k = Symbol("k", real=True)
t = Symbol('t')
w = Function('w')
sol = dsolve(w(t).diff(t, 6) - k**6*w(t), w(t))
assert len([s for s in sol.free_symbols if s.name.startswith('C')]) == 6
assert constantsimp((C1*cos(x) + C2*cos(x))*exp(x), set([C1, C2])) == \
C1*cos(x)*exp(x)
assert constantsimp(C1*cos(x) + C2*cos(x) + C3*sin(x), set([C1, C2, C3])) == \
C1*cos(x) + C3*sin(x)
assert constantsimp(exp(C1 + x), set([C1])) == C1*exp(x)
assert constantsimp(x + C1 + y, set([C1, y])) == C1 + x
assert constantsimp(x + C1 + Integral(x, (x, 1, 2)), set([C1])) == C1 + x
def test_issue_5112_5430():
assert homogeneous_order(-log(x) + acosh(x), x) is None
assert homogeneous_order(y - log(x), x, y) is None
def test_nth_order_linear_euler_eq_homogeneous():
x, t, a, b, c = symbols('x t a b c')
y = Function('y')
our_hint = "nth_linear_euler_eq_homogeneous"
eq = diff(f(t), t, 4)*t**4 - 13*diff(f(t), t, 2)*t**2 + 36*f(t)
assert our_hint in classify_ode(eq)
eq = a*y(t) + b*t*diff(y(t), t) + c*t**2*diff(y(t), t, 2)
assert our_hint in classify_ode(eq)
eq = Eq(-3*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0)
sol = C1 + C2*x**Rational(5, 2)
sols = constant_renumber(sol, 'C', 1, 3)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(3*f(x) - 5*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0)
sol = C1*sqrt(x) + C2*x**3
sols = constant_renumber(sol, 'C', 1, 3)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(4*f(x) + 5*diff(f(x), x)*x + x**2*diff(f(x), x, x), 0)
sol = (C1 + C2*log(x))/x**2
sols = constant_renumber(sol, 'C', 1, 3)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(6*f(x) - 6*diff(f(x), x)*x + 1*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0)
sol = dsolve(eq, f(x), hint=our_hint)
sol = C1/x**2 + C2*x + C3*x**3
sols = constant_renumber(sol, 'C', 1, 4)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(-125*f(x) + 61*diff(f(x), x)*x - 12*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0)
sol = x**5*(C1 + C2*log(x) + C3*log(x)**2)
sols = [sol, constant_renumber(sol, 'C', 1, 4)]
sols += [sols[-1].expand()]
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in sols
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = t**2*diff(y(t), t, 2) + t*diff(y(t), t) - 9*y(t)
sol = C1*t**3 + C2*t**-3
sols = constant_renumber(sol, 'C', 1, 3)
assert our_hint in classify_ode(eq)
assert dsolve(eq, y(t), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = sin(x)*x**2*f(x).diff(x, 2) + sin(x)*x*f(x).diff(x) + sin(x)*f(x)
sol = C1*sin(log(x)) + C2*cos(log(x))
sols = constant_renumber(sol, 'C', 1, 3)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_nth_order_linear_euler_eq_nonhomogeneous_undetermined_coefficients():
x, t = symbols('x t')
a, b, c, d = symbols('a b c d', integer=True)
our_hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"
eq = x**4*diff(f(x), x, 4) - 13*x**2*diff(f(x), x, 2) + 36*f(x) + x
assert our_hint in classify_ode(eq, f(x))
eq = a*x**2*diff(f(x), x, 2) + b*x*diff(f(x), x) + c*f(x) + d*log(x)
assert our_hint in classify_ode(eq, f(x))
eq = Eq(x**2*diff(f(x), x, x) + x*diff(f(x), x), 1)
sol = C1 + C2*log(x) + log(x)**2/2
sols = constant_renumber(sol, 'C', 1, 2)
assert our_hint in classify_ode(eq, f(x))
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*diff(f(x), x, x) - 2*x*diff(f(x), x) + 2*f(x), x**3)
sol = x*(C1 + C2*x + Rational(1, 2)*x**2)
sols = constant_renumber(sol, 'C', 1, 2)
assert our_hint in classify_ode(eq, f(x))
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*diff(f(x), x, x) - x*diff(f(x), x) - 3*f(x), log(x)/x)
sol = C1/x + C2*x**3 - Rational(1, 16)*log(x)/x - Rational(1, 8)*log(x)**2/x
sols = constant_renumber(sol, 'C', 1, 2)
assert our_hint in classify_ode(eq, f(x))
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*diff(f(x), x, x) + 3*x*diff(f(x), x) - 8*f(x), log(x)**3 - log(x))
sol = C1/x**4 + C2*x**2 - Rational(1,8)*log(x)**3 - Rational(3,32)*log(x)**2 - Rational(1,64)*log(x) - Rational(7, 256)
sols = constant_renumber(sol, 'C', 1, 2)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**3*diff(f(x), x, x, x) - 3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), log(x))
sol = C1*x + C2*x**2 + C3*x**3 - Rational(1, 6)*log(x) - Rational(11, 36)
sols = constant_renumber(sol, 'C', 1, 3)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_nth_order_linear_euler_eq_nonhomogeneous_variation_of_parameters():
x, t = symbols('x, t')
a, b, c, d = symbols('a, b, c, d', integer=True)
our_hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"
eq = Eq(x**2*diff(f(x),x,2) - 8*x*diff(f(x),x) + 12*f(x), x**2)
assert our_hint in classify_ode(eq, f(x))
eq = Eq(a*x**3*diff(f(x),x,3) + b*x**2*diff(f(x),x,2) + c*x*diff(f(x),x) + d*f(x), x*log(x))
assert our_hint in classify_ode(eq, f(x))
eq = Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4)
sol = C1*x + C2*x**2 + x**4/6
sols = constant_renumber(sol, 'C', 1, 2)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), x**3*exp(x))
sol = C1/x**2 + C2*x + x*exp(x)/3 - 4*exp(x)/3 + 8*exp(x)/(3*x) - 8*exp(x)/(3*x**2)
sols = constant_renumber(sol, 'C', 1, 2)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4*exp(x))
sol = C1*x + C2*x**2 + x**2*exp(x) - 2*x*exp(x)
sols = constant_renumber(sol, 'C', 1, 2)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs.expand() in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x)
sol = C1*x + C2*x**2 + log(x)/2 + S(3)/4
sols = constant_renumber(sol, 'C', 1, 2)
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint).rhs in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
eq = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x
from sympy.integrals.risch import NonElementaryIntegral
sol = Eq(f(x), C1 + C2*log(x) + (x - 1)*exp(x)*log(x) - NonElementaryIntegral(x*exp(x)*log(x), x))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_issue_5095():
f = Function('f')
raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'separable'))
raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'fdsjf'))
def test_almost_linear():
from sympy import Ei
A = Symbol('A', positive=True)
our_hint = 'almost_linear'
f = Function('f')
d = f(x).diff(x)
eq = x**2*f(x)**2*d + f(x)**3 + 1
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol[0].rhs == (C1*exp(3/x) - 1)**(S(1)/3)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = x*f(x)*d + 2*x*f(x)**2 + 1
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol[0].rhs == -sqrt(C1 - 2*Ei(4*x))*exp(-2*x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = x*d + x*f(x) + 1
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol.rhs == (C1 - Ei(x))*exp(-x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
assert our_hint in classify_ode(eq, f(x))
eq = x*exp(f(x))*d + exp(f(x)) + 3*x
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol.rhs == log(C1/x - 3*x/2)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2
sol = dsolve(eq, f(x), hint = 'almost_linear')
assert sol.rhs == (C1 + Piecewise(
(x, Eq(A + 1, 0)), ((-A*x + A - x - 1)*exp(x)/(A + 1), True)))*exp(-x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_exact_enhancement():
f = Function('f')(x)
df = Derivative(f, x)
eq = f/x**2 + ((f*x - 1)/x)*df
sol = dsolve(eq, f)
assert sol == [Eq(f, (i*sqrt(C1*x**2 + 1) + 1)/x) for i in (-1, 1)]
eq = (x*f - 1) + df*(x**2 - x*f)
rhs = [sol.rhs for sol in dsolve(eq, f)]
assert rhs[0] == x - sqrt(C1 + x**2 - 2*log(x))
assert rhs[1] == x + sqrt(C1 + x**2 - 2*log(x))
eq = (x + 2)*sin(f) + df*x*cos(f)
rhs = [sol.rhs for sol in dsolve(eq, f)]
assert rhs == [
-asin(C1*exp(-x)/x**2) + pi,
asin(C1*exp(-x)/x**2)]
def test_separable_reduced():
f = Function('f')
x = Symbol('x')
df = f(x).diff(x)
eq = (x / f(x))*df + tan(x**2*f(x) / (x**2*f(x) - 1))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
eq = x* df + f(x)* (1 / (x**2*f(x) - 1))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol.lhs == log(x**2*f(x))/3 + log(x**2*f(x) - S(3)/2)/6
assert sol.rhs == C1 + log(x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = f(x).diff(x) + (f(x) / (x**4*f(x) - x))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
sol = dsolve(eq, hint = 'separable_reduced')
assert len(sol) == 4
eq = x*df + f(x)*(x**2*f(x))
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol == Eq(log(x**2*f(x))/2 - log(x**2*f(x) - 2)/2, C1 + log(x))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_homogeneous_function():
f = Function('f')
eq1 = tan(x + f(x))
eq2 = sin((3*x)/(4*f(x)))
eq3 = cos(3*x/4*f(x))
eq4 = log((3*x + 4*f(x))/(5*f(x) + 7*x))
eq5 = exp((2*x**2)/(3*f(x)**2))
eq6 = log((3*x + 4*f(x))/(5*f(x) + 7*x) + exp((2*x**2)/(3*f(x)**2)))
eq7 = sin((3*x)/(5*f(x) + x**2))
assert homogeneous_order(eq1, x, f(x)) == None
assert homogeneous_order(eq2, x, f(x)) == 0
assert homogeneous_order(eq3, x, f(x)) == None
assert homogeneous_order(eq4, x, f(x)) == 0
assert homogeneous_order(eq5, x, f(x)) == 0
assert homogeneous_order(eq6, x, f(x)) == 0
assert homogeneous_order(eq7, x, f(x)) == None
def test_linear_coeff_match():
from sympy.solvers.ode import _linear_coeff_match
n, d = z*(2*x + 3*f(x) + 5), z*(7*x + 9*f(x) + 11)
rat = n/d
eq1 = sin(rat) + cos(rat.expand())
eq2 = rat
eq3 = log(sin(rat))
ans = (4, -S(13)/3)
assert _linear_coeff_match(eq1, f(x)) == ans
assert _linear_coeff_match(eq2, f(x)) == ans
assert _linear_coeff_match(eq3, f(x)) == ans
# no c
eq4 = (3*x)/f(x)
# not x and f(x)
eq5 = (3*x + 2)/x
# denom will be zero
eq6 = (3*x + 2*f(x) + 1)/(3*x + 2*f(x) + 5)
# not rational coefficient
eq7 = (3*x + 2*f(x) + sqrt(2))/(3*x + 2*f(x) + 5)
assert _linear_coeff_match(eq4, f(x)) is None
assert _linear_coeff_match(eq5, f(x)) is None
assert _linear_coeff_match(eq6, f(x)) is None
assert _linear_coeff_match(eq7, f(x)) is None
def test_linear_coefficients():
f = Function('f')
sol = Eq(f(x), C1/(x**2 + 6*x + 9) - S(3)/2)
eq = f(x).diff(x) + (3 + 2*f(x))/(x + 3)
assert dsolve(eq, hint='linear_coefficients') == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_constantsimp_take_problem():
c = exp(C1) + 2
assert len(Poly(constantsimp(exp(C1) + c + c*x, [C1])).gens) == 2
def test_issue_6879():
f = Function('f')
eq = Eq(Derivative(f(x), x, 2) - 2*Derivative(f(x), x) + f(x), sin(x))
sol = (C1 + C2*x)*exp(x) + cos(x)/2
assert dsolve(eq).rhs == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_issue_6989():
f = Function('f')
k = Symbol('k')
assert dsolve(f(x).diff(x) - x*exp(-k*x), f(x)) == Eq(f(x),
C1 + Piecewise(
((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),
(x**2/2, True)
))
eq = -f(x).diff(x) + x*exp(-k*x)
sol = dsolve(eq, f(x))
actual_sol = Eq(f(x), C1 + Piecewise(
((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),
(+x**2/2, True)
))
errstr = str(eq) + ' : ' + str(sol) + ' == ' + str(actual_sol)
assert sol == actual_sol, errstr
def test_heuristic1():
y, a, b, c, a4, a3, a2, a1, a0 = symbols("y a b c a4 a3 a2 a1 a0")
y = Symbol('y')
f = Function('f')
xi = Function('xi')
eta = Function('eta')
df = f(x).diff(x)
eq = Eq(df, x**2*f(x))
eq1 = f(x).diff(x) + a*f(x) - c*exp(b*x)
eq2 = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
eq3 = (1 + 2*x)*df + 2 - 4*exp(-f(x))
eq4 = f(x).diff(x) - (a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**(S(-1)/2)
eq5 = x**2*df - f(x) + x**2*exp(x - (1/x))
eqlist = [eq, eq1, eq2, eq3, eq4, eq5]
i = infinitesimals(eq, hint='abaco1_simple')
assert i == [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0},
{eta(x, f(x)): f(x), xi(x, f(x)): 0},
{eta(x, f(x)): 0, xi(x, f(x)): x**(-2)}]
i1 = infinitesimals(eq1, hint='abaco1_simple')
assert i1 == [{eta(x, f(x)): exp(-a*x), xi(x, f(x)): 0}]
i2 = infinitesimals(eq2, hint='abaco1_simple')
assert i2 == [{eta(x, f(x)): exp(-x**2), xi(x, f(x)): 0}]
i3 = infinitesimals(eq3, hint='abaco1_simple')
assert i3 == [{eta(x, f(x)): 0, xi(x, f(x)): 2*x + 1},
{eta(x, f(x)): 0, xi(x, f(x)): 1/(exp(f(x)) - 2)}]
i4 = infinitesimals(eq4, hint='abaco1_simple')
assert i4 == [{eta(x, f(x)): 1, xi(x, f(x)): 0},
{eta(x, f(x)): 0,
xi(x, f(x)): sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)}]
i5 = infinitesimals(eq5, hint='abaco1_simple')
assert i5 == [{xi(x, f(x)): 0, eta(x, f(x)): exp(-1/x)}]
ilist = [i, i1, i2, i3, i4, i5]
for eq, i in (zip(eqlist, ilist)):
check = checkinfsol(eq, i)
assert check[0]
def test_issue_6247():
eq = x**2*f(x)**2 + x*Derivative(f(x), x)
sol = dsolve(eq, hint = 'separable_reduced')
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x, x) + 4*f(x)
sol = dsolve(eq, f(x), simplify=False)
assert sol == Eq(f(x), C1*sin(2*x) + C2*cos(2*x))
def test_heuristic2():
y = Symbol('y')
xi = Function('xi')
eta = Function('eta')
df = f(x).diff(x)
# This ODE can be solved by the Lie Group method, when there are
# better assumptions
eq = df - (f(x)/x)*(x*log(x**2/f(x)) + 2)
i = infinitesimals(eq, hint='abaco1_product')
assert i == [{eta(x, f(x)): f(x)*exp(-x), xi(x, f(x)): 0}]
assert checkinfsol(eq, i)[0]
@slow
def test_heuristic3():
y = Symbol('y')
xi = Function('xi')
eta = Function('eta')
a, b = symbols("a b")
df = f(x).diff(x)
eq = x**2*df + x*f(x) + f(x)**2 + x**2
i = infinitesimals(eq, hint='bivariate')
assert i == [{eta(x, f(x)): f(x), xi(x, f(x)): x}]
assert checkinfsol(eq, i)[0]
eq = x**2*(-f(x)**2 + df)- a*x**2*f(x) + 2 - a*x
i = infinitesimals(eq, hint='bivariate')
assert checkinfsol(eq, i)[0]
def test_heuristic_4():
y, a = symbols("y a")
xi = Function('xi')
eta = Function('eta')
eq = x*(f(x).diff(x)) + 1 - f(x)**2
i = infinitesimals(eq, hint='chi')
assert checkinfsol(eq, i)[0]
def test_heuristic_function_sum():
xi = Function('xi')
eta = Function('eta')
eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x +
(1 - 3*f(x))*(x/f(x)**2))
i = infinitesimals(eq, hint='function_sum')
assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}]
assert checkinfsol(eq, i)[0]
def test_heuristic_abaco2_similar():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b = symbols("a b")
eq = f(x).diff(x) - F(a*x + b*f(x))
i = infinitesimals(eq, hint='abaco2_similar')
assert i == [{eta(x, f(x)): -a/b, xi(x, f(x)): 1}]
assert checkinfsol(eq, i)[0]
eq = f(x).diff(x) - (f(x)**2 / (sin(f(x) - x) - x**2 + 2*x*f(x)))
i = infinitesimals(eq, hint='abaco2_similar')
assert i == [{eta(x, f(x)): f(x)**2, xi(x, f(x)): f(x)**2}]
assert checkinfsol(eq, i)[0]
def test_heuristic_abaco2_unique_unknown():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b = symbols("a b")
x = Symbol("x", positive=True)
eq = f(x).diff(x) - x**(a - 1)*(f(x)**(1 - b))*F(x**a/a + f(x)**b/b)
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert i == [{eta(x, f(x)): -f(x)*f(x)**(-b), xi(x, f(x)): x*x**(-a)}]
assert checkinfsol(eq, i)[0]
eq = f(x).diff(x) + tan(F(x**2 + f(x)**2) + atan(x/f(x)))
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert i == [{eta(x, f(x)): x, xi(x, f(x)): -f(x)}]
assert checkinfsol(eq, i)[0]
eq = (x*f(x).diff(x) + f(x) + 2*x)**2 -4*x*f(x) -4*x**2 -4*a
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert checkinfsol(eq, i)[0]
def test_heuristic_linear():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b, m, n = symbols("a b m n")
eq = x**(n*(m + 1) - m)*(f(x).diff(x)) - a*f(x)**n -b*x**(n*(m + 1))
i = infinitesimals(eq, hint='linear')
assert checkinfsol(eq, i)[0]
@XFAIL
def test_kamke():
a, b, alpha, c = symbols("a b alpha c")
eq = x**2*(a*f(x)**2+(f(x).diff(x))) + b*x**alpha + c
i = infinitesimals(eq, hint='sum_function')
assert checkinfsol(eq, i)[0]
def test_series():
C1 = Symbol("C1")
eq = f(x).diff(x) - f(x)
assert dsolve(eq, hint='1st_power_series') == Eq(f(x),
C1 + C1*x + C1*x**2/2 + C1*x**3/6 + C1*x**4/24 +
C1*x**5/120 + O(x**6))
eq = f(x).diff(x) - x*f(x)
assert dsolve(eq, hint='1st_power_series') == Eq(f(x),
C1*x**4/8 + C1*x**2/2 + C1 + O(x**6))
eq = f(x).diff(x) - sin(x*f(x))
sol = Eq(f(x), (x - 2)**2*(1+ sin(4))*cos(4) + (x - 2)*sin(4) + 2 + O(x**3))
assert dsolve(eq, hint='1st_power_series', ics={f(2): 2}, n=3) == sol
@slow
def test_lie_group():
C1 = Symbol("C1")
x = Symbol("x") # assuming x is real generates an error!
a, b, c = symbols("a b c")
eq = f(x).diff(x)**2
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol)[0]
eq = Eq(f(x).diff(x), x**2*f(x))
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), C1*exp(x**3)**(1/3))
assert checkodesol(eq, sol)[0]
eq = f(x).diff(x) + a*f(x) - c*exp(b*x)
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol)[0]
eq = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
sol = dsolve(eq, f(x), hint='lie_group')
actual_sol = Eq(f(x), (C1 + x**2/2)*exp(-x**2))
errstr = str(eq)+' : '+str(sol)+' == '+str(actual_sol)
assert sol == actual_sol, errstr
assert checkodesol(eq, sol)[0]
eq = (1 + 2*x)*(f(x).diff(x)) + 2 - 4*exp(-f(x))
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), log(C1/(2*x + 1) + 2))
assert checkodesol(eq, sol)[0]
eq = x**2*(f(x).diff(x)) - f(x) + x**2*exp(x - (1/x))
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol)[0]
eq = x**2*f(x)**2 + x*Derivative(f(x), x)
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), 2/(C1 + x**2))
assert checkodesol(eq, sol)[0]
@XFAIL
def test_lie_group_issue15219():
eqn = exp(f(x).diff(x)-f(x))
assert 'lie_group' not in classify_ode(eqn, f(x))
def test_user_infinitesimals():
C2 = Symbol("C2")
x = Symbol("x") # assuming x is real generates an error
eq = x*(f(x).diff(x)) + 1 - f(x)**2
sol = dsolve(eq, hint='lie_group', xi=sqrt(f(x) - 1)/sqrt(f(x) + 1),
eta=0)
actual_sol = Eq(f(x), (C1 + x**2)/(C1 - x**2))
errstr = str(eq)+' : '+str(sol)+' == '+str(actual_sol)
assert sol == actual_sol, errstr
raises(ValueError, lambda: dsolve(eq, hint='lie_group', xi=0, eta=f(x)))
def test_issue_7081():
eq = x*(f(x).diff(x)) + 1 - f(x)**2
assert dsolve(eq) == Eq(f(x), -1/(-C1 + x**2)*(C1 + x**2))
def test_2nd_power_series_ordinary():
C1, C2 = symbols("C1 C2")
eq = f(x).diff(x, 2) - x*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
assert dsolve(eq) == Eq(f(x),
C2*(x**3/6 + 1) + C1*x*(x**3/12 + 1) + O(x**6))
assert dsolve(eq, x0=-2) == Eq(f(x),
C2*((x + 2)**4/6 + (x + 2)**3/6 - (x + 2)**2 + 1)
+ C1*(x + (x + 2)**4/12 - (x + 2)**3/3 + S(2))
+ O(x**6))
assert dsolve(eq, n=2) == Eq(f(x), C2*x + C1 + O(x**2))
eq = (1 + x**2)*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) -2*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
assert dsolve(eq) == Eq(f(x), C2*(-x**4/3 + x**2 + 1) + C1*x
+ O(x**6))
eq = f(x).diff(x, 2) + x*(f(x).diff(x)) + f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
assert dsolve(eq) == Eq(f(x), C2*(
x**4/8 - x**2/2 + 1) + C1*x*(-x**2/3 + 1) + O(x**6))
eq = f(x).diff(x, 2) + f(x).diff(x) - x*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
assert dsolve(eq) == Eq(f(x), C2*(
-x**4/24 + x**3/6 + 1) + C1*x*(x**3/24 + x**2/6 - x/2
+ 1) + O(x**6))
eq = f(x).diff(x, 2) + x*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
assert dsolve(eq, n=7) == Eq(f(x), C2*(
x**6/180 - x**3/6 + 1) + C1*x*(-x**3/12 + 1) + O(x**7))
def test_2nd_power_series_regular():
C1, C2 = symbols("C1 C2")
eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x)
assert dsolve(eq) == Eq(f(x), C1*x**2*(-16*x**3/9 +
4*x**2 - 4*x + 1) + O(x**6))
eq = 4*x**2*(f(x).diff(x, 2)) -8*x**2*(f(x).diff(x)) + (4*x**2 +
1)*f(x)
assert dsolve(eq) == Eq(f(x), C1*sqrt(x)*(
x**4/24 + x**3/6 + x**2/2 + x + 1) + O(x**6))
eq = x**2*(f(x).diff(x, 2)) - x**2*(f(x).diff(x)) + (
x**2 - 2)*f(x)
assert dsolve(eq) == Eq(f(x), C1*(-x**6/720 - 3*x**5/80 - x**4/8 +
x**2/2 + x/2 + 1)/x + C2*x**2*(-x**3/60 + x**2/20 + x/2 + 1)
+ O(x**6))
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - S(1)/4)*f(x)
assert dsolve(eq) == Eq(f(x), C1*(x**4/24 - x**2/2 + 1)/sqrt(x) +
C2*sqrt(x)*(x**4/120 - x**2/6 + 1) + O(x**6))
eq = x*(f(x).diff(x, 2)) - f(x).diff(x) + 4*x**3*f(x)
assert dsolve(eq) == Eq(f(x), C2*(-x**4/2 + 1) + C1*x**2 + O(x**6))
def test_issue_7093():
x = Symbol("x") # assuming x is real leads to an error
sol = [Eq(f(x), C1 - 2*x*sqrt(x**3)/5),
Eq(f(x), C1 + 2*x*sqrt(x**3)/5)]
eq = Derivative(f(x), x)**2 - x**3
assert (set(dsolve(eq)) == set(sol) and
checkodesol(eq, sol) == [(True, 0)] * 2)
def test_dsolve_linsystem_symbol():
eps = Symbol('epsilon', positive=True)
eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x)))
sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)),
Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
def test_C1_function_9239():
t = Symbol('t')
C1 = Function('C1')
C2 = Function('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t)))
sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)),
Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
def test_issue_15056():
t = Symbol('t')
C3 = Symbol('C3')
assert get_numbered_constants(Symbol('C1') * Function('C2')(t)) == C3
def test_issue_10379():
t,y = symbols('t,y')
sol = dsolve(f(t).diff(t)-(1-51.05*y*f(t)), rational=False)
ans = Eq(f(t), (0.019588638589618*exp(y*(C1 - 51.05*t)) + 0.019588638589618)/y)
assert str(sol) == str(ans)
def test_issue_10867():
x = Symbol('x')
v = Eq(g(x).diff(x).diff(x), (x-2)**2 + (x-3)**3)
ans = Eq(g(x), C1 + C2*x + x**5/20 - 2*x**4/3 + 23*x**3/6 - 23*x**2/2)
assert dsolve(v, g(x)) == ans
def test_issue_11290():
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
sol_1 = dsolve(eq, f(x), simplify=False, hint='1st_exact_Integral')
sol_0 = dsolve(eq, f(x), simplify=False, hint='1st_exact')
assert sol_1.dummy_eq(Eq(Subs(
Integral(u**2 - x*sin(u) - Integral(-sin(u), x), u) +
Integral(cos(u), x), u, f(x)), C1))
assert sol_1.doit() == sol_0
def test_issue_14395():
sol = Eq(f(x), (C1 - x/3 + sin(2*x)/3)*sin(3*x) + (C2 + log(cos(x))
- 2*log(cos(x)**2)/3 + 2*cos(x)**2/3)*cos(3*x))
assert dsolve(Derivative(f(x), x, x) + 9*f(x) - sec(x), f(x)) == sol
def test_sysode_linear_neq_order1():
from sympy.abc import t
Z0 = Function('Z0')
Z1 = Function('Z1')
Z2 = Function('Z2')
Z3 = Function('Z3')
k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30')
eq = (Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)), Eq(Derivative(Z1(t), t),
k01*Z0(t) - k10*Z1(t) + k21*Z2(t)), Eq(Derivative(Z2(t), t), -(k20 + k21 + k23)*Z2(t)), Eq(Derivative(Z3(t),
t), k23*Z2(t) - k30*Z3(t)))
sols_eq = [Eq(Z0(t), C1*k10/k01 + C2*(-k10 + k30)*exp(-k30*t)/(k01 + k10 - k30) - C3*exp(t*(-
k01 - k10)) + C4*(k10*k20 + k10*k21 - k10*k30 - k20**2 - k20*k21 - k20*k23 + k20*k30 +
k23*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 - k21 - k23))),
Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*exp(t*(-k01 - k10)) + C4*(k01*k20 + k01*k21
- k01*k30 - k20*k21 - k21**2 - k21*k23 + k21*k30)*exp(t*(-k20 - k21 - k23))/(k23*(k01 + k10 - k20 -
k21 - k23))),
Eq(Z2(t), C4*(-k20 - k21 - k23 + k30)*exp(t*(-k20 - k21 - k23))/k23),
Eq(Z3(t), C2*exp(-k30*t) + C4*exp(t*(-k20 - k21 - k23)))]
assert dsolve(eq, simplify=False) == sols_eq
def test_nth_algebraic():
eqn = Eq(Derivative(f(x), x), Derivative(g(x), x))
sol = Eq(f(x), C1 + g(x))
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = (diff(f(x)) - x)*(diff(f(x)) + x)
sol = [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)]
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = (1 - sin(f(x))) * f(x).diff(x)
sol = Eq(f(x), C1)
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
M, m, r, t = symbols('M m r t')
phi = Function('phi')
eqn = Eq(-M * phi(t).diff(t),
Rational(3, 2) * m * r**2 * phi(t).diff(t) * phi(t).diff(t,t))
solns = [Eq(phi(t), C1), Eq(phi(t), C1 + C2*t - M*t**2/(3*m*r**2))]
assert checkodesol(eqn, solns[0], order=2, solve_for_func=False)[0]
assert checkodesol(eqn, solns[1], order=2, solve_for_func=False)[0]
assert set(solns) == set(dsolve(eqn, phi(t), hint='nth_algebraic'))
assert set(solns) == set(dsolve(eqn, phi(t)))
eqn = f(x) * f(x).diff(x) * f(x).diff(x, x)
sol = Eq(f(x), C1 + C2*x)
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1)
sol = Eq(f(x), C1 + C2*x)
assert checkodesol(eqn, sol, order=1, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
eqn = f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) * (f(x).diff(x) - x)
solns = [Eq(f(x), C1 + x**2/2), Eq(f(x), C1 + C2*x)]
assert checkodesol(eqn, solns[0], order=2, solve_for_func=False)[0]
assert checkodesol(eqn, solns[1], order=2, solve_for_func=False)[0]
assert set(solns) == set(dsolve(eqn, f(x), hint='nth_algebraic'))
assert set(solns) == set(dsolve(eqn, f(x)))
def test_nth_algebraic_redundant_solutions():
# This one has a redundant solution that should be removed
eqn = f(x)*f(x).diff(x)
soln = Eq(f(x), C1)
assert checkodesol(eqn, soln, order=1, solve_for_func=False)[0]
assert soln == dsolve(eqn, f(x), hint='nth_algebraic')
assert soln == dsolve(eqn, f(x))
# This has two integral solutions and no algebraic solutions
eqn = (diff(f(x)) - x)*(diff(f(x)) + x)
sol = [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)]
assert all(c[0] for c in checkodesol(eqn, sol, order=1, solve_for_func=False))
assert set(sol) == set(dsolve(eqn, f(x), hint='nth_algebraic'))
assert set(sol) == set(dsolve(eqn, f(x)))
# This one doesn't work with dsolve at the time of writing but the
# redundancy checking code should not remove the algebraic solution.
from sympy.solvers.ode import _nth_algebraic_remove_redundant_solutions
eqn = f(x) + f(x)*f(x).diff(x)
solns = [Eq(f(x), 0),
Eq(f(x), C1 - x)]
solns_final = _nth_algebraic_remove_redundant_solutions(eqn, solns, 1, x)
assert all(c[0] for c in checkodesol(eqn, solns, order=1, solve_for_func=False))
assert set(solns) == set(solns_final)
solns = [Eq(f(x), exp(x)),
Eq(f(x), C1*exp(C2*x))]
solns_final = _nth_algebraic_remove_redundant_solutions(eqn, solns, 2, x)
assert solns_final == [Eq(f(x), C1*exp(C2*x))]
#
# These tests can be combined with the above test if they get fixed
# so that dsolve actually works in all these cases.
#
# Fails due to division by f(x) eliminating the solution before nth_algebraic
# is called.
@XFAIL
def test_nth_algebraic_find_multiple1():
eqn = f(x) + f(x)*f(x).diff(x)
solns = [Eq(f(x), 0),
Eq(f(x), C1 - x)]
assert all(c[0] for c in checkodesol(eqn, solns, order=1, solve_for_func=False))
assert set(solns) == set(dsolve(eqn, f(x)))
# prep = True breaks this
def test_nth_algebraic_noprep1():
eqn = Derivative(x*f(x), x, x, x)
sol = Eq(f(x), (C1 + C2*x + C3*x**2) / x)
assert checkodesol(eqn, sol, order=3, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=False, hint='nth_algebraic')
@XFAIL
def test_nth_algebraic_prep1():
eqn = Derivative(x*f(x), x, x, x)
sol = Eq(f(x), (C1 + C2*x + C3*x**2) / x)
assert checkodesol(eqn, sol, order=3, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=True, hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
# prep = True breaks this
def test_nth_algebraic_noprep2():
eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=False, hint='nth_algebraic')
@XFAIL
def test_nth_algebraic_prep2():
eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x), prep=True, hint='nth_algebraic')
assert sol == dsolve(eqn, f(x))
# This one needs a substitution f' = g. Should be doable...
@XFAIL
def test_2nd_order_substitution():
eqn = -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
assert sol == dsolve(eqn, f(x))
# This needs a combination of solutions from nth_algebraic and some other
# method from dsolve
@XFAIL
def test_nth_algebraic_find_multiple2():
eqn = f(x)**2 + f(x)*f(x).diff(x)
solns = [Eq(f(x), 0),
Eq(f(x), C1*exp(-x))]
assert all(c[0] for c in checkodesol(eqn, solns, order=1, solve_for_func=False))
assert set(solns) == dsolve(eqn, f(x))
# Needs to be a way to know how to combine derivatives in the expression
@XFAIL
def test_factoring_ode():
eqn = Derivative(x*f(x), x, x, x) + Derivative(f(x), x, x, x)
soln = Eq(f(x), (C1*x**2/2 + C2*x + C3 - x)/(1 + x))
assert checkodesol(eqn, soln, order=2, solve_for_func=False)[0]
assert soln == dsolve(eqn, f(x))
|
65cf43d9f1aa5dff08c8fdf67ae0a454384b0690b06067976380ead9e654da83
|
from sympy import sqrt, pi, E, exp
from sympy.core import S, Symbol, symbols, I
from sympy.core.compatibility import range
from sympy.discrete.convolutions import (
convolution, convolution_fft, convolution_ntt, convolution_fwht,
convolution_subset, covering_product, intersecting_product)
from sympy.utilities.pytest import raises
from sympy.abc import x, y
def test_convolution():
# fft
a = [1, S(5)/3, sqrt(3), S(7)/5]
b = [9, 5, 5, 4, 3, 2]
c = [3, 5, 3, 7, 8]
d = [1422, 6572, 3213, 5552]
assert convolution(a, b) == convolution_fft(a, b)
assert convolution(a, b, dps=9) == convolution_fft(a, b, dps=9)
assert convolution(a, d, dps=7) == convolution_fft(d, a, dps=7)
assert convolution(a, d[1:], dps=3) == convolution_fft(d[1:], a, dps=3)
# prime moduli of the form (m*2**k + 1), sequence length
# should be a divisor of 2**k
p = 7*17*2**23 + 1
q = 19*2**10 + 1
# ntt
assert convolution(d, b, prime=q) == convolution_ntt(b, d, prime=q)
assert convolution(c, b, prime=p) == convolution_ntt(b, c, prime=p)
assert convolution(d, c, prime=p) == convolution_ntt(c, d, prime=p)
raises(TypeError, lambda: convolution(b, d, dps=5, prime=q))
raises(TypeError, lambda: convolution(b, d, dps=6, prime=q))
# fwht
assert convolution(a, b, dyadic=True) == convolution_fwht(a, b)
assert convolution(a, b, dyadic=False) == convolution(a, b)
raises(TypeError, lambda: convolution(b, d, dps=2, dyadic=True))
raises(TypeError, lambda: convolution(b, d, prime=p, dyadic=True))
raises(TypeError, lambda: convolution(a, b, dps=2, dyadic=True))
raises(TypeError, lambda: convolution(b, c, prime=p, dyadic=True))
# subset
assert convolution(a, b, subset=True) == convolution_subset(a, b) == \
convolution(a, b, subset=True, dyadic=False) == \
convolution(a, b, subset=True)
assert convolution(a, b, subset=False) == convolution(a, b)
raises(TypeError, lambda: convolution(a, b, subset=True, dyadic=True))
raises(TypeError, lambda: convolution(c, d, subset=True, dps=6))
raises(TypeError, lambda: convolution(a, c, subset=True, prime=q))
def test_cyclic_convolution():
# fft
a = [1, S(5)/3, sqrt(3), S(7)/5]
b = [9, 5, 5, 4, 3, 2]
assert convolution([1, 2, 3], [4, 5, 6], cycle=0) == \
convolution([1, 2, 3], [4, 5, 6], cycle=5) == \
convolution([1, 2, 3], [4, 5, 6])
assert convolution([1, 2, 3], [4, 5, 6], cycle=3) == [31, 31, 28]
a = [S(1)/3, S(7)/3, S(5)/9, S(2)/7, S(5)/8]
b = [S(3)/5, S(4)/7, S(7)/8, S(8)/9]
assert convolution(a, b, cycle=0) == \
convolution(a, b, cycle=len(a) + len(b) - 1)
assert convolution(a, b, cycle=4) == [S(87277)/26460, S(30521)/11340,
S(11125)/4032, S(3653)/1080]
assert convolution(a, b, cycle=6) == [S(20177)/20160, S(676)/315, S(47)/24,
S(3053)/1080, S(16397)/5292, S(2497)/2268]
assert convolution(a, b, cycle=9) == \
convolution(a, b, cycle=0) + [S.Zero]
# ntt
a = [2313, 5323532, S(3232), 42142, 42242421]
b = [S(33456), 56757, 45754, 432423]
assert convolution(a, b, prime=19*2**10 + 1, cycle=0) == \
convolution(a, b, prime=19*2**10 + 1, cycle=8) == \
convolution(a, b, prime=19*2**10 + 1)
assert convolution(a, b, prime=19*2**10 + 1, cycle=5) == [96, 17146, 2664,
15534, 3517]
assert convolution(a, b, prime=19*2**10 + 1, cycle=7) == [4643, 3458, 1260,
15534, 3517, 16314, 13688]
assert convolution(a, b, prime=19*2**10 + 1, cycle=9) == \
convolution(a, b, prime=19*2**10 + 1) + [0]
# fwht
u, v, w, x, y = symbols('u v w x y')
p, q, r, s, t = symbols('p q r s t')
c = [u, v, w, x, y]
d = [p, q, r, s, t]
assert convolution(a, b, dyadic=True, cycle=3) == \
[2499522285783, 19861417974796, 4702176579021]
assert convolution(a, b, dyadic=True, cycle=5) == [2718149225143,
2114320852171, 20571217906407, 246166418903, 1413262436976]
assert convolution(c, d, dyadic=True, cycle=4) == \
[p*u + p*y + q*v + r*w + s*x + t*u + t*y,
p*v + q*u + q*y + r*x + s*w + t*v,
p*w + q*x + r*u + r*y + s*v + t*w,
p*x + q*w + r*v + s*u + s*y + t*x]
assert convolution(c, d, dyadic=True, cycle=6) == \
[p*u + q*v + r*w + r*y + s*x + t*w + t*y,
p*v + q*u + r*x + s*w + s*y + t*x,
p*w + q*x + r*u + s*v,
p*x + q*w + r*v + s*u,
p*y + t*u,
q*y + t*v]
# subset
assert convolution(a, b, subset=True, cycle=7) == [18266671799811,
178235365533, 213958794, 246166418903, 1413262436976,
2397553088697, 1932759730434]
assert convolution(a[1:], b, subset=True, cycle=4) == \
[178104086592, 302255835516, 244982785880, 3717819845434]
assert convolution(a, b[:-1], subset=True, cycle=6) == [1932837114162,
178235365533, 213958794, 245166224504, 1413262436976, 2397553088697]
assert convolution(c, d, subset=True, cycle=3) == \
[p*u + p*x + q*w + r*v + r*y + s*u + t*w,
p*v + p*y + q*u + s*y + t*u + t*x,
p*w + q*y + r*u + t*v]
assert convolution(c, d, subset=True, cycle=5) == \
[p*u + q*y + t*v,
p*v + q*u + r*y + t*w,
p*w + r*u + s*y + t*x,
p*x + q*w + r*v + s*u,
p*y + t*u]
def test_convolution_fft():
assert all(convolution_fft([], x, dps=y) == [] for x in ([], [1]) for y in (None, 3))
assert convolution_fft([1, 2, 3], [4, 5, 6]) == [4, 13, 28, 27, 18]
assert convolution_fft([1], [5, 6, 7]) == [5, 6, 7]
assert convolution_fft([1, 3], [5, 6, 7]) == [5, 21, 25, 21]
assert convolution_fft([1 + 2*I], [2 + 3*I]) == [-4 + 7*I]
assert convolution_fft([1 + 2*I, 3 + 4*I, 5 + S(3)/5*I], [S(2)/5 + S(4)/7*I]) == \
[-S(26)/35 + 48*I/35, -S(38)/35 + 116*I/35, S(58)/35 + 542*I/175]
assert convolution_fft([S(3)/4, S(5)/6], [S(7)/8, S(1)/3, S(2)/5]) == \
[S(21)/32, S(47)/48, S(26)/45, S(1)/3]
assert convolution_fft([S(1)/9, S(2)/3, S(3)/5], [S(2)/5, S(3)/7, S(4)/9]) == \
[S(2)/45, S(11)/35, S(8152)/14175, S(523)/945, S(4)/15]
assert convolution_fft([pi, E, sqrt(2)], [sqrt(3), 1/pi, 1/E]) == \
[sqrt(3)*pi, 1 + sqrt(3)*E, E/pi + pi*exp(-1) + sqrt(6),
sqrt(2)/pi + 1, sqrt(2)*exp(-1)]
assert convolution_fft([2321, 33123], [5321, 6321, 71323]) == \
[12350041, 190918524, 374911166, 2362431729]
assert convolution_fft([312313, 31278232], [32139631, 319631]) == \
[10037624576503, 1005370659728895, 9997492572392]
raises(TypeError, lambda: convolution_fft(x, y))
raises(ValueError, lambda: convolution_fft([x, y], [y, x]))
def test_convolution_ntt():
# prime moduli of the form (m*2**k + 1), sequence length
# should be a divisor of 2**k
p = 7*17*2**23 + 1
q = 19*2**10 + 1
r = 2*500000003 + 1 # only for sequences of length 1 or 2
s = 2*3*5*7 # composite modulus
assert all(convolution_ntt([], x, prime=y) == [] for x in ([], [1]) for y in (p, q, r))
assert convolution_ntt([2], [3], r) == [6]
assert convolution_ntt([2, 3], [4], r) == [8, 12]
assert convolution_ntt([32121, 42144, 4214, 4241], [32132, 3232, 87242], p) == [33867619,
459741727, 79180879, 831885249, 381344700, 369993322]
assert convolution_ntt([121913, 3171831, 31888131, 12], [17882, 21292, 29921, 312], q) == \
[8158, 3065, 3682, 7090, 1239, 2232, 3744]
assert convolution_ntt([12, 19, 21, 98, 67], [2, 6, 7, 8, 9], p) == \
convolution_ntt([12, 19, 21, 98, 67], [2, 6, 7, 8, 9], q)
assert convolution_ntt([12, 19, 21, 98, 67], [21, 76, 17, 78, 69], p) == \
convolution_ntt([12, 19, 21, 98, 67], [21, 76, 17, 78, 69], q)
raises(ValueError, lambda: convolution_ntt([2, 3], [4, 5], r))
raises(ValueError, lambda: convolution_ntt([x, y], [y, x], q))
raises(TypeError, lambda: convolution_ntt(x, y, p))
def test_convolution_fwht():
assert convolution_fwht([], []) == []
assert convolution_fwht([], [1]) == []
assert convolution_fwht([1, 2, 3], [4, 5, 6]) == [32, 13, 18, 27]
assert convolution_fwht([S(5)/7, S(6)/8, S(7)/3], [2, 4, S(6)/7]) == \
[S(45)/7, S(61)/14, S(776)/147, S(419)/42]
a = [1, S(5)/3, sqrt(3), S(7)/5, 4 + 5*I]
b = [94, 51, 53, 45, 31, 27, 13]
c = [3 + 4*I, 5 + 7*I, 3, S(7)/6, 8]
assert convolution_fwht(a, b) == [53*sqrt(3) + 366 + 155*I,
45*sqrt(3) + S(5848)/15 + 135*I,
94*sqrt(3) + S(1257)/5 + 65*I,
51*sqrt(3) + S(3974)/15,
13*sqrt(3) + 452 + 470*I,
S(4513)/15 + 255*I,
31*sqrt(3) + S(1314)/5 + 265*I,
27*sqrt(3) + S(3676)/15 + 225*I]
assert convolution_fwht(b, c) == [1993/S(2) + 733*I, 6215/S(6) + 862*I,
1659/S(2) + 527*I, 1988/S(3) + 551*I, 1019 + 313*I, 3955/S(6) + 325*I,
1175/S(2) + 52*I, 3253/S(6) + 91*I]
assert convolution_fwht(a[3:], c) == [-S(54)/5 + 293*I/5, -1 + 204*I/5,
133/S(15) + 35*I/6, 409/S(30) + 15*I, 56/S(5), 32 + 40*I, 0, 0]
u, v, w, x, y, z = symbols('u v w x y z')
assert convolution_fwht([u, v], [x, y]) == [u*x + v*y, u*y + v*x]
assert convolution_fwht([u, v, w], [x, y]) == \
[u*x + v*y, u*y + v*x, w*x, w*y]
assert convolution_fwht([u, v, w], [x, y, z]) == \
[u*x + v*y + w*z, u*y + v*x, u*z + w*x, v*z + w*y]
raises(TypeError, lambda: convolution_fwht(x, y))
raises(TypeError, lambda: convolution_fwht(x*y, u + v))
def test_convolution_subset():
assert convolution_subset([], []) == []
assert convolution_subset([], [S(1)/3]) == []
assert convolution_subset([6 + 3*I/7], [S(2)/3]) == [4 + 2*I/7]
a = [1, S(5)/3, sqrt(3), 4 + 5*I]
b = [64, 71, 55, 47, 33, 29, 15]
c = [3 + 2*I/3, 5 + 7*I, 7, S(7)/5, 9]
assert convolution_subset(a, b) == [64, 533/S(3), 55 + 64*sqrt(3),
71*sqrt(3) + 1184/S(3) + 320*I, 33, 84,
15 + 33*sqrt(3), 29*sqrt(3) + 157 + 165*I]
assert convolution_subset(b, c) == [192 + 128*I/3, 533 + 1486*I/3,
613 + 110*I/3, S(5013)/5 + 1249*I/3,
675 + 22*I, 891 + 751*I/3,
771 + 10*I, S(3736)/5 + 105*I]
assert convolution_subset(a, c) == convolution_subset(c, a)
assert convolution_subset(a[:2], b) == \
[64, 533/S(3), 55, 416/S(3), 33, 84, 15, 25]
assert convolution_subset(a[:2], c) == \
[3 + 2*I/3, 10 + 73*I/9, 7, 196/S(15), 9, 15, 0, 0]
u, v, w, x, y, z = symbols('u v w x y z')
assert convolution_subset([u, v, w], [x, y]) == [u*x, u*y + v*x, w*x, w*y]
assert convolution_subset([u, v, w, x], [y, z]) == \
[u*y, u*z + v*y, w*y, w*z + x*y]
assert convolution_subset([u, v], [x, y, z]) == \
convolution_subset([x, y, z], [u, v])
raises(TypeError, lambda: convolution_subset(x, z))
raises(TypeError, lambda: convolution_subset(S(7)/3, u))
def test_covering_product():
assert covering_product([], []) == []
assert covering_product([], [S(1)/3]) == []
assert covering_product([6 + 3*I/7], [S(2)/3]) == [4 + 2*I/7]
a = [1, S(5)/8, sqrt(7), 4 + 9*I]
b = [66, 81, 95, 49, 37, 89, 17]
c = [3 + 2*I/3, 51 + 72*I, 7, S(7)/15, 91]
assert covering_product(a, b) == [66, S(1383)/8, 95 + 161*sqrt(7),
130*sqrt(7) + 1303 + 2619*I, 37,
S(671)/4, 17 + 54*sqrt(7),
89*sqrt(7) + S(4661)/8 + 1287*I]
assert covering_product(b, c) == [198 + 44*I, 7740 + 10638*I,
1412 + 190*I/3, S(42684)/5 + 31202*I/3,
9484 + 74*I/3, 22163 + 27394*I/3,
10621 + 34*I/3, S(90236)/15 + 1224*I]
assert covering_product(a, c) == covering_product(c, a)
assert covering_product(b, c[:-1]) == [198 + 44*I, 7740 + 10638*I,
1412 + 190*I/3, S(42684)/5 + 31202*I/3,
111 + 74*I/3, 6693 + 27394*I/3,
429 + 34*I/3, S(23351)/15 + 1224*I]
assert covering_product(a, c[:-1]) == [3 + 2*I/3,
S(339)/4 + 1409*I/12, 7 + 10*sqrt(7) + 2*sqrt(7)*I/3,
-403 + 772*sqrt(7)/15 + 72*sqrt(7)*I + 12658*I/15]
u, v, w, x, y, z = symbols('u v w x y z')
assert covering_product([u, v, w], [x, y]) == \
[u*x, u*y + v*x + v*y, w*x, w*y]
assert covering_product([u, v, w, x], [y, z]) == \
[u*y, u*z + v*y + v*z, w*y, w*z + x*y + x*z]
assert covering_product([u, v], [x, y, z]) == \
covering_product([x, y, z], [u, v])
raises(TypeError, lambda: covering_product(x, z))
raises(TypeError, lambda: covering_product(S(7)/3, u))
def test_intersecting_product():
assert intersecting_product([], []) == []
assert intersecting_product([], [S(1)/3]) == []
assert intersecting_product([6 + 3*I/7], [S(2)/3]) == [4 + 2*I/7]
a = [1, sqrt(5), S(3)/8 + 5*I, 4 + 7*I]
b = [67, 51, 65, 48, 36, 79, 27]
c = [3 + 2*I/5, 5 + 9*I, 7, S(7)/19, 13]
assert intersecting_product(a, b) == [195*sqrt(5) + 6979/S(8) + 1886*I,
178*sqrt(5) + 520 + 910*I, 841/S(2) + 1344*I,
192 + 336*I, 0, 0, 0, 0]
assert intersecting_product(b, c) == [128553/S(19) + 9521*I/5,
S(17820)/19 + 1602*I, S(19264)/19, S(336)/19, 1846, 0, 0, 0]
assert intersecting_product(a, c) == intersecting_product(c, a)
assert intersecting_product(b[1:], c[:-1]) == [64788/S(19) + 8622*I/5,
12804/S(19) + 1152*I, 11508/S(19), 252/S(19), 0, 0, 0, 0]
