hash
stringlengths
64
64
content
stringlengths
0
1.51M
2eae656b2ed9fd13111e2521b34bc3e7265631b0c343b8a14460b411397aad2c
""" =================== The mplot3d Toolkit =================== Generating 3D plots using the mplot3d toolkit. .. currentmodule:: mpl_toolkits.mplot3d .. contents:: :backlinks: none .. _toolkit_mplot3d-tutorial: Getting started --------------- 3D Axes (of class `Axes3D`) are created by passing the ``projection="3d"`` keyword argument to `Figure.add_subplot`:: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111, projection='3d') .. versionchanged:: 1.0.0 Prior to Matplotlib 1.0.0, `Axes3D` needed to be directly instantiated with ``from mpl_toolkits.mplot3d import Axes3D; ax = Axes3D(fig)``. .. versionchanged:: 3.2.0 Prior to Matplotlib 3.2.0, it was necessary to explicitly import the :mod:`mpl_toolkits.mplot3d` module to make the '3d' projection to `Figure.add_subplot`. See the :ref:`toolkit_mplot3d-faq` for more information about the mplot3d toolkit. .. _plot3d: Line plots ==================== .. automethod:: Axes3D.plot .. figure:: ../../gallery/mplot3d/images/sphx_glr_lines3d_001.png :target: ../../gallery/mplot3d/lines3d.html :align: center :scale: 50 Lines3d .. _scatter3d: Scatter plots ============= .. automethod:: Axes3D.scatter .. figure:: ../../gallery/mplot3d/images/sphx_glr_scatter3d_001.png :target: ../../gallery/mplot3d/scatter3d.html :align: center :scale: 50 Scatter3d .. _wireframe: Wireframe plots =============== .. automethod:: Axes3D.plot_wireframe .. figure:: ../../gallery/mplot3d/images/sphx_glr_wire3d_001.png :target: ../../gallery/mplot3d/wire3d.html :align: center :scale: 50 Wire3d .. _surface: Surface plots ============= .. automethod:: Axes3D.plot_surface .. figure:: ../../gallery/mplot3d/images/sphx_glr_surface3d_001.png :target: ../../gallery/mplot3d/surface3d.html :align: center :scale: 50 Surface3d Surface3d 2 Surface3d 3 .. _trisurface: Tri-Surface plots ================= .. automethod:: Axes3D.plot_trisurf .. figure:: ../../gallery/mplot3d/images/sphx_glr_trisurf3d_001.png :target: ../../gallery/mplot3d/trisurf3d.html :align: center :scale: 50 Trisurf3d .. _contour3d: Contour plots ============= .. automethod:: Axes3D.contour .. figure:: ../../gallery/mplot3d/images/sphx_glr_contour3d_001.png :target: ../../gallery/mplot3d/contour3d.html :align: center :scale: 50 Contour3d Contour3d 2 Contour3d 3 .. _contourf3d: Filled contour plots ==================== .. automethod:: Axes3D.contourf .. figure:: ../../gallery/mplot3d/images/sphx_glr_contourf3d_001.png :target: ../../gallery/mplot3d/contourf3d.html :align: center :scale: 50 Contourf3d Contourf3d 2 .. versionadded:: 1.1.0 The feature demoed in the second contourf3d example was enabled as a result of a bugfix for version 1.1.0. .. _polygon3d: Polygon plots ==================== .. automethod:: Axes3D.add_collection3d .. figure:: ../../gallery/mplot3d/images/sphx_glr_polys3d_001.png :target: ../../gallery/mplot3d/polys3d.html :align: center :scale: 50 Polys3d .. _bar3d: Bar plots ==================== .. automethod:: Axes3D.bar .. figure:: ../../gallery/mplot3d/images/sphx_glr_bars3d_001.png :target: ../../gallery/mplot3d/bars3d.html :align: center :scale: 50 Bars3d .. _quiver3d: Quiver ==================== .. automethod:: Axes3D.quiver .. figure:: ../../gallery/mplot3d/images/sphx_glr_quiver3d_001.png :target: ../../gallery/mplot3d/quiver3d.html :align: center :scale: 50 Quiver3d .. _2dcollections3d: 2D plots in 3D ==================== .. figure:: ../../gallery/mplot3d/images/sphx_glr_2dcollections3d_001.png :target: ../../gallery/mplot3d/2dcollections3d.html :align: center :scale: 50 2dcollections3d .. _text3d: Text ==================== .. automethod:: Axes3D.text .. figure:: ../../gallery/mplot3d/images/sphx_glr_text3d_001.png :target: ../../gallery/mplot3d/text3d.html :align: center :scale: 50 Text3d .. _3dsubplots: Subplotting ==================== Having multiple 3D plots in a single figure is the same as it is for 2D plots. Also, you can have both 2D and 3D plots in the same figure. .. versionadded:: 1.0.0 Subplotting 3D plots was added in v1.0.0. Earlier version can not do this. .. figure:: ../../gallery/mplot3d/images/sphx_glr_subplot3d_001.png :target: ../../gallery/mplot3d/subplot3d.html :align: center :scale: 50 Subplot3d Mixed Subplots """
93b6cfb60ba4319396857702e61859cabf1d8d604c74d2e1502721e92324d43e
""" ***************** Specifying Colors ***************** Matplotlib recognizes the following formats to specify a color: * an RGB or RGBA (red, green, blue, alpha) tuple of float values in ``[0, 1]`` (e.g., ``(0.1, 0.2, 0.5)`` or ``(0.1, 0.2, 0.5, 0.3)``); * a hex RGB or RGBA string (e.g., ``'#0f0f0f'`` or ``'#0f0f0f80'``; case-insensitive); * a string representation of a float value in ``[0, 1]`` inclusive for gray level (e.g., ``'0.5'``); * one of ``{'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'}``; * a X11/CSS4 color name (case-insensitive); * a name from the `xkcd color survey`_, prefixed with ``'xkcd:'`` (e.g., ``'xkcd:sky blue'``; case insensitive); * one of the Tableau Colors from the 'T10' categorical palette (the default color cycle): ``{'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'}`` (case-insensitive); * a "CN" color spec, i.e. `'C'` followed by a number, which is an index into the default property cycle (``matplotlib.rcParams['axes.prop_cycle']``); the indexing is intended to occur at rendering time, and defaults to black if the cycle does not include color. .. _xkcd color survey: https://xkcd.com/color/rgb/ "Red", "Green", and "Blue" are the intensities of those colors, the combination of which span the colorspace. How "Alpha" behaves depends on the ``zorder`` of the Artist. Higher ``zorder`` Artists are drawn on top of lower Artists, and "Alpha" determines whether the lower artist is covered by the higher. If the old RGB of a pixel is ``RGBold`` and the RGB of the pixel of the Artist being added is ``RGBnew`` with Alpha ``alpha``, then the RGB of the pixel is updated to: ``RGB = RGBOld * (1 - Alpha) + RGBnew * Alpha``. Alpha of 1 means the old color is completely covered by the new Artist, Alpha of 0 means that pixel of the Artist is transparent. For more information on colors in matplotlib see * the :doc:`/gallery/color/color_demo` example; * the `matplotlib.colors` API; * the :doc:`/gallery/color/named_colors` example. "CN" color selection -------------------- "CN" colors are converted to RGBA as soon as the artist is created. For example, """ import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl th = np.linspace(0, 2*np.pi, 128) def demo(sty): mpl.style.use(sty) fig, ax = plt.subplots(figsize=(3, 3)) ax.set_title('style: {!r}'.format(sty), color='C0') ax.plot(th, np.cos(th), 'C1', label='C1') ax.plot(th, np.sin(th), 'C2', label='C2') ax.legend() demo('default') demo('seaborn') ############################################################################### # will use the first color for the title and then plot using the second # and third colors of each style's ``mpl.rcParams['axes.prop_cycle']``. # # # .. _xkcd-colors: # # xkcd v X11/CSS4 # --------------- # # The xkcd colors are derived from a user survey conducted by the # webcomic xkcd. `Details of the survey are available on the xkcd blog # <https://blog.xkcd.com/2010/05/03/color-survey-results/>`__. # # Out of 148 colors in the CSS color list, there are 95 name collisions # between the X11/CSS4 names and the xkcd names, all but 3 of which have # different hex values. For example ``'blue'`` maps to ``'#0000FF'`` # where as ``'xkcd:blue'`` maps to ``'#0343DF'``. Due to these name # collisions all of the xkcd colors have ``'xkcd:'`` prefixed. As noted in # the blog post, while it might be interesting to re-define the X11/CSS4 names # based on such a survey, we do not do so unilaterally. # # The name collisions are shown in the table below; the color names # where the hex values agree are shown in bold. import matplotlib._color_data as mcd import matplotlib.patches as mpatch overlap = {name for name in mcd.CSS4_COLORS if "xkcd:" + name in mcd.XKCD_COLORS} fig = plt.figure(figsize=[4.8, 16]) ax = fig.add_axes([0, 0, 1, 1]) for j, n in enumerate(sorted(overlap, reverse=True)): weight = None cn = mcd.CSS4_COLORS[n] xkcd = mcd.XKCD_COLORS["xkcd:" + n].upper() if cn == xkcd: weight = 'bold' r1 = mpatch.Rectangle((0, j), 1, 1, color=cn) r2 = mpatch.Rectangle((1, j), 1, 1, color=xkcd) txt = ax.text(2, j+.5, ' ' + n, va='center', fontsize=10, weight=weight) ax.add_patch(r1) ax.add_patch(r2) ax.axhline(j, color='k') ax.text(.5, j + 1.5, 'X11', ha='center', va='center') ax.text(1.5, j + 1.5, 'xkcd', ha='center', va='center') ax.set_xlim(0, 3) ax.set_ylim(0, j + 2) ax.axis('off')
b457049c7ea3e5508babe12c3af1ba92318a81cb3c8b1dca1d809b65974ad140
""" ============================= Customized Colorbars Tutorial ============================= This tutorial shows how to build colorbars without an attached plot. Customized Colorbars ==================== `~matplotlib.colorbar.ColorbarBase` puts a colorbar in a specified axes, and can make a colorbar for a given colormap; it does not need a mappable object like an image. In this tutorial we will explore what can be done with standalone colorbar. Basic continuous colorbar ------------------------- Set the colormap and norm to correspond to the data for which the colorbar will be used. Then create the colorbar by calling :class:`~matplotlib.colorbar.ColorbarBase` and specify axis, colormap, norm and orientation as parameters. Here we create a basic continuous colorbar with ticks and labels. For more information see the :mod:`~matplotlib.colorbar` API. """ import matplotlib.pyplot as plt import matplotlib as mpl fig, ax = plt.subplots(figsize=(6, 1)) fig.subplots_adjust(bottom=0.5) cmap = mpl.cm.cool norm = mpl.colors.Normalize(vmin=5, vmax=10) cb1 = mpl.colorbar.ColorbarBase(ax, cmap=cmap, norm=norm, orientation='horizontal') cb1.set_label('Some Units') fig.show() ############################################################################### # Discrete intervals colorbar # --------------------------- # # The second example illustrates the use of a # :class:`~matplotlib.colors.ListedColormap` which generates a colormap from a # set of listed colors, :func:`colors.BoundaryNorm` which generates a colormap # index based on discrete intervals and extended ends to show the "over" and # "under" value colors. Over and under are used to display data outside of the # normalized [0,1] range. Here we pass colors as gray shades as a string # encoding a float in the 0-1 range. # # If a :class:`~matplotlib.colors.ListedColormap` is used, the length of the # bounds array must be one greater than the length of the color list. The # bounds must be monotonically increasing. # # This time we pass some more arguments in addition to previous arguments to # :class:`~matplotlib.colorbar.ColorbarBase`. For the out-of-range values to # display on the colorbar, we have to use the *extend* keyword argument. To use # *extend*, you must specify two extra boundaries. Finally spacing argument # ensures that intervals are shown on colorbar proportionally. fig, ax = plt.subplots(figsize=(6, 1)) fig.subplots_adjust(bottom=0.5) cmap = mpl.colors.ListedColormap(['red', 'green', 'blue', 'cyan']) cmap.set_over('0.25') cmap.set_under('0.75') bounds = [1, 2, 4, 7, 8] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) cb2 = mpl.colorbar.ColorbarBase(ax, cmap=cmap, norm=norm, boundaries=[0] + bounds + [13], extend='both', ticks=bounds, spacing='proportional', orientation='horizontal') cb2.set_label('Discrete intervals, some other units') fig.show() ############################################################################### # Colorbar with custom extension lengths # -------------------------------------- # # Here we illustrate the use of custom length colorbar extensions, used on a # colorbar with discrete intervals. To make the length of each extension the # same as the length of the interior colors, use ``extendfrac='auto'``. fig, ax = plt.subplots(figsize=(6, 1)) fig.subplots_adjust(bottom=0.5) cmap = mpl.colors.ListedColormap(['royalblue', 'cyan', 'yellow', 'orange']) cmap.set_over('red') cmap.set_under('blue') bounds = [-1.0, -0.5, 0.0, 0.5, 1.0] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) cb3 = mpl.colorbar.ColorbarBase(ax, cmap=cmap, norm=norm, boundaries=[-10] + bounds + [10], extend='both', extendfrac='auto', ticks=bounds, spacing='uniform', orientation='horizontal') cb3.set_label('Custom extension lengths, some other units') fig.show()
1025ac7130e1a7526f34dfdf4f26dd5d9af610f53069e0b86ff4af03e5f42540
""" Colormap Normalization ====================== Objects that use colormaps by default linearly map the colors in the colormap from data values *vmin* to *vmax*. For example:: pcm = ax.pcolormesh(x, y, Z, vmin=-1., vmax=1., cmap='RdBu_r') will map the data in *Z* linearly from -1 to +1, so *Z=0* will give a color at the center of the colormap *RdBu_r* (white in this case). Matplotlib does this mapping in two steps, with a normalization from [0,1] occurring first, and then mapping onto the indices in the colormap. Normalizations are classes defined in the :func:`matplotlib.colors` module. The default, linear normalization is :func:`matplotlib.colors.Normalize`. Artists that map data to color pass the arguments *vmin* and *vmax* to construct a :func:`matplotlib.colors.Normalize` instance, then call it: .. ipython:: In [1]: import matplotlib as mpl In [2]: norm = mpl.colors.Normalize(vmin=-1.,vmax=1.) In [3]: norm(0.) Out[3]: 0.5 However, there are sometimes cases where it is useful to map data to colormaps in a non-linear fashion. Logarithmic ----------- One of the most common transformations is to plot data by taking its logarithm (to the base-10). This transformation is useful to display changes across disparate scales. Using :func:`colors.LogNorm` normalizes the data via :math:`log_{10}`. In the example below, there are two bumps, one much smaller than the other. Using :func:`colors.LogNorm`, the shape and location of each bump can clearly be seen: """ import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.cbook as cbook N = 100 X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] # A low hump with a spike coming out of the top right. Needs to have # z/colour axis on a log scale so we see both hump and spike. linear # scale only shows the spike. Z1 = np.exp(-(X)**2 - (Y)**2) Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2) Z = Z1 + 50 * Z2 fig, ax = plt.subplots(2, 1) pcm = ax[0].pcolor(X, Y, Z, norm=colors.LogNorm(vmin=Z.min(), vmax=Z.max()), cmap='PuBu_r') fig.colorbar(pcm, ax=ax[0], extend='max') pcm = ax[1].pcolor(X, Y, Z, cmap='PuBu_r') fig.colorbar(pcm, ax=ax[1], extend='max') plt.show() ############################################################################### # Symmetric logarithmic # --------------------- # # Similarly, it sometimes happens that there is data that is positive # and negative, but we would still like a logarithmic scaling applied to # both. In this case, the negative numbers are also scaled # logarithmically, and mapped to smaller numbers; e.g., if `vmin=-vmax`, # then they the negative numbers are mapped from 0 to 0.5 and the # positive from 0.5 to 1. # # Since the logarithm of values close to zero tends toward infinity, a # small range around zero needs to be mapped linearly. The parameter # *linthresh* allows the user to specify the size of this range # (-*linthresh*, *linthresh*). The size of this range in the colormap is # set by *linscale*. When *linscale* == 1.0 (the default), the space used # for the positive and negative halves of the linear range will be equal # to one decade in the logarithmic range. N = 100 X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 fig, ax = plt.subplots(2, 1) pcm = ax[0].pcolormesh(X, Y, Z, norm=colors.SymLogNorm(linthresh=0.03, linscale=0.03, vmin=-1.0, vmax=1.0), cmap='RdBu_r') fig.colorbar(pcm, ax=ax[0], extend='both') pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z)) fig.colorbar(pcm, ax=ax[1], extend='both') plt.show() ############################################################################### # Power-law # --------- # # Sometimes it is useful to remap the colors onto a power-law # relationship (i.e. :math:`y=x^{\gamma}`, where :math:`\gamma` is the # power). For this we use the :func:`colors.PowerNorm`. It takes as an # argument *gamma* (*gamma* == 1.0 will just yield the default linear # normalization): # # .. note:: # # There should probably be a good reason for plotting the data using # this type of transformation. Technical viewers are used to linear # and logarithmic axes and data transformations. Power laws are less # common, and viewers should explicitly be made aware that they have # been used. N = 100 X, Y = np.mgrid[0:3:complex(0, N), 0:2:complex(0, N)] Z1 = (1 + np.sin(Y * 10.)) * X**(2.) fig, ax = plt.subplots(2, 1) pcm = ax[0].pcolormesh(X, Y, Z1, norm=colors.PowerNorm(gamma=0.5), cmap='PuBu_r') fig.colorbar(pcm, ax=ax[0], extend='max') pcm = ax[1].pcolormesh(X, Y, Z1, cmap='PuBu_r') fig.colorbar(pcm, ax=ax[1], extend='max') plt.show() ############################################################################### # Discrete bounds # --------------- # # Another normaization that comes with Matplotlib is # :func:`colors.BoundaryNorm`. In addition to *vmin* and *vmax*, this # takes as arguments boundaries between which data is to be mapped. The # colors are then linearly distributed between these "bounds". For # instance: # # .. ipython:: # # In [2]: import matplotlib.colors as colors # # In [3]: bounds = np.array([-0.25, -0.125, 0, 0.5, 1]) # # In [4]: norm = colors.BoundaryNorm(boundaries=bounds, ncolors=4) # # In [5]: print(norm([-0.2,-0.15,-0.02, 0.3, 0.8, 0.99])) # [0 0 1 2 3 3] # # Note unlike the other norms, this norm returns values from 0 to *ncolors*-1. N = 100 X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 fig, ax = plt.subplots(3, 1, figsize=(8, 8)) ax = ax.flatten() # even bounds gives a contour-like effect bounds = np.linspace(-1, 1, 10) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) pcm = ax[0].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r') fig.colorbar(pcm, ax=ax[0], extend='both', orientation='vertical') # uneven bounds changes the colormapping: bounds = np.array([-0.25, -0.125, 0, 0.5, 1]) norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256) pcm = ax[1].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r') fig.colorbar(pcm, ax=ax[1], extend='both', orientation='vertical') pcm = ax[2].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z)) fig.colorbar(pcm, ax=ax[2], extend='both', orientation='vertical') plt.show() ############################################################################### # DivergingNorm: Different mapping on either side of a center # ----------------------------------------------------------- # # Sometimes we want to have a different colormap on either side of a # conceptual center point, and we want those two colormaps to have # different linear scales. An example is a topographic map where the land # and ocean have a center at zero, but land typically has a greater # elevation range than the water has depth range, and they are often # represented by a different colormap. filename = cbook.get_sample_data('topobathy.npz', asfileobj=False) with np.load(filename) as dem: topo = dem['topo'] longitude = dem['longitude'] latitude = dem['latitude'] fig, ax = plt.subplots() # make a colormap that has land and ocean clearly delineated and of the # same length (256 + 256) colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 256)) colors_land = plt.cm.terrain(np.linspace(0.25, 1, 256)) all_colors = np.vstack((colors_undersea, colors_land)) terrain_map = colors.LinearSegmentedColormap.from_list('terrain_map', all_colors) # make the norm: Note the center is offset so that the land has more # dynamic range: divnorm = colors.DivergingNorm(vmin=-500., vcenter=0, vmax=4000) pcm = ax.pcolormesh(longitude, latitude, topo, rasterized=True, norm=divnorm, cmap=terrain_map,) # Simple geographic plot, set aspect ratio beecause distance between lines of # longitude depends on latitude. ax.set_aspect(1 / np.cos(np.deg2rad(49))) fig.colorbar(pcm, shrink=0.6) plt.show() ############################################################################### # Custom normalization: Manually implement two linear ranges # ---------------------------------------------------------- # # The `.DivergingNorm` described above makes a useful example for # defining your own norm. class MidpointNormalize(colors.Normalize): def __init__(self, vmin=None, vmax=None, vcenter=None, clip=False): self.vcenter = vcenter colors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): # I'm ignoring masked values and all kinds of edge cases to make a # simple example... x, y = [self.vmin, self.vcenter, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) fig, ax = plt.subplots() midnorm = MidpointNormalize(vmin=-500., vcenter=0, vmax=4000) pcm = ax.pcolormesh(longitude, latitude, topo, rasterized=True, norm=midnorm, cmap=terrain_map) ax.set_aspect(1 / np.cos(np.deg2rad(49))) fig.colorbar(pcm, shrink=0.6, extend='both') plt.show()
78557d034dfe53622129ed11c301cdab57ee55bc6d26519a8020ab7fb29bc091
""" ******************************** Choosing Colormaps in Matplotlib ******************************** Matplotlib has a number of built-in colormaps accessible via `.matplotlib.cm.get_cmap`. There are also external libraries like [palettable]_ that have many extra colormaps. Here we briefly discuss how to choose between the many options. For help on creating your own colormaps, see :doc:`/tutorials/colors/colormap-manipulation`. Overview ======== The idea behind choosing a good colormap is to find a good representation in 3D colorspace for your data set. The best colormap for any given data set depends on many things including: - Whether representing form or metric data ([Ware]_) - Your knowledge of the data set (*e.g.*, is there a critical value from which the other values deviate?) - If there is an intuitive color scheme for the parameter you are plotting - If there is a standard in the field the audience may be expecting For many applications, a perceptually uniform colormap is the best choice --- one in which equal steps in data are perceived as equal steps in the color space. Researchers have found that the human brain perceives changes in the lightness parameter as changes in the data much better than, for example, changes in hue. Therefore, colormaps which have monotonically increasing lightness through the colormap will be better interpreted by the viewer. A wonderful example of perceptually uniform colormaps is [colorcet]_. Color can be represented in 3D space in various ways. One way to represent color is using CIELAB. In CIELAB, color space is represented by lightness, :math:`L^*`; red-green, :math:`a^*`; and yellow-blue, :math:`b^*`. The lightness parameter :math:`L^*` can then be used to learn more about how the matplotlib colormaps will be perceived by viewers. An excellent starting resource for learning about human perception of colormaps is from [IBM]_. Classes of colormaps ==================== Colormaps are often split into several categories based on their function (see, *e.g.*, [Moreland]_): 1. Sequential: change in lightness and often saturation of color incrementally, often using a single hue; should be used for representing information that has ordering. 2. Diverging: change in lightness and possibly saturation of two different colors that meet in the middle at an unsaturated color; should be used when the information being plotted has a critical middle value, such as topography or when the data deviates around zero. 3. Cyclic: change in lightness of two different colors that meet in the middle and beginning/end at an unsaturated color; should be used for values that wrap around at the endpoints, such as phase angle, wind direction, or time of day. 4. Qualitative: often are miscellaneous colors; should be used to represent information which does not have ordering or relationships. """ # sphinx_gallery_thumbnail_number = 2 import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import cm from colorspacious import cspace_converter from collections import OrderedDict cmaps = OrderedDict() ############################################################################### # Sequential # ---------- # # For the Sequential plots, the lightness value increases monotonically through # the colormaps. This is good. Some of the :math:`L^*` values in the colormaps # span from 0 to 100 (binary and the other grayscale), and others start around # :math:`L^*=20`. Those that have a smaller range of :math:`L^*` will accordingly # have a smaller perceptual range. Note also that the :math:`L^*` function varies # amongst the colormaps: some are approximately linear in :math:`L^*` and others # are more curved. cmaps['Perceptually Uniform Sequential'] = [ 'viridis', 'plasma', 'inferno', 'magma', 'cividis'] cmaps['Sequential'] = [ 'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn'] ############################################################################### # Sequential2 # ----------- # # Many of the :math:`L^*` values from the Sequential2 plots are monotonically # increasing, but some (autumn, cool, spring, and winter) plateau or even go both # up and down in :math:`L^*` space. Others (afmhot, copper, gist_heat, and hot) # have kinks in the :math:`L^*` functions. Data that is being represented in a # region of the colormap that is at a plateau or kink will lead to a perception of # banding of the data in those values in the colormap (see [mycarta-banding]_ for # an excellent example of this). cmaps['Sequential (2)'] = [ 'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper'] ############################################################################### # Diverging # --------- # # For the Diverging maps, we want to have monotonically increasing :math:`L^*` # values up to a maximum, which should be close to :math:`L^*=100`, followed by # monotonically decreasing :math:`L^*` values. We are looking for approximately # equal minimum :math:`L^*` values at opposite ends of the colormap. By these # measures, BrBG and RdBu are good options. coolwarm is a good option, but it # doesn't span a wide range of :math:`L^*` values (see grayscale section below). cmaps['Diverging'] = [ 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic'] ############################################################################### # Cyclic # ------ # # For Cyclic maps, we want to start and end on the same color, and meet a # symmetric center point in the middle. :math:`L^*` should change monotonically # from start to middle, and inversely from middle to end. It should be symmetric # on the increasing and decreasing side, and only differ in hue. At the ends and # middle, :math:`L^*` will reverse direction, which should be smoothed in # :math:`L^*` space to reduce artifacts. See [kovesi-colormaps]_ for more # information on the design of cyclic maps. # # The often-used HSV colormap is included in this set of colormaps, although it # is not symmetric to a center point. Additionally, the :math:`L^*` values vary # widely throughout the colormap, making it a poor choice for representing data # for viewers to see perceptually. See an extension on this idea at # [mycarta-jet]_. cmaps['Cyclic'] = ['twilight', 'twilight_shifted', 'hsv'] ############################################################################### # Qualitative # ----------- # # Qualitative colormaps are not aimed at being perceptual maps, but looking at the # lightness parameter can verify that for us. The :math:`L^*` values move all over # the place throughout the colormap, and are clearly not monotonically increasing. # These would not be good options for use as perceptual colormaps. cmaps['Qualitative'] = ['Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b', 'tab20c'] ############################################################################### # Miscellaneous # ------------- # # Some of the miscellaneous colormaps have particular uses for which # they have been created. For example, gist_earth, ocean, and terrain # all seem to be created for plotting topography (green/brown) and water # depths (blue) together. We would expect to see a divergence in these # colormaps, then, but multiple kinks may not be ideal, such as in # gist_earth and terrain. CMRmap was created to convert well to # grayscale, though it does appear to have some small kinks in # :math:`L^*`. cubehelix was created to vary smoothly in both lightness # and hue, but appears to have a small hump in the green hue area. # # The often-used jet colormap is included in this set of colormaps. We can see # that the :math:`L^*` values vary widely throughout the colormap, making it a # poor choice for representing data for viewers to see perceptually. See an # extension on this idea at [mycarta-jet]_. cmaps['Miscellaneous'] = [ 'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'] ############################################################################### # .. _color-colormaps_reference: # # First, we'll show the range of each colormap. Note that some seem # to change more "quickly" than others. nrows = max(len(cmap_list) for cmap_category, cmap_list in cmaps.items()) gradient = np.linspace(0, 1, 256) gradient = np.vstack((gradient, gradient)) def plot_color_gradients(cmap_category, cmap_list, nrows): fig, axes = plt.subplots(nrows=nrows) fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99) axes[0].set_title(cmap_category + ' colormaps', fontsize=14) for ax, name in zip(axes, cmap_list): ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name)) pos = list(ax.get_position().bounds) x_text = pos[0] - 0.01 y_text = pos[1] + pos[3]/2. fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10) # Turn off *all* ticks & spines, not just the ones with colormaps. for ax in axes: ax.set_axis_off() for cmap_category, cmap_list in cmaps.items(): plot_color_gradients(cmap_category, cmap_list, nrows) plt.show() ############################################################################### # Lightness of matplotlib colormaps # ================================= # # Here we examine the lightness values of the matplotlib colormaps. # Note that some documentation on the colormaps is available # ([list-colormaps]_). mpl.rcParams.update({'font.size': 12}) # Number of colormap per subplot for particular cmap categories _DSUBS = {'Perceptually Uniform Sequential': 5, 'Sequential': 6, 'Sequential (2)': 6, 'Diverging': 6, 'Cyclic': 3, 'Qualitative': 4, 'Miscellaneous': 6} # Spacing between the colormaps of a subplot _DC = {'Perceptually Uniform Sequential': 1.4, 'Sequential': 0.7, 'Sequential (2)': 1.4, 'Diverging': 1.4, 'Cyclic': 1.4, 'Qualitative': 1.4, 'Miscellaneous': 1.4} # Indices to step through colormap x = np.linspace(0.0, 1.0, 100) # Do plot for cmap_category, cmap_list in cmaps.items(): # Do subplots so that colormaps have enough space. # Default is 6 colormaps per subplot. dsub = _DSUBS.get(cmap_category, 6) nsubplots = int(np.ceil(len(cmap_list) / dsub)) # squeeze=False to handle similarly the case of a single subplot fig, axes = plt.subplots(nrows=nsubplots, squeeze=False, figsize=(7, 2.6*nsubplots)) for i, ax in enumerate(axes.flat): locs = [] # locations for text labels for j, cmap in enumerate(cmap_list[i*dsub:(i+1)*dsub]): # Get RGB values for colormap and convert the colormap in # CAM02-UCS colorspace. lab[0, :, 0] is the lightness. rgb = cm.get_cmap(cmap)(x)[np.newaxis, :, :3] lab = cspace_converter("sRGB1", "CAM02-UCS")(rgb) # Plot colormap L values. Do separately for each category # so each plot can be pretty. To make scatter markers change # color along plot: # http://stackoverflow.com/questions/8202605/ if cmap_category == 'Sequential': # These colormaps all start at high lightness but we want them # reversed to look nice in the plot, so reverse the order. y_ = lab[0, ::-1, 0] c_ = x[::-1] else: y_ = lab[0, :, 0] c_ = x dc = _DC.get(cmap_category, 1.4) # cmaps horizontal spacing ax.scatter(x + j*dc, y_, c=c_, cmap=cmap, s=300, linewidths=0.0) # Store locations for colormap labels if cmap_category in ('Perceptually Uniform Sequential', 'Sequential'): locs.append(x[-1] + j*dc) elif cmap_category in ('Diverging', 'Qualitative', 'Cyclic', 'Miscellaneous', 'Sequential (2)'): locs.append(x[int(x.size/2.)] + j*dc) # Set up the axis limits: # * the 1st subplot is used as a reference for the x-axis limits # * lightness values goes from 0 to 100 (y-axis limits) ax.set_xlim(axes[0, 0].get_xlim()) ax.set_ylim(0.0, 100.0) # Set up labels for colormaps ax.xaxis.set_ticks_position('top') ticker = mpl.ticker.FixedLocator(locs) ax.xaxis.set_major_locator(ticker) formatter = mpl.ticker.FixedFormatter(cmap_list[i*dsub:(i+1)*dsub]) ax.xaxis.set_major_formatter(formatter) ax.xaxis.set_tick_params(rotation=50) ax.set_xlabel(cmap_category + ' colormaps', fontsize=14) fig.text(0.0, 0.55, 'Lightness $L^*$', fontsize=12, transform=fig.transFigure, rotation=90) fig.tight_layout(h_pad=0.0, pad=1.5) plt.show() ############################################################################### # Grayscale conversion # ==================== # # It is important to pay attention to conversion to grayscale for color # plots, since they may be printed on black and white printers. If not # carefully considered, your readers may end up with indecipherable # plots because the grayscale changes unpredictably through the # colormap. # # Conversion to grayscale is done in many different ways [bw]_. Some of the # better ones use a linear combination of the rgb values of a pixel, but # weighted according to how we perceive color intensity. A nonlinear method of # conversion to grayscale is to use the :math:`L^*` values of the pixels. In # general, similar principles apply for this question as they do for presenting # one's information perceptually; that is, if a colormap is chosen that is # monotonically increasing in :math:`L^*` values, it will print in a reasonable # manner to grayscale. # # With this in mind, we see that the Sequential colormaps have reasonable # representations in grayscale. Some of the Sequential2 colormaps have decent # enough grayscale representations, though some (autumn, spring, summer, # winter) have very little grayscale change. If a colormap like this was used # in a plot and then the plot was printed to grayscale, a lot of the # information may map to the same gray values. The Diverging colormaps mostly # vary from darker gray on the outer edges to white in the middle. Some # (PuOr and seismic) have noticeably darker gray on one side than the other # and therefore are not very symmetric. coolwarm has little range of gray scale # and would print to a more uniform plot, losing a lot of detail. Note that # overlaid, labeled contours could help differentiate between one side of the # colormap vs. the other since color cannot be used once a plot is printed to # grayscale. Many of the Qualitative and Miscellaneous colormaps, such as # Accent, hsv, and jet, change from darker to lighter and back to darker gray # throughout the colormap. This would make it impossible for a viewer to # interpret the information in a plot once it is printed in grayscale. mpl.rcParams.update({'font.size': 14}) # Indices to step through colormap. x = np.linspace(0.0, 1.0, 100) gradient = np.linspace(0, 1, 256) gradient = np.vstack((gradient, gradient)) def plot_color_gradients(cmap_category, cmap_list): fig, axes = plt.subplots(nrows=len(cmap_list), ncols=2) fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99, wspace=0.05) fig.suptitle(cmap_category + ' colormaps', fontsize=14, y=1.0, x=0.6) for ax, name in zip(axes, cmap_list): # Get RGB values for colormap. rgb = cm.get_cmap(plt.get_cmap(name))(x)[np.newaxis, :, :3] # Get colormap in CAM02-UCS colorspace. We want the lightness. lab = cspace_converter("sRGB1", "CAM02-UCS")(rgb) L = lab[0, :, 0] L = np.float32(np.vstack((L, L, L))) ax[0].imshow(gradient, aspect='auto', cmap=plt.get_cmap(name)) ax[1].imshow(L, aspect='auto', cmap='binary_r', vmin=0., vmax=100.) pos = list(ax[0].get_position().bounds) x_text = pos[0] - 0.01 y_text = pos[1] + pos[3]/2. fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10) # Turn off *all* ticks & spines, not just the ones with colormaps. for ax in axes.flat: ax.set_axis_off() plt.show() for cmap_category, cmap_list in cmaps.items(): plot_color_gradients(cmap_category, cmap_list) ############################################################################### # Color vision deficiencies # ========================= # # There is a lot of information available about color blindness (*e.g.*, # [colorblindness]_). Additionally, there are tools available to convert images # to how they look for different types of color vision deficiencies (*e.g.*, # [vischeck]_). # # The most common form of color vision deficiency involves differentiating # between red and green. Thus, avoiding colormaps with both red and green will # avoid many problems in general. # # # References # ========== # # .. [colorcet] https://github.com/bokeh/colorcet # .. [Ware] http://ccom.unh.edu/sites/default/files/publications/Ware_1988_CGA_Color_sequences_univariate_maps.pdf # .. [Moreland] http://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf # .. [list-colormaps] https://gist.github.com/endolith/2719900#id7 # .. [mycarta-banding] https://mycarta.wordpress.com/2012/10/14/the-rainbow-is-deadlong-live-the-rainbow-part-4-cie-lab-heated-body/ # .. [mycarta-jet] https://mycarta.wordpress.com/2012/10/06/the-rainbow-is-deadlong-live-the-rainbow-part-3/ # .. [kovesi-colormaps] https://arxiv.org/abs/1509.03700 # .. [bw] http://www.tannerhelland.com/3643/grayscale-image-algorithm-vb6/ # .. [colorblindness] http://www.color-blindness.com/ # .. [vischeck] http://www.vischeck.com/vischeck/ # .. [IBM] https://doi.org/10.1109/VISUAL.1995.480803 # .. [palettable] https://jiffyclub.github.io/palettable/
0fe7837a262b1917cd7ada50129aae288b17277676b1e3748cbb2f4291a97422
""" ******************************** Creating Colormaps in Matplotlib ******************************** Matplotlib has a number of built-in colormaps accessible via `.matplotlib.cm.get_cmap`. There are also external libraries like palettable_ that have many extra colormaps. .. _palettable: https://jiffyclub.github.io/palettable/ However, we often want to create or manipulate colormaps in Matplotlib. This can be done using the class `.ListedColormap` and a Nx4 numpy array of values between 0 and 1 to represent the RGBA values of the colormap. There is also a `.LinearSegmentedColormap` class that allows colormaps to be specified with a few anchor points defining segments, and linearly interpolating between the anchor points. Getting colormaps and accessing their values ============================================ First, getting a named colormap, most of which are listed in :doc:`/tutorials/colors/colormaps` requires the use of `.matplotlib.cm.get_cmap`, which returns a :class:`.matplotlib.colors.ListedColormap` object. The second argument gives the size of the list of colors used to define the colormap, and below we use a modest value of 12 so there are not a lot of values to look at. """ import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap viridis = cm.get_cmap('viridis', 12) print(viridis) ############################################################################## # The object ``viridis`` is a callable, that when passed a float between # 0 and 1 returns an RGBA value from the colormap: print(viridis(0.56)) ############################################################################## # The list of colors that comprise the colormap can be directly accessed using # the ``colors`` property, # or it can be accessed indirectly by calling ``viridis`` with an array # of values matching the length of the colormap. Note that the returned list # is in the form of an RGBA Nx4 array, where N is the length of the colormap. print('viridis.colors', viridis.colors) print('viridis(range(12))', viridis(range(12))) print('viridis(np.linspace(0, 1, 12))', viridis(np.linspace(0, 1, 12))) ############################################################################## # The colormap is a lookup table, so "oversampling" the colormap returns # nearest-neighbor interpolation (note the repeated colors in the list below) print('viridis(np.linspace(0, 1, 15))', viridis(np.linspace(0, 1, 15))) ############################################################################## # Creating listed colormaps # ========================= # # This is essential the inverse operation of the above where we supply a # Nx4 numpy array with all values between 0 and 1, # to `.ListedColormap` to make a new colormap. This means that # any numpy operations that we can do on a Nx4 array make carpentry of # new colormaps from existing colormaps quite straight forward. # # Suppose we want to make the first 25 entries of a 256-length "viridis" # colormap pink for some reason: viridis = cm.get_cmap('viridis', 256) newcolors = viridis(np.linspace(0, 1, 256)) pink = np.array([248/256, 24/256, 148/256, 1]) newcolors[:25, :] = pink newcmp = ListedColormap(newcolors) def plot_examples(cms): """ helper function to plot two colormaps """ np.random.seed(19680801) data = np.random.randn(30, 30) fig, axs = plt.subplots(1, 2, figsize=(6, 3), constrained_layout=True) for [ax, cmap] in zip(axs, cms): psm = ax.pcolormesh(data, cmap=cmap, rasterized=True, vmin=-4, vmax=4) fig.colorbar(psm, ax=ax) plt.show() plot_examples([viridis, newcmp]) ############################################################################## # We can easily reduce the dynamic range of a colormap; here we choose the # middle 0.5 of the colormap. However, we need to interpolate from a larger # colormap, otherwise the new colormap will have repeated values. viridisBig = cm.get_cmap('viridis', 512) newcmp = ListedColormap(viridisBig(np.linspace(0.25, 0.75, 256))) plot_examples([viridis, newcmp]) ############################################################################## # and we can easily concatenate two colormaps: top = cm.get_cmap('Oranges_r', 128) bottom = cm.get_cmap('Blues', 128) newcolors = np.vstack((top(np.linspace(0, 1, 128)), bottom(np.linspace(0, 1, 128)))) newcmp = ListedColormap(newcolors, name='OrangeBlue') plot_examples([viridis, newcmp]) ############################################################################## # Of course we need not start from a named colormap, we just need to create # the Nx4 array to pass to `.ListedColormap`. Here we create a # brown colormap that goes to white.... N = 256 vals = np.ones((N, 4)) vals[:, 0] = np.linspace(90/256, 1, N) vals[:, 1] = np.linspace(39/256, 1, N) vals[:, 2] = np.linspace(41/256, 1, N) newcmp = ListedColormap(vals) plot_examples([viridis, newcmp]) ############################################################################## # Creating linear segmented colormaps # =================================== # # `.LinearSegmentedColormap` class specifies colormaps using anchor points # between which RGB(A) values are interpolated. # # The format to specify these colormaps allows discontinuities at the anchor # points. Each anchor point is specified as a row in a matrix of the # form ``[x[i] yleft[i] yright[i]]``, where ``x[i]`` is the anchor, and # ``yleft[i]`` and ``yright[i]`` are the values of the color on either # side of the anchor point. # # If there are no discontinuities, then ``yleft[i]=yright[i]``: cdict = {'red': [[0.0, 0.0, 0.0], [0.5, 1.0, 1.0], [1.0, 1.0, 1.0]], 'green': [[0.0, 0.0, 0.0], [0.25, 0.0, 0.0], [0.75, 1.0, 1.0], [1.0, 1.0, 1.0]], 'blue': [[0.0, 0.0, 0.0], [0.5, 0.0, 0.0], [1.0, 1.0, 1.0]]} def plot_linearmap(cdict): newcmp = LinearSegmentedColormap('testCmap', segmentdata=cdict, N=256) rgba = newcmp(np.linspace(0, 1, 256)) fig, ax = plt.subplots(figsize=(4, 3), constrained_layout=True) col = ['r', 'g', 'b'] for xx in [0.25, 0.5, 0.75]: ax.axvline(xx, color='0.7', linestyle='--') for i in range(3): ax.plot(np.arange(256)/256, rgba[:, i], color=col[i]) ax.set_xlabel('index') ax.set_ylabel('RGB') plt.show() plot_linearmap(cdict) ############################################################################# # In order to make a discontinuity at an anchor point, the third column is # different than the second. The matrix for each of "red", "green", "blue", # and optionally "alpha" is set up as:: # # cdict['red'] = [... # [x[i] yleft[i] yright[i]], # [x[i+1] yleft[i+1] yright[i+1]], # ...] # # and for values passed to the colormap between ``x[i]`` and ``x[i+1]``, # the interpolation is between ``yright[i]`` and ``yleft[i+1]``. # # In the example below there is a discontinuity in red at 0.5. The # interpolation between 0 and 0.5 goes from 0.3 to 1, and between 0.5 and 1 # it goes from 0.9 to 1. Note that red[0, 1], and red[2, 2] are both # superfluous to the interpolation because red[0, 1] is the value to the # left of 0, and red[2, 2] is the value to the right of 1.0. cdict['red'] = [[0.0, 0.0, 0.3], [0.5, 1.0, 0.9], [1.0, 1.0, 1.0]] plot_linearmap(cdict) ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions, methods, classes and modules is shown # in this example: import matplotlib matplotlib.axes.Axes.pcolormesh matplotlib.figure.Figure.colorbar matplotlib.colors matplotlib.colors.LinearSegmentedColormap matplotlib.colors.ListedColormap matplotlib.cm matplotlib.cm.get_cmap
df8218c43606b77b985d4c738ddeea534e656a45c0ad7645dd22f9ed0ebf2203
""" *********** Usage Guide *********** This tutorial covers some basic usage patterns and best-practices to help you get started with Matplotlib. .. _general_concepts: General Concepts ================ :mod:`matplotlib` has an extensive codebase that can be daunting to many new users. However, most of matplotlib can be understood with a fairly simple conceptual framework and knowledge of a few important points. Plotting requires action on a range of levels, from the most general (e.g., 'contour this 2-D array') to the most specific (e.g., 'color this screen pixel red'). The purpose of a plotting package is to assist you in visualizing your data as easily as possible, with all the necessary control -- that is, by using relatively high-level commands most of the time, and still have the ability to use the low-level commands when needed. Therefore, everything in matplotlib is organized in a hierarchy. At the top of the hierarchy is the matplotlib "state-machine environment" which is provided by the :mod:`matplotlib.pyplot` module. At this level, simple functions are used to add plot elements (lines, images, text, etc.) to the current axes in the current figure. .. note:: Pyplot's state-machine environment behaves similarly to MATLAB and should be most familiar to users with MATLAB experience. The next level down in the hierarchy is the first level of the object-oriented interface, in which pyplot is used only for a few functions such as figure creation, and the user explicitly creates and keeps track of the figure and axes objects. At this level, the user uses pyplot to create figures, and through those figures, one or more axes objects can be created. These axes objects are then used for most plotting actions. For even more control -- which is essential for things like embedding matplotlib plots in GUI applications -- the pyplot level may be dropped completely, leaving a purely object-oriented approach. """ # sphinx_gallery_thumbnail_number = 3 import matplotlib.pyplot as plt import numpy as np ############################################################################### # .. _figure_parts: # # Parts of a Figure # ================= # # .. image:: ../../_static/anatomy.png # # # :class:`~matplotlib.figure.Figure` # ---------------------------------- # # The **whole** figure. The figure keeps # track of all the child :class:`~matplotlib.axes.Axes`, a smattering of # 'special' artists (titles, figure legends, etc), and the **canvas**. # (Don't worry too much about the canvas, it is crucial as it is the # object that actually does the drawing to get you your plot, but as the # user it is more-or-less invisible to you). A figure can have any # number of :class:`~matplotlib.axes.Axes`, but to be useful should have # at least one. # # The easiest way to create a new figure is with pyplot: fig = plt.figure() # an empty figure with no axes fig.suptitle('No axes on this figure') # Add a title so we know which it is fig, ax_lst = plt.subplots(2, 2) # a figure with a 2x2 grid of Axes ############################################################################### # :class:`~matplotlib.axes.Axes` # ------------------------------ # # This is what you think of as 'a plot', it is the region of the image # with the data space. A given figure # can contain many Axes, but a given :class:`~matplotlib.axes.Axes` # object can only be in one :class:`~matplotlib.figure.Figure`. The # Axes contains two (or three in the case of 3D) # :class:`~matplotlib.axis.Axis` objects (be aware of the difference # between **Axes** and **Axis**) which take care of the data limits (the # data limits can also be controlled via set via the # :meth:`~matplotlib.axes.Axes.set_xlim` and # :meth:`~matplotlib.axes.Axes.set_ylim` :class:`Axes` methods). Each # :class:`Axes` has a title (set via # :meth:`~matplotlib.axes.Axes.set_title`), an x-label (set via # :meth:`~matplotlib.axes.Axes.set_xlabel`), and a y-label set via # :meth:`~matplotlib.axes.Axes.set_ylabel`). # # The :class:`Axes` class and it's member functions are the primary entry # point to working with the OO interface. # # :class:`~matplotlib.axis.Axis` # ------------------------------ # # These are the number-line-like objects. They take # care of setting the graph limits and generating the ticks (the marks # on the axis) and ticklabels (strings labeling the ticks). The # location of the ticks is determined by a # :class:`~matplotlib.ticker.Locator` object and the ticklabel strings # are formatted by a :class:`~matplotlib.ticker.Formatter`. The # combination of the correct :class:`Locator` and :class:`Formatter` gives # very fine control over the tick locations and labels. # # :class:`~matplotlib.artist.Artist` # ---------------------------------- # # Basically everything you can see on the figure is an artist (even the # :class:`Figure`, :class:`Axes`, and :class:`Axis` objects). This # includes :class:`Text` objects, :class:`Line2D` objects, # :class:`collection` objects, :class:`Patch` objects ... (you get the # idea). When the figure is rendered, all of the artists are drawn to # the **canvas**. Most Artists are tied to an Axes; such an Artist # cannot be shared by multiple Axes, or moved from one to another. # # .. _input_types: # # Types of inputs to plotting functions # ===================================== # # All of plotting functions expect `np.array` or `np.ma.masked_array` as # input. Classes that are 'array-like' such as `pandas` data objects # and `np.matrix` may or may not work as intended. It is best to # convert these to `np.array` objects prior to plotting. # # For example, to convert a `pandas.DataFrame` :: # # a = pandas.DataFrame(np.random.rand(4,5), columns = list('abcde')) # a_asarray = a.values # # and to convert a `np.matrix` :: # # b = np.matrix([[1,2],[3,4]]) # b_asarray = np.asarray(b) # # .. _pylab: # # Matplotlib, pyplot and pylab: how are they related? # ==================================================== # # Matplotlib is the whole package; :mod:`matplotlib.pyplot` # is a module in matplotlib; and :mod:`pylab` is a module # that gets installed alongside :mod:`matplotlib`. # # Pyplot provides the state-machine interface to the underlying # object-oriented plotting library. The state-machine implicitly and # automatically creates figures and axes to achieve the desired # plot. For example: x = np.linspace(0, 2, 100) plt.plot(x, x, label='linear') plt.plot(x, x**2, label='quadratic') plt.plot(x, x**3, label='cubic') plt.xlabel('x label') plt.ylabel('y label') plt.title("Simple Plot") plt.legend() plt.show() ############################################################################### # The first call to ``plt.plot`` will automatically create the necessary # figure and axes to achieve the desired plot. Subsequent calls to # ``plt.plot`` re-use the current axes and each add another line. # Setting the title, legend, and axis labels also automatically use the # current axes and set the title, create the legend, and label the axis # respectively. # # :mod:`pylab` is a convenience module that bulk imports # :mod:`matplotlib.pyplot` (for plotting) and :mod:`numpy` # (for mathematics and working with arrays) in a single name space. # pylab is deprecated and its use is strongly discouraged because # of namespace pollution. Use pyplot instead. # # For non-interactive plotting it is suggested # to use pyplot to create the figures and then the OO interface for # plotting. # # .. _coding_styles: # # Coding Styles # ================== # # When viewing this documentation and examples, you will find different # coding styles and usage patterns. These styles are perfectly valid # and have their pros and cons. Just about all of the examples can be # converted into another style and achieve the same results. # The only caveat is to avoid mixing the coding styles for your own code. # # .. note:: # Developers for matplotlib have to follow a specific style and guidelines. # See :ref:`developers-guide-index`. # # Of the different styles, there are two that are officially supported. # Therefore, these are the preferred ways to use matplotlib. # # For the pyplot style, the imports at the top of your # scripts will typically be:: # # import matplotlib.pyplot as plt # import numpy as np # # Then one calls, for example, np.arange, np.zeros, np.pi, plt.figure, # plt.plot, plt.show, etc. Use the pyplot interface # for creating figures, and then use the object methods for the rest: x = np.arange(0, 10, 0.2) y = np.sin(x) fig, ax = plt.subplots() ax.plot(x, y) plt.show() ############################################################################### # So, why all the extra typing instead of the MATLAB-style (which relies # on global state and a flat namespace)? For very simple things like # this example, the only advantage is academic: the wordier styles are # more explicit, more clear as to where things come from and what is # going on. For more complicated applications, this explicitness and # clarity becomes increasingly valuable, and the richer and more # complete object-oriented interface will likely make the program easier # to write and maintain. # # # Typically one finds oneself making the same plots over and over # again, but with different data sets, which leads to needing to write # specialized functions to do the plotting. The recommended function # signature is something like: def my_plotter(ax, data1, data2, param_dict): """ A helper function to make a graph Parameters ---------- ax : Axes The axes to draw to data1 : array The x data data2 : array The y data param_dict : dict Dictionary of kwargs to pass to ax.plot Returns ------- out : list list of artists added """ out = ax.plot(data1, data2, **param_dict) return out # which you would then use as: data1, data2, data3, data4 = np.random.randn(4, 100) fig, ax = plt.subplots(1, 1) my_plotter(ax, data1, data2, {'marker': 'x'}) ############################################################################### # or if you wanted to have 2 sub-plots: fig, (ax1, ax2) = plt.subplots(1, 2) my_plotter(ax1, data1, data2, {'marker': 'x'}) my_plotter(ax2, data3, data4, {'marker': 'o'}) ############################################################################### # Again, for these simple examples this style seems like overkill, however # once the graphs get slightly more complex it pays off. # # # .. _backends: # # Backends # ======== # # .. _what-is-a-backend: # # What is a backend? # ------------------ # # A lot of documentation on the website and in the mailing lists refers # to the "backend" and many new users are confused by this term. # matplotlib targets many different use cases and output formats. Some # people use matplotlib interactively from the python shell and have # plotting windows pop up when they type commands. Some people run # `Jupyter <https://jupyter.org>`_ notebooks and draw inline plots for # quick data analysis. Others embed matplotlib into graphical user # interfaces like wxpython or pygtk to build rich applications. Some # people use matplotlib in batch scripts to generate postscript images # from numerical simulations, and still others run web application # servers to dynamically serve up graphs. # # To support all of these use cases, matplotlib can target different # outputs, and each of these capabilities is called a backend; the # "frontend" is the user facing code, i.e., the plotting code, whereas the # "backend" does all the hard work behind-the-scenes to make the figure. # There are two types of backends: user interface backends (for use in # pygtk, wxpython, tkinter, qt4, or macosx; also referred to as # "interactive backends") and hardcopy backends to make image files # (PNG, SVG, PDF, PS; also referred to as "non-interactive backends"). # # There are four ways to configure your backend. If they conflict each other, # the method mentioned last in the following list will be used, e.g. calling # :func:`~matplotlib.use()` will override the setting in your ``matplotlibrc``. # # # #. The ``backend`` parameter in your ``matplotlibrc`` file (see # :doc:`/tutorials/introductory/customizing`):: # # backend : WXAgg # use wxpython with antigrain (agg) rendering # # #. Setting the :envvar:`MPLBACKEND` environment variable, either for your # current shell or for a single script. On Unix:: # # > export MPLBACKEND=module://my_backend # > python simple_plot.py # # > MPLBACKEND="module://my_backend" python simple_plot.py # # On Windows, only the former is possible:: # # > set MPLBACKEND=module://my_backend # > python simple_plot.py # # Setting this environment variable will override the ``backend`` parameter # in *any* ``matplotlibrc``, even if there is a ``matplotlibrc`` in your # current working directory. Therefore setting :envvar:`MPLBACKEND` # globally, e.g. in your ``.bashrc`` or ``.profile``, is discouraged as it # might lead to counter-intuitive behavior. # # #. If your script depends on a specific backend you can use the # :func:`~matplotlib.use` function:: # # import matplotlib # matplotlib.use('PS') # generate postscript output by default # # If you use the :func:`~matplotlib.use` function, this must be done before # importing :mod:`matplotlib.pyplot`. Calling :func:`~matplotlib.use` after # pyplot has been imported will have no effect. Using # :func:`~matplotlib.use` will require changes in your code if users want to # use a different backend. Therefore, you should avoid explicitly calling # :func:`~matplotlib.use` unless absolutely necessary. # # .. note:: # Backend name specifications are not case-sensitive; e.g., 'GTK3Agg' # and 'gtk3agg' are equivalent. # # With a typical installation of matplotlib, such as from a # binary installer or a linux distribution package, a good default # backend will already be set, allowing both interactive work and # plotting from scripts, with output to the screen and/or to # a file, so at least initially you will not need to use any of the # methods given above. # # If, however, you want to write graphical user interfaces, or a web # application server (:ref:`howto-webapp`), or need a better # understanding of what is going on, read on. To make things a little # more customizable for graphical user interfaces, matplotlib separates # the concept of the renderer (the thing that actually does the drawing) # from the canvas (the place where the drawing goes). The canonical # renderer for user interfaces is ``Agg`` which uses the `Anti-Grain # Geometry`_ C++ library to make a raster (pixel) image of the figure. # All of the user interfaces except ``macosx`` can be used with # agg rendering, e.g., ``WXAgg``, ``GTK3Agg``, ``QT4Agg``, ``QT5Agg``, # ``TkAgg``. In addition, some of the user interfaces support other rendering # engines. For example, with GTK+ 3, you can also select Cairo rendering # (backend ``GTK3Cairo``). # # For the rendering engines, one can also distinguish between `vector # <https://en.wikipedia.org/wiki/Vector_graphics>`_ or `raster # <https://en.wikipedia.org/wiki/Raster_graphics>`_ renderers. Vector # graphics languages issue drawing commands like "draw a line from this # point to this point" and hence are scale free, and raster backends # generate a pixel representation of the line whose accuracy depends on a # DPI setting. # # Here is a summary of the matplotlib renderers (there is an eponymous # backend for each; these are *non-interactive backends*, capable of # writing to a file): # # ============= ============ ================================================ # Renderer Filetypes Description # ============= ============ ================================================ # :term:`AGG` :term:`png` :term:`raster graphics` -- high quality images # using the `Anti-Grain Geometry`_ engine # PS :term:`ps` :term:`vector graphics` -- Postscript_ output # :term:`eps` # PDF :term:`pdf` :term:`vector graphics` -- # `Portable Document Format`_ # SVG :term:`svg` :term:`vector graphics` -- # `Scalable Vector Graphics`_ # :term:`Cairo` :term:`png` :term:`raster graphics` and # :term:`ps` :term:`vector graphics` -- using the # :term:`pdf` `Cairo graphics`_ library # :term:`svg` # ============= ============ ================================================ # # And here are the user interfaces and renderer combinations supported; # these are *interactive backends*, capable of displaying to the screen # and of using appropriate renderers from the table above to write to # a file: # # ========= ================================================================ # Backend Description # ========= ================================================================ # Qt5Agg Agg rendering in a :term:`Qt5` canvas (requires PyQt5_). This # backend can be activated in IPython with ``%matplotlib qt5``. # ipympl Agg rendering embedded in a Jupyter widget. (requires ipympl). # This backend can be enabled in a Jupyter notebook with # ``%matplotlib ipympl``. # GTK3Agg Agg rendering to a :term:`GTK` 3.x canvas (requires PyGObject_, # and pycairo_ or cairocffi_). This backend can be activated in # IPython with ``%matplotlib gtk3``. # macosx Agg rendering into a Cocoa canvas in OSX. This backend can be # activated in IPython with ``%matplotlib osx``. # TkAgg Agg rendering to a :term:`Tk` canvas (requires TkInter_). This # backend can be activated in IPython with ``%matplotlib tk``. # nbAgg Embed an interactive figure in a Jupyter classic notebook. This # backend can be enabled in Jupyter notebooks via # ``%matplotlib notebook``. # WebAgg On ``show()`` will start a tornado server with an interactive # figure. # GTK3Cairo Cairo rendering to a :term:`GTK` 3.x canvas (requires PyGObject_, # and pycairo_ or cairocffi_). # Qt4Agg Agg rendering to a :term:`Qt4` canvas (requires PyQt4_ or # ``pyside``). This backend can be activated in IPython with # ``%matplotlib qt4``. # WXAgg Agg rendering to a :term:`wxWidgets` canvas (requires wxPython_ 4). # This backend can be activated in IPython with ``%matplotlib wx``. # ========= ================================================================ # # .. _`Anti-Grain Geometry`: http://antigrain.com/ # .. _Postscript: https://en.wikipedia.org/wiki/PostScript # .. _`Portable Document Format`: https://en.wikipedia.org/wiki/Portable_Document_Format # .. _`Scalable Vector Graphics`: https://en.wikipedia.org/wiki/Scalable_Vector_Graphics # .. _`Cairo graphics`: https://wwW.cairographics.org # .. _PyGObject: https://wiki.gnome.org/action/show/Projects/PyGObject # .. _pycairo: https://www.cairographics.org/pycairo/ # .. _cairocffi: https://pythonhosted.org/cairocffi/ # .. _wxPython: https://www.wxpython.org/ # .. _TkInter: https://wiki.python.org/moin/TkInter # .. _PyQt4: https://riverbankcomputing.com/software/pyqt/intro # .. _PyQt5: https://riverbankcomputing.com/software/pyqt/intro # # ipympl # ------ # # The Jupyter widget ecosystem is moving too fast to support directly in # Matplotlib. To install ipympl # # .. code-block:: bash # # pip install ipympl # jupyter nbextension enable --py --sys-prefix ipympl # # or # # .. code-block:: bash # # conda install ipympl -c conda-forge # # See `jupyter-matplotlib <https://github.com/matplotlib/jupyter-matplotlib>`__ # for more details. # # GTK and Cairo # ------------- # # `GTK3` backends (*both* `GTK3Agg` and `GTK3Cairo`) depend on Cairo # (pycairo>=1.11.0 or cairocffi). # # How do I select PyQt4 or PySide? # -------------------------------- # # The `QT_API` environment variable can be set to either `pyqt` or `pyside` # to use `PyQt4` or `PySide`, respectively. # # Since the default value for the bindings to be used is `PyQt4`, # :mod:`matplotlib` first tries to import it, if the import fails, it tries to # import `PySide`. # # .. _interactive-mode: # # What is interactive mode? # =================================== # # Use of an interactive backend (see :ref:`what-is-a-backend`) # permits--but does not by itself require or ensure--plotting # to the screen. Whether and when plotting to the screen occurs, # and whether a script or shell session continues after a plot # is drawn on the screen, depends on the functions and methods # that are called, and on a state variable that determines whether # matplotlib is in "interactive mode". The default Boolean value is set # by the :file:`matplotlibrc` file, and may be customized like any other # configuration parameter (see :doc:`/tutorials/introductory/customizing`). It # may also be set via :func:`matplotlib.interactive`, and its # value may be queried via :func:`matplotlib.is_interactive`. Turning # interactive mode on and off in the middle of a stream of plotting # commands, whether in a script or in a shell, is rarely needed # and potentially confusing, so in the following we will assume all # plotting is done with interactive mode either on or off. # # .. note:: # Major changes related to interactivity, and in particular the # role and behavior of :func:`~matplotlib.pyplot.show`, were made in the # transition to matplotlib version 1.0, and bugs were fixed in # 1.0.1. Here we describe the version 1.0.1 behavior for the # primary interactive backends, with the partial exception of # *macosx*. # # Interactive mode may also be turned on via :func:`matplotlib.pyplot.ion`, # and turned off via :func:`matplotlib.pyplot.ioff`. # # .. note:: # Interactive mode works with suitable backends in ipython and in # the ordinary python shell, but it does *not* work in the IDLE IDE. # If the default backend does not support interactivity, an interactive # backend can be explicitly activated using any of the methods discussed in `What is a backend?`_. # # # Interactive example # -------------------- # # From an ordinary python prompt, or after invoking ipython with no options, # try this:: # # import matplotlib.pyplot as plt # plt.ion() # plt.plot([1.6, 2.7]) # # Assuming you are running version 1.0.1 or higher, and you have # an interactive backend installed and selected by default, you should # see a plot, and your terminal prompt should also be active; you # can type additional commands such as:: # # plt.title("interactive test") # plt.xlabel("index") # # and you will see the plot being updated after each line. Since version 1.5, # modifying the plot by other means *should* also automatically # update the display on most backends. Get a reference to the :class:`~matplotlib.axes.Axes` instance, # and call a method of that instance:: # # ax = plt.gca() # ax.plot([3.1, 2.2]) # # If you are using certain backends (like `macosx`), or an older version # of matplotlib, you may not see the new line added to the plot immediately. # In this case, you need to explicitly call :func:`~matplotlib.pyplot.draw` # in order to update the plot:: # # plt.draw() # # # Non-interactive example # ----------------------- # # Start a fresh session as in the previous example, but now # turn interactive mode off:: # # import matplotlib.pyplot as plt # plt.ioff() # plt.plot([1.6, 2.7]) # # Nothing happened--or at least nothing has shown up on the # screen (unless you are using *macosx* backend, which is # anomalous). To make the plot appear, you need to do this:: # # plt.show() # # Now you see the plot, but your terminal command line is # unresponsive; the :func:`show()` command *blocks* the input # of additional commands until you manually kill the plot # window. # # What good is this--being forced to use a blocking function? # Suppose you need a script that plots the contents of a file # to the screen. You want to look at that plot, and then end # the script. Without some blocking command such as show(), the # script would flash up the plot and then end immediately, # leaving nothing on the screen. # # In addition, non-interactive mode delays all drawing until # show() is called; this is more efficient than redrawing # the plot each time a line in the script adds a new feature. # # Prior to version 1.0, show() generally could not be called # more than once in a single script (although sometimes one # could get away with it); for version 1.0.1 and above, this # restriction is lifted, so one can write a script like this:: # # import numpy as np # import matplotlib.pyplot as plt # # plt.ioff() # for i in range(3): # plt.plot(np.random.rand(10)) # plt.show() # # which makes three plots, one at a time. I.e. the second plot will show up, # once the first plot is closed. # # Summary # ------- # # In interactive mode, pyplot functions automatically draw # to the screen. # # When plotting interactively, if using # object method calls in addition to pyplot functions, then # call :func:`~matplotlib.pyplot.draw` whenever you want to # refresh the plot. # # Use non-interactive mode in scripts in which you want to # generate one or more figures and display them before ending # or generating a new set of figures. In that case, use # :func:`~matplotlib.pyplot.show` to display the figure(s) and # to block execution until you have manually destroyed them. # # .. _performance: # # Performance # =========== # # Whether exploring data in interactive mode or programmatically # saving lots of plots, rendering performance can be a painful # bottleneck in your pipeline. Matplotlib provides a couple # ways to greatly reduce rendering time at the cost of a slight # change (to a settable tolerance) in your plot's appearance. # The methods available to reduce rendering time depend on the # type of plot that is being created. # # Line segment simplification # --------------------------- # # For plots that have line segments (e.g. typical line plots, # outlines of polygons, etc.), rendering performance can be # controlled by the ``path.simplify`` and # ``path.simplify_threshold`` parameters in your # ``matplotlibrc`` file (see # :doc:`/tutorials/introductory/customizing` for # more information about the ``matplotlibrc`` file). # The ``path.simplify`` parameter is a boolean indicating whether # or not line segments are simplified at all. The # ``path.simplify_threshold`` parameter controls how much line # segments are simplified; higher thresholds result in quicker # rendering. # # The following script will first display the data without any # simplification, and then display the same data with simplification. # Try interacting with both of them:: # # import numpy as np # import matplotlib.pyplot as plt # import matplotlib as mpl # # # Setup, and create the data to plot # y = np.random.rand(100000) # y[50000:] *= 2 # y[np.logspace(1, np.log10(50000), 400).astype(int)] = -1 # mpl.rcParams['path.simplify'] = True # # mpl.rcParams['path.simplify_threshold'] = 0.0 # plt.plot(y) # plt.show() # # mpl.rcParams['path.simplify_threshold'] = 1.0 # plt.plot(y) # plt.show() # # Matplotlib currently defaults to a conservative simplification # threshold of ``1/9``. If you want to change your default settings # to use a different value, you can change your ``matplotlibrc`` # file. Alternatively, you could create a new style for # interactive plotting (with maximal simplification) and another # style for publication quality plotting (with minimal # simplification) and activate them as necessary. See # :doc:`/tutorials/introductory/customizing` for # instructions on how to perform these actions. # # The simplification works by iteratively merging line segments # into a single vector until the next line segment's perpendicular # distance to the vector (measured in display-coordinate space) # is greater than the ``path.simplify_threshold`` parameter. # # .. note:: # Changes related to how line segments are simplified were made # in version 2.1. Rendering time will still be improved by these # parameters prior to 2.1, but rendering time for some kinds of # data will be vastly improved in versions 2.1 and greater. # # Marker simplification # --------------------- # # Markers can also be simplified, albeit less robustly than # line segments. Marker simplification is only available # to :class:`~matplotlib.lines.Line2D` objects (through the # ``markevery`` property). Wherever # :class:`~matplotlib.lines.Line2D` construction parameter # are passed through, such as # :func:`matplotlib.pyplot.plot` and # :meth:`matplotlib.axes.Axes.plot`, the ``markevery`` # parameter can be used:: # # plt.plot(x, y, markevery=10) # # The markevery argument allows for naive subsampling, or an # attempt at evenly spaced (along the *x* axis) sampling. See the # :doc:`/gallery/lines_bars_and_markers/markevery_demo` # for more information. # # Splitting lines into smaller chunks # ----------------------------------- # # If you are using the Agg backend (see :ref:`what-is-a-backend`), # then you can make use of the ``agg.path.chunksize`` rc parameter. # This allows you to specify a chunk size, and any lines with # greater than that many vertices will be split into multiple # lines, each of which have no more than ``agg.path.chunksize`` # many vertices. (Unless ``agg.path.chunksize`` is zero, in # which case there is no chunking.) For some kind of data, # chunking the line up into reasonable sizes can greatly # decrease rendering time. # # The following script will first display the data without any # chunk size restriction, and then display the same data with # a chunk size of 10,000. The difference can best be seen when # the figures are large, try maximizing the GUI and then # interacting with them:: # # import numpy as np # import matplotlib.pyplot as plt # import matplotlib as mpl # mpl.rcParams['path.simplify_threshold'] = 1.0 # # # Setup, and create the data to plot # y = np.random.rand(100000) # y[50000:] *= 2 # y[np.logspace(1,np.log10(50000), 400).astype(int)] = -1 # mpl.rcParams['path.simplify'] = True # # mpl.rcParams['agg.path.chunksize'] = 0 # plt.plot(y) # plt.show() # # mpl.rcParams['agg.path.chunksize'] = 10000 # plt.plot(y) # plt.show() # # Legends # ------- # # The default legend behavior for axes attempts to find the location # that covers the fewest data points (`loc='best'`). This can be a # very expensive computation if there are lots of data points. In # this case, you may want to provide a specific location. # # Using the *fast* style # ---------------------- # # The *fast* style can be used to automatically set # simplification and chunking parameters to reasonable # settings to speed up plotting large amounts of data. # It can be used simply by running:: # # import matplotlib.style as mplstyle # mplstyle.use('fast') # # It is very light weight, so it plays nicely with other # styles, just make sure the fast style is applied last # so that other styles do not overwrite the settings:: # # mplstyle.use(['dark_background', 'ggplot', 'fast'])
ae7cb0ca0bb477ebbd3a7f0516a5cfdf4414de26be2b9795cf05794b0314e85d
""" ============== Image tutorial ============== A short tutorial on plotting images with Matplotlib. .. _imaging_startup: Startup commands =================== First, let's start IPython. It is a most excellent enhancement to the standard Python prompt, and it ties in especially well with Matplotlib. Start IPython either at a shell, or the IPython Notebook now. With IPython started, we now need to connect to a GUI event loop. This tells IPython where (and how) to display plots. To connect to a GUI loop, execute the **%matplotlib** magic at your IPython prompt. There's more detail on exactly what this does at `IPython's documentation on GUI event loops <http://ipython.org/ipython-doc/2/interactive/reference.html#gui-event-loop-support>`_. If you're using IPython Notebook, the same commands are available, but people commonly use a specific argument to the %matplotlib magic: .. sourcecode:: ipython In [1]: %matplotlib inline This turns on inline plotting, where plot graphics will appear in your notebook. This has important implications for interactivity. For inline plotting, commands in cells below the cell that outputs a plot will not affect the plot. For example, changing the color map is not possible from cells below the cell that creates a plot. However, for other backends, such as Qt5, that open a separate window, cells below those that create the plot will change the plot - it is a live object in memory. This tutorial will use matplotlib's imperative-style plotting interface, pyplot. This interface maintains global state, and is very useful for quickly and easily experimenting with various plot settings. The alternative is the object-oriented interface, which is also very powerful, and generally more suitable for large application development. If you'd like to learn about the object-oriented interface, a great place to start is our :doc:`Usage guide </tutorials/introductory/usage>`. For now, let's get on with the imperative-style approach: """ import matplotlib.pyplot as plt import matplotlib.image as mpimg ############################################################################### # .. _importing_data: # # Importing image data into Numpy arrays # =============================================== # # Loading image data is supported by the `Pillow # <https://pillow.readthedocs.io/en/latest/>`_ library. Natively, Matplotlib # only supports PNG images. The commands shown below fall back on Pillow if # the native read fails. # # The image used in this example is a PNG file, but keep that Pillow # requirement in mind for your own data. # # Here's the image we're going to play with: # # .. image:: ../../_static/stinkbug.png # # It's a 24-bit RGB PNG image (8 bits for each of R, G, B). Depending # on where you get your data, the other kinds of image that you'll most # likely encounter are RGBA images, which allow for transparency, or # single-channel grayscale (luminosity) images. You can right click on # it and choose "Save image as" to download it to your computer for the # rest of this tutorial. # # And here we go... img = mpimg.imread('../../doc/_static/stinkbug.png') print(img) ############################################################################### # Note the dtype there - float32. Matplotlib has rescaled the 8 bit # data from each channel to floating point data between 0.0 and 1.0. As # a side note, the only datatype that Pillow can work with is uint8. # Matplotlib plotting can handle float32 and uint8, but image # reading/writing for any format other than PNG is limited to uint8 # data. Why 8 bits? Most displays can only render 8 bits per channel # worth of color gradation. Why can they only render 8 bits/channel? # Because that's about all the human eye can see. More here (from a # photography standpoint): `Luminous Landscape bit depth tutorial # <https://luminous-landscape.com/bit-depth/>`_. # # Each inner list represents a pixel. Here, with an RGB image, there # are 3 values. Since it's a black and white image, R, G, and B are all # similar. An RGBA (where A is alpha, or transparency), has 4 values # per inner list, and a simple luminance image just has one value (and # is thus only a 2-D array, not a 3-D array). For RGB and RGBA images, # matplotlib supports float32 and uint8 data types. For grayscale, # matplotlib supports only float32. If your array data does not meet # one of these descriptions, you need to rescale it. # # .. _plotting_data: # # Plotting numpy arrays as images # =================================== # # So, you have your data in a numpy array (either by importing it, or by # generating it). Let's render it. In Matplotlib, this is performed # using the :func:`~matplotlib.pyplot.imshow` function. Here we'll grab # the plot object. This object gives you an easy way to manipulate the # plot from the prompt. imgplot = plt.imshow(img) ############################################################################### # You can also plot any numpy array. # # .. _Pseudocolor: # # Applying pseudocolor schemes to image plots # ------------------------------------------------- # # Pseudocolor can be a useful tool for enhancing contrast and # visualizing your data more easily. This is especially useful when # making presentations of your data using projectors - their contrast is # typically quite poor. # # Pseudocolor is only relevant to single-channel, grayscale, luminosity # images. We currently have an RGB image. Since R, G, and B are all # similar (see for yourself above or in your data), we can just pick one # channel of our data: lum_img = img[:, :, 0] # This is array slicing. You can read more in the `Numpy tutorial # <https://docs.scipy.org/doc/numpy/user/quickstart.html>`_. plt.imshow(lum_img) ############################################################################### # Now, with a luminosity (2D, no color) image, the default colormap (aka lookup table, # LUT), is applied. The default is called viridis. There are plenty of # others to choose from. plt.imshow(lum_img, cmap="hot") ############################################################################### # Note that you can also change colormaps on existing plot objects using the # :meth:`~matplotlib.image.Image.set_cmap` method: imgplot = plt.imshow(lum_img) imgplot.set_cmap('nipy_spectral') ############################################################################### # # .. note:: # # However, remember that in the IPython notebook with the inline backend, # you can't make changes to plots that have already been rendered. If you # create imgplot here in one cell, you cannot call set_cmap() on it in a later # cell and expect the earlier plot to change. Make sure that you enter these # commands together in one cell. plt commands will not change plots from earlier # cells. # # There are many other colormap schemes available. See the `list and # images of the colormaps # <../colors/colormaps.html>`_. # # .. _`Color Bars`: # # Color scale reference # ------------------------ # # It's helpful to have an idea of what value a color represents. We can # do that by adding color bars. imgplot = plt.imshow(lum_img) plt.colorbar() ############################################################################### # This adds a colorbar to your existing figure. This won't # automatically change if you change you switch to a different # colormap - you have to re-create your plot, and add in the colorbar # again. # # .. _`Data ranges`: # # Examining a specific data range # --------------------------------- # # Sometimes you want to enhance the contrast in your image, or expand # the contrast in a particular region while sacrificing the detail in # colors that don't vary much, or don't matter. A good tool to find # interesting regions is the histogram. To create a histogram of our # image data, we use the :func:`~matplotlib.pyplot.hist` function. plt.hist(lum_img.ravel(), bins=256, range=(0.0, 1.0), fc='k', ec='k') ############################################################################### # Most often, the "interesting" part of the image is around the peak, # and you can get extra contrast by clipping the regions above and/or # below the peak. In our histogram, it looks like there's not much # useful information in the high end (not many white things in the # image). Let's adjust the upper limit, so that we effectively "zoom in # on" part of the histogram. We do this by passing the clim argument to # imshow. You could also do this by calling the # :meth:`~matplotlib.image.Image.set_clim` method of the image plot # object, but make sure that you do so in the same cell as your plot # command when working with the IPython Notebook - it will not change # plots from earlier cells. # # You can specify the clim in the call to ``plot``. imgplot = plt.imshow(lum_img, clim=(0.0, 0.7)) ############################################################################### # You can also specify the clim using the returned object fig = plt.figure() a = fig.add_subplot(1, 2, 1) imgplot = plt.imshow(lum_img) a.set_title('Before') plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal') a = fig.add_subplot(1, 2, 2) imgplot = plt.imshow(lum_img) imgplot.set_clim(0.0, 0.7) a.set_title('After') plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal') ############################################################################### # .. _Interpolation: # # Array Interpolation schemes # --------------------------- # # Interpolation calculates what the color or value of a pixel "should" # be, according to different mathematical schemes. One common place # that this happens is when you resize an image. The number of pixels # change, but you want the same information. Since pixels are discrete, # there's missing space. Interpolation is how you fill that space. # This is why your images sometimes come out looking pixelated when you # blow them up. The effect is more pronounced when the difference # between the original image and the expanded image is greater. Let's # take our image and shrink it. We're effectively discarding pixels, # only keeping a select few. Now when we plot it, that data gets blown # up to the size on your screen. The old pixels aren't there anymore, # and the computer has to draw in pixels to fill that space. # # We'll use the Pillow library that we used to load the image also to resize # the image. from PIL import Image img = Image.open('../../doc/_static/stinkbug.png') img.thumbnail((64, 64), Image.ANTIALIAS) # resizes image in-place imgplot = plt.imshow(img) ############################################################################### # Here we have the default interpolation, bilinear, since we did not # give :func:`~matplotlib.pyplot.imshow` any interpolation argument. # # Let's try some others. Here's "nearest", which does no interpolation. imgplot = plt.imshow(img, interpolation="nearest") ############################################################################### # and bicubic: imgplot = plt.imshow(img, interpolation="bicubic") ############################################################################### # Bicubic interpolation is often used when blowing up photos - people # tend to prefer blurry over pixelated.
5b870c2748613e67321d086ce525677cdcd5ea82210d18b7ccb8cbd4e4634204
""" ========================== Sample plots in Matplotlib ========================== Here you'll find a host of example plots with the code that generated them. .. _matplotlibscreenshots: Line Plot ========= Here's how to create a line plot with text labels using :func:`~matplotlib.pyplot.plot`. .. figure:: ../../gallery/lines_bars_and_markers/images/sphx_glr_simple_plot_001.png :target: ../../gallery/lines_bars_and_markers/simple_plot.html :align: center :scale: 50 Simple Plot .. _screenshots_subplot_demo: Multiple subplots in one figure =============================== Multiple axes (i.e. subplots) are created with the :func:`~matplotlib.pyplot.subplot` function: .. figure:: ../../gallery/subplots_axes_and_figures/images/sphx_glr_subplot_001.png :target: ../../gallery/subplots_axes_and_figures/subplot.html :align: center :scale: 50 Subplot .. _screenshots_images_demo: Images ====== Matplotlib can display images (assuming equally spaced horizontal dimensions) using the :func:`~matplotlib.pyplot.imshow` function. .. figure:: ../../gallery/images_contours_and_fields/images/sphx_glr_image_demo_003.png :target: ../../gallery/images_contours_and_fields/image_demo.html :align: center :scale: 50 Example of using :func:`~matplotlib.pyplot.imshow` to display a CT scan .. _screenshots_pcolormesh_demo: Contouring and pseudocolor ========================== The :func:`~matplotlib.pyplot.pcolormesh` function can make a colored representation of a two-dimensional array, even if the horizontal dimensions are unevenly spaced. The :func:`~matplotlib.pyplot.contour` function is another way to represent the same data: .. figure:: ../../gallery/images_contours_and_fields/images/sphx_glr_pcolormesh_levels_001.png :target: ../../gallery/images_contours_and_fields/pcolormesh_levels.html :align: center :scale: 50 Example comparing :func:`~matplotlib.pyplot.pcolormesh` and :func:`~matplotlib.pyplot.contour` for plotting two-dimensional data .. _screenshots_histogram_demo: Histograms ========== The :func:`~matplotlib.pyplot.hist` function automatically generates histograms and returns the bin counts or probabilities: .. figure:: ../../gallery/statistics/images/sphx_glr_histogram_features_001.png :target: ../../gallery/statistics/histogram_features.html :align: center :scale: 50 Histogram Features .. _screenshots_path_demo: Paths ===== You can add arbitrary paths in Matplotlib using the :mod:`matplotlib.path` module: .. figure:: ../../gallery/shapes_and_collections/images/sphx_glr_path_patch_001.png :target: ../../gallery/shapes_and_collections/path_patch.html :align: center :scale: 50 Path Patch .. _screenshots_mplot3d_surface: Three-dimensional plotting ========================== The mplot3d toolkit (see :ref:`toolkit_mplot3d-tutorial` and :ref:`mplot3d-examples-index`) has support for simple 3d graphs including surface, wireframe, scatter, and bar charts. .. figure:: ../../gallery/mplot3d/images/sphx_glr_surface3d_001.png :target: ../../gallery/mplot3d/surface3d.html :align: center :scale: 50 Surface3d Thanks to John Porter, Jonathon Taylor, Reinier Heeres, and Ben Root for the `mplot3d` toolkit. This toolkit is included with all standard Matplotlib installs. .. _screenshots_ellipse_demo: Streamplot ========== The :meth:`~matplotlib.pyplot.streamplot` function plots the streamlines of a vector field. In addition to simply plotting the streamlines, it allows you to map the colors and/or line widths of streamlines to a separate parameter, such as the speed or local intensity of the vector field. .. figure:: ../../gallery/images_contours_and_fields/images/sphx_glr_plot_streamplot_001.png :target: ../../gallery/images_contours_and_fields/plot_streamplot.html :align: center :scale: 50 Streamplot with various plotting options. This feature complements the :meth:`~matplotlib.pyplot.quiver` function for plotting vector fields. Thanks to Tom Flannaghan and Tony Yu for adding the streamplot function. Ellipses ======== In support of the `Phoenix <http://www.jpl.nasa.gov/news/phoenix/main.php>`_ mission to Mars (which used Matplotlib to display ground tracking of spacecraft), Michael Droettboom built on work by Charlie Moad to provide an extremely accurate 8-spline approximation to elliptical arcs (see :class:`~matplotlib.patches.Arc`), which are insensitive to zoom level. .. figure:: ../../gallery/shapes_and_collections/images/sphx_glr_ellipse_demo_001.png :target: ../../gallery/shapes_and_collections/ellipse_demo.html :align: center :scale: 50 Ellipse Demo .. _screenshots_barchart_demo: Bar charts ========== Use the :func:`~matplotlib.pyplot.bar` function to make bar charts, which includes customizations such as error bars: .. figure:: ../../gallery/statistics/images/sphx_glr_barchart_demo_001.png :target: ../../gallery/statistics/barchart_demo.html :align: center :scale: 50 Barchart Demo You can also create stacked bars (`bar_stacked.py <../../gallery/lines_bars_and_markers/bar_stacked.html>`_), or horizontal bar charts (`barh.py <../../gallery/lines_bars_and_markers/barh.html>`_). .. _screenshots_pie_demo: Pie charts ========== The :func:`~matplotlib.pyplot.pie` function allows you to create pie charts. Optional features include auto-labeling the percentage of area, exploding one or more wedges from the center of the pie, and a shadow effect. Take a close look at the attached code, which generates this figure in just a few lines of code. .. figure:: ../../gallery/pie_and_polar_charts/images/sphx_glr_pie_features_001.png :target: ../../gallery/pie_and_polar_charts/pie_features.html :align: center :scale: 50 Pie Features .. _screenshots_table_demo: Tables ====== The :func:`~matplotlib.pyplot.table` function adds a text table to an axes. .. figure:: ../../gallery/misc/images/sphx_glr_table_demo_001.png :target: ../../gallery/misc/table_demo.html :align: center :scale: 50 Table Demo .. _screenshots_scatter_demo: Scatter plots ============= The :func:`~matplotlib.pyplot.scatter` function makes a scatter plot with (optional) size and color arguments. This example plots changes in Google's stock price, with marker sizes reflecting the trading volume and colors varying with time. Here, the alpha attribute is used to make semitransparent circle markers. .. figure:: ../../gallery/lines_bars_and_markers/images/sphx_glr_scatter_demo2_001.png :target: ../../gallery/lines_bars_and_markers/scatter_demo2.html :align: center :scale: 50 Scatter Demo2 .. _screenshots_slider_demo: GUI widgets =========== Matplotlib has basic GUI widgets that are independent of the graphical user interface you are using, allowing you to write cross GUI figures and widgets. See :mod:`matplotlib.widgets` and the `widget examples <../../gallery/index.html>`_. .. figure:: ../../gallery/widgets/images/sphx_glr_slider_demo_001.png :target: ../../gallery/widgets/slider_demo.html :align: center :scale: 50 Slider and radio-button GUI. .. _screenshots_fill_demo: Filled curves ============= The :func:`~matplotlib.pyplot.fill` function lets you plot filled curves and polygons: .. figure:: ../../gallery/lines_bars_and_markers/images/sphx_glr_fill_001.png :target: ../../gallery/lines_bars_and_markers/fill.html :align: center :scale: 50 Fill Thanks to Andrew Straw for adding this function. .. _screenshots_date_demo: Date handling ============= You can plot timeseries data with major and minor ticks and custom tick formatters for both. .. figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_date_001.png :target: ../../gallery/text_labels_and_annotations/date.html :align: center :scale: 50 Date See :mod:`matplotlib.ticker` and :mod:`matplotlib.dates` for details and usage. .. _screenshots_log_demo: Log plots ========= The :func:`~matplotlib.pyplot.semilogx`, :func:`~matplotlib.pyplot.semilogy` and :func:`~matplotlib.pyplot.loglog` functions simplify the creation of logarithmic plots. .. figure:: ../../gallery/scales/images/sphx_glr_log_demo_001.png :target: ../../gallery/scales/log_demo.html :align: center :scale: 50 Log Demo Thanks to Andrew Straw, Darren Dale and Gregory Lielens for contributions log-scaling infrastructure. .. _screenshots_polar_demo: Polar plots =========== The :func:`~matplotlib.pyplot.polar` function generates polar plots. .. figure:: ../../gallery/pie_and_polar_charts/images/sphx_glr_polar_demo_001.png :target: ../../gallery/pie_and_polar_charts/polar_demo.html :align: center :scale: 50 Polar Demo .. _screenshots_legend_demo: Legends ======= The :func:`~matplotlib.pyplot.legend` function automatically generates figure legends, with MATLAB-compatible legend-placement functions. .. figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_legend_001.png :target: ../../gallery/text_labels_and_annotations/legend.html :align: center :scale: 50 Legend Thanks to Charles Twardy for input on the legend function. .. _screenshots_mathtext_examples_demo: TeX-notation for text objects ============================= Below is a sampling of the many TeX expressions now supported by Matplotlib's internal mathtext engine. The mathtext module provides TeX style mathematical expressions using `FreeType <https://www.freetype.org/>`_ and the DejaVu, BaKoMa computer modern, or `STIX <http://www.stixfonts.org>`_ fonts. See the :mod:`matplotlib.mathtext` module for additional details. .. figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_mathtext_examples_001.png :target: ../../gallery/text_labels_and_annotations/mathtext_examples.html :align: center :scale: 50 Mathtext Examples Matplotlib's mathtext infrastructure is an independent implementation and does not require TeX or any external packages installed on your computer. See the tutorial at :doc:`/tutorials/text/mathtext`. .. _screenshots_tex_demo: Native TeX rendering ==================== Although Matplotlib's internal math rendering engine is quite powerful, sometimes you need TeX. Matplotlib supports external TeX rendering of strings with the *usetex* option. .. figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_tex_demo_001.png :target: ../../gallery/text_labels_and_annotations/tex_demo.html :align: center :scale: 50 Tex Demo .. _screenshots_eeg_demo: EEG GUI ======= You can embed Matplotlib into pygtk, wx, Tk, or Qt applications. Here is a screenshot of an EEG viewer called `pbrain <https://github.com/nipy/pbrain>`__. .. image:: ../../_static/eeg_small.png The lower axes uses :func:`~matplotlib.pyplot.specgram` to plot the spectrogram of one of the EEG channels. For examples of how to embed Matplotlib in different toolkits, see: * :doc:`/gallery/user_interfaces/embedding_in_gtk3_sgskip` * :doc:`/gallery/user_interfaces/embedding_in_wx2_sgskip` * :doc:`/gallery/user_interfaces/mpl_with_glade3_sgskip` * :doc:`/gallery/user_interfaces/embedding_in_qt_sgskip` * :doc:`/gallery/user_interfaces/embedding_in_tk_sgskip` XKCD-style sketch plots ======================= Just for fun, Matplotlib supports plotting in the style of `xkcd <http://www.xkcd.com/>`. .. figure:: ../../gallery/showcase/images/sphx_glr_xkcd_001.png :target: ../../gallery/showcase/xkcd.html :align: center :scale: 50 xkcd Subplot example =============== Many plot types can be combined in one figure to create powerful and flexible representations of data. """ import matplotlib.pyplot as plt import numpy as np np.random.seed(19680801) data = np.random.randn(2, 100) fig, axs = plt.subplots(2, 2, figsize=(5, 5)) axs[0, 0].hist(data[0]) axs[1, 0].scatter(data[0], data[1]) axs[0, 1].plot(data[0], data[1]) axs[1, 1].hist2d(data[0], data[1]) plt.show()
838e6043323bbf17215f2a82cbbb5a8cdd7a5950b38e48fc834114b691ae54ef
""" ======================= The Lifecycle of a Plot ======================= This tutorial aims to show the beginning, middle, and end of a single visualization using Matplotlib. We'll begin with some raw data and end by saving a figure of a customized visualization. Along the way we'll try to highlight some neat features and best-practices using Matplotlib. .. currentmodule:: matplotlib .. note:: This tutorial is based off of `this excellent blog post <http://pbpython.com/effective-matplotlib.html>`_ by Chris Moffitt. It was transformed into this tutorial by Chris Holdgraf. A note on the Object-Oriented API vs Pyplot =========================================== Matplotlib has two interfaces. The first is an object-oriented (OO) interface. In this case, we utilize an instance of :class:`axes.Axes` in order to render visualizations on an instance of :class:`figure.Figure`. The second is based on MATLAB and uses a state-based interface. This is encapsulated in the :mod:`pyplot` module. See the :doc:`pyplot tutorials </tutorials/introductory/pyplot>` for a more in-depth look at the pyplot interface. Most of the terms are straightforward but the main thing to remember is that: * The Figure is the final image that may contain 1 or more Axes. * The Axes represent an individual plot (don't confuse this with the word "axis", which refers to the x/y axis of a plot). We call methods that do the plotting directly from the Axes, which gives us much more flexibility and power in customizing our plot. .. note:: In general, try to use the object-oriented interface over the pyplot interface. Our data ======== We'll use the data from the post from which this tutorial was derived. It contains sales information for a number of companies. """ # sphinx_gallery_thumbnail_number = 10 import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter data = {'Barton LLC': 109438.50, 'Frami, Hills and Schmidt': 103569.59, 'Fritsch, Russel and Anderson': 112214.71, 'Jerde-Hilpert': 112591.43, 'Keeling LLC': 100934.30, 'Koepp Ltd': 103660.54, 'Kulas Inc': 137351.96, 'Trantow-Barrows': 123381.38, 'White-Trantow': 135841.99, 'Will LLC': 104437.60} group_data = list(data.values()) group_names = list(data.keys()) group_mean = np.mean(group_data) ############################################################################### # Getting started # =============== # # This data is naturally visualized as a barplot, with one bar per # group. To do this with the object-oriented approach, we'll first generate # an instance of :class:`figure.Figure` and # :class:`axes.Axes`. The Figure is like a canvas, and the Axes # is a part of that canvas on which we will make a particular visualization. # # .. note:: # # Figures can have multiple axes on them. For information on how to do this, # see the :doc:`Tight Layout tutorial # </tutorials/intermediate/tight_layout_guide>`. fig, ax = plt.subplots() ############################################################################### # Now that we have an Axes instance, we can plot on top of it. fig, ax = plt.subplots() ax.barh(group_names, group_data) ############################################################################### # Controlling the style # ===================== # # There are many styles available in Matplotlib in order to let you tailor # your visualization to your needs. To see a list of styles, we can use # :mod:`pyplot.style`. print(plt.style.available) ############################################################################### # You can activate a style with the following: plt.style.use('fivethirtyeight') ############################################################################### # Now let's remake the above plot to see how it looks: fig, ax = plt.subplots() ax.barh(group_names, group_data) ############################################################################### # The style controls many things, such as color, linewidths, backgrounds, # etc. # # Customizing the plot # ==================== # # Now we've got a plot with the general look that we want, so let's fine-tune # it so that it's ready for print. First let's rotate the labels on the x-axis # so that they show up more clearly. We can gain access to these labels # with the :meth:`axes.Axes.get_xticklabels` method: fig, ax = plt.subplots() ax.barh(group_names, group_data) labels = ax.get_xticklabels() ############################################################################### # If we'd like to set the property of many items at once, it's useful to use # the :func:`pyplot.setp` function. This will take a list (or many lists) of # Matplotlib objects, and attempt to set some style element of each one. fig, ax = plt.subplots() ax.barh(group_names, group_data) labels = ax.get_xticklabels() plt.setp(labels, rotation=45, horizontalalignment='right') ############################################################################### # It looks like this cut off some of the labels on the bottom. We can # tell Matplotlib to automatically make room for elements in the figures # that we create. To do this we'll set the ``autolayout`` value of our # rcParams. For more information on controlling the style, layout, and # other features of plots with rcParams, see # :doc:`/tutorials/introductory/customizing`. plt.rcParams.update({'figure.autolayout': True}) fig, ax = plt.subplots() ax.barh(group_names, group_data) labels = ax.get_xticklabels() plt.setp(labels, rotation=45, horizontalalignment='right') ############################################################################### # Next, we'll add labels to the plot. To do this with the OO interface, # we can use the :meth:`axes.Axes.set` method to set properties of this # Axes object. fig, ax = plt.subplots() ax.barh(group_names, group_data) labels = ax.get_xticklabels() plt.setp(labels, rotation=45, horizontalalignment='right') ax.set(xlim=[-10000, 140000], xlabel='Total Revenue', ylabel='Company', title='Company Revenue') ############################################################################### # We can also adjust the size of this plot using the :func:`pyplot.subplots` # function. We can do this with the ``figsize`` kwarg. # # .. note:: # # While indexing in NumPy follows the form (row, column), the figsize # kwarg follows the form (width, height). This follows conventions in # visualization, which unfortunately are different from those of linear # algebra. fig, ax = plt.subplots(figsize=(8, 4)) ax.barh(group_names, group_data) labels = ax.get_xticklabels() plt.setp(labels, rotation=45, horizontalalignment='right') ax.set(xlim=[-10000, 140000], xlabel='Total Revenue', ylabel='Company', title='Company Revenue') ############################################################################### # For labels, we can specify custom formatting guidelines in the form of # functions by using the :class:`ticker.FuncFormatter` class. Below we'll # define a function that takes an integer as input, and returns a string # as an output. def currency(x, pos): """The two args are the value and tick position""" if x >= 1e6: s = '${:1.1f}M'.format(x*1e-6) else: s = '${:1.0f}K'.format(x*1e-3) return s formatter = FuncFormatter(currency) ############################################################################### # We can then apply this formatter to the labels on our plot. To do this, # we'll use the ``xaxis`` attribute of our axis. This lets you perform # actions on a specific axis on our plot. fig, ax = plt.subplots(figsize=(6, 8)) ax.barh(group_names, group_data) labels = ax.get_xticklabels() plt.setp(labels, rotation=45, horizontalalignment='right') ax.set(xlim=[-10000, 140000], xlabel='Total Revenue', ylabel='Company', title='Company Revenue') ax.xaxis.set_major_formatter(formatter) ############################################################################### # Combining multiple visualizations # ================================= # # It is possible to draw multiple plot elements on the same instance of # :class:`axes.Axes`. To do this we simply need to call another one of # the plot methods on that axes object. fig, ax = plt.subplots(figsize=(8, 8)) ax.barh(group_names, group_data) labels = ax.get_xticklabels() plt.setp(labels, rotation=45, horizontalalignment='right') # Add a vertical line, here we set the style in the function call ax.axvline(group_mean, ls='--', color='r') # Annotate new companies for group in [3, 5, 8]: ax.text(145000, group, "New Company", fontsize=10, verticalalignment="center") # Now we'll move our title up since it's getting a little cramped ax.title.set(y=1.05) ax.set(xlim=[-10000, 140000], xlabel='Total Revenue', ylabel='Company', title='Company Revenue') ax.xaxis.set_major_formatter(formatter) ax.set_xticks([0, 25e3, 50e3, 75e3, 100e3, 125e3]) fig.subplots_adjust(right=.1) plt.show() ############################################################################### # Saving our plot # =============== # # Now that we're happy with the outcome of our plot, we want to save it to # disk. There are many file formats we can save to in Matplotlib. To see # a list of available options, use: print(fig.canvas.get_supported_filetypes()) ############################################################################### # We can then use the :meth:`figure.Figure.savefig` in order to save the figure # to disk. Note that there are several useful flags we'll show below: # # * ``transparent=True`` makes the background of the saved figure transparent # if the format supports it. # * ``dpi=80`` controls the resolution (dots per square inch) of the output. # * ``bbox_inches="tight"`` fits the bounds of the figure to our plot. # Uncomment this line to save the figure. # fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")
bc64ab6e945b3eed0293bb1cef525fe3f44c857203cef0d21e60f61bdfeebcf2
""" =============== Pyplot tutorial =============== An introduction to the pyplot interface. """ ############################################################################### # Intro to pyplot # =============== # # :mod:`matplotlib.pyplot` is a collection of command style functions # that make matplotlib work like MATLAB. # Each ``pyplot`` function makes # some change to a figure: e.g., creates a figure, creates a plotting area # in a figure, plots some lines in a plotting area, decorates the plot # with labels, etc. # # In :mod:`matplotlib.pyplot` various states are preserved # across function calls, so that it keeps track of things like # the current figure and plotting area, and the plotting # functions are directed to the current axes (please note that "axes" here # and in most places in the documentation refers to the *axes* # :ref:`part of a figure <figure_parts>` # and not the strict mathematical term for more than one axis). # # .. note:: # # the pyplot API is generally less-flexible than the object-oriented API. # Most of the function calls you see here can also be called as methods # from an ``Axes`` object. We recommend browsing the tutorials and # examples to see how this works. # # Generating visualizations with pyplot is very quick: import matplotlib.pyplot as plt plt.plot([1, 2, 3, 4]) plt.ylabel('some numbers') plt.show() ############################################################################### # You may be wondering why the x-axis ranges from 0-3 and the y-axis # from 1-4. If you provide a single list or array to the # :func:`~matplotlib.pyplot.plot` command, matplotlib assumes it is a # sequence of y values, and automatically generates the x values for # you. Since python ranges start with 0, the default x vector has the # same length as y but starts with 0. Hence the x data are # ``[0,1,2,3]``. # # :func:`~matplotlib.pyplot.plot` is a versatile command, and will take # an arbitrary number of arguments. For example, to plot x versus y, # you can issue the command: plt.plot([1, 2, 3, 4], [1, 4, 9, 16]) ############################################################################### # Formatting the style of your plot # --------------------------------- # # For every x, y pair of arguments, there is an optional third argument # which is the format string that indicates the color and line type of # the plot. The letters and symbols of the format string are from # MATLAB, and you concatenate a color string with a line style string. # The default format string is 'b-', which is a solid blue line. For # example, to plot the above with red circles, you would issue plt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro') plt.axis([0, 6, 0, 20]) plt.show() ############################################################################### # See the :func:`~matplotlib.pyplot.plot` documentation for a complete # list of line styles and format strings. The # :func:`~matplotlib.pyplot.axis` command in the example above takes a # list of ``[xmin, xmax, ymin, ymax]`` and specifies the viewport of the # axes. # # If matplotlib were limited to working with lists, it would be fairly # useless for numeric processing. Generally, you will use `numpy # <http://www.numpy.org>`_ arrays. In fact, all sequences are # converted to numpy arrays internally. The example below illustrates a # plotting several lines with different format styles in one command # using arrays. import numpy as np # evenly sampled time at 200ms intervals t = np.arange(0., 5., 0.2) # red dashes, blue squares and green triangles plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^') plt.show() ############################################################################### # .. _plotting-with-keywords: # # Plotting with keyword strings # ============================= # # There are some instances where you have data in a format that lets you # access particular variables with strings. For example, with # :class:`numpy.recarray` or :class:`pandas.DataFrame`. # # Matplotlib allows you provide such an object with # the ``data`` keyword argument. If provided, then you may generate plots with # the strings corresponding to these variables. data = {'a': np.arange(50), 'c': np.random.randint(0, 50, 50), 'd': np.random.randn(50)} data['b'] = data['a'] + 10 * np.random.randn(50) data['d'] = np.abs(data['d']) * 100 plt.scatter('a', 'b', c='c', s='d', data=data) plt.xlabel('entry a') plt.ylabel('entry b') plt.show() ############################################################################### # .. _plotting-with-categorical-vars: # # Plotting with categorical variables # =================================== # # It is also possible to create a plot using categorical variables. # Matplotlib allows you to pass categorical variables directly to # many plotting functions. For example: names = ['group_a', 'group_b', 'group_c'] values = [1, 10, 100] plt.figure(figsize=(9, 3)) plt.subplot(131) plt.bar(names, values) plt.subplot(132) plt.scatter(names, values) plt.subplot(133) plt.plot(names, values) plt.suptitle('Categorical Plotting') plt.show() ############################################################################### # .. _controlling-line-properties: # # Controlling line properties # =========================== # # Lines have many attributes that you can set: linewidth, dash style, # antialiased, etc; see :class:`matplotlib.lines.Line2D`. There are # several ways to set line properties # # * Use keyword args:: # # plt.plot(x, y, linewidth=2.0) # # # * Use the setter methods of a ``Line2D`` instance. ``plot`` returns a list # of ``Line2D`` objects; e.g., ``line1, line2 = plot(x1, y1, x2, y2)``. In the code # below we will suppose that we have only # one line so that the list returned is of length 1. We use tuple unpacking with # ``line,`` to get the first element of that list:: # # line, = plt.plot(x, y, '-') # line.set_antialiased(False) # turn off antialiasing # # * Use the :func:`~matplotlib.pyplot.setp` command. The example below # uses a MATLAB-style command to set multiple properties # on a list of lines. ``setp`` works transparently with a list of objects # or a single object. You can either use python keyword arguments or # MATLAB-style string/value pairs:: # # lines = plt.plot(x1, y1, x2, y2) # # use keyword args # plt.setp(lines, color='r', linewidth=2.0) # # or MATLAB style string value pairs # plt.setp(lines, 'color', 'r', 'linewidth', 2.0) # # # Here are the available :class:`~matplotlib.lines.Line2D` properties. # # ====================== ================================================== # Property Value Type # ====================== ================================================== # alpha float # animated [True | False] # antialiased or aa [True | False] # clip_box a matplotlib.transform.Bbox instance # clip_on [True | False] # clip_path a Path instance and a Transform instance, a Patch # color or c any matplotlib color # contains the hit testing function # dash_capstyle [``'butt'`` | ``'round'`` | ``'projecting'``] # dash_joinstyle [``'miter'`` | ``'round'`` | ``'bevel'``] # dashes sequence of on/off ink in points # data (np.array xdata, np.array ydata) # figure a matplotlib.figure.Figure instance # label any string # linestyle or ls [ ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'steps'`` | ...] # linewidth or lw float value in points # marker [ ``'+'`` | ``','`` | ``'.'`` | ``'1'`` | ``'2'`` | ``'3'`` | ``'4'`` ] # markeredgecolor or mec any matplotlib color # markeredgewidth or mew float value in points # markerfacecolor or mfc any matplotlib color # markersize or ms float # markevery [ None | integer | (startind, stride) ] # picker used in interactive line selection # pickradius the line pick selection radius # solid_capstyle [``'butt'`` | ``'round'`` | ``'projecting'``] # solid_joinstyle [``'miter'`` | ``'round'`` | ``'bevel'``] # transform a matplotlib.transforms.Transform instance # visible [True | False] # xdata np.array # ydata np.array # zorder any number # ====================== ================================================== # # To get a list of settable line properties, call the # :func:`~matplotlib.pyplot.setp` function with a line or lines # as argument # # .. sourcecode:: ipython # # In [69]: lines = plt.plot([1, 2, 3]) # # In [70]: plt.setp(lines) # alpha: float # animated: [True | False] # antialiased or aa: [True | False] # ...snip # # .. _multiple-figs-axes: # # # Working with multiple figures and axes # ====================================== # # MATLAB, and :mod:`~matplotlib.pyplot`, have the concept of the current # figure and the current axes. All plotting commands apply to the # current axes. The function :func:`~matplotlib.pyplot.gca` returns the # current axes (a :class:`matplotlib.axes.Axes` instance), and # :func:`~matplotlib.pyplot.gcf` returns the current figure # (:class:`matplotlib.figure.Figure` instance). Normally, you don't have # to worry about this, because it is all taken care of behind the # scenes. Below is a script to create two subplots. def f(t): return np.exp(-t) * np.cos(2*np.pi*t) t1 = np.arange(0.0, 5.0, 0.1) t2 = np.arange(0.0, 5.0, 0.02) plt.figure() plt.subplot(211) plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k') plt.subplot(212) plt.plot(t2, np.cos(2*np.pi*t2), 'r--') plt.show() ############################################################################### # The :func:`~matplotlib.pyplot.figure` command here is optional because # ``figure(1)`` will be created by default, just as a ``subplot(111)`` # will be created by default if you don't manually specify any axes. The # :func:`~matplotlib.pyplot.subplot` command specifies ``numrows, # numcols, plot_number`` where ``plot_number`` ranges from 1 to # ``numrows*numcols``. The commas in the ``subplot`` command are # optional if ``numrows*numcols<10``. So ``subplot(211)`` is identical # to ``subplot(2, 1, 1)``. # # You can create an arbitrary number of subplots # and axes. If you want to place an axes manually, i.e., not on a # rectangular grid, use the :func:`~matplotlib.pyplot.axes` command, # which allows you to specify the location as ``axes([left, bottom, # width, height])`` where all values are in fractional (0 to 1) # coordinates. See :doc:`/gallery/subplots_axes_and_figures/axes_demo` for an example of # placing axes manually and :doc:`/gallery/subplots_axes_and_figures/subplot_demo` for an # example with lots of subplots. # # # You can create multiple figures by using multiple # :func:`~matplotlib.pyplot.figure` calls with an increasing figure # number. Of course, each figure can contain as many axes and subplots # as your heart desires:: # # import matplotlib.pyplot as plt # plt.figure(1) # the first figure # plt.subplot(211) # the first subplot in the first figure # plt.plot([1, 2, 3]) # plt.subplot(212) # the second subplot in the first figure # plt.plot([4, 5, 6]) # # # plt.figure(2) # a second figure # plt.plot([4, 5, 6]) # creates a subplot(111) by default # # plt.figure(1) # figure 1 current; subplot(212) still current # plt.subplot(211) # make subplot(211) in figure1 current # plt.title('Easy as 1, 2, 3') # subplot 211 title # # You can clear the current figure with :func:`~matplotlib.pyplot.clf` # and the current axes with :func:`~matplotlib.pyplot.cla`. If you find # it annoying that states (specifically the current image, figure and axes) # are being maintained for you behind the scenes, don't despair: this is just a thin # stateful wrapper around an object oriented API, which you can use # instead (see :doc:`/tutorials/intermediate/artists`) # # If you are making lots of figures, you need to be aware of one # more thing: the memory required for a figure is not completely # released until the figure is explicitly closed with # :func:`~matplotlib.pyplot.close`. Deleting all references to the # figure, and/or using the window manager to kill the window in which # the figure appears on the screen, is not enough, because pyplot # maintains internal references until :func:`~matplotlib.pyplot.close` # is called. # # .. _working-with-text: # # Working with text # ================= # # The :func:`~matplotlib.pyplot.text` command can be used to add text in # an arbitrary location, and the :func:`~matplotlib.pyplot.xlabel`, # :func:`~matplotlib.pyplot.ylabel` and :func:`~matplotlib.pyplot.title` # are used to add text in the indicated locations (see :doc:`/tutorials/text/text_intro` # for a more detailed example) mu, sigma = 100, 15 x = mu + sigma * np.random.randn(10000) # the histogram of the data n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75) plt.xlabel('Smarts') plt.ylabel('Probability') plt.title('Histogram of IQ') plt.text(60, .025, r'$\mu=100,\ \sigma=15$') plt.axis([40, 160, 0, 0.03]) plt.grid(True) plt.show() ############################################################################### # All of the :func:`~matplotlib.pyplot.text` commands return an # :class:`matplotlib.text.Text` instance. Just as with with lines # above, you can customize the properties by passing keyword arguments # into the text functions or using :func:`~matplotlib.pyplot.setp`:: # # t = plt.xlabel('my data', fontsize=14, color='red') # # These properties are covered in more detail in :doc:`/tutorials/text/text_props`. # # # Using mathematical expressions in text # -------------------------------------- # # matplotlib accepts TeX equation expressions in any text expression. # For example to write the expression :math:`\sigma_i=15` in the title, # you can write a TeX expression surrounded by dollar signs:: # # plt.title(r'$\sigma_i=15$') # # The ``r`` preceding the title string is important -- it signifies # that the string is a *raw* string and not to treat backslashes as # python escapes. matplotlib has a built-in TeX expression parser and # layout engine, and ships its own math fonts -- for details see # :doc:`/tutorials/text/mathtext`. Thus you can use mathematical text across platforms # without requiring a TeX installation. For those who have LaTeX and # dvipng installed, you can also use LaTeX to format your text and # incorporate the output directly into your display figures or saved # postscript -- see :doc:`/tutorials/text/usetex`. # # # Annotating text # --------------- # # The uses of the basic :func:`~matplotlib.pyplot.text` command above # place text at an arbitrary position on the Axes. A common use for # text is to annotate some feature of the plot, and the # :func:`~matplotlib.pyplot.annotate` method provides helper # functionality to make annotations easy. In an annotation, there are # two points to consider: the location being annotated represented by # the argument ``xy`` and the location of the text ``xytext``. Both of # these arguments are ``(x,y)`` tuples. ax = plt.subplot(111) t = np.arange(0.0, 5.0, 0.01) s = np.cos(2*np.pi*t) line, = plt.plot(t, s, lw=2) plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5), arrowprops=dict(facecolor='black', shrink=0.05), ) plt.ylim(-2, 2) plt.show() ############################################################################### # In this basic example, both the ``xy`` (arrow tip) and ``xytext`` # locations (text location) are in data coordinates. There are a # variety of other coordinate systems one can choose -- see # :ref:`annotations-tutorial` and :ref:`plotting-guide-annotation` for # details. More examples can be found in # :doc:`/gallery/text_labels_and_annotations/annotation_demo`. # # # Logarithmic and other nonlinear axes # ==================================== # # :mod:`matplotlib.pyplot` supports not only linear axis scales, but also # logarithmic and logit scales. This is commonly used if data spans many orders # of magnitude. Changing the scale of an axis is easy: # # plt.xscale('log') # # An example of four plots with the same data and different scales for the y axis # is shown below. from matplotlib.ticker import NullFormatter # useful for `logit` scale # Fixing random state for reproducibility np.random.seed(19680801) # make up some data in the interval ]0, 1[ y = np.random.normal(loc=0.5, scale=0.4, size=1000) y = y[(y > 0) & (y < 1)] y.sort() x = np.arange(len(y)) # plot with various axes scales plt.figure() # linear plt.subplot(221) plt.plot(x, y) plt.yscale('linear') plt.title('linear') plt.grid(True) # log plt.subplot(222) plt.plot(x, y) plt.yscale('log') plt.title('log') plt.grid(True) # symmetric log plt.subplot(223) plt.plot(x, y - y.mean()) plt.yscale('symlog', linthreshy=0.01) plt.title('symlog') plt.grid(True) # logit plt.subplot(224) plt.plot(x, y) plt.yscale('logit') plt.title('logit') plt.grid(True) # Format the minor tick labels of the y-axis into empty strings with # `NullFormatter`, to avoid cumbering the axis with too many labels. plt.gca().yaxis.set_minor_formatter(NullFormatter()) # Adjust the subplot layout, because the logit one may take more space # than usual, due to y-tick labels like "1 - 10^{-3}" plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25, wspace=0.35) plt.show() ############################################################################### # It is also possible to add your own scale, see :ref:`adding-new-scales` for # details.
e6868b710c6d93b386ad7b2279fb48a4fb70a607f0d4121b0a9572500b33e5d9
""" Customizing Matplotlib with style sheets and rcParams ===================================================== Tips for customizing the properties and default styles of Matplotlib. Using style sheets ------------------ The ``style`` package adds support for easy-to-switch plotting "styles" with the same parameters as a :ref:`matplotlib rc <customizing-with-matplotlibrc-files>` file (which is read at startup to configure matplotlib). There are a number of pre-defined styles `provided by Matplotlib`_. For example, there's a pre-defined style called "ggplot", which emulates the aesthetics of ggplot_ (a popular plotting package for R_). To use this style, just add: """ import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl plt.style.use('ggplot') data = np.random.randn(50) ############################################################################### # To list all available styles, use: print(plt.style.available) ############################################################################### # Defining your own style # ----------------------- # # You can create custom styles and use them by calling ``style.use`` with the # path or URL to the style sheet. Additionally, if you add your # ``<style-name>.mplstyle`` file to ``mpl_configdir/stylelib``, you can reuse # your custom style sheet with a call to ``style.use(<style-name>)``. By default # ``mpl_configdir`` should be ``~/.config/matplotlib``, but you can check where # yours is with ``matplotlib.get_configdir()``; you may need to create this # directory. You also can change the directory where matplotlib looks for # the stylelib/ folder by setting the MPLCONFIGDIR environment variable, # see :ref:`locating-matplotlib-config-dir`. # # Note that a custom style sheet in ``mpl_configdir/stylelib`` will # override a style sheet defined by matplotlib if the styles have the same name. # # For example, you might want to create # ``mpl_configdir/stylelib/presentation.mplstyle`` with the following:: # # axes.titlesize : 24 # axes.labelsize : 20 # lines.linewidth : 3 # lines.markersize : 10 # xtick.labelsize : 16 # ytick.labelsize : 16 # # Then, when you want to adapt a plot designed for a paper to one that looks # good in a presentation, you can just add:: # # >>> import matplotlib.pyplot as plt # >>> plt.style.use('presentation') # # # Composing styles # ---------------- # # Style sheets are designed to be composed together. So you can have a style # sheet that customizes colors and a separate style sheet that alters element # sizes for presentations. These styles can easily be combined by passing # a list of styles:: # # >>> import matplotlib.pyplot as plt # >>> plt.style.use(['dark_background', 'presentation']) # # Note that styles further to the right will overwrite values that are already # defined by styles on the left. # # # Temporary styling # ----------------- # # If you only want to use a style for a specific block of code but don't want # to change the global styling, the style package provides a context manager # for limiting your changes to a specific scope. To isolate your styling # changes, you can write something like the following: with plt.style.context('dark_background'): plt.plot(np.sin(np.linspace(0, 2 * np.pi)), 'r-o') plt.show() ############################################################################### # .. _matplotlib-rcparams: # # matplotlib rcParams # =================== # # .. _customizing-with-dynamic-rc-settings: # # Dynamic rc settings # ------------------- # # You can also dynamically change the default rc settings in a python script or # interactively from the python shell. All of the rc settings are stored in a # dictionary-like variable called :data:`matplotlib.rcParams`, which is global to # the matplotlib package. rcParams can be modified directly, for example: mpl.rcParams['lines.linewidth'] = 2 mpl.rcParams['lines.color'] = 'r' plt.plot(data) ############################################################################### # Matplotlib also provides a couple of convenience functions for modifying rc # settings. The :func:`matplotlib.rc` command can be used to modify multiple # settings in a single group at once, using keyword arguments: mpl.rc('lines', linewidth=4, color='g') plt.plot(data) ############################################################################### # The :func:`matplotlib.rcdefaults` command will restore the standard matplotlib # default settings. # # There is some degree of validation when setting the values of rcParams, see # :mod:`matplotlib.rcsetup` for details. # # .. _customizing-with-matplotlibrc-files: # # The :file:`matplotlibrc` file # ----------------------------- # # matplotlib uses :file:`matplotlibrc` configuration files to customize all kinds # of properties, which we call `rc settings` or `rc parameters`. You can control # the defaults of almost every property in matplotlib: figure size and dpi, line # width, color and style, axes, axis and grid properties, text and font # properties and so on. matplotlib looks for :file:`matplotlibrc` in four # locations, in the following order: # # 1. :file:`matplotlibrc` in the current working directory, usually used for # specific customizations that you do not want to apply elsewhere. # # 2. :file:`$MATPLOTLIBRC` if it is a file, else :file:`$MATPLOTLIBRC/matplotlibrc`. # # 3. It next looks in a user-specific place, depending on your platform: # # - On Linux and FreeBSD, it looks in :file:`.config/matplotlib/matplotlibrc` # (or `$XDG_CONFIG_HOME/matplotlib/matplotlibrc`) if you've customized # your environment. # # - On other platforms, it looks in :file:`.matplotlib/matplotlibrc`. # # See :ref:`locating-matplotlib-config-dir`. # # 4. :file:`{INSTALL}/matplotlib/mpl-data/matplotlibrc`, where # :file:`{INSTALL}` is something like # :file:`/usr/lib/python3.7/site-packages` on Linux, and maybe # :file:`C:\\Python37\\Lib\\site-packages` on Windows. Every time you # install matplotlib, this file will be overwritten, so if you want # your customizations to be saved, please move this file to your # user-specific matplotlib directory. # # Once a :file:`matplotlibrc` file has been found, it will *not* search any of # the other paths. # # To display where the currently active :file:`matplotlibrc` file was # loaded from, one can do the following:: # # >>> import matplotlib # >>> matplotlib.matplotlib_fname() # '/home/foo/.config/matplotlib/matplotlibrc' # # See below for a sample :ref:`matplotlibrc file<matplotlibrc-sample>`. # # .. _matplotlibrc-sample: # # A sample matplotlibrc file # ~~~~~~~~~~~~~~~~~~~~~~~~~~ # # .. literalinclude:: ../../../matplotlibrc.template # # # .. _ggplot: https://ggplot2.tidyverse.org/ # .. _R: https://www.r-project.org/ # .. _provided by Matplotlib: https://github.com/matplotlib/matplotlib/tree/master/lib/matplotlib/mpl-data/stylelib
81dd2a7c12276941947e5fe4d6e72c0525ebc25956cba4e9e7284f35e3d93eca
""" ============ Legend guide ============ Generating legends flexibly in Matplotlib. .. currentmodule:: matplotlib.pyplot This legend guide is an extension of the documentation available at :func:`~matplotlib.pyplot.legend` - please ensure you are familiar with contents of that documentation before proceeding with this guide. This guide makes use of some common terms, which are documented here for clarity: .. glossary:: legend entry A legend is made up of one or more legend entries. An entry is made up of exactly one key and one label. legend key The colored/patterned marker to the left of each legend label. legend label The text which describes the handle represented by the key. legend handle The original object which is used to generate an appropriate entry in the legend. Controlling the legend entries ============================== Calling :func:`legend` with no arguments automatically fetches the legend handles and their associated labels. This functionality is equivalent to:: handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) The :meth:`~matplotlib.axes.Axes.get_legend_handles_labels` function returns a list of handles/artists which exist on the Axes which can be used to generate entries for the resulting legend - it is worth noting however that not all artists can be added to a legend, at which point a "proxy" will have to be created (see :ref:`proxy_legend_handles` for further details). For full control of what is being added to the legend, it is common to pass the appropriate handles directly to :func:`legend`:: line_up, = plt.plot([1,2,3], label='Line 2') line_down, = plt.plot([3,2,1], label='Line 1') plt.legend(handles=[line_up, line_down]) In some cases, it is not possible to set the label of the handle, so it is possible to pass through the list of labels to :func:`legend`:: line_up, = plt.plot([1,2,3], label='Line 2') line_down, = plt.plot([3,2,1], label='Line 1') plt.legend([line_up, line_down], ['Line Up', 'Line Down']) .. _proxy_legend_handles: Creating artists specifically for adding to the legend (aka. Proxy artists) =========================================================================== Not all handles can be turned into legend entries automatically, so it is often necessary to create an artist which *can*. Legend handles don't have to exists on the Figure or Axes in order to be used. Suppose we wanted to create a legend which has an entry for some data which is represented by a red color: """ import matplotlib.patches as mpatches import matplotlib.pyplot as plt red_patch = mpatches.Patch(color='red', label='The red data') plt.legend(handles=[red_patch]) plt.show() ############################################################################### # There are many supported legend handles, instead of creating a patch of color # we could have created a line with a marker: import matplotlib.lines as mlines blue_line = mlines.Line2D([], [], color='blue', marker='*', markersize=15, label='Blue stars') plt.legend(handles=[blue_line]) plt.show() ############################################################################### # Legend location # =============== # # The location of the legend can be specified by the keyword argument # *loc*. Please see the documentation at :func:`legend` for more details. # # The ``bbox_to_anchor`` keyword gives a great degree of control for manual # legend placement. For example, if you want your axes legend located at the # figure's top right-hand corner instead of the axes' corner, simply specify # the corner's location, and the coordinate system of that location:: # # plt.legend(bbox_to_anchor=(1, 1), # bbox_transform=plt.gcf().transFigure) # # More examples of custom legend placement: plt.subplot(211) plt.plot([1, 2, 3], label="test1") plt.plot([3, 2, 1], label="test2") # Place a legend above this subplot, expanding itself to # fully use the given bounding box. plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=2, mode="expand", borderaxespad=0.) plt.subplot(223) plt.plot([1, 2, 3], label="test1") plt.plot([3, 2, 1], label="test2") # Place a legend to the right of this smaller subplot. plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.) plt.show() ############################################################################### # Multiple legends on the same Axes # ================================= # # Sometimes it is more clear to split legend entries across multiple # legends. Whilst the instinctive approach to doing this might be to call # the :func:`legend` function multiple times, you will find that only one # legend ever exists on the Axes. This has been done so that it is possible # to call :func:`legend` repeatedly to update the legend to the latest # handles on the Axes, so to persist old legend instances, we must add them # manually to the Axes: line1, = plt.plot([1, 2, 3], label="Line 1", linestyle='--') line2, = plt.plot([3, 2, 1], label="Line 2", linewidth=4) # Create a legend for the first line. first_legend = plt.legend(handles=[line1], loc='upper right') # Add the legend manually to the current Axes. ax = plt.gca().add_artist(first_legend) # Create another legend for the second line. plt.legend(handles=[line2], loc='lower right') plt.show() ############################################################################### # Legend Handlers # =============== # # In order to create legend entries, handles are given as an argument to an # appropriate :class:`~matplotlib.legend_handler.HandlerBase` subclass. # The choice of handler subclass is determined by the following rules: # # 1. Update :func:`~matplotlib.legend.Legend.get_legend_handler_map` # with the value in the ``handler_map`` keyword. # 2. Check if the ``handle`` is in the newly created ``handler_map``. # 3. Check if the type of ``handle`` is in the newly created # ``handler_map``. # 4. Check if any of the types in the ``handle``'s mro is in the newly # created ``handler_map``. # # For completeness, this logic is mostly implemented in # :func:`~matplotlib.legend.Legend.get_legend_handler`. # # All of this flexibility means that we have the necessary hooks to implement # custom handlers for our own type of legend key. # # The simplest example of using custom handlers is to instantiate one of the # existing :class:`~matplotlib.legend_handler.HandlerBase` subclasses. For the # sake of simplicity, let's choose :class:`matplotlib.legend_handler.HandlerLine2D` # which accepts a ``numpoints`` argument (note numpoints is a keyword # on the :func:`legend` function for convenience). We can then pass the mapping # of instance to Handler as a keyword to legend. from matplotlib.legend_handler import HandlerLine2D line1, = plt.plot([3, 2, 1], marker='o', label='Line 1') line2, = plt.plot([1, 2, 3], marker='o', label='Line 2') plt.legend(handler_map={line1: HandlerLine2D(numpoints=4)}) ############################################################################### # As you can see, "Line 1" now has 4 marker points, where "Line 2" has 2 (the # default). Try the above code, only change the map's key from ``line1`` to # ``type(line1)``. Notice how now both :class:`~matplotlib.lines.Line2D` instances # get 4 markers. # # Along with handlers for complex plot types such as errorbars, stem plots # and histograms, the default ``handler_map`` has a special ``tuple`` handler # (:class:`~matplotlib.legend_handler.HandlerTuple`) which simply plots # the handles on top of one another for each item in the given tuple. The # following example demonstrates combining two legend keys on top of one another: from numpy.random import randn z = randn(10) red_dot, = plt.plot(z, "ro", markersize=15) # Put a white cross over some of the data. white_cross, = plt.plot(z[:5], "w+", markeredgewidth=3, markersize=15) plt.legend([red_dot, (red_dot, white_cross)], ["Attr A", "Attr A+B"]) ############################################################################### # The :class:`~matplotlib.legend_handler.HandlerTuple` class can also be used to # assign several legend keys to the same entry: from matplotlib.legend_handler import HandlerLine2D, HandlerTuple p1, = plt.plot([1, 2.5, 3], 'r-d') p2, = plt.plot([3, 2, 1], 'k-o') l = plt.legend([(p1, p2)], ['Two keys'], numpoints=1, handler_map={tuple: HandlerTuple(ndivide=None)}) ############################################################################### # Implementing a custom legend handler # ------------------------------------ # # A custom handler can be implemented to turn any handle into a legend key (handles # don't necessarily need to be matplotlib artists). # The handler must implement a "legend_artist" method which returns a # single artist for the legend to use. Signature details about the "legend_artist" # are documented at :meth:`~matplotlib.legend_handler.HandlerBase.legend_artist`. import matplotlib.patches as mpatches class AnyObject(object): pass class AnyObjectHandler(object): def legend_artist(self, legend, orig_handle, fontsize, handlebox): x0, y0 = handlebox.xdescent, handlebox.ydescent width, height = handlebox.width, handlebox.height patch = mpatches.Rectangle([x0, y0], width, height, facecolor='red', edgecolor='black', hatch='xx', lw=3, transform=handlebox.get_transform()) handlebox.add_artist(patch) return patch plt.legend([AnyObject()], ['My first handler'], handler_map={AnyObject: AnyObjectHandler()}) ############################################################################### # Alternatively, had we wanted to globally accept ``AnyObject`` instances without # needing to manually set the ``handler_map`` keyword all the time, we could have # registered the new handler with:: # # from matplotlib.legend import Legend # Legend.update_default_handler_map({AnyObject: AnyObjectHandler()}) # # Whilst the power here is clear, remember that there are already many handlers # implemented and what you want to achieve may already be easily possible with # existing classes. For example, to produce elliptical legend keys, rather than # rectangular ones: from matplotlib.legend_handler import HandlerPatch class HandlerEllipse(HandlerPatch): def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): center = 0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent p = mpatches.Ellipse(xy=center, width=width + xdescent, height=height + ydescent) self.update_prop(p, orig_handle, legend) p.set_transform(trans) return [p] c = mpatches.Circle((0.5, 0.5), 0.25, facecolor="green", edgecolor="red", linewidth=3) plt.gca().add_patch(c) plt.legend([c], ["An ellipse, not a rectangle"], handler_map={mpatches.Circle: HandlerEllipse()})
2bc286518cc269b8059534ab6d0354bbb16c954c037c321c827aa9944a216d54
""" ============================================================= Customizing Figure Layouts Using GridSpec and Other Functions ============================================================= How to create grid-shaped combinations of axes. :func:`~matplotlib.pyplot.subplots` Perhaps the primary function used to create figures and axes. It's also similar to :func:`.matplotlib.pyplot.subplot`, but creates and places all axes on the figure at once. See also `matplotlib.Figure.subplots`. :class:`~matplotlib.gridspec.GridSpec` Specifies the geometry of the grid that a subplot will be placed. The number of rows and number of columns of the grid need to be set. Optionally, the subplot layout parameters (e.g., left, right, etc.) can be tuned. :class:`~matplotlib.gridspec.SubplotSpec` Specifies the location of the subplot in the given *GridSpec*. :func:`~matplotlib.pyplot.subplot2grid` A helper function that is similar to :func:`~matplotlib.pyplot.subplot`, but uses 0-based indexing and let subplot to occupy multiple cells. This function is not covered in this tutorial. """ import matplotlib import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec ############################################################################ # Basic Quickstart Guide # ====================== # # These first two examples show how to create a basic 2-by-2 grid using # both :func:`~matplotlib.pyplot.subplots` and :mod:`~matplotlib.gridspec`. # # Using :func:`~matplotlib.pyplot.subplots` is quite simple. # It returns a :class:`~matplotlib.figure.Figure` instance and an array of # :class:`~matplotlib.axes.Axes` objects. fig1, f1_axes = plt.subplots(ncols=2, nrows=2, constrained_layout=True) ############################################################################ # For a simple use case such as this, :mod:`~matplotlib.gridspec` is # perhaps overly verbose. # You have to create the figure and :class:`~matplotlib.gridspec.GridSpec` # instance separately, then pass elements of gridspec instance to the # :func:`~matplotlib.figure.Figure.add_subplot` method to create the axes # objects. # The elements of the gridspec are accessed in generally the same manner as # numpy arrays. fig2 = plt.figure(constrained_layout=True) spec2 = gridspec.GridSpec(ncols=2, nrows=2, figure=fig2) f2_ax1 = fig2.add_subplot(spec2[0, 0]) f2_ax2 = fig2.add_subplot(spec2[0, 1]) f2_ax3 = fig2.add_subplot(spec2[1, 0]) f2_ax4 = fig2.add_subplot(spec2[1, 1]) ############################################################################# # The power of gridspec comes in being able to create subplots that span # rows and columns. Note the # `Numpy slice <https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html>`_ # syntax for selecting the part of the gridspec each subplot will occupy. # # Note that we have also used the convenience method `.Figure.add_gridspec` # instead of `.gridspec.GridSpec`, potentially saving the user an import, # and keeping the namespace cleaner. fig3 = plt.figure(constrained_layout=True) gs = fig3.add_gridspec(3, 3) f3_ax1 = fig3.add_subplot(gs[0, :]) f3_ax1.set_title('gs[0, :]') f3_ax2 = fig3.add_subplot(gs[1, :-1]) f3_ax2.set_title('gs[1, :-1]') f3_ax3 = fig3.add_subplot(gs[1:, -1]) f3_ax3.set_title('gs[1:, -1]') f3_ax4 = fig3.add_subplot(gs[-1, 0]) f3_ax4.set_title('gs[-1, 0]') f3_ax5 = fig3.add_subplot(gs[-1, -2]) f3_ax5.set_title('gs[-1, -2]') ############################################################################# # :mod:`~matplotlib.gridspec` is also indispensable for creating subplots # of different widths via a couple of methods. # # The method shown here is similar to the one above and initializes a # uniform grid specification, # and then uses numpy indexing and slices to allocate multiple # "cells" for a given subplot. fig4 = plt.figure(constrained_layout=True) spec4 = fig4.add_gridspec(ncols=2, nrows=2) anno_opts = dict(xy=(0.5, 0.5), xycoords='axes fraction', va='center', ha='center') f4_ax1 = fig4.add_subplot(spec4[0, 0]) f4_ax1.annotate('GridSpec[0, 0]', **anno_opts) fig4.add_subplot(spec4[0, 1]).annotate('GridSpec[0, 1:]', **anno_opts) fig4.add_subplot(spec4[1, 0]).annotate('GridSpec[1:, 0]', **anno_opts) fig4.add_subplot(spec4[1, 1]).annotate('GridSpec[1:, 1:]', **anno_opts) ############################################################################ # Another option is to use the ``width_ratios`` and ``height_ratios`` # parameters. These keyword arguments are lists of numbers. # Note that absolute values are meaningless, only their relative ratios # matter. That means that ``width_ratios=[2, 4, 8]`` is equivalent to # ``width_ratios=[1, 2, 4]`` within equally wide figures. # For the sake of demonstration, we'll blindly create the axes within # ``for`` loops since we won't need them later. fig5 = plt.figure(constrained_layout=True) widths = [2, 3, 1.5] heights = [1, 3, 2] spec5 = fig5.add_gridspec(ncols=3, nrows=3, width_ratios=widths, height_ratios=heights) for row in range(3): for col in range(3): ax = fig5.add_subplot(spec5[row, col]) label = 'Width: {}\nHeight: {}'.format(widths[col], heights[row]) ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center') ############################################################################ # Learning to use ``width_ratios`` and ``height_ratios`` is particularly # useful since the top-level function :func:`~matplotlib.pyplot.subplots` # accepts them within the ``gridspec_kw`` parameter. # For that matter, any parameter accepted by # :class:`~matplotlib.gridspec.GridSpec` can be passed to # :func:`~matplotlib.pyplot.subplots` via the ``gridspec_kw`` parameter. # This example recreates the previous figure without directly using a # gridspec instance. gs_kw = dict(width_ratios=widths, height_ratios=heights) fig6, f6_axes = plt.subplots(ncols=3, nrows=3, constrained_layout=True, gridspec_kw=gs_kw) for r, row in enumerate(f6_axes): for c, ax in enumerate(row): label = 'Width: {}\nHeight: {}'.format(widths[c], heights[r]) ax.annotate(label, (0.1, 0.5), xycoords='axes fraction', va='center') ############################################################################ # The ``subplots`` and ``gridspec`` methods can be combined since it is # sometimes more convenient to make most of the subplots using ``subplots`` # and then remove some and combine them. Here we create a layout with # the bottom two axes in the last column combined. fig7, f7_axs = plt.subplots(ncols=3, nrows=3) gs = f7_axs[1, 2].get_gridspec() # remove the underlying axes for ax in f7_axs[1:, -1]: ax.remove() axbig = fig7.add_subplot(gs[1:, -1]) axbig.annotate('Big Axes \nGridSpec[1:, -1]', (0.1, 0.5), xycoords='axes fraction', va='center') fig7.tight_layout() ############################################################################### # Fine Adjustments to a Gridspec Layout # ===================================== # # When a GridSpec is explicitly used, you can adjust the layout # parameters of subplots that are created from the GridSpec. Note this # option is not compatible with ``constrained_layout`` or # `.Figure.tight_layout` which both adjust subplot sizes to fill the # figure. fig8 = plt.figure(constrained_layout=False) gs1 = fig8.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.48, wspace=0.05) f8_ax1 = fig8.add_subplot(gs1[:-1, :]) f8_ax2 = fig8.add_subplot(gs1[-1, :-1]) f8_ax3 = fig8.add_subplot(gs1[-1, -1]) ############################################################################### # This is similar to :func:`~matplotlib.pyplot.subplots_adjust`, but it only # affects the subplots that are created from the given GridSpec. # # For example, compare the left and right sides of this figure: fig9 = plt.figure(constrained_layout=False) gs1 = fig9.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.48, wspace=0.05) f9_ax1 = fig9.add_subplot(gs1[:-1, :]) f9_ax2 = fig9.add_subplot(gs1[-1, :-1]) f9_ax3 = fig9.add_subplot(gs1[-1, -1]) gs2 = fig9.add_gridspec(nrows=3, ncols=3, left=0.55, right=0.98, hspace=0.05) f9_ax4 = fig9.add_subplot(gs2[:, :-1]) f9_ax5 = fig9.add_subplot(gs2[:-1, -1]) f9_ax6 = fig9.add_subplot(gs2[-1, -1]) ############################################################################### # GridSpec using SubplotSpec # ========================== # # You can create GridSpec from the :class:`~matplotlib.gridspec.SubplotSpec`, # in which case its layout parameters are set to that of the location of # the given SubplotSpec. # # Note this is also available from the more verbose # `.gridspec.GridSpecFromSubplotSpec`. fig10 = plt.figure(constrained_layout=True) gs0 = fig10.add_gridspec(1, 2) gs00 = gs0[0].subgridspec(2, 3) gs01 = gs0[1].subgridspec(3, 2) for a in range(2): for b in range(3): fig10.add_subplot(gs00[a, b]) fig10.add_subplot(gs01[b, a]) ############################################################################### # A Complex Nested GridSpec using SubplotSpec # =========================================== # # Here's a more sophisticated example of nested GridSpec where we put # a box around each cell of the outer 4x4 grid, by hiding appropriate # spines in each of the inner 3x3 grids. import numpy as np from itertools import product def squiggle_xy(a, b, c, d, i=np.arange(0.0, 2*np.pi, 0.05)): return np.sin(i*a)*np.cos(i*b), np.sin(i*c)*np.cos(i*d) fig11 = plt.figure(figsize=(8, 8), constrained_layout=False) # gridspec inside gridspec outer_grid = fig11.add_gridspec(4, 4, wspace=0.0, hspace=0.0) for i in range(16): inner_grid = outer_grid[i].subgridspec(3, 3, wspace=0.0, hspace=0.0) a, b = int(i/4)+1, i % 4+1 for j, (c, d) in enumerate(product(range(1, 4), repeat=2)): ax = fig11.add_subplot(inner_grid[j]) ax.plot(*squiggle_xy(a, b, c, d)) ax.set_xticks([]) ax.set_yticks([]) fig11.add_subplot(ax) all_axes = fig11.get_axes() # show only the outside spines for ax in all_axes: for sp in ax.spines.values(): sp.set_visible(False) if ax.is_first_row(): ax.spines['top'].set_visible(True) if ax.is_last_row(): ax.spines['bottom'].set_visible(True) if ax.is_first_col(): ax.spines['left'].set_visible(True) if ax.is_last_col(): ax.spines['right'].set_visible(True) plt.show() ############################################################################# # # ------------ # # References # """""""""" # # The usage of the following functions and methods is shown in this example: matplotlib.pyplot.subplots matplotlib.figure.Figure.add_gridspec matplotlib.figure.Figure.add_subplot matplotlib.gridspec.GridSpec matplotlib.gridspec.SubplotSpec.subgridspec matplotlib.gridspec.GridSpecFromSubplotSpec
306176fb5cb00cabb9aff5f03de0547e799e34fef15f9600e16ef63b1a3b2295
""" ================================ Constrained Layout Guide ================================ How to use constrained-layout to fit plots within your figure cleanly. *constrained_layout* automatically adjusts subplots and decorations like legends and colorbars so that they fit in the figure window while still preserving, as best they can, the logical layout requested by the user. *constrained_layout* is similar to :doc:`tight_layout</tutorials/intermediate/tight_layout_guide>`, but uses a constraint solver to determine the size of axes that allows them to fit. *constrained_layout* needs to be activated before any axes are added to a figure. Two ways of doing so are * using the respective argument to :func:`~.pyplot.subplots` or :func:`~.pyplot.figure`, e.g.:: plt.subplots(constrained_layout=True) * activate it via :ref:`rcParams<matplotlib-rcparams>`, like:: plt.rcParams['figure.constrained_layout.use'] = True Those are described in detail throughout the following sections. .. warning:: Currently Constrained Layout is **experimental**. The behaviour and API are subject to change, or the whole functionality may be removed without a deprecation period. If you *require* your plots to be absolutely reproducible, get the Axes positions after running Constrained Layout and use ``ax.set_position()`` in your code with ``constrained_layout=False``. Simple Example ============== In Matplotlib, the location of axes (including subplots) are specified in normalized figure coordinates. It can happen that your axis labels or titles (or sometimes even ticklabels) go outside the figure area, and are thus clipped. """ # sphinx_gallery_thumbnail_number = 18 import matplotlib.pyplot as plt import matplotlib.colors as mcolors import matplotlib.gridspec as gridspec import numpy as np plt.rcParams['savefig.facecolor'] = "0.8" plt.rcParams['figure.figsize'] = 4.5, 4. def example_plot(ax, fontsize=12, nodec=False): ax.plot([1, 2]) ax.locator_params(nbins=3) if not nodec: ax.set_xlabel('x-label', fontsize=fontsize) ax.set_ylabel('y-label', fontsize=fontsize) ax.set_title('Title', fontsize=fontsize) else: ax.set_xticklabels('') ax.set_yticklabels('') fig, ax = plt.subplots(constrained_layout=False) example_plot(ax, fontsize=24) ############################################################################### # To prevent this, the location of axes needs to be adjusted. For # subplots, this can be done by adjusting the subplot params # (:ref:`howto-subplots-adjust`). However, specifying your figure with the # ``constrained_layout=True`` kwarg will do the adjusting automatically. fig, ax = plt.subplots(constrained_layout=True) example_plot(ax, fontsize=24) ############################################################################### # When you have multiple subplots, often you see labels of different # axes overlapping each other. fig, axs = plt.subplots(2, 2, constrained_layout=False) for ax in axs.flatten(): example_plot(ax) ############################################################################### # Specifying ``constrained_layout=True`` in the call to ``plt.subplots`` # causes the layout to be properly constrained. fig, axs = plt.subplots(2, 2, constrained_layout=True) for ax in axs.flatten(): example_plot(ax) ############################################################################### # Colorbars # ========= # # If you create a colorbar with the :func:`~matplotlib.pyplot.colorbar` # command you need to make room for it. ``constrained_layout`` does this # automatically. Note that if you specify ``use_gridspec=True`` it will be # ignored because this option is made for improving the layout via # ``tight_layout``. # # .. note:: # # For the `~.axes.Axes.pcolormesh` kwargs (``pc_kwargs``) we use a # dictionary. Below we will assign one colorbar to a number of axes each # containing a `~.cm.ScalarMappable`; specifying the norm and colormap # ensures the colorbar is accurate for all the axes. arr = np.arange(100).reshape((10, 10)) norm = mcolors.Normalize(vmin=0., vmax=100.) # see note above: this makes all pcolormesh calls consistent: pc_kwargs = {'rasterized': True, 'cmap': 'viridis', 'norm': norm} fig, ax = plt.subplots(figsize=(4, 4), constrained_layout=True) im = ax.pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=ax, shrink=0.6) ############################################################################ # If you specify a list of axes (or other iterable container) to the # ``ax`` argument of ``colorbar``, constrained_layout will take space from # the specified axes. fig, axs = plt.subplots(2, 2, figsize=(4, 4), constrained_layout=True) for ax in axs.flatten(): im = ax.pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=axs, shrink=0.6) ############################################################################ # If you specify a list of axes from inside a grid of axes, the colorbar # will steal space appropriately, and leave a gap, but all subplots will # still be the same size. fig, axs = plt.subplots(3, 3, figsize=(4, 4), constrained_layout=True) for ax in axs.flatten(): im = ax.pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=axs[1:, ][:, 1], shrink=0.8) fig.colorbar(im, ax=axs[:, -1], shrink=0.6) ############################################################################ # Note that there is a bit of a subtlety when specifying a single axes # as the parent. In the following, it might be desirable and expected # for the colorbars to line up, but they don't because the colorbar paired # with the bottom axes is tied to the subplotspec of the axes, and hence # shrinks when the gridspec-level colorbar is added. fig, axs = plt.subplots(3, 1, figsize=(4, 4), constrained_layout=True) for ax in axs[:2]: im = ax.pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=axs[:2], shrink=0.6) im = axs[2].pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=axs[2], shrink=0.6) ############################################################################ # The API to make a single-axes behave like a list of axes is to specify # it as a list (or other iterable container), as below: fig, axs = plt.subplots(3, 1, figsize=(4, 4), constrained_layout=True) for ax in axs[:2]: im = ax.pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=axs[:2], shrink=0.6) im = axs[2].pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=[axs[2]], shrink=0.6) #################################################### # Suptitle # ========= # # ``constrained_layout`` can also make room for `~.figure.Figure.suptitle`. fig, axs = plt.subplots(2, 2, figsize=(4, 4), constrained_layout=True) for ax in axs.flatten(): im = ax.pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=axs, shrink=0.6) fig.suptitle('Big Suptitle') #################################################### # Legends # ======= # # Legends can be placed outside of their parent axis. # Constrained-layout is designed to handle this for :meth:`.Axes.legend`. # However, constrained-layout does *not* handle legends being created via # :meth:`.Figure.legend` (yet). fig, ax = plt.subplots(constrained_layout=True) ax.plot(np.arange(10), label='This is a plot') ax.legend(loc='center left', bbox_to_anchor=(0.8, 0.5)) ############################################# # However, this will steal space from a subplot layout: fig, axs = plt.subplots(1, 2, figsize=(4, 2), constrained_layout=True) axs[0].plot(np.arange(10)) axs[1].plot(np.arange(10), label='This is a plot') axs[1].legend(loc='center left', bbox_to_anchor=(0.8, 0.5)) ############################################# # In order for a legend or other artist to *not* steal space # from the subplot layout, we can ``leg.set_in_layout(False)``. # Of course this can mean the legend ends up # cropped, but can be useful if the plot is subsequently called # with ``fig.savefig('outname.png', bbox_inches='tight')``. Note, # however, that the legend's ``get_in_layout`` status will have to be # toggled again to make the saved file work, and we must manually # trigger a draw if we want constrained_layout to adjust the size # of the axes before printing. fig, axs = plt.subplots(1, 2, figsize=(4, 2), constrained_layout=True) axs[0].plot(np.arange(10)) axs[1].plot(np.arange(10), label='This is a plot') leg = axs[1].legend(loc='center left', bbox_to_anchor=(0.8, 0.5)) leg.set_in_layout(False) # trigger a draw so that constrained_layout is executed once # before we turn it off when printing.... fig.canvas.draw() # we want the legend included in the bbox_inches='tight' calcs. leg.set_in_layout(True) # we don't want the layout to change at this point. fig.set_constrained_layout(False) fig.savefig('CL01.png', bbox_inches='tight', dpi=100) ############################################# # The saved file looks like: # # .. image:: /_static/constrained_layout/CL01.png # :align: center # # A better way to get around this awkwardness is to simply # use the legend method provided by `.Figure.legend`: fig, axs = plt.subplots(1, 2, figsize=(4, 2), constrained_layout=True) axs[0].plot(np.arange(10)) lines = axs[1].plot(np.arange(10), label='This is a plot') labels = [l.get_label() for l in lines] leg = fig.legend(lines, labels, loc='center left', bbox_to_anchor=(0.8, 0.5), bbox_transform=axs[1].transAxes) fig.savefig('CL02.png', bbox_inches='tight', dpi=100) ############################################# # The saved file looks like: # # .. image:: /_static/constrained_layout/CL02.png # :align: center # ############################################################################### # Padding and Spacing # =================== # # For constrained_layout, we have implemented a padding around the edge of # each axes. This padding sets the distance from the edge of the plot, # and the minimum distance between adjacent plots. It is specified in # inches by the keyword arguments ``w_pad`` and ``h_pad`` to the function # `~.figure.Figure.set_constrained_layout_pads`: fig, axs = plt.subplots(2, 2, constrained_layout=True) for ax in axs.flatten(): example_plot(ax, nodec=True) ax.set_xticklabels('') ax.set_yticklabels('') fig.set_constrained_layout_pads(w_pad=4./72., h_pad=4./72., hspace=0., wspace=0.) fig, axs = plt.subplots(2, 2, constrained_layout=True) for ax in axs.flatten(): example_plot(ax, nodec=True) ax.set_xticklabels('') ax.set_yticklabels('') fig.set_constrained_layout_pads(w_pad=2./72., h_pad=2./72., hspace=0., wspace=0.) ########################################## # Spacing between subplots is set by ``wspace`` and ``hspace``. There are # specified as a fraction of the size of the subplot group as a whole. # If the size of the figure is changed, then these spaces change in # proportion. Note in the blow how the space at the edges doesn't change from # the above, but the space between subplots does. fig, axs = plt.subplots(2, 2, constrained_layout=True) for ax in axs.flatten(): example_plot(ax, nodec=True) ax.set_xticklabels('') ax.set_yticklabels('') fig.set_constrained_layout_pads(w_pad=2./72., h_pad=2./72., hspace=0.2, wspace=0.2) ########################################## # Spacing with colorbars # ----------------------- # # Colorbars will be placed ``wspace`` and ``hsapce`` apart from other # subplots. The padding between the colorbar and the axis it is # attached to will never be less than ``w_pad`` (for a vertical colorbar) # or ``h_pad`` (for a horizontal colorbar). Note the use of the ``pad`` kwarg # here in the ``colorbar`` call. It defaults to 0.02 of the size # of the axis it is attached to. fig, axs = plt.subplots(2, 2, constrained_layout=True) for ax in axs.flatten(): pc = ax.pcolormesh(arr, **pc_kwargs) fig.colorbar(pc, ax=ax, shrink=0.6, pad=0) ax.set_xticklabels('') ax.set_yticklabels('') fig.set_constrained_layout_pads(w_pad=2./72., h_pad=2./72., hspace=0.2, wspace=0.2) ########################################## # In the above example, the colorbar will not ever be closer than 2 pts to # the plot, but if we want it a bit further away, we can specify its value # for ``pad`` to be non-zero. fig, axs = plt.subplots(2, 2, constrained_layout=True) for ax in axs.flatten(): pc = ax.pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=ax, shrink=0.6, pad=0.05) ax.set_xticklabels('') ax.set_yticklabels('') fig.set_constrained_layout_pads(w_pad=2./72., h_pad=2./72., hspace=0.2, wspace=0.2) ########################################## # rcParams # ======== # # There are five :ref:`rcParams<matplotlib-rcparams>` that can be set, # either in a script or in the `matplotlibrc` file. # They all have the prefix ``figure.constrained_layout``: # # - ``use``: Whether to use constrained_layout. Default is False # - ``w_pad``, ``h_pad``: Padding around axes objects. # Float representing inches. Default is 3./72. inches (3 pts) # - ``wspace``, ``hspace``: Space between subplot groups. # Float representing a fraction of the subplot widths being separated. # Default is 0.02. plt.rcParams['figure.constrained_layout.use'] = True fig, axs = plt.subplots(2, 2, figsize=(3, 3)) for ax in axs.flatten(): example_plot(ax) ############################# # Use with GridSpec # ================= # # constrained_layout is meant to be used # with :func:`~matplotlib.figure.Figure.subplots` or # :func:`~matplotlib.gridspec.GridSpec` and # :func:`~matplotlib.figure.Figure.add_subplot`. # # Note that in what follows ``constrained_layout=True`` fig = plt.figure() gs1 = gridspec.GridSpec(2, 1, figure=fig) ax1 = fig.add_subplot(gs1[0]) ax2 = fig.add_subplot(gs1[1]) example_plot(ax1) example_plot(ax2) ############################################################################### # More complicated gridspec layouts are possible. Note here we use the # convenience functions ``add_gridspec`` and ``subgridspec``. fig = plt.figure() gs0 = fig.add_gridspec(1, 2) gs1 = gs0[0].subgridspec(2, 1) ax1 = fig.add_subplot(gs1[0]) ax2 = fig.add_subplot(gs1[1]) example_plot(ax1) example_plot(ax2) gs2 = gs0[1].subgridspec(3, 1) for ss in gs2: ax = fig.add_subplot(ss) example_plot(ax) ax.set_title("") ax.set_xlabel("") ax.set_xlabel("x-label", fontsize=12) ############################################################################ # Note that in the above the left and columns don't have the same vertical # extent. If we want the top and bottom of the two grids to line up then # they need to be in the same gridspec: fig = plt.figure() gs0 = fig.add_gridspec(6, 2) ax1 = fig.add_subplot(gs0[:3, 0]) ax2 = fig.add_subplot(gs0[3:, 0]) example_plot(ax1) example_plot(ax2) ax = fig.add_subplot(gs0[0:2, 1]) example_plot(ax) ax = fig.add_subplot(gs0[2:4, 1]) example_plot(ax) ax = fig.add_subplot(gs0[4:, 1]) example_plot(ax) ############################################################################ # This example uses two gridspecs to have the colorbar only pertain to # one set of pcolors. Note how the left column is wider than the # two right-hand columns because of this. Of course, if you wanted the # subplots to be the same size you only needed one gridspec. def docomplicated(suptitle=None): fig = plt.figure() gs0 = fig.add_gridspec(1, 2, figure=fig, width_ratios=[1., 2.]) gsl = gs0[0].subgridspec(2, 1) gsr = gs0[1].subgridspec(2, 2) for gs in gsl: ax = fig.add_subplot(gs) example_plot(ax) axs = [] for gs in gsr: ax = fig.add_subplot(gs) pcm = ax.pcolormesh(arr, **pc_kwargs) ax.set_xlabel('x-label') ax.set_ylabel('y-label') ax.set_title('title') axs += [ax] fig.colorbar(pcm, ax=axs) if suptitle is not None: fig.suptitle(suptitle) docomplicated() ############################################################################### # Manually setting axes positions # ================================ # # There can be good reasons to manually set an axes position. A manual call # to `~.axes.Axes.set_position` will set the axes so constrained_layout has # no effect on it anymore. (Note that constrained_layout still leaves the # space for the axes that is moved). fig, axs = plt.subplots(1, 2) example_plot(axs[0], fontsize=12) axs[1].set_position([0.2, 0.2, 0.4, 0.4]) ############################################################################### # If you want an inset axes in data-space, you need to manually execute the # layout using ``fig.execute_constrained_layout()`` call. The inset figure # will then be properly positioned. However, it will not be properly # positioned if the size of the figure is subsequently changed. Similarly, # if the figure is printed to another backend, there may be slight changes # of location due to small differences in how the backends render fonts. from matplotlib.transforms import Bbox fig, axs = plt.subplots(1, 2) example_plot(axs[0], fontsize=12) fig.execute_constrained_layout() # put into data-space: bb_data_ax2 = Bbox.from_bounds(0.5, 1., 0.2, 0.4) disp_coords = axs[0].transData.transform(bb_data_ax2) fig_coords_ax2 = fig.transFigure.inverted().transform(disp_coords) bb_ax2 = Bbox(fig_coords_ax2) ax2 = fig.add_axes(bb_ax2) ############################################################################### # Manually turning off ``constrained_layout`` # =========================================== # # ``constrained_layout`` usually adjusts the axes positions on each draw # of the figure. If you want to get the spacing provided by # ``constrained_layout`` but not have it update, then do the initial # draw and then call ``fig.set_constrained_layout(False)``. # This is potentially useful for animations where the tick labels may # change length. # # Note that ``constrained_layout`` is turned off for ``ZOOM`` and ``PAN`` # GUI events for the backends that use the toolbar. This prevents the # axes from changing position during zooming and panning. # # # Limitations # ======================== # # Incompatible functions # ---------------------- # # ``constrained_layout`` will not work on subplots # created via the `subplot` command. The reason is that each of these # commands creates a separate `GridSpec` instance and ``constrained_layout`` # uses (nested) gridspecs to carry out the layout. So the following fails # to yield a nice layout: fig = plt.figure() ax1 = plt.subplot(221) ax2 = plt.subplot(223) ax3 = plt.subplot(122) example_plot(ax1) example_plot(ax2) example_plot(ax3) ############################################################################### # Of course that layout is possible using a gridspec: fig = plt.figure() gs = fig.add_gridspec(2, 2) ax1 = fig.add_subplot(gs[0, 0]) ax2 = fig.add_subplot(gs[1, 0]) ax3 = fig.add_subplot(gs[:, 1]) example_plot(ax1) example_plot(ax2) example_plot(ax3) ############################################################################### # Similarly, # :func:`~matplotlib.pyplot.subplot2grid` doesn't work for the same reason: # each call creates a different parent gridspec. fig = plt.figure() ax1 = plt.subplot2grid((3, 3), (0, 0)) ax2 = plt.subplot2grid((3, 3), (0, 1), colspan=2) ax3 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2) ax4 = plt.subplot2grid((3, 3), (1, 2), rowspan=2) example_plot(ax1) example_plot(ax2) example_plot(ax3) example_plot(ax4) ############################################################################### # The way to make this plot compatible with ``constrained_layout`` is again # to use ``gridspec`` directly fig = plt.figure() gs = fig.add_gridspec(3, 3) ax1 = fig.add_subplot(gs[0, 0]) ax2 = fig.add_subplot(gs[0, 1:]) ax3 = fig.add_subplot(gs[1:, 0:2]) ax4 = fig.add_subplot(gs[1:, -1]) example_plot(ax1) example_plot(ax2) example_plot(ax3) example_plot(ax4) ############################################################################### # Other Caveats # ------------- # # * ``constrained_layout`` only considers ticklabels, axis labels, titles, and # legends. Thus, other artists may be clipped and also may overlap. # # * It assumes that the extra space needed for ticklabels, axis labels, # and titles is independent of original location of axes. This is # often true, but there are rare cases where it is not. # # * There are small differences in how the backends handle rendering fonts, # so the results will not be pixel-identical. ########################################################### # Debugging # ========= # # Constrained-layout can fail in somewhat unexpected ways. Because it uses # a constraint solver the solver can find solutions that are mathematically # correct, but that aren't at all what the user wants. The usual failure # mode is for all sizes to collapse to their smallest allowable value. If # this happens, it is for one of two reasons: # # 1. There was not enough room for the elements you were requesting to draw. # 2. There is a bug - in which case open an issue at # https://github.com/matplotlib/matplotlib/issues. # # If there is a bug, please report with a self-contained example that does # not require outside data or dependencies (other than numpy). ########################################################### # Notes on the algorithm # ====================== # # The algorithm for the constraint is relatively straightforward, but # has some complexity due to the complex ways we can layout a figure. # # Figure layout # ------------- # # Figures are laid out in a hierarchy: # # 1. Figure: ``fig = plt.figure()`` # # a. Gridspec ``gs0 = gridspec.GridSpec(1, 2, figure=fig)`` # # i. Subplotspec: ``ss = gs[0, 0]`` # # 1. Axes: ``ax0 = fig.add_subplot(ss)`` # # ii. Subplotspec: ``ss = gs[0, 1]`` # # 1. Gridspec: ``gsR = gridspec.GridSpecFromSubplotSpec(2, 1, ss)`` # # - Subplotspec: ``ss = gsR[0, 0]`` # # - Axes: ``axR0 = fig.add_subplot(ss)`` # # - Subplotspec: ``ss = gsR[1, 0]`` # # - Axes: ``axR1 = fig.add_subplot(ss)`` # # Each item has a layoutbox associated with it. The nesting of gridspecs # created with `.GridSpecFromSubplotSpec` can be arbitrarily deep. # # Each `~matplotlib.axes.Axes` has *two* layoutboxes. The first one, # ``ax._layoutbox`` represents the outside of the Axes and all its # decorations (i.e. ticklabels,axis labels, etc.). # The second layoutbox corresponds to the Axes' ``ax.position``, which sets # where in the figure the spines are placed. # # Why so many stacked containers? Ideally, all that would be needed are the # Axes layout boxes. For the Gridspec case, a container is # needed if the Gridspec is nested via `.GridSpecFromSubplotSpec`. At the # top level, it is desirable for symmetry, but it also makes room for # `~.Figure.suptitle`. # # For the Subplotspec/Axes case, Axes often have colorbars or other # annotations that need to be packaged inside the Subplotspec, hence the # need for the outer layer. # # # Simple case: one Axes # --------------------- # # For a single Axes the layout is straight forward. The Figure and # outer Gridspec layoutboxes coincide. The Subplotspec and Axes # boxes also coincide because the Axes has no colorbar. Note # the difference between the red ``pos`` box and the green ``ax`` box # is set by the size of the decorations around the Axes. # # In the code, this is accomplished by the entries in # ``do_constrained_layout()`` like:: # # ax._poslayoutbox.edit_left_margin_min(-bbox.x0 + pos.x0 + w_padt) # from matplotlib._layoutbox import plot_children fig, ax = plt.subplots(constrained_layout=True) example_plot(ax, fontsize=24) plot_children(fig, fig._layoutbox, printit=False) ####################################################################### # Simple case: two Axes # --------------------- # For this case, the Axes layoutboxes and the Subplotspec boxes still # co-incide. However, because the decorations in the right-hand plot are so # much smaller than the left-hand, so the right-hand layoutboxes are smaller. # # The Subplotspec boxes are laid out in the code in the subroutine # ``arange_subplotspecs()``, which simply checks the subplotspecs in the code # against one another and stacks them appropriately. # # The two ``pos`` axes are lined up. Because they have the same # minimum row, they are lined up at the top. Because # they have the same maximum row they are lined up at the bottom. In the # code this is accomplished via the calls to ``layoutbox.align``. If # there was more than one row, then the same horizontal alignment would # occur between the rows. # # The two ``pos`` axes are given the same width because the subplotspecs # occupy the same number of columns. This is accomplished in the code where # ``dcols0`` is compared to ``dcolsC``. If they are equal, then their widths # are constrained to be equal. # # While it is a bit subtle in this case, note that the division between the # Subplotspecs is *not* centered, but has been moved to the right to make # space for the larger labels on the left-hand plot. fig, ax = plt.subplots(1, 2, constrained_layout=True) example_plot(ax[0], fontsize=32) example_plot(ax[1], fontsize=8) plot_children(fig, fig._layoutbox, printit=False) ####################################################################### # Two Axes and colorbar # --------------------- # # Adding a colorbar makes it clear why the Subplotspec layoutboxes must # be different from the axes layoutboxes. Here we see the left-hand # subplotspec has more room to accommodate the `~.Figure.colorbar`, and # that there are two green ``ax`` boxes inside the ``ss`` box. # # Note that the width of the ``pos`` boxes is still the same because of the # constraint on their widths because their subplotspecs occupy the same # number of columns (one in this example). # # The colorbar layout logic is contained in `~matplotlib.colorbar.make_axes` # which calls ``_constrained_layout.layoutcolorbarsingle()`` # for cbars attached to a single axes, and # ``_constrained_layout.layoutcolorbargridspec()`` if the colorbar is # associated with a gridspec. fig, ax = plt.subplots(1, 2, constrained_layout=True) im = ax[0].pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=ax[0], shrink=0.6) im = ax[1].pcolormesh(arr, **pc_kwargs) plot_children(fig, fig._layoutbox, printit=False) ####################################################################### # Colorbar associated with a Gridspec # ----------------------------------- # # This example shows the Subplotspec layoutboxes being made smaller by # a colorbar layoutbox. The size of the colorbar layoutbox is # set to be ``shrink`` smaller than the vertical extent of the ``pos`` # layoutboxes in the gridspec, and it is made to be centered between # those two points. fig, ax = plt.subplots(2, 2, constrained_layout=True) for a in ax.flatten(): im = a.pcolormesh(arr, **pc_kwargs) fig.colorbar(im, ax=ax, shrink=0.6) plot_children(fig, fig._layoutbox, printit=False) ####################################################################### # Uneven sized Axes # ----------------- # # There are two ways to make axes have an uneven size in a # Gridspec layout, either by specifying them to cross Gridspecs rows # or columns, or by specifying width and height ratios. # # The first method is used here. The constraint that makes the heights # be correct is in the code where ``drowsC < drows0`` which in # this case would be 1 is less than 2. So we constrain the # height of the 1-row Axes to be less than half the height of the # 2-row Axes. # # .. note:: # # This algorithm can be wrong if the decorations attached to the smaller # axes are very large, so there is an unaccounted-for edge case. fig = plt.figure(constrained_layout=True) gs = gridspec.GridSpec(2, 2, figure=fig) ax = fig.add_subplot(gs[:, 0]) im = ax.pcolormesh(arr, **pc_kwargs) ax = fig.add_subplot(gs[0, 1]) im = ax.pcolormesh(arr, **pc_kwargs) ax = fig.add_subplot(gs[1, 1]) im = ax.pcolormesh(arr, **pc_kwargs) plot_children(fig, fig._layoutbox, printit=False) ####################################################################### # Height and width ratios are accommodated with the same part of # the code with the smaller axes always constrained to be less in size # than the larger. fig = plt.figure(constrained_layout=True) gs = gridspec.GridSpec(3, 2, figure=fig, height_ratios=[1., 0.5, 1.5], width_ratios=[1.2, 0.8]) ax = fig.add_subplot(gs[:2, 0]) im = ax.pcolormesh(arr, **pc_kwargs) ax = fig.add_subplot(gs[2, 0]) im = ax.pcolormesh(arr, **pc_kwargs) ax = fig.add_subplot(gs[0, 1]) im = ax.pcolormesh(arr, **pc_kwargs) ax = fig.add_subplot(gs[1:, 1]) im = ax.pcolormesh(arr, **pc_kwargs) plot_children(fig, fig._layoutbox, printit=False) ######################################################################## # Empty gridspec slots # -------------------- # # The final piece of the code that has not been explained is what happens if # there is an empty gridspec opening. In that case a fake invisible axes is # added and we proceed as before. The empty gridspec has no decorations, but # the axes position in made the same size as the occupied Axes positions. # # This is done at the start of # ``_constrained_layout.do_constrained_layout()`` (``hassubplotspec``). fig = plt.figure(constrained_layout=True) gs = gridspec.GridSpec(1, 3, figure=fig) ax = fig.add_subplot(gs[0]) im = ax.pcolormesh(arr, **pc_kwargs) ax = fig.add_subplot(gs[-1]) im = ax.pcolormesh(arr, **pc_kwargs) plot_children(fig, fig._layoutbox, printit=False) plt.show() ######################################################################## # Other notes # ----------- # # The layout is called only once. This is OK if the original layout was # pretty close (which it should be in most cases). However, if the layout # changes a lot from the default layout then the decorators can change size. # In particular the x and ytick labels can change. If this happens, then # we should probably call the whole routine twice.