assert intersecting_product(a, c[:-2]) == \
[-99/S(5) + 10*sqrt(5) + 2*sqrt(5)*I/5 + 3021*I/40,
-43 + 5*sqrt(5) + 9*sqrt(5)*I + 71*I, 245/S(8) + 84*I, 0]
u, v, w, x, y, z = symbols('u v w x y z')
assert intersecting_product([u, v, w], [x, y]) == \
[u*x + u*y + v*x + w*x + w*y, v*y, 0, 0]
assert intersecting_product([u, v, w, x], [y, z]) == \
[u*y + u*z + v*y + w*y + w*z + x*y, v*z + x*z, 0, 0]
assert intersecting_product([u, v], [x, y, z]) == \
intersecting_product([x, y, z], [u, v])
raises(TypeError, lambda: intersecting_product(x, z))
raises(TypeError, lambda: intersecting_product(u, S(8)/3))
|
d6a14224eba91990ef8a90cf00e7835e9293570589d39a366e8eedfb1ee0e67b
|
from sympy import sqrt, Rational, fibonacci
from sympy.core import S, symbols, I
from sympy.core.compatibility import range
from sympy.utilities.pytest import raises
from sympy.discrete.recurrences import linrec
def test_linrec():
assert linrec(coeffs=[1, 1], init=[1, 1], n=20) == 10946
assert linrec(coeffs=[1, 2, 3, 4, 5], init=[1, 1, 0, 2], n=10) == 1040
assert linrec(coeffs=[0, 0, 11, 13], init=[23, 27], n=25) == 59628567384
assert linrec(coeffs=[0, 0, 1, 1, 2], init=[1, 5, 3], n=15) == 165
assert linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4], n=70) == \
56889923441670659718376223533331214868804815612050381493741233489928913241
assert linrec(coeffs=[0]*55 + [1, 1, 2, 3], init=[0]*50 + [1, 2, 3], n=4000) == \
702633573874937994980598979769135096432444135301118916539
assert linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4], n=10**4)
assert linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4], n=10**5)
assert all(linrec(coeffs=[1, 1], init=[0, 1], n=n) == fibonacci(n)
for n in range(95, 115))
assert all(linrec(coeffs=[1, 1], init=[1, 1], n=n) == fibonacci(n + 1)
for n in range(595, 615))
a = [S(1)/2, S(3)/4, S(5)/6, 7, S(8)/9, S(3)/5]
b = [1, 2, 8, S(5)/7, S(3)/7, S(2)/9, 6]
x, y, z = symbols('x y z')
assert linrec(coeffs=a[:5], init=b[:4], n=80) == \
Rational(1726244235456268979436592226626304376013002142588105090705187189,
1960143456748895967474334873705475211264)
assert linrec(coeffs=a[:4], init=b[:4], n=50) == \
Rational(368949940033050147080268092104304441, 504857282956046106624)
assert linrec(coeffs=a[3:], init=b[:3], n=35) == \
Rational(97409272177295731943657945116791049305244422833125109,
814315512679031689453125)
assert linrec(coeffs=[0]*60 + [S(2)/3, S(4)/5], init=b, n=3000) == \
26777668739896791448594650497024/S(48084516708184142230517578125)
raises(TypeError, lambda: linrec(coeffs=[11, 13, 15, 17], init=[1, 2, 3, 4, 5], n=1))
raises(TypeError, lambda: linrec(coeffs=a[:4], init=b[:5], n=10000))
raises(ValueError, lambda: linrec(coeffs=a[:4], init=b[:4], n=-10000))
raises(TypeError, lambda: linrec(x, b, n=10000))
raises(TypeError, lambda: linrec(a, y, n=10000))
assert linrec(coeffs=[x, y, z], init=[1, 1, 1], n=4) == \
x**2 + x*y + x*z + y + z
assert linrec(coeffs=[1, 2, 1], init=[x, y, z], n=20) == \
269542*x + 664575*y + 578949*z
assert linrec(coeffs=[0, 3, 1, 2], init=[x, y], n=30) == \
58516436*x + 56372788*y
assert linrec(coeffs=[0]*50 + [1, 2, 3], init=[x, y, z], n=1000) == \
11477135884896*x + 25999077948732*y + 41975630244216*z
|
fc197effc3fbe5c66cc35d0f122dfd84848f813e3fd640adb4f4d0235cb9f870
|
from sympy import sqrt
from sympy.core import S, Symbol, symbols, I
from sympy.core.compatibility import range
from sympy.discrete import (fft, ifft, ntt, intt, fwht, ifwht,
mobius_transform, inverse_mobius_transform)
from sympy.utilities.pytest import raises
def test_fft_ifft():
assert all(tf(ls) == ls for tf in (fft, ifft)
for ls in ([], [S(5)/3]))
ls = list(range(6))
fls = [15, -7*sqrt(2)/2 - 4 - sqrt(2)*I/2 + 2*I, 2 + 3*I,
-4 + 7*sqrt(2)/2 - 2*I - sqrt(2)*I/2, -3,
-4 + 7*sqrt(2)/2 + sqrt(2)*I/2 + 2*I,
2 - 3*I, -7*sqrt(2)/2 - 4 - 2*I + sqrt(2)*I/2]
assert fft(ls) == fls
assert ifft(fls) == ls + [S.Zero]*2
ls = [1 + 2*I, 3 + 4*I, 5 + 6*I]
ifls = [S(9)/4 + 3*I, -7*I/4, S(3)/4 + I, -2 - I/4]
assert ifft(ls) == ifls
assert fft(ifls) == ls + [S.Zero]
x = Symbol('x', real=True)
raises(TypeError, lambda: fft(x))
raises(ValueError, lambda: ifft([x, 2*x, 3*x**2, 4*x**3]))
def test_ntt_intt():
# prime moduli of the form (m*2**k + 1), sequence length
# should be a divisor of 2**k
p = 7*17*2**23 + 1
q = 2*500000003 + 1 # only for sequences of length 1 or 2
r = 2*3*5*7 # composite modulus
assert all(tf(ls, p) == ls for tf in (ntt, intt)
for ls in ([], [5]))
ls = list(range(6))
nls = [15, 801133602, 738493201, 334102277, 998244350, 849020224,
259751156, 12232587]
assert ntt(ls, p) == nls
assert intt(nls, p) == ls + [0]*2
ls = [1 + 2*I, 3 + 4*I, 5 + 6*I]
x = Symbol('x', integer=True)
raises(TypeError, lambda: ntt(x, p))
raises(ValueError, lambda: intt([x, 2*x, 3*x**2, 4*x**3], p))
raises(ValueError, lambda: intt(ls, p))
raises(ValueError, lambda: ntt([1.2, 2.1, 3.5], p))
raises(ValueError, lambda: ntt([3, 5, 6], q))
raises(ValueError, lambda: ntt([4, 5, 7], r))
assert ntt([1.0, 2.0, 3.0], p) == ntt([1, 2, 3], p)
def test_fwht_ifwht():
assert all(tf(ls) == ls for tf in (fwht, ifwht) \
for ls in ([], [S(7)/4]))
ls = [213, 321, 43235, 5325, 312, 53]
fls = [49459, 38061, -47661, -37759, 48729, 37543, -48391, -38277]
assert fwht(ls) == fls
assert ifwht(fls) == ls + [S.Zero]*2
ls = [S(1)/2 + 2*I, S(3)/7 + 4*I, S(5)/6 + 6*I, S(7)/3, S(9)/4]
ifls = [S(533)/672 + 3*I/2, S(23)/224 + I/2, S(1)/672, S(107)/224 - I,
S(155)/672 + 3*I/2, -S(103)/224 + I/2, -S(377)/672, -S(19)/224 - I]
assert ifwht(ls) == ifls
assert fwht(ifls) == ls + [S.Zero]*3
x, y = symbols('x y')
raises(TypeError, lambda: fwht(x))
ls = [x, 2*x, 3*x**2, 4*x**3]
ifls = [x**3 + 3*x**2/4 + 3*x/4,
-x**3 + 3*x**2/4 - x/4,
-x**3 - 3*x**2/4 + 3*x/4,
x**3 - 3*x**2/4 - x/4]
assert ifwht(ls) == ifls
assert fwht(ifls) == ls
ls = [x, y, x**2, y**2, x*y]
fls = [x**2 + x*y + x + y**2 + y,
x**2 + x*y + x - y**2 - y,
-x**2 + x*y + x - y**2 + y,
-x**2 + x*y + x + y**2 - y,
x**2 - x*y + x + y**2 + y,
x**2 - x*y + x - y**2 - y,
-x**2 - x*y + x - y**2 + y,
-x**2 - x*y + x + y**2 - y]
assert fwht(ls) == fls
assert ifwht(fls) == ls + [S.Zero]*3
ls = list(range(6))
assert fwht(ls) == [x*8 for x in ifwht(ls)]
def test_mobius_transform():
assert all(tf(ls, subset=subset) == ls
for ls in ([], [S(7)/4]) for subset in (True, False)
for tf in (mobius_transform, inverse_mobius_transform))
w, x, y, z = symbols('w x y z')
assert mobius_transform([x, y]) == [x, x + y]
assert inverse_mobius_transform([x, x + y]) == [x, y]
assert mobius_transform([x, y], subset=False) == [x + y, y]
assert inverse_mobius_transform([x + y, y], subset=False) == [x, y]
assert mobius_transform([w, x, y, z]) == [w, w + x, w + y, w + x + y + z]
assert inverse_mobius_transform([w, w + x, w + y, w + x + y + z]) == \
[w, x, y, z]
assert mobius_transform([w, x, y, z], subset=False) == \
[w + x + y + z, x + z, y + z, z]
assert inverse_mobius_transform([w + x + y + z, x + z, y + z, z], subset=False) == \
[w, x, y, z]
ls = [S(2)/3, S(6)/7, S(5)/8, 9, S(5)/3 + 7*I]
mls = [S(2)/3, S(32)/21, S(31)/24, S(1873)/168,
S(7)/3 + 7*I, S(67)/21 + 7*I, S(71)/24 + 7*I,
S(2153)/168 + 7*I]
assert mobius_transform(ls) == mls
assert inverse_mobius_transform(mls) == ls + [S.Zero]*3
mls = [S(2153)/168 + 7*I, S(69)/7, S(77)/8, 9, S(5)/3 + 7*I, 0, 0, 0]
assert mobius_transform(ls, subset=False) == mls
assert inverse_mobius_transform(mls, subset=False) == ls + [S.Zero]*3
ls = ls[:-1]
mls = [S(2)/3, S(32)/21, S(31)/24, S(1873)/168]
assert mobius_transform(ls) == mls
assert inverse_mobius_transform(mls) == ls
mls = [S(1873)/168, S(69)/7, S(77)/8, 9]
assert mobius_transform(ls, subset=False) == mls
assert inverse_mobius_transform(mls, subset=False) == ls
raises(TypeError, lambda: mobius_transform(x, subset=True))
raises(TypeError, lambda: inverse_mobius_transform(y, subset=False))
|
b71e121f2e929f9e0b73f5f45379bec1670cc7aad3eca504029823c3db4dbc18
|
from sympy.liealgebras.cartan_type import CartanType
from sympy.core.compatibility import range
from sympy.matrices import Matrix
from sympy.core.backend import S
def test_type_F():
c = CartanType("F4")
m = Matrix(4, 4, [2, -1, 0, 0, -1, 2, -2, 0, 0, -1, 2, -1, 0, 0, -1, 2])
assert c.cartan_matrix() == m
assert c.dimension() == 4
assert c.simple_root(3) == [0, 0, 0, 1]
assert c.simple_root(4) == [-S(1)/2, -S(1)/2, -S(1)/2, -S(1)/2]
assert c.roots() == 48
assert c.basis() == 52
diag = "0---0=>=0---0\n" + " ".join(str(i) for i in range(1, 5))
assert c.dynkin_diagram() == diag
assert c.positive_roots() == {1: [1, -1, 0, 0], 2: [1, 1, 0, 0], 3: [1, 0, -1, 0],
4: [1, 0, 1, 0], 5: [1, 0, 0, -1], 6: [1, 0, 0, 1], 7: [0, 1, -1, 0],
8: [0, 1, 1, 0], 9: [0, 1, 0, -1], 10: [0, 1, 0, 1], 11: [0, 0, 1, -1],
12: [0, 0, 1, 1], 13: [1, 0, 0, 0], 14: [0, 1, 0, 0], 15: [0, 0, 1, 0],
16: [0, 0, 0, 1], 17: [S(1)/2, S(1)/2, S(1)/2, S(1)/2], 18: [S(1)/2, S(-1)/2, S(1)/2, S(1)/2],
19: [S(1)/2, S(1)/2, S(-1)/2, S(1)/2], 20: [S(1)/2, S(1)/2, S(1)/2, S(-1)/2], 21: [S(1)/2, S(1)/2, S(-1)/2, S(-1)/2],
22: [S(1)/2, S(-1)/2, S(1)/2, S(-1)/2], 23: [S(1)/2, S(-1)/2, S(-1)/2, S(1)/2], 24: [S(1)/2, S(-1)/2, S(-1)/2, S(-1)/2]}
|
d7e5efa2b54d8e4de2cb7f819274f853a058e48ed9ceed59b398a7bb2741cacc
|
from sympy import (Symbol, S, exp, log, sqrt, oo, E, zoo, pi, tan, sin, cos,
cot, sec, csc, Abs, symbols)
from sympy.calculus.util import (function_range, continuous_domain, not_empty_in,
periodicity, lcim, AccumBounds)
from sympy.core import Add, Mul, Pow
from sympy.sets.sets import Interval, FiniteSet, Complement, Union
from sympy.utilities.pytest import raises
from sympy.abc import x
a = Symbol('a', real=True)
def test_function_range():
x, y, a, b = symbols('x y a b')
assert function_range(sin(x), x, Interval(-pi/2, pi/2)
) == Interval(-1, 1)
assert function_range(sin(x), x, Interval(0, pi)
) == Interval(0, 1)
assert function_range(tan(x), x, Interval(0, pi)
) == Interval(-oo, oo)
assert function_range(tan(x), x, Interval(pi/2, pi)
) == Interval(-oo, 0)
assert function_range((x + 3)/(x - 2), x, Interval(-5, 5)
) == Union(Interval(-oo, S(2)/7), Interval(S(8)/3, oo))
assert function_range(1/(x**2), x, Interval(-1, 1)
) == Interval(1, oo)
assert function_range(exp(x), x, Interval(-1, 1)
) == Interval(exp(-1), exp(1))
assert function_range(log(x) - x, x, S.Reals
) == Interval(-oo, -1)
assert function_range(sqrt(3*x - 1), x, Interval(0, 2)
) == Interval(0, sqrt(5))
assert function_range(x*(x - 1) - (x**2 - x), x, S.Reals
) == FiniteSet(0)
assert function_range(x*(x - 1) - (x**2 - x) + y, x, S.Reals
) == FiniteSet(y)
assert function_range(sin(x), x, Union(Interval(-5, -3), FiniteSet(4))
) == Union(Interval(-sin(3), 1), FiniteSet(sin(4)))
assert function_range(cos(x), x, Interval(-oo, -4)
) == Interval(-1, 1)
raises(NotImplementedError, lambda : function_range(
exp(x)*(sin(x) - cos(x))/2 - x, x, S.Reals))
raises(NotImplementedError, lambda : function_range(
log(x), x, S.Integers))
raises(NotImplementedError, lambda : function_range(
sin(x)/2, x, S.Naturals))
def test_continuous_domain():
x = Symbol('x')
assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi)
assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \
Union(Interval(0, pi/2, False, True), Interval(pi/2, 3*pi/2, True, True),
Interval(3*pi/2, 2*pi, True, False))
assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \
Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True))
assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \
Interval(S(1)/4, oo, True, True)
assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True)
assert continuous_domain(1/x - 2, x, S.Reals) == \
Union(Interval.open(-oo, 0), Interval.open(0, oo))
assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \
Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo))
def test_not_empty_in():
assert not_empty_in(FiniteSet(x, 2*x).intersect(Interval(1, 2, True, False)), x) == \
Interval(S(1)/2, 2, True, False)
assert not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) == \
Union(Interval(-sqrt(2), -1), Interval(1, 2))
assert not_empty_in(FiniteSet(x**2 + x, x).intersect(Interval(2, 4)), x) == \
Union(Interval(-sqrt(17)/2 - S(1)/2, -2),
Interval(1, -S(1)/2 + sqrt(17)/2), Interval(2, 4))
assert not_empty_in(FiniteSet(x/(x - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet(a/(a - 1)).intersect(S.Reals), a) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet((x**2 - 3*x + 2)/(x - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(1))
assert not_empty_in(FiniteSet(3, 4, x/(x - 1)).intersect(Interval(2, 3)), x) == \
Union(Interval(S(3)/2, 2), FiniteSet(3))
assert not_empty_in(FiniteSet(x/(x**2 - 1)).intersect(S.Reals), x) == \
Complement(S.Reals, FiniteSet(-1, 1))
assert not_empty_in(FiniteSet(x, x**2).intersect(Union(Interval(1, 3, True, True),
Interval(4, 5))), x) == \
Union(Interval(-sqrt(5), -2), Interval(-sqrt(3), -1, True, True),
Interval(1, 3, True, True), Interval(4, 5))
assert not_empty_in(FiniteSet(1).intersect(Interval(3, 4)), x) == S.EmptySet
assert not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) == \
Union(Interval(-2, -1, True, False), Interval(2, oo))
def test_periodicity():
x = Symbol('x')
y = Symbol('y')
assert periodicity(sin(2*x), x) == pi
assert periodicity((-2)*tan(4*x), x) == pi/4
assert periodicity(sin(x)**2, x) == 2*pi
assert periodicity(3**tan(3*x), x) == pi/3
assert periodicity(tan(x)*cos(x), x) == 2*pi
assert periodicity(sin(x)**(tan(x)), x) == 2*pi
assert periodicity(tan(x)*sec(x), x) == 2*pi
assert periodicity(sin(2*x)*cos(2*x) - y, x) == pi/2
assert periodicity(tan(x) + cot(x), x) == pi
assert periodicity(sin(x) - cos(2*x), x) == 2*pi
assert periodicity(sin(x) - 1, x) == 2*pi
assert periodicity(sin(4*x) + sin(x)*cos(x), x) == pi
assert periodicity(exp(sin(x)), x) == 2*pi
assert periodicity(log(cot(2*x)) - sin(cos(2*x)), x) == pi
assert periodicity(sin(2*x)*exp(tan(x) - csc(2*x)), x) == pi
assert periodicity(cos(sec(x) - csc(2*x)), x) == 2*pi
assert periodicity(tan(sin(2*x)), x) == pi
assert periodicity(2*tan(x)**2, x) == pi
assert periodicity(sin(x%4), x) == 4
assert periodicity(sin(x)%4, x) == 2*pi
assert periodicity(tan((3*x-2)%4), x) == S(4)/3
assert periodicity((sqrt(2)*(x+1)+x) % 3, x) == 3 / (sqrt(2)+1)
assert periodicity((x**2+1) % x, x) == None
assert periodicity(sin(x)**2 + cos(x)**2, x) == S.Zero
assert periodicity(tan(x), y) == S.Zero
assert periodicity(exp(x), x) is None
assert periodicity(log(x), x) is None
assert periodicity(exp(x)**sin(x), x) is None
assert periodicity(sin(x)**y, y) is None
assert periodicity(Abs(sin(Abs(sin(x)))), x) == pi
assert all(periodicity(Abs(f(x)), x) == pi for f in (
cos, sin, sec, csc, tan, cot))
assert periodicity(Abs(sin(tan(x))), x) == pi
assert periodicity(Abs(sin(sin(x) + tan(x))), x) == 2*pi
assert periodicity(sin(x) > S.Half, x) is 2*pi
assert periodicity(x > 2, x) is None
assert periodicity(x**3 - x**2 + 1, x) is None
assert periodicity(Abs(x), x) is None
assert periodicity(Abs(x**2 - 1), x) is None
assert periodicity((x**2 + 4)%2, x) is None
assert periodicity((E**x)%3, x) is None
def test_periodicity_check():
x = Symbol('x')
y = Symbol('y')
assert periodicity(tan(x), x, check=True) == pi
assert periodicity(sin(x) + cos(x), x, check=True) == 2*pi
assert periodicity(sec(x), x) == 2*pi
assert periodicity(sin(x*y), x) == 2*pi/abs(y)
assert periodicity(Abs(sec(sec(x))), x) == pi
def test_lcim():
from sympy import pi
assert lcim([S(1)/2, S(2), S(3)]) == 6
assert lcim([pi/2, pi/4, pi]) == pi
assert lcim([2*pi, pi/2]) == 2*pi
assert lcim([S(1), 2*pi]) is None
assert lcim([S(2) + 2*E, E/3 + S(1)/3, S(1) + E]) == S(2) + 2*E
def test_AccumBounds():
assert AccumBounds(1, 2).args == (1, 2)
assert AccumBounds(1, 2).delta == S(1)
assert AccumBounds(1, 2).mid == S(3)/2
assert AccumBounds(1, 3).is_real == True
assert AccumBounds(1, 1) == S(1)
assert AccumBounds(1, 2) + 1 == AccumBounds(2, 3)
assert 1 + AccumBounds(1, 2) == AccumBounds(2, 3)
assert AccumBounds(1, 2) + AccumBounds(2, 3) == AccumBounds(3, 5)
assert -AccumBounds(1, 2) == AccumBounds(-2, -1)
assert AccumBounds(1, 2) - 1 == AccumBounds(0, 1)
assert 1 - AccumBounds(1, 2) == AccumBounds(-1, 0)
assert AccumBounds(2, 3) - AccumBounds(1, 2) == AccumBounds(0, 2)
assert x + AccumBounds(1, 2) == Add(AccumBounds(1, 2), x)
assert a + AccumBounds(1, 2) == AccumBounds(1 + a, 2 + a)
assert AccumBounds(1, 2) - x == Add(AccumBounds(1, 2), -x)
assert AccumBounds(-oo, 1) + oo == AccumBounds(-oo, oo)
assert AccumBounds(1, oo) + oo == oo
assert AccumBounds(1, oo) - oo == AccumBounds(-oo, oo)
assert (-oo - AccumBounds(-1, oo)) == -oo
assert AccumBounds(-oo, 1) - oo == -oo
assert AccumBounds(1, oo) - oo == AccumBounds(-oo, oo)
assert AccumBounds(-oo, 1) - (-oo) == AccumBounds(-oo, oo)
assert (oo - AccumBounds(1, oo)) == AccumBounds(-oo, oo)
assert (-oo - AccumBounds(1, oo)) == -oo
assert AccumBounds(1, 2)/2 == AccumBounds(S(1)/2, 1)
assert 2/AccumBounds(2, 3) == AccumBounds(S(2)/3, 1)
assert 1/AccumBounds(-1, 1) == AccumBounds(-oo, oo)
assert abs(AccumBounds(1, 2)) == AccumBounds(1, 2)
assert abs(AccumBounds(-2, -1)) == AccumBounds(1, 2)
assert abs(AccumBounds(-2, 1)) == AccumBounds(0, 2)
assert abs(AccumBounds(-1, 2)) == AccumBounds(0, 2)
def test_AccumBounds_mul():
assert AccumBounds(1, 2)*2 == AccumBounds(2, 4)
assert 2*AccumBounds(1, 2) == AccumBounds(2, 4)
assert AccumBounds(1, 2)*AccumBounds(2, 3) == AccumBounds(2, 6)
assert AccumBounds(1, 2)*0 == 0
assert AccumBounds(1, oo)*0 == AccumBounds(0, oo)
assert AccumBounds(-oo, 1)*0 == AccumBounds(-oo, 0)
assert AccumBounds(-oo, oo)*0 == AccumBounds(-oo, oo)
assert AccumBounds(1, 2)*x == Mul(AccumBounds(1, 2), x, evaluate=False)
assert AccumBounds(0, 2)*oo == AccumBounds(0, oo)
assert AccumBounds(-2, 0)*oo == AccumBounds(-oo, 0)
assert AccumBounds(0, 2)*(-oo) == AccumBounds(-oo, 0)
assert AccumBounds(-2, 0)*(-oo) == AccumBounds(0, oo)
assert AccumBounds(-1, 1)*oo == AccumBounds(-oo, oo)
assert AccumBounds(-1, 1)*(-oo) == AccumBounds(-oo, oo)
assert AccumBounds(-oo, oo)*oo == AccumBounds(-oo, oo)
def test_AccumBounds_div():
assert AccumBounds(-1, 3)/AccumBounds(3, 4) == AccumBounds(-S(1)/3, 1)
assert AccumBounds(-2, 4)/AccumBounds(-3, 4) == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)/AccumBounds(-4, 0) == AccumBounds(S(1)/2, oo)
# these two tests can have a better answer
# after Union of AccumBounds is improved
assert AccumBounds(-3, -2)/AccumBounds(-2, 1) == AccumBounds(-oo, oo)
assert AccumBounds(2, 3)/AccumBounds(-2, 2) == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)/AccumBounds(0, 4) == AccumBounds(-oo, -S(1)/2)
assert AccumBounds(2, 4)/AccumBounds(-3, 0) == AccumBounds(-oo, -S(2)/3)
assert AccumBounds(2, 4)/AccumBounds(0, 3) == AccumBounds(S(2)/3, oo)
assert AccumBounds(0, 1)/AccumBounds(0, 1) == AccumBounds(0, oo)
assert AccumBounds(-1, 0)/AccumBounds(0, 1) == AccumBounds(-oo, 0)
assert AccumBounds(-1, 2)/AccumBounds(-2, 2) == AccumBounds(-oo, oo)
assert 1/AccumBounds(-1, 2) == AccumBounds(-oo, oo)
assert 1/AccumBounds(0, 2) == AccumBounds(S(1)/2, oo)
assert (-1)/AccumBounds(0, 2) == AccumBounds(-oo, -S(1)/2)
assert 1/AccumBounds(-oo, 0) == AccumBounds(-oo, 0)
assert 1/AccumBounds(-1, 0) == AccumBounds(-oo, -1)
assert (-2)/AccumBounds(-oo, 0) == AccumBounds(0, oo)
assert 1/AccumBounds(-oo, -1) == AccumBounds(-1, 0)
assert AccumBounds(1, 2)/a == Mul(AccumBounds(1, 2), 1/a, evaluate=False)
assert AccumBounds(1, 2)/0 == AccumBounds(1, 2)*zoo
assert AccumBounds(1, oo)/oo == AccumBounds(0, oo)
assert AccumBounds(1, oo)/(-oo) == AccumBounds(-oo, 0)
assert AccumBounds(-oo, -1)/oo == AccumBounds(-oo, 0)
assert AccumBounds(-oo, -1)/(-oo) == AccumBounds(0, oo)
assert AccumBounds(-oo, oo)/oo == AccumBounds(-oo, oo)
assert AccumBounds(-oo, oo)/(-oo) == AccumBounds(-oo, oo)
assert AccumBounds(-1, oo)/oo == AccumBounds(0, oo)
assert AccumBounds(-1, oo)/(-oo) == AccumBounds(-oo, 0)
assert AccumBounds(-oo, 1)/oo == AccumBounds(-oo, 0)
assert AccumBounds(-oo, 1)/(-oo) == AccumBounds(0, oo)
def test_AccumBounds_func():
assert (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1)) == AccumBounds(-1, 4)
assert exp(AccumBounds(0, 1)) == AccumBounds(1, E)
assert exp(AccumBounds(-oo, oo)) == AccumBounds(0, oo)
assert log(AccumBounds(3, 6)) == AccumBounds(log(3), log(6))
def test_AccumBounds_pow():
assert AccumBounds(0, 2)**2 == AccumBounds(0, 4)
assert AccumBounds(-1, 1)**2 == AccumBounds(0, 1)
assert AccumBounds(1, 2)**2 == AccumBounds(1, 4)
assert AccumBounds(-1, 2)**3 == AccumBounds(-1, 8)
assert AccumBounds(-1, 1)**0 == 1
assert AccumBounds(1, 2)**(S(5)/2) == AccumBounds(1, 4*sqrt(2))
assert AccumBounds(-1, 2)**(S(1)/3) == AccumBounds(-1, 2**(S(1)/3))
assert AccumBounds(0, 2)**(S(1)/2) == AccumBounds(0, sqrt(2))
assert AccumBounds(-4, 2)**(S(2)/3) == AccumBounds(0, 2*2**(S(1)/3))
assert AccumBounds(-1, 5)**(S(1)/2) == AccumBounds(0, sqrt(5))
assert AccumBounds(-oo, 2)**(S(1)/2) == AccumBounds(0, sqrt(2))
assert AccumBounds(-2, 3)**(S(-1)/4) == AccumBounds(0, oo)
assert AccumBounds(1, 5)**(-2) == AccumBounds(S(1)/25, 1)
assert AccumBounds(-1, 3)**(-2) == AccumBounds(0, oo)
assert AccumBounds(0, 2)**(-2) == AccumBounds(S(1)/4, oo)
assert AccumBounds(-1, 2)**(-3) == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)**(-3) == AccumBounds(S(-1)/8, -S(1)/27)
assert AccumBounds(-3, -2)**(-2) == AccumBounds(S(1)/9, S(1)/4)
assert AccumBounds(0, oo)**(S(1)/2) == AccumBounds(0, oo)
assert AccumBounds(-oo, -1)**(S(1)/3) == AccumBounds(-oo, -1)
assert AccumBounds(-2, 3)**(-S(1)/3) == AccumBounds(-oo, oo)
assert AccumBounds(-oo, 0)**(-2) == AccumBounds(0, oo)
assert AccumBounds(-2, 0)**(-2) == AccumBounds(S(1)/4, oo)
assert AccumBounds(S(1)/3, S(1)/2)**oo == S(0)
assert AccumBounds(0, S(1)/2)**oo == S(0)
assert AccumBounds(S(1)/2, 1)**oo == AccumBounds(0, oo)
assert AccumBounds(0, 1)**oo == AccumBounds(0, oo)
assert AccumBounds(2, 3)**oo == oo
assert AccumBounds(1, 2)**oo == AccumBounds(0, oo)
assert AccumBounds(S(1)/2, 3)**oo == AccumBounds(0, oo)
assert AccumBounds(-S(1)/3, -S(1)/4)**oo == S(0)
assert AccumBounds(-1, -S(1)/2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-3, -2)**oo == FiniteSet(-oo, oo)
assert AccumBounds(-2, -1)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-2, -S(1)/2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-S(1)/2, S(1)/2)**oo == S(0)
assert AccumBounds(-S(1)/2, 1)**oo == AccumBounds(0, oo)
assert AccumBounds(-S(2)/3, 2)**oo == AccumBounds(0, oo)
assert AccumBounds(-1, 1)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-1, S(1)/2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-1, 2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(-2, S(1)/2)**oo == AccumBounds(-oo, oo)
assert AccumBounds(1, 2)**x == Pow(AccumBounds(1, 2), x, evaluate=False)
assert AccumBounds(2, 3)**(-oo) == S(0)
assert AccumBounds(0, 2)**(-oo) == AccumBounds(0, oo)
assert AccumBounds(-1, 2)**(-oo) == AccumBounds(-oo, oo)
assert (tan(x)**sin(2*x)).subs(x, AccumBounds(0, pi/2)) == \
Pow(AccumBounds(-oo, oo), AccumBounds(0, 1), evaluate=False)
def test_comparison_AccumBounds():
assert (AccumBounds(1, 3) < 4) == S.true
assert (AccumBounds(1, 3) < -1) == S.false
assert (AccumBounds(1, 3) < 2).rel_op == '<'
assert (AccumBounds(1, 3) <= 2).rel_op == '<='
assert (AccumBounds(1, 3) > 4) == S.false
assert (AccumBounds(1, 3) > -1) == S.true
assert (AccumBounds(1, 3) > 2).rel_op == '>'
assert (AccumBounds(1, 3) >= 2).rel_op == '>='
assert (AccumBounds(1, 3) < AccumBounds(4, 6)) == S.true
assert (AccumBounds(1, 3) < AccumBounds(2, 4)).rel_op == '<'
assert (AccumBounds(1, 3) < AccumBounds(-2, 0)) == S.false
# issue 13499
assert (cos(x) > 0).subs(x, oo) == (AccumBounds(-1, 1) > 0)
def test_contains_AccumBounds():
assert (1 in AccumBounds(1, 2)) == S.true
raises(TypeError, lambda: a in AccumBounds(1, 2))
assert 0 in AccumBounds(-1, 0)
raises(TypeError, lambda:
(cos(1)**2 + sin(1)**2 - 1) in AccumBounds(-1, 0))
assert (-oo in AccumBounds(1, oo)) == S.true
assert (oo in AccumBounds(-oo, 0)) == S.true
# issue 13159
assert Mul(0, AccumBounds(-1, 1)) == Mul(AccumBounds(-1, 1), 0) == 0
import itertools
for perm in itertools.permutations([0, AccumBounds(-1, 1), x]):
assert Mul(*perm) == 0
|
4158987113984043b7938ac2feb18cdc979d63f34b51343e6d4426990d738c14
|
from itertools import product
from sympy import S, symbols, Function, exp
from sympy.core.compatibility import range
from sympy.utilities.pytest import warns_deprecated_sympy
from sympy.calculus.finite_diff import (
apply_finite_diff, differentiate_finite, finite_diff_weights,
as_finite_diff
)
def test_apply_finite_diff():
x, h = symbols('x h')
f = Function('f')
assert (apply_finite_diff(1, [x-h, x+h], [f(x-h), f(x+h)], x) -
(f(x+h)-f(x-h))/(2*h)).simplify() == 0
assert (apply_finite_diff(1, [5, 6, 7], [f(5), f(6), f(7)], 5) -
(-S(3)/2*f(5) + 2*f(6) - S(1)/2*f(7))).simplify() == 0
def test_finite_diff_weights():
d = finite_diff_weights(1, [5, 6, 7], 5)
assert d[1][2] == [-S(3)/2, 2, -S(1)/2]
# Table 1, p. 702 in doi:10.1090/S0025-5718-1988-0935077-0
# --------------------------------------------------------
xl = [0, 1, -1, 2, -2, 3, -3, 4, -4]
# d holds all coefficients
d = finite_diff_weights(4, xl, S(0))
# Zeroeth derivative
for i in range(5):
assert d[0][i] == [S(1)] + [S(0)]*8
# First derivative
assert d[1][0] == [S(0)]*9
assert d[1][2] == [S(0), S(1)/2, -S(1)/2] + [S(0)]*6
assert d[1][4] == [S(0), S(2)/3, -S(2)/3, -S(1)/12, S(1)/12] + [S(0)]*4
assert d[1][6] == [S(0), S(3)/4, -S(3)/4, -S(3)/20, S(3)/20,
S(1)/60, -S(1)/60] + [S(0)]*2
assert d[1][8] == [S(0), S(4)/5, -S(4)/5, -S(1)/5, S(1)/5,
S(4)/105, -S(4)/105, -S(1)/280, S(1)/280]
# Second derivative
for i in range(2):
assert d[2][i] == [S(0)]*9
assert d[2][2] == [-S(2), S(1), S(1)] + [S(0)]*6
assert d[2][4] == [-S(5)/2, S(4)/3, S(4)/3, -S(1)/12, -S(1)/12] + [S(0)]*4
assert d[2][6] == [-S(49)/18, S(3)/2, S(3)/2, -S(3)/20, -S(3)/20,
S(1)/90, S(1)/90] + [S(0)]*2
assert d[2][8] == [-S(205)/72, S(8)/5, S(8)/5, -S(1)/5, -S(1)/5,
S(8)/315, S(8)/315, -S(1)/560, -S(1)/560]
# Third derivative
for i in range(3):
assert d[3][i] == [S(0)]*9
assert d[3][4] == [S(0), -S(1), S(1), S(1)/2, -S(1)/2] + [S(0)]*4
assert d[3][6] == [S(0), -S(13)/8, S(13)/8, S(1), -S(1),
-S(1)/8, S(1)/8] + [S(0)]*2
assert d[3][8] == [S(0), -S(61)/30, S(61)/30, S(169)/120, -S(169)/120,
-S(3)/10, S(3)/10, S(7)/240, -S(7)/240]
# Fourth derivative
for i in range(4):
assert d[4][i] == [S(0)]*9
assert d[4][4] == [S(6), -S(4), -S(4), S(1), S(1)] + [S(0)]*4
assert d[4][6] == [S(28)/3, -S(13)/2, -S(13)/2, S(2), S(2),
-S(1)/6, -S(1)/6] + [S(0)]*2
assert d[4][8] == [S(91)/8, -S(122)/15, -S(122)/15, S(169)/60, S(169)/60,
-S(2)/5, -S(2)/5, S(7)/240, S(7)/240]
# Table 2, p. 703 in doi:10.1090/S0025-5718-1988-0935077-0
# --------------------------------------------------------
xl = [[j/S(2) for j in list(range(-i*2+1, 0, 2))+list(range(1, i*2+1, 2))]
for i in range(1, 5)]
# d holds all coefficients
d = [finite_diff_weights({0: 1, 1: 2, 2: 4, 3: 4}[i], xl[i], 0) for
i in range(4)]
# Zeroth derivative
assert d[0][0][1] == [S(1)/2, S(1)/2]
assert d[1][0][3] == [-S(1)/16, S(9)/16, S(9)/16, -S(1)/16]
assert d[2][0][5] == [S(3)/256, -S(25)/256, S(75)/128, S(75)/128,
-S(25)/256, S(3)/256]
assert d[3][0][7] == [-S(5)/2048, S(49)/2048, -S(245)/2048, S(1225)/2048,
S(1225)/2048, -S(245)/2048, S(49)/2048, -S(5)/2048]
# First derivative
assert d[0][1][1] == [-S(1), S(1)]
assert d[1][1][3] == [S(1)/24, -S(9)/8, S(9)/8, -S(1)/24]
assert d[2][1][5] == [-S(3)/640, S(25)/384, -S(75)/64, S(75)/64,
-S(25)/384, S(3)/640]
assert d[3][1][7] == [S(5)/7168, -S(49)/5120, S(245)/3072, S(-1225)/1024,
S(1225)/1024, -S(245)/3072, S(49)/5120, -S(5)/7168]
# Reasonably the rest of the table is also correct... (testing of that
# deemed excessive at the moment)
def test_as_finite_diff():
x = symbols('x')
f = Function('f')
with warns_deprecated_sympy():
as_finite_diff(f(x).diff(x), [x-2, x-1, x, x+1, x+2])
def test_differentiate_finite():
x, y = symbols('x y')
f = Function('f')
res0 = differentiate_finite(f(x, y) + exp(42), x, y, evaluate=True)
xm, xp, ym, yp = [v + sign*S(1)/2 for v, sign in product([x, y], [-1, 1])]
ref0 = f(xm, ym) + f(xp, yp) - f(xm, yp) - f(xp, ym)
assert (res0 - ref0).simplify() == 0
g = Function('g')
res1 = differentiate_finite(f(x)*g(x) + 42, x, evaluate=True)
ref1 = (-f(x - S(1)/2) + f(x + S(1)/2))*g(x) + \
(-g(x - S(1)/2) + g(x + S(1)/2))*f(x)
assert (res1 - ref1).simplify() == 0
res2 = differentiate_finite(f(x) + x**3 + 42, x, points=[x-1, x+1])
ref2 = (f(x + 1) + (x + 1)**3 - f(x - 1) - (x - 1)**3)/2
assert (res2 - ref2).simplify() == 0
|
ed3cff3982e41c2c97e3f842d39ed8aa8123c870da6a4a30708ea03fc1582a55
|
# Tests that require installed backends go into
# sympy/test_external/test_autowrap
import os
import tempfile
import shutil
import tempfile
from sympy.core import symbols, Eq
from sympy.core.compatibility import StringIO
from sympy.utilities.pytest import raises
from sympy.utilities.autowrap import (autowrap, binary_function,
CythonCodeWrapper, ufuncify, UfuncifyCodeWrapper, CodeWrapper)
from sympy.utilities.codegen import (
CCodeGen, C99CodeGen, CodeGenArgumentListError, make_routine
)
from sympy.utilities.tmpfiles import TmpFileManager, cleanup_tmp_files
def get_string(dump_fn, routines, prefix="file", **kwargs):
"""Wrapper for dump_fn. dump_fn writes its results to a stream object and
this wrapper returns the contents of that stream as a string. This
auxiliary function is used by many tests below.
The header and the empty lines are not generator to facilitate the
testing of the output.
"""
output = StringIO()
dump_fn(routines, output, prefix, **kwargs)
source = output.getvalue()
output.close()
return source
def test_cython_wrapper_scalar_function():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = CythonCodeWrapper(CCodeGen())
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" double test(double x, double y, double z)\n"
"\n"
"def test_c(double x, double y, double z):\n"
"\n"
" return test(x, y, z)")
assert source == expected
def test_cython_wrapper_outarg():
from sympy import Equality
x, y, z = symbols('x,y,z')
code_gen = CythonCodeWrapper(C99CodeGen())
routine = make_routine("test", Equality(z, x + y))
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" void test(double x, double y, double *z)\n"
"\n"
"def test_c(double x, double y):\n"
"\n"
" cdef double z = 0\n"
" test(x, y, &z)\n"
" return z")
assert source == expected
def test_cython_wrapper_inoutarg():
from sympy import Equality
x, y, z = symbols('x,y,z')
code_gen = CythonCodeWrapper(C99CodeGen())
routine = make_routine("test", Equality(z, x + y + z))
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" void test(double x, double y, double *z)\n"
"\n"
"def test_c(double x, double y, double z):\n"
"\n"
" test(x, y, &z)\n"
" return z")
assert source == expected
@cleanup_tmp_files
def test_cython_wrapper_compile_flags():
from sympy import Equality
x, y, z = symbols('x,y,z')
routine = make_routine("test", Equality(z, x + y))
code_gen = CythonCodeWrapper(CCodeGen())
expected = """\
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
cy_opts = {}
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=[],
library_dirs=[],
libraries=[],
extra_compile_args=['-std=c99'],
extra_link_args=[]
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
temp_dir = tempfile.mkdtemp()
TmpFileManager.tmp_folder(temp_dir)
setup_file_path = os.path.join(temp_dir, 'setup.py')
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
code_gen = CythonCodeWrapper(CCodeGen(),
include_dirs=['/usr/local/include', '/opt/booger/include'],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math'],
extra_link_args=['-lswamp', '-ltrident'],
cythonize_options={'compiler_directives': {'boundscheck': False}}
)
expected = """\
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
cy_opts = {'compiler_directives': {'boundscheck': False}}
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=['/usr/local/include', '/opt/booger/include'],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math', '-std=c99'],
extra_link_args=['-lswamp', '-ltrident']
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
expected = """\
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
cy_opts = {'compiler_directives': {'boundscheck': False}}
import numpy as np
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=['/usr/local/include', '/opt/booger/include', np.get_include()],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math', '-std=c99'],
extra_link_args=['-lswamp', '-ltrident']
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
code_gen._need_numpy = True
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
def test_autowrap_dummy():
x, y, z = symbols('x y z')
# Uses DummyWrapper to test that codegen works as expected
f = autowrap(x + y, backend='dummy')
assert f() == str(x + y)
assert f.args == "x, y"
assert f.returns == "nameless"
f = autowrap(Eq(z, x + y), backend='dummy')
assert f() == str(x + y)
assert f.args == "x, y"
assert f.returns == "z"
f = autowrap(Eq(z, x + y + z), backend='dummy')
assert f() == str(x + y + z)
assert f.args == "x, y, z"
assert f.returns == "z"
def test_autowrap_args():
x, y, z = symbols('x y z')
raises(CodeGenArgumentListError, lambda: autowrap(Eq(z, x + y),
backend='dummy', args=[x]))
f = autowrap(Eq(z, x + y), backend='dummy', args=[y, x])
assert f() == str(x + y)
assert f.args == "y, x"
assert f.returns == "z"
raises(CodeGenArgumentListError, lambda: autowrap(Eq(z, x + y + z),
backend='dummy', args=[x, y]))
f = autowrap(Eq(z, x + y + z), backend='dummy', args=[y, x, z])
assert f() == str(x + y + z)
assert f.args == "y, x, z"
assert f.returns == "z"
f = autowrap(Eq(z, x + y + z), backend='dummy', args=(y, x, z))
assert f() == str(x + y + z)
assert f.args == "y, x, z"
assert f.returns == "z"
@cleanup_tmp_files
def test_autowrap_store_files():
x, y = symbols('x y')
tmp = tempfile.mkdtemp()
TmpFileManager.tmp_folder(tmp)
f = autowrap(x + y, backend='dummy', tempdir=tmp)
assert f() == str(x + y)
assert os.access(tmp, os.F_OK)
def test_autowrap_store_files_issue_gh12939():
x, y = symbols('x y')
tmp = './tmp'
try:
f = autowrap(x + y, backend='dummy', tempdir=tmp)
assert f() == str(x + y)
assert os.access(tmp, os.F_OK)
finally:
shutil.rmtree(tmp)
def test_binary_function():
x, y = symbols('x y')
f = binary_function('f', x + y, backend='dummy')
assert f._imp_() == str(x + y)
def test_ufuncify_source():
x, y, z = symbols('x,y,z')
code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"))
routine = make_routine("test", x + y + z)
source = get_string(code_wrapper.dump_c, [routine])
expected = """\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include "file.h"
static PyMethodDef wrapper_module_%(num)sMethods[] = {
{NULL, NULL, 0, NULL}
};
static void test_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in0 = args[0];
char *in1 = args[1];
char *in2 = args[2];
char *out0 = args[3];
npy_intp in0_step = steps[0];
npy_intp in1_step = steps[1];
npy_intp in2_step = steps[2];
npy_intp out0_step = steps[3];
for (i = 0; i < n; i++) {
*((double *)out0) = test(*(double *)in0, *(double *)in1, *(double *)in2);
in0 += in0_step;
in1 += in1_step;
in2 += in2_step;
out0 += out0_step;
}
}
PyUFuncGenericFunction test_funcs[1] = {&test_ufunc};
static char test_types[4] = {NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE};
static void *test_data[1] = {NULL};
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"wrapper_module_%(num)s",
NULL,
-1,
wrapper_module_%(num)sMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_wrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(test_funcs, test_data, test_types, 1, 3, 1,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "test", ufunc0);
Py_DECREF(ufunc0);
return m;
}
#else
PyMODINIT_FUNC initwrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = Py_InitModule("wrapper_module_%(num)s", wrapper_module_%(num)sMethods);
if (m == NULL) {
return;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(test_funcs, test_data, test_types, 1, 3, 1,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "test", ufunc0);
Py_DECREF(ufunc0);
}
#endif""" % {'num': CodeWrapper._module_counter}
assert source == expected
def test_ufuncify_source_multioutput():
x, y, z = symbols('x,y,z')
var_symbols = (x, y, z)
expr = x + y**3 + 10*z**2
code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"))
routines = [make_routine("func{}".format(i), expr.diff(var_symbols[i]), var_symbols) for i in range(len(var_symbols))]
source = get_string(code_wrapper.dump_c, routines, funcname='multitest')
expected = """\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include "file.h"
static PyMethodDef wrapper_module_%(num)sMethods[] = {
{NULL, NULL, 0, NULL}
};
static void multitest_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in0 = args[0];
char *in1 = args[1];
char *in2 = args[2];
char *out0 = args[3];
char *out1 = args[4];
char *out2 = args[5];
npy_intp in0_step = steps[0];
npy_intp in1_step = steps[1];
npy_intp in2_step = steps[2];
npy_intp out0_step = steps[3];
npy_intp out1_step = steps[4];
npy_intp out2_step = steps[5];
for (i = 0; i < n; i++) {
*((double *)out0) = func0(*(double *)in0, *(double *)in1, *(double *)in2);
*((double *)out1) = func1(*(double *)in0, *(double *)in1, *(double *)in2);
*((double *)out2) = func2(*(double *)in0, *(double *)in1, *(double *)in2);
in0 += in0_step;
in1 += in1_step;
in2 += in2_step;
out0 += out0_step;
out1 += out1_step;
out2 += out2_step;
}
}
PyUFuncGenericFunction multitest_funcs[1] = {&multitest_ufunc};
static char multitest_types[6] = {NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE};
static void *multitest_data[1] = {NULL};
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"wrapper_module_%(num)s",
NULL,
-1,
wrapper_module_%(num)sMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_wrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(multitest_funcs, multitest_data, multitest_types, 1, 3, 3,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "multitest", ufunc0);
Py_DECREF(ufunc0);
return m;
}
#else
PyMODINIT_FUNC initwrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = Py_InitModule("wrapper_module_%(num)s", wrapper_module_%(num)sMethods);
if (m == NULL) {
return;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(multitest_funcs, multitest_data, multitest_types, 1, 3, 3,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "multitest", ufunc0);
Py_DECREF(ufunc0);
}
#endif""" % {'num': CodeWrapper._module_counter}
assert source == expected
|
0db3327b25e76270e8dfca551a0bca901e573debe8e76c1a211dcabf75df2853
|
import sys
import inspect
import copy
import pickle
from sympy.physics.units import meter
from sympy.utilities.pytest import XFAIL
from sympy.core.basic import Atom, Basic
from sympy.core.core import BasicMeta
from sympy.core.singleton import SingletonRegistry
from sympy.core.symbol import Dummy, Symbol, Wild
from sympy.core.numbers import (E, I, pi, oo, zoo, nan, Integer,
Rational, Float)
from sympy.core.relational import (Equality, GreaterThan, LessThan, Relational,
StrictGreaterThan, StrictLessThan, Unequality)
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.function import Derivative, Function, FunctionClass, Lambda, \
WildFunction
from sympy.sets.sets import Interval
from sympy.core.multidimensional import vectorize
from sympy.core.compatibility import HAS_GMPY
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.pytest import ignore_warnings
from sympy import symbols, S
from sympy.external import import_module
cloudpickle = import_module('cloudpickle')
excluded_attrs = set(['_assumptions', '_mhash'])
def check(a, exclude=[], check_attr=True):
""" Check that pickling and copying round-trips.
"""
protocols = [0, 1, 2, copy.copy, copy.deepcopy]
# Python 2.x doesn't support the third pickling protocol
if sys.version_info >= (3,):
protocols.extend([3, 4])
if cloudpickle:
protocols.extend([cloudpickle])
for protocol in protocols:
if protocol in exclude:
continue
if callable(protocol):
if isinstance(a, BasicMeta):
# Classes can't be copied, but that's okay.
continue
b = protocol(a)
elif inspect.ismodule(protocol):
b = protocol.loads(protocol.dumps(a))
else:
b = pickle.loads(pickle.dumps(a, protocol))
d1 = dir(a)
d2 = dir(b)
assert set(d1) == set(d2)
if not check_attr:
continue
def c(a, b, d):
for i in d:
if not hasattr(a, i) or i in excluded_attrs:
continue
attr = getattr(a, i)
if not hasattr(attr, "__call__"):
assert hasattr(b, i), i
assert getattr(b, i) == attr, "%s != %s, protocol: %s" % (getattr(b, i), attr, protocol)
# XXX Can be removed if Py2 support is dropped.
# DeprecationWarnings on Python 2.6 from calling e.g. getattr(a, 'message')
# This check eliminates 800 warnings.
if sys.version_info < (3,):
with ignore_warnings(DeprecationWarning):
c(a, b, d1)
c(b, a, d2)
else:
c(a, b, d1)
c(b, a, d2)
#================== core =========================
def test_core_basic():
for c in (Atom, Atom(),
Basic, Basic(),
# XXX: dynamically created types are not picklable
# BasicMeta, BasicMeta("test", (), {}),
SingletonRegistry, S):
check(c)
def test_core_symbol():
# make the Symbol a unique name that doesn't class with any other
# testing variable in this file since after this test the symbol
# having the same name will be cached as noncommutative
for c in (Dummy, Dummy("x", commutative=False), Symbol,
Symbol("_issue_3130", commutative=False), Wild, Wild("x")):
check(c)
def test_core_numbers():
for c in (Integer(2), Rational(2, 3), Float("1.2")):
check(c)
def test_core_float_copy():
# See gh-7457
y = Symbol("x") + 1.0
check(y) # does not raise TypeError ("argument is not an mpz")
def test_core_relational():
x = Symbol("x")
y = Symbol("y")
for c in (Equality, Equality(x, y), GreaterThan, GreaterThan(x, y),
LessThan, LessThan(x, y), Relational, Relational(x, y),
StrictGreaterThan, StrictGreaterThan(x, y), StrictLessThan,
StrictLessThan(x, y), Unequality, Unequality(x, y)):
check(c)
def test_core_add():
x = Symbol("x")
for c in (Add, Add(x, 4)):
check(c)
def test_core_mul():
x = Symbol("x")
for c in (Mul, Mul(x, 4)):
check(c)
def test_core_power():
x = Symbol("x")
for c in (Pow, Pow(x, 4)):
check(c)
def test_core_function():
x = Symbol("x")
for f in (Derivative, Derivative(x), Function, FunctionClass, Lambda,
WildFunction):
check(f)
def test_core_undefinedfunctions():
f = Function("f")
# Full XFAILed test below
exclude = list(range(5))
# https://github.com/cloudpipe/cloudpickle/issues/65
# https://github.com/cloudpipe/cloudpickle/issues/190
exclude.append(cloudpickle)
check(f, exclude=exclude)
@XFAIL
def test_core_undefinedfunctions_fail():
# This fails because f is assumed to be a class at sympy.basic.function.f
f = Function("f")
check(f)
def test_core_interval():
for c in (Interval, Interval(0, 2)):
check(c)
def test_core_multidimensional():
for c in (vectorize, vectorize(0)):
check(c)
def test_Singletons():
protocols = [0, 1, 2]
if sys.version_info >= (3,):
protocols.extend([3, 4])
copiers = [copy.copy, copy.deepcopy]
copiers += [lambda x: pickle.loads(pickle.dumps(x, proto))
for proto in protocols]
if cloudpickle:
copiers += [lambda x: cloudpickle.loads(cloudpickle.dumps(x))]
for obj in (Integer(-1), Integer(0), Integer(1), Rational(1, 2), pi, E, I,
oo, -oo, zoo, nan, S.GoldenRatio, S.TribonacciConstant,
S.EulerGamma, S.Catalan, S.EmptySet, S.IdentityFunction):
for func in copiers:
assert func(obj) is obj
#================== functions ===================
from sympy.functions import (Piecewise, lowergamma, acosh,
chebyshevu, chebyshevt, ln, chebyshevt_root, binomial, legendre,
Heaviside, factorial, bernoulli, coth, tanh, assoc_legendre, sign,
arg, asin, DiracDelta, re, rf, Abs, uppergamma, binomial, sinh, Ynm,
cos, cot, acos, acot, gamma, bell, hermite, harmonic,
LambertW, zeta, log, factorial, asinh, acoth, Znm,
cosh, dirichlet_eta, Eijk, loggamma, erf, ceiling, im, fibonacci,
tribonacci, conjugate, tan, chebyshevu_root, floor, atanh, sqrt,
RisingFactorial, sin, atan, ff, FallingFactorial, lucas, atan2,
polygamma, exp)
def test_functions():
one_var = (acosh, ln, Heaviside, factorial, bernoulli, coth, tanh,
sign, arg, asin, DiracDelta, re, Abs, sinh, cos, cot, acos, acot,
gamma, bell, harmonic, LambertW, zeta, log, factorial, asinh,
acoth, cosh, dirichlet_eta, loggamma, erf, ceiling, im, fibonacci,
tribonacci, conjugate, tan, floor, atanh, sin, atan, lucas, exp)
two_var = (rf, ff, lowergamma, chebyshevu, chebyshevt, binomial,
atan2, polygamma, hermite, legendre, uppergamma)
x, y, z = symbols("x,y,z")
others = (chebyshevt_root, chebyshevu_root, Eijk(x, y, z),
Piecewise( (0, x < -1), (x**2, x <= 1), (x**3, True)),
assoc_legendre)
for cls in one_var:
check(cls)
c = cls(x)
check(c)
for cls in two_var:
check(cls)
c = cls(x, y)
check(c)
for cls in others:
check(cls)
#================== geometry ====================
from sympy.geometry.entity import GeometryEntity
from sympy.geometry.point import Point
from sympy.geometry.ellipse import Circle, Ellipse
from sympy.geometry.line import Line, LinearEntity, Ray, Segment
from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle
def test_geometry():
p1 = Point(1, 2)
p2 = Point(2, 3)
p3 = Point(0, 0)
p4 = Point(0, 1)
for c in (
GeometryEntity, GeometryEntity(), Point, p1, Circle, Circle(p1, 2),
Ellipse, Ellipse(p1, 3, 4), Line, Line(p1, p2), LinearEntity,
LinearEntity(p1, p2), Ray, Ray(p1, p2), Segment, Segment(p1, p2),
Polygon, Polygon(p1, p2, p3, p4), RegularPolygon,
RegularPolygon(p1, 4, 5), Triangle, Triangle(p1, p2, p3)):
check(c, check_attr=False)
#================== integrals ====================
from sympy.integrals.integrals import Integral
def test_integrals():
x = Symbol("x")
for c in (Integral, Integral(x)):
check(c)
#==================== logic =====================
from sympy.core.logic import Logic
def test_logic():
for c in (Logic, Logic(1)):
check(c)
#================== matrices ====================
from sympy.matrices import Matrix, SparseMatrix
def test_matrices():
for c in (Matrix, Matrix([1, 2, 3]), SparseMatrix, SparseMatrix([[1, 2], [3, 4]])):
check(c)
#================== ntheory =====================
from sympy.ntheory.generate import Sieve
def test_ntheory():
for c in (Sieve, Sieve()):
check(c)
#================== physics =====================
from sympy.physics.paulialgebra import Pauli
from sympy.physics.units import Unit
def test_physics():
for c in (Unit, meter, Pauli, Pauli(1)):
check(c)
#================== plotting ====================
# XXX: These tests are not complete, so XFAIL them
@XFAIL
def test_plotting():
from sympy.plotting.color_scheme import ColorGradient, ColorScheme
from sympy.plotting.managed_window import ManagedWindow
from sympy.plotting.plot import Plot, ScreenShot
from sympy.plotting.plot_axes import PlotAxes, PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate
from sympy.plotting.plot_camera import PlotCamera
from sympy.plotting.plot_controller import PlotController
from sympy.plotting.plot_curve import PlotCurve
from sympy.plotting.plot_interval import PlotInterval
from sympy.plotting.plot_mode import PlotMode
from sympy.plotting.plot_modes import Cartesian2D, Cartesian3D, Cylindrical, \
ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical
from sympy.plotting.plot_object import PlotObject
from sympy.plotting.plot_surface import PlotSurface
from sympy.plotting.plot_window import PlotWindow
for c in (
ColorGradient, ColorGradient(0.2, 0.4), ColorScheme, ManagedWindow,
ManagedWindow, Plot, ScreenShot, PlotAxes, PlotAxesBase,
PlotAxesFrame, PlotAxesOrdinate, PlotCamera, PlotController,
PlotCurve, PlotInterval, PlotMode, Cartesian2D, Cartesian3D,
Cylindrical, ParametricCurve2D, ParametricCurve3D,
ParametricSurface, Polar, Spherical, PlotObject, PlotSurface,
PlotWindow):
check(c)
@XFAIL
def test_plotting2():
from sympy.plotting.color_scheme import ColorGradient, ColorScheme
from sympy.plotting.managed_window import ManagedWindow
from sympy.plotting.plot import Plot, ScreenShot
from sympy.plotting.plot_axes import PlotAxes, PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate
from sympy.plotting.plot_camera import PlotCamera
from sympy.plotting.plot_controller import PlotController
from sympy.plotting.plot_curve import PlotCurve
from sympy.plotting.plot_interval import PlotInterval
from sympy.plotting.plot_mode import PlotMode
from sympy.plotting.plot_modes import Cartesian2D, Cartesian3D, Cylindrical, \
ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical
from sympy.plotting.plot_object import PlotObject
from sympy.plotting.plot_surface import PlotSurface
from sympy.plotting.plot_window import PlotWindow
check(ColorScheme("rainbow"))
check(Plot(1, visible=False))
check(PlotAxes())
#================== polys =======================
from sympy import Poly, ZZ, QQ, lex
def test_pickling_polys_polytools():
from sympy.polys.polytools import Poly, PurePoly, GroebnerBasis
x = Symbol('x')
for c in (Poly, Poly(x, x)):
check(c)
for c in (PurePoly, PurePoly(x)):
check(c)
# TODO: fix pickling of Options class (see GroebnerBasis._options)
# for c in (GroebnerBasis, GroebnerBasis([x**2 - 1], x, order=lex)):
# check(c)
def test_pickling_polys_polyclasses():
from sympy.polys.polyclasses import DMP, DMF, ANP
for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)):
check(c)
for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)]), ZZ)):
check(c)
for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)):
check(c)
@XFAIL
def test_pickling_polys_rings():
# NOTE: can't use protocols < 2 because we have to execute __new__ to
# make sure caching of rings works properly.
from sympy.polys.rings import PolyRing
ring = PolyRing("x,y,z", ZZ, lex)
for c in (PolyRing, ring):
check(c, exclude=[0, 1])
for c in (ring.dtype, ring.one):
check(c, exclude=[0, 1], check_attr=False) # TODO: Py3k
def test_pickling_polys_fields():
# NOTE: can't use protocols < 2 because we have to execute __new__ to
# make sure caching of fields works properly.
from sympy.polys.fields import FracField
field = FracField("x,y,z", ZZ, lex)
# TODO: AssertionError: assert id(obj) not in self.memo
# for c in (FracField, field):
# check(c, exclude=[0, 1])
# TODO: AssertionError: assert id(obj) not in self.memo
# for c in (field.dtype, field.one):
# check(c, exclude=[0, 1])
def test_pickling_polys_elements():
from sympy.polys.domains.pythonrational import PythonRational
from sympy.polys.domains.pythonfinitefield import PythonFiniteField
from sympy.polys.domains.mpelements import MPContext
for c in (PythonRational, PythonRational(1, 7)):
check(c)
gf = PythonFiniteField(17)
# TODO: fix pickling of ModularInteger
# for c in (gf.dtype, gf(5)):
# check(c)
mp = MPContext()
# TODO: fix pickling of RealElement
# for c in (mp.mpf, mp.mpf(1.0)):
# check(c)
# TODO: fix pickling of ComplexElement
# for c in (mp.mpc, mp.mpc(1.0, -1.5)):
# check(c)
def test_pickling_polys_domains():
from sympy.polys.domains.pythonfinitefield import PythonFiniteField
from sympy.polys.domains.pythonintegerring import PythonIntegerRing
from sympy.polys.domains.pythonrationalfield import PythonRationalField
# TODO: fix pickling of ModularInteger
# for c in (PythonFiniteField, PythonFiniteField(17)):
# check(c)
for c in (PythonIntegerRing, PythonIntegerRing()):
check(c, check_attr=False)
for c in (PythonRationalField, PythonRationalField()):
check(c, check_attr=False)
if HAS_GMPY:
from sympy.polys.domains.gmpyfinitefield import GMPYFiniteField
from sympy.polys.domains.gmpyintegerring import GMPYIntegerRing
from sympy.polys.domains.gmpyrationalfield import GMPYRationalField
# TODO: fix pickling of ModularInteger
# for c in (GMPYFiniteField, GMPYFiniteField(17)):
# check(c)
for c in (GMPYIntegerRing, GMPYIntegerRing()):
check(c, check_attr=False)
for c in (GMPYRationalField, GMPYRationalField()):
check(c, check_attr=False)
from sympy.polys.domains.realfield import RealField
from sympy.polys.domains.complexfield import ComplexField
from sympy.polys.domains.algebraicfield import AlgebraicField
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.domains.fractionfield import FractionField
from sympy.polys.domains.expressiondomain import ExpressionDomain
# TODO: fix pickling of RealElement
# for c in (RealField, RealField(100)):
# check(c)
# TODO: fix pickling of ComplexElement
# for c in (ComplexField, ComplexField(100)):
# check(c)
for c in (AlgebraicField, AlgebraicField(QQ, sqrt(3))):
check(c, check_attr=False)
# TODO: AssertionError
# for c in (PolynomialRing, PolynomialRing(ZZ, "x,y,z")):
# check(c)
# TODO: AttributeError: 'PolyElement' object has no attribute 'ring'
# for c in (FractionField, FractionField(ZZ, "x,y,z")):
# check(c)
for c in (ExpressionDomain, ExpressionDomain()):
check(c, check_attr=False)
def test_pickling_polys_numberfields():
from sympy.polys.numberfields import AlgebraicNumber
for c in (AlgebraicNumber, AlgebraicNumber(sqrt(3))):
check(c, check_attr=False)
def test_pickling_polys_orderings():
from sympy.polys.orderings import (LexOrder, GradedLexOrder,
ReversedGradedLexOrder, ProductOrder, InverseOrder)
for c in (LexOrder, LexOrder()):
check(c)
for c in (GradedLexOrder, GradedLexOrder()):
check(c)
for c in (ReversedGradedLexOrder, ReversedGradedLexOrder()):
check(c)
# TODO: Argh, Python is so naive. No lambdas nor inner function support in
# pickling module. Maybe someone could figure out what to do with this.
#
# for c in (ProductOrder, ProductOrder((LexOrder(), lambda m: m[:2]),
# (GradedLexOrder(), lambda m: m[2:]))):
# check(c)
for c in (InverseOrder, InverseOrder(LexOrder())):
check(c)
def test_pickling_polys_monomials():
from sympy.polys.monomials import MonomialOps, Monomial
x, y, z = symbols("x,y,z")
for c in (MonomialOps, MonomialOps(3)):
check(c)
for c in (Monomial, Monomial((1, 2, 3), (x, y, z))):
check(c)
def test_pickling_polys_errors():
from sympy.polys.polyerrors import (ExactQuotientFailed, OperationNotSupported,
HeuristicGCDFailed, HomomorphismFailed, IsomorphismFailed, ExtraneousFactors,
EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible, NotReversible,
NotAlgebraic, DomainError, PolynomialError, UnificationFailed, GeneratorsError,
GeneratorsNeeded, ComputationFailed, UnivariatePolynomialError,
MultivariatePolynomialError, PolificationFailed, OptionError, FlagError)
x = Symbol('x')
# TODO: TypeError: __init__() takes at least 3 arguments (1 given)
# for c in (ExactQuotientFailed, ExactQuotientFailed(x, 3*x, ZZ)):
# check(c)
# TODO: TypeError: can't pickle instancemethod objects
# for c in (OperationNotSupported, OperationNotSupported(Poly(x), Poly.gcd)):
# check(c)
for c in (HeuristicGCDFailed, HeuristicGCDFailed()):
check(c)
for c in (HomomorphismFailed, HomomorphismFailed()):
check(c)
for c in (IsomorphismFailed, IsomorphismFailed()):
check(c)
for c in (ExtraneousFactors, ExtraneousFactors()):
check(c)
for c in (EvaluationFailed, EvaluationFailed()):
check(c)
for c in (RefinementFailed, RefinementFailed()):
check(c)
for c in (CoercionFailed, CoercionFailed()):
check(c)
for c in (NotInvertible, NotInvertible()):
check(c)
for c in (NotReversible, NotReversible()):
check(c)
for c in (NotAlgebraic, NotAlgebraic()):
check(c)
for c in (DomainError, DomainError()):
check(c)
for c in (PolynomialError, PolynomialError()):
check(c)
for c in (UnificationFailed, UnificationFailed()):
check(c)
for c in (GeneratorsError, GeneratorsError()):
check(c)
for c in (GeneratorsNeeded, GeneratorsNeeded()):
check(c)
# TODO: PicklingError: Can't pickle <function <lambda> at 0x38578c0>: it's not found as __main__.<lambda>
# for c in (ComputationFailed, ComputationFailed(lambda t: t, 3, None)):
# check(c)
for c in (UnivariatePolynomialError, UnivariatePolynomialError()):
check(c)
for c in (MultivariatePolynomialError, MultivariatePolynomialError()):
check(c)
# TODO: TypeError: __init__() takes at least 3 arguments (1 given)
# for c in (PolificationFailed, PolificationFailed({}, x, x, False)):
# check(c)
for c in (OptionError, OptionError()):
check(c)
for c in (FlagError, FlagError()):
check(c)
def test_pickling_polys_options():
from sympy.polys.polyoptions import Options
# TODO: fix pickling of `symbols' flag
# for c in (Options, Options((), dict(domain='ZZ', polys=False))):
# check(c)
# TODO: def test_pickling_polys_rootisolation():
# RealInterval
# ComplexInterval
def test_pickling_polys_rootoftools():
from sympy.polys.rootoftools import CRootOf, RootSum
x = Symbol('x')
f = x**3 + x + 3
for c in (CRootOf, CRootOf(f, 0)):
check(c)
for c in (RootSum, RootSum(f, exp)):
check(c)
#================== printing ====================
from sympy.printing.latex import LatexPrinter
from sympy.printing.mathml import MathMLContentPrinter, MathMLPresentationPrinter
from sympy.printing.pretty.pretty import PrettyPrinter
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.printing.printer import Printer
from sympy.printing.python import PythonPrinter
def test_printing():
for c in (LatexPrinter, LatexPrinter(), MathMLContentPrinter,
MathMLPresentationPrinter, PrettyPrinter, prettyForm, stringPict,
stringPict("a"), Printer, Printer(), PythonPrinter,
PythonPrinter()):
check(c)
@XFAIL
def test_printing1():
check(MathMLContentPrinter())
@XFAIL
def test_printing2():
check(MathMLPresentationPrinter())
@XFAIL
def test_printing3():
check(PrettyPrinter())
#================== series ======================
from sympy.series.limits import Limit
from sympy.series.order import Order
def test_series():
e = Symbol("e")
x = Symbol("x")
for c in (Limit, Limit(e, x, 1), Order, Order(e)):
check(c)
#================== concrete ==================
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
def test_concrete():
x = Symbol("x")
for c in (Product, Product(x, (x, 2, 4)), Sum, Sum(x, (x, 2, 4))):
check(c)
def test_deprecation_warning():
w = SymPyDeprecationWarning('value', 'feature', issue=12345, deprecated_since_version='1.0')
check(w)
|
110bd1242aaf21a93f7febfd2c57682d7b444fe792c336fb58cef3cf4cb4e62c
|
import warnings
from sympy.utilities.pytest import (raises, warns, ignore_warnings, USE_PYTEST,
warns_deprecated_sympy)
from sympy.utilities.exceptions import SymPyDeprecationWarning
if USE_PYTEST:
from _pytest.outcomes import Failed
else:
Failed = AssertionError
# Test callables
def test_expected_exception_is_silent_callable():
def f():
raise ValueError()
raises(ValueError, f)
# Under pytest raises will raise Failed rather than AssertionError
def test_lack_of_exception_triggers_AssertionError_callable():
try:
raises(Exception, lambda: 1 + 1)
assert False
except Failed as e:
assert "DID NOT RAISE" in str(e)
def test_unexpected_exception_is_passed_through_callable():
def f():
raise ValueError("some error message")
try:
raises(TypeError, f)
assert False
except ValueError as e:
assert str(e) == "some error message"
# Test with statement
def test_expected_exception_is_silent_with():
with raises(ValueError):
raise ValueError()
def test_lack_of_exception_triggers_AssertionError_with():
try:
with raises(Exception):
1 + 1
assert False
except Failed as e:
assert "DID NOT RAISE" in str(e)
def test_unexpected_exception_is_passed_through_with():
try:
with raises(TypeError):
raise ValueError("some error message")
assert False
except ValueError as e:
assert str(e) == "some error message"
# Now we can use raises() instead of try/catch
# to test that a specific exception class is raised
def test_second_argument_should_be_callable_or_string():
raises(TypeError, lambda: raises("irrelevant", 42))
def test_warns_catches_warning():
with warnings.catch_warnings(record=True) as w:
with warns(UserWarning):
warnings.warn('this is the warning message')
assert len(w) == 0
def test_warns_raises_without_warning():
with raises(Failed):
with warns(UserWarning):
pass
def test_warns_hides_other_warnings():
# This isn't ideal but it's what pytest's warns does:
with warnings.catch_warnings(record=True) as w:
with warns(UserWarning):
warnings.warn('this is the warning message', UserWarning)
warnings.warn('this is the other message', RuntimeWarning)
assert len(w) == 0
def test_warns_continues_after_warning():
with warnings.catch_warnings(record=True) as w:
finished = False
with warns(UserWarning):
warnings.warn('this is the warning message')
finished = True
assert finished
assert len(w) == 0
def test_warns_many_warnings():
# This isn't ideal but it's what pytest's warns does:
with warnings.catch_warnings(record=True) as w:
finished = False
with warns(UserWarning):
warnings.warn('this is the warning message', UserWarning)
warnings.warn('this is the other message', RuntimeWarning)
warnings.warn('this is the warning message', UserWarning)
warnings.warn('this is the other message', RuntimeWarning)
warnings.warn('this is the other message', RuntimeWarning)
finished = True
assert finished
assert len(w) == 0
def test_warns_match_matching():
with warnings.catch_warnings(record=True) as w:
with warns(UserWarning, match='this is the warning message'):
warnings.warn('this is the warning message', UserWarning)
assert len(w) == 0
def test_warns_match_non_matching():
with warnings.catch_warnings(record=True) as w:
with raises(Failed):
with warns(UserWarning, match='this is the warning message'):
warnings.warn('this is not the expected warning message', UserWarning)
assert len(w) == 0
def _warn_sympy_deprecation():
SymPyDeprecationWarning(
feature="foo",
useinstead="bar",
issue=1,
deprecated_since_version="0.0.0").warn()
def test_warns_deprecated_sympy_catches_warning():
with warnings.catch_warnings(record=True) as w:
with warns_deprecated_sympy():
_warn_sympy_deprecation()
assert len(w) == 0
def test_warns_deprecated_sympy_raises_without_warning():
with raises(Failed):
with warns_deprecated_sympy():
pass
def test_warns_deprecated_sympy_hides_other_warnings():
# This isn't ideal but it's what pytest's deprecated_call does:
with warnings.catch_warnings(record=True) as w:
with warns_deprecated_sympy():
_warn_sympy_deprecation()
warnings.warn('this is the other message', RuntimeWarning)
assert len(w) == 0
def test_warns_deprecated_sympy_continues_after_warning():
with warnings.catch_warnings(record=True) as w:
finished = False
with warns_deprecated_sympy():
_warn_sympy_deprecation()
finished = True
assert finished
assert len(w) == 0
def test_warns_deprecated_sympy_many_warnings():
# This isn't ideal but it's what pytest's warns_deprecated_sympy does:
with warnings.catch_warnings(record=True) as w:
finished = False
with warns_deprecated_sympy():
_warn_sympy_deprecation()
warnings.warn('this is the other message', RuntimeWarning)
_warn_sympy_deprecation()
warnings.warn('this is the other message', RuntimeWarning)
warnings.warn('this is the other message', RuntimeWarning)
finished = True
assert finished
assert len(w) == 0
def test_ignore_ignores_warning():
with warnings.catch_warnings(record=True) as w:
with ignore_warnings(UserWarning):
warnings.warn('this is the warning message')
assert len(w) == 0
def test_ignore_does_not_raise_without_warning():
with warnings.catch_warnings(record=True) as w:
with ignore_warnings(UserWarning):
pass
assert len(w) == 0
def test_ignore_allows_other_warnings():
with warnings.catch_warnings(record=True) as w:
with ignore_warnings(UserWarning):
warnings.warn('this is the warning message', UserWarning)
warnings.warn('this is the other message', RuntimeWarning)
assert len(w) == 1
assert isinstance(w[0].message, RuntimeWarning)
assert str(w[0].message) == 'this is the other message'
def test_ignore_continues_after_warning():
with warnings.catch_warnings(record=True) as w:
finished = False
with ignore_warnings(UserWarning):
warnings.warn('this is the warning message')
finished = True
assert finished
assert len(w) == 0
def test_ignore_many_warnings():
with warnings.catch_warnings(record=True) as w:
with ignore_warnings(UserWarning):
warnings.warn('this is the warning message', UserWarning)
warnings.warn('this is the other message', RuntimeWarning)
warnings.warn('this is the warning message', UserWarning)
warnings.warn('this is the other message', RuntimeWarning)
warnings.warn('this is the other message', RuntimeWarning)
assert len(w) == 3
for wi in w:
assert isinstance(wi.message, RuntimeWarning)
assert str(wi.message) == 'this is the other message'
|
a19d81f0928e5d704210edc7cdf0239151a4d4f704e3d89ba917ad36f8dbac04
|
from distutils.version import LooseVersion as V
from itertools import product
import math
import inspect
import mpmath
from sympy.utilities.pytest import XFAIL, raises
from sympy import (
symbols, lambdify, sqrt, sin, cos, tan, pi, acos, acosh, Rational,
Float, Matrix, Lambda, Piecewise, exp, Integral, oo, I, Abs, Function,
true, false, And, Or, Not, ITE, Min, Max, floor, diff, IndexedBase, Sum,
DotProduct, Eq, Dummy, sinc, erf, erfc, factorial, gamma, loggamma,
digamma, RisingFactorial, besselj, bessely, besseli, besselk, S,
MatrixSymbol)
from sympy.printing.lambdarepr import LambdaPrinter
from sympy.printing.pycode import NumPyPrinter
from sympy.utilities.lambdify import implemented_function, lambdastr
from sympy.utilities.pytest import skip
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.external import import_module
from sympy.functions.special.gamma_functions import uppergamma,lowergamma
import sympy
MutableDenseMatrix = Matrix
numpy = import_module('numpy')
scipy = import_module('scipy')
scipy_special = import_module('scipy.special')
numexpr = import_module('numexpr')
tensorflow = import_module('tensorflow')
if tensorflow:
# Hide Tensorflow warnings
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
w, x, y, z = symbols('w,x,y,z')
#================== Test different arguments =======================
def test_no_args():
f = lambdify([], 1)
raises(TypeError, lambda: f(-1))
assert f() == 1
def test_single_arg():
f = lambdify(x, 2*x)
assert f(1) == 2
def test_list_args():
f = lambdify([x, y], x + y)
assert f(1, 2) == 3
def test_nested_args():
f1 = lambdify([[w, x]], [w, x])
assert f1([91, 2]) == [91, 2]
raises(TypeError, lambda: f1(1, 2))
f2 = lambdify([(w, x), (y, z)], [w, x, y, z])
assert f2((18, 12), (73, 4)) == [18, 12, 73, 4]
raises(TypeError, lambda: f2(3, 4))
f3 = lambdify([w, [[[x]], y], z], [w, x, y, z])
assert f3(10, [[[52]], 31], 44) == [10, 52, 31, 44]
def test_str_args():
f = lambdify('x,y,z', 'z,y,x')
assert f(3, 2, 1) == (1, 2, 3)
assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0)
# make sure correct number of args required
raises(TypeError, lambda: f(0))
def test_own_namespace_1():
myfunc = lambda x: 1
f = lambdify(x, sin(x), {"sin": myfunc})
assert f(0.1) == 1
assert f(100) == 1
def test_own_namespace_2():
def myfunc(x):
return 1
f = lambdify(x, sin(x), {'sin': myfunc})
assert f(0.1) == 1
assert f(100) == 1
def test_own_module():
f = lambdify(x, sin(x), math)
assert f(0) == 0.0
def test_bad_args():
# no vargs given
raises(TypeError, lambda: lambdify(1))
# same with vector exprs
raises(TypeError, lambda: lambdify([1, 2]))
def test_atoms():
# Non-Symbol atoms should not be pulled out from the expression namespace
f = lambdify(x, pi + x, {"pi": 3.14})
assert f(0) == 3.14
f = lambdify(x, I + x, {"I": 1j})
assert f(1) == 1 + 1j
#================== Test different modules =========================
# high precision output of sin(0.2*pi) is used to detect if precision is lost unwanted
@conserve_mpmath_dps
def test_sympy_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "sympy")
assert f(x) == sin(x)
prec = 1e-15
assert -prec < f(Rational(1, 5)).evalf() - Float(str(sin02)) < prec
# arctan is in numpy module and should not be available
raises(NameError, lambda: lambdify(x, arctan(x), "sympy"))
@conserve_mpmath_dps
def test_math_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "math")
prec = 1e-15
assert -prec < f(0.2) - sin02 < prec
raises(TypeError, lambda: f(x))
# if this succeeds, it can't be a python math function
@conserve_mpmath_dps
def test_mpmath_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "mpmath")
prec = 1e-49 # mpmath precision is around 50 decimal places
assert -prec < f(mpmath.mpf("0.2")) - sin02 < prec
raises(TypeError, lambda: f(x))
# if this succeeds, it can't be a mpmath function
@conserve_mpmath_dps
def test_number_precision():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin02, "mpmath")
prec = 1e-49 # mpmath precision is around 50 decimal places
assert -prec < f(0) - sin02 < prec
@conserve_mpmath_dps
def test_mpmath_precision():
mpmath.mp.dps = 100
assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100))
#================== Test Translations ==============================
# We can only check if all translated functions are valid. It has to be checked
# by hand if they are complete.
def test_math_transl():
from sympy.utilities.lambdify import MATH_TRANSLATIONS
for sym, mat in MATH_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert mat in math.__dict__
def test_mpmath_transl():
from sympy.utilities.lambdify import MPMATH_TRANSLATIONS
for sym, mat in MPMATH_TRANSLATIONS.items():
assert sym in sympy.__dict__ or sym == 'Matrix'
assert mat in mpmath.__dict__
def test_numpy_transl():
if not numpy:
skip("numpy not installed.")
from sympy.utilities.lambdify import NUMPY_TRANSLATIONS
for sym, nump in NUMPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert nump in numpy.__dict__
def test_scipy_transl():
if not scipy:
skip("scipy not installed.")
from sympy.utilities.lambdify import SCIPY_TRANSLATIONS
for sym, scip in SCIPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert scip in scipy.__dict__ or scip in scipy.special.__dict__
def test_tensorflow_transl():
if not tensorflow:
skip("tensorflow not installed")
from sympy.utilities.lambdify import TENSORFLOW_TRANSLATIONS
for sym, tens in TENSORFLOW_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert tens in tensorflow.__dict__
def test_numpy_translation_abs():
if not numpy:
skip("numpy not installed.")
f = lambdify(x, Abs(x), "numpy")
assert f(-1) == 1
assert f(1) == 1
def test_numexpr_printer():
if not numexpr:
skip("numexpr not installed.")
# if translation/printing is done incorrectly then evaluating
# a lambdified numexpr expression will throw an exception
from sympy.printing.lambdarepr import NumExprPrinter
blacklist = ('where', 'complex', 'contains')
arg_tuple = (x, y, z) # some functions take more than one argument
for sym in NumExprPrinter._numexpr_functions.keys():
if sym in blacklist:
continue
ssym = S(sym)
if hasattr(ssym, '_nargs'):
nargs = ssym._nargs[0]
else:
nargs = 1
args = arg_tuple[:nargs]
f = lambdify(args, ssym(*args), modules='numexpr')
assert f(*(1, )*nargs) is not None
def test_issue_9334():
if not numexpr:
skip("numexpr not installed.")
if not numpy:
skip("numpy not installed.")
expr = S('b*a - sqrt(a**2)')
a, b = sorted(expr.free_symbols, key=lambda s: s.name)
func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False)
foo, bar = numpy.random.random((2, 4))
func_numexpr(foo, bar)
#================== Test some functions ============================
def test_exponentiation():
f = lambdify(x, x**2)
assert f(-1) == 1
assert f(0) == 0
assert f(1) == 1
assert f(-2) == 4
assert f(2) == 4
assert f(2.5) == 6.25
def test_sqrt():
f = lambdify(x, sqrt(x))
assert f(0) == 0.0
assert f(1) == 1.0
assert f(4) == 2.0
assert abs(f(2) - 1.414) < 0.001
assert f(6.25) == 2.5
def test_trig():
f = lambdify([x], [cos(x), sin(x)], 'math')
d = f(pi)
prec = 1e-11
assert -prec < d[0] + 1 < prec
assert -prec < d[1] < prec
d = f(3.14159)
prec = 1e-5
assert -prec < d[0] + 1 < prec
assert -prec < d[1] < prec
#================== Test vectors ===================================
def test_vector_simple():
f = lambdify((x, y, z), (z, y, x))
assert f(3, 2, 1) == (1, 2, 3)
assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0)
# make sure correct number of args required
raises(TypeError, lambda: f(0))
def test_vector_discontinuous():
f = lambdify(x, (-1/x, 1/x))
raises(ZeroDivisionError, lambda: f(0))
assert f(1) == (-1.0, 1.0)
assert f(2) == (-0.5, 0.5)
assert f(-2) == (0.5, -0.5)
def test_trig_symbolic():
f = lambdify([x], [cos(x), sin(x)], 'math')
d = f(pi)
assert abs(d[0] + 1) < 0.0001
assert abs(d[1] - 0) < 0.0001
def test_trig_float():
f = lambdify([x], [cos(x), sin(x)])
d = f(3.14159)
assert abs(d[0] + 1) < 0.0001
assert abs(d[1] - 0) < 0.0001
def test_docs():
f = lambdify(x, x**2)
assert f(2) == 4
f = lambdify([x, y, z], [z, y, x])
assert f(1, 2, 3) == [3, 2, 1]
f = lambdify(x, sqrt(x))
assert f(4) == 2.0
f = lambdify((x, y), sin(x*y)**2)
assert f(0, 5) == 0
def test_math():
f = lambdify((x, y), sin(x), modules="math")
assert f(0, 5) == 0
def test_sin():
f = lambdify(x, sin(x)**2)
assert isinstance(f(2), float)
f = lambdify(x, sin(x)**2, modules="math")
assert isinstance(f(2), float)
def test_matrix():
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol = Matrix([[1, 2], [sin(3) + 4, 1]])
f = lambdify((x, y, z), A, modules="sympy")
assert f(1, 2, 3) == sol
f = lambdify((x, y, z), (A, [A]), modules="sympy")
assert f(1, 2, 3) == (sol, [sol])
J = Matrix((x, x + y)).jacobian((x, y))
v = Matrix((x, y))
sol = Matrix([[1, 0], [1, 1]])
assert lambdify(v, J, modules='sympy')(1, 2) == sol
assert lambdify(v.T, J, modules='sympy')(1, 2) == sol
def test_numpy_matrix():
if not numpy:
skip("numpy not installed.")
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]])
#Lambdify array first, to ensure return to array as default
f = lambdify((x, y, z), A, ['numpy'])
numpy.testing.assert_allclose(f(1, 2, 3), sol_arr)
#Check that the types are arrays and matrices
assert isinstance(f(1, 2, 3), numpy.ndarray)
# gh-15071
class dot(Function):
pass
x_dot_mtx = dot(x, Matrix([[2], [1], [0]]))
f_dot1 = lambdify(x, x_dot_mtx)
inp = numpy.zeros((17, 3))
assert numpy.all(f_dot1(inp) == 0)
strict_kw = dict(allow_unknown_functions=False, inline=True, fully_qualified_modules=False)
p2 = NumPyPrinter(dict(user_functions={'dot': 'dot'}, **strict_kw))
f_dot2 = lambdify(x, x_dot_mtx, printer=p2)
assert numpy.all(f_dot2(inp) == 0)
p3 = NumPyPrinter(strict_kw)
# The line below should probably fail upon construction (before calling with "(inp)"):
raises(Exception, lambda: lambdify(x, x_dot_mtx, printer=p3)(inp))
def test_numpy_transpose():
if not numpy:
skip("numpy not installed.")
A = Matrix([[1, x], [0, 1]])
f = lambdify((x), A.T, modules="numpy")
numpy.testing.assert_array_equal(f(2), numpy.array([[1, 0], [2, 1]]))
def test_numpy_dotproduct():
if not numpy:
skip("numpy not installed")
A = Matrix([x, y, z])
f1 = lambdify([x, y, z], DotProduct(A, A), modules='numpy')
f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy')
f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='numpy')
f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy')
assert f1(1, 2, 3) == \
f2(1, 2, 3) == \
f3(1, 2, 3) == \
f4(1, 2, 3) == \
numpy.array([14])
def test_numpy_inverse():
if not numpy:
skip("numpy not installed.")
A = Matrix([[1, x], [0, 1]])
f = lambdify((x), A**-1, modules="numpy")
numpy.testing.assert_array_equal(f(2), numpy.array([[1, -2], [0, 1]]))
def test_numpy_old_matrix():
if not numpy:
skip("numpy not installed.")