f14ca760ff0a41f6426ee88b9b60b024a7047320a32d26d2977840f0e109dee8
""" =============== Artist tutorial =============== Using Artist objects to render on the canvas. There are three layers to the matplotlib API. * the :class:`matplotlib.backend_bases.FigureCanvas` is the area onto which the figure is drawn * the :class:`matplotlib.backend_bases.Renderer` is the object which knows how to draw on the :class:`~matplotlib.backend_bases.FigureCanvas` * and the :class:`matplotlib.artist.Artist` is the object that knows how to use a renderer to paint onto the canvas. The :class:`~matplotlib.backend_bases.FigureCanvas` and :class:`~matplotlib.backend_bases.Renderer` handle all the details of talking to user interface toolkits like `wxPython <https://www.wxpython.org>`_ or drawing languages like PostScript®, and the ``Artist`` handles all the high level constructs like representing and laying out the figure, text, and lines. The typical user will spend 95% of their time working with the ``Artists``. There are two types of ``Artists``: primitives and containers. The primitives represent the standard graphical objects we want to paint onto our canvas: :class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.patches.Rectangle`, :class:`~matplotlib.text.Text`, :class:`~matplotlib.image.AxesImage`, etc., and the containers are places to put them (:class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axes.Axes` and :class:`~matplotlib.figure.Figure`). The standard use is to create a :class:`~matplotlib.figure.Figure` instance, use the ``Figure`` to create one or more :class:`~matplotlib.axes.Axes` or :class:`~matplotlib.axes.Subplot` instances, and use the ``Axes`` instance helper methods to create the primitives. In the example below, we create a ``Figure`` instance using :func:`matplotlib.pyplot.figure`, which is a convenience method for instantiating ``Figure`` instances and connecting them with your user interface or drawing toolkit ``FigureCanvas``. As we will discuss below, this is not necessary -- you can work directly with PostScript, PDF Gtk+, or wxPython ``FigureCanvas`` instances, instantiate your ``Figures`` directly and connect them yourselves -- but since we are focusing here on the ``Artist`` API we'll let :mod:`~matplotlib.pyplot` handle some of those details for us:: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(2, 1, 1) # two rows, one column, first plot The :class:`~matplotlib.axes.Axes` is probably the most important class in the matplotlib API, and the one you will be working with most of the time. This is because the ``Axes`` is the plotting area into which most of the objects go, and the ``Axes`` has many special helper methods (:meth:`~matplotlib.axes.Axes.plot`, :meth:`~matplotlib.axes.Axes.text`, :meth:`~matplotlib.axes.Axes.hist`, :meth:`~matplotlib.axes.Axes.imshow`) to create the most common graphics primitives (:class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`, :class:`~matplotlib.patches.Rectangle`, :class:`~matplotlib.image.Image`, respectively). These helper methods will take your data (e.g., ``numpy`` arrays and strings) and create primitive ``Artist`` instances as needed (e.g., ``Line2D``), add them to the relevant containers, and draw them when requested. Most of you are probably familiar with the :class:`~matplotlib.axes.Subplot`, which is just a special case of an ``Axes`` that lives on a regular rows by columns grid of ``Subplot`` instances. If you want to create an ``Axes`` at an arbitrary location, simply use the :meth:`~matplotlib.figure.Figure.add_axes` method which takes a list of ``[left, bottom, width, height]`` values in 0-1 relative figure coordinates:: fig2 = plt.figure() ax2 = fig2.add_axes([0.15, 0.1, 0.7, 0.3]) Continuing with our example:: import numpy as np t = np.arange(0.0, 1.0, 0.01) s = np.sin(2*np.pi*t) line, = ax.plot(t, s, color='blue', lw=2) In this example, ``ax`` is the ``Axes`` instance created by the ``fig.add_subplot`` call above (remember ``Subplot`` is just a subclass of ``Axes``) and when you call ``ax.plot``, it creates a ``Line2D`` instance and adds it to the :attr:`Axes.lines <matplotlib.axes.Axes.lines>` list. In the interactive `ipython <http://ipython.org/>`_ session below, you can see that the ``Axes.lines`` list is length one and contains the same line that was returned by the ``line, = ax.plot...`` call: .. sourcecode:: ipython In [101]: ax.lines[0] Out[101]: <matplotlib.lines.Line2D instance at 0x19a95710> In [102]: line Out[102]: <matplotlib.lines.Line2D instance at 0x19a95710> If you make subsequent calls to ``ax.plot`` (and the hold state is "on" which is the default) then additional lines will be added to the list. You can remove lines later simply by calling the list methods; either of these will work:: del ax.lines[0] ax.lines.remove(line) # one or the other, not both! The Axes also has helper methods to configure and decorate the x-axis and y-axis tick, tick labels and axis labels:: xtext = ax.set_xlabel('my xdata') # returns a Text instance ytext = ax.set_ylabel('my ydata') When you call :meth:`ax.set_xlabel <matplotlib.axes.Axes.set_xlabel>`, it passes the information on the :class:`~matplotlib.text.Text` instance of the :class:`~matplotlib.axis.XAxis`. Each ``Axes`` instance contains an :class:`~matplotlib.axis.XAxis` and a :class:`~matplotlib.axis.YAxis` instance, which handle the layout and drawing of the ticks, tick labels and axis labels. Try creating the figure below. """ import numpy as np import matplotlib.pyplot as plt fig = plt.figure() fig.subplots_adjust(top=0.8) ax1 = fig.add_subplot(211) ax1.set_ylabel('volts') ax1.set_title('a sine wave') t = np.arange(0.0, 1.0, 0.01) s = np.sin(2*np.pi*t) line, = ax1.plot(t, s, color='blue', lw=2) # Fixing random state for reproducibility np.random.seed(19680801) ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3]) n, bins, patches = ax2.hist(np.random.randn(1000), 50, facecolor='yellow', edgecolor='yellow') ax2.set_xlabel('time (s)') plt.show() ############################################################################### # .. _customizing-artists: # # Customizing your objects # ======================== # # Every element in the figure is represented by a matplotlib # :class:`~matplotlib.artist.Artist`, and each has an extensive list of # properties to configure its appearance. The figure itself contains a # :class:`~matplotlib.patches.Rectangle` exactly the size of the figure, # which you can use to set the background color and transparency of the # figures. Likewise, each :class:`~matplotlib.axes.Axes` bounding box # (the standard white box with black edges in the typical matplotlib # plot, has a ``Rectangle`` instance that determines the color, # transparency, and other properties of the Axes. These instances are # stored as member variables :attr:`Figure.patch # <matplotlib.figure.Figure.patch>` and :attr:`Axes.patch # <matplotlib.axes.Axes.patch>` ("Patch" is a name inherited from # MATLAB, and is a 2D "patch" of color on the figure, e.g., rectangles, # circles and polygons). Every matplotlib ``Artist`` has the following # properties # # ========== ================================================================================ # Property Description # ========== ================================================================================ # alpha The transparency - a scalar from 0-1 # animated A boolean that is used to facilitate animated drawing # axes The axes that the Artist lives in, possibly None # clip_box The bounding box that clips the Artist # clip_on Whether clipping is enabled # clip_path The path the artist is clipped to # contains A picking function to test whether the artist contains the pick point # figure The figure instance the artist lives in, possibly None # label A text label (e.g., for auto-labeling) # picker A python object that controls object picking # transform The transformation # visible A boolean whether the artist should be drawn # zorder A number which determines the drawing order # rasterized Boolean; Turns vectors into raster graphics (for compression & eps transparency) # ========== ================================================================================ # # Each of the properties is accessed with an old-fashioned setter or # getter (yes we know this irritates Pythonistas and we plan to support # direct access via properties or traits but it hasn't been done yet). # For example, to multiply the current alpha by a half:: # # a = o.get_alpha() # o.set_alpha(0.5*a) # # If you want to set a number of properties at once, you can also use # the ``set`` method with keyword arguments. For example:: # # o.set(alpha=0.5, zorder=2) # # If you are working interactively at the python shell, a handy way to # inspect the ``Artist`` properties is to use the # :func:`matplotlib.artist.getp` function (simply # :func:`~matplotlib.pyplot.getp` in pyplot), which lists the properties # and their values. This works for classes derived from ``Artist`` as # well, e.g., ``Figure`` and ``Rectangle``. Here are the ``Figure`` rectangle # properties mentioned above: # # .. sourcecode:: ipython # # In [149]: matplotlib.artist.getp(fig.patch) # alpha = 1.0 # animated = False # antialiased or aa = True # axes = None # clip_box = None # clip_on = False # clip_path = None # contains = None # edgecolor or ec = w # facecolor or fc = 0.75 # figure = Figure(8.125x6.125) # fill = 1 # hatch = None # height = 1 # label = # linewidth or lw = 1.0 # picker = None # transform = <Affine object at 0x134cca84> # verts = ((0, 0), (0, 1), (1, 1), (1, 0)) # visible = True # width = 1 # window_extent = <Bbox object at 0x134acbcc> # x = 0 # y = 0 # zorder = 1 # # The docstrings for all of the classes also contain the ``Artist`` # properties, so you can consult the interactive "help" or the # :ref:`artist-api` for a listing of properties for a given object. # # .. _object-containers: # # Object containers # ================= # # # Now that we know how to inspect and set the properties of a given # object we want to configure, we need to know how to get at that object. # As mentioned in the introduction, there are two kinds of objects: # primitives and containers. The primitives are usually the things you # want to configure (the font of a :class:`~matplotlib.text.Text` # instance, the width of a :class:`~matplotlib.lines.Line2D`) although # the containers also have some properties as well -- for example the # :class:`~matplotlib.axes.Axes` :class:`~matplotlib.artist.Artist` is a # container that contains many of the primitives in your plot, but it # also has properties like the ``xscale`` to control whether the xaxis # is 'linear' or 'log'. In this section we'll review where the various # container objects store the ``Artists`` that you want to get at. # # .. _figure-container: # # Figure container # ---------------- # # The top level container ``Artist`` is the # :class:`matplotlib.figure.Figure`, and it contains everything in the # figure. The background of the figure is a # :class:`~matplotlib.patches.Rectangle` which is stored in # :attr:`Figure.patch <matplotlib.figure.Figure.patch>`. As # you add subplots (:meth:`~matplotlib.figure.Figure.add_subplot`) and # axes (:meth:`~matplotlib.figure.Figure.add_axes`) to the figure # these will be appended to the :attr:`Figure.axes # <matplotlib.figure.Figure.axes>`. These are also returned by the # methods that create them: # # .. sourcecode:: ipython # # In [156]: fig = plt.figure() # # In [157]: ax1 = fig.add_subplot(211) # # In [158]: ax2 = fig.add_axes([0.1, 0.1, 0.7, 0.3]) # # In [159]: ax1 # Out[159]: <matplotlib.axes.Subplot instance at 0xd54b26c> # # In [160]: print(fig.axes) # [<matplotlib.axes.Subplot instance at 0xd54b26c>, <matplotlib.axes.Axes instance at 0xd3f0b2c>] # # Because the figure maintains the concept of the "current axes" (see # :meth:`Figure.gca <matplotlib.figure.Figure.gca>` and # :meth:`Figure.sca <matplotlib.figure.Figure.sca>`) to support the # pylab/pyplot state machine, you should not insert or remove axes # directly from the axes list, but rather use the # :meth:`~matplotlib.figure.Figure.add_subplot` and # :meth:`~matplotlib.figure.Figure.add_axes` methods to insert, and the # :meth:`~matplotlib.figure.Figure.delaxes` method to delete. You are # free however, to iterate over the list of axes or index into it to get # access to ``Axes`` instances you want to customize. Here is an # example which turns all the axes grids on:: # # for ax in fig.axes: # ax.grid(True) # # # The figure also has its own text, lines, patches and images, which you # can use to add primitives directly. The default coordinate system for # the ``Figure`` will simply be in pixels (which is not usually what you # want) but you can control this by setting the transform property of # the ``Artist`` you are adding to the figure. # # .. TODO: Is that still true? # # More useful is "figure coordinates" where (0, 0) is the bottom-left of # the figure and (1, 1) is the top-right of the figure which you can # obtain by setting the ``Artist`` transform to :attr:`fig.transFigure # <matplotlib.figure.Figure.transFigure>`: import matplotlib.lines as lines fig = plt.figure() l1 = lines.Line2D([0, 1], [0, 1], transform=fig.transFigure, figure=fig) l2 = lines.Line2D([0, 1], [1, 0], transform=fig.transFigure, figure=fig) fig.lines.extend([l1, l2]) plt.show() ############################################################################### # Here is a summary of the Artists the figure contains # # .. TODO: Add xrefs to this table # # ================ =============================================================== # Figure attribute Description # ================ =============================================================== # axes A list of Axes instances (includes Subplot) # patch The Rectangle background # images A list of FigureImages patches - useful for raw pixel display # legends A list of Figure Legend instances (different from Axes.legends) # lines A list of Figure Line2D instances (rarely used, see Axes.lines) # patches A list of Figure patches (rarely used, see Axes.patches) # texts A list Figure Text instances # ================ =============================================================== # # .. _axes-container: # # Axes container # -------------- # # The :class:`matplotlib.axes.Axes` is the center of the matplotlib # universe -- it contains the vast majority of all the ``Artists`` used # in a figure with many helper methods to create and add these # ``Artists`` to itself, as well as helper methods to access and # customize the ``Artists`` it contains. Like the # :class:`~matplotlib.figure.Figure`, it contains a # :class:`~matplotlib.patches.Patch` # :attr:`~matplotlib.axes.Axes.patch` which is a # :class:`~matplotlib.patches.Rectangle` for Cartesian coordinates and a # :class:`~matplotlib.patches.Circle` for polar coordinates; this patch # determines the shape, background and border of the plotting region:: # # ax = fig.add_subplot(111) # rect = ax.patch # a Rectangle instance # rect.set_facecolor('green') # # When you call a plotting method, e.g., the canonical # :meth:`~matplotlib.axes.Axes.plot` and pass in arrays or lists of # values, the method will create a :meth:`matplotlib.lines.Line2D` # instance, update the line with all the ``Line2D`` properties passed as # keyword arguments, add the line to the :attr:`Axes.lines # <matplotlib.axes.Axes.lines>` container, and returns it to you: # # .. sourcecode:: ipython # # In [213]: x, y = np.random.rand(2, 100) # # In [214]: line, = ax.plot(x, y, '-', color='blue', linewidth=2) # # ``plot`` returns a list of lines because you can pass in multiple x, y # pairs to plot, and we are unpacking the first element of the length # one list into the line variable. The line has been added to the # ``Axes.lines`` list: # # .. sourcecode:: ipython # # In [229]: print(ax.lines) # [<matplotlib.lines.Line2D instance at 0xd378b0c>] # # Similarly, methods that create patches, like # :meth:`~matplotlib.axes.Axes.bar` creates a list of rectangles, will # add the patches to the :attr:`Axes.patches # <matplotlib.axes.Axes.patches>` list: # # .. sourcecode:: ipython # # In [233]: n, bins, rectangles = ax.hist(np.random.randn(1000), 50, facecolor='yellow') # # In [234]: rectangles # Out[234]: <a list of 50 Patch objects> # # In [235]: print(len(ax.patches)) # # You should not add objects directly to the ``Axes.lines`` or # ``Axes.patches`` lists unless you know exactly what you are doing, # because the ``Axes`` needs to do a few things when it creates and adds # an object. It sets the figure and axes property of the ``Artist``, as # well as the default ``Axes`` transformation (unless a transformation # is set). It also inspects the data contained in the ``Artist`` to # update the data structures controlling auto-scaling, so that the view # limits can be adjusted to contain the plotted data. You can, # nonetheless, create objects yourself and add them directly to the # ``Axes`` using helper methods like # :meth:`~matplotlib.axes.Axes.add_line` and # :meth:`~matplotlib.axes.Axes.add_patch`. Here is an annotated # interactive session illustrating what is going on: # # .. sourcecode:: ipython # # In [262]: fig, ax = plt.subplots() # # # create a rectangle instance # In [263]: rect = matplotlib.patches.Rectangle( (1,1), width=5, height=12) # # # by default the axes instance is None # In [264]: print(rect.get_axes()) # None # # # and the transformation instance is set to the "identity transform" # In [265]: print(rect.get_transform()) # <Affine object at 0x13695544> # # # now we add the Rectangle to the Axes # In [266]: ax.add_patch(rect) # # # and notice that the ax.add_patch method has set the axes # # instance # In [267]: print(rect.get_axes()) # Axes(0.125,0.1;0.775x0.8) # # # and the transformation has been set too # In [268]: print(rect.get_transform()) # <Affine object at 0x15009ca4> # # # the default axes transformation is ax.transData # In [269]: print(ax.transData) # <Affine object at 0x15009ca4> # # # notice that the xlimits of the Axes have not been changed # In [270]: print(ax.get_xlim()) # (0.0, 1.0) # # # but the data limits have been updated to encompass the rectangle # In [271]: print(ax.dataLim.bounds) # (1.0, 1.0, 5.0, 12.0) # # # we can manually invoke the auto-scaling machinery # In [272]: ax.autoscale_view() # # # and now the xlim are updated to encompass the rectangle # In [273]: print(ax.get_xlim()) # (1.0, 6.0) # # # we have to manually force a figure draw # In [274]: ax.figure.canvas.draw() # # # There are many, many ``Axes`` helper methods for creating primitive # ``Artists`` and adding them to their respective containers. The table # below summarizes a small sampling of them, the kinds of ``Artist`` they # create, and where they store them # # ============================== ==================== ======================= # Helper method Artist Container # ============================== ==================== ======================= # ax.annotate - text annotations Annotate ax.texts # ax.bar - bar charts Rectangle ax.patches # ax.errorbar - error bar plots Line2D and Rectangle ax.lines and ax.patches # ax.fill - shared area Polygon ax.patches # ax.hist - histograms Rectangle ax.patches # ax.imshow - image data AxesImage ax.images # ax.legend - axes legends Legend ax.legends # ax.plot - xy plots Line2D ax.lines # ax.scatter - scatter charts PolygonCollection ax.collections # ax.text - text Text ax.texts # ============================== ==================== ======================= # # # In addition to all of these ``Artists``, the ``Axes`` contains two # important ``Artist`` containers: the :class:`~matplotlib.axis.XAxis` # and :class:`~matplotlib.axis.YAxis`, which handle the drawing of the # ticks and labels. These are stored as instance variables # :attr:`~matplotlib.axes.Axes.xaxis` and # :attr:`~matplotlib.axes.Axes.yaxis`. The ``XAxis`` and ``YAxis`` # containers will be detailed below, but note that the ``Axes`` contains # many helper methods which forward calls on to the # :class:`~matplotlib.axis.Axis` instances so you often do not need to # work with them directly unless you want to. For example, you can set # the font color of the ``XAxis`` ticklabels using the ``Axes`` helper # method:: # # for label in ax.get_xticklabels(): # label.set_color('orange') # # Below is a summary of the Artists that the Axes contains # # ============== ====================================== # Axes attribute Description # ============== ====================================== # artists A list of Artist instances # patch Rectangle instance for Axes background # collections A list of Collection instances # images A list of AxesImage # legends A list of Legend instances # lines A list of Line2D instances # patches A list of Patch instances # texts A list of Text instances # xaxis matplotlib.axis.XAxis instance # yaxis matplotlib.axis.YAxis instance # ============== ====================================== # # .. _axis-container: # # Axis containers # --------------- # # The :class:`matplotlib.axis.Axis` instances handle the drawing of the # tick lines, the grid lines, the tick labels and the axis label. You # can configure the left and right ticks separately for the y-axis, and # the upper and lower ticks separately for the x-axis. The ``Axis`` # also stores the data and view intervals used in auto-scaling, panning # and zooming, as well as the :class:`~matplotlib.ticker.Locator` and # :class:`~matplotlib.ticker.Formatter` instances which control where # the ticks are placed and how they are represented as strings. # # Each ``Axis`` object contains a :attr:`~matplotlib.axis.Axis.label` attribute # (this is what :mod:`~matplotlib.pyplot` modifies in calls to # :func:`~matplotlib.pyplot.xlabel` and :func:`~matplotlib.pyplot.ylabel`) as # well as a list of major and minor ticks. The ticks are # :class:`~matplotlib.axis.XTick` and :class:`~matplotlib.axis.YTick` instances, # which contain the actual line and text primitives that render the ticks and # ticklabels. Because the ticks are dynamically created as needed (e.g., when # panning and zooming), you should access the lists of major and minor ticks # through their accessor methods :meth:`~matplotlib.axis.Axis.get_major_ticks` # and :meth:`~matplotlib.axis.Axis.get_minor_ticks`. Although the ticks contain # all the primitives and will be covered below, ``Axis`` instances have accessor # methods that return the tick lines, tick labels, tick locations etc.: fig, ax = plt.subplots() axis = ax.xaxis axis.get_ticklocs() ############################################################################### axis.get_ticklabels() ############################################################################### # note there are twice as many ticklines as labels because by # default there are tick lines at the top and bottom but only tick # labels below the xaxis; this can be customized axis.get_ticklines() ############################################################################### # by default you get the major ticks back axis.get_ticklines() ############################################################################### # but you can also ask for the minor ticks axis.get_ticklines(minor=True) # Here is a summary of some of the useful accessor methods of the ``Axis`` # (these have corresponding setters where useful, such as # set_major_formatter) # # ====================== ========================================================= # Accessor method Description # ====================== ========================================================= # get_scale The scale of the axis, e.g., 'log' or 'linear' # get_view_interval The interval instance of the axis view limits # get_data_interval The interval instance of the axis data limits # get_gridlines A list of grid lines for the Axis # get_label The axis label - a Text instance # get_ticklabels A list of Text instances - keyword minor=True|False # get_ticklines A list of Line2D instances - keyword minor=True|False # get_ticklocs A list of Tick locations - keyword minor=True|False # get_major_locator The matplotlib.ticker.Locator instance for major ticks # get_major_formatter The matplotlib.ticker.Formatter instance for major ticks # get_minor_locator The matplotlib.ticker.Locator instance for minor ticks # get_minor_formatter The matplotlib.ticker.Formatter instance for minor ticks # get_major_ticks A list of Tick instances for major ticks # get_minor_ticks A list of Tick instances for minor ticks # grid Turn the grid on or off for the major or minor ticks # ====================== ========================================================= # # Here is an example, not recommended for its beauty, which customizes # the axes and tick properties # plt.figure creates a matplotlib.figure.Figure instance fig = plt.figure() rect = fig.patch # a rectangle instance rect.set_facecolor('lightgoldenrodyellow') ax1 = fig.add_axes([0.1, 0.3, 0.4, 0.4]) rect = ax1.patch rect.set_facecolor('lightslategray') for label in ax1.xaxis.get_ticklabels(): # label is a Text instance label.set_color('red') label.set_rotation(45) label.set_fontsize(16) for line in ax1.yaxis.get_ticklines(): # line is a Line2D instance line.set_color('green') line.set_markersize(25) line.set_markeredgewidth(3) plt.show() ############################################################################### # .. _tick-container: # # Tick containers # --------------- # # The :class:`matplotlib.axis.Tick` is the final container object in our # descent from the :class:`~matplotlib.figure.Figure` to the # :class:`~matplotlib.axes.Axes` to the :class:`~matplotlib.axis.Axis` # to the :class:`~matplotlib.axis.Tick`. The ``Tick`` contains the tick # and grid line instances, as well as the label instances for the upper # and lower ticks. Each of these is accessible directly as an attribute # of the ``Tick``. # # ============== ========================================================== # Tick attribute Description # ============== ========================================================== # tick1line Line2D instance # tick2line Line2D instance # gridline Line2D instance # label1 Text instance # label2 Text instance # ============== ========================================================== # # Here is an example which sets the formatter for the right side ticks with # dollar signs and colors them green on the right side of the yaxis import matplotlib.ticker as ticker # Fixing random state for reproducibility np.random.seed(19680801) fig, ax = plt.subplots() ax.plot(100*np.random.rand(20)) formatter = ticker.FormatStrFormatter('$%1.2f') ax.yaxis.set_major_formatter(formatter) for tick in ax.yaxis.get_major_ticks(): tick.label1.set_visible(False) tick.label2.set_visible(True) tick.label2.set_color('green') plt.show()
3c6449746d390e3a459527e7d7c728da825eedc38d5bb1e21bd0319f90f95874
""" =================== Styling with cycler =================== Demo of custom property-cycle settings to control colors and other style properties for multi-line plots. .. note:: More complete documentation of the ``cycler`` API can be found `here <http://matplotlib.org/cycler/>`_. This example demonstrates two different APIs: 1. Setting the default rc parameter specifying the property cycle. This affects all subsequent axes (but not axes already created). 2. Setting the property cycle for a single pair of axes. """ from cycler import cycler import numpy as np import matplotlib.pyplot as plt ############################################################################### # First we'll generate some sample data, in this case, four offset sine # curves. x = np.linspace(0, 2 * np.pi, 50) offsets = np.linspace(0, 2 * np.pi, 4, endpoint=False) yy = np.transpose([np.sin(x + phi) for phi in offsets]) ############################################################################### # Now ``yy`` has shape print(yy.shape) ############################################################################### # So ``yy[:, i]`` will give you the ``i``-th offset sine curve. Let's set the # default prop_cycle using :func:`matplotlib.pyplot.rc`. We'll combine a color # cycler and a linestyle cycler by adding (``+``) two ``cycler``'s together. # See the bottom of this tutorial for more information about combining # different cyclers. default_cycler = (cycler(color=['r', 'g', 'b', 'y']) + cycler(linestyle=['-', '--', ':', '-.'])) plt.rc('lines', linewidth=4) plt.rc('axes', prop_cycle=default_cycler) ############################################################################### # Now we'll generate a figure with two axes, one on top of the other. On the # first axis, we'll plot with the default cycler. On the second axis, we'll # set the prop_cycler using :func:`matplotlib.axes.Axes.set_prop_cycle` # which will only set the ``prop_cycle`` for this :mod:`matplotlib.axes.Axes` # instance. We'll use a second ``cycler`` that combines a color cycler and a # linewidth cycler. custom_cycler = (cycler(color=['c', 'm', 'y', 'k']) + cycler(lw=[1, 2, 3, 4])) fig, (ax0, ax1) = plt.subplots(nrows=2) ax0.plot(yy) ax0.set_title('Set default color cycle to rgby') ax1.set_prop_cycle(custom_cycler) ax1.plot(yy) ax1.set_title('Set axes color cycle to cmyk') # Add a bit more space between the two plots. fig.subplots_adjust(hspace=0.3) plt.show() ############################################################################### # Setting ``prop_cycler`` in the ``matplotlibrc`` file or style files # ------------------------------------------------------------------- # # Remember, if you want to set a custom ``prop_cycler`` in your # ``.matplotlibrc`` file or a style file (``style.mplstyle``), you can set the # ``axes.prop_cycle`` property: # # .. code-block:: python # # axes.prop_cycle : cycler(color='bgrcmyk') # # Cycling through multiple properties # ----------------------------------- # # You can add cyclers: # # .. code-block:: python # # from cycler import cycler # cc = (cycler(color=list('rgb')) + # cycler(linestyle=['-', '--', '-.'])) # for d in cc: # print(d) # # Results in: # # .. code-block:: python # # {'color': 'r', 'linestyle': '-'} # {'color': 'g', 'linestyle': '--'} # {'color': 'b', 'linestyle': '-.'} # # # You can multiply cyclers: # # .. code-block:: python # # from cycler import cycler # cc = (cycler(color=list('rgb')) * # cycler(linestyle=['-', '--', '-.'])) # for d in cc: # print(d) # # Results in: # # .. code-block:: python # # {'color': 'r', 'linestyle': '-'} # {'color': 'r', 'linestyle': '--'} # {'color': 'r', 'linestyle': '-.'} # {'color': 'g', 'linestyle': '-'} # {'color': 'g', 'linestyle': '--'} # {'color': 'g', 'linestyle': '-.'} # {'color': 'b', 'linestyle': '-'} # {'color': 'b', 'linestyle': '--'} # {'color': 'b', 'linestyle': '-.'}
02f486f13d85a052cf6c7abbf06eee3b8bc5ed389734c508da6cba0a1d7a7bc8
""" *origin* and *extent* in `~.Axes.imshow` ======================================== :meth:`~.Axes.imshow` allows you to render an image (either a 2D array which will be color-mapped (based on *norm* and *cmap*) or and 3D RGB(A) array which will be used as-is) to a rectangular region in dataspace. The orientation of the image in the final rendering is controlled by the *origin* and *extent* kwargs (and attributes on the resulting `~.AxesImage` instance) and the data limits of the axes. The *extent* kwarg controls the bounding box in data coordinates that the image will fill specified as ``(left, right, bottom, top)`` in **data coordinates**, the *origin* kwarg controls how the image fills that bounding box, and the orientation in the final rendered image is also affected by the axes limits. .. hint:: Most of the code below is used for adding labels and informative text to the plots. The described effects of *origin* and *extent* can be seen in the plots without the need to follow all code details. For a quick understanding, you may want to skip the code details below and directly continue with the discussion of the results. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec def index_to_coordinate(index, extent, origin): """Return the pixel center of an index.""" left, right, bottom, top = extent hshift = 0.5 * np.sign(right - left) left, right = left + hshift, right - hshift vshift = 0.5 * np.sign(top - bottom) bottom, top = bottom + vshift, top - vshift if origin == 'upper': bottom, top = top, bottom return { "[0, 0]": (left, bottom), "[M', 0]": (left, top), "[0, N']": (right, bottom), "[M', N']": (right, top), }[index] def get_index_label_pos(index, extent, origin, inverted_xindex): """ Return the desired position and horizontal alignment of an index label. """ if extent is None: extent = lookup_extent(origin) left, right, bottom, top = extent x, y = index_to_coordinate(index, extent, origin) is_x0 = index[-2:] == "0]" halign = 'left' if is_x0 ^ inverted_xindex else 'right' hshift = 0.5 * np.sign(left - right) x += hshift * (1 if is_x0 else -1) return x, y, halign def get_color(index, data, cmap): """Return the data color of an index.""" val = { "[0, 0]": data[0, 0], "[0, N']": data[0, -1], "[M', 0]": data[-1, 0], "[M', N']": data[-1, -1], }[index] return cmap(val / data.max()) def lookup_extent(origin): """Return extent for label positioning when not given explicitly.""" if origin == 'lower': return (-0.5, 6.5, -0.5, 5.5) else: return (-0.5, 6.5, 5.5, -0.5) def set_extent_None_text(ax): ax.text(3, 2.5, 'equals\nextent=None', size='large', ha='center', va='center', color='w') def plot_imshow_with_labels(ax, data, extent, origin, xlim, ylim): """Actually run ``imshow()`` and add extent and index labels.""" im = ax.imshow(data, origin=origin, extent=extent) # extent labels (left, right, bottom, top) left, right, bottom, top = im.get_extent() if xlim is None or top > bottom: upper_string, lower_string = 'top', 'bottom' else: upper_string, lower_string = 'bottom', 'top' if ylim is None or left < right: port_string, starboard_string = 'left', 'right' inverted_xindex = False else: port_string, starboard_string = 'right', 'left' inverted_xindex = True bbox_kwargs = {'fc': 'w', 'alpha': .75, 'boxstyle': "round4"} ann_kwargs = {'xycoords': 'axes fraction', 'textcoords': 'offset points', 'bbox': bbox_kwargs} ax.annotate(upper_string, xy=(.5, 1), xytext=(0, -1), ha='center', va='top', **ann_kwargs) ax.annotate(lower_string, xy=(.5, 0), xytext=(0, 1), ha='center', va='bottom', **ann_kwargs) ax.annotate(port_string, xy=(0, .5), xytext=(1, 0), ha='left', va='center', rotation=90, **ann_kwargs) ax.annotate(starboard_string, xy=(1, .5), xytext=(-1, 0), ha='right', va='center', rotation=-90, **ann_kwargs) ax.set_title('origin: {origin}'.format(origin=origin)) # index labels for index in ["[0, 0]", "[0, N']", "[M', 0]", "[M', N']"]: tx, ty, halign = get_index_label_pos(index, extent, origin, inverted_xindex) facecolor = get_color(index, data, im.get_cmap()) ax.text(tx, ty, index, color='white', ha=halign, va='center', bbox={'boxstyle': 'square', 'facecolor': facecolor}) if xlim: ax.set_xlim(*xlim) if ylim: ax.set_ylim(*ylim) def generate_imshow_demo_grid(extents, xlim=None, ylim=None): N = len(extents) fig = plt.figure(tight_layout=True) fig.set_size_inches(6, N * (11.25) / 5) gs = GridSpec(N, 5, figure=fig) columns = {'label': [fig.add_subplot(gs[j, 0]) for j in range(N)], 'upper': [fig.add_subplot(gs[j, 1:3]) for j in range(N)], 'lower': [fig.add_subplot(gs[j, 3:5]) for j in range(N)]} x, y = np.ogrid[0:6, 0:7] data = x + y for origin in ['upper', 'lower']: for ax, extent in zip(columns[origin], extents): plot_imshow_with_labels(ax, data, extent, origin, xlim, ylim) for ax, extent in zip(columns['label'], extents): text_kwargs = {'ha': 'right', 'va': 'center', 'xycoords': 'axes fraction', 'xy': (1, .5)} if extent is None: ax.annotate('None', **text_kwargs) ax.set_title('extent=') else: left, right, bottom, top = extent text = ('left: {left:0.1f}\nright: {right:0.1f}\n' + 'bottom: {bottom:0.1f}\ntop: {top:0.1f}\n').format( left=left, right=right, bottom=bottom, top=top) ax.annotate(text, **text_kwargs) ax.axis('off') return columns ############################################################################### # # Default extent # -------------- # # First, let's have a look at the default `extent=None` generate_imshow_demo_grid(extents=[None]) ############################################################################### # # Generally, for an array of shape (M, N), the first index runs along the # vertical, the second index runs along the horizontal. # The pixel centers are at integer positions ranging from 0 to ``N' = N - 1`` # horizontally and from 0 to ``M' = M - 1`` vertically. # *origin* determines how to the data is filled in the bounding box. # # For ``origin='lower'``: # # - [0, 0] is at (left, bottom) # - [M', 0] is at (left, top) # - [0, N'] is at (right, bottom) # - [M', N'] is at (right, top) # # ``origin='upper'`` reverses the vertical axes direction and filling: # # - [0, 0] is at (left, top) # - [M', 0] is at (left, bottom) # - [0, N'] is at (right, top) # - [M', N'] is at (right, bottom) # # In summary, the position of the [0, 0] index as well as the extent are # influenced by *origin*: # # ====== =============== ========================================== # origin [0, 0] position extent # ====== =============== ========================================== # upper top left ``(-0.5, numcols-0.5, numrows-0.5, -0.5)`` # lower bottom left ``(-0.5, numcols-0.5, -0.5, numrows-0.5)`` # ====== =============== ========================================== # # The default value of *origin* is set by :rc:`image.origin` which defaults # to ``'upper'`` to match the matrix indexing conventions in math and # computer graphics image indexing conventions. # # # Explicit extent # --------------- # # By setting *extent* we define the coordinates of the image area. The # underlying image data is interpolated/resampled to fill that area. # # If the axes is set to autoscale, then the view limits of the axes are set # to match the *extent* which ensures that the coordinate set by # ``(left, bottom)`` is at the bottom left of the axes! However, this # may invert the axis so they do not increase in the 'natural' direction. # extents = [(-0.5, 6.5, -0.5, 5.5), (-0.5, 6.5, 5.5, -0.5), (6.5, -0.5, -0.5, 5.5), (6.5, -0.5, 5.5, -0.5)] columns = generate_imshow_demo_grid(extents) set_extent_None_text(columns['upper'][1]) set_extent_None_text(columns['lower'][0]) ############################################################################### # # Explicit extent and axes limits # ------------------------------- # # If we fix the axes limits by explicitly setting `set_xlim` / `set_ylim`, we # force a certain size and orientation of the axes. # This can decouple the 'left-right' and 'top-bottom' sense of the image from # the orientation on the screen. # # In the example below we have chosen the limits slightly larger than the # extent (note the white areas within the Axes). # # While we keep the extents as in the examples before, the coordinate (0, 0) # is now explicitly put at the bottom left and values increase to up and to # the right (from the viewer point of view). # We can see that: # # - The coordinate ``(left, bottom)`` anchors the image which then fills the # box going towards the ``(right, top)`` point in data space. # - The first column is always closest to the 'left'. # - *origin* controls if the first row is closest to 'top' or 'bottom'. # - The image may be inverted along either direction. # - The 'left-right' and 'top-bottom' sense of the image may be uncoupled from # the orientation on the screen. generate_imshow_demo_grid(extents=[None] + extents, xlim=(-2, 8), ylim=(-1, 6))
657dddf4f5a2b4b180e187bc2a5e9d31805e2f57f957ee5006a50d17ad72eb1e
""" ================== Tight Layout guide ================== How to use tight-layout to fit plots within your figure cleanly. *tight_layout* automatically adjusts subplot params so that the subplot(s) fits in to the figure area. This is an experimental feature and may not work for some cases. It only checks the extents of ticklabels, axis labels, and titles. An alternative to *tight_layout* is :doc:`constrained_layout </tutorials/intermediate/constrainedlayout_guide>`. Simple Example ============== In matplotlib, the location of axes (including subplots) are specified in normalized figure coordinates. It can happen that your axis labels or titles (or sometimes even ticklabels) go outside the figure area, and are thus clipped. """ # sphinx_gallery_thumbnail_number = 7 import matplotlib.pyplot as plt import numpy as np plt.rcParams['savefig.facecolor'] = "0.8" def example_plot(ax, fontsize=12): ax.plot([1, 2]) ax.locator_params(nbins=3) ax.set_xlabel('x-label', fontsize=fontsize) ax.set_ylabel('y-label', fontsize=fontsize) ax.set_title('Title', fontsize=fontsize) plt.close('all') fig, ax = plt.subplots() example_plot(ax, fontsize=24) ############################################################################### # To prevent this, the location of axes needs to be adjusted. For # subplots, this can be done by adjusting the subplot params # (:ref:`howto-subplots-adjust`). Matplotlib v1.1 introduces a new # command :func:`~matplotlib.pyplot.tight_layout` that does this # automatically for you. fig, ax = plt.subplots() example_plot(ax, fontsize=24) plt.tight_layout() ############################################################################### # Note that :func:`matplotlib.pyplot.tight_layout` will only adjust the # subplot params when it is called. In order to perform this adjustment each # time the figure is redrawn, you can call ``fig.set_tight_layout(True)``, or, # equivalently, set the ``figure.autolayout`` rcParam to ``True``. # # When you have multiple subplots, often you see labels of different # axes overlapping each other. plt.close('all') fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2) example_plot(ax1) example_plot(ax2) example_plot(ax3) example_plot(ax4) ############################################################################### # :func:`~matplotlib.pyplot.tight_layout` will also adjust spacing between # subplots to minimize the overlaps. fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2) example_plot(ax1) example_plot(ax2) example_plot(ax3) example_plot(ax4) plt.tight_layout() ############################################################################### # :func:`~matplotlib.pyplot.tight_layout` can take keyword arguments of # *pad*, *w_pad* and *h_pad*. These control the extra padding around the # figure border and between subplots. The pads are specified in fraction # of fontsize. fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2) example_plot(ax1) example_plot(ax2) example_plot(ax3) example_plot(ax4) plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) ############################################################################### # :func:`~matplotlib.pyplot.tight_layout` will work even if the sizes of # subplots are different as far as their grid specification is # compatible. In the example below, *ax1* and *ax2* are subplots of a 2x2 # grid, while *ax3* is of a 1x2 grid. plt.close('all') fig = plt.figure() ax1 = plt.subplot(221) ax2 = plt.subplot(223) ax3 = plt.subplot(122) example_plot(ax1) example_plot(ax2) example_plot(ax3) plt.tight_layout() ############################################################################### # It works with subplots created with # :func:`~matplotlib.pyplot.subplot2grid`. In general, subplots created # from the gridspec (:doc:`/tutorials/intermediate/gridspec`) will work. plt.close('all') fig = plt.figure() ax1 = plt.subplot2grid((3, 3), (0, 0)) ax2 = plt.subplot2grid((3, 3), (0, 1), colspan=2) ax3 = plt.subplot2grid((3, 3), (1, 0), colspan=2, rowspan=2) ax4 = plt.subplot2grid((3, 3), (1, 2), rowspan=2) example_plot(ax1) example_plot(ax2) example_plot(ax3) example_plot(ax4) plt.tight_layout() ############################################################################### # Although not thoroughly tested, it seems to work for subplots with # aspect != "auto" (e.g., axes with images). arr = np.arange(100).reshape((10, 10)) plt.close('all') fig = plt.figure(figsize=(5, 4)) ax = plt.subplot(111) im = ax.imshow(arr, interpolation="none") plt.tight_layout() ############################################################################### # Caveats # ======= # # * :func:`~matplotlib.pyplot.tight_layout` only considers ticklabels, axis # labels, and titles. Thus, other artists may be clipped and also may # overlap. # # * It assumes that the extra space needed for ticklabels, axis labels, # and titles is independent of original location of axes. This is # often true, but there are rare cases where it is not. # # * pad=0 clips some of the texts by a few pixels. This may be a bug or # a limitation of the current algorithm and it is not clear why it # happens. Meanwhile, use of pad at least larger than 0.3 is # recommended. # # Use with GridSpec # ================= # # GridSpec has its own :func:`~matplotlib.gridspec.GridSpec.tight_layout` method # (the pyplot api :func:`~matplotlib.pyplot.tight_layout` also works). import matplotlib.gridspec as gridspec plt.close('all') fig = plt.figure() gs1 = gridspec.GridSpec(2, 1) ax1 = fig.add_subplot(gs1[0]) ax2 = fig.add_subplot(gs1[1]) example_plot(ax1) example_plot(ax2) gs1.tight_layout(fig) ############################################################################### # You may provide an optional *rect* parameter, which specifies the bounding box # that the subplots will be fit inside. The coordinates must be in normalized # figure coordinates and the default is (0, 0, 1, 1). fig = plt.figure() gs1 = gridspec.GridSpec(2, 1) ax1 = fig.add_subplot(gs1[0]) ax2 = fig.add_subplot(gs1[1]) example_plot(ax1) example_plot(ax2) gs1.tight_layout(fig, rect=[0, 0, 0.5, 1]) ############################################################################### # For example, this can be used for a figure with multiple gridspecs. fig = plt.figure() gs1 = gridspec.GridSpec(2, 1) ax1 = fig.add_subplot(gs1[0]) ax2 = fig.add_subplot(gs1[1]) example_plot(ax1) example_plot(ax2) gs1.tight_layout(fig, rect=[0, 0, 0.5, 1]) gs2 = gridspec.GridSpec(3, 1) for ss in gs2: ax = fig.add_subplot(ss) example_plot(ax) ax.set_title("") ax.set_xlabel("") ax.set_xlabel("x-label", fontsize=12) gs2.tight_layout(fig, rect=[0.5, 0, 1, 1], h_pad=0.5) # We may try to match the top and bottom of two grids :: top = min(gs1.top, gs2.top) bottom = max(gs1.bottom, gs2.bottom) gs1.update(top=top, bottom=bottom) gs2.update(top=top, bottom=bottom) plt.show() ############################################################################### # While this should be mostly good enough, adjusting top and bottom # may require adjustment of hspace also. To update hspace & vspace, we # call :func:`~matplotlib.gridspec.GridSpec.tight_layout` again with updated # rect argument. Note that the rect argument specifies the area including the # ticklabels, etc. Thus, we will increase the bottom (which is 0 for the normal # case) by the difference between the *bottom* from above and the bottom of each # gridspec. Same thing for the top. fig = plt.gcf() gs1 = gridspec.GridSpec(2, 1) ax1 = fig.add_subplot(gs1[0]) ax2 = fig.add_subplot(gs1[1]) example_plot(ax1) example_plot(ax2) gs1.tight_layout(fig, rect=[0, 0, 0.5, 1]) gs2 = gridspec.GridSpec(3, 1) for ss in gs2: ax = fig.add_subplot(ss) example_plot(ax) ax.set_title("") ax.set_xlabel("") ax.set_xlabel("x-label", fontsize=12) gs2.tight_layout(fig, rect=[0.5, 0, 1, 1], h_pad=0.5) top = min(gs1.top, gs2.top) bottom = max(gs1.bottom, gs2.bottom) gs1.update(top=top, bottom=bottom) gs2.update(top=top, bottom=bottom) top = min(gs1.top, gs2.top) bottom = max(gs1.bottom, gs2.bottom) gs1.tight_layout(fig, rect=[None, 0 + (bottom-gs1.bottom), 0.5, 1 - (gs1.top-top)]) gs2.tight_layout(fig, rect=[0.5, 0 + (bottom-gs2.bottom), None, 1 - (gs2.top-top)], h_pad=0.5) ############################################################################### # Legends and Annotations # ======================= # # Pre Matplotlib 2.2, legends and annotations were excluded from the bounding # box calculations that decide the layout. Subsequently these artists were # added to the calculation, but sometimes it is undesirable to include them. # For instance in this case it might be good to have the axes shring a bit # to make room for the legend: fig, ax = plt.subplots(figsize=(4, 3)) lines = ax.plot(range(10), label='A simple plot') ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',) fig.tight_layout() plt.show() ############################################################################### # However, sometimes this is not desired (quite often when using # ``fig.savefig('outname.png', bbox_inches='tight')``). In order to # remove the legend from the bounding box calculation, we simply set its # bounding ``leg.set_in_layout(False)`` and the legend will be ignored. fig, ax = plt.subplots(figsize=(4, 3)) lines = ax.plot(range(10), label='B simple plot') leg = ax.legend(bbox_to_anchor=(0.7, 0.5), loc='center left',) leg.set_in_layout(False) fig.tight_layout() plt.show() ############################################################################### # Use with AxesGrid1 # ================== # # While limited, the axes_grid1 toolkit is also supported. from mpl_toolkits.axes_grid1 import Grid plt.close('all') fig = plt.figure() grid = Grid(fig, rect=111, nrows_ncols=(2, 2), axes_pad=0.25, label_mode='L', ) for ax in grid: example_plot(ax) ax.title.set_visible(False) plt.tight_layout() ############################################################################### # Colorbar # ======== # # If you create a colorbar with the :func:`~matplotlib.pyplot.colorbar` # command, the created colorbar is an instance of Axes, *not* Subplot, so # tight_layout does not work. With Matplotlib v1.1, you may create a # colorbar as a subplot using the gridspec. plt.close('all') arr = np.arange(100).reshape((10, 10)) fig = plt.figure(figsize=(4, 4)) im = plt.imshow(arr, interpolation="none") plt.colorbar(im, use_gridspec=True) plt.tight_layout() ############################################################################### # Another option is to use AxesGrid1 toolkit to # explicitly create an axes for colorbar. from mpl_toolkits.axes_grid1 import make_axes_locatable plt.close('all') arr = np.arange(100).reshape((10, 10)) fig = plt.figure(figsize=(4, 4)) im = plt.imshow(arr, interpolation="none") divider = make_axes_locatable(plt.gca()) cax = divider.append_axes("right", "5%", pad="3%") plt.colorbar(im, cax=cax) plt.tight_layout()
6415694ebd1f803d787c1f72357ec04a87ebf413133927326e7f5d92058e42aa
import numpy as np import matplotlib from matplotlib import cbook, docstring, rcParams from matplotlib.artist import allow_rasterization import matplotlib.transforms as mtransforms import matplotlib.patches as mpatches import matplotlib.path as mpath class Spine(mpatches.Patch): """an axis spine -- the line noting the data area boundaries Spines are the lines connecting the axis tick marks and noting the boundaries of the data area. They can be placed at arbitrary positions. See function:`~matplotlib.spines.Spine.set_position` for more information. The default position is ``('outward',0)``. Spines are subclasses of class:`~matplotlib.patches.Patch`, and inherit much of their behavior. Spines draw a line, a circle, or an arc depending if function:`~matplotlib.spines.Spine.set_patch_line`, function:`~matplotlib.spines.Spine.set_patch_circle`, or function:`~matplotlib.spines.Spine.set_patch_arc` has been called. Line-like is the default. """ def __str__(self): return "Spine" @docstring.dedent_interpd def __init__(self, axes, spine_type, path, **kwargs): """ - *axes* : the Axes instance containing the spine - *spine_type* : a string specifying the spine type - *path* : the path instance used to draw the spine Valid kwargs are: %(Patch)s """ super().__init__(**kwargs) self.axes = axes self.set_figure(self.axes.figure) self.spine_type = spine_type self.set_facecolor('none') self.set_edgecolor(rcParams['axes.edgecolor']) self.set_linewidth(rcParams['axes.linewidth']) self.set_capstyle('projecting') self.axis = None self.set_zorder(2.5) self.set_transform(self.axes.transData) # default transform self._bounds = None # default bounds self._smart_bounds = False # Defer initial position determination. (Not much support for # non-rectangular axes is currently implemented, and this lets # them pass through the spines machinery without errors.) self._position = None if not isinstance(path, matplotlib.path.Path): raise ValueError( "'path' must be an instance of 'matplotlib.path.Path'") self._path = path # To support drawing both linear and circular spines, this # class implements Patch behavior three ways. If # self._patch_type == 'line', behave like a mpatches.PathPatch # instance. If self._patch_type == 'circle', behave like a # mpatches.Ellipse instance. If self._patch_type == 'arc', behave like # a mpatches.Arc instance. self._patch_type = 'line' # Behavior copied from mpatches.Ellipse: # Note: This cannot be calculated until this is added to an Axes self._patch_transform = mtransforms.IdentityTransform() def set_smart_bounds(self, value): """set the spine and associated axis to have smart bounds""" self._smart_bounds = value # also set the axis if possible if self.spine_type in ('left', 'right'): self.axes.yaxis.set_smart_bounds(value) elif self.spine_type in ('top', 'bottom'): self.axes.xaxis.set_smart_bounds(value) self.stale = True def get_smart_bounds(self): """get whether the spine has smart bounds""" return self._smart_bounds def set_patch_arc(self, center, radius, theta1, theta2): """set the spine to be arc-like""" self._patch_type = 'arc' self._center = center self._width = radius * 2 self._height = radius * 2 self._theta1 = theta1 self._theta2 = theta2 self._path = mpath.Path.arc(theta1, theta2) # arc drawn on axes transform self.set_transform(self.axes.transAxes) self.stale = True def set_patch_circle(self, center, radius): """set the spine to be circular""" self._patch_type = 'circle' self._center = center self._width = radius * 2 self._height = radius * 2 # circle drawn on axes transform self.set_transform(self.axes.transAxes) self.stale = True def set_patch_line(self): """set the spine to be linear""" self._patch_type = 'line' self.stale = True # Behavior copied from mpatches.Ellipse: def _recompute_transform(self): """NOTE: This cannot be called until after this has been added to an Axes, otherwise unit conversion will fail. This makes it very important to call the accessor method and not directly access the transformation member variable. """ assert self._patch_type in ('arc', 'circle') center = (self.convert_xunits(self._center[0]), self.convert_yunits(self._center[1])) width = self.convert_xunits(self._width) height = self.convert_yunits(self._height) self._patch_transform = mtransforms.Affine2D() \ .scale(width * 0.5, height * 0.5) \ .translate(*center) def get_patch_transform(self): if self._patch_type in ('arc', 'circle'): self._recompute_transform() return self._patch_transform else: return super().get_patch_transform() def get_window_extent(self, renderer=None): """ Return the window extent of the spines in display space, including padding for ticks (but not their labels) See Also -------- matplotlib.axes.Axes.get_tightbbox matplotlib.axes.Axes.get_window_extent """ # make sure the location is updated so that transforms etc are # correct: self._adjust_location() bb = super().get_window_extent(renderer=renderer) if self.axis is None: return bb bboxes = [bb] tickstocheck = [self.axis.majorTicks[0]] if len(self.axis.minorTicks) > 1: # only pad for minor ticks if there are more than one # of them. There is always one... tickstocheck.append(self.axis.minorTicks[1]) for tick in tickstocheck: bb0 = bb.frozen() tickl = tick._size tickdir = tick._tickdir if tickdir == 'out': padout = 1 padin = 0 elif tickdir == 'in': padout = 0 padin = 1 else: padout = 0.5 padin = 0.5 padout = padout * tickl / 72 * self.figure.dpi padin = padin * tickl / 72 * self.figure.dpi if tick.tick1line.get_visible(): if self.spine_type in ['left']: bb0.x0 = bb0.x0 - padout bb0.x1 = bb0.x1 + padin elif self.spine_type in ['bottom']: bb0.y0 = bb0.y0 - padout bb0.y1 = bb0.y1 + padin if tick.tick2line.get_visible(): if self.spine_type in ['right']: bb0.x1 = bb0.x1 + padout bb0.x0 = bb0.x0 - padin elif self.spine_type in ['top']: bb0.y1 = bb0.y1 + padout bb0.y0 = bb0.y0 - padout bboxes.append(bb0) return mtransforms.Bbox.union(bboxes) def get_path(self): return self._path def _ensure_position_is_set(self): if self._position is None: # default position self._position = ('outward', 0.0) # in points self.set_position(self._position) def register_axis(self, axis): """register an axis An axis should be registered with its corresponding spine from the Axes instance. This allows the spine to clear any axis properties when needed. """ self.axis = axis if self.axis is not None: self.axis.cla() self.stale = True def cla(self): """Clear the current spine""" self._position = None # clear position if self.axis is not None: self.axis.cla() @cbook.deprecated("3.1") def is_frame_like(self): """return True if directly on axes frame This is useful for determining if a spine is the edge of an old style MPL plot. If so, this function will return True. """ self._ensure_position_is_set() position = self._position if isinstance(position, str): if position == 'center': position = ('axes', 0.5) elif position == 'zero': position = ('data', 0) if len(position) != 2: raise ValueError("position should be 2-tuple") position_type, amount = position if position_type == 'outward' and amount == 0: return True else: return False def _adjust_location(self): """automatically set spine bounds to the view interval""" if self.spine_type == 'circle': return if self._bounds is None: if self.spine_type in ('left', 'right'): low, high = self.axes.viewLim.intervaly elif self.spine_type in ('top', 'bottom'): low, high = self.axes.viewLim.intervalx else: raise ValueError('unknown spine spine_type: %s' % self.spine_type) if self._smart_bounds: # attempt to set bounds in sophisticated way # handle inverted limits viewlim_low, viewlim_high = sorted([low, high]) if self.spine_type in ('left', 'right'): datalim_low, datalim_high = self.axes.dataLim.intervaly ticks = self.axes.get_yticks() elif self.spine_type in ('top', 'bottom'): datalim_low, datalim_high = self.axes.dataLim.intervalx ticks = self.axes.get_xticks() # handle inverted limits ticks = np.sort(ticks) datalim_low, datalim_high = sorted([datalim_low, datalim_high]) if datalim_low < viewlim_low: # Data extends past view. Clip line to view. low = viewlim_low else: # Data ends before view ends. cond = (ticks <= datalim_low) & (ticks >= viewlim_low) tickvals = ticks[cond] if len(tickvals): # A tick is less than or equal to lowest data point. low = tickvals[-1] else: # No tick is available low = datalim_low low = max(low, viewlim_low) if datalim_high > viewlim_high: # Data extends past view. Clip line to view. high = viewlim_high else: # Data ends before view ends. cond = (ticks >= datalim_high) & (ticks <= viewlim_high) tickvals = ticks[cond] if len(tickvals): # A tick is greater than or equal to highest data # point. high = tickvals[0] else: # No tick is available high = datalim_high high = min(high, viewlim_high) else: low, high = self._bounds if self._patch_type == 'arc': if self.spine_type in ('bottom', 'top'): try: direction = self.axes.get_theta_direction() except AttributeError: direction = 1 try: offset = self.axes.get_theta_offset() except AttributeError: offset = 0 low = low * direction + offset high = high * direction + offset if low > high: low, high = high, low self._path = mpath.Path.arc(np.rad2deg(low), np.rad2deg(high)) if self.spine_type == 'bottom': rmin, rmax = self.axes.viewLim.intervaly try: rorigin = self.axes.get_rorigin() except AttributeError: rorigin = rmin scaled_diameter = (rmin - rorigin) / (rmax - rorigin) self._height = scaled_diameter self._width = scaled_diameter else: raise ValueError('unable to set bounds for spine "%s"' % self.spine_type) else: v1 = self._path.vertices assert v1.shape == (2, 2), 'unexpected vertices shape' if self.spine_type in ['left', 'right']: v1[0, 1] = low v1[1, 1] = high elif self.spine_type in ['bottom', 'top']: v1[0, 0] = low v1[1, 0] = high else: raise ValueError('unable to set bounds for spine "%s"' % self.spine_type) @allow_rasterization def draw(self, renderer): self._adjust_location() ret = super().draw(renderer) self.stale = False return ret def _calc_offset_transform(self): """calculate the offset transform performed by the spine""" self._ensure_position_is_set() position = self._position if isinstance(position, str): if position == 'center': position = ('axes', 0.5) elif position == 'zero': position = ('data', 0) assert len(position) == 2, "position should be 2-tuple" position_type, amount = position assert position_type in ('axes', 'outward', 'data') if position_type == 'outward': if amount == 0: # short circuit commonest case self._spine_transform = ('identity', mtransforms.IdentityTransform()) elif self.spine_type in ['left', 'right', 'top', 'bottom']: offset_vec = {'left': (-1, 0), 'right': (1, 0), 'bottom': (0, -1), 'top': (0, 1), }[self.spine_type] # calculate x and y offset in dots offset_x = amount * offset_vec[0] / 72.0 offset_y = amount * offset_vec[1] / 72.0 self._spine_transform = ('post', mtransforms.ScaledTranslation( offset_x, offset_y, self.figure.dpi_scale_trans)) else: cbook._warn_external('unknown spine type "%s": no spine ' 'offset performed' % self.spine_type) self._spine_transform = ('identity', mtransforms.IdentityTransform()) elif position_type == 'axes': if self.spine_type in ('left', 'right'): self._spine_transform = ('pre', mtransforms.Affine2D.from_values( # keep y unchanged, fix x at # amount 0, 0, 0, 1, amount, 0)) elif self.spine_type in ('bottom', 'top'): self._spine_transform = ('pre', mtransforms.Affine2D.from_values( # keep x unchanged, fix y at # amount 1, 0, 0, 0, 0, amount)) else: cbook._warn_external('unknown spine type "%s": no spine ' 'offset performed' % self.spine_type) self._spine_transform = ('identity', mtransforms.IdentityTransform()) elif position_type == 'data': if self.spine_type in ('right', 'top'): # The right and top spines have a default position of 1 in # axes coordinates. When specifying the position in data # coordinates, we need to calculate the position relative to 0. amount -= 1 if self.spine_type in ('left', 'right'): self._spine_transform = ('data', mtransforms.Affine2D().translate( amount, 0)) elif self.spine_type in ('bottom', 'top'): self._spine_transform = ('data', mtransforms.Affine2D().translate( 0, amount)) else: cbook._warn_external('unknown spine type "%s": no spine ' 'offset performed' % self.spine_type) self._spine_transform = ('identity', mtransforms.IdentityTransform()) def set_position(self, position): """set the position of the spine Spine position is specified by a 2 tuple of (position type, amount). The position types are: * 'outward' : place the spine out from the data area by the specified number of points. (Negative values specify placing the spine inward.) * 'axes' : place the spine at the specified Axes coordinate (from 0.0-1.0). * 'data' : place the spine at the specified data coordinate. Additionally, shorthand notations define a special positions: * 'center' -> ('axes',0.5) * 'zero' -> ('data', 0.0) """ if position in ('center', 'zero'): # special positions pass else: if len(position) != 2: raise ValueError("position should be 'center' or 2-tuple") if position[0] not in ['outward', 'axes', 'data']: raise ValueError("position[0] should be one of 'outward', " "'axes', or 'data' ") self._position = position self._calc_offset_transform() self.set_transform(self.get_spine_transform()) if self.axis is not None: self.axis.reset_ticks() self.stale = True def get_position(self): """get the spine position""" self._ensure_position_is_set() return self._position def get_spine_transform(self): """get the spine transform""" self._ensure_position_is_set() what, how = self._spine_transform if what == 'data': # special case data based spine locations data_xform = self.axes.transScale + \ (how + self.axes.transLimits + self.axes.transAxes) if self.spine_type in ['left', 'right']: result = mtransforms.blended_transform_factory( data_xform, self.axes.transData) elif self.spine_type in ['top', 'bottom']: result = mtransforms.blended_transform_factory( self.axes.transData, data_xform) else: raise ValueError('unknown spine spine_type: %s' % self.spine_type) return result if self.spine_type in ['left', 'right']: base_transform = self.axes.get_yaxis_transform(which='grid') elif self.spine_type in ['top', 'bottom']: base_transform = self.axes.get_xaxis_transform(which='grid') else: raise ValueError('unknown spine spine_type: %s' % self.spine_type) if what == 'identity': return base_transform elif what == 'post': return base_transform + how elif what == 'pre': return how + base_transform else: raise ValueError("unknown spine_transform type: %s" % what) def set_bounds(self, low, high): """Set the bounds of the spine.""" if self.spine_type == 'circle': raise ValueError( 'set_bounds() method incompatible with circular spines') self._bounds = (low, high) self.stale = True def get_bounds(self): """Get the bounds of the spine.""" return self._bounds @classmethod def linear_spine(cls, axes, spine_type, **kwargs): """ Returns a linear `Spine`. """ # all values of 0.999 get replaced upon call to set_bounds() if spine_type == 'left': path = mpath.Path([(0.0, 0.999), (0.0, 0.999)]) elif spine_type == 'right': path = mpath.Path([(1.0, 0.999), (1.0, 0.999)]) elif spine_type == 'bottom': path = mpath.Path([(0.999, 0.0), (0.999, 0.0)]) elif spine_type == 'top': path = mpath.Path([(0.999, 1.0), (0.999, 1.0)]) else: raise ValueError('unable to make path for spine "%s"' % spine_type) result = cls(axes, spine_type, path, **kwargs) result.set_visible(rcParams['axes.spines.{0}'.format(spine_type)]) return result @classmethod def arc_spine(cls, axes, spine_type, center, radius, theta1, theta2, **kwargs): """ Returns an arc `Spine`. """ path = mpath.Path.arc(theta1, theta2) result = cls(axes, spine_type, path, **kwargs) result.set_patch_arc(center, radius, theta1, theta2) return result @classmethod def circular_spine(cls, axes, center, radius, **kwargs): """ Returns a circular `Spine`. """ path = mpath.Path.unit_circle() spine_type = 'circle' result = cls(axes, spine_type, path, **kwargs) result.set_patch_circle(center, radius) return result def set_color(self, c): """ Set the edgecolor. Parameters ---------- c : color Notes ----- This method does not modify the facecolor (which defaults to "none"), unlike the `Patch.set_color` method defined in the parent class. Use `Patch.set_facecolor` to set the facecolor. """ self.set_edgecolor(c) self.stale = True
4177b869394ea04d1da61cd40fec914c8d8b8b08d72da8cee8e4699474a50cbd
""" Nothing here but dictionaries for generating LinearSegmentedColormaps, and a dictionary of these dictionaries. Documentation for each is in pyplot.colormaps(). Please update this with the purpose and type of your colormap if you add data for one here. """ from functools import partial import numpy as np _binary_data = { 'red': ((0., 1., 1.), (1., 0., 0.)), 'green': ((0., 1., 1.), (1., 0., 0.)), 'blue': ((0., 1., 1.), (1., 0., 0.)) } _autumn_data = {'red': ((0., 1.0, 1.0), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.), (1.0, 0., 0.))} _bone_data = {'red': ((0., 0., 0.), (0.746032, 0.652778, 0.652778), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (0.365079, 0.319444, 0.319444), (0.746032, 0.777778, 0.777778), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.), (0.365079, 0.444444, 0.444444), (1.0, 1.0, 1.0))} _cool_data = {'red': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'green': ((0., 1., 1.), (1.0, 0., 0.)), 'blue': ((0., 1., 1.), (1.0, 1., 1.))} _copper_data = {'red': ((0., 0., 0.), (0.809524, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (1.0, 0.7812, 0.7812)), 'blue': ((0., 0., 0.), (1.0, 0.4975, 0.4975))} def _flag_red(x): return 0.75 * np.sin((x * 31.5 + 0.25) * np.pi) + 0.5 def _flag_green(x): return np.sin(x * 31.5 * np.pi) def _flag_blue(x): return 0.75 * np.sin((x * 31.5 - 0.25) * np.pi) + 0.5 _flag_data = {'red': _flag_red, 'green': _flag_green, 'blue': _flag_blue} def _prism_red(x): return 0.75 * np.sin((x * 20.9 + 0.25) * np.pi) + 0.67 def _prism_green(x): return 0.75 * np.sin((x * 20.9 - 0.25) * np.pi) + 0.33 def _prism_blue(x): return -1.1 * np.sin((x * 20.9) * np.pi) _prism_data = {'red': _prism_red, 'green': _prism_green, 'blue': _prism_blue} def _ch_helper(gamma, s, r, h, p0, p1, x): """Helper function for generating picklable cubehelix color maps.""" # Apply gamma factor to emphasise low or high intensity values xg = x ** gamma # Calculate amplitude and angle of deviation from the black to white # diagonal in the plane of constant perceived intensity. a = h * xg * (1 - xg) / 2 phi = 2 * np.pi * (s / 3 + r * x) return xg + a * (p0 * np.cos(phi) + p1 * np.sin(phi)) def cubehelix(gamma=1.0, s=0.5, r=-1.5, h=1.0): """ Return custom data dictionary of (r,g,b) conversion functions, which can be used with :func:`register_cmap`, for the cubehelix color scheme. Unlike most other color schemes cubehelix was designed by D.A. Green to be monotonically increasing in terms of perceived brightness. Also, when printed on a black and white postscript printer, the scheme results in a greyscale with monotonically increasing brightness. This color scheme is named cubehelix because the r,g,b values produced can be visualised as a squashed helix around the diagonal in the r,g,b color cube. For a unit color cube (i.e. 3-D coordinates for r,g,b each in the range 0 to 1) the color scheme starts at (r,g,b) = (0,0,0), i.e. black, and finishes at (r,g,b) = (1,1,1), i.e. white. For some fraction *x*, between 0 and 1, the color is the corresponding grey value at that fraction along the black to white diagonal (x,x,x) plus a color element. This color element is calculated in a plane of constant perceived intensity and controlled by the following parameters. Optional keyword arguments: ========= ======================================================= Keyword Description ========= ======================================================= gamma gamma factor to emphasise either low intensity values (gamma < 1), or high intensity values (gamma > 1); defaults to 1.0. s the start color; defaults to 0.5 (i.e. purple). r the number of r,g,b rotations in color that are made from the start to the end of the color scheme; defaults to -1.5 (i.e. -> B -> G -> R -> B). h the hue parameter which controls how saturated the colors are. If this parameter is zero then the color scheme is purely a greyscale; defaults to 1.0. ========= ======================================================= """ return {'red': partial(_ch_helper, gamma, s, r, h, -0.14861, 1.78277), 'green': partial(_ch_helper, gamma, s, r, h, -0.29227, -0.90649), 'blue': partial(_ch_helper, gamma, s, r, h, 1.97294, 0.0)} _cubehelix_data = cubehelix() _bwr_data = ((0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0)) _brg_data = ((0.0, 0.0, 1.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0)) # Gnuplot palette functions def _g0(x): return 0 def _g1(x): return 0.5 def _g2(x): return 1 def _g3(x): return x def _g4(x): return x ** 2 def _g5(x): return x ** 3 def _g6(x): return x ** 4 def _g7(x): return np.sqrt(x) def _g8(x): return np.sqrt(np.sqrt(x)) def _g9(x): return np.sin(x * np.pi / 2) def _g10(x): return np.cos(x * np.pi / 2) def _g11(x): return np.abs(x - 0.5) def _g12(x): return (2 * x - 1) ** 2 def _g13(x): return np.sin(x * np.pi) def _g14(x): return np.abs(np.cos(x * np.pi)) def _g15(x): return np.sin(x * 2 * np.pi) def _g16(x): return np.cos(x * 2 * np.pi) def _g17(x): return np.abs(np.sin(x * 2 * np.pi)) def _g18(x): return np.abs(np.cos(x * 2 * np.pi)) def _g19(x): return np.abs(np.sin(x * 4 * np.pi)) def _g20(x): return np.abs(np.cos(x * 4 * np.pi)) def _g21(x): return 3 * x def _g22(x): return 3 * x - 1 def _g23(x): return 3 * x - 2 def _g24(x): return np.abs(3 * x - 1) def _g25(x): return np.abs(3 * x - 2) def _g26(x): return (3 * x - 1) / 2 def _g27(x): return (3 * x - 2) / 2 def _g28(x): return np.abs((3 * x - 1) / 2) def _g29(x): return np.abs((3 * x - 2) / 2) def _g30(x): return x / 0.32 - 0.78125 def _g31(x): return 2 * x - 0.84 def _g32(x): ret = np.zeros(len(x)) m = (x < 0.25) ret[m] = 4 * x[m] m = (x >= 0.25) & (x < 0.92) ret[m] = -2 * x[m] + 1.84 m = (x >= 0.92) ret[m] = x[m] / 0.08 - 11.5 return ret def _g33(x): return np.abs(2 * x - 0.5) def _g34(x): return 2 * x def _g35(x): return 2 * x - 0.5 def _g36(x): return 2 * x - 1 gfunc = {i: globals()["_g{}".format(i)] for i in range(37)} _gnuplot_data = { 'red': gfunc[7], 'green': gfunc[5], 'blue': gfunc[15], } _gnuplot2_data = { 'red': gfunc[30], 'green': gfunc[31], 'blue': gfunc[32], } _ocean_data = { 'red': gfunc[23], 'green': gfunc[28], 'blue': gfunc[3], } _afmhot_data = { 'red': gfunc[34], 'green': gfunc[35], 'blue': gfunc[36], } _rainbow_data = { 'red': gfunc[33], 'green': gfunc[13], 'blue': gfunc[10], } _seismic_data = ( (0.0, 0.0, 0.3), (0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 0.0, 0.0), (0.5, 0.0, 0.0)) _terrain_data = ( (0.00, (0.2, 0.2, 0.6)), (0.15, (0.0, 0.6, 1.0)), (0.25, (0.0, 0.8, 0.4)), (0.50, (1.0, 1.0, 0.6)), (0.75, (0.5, 0.36, 0.33)), (1.00, (1.0, 1.0, 1.0))) _gray_data = {'red': ((0., 0, 0), (1., 1, 1)), 'green': ((0., 0, 0), (1., 1, 1)), 'blue': ((0., 0, 0), (1., 1, 1))} _hot_data = {'red': ((0., 0.0416, 0.0416), (0.365079, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (0.365079, 0.000000, 0.000000), (0.746032, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.), (0.746032, 0.000000, 0.000000), (1.0, 1.0, 1.0))} _hsv_data = {'red': ((0., 1., 1.), (0.158730, 1.000000, 1.000000), (0.174603, 0.968750, 0.968750), (0.333333, 0.031250, 0.031250), (0.349206, 0.000000, 0.000000), (0.666667, 0.000000, 0.000000), (0.682540, 0.031250, 0.031250), (0.841270, 0.968750, 0.968750), (0.857143, 1.000000, 1.000000), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (0.158730, 0.937500, 0.937500), (0.174603, 1.000000, 1.000000), (0.507937, 1.000000, 1.000000), (0.666667, 0.062500, 0.062500), (0.682540, 0.000000, 0.000000), (1.0, 0., 0.)), 'blue': ((0., 0., 0.), (0.333333, 0.000000, 0.000000), (0.349206, 0.062500, 0.062500), (0.507937, 1.000000, 1.000000), (0.841270, 1.000000, 1.000000), (0.857143, 0.937500, 0.937500), (1.0, 0.09375, 0.09375))} _jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89, 1, 1), (1, 0.5, 0.5)), 'green': ((0., 0, 0), (0.125, 0, 0), (0.375, 1, 1), (0.64, 1, 1), (0.91, 0, 0), (1, 0, 0)), 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65, 0, 0), (1, 0, 0))} _pink_data = {'red': ((0., 0.1178, 0.1178), (0.015873, 0.195857, 0.195857), (0.031746, 0.250661, 0.250661), (0.047619, 0.295468, 0.295468), (0.063492, 0.334324, 0.334324), (0.079365, 0.369112, 0.369112), (0.095238, 0.400892, 0.400892), (0.111111, 0.430331, 0.430331), (0.126984, 0.457882, 0.457882), (0.142857, 0.483867, 0.483867), (0.158730, 0.508525, 0.508525), (0.174603, 0.532042, 0.532042), (0.190476, 0.554563, 0.554563), (0.206349, 0.576204, 0.576204), (0.222222, 0.597061, 0.597061), (0.238095, 0.617213, 0.617213), (0.253968, 0.636729, 0.636729), (0.269841, 0.655663, 0.655663), (0.285714, 0.674066, 0.674066), (0.301587, 0.691980, 0.691980), (0.317460, 0.709441, 0.709441), (0.333333, 0.726483, 0.726483), (0.349206, 0.743134, 0.743134), (0.365079, 0.759421, 0.759421), (0.380952, 0.766356, 0.766356), (0.396825, 0.773229, 0.773229), (0.412698, 0.780042, 0.780042), (0.428571, 0.786796, 0.786796), (0.444444, 0.793492, 0.793492), (0.460317, 0.800132, 0.800132), (0.476190, 0.806718, 0.806718), (0.492063, 0.813250, 0.813250), (0.507937, 0.819730, 0.819730), (0.523810, 0.826160, 0.826160), (0.539683, 0.832539, 0.832539), (0.555556, 0.838870, 0.838870), (0.571429, 0.845154, 0.845154), (0.587302, 0.851392, 0.851392), (0.603175, 0.857584, 0.857584), (0.619048, 0.863731, 0.863731), (0.634921, 0.869835, 0.869835), (0.650794, 0.875897, 0.875897), (0.666667, 0.881917, 0.881917), (0.682540, 0.887896, 0.887896), (0.698413, 0.893835, 0.893835), (0.714286, 0.899735, 0.899735), (0.730159, 0.905597, 0.905597), (0.746032, 0.911421, 0.911421), (0.761905, 0.917208, 0.917208), (0.777778, 0.922958, 0.922958), (0.793651, 0.928673, 0.928673), (0.809524, 0.934353, 0.934353), (0.825397, 0.939999, 0.939999), (0.841270, 0.945611, 0.945611), (0.857143, 0.951190, 0.951190), (0.873016, 0.956736, 0.956736), (0.888889, 0.962250, 0.962250), (0.904762, 0.967733, 0.967733), (0.920635, 0.973185, 0.973185), (0.936508, 0.978607, 0.978607), (0.952381, 0.983999, 0.983999), (0.968254, 0.989361, 0.989361), (0.984127, 0.994695, 0.994695), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (0.015873, 0.102869, 0.102869), (0.031746, 0.145479, 0.145479), (0.047619, 0.178174, 0.178174), (0.063492, 0.205738, 0.205738), (0.079365, 0.230022, 0.230022), (0.095238, 0.251976, 0.251976), (0.111111, 0.272166, 0.272166), (0.126984, 0.290957, 0.290957), (0.142857, 0.308607, 0.308607), (0.158730, 0.325300, 0.325300), (0.174603, 0.341178, 0.341178), (0.190476, 0.356348, 0.356348), (0.206349, 0.370899, 0.370899), (0.222222, 0.384900, 0.384900), (0.238095, 0.398410, 0.398410), (0.253968, 0.411476, 0.411476), (0.269841, 0.424139, 0.424139), (0.285714, 0.436436, 0.436436), (0.301587, 0.448395, 0.448395), (0.317460, 0.460044, 0.460044), (0.333333, 0.471405, 0.471405), (0.349206, 0.482498, 0.482498), (0.365079, 0.493342, 0.493342), (0.380952, 0.517549, 0.517549), (0.396825, 0.540674, 0.540674), (0.412698, 0.562849, 0.562849), (0.428571, 0.584183, 0.584183), (0.444444, 0.604765, 0.604765), (0.460317, 0.624669, 0.624669), (0.476190, 0.643958, 0.643958), (0.492063, 0.662687, 0.662687), (0.507937, 0.680900, 0.680900), (0.523810, 0.698638, 0.698638), (0.539683, 0.715937, 0.715937), (0.555556, 0.732828, 0.732828), (0.571429, 0.749338, 0.749338), (0.587302, 0.765493, 0.765493), (0.603175, 0.781313, 0.781313), (0.619048, 0.796819, 0.796819), (0.634921, 0.812029, 0.812029), (0.650794, 0.826960, 0.826960), (0.666667, 0.841625, 0.841625), (0.682540, 0.856040, 0.856040), (0.698413, 0.870216, 0.870216), (0.714286, 0.884164, 0.884164), (0.730159, 0.897896, 0.897896), (0.746032, 0.911421, 0.911421), (0.761905, 0.917208, 0.917208), (0.777778, 0.922958, 0.922958), (0.793651, 0.928673, 0.928673), (0.809524, 0.934353, 0.934353), (0.825397, 0.939999, 0.939999), (0.841270, 0.945611, 0.945611), (0.857143, 0.951190, 0.951190), (0.873016, 0.956736, 0.956736), (0.888889, 0.962250, 0.962250), (0.904762, 0.967733, 0.967733), (0.920635, 0.973185, 0.973185), (0.936508, 0.978607, 0.978607), (0.952381, 0.983999, 0.983999), (0.968254, 0.989361, 0.989361), (0.984127, 0.994695, 0.994695), (1.0, 1.0, 1.0)), 'blue': ((0., 0., 0.), (0.015873, 0.102869, 0.102869), (0.031746, 0.145479, 0.145479), (0.047619, 0.178174, 0.178174), (0.063492, 0.205738, 0.205738), (0.079365, 0.230022, 0.230022), (0.095238, 0.251976, 0.251976), (0.111111, 0.272166, 0.272166), (0.126984, 0.290957, 0.290957), (0.142857, 0.308607, 0.308607), (0.158730, 0.325300, 0.325300), (0.174603, 0.341178, 0.341178), (0.190476, 0.356348, 0.356348), (0.206349, 0.370899, 0.370899), (0.222222, 0.384900, 0.384900), (0.238095, 0.398410, 0.398410), (0.253968, 0.411476, 0.411476), (0.269841, 0.424139, 0.424139), (0.285714, 0.436436, 0.436436), (0.301587, 0.448395, 0.448395), (0.317460, 0.460044, 0.460044), (0.333333, 0.471405, 0.471405), (0.349206, 0.482498, 0.482498), (0.365079, 0.493342, 0.493342), (0.380952, 0.503953, 0.503953), (0.396825, 0.514344, 0.514344), (0.412698, 0.524531, 0.524531), (0.428571, 0.534522, 0.534522), (0.444444, 0.544331, 0.544331), (0.460317, 0.553966, 0.553966), (0.476190, 0.563436, 0.563436), (0.492063, 0.572750, 0.572750), (0.507937, 0.581914, 0.581914), (0.523810, 0.590937, 0.590937), (0.539683, 0.599824, 0.599824), (0.555556, 0.608581, 0.608581), (0.571429, 0.617213, 0.617213), (0.587302, 0.625727, 0.625727), (0.603175, 0.634126, 0.634126), (0.619048, 0.642416, 0.642416), (0.634921, 0.650600, 0.650600), (0.650794, 0.658682, 0.658682), (0.666667, 0.666667, 0.666667), (0.682540, 0.674556, 0.674556), (0.698413, 0.682355, 0.682355), (0.714286, 0.690066, 0.690066), (0.730159, 0.697691, 0.697691), (0.746032, 0.705234, 0.705234), (0.761905, 0.727166, 0.727166), (0.777778, 0.748455, 0.748455), (0.793651, 0.769156, 0.769156), (0.809524, 0.789314, 0.789314), (0.825397, 0.808969, 0.808969), (0.841270, 0.828159, 0.828159), (0.857143, 0.846913, 0.846913), (0.873016, 0.865261, 0.865261), (0.888889, 0.883229, 0.883229), (0.904762, 0.900837, 0.900837), (0.920635, 0.918109, 0.918109), (0.936508, 0.935061, 0.935061), (0.952381, 0.951711, 0.951711), (0.968254, 0.968075, 0.968075), (0.984127, 0.984167, 0.984167), (1.0, 1.0, 1.0))} _spring_data = {'red': ((0., 1., 1.), (1.0, 1.0, 1.0)), 'green': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'blue': ((0., 1., 1.), (1.0, 0.0, 0.0))} _summer_data = {'red': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'green': ((0., 0.5, 0.5), (1.0, 1.0, 1.0)), 'blue': ((0., 0.4, 0.4), (1.0, 0.4, 0.4))} _winter_data = {'red': ((0., 0., 0.), (1.0, 0.0, 0.0)), 'green': ((0., 0., 0.), (1.0, 1.0, 1.0)), 'blue': ((0., 1., 1.), (1.0, 0.5, 0.5))} _nipy_spectral_data = { 'red': [(0.0, 0.0, 0.0), (0.05, 0.4667, 0.4667), (0.10, 0.5333, 0.5333), (0.15, 0.0, 0.0), (0.20, 0.0, 0.0), (0.25, 0.0, 0.0), (0.30, 0.0, 0.0), (0.35, 0.0, 0.0), (0.40, 0.0, 0.0), (0.45, 0.0, 0.0), (0.50, 0.0, 0.0), (0.55, 0.0, 0.0), (0.60, 0.0, 0.0), (0.65, 0.7333, 0.7333), (0.70, 0.9333, 0.9333), (0.75, 1.0, 1.0), (0.80, 1.0, 1.0), (0.85, 1.0, 1.0), (0.90, 0.8667, 0.8667), (0.95, 0.80, 0.80), (1.0, 0.80, 0.80)], 'green': [(0.0, 0.0, 0.0), (0.05, 0.0, 0.0), (0.10, 0.0, 0.0), (0.15, 0.0, 0.0), (0.20, 0.0, 0.0), (0.25, 0.4667, 0.4667), (0.30, 0.6000, 0.6000), (0.35, 0.6667, 0.6667), (0.40, 0.6667, 0.6667), (0.45, 0.6000, 0.6000), (0.50, 0.7333, 0.7333), (0.55, 0.8667, 0.8667), (0.60, 1.0, 1.0), (0.65, 1.0, 1.0), (0.70, 0.9333, 0.9333), (0.75, 0.8000, 0.8000), (0.80, 0.6000, 0.6000), (0.85, 0.0, 0.0), (0.90, 0.0, 0.0), (0.95, 0.0, 0.0), (1.0, 0.80, 0.80)], 'blue': [(0.0, 0.0, 0.0), (0.05, 0.5333, 0.5333), (0.10, 0.6000, 0.6000), (0.15, 0.6667, 0.6667), (0.20, 0.8667, 0.8667), (0.25, 0.8667, 0.8667), (0.30, 0.8667, 0.8667), (0.35, 0.6667, 0.6667), (0.40, 0.5333, 0.5333), (0.45, 0.0, 0.0), (0.5, 0.0, 0.0), (0.55, 0.0, 0.0), (0.60, 0.0, 0.0), (0.65, 0.0, 0.0), (0.70, 0.0, 0.0), (0.75, 0.0, 0.0), (0.80, 0.0, 0.0), (0.85, 0.0, 0.0), (0.90, 0.0, 0.0), (0.95, 0.0, 0.0), (1.0, 0.80, 0.80)], } # 34 colormaps based on color specifications and designs # developed by Cynthia Brewer (http://colorbrewer.org). # The ColorBrewer palettes have been included under the terms # of an Apache-stype license (for details, see the file # LICENSE_COLORBREWER in the license directory of the matplotlib # source distribution). # RGB values taken from Brewer's Excel sheet, divided by 255 _Blues_data = ( (0.96862745098039216, 0.98431372549019602, 1.0 ), (0.87058823529411766, 0.92156862745098034, 0.96862745098039216), (0.77647058823529413, 0.85882352941176465, 0.93725490196078431), (0.61960784313725492, 0.792156862745098 , 0.88235294117647056), (0.41960784313725491, 0.68235294117647061, 0.83921568627450982), (0.25882352941176473, 0.5725490196078431 , 0.77647058823529413), (0.12941176470588237, 0.44313725490196076, 0.70980392156862748), (0.03137254901960784, 0.31764705882352939, 0.61176470588235299), (0.03137254901960784, 0.18823529411764706, 0.41960784313725491) ) _BrBG_data = ( (0.32941176470588235, 0.18823529411764706, 0.0196078431372549 ), (0.5490196078431373 , 0.31764705882352939, 0.0392156862745098 ), (0.74901960784313726, 0.50588235294117645, 0.17647058823529413), (0.87450980392156863, 0.76078431372549016, 0.49019607843137253), (0.96470588235294119, 0.90980392156862744, 0.76470588235294112), (0.96078431372549022, 0.96078431372549022, 0.96078431372549022), (0.7803921568627451 , 0.91764705882352937, 0.89803921568627454), (0.50196078431372548, 0.80392156862745101, 0.75686274509803919), (0.20784313725490197, 0.59215686274509804, 0.5607843137254902 ), (0.00392156862745098, 0.4 , 0.36862745098039218), (0.0 , 0.23529411764705882, 0.18823529411764706) ) _BuGn_data = ( (0.96862745098039216, 0.9882352941176471 , 0.99215686274509807), (0.89803921568627454, 0.96078431372549022, 0.97647058823529409), (0.8 , 0.92549019607843142, 0.90196078431372551), (0.6 , 0.84705882352941175, 0.78823529411764703), (0.4 , 0.76078431372549016, 0.64313725490196083), (0.25490196078431371, 0.68235294117647061, 0.46274509803921571), (0.13725490196078433, 0.54509803921568623, 0.27058823529411763), (0.0 , 0.42745098039215684, 0.17254901960784313), (0.0 , 0.26666666666666666, 0.10588235294117647) ) _BuPu_data = ( (0.96862745098039216, 0.9882352941176471 , 0.99215686274509807), (0.8784313725490196 , 0.92549019607843142, 0.95686274509803926), (0.74901960784313726, 0.82745098039215681, 0.90196078431372551), (0.61960784313725492, 0.73725490196078436, 0.85490196078431369), (0.5490196078431373 , 0.58823529411764708, 0.77647058823529413), (0.5490196078431373 , 0.41960784313725491, 0.69411764705882351), (0.53333333333333333, 0.25490196078431371, 0.61568627450980395), (0.50588235294117645, 0.05882352941176471, 0.48627450980392156), (0.30196078431372547, 0.0 , 0.29411764705882354) ) _GnBu_data = ( (0.96862745098039216, 0.9882352941176471 , 0.94117647058823528), (0.8784313725490196 , 0.95294117647058818, 0.85882352941176465), (0.8 , 0.92156862745098034, 0.77254901960784317), (0.6588235294117647 , 0.8666666666666667 , 0.70980392156862748), (0.4823529411764706 , 0.8 , 0.7686274509803922 ), (0.30588235294117649, 0.70196078431372544, 0.82745098039215681), (0.16862745098039217, 0.5490196078431373 , 0.74509803921568629), (0.03137254901960784, 0.40784313725490196, 0.67450980392156867), (0.03137254901960784, 0.25098039215686274, 0.50588235294117645) ) _Greens_data = ( (0.96862745098039216, 0.9882352941176471 , 0.96078431372549022), (0.89803921568627454, 0.96078431372549022, 0.8784313725490196 ), (0.7803921568627451 , 0.9137254901960784 , 0.75294117647058822), (0.63137254901960782, 0.85098039215686272, 0.60784313725490191), (0.45490196078431372, 0.7686274509803922 , 0.46274509803921571), (0.25490196078431371, 0.6705882352941176 , 0.36470588235294116), (0.13725490196078433, 0.54509803921568623, 0.27058823529411763), (0.0 , 0.42745098039215684, 0.17254901960784313), (0.0 , 0.26666666666666666, 0.10588235294117647) ) _Greys_data = ( (1.0 , 1.0 , 1.0 ), (0.94117647058823528, 0.94117647058823528, 0.94117647058823528), (0.85098039215686272, 0.85098039215686272, 0.85098039215686272), (0.74117647058823533, 0.74117647058823533, 0.74117647058823533), (0.58823529411764708, 0.58823529411764708, 0.58823529411764708), (0.45098039215686275, 0.45098039215686275, 0.45098039215686275), (0.32156862745098042, 0.32156862745098042, 0.32156862745098042), (0.14509803921568629, 0.14509803921568629, 0.14509803921568629), (0.0 , 0.0 , 0.0 ) ) _Oranges_data = ( (1.0 , 0.96078431372549022, 0.92156862745098034), (0.99607843137254903, 0.90196078431372551, 0.80784313725490198), (0.99215686274509807, 0.81568627450980391, 0.63529411764705879), (0.99215686274509807, 0.68235294117647061, 0.41960784313725491), (0.99215686274509807, 0.55294117647058827, 0.23529411764705882), (0.94509803921568625, 0.41176470588235292, 0.07450980392156863), (0.85098039215686272, 0.28235294117647058, 0.00392156862745098), (0.65098039215686276, 0.21176470588235294, 0.01176470588235294), (0.49803921568627452, 0.15294117647058825, 0.01568627450980392) ) _OrRd_data = ( (1.0 , 0.96862745098039216, 0.92549019607843142), (0.99607843137254903, 0.90980392156862744, 0.78431372549019607), (0.99215686274509807, 0.83137254901960789, 0.61960784313725492), (0.99215686274509807, 0.73333333333333328, 0.51764705882352946), (0.9882352941176471 , 0.55294117647058827, 0.34901960784313724), (0.93725490196078431, 0.396078431372549 , 0.28235294117647058), (0.84313725490196079, 0.18823529411764706, 0.12156862745098039), (0.70196078431372544, 0.0 , 0.0 ), (0.49803921568627452, 0.0 , 0.0 ) ) _PiYG_data = ( (0.55686274509803924, 0.00392156862745098, 0.32156862745098042), (0.77254901960784317, 0.10588235294117647, 0.49019607843137253), (0.87058823529411766, 0.46666666666666667, 0.68235294117647061), (0.94509803921568625, 0.71372549019607845, 0.85490196078431369), (0.99215686274509807, 0.8784313725490196 , 0.93725490196078431), (0.96862745098039216, 0.96862745098039216, 0.96862745098039216), (0.90196078431372551, 0.96078431372549022, 0.81568627450980391), (0.72156862745098038, 0.88235294117647056, 0.52549019607843139), (0.49803921568627452, 0.73725490196078436, 0.25490196078431371), (0.30196078431372547, 0.5725490196078431 , 0.12941176470588237), (0.15294117647058825, 0.39215686274509803, 0.09803921568627451) ) _PRGn_data = ( (0.25098039215686274, 0.0 , 0.29411764705882354), (0.46274509803921571, 0.16470588235294117, 0.51372549019607838), (0.6 , 0.4392156862745098 , 0.6705882352941176 ), (0.76078431372549016, 0.6470588235294118 , 0.81176470588235294), (0.90588235294117647, 0.83137254901960789, 0.90980392156862744), (0.96862745098039216, 0.96862745098039216, 0.96862745098039216), (0.85098039215686272, 0.94117647058823528, 0.82745098039215681), (0.65098039215686276, 0.85882352941176465, 0.62745098039215685), (0.35294117647058826, 0.68235294117647061, 0.38039215686274508), (0.10588235294117647, 0.47058823529411764, 0.21568627450980393), (0.0 , 0.26666666666666666, 0.10588235294117647) ) _PuBu_data = ( (1.0 , 0.96862745098039216, 0.98431372549019602), (0.92549019607843142, 0.90588235294117647, 0.94901960784313721), (0.81568627450980391, 0.81960784313725488, 0.90196078431372551), (0.65098039215686276, 0.74117647058823533, 0.85882352941176465), (0.45490196078431372, 0.66274509803921566, 0.81176470588235294), (0.21176470588235294, 0.56470588235294117, 0.75294117647058822), (0.0196078431372549 , 0.4392156862745098 , 0.69019607843137254), (0.01568627450980392, 0.35294117647058826, 0.55294117647058827), (0.00784313725490196, 0.2196078431372549 , 0.34509803921568627) ) _PuBuGn_data = ( (1.0 , 0.96862745098039216, 0.98431372549019602), (0.92549019607843142, 0.88627450980392153, 0.94117647058823528), (0.81568627450980391, 0.81960784313725488, 0.90196078431372551), (0.65098039215686276, 0.74117647058823533, 0.85882352941176465), (0.40392156862745099, 0.66274509803921566, 0.81176470588235294), (0.21176470588235294, 0.56470588235294117, 0.75294117647058822), (0.00784313725490196, 0.50588235294117645, 0.54117647058823526), (0.00392156862745098, 0.42352941176470588, 0.34901960784313724), (0.00392156862745098, 0.27450980392156865, 0.21176470588235294) ) _PuOr_data = ( (0.49803921568627452, 0.23137254901960785, 0.03137254901960784), (0.70196078431372544, 0.34509803921568627, 0.02352941176470588), (0.8784313725490196 , 0.50980392156862742, 0.07843137254901961), (0.99215686274509807, 0.72156862745098038, 0.38823529411764707), (0.99607843137254903, 0.8784313725490196 , 0.71372549019607845), (0.96862745098039216, 0.96862745098039216, 0.96862745098039216), (0.84705882352941175, 0.85490196078431369, 0.92156862745098034), (0.69803921568627447, 0.6705882352941176 , 0.82352941176470584), (0.50196078431372548, 0.45098039215686275, 0.67450980392156867), (0.32941176470588235, 0.15294117647058825, 0.53333333333333333), (0.17647058823529413, 0.0 , 0.29411764705882354) ) _PuRd_data = ( (0.96862745098039216, 0.95686274509803926, 0.97647058823529409), (0.90588235294117647, 0.88235294117647056, 0.93725490196078431), (0.83137254901960789, 0.72549019607843135, 0.85490196078431369), (0.78823529411764703, 0.58039215686274515, 0.7803921568627451 ), (0.87450980392156863, 0.396078431372549 , 0.69019607843137254), (0.90588235294117647, 0.16078431372549021, 0.54117647058823526), (0.80784313725490198, 0.07058823529411765, 0.33725490196078434), (0.59607843137254901, 0.0 , 0.2627450980392157 ), (0.40392156862745099, 0.0 , 0.12156862745098039) ) _Purples_data = ( (0.9882352941176471 , 0.98431372549019602, 0.99215686274509807), (0.93725490196078431, 0.92941176470588238, 0.96078431372549022), (0.85490196078431369, 0.85490196078431369, 0.92156862745098034), (0.73725490196078436, 0.74117647058823533, 0.86274509803921573), (0.61960784313725492, 0.60392156862745094, 0.78431372549019607), (0.50196078431372548, 0.49019607843137253, 0.72941176470588232), (0.41568627450980394, 0.31764705882352939, 0.63921568627450975), (0.32941176470588235, 0.15294117647058825, 0.5607843137254902 ), (0.24705882352941178, 0.0 , 0.49019607843137253) ) _RdBu_data = ( (0.40392156862745099, 0.0 , 0.12156862745098039), (0.69803921568627447, 0.09411764705882353, 0.16862745098039217), (0.83921568627450982, 0.37647058823529411, 0.30196078431372547), (0.95686274509803926, 0.6470588235294118 , 0.50980392156862742), (0.99215686274509807, 0.85882352941176465, 0.7803921568627451 ), (0.96862745098039216, 0.96862745098039216, 0.96862745098039216), (0.81960784313725488, 0.89803921568627454, 0.94117647058823528), (0.5725490196078431 , 0.77254901960784317, 0.87058823529411766), (0.2627450980392157 , 0.57647058823529407, 0.76470588235294112), (0.12941176470588237, 0.4 , 0.67450980392156867), (0.0196078431372549 , 0.18823529411764706, 0.38039215686274508) ) _RdGy_data = ( (0.40392156862745099, 0.0 , 0.12156862745098039), (0.69803921568627447, 0.09411764705882353, 0.16862745098039217), (0.83921568627450982, 0.37647058823529411, 0.30196078431372547), (0.95686274509803926, 0.6470588235294118 , 0.50980392156862742), (0.99215686274509807, 0.85882352941176465, 0.7803921568627451 ), (1.0 , 1.0 , 1.0 ), (0.8784313725490196 , 0.8784313725490196 , 0.8784313725490196 ), (0.72941176470588232, 0.72941176470588232, 0.72941176470588232), (0.52941176470588236, 0.52941176470588236, 0.52941176470588236), (0.30196078431372547, 0.30196078431372547, 0.30196078431372547), (0.10196078431372549, 0.10196078431372549, 0.10196078431372549) ) _RdPu_data = ( (1.0 , 0.96862745098039216, 0.95294117647058818), (0.99215686274509807, 0.8784313725490196 , 0.86666666666666667), (0.9882352941176471 , 0.77254901960784317, 0.75294117647058822), (0.98039215686274506, 0.62352941176470589, 0.70980392156862748), (0.96862745098039216, 0.40784313725490196, 0.63137254901960782), (0.86666666666666667, 0.20392156862745098, 0.59215686274509804), (0.68235294117647061, 0.00392156862745098, 0.49411764705882355), (0.47843137254901963, 0.00392156862745098, 0.46666666666666667), (0.28627450980392155, 0.0 , 0.41568627450980394) ) _RdYlBu_data = ( (0.6470588235294118 , 0.0 , 0.14901960784313725), (0.84313725490196079, 0.18823529411764706 , 0.15294117647058825), (0.95686274509803926, 0.42745098039215684 , 0.2627450980392157 ), (0.99215686274509807, 0.68235294117647061 , 0.38039215686274508), (0.99607843137254903, 0.8784313725490196 , 0.56470588235294117), (1.0 , 1.0 , 0.74901960784313726), (0.8784313725490196 , 0.95294117647058818 , 0.97254901960784312), (0.6705882352941176 , 0.85098039215686272 , 0.9137254901960784 ), (0.45490196078431372, 0.67843137254901964 , 0.81960784313725488), (0.27058823529411763, 0.45882352941176469 , 0.70588235294117652), (0.19215686274509805, 0.21176470588235294 , 0.58431372549019611) ) _RdYlGn_data = ( (0.6470588235294118 , 0.0 , 0.14901960784313725), (0.84313725490196079, 0.18823529411764706 , 0.15294117647058825), (0.95686274509803926, 0.42745098039215684 , 0.2627450980392157 ), (0.99215686274509807, 0.68235294117647061 , 0.38039215686274508), (0.99607843137254903, 0.8784313725490196 , 0.54509803921568623), (1.0 , 1.0 , 0.74901960784313726), (0.85098039215686272, 0.93725490196078431 , 0.54509803921568623), (0.65098039215686276, 0.85098039215686272 , 0.41568627450980394), (0.4 , 0.74117647058823533 , 0.38823529411764707), (0.10196078431372549, 0.59607843137254901 , 0.31372549019607843), (0.0 , 0.40784313725490196 , 0.21568627450980393) ) _Reds_data = ( (1.0 , 0.96078431372549022 , 0.94117647058823528), (0.99607843137254903, 0.8784313725490196 , 0.82352941176470584), (0.9882352941176471 , 0.73333333333333328 , 0.63137254901960782), (0.9882352941176471 , 0.5725490196078431 , 0.44705882352941179), (0.98431372549019602, 0.41568627450980394 , 0.29019607843137257), (0.93725490196078431, 0.23137254901960785 , 0.17254901960784313), (0.79607843137254897, 0.094117647058823528, 0.11372549019607843), (0.6470588235294118 , 0.058823529411764705, 0.08235294117647058), (0.40392156862745099, 0.0 , 0.05098039215686274) ) _Spectral_data = ( (0.61960784313725492, 0.003921568627450980, 0.25882352941176473), (0.83529411764705885, 0.24313725490196078 , 0.30980392156862746), (0.95686274509803926, 0.42745098039215684 , 0.2627450980392157 ), (0.99215686274509807, 0.68235294117647061 , 0.38039215686274508), (0.99607843137254903, 0.8784313725490196 , 0.54509803921568623), (1.0 , 1.0 , 0.74901960784313726), (0.90196078431372551, 0.96078431372549022 , 0.59607843137254901), (0.6705882352941176 , 0.8666666666666667 , 0.64313725490196083), (0.4 , 0.76078431372549016 , 0.6470588235294118 ), (0.19607843137254902, 0.53333333333333333 , 0.74117647058823533), (0.36862745098039218, 0.30980392156862746 , 0.63529411764705879) ) _YlGn_data = ( (1.0 , 1.0 , 0.89803921568627454), (0.96862745098039216, 0.9882352941176471 , 0.72549019607843135), (0.85098039215686272, 0.94117647058823528 , 0.63921568627450975), (0.67843137254901964, 0.8666666666666667 , 0.55686274509803924), (0.47058823529411764, 0.77647058823529413 , 0.47450980392156861), (0.25490196078431371, 0.6705882352941176 , 0.36470588235294116), (0.13725490196078433, 0.51764705882352946 , 0.2627450980392157 ), (0.0 , 0.40784313725490196 , 0.21568627450980393), (0.0 , 0.27058823529411763 , 0.16078431372549021) ) _YlGnBu_data = ( (1.0 , 1.0 , 0.85098039215686272), (0.92941176470588238, 0.97254901960784312 , 0.69411764705882351), (0.7803921568627451 , 0.9137254901960784 , 0.70588235294117652), (0.49803921568627452, 0.80392156862745101 , 0.73333333333333328), (0.25490196078431371, 0.71372549019607845 , 0.7686274509803922 ), (0.11372549019607843, 0.56862745098039214 , 0.75294117647058822), (0.13333333333333333, 0.36862745098039218 , 0.6588235294117647 ), (0.14509803921568629, 0.20392156862745098 , 0.58039215686274515), (0.03137254901960784, 0.11372549019607843 , 0.34509803921568627) ) _YlOrBr_data = ( (1.0 , 1.0 , 0.89803921568627454), (1.0 , 0.96862745098039216 , 0.73725490196078436), (0.99607843137254903, 0.8901960784313725 , 0.56862745098039214), (0.99607843137254903, 0.7686274509803922 , 0.30980392156862746), (0.99607843137254903, 0.6 , 0.16078431372549021), (0.92549019607843142, 0.4392156862745098 , 0.07843137254901961), (0.8 , 0.29803921568627451 , 0.00784313725490196), (0.6 , 0.20392156862745098 , 0.01568627450980392), (0.4 , 0.14509803921568629 , 0.02352941176470588) ) _YlOrRd_data = ( (1.0 , 1.0 , 0.8 ), (1.0 , 0.92941176470588238 , 0.62745098039215685), (0.99607843137254903, 0.85098039215686272 , 0.46274509803921571), (0.99607843137254903, 0.69803921568627447 , 0.29803921568627451), (0.99215686274509807, 0.55294117647058827 , 0.23529411764705882), (0.9882352941176471 , 0.30588235294117649 , 0.16470588235294117), (0.8901960784313725 , 0.10196078431372549 , 0.10980392156862745), (0.74117647058823533, 0.0 , 0.14901960784313725), (0.50196078431372548, 0.0 , 0.14901960784313725) ) # ColorBrewer's qualitative maps, implemented using ListedColormap # for use with mpl.colors.NoNorm _Accent_data = ( (0.49803921568627452, 0.78823529411764703, 0.49803921568627452), (0.74509803921568629, 0.68235294117647061, 0.83137254901960789), (0.99215686274509807, 0.75294117647058822, 0.52549019607843139), (1.0, 1.0, 0.6 ), (0.2196078431372549, 0.42352941176470588, 0.69019607843137254), (0.94117647058823528, 0.00784313725490196, 0.49803921568627452), (0.74901960784313726, 0.35686274509803922, 0.09019607843137254), (0.4, 0.4, 0.4 ), ) _Dark2_data = ( (0.10588235294117647, 0.61960784313725492, 0.46666666666666667), (0.85098039215686272, 0.37254901960784315, 0.00784313725490196), (0.45882352941176469, 0.4392156862745098, 0.70196078431372544), (0.90588235294117647, 0.16078431372549021, 0.54117647058823526), (0.4, 0.65098039215686276, 0.11764705882352941), (0.90196078431372551, 0.6705882352941176, 0.00784313725490196), (0.65098039215686276, 0.46274509803921571, 0.11372549019607843), (0.4, 0.4, 0.4 ), ) _Paired_data = ( (0.65098039215686276, 0.80784313725490198, 0.8901960784313725 ), (0.12156862745098039, 0.47058823529411764, 0.70588235294117652), (0.69803921568627447, 0.87450980392156863, 0.54117647058823526), (0.2, 0.62745098039215685, 0.17254901960784313), (0.98431372549019602, 0.60392156862745094, 0.6 ), (0.8901960784313725, 0.10196078431372549, 0.10980392156862745), (0.99215686274509807, 0.74901960784313726, 0.43529411764705883), (1.0, 0.49803921568627452, 0.0 ), (0.792156862745098, 0.69803921568627447, 0.83921568627450982), (0.41568627450980394, 0.23921568627450981, 0.60392156862745094), (1.0, 1.0, 0.6 ), (0.69411764705882351, 0.34901960784313724, 0.15686274509803921), ) _Pastel1_data = ( (0.98431372549019602, 0.70588235294117652, 0.68235294117647061), (0.70196078431372544, 0.80392156862745101, 0.8901960784313725 ), (0.8, 0.92156862745098034, 0.77254901960784317), (0.87058823529411766, 0.79607843137254897, 0.89411764705882357), (0.99607843137254903, 0.85098039215686272, 0.65098039215686276), (1.0, 1.0, 0.8 ), (0.89803921568627454, 0.84705882352941175, 0.74117647058823533), (0.99215686274509807, 0.85490196078431369, 0.92549019607843142), (0.94901960784313721, 0.94901960784313721, 0.94901960784313721), ) _Pastel2_data = ( (0.70196078431372544, 0.88627450980392153, 0.80392156862745101), (0.99215686274509807, 0.80392156862745101, 0.67450980392156867), (0.79607843137254897, 0.83529411764705885, 0.90980392156862744), (0.95686274509803926, 0.792156862745098, 0.89411764705882357), (0.90196078431372551, 0.96078431372549022, 0.78823529411764703), (1.0, 0.94901960784313721, 0.68235294117647061), (0.94509803921568625, 0.88627450980392153, 0.8 ), (0.8, 0.8, 0.8 ), ) _Set1_data = ( (0.89411764705882357, 0.10196078431372549, 0.10980392156862745), (0.21568627450980393, 0.49411764705882355, 0.72156862745098038), (0.30196078431372547, 0.68627450980392157, 0.29019607843137257), (0.59607843137254901, 0.30588235294117649, 0.63921568627450975), (1.0, 0.49803921568627452, 0.0 ), (1.0, 1.0, 0.2 ), (0.65098039215686276, 0.33725490196078434, 0.15686274509803921), (0.96862745098039216, 0.50588235294117645, 0.74901960784313726), (0.6, 0.6, 0.6), ) _Set2_data = ( (0.4, 0.76078431372549016, 0.6470588235294118 ), (0.9882352941176471, 0.55294117647058827, 0.3843137254901961 ), (0.55294117647058827, 0.62745098039215685, 0.79607843137254897), (0.90588235294117647, 0.54117647058823526, 0.76470588235294112), (0.65098039215686276, 0.84705882352941175, 0.32941176470588235), (1.0, 0.85098039215686272, 0.18431372549019609), (0.89803921568627454, 0.7686274509803922, 0.58039215686274515), (0.70196078431372544, 0.70196078431372544, 0.70196078431372544), ) _Set3_data = ( (0.55294117647058827, 0.82745098039215681, 0.7803921568627451 ), (1.0, 1.0, 0.70196078431372544), (0.74509803921568629, 0.72941176470588232, 0.85490196078431369), (0.98431372549019602, 0.50196078431372548, 0.44705882352941179), (0.50196078431372548, 0.69411764705882351, 0.82745098039215681), (0.99215686274509807, 0.70588235294117652, 0.3843137254901961 ), (0.70196078431372544, 0.87058823529411766, 0.41176470588235292), (0.9882352941176471, 0.80392156862745101, 0.89803921568627454), (0.85098039215686272, 0.85098039215686272, 0.85098039215686272), (0.73725490196078436, 0.50196078431372548, 0.74117647058823533), (0.8, 0.92156862745098034, 0.77254901960784317), (1.0, 0.92941176470588238, 0.43529411764705883), ) # The next 7 palettes are from the Yorick scientific visualization package, # an evolution of the GIST package, both by David H. Munro. # They are released under a BSD-like license (see LICENSE_YORICK in # the license directory of the matplotlib source distribution). # # Most palette functions have been reduced to simple function descriptions # by Reinier Heeres, since the rgb components were mostly straight lines. # gist_earth_data and gist_ncar_data were simplified by a script and some # manual effort. _gist_earth_data = \ {'red': ( (0.0, 0.0, 0.0000), (0.2824, 0.1882, 0.1882), (0.4588, 0.2714, 0.2714), (0.5490, 0.4719, 0.4719), (0.6980, 0.7176, 0.7176), (0.7882, 0.7553, 0.7553), (1.0000, 0.9922, 0.9922), ), 'green': ( (0.0, 0.0, 0.0000), (0.0275, 0.0000, 0.0000), (0.1098, 0.1893, 0.1893), (0.1647, 0.3035, 0.3035), (0.2078, 0.3841, 0.3841), (0.2824, 0.5020, 0.5020), (0.5216, 0.6397, 0.6397), (0.6980, 0.7171, 0.7171), (0.7882, 0.6392, 0.6392), (0.7922, 0.6413, 0.6413), (0.8000, 0.6447, 0.6447), (0.8078, 0.6481, 0.6481), (0.8157, 0.6549, 0.6549), (0.8667, 0.6991, 0.6991), (0.8745, 0.7103, 0.7103), (0.8824, 0.7216, 0.7216), (0.8902, 0.7323, 0.7323), (0.8980, 0.7430, 0.7430), (0.9412, 0.8275, 0.8275), (0.9569, 0.8635, 0.8635), (0.9647, 0.8816, 0.8816), (0.9961, 0.9733, 0.9733), (1.0000, 0.9843, 0.9843), ), 'blue': ( (0.0, 0.0, 0.0000), (0.0039, 0.1684, 0.1684), (0.0078, 0.2212, 0.2212), (0.0275, 0.4329, 0.4329), (0.0314, 0.4549, 0.4549), (0.2824, 0.5004, 0.5004), (0.4667, 0.2748, 0.2748), (0.5451, 0.3205, 0.3205), (0.7843, 0.3961, 0.3961), (0.8941, 0.6651, 0.6651), (1.0000, 0.9843, 0.9843), )} _gist_gray_data = { 'red': gfunc[3], 'green': gfunc[3], 'blue': gfunc[3], } def _gist_heat_red(x): return 1.5 * x def _gist_heat_green(x): return 2 * x - 1 def _gist_heat_blue(x): return 4 * x - 3 _gist_heat_data = { 'red': _gist_heat_red, 'green': _gist_heat_green, 'blue': _gist_heat_blue} _gist_ncar_data = \ {'red': ( (0.0, 0.0, 0.0000), (0.3098, 0.0000, 0.0000), (0.3725, 0.3993, 0.3993), (0.4235, 0.5003, 0.5003), (0.5333, 1.0000, 1.0000), (0.7922, 1.0000, 1.0000), (0.8471, 0.6218, 0.6218), (0.8980, 0.9235, 0.9235), (1.0000, 0.9961, 0.9961), ), 'green': ( (0.0, 0.0, 0.0000), (0.0510, 0.3722, 0.3722), (0.1059, 0.0000, 0.0000), (0.1569, 0.7202, 0.7202), (0.1608, 0.7537, 0.7537), (0.1647, 0.7752, 0.7752), (0.2157, 1.0000, 1.0000), (0.2588, 0.9804, 0.9804), (0.2706, 0.9804, 0.9804), (0.3176, 1.0000, 1.0000), (0.3686, 0.8081, 0.8081), (0.4275, 1.0000, 1.0000), (0.5216, 1.0000, 1.0000), (0.6314, 0.7292, 0.7292), (0.6863, 0.2796, 0.2796), (0.7451, 0.0000, 0.0000), (0.7922, 0.0000, 0.0000), (0.8431, 0.1753, 0.1753), (0.8980, 0.5000, 0.5000), (1.0000, 0.9725, 0.9725), ), 'blue': ( (0.0, 0.5020, 0.5020), (0.0510, 0.0222, 0.0222), (0.1098, 1.0000, 1.0000), (0.2039, 1.0000, 1.0000), (0.2627, 0.6145, 0.6145), (0.3216, 0.0000, 0.0000), (0.4157, 0.0000, 0.0000), (0.4745, 0.2342, 0.2342), (0.5333, 0.0000, 0.0000), (0.5804, 0.0000, 0.0000), (0.6314, 0.0549, 0.0549), (0.6902, 0.0000, 0.0000), (0.7373, 0.0000, 0.0000), (0.7922, 0.9738, 0.9738), (0.8000, 1.0000, 1.0000), (0.8431, 1.0000, 1.0000), (0.8980, 0.9341, 0.9341), (1.0000, 0.9961, 0.9961), )} _gist_rainbow_data = ( (0.000, (1.00, 0.00, 0.16)), (0.030, (1.00, 0.00, 0.00)), (0.215, (1.00, 1.00, 0.00)), (0.400, (0.00, 1.00, 0.00)), (0.586, (0.00, 1.00, 1.00)), (0.770, (0.00, 0.00, 1.00)), (0.954, (1.00, 0.00, 1.00)), (1.000, (1.00, 0.00, 0.75)) ) _gist_stern_data = { 'red': ( (0.000, 0.000, 0.000), (0.0547, 1.000, 1.000), (0.250, 0.027, 0.250), # (0.2500, 0.250, 0.250), (1.000, 1.000, 1.000)), 'green': ((0, 0, 0), (1, 1, 1)), 'blue': ( (0.000, 0.000, 0.000), (0.500, 1.000, 1.000), (0.735, 0.000, 0.000), (1.000, 1.000, 1.000)) } def _gist_yarg(x): return 1 - x _gist_yarg_data = {'red': _gist_yarg, 'green': _gist_yarg, 'blue': _gist_yarg} # This bipolar color map was generated from CoolWarmFloat33.csv of # "Diverging Color Maps for Scientific Visualization" by Kenneth Moreland. # <http://www.kennethmoreland.com/color-maps/> _coolwarm_data = { 'red': [ (0.0, 0.2298057, 0.2298057), (0.03125, 0.26623388, 0.26623388), (0.0625, 0.30386891, 0.30386891), (0.09375, 0.342804478, 0.342804478), (0.125, 0.38301334, 0.38301334), (0.15625, 0.424369608, 0.424369608), (0.1875, 0.46666708, 0.46666708), (0.21875, 0.509635204, 0.509635204), (0.25, 0.552953156, 0.552953156), (0.28125, 0.596262162, 0.596262162), (0.3125, 0.639176211, 0.639176211), (0.34375, 0.681291281, 0.681291281), (0.375, 0.722193294, 0.722193294), (0.40625, 0.761464949, 0.761464949), (0.4375, 0.798691636, 0.798691636), (0.46875, 0.833466556, 0.833466556), (0.5, 0.865395197, 0.865395197), (0.53125, 0.897787179, 0.897787179), (0.5625, 0.924127593, 0.924127593), (0.59375, 0.944468518, 0.944468518), (0.625, 0.958852946, 0.958852946), (0.65625, 0.96732803, 0.96732803), (0.6875, 0.969954137, 0.969954137), (0.71875, 0.966811177, 0.966811177), (0.75, 0.958003065, 0.958003065), (0.78125, 0.943660866, 0.943660866), (0.8125, 0.923944917, 0.923944917), (0.84375, 0.89904617, 0.89904617), (0.875, 0.869186849, 0.869186849), (0.90625, 0.834620542, 0.834620542), (0.9375, 0.795631745, 0.795631745), (0.96875, 0.752534934, 0.752534934), (1.0, 0.705673158, 0.705673158)], 'green': [ (0.0, 0.298717966, 0.298717966), (0.03125, 0.353094838, 0.353094838), (0.0625, 0.406535296, 0.406535296), (0.09375, 0.458757618, 0.458757618), (0.125, 0.50941904, 0.50941904), (0.15625, 0.558148092, 0.558148092), (0.1875, 0.604562568, 0.604562568), (0.21875, 0.648280772, 0.648280772), (0.25, 0.688929332, 0.688929332), (0.28125, 0.726149107, 0.726149107), (0.3125, 0.759599947, 0.759599947), (0.34375, 0.788964712, 0.788964712), (0.375, 0.813952739, 0.813952739), (0.40625, 0.834302879, 0.834302879), (0.4375, 0.849786142, 0.849786142), (0.46875, 0.860207984, 0.860207984), (0.5, 0.86541021, 0.86541021), (0.53125, 0.848937047, 0.848937047), (0.5625, 0.827384882, 0.827384882), (0.59375, 0.800927443, 0.800927443), (0.625, 0.769767752, 0.769767752), (0.65625, 0.734132809, 0.734132809), (0.6875, 0.694266682, 0.694266682), (0.71875, 0.650421156, 0.650421156), (0.75, 0.602842431, 0.602842431), (0.78125, 0.551750968, 0.551750968), (0.8125, 0.49730856, 0.49730856), (0.84375, 0.439559467, 0.439559467), (0.875, 0.378313092, 0.378313092), (0.90625, 0.312874446, 0.312874446), (0.9375, 0.24128379, 0.24128379), (0.96875, 0.157246067, 0.157246067), (1.0, 0.01555616, 0.01555616)], 'blue': [ (0.0, 0.753683153, 0.753683153), (0.03125, 0.801466763, 0.801466763), (0.0625, 0.84495867, 0.84495867), (0.09375, 0.883725899, 0.883725899), (0.125, 0.917387822, 0.917387822), (0.15625, 0.945619588, 0.945619588), (0.1875, 0.968154911, 0.968154911), (0.21875, 0.98478814, 0.98478814), (0.25, 0.995375608, 0.995375608), (0.28125, 0.999836203, 0.999836203), (0.3125, 0.998151185, 0.998151185), (0.34375, 0.990363227, 0.990363227), (0.375, 0.976574709, 0.976574709), (0.40625, 0.956945269, 0.956945269), (0.4375, 0.931688648, 0.931688648), (0.46875, 0.901068838, 0.901068838), (0.5, 0.865395561, 0.865395561), (0.53125, 0.820880546, 0.820880546), (0.5625, 0.774508472, 0.774508472), (0.59375, 0.726736146, 0.726736146), (0.625, 0.678007945, 0.678007945), (0.65625, 0.628751763, 0.628751763), (0.6875, 0.579375448, 0.579375448), (0.71875, 0.530263762, 0.530263762), (0.75, 0.481775914, 0.481775914), (0.78125, 0.434243684, 0.434243684), (0.8125, 0.387970225, 0.387970225), (0.84375, 0.343229596, 0.343229596), (0.875, 0.300267182, 0.300267182), (0.90625, 0.259301199, 0.259301199), (0.9375, 0.220525627, 0.220525627), (0.96875, 0.184115123, 0.184115123), (1.0, 0.150232812, 0.150232812)] } # Implementation of Carey Rappaport's CMRmap. # See `A Color Map for Effective Black-and-White Rendering of Color-Scale # Images' by Carey Rappaport # http://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m _CMRmap_data = {'red': ((0.000, 0.00, 0.00), (0.125, 0.15, 0.15), (0.250, 0.30, 0.30), (0.375, 0.60, 0.60), (0.500, 1.00, 1.00), (0.625, 0.90, 0.90), (0.750, 0.90, 0.90), (0.875, 0.90, 0.90), (1.000, 1.00, 1.00)), 'green': ((0.000, 0.00, 0.00), (0.125, 0.15, 0.15), (0.250, 0.15, 0.15), (0.375, 0.20, 0.20), (0.500, 0.25, 0.25), (0.625, 0.50, 0.50), (0.750, 0.75, 0.75), (0.875, 0.90, 0.90), (1.000, 1.00, 1.00)), 'blue': ((0.000, 0.00, 0.00), (0.125, 0.50, 0.50), (0.250, 0.75, 0.75), (0.375, 0.50, 0.50), (0.500, 0.15, 0.15), (0.625, 0.00, 0.00), (0.750, 0.10, 0.10), (0.875, 0.50, 0.50), (1.000, 1.00, 1.00))} # An MIT licensed, colorblind-friendly heatmap from Wistia: # https://github.com/wistia/heatmap-palette # http://wistia.com/blog/heatmaps-for-colorblindness # # >>> import matplotlib.colors as c # >>> colors = ["#e4ff7a", "#ffe81a", "#ffbd00", "#ffa000", "#fc7f00"] # >>> cm = c.LinearSegmentedColormap.from_list('wistia', colors) # >>> _wistia_data = cm._segmentdata # >>> del _wistia_data['alpha'] # _wistia_data = { 'red': [(0.0, 0.8941176470588236, 0.8941176470588236), (0.25, 1.0, 1.0), (0.5, 1.0, 1.0), (0.75, 1.0, 1.0), (1.0, 0.9882352941176471, 0.9882352941176471)], 'green': [(0.0, 1.0, 1.0), (0.25, 0.9098039215686274, 0.9098039215686274), (0.5, 0.7411764705882353, 0.7411764705882353), (0.75, 0.6274509803921569, 0.6274509803921569), (1.0, 0.4980392156862745, 0.4980392156862745)], 'blue': [(0.0, 0.47843137254901963, 0.47843137254901963), (0.25, 0.10196078431372549, 0.10196078431372549), (0.5, 0.0, 0.0), (0.75, 0.0, 0.0), (1.0, 0.0, 0.0)], } # Categorical palettes from Vega: # https://github.com/vega/vega/wiki/Scales # (divided by 255) # _tab10_data = ( (0.12156862745098039, 0.4666666666666667, 0.7058823529411765 ), # 1f77b4 (1.0, 0.4980392156862745, 0.054901960784313725), # ff7f0e (0.17254901960784313, 0.6274509803921569, 0.17254901960784313 ), # 2ca02c (0.8392156862745098, 0.15294117647058825, 0.1568627450980392 ), # d62728 (0.5803921568627451, 0.403921568627451, 0.7411764705882353 ), # 9467bd (0.5490196078431373, 0.33725490196078434, 0.29411764705882354 ), # 8c564b (0.8901960784313725, 0.4666666666666667, 0.7607843137254902 ), # e377c2 (0.4980392156862745, 0.4980392156862745, 0.4980392156862745 ), # 7f7f7f (0.7372549019607844, 0.7411764705882353, 0.13333333333333333 ), # bcbd22 (0.09019607843137255, 0.7450980392156863, 0.8117647058823529), # 17becf ) _tab20_data = ( (0.12156862745098039, 0.4666666666666667, 0.7058823529411765 ), # 1f77b4 (0.6823529411764706, 0.7803921568627451, 0.9098039215686274 ), # aec7e8 (1.0, 0.4980392156862745, 0.054901960784313725), # ff7f0e (1.0, 0.7333333333333333, 0.47058823529411764 ), # ffbb78 (0.17254901960784313, 0.6274509803921569, 0.17254901960784313 ), # 2ca02c (0.596078431372549, 0.8745098039215686, 0.5411764705882353 ), # 98df8a (0.8392156862745098, 0.15294117647058825, 0.1568627450980392 ), # d62728 (1.0, 0.596078431372549, 0.5882352941176471 ), # ff9896 (0.5803921568627451, 0.403921568627451, 0.7411764705882353 ), # 9467bd (0.7725490196078432, 0.6901960784313725, 0.8352941176470589 ), # c5b0d5 (0.5490196078431373, 0.33725490196078434, 0.29411764705882354 ), # 8c564b (0.7686274509803922, 0.611764705882353, 0.5803921568627451 ), # c49c94 (0.8901960784313725, 0.4666666666666667, 0.7607843137254902 ), # e377c2 (0.9686274509803922, 0.7137254901960784, 0.8235294117647058 ), # f7b6d2 (0.4980392156862745, 0.4980392156862745, 0.4980392156862745 ), # 7f7f7f (0.7803921568627451, 0.7803921568627451, 0.7803921568627451 ), # c7c7c7 (0.7372549019607844, 0.7411764705882353, 0.13333333333333333 ), # bcbd22 (0.8588235294117647, 0.8588235294117647, 0.5529411764705883 ), # dbdb8d (0.09019607843137255, 0.7450980392156863, 0.8117647058823529 ), # 17becf (0.6196078431372549, 0.8549019607843137, 0.8980392156862745), # 9edae5 ) _tab20b_data = ( (0.2235294117647059, 0.23137254901960785, 0.4745098039215686 ), # 393b79 (0.3215686274509804, 0.32941176470588235, 0.6392156862745098 ), # 5254a3 (0.4196078431372549, 0.43137254901960786, 0.8117647058823529 ), # 6b6ecf (0.611764705882353, 0.6196078431372549, 0.8705882352941177 ), # 9c9ede (0.38823529411764707, 0.4745098039215686, 0.2235294117647059 ), # 637939 (0.5490196078431373, 0.6352941176470588, 0.3215686274509804 ), # 8ca252 (0.7098039215686275, 0.8117647058823529, 0.4196078431372549 ), # b5cf6b (0.807843137254902, 0.8588235294117647, 0.611764705882353 ), # cedb9c (0.5490196078431373, 0.42745098039215684, 0.19215686274509805), # 8c6d31 (0.7411764705882353, 0.6196078431372549, 0.2235294117647059 ), # bd9e39 (0.9058823529411765, 0.7294117647058823, 0.3215686274509804 ), # e7ba52 (0.9058823529411765, 0.796078431372549, 0.5803921568627451 ), # e7cb94 (0.5176470588235295, 0.23529411764705882, 0.2235294117647059 ), # 843c39 (0.6784313725490196, 0.28627450980392155, 0.2901960784313726 ), # ad494a (0.8392156862745098, 0.3803921568627451, 0.4196078431372549 ), # d6616b (0.9058823529411765, 0.5882352941176471, 0.611764705882353 ), # e7969c (0.4823529411764706, 0.2549019607843137, 0.45098039215686275), # 7b4173 (0.6470588235294118, 0.3176470588235294, 0.5803921568627451 ), # a55194 (0.807843137254902, 0.42745098039215684, 0.7411764705882353 ), # ce6dbd (0.8705882352941177, 0.6196078431372549, 0.8392156862745098 ), # de9ed6 ) _tab20c_data = ( (0.19215686274509805, 0.5098039215686274, 0.7411764705882353 ), # 3182bd (0.4196078431372549, 0.6823529411764706, 0.8392156862745098 ), # 6baed6 (0.6196078431372549, 0.792156862745098, 0.8823529411764706 ), # 9ecae1 (0.7764705882352941, 0.8588235294117647, 0.9372549019607843 ), # c6dbef (0.9019607843137255, 0.3333333333333333, 0.050980392156862744), # e6550d (0.9921568627450981, 0.5529411764705883, 0.23529411764705882 ), # fd8d3c (0.9921568627450981, 0.6823529411764706, 0.4196078431372549 ), # fdae6b (0.9921568627450981, 0.8156862745098039, 0.6352941176470588 ), # fdd0a2 (0.19215686274509805, 0.6392156862745098, 0.32941176470588235 ), # 31a354 (0.4549019607843137, 0.7686274509803922, 0.4627450980392157 ), # 74c476 (0.6313725490196078, 0.8509803921568627, 0.6078431372549019 ), # a1d99b (0.7803921568627451, 0.9137254901960784, 0.7529411764705882 ), # c7e9c0 (0.4588235294117647, 0.4196078431372549, 0.6941176470588235 ), # 756bb1 (0.6196078431372549, 0.6039215686274509, 0.7843137254901961 ), # 9e9ac8 (0.7372549019607844, 0.7411764705882353, 0.8627450980392157 ), # bcbddc (0.8549019607843137, 0.8549019607843137, 0.9215686274509803 ), # dadaeb (0.38823529411764707, 0.38823529411764707, 0.38823529411764707 ), # 636363 (0.5882352941176471, 0.5882352941176471, 0.5882352941176471 ), # 969696 (0.7411764705882353, 0.7411764705882353, 0.7411764705882353 ), # bdbdbd (0.8509803921568627, 0.8509803921568627, 0.8509803921568627 ), # d9d9d9 ) datad = { 'Blues': _Blues_data, 'BrBG': _BrBG_data, 'BuGn': _BuGn_data, 'BuPu': _BuPu_data, 'CMRmap': _CMRmap_data, 'GnBu': _GnBu_data, 'Greens': _Greens_data, 'Greys': _Greys_data, 'OrRd': _OrRd_data, 'Oranges': _Oranges_data, 'PRGn': _PRGn_data, 'PiYG': _PiYG_data, 'PuBu': _PuBu_data, 'PuBuGn': _PuBuGn_data, 'PuOr': _PuOr_data, 'PuRd': _PuRd_data, 'Purples': _Purples_data, 'RdBu': _RdBu_data, 'RdGy': _RdGy_data, 'RdPu': _RdPu_data, 'RdYlBu': _RdYlBu_data, 'RdYlGn': _RdYlGn_data, 'Reds': _Reds_data, 'Spectral': _Spectral_data, 'Wistia': _wistia_data, 'YlGn': _YlGn_data, 'YlGnBu': _YlGnBu_data, 'YlOrBr': _YlOrBr_data, 'YlOrRd': _YlOrRd_data, 'afmhot': _afmhot_data, 'autumn': _autumn_data, 'binary': _binary_data, 'bone': _bone_data, 'brg': _brg_data, 'bwr': _bwr_data, 'cool': _cool_data, 'coolwarm': _coolwarm_data, 'copper': _copper_data, 'cubehelix': _cubehelix_data, 'flag': _flag_data, 'gist_earth': _gist_earth_data, 'gist_gray': _gist_gray_data, 'gist_heat': _gist_heat_data, 'gist_ncar': _gist_ncar_data, 'gist_rainbow': _gist_rainbow_data, 'gist_stern': _gist_stern_data, 'gist_yarg': _gist_yarg_data, 'gnuplot': _gnuplot_data, 'gnuplot2': _gnuplot2_data, 'gray': _gray_data, 'hot': _hot_data, 'hsv': _hsv_data, 'jet': _jet_data, 'nipy_spectral': _nipy_spectral_data, 'ocean': _ocean_data, 'pink': _pink_data, 'prism': _prism_data, 'rainbow': _rainbow_data, 'seismic': _seismic_data, 'spring': _spring_data, 'summer': _summer_data, 'terrain': _terrain_data, 'winter': _winter_data, # Qualitative 'Accent': {'listed': _Accent_data}, 'Dark2': {'listed': _Dark2_data}, 'Paired': {'listed': _Paired_data}, 'Pastel1': {'listed': _Pastel1_data}, 'Pastel2': {'listed': _Pastel2_data}, 'Set1': {'listed': _Set1_data}, 'Set2': {'listed': _Set2_data}, 'Set3': {'listed': _Set3_data}, 'tab10': {'listed': _tab10_data}, 'tab20': {'listed': _tab20_data}, 'tab20b': {'listed': _tab20b_data}, 'tab20c': {'listed': _tab20c_data}, }
535e40207dba33286af2bf7e823920e95d725d057b4519fdbe17624136d7530e
""" :mod:`~matplotlib.gridspec` is a module which specifies the location of the subplot in the figure. `GridSpec` specifies the geometry of the grid that a subplot will be placed. The number of rows and number of columns of the grid need to be set. Optionally, the subplot layout parameters (e.g., left, right, etc.) can be tuned. `SubplotSpec` specifies the location of the subplot in the given `GridSpec`. """ import copy import logging import numpy as np import matplotlib as mpl from matplotlib import _pylab_helpers, cbook, tight_layout, rcParams from matplotlib.transforms import Bbox import matplotlib._layoutbox as layoutbox _log = logging.getLogger(__name__) class GridSpecBase(object): """ A base class of GridSpec that specifies the geometry of the grid that a subplot will be placed. """ def __init__(self, nrows, ncols, height_ratios=None, width_ratios=None): """ The number of rows and number of columns of the grid need to be set. Optionally, the ratio of heights and widths of rows and columns can be specified. """ self._nrows, self._ncols = nrows, ncols self.set_height_ratios(height_ratios) self.set_width_ratios(width_ratios) def __repr__(self): height_arg = (', height_ratios=%r' % self._row_height_ratios if self._row_height_ratios is not None else '') width_arg = (', width_ratios=%r' % self._col_width_ratios if self._col_width_ratios is not None else '') return '{clsname}({nrows}, {ncols}{optionals})'.format( clsname=self.__class__.__name__, nrows=self._nrows, ncols=self._ncols, optionals=height_arg + width_arg, ) def get_geometry(self): 'get the geometry of the grid, e.g., 2,3' return self._nrows, self._ncols def get_subplot_params(self, figure=None, fig=None): pass def new_subplotspec(self, loc, rowspan=1, colspan=1): """ create and return a SubplotSpec instance. """ loc1, loc2 = loc subplotspec = self[loc1:loc1+rowspan, loc2:loc2+colspan] return subplotspec def set_width_ratios(self, width_ratios): if width_ratios is not None and len(width_ratios) != self._ncols: raise ValueError('Expected the given number of width ratios to ' 'match the number of columns of the grid') self._col_width_ratios = width_ratios def get_width_ratios(self): return self._col_width_ratios def set_height_ratios(self, height_ratios): if height_ratios is not None and len(height_ratios) != self._nrows: raise ValueError('Expected the given number of height ratios to ' 'match the number of rows of the grid') self._row_height_ratios = height_ratios def get_height_ratios(self): return self._row_height_ratios def get_grid_positions(self, fig, raw=False): """ return lists of bottom and top position of rows, left and right positions of columns. If raw=True, then these are all in units relative to the container with no margins. (used for constrained_layout). """ nrows, ncols = self.get_geometry() if raw: left = 0. right = 1. bottom = 0. top = 1. wspace = 0. hspace = 0. else: subplot_params = self.get_subplot_params(fig) left = subplot_params.left right = subplot_params.right bottom = subplot_params.bottom top = subplot_params.top wspace = subplot_params.wspace hspace = subplot_params.hspace tot_width = right - left tot_height = top - bottom # calculate accumulated heights of columns cell_h = tot_height / (nrows + hspace*(nrows-1)) sep_h = hspace * cell_h if self._row_height_ratios is not None: norm = cell_h * nrows / sum(self._row_height_ratios) cell_heights = [r * norm for r in self._row_height_ratios] else: cell_heights = [cell_h] * nrows sep_heights = [0] + ([sep_h] * (nrows-1)) cell_hs = np.cumsum(np.column_stack([sep_heights, cell_heights]).flat) # calculate accumulated widths of rows cell_w = tot_width / (ncols + wspace*(ncols-1)) sep_w = wspace * cell_w if self._col_width_ratios is not None: norm = cell_w * ncols / sum(self._col_width_ratios) cell_widths = [r * norm for r in self._col_width_ratios] else: cell_widths = [cell_w] * ncols sep_widths = [0] + ([sep_w] * (ncols-1)) cell_ws = np.cumsum(np.column_stack([sep_widths, cell_widths]).flat) fig_tops, fig_bottoms = (top - cell_hs).reshape((-1, 2)).T fig_lefts, fig_rights = (left + cell_ws).reshape((-1, 2)).T return fig_bottoms, fig_tops, fig_lefts, fig_rights def __getitem__(self, key): """Create and return a SubplotSpec instance. """ nrows, ncols = self.get_geometry() def _normalize(key, size, axis): # Includes last index. orig_key = key if isinstance(key, slice): start, stop, _ = key.indices(size) if stop > start: return start, stop - 1 raise IndexError("GridSpec slice would result in no space " "allocated for subplot") else: if key < 0: key = key + size if 0 <= key < size: return key, key elif axis is not None: raise IndexError(f"index {orig_key} is out of bounds for " f"axis {axis} with size {size}") else: # flat index raise IndexError(f"index {orig_key} is out of bounds for " f"GridSpec with size {size}") if isinstance(key, tuple): try: k1, k2 = key except ValueError: raise ValueError("unrecognized subplot spec") num1, num2 = np.ravel_multi_index( [_normalize(k1, nrows, 0), _normalize(k2, ncols, 1)], (nrows, ncols)) else: # Single key num1, num2 = _normalize(key, nrows * ncols, None) return SubplotSpec(self, num1, num2) class GridSpec(GridSpecBase): """ A class that specifies the geometry of the grid that a subplot will be placed. The location of grid is determined by similar way as the SubplotParams. """ def __init__(self, nrows, ncols, figure=None, left=None, bottom=None, right=None, top=None, wspace=None, hspace=None, width_ratios=None, height_ratios=None): """ The number of rows and number of columns of the grid need to be set. Optionally, the subplot layout parameters (e.g., left, right, etc.) can be tuned. Parameters ---------- nrows : int Number of rows in grid. ncols : int Number or columns in grid. figure : `~.figure.Figure`, optional left, right, top, bottom : float, optional Extent of the subplots as a fraction of figure width or height. Left cannot be larger than right, and bottom cannot be larger than top. wspace : float, optional The amount of width reserved for space between subplots, expressed as a fraction of the average axis width. hspace : float, optional The amount of height reserved for space between subplots, expressed as a fraction of the average axis height. width_ratios : length *ncols* iterable, optional Width ratios of the columns. height_ratios : length *nrows* iterable, optional Height ratios of the rows. Notes ----- See `~.figure.SubplotParams` for descriptions of the layout parameters. """ self.left = left self.bottom = bottom self.right = right self.top = top self.wspace = wspace self.hspace = hspace self.figure = figure GridSpecBase.__init__(self, nrows, ncols, width_ratios=width_ratios, height_ratios=height_ratios) if self.figure is None or not self.figure.get_constrained_layout(): self._layoutbox = None else: self.figure.init_layoutbox() self._layoutbox = layoutbox.LayoutBox( parent=self.figure._layoutbox, name='gridspec' + layoutbox.seq_id(), artist=self) # by default the layoutbox for a gridspec will fill a figure. # but this can change below if the gridspec is created from a # subplotspec. (GridSpecFromSubplotSpec) _AllowedKeys = ["left", "bottom", "right", "top", "wspace", "hspace"] def __getstate__(self): state = self.__dict__ try: state.pop('_layoutbox') except KeyError: pass return state def __setstate__(self, state): self.__dict__ = state # layoutboxes don't survive pickling... self._layoutbox = None def update(self, **kwargs): """ Update the current values. Values set to None use the rcParams value. """ for k, v in kwargs.items(): if k in self._AllowedKeys: setattr(self, k, v) else: raise AttributeError(f"{k} is an unknown keyword") for figmanager in _pylab_helpers.Gcf.figs.values(): for ax in figmanager.canvas.figure.axes: # copied from Figure.subplots_adjust if not isinstance(ax, mpl.axes.SubplotBase): # Check if sharing a subplots axis if isinstance(ax._sharex, mpl.axes.SubplotBase): if ax._sharex.get_subplotspec().get_gridspec() == self: ax._sharex.update_params() ax._set_position(ax._sharex.figbox) elif isinstance(ax._sharey, mpl.axes.SubplotBase): if ax._sharey.get_subplotspec().get_gridspec() == self: ax._sharey.update_params() ax._set_position(ax._sharey.figbox) else: ss = ax.get_subplotspec().get_topmost_subplotspec() if ss.get_gridspec() == self: ax.update_params() ax._set_position(ax.figbox) def get_subplot_params(self, figure=None): """ Return a dictionary of subplot layout parameters. The default parameters are from rcParams unless a figure attribute is set. """ if figure is None: kw = {k: rcParams["figure.subplot."+k] for k in self._AllowedKeys} subplotpars = mpl.figure.SubplotParams(**kw) else: subplotpars = copy.copy(figure.subplotpars) subplotpars.update(**{k: getattr(self, k) for k in self._AllowedKeys}) return subplotpars def locally_modified_subplot_params(self): return [k for k in self._AllowedKeys if getattr(self, k)] def tight_layout(self, figure, renderer=None, pad=1.08, h_pad=None, w_pad=None, rect=None): """ Adjust subplot parameters to give specified padding. Parameters ---------- pad : float Padding between the figure edge and the edges of subplots, as a fraction of the font-size. h_pad, w_pad : float, optional Padding (height/width) between edges of adjacent subplots. Defaults to ``pad_inches``. rect : tuple of 4 floats, optional (left, bottom, right, top) rectangle in normalized figure coordinates that the whole subplots area (including labels) will fit into. Default is (0, 0, 1, 1). """ subplotspec_list = tight_layout.get_subplotspec_list( figure.axes, grid_spec=self) if None in subplotspec_list: cbook._warn_external("This figure includes Axes that are not " "compatible with tight_layout, so results " "might be incorrect.") if renderer is None: renderer = tight_layout.get_renderer(figure) kwargs = tight_layout.get_tight_layout_figure( figure, figure.axes, subplotspec_list, renderer, pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect) if kwargs: self.update(**kwargs) class GridSpecFromSubplotSpec(GridSpecBase): """ GridSpec whose subplot layout parameters are inherited from the location specified by a given SubplotSpec. """ def __init__(self, nrows, ncols, subplot_spec, wspace=None, hspace=None, height_ratios=None, width_ratios=None): """ The number of rows and number of columns of the grid need to be set. An instance of SubplotSpec is also needed to be set from which the layout parameters will be inherited. The wspace and hspace of the layout can be optionally specified or the default values (from the figure or rcParams) will be used. """ self._wspace = wspace self._hspace = hspace self._subplot_spec = subplot_spec GridSpecBase.__init__(self, nrows, ncols, width_ratios=width_ratios, height_ratios=height_ratios) # do the layoutboxes subspeclb = subplot_spec._layoutbox if subspeclb is None: self._layoutbox = None else: # OK, this is needed to divide the figure. self._layoutbox = subspeclb.layout_from_subplotspec( subplot_spec, name=subspeclb.name + '.gridspec' + layoutbox.seq_id(), artist=self) def get_subplot_params(self, figure=None): """Return a dictionary of subplot layout parameters. """ hspace = (self._hspace if self._hspace is not None else figure.subplotpars.hspace if figure is not None else rcParams["figure.subplot.hspace"]) wspace = (self._wspace if self._wspace is not None else figure.subplotpars.wspace if figure is not None else rcParams["figure.subplot.wspace"]) figbox = self._subplot_spec.get_position(figure) left, bottom, right, top = figbox.extents return mpl.figure.SubplotParams(left=left, right=right, bottom=bottom, top=top, wspace=wspace, hspace=hspace) def get_topmost_subplotspec(self): """Get the topmost SubplotSpec instance associated with the subplot.""" return self._subplot_spec.get_topmost_subplotspec() class SubplotSpec(object): """Specifies the location of the subplot in the given `GridSpec`. """ def __init__(self, gridspec, num1, num2=None): """ The subplot will occupy the num1-th cell of the given gridspec. If num2 is provided, the subplot will span between num1-th cell and num2-th cell *inclusive*. The index starts from 0. """ self._gridspec = gridspec self.num1 = num1 self.num2 = num2 if gridspec._layoutbox is not None: glb = gridspec._layoutbox # So note that here we don't assign any layout yet, # just make the layoutbox that will contain all items # associated w/ this axis. This can include other axes like # a colorbar or a legend. self._layoutbox = layoutbox.LayoutBox( parent=glb, name=glb.name + '.ss' + layoutbox.seq_id(), artist=self) else: self._layoutbox = None # num2 is a property only to handle the case where it is None and someone # mutates num1. @property def num2(self): return self.num1 if self._num2 is None else self._num2 @num2.setter def num2(self, value): self._num2 = value def __getstate__(self): state = self.__dict__ try: state.pop('_layoutbox') except KeyError: pass return state def __setstate__(self, state): self.__dict__ = state # layoutboxes don't survive pickling... self._layoutbox = None def get_gridspec(self): return self._gridspec def get_geometry(self): """ Get the subplot geometry (``n_rows, n_cols, start, stop``). start and stop are the index of the start and stop of the subplot. """ rows, cols = self.get_gridspec().get_geometry() return rows, cols, self.num1, self.num2 def get_rows_columns(self): """ Get the subplot row and column numbers: (``n_rows, n_cols, row_start, row_stop, col_start, col_stop``) """ gridspec = self.get_gridspec() nrows, ncols = gridspec.get_geometry() row_start, col_start = divmod(self.num1, ncols) row_stop, col_stop = divmod(self.num2, ncols) return nrows, ncols, row_start, row_stop, col_start, col_stop def get_position(self, figure, return_all=False): """Update the subplot position from ``figure.subplotpars``. """ gridspec = self.get_gridspec() nrows, ncols = gridspec.get_geometry() rows, cols = np.unravel_index([self.num1, self.num2], (nrows, ncols)) fig_bottoms, fig_tops, fig_lefts, fig_rights = \ gridspec.get_grid_positions(figure) fig_bottom = fig_bottoms[rows].min() fig_top = fig_tops[rows].max() fig_left = fig_lefts[cols].min() fig_right = fig_rights[cols].max() figbox = Bbox.from_extents(fig_left, fig_bottom, fig_right, fig_top) if return_all: return figbox, rows[0], cols[0], nrows, ncols else: return figbox def get_topmost_subplotspec(self): 'get the topmost SubplotSpec instance associated with the subplot' gridspec = self.get_gridspec() if hasattr(gridspec, "get_topmost_subplotspec"): return gridspec.get_topmost_subplotspec() else: return self def __eq__(self, other): # other may not even have the attributes we are checking. return ((self._gridspec, self.num1, self.num2) == (getattr(other, "_gridspec", object()), getattr(other, "num1", object()), getattr(other, "num2", object()))) def __hash__(self): return hash((self._gridspec, self.num1, self.num2)) def subgridspec(self, nrows, ncols, **kwargs): """ Return a `.GridSpecFromSubplotSpec` that has this subplotspec as a parent. Parameters ---------- nrows : int Number of rows in grid. ncols : int Number or columns in grid. Returns ------- gridspec : `.GridSpec` Other Parameters ---------------- **kwargs All other parameters are passed to `.GridSpec`. See Also -------- matplotlib.pyplot.subplots Examples -------- Adding three subplots in the space occupied by a single subplot:: fig = plt.figure() gs0 = fig.add_gridspec(3, 1) ax1 = fig.add_subplot(gs0[0]) ax2 = fig.add_subplot(gs0[1]) gssub = gs0[2].subgridspec(1, 3) for i in range(3): fig.add_subplot(gssub[0, i]) """ return GridSpecFromSubplotSpec(nrows, ncols, self, **kwargs)
4836874771883bca61c5bffdb85bcae3f4724bf95d80198ecefa7a1d5928626a