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]])
f = lambdify((x, y, z), A, [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy'])
numpy.testing.assert_allclose(f(1, 2, 3), sol_arr)
assert isinstance(f(1, 2, 3), numpy.matrix)
def test_python_div_zero_issue_11306():
if not numpy:
skip("numpy not installed.")
p = Piecewise((1 / x, y < -1), (x, y < 1), (1 / x, True))
f = lambdify([x, y], p, modules='numpy')
numpy.seterr(divide='ignore')
assert float(f(numpy.array([0]),numpy.array([0.5]))) == 0
assert str(float(f(numpy.array([0]),numpy.array([1])))) == 'inf'
numpy.seterr(divide='warn')
def test_issue9474():
mods = [None, 'math']
if numpy:
mods.append('numpy')
if mpmath:
mods.append('mpmath')
for mod in mods:
f = lambdify(x, S(1)/x, modules=mod)
assert f(2) == 0.5
f = lambdify(x, floor(S(1)/x), modules=mod)
assert f(2) == 0
for absfunc, modules in product([Abs, abs], mods):
f = lambdify(x, absfunc(x), modules=modules)
assert f(-1) == 1
assert f(1) == 1
assert f(3+4j) == 5
def test_issue_9871():
if not numexpr:
skip("numexpr not installed.")
if not numpy:
skip("numpy not installed.")
r = sqrt(x**2 + y**2)
expr = diff(1/r, x)
xn = yn = numpy.linspace(1, 10, 16)
# expr(xn, xn) = -xn/(sqrt(2)*xn)^3
fv_exact = -numpy.sqrt(2.)**-3 * xn**-2
fv_numpy = lambdify((x, y), expr, modules='numpy')(xn, yn)
fv_numexpr = lambdify((x, y), expr, modules='numexpr')(xn, yn)
numpy.testing.assert_allclose(fv_numpy, fv_exact, rtol=1e-10)
numpy.testing.assert_allclose(fv_numexpr, fv_exact, rtol=1e-10)
def test_numpy_piecewise():
if not numpy:
skip("numpy not installed.")
pieces = Piecewise((x, x < 3), (x**2, x > 5), (0, True))
f = lambdify(x, pieces, modules="numpy")
numpy.testing.assert_array_equal(f(numpy.arange(10)),
numpy.array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81]))
# If we evaluate somewhere all conditions are False, we should get back NaN
nodef_func = lambdify(x, Piecewise((x, x > 0), (-x, x < 0)))
numpy.testing.assert_array_equal(nodef_func(numpy.array([-1, 0, 1])),
numpy.array([1, numpy.nan, 1]))
def test_numpy_logical_ops():
if not numpy:
skip("numpy not installed.")
and_func = lambdify((x, y), And(x, y), modules="numpy")
and_func_3 = lambdify((x, y, z), And(x, y, z), modules="numpy")
or_func = lambdify((x, y), Or(x, y), modules="numpy")
or_func_3 = lambdify((x, y, z), Or(x, y, z), modules="numpy")
not_func = lambdify((x), Not(x), modules="numpy")
arr1 = numpy.array([True, True])
arr2 = numpy.array([False, True])
arr3 = numpy.array([True, False])
numpy.testing.assert_array_equal(and_func(arr1, arr2), numpy.array([False, True]))
numpy.testing.assert_array_equal(and_func_3(arr1, arr2, arr3), numpy.array([False, False]))
numpy.testing.assert_array_equal(or_func(arr1, arr2), numpy.array([True, True]))
numpy.testing.assert_array_equal(or_func_3(arr1, arr2, arr3), numpy.array([True, True]))
numpy.testing.assert_array_equal(not_func(arr2), numpy.array([True, False]))
def test_numpy_matmul():
if not numpy:
skip("numpy not installed.")
xmat = Matrix([[x, y], [z, 1+z]])
ymat = Matrix([[x**2], [Abs(x)]])
mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy")
numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]]))
numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]]))
# Multiple matrices chained together in multiplication
f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy")
numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25],
[159, 251]]))
def test_numpy_numexpr():
if not numpy:
skip("numpy not installed.")
if not numexpr:
skip("numexpr not installed.")
a, b, c = numpy.random.randn(3, 128, 128)
# ensure that numpy and numexpr return same value for complicated expression
expr = sin(x) + cos(y) + tan(z)**2 + Abs(z-y)*acos(sin(y*z)) + \
Abs(y-z)*acosh(2+exp(y-x))- sqrt(x**2+I*y**2)
npfunc = lambdify((x, y, z), expr, modules='numpy')
nefunc = lambdify((x, y, z), expr, modules='numexpr')
assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c))
def test_numexpr_userfunctions():
if not numpy:
skip("numpy not installed.")
if not numexpr:
skip("numexpr not installed.")
a, b = numpy.random.randn(2, 10)
uf = type('uf', (Function, ),
{'eval' : classmethod(lambda x, y : y**2+1)})
func = lambdify(x, 1-uf(x), modules='numexpr')
assert numpy.allclose(func(a), -(a**2))
uf = implemented_function(Function('uf'), lambda x, y : 2*x*y+1)
func = lambdify((x, y), uf(x, y), modules='numexpr')
assert numpy.allclose(func(a, b), 2*a*b+1)
def test_tensorflow_basic_math():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.constant(0, dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s) == 0.5
def test_tensorflow_placeholders():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.placeholder(dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5
def test_tensorflow_variables():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.Variable(0, dtype=tensorflow.float32)
s = tensorflow.Session()
if V(tensorflow.__version__) < '1.0':
s.run(tensorflow.initialize_all_variables())
else:
s.run(tensorflow.global_variables_initializer())
assert func(a).eval(session=s) == 0.5
def test_tensorflow_logical_operations():
if not tensorflow:
skip("tensorflow not installed.")
expr = Not(And(Or(x, y), y))
func = lambdify([x, y], expr, modules="tensorflow")
a = tensorflow.constant(False)
b = tensorflow.constant(True)
s = tensorflow.Session()
assert func(a, b).eval(session=s) == 0
def test_tensorflow_piecewise():
if not tensorflow:
skip("tensorflow not installed.")
expr = Piecewise((0, Eq(x,0)), (-1, x < 0), (1, x > 0))
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.placeholder(dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s, feed_dict={a: -1}) == -1
assert func(a).eval(session=s, feed_dict={a: 0}) == 0
assert func(a).eval(session=s, feed_dict={a: 1}) == 1
def test_tensorflow_multi_max():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(x, -x, x**2)
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.placeholder(dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s, feed_dict={a: -2}) == 4
def test_tensorflow_multi_min():
if not tensorflow:
skip("tensorflow not installed.")
expr = Min(x, -x, x**2)
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.placeholder(dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s, feed_dict={a: -2}) == -2
def test_tensorflow_relational():
if not tensorflow:
skip("tensorflow not installed.")
expr = x >= 0
func = lambdify(x, expr, modules="tensorflow")
a = tensorflow.placeholder(dtype=tensorflow.float32)
s = tensorflow.Session()
assert func(a).eval(session=s, feed_dict={a: 1})
def test_integral():
f = Lambda(x, exp(-x**2))
l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy")
assert l(x) == Integral(exp(-x**2), (x, -oo, oo))
#================== Test symbolic ==================================
def test_sym_single_arg():
f = lambdify(x, x * y)
assert f(z) == z * y
def test_sym_list_args():
f = lambdify([x, y], x + y + z)
assert f(1, 2) == 3 + z
def test_sym_integral():
f = Lambda(x, exp(-x**2))
l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy")
assert l(y).doit() == sqrt(pi)
def test_namespace_order():
# lambdify had a bug, such that module dictionaries or cached module
# dictionaries would pull earlier namespaces into themselves.
# Because the module dictionaries form the namespace of the
# generated lambda, this meant that the behavior of a previously
# generated lambda function could change as a result of later calls
# to lambdify.
n1 = {'f': lambda x: 'first f'}
n2 = {'f': lambda x: 'second f',
'g': lambda x: 'function g'}
f = sympy.Function('f')
g = sympy.Function('g')
if1 = lambdify(x, f(x), modules=(n1, "sympy"))
assert if1(1) == 'first f'
if2 = lambdify(x, g(x), modules=(n2, "sympy"))
# previously gave 'second f'
assert if1(1) == 'first f'
def test_namespace_type():
# lambdify had a bug where it would reject modules of type unicode
# on Python 2.
x = sympy.Symbol('x')
lambdify(x, x, modules=u'math')
def test_imps():
# Here we check if the default returned functions are anonymous - in
# the sense that we can have more than one function with the same name
f = implemented_function('f', lambda x: 2*x)
g = implemented_function('f', lambda x: math.sqrt(x))
l1 = lambdify(x, f(x))
l2 = lambdify(x, g(x))
assert str(f(x)) == str(g(x))
assert l1(3) == 6
assert l2(3) == math.sqrt(3)
# check that we can pass in a Function as input
func = sympy.Function('myfunc')
assert not hasattr(func, '_imp_')
my_f = implemented_function(func, lambda x: 2*x)
assert hasattr(my_f, '_imp_')
# Error for functions with same name and different implementation
f2 = implemented_function("f", lambda x: x + 101)
raises(ValueError, lambda: lambdify(x, f(f2(x))))
def test_imps_errors():
# Test errors that implemented functions can return, and still be able to
# form expressions.
# See: https://github.com/sympy/sympy/issues/10810
for val, error_class in product((0, 0., 2, 2.0),
(AttributeError, TypeError, ValueError)):
def myfunc(a):
if a == 0:
raise error_class
return 1
f = implemented_function('f', myfunc)
expr = f(val)
assert expr == f(val)
def test_imps_wrong_args():
raises(ValueError, lambda: implemented_function(sin, lambda x: x))
def test_lambdify_imps():
# Test lambdify with implemented functions
# first test basic (sympy) lambdify
f = sympy.cos
assert lambdify(x, f(x))(0) == 1
assert lambdify(x, 1 + f(x))(0) == 2
assert lambdify((x, y), y + f(x))(0, 1) == 2
# make an implemented function and test
f = implemented_function("f", lambda x: x + 100)
assert lambdify(x, f(x))(0) == 100
assert lambdify(x, 1 + f(x))(0) == 101
assert lambdify((x, y), y + f(x))(0, 1) == 101
# Can also handle tuples, lists, dicts as expressions
lam = lambdify(x, (f(x), x))
assert lam(3) == (103, 3)
lam = lambdify(x, [f(x), x])
assert lam(3) == [103, 3]
lam = lambdify(x, [f(x), (f(x), x)])
assert lam(3) == [103, (103, 3)]
lam = lambdify(x, {f(x): x})
assert lam(3) == {103: 3}
lam = lambdify(x, {f(x): x})
assert lam(3) == {103: 3}
lam = lambdify(x, {x: f(x)})
assert lam(3) == {3: 103}
# Check that imp preferred to other namespaces by default
d = {'f': lambda x: x + 99}
lam = lambdify(x, f(x), d)
assert lam(3) == 103
# Unless flag passed
lam = lambdify(x, f(x), d, use_imps=False)
assert lam(3) == 102
def test_dummification():
t = symbols('t')
F = Function('F')
G = Function('G')
#"\alpha" is not a valid python variable name
#lambdify should sub in a dummy for it, and return
#without a syntax error
alpha = symbols(r'\alpha')
some_expr = 2 * F(t)**2 / G(t)
lam = lambdify((F(t), G(t)), some_expr)
assert lam(3, 9) == 2
lam = lambdify(sin(t), 2 * sin(t)**2)
assert lam(F(t)) == 2 * F(t)**2
#Test that \alpha was properly dummified
lam = lambdify((alpha, t), 2*alpha + t)
assert lam(2, 1) == 5
raises(SyntaxError, lambda: lambdify(F(t) * G(t), F(t) * G(t) + 5))
raises(SyntaxError, lambda: lambdify(2 * F(t), 2 * F(t) + 5))
raises(SyntaxError, lambda: lambdify(2 * F(t), 4 * F(t) + 5))
def test_curly_matrix_symbol():
# Issue #15009
curlyv = sympy.MatrixSymbol("{v}", 2, 1)
lam = lambdify(curlyv, curlyv)
assert lam(1)==1
lam = lambdify(curlyv, curlyv, dummify=True)
assert lam(1)==1
def test_python_keywords():
# Test for issue 7452. The automatic dummification should ensure use of
# Python reserved keywords as symbol names will create valid lambda
# functions. This is an additional regression test.
python_if = symbols('if')
expr = python_if / 2
f = lambdify(python_if, expr)
assert f(4.0) == 2.0
def test_lambdify_docstring():
func = lambdify((w, x, y, z), w + x + y + z)
ref = (
"Created with lambdify. Signature:\n\n"
"func(w, x, y, z)\n\n"
"Expression:\n\n"
"w + x + y + z"
).splitlines()
assert func.__doc__.splitlines()[:len(ref)] == ref
syms = symbols('a1:26')
func = lambdify(syms, sum(syms))
ref = (
"Created with lambdify. Signature:\n\n"
"func(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,\n"
" a16, a17, a18, a19, a20, a21, a22, a23, a24, a25)\n\n"
"Expression:\n\n"
"a1 + a10 + a11 + a12 + a13 + a14 + a15 + a16 + a17 + a18 + a19 + a2 + a20 +..."
).splitlines()
assert func.__doc__.splitlines()[:len(ref)] == ref
#================== Test special printers ==========================
def test_special_printers():
class IntervalPrinter(LambdaPrinter):
"""Use ``lambda`` printer but print numbers as ``mpi`` intervals. """
def _print_Integer(self, expr):
return "mpi('%s')" % super(IntervalPrinter, self)._print_Integer(expr)
def _print_Rational(self, expr):
return "mpi('%s')" % super(IntervalPrinter, self)._print_Rational(expr)
def intervalrepr(expr):
return IntervalPrinter().doprint(expr)
expr = sqrt(sqrt(2) + sqrt(3)) + S(1)/2
func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())
mpi = type(mpmath.mpi(1, 2))
assert isinstance(func0(), mpi)
assert isinstance(func1(), mpi)
assert isinstance(func2(), mpi)
def test_true_false():
# We want exact is comparison here, not just ==
assert lambdify([], true)() is True
assert lambdify([], false)() is False
def test_issue_2790():
assert lambdify((x, (y, z)), x + y)(1, (2, 4)) == 3
assert lambdify((x, (y, (w, z))), w + x + y + z)(1, (2, (3, 4))) == 10
assert lambdify(x, x + 1, dummify=False)(1) == 2
def test_issue_12092():
f = implemented_function('f', lambda x: x**2)
assert f(f(2)).evalf() == Float(16)
def test_issue_14911():
class Variable(sympy.Symbol):
def _sympystr(self, printer):
return printer.doprint(self.name)
_lambdacode = _sympystr
_numpycode = _sympystr
x = Variable('x')
y = 2 * x
code = LambdaPrinter().doprint(y)
assert code.replace(' ', '') == '2*x'
def test_ITE():
assert lambdify((x, y, z), ITE(x, y, z))(True, 5, 3) == 5
assert lambdify((x, y, z), ITE(x, y, z))(False, 5, 3) == 3
def test_Min_Max():
# see gh-10375
assert lambdify((x, y, z), Min(x, y, z))(1, 2, 3) == 1
assert lambdify((x, y, z), Max(x, y, z))(1, 2, 3) == 3
def test_Indexed():
# Issue #10934
if not numpy:
skip("numpy not installed")
a = IndexedBase('a')
i, j = symbols('i j')
b = numpy.array([[1, 2], [3, 4]])
assert lambdify(a, Sum(a[x, y], (x, 0, 1), (y, 0, 1)))(b) == 10
def test_issue_12173():
#test for issue 12173
exp1 = lambdify((x, y), uppergamma(x, y),"mpmath")(1, 2)
exp2 = lambdify((x, y), lowergamma(x, y),"mpmath")(1, 2)
assert exp1 == uppergamma(1, 2).evalf()
assert exp2 == lowergamma(1, 2).evalf()
def test_issue_13642():
if not numpy:
skip("numpy not installed")
f = lambdify(x, sinc(x))
assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_sinc_mpmath():
f = lambdify(x, sinc(x), "mpmath")
assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_lambdify_dummy_arg():
d1 = Dummy()
f1 = lambdify(d1, d1 + 1, dummify=False)
assert f1(2) == 3
f1b = lambdify(d1, d1 + 1)
assert f1b(2) == 3
d2 = Dummy('x')
f2 = lambdify(d2, d2 + 1)
assert f2(2) == 3
f3 = lambdify([[d2]], d2 + 1)
assert f3([2]) == 3
def test_lambdify_mixed_symbol_dummy_args():
d = Dummy()
# Contrived example of name clash
dsym = symbols(str(d))
f = lambdify([d, dsym], d - dsym)
assert f(4, 1) == 3
def test_numpy_array_arg():
# Test for issue 14655 (numpy part)
if not numpy:
skip("numpy not installed")
f = lambdify([[x, y]], x*x + y, 'numpy')
assert f(numpy.array([2.0, 1.0])) == 5
def test_tensorflow_array_arg():
# Test for issue 14655 (tensorflow part)
if not tensorflow:
skip("tensorflow not installed.")
f = lambdify([[x, y]], x*x + y, 'tensorflow')
fcall = f(tensorflow.constant([2.0, 1.0]))
s = tensorflow.Session()
assert s.run(fcall) == 5
def test_scipy_fns():
if not scipy:
skip("scipy not installed")
single_arg_sympy_fns = [erf, erfc, factorial, gamma, loggamma, digamma]
single_arg_scipy_fns = [scipy.special.erf, scipy.special.erfc,
scipy.special.factorial, scipy.special.gamma, scipy.special.gammaln,
scipy.special.psi]
numpy.random.seed(0)
for (sympy_fn, scipy_fn) in zip(single_arg_sympy_fns, single_arg_scipy_fns):
test_values = 20 * numpy.random.rand(20)
f = lambdify(x, sympy_fn(x), modules = "scipy")
assert numpy.all(abs(f(test_values) - scipy_fn(test_values)) < 1e-15)
double_arg_sympy_fns = [RisingFactorial, besselj, bessely, besseli,
besselk]
double_arg_scipy_fns = [scipy.special.poch, scipy.special.jn,
scipy.special.yn, scipy.special.iv, scipy.special.kn]
#suppress scipy warnings
import warnings
warnings.filterwarnings('ignore', '.*floating point number truncated*')
for (sympy_fn, scipy_fn) in zip(double_arg_sympy_fns, double_arg_scipy_fns):
for i in range(20):
test_values = 20 * numpy.random.rand(2)
f = lambdify((x,y), sympy_fn(x,y), modules = "scipy")
assert abs(f(*test_values) - scipy_fn(*test_values)) < 1e-15
def test_lambdify_inspect():
f = lambdify(x, x**2)
# Test that inspect.getsource works but don't hard-code implementation
# details
assert 'x**2' in inspect.getsource(f)
def test_issue_14941():
x, y = Dummy(), Dummy()
# test dict
f1 = lambdify([x, y], {x: 3, y: 3}, 'sympy')
assert f1(2, 3) == {2: 3, 3: 3}
# test tuple
f2 = lambdify([x, y], (y, x), 'sympy')
assert f2(2, 3) == (3, 2)
# test list
f3 = lambdify([x, y], [y, x], 'sympy')
assert f3(2, 3) == [3, 2]
def test_lambdify_Derivative_arg_issue_16468():
f = Function('f')(x)
fx = f.diff()
assert lambdify((f, fx), f + fx)(10, 5) == 15
assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2
raises(SyntaxError, lambda:
eval(lambdastr((f, fx), f/fx, dummify=False)))
assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2
assert eval(lambdastr((fx, f), f/fx, dummify=True))(S(10), 5) == S.Half
assert lambdify(fx, 1 + fx)(41) == 42
assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42
def test_imag_real():
f_re = lambdify([z], sympy.re(z))
val = 3+2j
assert f_re(val) == val.real
f_im = lambdify([z], sympy.im(z)) # see #15400
assert f_im(val) == val.imag
def test_MatrixSymbol_issue_15578():
if not numpy:
skip("numpy not installed")
A = MatrixSymbol('A', 2, 2)
A0 = numpy.array([[1, 2], [3, 4]])
f = lambdify(A, A**(-1))
assert numpy.allclose(f(A0), numpy.array([[-2., 1.], [1.5, -0.5]]))
g = lambdify(A, A**3)
assert numpy.allclose(g(A0), numpy.array([[37, 54], [81, 118]]))
|
00902c698a79692d65aa1e01a846b993f386f685322ff819946658489775d18d
|
""" Tests from Michael Wester's 1999 paper "Review of CAS mathematical
capabilities".
http://www.math.unm.edu/~wester/cas/book/Wester.pdf
See also http://math.unm.edu/~wester/cas_review.html for detailed output of
each tested system.
"""
from sympy import (Rational, symbols, Dummy, factorial, sqrt, log, exp, oo, zoo,
product, binomial, rf, pi, gamma, igcd, factorint, radsimp, combsimp,
npartitions, totient, primerange, factor, simplify, gcd, resultant, expand,
I, trigsimp, tan, sin, cos, cot, diff, nan, limit, EulerGamma, polygamma,
bernoulli, hyper, hyperexpand, besselj, asin, assoc_legendre, Function, re,
im, DiracDelta, chebyshevt, legendre_poly, polylog, series, O,
atan, sinh, cosh, tanh, floor, ceiling, solve, asinh, acot, csc, sec,
LambertW, N, apart, sqrtdenest, factorial2, powdenest, Mul, S, ZZ,
Poly, expand_func, E, Q, And, Or, Ne, Eq, Le, Lt, Min,
ask, refine, AlgebraicNumber, continued_fraction_iterator as cf_i,
continued_fraction_periodic as cf_p, continued_fraction_convergents as cf_c,
continued_fraction_reduce as cf_r, FiniteSet, elliptic_e, elliptic_f,
powsimp, hessian, wronskian, fibonacci, sign, Lambda, Piecewise, Subs,
residue, Derivative, logcombine, Symbol, Intersection, Union,
EmptySet, Interval, Integral, idiff)
import mpmath
from sympy.functions.combinatorial.numbers import stirling
from sympy.functions.special.zeta_functions import zeta
from sympy.integrals.deltafunctions import deltaintegrate
from sympy.utilities.pytest import XFAIL, slow, SKIP, skip, ON_TRAVIS
from sympy.utilities.iterables import partitions
from mpmath import mpi, mpc
from sympy.matrices import Matrix, GramSchmidt, eye
from sympy.matrices.expressions.blockmatrix import BlockMatrix, block_collapse
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
from sympy.physics.quantum import Commutator
from sympy.assumptions import assuming
from sympy.polys.rings import vring
from sympy.polys.fields import vfield
from sympy.polys.solvers import solve_lin_sys
from sympy.concrete import Sum
from sympy.concrete.products import Product
from sympy.integrals import integrate
from sympy.integrals.transforms import laplace_transform,\
inverse_laplace_transform, LaplaceTransform, fourier_transform,\
mellin_transform
from sympy.functions.special.error_functions import erf
from sympy.functions.special.delta_functions import Heaviside
from sympy.solvers.recurr import rsolve
from sympy.solvers.solveset import solveset, solveset_real, linsolve
from sympy.solvers.ode import dsolve
from sympy.core.relational import Equality
from sympy.core.compatibility import range
from itertools import islice, takewhile
from sympy.series.fourier import fourier_series
R = Rational
x, y, z = symbols('x y z')
i, j, k, l, m, n = symbols('i j k l m n', integer=True)
f = Function('f')
g = Function('g')
# A. Boolean Logic and Quantifier Elimination
# Not implemented.
# B. Set Theory
def test_B1():
assert (FiniteSet(i, j, j, k, k, k) | FiniteSet(l, k, j) |
FiniteSet(j, m, j)) == FiniteSet(i, j, k, l, m)
def test_B2():
a, b, c = FiniteSet(j), FiniteSet(m), FiniteSet(j, k)
d, e = FiniteSet(i), FiniteSet(j, k, l)
assert (FiniteSet(i, j, j, k, k, k) & FiniteSet(l, k, j) &
FiniteSet(j, m, j)) == Union(a, Intersection(b, Union(c, Intersection(d, FiniteSet(l)))))
# {j} U Intersection({m}, {j, k} U Intersection({i}, {l}))
def test_B3():
assert (FiniteSet(i, j, k, l, m) - FiniteSet(j) ==
FiniteSet(i, k, l, m))
def test_B4():
assert (FiniteSet(*(FiniteSet(i, j)*FiniteSet(k, l))) ==
FiniteSet((i, k), (i, l), (j, k), (j, l)))
# C. Numbers
def test_C1():
assert (factorial(50) ==
30414093201713378043612608166064768844377641568960512000000000000)
def test_C2():
assert (factorint(factorial(50)) == {2: 47, 3: 22, 5: 12, 7: 8,
11: 4, 13: 3, 17: 2, 19: 2, 23: 2, 29: 1, 31: 1, 37: 1,
41: 1, 43: 1, 47: 1})
def test_C3():
assert (factorial2(10), factorial2(9)) == (3840, 945)
# Base conversions; not really implemented by sympy
# Whatever. Take credit!
def test_C4():
assert 0xABC == 2748
def test_C5():
assert 123 == int('234', 7)
def test_C6():
assert int('677', 8) == int('1BF', 16) == 447
def test_C7():
assert log(32768, 8) == 5
def test_C8():
# Modular multiplicative inverse. Would be nice if divmod could do this.
assert ZZ.invert(5, 7) == 3
assert ZZ.invert(5, 6) == 5
def test_C9():
assert igcd(igcd(1776, 1554), 5698) == 74
def test_C10():
x = 0
for n in range(2, 11):
x += R(1, n)
assert x == R(4861, 2520)
def test_C11():
assert R(1, 7) == S('0.[142857]')
def test_C12():
assert R(7, 11) * R(22, 7) == 2
def test_C13():
test = R(10, 7) * (1 + R(29, 1000)) ** R(1, 3)
good = 3 ** R(1, 3)
assert test == good
def test_C14():
assert sqrtdenest(sqrt(2*sqrt(3) + 4)) == 1 + sqrt(3)
def test_C15():
test = sqrtdenest(sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))))
good = sqrt(2) + 3
assert test == good
def test_C16():
test = sqrtdenest(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15)))
good = sqrt(2) + sqrt(3) + sqrt(5)
assert test == good
def test_C17():
test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2)))
good = 5 + 2*sqrt(6)
assert test == good
def test_C18():
assert simplify((sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5))).expand(complex=True)) == 3
@XFAIL
def test_C19():
assert radsimp(simplify((90 + 34*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7)
def test_C20():
inside = (135 + 78*sqrt(3))
test = AlgebraicNumber((inside**R(2, 3) + 3) * sqrt(3) / inside**R(1, 3))
assert simplify(test) == AlgebraicNumber(12)
def test_C21():
assert simplify(AlgebraicNumber((41 + 29*sqrt(2)) ** R(1, 5))) == \
AlgebraicNumber(1 + sqrt(2))
@XFAIL
def test_C22():
test = simplify(((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17
- 12*sqrt(2)) + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72))
good = sqrt(2)/3 - log(sqrt(2) - 1)/3
assert test == good
def test_C23():
assert 2 * oo - 3 == oo
@XFAIL
def test_C24():
raise NotImplementedError("2**aleph_null == aleph_1")
# D. Numerical Analysis
def test_D1():
assert 0.0 / sqrt(2) == 0.0
def test_D2():
assert str(exp(-1000000).evalf()) == '3.29683147808856e-434295'
def test_D3():
assert exp(pi*sqrt(163)).evalf(50).num.ae(262537412640768744)
def test_D4():
assert floor(R(-5, 3)) == -2
assert ceiling(R(-5, 3)) == -1
@XFAIL
def test_D5():
raise NotImplementedError("cubic_spline([1, 2, 4, 5], [1, 4, 2, 3], x)(3) == 27/8")
@XFAIL
def test_D6():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to FORTRAN")
@XFAIL
def test_D7():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to C")
@XFAIL
def test_D8():
# One way is to cheat by converting the sum to a string,
# and replacing the '[' and ']' with ''.
# E.g., horner(S(str(_).replace('[','').replace(']','')))
raise NotImplementedError("apply Horner's rule to sum(a[i]*x**i, (i,1,5))")
@XFAIL
def test_D9():
raise NotImplementedError("translate D8 to FORTRAN")
@XFAIL
def test_D10():
raise NotImplementedError("translate D8 to C")
@XFAIL
def test_D11():
#Is there a way to use count_ops?
raise NotImplementedError("flops(sum(product(f[i][k], (i,1,k)), (k,1,n)))")
@XFAIL
def test_D12():
assert (mpi(-4, 2) * x + mpi(1, 3)) ** 2 == mpi(-8, 16)*x**2 + mpi(-24, 12)*x + mpi(1, 9)
@XFAIL
def test_D13():
raise NotImplementedError("discretize a PDE: diff(f(x,t),t) == diff(diff(f(x,t),x),x)")
# E. Statistics
# See scipy; all of this is numerical.
# F. Combinatorial Theory.
def test_F1():
assert rf(x, 3) == x*(1 + x)*(2 + x)
def test_F2():
assert expand_func(binomial(n, 3)) == n*(n - 1)*(n - 2)/6
@XFAIL
def test_F3():
assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n)
@XFAIL
def test_F4():
assert combsimp((2**n * factorial(n) * product(2*k - 1, (k, 1, n)))) == factorial(2*n)
@XFAIL
def test_F5():
assert gamma(n + R(1, 2)) / sqrt(pi) / factorial(n) == factorial(2*n)/2**(2*n)/factorial(n)**2
def test_F6():
partTest = [p.copy() for p in partitions(4)]
partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}]
assert partTest == partDesired
def test_F7():
assert npartitions(4) == 5
def test_F8():
assert stirling(5, 2, signed=True) == -50 # if signed, then kind=1
def test_F9():
assert totient(1776) == 576
# G. Number Theory
def test_G1():
assert list(primerange(999983, 1000004)) == [999983, 1000003]
@XFAIL
def test_G2():
raise NotImplementedError("find the primitive root of 191 == 19")
@XFAIL
def test_G3():
raise NotImplementedError("(a+b)**p mod p == a**p + b**p mod p; p prime")
# ... G14 Modular equations are not implemented.
def test_G15():
assert Rational(sqrt(3).evalf()).limit_denominator(15) == Rational(26, 15)
assert list(takewhile(lambda x: x.q <= 15, cf_c(cf_i(sqrt(3)))))[-1] == \
Rational(26, 15)
def test_G16():
assert list(islice(cf_i(pi),10)) == [3, 7, 15, 1, 292, 1, 1, 1, 2, 1]
def test_G17():
assert cf_p(0, 1, 23) == [4, [1, 3, 1, 8]]
def test_G18():
assert cf_p(1, 2, 5) == [[1]]
assert cf_r([[1]]) == S.Half + sqrt(5)/2
@XFAIL
def test_G19():
s = symbols('s', integer=True, positive=True)
it = cf_i((exp(1/s) - 1)/(exp(1/s) + 1))
assert list(islice(it, 5)) == [0, 2*s, 6*s, 10*s, 14*s]
def test_G20():
s = symbols('s', integer=True, positive=True)
# Wester erroneously has this as -s + sqrt(s**2 + 1)
assert cf_r([[2*s]]) == s + sqrt(s**2 + 1)
@XFAIL
def test_G20b():
s = symbols('s', integer=True, positive=True)
assert cf_p(s, 1, s**2 + 1) == [[2*s]]
# H. Algebra
def test_H1():
assert simplify(2*2**n) == simplify(2**(n + 1))
assert powdenest(2*2**n) == simplify(2**(n + 1))
def test_H2():
assert powsimp(4 * 2**n) == 2**(n + 2)
def test_H3():
assert (-1)**(n*(n + 1)) == 1
def test_H4():
expr = factor(6*x - 10)
assert type(expr) is Mul
assert expr.args[0] == 2
assert expr.args[1] == 3*x - 5
p1 = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81
p2 = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81
q = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86
def test_H5():
assert gcd(p1, p2, x) == 1
def test_H6():
assert gcd(expand(p1 * q), expand(p2 * q)) == q
def test_H7():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
assert gcd(p1, p2, x, y, z) == 1
def test_H8():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
q = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8
assert gcd(p1 * q, p2 * q, x, y, z) == q
def test_H9():
p1 = 2*x**(n + 4) - x**(n + 2)
p2 = 4*x**(n + 1) + 3*x**n
assert gcd(p1, p2) == x**n
def test_H10():
p1 = 3*x**4 + 3*x**3 + x**2 - x - 2
p2 = x**3 - 3*x**2 + x + 5
assert resultant(p1, p2, x) == 0
def test_H11():
assert resultant(p1 * q, p2 * q, x) == 0
def test_H12():
num = x**2 - 4
den = x**2 + 4*x + 4
assert simplify(num/den) == (x - 2)/(x + 2)
@XFAIL
def test_H13():
assert simplify((exp(x) - 1) / (exp(x/2) + 1)) == exp(x/2) - 1
def test_H14():
p = (x + 1) ** 20
ep = expand(p)
assert ep == (1 + 20*x + 190*x**2 + 1140*x**3 + 4845*x**4 + 15504*x**5
+ 38760*x**6 + 77520*x**7 + 125970*x**8 + 167960*x**9 + 184756*x**10
+ 167960*x**11 + 125970*x**12 + 77520*x**13 + 38760*x**14 + 15504*x**15
+ 4845*x**16 + 1140*x**17 + 190*x**18 + 20*x**19 + x**20)
dep = diff(ep, x)
assert dep == (20 + 380*x + 3420*x**2 + 19380*x**3 + 77520*x**4
+ 232560*x**5 + 542640*x**6 + 1007760*x**7 + 1511640*x**8 + 1847560*x**9
+ 1847560*x**10 + 1511640*x**11 + 1007760*x**12 + 542640*x**13
+ 232560*x**14 + 77520*x**15 + 19380*x**16 + 3420*x**17 + 380*x**18
+ 20*x**19)
assert factor(dep) == 20*(1 + x)**19
def test_H15():
assert simplify((Mul(*[x - r for r in solveset(x**3 + x**2 - 7)]))) == x**3 + x**2 - 7
def test_H16():
assert factor(x**100 - 1) == ((x - 1)*(x + 1)*(x**2 + 1)*(x**4 - x**3
+ x**2 - x + 1)*(x**4 + x**3 + x**2 + x + 1)*(x**8 - x**6 + x**4
- x**2 + 1)*(x**20 - x**15 + x**10 - x**5 + 1)*(x**20 + x**15 + x**10
+ x**5 + 1)*(x**40 - x**30 + x**20 - x**10 + 1))
def test_H17():
assert simplify(factor(expand(p1 * p2)) - p1*p2) == 0
@XFAIL
def test_H18():
# Factor over complex rationals.
test = factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153)
good = (2*x + 3*I)*(2*x - 3*I)*(x + 1 - 4*I)*(x + 1 + 4*I)
assert test == good
def test_H19():
a = symbols('a')
# The idea is to let a**2 == 2, then solve 1/(a-1). Answer is a+1")
assert Poly(a - 1).invert(Poly(a**2 - 2)) == a + 1
@XFAIL
def test_H20():
raise NotImplementedError("let a**2==2; (x**3 + (a-2)*x**2 - "
+ "(2*a+3)*x - 3*a) / (x**2-2) = (x**2 - 2*x - 3) / (x-a)")
@XFAIL
def test_H21():
raise NotImplementedError("evaluate (b+c)**4 assuming b**3==2, c**2==3. \
Answer is 2*b + 8*c + 18*b**2 + 12*b*c + 9")
def test_H22():
assert factor(x**4 - 3*x**2 + 1, modulus=5) == (x - 2)**2 * (x + 2)**2
def test_H23():
f = x**11 + x + 1
g = (x**2 + x + 1) * (x**9 - x**8 + x**6 - x**5 + x**3 - x**2 + 1)
assert factor(f, modulus=65537) == g
def test_H24():
phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
assert factor(x**4 - 3*x**2 + 1, extension=phi) == \
(x - phi)*(x + 1 - phi)*(x - 1 + phi)*(x + phi)
def test_H25():
e = (x - 2*y**2 + 3*z**3) ** 20
assert factor(expand(e)) == e
@slow
def test_H26():
g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20)
assert factor(g, expand=False) == (-sin(x) + 2*cos(y)**2 - 3*tan(z)**3)**20
@slow
def test_H27():
f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
h = -2*z*y**7 \
*(6*x**9*y**9*z**3 + 10*x**7*z**6 + 17*y*x**5*z**12 + 40*y**7) \
*(3*x**22 + 47*x**17*y**5*z**8 - 6*x**15*y**9*z**2 - 24*x*y**19*z**8 - 5)
assert factor(expand(f*g)) == h
@XFAIL
def test_H28():
raise NotImplementedError("expand ((1 - c**2)**5 * (1 - s**2)**5 * "
+ "(c**2 + s**2)**10) with c**2 + s**2 = 1. Answer is c**10*s**10.")
@XFAIL
def test_H29():
assert factor(4*x**2 - 21*x*y + 20*y**2, modulus=3) == (x + y)*(x - y)
def test_H30():
test = factor(x**3 + y**3, extension=sqrt(-3))
answer = (x + y)*(x + y*(-R(1, 2) - sqrt(3)/2*I))*(x + y*(-R(1, 2) + sqrt(3)/2*I))
assert answer == test
def test_H31():
f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2)
g = 2 / (x + 1)**2 - 2 / (x + 1) + 3 / (x + 2)
assert apart(f) == g
@XFAIL
def test_H32(): # issue 6558
raise NotImplementedError("[A*B*C - (A*B*C)**(-1)]*A*C*B (product \
of a non-commuting product and its inverse)")
def test_H33():
A, B, C = symbols('A, B, C', commutative=False)
assert (Commutator(A, Commutator(B, C))
+ Commutator(B, Commutator(C, A))
+ Commutator(C, Commutator(A, B))).doit().expand() == 0
# I. Trigonometry
@XFAIL
def test_I1():
assert tan(7*pi/10) == -sqrt(1 + 2/sqrt(5))
@XFAIL
def test_I2():
assert sqrt((1 + cos(6))/2) == -cos(3)
def test_I3():
assert cos(n*pi) + sin((4*n - 1)*pi/2) == (-1)**n - 1
def test_I4():
assert refine(cos(pi*cos(n*pi)) + sin(pi/2*cos(n*pi)), Q.integer(n)) == (-1)**n - 1
@XFAIL
def test_I5():
assert sin((n**5/5 + n**4/2 + n**3/3 - n/30) * pi) == 0
@XFAIL
def test_I6():
raise NotImplementedError("assuming -3*pi<x<-5*pi/2, abs(cos(x)) == -cos(x), abs(sin(x)) == -sin(x)")
@XFAIL
def test_I7():
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
@XFAIL
def test_I8():
assert cos(3*x)/cos(x) == 2*cos(2*x) - 1
@XFAIL
def test_I9():
# Supposed to do this with rewrite rules.
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
def test_I10():
assert trigsimp((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1)) == nan
@SKIP("hangs")
@XFAIL
def test_I11():
assert limit((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x, 0) != 0
@XFAIL
def test_I12():
try:
# This should fail or return nan or something.
diff((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x)
except:
assert True
else:
assert False, "taking the derivative with a fraction equivalent to 0/0 should fail"
# J. Special functions.
def test_J1():
assert bernoulli(16) == R(-3617, 510)
def test_J2():
assert diff(elliptic_e(x, y**2), y) == (elliptic_e(x, y**2) - elliptic_f(x, y**2))/y
@XFAIL
def test_J3():
raise NotImplementedError("Jacobi elliptic functions: diff(dn(u,k), u) == -k**2*sn(u,k)*cn(u,k)")
def test_J4():
assert gamma(R(-1, 2)) == -2*sqrt(pi)
def test_J5():
assert polygamma(0, R(1, 3)) == -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
def test_J6():
assert mpmath.besselj(2, 1 + 1j).ae(mpc('0.04157988694396212', '0.24739764151330632'))
def test_J7():
assert simplify(besselj(R(-5,2), pi/2)) == 12/(pi**2)
def test_J8():
p = besselj(R(3,2), z)
q = (sin(z)/z - cos(z))/sqrt(pi*z/2)
assert simplify(expand_func(p) -q) == 0
def test_J9():
assert besselj(0, z).diff(z) == - besselj(1, z)
def test_J10():
mu, nu = symbols('mu, nu', integer=True)
assert assoc_legendre(nu, mu, 0) == 2**mu*sqrt(pi)/gamma((nu - mu)/2 + 1)/gamma((-nu - mu + 1)/2)
def test_J11():
assert simplify(assoc_legendre(3, 1, x)) == simplify(-R(3, 2)*sqrt(1 - x**2)*(5*x**2 - 1))
@slow
def test_J12():
assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_J13():
a = symbols('a', integer=True, negative=False)
assert chebyshevt(a, -1) == (-1)**a
def test_J14():
p = hyper([S(1)/2, S(1)/2], [S(3)/2], z**2)
assert hyperexpand(p) == asin(z)/z
@XFAIL
def test_J15():
raise NotImplementedError("F((n+2)/2,-(n-2)/2,R(3,2),sin(z)**2) == sin(n*z)/(n*sin(z)*cos(z)); F(.) is hypergeometric function")
@XFAIL
def test_J16():
raise NotImplementedError("diff(zeta(x), x) @ x=0 == -log(2*pi)/2")
@XFAIL
def test_J17():
assert deltaintegrate(f((x + 2)/5)*DiracDelta((x - 2)/3) - g(x)*diff(DiracDelta(x - 1), x), (x, 0, 3))
@XFAIL
def test_J18():
raise NotImplementedError("define an antisymmetric function")
# K. The Complex Domain
def test_K1():
z1, z2 = symbols('z1, z2', complex=True)
assert re(z1 + I*z2) == -im(z2) + re(z1)
assert im(z1 + I*z2) == im(z1) + re(z2)
def test_K2():
assert abs(3 - sqrt(7) + I*sqrt(6*sqrt(7) - 15)) == 1
@XFAIL
def test_K3():
a, b = symbols('a, b', real=True)
assert simplify(abs(1/(a + I/a + I*b))) == 1/sqrt(a**2 + (I/a + b)**2)
def test_K4():
assert log(3 + 4*I).expand(complex=True) == log(5) + I*atan(R(4, 3))
def test_K5():
x, y = symbols('x, y', real=True)
assert tan(x + I*y).expand(complex=True) == (sin(2*x)/(cos(2*x) +
cosh(2*y)) + I*sinh(2*y)/(cos(2*x) + cosh(2*y)))
def test_K6():
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) == sqrt(x*y)/sqrt(x)
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) != sqrt(y)
def test_K7():
y = symbols('y', real=True, negative=False)
expr = sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z))
sexpr = simplify(expr)
assert sexpr == sqrt(y)
@XFAIL
def test_K8():
z = symbols('z', complex=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) != 0 # Passes
z = symbols('z', complex=True, negative=False)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 # Fails
def test_K9():
z = symbols('z', real=True, positive=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0
def test_K10():
z = symbols('z', real=True, negative=True)
assert simplify(sqrt(1/z) + 1/sqrt(z)) == 0
# This goes up to K25
# L. Determining Zero Equivalence
def test_L1():
assert sqrt(997) - (997**3)**R(1, 6) == 0
def test_L2():
assert sqrt(999983) - (999983**3)**R(1, 6) == 0
def test_L3():
assert simplify((2**R(1, 3) + 4**R(1, 3))**3 - 6*(2**R(1, 3) + 4**R(1, 3)) - 6) == 0
def test_L4():
assert trigsimp(cos(x)**3 + cos(x)*sin(x)**2 - cos(x)) == 0
@XFAIL
def test_L5():
assert log(tan(R(1, 2)*x + pi/4)) - asinh(tan(x)) == 0
def test_L6():
assert (log(tan(x/2 + pi/4)) - asinh(tan(x))).diff(x).subs({x: 0}) == 0
@XFAIL
def test_L7():
assert simplify(log((2*sqrt(x) + 1)/(sqrt(4*x + 4*sqrt(x) + 1)))) == 0
@XFAIL
def test_L8():
assert simplify((4*x + 4*sqrt(x) + 1)**(sqrt(x)/(2*sqrt(x) + 1)) \
*(2*sqrt(x) + 1)**(1/(2*sqrt(x) + 1)) - 2*sqrt(x) - 1) == 0
@XFAIL
def test_L9():
z = symbols('z', complex=True)
assert simplify(2**(1 - z)*gamma(z)*zeta(z)*cos(z*pi/2) - pi**2*zeta(1 - z)) == 0
# M. Equations
@XFAIL
def test_M1():
assert Equality(x, 2)/2 + Equality(1, 1) == Equality(x/2 + 1, 2)
def test_M2():
# The roots of this equation should all be real. Note that this
# doesn't test that they are correct.
sol = solveset(3*x**3 - 18*x**2 + 33*x - 19, x)
assert all(s.expand(complex=True).is_real for s in sol)
@XFAIL
def test_M5():
assert solveset(x**6 - 9*x**4 - 4*x**3 + 27*x**2 - 36*x - 23, x) == FiniteSet(2**(1/3) + sqrt(3), 2**(1/3) - sqrt(3), +sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), +sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3))
def test_M6():
assert set(solveset(x**7 - 1, x)) == \
{cos(n*2*pi/7) + I*sin(n*2*pi/7) for n in range(0, 7)}
# The paper asks for exp terms, but sin's and cos's may be acceptable;
# if the results are simplified, exp terms appear for all but
# -sin(pi/14) - I*cos(pi/14) and -sin(pi/14) + I*cos(pi/14) which
# will simplify if you apply the transformation foo.rewrite(exp).expand()
def test_M7():
# TODO: Replace solve with solveset, as of now test fails for solveset
sol = solve(x**8 - 8*x**7 + 34*x**6 - 92*x**5 + 175*x**4 - 236*x**3 +
226*x**2 - 140*x + 46, x)
assert [s.simplify() for s in sol] == [
1 - sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 - sqrt(-6 + 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*I*sqrt(3 + 4*sqrt (3)))/2,
1 - sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 - sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2]
@XFAIL # There are an infinite number of solutions.
def test_M8():
x = Symbol('x')
z = symbols('z', complex=True)
assert solveset(exp(2*x) + 2*exp(x) + 1 - z, x, S.Reals) == \
FiniteSet(log(1 + z - 2*sqrt(z))/2, log(1 + z + 2*sqrt(z))/2)
# This one could be simplified better (the 1/2 could be pulled into the log
# as a sqrt, and the function inside the log can be factored as a square,
# giving [log(sqrt(z) - 1), log(sqrt(z) + 1)]). Also, there should be an
# infinite number of solutions.
# x = {log(sqrt(z) - 1), log(sqrt(z) + 1) + i pi} [+ n 2 pi i, + n 2 pi i]
# where n is an arbitrary integer. See url of detailed output above.
@XFAIL
def test_M9():
x = symbols('x')
raise NotImplementedError("solveset(exp(2-x**2)-exp(-x),x) has complex solutions.")
def test_M10():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(exp(x) - x, x) == [-LambertW(-1)]
@XFAIL
def test_M11():
assert solveset(x**x - x, x) == FiniteSet(-1, 1)
def test_M12():
# TODO: x = [-1, 2*(+/-asinh(1)*I + n*pi}, 3*(pi/6 + n*pi/3)]
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x + 1)*(sin(x)**2 + 1)**2*cos(3*x)**3, x) == [
-1, pi/6, pi/2,
- I*log(1 + sqrt(2)), I*log(1 + sqrt(2)),
pi - I*log(1 + sqrt(2)), pi + I*log(1 + sqrt(2)),
]
@XFAIL
def test_M13():
n = Dummy('n')
assert solveset_real(sin(x) - cos(x), x) == ImageSet(Lambda(n, n*pi - 7*pi/4), S.Integers)
@XFAIL
def test_M14():
n = Dummy('n')
assert solveset_real(tan(x) - 1, x) == ImageSet(Lambda(n, n*pi + pi/4), S.Integers)
@XFAIL
def test_M15():
n = Dummy('n')
assert solveset(sin(x) - S.Half) == Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + 5*pi/6), S.Integers))
@XFAIL
def test_M16():
n = Dummy('n')
assert solveset(sin(x) - tan(x), x) == ImageSet(Lambda(n, n*pi), Integers())
@XFAIL
def test_M17():
assert solveset_real(asin(x) - atan(x), x) == FiniteSet(0)
@XFAIL
def test_M18():
assert solveset_real(acos(x) - atan(x), x) == FiniteSet(sqrt((sqrt(5) - 1)/2))
def test_M19():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x - 2)/x**R(1, 3), x) == [2]
def test_M20():
assert solveset(sqrt(x**2 + 1) - x + 2, x) == EmptySet()
def test_M21():
assert solveset(x + sqrt(x) - 2) == FiniteSet(1)
def test_M22():
assert solveset(2*sqrt(x) + 3*x**R(1, 4) - 2) == FiniteSet(R(1, 16))
def test_M23():
x = symbols('x', complex=True)
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(x - 1/sqrt(1 + x**2)) == [
-I*sqrt(S.Half + sqrt(5)/2), sqrt(-S.Half + sqrt(5)/2)]
def test_M24():
# TODO: Replace solve with solveset, as of now test fails for solveset
solution = solve(1 - binomial(m, 2)*2**k, k)
answer = log(2/(m*(m - 1)), 2)
assert solution[0].expand() == answer.expand()
def test_M25():
a, b, c, d = symbols(':d', positive=True)
x = symbols('x')
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(a*b**x - c*d**x, x)[0].expand() == (log(c/a)/log(b/d)).expand()
def test_M26():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(sqrt(log(x)) - log(sqrt(x))) == [1, exp(4)]
@XFAIL
def test_M27():
x = symbols('x', real=True)
b = symbols('b', real=True)
with assuming(Q.is_true(sin(cos(1/E**2) + 1) + b > 0)):
# TODO: Replace solve with solveset
solve(log(acos(asin(x**R(2, 3) - b) - 1)) + 2, x) == [-b - sin(1 + cos(1/e**2))**R(3/2), b + sin(1 + cos(1/e**2))**R(3/2)]
@XFAIL
def test_M28():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solve(5*x + exp((x - 5)/2) - 8*x**3, x, assume=Q.real(x)) == [-0.784966, -0.016291, 0.802557]
def test_M29():
x = symbols('x')
assert solveset(abs(x - 1) - 2, domain=S.Reals) == FiniteSet(-1, 3)
@XFAIL
def test_M30():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solve(abs(2*x + 5) - abs(x - 2),x, assume=Q.real(x)) == [-1, -7]
@XFAIL
def test_M31():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solve(1 - abs(x) - max(-x - 2, x - 2),x, assume=Q.real(x)) == [-3/2, 3/2]
@XFAIL
def test_M32():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solve(max(2 - x**2, x)- max(-x, (x**3)/9), assume=Q.real(x)) == [-1, 3]
@XFAIL
def test_M33():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# Second answer can be written in another form. The second answer is the root of x**3 + 9*x**2 - 18 = 0 in the interval (-2, -1).
assert solve(max(2 - x**2, x) - x**3/9, assume=Q.real(x)) == [-3, -1.554894, 3]
@XFAIL
def test_M34():
z = symbols('z', complex=True)
assert solveset((1 + I) * z + (2 - I) * conjugate(z) + 3*I, z) == FiniteSet(2 + 3*I)
def test_M35():
x, y = symbols('x y', real=True)
assert linsolve((3*x - 2*y - I*y + 3*I).as_real_imag(), y, x) == FiniteSet((3, 2))
@XFAIL
def test_M36():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports solving for function
assert solve(f**2 + f - 2, x) == [Eq(f(x), 1), Eq(f(x), -2)]
def test_M37():
assert linsolve([x + y + z - 6, 2*x + y + 2*z - 10, x + 3*y + z - 10 ], x, y, z) == \
FiniteSet((-z + 4, 2, z))
def test_M38():
variables = vring("k1:50", vfield("a,b,c", ZZ).to_domain())
system = [
-b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a,
-b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a,
-b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a,
b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a,
b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4,
-b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c,
b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b),
-k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b,
a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11,
b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b,
-k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b,
-a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b,
a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b),
a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2,
-k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c,
-k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c,
-a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18,
-a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c,
a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c,
-k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c,
-a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c),
a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18,
-k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44,
-k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42,
-2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a,
k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b,
a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c,
-a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7,
k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a,
k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37,
k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b,
a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c,
-k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8,
-k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6,
-k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46,
b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b,
-k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a,
-a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b,
-a*k49/c + b*k49/c
]
solution = {
k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0,
k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0,
k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0,
k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0,
k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0,
k2: 0, k1: 0,
k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39
}
assert solve_lin_sys(system, variables) == solution
def test_M39():
x, y, z = symbols('x y z', complex=True)
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports non-linear multivariate
assert solve([x**2*y + 3*y*z - 4, -3*x**2*z + 2*y**2 + 1, 2*y*z**2 - z**2 - 1 ]) ==\
[{y: 1, z: 1, x: -1}, {y: 1, z: 1, x: 1},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: -sqrt(-1 - sqrt(2)*I)},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: sqrt(-1 - sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: -sqrt(-1 + sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: sqrt(-1 + sqrt(2)*I)}]
# N. Inequalities
def test_N1():
assert ask(Q.is_true(E**pi > pi**E))
@XFAIL
def test_N2():
x = symbols('x', real=True)
assert ask(Q.is_true(x**4 - x + 1 > 0))
assert ask(Q.is_true(x**4 - x + 1 > 1)) == False
@XFAIL
def test_N3():
x = symbols('x', real=True)
assert ask(Q.is_true(And(Lt(-1, x), Lt(x, 1))), Q.is_true(abs(x) < 1 ))
@XFAIL
def test_N4():
x, y = symbols('x y', real=True)
assert ask(Q.is_true(2*x**2 > 2*y**2), Q.is_true((x > y) & (y > 0)))
@XFAIL
def test_N5():
x, y, k = symbols('x y k', real=True)
assert ask(Q.is_true(k*x**2 > k*y**2), Q.is_true((x > y) & (y > 0) & (k > 0)))
@XFAIL
def test_N6():
x, y, k, n = symbols('x y k n', real=True)
assert ask(Q.is_true(k*x**n > k*y**n), Q.is_true((x > y) & (y > 0) & (k > 0) & (n > 0)))
@XFAIL
def test_N7():
x, y = symbols('x y', real=True)
assert ask(Q.is_true(y > 0), Q.is_true((x > 1) & (y >= x - 1)))
@XFAIL
def test_N8():
x, y, z = symbols('x y z', real=True)
assert ask(Q.is_true((x == y) & (y == z)),
Q.is_true((x >= y) & (y >= z) & (z >= x)))
def test_N9():
x = Symbol('x')
assert solveset(abs(x - 1) > 2, domain=S.Reals) == Union(Interval(-oo, -1, False, True),
Interval(3, oo, True))
def test_N10():
x = Symbol('x')
p = (x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5)
assert solveset(expand(p) < 0, domain=S.Reals) == Union(Interval(-oo, 1, True, True),
Interval(2, 3, True, True),
Interval(4, 5, True, True))
def test_N11():
x = Symbol('x')
assert solveset(6/(x - 3) <= 3, domain=S.Reals) == Union(Interval(-oo, 3, True, True), Interval(5, oo))
def test_N12():
x = Symbol('x')
assert solveset(sqrt(x) < 2, domain=S.Reals) == Interval(0, 4, False, True)
def test_N13():
x = Symbol('x')
assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
@XFAIL
def test_N14():
# raises NotImplementedError: can't reduce [sin(x) < 1]
x = Symbol('x')
assert solveset(sin(x) < 1, domain=S.Reals) == Union(Interval(-oo, pi/2, True, True),
Interval(pi/2, oo, True, True))
def test_N15():
r, t = symbols('r t')
# raises NotImplementedError: only univariate inequalities are supported
solveset(abs(2*r*(cos(t) - 1) + 1) <= 1, r, S.Reals)
def test_N16():
r, t = symbols('r t')
solveset((r**2)*((cos(t) - 4)**2)*sin(t)**2 < 9, r, S.Reals)
@XFAIL
def test_N17():
# currently only univariate inequalities are supported
assert solveset((x + y > 0, x - y < 0), (x, y)) == (abs(x) < y)
def test_O1():
M = Matrix((1 + I, -2, 3*I))
assert sqrt(expand(M.dot(M.H))) == sqrt(15)
def test_O2():
assert Matrix((2, 2, -3)).cross(Matrix((1, 3, 1))) == Matrix([[11],
[-5],
[4]])
# The vector module has no way of representing vectors symbolically (without
# respect to a basis)
@XFAIL
def test_O3():
assert (va ^ vb) | (vc ^ vd) == -(va | vc)*(vb | vd) + (va | vd)*(vb | vc)
def test_O4():
from sympy.vector import CoordSys3D, Del
N = CoordSys3D("N")
delop = Del()
i, j, k = N.base_vectors()
x, y, z = N.base_scalars()
F = i*(x*y*z) + j*((x*y*z)**2) + k*((y**2)*(z**3))
assert delop.cross(F).doit() == (-2*x**2*y**2*z + 2*y*z**3)*i + x*y*j + (2*x*y**2*z**2 - x*z)*k
# The vector module has no way of representing vectors symbolically (without
# respect to a basis)
@XFAIL
def test_O5():
assert grad|(f^g)-g|(grad^f)+f|(grad^g) == 0
#testO8-O9 MISSING!!
def test_O10():
L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])]
assert GramSchmidt(L) == [Matrix([
[2],
[3],
[5]]),
Matrix([
[S(23)/19],
[S(63)/19],
[S(-47)/19]]),
Matrix([
[S(1692)/353],
[S(-1551)/706],
[S(-423)/706]])]
@XFAIL
def test_P1():
raise NotImplementedError("Matrix property/function to extract Nth \
diagonal not implemented. See Matlab diag(A,k) \
http://www.mathworks.de/de/help/symbolic/diag.html")
def test_P2():
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
M.row_del(1)
M.col_del(2)
assert M == Matrix([[1, 2],
[7, 8]])
@XFAIL
def test_P3():
A = Matrix([
[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44]])
A11 = A[0:3, 1:4]
A12 = A[(0, 1, 3), (2, 0, 3)] # unsupported raises exception
A21 = A
A221 = A[0:2, 2:4]
A222 = A[(3, 0), (2, 1)] # unsupported raises exception
A22 = BlockMatrix([A221, A222])
B = BlockMatrix([[A11, A12],
[A21, A22]])
assert B == Matrix([[12, 13, 14, 13, 11, 14],
[22, 22, 24, 23, 21, 24],
[32, 33, 34, 43, 41, 44],
[11, 12, 13, 14, 13, 14],
[21, 22, 23, 24, 23, 24],
[31, 32, 33, 34, 43, 42],
[41, 42, 43, 44, 13, 12]])
@XFAIL
def test_P4():
raise NotImplementedError("Block matrix diagonalization not supported")
@XFAIL
def test_P5():
M = Matrix([[7, 11],
[3, 8]])
# Raises exception % not supported for matrices
assert M % 2 == Matrix([[1, 1],
[1, 0]])
def test_P5_workaround():
M = Matrix([[7, 11],
[3, 8]])
assert M.applyfunc(lambda i: i % 2) == Matrix([[1, 1],
[1, 0]])
def test_P6():
M = Matrix([[cos(x), sin(x)],
[-sin(x), cos(x)]])
assert M.diff(x, 2) == Matrix([[-cos(x), -sin(x)],
[sin(x), -cos(x)]])
def test_P7():
M = Matrix([[x, y]])*(
z*Matrix([[1, 3, 5],
[2, 4, 6]]) + Matrix([[7, -9, 11],
[-8, 10, -12]]))
assert M == Matrix([[x*(z + 7) + y*(2*z - 8), x*(3*z - 9) + y*(4*z + 10),
x*(5*z + 11) + y*(6*z - 12)]])
def test_P8():
M = Matrix([[1, -2*I],
[-3*I, 4]])
assert M.norm(ord=S.Infinity) == 7
def test_P9():
a, b, c = symbols('a b c', real=True)
M = Matrix([[a/(b*c), 1/c, 1/b],
[1/c, b/(a*c), 1/a],
[1/b, 1/a, c/(a*b)]])
assert factor(M.norm('fro')) == (a**2 + b**2 + c**2)/(abs(a)*abs(b)*abs(c))
@XFAIL
def test_P10():
M = Matrix([[1, 2 + 3*I],
[f(4 - 5*i), 6]])
# conjugate(f(4 - 5*i)) is not simplified to f(4+5*I)
assert M.H == Matrix([[1, f(4 + 5*I)],
[2 + 3*I, 6]])
@XFAIL
def test_P11():
# raises NotImplementedError("Matrix([[x,y],[1,x*y]]).inv()
# not simplifying to extract common factor")
assert Matrix([[x, y],
[1, x*y]]).inv() == (1/(x**2 - 1))*Matrix([[x, -1],
[-1/y, x/y]])
def test_P12():
A11 = MatrixSymbol('A11', n, n)
A12 = MatrixSymbol('A12', n, n)
A22 = MatrixSymbol('A22', n, n)
B = BlockMatrix([[A11, A12],
[ZeroMatrix(n, n), A22]])
assert block_collapse(B.I) == BlockMatrix([[A11.I, (-1)*A11.I*A12*A22.I],
[ZeroMatrix(n, n), A22.I]])
def test_P13():
M = Matrix([[1, x - 2, x - 3],
[x - 1, x**2 - 3*x + 6, x**2 - 3*x - 2],
[x - 2, x**2 - 8, 2*(x**2) - 12*x + 14]])
L, U, _ = M.LUdecomposition()
assert simplify(L) == Matrix([[1, 0, 0],
[x - 1, 1, 0],
[x - 2, x - 3, 1]])
assert simplify(U) == Matrix([[1, x - 2, x - 3],
[0, 4, x - 5],
[0, 0, x - 7]])
def test_P14():
M = Matrix([[1, 2, 3, 1, 3],
[3, 2, 1, 1, 7],
[0, 2, 4, 1, 1],
[1, 1, 1, 1, 4]])
R, _ = M.rref()
assert R == Matrix([[1, 0, -1, 0, 2],
[0, 1, 2, 0, -1],
[0, 0, 0, 1, 3],
[0, 0, 0, 0, 0]])
def test_P15():
M = Matrix([[-1, 3, 7, -5],
[4, -2, 1, 3],
[2, 4, 15, -7]])
assert M.rank() == 2
def test_P16():
M = Matrix([[2*sqrt(2), 8],
[6*sqrt(6), 24*sqrt(3)]])
assert M.rank() == 1
def test_P17():
t = symbols('t', real=True)
M=Matrix([
[sin(2*t), cos(2*t)],
[2*(1 - (cos(t)**2))*cos(t), (1 - 2*(sin(t)**2))*sin(t)]])
assert M.rank() == 1
def test_P18():
M = Matrix([[1, 0, -2, 0],
[-2, 1, 0, 3],
[-1, 2, -6, 6]])
assert M.nullspace() == [Matrix([[2],
[4],
[1],
[0]]),
Matrix([[0],
[-3],
[0],
[1]])]
def test_P19():
w = symbols('w')
M = Matrix([[1, 1, 1, 1],
[w, x, y, z],
[w**2, x**2, y**2, z**2],
[w**3, x**3, y**3, z**3]])
assert M.det() == (w**3*x**2*y - w**3*x**2*z - w**3*x*y**2 + w**3*x*z**2
+ w**3*y**2*z - w**3*y*z**2 - w**2*x**3*y + w**2*x**3*z
+ w**2*x*y**3 - w**2*x*z**3 - w**2*y**3*z + w**2*y*z**3
+ w*x**3*y**2 - w*x**3*z**2 - w*x**2*y**3 + w*x**2*z**3
+ w*y**3*z**2 - w*y**2*z**3 - x**3*y**2*z + x**3*y*z**2
+ x**2*y**3*z - x**2*y*z**3 - x*y**3*z**2 + x*y**2*z**3
)
@XFAIL
def test_P20():
raise NotImplementedError("Matrix minimal polynomial not supported")
def test_P21():
M = Matrix([[5, -3, -7],
[-2, 1, 2],
[2, -3, -4]])
assert M.charpoly(x).as_expr() == x**3 - 2*x**2 - 5*x + 6
@slow
def test_P22():
# Wester test calculates eigenvalues for a diagonal matrix of dimension 100
# This currently takes forever with sympy:
# M = (2 - x)*eye(100);
# assert M.eigenvals() == {-x + 2: 100}
# So we will speed-up the test checking only for dimension=12
d = 12
M = (2 - x)*eye(d)
assert M.eigenvals() == {-x + 2: d}
def test_P23():
M = Matrix([
[2, 1, 0, 0, 0],
[1, 2, 1, 0, 0],
[0, 1, 2, 1, 0],
[0, 0, 1, 2, 1],
[0, 0, 0, 1, 2]])
assert M.eigenvals() == {
S('1'): 1,
S('2'): 1,
S('3'): 1,
S('sqrt(3) + 2'): 1,
S('-sqrt(3) + 2'): 1}
def test_P24():
M = Matrix([[611, 196, -192, 407, -8, -52, -49, 29],
[196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]])
assert M.eigenvals() == {
S('0'): 1,
S('10*sqrt(10405)'): 1,
S('100*sqrt(26) + 510'): 1,
S('1000'): 2,
S('-100*sqrt(26) + 510'): 1,
S('-10*sqrt(10405)'): 1,
S('1020'): 1}
def test_P25():
MF = N(Matrix([[ 611, 196, -192, 407, -8, -52, -49, 29],
[ 196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]]))
assert (Matrix(sorted(MF.eigenvals())) - Matrix(
[-1020.0490184299969, 0.0, 0.09804864072151699, 1000.0,
1019.9019513592784, 1020.0, 1020.0490184299969])).norm() < 1e-13
def test_P26():
a0, a1, a2, a3, a4 = symbols('a0 a1 a2 a3 a4')
M = Matrix([[-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, -1, -1, 0, 0],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 1, -1, -1],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0]])
assert M.eigenvals(error_when_incomplete=False) == {
S('-1/2 - sqrt(3)*I/2'): 2,
S('-1/2 + sqrt(3)*I/2'): 2}
def test_P27():
a = symbols('a')
M = Matrix([[a, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, a, 0, 0],
[0, 0, 0, a, 0],
[0, -2, 0, 0, 2]])
assert M.eigenvects() == [(a, 3, [Matrix([[1],
[0],
[0],
[0],
[0]]),
Matrix([[0],
[0],
[1],
[0],
[0]]),
Matrix([[0],
[0],
[0],
[1],
[0]])]),
(1 - I, 1, [Matrix([[ 0],
[-1/(-1 + I)],
[ 0],
[ 0],
[ 1]])]),
(1 + I, 1, [Matrix([[ 0],
[-1/(-1 - I)],
[ 0],
[ 0],
[ 1]])])]
@XFAIL
def test_P28():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
@XFAIL
def test_P29():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
def test_P30():
M = Matrix([[1, 0, 0, 1, -1],
[0, 1, -2, 3, -3],
[0, 0, -1, 2, -2],
[1, -1, 1, 0, 1],
[1, -1, 1, -1, 2]])
_, J = M.jordan_form()
assert J == Matrix([[-1, 0, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 0, 1]])
@XFAIL
def test_P31():
raise NotImplementedError("Smith normal form not implemented")
def test_P32():
M = Matrix([[1, -2],
[2, 1]])
assert exp(M).rewrite(cos).simplify() == Matrix([[E*cos(2), -E*sin(2)],
[E*sin(2), E*cos(2)]])
def test_P33():
w, t = symbols('w t')
M = Matrix([[0, 1, 0, 0],
[0, 0, 0, 2*w],
[0, 0, 0, 1],
[0, -2*w, 3*w**2, 0]])
assert exp(M*t).rewrite(cos).expand() == Matrix([
[1, -3*t + 4*sin(t*w)/w, 6*t*w - 6*sin(t*w), -2*cos(t*w)/w + 2/w],
[0, 4*cos(t*w) - 3, -6*w*cos(t*w) + 6*w, 2*sin(t*w)],
[0, 2*cos(t*w)/w - 2/w, -3*cos(t*w) + 4, sin(t*w)/w],
[0, -2*sin(t*w), 3*w*sin(t*w), cos(t*w)]])
@XFAIL
def test_P34():
a, b, c = symbols('a b c', real=True)
M = Matrix([[a, 1, 0, 0, 0, 0],
[0, a, 0, 0, 0, 0],
[0, 0, b, 0, 0, 0],
[0, 0, 0, c, 1, 0],
[0, 0, 0, 0, c, 1],
[0, 0, 0, 0, 0, c]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == Matrix([[sin(a), cos(a), 0, 0, 0, 0],
[0, sin(a), 0, 0, 0, 0],
[0, 0, sin(b), 0, 0, 0],
[0, 0, 0, sin(c), cos(c), -sin(c)/2],
[0, 0, 0, 0, sin(c), cos(c)],
[0, 0, 0, 0, 0, sin(c)]])
@XFAIL
def test_P35():
M = pi/2*Matrix([[2, 1, 1],
[2, 3, 2],
[1, 1, 2]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == eye(3)
@XFAIL
def test_P36():
M = Matrix([[10, 7],
[7, 17]])
assert sqrt(M) == Matrix([[3, 1],
[1, 4]])
@XFAIL
def test_P37():
M = Matrix([[1, 1, 0],
[0, 1, 0],
[0, 0, 1]])
#raises NotImplementedError: Implemented only for diagonalizable matrices
M**Rational(1, 2)
@XFAIL
def test_P38():
M=Matrix([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
#raises NotImplementedError: Implemented only for diagonalizable matrices
M**Rational(1,2)
@XFAIL
def test_P39():
'''
M=Matrix([
[1, 1],
[2, 2],
[3, 3]])
M.SVD()
'''
raise NotImplementedError("Singular value decomposition not implemented")
def test_P40():
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert M.jacobian(Matrix([r, t])) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P41():
r, t = symbols('r t', real=True)
assert hessian(r**2*sin(t),(r,t)) == Matrix([[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P42():
assert wronskian([cos(x), sin(x)], x).simplify() == 1
def test_P43():
def __my_jacobian(M, Y):
return Matrix([M.diff(v).T for v in Y]).T
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert __my_jacobian(M,[r,t]) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P44():
def __my_hessian(f, Y):
V = Matrix([diff(f, v) for v in Y])
return Matrix([V.T.diff(v) for v in Y])
r, t = symbols('r t', real=True)
assert __my_hessian(r**2*sin(t), (r, t)) == Matrix([
[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P45():
def __my_wronskian(Y, v):
M = Matrix([Matrix(Y).T.diff(x, n) for n in range(0, len(Y))])
return M.det()
assert __my_wronskian([cos(x), sin(x)], x).simplify() == 1
# Q1-Q6 Tensor tests missing
@XFAIL
def test_R1():
i, n = symbols('i n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
Sm = Sum((xn[i, 0] - Sum(xn[j, 0], (j, 0, n - 1))/n)**2, (i, 0, n - 1))
# raises AttributeError: 'str' object has no attribute 'is_Piecewise'
Sm.doit()
@XFAIL
def test_R2():
m, b = symbols('m b')
i, n = symbols('i n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
yn = MatrixSymbol('yn', n, 1)
f = Sum((yn[i, 0] - m*xn[i, 0] - b)**2, (i, 0, n - 1))
f1 = diff(f, m)
f2 = diff(f, b)
# raises TypeError: solveset() takes at most 2 arguments (3 given)
solveset((f1, f2), m, b, domain=S.Reals)
@XFAIL
def test_R3():
n, k = symbols('n k', integer=True, positive=True)
sk = ((-1)**k) * (binomial(2*n, k))**2
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit()
T2 = T.combsimp()
# returns -((-1)**n*factorial(2*n)
# - (factorial(n))**2)*exp_polar(-I*pi)/(factorial(n))**2
assert T2 == (-1)**n*binomial(2*n, n)
@XFAIL
def test_R4():
# Macsyma indefinite sum test case:
#(c15) /* Check whether the full Gosper algorithm is implemented
# => 1/2^(n + 1) binomial(n, k - 1) */
#closedform(indefsum(binomial(n, k)/2^n - binomial(n + 1, k)/2^(n + 1), k));
#Time= 2690 msecs
# (- n + k - 1) binomial(n + 1, k)
#(d15) - --------------------------------
# n
# 2 2 (n + 1)
#
#(c16) factcomb(makefact(%));
#Time= 220 msecs
# n!
#(d16) ----------------
# n
# 2 k! 2 (n - k)!
# Might be possible after fixing https://github.com/sympy/sympy/pull/1879
raise NotImplementedError("Indefinite sum not supported")
@XFAIL
def test_R5():
a, b, c, n, k = symbols('a b c n k', integer=True, positive=True)
sk = ((-1)**k)*(binomial(a + b, a + k)
*binomial(b + c, b + k)*binomial(c + a, c + k))
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit() # hypergeometric series not calculated
assert T == factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c))
@XFAIL
def test_R6():
n, k = symbols('n k', integer=True, positive=True)
gn = MatrixSymbol('gn', n + 1, 1)
Sm = Sum(gn[k, 0] - gn[k - 1, 0], (k, 1, n + 1))
# raises AttributeError: 'str' object has no attribute 'is_Piecewise'
assert Sm.doit() == -gn[0, 0] + gn[n + 1, 0]
def test_R7():
n, k = symbols('n k', integer=True, positive=True)
T = Sum(k**3,(k,1,n)).doit()
assert T.factor() == n**2*(n + 1)**2/4
@XFAIL
def test_R8():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(k**2*binomial(n, k), (k, 1, n))
T = Sm.doit() #returns Piecewise function
# T.simplify() raisesAttributeError
assert T.combsimp() == n*(n + 1)*2**(n - 2)
def test_R9():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, k - 1)/k, (k, 1, n + 1))
assert Sm.doit().simplify() == (2**(n + 1) - 1)/(n + 1)
@XFAIL
def test_R10():
n, m, r, k = symbols('n m r k', integer=True, positive=True)
Sm = Sum(binomial(n, k)*binomial(m, r - k), (k, 0, r))
T = Sm.doit()
T2 = T.combsimp().rewrite(factorial)
assert T2 == factorial(m + n)/(factorial(r)*factorial(m + n - r))
assert T2 == binomial(m + n, r).rewrite(factorial)
# rewrite(binomial) is not working.
# https://github.com/sympy/sympy/issues/7135
T3 = T2.rewrite(binomial)
assert T3 == binomial(m + n, r)
@XFAIL
def test_R11():
n, k = symbols('n k', integer=True, positive=True)
sk = binomial(n, k)*fibonacci(k)
Sm = Sum(sk, (k, 0, n))
T = Sm.doit()
# Fibonacci simplification not implemented
# https://github.com/sympy/sympy/issues/7134
assert T == fibonacci(2*n)
@XFAIL
def test_R12():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(fibonacci(k)**2, (k, 0, n))
T = Sm.doit()
assert T == fibonacci(n)*fibonacci(n + 1)
@XFAIL
def test_R13():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin(k*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == cot(x/2)/2 - cos(x*(2*n + 1)/2)/(2*sin(x/2))
@XFAIL
def test_R14():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin((2*k - 1)*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == sin(n*x)**2/sin(x)
@XFAIL
def test_R15():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n - k, k), (k, 0, floor(n/2)))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == fibonacci(n + 1)
def test_R16():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/k**2 + 1/k**3, (k, 1, oo))
assert Sm.doit() == zeta(3) + pi**2/6
def test_R17():
k = symbols('k', integer=True, positive=True)
assert abs(float(Sum(1/k**2 + 1/k**3, (k, 1, oo)))
- 2.8469909700078206) < 1e-15
def test_R18():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(2**k*k**2), (k, 1, oo))
T = Sm.doit()
assert T.simplify() == -log(2)**2/2 + pi**2/12
@slow
@XFAIL
def test_R19():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/((3*k + 1)*(3*k + 2)*(3*k + 3)), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == -log(3)/4 + sqrt(3)*pi/12
@XFAIL
def test_R20():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, 4*k), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == 2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2
@XFAIL
def test_R21():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(sqrt(k*(k + 1)) * (sqrt(k) + sqrt(k + 1))), (k, 1, oo))
T = Sm.doit() # Sum not calculated
assert T.simplify() == 1
# test_R22 answer not available in Wester samples
# Sum(Sum(binomial(n, k)*binomial(n - k, n - 2*k)*x**n*y**(n - 2*k),
# (k, 0, floor(n/2))), (n, 0, oo)) with abs(x*y)<1?
@XFAIL
def test_R23():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(Sum((factorial(n)/(factorial(k)**2*factorial(n - 2*k)))*
(x/y)**k*(x*y)**(n - k), (n, 2*k, oo)), (k, 0, oo))
# Missing how to express constraint abs(x*y)<1?
T = Sm.doit() # Sum not calculated
assert T == -1/sqrt(x**2*y**2 - 4*x**2 - 2*x*y + 1)
def test_R24():
m, k = symbols('m k', integer=True, positive=True)
Sm = Sum(Product(k/(2*k - 1), (k, 1, m)), (m, 2, oo))
assert Sm.doit() == pi/2
def test_S1():
k = symbols('k', integer=True, positive=True)
Pr = Product(gamma(k/3), (k, 1, 8))
assert Pr.doit().simplify() == 640*sqrt(3)*pi**3/6561
def test_S2():
n, k = symbols('n k', integer=True, positive=True)
assert Product(k, (k, 1, n)).doit() == factorial(n)
def test_S3():
n, k = symbols('n k', integer=True, positive=True)
assert Product(x**k, (k, 1, n)).doit().simplify() == x**(n*(n + 1)/2)
def test_S4():
n, k = symbols('n k', integer=True, positive=True)
assert Product(1 + 1/k, (k, 1, n -1)).doit().simplify() == n
def test_S5():
n, k = symbols('n k', integer=True, positive=True)
assert (Product((2*k - 1)/(2*k), (k, 1, n)).doit().gammasimp() ==
gamma(n + Rational(1, 2))/(sqrt(pi)*gamma(n + 1)))
@SKIP("https://github.com/sympy/sympy/issues/7133")
def test_S6():
n, k = symbols('n k', integer=True, positive=True)
# Product raises Infinite recursion error.
# https://github.com/sympy/sympy/issues/7133
assert (Product(x**2 -2*x*cos(k*pi/n) + 1, (k, 1, n - 1)).doit().simplify()
== (x**(2*n) - 1)/(x**2 - 1))
@XFAIL
def test_S7():
k = symbols('k', integer=True, positive=True)
Pr = Product((k**3 - 1)/(k**3 + 1), (k, 2, oo))
T = Pr.doit()
assert T.simplify() == Rational(2, 3) # T simplifies incorrectly to 0
@XFAIL
def test_S8():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 - 1/(2*k)**2, (k, 1, oo))
T = Pr.doit()
# T = nan https://github.com/sympy/sympy/issues/7136
assert T.simplify() == 2/pi
@SKIP("https://github.com/sympy/sympy/issues/7133")
def test_S9():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 + (-1)**(k + 1)/(2*k - 1), (k, 1, oo))
# Product.doit() raises Infinite recursion error.
# https://github.com/sympy/sympy/issues/7133
T = Pr.doit()
assert T.simplify() == sqrt(2)
@SKIP("https://github.com/sympy/sympy/issues/7137")
def test_S10():
k = symbols('k', integer=True, positive=True)
Pr = Product((k*(k + 1) + 1 + I)/(k*(k + 1) + 1 - I), (k, 0, oo))
T = Pr.doit()
# raises OverflowError
# https://github.com/sympy/sympy/issues/7137
assert T.simplify() == -1
def test_T1():
assert limit((1 + 1/n)**n, n, oo) == E
assert limit((1 - cos(x))/x**2, x, 0) == Rational(1, 2)
def test_T2():
assert limit((3**x + 5**x)**(1/x), x, oo) == 5
def test_T3():
assert limit(log(x)/(log(x) + sin(x)), x, oo) == 1
def test_T4():
assert limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1))))
- exp(x))/x, x, oo) == -exp(2)
@slow
def test_T5():
assert limit(x*log(x)*log(x*exp(x) - x**2)**2/log(log(x**2
+ 2*exp(exp(3*x**3*log(x))))), x, oo) == Rational(1, 3)
def test_T6():
assert limit(1/n * factorial(n)**(1/n), n, oo) == exp(-1)
def test_T7():
limit(1/n * gamma(n + 1)**(1/n), n, oo)
def test_T8():
a, z = symbols('a z', real=True, positive=True)
assert limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, oo) == 1
@XFAIL
def test_T9():
z, k = symbols('z k', real=True, positive=True)
# raises NotImplementedError:
# Don't know how to calculate the mrv of '(1, k)'
assert limit(hyper((1, k), (1,), z/k), k, oo) == exp(z)
@XFAIL
def test_T10():
# raises PoleError should return euler-mascheroni constant
limit(zeta(x) - 1/(x - 1), x, 1)
@XFAIL
def test_T11():
n, k = symbols('n k', integer=True, positive=True)
# raises NotImplementedError
assert limit(n**x/(x*product((1 + x/k), (k, 1, n))), n, oo) == gamma(x)
@XFAIL
def test_T12():
x, t = symbols('x t', real=True)
# raises PoleError: Don't know how to calculate the
# limit(sqrt(pi)*x*erf(x)/(2*(1 - exp(-x**2))), x, 0, dir=+)
assert limit(x * integrate(exp(-t**2), (t, 0, x))/(1 - exp(-x**2)),
x, 0) == 1
def test_T13():
x = symbols('x', real=True)
assert [limit(x/abs(x), x, 0, dir='-'),
limit(x/abs(x), x, 0, dir='+')] == [-1, 1]
def test_T14():
x = symbols('x', real=True)
assert limit(atan(-log(x)), x, 0, dir='+') == pi/2
def test_U1():
x = symbols('x', real=True)
assert diff(abs(x), x) == sign(x)
def test_U2():
f = Lambda(x, Piecewise((-x, x < 0), (x, x >= 0)))
assert diff(f(x), x) == Piecewise((-1, x < 0), (1, x >= 0))
def test_U3():
f = Lambda(x, Piecewise((x**2 - 1, x == 1), (x**3, x != 1)))
f1 = Lambda(x, diff(f(x), x))
assert f1(x) == 3*x**2
assert f1(1) == 3
@XFAIL
def test_U4():
n = symbols('n', integer=True, positive=True)
x = symbols('x', real=True)
diff(x**n, x, n)
assert diff(x**n, x, n).rewrite(factorial) == factorial(n)
def test_U5():
# issue 6681
t = symbols('t')
ans = (
Derivative(f(g(t)), g(t))*Derivative(g(t), (t, 2)) +
Derivative(f(g(t)), (g(t), 2))*Derivative(g(t), t)**2)
assert f(g(t)).diff(t, 2) == ans
assert ans.doit() == ans
def test_U6():
h = Function('h')
T = integrate(f(y), (y, h(x), g(x)))
assert T.diff(x) == (
f(g(x))*Derivative(g(x), x) - f(h(x))*Derivative(h(x), x))
@XFAIL
def test_U7():
p, t = symbols('p t', real=True)
# Exact differential => d(V(P, T)) => dV/dP DP + dV/dT DT
# raises ValueError: Since there is more than one variable in the
# expression, the variable(s) of differentiation must be supplied to
# differentiate f(p,t)
diff(f(p, t))
def test_U8():
x, y = symbols('x y', real=True)
eq = cos(x*y) + x
# If SymPy had implicit_diff() function this hack could be avoided
# TODO: Replace solve with solveset, current test fails for solveset
assert idiff(y - eq, y, x) == (-y*sin(x*y) + 1)/(x*sin(x*y) + 1)
def test_U9():
# Wester sample case for Maple:
# O29 := diff(f(x, y), x) + diff(f(x, y), y);
# /d \ /d \
# |-- f(x, y)| + |-- f(x, y)|
# \dx / \dy /
#
# O30 := factor(subs(f(x, y) = g(x^2 + y^2), %));
# 2 2
# 2 D(g)(x + y ) (x + y)
x, y = symbols('x y', real=True)
su = diff(f(x, y), x) + diff(f(x, y), y)
s2 = su.subs(f(x, y), g(x**2 + y**2))
s3 = s2.doit().factor()
# Subs not performed, s3 = 2*(x + y)*Subs(Derivative(
# g(_xi_1), _xi_1), _xi_1, x**2 + y**2)
# Derivative(g(x*2 + y**2), x**2 + y**2) is not valid in SymPy,
# and probably will remain that way. You can take derivatives with respect
# to other expressions only if they are atomic, like a symbol or a
# function.
# D operator should be added to SymPy
# See https://github.com/sympy/sympy/issues/4719.
assert s3 == (x + y)*Subs(Derivative(g(x), x), x, x**2 + y**2)*2
def test_U10():
# see issue 2519:
assert residue((z**3 + 5)/((z**4 - 1)*(z + 1)), z, -1) == Rational(-9, 4)
@XFAIL
def test_U11():
assert (2*dx + dz) ^ (3*dx + dy + dz) ^ (dx + dy + 4*dz) == 8*dx ^ dy ^dz
@XFAIL
def test_U12():
# Wester sample case:
# (c41) /* d(3 x^5 dy /\ dz + 5 x y^2 dz /\ dx + 8 z dx /\ dy)
# => (15 x^4 + 10 x y + 8) dx /\ dy /\ dz */
# factor(ext_diff(3*x^5 * dy ~ dz + 5*x*y^2 * dz ~ dx + 8*z * dx ~ dy));
# 4
# (d41) (10 x y + 15 x + 8) dx dy dz
raise NotImplementedError(
"External diff of differential form not supported")
@XFAIL
def test_U13():
#assert minimize(x**4 - x + 1, x)== -3*2**Rational(1,3)/8 + 1
raise NotImplementedError("minimize() not supported")
@XFAIL
def test_U14():
#f = 1/(x**2 + y**2 + 1)
#assert [minimize(f), maximize(f)] == [0,1]
raise NotImplementedError("minimize(), maximize() not supported")
@XFAIL
def test_U15():
raise NotImplementedError("minimize() not supported and also solve does \
not support multivariate inequalities")
@XFAIL
def test_U16():
raise NotImplementedError("minimize() not supported in SymPy and also \
solve does not support multivariate inequalities")
@XFAIL
def test_U17():
raise NotImplementedError("Linear programming, symbolic simplex not \
supported in SymPy")
def test_V1():
x = symbols('x', real=True)
assert integrate(abs(x), x) == Piecewise((-x**2/2, x <= 0), (x**2/2, True))
def test_V2():
assert integrate(Piecewise((-x, x < 0), (x, x >= 0)), x
) == Piecewise((-x**2/2, x < 0), (x**2/2, True))
def test_V3():
assert integrate(1/(x**3 + 2),x).diff().simplify() == 1/(x**3 + 2)
def test_V4():
assert integrate(2**x/sqrt(1 + 4**x), x) == asinh(2**x)/log(2)
@XFAIL
@slow
def test_V5():
# Takes extremely long time
# https://github.com/sympy/sympy/issues/7149
assert (integrate((3*x - 5)**2/(2*x - 1)**(Rational(7, 2)), x) ==
(-41 + 80*x - 45*x**2)/(5*(2*x - 1)**Rational(5, 2)))
@XFAIL
def test_V6():
# returns RootSum(40*_z**2 - 1, Lambda(_i, _i*log(-4*_i + exp(-m*x))))/m
assert (integrate(1/(2*exp(m*x) - 5*exp(-m*x)), x) == sqrt(10)*(
log(2*exp(m*x) - sqrt(10)) - log(2*exp(m*x) + sqrt(10)))/(20*m))
def test_V7():
r1 = integrate(sinh(x)**4/cosh(x)**2)
assert r1.simplify() == -3*x/2 + sinh(x)**3/(2*cosh(x)) + 3*tanh(x)/2
@XFAIL
def test_V8_V9():
#Macsyma test case:
#(c27) /* This example involves several symbolic parameters
# => 1/sqrt(b^2 - a^2) log([sqrt(b^2 - a^2) tan(x/2) + a + b]/
# [sqrt(b^2 - a^2) tan(x/2) - a - b]) (a^2 < b^2)
# [Gradshteyn and Ryzhik 2.553(3)] */
#assume(b^2 > a^2)$
#(c28) integrate(1/(a + b*cos(x)), x);
#(c29) trigsimp(ratsimp(diff(%, x)));
# 1
#(d29) ------------
# b cos(x) + a
raise NotImplementedError(
"Integrate with assumption not supported")
def test_V10():
assert integrate(1/(3 + 3*cos(x) + 4*sin(x)), x) == log(tan(x/2) + Rational(3, 4))/4
def test_V11():
r1 = integrate(1/(4 + 3*cos(x) + 4*sin(x)), x)
r2 = factor(r1)
assert (logcombine(r2, force=True) ==
log(((tan(x/2) + 1)/(tan(x/2) + 7))**Rational(1, 3)))
@XFAIL
def test_V12():
r1 = integrate(1/(5 + 3*cos(x) + 4*sin(x)), x)
# Correct result in python2.7.4 wrong result in python3.3.1
# https://github.com/sympy/sympy/issues/7157
assert r1 == -1/(tan(x/2) + 2)
@slow
@XFAIL
def test_V13():
r1 = integrate(1/(6 + 3*cos(x) + 4*sin(x)), x)
# expression not simplified, returns: -sqrt(11)*I*log(tan(x/2) + 4/3
# - sqrt(11)*I/3)/11 + sqrt(11)*I*log(tan(x/2) + 4/3 + sqrt(11)*I/3)/11
assert r1.simplify() == 2*sqrt(11)*atan(sqrt(11)*(3*tan(x/2) + 4)/11)/11
@slow
@XFAIL
def test_V14():
r1 = integrate(log(abs(x**2 - y**2)), x)
# Piecewise result does not simplify to the desired result.
assert (r1.simplify() == x*log(abs(x**2 - y**2))
+ y*log(x + y) - y*log(x - y) - 2*x)
def test_V15():
r1 = integrate(x*acot(x/y), x)
assert simplify(r1 - (x*y + (x**2 + y**2)*acot(x/y))/2) == 0
@XFAIL
def test_V16():
# test case in Mathematica syntax:
# In[53]:= Integrate[Cos[5*x]*CosIntegral[2*x], x]
# CosIntegral[2 x] Sin[5 x] -SinIntegral[3 x] - SinIntegral[7 x]
# Out[53]= ------------------------- + ------------------------------------
# 5 10
# cosine Integral function not supported
# http://reference.wolfram.com/mathematica/ref/CosIntegral.html
raise NotImplementedError("cosine integral function not supported")
@slow
@XFAIL
def test_V17():
r1 = integrate((diff(f(x), x)*g(x)
- f(x)*diff(g(x), x))/(f(x)**2 - g(x)**2), x)
# integral not calculated
assert simplify(r1 - (f(x) - g(x))/(f(x) + g(x))/2) == 0
@XFAIL
def test_W1():
# The function has a pole at y.
# The integral has a Cauchy principal value of zero but SymPy returns -I*pi
# https://github.com/sympy/sympy/issues/7159
assert integrate(1/(x - y), (x, y - 1, y + 1)) == 0
@XFAIL
def test_W2():
# The function has a pole at y.
# The integral is divergent but SymPy returns -2
# https://github.com/sympy/sympy/issues/7160
# Test case in Macsyma:
# (c6) errcatch(integrate(1/(x - a)^2, x, a - 1, a + 1));
# Integral is divergent
assert integrate(1/(x - y)**2, (x, y - 1, y + 1)) == zoo
@XFAIL
def test_W3():
# integral is not calculated
# https://github.com/sympy/sympy/issues/7161
assert integrate(sqrt(x + 1/x - 2), (x, 0, 1)) == S(4)/3
@XFAIL
def test_W4():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 1, 2)) == -2*sqrt(2)/3 + S(4)/3
@XFAIL
def test_W5():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 0, 2)) == -2*sqrt(2)/3 + S(8)/3
@XFAIL
@slow
def test_W6():
# integral is not calculated
assert integrate(sqrt(2 - 2*cos(2*x))/2, (x, -3*pi/4, -pi/4)) == sqrt(2)
def test_W7():
a = symbols('a', real=True, positive=True)
r1 = integrate(cos(x)/(x**2 + a**2), (x, -oo, oo))
assert r1.simplify() == pi*exp(-a)/a
@XFAIL
def test_W8():
# Test case in Mathematica:
# In[19]:= Integrate[t^(a - 1)/(1 + t), {t, 0, Infinity},
# Assumptions -> 0 < a < 1]
# Out[19]= Pi Csc[a Pi]
raise NotImplementedError(
"Integrate with assumption 0 < a < 1 not supported")
@XFAIL
def test_W9():
# Integrand with a residue at infinity => -2 pi [sin(pi/5) + sin(2pi/5)]
# (principal value) [Levinson and Redheffer, p. 234] *)
r1 = integrate(5*x**3/(1 + x + x**2 + x**3 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == -2*pi*(sqrt(-sqrt(5)/8 + 5/8) + sqrt(sqrt(5)/8 + 5/8))
@XFAIL
def test_W10():
# integrate(1/[1 + x + x^2 + ... + x^(2 n)], x = -infinity..infinity) =
# 2 pi/(2 n + 1) [1 + cos(pi/[2 n + 1])] csc(2 pi/[2 n + 1])
# [Levinson and Redheffer, p. 255] => 2 pi/5 [1 + cos(pi/5)] csc(2 pi/5) */
r1 = integrate(x/(1 + x + x**2 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == 2*pi*(sqrt(5)/4 + 5/4)*csc(2*pi/5)/5
@XFAIL
def test_W11():
# integral not calculated
assert (integrate(sqrt(1 - x**2)/(1 + x**2), (x, -1, 1)) ==
pi*(-1 + sqrt(2)))
def test_W12():
p = symbols('p', real=True, positive=True)
q = symbols('q', real=True)
r1 = integrate(x*exp(-p*x**2 + 2*q*x), (x, -oo, oo))
assert r1.simplify() == sqrt(pi)*q*exp(q**2/p)/p**Rational(3, 2)
@XFAIL
def test_W13():
# Integral not calculated. Expected result is 2*(Euler_mascheroni_constant)
r1 = integrate(1/log(x) + 1/(1 - x) - log(log(1/x)), (x, 0, 1))
assert r1 == 2*EulerGamma
def test_W14():
assert integrate(sin(x)/x*exp(2*I*x), (x, -oo, oo)) == 0
@XFAIL
def test_W15():
# integral not calculated
assert integrate(log(gamma(x))*cos(6*pi*x), (x, 0, 1)) == S(1)/12
def test_W16():
assert integrate((1 + x)**3*legendre_poly(1, x)*legendre_poly(2, x),
(x, -1, 1)) == S(36)/35
def test_W17():
a, b = symbols('a b', real=True, positive=True)
assert integrate(exp(-a*x)*besselj(0, b*x),
(x, 0, oo)) == 1/(b*sqrt(a**2/b**2 + 1))
def test_W18():
assert integrate((besselj(1, x)/x)**2, (x, 0, oo)) == 4/(3*pi)
@XFAIL
def test_W19():
# integrate(cos_int(x)*bessel_j[0](2*sqrt(7*x)), x, 0, inf);
# Expected result is cos 7 - 1)/7 [Gradshteyn and Ryzhik 6.782(3)]
raise NotImplementedError("cosine integral function not supported")
@XFAIL
def test_W20():
# integral not calculated
assert (integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)) ==
-pi**2/36 - S(17)/108 + zeta(3)/4 +
(-pi**2/2 - 4*log(2) + log(2)**2 + 35/3)*log(2)/9)
def test_W21():
assert abs(N(integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)))
- 0.210882859565594) < 1e-15
def test_W22():
t, u = symbols('t u', real=True)
s = Lambda(x, Piecewise((1, And(x >= 1, x <= 2)), (0, True)))
assert integrate(s(t)*cos(t), (t, 0, u)) == Piecewise(
(0, u < 0),
(-sin(Min(1, u)) + sin(Min(2, u)), True))
@XFAIL
@slow
def test_W23():
a, b = symbols('a b', real=True, positive=True)
r1 = integrate(integrate(x/(x**2 + y**2), (x, a, b)), (y, -oo, oo))
assert r1.simplify() == pi*(-a + b)
@SKIP("integrate raises RuntimeError: maximum recursion depth exceeded")
@slow
def test_W23b():
# like W23 but limits are reversed
a, b = symbols('a b', real=True, positive=True)
r2 = integrate(integrate(x/(x**2 + y**2), (y, -oo, oo)), (x, a, b))
assert r2 == pi*(-a + b)
@XFAIL
@slow
def test_W24():
if ON_TRAVIS:
skip("Too slow for travis.")
x, y = symbols('x y', real=True)
r1 = integrate(integrate(sqrt(x**2 + y**2), (x, 0, 1)), (y, 0, 1))
assert (r1 - (sqrt(2) + asinh(1))/3).simplify() == 0
@XFAIL
@slow
def test_W25():
if ON_TRAVIS:
skip("Too slow for travis.")
a, x, y = symbols('a x y', real=True)
i1 = integrate(
sin(a)*sin(y)/sqrt(1 - sin(a)**2*sin(x)**2*sin(y)**2),
(x, 0, pi/2))
i2 = integrate(i1, (y, 0, pi/2))
assert (i2 - pi*a/2).simplify() == 0
def test_W26():
x, y = symbols('x y', real=True)
assert integrate(integrate(abs(y - x**2), (y, 0, 2)),
(x, -1, 1)) == S(46)/15
def test_W27():
a, b, c = symbols('a b c')
assert integrate(integrate(integrate(1, (z, 0, c*(1 - x/a - y/b))),
(y, 0, b*(1 - x/a))),
(x, 0, a)) == a*b*c/6
def test_X1():
v, c = symbols('v c', real=True)
assert (series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) ==
5*v**6/(16*c**6) + 3*v**4/(8*c**4) + v**2/(2*c**2) + 1 + O(v**8))
def test_X2():
v, c = symbols('v c', real=True)
s1 = series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8)
assert (1/s1**2).series(v, x0=0, n=8) == -v**2/c**2 + 1 + O(v**8)
def test_X3():
s1 = (sin(x).series()/cos(x).series()).series()
s2 = tan(x).series()
assert s2 == x + x**3/3 + 2*x**5/15 + O(x**6)
assert s1 == s2
def test_X4():
s1 = log(sin(x)/x).series()
assert s1 == -x**2/6 - x**4/180 + O(x**6)
assert log(series(sin(x)/x)).series() == s1
@XFAIL
def test_X5():
# test case in Mathematica syntax:
# In[21]:= (* => [a f'(a d) + g(b d) + integrate(h(c y), y = 0..d)]
# + [a^2 f''(a d) + b g'(b d) + h(c d)] (x - d) *)
# In[22]:= D[f[a*x], x] + g[b*x] + Integrate[h[c*y], {y, 0, x}]
# Out[22]= g[b x] + Integrate[h[c y], {y, 0, x}] + a f'[a x]
# In[23]:= Series[%, {x, d, 1}]
# Out[23]= (g[b d] + Integrate[h[c y], {y, 0, d}] + a f'[a d]) +
# 2 2
# (h[c d] + b g'[b d] + a f''[a d]) (-d + x) + O[-d + x]
h = Function('h')
a, b, c, d = symbols('a b c d', real=True)
# series() raises NotImplementedError:
# The _eval_nseries method should be added to <class
# 'sympy.core.function.Subs'> to give terms up to O(x**n) at x=0
series(diff(f(a*x), x) + g(b*x) + integrate(h(c*y), (y, 0, x)),
x, x0=d, n=2)
# assert missing, until exception is removed
def test_X6():
# Taylor series of nonscalar objects (noncommutative multiplication)
# expected result => (B A - A B) t^2/2 + O(t^3) [Stanly Steinberg]
a, b = symbols('a b', commutative=False, scalar=False)
assert (series(exp((a + b)*x) - exp(a*x) * exp(b*x), x, x0=0, n=3) ==
x**2*(-a*b/2 + b*a/2) + O(x**3))
def test_X7():
# => sum( Bernoulli[k]/k! x^(k - 2), k = 1..infinity )
# = 1/x^2 - 1/(2 x) + 1/12 - x^2/720 + x^4/30240 + O(x^6)
# [Levinson and Redheffer, p. 173]
assert (series(1/(x*(exp(x) - 1)), x, 0, 7) == x**(-2) - 1/(2*x) +
S(1)/12 - x**2/720 + x**4/30240 - x**6/1209600 + O(x**7))
def test_X8():
# Puiseux series (terms with fractional degree):
# => 1/sqrt(x - 3/2 pi) + (x - 3/2 pi)^(3/2) / 12 + O([x - 3/2 pi]^(7/2))
# see issue 7167:
x = symbols('x', real=True)
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
1/sqrt(x - 3*pi/2) + (x - 3*pi/2)**(S(3)/2)/12 +
(x - 3*pi/2)**(S(7)/2)/160 + O((x - 3*pi/2)**4, (x, 3*pi/2)))
def test_X9():
assert (series(x**x, x, x0=0, n=4) == 1 + x*log(x) + x**2*log(x)**2/2 +
x**3*log(x)**3/6 + O(x**4*log(x)**4))
def test_X10():
z, w = symbols('z w')
assert (series(log(sinh(z)) + log(cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
def test_X11():
z, w = symbols('z w')
assert (series(log(sinh(z) * cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
@XFAIL
def test_X12():
# Look at the generalized Taylor series around x = 1
# Result => (x - 1)^a/e^b [1 - (a + 2 b) (x - 1) / 2 + O((x - 1)^2)]
a, b, x = symbols('a b x', real=True)
# series returns O(log(x)**2)
# https://github.com/sympy/sympy/issues/7168
assert (series(log(x)**a*exp(-b*x), x, x0=1, n=2) ==
(x - 1)**a/exp(b)*(1 - (a + 2*b)*(x - 1)/2 + O((x - 1)**2)))
def test_X13():
assert series(sqrt(2*x**2 + 1), x, x0=oo, n=1) == sqrt(2)*x + O(1/x, (x, oo))
@XFAIL
def test_X14():
# Wallis' product => 1/sqrt(pi n) + ... [Knopp, p. 385]
assert series(1/2**(2*n)*binomial(2*n, n),
n, x==oo, n=1) == 1/(sqrt(pi)*sqrt(n)) + O(1/x, (x, oo))
@SKIP("https://github.com/sympy/sympy/issues/7164")
def test_X15():
# => 0!/x - 1!/x^2 + 2!/x^3 - 3!/x^4 + O(1/x^5) [Knopp, p. 544]
x, t = symbols('x t', real=True)
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7164
e1 = integrate(exp(-t)/t, (t, x, oo))
assert (series(e1, x, x0=oo, n=5) ==
6/x**4 + 2/x**3 - 1/x**2 + 1/x + O(x**(-5), (x, oo)))
def test_X16():
# Multivariate Taylor series expansion => 1 - (x^2 + 2 x y + y^2)/2 + O(x^4)
assert (series(cos(x + y), x + y, x0=0, n=4) == 1 - (x + y)**2/2 +
O(x**4 + x**3*y + x**2*y**2 + x*y**3 + y**4, x, y))
@XFAIL
def test_X17():
# Power series (compute the general formula)
# (c41) powerseries(log(sin(x)/x), x, 0);
# /aquarius/data2/opt/local/macsyma_422/library1/trgred.so being loaded.
# inf
# ==== i1 2 i1 2 i1
# \ (- 1) 2 bern(2 i1) x
# (d41) > ------------------------------
# / 2 i1 (2 i1)!
# ====
# i1 = 1
raise NotImplementedError("Formal power series not supported")
@XFAIL
def test_X18():
# Power series (compute the general formula). Maple FPS:
# > FormalPowerSeries(exp(-x)*sin(x), x = 0);
# infinity
# ----- (1/2 k) k
# \ 2 sin(3/4 k Pi) x
# ) -------------------------
# / k!
# -----
raise NotImplementedError("Formal power series not supported")
@XFAIL
def test_X19():
# (c45) /* Derive an explicit Taylor series solution of y as a function of
# x from the following implicit relation:
# y = x - 1 + (x - 1)^2/2 + 2/3 (x - 1)^3 + (x - 1)^4 +
# 17/10 (x - 1)^5 + ...
# */
# x = sin(y) + cos(y);
# Time= 0 msecs
# (d45) x = sin(y) + cos(y)
#
# (c46) taylor_revert(%, y, 7);
raise NotImplementedError("Solve using series not supported. \
Inverse Taylor series expansion also not supported")
@XFAIL
def test_X20():
# Pade (rational function) approximation => (2 - x)/(2 + x)
# > numapprox[pade](exp(-x), x = 0, [1, 1]);
# bytes used=9019816, alloc=3669344, time=13.12
# 1 - 1/2 x
# ---------
# 1 + 1/2 x
# mpmath support numeric Pade approximant but there is
# no symbolic implementation in SymPy
# https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
raise NotImplementedError("Symbolic Pade approximant not supported")
def test_X21():
"""
Test whether `fourier_series` of x periodical on the [-p, p] interval equals
`- (2 p / pi) sum( (-1)^n / n sin(n pi x / p), n = 1..infinity )`.