""" Classes for including text in a figure. """ import contextlib import logging import math import weakref import numpy as np from . import artist, cbook, docstring, rcParams from .artist import Artist from .font_manager import FontProperties from .lines import Line2D from .patches import FancyArrowPatch, FancyBboxPatch, Rectangle from .textpath import TextPath # Unused, but imported by others. from .transforms import ( Affine2D, Bbox, BboxBase, BboxTransformTo, IdentityTransform, Transform) _log = logging.getLogger(__name__) @contextlib.contextmanager def _wrap_text(textobj): """Temporarily inserts newlines to the text if the wrap option is enabled. """ if textobj.get_wrap(): old_text = textobj.get_text() try: textobj.set_text(textobj._get_wrapped_text()) yield textobj finally: textobj.set_text(old_text) else: yield textobj # Extracted from Text's method to serve as a function def get_rotation(rotation): """ Return the text angle as float between 0 and 360 degrees. *rotation* may be 'horizontal', 'vertical', or a numeric value in degrees. """ try: return float(rotation) % 360 except (ValueError, TypeError): if cbook._str_equal(rotation, 'horizontal') or rotation is None: return 0. elif cbook._str_equal(rotation, 'vertical'): return 90. else: raise ValueError("rotation is {!r}; expected either 'horizontal', " "'vertical', numeric value, or None" .format(rotation)) def _get_textbox(text, renderer): """ Calculate the bounding box of the text. Unlike :meth:`matplotlib.text.Text.get_extents` method, The bbox size of the text before the rotation is calculated. """ # TODO : This function may move into the Text class as a method. As a # matter of fact, The information from the _get_textbox function # should be available during the Text._get_layout() call, which is # called within the _get_textbox. So, it would better to move this # function as a method with some refactoring of _get_layout method. projected_xs = [] projected_ys = [] theta = np.deg2rad(text.get_rotation()) tr = Affine2D().rotate(-theta) _, parts, d = text._get_layout(renderer) for t, wh, x, y in parts: w, h = wh xt1, yt1 = tr.transform_point((x, y)) yt1 -= d xt2, yt2 = xt1 + w, yt1 + h projected_xs.extend([xt1, xt2]) projected_ys.extend([yt1, yt2]) xt_box, yt_box = min(projected_xs), min(projected_ys) w_box, h_box = max(projected_xs) - xt_box, max(projected_ys) - yt_box x_box, y_box = Affine2D().rotate(theta).transform_point((xt_box, yt_box)) return x_box, y_box, w_box, h_box @cbook._define_aliases({ "color": ["c"], "fontfamily": ["family"], "fontproperties": ["font_properties"], "horizontalalignment": ["ha"], "multialignment": ["ma"], "fontname": ["name"], "fontsize": ["size"], "fontstretch": ["stretch"], "fontstyle": ["style"], "fontvariant": ["variant"], "verticalalignment": ["va"], "fontweight": ["weight"], }) class Text(Artist): """Handle storing and drawing of text in window or data coordinates.""" zorder = 3 _cached = cbook.maxdict(50) def __repr__(self): return "Text(%s, %s, %s)" % (self._x, self._y, repr(self._text)) def __init__(self, x=0, y=0, text='', color=None, # defaults to rc params verticalalignment='baseline', horizontalalignment='left', multialignment=None, fontproperties=None, # defaults to FontProperties() rotation=None, linespacing=None, rotation_mode=None, usetex=None, # defaults to rcParams['text.usetex'] wrap=False, **kwargs ): """ Create a `.Text` instance at *x*, *y* with string *text*. Valid kwargs are %(Text)s """ Artist.__init__(self) self._x, self._y = x, y if color is None: color = rcParams['text.color'] if fontproperties is None: fontproperties = FontProperties() elif isinstance(fontproperties, str): fontproperties = FontProperties(fontproperties) self._text = '' self.set_text(text) self.set_color(color) self.set_usetex(usetex) self.set_wrap(wrap) self.set_verticalalignment(verticalalignment) self.set_horizontalalignment(horizontalalignment) self._multialignment = multialignment self._rotation = rotation self._fontproperties = fontproperties self._bbox_patch = None # a FancyBboxPatch instance self._renderer = None if linespacing is None: linespacing = 1.2 # Maybe use rcParam later. self._linespacing = linespacing self.set_rotation_mode(rotation_mode) self.update(kwargs) def update(self, kwargs): """ Update properties from a dictionary. """ # Update bbox last, as it depends on font properties. sentinel = object() # bbox can be None, so use another sentinel. bbox = kwargs.pop("bbox", sentinel) super().update(kwargs) if bbox is not sentinel: self.set_bbox(bbox) def __getstate__(self): d = super().__getstate__() # remove the cached _renderer (if it exists) d['_renderer'] = None return d def contains(self, mouseevent): """Test whether the mouse event occurred in the patch. In the case of text, a hit is true anywhere in the axis-aligned bounding-box containing the text. Returns ------- bool : bool """ if self._contains is not None: return self._contains(self, mouseevent) if not self.get_visible() or self._renderer is None: return False, {} l, b, w, h = self.get_window_extent().bounds r, t = l + w, b + h x, y = mouseevent.x, mouseevent.y inside = (l <= x <= r and b <= y <= t) cattr = {} # if the text has a surrounding patch, also check containment for it, # and merge the results with the results for the text. if self._bbox_patch: patch_inside, patch_cattr = self._bbox_patch.contains(mouseevent) inside = inside or patch_inside cattr["bbox_patch"] = patch_cattr return inside, cattr def _get_xy_display(self): """ Get the (possibly unit converted) transformed x, y in display coords. """ x, y = self.get_unitless_position() return self.get_transform().transform_point((x, y)) def _get_multialignment(self): if self._multialignment is not None: return self._multialignment else: return self._horizontalalignment def get_rotation(self): """Return the text angle as float in degrees.""" return get_rotation(self._rotation) # string_or_number -> number def set_rotation_mode(self, m): """ Set text rotation mode. Parameters ---------- m : {None, 'default', 'anchor'} If ``None`` or ``"default"``, the text will be first rotated, then aligned according to their horizontal and vertical alignments. If ``"anchor"``, then alignment occurs before rotation. """ if m is None or m in ["anchor", "default"]: self._rotation_mode = m else: raise ValueError("Unknown rotation_mode : %s" % repr(m)) self.stale = True def get_rotation_mode(self): """Get the text rotation mode.""" return self._rotation_mode def update_from(self, other): """Copy properties from other to self.""" Artist.update_from(self, other) self._color = other._color self._multialignment = other._multialignment self._verticalalignment = other._verticalalignment self._horizontalalignment = other._horizontalalignment self._fontproperties = other._fontproperties.copy() self._rotation = other._rotation self._picker = other._picker self._linespacing = other._linespacing self.stale = True def _get_layout(self, renderer): """ return the extent (bbox) of the text together with multiple-alignment information. Note that it returns an extent of a rotated text when necessary. """ key = self.get_prop_tup(renderer=renderer) if key in self._cached: return self._cached[key] thisx, thisy = 0.0, 0.0 lines = self.get_text().split("\n") # Ensures lines is not empty. ws = [] hs = [] xs = [] ys = [] # Full vertical extent of font, including ascenders and descenders: _, lp_h, lp_d = renderer.get_text_width_height_descent( "lp", self._fontproperties, ismath="TeX" if self.get_usetex() else False) min_dy = (lp_h - lp_d) * self._linespacing for i, line in enumerate(lines): clean_line, ismath = self._preprocess_math(line) if clean_line: w, h, d = renderer.get_text_width_height_descent( clean_line, self._fontproperties, ismath=ismath) else: w = h = d = 0 # For multiline text, increase the line spacing when the text # net-height (excluding baseline) is larger than that of a "l" # (e.g., use of superscripts), which seems what TeX does. h = max(h, lp_h) d = max(d, lp_d) ws.append(w) hs.append(h) # Metrics of the last line that are needed later: baseline = (h - d) - thisy if i == 0: # position at baseline thisy = -(h - d) else: # put baseline a good distance from bottom of previous line thisy -= max(min_dy, (h - d) * self._linespacing) xs.append(thisx) # == 0. ys.append(thisy) thisy -= d # Metrics of the last line that are needed later: descent = d # Bounding box definition: width = max(ws) xmin = 0 xmax = width ymax = 0 ymin = ys[-1] - descent # baseline of last line minus its descent height = ymax - ymin # get the rotation matrix M = Affine2D().rotate_deg(self.get_rotation()) # now offset the individual text lines within the box malign = self._get_multialignment() if malign == 'left': offset_layout = [(x, y) for x, y in zip(xs, ys)] elif malign == 'center': offset_layout = [(x + width / 2 - w / 2, y) for x, y, w in zip(xs, ys, ws)] elif malign == 'right': offset_layout = [(x + width - w, y) for x, y, w in zip(xs, ys, ws)] # the corners of the unrotated bounding box corners_horiz = np.array( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)]) # now rotate the bbox corners_rotated = M.transform(corners_horiz) # compute the bounds of the rotated box xmin = corners_rotated[:, 0].min() xmax = corners_rotated[:, 0].max() ymin = corners_rotated[:, 1].min() ymax = corners_rotated[:, 1].max() width = xmax - xmin height = ymax - ymin # Now move the box to the target position offset the display # bbox by alignment halign = self._horizontalalignment valign = self._verticalalignment rotation_mode = self.get_rotation_mode() if rotation_mode != "anchor": # compute the text location in display coords and the offsets # necessary to align the bbox with that location if halign == 'center': offsetx = (xmin + xmax) / 2 elif halign == 'right': offsetx = xmax else: offsetx = xmin if valign == 'center': offsety = (ymin + ymax) / 2 elif valign == 'top': offsety = ymax elif valign == 'baseline': offsety = ymin + descent elif valign == 'center_baseline': offsety = ymin + height - baseline / 2.0 else: offsety = ymin else: xmin1, ymin1 = corners_horiz[0] xmax1, ymax1 = corners_horiz[2] if halign == 'center': offsetx = (xmin1 + xmax1) / 2.0 elif halign == 'right': offsetx = xmax1 else: offsetx = xmin1 if valign == 'center': offsety = (ymin1 + ymax1) / 2.0 elif valign == 'top': offsety = ymax1 elif valign == 'baseline': offsety = ymax1 - baseline elif valign == 'center_baseline': offsety = ymax1 - baseline / 2.0 else: offsety = ymin1 offsetx, offsety = M.transform_point((offsetx, offsety)) xmin -= offsetx ymin -= offsety bbox = Bbox.from_bounds(xmin, ymin, width, height) # now rotate the positions around the first x,y position xys = M.transform(offset_layout) - (offsetx, offsety) ret = bbox, list(zip(lines, zip(ws, hs), *xys.T)), descent self._cached[key] = ret return ret def set_bbox(self, rectprops): """ Draw a bounding box around self. Parameters ---------- rectprops : dict with properties for `.patches.FancyBboxPatch` The default boxstyle is 'square'. The mutation scale of the `.patches.FancyBboxPatch` is set to the fontsize. Examples -------- :: t.set_bbox(dict(facecolor='red', alpha=0.5)) """ if rectprops is not None: props = rectprops.copy() boxstyle = props.pop("boxstyle", None) pad = props.pop("pad", None) if boxstyle is None: boxstyle = "square" if pad is None: pad = 4 # points pad /= self.get_size() # to fraction of font size else: if pad is None: pad = 0.3 # boxstyle could be a callable or a string if isinstance(boxstyle, str) and "pad" not in boxstyle: boxstyle += ",pad=%0.2f" % pad bbox_transmuter = props.pop("bbox_transmuter", None) self._bbox_patch = FancyBboxPatch( (0., 0.), 1., 1., boxstyle=boxstyle, bbox_transmuter=bbox_transmuter, transform=IdentityTransform(), **props) else: self._bbox_patch = None self._update_clip_properties() def get_bbox_patch(self): """ Return the bbox Patch, or None if the `.patches.FancyBboxPatch` is not made. """ return self._bbox_patch def update_bbox_position_size(self, renderer): """ Update the location and the size of the bbox. This method should be used when the position and size of the bbox needs to be updated before actually drawing the bbox. """ if self._bbox_patch: trans = self.get_transform() # don't use self.get_unitless_position here, which refers to text # position in Text, and dash position in TextWithDash: posx = float(self.convert_xunits(self._x)) posy = float(self.convert_yunits(self._y)) posx, posy = trans.transform_point((posx, posy)) x_box, y_box, w_box, h_box = _get_textbox(self, renderer) self._bbox_patch.set_bounds(0., 0., w_box, h_box) theta = np.deg2rad(self.get_rotation()) tr = Affine2D().rotate(theta) tr = tr.translate(posx + x_box, posy + y_box) self._bbox_patch.set_transform(tr) fontsize_in_pixel = renderer.points_to_pixels(self.get_size()) self._bbox_patch.set_mutation_scale(fontsize_in_pixel) def _draw_bbox(self, renderer, posx, posy): """ Update the location and size of the bbox (`.patches.FancyBboxPatch`), and draw. """ x_box, y_box, w_box, h_box = _get_textbox(self, renderer) self._bbox_patch.set_bounds(0., 0., w_box, h_box) theta = np.deg2rad(self.get_rotation()) tr = Affine2D().rotate(theta) tr = tr.translate(posx + x_box, posy + y_box) self._bbox_patch.set_transform(tr) fontsize_in_pixel = renderer.points_to_pixels(self.get_size()) self._bbox_patch.set_mutation_scale(fontsize_in_pixel) self._bbox_patch.draw(renderer) def _update_clip_properties(self): clipprops = dict(clip_box=self.clipbox, clip_path=self._clippath, clip_on=self._clipon) if self._bbox_patch: self._bbox_patch.update(clipprops) def set_clip_box(self, clipbox): # docstring inherited. super().set_clip_box(clipbox) self._update_clip_properties() def set_clip_path(self, path, transform=None): # docstring inherited. super().set_clip_path(path, transform) self._update_clip_properties() def set_clip_on(self, b): # docstring inherited. super().set_clip_on(b) self._update_clip_properties() def get_wrap(self): """Return the wrapping state for the text.""" return self._wrap def set_wrap(self, wrap): """Set the wrapping state for the text. Parameters ---------- wrap : bool """ self._wrap = wrap def _get_wrap_line_width(self): """ Return the maximum line width for wrapping text based on the current orientation. """ x0, y0 = self.get_transform().transform(self.get_position()) figure_box = self.get_figure().get_window_extent() # Calculate available width based on text alignment alignment = self.get_horizontalalignment() self.set_rotation_mode('anchor') rotation = self.get_rotation() left = self._get_dist_to_box(rotation, x0, y0, figure_box) right = self._get_dist_to_box( (180 + rotation) % 360, x0, y0, figure_box) if alignment == 'left': line_width = left elif alignment == 'right': line_width = right else: line_width = 2 * min(left, right) return line_width def _get_dist_to_box(self, rotation, x0, y0, figure_box): """ Return the distance from the given points to the boundaries of a rotated box, in pixels. """ if rotation > 270: quad = rotation - 270 h1 = y0 / math.cos(math.radians(quad)) h2 = (figure_box.x1 - x0) / math.cos(math.radians(90 - quad)) elif rotation > 180: quad = rotation - 180 h1 = x0 / math.cos(math.radians(quad)) h2 = y0 / math.cos(math.radians(90 - quad)) elif rotation > 90: quad = rotation - 90 h1 = (figure_box.y1 - y0) / math.cos(math.radians(quad)) h2 = x0 / math.cos(math.radians(90 - quad)) else: h1 = (figure_box.x1 - x0) / math.cos(math.radians(rotation)) h2 = (figure_box.y1 - y0) / math.cos(math.radians(90 - rotation)) return min(h1, h2) def _get_rendered_text_width(self, text): """ Return the width of a given text string, in pixels. """ w, h, d = self._renderer.get_text_width_height_descent( text, self.get_fontproperties(), False) return math.ceil(w) def _get_wrapped_text(self): """ Return a copy of the text with new lines added, so that the text is wrapped relative to the parent figure. """ # Not fit to handle breaking up latex syntax correctly, so # ignore latex for now. if self.get_usetex(): return self.get_text() # Build the line incrementally, for a more accurate measure of length line_width = self._get_wrap_line_width() wrapped_str = "" line = "" for word in self.get_text().split(' '): # New lines in the user's test need to force a split, so that it's # not using the longest current line width in the line being built sub_words = word.split('\n') for i in range(len(sub_words)): current_width = self._get_rendered_text_width( line + ' ' + sub_words[i]) # Split long lines, and each newline found in the current word if current_width > line_width or i > 0: wrapped_str += line + '\n' line = "" if line == "": line = sub_words[i] else: line += ' ' + sub_words[i] return wrapped_str + line @artist.allow_rasterization def draw(self, renderer): """ Draws the `.Text` object to the given *renderer*. """ if renderer is not None: self._renderer = renderer if not self.get_visible(): return if self.get_text() == '': return renderer.open_group('text', self.get_gid()) with _wrap_text(self) as textobj: bbox, info, descent = textobj._get_layout(renderer) trans = textobj.get_transform() # don't use textobj.get_position here, which refers to text # position in Text, and dash position in TextWithDash: posx = float(textobj.convert_xunits(textobj._x)) posy = float(textobj.convert_yunits(textobj._y)) posx, posy = trans.transform_point((posx, posy)) if not np.isfinite(posx) or not np.isfinite(posy): _log.warning("posx and posy should be finite values") return canvasw, canvash = renderer.get_canvas_width_height() # draw the FancyBboxPatch if textobj._bbox_patch: textobj._draw_bbox(renderer, posx, posy) gc = renderer.new_gc() gc.set_foreground(textobj.get_color()) gc.set_alpha(textobj.get_alpha()) gc.set_url(textobj._url) textobj._set_gc_clip(gc) angle = textobj.get_rotation() for line, wh, x, y in info: mtext = textobj if len(info) == 1 else None x = x + posx y = y + posy if renderer.flipy(): y = canvash - y clean_line, ismath = textobj._preprocess_math(line) if textobj.get_path_effects(): from matplotlib.patheffects import PathEffectRenderer textrenderer = PathEffectRenderer( textobj.get_path_effects(), renderer) else: textrenderer = renderer if textobj.get_usetex(): textrenderer.draw_tex(gc, x, y, clean_line, textobj._fontproperties, angle, mtext=mtext) else: textrenderer.draw_text(gc, x, y, clean_line, textobj._fontproperties, angle, ismath=ismath, mtext=mtext) gc.restore() renderer.close_group('text') self.stale = False def get_color(self): "Return the color of the text" return self._color def get_fontproperties(self): "Return the `.font_manager.FontProperties` object" return self._fontproperties def get_fontfamily(self): """ Return the list of font families used for font lookup See Also -------- .font_manager.FontProperties.get_family """ return self._fontproperties.get_family() def get_fontname(self): """ Return the font name as string See Also -------- .font_manager.FontProperties.get_name """ return self._fontproperties.get_name() def get_fontstyle(self): """ Return the font style as string See Also -------- .font_manager.FontProperties.get_style """ return self._fontproperties.get_style() def get_fontsize(self): """ Return the font size as integer See Also -------- .font_manager.FontProperties.get_size_in_points """ return self._fontproperties.get_size_in_points() def get_fontvariant(self): """ Return the font variant as a string See Also -------- .font_manager.FontProperties.get_variant """ return self._fontproperties.get_variant() def get_fontweight(self): """ Get the font weight as string or number See Also -------- .font_manager.FontProperties.get_weight """ return self._fontproperties.get_weight() def get_stretch(self): """ Get the font stretch as a string or number See Also -------- .font_manager.FontProperties.get_stretch """ return self._fontproperties.get_stretch() def get_horizontalalignment(self): """ Return the horizontal alignment as string. Will be one of 'left', 'center' or 'right'. """ return self._horizontalalignment def get_unitless_position(self): "Return the unitless position of the text as a tuple (*x*, *y*)" # This will get the position with all unit information stripped away. # This is here for convenience since it is done in several locations. x = float(self.convert_xunits(self._x)) y = float(self.convert_yunits(self._y)) return x, y def get_position(self): "Return the position of the text as a tuple (*x*, *y*)" # This should return the same data (possible unitized) as was # specified with 'set_x' and 'set_y'. return self._x, self._y def get_prop_tup(self, renderer=None): """ Return a hashable tuple of properties. Not intended to be human readable, but useful for backends who want to cache derived information about text (e.g., layouts) and need to know if the text has changed. """ x, y = self.get_unitless_position() renderer = renderer or self._renderer return (x, y, self.get_text(), self._color, self._verticalalignment, self._horizontalalignment, hash(self._fontproperties), self._rotation, self._rotation_mode, self.figure.dpi, weakref.ref(renderer), self._linespacing ) def get_text(self): "Get the text as string" return self._text def get_verticalalignment(self): """ Return the vertical alignment as string. Will be one of 'top', 'center', 'bottom' or 'baseline'. """ return self._verticalalignment def get_window_extent(self, renderer=None, dpi=None): """ Return the `Bbox` bounding the text, in display units. In addition to being used internally, this is useful for specifying clickable regions in a png file on a web page. Parameters ---------- renderer : Renderer, optional A renderer is needed to compute the bounding box. If the artist has already been drawn, the renderer is cached; thus, it is only necessary to pass this argument when calling `get_window_extent` before the first `draw`. In practice, it is usually easier to trigger a draw first (e.g. by saving the figure). dpi : float, optional The dpi value for computing the bbox, defaults to ``self.figure.dpi`` (*not* the renderer dpi); should be set e.g. if to match regions with a figure saved with a custom dpi value. """ #return _unit_box if not self.get_visible(): return Bbox.unit() if dpi is not None: dpi_orig = self.figure.dpi self.figure.dpi = dpi if self.get_text() == '': tx, ty = self._get_xy_display() return Bbox.from_bounds(tx, ty, 0, 0) if renderer is not None: self._renderer = renderer if self._renderer is None: self._renderer = self.figure._cachedRenderer if self._renderer is None: raise RuntimeError('Cannot get window extent w/o renderer') bbox, info, descent = self._get_layout(self._renderer) x, y = self.get_unitless_position() x, y = self.get_transform().transform_point((x, y)) bbox = bbox.translated(x, y) if dpi is not None: self.figure.dpi = dpi_orig return bbox def set_backgroundcolor(self, color): """ Set the background color of the text by updating the bbox. Parameters ---------- color : color See Also -------- .set_bbox : To change the position of the bounding box """ if self._bbox_patch is None: self.set_bbox(dict(facecolor=color, edgecolor=color)) else: self._bbox_patch.update(dict(facecolor=color)) self._update_clip_properties() self.stale = True def set_color(self, color): """ Set the foreground color of the text Parameters ---------- color : color """ # Make sure it is hashable, or get_prop_tup will fail. try: hash(color) except TypeError: color = tuple(color) self._color = color self.stale = True def set_horizontalalignment(self, align): """ Set the horizontal alignment to one of Parameters ---------- align : {'center', 'right', 'left'} """ cbook._check_in_list(['center', 'right', 'left'], align=align) self._horizontalalignment = align self.stale = True def set_multialignment(self, align): """ Set the alignment for multiple lines layout. The layout of the bounding box of all the lines is determined bu the horizontalalignment and verticalalignment properties, but the multiline text within that box can be Parameters ---------- align : {'left', 'right', 'center'} """ cbook._check_in_list(['center', 'right', 'left'], align=align) self._multialignment = align self.stale = True def set_linespacing(self, spacing): """ Set the line spacing as a multiple of the font size. Default is 1.2. Parameters ---------- spacing : float (multiple of font size) """ self._linespacing = spacing self.stale = True def set_fontfamily(self, fontname): """ Set the font family. May be either a single string, or a list of strings in decreasing priority. Each string may be either a real font name or a generic font class name. If the latter, the specific font names will be looked up in the corresponding rcParams. If a `Text` instance is constructed with ``fontfamily=None``, then the font is set to :rc:`font.family`, and the same is done when `set_fontfamily()` is called on an existing `Text` instance. Parameters ---------- fontname : {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', \ 'monospace'} See Also -------- .font_manager.FontProperties.set_family """ self._fontproperties.set_family(fontname) self.stale = True def set_fontvariant(self, variant): """ Set the font variant, either 'normal' or 'small-caps'. Parameters ---------- variant : {'normal', 'small-caps'} See Also -------- .font_manager.FontProperties.set_variant """ self._fontproperties.set_variant(variant) self.stale = True def set_fontstyle(self, fontstyle): """ Set the font style. Parameters ---------- fontstyle : {'normal', 'italic', 'oblique'} See Also -------- .font_manager.FontProperties.set_style """ self._fontproperties.set_style(fontstyle) self.stale = True def set_fontsize(self, fontsize): """ Set the font size. May be either a size string, relative to the default font size, or an absolute font size in points. Parameters ---------- fontsize : {size in points, 'xx-small', 'x-small', 'small', 'medium', \ 'large', 'x-large', 'xx-large'} See Also -------- .font_manager.FontProperties.set_size """ self._fontproperties.set_size(fontsize) self.stale = True def set_fontweight(self, weight): """ Set the font weight. Parameters ---------- weight : {a numeric value in range 0-1000, 'ultralight', 'light', \ 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', \ 'demi', 'bold', 'heavy', 'extra bold', 'black'} See Also -------- .font_manager.FontProperties.set_weight """ self._fontproperties.set_weight(weight) self.stale = True def set_fontstretch(self, stretch): """ Set the font stretch (horizontal condensation or expansion). Parameters ---------- stretch : {a numeric value in range 0-1000, 'ultra-condensed', \ 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', \ 'expanded', 'extra-expanded', 'ultra-expanded'} See Also -------- .font_manager.FontProperties.set_stretch """ self._fontproperties.set_stretch(stretch) self.stale = True def set_position(self, xy): """ Set the (*x*, *y*) position of the text. Parameters ---------- xy : (float, float) """ self.set_x(xy[0]) self.set_y(xy[1]) def set_x(self, x): """ Set the *x* position of the text. Parameters ---------- x : float """ self._x = x self.stale = True def set_y(self, y): """ Set the *y* position of the text. Parameters ---------- y : float """ self._y = y self.stale = True def set_rotation(self, s): """ Set the rotation of the text. Parameters ---------- s : {angle in degrees, 'vertical', 'horizontal'} """ self._rotation = s self.stale = True def set_verticalalignment(self, align): """ Set the vertical alignment Parameters ---------- align : {'center', 'top', 'bottom', 'baseline', 'center_baseline'} """ cbook._check_in_list( ['top', 'bottom', 'center', 'baseline', 'center_baseline'], align=align) self._verticalalignment = align self.stale = True def set_text(self, s): """ Set the text string *s*. It may contain newlines (``\\n``) or math in LaTeX syntax. Parameters ---------- s : object Any object gets converted to its `str`, except ``None`` which becomes ``''``. """ if s is None: s = '' if s != self._text: self._text = str(s) self.stale = True @staticmethod @cbook.deprecated("3.1") def is_math_text(s, usetex=None): """ Returns a cleaned string and a boolean flag. The flag indicates if the given string *s* contains any mathtext, determined by counting unescaped dollar signs. If no mathtext is present, the cleaned string has its dollar signs unescaped. If usetex is on, the flag always has the value "TeX". """ # Did we find an even number of non-escaped dollar signs? # If so, treat is as math text. if usetex is None: usetex = rcParams['text.usetex'] if usetex: if s == ' ': s = r'\ ' return s, 'TeX' if cbook.is_math_text(s): return s, True else: return s.replace(r'\$', '$'), False def _preprocess_math(self, s): """ Return the string *s* after mathtext preprocessing, and the kind of mathtext support needed. - If *self* is configured to use TeX, return *s* unchanged except that a single space gets escaped, and the flag "TeX". - Otherwise, if *s* is mathtext (has an even number of unescaped dollar signs), return *s* and the flag True. - Otherwise, return *s* with dollar signs unescaped, and the flag False. """ if self.get_usetex(): if s == " ": s = r"\ " return s, "TeX" elif cbook.is_math_text(s): return s, True else: return s.replace(r"\$", "$"), False def set_fontproperties(self, fp): """ Set the font properties that control the text. Parameters ---------- fp : `.font_manager.FontProperties` """ if isinstance(fp, str): fp = FontProperties(fp) self._fontproperties = fp.copy() self.stale = True def set_usetex(self, usetex): """ Parameters ---------- usetex : bool or None Whether to render using TeX, ``None`` means to use :rc:`text.usetex`. """ if usetex is None: self._usetex = rcParams['text.usetex'] else: self._usetex = bool(usetex) self.stale = True def get_usetex(self): """Return whether this `Text` object uses TeX for rendering.""" return self._usetex def set_fontname(self, fontname): """ Alias for `set_family`. One-way alias only: the getter differs. Parameters ---------- fontname : {FONTNAME, 'serif', 'sans-serif', 'cursive', 'fantasy', \ 'monospace'} See Also -------- .font_manager.FontProperties.set_family """ return self.set_family(fontname) docstring.interpd.update(Text=artist.kwdoc(Text)) docstring.dedent_interpd(Text.__init__) @cbook.deprecated("3.1", alternative="Annotation") class TextWithDash(Text): """ This is basically a :class:`~matplotlib.text.Text` with a dash (drawn with a :class:`~matplotlib.lines.Line2D`) before/after it. It is intended to be a drop-in replacement for :class:`~matplotlib.text.Text`, and should behave identically to it when *dashlength* = 0.0. The dash always comes between the point specified by :meth:`~matplotlib.text.Text.set_position` and the text. When a dash exists, the text alignment arguments (*horizontalalignment*, *verticalalignment*) are ignored. *dashlength* is the length of the dash in canvas units. (default = 0.0). *dashdirection* is one of 0 or 1, where 0 draws the dash after the text and 1 before. (default = 0). *dashrotation* specifies the rotation of the dash, and should generally stay *None*. In this case :meth:`~matplotlib.text.TextWithDash.get_dashrotation` returns :meth:`~matplotlib.text.Text.get_rotation`. (i.e., the dash takes its rotation from the text's rotation). Because the text center is projected onto the dash, major deviations in the rotation cause what may be considered visually unappealing results. (default = *None*) *dashpad* is a padding length to add (or subtract) space between the text and the dash, in canvas units. (default = 3) *dashpush* "pushes" the dash and text away from the point specified by :meth:`~matplotlib.text.Text.set_position` by the amount in canvas units. (default = 0) .. note:: The alignment of the two objects is based on the bounding box of the :class:`~matplotlib.text.Text`, as obtained by :meth:`~matplotlib.artist.Artist.get_window_extent`. This, in turn, appears to depend on the font metrics as given by the rendering backend. Hence the quality of the "centering" of the label text with respect to the dash varies depending on the backend used. .. note:: I'm not sure that I got the :meth:`~matplotlib.text.TextWithDash.get_window_extent` right, or whether that's sufficient for providing the object bounding box. """ __name__ = 'textwithdash' def __str__(self): return "TextWithDash(%g, %g, %r)" % (self._x, self._y, self._text) def __init__(self, x=0, y=0, text='', color=None, # defaults to rc params verticalalignment='center', horizontalalignment='center', multialignment=None, fontproperties=None, # defaults to FontProperties() rotation=None, linespacing=None, dashlength=0.0, dashdirection=0, dashrotation=None, dashpad=3, dashpush=0, ): Text.__init__(self, x=x, y=y, text=text, color=color, verticalalignment=verticalalignment, horizontalalignment=horizontalalignment, multialignment=multialignment, fontproperties=fontproperties, rotation=rotation, linespacing=linespacing, ) # The position (x,y) values for text and dashline # are bogus as given in the instantiation; they will # be set correctly by update_coords() in draw() self.dashline = Line2D(xdata=(x, x), ydata=(y, y), color='k', linestyle='-') self._dashx = float(x) self._dashy = float(y) self._dashlength = dashlength self._dashdirection = dashdirection self._dashrotation = dashrotation self._dashpad = dashpad self._dashpush = dashpush #self.set_bbox(dict(pad=0)) def get_unitless_position(self): "Return the unitless position of the text as a tuple (*x*, *y*)" # This will get the position with all unit information stripped away. # This is here for convenience since it is done in several locations. x = float(self.convert_xunits(self._dashx)) y = float(self.convert_yunits(self._dashy)) return x, y def get_position(self): "Return the position of the text as a tuple (*x*, *y*)" # This should return the same data (possibly unitized) as was # specified with set_x and set_y return self._dashx, self._dashy def get_prop_tup(self, renderer=None): """ Return a hashable tuple of properties. Not intended to be human readable, but useful for backends who want to cache derived information about text (e.g., layouts) and need to know if the text has changed. """ props = [p for p in Text.get_prop_tup(self, renderer=renderer)] props.extend([self._x, self._y, self._dashlength, self._dashdirection, self._dashrotation, self._dashpad, self._dashpush]) return tuple(props) def draw(self, renderer): """ Draw the :class:`TextWithDash` object to the given *renderer*. """ self.update_coords(renderer) Text.draw(self, renderer) if self.get_dashlength() > 0.0: self.dashline.draw(renderer) self.stale = False def update_coords(self, renderer): """ Computes the actual *x*, *y* coordinates for text based on the input *x*, *y* and the *dashlength*. Since the rotation is with respect to the actual canvas's coordinates we need to map back and forth. """ dashx, dashy = self.get_unitless_position() dashlength = self.get_dashlength() # Shortcircuit this process if we don't have a dash if dashlength == 0.0: self._x, self._y = dashx, dashy return dashrotation = self.get_dashrotation() dashdirection = self.get_dashdirection() dashpad = self.get_dashpad() dashpush = self.get_dashpush() angle = get_rotation(dashrotation) theta = np.pi * (angle / 180.0 + dashdirection - 1) cos_theta, sin_theta = np.cos(theta), np.sin(theta) transform = self.get_transform() # Compute the dash end points # The 'c' prefix is for canvas coordinates cxy = transform.transform_point((dashx, dashy)) cd = np.array([cos_theta, sin_theta]) c1 = cxy + dashpush * cd c2 = cxy + (dashpush + dashlength) * cd inverse = transform.inverted() (x1, y1) = inverse.transform_point(tuple(c1)) (x2, y2) = inverse.transform_point(tuple(c2)) self.dashline.set_data((x1, x2), (y1, y2)) # We now need to extend this vector out to # the center of the text area. # The basic problem here is that we're "rotating" # two separate objects but want it to appear as # if they're rotated together. # This is made non-trivial because of the # interaction between text rotation and alignment - # text alignment is based on the bbox after rotation. # We reset/force both alignments to 'center' # so we can do something relatively reasonable. # There's probably a better way to do this by # embedding all this in the object's transformations, # but I don't grok the transformation stuff # well enough yet. we = Text.get_window_extent(self, renderer=renderer) w, h = we.width, we.height # Watch for zeros if sin_theta == 0.0: dx = w dy = 0.0 elif cos_theta == 0.0: dx = 0.0 dy = h else: tan_theta = sin_theta / cos_theta dx = w dy = w * tan_theta if dy > h or dy < -h: dy = h dx = h / tan_theta cwd = np.array([dx, dy]) / 2 cwd *= 1 + dashpad / np.sqrt(np.dot(cwd, cwd)) cw = c2 + (dashdirection * 2 - 1) * cwd newx, newy = inverse.transform_point(tuple(cw)) self._x, self._y = newx, newy # Now set the window extent # I'm not at all sure this is the right way to do this. we = Text.get_window_extent(self, renderer=renderer) self._twd_window_extent = we.frozen() self._twd_window_extent.update_from_data_xy(np.array([c1]), False) # Finally, make text align center Text.set_horizontalalignment(self, 'center') Text.set_verticalalignment(self, 'center') def get_window_extent(self, renderer=None): ''' Return a :class:`~matplotlib.transforms.Bbox` object bounding the text, in display units. In addition to being used internally, this is useful for specifying clickable regions in a png file on a web page. *renderer* defaults to the _renderer attribute of the text object. This is not assigned until the first execution of :meth:`draw`, so you must use this kwarg if you want to call :meth:`get_window_extent` prior to the first :meth:`draw`. For getting web page regions, it is simpler to call the method after saving the figure. ''' self.update_coords(renderer) if self.get_dashlength() == 0.0: return Text.get_window_extent(self, renderer=renderer) else: return self._twd_window_extent def get_dashlength(self): """ Get the length of the dash. """ return self._dashlength def set_dashlength(self, dl): """ Set the length of the dash, in canvas units. Parameters ---------- dl : float """ self._dashlength = dl self.stale = True def get_dashdirection(self): """ Get the direction dash. 1 is before the text and 0 is after. """ return self._dashdirection def set_dashdirection(self, dd): """ Set the direction of the dash following the text. 1 is before the text and 0 is after. The default is 0, which is what you'd want for the typical case of ticks below and on the left of the figure. Parameters ---------- dd : int (1 is before, 0 is after) """ self._dashdirection = dd self.stale = True def get_dashrotation(self): """ Get the rotation of the dash in degrees. """ if self._dashrotation is None: return self.get_rotation() else: return self._dashrotation def set_dashrotation(self, dr): """ Set the rotation of the dash, in degrees. Parameters ---------- dr : float """ self._dashrotation = dr self.stale = True def get_dashpad(self): """ Get the extra spacing between the dash and the text, in canvas units. """ return self._dashpad def set_dashpad(self, dp): """ Set the "pad" of the TextWithDash, which is the extra spacing between the dash and the text, in canvas units. Parameters ---------- dp : float """ self._dashpad = dp self.stale = True def get_dashpush(self): """ Get the extra spacing between the dash and the specified text position, in canvas units. """ return self._dashpush def set_dashpush(self, dp): """ Set the "push" of the TextWithDash, which is the extra spacing between the beginning of the dash and the specified position. Parameters ---------- dp : float """ self._dashpush = dp self.stale = True def set_position(self, xy): """ Set the (*x*, *y*) position of the :class:`TextWithDash`. Parameters ---------- xy : (float, float) """ self.set_x(xy[0]) self.set_y(xy[1]) def set_x(self, x): """ Set the *x* position of the :class:`TextWithDash`. Parameters ---------- x : float """ self._dashx = float(x) self.stale = True def set_y(self, y): """ Set the *y* position of the :class:`TextWithDash`. Parameters ---------- y : float """ self._dashy = float(y) self.stale = True def set_transform(self, t): """ Set the :class:`matplotlib.transforms.Transform` instance used by this artist. Parameters ---------- t : matplotlib.transforms.Transform """ Text.set_transform(self, t) self.dashline.set_transform(t) self.stale = True def get_figure(self): 'return the figure instance the artist belongs to' return self.figure def set_figure(self, fig): """ Set the figure instance the artist belongs to. Parameters ---------- fig : matplotlib.figure.Figure """ Text.set_figure(self, fig) self.dashline.set_figure(fig) docstring.interpd.update(TextWithDash=artist.kwdoc(TextWithDash)) class OffsetFrom(object): 'Callable helper class for working with `Annotation`' def __init__(self, artist, ref_coord, unit="points"): ''' Parameters ---------- artist : `Artist`, `BboxBase`, or `Transform` The object to compute the offset from. ref_coord : length 2 sequence If `artist` is an `Artist` or `BboxBase`, this values is the location to of the offset origin in fractions of the `artist` bounding box. If `artist` is a transform, the offset origin is the transform applied to this value. unit : {'points, 'pixels'} The screen units to use (pixels or points) for the offset input. ''' self._artist = artist self._ref_coord = ref_coord self.set_unit(unit) def set_unit(self, unit): ''' The unit for input to the transform used by ``__call__`` Parameters ---------- unit : {'points', 'pixels'} ''' cbook._check_in_list(["points", "pixels"], unit=unit) self._unit = unit def get_unit(self): 'The unit for input to the transform used by ``__call__``' return self._unit def _get_scale(self, renderer): unit = self.get_unit() if unit == "pixels": return 1. else: return renderer.points_to_pixels(1.) def __call__(self, renderer): ''' Return the offset transform. Parameters ---------- renderer : `RendererBase` The renderer to use to compute the offset Returns ------- transform : `Transform` Maps (x, y) in pixel or point units to screen units relative to the given artist. ''' if isinstance(self._artist, Artist): bbox = self._artist.get_window_extent(renderer) l, b, w, h = bbox.bounds xf, yf = self._ref_coord x, y = l + w * xf, b + h * yf elif isinstance(self._artist, BboxBase): l, b, w, h = self._artist.bounds xf, yf = self._ref_coord x, y = l + w * xf, b + h * yf elif isinstance(self._artist, Transform): x, y = self._artist.transform_point(self._ref_coord) else: raise RuntimeError("unknown type") sc = self._get_scale(renderer) tr = Affine2D().scale(sc, sc).translate(x, y) return tr class _AnnotationBase(object): def __init__(self, xy, xycoords='data', annotation_clip=None): self.xy = xy self.xycoords = xycoords self.set_annotation_clip(annotation_clip) self._draggable = None def _get_xy(self, renderer, x, y, s): if isinstance(s, tuple): s1, s2 = s else: s1, s2 = s, s if s1 == 'data': x = float(self.convert_xunits(x)) if s2 == 'data': y = float(self.convert_yunits(y)) tr = self._get_xy_transform(renderer, s) x1, y1 = tr.transform_point((x, y)) return x1, y1 def _get_xy_transform(self, renderer, s): if isinstance(s, tuple): s1, s2 = s from matplotlib.transforms import blended_transform_factory tr1 = self._get_xy_transform(renderer, s1) tr2 = self._get_xy_transform(renderer, s2) tr = blended_transform_factory(tr1, tr2) return tr elif callable(s): tr = s(renderer) if isinstance(tr, BboxBase): return BboxTransformTo(tr) elif isinstance(tr, Transform): return tr else: raise RuntimeError("unknown return type ...") elif isinstance(s, Artist): bbox = s.get_window_extent(renderer) return BboxTransformTo(bbox) elif isinstance(s, BboxBase): return BboxTransformTo(s) elif isinstance(s, Transform): return s elif not isinstance(s, str): raise RuntimeError("unknown coordinate type : %s" % s) if s == 'data': return self.axes.transData elif s == 'polar': from matplotlib.projections import PolarAxes tr = PolarAxes.PolarTransform() trans = tr + self.axes.transData return trans s_ = s.split() if len(s_) != 2: raise ValueError("%s is not a recognized coordinate" % s) bbox0, xy0 = None, None bbox_name, unit = s_ # if unit is offset-like if bbox_name == "figure": bbox0 = self.figure.bbox elif bbox_name == "axes": bbox0 = self.axes.bbox # elif bbox_name == "bbox": # if bbox is None: # raise RuntimeError("bbox is specified as a coordinate but " # "never set") # bbox0 = self._get_bbox(renderer, bbox) if bbox0 is not None: xy0 = bbox0.bounds[:2] elif bbox_name == "offset": xy0 = self._get_ref_xy(renderer) if xy0 is not None: # reference x, y in display coordinate ref_x, ref_y = xy0 from matplotlib.transforms import Affine2D if unit == "points": # dots per points dpp = self.figure.get_dpi() / 72. tr = Affine2D().scale(dpp, dpp) elif unit == "pixels": tr = Affine2D() elif unit == "fontsize": fontsize = self.get_size() dpp = fontsize * self.figure.get_dpi() / 72. tr = Affine2D().scale(dpp, dpp) elif unit == "fraction": w, h = bbox0.bounds[2:] tr = Affine2D().scale(w, h) else: raise ValueError("%s is not a recognized coordinate" % s) return tr.translate(ref_x, ref_y) else: raise ValueError("%s is not a recognized coordinate" % s) def _get_ref_xy(self, renderer): """ return x, y (in display coordinate) that is to be used for a reference of any offset coordinate """ def is_offset(s): return isinstance(s, str) and s.split()[0] == "offset" if isinstance(self.xycoords, tuple): s1, s2 = self.xycoords if is_offset(s1) or is_offset(s2): raise ValueError("xycoords should not be an offset coordinate") x, y = self.xy x1, y1 = self._get_xy(renderer, x, y, s1) x2, y2 = self._get_xy(renderer, x, y, s2) return x1, y2 elif is_offset(self.xycoords): raise ValueError("xycoords should not be an offset coordinate") else: x, y = self.xy return self._get_xy(renderer, x, y, self.xycoords) #raise RuntimeError("must be defined by the derived class") # def _get_bbox(self, renderer): # if hasattr(bbox, "bounds"): # return bbox # elif hasattr(bbox, "get_window_extent"): # bbox = bbox.get_window_extent() # return bbox # else: # raise ValueError("A bbox instance is expected but got %s" % # str(bbox)) def set_annotation_clip(self, b): """ set *annotation_clip* attribute. * True: the annotation will only be drawn when self.xy is inside the axes. * False: the annotation will always be drawn regardless of its position. * None: the self.xy will be checked only if *xycoords* is "data" """ self._annotation_clip = b def get_annotation_clip(self): """ Return *annotation_clip* attribute. See :meth:`set_annotation_clip` for the meaning of return values. """ return self._annotation_clip def _get_position_xy(self, renderer): "Return the pixel position of the annotated point." x, y = self.xy return self._get_xy(renderer, x, y, self.xycoords) def _check_xy(self, renderer, xy_pixel): """ given the xy pixel coordinate, check if the annotation need to be drawn. """ b = self.get_annotation_clip() if b or (b is None and self.xycoords == "data"): # check if self.xy is inside the axes. if not self.axes.contains_point(xy_pixel): return False return True def draggable(self, state=None, use_blit=False): """ Set the draggable state -- if state is * None : toggle the current state * True : turn draggable on * False : turn draggable off If draggable is on, you can drag the annotation on the canvas with the mouse. The DraggableAnnotation helper instance is returned if draggable is on. """ from matplotlib.offsetbox import DraggableAnnotation is_draggable = self._draggable is not None # if state is None we'll toggle if state is None: state = not is_draggable if state: if self._draggable is None: self._draggable = DraggableAnnotation(self, use_blit) else: if self._draggable is not None: self._draggable.disconnect() self._draggable = None return self._draggable class Annotation(Text, _AnnotationBase): """ An `.Annotation` is a `.Text` that can refer to a specific position *xy*. Optionally an arrow pointing from the text to *xy* can be drawn. Attributes ---------- xy The annotated position. xycoords The coordinate system for *xy*. arrow_patch A `.FancyArrowPatch` to point from *xytext* to *xy*. """ def __str__(self): return "Annotation(%g, %g, %r)" % (self.xy[0], self.xy[1], self._text) @cbook._rename_parameter("3.1", "s", "text") def __init__(self, text, xy, xytext=None, xycoords='data', textcoords=None, arrowprops=None, annotation_clip=None, **kwargs): """ Annotate the point *xy* with text *text*. In the simplest form, the text is placed at *xy*. Optionally, the text can be displayed in another position *xytext*. An arrow pointing from the text to the annotated point *xy* can then be added by defining *arrowprops*. Parameters ---------- text : str The text of the annotation. *s* is a deprecated synonym for this parameter. xy : (float, float) The point *(x,y)* to annotate. xytext : (float, float), optional The position *(x,y)* to place the text at. If *None*, defaults to *xy*. xycoords : str, `.Artist`, `.Transform`, callable or tuple, optional The coordinate system that *xy* is given in. The following types of values are supported: - One of the following strings: ================= ============================================= Value Description ================= ============================================= 'figure points' Points from the lower left of the figure 'figure pixels' Pixels from the lower left of the figure 'figure fraction' Fraction of figure from lower left 'axes points' Points from lower left corner of axes 'axes pixels' Pixels from lower left corner of axes 'axes fraction' Fraction of axes from lower left 'data' Use the coordinate system of the object being annotated (default) 'polar' *(theta,r)* if not native 'data' coordinates ================= ============================================= - An `.Artist`: *xy* is interpreted as a fraction of the artists `~matplotlib.transforms.Bbox`. E.g. *(0, 0)* would be the lower left corner of the bounding box and *(0.5, 1)* would be the center top of the bounding box. - A `.Transform` to transform *xy* to screen coordinates. - A function with one of the following signatures:: def transform(renderer) -> Bbox def transform(renderer) -> Transform where *renderer* is a `.RendererBase` subclass. The result of the function is interpreted like the `.Artist` and `.Transform` cases above. - A tuple *(xcoords, ycoords)* specifying separate coordinate systems for *x* and *y*. *xcoords* and *ycoords* must each be of one of the above described types. See :ref:`plotting-guide-annotation` for more details. Defaults to 'data'. textcoords : str, `.Artist`, `.Transform`, callable or tuple, optional The coordinate system that *xytext* is given in. All *xycoords* values are valid as well as the following strings: ================= ========================================= Value Description ================= ========================================= 'offset points' Offset (in points) from the *xy* value 'offset pixels' Offset (in pixels) from the *xy* value ================= ========================================= Defaults to the value of *xycoords*, i.e. use the same coordinate system for annotation point and text position. arrowprops : dict, optional The properties used to draw a `~matplotlib.patches.FancyArrowPatch` arrow between the positions *xy* and *xytext*. If *arrowprops* does not contain the key 'arrowstyle' the allowed keys are: ========== ====================================================== Key Description ========== ====================================================== width The width of the arrow in points headwidth The width of the base of the arrow head in points headlength The length of the arrow head in points shrink Fraction of total length to shrink from both ends ? Any key to :class:`matplotlib.patches.FancyArrowPatch` ========== ====================================================== If *arrowprops* contains the key 'arrowstyle' the above keys are forbidden. The allowed values of ``'arrowstyle'`` are: ============ ============================================= Name Attrs ============ ============================================= ``'-'`` None ``'->'`` head_length=0.4,head_width=0.2 ``'-['`` widthB=1.0,lengthB=0.2,angleB=None ``'|-|'`` widthA=1.0,widthB=1.0 ``'-|>'`` head_length=0.4,head_width=0.2 ``'<-'`` head_length=0.4,head_width=0.2 ``'<->'`` head_length=0.4,head_width=0.2 ``'<|-'`` head_length=0.4,head_width=0.2 ``'<|-|>'`` head_length=0.4,head_width=0.2 ``'fancy'`` head_length=0.4,head_width=0.4,tail_width=0.4 ``'simple'`` head_length=0.5,head_width=0.5,tail_width=0.2 ``'wedge'`` tail_width=0.3,shrink_factor=0.5 ============ ============================================= Valid keys for `~matplotlib.patches.FancyArrowPatch` are: =============== ================================================== Key Description =============== ================================================== arrowstyle the arrow style connectionstyle the connection style relpos default is (0.5, 0.5) patchA default is bounding box of the text patchB default is None shrinkA default is 2 points shrinkB default is 2 points mutation_scale default is text size (in points) mutation_aspect default is 1. ? any key for :class:`matplotlib.patches.PathPatch` =============== ================================================== Defaults to None, i.e. no arrow is drawn. annotation_clip : bool or None, optional Whether to draw the annotation when the annotation point *xy* is outside the axes area. - If *True*, the annotation will only be drawn when *xy* is within the axes. - If *False*, the annotation will always be drawn. - If *None*, the annotation will only be drawn when *xy* is within the axes and *xycoords* is 'data'. Defaults to *None*. **kwargs Additional kwargs are passed to `~matplotlib.text.Text`. Returns ------- annotation : `.Annotation` See Also -------- :ref:`plotting-guide-annotation`. """ _AnnotationBase.__init__(self, xy, xycoords=xycoords, annotation_clip=annotation_clip) # warn about wonky input data if (xytext is None and textcoords is not None and textcoords != xycoords): cbook._warn_external("You have used the `textcoords` kwarg, but " "not the `xytext` kwarg. This can lead to " "surprising results.") # clean up textcoords and assign default if textcoords is None: textcoords = self.xycoords self._textcoords = textcoords # cleanup xytext defaults if xytext is None: xytext = self.xy x, y = xytext Text.__init__(self, x, y, text, **kwargs) self.arrowprops = arrowprops if arrowprops is not None: if "arrowstyle" in arrowprops: arrowprops = self.arrowprops.copy() self._arrow_relpos = arrowprops.pop("relpos", (0.5, 0.5)) else: # modified YAArrow API to be used with FancyArrowPatch shapekeys = ('width', 'headwidth', 'headlength', 'shrink', 'frac') arrowprops = dict() for key, val in self.arrowprops.items(): if key not in shapekeys: arrowprops[key] = val # basic Patch properties self.arrow_patch = FancyArrowPatch((0, 0), (1, 1), **arrowprops) else: self.arrow_patch = None def contains(self, event): contains, tinfo = Text.contains(self, event) if self.arrow_patch is not None: in_patch, _ = self.arrow_patch.contains(event) contains = contains or in_patch return contains, tinfo @property def xyann(self): """ The the text position. See also *xytext* in `.Annotation`. """ return self.get_position() @xyann.setter def xyann(self, xytext): self.set_position(xytext) @property def anncoords(self): """The coordinate system to use for `.Annotation.xyann`.""" return self._textcoords @anncoords.setter def anncoords(self, coords): self._textcoords = coords get_anncoords = anncoords.fget get_anncoords.__doc__ = """ Return the coordinate system to use for `.Annotation.xyann`. See also *xycoords* in `.Annotation`. """ set_anncoords = anncoords.fset set_anncoords.__doc__ = """ Set the coordinate system to use for `.Annotation.xyann`. See also *xycoords* in `.Annotation`. """ def set_figure(self, fig): if self.arrow_patch is not None: self.arrow_patch.set_figure(fig) Artist.set_figure(self, fig) def update_positions(self, renderer): """Update the pixel positions of the annotated point and the text.""" xy_pixel = self._get_position_xy(renderer) self._update_position_xytext(renderer, xy_pixel) def _update_position_xytext(self, renderer, xy_pixel): """ Update the pixel positions of the annotation text and the arrow patch. """ # generate transformation, self.set_transform(self._get_xy_transform(renderer, self.anncoords)) ox0, oy0 = self._get_xy_display() ox1, oy1 = xy_pixel if self.arrowprops is not None: x0, y0 = xy_pixel l, b, w, h = Text.get_window_extent(self, renderer).bounds r = l + w t = b + h xc = 0.5 * (l + r) yc = 0.5 * (b + t) d = self.arrowprops.copy() ms = d.pop("mutation_scale", self.get_size()) self.arrow_patch.set_mutation_scale(ms) if "arrowstyle" not in d: # Approximately simulate the YAArrow. # Pop its kwargs: shrink = d.pop('shrink', 0.0) width = d.pop('width', 4) headwidth = d.pop('headwidth', 12) # Ignore frac--it is useless. frac = d.pop('frac', None) if frac is not None: cbook._warn_external( "'frac' option in 'arrowprops' is no longer supported;" " use 'headlength' to set the head length in points.") headlength = d.pop('headlength', 12) # NB: ms is in pts stylekw = dict(head_length=headlength / ms, head_width=headwidth / ms, tail_width=width / ms) self.arrow_patch.set_arrowstyle('simple', **stylekw) # using YAArrow style: # pick the x,y corner of the text bbox closest to point # annotated xpos = ((l, 0), (xc, 0.5), (r, 1)) ypos = ((b, 0), (yc, 0.5), (t, 1)) _, (x, relposx) = min((abs(val[0] - x0), val) for val in xpos) _, (y, relposy) = min((abs(val[0] - y0), val) for val in ypos) self._arrow_relpos = (relposx, relposy) r = np.hypot((y - y0), (x - x0)) shrink_pts = shrink * r / renderer.points_to_pixels(1) self.arrow_patch.shrinkA = shrink_pts self.arrow_patch.shrinkB = shrink_pts # adjust the starting point of the arrow relative to # the textbox. # TODO : Rotation needs to be accounted. relpos = self._arrow_relpos bbox = Text.get_window_extent(self, renderer) ox0 = bbox.x0 + bbox.width * relpos[0] oy0 = bbox.y0 + bbox.height * relpos[1] # The arrow will be drawn from (ox0, oy0) to (ox1, # oy1). It will be first clipped by patchA and patchB. # Then it will be shrunk by shrinkA and shrinkB # (in points). If patch A is not set, self.bbox_patch # is used. self.arrow_patch.set_positions((ox0, oy0), (ox1, oy1)) if "patchA" in d: self.arrow_patch.set_patchA(d.pop("patchA")) else: if self._bbox_patch: self.arrow_patch.set_patchA(self._bbox_patch) else: pad = renderer.points_to_pixels(4) if self.get_text() == "": self.arrow_patch.set_patchA(None) return bbox = Text.get_window_extent(self, renderer) l, b, w, h = bbox.bounds l -= pad / 2. b -= pad / 2. w += pad h += pad r = Rectangle(xy=(l, b), width=w, height=h, ) r.set_transform(IdentityTransform()) r.set_clip_on(False) self.arrow_patch.set_patchA(r) @artist.allow_rasterization def draw(self, renderer): """ Draw the :class:`Annotation` object to the given *renderer*. """ if renderer is not None: self._renderer = renderer if not self.get_visible(): return xy_pixel = self._get_position_xy(renderer) if not self._check_xy(renderer, xy_pixel): return self._update_position_xytext(renderer, xy_pixel) self.update_bbox_position_size(renderer) if self.arrow_patch is not None: # FancyArrowPatch if self.arrow_patch.figure is None and self.figure is not None: self.arrow_patch.figure = self.figure self.arrow_patch.draw(renderer) # Draw text, including FancyBboxPatch, after FancyArrowPatch. # Otherwise, a wedge arrowstyle can land partly on top of the Bbox. Text.draw(self, renderer) def get_window_extent(self, renderer=None): """ Return the `Bbox` bounding the text and arrow, in display units. Parameters ---------- renderer : Renderer, optional A renderer is needed to compute the bounding box. If the artist has already been drawn, the renderer is cached; thus, it is only necessary to pass this argument when calling `get_window_extent` before the first `draw`. In practice, it is usually easier to trigger a draw first (e.g. by saving the figure). """ # This block is the same as in Text.get_window_extent, but we need to # set the renderer before calling update_positions(). if not self.get_visible(): return Bbox.unit() if renderer is not None: self._renderer = renderer if self._renderer is None: self._renderer = self.figure._cachedRenderer if self._renderer is None: raise RuntimeError('Cannot get window extent w/o renderer') self.update_positions(self._renderer) text_bbox = Text.get_window_extent(self) bboxes = [text_bbox] if self.arrow_patch is not None: bboxes.append(self.arrow_patch.get_window_extent()) return Bbox.union(bboxes) arrow = property( fget=cbook.deprecated("3.0", message="arrow was deprecated in " "Matplotlib 3.0 and will be removed in 3.2. Use arrow_patch " "instead.")(lambda self: None), fset=cbook.deprecated("3.0")(lambda self, value: None)) docstring.interpd.update(Annotation=Annotation.__init__.__doc__)
213a22de41859cedf8721c70fb10cd52f1c350d7ebfc89a2e5ac5c04ddf87b59
""" matplotlib includes a framework for arbitrary geometric transformations that is used determine the final position of all elements drawn on the canvas. Transforms are composed into trees of `TransformNode` objects whose actual value depends on their children. When the contents of children change, their parents are automatically invalidated. The next time an invalidated transform is accessed, it is recomputed to reflect those changes. This invalidation/caching approach prevents unnecessary recomputations of transforms, and contributes to better interactive performance. For example, here is a graph of the transform tree used to plot data to the graph: .. image:: ../_static/transforms.png The framework can be used for both affine and non-affine transformations. However, for speed, we want use the backend renderers to perform affine transformations whenever possible. Therefore, it is possible to perform just the affine or non-affine part of a transformation on a set of data. The affine is always assumed to occur after the non-affine. For any transform:: full transform == non-affine part + affine part The backends are not expected to handle non-affine transformations themselves. """ # Note: There are a number of places in the code where we use `np.min` or # `np.minimum` instead of the builtin `min`, and likewise for `max`. This is # done so that `nan`s are propagated, instead of being silently dropped. import re import weakref import numpy as np from numpy.linalg import inv from matplotlib import cbook from matplotlib._path import ( affine_transform, count_bboxes_overlapping_bbox, update_path_extents) from .path import Path DEBUG = False def _indent_str(obj): # textwrap.indent(str(obj), 4) on Py3. return re.sub("(^|\n)", r"\1 ", str(obj)) class TransformNode(object): """ :class:`TransformNode` is the base class for anything that participates in the transform tree and needs to invalidate its parents or be invalidated. This includes classes that are not really transforms, such as bounding boxes, since some transforms depend on bounding boxes to compute their values. """ _gid = 0 # Invalidation may affect only the affine part. If the # invalidation was "affine-only", the _invalid member is set to # INVALID_AFFINE_ONLY INVALID_NON_AFFINE = 1 INVALID_AFFINE = 2 INVALID = INVALID_NON_AFFINE | INVALID_AFFINE # Some metadata about the transform, used to determine whether an # invalidation is affine-only is_affine = False is_bbox = False pass_through = False """ If pass_through is True, all ancestors will always be invalidated, even if 'self' is already invalid. """ def __init__(self, shorthand_name=None): """ Creates a new :class:`TransformNode`. Parameters ---------- shorthand_name : str A string representing the "name" of the transform. The name carries no significance other than to improve the readability of ``str(transform)`` when DEBUG=True. """ self._parents = {} # TransformNodes start out as invalid until their values are # computed for the first time. self._invalid = 1 self._shorthand_name = shorthand_name or '' if DEBUG: def __str__(self): # either just return the name of this TransformNode, or its repr return self._shorthand_name or repr(self) def __getstate__(self): # turn the dictionary with weak values into a normal dictionary return {**self.__dict__, '_parents': {k: v() for k, v in self._parents.items()}} def __setstate__(self, data_dict): self.__dict__ = data_dict # turn the normal dictionary back into a dictionary with weak values # The extra lambda is to provide a callback to remove dead # weakrefs from the dictionary when garbage collection is done. self._parents = {k: weakref.ref(v, lambda ref, sid=k, target=self._parents: target.pop(sid)) for k, v in self._parents.items() if v is not None} def __copy__(self, *args): raise NotImplementedError( "TransformNode instances can not be copied. " "Consider using frozen() instead.") __deepcopy__ = __copy__ def invalidate(self): """ Invalidate this `TransformNode` and triggers an invalidation of its ancestors. Should be called any time the transform changes. """ value = self.INVALID if self.is_affine: value = self.INVALID_AFFINE return self._invalidate_internal(value, invalidating_node=self) def _invalidate_internal(self, value, invalidating_node): """ Called by :meth:`invalidate` and subsequently ascends the transform stack calling each TransformNode's _invalidate_internal method. """ # determine if this call will be an extension to the invalidation # status. If not, then a shortcut means that we needn't invoke an # invalidation up the transform stack as it will already have been # invalidated. # N.B This makes the invalidation sticky, once a transform has been # invalidated as NON_AFFINE, then it will always be invalidated as # NON_AFFINE even when triggered with a AFFINE_ONLY invalidation. # In most cases this is not a problem (i.e. for interactive panning and # zooming) and the only side effect will be on performance. status_changed = self._invalid < value if self.pass_through or status_changed: self._invalid = value for parent in list(self._parents.values()): # Dereference the weak reference parent = parent() if parent is not None: parent._invalidate_internal( value=value, invalidating_node=self) def set_children(self, *children): """ Set the children of the transform, to let the invalidation system know which transforms can invalidate this transform. Should be called from the constructor of any transforms that depend on other transforms. """ # Parents are stored as weak references, so that if the # parents are destroyed, references from the children won't # keep them alive. for child in children: # Use weak references so this dictionary won't keep obsolete nodes # alive; the callback deletes the dictionary entry. This is a # performance improvement over using WeakValueDictionary. ref = weakref.ref(self, lambda ref, sid=id(self), target=child._parents: target.pop(sid)) child._parents[id(self)] = ref if DEBUG: _set_children = set_children def set_children(self, *children): self._set_children(*children) self._children = children set_children.__doc__ = _set_children.__doc__ def frozen(self): """ Returns a frozen copy of this transform node. The frozen copy will not update when its children change. Useful for storing a previously known state of a transform where ``copy.deepcopy()`` might normally be used. """ return self if DEBUG: def write_graphviz(self, fobj, highlight=[]): """ For debugging purposes. Writes the transform tree rooted at 'self' to a graphviz "dot" format file. This file can be run through the "dot" utility to produce a graph of the transform tree. Affine transforms are marked in blue. Bounding boxes are marked in yellow. *fobj*: A Python file-like object Once the "dot" file has been created, it can be turned into a png easily with:: $> dot -Tpng -o $OUTPUT_FILE $DOT_FILE """ seen = set() def recurse(root): if root in seen: return seen.add(root) props = {} label = root.__class__.__name__ if root._invalid: label = '[%s]' % label if root in highlight: props['style'] = 'bold' props['shape'] = 'box' props['label'] = '"%s"' % label props = ' '.join(map('{0[0]}={0[1]}'.format, props.items())) fobj.write('%s [%s];\n' % (hash(root), props)) if hasattr(root, '_children'): for child in root._children: name = next((key for key, val in root.__dict__.items() if val is child), '?') fobj.write('"%s" -> "%s" [label="%s", fontsize=10];\n' % (hash(root), hash(child), name)) recurse(child) fobj.write("digraph G {\n") recurse(self) fobj.write("}\n") class BboxBase(TransformNode): """ This is the base class of all bounding boxes, and provides read-only access to its data. A mutable bounding box is provided by the `Bbox` class. The canonical representation is as two points, with no restrictions on their ordering. Convenience properties are provided to get the left, bottom, right and top edges and width and height, but these are not stored explicitly. """ is_bbox = True is_affine = True if DEBUG: def _check(points): if isinstance(points, np.ma.MaskedArray): cbook._warn_external("Bbox bounds are a masked array.") points = np.asarray(points) if (points[1, 0] - points[0, 0] == 0 or points[1, 1] - points[0, 1] == 0): cbook._warn_external("Singular Bbox.") _check = staticmethod(_check) def frozen(self): return Bbox(self.get_points().copy()) frozen.__doc__ = TransformNode.__doc__ def __array__(self, *args, **kwargs): return self.get_points() def is_unit(self): """Return whether this is the unit box (from (0, 0) to (1, 1)).""" return self.get_points().tolist() == [[0., 0.], [1., 1.]] @property def x0(self): """ The first of the pair of *x* coordinates that define the bounding box. This is not guaranteed to be less than :attr:`x1` (for that, use :attr:`xmin`). """ return self.get_points()[0, 0] @property def y0(self): """ The first of the pair of *y* coordinates that define the bounding box. This is not guaranteed to be less than :attr:`y1` (for that, use :attr:`ymin`). """ return self.get_points()[0, 1] @property def x1(self): """ The second of the pair of *x* coordinates that define the bounding box. This is not guaranteed to be greater than :attr:`x0` (for that, use :attr:`xmax`). """ return self.get_points()[1, 0] @property def y1(self): """ The second of the pair of *y* coordinates that define the bounding box. This is not guaranteed to be greater than :attr:`y0` (for that, use :attr:`ymax`). """ return self.get_points()[1, 1] @property def p0(self): """ The first pair of (*x*, *y*) coordinates that define the bounding box. This is not guaranteed to be the bottom-left corner (for that, use :attr:`min`). """ return self.get_points()[0] @property def p1(self): """ The second pair of (*x*, *y*) coordinates that define the bounding box. This is not guaranteed to be the top-right corner (for that, use :attr:`max`). """ return self.get_points()[1] @property def xmin(self): """The left edge of the bounding box.""" return np.min(self.get_points()[:, 0]) @property def ymin(self): """The bottom edge of the bounding box.""" return np.min(self.get_points()[:, 1]) @property def xmax(self): """The right edge of the bounding box.""" return np.max(self.get_points()[:, 0]) @property def ymax(self): """The top edge of the bounding box.""" return np.max(self.get_points()[:, 1]) @property def min(self): """The bottom-left corner of the bounding box.""" return np.min(self.get_points(), axis=0) @property def max(self): """The top-right corner of the bounding box.""" return np.max(self.get_points(), axis=0) @property def intervalx(self): """ The pair of *x* coordinates that define the bounding box. This is not guaranteed to be sorted from left to right. """ return self.get_points()[:, 0] @property def intervaly(self): """ The pair of *y* coordinates that define the bounding box. This is not guaranteed to be sorted from bottom to top. """ return self.get_points()[:, 1] @property def width(self): """The (signed) width of the bounding box.""" points = self.get_points() return points[1, 0] - points[0, 0] @property def height(self): """The (signed) height of the bounding box.""" points = self.get_points() return points[1, 1] - points[0, 1] @property def size(self): """The (signed) width and height of the bounding box.""" points = self.get_points() return points[1] - points[0] @property def bounds(self): """Return (:attr:`x0`, :attr:`y0`, :attr:`width`, :attr:`height`).""" (x0, y0), (x1, y1) = self.get_points() return (x0, y0, x1 - x0, y1 - y0) @property def extents(self): """Return (:attr:`x0`, :attr:`y0`, :attr:`x1`, :attr:`y1`).""" return self.get_points().flatten() # flatten returns a copy. def get_points(self): raise NotImplementedError def containsx(self, x): """ Return whether *x* is in the closed (:attr:`x0`, :attr:`x1`) interval. """ x0, x1 = self.intervalx return x0 <= x <= x1 or x0 >= x >= x1 def containsy(self, y): """ Return whether *y* is in the closed (:attr:`y0`, :attr:`y1`) interval. """ y0, y1 = self.intervaly return y0 <= y <= y1 or y0 >= y >= y1 def contains(self, x, y): """ Return whether ``(x, y)`` is in the bounding box or on its edge. """ return self.containsx(x) and self.containsy(y) def overlaps(self, other): """ Return whether this bounding box overlaps with the other bounding box. Parameters ---------- other : BboxBase """ ax1, ay1, ax2, ay2 = self.extents bx1, by1, bx2, by2 = other.extents if ax2 < ax1: ax2, ax1 = ax1, ax2 if ay2 < ay1: ay2, ay1 = ay1, ay2 if bx2 < bx1: bx2, bx1 = bx1, bx2 if by2 < by1: by2, by1 = by1, by2 return ax1 <= bx2 and bx1 <= ax2 and ay1 <= by2 and by1 <= ay2 def fully_containsx(self, x): """ Return whether *x* is in the open (:attr:`x0`, :attr:`x1`) interval. """ x0, x1 = self.intervalx return x0 < x < x1 or x0 > x > x1 def fully_containsy(self, y): """ Return whether *y* is in the open (:attr:`y0`, :attr:`y1`) interval. """ y0, y1 = self.intervaly return y0 < y < y1 or y0 > y > y1 def fully_contains(self, x, y): """ Return whether ``x, y`` is in the bounding box, but not on its edge. """ return self.fully_containsx(x) and self.fully_containsy(y) def fully_overlaps(self, other): """ Return whether this bounding box overlaps with the other bounding box, not including the edges. Parameters ---------- other : BboxBase """ ax1, ay1, ax2, ay2 = self.extents bx1, by1, bx2, by2 = other.extents if ax2 < ax1: ax2, ax1 = ax1, ax2 if ay2 < ay1: ay2, ay1 = ay1, ay2 if bx2 < bx1: bx2, bx1 = bx1, bx2 if by2 < by1: by2, by1 = by1, by2 return ax1 < bx2 and bx1 < ax2 and ay1 < by2 and by1 < ay2 def transformed(self, transform): """ Construct a `Bbox` by statically transforming this one by *transform*. """ pts = self.get_points() ll, ul, lr = transform.transform(np.array([pts[0], [pts[0, 0], pts[1, 1]], [pts[1, 0], pts[0, 1]]])) return Bbox([ll, [lr[0], ul[1]]]) def inverse_transformed(self, transform): """ Construct a `Bbox` by statically transforming this one by the inverse of *transform*. """ return self.transformed(transform.inverted()) coefs = {'C': (0.5, 0.5), 'SW': (0, 0), 'S': (0.5, 0), 'SE': (1.0, 0), 'E': (1.0, 0.5), 'NE': (1.0, 1.0), 'N': (0.5, 1.0), 'NW': (0, 1.0), 'W': (0, 0.5)} def anchored(self, c, container=None): """ Return a copy of the `Bbox` shifted to position *c* within *container*. Parameters ---------- c : (float, float) or str May be either: * A sequence (*cx*, *cy*) where *cx* and *cy* range from 0 to 1, where 0 is left or bottom and 1 is right or top * a string: - 'C' for centered - 'S' for bottom-center - 'SE' for bottom-left - 'E' for left - etc. container : Bbox, optional The box within which the :class:`Bbox` is positioned; it defaults to the initial :class:`Bbox`. """ if container is None: container = self l, b, w, h = container.bounds if isinstance(c, str): cx, cy = self.coefs[c] else: cx, cy = c L, B, W, H = self.bounds return Bbox(self._points + [(l + cx * (w - W)) - L, (b + cy * (h - H)) - B]) def shrunk(self, mx, my): """ Return a copy of the :class:`Bbox`, shrunk by the factor *mx* in the *x* direction and the factor *my* in the *y* direction. The lower left corner of the box remains unchanged. Normally *mx* and *my* will be less than 1, but this is not enforced. """ w, h = self.size return Bbox([self._points[0], self._points[0] + [mx * w, my * h]]) def shrunk_to_aspect(self, box_aspect, container=None, fig_aspect=1.0): """ Return a copy of the :class:`Bbox`, shrunk so that it is as large as it can be while having the desired aspect ratio, *box_aspect*. If the box coordinates are relative---that is, fractions of a larger box such as a figure---then the physical aspect ratio of that figure is specified with *fig_aspect*, so that *box_aspect* can also be given as a ratio of the absolute dimensions, not the relative dimensions. """ if box_aspect <= 0 or fig_aspect <= 0: raise ValueError("'box_aspect' and 'fig_aspect' must be positive") if container is None: container = self w, h = container.size H = w * box_aspect / fig_aspect if H <= h: W = w else: W = h * fig_aspect / box_aspect H = h return Bbox([self._points[0], self._points[0] + (W, H)]) def splitx(self, *args): """ Return a list of new `Bbox` objects formed by splitting the original one with vertical lines at fractional positions given by *args*. """ xf = [0, *args, 1] x0, y0, x1, y1 = self.extents w = x1 - x0 return [Bbox([[x0 + xf0 * w, y0], [x0 + xf1 * w, y1]]) for xf0, xf1 in zip(xf[:-1], xf[1:])] def splity(self, *args): """ Return a list of new `Bbox` objects formed by splitting the original one with horizontal lines at fractional positions given by *args*. """ yf = [0, *args, 1] x0, y0, x1, y1 = self.extents h = y1 - y0 return [Bbox([[x0, y0 + yf0 * h], [x1, y0 + yf1 * h]]) for yf0, yf1 in zip(yf[:-1], yf[1:])] def count_contains(self, vertices): """ Count the number of vertices contained in the :class:`Bbox`. Any vertices with a non-finite x or y value are ignored. Parameters ---------- vertices : Nx2 Numpy array. """ if len(vertices) == 0: return 0 vertices = np.asarray(vertices) with np.errstate(invalid='ignore'): return (((self.min < vertices) & (vertices < self.max)).all(axis=1).sum()) def count_overlaps(self, bboxes): """ Count the number of bounding boxes that overlap this one. Parameters ---------- bboxes : sequence of :class:`BboxBase` objects """ return count_bboxes_overlapping_bbox( self, np.atleast_3d([np.array(x) for x in bboxes])) def expanded(self, sw, sh): """ Construct a `Bbox` by expanding this one around its center by the factors *sw* and *sh*. """ width = self.width height = self.height deltaw = (sw * width - width) / 2.0 deltah = (sh * height - height) / 2.0 a = np.array([[-deltaw, -deltah], [deltaw, deltah]]) return Bbox(self._points + a) def padded(self, p): """Construct a `Bbox` by padding this one on all four sides by *p*.""" points = self.get_points() return Bbox(points + [[-p, -p], [p, p]]) def translated(self, tx, ty): """Construct a `Bbox` by translating this one by *tx* and *ty*.""" return Bbox(self._points + (tx, ty)) def corners(self): """ Return the corners of this rectangle as an array of points. Specifically, this returns the array ``[[x0, y0], [x0, y1], [x1, y0], [x1, y1]]``. """ (x0, y0), (x1, y1) = self.get_points() return np.array([[x0, y0], [x0, y1], [x1, y0], [x1, y1]]) def rotated(self, radians): """ Return a new bounding box that bounds a rotated version of this bounding box by the given radians. The new bounding box is still aligned with the axes, of course. """ corners = self.corners() corners_rotated = Affine2D().rotate(radians).transform(corners) bbox = Bbox.unit() bbox.update_from_data_xy(corners_rotated, ignore=True) return bbox @staticmethod def union(bboxes): """Return a `Bbox` that contains all of the given *bboxes*.""" if not len(bboxes): raise ValueError("'bboxes' cannot be empty") x0 = np.min([bbox.xmin for bbox in bboxes]) x1 = np.max([bbox.xmax for bbox in bboxes]) y0 = np.min([bbox.ymin for bbox in bboxes]) y1 = np.max([bbox.ymax for bbox in bboxes]) return Bbox([[x0, y0], [x1, y1]]) @staticmethod def intersection(bbox1, bbox2): """ Return the intersection of *bbox1* and *bbox2* if they intersect, or None if they don't. """ x0 = np.maximum(bbox1.xmin, bbox2.xmin) x1 = np.minimum(bbox1.xmax, bbox2.xmax) y0 = np.maximum(bbox1.ymin, bbox2.ymin) y1 = np.minimum(bbox1.ymax, bbox2.ymax) return Bbox([[x0, y0], [x1, y1]]) if x0 <= x1 and y0 <= y1 else None class Bbox(BboxBase): """ A mutable bounding box. """ def __init__(self, points, **kwargs): """ Parameters ---------- points : ndarray A 2x2 numpy array of the form ``[[x0, y0], [x1, y1]]``. Notes ----- If you need to create a :class:`Bbox` object from another form of data, consider the static methods :meth:`unit`, :meth:`from_bounds` and :meth:`from_extents`. """ BboxBase.__init__(self, **kwargs) points = np.asarray(points, float) if points.shape != (2, 2): raise ValueError('Bbox points must be of the form ' '"[[x0, y0], [x1, y1]]".') self._points = points self._minpos = np.array([np.inf, np.inf]) self._ignore = True # it is helpful in some contexts to know if the bbox is a # default or has been mutated; we store the orig points to # support the mutated methods self._points_orig = self._points.copy() if DEBUG: ___init__ = __init__ def __init__(self, points, **kwargs): self._check(points) self.___init__(points, **kwargs) def invalidate(self): self._check(self._points) TransformNode.invalidate(self) @staticmethod def unit(): """Create a new unit `Bbox` from (0, 0) to (1, 1).""" return Bbox(np.array([[0.0, 0.0], [1.0, 1.0]], float)) @staticmethod def null(): """Create a new null `Bbox` from (inf, inf) to (-inf, -inf).""" return Bbox(np.array([[np.inf, np.inf], [-np.inf, -np.inf]], float)) @staticmethod def from_bounds(x0, y0, width, height): """ Create a new `Bbox` from *x0*, *y0*, *width* and *height*. *width* and *height* may be negative. """ return Bbox.from_extents(x0, y0, x0 + width, y0 + height) @staticmethod def from_extents(*args): """ Create a new Bbox from *left*, *bottom*, *right* and *top*. The *y*-axis increases upwards. """ points = np.array(args, dtype=float).reshape(2, 2) return Bbox(points) def __format__(self, fmt): return ( 'Bbox(x0={0.x0:{1}}, y0={0.y0:{1}}, x1={0.x1:{1}}, y1={0.y1:{1}})'. format(self, fmt)) def __str__(self): return format(self, '') def __repr__(self): return 'Bbox([[{0.x0}, {0.y0}], [{0.x1}, {0.y1}]])'.format(self) def ignore(self, value): """ Set whether the existing bounds of the box should be ignored by subsequent calls to :meth:`update_from_data_xy`. value : bool - When ``True``, subsequent calls to :meth:`update_from_data_xy` will ignore the existing bounds of the :class:`Bbox`. - When ``False``, subsequent calls to :meth:`update_from_data_xy` will include the existing bounds of the :class:`Bbox`. """ self._ignore = value def update_from_path(self, path, ignore=None, updatex=True, updatey=True): """ Update the bounds of the :class:`Bbox` based on the passed in data. After updating, the bounds will have positive *width* and *height*; *x0* and *y0* will be the minimal values. Parameters ---------- path : :class:`~matplotlib.path.Path` ignore : bool, optional - when ``True``, ignore the existing bounds of the :class:`Bbox`. - when ``False``, include the existing bounds of the :class:`Bbox`. - when ``None``, use the last value passed to :meth:`ignore`. updatex, updatey : bool, optional When ``True``, update the x/y values. """ if ignore is None: ignore = self._ignore if path.vertices.size == 0: return points, minpos, changed = update_path_extents( path, None, self._points, self._minpos, ignore) if changed: self.invalidate() if updatex: self._points[:, 0] = points[:, 0] self._minpos[0] = minpos[0] if updatey: self._points[:, 1] = points[:, 1] self._minpos[1] = minpos[1] def update_from_data_xy(self, xy, ignore=None, updatex=True, updatey=True): """ Update the bounds of the :class:`Bbox` based on the passed in data. After updating, the bounds will have positive *width* and *height*; *x0* and *y0* will be the minimal values. Parameters ---------- xy : ndarray A numpy array of 2D points. ignore : bool, optional - When ``True``, ignore the existing bounds of the :class:`Bbox`. - When ``False``, include the existing bounds of the :class:`Bbox`. - When ``None``, use the last value passed to :meth:`ignore`. updatex, updatey : bool, optional When ``True``, update the x/y values. """ if len(xy) == 0: return path = Path(xy) self.update_from_path(path, ignore=ignore, updatex=updatex, updatey=updatey) @BboxBase.x0.setter def x0(self, val): self._points[0, 0] = val self.invalidate() @BboxBase.y0.setter def y0(self, val): self._points[0, 1] = val self.invalidate() @BboxBase.x1.setter def x1(self, val): self._points[1, 0] = val self.invalidate() @BboxBase.y1.setter def y1(self, val): self._points[1, 1] = val self.invalidate() @BboxBase.p0.setter def p0(self, val): self._points[0] = val self.invalidate() @BboxBase.p1.setter def p1(self, val): self._points[1] = val self.invalidate() @BboxBase.intervalx.setter def intervalx(self, interval): self._points[:, 0] = interval self.invalidate() @BboxBase.intervaly.setter def intervaly(self, interval): self._points[:, 1] = interval self.invalidate() @BboxBase.bounds.setter def bounds(self, bounds): l, b, w, h = bounds points = np.array([[l, b], [l + w, b + h]], float) if np.any(self._points != points): self._points = points self.invalidate() @property def minpos(self): return self._minpos @property def minposx(self): return self._minpos[0] @property def minposy(self): return self._minpos[1] def get_points(self): """ Get the points of the bounding box directly as a numpy array of the form: ``[[x0, y0], [x1, y1]]``. """ self._invalid = 0 return self._points def set_points(self, points): """ Set the points of the bounding box directly from a numpy array of the form: ``[[x0, y0], [x1, y1]]``. No error checking is performed, as this method is mainly for internal use. """ if np.any(self._points != points): self._points = points self.invalidate() def set(self, other): """ Set this bounding box from the "frozen" bounds of another `Bbox`. """ if np.any(self._points != other.get_points()): self._points = other.get_points() self.invalidate() def mutated(self): 'Return whether the bbox has changed since init.' return self.mutatedx() or self.mutatedy() def mutatedx(self): 'Return whether the x-limits have changed since init.' return (self._points[0, 0] != self._points_orig[0, 0] or self._points[1, 0] != self._points_orig[1, 0]) def mutatedy(self): 'Return whether the y-limits have changed since init.' return (self._points[0, 1] != self._points_orig[0, 1] or self._points[1, 1] != self._points_orig[1, 1]) class TransformedBbox(BboxBase): """ A :class:`Bbox` that is automatically transformed by a given transform. When either the child bounding box or transform changes, the bounds of this bbox will update accordingly. """ def __init__(self, bbox, transform, **kwargs): """ Parameters ---------- bbox : :class:`Bbox` transform : :class:`Transform` """ if not bbox.is_bbox: raise ValueError("'bbox' is not a bbox") if not isinstance(transform, Transform): raise ValueError("'transform' must be an instance of " "'matplotlib.transform.Transform'") if transform.input_dims != 2 or transform.output_dims != 2: raise ValueError( "The input and output dimensions of 'transform' must be 2") BboxBase.__init__(self, **kwargs) self._bbox = bbox self._transform = transform self.set_children(bbox, transform) self._points = None def __str__(self): return ("{}(\n" "{},\n" "{})" .format(type(self).__name__, _indent_str(self._bbox), _indent_str(self._transform))) def get_points(self): # docstring inherited if self._invalid: p = self._bbox.get_points() # Transform all four points, then make a new bounding box # from the result, taking care to make the orientation the # same. points = self._transform.transform( [[p[0, 0], p[0, 1]], [p[1, 0], p[0, 1]], [p[0, 0], p[1, 1]], [p[1, 0], p[1, 1]]]) points = np.ma.filled(points, 0.0) xs = min(points[:, 0]), max(points[:, 0]) if p[0, 0] > p[1, 0]: xs = xs[::-1] ys = min(points[:, 1]), max(points[:, 1]) if p[0, 1] > p[1, 1]: ys = ys[::-1] self._points = np.array([ [xs[0], ys[0]], [xs[1], ys[1]] ]) self._invalid = 0 return self._points if DEBUG: _get_points = get_points def get_points(self): points = self._get_points() self._check(points) return points class LockableBbox(BboxBase): """ A :class:`Bbox` where some elements may be locked at certain values. When the child bounding box changes, the bounds of this bbox will update accordingly with the exception of the locked elements. """ def __init__(self, bbox, x0=None, y0=None, x1=None, y1=None, **kwargs): """ Parameters ---------- bbox : Bbox The child bounding box to wrap. x0 : float or None The locked value for x0, or None to leave unlocked. y0 : float or None The locked value for y0, or None to leave unlocked. x1 : float or None The locked value for x1, or None to leave unlocked. y1 : float or None The locked value for y1, or None to leave unlocked. """ if not bbox.is_bbox: raise ValueError("'bbox' is not a bbox") BboxBase.__init__(self, **kwargs) self._bbox = bbox self.set_children(bbox) self._points = None fp = [x0, y0, x1, y1] mask = [val is None for val in fp] self._locked_points = np.ma.array(fp, float, mask=mask).reshape((2, 2)) def __str__(self): return ("{}(\n" "{},\n" "{})" .format(type(self).__name__, _indent_str(self._bbox), _indent_str(self._locked_points))) def get_points(self): # docstring inherited if self._invalid: points = self._bbox.get_points() self._points = np.where(self._locked_points.mask, points, self._locked_points) self._invalid = 0 return self._points if DEBUG: _get_points = get_points def get_points(self): points = self._get_points() self._check(points) return points @property def locked_x0(self): """ float or None: The value used for the locked x0. """ if self._locked_points.mask[0, 0]: return None else: return self._locked_points[0, 0] @locked_x0.setter def locked_x0(self, x0): self._locked_points.mask[0, 0] = x0 is None self._locked_points.data[0, 0] = x0 self.invalidate() @property def locked_y0(self): """ float or None: The value used for the locked y0. """ if self._locked_points.mask[0, 1]: return None else: return self._locked_points[0, 1] @locked_y0.setter def locked_y0(self, y0): self._locked_points.mask[0, 1] = y0 is None self._locked_points.data[0, 1] = y0 self.invalidate() @property def locked_x1(self): """ float or None: The value used for the locked x1. """ if self._locked_points.mask[1, 0]: return None else: return self._locked_points[1, 0] @locked_x1.setter def locked_x1(self, x1): self._locked_points.mask[1, 0] = x1 is None self._locked_points.data[1, 0] = x1 self.invalidate() @property def locked_y1(self): """ float or None: The value used for the locked y1. """ if self._locked_points.mask[1, 1]: return None else: return self._locked_points[1, 1] @locked_y1.setter def locked_y1(self, y1): self._locked_points.mask[1, 1] = y1 is None self._locked_points.data[1, 1] = y1 self.invalidate() class Transform(TransformNode): """ The base class of all :class:`TransformNode` instances that actually perform a transformation. All non-affine transformations should be subclasses of this class. New affine transformations should be subclasses of `Affine2D`. Subclasses of this class should override the following members (at minimum): - :attr:`input_dims` - :attr:`output_dims` - :meth:`transform` - :attr:`is_separable` - :attr:`has_inverse` - :meth:`inverted` (if :attr:`has_inverse` is True) If the transform needs to do something non-standard with :class:`matplotlib.path.Path` objects, such as adding curves where there were once line segments, it should override: - :meth:`transform_path` """ input_dims = None """ The number of input dimensions of this transform. Must be overridden (with integers) in the subclass. """ output_dims = None """ The number of output dimensions of this transform. Must be overridden (with integers) in the subclass. """ has_inverse = False """True if this transform has a corresponding inverse transform.""" is_separable = False """True if this transform is separable in the x- and y- dimensions.""" def __add__(self, other): """ Composes two transforms together such that *self* is followed by *other*. """ if isinstance(other, Transform): return composite_transform_factory(self, other) raise TypeError( "Can not add Transform to object of type '%s'" % type(other)) def __radd__(self, other): """ Composes two transforms together such that *self* is followed by *other*. """ if isinstance(other, Transform): return composite_transform_factory(other, self) raise TypeError( "Can not add Transform to object of type '%s'" % type(other)) # Equality is based on object identity for `Transform`s (so we don't # override `__eq__`), but some subclasses, such as TransformWrapper & # AffineBase, override this behavior. def _iter_break_from_left_to_right(self): """ Returns an iterator breaking down this transform stack from left to right recursively. If self == ((A, N), A) then the result will be an iterator which yields I : ((A, N), A), followed by A : (N, A), followed by (A, N) : (A), but not ((A, N), A) : I. This is equivalent to flattening the stack then yielding ``flat_stack[:i], flat_stack[i:]`` where i=0..(n-1). """ yield IdentityTransform(), self @property def depth(self): """ Returns the number of transforms which have been chained together to form this Transform instance. .. note:: For the special case of a Composite transform, the maximum depth of the two is returned. """ return 1 def contains_branch(self, other): """ Return whether the given transform is a sub-tree of this transform. This routine uses transform equality to identify sub-trees, therefore in many situations it is object id which will be used. For the case where the given transform represents the whole of this transform, returns True. """ if self.depth < other.depth: return False # check that a subtree is equal to other (starting from self) for _, sub_tree in self._iter_break_from_left_to_right(): if sub_tree == other: return True return False def contains_branch_seperately(self, other_transform): """ Returns whether the given branch is a sub-tree of this transform on each separate dimension. A common use for this method is to identify if a transform is a blended transform containing an axes' data transform. e.g.:: x_isdata, y_isdata = trans.contains_branch_seperately(ax.transData) """ if self.output_dims != 2: raise ValueError('contains_branch_seperately only supports ' 'transforms with 2 output dimensions') # for a non-blended transform each separate dimension is the same, so # just return the appropriate shape. return [self.contains_branch(other_transform)] * 2 def __sub__(self, other): """ Returns a transform stack which goes all the way down self's transform stack, and then ascends back up other's stack. If it can, this is optimised:: # normally A - B == a + b.inverted() # sometimes, when A contains the tree B there is no need to # descend all the way down to the base of A (via B), instead we # can just stop at B. (A + B) - (B)^-1 == A # similarly, when B contains tree A, we can avoid descending A at # all, basically: A - (A + B) == ((B + A) - A).inverted() or B^-1 For clarity, the result of ``(A + B) - B + B == (A + B)``. """ # we only know how to do this operation if other is a Transform. if not isinstance(other, Transform): return NotImplemented for remainder, sub_tree in self._iter_break_from_left_to_right(): if sub_tree == other: return remainder for remainder, sub_tree in other._iter_break_from_left_to_right(): if sub_tree == self: if not remainder.has_inverse: raise ValueError( "The shortcut cannot be computed since 'other' " "includes a non-invertible component") return remainder.inverted() # if we have got this far, then there was no shortcut possible if other.has_inverse: return self + other.inverted() else: raise ValueError('It is not possible to compute transA - transB ' 'since transB cannot be inverted and there is no ' 'shortcut possible.') def __array__(self, *args, **kwargs): """ Array interface to get at this Transform's affine matrix. """ return self.get_affine().get_matrix() def transform(self, values): """ Performs the transformation on the given array of values. Accepts a numpy array of shape (N x :attr:`input_dims`) and returns a numpy array of shape (N x :attr:`output_dims`). Alternatively, accepts a numpy array of length :attr:`input_dims` and returns a numpy array of length :attr:`output_dims`. """ # Ensure that values is a 2d array (but remember whether # we started with a 1d or 2d array). values = np.asanyarray(values) ndim = values.ndim values = values.reshape((-1, self.input_dims)) # Transform the values res = self.transform_affine(self.transform_non_affine(values)) # Convert the result back to the shape of the input values. if ndim == 0: assert not np.ma.is_masked(res) # just to be on the safe side return res[0, 0] if ndim == 1: return res.reshape(-1) elif ndim == 2: return res raise ValueError( "Input values must have shape (N x {dims}) " "or ({dims}).".format(dims=self.input_dims)) def transform_affine(self, values): """ Performs only the affine part of this transformation on the given array of values. ``transform(values)`` is always equivalent to ``transform_affine(transform_non_affine(values))``. In non-affine transformations, this is generally a no-op. In affine transformations, this is equivalent to ``transform(values)``. Accepts a numpy array of shape (N x :attr:`input_dims`) and returns a numpy array of shape (N x :attr:`output_dims`). Alternatively, accepts a numpy array of length :attr:`input_dims` and returns a numpy array of length :attr:`output_dims`. """ return self.get_affine().transform(values) def transform_non_affine(self, values): """ Performs only the non-affine part of the transformation. ``transform(values)`` is always equivalent to ``transform_affine(transform_non_affine(values))``. In non-affine transformations, this is generally equivalent to ``transform(values)``. In affine transformations, this is always a no-op. Accepts a numpy array of shape (N x :attr:`input_dims`) and returns a numpy array of shape (N x :attr:`output_dims`). Alternatively, accepts a numpy array of length :attr:`input_dims` and returns a numpy array of length :attr:`output_dims`. """ return values def transform_bbox(self, bbox): """ Transform the given bounding box. Note, for smarter transforms including caching (a common requirement for matplotlib figures), see :class:`TransformedBbox`. """ return Bbox(self.transform(bbox.get_points())) def get_affine(self): """ Get the affine part of this transform. """ return IdentityTransform() def get_matrix(self): """ Get the Affine transformation array for the affine part of this transform. """ return self.get_affine().get_matrix() def transform_point(self, point): """ A convenience function that returns the transformed copy of a single point. The point is given as a sequence of length :attr:`input_dims`. The transformed point is returned as a sequence of length :attr:`output_dims`. """ if len(point) != self.input_dims: raise ValueError("The length of 'point' must be 'self.input_dims'") return self.transform(np.asarray([point]))[0] def transform_path(self, path): """ Returns a transformed path. *path*: a :class:`~matplotlib.path.Path` instance. In some cases, this transform may insert curves into the path that began as line segments. """ return self.transform_path_affine(self.transform_path_non_affine(path)) def transform_path_affine(self, path): """ Returns a path, transformed only by the affine part of this transform. *path*: a :class:`~matplotlib.path.Path` instance. ``transform_path(path)`` is equivalent to ``transform_path_affine(transform_path_non_affine(values))``. """ return self.get_affine().transform_path_affine(path) def transform_path_non_affine(self, path): """ Returns a path, transformed only by the non-affine part of this transform. *path*: a :class:`~matplotlib.path.Path` instance. ``transform_path(path)`` is equivalent to ``transform_path_affine(transform_path_non_affine(values))``. """ x = self.transform_non_affine(path.vertices) return Path._fast_from_codes_and_verts(x, path.codes, path) def transform_angles(self, angles, pts, radians=False, pushoff=1e-5): """ Transforms a set of angles anchored at specific locations. Parameters ---------- angles : (N,) array-like The angles to transform. pts : (N, 2) array-like The points where the angles are anchored. radians : bool, default: False Whether *angles* are radians or degrees. pushoff : float For each point in *pts* and angle in *angles*, the transformed angle is computed by transforming a segment of length *pushoff* starting at that point and making that angle relative to the horizontal axis, and measuring the angle between the horizontal axis and the transformed segment. Returns ------- transformed_angles : (N,) array """ # Must be 2D if self.input_dims != 2 or self.output_dims != 2: raise NotImplementedError('Only defined in 2D') if pts.shape[1] != 2: raise ValueError("'pts' must be array with 2 columns for x,y") if angles.ndim != 1 or angles.shape[0] != pts.shape[0]: raise ValueError("'angles' must be a column vector and have same " "number of rows as 'pts'") # Convert to radians if desired if not radians: angles = angles / 180.0 * np.pi # Move a short distance away pts2 = pts + pushoff * np.c_[np.cos(angles), np.sin(angles)] # Transform both sets of points tpts = self.transform(pts) tpts2 = self.transform(pts2) # Calculate transformed angles d = tpts2 - tpts a = np.arctan2(d[:, 1], d[:, 0]) # Convert back to degrees if desired if not radians: a = np.rad2deg(a) return a def inverted(self): """ Return the corresponding inverse transformation. The return value of this method should be treated as temporary. An update to *self* does not cause a corresponding update to its inverted copy. ``x === self.inverted().transform(self.transform(x))`` """ raise NotImplementedError() class TransformWrapper(Transform): """ A helper class that holds a single child transform and acts equivalently to it. This is useful if a node of the transform tree must be replaced at run time with a transform of a different type. This class allows that replacement to correctly trigger invalidation. Note that :class:`TransformWrapper` instances must have the same input and output dimensions during their entire lifetime, so the child transform may only be replaced with another child transform of the same dimensions. """ pass_through = True def __init__(self, child): """ *child*: A class:`Transform` instance. This child may later be replaced with :meth:`set`. """ if not isinstance(child, Transform): raise ValueError("'child' must be an instance of " "'matplotlib.transform.Transform'") self._init(child) self.set_children(child) def _init(self, child): Transform.__init__(self) self.input_dims = child.input_dims self.output_dims = child.output_dims self._set(child) self._invalid = 0 def __eq__(self, other): return self._child.__eq__(other) def __str__(self): return ("{}(\n" "{})" .format(type(self).__name__, _indent_str(self._child))) def frozen(self): # docstring inherited return self._child.frozen() def _set(self, child): self._child = child self.transform = child.transform self.transform_affine = child.transform_affine self.transform_non_affine = child.transform_non_affine self.transform_path = child.transform_path self.transform_path_affine = child.transform_path_affine self.transform_path_non_affine = child.transform_path_non_affine self.get_affine = child.get_affine self.inverted = child.inverted self.get_matrix = child.get_matrix # note we do not wrap other properties here since the transform's # child can be changed with WrappedTransform.set and so checking # is_affine and other such properties may be dangerous. def set(self, child): """ Replace the current child of this transform with another one. The new child must have the same number of input and output dimensions as the current child. """ if (child.input_dims != self.input_dims or child.output_dims != self.output_dims): raise ValueError( "The new child must have the same number of input and output " "dimensions as the current child") self.set_children(child) self._set(child) self._invalid = 0 self.invalidate() self._invalid = 0 is_affine = property(lambda self: self._child.is_affine) is_separable = property(lambda self: self._child.is_separable) has_inverse = property(lambda self: self._child.has_inverse) class AffineBase(Transform): """ The base class of all affine transformations of any number of dimensions. """ is_affine = True def __init__(self, *args, **kwargs): Transform.__init__(self, *args, **kwargs) self._inverted = None def __array__(self, *args, **kwargs): # optimises the access of the transform matrix vs the superclass return self.get_matrix() def __eq__(self, other): if getattr(other, "is_affine", False): return np.all(self.get_matrix() == other.get_matrix()) return NotImplemented def transform(self, values): # docstring inherited return self.transform_affine(values) def transform_affine(self, values): # docstring inherited raise NotImplementedError('Affine subclasses should override this ' 'method.') def transform_non_affine(self, points): # docstring inherited return points def transform_path(self, path): # docstring inherited return self.transform_path_affine(path) def transform_path_affine(self, path): # docstring inherited return Path(self.transform_affine(path.vertices), path.codes, path._interpolation_steps) def transform_path_non_affine(self, path): # docstring inherited return path def get_affine(self): # docstring inherited return self class Affine2DBase(AffineBase): """ The base class of all 2D affine transformations. 2D affine transformations are performed using a 3x3 numpy array:: a c e b d f 0 0 1 This class provides the read-only interface. For a mutable 2D affine transformation, use :class:`Affine2D`. Subclasses of this class will generally only need to override a constructor and :meth:`get_matrix` that generates a custom 3x3 matrix. """ has_inverse = True input_dims = 2 output_dims = 2 def frozen(self): # docstring inherited return Affine2D(self.get_matrix().copy()) @property def is_separable(self): mtx = self.get_matrix() return mtx[0, 1] == mtx[1, 0] == 0.0 def to_values(self): """ Return the values of the matrix as an ``(a, b, c, d, e, f)`` tuple. """ mtx = self.get_matrix() return tuple(mtx[:2].swapaxes(0, 1).flat) @staticmethod def matrix_from_values(a, b, c, d, e, f): """ Create a new transformation matrix as a 3x3 numpy array of the form:: a c e b d f 0 0 1 """ return np.array([[a, c, e], [b, d, f], [0.0, 0.0, 1.0]], float) def transform_affine(self, points): mtx = self.get_matrix() if isinstance(points, np.ma.MaskedArray): tpoints = affine_transform(points.data, mtx) return np.ma.MaskedArray(tpoints, mask=np.ma.getmask(points)) return affine_transform(points, mtx) def transform_point(self, point): # docstring inherited mtx = self.get_matrix() return affine_transform([point], mtx)[0] if DEBUG: _transform_affine = transform_affine def transform_affine(self, points): # docstring inherited # The major speed trap here is just converting to the # points to an array in the first place. If we can use # more arrays upstream, that should help here. if not isinstance(points, (np.ma.MaskedArray, np.ndarray)): cbook._warn_external( f'A non-numpy array of type {type(points)} was passed in ' f'for transformation, which results in poor performance.') return self._transform_affine(points) def inverted(self): # docstring inherited if self._inverted is None or self._invalid: mtx = self.get_matrix() shorthand_name = None if self._shorthand_name: shorthand_name = '(%s)-1' % self._shorthand_name self._inverted = Affine2D(inv(mtx), shorthand_name=shorthand_name) self._invalid = 0 return self._inverted class Affine2D(Affine2DBase): """ A mutable 2D affine transformation. """ def __init__(self, matrix=None, **kwargs): """ Initialize an Affine transform from a 3x3 numpy float array:: a c e b d f 0 0 1 If *matrix* is None, initialize with the identity transform. """ Affine2DBase.__init__(self, **kwargs) if matrix is None: # A bit faster than np.identity(3). matrix = IdentityTransform._mtx.copy() self._mtx = matrix self._invalid = 0 def __str__(self): return ("{}(\n" "{})" .format(type(self).__name__, _indent_str(self._mtx))) @staticmethod def from_values(a, b, c, d, e, f): """ Create a new Affine2D instance from the given values:: a c e b d f 0 0 1 . """ return Affine2D( np.array([a, c, e, b, d, f, 0.0, 0.0, 1.0], float).reshape((3, 3))) def get_matrix(self): """ Get the underlying transformation matrix as a 3x3 numpy array:: a c e b d f 0 0 1 . """ self._invalid = 0 return self._mtx def set_matrix(self, mtx): """ Set the underlying transformation matrix from a 3x3 numpy array:: a c e b d f 0 0 1 . """ self._mtx = mtx self.invalidate() def set(self, other): """ Set this transformation from the frozen copy of another :class:`Affine2DBase` object. """ if not isinstance(other, Affine2DBase): raise ValueError("'other' must be an instance of " "'matplotlib.transform.Affine2DBase'") self._mtx = other.get_matrix() self.invalidate() @staticmethod def identity(): """ Return a new `Affine2D` object that is the identity transform. Unless this transform will be mutated later on, consider using the faster :class:`IdentityTransform` class instead. """ return Affine2D() def clear(self): """ Reset the underlying matrix to the identity transform. """ # A bit faster than np.identity(3). self._mtx = IdentityTransform._mtx.copy() self.invalidate() return self def rotate(self, theta): """ Add a rotation (in radians) to this transform in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ a = np.cos(theta) b = np.sin(theta) rotate_mtx = np.array([[a, -b, 0.0], [b, a, 0.0], [0.0, 0.0, 1.0]], float) self._mtx = np.dot(rotate_mtx, self._mtx) self.invalidate() return self def rotate_deg(self, degrees): """ Add a rotation (in degrees) to this transform in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ return self.rotate(np.deg2rad(degrees)) def rotate_around(self, x, y, theta): """ Add a rotation (in radians) around the point (x, y) in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ return self.translate(-x, -y).rotate(theta).translate(x, y) def rotate_deg_around(self, x, y, degrees): """ Add a rotation (in degrees) around the point (x, y) in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ # Cast to float to avoid wraparound issues with uint8's x, y = float(x), float(y) return self.translate(-x, -y).rotate_deg(degrees).translate(x, y) def translate(self, tx, ty): """ Adds a translation in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ translate_mtx = np.array( [[1.0, 0.0, tx], [0.0, 1.0, ty], [0.0, 0.0, 1.0]], float) self._mtx = np.dot(translate_mtx, self._mtx) self.invalidate() return self def scale(self, sx, sy=None): """ Adds a scale in place. If *sy* is None, the same scale is applied in both the *x*- and *y*-directions. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ if sy is None: sy = sx scale_mtx = np.array( [[sx, 0.0, 0.0], [0.0, sy, 0.0], [0.0, 0.0, 1.0]], float) self._mtx = np.dot(scale_mtx, self._mtx) self.invalidate() return self def skew(self, xShear, yShear): """ Adds a skew in place. *xShear* and *yShear* are the shear angles along the *x*- and *y*-axes, respectively, in radians. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ rotX = np.tan(xShear) rotY = np.tan(yShear) skew_mtx = np.array( [[1.0, rotX, 0.0], [rotY, 1.0, 0.0], [0.0, 0.0, 1.0]], float) self._mtx = np.dot(skew_mtx, self._mtx) self.invalidate() return self def skew_deg(self, xShear, yShear): """ Adds a skew in place. *xShear* and *yShear* are the shear angles along the *x*- and *y*-axes, respectively, in degrees. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ return self.skew(np.deg2rad(xShear), np.deg2rad(yShear)) class IdentityTransform(Affine2DBase): """ A special class that does one thing, the identity transform, in a fast way. """ _mtx = np.identity(3) def frozen(self): # docstring inherited return self def __str__(self): return ("{}()" .format(type(self).__name__)) def get_matrix(self): # docstring inherited return self._mtx def transform(self, points): # docstring inherited return np.asanyarray(points) def transform_affine(self, points): # docstring inherited return np.asanyarray(points) def transform_non_affine(self, points): # docstring inherited return np.asanyarray(points) def transform_path(self, path): # docstring inherited return path def transform_path_affine(self, path): # docstring inherited return path def transform_path_non_affine(self, path): # docstring inherited return path def get_affine(self): # docstring inherited return self def inverted(self): # docstring inherited return self class BlendedGenericTransform(Transform): """ A "blended" transform uses one transform for the *x*-direction, and another transform for the *y*-direction. This "generic" version can handle any given child transform in the *x*- and *y*-directions. """ input_dims = 2 output_dims = 2 is_separable = True pass_through = True def __init__(self, x_transform, y_transform, **kwargs): """ Create a new "blended" transform using *x_transform* to transform the *x*-axis and *y_transform* to transform the *y*-axis. You will generally not call this constructor directly but use the `blended_transform_factory` function instead, which can determine automatically which kind of blended transform to create. """ # Here we ask: "Does it blend?" Transform.__init__(self, **kwargs) self._x = x_transform self._y = y_transform self.set_children(x_transform, y_transform) self._affine = None def __eq__(self, other): # Note, this is an exact copy of BlendedAffine2D.__eq__ if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)): return (self._x == other._x) and (self._y == other._y) elif self._x == self._y: return self._x == other else: return NotImplemented def contains_branch_seperately(self, transform): # Note, this is an exact copy of BlendedAffine2D.contains_branch_seperately return self._x.contains_branch(transform), self._y.contains_branch(transform) @property def depth(self): return max(self._x.depth, self._y.depth) def contains_branch(self, other): # a blended transform cannot possibly contain a branch from two different transforms. return False is_affine = property(lambda self: self._x.is_affine and self._y.is_affine) has_inverse = property( lambda self: self._x.has_inverse and self._y.has_inverse) def frozen(self): # docstring inherited return blended_transform_factory(self._x.frozen(), self._y.frozen()) def __str__(self): return ("{}(\n" "{},\n" "{})" .format(type(self).__name__, _indent_str(self._x), _indent_str(self._y))) def transform_non_affine(self, points): # docstring inherited if self._x.is_affine and self._y.is_affine: return points x = self._x y = self._y if x == y and x.input_dims == 2: return x.transform_non_affine(points) if x.input_dims == 2: x_points = x.transform_non_affine(points)[:, 0:1] else: x_points = x.transform_non_affine(points[:, 0]) x_points = x_points.reshape((len(x_points), 1)) if y.input_dims == 2: y_points = y.transform_non_affine(points)[:, 1:] else: y_points = y.transform_non_affine(points[:, 1]) y_points = y_points.reshape((len(y_points), 1)) if (isinstance(x_points, np.ma.MaskedArray) or isinstance(y_points, np.ma.MaskedArray)): return np.ma.concatenate((x_points, y_points), 1) else: return np.concatenate((x_points, y_points), 1) def inverted(self): # docstring inherited return BlendedGenericTransform(self._x.inverted(), self._y.inverted()) def get_affine(self): # docstring inherited if self._invalid or self._affine is None: if self._x == self._y: self._affine = self._x.get_affine() else: x_mtx = self._x.get_affine().get_matrix() y_mtx = self._y.get_affine().get_matrix() # This works because we already know the transforms are # separable, though normally one would want to set b and # c to zero. mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0])) self._affine = Affine2D(mtx) self._invalid = 0 return self._affine class BlendedAffine2D(Affine2DBase): """ A "blended" transform uses one transform for the *x*-direction, and another transform for the *y*-direction. This version is an optimization for the case where both child transforms are of type :class:`Affine2DBase`. """ is_separable = True def __init__(self, x_transform, y_transform, **kwargs): """ Create a new "blended" transform using *x_transform* to transform the *x*-axis and *y_transform* to transform the *y*-axis. Both *x_transform* and *y_transform* must be 2D affine transforms. You will generally not call this constructor directly but use the `blended_transform_factory` function instead, which can determine automatically which kind of blended transform to create. """ is_affine = x_transform.is_affine and y_transform.is_affine is_separable = x_transform.is_separable and y_transform.is_separable is_correct = is_affine and is_separable if not is_correct: raise ValueError("Both *x_transform* and *y_transform* must be 2D " "affine transforms") Transform.__init__(self, **kwargs) self._x = x_transform self._y = y_transform self.set_children(x_transform, y_transform) Affine2DBase.__init__(self) self._mtx = None def __eq__(self, other): # Note, this is an exact copy of BlendedGenericTransform.__eq__ if isinstance(other, (BlendedAffine2D, BlendedGenericTransform)): return (self._x == other._x) and (self._y == other._y) elif self._x == self._y: return self._x == other else: return NotImplemented def contains_branch_seperately(self, transform): # Note, this is an exact copy of BlendedTransform.contains_branch_seperately return self._x.contains_branch(transform), self._y.contains_branch(transform) def __str__(self): return ("{}(\n" "{},\n" "{})" .format(type(self).__name__, _indent_str(self._x), _indent_str(self._y))) def get_matrix(self): # docstring inherited if self._invalid: if self._x == self._y: self._mtx = self._x.get_matrix() else: x_mtx = self._x.get_matrix() y_mtx = self._y.get_matrix() # This works because we already know the transforms are # separable, though normally one would want to set b and # c to zero. self._mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0])) self._inverted = None self._invalid = 0 return self._mtx def blended_transform_factory(x_transform, y_transform): """ Create a new "blended" transform using *x_transform* to transform the *x*-axis and *y_transform* to transform the *y*-axis. A faster version of the blended transform is returned for the case where both child transforms are affine. """ if (isinstance(x_transform, Affine2DBase) and isinstance(y_transform, Affine2DBase)): return BlendedAffine2D(x_transform, y_transform) return BlendedGenericTransform(x_transform, y_transform) class CompositeGenericTransform(Transform): """ A composite transform formed by applying transform *a* then transform *b*. This "generic" version can handle any two arbitrary transformations. """ pass_through = True def __init__(self, a, b, **kwargs): """ Create a new composite transform that is the result of applying transform *a* then transform *b*. You will generally not call this constructor directly but use the `composite_transform_factory` function instead, which can automatically choose the best kind of composite transform instance to create. """ if a.output_dims != b.input_dims: raise ValueError("The output dimension of 'a' must be equal to " "the input dimensions of 'b'") self.input_dims = a.input_dims self.output_dims = b.output_dims Transform.__init__(self, **kwargs) self._a = a self._b = b self.set_children(a, b) def frozen(self): # docstring inherited self._invalid = 0 frozen = composite_transform_factory(self._a.frozen(), self._b.frozen()) if not isinstance(frozen, CompositeGenericTransform): return frozen.frozen() return frozen def _invalidate_internal(self, value, invalidating_node): # In some cases for a composite transform, an invalidating call to AFFINE_ONLY needs # to be extended to invalidate the NON_AFFINE part too. These cases are when the right # hand transform is non-affine and either: # (a) the left hand transform is non affine # (b) it is the left hand node which has triggered the invalidation if value == Transform.INVALID_AFFINE \ and not self._b.is_affine \ and (not self._a.is_affine or invalidating_node is self._a): value = Transform.INVALID Transform._invalidate_internal(self, value=value, invalidating_node=invalidating_node) def __eq__(self, other): if isinstance(other, (CompositeGenericTransform, CompositeAffine2D)): return self is other or (self._a == other._a and self._b == other._b) else: return False def _iter_break_from_left_to_right(self): for left, right in self._a._iter_break_from_left_to_right(): yield left, right + self._b for left, right in self._b._iter_break_from_left_to_right(): yield self._a + left, right depth = property(lambda self: self._a.depth + self._b.depth) is_affine = property(lambda self: self._a.is_affine and self._b.is_affine) is_separable = property( lambda self: self._a.is_separable and self._b.is_separable) has_inverse = property( lambda self: self._a.has_inverse and self._b.has_inverse) def __str__(self): return ("{}(\n" "{},\n" "{})" .format(type(self).__name__, _indent_str(self._a), _indent_str(self._b))) def transform_affine(self, points): # docstring inherited return self.get_affine().transform(points) def transform_non_affine(self, points): # docstring inherited if self._a.is_affine and self._b.is_affine: return points elif not self._a.is_affine and self._b.is_affine: return self._a.transform_non_affine(points) else: return self._b.transform_non_affine( self._a.transform(points)) def transform_path_non_affine(self, path): # docstring inherited if self._a.is_affine and self._b.is_affine: return path elif not self._a.is_affine and self._b.is_affine: return self._a.transform_path_non_affine(path) else: return self._b.transform_path_non_affine( self._a.transform_path(path)) def get_affine(self): # docstring inherited if not self._b.is_affine: return self._b.get_affine() else: return Affine2D(np.dot(self._b.get_affine().get_matrix(), self._a.get_affine().get_matrix())) def inverted(self): # docstring inherited return CompositeGenericTransform(self._b.inverted(), self._a.inverted()) class CompositeAffine2D(Affine2DBase): """ A composite transform formed by applying transform *a* then transform *b*. This version is an optimization that handles the case where both *a* and *b* are 2D affines. """ def __init__(self, a, b, **kwargs): """ Create a new composite transform that is the result of applying transform *a* then transform *b*. Both *a* and *b* must be instances of :class:`Affine2DBase`. You will generally not call this constructor directly but use the `composite_transform_factory` function instead, which can automatically choose the best kind of composite transform instance to create. """ if not a.is_affine or not b.is_affine: raise ValueError("'a' and 'b' must be affine transforms") if a.output_dims != b.input_dims: raise ValueError("The output dimension of 'a' must be equal to " "the input dimensions of 'b'") self.input_dims = a.input_dims self.output_dims = b.output_dims Affine2DBase.__init__(self, **kwargs) self._a = a self._b = b self.set_children(a, b) self._mtx = None @property def depth(self): return self._a.depth + self._b.depth def _iter_break_from_left_to_right(self): for left, right in self._a._iter_break_from_left_to_right(): yield left, right + self._b for left, right in self._b._iter_break_from_left_to_right(): yield self._a + left, right def __str__(self): return ("{}(\n" "{},\n" "{})" .format(type(self).__name__, _indent_str(self._a), _indent_str(self._b))) def get_matrix(self): # docstring inherited if self._invalid: self._mtx = np.dot( self._b.get_matrix(), self._a.get_matrix()) self._inverted = None self._invalid = 0 return self._mtx def composite_transform_factory(a, b): """ Create a new composite transform that is the result of applying transform a then transform b. Shortcut versions of the blended transform are provided for the case where both child transforms are affine, or one or the other is the identity transform. Composite transforms may also be created using the '+' operator, e.g.:: c = a + b """ # check to see if any of a or b are IdentityTransforms. We use # isinstance here to guarantee that the transforms will *always* # be IdentityTransforms. Since TransformWrappers are mutable, # use of equality here would be wrong. if isinstance(a, IdentityTransform): return b elif isinstance(b, IdentityTransform): return a elif isinstance(a, Affine2D) and isinstance(b, Affine2D): return CompositeAffine2D(a, b) return CompositeGenericTransform(a, b) class BboxTransform(Affine2DBase): """ `BboxTransform` linearly transforms points from one `Bbox` to another. """ is_separable = True def __init__(self, boxin, boxout, **kwargs): """ Create a new :class:`BboxTransform` that linearly transforms points from *boxin* to *boxout*. """ if not boxin.is_bbox or not boxout.is_bbox: raise ValueError("'boxin' and 'boxout' must be bbox") Affine2DBase.__init__(self, **kwargs) self._boxin = boxin self._boxout = boxout self.set_children(boxin, boxout) self._mtx = None self._inverted = None def __str__(self): return ("{}(\n" "{},\n" "{})" .format(type(self).__name__, _indent_str(self._boxin), _indent_str(self._boxout))) def get_matrix(self): # docstring inherited if self._invalid: inl, inb, inw, inh = self._boxin.bounds outl, outb, outw, outh = self._boxout.bounds x_scale = outw / inw y_scale = outh / inh if DEBUG and (x_scale == 0 or y_scale == 0): raise ValueError("Transforming from or to a singular bounding box.") self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale+outl)], [0.0 , y_scale, (-inb*y_scale+outb)], [0.0 , 0.0 , 1.0 ]], float) self._inverted = None self._invalid = 0 return self._mtx class BboxTransformTo(Affine2DBase): """ `BboxTransformTo` is a transformation that linearly transforms points from the unit bounding box to a given `Bbox`. """ is_separable = True def __init__(self, boxout, **kwargs): """ Create a new :class:`BboxTransformTo` that linearly transforms points from the unit bounding box to *boxout*. """ if not boxout.is_bbox: raise ValueError("'boxout' must be bbox") Affine2DBase.__init__(self, **kwargs) self._boxout = boxout self.set_children(boxout) self._mtx = None self._inverted = None def __str__(self): return ("{}(\n" "{})" .format(type(self).__name__, _indent_str(self._boxout))) def get_matrix(self): # docstring inherited if self._invalid: outl, outb, outw, outh = self._boxout.bounds if DEBUG and (outw == 0 or outh == 0): raise ValueError("Transforming to a singular bounding box.") self._mtx = np.array([[outw, 0.0, outl], [ 0.0, outh, outb], [ 0.0, 0.0, 1.0]], float) self._inverted = None self._invalid = 0 return self._mtx class BboxTransformToMaxOnly(BboxTransformTo): """ `BboxTransformTo` is a transformation that linearly transforms points from the unit bounding box to a given `Bbox` with a fixed upper left of (0, 0). """ def get_matrix(self): # docstring inherited if self._invalid: xmax, ymax = self._boxout.max if DEBUG and (xmax == 0 or ymax == 0): raise ValueError("Transforming to a singular bounding box.") self._mtx = np.array([[xmax, 0.0, 0.0], [ 0.0, ymax, 0.0], [ 0.0, 0.0, 1.0]], float) self._inverted = None self._invalid = 0 return self._mtx class BboxTransformFrom(Affine2DBase): """ `BboxTransformFrom` linearly transforms points from a given `Bbox` to the unit bounding box. """ is_separable = True def __init__(self, boxin, **kwargs): if not boxin.is_bbox: raise ValueError("'boxin' must be bbox") Affine2DBase.__init__(self, **kwargs) self._boxin = boxin self.set_children(boxin) self._mtx = None self._inverted = None def __str__(self): return ("{}(\n" "{})" .format(type(self).__name__, _indent_str(self._boxin))) def get_matrix(self): # docstring inherited if self._invalid: inl, inb, inw, inh = self._boxin.bounds if DEBUG and (inw == 0 or inh == 0): raise ValueError("Transforming from a singular bounding box.") x_scale = 1.0 / inw y_scale = 1.0 / inh self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale)], [0.0 , y_scale, (-inb*y_scale)], [0.0 , 0.0 , 1.0 ]], float) self._inverted = None self._invalid = 0 return self._mtx class ScaledTranslation(Affine2DBase): """ A transformation that translates by *xt* and *yt*, after *xt* and *yt* have been transformed by *scale_trans*. """ def __init__(self, xt, yt, scale_trans, **kwargs): Affine2DBase.__init__(self, **kwargs) self._t = (xt, yt) self._scale_trans = scale_trans self.set_children(scale_trans) self._mtx = None self._inverted = None def __str__(self): return ("{}(\n" "{})" .format(type(self).__name__, _indent_str(self._t))) def get_matrix(self): # docstring inherited if self._invalid: xt, yt = self._scale_trans.transform_point(self._t) self._mtx = np.array([[1.0, 0.0, xt], [0.0, 1.0, yt], [0.0, 0.0, 1.0]], float) self._invalid = 0 self._inverted = None return self._mtx class TransformedPath(TransformNode): """ A `TransformedPath` caches a non-affine transformed copy of the `~.path.Path`. This cached copy is automatically updated when the non-affine part of the transform changes. .. note:: Paths are considered immutable by this class. Any update to the path's vertices/codes will not trigger a transform recomputation. """ def __init__(self, path, transform): """ Parameters ---------- path : `~.path.Path` transform : `Transform` """ if not isinstance(transform, Transform): raise ValueError("'transform' must be an instance of " "'matplotlib.transform.Transform'") TransformNode.__init__(self) self._path = path self._transform = transform self.set_children(transform) self._transformed_path = None self._transformed_points = None def _revalidate(self): # only recompute if the invalidation includes the non_affine part of the transform if ((self._invalid & self.INVALID_NON_AFFINE == self.INVALID_NON_AFFINE) or self._transformed_path is None): self._transformed_path = \ self._transform.transform_path_non_affine(self._path) self._transformed_points = \ Path._fast_from_codes_and_verts( self._transform.transform_non_affine(self._path.vertices), None, self._path) self._invalid = 0 def get_transformed_points_and_affine(self): """ Return a copy of the child path, with the non-affine part of the transform already applied, along with the affine part of the path necessary to complete the transformation. Unlike :meth:`get_transformed_path_and_affine`, no interpolation will be performed. """ self._revalidate() return self._transformed_points, self.get_affine() def get_transformed_path_and_affine(self): """ Return a copy of the child path, with the non-affine part of the transform already applied, along with the affine part of the path necessary to complete the transformation. """ self._revalidate() return self._transformed_path, self.get_affine() def get_fully_transformed_path(self): """ Return a fully-transformed copy of the child path. """ self._revalidate() return self._transform.transform_path_affine(self._transformed_path) def get_affine(self): return self._transform.get_affine() class TransformedPatchPath(TransformedPath): """ A `TransformedPatchPath` caches a non-affine transformed copy of the `~.patch.Patch`. This cached copy is automatically updated when the non-affine part of the transform or the patch changes. """ def __init__(self, patch): """ Parameters ---------- patch : `~.patches.Patch` """ TransformNode.__init__(self) transform = patch.get_transform() self._patch = patch self._transform = transform self.set_children(transform) self._path = patch.get_path() self._transformed_path = None self._transformed_points = None def _revalidate(self): patch_path = self._patch.get_path() # Only recompute if the invalidation includes the non_affine part of # the transform, or the Patch's Path has changed. if (self._transformed_path is None or self._path != patch_path or (self._invalid & self.INVALID_NON_AFFINE == self.INVALID_NON_AFFINE)): self._path = patch_path self._transformed_path = \ self._transform.transform_path_non_affine(patch_path) self._transformed_points = \ Path._fast_from_codes_and_verts( self._transform.transform_non_affine(patch_path.vertices), None, patch_path) self._invalid = 0 def nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increasing=True): """ Modify the endpoints of a range as needed to avoid singularities. Parameters ---------- vmin, vmax : float The initial endpoints. expander : float, optional, default: 0.001 Fractional amount by which *vmin* and *vmax* are expanded if the original interval is too small, based on *tiny*. tiny : float, optional, default: 1e-15 Threshold for the ratio of the interval to the maximum absolute value of its endpoints. If the interval is smaller than this, it will be expanded. This value should be around 1e-15 or larger; otherwise the interval will be approaching the double precision resolution limit. increasing : bool, optional, default: True If True, swap *vmin*, *vmax* if *vmin* > *vmax*. Returns ------- vmin, vmax : float Endpoints, expanded and/or swapped if necessary. If either input is inf or NaN, or if both inputs are 0 or very close to zero, it returns -*expander*, *expander*. """ if (not np.isfinite(vmin)) or (not np.isfinite(vmax)): return -expander, expander swapped = False if vmax < vmin: vmin, vmax = vmax, vmin swapped = True maxabsvalue = max(abs(vmin), abs(vmax)) if maxabsvalue < (1e6 / tiny) * np.finfo(float).tiny: vmin = -expander vmax = expander elif vmax - vmin <= maxabsvalue * tiny: if vmax == 0 and vmin == 0: vmin = -expander vmax = expander else: vmin -= expander*abs(vmin) vmax += expander*abs(vmax) if swapped and not increasing: vmin, vmax = vmax, vmin return vmin, vmax def interval_contains(interval, val): """ Check, inclusively, whether an interval includes a given value. Parameters ---------- interval : sequence of scalar A 2-length sequence, endpoints that define the interval. val : scalar Value to check is within interval. Returns ------- bool Returns *True* if given *val* is within the *interval*. """ a, b = interval if a > b: a, b = b, a return a <= val <= b def _interval_contains_close(interval, val, rtol=1e-10): """ Check, inclusively, whether an interval includes a given value, with the interval expanded by a small tolerance to admit floating point errors. Parameters ---------- interval : sequence of scalar A 2-length sequence, endpoints that define the interval. val : scalar Value to check is within interval. rtol : scalar Tolerance slippage allowed outside of this interval. Default 1e-10 * (b - a). Returns ------- bool Returns *True* if given *val* is within the *interval* (with tolerance) """ a, b = interval if a > b: a, b = b, a rtol = (b - a) * rtol return a - rtol <= val <= b + rtol def interval_contains_open(interval, val): """ Check, excluding endpoints, whether an interval includes a given value. Parameters ---------- interval : sequence of scalar A 2-length sequence, endpoints that define the interval. val : scalar Value to check is within interval. Returns ------- bool Returns true if given val is within the interval. """ a, b = interval return a < val < b or a > val > b def offset_copy(trans, fig=None, x=0.0, y=0.0, units='inches'): """ Return a new transform with an added offset. Parameters ---------- trans : :class:`Transform` instance Any transform, to which offset will be applied. fig : :class:`~matplotlib.figure.Figure`, optional, default: None Current figure. It can be None if *units* are 'dots'. x, y : float, optional, default: 0.0 Specifies the offset to apply. units : {'inches', 'points', 'dots'}, optional Units of the offset. Returns ------- trans : :class:`Transform` instance Transform with applied offset. """ if units == 'dots': return trans + Affine2D().translate(x, y) if fig is None: raise ValueError('For units of inches or points a fig kwarg is needed') if units == 'points': x /= 72.0 y /= 72.0 elif not units == 'inches': raise ValueError('units must be dots, points, or inches') return trans + ScaledTranslation(x, y, fig.dpi_scale_trans)
ac205ad7a6cb4775cd0236363633825db4c579f51c0e99b372c475c8f6137e34
""" Plotting of string "category" data: ``plot(['d', 'f', 'a'], [1, 2, 3])`` will plot three points with x-axis values of 'd', 'f', 'a'. See :doc:`/gallery/lines_bars_and_markers/categorical_variables` for an example. The module uses Matplotlib's `matplotlib.units` mechanism to convert from strings to integers and provides a tick locator, a tick formatter, and the `.UnitData` class that creates and stores the string-to-integer mapping. """ from collections import OrderedDict import dateutil.parser import itertools import logging import numpy as np import matplotlib.cbook as cbook import matplotlib.units as units import matplotlib.ticker as ticker _log = logging.getLogger(__name__) class StrCategoryConverter(units.ConversionInterface): @staticmethod def convert(value, unit, axis): """ Convert strings in *value* to floats using mapping information stored in the *unit* object. Parameters ---------- value : string or iterable Value or list of values to be converted. unit : `.UnitData` An object mapping strings to integers. axis : `~matplotlib.axis.Axis` The axis on which the converted value is plotted. .. note:: *axis* is unused. Returns ------- mapped_value : float or ndarray[float] """ if unit is None: raise ValueError( 'Missing category information for StrCategoryConverter; ' 'this might be caused by unintendedly mixing categorical and ' 'numeric data') # dtype = object preserves numerical pass throughs values = np.atleast_1d(np.array(value, dtype=object)) # pass through sequence of non binary numbers if all(units.ConversionInterface.is_numlike(v) and not isinstance(v, (str, bytes)) for v in values): return np.asarray(values, dtype=float) # force an update so it also does type checking unit.update(values) return np.vectorize(unit._mapping.__getitem__, otypes=[float])(values) @staticmethod def axisinfo(unit, axis): """ Set the default axis ticks and labels. Parameters ---------- unit : `.UnitData` object string unit information for value axis : `~matplotlib.axis.Axis` axis for which information is being set Returns ------- axisinfo : `~matplotlib.units.AxisInfo` Information to support default tick labeling .. note: axis is not used """ # locator and formatter take mapping dict because # args need to be pass by reference for updates majloc = StrCategoryLocator(unit._mapping) majfmt = StrCategoryFormatter(unit._mapping) return units.AxisInfo(majloc=majloc, majfmt=majfmt) @staticmethod def default_units(data, axis): """ Set and update the `~matplotlib.axis.Axis` units. Parameters ---------- data : string or iterable of strings axis : `~matplotlib.axis.Axis` axis on which the data is plotted Returns ------- class : `.UnitData` object storing string to integer mapping """ # the conversion call stack is default_units -> axis_info -> convert if axis.units is None: axis.set_units(UnitData(data)) else: axis.units.update(data) return axis.units class StrCategoryLocator(ticker.Locator): """Tick at every integer mapping of the string data.""" def __init__(self, units_mapping): """ Parameters ----------- units_mapping : Dict[str, int] """ self._units = units_mapping def __call__(self): return list(self._units.values()) def tick_values(self, vmin, vmax): return self() class StrCategoryFormatter(ticker.Formatter): """String representation of the data at every tick.""" def __init__(self, units_mapping): """ Parameters ---------- units_mapping : Dict[Str, int] """ self._units = units_mapping def __call__(self, x, pos=None): return '' if pos is None else self.format_ticks([x])[0] def format_ticks(self, values): r_mapping = {v: self._text(k) for k, v in self._units.items()} return [r_mapping.get(round(val), '') for val in values] @staticmethod def _text(value): """Convert text values into utf-8 or ascii strings.""" if isinstance(value, bytes): value = value.decode(encoding='utf-8') elif not isinstance(value, str): value = str(value) return value class UnitData(object): def __init__(self, data=None): """ Create mapping between unique categorical values and integer ids. Parameters ---------- data : iterable sequence of string values """ self._mapping = OrderedDict() self._counter = itertools.count() if data is not None: self.update(data) @staticmethod def _str_is_convertible(val): """ Helper method to check whether a string can be parsed as float or date. """ try: float(val) except ValueError: try: dateutil.parser.parse(val) except ValueError: return False return True def update(self, data): """ Map new values to integer identifiers. Parameters ---------- data : iterable sequence of string values Raises ------ TypeError If the value in data is not a string, unicode, bytes type """ data = np.atleast_1d(np.array(data, dtype=object)) # check if convertible to number: convertible = True for val in OrderedDict.fromkeys(data): # OrderedDict just iterates over unique values in data. if not isinstance(val, (str, bytes)): raise TypeError("{val!r} is not a string".format(val=val)) if convertible: # this will only be called so long as convertible is True. convertible = self._str_is_convertible(val) if val not in self._mapping: self._mapping[val] = next(self._counter) if convertible: _log.info('Using categorical units to plot a list of strings ' 'that are all parsable as floats or dates. If these ' 'strings should be plotted as numbers, cast to the ' 'appropriate data type before plotting.') # Register the converter with Matplotlib's unit framework units.registry[str] = StrCategoryConverter() units.registry[np.str_] = StrCategoryConverter() units.registry[bytes] = StrCategoryConverter() units.registry[np.bytes_] = StrCategoryConverter()
23773054cb0c4bcc6a575f414f673136736ff2592592a372f372e0856c6dd247
""" A module for parsing and generating `fontconfig patterns`_. .. _fontconfig patterns: https://www.freedesktop.org/software/fontconfig/fontconfig-user.html """ # This class is defined here because it must be available in: # - The old-style config framework (:file:`rcsetup.py`) # - The font manager (:file:`font_manager.py`) # It probably logically belongs in :file:`font_manager.py`, but placing it # there would have created cyclical dependency problems. from functools import lru_cache import re from pyparsing import (Literal, ZeroOrMore, Optional, Regex, StringEnd, ParseException, Suppress) family_punc = r'\\\-:,' family_unescape = re.compile(r'\\([%s])' % family_punc).sub family_escape = re.compile(r'([%s])' % family_punc).sub value_punc = r'\\=_:,' value_unescape = re.compile(r'\\([%s])' % value_punc).sub value_escape = re.compile(r'([%s])' % value_punc).sub class FontconfigPatternParser(object): """ A simple pyparsing-based parser for `fontconfig patterns`_. .. _fontconfig patterns: https://www.freedesktop.org/software/fontconfig/fontconfig-user.html """ _constants = { 'thin' : ('weight', 'light'), 'extralight' : ('weight', 'light'), 'ultralight' : ('weight', 'light'), 'light' : ('weight', 'light'), 'book' : ('weight', 'book'), 'regular' : ('weight', 'regular'), 'normal' : ('weight', 'normal'), 'medium' : ('weight', 'medium'), 'demibold' : ('weight', 'demibold'), 'semibold' : ('weight', 'semibold'), 'bold' : ('weight', 'bold'), 'extrabold' : ('weight', 'extra bold'), 'black' : ('weight', 'black'), 'heavy' : ('weight', 'heavy'), 'roman' : ('slant', 'normal'), 'italic' : ('slant', 'italic'), 'oblique' : ('slant', 'oblique'), 'ultracondensed' : ('width', 'ultra-condensed'), 'extracondensed' : ('width', 'extra-condensed'), 'condensed' : ('width', 'condensed'), 'semicondensed' : ('width', 'semi-condensed'), 'expanded' : ('width', 'expanded'), 'extraexpanded' : ('width', 'extra-expanded'), 'ultraexpanded' : ('width', 'ultra-expanded') } def __init__(self): family = Regex(r'([^%s]|(\\[%s]))*' % (family_punc, family_punc)) \ .setParseAction(self._family) size = Regex(r"([0-9]+\.?[0-9]*|\.[0-9]+)") \ .setParseAction(self._size) name = Regex(r'[a-z]+') \ .setParseAction(self._name) value = Regex(r'([^%s]|(\\[%s]))*' % (value_punc, value_punc)) \ .setParseAction(self._value) families =(family + ZeroOrMore( Literal(',') + family) ).setParseAction(self._families) point_sizes =(size + ZeroOrMore( Literal(',') + size) ).setParseAction(self._point_sizes) property =( (name + Suppress(Literal('=')) + value + ZeroOrMore( Suppress(Literal(',')) + value) ) | name ).setParseAction(self._property) pattern =(Optional( families) + Optional( Literal('-') + point_sizes) + ZeroOrMore( Literal(':') + property) + StringEnd() ) self._parser = pattern self.ParseException = ParseException def parse(self, pattern): """ Parse the given fontconfig *pattern* and return a dictionary of key/value pairs useful for initializing a :class:`font_manager.FontProperties` object. """ props = self._properties = {} try: self._parser.parseString(pattern) except self.ParseException as e: raise ValueError( "Could not parse font string: '%s'\n%s" % (pattern, e)) self._properties = None self._parser.resetCache() return props def _family(self, s, loc, tokens): return [family_unescape(r'\1', str(tokens[0]))] def _size(self, s, loc, tokens): return [float(tokens[0])] def _name(self, s, loc, tokens): return [str(tokens[0])] def _value(self, s, loc, tokens): return [value_unescape(r'\1', str(tokens[0]))] def _families(self, s, loc, tokens): self._properties['family'] = [str(x) for x in tokens] return [] def _point_sizes(self, s, loc, tokens): self._properties['size'] = [str(x) for x in tokens] return [] def _property(self, s, loc, tokens): if len(tokens) == 1: if tokens[0] in self._constants: key, val = self._constants[tokens[0]] self._properties.setdefault(key, []).append(val) else: key = tokens[0] val = tokens[1:] self._properties.setdefault(key, []).extend(val) return [] # `parse_fontconfig_pattern` is a bottleneck during the tests because it is # repeatedly called when the rcParams are reset (to validate the default # fonts). In practice, the cache size doesn't grow beyond a few dozen entries # during the test suite. parse_fontconfig_pattern = lru_cache()(FontconfigPatternParser().parse) def generate_fontconfig_pattern(d): """ Given a dictionary of key/value pairs, generates a fontconfig pattern string. """ props = [] for key in 'family style variant weight stretch file size'.split(): val = getattr(d, 'get_' + key)() if val is not None and val != []: if type(val) == list: val = [value_escape(r'\\\1', str(x)) for x in val if x is not None] if val != []: val = ','.join(val) props.append(":%s=%s" % (key, val)) return ''.join(props)
1d7dac4b9b846bdc445e01c9b661432c429d01e9b3ab105ef24f4ef05bbcc245
""" Classes for the efficient drawing of large collections of objects that share most properties, e.g., a large number of line segments or polygons. The classes are not meant to be as flexible as their single element counterparts (e.g., you may not be able to select all line styles) but they are meant to be fast for common use cases (e.g., a large set of solid line segments). """ import math from numbers import Number import numpy as np import matplotlib as mpl from . import (_path, artist, cbook, cm, colors as mcolors, docstring, lines as mlines, path as mpath, transforms) import warnings @cbook._define_aliases({ "antialiased": ["antialiaseds", "aa"], "edgecolor": ["edgecolors", "ec"], "facecolor": ["facecolors", "fc"], "linestyle": ["linestyles", "dashes", "ls"], "linewidth": ["linewidths", "lw"], }) class Collection(artist.Artist, cm.ScalarMappable): """ Base class for Collections. Must be subclassed to be usable. All properties in a collection must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith element of the collection is:: prop[i % len(props)] Exceptions are *capstyle* and *joinstyle* properties, these can only be set globally for the whole collection. Keyword arguments and default values: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *capstyle*: None * *joinstyle*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *offset_position*: 'screen' (default) or 'data' * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *hatch*: None * *zorder*: 1 *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets). If offset_position is 'screen' (default) the offset is applied after the master transform has been applied, that is, the offsets are in screen coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in data coordinates. If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (i.e., a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ _offsets = np.zeros((0, 2)) _transOffset = transforms.IdentityTransform() #: Either a list of 3x3 arrays or an Nx3x3 array of transforms, suitable #: for the `all_transforms` argument to #: :meth:`~matplotlib.backend_bases.RendererBase.draw_path_collection`; #: each 3x3 array is used to initialize an #: :class:`~matplotlib.transforms.Affine2D` object. #: Each kind of collection defines this based on its arguments. _transforms = np.empty((0, 3, 3)) # Whether to draw an edge by default. Set on a # subclass-by-subclass basis. _edge_default = False def __init__(self, edgecolors=None, facecolors=None, linewidths=None, linestyles='solid', capstyle=None, joinstyle=None, antialiaseds=None, offsets=None, transOffset=None, norm=None, # optional for ScalarMappable cmap=None, # ditto pickradius=5.0, hatch=None, urls=None, offset_position='screen', zorder=1, **kwargs ): """ Create a Collection %(Collection)s """ artist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) # list of un-scaled dash patterns # this is needed scaling the dash pattern by linewidth self._us_linestyles = [(None, None)] # list of dash patterns self._linestyles = [(None, None)] # list of unbroadcast/scaled linewidths self._us_lw = [0] self._linewidths = [0] self._is_filled = True # May be modified by set_facecolor(). self._hatch_color = mcolors.to_rgba(mpl.rcParams['hatch.color']) self.set_facecolor(facecolors) self.set_edgecolor(edgecolors) self.set_linewidth(linewidths) self.set_linestyle(linestyles) self.set_antialiased(antialiaseds) self.set_pickradius(pickradius) self.set_urls(urls) self.set_hatch(hatch) self.set_offset_position(offset_position) self.set_zorder(zorder) if capstyle: self.set_capstyle(capstyle) else: self._capstyle = None if joinstyle: self.set_joinstyle(joinstyle) else: self._joinstyle = None self._offsets = np.zeros((1, 2)) self._uniform_offsets = None if offsets is not None: offsets = np.asanyarray(offsets, float) # Broadcast (2,) -> (1, 2) but nothing else. if offsets.shape == (2,): offsets = offsets[None, :] if transOffset is not None: self._offsets = offsets self._transOffset = transOffset else: self._uniform_offsets = offsets self._path_effects = None self.update(kwargs) self._paths = None def get_paths(self): return self._paths def set_paths(self): raise NotImplementedError def get_transforms(self): return self._transforms def get_offset_transform(self): t = self._transOffset if (not isinstance(t, transforms.Transform) and hasattr(t, '_as_mpl_transform')): t = t._as_mpl_transform(self.axes) return t def get_datalim(self, transData): transform = self.get_transform() transOffset = self.get_offset_transform() offsets = self._offsets paths = self.get_paths() if not transform.is_affine: paths = [transform.transform_path_non_affine(p) for p in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() if isinstance(offsets, np.ma.MaskedArray): offsets = offsets.filled(np.nan) # get_path_collection_extents handles nan but not masked arrays if len(paths) and len(offsets): result = mpath.get_path_collection_extents( transform.frozen(), paths, self.get_transforms(), offsets, transOffset.frozen()) result = result.inverse_transformed(transData) else: result = transforms.Bbox.null() return result def get_window_extent(self, renderer): # TODO: check to ensure that this does not fail for # cases other than scatter plot legend return self.get_datalim(transforms.IdentityTransform()) def _prepare_points(self): # Helper for drawing and hit testing. transform = self.get_transform() transOffset = self.get_offset_transform() offsets = self._offsets paths = self.get_paths() if self.have_units(): paths = [] for path in self.get_paths(): vertices = path.vertices xs, ys = vertices[:, 0], vertices[:, 1] xs = self.convert_xunits(xs) ys = self.convert_yunits(ys) paths.append(mpath.Path(np.column_stack([xs, ys]), path.codes)) if offsets.size: xs = self.convert_xunits(offsets[:, 0]) ys = self.convert_yunits(offsets[:, 1]) offsets = np.column_stack([xs, ys]) if not transform.is_affine: paths = [transform.transform_path_non_affine(path) for path in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) # This might have changed an ndarray into a masked array. transOffset = transOffset.get_affine() if isinstance(offsets, np.ma.MaskedArray): offsets = offsets.filled(np.nan) # Changing from a masked array to nan-filled ndarray # is probably most efficient at this point. return transform, transOffset, offsets, paths @artist.allow_rasterization def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__, self.get_gid()) self.update_scalarmappable() transform, transOffset, offsets, paths = self._prepare_points() gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_snap(self.get_snap()) if self._hatch: gc.set_hatch(self._hatch) try: gc.set_hatch_color(self._hatch_color) except AttributeError: # if we end up with a GC that does not have this method cbook.warn_deprecated( "3.1", message="Your backend does not support setting the " "hatch color; such backends will become unsupported in " "Matplotlib 3.3.") if self.get_sketch_params() is not None: gc.set_sketch_params(*self.get_sketch_params()) if self.get_path_effects(): from matplotlib.patheffects import PathEffectRenderer renderer = PathEffectRenderer(self.get_path_effects(), renderer) # If the collection is made up of a single shape/color/stroke, # it can be rendered once and blitted multiple times, using # `draw_markers` rather than `draw_path_collection`. This is # *much* faster for Agg, and results in smaller file sizes in # PDF/SVG/PS. trans = self.get_transforms() facecolors = self.get_facecolor() edgecolors = self.get_edgecolor() do_single_path_optimization = False if (len(paths) == 1 and len(trans) <= 1 and len(facecolors) == 1 and len(edgecolors) == 1 and len(self._linewidths) == 1 and self._linestyles == [(None, None)] and len(self._antialiaseds) == 1 and len(self._urls) == 1 and self.get_hatch() is None): if len(trans): combined_transform = (transforms.Affine2D(trans[0]) + transform) else: combined_transform = transform extents = paths[0].get_extents(combined_transform) width, height = renderer.get_canvas_width_height() if extents.width < width and extents.height < height: do_single_path_optimization = True if self._joinstyle: gc.set_joinstyle(self._joinstyle) if self._capstyle: gc.set_capstyle(self._capstyle) if do_single_path_optimization: gc.set_foreground(tuple(edgecolors[0])) gc.set_linewidth(self._linewidths[0]) gc.set_dashes(*self._linestyles[0]) gc.set_antialiased(self._antialiaseds[0]) gc.set_url(self._urls[0]) renderer.draw_markers( gc, paths[0], combined_transform.frozen(), mpath.Path(offsets), transOffset, tuple(facecolors[0])) else: renderer.draw_path_collection( gc, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, self.get_facecolor(), self.get_edgecolor(), self._linewidths, self._linestyles, self._antialiaseds, self._urls, self._offset_position) gc.restore() renderer.close_group(self.__class__.__name__) self.stale = False def set_pickradius(self, pr): """ Set the pick radius used for containment tests. Parameters ---------- d : float Pick radius, in points. """ self._pickradius = pr def get_pickradius(self): return self._pickradius def contains(self, mouseevent): """ Test whether the mouse event occurred in the collection. Returns ``bool, dict(ind=itemlist)``, where every item in itemlist contains the event. """ if self._contains is not None: return self._contains(self, mouseevent) if not self.get_visible(): return False, {} pickradius = ( float(self._picker) if isinstance(self._picker, Number) and self._picker is not True # the bool, not just nonzero or 1 else self._pickradius) transform, transOffset, offsets, paths = self._prepare_points() ind = _path.point_in_path_collection( mouseevent.x, mouseevent.y, pickradius, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, pickradius <= 0, self.get_offset_position()) return len(ind) > 0, dict(ind=ind) def set_urls(self, urls): """ Parameters ---------- urls : List[str] or None """ self._urls = urls if urls is not None else [None] self.stale = True def get_urls(self): return self._urls def set_hatch(self, hatch): r""" Set the hatching pattern *hatch* can be one of:: / - diagonal hatching \ - back diagonal | - vertical - - horizontal + - crossed x - crossed diagonal o - small circle O - large circle . - dots * - stars Letters can be combined, in which case all the specified hatchings are done. If same letter repeats, it increases the density of hatching of that pattern. Hatching is supported in the PostScript, PDF, SVG and Agg backends only. Unlike other properties such as linewidth and colors, hatching can only be specified for the collection as a whole, not separately for each member. Parameters ---------- hatch : {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'} """ self._hatch = hatch self.stale = True def get_hatch(self): """Return the current hatching pattern.""" return self._hatch def set_offsets(self, offsets): """ Set the offsets for the collection. Parameters ---------- offsets : float or sequence of floats """ offsets = np.asanyarray(offsets, float) if offsets.shape == (2,): # Broadcast (2,) -> (1, 2) but nothing else. offsets = offsets[None, :] # This decision is based on how they are initialized above in __init__. if self._uniform_offsets is None: self._offsets = offsets else: self._uniform_offsets = offsets self.stale = True def get_offsets(self): """Return the offsets for the collection.""" # This decision is based on how they are initialized above in __init__. if self._uniform_offsets is None: return self._offsets else: return self._uniform_offsets def set_offset_position(self, offset_position): """ Set how offsets are applied. If *offset_position* is 'screen' (default) the offset is applied after the master transform has been applied, that is, the offsets are in screen coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in data coordinates. Parameters ---------- offset_position : {'screen', 'data'} """ cbook._check_in_list(['screen', 'data'], offset_position=offset_position) self._offset_position = offset_position self.stale = True def get_offset_position(self): """ Returns how offsets are applied for the collection. If *offset_position* is 'screen', the offset is applied after the master transform has been applied, that is, the offsets are in screen coordinates. If offset_position is 'data', the offset is applied before the master transform, i.e., the offsets are in data coordinates. """ return self._offset_position def set_linewidth(self, lw): """ Set the linewidth(s) for the collection. *lw* can be a scalar or a sequence; if it is a sequence the patches will cycle through the sequence Parameters ---------- lw : float or sequence of floats """ if lw is None: lw = mpl.rcParams['patch.linewidth'] if lw is None: lw = mpl.rcParams['lines.linewidth'] # get the un-scaled/broadcast lw self._us_lw = np.atleast_1d(np.asarray(lw)) # scale all of the dash patterns. self._linewidths, self._linestyles = self._bcast_lwls( self._us_lw, self._us_linestyles) self.stale = True def set_linestyle(self, ls): """ Set the linestyle(s) for the collection. =========================== ================= linestyle description =========================== ================= ``'-'`` or ``'solid'`` solid line ``'--'`` or ``'dashed'`` dashed line ``'-.'`` or ``'dashdot'`` dash-dotted line ``':'`` or ``'dotted'`` dotted line =========================== ================= Alternatively a dash tuple of the following form can be provided:: (offset, onoffseq), where ``onoffseq`` is an even length tuple of on and off ink in points. Parameters ---------- ls : {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} The line style. """ try: if isinstance(ls, str): ls = cbook.ls_mapper.get(ls, ls) dashes = [mlines._get_dash_pattern(ls)] else: try: dashes = [mlines._get_dash_pattern(ls)] except ValueError: dashes = [mlines._get_dash_pattern(x) for x in ls] except ValueError: raise ValueError( 'Do not know how to convert {!r} to dashes'.format(ls)) # get the list of raw 'unscaled' dash patterns self._us_linestyles = dashes # broadcast and scale the lw and dash patterns self._linewidths, self._linestyles = self._bcast_lwls( self._us_lw, self._us_linestyles) def set_capstyle(self, cs): """ Set the capstyle for the collection (for all its elements). Parameters ---------- cs : {'butt', 'round', 'projecting'} The capstyle """ if cs in ('butt', 'round', 'projecting'): self._capstyle = cs else: raise ValueError('Unrecognized cap style. Found %s' % cs) def get_capstyle(self): return self._capstyle def set_joinstyle(self, js): """ Set the joinstyle for the collection (for all its elements). Parameters ---------- js : {'miter', 'round', 'bevel'} The joinstyle """ if js in ('miter', 'round', 'bevel'): self._joinstyle = js else: raise ValueError('Unrecognized join style. Found %s' % js) def get_joinstyle(self): return self._joinstyle @staticmethod def _bcast_lwls(linewidths, dashes): """ Internal helper function to broadcast + scale ls/lw In the collection drawing code, the linewidth and linestyle are cycled through as circular buffers (via ``v[i % len(v)]``). Thus, if we are going to scale the dash pattern at set time (not draw time) we need to do the broadcasting now and expand both lists to be the same length. Parameters ---------- linewidths : list line widths of collection dashes : list dash specification (offset, (dash pattern tuple)) Returns ------- linewidths, dashes : list Will be the same length, dashes are scaled by paired linewidth """ if mpl.rcParams['_internal.classic_mode']: return linewidths, dashes # make sure they are the same length so we can zip them if len(dashes) != len(linewidths): l_dashes = len(dashes) l_lw = len(linewidths) gcd = math.gcd(l_dashes, l_lw) dashes = list(dashes) * (l_lw // gcd) linewidths = list(linewidths) * (l_dashes // gcd) # scale the dash patters dashes = [mlines._scale_dashes(o, d, lw) for (o, d), lw in zip(dashes, linewidths)] return linewidths, dashes def set_antialiased(self, aa): """ Set the antialiasing state for rendering. Parameters ---------- aa : bool or sequence of bools """ if aa is None: aa = mpl.rcParams['patch.antialiased'] self._antialiaseds = np.atleast_1d(np.asarray(aa, bool)) self.stale = True def set_color(self, c): """ Set both the edgecolor and the facecolor. Parameters ---------- c : color or sequence of rgba tuples See Also -------- Collection.set_facecolor, Collection.set_edgecolor For setting the edge or face color individually. """ self.set_facecolor(c) self.set_edgecolor(c) def _set_facecolor(self, c): if c is None: c = mpl.rcParams['patch.facecolor'] self._is_filled = True try: if c.lower() == 'none': self._is_filled = False except AttributeError: pass self._facecolors = mcolors.to_rgba_array(c, self._alpha) self.stale = True def set_facecolor(self, c): """ Set the facecolor(s) of the collection. *c* can be a matplotlib color spec (all patches have same color), or a sequence of specs; if it is a sequence the patches will cycle through the sequence. If *c* is 'none', the patch will not be filled. Parameters ---------- c : color or sequence of colors """ self._original_facecolor = c self._set_facecolor(c) def get_facecolor(self): return self._facecolors def get_edgecolor(self): if cbook._str_equal(self._edgecolors, 'face'): return self.get_facecolor() else: return self._edgecolors def _set_edgecolor(self, c): set_hatch_color = True if c is None: if (mpl.rcParams['patch.force_edgecolor'] or not self._is_filled or self._edge_default): c = mpl.rcParams['patch.edgecolor'] else: c = 'none' set_hatch_color = False self._is_stroked = True try: if c.lower() == 'none': self._is_stroked = False except AttributeError: pass try: if c.lower() == 'face': # Special case: lookup in "get" method. self._edgecolors = 'face' return except AttributeError: pass self._edgecolors = mcolors.to_rgba_array(c, self._alpha) if set_hatch_color and len(self._edgecolors): self._hatch_color = tuple(self._edgecolors[0]) self.stale = True def set_edgecolor(self, c): """ Set the edgecolor(s) of the collection. Parameters ---------- c : color or sequence of colors or 'face' The collection edgecolor(s). If a sequence, the patches cycle through it. If 'face', match the facecolor. """ self._original_edgecolor = c self._set_edgecolor(c) def set_alpha(self, alpha): # docstring inherited super().set_alpha(alpha) self.update_dict['array'] = True self._set_facecolor(self._original_facecolor) self._set_edgecolor(self._original_edgecolor) def get_linewidth(self): return self._linewidths def get_linestyle(self): return self._linestyles def update_scalarmappable(self): """Update colors from the scalar mappable array, if it is not None.""" if self._A is None: return if self._A.ndim > 1: raise ValueError('Collections can only map rank 1 arrays') if not self.check_update("array"): return if self._is_filled: self._facecolors = self.to_rgba(self._A, self._alpha) elif self._is_stroked: self._edgecolors = self.to_rgba(self._A, self._alpha) self.stale = True def get_fill(self): 'return whether fill is set' return self._is_filled def update_from(self, other): 'copy properties from other to self' artist.Artist.update_from(self, other) self._antialiaseds = other._antialiaseds self._original_edgecolor = other._original_edgecolor self._edgecolors = other._edgecolors self._original_facecolor = other._original_facecolor self._facecolors = other._facecolors self._linewidths = other._linewidths self._linestyles = other._linestyles self._us_linestyles = other._us_linestyles self._pickradius = other._pickradius self._hatch = other._hatch # update_from for scalarmappable self._A = other._A self.norm = other.norm self.cmap = other.cmap # self.update_dict = other.update_dict # do we need to copy this? -JJL self.stale = True # these are not available for the object inspector until after the # class is built so we define an initial set here for the init # function and they will be overridden after object defn docstring.interpd.update(Collection="""\ Valid Collection keyword arguments: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets) If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. """) class _CollectionWithSizes(Collection): """ Base class for collections that have an array of sizes. """ _factor = 1.0 def get_sizes(self): """ Returns the sizes of the elements in the collection. The value represents the 'area' of the element. Returns ------- sizes : array The 'area' of each element. """ return self._sizes def set_sizes(self, sizes, dpi=72.0): """ Set the sizes of each member of the collection. Parameters ---------- sizes : ndarray or None The size to set for each element of the collection. The value is the 'area' of the element. dpi : float The dpi of the canvas. Defaults to 72.0. """ if sizes is None: self._sizes = np.array([]) self._transforms = np.empty((0, 3, 3)) else: self._sizes = np.asarray(sizes) self._transforms = np.zeros((len(self._sizes), 3, 3)) scale = np.sqrt(self._sizes) * dpi / 72.0 * self._factor self._transforms[:, 0, 0] = scale self._transforms[:, 1, 1] = scale self._transforms[:, 2, 2] = 1.0 self.stale = True @artist.allow_rasterization def draw(self, renderer): self.set_sizes(self._sizes, self.figure.dpi) Collection.draw(self, renderer) class PathCollection(_CollectionWithSizes): """ This is the most basic :class:`Collection` subclass. A :class:`PathCollection` is e.g. created by a :meth:`~.Axes.scatter` plot. """ @docstring.dedent_interpd def __init__(self, paths, sizes=None, **kwargs): """ *paths* is a sequence of :class:`matplotlib.path.Path` instances. %(Collection)s """ Collection.__init__(self, **kwargs) self.set_paths(paths) self.set_sizes(sizes) self.stale = True def set_paths(self, paths): self._paths = paths self.stale = True def get_paths(self): return self._paths def legend_elements(self, prop="colors", num="auto", fmt=None, func=lambda x: x, **kwargs): """ Creates legend handles and labels for a PathCollection. This is useful for obtaining a legend for a :meth:`~.Axes.scatter` plot. E.g.:: scatter = plt.scatter([1,2,3], [4,5,6], c=[7,2,3]) plt.legend(*scatter.legend_elements()) Also see the :ref:`automatedlegendcreation` example. Parameters ---------- prop : string, optional, default *"colors"* Can be *"colors"* or *"sizes"*. In case of *"colors"*, the legend handles will show the different colors of the collection. In case of "sizes", the legend will show the different sizes. num : int, None, "auto" (default), array-like, or `~.ticker.Locator`, optional Target number of elements to create. If None, use all unique elements of the mappable array. If an integer, target to use *num* elements in the normed range. If *"auto"*, try to determine which option better suits the nature of the data. The number of created elements may slightly deviate from *num* due to a `~.ticker.Locator` being used to find useful locations. If a list or array, use exactly those elements for the legend. Finally, a `~.ticker.Locator` can be provided. fmt : string, `~matplotlib.ticker.Formatter`, or None (default) The format or formatter to use for the labels. If a string must be a valid input for a `~.StrMethodFormatter`. If None (the default), use a `~.ScalarFormatter`. func : function, default *lambda x: x* Function to calculate the labels. Often the size (or color) argument to :meth:`~.Axes.scatter` will have been pre-processed by the user using a function *s = f(x)* to make the markers visible; e.g. *size = np.log10(x)*. Providing the inverse of this function here allows that pre-processing to be inverted, so that the legend labels have the correct values; e.g. *func = np.exp(x, 10)*. kwargs : further parameters Allowed kwargs are *color* and *size*. E.g. it may be useful to set the color of the markers if *prop="sizes"* is used; similarly to set the size of the markers if *prop="colors"* is used. Any further parameters are passed onto the `.Line2D` instance. This may be useful to e.g. specify a different *markeredgecolor* or *alpha* for the legend handles. Returns ------- tuple (handles, labels) with *handles* being a list of `.Line2D` objects and *labels* a matching list of strings. """ handles = [] labels = [] hasarray = self.get_array() is not None if fmt is None: fmt = mpl.ticker.ScalarFormatter(useOffset=False, useMathText=True) elif isinstance(fmt, str): fmt = mpl.ticker.StrMethodFormatter(fmt) fmt.create_dummy_axis() if prop == "colors": if not hasarray: warnings.warn("Collection without array used. Make sure to " "specify the values to be colormapped via the " "`c` argument.") return handles, labels u = np.unique(self.get_array()) size = kwargs.pop("size", mpl.rcParams["lines.markersize"]) elif prop == "sizes": u = np.unique(self.get_sizes()) color = kwargs.pop("color", "k") else: raise ValueError("Valid values for `prop` are 'colors' or " f"'sizes'. You supplied '{prop}' instead.") fmt.set_bounds(func(u).min(), func(u).max()) if num == "auto": num = 9 if len(u) <= num: num = None if num is None: values = u label_values = func(values) else: if prop == "colors": arr = self.get_array() elif prop == "sizes": arr = self.get_sizes() if isinstance(num, mpl.ticker.Locator): loc = num elif np.iterable(num): loc = mpl.ticker.FixedLocator(num) else: num = int(num) loc = mpl.ticker.MaxNLocator(nbins=num, min_n_ticks=num-1, steps=[1, 2, 2.5, 3, 5, 6, 8, 10]) label_values = loc.tick_values(func(arr).min(), func(arr).max()) cond = ((label_values >= func(arr).min()) & (label_values <= func(arr).max())) label_values = label_values[cond] xarr = np.linspace(arr.min(), arr.max(), 256) values = np.interp(label_values, func(xarr), xarr) kw = dict(markeredgewidth=self.get_linewidths()[0], alpha=self.get_alpha()) kw.update(kwargs) for val, lab in zip(values, label_values): if prop == "colors": color = self.cmap(self.norm(val)) elif prop == "sizes": size = np.sqrt(val) if np.isclose(size, 0.0): continue h = mlines.Line2D([0], [0], ls="", color=color, ms=size, marker=self.get_paths()[0], **kw) handles.append(h) if hasattr(fmt, "set_locs"): fmt.set_locs(label_values) l = fmt(lab) labels.append(l) return handles, labels class PolyCollection(_CollectionWithSizes): @docstring.dedent_interpd def __init__(self, verts, sizes=None, closed=True, **kwargs): """ *verts* is a sequence of ( *verts0*, *verts1*, ...) where *verts_i* is a sequence of *xy* tuples of vertices, or an equivalent :mod:`numpy` array of shape (*nv*, 2). *sizes* is *None* (default) or a sequence of floats that scale the corresponding *verts_i*. The scaling is applied before the Artist master transform; if the latter is an identity transform, then the overall scaling is such that if *verts_i* specify a unit square, then *sizes_i* is the area of that square in points^2. If len(*sizes*) < *nv*, the additional values will be taken cyclically from the array. *closed*, when *True*, will explicitly close the polygon. %(Collection)s """ Collection.__init__(self, **kwargs) self.set_sizes(sizes) self.set_verts(verts, closed) self.stale = True def set_verts(self, verts, closed=True): '''This allows one to delay initialization of the vertices.''' if isinstance(verts, np.ma.MaskedArray): verts = verts.astype(float).filled(np.nan) # This is much faster than having Path do it one at a time. if closed: self._paths = [] for xy in verts: if len(xy): if isinstance(xy, np.ma.MaskedArray): xy = np.ma.concatenate([xy, xy[0:1]]) else: xy = np.asarray(xy) xy = np.concatenate([xy, xy[0:1]]) codes = np.empty(xy.shape[0], dtype=mpath.Path.code_type) codes[:] = mpath.Path.LINETO codes[0] = mpath.Path.MOVETO codes[-1] = mpath.Path.CLOSEPOLY self._paths.append(mpath.Path(xy, codes)) else: self._paths.append(mpath.Path(xy)) else: self._paths = [mpath.Path(xy) for xy in verts] self.stale = True set_paths = set_verts def set_verts_and_codes(self, verts, codes): """This allows one to initialize vertices with path codes.""" if len(verts) != len(codes): raise ValueError("'codes' must be a 1D list or array " "with the same length of 'verts'") self._paths = [] for xy, cds in zip(verts, codes): if len(xy): self._paths.append(mpath.Path(xy, cds)) else: self._paths.append(mpath.Path(xy)) self.stale = True class BrokenBarHCollection(PolyCollection): """ A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. """ @docstring.dedent_interpd def __init__(self, xranges, yrange, **kwargs): """ *xranges* sequence of (*xmin*, *xwidth*) *yrange* *ymin*, *ywidth* %(Collection)s """ ymin, ywidth = yrange ymax = ymin + ywidth verts = [[(xmin, ymin), (xmin, ymax), (xmin + xwidth, ymax), (xmin + xwidth, ymin), (xmin, ymin)] for xmin, xwidth in xranges] PolyCollection.__init__(self, verts, **kwargs) @staticmethod def span_where(x, ymin, ymax, where, **kwargs): """ Create a BrokenBarHCollection to plot horizontal bars from over the regions in *x* where *where* is True. The bars range on the y-axis from *ymin* to *ymax* A :class:`BrokenBarHCollection` is returned. *kwargs* are passed on to the collection. """ xranges = [] for ind0, ind1 in cbook.contiguous_regions(where): xslice = x[ind0:ind1] if not len(xslice): continue xranges.append((xslice[0], xslice[-1] - xslice[0])) collection = BrokenBarHCollection( xranges, [ymin, ymax - ymin], **kwargs) return collection class RegularPolyCollection(_CollectionWithSizes): """Draw a collection of regular polygons with *numsides*.""" _path_generator = mpath.Path.unit_regular_polygon _factor = np.pi ** (-1/2) @docstring.dedent_interpd def __init__(self, numsides, rotation=0, sizes=(1,), **kwargs): """ *numsides* the number of sides of the polygon *rotation* the rotation of the polygon in radians *sizes* gives the area of the circle circumscribing the regular polygon in points^2 %(Collection)s Example: see :doc:`/gallery/event_handling/lasso_demo` for a complete example:: offsets = np.random.rand(20,2) facecolors = [cm.jet(x) for x in np.random.rand(20)] black = (0,0,0,1) collection = RegularPolyCollection( numsides=5, # a pentagon rotation=0, sizes=(50,), facecolors=facecolors, edgecolors=(black,), linewidths=(1,), offsets=offsets, transOffset=ax.transData, ) """ Collection.__init__(self, **kwargs) self.set_sizes(sizes) self._numsides = numsides self._paths = [self._path_generator(numsides)] self._rotation = rotation self.set_transform(transforms.IdentityTransform()) def get_numsides(self): return self._numsides def get_rotation(self): return self._rotation @artist.allow_rasterization def draw(self, renderer): self.set_sizes(self._sizes, self.figure.dpi) self._transforms = [ transforms.Affine2D(x).rotate(-self._rotation).get_matrix() for x in self._transforms ] Collection.draw(self, renderer) class StarPolygonCollection(RegularPolyCollection): """Draw a collection of regular stars with *numsides* points.""" _path_generator = mpath.Path.unit_regular_star class AsteriskPolygonCollection(RegularPolyCollection): """Draw a collection of regular asterisks with *numsides* points.""" _path_generator = mpath.Path.unit_regular_asterisk class LineCollection(Collection): """ All parameters must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith line segment is:: prop[i % len(props)] i.e., the properties cycle if the ``len`` of props is less than the number of segments. """ _edge_default = True def __init__(self, segments, # Can be None. linewidths=None, colors=None, antialiaseds=None, linestyles='solid', offsets=None, transOffset=None, norm=None, cmap=None, pickradius=5, zorder=2, facecolors='none', **kwargs ): """ Parameters ---------- segments A sequence of (*line0*, *line1*, *line2*), where:: linen = (x0, y0), (x1, y1), ... (xm, ym) or the equivalent numpy array with two columns. Each line can be a different length. colors : sequence, optional A sequence of RGBA tuples (e.g., arbitrary color strings, etc, not allowed). antialiaseds : sequence, optional A sequence of ones or zeros. linestyles : string, tuple, optional Either one of [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ], or a dash tuple. The dash tuple is:: (offset, onoffseq) where ``onoffseq`` is an even length tuple of on and off ink in points. norm : Normalize, optional `~.colors.Normalize` instance. cmap : string or Colormap, optional Colormap name or `~.colors.Colormap` instance. pickradius : float, optional The tolerance in points for mouse clicks picking a line. Default is 5 pt. zorder : int, optional zorder of the LineCollection. Default is 2. facecolors : optional The facecolors of the LineCollection. Default is 'none'. Setting to a value other than 'none' will lead to a filled polygon being drawn between points on each line. Notes ----- If *linewidths*, *colors*, or *antialiaseds* is None, they default to their rcParams setting, in sequence form. If *offsets* and *transOffset* are not None, then *offsets* are transformed by *transOffset* and applied after the segments have been transformed to display coordinates. If *offsets* is not None but *transOffset* is None, then the *offsets* are added to the segments before any transformation. In this case, a single offset can be specified as:: offsets=(xo,yo) and this value will be added cumulatively to each successive segment, so as to produce a set of successively offset curves. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` array :attr:`~matplotlib.cm.ScalarMappable._A` is not None (i.e., a call to :meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at draw time a call to scalar mappable will be made to set the colors. """ if colors is None: colors = mpl.rcParams['lines.color'] if linewidths is None: linewidths = (mpl.rcParams['lines.linewidth'],) if antialiaseds is None: antialiaseds = (mpl.rcParams['lines.antialiased'],) colors = mcolors.to_rgba_array(colors) Collection.__init__( self, edgecolors=colors, facecolors=facecolors, linewidths=linewidths, linestyles=linestyles, antialiaseds=antialiaseds, offsets=offsets, transOffset=transOffset, norm=norm, cmap=cmap, pickradius=pickradius, zorder=zorder, **kwargs) self.set_segments(segments) def set_segments(self, segments): if segments is None: return _segments = [] for seg in segments: if not isinstance(seg, np.ma.MaskedArray): seg = np.asarray(seg, float) _segments.append(seg) if self._uniform_offsets is not None: _segments = self._add_offsets(_segments) self._paths = [mpath.Path(_seg) for _seg in _segments] self.stale = True set_verts = set_segments # for compatibility with PolyCollection set_paths = set_segments def get_segments(self): """ Returns ------- segments : list List of segments in the LineCollection. Each list item contains an array of vertices. """ segments = [] for path in self._paths: vertices = [vertex for vertex, _ in path.iter_segments()] vertices = np.asarray(vertices) segments.append(vertices) return segments def _add_offsets(self, segs): offsets = self._uniform_offsets Nsegs = len(segs) Noffs = offsets.shape[0] if Noffs == 1: for i in range(Nsegs): segs[i] = segs[i] + i * offsets else: for i in range(Nsegs): io = i % Noffs segs[i] = segs[i] + offsets[io:io + 1] return segs def set_color(self, c): """ Set the color(s) of the LineCollection. Parameters ---------- c : color or list of colors Matplotlib color argument (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence. """ self.set_edgecolor(c) self.stale = True def get_color(self): return self._edgecolors get_colors = get_color # for compatibility with old versions class EventCollection(LineCollection): """ A collection of discrete events. The events are given by a 1-dimensional array, usually the position of something along an axis, such as time or length. They do not have an amplitude and are displayed as vertical or horizontal parallel bars. """ _edge_default = True def __init__(self, positions, # Cannot be None. orientation=None, lineoffset=0, linelength=1, linewidth=None, color=None, linestyle='solid', antialiased=None, **kwargs ): """ Parameters ---------- positions : 1D array-like object Each value is an event. orientation : {None, 'horizontal', 'vertical'}, optional The orientation of the **collection** (the event bars are along the orthogonal direction). Defaults to 'horizontal' if not specified or None. lineoffset : scalar, optional, default: 0 The offset of the center of the markers from the origin, in the direction orthogonal to *orientation*. linelength : scalar, optional, default: 1 The total height of the marker (i.e. the marker stretches from ``lineoffset - linelength/2`` to ``lineoffset + linelength/2``). linewidth : scalar or None, optional, default: None If it is None, defaults to its rcParams setting, in sequence form. color : color, sequence of colors or None, optional, default: None If it is None, defaults to its rcParams setting, in sequence form. linestyle : str or tuple, optional, default: 'solid' Valid strings are ['solid', 'dashed', 'dashdot', 'dotted', '-', '--', '-.', ':']. Dash tuples should be of the form:: (offset, onoffseq), where *onoffseq* is an even length tuple of on and off ink in points. antialiased : {None, 1, 2}, optional If it is None, defaults to its rcParams setting, in sequence form. **kwargs : optional Other keyword arguments are line collection properties. See :class:`~matplotlib.collections.LineCollection` for a list of the valid properties. Examples -------- .. plot:: gallery/lines_bars_and_markers/eventcollection_demo.py """ segment = (lineoffset + linelength / 2., lineoffset - linelength / 2.) if positions is None or len(positions) == 0: segments = [] elif hasattr(positions, 'ndim') and positions.ndim > 1: raise ValueError('positions cannot be an array with more than ' 'one dimension.') elif (orientation is None or orientation.lower() == 'none' or orientation.lower() == 'horizontal'): positions.sort() segments = [[(coord1, coord2) for coord2 in segment] for coord1 in positions] self._is_horizontal = True elif orientation.lower() == 'vertical': positions.sort() segments = [[(coord2, coord1) for coord2 in segment] for coord1 in positions] self._is_horizontal = False else: cbook._check_in_list(['horizontal', 'vertical'], orientation=orientation) LineCollection.__init__(self, segments, linewidths=linewidth, colors=color, antialiaseds=antialiased, linestyles=linestyle, **kwargs) self._linelength = linelength self._lineoffset = lineoffset def get_positions(self): ''' return an array containing the floating-point values of the positions ''' segments = self.get_segments() pos = 0 if self.is_horizontal() else 1 return [segment[0, pos] for segment in self.get_segments()] def set_positions(self, positions): ''' set the positions of the events to the specified value ''' if positions is None or (hasattr(positions, 'len') and len(positions) == 0): self.set_segments([]) return lineoffset = self.get_lineoffset() linelength = self.get_linelength() segment = (lineoffset + linelength / 2., lineoffset - linelength / 2.) positions = np.asanyarray(positions) positions.sort() if self.is_horizontal(): segments = [[(coord1, coord2) for coord2 in segment] for coord1 in positions] else: segments = [[(coord2, coord1) for coord2 in segment] for coord1 in positions] self.set_segments(segments) def add_positions(self, position): ''' add one or more events at the specified positions ''' if position is None or (hasattr(position, 'len') and len(position) == 0): return positions = self.get_positions() positions = np.hstack([positions, np.asanyarray(position)]) self.set_positions(positions) extend_positions = append_positions = add_positions def is_horizontal(self): ''' True if the eventcollection is horizontal, False if vertical ''' return self._is_horizontal def get_orientation(self): ''' get the orientation of the event line, may be: [ 'horizontal' | 'vertical' ] ''' return 'horizontal' if self.is_horizontal() else 'vertical' def switch_orientation(self): ''' switch the orientation of the event line, either from vertical to horizontal or vice versus ''' segments = self.get_segments() for i, segment in enumerate(segments): segments[i] = np.fliplr(segment) self.set_segments(segments) self._is_horizontal = not self.is_horizontal() self.stale = True def set_orientation(self, orientation=None): ''' set the orientation of the event line [ 'horizontal' | 'vertical' | None ] defaults to 'horizontal' if not specified or None ''' if (orientation is None or orientation.lower() == 'none' or orientation.lower() == 'horizontal'): is_horizontal = True elif orientation.lower() == 'vertical': is_horizontal = False else: cbook._check_in_list(['horizontal', 'vertical'], orientation=orientation) if is_horizontal == self.is_horizontal(): return self.switch_orientation() def get_linelength(self): ''' get the length of the lines used to mark each event ''' return self._linelength def set_linelength(self, linelength): ''' set the length of the lines used to mark each event ''' if linelength == self.get_linelength(): return lineoffset = self.get_lineoffset() segments = self.get_segments() pos = 1 if self.is_horizontal() else 0 for segment in segments: segment[0, pos] = lineoffset + linelength / 2. segment[1, pos] = lineoffset - linelength / 2. self.set_segments(segments) self._linelength = linelength def get_lineoffset(self): ''' get the offset of the lines used to mark each event ''' return self._lineoffset def set_lineoffset(self, lineoffset): ''' set the offset of the lines used to mark each event ''' if lineoffset == self.get_lineoffset(): return linelength = self.get_linelength() segments = self.get_segments() pos = 1 if self.is_horizontal() else 0 for segment in segments: segment[0, pos] = lineoffset + linelength / 2. segment[1, pos] = lineoffset - linelength / 2. self.set_segments(segments) self._lineoffset = lineoffset def get_linewidth(self): """Get the width of the lines used to mark each event.""" return super(EventCollection, self).get_linewidth()[0] def get_linewidths(self): return super(EventCollection, self).get_linewidth() def get_color(self): ''' get the color of the lines used to mark each event ''' return self.get_colors()[0] class CircleCollection(_CollectionWithSizes): """A collection of circles, drawn using splines.""" _factor = np.pi ** (-1/2) @docstring.dedent_interpd def __init__(self, sizes, **kwargs): """ *sizes* Gives the area of the circle in points^2 %(Collection)s """ Collection.__init__(self, **kwargs) self.set_sizes(sizes) self.set_transform(transforms.IdentityTransform()) self._paths = [mpath.Path.unit_circle()] class EllipseCollection(Collection): """A collection of ellipses, drawn using splines.""" @docstring.dedent_interpd def __init__(self, widths, heights, angles, units='points', **kwargs): """ Parameters ---------- widths : array-like The lengths of the first axes (e.g., major axis lengths). heights : array-like The lengths of second axes. angles : array-like The angles of the first axes, degrees CCW from the x-axis. units : {'points', 'inches', 'dots', 'width', 'height', 'x', 'y', 'xy'} The units in which majors and minors are given; 'width' and 'height' refer to the dimensions of the axes, while 'x' and 'y' refer to the *offsets* data units. 'xy' differs from all others in that the angle as plotted varies with the aspect ratio, and equals the specified angle only when the aspect ratio is unity. Hence it behaves the same as the :class:`~matplotlib.patches.Ellipse` with ``axes.transData`` as its transform. Other Parameters ---------------- **kwargs Additional kwargs inherited from the base :class:`Collection`. %(Collection)s """ Collection.__init__(self, **kwargs) self._widths = 0.5 * np.asarray(widths).ravel() self._heights = 0.5 * np.asarray(heights).ravel() self._angles = np.deg2rad(angles).ravel() self._units = units self.set_transform(transforms.IdentityTransform()) self._transforms = np.empty((0, 3, 3)) self._paths = [mpath.Path.unit_circle()] def _set_transforms(self): """Calculate transforms immediately before drawing.""" ax = self.axes fig = self.figure if self._units == 'xy': sc = 1 elif self._units == 'x': sc = ax.bbox.width / ax.viewLim.width elif self._units == 'y': sc = ax.bbox.height / ax.viewLim.height elif self._units == 'inches': sc = fig.dpi elif self._units == 'points': sc = fig.dpi / 72.0 elif self._units == 'width': sc = ax.bbox.width elif self._units == 'height': sc = ax.bbox.height elif self._units == 'dots': sc = 1.0 else: raise ValueError('unrecognized units: %s' % self._units) self._transforms = np.zeros((len(self._widths), 3, 3)) widths = self._widths * sc heights = self._heights * sc sin_angle = np.sin(self._angles) cos_angle = np.cos(self._angles) self._transforms[:, 0, 0] = widths * cos_angle self._transforms[:, 0, 1] = heights * -sin_angle self._transforms[:, 1, 0] = widths * sin_angle self._transforms[:, 1, 1] = heights * cos_angle self._transforms[:, 2, 2] = 1.0 _affine = transforms.Affine2D if self._units == 'xy': m = ax.transData.get_affine().get_matrix().copy() m[:2, 2:] = 0 self.set_transform(_affine(m)) @artist.allow_rasterization def draw(self, renderer): self._set_transforms() Collection.draw(self, renderer) class PatchCollection(Collection): """ A generic collection of patches. This makes it easier to assign a color map to a heterogeneous collection of patches. This also may improve plotting speed, since PatchCollection will draw faster than a large number of patches. """ def __init__(self, patches, match_original=False, **kwargs): """ *patches* a sequence of Patch objects. This list may include a heterogeneous assortment of different patch types. *match_original* If True, use the colors and linewidths of the original patches. If False, new colors may be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths, norm or cmap. If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (i.e., a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ if match_original: def determine_facecolor(patch): if patch.get_fill(): return patch.get_facecolor() return [0, 0, 0, 0] kwargs['facecolors'] = [determine_facecolor(p) for p in patches] kwargs['edgecolors'] = [p.get_edgecolor() for p in patches] kwargs['linewidths'] = [p.get_linewidth() for p in patches] kwargs['linestyles'] = [p.get_linestyle() for p in patches] kwargs['antialiaseds'] = [p.get_antialiased() for p in patches] Collection.__init__(self, **kwargs) self.set_paths(patches) def set_paths(self, patches): paths = [p.get_transform().transform_path(p.get_path()) for p in patches] self._paths = paths class TriMesh(Collection): """ Class for the efficient drawing of a triangular mesh using Gouraud shading. A triangular mesh is a `~matplotlib.tri.Triangulation` object. """ def __init__(self, triangulation, **kwargs): Collection.__init__(self, **kwargs) self._triangulation = triangulation self._shading = 'gouraud' self._is_filled = True self._bbox = transforms.Bbox.unit() # Unfortunately this requires a copy, unless Triangulation # was rewritten. xy = np.hstack((triangulation.x.reshape(-1, 1), triangulation.y.reshape(-1, 1))) self._bbox.update_from_data_xy(xy) def get_paths(self): if self._paths is None: self.set_paths() return self._paths def set_paths(self): self._paths = self.convert_mesh_to_paths(self._triangulation) @staticmethod def convert_mesh_to_paths(tri): """ Converts a given mesh into a sequence of `~.Path` objects. This function is primarily of use to implementers of backends that do not directly support meshes. """ triangles = tri.get_masked_triangles() verts = np.stack((tri.x[triangles], tri.y[triangles]), axis=-1) return [mpath.Path(x) for x in verts] @artist.allow_rasterization def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) transform = self.get_transform() # Get a list of triangles and the color at each vertex. tri = self._triangulation triangles = tri.get_masked_triangles() verts = np.stack((tri.x[triangles], tri.y[triangles]), axis=-1) self.update_scalarmappable() colors = self._facecolors[triangles] gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_linewidth(self.get_linewidth()[0]) renderer.draw_gouraud_triangles(gc, verts, colors, transform.frozen()) gc.restore() renderer.close_group(self.__class__.__name__) class QuadMesh(Collection): """ Class for the efficient drawing of a quadrilateral mesh. A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (*meshWidth* + 1, *meshHeight* + 1). Each vertex in the mesh has a different set of "mesh coordinates" representing its position in the topology of the mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth* and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates (*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*) form one of the quadrilaterals in the mesh. There are thus (*meshWidth* * *meshHeight*) quadrilaterals in the mesh. The mesh need not be regular and the polygons need not be convex. A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) * (*meshHeight* + 1))) numpy array *coordinates*, where each row is the *x* and *y* coordinates of one of the vertices. To define the function that maps from a data point to its corresponding color, use the :meth:`set_cmap` method. Each of these arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates of the lower left vertex, in the case of the colors). For example, the first entry in *coordinates* is the coordinates of the vertex at mesh coordinates (0, 0), then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on. *shading* may be 'flat', or 'gouraud' """ def __init__(self, meshWidth, meshHeight, coordinates, antialiased=True, shading='flat', **kwargs): Collection.__init__(self, **kwargs) self._meshWidth = meshWidth self._meshHeight = meshHeight # By converting to floats now, we can avoid that on every draw. self._coordinates = np.asarray(coordinates, float).reshape( (meshHeight + 1, meshWidth + 1, 2)) self._antialiased = antialiased self._shading = shading self._bbox = transforms.Bbox.unit() self._bbox.update_from_data_xy(coordinates.reshape( ((meshWidth + 1) * (meshHeight + 1), 2))) def get_paths(self): if self._paths is None: self.set_paths() return self._paths def set_paths(self): self._paths = self.convert_mesh_to_paths( self._meshWidth, self._meshHeight, self._coordinates) self.stale = True def get_datalim(self, transData): return (self.get_transform() - transData).transform_bbox(self._bbox) @staticmethod def convert_mesh_to_paths(meshWidth, meshHeight, coordinates): """ Converts a given mesh into a sequence of `~.Path` objects. This function is primarily of use to implementers of backends that do not directly support quadmeshes. """ if isinstance(coordinates, np.ma.MaskedArray): c = coordinates.data else: c = coordinates points = np.concatenate(( c[:-1, :-1], c[:-1, 1:], c[1:, 1:], c[1:, :-1], c[:-1, :-1] ), axis=2) points = points.reshape((meshWidth * meshHeight, 5, 2)) return [mpath.Path(x) for x in points] def convert_mesh_to_triangles(self, meshWidth, meshHeight, coordinates): """ Converts a given mesh into a sequence of triangles, each point with its own color. This is useful for experiments using `draw_gouraud_triangle`. """ if isinstance(coordinates, np.ma.MaskedArray): p = coordinates.data else: p = coordinates p_a = p[:-1, :-1] p_b = p[:-1, 1:] p_c = p[1:, 1:] p_d = p[1:, :-1] p_center = (p_a + p_b + p_c + p_d) / 4.0 triangles = np.concatenate(( p_a, p_b, p_center, p_b, p_c, p_center, p_c, p_d, p_center, p_d, p_a, p_center, ), axis=2) triangles = triangles.reshape((meshWidth * meshHeight * 4, 3, 2)) c = self.get_facecolor().reshape((meshHeight + 1, meshWidth + 1, 4)) c_a = c[:-1, :-1] c_b = c[:-1, 1:] c_c = c[1:, 1:] c_d = c[1:, :-1] c_center = (c_a + c_b + c_c + c_d) / 4.0 colors = np.concatenate(( c_a, c_b, c_center, c_b, c_c, c_center, c_c, c_d, c_center, c_d, c_a, c_center, ), axis=2) colors = colors.reshape((meshWidth * meshHeight * 4, 3, 4)) return triangles, colors @artist.allow_rasterization def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__, self.get_gid()) transform = self.get_transform() transOffset = self.get_offset_transform() offsets = self._offsets if self.have_units(): if len(self._offsets): xs = self.convert_xunits(self._offsets[:, 0]) ys = self.convert_yunits(self._offsets[:, 1]) offsets = np.column_stack([xs, ys]) self.update_scalarmappable() if not transform.is_affine: coordinates = self._coordinates.reshape((-1, 2)) coordinates = transform.transform(coordinates) coordinates = coordinates.reshape(self._coordinates.shape) transform = transforms.IdentityTransform() else: coordinates = self._coordinates if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_linewidth(self.get_linewidth()[0]) if self._shading == 'gouraud': triangles, colors = self.convert_mesh_to_triangles( self._meshWidth, self._meshHeight, coordinates) renderer.draw_gouraud_triangles( gc, triangles, colors, transform.frozen()) else: renderer.draw_quad_mesh( gc, transform.frozen(), self._meshWidth, self._meshHeight, coordinates, offsets, transOffset, self.get_facecolor(), self._antialiased, self.get_edgecolors()) gc.restore() renderer.close_group(self.__class__.__name__) self.stale = False patchstr = artist.kwdoc(Collection) for k in ('QuadMesh', 'TriMesh', 'PolyCollection', 'BrokenBarHCollection', 'RegularPolyCollection', 'PathCollection', 'StarPolygonCollection', 'PatchCollection', 'CircleCollection', 'Collection',): docstring.interpd.update({k: patchstr}) docstring.interpd.update(LineCollection=artist.kwdoc(LineCollection))