"""
p = symbols('p', positive=True)
n = symbols('n', positive=True, integer=True)
s = fourier_series(x, (x, -p, p))
# All cosine coefficients are equal to 0
assert s.an.formula == 0
# Check for sine coefficients
assert s.bn.formula.subs(s.bn.variables[0], 0) == 0
assert s.bn.formula.subs(s.bn.variables[0], n) == \
-2*p/pi * (-1)**n / n * sin(n*pi*x/p)
@XFAIL
def test_X22():
# (c52) /* => p / 2
# - (2 p / pi^2) sum( [1 - (-1)^n] cos(n pi x / p) / n^2,
# n = 1..infinity ) */
# fourier_series(abs(x), x, p);
# p
# (e52) a = -
# 0 2
#
# %nn
# (2 (- 1) - 2) p
# (e53) a = ------------------
# %nn 2 2
# %pi %nn
#
# (e54) b = 0
# %nn
#
# Time= 5290 msecs
# inf %nn %pi %nn x
# ==== (2 (- 1) - 2) cos(---------)
# \ p
# p > -------------------------------
# / 2
# ==== %nn
# %nn = 1 p
# (d54) ----------------------------------------- + -
# 2 2
# %pi
raise NotImplementedError("Fourier series not supported")
def test_Y1():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(cos((w - 1)*t), t, s)
assert F == s/(s**2 + (w - 1)**2)
def test_Y2():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
f = inverse_laplace_transform(s/(s**2 + (w - 1)**2), s, t)
assert f == cos(t*w - t)
@slow
@XFAIL
def test_Y3():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(sinh(w*t)*cosh(w*t), t, s)
assert F == w/(s**2 - 4*w**2)
def test_Y4():
t = symbols('t', real=True, positive=True)
s = symbols('s')
F, _, _ = laplace_transform(erf(3/sqrt(t)), t, s)
assert F == (1 - exp(-6*sqrt(s)))/s
@XFAIL
def test_Y5_Y6():
# Solve y'' + y = 4 [H(t - 1) - H(t - 2)], y(0) = 1, y'(0) = 0 where H is the
# Heaviside (unit step) function (the RHS describes a pulse of magnitude 4 and
# duration 1). See David A. Sanchez, Richard C. Allen, Jr. and Walter T.
# Kyner, _Differential Equations: An Introduction_, Addison-Wesley Publishing
# Company, 1983, p. 211. First, take the Laplace transform of the ODE
# => s^2 Y(s) - s + Y(s) = 4/s [e^(-s) - e^(-2 s)]
# where Y(s) is the Laplace transform of y(t)
t = symbols('t', real=True, positive=True)
s = symbols('s')
y = Function('y')
F, _, _ = laplace_transform(diff(y(t), t, 2)
+ y(t)
- 4*(Heaviside(t - 1)
- Heaviside(t - 2)), t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(y(t), t, s) - s
+ LaplaceTransform(y(t), t, s) - 4*exp(-s)/s + 4*exp(-2*s)/s)
# TODO implement second part of test case
# Now, solve for Y(s) and then take the inverse Laplace transform
# => Y(s) = s/(s^2 + 1) + 4 [1/s - s/(s^2 + 1)] [e^(-s) - e^(-2 s)]
# => y(t) = cos t + 4 {[1 - cos(t - 1)] H(t - 1) - [1 - cos(t - 2)] H(t - 2)}
@XFAIL
def test_Y7():
# What is the Laplace transform of an infinite square wave?
# => 1/s + 2 sum( (-1)^n e^(- s n a)/s, n = 1..infinity )
# [Sanchez, Allen and Kyner, p. 213]
t = symbols('t', real=True, positive=True)
a = symbols('a', real=True)
s = symbols('s')
F, _, _ = laplace_transform(1 + 2*Sum((-1)**n*Heaviside(t - n*a),
(n, 1, oo)), t, s)
# returns 2*LaplaceTransform(Sum((-1)**n*Heaviside(-a*n + t),
# (n, 1, oo)), t, s) + 1/s
# https://github.com/sympy/sympy/issues/7177
assert F == 2*Sum((-1)**n*exp(-a*n*s)/s, (n, 1, oo)) + 1/s
@XFAIL
def test_Y8():
assert fourier_transform(1, x, z) == DiracDelta(z)
def test_Y9():
assert (fourier_transform(exp(-9*x**2), x, z) ==
sqrt(pi)*exp(-pi**2*z**2/9)/3)
def test_Y10():
assert (fourier_transform(abs(x)*exp(-3*abs(x)), x, z) ==
(-8*pi**2*z**2 + 18)/(16*pi**4*z**4 + 72*pi**2*z**2 + 81))
@SKIP("https://github.com/sympy/sympy/issues/7181")
@slow
def test_Y11():
# => pi cot(pi s) (0 < Re s < 1) [Gradshteyn and Ryzhik 17.43(5)]
x, s = symbols('x s')
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7181
F, _, _ = mellin_transform(1/(1 - x), x, s)
assert F == pi*cot(pi*s)
@XFAIL
def test_Y12():
# => 2^(s - 4) gamma(s/2)/gamma(4 - s/2) (0 < Re s < 1)
# [Gradshteyn and Ryzhik 17.43(16)]
x, s = symbols('x s')
# returns Wrong value -2**(s - 4)*gamma(s/2 - 3)/gamma(-s/2 + 1)
# https://github.com/sympy/sympy/issues/7182
F, _, _ = mellin_transform(besselj(3, x)/x**3, x, s)
assert F == -2**(s - 4)*gamma(s/2)/gamma(-s/2 + 4)
@XFAIL
def test_Y13():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) z
raise NotImplementedError("z-transform not supported")
@XFAIL
def test_Y14():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function)
raise NotImplementedError("z-transform not supported")
def test_Z1():
r = Function('r')
assert (rsolve(r(n + 2) - 2*r(n + 1) + r(n) - 2, r(n),
{r(0): 1, r(1): m}).simplify() == n**2 + n*(m - 2) + 1)
def test_Z2():
r = Function('r')
assert (rsolve(r(n) - (5*r(n - 1) - 6*r(n - 2)), r(n), {r(0): 0, r(1): 1})
== -2**n + 3**n)
def test_Z3():
# => r(n) = Fibonacci[n + 1] [Cohen, p. 83]
r = Function('r')
# recurrence solution is correct, Wester expects it to be simplified to
# fibonacci(n+1), but that is quite hard
assert (rsolve(r(n) - (r(n - 1) + r(n - 2)), r(n),
{r(1): 1, r(2): 2}).simplify()
== 2**(-n)*((1 + sqrt(5))**n*(sqrt(5) + 5) +
(-sqrt(5) + 1)**n*(-sqrt(5) + 5))/10)
@XFAIL
def test_Z4():
# => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)]
# [Joan Z. Yu and Robert Israel in sci.math.symbolic]
r = Function('r')
c = symbols('c')
# raises ValueError: Polynomial or rational function expected,
# got '(c**2 - c**n)/(c - c**n)
s = rsolve(r(n) - ((1 + c - c**(n-1) - c**(n+1))/(1 - c**n)*r(n - 1)
- c*(1 - c**(n-2))/(1 - c**(n-1))*r(n - 2) + 1),
r(n), {r(1): 1, r(2): (2 + 2*c + c**2)/(1 + c)})
assert (s - (c*(n + 1)*(c*(n + 1) - 2*c - 2) +
(n + 1)*c**2 + 2*c - n)/((c-1)**3*(c+1)) == 0)
@XFAIL
def test_Z5():
# Second order ODE with initial conditions---solve directly
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
C1, C2 = symbols('C1 C2')
# initial conditions not supported, this is a manual workaround
# https://github.com/sympy/sympy/issues/4720
eq = Derivative(f(x), x, 2) + 4*f(x) - sin(2*x)
sol = dsolve(eq, f(x))
f0 = Lambda(x, sol.rhs)
assert f0(x) == C2*sin(2*x) + (C1 - x/4)*cos(2*x)
f1 = Lambda(x, diff(f0(x), x))
# TODO: Replace solve with solveset, when it works for solveset
const_dict = solve((f0(0), f1(0)))
result = f0(x).subs(C1, const_dict[C1]).subs(C2, const_dict[C2])
assert result == -x*cos(2*x)/4 + sin(2*x)/8
# Result is OK, but ODE solving with initial conditions should be
# supported without all this manual work
raise NotImplementedError('ODE solving with initial conditions \
not supported')
@XFAIL
def test_Z6():
# Second order ODE with initial conditions---solve using Laplace
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
t = symbols('t', real=True, positive=True)
s = symbols('s')
eq = Derivative(f(t), t, 2) + 4*f(t) - sin(2*t)
F, _, _ = laplace_transform(eq, t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(f(t), t, s) +
4*LaplaceTransform(f(t), t, s) - 2/(s**2 + 4))
# rest of test case not implemented
|
604ec6eddea57f7bd92d34a82a86717477aa268ffba4961e0e96bc2f27b15d8e
|
import sys
from sympy.utilities.source import get_mod_func, get_class, source
from sympy.utilities.pytest import warns_deprecated_sympy
from sympy import point
def test_source():
# Dummy stdout
class StdOut(object):
def write(self, x):
pass
# Test SymPyDeprecationWarning from source()
with warns_deprecated_sympy():
# Redirect stdout temporarily so print out is not seen
stdout = sys.stdout
try:
sys.stdout = StdOut()
source(point)
finally:
sys.stdout = stdout
def test_get_mod_func():
assert get_mod_func(
'sympy.core.basic.Basic') == ('sympy.core.basic', 'Basic')
def test_get_class():
_basic = get_class('sympy.core.basic.Basic')
assert _basic.__name__ == 'Basic'
|
48a7c526400892e2ca44a77636355d538db8941caef9a0072f2c2e2150833121
|
from sympy.core import symbols, Eq, pi, Catalan, Lambda, Dummy
from sympy.core.compatibility import StringIO
from sympy import erf, Integral
from sympy import Equality
from sympy.matrices import Matrix, MatrixSymbol
from sympy.utilities.codegen import (
codegen, make_routine, CCodeGen, C89CodeGen, C99CodeGen, InputArgument,
CodeGenError, FCodeGen, CodeGenArgumentListError, OutputArgument,
InOutArgument)
from sympy.utilities.pytest import raises
from sympy.utilities.lambdify import implemented_function
#FIXME: Fails due to circular import in with core
# from sympy import codegen
def get_string(dump_fn, routines, prefix="file", header=False, empty=False):
"""Wrapper for dump_fn. dump_fn writes its results to a stream object and
this wrapper returns the contents of that stream as a string. This
auxiliary function is used by many tests below.
The header and the empty lines are not generated to facilitate the
testing of the output.
"""
output = StringIO()
dump_fn(routines, output, prefix, header, empty)
source = output.getvalue()
output.close()
return source
def test_Routine_argument_order():
a, x, y, z = symbols('a x y z')
expr = (x + y)*z
raises(CodeGenArgumentListError, lambda: make_routine("test", expr,
argument_sequence=[z, x]))
raises(CodeGenArgumentListError, lambda: make_routine("test", Eq(a,
expr), argument_sequence=[z, x, y]))
r = make_routine('test', Eq(a, expr), argument_sequence=[z, x, a, y])
assert [ arg.name for arg in r.arguments ] == [z, x, a, y]
assert [ type(arg) for arg in r.arguments ] == [
InputArgument, InputArgument, OutputArgument, InputArgument ]
r = make_routine('test', Eq(z, expr), argument_sequence=[z, x, y])
assert [ type(arg) for arg in r.arguments ] == [
InOutArgument, InputArgument, InputArgument ]
from sympy.tensor import IndexedBase, Idx
A, B = map(IndexedBase, ['A', 'B'])
m = symbols('m', integer=True)
i = Idx('i', m)
r = make_routine('test', Eq(A[i], B[i]), argument_sequence=[B, A, m])
assert [ arg.name for arg in r.arguments ] == [B.label, A.label, m]
expr = Integral(x*y*z, (x, 1, 2), (y, 1, 3))
r = make_routine('test', Eq(a, expr), argument_sequence=[z, x, a, y])
assert [ arg.name for arg in r.arguments ] == [z, x, a, y]
def test_empty_c_code():
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [])
assert source == "#include \"file.h\"\n#include <math.h>\n"
def test_empty_c_code_with_comment():
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [], header=True)
assert source[:82] == (
"/******************************************************************************\n *"
)
# " Code generated with sympy 0.7.2-git "
assert source[158:] == ( "*\n"
" * *\n"
" * See http://www.sympy.org/ for more information. *\n"
" * *\n"
" * This file is part of 'project' *\n"
" ******************************************************************************/\n"
"#include \"file.h\"\n"
"#include <math.h>\n"
)
def test_empty_c_header():
code_gen = C99CodeGen()
source = get_string(code_gen.dump_h, [])
assert source == "#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n#endif\n"
def test_simple_c_code():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double x, double y, double z) {\n"
" double test_result;\n"
" test_result = z*(x + y);\n"
" return test_result;\n"
"}\n"
)
assert source == expected
def test_c_code_reserved_words():
x, y, z = symbols('if, typedef, while')
expr = (x + y) * z
routine = make_routine("test", expr)
code_gen = C99CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double if_, double typedef_, double while_) {\n"
" double test_result;\n"
" test_result = while_*(if_ + typedef_);\n"
" return test_result;\n"
"}\n"
)
assert source == expected
def test_numbersymbol_c_code():
routine = make_routine("test", pi**Catalan)
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test() {\n"
" double test_result;\n"
" double const Catalan = %s;\n"
" test_result = pow(M_PI, Catalan);\n"
" return test_result;\n"
"}\n"
) % Catalan.evalf(17)
assert source == expected
def test_c_code_argument_order():
x, y, z = symbols('x,y,z')
expr = x + y
routine = make_routine("test", expr, argument_sequence=[z, x, y])
code_gen = C89CodeGen()
source = get_string(code_gen.dump_c, [routine])
expected = (
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double z, double x, double y) {\n"
" double test_result;\n"
" test_result = x + y;\n"
" return test_result;\n"
"}\n"
)
assert source == expected
def test_simple_c_header():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = C89CodeGen()
source = get_string(code_gen.dump_h, [routine])
expected = (
"#ifndef PROJECT__FILE__H\n"
"#define PROJECT__FILE__H\n"
"double test(double x, double y, double z);\n"
"#endif\n"
)
assert source == expected
def test_simple_c_codegen():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
expected = [
("file.c",
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double x, double y, double z) {\n"
" double test_result;\n"
" test_result = z*(x + y);\n"
" return test_result;\n"
"}\n"),
("file.h",
"#ifndef PROJECT__FILE__H\n"
"#define PROJECT__FILE__H\n"
"double test(double x, double y, double z);\n"
"#endif\n")
]
result = codegen(("test", expr), "C", "file", header=False, empty=False)
assert result == expected
def test_multiple_results_c():
x, y, z = symbols('x,y,z')
expr1 = (x + y)*z
expr2 = (x - y)*z
routine = make_routine(
"test",
[expr1, expr2]
)
code_gen = C99CodeGen()
raises(CodeGenError, lambda: get_string(code_gen.dump_h, [routine]))
def test_no_results_c():
raises(ValueError, lambda: make_routine("test", []))
def test_ansi_math1_codegen():
# not included: log10
from sympy import (acos, asin, atan, ceiling, cos, cosh, floor, log, ln,
sin, sinh, sqrt, tan, tanh, Abs)
x = symbols('x')
name_expr = [
("test_fabs", Abs(x)),
("test_acos", acos(x)),
("test_asin", asin(x)),
("test_atan", atan(x)),
("test_ceil", ceiling(x)),
("test_cos", cos(x)),
("test_cosh", cosh(x)),
("test_floor", floor(x)),
("test_log", log(x)),
("test_ln", ln(x)),
("test_sin", sin(x)),
("test_sinh", sinh(x)),
("test_sqrt", sqrt(x)),
("test_tan", tan(x)),
("test_tanh", tanh(x)),
]
result = codegen(name_expr, "C89", "file", header=False, empty=False)
assert result[0][0] == "file.c"
assert result[0][1] == (
'#include "file.h"\n#include <math.h>\n'
'double test_fabs(double x) {\n double test_fabs_result;\n test_fabs_result = fabs(x);\n return test_fabs_result;\n}\n'
'double test_acos(double x) {\n double test_acos_result;\n test_acos_result = acos(x);\n return test_acos_result;\n}\n'
'double test_asin(double x) {\n double test_asin_result;\n test_asin_result = asin(x);\n return test_asin_result;\n}\n'
'double test_atan(double x) {\n double test_atan_result;\n test_atan_result = atan(x);\n return test_atan_result;\n}\n'
'double test_ceil(double x) {\n double test_ceil_result;\n test_ceil_result = ceil(x);\n return test_ceil_result;\n}\n'
'double test_cos(double x) {\n double test_cos_result;\n test_cos_result = cos(x);\n return test_cos_result;\n}\n'
'double test_cosh(double x) {\n double test_cosh_result;\n test_cosh_result = cosh(x);\n return test_cosh_result;\n}\n'
'double test_floor(double x) {\n double test_floor_result;\n test_floor_result = floor(x);\n return test_floor_result;\n}\n'
'double test_log(double x) {\n double test_log_result;\n test_log_result = log(x);\n return test_log_result;\n}\n'
'double test_ln(double x) {\n double test_ln_result;\n test_ln_result = log(x);\n return test_ln_result;\n}\n'
'double test_sin(double x) {\n double test_sin_result;\n test_sin_result = sin(x);\n return test_sin_result;\n}\n'
'double test_sinh(double x) {\n double test_sinh_result;\n test_sinh_result = sinh(x);\n return test_sinh_result;\n}\n'
'double test_sqrt(double x) {\n double test_sqrt_result;\n test_sqrt_result = sqrt(x);\n return test_sqrt_result;\n}\n'
'double test_tan(double x) {\n double test_tan_result;\n test_tan_result = tan(x);\n return test_tan_result;\n}\n'
'double test_tanh(double x) {\n double test_tanh_result;\n test_tanh_result = tanh(x);\n return test_tanh_result;\n}\n'
)
assert result[1][0] == "file.h"
assert result[1][1] == (
'#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n'
'double test_fabs(double x);\ndouble test_acos(double x);\n'
'double test_asin(double x);\ndouble test_atan(double x);\n'
'double test_ceil(double x);\ndouble test_cos(double x);\n'
'double test_cosh(double x);\ndouble test_floor(double x);\n'
'double test_log(double x);\ndouble test_ln(double x);\n'
'double test_sin(double x);\ndouble test_sinh(double x);\n'
'double test_sqrt(double x);\ndouble test_tan(double x);\n'
'double test_tanh(double x);\n#endif\n'
)
def test_ansi_math2_codegen():
# not included: frexp, ldexp, modf, fmod
from sympy import atan2
x, y = symbols('x,y')
name_expr = [
("test_atan2", atan2(x, y)),
("test_pow", x**y),
]
result = codegen(name_expr, "C89", "file", header=False, empty=False)
assert result[0][0] == "file.c"
assert result[0][1] == (
'#include "file.h"\n#include <math.h>\n'
'double test_atan2(double x, double y) {\n double test_atan2_result;\n test_atan2_result = atan2(x, y);\n return test_atan2_result;\n}\n'
'double test_pow(double x, double y) {\n double test_pow_result;\n test_pow_result = pow(x, y);\n return test_pow_result;\n}\n'
)
assert result[1][0] == "file.h"
assert result[1][1] == (
'#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n'
'double test_atan2(double x, double y);\n'
'double test_pow(double x, double y);\n'
'#endif\n'
)
def test_complicated_codegen():
from sympy import sin, cos, tan
x, y, z = symbols('x,y,z')
name_expr = [
("test1", ((sin(x) + cos(y) + tan(z))**7).expand()),
("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))),
]
result = codegen(name_expr, "C89", "file", header=False, empty=False)
assert result[0][0] == "file.c"
assert result[0][1] == (
'#include "file.h"\n#include <math.h>\n'
'double test1(double x, double y, double z) {\n'
' double test1_result;\n'
' test1_result = '
'pow(sin(x), 7) + '
'7*pow(sin(x), 6)*cos(y) + '
'7*pow(sin(x), 6)*tan(z) + '
'21*pow(sin(x), 5)*pow(cos(y), 2) + '
'42*pow(sin(x), 5)*cos(y)*tan(z) + '
'21*pow(sin(x), 5)*pow(tan(z), 2) + '
'35*pow(sin(x), 4)*pow(cos(y), 3) + '
'105*pow(sin(x), 4)*pow(cos(y), 2)*tan(z) + '
'105*pow(sin(x), 4)*cos(y)*pow(tan(z), 2) + '
'35*pow(sin(x), 4)*pow(tan(z), 3) + '
'35*pow(sin(x), 3)*pow(cos(y), 4) + '
'140*pow(sin(x), 3)*pow(cos(y), 3)*tan(z) + '
'210*pow(sin(x), 3)*pow(cos(y), 2)*pow(tan(z), 2) + '
'140*pow(sin(x), 3)*cos(y)*pow(tan(z), 3) + '
'35*pow(sin(x), 3)*pow(tan(z), 4) + '
'21*pow(sin(x), 2)*pow(cos(y), 5) + '
'105*pow(sin(x), 2)*pow(cos(y), 4)*tan(z) + '
'210*pow(sin(x), 2)*pow(cos(y), 3)*pow(tan(z), 2) + '
'210*pow(sin(x), 2)*pow(cos(y), 2)*pow(tan(z), 3) + '
'105*pow(sin(x), 2)*cos(y)*pow(tan(z), 4) + '
'21*pow(sin(x), 2)*pow(tan(z), 5) + '
'7*sin(x)*pow(cos(y), 6) + '
'42*sin(x)*pow(cos(y), 5)*tan(z) + '
'105*sin(x)*pow(cos(y), 4)*pow(tan(z), 2) + '
'140*sin(x)*pow(cos(y), 3)*pow(tan(z), 3) + '
'105*sin(x)*pow(cos(y), 2)*pow(tan(z), 4) + '
'42*sin(x)*cos(y)*pow(tan(z), 5) + '
'7*sin(x)*pow(tan(z), 6) + '
'pow(cos(y), 7) + '
'7*pow(cos(y), 6)*tan(z) + '
'21*pow(cos(y), 5)*pow(tan(z), 2) + '
'35*pow(cos(y), 4)*pow(tan(z), 3) + '
'35*pow(cos(y), 3)*pow(tan(z), 4) + '
'21*pow(cos(y), 2)*pow(tan(z), 5) + '
'7*cos(y)*pow(tan(z), 6) + '
'pow(tan(z), 7);\n'
' return test1_result;\n'
'}\n'
'double test2(double x, double y, double z) {\n'
' double test2_result;\n'
' test2_result = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))));\n'
' return test2_result;\n'
'}\n'
)
assert result[1][0] == "file.h"
assert result[1][1] == (
'#ifndef PROJECT__FILE__H\n'
'#define PROJECT__FILE__H\n'
'double test1(double x, double y, double z);\n'
'double test2(double x, double y, double z);\n'
'#endif\n'
)
def test_loops_c():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "C99", "file", header=False, empty=False)
assert f1 == 'file.c'
expected = (
'#include "file.h"\n'
'#include <math.h>\n'
'void matrix_vector(double *A, int m, int n, double *x, double *y) {\n'
' for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
' }\n'
' for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = %(rhs)s + y[i];\n'
' }\n'
' }\n'
'}\n'
)
assert (code == expected % {'rhs': 'A[%s]*x[j]' % (i*n + j)} or
code == expected % {'rhs': 'A[%s]*x[j]' % (j + i*n)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (i*n + j)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (j + i*n)})
assert f2 == 'file.h'
assert interface == (
'#ifndef PROJECT__FILE__H\n'
'#define PROJECT__FILE__H\n'
'void matrix_vector(double *A, int m, int n, double *x, double *y);\n'
'#endif\n'
)
def test_dummy_loops_c():
from sympy.tensor import IndexedBase, Idx
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'#include "file.h"\n'
'#include <math.h>\n'
'void test_dummies(int m_%(mno)i, double *x, double *y) {\n'
' for (int i_%(ino)i=0; i_%(ino)i<m_%(mno)i; i_%(ino)i++){\n'
' y[i_%(ino)i] = x[i_%(ino)i];\n'
' }\n'
'}\n'
) % {'ino': i.label.dummy_index, 'mno': m.dummy_index}
r = make_routine('test_dummies', Eq(y[i], x[i]))
c89 = C89CodeGen()
c99 = C99CodeGen()
code = get_string(c99.dump_c, [r])
assert code == expected
with raises(NotImplementedError):
get_string(c89.dump_c, [r])
def test_partial_loops_c():
# check that loop boundaries are determined by Idx, and array strides
# determined by shape of IndexedBase object.
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
A = IndexedBase('A', shape=(m, p))
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', (o, m - 5)) # Note: bounds are inclusive
j = Idx('j', n) # dimension n corresponds to bounds (0, n - 1)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "C99", "file", header=False, empty=False)
assert f1 == 'file.c'
expected = (
'#include "file.h"\n'
'#include <math.h>\n'
'void matrix_vector(double *A, int m, int n, int o, int p, double *x, double *y) {\n'
' for (int i=o; i<%(upperi)s; i++){\n'
' y[i] = 0;\n'
' }\n'
' for (int i=o; i<%(upperi)s; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = %(rhs)s + y[i];\n'
' }\n'
' }\n'
'}\n'
) % {'upperi': m - 4, 'rhs': '%(rhs)s'}
assert (code == expected % {'rhs': 'A[%s]*x[j]' % (i*p + j)} or
code == expected % {'rhs': 'A[%s]*x[j]' % (j + i*p)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (i*p + j)} or
code == expected % {'rhs': 'x[j]*A[%s]' % (j + i*p)})
assert f2 == 'file.h'
assert interface == (
'#ifndef PROJECT__FILE__H\n'
'#define PROJECT__FILE__H\n'
'void matrix_vector(double *A, int m, int n, int o, int p, double *x, double *y);\n'
'#endif\n'
)
def test_output_arg_c():
from sympy import sin, cos, Equality
x, y, z = symbols("x,y,z")
r = make_routine("foo", [Equality(y, sin(x)), cos(x)])
c = C89CodeGen()
result = c.write([r], "test", header=False, empty=False)
assert result[0][0] == "test.c"
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'double foo(double x, double *y) {\n'
' (*y) = sin(x);\n'
' double foo_result;\n'
' foo_result = cos(x);\n'
' return foo_result;\n'
'}\n'
)
assert result[0][1] == expected
def test_output_arg_c_reserved_words():
from sympy import sin, cos, Equality
x, y, z = symbols("if, while, z")
r = make_routine("foo", [Equality(y, sin(x)), cos(x)])
c = C89CodeGen()
result = c.write([r], "test", header=False, empty=False)
assert result[0][0] == "test.c"
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'double foo(double if_, double *while_) {\n'
' (*while_) = sin(if_);\n'
' double foo_result;\n'
' foo_result = cos(if_);\n'
' return foo_result;\n'
'}\n'
)
assert result[0][1] == expected
def test_ccode_results_named_ordered():
x, y, z = symbols('x,y,z')
B, C = symbols('B,C')
A = MatrixSymbol('A', 1, 3)
expr1 = Equality(A, Matrix([[1, 2, x]]))
expr2 = Equality(C, (x + y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'void test(double x, double *C, double z, double y, double *A, double *B) {\n'
' (*C) = z*(x + y);\n'
' A[0] = 1;\n'
' A[1] = 2;\n'
' A[2] = x;\n'
' (*B) = 2*x;\n'
'}\n'
)
result = codegen(name_expr, "c", "test", header=False, empty=False,
argument_sequence=(x, C, z, y, A, B))
source = result[0][1]
assert source == expected
def test_ccode_matrixsymbol_slice():
A = MatrixSymbol('A', 5, 3)
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 1, 3)
D = MatrixSymbol('D', 5, 1)
name_expr = ("test", [Equality(B, A[0, :]),
Equality(C, A[1, :]),
Equality(D, A[:, 2])])
result = codegen(name_expr, "c99", "test", header=False, empty=False)
source = result[0][1]
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'void test(double *A, double *B, double *C, double *D) {\n'
' B[0] = A[0];\n'
' B[1] = A[1];\n'
' B[2] = A[2];\n'
' C[0] = A[3];\n'
' C[1] = A[4];\n'
' C[2] = A[5];\n'
' D[0] = A[2];\n'
' D[1] = A[5];\n'
' D[2] = A[8];\n'
' D[3] = A[11];\n'
' D[4] = A[14];\n'
'}\n'
)
assert source == expected
def test_ccode_cse():
a, b, c, d = symbols('a b c d')
e = MatrixSymbol('e', 3, 1)
name_expr = ("test", [Equality(e, Matrix([[a*b], [a*b + c*d], [a*b*c*d]]))])
generator = CCodeGen(cse=True)
result = codegen(name_expr, code_gen=generator, header=False, empty=False)
source = result[0][1]
expected = (
'#include "test.h"\n'
'#include <math.h>\n'
'void test(double a, double b, double c, double d, double *e) {\n'
' const double x0 = a*b;\n'
' const double x1 = c*d;\n'
' e[0] = x0;\n'
' e[1] = x0 + x1;\n'
' e[2] = x0*x1;\n'
'}\n'
)
assert source == expected
def test_empty_f_code():
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [])
assert source == ""
def test_empty_f_code_with_header():
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [], header=True)
assert source[:82] == (
"!******************************************************************************\n!*"
)
# " Code generated with sympy 0.7.2-git "
assert source[158:] == ( "*\n"
"!* *\n"
"!* See http://www.sympy.org/ for more information. *\n"
"!* *\n"
"!* This file is part of 'project' *\n"
"!******************************************************************************\n"
)
def test_empty_f_header():
code_gen = FCodeGen()
source = get_string(code_gen.dump_h, [])
assert source == ""
def test_simple_f_code():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"test = z*(x + y)\n"
"end function\n"
)
assert source == expected
def test_numbersymbol_f_code():
routine = make_routine("test", pi**Catalan)
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test()\n"
"implicit none\n"
"REAL*8, parameter :: Catalan = %sd0\n"
"REAL*8, parameter :: pi = %sd0\n"
"test = pi**Catalan\n"
"end function\n"
) % (Catalan.evalf(17), pi.evalf(17))
assert source == expected
def test_erf_f_code():
x = symbols('x')
routine = make_routine("test", erf(x) - erf(-2 * x))
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test(x)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"test = erf(x) + erf(2.0d0*x)\n"
"end function\n"
)
assert source == expected, source
def test_f_code_argument_order():
x, y, z = symbols('x,y,z')
expr = x + y
routine = make_routine("test", expr, argument_sequence=[z, x, y])
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = (
"REAL*8 function test(z, x, y)\n"
"implicit none\n"
"REAL*8, intent(in) :: z\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"test = x + y\n"
"end function\n"
)
assert source == expected
def test_simple_f_header():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = FCodeGen()
source = get_string(code_gen.dump_h, [routine])
expected = (
"interface\n"
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"end function\n"
"end interface\n"
)
assert source == expected
def test_simple_f_codegen():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
result = codegen(
("test", expr), "F95", "file", header=False, empty=False)
expected = [
("file.f90",
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"test = z*(x + y)\n"
"end function\n"),
("file.h",
"interface\n"
"REAL*8 function test(x, y, z)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"end function\n"
"end interface\n")
]
assert result == expected
def test_multiple_results_f():
x, y, z = symbols('x,y,z')
expr1 = (x + y)*z
expr2 = (x - y)*z
routine = make_routine(
"test",
[expr1, expr2]
)
code_gen = FCodeGen()
raises(CodeGenError, lambda: get_string(code_gen.dump_h, [routine]))
def test_no_results_f():
raises(ValueError, lambda: make_routine("test", []))
def test_intrinsic_math_codegen():
# not included: log10
from sympy import (acos, asin, atan, ceiling, cos, cosh, floor, log, ln,
sin, sinh, sqrt, tan, tanh, Abs)
x = symbols('x')
name_expr = [
("test_abs", Abs(x)),
("test_acos", acos(x)),
("test_asin", asin(x)),
("test_atan", atan(x)),
("test_cos", cos(x)),
("test_cosh", cosh(x)),
("test_log", log(x)),
("test_ln", ln(x)),
("test_sin", sin(x)),
("test_sinh", sinh(x)),
("test_sqrt", sqrt(x)),
("test_tan", tan(x)),
("test_tanh", tanh(x)),
]
result = codegen(name_expr, "F95", "file", header=False, empty=False)
assert result[0][0] == "file.f90"
expected = (
'REAL*8 function test_abs(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_abs = abs(x)\n'
'end function\n'
'REAL*8 function test_acos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_acos = acos(x)\n'
'end function\n'
'REAL*8 function test_asin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_asin = asin(x)\n'
'end function\n'
'REAL*8 function test_atan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_atan = atan(x)\n'
'end function\n'
'REAL*8 function test_cos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_cos = cos(x)\n'
'end function\n'
'REAL*8 function test_cosh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_cosh = cosh(x)\n'
'end function\n'
'REAL*8 function test_log(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_log = log(x)\n'
'end function\n'
'REAL*8 function test_ln(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_ln = log(x)\n'
'end function\n'
'REAL*8 function test_sin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_sin = sin(x)\n'
'end function\n'
'REAL*8 function test_sinh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_sinh = sinh(x)\n'
'end function\n'
'REAL*8 function test_sqrt(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_sqrt = sqrt(x)\n'
'end function\n'
'REAL*8 function test_tan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_tan = tan(x)\n'
'end function\n'
'REAL*8 function test_tanh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'test_tanh = tanh(x)\n'
'end function\n'
)
assert result[0][1] == expected
assert result[1][0] == "file.h"
expected = (
'interface\n'
'REAL*8 function test_abs(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_acos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_asin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_atan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_cos(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_cosh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_log(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_ln(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_sin(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_sinh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_sqrt(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_tan(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_tanh(x)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'end function\n'
'end interface\n'
)
assert result[1][1] == expected
def test_intrinsic_math2_codegen():
# not included: frexp, ldexp, modf, fmod
from sympy import atan2
x, y = symbols('x,y')
name_expr = [
("test_atan2", atan2(x, y)),
("test_pow", x**y),
]
result = codegen(name_expr, "F95", "file", header=False, empty=False)
assert result[0][0] == "file.f90"
expected = (
'REAL*8 function test_atan2(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'test_atan2 = atan2(x, y)\n'
'end function\n'
'REAL*8 function test_pow(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'test_pow = x**y\n'
'end function\n'
)
assert result[0][1] == expected
assert result[1][0] == "file.h"
expected = (
'interface\n'
'REAL*8 function test_atan2(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test_pow(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'end function\n'
'end interface\n'
)
assert result[1][1] == expected
def test_complicated_codegen_f95():
from sympy import sin, cos, tan
x, y, z = symbols('x,y,z')
name_expr = [
("test1", ((sin(x) + cos(y) + tan(z))**7).expand()),
("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))),
]
result = codegen(name_expr, "F95", "file", header=False, empty=False)
assert result[0][0] == "file.f90"
expected = (
'REAL*8 function test1(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'test1 = sin(x)**7 + 7*sin(x)**6*cos(y) + 7*sin(x)**6*tan(z) + 21*sin(x) &\n'
' **5*cos(y)**2 + 42*sin(x)**5*cos(y)*tan(z) + 21*sin(x)**5*tan(z) &\n'
' **2 + 35*sin(x)**4*cos(y)**3 + 105*sin(x)**4*cos(y)**2*tan(z) + &\n'
' 105*sin(x)**4*cos(y)*tan(z)**2 + 35*sin(x)**4*tan(z)**3 + 35*sin( &\n'
' x)**3*cos(y)**4 + 140*sin(x)**3*cos(y)**3*tan(z) + 210*sin(x)**3* &\n'
' cos(y)**2*tan(z)**2 + 140*sin(x)**3*cos(y)*tan(z)**3 + 35*sin(x) &\n'
' **3*tan(z)**4 + 21*sin(x)**2*cos(y)**5 + 105*sin(x)**2*cos(y)**4* &\n'
' tan(z) + 210*sin(x)**2*cos(y)**3*tan(z)**2 + 210*sin(x)**2*cos(y) &\n'
' **2*tan(z)**3 + 105*sin(x)**2*cos(y)*tan(z)**4 + 21*sin(x)**2*tan &\n'
' (z)**5 + 7*sin(x)*cos(y)**6 + 42*sin(x)*cos(y)**5*tan(z) + 105* &\n'
' sin(x)*cos(y)**4*tan(z)**2 + 140*sin(x)*cos(y)**3*tan(z)**3 + 105 &\n'
' *sin(x)*cos(y)**2*tan(z)**4 + 42*sin(x)*cos(y)*tan(z)**5 + 7*sin( &\n'
' x)*tan(z)**6 + cos(y)**7 + 7*cos(y)**6*tan(z) + 21*cos(y)**5*tan( &\n'
' z)**2 + 35*cos(y)**4*tan(z)**3 + 35*cos(y)**3*tan(z)**4 + 21*cos( &\n'
' y)**2*tan(z)**5 + 7*cos(y)*tan(z)**6 + tan(z)**7\n'
'end function\n'
'REAL*8 function test2(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'test2 = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))\n'
'end function\n'
)
assert result[0][1] == expected
assert result[1][0] == "file.h"
expected = (
'interface\n'
'REAL*8 function test1(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'end function\n'
'end interface\n'
'interface\n'
'REAL*8 function test2(x, y, z)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(in) :: y\n'
'REAL*8, intent(in) :: z\n'
'end function\n'
'end interface\n'
)
assert result[1][1] == expected
def test_loops():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n,m', integer=True)
A, x, y = map(IndexedBase, 'Axy')
i = Idx('i', m)
j = Idx('j', n)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "F95", "file", header=False, empty=False)
assert f1 == 'file.f90'
expected = (
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(out), dimension(1:m) :: y\n'
'INTEGER*4 :: i\n'
'INTEGER*4 :: j\n'
'do i = 1, m\n'
' y(i) = 0\n'
'end do\n'
'do i = 1, m\n'
' do j = 1, n\n'
' y(i) = %(rhs)s + y(i)\n'
' end do\n'
'end do\n'
'end subroutine\n'
)
assert code == expected % {'rhs': 'A(i, j)*x(j)'} or\
code == expected % {'rhs': 'x(j)*A(i, j)'}
assert f2 == 'file.h'
assert interface == (
'interface\n'
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(out), dimension(1:m) :: y\n'
'end subroutine\n'
'end interface\n'
)
def test_dummy_loops_f95():
from sympy.tensor import IndexedBase, Idx
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'subroutine test_dummies(m_%(mcount)i, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m_%(mcount)i\n'
'REAL*8, intent(in), dimension(1:m_%(mcount)i) :: x\n'
'REAL*8, intent(out), dimension(1:m_%(mcount)i) :: y\n'
'INTEGER*4 :: i_%(icount)i\n'
'do i_%(icount)i = 1, m_%(mcount)i\n'
' y(i_%(icount)i) = x(i_%(icount)i)\n'
'end do\n'
'end subroutine\n'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
r = make_routine('test_dummies', Eq(y[i], x[i]))
c = FCodeGen()
code = get_string(c.dump_f95, [r])
assert code == expected
def test_loops_InOut():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
i, j, n, m = symbols('i,j,n,m', integer=True)
A, x, y = symbols('A,x,y')
A = IndexedBase(A)[Idx(i, m), Idx(j, n)]
x = IndexedBase(x)[Idx(j, n)]
y = IndexedBase(y)[Idx(i, m)]
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y, y + A*x)), "F95", "file", header=False, empty=False)
assert f1 == 'file.f90'
expected = (
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(inout), dimension(1:m) :: y\n'
'INTEGER*4 :: i\n'
'INTEGER*4 :: j\n'
'do i = 1, m\n'
' do j = 1, n\n'
' y(i) = %(rhs)s + y(i)\n'
' end do\n'
'end do\n'
'end subroutine\n'
)
assert (code == expected % {'rhs': 'A(i, j)*x(j)'} or
code == expected % {'rhs': 'x(j)*A(i, j)'})
assert f2 == 'file.h'
assert interface == (
'interface\n'
'subroutine matrix_vector(A, m, n, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'REAL*8, intent(in), dimension(1:m, 1:n) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(inout), dimension(1:m) :: y\n'
'end subroutine\n'
'end interface\n'
)
def test_partial_loops_f():
# check that loop boundaries are determined by Idx, and array strides
# determined by shape of IndexedBase object.
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
A = IndexedBase('A', shape=(m, p))
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', (o, m - 5)) # Note: bounds are inclusive
j = Idx('j', n) # dimension n corresponds to bounds (0, n - 1)
(f1, code), (f2, interface) = codegen(
('matrix_vector', Eq(y[i], A[i, j]*x[j])), "F95", "file", header=False, empty=False)
expected = (
'subroutine matrix_vector(A, m, n, o, p, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'INTEGER*4, intent(in) :: n\n'
'INTEGER*4, intent(in) :: o\n'
'INTEGER*4, intent(in) :: p\n'
'REAL*8, intent(in), dimension(1:m, 1:p) :: A\n'
'REAL*8, intent(in), dimension(1:n) :: x\n'
'REAL*8, intent(out), dimension(1:%(iup-ilow)s) :: y\n'
'INTEGER*4 :: i\n'
'INTEGER*4 :: j\n'
'do i = %(ilow)s, %(iup)s\n'
' y(i) = 0\n'
'end do\n'
'do i = %(ilow)s, %(iup)s\n'
' do j = 1, n\n'
' y(i) = %(rhs)s + y(i)\n'
' end do\n'
'end do\n'
'end subroutine\n'
) % {
'rhs': '%(rhs)s',
'iup': str(m - 4),
'ilow': str(1 + o),
'iup-ilow': str(m - 4 - o)
}
assert code == expected % {'rhs': 'A(i, j)*x(j)'} or\
code == expected % {'rhs': 'x(j)*A(i, j)'}
def test_output_arg_f():
from sympy import sin, cos, Equality
x, y, z = symbols("x,y,z")
r = make_routine("foo", [Equality(y, sin(x)), cos(x)])
c = FCodeGen()
result = c.write([r], "test", header=False, empty=False)
assert result[0][0] == "test.f90"
assert result[0][1] == (
'REAL*8 function foo(x, y)\n'
'implicit none\n'
'REAL*8, intent(in) :: x\n'
'REAL*8, intent(out) :: y\n'
'y = sin(x)\n'
'foo = cos(x)\n'
'end function\n'
)
def test_inline_function():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A, x, y = map(IndexedBase, 'Axy')
i = Idx('i', m)
p = FCodeGen()
func = implemented_function('func', Lambda(n, n*(n + 1)))
routine = make_routine('test_inline', Eq(y[i], func(x[i])))
code = get_string(p.dump_f95, [routine])
expected = (
'subroutine test_inline(m, x, y)\n'
'implicit none\n'
'INTEGER*4, intent(in) :: m\n'
'REAL*8, intent(in), dimension(1:m) :: x\n'
'REAL*8, intent(out), dimension(1:m) :: y\n'
'INTEGER*4 :: i\n'
'do i = 1, m\n'
' y(i) = %s*%s\n'
'end do\n'
'end subroutine\n'
)
args = ('x(i)', '(x(i) + 1)')
assert code == expected % args or\
code == expected % args[::-1]
def test_f_code_call_signature_wrap():
# Issue #7934
x = symbols('x:20')
expr = 0
for sym in x:
expr += sym
routine = make_routine("test", expr)
code_gen = FCodeGen()
source = get_string(code_gen.dump_f95, [routine])
expected = """\
REAL*8 function test(x0, x1, x10, x11, x12, x13, x14, x15, x16, x17, x18, &
x19, x2, x3, x4, x5, x6, x7, x8, x9)
implicit none
REAL*8, intent(in) :: x0
REAL*8, intent(in) :: x1
REAL*8, intent(in) :: x10
REAL*8, intent(in) :: x11
REAL*8, intent(in) :: x12
REAL*8, intent(in) :: x13
REAL*8, intent(in) :: x14
REAL*8, intent(in) :: x15
REAL*8, intent(in) :: x16
REAL*8, intent(in) :: x17
REAL*8, intent(in) :: x18
REAL*8, intent(in) :: x19
REAL*8, intent(in) :: x2
REAL*8, intent(in) :: x3
REAL*8, intent(in) :: x4
REAL*8, intent(in) :: x5
REAL*8, intent(in) :: x6
REAL*8, intent(in) :: x7
REAL*8, intent(in) :: x8
REAL*8, intent(in) :: x9
test = x0 + x1 + x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + &
x19 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9
end function
"""
assert source == expected
def test_check_case():
x, X = symbols('x,X')
raises(CodeGenError, lambda: codegen(('test', x*X), 'f95', 'prefix'))
def test_check_case_false_positive():
# The upper case/lower case exception should not be triggered by SymPy
# objects that differ only because of assumptions. (It may be useful to
# have a check for that as well, but here we only want to test against
# false positives with respect to case checking.)
x1 = symbols('x')
x2 = symbols('x', my_assumption=True)
try:
codegen(('test', x1*x2), 'f95', 'prefix')
except CodeGenError as e:
if e.args[0].startswith("Fortran ignores case."):
raise AssertionError("This exception should not be raised!")