891c4d3f13d56291d41f55de89f5d0ccb28c461e4a686e1870076a79731c5988
''' Colorbar toolkit with two classes and a function: :class:`ColorbarBase` the base class with full colorbar drawing functionality. It can be used as-is to make a colorbar for a given colormap; a mappable object (e.g., image) is not needed. :class:`Colorbar` the derived class for use with images or contour plots. :func:`make_axes` a function for resizing an axes and adding a second axes suitable for a colorbar The :meth:`~matplotlib.figure.Figure.colorbar` method uses :func:`make_axes` and :class:`Colorbar`; the :func:`~matplotlib.pyplot.colorbar` function is a thin wrapper over :meth:`~matplotlib.figure.Figure.colorbar`. ''' import logging import numpy as np import matplotlib as mpl import matplotlib.artist as martist import matplotlib.cbook as cbook import matplotlib.collections as collections import matplotlib.colors as colors import matplotlib.contour as contour import matplotlib.cm as cm import matplotlib.gridspec as gridspec import matplotlib.patches as mpatches import matplotlib.path as mpath import matplotlib.ticker as ticker import matplotlib.transforms as mtransforms import matplotlib._layoutbox as layoutbox import matplotlib._constrained_layout as constrained_layout from matplotlib import docstring _log = logging.getLogger(__name__) make_axes_kw_doc = ''' ============= ==================================================== Property Description ============= ==================================================== *orientation* vertical or horizontal *fraction* 0.15; fraction of original axes to use for colorbar *pad* 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new image axes *shrink* 1.0; fraction by which to multiply the size of the colorbar *aspect* 20; ratio of long to short dimensions *anchor* (0.0, 0.5) if vertical; (0.5, 1.0) if horizontal; the anchor point of the colorbar axes *panchor* (1.0, 0.5) if vertical; (0.5, 0.0) if horizontal; the anchor point of the colorbar parent axes. If False, the parent axes' anchor will be unchanged ============= ==================================================== ''' colormap_kw_doc = ''' ============ ==================================================== Property Description ============ ==================================================== *extend* [ 'neither' | 'both' | 'min' | 'max' ] If not 'neither', make pointed end(s) for out-of- range values. These are set for a given colormap using the colormap set_under and set_over methods. *extendfrac* [ *None* | 'auto' | length | lengths ] If set to *None*, both the minimum and maximum triangular colorbar extensions with have a length of 5% of the interior colorbar length (this is the default setting). If set to 'auto', makes the triangular colorbar extensions the same lengths as the interior boxes (when *spacing* is set to 'uniform') or the same lengths as the respective adjacent interior boxes (when *spacing* is set to 'proportional'). If a scalar, indicates the length of both the minimum and maximum triangular colorbar extensions as a fraction of the interior colorbar length. A two-element sequence of fractions may also be given, indicating the lengths of the minimum and maximum colorbar extensions respectively as a fraction of the interior colorbar length. *extendrect* bool If *False* the minimum and maximum colorbar extensions will be triangular (the default). If *True* the extensions will be rectangular. *spacing* [ 'uniform' | 'proportional' ] Uniform spacing gives each discrete color the same space; proportional makes the space proportional to the data interval. *ticks* [ None | list of ticks | Locator object ] If None, ticks are determined automatically from the input. *format* [ None | format string | Formatter object ] If None, the :class:`~matplotlib.ticker.ScalarFormatter` is used. If a format string is given, e.g., '%.3f', that is used. An alternative :class:`~matplotlib.ticker.Formatter` object may be given instead. *drawedges* bool Whether to draw lines at color boundaries. ============ ==================================================== The following will probably be useful only in the context of indexed colors (that is, when the mappable has norm=NoNorm()), or other unusual circumstances. ============ =================================================== Property Description ============ =================================================== *boundaries* None or a sequence *values* None or a sequence which must be of length 1 less than the sequence of *boundaries*. For each region delimited by adjacent entries in *boundaries*, the color mapped to the corresponding value in values will be used. ============ =================================================== ''' colorbar_doc = ''' Add a colorbar to a plot. Function signatures for the :mod:`~matplotlib.pyplot` interface; all but the first are also method signatures for the :meth:`~matplotlib.figure.Figure.colorbar` method:: colorbar(**kwargs) colorbar(mappable, **kwargs) colorbar(mappable, cax=cax, **kwargs) colorbar(mappable, ax=ax, **kwargs) Parameters ---------- mappable The `matplotlib.cm.ScalarMappable` (i.e., `~matplotlib.image.Image`, `~matplotlib.contour.ContourSet`, etc.) described by this colorbar. This argument is mandatory for the `.Figure.colorbar` method but optional for the `.pyplot.colorbar` function, which sets the default to the current image. Note that one can create a `ScalarMappable` "on-the-fly" to generate colorbars not attached to a previously drawn artist, e.g. :: fig.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap), ax=ax) cax : :class:`~matplotlib.axes.Axes` object, optional Axes into which the colorbar will be drawn. ax : :class:`~matplotlib.axes.Axes`, list of Axes, optional Parent axes from which space for a new colorbar axes will be stolen. If a list of axes is given they will all be resized to make room for the colorbar axes. use_gridspec : bool, optional If *cax* is ``None``, a new *cax* is created as an instance of Axes. If *ax* is an instance of Subplot and *use_gridspec* is ``True``, *cax* is created as an instance of Subplot using the :mod:`~.gridspec` module. Returns ------- colorbar : `~matplotlib.colorbar.Colorbar` See also its base class, `~matplotlib.colorbar.ColorbarBase`. Use `~.ColorbarBase.set_label` to label the colorbar. Notes ----- Additional keyword arguments are of two kinds: axes properties: %s colorbar properties: %s If *mappable* is a :class:`~matplotlib.contours.ContourSet`, its *extend* kwarg is included automatically. The *shrink* kwarg provides a simple way to scale the colorbar with respect to the axes. Note that if *cax* is specified, it determines the size of the colorbar and *shrink* and *aspect* kwargs are ignored. For more precise control, you can manually specify the positions of the axes objects in which the mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs. It is known that some vector graphics viewers (svg and pdf) renders white gaps between segments of the colorbar. This is due to bugs in the viewers, not Matplotlib. As a workaround, the colorbar can be rendered with overlapping segments:: cbar = colorbar() cbar.solids.set_edgecolor("face") draw() However this has negative consequences in other circumstances, e.g. with semi-transparent images (alpha < 1) and colorbar extensions; therefore, this workaround is not used by default (see issue #1188). ''' % (make_axes_kw_doc, colormap_kw_doc) docstring.interpd.update(colorbar_doc=colorbar_doc) def _set_ticks_on_axis_warn(*args, **kw): # a top level function which gets put in at the axes' # set_xticks set_yticks by _patch_ax cbook._warn_external("Use the colorbar set_ticks() method instead.") class _ColorbarAutoLocator(ticker.MaxNLocator): """ AutoLocator for Colorbar This locator is just a `.MaxNLocator` except the min and max are clipped by the norm's min and max (i.e. vmin/vmax from the image/pcolor/contour object). This is necessary so ticks don't extrude into the "extend regions". """ def __init__(self, colorbar): """ This ticker needs to know the *colorbar* so that it can access its *vmin* and *vmax*. Otherwise it is the same as `~.ticker.AutoLocator`. """ self._colorbar = colorbar nbins = 'auto' steps = [1, 2, 2.5, 5, 10] super().__init__(nbins=nbins, steps=steps) def tick_values(self, vmin, vmax): # flip if needed: if vmin > vmax: vmin, vmax = vmax, vmin vmin = max(vmin, self._colorbar.norm.vmin) vmax = min(vmax, self._colorbar.norm.vmax) ticks = super().tick_values(vmin, vmax) rtol = (vmax - vmin) * 1e-10 return ticks[(ticks >= vmin - rtol) & (ticks <= vmax + rtol)] class _ColorbarAutoMinorLocator(ticker.AutoMinorLocator): """ AutoMinorLocator for Colorbar This locator is just a `.AutoMinorLocator` except the min and max are clipped by the norm's min and max (i.e. vmin/vmax from the image/pcolor/contour object). This is necessary so that the minorticks don't extrude into the "extend regions". """ def __init__(self, colorbar, n=None): """ This ticker needs to know the *colorbar* so that it can access its *vmin* and *vmax*. """ self._colorbar = colorbar self.ndivs = n super().__init__(n=None) def __call__(self): vmin = self._colorbar.norm.vmin vmax = self._colorbar.norm.vmax ticks = super().__call__() rtol = (vmax - vmin) * 1e-10 return ticks[(ticks >= vmin - rtol) & (ticks <= vmax + rtol)] class _ColorbarLogLocator(ticker.LogLocator): """ LogLocator for Colorbarbar This locator is just a `.LogLocator` except the min and max are clipped by the norm's min and max (i.e. vmin/vmax from the image/pcolor/contour object). This is necessary so ticks don't extrude into the "extend regions". """ def __init__(self, colorbar, *args, **kwargs): """ _ColorbarLogLocator(colorbar, *args, **kwargs) This ticker needs to know the *colorbar* so that it can access its *vmin* and *vmax*. Otherwise it is the same as `~.ticker.LogLocator`. The ``*args`` and ``**kwargs`` are the same as `~.ticker.LogLocator`. """ self._colorbar = colorbar super().__init__(*args, **kwargs) def tick_values(self, vmin, vmax): if vmin > vmax: vmin, vmax = vmax, vmin vmin = max(vmin, self._colorbar.norm.vmin) vmax = min(vmax, self._colorbar.norm.vmax) ticks = super().tick_values(vmin, vmax) rtol = (np.log10(vmax) - np.log10(vmin)) * 1e-10 ticks = ticks[(np.log10(ticks) >= np.log10(vmin) - rtol) & (np.log10(ticks) <= np.log10(vmax) + rtol)] return ticks class _ColorbarMappableDummy(object): """ Private class to hold deprecated ColorbarBase methods that used to be inhereted from ScalarMappable. """ @cbook.deprecated("3.1", alternative="ScalarMappable.set_norm") def set_norm(self, norm): """ `.colorbar.Colorbar.set_norm` does nothing; set the norm on the mappable associated with this colorbar. """ pass @cbook.deprecated("3.1", alternative="ScalarMappable.set_cmap") def set_cmap(self, cmap): """ `.colorbar.Colorbar.set_cmap` does nothing; set the norm on the mappable associated with this colorbar. """ pass @cbook.deprecated("3.1", alternative="ScalarMappable.set_clim") def set_clim(self, vmin=None, vmax=None): """ `.colorbar.Colorbar.set_clim` does nothing; set the limits on the mappable associated with this colorbar. """ pass @cbook.deprecated("3.1", alternative="ScalarMappable.get_cmap") def get_cmap(self): """ return the colormap """ return self.cmap @cbook.deprecated("3.1", alternative="ScalarMappable.get_clim") def get_clim(self): """ return the min, max of the color limits for image scaling """ return self.norm.vmin, self.norm.vmax class ColorbarBase(_ColorbarMappableDummy): ''' Draw a colorbar in an existing axes. This is a base class for the :class:`Colorbar` class, which is the basis for the :func:`~matplotlib.pyplot.colorbar` function and the :meth:`~matplotlib.figure.Figure.colorbar` method, which are the usual ways of creating a colorbar. It is also useful by itself for showing a colormap. If the *cmap* kwarg is given but *boundaries* and *values* are left as None, then the colormap will be displayed on a 0-1 scale. To show the under- and over-value colors, specify the *norm* as:: colors.Normalize(clip=False) To show the colors versus index instead of on the 0-1 scale, use:: norm=colors.NoNorm. Useful public methods are :meth:`set_label` and :meth:`add_lines`. Attributes ---------- ax : Axes The `Axes` instance in which the colorbar is drawn. lines : list A list of `LineCollection` if lines were drawn, otherwise an empty list. dividers : LineCollection A LineCollection if *drawedges* is ``True``, otherwise ``None``. ''' _slice_dict = {'neither': slice(0, None), 'both': slice(1, -1), 'min': slice(1, None), 'max': slice(0, -1)} n_rasterize = 50 # rasterize solids if number of colors >= n_rasterize def __init__(self, ax, cmap=None, norm=None, alpha=None, values=None, boundaries=None, orientation='vertical', ticklocation='auto', extend='neither', spacing='uniform', # uniform or proportional ticks=None, format=None, drawedges=False, filled=True, extendfrac=None, extendrect=False, label='', ): #: The axes that this colorbar lives in. self.ax = ax self._patch_ax() if cmap is None: cmap = cm.get_cmap() if norm is None: norm = colors.Normalize() self.alpha = alpha self.cmap = cmap self.norm = norm self.values = values self.boundaries = boundaries self.extend = extend self._inside = self._slice_dict[extend] self.spacing = spacing self.orientation = orientation self.drawedges = drawedges self.filled = filled self.extendfrac = extendfrac self.extendrect = extendrect self.solids = None self.lines = list() self.outline = None self.patch = None self.dividers = None self.locator = None self.formatter = None self._manual_tick_data_values = None if ticklocation == 'auto': ticklocation = 'bottom' if orientation == 'horizontal' else 'right' self.ticklocation = ticklocation self.set_label(label) self._reset_locator_formatter_scale() if np.iterable(ticks): self.locator = ticker.FixedLocator(ticks, nbins=len(ticks)) else: self.locator = ticks # Handle default in _ticker() if isinstance(format, str): self.formatter = ticker.FormatStrFormatter(format) else: self.formatter = format # Assume it is a Formatter or None self.draw_all() def _extend_lower(self): """Return whether the lower limit is open ended.""" return self.extend in ('both', 'min') def _extend_upper(self): """Return whether the uper limit is open ended.""" return self.extend in ('both', 'max') def _patch_ax(self): # bind some methods to the axes to warn users # against using those methods. self.ax.set_xticks = _set_ticks_on_axis_warn self.ax.set_yticks = _set_ticks_on_axis_warn def draw_all(self): ''' Calculate any free parameters based on the current cmap and norm, and do all the drawing. ''' # sets self._boundaries and self._values in real data units. # takes into account extend values: self._process_values() # sets self.vmin and vmax in data units, but just for # the part of the colorbar that is not part of the extend # patch: self._find_range() # returns the X and Y mesh, *but* this was/is in normalized # units: X, Y = self._mesh() C = self._values[:, np.newaxis] self.config_axis() self._config_axes(X, Y) if self.filled: self._add_solids(X, Y, C) def config_axis(self): ax = self.ax if self.orientation == 'vertical': long_axis, short_axis = ax.yaxis, ax.xaxis else: long_axis, short_axis = ax.xaxis, ax.yaxis long_axis.set_label_position(self.ticklocation) long_axis.set_ticks_position(self.ticklocation) short_axis.set_ticks([]) short_axis.set_ticks([], minor=True) self._set_label() def _get_ticker_locator_formatter(self): """ This code looks at the norm being used by the colorbar and decides what locator and formatter to use. If ``locator`` has already been set by hand, it just returns ``self.locator, self.formatter``. """ locator = self.locator formatter = self.formatter if locator is None: if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv / 10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = _ColorbarLogLocator(self) elif isinstance(self.norm, colors.SymLogNorm): # The subs setting here should be replaced # by logic in the locator. locator = ticker.SymmetricalLogLocator( subs=np.arange(1, 10), linthresh=self.norm.linthresh, base=10) else: if mpl.rcParams['_internal.classic_mode']: locator = ticker.MaxNLocator() else: locator = _ColorbarAutoLocator(self) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b, nbins=10) if formatter is None: if isinstance(self.norm, colors.LogNorm): formatter = ticker.LogFormatterSciNotation() elif isinstance(self.norm, colors.SymLogNorm): formatter = ticker.LogFormatterSciNotation( linthresh=self.norm.linthresh) else: formatter = ticker.ScalarFormatter() else: formatter = self.formatter self.locator = locator self.formatter = formatter _log.debug('locator: %r', locator) return locator, formatter def _use_auto_colorbar_locator(self): """ Return if we should use an adjustable tick locator or a fixed one. (check is used twice so factored out here...) """ return (self.boundaries is None and self.values is None and ((type(self.norm) == colors.Normalize) or (type(self.norm) == colors.LogNorm))) def _reset_locator_formatter_scale(self): """ Reset the locator et al to defaults. Any user-hardcoded changes need to be re-entered if this gets called (either at init, or when the mappable normal gets changed: Colorbar.update_normal) """ self.locator = None self.formatter = None if (isinstance(self.norm, colors.LogNorm) and self._use_auto_colorbar_locator()): # *both* axes are made log so that determining the # mid point is easier. self.ax.set_xscale('log') self.ax.set_yscale('log') self.minorticks_on() else: self.ax.set_xscale('linear') self.ax.set_yscale('linear') def update_ticks(self): """ Force the update of the ticks and ticklabels. This must be called whenever the tick locator and/or tick formatter changes. """ ax = self.ax # get the locator and formatter. Defaults to # self.locator if not None.. locator, formatter = self._get_ticker_locator_formatter() if self.orientation == 'vertical': long_axis, short_axis = ax.yaxis, ax.xaxis else: long_axis, short_axis = ax.xaxis, ax.yaxis if self._use_auto_colorbar_locator(): _log.debug('Using auto colorbar locator on colorbar') _log.debug('locator: %r', locator) long_axis.set_major_locator(locator) long_axis.set_major_formatter(formatter) else: _log.debug('Using fixed locator on colorbar') ticks, ticklabels, offset_string = self._ticker(locator, formatter) long_axis.set_ticks(ticks) long_axis.set_ticklabels(ticklabels) long_axis.get_major_formatter().set_offset_string(offset_string) def set_ticks(self, ticks, update_ticks=True): """ Set tick locations. Parameters ---------- ticks : {None, sequence, :class:`~matplotlib.ticker.Locator` instance} If None, a default Locator will be used. update_ticks : {True, False}, optional If True, tick locations are updated immediately. If False, use :meth:`update_ticks` to manually update the ticks. """ if np.iterable(ticks): self.locator = ticker.FixedLocator(ticks, nbins=len(ticks)) else: self.locator = ticks if update_ticks: self.update_ticks() self.stale = True def get_ticks(self, minor=False): """Return the x ticks as a list of locations.""" if self._manual_tick_data_values is None: ax = self.ax if self.orientation == 'vertical': long_axis, short_axis = ax.yaxis, ax.xaxis else: long_axis, short_axis = ax.xaxis, ax.yaxis return long_axis.get_majorticklocs() else: # We made the axes manually, the old way, and the ylim is 0-1, # so the majorticklocs are in those units, not data units. return self._manual_tick_data_values def set_ticklabels(self, ticklabels, update_ticks=True): """ Set tick labels. Tick labels are updated immediately unless *update_ticks* is *False*, in which case one should call `.update_ticks` explicitly. """ if isinstance(self.locator, ticker.FixedLocator): self.formatter = ticker.FixedFormatter(ticklabels) if update_ticks: self.update_ticks() else: cbook._warn_external("set_ticks() must have been called.") self.stale = True def minorticks_on(self): """ Turns on the minor ticks on the colorbar without extruding into the "extend regions". """ ax = self.ax long_axis = ax.yaxis if self.orientation == 'vertical' else ax.xaxis if long_axis.get_scale() == 'log': long_axis.set_minor_locator(_ColorbarLogLocator(self, base=10., subs='auto')) long_axis.set_minor_formatter(ticker.LogFormatterSciNotation()) else: long_axis.set_minor_locator(_ColorbarAutoMinorLocator(self)) def minorticks_off(self): """ Turns off the minor ticks on the colorbar. """ ax = self.ax long_axis = ax.yaxis if self.orientation == 'vertical' else ax.xaxis long_axis.set_minor_locator(ticker.NullLocator()) def _config_axes(self, X, Y): ''' Make an axes patch and outline. ''' ax = self.ax ax.set_frame_on(False) ax.set_navigate(False) xy = self._outline(X, Y) ax.ignore_existing_data_limits = True ax.update_datalim(xy) ax.set_xlim(*ax.dataLim.intervalx) ax.set_ylim(*ax.dataLim.intervaly) if self.outline is not None: self.outline.remove() self.outline = mpatches.Polygon( xy, edgecolor=mpl.rcParams['axes.edgecolor'], facecolor='none', linewidth=mpl.rcParams['axes.linewidth'], closed=True, zorder=2) ax.add_artist(self.outline) self.outline.set_clip_box(None) self.outline.set_clip_path(None) c = mpl.rcParams['axes.facecolor'] if self.patch is not None: self.patch.remove() self.patch = mpatches.Polygon(xy, edgecolor=c, facecolor=c, linewidth=0.01, zorder=-1) ax.add_artist(self.patch) self.update_ticks() def _set_label(self): if self.orientation == 'vertical': self.ax.set_ylabel(self._label, **self._labelkw) else: self.ax.set_xlabel(self._label, **self._labelkw) self.stale = True def set_label(self, label, **kw): """Label the long axis of the colorbar.""" self._label = str(label) self._labelkw = kw self._set_label() def _outline(self, X, Y): ''' Return *x*, *y* arrays of colorbar bounding polygon, taking orientation into account. ''' N = X.shape[0] ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0] x = X.T.reshape(-1)[ii] y = Y.T.reshape(-1)[ii] return (np.column_stack([y, x]) if self.orientation == 'horizontal' else np.column_stack([x, y])) def _edges(self, X, Y): ''' Return the separator line segments; helper for _add_solids. ''' N = X.shape[0] # Using the non-array form of these line segments is much # simpler than making them into arrays. if self.orientation == 'vertical': return [list(zip(X[i], Y[i])) for i in range(1, N - 1)] else: return [list(zip(Y[i], X[i])) for i in range(1, N - 1)] def _add_solids(self, X, Y, C): ''' Draw the colors using :meth:`~matplotlib.axes.Axes.pcolormesh`; optionally add separators. ''' if self.orientation == 'vertical': args = (X, Y, C) else: args = (np.transpose(Y), np.transpose(X), np.transpose(C)) kw = dict(cmap=self.cmap, norm=self.norm, alpha=self.alpha, edgecolors='None') _log.debug('Setting pcolormesh') col = self.ax.pcolormesh(*args, **kw) # self.add_observer(col) # We should observe, not be observed... if self.solids is not None: self.solids.remove() self.solids = col if self.dividers is not None: self.dividers.remove() self.dividers = None if self.drawedges: linewidths = (0.5 * mpl.rcParams['axes.linewidth'],) self.dividers = collections.LineCollection( self._edges(X, Y), colors=(mpl.rcParams['axes.edgecolor'],), linewidths=linewidths) self.ax.add_collection(self.dividers) elif len(self._y) >= self.n_rasterize: self.solids.set_rasterized(True) def add_lines(self, levels, colors, linewidths, erase=True): ''' Draw lines on the colorbar. *colors* and *linewidths* must be scalars or sequences the same length as *levels*. Set *erase* to False to add lines without first removing any previously added lines. ''' y = self._locate(levels) rtol = (self._y[-1] - self._y[0]) * 1e-10 igood = (y < self._y[-1] + rtol) & (y > self._y[0] - rtol) y = y[igood] if np.iterable(colors): colors = np.asarray(colors)[igood] if np.iterable(linewidths): linewidths = np.asarray(linewidths)[igood] X, Y = np.meshgrid([self._y[0], self._y[-1]], y) if self.orientation == 'vertical': xy = np.stack([X, Y], axis=-1) else: xy = np.stack([Y, X], axis=-1) col = collections.LineCollection(xy, linewidths=linewidths) if erase and self.lines: for lc in self.lines: lc.remove() self.lines = [] self.lines.append(col) col.set_color(colors) self.ax.add_collection(col) self.stale = True def _ticker(self, locator, formatter): ''' Return the sequence of ticks (colorbar data locations), ticklabels (strings), and the corresponding offset string. ''' if isinstance(self.norm, colors.NoNorm) and self.boundaries is None: intv = self._values[0], self._values[-1] else: intv = self.vmin, self.vmax locator.create_dummy_axis(minpos=intv[0]) formatter.create_dummy_axis(minpos=intv[0]) locator.set_view_interval(*intv) locator.set_data_interval(*intv) formatter.set_view_interval(*intv) formatter.set_data_interval(*intv) b = np.array(locator()) if isinstance(locator, ticker.LogLocator): eps = 1e-10 b = b[(b <= intv[1] * (1 + eps)) & (b >= intv[0] * (1 - eps))] else: eps = (intv[1] - intv[0]) * 1e-10 b = b[(b <= intv[1] + eps) & (b >= intv[0] - eps)] self._manual_tick_data_values = b ticks = self._locate(b) ticklabels = formatter.format_ticks(b) offset_string = formatter.get_offset() return ticks, ticklabels, offset_string def _process_values(self, b=None): ''' Set the :attr:`_boundaries` and :attr:`_values` attributes based on the input boundaries and values. Input boundaries can be *self.boundaries* or the argument *b*. ''' if b is None: b = self.boundaries if b is not None: self._boundaries = np.asarray(b, dtype=float) if self.values is None: self._values = 0.5 * (self._boundaries[:-1] + self._boundaries[1:]) if isinstance(self.norm, colors.NoNorm): self._values = (self._values + 0.00001).astype(np.int16) else: self._values = np.array(self.values) return if self.values is not None: self._values = np.array(self.values) if self.boundaries is None: b = np.zeros(len(self.values) + 1) b[1:-1] = 0.5 * (self._values[:-1] + self._values[1:]) b[0] = 2.0 * b[1] - b[2] b[-1] = 2.0 * b[-2] - b[-3] self._boundaries = b return self._boundaries = np.array(self.boundaries) return # Neither boundaries nor values are specified; # make reasonable ones based on cmap and norm. if isinstance(self.norm, colors.NoNorm): b = self._uniform_y(self.cmap.N + 1) * self.cmap.N - 0.5 v = np.zeros(len(b) - 1, dtype=np.int16) v[self._inside] = np.arange(self.cmap.N, dtype=np.int16) if self._extend_lower(): v[0] = -1 if self._extend_upper(): v[-1] = self.cmap.N self._boundaries = b self._values = v return elif isinstance(self.norm, colors.BoundaryNorm): b = list(self.norm.boundaries) if self._extend_lower(): b = [b[0] - 1] + b if self._extend_upper(): b = b + [b[-1] + 1] b = np.array(b) v = np.zeros(len(b) - 1) bi = self.norm.boundaries v[self._inside] = 0.5 * (bi[:-1] + bi[1:]) if self._extend_lower(): v[0] = b[0] - 1 if self._extend_upper(): v[-1] = b[-1] + 1 self._boundaries = b self._values = v return else: if not self.norm.scaled(): self.norm.vmin = 0 self.norm.vmax = 1 self.norm.vmin, self.norm.vmax = mtransforms.nonsingular( self.norm.vmin, self.norm.vmax, expander=0.1) b = self.norm.inverse(self._uniform_y(self.cmap.N + 1)) if isinstance(self.norm, (colors.PowerNorm, colors.LogNorm)): # If using a lognorm or powernorm, ensure extensions don't # go negative if self._extend_lower(): b[0] = 0.9 * b[0] if self._extend_upper(): b[-1] = 1.1 * b[-1] else: if self._extend_lower(): b[0] = b[0] - 1 if self._extend_upper(): b[-1] = b[-1] + 1 self._process_values(b) def _find_range(self): ''' Set :attr:`vmin` and :attr:`vmax` attributes to the first and last boundary excluding extended end boundaries. ''' b = self._boundaries[self._inside] self.vmin = b[0] self.vmax = b[-1] def _central_N(self): """Return the number of boundaries excluding end extensions.""" nb = len(self._boundaries) if self.extend == 'both': nb -= 2 elif self.extend in ('min', 'max'): nb -= 1 return nb def _extended_N(self): ''' Based on the colormap and extend variable, return the number of boundaries. ''' N = self.cmap.N + 1 if self.extend == 'both': N += 2 elif self.extend in ('min', 'max'): N += 1 return N def _get_extension_lengths(self, frac, automin, automax, default=0.05): ''' Get the lengths of colorbar extensions. A helper method for _uniform_y and _proportional_y. ''' # Set the default value. extendlength = np.array([default, default]) if isinstance(frac, str): if frac.lower() == 'auto': # Use the provided values when 'auto' is required. extendlength[:] = [automin, automax] else: # Any other string is invalid. raise ValueError('invalid value for extendfrac') elif frac is not None: try: # Try to set min and max extension fractions directly. extendlength[:] = frac # If frac is a sequence containing None then NaN may # be encountered. This is an error. if np.isnan(extendlength).any(): raise ValueError() except (TypeError, ValueError): # Raise an error on encountering an invalid value for frac. raise ValueError('invalid value for extendfrac') return extendlength def _uniform_y(self, N): ''' Return colorbar data coordinates for *N* uniformly spaced boundaries, plus ends if required. ''' if self.extend == 'neither': y = np.linspace(0, 1, N) else: automin = automax = 1. / (N - 1.) extendlength = self._get_extension_lengths(self.extendfrac, automin, automax, default=0.05) if self.extend == 'both': y = np.zeros(N + 2, 'd') y[0] = 0. - extendlength[0] y[-1] = 1. + extendlength[1] elif self.extend == 'min': y = np.zeros(N + 1, 'd') y[0] = 0. - extendlength[0] else: y = np.zeros(N + 1, 'd') y[-1] = 1. + extendlength[1] y[self._inside] = np.linspace(0, 1, N) return y def _proportional_y(self): ''' Return colorbar data coordinates for the boundaries of a proportional colorbar. ''' if isinstance(self.norm, colors.BoundaryNorm): y = (self._boundaries - self._boundaries[0]) y = y / (self._boundaries[-1] - self._boundaries[0]) else: y = self.norm(self._boundaries.copy()) y = np.ma.filled(y, np.nan) if self.extend == 'min': # Exclude leftmost interval of y. clen = y[-1] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-1] - y[-2]) / clen elif self.extend == 'max': # Exclude rightmost interval in y. clen = y[-2] - y[0] automin = (y[1] - y[0]) / clen automax = (y[-2] - y[-3]) / clen elif self.extend == 'both': # Exclude leftmost and rightmost intervals in y. clen = y[-2] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-2] - y[-3]) / clen if self.extend in ('both', 'min', 'max'): extendlength = self._get_extension_lengths(self.extendfrac, automin, automax, default=0.05) if self.extend in ('both', 'min'): y[0] = 0. - extendlength[0] if self.extend in ('both', 'max'): y[-1] = 1. + extendlength[1] yi = y[self._inside] norm = colors.Normalize(yi[0], yi[-1]) y[self._inside] = np.ma.filled(norm(yi), np.nan) return y def _mesh(self): ''' Return X,Y, the coordinate arrays for the colorbar pcolormesh. These are suitable for a vertical colorbar; swapping and transposition for a horizontal colorbar are done outside this function. ''' # if boundaries and values are None, then we can go ahead and # scale this up for Auto tick location. Otherwise we # want to keep normalized between 0 and 1 and use manual tick # locations. x = np.array([0.0, 1.0]) if self.spacing == 'uniform': y = self._uniform_y(self._central_N()) else: y = self._proportional_y() if self._use_auto_colorbar_locator(): y = self.norm.inverse(y) x = self.norm.inverse(x) self._y = y X, Y = np.meshgrid(x, y) if self._use_auto_colorbar_locator(): xmid = self.norm.inverse(0.5) else: xmid = 0.5 if self._extend_lower() and not self.extendrect: X[0, :] = xmid if self._extend_upper() and not self.extendrect: X[-1, :] = xmid return X, Y def _locate(self, x): ''' Given a set of color data values, return their corresponding colorbar data coordinates. ''' if isinstance(self.norm, (colors.NoNorm, colors.BoundaryNorm)): b = self._boundaries xn = x else: # Do calculations using normalized coordinates so # as to make the interpolation more accurate. b = self.norm(self._boundaries, clip=False).filled() xn = self.norm(x, clip=False).filled() bunique = b yunique = self._y # trim extra b values at beginning and end if they are # not unique. These are here for extended colorbars, and are not # wanted for the interpolation. if b[0] == b[1]: bunique = bunique[1:] yunique = yunique[1:] if b[-1] == b[-2]: bunique = bunique[:-1] yunique = yunique[:-1] z = np.interp(xn, bunique, yunique) return z def set_alpha(self, alpha): self.alpha = alpha def remove(self): """ Remove this colorbar from the figure """ fig = self.ax.figure fig.delaxes(self.ax) class Colorbar(ColorbarBase): """ This class connects a :class:`ColorbarBase` to a :class:`~matplotlib.cm.ScalarMappable` such as a :class:`~matplotlib.image.AxesImage` generated via :meth:`~matplotlib.axes.Axes.imshow`. It is not intended to be instantiated directly; instead, use :meth:`~matplotlib.figure.Figure.colorbar` or :func:`~matplotlib.pyplot.colorbar` to make your colorbar. """ def __init__(self, ax, mappable, **kw): # Ensure the given mappable's norm has appropriate vmin and vmax set # even if mappable.draw has not yet been called. if mappable.get_array() is not None: mappable.autoscale_None() self.mappable = mappable kw['cmap'] = cmap = mappable.cmap kw['norm'] = mappable.norm if isinstance(mappable, contour.ContourSet): CS = mappable kw['alpha'] = mappable.get_alpha() kw['boundaries'] = CS._levels kw['values'] = CS.cvalues kw['extend'] = CS.extend kw.setdefault('ticks', ticker.FixedLocator(CS.levels, nbins=10)) kw['filled'] = CS.filled ColorbarBase.__init__(self, ax, **kw) if not CS.filled: self.add_lines(CS) else: if getattr(cmap, 'colorbar_extend', False) is not False: kw.setdefault('extend', cmap.colorbar_extend) if isinstance(mappable, martist.Artist): kw['alpha'] = mappable.get_alpha() ColorbarBase.__init__(self, ax, **kw) def on_mappable_changed(self, mappable): """ Updates this colorbar to match the mappable's properties. Typically this is automatically registered as an event handler by :func:`colorbar_factory` and should not be called manually. """ _log.debug('colorbar mappable changed') self.update_normal(mappable) def add_lines(self, CS, erase=True): ''' Add the lines from a non-filled :class:`~matplotlib.contour.ContourSet` to the colorbar. Set *erase* to False if these lines should be added to any pre-existing lines. ''' if not isinstance(CS, contour.ContourSet) or CS.filled: raise ValueError('add_lines is only for a ContourSet of lines') tcolors = [c[0] for c in CS.tcolors] tlinewidths = [t[0] for t in CS.tlinewidths] # The following was an attempt to get the colorbar lines # to follow subsequent changes in the contour lines, # but more work is needed: specifically, a careful # look at event sequences, and at how # to make one object track another automatically. #tcolors = [col.get_colors()[0] for col in CS.collections] #tlinewidths = [col.get_linewidth()[0] for lw in CS.collections] ColorbarBase.add_lines(self, CS.levels, tcolors, tlinewidths, erase=erase) def update_normal(self, mappable): """ Update solid patches, lines, etc. Unlike `.update_bruteforce`, this does not clear the axes. This is meant to be called when the norm of the image or contour plot to which this colorbar belongs changes. If the norm on the mappable is different than before, this resets the locator and formatter for the axis, so if these have been customized, they will need to be customized again. However, if the norm only changes values of *vmin*, *vmax* or *cmap* then the old formatter and locator will be preserved. """ _log.debug('colorbar update normal %r %r', mappable.norm, self.norm) self.mappable = mappable self.set_alpha(mappable.get_alpha()) self.cmap = mappable.cmap if mappable.norm != self.norm: self.norm = mappable.norm self._reset_locator_formatter_scale() self.draw_all() if isinstance(self.mappable, contour.ContourSet): CS = self.mappable if not CS.filled: self.add_lines(CS) self.stale = True def update_bruteforce(self, mappable): ''' Destroy and rebuild the colorbar. This is intended to become obsolete, and will probably be deprecated and then removed. It is not called when the pyplot.colorbar function or the Figure.colorbar method are used to create the colorbar. ''' # We are using an ugly brute-force method: clearing and # redrawing the whole thing. The problem is that if any # properties have been changed by methods other than the # colorbar methods, those changes will be lost. self.ax.cla() self.locator = None self.formatter = None # clearing the axes will delete outline, patch, solids, and lines: self.outline = None self.patch = None self.solids = None self.lines = list() self.dividers = None self.update_normal(mappable) self.draw_all() if isinstance(self.mappable, contour.ContourSet): CS = self.mappable if not CS.filled: self.add_lines(CS) #if self.lines is not None: # tcolors = [c[0] for c in CS.tcolors] # self.lines.set_color(tcolors) #Fixme? Recalculate boundaries, ticks if vmin, vmax have changed. #Fixme: Some refactoring may be needed; we should not # be recalculating everything if there was a simple alpha # change. def remove(self): """ Remove this colorbar from the figure. If the colorbar was created with ``use_gridspec=True`` then restore the gridspec to its previous value. """ ColorbarBase.remove(self) self.mappable.callbacksSM.disconnect(self.mappable.colorbar_cid) self.mappable.colorbar = None self.mappable.colorbar_cid = None try: ax = self.mappable.axes except AttributeError: return try: gs = ax.get_subplotspec().get_gridspec() subplotspec = gs.get_topmost_subplotspec() except AttributeError: # use_gridspec was False pos = ax.get_position(original=True) ax._set_position(pos) else: # use_gridspec was True ax.set_subplotspec(subplotspec) @docstring.Substitution(make_axes_kw_doc) def make_axes(parents, location=None, orientation=None, fraction=0.15, shrink=1.0, aspect=20, **kw): ''' Resize and reposition parent axes, and return a child axes suitable for a colorbar. Keyword arguments may include the following (with defaults): location : [None|'left'|'right'|'top'|'bottom'] The position, relative to **parents**, where the colorbar axes should be created. If None, the value will either come from the given ``orientation``, else it will default to 'right'. orientation : [None|'vertical'|'horizontal'] The orientation of the colorbar. Typically, this keyword shouldn't be used, as it can be derived from the ``location`` keyword. %s Returns (cax, kw), the child axes and the reduced kw dictionary to be passed when creating the colorbar instance. ''' locations = ["left", "right", "top", "bottom"] if orientation is not None and location is not None: raise TypeError('position and orientation are mutually exclusive. ' 'Consider setting the position to any of {}' .format(', '.join(locations))) # provide a default location if location is None and orientation is None: location = 'right' # allow the user to not specify the location by specifying the # orientation instead if location is None: location = 'right' if orientation == 'vertical' else 'bottom' if location not in locations: raise ValueError('Invalid colorbar location. Must be one ' 'of %s' % ', '.join(locations)) default_location_settings = {'left': {'anchor': (1.0, 0.5), 'panchor': (0.0, 0.5), 'pad': 0.10, 'orientation': 'vertical'}, 'right': {'anchor': (0.0, 0.5), 'panchor': (1.0, 0.5), 'pad': 0.05, 'orientation': 'vertical'}, 'top': {'anchor': (0.5, 0.0), 'panchor': (0.5, 1.0), 'pad': 0.05, 'orientation': 'horizontal'}, 'bottom': {'anchor': (0.5, 1.0), 'panchor': (0.5, 0.0), 'pad': 0.15, # backwards compat 'orientation': 'horizontal'}, } loc_settings = default_location_settings[location] # put appropriate values into the kw dict for passing back to # the Colorbar class kw['orientation'] = loc_settings['orientation'] kw['ticklocation'] = location anchor = kw.pop('anchor', loc_settings['anchor']) parent_anchor = kw.pop('panchor', loc_settings['panchor']) parents_iterable = np.iterable(parents) # turn parents into a list if it is not already. We do this w/ np # because `plt.subplots` can return an ndarray and is natural to # pass to `colorbar`. parents = np.atleast_1d(parents).ravel() # check if using constrained_layout: try: gs = parents[0].get_subplotspec().get_gridspec() using_constrained_layout = (gs._layoutbox is not None) except AttributeError: using_constrained_layout = False # defaults are not appropriate for constrained_layout: pad0 = loc_settings['pad'] if using_constrained_layout: pad0 = 0.02 pad = kw.pop('pad', pad0) fig = parents[0].get_figure() if not all(fig is ax.get_figure() for ax in parents): raise ValueError('Unable to create a colorbar axes as not all ' 'parents share the same figure.') # take a bounding box around all of the given axes parents_bbox = mtransforms.Bbox.union( [ax.get_position(original=True).frozen() for ax in parents]) pb = parents_bbox if location in ('left', 'right'): if location == 'left': pbcb, _, pb1 = pb.splitx(fraction, fraction + pad) else: pb1, _, pbcb = pb.splitx(1 - fraction - pad, 1 - fraction) pbcb = pbcb.shrunk(1.0, shrink).anchored(anchor, pbcb) else: if location == 'bottom': pbcb, _, pb1 = pb.splity(fraction, fraction + pad) else: pb1, _, pbcb = pb.splity(1 - fraction - pad, 1 - fraction) pbcb = pbcb.shrunk(shrink, 1.0).anchored(anchor, pbcb) # define the aspect ratio in terms of y's per x rather than x's per y aspect = 1.0 / aspect # define a transform which takes us from old axes coordinates to # new axes coordinates shrinking_trans = mtransforms.BboxTransform(parents_bbox, pb1) # transform each of the axes in parents using the new transform for ax in parents: new_posn = shrinking_trans.transform(ax.get_position(original=True)) new_posn = mtransforms.Bbox(new_posn) ax._set_position(new_posn) if parent_anchor is not False: ax.set_anchor(parent_anchor) cax = fig.add_axes(pbcb, label="<colorbar>") # OK, now make a layoutbox for the cb axis. Later, we will use this # to make the colorbar fit nicely. if not using_constrained_layout: # no layout boxes: lb = None lbpos = None # and we need to set the aspect ratio by hand... cax.set_aspect(aspect, anchor=anchor, adjustable='box') else: if not parents_iterable: # this is a single axis... ax = parents[0] lb, lbpos = constrained_layout.layoutcolorbarsingle( ax, cax, shrink, aspect, location, pad=pad) else: # there is more than one parent, so lets use gridspec # the colorbar will be a sibling of this gridspec, so the # parent is the same parent as the gridspec. Either the figure, # or a subplotspec. lb, lbpos = constrained_layout.layoutcolorbargridspec( parents, cax, shrink, aspect, location, pad) cax._layoutbox = lb cax._poslayoutbox = lbpos return cax, kw @docstring.Substitution(make_axes_kw_doc) def make_axes_gridspec(parent, *, fraction=0.15, shrink=1.0, aspect=20, **kw): ''' Resize and reposition a parent axes, and return a child axes suitable for a colorbar. This function is similar to make_axes. Prmary differences are * *make_axes_gridspec* only handles the *orientation* keyword and cannot handle the "location" keyword. * *make_axes_gridspec* should only be used with a subplot parent. * *make_axes* creates an instance of Axes. *make_axes_gridspec* creates an instance of Subplot. * *make_axes* updates the position of the parent. *make_axes_gridspec* replaces the grid_spec attribute of the parent with a new one. While this function is meant to be compatible with *make_axes*, there could be some minor differences. Keyword arguments may include the following (with defaults): *orientation* 'vertical' or 'horizontal' %s All but the first of these are stripped from the input kw set. Returns (cax, kw), the child axes and the reduced kw dictionary to be passed when creating the colorbar instance. ''' orientation = kw.setdefault('orientation', 'vertical') kw['ticklocation'] = 'auto' x1 = 1 - fraction # for shrinking pad_s = (1 - shrink) * 0.5 wh_ratios = [pad_s, shrink, pad_s] # we need to none the tree of layoutboxes because # constrained_layout can't remove and replace the tree # hierarchy w/o a seg fault. gs = parent.get_subplotspec().get_gridspec() layoutbox.nonetree(gs._layoutbox) gs_from_subplotspec = gridspec.GridSpecFromSubplotSpec if orientation == 'vertical': pad = kw.pop('pad', 0.05) wh_space = 2 * pad / (1 - pad) gs = gs_from_subplotspec(1, 2, subplot_spec=parent.get_subplotspec(), wspace=wh_space, width_ratios=[x1 - pad, fraction]) gs2 = gs_from_subplotspec(3, 1, subplot_spec=gs[1], hspace=0., height_ratios=wh_ratios) anchor = (0.0, 0.5) panchor = (1.0, 0.5) else: pad = kw.pop('pad', 0.15) wh_space = 2 * pad / (1 - pad) gs = gs_from_subplotspec(2, 1, subplot_spec=parent.get_subplotspec(), hspace=wh_space, height_ratios=[x1 - pad, fraction]) gs2 = gs_from_subplotspec(1, 3, subplot_spec=gs[1], wspace=0., width_ratios=wh_ratios) aspect = 1 / aspect anchor = (0.5, 1.0) panchor = (0.5, 0.0) parent.set_subplotspec(gs[0]) parent.update_params() parent._set_position(parent.figbox) parent.set_anchor(panchor) fig = parent.get_figure() cax = fig.add_subplot(gs2[1], label="<colorbar>") cax.set_aspect(aspect, anchor=anchor, adjustable='box') return cax, kw class ColorbarPatch(Colorbar): """ A Colorbar which is created using :class:`~matplotlib.patches.Patch` rather than the default :func:`~matplotlib.axes.pcolor`. It uses a list of Patch instances instead of a :class:`~matplotlib.collections.PatchCollection` because the latter does not allow the hatch pattern to vary among the members of the collection. """ def __init__(self, ax, mappable, **kw): # we do not want to override the behaviour of solids # so add a new attribute which will be a list of the # colored patches in the colorbar self.solids_patches = [] Colorbar.__init__(self, ax, mappable, **kw) def _add_solids(self, X, Y, C): """ Draw the colors using :class:`~matplotlib.patches.Patch`; optionally add separators. """ n_segments = len(C) # ensure there are sufficient hatches hatches = self.mappable.hatches * n_segments patches = [] for i in range(len(X) - 1): val = C[i][0] hatch = hatches[i] xy = np.array([[X[i][0], Y[i][0]], [X[i][1], Y[i][0]], [X[i + 1][1], Y[i + 1][0]], [X[i + 1][0], Y[i + 1][1]]]) if self.orientation == 'horizontal': # if horizontal swap the xs and ys xy = xy[..., ::-1] patch = mpatches.PathPatch(mpath.Path(xy), facecolor=self.cmap(self.norm(val)), hatch=hatch, linewidth=0, antialiased=False, alpha=self.alpha) self.ax.add_patch(patch) patches.append(patch) if self.solids_patches: for solid in self.solids_patches: solid.remove() self.solids_patches = patches if self.dividers is not None: self.dividers.remove() self.dividers = None if self.drawedges: self.dividers = collections.LineCollection( self._edges(X, Y), colors=(mpl.rcParams['axes.edgecolor'],), linewidths=(0.5 * mpl.rcParams['axes.linewidth'],)) self.ax.add_collection(self.dividers) def colorbar_factory(cax, mappable, **kwargs): """ Creates a colorbar on the given axes for the given mappable. Typically, for automatic colorbar placement given only a mappable use :meth:`~matplotlib.figure.Figure.colorbar`. """ # if the given mappable is a contourset with any hatching, use # ColorbarPatch else use Colorbar if (isinstance(mappable, contour.ContourSet) and any(hatch is not None for hatch in mappable.hatches)): cb = ColorbarPatch(cax, mappable, **kwargs) else: cb = Colorbar(cax, mappable, **kwargs) cid = mappable.callbacksSM.connect('changed', cb.on_mappable_changed) mappable.colorbar = cb mappable.colorbar_cid = cid return cb
0c5eca3bc9825128f48ef77616f9b01c92d1c50eaef07ec907fce6d95d828dce
""" The figure module provides the top-level :class:`~matplotlib.artist.Artist`, the :class:`Figure`, which contains all the plot elements. The following classes are defined :class:`SubplotParams` control the default spacing of the subplots :class:`Figure` Top level container for all plot elements. """ import logging from numbers import Integral import numpy as np from matplotlib import rcParams from matplotlib import backends, docstring, projections from matplotlib import __version__ as _mpl_version from matplotlib import get_backend import matplotlib.artist as martist from matplotlib.artist import Artist, allow_rasterization from matplotlib.backend_bases import FigureCanvasBase import matplotlib.cbook as cbook import matplotlib.colorbar as cbar import matplotlib.image as mimage from matplotlib.axes import Axes, SubplotBase, subplot_class_factory from matplotlib.blocking_input import BlockingMouseInput, BlockingKeyMouseInput from matplotlib.gridspec import GridSpec import matplotlib.legend as mlegend from matplotlib.patches import Rectangle from matplotlib.projections import (get_projection_names, process_projection_requirements) from matplotlib.text import Text, TextWithDash from matplotlib.transforms import (Affine2D, Bbox, BboxTransformTo, TransformedBbox) import matplotlib._layoutbox as layoutbox from matplotlib.backend_bases import NonGuiException _log = logging.getLogger(__name__) docstring.interpd.update(projection_names=get_projection_names()) def _stale_figure_callback(self, val): if self.figure: self.figure.stale = val class AxesStack(cbook.Stack): """ Specialization of the `.Stack` to handle all tracking of `~matplotlib.axes.Axes` in a `.Figure`. This stack stores ``key, (ind, axes)`` pairs, where: * **key** should be a hash of the args and kwargs used in generating the Axes. * **ind** is a serial number for tracking the order in which axes were added. The AxesStack is a callable, where ``ax_stack()`` returns the current axes. Alternatively the :meth:`current_key_axes` will return the current key and associated axes. """ def __init__(self): super().__init__() self._ind = 0 def as_list(self): """ Return a list of the Axes instances that have been added to the figure. """ ia_list = [a for k, a in self._elements] ia_list.sort() return [a for i, a in ia_list] def get(self, key): """ Return the Axes instance that was added with *key*. If it is not present, return *None*. """ item = dict(self._elements).get(key) if item is None: return None cbook.warn_deprecated( "2.1", message="Adding an axes using the same arguments as a previous " "axes currently reuses the earlier instance. In a future " "version, a new instance will always be created and returned. " "Meanwhile, this warning can be suppressed, and the future " "behavior ensured, by passing a unique label to each axes " "instance.") return item[1] def _entry_from_axes(self, e): ind, k = {a: (ind, k) for k, (ind, a) in self._elements}[e] return (k, (ind, e)) def remove(self, a): """Remove the axes from the stack.""" super().remove(self._entry_from_axes(a)) def bubble(self, a): """ Move the given axes, which must already exist in the stack, to the top. """ return super().bubble(self._entry_from_axes(a)) def add(self, key, a): """ Add Axes *a*, with key *key*, to the stack, and return the stack. If *key* is unhashable, replace it by a unique, arbitrary object. If *a* is already on the stack, don't add it again, but return *None*. """ # All the error checking may be unnecessary; but this method # is called so seldom that the overhead is negligible. if not isinstance(a, Axes): raise ValueError("second argument, {!r}, is not an Axes".format(a)) try: hash(key) except TypeError: key = object() a_existing = self.get(key) if a_existing is not None: super().remove((key, a_existing)) cbook._warn_external( "key {!r} already existed; Axes is being replaced".format(key)) # I don't think the above should ever happen. if a in self: return None self._ind += 1 return super().push((key, (self._ind, a))) def current_key_axes(self): """ Return a tuple of ``(key, axes)`` for the active axes. If no axes exists on the stack, then returns ``(None, None)``. """ if not len(self._elements): return self._default, self._default else: key, (index, axes) = self._elements[self._pos] return key, axes def __call__(self): return self.current_key_axes()[1] def __contains__(self, a): return a in self.as_list() class SubplotParams(object): """ A class to hold the parameters for a subplot. """ def __init__(self, left=None, bottom=None, right=None, top=None, wspace=None, hspace=None): """ All dimensions are fractions of the figure width or height. Defaults are given by :rc:`figure.subplot.[name]`. Parameters ---------- left : float The left side of the subplots of the figure. right : float The right side of the subplots of the figure. bottom : float The bottom of the subplots of the figure. top : float The top of the subplots of the figure. wspace : float The amount of width reserved for space between subplots, expressed as a fraction of the average axis width. hspace : float The amount of height reserved for space between subplots, expressed as a fraction of the average axis height. """ self.validate = True self.update(left, bottom, right, top, wspace, hspace) def update(self, left=None, bottom=None, right=None, top=None, wspace=None, hspace=None): """ Update the dimensions of the passed parameters. *None* means unchanged. """ thisleft = getattr(self, 'left', None) thisright = getattr(self, 'right', None) thistop = getattr(self, 'top', None) thisbottom = getattr(self, 'bottom', None) thiswspace = getattr(self, 'wspace', None) thishspace = getattr(self, 'hspace', None) self._update_this('left', left) self._update_this('right', right) self._update_this('bottom', bottom) self._update_this('top', top) self._update_this('wspace', wspace) self._update_this('hspace', hspace) def reset(): self.left = thisleft self.right = thisright self.top = thistop self.bottom = thisbottom self.wspace = thiswspace self.hspace = thishspace if self.validate: if self.left >= self.right: reset() raise ValueError('left cannot be >= right') if self.bottom >= self.top: reset() raise ValueError('bottom cannot be >= top') def _update_this(self, s, val): if val is None: val = getattr(self, s, None) if val is None: key = 'figure.subplot.' + s val = rcParams[key] setattr(self, s, val) class Figure(Artist): """ The top level container for all the plot elements. The Figure instance supports callbacks through a *callbacks* attribute which is a `.CallbackRegistry` instance. The events you can connect to are 'dpi_changed', and the callback will be called with ``func(fig)`` where fig is the `Figure` instance. Attributes ---------- patch The `.Rectangle` instance representing the figure background patch. suppressComposite For multiple figure images, the figure will make composite images depending on the renderer option_image_nocomposite function. If *suppressComposite* is a boolean, this will override the renderer. """ def __str__(self): return "Figure(%gx%g)" % tuple(self.bbox.size) def __repr__(self): return "<{clsname} size {h:g}x{w:g} with {naxes} Axes>".format( clsname=self.__class__.__name__, h=self.bbox.size[0], w=self.bbox.size[1], naxes=len(self.axes), ) def __init__(self, figsize=None, dpi=None, facecolor=None, edgecolor=None, linewidth=0.0, frameon=None, subplotpars=None, # default to rc tight_layout=None, # default to rc figure.autolayout constrained_layout=None, # default to rc #figure.constrained_layout.use ): """ Parameters ---------- figsize : 2-tuple of floats, default: :rc:`figure.figsize` Figure dimension ``(width, height)`` in inches. dpi : float, default: :rc:`figure.dpi` Dots per inch. facecolor : default: :rc:`figure.facecolor` The figure patch facecolor. edgecolor : default: :rc:`figure.edgecolor` The figure patch edge color. linewidth : float The linewidth of the frame (i.e. the edge linewidth of the figure patch). frameon : bool, default: :rc:`figure.frameon` If ``False``, suppress drawing the figure background patch. subplotpars : :class:`SubplotParams` Subplot parameters. If not given, the default subplot parameters :rc:`figure.subplot.*` are used. tight_layout : bool or dict, default: :rc:`figure.autolayout` If ``False`` use *subplotpars*. If ``True`` adjust subplot parameters using `.tight_layout` with default padding. When providing a dict containing the keys ``pad``, ``w_pad``, ``h_pad``, and ``rect``, the default `.tight_layout` paddings will be overridden. constrained_layout : bool If ``True`` use constrained layout to adjust positioning of plot elements. Like ``tight_layout``, but designed to be more flexible. See :doc:`/tutorials/intermediate/constrainedlayout_guide` for examples. (Note: does not work with :meth:`.subplot` or :meth:`.subplot2grid`.) Defaults to :rc:`figure.constrained_layout.use`. """ super().__init__() # remove the non-figure artist _axes property # as it makes no sense for a figure to be _in_ an axes # this is used by the property methods in the artist base class # which are over-ridden in this class del self._axes self.callbacks = cbook.CallbackRegistry() if figsize is None: figsize = rcParams['figure.figsize'] if dpi is None: dpi = rcParams['figure.dpi'] if facecolor is None: facecolor = rcParams['figure.facecolor'] if edgecolor is None: edgecolor = rcParams['figure.edgecolor'] if frameon is None: frameon = rcParams['figure.frameon'] if not np.isfinite(figsize).all() or (np.array(figsize) <= 0).any(): raise ValueError('figure size must be positive finite not ' f'{figsize}') self.bbox_inches = Bbox.from_bounds(0, 0, *figsize) self.dpi_scale_trans = Affine2D().scale(dpi, dpi) # do not use property as it will trigger self._dpi = dpi self.bbox = TransformedBbox(self.bbox_inches, self.dpi_scale_trans) self.transFigure = BboxTransformTo(self.bbox) self.patch = Rectangle( xy=(0, 0), width=1, height=1, facecolor=facecolor, edgecolor=edgecolor, linewidth=linewidth, visible=frameon) self._set_artist_props(self.patch) self.patch.set_antialiased(False) FigureCanvasBase(self) # Set self.canvas. self._suptitle = None if subplotpars is None: subplotpars = SubplotParams() self.subplotpars = subplotpars # constrained_layout: self._layoutbox = None # set in set_constrained_layout_pads() self.set_constrained_layout(constrained_layout) self.set_tight_layout(tight_layout) self._axstack = AxesStack() # track all figure axes and current axes self.clf() self._cachedRenderer = None # groupers to keep track of x and y labels we want to align. # see self.align_xlabels and self.align_ylabels and # axis._get_tick_boxes_siblings self._align_xlabel_grp = cbook.Grouper() self._align_ylabel_grp = cbook.Grouper() # list of child gridspecs for this figure self._gridspecs = [] # TODO: I'd like to dynamically add the _repr_html_ method # to the figure in the right context, but then IPython doesn't # use it, for some reason. def _repr_html_(self): # We can't use "isinstance" here, because then we'd end up importing # webagg unconditionally. if 'WebAgg' in type(self.canvas).__name__: from matplotlib.backends import backend_webagg return backend_webagg.ipython_inline_display(self) def show(self, warn=True): """ If using a GUI backend with pyplot, display the figure window. If the figure was not created using :func:`~matplotlib.pyplot.figure`, it will lack a :class:`~matplotlib.backend_bases.FigureManagerBase`, and will raise an AttributeError. .. warning:: This does not manage an GUI event loop. Consequently, the figure may only be shown briefly or not shown at all if you or your environment are not managing an event loop. Proper use cases for `.Figure.show` include running this from a GUI application or an IPython shell. If you're running a pure python shell or executing a non-GUI python script, you should use `matplotlib.pyplot.show` instead, which takes care of managing the event loop for you. Parameters ---------- warn : bool If ``True`` and we are not running headless (i.e. on Linux with an unset DISPLAY), issue warning when called on a non-GUI backend. """ try: manager = getattr(self.canvas, 'manager') except AttributeError as err: raise AttributeError("%s\n" "Figure.show works only " "for figures managed by pyplot, normally " "created by pyplot.figure()." % err) if manager is not None: try: manager.show() return except NonGuiException: pass if (backends._get_running_interactive_framework() != "headless" and warn): cbook._warn_external('Matplotlib is currently using %s, which is ' 'a non-GUI backend, so cannot show the ' 'figure.' % get_backend()) def _get_axes(self): return self._axstack.as_list() axes = property(fget=_get_axes, doc="List of axes in the Figure. You can access the " "axes in the Figure through this list. " "Do not modify the list itself. Instead, use " "`~Figure.add_axes`, `~.Figure.subplot` or " "`~.Figure.delaxes` to add or remove an axes.") def _get_dpi(self): return self._dpi def _set_dpi(self, dpi, forward=True): """ Parameters ---------- dpi : float forward : bool Passed on to `~.Figure.set_size_inches` """ self._dpi = dpi self.dpi_scale_trans.clear().scale(dpi, dpi) w, h = self.get_size_inches() self.set_size_inches(w, h, forward=forward) self.callbacks.process('dpi_changed', self) dpi = property(_get_dpi, _set_dpi, doc="The resolution in dots per inch.") def get_tight_layout(self): """Return whether `.tight_layout` is called when drawing.""" return self._tight def set_tight_layout(self, tight): """ Set whether and how `.tight_layout` is called when drawing. Parameters ---------- tight : bool or dict with keys "pad", "w_pad", "h_pad", "rect" or None If a bool, sets whether to call `.tight_layout` upon drawing. If ``None``, use the ``figure.autolayout`` rcparam instead. If a dict, pass it as kwargs to `.tight_layout`, overriding the default paddings. """ if tight is None: tight = rcParams['figure.autolayout'] self._tight = bool(tight) self._tight_parameters = tight if isinstance(tight, dict) else {} self.stale = True def get_constrained_layout(self): """ Return a boolean: True means constrained layout is being used. See :doc:`/tutorials/intermediate/constrainedlayout_guide`. """ return self._constrained def set_constrained_layout(self, constrained): """ Set whether ``constrained_layout`` is used upon drawing. If None, the rcParams['figure.constrained_layout.use'] value will be used. When providing a dict containing the keys `w_pad`, `h_pad` the default ``constrained_layout`` paddings will be overridden. These pads are in inches and default to 3.0/72.0. ``w_pad`` is the width padding and ``h_pad`` is the height padding. See :doc:`/tutorials/intermediate/constrainedlayout_guide`. Parameters ---------- constrained : bool or dict or None """ self._constrained_layout_pads = dict() self._constrained_layout_pads['w_pad'] = None self._constrained_layout_pads['h_pad'] = None self._constrained_layout_pads['wspace'] = None self._constrained_layout_pads['hspace'] = None if constrained is None: constrained = rcParams['figure.constrained_layout.use'] self._constrained = bool(constrained) if isinstance(constrained, dict): self.set_constrained_layout_pads(**constrained) else: self.set_constrained_layout_pads() self.stale = True def set_constrained_layout_pads(self, **kwargs): """ Set padding for ``constrained_layout``. Note the kwargs can be passed as a dictionary ``fig.set_constrained_layout(**paddict)``. See :doc:`/tutorials/intermediate/constrainedlayout_guide`. Parameters ---------- w_pad : scalar Width padding in inches. This is the pad around axes and is meant to make sure there is enough room for fonts to look good. Defaults to 3 pts = 0.04167 inches h_pad : scalar Height padding in inches. Defaults to 3 pts. wspace : scalar Width padding between subplots, expressed as a fraction of the subplot width. The total padding ends up being w_pad + wspace. hspace : scalar Height padding between subplots, expressed as a fraction of the subplot width. The total padding ends up being h_pad + hspace. """ todo = ['w_pad', 'h_pad', 'wspace', 'hspace'] for td in todo: if td in kwargs and kwargs[td] is not None: self._constrained_layout_pads[td] = kwargs[td] else: self._constrained_layout_pads[td] = ( rcParams['figure.constrained_layout.' + td]) def get_constrained_layout_pads(self, relative=False): """ Get padding for ``constrained_layout``. Returns a list of `w_pad, h_pad` in inches and `wspace` and `hspace` as fractions of the subplot. See :doc:`/tutorials/intermediate/constrainedlayout_guide`. Parameters ---------- relative : boolean If `True`, then convert from inches to figure relative. """ w_pad = self._constrained_layout_pads['w_pad'] h_pad = self._constrained_layout_pads['h_pad'] wspace = self._constrained_layout_pads['wspace'] hspace = self._constrained_layout_pads['hspace'] if relative and (w_pad is not None or h_pad is not None): renderer0 = layoutbox.get_renderer(self) dpi = renderer0.dpi w_pad = w_pad * dpi / renderer0.width h_pad = h_pad * dpi / renderer0.height return w_pad, h_pad, wspace, hspace def autofmt_xdate(self, bottom=0.2, rotation=30, ha='right', which=None): """ Date ticklabels often overlap, so it is useful to rotate them and right align them. Also, a common use case is a number of subplots with shared xaxes where the x-axis is date data. The ticklabels are often long, and it helps to rotate them on the bottom subplot and turn them off on other subplots, as well as turn off xlabels. Parameters ---------- bottom : scalar The bottom of the subplots for :meth:`subplots_adjust`. rotation : angle in degrees The rotation of the xtick labels. ha : string The horizontal alignment of the xticklabels. which : {None, 'major', 'minor', 'both'} Selects which ticklabels to rotate. Default is None which works the same as major. """ allsubplots = all(hasattr(ax, 'is_last_row') for ax in self.axes) if len(self.axes) == 1: for label in self.axes[0].get_xticklabels(which=which): label.set_ha(ha) label.set_rotation(rotation) else: if allsubplots: for ax in self.get_axes(): if ax.is_last_row(): for label in ax.get_xticklabels(which=which): label.set_ha(ha) label.set_rotation(rotation) else: for label in ax.get_xticklabels(which=which): label.set_visible(False) ax.set_xlabel('') if allsubplots: self.subplots_adjust(bottom=bottom) self.stale = True def get_children(self): """Get a list of artists contained in the figure.""" return [self.patch, *self.artists, *self.axes, *self.lines, *self.patches, *self.texts, *self.images, *self.legends] def contains(self, mouseevent): """ Test whether the mouse event occurred on the figure. Returns ------- bool, {} """ if self._contains is not None: return self._contains(self, mouseevent) inside = self.bbox.contains(mouseevent.x, mouseevent.y) return inside, {} def get_window_extent(self, *args, **kwargs): """ Return the figure bounding box in display space. Arguments are ignored. """ return self.bbox def suptitle(self, t, **kwargs): """ Add a centered title to the figure. Parameters ---------- t : str The title text. x : float, default 0.5 The x location of the text in figure coordinates. y : float, default 0.98 The y location of the text in figure coordinates. horizontalalignment, ha : {'center', 'left', right'}, default: 'center' The horizontal alignment of the text relative to (*x*, *y*). verticalalignment, va : {'top', 'center', 'bottom', 'baseline'}, \ default: 'top' The vertical alignment of the text relative to (*x*, *y*). fontsize, size : default: :rc:`figure.titlesize` The font size of the text. See `.Text.set_size` for possible values. fontweight, weight : default: :rc:`figure.titleweight` The font weight of the text. See `.Text.set_weight` for possible values. Returns ------- text The `.Text` instance of the title. Other Parameters ---------------- fontproperties : None or dict, optional A dict of font properties. If *fontproperties* is given the default values for font size and weight are taken from the `FontProperties` defaults. :rc:`figure.titlesize` and :rc:`figure.titleweight` are ignored in this case. **kwargs Additional kwargs are :class:`matplotlib.text.Text` properties. Examples -------- >>> fig.suptitle('This is the figure title', fontsize=12) """ manual_position = ('x' in kwargs or 'y' in kwargs) x = kwargs.pop('x', 0.5) y = kwargs.pop('y', 0.98) if 'horizontalalignment' not in kwargs and 'ha' not in kwargs: kwargs['horizontalalignment'] = 'center' if 'verticalalignment' not in kwargs and 'va' not in kwargs: kwargs['verticalalignment'] = 'top' if 'fontproperties' not in kwargs: if 'fontsize' not in kwargs and 'size' not in kwargs: kwargs['size'] = rcParams['figure.titlesize'] if 'fontweight' not in kwargs and 'weight' not in kwargs: kwargs['weight'] = rcParams['figure.titleweight'] sup = self.text(x, y, t, **kwargs) if self._suptitle is not None: self._suptitle.set_text(t) self._suptitle.set_position((x, y)) self._suptitle.update_from(sup) sup.remove() else: self._suptitle = sup self._suptitle._layoutbox = None if self._layoutbox is not None and not manual_position: w_pad, h_pad, wspace, hspace = \ self.get_constrained_layout_pads(relative=True) figlb = self._layoutbox self._suptitle._layoutbox = layoutbox.LayoutBox( parent=figlb, artist=self._suptitle, name=figlb.name+'.suptitle') # stack the suptitle on top of all the children. # Some day this should be on top of all the children in the # gridspec only. for child in figlb.children: if child is not self._suptitle._layoutbox: layoutbox.vstack([self._suptitle._layoutbox, child], padding=h_pad*2., strength='required') self.stale = True return self._suptitle def set_canvas(self, canvas): """ Set the canvas that contains the figure Parameters ---------- canvas : FigureCanvas """ self.canvas = canvas def figimage(self, X, xo=0, yo=0, alpha=None, norm=None, cmap=None, vmin=None, vmax=None, origin=None, resize=False, **kwargs): """ Add a non-resampled image to the figure. The image is attached to the lower or upper left corner depending on *origin*. Parameters ---------- X The image data. This is an array of one of the following shapes: - MxN: luminance (grayscale) values - MxNx3: RGB values - MxNx4: RGBA values xo, yo : int The *x*/*y* image offset in pixels. alpha : None or float The alpha blending value. norm : :class:`matplotlib.colors.Normalize` A :class:`.Normalize` instance to map the luminance to the interval [0, 1]. cmap : str or :class:`matplotlib.colors.Colormap` The colormap to use. Default: :rc:`image.cmap`. vmin, vmax : scalar If *norm* is not given, these values set the data limits for the colormap. origin : {'upper', 'lower'} Indicates where the [0, 0] index of the array is in the upper left or lower left corner of the axes. Defaults to :rc:`image.origin`. resize : bool If *True*, resize the figure to match the given image size. Returns ------- :class:`matplotlib.image.FigureImage` Other Parameters ---------------- **kwargs Additional kwargs are `.Artist` kwargs passed on to `.FigureImage`. Notes ----- figimage complements the axes image (:meth:`~matplotlib.axes.Axes.imshow`) which will be resampled to fit the current axes. If you want a resampled image to fill the entire figure, you can define an :class:`~matplotlib.axes.Axes` with extent [0,0,1,1]. Examples:: f = plt.figure() nx = int(f.get_figwidth() * f.dpi) ny = int(f.get_figheight() * f.dpi) data = np.random.random((ny, nx)) f.figimage(data) plt.show() """ if resize: dpi = self.get_dpi() figsize = [x / dpi for x in (X.shape[1], X.shape[0])] self.set_size_inches(figsize, forward=True) im = mimage.FigureImage(self, cmap, norm, xo, yo, origin, **kwargs) im.stale_callback = _stale_figure_callback im.set_array(X) im.set_alpha(alpha) if norm is None: im.set_clim(vmin, vmax) self.images.append(im) im._remove_method = self.images.remove self.stale = True return im def set_size_inches(self, w, h=None, forward=True): """Set the figure size in inches. Call signatures:: fig.set_size_inches(w, h) # OR fig.set_size_inches((w, h)) optional kwarg *forward=True* will cause the canvas size to be automatically updated; e.g., you can resize the figure window from the shell ACCEPTS: a (w, h) tuple with w, h in inches See Also -------- matplotlib.Figure.get_size_inches """ if h is None: # Got called with a single pair as argument. w, h = w size = np.array([w, h]) if not np.isfinite(size).all() or (size <= 0).any(): raise ValueError(f'figure size must be positive finite not {size}') self.bbox_inches.p1 = size if forward: canvas = getattr(self, 'canvas') if canvas is not None: dpi_ratio = getattr(canvas, '_dpi_ratio', 1) manager = getattr(canvas, 'manager', None) if manager is not None: manager.resize(*(size * self.dpi / dpi_ratio).astype(int)) self.stale = True def get_size_inches(self): """ Returns the current size of the figure in inches. Returns ------- size : ndarray The size (width, height) of the figure in inches. See Also -------- matplotlib.Figure.set_size_inches """ return np.array(self.bbox_inches.p1) def get_edgecolor(self): """Get the edge color of the Figure rectangle.""" return self.patch.get_edgecolor() def get_facecolor(self): """Get the face color of the Figure rectangle.""" return self.patch.get_facecolor() def get_figwidth(self): """Return the figure width as a float.""" return self.bbox_inches.width def get_figheight(self): """Return the figure height as a float.""" return self.bbox_inches.height def get_dpi(self): """Return the resolution in dots per inch as a float.""" return self.dpi def get_frameon(self): """ Return the figure's background patch visibility, i.e. whether the figure background will be drawn. Equivalent to ``Figure.patch.get_visible()``. """ return self.patch.get_visible() def set_edgecolor(self, color): """ Set the edge color of the Figure rectangle. Parameters ---------- color : color """ self.patch.set_edgecolor(color) def set_facecolor(self, color): """ Set the face color of the Figure rectangle. Parameters ---------- color : color """ self.patch.set_facecolor(color) def set_dpi(self, val): """ Set the resolution of the figure in dots-per-inch. Parameters ---------- val : float """ self.dpi = val self.stale = True def set_figwidth(self, val, forward=True): """ Set the width of the figure in inches. Parameters ---------- val : float forward : bool """ self.set_size_inches(val, self.get_figheight(), forward=forward) def set_figheight(self, val, forward=True): """ Set the height of the figure in inches. Parameters ---------- val : float forward : bool """ self.set_size_inches(self.get_figwidth(), val, forward=forward) def set_frameon(self, b): """ Set the figure's background patch visibility, i.e. whether the figure background will be drawn. Equivalent to ``Figure.patch.set_visible()``. Parameters ---------- b : bool """ self.patch.set_visible(b) self.stale = True frameon = property(get_frameon, set_frameon) def delaxes(self, ax): """ Remove the `~matplotlib.axes.Axes` *ax* from the figure and update the current axes. """ self._axstack.remove(ax) for func in self._axobservers: func(self) self.stale = True def add_artist(self, artist, clip=False): """ Add any :class:`~matplotlib.artist.Artist` to the figure. Usually artists are added to axes objects using :meth:`matplotlib.axes.Axes.add_artist`, but use this method in the rare cases that adding directly to the figure is necessary. Parameters ---------- artist : `~matplotlib.artist.Artist` The artist to add to the figure. If the added artist has no transform previously set, its transform will be set to ``figure.transFigure``. clip : bool, optional, default ``False`` An optional parameter ``clip`` determines whether the added artist should be clipped by the figure patch. Default is *False*, i.e. no clipping. Returns ------- artist : The added `~matplotlib.artist.Artist` """ artist.set_figure(self) self.artists.append(artist) artist._remove_method = self.artists.remove if not artist.is_transform_set(): artist.set_transform(self.transFigure) if clip: artist.set_clip_path(self.patch) self.stale = True return artist def _make_key(self, *args, **kwargs): """Make a hashable key out of args and kwargs.""" def fixitems(items): # items may have arrays and lists in them, so convert them # to tuples for the key ret = [] for k, v in items: # some objects can define __getitem__ without being # iterable and in those cases the conversion to tuples # will fail. So instead of using the np.iterable(v) function # we simply try and convert to a tuple, and proceed if not. try: v = tuple(v) except Exception: pass ret.append((k, v)) return tuple(ret) def fixlist(args): ret = [] for a in args: if np.iterable(a): a = tuple(a) ret.append(a) return tuple(ret) key = fixlist(args), fixitems(kwargs.items()) return key def _process_projection_requirements( self, *args, polar=False, projection=None, **kwargs): """ Handle the args/kwargs to add_axes/add_subplot/gca, returning:: (axes_proj_class, proj_class_kwargs, proj_stack_key) which can be used for new axes initialization/identification. """ if polar: if projection is not None and projection != 'polar': raise ValueError( "polar=True, yet projection=%r. " "Only one of these arguments should be supplied." % projection) projection = 'polar' if isinstance(projection, str) or projection is None: projection_class = projections.get_projection_class(projection) elif hasattr(projection, '_as_mpl_axes'): projection_class, extra_kwargs = projection._as_mpl_axes() kwargs.update(**extra_kwargs) else: raise TypeError('projection must be a string, None or implement a ' '_as_mpl_axes method. Got %r' % projection) # Make the key without projection kwargs, this is used as a unique # lookup for axes instances key = self._make_key(*args, **kwargs) return projection_class, kwargs, key @docstring.dedent_interpd def add_axes(self, *args, **kwargs): """ Add an axes to the figure. Call signatures:: add_axes(rect, projection=None, polar=False, **kwargs) add_axes(ax) Parameters ---------- rect : sequence of float The dimensions [left, bottom, width, height] of the new axes. All quantities are in fractions of figure width and height. projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \ 'polar', 'rectilinear', str}, optional The projection type of the `~.axes.Axes`. *str* is the name of a custom projection, see `~matplotlib.projections`. The default None results in a 'rectilinear' projection. polar : boolean, optional If True, equivalent to projection='polar'. sharex, sharey : `~.axes.Axes`, optional Share the x or y `~matplotlib.axis` with sharex and/or sharey. The axis will have the same limits, ticks, and scale as the axis of the shared axes. label : str A label for the returned axes. Other Parameters ---------------- **kwargs This method also takes the keyword arguments for the returned axes class. The keyword arguments for the rectilinear axes class `~.axes.Axes` can be found in the following table but there might also be other keyword arguments if another projection is used, see the actual axes class. %(Axes)s Returns ------- axes : `~.axes.Axes` (or a subclass of `~.axes.Axes`) The returned axes class depends on the projection used. It is `~.axes.Axes` if rectilinear projection are used and `.projections.polar.PolarAxes` if polar projection are used. Notes ----- If the figure already has an axes with key (*args*, *kwargs*) then it will simply make that axes current and return it. This behavior is deprecated. Meanwhile, if you do not want this behavior (i.e., you want to force the creation of a new axes), you must use a unique set of args and kwargs. The axes *label* attribute has been exposed for this purpose: if you want two axes that are otherwise identical to be added to the figure, make sure you give them unique labels. In rare circumstances, `.add_axes` may be called with a single argument, a axes instance already created in the present figure but not in the figure's list of axes. See Also -------- .Figure.add_subplot .pyplot.subplot .pyplot.axes .Figure.subplots .pyplot.subplots Examples -------- Some simple examples:: rect = l, b, w, h fig = plt.figure() fig.add_axes(rect,label=label1) fig.add_axes(rect,label=label2) fig.add_axes(rect, frameon=False, facecolor='g') fig.add_axes(rect, polar=True) ax=fig.add_axes(rect, projection='polar') fig.delaxes(ax) fig.add_axes(ax) """ if not len(args): return # shortcut the projection "key" modifications later on, if an axes # with the exact args/kwargs exists, return it immediately. key = self._make_key(*args, **kwargs) ax = self._axstack.get(key) if ax is not None: self.sca(ax) return ax if isinstance(args[0], Axes): a = args[0] if a.get_figure() is not self: raise ValueError( "The Axes must have been created in the present figure") else: rect = args[0] if not np.isfinite(rect).all(): raise ValueError('all entries in rect must be finite ' 'not {}'.format(rect)) projection_class, kwargs, key = \ self._process_projection_requirements(*args, **kwargs) # check that an axes of this type doesn't already exist, if it # does, set it as active and return it ax = self._axstack.get(key) if isinstance(ax, projection_class): self.sca(ax) return ax # create the new axes using the axes class given a = projection_class(self, rect, **kwargs) return self._add_axes_internal(key, a) @docstring.dedent_interpd def add_subplot(self, *args, **kwargs): """ Add an `~.axes.Axes` to the figure as part of a subplot arrangement. Call signatures:: add_subplot(nrows, ncols, index, **kwargs) add_subplot(pos, **kwargs) add_subplot(ax) add_subplot() Parameters ---------- *args Either a 3-digit integer or three separate integers describing the position of the subplot. If the three integers are *nrows*, *ncols*, and *index* in order, the subplot will take the *index* position on a grid with *nrows* rows and *ncols* columns. *index* starts at 1 in the upper left corner and increases to the right. *pos* is a three digit integer, where the first digit is the number of rows, the second the number of columns, and the third the index of the subplot. i.e. fig.add_subplot(235) is the same as fig.add_subplot(2, 3, 5). Note that all integers must be less than 10 for this form to work. If no positional arguments are passed, defaults to (1, 1, 1). projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \ 'polar', 'rectilinear', str}, optional The projection type of the subplot (`~.axes.Axes`). *str* is the name of a custom projection, see `~matplotlib.projections`. The default None results in a 'rectilinear' projection. polar : boolean, optional If True, equivalent to projection='polar'. sharex, sharey : `~.axes.Axes`, optional Share the x or y `~matplotlib.axis` with sharex and/or sharey. The axis will have the same limits, ticks, and scale as the axis of the shared axes. label : str A label for the returned axes. Other Parameters ---------------- **kwargs This method also takes the keyword arguments for the returned axes base class. The keyword arguments for the rectilinear base class `~.axes.Axes` can be found in the following table but there might also be other keyword arguments if another projection is used. %(Axes)s Returns ------- axes : an `.axes.SubplotBase` subclass of `~.axes.Axes` (or a \ subclass of `~.axes.Axes`) The axes of the subplot. The returned axes base class depends on the projection used. It is `~.axes.Axes` if rectilinear projection are used and `.projections.polar.PolarAxes` if polar projection are used. The returned axes is then a subplot subclass of the base class. Notes ----- If the figure already has a subplot with key (*args*, *kwargs*) then it will simply make that subplot current and return it. This behavior is deprecated. Meanwhile, if you do not want this behavior (i.e., you want to force the creation of a new subplot), you must use a unique set of args and kwargs. The axes *label* attribute has been exposed for this purpose: if you want two subplots that are otherwise identical to be added to the figure, make sure you give them unique labels. In rare circumstances, `.add_subplot` may be called with a single argument, a subplot axes instance already created in the present figure but not in the figure's list of axes. See Also -------- .Figure.add_axes .pyplot.subplot .pyplot.axes .Figure.subplots .pyplot.subplots Examples -------- :: fig = plt.figure() fig.add_subplot(221) # equivalent but more general ax1 = fig.add_subplot(2, 2, 1) # add a subplot with no frame ax2 = fig.add_subplot(222, frameon=False) # add a polar subplot fig.add_subplot(223, projection='polar') # add a red subplot that share the x-axis with ax1 fig.add_subplot(224, sharex=ax1, facecolor='red') #delete x2 from the figure fig.delaxes(ax2) #add x2 to the figure again fig.add_subplot(ax2) """ if not len(args): args = (1, 1, 1) if len(args) == 1 and isinstance(args[0], Integral): if not 100 <= args[0] <= 999: raise ValueError("Integer subplot specification must be a " "three-digit number, not {}".format(args[0])) args = tuple(map(int, str(args[0]))) if isinstance(args[0], SubplotBase): a = args[0] if a.get_figure() is not self: raise ValueError( "The Subplot must have been created in the present figure") # make a key for the subplot (which includes the axes object id # in the hash) key = self._make_key(*args, **kwargs) else: projection_class, kwargs, key = \ self._process_projection_requirements(*args, **kwargs) # try to find the axes with this key in the stack ax = self._axstack.get(key) if ax is not None: if isinstance(ax, projection_class): # the axes already existed, so set it as active & return self.sca(ax) return ax else: # Undocumented convenience behavior: # subplot(111); subplot(111, projection='polar') # will replace the first with the second. # Without this, add_subplot would be simpler and # more similar to add_axes. self._axstack.remove(ax) a = subplot_class_factory(projection_class)(self, *args, **kwargs) return self._add_axes_internal(key, a) def _add_axes_internal(self, key, ax): """Private helper for `add_axes` and `add_subplot`.""" self._axstack.add(key, ax) self.sca(ax) ax._remove_method = self._remove_ax self.stale = True ax.stale_callback = _stale_figure_callback return ax def subplots(self, nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None): """ Add a set of subplots to this figure. This utility wrapper makes it convenient to create common layouts of subplots in a single call. Parameters ---------- nrows, ncols : int, optional, default: 1 Number of rows/columns of the subplot grid. sharex, sharey : bool or {'none', 'all', 'row', 'col'}, default: False Controls sharing of properties among x (`sharex`) or y (`sharey`) axes: - True or 'all': x- or y-axis will be shared among all subplots. - False or 'none': each subplot x- or y-axis will be independent. - 'row': each subplot row will share an x- or y-axis. - 'col': each subplot column will share an x- or y-axis. When subplots have a shared x-axis along a column, only the x tick labels of the bottom subplot are created. Similarly, when subplots have a shared y-axis along a row, only the y tick labels of the first column subplot are created. To later turn other subplots' ticklabels on, use `~matplotlib.axes.Axes.tick_params`. squeeze : bool, optional, default: True - If True, extra dimensions are squeezed out from the returned array of Axes: - if only one subplot is constructed (nrows=ncols=1), the resulting single Axes object is returned as a scalar. - for Nx1 or 1xM subplots, the returned object is a 1D numpy object array of Axes objects. - for NxM, subplots with N>1 and M>1 are returned as a 2D array. - If False, no squeezing at all is done: the returned Axes object is always a 2D array containing Axes instances, even if it ends up being 1x1. subplot_kw : dict, optional Dict with keywords passed to the :meth:`~matplotlib.figure.Figure.add_subplot` call used to create each subplot. gridspec_kw : dict, optional Dict with keywords passed to the `~matplotlib.gridspec.GridSpec` constructor used to create the grid the subplots are placed on. Returns ------- ax : `~.axes.Axes` object or array of Axes objects. *ax* can be either a single `~matplotlib.axes.Axes` object or an array of Axes objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. Examples -------- :: # First create some toy data: x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2) # Create a figure plt.figure() # Creates a subplot ax = fig.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Creates two subplots and unpacks the output array immediately ax1, ax2 = fig.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Creates four polar axes, and accesses them through the # returned array axes = fig.subplots(2, 2, subplot_kw=dict(polar=True)) axes[0, 0].plot(x, y) axes[1, 1].scatter(x, y) # Share a X axis with each column of subplots fig.subplots(2, 2, sharex='col') # Share a Y axis with each row of subplots fig.subplots(2, 2, sharey='row') # Share both X and Y axes with all subplots fig.subplots(2, 2, sharex='all', sharey='all') # Note that this is the same as fig.subplots(2, 2, sharex=True, sharey=True) See Also -------- .pyplot.subplots .Figure.add_subplot .pyplot.subplot """ if isinstance(sharex, bool): sharex = "all" if sharex else "none" if isinstance(sharey, bool): sharey = "all" if sharey else "none" # This check was added because it is very easy to type # `subplots(1, 2, 1)` when `subplot(1, 2, 1)` was intended. # In most cases, no error will ever occur, but mysterious behavior # will result because what was intended to be the subplot index is # instead treated as a bool for sharex. if isinstance(sharex, Integral): cbook._warn_external( "sharex argument to subplots() was an integer. Did you " "intend to use subplot() (without 's')?") cbook._check_in_list(["all", "row", "col", "none"], sharex=sharex, sharey=sharey) if subplot_kw is None: subplot_kw = {} if gridspec_kw is None: gridspec_kw = {} # don't mutate kwargs passed by user... subplot_kw = subplot_kw.copy() gridspec_kw = gridspec_kw.copy() if self.get_constrained_layout(): gs = GridSpec(nrows, ncols, figure=self, **gridspec_kw) else: # this should turn constrained_layout off if we don't want it gs = GridSpec(nrows, ncols, figure=None, **gridspec_kw) self._gridspecs.append(gs) # Create array to hold all axes. axarr = np.empty((nrows, ncols), dtype=object) for row in range(nrows): for col in range(ncols): shared_with = {"none": None, "all": axarr[0, 0], "row": axarr[row, 0], "col": axarr[0, col]} subplot_kw["sharex"] = shared_with[sharex] subplot_kw["sharey"] = shared_with[sharey] axarr[row, col] = self.add_subplot(gs[row, col], **subplot_kw) # turn off redundant tick labeling if sharex in ["col", "all"]: # turn off all but the bottom row for ax in axarr[:-1, :].flat: ax.xaxis.set_tick_params(which='both', labelbottom=False, labeltop=False) ax.xaxis.offsetText.set_visible(False) if sharey in ["row", "all"]: # turn off all but the first column for ax in axarr[:, 1:].flat: ax.yaxis.set_tick_params(which='both', labelleft=False, labelright=False) ax.yaxis.offsetText.set_visible(False) if squeeze: # Discarding unneeded dimensions that equal 1. If we only have one # subplot, just return it instead of a 1-element array. return axarr.item() if axarr.size == 1 else axarr.squeeze() else: # Returned axis array will be always 2-d, even if nrows=ncols=1. return axarr def _remove_ax(self, ax): def _reset_loc_form(axis): axis.set_major_formatter(axis.get_major_formatter()) axis.set_major_locator(axis.get_major_locator()) axis.set_minor_formatter(axis.get_minor_formatter()) axis.set_minor_locator(axis.get_minor_locator()) def _break_share_link(ax, grouper): siblings = grouper.get_siblings(ax) if len(siblings) > 1: grouper.remove(ax) for last_ax in siblings: if ax is not last_ax: return last_ax return None self.delaxes(ax) last_ax = _break_share_link(ax, ax._shared_y_axes) if last_ax is not None: _reset_loc_form(last_ax.yaxis) last_ax = _break_share_link(ax, ax._shared_x_axes) if last_ax is not None: _reset_loc_form(last_ax.xaxis) def clf(self, keep_observers=False): """ Clear the figure. Set *keep_observers* to True if, for example, a gui widget is tracking the axes in the figure. """ self.suppressComposite = None self.callbacks = cbook.CallbackRegistry() for ax in tuple(self.axes): # Iterate over the copy. ax.cla() self.delaxes(ax) # removes ax from self._axstack toolbar = getattr(self.canvas, 'toolbar', None) if toolbar is not None: toolbar.update() self._axstack.clear() self.artists = [] self.lines = [] self.patches = [] self.texts = [] self.images = [] self.legends = [] if not keep_observers: self._axobservers = [] self._suptitle = None if self.get_constrained_layout(): layoutbox.nonetree(self._layoutbox) self.stale = True def clear(self, keep_observers=False): """ Clear the figure -- synonym for :meth:`clf`. """ self.clf(keep_observers=keep_observers) @allow_rasterization def draw(self, renderer): """ Render the figure using :class:`matplotlib.backend_bases.RendererBase` instance *renderer*. """ # draw the figure bounding box, perhaps none for white figure if not self.get_visible(): return artists = self.get_children() artists.remove(self.patch) artists = sorted( (artist for artist in artists if not artist.get_animated()), key=lambda artist: artist.get_zorder()) for ax in self.axes: locator = ax.get_axes_locator() if locator: pos = locator(ax, renderer) ax.apply_aspect(pos) else: ax.apply_aspect() for child in ax.get_children(): if hasattr(child, 'apply_aspect'): locator = child.get_axes_locator() if locator: pos = locator(child, renderer) child.apply_aspect(pos) else: child.apply_aspect() try: renderer.open_group('figure') if self.get_constrained_layout() and self.axes: self.execute_constrained_layout(renderer) if self.get_tight_layout() and self.axes: try: self.tight_layout(renderer, **self._tight_parameters) except ValueError: pass # ValueError can occur when resizing a window. self.patch.draw(renderer) mimage._draw_list_compositing_images( renderer, self, artists, self.suppressComposite) renderer.close_group('figure') finally: self.stale = False self._cachedRenderer = renderer self.canvas.draw_event(renderer) def draw_artist(self, a): """ Draw :class:`matplotlib.artist.Artist` instance *a* only. This is available only after the figure is drawn. """ if self._cachedRenderer is None: raise AttributeError("draw_artist can only be used after an " "initial draw which caches the renderer") a.draw(self._cachedRenderer) def get_axes(self): """ Return a list of axes in the Figure. You can access and modify the axes in the Figure through this list. Do not modify the list itself. Instead, use `~Figure.add_axes`, `~.Figure.subplot` or `~.Figure.delaxes` to add or remove an axes. Note: This is equivalent to the property `~.Figure.axes`. """ return self.axes # Note: in the docstring below, the newlines in the examples after the # calls to legend() allow replacing it with figlegend() to generate the # docstring of pyplot.figlegend. @docstring.dedent_interpd def legend(self, *args, **kwargs): """ Place a legend on the figure. To make a legend from existing artists on every axes:: legend() To make a legend for a list of lines and labels:: legend( (line1, line2, line3), ('label1', 'label2', 'label3'), loc='upper right') These can also be specified by keyword:: legend( handles=(line1, line2, line3), labels=('label1', 'label2', 'label3'), loc='upper right') Parameters ---------- handles : sequence of `.Artist`, optional A list of Artists (lines, patches) to be added to the legend. Use this together with *labels*, if you need full control on what is shown in the legend and the automatic mechanism described above is not sufficient. The length of handles and labels should be the same in this case. If they are not, they are truncated to the smaller length. labels : sequence of strings, optional A list of labels to show next to the artists. Use this together with *handles*, if you need full control on what is shown in the legend and the automatic mechanism described above is not sufficient. Other Parameters ---------------- %(_legend_kw_doc)s Returns ------- :class:`matplotlib.legend.Legend` instance Notes ----- Not all kinds of artist are supported by the legend command. See :doc:`/tutorials/intermediate/legend_guide` for details. """ handles, labels, extra_args, kwargs = mlegend._parse_legend_args( self.axes, *args, **kwargs) # check for third arg if len(extra_args): # cbook.warn_deprecated( # "2.1", # message="Figure.legend will accept no more than two " # "positional arguments in the future. Use " # "'fig.legend(handles, labels, loc=location)' " # "instead.") # kwargs['loc'] = extra_args[0] # extra_args = extra_args[1:] pass l = mlegend.Legend(self, handles, labels, *extra_args, **kwargs) self.legends.append(l) l._remove_method = self.legends.remove self.stale = True return l @cbook._delete_parameter("3.1", "withdash") @docstring.dedent_interpd def text(self, x, y, s, fontdict=None, withdash=False, **kwargs): """ Add text to figure. Parameters ---------- x, y : float The position to place the text. By default, this is in figure coordinates, floats in [0, 1]. The coordinate system can be changed using the *transform* keyword. s : str The text string. fontdict : dictionary, optional, default: None A dictionary to override the default text properties. If fontdict is None, the defaults are determined by your rc parameters. A property in *kwargs* override the same property in fontdict. withdash : boolean, optional, default: False Creates a `~matplotlib.text.TextWithDash` instance instead of a `~matplotlib.text.Text` instance. Other Parameters ---------------- **kwargs : `~matplotlib.text.Text` properties Other miscellaneous text parameters. %(Text)s Returns ------- text : `~.text.Text` See Also -------- .Axes.text .pyplot.text """ default = dict(transform=self.transFigure) if withdash: text = TextWithDash(x=x, y=y, text=s) else: text = Text(x=x, y=y, text=s) text.update(default) if fontdict is not None: text.update(fontdict) text.update(kwargs) text.set_figure(self) text.stale_callback = _stale_figure_callback self.texts.append(text) text._remove_method = self.texts.remove self.stale = True return text def _set_artist_props(self, a): if a != self: a.set_figure(self) a.stale_callback = _stale_figure_callback a.set_transform(self.transFigure) @docstring.dedent_interpd def gca(self, **kwargs): """ Get the current axes, creating one if necessary. The following kwargs are supported for ensuring the returned axes adheres to the given projection etc., and for axes creation if the active axes does not exist: %(Axes)s """ ckey, cax = self._axstack.current_key_axes() # if there exists an axes on the stack see if it matches # the desired axes configuration if cax is not None: # if no kwargs are given just return the current axes # this is a convenience for gca() on axes such as polar etc. if not kwargs: return cax # if the user has specified particular projection detail # then build up a key which can represent this else: projection_class, _, key = \ self._process_projection_requirements(**kwargs) # let the returned axes have any gridspec by removing it from # the key ckey = ckey[1:] key = key[1:] # if the cax matches this key then return the axes, otherwise # continue and a new axes will be created if key == ckey and isinstance(cax, projection_class): return cax else: cbook._warn_external('Requested projection is different ' 'from current axis projection, ' 'creating new axis with requested ' 'projection.') # no axes found, so create one which spans the figure return self.add_subplot(1, 1, 1, **kwargs) def sca(self, a): """Set the current axes to be a and return a.""" self._axstack.bubble(a) for func in self._axobservers: func(self) return a def _gci(self): """ Helper for :func:`~matplotlib.pyplot.gci`. Do not use elsewhere. """ # Look first for an image in the current Axes: cax = self._axstack.current_key_axes()[1] if cax is None: return None im = cax._gci() if im is not None: return im # If there is no image in the current Axes, search for # one in a previously created Axes. Whether this makes # sense is debatable, but it is the documented behavior. for ax in reversed(self.axes): im = ax._gci() if im is not None: return im return None def __getstate__(self): state = super().__getstate__() # the axobservers cannot currently be pickled. # Additionally, the canvas cannot currently be pickled, but this has # the benefit of meaning that a figure can be detached from one canvas, # and re-attached to another. for attr_to_pop in ('_axobservers', 'show', 'canvas', '_cachedRenderer'): state.pop(attr_to_pop, None) # add version information to the state state['__mpl_version__'] = _mpl_version # check whether the figure manager (if any) is registered with pyplot from matplotlib import _pylab_helpers if getattr(self.canvas, 'manager', None) \ in _pylab_helpers.Gcf.figs.values(): state['_restore_to_pylab'] = True # set all the layoutbox information to None. kiwisolver objects can't # be pickled, so we lose the layout options at this point. state.pop('_layoutbox', None) # suptitle: if self._suptitle is not None: self._suptitle._layoutbox = None return state def __setstate__(self, state): version = state.pop('__mpl_version__') restore_to_pylab = state.pop('_restore_to_pylab', False) if version != _mpl_version: cbook._warn_external( f"This figure was saved with matplotlib version {version} and " f"is unlikely to function correctly.") self.__dict__ = state # re-initialise some of the unstored state information self._axobservers = [] self.canvas = None self._layoutbox = None if restore_to_pylab: # lazy import to avoid circularity import matplotlib.pyplot as plt import matplotlib._pylab_helpers as pylab_helpers allnums = plt.get_fignums() num = max(allnums) + 1 if allnums else 1 mgr = plt._backend_mod.new_figure_manager_given_figure(num, self) # XXX The following is a copy and paste from pyplot. Consider # factoring to pylab_helpers if self.get_label(): mgr.set_window_title(self.get_label()) # make this figure current on button press event def make_active(event): pylab_helpers.Gcf.set_active(mgr) mgr._cidgcf = mgr.canvas.mpl_connect('button_press_event', make_active) pylab_helpers.Gcf.set_active(mgr) self.number = num plt.draw_if_interactive() self.stale = True def add_axobserver(self, func): """Whenever the axes state change, ``func(self)`` will be called.""" self._axobservers.append(func) def savefig(self, fname, *, transparent=None, **kwargs): """ Save the current figure. Call signature:: savefig(fname, dpi=None, facecolor='w', edgecolor='w', orientation='portrait', papertype=None, format=None, transparent=False, bbox_inches=None, pad_inches=0.1, frameon=None, metadata=None) The output formats available depend on the backend being used. Parameters ---------- fname : str or PathLike or file-like object A path, or a Python file-like object, or possibly some backend-dependent object such as `matplotlib.backends.backend_pdf.PdfPages`. If *format* is not set, then the output format is inferred from the extension of *fname*, if any, and from :rc:`savefig.format` otherwise. If *format* is set, it determines the output format. Hence, if *fname* is not a path or has no extension, remember to specify *format* to ensure that the correct backend is used. Other Parameters ---------------- dpi : [ *None* | scalar > 0 | 'figure' ] The resolution in dots per inch. If *None*, defaults to :rc:`savefig.dpi`. If 'figure', uses the figure's dpi value. quality : [ *None* | 1 <= scalar <= 100 ] The image quality, on a scale from 1 (worst) to 95 (best). Applicable only if *format* is jpg or jpeg, ignored otherwise. If *None*, defaults to :rc:`savefig.jpeg_quality` (95 by default). Values above 95 should be avoided; 100 completely disables the JPEG quantization stage. optimize : bool If *True*, indicates that the JPEG encoder should make an extra pass over the image in order to select optimal encoder settings. Applicable only if *format* is jpg or jpeg, ignored otherwise. Is *False* by default. progressive : bool If *True*, indicates that this image should be stored as a progressive JPEG file. Applicable only if *format* is jpg or jpeg, ignored otherwise. Is *False* by default. facecolor : color spec or None, optional The facecolor of the figure; if *None*, defaults to :rc:`savefig.facecolor`. edgecolor : color spec or None, optional The edgecolor of the figure; if *None*, defaults to :rc:`savefig.edgecolor` orientation : {'landscape', 'portrait'} Currently only supported by the postscript backend. papertype : str One of 'letter', 'legal', 'executive', 'ledger', 'a0' through 'a10', 'b0' through 'b10'. Only supported for postscript output. format : str The file format, e.g. 'png', 'pdf', 'svg', ... The behavior when this is unset is documented under *fname*. transparent : bool If *True*, the axes patches will all be transparent; the figure patch will also be transparent unless facecolor and/or edgecolor are specified via kwargs. This is useful, for example, for displaying a plot on top of a colored background on a web page. The transparency of these patches will be restored to their original values upon exit of this function. bbox_inches : str or `~matplotlib.transforms.Bbox`, optional Bbox in inches. Only the given portion of the figure is saved. If 'tight', try to figure out the tight bbox of the figure. If None, use savefig.bbox pad_inches : scalar, optional Amount of padding around the figure when bbox_inches is 'tight'. If None, use savefig.pad_inches bbox_extra_artists : list of `~matplotlib.artist.Artist`, optional A list of extra artists that will be considered when the tight bbox is calculated. metadata : dict, optional Key/value pairs to store in the image metadata. The supported keys and defaults depend on the image format and backend: - 'png' with Agg backend: See the parameter ``metadata`` of `~.FigureCanvasAgg.print_png`. - 'pdf' with pdf backend: See the parameter ``metadata`` of `~.backend_pdf.PdfPages`. - 'eps' and 'ps' with PS backend: Only 'Creator' is supported. pil_kwargs : dict, optional Additional keyword arguments that are passed to `PIL.Image.save` when saving the figure. Only applicable for formats that are saved using Pillow, i.e. JPEG, TIFF, and (if the keyword is set to a non-None value) PNG. """ kwargs.setdefault('dpi', rcParams['savefig.dpi']) if "frameon" in kwargs: cbook.warn_deprecated("3.1", name="frameon", obj_type="kwarg", alternative="facecolor") frameon = kwargs.pop("frameon") if frameon is None: frameon = dict.__getitem__(rcParams, 'savefig.frameon') else: frameon = False # Won't pass "if frameon:" below. if transparent is None: transparent = rcParams['savefig.transparent'] if transparent: kwargs.setdefault('facecolor', 'none') kwargs.setdefault('edgecolor', 'none') original_axes_colors = [] for ax in self.axes: patch = ax.patch original_axes_colors.append((patch.get_facecolor(), patch.get_edgecolor())) patch.set_facecolor('none') patch.set_edgecolor('none') else: kwargs.setdefault('facecolor', rcParams['savefig.facecolor']) kwargs.setdefault('edgecolor', rcParams['savefig.edgecolor']) if frameon: original_frameon = self.patch.get_visible() self.patch.set_visible(frameon) self.canvas.print_figure(fname, **kwargs) if frameon: self.patch.set_visible(original_frameon) if transparent: for ax, cc in zip(self.axes, original_axes_colors): ax.patch.set_facecolor(cc[0]) ax.patch.set_edgecolor(cc[1]) @docstring.dedent_interpd def colorbar(self, mappable, cax=None, ax=None, use_gridspec=True, **kw): """ Create a colorbar for a ScalarMappable instance, *mappable*. Documentation for the pyplot thin wrapper: %(colorbar_doc)s """ if ax is None: ax = self.gca() # Store the value of gca so that we can set it back later on. current_ax = self.gca() if cax is None: if use_gridspec and isinstance(ax, SubplotBase) \ and (not self.get_constrained_layout()): cax, kw = cbar.make_axes_gridspec(ax, **kw) else: cax, kw = cbar.make_axes(ax, **kw) # need to remove kws that cannot be passed to Colorbar NON_COLORBAR_KEYS = ['fraction', 'pad', 'shrink', 'aspect', 'anchor', 'panchor'] cb_kw = {k: v for k, v in kw.items() if k not in NON_COLORBAR_KEYS} cb = cbar.colorbar_factory(cax, mappable, **cb_kw) self.sca(current_ax) self.stale = True return cb def subplots_adjust(self, left=None, bottom=None, right=None, top=None, wspace=None, hspace=None): """ Update the :class:`SubplotParams` with *kwargs* (defaulting to rc when *None*) and update the subplot locations. """ if self.get_constrained_layout(): self.set_constrained_layout(False) cbook._warn_external("This figure was using " "constrained_layout==True, but that is " "incompatible with subplots_adjust and or " "tight_layout: setting " "constrained_layout==False. ") self.subplotpars.update(left, bottom, right, top, wspace, hspace) for ax in self.axes: if not isinstance(ax, SubplotBase): # Check if sharing a subplots axis if isinstance(ax._sharex, SubplotBase): ax._sharex.update_params() ax.set_position(ax._sharex.figbox) elif isinstance(ax._sharey, SubplotBase): ax._sharey.update_params() ax.set_position(ax._sharey.figbox) else: ax.update_params() ax.set_position(ax.figbox) self.stale = True def ginput(self, n=1, timeout=30, show_clicks=True, mouse_add=1, mouse_pop=3, mouse_stop=2): """ Blocking call to interact with a figure. Wait until the user clicks *n* times on the figure, and return the coordinates of each click in a list. There are three possible interactions: - Add a point. - Remove the most recently added point. - Stop the interaction and return the points added so far. The actions are assigned to mouse buttons via the arguments *mouse_add*, *mouse_pop* and *mouse_stop*. Mouse buttons are defined by the numbers: - 1: left mouse button - 2: middle mouse button - 3: right mouse button - None: no mouse button Parameters ---------- n : int, optional, default: 1 Number of mouse clicks to accumulate. If negative, accumulate clicks until the input is terminated manually. timeout : scalar, optional, default: 30 Number of seconds to wait before timing out. If zero or negative will never timeout. show_clicks : bool, optional, default: False If True, show a red cross at the location of each click. mouse_add : {1, 2, 3, None}, optional, default: 1 (left click) Mouse button used to add points. mouse_pop : {1, 2, 3, None}, optional, default: 3 (right click) Mouse button used to remove the most recently added point. mouse_stop : {1, 2, 3, None}, optional, default: 2 (middle click) Mouse button used to stop input. Returns ------- points : list of tuples A list of the clicked (x, y) coordinates. Notes ----- The keyboard can also be used to select points in case your mouse does not have one or more of the buttons. The delete and backspace keys act like right clicking (i.e., remove last point), the enter key terminates input and any other key (not already used by the window manager) selects a point. """ blocking_mouse_input = BlockingMouseInput(self, mouse_add=mouse_add, mouse_pop=mouse_pop, mouse_stop=mouse_stop) return blocking_mouse_input(n=n, timeout=timeout, show_clicks=show_clicks) def waitforbuttonpress(self, timeout=-1): """ Blocking call to interact with the figure. This will return True is a key was pressed, False if a mouse button was pressed and None if *timeout* was reached without either being pressed. If *timeout* is negative, does not timeout. """ blocking_input = BlockingKeyMouseInput(self) return blocking_input(timeout=timeout) def get_default_bbox_extra_artists(self): bbox_artists = [artist for artist in self.get_children() if (artist.get_visible() and artist.get_in_layout())] for ax in self.axes: if ax.get_visible(): bbox_artists.extend(ax.get_default_bbox_extra_artists()) # we don't want the figure's patch to influence the bbox calculation bbox_artists.remove(self.patch) return bbox_artists def get_tightbbox(self, renderer, bbox_extra_artists=None): """ Return a (tight) bounding box of the figure in inches. Artists that have ``artist.set_in_layout(False)`` are not included in the bbox. Parameters ---------- renderer : `.RendererBase` instance renderer that will be used to draw the figures (i.e. ``fig.canvas.get_renderer()``) bbox_extra_artists : list of `.Artist` or ``None`` List of artists to include in the tight bounding box. If ``None`` (default), then all artist children of each axes are included in the tight bounding box. Returns ------- bbox : `.BboxBase` containing the bounding box (in figure inches). """ bb = [] if bbox_extra_artists is None: artists = self.get_default_bbox_extra_artists() else: artists = bbox_extra_artists for a in artists: bbox = a.get_tightbbox(renderer) if bbox is not None and (bbox.width != 0 or bbox.height != 0): bb.append(bbox) for ax in self.axes: if ax.get_visible(): # some axes don't take the bbox_extra_artists kwarg so we # need this conditional.... try: bbox = ax.get_tightbbox(renderer, bbox_extra_artists=bbox_extra_artists) except TypeError: bbox = ax.get_tightbbox(renderer) bb.append(bbox) bb = [b for b in bb if (np.isfinite(b.width) and np.isfinite(b.height) and (b.width != 0 or b.height != 0))] if len(bb) == 0: return self.bbox_inches _bbox = Bbox.union(bb) bbox_inches = TransformedBbox(_bbox, Affine2D().scale(1. / self.dpi)) return bbox_inches def init_layoutbox(self): """Initialize the layoutbox for use in constrained_layout.""" if self._layoutbox is None: self._layoutbox = layoutbox.LayoutBox(parent=None, name='figlb', artist=self) self._layoutbox.constrain_geometry(0., 0., 1., 1.) def execute_constrained_layout(self, renderer=None): """ Use ``layoutbox`` to determine pos positions within axes. See also `.set_constrained_layout_pads`. """ from matplotlib._constrained_layout import do_constrained_layout _log.debug('Executing constrainedlayout') if self._layoutbox is None: cbook._warn_external("Calling figure.constrained_layout, but " "figure not setup to do constrained layout. " " You either called GridSpec without the " "fig keyword, you are using plt.subplot, " "or you need to call figure or subplots " "with the constrained_layout=True kwarg.") return w_pad, h_pad, wspace, hspace = self.get_constrained_layout_pads() # convert to unit-relative lengths fig = self width, height = fig.get_size_inches() w_pad = w_pad / width h_pad = h_pad / height if renderer is None: renderer = layoutbox.get_renderer(fig) do_constrained_layout(fig, renderer, h_pad, w_pad, hspace, wspace) def tight_layout(self, renderer=None, pad=1.08, h_pad=None, w_pad=None, rect=None): """ Automatically adjust subplot parameters to give specified padding. To exclude an artist on the axes from the bounding box calculation that determines the subplot parameters (i.e. legend, or annotation), then set `a.set_in_layout(False)` for that artist. Parameters ---------- renderer : subclass of `~.backend_bases.RendererBase`, optional Defaults to the renderer for the figure. pad : float, optional Padding between the figure edge and the edges of subplots, as a fraction of the font size. h_pad, w_pad : float, optional Padding (height/width) between edges of adjacent subplots, as a fraction of the font size. Defaults to *pad*. rect : tuple (left, bottom, right, top), optional A rectangle (left, bottom, right, top) in the normalized figure coordinate that the whole subplots area (including labels) will fit into. Default is (0, 0, 1, 1). See Also -------- .Figure.set_tight_layout .pyplot.tight_layout """ from .tight_layout import ( get_renderer, get_subplotspec_list, get_tight_layout_figure) subplotspec_list = get_subplotspec_list(self.axes) if None in subplotspec_list: cbook._warn_external("This figure includes Axes that are not " "compatible with tight_layout, so results " "might be incorrect.") if renderer is None: renderer = get_renderer(self) kwargs = get_tight_layout_figure( self, self.axes, subplotspec_list, renderer, pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect) if kwargs: self.subplots_adjust(**kwargs) def align_xlabels(self, axs=None): """ Align the ylabels of subplots in the same subplot column if label alignment is being done automatically (i.e. the label position is not manually set). Alignment persists for draw events after this is called. If a label is on the bottom, it is aligned with labels on axes that also have their label on the bottom and that have the same bottom-most subplot row. If the label is on the top, it is aligned with labels on axes with the same top-most row. Parameters ---------- axs : list of `~matplotlib.axes.Axes` Optional list of (or ndarray) `~matplotlib.axes.Axes` to align the xlabels. Default is to align all axes on the figure. See Also -------- matplotlib.figure.Figure.align_ylabels matplotlib.figure.Figure.align_labels Notes ----- This assumes that ``axs`` are from the same `.GridSpec`, so that their `.SubplotSpec` positions correspond to figure positions. Examples -------- Example with rotated xtick labels:: fig, axs = plt.subplots(1, 2) for tick in axs[0].get_xticklabels(): tick.set_rotation(55) axs[0].set_xlabel('XLabel 0') axs[1].set_xlabel('XLabel 1') fig.align_xlabels() """ if axs is None: axs = self.axes axs = np.asarray(axs).ravel() for ax in axs: _log.debug(' Working on: %s', ax.get_xlabel()) ss = ax.get_subplotspec() nrows, ncols, row0, row1, col0, col1 = ss.get_rows_columns() labpo = ax.xaxis.get_label_position() # top or bottom # loop through other axes, and search for label positions # that are same as this one, and that share the appropriate # row number. # Add to a grouper associated with each axes of sibblings. # This list is inspected in `axis.draw` by # `axis._update_label_position`. for axc in axs: if axc.xaxis.get_label_position() == labpo: ss = axc.get_subplotspec() nrows, ncols, rowc0, rowc1, colc, col1 = \ ss.get_rows_columns() if (labpo == 'bottom' and rowc1 == row1 or labpo == 'top' and rowc0 == row0): # grouper for groups of xlabels to align self._align_xlabel_grp.join(ax, axc) def align_ylabels(self, axs=None): """ Align the ylabels of subplots in the same subplot column if label alignment is being done automatically (i.e. the label position is not manually set). Alignment persists for draw events after this is called. If a label is on the left, it is aligned with labels on axes that also have their label on the left and that have the same left-most subplot column. If the label is on the right, it is aligned with labels on axes with the same right-most column. Parameters ---------- axs : list of `~matplotlib.axes.Axes` Optional list (or ndarray) of `~matplotlib.axes.Axes` to align the ylabels. Default is to align all axes on the figure. See Also -------- matplotlib.figure.Figure.align_xlabels matplotlib.figure.Figure.align_labels Notes ----- This assumes that ``axs`` are from the same `.GridSpec`, so that their `.SubplotSpec` positions correspond to figure positions. Examples -------- Example with large yticks labels:: fig, axs = plt.subplots(2, 1) axs[0].plot(np.arange(0, 1000, 50)) axs[0].set_ylabel('YLabel 0') axs[1].set_ylabel('YLabel 1') fig.align_ylabels() """ if axs is None: axs = self.axes axs = np.asarray(axs).ravel() for ax in axs: _log.debug(' Working on: %s', ax.get_ylabel()) ss = ax.get_subplotspec() nrows, ncols, row0, row1, col0, col1 = ss.get_rows_columns() labpo = ax.yaxis.get_label_position() # left or right # loop through other axes, and search for label positions # that are same as this one, and that share the appropriate # column number. # Add to a list associated with each axes of sibblings. # This list is inspected in `axis.draw` by # `axis._update_label_position`. for axc in axs: if axc != ax: if axc.yaxis.get_label_position() == labpo: ss = axc.get_subplotspec() nrows, ncols, row0, row1, colc0, colc1 = \ ss.get_rows_columns() if (labpo == 'left' and colc0 == col0 or labpo == 'right' and colc1 == col1): # grouper for groups of ylabels to align self._align_ylabel_grp.join(ax, axc) def align_labels(self, axs=None): """ Align the xlabels and ylabels of subplots with the same subplots row or column (respectively) if label alignment is being done automatically (i.e. the label position is not manually set). Alignment persists for draw events after this is called. Parameters ---------- axs : list of `~matplotlib.axes.Axes` Optional list (or ndarray) of `~matplotlib.axes.Axes` to align the labels. Default is to align all axes on the figure. See Also -------- matplotlib.figure.Figure.align_xlabels matplotlib.figure.Figure.align_ylabels """ self.align_xlabels(axs=axs) self.align_ylabels(axs=axs) def add_gridspec(self, nrows, ncols, **kwargs): """ Return a `.GridSpec` that has this figure as a parent. This allows complex layout of axes in the figure. Parameters ---------- nrows : int Number of rows in grid. ncols : int Number or columns in grid. Returns ------- gridspec : `.GridSpec` Other Parameters ---------------- **kwargs Keyword arguments are passed to `.GridSpec`. See Also -------- matplotlib.pyplot.subplots Examples -------- Adding a subplot that spans two rows:: fig = plt.figure() gs = fig.add_gridspec(2, 2) ax1 = fig.add_subplot(gs[0, 0]) ax2 = fig.add_subplot(gs[1, 0]) # spans two rows: ax3 = fig.add_subplot(gs[:, 1]) """ _ = kwargs.pop('figure', None) # pop in case user has added this... gs = GridSpec(nrows=nrows, ncols=ncols, figure=self, **kwargs) self._gridspecs.append(gs) return gs def figaspect(arg): """ Calculate the width and height for a figure with a specified aspect ratio. While the height is taken from :rc:`figure.figsize`, the width is adjusted to match the desired aspect ratio. Additionally, it is ensured that the width is in the range [4., 16.] and the height is in the range [2., 16.]. If necessary, the default height is adjusted to ensure this. Parameters ---------- arg : scalar or 2d array If a scalar, this defines the aspect ratio (i.e. the ratio height / width). In case of an array the aspect ratio is number of rows / number of columns, so that the array could be fitted in the figure undistorted. Returns ------- width, height The figure size in inches. Notes ----- If you want to create an axes within the figure, that still preserves the aspect ratio, be sure to create it with equal width and height. See examples below. Thanks to Fernando Perez for this function. Examples -------- Make a figure twice as tall as it is wide:: w, h = figaspect(2.) fig = Figure(figsize=(w, h)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.imshow(A, **kwargs) Make a figure with the proper aspect for an array:: A = rand(5,3) w, h = figaspect(A) fig = Figure(figsize=(w, h)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.imshow(A, **kwargs) """ isarray = hasattr(arg, 'shape') and not np.isscalar(arg) # min/max sizes to respect when autoscaling. If John likes the idea, they # could become rc parameters, for now they're hardwired. figsize_min = np.array((4.0, 2.0)) # min length for width/height figsize_max = np.array((16.0, 16.0)) # max length for width/height # Extract the aspect ratio of the array if isarray: nr, nc = arg.shape[:2] arr_ratio = nr / nc else: arr_ratio = arg # Height of user figure defaults fig_height = rcParams['figure.figsize'][1] # New size for the figure, keeping the aspect ratio of the caller newsize = np.array((fig_height / arr_ratio, fig_height)) # Sanity checks, don't drop either dimension below figsize_min newsize /= min(1.0, *(newsize / figsize_min)) # Avoid humongous windows as well newsize /= max(1.0, *(newsize / figsize_max)) # Finally, if we have a really funky aspect ratio, break it but respect # the min/max dimensions (we don't want figures 10 feet tall!) newsize = np.clip(newsize, figsize_min, figsize_max) return newsize docstring.interpd.update(Figure=martist.kwdoc(Figure))
52c902be41f800fd8b966705a12d2ec510e6d2eb6efd026e72c04b7eb6b15fab
""" A module for converting numbers or color arguments to *RGB* or *RGBA*. *RGB* and *RGBA* are sequences of, respectively, 3 or 4 floats in the range 0-1. This module includes functions and classes for color specification conversions, and for mapping numbers to colors in a 1-D array of colors called a colormap. Mapping data onto colors using a colormap typically involves two steps: a data array is first mapped onto the range 0-1 using a subclass of :class:`Normalize`, then this number is mapped to a color using a subclass of :class:`Colormap`. Two are provided here: :class:`LinearSegmentedColormap`, which uses piecewise-linear interpolation to define colormaps, and :class:`ListedColormap`, which makes a colormap from a list of colors. .. seealso:: :doc:`/tutorials/colors/colormap-manipulation` for examples of how to make colormaps and :doc:`/tutorials/colors/colormaps` for a list of built-in colormaps. :doc:`/tutorials/colors/colormapnorms` for more details about data normalization More colormaps are available at palettable_. The module also provides functions for checking whether an object can be interpreted as a color (:func:`is_color_like`), for converting such an object to an RGBA tuple (:func:`to_rgba`) or to an HTML-like hex string in the `#rrggbb` format (:func:`to_hex`), and a sequence of colors to an `(n, 4)` RGBA array (:func:`to_rgba_array`). Caching is used for efficiency. Matplotlib recognizes the following formats to specify a color: * an RGB or RGBA tuple of float values in ``[0, 1]`` (e.g., ``(0.1, 0.2, 0.5)`` or ``(0.1, 0.2, 0.5, 0.3)``); * a hex RGB or RGBA string (e.g., ``'#0f0f0f'`` or ``'#0f0f0f80'``; case-insensitive); * a string representation of a float value in ``[0, 1]`` inclusive for gray level (e.g., ``'0.5'``); * one of ``{'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'}``; * a X11/CSS4 color name (case-insensitive); * a name from the `xkcd color survey`_, prefixed with ``'xkcd:'`` (e.g., ``'xkcd:sky blue'``; case insensitive); * one of the Tableau Colors from the 'T10' categorical palette (the default color cycle): ``{'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'}`` (case-insensitive); * a "CN" color spec, i.e. `'C'` followed by a number, which is an index into the default property cycle (``matplotlib.rcParams['axes.prop_cycle']``); the indexing is intended to occur at rendering time, and defaults to black if the cycle does not include color. .. _palettable: https://jiffyclub.github.io/palettable/ .. _xkcd color survey: https://xkcd.com/color/rgb/ """ from collections.abc import Sized import itertools import re import numpy as np import matplotlib.cbook as cbook from ._color_data import BASE_COLORS, TABLEAU_COLORS, CSS4_COLORS, XKCD_COLORS class _ColorMapping(dict): def __init__(self, mapping): super().__init__(mapping) self.cache = {} def __setitem__(self, key, value): super().__setitem__(key, value) self.cache.clear() def __delitem__(self, key): super().__delitem__(key) self.cache.clear() _colors_full_map = {} # Set by reverse priority order. _colors_full_map.update(XKCD_COLORS) _colors_full_map.update({k.replace('grey', 'gray'): v for k, v in XKCD_COLORS.items() if 'grey' in k}) _colors_full_map.update(CSS4_COLORS) _colors_full_map.update(TABLEAU_COLORS) _colors_full_map.update({k.replace('gray', 'grey'): v for k, v in TABLEAU_COLORS.items() if 'gray' in k}) _colors_full_map.update(BASE_COLORS) _colors_full_map = _ColorMapping(_colors_full_map) def get_named_colors_mapping(): """Return the global mapping of names to named colors.""" return _colors_full_map def _sanitize_extrema(ex): if ex is None: return ex try: ret = ex.item() except AttributeError: ret = float(ex) return ret def _is_nth_color(c): """Return whether *c* can be interpreted as an item in the color cycle.""" return isinstance(c, str) and re.match(r"\AC[0-9]+\Z", c) def is_color_like(c): """Return whether *c* can be interpreted as an RGB(A) color.""" # Special-case nth color syntax because it cannot be parsed during setup. if _is_nth_color(c): return True try: to_rgba(c) except ValueError: return False else: return True def same_color(c1, c2): """ Compare two colors to see if they are the same. Parameters ---------- c1, c2 : Matplotlib colors Returns ------- bool ``True`` if *c1* and *c2* are the same color, otherwise ``False``. """ return (to_rgba_array(c1) == to_rgba_array(c2)).all() def to_rgba(c, alpha=None): """ Convert *c* to an RGBA color. Parameters ---------- c : Matplotlib color alpha : scalar, optional If *alpha* is not ``None``, it forces the alpha value, except if *c* is ``"none"`` (case-insensitive), which always maps to ``(0, 0, 0, 0)``. Returns ------- tuple Tuple of ``(r, g, b, a)`` scalars. """ # Special-case nth color syntax because it should not be cached. if _is_nth_color(c): from matplotlib import rcParams prop_cycler = rcParams['axes.prop_cycle'] colors = prop_cycler.by_key().get('color', ['k']) c = colors[int(c[1:]) % len(colors)] try: rgba = _colors_full_map.cache[c, alpha] except (KeyError, TypeError): # Not in cache, or unhashable. rgba = None if rgba is None: # Suppress exception chaining of cache lookup failure. rgba = _to_rgba_no_colorcycle(c, alpha) try: _colors_full_map.cache[c, alpha] = rgba except TypeError: pass return rgba def _to_rgba_no_colorcycle(c, alpha=None): """Convert *c* to an RGBA color, with no support for color-cycle syntax. If *alpha* is not ``None``, it forces the alpha value, except if *c* is ``"none"`` (case-insensitive), which always maps to ``(0, 0, 0, 0)``. """ orig_c = c if isinstance(c, str): if c.lower() == "none": return (0., 0., 0., 0.) # Named color. try: # This may turn c into a non-string, so we check again below. c = _colors_full_map[c] except KeyError: try: c = _colors_full_map[c.lower()] except KeyError: pass else: if len(orig_c) == 1: cbook.warn_deprecated( "3.1", message="Support for uppercase " "single-letter colors is deprecated since Matplotlib " "%(since)s and will be removed %(removal)s; please " "use lowercase instead.") if isinstance(c, str): # hex color with no alpha. match = re.match(r"\A#[a-fA-F0-9]{6}\Z", c) if match: return (tuple(int(n, 16) / 255 for n in [c[1:3], c[3:5], c[5:7]]) + (alpha if alpha is not None else 1.,)) # hex color with alpha. match = re.match(r"\A#[a-fA-F0-9]{8}\Z", c) if match: color = [int(n, 16) / 255 for n in [c[1:3], c[3:5], c[5:7], c[7:9]]] if alpha is not None: color[-1] = alpha return tuple(color) # string gray. try: c = float(c) except ValueError: pass else: if not (0 <= c <= 1): raise ValueError( f"Invalid string grayscale value {orig_c!r}. " f"Value must be within 0-1 range") return c, c, c, alpha if alpha is not None else 1. raise ValueError(f"Invalid RGBA argument: {orig_c!r}") # tuple color. c = np.array(c) if not np.can_cast(c.dtype, float, "same_kind") or c.ndim != 1: # Test the dtype explicitly as `map(float, ...)`, `np.array(..., # float)` and `np.array(...).astype(float)` all convert "0.5" to 0.5. # Test dimensionality to reject single floats. raise ValueError(f"Invalid RGBA argument: {orig_c!r}") # Return a tuple to prevent the cached value from being modified. c = tuple(c.astype(float)) if len(c) not in [3, 4]: raise ValueError("RGBA sequence should have length 3 or 4") if len(c) == 3 and alpha is None: alpha = 1 if alpha is not None: c = c[:3] + (alpha,) if any(elem < 0 or elem > 1 for elem in c): raise ValueError("RGBA values should be within 0-1 range") return c def to_rgba_array(c, alpha=None): """Convert *c* to a (n, 4) array of RGBA colors. If *alpha* is not ``None``, it forces the alpha value. If *c* is ``"none"`` (case-insensitive) or an empty list, an empty array is returned. """ # Special-case inputs that are already arrays, for performance. (If the # array has the wrong kind or shape, raise the error during one-at-a-time # conversion.) if (isinstance(c, np.ndarray) and c.dtype.kind in "if" and c.ndim == 2 and c.shape[1] in [3, 4]): if c.shape[1] == 3: result = np.column_stack([c, np.zeros(len(c))]) result[:, -1] = alpha if alpha is not None else 1. elif c.shape[1] == 4: result = c.copy() if alpha is not None: result[:, -1] = alpha if np.any((result < 0) | (result > 1)): raise ValueError("RGBA values should be within 0-1 range") return result # Handle single values. # Note that this occurs *after* handling inputs that are already arrays, as # `to_rgba(c, alpha)` (below) is expensive for such inputs, due to the need # to format the array in the ValueError message(!). if cbook._str_lower_equal(c, "none"): return np.zeros((0, 4), float) try: return np.array([to_rgba(c, alpha)], float) except (ValueError, TypeError): pass # Convert one at a time. result = np.empty((len(c), 4), float) for i, cc in enumerate(c): result[i] = to_rgba(cc, alpha) return result def to_rgb(c): """Convert *c* to an RGB color, silently dropping the alpha channel.""" return to_rgba(c)[:3] def to_hex(c, keep_alpha=False): """Convert *c* to a hex color. Uses the ``#rrggbb`` format if *keep_alpha* is False (the default), ``#rrggbbaa`` otherwise. """ c = to_rgba(c) if not keep_alpha: c = c[:3] return "#" + "".join(format(int(np.round(val * 255)), "02x") for val in c) ### Backwards-compatible color-conversion API cnames = CSS4_COLORS hexColorPattern = re.compile(r"\A#[a-fA-F0-9]{6}\Z") rgb2hex = to_hex hex2color = to_rgb class ColorConverter(object): """ This class is only kept for backwards compatibility. Its functionality is entirely provided by module-level functions. """ colors = _colors_full_map cache = _colors_full_map.cache to_rgb = staticmethod(to_rgb) to_rgba = staticmethod(to_rgba) to_rgba_array = staticmethod(to_rgba_array) colorConverter = ColorConverter() ### End of backwards-compatible color-conversion API def makeMappingArray(N, data, gamma=1.0): """Create an *N* -element 1-d lookup table *data* represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between 0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all values of x must be in increasing order. Values between the given mapping points are determined by simple linear interpolation. Alternatively, data can be a function mapping values between 0 - 1 to 0 - 1. The function returns an array "result" where ``result[x*(N-1)]`` gives the closest value for values of x between 0 and 1. """ if callable(data): xind = np.linspace(0, 1, N) ** gamma lut = np.clip(np.array(data(xind), dtype=float), 0, 1) return lut try: adata = np.array(data) except Exception: raise TypeError("data must be convertible to an array") shape = adata.shape if len(shape) != 2 or shape[1] != 3: raise ValueError("data must be nx3 format") x = adata[:, 0] y0 = adata[:, 1] y1 = adata[:, 2] if x[0] != 0. or x[-1] != 1.0: raise ValueError( "data mapping points must start with x=0 and end with x=1") if (np.diff(x) < 0).any(): raise ValueError("data mapping points must have x in increasing order") # begin generation of lookup table x = x * (N - 1) xind = (N - 1) * np.linspace(0, 1, N) ** gamma ind = np.searchsorted(x, xind)[1:-1] distance = (xind[1:-1] - x[ind - 1]) / (x[ind] - x[ind - 1]) lut = np.concatenate([ [y1[0]], distance * (y0[ind] - y1[ind - 1]) + y1[ind - 1], [y0[-1]], ]) # ensure that the lut is confined to values between 0 and 1 by clipping it return np.clip(lut, 0.0, 1.0) class Colormap(object): """ Baseclass for all scalar to RGBA mappings. Typically Colormap instances are used to convert data values (floats) from the interval ``[0, 1]`` to the RGBA color that the respective Colormap represents. For scaling of data into the ``[0, 1]`` interval see :class:`matplotlib.colors.Normalize`. It is worth noting that :class:`matplotlib.cm.ScalarMappable` subclasses make heavy use of this ``data->normalize->map-to-color`` processing chain. """ def __init__(self, name, N=256): """ Parameters ---------- name : str The name of the colormap. N : int The number of rgb quantization levels. """ self.name = name self.N = int(N) # ensure that N is always int self._rgba_bad = (0.0, 0.0, 0.0, 0.0) # If bad, don't paint anything. self._rgba_under = None self._rgba_over = None self._i_under = self.N self._i_over = self.N + 1 self._i_bad = self.N + 2 self._isinit = False #: When this colormap exists on a scalar mappable and colorbar_extend #: is not False, colorbar creation will pick up ``colorbar_extend`` as #: the default value for the ``extend`` keyword in the #: :class:`matplotlib.colorbar.Colorbar` constructor. self.colorbar_extend = False def __call__(self, X, alpha=None, bytes=False): """ Parameters ---------- X : scalar, ndarray The data value(s) to convert to RGBA. For floats, X should be in the interval ``[0.0, 1.0]`` to return the RGBA values ``X*100`` percent along the Colormap line. For integers, X should be in the interval ``[0, Colormap.N)`` to return RGBA values *indexed* from the Colormap with index ``X``. alpha : float, None Alpha must be a scalar between 0 and 1, or None. bytes : bool If False (default), the returned RGBA values will be floats in the interval ``[0, 1]`` otherwise they will be uint8s in the interval ``[0, 255]``. Returns ------- Tuple of RGBA values if X is scalar, otherwise an array of RGBA values with a shape of ``X.shape + (4, )``. """ # See class docstring for arg/kwarg documentation. if not self._isinit: self._init() mask_bad = None if not np.iterable(X): vtype = 'scalar' xa = np.array([X]) else: vtype = 'array' xma = np.ma.array(X, copy=True) # Copy here to avoid side effects. mask_bad = xma.mask # Mask will be used below. xa = xma.filled() # Fill to avoid infs, etc. del xma # Calculations with native byteorder are faster, and avoid a # bug that otherwise can occur with putmask when the last # argument is a numpy scalar. if not xa.dtype.isnative: xa = xa.byteswap().newbyteorder() if xa.dtype.kind == "f": xa *= self.N # Negative values are out of range, but astype(int) would truncate # them towards zero. xa[xa < 0] = -1 # xa == 1 (== N after multiplication) is not out of range. xa[xa == self.N] = self.N - 1 # Avoid converting large positive values to negative integers. np.clip(xa, -1, self.N, out=xa) xa = xa.astype(int) # Set the over-range indices before the under-range; # otherwise the under-range values get converted to over-range. xa[xa > self.N - 1] = self._i_over xa[xa < 0] = self._i_under if mask_bad is not None: if mask_bad.shape == xa.shape: np.copyto(xa, self._i_bad, where=mask_bad) elif mask_bad: xa.fill(self._i_bad) if bytes: lut = (self._lut * 255).astype(np.uint8) else: lut = self._lut.copy() # Don't let alpha modify original _lut. if alpha is not None: alpha = np.clip(alpha, 0, 1) if bytes: alpha = int(alpha * 255) if (lut[-1] == 0).all(): lut[:-1, -1] = alpha # All zeros is taken as a flag for the default bad # color, which is no color--fully transparent. We # don't want to override this. else: lut[:, -1] = alpha # If the bad value is set to have a color, then we # override its alpha just as for any other value. rgba = lut.take(xa, axis=0, mode='clip') if vtype == 'scalar': rgba = tuple(rgba[0, :]) return rgba def __copy__(self): """Create new object with the same class, update attributes """ cls = self.__class__ cmapobject = cls.__new__(cls) cmapobject.__dict__.update(self.__dict__) if self._isinit: cmapobject._lut = np.copy(self._lut) return cmapobject def set_bad(self, color='k', alpha=None): """Set color to be used for masked values. """ self._rgba_bad = to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_under(self, color='k', alpha=None): """Set color to be used for low out-of-range values. Requires norm.clip = False """ self._rgba_under = to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_over(self, color='k', alpha=None): """Set color to be used for high out-of-range values. Requires norm.clip = False """ self._rgba_over = to_rgba(color, alpha) if self._isinit: self._set_extremes() def _set_extremes(self): if self._rgba_under: self._lut[self._i_under] = self._rgba_under else: self._lut[self._i_under] = self._lut[0] if self._rgba_over: self._lut[self._i_over] = self._rgba_over else: self._lut[self._i_over] = self._lut[self.N - 1] self._lut[self._i_bad] = self._rgba_bad def _init(self): """Generate the lookup table, self._lut""" raise NotImplementedError("Abstract class only") def is_gray(self): if not self._isinit: self._init() return (np.all(self._lut[:, 0] == self._lut[:, 1]) and np.all(self._lut[:, 0] == self._lut[:, 2])) def _resample(self, lutsize): """ Return a new color map with *lutsize* entries. """ raise NotImplementedError() def reversed(self, name=None): """ Make a reversed instance of the Colormap. .. note:: Function not implemented for base class. Parameters ---------- name : str, optional The name for the reversed colormap. If it's None the name will be the name of the parent colormap + "_r". See Also -------- LinearSegmentedColormap.reversed ListedColormap.reversed """ raise NotImplementedError() class LinearSegmentedColormap(Colormap): """ Colormap objects based on lookup tables using linear segments. The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain divided into any number of segments. """ def __init__(self, name, segmentdata, N=256, gamma=1.0): """ Create color map from linear mapping segments segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of *x*, *y0*, *y1* tuples, forming rows in a table. Entries for alpha are optional. Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over the middle half, and blue over the top half. Then you would use:: cdict = {'red': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)], 'blue': [(0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)]} Each row in the table for a given color is a sequence of *x*, *y0*, *y1* tuples. In each sequence, *x* must increase monotonically from 0 to 1. For any input value *z* falling between *x[i]* and *x[i+1]*, the output value of a given color will be linearly interpolated between *y1[i]* and *y0[i+1]*:: row i: x y0 y1 / / row i+1: x y0 y1 Hence y0 in the first row and y1 in the last row are never used. See Also -------- LinearSegmentedColormap.from_list Static method; factory function for generating a smoothly-varying LinearSegmentedColormap. makeMappingArray For information about making a mapping array. """ # True only if all colors in map are identical; needed for contouring. self.monochrome = False Colormap.__init__(self, name, N) self._segmentdata = segmentdata self._gamma = gamma def _init(self): self._lut = np.ones((self.N + 3, 4), float) self._lut[:-3, 0] = makeMappingArray( self.N, self._segmentdata['red'], self._gamma) self._lut[:-3, 1] = makeMappingArray( self.N, self._segmentdata['green'], self._gamma) self._lut[:-3, 2] = makeMappingArray( self.N, self._segmentdata['blue'], self._gamma) if 'alpha' in self._segmentdata: self._lut[:-3, 3] = makeMappingArray( self.N, self._segmentdata['alpha'], 1) self._isinit = True self._set_extremes() def set_gamma(self, gamma): """ Set a new gamma value and regenerate color map. """ self._gamma = gamma self._init() @staticmethod def from_list(name, colors, N=256, gamma=1.0): """ Make a linear segmented colormap with *name* from a sequence of *colors* which evenly transitions from colors[0] at val=0 to colors[-1] at val=1. *N* is the number of rgb quantization levels. Alternatively, a list of (value, color) tuples can be given to divide the range unevenly. """ if not np.iterable(colors): raise ValueError('colors must be iterable') if (isinstance(colors[0], Sized) and len(colors[0]) == 2 and not isinstance(colors[0], str)): # List of value, color pairs vals, colors = zip(*colors) else: vals = np.linspace(0, 1, len(colors)) cdict = dict(red=[], green=[], blue=[], alpha=[]) for val, color in zip(vals, colors): r, g, b, a = to_rgba(color) cdict['red'].append((val, r, r)) cdict['green'].append((val, g, g)) cdict['blue'].append((val, b, b)) cdict['alpha'].append((val, a, a)) return LinearSegmentedColormap(name, cdict, N, gamma) def _resample(self, lutsize): """ Return a new color map with *lutsize* entries. """ return LinearSegmentedColormap(self.name, self._segmentdata, lutsize) def reversed(self, name=None): """ Make a reversed instance of the Colormap. Parameters ---------- name : str, optional The name for the reversed colormap. If it's None the name will be the name of the parent colormap + "_r". Returns ------- LinearSegmentedColormap The reversed colormap. """ if name is None: name = self.name + "_r" # Function factory needed to deal with 'late binding' issue. def factory(dat): def func_r(x): return dat(1.0 - x) return func_r data_r = {key: (factory(data) if callable(data) else [(1.0 - x, y1, y0) for x, y0, y1 in reversed(data)]) for key, data in self._segmentdata.items()} return LinearSegmentedColormap(name, data_r, self.N, self._gamma) class ListedColormap(Colormap): """ Colormap object generated from a list of colors. This may be most useful when indexing directly into a colormap, but it can also be used to generate special colormaps for ordinary mapping. Parameters ---------- colors : list, array List of Matplotlib color specifications, or an equivalent Nx3 or Nx4 floating point array (*N* rgb or rgba values). name : str, optional String to identify the colormap. N : int, optional Number of entries in the map. The default is *None*, in which case there is one colormap entry for each element in the list of colors. If:: N < len(colors) the list will be truncated at *N*. If:: N > len(colors) the list will be extended by repetition. """ def __init__(self, colors, name='from_list', N=None): self.monochrome = False # True only if all colors in map are # identical; needed for contouring. if N is None: self.colors = colors N = len(colors) else: if isinstance(colors, str): self.colors = [colors] * N self.monochrome = True elif np.iterable(colors): if len(colors) == 1: self.monochrome = True self.colors = list( itertools.islice(itertools.cycle(colors), N)) else: try: gray = float(colors) except TypeError: pass else: self.colors = [gray] * N self.monochrome = True Colormap.__init__(self, name, N) def _init(self): self._lut = np.zeros((self.N + 3, 4), float) self._lut[:-3] = to_rgba_array(self.colors) self._isinit = True self._set_extremes() def _resample(self, lutsize): """ Return a new color map with *lutsize* entries. """ colors = self(np.linspace(0, 1, lutsize)) return ListedColormap(colors, name=self.name) def reversed(self, name=None): """ Make a reversed instance of the Colormap. Parameters ---------- name : str, optional The name for the reversed colormap. If it's None the name will be the name of the parent colormap + "_r". Returns ------- ListedColormap A reversed instance of the colormap. """ if name is None: name = self.name + "_r" colors_r = list(reversed(self.colors)) return ListedColormap(colors_r, name=name, N=self.N) class Normalize(object): """ A class which, when called, can normalize data into the ``[0.0, 1.0]`` interval. """ def __init__(self, vmin=None, vmax=None, clip=False): """ If *vmin* or *vmax* is not given, they are initialized from the minimum and maximum value respectively of the first input processed. That is, *__call__(A)* calls *autoscale_None(A)*. If *clip* is *True* and the given value falls outside the range, the returned value will be 0 or 1, whichever is closer. Returns 0 if:: vmin==vmax Works with scalars or arrays, including masked arrays. If *clip* is *True*, masked values are set to 1; otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and masked colors in the colormap, so it is likely to lead to surprises; therefore the default is *clip* = *False*. """ self.vmin = _sanitize_extrema(vmin) self.vmax = _sanitize_extrema(vmax) self.clip = clip @staticmethod def process_value(value): """ Homogenize the input *value* for easy and efficient normalization. *value* can be a scalar or sequence. Returns *result*, *is_scalar*, where *result* is a masked array matching *value*. Float dtypes are preserved; integer types with two bytes or smaller are converted to np.float32, and larger types are converted to np.float64. Preserving float32 when possible, and using in-place operations, can greatly improve speed for large arrays. Experimental; we may want to add an option to force the use of float32. """ is_scalar = not np.iterable(value) if is_scalar: value = [value] dtype = np.min_scalar_type(value) if np.issubdtype(dtype, np.integer) or dtype.type is np.bool_: # bool_/int8/int16 -> float32; int32/int64 -> float64 dtype = np.promote_types(dtype, np.float32) # ensure data passed in as an ndarray subclass are interpreted as # an ndarray. See issue #6622. mask = np.ma.getmask(value) data = np.asarray(np.ma.getdata(value)) result = np.ma.array(data, mask=mask, dtype=dtype, copy=True) return result, is_scalar def __call__(self, value, clip=None): """ Normalize *value* data in the ``[vmin, vmax]`` interval into the ``[0.0, 1.0]`` interval and return it. *clip* defaults to *self.clip* (which defaults to *False*). If not already initialized, *vmin* and *vmax* are initialized using *autoscale_None(value)*. """ if clip is None: clip = self.clip result, is_scalar = self.process_value(value) self.autoscale_None(result) # Convert at least to float, without losing precision. (vmin,), _ = self.process_value(self.vmin) (vmax,), _ = self.process_value(self.vmax) if vmin == vmax: result.fill(0) # Or should it be all masked? Or 0.5? elif vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") else: if clip: mask = np.ma.getmask(result) result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) # ma division is very slow; we can take a shortcut resdat = result.data resdat -= vmin resdat /= (vmax - vmin) result = np.ma.array(resdat, mask=result.mask, copy=False) if is_scalar: result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") (vmin,), _ = self.process_value(self.vmin) (vmax,), _ = self.process_value(self.vmax) if np.iterable(value): val = np.ma.asarray(value) return vmin + val * (vmax - vmin) else: return vmin + value * (vmax - vmin) def autoscale(self, A): """Set *vmin*, *vmax* to min, max of *A*.""" A = np.asanyarray(A) self.vmin = A.min() self.vmax = A.max() def autoscale_None(self, A): """Autoscale only None-valued vmin or vmax.""" A = np.asanyarray(A) if self.vmin is None and A.size: self.vmin = A.min() if self.vmax is None and A.size: self.vmax = A.max() def scaled(self): """Return whether vmin and vmax are set.""" return self.vmin is not None and self.vmax is not None class DivergingNorm(Normalize): def __init__(self, vcenter, vmin=None, vmax=None): """ Normalize data with a set center. Useful when mapping data with an unequal rates of change around a conceptual center, e.g., data that range from -2 to 4, with 0 as the midpoint. Parameters ---------- vcenter : float The data value that defines ``0.5`` in the normalization. vmin : float, optional The data value that defines ``0.0`` in the normalization. Defaults to the min value of the dataset. vmax : float, optional The data value that defines ``1.0`` in the normalization. Defaults to the the max value of the dataset. Examples -------- This maps data value -4000 to 0., 0 to 0.5, and +10000 to 1.0; data between is linearly interpolated:: >>> import matplotlib.colors as mcolors >>> offset = mcolors.DivergingNorm(vmin=-4000., vcenter=0., vmax=10000) >>> data = [-4000., -2000., 0., 2500., 5000., 7500., 10000.] >>> offset(data) array([0., 0.25, 0.5, 0.625, 0.75, 0.875, 1.0]) """ self.vcenter = vcenter self.vmin = vmin self.vmax = vmax if vcenter is not None and vmax is not None and vcenter >= vmax: raise ValueError('vmin, vcenter, and vmax must be in ' 'ascending order') if vcenter is not None and vmin is not None and vcenter <= vmin: raise ValueError('vmin, vcenter, and vmax must be in ' 'ascending order') def autoscale_None(self, A): """ Get vmin and vmax, and then clip at vcenter """ super().autoscale_None(A) if self.vmin > self.vcenter: self.vmin = self.vcenter if self.vmax < self.vcenter: self.vmax = self.vcenter def __call__(self, value, clip=None): """ Map value to the interval [0, 1]. The clip argument is unused. """ result, is_scalar = self.process_value(value) self.autoscale_None(result) # sets self.vmin, self.vmax if None if not self.vmin <= self.vcenter <= self.vmax: raise ValueError("vmin, vcenter, vmax must increase monotonically") result = np.ma.masked_array( np.interp(result, [self.vmin, self.vcenter, self.vmax], [0, 0.5, 1.]), mask=np.ma.getmask(result)) if is_scalar: result = np.atleast_1d(result)[0] return result class LogNorm(Normalize): """Normalize a given value to the 0-1 range on a log scale.""" def _check_vmin_vmax(self): if self.vmin > self.vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif self.vmin <= 0: raise ValueError("minvalue must be positive") def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) result = np.ma.masked_less_equal(result, 0, copy=False) self.autoscale_None(result) self._check_vmin_vmax() vmin, vmax = self.vmin, self.vmax if vmin == vmax: result.fill(0) else: if clip: mask = np.ma.getmask(result) result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) # in-place equivalent of above can be much faster resdat = result.data mask = result.mask if mask is np.ma.nomask: mask = (resdat <= 0) else: mask |= resdat <= 0 np.copyto(resdat, 1, where=mask) np.log(resdat, resdat) resdat -= np.log(vmin) resdat /= (np.log(vmax) - np.log(vmin)) result = np.ma.array(resdat, mask=mask, copy=False) if is_scalar: result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") self._check_vmin_vmax() vmin, vmax = self.vmin, self.vmax if np.iterable(value): val = np.ma.asarray(value) return vmin * np.ma.power((vmax / vmin), val) else: return vmin * pow((vmax / vmin), value) def autoscale(self, A): # docstring inherited. super().autoscale(np.ma.masked_less_equal(A, 0, copy=False)) def autoscale_None(self, A): # docstring inherited. super().autoscale_None(np.ma.masked_less_equal(A, 0, copy=False)) class SymLogNorm(Normalize): """ The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin. Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter *linthresh* allows the user to specify the size of this range (-*linthresh*, *linthresh*). """ def __init__(self, linthresh, linscale=1.0, vmin=None, vmax=None, clip=False): """ *linthresh*: The range within which the plot is linear (to avoid having the plot go to infinity around zero). *linscale*: This allows the linear range (-*linthresh* to *linthresh*) to be stretched relative to the logarithmic range. Its value is the number of decades to use for each half of the linear range. For example, when *linscale* == 1.0 (the default), the space used for the positive and negative halves of the linear range will be equal to one decade in the logarithmic range. Defaults to 1. """ Normalize.__init__(self, vmin, vmax, clip) self.linthresh = float(linthresh) self._linscale_adj = (linscale / (1.0 - np.e ** -1)) if vmin is not None and vmax is not None: self._transform_vmin_vmax() def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) self.autoscale_None(result) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin == vmax: result.fill(0) else: if clip: mask = np.ma.getmask(result) result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) # in-place equivalent of above can be much faster resdat = self._transform(result.data) resdat -= self._lower resdat /= (self._upper - self._lower) if is_scalar: result = result[0] return result def _transform(self, a): """Inplace transformation.""" with np.errstate(invalid="ignore"): masked = np.abs(a) > self.linthresh sign = np.sign(a[masked]) log = (self._linscale_adj + np.log(np.abs(a[masked]) / self.linthresh)) log *= sign * self.linthresh a[masked] = log a[~masked] *= self._linscale_adj return a def _inv_transform(self, a): """Inverse inplace Transformation.""" masked = np.abs(a) > (self.linthresh * self._linscale_adj) sign = np.sign(a[masked]) exp = np.exp(sign * a[masked] / self.linthresh - self._linscale_adj) exp *= sign * self.linthresh a[masked] = exp a[~masked] /= self._linscale_adj return a def _transform_vmin_vmax(self): """Calculates vmin and vmax in the transformed system.""" vmin, vmax = self.vmin, self.vmax arr = np.array([vmax, vmin]).astype(float) self._upper, self._lower = self._transform(arr) def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") val = np.ma.asarray(value) val = val * (self._upper - self._lower) + self._lower return self._inv_transform(val) def autoscale(self, A): # docstring inherited. super().autoscale(A) self._transform_vmin_vmax() def autoscale_None(self, A): # docstring inherited. super().autoscale_None(A) self._transform_vmin_vmax() class PowerNorm(Normalize): """ Linearly map a given value to the 0-1 range and then apply a power-law normalization over that range. """ def __init__(self, gamma, vmin=None, vmax=None, clip=False): Normalize.__init__(self, vmin, vmax, clip) self.gamma = gamma def __call__(self, value, clip=None): if clip is None: clip = self.clip result, is_scalar = self.process_value(value) self.autoscale_None(result) gamma = self.gamma vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin == vmax: result.fill(0) else: if clip: mask = np.ma.getmask(result) result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax), mask=mask) resdat = result.data resdat -= vmin resdat[resdat < 0] = 0 np.power(resdat, gamma, resdat) resdat /= (vmax - vmin) ** gamma result = np.ma.array(resdat, mask=result.mask, copy=False) if is_scalar: result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") gamma = self.gamma vmin, vmax = self.vmin, self.vmax if np.iterable(value): val = np.ma.asarray(value) return np.ma.power(val, 1. / gamma) * (vmax - vmin) + vmin else: return pow(value, 1. / gamma) * (vmax - vmin) + vmin class BoundaryNorm(Normalize): """ Generate a colormap index based on discrete intervals. Unlike `Normalize` or `LogNorm`, `BoundaryNorm` maps values to integers instead of to the interval 0-1. Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using integers seems simpler, and reduces the number of conversions back and forth between integer and floating point. """ def __init__(self, boundaries, ncolors, clip=False): """ Parameters ---------- boundaries : array-like Monotonically increasing sequence of boundaries ncolors : int Number of colors in the colormap to be used clip : bool, optional If clip is ``True``, out of range values are mapped to 0 if they are below ``boundaries[0]`` or mapped to ncolors - 1 if they are above ``boundaries[-1]``. If clip is ``False``, out of range values are mapped to -1 if they are below ``boundaries[0]`` or mapped to ncolors if they are above ``boundaries[-1]``. These are then converted to valid indices by :meth:`Colormap.__call__`. Notes ----- *boundaries* defines the edges of bins, and data falling within a bin is mapped to the color with the same index. If the number of bins doesn't equal *ncolors*, the color is chosen by linear interpolation of the bin number onto color numbers. """ self.clip = clip self.vmin = boundaries[0] self.vmax = boundaries[-1] self.boundaries = np.asarray(boundaries) self.N = len(self.boundaries) self.Ncmap = ncolors if self.N - 1 == self.Ncmap: self._interp = False else: self._interp = True def __call__(self, value, clip=None): if clip is None: clip = self.clip xx, is_scalar = self.process_value(value) mask = np.ma.getmaskarray(xx) xx = np.atleast_1d(xx.filled(self.vmax + 1)) if clip: np.clip(xx, self.vmin, self.vmax, out=xx) max_col = self.Ncmap - 1 else: max_col = self.Ncmap iret = np.zeros(xx.shape, dtype=np.int16) for i, b in enumerate(self.boundaries): iret[xx >= b] = i if self._interp: scalefac = (self.Ncmap - 1) / (self.N - 2) iret = (iret * scalefac).astype(np.int16) iret[xx < self.vmin] = -1 iret[xx >= self.vmax] = max_col ret = np.ma.array(iret, mask=mask) if is_scalar: ret = int(ret[0]) # assume python scalar return ret def inverse(self, value): """ Raises ------ ValueError BoundaryNorm is not invertible, so calling this method will always raise an error """ return ValueError("BoundaryNorm is not invertible") class NoNorm(Normalize): """ Dummy replacement for `Normalize`, for the case where we want to use indices directly in a `~matplotlib.cm.ScalarMappable`. """ def __call__(self, value, clip=None): return value def inverse(self, value): return value def rgb_to_hsv(arr): """ Convert float rgb values (in the range [0, 1]), in a numpy array to hsv values. Parameters ---------- arr : (..., 3) array-like All values must be in the range [0, 1] Returns ------- hsv : (..., 3) ndarray Colors converted to hsv values in range [0, 1] """ arr = np.asarray(arr) # check length of the last dimension, should be _some_ sort of rgb if arr.shape[-1] != 3: raise ValueError("Last dimension of input array must be 3; " "shape {} was found.".format(arr.shape)) in_shape = arr.shape arr = np.array( arr, copy=False, dtype=np.promote_types(arr.dtype, np.float32), # Don't work on ints. ndmin=2, # In case input was 1D. ) out = np.zeros_like(arr) arr_max = arr.max(-1) ipos = arr_max > 0 delta = arr.ptp(-1) s = np.zeros_like(delta) s[ipos] = delta[ipos] / arr_max[ipos] ipos = delta > 0 # red is max idx = (arr[..., 0] == arr_max) & ipos out[idx, 0] = (arr[idx, 1] - arr[idx, 2]) / delta[idx] # green is max idx = (arr[..., 1] == arr_max) & ipos out[idx, 0] = 2. + (arr[idx, 2] - arr[idx, 0]) / delta[idx] # blue is max idx = (arr[..., 2] == arr_max) & ipos out[idx, 0] = 4. + (arr[idx, 0] - arr[idx, 1]) / delta[idx] out[..., 0] = (out[..., 0] / 6.0) % 1.0 out[..., 1] = s out[..., 2] = arr_max return out.reshape(in_shape) def hsv_to_rgb(hsv): """ Convert hsv values to rgb. Parameters ---------- hsv : (..., 3) array-like All values assumed to be in range [0, 1] Returns ------- rgb : (..., 3) ndarray Colors converted to RGB values in range [0, 1] """ hsv = np.asarray(hsv) # check length of the last dimension, should be _some_ sort of rgb if hsv.shape[-1] != 3: raise ValueError("Last dimension of input array must be 3; " "shape {shp} was found.".format(shp=hsv.shape)) in_shape = hsv.shape hsv = np.array( hsv, copy=False, dtype=np.promote_types(hsv.dtype, np.float32), # Don't work on ints. ndmin=2, # In case input was 1D. ) h = hsv[..., 0] s = hsv[..., 1] v = hsv[..., 2] r = np.empty_like(h) g = np.empty_like(h) b = np.empty_like(h) i = (h * 6.0).astype(int) f = (h * 6.0) - i p = v * (1.0 - s) q = v * (1.0 - s * f) t = v * (1.0 - s * (1.0 - f)) idx = i % 6 == 0 r[idx] = v[idx] g[idx] = t[idx] b[idx] = p[idx] idx = i == 1 r[idx] = q[idx] g[idx] = v[idx] b[idx] = p[idx] idx = i == 2 r[idx] = p[idx] g[idx] = v[idx] b[idx] = t[idx] idx = i == 3 r[idx] = p[idx] g[idx] = q[idx] b[idx] = v[idx] idx = i == 4 r[idx] = t[idx] g[idx] = p[idx] b[idx] = v[idx] idx = i == 5 r[idx] = v[idx] g[idx] = p[idx] b[idx] = q[idx] idx = s == 0 r[idx] = v[idx] g[idx] = v[idx] b[idx] = v[idx] rgb = np.stack([r, g, b], axis=-1) return rgb.reshape(in_shape) def _vector_magnitude(arr): # things that don't work here: # * np.linalg.norm # - doesn't broadcast in numpy 1.7 # - drops the mask from ma.array # * using keepdims - broken on ma.array until 1.11.2 # * using sum - discards mask on ma.array unless entire vector is masked sum_sq = 0 for i in range(arr.shape[-1]): sum_sq += np.square(arr[..., i, np.newaxis]) return np.sqrt(sum_sq) class LightSource(object): """ Create a light source coming from the specified azimuth and elevation. Angles are in degrees, with the azimuth measured clockwise from north and elevation up from the zero plane of the surface. The :meth:`shade` is used to produce "shaded" rgb values for a data array. :meth:`shade_rgb` can be used to combine an rgb image with The :meth:`shade_rgb` The :meth:`hillshade` produces an illumination map of a surface. """ def __init__(self, azdeg=315, altdeg=45, hsv_min_val=0, hsv_max_val=1, hsv_min_sat=1, hsv_max_sat=0): """ Specify the azimuth (measured clockwise from south) and altitude (measured up from the plane of the surface) of the light source in degrees. Parameters ---------- azdeg : number, optional The azimuth (0-360, degrees clockwise from North) of the light source. Defaults to 315 degrees (from the northwest). altdeg : number, optional The altitude (0-90, degrees up from horizontal) of the light source. Defaults to 45 degrees from horizontal. Notes ----- For backwards compatibility, the parameters *hsv_min_val*, *hsv_max_val*, *hsv_min_sat*, and *hsv_max_sat* may be supplied at initialization as well. However, these parameters will only be used if "blend_mode='hsv'" is passed into :meth:`shade` or :meth:`shade_rgb`. See the documentation for :meth:`blend_hsv` for more details. """ self.azdeg = azdeg self.altdeg = altdeg self.hsv_min_val = hsv_min_val self.hsv_max_val = hsv_max_val self.hsv_min_sat = hsv_min_sat self.hsv_max_sat = hsv_max_sat @property def direction(self): """The unit vector direction towards the light source.""" # Azimuth is in degrees clockwise from North. Convert to radians # counterclockwise from East (mathematical notation). az = np.radians(90 - self.azdeg) alt = np.radians(self.altdeg) return np.array([ np.cos(az) * np.cos(alt), np.sin(az) * np.cos(alt), np.sin(alt) ]) def hillshade(self, elevation, vert_exag=1, dx=1, dy=1, fraction=1.): """ Calculates the illumination intensity for a surface using the defined azimuth and elevation for the light source. This computes the normal vectors for the surface, and then passes them on to `shade_normals` Parameters ---------- elevation : array-like A 2d array (or equivalent) of the height values used to generate an illumination map vert_exag : number, optional The amount to exaggerate the elevation values by when calculating illumination. This can be used either to correct for differences in units between the x-y coordinate system and the elevation coordinate system (e.g. decimal degrees vs meters) or to exaggerate or de-emphasize topographic effects. dx : number, optional The x-spacing (columns) of the input *elevation* grid. dy : number, optional The y-spacing (rows) of the input *elevation* grid. fraction : number, optional Increases or decreases the contrast of the hillshade. Values greater than one will cause intermediate values to move closer to full illumination or shadow (and clipping any values that move beyond 0 or 1). Note that this is not visually or mathematically the same as vertical exaggeration. Returns ------- intensity : ndarray A 2d array of illumination values between 0-1, where 0 is completely in shadow and 1 is completely illuminated. """ # Because most image and raster GIS data has the first row in the array # as the "top" of the image, dy is implicitly negative. This is # consistent to what `imshow` assumes, as well. dy = -dy # compute the normal vectors from the partial derivatives e_dy, e_dx = np.gradient(vert_exag * elevation, dy, dx) # .view is to keep subclasses normal = np.empty(elevation.shape + (3,)).view(type(elevation)) normal[..., 0] = -e_dx normal[..., 1] = -e_dy normal[..., 2] = 1 normal /= _vector_magnitude(normal) return self.shade_normals(normal, fraction) def shade_normals(self, normals, fraction=1.): """ Calculates the illumination intensity for the normal vectors of a surface using the defined azimuth and elevation for the light source. Imagine an artificial sun placed at infinity in some azimuth and elevation position illuminating our surface. The parts of the surface that slope toward the sun should brighten while those sides facing away should become darker. Parameters ---------- fraction : number, optional Increases or decreases the contrast of the hillshade. Values greater than one will cause intermediate values to move closer to full illumination or shadow (and clipping any values that move beyond 0 or 1). Note that this is not visually or mathematically the same as vertical exaggeration. Returns ------- intensity : ndarray A 2d array of illumination values between 0-1, where 0 is completely in shadow and 1 is completely illuminated. """ intensity = normals.dot(self.direction) # Apply contrast stretch imin, imax = intensity.min(), intensity.max() intensity *= fraction # Rescale to 0-1, keeping range before contrast stretch # If constant slope, keep relative scaling (i.e. flat should be 0.5, # fully occluded 0, etc.) if (imax - imin) > 1e-6: # Strictly speaking, this is incorrect. Negative values should be # clipped to 0 because they're fully occluded. However, rescaling # in this manner is consistent with the previous implementation and # visually appears better than a "hard" clip. intensity -= imin intensity /= (imax - imin) intensity = np.clip(intensity, 0, 1, intensity) return intensity def shade(self, data, cmap, norm=None, blend_mode='overlay', vmin=None, vmax=None, vert_exag=1, dx=1, dy=1, fraction=1, **kwargs): """ Combine colormapped data values with an illumination intensity map (a.k.a. "hillshade") of the values. Parameters ---------- data : array-like A 2d array (or equivalent) of the height values used to generate a shaded map. cmap : `~matplotlib.colors.Colormap` instance The colormap used to color the *data* array. Note that this must be a `~matplotlib.colors.Colormap` instance. For example, rather than passing in `cmap='gist_earth'`, use `cmap=plt.get_cmap('gist_earth')` instead. norm : `~matplotlib.colors.Normalize` instance, optional The normalization used to scale values before colormapping. If None, the input will be linearly scaled between its min and max. blend_mode : {'hsv', 'overlay', 'soft'} or callable, optional The type of blending used to combine the colormapped data values with the illumination intensity. Default is "overlay". Note that for most topographic surfaces, "overlay" or "soft" appear more visually realistic. If a user-defined function is supplied, it is expected to combine an MxNx3 RGB array of floats (ranging 0 to 1) with an MxNx1 hillshade array (also 0 to 1). (Call signature `func(rgb, illum, **kwargs)`) Additional kwargs supplied to this function will be passed on to the *blend_mode* function. vmin : scalar or None, optional The minimum value used in colormapping *data*. If *None* the minimum value in *data* is used. If *norm* is specified, then this argument will be ignored. vmax : scalar or None, optional The maximum value used in colormapping *data*. If *None* the maximum value in *data* is used. If *norm* is specified, then this argument will be ignored. vert_exag : number, optional The amount to exaggerate the elevation values by when calculating illumination. This can be used either to correct for differences in units between the x-y coordinate system and the elevation coordinate system (e.g. decimal degrees vs meters) or to exaggerate or de-emphasize topography. dx : number, optional The x-spacing (columns) of the input *elevation* grid. dy : number, optional The y-spacing (rows) of the input *elevation* grid. fraction : number, optional Increases or decreases the contrast of the hillshade. Values greater than one will cause intermediate values to move closer to full illumination or shadow (and clipping any values that move beyond 0 or 1). Note that this is not visually or mathematically the same as vertical exaggeration. Additional kwargs are passed on to the *blend_mode* function. Returns ------- rgba : ndarray An MxNx4 array of floats ranging between 0-1. """ if vmin is None: vmin = data.min() if vmax is None: vmax = data.max() if norm is None: norm = Normalize(vmin=vmin, vmax=vmax) rgb0 = cmap(norm(data)) rgb1 = self.shade_rgb(rgb0, elevation=data, blend_mode=blend_mode, vert_exag=vert_exag, dx=dx, dy=dy, fraction=fraction, **kwargs) # Don't overwrite the alpha channel, if present. rgb0[..., :3] = rgb1[..., :3] return rgb0 def shade_rgb(self, rgb, elevation, fraction=1., blend_mode='hsv', vert_exag=1, dx=1, dy=1, **kwargs): """ Use this light source to adjust the colors of the *rgb* input array to give the impression of a shaded relief map with the given `elevation`. Parameters ---------- rgb : array-like An (M, N, 3) RGB array, assumed to be in the range of 0 to 1. elevation : array-like An (M, N) array of the height values used to generate a shaded map. fraction : number Increases or decreases the contrast of the hillshade. Values greater than one will cause intermediate values to move closer to full illumination or shadow (and clipping any values that move beyond 0 or 1). Note that this is not visually or mathematically the same as vertical exaggeration. blend_mode : {'hsv', 'overlay', 'soft'} or callable, optional The type of blending used to combine the colormapped data values with the illumination intensity. For backwards compatibility, this defaults to "hsv". Note that for most topographic surfaces, "overlay" or "soft" appear more visually realistic. If a user-defined function is supplied, it is expected to combine an MxNx3 RGB array of floats (ranging 0 to 1) with an MxNx1 hillshade array (also 0 to 1). (Call signature `func(rgb, illum, **kwargs)`) Additional kwargs supplied to this function will be passed on to the *blend_mode* function. vert_exag : number, optional The amount to exaggerate the elevation values by when calculating illumination. This can be used either to correct for differences in units between the x-y coordinate system and the elevation coordinate system (e.g. decimal degrees vs meters) or to exaggerate or de-emphasize topography. dx : number, optional The x-spacing (columns) of the input *elevation* grid. dy : number, optional The y-spacing (rows) of the input *elevation* grid. Additional kwargs are passed on to the *blend_mode* function. Returns ------- shaded_rgb : ndarray An (m, n, 3) array of floats ranging between 0-1. """ # Calculate the "hillshade" intensity. intensity = self.hillshade(elevation, vert_exag, dx, dy, fraction) intensity = intensity[..., np.newaxis] # Blend the hillshade and rgb data using the specified mode lookup = { 'hsv': self.blend_hsv, 'soft': self.blend_soft_light, 'overlay': self.blend_overlay, } if blend_mode in lookup: blend = lookup[blend_mode](rgb, intensity, **kwargs) else: try: blend = blend_mode(rgb, intensity, **kwargs) except TypeError: raise ValueError('"blend_mode" must be callable or one of {}' .format(lookup.keys)) # Only apply result where hillshade intensity isn't masked if hasattr(intensity, 'mask'): mask = intensity.mask[..., 0] for i in range(3): blend[..., i][mask] = rgb[..., i][mask] return blend def blend_hsv(self, rgb, intensity, hsv_max_sat=None, hsv_max_val=None, hsv_min_val=None, hsv_min_sat=None): """ Take the input data array, convert to HSV values in the given colormap, then adjust those color values to give the impression of a shaded relief map with a specified light source. RGBA values are returned, which can then be used to plot the shaded image with imshow. The color of the resulting image will be darkened by moving the (s,v) values (in hsv colorspace) toward (hsv_min_sat, hsv_min_val) in the shaded regions, or lightened by sliding (s,v) toward (hsv_max_sat hsv_max_val) in regions that are illuminated. The default extremes are chose so that completely shaded points are nearly black (s = 1, v = 0) and completely illuminated points are nearly white (s = 0, v = 1). Parameters ---------- rgb : ndarray An MxNx3 RGB array of floats ranging from 0 to 1 (color image). intensity : ndarray An MxNx1 array of floats ranging from 0 to 1 (grayscale image). hsv_max_sat : number, optional The maximum saturation value that the *intensity* map can shift the output image to. Defaults to 1. hsv_min_sat : number, optional The minimum saturation value that the *intensity* map can shift the output image to. Defaults to 0. hsv_max_val : number, optional The maximum value ("v" in "hsv") that the *intensity* map can shift the output image to. Defaults to 1. hsv_min_val : number, optional The minimum value ("v" in "hsv") that the *intensity* map can shift the output image to. Defaults to 0. Returns ------- rgb : ndarray An MxNx3 RGB array representing the combined images. """ # Backward compatibility... if hsv_max_sat is None: hsv_max_sat = self.hsv_max_sat if hsv_max_val is None: hsv_max_val = self.hsv_max_val if hsv_min_sat is None: hsv_min_sat = self.hsv_min_sat if hsv_min_val is None: hsv_min_val = self.hsv_min_val # Expects a 2D intensity array scaled between -1 to 1... intensity = intensity[..., 0] intensity = 2 * intensity - 1 # Convert to rgb, then rgb to hsv hsv = rgb_to_hsv(rgb[:, :, 0:3]) hue, sat, val = np.moveaxis(hsv, -1, 0) # Modify hsv values (in place) to simulate illumination. # putmask(A, mask, B) <=> A[mask] = B[mask] np.putmask(sat, (np.abs(sat) > 1.e-10) & (intensity > 0), (1 - intensity) * sat + intensity * hsv_max_sat) np.putmask(sat, (np.abs(sat) > 1.e-10) & (intensity < 0), (1 + intensity) * sat - intensity * hsv_min_sat) np.putmask(val, intensity > 0, (1 - intensity) * val + intensity * hsv_max_val) np.putmask(val, intensity < 0, (1 + intensity) * val - intensity * hsv_min_val) np.clip(hsv[:, :, 1:], 0, 1, out=hsv[:, :, 1:]) # Convert modified hsv back to rgb. return hsv_to_rgb(hsv) def blend_soft_light(self, rgb, intensity): """ Combines an rgb image with an intensity map using "soft light" blending. Uses the "pegtop" formula. Parameters ---------- rgb : ndarray An MxNx3 RGB array of floats ranging from 0 to 1 (color image). intensity : ndarray An MxNx1 array of floats ranging from 0 to 1 (grayscale image). Returns ------- rgb : ndarray An MxNx3 RGB array representing the combined images. """ return 2 * intensity * rgb + (1 - 2 * intensity) * rgb**2 def blend_overlay(self, rgb, intensity): """ Combines an rgb image with an intensity map using "overlay" blending. Parameters ---------- rgb : ndarray An MxNx3 RGB array of floats ranging from 0 to 1 (color image). intensity : ndarray An MxNx1 array of floats ranging from 0 to 1 (grayscale image). Returns ------- rgb : ndarray An MxNx3 RGB array representing the combined images. """ low = 2 * intensity * rgb high = 1 - 2 * (1 - intensity) * (1 - rgb) return np.where(rgb <= 0.5, low, high) def from_levels_and_colors(levels, colors, extend='neither'): """ A helper routine to generate a cmap and a norm instance which behave similar to contourf's levels and colors arguments. Parameters ---------- levels : sequence of numbers The quantization levels used to construct the :class:`BoundaryNorm`. Value ``v`` is quantized to level ``i`` if ``lev[i] <= v < lev[i+1]``. colors : sequence of colors The fill color to use for each level. If `extend` is "neither" there must be ``n_level - 1`` colors. For an `extend` of "min" or "max" add one extra color, and for an `extend` of "both" add two colors. extend : {'neither', 'min', 'max', 'both'}, optional The behaviour when a value falls out of range of the given levels. See :func:`~matplotlib.pyplot.contourf` for details. Returns ------- (cmap, norm) : tuple containing a :class:`Colormap` and a \ :class:`Normalize` instance """ colors_i0 = 0 colors_i1 = None if extend == 'both': colors_i0 = 1 colors_i1 = -1 extra_colors = 2 elif extend == 'min': colors_i0 = 1 extra_colors = 1 elif extend == 'max': colors_i1 = -1 extra_colors = 1 elif extend == 'neither': extra_colors = 0 else: raise ValueError('Unexpected value for extend: {0!r}'.format(extend)) n_data_colors = len(levels) - 1 n_expected_colors = n_data_colors + extra_colors if len(colors) != n_expected_colors: raise ValueError('With extend == {0!r} and n_levels == {1!r} expected' ' n_colors == {2!r}. Got {3!r}.' ''.format(extend, len(levels), n_expected_colors, len(colors))) cmap = ListedColormap(colors[colors_i0:colors_i1], N=n_data_colors) if extend in ['min', 'both']: cmap.set_under(colors[0]) else: cmap.set_under('none') if extend in ['max', 'both']: cmap.set_over(colors[-1]) else: cmap.set_over('none') cmap.colorbar_extend = extend norm = BoundaryNorm(levels, ncolors=n_data_colors) return cmap, norm
daf9b817119ef411c20b7097bddd74d0ca0f62f18ec072c5f0bcca4b3b05274a
# Original code by: # John Gill <[email protected]> # Copyright 2004 John Gill and John Hunter # # Subsequent changes: # The Matplotlib development team # Copyright The Matplotlib development team """ This module provides functionality to add a table to a plot. Use the factory function `~matplotlib.table.table` to create a ready-made table from texts. If you need more control, use the `.Table` class and its methods. The table consists of a grid of cells, which are indexed by (row, column). The cell (0, 0) is positioned at the top left. Thanks to John Gill for providing the class and table. """ from . import artist, cbook, docstring from .artist import Artist, allow_rasterization from .patches import Rectangle from .text import Text from .transforms import Bbox from .path import Path class Cell(Rectangle): """ A cell is a `.Rectangle` with some associated `.Text`. .. note: As a user, you'll most likely not creates cells yourself. Instead, you should use either the `~matplotlib.table.table` factory function or `.Table.add_cell`. Parameters ---------- xy : 2-tuple The position of the bottom left corner of the cell. width : float The cell width. height : float The cell height. edgecolor : color spec The color of the cell border. facecolor : color spec The cell facecolor. fill : bool Whether the cell background is filled. text : str The cell text. loc : {'left', 'center', 'right'}, default: 'right' The alignment of the text within the cell. fontproperties : dict A dict defining the font properties of the text. Supported keys and values are the keyword arguments accepted by `.FontProperties`. """ PAD = 0.1 """Padding between text and rectangle.""" def __init__(self, xy, width, height, edgecolor='k', facecolor='w', fill=True, text='', loc=None, fontproperties=None ): # Call base Rectangle.__init__(self, xy, width=width, height=height, fill=fill, edgecolor=edgecolor, facecolor=facecolor) self.set_clip_on(False) # Create text object if loc is None: loc = 'right' self._loc = loc self._text = Text(x=xy[0], y=xy[1], text=text, fontproperties=fontproperties) self._text.set_clip_on(False) def set_transform(self, trans): Rectangle.set_transform(self, trans) # the text does not get the transform! self.stale = True def set_figure(self, fig): Rectangle.set_figure(self, fig) self._text.set_figure(fig) def get_text(self): """Return the cell `.Text` instance.""" return self._text def set_fontsize(self, size): """Set the text fontsize.""" self._text.set_fontsize(size) self.stale = True def get_fontsize(self): """Return the cell fontsize.""" return self._text.get_fontsize() def auto_set_font_size(self, renderer): """Shrink font size until the text fits into the cell width.""" fontsize = self.get_fontsize() required = self.get_required_width(renderer) while fontsize > 1 and required > self.get_width(): fontsize -= 1 self.set_fontsize(fontsize) required = self.get_required_width(renderer) return fontsize @allow_rasterization def draw(self, renderer): if not self.get_visible(): return # draw the rectangle Rectangle.draw(self, renderer) # position the text self._set_text_position(renderer) self._text.draw(renderer) self.stale = False def _set_text_position(self, renderer): """Set text up so it draws in the right place. Currently support 'left', 'center' and 'right' """ bbox = self.get_window_extent(renderer) l, b, w, h = bbox.bounds # draw in center vertically self._text.set_verticalalignment('center') y = b + (h / 2.0) # now position horizontally if self._loc == 'center': self._text.set_horizontalalignment('center') x = l + (w / 2.0) elif self._loc == 'left': self._text.set_horizontalalignment('left') x = l + (w * self.PAD) else: self._text.set_horizontalalignment('right') x = l + (w * (1.0 - self.PAD)) self._text.set_position((x, y)) def get_text_bounds(self, renderer): """ Return the text bounds as *(x, y, width, height)* in table coordinates. """ bbox = self._text.get_window_extent(renderer) bboxa = bbox.inverse_transformed(self.get_data_transform()) return bboxa.bounds def get_required_width(self, renderer): """Return the minimal required width for the cell.""" l, b, w, h = self.get_text_bounds(renderer) return w * (1.0 + (2.0 * self.PAD)) @docstring.dedent_interpd def set_text_props(self, **kwargs): """ Update the text properties. Valid kwargs are %(Text)s """ self._text.update(kwargs) self.stale = True class CustomCell(Cell): """ A `.Cell` subclass with configurable edge visibility. """ _edges = 'BRTL' _edge_aliases = {'open': '', 'closed': _edges, # default 'horizontal': 'BT', 'vertical': 'RL' } def __init__(self, *args, visible_edges, **kwargs): super().__init__(*args, **kwargs) self.visible_edges = visible_edges @property def visible_edges(self): """ The cell edges to be drawn with a line. Reading this property returns a substring of 'BRTL' (bottom, right, top, left'). When setting this property, you can use a substring of 'BRTL' or one of {'open', 'closed', 'horizontal', 'vertical'}. """ return self._visible_edges @visible_edges.setter def visible_edges(self, value): if value is None: self._visible_edges = self._edges elif value in self._edge_aliases: self._visible_edges = self._edge_aliases[value] else: if any(edge not in self._edges for edge in value): raise ValueError('Invalid edge param {}, must only be one of ' '{} or string of {}'.format( value, ", ".join(self._edge_aliases), ", ".join(self._edges))) self._visible_edges = value self.stale = True def get_path(self): """Return a `.Path` for the `.visible_edges`.""" codes = [Path.MOVETO] for edge in self._edges: if edge in self._visible_edges: codes.append(Path.LINETO) else: codes.append(Path.MOVETO) if Path.MOVETO not in codes[1:]: # All sides are visible codes[-1] = Path.CLOSEPOLY return Path( [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]], codes, readonly=True ) class Table(Artist): """ A table of cells. The table consists of a grid of cells, which are indexed by (row, column). For a simple table, you'll have a full grid of cells with indices from (0, 0) to (num_rows-1, num_cols-1), in which the cell (0, 0) is positioned at the top left. However, you can also add cells with negative indices. You don't have to add a cell to every grid position, so you can create tables that have holes. *Note*: You'll usually not create an empty table from scratch. Instead use `~matplotlib.table.table` to create a table from data. """ codes = {'best': 0, 'upper right': 1, # default 'upper left': 2, 'lower left': 3, 'lower right': 4, 'center left': 5, 'center right': 6, 'lower center': 7, 'upper center': 8, 'center': 9, 'top right': 10, 'top left': 11, 'bottom left': 12, 'bottom right': 13, 'right': 14, 'left': 15, 'top': 16, 'bottom': 17, } """Possible values where to place the table relative to the Axes.""" FONTSIZE = 10 AXESPAD = 0.02 """The border between the Axes and the table edge in Axes units.""" def __init__(self, ax, loc=None, bbox=None, **kwargs): """ Parameters ---------- ax : `matplotlib.axes.Axes` The `~.axes.Axes` to plot the table into. loc : str The position of the cell with respect to *ax*. This must be one of the `~.Table.codes`. bbox : `.Bbox` or None A bounding box to draw the table into. If this is not *None*, this overrides *loc*. Other Parameters ---------------- **kwargs `.Artist` properties. """ Artist.__init__(self) if isinstance(loc, str): if loc not in self.codes: cbook.warn_deprecated( "3.1", message="Unrecognized location {!r}. Falling back " "on 'bottom'; valid locations are\n\t{}\n" "This will raise an exception %(removal)s." .format(loc, '\n\t'.join(self.codes))) loc = 'bottom' loc = self.codes[loc] self.set_figure(ax.figure) self._axes = ax self._loc = loc self._bbox = bbox # use axes coords self.set_transform(ax.transAxes) self._cells = {} self._edges = None self._autoColumns = [] self._autoFontsize = True self.update(kwargs) self.set_clip_on(False) def add_cell(self, row, col, *args, **kwargs): """ Create a cell and add it to the table. Parameters ---------- row : int Row index. col : int Column index. *args, **kwargs All other parameters are passed on to `Cell`. Returns ------- cell : `.CustomCell` The created cell. """ xy = (0, 0) cell = CustomCell(xy, visible_edges=self.edges, *args, **kwargs) self[row, col] = cell return cell def __setitem__(self, position, cell): """ Set a custom cell in a given position. """ if not isinstance(cell, CustomCell): raise TypeError('Table only accepts CustomCell') try: row, col = position[0], position[1] except Exception: raise KeyError('Only tuples length 2 are accepted as coordinates') cell.set_figure(self.figure) cell.set_transform(self.get_transform()) cell.set_clip_on(False) self._cells[row, col] = cell self.stale = True def __getitem__(self, position): """Retrieve a custom cell from a given position.""" return self._cells[position] @property def edges(self): """ The default value of `~.CustomCell.visible_edges` for newly added cells using `.add_cell`. Notes ----- This setting does currently only affect newly created cells using `.add_cell`. To change existing cells, you have to set their edges explicitly:: for c in tab.get_celld().values(): c.visible_edges = 'horizontal' """ return self._edges @edges.setter def edges(self, value): self._edges = value self.stale = True def _approx_text_height(self): return (self.FONTSIZE / 72.0 * self.figure.dpi / self._axes.bbox.height * 1.2) @allow_rasterization def draw(self, renderer): # docstring inherited # Need a renderer to do hit tests on mouseevent; assume the last one # will do if renderer is None: renderer = self.figure._cachedRenderer if renderer is None: raise RuntimeError('No renderer defined') if not self.get_visible(): return renderer.open_group('table') self._update_positions(renderer) for key in sorted(self._cells): self._cells[key].draw(renderer) renderer.close_group('table') self.stale = False def _get_grid_bbox(self, renderer): """Get a bbox, in axes co-ordinates for the cells. Only include those in the range (0,0) to (maxRow, maxCol)""" boxes = [cell.get_window_extent(renderer) for (row, col), cell in self._cells.items() if row >= 0 and col >= 0] bbox = Bbox.union(boxes) return bbox.inverse_transformed(self.get_transform()) def contains(self, mouseevent): # docstring inherited if self._contains is not None: return self._contains(self, mouseevent) # TODO: Return index of the cell containing the cursor so that the user # doesn't have to bind to each one individually. renderer = self.figure._cachedRenderer if renderer is not None: boxes = [cell.get_window_extent(renderer) for (row, col), cell in self._cells.items() if row >= 0 and col >= 0] bbox = Bbox.union(boxes) return bbox.contains(mouseevent.x, mouseevent.y), {} else: return False, {} def get_children(self): """Return the Artists contained by the table.""" return list(self._cells.values()) get_child_artists = cbook.deprecated("3.0")(get_children) def get_window_extent(self, renderer): """Return the bounding box of the table in window coords.""" boxes = [cell.get_window_extent(renderer) for cell in self._cells.values()] return Bbox.union(boxes) def _do_cell_alignment(self): """ Calculate row heights and column widths; position cells accordingly. """ # Calculate row/column widths widths = {} heights = {} for (row, col), cell in self._cells.items(): height = heights.setdefault(row, 0.0) heights[row] = max(height, cell.get_height()) width = widths.setdefault(col, 0.0) widths[col] = max(width, cell.get_width()) # work out left position for each column xpos = 0 lefts = {} for col in sorted(widths): lefts[col] = xpos xpos += widths[col] ypos = 0 bottoms = {} for row in sorted(heights, reverse=True): bottoms[row] = ypos ypos += heights[row] # set cell positions for (row, col), cell in self._cells.items(): cell.set_x(lefts[col]) cell.set_y(bottoms[row]) def auto_set_column_width(self, col): """ Automatically set the widths of given columns to optimal sizes. Parameters ---------- col : int or sequence of ints The indices of the columns to auto-scale. """ # check for col possibility on iteration try: iter(col) except (TypeError, AttributeError): self._autoColumns.append(col) else: for cell in col: self._autoColumns.append(cell) self.stale = True def _auto_set_column_width(self, col, renderer): """Automatically set width for column.""" cells = [cell for key, cell in self._cells.items() if key[1] == col] max_width = max((cell.get_required_width(renderer) for cell in cells), default=0) for cell in cells: cell.set_width(max_width) def auto_set_font_size(self, value=True): """Automatically set font size.""" self._autoFontsize = value self.stale = True def _auto_set_font_size(self, renderer): if len(self._cells) == 0: return fontsize = next(iter(self._cells.values())).get_fontsize() cells = [] for key, cell in self._cells.items(): # ignore auto-sized columns if key[1] in self._autoColumns: continue size = cell.auto_set_font_size(renderer) fontsize = min(fontsize, size) cells.append(cell) # now set all fontsizes equal for cell in self._cells.values(): cell.set_fontsize(fontsize) def scale(self, xscale, yscale): """Scale column widths by *xscale* and row heights by *yscale*.""" for c in self._cells.values(): c.set_width(c.get_width() * xscale) c.set_height(c.get_height() * yscale) def set_fontsize(self, size): """ Set the font size, in points, of the cell text. Parameters ---------- size : float Notes ----- As long as auto font size has not been disabled, the value will be clipped such that the text fits horizontally into the cell. You can disable this behavior using `.auto_set_font_size`. >>> the_table.auto_set_font_size(False) >>> the_table.set_fontsize(20) However, there is no automatic scaling of the row height so that the text may exceed the cell boundary. """ for cell in self._cells.values(): cell.set_fontsize(size) self.stale = True def _offset(self, ox, oy): """Move all the artists by ox, oy (axes coords).""" for c in self._cells.values(): x, y = c.get_x(), c.get_y() c.set_x(x + ox) c.set_y(y + oy) def _update_positions(self, renderer): # called from renderer to allow more precise estimates of # widths and heights with get_window_extent # Do any auto width setting for col in self._autoColumns: self._auto_set_column_width(col, renderer) if self._autoFontsize: self._auto_set_font_size(renderer) # Align all the cells self._do_cell_alignment() bbox = self._get_grid_bbox(renderer) l, b, w, h = bbox.bounds if self._bbox is not None: # Position according to bbox rl, rb, rw, rh = self._bbox self.scale(rw / w, rh / h) ox = rl - l oy = rb - b self._do_cell_alignment() else: # Position using loc (BEST, UR, UL, LL, LR, CL, CR, LC, UC, C, TR, TL, BL, BR, R, L, T, B) = range(len(self.codes)) # defaults for center ox = (0.5 - w / 2) - l oy = (0.5 - h / 2) - b if self._loc in (UL, LL, CL): # left ox = self.AXESPAD - l if self._loc in (BEST, UR, LR, R, CR): # right ox = 1 - (l + w + self.AXESPAD) if self._loc in (BEST, UR, UL, UC): # upper oy = 1 - (b + h + self.AXESPAD) if self._loc in (LL, LR, LC): # lower oy = self.AXESPAD - b if self._loc in (LC, UC, C): # center x ox = (0.5 - w / 2) - l if self._loc in (CL, CR, C): # center y oy = (0.5 - h / 2) - b if self._loc in (TL, BL, L): # out left ox = - (l + w) if self._loc in (TR, BR, R): # out right ox = 1.0 - l if self._loc in (TR, TL, T): # out top oy = 1.0 - b if self._loc in (BL, BR, B): # out bottom oy = - (b + h) self._offset(ox, oy) def get_celld(self): r""" Return a dict of cells in the table mapping *(row, column)* to `.Cell`\s. Notes ----- You can also directly index into the Table object to access individual cells:: cell = table[row, col] """ return self._cells docstring.interpd.update(Table=artist.kwdoc(Table)) @docstring.dedent_interpd def table(ax, cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None, edges='closed', **kwargs): """ Add a table to an `~.axes.Axes`. At least one of *cellText* or *cellColours* must be specified. These parameters must be 2D lists, in which the outer lists define the rows and the inner list define the column values per row. Each row must have the same number of elements. The table can optionally have row and column headers, which are configured using *rowLabels*, *rowColours*, *rowLoc* and *colLabels*, *colColours*, *colLoc* respectively. For finer grained control over tables, use the `.Table` class and add it to the axes with `.Axes.add_table`. Parameters ---------- cellText : 2D list of str, optional The texts to place into the table cells. *Note*: Line breaks in the strings are currently not accounted for and will result in the text exceeding the cell boundaries. cellColours : 2D list of matplotlib color specs, optional The background colors of the cells. cellLoc : {'left', 'center', 'right'}, default: 'right' The alignment of the text within the cells. colWidths : list of float, optional The column widths in units of the axes. If not given, all columns will have a width of *1 / ncols*. rowLabels : list of str, optional The text of the row header cells. rowColours : list of matplotlib color specs, optional The colors of the row header cells. rowLoc : {'left', 'center', 'right'}, optional, default: 'left' The text alignment of the row header cells. colLabels : list of str, optional The text of the column header cells. colColours : list of matplotlib color specs, optional The colors of the column header cells. rowLoc : {'left', 'center', 'right'}, optional, default: 'left' The text alignment of the column header cells. loc : str, optional The position of the cell with respect to *ax*. This must be one of the `~.Table.codes`. bbox : `.Bbox`, optional A bounding box to draw the table into. If this is not *None*, this overrides *loc*. edges : substring of 'BRTL' or {'open', 'closed', 'horizontal', 'vertical'} The cell edges to be drawn with a line. See also `~.CustomCell.visible_edges`. Other Parameters ---------------- **kwargs `.Table` properties. %(Table)s Returns ------- table : `~matplotlib.table.Table` The created table. """ if cellColours is None and cellText is None: raise ValueError('At least one argument from "cellColours" or ' '"cellText" must be provided to create a table.') # Check we have some cellText if cellText is None: # assume just colours are needed rows = len(cellColours) cols = len(cellColours[0]) cellText = [[''] * cols] * rows rows = len(cellText) cols = len(cellText[0]) for row in cellText: if len(row) != cols: raise ValueError("Each row in 'cellText' must have {} columns" .format(cols)) if cellColours is not None: if len(cellColours) != rows: raise ValueError("'cellColours' must have {} rows".format(rows)) for row in cellColours: if len(row) != cols: raise ValueError("Each row in 'cellColours' must have {} " "columns".format(cols)) else: cellColours = ['w' * cols] * rows # Set colwidths if not given if colWidths is None: colWidths = [1.0 / cols] * cols # Fill in missing information for column # and row labels rowLabelWidth = 0 if rowLabels is None: if rowColours is not None: rowLabels = [''] * rows rowLabelWidth = colWidths[0] elif rowColours is None: rowColours = 'w' * rows if rowLabels is not None: if len(rowLabels) != rows: raise ValueError("'rowLabels' must be of length {0}".format(rows)) # If we have column labels, need to shift # the text and colour arrays down 1 row offset = 1 if colLabels is None: if colColours is not None: colLabels = [''] * cols else: offset = 0 elif colColours is None: colColours = 'w' * cols # Set up cell colours if not given if cellColours is None: cellColours = ['w' * cols] * rows # Now create the table table = Table(ax, loc, bbox, **kwargs) table.edges = edges height = table._approx_text_height() # Add the cells for row in range(rows): for col in range(cols): table.add_cell(row + offset, col, width=colWidths[col], height=height, text=cellText[row][col], facecolor=cellColours[row][col], loc=cellLoc) # Do column labels if colLabels is not None: for col in range(cols): table.add_cell(0, col, width=colWidths[col], height=height, text=colLabels[col], facecolor=colColours[col], loc=colLoc) # Do row labels if rowLabels is not None: for row in range(rows): table.add_cell(row + offset, -1, width=rowLabelWidth or 1e-15, height=height, text=rowLabels[row], facecolor=rowColours[row], loc=rowLoc) if rowLabelWidth == 0: table.auto_set_column_width(-1) ax.add_table(table) return table
f03dd679e970e4e463165a4bc7f3f83f4b6d290f33132322b2220e3db11d1e1d
""" This is an object-oriented plotting library. A procedural interface is provided by the companion pyplot module, which may be imported directly, e.g.:: import matplotlib.pyplot as plt or using ipython:: ipython at your terminal, followed by:: In [1]: %matplotlib In [2]: import matplotlib.pyplot as plt at the ipython shell prompt. For the most part, direct use of the object-oriented library is encouraged when programming; pyplot is primarily for working interactively. The exceptions are the pyplot commands :func:`~matplotlib.pyplot.figure`, :func:`~matplotlib.pyplot.subplot`, :func:`~matplotlib.pyplot.subplots`, and :func:`~pyplot.savefig`, which can greatly simplify scripting. Modules include: :mod:`matplotlib.axes` defines the :class:`~matplotlib.axes.Axes` class. Most pyplot commands are wrappers for :class:`~matplotlib.axes.Axes` methods. The axes module is the highest level of OO access to the library. :mod:`matplotlib.figure` defines the :class:`~matplotlib.figure.Figure` class. :mod:`matplotlib.artist` defines the :class:`~matplotlib.artist.Artist` base class for all classes that draw things. :mod:`matplotlib.lines` defines the :class:`~matplotlib.lines.Line2D` class for drawing lines and markers :mod:`matplotlib.patches` defines classes for drawing polygons :mod:`matplotlib.text` defines the :class:`~matplotlib.text.Text`, :class:`~matplotlib.text.TextWithDash`, and :class:`~matplotlib.text.Annotate` classes :mod:`matplotlib.image` defines the :class:`~matplotlib.image.AxesImage` and :class:`~matplotlib.image.FigureImage` classes :mod:`matplotlib.collections` classes for efficient drawing of groups of lines or polygons :mod:`matplotlib.colors` classes for interpreting color specifications and for making colormaps :mod:`matplotlib.cm` colormaps and the :class:`~matplotlib.image.ScalarMappable` mixin class for providing color mapping functionality to other classes :mod:`matplotlib.ticker` classes for calculating tick mark locations and for formatting tick labels :mod:`matplotlib.backends` a subpackage with modules for various gui libraries and output formats The base matplotlib namespace includes: :data:`~matplotlib.rcParams` a global dictionary of default configuration settings. It is initialized by code which may be overridden by a matplotlibrc file. :func:`~matplotlib.rc` a function for setting groups of rcParams values :func:`~matplotlib.use` a function for setting the matplotlib backend. If used, this function must be called immediately after importing matplotlib for the first time. In particular, it must be called **before** importing pyplot (if pyplot is imported). matplotlib was initially written by John D. Hunter (1968-2012) and is now developed and maintained by a host of others. Occasionally the internal documentation (python docstrings) will refer to MATLAB&reg;, a registered trademark of The MathWorks, Inc. """ # NOTE: This file must remain Python 2 compatible for the foreseeable future, # to ensure that we error out properly for existing editable installs. import sys if sys.version_info < (3, 5): # noqa: E402 raise ImportError(""" Matplotlib 3.0+ does not support Python 2.x, 3.0, 3.1, 3.2, 3.3, or 3.4. Beginning with Matplotlib 3.0, Python 3.5 and above is required. See Matplotlib `INSTALL.rst` file for more information: https://github.com/matplotlib/matplotlib/blob/master/INSTALL.rst """) import atexit from collections import namedtuple from collections.abc import MutableMapping import contextlib from distutils.version import LooseVersion import functools import importlib import inspect from inspect import Parameter import locale import logging import os from pathlib import Path import pprint import re import shutil import subprocess import tempfile # cbook must import matplotlib only within function # definitions, so it is safe to import from it here. from . import cbook, rcsetup from matplotlib.cbook import ( MatplotlibDeprecationWarning, dedent, get_label, sanitize_sequence) from matplotlib.cbook import mplDeprecation # deprecated from matplotlib.rcsetup import defaultParams, validate_backend, cycler import numpy # Get the version from the _version.py versioneer file. For a git checkout, # this is computed based on the number of commits since the last tag. from ._version import get_versions __version__ = str(get_versions()['version']) del get_versions _log = logging.getLogger(__name__) __bibtex__ = r"""@Article{Hunter:2007, Author = {Hunter, J. D.}, Title = {Matplotlib: A 2D graphics environment}, Journal = {Computing in Science \& Engineering}, Volume = {9}, Number = {3}, Pages = {90--95}, abstract = {Matplotlib is a 2D graphics package used for Python for application development, interactive scripting, and publication-quality image generation across user interfaces and operating systems.}, publisher = {IEEE COMPUTER SOC}, year = 2007 }""" def compare_versions(a, b): "Return whether version *a* is greater than or equal to version *b*." if isinstance(a, bytes): cbook.warn_deprecated( "3.0", message="compare_versions arguments should be strs.") a = a.decode('ascii') if isinstance(b, bytes): cbook.warn_deprecated( "3.0", message="compare_versions arguments should be strs.") b = b.decode('ascii') if a: return LooseVersion(a) >= LooseVersion(b) else: return False def _check_versions(): for modname, minver in [ ("cycler", "0.10"), ("dateutil", "2.1"), ("kiwisolver", "1.0.1"), ("numpy", "1.11"), ("pyparsing", "2.0.1"), ]: module = importlib.import_module(modname) if LooseVersion(module.__version__) < minver: raise ImportError("Matplotlib requires {}>={}; you have {}" .format(modname, minver, module.__version__)) _check_versions() if not hasattr(sys, 'argv'): # for modpython sys.argv = ['modpython'] # The decorator ensures this always returns the same handler (and it is only # attached once). @functools.lru_cache() def _ensure_handler(): """ The first time this function is called, attach a `StreamHandler` using the same format as `logging.basicConfig` to the Matplotlib root logger. Return this handler every time this function is called. """ handler = logging.StreamHandler() handler.setFormatter(logging.Formatter(logging.BASIC_FORMAT)) _log.addHandler(handler) return handler def set_loglevel(level): """ Sets the Matplotlib's root logger and root logger handler level, creating the handler if it does not exist yet. Typically, one should call ``set_loglevel("info")`` or ``set_loglevel("debug")`` to get additional debugging information. Parameters ---------- level : {"notset", "debug", "info", "warning", "error", "critical"} The log level of the handler. Notes ----- The first time this function is called, an additional handler is attached to Matplotlib's root handler; this handler is reused every time and this function simply manipulates the logger and handler's level. """ _log.setLevel(level.upper()) _ensure_handler().setLevel(level.upper()) def _logged_cached(fmt, func=None): """ Decorator that logs a function's return value, and memoizes that value. After :: @_logged_cached(fmt) def func(): ... the first call to *func* will log its return value at the DEBUG level using %-format string *fmt*, and memoize it; later calls to *func* will directly return that value. """ if func is None: # Return the actual decorator. return functools.partial(_logged_cached, fmt) called = False ret = None @functools.wraps(func) def wrapper(): nonlocal called, ret if not called: ret = func() called = True _log.debug(fmt, ret) return ret return wrapper _ExecInfo = namedtuple("_ExecInfo", "executable version") @functools.lru_cache() def _get_executable_info(name): """ Get the version of some executable that Matplotlib optionally depends on. .. warning: The list of executables that this function supports is set according to Matplotlib's internal needs, and may change without notice. Parameters ---------- name : str The executable to query. The following values are currently supported: "dvipng", "gs", "inkscape", "magick", "pdftops". This list is subject to change without notice. Returns ------- If the executable is found, a namedtuple with fields ``executable`` (`str`) and ``version`` (`distutils.version.LooseVersion`, or ``None`` if the version cannot be determined). Raises ------ FileNotFoundError If the executable is not found or older than the oldest version supported by Matplotlib. ValueError If the executable is not one that we know how to query. """ def impl(args, regex, min_ver=None): # Execute the subprocess specified by args; capture stdout and stderr. # Search for a regex match in the output; if the match succeeds, the # first group of the match is the version. # Return an _ExecInfo if the executable exists, and has a version of # at least min_ver (if set); else, raise FileNotFoundError. output = subprocess.check_output( args, stderr=subprocess.STDOUT, universal_newlines=True) match = re.search(regex, output) if match: version = LooseVersion(match.group(1)) if min_ver is not None and version < min_ver: raise FileNotFoundError( f"You have {args[0]} version {version} but the minimum " f"version supported by Matplotlib is {min_ver}.") return _ExecInfo(args[0], version) else: raise FileNotFoundError( f"Failed to determine the version of {args[0]} from " f"{' '.join(args)}, which output {output}") if name == "dvipng": return impl(["dvipng", "-version"], "(?m)^dvipng .* (.+)", "1.6") elif name == "gs": execs = (["gswin32c", "gswin64c", "mgs", "gs"] # "mgs" for miktex. if sys.platform == "win32" else ["gs"]) for e in execs: try: return impl([e, "--version"], "(.*)", "9") except FileNotFoundError: pass raise FileNotFoundError("Failed to find a Ghostscript installation") elif name == "inkscape": return impl(["inkscape", "-V"], "^Inkscape ([^ ]*)") elif name == "magick": path = None if sys.platform == "win32": # Check the registry to avoid confusing ImageMagick's convert with # Windows's builtin convert.exe. import winreg binpath = "" for flag in [0, winreg.KEY_WOW64_32KEY, winreg.KEY_WOW64_64KEY]: try: with winreg.OpenKeyEx( winreg.HKEY_LOCAL_MACHINE, r"Software\Imagemagick\Current", 0, winreg.KEY_QUERY_VALUE | flag) as hkey: binpath = winreg.QueryValueEx(hkey, "BinPath")[0] except OSError: pass if binpath: for name in ["convert.exe", "magick.exe"]: candidate = Path(binpath, name) if candidate.exists(): path = str(candidate) break else: path = "convert" if path is None: raise FileNotFoundError( "Failed to find an ImageMagick installation") return impl([path, "--version"], r"^Version: ImageMagick (\S*)") elif name == "pdftops": info = impl(["pdftops", "-v"], "^pdftops version (.*)") if info and not ("3.0" <= info.version # poppler version numbers. or "0.9" <= info.version <= "1.0"): raise FileNotFoundError( f"You have pdftops version {info.version} but the minimum " f"version supported by Matplotlib is 3.0.") return info else: raise ValueError("Unknown executable: {!r}".format(name)) @cbook.deprecated("3.1") def checkdep_dvipng(): try: s = subprocess.Popen(['dvipng', '-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = s.communicate() line = stdout.decode('ascii').split('\n')[1] v = line.split()[-1] return v except (IndexError, ValueError, OSError): return None @cbook.deprecated("3.1") def checkdep_ghostscript(): if checkdep_ghostscript.executable is None: if sys.platform == 'win32': # mgs is the name in miktex gs_execs = ['gswin32c', 'gswin64c', 'mgs', 'gs'] else: gs_execs = ['gs'] for gs_exec in gs_execs: try: s = subprocess.Popen( [gs_exec, '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = s.communicate() if s.returncode == 0: v = stdout[:-1].decode('ascii') if compare_versions(v, '9.0'): checkdep_ghostscript.executable = gs_exec checkdep_ghostscript.version = v except (IndexError, ValueError, OSError): pass return checkdep_ghostscript.executable, checkdep_ghostscript.version checkdep_ghostscript.executable = None checkdep_ghostscript.version = None @cbook.deprecated("3.1") def checkdep_pdftops(): try: s = subprocess.Popen(['pdftops', '-v'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = s.communicate() lines = stderr.decode('ascii').split('\n') for line in lines: if 'version' in line: v = line.split()[-1] return v except (IndexError, ValueError, UnboundLocalError, OSError): return None @cbook.deprecated("3.1") def checkdep_inkscape(): if checkdep_inkscape.version is None: try: s = subprocess.Popen(['inkscape', '-V'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = s.communicate() lines = stdout.decode('ascii').split('\n') for line in lines: if 'Inkscape' in line: v = line.split()[1] break checkdep_inkscape.version = v except (IndexError, ValueError, UnboundLocalError, OSError): pass return checkdep_inkscape.version checkdep_inkscape.version = None def checkdep_ps_distiller(s): if not s: return False try: _get_executable_info("gs") except FileNotFoundError: _log.warning( "Setting rcParams['ps.usedistiller'] requires ghostscript.") return False if s == "xpdf": try: _get_executable_info("pdftops") except FileNotFoundError: _log.warning( "Setting rcParams['ps.usedistiller'] to 'xpdf' requires xpdf.") return False return s def checkdep_usetex(s): if not s: return False if not shutil.which("tex"): _log.warning("usetex mode requires TeX.") return False try: _get_executable_info("dvipng") except FileNotFoundError: _log.warning("usetex mode requires dvipng.") return False try: _get_executable_info("gs") except FileNotFoundError: _log.warning("usetex mode requires ghostscript.") return False return True @_logged_cached('$HOME=%s') def get_home(): """ Return the user's home directory. If the user's home directory cannot be found, return None. """ try: return str(Path.home()) except Exception: return None def _create_tmp_config_or_cache_dir(): """ If the config or cache directory cannot be created, create a temporary one. """ configdir = os.environ['MPLCONFIGDIR'] = ( tempfile.mkdtemp(prefix='matplotlib-')) atexit.register(shutil.rmtree, configdir) return configdir def _get_xdg_config_dir(): """ Return the XDG configuration directory, according to the `XDG base directory spec <http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html>`_. """ return (os.environ.get('XDG_CONFIG_HOME') or (str(Path(get_home(), ".config")) if get_home() else None)) def _get_xdg_cache_dir(): """ Return the XDG cache directory, according to the `XDG base directory spec <http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html>`_. """ return (os.environ.get('XDG_CACHE_HOME') or (str(Path(get_home(), ".cache")) if get_home() else None)) def _get_config_or_cache_dir(xdg_base): configdir = os.environ.get('MPLCONFIGDIR') if configdir: configdir = Path(configdir).resolve() elif sys.platform.startswith(('linux', 'freebsd')) and xdg_base: configdir = Path(xdg_base, "matplotlib") elif get_home(): configdir = Path(get_home(), ".matplotlib") else: configdir = None if configdir: try: configdir.mkdir(parents=True, exist_ok=True) except OSError: pass else: if os.access(str(configdir), os.W_OK) and configdir.is_dir(): return str(configdir) return _create_tmp_config_or_cache_dir() @_logged_cached('CONFIGDIR=%s') def get_configdir(): """ Return the string representing the configuration directory. The directory is chosen as follows: 1. If the MPLCONFIGDIR environment variable is supplied, choose that. 2a. On Linux, follow the XDG specification and look first in `$XDG_CONFIG_HOME`, if defined, or `$HOME/.config`. 2b. On other platforms, choose `$HOME/.matplotlib`. 3. If the chosen directory exists and is writable, use that as the configuration directory. 4. If possible, create a temporary directory, and use it as the configuration directory. 5. A writable directory could not be found or created; return None. """ return _get_config_or_cache_dir(_get_xdg_config_dir()) @_logged_cached('CACHEDIR=%s') def get_cachedir(): """ Return the location of the cache directory. The procedure used to find the directory is the same as for _get_config_dir, except using `$XDG_CACHE_HOME`/`~/.cache` instead. """ return _get_config_or_cache_dir(_get_xdg_cache_dir()) def _get_data_path(): 'get the path to matplotlib data' if 'MATPLOTLIBDATA' in os.environ: path = os.environ['MATPLOTLIBDATA'] if not os.path.isdir(path): raise RuntimeError('Path in environment MATPLOTLIBDATA not a ' 'directory') cbook.warn_deprecated( "3.1", name="MATPLOTLIBDATA", obj_type="environment variable") return path def get_candidate_paths(): yield Path(__file__).with_name('mpl-data') # setuptools' namespace_packages may hijack this init file # so need to try something known to be in Matplotlib, not basemap. import matplotlib.afm yield Path(matplotlib.afm.__file__).with_name('mpl-data') # py2exe zips pure python, so still need special check. if getattr(sys, 'frozen', None): yield Path(sys.executable).with_name('mpl-data') # Try again assuming we need to step up one more directory. yield Path(sys.executable).parent.with_name('mpl-data') # Try again assuming sys.path[0] is a dir not a exe. yield Path(sys.path[0]) / 'mpl-data' for path in get_candidate_paths(): if path.is_dir(): return str(path) raise RuntimeError('Could not find the matplotlib data files') @_logged_cached('matplotlib data path: %s') def get_data_path(): if defaultParams['datapath'][0] is None: defaultParams['datapath'][0] = _get_data_path() return defaultParams['datapath'][0] @cbook.deprecated("3.1") def get_py2exe_datafiles(): data_path = Path(get_data_path()) d = {} for path in filter(Path.is_file, data_path.glob("**/*")): (d.setdefault(str(path.parent.relative_to(data_path.parent)), []) .append(str(path))) return list(d.items()) def matplotlib_fname(): """ Get the location of the config file. The file location is determined in the following order - ``$PWD/matplotlibrc`` - ``$MATPLOTLIBRC`` if it is not a directory - ``$MATPLOTLIBRC/matplotlibrc`` - ``$MPLCONFIGDIR/matplotlibrc`` - On Linux, - ``$XDG_CONFIG_HOME/matplotlib/matplotlibrc`` (if ``$XDG_CONFIG_HOME`` is defined) - or ``$HOME/.config/matplotlib/matplotlibrc`` (if ``$XDG_CONFIG_HOME`` is not defined) - On other platforms, - ``$HOME/.matplotlib/matplotlibrc`` if ``$HOME`` is defined - Lastly, it looks in ``$MATPLOTLIBDATA/matplotlibrc``, which should always exist. """ def gen_candidates(): yield os.path.join(os.getcwd(), 'matplotlibrc') try: matplotlibrc = os.environ['MATPLOTLIBRC'] except KeyError: pass else: yield matplotlibrc yield os.path.join(matplotlibrc, 'matplotlibrc') yield os.path.join(get_configdir(), 'matplotlibrc') yield os.path.join(get_data_path(), 'matplotlibrc') for fname in gen_candidates(): if os.path.exists(fname) and not os.path.isdir(fname): return fname raise RuntimeError("Could not find matplotlibrc file; your Matplotlib " "install is broken") # rcParams deprecated and automatically mapped to another key. # Values are tuples of (version, new_name, f_old2new, f_new2old). _deprecated_map = {} # rcParams deprecated; some can manually be mapped to another key. # Values are tuples of (version, new_name_or_None). _deprecated_ignore_map = { 'pgf.debug': ('3.0', None), } # rcParams deprecated; can use None to suppress warnings; remain actually # listed in the rcParams (not included in _all_deprecated). # Values are tuples of (version,) _deprecated_remain_as_none = { 'text.latex.unicode': ('3.0',), 'savefig.frameon': ('3.1',), 'verbose.fileo': ('3.1',), 'verbose.level': ('3.1',), } _all_deprecated = {*_deprecated_map, *_deprecated_ignore_map} class RcParams(MutableMapping, dict): """ A dictionary object including validation validating functions are defined and associated with rc parameters in :mod:`matplotlib.rcsetup` """ validate = {key: converter for key, (default, converter) in defaultParams.items() if key not in _all_deprecated} @cbook.deprecated("3.0") @property def msg_depr(self): return "%s is deprecated and replaced with %s; please use the latter." @cbook.deprecated("3.0") @property def msg_depr_ignore(self): return "%s is deprecated and ignored. Use %s instead." @cbook.deprecated("3.0") @property def msg_depr_set(self): return ("%s is deprecated. Please remove it from your matplotlibrc " "and/or style files.") @cbook.deprecated("3.0") @property def msg_obsolete(self): return ("%s is obsolete. Please remove it from your matplotlibrc " "and/or style files.") @cbook.deprecated("3.0") @property def msg_backend_obsolete(self): return ("The {} rcParam was deprecated in version 2.2. In order to " "force the use of a specific Qt binding, either import that " "binding first, or set the QT_API environment variable.") # validate values on the way in def __init__(self, *args, **kwargs): self.update(*args, **kwargs) def __setitem__(self, key, val): try: if key in _deprecated_map: version, alt_key, alt_val, inverse_alt = _deprecated_map[key] cbook.warn_deprecated( version, name=key, obj_type="rcparam", alternative=alt_key) key = alt_key val = alt_val(val) elif key in _deprecated_remain_as_none and val is not None: version, = _deprecated_remain_as_none[key] cbook.warn_deprecated( version, name=key, obj_type="rcparam") elif key in _deprecated_ignore_map: version, alt_key = _deprecated_ignore_map[key] cbook.warn_deprecated( version, name=key, obj_type="rcparam", alternative=alt_key) return elif key == 'examples.directory': cbook.warn_deprecated( "3.0", name=key, obj_type="rcparam", addendum="In the " "future, examples will be found relative to the " "'datapath' directory.") elif key == 'backend': if val is rcsetup._auto_backend_sentinel: if 'backend' in self: return try: cval = self.validate[key](val) except ValueError as ve: raise ValueError("Key %s: %s" % (key, str(ve))) dict.__setitem__(self, key, cval) except KeyError: raise KeyError( f"{key} is not a valid rc parameter (see rcParams.keys() for " f"a list of valid parameters)") def __getitem__(self, key): if key in _deprecated_map: version, alt_key, alt_val, inverse_alt = _deprecated_map[key] cbook.warn_deprecated( version, name=key, obj_type="rcparam", alternative=alt_key) return inverse_alt(dict.__getitem__(self, alt_key)) elif key in _deprecated_ignore_map: version, alt_key = _deprecated_ignore_map[key] cbook.warn_deprecated( version, name=key, obj_type="rcparam", alternative=alt_key) return dict.__getitem__(self, alt_key) if alt_key else None elif key == 'examples.directory': cbook.warn_deprecated( "3.0", name=key, obj_type="rcparam", addendum="In the future, " "examples will be found relative to the 'datapath' directory.") elif key == "backend": val = dict.__getitem__(self, key) if val is rcsetup._auto_backend_sentinel: from matplotlib import pyplot as plt plt.switch_backend(rcsetup._auto_backend_sentinel) return dict.__getitem__(self, key) def __repr__(self): class_name = self.__class__.__name__ indent = len(class_name) + 1 repr_split = pprint.pformat(dict(self), indent=1, width=80 - indent).split('\n') repr_indented = ('\n' + ' ' * indent).join(repr_split) return '{}({})'.format(class_name, repr_indented) def __str__(self): return '\n'.join(map('{0[0]}: {0[1]}'.format, sorted(self.items()))) def __iter__(self): """Yield sorted list of keys.""" with cbook._suppress_matplotlib_deprecation_warning(): yield from sorted(dict.__iter__(self)) def __len__(self): return dict.__len__(self) def find_all(self, pattern): """ Return the subset of this RcParams dictionary whose keys match, using :func:`re.search`, the given ``pattern``. .. note:: Changes to the returned dictionary are *not* propagated to the parent RcParams dictionary. """ pattern_re = re.compile(pattern) return RcParams((key, value) for key, value in self.items() if pattern_re.search(key)) def copy(self): return {k: dict.__getitem__(self, k) for k in self} def rc_params(fail_on_error=False): """Return a :class:`matplotlib.RcParams` instance from the default matplotlib rc file. """ return rc_params_from_file(matplotlib_fname(), fail_on_error) URL_REGEX = re.compile(r'^http://|^https://|^ftp://|^file:') def is_url(filename): """Return True if string is an http, ftp, or file URL path.""" return URL_REGEX.match(filename) is not None @contextlib.contextmanager def _open_file_or_url(fname): if is_url(fname): import urllib.request with urllib.request.urlopen(fname) as f: yield (line.decode('utf-8') for line in f) else: fname = os.path.expanduser(fname) encoding = locale.getpreferredencoding(do_setlocale=False) if encoding is None: encoding = "utf-8" with open(fname, encoding=encoding) as f: yield f _error_details_fmt = 'line #%d\n\t"%s"\n\tin file "%s"' def _rc_params_in_file(fname, fail_on_error=False): """Return :class:`matplotlib.RcParams` from the contents of the given file. Unlike `rc_params_from_file`, the configuration class only contains the parameters specified in the file (i.e. default values are not filled in). """ cnt = 0 rc_temp = {} with _open_file_or_url(fname) as fd: try: for line in fd: cnt += 1 strippedline = line.split('#', 1)[0].strip() if not strippedline: continue tup = strippedline.split(':', 1) if len(tup) != 2: error_details = _error_details_fmt % (cnt, line, fname) _log.warning('Illegal %s', error_details) continue key, val = tup key = key.strip() val = val.strip() if key in rc_temp: _log.warning('Duplicate key in file %r line #%d.', fname, cnt) rc_temp[key] = (val, line, cnt) except UnicodeDecodeError: _log.warning('Cannot decode configuration file %s with encoding ' '%s, check LANG and LC_* variables.', fname, locale.getpreferredencoding(do_setlocale=False) or 'utf-8 (default)') raise config = RcParams() for key, (val, line, cnt) in rc_temp.items(): if key in defaultParams: if fail_on_error: config[key] = val # try to convert to proper type or raise else: try: config[key] = val # try to convert to proper type or skip except Exception as msg: error_details = _error_details_fmt % (cnt, line, fname) _log.warning('Bad val %r on %s\n\t%s', val, error_details, msg) elif key in _deprecated_ignore_map: version, alt_key = _deprecated_ignore_map[key] cbook.warn_deprecated( version, name=key, alternative=alt_key, addendum="Please update your matplotlibrc.") else: print(""" Bad key "%s" on line %d in %s. You probably need to get an updated matplotlibrc file from http://github.com/matplotlib/matplotlib/blob/master/matplotlibrc.template or from the matplotlib source distribution""" % (key, cnt, fname), file=sys.stderr) return config def rc_params_from_file(fname, fail_on_error=False, use_default_template=True): """Return :class:`matplotlib.RcParams` from the contents of the given file. Parameters ---------- fname : str Name of file parsed for matplotlib settings. fail_on_error : bool If True, raise an error when the parser fails to convert a parameter. use_default_template : bool If True, initialize with default parameters before updating with those in the given file. If False, the configuration class only contains the parameters specified in the file. (Useful for updating dicts.) """ config_from_file = _rc_params_in_file(fname, fail_on_error) if not use_default_template: return config_from_file iter_params = defaultParams.items() with cbook._suppress_matplotlib_deprecation_warning(): config = RcParams([(key, default) for key, (default, _) in iter_params if key not in _all_deprecated]) config.update(config_from_file) if config['datapath'] is None: config['datapath'] = get_data_path() if "".join(config['text.latex.preamble']): _log.info(""" ***************************************************************** You have the following UNSUPPORTED LaTeX preamble customizations: %s Please do not ask for support with these customizations active. ***************************************************************** """, '\n'.join(config['text.latex.preamble'])) _log.debug('loaded rc file %s', fname) return config # this is the instance used by the matplotlib classes rcParams = rc_params() # Don't trigger deprecation warning when just fetching. if dict.__getitem__(rcParams, 'examples.directory'): # paths that are intended to be relative to matplotlib_fname() # are allowed for the examples.directory parameter. # However, we will need to fully qualify the path because # Sphinx requires absolute paths. if not os.path.isabs(rcParams['examples.directory']): _basedir, _fname = os.path.split(matplotlib_fname()) # Sometimes matplotlib_fname() can return relative paths, # Also, using realpath() guarantees that Sphinx will use # the same path that matplotlib sees (in case of weird symlinks). _basedir = os.path.realpath(_basedir) _fullpath = os.path.join(_basedir, rcParams['examples.directory']) rcParams['examples.directory'] = _fullpath with cbook._suppress_matplotlib_deprecation_warning(): rcParamsOrig = RcParams(rcParams.copy()) rcParamsDefault = RcParams([(key, default) for key, (default, converter) in defaultParams.items() if key not in _all_deprecated]) rcParams['ps.usedistiller'] = checkdep_ps_distiller( rcParams['ps.usedistiller']) if rcParams['axes.formatter.use_locale']: locale.setlocale(locale.LC_ALL, '') def rc(group, **kwargs): """ Set the current rc params. *group* is the grouping for the rc, e.g., for ``lines.linewidth`` the group is ``lines``, for ``axes.facecolor``, the group is ``axes``, and so on. Group may also be a list or tuple of group names, e.g., (*xtick*, *ytick*). *kwargs* is a dictionary attribute name/value pairs, e.g.,:: rc('lines', linewidth=2, color='r') sets the current rc params and is equivalent to:: rcParams['lines.linewidth'] = 2 rcParams['lines.color'] = 'r' The following aliases are available to save typing for interactive users: ===== ================= Alias Property ===== ================= 'lw' 'linewidth' 'ls' 'linestyle' 'c' 'color' 'fc' 'facecolor' 'ec' 'edgecolor' 'mew' 'markeredgewidth' 'aa' 'antialiased' ===== ================= Thus you could abbreviate the above rc command as:: rc('lines', lw=2, c='r') Note you can use python's kwargs dictionary facility to store dictionaries of default parameters. e.g., you can customize the font rc as follows:: font = {'family' : 'monospace', 'weight' : 'bold', 'size' : 'larger'} rc('font', **font) # pass in the font dict as kwargs This enables you to easily switch between several configurations. Use ``matplotlib.style.use('default')`` or :func:`~matplotlib.rcdefaults` to restore the default rc params after changes. """ aliases = { 'lw': 'linewidth', 'ls': 'linestyle', 'c': 'color', 'fc': 'facecolor', 'ec': 'edgecolor', 'mew': 'markeredgewidth', 'aa': 'antialiased', } if isinstance(group, str): group = (group,) for g in group: for k, v in kwargs.items(): name = aliases.get(k) or k key = '%s.%s' % (g, name) try: rcParams[key] = v except KeyError: raise KeyError(('Unrecognized key "%s" for group "%s" and ' 'name "%s"') % (key, g, name)) def rcdefaults(): """ Restore the rc params from Matplotlib's internal default style. Style-blacklisted rc params (defined in `matplotlib.style.core.STYLE_BLACKLIST`) are not updated. See Also -------- rc_file_defaults Restore the rc params from the rc file originally loaded by Matplotlib. matplotlib.style.use : Use a specific style file. Call ``style.use('default')`` to restore the default style. """ # Deprecation warnings were already handled when creating rcParamsDefault, # no need to reemit them here. with cbook._suppress_matplotlib_deprecation_warning(): from .style.core import STYLE_BLACKLIST rcParams.clear() rcParams.update({k: v for k, v in rcParamsDefault.items() if k not in STYLE_BLACKLIST}) def rc_file_defaults(): """ Restore the rc params from the original rc file loaded by Matplotlib. Style-blacklisted rc params (defined in `matplotlib.style.core.STYLE_BLACKLIST`) are not updated. """ # Deprecation warnings were already handled when creating rcParamsOrig, no # need to reemit them here. with cbook._suppress_matplotlib_deprecation_warning(): from .style.core import STYLE_BLACKLIST rcParams.update({k: rcParamsOrig[k] for k in rcParamsOrig if k not in STYLE_BLACKLIST}) def rc_file(fname, *, use_default_template=True): """ Update rc params from file. Style-blacklisted rc params (defined in `matplotlib.style.core.STYLE_BLACKLIST`) are not updated. Parameters ---------- fname : str Name of file parsed for matplotlib settings. use_default_template : bool If True, initialize with default parameters before updating with those in the given file. If False, the current configuration persists and only the parameters specified in the file are updated. """ # Deprecation warnings were already handled in rc_params_from_file, no need # to reemit them here. with cbook._suppress_matplotlib_deprecation_warning(): from .style.core import STYLE_BLACKLIST rc_from_file = rc_params_from_file( fname, use_default_template=use_default_template) rcParams.update({k: rc_from_file[k] for k in rc_from_file if k not in STYLE_BLACKLIST}) class rc_context: """ Return a context manager for managing rc settings. This allows one to do:: with mpl.rc_context(fname='screen.rc'): plt.plot(x, a) with mpl.rc_context(fname='print.rc'): plt.plot(x, b) plt.plot(x, c) The 'a' vs 'x' and 'c' vs 'x' plots would have settings from 'screen.rc', while the 'b' vs 'x' plot would have settings from 'print.rc'. A dictionary can also be passed to the context manager:: with mpl.rc_context(rc={'text.usetex': True}, fname='screen.rc'): plt.plot(x, a) The 'rc' dictionary takes precedence over the settings loaded from 'fname'. Passing a dictionary only is also valid. For example a common usage is:: with mpl.rc_context(rc={'interactive': False}): fig, ax = plt.subplots() ax.plot(range(3), range(3)) fig.savefig('A.png', format='png') plt.close(fig) """ # While it may seem natural to implement rc_context using # contextlib.contextmanager, that would entail always calling the finally: # clause of the contextmanager (which restores the original rcs) including # during garbage collection; as a result, something like `plt.xkcd(); # gc.collect()` would result in the style being lost (as `xkcd()` is # implemented on top of rc_context, and nothing is holding onto context # manager except possibly circular references. def __init__(self, rc=None, fname=None): self._orig = rcParams.copy() try: if fname: rc_file(fname) if rc: rcParams.update(rc) except Exception: self.__fallback() raise def __fallback(self): # If anything goes wrong, revert to the original rcs. updated_backend = self._orig['backend'] dict.update(rcParams, self._orig) # except for the backend. If the context block triggered resolving # the auto backend resolution keep that value around if self._orig['backend'] is rcsetup._auto_backend_sentinel: rcParams['backend'] = updated_backend def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): self.__fallback() @cbook._rename_parameter("3.1", "arg", "backend") def use(backend, warn=False, force=True): """ Select the backend used for rendering and GUI integration. Parameters ---------- backend : str The backend to switch to. This can either be one of the standard backend names, which are case-insensitive: - interactive backends: GTK3Agg, GTK3Cairo, MacOSX, nbAgg, Qt4Agg, Qt4Cairo, Qt5Agg, Qt5Cairo, TkAgg, TkCairo, WebAgg, WX, WXAgg, WXCairo - non-interactive backends: agg, cairo, pdf, pgf, ps, svg, template or a string of the form: ``module://my.module.name``. warn : bool, optional, default: False If True and not *force*, warn that the call will have no effect if this is called after pyplot has been imported and a backend is set up. force : bool, optional, default: True If True, attempt to switch the backend. An ImportError is raised if an interactive backend is selected, but another interactive backend has already started. See Also -------- :ref:`backends` matplotlib.get_backend """ name = validate_backend(backend) if dict.__getitem__(rcParams, 'backend') == name: # Nothing to do if the requested backend is already set pass elif 'matplotlib.pyplot' in sys.modules: # pyplot has already been imported (which triggered backend selection) # and the requested backend is different from the current one. if force: # if we are going to force switching the backend, pull in # `switch_backend` from pyplot (which is already imported). from matplotlib.pyplot import switch_backend switch_backend(name) elif warn: # Only if we are not going to force the switch *and* warn is True, # then direct users to `plt.switch_backend`. cbook._warn_external( "matplotlib.pyplot has already been imported, " "this call will have no effect.") else: # Finally if pyplot is not imported update both rcParams and # rcDefaults so restoring the defaults later with rcdefaults # won't change the backend. This is a bit of overkill as 'backend' # is already in style.core.STYLE_BLACKLIST, but better to be safe. rcParams['backend'] = rcParamsDefault['backend'] = name if os.environ.get('MPLBACKEND'): rcParams['backend'] = os.environ.get('MPLBACKEND') def get_backend(): """ Return the name of the current backend. See Also -------- matplotlib.use """ return rcParams['backend'] def interactive(b): """ Set interactive mode to boolean b. If b is True, then draw after every plotting command, e.g., after xlabel """ rcParams['interactive'] = b def is_interactive(): 'Return true if plot mode is interactive' return rcParams['interactive'] @cbook.deprecated("3.1", alternative="rcParams['tk.window_focus']") def tk_window_focus(): """Return true if focus maintenance under TkAgg on win32 is on. This currently works only for python.exe and IPython.exe. Both IDLE and Pythonwin.exe fail badly when tk_window_focus is on.""" if rcParams['backend'] != 'TkAgg': return False return rcParams['tk.window_focus'] default_test_modules = [ 'matplotlib.tests', 'matplotlib.sphinxext.tests', 'mpl_toolkits.tests', ] def _init_tests(): # CPython's faulthandler since v3.6 handles exceptions on Windows # https://bugs.python.org/issue23848 but until v3.6.4 it was printing # non-fatal exceptions https://bugs.python.org/issue30557 import platform if not (sys.platform == 'win32' and (3, 6) < sys.version_info < (3, 6, 4) and platform.python_implementation() == 'CPython'): import faulthandler faulthandler.enable() # The version of FreeType to install locally for running the # tests. This must match the value in `setupext.py` LOCAL_FREETYPE_VERSION = '2.6.1' from matplotlib import ft2font if (ft2font.__freetype_version__ != LOCAL_FREETYPE_VERSION or ft2font.__freetype_build_type__ != 'local'): _log.warning( "Matplotlib is not built with the correct FreeType version to run " "tests. Set local_freetype=True in setup.cfg and rebuild. " "Expect many image comparison failures below. " "Expected freetype version {0}. " "Found freetype version {1}. " "Freetype build type is {2}local".format( LOCAL_FREETYPE_VERSION, ft2font.__freetype_version__, "" if ft2font.__freetype_build_type__ == 'local' else "not ")) try: import pytest except ImportError: print("matplotlib.test requires pytest to run.") raise @cbook._delete_parameter("3.2", "switch_backend_warn") def test(verbosity=None, coverage=False, switch_backend_warn=True, recursionlimit=0, **kwargs): """Run the matplotlib test suite.""" _init_tests() if not os.path.isdir(os.path.join(os.path.dirname(__file__), 'tests')): raise ImportError("Matplotlib test data is not installed") old_backend = get_backend() old_recursionlimit = sys.getrecursionlimit() try: use('agg') if recursionlimit: sys.setrecursionlimit(recursionlimit) import pytest args = kwargs.pop('argv', []) provide_default_modules = True use_pyargs = True for arg in args: if any(arg.startswith(module_path) for module_path in default_test_modules): provide_default_modules = False break if os.path.exists(arg): provide_default_modules = False use_pyargs = False break if use_pyargs: args += ['--pyargs'] if provide_default_modules: args += default_test_modules if coverage: args += ['--cov'] if verbosity: args += ['-' + 'v' * verbosity] retcode = pytest.main(args, **kwargs) finally: if old_backend.lower() != 'agg': use(old_backend) if recursionlimit: sys.setrecursionlimit(old_recursionlimit) return retcode test.__test__ = False # pytest: this function is not a test def _replacer(data, value): """ Either returns ``data[value]`` or passes ``data`` back, converts either to a sequence. """ try: # if key isn't a string don't bother if isinstance(value, str): # try to use __getitem__ value = data[value] except Exception: # key does not exist, silently fall back to key pass return sanitize_sequence(value) def _label_from_arg(y, default_name): try: return y.name except AttributeError: if isinstance(default_name, str): return default_name return None _DATA_DOC_APPENDIX = """ .. note:: In addition to the above described arguments, this function can take a **data** keyword argument. If such a **data** argument is given, the following arguments are replaced by **data[<arg>]**: {replaced} Objects passed as **data** must support item access (``data[<arg>]``) and membership test (``<arg> in data``). """ def _add_data_doc(docstring, replace_names): """Add documentation for a *data* field to the given docstring. Parameters ---------- docstring : str The input docstring. replace_names : list of str or None The list of parameter names which arguments should be replaced by ``data[name]`` (if ``data[name]`` does not throw an exception). If None, replacement is attempted for all arguments. Returns ------- The augmented docstring. """ docstring = inspect.cleandoc(docstring) if docstring is not None else "" repl = ("* All positional and all keyword arguments." if replace_names is None else "" if len(replace_names) == 0 else "* All arguments with the following names: {}.".format( ", ".join(map(repr, sorted(replace_names))))) return docstring + _DATA_DOC_APPENDIX.format(replaced=repl) def _preprocess_data(func=None, *, replace_names=None, label_namer=None): """ A decorator to add a 'data' kwarg to a function. :: @_preprocess_data() def func(ax, *args, **kwargs): ... is a function with signature ``decorated(ax, *args, data=None, **kwargs)`` with the following behavior: - if called with ``data=None``, forward the other arguments to ``func``; - otherwise, *data* must be a mapping; for any argument passed in as a string ``name``, replace the argument by ``data[name]`` (if this does not throw an exception), then forward the arguments to ``func``. In either case, any argument that is a `MappingView` is also converted to a list. Parameters ---------- replace_names : list of str or None, optional, default: None The list of parameter names for which lookup into *data* should be attempted. If None, replacement is attempted for all arguments. label_namer : string, optional, default: None If set e.g. to "namer" (which must be a kwarg in the function's signature -- not as ``**kwargs``), if the *namer* argument passed in is a (string) key of *data* and no *label* kwarg is passed, then use the (string) value of the *namer* as *label*. :: @_preprocess_data(label_namer="foo") def func(foo, label=None): ... func("key", data={"key": value}) # is equivalent to func.__wrapped__(value, label="key") """ if func is None: # Return the actual decorator. return functools.partial( _preprocess_data, replace_names=replace_names, label_namer=label_namer) sig = inspect.signature(func) varargs_name = None varkwargs_name = None arg_names = [] params = list(sig.parameters.values()) for p in params: if p.kind is Parameter.VAR_POSITIONAL: varargs_name = p.name elif p.kind is Parameter.VAR_KEYWORD: varkwargs_name = p.name else: arg_names.append(p.name) data_param = Parameter("data", Parameter.KEYWORD_ONLY, default=None) if varkwargs_name: params.insert(-1, data_param) else: params.append(data_param) new_sig = sig.replace(parameters=params) arg_names = arg_names[1:] # remove the first "ax" / self arg if replace_names is not None: replace_names = set(replace_names) assert (replace_names or set()) <= set(arg_names) or varkwargs_name, ( "Matplotlib internal error: invalid replace_names ({!r}) for {!r}" .format(replace_names, func.__name__)) assert label_namer is None or label_namer in arg_names, ( "Matplotlib internal error: invalid label_namer ({!r}) for {!r}" .format(label_namer, func.__name__)) @functools.wraps(func) def inner(ax, *args, data=None, **kwargs): if data is None: return func(ax, *map(sanitize_sequence, args), **kwargs) bound = new_sig.bind(ax, *args, **kwargs) needs_label = (label_namer and "label" not in bound.arguments and "label" not in bound.kwargs) auto_label = (bound.arguments.get(label_namer) or bound.kwargs.get(label_namer)) for k, v in bound.arguments.items(): if k == varkwargs_name: for k1, v1 in v.items(): if replace_names is None or k1 in replace_names: v[k1] = _replacer(data, v1) elif k == varargs_name: if replace_names is None: bound.arguments[k] = tuple(_replacer(data, v1) for v1 in v) else: if replace_names is None or k in replace_names: bound.arguments[k] = _replacer(data, v) bound.apply_defaults() del bound.arguments["data"] if needs_label: all_kwargs = {**bound.arguments, **bound.kwargs} # label_namer will be in all_kwargs as we asserted above that # `label_namer is None or label_namer in arg_names`. label = _label_from_arg(all_kwargs[label_namer], auto_label) if "label" in arg_names: bound.arguments["label"] = label try: bound.arguments.move_to_end(varkwargs_name) except KeyError: pass else: bound.arguments.setdefault(varkwargs_name, {})["label"] = label return func(*bound.args, **bound.kwargs) inner.__doc__ = _add_data_doc(inner.__doc__, replace_names) inner.__signature__ = new_sig return inner _log.debug('matplotlib version %s', __version__) _log.debug('interactive is %s', is_interactive()) _log.debug('platform is %s', sys.platform) _log.debug('loaded modules: %s', list(sys.modules))
e5cf66ffa452acdbaff18bd29cc93ba8312572b3afe1e7ba068a0bc23aa3b71d
import inspect import textwrap import numpy as np from numpy import ma from matplotlib import cbook, docstring, rcParams from matplotlib.ticker import ( NullFormatter, ScalarFormatter, LogFormatterSciNotation, LogitFormatter, NullLocator, LogLocator, AutoLocator, AutoMinorLocator, SymmetricalLogLocator, LogitLocator) from matplotlib.transforms import Transform, IdentityTransform class ScaleBase(object): """ The base class for all scales. Scales are separable transformations, working on a single dimension. Any subclasses will want to override: - :attr:`name` - :meth:`get_transform` - :meth:`set_default_locators_and_formatters` And optionally: - :meth:`limit_range_for_scale` """ def __init__(self, axis, **kwargs): r""" Construct a new scale. Notes ----- The following note is for scale implementors. For back-compatibility reasons, scales take an `~matplotlib.axis.Axis` object as first argument. However, this argument should not be used: a single scale object should be usable by multiple `~matplotlib.axis.Axis`\es at the same time. """ def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` object associated with this scale. """ raise NotImplementedError() def set_default_locators_and_formatters(self, axis): """ Set the :class:`~matplotlib.ticker.Locator` and :class:`~matplotlib.ticker.Formatter` objects on the given axis to match this scale. """ raise NotImplementedError() def limit_range_for_scale(self, vmin, vmax, minpos): """ Returns the range *vmin*, *vmax*, possibly limited to the domain supported by this scale. *minpos* should be the minimum positive value in the data. This is used by log scales to determine a minimum value. """ return vmin, vmax class LinearScale(ScaleBase): """ The default linear scale. """ name = 'linear' def __init__(self, axis, **kwargs): # This method is present only to prevent inheritance of the base class' # constructor docstring, which would otherwise end up interpolated into # the docstring of Axis.set_scale. """ """ super().__init__(axis, **kwargs) def set_default_locators_and_formatters(self, axis): """ Set the locators and formatters to reasonable defaults for linear scaling. """ axis.set_major_locator(AutoLocator()) axis.set_major_formatter(ScalarFormatter()) axis.set_minor_formatter(NullFormatter()) # update the minor locator for x and y axis based on rcParams if (axis.axis_name == 'x' and rcParams['xtick.minor.visible'] or axis.axis_name == 'y' and rcParams['ytick.minor.visible']): axis.set_minor_locator(AutoMinorLocator()) else: axis.set_minor_locator(NullLocator()) def get_transform(self): """ The transform for linear scaling is just the :class:`~matplotlib.transforms.IdentityTransform`. """ return IdentityTransform() class FuncTransform(Transform): """ A simple transform that takes and arbitrary function for the forward and inverse transform. """ input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, forward, inverse): """ Parameters ---------- forward : callable The forward function for the transform. This function must have an inverse and, for best behavior, be monotonic. It must have the signature:: def forward(values: array-like) -> array-like inverse : callable The inverse of the forward function. Signature as ``forward``. """ super().__init__() if callable(forward) and callable(inverse): self._forward = forward self._inverse = inverse else: raise ValueError('arguments to FuncTransform must ' 'be functions') def transform_non_affine(self, values): return self._forward(values) def inverted(self): return FuncTransform(self._inverse, self._forward) class FuncScale(ScaleBase): """ Provide an arbitrary scale with user-supplied function for the axis. """ name = 'function' def __init__(self, axis, functions): """ Parameters ---------- axis: the axis for the scale functions : (callable, callable) two-tuple of the forward and inverse functions for the scale. The forward function must be monotonic. Both functions must have the signature:: def forward(values: array-like) -> array-like """ forward, inverse = functions transform = FuncTransform(forward, inverse) self._transform = transform def get_transform(self): """ The transform for arbitrary scaling """ return self._transform def set_default_locators_and_formatters(self, axis): """ Set the locators and formatters to the same defaults as the linear scale. """ axis.set_major_locator(AutoLocator()) axis.set_major_formatter(ScalarFormatter()) axis.set_minor_formatter(NullFormatter()) # update the minor locator for x and y axis based on rcParams if (axis.axis_name == 'x' and rcParams['xtick.minor.visible'] or axis.axis_name == 'y' and rcParams['ytick.minor.visible']): axis.set_minor_locator(AutoMinorLocator()) else: axis.set_minor_locator(NullLocator()) @cbook.deprecated("3.1", alternative="LogTransform") class LogTransformBase(Transform): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, nonpos='clip'): Transform.__init__(self) self._clip = {"clip": True, "mask": False}[nonpos] def transform_non_affine(self, a): return LogTransform.transform_non_affine(self, a) def __str__(self): return "{}({!r})".format( type(self).__name__, "clip" if self._clip else "mask") @cbook.deprecated("3.1", alternative="InvertedLogTransform") class InvertedLogTransformBase(Transform): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def transform_non_affine(self, a): return ma.power(self.base, a) def __str__(self): return "{}()".format(type(self).__name__) @cbook.deprecated("3.1", alternative="LogTransform") class Log10Transform(LogTransformBase): base = 10.0 def inverted(self): return InvertedLog10Transform() @cbook.deprecated("3.1", alternative="InvertedLogTransform") class InvertedLog10Transform(InvertedLogTransformBase): base = 10.0 def inverted(self): return Log10Transform() @cbook.deprecated("3.1", alternative="LogTransform") class Log2Transform(LogTransformBase): base = 2.0 def inverted(self): return InvertedLog2Transform() @cbook.deprecated("3.1", alternative="InvertedLogTransform") class InvertedLog2Transform(InvertedLogTransformBase): base = 2.0 def inverted(self): return Log2Transform() @cbook.deprecated("3.1", alternative="LogTransform") class NaturalLogTransform(LogTransformBase): base = np.e def inverted(self): return InvertedNaturalLogTransform() @cbook.deprecated("3.1", alternative="InvertedLogTransform") class InvertedNaturalLogTransform(InvertedLogTransformBase): base = np.e def inverted(self): return NaturalLogTransform() class LogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, base, nonpos='clip'): Transform.__init__(self) self.base = base self._clip = {"clip": True, "mask": False}[nonpos] def __str__(self): return "{}(base={}, nonpos={!r})".format( type(self).__name__, self.base, "clip" if self._clip else "mask") def transform_non_affine(self, a): # Ignore invalid values due to nans being passed to the transform. with np.errstate(divide="ignore", invalid="ignore"): log = {np.e: np.log, 2: np.log2, 10: np.log10}.get(self.base) if log: # If possible, do everything in a single call to Numpy. out = log(a) else: out = np.log(a) out /= np.log(self.base) if self._clip: # SVG spec says that conforming viewers must support values up # to 3.4e38 (C float); however experiments suggest that # Inkscape (which uses cairo for rendering) runs into cairo's # 24-bit limit (which is apparently shared by Agg). # Ghostscript (used for pdf rendering appears to overflow even # earlier, with the max value around 2 ** 15 for the tests to # pass. On the other hand, in practice, we want to clip beyond # np.log10(np.nextafter(0, 1)) ~ -323 # so 1000 seems safe. out[a <= 0] = -1000 return out def inverted(self): return InvertedLogTransform(self.base) class InvertedLogTransform(InvertedLogTransformBase): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, base): Transform.__init__(self) self.base = base def __str__(self): return "{}(base={})".format(type(self).__name__, self.base) def transform_non_affine(self, a): return ma.power(self.base, a) def inverted(self): return LogTransform(self.base) class LogScale(ScaleBase): """ A standard logarithmic scale. Care is taken to only plot positive values. """ name = 'log' # compatibility shim LogTransformBase = LogTransformBase Log10Transform = Log10Transform InvertedLog10Transform = InvertedLog10Transform Log2Transform = Log2Transform InvertedLog2Transform = InvertedLog2Transform NaturalLogTransform = NaturalLogTransform InvertedNaturalLogTransform = InvertedNaturalLogTransform LogTransform = LogTransform InvertedLogTransform = InvertedLogTransform def __init__(self, axis, **kwargs): """ *basex*/*basey*: The base of the logarithm *nonposx*/*nonposy*: {'mask', 'clip'} non-positive values in *x* or *y* can be masked as invalid, or clipped to a very small positive number *subsx*/*subsy*: Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale: ``[2, 3, 4, 5, 6, 7, 8, 9]`` will place 8 logarithmically spaced minor ticks between each major tick. """ if axis.axis_name == 'x': base = kwargs.pop('basex', 10.0) subs = kwargs.pop('subsx', None) nonpos = kwargs.pop('nonposx', 'clip') cbook._check_in_list(['mask', 'clip'], nonposx=nonpos) else: base = kwargs.pop('basey', 10.0) subs = kwargs.pop('subsy', None) nonpos = kwargs.pop('nonposy', 'clip') cbook._check_in_list(['mask', 'clip'], nonposy=nonpos) if len(kwargs): raise ValueError(("provided too many kwargs, can only pass " "{'basex', 'subsx', nonposx'} or " "{'basey', 'subsy', nonposy'}. You passed ") + "{!r}".format(kwargs)) if base <= 0 or base == 1: raise ValueError('The log base cannot be <= 0 or == 1') self._transform = self.LogTransform(base, nonpos) self.subs = subs @property def base(self): return self._transform.base def set_default_locators_and_formatters(self, axis): """ Set the locators and formatters to specialized versions for log scaling. """ axis.set_major_locator(LogLocator(self.base)) axis.set_major_formatter(LogFormatterSciNotation(self.base)) axis.set_minor_locator(LogLocator(self.base, self.subs)) axis.set_minor_formatter( LogFormatterSciNotation(self.base, labelOnlyBase=(self.subs is not None))) def get_transform(self): """ Return a :class:`~matplotlib.transforms.Transform` instance appropriate for the given logarithm base. """ return self._transform def limit_range_for_scale(self, vmin, vmax, minpos): """ Limit the domain to positive values. """ if not np.isfinite(minpos): minpos = 1e-300 # This value should rarely if ever # end up with a visible effect. return (minpos if vmin <= 0 else vmin, minpos if vmax <= 0 else vmax) class FuncScaleLog(LogScale): """ Provide an arbitrary scale with user-supplied function for the axis and then put on a logarithmic axes. """ name = 'functionlog' def __init__(self, axis, functions, base=10): """ Parameters ---------- axis: the axis for the scale functions : (callable, callable) two-tuple of the forward and inverse functions for the scale. The forward function must be monotonic. Both functions must have the signature:: def forward(values: array-like) -> array-like base : float logarithmic base of the scale (default = 10) """ forward, inverse = functions self.subs = None self._transform = FuncTransform(forward, inverse) + LogTransform(base) @property def base(self): return self._transform._b.base # Base of the LogTransform. def get_transform(self): """ The transform for arbitrary scaling """ return self._transform class SymmetricalLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, base, linthresh, linscale): Transform.__init__(self) self.base = base self.linthresh = linthresh self.linscale = linscale self._linscale_adj = (linscale / (1.0 - self.base ** -1)) self._log_base = np.log(base) def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False) log = sign * self.linthresh * ( self._linscale_adj + ma.log(np.abs(masked) / self.linthresh) / self._log_base) if masked.mask.any(): return ma.where(masked.mask, a * self._linscale_adj, log) else: return log def inverted(self): return InvertedSymmetricalLogTransform(self.base, self.linthresh, self.linscale) class InvertedSymmetricalLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, base, linthresh, linscale): Transform.__init__(self) symlog = SymmetricalLogTransform(base, linthresh, linscale) self.base = base self.linthresh = linthresh self.invlinthresh = symlog.transform(linthresh) self.linscale = linscale self._linscale_adj = (linscale / (1.0 - self.base ** -1)) def transform_non_affine(self, a): sign = np.sign(a) masked = ma.masked_inside(a, -self.invlinthresh, self.invlinthresh, copy=False) exp = sign * self.linthresh * ( ma.power(self.base, (sign * (masked / self.linthresh)) - self._linscale_adj)) if masked.mask.any(): return ma.where(masked.mask, a / self._linscale_adj, exp) else: return exp def inverted(self): return SymmetricalLogTransform(self.base, self.linthresh, self.linscale) class SymmetricalLogScale(ScaleBase): """ The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin. Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter *linthresh* allows the user to specify the size of this range (-*linthresh*, *linthresh*). """ name = 'symlog' # compatibility shim SymmetricalLogTransform = SymmetricalLogTransform InvertedSymmetricalLogTransform = InvertedSymmetricalLogTransform def __init__(self, axis, **kwargs): """ *basex*/*basey*: The base of the logarithm *linthreshx*/*linthreshy*: A single float which defines the range (-*x*, *x*), within which the plot is linear. This avoids having the plot go to infinity around zero. *subsx*/*subsy*: Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale: ``[2, 3, 4, 5, 6, 7, 8, 9]`` will place 8 logarithmically spaced minor ticks between each major tick. *linscalex*/*linscaley*: This allows the linear range (-*linthresh* to *linthresh*) to be stretched relative to the logarithmic range. Its value is the number of decades to use for each half of the linear range. For example, when *linscale* == 1.0 (the default), the space used for the positive and negative halves of the linear range will be equal to one decade in the logarithmic range. """ if axis.axis_name == 'x': base = kwargs.pop('basex', 10.0) linthresh = kwargs.pop('linthreshx', 2.0) subs = kwargs.pop('subsx', None) linscale = kwargs.pop('linscalex', 1.0) else: base = kwargs.pop('basey', 10.0) linthresh = kwargs.pop('linthreshy', 2.0) subs = kwargs.pop('subsy', None) linscale = kwargs.pop('linscaley', 1.0) if base <= 1.0: raise ValueError("'basex/basey' must be larger than 1") if linthresh <= 0.0: raise ValueError("'linthreshx/linthreshy' must be positive") if linscale <= 0.0: raise ValueError("'linscalex/linthreshy' must be positive") self._transform = self.SymmetricalLogTransform(base, linthresh, linscale) self.base = base self.linthresh = linthresh self.linscale = linscale self.subs = subs def set_default_locators_and_formatters(self, axis): """ Set the locators and formatters to specialized versions for symmetrical log scaling. """ axis.set_major_locator(SymmetricalLogLocator(self.get_transform())) axis.set_major_formatter(LogFormatterSciNotation(self.base)) axis.set_minor_locator(SymmetricalLogLocator(self.get_transform(), self.subs)) axis.set_minor_formatter(NullFormatter()) def get_transform(self): """ Return a :class:`SymmetricalLogTransform` instance. """ return self._transform class LogitTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, nonpos='mask'): Transform.__init__(self) self._nonpos = nonpos self._clip = {"clip": True, "mask": False}[nonpos] def transform_non_affine(self, a): """logit transform (base 10), masked or clipped""" with np.errstate(divide="ignore", invalid="ignore"): out = np.log10(a / (1 - a)) if self._clip: # See LogTransform for choice of clip value. out[a <= 0] = -1000 out[1 <= a] = 1000 return out def inverted(self): return LogisticTransform(self._nonpos) def __str__(self): return "{}({!r})".format(type(self).__name__, "clip" if self._clip else "mask") class LogisticTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, nonpos='mask'): Transform.__init__(self) self._nonpos = nonpos def transform_non_affine(self, a): """logistic transform (base 10)""" return 1.0 / (1 + 10**(-a)) def inverted(self): return LogitTransform(self._nonpos) def __str__(self): return "{}({!r})".format(type(self).__name__, self._nonpos) class LogitScale(ScaleBase): """ Logit scale for data between zero and one, both excluded. This scale is similar to a log scale close to zero and to one, and almost linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[. """ name = 'logit' def __init__(self, axis, nonpos='mask'): """ *nonpos*: {'mask', 'clip'} values beyond ]0, 1[ can be masked as invalid, or clipped to a number very close to 0 or 1 """ cbook._check_in_list(['mask', 'clip'], nonpos=nonpos) self._transform = LogitTransform(nonpos) def get_transform(self): """ Return a :class:`LogitTransform` instance. """ return self._transform def set_default_locators_and_formatters(self, axis): # ..., 0.01, 0.1, 0.5, 0.9, 0.99, ... axis.set_major_locator(LogitLocator()) axis.set_major_formatter(LogitFormatter()) axis.set_minor_locator(LogitLocator(minor=True)) axis.set_minor_formatter(LogitFormatter()) def limit_range_for_scale(self, vmin, vmax, minpos): """ Limit the domain to values between 0 and 1 (excluded). """ if not np.isfinite(minpos): minpos = 1e-7 # This value should rarely if ever # end up with a visible effect. return (minpos if vmin <= 0 else vmin, 1 - minpos if vmax >= 1 else vmax) _scale_mapping = { 'linear': LinearScale, 'log': LogScale, 'symlog': SymmetricalLogScale, 'logit': LogitScale, 'function': FuncScale, 'functionlog': FuncScaleLog, } def get_scale_names(): return sorted(_scale_mapping) def scale_factory(scale, axis, **kwargs): """ Return a scale class by name. Parameters ---------- scale : {%(names)s} axis : Axis """ scale = scale.lower() if scale not in _scale_mapping: raise ValueError("Unknown scale type '%s'" % scale) return _scale_mapping[scale](axis, **kwargs) if scale_factory.__doc__: scale_factory.__doc__ = scale_factory.__doc__ % { "names": ", ".join(get_scale_names())} def register_scale(scale_class): """ Register a new kind of scale. *scale_class* must be a subclass of :class:`ScaleBase`. """ _scale_mapping[scale_class.name] = scale_class @cbook.deprecated( '3.1', message='get_scale_docs() is considered private API since ' '3.1 and will be removed from the public API in 3.3.') def get_scale_docs(): """ Helper function for generating docstrings related to scales. """ return _get_scale_docs() def _get_scale_docs(): """ Helper function for generating docstrings related to scales. """ docs = [] for name, scale_class in _scale_mapping.items(): docs.extend([ f" {name!r}", "", textwrap.indent(inspect.getdoc(scale_class.__init__), " " * 8), "" ]) return "\n".join(docs) docstring.interpd.update( scale=' | '.join([repr(x) for x in get_scale_names()]), scale_docs=_get_scale_docs().rstrip(), )
589fd3fd84f94c0e0a20aab5f77eb26ac94670bdafdb1002e341b7fa58e37c46
""" The rcsetup module contains the default values and the validation code for customization using matplotlib's rc settings. Each rc setting is assigned a default value and a function used to validate any attempted changes to that setting. The default values and validation functions are defined in the rcsetup module, and are used to construct the rcParams global object which stores the settings and is referenced throughout matplotlib. These default values should be consistent with the default matplotlibrc file that actually reflects the values given here. Any additions or deletions to the parameter set listed here should also be visited to the :file:`matplotlibrc.template` in matplotlib's root source directory. """ from collections.abc import Iterable, Mapping from functools import reduce import operator import os import re from matplotlib import cbook from matplotlib.cbook import ls_mapper from matplotlib.fontconfig_pattern import parse_fontconfig_pattern from matplotlib.colors import is_color_like # Don't let the original cycler collide with our validating cycler from cycler import Cycler, cycler as ccycler # The capitalized forms are needed for ipython at present; this may # change for later versions. interactive_bk = ['GTK3Agg', 'GTK3Cairo', 'MacOSX', 'nbAgg', 'Qt4Agg', 'Qt4Cairo', 'Qt5Agg', 'Qt5Cairo', 'TkAgg', 'TkCairo', 'WebAgg', 'WX', 'WXAgg', 'WXCairo'] non_interactive_bk = ['agg', 'cairo', 'pdf', 'pgf', 'ps', 'svg', 'template'] all_backends = interactive_bk + non_interactive_bk class ValidateInStrings(object): def __init__(self, key, valid, ignorecase=False): 'valid is a list of legal strings' self.key = key self.ignorecase = ignorecase def func(s): if ignorecase: return s.lower() else: return s self.valid = {func(k): k for k in valid} def __call__(self, s): if self.ignorecase: s = s.lower() if s in self.valid: return self.valid[s] raise ValueError('Unrecognized %s string %r: valid strings are %s' % (self.key, s, list(self.valid.values()))) def _listify_validator(scalar_validator, allow_stringlist=False): def f(s): if isinstance(s, str): try: return [scalar_validator(v.strip()) for v in s.split(',') if v.strip()] except Exception: if allow_stringlist: # Sometimes, a list of colors might be a single string # of single-letter colornames. So give that a shot. return [scalar_validator(v.strip()) for v in s if v.strip()] else: raise # We should allow any generic sequence type, including generators, # Numpy ndarrays, and pandas data structures. However, unordered # sequences, such as sets, should be allowed but discouraged unless the # user desires pseudorandom behavior. elif isinstance(s, Iterable) and not isinstance(s, Mapping): # The condition on this list comprehension will preserve the # behavior of filtering out any empty strings (behavior was # from the original validate_stringlist()), while allowing # any non-string/text scalar values such as numbers and arrays. return [scalar_validator(v) for v in s if not isinstance(v, str) or v] else: raise ValueError("{!r} must be of type: string or non-dictionary " "iterable".format(s)) try: f.__name__ = "{}list".format(scalar_validator.__name__) except AttributeError: # class instance. f.__name__ = "{}List".format(type(scalar_validator).__name__) f.__doc__ = scalar_validator.__doc__ return f def validate_any(s): return s validate_anylist = _listify_validator(validate_any) def validate_path_exists(s): """If s is a path, return s, else False""" if s is None: return None if os.path.exists(s): return s else: raise RuntimeError('"%s" should be a path but it does not exist' % s) def validate_bool(b): """Convert b to a boolean or raise""" if isinstance(b, str): b = b.lower() if b in ('t', 'y', 'yes', 'on', 'true', '1', 1, True): return True elif b in ('f', 'n', 'no', 'off', 'false', '0', 0, False): return False else: raise ValueError('Could not convert "%s" to boolean' % b) def validate_bool_maybe_none(b): 'Convert b to a boolean or raise' if isinstance(b, str): b = b.lower() if b is None or b == 'none': return None if b in ('t', 'y', 'yes', 'on', 'true', '1', 1, True): return True elif b in ('f', 'n', 'no', 'off', 'false', '0', 0, False): return False else: raise ValueError('Could not convert "%s" to boolean' % b) def validate_float(s): """convert s to float or raise""" try: return float(s) except ValueError: raise ValueError('Could not convert "%s" to float' % s) validate_floatlist = _listify_validator(validate_float) def validate_float_or_None(s): """convert s to float, None or raise""" # values directly from the rc file can only be strings, # so we need to recognize the string "None" and convert # it into the object. We will be case-sensitive here to # avoid confusion between string values of 'none', which # can be a valid string value for some other parameters. if s is None or s == 'None': return None try: return float(s) except ValueError: raise ValueError('Could not convert "%s" to float or None' % s) def validate_string_or_None(s): """convert s to string or raise""" if s is None: return None try: return validate_string(s) except ValueError: raise ValueError('Could not convert "%s" to string' % s) def _validate_tex_preamble(s): if s is None or s == 'None': return "" try: if isinstance(s, str): return s elif isinstance(s, Iterable): return '\n'.join(s) else: raise TypeError except TypeError: raise ValueError('Could not convert "%s" to string' % s) def validate_axisbelow(s): try: return validate_bool(s) except ValueError: if isinstance(s, str): s = s.lower() if s.startswith('line'): return 'line' raise ValueError('%s cannot be interpreted as' ' True, False, or "line"' % s) def validate_dpi(s): """confirm s is string 'figure' or convert s to float or raise""" if s == 'figure': return s try: return float(s) except ValueError: raise ValueError('"%s" is not string "figure" or' ' could not convert "%s" to float' % (s, s)) def validate_int(s): """convert s to int or raise""" try: return int(s) except ValueError: raise ValueError('Could not convert "%s" to int' % s) def validate_int_or_None(s): """if not None, tries to validate as an int""" if s == 'None': s = None if s is None: return None try: return int(s) except ValueError: raise ValueError('Could not convert "%s" to int' % s) def validate_fonttype(s): """ confirm that this is a Postscript of PDF font type that we know how to convert to """ fonttypes = {'type3': 3, 'truetype': 42} try: fonttype = validate_int(s) except ValueError: try: return fonttypes[s.lower()] except KeyError: raise ValueError( 'Supported Postscript/PDF font types are %s' % list(fonttypes)) else: if fonttype not in fonttypes.values(): raise ValueError( 'Supported Postscript/PDF font types are %s' % list(fonttypes.values())) return fonttype _validate_standard_backends = ValidateInStrings( 'backend', all_backends, ignorecase=True) _auto_backend_sentinel = object() def validate_backend(s): backend = ( s if s is _auto_backend_sentinel or s.startswith("module://") else _validate_standard_backends(s)) return backend @cbook.deprecated("3.1") def validate_qt4(s): if s is None: return None return ValidateInStrings("backend.qt4", ['PyQt4', 'PySide', 'PyQt4v2'])(s) @cbook.deprecated("3.1") def validate_qt5(s): if s is None: return None return ValidateInStrings("backend.qt5", ['PyQt5', 'PySide2'])(s) def validate_toolbar(s): validator = ValidateInStrings( 'toolbar', ['None', 'toolbar2', 'toolmanager'], ignorecase=True) return validator(s) _seq_err_msg = ('You must supply exactly {n} values, you provided {num} ' 'values: {s}') _str_err_msg = ('You must supply exactly {n} comma-separated values, you ' 'provided {num} comma-separated values: {s}') class validate_nseq_float(object): def __init__(self, n=None, allow_none=False): self.n = n self.allow_none = allow_none def __call__(self, s): """return a seq of n floats or raise""" if isinstance(s, str): s = [x.strip() for x in s.split(',')] err_msg = _str_err_msg else: err_msg = _seq_err_msg if self.n is not None and len(s) != self.n: raise ValueError(err_msg.format(n=self.n, num=len(s), s=s)) try: return [float(val) if not self.allow_none or val is not None else val for val in s] except ValueError: raise ValueError('Could not convert all entries to floats') class validate_nseq_int(object): def __init__(self, n=None): self.n = n def __call__(self, s): """return a seq of n ints or raise""" if isinstance(s, str): s = [x.strip() for x in s.split(',')] err_msg = _str_err_msg else: err_msg = _seq_err_msg if self.n is not None and len(s) != self.n: raise ValueError(err_msg.format(n=self.n, num=len(s), s=s)) try: return [int(val) for val in s] except ValueError: raise ValueError('Could not convert all entries to ints') def validate_color_or_inherit(s): 'return a valid color arg' if s == 'inherit': return s return validate_color(s) def validate_color_or_auto(s): if s == 'auto': return s return validate_color(s) def validate_color_for_prop_cycle(s): # Special-case the N-th color cycle syntax, this obviously can not # go in the color cycle. if isinstance(s, bytes): match = re.match(b'^C[0-9]$', s) if match is not None: raise ValueError('Can not put cycle reference ({cn!r}) in ' 'prop_cycler'.format(cn=s)) elif isinstance(s, str): match = re.match('^C[0-9]$', s) if match is not None: raise ValueError('Can not put cycle reference ({cn!r}) in ' 'prop_cycler'.format(cn=s)) return validate_color(s) def validate_color(s): 'return a valid color arg' try: if s.lower() == 'none': return 'none' except AttributeError: pass if isinstance(s, str): if len(s) == 6 or len(s) == 8: stmp = '#' + s if is_color_like(stmp): return stmp if is_color_like(s): return s # If it is still valid, it must be a tuple. colorarg = s msg = '' if s.find(',') >= 0: # get rid of grouping symbols stmp = ''.join([c for c in s if c.isdigit() or c == '.' or c == ',']) vals = stmp.split(',') if len(vals) not in [3, 4]: msg = '\nColor tuples must be of length 3 or 4' else: try: colorarg = [float(val) for val in vals] except ValueError: msg = '\nCould not convert all entries to floats' if not msg and is_color_like(colorarg): return colorarg raise ValueError('%s does not look like a color arg%s' % (s, msg)) validate_colorlist = _listify_validator(validate_color, allow_stringlist=True) validate_colorlist.__doc__ = 'return a list of colorspecs' def validate_string(s): if isinstance(s, str): # Always leave str as str and unicode as unicode return s else: return str(s) validate_stringlist = _listify_validator(str) validate_stringlist.__doc__ = 'return a list' validate_orientation = ValidateInStrings( 'orientation', ['landscape', 'portrait']) def validate_aspect(s): if s in ('auto', 'equal'): return s try: return float(s) except ValueError: raise ValueError('not a valid aspect specification') def validate_fontsize_None(s): if s is None or s == 'None': return None else: return validate_fontsize(s) def validate_fontsize(s): fontsizes = ['xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large', 'smaller', 'larger'] if isinstance(s, str): s = s.lower() if s in fontsizes: return s try: return float(s) except ValueError: raise ValueError("%s is not a valid font size. Valid font sizes " "are %s." % (s, ", ".join(fontsizes))) validate_fontsizelist = _listify_validator(validate_fontsize) def validate_font_properties(s): parse_fontconfig_pattern(s) return s validate_fontset = ValidateInStrings( 'fontset', ['dejavusans', 'dejavuserif', 'cm', 'stix', 'stixsans', 'custom']) def validate_mathtext_default(s): if s == "circled": cbook.warn_deprecated( "3.1", message="Support for setting the mathtext.default rcParam " "to 'circled' is deprecated since %(since)s and will be removed " "%(removal)s.") return ValidateInStrings( 'default', "rm cal it tt sf bf default bb frak circled scr regular".split())(s) _validate_alignment = ValidateInStrings( 'alignment', ['center', 'top', 'bottom', 'baseline', 'center_baseline']) _validate_verbose = ValidateInStrings( 'verbose', ['silent', 'helpful', 'debug', 'debug-annoying']) @cbook.deprecated("3.1") def validate_verbose(s): return _validate_verbose(s) def validate_whiskers(s): if s == 'range': return 'range' else: try: v = validate_nseq_float(2)(s) return v except (TypeError, ValueError): try: v = float(s) return v except ValueError: raise ValueError("Not a valid whisker value ['range', float, " "(float, float)]") def update_savefig_format(value): # The old savefig.extension could also have a value of "auto", but # the new savefig.format does not. We need to fix this here. value = validate_string(value) if value == 'auto': value = 'png' return value validate_ps_papersize = ValidateInStrings( 'ps_papersize', ['auto', 'letter', 'legal', 'ledger', 'a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'a10', 'b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9', 'b10', ], ignorecase=True) def validate_ps_distiller(s): if isinstance(s, str): s = s.lower() if s in ('none', None): return None elif s in ('false', False): return False elif s in ('ghostscript', 'xpdf'): return s else: raise ValueError('matplotlibrc ps.usedistiller must either be none, ' 'ghostscript or xpdf') validate_joinstyle = ValidateInStrings('joinstyle', ['miter', 'round', 'bevel'], ignorecase=True) validate_joinstylelist = _listify_validator(validate_joinstyle) validate_capstyle = ValidateInStrings('capstyle', ['butt', 'round', 'projecting'], ignorecase=True) validate_capstylelist = _listify_validator(validate_capstyle) validate_fillstyle = ValidateInStrings('markers.fillstyle', ['full', 'left', 'right', 'bottom', 'top', 'none']) validate_fillstylelist = _listify_validator(validate_fillstyle) _validate_negative_linestyle = ValidateInStrings('negative_linestyle', ['solid', 'dashed'], ignorecase=True) def validate_markevery(s): """ Validate the markevery property of a Line2D object. Parameters ---------- s : None, int, float, slice, length-2 tuple of ints, length-2 tuple of floats, list of ints Returns ------- s : None, int, float, slice, length-2 tuple of ints, length-2 tuple of floats, list of ints """ # Validate s against type slice if isinstance(s, slice): return s # Validate s against type tuple if isinstance(s, tuple): tupMaxLength = 2 tupType = type(s[0]) if len(s) != tupMaxLength: raise TypeError("'markevery' tuple must have a length of " "%d" % (tupMaxLength)) if tupType is int and not all(isinstance(e, int) for e in s): raise TypeError("'markevery' tuple with first element of " "type int must have all elements of type " "int") if tupType is float and not all(isinstance(e, float) for e in s): raise TypeError("'markevery' tuple with first element of " "type float must have all elements of type " "float") if tupType is not float and tupType is not int: raise TypeError("'markevery' tuple contains an invalid type") # Validate s against type list elif isinstance(s, list): if not all(isinstance(e, int) for e in s): raise TypeError("'markevery' list must have all elements of " "type int") # Validate s against type float int and None elif not isinstance(s, (float, int)): if s is not None: raise TypeError("'markevery' is of an invalid type") return s validate_markeverylist = _listify_validator(validate_markevery) validate_legend_loc = ValidateInStrings( 'legend_loc', ['best', 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', 'center'], ignorecase=True) def validate_svg_fonttype(s): if s in ["none", "path"]: return s raise ValueError("Unrecognized svg.fonttype string '{}'; " "valid strings are 'none', 'path'") def validate_hinting(s): if s in (True, False): return s if s.lower() in ('auto', 'native', 'either', 'none'): return s.lower() raise ValueError("hinting should be 'auto', 'native', 'either' or 'none'") validate_pgf_texsystem = ValidateInStrings('pgf.texsystem', ['xelatex', 'lualatex', 'pdflatex']) validate_movie_writer = ValidateInStrings('animation.writer', ['ffmpeg', 'ffmpeg_file', 'avconv', 'avconv_file', 'imagemagick', 'imagemagick_file', 'html']) validate_movie_frame_fmt = ValidateInStrings('animation.frame_format', ['png', 'jpeg', 'tiff', 'raw', 'rgba']) validate_axis_locator = ValidateInStrings('major', ['minor', 'both', 'major']) validate_movie_html_fmt = ValidateInStrings('animation.html', ['html5', 'jshtml', 'none']) def validate_bbox(s): if isinstance(s, str): s = s.lower() if s == 'tight': return s if s == 'standard': return None raise ValueError("bbox should be 'tight' or 'standard'") elif s is not None: # Backwards compatibility. None is equivalent to 'standard'. raise ValueError("bbox should be 'tight' or 'standard'") return s def validate_sketch(s): if isinstance(s, str): s = s.lower() if s == 'none' or s is None: return None if isinstance(s, str): result = tuple([float(v.strip()) for v in s.split(',')]) elif isinstance(s, (list, tuple)): result = tuple([float(v) for v in s]) if len(result) != 3: raise ValueError("path.sketch must be a tuple (scale, length, randomness)") return result class ValidateInterval(object): """ Value must be in interval """ def __init__(self, vmin, vmax, closedmin=True, closedmax=True): self.vmin = vmin self.vmax = vmax self.cmin = closedmin self.cmax = closedmax def __call__(self, s): try: s = float(s) except ValueError: raise RuntimeError('Value must be a float; found "%s"' % s) if self.cmin and s < self.vmin: raise RuntimeError('Value must be >= %f; found "%f"' % (self.vmin, s)) elif not self.cmin and s <= self.vmin: raise RuntimeError('Value must be > %f; found "%f"' % (self.vmin, s)) if self.cmax and s > self.vmax: raise RuntimeError('Value must be <= %f; found "%f"' % (self.vmax, s)) elif not self.cmax and s >= self.vmax: raise RuntimeError('Value must be < %f; found "%f"' % (self.vmax, s)) return s validate_grid_axis = ValidateInStrings('axes.grid.axis', ['x', 'y', 'both']) def validate_hatch(s): """ Validate a hatch pattern. A hatch pattern string can have any sequence of the following characters: ``\\ / | - + * . x o O``. """ if not isinstance(s, str): raise ValueError("Hatch pattern must be a string") unknown = set(s) - {'\\', '/', '|', '-', '+', '*', '.', 'x', 'o', 'O'} if unknown: raise ValueError("Unknown hatch symbol(s): %s" % list(unknown)) return s validate_hatchlist = _listify_validator(validate_hatch) validate_dashlist = _listify_validator(validate_nseq_float(allow_none=True)) _prop_validators = { 'color': _listify_validator(validate_color_for_prop_cycle, allow_stringlist=True), 'linewidth': validate_floatlist, 'linestyle': validate_stringlist, 'facecolor': validate_colorlist, 'edgecolor': validate_colorlist, 'joinstyle': validate_joinstylelist, 'capstyle': validate_capstylelist, 'fillstyle': validate_fillstylelist, 'markerfacecolor': validate_colorlist, 'markersize': validate_floatlist, 'markeredgewidth': validate_floatlist, 'markeredgecolor': validate_colorlist, 'markevery': validate_markeverylist, 'alpha': validate_floatlist, 'marker': validate_stringlist, 'hatch': validate_hatchlist, 'dashes': validate_dashlist, } _prop_aliases = { 'c': 'color', 'lw': 'linewidth', 'ls': 'linestyle', 'fc': 'facecolor', 'ec': 'edgecolor', 'mfc': 'markerfacecolor', 'mec': 'markeredgecolor', 'mew': 'markeredgewidth', 'ms': 'markersize', } def cycler(*args, **kwargs): """ Creates a `~cycler.Cycler` object much like :func:`cycler.cycler`, but includes input validation. Call signatures:: cycler(cycler) cycler(label=values[, label2=values2[, ...]]) cycler(label, values) Form 1 copies a given `~cycler.Cycler` object. Form 2 creates a `~cycler.Cycler` which cycles over one or more properties simultaneously. If multiple properties are given, their value lists must have the same length. Form 3 creates a `~cycler.Cycler` for a single property. This form exists for compatibility with the original cycler. Its use is discouraged in favor of the kwarg form, i.e. ``cycler(label=values)``. Parameters ---------- cycler : Cycler Copy constructor for Cycler. label : str The property key. Must be a valid `.Artist` property. For example, 'color' or 'linestyle'. Aliases are allowed, such as 'c' for 'color' and 'lw' for 'linewidth'. values : iterable Finite-length iterable of the property values. These values are validated and will raise a ValueError if invalid. Returns ------- cycler : Cycler A new :class:`~cycler.Cycler` for the given properties. Examples -------- Creating a cycler for a single property: >>> c = cycler(color=['red', 'green', 'blue']) Creating a cycler for simultaneously cycling over multiple properties (e.g. red circle, green plus, blue cross): >>> c = cycler(color=['red', 'green', 'blue'], ... marker=['o', '+', 'x']) """ if args and kwargs: raise TypeError("cycler() can only accept positional OR keyword " "arguments -- not both.") elif not args and not kwargs: raise TypeError("cycler() must have positional OR keyword arguments") if len(args) == 1: if not isinstance(args[0], Cycler): raise TypeError("If only one positional argument given, it must " " be a Cycler instance.") return validate_cycler(args[0]) elif len(args) == 2: pairs = [(args[0], args[1])] elif len(args) > 2: raise TypeError("No more than 2 positional arguments allowed") else: pairs = kwargs.items() validated = [] for prop, vals in pairs: norm_prop = _prop_aliases.get(prop, prop) validator = _prop_validators.get(norm_prop, None) if validator is None: raise TypeError("Unknown artist property: %s" % prop) vals = validator(vals) # We will normalize the property names as well to reduce # the amount of alias handling code elsewhere. validated.append((norm_prop, vals)) return reduce(operator.add, (ccycler(k, v) for k, v in validated)) def validate_cycler(s): 'return a Cycler object from a string repr or the object itself' if isinstance(s, str): try: # TODO: We might want to rethink this... # While I think I have it quite locked down, # it is execution of arbitrary code without # sanitation. # Combine this with the possibility that rcparams # might come from the internet (future plans), this # could be downright dangerous. # I locked it down by only having the 'cycler()' function # available. # UPDATE: Partly plugging a security hole. # I really should have read this: # http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html # We should replace this eval with a combo of PyParsing and # ast.literal_eval() if '.__' in s.replace(' ', ''): raise ValueError("'%s' seems to have dunder methods. Raising" " an exception for your safety") s = eval(s, {'cycler': cycler, '__builtins__': {}}) except BaseException as e: raise ValueError("'%s' is not a valid cycler construction: %s" % (s, e)) # Should make sure what comes from the above eval() # is a Cycler object. if isinstance(s, Cycler): cycler_inst = s else: raise ValueError("object was not a string or Cycler instance: %s" % s) unknowns = cycler_inst.keys - (set(_prop_validators) | set(_prop_aliases)) if unknowns: raise ValueError("Unknown artist properties: %s" % unknowns) # Not a full validation, but it'll at least normalize property names # A fuller validation would require v0.10 of cycler. checker = set() for prop in cycler_inst.keys: norm_prop = _prop_aliases.get(prop, prop) if norm_prop != prop and norm_prop in cycler_inst.keys: raise ValueError("Cannot specify both '{0}' and alias '{1}'" " in the same prop_cycle".format(norm_prop, prop)) if norm_prop in checker: raise ValueError("Another property was already aliased to '{0}'." " Collision normalizing '{1}'.".format(norm_prop, prop)) checker.update([norm_prop]) # This is just an extra-careful check, just in case there is some # edge-case I haven't thought of. assert len(checker) == len(cycler_inst.keys) # Now, it should be safe to mutate this cycler for prop in cycler_inst.keys: norm_prop = _prop_aliases.get(prop, prop) cycler_inst.change_key(prop, norm_prop) for key, vals in cycler_inst.by_key().items(): _prop_validators[key](vals) return cycler_inst def validate_hist_bins(s): valid_strs = ["auto", "sturges", "fd", "doane", "scott", "rice", "sqrt"] if isinstance(s, str) and s in valid_strs: return s try: return int(s) except (TypeError, ValueError): pass try: return validate_floatlist(s) except ValueError: pass raise ValueError("'hist.bins' must be one of {}, an int or" " a sequence of floats".format(valid_strs)) def validate_animation_writer_path(p): # Make sure it's a string and then figure out if the animations # are already loaded and reset the writers (which will validate # the path on next call) if not isinstance(p, str): raise ValueError("path must be a (unicode) string") from sys import modules # set dirty, so that the next call to the registry will re-evaluate # the state. # only set dirty if already loaded. If not loaded, the load will # trigger the checks. if "matplotlib.animation" in modules: modules["matplotlib.animation"].writers.set_dirty() return p def validate_webagg_address(s): if s is not None: import socket try: socket.inet_aton(s) except socket.error as e: raise ValueError("'webagg.address' is not a valid IP address") return s raise ValueError("'webagg.address' is not a valid IP address") # A validator dedicated to the named line styles, based on the items in # ls_mapper, and a list of possible strings read from Line2D.set_linestyle _validate_named_linestyle = ValidateInStrings( 'linestyle', [*ls_mapper.keys(), *ls_mapper.values(), 'None', 'none', ' ', ''], ignorecase=True) def _validate_linestyle(ls): """ A validator for all possible line styles, the named ones *and* the on-off ink sequences. """ # Look first for a valid named line style, like '--' or 'solid' Also # includes bytes(-arrays) here (they all fail _validate_named_linestyle); # otherwise, if *ls* is of even-length, it will be passed to the instance # of validate_nseq_float, which will return an absurd on-off ink # sequence... if isinstance(ls, (str, bytes, bytearray)): return _validate_named_linestyle(ls) # Look for an on-off ink sequence (in points) *of even length*. # Offset is set to None. try: if len(ls) % 2 != 0: raise ValueError("the linestyle sequence {!r} is not of even " "length.".format(ls)) return (None, validate_nseq_float()(ls)) except (ValueError, TypeError): # TypeError can be raised inside the instance of validate_nseq_float, # by wrong types passed to float(), like NoneType. raise ValueError("linestyle {!r} is not a valid on-off ink " "sequence.".format(ls)) validate_axes_titlelocation = ValidateInStrings('axes.titlelocation', ['left', 'center', 'right']) # a map from key -> value, converter defaultParams = { 'backend': [_auto_backend_sentinel, validate_backend], 'backend_fallback': [True, validate_bool], 'webagg.port': [8988, validate_int], 'webagg.address': ['127.0.0.1', validate_webagg_address], 'webagg.open_in_browser': [True, validate_bool], 'webagg.port_retries': [50, validate_int], 'toolbar': ['toolbar2', validate_toolbar], 'datapath': [None, validate_path_exists], # handled by # _get_data_path_cached 'interactive': [False, validate_bool], 'timezone': ['UTC', validate_string], # the verbosity setting 'verbose.level': ['silent', _validate_verbose], 'verbose.fileo': ['sys.stdout', validate_string], # line props 'lines.linewidth': [1.5, validate_float], # line width in points 'lines.linestyle': ['-', _validate_linestyle], # solid line 'lines.color': ['C0', validate_color], # first color in color cycle 'lines.marker': ['None', validate_string], # marker name 'lines.markerfacecolor': ['auto', validate_color_or_auto], # default color 'lines.markeredgecolor': ['auto', validate_color_or_auto], # default color 'lines.markeredgewidth': [1.0, validate_float], 'lines.markersize': [6, validate_float], # markersize, in points 'lines.antialiased': [True, validate_bool], # antialiased (no jaggies) 'lines.dash_joinstyle': ['round', validate_joinstyle], 'lines.solid_joinstyle': ['round', validate_joinstyle], 'lines.dash_capstyle': ['butt', validate_capstyle], 'lines.solid_capstyle': ['projecting', validate_capstyle], 'lines.dashed_pattern': [[3.7, 1.6], validate_nseq_float(allow_none=True)], 'lines.dashdot_pattern': [[6.4, 1.6, 1, 1.6], validate_nseq_float(allow_none=True)], 'lines.dotted_pattern': [[1, 1.65], validate_nseq_float(allow_none=True)], 'lines.scale_dashes': [True, validate_bool], # marker props 'markers.fillstyle': ['full', validate_fillstyle], ## patch props 'patch.linewidth': [1.0, validate_float], # line width in points 'patch.edgecolor': ['black', validate_color], 'patch.force_edgecolor': [False, validate_bool], 'patch.facecolor': ['C0', validate_color], # first color in cycle 'patch.antialiased': [True, validate_bool], # antialiased (no jaggies) ## hatch props 'hatch.color': ['black', validate_color], 'hatch.linewidth': [1.0, validate_float], ## Histogram properties 'hist.bins': [10, validate_hist_bins], ## Boxplot properties 'boxplot.notch': [False, validate_bool], 'boxplot.vertical': [True, validate_bool], 'boxplot.whiskers': [1.5, validate_whiskers], 'boxplot.bootstrap': [None, validate_int_or_None], 'boxplot.patchartist': [False, validate_bool], 'boxplot.showmeans': [False, validate_bool], 'boxplot.showcaps': [True, validate_bool], 'boxplot.showbox': [True, validate_bool], 'boxplot.showfliers': [True, validate_bool], 'boxplot.meanline': [False, validate_bool], 'boxplot.flierprops.color': ['black', validate_color], 'boxplot.flierprops.marker': ['o', validate_string], 'boxplot.flierprops.markerfacecolor': ['none', validate_color_or_auto], 'boxplot.flierprops.markeredgecolor': ['black', validate_color], 'boxplot.flierprops.markeredgewidth': [1.0, validate_float], 'boxplot.flierprops.markersize': [6, validate_float], 'boxplot.flierprops.linestyle': ['none', _validate_linestyle], 'boxplot.flierprops.linewidth': [1.0, validate_float], 'boxplot.boxprops.color': ['black', validate_color], 'boxplot.boxprops.linewidth': [1.0, validate_float], 'boxplot.boxprops.linestyle': ['-', _validate_linestyle], 'boxplot.whiskerprops.color': ['black', validate_color], 'boxplot.whiskerprops.linewidth': [1.0, validate_float], 'boxplot.whiskerprops.linestyle': ['-', _validate_linestyle], 'boxplot.capprops.color': ['black', validate_color], 'boxplot.capprops.linewidth': [1.0, validate_float], 'boxplot.capprops.linestyle': ['-', _validate_linestyle], 'boxplot.medianprops.color': ['C1', validate_color], 'boxplot.medianprops.linewidth': [1.0, validate_float], 'boxplot.medianprops.linestyle': ['-', _validate_linestyle], 'boxplot.meanprops.color': ['C2', validate_color], 'boxplot.meanprops.marker': ['^', validate_string], 'boxplot.meanprops.markerfacecolor': ['C2', validate_color], 'boxplot.meanprops.markeredgecolor': ['C2', validate_color], 'boxplot.meanprops.markersize': [6, validate_float], 'boxplot.meanprops.linestyle': ['--', _validate_linestyle], 'boxplot.meanprops.linewidth': [1.0, validate_float], ## font props 'font.family': [['sans-serif'], validate_stringlist], # used by text object 'font.style': ['normal', validate_string], 'font.variant': ['normal', validate_string], 'font.stretch': ['normal', validate_string], 'font.weight': ['normal', validate_string], 'font.size': [10, validate_float], # Base font size in points 'font.serif': [['DejaVu Serif', 'Bitstream Vera Serif', 'Computer Modern Roman', 'New Century Schoolbook', 'Century Schoolbook L', 'Utopia', 'ITC Bookman', 'Bookman', 'Nimbus Roman No9 L', 'Times New Roman', 'Times', 'Palatino', 'Charter', 'serif'], validate_stringlist], 'font.sans-serif': [['DejaVu Sans', 'Bitstream Vera Sans', 'Computer Modern Sans Serif', 'Lucida Grande', 'Verdana', 'Geneva', 'Lucid', 'Arial', 'Helvetica', 'Avant Garde', 'sans-serif'], validate_stringlist], 'font.cursive': [['Apple Chancery', 'Textile', 'Zapf Chancery', 'Sand', 'Script MT', 'Felipa', 'cursive'], validate_stringlist], 'font.fantasy': [['Comic Sans MS', 'Chicago', 'Charcoal', 'Impact', 'Western', 'Humor Sans', 'xkcd', 'fantasy'], validate_stringlist], 'font.monospace': [['DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Computer Modern Typewriter', 'Andale Mono', 'Nimbus Mono L', 'Courier New', 'Courier', 'Fixed', 'Terminal', 'monospace'], validate_stringlist], # text props 'text.color': ['black', validate_color], 'text.usetex': [False, validate_bool], 'text.latex.unicode': [True, validate_bool], 'text.latex.preamble': ['', _validate_tex_preamble], 'text.latex.preview': [False, validate_bool], 'text.hinting': ['auto', validate_hinting], 'text.hinting_factor': [8, validate_int], 'text.antialiased': [True, validate_bool], 'mathtext.cal': ['cursive', validate_font_properties], 'mathtext.rm': ['sans', validate_font_properties], 'mathtext.tt': ['monospace', validate_font_properties], 'mathtext.it': ['sans:italic', validate_font_properties], 'mathtext.bf': ['sans:bold', validate_font_properties], 'mathtext.sf': ['sans', validate_font_properties], 'mathtext.fontset': ['dejavusans', validate_fontset], 'mathtext.default': ['it', validate_mathtext_default], 'mathtext.fallback_to_cm': [True, validate_bool], 'image.aspect': ['equal', validate_aspect], # equal, auto, a number 'image.interpolation': ['nearest', validate_string], 'image.cmap': ['viridis', validate_string], # gray, jet, etc. 'image.lut': [256, validate_int], # lookup table 'image.origin': ['upper', ValidateInStrings('image.origin', ['upper', 'lower'])], 'image.resample': [True, validate_bool], # Specify whether vector graphics backends will combine all images on a # set of axes into a single composite image 'image.composite_image': [True, validate_bool], # contour props 'contour.negative_linestyle': ['dashed', _validate_linestyle], 'contour.corner_mask': [True, validate_bool], # errorbar props 'errorbar.capsize': [0, validate_float], # axes props 'axes.axisbelow': ['line', validate_axisbelow], 'axes.facecolor': ['white', validate_color], # background color 'axes.edgecolor': ['black', validate_color], # edge color 'axes.linewidth': [0.8, validate_float], # edge linewidth 'axes.spines.left': [True, validate_bool], # Set visibility of axes 'axes.spines.right': [True, validate_bool], # 'spines', the lines 'axes.spines.bottom': [True, validate_bool], # around the chart 'axes.spines.top': [True, validate_bool], # denoting data boundary 'axes.titlesize': ['large', validate_fontsize], # fontsize of the # axes title 'axes.titlelocation': ['center', validate_axes_titlelocation], # alignment of axes title 'axes.titleweight': ['normal', validate_string], # font weight of axes title 'axes.titlepad': [6.0, validate_float], # pad from axes top to title in points 'axes.grid': [False, validate_bool], # display grid or not 'axes.grid.which': ['major', validate_axis_locator], # set whether the gid are by # default draw on 'major' # 'minor' or 'both' kind of # axis locator 'axes.grid.axis': ['both', validate_grid_axis], # grid type: # 'x', 'y', or 'both' 'axes.labelsize': ['medium', validate_fontsize], # fontsize of the # x any y labels 'axes.labelpad': [4.0, validate_float], # space between label and axis 'axes.labelweight': ['normal', validate_string], # fontsize of the x any y labels 'axes.labelcolor': ['black', validate_color], # color of axis label 'axes.formatter.limits': [[-7, 7], validate_nseq_int(2)], # use scientific notation if log10 # of the axis range is smaller than the # first or larger than the second 'axes.formatter.use_locale': [False, validate_bool], # Use the current locale to format ticks 'axes.formatter.use_mathtext': [False, validate_bool], 'axes.formatter.min_exponent': [0, validate_int], # minimum exponent to format in scientific notation 'axes.formatter.useoffset': [True, validate_bool], 'axes.formatter.offset_threshold': [4, validate_int], 'axes.unicode_minus': [True, validate_bool], # This entry can be either a cycler object or a # string repr of a cycler-object, which gets eval()'ed # to create the object. 'axes.prop_cycle': [ ccycler('color', ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']), validate_cycler], # If 'data', axes limits are set close to the data. # If 'round_numbers' axes limits are set to the nearest round numbers. 'axes.autolimit_mode': [ 'data', ValidateInStrings('autolimit_mode', ['data', 'round_numbers'])], 'axes.xmargin': [0.05, ValidateInterval(0, 1, closedmin=True, closedmax=True)], # margin added to xaxis 'axes.ymargin': [0.05, ValidateInterval(0, 1, closedmin=True, closedmax=True)], # margin added to yaxis 'polaraxes.grid': [True, validate_bool], # display polar grid or # not 'axes3d.grid': [True, validate_bool], # display 3d grid # scatter props 'scatter.marker': ['o', validate_string], 'scatter.edgecolors': ['face', validate_string], # TODO validate that these are valid datetime format strings 'date.autoformatter.year': ['%Y', validate_string], 'date.autoformatter.month': ['%Y-%m', validate_string], 'date.autoformatter.day': ['%Y-%m-%d', validate_string], 'date.autoformatter.hour': ['%m-%d %H', validate_string], 'date.autoformatter.minute': ['%d %H:%M', validate_string], 'date.autoformatter.second': ['%H:%M:%S', validate_string], 'date.autoformatter.microsecond': ['%M:%S.%f', validate_string], #legend properties 'legend.fancybox': [True, validate_bool], 'legend.loc': ['best', validate_legend_loc], # the number of points in the legend line 'legend.numpoints': [1, validate_int], # the number of points in the legend line for scatter 'legend.scatterpoints': [1, validate_int], 'legend.fontsize': ['medium', validate_fontsize], 'legend.title_fontsize': [None, validate_fontsize_None], # the relative size of legend markers vs. original 'legend.markerscale': [1.0, validate_float], 'legend.shadow': [False, validate_bool], # whether or not to draw a frame around legend 'legend.frameon': [True, validate_bool], # alpha value of the legend frame 'legend.framealpha': [0.8, validate_float_or_None], ## the following dimensions are in fraction of the font size 'legend.borderpad': [0.4, validate_float], # units are fontsize # the vertical space between the legend entries 'legend.labelspacing': [0.5, validate_float], # the length of the legend lines 'legend.handlelength': [2., validate_float], # the length of the legend lines 'legend.handleheight': [0.7, validate_float], # the space between the legend line and legend text 'legend.handletextpad': [.8, validate_float], # the border between the axes and legend edge 'legend.borderaxespad': [0.5, validate_float], # the border between the axes and legend edge 'legend.columnspacing': [2., validate_float], 'legend.facecolor': ['inherit', validate_color_or_inherit], 'legend.edgecolor': ['0.8', validate_color_or_inherit], # tick properties 'xtick.top': [False, validate_bool], # draw ticks on the top side 'xtick.bottom': [True, validate_bool], # draw ticks on the bottom side 'xtick.labeltop': [False, validate_bool], # draw label on the top 'xtick.labelbottom': [True, validate_bool], # draw label on the bottom 'xtick.major.size': [3.5, validate_float], # major xtick size in points 'xtick.minor.size': [2, validate_float], # minor xtick size in points 'xtick.major.width': [0.8, validate_float], # major xtick width in points 'xtick.minor.width': [0.6, validate_float], # minor xtick width in points 'xtick.major.pad': [3.5, validate_float], # distance to label in points 'xtick.minor.pad': [3.4, validate_float], # distance to label in points 'xtick.color': ['black', validate_color], # color of the xtick labels 'xtick.minor.visible': [False, validate_bool], # visibility of the x axis minor ticks 'xtick.minor.top': [True, validate_bool], # draw x axis top minor ticks 'xtick.minor.bottom': [True, validate_bool], # draw x axis bottom minor ticks 'xtick.major.top': [True, validate_bool], # draw x axis top major ticks 'xtick.major.bottom': [True, validate_bool], # draw x axis bottom major ticks # fontsize of the xtick labels 'xtick.labelsize': ['medium', validate_fontsize], 'xtick.direction': ['out', validate_string], # direction of xticks 'xtick.alignment': ["center", _validate_alignment], 'ytick.left': [True, validate_bool], # draw ticks on the left side 'ytick.right': [False, validate_bool], # draw ticks on the right side 'ytick.labelleft': [True, validate_bool], # draw tick labels on the left side 'ytick.labelright': [False, validate_bool], # draw tick labels on the right side 'ytick.major.size': [3.5, validate_float], # major ytick size in points 'ytick.minor.size': [2, validate_float], # minor ytick size in points 'ytick.major.width': [0.8, validate_float], # major ytick width in points 'ytick.minor.width': [0.6, validate_float], # minor ytick width in points 'ytick.major.pad': [3.5, validate_float], # distance to label in points 'ytick.minor.pad': [3.4, validate_float], # distance to label in points 'ytick.color': ['black', validate_color], # color of the ytick labels 'ytick.minor.visible': [False, validate_bool], # visibility of the y axis minor ticks 'ytick.minor.left': [True, validate_bool], # draw y axis left minor ticks 'ytick.minor.right': [True, validate_bool], # draw y axis right minor ticks 'ytick.major.left': [True, validate_bool], # draw y axis left major ticks 'ytick.major.right': [True, validate_bool], # draw y axis right major ticks # fontsize of the ytick labels 'ytick.labelsize': ['medium', validate_fontsize], 'ytick.direction': ['out', validate_string], # direction of yticks 'ytick.alignment': ["center_baseline", _validate_alignment], 'grid.color': ['#b0b0b0', validate_color], # grid color 'grid.linestyle': ['-', _validate_linestyle], # solid 'grid.linewidth': [0.8, validate_float], # in points 'grid.alpha': [1.0, validate_float], ## figure props # figure title 'figure.titlesize': ['large', validate_fontsize], 'figure.titleweight': ['normal', validate_string], # figure size in inches: width by height 'figure.figsize': [[6.4, 4.8], validate_nseq_float(2)], 'figure.dpi': [100, validate_float], # DPI 'figure.facecolor': ['white', validate_color], 'figure.edgecolor': ['white', validate_color], 'figure.frameon': [True, validate_bool], 'figure.autolayout': [False, validate_bool], 'figure.max_open_warning': [20, validate_int], 'figure.subplot.left': [0.125, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.right': [0.9, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.bottom': [0.11, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.top': [0.88, ValidateInterval(0, 1, closedmin=True, closedmax=True)], 'figure.subplot.wspace': [0.2, ValidateInterval(0, 1, closedmin=True, closedmax=False)], 'figure.subplot.hspace': [0.2, ValidateInterval(0, 1, closedmin=True, closedmax=False)], # do constrained_layout. 'figure.constrained_layout.use': [False, validate_bool], # wspace and hspace are fraction of adjacent subplots to use # for space. Much smaller than above because we don't need # room for the text. 'figure.constrained_layout.hspace': [0.02, ValidateInterval( 0, 1, closedmin=True, closedmax=False)], 'figure.constrained_layout.wspace': [0.02, ValidateInterval( 0, 1, closedmin=True, closedmax=False)], # This is a buffer around the axes in inches. This is 3pts. 'figure.constrained_layout.h_pad': [0.04167, validate_float], 'figure.constrained_layout.w_pad': [0.04167, validate_float], ## Saving figure's properties 'savefig.dpi': ['figure', validate_dpi], # DPI 'savefig.facecolor': ['white', validate_color], 'savefig.edgecolor': ['white', validate_color], 'savefig.frameon': [True, validate_bool], 'savefig.orientation': ['portrait', validate_orientation], 'savefig.jpeg_quality': [95, validate_int], # value checked by backend at runtime 'savefig.format': ['png', update_savefig_format], # options are 'tight', or 'standard'. 'standard' validates to None. 'savefig.bbox': ['standard', validate_bbox], 'savefig.pad_inches': [0.1, validate_float], # default directory in savefig dialog box 'savefig.directory': ['~', validate_string], 'savefig.transparent': [False, validate_bool], # Maintain shell focus for TkAgg 'tk.window_focus': [False, validate_bool], # Set the papersize/type 'ps.papersize': ['letter', validate_ps_papersize], 'ps.useafm': [False, validate_bool], # use ghostscript or xpdf to distill ps output 'ps.usedistiller': [False, validate_ps_distiller], 'ps.distiller.res': [6000, validate_int], # dpi 'ps.fonttype': [3, validate_fonttype], # 3 (Type3) or 42 (Truetype) # compression level from 0 to 9; 0 to disable 'pdf.compression': [6, validate_int], # ignore any color-setting commands from the frontend 'pdf.inheritcolor': [False, validate_bool], # use only the 14 PDF core fonts embedded in every PDF viewing application 'pdf.use14corefonts': [False, validate_bool], 'pdf.fonttype': [3, validate_fonttype], # 3 (Type3) or 42 (Truetype) 'pgf.debug': [False, validate_bool], # output debug information # choose latex application for creating pdf files (xelatex/lualatex) 'pgf.texsystem': ['xelatex', validate_pgf_texsystem], # use matplotlib rc settings for font configuration 'pgf.rcfonts': [True, validate_bool], # provide a custom preamble for the latex process 'pgf.preamble': ['', _validate_tex_preamble], # write raster image data directly into the svg file 'svg.image_inline': [True, validate_bool], # True to save all characters as paths in the SVG 'svg.fonttype': ['path', validate_svg_fonttype], 'svg.hashsalt': [None, validate_string_or_None], # set this when you want to generate hardcopy docstring 'docstring.hardcopy': [False, validate_bool], 'path.simplify': [True, validate_bool], 'path.simplify_threshold': [1.0 / 9.0, ValidateInterval(0.0, 1.0)], 'path.snap': [True, validate_bool], 'path.sketch': [None, validate_sketch], 'path.effects': [[], validate_any], 'agg.path.chunksize': [0, validate_int], # 0 to disable chunking; # key-mappings (multi-character mappings should be a list/tuple) 'keymap.fullscreen': [['f', 'ctrl+f'], validate_stringlist], 'keymap.home': [['h', 'r', 'home'], validate_stringlist], 'keymap.back': [['left', 'c', 'backspace', 'MouseButton.BACK'], validate_stringlist], 'keymap.forward': [['right', 'v', 'MouseButton.FORWARD'], validate_stringlist], 'keymap.pan': [['p'], validate_stringlist], 'keymap.zoom': [['o'], validate_stringlist], 'keymap.save': [['s', 'ctrl+s'], validate_stringlist], 'keymap.quit': [['ctrl+w', 'cmd+w', 'q'], validate_stringlist], 'keymap.quit_all': [['W', 'cmd+W', 'Q'], validate_stringlist], 'keymap.grid': [['g'], validate_stringlist], 'keymap.grid_minor': [['G'], validate_stringlist], 'keymap.yscale': [['l'], validate_stringlist], 'keymap.xscale': [['k', 'L'], validate_stringlist], 'keymap.all_axes': [['a'], validate_stringlist], 'keymap.help': [['f1'], validate_stringlist], 'keymap.copy': [['ctrl+c', 'cmd+c'], validate_stringlist], # sample data 'examples.directory': ['', validate_string], # Animation settings 'animation.html': ['none', validate_movie_html_fmt], # Limit, in MB, of size of base64 encoded animation in HTML # (i.e. IPython notebook) 'animation.embed_limit': [20, validate_float], 'animation.writer': ['ffmpeg', validate_movie_writer], 'animation.codec': ['h264', validate_string], 'animation.bitrate': [-1, validate_int], # Controls image format when frames are written to disk 'animation.frame_format': ['png', validate_movie_frame_fmt], # Additional arguments for HTML writer 'animation.html_args': [[], validate_stringlist], # Path to ffmpeg binary. If just binary name, subprocess uses $PATH. 'animation.ffmpeg_path': ['ffmpeg', validate_animation_writer_path], # Additional arguments for ffmpeg movie writer (using pipes) 'animation.ffmpeg_args': [[], validate_stringlist], # Path to AVConv binary. If just binary name, subprocess uses $PATH. 'animation.avconv_path': ['avconv', validate_animation_writer_path], # Additional arguments for avconv movie writer (using pipes) 'animation.avconv_args': [[], validate_stringlist], # Path to convert binary. If just binary name, subprocess uses $PATH. 'animation.convert_path': ['convert', validate_animation_writer_path], # Additional arguments for convert movie writer (using pipes) 'animation.convert_args': [[], validate_stringlist], # Classic (pre 2.0) compatibility mode # This is used for things that are hard to make backward compatible # with a sane rcParam alone. This does *not* turn on classic mode # altogether. For that use `matplotlib.style.use('classic')`. '_internal.classic_mode': [False, validate_bool] }