def test_c_fortran_omit_routine_name():
x, y = symbols("x,y")
name_expr = [("foo", 2*x)]
result = codegen(name_expr, "F95", header=False, empty=False)
expresult = codegen(name_expr, "F95", "foo", header=False, empty=False)
assert result[0][1] == expresult[0][1]
name_expr = ("foo", x*y)
result = codegen(name_expr, "F95", header=False, empty=False)
expresult = codegen(name_expr, "F95", "foo", header=False, empty=False)
assert result[0][1] == expresult[0][1]
name_expr = ("foo", Matrix([[x, y], [x+y, x-y]]))
result = codegen(name_expr, "C89", header=False, empty=False)
expresult = codegen(name_expr, "C89", "foo", header=False, empty=False)
assert result[0][1] == expresult[0][1]
def test_fcode_matrix_output():
x, y, z = symbols('x,y,z')
e1 = x + y
e2 = Matrix([[x, y], [z, 16]])
name_expr = ("test", (e1, e2))
result = codegen(name_expr, "f95", "test", header=False, empty=False)
source = result[0][1]
expected = (
"REAL*8 function test(x, y, z, out_%(hash)s)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(in) :: z\n"
"REAL*8, intent(out), dimension(1:2, 1:2) :: out_%(hash)s\n"
"out_%(hash)s(1, 1) = x\n"
"out_%(hash)s(2, 1) = z\n"
"out_%(hash)s(1, 2) = y\n"
"out_%(hash)s(2, 2) = 16\n"
"test = x + y\n"
"end function\n"
)
# look for the magic number
a = source.splitlines()[5]
b = a.split('_')
out = b[1]
expected = expected % {'hash': out}
assert source == expected
def test_fcode_results_named_ordered():
x, y, z = symbols('x,y,z')
B, C = symbols('B,C')
A = MatrixSymbol('A', 1, 3)
expr1 = Equality(A, Matrix([[1, 2, x]]))
expr2 = Equality(C, (x + y)*z)
expr3 = Equality(B, 2*x)
name_expr = ("test", [expr1, expr2, expr3])
result = codegen(name_expr, "f95", "test", header=False, empty=False,
argument_sequence=(x, z, y, C, A, B))
source = result[0][1]
expected = (
"subroutine test(x, z, y, C, A, B)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"REAL*8, intent(in) :: z\n"
"REAL*8, intent(in) :: y\n"
"REAL*8, intent(out) :: C\n"
"REAL*8, intent(out) :: B\n"
"REAL*8, intent(out), dimension(1:1, 1:3) :: A\n"
"C = z*(x + y)\n"
"A(1, 1) = 1\n"
"A(1, 2) = 2\n"
"A(1, 3) = x\n"
"B = 2*x\n"
"end subroutine\n"
)
assert source == expected
def test_fcode_matrixsymbol_slice():
A = MatrixSymbol('A', 2, 3)
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 1, 3)
D = MatrixSymbol('D', 2, 1)
name_expr = ("test", [Equality(B, A[0, :]),
Equality(C, A[1, :]),
Equality(D, A[:, 2])])
result = codegen(name_expr, "f95", "test", header=False, empty=False)
source = result[0][1]
expected = (
"subroutine test(A, B, C, D)\n"
"implicit none\n"
"REAL*8, intent(in), dimension(1:2, 1:3) :: A\n"
"REAL*8, intent(out), dimension(1:1, 1:3) :: B\n"
"REAL*8, intent(out), dimension(1:1, 1:3) :: C\n"
"REAL*8, intent(out), dimension(1:2, 1:1) :: D\n"
"B(1, 1) = A(1, 1)\n"
"B(1, 2) = A(1, 2)\n"
"B(1, 3) = A(1, 3)\n"
"C(1, 1) = A(2, 1)\n"
"C(1, 2) = A(2, 2)\n"
"C(1, 3) = A(2, 3)\n"
"D(1, 1) = A(1, 3)\n"
"D(2, 1) = A(2, 3)\n"
"end subroutine\n"
)
assert source == expected
def test_fcode_matrixsymbol_slice_autoname():
# see issue #8093
A = MatrixSymbol('A', 2, 3)
name_expr = ("test", A[:, 1])
result = codegen(name_expr, "f95", "test", header=False, empty=False)
source = result[0][1]
expected = (
"subroutine test(A, out_%(hash)s)\n"
"implicit none\n"
"REAL*8, intent(in), dimension(1:2, 1:3) :: A\n"
"REAL*8, intent(out), dimension(1:2, 1:1) :: out_%(hash)s\n"
"out_%(hash)s(1, 1) = A(1, 2)\n"
"out_%(hash)s(2, 1) = A(2, 2)\n"
"end subroutine\n"
)
# look for the magic number
a = source.splitlines()[3]
b = a.split('_')
out = b[1]
expected = expected % {'hash': out}
assert source == expected
def test_global_vars():
x, y, z, t = symbols("x y z t")
result = codegen(('f', x*y), "F95", header=False, empty=False,
global_vars=(y,))
source = result[0][1]
expected = (
"REAL*8 function f(x)\n"
"implicit none\n"
"REAL*8, intent(in) :: x\n"
"f = x*y\n"
"end function\n"
)
assert source == expected
expected = (
'#include "f.h"\n'
'#include <math.h>\n'
'double f(double x, double y) {\n'
' double f_result;\n'
' f_result = x*y + z;\n'
' return f_result;\n'
'}\n'
)
result = codegen(('f', x*y+z), "C", header=False, empty=False,
global_vars=(z, t))
source = result[0][1]
assert source == expected
def test_custom_codegen():
from sympy.printing.ccode import C99CodePrinter
from sympy.functions.elementary.exponential import exp
printer = C99CodePrinter(settings={'user_functions': {'exp': 'fastexp'}})
x, y = symbols('x y')
expr = exp(x + y)
# replace math.h with a different header
gen = C99CodeGen(printer=printer,
preprocessor_statements=['#include "fastexp.h"'])
expected = (
'#include "expr.h"\n'
'#include "fastexp.h"\n'
'double expr(double x, double y) {\n'
' double expr_result;\n'
' expr_result = fastexp(x + y);\n'
' return expr_result;\n'
'}\n'
)
result = codegen(('expr', expr), header=False, empty=False, code_gen=gen)
source = result[0][1]
assert source == expected
# use both math.h and an external header
gen = C99CodeGen(printer=printer)
gen.preprocessor_statements.append('#include "fastexp.h"')
expected = (
'#include "expr.h"\n'
'#include <math.h>\n'
'#include "fastexp.h"\n'
'double expr(double x, double y) {\n'
' double expr_result;\n'
' expr_result = fastexp(x + y);\n'
' return expr_result;\n'
'}\n'
)
result = codegen(('expr', expr), header=False, empty=False, code_gen=gen)
source = result[0][1]
assert source == expected
def test_c_with_printer():
#issue 13586
from sympy.printing.ccode import C99CodePrinter
class CustomPrinter(C99CodePrinter):
def _print_Pow(self, expr):
return "fastpow({}, {})".format(self._print(expr.base),
self._print(expr.exp))
x = symbols('x')
expr = x**3
expected =[
("file.c",
"#include \"file.h\"\n"
"#include <math.h>\n"
"double test(double x) {\n"
" double test_result;\n"
" test_result = fastpow(x, 3);\n"
" return test_result;\n"
"}\n"),
("file.h",
"#ifndef PROJECT__FILE__H\n"
"#define PROJECT__FILE__H\n"
"double test(double x);\n"
"#endif\n")
]
result = codegen(("test", expr), "C","file", header=False, empty=False, printer = CustomPrinter())
assert result == expected
|
693cfc7539877d9cf503c73199b9f2c3ea9d6b852ab9d5d85b4c929d860363b9
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import
import shutil
from sympy.external import import_module
from sympy.utilities.pytest import skip
from sympy.utilities._compilation.compilation import compile_link_import_strings
numpy = import_module('numpy')
cython = import_module('cython')
_sources1 = [
('sigmoid.c', r"""
#include <math.h>
void sigmoid(int n, const double * const restrict in,
double * const restrict out, double lim){
for (int i=0; i<n; ++i){
const double x = in[i];
out[i] = x*pow(pow(x/lim, 8)+1, -1./8.);
}
}
"""),
('_sigmoid.pyx', r"""
import numpy as np
cimport numpy as cnp
cdef extern void c_sigmoid "sigmoid" (int, const double * const,
double * const, double)
def sigmoid(double [:] inp, double lim=350.0):
cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.empty(
inp.size, dtype=np.float64)
c_sigmoid(inp.size, &inp[0], &out[0], lim)
return out
""")
]
def npy(data, lim=350.0):
return data/((data/lim)**8+1)**(1/8.)
def test_compile_link_import_strings():
if not numpy:
skip("numpy not installed.")
if not cython:
skip("cython not installed.")
compile_kw = dict(std='c99', include_dirs=[numpy.get_include()])
info = None
try:
mod, info = compile_link_import_strings(_sources1, compile_kwargs=compile_kw)
data = numpy.random.random(1024*1024*8) # 64 MB of RAM needed..
res_mod = mod.sigmoid(data)
res_npy = npy(data)
assert numpy.allclose(res_mod, res_npy)
finally:
if info and info['build_dir']:
shutil.rmtree(info['build_dir'])
|
79604162ee2d595a74aabe6c4a70f8ed6c45594252508c57be870a7376cb64f0
|
from __future__ import print_function, division
import itertools
from sympy.core import S
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg
from sympy.core.mod import Mod
from sympy.core.mul import Mul
from sympy.core.numbers import Rational
from sympy.core.power import Pow
from sympy.core.relational import Equality
from sympy.core.symbol import Symbol
from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional
from sympy.utilities import group
from sympy.utilities.iterables import has_variety
from sympy.core.sympify import SympifyError
from sympy.core.compatibility import range
from sympy.core.add import Add
from sympy.printing.printer import Printer
from sympy.printing.str import sstr
from sympy.printing.conventions import requires_partial
from .stringpict import prettyForm, stringPict
from .pretty_symbology import xstr, hobj, vobj, xobj, xsym, pretty_symbol, \
pretty_atom, pretty_use_unicode, pretty_try_use_unicode, greek_unicode, U, \
annotated
from sympy.utilities import default_sort_key
# rename for usage from outside
pprint_use_unicode = pretty_use_unicode
pprint_try_use_unicode = pretty_try_use_unicode
class PrettyPrinter(Printer):
"""Printer, which converts an expression into 2D ASCII-art figure."""
printmethod = "_pretty"
_default_settings = {
"order": None,
"full_prec": "auto",
"use_unicode": None,
"wrap_line": True,
"num_columns": None,
"use_unicode_sqrt_char": True,
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
self.emptyPrinter = lambda x: prettyForm(xstr(x))
@property
def _use_unicode(self):
if self._settings['use_unicode']:
return True
else:
return pretty_use_unicode()
def doprint(self, expr):
return self._print(expr).render(**self._settings)
# empty op so _print(stringPict) returns the same
def _print_stringPict(self, e):
return e
def _print_basestring(self, e):
return prettyForm(e)
def _print_atan2(self, e):
pform = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(*pform.left('atan2'))
return pform
def _print_Symbol(self, e):
symb = pretty_symbol(e.name)
return prettyForm(symb)
_print_RandomSymbol = _print_Symbol
def _print_Float(self, e):
# we will use StrPrinter's Float printer, but we need to handle the
# full_prec ourselves, according to the self._print_level
full_prec = self._settings["full_prec"]
if full_prec == "auto":
full_prec = self._print_level == 1
return prettyForm(sstr(e, full_prec=full_prec))
def _print_Cross(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Curl(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Divergence(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Dot(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Gradient(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Atom(self, e):
try:
# print atoms like Exp1 or Pi
return prettyForm(pretty_atom(e.__class__.__name__))
except KeyError:
return self.emptyPrinter(e)
# Infinity inherits from Number, so we have to override _print_XXX order
_print_Infinity = _print_Atom
_print_NegativeInfinity = _print_Atom
_print_EmptySet = _print_Atom
_print_Naturals = _print_Atom
_print_Naturals0 = _print_Atom
_print_Integers = _print_Atom
_print_Complexes = _print_Atom
def _print_Reals(self, e):
if self._use_unicode:
return self._print_Atom(e)
else:
inf_list = ['-oo', 'oo']
return self._print_seq(inf_list, '(', ')')
def _print_subfactorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('!'))
return pform
def _print_factorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!'))
return pform
def _print_factorial2(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!!'))
return pform
def _print_binomial(self, e):
n, k = e.args
n_pform = self._print(n)
k_pform = self._print(k)
bar = ' '*max(n_pform.width(), k_pform.width())
pform = prettyForm(*k_pform.above(bar))
pform = prettyForm(*pform.above(n_pform))
pform = prettyForm(*pform.parens('(', ')'))
pform.baseline = (pform.baseline + 1)//2
return pform
def _print_Relational(self, e):
op = prettyForm(' ' + xsym(e.rel_op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def _print_Not(self, e):
from sympy import Equivalent, Implies
if self._use_unicode:
arg = e.args[0]
pform = self._print(arg)
if isinstance(arg, Equivalent):
return self._print_Equivalent(arg, altchar=u"\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}")
if isinstance(arg, Implies):
return self._print_Implies(arg, altchar=u"\N{RIGHTWARDS ARROW WITH STROKE}")
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left(u"\N{NOT SIGN}"))
else:
return self._print_Function(e)
def __print_Boolean(self, e, char, sort=True):
args = e.args
if sort:
args = sorted(e.args, key=default_sort_key)
arg = args[0]
pform = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
for arg in args[1:]:
pform_arg = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform_arg = prettyForm(*pform_arg.parens())
pform = prettyForm(*pform.right(u' %s ' % char))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_And(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{LOGICAL AND}")
else:
return self._print_Function(e, sort=True)
def _print_Or(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{LOGICAL OR}")
else:
return self._print_Function(e, sort=True)
def _print_Xor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{XOR}")
else:
return self._print_Function(e, sort=True)
def _print_Nand(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{NAND}")
else:
return self._print_Function(e, sort=True)
def _print_Nor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, u"\N{NOR}")
else:
return self._print_Function(e, sort=True)
def _print_Implies(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or u"\N{RIGHTWARDS ARROW}", sort=False)
else:
return self._print_Function(e)
def _print_Equivalent(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or u"\N{LEFT RIGHT DOUBLE ARROW}")
else:
return self._print_Function(e, sort=True)
def _print_conjugate(self, e):
pform = self._print(e.args[0])
return prettyForm( *pform.above( hobj('_', pform.width())) )
def _print_Abs(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('|', '|'))
return pform
_print_Determinant = _print_Abs
def _print_floor(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lfloor', 'rfloor'))
return pform
else:
return self._print_Function(e)
def _print_ceiling(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lceil', 'rceil'))
return pform
else:
return self._print_Function(e)
def _print_Derivative(self, deriv):
if requires_partial(deriv) and self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
count_total_deriv = 0
for sym, num in reversed(deriv.variable_count):
s = self._print(sym)
ds = prettyForm(*s.left(deriv_symbol))
count_total_deriv += num
if (not num.is_Integer) or (num > 1):
ds = ds**prettyForm(str(num))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if (count_total_deriv > 1) != False:
pform = pform**prettyForm(str(count_total_deriv))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Cycle(self, dc):
from sympy.combinatorics.permutations import Permutation, Cycle
# for Empty Cycle
if dc == Cycle():
cyc = stringPict('')
return prettyForm(*cyc.parens())
dc_list = Permutation(dc.list()).cyclic_form
# for Identity Cycle
if dc_list == []:
cyc = self._print(dc.size - 1)
return prettyForm(*cyc.parens())
cyc = stringPict('')
for i in dc_list:
l = self._print(str(tuple(i)).replace(',', ''))
cyc = prettyForm(*cyc.right(l))
return cyc
def _print_PDF(self, pdf):
lim = self._print(pdf.pdf.args[0])
lim = prettyForm(*lim.right(', '))
lim = prettyForm(*lim.right(self._print(pdf.domain[0])))
lim = prettyForm(*lim.right(', '))
lim = prettyForm(*lim.right(self._print(pdf.domain[1])))
lim = prettyForm(*lim.parens())
f = self._print(pdf.pdf.args[1])
f = prettyForm(*f.right(', '))
f = prettyForm(*f.right(lim))
f = prettyForm(*f.parens())
pform = prettyForm('PDF')
pform = prettyForm(*pform.right(f))
return pform
def _print_Integral(self, integral):
f = integral.function
# Add parentheses if arg involves addition of terms and
# create a pretty form for the argument
prettyF = self._print(f)
# XXX generalize parens
if f.is_Add:
prettyF = prettyForm(*prettyF.parens())
# dx dy dz ...
arg = prettyF
for x in integral.limits:
prettyArg = self._print(x[0])
# XXX qparens (parens if needs-parens)
if prettyArg.width() > 1:
prettyArg = prettyForm(*prettyArg.parens())
arg = prettyForm(*arg.right(' d', prettyArg))
# \int \int \int ...
firstterm = True
s = None
for lim in integral.limits:
x = lim[0]
# Create bar based on the height of the argument
h = arg.height()
H = h + 2
# XXX hack!
ascii_mode = not self._use_unicode
if ascii_mode:
H += 2
vint = vobj('int', H)
# Construct the pretty form with the integral sign and the argument
pform = prettyForm(vint)
pform.baseline = arg.baseline + (
H - h)//2 # covering the whole argument
if len(lim) > 1:
# Create pretty forms for endpoints, if definite integral.
# Do not print empty endpoints.
if len(lim) == 2:
prettyA = prettyForm("")
prettyB = self._print(lim[1])
if len(lim) == 3:
prettyA = self._print(lim[1])
prettyB = self._print(lim[2])
if ascii_mode: # XXX hack
# Add spacing so that endpoint can more easily be
# identified with the correct integral sign
spc = max(1, 3 - prettyB.width())
prettyB = prettyForm(*prettyB.left(' ' * spc))
spc = max(1, 4 - prettyA.width())
prettyA = prettyForm(*prettyA.right(' ' * spc))
pform = prettyForm(*pform.above(prettyB))
pform = prettyForm(*pform.below(prettyA))
if not ascii_mode: # XXX hack
pform = prettyForm(*pform.right(' '))
if firstterm:
s = pform # first term
firstterm = False
else:
s = prettyForm(*s.left(pform))
pform = prettyForm(*arg.left(s))
pform.binding = prettyForm.MUL
return pform
def _print_Product(self, expr):
func = expr.term
pretty_func = self._print(func)
horizontal_chr = xobj('_', 1)
corner_chr = xobj('_', 1)
vertical_chr = xobj('|', 1)
if self._use_unicode:
# use unicode corners
horizontal_chr = xobj('-', 1)
corner_chr = u'\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}'
func_height = pretty_func.height()
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
width = (func_height + 2) * 5 // 3 - 2
sign_lines = []
sign_lines.append(corner_chr + (horizontal_chr*width) + corner_chr)
for i in range(func_height + 1):
sign_lines.append(vertical_chr + (' '*width) + vertical_chr)
pretty_sign = stringPict('')
pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines))
pretty_upper = self._print(lim[2])
pretty_lower = self._print(Equality(lim[0], lim[1]))
max_upper = max(max_upper, pretty_upper.height())
if first:
sign_height = pretty_sign.height()
pretty_sign = prettyForm(*pretty_sign.above(pretty_upper))
pretty_sign = prettyForm(*pretty_sign.below(pretty_lower))
if first:
pretty_func.baseline = 0
first = False
height = pretty_sign.height()
padding = stringPict('')
padding = prettyForm(*padding.stack(*[' ']*(height - 1)))
pretty_sign = prettyForm(*pretty_sign.right(padding))
pretty_func = prettyForm(*pretty_sign.right(pretty_func))
pretty_func.baseline = max_upper + sign_height//2
pretty_func.binding = prettyForm.MUL
return pretty_func
def _print_Sum(self, expr):
ascii_mode = not self._use_unicode
def asum(hrequired, lower, upper, use_ascii):
def adjust(s, wid=None, how='<^>'):
if not wid or len(s) > wid:
return s
need = wid - len(s)
if how == '<^>' or how == "<" or how not in list('<^>'):
return s + ' '*need
half = need//2
lead = ' '*half
if how == ">":
return " "*need + s
return lead + s + ' '*(need - len(lead))
h = max(hrequired, 2)
d = h//2
w = d + 1
more = hrequired % 2
lines = []
if use_ascii:
lines.append("_"*(w) + ' ')
lines.append(r"\%s`" % (' '*(w - 1)))
for i in range(1, d):
lines.append('%s\\%s' % (' '*i, ' '*(w - i)))
if more:
lines.append('%s)%s' % (' '*(d), ' '*(w - d)))
for i in reversed(range(1, d)):
lines.append('%s/%s' % (' '*i, ' '*(w - i)))
lines.append("/" + "_"*(w - 1) + ',')
return d, h + more, lines, 0
else:
w = w + more
d = d + more
vsum = vobj('sum', 4)
lines.append("_"*(w))
for i in range(0, d):
lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1)))
for i in reversed(range(0, d)):
lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1)))
lines.append(vsum[8]*(w))
return d, h + 2*more, lines, more
f = expr.function
prettyF = self._print(f)
if f.is_Add: # add parens
prettyF = prettyForm(*prettyF.parens())
H = prettyF.height() + 2
# \sum \sum \sum ...
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
if len(lim) == 3:
prettyUpper = self._print(lim[2])
prettyLower = self._print(Equality(lim[0], lim[1]))
elif len(lim) == 2:
prettyUpper = self._print("")
prettyLower = self._print(Equality(lim[0], lim[1]))
elif len(lim) == 1:
prettyUpper = self._print("")
prettyLower = self._print(lim[0])
max_upper = max(max_upper, prettyUpper.height())
# Create sum sign based on the height of the argument
d, h, slines, adjustment = asum(
H, prettyLower.width(), prettyUpper.width(), ascii_mode)
prettySign = stringPict('')
prettySign = prettyForm(*prettySign.stack(*slines))
if first:
sign_height = prettySign.height()
prettySign = prettyForm(*prettySign.above(prettyUpper))
prettySign = prettyForm(*prettySign.below(prettyLower))
if first:
# change F baseline so it centers on the sign
prettyF.baseline -= d - (prettyF.height()//2 -
prettyF.baseline) - adjustment
first = False
# put padding to the right
pad = stringPict('')
pad = prettyForm(*pad.stack(*[' ']*h))
prettySign = prettyForm(*prettySign.right(pad))
# put the present prettyF to the right
prettyF = prettyForm(*prettySign.right(prettyF))
prettyF.baseline = max_upper + sign_height//2
prettyF.binding = prettyForm.MUL
return prettyF
def _print_Limit(self, l):
e, z, z0, dir = l.args
E = self._print(e)
if precedence(e) <= PRECEDENCE["Mul"]:
E = prettyForm(*E.parens('(', ')'))
Lim = prettyForm('lim')
LimArg = self._print(z)
if self._use_unicode:
LimArg = prettyForm(*LimArg.right(u'\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}'))
else:
LimArg = prettyForm(*LimArg.right('->'))
LimArg = prettyForm(*LimArg.right(self._print(z0)))
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
dir = ""
else:
if self._use_unicode:
dir = u'\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else u'\N{SUPERSCRIPT MINUS}'
LimArg = prettyForm(*LimArg.right(self._print(dir)))
Lim = prettyForm(*Lim.below(LimArg))
Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL)
return Lim
def _print_matrix_contents(self, e):
"""
This method factors out what is essentially grid printing.
"""
M = e # matrix
Ms = {} # i,j -> pretty(M[i,j])
for i in range(M.rows):
for j in range(M.cols):
Ms[i, j] = self._print(M[i, j])
# h- and v- spacers
hsep = 2
vsep = 1
# max width for columns
maxw = [-1] * M.cols
for j in range(M.cols):
maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0])
# drawing result
D = None
for i in range(M.rows):
D_row = None
for j in range(M.cols):
s = Ms[i, j]
# reshape s to maxw
# XXX this should be generalized, and go to stringPict.reshape ?
assert s.width() <= maxw[j]
# hcenter it, +0.5 to the right 2
# ( it's better to align formula starts for say 0 and r )
# XXX this is not good in all cases -- maybe introduce vbaseline?
wdelta = maxw[j] - s.width()
wleft = wdelta // 2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
# we don't need vcenter cells -- this is automatically done in
# a pretty way because when their baselines are taking into
# account in .right()
if D_row is None:
D_row = s # first box in a row
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
if D is None:
D = prettyForm('') # Empty Matrix
return D
def _print_MatrixBase(self, e):
D = self._print_matrix_contents(e)
D.baseline = D.height()//2
D = prettyForm(*D.parens('[', ']'))
return D
_print_ImmutableMatrix = _print_MatrixBase
_print_Matrix = _print_MatrixBase
def _print_TensorProduct(self, expr):
# This should somehow share the code with _print_WedgeProduct:
circled_times = "\u2297"
return self._print_seq(expr.args, None, None, circled_times,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_WedgeProduct(self, expr):
# This should somehow share the code with _print_TensorProduct:
wedge_symbol = u"\u2227"
return self._print_seq(expr.args, None, None, wedge_symbol,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_Trace(self, e):
D = self._print(e.arg)
D = prettyForm(*D.parens('(',')'))
D.baseline = D.height()//2
D = prettyForm(*D.left('\n'*(0) + 'tr'))
return D
def _print_MatrixElement(self, expr):
from sympy.matrices import MatrixSymbol
from sympy import Symbol
if (isinstance(expr.parent, MatrixSymbol)
and expr.i.is_number and expr.j.is_number):
return self._print(
Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j)))
else:
prettyFunc = self._print(expr.parent)
prettyFunc = prettyForm(*prettyFunc.parens())
prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', '
).parens(left='[', right=']')[0]
pform = prettyForm(binding=prettyForm.FUNC,
*stringPict.next(prettyFunc, prettyIndices))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyIndices
return pform
def _print_MatrixSlice(self, m):
# XXX works only for applied functions
prettyFunc = self._print(m.parent)
def ppslice(x):
x = list(x)
if x[2] == 1:
del x[2]
if x[1] == x[0] + 1:
del x[1]
if x[0] == 0:
x[0] = ''
return prettyForm(*self._print_seq(x, delimiter=':'))
prettyArgs = self._print_seq((ppslice(m.rowslice),
ppslice(m.colslice)), delimiter=', ').parens(left='[', right=']')[0]
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_Transpose(self, expr):
pform = self._print(expr.arg)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(prettyForm('T'))
return pform
def _print_Adjoint(self, expr):
pform = self._print(expr.arg)
if self._use_unicode:
dag = prettyForm(u'\N{DAGGER}')
else:
dag = prettyForm('+')
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**dag
return pform
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
return self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_MatAdd(self, expr):
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
coeff = item.as_coeff_mmul()[0]
if _coeff_isneg(S(coeff)):
s = prettyForm(*stringPict.next(s, ' '))
pform = self._print(item)
else:
s = prettyForm(*stringPict.next(s, ' + '))
s = prettyForm(*stringPict.next(s, pform))
return s
def _print_MatMul(self, expr):
args = list(expr.args)
from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct
for i, a in enumerate(args):
if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct))
and len(expr.args) > 1):
args[i] = prettyForm(*self._print(a).parens())
else:
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_DotProduct(self, expr):
args = list(expr.args)
for i, a in enumerate(args):
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_MatPow(self, expr):
pform = self._print(expr.base)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.base, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(self._print(expr.exp))
return pform
def _print_HadamardProduct(self, expr):
from sympy import MatAdd, MatMul
if self._use_unicode:
delim = pretty_atom('Ring')
else:
delim = '.*'
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
def _print_KroneckerProduct(self, expr):
from sympy import MatAdd, MatMul
if self._use_unicode:
delim = u' \N{N-ARY CIRCLED TIMES OPERATOR} '
else:
delim = ' x '
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
_print_MatrixSymbol = _print_Symbol
def _print_FunctionMatrix(self, X):
D = self._print(X.lamda.expr)
D = prettyForm(*D.parens('[', ']'))
return D
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented")
if expr == expr.zero:
return prettyForm(expr.zero._pretty_form)
o1 = []
vectstrs = []
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key = lambda x: x[0].__str__())
for k, v in inneritems:
#if the coef of the basis vector is 1
#we skip the 1
if v == 1:
o1.append(u"" +
k._pretty_form)
#Same for -1
elif v == -1:
o1.append(u"(-1) " +
k._pretty_form)
#For a general expr
else:
#We always wrap the measure numbers in
#parentheses
arg_str = self._print(
v).parens()[0]
o1.append(arg_str + ' ' + k._pretty_form)
vectstrs.append(k._pretty_form)
#outstr = u("").join(o1)
if o1[0].startswith(u" + "):
o1[0] = o1[0][3:]
elif o1[0].startswith(" "):
o1[0] = o1[0][1:]
#Fixing the newlines
lengths = []
strs = ['']
flag = []
for i, partstr in enumerate(o1):
flag.append(0)
# XXX: What is this hack?
if '\n' in partstr:
tempstr = partstr
tempstr = tempstr.replace(vectstrs[i], '')
if u'\N{right parenthesis extension}' in tempstr: # If scalar is a fraction
for paren in range(len(tempstr)):
flag[i] = 1
if tempstr[paren] == u'\N{right parenthesis extension}':
tempstr = tempstr[:paren] + u'\N{right parenthesis extension}'\
+ ' ' + vectstrs[i] + tempstr[paren + 1:]
break
elif u'\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr:
flag[i] = 1
tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS LOWER HOOK}',
u'\N{RIGHT PARENTHESIS LOWER HOOK}'
+ ' ' + vectstrs[i])
else:
tempstr = tempstr.replace(u'\N{RIGHT PARENTHESIS UPPER HOOK}',
u'\N{RIGHT PARENTHESIS UPPER HOOK}'
+ ' ' + vectstrs[i])
o1[i] = tempstr
o1 = [x.split('\n') for x in o1]
n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form
if 1 in flag: # If there was a fractional scalar
for i, parts in enumerate(o1):
if len(parts) == 1: # If part has no newline
parts.insert(0, ' ' * (len(parts[0])))
flag[i] = 1
for i, parts in enumerate(o1):
lengths.append(len(parts[flag[i]]))
for j in range(n_newlines):
if j+1 <= len(parts):
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
if j == flag[i]:
strs[flag[i]] += parts[flag[i]] + ' + '
else:
strs[j] += parts[j] + ' '*(lengths[-1] -
len(parts[j])+
3)
else:
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
strs[j] += ' '*(lengths[-1]+3)
return prettyForm(u'\n'.join([s[:-3] for s in strs]))
def _print_NDimArray(self, expr):
from sympy import ImmutableMatrix
if expr.rank() == 0:
return self._print(expr[()])
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(expr[outer_i])
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(level_str[back_outer_i+1])
else:
level_str[back_outer_i].append(ImmutableMatrix(level_str[back_outer_i+1]))
if len(level_str[back_outer_i + 1]) == 1:
level_str[back_outer_i][-1] = ImmutableMatrix([[level_str[back_outer_i][-1]]])
even = not even
level_str[back_outer_i+1] = []
out_expr = level_str[0][0]
if expr.rank() % 2 == 1:
out_expr = ImmutableMatrix([out_expr])
return self._print(out_expr)
_print_ImmutableDenseNDimArray = _print_NDimArray
_print_ImmutableSparseNDimArray = _print_NDimArray
_print_MutableDenseNDimArray = _print_NDimArray
_print_MutableSparseNDimArray = _print_NDimArray
def _printer_tensor_indices(self, name, indices, index_map={}):
center = stringPict(name)
top = stringPict(" "*center.width())
bot = stringPict(" "*center.width())
no_top = True
no_bot = True
last_valence = None
prev_map = None
for i, index in enumerate(indices):
indpic = self._print(index.args[0])
if ((index in index_map) or prev_map) and last_valence == index.is_up:
if index.is_up:
top = prettyForm(*stringPict.next(top, ","))
else:
bot = prettyForm(*stringPict.next(bot, ","))
if index in index_map:
indpic = prettyForm(*stringPict.next(indpic, "="))
indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index])))
prev_map = True
else:
prev_map = False
if index.is_up:
no_top = False
top = stringPict(*top.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
bot = stringPict(*bot.right(" "*indpic.width()))
else:
no_bot = False
bot = stringPict(*bot.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
top = stringPict(*top.right(" "*indpic.width()))
last_valence = index.is_up
pict = prettyForm(*center.above(top))
pict = prettyForm(*pict.below(bot))
return pict
def _print_Tensor(self, expr):
name = expr.args[0].name
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].name
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
sign, args = expr._get_args_for_traditional_printer()
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in args
]
pform = prettyForm.__mul__(*args)
if sign:
return prettyForm(*pform.left(sign))
else:
return pform
def _print_TensAdd(self, expr):
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in expr.args
]
return prettyForm.__add__(*args)
def _print_TensorIndex(self, expr):
sym = expr.args[0]
if not expr.is_up:
sym = -sym
return self._print(sym)
def _print_PartialDerivative(self, deriv):
if self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
for variable in reversed(deriv.variables):
s = self._print(variable)
ds = prettyForm(*s.left(deriv_symbol))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Piecewise(self, pexpr):
P = {}
for n, ec in enumerate(pexpr.args):
P[n, 0] = self._print(ec.expr)
if ec.cond == True:
P[n, 1] = prettyForm('otherwise')
else:
P[n, 1] = prettyForm(
*prettyForm('for ').right(self._print(ec.cond)))
hsep = 2
vsep = 1
len_args = len(pexpr.args)
# max widths
maxw = [max([P[i, j].width() for i in range(len_args)])
for j in range(2)]
# FIXME: Refactor this code and matrix into some tabular environment.
# drawing result
D = None
for i in range(len_args):
D_row = None
for j in range(2):
p = P[i, j]
assert p.width() <= maxw[j]
wdelta = maxw[j] - p.width()
wleft = wdelta // 2
wright = wdelta - wleft
p = prettyForm(*p.right(' '*wright))
p = prettyForm(*p.left(' '*wleft))
if D_row is None:
D_row = p
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(p))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens('{', ''))
D.baseline = D.height()//2
D.binding = prettyForm.OPEN
return D
def _print_ITE(self, ite):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(ite.rewrite(Piecewise))
def _hprint_vec(self, v):
D = None
for a in v:
p = a
if D is None:
D = p
else:
D = prettyForm(*D.right(', '))
D = prettyForm(*D.right(p))
if D is None:
D = stringPict(' ')
return D
def _hprint_vseparator(self, p1, p2):
tmp = prettyForm(*p1.right(p2))
sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline)
return prettyForm(*p1.right(sep, p2))
def _print_hyper(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
ap = [self._print(a) for a in e.ap]
bq = [self._print(b) for b in e.bq]
P = self._print(e.argument)
P.baseline = P.height()//2
# Drawing result - first create the ap, bq vectors
D = None
for v in [ap, bq]:
D_row = self._hprint_vec(v)
if D is None:
D = D_row # first row in a picture
else:
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the F symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('F')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
add = (sz + 1)//2
F = prettyForm(*F.left(self._print(len(e.ap))))
F = prettyForm(*F.right(self._print(len(e.bq))))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_meijerg(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
v = {}
v[(0, 0)] = [self._print(a) for a in e.an]
v[(0, 1)] = [self._print(a) for a in e.aother]
v[(1, 0)] = [self._print(b) for b in e.bm]
v[(1, 1)] = [self._print(b) for b in e.bother]
P = self._print(e.argument)
P.baseline = P.height()//2
vp = {}
for idx in v:
vp[idx] = self._hprint_vec(v[idx])
for i in range(2):
maxw = max(vp[(0, i)].width(), vp[(1, i)].width())
for j in range(2):
s = vp[(j, i)]
left = (maxw - s.width()) // 2
right = maxw - left - s.width()
s = prettyForm(*s.left(' ' * left))
s = prettyForm(*s.right(' ' * right))
vp[(j, i)] = s
D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)]))
D1 = prettyForm(*D1.below(' '))
D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)]))
D = prettyForm(*D1.below(D2))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the G symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('G')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
pp = self._print(len(e.ap))
pq = self._print(len(e.bq))
pm = self._print(len(e.bm))
pn = self._print(len(e.an))
def adjust(p1, p2):
diff = p1.width() - p2.width()
if diff == 0:
return p1, p2
elif diff > 0:
return p1, prettyForm(*p2.left(' '*diff))
else:
return prettyForm(*p1.left(' '*-diff)), p2
pp, pm = adjust(pp, pm)
pq, pn = adjust(pq, pn)
pu = prettyForm(*pm.right(', ', pn))
pl = prettyForm(*pp.right(', ', pq))
ht = F.baseline - above - 2
if ht > 0:
pu = prettyForm(*pu.below('\n'*ht))
p = prettyForm(*pu.below(pl))
F.baseline = above
F = prettyForm(*F.right(p))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_ExpBase(self, e):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
base = prettyForm(pretty_atom('Exp1', 'e'))
return base ** self._print(e.args[0])
def _print_Function(self, e, sort=False, func_name=None):
# optional argument func_name for supplying custom names
# XXX works only for applied functions
func = e.func
args = e.args
if sort:
args = sorted(args, key=default_sort_key)
if not func_name:
func_name = func.__name__
prettyFunc = self._print(Symbol(func_name))
prettyArgs = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: [greek_unicode['delta'], 'delta'],
gamma: [greek_unicode['Gamma'], 'Gamma'],
lowergamma: [greek_unicode['gamma'], 'gamma'],
beta: [greek_unicode['Beta'], 'B'],
DiracDelta: [greek_unicode['delta'], 'delta'],
Chi: ['Chi', 'Chi']}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
if self._use_unicode:
return prettyForm(self._special_function_classes[cls][0])
else:
return prettyForm(self._special_function_classes[cls][1])
func_name = expr.__name__
return prettyForm(pretty_symbol(func_name))
def _print_GeometryEntity(self, expr):
# GeometryEntity is based on Tuple but should not print like a Tuple
return self.emptyPrinter(expr)
def _print_Lambda(self, e):
vars, expr = e.args
if self._use_unicode:
arrow = u" \N{RIGHTWARDS ARROW FROM BAR} "
else:
arrow = " -> "
if len(vars) == 1:
var_form = self._print(vars[0])
else:
var_form = self._print(tuple(vars))
return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8)
def _print_Order(self, expr):
pform = self._print(expr.expr)
if (expr.point and any(p != S.Zero for p in expr.point)) or \
len(expr.variables) > 1:
pform = prettyForm(*pform.right("; "))
if len(expr.variables) > 1:
pform = prettyForm(*pform.right(self._print(expr.variables)))
elif len(expr.variables):
pform = prettyForm(*pform.right(self._print(expr.variables[0])))
if self._use_unicode:
pform = prettyForm(*pform.right(u" \N{RIGHTWARDS ARROW} "))
else:
pform = prettyForm(*pform.right(" -> "))
if len(expr.point) > 1:
pform = prettyForm(*pform.right(self._print(expr.point)))
else:
pform = prettyForm(*pform.right(self._print(expr.point[0])))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left("O"))
return pform
def _print_SingularityFunction(self, e):
if self._use_unicode:
shift = self._print(e.args[0]-e.args[1])
n = self._print(e.args[2])
base = prettyForm("<")
base = prettyForm(*base.right(shift))
base = prettyForm(*base.right(">"))
pform = base**n
return pform
else:
n = self._print(e.args[2])
shift = self._print(e.args[0]-e.args[1])
base = self._print_seq(shift, "<", ">", ' ')
return base**n
def _print_beta(self, e):
func_name = greek_unicode['Beta'] if self._use_unicode else 'B'
return self._print_Function(e, func_name=func_name)
def _print_gamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_uppergamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_lowergamma(self, e):
func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma'
return self._print_Function(e, func_name=func_name)
def _print_DiracDelta(self, e):
if self._use_unicode:
if len(e.args) == 2:
a = prettyForm(greek_unicode['delta'])
b = self._print(e.args[1])
b = prettyForm(*b.parens())
c = self._print(e.args[0])
c = prettyForm(*c.parens())
pform = a**b
pform = prettyForm(*pform.right(' '))
pform = prettyForm(*pform.right(c))
return pform
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(greek_unicode['delta']))
return pform
else:
return self._print_Function(e)
def _print_expint(self, e):
from sympy import Function
if e.args[0].is_Integer and self._use_unicode:
return self._print_Function(Function('E_%s' % e.args[0])(e.args[1]))
return self._print_Function(e)
def _print_Chi(self, e):
# This needs a special case since otherwise it comes out as greek
# letter chi...
prettyFunc = prettyForm("Chi")
prettyArgs = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_elliptic_e(self, e):
pforma0 = self._print(e.args[0])
if len(e.args) == 1:
pform = pforma0
else:
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('E'))
return pform
def _print_elliptic_k(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('K'))
return pform
def _print_elliptic_f(self, e):
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('F'))
return pform
def _print_elliptic_pi(self, e):
name = greek_unicode['Pi'] if self._use_unicode else 'Pi'
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
if len(e.args) == 2:
pform = self._hprint_vseparator(pforma0, pforma1)
else:
pforma2 = self._print(e.args[2])
pforma = self._hprint_vseparator(pforma1, pforma2)
pforma = prettyForm(*pforma.left('; '))
pform = prettyForm(*pforma.left(pforma0))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(name))
return pform
def _print_GoldenRatio(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('phi'))
return self._print(Symbol("GoldenRatio"))
def _print_EulerGamma(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('gamma'))
return self._print(Symbol("EulerGamma"))
def _print_Mod(self, expr):
pform = self._print(expr.args[0])
if pform.binding > prettyForm.MUL:
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right(' mod '))
pform = prettyForm(*pform.right(self._print(expr.args[1])))
pform.binding = prettyForm.OPEN
return pform
def _print_Add(self, expr, order=None):
if self.order == 'none':
terms = list(expr.args)
else:
terms = self._as_ordered_terms(expr, order=order)
pforms, indices = [], []
def pretty_negative(pform, index):
"""Prepend a minus sign to a pretty form. """
#TODO: Move this code to prettyForm
if index == 0:
if pform.height() > 1:
pform_neg = '- '
else:
pform_neg = '-'
else:
pform_neg = ' - '
if (pform.binding > prettyForm.NEG
or pform.binding == prettyForm.ADD):
p = stringPict(*pform.parens())
else:
p = pform
p = stringPict.next(pform_neg, p)