26e3f130e3598b965c58ea0765d85fd499535eed75c30a279150026c4db9c6d5
""" This module provides the routine to adjust subplot layouts so that there are no overlapping axes or axes decorations. All axes decorations are dealt with (labels, ticks, titles, ticklabels) and some dependent artists are also dealt with (colorbar, suptitle, legend). Layout is done via :meth:`~matplotlib.gridspec`, with one constraint per gridspec, so it is possible to have overlapping axes if the gridspecs overlap (i.e. using :meth:`~matplotlib.gridspec.GridSpecFromSubplotSpec`). Axes placed using ``figure.subplots()`` or ``figure.add_subplots()`` will participate in the layout. Axes manually placed via ``figure.add_axes()`` will not. See Tutorial: :doc:`/tutorials/intermediate/constrainedlayout_guide` """ # Development Notes: # What gets a layoutbox: # - figure # - gridspec # - subplotspec # EITHER: # - axes + pos for the axes (i.e. the total area taken by axis and # the actual "position" argument that needs to be sent to # ax.set_position.) # - The axes layout box will also encompass the legend, and that is # how legends get included (axes legends, not figure legends) # - colorbars are siblings of the axes if they are single-axes # colorbars # OR: # - a gridspec can be inside a subplotspec. # - subplotspec # EITHER: # - axes... # OR: # - gridspec... with arbitrary nesting... # - colorbars are siblings of the subplotspecs if they are multi-axes # colorbars. # - suptitle: # - right now suptitles are just stacked atop everything else in figure. # Could imagine suptitles being gridspec suptitles, but not implemented # # Todo: AnchoredOffsetbox connected to gridspecs or axes. This would # be more general way to add extra-axes annotations. import logging import numpy as np import matplotlib.cbook as cbook import matplotlib._layoutbox as layoutbox _log = logging.getLogger(__name__) def _in_same_column(colnum0min, colnum0max, colnumCmin, colnumCmax): return (colnumCmin <= colnum0min <= colnumCmax or colnumCmin <= colnum0max <= colnumCmax) def _in_same_row(rownum0min, rownum0max, rownumCmin, rownumCmax): return (rownumCmin <= rownum0min <= rownumCmax or rownumCmin <= rownum0max <= rownumCmax) def _axes_all_finite_sized(fig): """ helper function to make sure all axes in the figure have a finite width and height. If not, return False """ for ax in fig.axes: if ax._layoutbox is not None: newpos = ax._poslayoutbox.get_rect() if newpos[2] <= 0 or newpos[3] <= 0: return False return True ###################################################### def do_constrained_layout(fig, renderer, h_pad, w_pad, hspace=None, wspace=None): """ Do the constrained_layout. Called at draw time in ``figure.constrained_layout()`` Parameters ---------- fig : Figure is the ``figure`` instance to do the layout in. renderer : Renderer the renderer to use. h_pad, w_pad : float are in figure-normalized units, and are a padding around the axes elements. hspace, wspace : float are in fractions of the subplot sizes. """ ''' Steps: 1. get a list of unique gridspecs in this figure. Each gridspec will be constrained separately. 2. Check for gaps in the gridspecs. i.e. if not every axes slot in the gridspec has been filled. If empty, add a ghost axis that is made so that it cannot be seen (though visible=True). This is needed to make a blank spot in the layout. 3. Compare the tight_bbox of each axes to its `position`, and assume that the difference is the space needed by the elements around the edge of the axes (decorations) like the title, ticklabels, x-labels, etc. This can include legends who overspill the axes boundaries. 4. Constrain gridspec elements to line up: a) if colnum0 != colnumC, the two subplotspecs are stacked next to each other, with the appropriate order. b) if colnum0 == colnumC, line up the left or right side of the _poslayoutbox (depending if it is the min or max num that is equal). c) do the same for rows... 5. The above doesn't constrain relative sizes of the _poslayoutboxes at all, and indeed zero-size is a solution that the solver often finds more convenient than expanding the sizes. Right now the solution is to compare subplotspec sizes (i.e. drowsC and drows0) and constrain the larger _poslayoutbox to be larger than the ratio of the sizes. i.e. if drows0 > drowsC, then ax._poslayoutbox > axc._poslayoutbox * drowsC / drows0. This works fine *if* the decorations are similar between the axes. If the larger subplotspec has much larger axes decorations, then the constraint above is incorrect. We need the greater than in the above, in general, rather than an equals sign. Consider the case of the left column having 2 rows, and the right column having 1 row. We want the top and bottom of the _poslayoutboxes to line up. So that means if there are decorations on the left column axes they will be smaller than half as large as the right hand axis. This can break down if the decoration size for the right hand axis (the margins) is very large. There must be a math way to check for this case. ''' invTransFig = fig.transFigure.inverted().transform_bbox # list of unique gridspecs that contain child axes: gss = set() for ax in fig.axes: if hasattr(ax, 'get_subplotspec'): gs = ax.get_subplotspec().get_gridspec() if gs._layoutbox is not None: gss.add(gs) if len(gss) == 0: cbook._warn_external('There are no gridspecs with layoutboxes. ' 'Possibly did not call parent GridSpec with the' ' figure= keyword') if fig._layoutbox.constrained_layout_called < 1: for gs in gss: # fill in any empty gridspec slots w/ ghost axes... _make_ghost_gridspec_slots(fig, gs) for nnn in range(2): # do the algorithm twice. This has to be done because decorators # change size after the first re-position (i.e. x/yticklabels get # larger/smaller). This second reposition tends to be much milder, # so doing twice makes things work OK. for ax in fig.axes: _log.debug(ax._layoutbox) if ax._layoutbox is not None: # make margins for each layout box based on the size of # the decorators. _make_layout_margins(ax, renderer, h_pad, w_pad) # do layout for suptitle. if fig._suptitle is not None and fig._suptitle._layoutbox is not None: sup = fig._suptitle bbox = invTransFig(sup.get_window_extent(renderer=renderer)) height = bbox.y1 - bbox.y0 if np.isfinite(height): sup._layoutbox.edit_height(height+h_pad) # OK, the above lines up ax._poslayoutbox with ax._layoutbox # now we need to # 1) arrange the subplotspecs. We do it at this level because # the subplotspecs are meant to contain other dependent axes # like colorbars or legends. # 2) line up the right and left side of the ax._poslayoutbox # that have the same subplotspec maxes. if fig._layoutbox.constrained_layout_called < 1: # arrange the subplotspecs... This is all done relative to each # other. Some subplotspecs contain axes, and others contain # gridspecs the ones that contain gridspecs are a set proportion # of their parent gridspec. The ones that contain axes are # not so constrained. figlb = fig._layoutbox for child in figlb.children: if child._is_gridspec_layoutbox(): # This routine makes all the subplot spec containers # have the correct arrangement. It just stacks the # subplot layoutboxes in the correct order... _arrange_subplotspecs(child, hspace=hspace, wspace=wspace) for gs in gss: _align_spines(fig, gs) fig._layoutbox.constrained_layout_called += 1 fig._layoutbox.update_variables() # check if any axes collapsed to zero. If not, don't change positions: if _axes_all_finite_sized(fig): # Now set the position of the axes... for ax in fig.axes: if ax._layoutbox is not None: newpos = ax._poslayoutbox.get_rect() # Now set the new position. # ax.set_position will zero out the layout for # this axis, allowing users to hard-code the position, # so this does the same w/o zeroing layout. ax._set_position(newpos, which='original') else: cbook._warn_external('constrained_layout not applied. At least ' 'one axes collapsed to zero width or height.') def _make_ghost_gridspec_slots(fig, gs): """ Check for unoccupied gridspec slots and make ghost axes for these slots... Do for each gs separately. This is a pretty big kludge but shouldn't have too much ill effect. The worst is that someone querying the figure will wonder why there are more axes than they thought. """ nrows, ncols = gs.get_geometry() hassubplotspec = np.zeros(nrows * ncols, dtype=bool) axs = [] for ax in fig.axes: if (hasattr(ax, 'get_subplotspec') and ax._layoutbox is not None and ax.get_subplotspec().get_gridspec() == gs): axs += [ax] for ax in axs: ss0 = ax.get_subplotspec() hassubplotspec[ss0.num1:(ss0.num2 + 1)] = True for nn, hss in enumerate(hassubplotspec): if not hss: # this gridspec slot doesn't have an axis so we # make a "ghost". ax = fig.add_subplot(gs[nn]) ax.set_frame_on(False) ax.set_xticks([]) ax.set_yticks([]) ax.set_facecolor((1, 0, 0, 0)) def _make_layout_margins(ax, renderer, h_pad, w_pad): """ For each axes, make a margin between the *pos* layoutbox and the *axes* layoutbox be a minimum size that can accommodate the decorations on the axis. """ fig = ax.figure invTransFig = fig.transFigure.inverted().transform_bbox pos = ax.get_position(original=True) tightbbox = ax.get_tightbbox(renderer=renderer) bbox = invTransFig(tightbbox) # this can go wrong: if not (np.isfinite(bbox.width) and np.isfinite(bbox.height)): # just abort, this is likely a bad set of co-ordinates that # is transitory... return # use stored h_pad if it exists h_padt = ax._poslayoutbox.h_pad if h_padt is None: h_padt = h_pad w_padt = ax._poslayoutbox.w_pad if w_padt is None: w_padt = w_pad ax._poslayoutbox.edit_left_margin_min(-bbox.x0 + pos.x0 + w_padt) ax._poslayoutbox.edit_right_margin_min(bbox.x1 - pos.x1 + w_padt) ax._poslayoutbox.edit_bottom_margin_min( -bbox.y0 + pos.y0 + h_padt) ax._poslayoutbox.edit_top_margin_min(bbox.y1-pos.y1+h_padt) _log.debug('left %f', (-bbox.x0 + pos.x0 + w_pad)) _log.debug('right %f', (bbox.x1 - pos.x1 + w_pad)) _log.debug('bottom %f', (-bbox.y0 + pos.y0 + h_padt)) _log.debug('bbox.y0 %f', bbox.y0) _log.debug('pos.y0 %f', pos.y0) # Sometimes its possible for the solver to collapse # rather than expand axes, so they all have zero height # or width. This stops that... It *should* have been # taken into account w/ pref_width... if fig._layoutbox.constrained_layout_called < 1: ax._poslayoutbox.constrain_height_min(20, strength='weak') ax._poslayoutbox.constrain_width_min(20, strength='weak') ax._layoutbox.constrain_height_min(20, strength='weak') ax._layoutbox.constrain_width_min(20, strength='weak') ax._poslayoutbox.constrain_top_margin(0, strength='weak') ax._poslayoutbox.constrain_bottom_margin(0, strength='weak') ax._poslayoutbox.constrain_right_margin(0, strength='weak') ax._poslayoutbox.constrain_left_margin(0, strength='weak') def _align_spines(fig, gs): """ - Align right/left and bottom/top spines of appropriate subplots. - Compare size of subplotspec including height and width ratios and make sure that the axes spines are at least as large as they should be. """ # for each gridspec... nrows, ncols = gs.get_geometry() width_ratios = gs.get_width_ratios() height_ratios = gs.get_height_ratios() if width_ratios is None: width_ratios = np.ones(ncols) if height_ratios is None: height_ratios = np.ones(nrows) # get axes in this gridspec.... axs = [] for ax in fig.axes: if (hasattr(ax, 'get_subplotspec') and ax._layoutbox is not None): if ax.get_subplotspec().get_gridspec() == gs: axs += [ax] rownummin = np.zeros(len(axs), dtype=np.int8) rownummax = np.zeros(len(axs), dtype=np.int8) colnummin = np.zeros(len(axs), dtype=np.int8) colnummax = np.zeros(len(axs), dtype=np.int8) width = np.zeros(len(axs)) height = np.zeros(len(axs)) for n, ax in enumerate(axs): ss0 = ax.get_subplotspec() rownummin[n], colnummin[n] = divmod(ss0.num1, ncols) rownummax[n], colnummax[n] = divmod(ss0.num2, ncols) width[n] = np.sum( width_ratios[colnummin[n]:(colnummax[n] + 1)]) height[n] = np.sum( height_ratios[rownummin[n]:(rownummax[n] + 1)]) for nn, ax in enumerate(axs[:-1]): # now compare ax to all the axs: # # If the subplotspecs have the same colnumXmax, then line # up their right sides. If they have the same min, then # line up their left sides (and vertical equivalents). rownum0min, colnum0min = rownummin[nn], colnummin[nn] rownum0max, colnum0max = rownummax[nn], colnummax[nn] width0, height0 = width[nn], height[nn] alignleft = False alignright = False alignbot = False aligntop = False alignheight = False alignwidth = False for mm in range(nn+1, len(axs)): axc = axs[mm] rownumCmin, colnumCmin = rownummin[mm], colnummin[mm] rownumCmax, colnumCmax = rownummax[mm], colnummax[mm] widthC, heightC = width[mm], height[mm] # Horizontally align axes spines if they have the # same min or max: if not alignleft and colnum0min == colnumCmin: # we want the _poslayoutboxes to line up on left # side of the axes spines... layoutbox.align([ax._poslayoutbox, axc._poslayoutbox], 'left') alignleft = True if not alignright and colnum0max == colnumCmax: # line up right sides of _poslayoutbox layoutbox.align([ax._poslayoutbox, axc._poslayoutbox], 'right') alignright = True # Vertically align axes spines if they have the # same min or max: if not aligntop and rownum0min == rownumCmin: # line up top of _poslayoutbox _log.debug('rownum0min == rownumCmin') layoutbox.align([ax._poslayoutbox, axc._poslayoutbox], 'top') aligntop = True if not alignbot and rownum0max == rownumCmax: # line up bottom of _poslayoutbox _log.debug('rownum0max == rownumCmax') layoutbox.align([ax._poslayoutbox, axc._poslayoutbox], 'bottom') alignbot = True ########### # Now we make the widths and heights of position boxes # similar. (i.e the spine locations) # This allows vertically stacked subplots to have # different sizes if they occupy different amounts # of the gridspec: i.e. # gs = gridspec.GridSpec(3,1) # ax1 = gs[0,:] # ax2 = gs[1:,:] # then drows0 = 1, and drowsC = 2, and ax2 # should be at least twice as large as ax1. # But it can be more than twice as large because # it needs less room for the labeling. # # For height, this only needs to be done if the # subplots share a column. For width if they # share a row. drowsC = (rownumCmax - rownumCmin + 1) drows0 = (rownum0max - rownum0min + 1) dcolsC = (colnumCmax - colnumCmin + 1) dcols0 = (colnum0max - colnum0min + 1) if not alignheight and drows0 == drowsC: ax._poslayoutbox.constrain_height( axc._poslayoutbox.height * height0 / heightC) alignheight = True elif _in_same_column(colnum0min, colnum0max, colnumCmin, colnumCmax): if height0 > heightC: ax._poslayoutbox.constrain_height_min( axc._poslayoutbox.height * height0 / heightC) # these constraints stop the smaller axes from # being allowed to go to zero height... axc._poslayoutbox.constrain_height_min( ax._poslayoutbox.height * heightC / (height0*1.8)) elif height0 < heightC: axc._poslayoutbox.constrain_height_min( ax._poslayoutbox.height * heightC / height0) ax._poslayoutbox.constrain_height_min( ax._poslayoutbox.height * height0 / (heightC*1.8)) # widths... if not alignwidth and dcols0 == dcolsC: ax._poslayoutbox.constrain_width( axc._poslayoutbox.width * width0 / widthC) alignwidth = True elif _in_same_row(rownum0min, rownum0max, rownumCmin, rownumCmax): if width0 > widthC: ax._poslayoutbox.constrain_width_min( axc._poslayoutbox.width * width0 / widthC) axc._poslayoutbox.constrain_width_min( ax._poslayoutbox.width * widthC / (width0*1.8)) elif width0 < widthC: axc._poslayoutbox.constrain_width_min( ax._poslayoutbox.width * widthC / width0) ax._poslayoutbox.constrain_width_min( axc._poslayoutbox.width * width0 / (widthC*1.8)) def _arrange_subplotspecs(gs, hspace=0, wspace=0): """ arrange the subplotspec children of this gridspec, and then recursively do the same of any gridspec children of those gridspecs... """ sschildren = [] for child in gs.children: if child._is_subplotspec_layoutbox(): for child2 in child.children: # check for gridspec children... if child2._is_gridspec_layoutbox(): _arrange_subplotspecs(child2, hspace=hspace, wspace=wspace) sschildren += [child] # now arrange the subplots... for child0 in sschildren: ss0 = child0.artist nrows, ncols = ss0.get_gridspec().get_geometry() rowNum0min, colNum0min = divmod(ss0.num1, ncols) rowNum0max, colNum0max = divmod(ss0.num2, ncols) sschildren = sschildren[1:] for childc in sschildren: ssc = childc.artist rowNumCmin, colNumCmin = divmod(ssc.num1, ncols) rowNumCmax, colNumCmax = divmod(ssc.num2, ncols) # OK, this tells us the relative layout of ax # with axc thepad = wspace / ncols if colNum0max < colNumCmin: layoutbox.hstack([ss0._layoutbox, ssc._layoutbox], padding=thepad) if colNumCmax < colNum0min: layoutbox.hstack([ssc._layoutbox, ss0._layoutbox], padding=thepad) #### # vertical alignment thepad = hspace / nrows if rowNum0max < rowNumCmin: layoutbox.vstack([ss0._layoutbox, ssc._layoutbox], padding=thepad) if rowNumCmax < rowNum0min: layoutbox.vstack([ssc._layoutbox, ss0._layoutbox], padding=thepad) def layoutcolorbarsingle(ax, cax, shrink, aspect, location, pad=0.05): """ Do the layout for a colorbar, to not overly pollute colorbar.py `pad` is in fraction of the original axis size. """ axlb = ax._layoutbox axpos = ax._poslayoutbox axsslb = ax.get_subplotspec()._layoutbox lb = layoutbox.LayoutBox( parent=axsslb, name=axsslb.name + '.cbar', artist=cax) if location in ('left', 'right'): lbpos = layoutbox.LayoutBox( parent=lb, name=lb.name + '.pos', tightwidth=False, pos=True, subplot=False, artist=cax) if location == 'right': # arrange to right of parent axis layoutbox.hstack([axlb, lb], padding=pad * axlb.width, strength='strong') else: layoutbox.hstack([lb, axlb], padding=pad * axlb.width) # constrain the height and center... layoutbox.match_heights([axpos, lbpos], [1, shrink]) layoutbox.align([axpos, lbpos], 'v_center') # set the width of the pos box lbpos.constrain_width(shrink * axpos.height * (1/aspect), strength='strong') elif location in ('bottom', 'top'): lbpos = layoutbox.LayoutBox( parent=lb, name=lb.name + '.pos', tightheight=True, pos=True, subplot=False, artist=cax) if location == 'bottom': layoutbox.vstack([axlb, lb], padding=pad * axlb.height) else: layoutbox.vstack([lb, axlb], padding=pad * axlb.height) # constrain the height and center... layoutbox.match_widths([axpos, lbpos], [1, shrink], strength='strong') layoutbox.align([axpos, lbpos], 'h_center') # set the height of the pos box lbpos.constrain_height(axpos.width * aspect * shrink, strength='medium') return lb, lbpos def _getmaxminrowcolumn(axs): # helper to get the min/max rows and columns of a list of axes. maxrow = -100000 minrow = 1000000 maxax = None minax = None maxcol = -100000 mincol = 1000000 maxax_col = None minax_col = None for ax in axs: subspec = ax.get_subplotspec() nrows, ncols, row_start, row_stop, col_start, col_stop = \ subspec.get_rows_columns() if row_stop > maxrow: maxrow = row_stop maxax = ax if row_start < minrow: minrow = row_start minax = ax if col_stop > maxcol: maxcol = col_stop maxax_col = ax if col_start < mincol: mincol = col_start minax_col = ax return (minrow, maxrow, minax, maxax, mincol, maxcol, minax_col, maxax_col) def layoutcolorbargridspec(parents, cax, shrink, aspect, location, pad=0.05): """ Do the layout for a colorbar, to not overly pollute colorbar.py `pad` is in fraction of the original axis size. """ gs = parents[0].get_subplotspec().get_gridspec() # parent layout box.... gslb = gs._layoutbox lb = layoutbox.LayoutBox(parent=gslb.parent, name=gslb.parent.name + '.cbar', artist=cax) # figure out the row and column extent of the parents. (minrow, maxrow, minax_row, maxax_row, mincol, maxcol, minax_col, maxax_col) = _getmaxminrowcolumn(parents) if location in ('left', 'right'): lbpos = layoutbox.LayoutBox( parent=lb, name=lb.name + '.pos', tightwidth=False, pos=True, subplot=False, artist=cax) for ax in parents: if location == 'right': order = [ax._layoutbox, lb] else: order = [lb, ax._layoutbox] layoutbox.hstack(order, padding=pad * gslb.width, strength='strong') # constrain the height and center... # This isn't quite right. We'd like the colorbar # pos to line up w/ the axes poss, not the size of the # gs. # Horizontal Layout: need to check all the axes in this gridspec for ch in gslb.children: subspec = ch.artist nrows, ncols, row_start, row_stop, col_start, col_stop = \ subspec.get_rows_columns() if location == 'right': if col_stop <= maxcol: order = [subspec._layoutbox, lb] # arrange to right of the parents if col_start > maxcol: order = [lb, subspec._layoutbox] elif location == 'left': if col_start >= mincol: order = [lb, subspec._layoutbox] if col_stop < mincol: order = [subspec._layoutbox, lb] layoutbox.hstack(order, padding=pad * gslb.width, strength='strong') # Vertical layout: maxposlb = minax_row._poslayoutbox minposlb = maxax_row._poslayoutbox # now we want the height of the colorbar pos to be # set by the top and bottom of the min/max axes... # bottom top # b t # h = (top-bottom)*shrink # b = bottom + (top-bottom - h) / 2. lbpos.constrain_height( (maxposlb.top - minposlb.bottom) * shrink, strength='strong') lbpos.constrain_bottom( (maxposlb.top - minposlb.bottom) * (1 - shrink)/2 + minposlb.bottom, strength='strong') # set the width of the pos box lbpos.constrain_width(lbpos.height * (shrink / aspect), strength='strong') elif location in ('bottom', 'top'): lbpos = layoutbox.LayoutBox( parent=lb, name=lb.name + '.pos', tightheight=True, pos=True, subplot=False, artist=cax) for ax in parents: if location == 'bottom': order = [ax._layoutbox, lb] else: order = [lb, ax._layoutbox] layoutbox.vstack(order, padding=pad * gslb.width, strength='strong') # Vertical Layout: need to check all the axes in this gridspec for ch in gslb.children: subspec = ch.artist nrows, ncols, row_start, row_stop, col_start, col_stop = \ subspec.get_rows_columns() if location == 'bottom': if row_stop <= minrow: order = [subspec._layoutbox, lb] if row_start > maxrow: order = [lb, subspec._layoutbox] elif location == 'top': if row_stop < minrow: order = [subspec._layoutbox, lb] if row_start >= maxrow: order = [lb, subspec._layoutbox] layoutbox.vstack(order, padding=pad * gslb.width, strength='strong') # Do horizontal layout... maxposlb = maxax_col._poslayoutbox minposlb = minax_col._poslayoutbox lbpos.constrain_width((maxposlb.right - minposlb.left) * shrink) lbpos.constrain_left( (maxposlb.right - minposlb.left) * (1-shrink)/2 + minposlb.left) # set the height of the pos box lbpos.constrain_height(lbpos.width * shrink * aspect, strength='medium') return lb, lbpos
b4125ca6233674a4814d188dfc484a7c7652cd9fc549b05d58e8b86cd39ae3dd
""" Tick locating and formatting ============================ This module contains classes to support completely configurable tick locating and formatting. Although the locators know nothing about major or minor ticks, they are used by the Axis class to support major and minor tick locating and formatting. Generic tick locators and formatters are provided, as well as domain specific custom ones. Default Formatter ----------------- The default formatter identifies when the x-data being plotted is a small range on top of a large offset. To reduce the chances that the ticklabels overlap, the ticks are labeled as deltas from a fixed offset. For example:: ax.plot(np.arange(2000, 2010), range(10)) will have tick of 0-9 with an offset of +2e3. If this is not desired turn off the use of the offset on the default formatter:: ax.get_xaxis().get_major_formatter().set_useOffset(False) set the rcParam ``axes.formatter.useoffset=False`` to turn it off globally, or set a different formatter. Tick locating ------------- The Locator class is the base class for all tick locators. The locators handle autoscaling of the view limits based on the data limits, and the choosing of tick locations. A useful semi-automatic tick locator is `MultipleLocator`. It is initialized with a base, e.g., 10, and it picks axis limits and ticks that are multiples of that base. The Locator subclasses defined here are :class:`AutoLocator` `MaxNLocator` with simple defaults. This is the default tick locator for most plotting. :class:`MaxNLocator` Finds up to a max number of intervals with ticks at nice locations. :class:`LinearLocator` Space ticks evenly from min to max. :class:`LogLocator` Space ticks logarithmically from min to max. :class:`MultipleLocator` Ticks and range are a multiple of base; either integer or float. :class:`FixedLocator` Tick locations are fixed. :class:`IndexLocator` Locator for index plots (e.g., where ``x = range(len(y))``). :class:`NullLocator` No ticks. :class:`SymmetricalLogLocator` Locator for use with with the symlog norm; works like `LogLocator` for the part outside of the threshold and adds 0 if inside the limits. :class:`LogitLocator` Locator for logit scaling. :class:`OldAutoLocator` Choose a `MultipleLocator` and dynamically reassign it for intelligent ticking during navigation. :class:`AutoMinorLocator` Locator for minor ticks when the axis is linear and the major ticks are uniformly spaced. Subdivides the major tick interval into a specified number of minor intervals, defaulting to 4 or 5 depending on the major interval. There are a number of locators specialized for date locations - see the `dates` module. You can define your own locator by deriving from Locator. You must override the ``__call__`` method, which returns a sequence of locations, and you will probably want to override the autoscale method to set the view limits from the data limits. If you want to override the default locator, use one of the above or a custom locator and pass it to the x or y axis instance. The relevant methods are:: ax.xaxis.set_major_locator(xmajor_locator) ax.xaxis.set_minor_locator(xminor_locator) ax.yaxis.set_major_locator(ymajor_locator) ax.yaxis.set_minor_locator(yminor_locator) The default minor locator is `NullLocator`, i.e., no minor ticks on by default. Tick formatting --------------- Tick formatting is controlled by classes derived from Formatter. The formatter operates on a single tick value and returns a string to the axis. :class:`NullFormatter` No labels on the ticks. :class:`IndexFormatter` Set the strings from a list of labels. :class:`FixedFormatter` Set the strings manually for the labels. :class:`FuncFormatter` User defined function sets the labels. :class:`StrMethodFormatter` Use string `format` method. :class:`FormatStrFormatter` Use an old-style sprintf format string. :class:`ScalarFormatter` Default formatter for scalars: autopick the format string. :class:`LogFormatter` Formatter for log axes. :class:`LogFormatterExponent` Format values for log axis using ``exponent = log_base(value)``. :class:`LogFormatterMathtext` Format values for log axis using ``exponent = log_base(value)`` using Math text. :class:`LogFormatterSciNotation` Format values for log axis using scientific notation. :class:`LogitFormatter` Probability formatter. :class:`EngFormatter` Format labels in engineering notation :class:`PercentFormatter` Format labels as a percentage You can derive your own formatter from the Formatter base class by simply overriding the ``__call__`` method. The formatter class has access to the axis view and data limits. To control the major and minor tick label formats, use one of the following methods:: ax.xaxis.set_major_formatter(xmajor_formatter) ax.xaxis.set_minor_formatter(xminor_formatter) ax.yaxis.set_major_formatter(ymajor_formatter) ax.yaxis.set_minor_formatter(yminor_formatter) See :doc:`/gallery/ticks_and_spines/major_minor_demo` for an example of setting major and minor ticks. See the :mod:`matplotlib.dates` module for more information and examples of using date locators and formatters. """ import itertools import logging import locale import math import numpy as np from matplotlib import rcParams from matplotlib import cbook from matplotlib import transforms as mtransforms _log = logging.getLogger(__name__) __all__ = ('TickHelper', 'Formatter', 'FixedFormatter', 'NullFormatter', 'FuncFormatter', 'FormatStrFormatter', 'StrMethodFormatter', 'ScalarFormatter', 'LogFormatter', 'LogFormatterExponent', 'LogFormatterMathtext', 'IndexFormatter', 'LogFormatterSciNotation', 'LogitFormatter', 'EngFormatter', 'PercentFormatter', 'Locator', 'IndexLocator', 'FixedLocator', 'NullLocator', 'LinearLocator', 'LogLocator', 'AutoLocator', 'MultipleLocator', 'MaxNLocator', 'AutoMinorLocator', 'SymmetricalLogLocator', 'LogitLocator') def _mathdefault(s): return '\\mathdefault{%s}' % s class _DummyAxis(object): def __init__(self, minpos=0): self.dataLim = mtransforms.Bbox.unit() self.viewLim = mtransforms.Bbox.unit() self._minpos = minpos def get_view_interval(self): return self.viewLim.intervalx def set_view_interval(self, vmin, vmax): self.viewLim.intervalx = vmin, vmax def get_minpos(self): return self._minpos def get_data_interval(self): return self.dataLim.intervalx def set_data_interval(self, vmin, vmax): self.dataLim.intervalx = vmin, vmax def get_tick_space(self): # Just use the long-standing default of nbins==9 return 9 class TickHelper(object): axis = None def set_axis(self, axis): self.axis = axis def create_dummy_axis(self, **kwargs): if self.axis is None: self.axis = _DummyAxis(**kwargs) def set_view_interval(self, vmin, vmax): self.axis.set_view_interval(vmin, vmax) def set_data_interval(self, vmin, vmax): self.axis.set_data_interval(vmin, vmax) def set_bounds(self, vmin, vmax): self.set_view_interval(vmin, vmax) self.set_data_interval(vmin, vmax) class Formatter(TickHelper): """ Create a string based on a tick value and location. """ # some classes want to see all the locs to help format # individual ones locs = [] def __call__(self, x, pos=None): """ Return the format for tick value *x* at position pos. ``pos=None`` indicates an unspecified location. """ raise NotImplementedError('Derived must override') def format_ticks(self, values): """Return the tick labels for all the ticks at once.""" self.set_locs(values) return [self(value, i) for i, value in enumerate(values)] def format_data(self, value): """ Returns the full string representation of the value with the position unspecified. """ return self.__call__(value) def format_data_short(self, value): """ Return a short string version of the tick value. Defaults to the position-independent long value. """ return self.format_data(value) def get_offset(self): return '' def set_locs(self, locs): self.locs = locs def fix_minus(self, s): """ Some classes may want to replace a hyphen for minus with the proper unicode symbol (U+2212) for typographical correctness. The default is to not replace it. Note, if you use this method, e.g., in :meth:`format_data` or call, you probably don't want to use it for :meth:`format_data_short` since the toolbar uses this for interactive coord reporting and I doubt we can expect GUIs across platforms will handle the unicode correctly. So for now the classes that override :meth:`fix_minus` should have an explicit :meth:`format_data_short` method """ return s def _set_locator(self, locator): """Subclasses may want to override this to set a locator.""" pass class IndexFormatter(Formatter): """ Format the position x to the nearest i-th label where ``i = int(x + 0.5)``. Positions where ``i < 0`` or ``i > len(list)`` have no tick labels. Parameters ---------- labels : list List of labels. """ def __init__(self, labels): self.labels = labels self.n = len(labels) def __call__(self, x, pos=None): """ Return the format for tick value `x` at position pos. The position is ignored and the value is rounded to the nearest integer, which is used to look up the label. """ i = int(x + 0.5) if i < 0 or i >= self.n: return '' else: return self.labels[i] class NullFormatter(Formatter): """ Always return the empty string. """ def __call__(self, x, pos=None): """ Returns an empty string for all inputs. """ return '' class FixedFormatter(Formatter): """ Return fixed strings for tick labels based only on position, not value. """ def __init__(self, seq): """ Set the sequence of strings that will be used for labels. """ self.seq = seq self.offset_string = '' def __call__(self, x, pos=None): """ Returns the label that matches the position regardless of the value. For positions ``pos < len(seq)``, return `seq[i]` regardless of `x`. Otherwise return empty string. `seq` is the sequence of strings that this object was initialized with. """ if pos is None or pos >= len(self.seq): return '' else: return self.seq[pos] def get_offset(self): return self.offset_string def set_offset_string(self, ofs): self.offset_string = ofs class FuncFormatter(Formatter): """ Use a user-defined function for formatting. The function should take in two inputs (a tick value ``x`` and a position ``pos``), and return a string containing the corresponding tick label. """ def __init__(self, func): self.func = func def __call__(self, x, pos=None): """ Return the value of the user defined function. `x` and `pos` are passed through as-is. """ return self.func(x, pos) class FormatStrFormatter(Formatter): """ Use an old-style ('%' operator) format string to format the tick. The format string should have a single variable format (%) in it. It will be applied to the value (not the position) of the tick. """ def __init__(self, fmt): self.fmt = fmt def __call__(self, x, pos=None): """ Return the formatted label string. Only the value `x` is formatted. The position is ignored. """ return self.fmt % x class StrMethodFormatter(Formatter): """ Use a new-style format string (as used by `str.format()`) to format the tick. The field used for the value must be labeled `x` and the field used for the position must be labeled `pos`. """ def __init__(self, fmt): self.fmt = fmt def __call__(self, x, pos=None): """ Return the formatted label string. `x` and `pos` are passed to `str.format` as keyword arguments with those exact names. """ return self.fmt.format(x=x, pos=pos) class OldScalarFormatter(Formatter): """ Tick location is a plain old number. """ def __call__(self, x, pos=None): """ Return the format for tick val `x` based on the width of the axis. The position `pos` is ignored. """ xmin, xmax = self.axis.get_view_interval() # If the number is not too big and it's an int, format it as an int. if abs(x) < 1e4 and x == int(x): return '%d' % x d = abs(xmax - xmin) fmt = ('%1.3e' if d < 1e-2 else '%1.3f' if d <= 1 else '%1.2f' if d <= 10 else '%1.1f' if d <= 1e5 else '%1.1e') s = fmt % x tup = s.split('e') if len(tup) == 2: mantissa = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') s = '%se%s%s' % (mantissa, sign, exponent) else: s = s.rstrip('0').rstrip('.') return s @cbook.deprecated("3.1") def pprint_val(self, x, d): """ Formats the value `x` based on the size of the axis range `d`. """ # If the number is not too big and it's an int, format it as an int. if abs(x) < 1e4 and x == int(x): return '%d' % x if d < 1e-2: fmt = '%1.3e' elif d < 1e-1: fmt = '%1.3f' elif d > 1e5: fmt = '%1.1e' elif d > 10: fmt = '%1.1f' elif d > 1: fmt = '%1.2f' else: fmt = '%1.3f' s = fmt % x tup = s.split('e') if len(tup) == 2: mantissa = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') s = '%se%s%s' % (mantissa, sign, exponent) else: s = s.rstrip('0').rstrip('.') return s class ScalarFormatter(Formatter): """ Format tick values as a number. Tick value is interpreted as a plain old number. If ``useOffset==True`` and the data range is much smaller than the data average, then an offset will be determined such that the tick labels are meaningful. Scientific notation is used for ``data < 10^-n`` or ``data >= 10^m``, where ``n`` and ``m`` are the power limits set using ``set_powerlimits((n,m))``. The defaults for these are controlled by the ``axes.formatter.limits`` rc parameter. """ def __init__(self, useOffset=None, useMathText=None, useLocale=None): # useOffset allows plotting small data ranges with large offsets: for # example: [1+1e-9,1+2e-9,1+3e-9] useMathText will render the offset # and scientific notation in mathtext if useOffset is None: useOffset = rcParams['axes.formatter.useoffset'] self._offset_threshold = rcParams['axes.formatter.offset_threshold'] self.set_useOffset(useOffset) self._usetex = rcParams['text.usetex'] if useMathText is None: useMathText = rcParams['axes.formatter.use_mathtext'] self.set_useMathText(useMathText) self.orderOfMagnitude = 0 self.format = '' self._scientific = True self._powerlimits = rcParams['axes.formatter.limits'] if useLocale is None: useLocale = rcParams['axes.formatter.use_locale'] self._useLocale = useLocale def get_useOffset(self): return self._useOffset def set_useOffset(self, val): if val in [True, False]: self.offset = 0 self._useOffset = val else: self._useOffset = False self.offset = val useOffset = property(fget=get_useOffset, fset=set_useOffset) def get_useLocale(self): return self._useLocale def set_useLocale(self, val): if val is None: self._useLocale = rcParams['axes.formatter.use_locale'] else: self._useLocale = val useLocale = property(fget=get_useLocale, fset=set_useLocale) def get_useMathText(self): return self._useMathText def set_useMathText(self, val): if val is None: self._useMathText = rcParams['axes.formatter.use_mathtext'] else: self._useMathText = val useMathText = property(fget=get_useMathText, fset=set_useMathText) def fix_minus(self, s): """ Replace hyphens with a unicode minus. """ if rcParams['text.usetex'] or not rcParams['axes.unicode_minus']: return s else: return s.replace('-', '\N{MINUS SIGN}') def __call__(self, x, pos=None): """ Return the format for tick value `x` at position `pos`. """ if len(self.locs) == 0: return '' else: xp = (x - self.offset) / (10. ** self.orderOfMagnitude) if np.abs(xp) < 1e-8: xp = 0 if self._useLocale: s = locale.format_string(self.format, (xp,)) else: s = self.format % xp return self.fix_minus(s) def set_scientific(self, b): """ Turn scientific notation on or off. See Also -------- ScalarFormatter.set_powerlimits """ self._scientific = bool(b) def set_powerlimits(self, lims): """ Sets size thresholds for scientific notation. Parameters ---------- lims : (min_exp, max_exp) A tuple containing the powers of 10 that determine the switchover threshold. Numbers below ``10**min_exp`` and above ``10**max_exp`` will be displayed in scientific notation. For example, ``formatter.set_powerlimits((-3, 4))`` sets the pre-2007 default in which scientific notation is used for numbers less than 1e-3 or greater than 1e4. See Also -------- ScalarFormatter.set_scientific """ if len(lims) != 2: raise ValueError("'lims' must be a sequence of length 2") self._powerlimits = lims def format_data_short(self, value): """ Return a short formatted string representation of a number. """ if self._useLocale: return locale.format_string('%-12g', (value,)) else: return '%-12g' % value def format_data(self, value): """ Return a formatted string representation of a number. """ if self._useLocale: s = locale.format_string('%1.10e', (value,)) else: s = '%1.10e' % value s = self._formatSciNotation(s) return self.fix_minus(s) def get_offset(self): """ Return scientific notation, plus offset. """ if len(self.locs) == 0: return '' s = '' if self.orderOfMagnitude or self.offset: offsetStr = '' sciNotStr = '' if self.offset: offsetStr = self.format_data(self.offset) if self.offset > 0: offsetStr = '+' + offsetStr if self.orderOfMagnitude: if self._usetex or self._useMathText: sciNotStr = self.format_data(10 ** self.orderOfMagnitude) else: sciNotStr = '1e%d' % self.orderOfMagnitude if self._useMathText: if sciNotStr != '': sciNotStr = r'\times%s' % _mathdefault(sciNotStr) s = ''.join(('$', sciNotStr, _mathdefault(offsetStr), '$')) elif self._usetex: if sciNotStr != '': sciNotStr = r'\times%s' % sciNotStr s = ''.join(('$', sciNotStr, offsetStr, '$')) else: s = ''.join((sciNotStr, offsetStr)) return self.fix_minus(s) def set_locs(self, locs): """ Set the locations of the ticks. """ self.locs = locs if len(self.locs) > 0: if self._useOffset: self._compute_offset() self._set_order_of_magnitude() self._set_format() def _compute_offset(self): locs = self.locs # Restrict to visible ticks. vmin, vmax = sorted(self.axis.get_view_interval()) locs = np.asarray(locs) locs = locs[(vmin <= locs) & (locs <= vmax)] if not len(locs): self.offset = 0 return lmin, lmax = locs.min(), locs.max() # Only use offset if there are at least two ticks and every tick has # the same sign. if lmin == lmax or lmin <= 0 <= lmax: self.offset = 0 return # min, max comparing absolute values (we want division to round towards # zero so we work on absolute values). abs_min, abs_max = sorted([abs(float(lmin)), abs(float(lmax))]) sign = math.copysign(1, lmin) # What is the smallest power of ten such that abs_min and abs_max are # equal up to that precision? # Note: Internally using oom instead of 10 ** oom avoids some numerical # accuracy issues. oom_max = np.ceil(math.log10(abs_max)) oom = 1 + next(oom for oom in itertools.count(oom_max, -1) if abs_min // 10 ** oom != abs_max // 10 ** oom) if (abs_max - abs_min) / 10 ** oom <= 1e-2: # Handle the case of straddling a multiple of a large power of ten # (relative to the span). # What is the smallest power of ten such that abs_min and abs_max # are no more than 1 apart at that precision? oom = 1 + next(oom for oom in itertools.count(oom_max, -1) if abs_max // 10 ** oom - abs_min // 10 ** oom > 1) # Only use offset if it saves at least _offset_threshold digits. n = self._offset_threshold - 1 self.offset = (sign * (abs_max // 10 ** oom) * 10 ** oom if abs_max // 10 ** oom >= 10**n else 0) def _set_order_of_magnitude(self): # if scientific notation is to be used, find the appropriate exponent # if using an numerical offset, find the exponent after applying the # offset. When lower power limit = upper <> 0, use provided exponent. if not self._scientific: self.orderOfMagnitude = 0 return if self._powerlimits[0] == self._powerlimits[1] != 0: # fixed scaling when lower power limit = upper <> 0. self.orderOfMagnitude = self._powerlimits[0] return # restrict to visible ticks vmin, vmax = sorted(self.axis.get_view_interval()) locs = np.asarray(self.locs) locs = locs[(vmin <= locs) & (locs <= vmax)] locs = np.abs(locs) if not len(locs): self.orderOfMagnitude = 0 return if self.offset: oom = math.floor(math.log10(vmax - vmin)) else: if locs[0] > locs[-1]: val = locs[0] else: val = locs[-1] if val == 0: oom = 0 else: oom = math.floor(math.log10(val)) if oom <= self._powerlimits[0]: self.orderOfMagnitude = oom elif oom >= self._powerlimits[1]: self.orderOfMagnitude = oom else: self.orderOfMagnitude = 0 def _set_format(self): # set the format string to format all the ticklabels if len(self.locs) < 2: # Temporarily augment the locations with the axis end points. _locs = [*self.locs, *self.axis.get_view_interval()] else: _locs = self.locs locs = (np.asarray(_locs) - self.offset) / 10. ** self.orderOfMagnitude loc_range = np.ptp(locs) # Curvilinear coordinates can yield two identical points. if loc_range == 0: loc_range = np.max(np.abs(locs)) # Both points might be zero. if loc_range == 0: loc_range = 1 if len(self.locs) < 2: # We needed the end points only for the loc_range calculation. locs = locs[:-2] loc_range_oom = int(math.floor(math.log10(loc_range))) # first estimate: sigfigs = max(0, 3 - loc_range_oom) # refined estimate: thresh = 1e-3 * 10 ** loc_range_oom while sigfigs >= 0: if np.abs(locs - np.round(locs, decimals=sigfigs)).max() < thresh: sigfigs -= 1 else: break sigfigs += 1 self.format = '%1.' + str(sigfigs) + 'f' if self._usetex: self.format = '$%s$' % self.format elif self._useMathText: self.format = '$%s$' % _mathdefault(self.format) @cbook.deprecated("3.1") def pprint_val(self, x): xp = (x - self.offset) / (10. ** self.orderOfMagnitude) if np.abs(xp) < 1e-8: xp = 0 if self._useLocale: return locale.format_string(self.format, (xp,)) else: return self.format % xp def _formatSciNotation(self, s): # transform 1e+004 into 1e4, for example if self._useLocale: decimal_point = locale.localeconv()['decimal_point'] positive_sign = locale.localeconv()['positive_sign'] else: decimal_point = '.' positive_sign = '+' tup = s.split('e') try: significand = tup[0].rstrip('0').rstrip(decimal_point) sign = tup[1][0].replace(positive_sign, '') exponent = tup[1][1:].lstrip('0') if self._useMathText or self._usetex: if significand == '1' and exponent != '': # reformat 1x10^y as 10^y significand = '' if exponent: exponent = '10^{%s%s}' % (sign, exponent) if significand and exponent: return r'%s{\times}%s' % (significand, exponent) else: return r'%s%s' % (significand, exponent) else: s = ('%se%s%s' % (significand, sign, exponent)).rstrip('e') return s except IndexError: return s class LogFormatter(Formatter): """ Base class for formatting ticks on a log or symlog scale. It may be instantiated directly, or subclassed. Parameters ---------- base : float, optional, default: 10. Base of the logarithm used in all calculations. labelOnlyBase : bool, optional, default: False If True, label ticks only at integer powers of base. This is normally True for major ticks and False for minor ticks. minor_thresholds : (subset, all), optional, default: (1, 0.4) If labelOnlyBase is False, these two numbers control the labeling of ticks that are not at integer powers of base; normally these are the minor ticks. The controlling parameter is the log of the axis data range. In the typical case where base is 10 it is the number of decades spanned by the axis, so we can call it 'numdec'. If ``numdec <= all``, all minor ticks will be labeled. If ``all < numdec <= subset``, then only a subset of minor ticks will be labeled, so as to avoid crowding. If ``numdec > subset`` then no minor ticks will be labeled. linthresh : None or float, optional, default: None If a symmetric log scale is in use, its ``linthresh`` parameter must be supplied here. Notes ----- The `set_locs` method must be called to enable the subsetting logic controlled by the ``minor_thresholds`` parameter. In some cases such as the colorbar, there is no distinction between major and minor ticks; the tick locations might be set manually, or by a locator that puts ticks at integer powers of base and at intermediate locations. For this situation, disable the minor_thresholds logic by using ``minor_thresholds=(np.inf, np.inf)``, so that all ticks will be labeled. To disable labeling of minor ticks when 'labelOnlyBase' is False, use ``minor_thresholds=(0, 0)``. This is the default for the "classic" style. Examples -------- To label a subset of minor ticks when the view limits span up to 2 decades, and all of the ticks when zoomed in to 0.5 decades or less, use ``minor_thresholds=(2, 0.5)``. To label all minor ticks when the view limits span up to 1.5 decades, use ``minor_thresholds=(1.5, 1.5)``. """ def __init__(self, base=10.0, labelOnlyBase=False, minor_thresholds=None, linthresh=None): self._base = float(base) self.labelOnlyBase = labelOnlyBase if minor_thresholds is None: if rcParams['_internal.classic_mode']: minor_thresholds = (0, 0) else: minor_thresholds = (1, 0.4) self.minor_thresholds = minor_thresholds self._sublabels = None self._linthresh = linthresh def base(self, base): """ Change the *base* for labeling. .. warning:: Should always match the base used for :class:`LogLocator` """ self._base = base def label_minor(self, labelOnlyBase): """ Switch minor tick labeling on or off. Parameters ---------- labelOnlyBase : bool If True, label ticks only at integer powers of base. """ self.labelOnlyBase = labelOnlyBase def set_locs(self, locs=None): """ Use axis view limits to control which ticks are labeled. The *locs* parameter is ignored in the present algorithm. """ if np.isinf(self.minor_thresholds[0]): self._sublabels = None return # Handle symlog case: linthresh = self._linthresh if linthresh is None: try: linthresh = self.axis.get_transform().linthresh except AttributeError: pass vmin, vmax = self.axis.get_view_interval() if vmin > vmax: vmin, vmax = vmax, vmin if linthresh is None and vmin <= 0: # It's probably a colorbar with # a format kwarg setting a LogFormatter in the manner # that worked with 1.5.x, but that doesn't work now. self._sublabels = {1} # label powers of base return b = self._base if linthresh is not None: # symlog # Only compute the number of decades in the logarithmic part of the # axis numdec = 0 if vmin < -linthresh: rhs = min(vmax, -linthresh) numdec += math.log(vmin / rhs) / math.log(b) if vmax > linthresh: lhs = max(vmin, linthresh) numdec += math.log(vmax / lhs) / math.log(b) else: vmin = math.log(vmin) / math.log(b) vmax = math.log(vmax) / math.log(b) numdec = abs(vmax - vmin) if numdec > self.minor_thresholds[0]: # Label only bases self._sublabels = {1} elif numdec > self.minor_thresholds[1]: # Add labels between bases at log-spaced coefficients; # include base powers in case the locations include # "major" and "minor" points, as in colorbar. c = np.logspace(0, 1, int(b)//2 + 1, base=b) self._sublabels = set(np.round(c)) # For base 10, this yields (1, 2, 3, 4, 6, 10). else: # Label all integer multiples of base**n. self._sublabels = set(np.arange(1, b + 1)) def _num_to_string(self, x, vmin, vmax): if x > 10000: s = '%1.0e' % x elif x < 1: s = '%1.0e' % x else: s = self._pprint_val(x, vmax - vmin) return s def __call__(self, x, pos=None): """ Return the format for tick val *x*. """ if x == 0.0: # Symlog return '0' x = abs(x) b = self._base # only label the decades fx = math.log(x) / math.log(b) is_x_decade = is_close_to_int(fx) exponent = np.round(fx) if is_x_decade else np.floor(fx) coeff = np.round(x / b ** exponent) if self.labelOnlyBase and not is_x_decade: return '' if self._sublabels is not None and coeff not in self._sublabels: return '' vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05) s = self._num_to_string(x, vmin, vmax) return self.fix_minus(s) def format_data(self, value): b = self.labelOnlyBase self.labelOnlyBase = False value = cbook.strip_math(self.__call__(value)) self.labelOnlyBase = b return value def format_data_short(self, value): """ Return a short formatted string representation of a number. """ return '%-12g' % value @cbook.deprecated("3.1") def pprint_val(self, *args, **kwargs): return self._pprint_val(*args, **kwargs) def _pprint_val(self, x, d): # If the number is not too big and it's an int, format it as an int. if abs(x) < 1e4 and x == int(x): return '%d' % x fmt = ('%1.3e' if d < 1e-2 else '%1.3f' if d <= 1 else '%1.2f' if d <= 10 else '%1.1f' if d <= 1e5 else '%1.1e') s = fmt % x tup = s.split('e') if len(tup) == 2: mantissa = tup[0].rstrip('0').rstrip('.') exponent = int(tup[1]) if exponent: s = '%se%d' % (mantissa, exponent) else: s = mantissa else: s = s.rstrip('0').rstrip('.') return s class LogFormatterExponent(LogFormatter): """ Format values for log axis using ``exponent = log_base(value)``. """ def _num_to_string(self, x, vmin, vmax): fx = math.log(x) / math.log(self._base) if abs(fx) > 10000: s = '%1.0g' % fx elif abs(fx) < 1: s = '%1.0g' % fx else: fd = math.log(vmax - vmin) / math.log(self._base) s = self._pprint_val(fx, fd) return s class LogFormatterMathtext(LogFormatter): """ Format values for log axis using ``exponent = log_base(value)``. """ def _non_decade_format(self, sign_string, base, fx, usetex): 'Return string for non-decade locations' if usetex: return (r'$%s%s^{%.2f}$') % (sign_string, base, fx) else: return ('$%s$' % _mathdefault('%s%s^{%.2f}' % (sign_string, base, fx))) def __call__(self, x, pos=None): """ Return the format for tick value *x*. The position *pos* is ignored. """ usetex = rcParams['text.usetex'] min_exp = rcParams['axes.formatter.min_exponent'] if x == 0: # Symlog if usetex: return '$0$' else: return '$%s$' % _mathdefault('0') sign_string = '-' if x < 0 else '' x = abs(x) b = self._base # only label the decades fx = math.log(x) / math.log(b) is_x_decade = is_close_to_int(fx) exponent = np.round(fx) if is_x_decade else np.floor(fx) coeff = np.round(x / b ** exponent) if is_x_decade: fx = round(fx) if self.labelOnlyBase and not is_x_decade: return '' if self._sublabels is not None and coeff not in self._sublabels: return '' # use string formatting of the base if it is not an integer if b % 1 == 0.0: base = '%d' % b else: base = '%s' % b if np.abs(fx) < min_exp: if usetex: return r'${0}{1:g}$'.format(sign_string, x) else: return '${0}$'.format(_mathdefault( '{0}{1:g}'.format(sign_string, x))) elif not is_x_decade: return self._non_decade_format(sign_string, base, fx, usetex) elif usetex: return r'$%s%s^{%d}$' % (sign_string, base, fx) else: return '$%s$' % _mathdefault('%s%s^{%d}' % (sign_string, base, fx)) class LogFormatterSciNotation(LogFormatterMathtext): """ Format values following scientific notation in a logarithmic axis. """ def _non_decade_format(self, sign_string, base, fx, usetex): 'Return string for non-decade locations' b = float(base) exponent = math.floor(fx) coeff = b ** fx / b ** exponent if is_close_to_int(coeff): coeff = round(coeff) if usetex: return (r'$%s%g\times%s^{%d}$') % \ (sign_string, coeff, base, exponent) else: return ('$%s$' % _mathdefault(r'%s%g\times%s^{%d}' % (sign_string, coeff, base, exponent))) class LogitFormatter(Formatter): """ Probability formatter (using Math text). """ def __call__(self, x, pos=None): s = '' if 0.01 <= x <= 0.99: s = '{:.2f}'.format(x) elif x < 0.01: if is_decade(x): s = '$10^{{{:.0f}}}$'.format(np.log10(x)) else: s = '${:.5f}$'.format(x) else: # x > 0.99 if is_decade(1-x): s = '$1-10^{{{:.0f}}}$'.format(np.log10(1-x)) else: s = '$1-{:.5f}$'.format(1-x) return s def format_data_short(self, value): 'return a short formatted string representation of a number' return '%-12g' % value class EngFormatter(Formatter): """ Formats axis values using engineering prefixes to represent powers of 1000, plus a specified unit, e.g., 10 MHz instead of 1e7. """ # The SI engineering prefixes ENG_PREFIXES = { -24: "y", -21: "z", -18: "a", -15: "f", -12: "p", -9: "n", -6: "\N{MICRO SIGN}", -3: "m", 0: "", 3: "k", 6: "M", 9: "G", 12: "T", 15: "P", 18: "E", 21: "Z", 24: "Y" } def __init__(self, unit="", places=None, sep=" ", *, usetex=None, useMathText=None): """ Parameters ---------- unit : str (default: "") Unit symbol to use, suitable for use with single-letter representations of powers of 1000. For example, 'Hz' or 'm'. places : int (default: None) Precision with which to display the number, specified in digits after the decimal point (there will be between one and three digits before the decimal point). If it is None, the formatting falls back to the floating point format '%g', which displays up to 6 *significant* digits, i.e. the equivalent value for *places* varies between 0 and 5 (inclusive). sep : str (default: " ") Separator used between the value and the prefix/unit. For example, one get '3.14 mV' if ``sep`` is " " (default) and '3.14mV' if ``sep`` is "". Besides the default behavior, some other useful options may be: * ``sep=""`` to append directly the prefix/unit to the value; * ``sep="\\N{THIN SPACE}"`` (``U+2009``); * ``sep="\\N{NARROW NO-BREAK SPACE}"`` (``U+202F``); * ``sep="\\N{NO-BREAK SPACE}"`` (``U+00A0``). usetex : bool (default: None) To enable/disable the use of TeX's math mode for rendering the numbers in the formatter. useMathText : bool (default: None) To enable/disable the use mathtext for rendering the numbers in the formatter. """ self.unit = unit self.places = places self.sep = sep self.set_usetex(usetex) self.set_useMathText(useMathText) def get_usetex(self): return self._usetex def set_usetex(self, val): if val is None: self._usetex = rcParams['text.usetex'] else: self._usetex = val usetex = property(fget=get_usetex, fset=set_usetex) def get_useMathText(self): return self._useMathText def set_useMathText(self, val): if val is None: self._useMathText = rcParams['axes.formatter.use_mathtext'] else: self._useMathText = val useMathText = property(fget=get_useMathText, fset=set_useMathText) def fix_minus(self, s): """ Replace hyphens with a unicode minus. """ return ScalarFormatter.fix_minus(self, s) def __call__(self, x, pos=None): s = "%s%s" % (self.format_eng(x), self.unit) # Remove the trailing separator when there is neither prefix nor unit if self.sep and s.endswith(self.sep): s = s[:-len(self.sep)] return self.fix_minus(s) def format_eng(self, num): """ Formats a number in engineering notation, appending a letter representing the power of 1000 of the original number. Some examples: >>> format_eng(0) # for self.places = 0 '0' >>> format_eng(1000000) # for self.places = 1 '1.0 M' >>> format_eng("-1e-6") # for self.places = 2 '-1.00 \N{MICRO SIGN}' """ sign = 1 fmt = "g" if self.places is None else ".{:d}f".format(self.places) if num < 0: sign = -1 num = -num if num != 0: pow10 = int(math.floor(math.log10(num) / 3) * 3) else: pow10 = 0 # Force num to zero, to avoid inconsistencies like # format_eng(-0) = "0" and format_eng(0.0) = "0" # but format_eng(-0.0) = "-0.0" num = 0.0 pow10 = np.clip(pow10, min(self.ENG_PREFIXES), max(self.ENG_PREFIXES)) mant = sign * num / (10.0 ** pow10) # Taking care of the cases like 999.9..., which may be rounded to 1000 # instead of 1 k. Beware of the corner case of values that are beyond # the range of SI prefixes (i.e. > 'Y'). if (abs(float(format(mant, fmt))) >= 1000 and pow10 < max(self.ENG_PREFIXES)): mant /= 1000 pow10 += 3 prefix = self.ENG_PREFIXES[int(pow10)] if self._usetex or self._useMathText: formatted = "${mant:{fmt}}${sep}{prefix}".format( mant=mant, sep=self.sep, prefix=prefix, fmt=fmt) else: formatted = "{mant:{fmt}}{sep}{prefix}".format( mant=mant, sep=self.sep, prefix=prefix, fmt=fmt) return formatted class PercentFormatter(Formatter): """ Format numbers as a percentage. Parameters ---------- xmax : float Determines how the number is converted into a percentage. *xmax* is the data value that corresponds to 100%. Percentages are computed as ``x / xmax * 100``. So if the data is already scaled to be percentages, *xmax* will be 100. Another common situation is where `xmax` is 1.0. decimals : None or int The number of decimal places to place after the point. If *None* (the default), the number will be computed automatically. symbol : string or None A string that will be appended to the label. It may be *None* or empty to indicate that no symbol should be used. LaTeX special characters are escaped in *symbol* whenever latex mode is enabled, unless *is_latex* is *True*. is_latex : bool If *False*, reserved LaTeX characters in *symbol* will be escaped. """ def __init__(self, xmax=100, decimals=None, symbol='%', is_latex=False): self.xmax = xmax + 0.0 self.decimals = decimals self._symbol = symbol self._is_latex = is_latex def __call__(self, x, pos=None): """ Formats the tick as a percentage with the appropriate scaling. """ ax_min, ax_max = self.axis.get_view_interval() display_range = abs(ax_max - ax_min) return self.fix_minus(self.format_pct(x, display_range)) def format_pct(self, x, display_range): """ Formats the number as a percentage number with the correct number of decimals and adds the percent symbol, if any. If `self.decimals` is `None`, the number of digits after the decimal point is set based on the `display_range` of the axis as follows: +---------------+----------+------------------------+ | display_range | decimals | sample | +---------------+----------+------------------------+ | >50 | 0 | ``x = 34.5`` => 35% | +---------------+----------+------------------------+ | >5 | 1 | ``x = 34.5`` => 34.5% | +---------------+----------+------------------------+ | >0.5 | 2 | ``x = 34.5`` => 34.50% | +---------------+----------+------------------------+ | ... | ... | ... | +---------------+----------+------------------------+ This method will not be very good for tiny axis ranges or extremely large ones. It assumes that the values on the chart are percentages displayed on a reasonable scale. """ x = self.convert_to_pct(x) if self.decimals is None: # conversion works because display_range is a difference scaled_range = self.convert_to_pct(display_range) if scaled_range <= 0: decimals = 0 else: # Luckily Python's built-in ceil rounds to +inf, not away from # zero. This is very important since the equation for decimals # starts out as `scaled_range > 0.5 * 10**(2 - decimals)` # and ends up with `decimals > 2 - log10(2 * scaled_range)`. decimals = math.ceil(2.0 - math.log10(2.0 * scaled_range)) if decimals > 5: decimals = 5 elif decimals < 0: decimals = 0 else: decimals = self.decimals s = '{x:0.{decimals}f}'.format(x=x, decimals=int(decimals)) return s + self.symbol def convert_to_pct(self, x): return 100.0 * (x / self.xmax) @property def symbol(self): """ The configured percent symbol as a string. If LaTeX is enabled via :rc:`text.usetex`, the special characters ``{'#', '$', '%', '&', '~', '_', '^', '\\', '{', '}'}`` are automatically escaped in the string. """ symbol = self._symbol if not symbol: symbol = '' elif rcParams['text.usetex'] and not self._is_latex: # Source: http://www.personal.ceu.hu/tex/specchar.htm # Backslash must be first for this to work correctly since # it keeps getting added in for spec in r'\#$%&~_^{}': symbol = symbol.replace(spec, '\\' + spec) return symbol @symbol.setter def symbol(self, symbol): self._symbol = symbol class Locator(TickHelper): """ Determine the tick locations; Note that the same locator should not be used across multiple `~matplotlib.axis.Axis` because the locator stores references to the Axis data and view limits. """ # Some automatic tick locators can generate so many ticks they # kill the machine when you try and render them. # This parameter is set to cause locators to raise an error if too # many ticks are generated. MAXTICKS = 1000 def tick_values(self, vmin, vmax): """ Return the values of the located ticks given **vmin** and **vmax**. .. note:: To get tick locations with the vmin and vmax values defined automatically for the associated :attr:`axis` simply call the Locator instance:: >>> print(type(loc)) <type 'Locator'> >>> print(loc()) [1, 2, 3, 4] """ raise NotImplementedError('Derived must override') def set_params(self, **kwargs): """ Do nothing, and raise a warning. Any locator class not supporting the set_params() function will call this. """ cbook._warn_external( "'set_params()' not defined for locator of type " + str(type(self))) def __call__(self): """Return the locations of the ticks""" # note: some locators return data limits, other return view limits, # hence there is no *one* interface to call self.tick_values. raise NotImplementedError('Derived must override') def raise_if_exceeds(self, locs): """raise a RuntimeError if Locator attempts to create more than MAXTICKS locs""" if len(locs) >= self.MAXTICKS: raise RuntimeError("Locator attempting to generate {} ticks from " "{} to {}: exceeds Locator.MAXTICKS".format( len(locs), locs[0], locs[-1])) return locs def nonsingular(self, v0, v1): """Modify the endpoints of a range as needed to avoid singularities.""" return mtransforms.nonsingular(v0, v1, increasing=False, expander=.05) def view_limits(self, vmin, vmax): """ Select a scale for the range from vmin to vmax. Subclasses should override this method to change locator behaviour. """ return mtransforms.nonsingular(vmin, vmax) def autoscale(self): """autoscale the view limits""" return self.view_limits(*self.axis.get_view_interval()) def pan(self, numsteps): """Pan numticks (can be positive or negative)""" ticks = self() numticks = len(ticks) vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05) if numticks > 2: step = numsteps * abs(ticks[0] - ticks[1]) else: d = abs(vmax - vmin) step = numsteps * d / 6. vmin += step vmax += step self.axis.set_view_interval(vmin, vmax, ignore=True) def zoom(self, direction): "Zoom in/out on axis; if direction is >0 zoom in, else zoom out" vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05) interval = abs(vmax - vmin) step = 0.1 * interval * direction self.axis.set_view_interval(vmin + step, vmax - step, ignore=True) def refresh(self): """refresh internal information based on current lim""" pass class IndexLocator(Locator): """ Place a tick on every multiple of some base number of points plotted, e.g., on every 5th point. It is assumed that you are doing index plotting; i.e., the axis is 0, len(data). This is mainly useful for x ticks. """ def __init__(self, base, offset): 'place ticks on the i-th data points where (i-offset)%base==0' self._base = base self.offset = offset def set_params(self, base=None, offset=None): """Set parameters within this locator""" if base is not None: self._base = base if offset is not None: self.offset = offset def __call__(self): """Return the locations of the ticks""" dmin, dmax = self.axis.get_data_interval() return self.tick_values(dmin, dmax) def tick_values(self, vmin, vmax): return self.raise_if_exceeds( np.arange(vmin + self.offset, vmax + 1, self._base)) class FixedLocator(Locator): """ Tick locations are fixed. If nbins is not None, the array of possible positions will be subsampled to keep the number of ticks <= nbins +1. The subsampling will be done so as to include the smallest absolute value; for example, if zero is included in the array of possibilities, then it is guaranteed to be one of the chosen ticks. """ def __init__(self, locs, nbins=None): self.locs = np.asarray(locs) self.nbins = max(nbins, 2) if nbins is not None else None def set_params(self, nbins=None): """Set parameters within this locator.""" if nbins is not None: self.nbins = nbins def __call__(self): return self.tick_values(None, None) def tick_values(self, vmin, vmax): """" Return the locations of the ticks. .. note:: Because the values are fixed, vmin and vmax are not used in this method. """ if self.nbins is None: return self.locs step = max(int(np.ceil(len(self.locs) / self.nbins)), 1) ticks = self.locs[::step] for i in range(1, step): ticks1 = self.locs[i::step] if np.abs(ticks1).min() < np.abs(ticks).min(): ticks = ticks1 return self.raise_if_exceeds(ticks) class NullLocator(Locator): """ No ticks """ def __call__(self): return self.tick_values(None, None) def tick_values(self, vmin, vmax): """" Return the locations of the ticks. .. note:: Because the values are Null, vmin and vmax are not used in this method. """ return [] class LinearLocator(Locator): """ Determine the tick locations The first time this function is called it will try to set the number of ticks to make a nice tick partitioning. Thereafter the number of ticks will be fixed so that interactive navigation will be nice """ def __init__(self, numticks=None, presets=None): """ Use presets to set locs based on lom. A dict mapping vmin, vmax->locs """ self.numticks = numticks if presets is None: self.presets = {} else: self.presets = presets def set_params(self, numticks=None, presets=None): """Set parameters within this locator.""" if presets is not None: self.presets = presets if numticks is not None: self.numticks = numticks def __call__(self): 'Return the locations of the ticks' vmin, vmax = self.axis.get_view_interval() return self.tick_values(vmin, vmax) def tick_values(self, vmin, vmax): vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05) if vmax < vmin: vmin, vmax = vmax, vmin if (vmin, vmax) in self.presets: return self.presets[(vmin, vmax)] if self.numticks is None: self._set_numticks() if self.numticks == 0: return [] ticklocs = np.linspace(vmin, vmax, self.numticks) return self.raise_if_exceeds(ticklocs) def _set_numticks(self): self.numticks = 11 # todo; be smart here; this is just for dev def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' if vmax < vmin: vmin, vmax = vmax, vmin if vmin == vmax: vmin -= 1 vmax += 1 if rcParams['axes.autolimit_mode'] == 'round_numbers': exponent, remainder = divmod( math.log10(vmax - vmin), math.log10(max(self.numticks - 1, 1))) exponent -= (remainder < .5) scale = max(self.numticks - 1, 1) ** (-exponent) vmin = math.floor(scale * vmin) / scale vmax = math.ceil(scale * vmax) / scale return mtransforms.nonsingular(vmin, vmax) @cbook.deprecated("3.0") def closeto(x, y): return abs(x - y) < 1e-10 @cbook.deprecated("3.0") class Base(object): 'this solution has some hacks to deal with floating point inaccuracies' def __init__(self, base): if base <= 0: raise ValueError("'base' must be positive") self._base = base def lt(self, x): 'return the largest multiple of base < x' d, m = divmod(x, self._base) if closeto(m, 0) and not closeto(m / self._base, 1): return (d - 1) * self._base return d * self._base def le(self, x): 'return the largest multiple of base <= x' d, m = divmod(x, self._base) if closeto(m / self._base, 1): # was closeto(m, self._base) #looks like floating point error return (d + 1) * self._base return d * self._base def gt(self, x): 'return the smallest multiple of base > x' d, m = divmod(x, self._base) if closeto(m / self._base, 1): #looks like floating point error return (d + 2) * self._base return (d + 1) * self._base def ge(self, x): 'return the smallest multiple of base >= x' d, m = divmod(x, self._base) if closeto(m, 0) and not closeto(m / self._base, 1): return d * self._base return (d + 1) * self._base def get_base(self): return self._base class MultipleLocator(Locator): """ Set a tick on each integer multiple of a base within the view interval. """ def __init__(self, base=1.0): self._edge = _Edge_integer(base, 0) def set_params(self, base): """Set parameters within this locator.""" if base is not None: self._edge = _Edge_integer(base, 0) def __call__(self): 'Return the locations of the ticks' vmin, vmax = self.axis.get_view_interval() return self.tick_values(vmin, vmax) def tick_values(self, vmin, vmax): if vmax < vmin: vmin, vmax = vmax, vmin step = self._edge.step vmin = self._edge.ge(vmin) * step n = (vmax - vmin + 0.001 * step) // step locs = vmin - step + np.arange(n + 3) * step return self.raise_if_exceeds(locs) def view_limits(self, dmin, dmax): """ Set the view limits to the nearest multiples of base that contain the data. """ if rcParams['axes.autolimit_mode'] == 'round_numbers': vmin = self._edge.le(dmin) * self._edge.step vmax = self._edge.ge(dmax) * self._edge.step if vmin == vmax: vmin -= 1 vmax += 1 else: vmin = dmin vmax = dmax return mtransforms.nonsingular(vmin, vmax) def scale_range(vmin, vmax, n=1, threshold=100): dv = abs(vmax - vmin) # > 0 as nonsingular is called before. meanv = (vmax + vmin) / 2 if abs(meanv) / dv < threshold: offset = 0 else: offset = math.copysign(10 ** (math.log10(abs(meanv)) // 1), meanv) scale = 10 ** (math.log10(dv / n) // 1) return scale, offset class _Edge_integer: """ Helper for MaxNLocator, MultipleLocator, etc. Take floating point precision limitations into account when calculating tick locations as integer multiples of a step. """ def __init__(self, step, offset): """ *step* is a positive floating-point interval between ticks. *offset* is the offset subtracted from the data limits prior to calculating tick locations. """ if step <= 0: raise ValueError("'step' must be positive") self.step = step self._offset = abs(offset) def closeto(self, ms, edge): # Allow more slop when the offset is large compared to the step. if self._offset > 0: digits = np.log10(self._offset / self.step) tol = max(1e-10, 10 ** (digits - 12)) tol = min(0.4999, tol) else: tol = 1e-10 return abs(ms - edge) < tol def le(self, x): 'Return the largest n: n*step <= x.' d, m = divmod(x, self.step) if self.closeto(m / self.step, 1): return (d + 1) return d def ge(self, x): 'Return the smallest n: n*step >= x.' d, m = divmod(x, self.step) if self.closeto(m / self.step, 0): return d return (d + 1) class MaxNLocator(Locator): """ Select no more than N intervals at nice locations. """ _default_params = dict(nbins=10, steps=None, integer=False, symmetric=False, prune=None, min_n_ticks=2) def __init__(self, *args, **kwargs): """ Parameters ---------- nbins : int or 'auto', optional, default: 10 Maximum number of intervals; one less than max number of ticks. If the string `'auto'`, the number of bins will be automatically determined based on the length of the axis. steps : array-like, optional Sequence of nice numbers starting with 1 and ending with 10; e.g., [1, 2, 4, 5, 10], where the values are acceptable tick multiples. i.e. for the example, 20, 40, 60 would be an acceptable set of ticks, as would 0.4, 0.6, 0.8, because they are multiples of 2. However, 30, 60, 90 would not be allowed because 3 does not appear in the list of steps. integer : bool, optional, default: False If True, ticks will take only integer values, provided at least `min_n_ticks` integers are found within the view limits. symmetric : bool, optional, default: False If True, autoscaling will result in a range symmetric about zero. prune : {'lower', 'upper', 'both', None}, optional, default: None Remove edge ticks -- useful for stacked or ganged plots where the upper tick of one axes overlaps with the lower tick of the axes above it, primarily when :rc:`axes.autolimit_mode` is ``'round_numbers'``. If ``prune=='lower'``, the smallest tick will be removed. If ``prune == 'upper'``, the largest tick will be removed. If ``prune == 'both'``, the largest and smallest ticks will be removed. If ``prune == None``, no ticks will be removed. min_n_ticks : int, optional, default: 2 Relax *nbins* and *integer* constraints if necessary to obtain this minimum number of ticks. """ if args: if 'nbins' in kwargs: cbook.deprecated("3.1", message='Calling MaxNLocator with positional ' 'and keyword parameter *nbins* is ' 'considered an error and will fail ' 'in future versions of matplotlib.') kwargs['nbins'] = args[0] if len(args) > 1: raise ValueError( "Keywords are required for all arguments except 'nbins'") self.set_params(**{**self._default_params, **kwargs}) @staticmethod def _validate_steps(steps): if not np.iterable(steps): raise ValueError('steps argument must be an increasing sequence ' 'of numbers between 1 and 10 inclusive') steps = np.asarray(steps) if np.any(np.diff(steps) <= 0) or steps[-1] > 10 or steps[0] < 1: raise ValueError('steps argument must be an increasing sequence ' 'of numbers between 1 and 10 inclusive') if steps[0] != 1: steps = np.hstack((1, steps)) if steps[-1] != 10: steps = np.hstack((steps, 10)) return steps @cbook.deprecated("3.1") @property def default_params(self): return self._default_params @cbook.deprecated("3.1") @default_params.setter def default_params(self, params): self._default_params = params @staticmethod def _staircase(steps): # Make an extended staircase within which the needed # step will be found. This is probably much larger # than necessary. flights = (0.1 * steps[:-1], steps, 10 * steps[1]) return np.hstack(flights) def set_params(self, **kwargs): """ Set parameters for this locator. Parameters ---------- nbins : int or 'auto', optional see `.MaxNLocator` steps : array-like, optional see `.MaxNLocator` integer : bool, optional see `.MaxNLocator` symmetric : bool, optional see `.MaxNLocator` prune : {'lower', 'upper', 'both', None}, optional see `.MaxNLocator` min_n_ticks : int, optional see `.MaxNLocator` """ if 'nbins' in kwargs: self._nbins = kwargs.pop('nbins') if self._nbins != 'auto': self._nbins = int(self._nbins) if 'symmetric' in kwargs: self._symmetric = kwargs.pop('symmetric') if 'prune' in kwargs: prune = kwargs.pop('prune') if prune is not None and prune not in ['upper', 'lower', 'both']: raise ValueError( "prune must be 'upper', 'lower', 'both', or None") self._prune = prune if 'min_n_ticks' in kwargs: self._min_n_ticks = max(1, kwargs.pop('min_n_ticks')) if 'steps' in kwargs: steps = kwargs.pop('steps') if steps is None: self._steps = np.array([1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10]) else: self._steps = self._validate_steps(steps) self._extended_steps = self._staircase(self._steps) if 'integer' in kwargs: self._integer = kwargs.pop('integer') if kwargs: key, _ = kwargs.popitem() cbook.warn_deprecated("3.1", message="MaxNLocator.set_params got an " f"unexpected parameter: {key}") def _raw_ticks(self, vmin, vmax): """ Generate a list of tick locations including the range *vmin* to *vmax*. In some applications, one or both of the end locations will not be needed, in which case they are trimmed off elsewhere. """ if self._nbins == 'auto': if self.axis is not None: nbins = np.clip(self.axis.get_tick_space(), max(1, self._min_n_ticks - 1), 9) else: nbins = 9 else: nbins = self._nbins scale, offset = scale_range(vmin, vmax, nbins) _vmin = vmin - offset _vmax = vmax - offset raw_step = (_vmax - _vmin) / nbins steps = self._extended_steps * scale if self._integer: # For steps > 1, keep only integer values. igood = (steps < 1) | (np.abs(steps - np.round(steps)) < 0.001) steps = steps[igood] istep = np.nonzero(steps >= raw_step)[0][0] # Classic round_numbers mode may require a larger step. if rcParams['axes.autolimit_mode'] == 'round_numbers': for istep in range(istep, len(steps)): step = steps[istep] best_vmin = (_vmin // step) * step best_vmax = best_vmin + step * nbins if best_vmax >= _vmax: break # This is an upper limit; move to smaller steps if necessary. for istep in reversed(range(istep + 1)): step = steps[istep] if (self._integer and np.floor(_vmax) - np.ceil(_vmin) >= self._min_n_ticks - 1): step = max(1, step) best_vmin = (_vmin // step) * step # Find tick locations spanning the vmin-vmax range, taking into # account degradation of precision when there is a large offset. # The edge ticks beyond vmin and/or vmax are needed for the # "round_numbers" autolimit mode. edge = _Edge_integer(step, offset) low = edge.le(_vmin - best_vmin) high = edge.ge(_vmax - best_vmin) ticks = np.arange(low, high + 1) * step + best_vmin # Count only the ticks that will be displayed. nticks = ((ticks <= _vmax) & (ticks >= _vmin)).sum() if nticks >= self._min_n_ticks: break return ticks + offset def __call__(self): vmin, vmax = self.axis.get_view_interval() return self.tick_values(vmin, vmax) def tick_values(self, vmin, vmax): if self._symmetric: vmax = max(abs(vmin), abs(vmax)) vmin = -vmax vmin, vmax = mtransforms.nonsingular( vmin, vmax, expander=1e-13, tiny=1e-14) locs = self._raw_ticks(vmin, vmax) prune = self._prune if prune == 'lower': locs = locs[1:] elif prune == 'upper': locs = locs[:-1] elif prune == 'both': locs = locs[1:-1] return self.raise_if_exceeds(locs) def view_limits(self, dmin, dmax): if self._symmetric: dmax = max(abs(dmin), abs(dmax)) dmin = -dmax dmin, dmax = mtransforms.nonsingular( dmin, dmax, expander=1e-12, tiny=1e-13) if rcParams['axes.autolimit_mode'] == 'round_numbers': return self._raw_ticks(dmin, dmax)[[0, -1]] else: return dmin, dmax @cbook.deprecated("3.1") def decade_down(x, base=10): 'floor x to the nearest lower decade' if x == 0.0: return -base lx = np.floor(np.log(x) / np.log(base)) return base ** lx @cbook.deprecated("3.1") def decade_up(x, base=10): 'ceil x to the nearest higher decade' if x == 0.0: return base lx = np.ceil(np.log(x) / np.log(base)) return base ** lx def nearest_long(x): cbook.warn_deprecated('3.0', removal='3.1', name='`nearest_long`', obj_type='function', alternative='`round`') if x >= 0: return int(x + 0.5) return int(x - 0.5) def is_decade(x, base=10): if not np.isfinite(x): return False if x == 0.0: return True lx = np.log(np.abs(x)) / np.log(base) return is_close_to_int(lx) def _decade_less_equal(x, base): """ Return the largest integer power of *base* that's less or equal to *x*. If *x* is negative, the exponent will be *greater*. """ return (x if x == 0 else -_decade_greater_equal(-x, base) if x < 0 else base ** np.floor(np.log(x) / np.log(base))) def _decade_greater_equal(x, base): """ Return the smallest integer power of *base* that's greater or equal to *x*. If *x* is negative, the exponent will be *smaller*. """ return (x if x == 0 else -_decade_less_equal(-x, base) if x < 0 else base ** np.ceil(np.log(x) / np.log(base))) def _decade_less(x, base): """ Return the largest integer power of *base* that's less than *x*. If *x* is negative, the exponent will be *greater*. """ if x < 0: return -_decade_greater(-x, base) less = _decade_less_equal(x, base) if less == x: less /= base return less def _decade_greater(x, base): """ Return the smallest integer power of *base* that's greater than *x*. If *x* is negative, the exponent will be *smaller*. """ if x < 0: return -_decade_less(-x, base) greater = _decade_greater_equal(x, base) if greater == x: greater *= base return greater def is_close_to_int(x): return abs(x - np.round(x)) < 1e-10 class LogLocator(Locator): """ Determine the tick locations for log axes """ def __init__(self, base=10.0, subs=(1.0,), numdecs=4, numticks=None): """ Place ticks on the locations : subs[j] * base**i Parameters ---------- subs : None, string, or sequence of float, optional, default (1.0,) Gives the multiples of integer powers of the base at which to place ticks. The default places ticks only at integer powers of the base. The permitted string values are ``'auto'`` and ``'all'``, both of which use an algorithm based on the axis view limits to determine whether and how to put ticks between integer powers of the base. With ``'auto'``, ticks are placed only between integer powers; with ``'all'``, the integer powers are included. A value of None is equivalent to ``'auto'``. """ if numticks is None: if rcParams['_internal.classic_mode']: numticks = 15 else: numticks = 'auto' self.base(base) self.subs(subs) self.numdecs = numdecs self.numticks = numticks def set_params(self, base=None, subs=None, numdecs=None, numticks=None): """Set parameters within this locator.""" if base is not None: self.base(base) if subs is not None: self.subs(subs) if numdecs is not None: self.numdecs = numdecs if numticks is not None: self.numticks = numticks # FIXME: these base and subs functions are contrary to our # usual and desired API. def base(self, base): """ set the base of the log scaling (major tick every base**i, i integer) """ self._base = float(base) def subs(self, subs): """ set the minor ticks for the log scaling every base**i*subs[j] """ if subs is None: # consistency with previous bad API self._subs = 'auto' elif isinstance(subs, str): if subs not in ('all', 'auto'): raise ValueError("A subs string must be 'all' or 'auto'; " "found '%s'." % subs) self._subs = subs else: self._subs = np.asarray(subs, dtype=float) def __call__(self): 'Return the locations of the ticks' vmin, vmax = self.axis.get_view_interval() return self.tick_values(vmin, vmax) def tick_values(self, vmin, vmax): if self.numticks == 'auto': if self.axis is not None: numticks = np.clip(self.axis.get_tick_space(), 2, 9) else: numticks = 9 else: numticks = self.numticks b = self._base # dummy axis has no axes attribute if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar': vmax = math.ceil(math.log(vmax) / math.log(b)) decades = np.arange(vmax - self.numdecs, vmax) ticklocs = b ** decades return ticklocs if vmin <= 0.0: if self.axis is not None: vmin = self.axis.get_minpos() if vmin <= 0.0 or not np.isfinite(vmin): raise ValueError( "Data has no positive values, and therefore can not be " "log-scaled.") _log.debug('vmin %s vmax %s', vmin, vmax) if vmax < vmin: vmin, vmax = vmax, vmin log_vmin = math.log(vmin) / math.log(b) log_vmax = math.log(vmax) / math.log(b) numdec = math.floor(log_vmax) - math.ceil(log_vmin) if isinstance(self._subs, str): _first = 2.0 if self._subs == 'auto' else 1.0 if numdec > 10 or b < 3: if self._subs == 'auto': return np.array([]) # no minor or major ticks else: subs = np.array([1.0]) # major ticks else: subs = np.arange(_first, b) else: subs = self._subs # Get decades between major ticks. stride = (max(math.ceil(numdec / (numticks - 1)), 1) if rcParams['_internal.classic_mode'] else (numdec + 1) // numticks + 1) # Does subs include anything other than 1? Essentially a hack to know # whether we're a major or a minor locator. have_subs = len(subs) > 1 or (len(subs) == 1 and subs[0] != 1.0) decades = np.arange(math.floor(log_vmin) - stride, math.ceil(log_vmax) + 2 * stride, stride) if hasattr(self, '_transform'): ticklocs = self._transform.inverted().transform(decades) if have_subs: if stride == 1: ticklocs = np.ravel(np.outer(subs, ticklocs)) else: # No ticklocs if we have >1 decade between major ticks. ticklocs = np.array([]) else: if have_subs: if stride == 1: ticklocs = np.concatenate( [subs * decade_start for decade_start in b ** decades]) else: ticklocs = np.array([]) else: ticklocs = b ** decades _log.debug('ticklocs %r', ticklocs) if (len(subs) > 1 and stride == 1 and ((vmin <= ticklocs) & (ticklocs <= vmax)).sum() <= 1): # If we're a minor locator *that expects at least two ticks per # decade* and the major locator stride is 1 and there's no more # than one minor tick, switch to AutoLocator. return AutoLocator().tick_values(vmin, vmax) else: return self.raise_if_exceeds(ticklocs) def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' b = self._base vmin, vmax = self.nonsingular(vmin, vmax) if self.axis.axes.name == 'polar': vmax = math.ceil(math.log(vmax) / math.log(b)) vmin = b ** (vmax - self.numdecs) if rcParams['axes.autolimit_mode'] == 'round_numbers': vmin = _decade_less_equal(vmin, self._base) vmax = _decade_greater_equal(vmax, self._base) return vmin, vmax def nonsingular(self, vmin, vmax): if not np.isfinite(vmin) or not np.isfinite(vmax): return 1, 10 # initial range, no data plotted yet if vmin > vmax: vmin, vmax = vmax, vmin if vmax <= 0: cbook._warn_external( "Data has no positive values, and therefore cannot be " "log-scaled.") return 1, 10 minpos = self.axis.get_minpos() if not np.isfinite(minpos): minpos = 1e-300 # This should never take effect. if vmin <= 0: vmin = minpos if vmin == vmax: vmin = _decade_less(vmin, self._base) vmax = _decade_greater(vmax, self._base) return vmin, vmax class SymmetricalLogLocator(Locator): """ Determine the tick locations for symmetric log axes """ def __init__(self, transform=None, subs=None, linthresh=None, base=None): """ place ticks on the location= base**i*subs[j] """ if transform is not None: self._base = transform.base self._linthresh = transform.linthresh elif linthresh is not None and base is not None: self._base = base self._linthresh = linthresh else: raise ValueError("Either transform, or both linthresh " "and base, must be provided.") if subs is None: self._subs = [1.0] else: self._subs = subs self.numticks = 15 def set_params(self, subs=None, numticks=None): """Set parameters within this locator.""" if numticks is not None: self.numticks = numticks if subs is not None: self._subs = subs def __call__(self): 'Return the locations of the ticks' # Note, these are untransformed coordinates vmin, vmax = self.axis.get_view_interval() return self.tick_values(vmin, vmax) def tick_values(self, vmin, vmax): b = self._base t = self._linthresh if vmax < vmin: vmin, vmax = vmax, vmin # The domain is divided into three sections, only some of # which may actually be present. # # <======== -t ==0== t ========> # aaaaaaaaa bbbbb ccccccccc # # a) and c) will have ticks at integral log positions. The # number of ticks needs to be reduced if there are more # than self.numticks of them. # # b) has a tick at 0 and only 0 (we assume t is a small # number, and the linear segment is just an implementation # detail and not interesting.) # # We could also add ticks at t, but that seems to usually be # uninteresting. # # "simple" mode is when the range falls entirely within (-t, # t) -- it should just display (vmin, 0, vmax) has_a = has_b = has_c = False if vmin < -t: has_a = True if vmax > -t: has_b = True if vmax > t: has_c = True elif vmin < 0: if vmax > 0: has_b = True if vmax > t: has_c = True else: return [vmin, vmax] elif vmin < t: if vmax > t: has_b = True has_c = True else: return [vmin, vmax] else: has_c = True def get_log_range(lo, hi): lo = np.floor(np.log(lo) / np.log(b)) hi = np.ceil(np.log(hi) / np.log(b)) return lo, hi # First, calculate all the ranges, so we can determine striding if has_a: if has_b: a_range = get_log_range(t, -vmin + 1) else: a_range = get_log_range(-vmax, -vmin + 1) else: a_range = (0, 0) if has_c: if has_b: c_range = get_log_range(t, vmax + 1) else: c_range = get_log_range(vmin, vmax + 1) else: c_range = (0, 0) total_ticks = (a_range[1] - a_range[0]) + (c_range[1] - c_range[0]) if has_b: total_ticks += 1 stride = max(total_ticks // (self.numticks - 1), 1) decades = [] if has_a: decades.extend(-1 * (b ** (np.arange(a_range[0], a_range[1], stride)[::-1]))) if has_b: decades.append(0.0) if has_c: decades.extend(b ** (np.arange(c_range[0], c_range[1], stride))) # Add the subticks if requested if self._subs is None: subs = np.arange(2.0, b) else: subs = np.asarray(self._subs) if len(subs) > 1 or subs[0] != 1.0: ticklocs = [] for decade in decades: if decade == 0: ticklocs.append(decade) else: ticklocs.extend(subs * decade) else: ticklocs = decades return self.raise_if_exceeds(np.array(ticklocs)) def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' b = self._base if vmax < vmin: vmin, vmax = vmax, vmin if rcParams['axes.autolimit_mode'] == 'round_numbers': vmin = _decade_less_equal(vmin, b) vmax = _decade_greater_equal(vmax, b) if vmin == vmax: vmin = _decade_less(vmin, b) vmax = _decade_greater(vmax, b) result = mtransforms.nonsingular(vmin, vmax) return result class LogitLocator(Locator): """ Determine the tick locations for logit axes """ def __init__(self, minor=False): """ place ticks on the logit locations """ self.minor = minor def set_params(self, minor=None): """Set parameters within this locator.""" if minor is not None: self.minor = minor def __call__(self): 'Return the locations of the ticks' vmin, vmax = self.axis.get_view_interval() return self.tick_values(vmin, vmax) def tick_values(self, vmin, vmax): # dummy axis has no axes attribute if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar': raise NotImplementedError('Polar axis cannot be logit scaled yet') vmin, vmax = self.nonsingular(vmin, vmax) vmin = np.log10(vmin / (1 - vmin)) vmax = np.log10(vmax / (1 - vmax)) decade_min = np.floor(vmin) decade_max = np.ceil(vmax) # major ticks if not self.minor: ticklocs = [] if decade_min <= -1: expo = np.arange(decade_min, min(0, decade_max + 1)) ticklocs.extend(10**expo) if decade_min <= 0 <= decade_max: ticklocs.append(0.5) if decade_max >= 1: expo = -np.arange(max(1, decade_min), decade_max + 1) ticklocs.extend(1 - 10**expo) # minor ticks else: ticklocs = [] if decade_min <= -2: expo = np.arange(decade_min, min(-1, decade_max)) newticks = np.outer(np.arange(2, 10), 10**expo).ravel() ticklocs.extend(newticks) if decade_min <= 0 <= decade_max: ticklocs.extend([0.2, 0.3, 0.4, 0.6, 0.7, 0.8]) if decade_max >= 2: expo = -np.arange(max(2, decade_min), decade_max + 1) newticks = 1 - np.outer(np.arange(2, 10), 10**expo).ravel() ticklocs.extend(newticks) return self.raise_if_exceeds(np.array(ticklocs)) def nonsingular(self, vmin, vmax): initial_range = (1e-7, 1 - 1e-7) if not np.isfinite(vmin) or not np.isfinite(vmax): return initial_range # no data plotted yet if vmin > vmax: vmin, vmax = vmax, vmin # what to do if a window beyond ]0, 1[ is chosen if self.axis is not None: minpos = self.axis.get_minpos() if not np.isfinite(minpos): return initial_range # again, no data plotted else: minpos = 1e-7 # should not occur in normal use # NOTE: for vmax, we should query a property similar to get_minpos, but # related to the maximal, less-than-one data point. Unfortunately, # Bbox._minpos is defined very deep in the BBox and updated with data, # so for now we use 1 - minpos as a substitute. if vmin <= 0: vmin = minpos if vmax >= 1: vmax = 1 - minpos if vmin == vmax: return 0.1 * vmin, 1 - 0.1 * vmin return vmin, vmax class AutoLocator(MaxNLocator): """ Dynamically find major tick positions. This is actually a subclass of `~matplotlib.ticker.MaxNLocator`, with parameters *nbins = 'auto'* and *steps = [1, 2, 2.5, 5, 10]*. """ def __init__(self): """ To know the values of the non-public parameters, please have a look to the defaults of `~matplotlib.ticker.MaxNLocator`. """ if rcParams['_internal.classic_mode']: nbins = 9 steps = [1, 2, 5, 10] else: nbins = 'auto' steps = [1, 2, 2.5, 5, 10] MaxNLocator.__init__(self, nbins=nbins, steps=steps) class AutoMinorLocator(Locator): """ Dynamically find minor tick positions based on the positions of major ticks. The scale must be linear with major ticks evenly spaced. """ def __init__(self, n=None): """ *n* is the number of subdivisions of the interval between major ticks; e.g., n=2 will place a single minor tick midway between major ticks. If *n* is omitted or None, it will be set to 5 or 4. """ self.ndivs = n def __call__(self): 'Return the locations of the ticks' if self.axis.get_scale() == 'log': cbook._warn_external('AutoMinorLocator does not work with ' 'logarithmic scale') return [] majorlocs = self.axis.get_majorticklocs() try: majorstep = majorlocs[1] - majorlocs[0] except IndexError: # Need at least two major ticks to find minor tick locations # TODO: Figure out a way to still be able to display minor # ticks without two major ticks visible. For now, just display # no ticks at all. return [] if self.ndivs is None: majorstep_no_exponent = 10 ** (np.log10(majorstep) % 1) if np.isclose(majorstep_no_exponent, [1.0, 2.5, 5.0, 10.0]).any(): ndivs = 5 else: ndivs = 4 else: ndivs = self.ndivs minorstep = majorstep / ndivs vmin, vmax = self.axis.get_view_interval() if vmin > vmax: vmin, vmax = vmax, vmin t0 = majorlocs[0] tmin = ((vmin - t0) // minorstep + 1) * minorstep tmax = ((vmax - t0) // minorstep + 1) * minorstep locs = np.arange(tmin, tmax, minorstep) + t0 return self.raise_if_exceeds(locs) def tick_values(self, vmin, vmax): raise NotImplementedError('Cannot get tick locations for a ' '%s type.' % type(self)) class OldAutoLocator(Locator): """ On autoscale this class picks the best MultipleLocator to set the view limits and the tick locs. """ def __init__(self): self._locator = LinearLocator() def __call__(self): 'Return the locations of the ticks' self.refresh() return self.raise_if_exceeds(self._locator()) def tick_values(self, vmin, vmax): raise NotImplementedError('Cannot get tick locations for a ' '%s type.' % type(self)) def refresh(self): 'refresh internal information based on current lim' vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander=0.05) d = abs(vmax - vmin) self._locator = self.get_locator(d) def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' d = abs(vmax - vmin) self._locator = self.get_locator(d) return self._locator.view_limits(vmin, vmax) def get_locator(self, d): 'pick the best locator based on a distance' d = abs(d) if d <= 0: locator = MultipleLocator(0.2) else: try: ld = math.log10(d) except OverflowError: raise RuntimeError('AutoLocator illegal data interval range') fld = math.floor(ld) base = 10 ** fld #if ld==fld: base = 10**(fld-1) #else: base = 10**fld if d >= 5 * base: ticksize = base elif d >= 2 * base: ticksize = base / 2.0 else: ticksize = base / 5.0 locator = MultipleLocator(ticksize) return locator
e20478c4a94cbeb36a568bf2d310d84370734f2e4e9203cd40b4d5a689b688d7
import inspect from matplotlib import cbook class Substitution(object): """ A decorator that performs %-substitution on an object's docstring. This decorator should be robust even if ``obj.__doc__`` is None (for example, if -OO was passed to the interpreter). Usage: construct a docstring.Substitution with a sequence or dictionary suitable for performing substitution; then decorate a suitable function with the constructed object, e.g.:: sub_author_name = Substitution(author='Jason') @sub_author_name def some_function(x): "%(author)s wrote this function" # note that some_function.__doc__ is now "Jason wrote this function" One can also use positional arguments:: sub_first_last_names = Substitution('Edgar Allen', 'Poe') @sub_first_last_names def some_function(x): "%s %s wrote the Raven" """ def __init__(self, *args, **kwargs): if args and kwargs: raise TypeError("Only positional or keyword args are allowed") self.params = args or kwargs def __call__(self, func): if func.__doc__: func.__doc__ %= self.params return func def update(self, *args, **kwargs): """ Update ``self.params`` (which must be a dict) with the supplied args. """ self.params.update(*args, **kwargs) @classmethod def from_params(cls, params): """ In the case where the params is a mutable sequence (list or dictionary) and it may change before this class is called, one may explicitly use a reference to the params rather than using *args or **kwargs which will copy the values and not reference them. """ result = cls() result.params = params return result @cbook.deprecated("3.1") class Appender(object): """ A function decorator that will append an addendum to the docstring of the target function. This decorator should be robust even if func.__doc__ is None (for example, if -OO was passed to the interpreter). Usage: construct a docstring.Appender with a string to be joined to the original docstring. An optional 'join' parameter may be supplied which will be used to join the docstring and addendum. e.g. add_copyright = Appender("Copyright (c) 2009", join='\n') @add_copyright def my_dog(has='fleas'): "This docstring will have a copyright below" pass """ def __init__(self, addendum, join=''): self.addendum = addendum self.join = join def __call__(self, func): docitems = [func.__doc__, self.addendum] func.__doc__ = func.__doc__ and self.join.join(docitems) return func @cbook.deprecated("3.1", alternative="inspect.getdoc()") def dedent(func): "Dedent a docstring (if present)" func.__doc__ = func.__doc__ and cbook.dedent(func.__doc__) return func def copy(source): "Copy a docstring from another source function (if present)" def do_copy(target): if source.__doc__: target.__doc__ = source.__doc__ return target return do_copy # Create a decorator that will house the various docstring snippets reused # throughout Matplotlib. interpd = Substitution() def dedent_interpd(func): """Dedent *func*'s docstring, then interpolate it with ``interpd``.""" func.__doc__ = inspect.getdoc(func) return interpd(func) @cbook.deprecated("3.1", alternative="docstring.copy() and cbook.dedent()") def copy_dedent(source): """A decorator that will copy the docstring from the source and then dedent it""" # note the following is ugly because "Python is not a functional # language" - GVR. Perhaps one day, functools.compose will exist. # or perhaps not. # http://mail.python.org/pipermail/patches/2007-February/021687.html return lambda target: dedent(copy(source)(target))
1fc6e1db0d70ee404d267cf001642f5a8f4027b79e02a82bd8ea419a77e48ca7
""" The image module supports basic image loading, rescaling and display operations. """ from io import BytesIO from math import ceil import os import logging from pathlib import Path import urllib.parse import numpy as np from matplotlib import rcParams import matplotlib.artist as martist from matplotlib.backend_bases import FigureCanvasBase import matplotlib.colors as mcolors import matplotlib.cm as cm import matplotlib.cbook as cbook # For clarity, names from _image are given explicitly in this module: import matplotlib._image as _image # For user convenience, the names from _image are also imported into # the image namespace: from matplotlib._image import * from matplotlib.transforms import (Affine2D, BboxBase, Bbox, BboxTransform, IdentityTransform, TransformedBbox) _log = logging.getLogger(__name__) # map interpolation strings to module constants _interpd_ = { 'none': _image.NEAREST, # fall back to nearest when not supported 'nearest': _image.NEAREST, 'bilinear': _image.BILINEAR, 'bicubic': _image.BICUBIC, 'spline16': _image.SPLINE16, 'spline36': _image.SPLINE36, 'hanning': _image.HANNING, 'hamming': _image.HAMMING, 'hermite': _image.HERMITE, 'kaiser': _image.KAISER, 'quadric': _image.QUADRIC, 'catrom': _image.CATROM, 'gaussian': _image.GAUSSIAN, 'bessel': _image.BESSEL, 'mitchell': _image.MITCHELL, 'sinc': _image.SINC, 'lanczos': _image.LANCZOS, 'blackman': _image.BLACKMAN, } interpolations_names = set(_interpd_) def composite_images(images, renderer, magnification=1.0): """ Composite a number of RGBA images into one. The images are composited in the order in which they appear in the `images` list. Parameters ---------- images : list of Images Each must have a `make_image` method. For each image, `can_composite` should return `True`, though this is not enforced by this function. Each image must have a purely affine transformation with no shear. renderer : RendererBase instance magnification : float The additional magnification to apply for the renderer in use. Returns ------- tuple : image, offset_x, offset_y Returns the tuple: - image: A numpy array of the same type as the input images. - offset_x, offset_y: The offset of the image (left, bottom) in the output figure. """ if len(images) == 0: return np.empty((0, 0, 4), dtype=np.uint8), 0, 0 parts = [] bboxes = [] for image in images: data, x, y, trans = image.make_image(renderer, magnification) if data is not None: x *= magnification y *= magnification parts.append((data, x, y, image.get_alpha() or 1.0)) bboxes.append( Bbox([[x, y], [x + data.shape[1], y + data.shape[0]]])) if len(parts) == 0: return np.empty((0, 0, 4), dtype=np.uint8), 0, 0 bbox = Bbox.union(bboxes) output = np.zeros( (int(bbox.height), int(bbox.width), 4), dtype=np.uint8) for data, x, y, alpha in parts: trans = Affine2D().translate(x - bbox.x0, y - bbox.y0) _image.resample(data, output, trans, _image.NEAREST, resample=False, alpha=alpha) return output, bbox.x0 / magnification, bbox.y0 / magnification def _draw_list_compositing_images( renderer, parent, artists, suppress_composite=None): """ Draw a sorted list of artists, compositing images into a single image where possible. For internal matplotlib use only: It is here to reduce duplication between `Figure.draw` and `Axes.draw`, but otherwise should not be generally useful. """ has_images = any(isinstance(x, _ImageBase) for x in artists) # override the renderer default if suppressComposite is not None not_composite = (suppress_composite if suppress_composite is not None else renderer.option_image_nocomposite()) if not_composite or not has_images: for a in artists: a.draw(renderer) else: # Composite any adjacent images together image_group = [] mag = renderer.get_image_magnification() def flush_images(): if len(image_group) == 1: image_group[0].draw(renderer) elif len(image_group) > 1: data, l, b = composite_images(image_group, renderer, mag) if data.size != 0: gc = renderer.new_gc() gc.set_clip_rectangle(parent.bbox) gc.set_clip_path(parent.get_clip_path()) renderer.draw_image(gc, np.round(l), np.round(b), data) gc.restore() del image_group[:] for a in artists: if isinstance(a, _ImageBase) and a.can_composite(): image_group.append(a) else: flush_images() a.draw(renderer) flush_images() def _rgb_to_rgba(A): """ Convert an RGB image to RGBA, as required by the image resample C++ extension. """ rgba = np.zeros((A.shape[0], A.shape[1], 4), dtype=A.dtype) rgba[:, :, :3] = A if rgba.dtype == np.uint8: rgba[:, :, 3] = 255 else: rgba[:, :, 3] = 1.0 return rgba class _ImageBase(martist.Artist, cm.ScalarMappable): zorder = 0 def __init__(self, ax, cmap=None, norm=None, interpolation=None, origin=None, filternorm=True, filterrad=4.0, resample=False, **kwargs ): """ interpolation and cmap default to their rc settings cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1 extent is data axes (left, right, bottom, top) for making image plots registered with data plots. Default is to label the pixel centers with the zero-based row and column indices. Additional kwargs are matplotlib.artist properties """ martist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) self._mouseover = True if origin is None: origin = rcParams['image.origin'] self.origin = origin self.set_filternorm(filternorm) self.set_filterrad(filterrad) self.set_interpolation(interpolation) self.set_resample(resample) self.axes = ax self._imcache = None self.update(kwargs) def __getstate__(self): state = super().__getstate__() # We can't pickle the C Image cached object. state['_imcache'] = None return state def get_size(self): """Get the numrows, numcols of the input image""" if self._A is None: raise RuntimeError('You must first set the image array') return self._A.shape[:2] def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends. Parameters ---------- alpha : float """ martist.Artist.set_alpha(self, alpha) self._imcache = None def changed(self): """ Call this whenever the mappable is changed so observers can update state """ self._imcache = None self._rgbacache = None cm.ScalarMappable.changed(self) def _make_image(self, A, in_bbox, out_bbox, clip_bbox, magnification=1.0, unsampled=False, round_to_pixel_border=True): """ Normalize, rescale, and colormap the image *A* from the given *in_bbox* (in data space), to the given *out_bbox* (in pixel space) clipped to the given *clip_bbox* (also in pixel space), and magnified by the *magnification* factor. *A* may be a greyscale image (M, N) with a dtype of float32, float64, float128, uint16 or uint8, or an (M, N, 4) RGBA image with a dtype of float32, float64, float128, or uint8. If *unsampled* is True, the image will not be scaled, but an appropriate affine transformation will be returned instead. If *round_to_pixel_border* is True, the output image size will be rounded to the nearest pixel boundary. This makes the images align correctly with the axes. It should not be used if exact scaling is needed, such as for `FigureImage`. Returns ------- image : (M, N, 4) uint8 array The RGBA image, resampled unless *unsampled* is True. x, y : float The upper left corner where the image should be drawn, in pixel space. trans : Affine2D The affine transformation from image to pixel space. """ if A is None: raise RuntimeError('You must first set the image ' 'array or the image attribute') if A.size == 0: raise RuntimeError("_make_image must get a non-empty image. " "Your Artist's draw method must filter before " "this method is called.") clipped_bbox = Bbox.intersection(out_bbox, clip_bbox) if clipped_bbox is None: return None, 0, 0, None out_width_base = clipped_bbox.width * magnification out_height_base = clipped_bbox.height * magnification if out_width_base == 0 or out_height_base == 0: return None, 0, 0, None if self.origin == 'upper': # Flip the input image using a transform. This avoids the # problem with flipping the array, which results in a copy # when it is converted to contiguous in the C wrapper t0 = Affine2D().translate(0, -A.shape[0]).scale(1, -1) else: t0 = IdentityTransform() t0 += ( Affine2D() .scale( in_bbox.width / A.shape[1], in_bbox.height / A.shape[0]) .translate(in_bbox.x0, in_bbox.y0) + self.get_transform()) t = (t0 + Affine2D().translate( -clipped_bbox.x0, -clipped_bbox.y0) .scale(magnification, magnification)) # So that the image is aligned with the edge of the axes, we want # to round up the output width to the next integer. This also # means scaling the transform just slightly to account for the # extra subpixel. if (t.is_affine and round_to_pixel_border and (out_width_base % 1.0 != 0.0 or out_height_base % 1.0 != 0.0)): out_width = int(ceil(out_width_base)) out_height = int(ceil(out_height_base)) extra_width = (out_width - out_width_base) / out_width_base extra_height = (out_height - out_height_base) / out_height_base t += Affine2D().scale(1.0 + extra_width, 1.0 + extra_height) else: out_width = int(out_width_base) out_height = int(out_height_base) if not unsampled: if A.ndim not in (2, 3): raise ValueError("Invalid shape {} for image data" .format(A.shape)) if A.ndim == 2: # if we are a 2D array, then we are running through the # norm + colormap transformation. However, in general the # input data is not going to match the size on the screen so we # have to resample to the correct number of pixels # need to # TODO slice input array first inp_dtype = A.dtype a_min = A.min() a_max = A.max() # figure out the type we should scale to. For floats, # leave as is. For integers cast to an appropriate-sized # float. Small integers get smaller floats in an attempt # to keep the memory footprint reasonable. if a_min is np.ma.masked: # all masked, so values don't matter a_min, a_max = np.int32(0), np.int32(1) if inp_dtype.kind == 'f': scaled_dtype = A.dtype # Cast to float64 if A.dtype not in (np.float32, np.float16): if A.dtype != np.float64: cbook._warn_external("Casting input data from " "'{0}' to 'float64' for " "imshow".format(A.dtype)) scaled_dtype = np.float64 else: # probably an integer of some type. da = a_max.astype(np.float64) - a_min.astype(np.float64) if da > 1e8: # give more breathing room if a big dynamic range scaled_dtype = np.float64 else: scaled_dtype = np.float32 # scale the input data to [.1, .9]. The Agg # interpolators clip to [0, 1] internally, use a # smaller input scale to identify which of the # interpolated points need to be should be flagged as # over / under. # This may introduce numeric instabilities in very broadly # scaled data A_scaled = np.empty(A.shape, dtype=scaled_dtype) A_scaled[:] = A # clip scaled data around norm if necessary. # This is necessary for big numbers at the edge of # float64's ability to represent changes. Applying # a norm first would be good, but ruins the interpolation # of over numbers. self.norm.autoscale_None(A) dv = (np.float64(self.norm.vmax) - np.float64(self.norm.vmin)) vmid = self.norm.vmin + dv / 2 fact = 1e7 if scaled_dtype == np.float64 else 1e4 newmin = vmid - dv * fact if newmin < a_min: newmin = None else: a_min = np.float64(newmin) newmax = vmid + dv * fact if newmax > a_max: newmax = None else: a_max = np.float64(newmax) if newmax is not None or newmin is not None: A_scaled = np.clip(A_scaled, newmin, newmax) A_scaled -= a_min # a_min and a_max might be ndarray subclasses so use # item to avoid errors a_min = a_min.astype(scaled_dtype).item() a_max = a_max.astype(scaled_dtype).item() if a_min != a_max: A_scaled /= ((a_max - a_min) / 0.8) A_scaled += 0.1 A_resampled = np.zeros((out_height, out_width), dtype=A_scaled.dtype) # resample the input data to the correct resolution and shape _image.resample(A_scaled, A_resampled, t, _interpd_[self.get_interpolation()], self.get_resample(), 1.0, self.get_filternorm(), self.get_filterrad()) # we are done with A_scaled now, remove from namespace # to be sure! del A_scaled # un-scale the resampled data to approximately the # original range things that interpolated to above / # below the original min/max will still be above / # below, but possibly clipped in the case of higher order # interpolation + drastically changing data. A_resampled -= 0.1 if a_min != a_max: A_resampled *= ((a_max - a_min) / 0.8) A_resampled += a_min # if using NoNorm, cast back to the original datatype if isinstance(self.norm, mcolors.NoNorm): A_resampled = A_resampled.astype(A.dtype) mask = np.empty(A.shape, dtype=np.float32) if A.mask.shape == A.shape: # this is the case of a nontrivial mask mask[:] = np.where(A.mask, np.float32(np.nan), np.float32(1)) else: mask[:] = 1 # we always have to interpolate the mask to account for # non-affine transformations out_mask = np.zeros((out_height, out_width), dtype=mask.dtype) _image.resample(mask, out_mask, t, _interpd_[self.get_interpolation()], True, 1, self.get_filternorm(), self.get_filterrad()) # we are done with the mask, delete from namespace to be sure! del mask # Agg updates the out_mask in place. If the pixel has # no image data it will not be updated (and still be 0 # as we initialized it), if input data that would go # into that output pixel than it will be `nan`, if all # the input data for a pixel is good it will be 1, and # if there is _some_ good data in that output pixel it # will be between [0, 1] (such as a rotated image). out_alpha = np.array(out_mask) out_mask = np.isnan(out_mask) out_alpha[out_mask] = 1 # mask and run through the norm output = self.norm(np.ma.masked_array(A_resampled, out_mask)) else: # Always convert to RGBA, even if only RGB input if A.shape[2] == 3: A = _rgb_to_rgba(A) elif A.shape[2] != 4: raise ValueError("Invalid shape {} for image data" .format(A.shape)) output = np.zeros((out_height, out_width, 4), dtype=A.dtype) output_a = np.zeros((out_height, out_width), dtype=A.dtype) alpha = self.get_alpha() if alpha is None: alpha = 1 #resample alpha channel alpha_channel = A[..., 3] _image.resample( alpha_channel, output_a, t, _interpd_[self.get_interpolation()], self.get_resample(), alpha, self.get_filternorm(), self.get_filterrad()) #resample rgb channels A = _rgb_to_rgba(A[..., :3]) _image.resample( A, output, t, _interpd_[self.get_interpolation()], self.get_resample(), alpha, self.get_filternorm(), self.get_filterrad()) #recombine rgb and alpha channels output[..., 3] = output_a # at this point output is either a 2D array of normed data # (of int or float) # or an RGBA array of re-sampled input output = self.to_rgba(output, bytes=True, norm=False) # output is now a correctly sized RGBA array of uint8 # Apply alpha *after* if the input was greyscale without a mask if A.ndim == 2: alpha = self.get_alpha() if alpha is None: alpha = 1 alpha_channel = output[:, :, 3] alpha_channel[:] = np.asarray( np.asarray(alpha_channel, np.float32) * out_alpha * alpha, np.uint8) else: if self._imcache is None: self._imcache = self.to_rgba(A, bytes=True, norm=(A.ndim == 2)) output = self._imcache # Subset the input image to only the part that will be # displayed subset = TransformedBbox( clip_bbox, t0.frozen().inverted()).frozen() output = output[ int(max(subset.ymin, 0)): int(min(subset.ymax + 1, output.shape[0])), int(max(subset.xmin, 0)): int(min(subset.xmax + 1, output.shape[1]))] t = Affine2D().translate( int(max(subset.xmin, 0)), int(max(subset.ymin, 0))) + t return output, clipped_bbox.x0, clipped_bbox.y0, t def make_image(self, renderer, magnification=1.0, unsampled=False): """ Normalize, rescale, and colormap this image's data for rendering using *renderer*, with the given *magnification*. If *unsampled* is True, the image will not be scaled, but an appropriate affine transformation will be returned instead. Returns ------- image : (M, N, 4) uint8 array The RGBA image, resampled unless *unsampled* is True. x, y : float The upper left corner where the image should be drawn, in pixel space. trans : Affine2D The affine transformation from image to pixel space. """ raise NotImplementedError('The make_image method must be overridden') def _draw_unsampled_image(self, renderer, gc): """ draw unsampled image. The renderer should support a draw_image method with scale parameter. """ im, l, b, trans = self.make_image(renderer, unsampled=True) if im is None: return trans = Affine2D().scale(im.shape[1], im.shape[0]) + trans renderer.draw_image(gc, l, b, im, trans) def _check_unsampled_image(self, renderer): """ return True if the image is better to be drawn unsampled. The derived class needs to override it. """ return False @martist.allow_rasterization def draw(self, renderer, *args, **kwargs): # if not visible, declare victory and return if not self.get_visible(): self.stale = False return # for empty images, there is nothing to draw! if self.get_array().size == 0: self.stale = False return # actually render the image. gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_alpha(self.get_alpha()) gc.set_url(self.get_url()) gc.set_gid(self.get_gid()) if (self._check_unsampled_image(renderer) and self.get_transform().is_affine): self._draw_unsampled_image(renderer, gc) else: im, l, b, trans = self.make_image( renderer, renderer.get_image_magnification()) if im is not None: renderer.draw_image(gc, l, b, im) gc.restore() self.stale = False def contains(self, mouseevent): """ Test whether the mouse event occurred within the image. """ if self._contains is not None: return self._contains(self, mouseevent) # TODO: make sure this is consistent with patch and patch # collection on nonlinear transformed coordinates. # TODO: consider returning image coordinates (shouldn't # be too difficult given that the image is rectilinear x, y = mouseevent.xdata, mouseevent.ydata xmin, xmax, ymin, ymax = self.get_extent() if xmin > xmax: xmin, xmax = xmax, xmin if ymin > ymax: ymin, ymax = ymax, ymin if x is not None and y is not None: inside = (xmin <= x <= xmax) and (ymin <= y <= ymax) else: inside = False return inside, {} def write_png(self, fname): """Write the image to png file with fname""" from matplotlib import _png im = self.to_rgba(self._A[::-1] if self.origin == 'lower' else self._A, bytes=True, norm=True) _png.write_png(im, fname) def set_data(self, A): """ Set the image array. Note that this function does *not* update the normalization used. Parameters ---------- A : array-like """ self._A = cbook.safe_masked_invalid(A, copy=True) if (self._A.dtype != np.uint8 and not np.can_cast(self._A.dtype, float, "same_kind")): raise TypeError("Image data of dtype {} cannot be converted to " "float".format(self._A.dtype)) if not (self._A.ndim == 2 or self._A.ndim == 3 and self._A.shape[-1] in [3, 4]): raise TypeError("Invalid shape {} for image data" .format(self._A.shape)) if self._A.ndim == 3: # If the input data has values outside the valid range (after # normalisation), we issue a warning and then clip X to the bounds # - otherwise casting wraps extreme values, hiding outliers and # making reliable interpretation impossible. high = 255 if np.issubdtype(self._A.dtype, np.integer) else 1 if self._A.min() < 0 or high < self._A.max(): _log.warning( 'Clipping input data to the valid range for imshow with ' 'RGB data ([0..1] for floats or [0..255] for integers).' ) self._A = np.clip(self._A, 0, high) # Cast unsupported integer types to uint8 if self._A.dtype != np.uint8 and np.issubdtype(self._A.dtype, np.integer): self._A = self._A.astype(np.uint8) self._imcache = None self._rgbacache = None self.stale = True def set_array(self, A): """ Retained for backwards compatibility - use set_data instead. Parameters ---------- A : array-like """ # This also needs to be here to override the inherited # cm.ScalarMappable.set_array method so it is not invoked by mistake. self.set_data(A) def get_interpolation(self): """ Return the interpolation method the image uses when resizing. One of 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', or 'none'. """ return self._interpolation def set_interpolation(self, s): """ Set the interpolation method the image uses when resizing. if None, use a value from rc setting. If 'none', the image is shown as is without interpolating. 'none' is only supported in agg, ps and pdf backends and will fall back to 'nearest' mode for other backends. Parameters ---------- s : {'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', \ 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', \ 'bessel', 'mitchell', 'sinc', 'lanczos', 'none'} """ if s is None: s = rcParams['image.interpolation'] s = s.lower() if s not in _interpd_: raise ValueError('Illegal interpolation string') self._interpolation = s self.stale = True def can_composite(self): """Return whether the image can be composited with its neighbors.""" trans = self.get_transform() return ( self._interpolation != 'none' and trans.is_affine and trans.is_separable) def set_resample(self, v): """ Set whether image resampling is used. Parameters ---------- v : bool or None If None, use :rc:`image.resample` = True. """ if v is None: v = rcParams['image.resample'] self._resample = v self.stale = True def get_resample(self): """Return whether image resampling is used.""" return self._resample def set_filternorm(self, filternorm): """ Set whether the resize filter normalizes the weights. See help for `~.Axes.imshow`. Parameters ---------- filternorm : bool """ self._filternorm = bool(filternorm) self.stale = True def get_filternorm(self): """Return whether the resize filter normalizes the weights.""" return self._filternorm def set_filterrad(self, filterrad): """ Set the resize filter radius only applicable to some interpolation schemes -- see help for imshow Parameters ---------- filterrad : positive float """ r = float(filterrad) if r <= 0: raise ValueError("The filter radius must be a positive number") self._filterrad = r self.stale = True def get_filterrad(self): """Return the filterrad setting.""" return self._filterrad class AxesImage(_ImageBase): def __str__(self): return "AxesImage(%g,%g;%gx%g)" % tuple(self.axes.bbox.bounds) def __init__(self, ax, cmap=None, norm=None, interpolation=None, origin=None, extent=None, filternorm=1, filterrad=4.0, resample=False, **kwargs ): """ interpolation and cmap default to their rc settings cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1 extent is data axes (left, right, bottom, top) for making image plots registered with data plots. Default is to label the pixel centers with the zero-based row and column indices. Additional kwargs are matplotlib.artist properties """ self._extent = extent super().__init__( ax, cmap=cmap, norm=norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs ) def get_window_extent(self, renderer=None): x0, x1, y0, y1 = self._extent bbox = Bbox.from_extents([x0, y0, x1, y1]) return bbox.transformed(self.axes.transData) def make_image(self, renderer, magnification=1.0, unsampled=False): # docstring inherited trans = self.get_transform() # image is created in the canvas coordinate. x1, x2, y1, y2 = self.get_extent() bbox = Bbox(np.array([[x1, y1], [x2, y2]])) transformed_bbox = TransformedBbox(bbox, trans) return self._make_image( self._A, bbox, transformed_bbox, self.axes.bbox, magnification, unsampled=unsampled) def _check_unsampled_image(self, renderer): """ Return whether the image would be better drawn unsampled. """ return (self.get_interpolation() == "none" and renderer.option_scale_image()) def set_extent(self, extent): """ extent is data axes (left, right, bottom, top) for making image plots This updates ax.dataLim, and, if autoscaling, sets viewLim to tightly fit the image, regardless of dataLim. Autoscaling state is not changed, so following this with ax.autoscale_view will redo the autoscaling in accord with dataLim. """ self._extent = xmin, xmax, ymin, ymax = extent corners = (xmin, ymin), (xmax, ymax) self.axes.update_datalim(corners) self.sticky_edges.x[:] = [xmin, xmax] self.sticky_edges.y[:] = [ymin, ymax] if self.axes._autoscaleXon: self.axes.set_xlim((xmin, xmax), auto=None) if self.axes._autoscaleYon: self.axes.set_ylim((ymin, ymax), auto=None) self.stale = True def get_extent(self): """Get the image extent: left, right, bottom, top""" if self._extent is not None: return self._extent else: sz = self.get_size() numrows, numcols = sz if self.origin == 'upper': return (-0.5, numcols-0.5, numrows-0.5, -0.5) else: return (-0.5, numcols-0.5, -0.5, numrows-0.5) def get_cursor_data(self, event): """ Return the image value at the event position or *None* if the event is outside the image. See Also -------- matplotlib.artist.Artist.get_cursor_data """ xmin, xmax, ymin, ymax = self.get_extent() if self.origin == 'upper': ymin, ymax = ymax, ymin arr = self.get_array() data_extent = Bbox([[ymin, xmin], [ymax, xmax]]) array_extent = Bbox([[0, 0], arr.shape[:2]]) trans = BboxTransform(boxin=data_extent, boxout=array_extent) y, x = event.ydata, event.xdata point = trans.transform_point([y, x]) if any(np.isnan(point)): return None i, j = point.astype(int) # Clip the coordinates at array bounds if not (0 <= i < arr.shape[0]) or not (0 <= j < arr.shape[1]): return None else: return arr[i, j] def format_cursor_data(self, data): if self.colorbar: return ( "[" + cbook.strip_math( self.colorbar.formatter.format_data_short(data)).strip() + "]") else: return super().format_cursor_data(data) class NonUniformImage(AxesImage): def __init__(self, ax, *, interpolation='nearest', **kwargs): """ kwargs are identical to those for AxesImage, except that 'nearest' and 'bilinear' are the only supported 'interpolation' options. """ super().__init__(ax, **kwargs) self.set_interpolation(interpolation) def _check_unsampled_image(self, renderer): """ return False. Do not use unsampled image. """ return False def make_image(self, renderer, magnification=1.0, unsampled=False): # docstring inherited if self._A is None: raise RuntimeError('You must first set the image array') if unsampled: raise ValueError('unsampled not supported on NonUniformImage') A = self._A if A.ndim == 2: if A.dtype != np.uint8: A = self.to_rgba(A, bytes=True) self.is_grayscale = self.cmap.is_gray() else: A = np.repeat(A[:, :, np.newaxis], 4, 2) A[:, :, 3] = 255 self.is_grayscale = True else: if A.dtype != np.uint8: A = (255*A).astype(np.uint8) if A.shape[2] == 3: B = np.zeros(tuple([*A.shape[0:2], 4]), np.uint8) B[:, :, 0:3] = A B[:, :, 3] = 255 A = B self.is_grayscale = False x0, y0, v_width, v_height = self.axes.viewLim.bounds l, b, r, t = self.axes.bbox.extents width = (np.round(r) + 0.5) - (np.round(l) - 0.5) height = (np.round(t) + 0.5) - (np.round(b) - 0.5) width *= magnification height *= magnification im = _image.pcolor(self._Ax, self._Ay, A, int(height), int(width), (x0, x0+v_width, y0, y0+v_height), _interpd_[self._interpolation]) return im, l, b, IdentityTransform() def set_data(self, x, y, A): """ Set the grid for the pixel centers, and the pixel values. *x* and *y* are monotonic 1-D ndarrays of lengths N and M, respectively, specifying pixel centers *A* is an (M,N) ndarray or masked array of values to be colormapped, or a (M,N,3) RGB array, or a (M,N,4) RGBA array. """ x = np.array(x, np.float32) y = np.array(y, np.float32) A = cbook.safe_masked_invalid(A, copy=True) if not (x.ndim == y.ndim == 1 and A.shape[0:2] == y.shape + x.shape): raise TypeError("Axes don't match array shape") if A.ndim not in [2, 3]: raise TypeError("Can only plot 2D or 3D data") if A.ndim == 3 and A.shape[2] not in [1, 3, 4]: raise TypeError("3D arrays must have three (RGB) " "or four (RGBA) color components") if A.ndim == 3 and A.shape[2] == 1: A.shape = A.shape[0:2] self._A = A self._Ax = x self._Ay = y self._imcache = None self.stale = True def set_array(self, *args): raise NotImplementedError('Method not supported') def set_interpolation(self, s): """ Parameters ---------- s : str, None Either 'nearest', 'bilinear', or ``None``. """ if s is not None and s not in ('nearest', 'bilinear'): raise NotImplementedError('Only nearest neighbor and ' 'bilinear interpolations are supported') AxesImage.set_interpolation(self, s) def get_extent(self): if self._A is None: raise RuntimeError('Must set data first') return self._Ax[0], self._Ax[-1], self._Ay[0], self._Ay[-1] def set_filternorm(self, s): pass def set_filterrad(self, s): pass def set_norm(self, norm): if self._A is not None: raise RuntimeError('Cannot change colors after loading data') super().set_norm(norm) def set_cmap(self, cmap): if self._A is not None: raise RuntimeError('Cannot change colors after loading data') super().set_cmap(cmap) class PcolorImage(AxesImage): """ Make a pcolor-style plot with an irregular rectangular grid. This uses a variation of the original irregular image code, and it is used by pcolorfast for the corresponding grid type. """ def __init__(self, ax, x=None, y=None, A=None, cmap=None, norm=None, **kwargs ): """ cmap defaults to its rc setting cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1 Additional kwargs are matplotlib.artist properties """ super().__init__(ax, norm=norm, cmap=cmap) self.update(kwargs) if A is not None: self.set_data(x, y, A) def make_image(self, renderer, magnification=1.0, unsampled=False): # docstring inherited if self._A is None: raise RuntimeError('You must first set the image array') if unsampled: raise ValueError('unsampled not supported on PColorImage') fc = self.axes.patch.get_facecolor() bg = mcolors.to_rgba(fc, 0) bg = (np.array(bg)*255).astype(np.uint8) l, b, r, t = self.axes.bbox.extents width = (np.round(r) + 0.5) - (np.round(l) - 0.5) height = (np.round(t) + 0.5) - (np.round(b) - 0.5) # The extra cast-to-int is only needed for python2 width = int(np.round(width * magnification)) height = int(np.round(height * magnification)) if self._rgbacache is None: A = self.to_rgba(self._A, bytes=True) self._rgbacache = A if self._A.ndim == 2: self.is_grayscale = self.cmap.is_gray() else: A = self._rgbacache vl = self.axes.viewLim im = _image.pcolor2(self._Ax, self._Ay, A, height, width, (vl.x0, vl.x1, vl.y0, vl.y1), bg) return im, l, b, IdentityTransform() def _check_unsampled_image(self, renderer): return False def set_data(self, x, y, A): """ Set the grid for the rectangle boundaries, and the data values. *x* and *y* are monotonic 1-D ndarrays of lengths N+1 and M+1, respectively, specifying rectangle boundaries. If None, they will be created as uniform arrays from 0 through N and 0 through M, respectively. *A* is an (M,N) ndarray or masked array of values to be colormapped, or a (M,N,3) RGB array, or a (M,N,4) RGBA array. """ A = cbook.safe_masked_invalid(A, copy=True) if x is None: x = np.arange(0, A.shape[1]+1, dtype=np.float64) else: x = np.array(x, np.float64).ravel() if y is None: y = np.arange(0, A.shape[0]+1, dtype=np.float64) else: y = np.array(y, np.float64).ravel() if A.shape[:2] != (y.size-1, x.size-1): raise ValueError( "Axes don't match array shape. Got %s, expected %s." % (A.shape[:2], (y.size - 1, x.size - 1))) if A.ndim not in [2, 3]: raise ValueError("A must be 2D or 3D") if A.ndim == 3 and A.shape[2] == 1: A.shape = A.shape[:2] self.is_grayscale = False if A.ndim == 3: if A.shape[2] in [3, 4]: if ((A[:, :, 0] == A[:, :, 1]).all() and (A[:, :, 0] == A[:, :, 2]).all()): self.is_grayscale = True else: raise ValueError("3D arrays must have RGB or RGBA as last dim") # For efficient cursor readout, ensure x and y are increasing. if x[-1] < x[0]: x = x[::-1] A = A[:, ::-1] if y[-1] < y[0]: y = y[::-1] A = A[::-1] self._A = A self._Ax = x self._Ay = y self._rgbacache = None self.stale = True def set_array(self, *args): raise NotImplementedError('Method not supported') def get_cursor_data(self, event): # docstring inherited x, y = event.xdata, event.ydata if (x < self._Ax[0] or x > self._Ax[-1] or y < self._Ay[0] or y > self._Ay[-1]): return None j = np.searchsorted(self._Ax, x) - 1 i = np.searchsorted(self._Ay, y) - 1 try: return self._A[i, j] except IndexError: return None class FigureImage(_ImageBase): zorder = 0 _interpolation = 'nearest' def __init__(self, fig, cmap=None, norm=None, offsetx=0, offsety=0, origin=None, **kwargs ): """ cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1 kwargs are an optional list of Artist keyword args """ super().__init__( None, norm=norm, cmap=cmap, origin=origin ) self.figure = fig self.ox = offsetx self.oy = offsety self.update(kwargs) self.magnification = 1.0 def get_extent(self): """Get the image extent: left, right, bottom, top""" numrows, numcols = self.get_size() return (-0.5 + self.ox, numcols-0.5 + self.ox, -0.5 + self.oy, numrows-0.5 + self.oy) def make_image(self, renderer, magnification=1.0, unsampled=False): # docstring inherited fac = renderer.dpi/self.figure.dpi # fac here is to account for pdf, eps, svg backends where # figure.dpi is set to 72. This means we need to scale the # image (using magnification) and offset it appropriately. bbox = Bbox([[self.ox/fac, self.oy/fac], [(self.ox/fac + self._A.shape[1]), (self.oy/fac + self._A.shape[0])]]) width, height = self.figure.get_size_inches() width *= renderer.dpi height *= renderer.dpi clip = Bbox([[0, 0], [width, height]]) return self._make_image( self._A, bbox, bbox, clip, magnification=magnification / fac, unsampled=unsampled, round_to_pixel_border=False) def set_data(self, A): """Set the image array.""" cm.ScalarMappable.set_array(self, cbook.safe_masked_invalid(A, copy=True)) self.stale = True class BboxImage(_ImageBase): """The Image class whose size is determined by the given bbox.""" @cbook._delete_parameter("3.1", "interp_at_native") def __init__(self, bbox, cmap=None, norm=None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample=False, interp_at_native=True, **kwargs ): """ cmap is a colors.Colormap instance norm is a colors.Normalize instance to map luminance to 0-1 kwargs are an optional list of Artist keyword args """ super().__init__( None, cmap=cmap, norm=norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs ) self.bbox = bbox self._interp_at_native = interp_at_native self._transform = IdentityTransform() @cbook.deprecated("3.1") @property def interp_at_native(self): return self._interp_at_native def get_transform(self): return self._transform def get_window_extent(self, renderer=None): if renderer is None: renderer = self.get_figure()._cachedRenderer if isinstance(self.bbox, BboxBase): return self.bbox elif callable(self.bbox): return self.bbox(renderer) else: raise ValueError("unknown type of bbox") def contains(self, mouseevent): """Test whether the mouse event occurred within the image.""" if self._contains is not None: return self._contains(self, mouseevent) if not self.get_visible(): # or self.get_figure()._renderer is None: return False, {} x, y = mouseevent.x, mouseevent.y inside = self.get_window_extent().contains(x, y) return inside, {} def make_image(self, renderer, magnification=1.0, unsampled=False): # docstring inherited width, height = renderer.get_canvas_width_height() bbox_in = self.get_window_extent(renderer).frozen() bbox_in._points /= [width, height] bbox_out = self.get_window_extent(renderer) clip = Bbox([[0, 0], [width, height]]) self._transform = BboxTransform(Bbox([[0, 0], [1, 1]]), clip) return self._make_image( self._A, bbox_in, bbox_out, clip, magnification, unsampled=unsampled) def imread(fname, format=None): """ Read an image from a file into an array. Parameters ---------- fname : str or file-like The image file to read. This can be a filename, a URL or a Python file-like object opened in read-binary mode. format : str, optional The image file format assumed for reading the data. If not given, the format is deduced from the filename. If nothing can be deduced, PNG is tried. Returns ------- imagedata : :class:`numpy.array` The image data. The returned array has shape - (M, N) for grayscale images. - (M, N, 3) for RGB images. - (M, N, 4) for RGBA images. Notes ----- Matplotlib can only read PNGs natively. Further image formats are supported via the optional dependency on Pillow. Note, URL strings are not compatible with Pillow. Check the `Pillow documentation`_ for more information. .. _Pillow documentation: http://pillow.readthedocs.io/en/latest/ """ def read_png(*args, **kwargs): from matplotlib import _png return _png.read_png(*args, **kwargs) handlers = {'png': read_png, } if format is None: if isinstance(fname, str): parsed = urllib.parse.urlparse(fname) # If the string is a URL (Windows paths appear as if they have a # length-1 scheme), assume png. if len(parsed.scheme) > 1: ext = 'png' else: basename, ext = os.path.splitext(fname) ext = ext.lower()[1:] elif hasattr(fname, 'geturl'): # Returned by urlopen(). # We could try to parse the url's path and use the extension, but # returning png is consistent with the block above. Note that this # if clause has to come before checking for fname.name as # urlopen("file:///...") also has a name attribute (with the fixed # value "<urllib response>"). ext = 'png' elif hasattr(fname, 'name'): basename, ext = os.path.splitext(fname.name) ext = ext.lower()[1:] else: ext = 'png' else: ext = format if ext not in handlers: # Try to load the image with PIL. try: from PIL import Image except ImportError: raise ValueError('Only know how to handle extensions: %s; ' 'with Pillow installed matplotlib can handle ' 'more images' % list(handlers)) with Image.open(fname) as image: return pil_to_array(image) handler = handlers[ext] # To handle Unicode filenames, we pass a file object to the PNG # reader extension, since Python handles them quite well, but it's # tricky in C. if isinstance(fname, str): parsed = urllib.parse.urlparse(fname) # If fname is a URL, download the data if len(parsed.scheme) > 1: from urllib import request fd = BytesIO(request.urlopen(fname).read()) return handler(fd) else: with open(fname, 'rb') as fd: return handler(fd) else: return handler(fname) def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None, origin=None, dpi=100): """ Save an array as an image file. Parameters ---------- fname : str or PathLike file-like A path or a Python file-like object to store the image in. If *format* is not set, then the output format is inferred from the extension of *fname*, if any, and from :rc:`savefig.format` otherwise. If *format* is set, it determines the output format. arr : array-like The image data. The shape can be one of MxN (luminance), MxNx3 (RGB) or MxNx4 (RGBA). vmin, vmax : scalar, optional *vmin* and *vmax* set the color scaling for the image by fixing the values that map to the colormap color limits. If either *vmin* or *vmax* is None, that limit is determined from the *arr* min/max value. cmap : str or `~matplotlib.colors.Colormap`, optional A Colormap instance or registered colormap name. The colormap maps scalar data to colors. It is ignored for RGB(A) data. Defaults to :rc:`image.cmap` ('viridis'). format : str, optional The file format, e.g. 'png', 'pdf', 'svg', ... The behavior when this is unset is documented under *fname*. origin : {'upper', 'lower'}, optional Indicates whether the ``(0, 0)`` index of the array is in the upper left or lower left corner of the axes. Defaults to :rc:`image.origin` ('upper'). dpi : int The DPI to store in the metadata of the file. This does not affect the resolution of the output image. """ from matplotlib.figure import Figure from matplotlib import _png if isinstance(fname, os.PathLike): fname = os.fspath(fname) if format is None: format = (Path(fname).suffix[1:] if isinstance(fname, str) else rcParams["savefig.format"]).lower() if format in ["pdf", "ps", "eps", "svg"]: # Vector formats that are not handled by PIL. fig = Figure(dpi=dpi, frameon=False) fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin, resize=True) fig.savefig(fname, dpi=dpi, format=format, transparent=True) else: # Don't bother creating an image; this avoids rounding errors on the # size when dividing and then multiplying by dpi. sm = cm.ScalarMappable(cmap=cmap) sm.set_clim(vmin, vmax) if origin is None: origin = rcParams["image.origin"] if origin == "lower": arr = arr[::-1] rgba = sm.to_rgba(arr, bytes=True) if format == "png": _png.write_png(rgba, fname, dpi=dpi) else: try: from PIL import Image except ImportError as exc: raise ImportError( f"Saving to {format} requires Pillow") from exc pil_shape = (rgba.shape[1], rgba.shape[0]) image = Image.frombuffer( "RGBA", pil_shape, rgba, "raw", "RGBA", 0, 1) if format in ["jpg", "jpeg"]: format = "jpeg" # Pillow doesn't recognize "jpg". color = tuple( int(x * 255) for x in mcolors.to_rgb(rcParams["savefig.facecolor"])) background = Image.new("RGB", pil_shape, color) background.paste(image, image) image = background image.save(fname, format=format, dpi=(dpi, dpi)) def pil_to_array(pilImage): """Load a `PIL image`_ and return it as a numpy array. .. _PIL image: https://pillow.readthedocs.io/en/latest/reference/Image.html Returns ------- numpy.array The array shape depends on the image type: - (M, N) for grayscale images. - (M, N, 3) for RGB images. - (M, N, 4) for RGBA images. """ if pilImage.mode in ['RGBA', 'RGBX', 'RGB', 'L']: # return MxNx4 RGBA, MxNx3 RBA, or MxN luminance array return np.asarray(pilImage) elif pilImage.mode.startswith('I;16'): # return MxN luminance array of uint16 raw = pilImage.tobytes('raw', pilImage.mode) if pilImage.mode.endswith('B'): x = np.frombuffer(raw, '>u2') else: x = np.frombuffer(raw, '<u2') return x.reshape(pilImage.size[::-1]).astype('=u2') else: # try to convert to an rgba image try: pilImage = pilImage.convert('RGBA') except ValueError: raise RuntimeError('Unknown image mode') return np.asarray(pilImage) # return MxNx4 RGBA array def thumbnail(infile, thumbfile, scale=0.1, interpolation='bilinear', preview=False): """ Make a thumbnail of image in *infile* with output filename *thumbfile*. See :doc:`/gallery/misc/image_thumbnail_sgskip`. Parameters ---------- infile : str or file-like The image file -- must be PNG, or Pillow-readable if you have Pillow_ installed. .. _Pillow: http://python-pillow.org/ thumbfile : str or file-like The thumbnail filename. scale : float, optional The scale factor for the thumbnail. interpolation : str, optional The interpolation scheme used in the resampling. See the *interpolation* parameter of `~.Axes.imshow` for possible values. preview : bool, optional If True, the default backend (presumably a user interface backend) will be used which will cause a figure to be raised if `~matplotlib.pyplot.show` is called. If it is False, the figure is created using `FigureCanvasBase` and the drawing backend is selected as `~matplotlib.figure.savefig` would normally do. Returns ------- figure : `~.figure.Figure` The figure instance containing the thumbnail. """ im = imread(infile) rows, cols, depth = im.shape # This doesn't really matter (it cancels in the end) but the API needs it. dpi = 100 height = rows / dpi * scale width = cols / dpi * scale if preview: # Let the UI backend do everything. import matplotlib.pyplot as plt fig = plt.figure(figsize=(width, height), dpi=dpi) else: from matplotlib.figure import Figure fig = Figure(figsize=(width, height), dpi=dpi) FigureCanvasBase(fig) ax = fig.add_axes([0, 0, 1, 1], aspect='auto', frameon=False, xticks=[], yticks=[]) ax.imshow(im, aspect='auto', resample=True, interpolation=interpolation) fig.savefig(thumbfile, dpi=dpi) return fig
994741b01bae5925c5914a0bc551e094be1cb653d0ac383eec904e5406bc27c3
""" Abstract base classes define the primitives that renderers and graphics contexts must implement to serve as a matplotlib backend :class:`RendererBase` An abstract base class to handle drawing/rendering operations. :class:`FigureCanvasBase` The abstraction layer that separates the :class:`matplotlib.figure.Figure` from the backend specific details like a user interface drawing area :class:`GraphicsContextBase` An abstract base class that provides color, line styles, etc... :class:`Event` The base class for all of the matplotlib event handling. Derived classes such as :class:`KeyEvent` and :class:`MouseEvent` store the meta data like keys and buttons pressed, x and y locations in pixel and :class:`~matplotlib.axes.Axes` coordinates. :class:`ShowBase` The base class for the Show class of each interactive backend; the 'show' callable is then set to Show.__call__, inherited from ShowBase. :class:`ToolContainerBase` The base class for the Toolbar class of each interactive backend. :class:`StatusbarBase` The base class for the messaging area. """ from contextlib import contextmanager from enum import IntEnum import functools import importlib import io import logging import os import sys import time from weakref import WeakKeyDictionary import numpy as np import matplotlib as mpl from matplotlib import ( backend_tools as tools, cbook, colors, textpath, tight_bbox, transforms, widgets, get_backend, is_interactive, rcParams) from matplotlib._pylab_helpers import Gcf from matplotlib.transforms import Affine2D from matplotlib.path import Path try: from PIL import PILLOW_VERSION from distutils.version import LooseVersion if LooseVersion(PILLOW_VERSION) >= "3.4": _has_pil = True else: _has_pil = False del PILLOW_VERSION except ImportError: _has_pil = False _log = logging.getLogger(__name__) _default_filetypes = { 'ps': 'Postscript', 'eps': 'Encapsulated Postscript', 'pdf': 'Portable Document Format', 'pgf': 'PGF code for LaTeX', 'png': 'Portable Network Graphics', 'raw': 'Raw RGBA bitmap', 'rgba': 'Raw RGBA bitmap', 'svg': 'Scalable Vector Graphics', 'svgz': 'Scalable Vector Graphics' } _default_backends = { 'ps': 'matplotlib.backends.backend_ps', 'eps': 'matplotlib.backends.backend_ps', 'pdf': 'matplotlib.backends.backend_pdf', 'pgf': 'matplotlib.backends.backend_pgf', 'png': 'matplotlib.backends.backend_agg', 'raw': 'matplotlib.backends.backend_agg', 'rgba': 'matplotlib.backends.backend_agg', 'svg': 'matplotlib.backends.backend_svg', 'svgz': 'matplotlib.backends.backend_svg', } def register_backend(format, backend, description=None): """ Register a backend for saving to a given file format. Parameters ---------- format : str File extension backend : module string or canvas class Backend for handling file output description : str, optional Description of the file type. Defaults to an empty string """ if description is None: description = '' _default_backends[format] = backend _default_filetypes[format] = description def get_registered_canvas_class(format): """ Return the registered default canvas for given file format. Handles deferred import of required backend. """ if format not in _default_backends: return None backend_class = _default_backends[format] if isinstance(backend_class, str): backend_class = importlib.import_module(backend_class).FigureCanvas _default_backends[format] = backend_class return backend_class class RendererBase(object): """An abstract base class to handle drawing/rendering operations. The following methods must be implemented in the backend for full functionality (though just implementing :meth:`draw_path` alone would give a highly capable backend): * :meth:`draw_path` * :meth:`draw_image` * :meth:`draw_gouraud_triangle` The following methods *should* be implemented in the backend for optimization reasons: * :meth:`draw_text` * :meth:`draw_markers` * :meth:`draw_path_collection` * :meth:`draw_quad_mesh` """ def __init__(self): self._texmanager = None self._text2path = textpath.TextToPath() def open_group(self, s, gid=None): """ Open a grouping element with label *s* and *gid* (if set) as id. Only used by the SVG renderer. """ def close_group(self, s): """ Close a grouping element with label *s* Only used by the SVG renderer. """ def draw_path(self, gc, path, transform, rgbFace=None): """ Draws a :class:`~matplotlib.path.Path` instance using the given affine transform. """ raise NotImplementedError def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): """ Draws a marker at each of the vertices in path. This includes all vertices, including control points on curves. To avoid that behavior, those vertices should be removed before calling this function. This provides a fallback implementation of draw_markers that makes multiple calls to :meth:`draw_path`. Some backends may want to override this method in order to draw the marker only once and reuse it multiple times. Parameters ---------- gc : `GraphicsContextBase` The graphics context marker_trans : `matplotlib.transforms.Transform` An affine transform applied to the marker. trans : `matplotlib.transforms.Transform` An affine transform applied to the path. """ for vertices, codes in path.iter_segments(trans, simplify=False): if len(vertices): x, y = vertices[-2:] self.draw_path(gc, marker_path, marker_trans + transforms.Affine2D().translate(x, y), rgbFace) def draw_path_collection(self, gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): """ Draws a collection of paths selecting drawing properties from the lists *facecolors*, *edgecolors*, *linewidths*, *linestyles* and *antialiaseds*. *offsets* is a list of offsets to apply to each of the paths. The offsets in *offsets* are first transformed by *offsetTrans* before being applied. *offset_position* may be either "screen" or "data" depending on the space that the offsets are in. This provides a fallback implementation of :meth:`draw_path_collection` that makes multiple calls to :meth:`draw_path`. Some backends may want to override this in order to render each set of path data only once, and then reference that path multiple times with the different offsets, colors, styles etc. The generator methods :meth:`_iter_collection_raw_paths` and :meth:`_iter_collection` are provided to help with (and standardize) the implementation across backends. It is highly recommended to use those generators, so that changes to the behavior of :meth:`draw_path_collection` can be made globally. """ path_ids = [ (path, transforms.Affine2D(transform)) for path, transform in self._iter_collection_raw_paths( master_transform, paths, all_transforms)] for xo, yo, path_id, gc0, rgbFace in self._iter_collection( gc, master_transform, all_transforms, path_ids, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): path, transform = path_id transform = transforms.Affine2D( transform.get_matrix()).translate(xo, yo) self.draw_path(gc0, path, transform, rgbFace) def draw_quad_mesh(self, gc, master_transform, meshWidth, meshHeight, coordinates, offsets, offsetTrans, facecolors, antialiased, edgecolors): """ This provides a fallback implementation of :meth:`draw_quad_mesh` that generates paths and then calls :meth:`draw_path_collection`. """ from matplotlib.collections import QuadMesh paths = QuadMesh.convert_mesh_to_paths( meshWidth, meshHeight, coordinates) if edgecolors is None: edgecolors = facecolors linewidths = np.array([gc.get_linewidth()], float) return self.draw_path_collection( gc, master_transform, paths, [], offsets, offsetTrans, facecolors, edgecolors, linewidths, [], [antialiased], [None], 'screen') def draw_gouraud_triangle(self, gc, points, colors, transform): """ Draw a Gouraud-shaded triangle. Parameters ---------- points : array_like, shape=(3, 2) Array of (x, y) points for the triangle. colors : array_like, shape=(3, 4) RGBA colors for each point of the triangle. transform : `matplotlib.transforms.Transform` An affine transform to apply to the points. """ raise NotImplementedError def draw_gouraud_triangles(self, gc, triangles_array, colors_array, transform): """ Draws a series of Gouraud triangles. Parameters ---------- points : array_like, shape=(N, 3, 2) Array of *N* (x, y) points for the triangles. colors : array_like, shape=(N, 3, 4) Array of *N* RGBA colors for each point of the triangles. transform : `matplotlib.transforms.Transform` An affine transform to apply to the points. """ transform = transform.frozen() for tri, col in zip(triangles_array, colors_array): self.draw_gouraud_triangle(gc, tri, col, transform) def _iter_collection_raw_paths(self, master_transform, paths, all_transforms): """ This is a helper method (along with :meth:`_iter_collection`) to make it easier to write a space-efficient :meth:`draw_path_collection` implementation in a backend. This method yields all of the base path/transform combinations, given a master transform, a list of paths and list of transforms. The arguments should be exactly what is passed in to :meth:`draw_path_collection`. The backend should take each yielded path and transform and create an object that can be referenced (reused) later. """ Npaths = len(paths) Ntransforms = len(all_transforms) N = max(Npaths, Ntransforms) if Npaths == 0: return transform = transforms.IdentityTransform() for i in range(N): path = paths[i % Npaths] if Ntransforms: transform = Affine2D(all_transforms[i % Ntransforms]) yield path, transform + master_transform def _iter_collection_uses_per_path(self, paths, all_transforms, offsets, facecolors, edgecolors): """ Compute how many times each raw path object returned by _iter_collection_raw_paths would be used when calling _iter_collection. This is intended for the backend to decide on the tradeoff between using the paths in-line and storing them once and reusing. Rounds up in case the number of uses is not the same for every path. """ Npaths = len(paths) if Npaths == 0 or len(facecolors) == len(edgecolors) == 0: return 0 Npath_ids = max(Npaths, len(all_transforms)) N = max(Npath_ids, len(offsets)) return (N + Npath_ids - 1) // Npath_ids def _iter_collection(self, gc, master_transform, all_transforms, path_ids, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): """ This is a helper method (along with :meth:`_iter_collection_raw_paths`) to make it easier to write a space-efficient :meth:`draw_path_collection` implementation in a backend. This method yields all of the path, offset and graphics context combinations to draw the path collection. The caller should already have looped over the results of :meth:`_iter_collection_raw_paths` to draw this collection. The arguments should be the same as that passed into :meth:`draw_path_collection`, with the exception of *path_ids*, which is a list of arbitrary objects that the backend will use to reference one of the paths created in the :meth:`_iter_collection_raw_paths` stage. Each yielded result is of the form:: xo, yo, path_id, gc, rgbFace where *xo*, *yo* is an offset; *path_id* is one of the elements of *path_ids*; *gc* is a graphics context and *rgbFace* is a color to use for filling the path. """ Ntransforms = len(all_transforms) Npaths = len(path_ids) Noffsets = len(offsets) N = max(Npaths, Noffsets) Nfacecolors = len(facecolors) Nedgecolors = len(edgecolors) Nlinewidths = len(linewidths) Nlinestyles = len(linestyles) Naa = len(antialiaseds) Nurls = len(urls) if (Nfacecolors == 0 and Nedgecolors == 0) or Npaths == 0: return if Noffsets: toffsets = offsetTrans.transform(offsets) gc0 = self.new_gc() gc0.copy_properties(gc) if Nfacecolors == 0: rgbFace = None if Nedgecolors == 0: gc0.set_linewidth(0.0) xo, yo = 0, 0 for i in range(N): path_id = path_ids[i % Npaths] if Noffsets: xo, yo = toffsets[i % Noffsets] if offset_position == 'data': if Ntransforms: transform = ( Affine2D(all_transforms[i % Ntransforms]) + master_transform) else: transform = master_transform xo, yo = transform.transform_point((xo, yo)) xp, yp = transform.transform_point((0, 0)) xo = -(xp - xo) yo = -(yp - yo) if not (np.isfinite(xo) and np.isfinite(yo)): continue if Nfacecolors: rgbFace = facecolors[i % Nfacecolors] if Nedgecolors: if Nlinewidths: gc0.set_linewidth(linewidths[i % Nlinewidths]) if Nlinestyles: gc0.set_dashes(*linestyles[i % Nlinestyles]) fg = edgecolors[i % Nedgecolors] if len(fg) == 4: if fg[3] == 0.0: gc0.set_linewidth(0) else: gc0.set_foreground(fg) else: gc0.set_foreground(fg) if rgbFace is not None and len(rgbFace) == 4: if rgbFace[3] == 0: rgbFace = None gc0.set_antialiased(antialiaseds[i % Naa]) if Nurls: gc0.set_url(urls[i % Nurls]) yield xo, yo, path_id, gc0, rgbFace gc0.restore() def get_image_magnification(self): """ Get the factor by which to magnify images passed to :meth:`draw_image`. Allows a backend to have images at a different resolution to other artists. """ return 1.0 def draw_image(self, gc, x, y, im, transform=None): """ Draw an RGBA image. Parameters ---------- gc : `GraphicsContextBase` a graphics context with clipping information. x : scalar the distance in physical units (i.e., dots or pixels) from the left hand side of the canvas. y : scalar the distance in physical units (i.e., dots or pixels) from the bottom side of the canvas. im : array_like, shape=(N, M, 4), dtype=np.uint8 An array of RGBA pixels. transform : `matplotlib.transforms.Affine2DBase` If and only if the concrete backend is written such that :meth:`option_scale_image` returns ``True``, an affine transformation *may* be passed to :meth:`draw_image`. It takes the form of a :class:`~matplotlib.transforms.Affine2DBase` instance. The translation vector of the transformation is given in physical units (i.e., dots or pixels). Note that the transformation does not override `x` and `y`, and has to be applied *before* translating the result by `x` and `y` (this can be accomplished by adding `x` and `y` to the translation vector defined by `transform`). """ raise NotImplementedError def option_image_nocomposite(self): """ Return whether image composition by Matplotlib should be skipped. Raster backends should usually return False (letting the C-level rasterizer take care of image composition); vector backends should usually return ``not rcParams["image.composite_image"]``. """ return False def option_scale_image(self): """ Return whether arbitrary affine transformations in :meth:`draw_image` are supported (True for most vector backends). """ return False def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!', mtext=None): """ """ self._draw_text_as_path(gc, x, y, s, prop, angle, ismath="TeX") def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): """ Draw the text instance. Parameters ---------- gc : `GraphicsContextBase` The graphics context. x : scalar The x location of the text in display coords. y : scalar The y location of the text baseline in display coords. s : str The text string. prop : `matplotlib.font_manager.FontProperties` The font properties. angle : scalar The rotation angle in degrees. mtext : `matplotlib.text.Text` The original text object to be rendered. Notes ----- **backend implementers note** When you are trying to determine if you have gotten your bounding box right (which is what enables the text layout/alignment to work properly), it helps to change the line in text.py:: if 0: bbox_artist(self, renderer) to if 1, and then the actual bounding box will be plotted along with your text. """ self._draw_text_as_path(gc, x, y, s, prop, angle, ismath) def _get_text_path_transform(self, x, y, s, prop, angle, ismath): """ Return the text path and transform. Parameters ---------- prop : `matplotlib.font_manager.FontProperties` The font property. s : str The text to be converted. ismath : bool or "TeX" If True, use mathtext parser. If "TeX", use *usetex* mode. """ text2path = self._text2path fontsize = self.points_to_pixels(prop.get_size_in_points()) verts, codes = text2path.get_text_path(prop, s, ismath=ismath) path = Path(verts, codes) angle = np.deg2rad(angle) if self.flipy(): transform = Affine2D().scale(fontsize / text2path.FONT_SCALE, fontsize / text2path.FONT_SCALE) transform = transform.rotate(angle).translate(x, self.height - y) else: transform = Affine2D().scale(fontsize / text2path.FONT_SCALE, fontsize / text2path.FONT_SCALE) transform = transform.rotate(angle).translate(x, y) return path, transform def _draw_text_as_path(self, gc, x, y, s, prop, angle, ismath): """ Draw the text by converting them to paths using textpath module. Parameters ---------- prop : `matplotlib.font_manager.FontProperties` The font property. s : str The text to be converted. usetex : bool Whether to use matplotlib usetex mode. ismath : bool or "TeX" If True, use mathtext parser. If "TeX", use *usetex* mode. """ path, transform = self._get_text_path_transform( x, y, s, prop, angle, ismath) color = gc.get_rgb() gc.set_linewidth(0.0) self.draw_path(gc, path, transform, rgbFace=color) def get_text_width_height_descent(self, s, prop, ismath): """ Get the width, height, and descent (offset from the bottom to the baseline), in display coords, of the string *s* with :class:`~matplotlib.font_manager.FontProperties` *prop* """ if ismath == 'TeX': # todo: handle props texmanager = self._text2path.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent( s, fontsize, renderer=self) return w, h, d dpi = self.points_to_pixels(72) if ismath: dims = self._text2path.mathtext_parser.parse(s, dpi, prop) return dims[0:3] # return width, height, descent flags = self._text2path._get_hinting_flag() font = self._text2path._get_font(prop) size = prop.get_size_in_points() font.set_size(size, dpi) # the width and height of unrotated string font.set_text(s, 0.0, flags=flags) w, h = font.get_width_height() d = font.get_descent() w /= 64.0 # convert from subpixels h /= 64.0 d /= 64.0 return w, h, d def flipy(self): """ Return whether y values increase from top to bottom. Note that this only affects drawing of texts and images. """ return True def get_canvas_width_height(self): """Return the canvas width and height in display coords.""" return 1, 1 def get_texmanager(self): """Return the `.TexManager` instance.""" if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def new_gc(self): """Return an instance of a `GraphicsContextBase`.""" return GraphicsContextBase() def points_to_pixels(self, points): """ Convert points to display units. You need to override this function (unless your backend doesn't have a dpi, e.g., postscript or svg). Some imaging systems assume some value for pixels per inch:: points to pixels = points * pixels_per_inch/72.0 * dpi/72.0 Parameters ---------- points : scalar or array_like a float or a numpy array of float Returns ------- Points converted to pixels """ return points @cbook.deprecated("3.1", alternative="cbook.strip_math") def strip_math(self, s): return cbook.strip_math(s) def start_rasterizing(self): """ Switch to the raster renderer. Used by `MixedModeRenderer`. """ def stop_rasterizing(self): """ Switch back to the vector renderer and draw the contents of the raster renderer as an image on the vector renderer. Used by `MixedModeRenderer`. """ def start_filter(self): """ Switch to a temporary renderer for image filtering effects. Currently only supported by the agg renderer. """ def stop_filter(self, filter_func): """ Switch back to the original renderer. The contents of the temporary renderer is processed with the *filter_func* and is drawn on the original renderer as an image. Currently only supported by the agg renderer. """ class GraphicsContextBase(object): """An abstract base class that provides color, line styles, etc.""" def __init__(self): self._alpha = 1.0 self._forced_alpha = False # if True, _alpha overrides A from RGBA self._antialiased = 1 # use 0,1 not True, False for extension code self._capstyle = 'butt' self._cliprect = None self._clippath = None self._dashes = None, None self._joinstyle = 'round' self._linestyle = 'solid' self._linewidth = 1 self._rgb = (0.0, 0.0, 0.0, 1.0) self._hatch = None self._hatch_color = colors.to_rgba(rcParams['hatch.color']) self._hatch_linewidth = rcParams['hatch.linewidth'] self._url = None self._gid = None self._snap = None self._sketch = None def copy_properties(self, gc): 'Copy properties from gc to self' self._alpha = gc._alpha self._forced_alpha = gc._forced_alpha self._antialiased = gc._antialiased self._capstyle = gc._capstyle self._cliprect = gc._cliprect self._clippath = gc._clippath self._dashes = gc._dashes self._joinstyle = gc._joinstyle self._linestyle = gc._linestyle self._linewidth = gc._linewidth self._rgb = gc._rgb self._hatch = gc._hatch self._hatch_color = gc._hatch_color self._hatch_linewidth = gc._hatch_linewidth self._url = gc._url self._gid = gc._gid self._snap = gc._snap self._sketch = gc._sketch def restore(self): """ Restore the graphics context from the stack - needed only for backends that save graphics contexts on a stack. """ def get_alpha(self): """ Return the alpha value used for blending - not supported on all backends. """ return self._alpha def get_antialiased(self): "Return whether the object should try to do antialiased rendering." return self._antialiased def get_capstyle(self): """ Return the capstyle as a string in ('butt', 'round', 'projecting'). """ return self._capstyle def get_clip_rectangle(self): """ Return the clip rectangle as a `~matplotlib.transforms.Bbox` instance. """ return self._cliprect def get_clip_path(self): """ Return the clip path in the form (path, transform), where path is a :class:`~matplotlib.path.Path` instance, and transform is an affine transform to apply to the path before clipping. """ if self._clippath is not None: return self._clippath.get_transformed_path_and_affine() return None, None def get_dashes(self): """ Return the dash style as an (offset, dash-list) pair. The dash list is a even-length list that gives the ink on, ink off in points. See p. 107 of to PostScript `blue book`_ for more info. Default value is (None, None). .. _blue book: https://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF """ return self._dashes def get_forced_alpha(self): """ Return whether the value given by get_alpha() should be used to override any other alpha-channel values. """ return self._forced_alpha def get_joinstyle(self): """Return the line join style as one of ('miter', 'round', 'bevel').""" return self._joinstyle def get_linewidth(self): """Return the line width in points.""" return self._linewidth def get_rgb(self): """Return a tuple of three or four floats from 0-1.""" return self._rgb def get_url(self): """Return a url if one is set, None otherwise.""" return self._url def get_gid(self): """Return the object identifier if one is set, None otherwise.""" return self._gid def get_snap(self): """ Returns the snap setting, which can be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ return self._snap def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends. If ``alpha=None`` (the default), the alpha components of the foreground and fill colors will be used to set their respective transparencies (where applicable); otherwise, ``alpha`` will override them. """ if alpha is not None: self._alpha = alpha self._forced_alpha = True else: self._alpha = 1.0 self._forced_alpha = False self.set_foreground(self._rgb, isRGBA=True) def set_antialiased(self, b): """Set whether object should be drawn with antialiased rendering.""" # Use ints to make life easier on extension code trying to read the gc. self._antialiased = int(bool(b)) def set_capstyle(self, cs): """Set the capstyle to be one of ('butt', 'round', 'projecting').""" cbook._check_in_list(['butt', 'round', 'projecting'], cs=cs) self._capstyle = cs def set_clip_rectangle(self, rectangle): """ Set the clip rectangle with sequence (left, bottom, width, height) """ self._cliprect = rectangle def set_clip_path(self, path): """ Set the clip path and transformation. Path should be a :class:`~matplotlib.transforms.TransformedPath` instance. """ if (path is not None and not isinstance(path, transforms.TransformedPath)): raise ValueError("Path should be a " "matplotlib.transforms.TransformedPath instance") self._clippath = path def set_dashes(self, dash_offset, dash_list): """ Set the dash style for the gc. Parameters ---------- dash_offset : float or None The offset (usually 0). dash_list : array_like or None The on-off sequence as points. Notes ----- ``(None, None)`` specifies a solid line. See p. 107 of to PostScript `blue book`_ for more info. .. _blue book: https://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF """ if dash_list is not None: dl = np.asarray(dash_list) if np.any(dl < 0.0): raise ValueError( "All values in the dash list must be positive") self._dashes = dash_offset, dash_list def set_foreground(self, fg, isRGBA=False): """ Set the foreground color. Parameters ---------- fg : color isRGBA : bool If *fg* is known to be an ``(r, g, b, a)`` tuple, *isRGBA* can be set to True to improve performance. """ if self._forced_alpha and isRGBA: self._rgb = fg[:3] + (self._alpha,) elif self._forced_alpha: self._rgb = colors.to_rgba(fg, self._alpha) elif isRGBA: self._rgb = fg else: self._rgb = colors.to_rgba(fg) def set_joinstyle(self, js): """Set the join style to be one of ('miter', 'round', 'bevel').""" cbook._check_in_list(['miter', 'round', 'bevel'], js=js) self._joinstyle = js def set_linewidth(self, w): """Set the linewidth in points.""" self._linewidth = float(w) def set_url(self, url): """Set the url for links in compatible backends.""" self._url = url def set_gid(self, id): """Set the id.""" self._gid = id def set_snap(self, snap): """ Set the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center """ self._snap = snap def set_hatch(self, hatch): """Set the hatch style (for fills).""" self._hatch = hatch def get_hatch(self): """Get the current hatch style.""" return self._hatch def get_hatch_path(self, density=6.0): """Return a `Path` for the current hatch.""" hatch = self.get_hatch() if hatch is None: return None return Path.hatch(hatch, density) def get_hatch_color(self): """Get the hatch color.""" return self._hatch_color def set_hatch_color(self, hatch_color): """Set the hatch color.""" self._hatch_color = hatch_color def get_hatch_linewidth(self): """Get the hatch linewidth.""" return self._hatch_linewidth def get_sketch_params(self): """ Return the sketch parameters for the artist. Returns ------- sketch_params : tuple or `None` A 3-tuple with the following elements: * `scale`: The amplitude of the wiggle perpendicular to the source line. * `length`: The length of the wiggle along the line. * `randomness`: The scale factor by which the length is shrunken or expanded. May return `None` if no sketch parameters were set. """ return self._sketch def set_sketch_params(self, scale=None, length=None, randomness=None): """ Set the sketch parameters. Parameters ---------- scale : float, optional The amplitude of the wiggle perpendicular to the source line, in pixels. If scale is `None`, or not provided, no sketch filter will be provided. length : float, optional The length of the wiggle along the line, in pixels (default 128). randomness : float, optional The scale factor by which the length is shrunken or expanded (default 16). """ self._sketch = ( None if scale is None else (scale, length or 128., randomness or 16.)) class TimerBase(object): """ A base class for providing timer events, useful for things animations. Backends need to implement a few specific methods in order to use their own timing mechanisms so that the timer events are integrated into their event loops. Mandatory functions that must be implemented: * `_timer_start`: Contains backend-specific code for starting the timer * `_timer_stop`: Contains backend-specific code for stopping the timer Optional overrides: * `_timer_set_single_shot`: Code for setting the timer to single shot operating mode, if supported by the timer object. If not, the `Timer` class itself will store the flag and the `_on_timer` method should be overridden to support such behavior. * `_timer_set_interval`: Code for setting the interval on the timer, if there is a method for doing so on the timer object. * `_on_timer`: This is the internal function that any timer object should call, which will handle the task of running all callbacks that have been set. Attributes ---------- interval : scalar The time between timer events in milliseconds. Default is 1000 ms. single_shot : bool Boolean flag indicating whether this timer should operate as single shot (run once and then stop). Defaults to `False`. callbacks : List[Tuple[callable, Tuple, Dict]] Stores list of (func, args, kwargs) tuples that will be called upon timer events. This list can be manipulated directly, or the functions `add_callback` and `remove_callback` can be used. """ def __init__(self, interval=None, callbacks=None): #Initialize empty callbacks list and setup default settings if necssary if callbacks is None: self.callbacks = [] else: self.callbacks = callbacks[:] # Create a copy if interval is None: self._interval = 1000 else: self._interval = interval self._single = False # Default attribute for holding the GUI-specific timer object self._timer = None def __del__(self): """Need to stop timer and possibly disconnect timer.""" self._timer_stop() def start(self, interval=None): """ Start the timer object. Parameters ---------- interval : int, optional Timer interval in milliseconds; overrides a previously set interval if provided. """ if interval is not None: self._set_interval(interval) self._timer_start() def stop(self): """Stop the timer.""" self._timer_stop() def _timer_start(self): pass def _timer_stop(self): pass @property def interval(self): return self._interval @interval.setter def interval(self, interval): # Force to int since none of the backends actually support fractional # milliseconds, and some error or give warnings. interval = int(interval) self._interval = interval self._timer_set_interval() @property def single_shot(self): return self._single @single_shot.setter def single_shot(self, ss): self._single = ss self._timer_set_single_shot() def add_callback(self, func, *args, **kwargs): """ Register *func* to be called by timer when the event fires. Any additional arguments provided will be passed to *func*. This function returns *func*, which makes it possible to use it as a decorator. """ self.callbacks.append((func, args, kwargs)) return func def remove_callback(self, func, *args, **kwargs): """ Remove *func* from list of callbacks. *args* and *kwargs* are optional and used to distinguish between copies of the same function registered to be called with different arguments. This behavior is deprecated. In the future, `*args, **kwargs` won't be considered anymore; to keep a specific callback removable by itself, pass it to `add_callback` as a `functools.partial` object. """ if args or kwargs: cbook.warn_deprecated( "3.1", "In a future version, Timer.remove_callback will not " "take *args, **kwargs anymore, but remove all callbacks where " "the callable matches; to keep a specific callback removable " "by itself, pass it to add_callback as a functools.partial " "object.") self.callbacks.remove((func, args, kwargs)) else: funcs = [c[0] for c in self.callbacks] if func in funcs: self.callbacks.pop(funcs.index(func)) def _timer_set_interval(self): """Used to set interval on underlying timer object.""" def _timer_set_single_shot(self): """Used to set single shot on underlying timer object.""" def _on_timer(self): """ Runs all function that have been registered as callbacks. Functions can return False (or 0) if they should not be called any more. If there are no callbacks, the timer is automatically stopped. """ for func, args, kwargs in self.callbacks: ret = func(*args, **kwargs) # docstring above explains why we use `if ret == 0` here, # instead of `if not ret`. # This will also catch `ret == False` as `False == 0` # but does not annoy the linters # https://docs.python.org/3/library/stdtypes.html#boolean-values if ret == 0: self.callbacks.remove((func, args, kwargs)) if len(self.callbacks) == 0: self.stop() class Event(object): """ A matplotlib event. Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. The following attributes are defined and shown with their default values Attributes ---------- name : str the event name canvas : `FigureCanvasBase` the backend-specific canvas instance generating the event guiEvent the GUI event that triggered the matplotlib event """ def __init__(self, name, canvas, guiEvent=None): self.name = name self.canvas = canvas self.guiEvent = guiEvent class DrawEvent(Event): """ An event triggered by a draw operation on the canvas In most backends callbacks subscribed to this callback will be fired after the rendering is complete but before the screen is updated. Any extra artists drawn to the canvas's renderer will be reflected without an explicit call to ``blit``. .. warning :: Calling ``canvas.draw`` and ``canvas.blit`` in these callbacks may not be safe with all backends and may cause infinite recursion. In addition to the :class:`Event` attributes, the following event attributes are defined: Attributes ---------- renderer : `RendererBase` the renderer for the draw event """ def __init__(self, name, canvas, renderer): Event.__init__(self, name, canvas) self.renderer = renderer class ResizeEvent(Event): """ An event triggered by a canvas resize In addition to the :class:`Event` attributes, the following event attributes are defined: Attributes ---------- width : scalar width of the canvas in pixels height : scalar height of the canvas in pixels """ def __init__(self, name, canvas): Event.__init__(self, name, canvas) self.width, self.height = canvas.get_width_height() class CloseEvent(Event): """An event triggered by a figure being closed.""" class LocationEvent(Event): """ An event that has a screen location. The following additional attributes are defined and shown with their default values. In addition to the :class:`Event` attributes, the following event attributes are defined: Attributes ---------- x : scalar x position - pixels from left of canvas y : scalar y position - pixels from bottom of canvas inaxes : bool the :class:`~matplotlib.axes.Axes` instance if mouse is over axes xdata : scalar x coord of mouse in data coords ydata : scalar y coord of mouse in data coords """ lastevent = None # the last event that was triggered before this one def __init__(self, name, canvas, x, y, guiEvent=None): """ *x*, *y* in figure coords, 0,0 = bottom, left """ Event.__init__(self, name, canvas, guiEvent=guiEvent) # x position - pixels from left of canvas self.x = int(x) if x is not None else x # y position - pixels from right of canvas self.y = int(y) if y is not None else y self.inaxes = None # the Axes instance if mouse us over axes self.xdata = None # x coord of mouse in data coords self.ydata = None # y coord of mouse in data coords if x is None or y is None: # cannot check if event was in axes if no x,y info self._update_enter_leave() return if self.canvas.mouse_grabber is None: self.inaxes = self.canvas.inaxes((x, y)) else: self.inaxes = self.canvas.mouse_grabber if self.inaxes is not None: try: trans = self.inaxes.transData.inverted() xdata, ydata = trans.transform_point((x, y)) except ValueError: pass else: self.xdata = xdata self.ydata = ydata self._update_enter_leave() def _update_enter_leave(self): 'process the figure/axes enter leave events' if LocationEvent.lastevent is not None: last = LocationEvent.lastevent if last.inaxes != self.inaxes: # process axes enter/leave events try: if last.inaxes is not None: last.canvas.callbacks.process('axes_leave_event', last) except Exception: pass # See ticket 2901582. # I think this is a valid exception to the rule # against catching all exceptions; if anything goes # wrong, we simply want to move on and process the # current event. if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) else: # process a figure enter event if self.inaxes is not None: self.canvas.callbacks.process('axes_enter_event', self) LocationEvent.lastevent = self class MouseButton(IntEnum): LEFT = 1 MIDDLE = 2 RIGHT = 3 BACK = 8 FORWARD = 9 class MouseEvent(LocationEvent): """ A mouse event ('button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event'). In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: Attributes ---------- button : {None, MouseButton.LEFT, MouseButton.MIDDLE, MouseButton.RIGHT, \ 'up', 'down'} The button pressed. 'up' and 'down' are used for scroll events. Note that in the nbagg backend, both the middle and right clicks return RIGHT since right clicking will bring up the context menu in some browsers. Note that LEFT and RIGHT actually refer to the "primary" and "secondary" buttons, i.e. if the user inverts their left and right buttons ("left-handed setting") then the LEFT button will be the one physically on the right. key : None or str The key pressed when the mouse event triggered, e.g. 'shift'. See `KeyEvent`. step : scalar The number of scroll steps (positive for 'up', negative for 'down'). dblclick : bool Whether the event is a double-click. Examples -------- Usage:: def on_press(event): print('you pressed', event.button, event.xdata, event.ydata) cid = fig.canvas.mpl_connect('button_press_event', on_press) """ def __init__(self, name, canvas, x, y, button=None, key=None, step=0, dblclick=False, guiEvent=None): """ x, y in figure coords, 0,0 = bottom, left button pressed None, 1, 2, 3, 'up', 'down' """ LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) if button in MouseButton.__members__.values(): button = MouseButton(button) self.button = button self.key = key self.step = step self.dblclick = dblclick def __str__(self): return (f"{self.name}: " f"xy=({self.x}, {self.y}) xydata=({self.xdata}, {self.ydata}) " f"button={self.button} dblclick={self.dblclick} " f"inaxes={self.inaxes}") class PickEvent(Event): """ a pick event, fired when the user picks a location on the canvas sufficiently close to an artist. Attrs: all the :class:`Event` attributes plus Attributes ---------- mouseevent : `MouseEvent` the mouse event that generated the pick artist : `matplotlib.artist.Artist` the picked artist other extra class dependent attrs -- e.g., a :class:`~matplotlib.lines.Line2D` pick may define different extra attributes than a :class:`~matplotlib.collections.PatchCollection` pick event Examples -------- Usage:: ax.plot(np.rand(100), 'o', picker=5) # 5 points tolerance def on_pick(event): line = event.artist xdata, ydata = line.get_data() ind = event.ind print('on pick line:', np.array([xdata[ind], ydata[ind]]).T) cid = fig.canvas.mpl_connect('pick_event', on_pick) """ def __init__(self, name, canvas, mouseevent, artist, guiEvent=None, **kwargs): Event.__init__(self, name, canvas, guiEvent) self.mouseevent = mouseevent self.artist = artist self.__dict__.update(kwargs) class KeyEvent(LocationEvent): """ A key event (key press, key release). Attach additional attributes as defined in :meth:`FigureCanvasBase.mpl_connect`. In addition to the :class:`Event` and :class:`LocationEvent` attributes, the following attributes are defined: Attributes ---------- key : None or str the key(s) pressed. Could be **None**, a single case sensitive ascii character ("g", "G", "#", etc.), a special key ("control", "shift", "f1", "up", etc.) or a combination of the above (e.g., "ctrl+alt+g", "ctrl+alt+G"). Notes ----- Modifier keys will be prefixed to the pressed key and will be in the order "ctrl", "alt", "super". The exception to this rule is when the pressed key is itself a modifier key, therefore "ctrl+alt" and "alt+control" can both be valid key values. Examples -------- Usage:: def on_key(event): print('you pressed', event.key, event.xdata, event.ydata) cid = fig.canvas.mpl_connect('key_press_event', on_key) """ def __init__(self, name, canvas, key, x=0, y=0, guiEvent=None): LocationEvent.__init__(self, name, canvas, x, y, guiEvent=guiEvent) self.key = key class FigureCanvasBase(object): """ The canvas the figure renders into. Public attributes Attributes ---------- figure : `matplotlib.figure.Figure` A high-level figure instance """ events = [ 'resize_event', 'draw_event', 'key_press_event', 'key_release_event', 'button_press_event', 'button_release_event', 'scroll_event', 'motion_notify_event', 'pick_event', 'idle_event', 'figure_enter_event', 'figure_leave_event', 'axes_enter_event', 'axes_leave_event', 'close_event' ] supports_blit = True fixed_dpi = None filetypes = _default_filetypes if _has_pil: # JPEG support register_backend('jpg', 'matplotlib.backends.backend_agg', 'Joint Photographic Experts Group') register_backend('jpeg', 'matplotlib.backends.backend_agg', 'Joint Photographic Experts Group') # TIFF support register_backend('tif', 'matplotlib.backends.backend_agg', 'Tagged Image File Format') register_backend('tiff', 'matplotlib.backends.backend_agg', 'Tagged Image File Format') def __init__(self, figure): self._fix_ipython_backend2gui() self._is_idle_drawing = True self._is_saving = False figure.set_canvas(self) self.figure = figure # a dictionary from event name to a dictionary that maps cid->func self.callbacks = cbook.CallbackRegistry() self.widgetlock = widgets.LockDraw() self._button = None # the button pressed self._key = None # the key pressed self._lastx, self._lasty = None, None self.button_pick_id = self.mpl_connect('button_press_event', self.pick) self.scroll_pick_id = self.mpl_connect('scroll_event', self.pick) self.mouse_grabber = None # the axes currently grabbing mouse self.toolbar = None # NavigationToolbar2 will set me self._is_idle_drawing = False @classmethod @functools.lru_cache() def _fix_ipython_backend2gui(cls): # Fix hard-coded module -> toolkit mapping in IPython (used for # `ipython --auto`). This cannot be done at import time due to # ordering issues, so we do it when creating a canvas, and should only # be done once per class (hence the `lru_cache(1)`). if "IPython" not in sys.modules: return import IPython ip = IPython.get_ipython() if not ip: return from IPython.core import pylabtools as pt if (not hasattr(pt, "backend2gui") or not hasattr(ip, "enable_matplotlib")): # In case we ever move the patch to IPython and remove these APIs, # don't break on our side. return backend_mod = sys.modules[cls.__module__] rif = getattr(backend_mod, "required_interactive_framework", None) backend2gui_rif = {"qt5": "qt", "qt4": "qt", "gtk3": "gtk3", "wx": "wx", "macosx": "osx"}.get(rif) if backend2gui_rif: pt.backend2gui[get_backend()] = backend2gui_rif # Work around pylabtools.find_gui_and_backend always reading from # rcParamsOrig. orig_origbackend = mpl.rcParamsOrig["backend"] try: mpl.rcParamsOrig["backend"] = mpl.rcParams["backend"] ip.enable_matplotlib() finally: mpl.rcParamsOrig["backend"] = orig_origbackend @contextmanager def _idle_draw_cntx(self): self._is_idle_drawing = True yield self._is_idle_drawing = False def is_saving(self): """ Returns whether the renderer is in the process of saving to a file, rather than rendering for an on-screen buffer. """ return self._is_saving def pick(self, mouseevent): if not self.widgetlock.locked(): self.figure.pick(mouseevent) def blit(self, bbox=None): """Blit the canvas in bbox (default entire canvas).""" def resize(self, w, h): """Set the canvas size in pixels.""" def draw_event(self, renderer): """Pass a `DrawEvent` to all functions connected to ``draw_event``.""" s = 'draw_event' event = DrawEvent(s, self, renderer) self.callbacks.process(s, event) def resize_event(self): """Pass a `ResizeEvent` to all functions connected to ``resize_event``. """ s = 'resize_event' event = ResizeEvent(s, self) self.callbacks.process(s, event) self.draw_idle() def close_event(self, guiEvent=None): """Pass a `CloseEvent` to all functions connected to ``close_event``. """ s = 'close_event' try: event = CloseEvent(s, self, guiEvent=guiEvent) self.callbacks.process(s, event) except (TypeError, AttributeError): pass # Suppress the TypeError when the python session is being killed. # It may be that a better solution would be a mechanism to # disconnect all callbacks upon shutdown. # AttributeError occurs on OSX with qt4agg upon exiting # with an open window; 'callbacks' attribute no longer exists. def key_press_event(self, key, guiEvent=None): """Pass a `KeyEvent` to all functions connected to ``key_press_event``. """ self._key = key s = 'key_press_event' event = KeyEvent( s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) def key_release_event(self, key, guiEvent=None): """ Pass a `KeyEvent` to all functions connected to ``key_release_event``. """ s = 'key_release_event' event = KeyEvent( s, self, key, self._lastx, self._lasty, guiEvent=guiEvent) self.callbacks.process(s, event) self._key = None def pick_event(self, mouseevent, artist, **kwargs): """ This method will be called by artists who are picked and will fire off :class:`PickEvent` callbacks registered listeners """ s = 'pick_event' event = PickEvent(s, self, mouseevent, artist, guiEvent=mouseevent.guiEvent, **kwargs) self.callbacks.process(s, event) def scroll_event(self, x, y, step, guiEvent=None): """ Backend derived classes should call this function on any scroll wheel event. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in MouseEvent. This method will be call all functions connected to the 'scroll_event' with a :class:`MouseEvent` instance. """ if step >= 0: self._button = 'up' else: self._button = 'down' s = 'scroll_event' mouseevent = MouseEvent(s, self, x, y, self._button, self._key, step=step, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_press_event(self, x, y, button, dblclick=False, guiEvent=None): """ Backend derived classes should call this function on any mouse button press. x,y are the canvas coords: 0,0 is lower, left. button and key are as defined in :class:`MouseEvent`. This method will be call all functions connected to the 'button_press_event' with a :class:`MouseEvent` instance. """ self._button = button s = 'button_press_event' mouseevent = MouseEvent(s, self, x, y, button, self._key, dblclick=dblclick, guiEvent=guiEvent) self.callbacks.process(s, mouseevent) def button_release_event(self, x, y, button, guiEvent=None): """ Backend derived classes should call this function on any mouse button release. This method will call all functions connected to the 'button_release_event' with a :class:`MouseEvent` instance. Parameters ---------- x : scalar the canvas coordinates where 0=left y : scalar the canvas coordinates where 0=bottom guiEvent the native UI event that generated the mpl event """ s = 'button_release_event' event = MouseEvent(s, self, x, y, button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) self._button = None def motion_notify_event(self, x, y, guiEvent=None): """ Backend derived classes should call this function on any motion-notify-event. This method will call all functions connected to the 'motion_notify_event' with a :class:`MouseEvent` instance. Parameters ---------- x : scalar the canvas coordinates where 0=left y : scalar the canvas coordinates where 0=bottom guiEvent the native UI event that generated the mpl event """ self._lastx, self._lasty = x, y s = 'motion_notify_event' event = MouseEvent(s, self, x, y, self._button, self._key, guiEvent=guiEvent) self.callbacks.process(s, event) def leave_notify_event(self, guiEvent=None): """ Backend derived classes should call this function when leaving canvas Parameters ---------- guiEvent the native UI event that generated the mpl event """ self.callbacks.process('figure_leave_event', LocationEvent.lastevent) LocationEvent.lastevent = None self._lastx, self._lasty = None, None def enter_notify_event(self, guiEvent=None, xy=None): """ Backend derived classes should call this function when entering canvas Parameters ---------- guiEvent the native UI event that generated the mpl event xy : (float, float) the coordinate location of the pointer when the canvas is entered """ if xy is not None: x, y = xy self._lastx, self._lasty = x, y else: x = None y = None cbook.warn_deprecated( '3.0', message='enter_notify_event expects a location but ' 'your backend did not pass one.') event = LocationEvent('figure_enter_event', self, x, y, guiEvent) self.callbacks.process('figure_enter_event', event) def inaxes(self, xy): """ Check if a point is in an axes. Parameters ---------- xy : tuple or list (x,y) coordinates. x position - pixels from left of canvas. y position - pixels from bottom of canvas. Returns ------- axes: topmost axes containing the point, or None if no axes. """ axes_list = [a for a in self.figure.get_axes() if a.patch.contains_point(xy)] if axes_list: axes = cbook._topmost_artist(axes_list) else: axes = None return axes def grab_mouse(self, ax): """ Set the child axes which are currently grabbing the mouse events. Usually called by the widgets themselves. It is an error to call this if the mouse is already grabbed by another axes. """ if self.mouse_grabber not in (None, ax): raise RuntimeError("Another Axes already grabs mouse input") self.mouse_grabber = ax def release_mouse(self, ax): """ Release the mouse grab held by the axes, ax. Usually called by the widgets. It is ok to call this even if you ax doesn't have the mouse grab currently. """ if self.mouse_grabber is ax: self.mouse_grabber = None def draw(self, *args, **kwargs): """Render the :class:`~matplotlib.figure.Figure`.""" def draw_idle(self, *args, **kwargs): """ Request a widget redraw once control returns to the GUI event loop. Even if multiple calls to `draw_idle` occur before control returns to the GUI event loop, the figure will only be rendered once. Notes ----- Backends may choose to override the method and implement their own strategy to prevent multiple renderings. """ if not self._is_idle_drawing: with self._idle_draw_cntx(): self.draw(*args, **kwargs) def draw_cursor(self, event): """ Draw a cursor in the event.axes if inaxes is not None. Use native GUI drawing for efficiency if possible """ def get_width_height(self): """ Return the figure width and height in points or pixels (depending on the backend), truncated to integers """ return int(self.figure.bbox.width), int(self.figure.bbox.height) @classmethod def get_supported_filetypes(cls): """Return dict of savefig file formats supported by this backend""" return cls.filetypes @classmethod def get_supported_filetypes_grouped(cls): """Return a dict of savefig file formats supported by this backend, where the keys are a file type name, such as 'Joint Photographic Experts Group', and the values are a list of filename extensions used for that filetype, such as ['jpg', 'jpeg'].""" groupings = {} for ext, name in cls.filetypes.items(): groupings.setdefault(name, []).append(ext) groupings[name].sort() return groupings def _get_output_canvas(self, fmt): """ Return a canvas suitable for saving figures to a specified file format. If necessary, this function will switch to a registered backend that supports the format. """ # Return the current canvas if it supports the requested format. if hasattr(self, 'print_{}'.format(fmt)): return self # Return a default canvas for the requested format, if it exists. canvas_class = get_registered_canvas_class(fmt) if canvas_class: return self.switch_backends(canvas_class) # Else report error for unsupported format. raise ValueError( "Format {!r} is not supported (supported formats: {})" .format(fmt, ", ".join(sorted(self.get_supported_filetypes())))) def print_figure(self, filename, dpi=None, facecolor=None, edgecolor=None, orientation='portrait', format=None, *, bbox_inches=None, **kwargs): """ Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because some of the GUIs have a gray figure face color background and you'll probably want to override this on hardcopy. Parameters ---------- filename can also be a file object on image backends orientation : {'landscape', 'portrait'}, optional only currently applies to PostScript printing. dpi : scalar, optional the dots per inch to save the figure in; if None, use savefig.dpi facecolor : color or None, optional the facecolor of the figure; if None, defaults to savefig.facecolor edgecolor : color or None, optional the edgecolor of the figure; if None, defaults to savefig.edgecolor format : str, optional when set, forcibly set the file format to save to bbox_inches : str or `~matplotlib.transforms.Bbox`, optional Bbox in inches. Only the given portion of the figure is saved. If 'tight', try to figure out the tight bbox of the figure. If None, use savefig.bbox pad_inches : scalar, optional Amount of padding around the figure when bbox_inches is 'tight'. If None, use savefig.pad_inches bbox_extra_artists : list of `~matplotlib.artist.Artist`, optional A list of extra artists that will be considered when the tight bbox is calculated. """ if format is None: # get format from filename, or from backend's default filetype if isinstance(filename, os.PathLike): filename = os.fspath(filename) if isinstance(filename, str): format = os.path.splitext(filename)[1][1:] if format is None or format == '': format = self.get_default_filetype() if isinstance(filename, str): filename = filename.rstrip('.') + '.' + format format = format.lower() # get canvas object and print method for format canvas = self._get_output_canvas(format) print_method = getattr(canvas, 'print_%s' % format) if dpi is None: dpi = rcParams['savefig.dpi'] if dpi == 'figure': dpi = getattr(self.figure, '_original_dpi', self.figure.dpi) # Remove the figure manager, if any, to avoid resizing the GUI widget. # Some code (e.g. Figure.show) differentiates between having *no* # manager and a *None* manager, which should be fixed at some point, # but this should be fine. with cbook._setattr_cm(self, _is_saving=True, manager=None), \ cbook._setattr_cm(self.figure, dpi=dpi): if facecolor is None: facecolor = rcParams['savefig.facecolor'] if edgecolor is None: edgecolor = rcParams['savefig.edgecolor'] origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) if bbox_inches is None: bbox_inches = rcParams['savefig.bbox'] if bbox_inches: # call adjust_bbox to save only the given area if bbox_inches == "tight": # When bbox_inches == "tight", it saves the figure twice. # The first save command (to a BytesIO) is just to estimate # the bounding box of the figure. result = print_method( io.BytesIO(), dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, orientation=orientation, dryrun=True, **kwargs) renderer = self.figure._cachedRenderer bbox_artists = kwargs.pop("bbox_extra_artists", None) bbox_inches = self.figure.get_tightbbox(renderer, bbox_extra_artists=bbox_artists) pad = kwargs.pop("pad_inches", None) if pad is None: pad = rcParams['savefig.pad_inches'] bbox_inches = bbox_inches.padded(pad) restore_bbox = tight_bbox.adjust_bbox(self.figure, bbox_inches, canvas.fixed_dpi) _bbox_inches_restore = (bbox_inches, restore_bbox) else: _bbox_inches_restore = None try: result = print_method( filename, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, orientation=orientation, bbox_inches_restore=_bbox_inches_restore, **kwargs) finally: if bbox_inches and restore_bbox: restore_bbox() self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) self.figure.set_canvas(self) return result @classmethod def get_default_filetype(cls): """ Get the default savefig file format as specified in rcParam ``savefig.format``. Returned string excludes period. Overridden in backends that only support a single file type. """ return rcParams['savefig.format'] def get_window_title(self): """ Get the title text of the window containing the figure. Return None if there is no window (e.g., a PS backend). """ if hasattr(self, "manager"): return self.manager.get_window_title() def set_window_title(self, title): """ Set the title text of the window containing the figure. Note that this has no effect if there is no window (e.g., a PS backend). """ if hasattr(self, "manager"): self.manager.set_window_title(title) def get_default_filename(self): """ Return a string, which includes extension, suitable for use as a default filename. """ default_basename = self.get_window_title() or 'image' default_basename = default_basename.replace(' ', '_') default_filetype = self.get_default_filetype() default_filename = default_basename + '.' + default_filetype return default_filename def switch_backends(self, FigureCanvasClass): """ Instantiate an instance of FigureCanvasClass This is used for backend switching, e.g., to instantiate a FigureCanvasPS from a FigureCanvasGTK. Note, deep copying is not done, so any changes to one of the instances (e.g., setting figure size or line props), will be reflected in the other """ newCanvas = FigureCanvasClass(self.figure) newCanvas._is_saving = self._is_saving return newCanvas def mpl_connect(self, s, func): """ Connect event with string *s* to *func*. The signature of *func* is:: def func(event) where event is a :class:`matplotlib.backend_bases.Event`. The following events are recognized - 'button_press_event' - 'button_release_event' - 'draw_event' - 'key_press_event' - 'key_release_event' - 'motion_notify_event' - 'pick_event' - 'resize_event' - 'scroll_event' - 'figure_enter_event', - 'figure_leave_event', - 'axes_enter_event', - 'axes_leave_event' - 'close_event' For the location events (button and key press/release), if the mouse is over the axes, the variable ``event.inaxes`` will be set to the :class:`~matplotlib.axes.Axes` the event occurs is over, and additionally, the variables ``event.xdata`` and ``event.ydata`` will be defined. This is the mouse location in data coords. See :class:`~matplotlib.backend_bases.KeyEvent` and :class:`~matplotlib.backend_bases.MouseEvent` for more info. Return value is a connection id that can be used with :meth:`~matplotlib.backend_bases.Event.mpl_disconnect`. Examples -------- Usage:: def on_press(event): print('you pressed', event.button, event.xdata, event.ydata) cid = canvas.mpl_connect('button_press_event', on_press) """ return self.callbacks.connect(s, func) def mpl_disconnect(self, cid): """ Disconnect callback id cid Examples -------- Usage:: cid = canvas.mpl_connect('button_press_event', on_press) #...later canvas.mpl_disconnect(cid) """ return self.callbacks.disconnect(cid) def new_timer(self, *args, **kwargs): """ Creates a new backend-specific subclass of :class:`backend_bases.Timer`. This is useful for getting periodic events through the backend's native event loop. Implemented only for backends with GUIs. Other Parameters ---------------- interval : scalar Timer interval in milliseconds callbacks : List[Tuple[callable, Tuple, Dict]] Sequence of (func, args, kwargs) where ``func(*args, **kwargs)`` will be executed by the timer every *interval*. callbacks which return ``False`` or ``0`` will be removed from the timer. Examples -------- >>> timer = fig.canvas.new_timer(callbacks=[(f1, (1, ), {'a': 3}),]) """ return TimerBase(*args, **kwargs) def flush_events(self): """ Flush the GUI events for the figure. Interactive backends need to reimplement this method. """ def start_event_loop(self, timeout=0): """Start a blocking event loop. Such an event loop is used by interactive functions, such as `ginput` and `waitforbuttonpress`, to wait for events. The event loop blocks until a callback function triggers `stop_event_loop`, or *timeout* is reached. If *timeout* is negative, never timeout. Only interactive backends need to reimplement this method and it relies on `flush_events` being properly implemented. Interactive backends should implement this in a more native way. """ if timeout <= 0: timeout = np.inf timestep = 0.01 counter = 0 self._looping = True while self._looping and counter * timestep < timeout: self.flush_events() time.sleep(timestep) counter += 1 def stop_event_loop(self): """Stop the current blocking event loop. Interactive backends need to reimplement this to match `start_event_loop` """ self._looping = False def key_press_handler(event, canvas, toolbar=None): """ Implement the default mpl key bindings for the canvas and toolbar described at :ref:`key-event-handling` Parameters ---------- event : :class:`KeyEvent` a key press/release event canvas : :class:`FigureCanvasBase` the backend-specific canvas instance toolbar : :class:`NavigationToolbar2` the navigation cursor toolbar """ # these bindings happen whether you are over an axes or not if event.key is None: return # Load key-mappings from rcParams. fullscreen_keys = rcParams['keymap.fullscreen'] home_keys = rcParams['keymap.home'] back_keys = rcParams['keymap.back'] forward_keys = rcParams['keymap.forward'] pan_keys = rcParams['keymap.pan'] zoom_keys = rcParams['keymap.zoom'] save_keys = rcParams['keymap.save'] quit_keys = rcParams['keymap.quit'] grid_keys = rcParams['keymap.grid'] grid_minor_keys = rcParams['keymap.grid_minor'] toggle_yscale_keys = rcParams['keymap.yscale'] toggle_xscale_keys = rcParams['keymap.xscale'] all_keys = rcParams['keymap.all_axes'] # toggle fullscreen mode ('f', 'ctrl + f') if event.key in fullscreen_keys: try: canvas.manager.full_screen_toggle() except AttributeError: pass # quit the figure (default key 'ctrl+w') if event.key in quit_keys: Gcf.destroy_fig(canvas.figure) if toolbar is not None: # home or reset mnemonic (default key 'h', 'home' and 'r') if event.key in home_keys: toolbar.home() # forward / backward keys to enable left handed quick navigation # (default key for backward: 'left', 'backspace' and 'c') elif event.key in back_keys: toolbar.back() # (default key for forward: 'right' and 'v') elif event.key in forward_keys: toolbar.forward() # pan mnemonic (default key 'p') elif event.key in pan_keys: toolbar.pan() toolbar._set_cursor(event) # zoom mnemonic (default key 'o') elif event.key in zoom_keys: toolbar.zoom() toolbar._set_cursor(event) # saving current figure (default key 's') elif event.key in save_keys: toolbar.save_figure() if event.inaxes is None: return # these bindings require the mouse to be over an axes to trigger def _get_uniform_gridstate(ticks): # Return True/False if all grid lines are on or off, None if they are # not all in the same state. if all(tick.gridline.get_visible() for tick in ticks): return True elif not any(tick.gridline.get_visible() for tick in ticks): return False else: return None ax = event.inaxes # toggle major grids in current axes (default key 'g') # Both here and below (for 'G'), we do nothing if *any* grid (major or # minor, x or y) is not in a uniform state, to avoid messing up user # customization. if (event.key in grid_keys # Exclude minor grids not in a uniform state. and None not in [_get_uniform_gridstate(ax.xaxis.minorTicks), _get_uniform_gridstate(ax.yaxis.minorTicks)]): x_state = _get_uniform_gridstate(ax.xaxis.majorTicks) y_state = _get_uniform_gridstate(ax.yaxis.majorTicks) cycle = [(False, False), (True, False), (True, True), (False, True)] try: x_state, y_state = ( cycle[(cycle.index((x_state, y_state)) + 1) % len(cycle)]) except ValueError: # Exclude major grids not in a uniform state. pass else: # If turning major grids off, also turn minor grids off. ax.grid(x_state, which="major" if x_state else "both", axis="x") ax.grid(y_state, which="major" if y_state else "both", axis="y") canvas.draw_idle() # toggle major and minor grids in current axes (default key 'G') if (event.key in grid_minor_keys # Exclude major grids not in a uniform state. and None not in [_get_uniform_gridstate(ax.xaxis.majorTicks), _get_uniform_gridstate(ax.yaxis.majorTicks)]): x_state = _get_uniform_gridstate(ax.xaxis.minorTicks) y_state = _get_uniform_gridstate(ax.yaxis.minorTicks) cycle = [(False, False), (True, False), (True, True), (False, True)] try: x_state, y_state = ( cycle[(cycle.index((x_state, y_state)) + 1) % len(cycle)]) except ValueError: # Exclude minor grids not in a uniform state. pass else: ax.grid(x_state, which="both", axis="x") ax.grid(y_state, which="both", axis="y") canvas.draw_idle() # toggle scaling of y-axes between 'log and 'linear' (default key 'l') elif event.key in toggle_yscale_keys: scale = ax.get_yscale() if scale == 'log': ax.set_yscale('linear') ax.figure.canvas.draw_idle() elif scale == 'linear': try: ax.set_yscale('log') except ValueError as exc: _log.warning(str(exc)) ax.set_yscale('linear') ax.figure.canvas.draw_idle() # toggle scaling of x-axes between 'log and 'linear' (default key 'k') elif event.key in toggle_xscale_keys: scalex = ax.get_xscale() if scalex == 'log': ax.set_xscale('linear') ax.figure.canvas.draw_idle() elif scalex == 'linear': try: ax.set_xscale('log') except ValueError as exc: _log.warning(str(exc)) ax.set_xscale('linear') ax.figure.canvas.draw_idle() # enable nagivation for all axes that contain the event (default key 'a') elif event.key in all_keys: for a in canvas.figure.get_axes(): if (event.x is not None and event.y is not None and a.in_axes(event)): # FIXME: Why only these? a.set_navigate(True) # enable navigation only for axes with this index (if such an axes exist, # otherwise do nothing) elif event.key.isdigit() and event.key != '0': n = int(event.key) - 1 if n < len(canvas.figure.get_axes()): for i, a in enumerate(canvas.figure.get_axes()): if (event.x is not None and event.y is not None and a.in_axes(event)): # FIXME: Why only these? a.set_navigate(i == n) def button_press_handler(event, canvas, toolbar=None): """ The default Matplotlib button actions for extra mouse buttons. """ if toolbar is not None: button_name = str(MouseButton(event.button)) if button_name in rcParams['keymap.back']: toolbar.back() elif button_name in rcParams['keymap.forward']: toolbar.forward() class NonGuiException(Exception): pass class FigureManagerBase(object): """ Helper class for pyplot mode, wraps everything up into a neat bundle Attributes ---------- canvas : :class:`FigureCanvasBase` The backend-specific canvas instance num : int or str The figure number key_press_handler_id : int The default key handler cid, when using the toolmanager. To disable the default key press handling use:: figure.canvas.mpl_disconnect( figure.canvas.manager.key_press_handler_id) button_press_handler_id : int The default mouse button handler cid, when using the toolmanager. To disable the default button press handling use:: figure.canvas.mpl_disconnect( figure.canvas.manager.button_press_handler_id) """ def __init__(self, canvas, num): self.canvas = canvas canvas.manager = self # store a pointer to parent self.num = num self.key_press_handler_id = None self.button_press_handler_id = None if rcParams['toolbar'] != 'toolmanager': self.key_press_handler_id = self.canvas.mpl_connect( 'key_press_event', self.key_press) self.button_press_handler_id = self.canvas.mpl_connect( 'button_press_event', self.button_press) self.toolmanager = None self.toolbar = None @self.canvas.figure.add_axobserver def notify_axes_change(fig): # Called whenever the current axes is changed. if self.toolmanager is None and self.toolbar is not None: self.toolbar.update() def show(self): """ For GUI backends, show the figure window and redraw. For non-GUI backends, raise an exception to be caught by :meth:`~matplotlib.figure.Figure.show`, for an optional warning. """ raise NonGuiException() def destroy(self): pass def full_screen_toggle(self): pass def resize(self, w, h): """"For GUI backends, resize the window (in pixels).""" def key_press(self, event): """ Implement the default mpl key bindings defined at :ref:`key-event-handling` """ if rcParams['toolbar'] != 'toolmanager': key_press_handler(event, self.canvas, self.canvas.toolbar) def button_press(self, event): """ The default Matplotlib button actions for extra mouse buttons. """ if rcParams['toolbar'] != 'toolmanager': button_press_handler(event, self.canvas, self.canvas.toolbar) def get_window_title(self): """Get the title text of the window containing the figure. Return None for non-GUI (e.g., PS) backends. """ return 'image' def set_window_title(self, title): """Set the title text of the window containing the figure. This has no effect for non-GUI (e.g., PS) backends. """ cursors = tools.cursors class NavigationToolbar2(object): """ Base class for the navigation cursor, version 2 backends must implement a canvas that handles connections for 'button_press_event' and 'button_release_event'. See :meth:`FigureCanvasBase.mpl_connect` for more information They must also define :meth:`save_figure` save the current figure :meth:`set_cursor` if you want the pointer icon to change :meth:`_init_toolbar` create your toolbar widget :meth:`draw_rubberband` (optional) draw the zoom to rect "rubberband" rectangle :meth:`press` (optional) whenever a mouse button is pressed, you'll be notified with the event :meth:`release` (optional) whenever a mouse button is released, you'll be notified with the event :meth:`set_message` (optional) display message :meth:`set_history_buttons` (optional) you can change the history back / forward buttons to indicate disabled / enabled state. That's it, we'll do the rest! """ # list of toolitems to add to the toolbar, format is: # ( # text, # the text of the button (often not visible to users) # tooltip_text, # the tooltip shown on hover (where possible) # image_file, # name of the image for the button (without the extension) # name_of_method, # name of the method in NavigationToolbar2 to call # ) toolitems = ( ('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous view', 'back', 'back'), ('Forward', 'Forward to next view', 'forward', 'forward'), (None, None, None, None), ('Pan', 'Pan axes with left mouse, zoom with right', 'move', 'pan'), ('Zoom', 'Zoom to rectangle', 'zoom_to_rect', 'zoom'), ('Subplots', 'Configure subplots', 'subplots', 'configure_subplots'), (None, None, None, None), ('Save', 'Save the figure', 'filesave', 'save_figure'), ) def __init__(self, canvas): self.canvas = canvas canvas.toolbar = self self._nav_stack = cbook.Stack() self._xypress = None # the location and axis info at the time # of the press self._idPress = None self._idRelease = None self._active = None # This cursor will be set after the initial draw. self._lastCursor = cursors.POINTER self._init_toolbar() self._idDrag = self.canvas.mpl_connect( 'motion_notify_event', self.mouse_move) self._ids_zoom = [] self._zoom_mode = None self._button_pressed = None # determined by the button pressed # at start self.mode = '' # a mode string for the status bar self.set_history_buttons() def set_message(self, s): """Display a message on toolbar or in status bar.""" def back(self, *args): """move back up the view lim stack""" self._nav_stack.back() self.set_history_buttons() self._update_view() def draw_rubberband(self, event, x0, y0, x1, y1): """Draw a rectangle rubberband to indicate zoom limits. Note that it is not guaranteed that ``x0 <= x1`` and ``y0 <= y1``. """ def remove_rubberband(self): """Remove the rubberband.""" def forward(self, *args): """Move forward in the view lim stack.""" self._nav_stack.forward() self.set_history_buttons() self._update_view() def home(self, *args): """Restore the original view.""" self._nav_stack.home() self.set_history_buttons() self._update_view() def _init_toolbar(self): """ This is where you actually build the GUI widgets (called by __init__). The icons ``home.xpm``, ``back.xpm``, ``forward.xpm``, ``hand.xpm``, ``zoom_to_rect.xpm`` and ``filesave.xpm`` are standard across backends (there are ppm versions in CVS also). You just need to set the callbacks home : self.home back : self.back forward : self.forward hand : self.pan zoom_to_rect : self.zoom filesave : self.save_figure You only need to define the last one - the others are in the base class implementation. """ raise NotImplementedError def _set_cursor(self, event): if not event.inaxes or not self._active: if self._lastCursor != cursors.POINTER: self.set_cursor(cursors.POINTER) self._lastCursor = cursors.POINTER else: if (self._active == 'ZOOM' and self._lastCursor != cursors.SELECT_REGION): self.set_cursor(cursors.SELECT_REGION) self._lastCursor = cursors.SELECT_REGION elif (self._active == 'PAN' and self._lastCursor != cursors.MOVE): self.set_cursor(cursors.MOVE) self._lastCursor = cursors.MOVE def mouse_move(self, event): self._set_cursor(event) if event.inaxes and event.inaxes.get_navigate(): try: s = event.inaxes.format_coord(event.xdata, event.ydata) except (ValueError, OverflowError): pass else: artists = [a for a in event.inaxes._mouseover_set if a.contains(event)[0] and a.get_visible()] if artists: a = cbook._topmost_artist(artists) if a is not event.inaxes.patch: data = a.get_cursor_data(event) if data is not None: data_str = a.format_cursor_data(data) if data_str is not None: s = s + ' ' + data_str if len(self.mode): self.set_message('%s, %s' % (self.mode, s)) else: self.set_message(s) else: self.set_message(self.mode) def pan(self, *args): """Activate the pan/zoom tool. pan with left button, zoom with right""" # set the pointer icon and button press funcs to the # appropriate callbacks if self._active == 'PAN': self._active = None else: self._active = 'PAN' if self._idPress is not None: self._idPress = self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease = self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect( 'button_press_event', self.press_pan) self._idRelease = self.canvas.mpl_connect( 'button_release_event', self.release_pan) self.mode = 'pan/zoom' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def press(self, event): """Called whenever a mouse button is pressed.""" def press_pan(self, event): """Callback for mouse button press in pan/zoom mode.""" if event.button == 1: self._button_pressed = 1 elif event.button == 3: self._button_pressed = 3 else: self._button_pressed = None return if self._nav_stack() is None: # set the home button to this view self.push_current() x, y = event.x, event.y self._xypress = [] for i, a in enumerate(self.canvas.figure.get_axes()): if (x is not None and y is not None and a.in_axes(event) and a.get_navigate() and a.can_pan()): a.start_pan(x, y, event.button) self._xypress.append((a, i)) self.canvas.mpl_disconnect(self._idDrag) self._idDrag = self.canvas.mpl_connect('motion_notify_event', self.drag_pan) self.press(event) def press_zoom(self, event): """Callback for mouse button press in zoom to rect mode.""" # If we're already in the middle of a zoom, pressing another # button works to "cancel" if self._ids_zoom != []: for zoom_id in self._ids_zoom: self.canvas.mpl_disconnect(zoom_id) self.release(event) self.draw() self._xypress = None self._button_pressed = None self._ids_zoom = [] return if event.button == 1: self._button_pressed = 1 elif event.button == 3: self._button_pressed = 3 else: self._button_pressed = None return if self._nav_stack() is None: # set the home button to this view self.push_current() x, y = event.x, event.y self._xypress = [] for i, a in enumerate(self.canvas.figure.get_axes()): if (x is not None and y is not None and a.in_axes(event) and a.get_navigate() and a.can_zoom()): self._xypress.append((x, y, a, i, a._get_view())) id1 = self.canvas.mpl_connect('motion_notify_event', self.drag_zoom) id2 = self.canvas.mpl_connect('key_press_event', self._switch_on_zoom_mode) id3 = self.canvas.mpl_connect('key_release_event', self._switch_off_zoom_mode) self._ids_zoom = id1, id2, id3 self._zoom_mode = event.key self.press(event) def _switch_on_zoom_mode(self, event): self._zoom_mode = event.key self.mouse_move(event) def _switch_off_zoom_mode(self, event): self._zoom_mode = None self.mouse_move(event) def push_current(self): """Push the current view limits and position onto the stack.""" self._nav_stack.push( WeakKeyDictionary( {ax: (ax._get_view(), # Store both the original and modified positions. (ax.get_position(True).frozen(), ax.get_position().frozen())) for ax in self.canvas.figure.axes})) self.set_history_buttons() def release(self, event): """Callback for mouse button release.""" def release_pan(self, event): """Callback for mouse button release in pan/zoom mode.""" if self._button_pressed is None: return self.canvas.mpl_disconnect(self._idDrag) self._idDrag = self.canvas.mpl_connect( 'motion_notify_event', self.mouse_move) for a, ind in self._xypress: a.end_pan() if not self._xypress: return self._xypress = [] self._button_pressed = None self.push_current() self.release(event) self.draw() def drag_pan(self, event): """Callback for dragging in pan/zoom mode.""" for a, ind in self._xypress: #safer to use the recorded button at the press than current button: #multiple button can get pressed during motion... a.drag_pan(self._button_pressed, event.key, event.x, event.y) self.canvas.draw_idle() def drag_zoom(self, event): """Callback for dragging in zoom mode.""" if self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, view = self._xypress[0] (x1, y1), (x2, y2) = np.clip( [[lastx, lasty], [x, y]], a.bbox.min, a.bbox.max) if self._zoom_mode == "x": y1, y2 = a.bbox.intervaly elif self._zoom_mode == "y": x1, x2 = a.bbox.intervalx self.draw_rubberband(event, x1, y1, x2, y2) def release_zoom(self, event): """Callback for mouse button release in zoom to rect mode.""" for zoom_id in self._ids_zoom: self.canvas.mpl_disconnect(zoom_id) self._ids_zoom = [] self.remove_rubberband() if not self._xypress: return last_a = [] for cur_xypress in self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, view = cur_xypress # ignore singular clicks - 5 pixels is a threshold # allows the user to "cancel" a zoom action # by zooming by less than 5 pixels if ((abs(x - lastx) < 5 and self._zoom_mode != "y") or (abs(y - lasty) < 5 and self._zoom_mode != "x")): self._xypress = None self.release(event) self.draw() return # detect twinx,y axes and avoid double zooming twinx, twiny = False, False if last_a: for la in last_a: if a.get_shared_x_axes().joined(a, la): twinx = True if a.get_shared_y_axes().joined(a, la): twiny = True last_a.append(a) if self._button_pressed == 1: direction = 'in' elif self._button_pressed == 3: direction = 'out' else: continue a._set_view_from_bbox((lastx, lasty, x, y), direction, self._zoom_mode, twinx, twiny) self.draw() self._xypress = None self._button_pressed = None self._zoom_mode = None self.push_current() self.release(event) def draw(self): """Redraw the canvases, update the locators.""" for a in self.canvas.figure.get_axes(): xaxis = getattr(a, 'xaxis', None) yaxis = getattr(a, 'yaxis', None) locators = [] if xaxis is not None: locators.append(xaxis.get_major_locator()) locators.append(xaxis.get_minor_locator()) if yaxis is not None: locators.append(yaxis.get_major_locator()) locators.append(yaxis.get_minor_locator()) for loc in locators: loc.refresh() self.canvas.draw_idle() def _update_view(self): """Update the viewlim and position from the view and position stack for each axes. """ nav_info = self._nav_stack() if nav_info is None: return # Retrieve all items at once to avoid any risk of GC deleting an Axes # while in the middle of the loop below. items = list(nav_info.items()) for ax, (view, (pos_orig, pos_active)) in items: ax._set_view(view) # Restore both the original and modified positions ax._set_position(pos_orig, 'original') ax._set_position(pos_active, 'active') self.canvas.draw_idle() def save_figure(self, *args): """Save the current figure.""" raise NotImplementedError def set_cursor(self, cursor): """Set the current cursor to one of the :class:`Cursors` enums values. If required by the backend, this method should trigger an update in the backend event loop after the cursor is set, as this method may be called e.g. before a long-running task during which the GUI is not updated. """ def update(self): """Reset the axes stack.""" self._nav_stack.clear() self.set_history_buttons() def zoom(self, *args): """Activate zoom to rect mode.""" if self._active == 'ZOOM': self._active = None else: self._active = 'ZOOM' if self._idPress is not None: self._idPress = self.canvas.mpl_disconnect(self._idPress) self.mode = '' if self._idRelease is not None: self._idRelease = self.canvas.mpl_disconnect(self._idRelease) self.mode = '' if self._active: self._idPress = self.canvas.mpl_connect('button_press_event', self.press_zoom) self._idRelease = self.canvas.mpl_connect('button_release_event', self.release_zoom) self.mode = 'zoom rect' self.canvas.widgetlock(self) else: self.canvas.widgetlock.release(self) for a in self.canvas.figure.get_axes(): a.set_navigate_mode(self._active) self.set_message(self.mode) def set_history_buttons(self): """Enable or disable the back/forward button.""" class ToolContainerBase(object): """ Base class for all tool containers, e.g. toolbars. Attributes ---------- toolmanager : `ToolManager` The tools with which this `ToolContainer` wants to communicate. """ _icon_extension = '.png' """ Toolcontainer button icon image format extension **String**: Image extension """ def __init__(self, toolmanager): self.toolmanager = toolmanager self.toolmanager.toolmanager_connect('tool_removed_event', self._remove_tool_cbk) def _tool_toggled_cbk(self, event): """ Captures the 'tool_trigger_[name]' This only gets used for toggled tools """ self.toggle_toolitem(event.tool.name, event.tool.toggled) def add_tool(self, tool, group, position=-1): """ Adds a tool to this container Parameters ---------- tool : tool_like The tool to add, see `ToolManager.get_tool`. group : str The name of the group to add this tool to. position : int (optional) The position within the group to place this tool. Defaults to end. """ tool = self.toolmanager.get_tool(tool) image = self._get_image_filename(tool.image) toggle = getattr(tool, 'toggled', None) is not None self.add_toolitem(tool.name, group, position, image, tool.description, toggle) if toggle: self.toolmanager.toolmanager_connect('tool_trigger_%s' % tool.name, self._tool_toggled_cbk) # If initially toggled if tool.toggled: self.toggle_toolitem(tool.name, True) def _remove_tool_cbk(self, event): """Captures the 'tool_removed_event' signal and removes the tool.""" self.remove_toolitem(event.tool.name) def _get_image_filename(self, image): """Find the image based on its name.""" if not image: return None basedir = os.path.join(rcParams['datapath'], 'images') possible_images = ( image, image + self._icon_extension, os.path.join(basedir, image), os.path.join(basedir, image) + self._icon_extension) for fname in possible_images: if os.path.isfile(fname): return fname def trigger_tool(self, name): """ Trigger the tool Parameters ---------- name : string Name (id) of the tool triggered from within the container """ self.toolmanager.trigger_tool(name, sender=self) def add_toolitem(self, name, group, position, image, description, toggle): """ Add a toolitem to the container This method must get implemented per backend The callback associated with the button click event, must be **EXACTLY** `self.trigger_tool(name)` Parameters ---------- name : string Name of the tool to add, this gets used as the tool's ID and as the default label of the buttons group : String Name of the group that this tool belongs to position : Int Position of the tool within its group, if -1 it goes at the End image_file : String Filename of the image for the button or `None` description : String Description of the tool, used for the tooltips toggle : Bool * `True` : The button is a toggle (change the pressed/unpressed state between consecutive clicks) * `False` : The button is a normal button (returns to unpressed state after release) """ raise NotImplementedError def toggle_toolitem(self, name, toggled): """ Toggle the toolitem without firing event Parameters ---------- name : String Id of the tool to toggle toggled : bool Whether to set this tool as toggled or not. """ raise NotImplementedError def remove_toolitem(self, name): """ Remove a toolitem from the `ToolContainer` This method must get implemented per backend Called when `ToolManager` emits a `tool_removed_event` Parameters ---------- name : string Name of the tool to remove """ raise NotImplementedError class StatusbarBase(object): """Base class for the statusbar""" def __init__(self, toolmanager): self.toolmanager = toolmanager self.toolmanager.toolmanager_connect('tool_message_event', self._message_cbk) def _message_cbk(self, event): """Captures the 'tool_message_event' and set the message""" self.set_message(event.message) def set_message(self, s): """ Display a message on toolbar or in status bar Parameters ---------- s : str Message text """ pass class _Backend(object): # A backend can be defined by using the following pattern: # # @_Backend.export # class FooBackend(_Backend): # # override the attributes and methods documented below. # Set to one of {"qt5", "qt4", "gtk3", "wx", "tk", "macosx"} if an # interactive framework is required, or None otherwise. required_interactive_framework = None # `backend_version` may be overridden by the subclass. backend_version = "unknown" # The `FigureCanvas` class must be defined. FigureCanvas = None # For interactive backends, the `FigureManager` class must be overridden. FigureManager = FigureManagerBase # The following methods must be left as None for non-interactive backends. # For interactive backends, `trigger_manager_draw` should be a function # taking a manager as argument and triggering a canvas draw, and `mainloop` # should be a function taking no argument and starting the backend main # loop. trigger_manager_draw = None mainloop = None # The following methods will be automatically defined and exported, but # can be overridden. @classmethod def new_figure_manager(cls, num, *args, **kwargs): """Create a new figure manager instance. """ # This import needs to happen here due to circular imports. from matplotlib.figure import Figure fig_cls = kwargs.pop('FigureClass', Figure) fig = fig_cls(*args, **kwargs) return cls.new_figure_manager_given_figure(num, fig) @classmethod def new_figure_manager_given_figure(cls, num, figure): """Create a new figure manager instance for the given figure. """ canvas = cls.FigureCanvas(figure) manager = cls.FigureManager(canvas, num) return manager @classmethod def draw_if_interactive(cls): if cls.trigger_manager_draw is not None and is_interactive(): manager = Gcf.get_active() if manager: cls.trigger_manager_draw(manager) @classmethod @cbook._make_keyword_only("3.1", "block") def show(cls, block=None): """ Show all figures. `show` blocks by calling `mainloop` if *block* is ``True``, or if it is ``None`` and we are neither in IPython's ``%pylab`` mode, nor in `interactive` mode. """ managers = Gcf.get_all_fig_managers() if not managers: return for manager in managers: # Emits a warning if the backend is non-interactive. manager.canvas.figure.show() if cls.mainloop is None: return if block is None: # Hack: Are we in IPython's pylab mode? from matplotlib import pyplot try: # IPython versions >= 0.10 tack the _needmain attribute onto # pyplot.show, and always set it to False, when in %pylab mode. ipython_pylab = not pyplot.show._needmain except AttributeError: ipython_pylab = False block = not ipython_pylab and not is_interactive() # TODO: The above is a hack to get the WebAgg backend working with # ipython's `%pylab` mode until proper integration is implemented. if get_backend() == "WebAgg": block = True if block: cls.mainloop() # This method is the one actually exporting the required methods. @staticmethod def export(cls): for name in ["required_interactive_framework", "backend_version", "FigureCanvas", "FigureManager", "new_figure_manager", "new_figure_manager_given_figure", "draw_if_interactive", "show"]: setattr(sys.modules[cls.__module__], name, getattr(cls, name)) # For back-compatibility, generate a shim `Show` class. class Show(ShowBase): def mainloop(self): return cls.mainloop() setattr(sys.modules[cls.__module__], "Show", Show) return cls class ShowBase(_Backend): """ Simple base class to generate a show() callable in backends. Subclass must override mainloop() method. """ def __call__(self, block=None): return self.show(block=block)
6816a4f9ee552a96691ff2f262a354c805f8be0462b19ab8b1f784715e39fa3e
""" This module contains a class representing a Type 1 font. This version reads pfa and pfb files and splits them for embedding in pdf files. It also supports SlantFont and ExtendFont transformations, similarly to pdfTeX and friends. There is no support yet for subsetting. Usage:: >>> font = Type1Font(filename) >>> clear_part, encrypted_part, finale = font.parts >>> slanted_font = font.transform({'slant': 0.167}) >>> extended_font = font.transform({'extend': 1.2}) Sources: * Adobe Technical Note #5040, Supporting Downloadable PostScript Language Fonts. * Adobe Type 1 Font Format, Adobe Systems Incorporated, third printing, v1.1, 1993. ISBN 0-201-57044-0. """ import binascii import enum import itertools import re import struct import numpy as np # token types _TokenType = enum.Enum('_TokenType', 'whitespace name string delimiter number') class Type1Font(object): """ A class representing a Type-1 font, for use by backends. Attributes ---------- parts : tuple A 3-tuple of the cleartext part, the encrypted part, and the finale of zeros. prop : Dict[str, Any] A dictionary of font properties. """ __slots__ = ('parts', 'prop') def __init__(self, input): """ Initialize a Type-1 font. *input* can be either the file name of a pfb file or a 3-tuple of already-decoded Type-1 font parts. """ if isinstance(input, tuple) and len(input) == 3: self.parts = input else: with open(input, 'rb') as file: data = self._read(file) self.parts = self._split(data) self._parse() def _read(self, file): """ Read the font from a file, decoding into usable parts. """ rawdata = file.read() if not rawdata.startswith(b'\x80'): return rawdata data = b'' while rawdata: if not rawdata.startswith(b'\x80'): raise RuntimeError('Broken pfb file (expected byte 128, ' 'got %d)' % rawdata[0]) type = rawdata[1] if type in (1, 2): length, = struct.unpack('<i', rawdata[2:6]) segment = rawdata[6:6 + length] rawdata = rawdata[6 + length:] if type == 1: # ASCII text: include verbatim data += segment elif type == 2: # binary data: encode in hexadecimal data += binascii.hexlify(segment) elif type == 3: # end of file break else: raise RuntimeError('Unknown segment type %d in pfb file' % type) return data def _split(self, data): """ Split the Type 1 font into its three main parts. The three parts are: (1) the cleartext part, which ends in a eexec operator; (2) the encrypted part; (3) the fixed part, which contains 512 ASCII zeros possibly divided on various lines, a cleartomark operator, and possibly something else. """ # Cleartext part: just find the eexec and skip whitespace idx = data.index(b'eexec') idx += len(b'eexec') while data[idx] in b' \t\r\n': idx += 1 len1 = idx # Encrypted part: find the cleartomark operator and count # zeros backward idx = data.rindex(b'cleartomark') - 1 zeros = 512 while zeros and data[idx] in b'0' or data[idx] in b'\r\n': if data[idx] in b'0': zeros -= 1 idx -= 1 if zeros: raise RuntimeError('Insufficiently many zeros in Type 1 font') # Convert encrypted part to binary (if we read a pfb file, we may end # up converting binary to hexadecimal to binary again; but if we read # a pfa file, this part is already in hex, and I am not quite sure if # even the pfb format guarantees that it will be in binary). binary = binascii.unhexlify(data[len1:idx+1]) return data[:len1], binary, data[idx+1:] _whitespace_re = re.compile(br'[\0\t\r\014\n ]+') _token_re = re.compile(br'/{0,2}[^]\0\t\r\v\n ()<>{}/%[]+') _comment_re = re.compile(br'%[^\r\n\v]*') _instring_re = re.compile(br'[()\\]') @classmethod def _tokens(cls, text): """ A PostScript tokenizer. Yield (token, value) pairs such as (_TokenType.whitespace, ' ') or (_TokenType.name, '/Foobar'). """ pos = 0 while pos < len(text): match = (cls._comment_re.match(text[pos:]) or cls._whitespace_re.match(text[pos:])) if match: yield (_TokenType.whitespace, match.group()) pos += match.end() elif text[pos] == b'(': start = pos pos += 1 depth = 1 while depth: match = cls._instring_re.search(text[pos:]) if match is None: return pos += match.end() if match.group() == b'(': depth += 1 elif match.group() == b')': depth -= 1 else: # a backslash - skip the next character pos += 1 yield (_TokenType.string, text[start:pos]) elif text[pos:pos + 2] in (b'<<', b'>>'): yield (_TokenType.delimiter, text[pos:pos + 2]) pos += 2 elif text[pos] == b'<': start = pos pos += text[pos:].index(b'>') yield (_TokenType.string, text[start:pos]) else: match = cls._token_re.match(text[pos:]) if match: try: float(match.group()) yield (_TokenType.number, match.group()) except ValueError: yield (_TokenType.name, match.group()) pos += match.end() else: yield (_TokenType.delimiter, text[pos:pos + 1]) pos += 1 def _parse(self): """ Find the values of various font properties. This limited kind of parsing is described in Chapter 10 "Adobe Type Manager Compatibility" of the Type-1 spec. """ # Start with reasonable defaults prop = {'weight': 'Regular', 'ItalicAngle': 0.0, 'isFixedPitch': False, 'UnderlinePosition': -100, 'UnderlineThickness': 50} filtered = ((token, value) for token, value in self._tokens(self.parts[0]) if token is not _TokenType.whitespace) # The spec calls this an ASCII format; in Python 2.x we could # just treat the strings and names as opaque bytes but let's # turn them into proper Unicode, and be lenient in case of high bytes. convert = lambda x: x.decode('ascii', 'replace') for token, value in filtered: if token is _TokenType.name and value.startswith(b'/'): key = convert(value[1:]) token, value = next(filtered) if token is _TokenType.name: if value in (b'true', b'false'): value = value == b'true' else: value = convert(value.lstrip(b'/')) elif token is _TokenType.string: value = convert(value.lstrip(b'(').rstrip(b')')) elif token is _TokenType.number: if b'.' in value: value = float(value) else: value = int(value) else: # more complicated value such as an array value = None if key != 'FontInfo' and value is not None: prop[key] = value # Fill in the various *Name properties if 'FontName' not in prop: prop['FontName'] = (prop.get('FullName') or prop.get('FamilyName') or 'Unknown') if 'FullName' not in prop: prop['FullName'] = prop['FontName'] if 'FamilyName' not in prop: extras = ('(?i)([ -](regular|plain|italic|oblique|(semi)?bold|' '(ultra)?light|extra|condensed))+$') prop['FamilyName'] = re.sub(extras, '', prop['FullName']) self.prop = prop @classmethod def _transformer(cls, tokens, slant, extend): def fontname(name): result = name if slant: result += b'_Slant_%d' % int(1000 * slant) if extend != 1.0: result += b'_Extend_%d' % int(1000 * extend) return result def italicangle(angle): return b'%a' % (float(angle) - np.arctan(slant) / np.pi * 180) def fontmatrix(array): array = array.lstrip(b'[').rstrip(b']').split() array = [float(x) for x in array] oldmatrix = np.eye(3, 3) oldmatrix[0:3, 0] = array[::2] oldmatrix[0:3, 1] = array[1::2] modifier = np.array([[extend, 0, 0], [slant, 1, 0], [0, 0, 1]]) newmatrix = np.dot(modifier, oldmatrix) array[::2] = newmatrix[0:3, 0] array[1::2] = newmatrix[0:3, 1] # Not directly using `b'%a' % x for x in array` for now as that # produces longer reprs on numpy<1.14, causing test failures. as_string = '[' + ' '.join(str(x) for x in array) + ']' return as_string.encode('latin-1') def replace(fun): def replacer(tokens): token, value = next(tokens) # name, e.g., /FontMatrix yield value token, value = next(tokens) # possible whitespace while token is _TokenType.whitespace: yield value token, value = next(tokens) if value != b'[': # name/number/etc. yield fun(value) else: # array, e.g., [1 2 3] result = b'' while value != b']': result += value token, value = next(tokens) result += value yield fun(result) return replacer def suppress(tokens): for x in itertools.takewhile(lambda x: x[1] != b'def', tokens): pass yield b'' table = {b'/FontName': replace(fontname), b'/ItalicAngle': replace(italicangle), b'/FontMatrix': replace(fontmatrix), b'/UniqueID': suppress} for token, value in tokens: if token is _TokenType.name and value in table: yield from table[value]( itertools.chain([(token, value)], tokens)) else: yield value def transform(self, effects): """ Transform the font by slanting or extending. *effects* should be a dict where ``effects['slant']`` is the tangent of the angle that the font is to be slanted to the right (so negative values slant to the left) and ``effects['extend']`` is the multiplier by which the font is to be extended (so values less than 1.0 condense). Returns a new :class:`Type1Font` object. """ tokenizer = self._tokens(self.parts[0]) transformed = self._transformer(tokenizer, slant=effects.get('slant', 0.0), extend=effects.get('extend', 1.0)) return Type1Font((b"".join(transformed), self.parts[1], self.parts[2]))
3d70fcdd2f3af5799320c654014ee4d08e9f143ff60398301610ddb90f7b3ae3
""" Support for plotting vector fields. Presently this contains Quiver and Barb. Quiver plots an arrow in the direction of the vector, with the size of the arrow related to the magnitude of the vector. Barbs are like quiver in that they point along a vector, but the magnitude of the vector is given schematically by the presence of barbs or flags on the barb. This will also become a home for things such as standard deviation ellipses, which can and will be derived very easily from the Quiver code. """ import math import weakref import numpy as np from numpy import ma from matplotlib import cbook, docstring, font_manager import matplotlib.artist as martist import matplotlib.collections as mcollections from matplotlib.patches import CirclePolygon import matplotlib.text as mtext import matplotlib.transforms as transforms _quiver_doc = """ Plot a 2-D field of arrows. Call signatures:: quiver(U, V, **kw) quiver(U, V, C, **kw) quiver(X, Y, U, V, **kw) quiver(X, Y, U, V, C, **kw) *U* and *V* are the arrow data, *X* and *Y* set the location of the arrows, and *C* sets the color of the arrows. These arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y* are absent, they will be generated as a uniform grid. If *U* and *V* are 2-D arrays and *X* and *Y* are 1-D, and if ``len(X)`` and ``len(Y)`` match the column and row dimensions of *U*, then *X* and *Y* will be expanded with :func:`numpy.meshgrid`. The default settings auto-scales the length of the arrows to a reasonable size. To change this behavior see the *scale* and *scale_units* kwargs. The defaults give a slightly swept-back arrow; to make the head a triangle, make *headaxislength* the same as *headlength*. To make the arrow more pointed, reduce *headwidth* or increase *headlength* and *headaxislength*. To make the head smaller relative to the shaft, scale down all the head parameters. You will probably do best to leave minshaft alone. *linewidths* and *edgecolors* can be used to customize the arrow outlines. Parameters ---------- X : 1D or 2D array, sequence, optional The x coordinates of the arrow locations Y : 1D or 2D array, sequence, optional The y coordinates of the arrow locations U : 1D or 2D array or masked array, sequence The x components of the arrow vectors V : 1D or 2D array or masked array, sequence The y components of the arrow vectors C : 1D or 2D array, sequence, optional The arrow colors units : [ 'width' | 'height' | 'dots' | 'inches' | 'x' | 'y' | 'xy' ] The arrow dimensions (except for *length*) are measured in multiples of this unit. 'width' or 'height': the width or height of the axis 'dots' or 'inches': pixels or inches, based on the figure dpi 'x', 'y', or 'xy': respectively *X*, *Y*, or :math:`\\sqrt{X^2 + Y^2}` in data units The arrows scale differently depending on the units. For 'x' or 'y', the arrows get larger as one zooms in; for other units, the arrow size is independent of the zoom state. For 'width or 'height', the arrow size increases with the width and height of the axes, respectively, when the window is resized; for 'dots' or 'inches', resizing does not change the arrows. angles : [ 'uv' | 'xy' ], array, optional Method for determining the angle of the arrows. Default is 'uv'. 'uv': the arrow axis aspect ratio is 1 so that if *U*==*V* the orientation of the arrow on the plot is 45 degrees counter-clockwise from the horizontal axis (positive to the right). 'xy': arrows point from (x,y) to (x+u, y+v). Use this for plotting a gradient field, for example. Alternatively, arbitrary angles may be specified as an array of values in degrees, counter-clockwise from the horizontal axis. Note: inverting a data axis will correspondingly invert the arrows only with ``angles='xy'``. scale : None, float, optional Number of data units per arrow length unit, e.g., m/s per plot width; a smaller scale parameter makes the arrow longer. Default is *None*. If *None*, a simple autoscaling algorithm is used, based on the average vector length and the number of vectors. The arrow length unit is given by the *scale_units* parameter scale_units : [ 'width' | 'height' | 'dots' | 'inches' | 'x' | 'y' | 'xy' ], \ None, optional If the *scale* kwarg is *None*, the arrow length unit. Default is *None*. e.g. *scale_units* is 'inches', *scale* is 2.0, and ``(u,v) = (1,0)``, then the vector will be 0.5 inches long. If *scale_units* is 'width'/'height', then the vector will be half the width/height of the axes. If *scale_units* is 'x' then the vector will be 0.5 x-axis units. To plot vectors in the x-y plane, with u and v having the same units as x and y, use ``angles='xy', scale_units='xy', scale=1``. width : scalar, optional Shaft width in arrow units; default depends on choice of units, above, and number of vectors; a typical starting value is about 0.005 times the width of the plot. headwidth : scalar, optional Head width as multiple of shaft width, default is 3 headlength : scalar, optional Head length as multiple of shaft width, default is 5 headaxislength : scalar, optional Head length at shaft intersection, default is 4.5 minshaft : scalar, optional Length below which arrow scales, in units of head length. Do not set this to less than 1, or small arrows will look terrible! Default is 1 minlength : scalar, optional Minimum length as a multiple of shaft width; if an arrow length is less than this, plot a dot (hexagon) of this diameter instead. Default is 1. pivot : [ 'tail' | 'mid' | 'middle' | 'tip' ], optional The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name *pivot*. color : [ color | color sequence ], optional This is a synonym for the :class:`~matplotlib.collections.PolyCollection` facecolor kwarg. If *C* has been set, *color* has no effect. Notes ----- Additional :class:`~matplotlib.collections.PolyCollection` keyword arguments: %(PolyCollection)s See Also -------- quiverkey : Add a key to a quiver plot """ % docstring.interpd.params _quiverkey_doc = """ Add a key to a quiver plot. Call signature:: quiverkey(Q, X, Y, U, label, **kw) Arguments: *Q*: The Quiver instance returned by a call to quiver. *X*, *Y*: The location of the key; additional explanation follows. *U*: The length of the key *label*: A string with the length and units of the key Keyword arguments: *angle* = 0 The angle of the key arrow. Measured in degrees anti-clockwise from the x-axis. *coordinates* = [ 'axes' | 'figure' | 'data' | 'inches' ] Coordinate system and units for *X*, *Y*: 'axes' and 'figure' are normalized coordinate systems with 0,0 in the lower left and 1,1 in the upper right; 'data' are the axes data coordinates (used for the locations of the vectors in the quiver plot itself); 'inches' is position in the figure in inches, with 0,0 at the lower left corner. *color*: overrides face and edge colors from *Q*. *labelpos* = [ 'N' | 'S' | 'E' | 'W' ] Position the label above, below, to the right, to the left of the arrow, respectively. *labelsep*: Distance in inches between the arrow and the label. Default is 0.1 *labelcolor*: defaults to default :class:`~matplotlib.text.Text` color. *fontproperties*: A dictionary with keyword arguments accepted by the :class:`~matplotlib.font_manager.FontProperties` initializer: *family*, *style*, *variant*, *size*, *weight* Any additional keyword arguments are used to override vector properties taken from *Q*. The positioning of the key depends on *X*, *Y*, *coordinates*, and *labelpos*. If *labelpos* is 'N' or 'S', *X*, *Y* give the position of the middle of the key arrow. If *labelpos* is 'E', *X*, *Y* positions the head, and if *labelpos* is 'W', *X*, *Y* positions the tail; in either of these two cases, *X*, *Y* is somewhere in the middle of the arrow+label key object. """ class QuiverKey(martist.Artist): """ Labelled arrow for use as a quiver plot scale key.""" halign = {'N': 'center', 'S': 'center', 'E': 'left', 'W': 'right'} valign = {'N': 'bottom', 'S': 'top', 'E': 'center', 'W': 'center'} pivot = {'N': 'middle', 'S': 'middle', 'E': 'tip', 'W': 'tail'} def __init__(self, Q, X, Y, U, label, *, angle=0, coordinates='axes', color=None, labelsep=0.1, labelpos='N', labelcolor=None, fontproperties=None, **kw): martist.Artist.__init__(self) self.Q = Q self.X = X self.Y = Y self.U = U self.angle = angle self.coord = coordinates self.color = color self.label = label self._labelsep_inches = labelsep self.labelsep = (self._labelsep_inches * Q.ax.figure.dpi) # try to prevent closure over the real self weak_self = weakref.ref(self) def on_dpi_change(fig): self_weakref = weak_self() if self_weakref is not None: self_weakref.labelsep = (self_weakref._labelsep_inches*fig.dpi) self_weakref._initialized = False # simple brute force update # works because _init is # called at the start of # draw. self._cid = Q.ax.figure.callbacks.connect('dpi_changed', on_dpi_change) self.labelpos = labelpos self.labelcolor = labelcolor self.fontproperties = fontproperties or dict() self.kw = kw _fp = self.fontproperties # boxprops = dict(facecolor='red') self.text = mtext.Text( text=label, # bbox=boxprops, horizontalalignment=self.halign[self.labelpos], verticalalignment=self.valign[self.labelpos], fontproperties=font_manager.FontProperties(**_fp)) if self.labelcolor is not None: self.text.set_color(self.labelcolor) self._initialized = False self.zorder = Q.zorder + 0.1 def remove(self): """ Overload the remove method """ self.Q.ax.figure.callbacks.disconnect(self._cid) self._cid = None # pass the remove call up the stack martist.Artist.remove(self) __init__.__doc__ = _quiverkey_doc def _init(self): if True: # not self._initialized: if not self.Q._initialized: self.Q._init() self._set_transform() _pivot = self.Q.pivot self.Q.pivot = self.pivot[self.labelpos] # Hack: save and restore the Umask _mask = self.Q.Umask self.Q.Umask = ma.nomask u = self.U * np.cos(np.radians(self.angle)) v = self.U * np.sin(np.radians(self.angle)) angle = self.Q.angles if isinstance(self.Q.angles, str) else 'uv' self.verts = self.Q._make_verts( np.array([u]), np.array([v]), angle) self.Q.Umask = _mask self.Q.pivot = _pivot kw = self.Q.polykw kw.update(self.kw) self.vector = mcollections.PolyCollection( self.verts, offsets=[(self.X, self.Y)], transOffset=self.get_transform(), **kw) if self.color is not None: self.vector.set_color(self.color) self.vector.set_transform(self.Q.get_transform()) self.vector.set_figure(self.get_figure()) self._initialized = True def _text_x(self, x): if self.labelpos == 'E': return x + self.labelsep elif self.labelpos == 'W': return x - self.labelsep else: return x def _text_y(self, y): if self.labelpos == 'N': return y + self.labelsep elif self.labelpos == 'S': return y - self.labelsep else: return y @martist.allow_rasterization def draw(self, renderer): self._init() self.vector.draw(renderer) x, y = self.get_transform().transform_point((self.X, self.Y)) self.text.set_x(self._text_x(x)) self.text.set_y(self._text_y(y)) self.text.draw(renderer) self.stale = False def _set_transform(self): if self.coord == 'data': self.set_transform(self.Q.ax.transData) elif self.coord == 'axes': self.set_transform(self.Q.ax.transAxes) elif self.coord == 'figure': self.set_transform(self.Q.ax.figure.transFigure) elif self.coord == 'inches': self.set_transform(self.Q.ax.figure.dpi_scale_trans) else: raise ValueError('unrecognized coordinates') def set_figure(self, fig): martist.Artist.set_figure(self, fig) self.text.set_figure(fig) def contains(self, mouseevent): # Maybe the dictionary should allow one to # distinguish between a text hit and a vector hit. if (self.text.contains(mouseevent)[0] or self.vector.contains(mouseevent)[0]): return True, {} return False, {} quiverkey_doc = _quiverkey_doc # This is a helper function that parses out the various combination of # arguments for doing colored vector plots. Pulling it out here # allows both Quiver and Barbs to use it def _parse_args(*args): X = Y = U = V = C = None args = list(args) # The use of atleast_1d allows for handling scalar arguments while also # keeping masked arrays if len(args) == 3 or len(args) == 5: C = np.atleast_1d(args.pop(-1)) V = np.atleast_1d(args.pop(-1)) U = np.atleast_1d(args.pop(-1)) cbook._check_not_matrix(U=U, V=V, C=C) if U.ndim == 1: nr, nc = 1, U.shape[0] else: nr, nc = U.shape if len(args) == 2: # remaining after removing U,V,C X, Y = [np.array(a).ravel() for a in args] if len(X) == nc and len(Y) == nr: X, Y = [a.ravel() for a in np.meshgrid(X, Y)] else: indexgrid = np.meshgrid(np.arange(nc), np.arange(nr)) X, Y = [np.ravel(a) for a in indexgrid] return X, Y, U, V, C def _check_consistent_shapes(*arrays): all_shapes = {a.shape for a in arrays} if len(all_shapes) != 1: raise ValueError('The shapes of the passed in arrays do not match') class Quiver(mcollections.PolyCollection): """ Specialized PolyCollection for arrows. The only API method is set_UVC(), which can be used to change the size, orientation, and color of the arrows; their locations are fixed when the class is instantiated. Possibly this method will be useful in animations. Much of the work in this class is done in the draw() method so that as much information as possible is available about the plot. In subsequent draw() calls, recalculation is limited to things that might have changed, so there should be no performance penalty from putting the calculations in the draw() method. """ _PIVOT_VALS = ('tail', 'middle', 'tip') @docstring.Substitution(_quiver_doc) def __init__(self, ax, *args, scale=None, headwidth=3, headlength=5, headaxislength=4.5, minshaft=1, minlength=1, units='width', scale_units=None, angles='uv', width=None, color='k', pivot='tail', **kw): """ The constructor takes one required argument, an Axes instance, followed by the args and kwargs described by the following pyplot interface documentation: %s """ self.ax = ax X, Y, U, V, C = _parse_args(*args) self.X = X self.Y = Y self.XY = np.column_stack((X, Y)) self.N = len(X) self.scale = scale self.headwidth = headwidth self.headlength = float(headlength) self.headaxislength = headaxislength self.minshaft = minshaft self.minlength = minlength self.units = units self.scale_units = scale_units self.angles = angles self.width = width if pivot.lower() == 'mid': pivot = 'middle' self.pivot = pivot.lower() cbook._check_in_list(self._PIVOT_VALS, pivot=self.pivot) self.transform = kw.pop('transform', ax.transData) kw.setdefault('facecolors', color) kw.setdefault('linewidths', (0,)) mcollections.PolyCollection.__init__(self, [], offsets=self.XY, transOffset=self.transform, closed=False, **kw) self.polykw = kw self.set_UVC(U, V, C) self._initialized = False # try to prevent closure over the real self weak_self = weakref.ref(self) def on_dpi_change(fig): self_weakref = weak_self() if self_weakref is not None: self_weakref._new_UV = True # vertices depend on width, span # which in turn depend on dpi self_weakref._initialized = False # simple brute force update # works because _init is # called at the start of # draw. self._cid = self.ax.figure.callbacks.connect('dpi_changed', on_dpi_change) @cbook.deprecated("3.1", alternative="get_facecolor()") @property def color(self): return self.get_facecolor() @cbook.deprecated("3.1") @property def keyvec(self): return None @cbook.deprecated("3.1") @property def keytext(self): return None def remove(self): """ Overload the remove method """ # disconnect the call back self.ax.figure.callbacks.disconnect(self._cid) self._cid = None # pass the remove call up the stack mcollections.PolyCollection.remove(self) def _init(self): """ Initialization delayed until first draw; allow time for axes setup. """ # It seems that there are not enough event notifications # available to have this work on an as-needed basis at present. if True: # not self._initialized: trans = self._set_transform() ax = self.ax sx, sy = trans.inverted().transform_point( (ax.bbox.width, ax.bbox.height)) self.span = sx if self.width is None: sn = np.clip(math.sqrt(self.N), 8, 25) self.width = 0.06 * self.span / sn # _make_verts sets self.scale if not already specified if not self._initialized and self.scale is None: self._make_verts(self.U, self.V, self.angles) self._initialized = True def get_datalim(self, transData): trans = self.get_transform() transOffset = self.get_offset_transform() full_transform = (trans - transData) + (transOffset - transData) XY = full_transform.transform(self.XY) bbox = transforms.Bbox.null() bbox.update_from_data_xy(XY, ignore=True) return bbox @martist.allow_rasterization def draw(self, renderer): self._init() verts = self._make_verts(self.U, self.V, self.angles) self.set_verts(verts, closed=False) self._new_UV = False mcollections.PolyCollection.draw(self, renderer) self.stale = False def set_UVC(self, U, V, C=None): # We need to ensure we have a copy, not a reference # to an array that might change before draw(). U = ma.masked_invalid(U, copy=True).ravel() V = ma.masked_invalid(V, copy=True).ravel() mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True) if C is not None: C = ma.masked_invalid(C, copy=True).ravel() mask = ma.mask_or(mask, C.mask, copy=False, shrink=True) if mask is ma.nomask: C = C.filled() else: C = ma.array(C, mask=mask, copy=False) self.U = U.filled(1) self.V = V.filled(1) self.Umask = mask if C is not None: self.set_array(C) self._new_UV = True self.stale = True def _dots_per_unit(self, units): """ Return a scale factor for converting from units to pixels """ ax = self.ax if units in ('x', 'y', 'xy'): if units == 'x': dx0 = ax.viewLim.width dx1 = ax.bbox.width elif units == 'y': dx0 = ax.viewLim.height dx1 = ax.bbox.height else: # 'xy' is assumed dxx0 = ax.viewLim.width dxx1 = ax.bbox.width dyy0 = ax.viewLim.height dyy1 = ax.bbox.height dx1 = np.hypot(dxx1, dyy1) dx0 = np.hypot(dxx0, dyy0) dx = dx1 / dx0 else: if units == 'width': dx = ax.bbox.width elif units == 'height': dx = ax.bbox.height elif units == 'dots': dx = 1.0 elif units == 'inches': dx = ax.figure.dpi else: raise ValueError('unrecognized units') return dx def _set_transform(self): """ Sets the PolygonCollection transform to go from arrow width units to pixels. """ dx = self._dots_per_unit(self.units) self._trans_scale = dx # pixels per arrow width unit trans = transforms.Affine2D().scale(dx) self.set_transform(trans) return trans def _angles_lengths(self, U, V, eps=1): xy = self.ax.transData.transform(self.XY) uv = np.column_stack((U, V)) xyp = self.ax.transData.transform(self.XY + eps * uv) dxy = xyp - xy angles = np.arctan2(dxy[:, 1], dxy[:, 0]) lengths = np.hypot(*dxy.T) / eps return angles, lengths def _make_verts(self, U, V, angles): uv = (U + V * 1j) str_angles = angles if isinstance(angles, str) else '' if str_angles == 'xy' and self.scale_units == 'xy': # Here eps is 1 so that if we get U, V by diffing # the X, Y arrays, the vectors will connect the # points, regardless of the axis scaling (including log). angles, lengths = self._angles_lengths(U, V, eps=1) elif str_angles == 'xy' or self.scale_units == 'xy': # Calculate eps based on the extents of the plot # so that we don't end up with roundoff error from # adding a small number to a large. eps = np.abs(self.ax.dataLim.extents).max() * 0.001 angles, lengths = self._angles_lengths(U, V, eps=eps) if str_angles and self.scale_units == 'xy': a = lengths else: a = np.abs(uv) if self.scale is None: sn = max(10, math.sqrt(self.N)) if self.Umask is not ma.nomask: amean = a[~self.Umask].mean() else: amean = a.mean() # crude auto-scaling # scale is typical arrow length as a multiple of the arrow width scale = 1.8 * amean * sn / self.span if self.scale_units is None: if self.scale is None: self.scale = scale widthu_per_lenu = 1.0 else: if self.scale_units == 'xy': dx = 1 else: dx = self._dots_per_unit(self.scale_units) widthu_per_lenu = dx / self._trans_scale if self.scale is None: self.scale = scale * widthu_per_lenu length = a * (widthu_per_lenu / (self.scale * self.width)) X, Y = self._h_arrows(length) if str_angles == 'xy': theta = angles elif str_angles == 'uv': theta = np.angle(uv) else: theta = ma.masked_invalid(np.deg2rad(angles)).filled(0) theta = theta.reshape((-1, 1)) # for broadcasting xy = (X + Y * 1j) * np.exp(1j * theta) * self.width XY = np.stack((xy.real, xy.imag), axis=2) if self.Umask is not ma.nomask: XY = ma.array(XY) XY[self.Umask] = ma.masked # This might be handled more efficiently with nans, given # that nans will end up in the paths anyway. return XY def _h_arrows(self, length): """ length is in arrow width units """ # It might be possible to streamline the code # and speed it up a bit by using complex (x,y) # instead of separate arrays; but any gain would be slight. minsh = self.minshaft * self.headlength N = len(length) length = length.reshape(N, 1) # This number is chosen based on when pixel values overflow in Agg # causing rendering errors # length = np.minimum(length, 2 ** 16) np.clip(length, 0, 2 ** 16, out=length) # x, y: normal horizontal arrow x = np.array([0, -self.headaxislength, -self.headlength, 0], np.float64) x = x + np.array([0, 1, 1, 1]) * length y = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64) y = np.repeat(y[np.newaxis, :], N, axis=0) # x0, y0: arrow without shaft, for short vectors x0 = np.array([0, minsh - self.headaxislength, minsh - self.headlength, minsh], np.float64) y0 = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64) ii = [0, 1, 2, 3, 2, 1, 0, 0] X = x[:, ii] Y = y[:, ii] Y[:, 3:-1] *= -1 X0 = x0[ii] Y0 = y0[ii] Y0[3:-1] *= -1 shrink = length / minsh if minsh != 0. else 0. X0 = shrink * X0[np.newaxis, :] Y0 = shrink * Y0[np.newaxis, :] short = np.repeat(length < minsh, 8, axis=1) # Now select X0, Y0 if short, otherwise X, Y np.copyto(X, X0, where=short) np.copyto(Y, Y0, where=short) if self.pivot == 'middle': X -= 0.5 * X[:, 3, np.newaxis] elif self.pivot == 'tip': X = X - X[:, 3, np.newaxis] # numpy bug? using -= does not # work here unless we multiply # by a float first, as with 'mid'. elif self.pivot != 'tail': raise ValueError(("Quiver.pivot must have value in {{'middle', " "'tip', 'tail'}} not {0}").format(self.pivot)) tooshort = length < self.minlength if tooshort.any(): # Use a heptagonal dot: th = np.arange(0, 8, 1, np.float64) * (np.pi / 3.0) x1 = np.cos(th) * self.minlength * 0.5 y1 = np.sin(th) * self.minlength * 0.5 X1 = np.repeat(x1[np.newaxis, :], N, axis=0) Y1 = np.repeat(y1[np.newaxis, :], N, axis=0) tooshort = np.repeat(tooshort, 8, 1) np.copyto(X, X1, where=tooshort) np.copyto(Y, Y1, where=tooshort) # Mask handling is deferred to the caller, _make_verts. return X, Y quiver_doc = _quiver_doc _barbs_doc = r""" Plot a 2-D field of barbs. Call signatures:: barb(U, V, **kw) barb(U, V, C, **kw) barb(X, Y, U, V, **kw) barb(X, Y, U, V, C, **kw) Arguments: *X*, *Y*: The x and y coordinates of the barb locations (default is head of barb; see *pivot* kwarg) *U*, *V*: Give the x and y components of the barb shaft *C*: An optional array used to map colors to the barbs All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y* are absent, they will be generated as a uniform grid. If *U* and *V* are 2-D arrays but *X* and *Y* are 1-D, and if ``len(X)`` and ``len(Y)`` match the column and row dimensions of *U*, then *X* and *Y* will be expanded with :func:`numpy.meshgrid`. *U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not supported at present. Keyword arguments: *length*: Length of the barb in points; the other parts of the barb are scaled against this. Default is 7. *pivot*: [ 'tip' | 'middle' | float ] The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name *pivot*. Default is 'tip'. Can also be a number, which shifts the start of the barb that many points from the origin. *barbcolor*: [ color | color sequence ] Specifies the color all parts of the barb except any flags. This parameter is analogous to the *edgecolor* parameter for polygons, which can be used instead. However this parameter will override facecolor. *flagcolor*: [ color | color sequence ] Specifies the color of any flags on the barb. This parameter is analogous to the *facecolor* parameter for polygons, which can be used instead. However this parameter will override facecolor. If this is not set (and *C* has not either) then *flagcolor* will be set to match *barbcolor* so that the barb has a uniform color. If *C* has been set, *flagcolor* has no effect. *sizes*: A dictionary of coefficients specifying the ratio of a given feature to the length of the barb. Only those values one wishes to override need to be included. These features include: - 'spacing' - space between features (flags, full/half barbs) - 'height' - height (distance from shaft to top) of a flag or full barb - 'width' - width of a flag, twice the width of a full barb - 'emptybarb' - radius of the circle used for low magnitudes *fill_empty*: A flag on whether the empty barbs (circles) that are drawn should be filled with the flag color. If they are not filled, they will be drawn such that no color is applied to the center. Default is False *rounding*: A flag to indicate whether the vector magnitude should be rounded when allocating barb components. If True, the magnitude is rounded to the nearest multiple of the half-barb increment. If False, the magnitude is simply truncated to the next lowest multiple. Default is True *barb_increments*: A dictionary of increments specifying values to associate with different parts of the barb. Only those values one wishes to override need to be included. - 'half' - half barbs (Default is 5) - 'full' - full barbs (Default is 10) - 'flag' - flags (default is 50) *flip_barb*: Either a single boolean flag or an array of booleans. Single boolean indicates whether the lines and flags should point opposite to normal for all barbs. An array (which should be the same size as the other data arrays) indicates whether to flip for each individual barb. Normal behavior is for the barbs and lines to point right (comes from wind barbs having these features point towards low pressure in the Northern Hemisphere.) Default is False Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observations, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows, which give vector magnitude by the length of the arrow, the barbs give more quantitative information about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude, as show schematically below:: : /\ \\ : / \ \\ : / \ \ \\ : / \ \ \\ : ------------------------------ .. note the double \\ at the end of each line to make the figure .. render correctly The largest increment is given by a triangle (or "flag"). After those come full lines (barbs). The smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5. linewidths and edgecolors can be used to customize the barb. Additional :class:`~matplotlib.collections.PolyCollection` keyword arguments: %(PolyCollection)s """ % docstring.interpd.params docstring.interpd.update(barbs_doc=_barbs_doc) class Barbs(mcollections.PolyCollection): ''' Specialized PolyCollection for barbs. The only API method is :meth:`set_UVC`, which can be used to change the size, orientation, and color of the arrows. Locations are changed using the :meth:`set_offsets` collection method. Possibly this method will be useful in animations. There is one internal function :meth:`_find_tails` which finds exactly what should be put on the barb given the vector magnitude. From there :meth:`_make_barbs` is used to find the vertices of the polygon to represent the barb based on this information. ''' # This may be an abuse of polygons here to render what is essentially maybe # 1 triangle and a series of lines. It works fine as far as I can tell # however. @docstring.interpd def __init__(self, ax, *args, pivot='tip', length=7, barbcolor=None, flagcolor=None, sizes=None, fill_empty=False, barb_increments=None, rounding=True, flip_barb=False, **kw): """ The constructor takes one required argument, an Axes instance, followed by the args and kwargs described by the following pyplot interface documentation: %(barbs_doc)s """ self.sizes = sizes or dict() self.fill_empty = fill_empty self.barb_increments = barb_increments or dict() self.rounding = rounding self.flip = flip_barb transform = kw.pop('transform', ax.transData) self._pivot = pivot self._length = length barbcolor = barbcolor flagcolor = flagcolor # Flagcolor and barbcolor provide convenience parameters for # setting the facecolor and edgecolor, respectively, of the barb # polygon. We also work here to make the flag the same color as the # rest of the barb by default if None in (barbcolor, flagcolor): kw['edgecolors'] = 'face' if flagcolor: kw['facecolors'] = flagcolor elif barbcolor: kw['facecolors'] = barbcolor else: # Set to facecolor passed in or default to black kw.setdefault('facecolors', 'k') else: kw['edgecolors'] = barbcolor kw['facecolors'] = flagcolor # Explicitly set a line width if we're not given one, otherwise # polygons are not outlined and we get no barbs if 'linewidth' not in kw and 'lw' not in kw: kw['linewidth'] = 1 # Parse out the data arrays from the various configurations supported x, y, u, v, c = _parse_args(*args) self.x = x self.y = y xy = np.column_stack((x, y)) # Make a collection barb_size = self._length ** 2 / 4 # Empirically determined mcollections.PolyCollection.__init__(self, [], (barb_size,), offsets=xy, transOffset=transform, **kw) self.set_transform(transforms.IdentityTransform()) self.set_UVC(u, v, c) def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50): ''' Find how many of each of the tail pieces is necessary. Flag specifies the increment for a flag, barb for a full barb, and half for half a barb. Mag should be the magnitude of a vector (i.e., >= 0). This returns a tuple of: (*number of flags*, *number of barbs*, *half_flag*, *empty_flag*) *half_flag* is a boolean whether half of a barb is needed, since there should only ever be one half on a given barb. *empty_flag* flag is an array of flags to easily tell if a barb is empty (too low to plot any barbs/flags. ''' # If rounding, round to the nearest multiple of half, the smallest # increment if rounding: mag = half * (mag / half + 0.5).astype(int) num_flags = np.floor(mag / flag).astype(int) mag = mag % flag num_barb = np.floor(mag / full).astype(int) mag = mag % full half_flag = mag >= half empty_flag = ~(half_flag | (num_flags > 0) | (num_barb > 0)) return num_flags, num_barb, half_flag, empty_flag def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length, pivot, sizes, fill_empty, flip): ''' This function actually creates the wind barbs. *u* and *v* are components of the vector in the *x* and *y* directions, respectively. *nflags*, *nbarbs*, and *half_barb*, empty_flag* are, *respectively, the number of flags, number of barbs, flag for *half a barb, and flag for empty barb, ostensibly obtained *from :meth:`_find_tails`. *length* is the length of the barb staff in points. *pivot* specifies the point on the barb around which the entire barb should be rotated. Right now, valid options are 'tip' and 'middle'. Can also be a number, which shifts the start of the barb that many points from the origin. *sizes* is a dictionary of coefficients specifying the ratio of a given feature to the length of the barb. These features include: - *spacing*: space between features (flags, full/half barbs) - *height*: distance from shaft of top of a flag or full barb - *width* - width of a flag, twice the width of a full barb - *emptybarb* - radius of the circle used for low magnitudes *fill_empty* specifies whether the circle representing an empty barb should be filled or not (this changes the drawing of the polygon). *flip* is a flag indicating whether the features should be flipped to the other side of the barb (useful for winds in the southern hemisphere). This function returns list of arrays of vertices, defining a polygon for each of the wind barbs. These polygons have been rotated to properly align with the vector direction. ''' # These control the spacing and size of barb elements relative to the # length of the shaft spacing = length * sizes.get('spacing', 0.125) full_height = length * sizes.get('height', 0.4) full_width = length * sizes.get('width', 0.25) empty_rad = length * sizes.get('emptybarb', 0.15) # Controls y point where to pivot the barb. pivot_points = dict(tip=0.0, middle=-length / 2.) # Check for flip if flip: full_height = -full_height endx = 0.0 try: endy = float(pivot) except ValueError: endy = pivot_points[pivot.lower()] # Get the appropriate angle for the vector components. The offset is # due to the way the barb is initially drawn, going down the y-axis. # This makes sense in a meteorological mode of thinking since there 0 # degrees corresponds to north (the y-axis traditionally) angles = -(ma.arctan2(v, u) + np.pi / 2) # Used for low magnitude. We just get the vertices, so if we make it # out here, it can be reused. The center set here should put the # center of the circle at the location(offset), rather than at the # same point as the barb pivot; this seems more sensible. circ = CirclePolygon((0, 0), radius=empty_rad).get_verts() if fill_empty: empty_barb = circ else: # If we don't want the empty one filled, we make a degenerate # polygon that wraps back over itself empty_barb = np.concatenate((circ, circ[::-1])) barb_list = [] for index, angle in np.ndenumerate(angles): # If the vector magnitude is too weak to draw anything, plot an # empty circle instead if empty_flag[index]: # We can skip the transform since the circle has no preferred # orientation barb_list.append(empty_barb) continue poly_verts = [(endx, endy)] offset = length # Add vertices for each flag for i in range(nflags[index]): # The spacing that works for the barbs is a little to much for # the flags, but this only occurs when we have more than 1 # flag. if offset != length: offset += spacing / 2. poly_verts.extend( [[endx, endy + offset], [endx + full_height, endy - full_width / 2 + offset], [endx, endy - full_width + offset]]) offset -= full_width + spacing # Add vertices for each barb. These really are lines, but works # great adding 3 vertices that basically pull the polygon out and # back down the line for i in range(nbarbs[index]): poly_verts.extend( [(endx, endy + offset), (endx + full_height, endy + offset + full_width / 2), (endx, endy + offset)]) offset -= spacing # Add the vertices for half a barb, if needed if half_barb[index]: # If the half barb is the first on the staff, traditionally it # is offset from the end to make it easy to distinguish from a # barb with a full one if offset == length: poly_verts.append((endx, endy + offset)) offset -= 1.5 * spacing poly_verts.extend( [(endx, endy + offset), (endx + full_height / 2, endy + offset + full_width / 4), (endx, endy + offset)]) # Rotate the barb according the angle. Making the barb first and # then rotating it made the math for drawing the barb really easy. # Also, the transform framework makes doing the rotation simple. poly_verts = transforms.Affine2D().rotate(-angle).transform( poly_verts) barb_list.append(poly_verts) return barb_list def set_UVC(self, U, V, C=None): self.u = ma.masked_invalid(U, copy=False).ravel() self.v = ma.masked_invalid(V, copy=False).ravel() if C is not None: c = ma.masked_invalid(C, copy=False).ravel() x, y, u, v, c = cbook.delete_masked_points( self.x.ravel(), self.y.ravel(), self.u, self.v, c) _check_consistent_shapes(x, y, u, v, c) else: x, y, u, v = cbook.delete_masked_points( self.x.ravel(), self.y.ravel(), self.u, self.v) _check_consistent_shapes(x, y, u, v) magnitude = np.hypot(u, v) flags, barbs, halves, empty = self._find_tails(magnitude, self.rounding, **self.barb_increments) # Get the vertices for each of the barbs plot_barbs = self._make_barbs(u, v, flags, barbs, halves, empty, self._length, self._pivot, self.sizes, self.fill_empty, self.flip) self.set_verts(plot_barbs) # Set the color array if C is not None: self.set_array(c) # Update the offsets in case the masked data changed xy = np.column_stack((x, y)) self._offsets = xy self.stale = True def set_offsets(self, xy): """ Set the offsets for the barb polygons. This saves the offsets passed in and masks them as appropriate for the existing U/V data. Parameters ---------- xy : sequence of pairs of floats """ self.x = xy[:, 0] self.y = xy[:, 1] x, y, u, v = cbook.delete_masked_points( self.x.ravel(), self.y.ravel(), self.u, self.v) _check_consistent_shapes(x, y, u, v) xy = np.column_stack((x, y)) mcollections.PolyCollection.set_offsets(self, xy) self.stale = True barbs_doc = _barbs_doc
6958c6bfff7c129f531ea8fe953974a79a63539e721c9cf6ee46318582bf7747
from collections import OrderedDict, namedtuple from functools import wraps import inspect import logging from numbers import Number import re import warnings import numpy as np import matplotlib from . import cbook, docstring, rcParams from .path import Path from .transforms import (Bbox, IdentityTransform, Transform, TransformedBbox, TransformedPatchPath, TransformedPath) _log = logging.getLogger(__name__) def allow_rasterization(draw): """ Decorator for Artist.draw method. Provides routines that run before and after the draw call. The before and after functions are useful for changing artist-dependent renderer attributes or making other setup function calls, such as starting and flushing a mixed-mode renderer. """ # the axes class has a second argument inframe for its draw method. @wraps(draw) def draw_wrapper(artist, renderer, *args, **kwargs): try: if artist.get_rasterized(): renderer.start_rasterizing() if artist.get_agg_filter() is not None: renderer.start_filter() return draw(artist, renderer, *args, **kwargs) finally: if artist.get_agg_filter() is not None: renderer.stop_filter(artist.get_agg_filter()) if artist.get_rasterized(): renderer.stop_rasterizing() draw_wrapper._supports_rasterization = True return draw_wrapper def _stale_axes_callback(self, val): if self.axes: self.axes.stale = val _XYPair = namedtuple("_XYPair", "x y") class Artist(object): """ Abstract base class for objects that render into a FigureCanvas. Typically, all visible elements in a figure are subclasses of Artist. """ @cbook.deprecated("3.1") @property def aname(self): return 'Artist' zorder = 0 # order of precedence when bulk setting/updating properties # via update. The keys should be property names and the values # integers _prop_order = dict(color=-1) def __init__(self): self._stale = True self.stale_callback = None self._axes = None self.figure = None self._transform = None self._transformSet = False self._visible = True self._animated = False self._alpha = None self.clipbox = None self._clippath = None self._clipon = True self._label = '' self._picker = None self._contains = None self._rasterized = None self._agg_filter = None self._mouseover = False self.eventson = False # fire events only if eventson self._oid = 0 # an observer id self._propobservers = {} # a dict from oids to funcs try: self.axes = None except AttributeError: # Handle self.axes as a read-only property, as in Figure. pass self._remove_method = None self._url = None self._gid = None self._snap = None self._sketch = rcParams['path.sketch'] self._path_effects = rcParams['path.effects'] self._sticky_edges = _XYPair([], []) self._in_layout = True def __getstate__(self): d = self.__dict__.copy() # remove the unpicklable remove method, this will get re-added on load # (by the axes) if the artist lives on an axes. d['stale_callback'] = None return d def remove(self): """ Remove the artist from the figure if possible. The effect will not be visible until the figure is redrawn, e.g., with `.FigureCanvasBase.draw_idle`. Call `~.axes.Axes.relim` to update the axes limits if desired. Note: `~.axes.Axes.relim` will not see collections even if the collection was added to the axes with *autolim* = True. Note: there is no support for removing the artist's legend entry. """ # There is no method to set the callback. Instead the parent should # set the _remove_method attribute directly. This would be a # protected attribute if Python supported that sort of thing. The # callback has one parameter, which is the child to be removed. if self._remove_method is not None: self._remove_method(self) # clear stale callback self.stale_callback = None _ax_flag = False if hasattr(self, 'axes') and self.axes: # remove from the mouse hit list self.axes._mouseover_set.discard(self) # mark the axes as stale self.axes.stale = True # decouple the artist from the axes self.axes = None _ax_flag = True if self.figure: self.figure = None if not _ax_flag: self.figure = True else: raise NotImplementedError('cannot remove artist') # TODO: the fix for the collections relim problem is to move the # limits calculation into the artist itself, including the property of # whether or not the artist should affect the limits. Then there will # be no distinction between axes.add_line, axes.add_patch, etc. # TODO: add legend support def have_units(self): """Return *True* if units are set on the *x* or *y* axes.""" ax = self.axes if ax is None or ax.xaxis is None: return False return ax.xaxis.have_units() or ax.yaxis.have_units() def convert_xunits(self, x): """ Convert *x* using the unit type of the xaxis. If the artist is not in contained in an Axes or if the xaxis does not have units, *x* itself is returned. """ ax = getattr(self, 'axes', None) if ax is None or ax.xaxis is None: return x return ax.xaxis.convert_units(x) def convert_yunits(self, y): """ Convert *y* using the unit type of the yaxis. If the artist is not in contained in an Axes or if the yaxis does not have units, *y* itself is returned. """ ax = getattr(self, 'axes', None) if ax is None or ax.yaxis is None: return y return ax.yaxis.convert_units(y) @property def axes(self): """The `~.axes.Axes` instance the artist resides in, or *None*.""" return self._axes @axes.setter def axes(self, new_axes): if (new_axes is not None and self._axes is not None and new_axes != self._axes): raise ValueError("Can not reset the axes. You are probably " "trying to re-use an artist in more than one " "Axes which is not supported") self._axes = new_axes if new_axes is not None and new_axes is not self: self.stale_callback = _stale_axes_callback return new_axes @property def stale(self): """ Whether the artist is 'stale' and needs to be re-drawn for the output to match the internal state of the artist. """ return self._stale @stale.setter def stale(self, val): self._stale = val # if the artist is animated it does not take normal part in the # draw stack and is not expected to be drawn as part of the normal # draw loop (when not saving) so do not propagate this change if self.get_animated(): return if val and self.stale_callback is not None: self.stale_callback(self, val) def get_window_extent(self, renderer): """ Get the axes bounding box in display space. The bounding box' width and height are nonnegative. Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to return an empty bounding box at 0, 0. Be careful when using this function, the results will not update if the artist window extent of the artist changes. The extent can change due to any changes in the transform stack, such as changing the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can lead to unexpected behavior where interactive figures will look fine on the screen, but will save incorrectly. """ return Bbox([[0, 0], [0, 0]]) def get_tightbbox(self, renderer): """ Like `Artist.get_window_extent`, but includes any clipping. Parameters ---------- renderer : `.RendererBase` instance renderer that will be used to draw the figures (i.e. ``fig.canvas.get_renderer()``) Returns ------- bbox : `.BBox` The enclosing bounding box (in figure pixel co-ordinates). """ bbox = self.get_window_extent(renderer) if self.get_clip_on(): clip_box = self.get_clip_box() if clip_box is not None: bbox = Bbox.intersection(bbox, clip_box) clip_path = self.get_clip_path() if clip_path is not None and bbox is not None: clip_path = clip_path.get_fully_transformed_path() bbox = Bbox.intersection(bbox, clip_path.get_extents()) return bbox def add_callback(self, func): """ Add a callback function that will be called whenever one of the `.Artist`'s properties changes. Parameters ---------- func : callable The callback function. It must have the signature:: def func(artist: Artist) -> Any where *artist* is the calling `.Artist`. Return values may exist but are ignored. Returns ------- oid : int The observer id associated with the callback. This id can be used for removing the callback with `.remove_callback` later. See Also -------- remove_callback """ oid = self._oid self._propobservers[oid] = func self._oid += 1 return oid def remove_callback(self, oid): """ Remove a callback based on its observer id. See Also -------- add_callback """ try: del self._propobservers[oid] except KeyError: pass def pchanged(self): """ Call all of the registered callbacks. This function is triggered internally when a property is changed. See Also -------- add_callback remove_callback """ for oid, func in self._propobservers.items(): func(self) def is_transform_set(self): """ Return whether the Artist has an explicitly set transform. This is *True* after `.set_transform` has been called. """ return self._transformSet def set_transform(self, t): """ Set the artist transform. Parameters ---------- t : `.Transform` """ self._transform = t self._transformSet = True self.pchanged() self.stale = True def get_transform(self): """Return the `.Transform` instance used by this artist.""" if self._transform is None: self._transform = IdentityTransform() elif (not isinstance(self._transform, Transform) and hasattr(self._transform, '_as_mpl_transform')): self._transform = self._transform._as_mpl_transform(self.axes) return self._transform def get_children(self): r"""Return a list of the child `.Artist`\s of this `.Artist`.""" return [] def contains(self, mouseevent): """Test whether the artist contains the mouse event. Parameters ---------- mouseevent : `matplotlib.backend_bases.MouseEvent` Returns ------- contains : bool Whether any values are within the radius. details : dict An artist-specific dictionary of details of the event context, such as which points are contained in the pick radius. See the individual Artist subclasses for details. See Also -------- set_contains, get_contains """ if self._contains is not None: return self._contains(self, mouseevent) _log.warning("%r needs 'contains' method", self.__class__.__name__) return False, {} def set_contains(self, picker): """ Define a custom contains test for the artist. The provided callable replaces the default `.contains` method of the artist. Parameters ---------- picker : callable A custom picker function to evaluate if an event is within the artist. The function must have the signature:: def contains(artist: Artist, event: MouseEvent) -> bool, dict that returns: - a bool indicating if the event is within the artist - a dict of additional information. The dict should at least return the same information as the default ``contains()`` implementation of the respective artist, but may provide additional information. """ if not callable(picker): raise TypeError("picker is not a callable") self._contains = picker def get_contains(self): """ Return the custom contains function of the artist if set, or *None*. See Also -------- set_contains """ return self._contains def pickable(self): """ Return whether the artist is pickable. See Also -------- set_picker, get_picker, pick """ return self.figure is not None and self._picker is not None def pick(self, mouseevent): """ Process a pick event. Each child artist will fire a pick event if *mouseevent* is over the artist and the artist has picker set. See Also -------- set_picker, get_picker, pickable """ # Pick self if self.pickable(): picker = self.get_picker() if callable(picker): inside, prop = picker(self, mouseevent) else: inside, prop = self.contains(mouseevent) if inside: self.figure.canvas.pick_event(mouseevent, self, **prop) # Pick children for a in self.get_children(): # make sure the event happened in the same axes ax = getattr(a, 'axes', None) if (mouseevent.inaxes is None or ax is None or mouseevent.inaxes == ax): # we need to check if mouseevent.inaxes is None # because some objects associated with an axes (e.g., a # tick label) can be outside the bounding box of the # axes and inaxes will be None # also check that ax is None so that it traverse objects # which do no have an axes property but children might a.pick(mouseevent) def set_picker(self, picker): """ Define the picking behavior of the artist. Parameters ---------- picker : None or bool or float or callable This can be one of the following: - *None*: Picking is disabled for this artist (default). - A boolean: If *True* then picking will be enabled and the artist will fire a pick event if the mouse event is over the artist. - A float: If picker is a number it is interpreted as an epsilon tolerance in points and the artist will fire off an event if it's data is within epsilon of the mouse event. For some artists like lines and patch collections, the artist may provide additional data to the pick event that is generated, e.g., the indices of the data within epsilon of the pick event - A function: If picker is callable, it is a user supplied function which determines whether the artist is hit by the mouse event:: hit, props = picker(artist, mouseevent) to determine the hit test. if the mouse event is over the artist, return *hit=True* and props is a dictionary of properties you want added to the PickEvent attributes. """ self._picker = picker def get_picker(self): """ Return the picking behavior of the artist. The possible values are described in `.set_picker`. See Also -------- set_picker, pickable, pick """ return self._picker def get_url(self): """Return the url.""" return self._url def set_url(self, url): """ Set the url for the artist. Parameters ---------- url : str """ self._url = url def get_gid(self): """Return the group id.""" return self._gid def set_gid(self, gid): """ Set the (group) id for the artist. Parameters ---------- gid : str """ self._gid = gid def get_snap(self): """ Returns the snap setting. See `.set_snap` for details. """ if rcParams['path.snap']: return self._snap else: return False def set_snap(self, snap): """ Set the snapping behavior. Snapping aligns positions with the pixel grid, which results in clearer images. For example, if a black line of 1px width was defined at a position in between two pixels, the resulting image would contain the interpolated value of that line in the pixel grid, which would be a grey value on both adjacent pixel positions. In contrast, snapping will move the line to the nearest integer pixel value, so that the resulting image will really contain a 1px wide black line. Snapping is currently only supported by the Agg and MacOSX backends. Parameters ---------- snap : bool or None Possible values: - *True*: Snap vertices to the nearest pixel center. - *False*: Do not modify vertex positions. - *None*: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center. """ self._snap = snap self.stale = True def get_sketch_params(self): """ Returns the sketch parameters for the artist. Returns ------- sketch_params : tuple or None A 3-tuple with the following elements: - *scale*: The amplitude of the wiggle perpendicular to the source line. - *length*: The length of the wiggle along the line. - *randomness*: The scale factor by which the length is shrunken or expanded. Returns *None* if no sketch parameters were set. """ return self._sketch def set_sketch_params(self, scale=None, length=None, randomness=None): """ Sets the sketch parameters. Parameters ---------- scale : float, optional The amplitude of the wiggle perpendicular to the source line, in pixels. If scale is `None`, or not provided, no sketch filter will be provided. length : float, optional The length of the wiggle along the line, in pixels (default 128.0) randomness : float, optional The scale factor by which the length is shrunken or expanded (default 16.0) .. ACCEPTS: (scale: float, length: float, randomness: float) """ if scale is None: self._sketch = None else: self._sketch = (scale, length or 128.0, randomness or 16.0) self.stale = True def set_path_effects(self, path_effects): """Set the path effects. Parameters ---------- path_effects : `.AbstractPathEffect` """ self._path_effects = path_effects self.stale = True def get_path_effects(self): return self._path_effects def get_figure(self): """Return the `.Figure` instance the artist belongs to.""" return self.figure def set_figure(self, fig): """ Set the `.Figure` instance the artist belongs to. Parameters ---------- fig : `.Figure` """ # if this is a no-op just return if self.figure is fig: return # if we currently have a figure (the case of both `self.figure` # and `fig` being none is taken care of above) we then user is # trying to change the figure an artist is associated with which # is not allowed for the same reason as adding the same instance # to more than one Axes if self.figure is not None: raise RuntimeError("Can not put single artist in " "more than one figure") self.figure = fig if self.figure and self.figure is not self: self.pchanged() self.stale = True def set_clip_box(self, clipbox): """ Set the artist's clip `.Bbox`. Parameters ---------- clipbox : `.Bbox` """ self.clipbox = clipbox self.pchanged() self.stale = True def set_clip_path(self, path, transform=None): """ Set the artist's clip path, which may be: - a :class:`~matplotlib.patches.Patch` (or subclass) instance; or - a :class:`~matplotlib.path.Path` instance, in which case a :class:`~matplotlib.transforms.Transform` instance, which will be applied to the path before using it for clipping, must be provided; or - ``None``, to remove a previously set clipping path. For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the clipping box to the corresponding rectangle and set the clipping path to ``None``. ACCEPTS: [(`~matplotlib.path.Path`, `.Transform`) | `.Patch` | None] """ from matplotlib.patches import Patch, Rectangle success = False if transform is None: if isinstance(path, Rectangle): self.clipbox = TransformedBbox(Bbox.unit(), path.get_transform()) self._clippath = None success = True elif isinstance(path, Patch): self._clippath = TransformedPatchPath(path) success = True elif isinstance(path, tuple): path, transform = path if path is None: self._clippath = None success = True elif isinstance(path, Path): self._clippath = TransformedPath(path, transform) success = True elif isinstance(path, TransformedPatchPath): self._clippath = path success = True elif isinstance(path, TransformedPath): self._clippath = path success = True if not success: raise TypeError( "Invalid arguments to set_clip_path, of type {} and {}" .format(type(path).__name__, type(transform).__name__)) # This may result in the callbacks being hit twice, but guarantees they # will be hit at least once. self.pchanged() self.stale = True def get_alpha(self): """ Return the alpha value used for blending - not supported on all backends """ return self._alpha def get_visible(self): """Return the visibility.""" return self._visible def get_animated(self): """Return the animated state.""" return self._animated def get_in_layout(self): """ Return boolean flag, ``True`` if artist is included in layout calculations. E.g. :doc:`/tutorials/intermediate/constrainedlayout_guide`, `.Figure.tight_layout()`, and ``fig.savefig(fname, bbox_inches='tight')``. """ return self._in_layout def get_clip_on(self): """Return whether the artist uses clipping.""" return self._clipon def get_clip_box(self): """Return the clipbox.""" return self.clipbox def get_clip_path(self): """Return the clip path.""" return self._clippath def get_transformed_clip_path_and_affine(self): ''' Return the clip path with the non-affine part of its transformation applied, and the remaining affine part of its transformation. ''' if self._clippath is not None: return self._clippath.get_transformed_path_and_affine() return None, None def set_clip_on(self, b): """ Set whether the artist uses clipping. When False artists will be visible out side of the axes which can lead to unexpected results. Parameters ---------- b : bool """ self._clipon = b # This may result in the callbacks being hit twice, but ensures they # are hit at least once self.pchanged() self.stale = True def _set_gc_clip(self, gc): 'Set the clip properly for the gc' if self._clipon: if self.clipbox is not None: gc.set_clip_rectangle(self.clipbox) gc.set_clip_path(self._clippath) else: gc.set_clip_rectangle(None) gc.set_clip_path(None) def get_rasterized(self): """Return whether the artist is to be rasterized.""" return self._rasterized def set_rasterized(self, rasterized): """ Force rasterized (bitmap) drawing in vector backend output. Defaults to None, which implies the backend's default behavior. Parameters ---------- rasterized : bool or None """ if rasterized and not hasattr(self.draw, "_supports_rasterization"): cbook._warn_external( "Rasterization of '%s' will be ignored" % self) self._rasterized = rasterized def get_agg_filter(self): """Return filter function to be used for agg filter.""" return self._agg_filter def set_agg_filter(self, filter_func): """Set the agg filter. Parameters ---------- filter_func : callable A filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array. .. ACCEPTS: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array """ self._agg_filter = filter_func self.stale = True def draw(self, renderer, *args, **kwargs): """ Draw the Artist using the given renderer. This method will be overridden in the Artist subclasses. Typically, it is implemented to not have any effect if the Artist is not visible (`.Artist.get_visible` is *False*). Parameters ---------- renderer : `.RendererBase` subclass. """ if not self.get_visible(): return self.stale = False def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends. Parameters ---------- alpha : float or None """ if alpha is not None and not isinstance(alpha, Number): raise TypeError('alpha must be a float or None') self._alpha = alpha self.pchanged() self.stale = True def set_visible(self, b): """ Set the artist's visibility. Parameters ---------- b : bool """ self._visible = b self.pchanged() self.stale = True def set_animated(self, b): """ Set the artist's animation state. Parameters ---------- b : bool """ if self._animated != b: self._animated = b self.pchanged() def set_in_layout(self, in_layout): """ Set if artist is to be included in layout calculations, E.g. :doc:`/tutorials/intermediate/constrainedlayout_guide`, `.Figure.tight_layout()`, and ``fig.savefig(fname, bbox_inches='tight')``. Parameters ---------- in_layout : bool """ self._in_layout = in_layout def update(self, props): """ Update this artist's properties from the dictionary *props*. """ def _update_property(self, k, v): """Sorting out how to update property (setter or setattr). Parameters ---------- k : str The name of property to update v : obj The value to assign to the property Returns ------- ret : obj or None If using a `set_*` method return it's return, else None. """ k = k.lower() # white list attributes we want to be able to update through # art.update, art.set, setp if k in {'axes'}: return setattr(self, k, v) else: func = getattr(self, 'set_' + k, None) if not callable(func): raise AttributeError('{!r} object has no property {!r}' .format(type(self).__name__, k)) return func(v) with cbook._setattr_cm(self, eventson=False): ret = [_update_property(self, k, v) for k, v in props.items()] if len(ret): self.pchanged() self.stale = True return ret def get_label(self): """Return the label used for this artist in the legend.""" return self._label def set_label(self, s): """ Set a label that will be displayed in the legend. Parameters ---------- s : object *s* will be converted to a string by calling `str`. """ if s is not None: self._label = str(s) else: self._label = None self.pchanged() self.stale = True def get_zorder(self): """Return the artist's zorder.""" return self.zorder def set_zorder(self, level): """ Set the zorder for the artist. Artists with lower zorder values are drawn first. Parameters ---------- level : float """ if level is None: level = self.__class__.zorder self.zorder = level self.pchanged() self.stale = True @property def sticky_edges(self): """ ``x`` and ``y`` sticky edge lists for autoscaling. When performing autoscaling, if a data limit coincides with a value in the corresponding sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typical use case is histograms, where one usually expects no margin on the bottom edge (0) of the histogram. This attribute cannot be assigned to; however, the ``x`` and ``y`` lists can be modified in place as needed. Examples -------- >>> artist.sticky_edges.x[:] = (xmin, xmax) >>> artist.sticky_edges.y[:] = (ymin, ymax) """ return self._sticky_edges def update_from(self, other): 'Copy properties from *other* to *self*.' self._transform = other._transform self._transformSet = other._transformSet self._visible = other._visible self._alpha = other._alpha self.clipbox = other.clipbox self._clipon = other._clipon self._clippath = other._clippath self._label = other._label self._sketch = other._sketch self._path_effects = other._path_effects self.sticky_edges.x[:] = other.sticky_edges.x[:] self.sticky_edges.y[:] = other.sticky_edges.y[:] self.pchanged() self.stale = True def properties(self): """Return a dictionary of all the properties of the artist.""" return ArtistInspector(self).properties() def set(self, **kwargs): """A property batch setter. Pass *kwargs* to set properties.""" kwargs = cbook.normalize_kwargs(kwargs, self) props = OrderedDict( sorted(kwargs.items(), reverse=True, key=lambda x: (self._prop_order.get(x[0], 0), x[0]))) return self.update(props) def findobj(self, match=None, include_self=True): """ Find artist objects. Recursively find all `.Artist` instances contained in the artist. Parameters ---------- match A filter criterion for the matches. This can be - *None*: Return all objects contained in artist. - A function with signature ``def match(artist: Artist) -> bool``. The result will only contain artists for which the function returns *True*. - A class instance: e.g., `.Line2D`. The result will only contain artists of this class or its subclasses (``isinstance`` check). include_self : bool Include *self* in the list to be checked for a match. Returns ------- artists : list of `.Artist` """ if match is None: # always return True def matchfunc(x): return True elif isinstance(match, type) and issubclass(match, Artist): def matchfunc(x): return isinstance(x, match) elif callable(match): matchfunc = match else: raise ValueError('match must be None, a matplotlib.artist.Artist ' 'subclass, or a callable') artists = sum([c.findobj(matchfunc) for c in self.get_children()], []) if include_self and matchfunc(self): artists.append(self) return artists def get_cursor_data(self, event): """ Return the cursor data for a given event. .. note:: This method is intended to be overridden by artist subclasses. As an end-user of Matplotlib you will most likely not call this method yourself. Cursor data can be used by Artists to provide additional context information for a given event. The default implementation just returns *None*. Subclasses can override the method and return arbitrary data. However, when doing so, they must ensure that `.format_cursor_data` can convert the data to a string representation. The only current use case is displaying the z-value of an `.AxesImage` in the status bar of a plot window, while moving the mouse. Parameters ---------- event : `matplotlib.backend_bases.MouseEvent` See Also -------- format_cursor_data """ return None def format_cursor_data(self, data): """ Return a string representation of *data*. .. note:: This method is intended to be overridden by artist subclasses. As an end-user of Matplotlib you will most likely not call this method yourself. The default implementation converts ints and floats and arrays of ints and floats into a comma-separated string enclosed in square brackets. See Also -------- get_cursor_data """ try: data[0] except (TypeError, IndexError): data = [data] data_str = ', '.join('{:0.3g}'.format(item) for item in data if isinstance(item, Number)) return "[" + data_str + "]" @property def mouseover(self): return self._mouseover @mouseover.setter def mouseover(self, val): val = bool(val) self._mouseover = val ax = self.axes if ax: if val: ax._mouseover_set.add(self) else: ax._mouseover_set.discard(self) class ArtistInspector(object): """ A helper class to inspect an `~matplotlib.artist.Artist` and return information about its settable properties and their current values. """ def __init__(self, o): r""" Initialize the artist inspector with an `Artist` or an iterable of `Artist`\s. If an iterable is used, we assume it is a homogeneous sequence (all `Artists` are of the same type) and it is your responsibility to make sure this is so. """ if not isinstance(o, Artist): if np.iterable(o): o = list(o) if len(o): o = o[0] self.oorig = o if not isinstance(o, type): o = type(o) self.o = o self.aliasd = self.get_aliases() def get_aliases(self): """ Get a dict mapping property fullnames to sets of aliases for each alias in the :class:`~matplotlib.artist.ArtistInspector`. e.g., for lines:: {'markerfacecolor': {'mfc'}, 'linewidth' : {'lw'}, } """ names = [name for name in dir(self.o) if name.startswith(('set_', 'get_')) and callable(getattr(self.o, name))] aliases = {} for name in names: func = getattr(self.o, name) if not self.is_alias(func): continue propname = re.search("`({}.*)`".format(name[:4]), # get_.*/set_.* inspect.getdoc(func)).group(1) aliases.setdefault(propname[4:], set()).add(name[4:]) return aliases _get_valid_values_regex = re.compile( r"\n\s*(?:\.\.\s+)?ACCEPTS:\s*((?:.|\n)*?)(?:$|(?:\n\n))" ) def get_valid_values(self, attr): """ Get the legal arguments for the setter associated with *attr*. This is done by querying the docstring of the setter for a line that begins with "ACCEPTS:" or ".. ACCEPTS:", and then by looking for a numpydoc-style documentation for the setter's first argument. """ name = 'set_%s' % attr if not hasattr(self.o, name): raise AttributeError('%s has no function %s' % (self.o, name)) func = getattr(self.o, name) docstring = inspect.getdoc(func) if docstring is None: return 'unknown' if docstring.startswith('Alias for '): return None match = self._get_valid_values_regex.search(docstring) if match is not None: return re.sub("\n *", " ", match.group(1)) # Much faster than list(inspect.signature(func).parameters)[1], # although barely relevant wrt. matplotlib's total import time. param_name = func.__code__.co_varnames[1] # We could set the presence * based on whether the parameter is a # varargs (it can't be a varkwargs) but it's not really worth the it. match = re.search(r"(?m)^ *\*?{} : (.+)".format(param_name), docstring) if match: return match.group(1) return 'unknown' def _get_setters_and_targets(self): """ Get the attribute strings and a full path to where the setter is defined for all setters in an object. """ setters = [] for name in dir(self.o): if not name.startswith('set_'): continue func = getattr(self.o, name) if not callable(func): continue nargs = len(inspect.getfullargspec(func).args) if nargs < 2 or self.is_alias(func): continue source_class = self.o.__module__ + "." + self.o.__name__ for cls in self.o.mro(): if name in cls.__dict__: source_class = cls.__module__ + "." + cls.__name__ break source_class = self._replace_path(source_class) setters.append((name[4:], source_class + "." + name)) return setters def _replace_path(self, source_class): """ Changes the full path to the public API path that is used in sphinx. This is needed for links to work. """ replace_dict = {'_base._AxesBase': 'Axes', '_axes.Axes': 'Axes'} for key, value in replace_dict.items(): source_class = source_class.replace(key, value) return source_class def get_setters(self): """ Get the attribute strings with setters for object. e.g., for a line, return ``['markerfacecolor', 'linewidth', ....]``. """ return [prop for prop, target in self._get_setters_and_targets()] def is_alias(self, o): """Return whether method object *o* is an alias for another method.""" ds = inspect.getdoc(o) if ds is None: return False return ds.startswith('Alias for ') def aliased_name(self, s): """ Return 'PROPNAME or alias' if *s* has an alias, else return 'PROPNAME'. e.g., for the line markerfacecolor property, which has an alias, return 'markerfacecolor or mfc' and for the transform property, which does not, return 'transform'. """ aliases = ''.join(' or %s' % x for x in sorted(self.aliasd.get(s, []))) return s + aliases def aliased_name_rest(self, s, target): """ Return 'PROPNAME or alias' if *s* has an alias, else return 'PROPNAME', formatted for ReST. e.g., for the line markerfacecolor property, which has an alias, return 'markerfacecolor or mfc' and for the transform property, which does not, return 'transform'. """ aliases = ''.join(' or %s' % x for x in sorted(self.aliasd.get(s, []))) return ':meth:`%s <%s>`%s' % (s, target, aliases) def pprint_setters(self, prop=None, leadingspace=2): """ If *prop* is *None*, return a list of strings of all settable properties and their valid values. If *prop* is not *None*, it is a valid property name and that property will be returned as a string of property : valid values. """ if leadingspace: pad = ' ' * leadingspace else: pad = '' if prop is not None: accepts = self.get_valid_values(prop) return '%s%s: %s' % (pad, prop, accepts) attrs = self._get_setters_and_targets() attrs.sort() lines = [] for prop, path in attrs: accepts = self.get_valid_values(prop) name = self.aliased_name(prop) lines.append('%s%s: %s' % (pad, name, accepts)) return lines def pprint_setters_rest(self, prop=None, leadingspace=4): """ If *prop* is *None*, return a list of strings of all settable properties and their valid values. Format the output for ReST If *prop* is not *None*, it is a valid property name and that property will be returned as a string of property : valid values. """ if leadingspace: pad = ' ' * leadingspace else: pad = '' if prop is not None: accepts = self.get_valid_values(prop) return '%s%s: %s' % (pad, prop, accepts) attrs = sorted(self._get_setters_and_targets()) names = [self.aliased_name_rest(prop, target) for prop, target in attrs] accepts = [self.get_valid_values(prop) for prop, target in attrs] col0_len = max(len(n) for n in names) col1_len = max(len(a) for a in accepts) table_formatstr = pad + ' ' + '=' * col0_len + ' ' + '=' * col1_len return [ '', pad + '.. table::', pad + ' :class: property-table', '', table_formatstr, pad + ' ' + 'Property'.ljust(col0_len) + ' ' + 'Description'.ljust(col1_len), table_formatstr, *[pad + ' ' + n.ljust(col0_len) + ' ' + a.ljust(col1_len) for n, a in zip(names, accepts)], table_formatstr, '', ] def properties(self): """Return a dictionary mapping property name -> value.""" o = self.oorig getters = [name for name in dir(o) if name.startswith('get_') and callable(getattr(o, name))] getters.sort() d = {} for name in getters: func = getattr(o, name) if self.is_alias(func): continue try: with warnings.catch_warnings(): warnings.simplefilter('ignore') val = func() except Exception: continue else: d[name[4:]] = val return d def pprint_getters(self): """Return the getters and actual values as list of strings.""" lines = [] for name, val in sorted(self.properties().items()): if getattr(val, 'shape', ()) != () and len(val) > 6: s = str(val[:6]) + '...' else: s = str(val) s = s.replace('\n', ' ') if len(s) > 50: s = s[:50] + '...' name = self.aliased_name(name) lines.append(' %s = %s' % (name, s)) return lines def getp(obj, property=None): """ Return the value of object's property. *property* is an optional string for the property you want to return Example usage:: getp(obj) # get all the object properties getp(obj, 'linestyle') # get the linestyle property *obj* is a :class:`Artist` instance, e.g., :class:`~matplotlib.lines.Line2D` or an instance of a :class:`~matplotlib.axes.Axes` or :class:`matplotlib.text.Text`. If the *property* is 'somename', this function returns obj.get_somename() :func:`getp` can be used to query all the gettable properties with ``getp(obj)``. Many properties have aliases for shorter typing, e.g. 'lw' is an alias for 'linewidth'. In the output, aliases and full property names will be listed as: property or alias = value e.g.: linewidth or lw = 2 """ if property is None: insp = ArtistInspector(obj) ret = insp.pprint_getters() print('\n'.join(ret)) return func = getattr(obj, 'get_' + property) return func() # alias get = getp def setp(obj, *args, **kwargs): """ Set a property on an artist object. matplotlib supports the use of :func:`setp` ("set property") and :func:`getp` to set and get object properties, as well as to do introspection on the object. For example, to set the linestyle of a line to be dashed, you can do:: >>> line, = plot([1,2,3]) >>> setp(line, linestyle='--') If you want to know the valid types of arguments, you can provide the name of the property you want to set without a value:: >>> setp(line, 'linestyle') linestyle: [ '-' | '--' | '-.' | ':' | 'steps' | 'None' ] If you want to see all the properties that can be set, and their possible values, you can do:: >>> setp(line) ... long output listing omitted You may specify another output file to `setp` if `sys.stdout` is not acceptable for some reason using the `file` keyword-only argument:: >>> with fopen('output.log') as f: >>> setp(line, file=f) :func:`setp` operates on a single instance or a iterable of instances. If you are in query mode introspecting the possible values, only the first instance in the sequence is used. When actually setting values, all the instances will be set. e.g., suppose you have a list of two lines, the following will make both lines thicker and red:: >>> x = arange(0,1.0,0.01) >>> y1 = sin(2*pi*x) >>> y2 = sin(4*pi*x) >>> lines = plot(x, y1, x, y2) >>> setp(lines, linewidth=2, color='r') :func:`setp` works with the MATLAB style string/value pairs or with python kwargs. For example, the following are equivalent:: >>> setp(lines, 'linewidth', 2, 'color', 'r') # MATLAB style >>> setp(lines, linewidth=2, color='r') # python style """ if isinstance(obj, Artist): objs = [obj] else: objs = list(cbook.flatten(obj)) if not objs: return insp = ArtistInspector(objs[0]) # file has to be popped before checking if kwargs is empty printArgs = {} if 'file' in kwargs: printArgs['file'] = kwargs.pop('file') if not kwargs and len(args) < 2: if args: print(insp.pprint_setters(prop=args[0]), **printArgs) else: print('\n'.join(insp.pprint_setters()), **printArgs) return if len(args) % 2: raise ValueError('The set args must be string, value pairs') # put args into ordereddict to maintain order funcvals = OrderedDict((k, v) for k, v in zip(args[::2], args[1::2])) ret = [o.update(funcvals) for o in objs] + [o.set(**kwargs) for o in objs] return list(cbook.flatten(ret)) def kwdoc(artist): r""" Inspect an `~matplotlib.artist.Artist` class (using `.ArtistInspector`) and return information about its settable properties and their current values. Parameters ---------- artist : `~matplotlib.artist.Artist` or an iterable of `Artist`\s Returns ------- string The settable properties of *artist*, as plain text if :rc:`docstring.hardcopy` is False and as a rst table (intended for use in Sphinx) if it is True. """ hardcopy = matplotlib.rcParams['docstring.hardcopy'] if hardcopy: return '\n'.join(ArtistInspector(artist).pprint_setters_rest( leadingspace=4)) else: return '\n'.join(ArtistInspector(artist).pprint_setters( leadingspace=2)) docstring.interpd.update(Artist=kwdoc(Artist))