# Lower the binding to NEG, even if it was higher. Otherwise, it
# will print as a + ( - (b)), instead of a - (b).
return prettyForm(binding=prettyForm.NEG, *p)
for i, term in enumerate(terms):
if term.is_Mul and _coeff_isneg(term):
coeff, other = term.as_coeff_mul(rational=False)
pform = self._print(Mul(-coeff, *other, evaluate=False))
pforms.append(pretty_negative(pform, i))
elif term.is_Rational and term.q > 1:
pforms.append(None)
indices.append(i)
elif term.is_Number and term < 0:
pform = self._print(-term)
pforms.append(pretty_negative(pform, i))
elif term.is_Relational:
pforms.append(prettyForm(*self._print(term).parens()))
else:
pforms.append(self._print(term))
if indices:
large = True
for pform in pforms:
if pform is not None and pform.height() > 1:
break
else:
large = False
for i in indices:
term, negative = terms[i], False
if term < 0:
term, negative = -term, True
if large:
pform = prettyForm(str(term.p))/prettyForm(str(term.q))
else:
pform = self._print(term)
if negative:
pform = pretty_negative(pform, i)
pforms[i] = pform
return prettyForm.__add__(*pforms)
def _print_Mul(self, product):
from sympy.physics.units import Quantity
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
if self.order not in ('old', 'none'):
args = product.as_ordered_factors()
else:
args = list(product.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and isinstance(x.base, Quantity)))
# Gather terms for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append( Rational(item.p) )
if item.q != 1:
b.append( Rational(item.q) )
else:
a.append(item)
from sympy import Integral, Piecewise, Product, Sum
# Convert to pretty forms. Add parens to Add instances if there
# is more than one term in the numer/denom
for i in range(0, len(a)):
if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and
isinstance(a[i], (Integral, Piecewise, Product, Sum))):
a[i] = prettyForm(*self._print(a[i]).parens())
elif a[i].is_Relational:
a[i] = prettyForm(*self._print(a[i]).parens())
else:
a[i] = self._print(a[i])
for i in range(0, len(b)):
if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and
isinstance(b[i], (Integral, Piecewise, Product, Sum))):
b[i] = prettyForm(*self._print(b[i]).parens())
else:
b[i] = self._print(b[i])
# Construct a pretty form
if len(b) == 0:
return prettyForm.__mul__(*a)
else:
if len(a) == 0:
a.append( self._print(S.One) )
return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)
# A helper function for _print_Pow to print x**(1/n)
def _print_nth_root(self, base, expt):
bpretty = self._print(base)
# In very simple cases, use a single-char root sign
if (self._settings['use_unicode_sqrt_char'] and self._use_unicode
and expt is S.Half and bpretty.height() == 1
and (bpretty.width() == 1
or (base.is_Integer and base.is_nonnegative))):
return prettyForm(*bpretty.left(u'\N{SQUARE ROOT}'))
# Construct root sign, start with the \/ shape
_zZ = xobj('/', 1)
rootsign = xobj('\\', 1) + _zZ
# Make exponent number to put above it
if isinstance(expt, Rational):
exp = str(expt.q)
if exp == '2':
exp = ''
else:
exp = str(expt.args[0])
exp = exp.ljust(2)
if len(exp) > 2:
rootsign = ' '*(len(exp) - 2) + rootsign
# Stack the exponent
rootsign = stringPict(exp + '\n' + rootsign)
rootsign.baseline = 0
# Diagonal: length is one less than height of base
linelength = bpretty.height() - 1
diagonal = stringPict('\n'.join(
' '*(linelength - i - 1) + _zZ + ' '*i
for i in range(linelength)
))
# Put baseline just below lowest line: next to exp
diagonal.baseline = linelength - 1
# Make the root symbol
rootsign = prettyForm(*rootsign.right(diagonal))
# Det the baseline to match contents to fix the height
# but if the height of bpretty is one, the rootsign must be one higher
rootsign.baseline = max(1, bpretty.baseline)
#build result
s = prettyForm(hobj('_', 2 + bpretty.width()))
s = prettyForm(*bpretty.above(s))
s = prettyForm(*s.left(rootsign))
return s
def _print_Pow(self, power):
from sympy.simplify.simplify import fraction
b, e = power.as_base_exp()
if power.is_commutative:
if e is S.NegativeOne:
return prettyForm("1")/self._print(b)
n, d = fraction(e)
if n is S.One and d.is_Atom and not e.is_Integer:
return self._print_nth_root(b, e)
if e.is_Rational and e < 0:
return prettyForm("1")/self._print(Pow(b, -e, evaluate=False))
if b.is_Relational:
return prettyForm(*self._print(b).parens()).__pow__(self._print(e))
return self._print(b)**self._print(e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def __print_numer_denom(self, p, q):
if q == 1:
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)
else:
return prettyForm(str(p))
elif abs(p) >= 10 and abs(q) >= 10:
# If more than one digit in numer and denom, print larger fraction
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q))
# Old printing method:
#pform = prettyForm(str(-p))/prettyForm(str(q))
#return prettyForm(binding=prettyForm.NEG, *pform.left('- '))
else:
return prettyForm(str(p))/prettyForm(str(q))
else:
return None
def _print_Rational(self, expr):
result = self.__print_numer_denom(expr.p, expr.q)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_Fraction(self, expr):
result = self.__print_numer_denom(expr.numerator, expr.denominator)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_ProductSet(self, p):
if len(p.sets) > 1 and not has_variety(p.sets):
from sympy import Pow
return self._print(Pow(p.sets[0], len(p.sets), evaluate=False))
else:
prod_char = u"\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x'
return self._print_seq(p.sets, None, None, ' %s ' % prod_char,
parenthesize=lambda set: set.is_Union or
set.is_Intersection or set.is_ProductSet)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_seq(items, '{', '}', ', ' )
def _print_Range(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if s.start.is_infinite:
printset = s.start, dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite or len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return self._print_seq(printset, '{', '}', ', ' )
def _print_Interval(self, i):
if i.start == i.end:
return self._print_seq(i.args[:1], '{', '}')
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return self._print_seq(i.args[:2], left, right)
def _print_AccumulationBounds(self, i):
left = '<'
right = '>'
return self._print_seq(i.args[:2], left, right)
def _print_Intersection(self, u):
delimiter = ' %s ' % pretty_atom('Intersection', 'n')
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Union or set.is_Complement)
def _print_Union(self, u):
union_delimiter = ' %s ' % pretty_atom('Union', 'U')
return self._print_seq(u.args, None, None, union_delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Intersection or set.is_Complement)
def _print_SymmetricDifference(self, u):
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented")
sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference')
return self._print_seq(u.args, None, None, sym_delimeter)
def _print_Complement(self, u):
delimiter = r' \ '
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or set.is_Intersection
or set.is_Union)
def _print_ImageSet(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
else:
inn = 'in'
variables = ts.lamda.variables
expr = self._print(ts.lamda.expr)
bar = self._print("|")
sets = [self._print(i) for i in ts.args[1:]]
if len(sets) == 1:
return self._print_seq((expr, bar, variables[0], inn, sets[0]), "{", "}", ' ')
else:
pargs = tuple(j for var, setv in zip(variables, sets) for j in (var, inn, setv, ","))
return self._print_seq((expr, bar) + pargs[:-1], "{", "}", ' ')
def _print_ConditionSet(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
# using _and because and is a keyword and it is bad practice to
# overwrite them
_and = u"\N{LOGICAL AND}"
else:
inn = 'in'
_and = 'and'
variables = self._print_seq(Tuple(ts.sym))
try:
cond = self._print(ts.condition.as_expr())
except AttributeError:
cond = self._print(ts.condition)
if self._use_unicode:
cond = self._print_seq(cond, "(", ")")
bar = self._print("|")
if ts.base_set is S.UniversalSet:
return self._print_seq((variables, bar, cond), "{", "}", ' ')
base = self._print(ts.base_set)
return self._print_seq((variables, bar, variables, inn,
base, _and, cond), "{", "}", ' ')
def _print_ComplexRegion(self, ts):
if self._use_unicode:
inn = u"\N{SMALL ELEMENT OF}"
else:
inn = 'in'
variables = self._print_seq(ts.variables)
expr = self._print(ts.expr)
bar = self._print("|")
prodsets = self._print(ts.sets)
return self._print_seq((expr, bar, variables, inn, prodsets), "{", "}", ' ')
def _print_Contains(self, e):
var, set = e.args
if self._use_unicode:
el = u" \N{ELEMENT OF} "
return prettyForm(*stringPict.next(self._print(var),
el, self._print(set)), binding=8)
else:
return prettyForm(sstr(e))
def _print_FourierSeries(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
return self._print_Add(s.truncate()) + self._print(dots)
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_SetExpr(self, se):
pretty_set = prettyForm(*self._print(se.set).parens())
pretty_name = self._print(Symbol("SetExpr"))
return prettyForm(*pretty_name.right(pretty_set))
def _print_SeqFormula(self, s):
if self._use_unicode:
dots = u"\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
printset = tuple(printset)
else:
printset = tuple(s)
return self._print_list(printset)
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_seq(self, seq, left=None, right=None, delimiter=', ',
parenthesize=lambda x: False):
s = None
for item in seq:
pform = self._print(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else:
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
s = prettyForm(*s.parens(left, right, ifascii_nougly=True))
return s
def join(self, delimiter, args):
pform = None
for arg in args:
if pform is None:
pform = arg
else:
pform = prettyForm(*pform.right(delimiter))
pform = prettyForm(*pform.right(arg))
if pform is None:
return prettyForm("")
else:
return pform
def _print_list(self, l):
return self._print_seq(l, '[', ']')
def _print_tuple(self, t):
if len(t) == 1:
ptuple = prettyForm(*stringPict.next(self._print(t[0]), ','))
return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True))
else:
return self._print_seq(t, '(', ')')
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for k in keys:
K = self._print(k)
V = self._print(d[k])
s = prettyForm(*stringPict.next(K, ': ', V))
items.append(s)
return self._print_seq(items, '{', '}')
def _print_Dict(self, d):
return self._print_dict(d)
def _print_set(self, s):
if not s:
return prettyForm('set()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
return pretty
def _print_frozenset(self, s):
if not s:
return prettyForm('frozenset()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True))
pretty = prettyForm(*stringPict.next(type(s).__name__, pretty))
return pretty
def _print_PolyRing(self, ring):
return prettyForm(sstr(ring))
def _print_FracField(self, field):
return prettyForm(sstr(field))
def _print_FreeGroupElement(self, elm):
return prettyForm(str(elm))
def _print_PolyElement(self, poly):
return prettyForm(sstr(poly))
def _print_FracElement(self, frac):
return prettyForm(sstr(frac))
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_ComplexRootOf(self, expr):
args = [self._print_Add(expr.expr, order='lex'), expr.index]
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('CRootOf'))
return pform
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('RootSum'))
return pform
def _print_FiniteField(self, expr):
if self._use_unicode:
form = u'\N{DOUBLE-STRUCK CAPITAL Z}_%d'
else:
form = 'GF(%d)'
return prettyForm(pretty_symbol(form % expr.mod))
def _print_IntegerRing(self, expr):
if self._use_unicode:
return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Z}')
else:
return prettyForm('ZZ')
def _print_RationalField(self, expr):
if self._use_unicode:
return prettyForm(u'\N{DOUBLE-STRUCK CAPITAL Q}')
else:
return prettyForm('QQ')
def _print_RealField(self, domain):
if self._use_unicode:
prefix = u'\N{DOUBLE-STRUCK CAPITAL R}'
else:
prefix = 'RR'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_ComplexField(self, domain):
if self._use_unicode:
prefix = u'\N{DOUBLE-STRUCK CAPITAL C}'
else:
prefix = 'CC'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_PolynomialRing(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_FractionField(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '(', ')')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_PolynomialRingBase(self, expr):
g = expr.symbols
if str(expr.order) != str(expr.default_order):
g = g + ("order=" + str(expr.order),)
pform = self._print_seq(g, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_GroebnerBasis(self, basis):
exprs = [ self._print_Add(arg, order=basis.order)
for arg in basis.exprs ]
exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]"))
gens = [ self._print(gen) for gen in basis.gens ]
domain = prettyForm(
*prettyForm("domain=").right(self._print(basis.domain)))
order = prettyForm(
*prettyForm("order=").right(self._print(basis.order)))
pform = self.join(", ", [exprs] + gens + [domain, order])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(basis.__class__.__name__))
return pform
def _print_Subs(self, e):
pform = self._print(e.expr)
pform = prettyForm(*pform.parens())
h = pform.height() if pform.height() > 1 else 2
rvert = stringPict(vobj('|', h), baseline=pform.baseline)
pform = prettyForm(*pform.right(rvert))
b = pform.baseline
pform.baseline = pform.height() - 1
pform = prettyForm(*pform.right(self._print_seq([
self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])),
delimiter='') for v in zip(e.variables, e.point) ])))
pform.baseline = b
return pform
def _print_euler(self, e):
pform = prettyForm("E")
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
if len(e.args) == 1:
return pform
m, x = e.args
# TODO: copy-pasted from _print_Function: can we do better?
prettyFunc = pform
prettyArgs = prettyForm(*self._print_seq([x]).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_catalan(self, e):
pform = prettyForm("C")
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_KroneckerDelta(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.right((prettyForm(','))))
pform = prettyForm(*pform.right((self._print(e.args[1]))))
if self._use_unicode:
a = stringPict(pretty_symbol('delta'))
else:
a = stringPict('d')
b = pform
top = stringPict(*b.left(' '*a.width()))
bot = stringPict(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.below(top))
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.as_boolean())))
return pform
elif hasattr(d, 'set'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
pform = prettyForm(*pform.right(self._print(' in ')))
pform = prettyForm(*pform.right(self._print(d.set)))
return pform
elif hasattr(d, 'symbols'):
pform = self._print('Domain on ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
return pform
else:
return self._print(None)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(pretty_symbol(object.name))
def _print_Morphism(self, morphism):
arrow = xsym("-->")
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
tail = domain.right(arrow, codomain)[0]
return prettyForm(tail)
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(pretty_symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(":", pretty_morphism)[0])
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(
NamedMorphism(morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
circle = xsym(".")
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [pretty_symbol(component.name) for
component in morphism.components]
component_names_list.reverse()
component_names = circle.join(component_names_list) + ":"
pretty_name = self._print(component_names)
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(pretty_morphism)[0])
def _print_Category(self, category):
return self._print(pretty_symbol(category.name))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
pretty_result = self._print(diagram.premises)
if diagram.conclusions:
results_arrow = " %s " % xsym("==>")
pretty_conclusions = self._print(diagram.conclusions)[0]
pretty_result = pretty_result.right(
results_arrow, pretty_conclusions)
return prettyForm(pretty_result[0])
def _print_DiagramGrid(self, grid):
from sympy.matrices import Matrix
from sympy import Symbol
matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ")
for j in range(grid.width)]
for i in range(grid.height)])
return self._print_matrix_contents(matrix)
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return self._print_seq(m, '[', ']')
def _print_SubModule(self, M):
return self._print_seq(M.gens, '<', '>')
def _print_FreeModule(self, M):
return self._print(M.ring)**self._print(M.rank)
def _print_ModuleImplementedIdeal(self, M):
return self._print_seq([x for [x] in M._module.gens], '<', '>')
def _print_QuotientRing(self, R):
return self._print(R.ring) / self._print(R.base_ideal)
def _print_QuotientRingElement(self, R):
return self._print(R.data) + self._print(R.ring.base_ideal)
def _print_QuotientModuleElement(self, m):
return self._print(m.data) + self._print(m.module.killed_module)
def _print_QuotientModule(self, M):
return self._print(M.base) / self._print(M.killed_module)
def _print_MatrixHomomorphism(self, h):
matrix = self._print(h._sympy_matrix())
matrix.baseline = matrix.height() // 2
pform = prettyForm(*matrix.right(' : ', self._print(h.domain),
' %s> ' % hobj('-', 2), self._print(h.codomain)))
return pform
def _print_BaseScalarField(self, field):
string = field._coord_sys._names[field._index]
return self._print(pretty_symbol(string))
def _print_BaseVectorField(self, field):
s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys._names[field._index]
return self._print(pretty_symbol(s))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys._names[field._index]
return self._print(u'\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string))
else:
pform = self._print(field)
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left(u"\N{DOUBLE-STRUCK ITALIC SMALL D}"))
def _print_Tr(self, p):
#TODO: Handle indices
pform = self._print(p.args[0])
pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__)))
pform = prettyForm(*pform.right(')'))
return pform
def _print_primenu(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['nu']))
else:
pform = prettyForm(*pform.left('nu'))
return pform
def _print_primeomega(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['Omega']))
else:
pform = prettyForm(*pform.left('Omega'))
return pform
def _print_Quantity(self, e):
if e.name.name == 'degree':
pform = self._print(u"\N{DEGREE SIGN}")
return pform
else:
return self.emptyPrinter(e)
def _print_AssignmentBase(self, e):
op = prettyForm(' ' + xsym(e.op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def pretty(expr, **settings):
"""Returns a string containing the prettified form of expr.
For information on keyword arguments see pretty_print function.
"""
pp = PrettyPrinter(settings)
# XXX: this is an ugly hack, but at least it works
use_unicode = pp._settings['use_unicode']
uflag = pretty_use_unicode(use_unicode)
try:
return pp.doprint(expr)
finally:
pretty_use_unicode(uflag)
def pretty_print(expr, wrap_line=True, num_columns=None, use_unicode=None,
full_prec="auto", order=None, use_unicode_sqrt_char=True):
"""Prints expr in pretty form.
pprint is just a shortcut for this function.
Parameters
==========
expr : expression
The expression to print.
wrap_line : bool, optional (default=True)
Line wrapping enabled/disabled.
num_columns : int or None, optional (default=None)
Number of columns before line breaking (default to None which reads
the terminal width), useful when using SymPy without terminal.
use_unicode : bool or None, optional (default=None)
Use unicode characters, such as the Greek letter pi instead of
the string pi.
full_prec : bool or string, optional (default="auto")
Use full precision.
order : bool or string, optional (default=None)
Set to 'none' for long expressions if slow; default is None.
use_unicode_sqrt_char : bool, optional (default=True)
Use compact single-character square root symbol (when unambiguous).
"""
print(pretty(expr, wrap_line=wrap_line, num_columns=num_columns,
use_unicode=use_unicode, full_prec=full_prec, order=order,
use_unicode_sqrt_char=use_unicode_sqrt_char))
pprint = pretty_print
def pager_print(expr, **settings):
"""Prints expr using the pager, in pretty form.
This invokes a pager command using pydoc. Lines are not wrapped
automatically. This routine is meant to be used with a pager that allows
sideways scrolling, like ``less -S``.
Parameters are the same as for ``pretty_print``. If you wish to wrap lines,
pass ``num_columns=None`` to auto-detect the width of the terminal.
"""
from pydoc import pager
from locale import getpreferredencoding
if 'num_columns' not in settings:
settings['num_columns'] = 500000 # disable line wrap
pager(pretty(expr, **settings).encode(getpreferredencoding()))
|
a17e946917b8210445bc24c4f44aa346eb761b0864e571711a946e55655e807c
|
from sympy.utilities.pytest import raises
from sympy import (symbols, Function, Integer, Matrix, Abs,
Rational, Float, S, WildFunction, ImmutableDenseMatrix, sin, true, false, ones,
sqrt, root, AlgebraicNumber, Symbol, Dummy, Wild)
from sympy.core.compatibility import exec_
from sympy.geometry import Point, Ellipse
from sympy.printing import srepr
from sympy.polys import ring, field, ZZ, QQ, lex, grlex, Poly
from sympy.polys.polyclasses import DMP
from sympy.polys.agca.extensions import FiniteExtension
x, y = symbols('x,y')
# eval(srepr(expr)) == expr has to succeed in the right environment. The right
# environment is the scope of "from sympy import *" for most cases.
ENV = {}
exec_("from sympy import *", ENV)
def sT(expr, string):
"""
sT := sreprTest
Tests that srepr delivers the expected string and that
the condition eval(srepr(expr))==expr holds.
"""
assert srepr(expr) == string
assert eval(string, ENV) == expr
def test_printmethod():
class R(Abs):
def _sympyrepr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert srepr(R(x)) == "foo(Symbol('x'))"
def test_Add():
sT(x + y, "Add(Symbol('x'), Symbol('y'))")
assert srepr(x**2 + 1, order='lex') == "Add(Pow(Symbol('x'), Integer(2)), Integer(1))"
assert srepr(x**2 + 1, order='old') == "Add(Integer(1), Pow(Symbol('x'), Integer(2)))"
def test_more_than_255_args_issue_10259():
from sympy import Add, Mul
for op in (Add, Mul):
expr = op(*symbols('x:256'))
assert eval(srepr(expr)) == expr
def test_Function():
sT(Function("f")(x), "Function('f')(Symbol('x'))")
# test unapplied Function
sT(Function('f'), "Function('f')")
sT(sin(x), "sin(Symbol('x'))")
sT(sin, "sin")
def test_Geometry():
sT(Point(0, 0), "Point2D(Integer(0), Integer(0))")
sT(Ellipse(Point(0, 0), 5, 1),
"Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))")
# TODO more tests
def test_Singletons():
sT(S.Catalan, 'Catalan')
sT(S.ComplexInfinity, 'zoo')
sT(S.EulerGamma, 'EulerGamma')
sT(S.Exp1, 'E')
sT(S.GoldenRatio, 'GoldenRatio')
sT(S.TribonacciConstant, 'TribonacciConstant')
sT(S.Half, 'Rational(1, 2)')
sT(S.ImaginaryUnit, 'I')
sT(S.Infinity, 'oo')
sT(S.NaN, 'nan')
sT(S.NegativeInfinity, '-oo')
sT(S.NegativeOne, 'Integer(-1)')
sT(S.One, 'Integer(1)')
sT(S.Pi, 'pi')
sT(S.Zero, 'Integer(0)')
def test_Integer():
sT(Integer(4), "Integer(4)")
def test_list():
sT([x, Integer(4)], "[Symbol('x'), Integer(4)]")
def test_Matrix():
for cls, name in [(Matrix, "MutableDenseMatrix"), (ImmutableDenseMatrix, "ImmutableDenseMatrix")]:
sT(cls([[x**+1, 1], [y, x + y]]),
"%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name)
sT(cls(), "%s([])" % name)
sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name)
def test_empty_Matrix():
sT(ones(0, 3), "MutableDenseMatrix(0, 3, [])")
sT(ones(4, 0), "MutableDenseMatrix(4, 0, [])")
sT(ones(0, 0), "MutableDenseMatrix([])")
def test_Rational():
sT(Rational(1, 3), "Rational(1, 3)")
sT(Rational(-1, 3), "Rational(-1, 3)")
def test_Float():
sT(Float('1.23', dps=3), "Float('1.22998', precision=13)")
sT(Float('1.23456789', dps=9), "Float('1.23456788994', precision=33)")
sT(Float('1.234567890123456789', dps=19),
"Float('1.234567890123456789013', precision=66)")
sT(Float('0.60038617995049726', dps=15),
"Float('0.60038617995049726', precision=53)")
sT(Float('1.23', precision=13), "Float('1.22998', precision=13)")
sT(Float('1.23456789', precision=33),
"Float('1.23456788994', precision=33)")
sT(Float('1.234567890123456789', precision=66),
"Float('1.234567890123456789013', precision=66)")
sT(Float('0.60038617995049726', precision=53),
"Float('0.60038617995049726', precision=53)")
sT(Float('0.60038617995049726', 15),
"Float('0.60038617995049726', precision=53)")
def test_Symbol():
sT(x, "Symbol('x')")
sT(y, "Symbol('y')")
sT(Symbol('x', negative=True), "Symbol('x', negative=True)")
def test_Symbol_two_assumptions():
x = Symbol('x', negative=0, integer=1)
# order could vary
s1 = "Symbol('x', integer=True, negative=False)"
s2 = "Symbol('x', negative=False, integer=True)"
assert srepr(x) in (s1, s2)
assert eval(srepr(x), ENV) == x
def test_Symbol_no_special_commutative_treatment():
sT(Symbol('x'), "Symbol('x')")
sT(Symbol('x', commutative=False), "Symbol('x', commutative=False)")
sT(Symbol('x', commutative=0), "Symbol('x', commutative=False)")
sT(Symbol('x', commutative=True), "Symbol('x', commutative=True)")
sT(Symbol('x', commutative=1), "Symbol('x', commutative=True)")
def test_Wild():
sT(Wild('x', even=True), "Wild('x', even=True)")
def test_Dummy():
d = Dummy('d')
sT(d, "Dummy('d', dummy_index=%s)" % str(d.dummy_index))
def test_Dummy_assumption():
d = Dummy('d', nonzero=True)
assert d == eval(srepr(d))
s1 = "Dummy('d', dummy_index=%s, nonzero=True)" % str(d.dummy_index)
s2 = "Dummy('d', nonzero=True, dummy_index=%s)" % str(d.dummy_index)
assert srepr(d) in (s1, s2)
def test_Dummy_from_Symbol():
# should not get the full dictionary of assumptions
n = Symbol('n', integer=True)
d = n.as_dummy()
assert srepr(d
) == "Dummy('n', dummy_index=%s)" % str(d.dummy_index)
def test_tuple():
sT((x,), "(Symbol('x'),)")
sT((x, y), "(Symbol('x'), Symbol('y'))")
def test_WildFunction():
sT(WildFunction('w'), "WildFunction('w')")
def test_settins():
raises(TypeError, lambda: srepr(x, method="garbage"))
def test_Mul():
sT(3*x**3*y, "Mul(Integer(3), Pow(Symbol('x'), Integer(3)), Symbol('y'))")
assert srepr(3*x**3*y, order='old') == "Mul(Integer(3), Symbol('y'), Pow(Symbol('x'), Integer(3)))"
def test_AlgebraicNumber():
a = AlgebraicNumber(sqrt(2))
sT(a, "AlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])")
a = AlgebraicNumber(root(-2, 3))
sT(a, "AlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)])")
def test_PolyRing():
assert srepr(ring("x", ZZ, lex)[0]) == "PolyRing((Symbol('x'),), ZZ, lex)"
assert srepr(ring("x,y", QQ, grlex)[0]) == "PolyRing((Symbol('x'), Symbol('y')), QQ, grlex)"
assert srepr(ring("x,y,z", ZZ["t"], lex)[0]) == "PolyRing((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)"
def test_FracField():
assert srepr(field("x", ZZ, lex)[0]) == "FracField((Symbol('x'),), ZZ, lex)"
assert srepr(field("x,y", QQ, grlex)[0]) == "FracField((Symbol('x'), Symbol('y')), QQ, grlex)"
assert srepr(field("x,y,z", ZZ["t"], lex)[0]) == "FracField((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)"
def test_PolyElement():
R, x, y = ring("x,y", ZZ)
assert srepr(3*x**2*y + 1) == "PolyElement(PolyRing((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)])"
def test_FracElement():
F, x, y = field("x,y", ZZ)
assert srepr((3*x**2*y + 1)/(x - y**2)) == "FracElement(FracField((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)], [((1, 0), 1), ((0, 2), -1)])"
def test_FractionField():
assert srepr(QQ.frac_field(x)) == \
"FractionField(FracField((Symbol('x'),), QQ, lex))"
assert srepr(QQ.frac_field(x, y, order=grlex)) == \
"FractionField(FracField((Symbol('x'), Symbol('y')), QQ, grlex))"
def test_PolynomialRingBase():
assert srepr(ZZ.old_poly_ring(x)) == \
"GlobalPolynomialRing(ZZ, Symbol('x'))"
assert srepr(ZZ[x].old_poly_ring(y)) == \
"GlobalPolynomialRing(ZZ[x], Symbol('y'))"
assert srepr(QQ.frac_field(x).old_poly_ring(y)) == \
"GlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y'))"
def test_DMP():
assert srepr(DMP([1, 2], ZZ)) == 'DMP([1, 2], ZZ)'
assert srepr(ZZ.old_poly_ring(x)([1, 2])) == \
"DMP([1, 2], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x')))"
def test_FiniteExtension():
assert srepr(FiniteExtension(Poly(x**2 + 1, x))) == \
"FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))"
def test_ExtensionElement():
A = FiniteExtension(Poly(x**2 + 1, x))
assert srepr(A.generator) == \
"ExtElem(DMP([1, 0], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x'))), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))"
def test_BooleanAtom():
assert srepr(true) == "true"
assert srepr(false) == "false"
|
4b6ca69562f5a270fc509be39add20c3760ad085c96a22a67858f0017b5737df
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from sympy.codegen import Assignment
from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational
from sympy.core.numbers import pi
from sympy.codegen.ast import none
from sympy.external import import_module
from sympy.logic import And, Or
from sympy.functions import acos, Piecewise, sign
from sympy.matrices import SparseMatrix, MatrixSymbol
from sympy.printing.pycode import (
MpmathPrinter, NumPyPrinter, PythonCodePrinter, pycode, SciPyPrinter
)
from sympy.utilities.pytest import raises
x, y, z = symbols('x y z')
def test_PythonCodePrinter():
prntr = PythonCodePrinter()
assert not prntr.module_imports
assert prntr.doprint(x**y) == 'x**y'
assert prntr.doprint(Mod(x, 2)) == 'x % 2'
assert prntr.doprint(And(x, y)) == 'x and y'
assert prntr.doprint(Or(x, y)) == 'x or y'
assert not prntr.module_imports
assert prntr.doprint(pi) == 'math.pi'
assert prntr.module_imports == {'math': {'pi'}}
assert prntr.doprint(acos(x)) == 'math.acos(x)'
assert prntr.doprint(Assignment(x, 2)) == 'x = 2'
assert prntr.doprint(Piecewise((1, Eq(x, 0)),
(2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)'
assert prntr.doprint(Piecewise((2, Le(x, 0)),
(3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\
' (3) if (x > 0) else None)'
assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))'
def test_MpmathPrinter():
p = MpmathPrinter()
assert p.doprint(sign(x)) == 'mpmath.sign(x)'
assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'
def test_NumPyPrinter():
p = NumPyPrinter()
assert p.doprint(sign(x)) == 'numpy.sign(x)'
A = MatrixSymbol("A", 2, 2)
assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
def test_SciPyPrinter():
p = SciPyPrinter()
expr = acos(x)
assert 'numpy' not in p.module_imports
assert p.doprint(expr) == 'numpy.arccos(x)'
assert 'numpy' in p.module_imports
assert not any(m.startswith('scipy') for m in p.module_imports)
smat = SparseMatrix(2, 5, {(0, 1): 3})
assert p.doprint(smat) == 'scipy.sparse.coo_matrix([3], ([0], [1]), shape=(2, 5))'
assert 'scipy.sparse' in p.module_imports
def test_pycode_reserved_words():
s1, s2 = symbols('if else')
raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True))
py_str = pycode(s1 + s2)
assert py_str in ('else_ + if_', 'if_ + else_')
class CustomPrintedObject(Expr):
def _numpycode(self, printer):
return 'numpy'
def _mpmathcode(self, printer):
return 'mpmath'
def test_printmethod():
obj = CustomPrintedObject()
assert NumPyPrinter().doprint(obj) == 'numpy'
assert MpmathPrinter().doprint(obj) == 'mpmath'
def test_codegen_ast_nodes():
assert pycode(none) == 'None'
def test_issue_14283():
prntr = PythonCodePrinter()
assert prntr.doprint(zoo) == "float('nan')"
assert prntr.doprint(-oo) == "float('-inf')"
|
1d94c848536645a923eaaf23c4d71a863595ac921f0f3bf1d739cc50794b4a31
|
from sympy import (Abs, Catalan, cos, Derivative, E, EulerGamma, exp,
factorial, factorial2, Function, GoldenRatio, TribonacciConstant, I,
Integer, Integral, Interval, Lambda, Limit, Matrix, nan, O, oo, pi, Pow,
Rational, Float, Rel, S, sin, SparseMatrix, sqrt, summation, Sum, Symbol,
symbols, Wild, WildFunction, zeta, zoo, Dummy, Dict, Tuple, FiniteSet, factor,
subfactorial, true, false, Equivalent, Xor, Complement, SymmetricDifference,
AccumBounds, UnevaluatedExpr, Eq, Ne, Quaternion, Subs)
from sympy.core import Expr, Mul
from sympy.physics.units import second, joule
from sympy.polys import Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ, lex, grlex
from sympy.geometry import Point, Circle
from sympy.utilities.pytest import raises
from sympy.core.compatibility import range
from sympy.printing import sstr, sstrrepr, StrPrinter
from sympy.core.trace import Tr
from sympy import MatrixSymbol
x, y, z, w, t = symbols('x,y,z,w,t')
d = Dummy('d')
def test_printmethod():
class R(Abs):
def _sympystr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert sstr(R(x)) == "foo(x)"
class R(Abs):
def _sympystr(self, printer):
return "foo"
assert sstr(R(x)) == "foo"
def test_Abs():
assert str(Abs(x)) == "Abs(x)"
assert str(Abs(Rational(1, 6))) == "1/6"
assert str(Abs(Rational(-1, 6))) == "1/6"
def test_Add():
assert str(x + y) == "x + y"
assert str(x + 1) == "x + 1"
assert str(x + x**2) == "x**2 + x"
assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5"
assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1"
assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2"
assert str(x - y) == "x - y"
assert str(2 - x) == "-x + 2"
assert str(x - 2) == "x - 2"
assert str(x - y - z - w) == "-w + x - y - z"
assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x"
assert str(x - 1*y*x*y) == "-x*y**2 + x"
assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)"
def test_Catalan():
assert str(Catalan) == "Catalan"
def test_ComplexInfinity():
assert str(zoo) == "zoo"
def test_Derivative():
assert str(Derivative(x, y)) == "Derivative(x, y)"
assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)"
assert str(Derivative(
x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)"
def test_dict():
assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}"
def test_Dict():
assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str(Dict({1: x**2, 2: y*x})) in (
"{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}"
def test_Dummy():
assert str(d) == "_d"
assert str(d + x) == "_d + x"
def test_EulerGamma():
assert str(EulerGamma) == "EulerGamma"
def test_Exp():
assert str(E) == "E"
def test_factorial():
n = Symbol('n', integer=True)
assert str(factorial(-2)) == "zoo"
assert str(factorial(0)) == "1"
assert str(factorial(7)) == "5040"
assert str(factorial(n)) == "factorial(n)"
assert str(factorial(2*n)) == "factorial(2*n)"
assert str(factorial(factorial(n))) == 'factorial(factorial(n))'
assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))'
assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))'
assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))'
assert str(subfactorial(3)) == "2"
assert str(subfactorial(n)) == "subfactorial(n)"
assert str(subfactorial(2*n)) == "subfactorial(2*n)"
def test_Function():
f = Function('f')
fx = f(x)
w = WildFunction('w')
assert str(f) == "f"
assert str(fx) == "f(x)"
assert str(w) == "w_"
def test_Geometry():
assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
# TODO test other Geometry entities
def test_GoldenRatio():
assert str(GoldenRatio) == "GoldenRatio"
def test_TribonacciConstant():
assert str(TribonacciConstant) == "TribonacciConstant"
def test_ImaginaryUnit():
assert str(I) == "I"
def test_Infinity():
assert str(oo) == "oo"
assert str(oo*I) == "oo*I"
def test_Integer():
assert str(Integer(-1)) == "-1"
assert str(Integer(1)) == "1"
assert str(Integer(-3)) == "-3"
assert str(Integer(0)) == "0"
assert str(Integer(25)) == "25"
def test_Integral():
assert str(Integral(sin(x), y)) == "Integral(sin(x), y)"
assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))"
def test_Interval():
n = (S.NegativeInfinity, 1, 2, S.Infinity)
for i in range(len(n)):
for j in range(i + 1, len(n)):
for l in (True, False):
for r in (True, False):
ival = Interval(n[i], n[j], l, r)
assert S(str(ival)) == ival
def test_AccumBounds():
a = Symbol('a', real=True)
assert str(AccumBounds(0, a)) == "AccumBounds(0, a)"
assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)"
def test_Lambda():
assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)"
# issue 2908
assert str(Lambda((), 1)) == "Lambda((), 1)"
assert str(Lambda((), x)) == "Lambda((), x)"
def test_Limit():
assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)"
assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)"
assert str(
Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')"
def test_list():
assert str([x]) == sstr([x]) == "[x]"
assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]"
assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]"
def test_Matrix_str():
M = Matrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
M = Matrix([[1]])
assert str(M) == sstr(M) == "Matrix([[1]])"
M = Matrix([[1, 2]])
assert str(M) == sstr(M) == "Matrix([[1, 2]])"
M = Matrix()
assert str(M) == sstr(M) == "Matrix(0, 0, [])"
M = Matrix(0, 1, lambda i, j: 0)
assert str(M) == sstr(M) == "Matrix(0, 1, [])"
def test_Mul():
assert str(x/y) == "x/y"
assert str(y/x) == "y/x"
assert str(x/y/z) == "x/(y*z)"
assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)"
assert str(2*x/3) == '2*x/3'
assert str(-2*x/3) == '-2*x/3'
assert str(-1.0*x) == '-1.0*x'
assert str(1.0*x) == '1.0*x'
# For issue 14160
assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
class CustomClass1(Expr):
is_commutative = True
class CustomClass2(Expr):
is_commutative = True
cc1 = CustomClass1()
cc2 = CustomClass2()
assert str(Rational(2)*cc1) == '2*CustomClass1()'
assert str(cc1*Rational(2)) == '2*CustomClass1()'
assert str(cc1*Float("1.5")) == '1.5*CustomClass1()'
assert str(cc2*Rational(2)) == '2*CustomClass2()'
assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()'
assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()'
def test_NaN():
assert str(nan) == "nan"
def test_NegativeInfinity():
assert str(-oo) == "-oo"
def test_Order():
assert str(O(x)) == "O(x)"
assert str(O(x**2)) == "O(x**2)"
assert str(O(x*y)) == "O(x*y, x, y)"
assert str(O(x, x)) == "O(x)"
assert str(O(x, (x, 0))) == "O(x)"
assert str(O(x, (x, oo))) == "O(x, (x, oo))"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))"
def test_Permutation_Cycle():
from sympy.combinatorics import Permutation, Cycle
# general principle: economically, canonically show all moved elements
# and the size of the permutation.
for p, s in [
(Cycle(),
'()'),
(Cycle(2),
'(2)'),
(Cycle(2, 1),
'(1 2)'),
(Cycle(1, 2)(5)(6, 7)(10),
'(1 2)(6 7)(10)'),
(Cycle(3, 4)(1, 2)(3, 4),
'(1 2)(4)'),
]:
assert str(p) == s
Permutation.print_cyclic = False
for p, s in [
(Permutation([]),
'Permutation([])'),
(Permutation([], size=1),
'Permutation([0])'),
(Permutation([], size=2),
'Permutation([0, 1])'),
(Permutation([], size=10),
'Permutation([], size=10)'),
(Permutation([1, 0, 2]),
'Permutation([1, 0, 2])'),
(Permutation([1, 0, 2, 3, 4, 5]),
'Permutation([1, 0], size=6)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'Permutation([1, 0], size=10)'),
]:
assert str(p) == s
Permutation.print_cyclic = True
for p, s in [
(Permutation([]),
'()'),
(Permutation([], size=1),
'(0)'),
(Permutation([], size=2),
'(1)'),
(Permutation([], size=10),
'(9)'),
(Permutation([1, 0, 2]),
'(2)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5]),
'(5)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'(9)(0 1)'),
(Permutation([0, 1, 3, 2, 4, 5], size=10),
'(9)(2 3)'),
]:
assert str(p) == s
def test_Pi():
assert str(pi) == "pi"
def test_Poly():
assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')"
assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')"
assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')"
assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')"
assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')"
assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')"
assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')"
assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')"
assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')"
assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')"
assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')"
assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')"
assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')"
assert str(Poly((x + y)**3, (x + y), expand=False)
) == "Poly((x + y)**3, x + y, domain='ZZ')"
assert str(Poly((x - 1)**2, (x - 1), expand=False)
) == "Poly((x - 1)**2, x - 1, domain='ZZ')"
assert str(
Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')"
assert str(
Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')"
assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='EX')"
assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='EX')"
assert str(Poly(-x*y*z + x*y - 1, x, y, z)
) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')"
assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \
"Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')"
assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)"
assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)"
def test_PolyRing():
assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order"
assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order"
assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order"
def test_FracField():
assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order"
assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order"
assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order"
def test_PolyElement():
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x**2) == "x**2"
assert str(x**(-2)) == "x**(-2)"
assert str(x**QQ(1, 2)) == "x**(1/2)"
assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1"
assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1"
assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1"
assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1"
def test_FracElement():
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x/3) == "x/3"
assert str(x/z) == "x/z"
assert str(x*y/z) == "x*y/z"
assert str(x/(z*t)) == "x/(z*t)"
assert str(x*y/(z*t)) == "x*y/(z*t)"
assert str((x - 1)/y) == "(x - 1)/y"
assert str((x + 1)/y) == "(x + 1)/y"
assert str((-x - 1)/y) == "(-x - 1)/y"
assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)"
assert str(-y/(x + 1)) == "-y/(x + 1)"
assert str(y*z/(x + 1)) == "y*z/(x + 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)"
def test_Pow():
assert str(x**-1) == "1/x"
assert str(x**-2) == "x**(-2)"
assert str(x**2) == "x**2"
assert str((x + y)**-1) == "1/(x + y)"
assert str((x + y)**-2) == "(x + y)**(-2)"
assert str((x + y)**2) == "(x + y)**2"
assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)"
assert str(x**Rational(1, 3)) == "x**(1/3)"
assert str(1/x**Rational(1, 3)) == "x**(-1/3)"
assert str(sqrt(sqrt(x))) == "x**(1/4)"
# not the same as x**-1
assert str(x**-1.0) == 'x**(-1.0)'
# see issue #2860
assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)'
def test_sqrt():
assert str(sqrt(x)) == "sqrt(x)"
assert str(sqrt(x**2)) == "sqrt(x**2)"
assert str(1/sqrt(x)) == "1/sqrt(x)"
assert str(1/sqrt(x**2)) == "1/sqrt(x**2)"
assert str(y/sqrt(x)) == "y/sqrt(x)"
assert str(x**0.5) == "x**0.5"
assert str(1/x**0.5) == "x**(-0.5)"
def test_Rational():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n7 = Rational(3)
n8 = Rational(-3)
assert str(n1*n2) == "1/12"
assert str(n1*n2) == "1/12"
assert str(n3) == "1/2"
assert str(n1*n3) == "1/8"
assert str(n1 + n3) == "3/4"
assert str(n1 + n2) == "7/12"
assert str(n1 + n4) == "-1/4"
assert str(n4*n4) == "1/4"
assert str(n4 + n2) == "-1/6"
assert str(n4 + n5) == "-1/2"
assert str(n4*n5) == "0"
assert str(n3 + n4) == "0"
assert str(n1**n7) == "1/64"
assert str(n2**n7) == "1/27"
assert str(n2**n8) == "27"
assert str(n7**n8) == "1/27"
assert str(Rational("-25")) == "-25"
assert str(Rational("1.25")) == "5/4"
assert str(Rational("-2.6e-2")) == "-13/500"
assert str(S("25/7")) == "25/7"
assert str(S("-123/569")) == "-123/569"
assert str(S("0.1[23]", rational=1)) == "61/495"
assert str(S("5.1[666]", rational=1)) == "31/6"
assert str(S("-5.1[666]", rational=1)) == "-31/6"
assert str(S("0.[9]", rational=1)) == "1"
assert str(S("-0.[9]", rational=1)) == "-1"
assert str(sqrt(Rational(1, 4))) == "1/2"
assert str(sqrt(Rational(1, 36))) == "1/6"
assert str((123**25) ** Rational(1, 25)) == "123"
assert str((123**25 + 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "122"
assert str(sqrt(Rational(81, 36))**3) == "27/8"
assert str(1/sqrt(Rational(81, 36))**3) == "8/27"
assert str(sqrt(-4)) == str(2*I)
assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)"
assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3"
x = Symbol("x")
assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)"
assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)"
assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \
"Limit(x, x, S(7)/2)"
def test_Float():
# NOTE dps is the whole number of decimal digits
assert str(Float('1.23', dps=1 + 2)) == '1.23'
assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789'
assert str(
Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789'
assert str(pi.evalf(1 + 2)) == '3.14'
assert str(pi.evalf(1 + 14)) == '3.14159265358979'
assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
'5028841971693993751058209749445923')
assert str(pi.round(-1)) == '0.'
assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
assert str(Float(S.Infinity)) == 'inf'
assert str(Float(S.NegativeInfinity)) == '-inf'
def test_Relational():
assert str(Rel(x, y, "<")) == "x < y"
assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)"
assert str(Rel(x, y, "!=")) == "Ne(x, y)"
assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)"
assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)"
def test_CRootOf():
assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
def test_RootSum():
f = x**5 + 2*x - 1
assert str(
RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)"
assert str(RootSum(f, Lambda(
z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))"
def test_GroebnerBasis():
assert str(groebner(
[], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
assert str(groebner(F, order='grlex')) == \
"GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
assert str(groebner(F, order='lex')) == \
"GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
def test_set():
assert sstr(set()) == 'set()'
assert sstr(frozenset()) == 'frozenset()'
assert sstr(set([1])) == '{1}'
assert sstr(frozenset([1])) == 'frozenset({1})'
assert sstr(set([1, 2, 3])) == '{1, 2, 3}'
assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})'
assert sstr(
set([1, x, x**2, x**3, x**4])) == '{1, x, x**2, x**3, x**4}'
assert sstr(
frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})'
def test_SparseMatrix():
M = SparseMatrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
def test_Sum():
assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))"
assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
"Sum(x*y**2, (x, -2, 2), (y, -5, 5))"
def test_Symbol():
assert str(y) == "y"
assert str(x) == "x"
e = x
assert str(e) == "x"
def test_tuple():
assert str((x,)) == sstr((x,)) == "(x,)"
assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)"
assert str((x + y, (
1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))"
def test_Quaternion_str_printer():
q = Quaternion(x, y, z, t)
assert str(q) == "x + y*i + z*j + t*k"
q = Quaternion(x,y,z,x*t)
assert str(q) == "x + y*i + z*j + t*x*k"
q = Quaternion(x,y,z,x+t)
assert str(q) == "x + y*i + z*j + (t + x)*k"
def test_Quantity_str():
assert sstr(second, abbrev=True) == "s"
assert sstr(joule, abbrev=True) == "J"
assert str(second) == "second"
assert str(joule) == "joule"
def test_wild_str():
# Check expressions containing Wild not causing infinite recursion
w = Wild('x')
assert str(w + 1) == 'x_ + 1'
assert str(exp(2**w) + 5) == 'exp(2**x_) + 5'
assert str(3*w + 1) == '3*x_ + 1'
assert str(1/w + 1) == '1 + 1/x_'
assert str(w**2 + 1) == 'x_**2 + 1'
assert str(1/(1 - w)) == '1/(-x_ + 1)'
def test_zeta():
assert str(zeta(3)) == "zeta(3)"
def test_issue_3101():
e = x - y
a = str(e)
b = str(e)
assert a == b
def test_issue_3103():
e = -2*sqrt(x) - y/sqrt(x)/2
assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y",
"-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"]
assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))"
def test_issue_4021():
e = Integral(x, x) + 1
assert str(e) == 'Integral(x, x) + 1'
def test_sstrrepr():
assert sstr('abc') == 'abc'
assert sstrrepr('abc') == "'abc'"
e = ['a', 'b', 'c', x]
assert sstr(e) == "[a, b, c, x]"
assert sstrrepr(e) == "['a', 'b', 'c', x]"
def test_infinity():
assert sstr(oo*I) == "oo*I"
def test_full_prec():
assert sstr(S("0.3"), full_prec=True) == "0.300000000000000"
assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000"
assert sstr(S("0.3"), full_prec=False) == "0.3"
assert sstr(S("0.3")*x, full_prec=True) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert sstr(S("0.3")*x, full_prec="auto") in [
"0.3*x",
"x*0.3"
]
assert sstr(S("0.3")*x, full_prec=False) in [
"0.3*x",
"x*0.3"
]
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert sstr(A*B*C**-1) == "A*B*C**(-1)"
assert sstr(C**-1*A*B) == "C**(-1)*A*B"
assert sstr(A*C**-1*B) == "A*C**(-1)*B"
assert sstr(sqrt(A)) == "sqrt(A)"
assert sstr(1/sqrt(A)) == "A**(-1/2)"
def test_empty_printer():
str_printer = StrPrinter()
assert str_printer.emptyPrinter("foo") == "foo"
assert str_printer.emptyPrinter(x*y) == "x*y"
assert str_printer.emptyPrinter(32) == "32"
def test_settings():
raises(TypeError, lambda: sstr(S(4), method="garbage"))
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)"
D = Die('d1', 6)
assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)"
def test_FiniteSet():
assert str(FiniteSet(*range(1, 51))) == '{1, 2, 3, ..., 48, 49, 50}'
assert str(FiniteSet(*range(1, 6))) == '{1, 2, 3, 4, 5}'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y))
assert sstr(R.convert(x + y)) == sstr(x + y)
def test_categories():
from sympy.categories import (Object, NamedMorphism,
IdentityMorphism, Category)
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
id_A = IdentityMorphism(A)
K = Category("K")
assert str(A) == 'Object("A")'
assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")'
assert str(id_A) == 'IdentityMorphism(Object("A"))'
assert str(K) == 'Category("K")'
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert str(t) == 'Tr(A*B)'
def test_issue_6387():
assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)'
def test_MatMul_MatAdd():
from sympy import MatrixSymbol
assert str(2*(MatrixSymbol("X", 2, 2) + MatrixSymbol("Y", 2, 2))) == \
"2*(X + Y)"
def test_MatrixSlice():
from sympy.matrices.expressions import MatrixSymbol
assert str(MatrixSymbol('X', 10, 10)[:5, 1:9:2]) == 'X[:5, 1:9:2]'
assert str(MatrixSymbol('X', 10, 10)[5, :5:2]) == 'X[5, :5:2]'
def test_true_false():
assert str(true) == repr(true) == sstr(true) == "True"
assert str(false) == repr(false) == sstr(false) == "False"
def test_Equivalent():
assert str(Equivalent(y, x)) == "Equivalent(x, y)"
def test_Xor():
assert str(Xor(y, x, evaluate=False)) == "Xor(x, y)"
def test_Complement():
assert str(Complement(S.Reals, S.Naturals)) == 'Reals \\ Naturals'
def test_SymmetricDifference():
assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \
'SymmetricDifference(Interval(2, 3), Interval(3, 4))'
def test_UnevaluatedExpr():
a, b = symbols("a b")
expr1 = 2*UnevaluatedExpr(a+b)
assert str(expr1) == "2*(a + b)"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(str(A[0, 0]) == "A[0, 0]")
assert(str(3 * A[0, 0]) == "3*A[0, 0]")
F = C[0, 0].subs(C, A - B)
assert str(F) == "(A - B)[0, 0]"
def test_MatrixSymbol_printing():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert str(A - A*B - B) == "A - A*B - B"
assert str(A*B - (A+B)) == "-(A + B) + A*B"
assert str(A**(-1)) == "A**(-1)"
assert str(A**3) == "A**3"
def test_Subs_printing():
assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)'
assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))'
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.