4c9c9cc3d9f2cf921de188b9baf4d0896aa3d2a698d040f37b584aa6fcc57eb6
""" This module contains functions to handle markers. Used by both the marker functionality of `~matplotlib.axes.Axes.plot` and `~matplotlib.axes.Axes.scatter`. All possible markers are defined here: ============================== ====== ========================================= marker symbol description ============================== ====== ========================================= ``"."`` |m00| point ``","`` |m01| pixel ``"o"`` |m02| circle ``"v"`` |m03| triangle_down ``"^"`` |m04| triangle_up ``"<"`` |m05| triangle_left ``">"`` |m06| triangle_right ``"1"`` |m07| tri_down ``"2"`` |m08| tri_up ``"3"`` |m09| tri_left ``"4"`` |m10| tri_right ``"8"`` |m11| octagon ``"s"`` |m12| square ``"p"`` |m13| pentagon ``"P"`` |m23| plus (filled) ``"*"`` |m14| star ``"h"`` |m15| hexagon1 ``"H"`` |m16| hexagon2 ``"+"`` |m17| plus ``"x"`` |m18| x ``"X"`` |m24| x (filled) ``"D"`` |m19| diamond ``"d"`` |m20| thin_diamond ``"|"`` |m21| vline ``"_"`` |m22| hline ``0`` (``TICKLEFT``) |m25| tickleft ``1`` (``TICKRIGHT``) |m26| tickright ``2`` (``TICKUP``) |m27| tickup ``3`` (``TICKDOWN``) |m28| tickdown ``4`` (``CARETLEFT``) |m29| caretleft ``5`` (``CARETRIGHT``) |m30| caretright ``6`` (``CARETUP``) |m31| caretup ``7`` (``CARETDOWN``) |m32| caretdown ``8`` (``CARETLEFTBASE``) |m33| caretleft (centered at base) ``9`` (``CARETRIGHTBASE``) |m34| caretright (centered at base) ``10`` (``CARETUPBASE``) |m35| caretup (centered at base) ``11`` (``CARETDOWNBASE``) |m36| caretdown (centered at base) ``"None"``, ``" "`` or ``""`` nothing ``'$...$'`` |m37| Render the string using mathtext. E.g ``"$f$"`` for marker showing the letter ``f``. ``verts`` A list of (x, y) pairs used for Path vertices. The center of the marker is located at (0,0) and the size is normalized, such that the created path is encapsulated inside the unit cell. path A `~matplotlib.path.Path` instance. ``(numsides, style, angle)`` The marker can also be a tuple ``(numsides, style, angle)``, which will create a custom, regular symbol. ``numsides``: the number of sides ``style``: the style of the regular symbol: - 0: a regular polygon - 1: a star-like symbol - 2: an asterisk - 3: a circle (``numsides`` and ``angle`` is ignored); deprecated. ``angle``: the angle of rotation of the symbol ============================== ====== ========================================= For backward compatibility, the form ``(verts, 0)`` is also accepted, but it is deprecated and equivalent to just ``verts`` for giving a raw set of vertices that define the shape. ``None`` is the default which means 'nothing', however this table is referred to from other docs for the valid inputs from marker inputs and in those cases ``None`` still means 'default'. Note that special symbols can be defined via the :doc:`STIX math font </tutorials/text/mathtext>`, e.g. ``"$\u266B$"``. For an overview over the STIX font symbols refer to the `STIX font table <http://www.stixfonts.org/allGlyphs.html>`_. Also see the :doc:`/gallery/text_labels_and_annotations/stix_fonts_demo`. Integer numbers from ``0`` to ``11`` create lines and triangles. Those are equally accessible via capitalized variables, like ``CARETDOWNBASE``. Hence the following are equivalent:: plt.plot([1,2,3], marker=11) plt.plot([1,2,3], marker=matplotlib.markers.CARETDOWNBASE) Examples showing the use of markers: * :doc:`/gallery/lines_bars_and_markers/marker_reference` * :doc:`/gallery/lines_bars_and_markers/marker_fillstyle_reference` * :doc:`/gallery/shapes_and_collections/marker_path` .. |m00| image:: /_static/markers/m00.png .. |m01| image:: /_static/markers/m01.png .. |m02| image:: /_static/markers/m02.png .. |m03| image:: /_static/markers/m03.png .. |m04| image:: /_static/markers/m04.png .. |m05| image:: /_static/markers/m05.png .. |m06| image:: /_static/markers/m06.png .. |m07| image:: /_static/markers/m07.png .. |m08| image:: /_static/markers/m08.png .. |m09| image:: /_static/markers/m09.png .. |m10| image:: /_static/markers/m10.png .. |m11| image:: /_static/markers/m11.png .. |m12| image:: /_static/markers/m12.png .. |m13| image:: /_static/markers/m13.png .. |m14| image:: /_static/markers/m14.png .. |m15| image:: /_static/markers/m15.png .. |m16| image:: /_static/markers/m16.png .. |m17| image:: /_static/markers/m17.png .. |m18| image:: /_static/markers/m18.png .. |m19| image:: /_static/markers/m19.png .. |m20| image:: /_static/markers/m20.png .. |m21| image:: /_static/markers/m21.png .. |m22| image:: /_static/markers/m22.png .. |m23| image:: /_static/markers/m23.png .. |m24| image:: /_static/markers/m24.png .. |m25| image:: /_static/markers/m25.png .. |m26| image:: /_static/markers/m26.png .. |m27| image:: /_static/markers/m27.png .. |m28| image:: /_static/markers/m28.png .. |m29| image:: /_static/markers/m29.png .. |m30| image:: /_static/markers/m30.png .. |m31| image:: /_static/markers/m31.png .. |m32| image:: /_static/markers/m32.png .. |m33| image:: /_static/markers/m33.png .. |m34| image:: /_static/markers/m34.png .. |m35| image:: /_static/markers/m35.png .. |m36| image:: /_static/markers/m36.png .. |m37| image:: /_static/markers/m37.png """ from collections.abc import Sized from numbers import Number import numpy as np from . import cbook, rcParams from .path import Path from .transforms import IdentityTransform, Affine2D # special-purpose marker identifiers: (TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN, CARETLEFT, CARETRIGHT, CARETUP, CARETDOWN, CARETLEFTBASE, CARETRIGHTBASE, CARETUPBASE, CARETDOWNBASE) = range(12) _empty_path = Path(np.empty((0, 2))) class MarkerStyle(object): markers = { '.': 'point', ',': 'pixel', 'o': 'circle', 'v': 'triangle_down', '^': 'triangle_up', '<': 'triangle_left', '>': 'triangle_right', '1': 'tri_down', '2': 'tri_up', '3': 'tri_left', '4': 'tri_right', '8': 'octagon', 's': 'square', 'p': 'pentagon', '*': 'star', 'h': 'hexagon1', 'H': 'hexagon2', '+': 'plus', 'x': 'x', 'D': 'diamond', 'd': 'thin_diamond', '|': 'vline', '_': 'hline', 'P': 'plus_filled', 'X': 'x_filled', TICKLEFT: 'tickleft', TICKRIGHT: 'tickright', TICKUP: 'tickup', TICKDOWN: 'tickdown', CARETLEFT: 'caretleft', CARETRIGHT: 'caretright', CARETUP: 'caretup', CARETDOWN: 'caretdown', CARETLEFTBASE: 'caretleftbase', CARETRIGHTBASE: 'caretrightbase', CARETUPBASE: 'caretupbase', CARETDOWNBASE: 'caretdownbase', "None": 'nothing', None: 'nothing', ' ': 'nothing', '': 'nothing' } # Just used for informational purposes. is_filled() # is calculated in the _set_* functions. filled_markers = ( 'o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd', 'P', 'X') fillstyles = ('full', 'left', 'right', 'bottom', 'top', 'none') _half_fillstyles = ('left', 'right', 'bottom', 'top') # TODO: Is this ever used as a non-constant? _point_size_reduction = 0.5 def __init__(self, marker=None, fillstyle=None): """ Attributes ---------- markers : list of known marks fillstyles : list of known fillstyles filled_markers : list of known filled markers. Parameters ---------- marker : string or array_like, optional, default: None See the descriptions of possible markers in the module docstring. fillstyle : string, optional, default: 'full' 'full', 'left", 'right', 'bottom', 'top', 'none' """ self._marker_function = None self.set_fillstyle(fillstyle) self.set_marker(marker) def _recache(self): if self._marker_function is None: return self._path = _empty_path self._transform = IdentityTransform() self._alt_path = None self._alt_transform = None self._snap_threshold = None self._joinstyle = 'round' self._capstyle = 'butt' self._filled = True self._marker_function() def __bool__(self): return bool(len(self._path.vertices)) def is_filled(self): return self._filled def get_fillstyle(self): return self._fillstyle def set_fillstyle(self, fillstyle): """ Sets fillstyle Parameters ---------- fillstyle : string amongst known fillstyles """ if fillstyle is None: fillstyle = rcParams['markers.fillstyle'] if fillstyle not in self.fillstyles: raise ValueError("Unrecognized fillstyle %s" % ' '.join(self.fillstyles)) self._fillstyle = fillstyle self._recache() def get_joinstyle(self): return self._joinstyle def get_capstyle(self): return self._capstyle def get_marker(self): return self._marker def set_marker(self, marker): if (isinstance(marker, np.ndarray) and marker.ndim == 2 and marker.shape[1] == 2): self._marker_function = self._set_vertices elif isinstance(marker, str) and cbook.is_math_text(marker): self._marker_function = self._set_mathtext_path elif isinstance(marker, Path): self._marker_function = self._set_path_marker elif (isinstance(marker, Sized) and len(marker) in (2, 3) and marker[1] in (0, 1, 2, 3)): self._marker_function = self._set_tuple_marker elif (not isinstance(marker, (np.ndarray, list)) and marker in self.markers): self._marker_function = getattr( self, '_set_' + self.markers[marker]) else: try: Path(marker) self._marker_function = self._set_vertices except ValueError: raise ValueError('Unrecognized marker style {!r}' .format(marker)) self._marker = marker self._recache() def get_path(self): return self._path def get_transform(self): return self._transform.frozen() def get_alt_path(self): return self._alt_path def get_alt_transform(self): return self._alt_transform.frozen() def get_snap_threshold(self): return self._snap_threshold def _set_nothing(self): self._filled = False def _set_custom_marker(self, path): verts = path.vertices rescale = max(np.max(np.abs(verts[:, 0])), np.max(np.abs(verts[:, 1]))) self._transform = Affine2D().scale(0.5 / rescale) self._path = path def _set_path_marker(self): self._set_custom_marker(self._marker) def _set_vertices(self): verts = self._marker marker = Path(verts) self._set_custom_marker(marker) def _set_tuple_marker(self): marker = self._marker if isinstance(marker[0], Number): if len(marker) == 2: numsides, rotation = marker[0], 0.0 elif len(marker) == 3: numsides, rotation = marker[0], marker[2] symstyle = marker[1] if symstyle == 0: self._path = Path.unit_regular_polygon(numsides) self._joinstyle = 'miter' elif symstyle == 1: self._path = Path.unit_regular_star(numsides) self._joinstyle = 'bevel' elif symstyle == 2: self._path = Path.unit_regular_asterisk(numsides) self._filled = False self._joinstyle = 'bevel' elif symstyle == 3: cbook.warn_deprecated( "3.0", message="Setting a circle marker using `(..., 3)` " "is deprecated since Matplotlib 3.0, and support for it " "will be removed in 3.2. Directly pass 'o' instead.") self._path = Path.unit_circle() self._transform = Affine2D().scale(0.5).rotate_deg(rotation) else: cbook.warn_deprecated( "3.0", message="Passing vertices as `(verts, 0)` is " "deprecated since Matplotlib 3.0, and support for it will be " "removed in 3.2. Directly pass `verts` instead.") verts = np.asarray(marker[0]) path = Path(verts) self._set_custom_marker(path) def _set_mathtext_path(self): """ Draws mathtext markers '$...$' using TextPath object. Submitted by tcb """ from matplotlib.text import TextPath from matplotlib.font_manager import FontProperties # again, the properties could be initialised just once outside # this function text = TextPath(xy=(0, 0), s=self.get_marker(), usetex=rcParams['text.usetex']) if len(text.vertices) == 0: return xmin, ymin = text.vertices.min(axis=0) xmax, ymax = text.vertices.max(axis=0) width = xmax - xmin height = ymax - ymin max_dim = max(width, height) self._transform = Affine2D() \ .translate(-xmin + 0.5 * -width, -ymin + 0.5 * -height) \ .scale(1.0 / max_dim) self._path = text self._snap = False def _half_fill(self): fs = self.get_fillstyle() result = fs in self._half_fillstyles return result def _set_circle(self, reduction=1.0): self._transform = Affine2D().scale(0.5 * reduction) self._snap_threshold = np.inf fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_circle() else: # build a right-half circle if fs == 'bottom': rotate = 270. elif fs == 'top': rotate = 90. elif fs == 'left': rotate = 180. else: rotate = 0. self._path = self._alt_path = Path.unit_circle_righthalf() self._transform.rotate_deg(rotate) self._alt_transform = self._transform.frozen().rotate_deg(180.) def _set_pixel(self): self._path = Path.unit_rectangle() # Ideally, you'd want -0.5, -0.5 here, but then the snapping # algorithm in the Agg backend will round this to a 2x2 # rectangle from (-1, -1) to (1, 1). By offsetting it # slightly, we can force it to be (0, 0) to (1, 1), which both # makes it only be a single pixel and places it correctly # aligned to 1-width stroking (i.e. the ticks). This hack is # the best of a number of bad alternatives, mainly because the # backends are not aware of what marker is actually being used # beyond just its path data. self._transform = Affine2D().translate(-0.49999, -0.49999) self._snap_threshold = None def _set_point(self): self._set_circle(reduction=self._point_size_reduction) _triangle_path = Path( [[0.0, 1.0], [-1.0, -1.0], [1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) # Going down halfway looks to small. Golden ratio is too far. _triangle_path_u = Path( [[0.0, 1.0], [-3 / 5., -1 / 5.], [3 / 5., -1 / 5.], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_d = Path( [[-3 / 5., -1 / 5.], [3 / 5., -1 / 5.], [1.0, -1.0], [-1.0, -1.0], [-3 / 5., -1 / 5.]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_l = Path( [[0.0, 1.0], [0.0, -1.0], [-1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _triangle_path_r = Path( [[0.0, 1.0], [0.0, -1.0], [1.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) def _set_triangle(self, rot, skip): self._transform = Affine2D().scale(0.5, 0.5).rotate_deg(rot) self._snap_threshold = 5.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = self._triangle_path else: mpaths = [self._triangle_path_u, self._triangle_path_l, self._triangle_path_d, self._triangle_path_r] if fs == 'top': self._path = mpaths[(0 + skip) % 4] self._alt_path = mpaths[(2 + skip) % 4] elif fs == 'bottom': self._path = mpaths[(2 + skip) % 4] self._alt_path = mpaths[(0 + skip) % 4] elif fs == 'left': self._path = mpaths[(1 + skip) % 4] self._alt_path = mpaths[(3 + skip) % 4] else: self._path = mpaths[(3 + skip) % 4] self._alt_path = mpaths[(1 + skip) % 4] self._alt_transform = self._transform self._joinstyle = 'miter' def _set_triangle_up(self): return self._set_triangle(0.0, 0) def _set_triangle_down(self): return self._set_triangle(180.0, 2) def _set_triangle_left(self): return self._set_triangle(90.0, 3) def _set_triangle_right(self): return self._set_triangle(270.0, 1) def _set_square(self): self._transform = Affine2D().translate(-0.5, -0.5) self._snap_threshold = 2.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_rectangle() else: # build a bottom filled square out of two rectangles, one # filled. Use the rotation to support left, right, bottom # or top if fs == 'bottom': rotate = 0. elif fs == 'top': rotate = 180. elif fs == 'left': rotate = 270. else: rotate = 90. self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 0.5], [0.0, 0.5], [0.0, 0.0]]) self._alt_path = Path([[0.0, 0.5], [1.0, 0.5], [1.0, 1.0], [0.0, 1.0], [0.0, 0.5]]) self._transform.rotate_deg(rotate) self._alt_transform = self._transform self._joinstyle = 'miter' def _set_diamond(self): self._transform = Affine2D().translate(-0.5, -0.5).rotate_deg(45) self._snap_threshold = 5.0 fs = self.get_fillstyle() if not self._half_fill(): self._path = Path.unit_rectangle() else: self._path = Path([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 0.0]]) self._alt_path = Path([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [0.0, 0.0]]) if fs == 'bottom': rotate = 270. elif fs == 'top': rotate = 90. elif fs == 'left': rotate = 180. else: rotate = 0. self._transform.rotate_deg(rotate) self._alt_transform = self._transform self._joinstyle = 'miter' def _set_thin_diamond(self): self._set_diamond() self._transform.scale(0.6, 1.0) def _set_pentagon(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 polypath = Path.unit_regular_polygon(5) fs = self.get_fillstyle() if not self._half_fill(): self._path = polypath else: verts = polypath.vertices y = (1 + np.sqrt(5)) / 4. top = Path([verts[0], verts[1], verts[4], verts[0]]) bottom = Path([verts[1], verts[2], verts[3], verts[4], verts[1]]) left = Path([verts[0], verts[1], verts[2], [0, -y], verts[0]]) right = Path([verts[0], verts[4], verts[3], [0, -y], verts[0]]) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_star(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 fs = self.get_fillstyle() polypath = Path.unit_regular_star(5, innerCircle=0.381966) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices top = Path(np.vstack((verts[0:4, :], verts[7:10, :], verts[0]))) bottom = Path(np.vstack((verts[3:8, :], verts[3]))) left = Path(np.vstack((verts[0:6, :], verts[0]))) right = Path(np.vstack((verts[0], verts[5:10, :], verts[0]))) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'bevel' def _set_hexagon1(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = None fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(6) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices # not drawing inside lines x = np.abs(np.cos(5 * np.pi / 6.)) top = Path(np.vstack(([-x, 0], verts[(1, 0, 5), :], [x, 0]))) bottom = Path(np.vstack(([-x, 0], verts[2:5, :], [x, 0]))) left = Path(verts[(0, 1, 2, 3), :]) right = Path(verts[(0, 5, 4, 3), :]) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_hexagon2(self): self._transform = Affine2D().scale(0.5).rotate_deg(30) self._snap_threshold = None fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(6) if not self._half_fill(): self._path = polypath else: verts = polypath.vertices # not drawing inside lines x, y = np.sqrt(3) / 4, 3 / 4. top = Path(verts[(1, 0, 5, 4, 1), :]) bottom = Path(verts[(1, 2, 3, 4), :]) left = Path(np.vstack(([x, y], verts[(0, 1, 2), :], [-x, -y], [x, y]))) right = Path(np.vstack(([x, y], verts[(5, 4, 3), :], [-x, -y]))) if fs == 'top': mpath, mpath_alt = top, bottom elif fs == 'bottom': mpath, mpath_alt = bottom, top elif fs == 'left': mpath, mpath_alt = left, right else: mpath, mpath_alt = right, left self._path = mpath self._alt_path = mpath_alt self._alt_transform = self._transform self._joinstyle = 'miter' def _set_octagon(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 fs = self.get_fillstyle() polypath = Path.unit_regular_polygon(8) if not self._half_fill(): self._transform.rotate_deg(22.5) self._path = polypath else: x = np.sqrt(2.) / 4. half = Path([[0, -1], [0, 1], [-x, 1], [-1, x], [-1, -x], [-x, -1], [0, -1]]) if fs == 'bottom': rotate = 90. elif fs == 'top': rotate = 270. elif fs == 'right': rotate = 180. else: rotate = 0. self._transform.rotate_deg(rotate) self._path = self._alt_path = half self._alt_transform = self._transform.frozen().rotate_deg(180.0) self._joinstyle = 'miter' _line_marker_path = Path([[0.0, -1.0], [0.0, 1.0]]) def _set_vline(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 1.0 self._filled = False self._path = self._line_marker_path def _set_hline(self): self._set_vline() self._transform = self._transform.rotate_deg(90) _tickhoriz_path = Path([[0.0, 0.0], [1.0, 0.0]]) def _set_tickleft(self): self._transform = Affine2D().scale(-1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickhoriz_path def _set_tickright(self): self._transform = Affine2D().scale(1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickhoriz_path _tickvert_path = Path([[-0.0, 0.0], [-0.0, 1.0]]) def _set_tickup(self): self._transform = Affine2D().scale(1.0, 1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickvert_path def _set_tickdown(self): self._transform = Affine2D().scale(1.0, -1.0) self._snap_threshold = 1.0 self._filled = False self._path = self._tickvert_path _tri_path = Path([[0.0, 0.0], [0.0, -1.0], [0.0, 0.0], [0.8, 0.5], [0.0, 0.0], [-0.8, 0.5]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_tri_down(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 5.0 self._filled = False self._path = self._tri_path def _set_tri_up(self): self._set_tri_down() self._transform = self._transform.rotate_deg(180) def _set_tri_left(self): self._set_tri_down() self._transform = self._transform.rotate_deg(270) def _set_tri_right(self): self._set_tri_down() self._transform = self._transform.rotate_deg(90) _caret_path = Path([[-1.0, 1.5], [0.0, 0.0], [1.0, 1.5]]) def _set_caretdown(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 3.0 self._filled = False self._path = self._caret_path self._joinstyle = 'miter' def _set_caretup(self): self._set_caretdown() self._transform = self._transform.rotate_deg(180) def _set_caretleft(self): self._set_caretdown() self._transform = self._transform.rotate_deg(270) def _set_caretright(self): self._set_caretdown() self._transform = self._transform.rotate_deg(90) _caret_path_base = Path([[-1.0, 0.0], [0.0, -1.5], [1.0, 0]]) def _set_caretdownbase(self): self._set_caretdown() self._path = self._caret_path_base def _set_caretupbase(self): self._set_caretdownbase() self._transform = self._transform.rotate_deg(180) def _set_caretleftbase(self): self._set_caretdownbase() self._transform = self._transform.rotate_deg(270) def _set_caretrightbase(self): self._set_caretdownbase() self._transform = self._transform.rotate_deg(90) _plus_path = Path([[-1.0, 0.0], [1.0, 0.0], [0.0, -1.0], [0.0, 1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_plus(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 1.0 self._filled = False self._path = self._plus_path _x_path = Path([[-1.0, -1.0], [1.0, 1.0], [-1.0, 1.0], [1.0, -1.0]], [Path.MOVETO, Path.LINETO, Path.MOVETO, Path.LINETO]) def _set_x(self): self._transform = Affine2D().scale(0.5) self._snap_threshold = 3.0 self._filled = False self._path = self._x_path _plus_filled_path = Path([(1/3, 0), (2/3, 0), (2/3, 1/3), (1, 1/3), (1, 2/3), (2/3, 2/3), (2/3, 1), (1/3, 1), (1/3, 2/3), (0, 2/3), (0, 1/3), (1/3, 1/3), (1/3, 0)], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _plus_filled_path_t = Path([(1, 1/2), (1, 2/3), (2/3, 2/3), (2/3, 1), (1/3, 1), (1/3, 2/3), (0, 2/3), (0, 1/2), (1, 1/2)], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) def _set_plus_filled(self): self._transform = Affine2D().translate(-0.5, -0.5) self._snap_threshold = 5.0 self._joinstyle = 'miter' fs = self.get_fillstyle() if not self._half_fill(): self._path = self._plus_filled_path else: # Rotate top half path to support all partitions if fs == 'top': rotate, rotate_alt = 0, 180 elif fs == 'bottom': rotate, rotate_alt = 180, 0 elif fs == 'left': rotate, rotate_alt = 90, 270 else: rotate, rotate_alt = 270, 90 self._path = self._plus_filled_path_t self._alt_path = self._plus_filled_path_t self._alt_transform = Affine2D().translate(-0.5, -0.5) self._transform.rotate_deg(rotate) self._alt_transform.rotate_deg(rotate_alt) _x_filled_path = Path([(0.25, 0), (0.5, 0.25), (0.75, 0), (1, 0.25), (0.75, 0.5), (1, 0.75), (0.75, 1), (0.5, 0.75), (0.25, 1), (0, 0.75), (0.25, 0.5), (0, 0.25), (0.25, 0)], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) _x_filled_path_t = Path([(0.75, 0.5), (1, 0.75), (0.75, 1), (0.5, 0.75), (0.25, 1), (0, 0.75), (0.25, 0.5), (0.75, 0.5)], [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]) def _set_x_filled(self): self._transform = Affine2D().translate(-0.5, -0.5) self._snap_threshold = 5.0 self._joinstyle = 'miter' fs = self.get_fillstyle() if not self._half_fill(): self._path = self._x_filled_path else: # Rotate top half path to support all partitions if fs == 'top': rotate, rotate_alt = 0, 180 elif fs == 'bottom': rotate, rotate_alt = 180, 0 elif fs == 'left': rotate, rotate_alt = 90, 270 else: rotate, rotate_alt = 270, 90 self._path = self._x_filled_path_t self._alt_path = self._x_filled_path_t self._alt_transform = Affine2D().translate(-0.5, -0.5) self._transform.rotate_deg(rotate) self._alt_transform.rotate_deg(rotate_alt)
b798b24e514d7337d97708b378d8398d3fc00ed3c017556b75365944504b2bd6
""" Manage figures for pyplot interface. """ import atexit import gc class Gcf(object): """ Singleton to manage a set of integer-numbered figures. This class is never instantiated; it consists of two class attributes (a list and a dictionary), and a set of static methods that operate on those attributes, accessing them directly as class attributes. Attributes: *figs*: dictionary of the form {*num*: *manager*, ...} *_activeQue*: list of *managers*, with active one at the end """ _activeQue = [] figs = {} @classmethod def get_fig_manager(cls, num): """ If figure manager *num* exists, make it the active figure and return the manager; otherwise return *None*. """ manager = cls.figs.get(num, None) if manager is not None: cls.set_active(manager) return manager @classmethod def destroy(cls, num): """ Try to remove all traces of figure *num*. In the interactive backends, this is bound to the window "destroy" and "delete" events. """ if not cls.has_fignum(num): return manager = cls.figs[num] manager.canvas.mpl_disconnect(manager._cidgcf) cls._activeQue.remove(manager) del cls.figs[num] manager.destroy() gc.collect(1) @classmethod def destroy_fig(cls, fig): "*fig* is a Figure instance" num = next((manager.num for manager in cls.figs.values() if manager.canvas.figure == fig), None) if num is not None: cls.destroy(num) @classmethod def destroy_all(cls): # this is need to ensure that gc is available in corner cases # where modules are being torn down after install with easy_install import gc # noqa for manager in list(cls.figs.values()): manager.canvas.mpl_disconnect(manager._cidgcf) manager.destroy() cls._activeQue = [] cls.figs.clear() gc.collect(1) @classmethod def has_fignum(cls, num): """ Return *True* if figure *num* exists. """ return num in cls.figs @classmethod def get_all_fig_managers(cls): """ Return a list of figure managers. """ return list(cls.figs.values()) @classmethod def get_num_fig_managers(cls): """ Return the number of figures being managed. """ return len(cls.figs) @classmethod def get_active(cls): """ Return the manager of the active figure, or *None*. """ if len(cls._activeQue) == 0: return None else: return cls._activeQue[-1] @classmethod def set_active(cls, manager): """ Make the figure corresponding to *manager* the active one. """ oldQue = cls._activeQue[:] cls._activeQue = [m for m in oldQue if m != manager] cls._activeQue.append(manager) cls.figs[manager.num] = manager @classmethod def draw_all(cls, force=False): """ Redraw all figures registered with the pyplot state machine. """ for f_mgr in cls.get_all_fig_managers(): if force or f_mgr.canvas.figure.stale: f_mgr.canvas.draw_idle() atexit.register(Gcf.destroy_all)
1294e343aa59f44fd4798e240dae9f53dcdafd51c1be1b8e9821ba7f0351be59
from .colors import ListedColormap _magma_data = [[0.001462, 0.000466, 0.013866], [0.002258, 0.001295, 0.018331], [0.003279, 0.002305, 0.023708], [0.004512, 0.003490, 0.029965], [0.005950, 0.004843, 0.037130], [0.007588, 0.006356, 0.044973], [0.009426, 0.008022, 0.052844], [0.011465, 0.009828, 0.060750], [0.013708, 0.011771, 0.068667], [0.016156, 0.013840, 0.076603], [0.018815, 0.016026, 0.084584], [0.021692, 0.018320, 0.092610], [0.024792, 0.020715, 0.100676], [0.028123, 0.023201, 0.108787], [0.031696, 0.025765, 0.116965], [0.035520, 0.028397, 0.125209], [0.039608, 0.031090, 0.133515], [0.043830, 0.033830, 0.141886], [0.048062, 0.036607, 0.150327], [0.052320, 0.039407, 0.158841], [0.056615, 0.042160, 0.167446], [0.060949, 0.044794, 0.176129], [0.065330, 0.047318, 0.184892], [0.069764, 0.049726, 0.193735], [0.074257, 0.052017, 0.202660], [0.078815, 0.054184, 0.211667], [0.083446, 0.056225, 0.220755], [0.088155, 0.058133, 0.229922], [0.092949, 0.059904, 0.239164], [0.097833, 0.061531, 0.248477], [0.102815, 0.063010, 0.257854], [0.107899, 0.064335, 0.267289], [0.113094, 0.065492, 0.276784], [0.118405, 0.066479, 0.286321], [0.123833, 0.067295, 0.295879], [0.129380, 0.067935, 0.305443], [0.135053, 0.068391, 0.315000], [0.140858, 0.068654, 0.324538], [0.146785, 0.068738, 0.334011], [0.152839, 0.068637, 0.343404], [0.159018, 0.068354, 0.352688], [0.165308, 0.067911, 0.361816], [0.171713, 0.067305, 0.370771], [0.178212, 0.066576, 0.379497], [0.184801, 0.065732, 0.387973], [0.191460, 0.064818, 0.396152], [0.198177, 0.063862, 0.404009], [0.204935, 0.062907, 0.411514], [0.211718, 0.061992, 0.418647], [0.218512, 0.061158, 0.425392], [0.225302, 0.060445, 0.431742], [0.232077, 0.059889, 0.437695], [0.238826, 0.059517, 0.443256], [0.245543, 0.059352, 0.448436], [0.252220, 0.059415, 0.453248], [0.258857, 0.059706, 0.457710], [0.265447, 0.060237, 0.461840], [0.271994, 0.060994, 0.465660], [0.278493, 0.061978, 0.469190], [0.284951, 0.063168, 0.472451], [0.291366, 0.064553, 0.475462], [0.297740, 0.066117, 0.478243], [0.304081, 0.067835, 0.480812], [0.310382, 0.069702, 0.483186], [0.316654, 0.071690, 0.485380], [0.322899, 0.073782, 0.487408], [0.329114, 0.075972, 0.489287], [0.335308, 0.078236, 0.491024], [0.341482, 0.080564, 0.492631], [0.347636, 0.082946, 0.494121], [0.353773, 0.085373, 0.495501], [0.359898, 0.087831, 0.496778], [0.366012, 0.090314, 0.497960], [0.372116, 0.092816, 0.499053], [0.378211, 0.095332, 0.500067], [0.384299, 0.097855, 0.501002], [0.390384, 0.100379, 0.501864], [0.396467, 0.102902, 0.502658], [0.402548, 0.105420, 0.503386], [0.408629, 0.107930, 0.504052], [0.414709, 0.110431, 0.504662], [0.420791, 0.112920, 0.505215], [0.426877, 0.115395, 0.505714], [0.432967, 0.117855, 0.506160], [0.439062, 0.120298, 0.506555], [0.445163, 0.122724, 0.506901], [0.451271, 0.125132, 0.507198], [0.457386, 0.127522, 0.507448], [0.463508, 0.129893, 0.507652], [0.469640, 0.132245, 0.507809], [0.475780, 0.134577, 0.507921], [0.481929, 0.136891, 0.507989], [0.488088, 0.139186, 0.508011], [0.494258, 0.141462, 0.507988], [0.500438, 0.143719, 0.507920], [0.506629, 0.145958, 0.507806], [0.512831, 0.148179, 0.507648], [0.519045, 0.150383, 0.507443], [0.525270, 0.152569, 0.507192], [0.531507, 0.154739, 0.506895], [0.537755, 0.156894, 0.506551], [0.544015, 0.159033, 0.506159], [0.550287, 0.161158, 0.505719], [0.556571, 0.163269, 0.505230], [0.562866, 0.165368, 0.504692], [0.569172, 0.167454, 0.504105], [0.575490, 0.169530, 0.503466], [0.581819, 0.171596, 0.502777], [0.588158, 0.173652, 0.502035], [0.594508, 0.175701, 0.501241], [0.600868, 0.177743, 0.500394], [0.607238, 0.179779, 0.499492], [0.613617, 0.181811, 0.498536], [0.620005, 0.183840, 0.497524], [0.626401, 0.185867, 0.496456], [0.632805, 0.187893, 0.495332], [0.639216, 0.189921, 0.494150], [0.645633, 0.191952, 0.492910], [0.652056, 0.193986, 0.491611], [0.658483, 0.196027, 0.490253], [0.664915, 0.198075, 0.488836], [0.671349, 0.200133, 0.487358], [0.677786, 0.202203, 0.485819], [0.684224, 0.204286, 0.484219], [0.690661, 0.206384, 0.482558], [0.697098, 0.208501, 0.480835], [0.703532, 0.210638, 0.479049], [0.709962, 0.212797, 0.477201], [0.716387, 0.214982, 0.475290], [0.722805, 0.217194, 0.473316], [0.729216, 0.219437, 0.471279], [0.735616, 0.221713, 0.469180], [0.742004, 0.224025, 0.467018], [0.748378, 0.226377, 0.464794], [0.754737, 0.228772, 0.462509], [0.761077, 0.231214, 0.460162], [0.767398, 0.233705, 0.457755], [0.773695, 0.236249, 0.455289], [0.779968, 0.238851, 0.452765], [0.786212, 0.241514, 0.450184], [0.792427, 0.244242, 0.447543], [0.798608, 0.247040, 0.444848], [0.804752, 0.249911, 0.442102], [0.810855, 0.252861, 0.439305], [0.816914, 0.255895, 0.436461], [0.822926, 0.259016, 0.433573], [0.828886, 0.262229, 0.430644], [0.834791, 0.265540, 0.427671], [0.840636, 0.268953, 0.424666], [0.846416, 0.272473, 0.421631], [0.852126, 0.276106, 0.418573], [0.857763, 0.279857, 0.415496], [0.863320, 0.283729, 0.412403], [0.868793, 0.287728, 0.409303], [0.874176, 0.291859, 0.406205], [0.879464, 0.296125, 0.403118], [0.884651, 0.300530, 0.400047], [0.889731, 0.305079, 0.397002], [0.894700, 0.309773, 0.393995], [0.899552, 0.314616, 0.391037], [0.904281, 0.319610, 0.388137], [0.908884, 0.324755, 0.385308], [0.913354, 0.330052, 0.382563], [0.917689, 0.335500, 0.379915], [0.921884, 0.341098, 0.377376], [0.925937, 0.346844, 0.374959], [0.929845, 0.352734, 0.372677], [0.933606, 0.358764, 0.370541], [0.937221, 0.364929, 0.368567], [0.940687, 0.371224, 0.366762], [0.944006, 0.377643, 0.365136], [0.947180, 0.384178, 0.363701], [0.950210, 0.390820, 0.362468], [0.953099, 0.397563, 0.361438], [0.955849, 0.404400, 0.360619], [0.958464, 0.411324, 0.360014], [0.960949, 0.418323, 0.359630], [0.963310, 0.425390, 0.359469], [0.965549, 0.432519, 0.359529], [0.967671, 0.439703, 0.359810], [0.969680, 0.446936, 0.360311], [0.971582, 0.454210, 0.361030], [0.973381, 0.461520, 0.361965], [0.975082, 0.468861, 0.363111], [0.976690, 0.476226, 0.364466], [0.978210, 0.483612, 0.366025], [0.979645, 0.491014, 0.367783], [0.981000, 0.498428, 0.369734], [0.982279, 0.505851, 0.371874], [0.983485, 0.513280, 0.374198], [0.984622, 0.520713, 0.376698], [0.985693, 0.528148, 0.379371], [0.986700, 0.535582, 0.382210], [0.987646, 0.543015, 0.385210], [0.988533, 0.550446, 0.388365], [0.989363, 0.557873, 0.391671], [0.990138, 0.565296, 0.395122], [0.990871, 0.572706, 0.398714], [0.991558, 0.580107, 0.402441], [0.992196, 0.587502, 0.406299], [0.992785, 0.594891, 0.410283], [0.993326, 0.602275, 0.414390], [0.993834, 0.609644, 0.418613], [0.994309, 0.616999, 0.422950], [0.994738, 0.624350, 0.427397], [0.995122, 0.631696, 0.431951], [0.995480, 0.639027, 0.436607], [0.995810, 0.646344, 0.441361], [0.996096, 0.653659, 0.446213], [0.996341, 0.660969, 0.451160], [0.996580, 0.668256, 0.456192], [0.996775, 0.675541, 0.461314], [0.996925, 0.682828, 0.466526], [0.997077, 0.690088, 0.471811], [0.997186, 0.697349, 0.477182], [0.997254, 0.704611, 0.482635], [0.997325, 0.711848, 0.488154], [0.997351, 0.719089, 0.493755], [0.997351, 0.726324, 0.499428], [0.997341, 0.733545, 0.505167], [0.997285, 0.740772, 0.510983], [0.997228, 0.747981, 0.516859], [0.997138, 0.755190, 0.522806], [0.997019, 0.762398, 0.528821], [0.996898, 0.769591, 0.534892], [0.996727, 0.776795, 0.541039], [0.996571, 0.783977, 0.547233], [0.996369, 0.791167, 0.553499], [0.996162, 0.798348, 0.559820], [0.995932, 0.805527, 0.566202], [0.995680, 0.812706, 0.572645], [0.995424, 0.819875, 0.579140], [0.995131, 0.827052, 0.585701], [0.994851, 0.834213, 0.592307], [0.994524, 0.841387, 0.598983], [0.994222, 0.848540, 0.605696], [0.993866, 0.855711, 0.612482], [0.993545, 0.862859, 0.619299], [0.993170, 0.870024, 0.626189], [0.992831, 0.877168, 0.633109], [0.992440, 0.884330, 0.640099], [0.992089, 0.891470, 0.647116], [0.991688, 0.898627, 0.654202], [0.991332, 0.905763, 0.661309], [0.990930, 0.912915, 0.668481], [0.990570, 0.920049, 0.675675], [0.990175, 0.927196, 0.682926], [0.989815, 0.934329, 0.690198], [0.989434, 0.941470, 0.697519], [0.989077, 0.948604, 0.704863], [0.988717, 0.955742, 0.712242], [0.988367, 0.962878, 0.719649], [0.988033, 0.970012, 0.727077], [0.987691, 0.977154, 0.734536], [0.987387, 0.984288, 0.742002], [0.987053, 0.991438, 0.749504]] _inferno_data = [[0.001462, 0.000466, 0.013866], [0.002267, 0.001270, 0.018570], [0.003299, 0.002249, 0.024239], [0.004547, 0.003392, 0.030909], [0.006006, 0.004692, 0.038558], [0.007676, 0.006136, 0.046836], [0.009561, 0.007713, 0.055143], [0.011663, 0.009417, 0.063460], [0.013995, 0.011225, 0.071862], [0.016561, 0.013136, 0.080282], [0.019373, 0.015133, 0.088767], [0.022447, 0.017199, 0.097327], [0.025793, 0.019331, 0.105930], [0.029432, 0.021503, 0.114621], [0.033385, 0.023702, 0.123397], [0.037668, 0.025921, 0.132232], [0.042253, 0.028139, 0.141141], [0.046915, 0.030324, 0.150164], [0.051644, 0.032474, 0.159254], [0.056449, 0.034569, 0.168414], [0.061340, 0.036590, 0.177642], [0.066331, 0.038504, 0.186962], [0.071429, 0.040294, 0.196354], [0.076637, 0.041905, 0.205799], [0.081962, 0.043328, 0.215289], [0.087411, 0.044556, 0.224813], [0.092990, 0.045583, 0.234358], [0.098702, 0.046402, 0.243904], [0.104551, 0.047008, 0.253430], [0.110536, 0.047399, 0.262912], [0.116656, 0.047574, 0.272321], [0.122908, 0.047536, 0.281624], [0.129285, 0.047293, 0.290788], [0.135778, 0.046856, 0.299776], [0.142378, 0.046242, 0.308553], [0.149073, 0.045468, 0.317085], [0.155850, 0.044559, 0.325338], [0.162689, 0.043554, 0.333277], [0.169575, 0.042489, 0.340874], [0.176493, 0.041402, 0.348111], [0.183429, 0.040329, 0.354971], [0.190367, 0.039309, 0.361447], [0.197297, 0.038400, 0.367535], [0.204209, 0.037632, 0.373238], [0.211095, 0.037030, 0.378563], [0.217949, 0.036615, 0.383522], [0.224763, 0.036405, 0.388129], [0.231538, 0.036405, 0.392400], [0.238273, 0.036621, 0.396353], [0.244967, 0.037055, 0.400007], [0.251620, 0.037705, 0.403378], [0.258234, 0.038571, 0.406485], [0.264810, 0.039647, 0.409345], [0.271347, 0.040922, 0.411976], [0.277850, 0.042353, 0.414392], [0.284321, 0.043933, 0.416608], [0.290763, 0.045644, 0.418637], [0.297178, 0.047470, 0.420491], [0.303568, 0.049396, 0.422182], [0.309935, 0.051407, 0.423721], [0.316282, 0.053490, 0.425116], [0.322610, 0.055634, 0.426377], [0.328921, 0.057827, 0.427511], [0.335217, 0.060060, 0.428524], [0.341500, 0.062325, 0.429425], [0.347771, 0.064616, 0.430217], [0.354032, 0.066925, 0.430906], [0.360284, 0.069247, 0.431497], [0.366529, 0.071579, 0.431994], [0.372768, 0.073915, 0.432400], [0.379001, 0.076253, 0.432719], [0.385228, 0.078591, 0.432955], [0.391453, 0.080927, 0.433109], [0.397674, 0.083257, 0.433183], [0.403894, 0.085580, 0.433179], [0.410113, 0.087896, 0.433098], [0.416331, 0.090203, 0.432943], [0.422549, 0.092501, 0.432714], [0.428768, 0.094790, 0.432412], [0.434987, 0.097069, 0.432039], [0.441207, 0.099338, 0.431594], [0.447428, 0.101597, 0.431080], [0.453651, 0.103848, 0.430498], [0.459875, 0.106089, 0.429846], [0.466100, 0.108322, 0.429125], [0.472328, 0.110547, 0.428334], [0.478558, 0.112764, 0.427475], [0.484789, 0.114974, 0.426548], [0.491022, 0.117179, 0.425552], [0.497257, 0.119379, 0.424488], [0.503493, 0.121575, 0.423356], [0.509730, 0.123769, 0.422156], [0.515967, 0.125960, 0.420887], [0.522206, 0.128150, 0.419549], [0.528444, 0.130341, 0.418142], [0.534683, 0.132534, 0.416667], [0.540920, 0.134729, 0.415123], [0.547157, 0.136929, 0.413511], [0.553392, 0.139134, 0.411829], [0.559624, 0.141346, 0.410078], [0.565854, 0.143567, 0.408258], [0.572081, 0.145797, 0.406369], [0.578304, 0.148039, 0.404411], [0.584521, 0.150294, 0.402385], [0.590734, 0.152563, 0.400290], [0.596940, 0.154848, 0.398125], [0.603139, 0.157151, 0.395891], [0.609330, 0.159474, 0.393589], [0.615513, 0.161817, 0.391219], [0.621685, 0.164184, 0.388781], [0.627847, 0.166575, 0.386276], [0.633998, 0.168992, 0.383704], [0.640135, 0.171438, 0.381065], [0.646260, 0.173914, 0.378359], [0.652369, 0.176421, 0.375586], [0.658463, 0.178962, 0.372748], [0.664540, 0.181539, 0.369846], [0.670599, 0.184153, 0.366879], [0.676638, 0.186807, 0.363849], [0.682656, 0.189501, 0.360757], [0.688653, 0.192239, 0.357603], [0.694627, 0.195021, 0.354388], [0.700576, 0.197851, 0.351113], [0.706500, 0.200728, 0.347777], [0.712396, 0.203656, 0.344383], [0.718264, 0.206636, 0.340931], [0.724103, 0.209670, 0.337424], [0.729909, 0.212759, 0.333861], [0.735683, 0.215906, 0.330245], [0.741423, 0.219112, 0.326576], [0.747127, 0.222378, 0.322856], [0.752794, 0.225706, 0.319085], [0.758422, 0.229097, 0.315266], [0.764010, 0.232554, 0.311399], [0.769556, 0.236077, 0.307485], [0.775059, 0.239667, 0.303526], [0.780517, 0.243327, 0.299523], [0.785929, 0.247056, 0.295477], [0.791293, 0.250856, 0.291390], [0.796607, 0.254728, 0.287264], [0.801871, 0.258674, 0.283099], [0.807082, 0.262692, 0.278898], [0.812239, 0.266786, 0.274661], [0.817341, 0.270954, 0.270390], [0.822386, 0.275197, 0.266085], [0.827372, 0.279517, 0.261750], [0.832299, 0.283913, 0.257383], [0.837165, 0.288385, 0.252988], [0.841969, 0.292933, 0.248564], [0.846709, 0.297559, 0.244113], [0.851384, 0.302260, 0.239636], [0.855992, 0.307038, 0.235133], [0.860533, 0.311892, 0.230606], [0.865006, 0.316822, 0.226055], [0.869409, 0.321827, 0.221482], [0.873741, 0.326906, 0.216886], [0.878001, 0.332060, 0.212268], [0.882188, 0.337287, 0.207628], [0.886302, 0.342586, 0.202968], [0.890341, 0.347957, 0.198286], [0.894305, 0.353399, 0.193584], [0.898192, 0.358911, 0.188860], [0.902003, 0.364492, 0.184116], [0.905735, 0.370140, 0.179350], [0.909390, 0.375856, 0.174563], [0.912966, 0.381636, 0.169755], [0.916462, 0.387481, 0.164924], [0.919879, 0.393389, 0.160070], [0.923215, 0.399359, 0.155193], [0.926470, 0.405389, 0.150292], [0.929644, 0.411479, 0.145367], [0.932737, 0.417627, 0.140417], [0.935747, 0.423831, 0.135440], [0.938675, 0.430091, 0.130438], [0.941521, 0.436405, 0.125409], [0.944285, 0.442772, 0.120354], [0.946965, 0.449191, 0.115272], [0.949562, 0.455660, 0.110164], [0.952075, 0.462178, 0.105031], [0.954506, 0.468744, 0.099874], [0.956852, 0.475356, 0.094695], [0.959114, 0.482014, 0.089499], [0.961293, 0.488716, 0.084289], [0.963387, 0.495462, 0.079073], [0.965397, 0.502249, 0.073859], [0.967322, 0.509078, 0.068659], [0.969163, 0.515946, 0.063488], [0.970919, 0.522853, 0.058367], [0.972590, 0.529798, 0.053324], [0.974176, 0.536780, 0.048392], [0.975677, 0.543798, 0.043618], [0.977092, 0.550850, 0.039050], [0.978422, 0.557937, 0.034931], [0.979666, 0.565057, 0.031409], [0.980824, 0.572209, 0.028508], [0.981895, 0.579392, 0.026250], [0.982881, 0.586606, 0.024661], [0.983779, 0.593849, 0.023770], [0.984591, 0.601122, 0.023606], [0.985315, 0.608422, 0.024202], [0.985952, 0.615750, 0.025592], [0.986502, 0.623105, 0.027814], [0.986964, 0.630485, 0.030908], [0.987337, 0.637890, 0.034916], [0.987622, 0.645320, 0.039886], [0.987819, 0.652773, 0.045581], [0.987926, 0.660250, 0.051750], [0.987945, 0.667748, 0.058329], [0.987874, 0.675267, 0.065257], [0.987714, 0.682807, 0.072489], [0.987464, 0.690366, 0.079990], [0.987124, 0.697944, 0.087731], [0.986694, 0.705540, 0.095694], [0.986175, 0.713153, 0.103863], [0.985566, 0.720782, 0.112229], [0.984865, 0.728427, 0.120785], [0.984075, 0.736087, 0.129527], [0.983196, 0.743758, 0.138453], [0.982228, 0.751442, 0.147565], [0.981173, 0.759135, 0.156863], [0.980032, 0.766837, 0.166353], [0.978806, 0.774545, 0.176037], [0.977497, 0.782258, 0.185923], [0.976108, 0.789974, 0.196018], [0.974638, 0.797692, 0.206332], [0.973088, 0.805409, 0.216877], [0.971468, 0.813122, 0.227658], [0.969783, 0.820825, 0.238686], [0.968041, 0.828515, 0.249972], [0.966243, 0.836191, 0.261534], [0.964394, 0.843848, 0.273391], [0.962517, 0.851476, 0.285546], [0.960626, 0.859069, 0.298010], [0.958720, 0.866624, 0.310820], [0.956834, 0.874129, 0.323974], [0.954997, 0.881569, 0.337475], [0.953215, 0.888942, 0.351369], [0.951546, 0.896226, 0.365627], [0.950018, 0.903409, 0.380271], [0.948683, 0.910473, 0.395289], [0.947594, 0.917399, 0.410665], [0.946809, 0.924168, 0.426373], [0.946392, 0.930761, 0.442367], [0.946403, 0.937159, 0.458592], [0.946903, 0.943348, 0.474970], [0.947937, 0.949318, 0.491426], [0.949545, 0.955063, 0.507860], [0.951740, 0.960587, 0.524203], [0.954529, 0.965896, 0.540361], [0.957896, 0.971003, 0.556275], [0.961812, 0.975924, 0.571925], [0.966249, 0.980678, 0.587206], [0.971162, 0.985282, 0.602154], [0.976511, 0.989753, 0.616760], [0.982257, 0.994109, 0.631017], [0.988362, 0.998364, 0.644924]] _plasma_data = [[0.050383, 0.029803, 0.527975], [0.063536, 0.028426, 0.533124], [0.075353, 0.027206, 0.538007], [0.086222, 0.026125, 0.542658], [0.096379, 0.025165, 0.547103], [0.105980, 0.024309, 0.551368], [0.115124, 0.023556, 0.555468], [0.123903, 0.022878, 0.559423], [0.132381, 0.022258, 0.563250], [0.140603, 0.021687, 0.566959], [0.148607, 0.021154, 0.570562], [0.156421, 0.020651, 0.574065], [0.164070, 0.020171, 0.577478], [0.171574, 0.019706, 0.580806], [0.178950, 0.019252, 0.584054], [0.186213, 0.018803, 0.587228], [0.193374, 0.018354, 0.590330], [0.200445, 0.017902, 0.593364], [0.207435, 0.017442, 0.596333], [0.214350, 0.016973, 0.599239], [0.221197, 0.016497, 0.602083], [0.227983, 0.016007, 0.604867], [0.234715, 0.015502, 0.607592], [0.241396, 0.014979, 0.610259], [0.248032, 0.014439, 0.612868], [0.254627, 0.013882, 0.615419], [0.261183, 0.013308, 0.617911], [0.267703, 0.012716, 0.620346], [0.274191, 0.012109, 0.622722], [0.280648, 0.011488, 0.625038], [0.287076, 0.010855, 0.627295], [0.293478, 0.010213, 0.629490], [0.299855, 0.009561, 0.631624], [0.306210, 0.008902, 0.633694], [0.312543, 0.008239, 0.635700], [0.318856, 0.007576, 0.637640], [0.325150, 0.006915, 0.639512], [0.331426, 0.006261, 0.641316], [0.337683, 0.005618, 0.643049], [0.343925, 0.004991, 0.644710], [0.350150, 0.004382, 0.646298], [0.356359, 0.003798, 0.647810], [0.362553, 0.003243, 0.649245], [0.368733, 0.002724, 0.650601], [0.374897, 0.002245, 0.651876], [0.381047, 0.001814, 0.653068], [0.387183, 0.001434, 0.654177], [0.393304, 0.001114, 0.655199], [0.399411, 0.000859, 0.656133], [0.405503, 0.000678, 0.656977], [0.411580, 0.000577, 0.657730], [0.417642, 0.000564, 0.658390], [0.423689, 0.000646, 0.658956], [0.429719, 0.000831, 0.659425], [0.435734, 0.001127, 0.659797], [0.441732, 0.001540, 0.660069], [0.447714, 0.002080, 0.660240], [0.453677, 0.002755, 0.660310], [0.459623, 0.003574, 0.660277], [0.465550, 0.004545, 0.660139], [0.471457, 0.005678, 0.659897], [0.477344, 0.006980, 0.659549], [0.483210, 0.008460, 0.659095], [0.489055, 0.010127, 0.658534], [0.494877, 0.011990, 0.657865], [0.500678, 0.014055, 0.657088], [0.506454, 0.016333, 0.656202], [0.512206, 0.018833, 0.655209], [0.517933, 0.021563, 0.654109], [0.523633, 0.024532, 0.652901], [0.529306, 0.027747, 0.651586], [0.534952, 0.031217, 0.650165], [0.540570, 0.034950, 0.648640], [0.546157, 0.038954, 0.647010], [0.551715, 0.043136, 0.645277], [0.557243, 0.047331, 0.643443], [0.562738, 0.051545, 0.641509], [0.568201, 0.055778, 0.639477], [0.573632, 0.060028, 0.637349], [0.579029, 0.064296, 0.635126], [0.584391, 0.068579, 0.632812], [0.589719, 0.072878, 0.630408], [0.595011, 0.077190, 0.627917], [0.600266, 0.081516, 0.625342], [0.605485, 0.085854, 0.622686], [0.610667, 0.090204, 0.619951], [0.615812, 0.094564, 0.617140], [0.620919, 0.098934, 0.614257], [0.625987, 0.103312, 0.611305], [0.631017, 0.107699, 0.608287], [0.636008, 0.112092, 0.605205], [0.640959, 0.116492, 0.602065], [0.645872, 0.120898, 0.598867], [0.650746, 0.125309, 0.595617], [0.655580, 0.129725, 0.592317], [0.660374, 0.134144, 0.588971], [0.665129, 0.138566, 0.585582], [0.669845, 0.142992, 0.582154], [0.674522, 0.147419, 0.578688], [0.679160, 0.151848, 0.575189], [0.683758, 0.156278, 0.571660], [0.688318, 0.160709, 0.568103], [0.692840, 0.165141, 0.564522], [0.697324, 0.169573, 0.560919], [0.701769, 0.174005, 0.557296], [0.706178, 0.178437, 0.553657], [0.710549, 0.182868, 0.550004], [0.714883, 0.187299, 0.546338], [0.719181, 0.191729, 0.542663], [0.723444, 0.196158, 0.538981], [0.727670, 0.200586, 0.535293], [0.731862, 0.205013, 0.531601], [0.736019, 0.209439, 0.527908], [0.740143, 0.213864, 0.524216], [0.744232, 0.218288, 0.520524], [0.748289, 0.222711, 0.516834], [0.752312, 0.227133, 0.513149], [0.756304, 0.231555, 0.509468], [0.760264, 0.235976, 0.505794], [0.764193, 0.240396, 0.502126], [0.768090, 0.244817, 0.498465], [0.771958, 0.249237, 0.494813], [0.775796, 0.253658, 0.491171], [0.779604, 0.258078, 0.487539], [0.783383, 0.262500, 0.483918], [0.787133, 0.266922, 0.480307], [0.790855, 0.271345, 0.476706], [0.794549, 0.275770, 0.473117], [0.798216, 0.280197, 0.469538], [0.801855, 0.284626, 0.465971], [0.805467, 0.289057, 0.462415], [0.809052, 0.293491, 0.458870], [0.812612, 0.297928, 0.455338], [0.816144, 0.302368, 0.451816], [0.819651, 0.306812, 0.448306], [0.823132, 0.311261, 0.444806], [0.826588, 0.315714, 0.441316], [0.830018, 0.320172, 0.437836], [0.833422, 0.324635, 0.434366], [0.836801, 0.329105, 0.430905], [0.840155, 0.333580, 0.427455], [0.843484, 0.338062, 0.424013], [0.846788, 0.342551, 0.420579], [0.850066, 0.347048, 0.417153], [0.853319, 0.351553, 0.413734], [0.856547, 0.356066, 0.410322], [0.859750, 0.360588, 0.406917], [0.862927, 0.365119, 0.403519], [0.866078, 0.369660, 0.400126], [0.869203, 0.374212, 0.396738], [0.872303, 0.378774, 0.393355], [0.875376, 0.383347, 0.389976], [0.878423, 0.387932, 0.386600], [0.881443, 0.392529, 0.383229], [0.884436, 0.397139, 0.379860], [0.887402, 0.401762, 0.376494], [0.890340, 0.406398, 0.373130], [0.893250, 0.411048, 0.369768], [0.896131, 0.415712, 0.366407], [0.898984, 0.420392, 0.363047], [0.901807, 0.425087, 0.359688], [0.904601, 0.429797, 0.356329], [0.907365, 0.434524, 0.352970], [0.910098, 0.439268, 0.349610], [0.912800, 0.444029, 0.346251], [0.915471, 0.448807, 0.342890], [0.918109, 0.453603, 0.339529], [0.920714, 0.458417, 0.336166], [0.923287, 0.463251, 0.332801], [0.925825, 0.468103, 0.329435], [0.928329, 0.472975, 0.326067], [0.930798, 0.477867, 0.322697], [0.933232, 0.482780, 0.319325], [0.935630, 0.487712, 0.315952], [0.937990, 0.492667, 0.312575], [0.940313, 0.497642, 0.309197], [0.942598, 0.502639, 0.305816], [0.944844, 0.507658, 0.302433], [0.947051, 0.512699, 0.299049], [0.949217, 0.517763, 0.295662], [0.951344, 0.522850, 0.292275], [0.953428, 0.527960, 0.288883], [0.955470, 0.533093, 0.285490], [0.957469, 0.538250, 0.282096], [0.959424, 0.543431, 0.278701], [0.961336, 0.548636, 0.275305], [0.963203, 0.553865, 0.271909], [0.965024, 0.559118, 0.268513], [0.966798, 0.564396, 0.265118], [0.968526, 0.569700, 0.261721], [0.970205, 0.575028, 0.258325], [0.971835, 0.580382, 0.254931], [0.973416, 0.585761, 0.251540], [0.974947, 0.591165, 0.248151], [0.976428, 0.596595, 0.244767], [0.977856, 0.602051, 0.241387], [0.979233, 0.607532, 0.238013], [0.980556, 0.613039, 0.234646], [0.981826, 0.618572, 0.231287], [0.983041, 0.624131, 0.227937], [0.984199, 0.629718, 0.224595], [0.985301, 0.635330, 0.221265], [0.986345, 0.640969, 0.217948], [0.987332, 0.646633, 0.214648], [0.988260, 0.652325, 0.211364], [0.989128, 0.658043, 0.208100], [0.989935, 0.663787, 0.204859], [0.990681, 0.669558, 0.201642], [0.991365, 0.675355, 0.198453], [0.991985, 0.681179, 0.195295], [0.992541, 0.687030, 0.192170], [0.993032, 0.692907, 0.189084], [0.993456, 0.698810, 0.186041], [0.993814, 0.704741, 0.183043], [0.994103, 0.710698, 0.180097], [0.994324, 0.716681, 0.177208], [0.994474, 0.722691, 0.174381], [0.994553, 0.728728, 0.171622], [0.994561, 0.734791, 0.168938], [0.994495, 0.740880, 0.166335], [0.994355, 0.746995, 0.163821], [0.994141, 0.753137, 0.161404], [0.993851, 0.759304, 0.159092], [0.993482, 0.765499, 0.156891], [0.993033, 0.771720, 0.154808], [0.992505, 0.777967, 0.152855], [0.991897, 0.784239, 0.151042], [0.991209, 0.790537, 0.149377], [0.990439, 0.796859, 0.147870], [0.989587, 0.803205, 0.146529], [0.988648, 0.809579, 0.145357], [0.987621, 0.815978, 0.144363], [0.986509, 0.822401, 0.143557], [0.985314, 0.828846, 0.142945], [0.984031, 0.835315, 0.142528], [0.982653, 0.841812, 0.142303], [0.981190, 0.848329, 0.142279], [0.979644, 0.854866, 0.142453], [0.977995, 0.861432, 0.142808], [0.976265, 0.868016, 0.143351], [0.974443, 0.874622, 0.144061], [0.972530, 0.881250, 0.144923], [0.970533, 0.887896, 0.145919], [0.968443, 0.894564, 0.147014], [0.966271, 0.901249, 0.148180], [0.964021, 0.907950, 0.149370], [0.961681, 0.914672, 0.150520], [0.959276, 0.921407, 0.151566], [0.956808, 0.928152, 0.152409], [0.954287, 0.934908, 0.152921], [0.951726, 0.941671, 0.152925], [0.949151, 0.948435, 0.152178], [0.946602, 0.955190, 0.150328], [0.944152, 0.961916, 0.146861], [0.941896, 0.968590, 0.140956], [0.940015, 0.975158, 0.131326]] _viridis_data = [[0.267004, 0.004874, 0.329415], [0.268510, 0.009605, 0.335427], [0.269944, 0.014625, 0.341379], [0.271305, 0.019942, 0.347269], [0.272594, 0.025563, 0.353093], [0.273809, 0.031497, 0.358853], [0.274952, 0.037752, 0.364543], [0.276022, 0.044167, 0.370164], [0.277018, 0.050344, 0.375715], [0.277941, 0.056324, 0.381191], [0.278791, 0.062145, 0.386592], [0.279566, 0.067836, 0.391917], [0.280267, 0.073417, 0.397163], [0.280894, 0.078907, 0.402329], [0.281446, 0.084320, 0.407414], [0.281924, 0.089666, 0.412415], [0.282327, 0.094955, 0.417331], [0.282656, 0.100196, 0.422160], [0.282910, 0.105393, 0.426902], [0.283091, 0.110553, 0.431554], [0.283197, 0.115680, 0.436115], [0.283229, 0.120777, 0.440584], [0.283187, 0.125848, 0.444960], [0.283072, 0.130895, 0.449241], [0.282884, 0.135920, 0.453427], [0.282623, 0.140926, 0.457517], [0.282290, 0.145912, 0.461510], [0.281887, 0.150881, 0.465405], [0.281412, 0.155834, 0.469201], [0.280868, 0.160771, 0.472899], [0.280255, 0.165693, 0.476498], [0.279574, 0.170599, 0.479997], [0.278826, 0.175490, 0.483397], [0.278012, 0.180367, 0.486697], [0.277134, 0.185228, 0.489898], [0.276194, 0.190074, 0.493001], [0.275191, 0.194905, 0.496005], [0.274128, 0.199721, 0.498911], [0.273006, 0.204520, 0.501721], [0.271828, 0.209303, 0.504434], [0.270595, 0.214069, 0.507052], [0.269308, 0.218818, 0.509577], [0.267968, 0.223549, 0.512008], [0.266580, 0.228262, 0.514349], [0.265145, 0.232956, 0.516599], [0.263663, 0.237631, 0.518762], [0.262138, 0.242286, 0.520837], [0.260571, 0.246922, 0.522828], [0.258965, 0.251537, 0.524736], [0.257322, 0.256130, 0.526563], [0.255645, 0.260703, 0.528312], [0.253935, 0.265254, 0.529983], [0.252194, 0.269783, 0.531579], [0.250425, 0.274290, 0.533103], [0.248629, 0.278775, 0.534556], [0.246811, 0.283237, 0.535941], [0.244972, 0.287675, 0.537260], [0.243113, 0.292092, 0.538516], [0.241237, 0.296485, 0.539709], [0.239346, 0.300855, 0.540844], [0.237441, 0.305202, 0.541921], [0.235526, 0.309527, 0.542944], [0.233603, 0.313828, 0.543914], [0.231674, 0.318106, 0.544834], [0.229739, 0.322361, 0.545706], [0.227802, 0.326594, 0.546532], [0.225863, 0.330805, 0.547314], [0.223925, 0.334994, 0.548053], [0.221989, 0.339161, 0.548752], [0.220057, 0.343307, 0.549413], [0.218130, 0.347432, 0.550038], [0.216210, 0.351535, 0.550627], [0.214298, 0.355619, 0.551184], [0.212395, 0.359683, 0.551710], [0.210503, 0.363727, 0.552206], [0.208623, 0.367752, 0.552675], [0.206756, 0.371758, 0.553117], [0.204903, 0.375746, 0.553533], [0.203063, 0.379716, 0.553925], [0.201239, 0.383670, 0.554294], [0.199430, 0.387607, 0.554642], [0.197636, 0.391528, 0.554969], [0.195860, 0.395433, 0.555276], [0.194100, 0.399323, 0.555565], [0.192357, 0.403199, 0.555836], [0.190631, 0.407061, 0.556089], [0.188923, 0.410910, 0.556326], [0.187231, 0.414746, 0.556547], [0.185556, 0.418570, 0.556753], [0.183898, 0.422383, 0.556944], [0.182256, 0.426184, 0.557120], [0.180629, 0.429975, 0.557282], [0.179019, 0.433756, 0.557430], [0.177423, 0.437527, 0.557565], [0.175841, 0.441290, 0.557685], [0.174274, 0.445044, 0.557792], [0.172719, 0.448791, 0.557885], [0.171176, 0.452530, 0.557965], [0.169646, 0.456262, 0.558030], [0.168126, 0.459988, 0.558082], [0.166617, 0.463708, 0.558119], [0.165117, 0.467423, 0.558141], [0.163625, 0.471133, 0.558148], [0.162142, 0.474838, 0.558140], [0.160665, 0.478540, 0.558115], [0.159194, 0.482237, 0.558073], [0.157729, 0.485932, 0.558013], [0.156270, 0.489624, 0.557936], [0.154815, 0.493313, 0.557840], [0.153364, 0.497000, 0.557724], [0.151918, 0.500685, 0.557587], [0.150476, 0.504369, 0.557430], [0.149039, 0.508051, 0.557250], [0.147607, 0.511733, 0.557049], [0.146180, 0.515413, 0.556823], [0.144759, 0.519093, 0.556572], [0.143343, 0.522773, 0.556295], [0.141935, 0.526453, 0.555991], [0.140536, 0.530132, 0.555659], [0.139147, 0.533812, 0.555298], [0.137770, 0.537492, 0.554906], [0.136408, 0.541173, 0.554483], [0.135066, 0.544853, 0.554029], [0.133743, 0.548535, 0.553541], [0.132444, 0.552216, 0.553018], [0.131172, 0.555899, 0.552459], [0.129933, 0.559582, 0.551864], [0.128729, 0.563265, 0.551229], [0.127568, 0.566949, 0.550556], [0.126453, 0.570633, 0.549841], [0.125394, 0.574318, 0.549086], [0.124395, 0.578002, 0.548287], [0.123463, 0.581687, 0.547445], [0.122606, 0.585371, 0.546557], [0.121831, 0.589055, 0.545623], [0.121148, 0.592739, 0.544641], [0.120565, 0.596422, 0.543611], [0.120092, 0.600104, 0.542530], [0.119738, 0.603785, 0.541400], [0.119512, 0.607464, 0.540218], [0.119423, 0.611141, 0.538982], [0.119483, 0.614817, 0.537692], [0.119699, 0.618490, 0.536347], [0.120081, 0.622161, 0.534946], [0.120638, 0.625828, 0.533488], [0.121380, 0.629492, 0.531973], [0.122312, 0.633153, 0.530398], [0.123444, 0.636809, 0.528763], [0.124780, 0.640461, 0.527068], [0.126326, 0.644107, 0.525311], [0.128087, 0.647749, 0.523491], [0.130067, 0.651384, 0.521608], [0.132268, 0.655014, 0.519661], [0.134692, 0.658636, 0.517649], [0.137339, 0.662252, 0.515571], [0.140210, 0.665859, 0.513427], [0.143303, 0.669459, 0.511215], [0.146616, 0.673050, 0.508936], [0.150148, 0.676631, 0.506589], [0.153894, 0.680203, 0.504172], [0.157851, 0.683765, 0.501686], [0.162016, 0.687316, 0.499129], [0.166383, 0.690856, 0.496502], [0.170948, 0.694384, 0.493803], [0.175707, 0.697900, 0.491033], [0.180653, 0.701402, 0.488189], [0.185783, 0.704891, 0.485273], [0.191090, 0.708366, 0.482284], [0.196571, 0.711827, 0.479221], [0.202219, 0.715272, 0.476084], [0.208030, 0.718701, 0.472873], [0.214000, 0.722114, 0.469588], [0.220124, 0.725509, 0.466226], [0.226397, 0.728888, 0.462789], [0.232815, 0.732247, 0.459277], [0.239374, 0.735588, 0.455688], [0.246070, 0.738910, 0.452024], [0.252899, 0.742211, 0.448284], [0.259857, 0.745492, 0.444467], [0.266941, 0.748751, 0.440573], [0.274149, 0.751988, 0.436601], [0.281477, 0.755203, 0.432552], [0.288921, 0.758394, 0.428426], [0.296479, 0.761561, 0.424223], [0.304148, 0.764704, 0.419943], [0.311925, 0.767822, 0.415586], [0.319809, 0.770914, 0.411152], [0.327796, 0.773980, 0.406640], [0.335885, 0.777018, 0.402049], [0.344074, 0.780029, 0.397381], [0.352360, 0.783011, 0.392636], [0.360741, 0.785964, 0.387814], [0.369214, 0.788888, 0.382914], [0.377779, 0.791781, 0.377939], [0.386433, 0.794644, 0.372886], [0.395174, 0.797475, 0.367757], [0.404001, 0.800275, 0.362552], [0.412913, 0.803041, 0.357269], [0.421908, 0.805774, 0.351910], [0.430983, 0.808473, 0.346476], [0.440137, 0.811138, 0.340967], [0.449368, 0.813768, 0.335384], [0.458674, 0.816363, 0.329727], [0.468053, 0.818921, 0.323998], [0.477504, 0.821444, 0.318195], [0.487026, 0.823929, 0.312321], [0.496615, 0.826376, 0.306377], [0.506271, 0.828786, 0.300362], [0.515992, 0.831158, 0.294279], [0.525776, 0.833491, 0.288127], [0.535621, 0.835785, 0.281908], [0.545524, 0.838039, 0.275626], [0.555484, 0.840254, 0.269281], [0.565498, 0.842430, 0.262877], [0.575563, 0.844566, 0.256415], [0.585678, 0.846661, 0.249897], [0.595839, 0.848717, 0.243329], [0.606045, 0.850733, 0.236712], [0.616293, 0.852709, 0.230052], [0.626579, 0.854645, 0.223353], [0.636902, 0.856542, 0.216620], [0.647257, 0.858400, 0.209861], [0.657642, 0.860219, 0.203082], [0.668054, 0.861999, 0.196293], [0.678489, 0.863742, 0.189503], [0.688944, 0.865448, 0.182725], [0.699415, 0.867117, 0.175971], [0.709898, 0.868751, 0.169257], [0.720391, 0.870350, 0.162603], [0.730889, 0.871916, 0.156029], [0.741388, 0.873449, 0.149561], [0.751884, 0.874951, 0.143228], [0.762373, 0.876424, 0.137064], [0.772852, 0.877868, 0.131109], [0.783315, 0.879285, 0.125405], [0.793760, 0.880678, 0.120005], [0.804182, 0.882046, 0.114965], [0.814576, 0.883393, 0.110347], [0.824940, 0.884720, 0.106217], [0.835270, 0.886029, 0.102646], [0.845561, 0.887322, 0.099702], [0.855810, 0.888601, 0.097452], [0.866013, 0.889868, 0.095953], [0.876168, 0.891125, 0.095250], [0.886271, 0.892374, 0.095374], [0.896320, 0.893616, 0.096335], [0.906311, 0.894855, 0.098125], [0.916242, 0.896091, 0.100717], [0.926106, 0.897330, 0.104071], [0.935904, 0.898570, 0.108131], [0.945636, 0.899815, 0.112838], [0.955300, 0.901065, 0.118128], [0.964894, 0.902323, 0.123941], [0.974417, 0.903590, 0.130215], [0.983868, 0.904867, 0.136897], [0.993248, 0.906157, 0.143936]] _cividis_data = [[0.000000, 0.135112, 0.304751], [0.000000, 0.138068, 0.311105], [0.000000, 0.141013, 0.317579], [0.000000, 0.143951, 0.323982], [0.000000, 0.146877, 0.330479], [0.000000, 0.149791, 0.337065], [0.000000, 0.152673, 0.343704], [0.000000, 0.155377, 0.350500], [0.000000, 0.157932, 0.357521], [0.000000, 0.160495, 0.364534], [0.000000, 0.163058, 0.371608], [0.000000, 0.165621, 0.378769], [0.000000, 0.168204, 0.385902], [0.000000, 0.170800, 0.393100], [0.000000, 0.173420, 0.400353], [0.000000, 0.176082, 0.407577], [0.000000, 0.178802, 0.414764], [0.000000, 0.181610, 0.421859], [0.000000, 0.184550, 0.428802], [0.000000, 0.186915, 0.435532], [0.000000, 0.188769, 0.439563], [0.000000, 0.190950, 0.441085], [0.000000, 0.193366, 0.441561], [0.003602, 0.195911, 0.441564], [0.017852, 0.198528, 0.441248], [0.032110, 0.201199, 0.440785], [0.046205, 0.203903, 0.440196], [0.058378, 0.206629, 0.439531], [0.068968, 0.209372, 0.438863], [0.078624, 0.212122, 0.438105], [0.087465, 0.214879, 0.437342], [0.095645, 0.217643, 0.436593], [0.103401, 0.220406, 0.435790], [0.110658, 0.223170, 0.435067], [0.117612, 0.225935, 0.434308], [0.124291, 0.228697, 0.433547], [0.130669, 0.231458, 0.432840], [0.136830, 0.234216, 0.432148], [0.142852, 0.236972, 0.431404], [0.148638, 0.239724, 0.430752], [0.154261, 0.242475, 0.430120], [0.159733, 0.245221, 0.429528], [0.165113, 0.247965, 0.428908], [0.170362, 0.250707, 0.428325], [0.175490, 0.253444, 0.427790], [0.180503, 0.256180, 0.427299], [0.185453, 0.258914, 0.426788], [0.190303, 0.261644, 0.426329], [0.195057, 0.264372, 0.425924], [0.199764, 0.267099, 0.425497], [0.204385, 0.269823, 0.425126], [0.208926, 0.272546, 0.424809], [0.213431, 0.275266, 0.424480], [0.217863, 0.277985, 0.424206], [0.222264, 0.280702, 0.423914], [0.226598, 0.283419, 0.423678], [0.230871, 0.286134, 0.423498], [0.235120, 0.288848, 0.423304], [0.239312, 0.291562, 0.423167], [0.243485, 0.294274, 0.423014], [0.247605, 0.296986, 0.422917], [0.251675, 0.299698, 0.422873], [0.255731, 0.302409, 0.422814], [0.259740, 0.305120, 0.422810], [0.263738, 0.307831, 0.422789], [0.267693, 0.310542, 0.422821], [0.271639, 0.313253, 0.422837], [0.275513, 0.315965, 0.422979], [0.279411, 0.318677, 0.423031], [0.283240, 0.321390, 0.423211], [0.287065, 0.324103, 0.423373], [0.290884, 0.326816, 0.423517], [0.294669, 0.329531, 0.423716], [0.298421, 0.332247, 0.423973], [0.302169, 0.334963, 0.424213], [0.305886, 0.337681, 0.424512], [0.309601, 0.340399, 0.424790], [0.313287, 0.343120, 0.425120], [0.316941, 0.345842, 0.425512], [0.320595, 0.348565, 0.425889], [0.324250, 0.351289, 0.426250], [0.327875, 0.354016, 0.426670], [0.331474, 0.356744, 0.427144], [0.335073, 0.359474, 0.427605], [0.338673, 0.362206, 0.428053], [0.342246, 0.364939, 0.428559], [0.345793, 0.367676, 0.429127], [0.349341, 0.370414, 0.429685], [0.352892, 0.373153, 0.430226], [0.356418, 0.375896, 0.430823], [0.359916, 0.378641, 0.431501], [0.363446, 0.381388, 0.432075], [0.366923, 0.384139, 0.432796], [0.370430, 0.386890, 0.433428], [0.373884, 0.389646, 0.434209], [0.377371, 0.392404, 0.434890], [0.380830, 0.395164, 0.435653], [0.384268, 0.397928, 0.436475], [0.387705, 0.400694, 0.437305], [0.391151, 0.403464, 0.438096], [0.394568, 0.406236, 0.438986], [0.397991, 0.409011, 0.439848], [0.401418, 0.411790, 0.440708], [0.404820, 0.414572, 0.441642], [0.408226, 0.417357, 0.442570], [0.411607, 0.420145, 0.443577], [0.414992, 0.422937, 0.444578], [0.418383, 0.425733, 0.445560], [0.421748, 0.428531, 0.446640], [0.425120, 0.431334, 0.447692], [0.428462, 0.434140, 0.448864], [0.431817, 0.436950, 0.449982], [0.435168, 0.439763, 0.451134], [0.438504, 0.442580, 0.452341], [0.441810, 0.445402, 0.453659], [0.445148, 0.448226, 0.454885], [0.448447, 0.451053, 0.456264], [0.451759, 0.453887, 0.457582], [0.455072, 0.456718, 0.458976], [0.458366, 0.459552, 0.460457], [0.461616, 0.462405, 0.461969], [0.464947, 0.465241, 0.463395], [0.468254, 0.468083, 0.464908], [0.471501, 0.470960, 0.466357], [0.474812, 0.473832, 0.467681], [0.478186, 0.476699, 0.468845], [0.481622, 0.479573, 0.469767], [0.485141, 0.482451, 0.470384], [0.488697, 0.485318, 0.471008], [0.492278, 0.488198, 0.471453], [0.495913, 0.491076, 0.471751], [0.499552, 0.493960, 0.472032], [0.503185, 0.496851, 0.472305], [0.506866, 0.499743, 0.472432], [0.510540, 0.502643, 0.472550], [0.514226, 0.505546, 0.472640], [0.517920, 0.508454, 0.472707], [0.521643, 0.511367, 0.472639], [0.525348, 0.514285, 0.472660], [0.529086, 0.517207, 0.472543], [0.532829, 0.520135, 0.472401], [0.536553, 0.523067, 0.472352], [0.540307, 0.526005, 0.472163], [0.544069, 0.528948, 0.471947], [0.547840, 0.531895, 0.471704], [0.551612, 0.534849, 0.471439], [0.555393, 0.537807, 0.471147], [0.559181, 0.540771, 0.470829], [0.562972, 0.543741, 0.470488], [0.566802, 0.546715, 0.469988], [0.570607, 0.549695, 0.469593], [0.574417, 0.552682, 0.469172], [0.578236, 0.555673, 0.468724], [0.582087, 0.558670, 0.468118], [0.585916, 0.561674, 0.467618], [0.589753, 0.564682, 0.467090], [0.593622, 0.567697, 0.466401], [0.597469, 0.570718, 0.465821], [0.601354, 0.573743, 0.465074], [0.605211, 0.576777, 0.464441], [0.609105, 0.579816, 0.463638], [0.612977, 0.582861, 0.462950], [0.616852, 0.585913, 0.462237], [0.620765, 0.588970, 0.461351], [0.624654, 0.592034, 0.460583], [0.628576, 0.595104, 0.459641], [0.632506, 0.598180, 0.458668], [0.636412, 0.601264, 0.457818], [0.640352, 0.604354, 0.456791], [0.644270, 0.607450, 0.455886], [0.648222, 0.610553, 0.454801], [0.652178, 0.613664, 0.453689], [0.656114, 0.616780, 0.452702], [0.660082, 0.619904, 0.451534], [0.664055, 0.623034, 0.450338], [0.668008, 0.626171, 0.449270], [0.671991, 0.629316, 0.448018], [0.675981, 0.632468, 0.446736], [0.679979, 0.635626, 0.445424], [0.683950, 0.638793, 0.444251], [0.687957, 0.641966, 0.442886], [0.691971, 0.645145, 0.441491], [0.695985, 0.648334, 0.440072], [0.700008, 0.651529, 0.438624], [0.704037, 0.654731, 0.437147], [0.708067, 0.657942, 0.435647], [0.712105, 0.661160, 0.434117], [0.716177, 0.664384, 0.432386], [0.720222, 0.667618, 0.430805], [0.724274, 0.670859, 0.429194], [0.728334, 0.674107, 0.427554], [0.732422, 0.677364, 0.425717], [0.736488, 0.680629, 0.424028], [0.740589, 0.683900, 0.422131], [0.744664, 0.687181, 0.420393], [0.748772, 0.690470, 0.418448], [0.752886, 0.693766, 0.416472], [0.756975, 0.697071, 0.414659], [0.761096, 0.700384, 0.412638], [0.765223, 0.703705, 0.410587], [0.769353, 0.707035, 0.408516], [0.773486, 0.710373, 0.406422], [0.777651, 0.713719, 0.404112], [0.781795, 0.717074, 0.401966], [0.785965, 0.720438, 0.399613], [0.790116, 0.723810, 0.397423], [0.794298, 0.727190, 0.395016], [0.798480, 0.730580, 0.392597], [0.802667, 0.733978, 0.390153], [0.806859, 0.737385, 0.387684], [0.811054, 0.740801, 0.385198], [0.815274, 0.744226, 0.382504], [0.819499, 0.747659, 0.379785], [0.823729, 0.751101, 0.377043], [0.827959, 0.754553, 0.374292], [0.832192, 0.758014, 0.371529], [0.836429, 0.761483, 0.368747], [0.840693, 0.764962, 0.365746], [0.844957, 0.768450, 0.362741], [0.849223, 0.771947, 0.359729], [0.853515, 0.775454, 0.356500], [0.857809, 0.778969, 0.353259], [0.862105, 0.782494, 0.350011], [0.866421, 0.786028, 0.346571], [0.870717, 0.789572, 0.343333], [0.875057, 0.793125, 0.339685], [0.879378, 0.796687, 0.336241], [0.883720, 0.800258, 0.332599], [0.888081, 0.803839, 0.328770], [0.892440, 0.807430, 0.324968], [0.896818, 0.811030, 0.320982], [0.901195, 0.814639, 0.317021], [0.905589, 0.818257, 0.312889], [0.910000, 0.821885, 0.308594], [0.914407, 0.825522, 0.304348], [0.918828, 0.829168, 0.299960], [0.923279, 0.832822, 0.295244], [0.927724, 0.836486, 0.290611], [0.932180, 0.840159, 0.285880], [0.936660, 0.843841, 0.280876], [0.941147, 0.847530, 0.275815], [0.945654, 0.851228, 0.270532], [0.950178, 0.854933, 0.265085], [0.954725, 0.858646, 0.259365], [0.959284, 0.862365, 0.253563], [0.963872, 0.866089, 0.247445], [0.968469, 0.869819, 0.241310], [0.973114, 0.873550, 0.234677], [0.977780, 0.877281, 0.227954], [0.982497, 0.881008, 0.220878], [0.987293, 0.884718, 0.213336], [0.992218, 0.888385, 0.205468], [0.994847, 0.892954, 0.203445], [0.995249, 0.898384, 0.207561], [0.995503, 0.903866, 0.212370], [0.995737, 0.909344, 0.217772]] _twilight_data = [ [0.88575015840754434, 0.85000924943067835, 0.8879736506427196], [0.88378520195539056, 0.85072940540310626, 0.88723222096949894], [0.88172231059285788, 0.85127594077653468, 0.88638056925514819], [0.8795410528270573, 0.85165675407495722, 0.8854143767924102], [0.87724880858965482, 0.85187028338870274, 0.88434120381311432], [0.87485347508575972, 0.85191526123023187, 0.88316926967613829], [0.87233134085124076, 0.85180165478080894, 0.88189704355001619], [0.86970474853509816, 0.85152403004797894, 0.88053883390003362], [0.86696015505333579, 0.8510896085314068, 0.87909766977173343], [0.86408985081463996, 0.85050391167507788, 0.87757925784892632], [0.86110245436899846, 0.84976754857001258, 0.87599242923439569], [0.85798259245670372, 0.84888934810281835, 0.87434038553446281], [0.85472593189256985, 0.84787488124672816, 0.8726282980930582], [0.85133714570857189, 0.84672735796116472, 0.87086081657350445], [0.84780710702577922, 0.8454546229209523, 0.86904036783694438], [0.8441261828674842, 0.84406482711037389, 0.86716973322690072], [0.84030420805957784, 0.8425605950855084, 0.865250882410458], [0.83634031809191178, 0.84094796518951942, 0.86328528001070159], [0.83222705712934408, 0.83923490627754482, 0.86127563500427884], [0.82796894316013536, 0.83742600751395202, 0.85922399451306786], [0.82357429680252847, 0.83552487764795436, 0.85713191328514948], [0.81904654677937527, 0.8335364929949034, 0.85500206287010105], [0.81438982121143089, 0.83146558694197847, 0.85283759062147024], [0.8095999819094809, 0.82931896673505456, 0.85064441601050367], [0.80469164429814577, 0.82709838780560663, 0.84842449296974021], [0.79967075421267997, 0.82480781812080928, 0.84618210029578533], [0.79454305089231114, 0.82245116226304615, 0.84392184786827984], [0.78931445564608915, 0.82003213188702007, 0.8416486380471222], [0.78399101042764918, 0.81755426400533426, 0.83936747464036732], [0.77857892008227592, 0.81502089378742548, 0.8370834463093898], [0.77308416590170936, 0.81243524735466011, 0.83480172950579679], [0.76751108504417864, 0.8098007598713145, 0.83252816638059668], [0.76186907937980286, 0.80711949387647486, 0.830266486168872], [0.75616443584381976, 0.80439408733477935, 0.82802138994719998], [0.75040346765406696, 0.80162699008965321, 0.82579737851082424], [0.74459247771890169, 0.79882047719583249, 0.82359867586156521], [0.73873771700494939, 0.79597665735031009, 0.82142922780433014], [0.73284543645523459, 0.79309746468844067, 0.81929263384230377], [0.72692177512829703, 0.7901846863592763, 0.81719217466726379], [0.72097280665536778, 0.78723995923452639, 0.81513073920879264], [0.71500403076252128, 0.78426487091581187, 0.81311116559949914], [0.70902078134539304, 0.78126088716070907, 0.81113591855117928], [0.7030297722540817, 0.77822904973358131, 0.80920618848056969], [0.6970365443886174, 0.77517050008066057, 0.80732335380063447], [0.69104641009309098, 0.77208629460678091, 0.80548841690679074], [0.68506446154395928, 0.7689774029354699, 0.80370206267176914], [0.67909554499882152, 0.76584472131395898, 0.8019646617300199], [0.67314422559426212, 0.76268908733890484, 0.80027628545809526], [0.66721479803752815, 0.7595112803730375, 0.79863674654537764], [0.6613112930078745, 0.75631202708719025, 0.7970456043491897], [0.65543692326454717, 0.75309208756768431, 0.79550271129031047], [0.64959573004253479, 0.74985201221941766, 0.79400674021499107], [0.6437910831099849, 0.7465923800833657, 0.79255653201306053], [0.63802586828545982, 0.74331376714033193, 0.79115100459573173], [0.6323027138710603, 0.74001672160131404, 0.78978892762640429], [0.62662402022604591, 0.73670175403699445, 0.78846901316334561], [0.62099193064817548, 0.73336934798923203, 0.78718994624696581], [0.61540846411770478, 0.73001995232739691, 0.78595022706750484], [0.60987543176093062, 0.72665398759758293, 0.78474835732694714], [0.60439434200274855, 0.7232718614323369, 0.78358295593535587], [0.5989665814482068, 0.71987394892246725, 0.78245259899346642], [0.59359335696837223, 0.7164606049658685, 0.78135588237640097], [0.58827579780555495, 0.71303214646458135, 0.78029141405636515], [0.58301487036932409, 0.70958887676997473, 0.77925781820476592], [0.5778116438998202, 0.70613106157153982, 0.77825345121025524], [0.5726668948158774, 0.7026589535425779, 0.77727702680911992], [0.56758117853861967, 0.69917279302646274, 0.77632748534275298], [0.56255515357219343, 0.69567278381629649, 0.77540359142309845], [0.55758940419605174, 0.69215911458254054, 0.7745041337932782], [0.55268450589347129, 0.68863194515166382, 0.7736279426902245], [0.54784098153018634, 0.68509142218509878, 0.77277386473440868], [0.54305932424018233, 0.68153767253065878, 0.77194079697835083], [0.53834015575176275, 0.67797081129095405, 0.77112734439057717], [0.53368389147728401, 0.67439093705212727, 0.7703325054879735], [0.529090861832473, 0.67079812302806219, 0.76955552292313134], [0.52456151470593582, 0.66719242996142225, 0.76879541714230948], [0.52009627392235558, 0.66357391434030388, 0.76805119403344102], [0.5156955988596057, 0.65994260812897998, 0.76732191489596169], [0.51135992541601927, 0.65629853981831865, 0.76660663780645333], [0.50708969576451657, 0.65264172403146448, 0.76590445660835849], [0.5028853540415561, 0.64897216734095264, 0.76521446718174913], [0.49874733661356069, 0.6452898684900934, 0.76453578734180083], [0.4946761847863938, 0.64159484119504429, 0.76386719002130909], [0.49067224938561221, 0.63788704858847078, 0.76320812763163837], [0.4867359599430568, 0.63416646251100506, 0.76255780085924041], [0.4828677867260272, 0.6304330455306234, 0.76191537149895305], [0.47906816236197386, 0.62668676251860134, 0.76128000375662419], [0.47533752394906287, 0.62292757283835809, 0.76065085571817748], [0.47167629518877091, 0.61915543242884641, 0.76002709227883047], [0.46808490970531597, 0.61537028695790286, 0.75940789891092741], [0.46456376716303932, 0.61157208822864151, 0.75879242623025811], [0.46111326647023881, 0.607760777169989, 0.75817986436807139], [0.45773377230160567, 0.60393630046586455, 0.75756936901859162], [0.45442563977552913, 0.60009859503858665, 0.75696013660606487], [0.45118918687617743, 0.59624762051353541, 0.75635120643246645], [0.44802470933589172, 0.59238331452146575, 0.75574176474107924], [0.44493246854215379, 0.5885055998308617, 0.7551311041857901], [0.44191271766696399, 0.58461441100175571, 0.75451838884410671], [0.43896563958048396, 0.58070969241098491, 0.75390276208285945], [0.43609138958356369, 0.57679137998186081, 0.7532834105961016], [0.43329008867358393, 0.57285941625606673, 0.75265946532566674], [0.43056179073057571, 0.56891374572457176, 0.75203008099312696], [0.42790652284925834, 0.5649543060909209, 0.75139443521914839], [0.42532423665011354, 0.56098104959950301, 0.75075164989005116], [0.42281485675772662, 0.55699392126996583, 0.75010086988227642], [0.42037822361396326, 0.55299287158108168, 0.7494412559451894], [0.41801414079233629, 0.54897785421888889, 0.74877193167001121], [0.4157223260454232, 0.54494882715350401, 0.74809204459000522], [0.41350245743314729, 0.54090574771098476, 0.74740073297543086], [0.41135414697304568, 0.53684857765005933, 0.74669712855065784], [0.4092768899914751, 0.53277730177130322, 0.74598030635707824], [0.40727018694219069, 0.52869188011057411, 0.74524942637581271], [0.40533343789303178, 0.52459228174983119, 0.74450365836708132], [0.40346600333905397, 0.52047847653840029, 0.74374215223567086], [0.40166714010896104, 0.51635044969688759, 0.7429640345324835], [0.39993606933454834, 0.51220818143218516, 0.74216844571317986], [0.3982719152586337, 0.50805166539276136, 0.74135450918099721], [0.39667374905665609, 0.50388089053847973, 0.74052138580516735], [0.39514058808207631, 0.49969585326377758, 0.73966820211715711], [0.39367135736822567, 0.49549655777451179, 0.738794102296364], [0.39226494876209317, 0.49128300332899261, 0.73789824784475078], [0.39092017571994903, 0.48705520251223039, 0.73697977133881254], [0.38963580160340855, 0.48281316715123496, 0.73603782546932739], [0.38841053300842432, 0.47855691131792805, 0.73507157641157261], [0.38724301459330251, 0.47428645933635388, 0.73408016787854391], [0.38613184178892102, 0.4700018340988123, 0.7330627749243106], [0.38507556793651387, 0.46570306719930193, 0.73201854033690505], [0.38407269378943537, 0.46139018782416635, 0.73094665432902683], [0.38312168084402748, 0.45706323581407199, 0.72984626791353258], [0.38222094988570376, 0.45272225034283325, 0.72871656144003782], [0.38136887930454161, 0.44836727669277859, 0.72755671317141346], [0.38056380696565623, 0.44399837208633719, 0.72636587045135315], [0.37980403744848751, 0.43961558821222629, 0.72514323778761092], [0.37908789283110761, 0.43521897612544935, 0.72388798691323131], [0.378413635091359, 0.43080859411413064, 0.72259931993061044], [0.37777949753513729, 0.4263845142616835, 0.72127639993530235], [0.37718371844251231, 0.42194680223454828, 0.71991841524475775], [0.37662448930806297, 0.41749553747893614, 0.71852454736176108], [0.37610001286385814, 0.41303079952477062, 0.71709396919920232], [0.37560846919442398, 0.40855267638072096, 0.71562585091587549], [0.37514802505380473, 0.4040612609993941, 0.7141193695725726], [0.37471686019302231, 0.3995566498711684, 0.71257368516500463], [0.37431313199312338, 0.39503894828283309, 0.71098796522377461], [0.37393499330475782, 0.39050827529375831, 0.70936134293478448], [0.3735806215098284, 0.38596474386057539, 0.70769297607310577], [0.37324816143326384, 0.38140848555753937, 0.70598200974806036], [0.37293578646665032, 0.37683963835219841, 0.70422755780589941], [0.37264166757849604, 0.37225835004836849, 0.7024287314570723], [0.37236397858465387, 0.36766477862108266, 0.70058463496520773], [0.37210089702443822, 0.36305909736982378, 0.69869434615073722], [0.3718506155898596, 0.35844148285875221, 0.69675695810256544], [0.37161133234400479, 0.3538121372967869, 0.69477149919380887], [0.37138124223736607, 0.34917126878479027, 0.69273703471928827], [0.37115856636209105, 0.34451911410230168, 0.69065253586464992], [0.37094151551337329, 0.33985591488818123, 0.68851703379505125], [0.37072833279422668, 0.33518193808489577, 0.68632948169606767], [0.37051738634484427, 0.33049741244307851, 0.68408888788857214], [0.37030682071842685, 0.32580269697872455, 0.68179411684486679], [0.37009487130772695, 0.3210981375964933, 0.67944405399056851], [0.36987980329025361, 0.31638410101153364, 0.67703755438090574], [0.36965987626565955, 0.31166098762951971, 0.67457344743419545], [0.36943334591276228, 0.30692923551862339, 0.67205052849120617], [0.36919847837592484, 0.30218932176507068, 0.66946754331614522], [0.36895355306596778, 0.29744175492366276, 0.66682322089824264], [0.36869682231895268, 0.29268709856150099, 0.66411625298236909], [0.36842655638020444, 0.28792596437778462, 0.66134526910944602], [0.36814101479899719, 0.28315901221182987, 0.65850888806972308], [0.36783843696531082, 0.27838697181297761, 0.65560566838453704], [0.36751707094367697, 0.27361063317090978, 0.65263411711618635], [0.36717513650699446, 0.26883085667326956, 0.64959272297892245], [0.36681085540107988, 0.26404857724525643, 0.64647991652908243], [0.36642243251550632, 0.25926481158628106, 0.64329409140765537], [0.36600853966739794, 0.25448043878086224, 0.64003361803368586], [0.36556698373538982, 0.24969683475296395, 0.63669675187488584], [0.36509579845886808, 0.24491536803550484, 0.63328173520055586], [0.36459308890125008, 0.24013747024823828, 0.62978680155026101], [0.36405693022088509, 0.23536470386204195, 0.62621013451953023], [0.36348537610385145, 0.23059876218396419, 0.62254988622392882], [0.36287643560041027, 0.22584149293287031, 0.61880417410823019], [0.36222809558295926, 0.22109488427338303, 0.61497112346096128], [0.36153829010998356, 0.21636111429594002, 0.61104880679640927], [0.36080493826624654, 0.21164251793458128, 0.60703532172064711], [0.36002681809096376, 0.20694122817889948, 0.60292845431916875], [0.35920088560930186, 0.20226037920758122, 0.5987265295935138], [0.35832489966617809, 0.197602942459778, 0.59442768517501066], [0.35739663292915563, 0.19297208197842461, 0.59003011251063131], [0.35641381143126327, 0.18837119869242164, 0.5855320765920552], [0.35537415306906722, 0.18380392577704466, 0.58093191431832802], [0.35427534960663759, 0.17927413271618647, 0.57622809660668717], [0.35311574421123737, 0.17478570377561287, 0.57141871523555288], [0.35189248608873791, 0.17034320478524959, 0.56650284911216653], [0.35060304441931012, 0.16595129984720861, 0.56147964703993225], [0.34924513554955644, 0.16161477763045118, 0.55634837474163779], [0.34781653238777782, 0.15733863511152979, 0.55110853452703257], [0.34631507175793091, 0.15312802296627787, 0.5457599924248665], [0.34473901574536375, 0.14898820589826409, 0.54030245920406539], [0.34308600291572294, 0.14492465359918028, 0.53473704282067103], [0.34135411074506483, 0.1409427920655632, 0.52906500940336754], [0.33954168752669694, 0.13704801896718169, 0.52328797535085236], [0.33764732090671112, 0.13324562282438077, 0.51740807573979475], [0.33566978565015315, 0.12954074251271822, 0.51142807215168951], [0.33360804901486002, 0.12593818301005921, 0.50535164796654897], [0.33146154891145124, 0.12244245263391232, 0.49918274588431072], [0.32923005203231409, 0.11905764321981127, 0.49292595612342666], [0.3269137124539796, 0.1157873496841953, 0.48658646495697461], [0.32451307931207785, 0.11263459791730848, 0.48017007211645196], [0.32202882276069322, 0.10960114111258401, 0.47368494725726878], [0.31946262395497965, 0.10668879882392659, 0.46713728801395243], [0.31681648089023501, 0.10389861387653518, 0.46053414662739794], [0.31409278414755532, 0.10123077676403242, 0.45388335612058467], [0.31129434479712365, 0.098684771934052201, 0.44719313715161618], [0.30842444457210105, 0.096259385340577736, 0.44047194882050544], [0.30548675819945936, 0.093952764840823738, 0.43372849999361113], [0.30248536364574252, 0.091761187397303601, 0.42697404043749887], [0.29942483960214772, 0.089682253716750038, 0.42021619665853854], [0.29631000388905288, 0.087713250960463951, 0.41346259134143476], [0.29314593096985248, 0.085850656889620708, 0.40672178082365834], [0.28993792445176608, 0.08409078829085731, 0.40000214725256295], [0.28669151388283165, 0.082429873848480689, 0.39331182532243375], [0.28341239797185225, 0.080864153365499375, 0.38665868550105914], [0.28010638576975472, 0.079389994802261526, 0.38005028528138707], [0.27677939615815589, 0.078003941033788216, 0.37349382846504675], [0.27343739342450812, 0.076702800237496066, 0.36699616136347685], [0.27008637749114051, 0.075483675584275545, 0.36056376228111864], [0.26673233211995284, 0.074344018028546205, 0.35420276066240958], [0.26338121807151404, 0.073281657939897077, 0.34791888996380105], [0.26003895187439957, 0.072294781043362205, 0.3417175669546984], [0.25671191651083902, 0.071380106242082242, 0.33560648984600089], [0.25340685873736807, 0.070533582926851829, 0.3295945757321303], [0.25012845306199383, 0.069758206429106989, 0.32368100685760637], [0.24688226237958999, 0.069053639449204451, 0.31786993834254956], [0.24367372557466271, 0.068419855150922693, 0.31216524050888372], [0.24050813332295939, 0.067857103814855602, 0.30657054493678321], [0.23739062429054825, 0.067365888050555517, 0.30108922184065873], [0.23433055727563878, 0.066935599661639394, 0.29574009929867601], [0.23132955273021344, 0.066576186939090592, 0.29051361067988485], [0.2283917709422868, 0.06628997924139618, 0.28541074411068496], [0.22552164337737857, 0.066078173119395595, 0.28043398847505197], [0.22272706739121817, 0.065933790675651943, 0.27559714652053702], [0.22001251100779617, 0.065857918918907604, 0.27090279994325861], [0.21737845072382705, 0.065859661233562045, 0.26634209349669508], [0.21482843531473683, 0.065940385613778491, 0.26191675992376573], [0.21237411048541005, 0.066085024661758446, 0.25765165093569542], [0.21001214221188125, 0.066308573918947178, 0.2535289048041211], [0.2077442377448806, 0.06661453200418091, 0.24954644291943817], [0.20558051999470117, 0.066990462397868739, 0.24572497420147632], [0.20352007949514977, 0.067444179612424215, 0.24205576625191821], [0.20156133764129841, 0.067983271026200248, 0.23852974228695395], [0.19971571438603364, 0.068592710553704722, 0.23517094067076993], [0.19794834061899208, 0.069314066071660657, 0.23194647381302336], [0.1960826032659409, 0.070321227242423623, 0.22874673279569585], [0.19410351363791453, 0.071608304856891569, 0.22558727307410353], [0.19199449184606268, 0.073182830649273306, 0.22243385243433622], [0.18975853639094634, 0.075019861862143766, 0.2193005075652994], [0.18739228342697645, 0.077102096899588329, 0.21618875376309582], [0.18488035509396164, 0.079425730279723883, 0.21307651648984993], [0.18774482037046955, 0.077251588468039312, 0.21387448578597812], [0.19049578401722037, 0.075311278416787641, 0.2146562337112265], [0.1931548636579131, 0.073606819040117955, 0.21542362939081539], [0.19571853588267552, 0.072157781039602742, 0.21617499187076789], [0.19819343656336558, 0.070974625252738788, 0.21690975060032436], [0.20058760685133747, 0.070064576149984209, 0.21762721310371608], [0.20290365333558247, 0.069435248580458964, 0.21833167885096033], [0.20531725273301316, 0.068919592266397572, 0.21911516689288835], [0.20785704662965598, 0.068484398797025281, 0.22000133917653536], [0.21052882914958676, 0.06812195249816172, 0.22098759107715404], [0.2133313859647627, 0.067830148426026665, 0.22207043213024291], [0.21625279838647882, 0.067616330270516389, 0.22324568672294431], [0.21930503925136402, 0.067465786362940039, 0.22451023616807558], [0.22247308588973624, 0.067388214053092838, 0.22585960379408354], [0.2257539681670791, 0.067382132300147474, 0.22728984778098055], [0.22915620278592841, 0.067434730871152565, 0.22879681433956656], [0.23266299920501882, 0.067557104388479783, 0.23037617493752832], [0.23627495835774248, 0.06774359820987802, 0.23202360805926608], [0.23999586188690308, 0.067985029964779953, 0.23373434258507808], [0.24381149720247919, 0.068289851529011875, 0.23550427698321885], [0.24772092990501099, 0.068653337909486523, 0.2373288009471749], [0.25172899728289466, 0.069064630826035506, 0.23920260612763083], [0.25582135547481771, 0.06953231029187984, 0.24112190491594204], [0.25999463887892144, 0.070053855603861875, 0.24308218808684579], [0.26425512207060942, 0.070616595622995437, 0.24507758869355967], [0.26859095948172862, 0.071226716277922458, 0.24710443563450618], [0.27299701518897301, 0.071883555446163511, 0.24915847093232929], [0.27747150809142801, 0.072582969899254779, 0.25123493995942769], [0.28201746297366942, 0.073315693214040967, 0.25332800295084507], [0.28662309235899847, 0.074088460826808866, 0.25543478673717029], [0.29128515387578635, 0.074899049847466703, 0.25755101595750435], [0.2960004726065818, 0.075745336000958424, 0.25967245030364566], [0.30077276812918691, 0.076617824336164764, 0.26179294097819672], [0.30559226007249934, 0.077521963107537312, 0.26391006692119662], [0.31045520848595526, 0.078456871676182177, 0.2660200572779356], [0.31535870009205808, 0.079420997315243186, 0.26811904076941961], [0.32029986557994061, 0.080412994737554838, 0.27020322893039511], [0.32527888860401261, 0.081428390076546092, 0.27226772884656186], [0.33029174471181438, 0.08246763389003825, 0.27430929404579435], [0.33533353224455448, 0.083532434119003962, 0.27632534356790039], [0.34040164359597463, 0.084622236191702671, 0.27831254595259397], [0.34549355713871799, 0.085736654965126335, 0.28026769921081435], [0.35060678246032478, 0.08687555176033529, 0.28218770540182386], [0.35573889947341125, 0.088038974350243354, 0.2840695897279818], [0.36088752387578377, 0.089227194362745205, 0.28591050458531014], [0.36605031412464006, 0.090440685427697898, 0.2877077458811747], [0.37122508431309342, 0.091679997480262732, 0.28945865397633169], [0.3764103053221462, 0.092945198093777909, 0.29116024157313919], [0.38160247377467543, 0.094238731263712183, 0.29281107506269488], [0.38679939079544168, 0.09556181960083443, 0.29440901248173756], [0.39199887556812907, 0.09691583650296684, 0.29595212005509081], [0.39719876876325577, 0.098302320968278623, 0.29743856476285779], [0.40239692379737496, 0.099722930314950553, 0.29886674369733968], [0.40759120392688708, 0.10117945586419633, 0.30023519507728602], [0.41277985630360303, 0.1026734006932461, 0.30154226437468967], [0.41796105205173684, 0.10420644885760968, 0.30278652039631843], [0.42313214269556043, 0.10578120994917611, 0.3039675809469457], [0.42829101315789753, 0.1073997763055258, 0.30508479060294547], [0.4334355841041439, 0.1090642347484701, 0.30613767928289148], [0.43856378187931538, 0.11077667828375456, 0.30712600062348083], [0.44367358645071275, 0.11253912421257944, 0.30804973095465449], [0.44876299173174822, 0.11435355574622549, 0.30890905921943196], [0.45383005086999889, 0.11622183788331528, 0.30970441249844921], [0.45887288947308297, 0.11814571137706886, 0.31043636979038808], [0.46389102840284874, 0.12012561256850712, 0.31110343446582983], [0.46888111384598413, 0.12216445576414045, 0.31170911458932665], [0.473841437035254, 0.12426354237989065, 0.31225470169927194], [0.47877034239726296, 0.12642401401409453, 0.31274172735821959], [0.48366628618847957, 0.12864679022013889, 0.31317188565991266], [0.48852847371852987, 0.13093210934893723, 0.31354553695453014], [0.49335504375145617, 0.13328091630401023, 0.31386561956734976], [0.49814435462074153, 0.13569380302451714, 0.314135190862664], [0.50289524974970612, 0.13817086581280427, 0.31435662153833671], [0.50760681181053691, 0.14071192654913128, 0.31453200120082569], [0.51227835105321762, 0.14331656120063752, 0.3146630922831542], [0.51690848800544464, 0.14598463068714407, 0.31475407592280041], [0.52149652863229956, 0.14871544765633712, 0.31480767954534428], [0.52604189625477482, 0.15150818660835483, 0.31482653406646727], [0.53054420489856446, 0.15436183633886777, 0.31481299789187128], [0.5350027976174474, 0.15727540775107324, 0.31477085207396532], [0.53941736649199057, 0.16024769309971934, 0.31470295028655965], [0.54378771313608565, 0.16327738551419116, 0.31461204226295625], [0.54811370033467621, 0.1663630904279047, 0.31450102990914708], [0.55239521572711914, 0.16950338809328983, 0.31437291554615371], [0.55663229034969341, 0.17269677158182117, 0.31423043195101424], [0.56082499039117173, 0.17594170887918095, 0.31407639883970623], [0.56497343529017696, 0.17923664950367169, 0.3139136046337036], [0.56907784784011428, 0.18258004462335425, 0.31374440956796529], [0.57313845754107873, 0.18597036007065024, 0.31357126868520002], [0.57715550812992045, 0.18940601489760422, 0.31339704333572083], [0.58112932761586555, 0.19288548904692518, 0.31322399394183942], [0.58506024396466882, 0.19640737049066315, 0.31305401163732732], [0.58894861935544707, 0.19997020971775276, 0.31288922211590126], [0.59279480536520257, 0.20357251410079796, 0.31273234839304942], [0.59659918109122367, 0.207212956082026, 0.31258523031121233], [0.60036213010411577, 0.21089030138947745, 0.31244934410414688], [0.60408401696732739, 0.21460331490206347, 0.31232652641170694], [0.60776523994818654, 0.21835070166659282, 0.31221903291870201], [0.6114062072731884, 0.22213124697023234, 0.31212881396435238], [0.61500723236391375, 0.22594402043981826, 0.31205680685765741], [0.61856865258877192, 0.22978799249179921, 0.31200463838728931], [0.62209079821082613, 0.2336621873300741, 0.31197383273627388], [0.62557416500434959, 0.23756535071152696, 0.31196698314912269], [0.62901892016985872, 0.24149689191922535, 0.31198447195645718], [0.63242534854210275, 0.24545598775548677, 0.31202765974624452], [0.6357937104834237, 0.24944185818822678, 0.31209793953300591], [0.6391243387840212, 0.25345365461983138, 0.31219689612063978], [0.642417577481186, 0.257490519876798, 0.31232631707560987], [0.64567349382645434, 0.26155203161615281, 0.31248673753935263], [0.64889230169458245, 0.26563755336209077, 0.31267941819570189], [0.65207417290277303, 0.26974650525236699, 0.31290560605819168], [0.65521932609327127, 0.27387826652410152, 0.3131666792687211], [0.6583280801134499, 0.27803210957665631, 0.3134643447952643], [0.66140037532601781, 0.28220778870555907, 0.31379912926498488], [0.66443632469878844, 0.28640483614256179, 0.31417223403606975], [0.66743603766369131, 0.29062280081258873, 0.31458483752056837], [0.67039959547676198, 0.29486126309253047, 0.31503813956872212], [0.67332725564817331, 0.29911962764489264, 0.31553372323982209], [0.67621897924409746, 0.30339762792450425, 0.3160724937230589], [0.67907474028157344, 0.30769497879760166, 0.31665545668946665], [0.68189457150944521, 0.31201133280550686, 0.31728380489244951], [0.68467850942494535, 0.31634634821222207, 0.31795870784057567], [0.68742656435169625, 0.32069970535138104, 0.31868137622277692], [0.6901389321505248, 0.32507091815606004, 0.31945332332898302], [0.69281544846764931, 0.32945984647042675, 0.3202754315314667], [0.69545608346891119, 0.33386622163232865, 0.32114884306985791], [0.6980608153581771, 0.33828976326048621, 0.32207478855218091], [0.70062962477242097, 0.34273019305341756, 0.32305449047765694], [0.70316249458814151, 0.34718723719597999, 0.32408913679491225], [0.70565951122610093, 0.35166052978120937, 0.32518014084085567], [0.70812059568420482, 0.35614985523380299, 0.32632861885644465], [0.7105456546582587, 0.36065500290840113, 0.32753574162788762], [0.71293466839773467, 0.36517570519856757, 0.3288027427038317], [0.71528760614847287, 0.36971170225223449, 0.3301308728723546], [0.71760444908133847, 0.37426272710686193, 0.33152138620958932], [0.71988521490549851, 0.37882848839337313, 0.33297555200245399], [0.7221299918421461, 0.38340864508963057, 0.33449469983585844], [0.72433865647781592, 0.38800301593162145, 0.33607995965691828], [0.72651122900227549, 0.3926113126792577, 0.3377325942005665], [0.72864773856716547, 0.39723324476747235, 0.33945384341064017], [0.73074820754845171, 0.401868526884681, 0.3412449533046818], [0.73281270506268747, 0.4065168468778026, 0.34310715173410822], [0.73484133598564938, 0.41117787004519513, 0.34504169470809071], [0.73683422173585866, 0.41585125850290111, 0.34704978520758401], [0.73879140024599266, 0.42053672992315327, 0.34913260148542435], [0.74071301619506091, 0.4252339389526239, 0.35129130890802607], [0.7425992159973317, 0.42994254036133867, 0.35352709245374592], [0.74445018676570673, 0.43466217184617112, 0.35584108091122535], [0.74626615789163442, 0.43939245044973502, 0.35823439142300639], [0.74804739275559562, 0.44413297780351974, 0.36070813602540136], [0.74979420547170472, 0.44888333481548809, 0.36326337558360278], [0.75150685045891663, 0.45364314496866825, 0.36590112443835765], [0.75318566369046569, 0.45841199172949604, 0.36862236642234769], [0.75483105066959544, 0.46318942799460555, 0.3714280448394211], [0.75644341577140706, 0.46797501437948458, 0.37431909037543515], [0.75802325538455839, 0.4727682731566229, 0.37729635531096678], [0.75957111105340058, 0.47756871222057079, 0.380360657784311], [0.7610876378057071, 0.48237579130289127, 0.38351275723852291], [0.76257333554052609, 0.48718906673415824, 0.38675335037837993], [0.76402885609288662, 0.49200802533379656, 0.39008308392311997], [0.76545492593330511, 0.49683212909727231, 0.39350254000115381], [0.76685228950643891, 0.5016608471009063, 0.39701221751773474], [0.76822176599735303, 0.50649362371287909, 0.40061257089416885], [0.7695642334401418, 0.5113298901696085, 0.40430398069682483], [0.77088091962302474, 0.51616892643469103, 0.40808667584648967], [0.77217257229605551, 0.5210102658711383, 0.41196089987122869], [0.77344021829889886, 0.52585332093451564, 0.41592679539764366], [0.77468494746063199, 0.53069749384776732, 0.41998440356963762], [0.77590790730685699, 0.53554217882461186, 0.42413367909988375], [0.7771103295521099, 0.54038674910561235, 0.42837450371258479], [0.77829345807633121, 0.54523059488426595, 0.432706647838971], [0.77945862731506643, 0.55007308413977274, 0.43712979856444761], [0.78060774749483774, 0.55491335744890613, 0.44164332426364639], [0.78174180478981836, 0.55975098052594863, 0.44624687186865436], [0.78286225264440912, 0.56458533111166875, 0.45093985823706345], [0.78397060836414478, 0.56941578326710418, 0.45572154742892063], [0.78506845019606841, 0.5742417003617839, 0.46059116206904965], [0.78615737132332963, 0.5790624629815756, 0.46554778281918402], [0.78723904108188347, 0.58387743744557208, 0.47059039582133383], [0.78831514045623963, 0.58868600173562435, 0.47571791879076081], [0.78938737766251943, 0.5934875421745599, 0.48092913815357724], [0.79045776847727878, 0.59828134277062461, 0.48622257801969754], [0.79152832843475607, 0.60306670593147205, 0.49159667021646397], [0.79260034304237448, 0.60784322087037024, 0.49705020621532009], [0.79367559698664958, 0.61261029334072192, 0.50258161291269432], [0.79475585972654039, 0.61736734400220705, 0.50818921213102985], [0.79584292379583765, 0.62211378808451145, 0.51387124091909786], [0.79693854719951607, 0.62684905679296699, 0.5196258425240281], [0.79804447815136637, 0.63157258225089552, 0.52545108144834785], [0.7991624518501963, 0.63628379372029187, 0.53134495942561433], [0.80029415389753977, 0.64098213306749863, 0.53730535185141037], [0.80144124292560048, 0.64566703459218766, 0.5433300863249918], [0.80260531146112946, 0.65033793748103852, 0.54941691584603647], [0.80378792531077625, 0.65499426549472628, 0.55556350867083815], [0.80499054790810298, 0.65963545027564163, 0.56176745110546977], [0.80621460526927058, 0.66426089585282289, 0.56802629178649788], [0.8074614045096935, 0.6688700095398864, 0.57433746373459582], [0.80873219170089694, 0.67346216702194517, 0.58069834805576737], [0.81002809466520687, 0.67803672673971815, 0.58710626908082753], [0.81135014011763329, 0.68259301546243389, 0.59355848909050757], [0.81269922039881493, 0.68713033714618876, 0.60005214820435104], [0.81407611046993344, 0.69164794791482131, 0.6065843782630862], [0.81548146627279483, 0.69614505508308089, 0.61315221209322646], [0.81691575775055891, 0.70062083014783982, 0.61975260637257923], [0.81837931164498223, 0.70507438189635097, 0.62638245478933297], [0.81987230650455289, 0.70950474978787481, 0.63303857040067113], [0.8213947205565636, 0.7139109141951604, 0.63971766697672761], [0.82294635110428427, 0.71829177331290062, 0.6464164243818421], [0.8245268129450285, 0.72264614312088882, 0.65313137915422603], [0.82613549710580259, 0.72697275518238258, 0.65985900156216504], [0.8277716072353446, 0.73127023324078089, 0.66659570204682972], [0.82943407816481474, 0.7355371221572935, 0.67333772009301907], [0.83112163529096306, 0.73977184647638616, 0.68008125203631464], [0.83283277185777982, 0.74397271817459876, 0.68682235874648545], [0.8345656905566583, 0.7481379479992134, 0.69355697649863846], [0.83631898844737929, 0.75226548952875261, 0.70027999028864962], [0.83809123476131964, 0.75635314860808633, 0.70698561390212977], [0.83987839884120874, 0.76039907199779677, 0.71367147811129228], [0.84167750766845151, 0.76440101200982946, 0.72033299387284622], [0.84348529222933699, 0.76835660399870176, 0.72696536998972039], [0.84529810731955113, 0.77226338601044719, 0.73356368240541492], [0.84711195507965098, 0.77611880236047159, 0.74012275762807056], [0.84892245563117641, 0.77992021407650147, 0.74663719293664366], [0.85072697023178789, 0.78366457342383888, 0.7530974636118285], [0.85251907207708444, 0.78734936133548439, 0.7594994148789691], [0.85429219611470464, 0.79097196777091994, 0.76583801477914104], [0.85604022314725403, 0.79452963601550608, 0.77210610037674143], [0.85775662943504905, 0.79801963142713928, 0.77829571667247499], [0.8594346370300241, 0.8014392309950078, 0.78439788751383921], [0.86107117027565516, 0.80478517909812231, 0.79039529663736285], [0.86265601051127572, 0.80805523804261525, 0.796282666437655], [0.86418343723941027, 0.81124644224653542, 0.80204612696863953], [0.86564934325605325, 0.81435544067514909, 0.80766972324164554], [0.86705314907048503, 0.81737804041911244, 0.81313419626911398], [0.86839954695818633, 0.82030875512181523, 0.81841638963128993], [0.86969131502613806, 0.82314158859569164, 0.82350476683173168], [0.87093846717297507, 0.82586857889438514, 0.82838497261149613], [0.87215331978454325, 0.82848052823709672, 0.8330486712880828], [0.87335171360916275, 0.83096715251272624, 0.83748851001197089], [0.87453793320260187, 0.83331972948645461, 0.84171925358069011], [0.87571458709961403, 0.8355302318472394, 0.84575537519027078], [0.87687848451614692, 0.83759238071186537, 0.84961373549150254], [0.87802298436649007, 0.83950165618540074, 0.85330645352458923], [0.87913244240792765, 0.84125554884475906, 0.85685572291039636], [0.88019293315695812, 0.84285224824778615, 0.86027399927156634], [0.88119169871341951, 0.84429066717717349, 0.86356595168669881], [0.88211542489401606, 0.84557007254559347, 0.86673765046233331], [0.88295168595448525, 0.84668970275699273, 0.86979617048190971], [0.88369127145898041, 0.84764891761519268, 0.87274147101441557], [0.88432713054113543, 0.84844741572055415, 0.87556785228242973], [0.88485138159908572, 0.84908426422893801, 0.87828235285372469], [0.88525897972630474, 0.84955892810989209, 0.88088414794024839], [0.88554714811952384, 0.84987174283631584, 0.88336206121170946], [0.88571155122845646, 0.85002186115856315, 0.88572538990087124]] _twilight_shifted_data = (_twilight_data[len(_twilight_data)//2:] + _twilight_data[:len(_twilight_data)//2]) _twilight_shifted_data.reverse() cmaps = {} for (name, data) in (('magma', _magma_data), ('inferno', _inferno_data), ('plasma', _plasma_data), ('viridis', _viridis_data), ('cividis', _cividis_data), ('twilight', _twilight_data), ('twilight_shifted', _twilight_shifted_data)): cmaps[name] = ListedColormap(data, name=name) # generate reversed colormap name = name + '_r' cmaps[name] = ListedColormap(list(reversed(data)), name=name)
3c7d6f3bcdfd71943afa63cd95a1cb24c8d35d11b7babcbffb36f69c73176269
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.15 (https://github.com/warner/python-versioneer) import errno import os import re import subprocess import sys def get_keywords(): # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" keywords = {"refnames": git_refnames, "full": git_full} return keywords class VersioneerConfig: pass def get_config(): # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440-post" cfg.tag_prefix = "v" cfg.parentdir_prefix = "matplotlib-" cfg.versionfile_source = "lib/matplotlib/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): pass LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator def decorate(f): if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False): assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) return None return stdout def versions_from_parentdir(parentdir_prefix, root, verbose): # Source tarballs conventionally unpack into a directory that includes # both the project name and a version string. dirname = os.path.basename(root) if not dirname.startswith(parentdir_prefix): if verbose: print("guessing rootdir is '%s', but '%s' doesn't start with " "prefix '%s'" % (root, dirname, parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None} @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): if not keywords: raise NotThisMethod("no keywords at all, weird") refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs-tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags"} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): # this runs 'git' from the root of the source tree. This only gets called # if the git-archive 'subst' keywords were *not* expanded, and # _version.py hasn't already been rewritten with a short version string, # meaning we're inside a checked out source tree. if not os.path.exists(os.path.join(root, ".git")): if verbose: print("no .git in %s" % root) raise NotThisMethod("no .git directory") GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] # if there is a tag, this yields TAG-NUM-gHEX[-dirty] # if there are no tags, this yields HEX[-dirty] (no NUM) describe_out = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long"], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits return pieces def plus_or_dot(pieces): if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): # now build up version string, with post-release "local version # identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you # get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty # exceptions: # 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): # TAG[.post.devDISTANCE] . No -dirty # exceptions: # 1: no tags. 0.post.devDISTANCE if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): # TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that # .dev0 sorts backwards (a dirty tree will appear "older" than the # corresponding clean one), but you shouldn't be releasing software with # -dirty anyways. # exceptions: # 1: no tags. 0.postDISTANCE[.dev0] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): # TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. # exceptions: # 1: no tags. 0.postDISTANCE[.dev0] if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): # TAG[-DISTANCE-gHEX][-dirty], like 'git describe --tags --dirty # --always' # exceptions: # 1: no tags. HEX[-dirty] (note: no 'g' prefix) if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): # TAG-DISTANCE-gHEX[-dirty], like 'git describe --tags --dirty # --always -long'. The distance/hash is unconditional. # exceptions: # 1: no tags. HEX[-dirty] (note: no 'g' prefix) if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"]} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None} def get_versions(): # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for _ in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree"} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version"}
b3a899571acc204a69f209f8ac40b4c760f2216c56a6694fd33314b693b23675
# TODO: # * Documentation -- this will need a new section of the User's Guide. # Both for Animations and just timers. # - Also need to update http://www.scipy.org/Cookbook/Matplotlib/Animations # * Blit # * Currently broken with Qt4 for widgets that don't start on screen # * Still a few edge cases that aren't working correctly # * Can this integrate better with existing matplotlib animation artist flag? # - If animated removes from default draw(), perhaps we could use this to # simplify initial draw. # * Example # * Frameless animation - pure procedural with no loop # * Need example that uses something like inotify or subprocess # * Complex syncing examples # * Movies # * Can blit be enabled for movies? # * Need to consider event sources to allow clicking through multiple figures import abc import base64 import contextlib from io import BytesIO, TextIOWrapper import itertools import logging import os from pathlib import Path import platform import shutil import subprocess import sys from tempfile import TemporaryDirectory import uuid import numpy as np import matplotlib as mpl from matplotlib._animation_data import ( DISPLAY_TEMPLATE, INCLUDED_FRAMES, JS_INCLUDE, STYLE_INCLUDE) from matplotlib import cbook, rcParams, rcParamsDefault, rc_context _log = logging.getLogger(__name__) # Process creation flag for subprocess to prevent it raising a terminal # window. See for example: # https://stackoverflow.com/questions/24130623/using-python-subprocess-popen-cant-prevent-exe-stopped-working-prompt if platform.system() == 'Windows': subprocess_creation_flags = CREATE_NO_WINDOW = 0x08000000 else: # Apparently None won't work here subprocess_creation_flags = 0 # Other potential writing methods: # * http://pymedia.org/ # * libming (produces swf) python wrappers: https://github.com/libming/libming # * Wrap x264 API: # (http://stackoverflow.com/questions/2940671/ # how-to-encode-series-of-images-into-h264-using-x264-api-c-c ) def adjusted_figsize(w, h, dpi, n): '''Compute figure size so that pixels are a multiple of n Parameters ---------- w, h : float Size in inches dpi : float The dpi n : int The target multiple Returns ------- wnew, hnew : float The new figure size in inches. ''' # this maybe simplified if / when we adopt consistent rounding for # pixel size across the whole library def correct_roundoff(x, dpi, n): if int(x*dpi) % n != 0: if int(np.nextafter(x, np.inf)*dpi) % n == 0: x = np.nextafter(x, np.inf) elif int(np.nextafter(x, -np.inf)*dpi) % n == 0: x = np.nextafter(x, -np.inf) return x wnew = int(w * dpi / n) * n / dpi hnew = int(h * dpi / n) * n / dpi return (correct_roundoff(wnew, dpi, n), correct_roundoff(hnew, dpi, n)) # A registry for available MovieWriter classes class MovieWriterRegistry(object): '''Registry of available writer classes by human readable name.''' def __init__(self): self.avail = dict() self._registered = dict() self._dirty = False def set_dirty(self): """Sets a flag to re-setup the writers.""" self._dirty = True def register(self, name): """Decorator for registering a class under a name. Example use:: @registry.register(name) class Foo: pass """ def wrapper(writerClass): self._registered[name] = writerClass if writerClass.isAvailable(): self.avail[name] = writerClass return writerClass return wrapper def ensure_not_dirty(self): """If dirty, reasks the writers if they are available""" if self._dirty: self.reset_available_writers() def reset_available_writers(self): """Reset the available state of all registered writers""" self.avail = {name: writerClass for name, writerClass in self._registered.items() if writerClass.isAvailable()} self._dirty = False def list(self): '''Get a list of available MovieWriters.''' self.ensure_not_dirty() return list(self.avail) def is_available(self, name): '''Check if given writer is available by name. Parameters ---------- name : str Returns ------- available : bool ''' self.ensure_not_dirty() return name in self.avail def __getitem__(self, name): self.ensure_not_dirty() if not self.avail: raise RuntimeError("No MovieWriters available!") try: return self.avail[name] except KeyError: raise RuntimeError( 'Requested MovieWriter ({}) not available'.format(name)) writers = MovieWriterRegistry() class AbstractMovieWriter(abc.ABC): ''' Abstract base class for writing movies. Fundamentally, what a MovieWriter does is provide is a way to grab frames by calling grab_frame(). setup() is called to start the process and finish() is called afterwards. This class is set up to provide for writing movie frame data to a pipe. saving() is provided as a context manager to facilitate this process as:: with moviewriter.saving(fig, outfile='myfile.mp4', dpi=100): # Iterate over frames moviewriter.grab_frame(**savefig_kwargs) The use of the context manager ensures that setup() and finish() are performed as necessary. An instance of a concrete subclass of this class can be given as the ``writer`` argument of `Animation.save()`. ''' @abc.abstractmethod def setup(self, fig, outfile, dpi=None): ''' Perform setup for writing the movie file. Parameters ---------- fig : `matplotlib.figure.Figure` instance The figure object that contains the information for frames outfile : string The filename of the resulting movie file dpi : int, optional The DPI (or resolution) for the file. This controls the size in pixels of the resulting movie file. Default is ``fig.dpi``. ''' @abc.abstractmethod def grab_frame(self, **savefig_kwargs): ''' Grab the image information from the figure and save as a movie frame. All keyword arguments in savefig_kwargs are passed on to the `savefig` command that saves the figure. ''' @abc.abstractmethod def finish(self): '''Finish any processing for writing the movie.''' @contextlib.contextmanager def saving(self, fig, outfile, dpi, *args, **kwargs): ''' Context manager to facilitate writing the movie file. ``*args, **kw`` are any parameters that should be passed to `setup`. ''' # This particular sequence is what contextlib.contextmanager wants self.setup(fig, outfile, dpi, *args, **kwargs) try: yield self finally: self.finish() class MovieWriter(AbstractMovieWriter): '''Base class for writing movies. This is a base class for MovieWriter subclasses that write a movie frame data to a pipe. You cannot instantiate this class directly. See examples for how to use its subclasses. Attributes ---------- frame_format : str The format used in writing frame data, defaults to 'rgba' fig : `~matplotlib.figure.Figure` The figure to capture data from. This must be provided by the sub-classes. ''' def __init__(self, fps=5, codec=None, bitrate=None, extra_args=None, metadata=None): '''MovieWriter Parameters ---------- fps : int Framerate for movie. codec : string or None, optional The codec to use. If ``None`` (the default) the ``animation.codec`` rcParam is used. bitrate : int or None, optional The bitrate for the saved movie file, which is one way to control the output file size and quality. The default value is ``None``, which uses the ``animation.bitrate`` rcParam. A value of -1 implies that the bitrate should be determined automatically by the underlying utility. extra_args : list of strings or None, optional A list of extra string arguments to be passed to the underlying movie utility. The default is ``None``, which passes the additional arguments in the ``animation.extra_args`` rcParam. metadata : Dict[str, str] or None A dictionary of keys and values for metadata to include in the output file. Some keys that may be of use include: title, artist, genre, subject, copyright, srcform, comment. ''' if self.__class__ is MovieWriter: # TODO MovieWriter is still an abstract class and needs to be # extended with a mixin. This should be clearer in naming # and description. For now, just give a reasonable error # message to users. raise TypeError( 'MovieWriter cannot be instantiated directly. Please use one ' 'of its subclasses.') self.fps = fps self.frame_format = 'rgba' if codec is None: self.codec = rcParams['animation.codec'] else: self.codec = codec if bitrate is None: self.bitrate = rcParams['animation.bitrate'] else: self.bitrate = bitrate if extra_args is None: self.extra_args = list(rcParams[self.args_key]) else: self.extra_args = extra_args if metadata is None: self.metadata = dict() else: self.metadata = metadata @property def frame_size(self): '''A tuple ``(width, height)`` in pixels of a movie frame.''' w, h = self.fig.get_size_inches() return int(w * self.dpi), int(h * self.dpi) def _adjust_frame_size(self): if self.codec == 'h264': wo, ho = self.fig.get_size_inches() w, h = adjusted_figsize(wo, ho, self.dpi, 2) if not (wo, ho) == (w, h): self.fig.set_size_inches(w, h, forward=True) _log.info('figure size (inches) has been adjusted ' 'from %s x %s to %s x %s', wo, ho, w, h) else: w, h = self.fig.get_size_inches() _log.debug('frame size in pixels is %s x %s', *self.frame_size) return w, h def setup(self, fig, outfile, dpi=None): ''' Perform setup for writing the movie file. Parameters ---------- fig : matplotlib.figure.Figure The figure object that contains the information for frames outfile : string The filename of the resulting movie file dpi : int, optional The DPI (or resolution) for the file. This controls the size in pixels of the resulting movie file. Default is fig.dpi. ''' self.outfile = outfile self.fig = fig if dpi is None: dpi = self.fig.dpi self.dpi = dpi self._w, self._h = self._adjust_frame_size() # Run here so that grab_frame() can write the data to a pipe. This # eliminates the need for temp files. self._run() def _run(self): # Uses subprocess to call the program for assembling frames into a # movie file. *args* returns the sequence of command line arguments # from a few configuration options. command = self._args() _log.info('MovieWriter.run: running command: %s', command) PIPE = subprocess.PIPE self._proc = subprocess.Popen( command, stdin=PIPE, stdout=PIPE, stderr=PIPE, creationflags=subprocess_creation_flags) def finish(self): '''Finish any processing for writing the movie.''' self.cleanup() def grab_frame(self, **savefig_kwargs): ''' Grab the image information from the figure and save as a movie frame. All keyword arguments in savefig_kwargs are passed on to the `savefig` command that saves the figure. ''' _log.debug('MovieWriter.grab_frame: Grabbing frame.') # re-adjust the figure size in case it has been changed by the # user. We must ensure that every frame is the same size or # the movie will not save correctly. self.fig.set_size_inches(self._w, self._h) # Tell the figure to save its data to the sink, using the # frame format and dpi. self.fig.savefig(self._frame_sink(), format=self.frame_format, dpi=self.dpi, **savefig_kwargs) def _frame_sink(self): '''Return the place to which frames should be written.''' return self._proc.stdin def _args(self): '''Assemble list of utility-specific command-line arguments.''' return NotImplementedError("args needs to be implemented by subclass.") def cleanup(self): '''Clean-up and collect the process used to write the movie file.''' out, err = self._proc.communicate() self._frame_sink().close() # Use the encoding/errors that universal_newlines would use. out = TextIOWrapper(BytesIO(out)).read() err = TextIOWrapper(BytesIO(err)).read() if out: _log.log( logging.WARNING if self._proc.returncode else logging.DEBUG, "MovieWriter stdout:\n%s", out) if err: _log.log( logging.WARNING if self._proc.returncode else logging.DEBUG, "MovieWriter stderr:\n%s", err) if self._proc.returncode: raise subprocess.CalledProcessError( self._proc.returncode, self._proc.args, out, err) @classmethod def bin_path(cls): ''' Return the binary path to the commandline tool used by a specific subclass. This is a class method so that the tool can be looked for before making a particular MovieWriter subclass available. ''' return str(rcParams[cls.exec_key]) @classmethod def isAvailable(cls): ''' Check to see if a MovieWriter subclass is actually available. ''' return shutil.which(cls.bin_path()) is not None class FileMovieWriter(MovieWriter): '''`MovieWriter` for writing to individual files and stitching at the end. This must be sub-classed to be useful. ''' def __init__(self, *args, **kwargs): MovieWriter.__init__(self, *args, **kwargs) self.frame_format = rcParams['animation.frame_format'] def setup(self, fig, outfile, dpi=None, frame_prefix='_tmp', clear_temp=True): '''Perform setup for writing the movie file. Parameters ---------- fig : matplotlib.figure.Figure The figure to grab the rendered frames from. outfile : str The filename of the resulting movie file. dpi : number, optional The dpi of the output file. This, with the figure size, controls the size in pixels of the resulting movie file. Default is fig.dpi. frame_prefix : str, optional The filename prefix to use for temporary files. Defaults to ``'_tmp'``. clear_temp : bool, optional If the temporary files should be deleted after stitching the final result. Setting this to ``False`` can be useful for debugging. Defaults to ``True``. ''' self.fig = fig self.outfile = outfile if dpi is None: dpi = self.fig.dpi self.dpi = dpi self._adjust_frame_size() self.clear_temp = clear_temp self.temp_prefix = frame_prefix self._frame_counter = 0 # used for generating sequential file names self._temp_names = list() self.fname_format_str = '%s%%07d.%s' @property def frame_format(self): ''' Format (png, jpeg, etc.) to use for saving the frames, which can be decided by the individual subclasses. ''' return self._frame_format @frame_format.setter def frame_format(self, frame_format): if frame_format in self.supported_formats: self._frame_format = frame_format else: self._frame_format = self.supported_formats[0] def _base_temp_name(self): # Generates a template name (without number) given the frame format # for extension and the prefix. return self.fname_format_str % (self.temp_prefix, self.frame_format) def _frame_sink(self): # Creates a filename for saving using the basename and the current # counter. fname = self._base_temp_name() % self._frame_counter # Save the filename so we can delete it later if necessary self._temp_names.append(fname) _log.debug('FileMovieWriter.frame_sink: saving frame %d to fname=%s', self._frame_counter, fname) self._frame_counter += 1 # Ensures each created name is 'unique' # This file returned here will be closed once it's used by savefig() # because it will no longer be referenced and will be gc-ed. return open(fname, 'wb') def grab_frame(self, **savefig_kwargs): ''' Grab the image information from the figure and save as a movie frame. All keyword arguments in savefig_kwargs are passed on to the `savefig` command that saves the figure. ''' # Overloaded to explicitly close temp file. _log.debug('MovieWriter.grab_frame: Grabbing frame.') # Tell the figure to save its data to the sink, using the # frame format and dpi. with self._frame_sink() as myframesink: self.fig.savefig(myframesink, format=self.frame_format, dpi=self.dpi, **savefig_kwargs) def finish(self): # Call run here now that all frame grabbing is done. All temp files # are available to be assembled. self._run() MovieWriter.finish(self) # Will call clean-up def cleanup(self): MovieWriter.cleanup(self) # Delete temporary files if self.clear_temp: _log.debug('MovieWriter: clearing temporary fnames=%s', self._temp_names) for fname in self._temp_names: os.remove(fname) @writers.register('pillow') class PillowWriter(MovieWriter): @classmethod def isAvailable(cls): try: import PIL except ImportError: return False return True def __init__(self, *args, **kwargs): if kwargs.get("extra_args") is None: kwargs["extra_args"] = () super().__init__(*args, **kwargs) def setup(self, fig, outfile, dpi=None): self._frames = [] self._outfile = outfile self._dpi = dpi self._fig = fig def grab_frame(self, **savefig_kwargs): from PIL import Image buf = BytesIO() self._fig.savefig(buf, **dict(savefig_kwargs, format="rgba")) renderer = self._fig.canvas.get_renderer() # Using frombuffer / getbuffer may be slightly more efficient, but # Py3-only. self._frames.append(Image.frombytes( "RGBA", (int(renderer.width), int(renderer.height)), buf.getvalue())) def finish(self): self._frames[0].save( self._outfile, save_all=True, append_images=self._frames[1:], duration=int(1000 / self.fps), loop=0) # Base class of ffmpeg information. Has the config keys and the common set # of arguments that controls the *output* side of things. class FFMpegBase(object): '''Mixin class for FFMpeg output. To be useful this must be multiply-inherited from with a `MovieWriterBase` sub-class. ''' exec_key = 'animation.ffmpeg_path' args_key = 'animation.ffmpeg_args' @property def output_args(self): args = ['-vcodec', self.codec] # For h264, the default format is yuv444p, which is not compatible # with quicktime (and others). Specifying yuv420p fixes playback on # iOS,as well as HTML5 video in firefox and safari (on both Win and # OSX). Also fixes internet explorer. This is as of 2015/10/29. if self.codec == 'h264' and '-pix_fmt' not in self.extra_args: args.extend(['-pix_fmt', 'yuv420p']) # The %dk adds 'k' as a suffix so that ffmpeg treats our bitrate as in # kbps if self.bitrate > 0: args.extend(['-b', '%dk' % self.bitrate]) if self.extra_args: args.extend(self.extra_args) for k, v in self.metadata.items(): args.extend(['-metadata', '%s=%s' % (k, v)]) return args + ['-y', self.outfile] @classmethod def isAvailable(cls): return ( super().isAvailable() # Ubuntu 12.04 ships a broken ffmpeg binary which we shouldn't use. # NOTE: when removed, remove the same method in AVConvBase. and b'LibAv' not in subprocess.run( [cls.bin_path()], creationflags=subprocess_creation_flags, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE).stderr) # Combine FFMpeg options with pipe-based writing @writers.register('ffmpeg') class FFMpegWriter(FFMpegBase, MovieWriter): '''Pipe-based ffmpeg writer. Frames are streamed directly to ffmpeg via a pipe and written in a single pass. ''' def _args(self): # Returns the command line parameters for subprocess to use # ffmpeg to create a movie using a pipe. args = [self.bin_path(), '-f', 'rawvideo', '-vcodec', 'rawvideo', '-s', '%dx%d' % self.frame_size, '-pix_fmt', self.frame_format, '-r', str(self.fps)] # Logging is quieted because subprocess.PIPE has limited buffer size. # If you have a lot of frames in your animation and set logging to # DEBUG, you will have a buffer overrun. if _log.getEffectiveLevel() > logging.DEBUG: args += ['-loglevel', 'error'] args += ['-i', 'pipe:'] + self.output_args return args # Combine FFMpeg options with temp file-based writing @writers.register('ffmpeg_file') class FFMpegFileWriter(FFMpegBase, FileMovieWriter): '''File-based ffmpeg writer. Frames are written to temporary files on disk and then stitched together at the end. ''' supported_formats = ['png', 'jpeg', 'ppm', 'tiff', 'sgi', 'bmp', 'pbm', 'raw', 'rgba'] def _args(self): # Returns the command line parameters for subprocess to use # ffmpeg to create a movie using a collection of temp images return [self.bin_path(), '-r', str(self.fps), '-i', self._base_temp_name(), '-vframes', str(self._frame_counter)] + self.output_args # Base class of avconv information. AVConv has identical arguments to FFMpeg. class AVConvBase(FFMpegBase): '''Mixin class for avconv output. To be useful this must be multiply-inherited from with a `MovieWriterBase` sub-class. ''' exec_key = 'animation.avconv_path' args_key = 'animation.avconv_args' # NOTE : should be removed when the same method is removed in FFMpegBase. isAvailable = classmethod(MovieWriter.isAvailable.__func__) # Combine AVConv options with pipe-based writing @writers.register('avconv') class AVConvWriter(AVConvBase, FFMpegWriter): '''Pipe-based avconv writer. Frames are streamed directly to avconv via a pipe and written in a single pass. ''' # Combine AVConv options with file-based writing @writers.register('avconv_file') class AVConvFileWriter(AVConvBase, FFMpegFileWriter): '''File-based avconv writer. Frames are written to temporary files on disk and then stitched together at the end. ''' # Base class for animated GIFs with ImageMagick class ImageMagickBase(object): '''Mixin class for ImageMagick output. To be useful this must be multiply-inherited from with a `MovieWriterBase` sub-class. ''' exec_key = 'animation.convert_path' args_key = 'animation.convert_args' @property def delay(self): return 100. / self.fps @property def output_args(self): return [self.outfile] @classmethod def bin_path(cls): binpath = super().bin_path() if binpath == 'convert': binpath = mpl._get_executable_info('magick').executable return binpath @classmethod def isAvailable(cls): try: return super().isAvailable() except FileNotFoundError: # May be raised by get_executable_info. return False # Combine ImageMagick options with pipe-based writing @writers.register('imagemagick') class ImageMagickWriter(ImageMagickBase, MovieWriter): '''Pipe-based animated gif. Frames are streamed directly to ImageMagick via a pipe and written in a single pass. ''' def _args(self): return ([self.bin_path(), '-size', '%ix%i' % self.frame_size, '-depth', '8', '-delay', str(self.delay), '-loop', '0', '%s:-' % self.frame_format] + self.output_args) # Combine ImageMagick options with temp file-based writing @writers.register('imagemagick_file') class ImageMagickFileWriter(ImageMagickBase, FileMovieWriter): '''File-based animated gif writer. Frames are written to temporary files on disk and then stitched together at the end. ''' supported_formats = ['png', 'jpeg', 'ppm', 'tiff', 'sgi', 'bmp', 'pbm', 'raw', 'rgba'] def _args(self): return ([self.bin_path(), '-delay', str(self.delay), '-loop', '0', '%s*.%s' % (self.temp_prefix, self.frame_format)] + self.output_args) # Taken directly from jakevdp's JSAnimation package at # http://github.com/jakevdp/JSAnimation def _included_frames(frame_list, frame_format): """frame_list should be a list of filenames""" return INCLUDED_FRAMES.format(Nframes=len(frame_list), frame_dir=os.path.dirname(frame_list[0]), frame_format=frame_format) def _embedded_frames(frame_list, frame_format): """frame_list should be a list of base64-encoded png files""" template = ' frames[{0}] = "data:image/{1};base64,{2}"\n' return "\n" + "".join( template.format(i, frame_format, frame_data.replace('\n', '\\\n')) for i, frame_data in enumerate(frame_list)) @writers.register('html') class HTMLWriter(FileMovieWriter): supported_formats = ['png', 'jpeg', 'tiff', 'svg'] args_key = 'animation.html_args' @classmethod def isAvailable(cls): return True def __init__(self, fps=30, codec=None, bitrate=None, extra_args=None, metadata=None, embed_frames=False, default_mode='loop', embed_limit=None): self.embed_frames = embed_frames self.default_mode = default_mode.lower() # Save embed limit, which is given in MB if embed_limit is None: self._bytes_limit = rcParams['animation.embed_limit'] else: self._bytes_limit = embed_limit # Convert from MB to bytes self._bytes_limit *= 1024 * 1024 if self.default_mode not in ['loop', 'once', 'reflect']: raise ValueError( "unrecognized default_mode {!r}".format(self.default_mode)) super().__init__(fps, codec, bitrate, extra_args, metadata) def setup(self, fig, outfile, dpi, frame_dir=None): root, ext = os.path.splitext(outfile) if ext not in ['.html', '.htm']: raise ValueError("outfile must be *.htm or *.html") self._saved_frames = [] self._total_bytes = 0 self._hit_limit = False if not self.embed_frames: if frame_dir is None: frame_dir = root + '_frames' if not os.path.exists(frame_dir): os.makedirs(frame_dir) frame_prefix = os.path.join(frame_dir, 'frame') else: frame_prefix = None super().setup(fig, outfile, dpi, frame_prefix, clear_temp=False) def grab_frame(self, **savefig_kwargs): if self.embed_frames: # Just stop processing if we hit the limit if self._hit_limit: return f = BytesIO() self.fig.savefig(f, format=self.frame_format, dpi=self.dpi, **savefig_kwargs) imgdata64 = base64.encodebytes(f.getvalue()).decode('ascii') self._total_bytes += len(imgdata64) if self._total_bytes >= self._bytes_limit: _log.warning( "Animation size has reached %s bytes, exceeding the limit " "of %s. If you're sure you want a larger animation " "embedded, set the animation.embed_limit rc parameter to " "a larger value (in MB). This and further frames will be " "dropped.", self._total_bytes, self._bytes_limit) self._hit_limit = True else: self._saved_frames.append(imgdata64) else: return super().grab_frame(**savefig_kwargs) def finish(self): # save the frames to an html file if self.embed_frames: fill_frames = _embedded_frames(self._saved_frames, self.frame_format) Nframes = len(self._saved_frames) else: # temp names is filled by FileMovieWriter fill_frames = _included_frames(self._temp_names, self.frame_format) Nframes = len(self._temp_names) mode_dict = dict(once_checked='', loop_checked='', reflect_checked='') mode_dict[self.default_mode + '_checked'] = 'checked' interval = 1000 // self.fps with open(self.outfile, 'w') as of: of.write(JS_INCLUDE + STYLE_INCLUDE) of.write(DISPLAY_TEMPLATE.format(id=uuid.uuid4().hex, Nframes=Nframes, fill_frames=fill_frames, interval=interval, **mode_dict)) class Animation(object): '''This class wraps the creation of an animation using matplotlib. It is only a base class which should be subclassed to provide needed behavior. This class is not typically used directly. Parameters ---------- fig : matplotlib.figure.Figure The figure object that is used to get draw, resize, and any other needed events. event_source : object, optional A class that can run a callback when desired events are generated, as well as be stopped and started. Examples include timers (see :class:`TimedAnimation`) and file system notifications. blit : bool, optional controls whether blitting is used to optimize drawing. Defaults to ``False``. See Also -------- FuncAnimation, ArtistAnimation ''' def __init__(self, fig, event_source=None, blit=False): self._fig = fig # Disables blitting for backends that don't support it. This # allows users to request it if available, but still have a # fallback that works if it is not. self._blit = blit and fig.canvas.supports_blit # These are the basics of the animation. The frame sequence represents # information for each frame of the animation and depends on how the # drawing is handled by the subclasses. The event source fires events # that cause the frame sequence to be iterated. self.frame_seq = self.new_frame_seq() self.event_source = event_source # Instead of starting the event source now, we connect to the figure's # draw_event, so that we only start once the figure has been drawn. self._first_draw_id = fig.canvas.mpl_connect('draw_event', self._start) # Connect to the figure's close_event so that we don't continue to # fire events and try to draw to a deleted figure. self._close_id = self._fig.canvas.mpl_connect('close_event', self._stop) if self._blit: self._setup_blit() def _start(self, *args): ''' Starts interactive animation. Adds the draw frame command to the GUI handler, calls show to start the event loop. ''' # First disconnect our draw event handler self._fig.canvas.mpl_disconnect(self._first_draw_id) self._first_draw_id = None # So we can check on save # Now do any initial draw self._init_draw() # Add our callback for stepping the animation and # actually start the event_source. self.event_source.add_callback(self._step) self.event_source.start() def _stop(self, *args): # On stop we disconnect all of our events. if self._blit: self._fig.canvas.mpl_disconnect(self._resize_id) self._fig.canvas.mpl_disconnect(self._close_id) self.event_source.remove_callback(self._step) self.event_source = None def save(self, filename, writer=None, fps=None, dpi=None, codec=None, bitrate=None, extra_args=None, metadata=None, extra_anim=None, savefig_kwargs=None, *, progress_callback=None): """ Save the animation as a movie file by drawing every frame. Parameters ---------- filename : str The output filename, e.g., :file:`mymovie.mp4`. writer : :class:`MovieWriter` or str, optional A `MovieWriter` instance to use or a key that identifies a class to use, such as 'ffmpeg'. If ``None``, defaults to :rc:`animation.writer` = 'ffmpeg'. fps : number, optional Frames per second in the movie. Defaults to ``None``, which will use the animation's specified interval to set the frames per second. dpi : number, optional Controls the dots per inch for the movie frames. This combined with the figure's size in inches controls the size of the movie. If ``None``, defaults to :rc:`savefig.dpi`. codec : str, optional The video codec to be used. Not all codecs are supported by a given :class:`MovieWriter`. If ``None``, default to :rc:`animation.codec` = 'h264'. bitrate : number, optional Specifies the number of bits used per second in the compressed movie, in kilobits per second. A higher number means a higher quality movie, but at the cost of increased file size. If ``None``, defaults to :rc:`animation.bitrate` = -1. extra_args : list, optional List of extra string arguments to be passed to the underlying movie utility. If ``None``, defaults to :rc:`animation.extra_args`. metadata : Dict[str, str], optional Dictionary of keys and values for metadata to include in the output file. Some keys that may be of use include: title, artist, genre, subject, copyright, srcform, comment. extra_anim : list, optional Additional `Animation` objects that should be included in the saved movie file. These need to be from the same `matplotlib.figure.Figure` instance. Also, animation frames will just be simply combined, so there should be a 1:1 correspondence between the frames from the different animations. savefig_kwargs : dict, optional Is a dictionary containing keyword arguments to be passed on to the `savefig` command which is called repeatedly to save the individual frames. progress_callback : function, optional A callback function that will be called for every frame to notify the saving progress. It must have the signature :: def func(current_frame: int, total_frames: int) -> Any where *current_frame* is the current frame number and *total_frames* is the total number of frames to be saved. *total_frames* is set to None, if the total number of frames can not be determined. Return values may exist but are ignored. Example code to write the progress to stdout:: progress_callback =\ lambda i, n: print(f'Saving frame {i} of {n}') Notes ----- *fps*, *codec*, *bitrate*, *extra_args* and *metadata* are used to construct a `.MovieWriter` instance and can only be passed if *writer* is a string. If they are passed as non-*None* and *writer* is a `.MovieWriter`, a `RuntimeError` will be raised. """ # If the writer is None, use the rc param to find the name of the one # to use if writer is None: writer = rcParams['animation.writer'] elif (not isinstance(writer, str) and any(arg is not None for arg in (fps, codec, bitrate, extra_args, metadata))): raise RuntimeError('Passing in values for arguments ' 'fps, codec, bitrate, extra_args, or metadata ' 'is not supported when writer is an existing ' 'MovieWriter instance. These should instead be ' 'passed as arguments when creating the ' 'MovieWriter instance.') if savefig_kwargs is None: savefig_kwargs = {} # Need to disconnect the first draw callback, since we'll be doing # draws. Otherwise, we'll end up starting the animation. if self._first_draw_id is not None: self._fig.canvas.mpl_disconnect(self._first_draw_id) reconnect_first_draw = True else: reconnect_first_draw = False if fps is None and hasattr(self, '_interval'): # Convert interval in ms to frames per second fps = 1000. / self._interval # Re-use the savefig DPI for ours if none is given if dpi is None: dpi = rcParams['savefig.dpi'] if dpi == 'figure': dpi = self._fig.dpi if codec is None: codec = rcParams['animation.codec'] if bitrate is None: bitrate = rcParams['animation.bitrate'] all_anim = [self] if extra_anim is not None: all_anim.extend(anim for anim in extra_anim if anim._fig is self._fig) # If we have the name of a writer, instantiate an instance of the # registered class. if isinstance(writer, str): if writer in writers.avail: writer = writers[writer](fps, codec, bitrate, extra_args=extra_args, metadata=metadata) else: if writers.list(): alt_writer = writers[writers.list()[0]] _log.warning("MovieWriter %s unavailable; trying to use " "%s instead.", writer, alt_writer) writer = alt_writer( fps, codec, bitrate, extra_args=extra_args, metadata=metadata) else: raise ValueError("Cannot save animation: no writers are " "available. Please install ffmpeg to " "save animations.") _log.info('Animation.save using %s', type(writer)) if 'bbox_inches' in savefig_kwargs: _log.warning("Warning: discarding the 'bbox_inches' argument in " "'savefig_kwargs' as it may cause frame size " "to vary, which is inappropriate for animation.") savefig_kwargs.pop('bbox_inches') # Create a new sequence of frames for saved data. This is different # from new_frame_seq() to give the ability to save 'live' generated # frame information to be saved later. # TODO: Right now, after closing the figure, saving a movie won't work # since GUI widgets are gone. Either need to remove extra code to # allow for this non-existent use case or find a way to make it work. with rc_context(): if rcParams['savefig.bbox'] == 'tight': _log.info("Disabling savefig.bbox = 'tight', as it may cause " "frame size to vary, which is inappropriate for " "animation.") rcParams['savefig.bbox'] = None with writer.saving(self._fig, filename, dpi): for anim in all_anim: # Clear the initial frame anim._init_draw() frame_number = 0 save_count_list = [a.save_count for a in all_anim] if None in save_count_list: total_frames = None else: total_frames = sum(save_count_list) for data in zip(*[a.new_saved_frame_seq() for a in all_anim]): for anim, d in zip(all_anim, data): # TODO: See if turning off blit is really necessary anim._draw_next_frame(d, blit=False) if progress_callback is not None: progress_callback(frame_number, total_frames) frame_number += 1 writer.grab_frame(**savefig_kwargs) # Reconnect signal for first draw if necessary if reconnect_first_draw: self._first_draw_id = self._fig.canvas.mpl_connect('draw_event', self._start) def _step(self, *args): ''' Handler for getting events. By default, gets the next frame in the sequence and hands the data off to be drawn. ''' # Returns True to indicate that the event source should continue to # call _step, until the frame sequence reaches the end of iteration, # at which point False will be returned. try: framedata = next(self.frame_seq) self._draw_next_frame(framedata, self._blit) return True except StopIteration: return False def new_frame_seq(self): """Return a new sequence of frame information.""" # Default implementation is just an iterator over self._framedata return iter(self._framedata) def new_saved_frame_seq(self): """Return a new sequence of saved/cached frame information.""" # Default is the same as the regular frame sequence return self.new_frame_seq() def _draw_next_frame(self, framedata, blit): # Breaks down the drawing of the next frame into steps of pre- and # post- draw, as well as the drawing of the frame itself. self._pre_draw(framedata, blit) self._draw_frame(framedata) self._post_draw(framedata, blit) def _init_draw(self): # Initial draw to clear the frame. Also used by the blitting code # when a clean base is required. pass def _pre_draw(self, framedata, blit): # Perform any cleaning or whatnot before the drawing of the frame. # This default implementation allows blit to clear the frame. if blit: self._blit_clear(self._drawn_artists, self._blit_cache) def _draw_frame(self, framedata): # Performs actual drawing of the frame. raise NotImplementedError('Needs to be implemented by subclasses to' ' actually make an animation.') def _post_draw(self, framedata, blit): # After the frame is rendered, this handles the actual flushing of # the draw, which can be a direct draw_idle() or make use of the # blitting. if blit and self._drawn_artists: self._blit_draw(self._drawn_artists, self._blit_cache) else: self._fig.canvas.draw_idle() # The rest of the code in this class is to facilitate easy blitting def _blit_draw(self, artists, bg_cache): # Handles blitted drawing, which renders only the artists given instead # of the entire figure. updated_ax = [] for a in artists: # If we haven't cached the background for this axes object, do # so now. This might not always be reliable, but it's an attempt # to automate the process. if a.axes not in bg_cache: bg_cache[a.axes] = a.figure.canvas.copy_from_bbox(a.axes.bbox) a.axes.draw_artist(a) updated_ax.append(a.axes) # After rendering all the needed artists, blit each axes individually. for ax in set(updated_ax): ax.figure.canvas.blit(ax.bbox) def _blit_clear(self, artists, bg_cache): # Get a list of the axes that need clearing from the artists that # have been drawn. Grab the appropriate saved background from the # cache and restore. axes = {a.axes for a in artists} for a in axes: if a in bg_cache: a.figure.canvas.restore_region(bg_cache[a]) def _setup_blit(self): # Setting up the blit requires: a cache of the background for the # axes self._blit_cache = dict() self._drawn_artists = [] for ax in self._fig.axes: ax.callbacks.connect('xlim_changed', lambda ax: self._blit_cache.pop(ax, None)) ax.callbacks.connect('ylim_changed', lambda ax: self._blit_cache.pop(ax, None)) self._resize_id = self._fig.canvas.mpl_connect('resize_event', self._handle_resize) self._post_draw(None, self._blit) def _handle_resize(self, *args): # On resize, we need to disable the resize event handling so we don't # get too many events. Also stop the animation events, so that # we're paused. Reset the cache and re-init. Set up an event handler # to catch once the draw has actually taken place. self._fig.canvas.mpl_disconnect(self._resize_id) self.event_source.stop() self._blit_cache.clear() self._init_draw() self._resize_id = self._fig.canvas.mpl_connect('draw_event', self._end_redraw) def _end_redraw(self, evt): # Now that the redraw has happened, do the post draw flushing and # blit handling. Then re-enable all of the original events. self._post_draw(None, False) self.event_source.start() self._fig.canvas.mpl_disconnect(self._resize_id) self._resize_id = self._fig.canvas.mpl_connect('resize_event', self._handle_resize) def to_html5_video(self, embed_limit=None): """ Convert the animation to an HTML5 ``<video>`` tag. This saves the animation as an h264 video, encoded in base64 directly into the HTML5 video tag. This respects the rc parameters for the writer as well as the bitrate. This also makes use of the ``interval`` to control the speed, and uses the ``repeat`` parameter to decide whether to loop. Parameters ---------- embed_limit : float, optional Limit, in MB, of the returned animation. No animation is created if the limit is exceeded. Defaults to :rc:`animation.embed_limit` = 20.0. Returns ------- video_tag : str An HTML5 video tag with the animation embedded as base64 encoded h264 video. If the *embed_limit* is exceeded, this returns the string "Video too large to embed." """ VIDEO_TAG = r'''<video {size} {options}> <source type="video/mp4" src="data:video/mp4;base64,{video}"> Your browser does not support the video tag. </video>''' # Cache the rendering of the video as HTML if not hasattr(self, '_base64_video'): # Save embed limit, which is given in MB if embed_limit is None: embed_limit = rcParams['animation.embed_limit'] # Convert from MB to bytes embed_limit *= 1024 * 1024 # Can't open a NamedTemporaryFile twice on Windows, so use a # TemporaryDirectory instead. with TemporaryDirectory() as tmpdir: path = Path(tmpdir, "temp.m4v") # We create a writer manually so that we can get the # appropriate size for the tag Writer = writers[rcParams['animation.writer']] writer = Writer(codec='h264', bitrate=rcParams['animation.bitrate'], fps=1000. / self._interval) self.save(str(path), writer=writer) # Now open and base64 encode. vid64 = base64.encodebytes(path.read_bytes()) vid_len = len(vid64) if vid_len >= embed_limit: _log.warning( "Animation movie is %s bytes, exceeding the limit of %s. " "If you're sure you want a large animation embedded, set " "the animation.embed_limit rc parameter to a larger value " "(in MB).", vid_len, embed_limit) else: self._base64_video = vid64.decode('ascii') self._video_size = 'width="{}" height="{}"'.format( *writer.frame_size) # If we exceeded the size, this attribute won't exist if hasattr(self, '_base64_video'): # Default HTML5 options are to autoplay and display video controls options = ['controls', 'autoplay'] # If we're set to repeat, make it loop if hasattr(self, 'repeat') and self.repeat: options.append('loop') return VIDEO_TAG.format(video=self._base64_video, size=self._video_size, options=' '.join(options)) else: return 'Video too large to embed.' def to_jshtml(self, fps=None, embed_frames=True, default_mode=None): """Generate HTML representation of the animation""" if fps is None and hasattr(self, '_interval'): # Convert interval in ms to frames per second fps = 1000 / self._interval # If we're not given a default mode, choose one base on the value of # the repeat attribute if default_mode is None: default_mode = 'loop' if self.repeat else 'once' if not hasattr(self, "_html_representation"): # Can't open a NamedTemporaryFile twice on Windows, so use a # TemporaryDirectory instead. with TemporaryDirectory() as tmpdir: path = Path(tmpdir, "temp.html") writer = HTMLWriter(fps=fps, embed_frames=embed_frames, default_mode=default_mode) self.save(str(path), writer=writer) self._html_representation = path.read_text() return self._html_representation def _repr_html_(self): '''IPython display hook for rendering.''' fmt = rcParams['animation.html'] if fmt == 'html5': return self.to_html5_video() elif fmt == 'jshtml': return self.to_jshtml() class TimedAnimation(Animation): ''':class:`Animation` subclass for time-based animation. A new frame is drawn every *interval* milliseconds. Parameters ---------- fig : matplotlib.figure.Figure The figure object that is used to get draw, resize, and any other needed events. interval : number, optional Delay between frames in milliseconds. Defaults to 200. repeat_delay : number, optional If the animation in repeated, adds a delay in milliseconds before repeating the animation. Defaults to ``None``. repeat : bool, optional Controls whether the animation should repeat when the sequence of frames is completed. Defaults to ``True``. blit : bool, optional Controls whether blitting is used to optimize drawing. Defaults to ``False``. ''' def __init__(self, fig, interval=200, repeat_delay=None, repeat=True, event_source=None, *args, **kwargs): # Store the timing information self._interval = interval self._repeat_delay = repeat_delay self.repeat = repeat # If we're not given an event source, create a new timer. This permits # sharing timers between animation objects for syncing animations. if event_source is None: event_source = fig.canvas.new_timer() event_source.interval = self._interval Animation.__init__(self, fig, event_source=event_source, *args, **kwargs) def _step(self, *args): ''' Handler for getting events. ''' # Extends the _step() method for the Animation class. If # Animation._step signals that it reached the end and we want to # repeat, we refresh the frame sequence and return True. If # _repeat_delay is set, change the event_source's interval to our loop # delay and set the callback to one which will then set the interval # back. still_going = Animation._step(self, *args) if not still_going and self.repeat: self._init_draw() self.frame_seq = self.new_frame_seq() if self._repeat_delay: self.event_source.remove_callback(self._step) self.event_source.add_callback(self._loop_delay) self.event_source.interval = self._repeat_delay return True else: return Animation._step(self, *args) else: return still_going def _stop(self, *args): # If we stop in the middle of a loop delay (which is relatively likely # given the potential pause here, remove the loop_delay callback as # well. self.event_source.remove_callback(self._loop_delay) Animation._stop(self) def _loop_delay(self, *args): # Reset the interval and change callbacks after the delay. self.event_source.remove_callback(self._loop_delay) self.event_source.interval = self._interval self.event_source.add_callback(self._step) Animation._step(self) class ArtistAnimation(TimedAnimation): '''Animation using a fixed set of `Artist` objects. Before creating an instance, all plotting should have taken place and the relevant artists saved. Parameters ---------- fig : matplotlib.figure.Figure The figure object that is used to get draw, resize, and any other needed events. artists : list Each list entry a collection of artists that represent what needs to be enabled on each frame. These will be disabled for other frames. interval : number, optional Delay between frames in milliseconds. Defaults to 200. repeat_delay : number, optional If the animation in repeated, adds a delay in milliseconds before repeating the animation. Defaults to ``None``. repeat : bool, optional Controls whether the animation should repeat when the sequence of frames is completed. Defaults to ``True``. blit : bool, optional Controls whether blitting is used to optimize drawing. Defaults to ``False``. ''' def __init__(self, fig, artists, *args, **kwargs): # Internal list of artists drawn in the most recent frame. self._drawn_artists = [] # Use the list of artists as the framedata, which will be iterated # over by the machinery. self._framedata = artists TimedAnimation.__init__(self, fig, *args, **kwargs) def _init_draw(self): # Make all the artists involved in *any* frame invisible figs = set() for f in self.new_frame_seq(): for artist in f: artist.set_visible(False) artist.set_animated(self._blit) # Assemble a list of unique figures that need flushing if artist.get_figure() not in figs: figs.add(artist.get_figure()) # Flush the needed figures for fig in figs: fig.canvas.draw_idle() def _pre_draw(self, framedata, blit): ''' Clears artists from the last frame. ''' if blit: # Let blit handle clearing self._blit_clear(self._drawn_artists, self._blit_cache) else: # Otherwise, make all the artists from the previous frame invisible for artist in self._drawn_artists: artist.set_visible(False) def _draw_frame(self, artists): # Save the artists that were passed in as framedata for the other # steps (esp. blitting) to use. self._drawn_artists = artists # Make all the artists from the current frame visible for artist in artists: artist.set_visible(True) class FuncAnimation(TimedAnimation): """ Makes an animation by repeatedly calling a function *func*. Parameters ---------- fig : matplotlib.figure.Figure The figure object that is used to get draw, resize, and any other needed events. func : callable The function to call at each frame. The first argument will be the next value in *frames*. Any additional positional arguments can be supplied via the *fargs* parameter. The required signature is:: def func(frame, *fargs) -> iterable_of_artists If ``blit == True``, *func* must return an iterable of all artists that were modified or created. This information is used by the blitting algorithm to determine which parts of the figure have to be updated. The return value is unused if ``blit == False`` and may be omitted in that case. frames : iterable, int, generator function, or None, optional Source of data to pass *func* and each frame of the animation - If an iterable, then simply use the values provided. If the iterable has a length, it will override the *save_count* kwarg. - If an integer, then equivalent to passing ``range(frames)`` - If a generator function, then must have the signature:: def gen_function() -> obj - If *None*, then equivalent to passing ``itertools.count``. In all of these cases, the values in *frames* is simply passed through to the user-supplied *func* and thus can be of any type. init_func : callable, optional A function used to draw a clear frame. If not given, the results of drawing from the first item in the frames sequence will be used. This function will be called once before the first frame. The required signature is:: def init_func() -> iterable_of_artists If ``blit == True``, *init_func* must return an iterable of artists to be re-drawn. This information is used by the blitting algorithm to determine which parts of the figure have to be updated. The return value is unused if ``blit == False`` and may be omitted in that case. fargs : tuple or None, optional Additional arguments to pass to each call to *func*. save_count : int, optional The number of values from *frames* to cache. interval : number, optional Delay between frames in milliseconds. Defaults to 200. repeat_delay : number, optional If the animation in repeated, adds a delay in milliseconds before repeating the animation. Defaults to *None*. repeat : bool, optional Controls whether the animation should repeat when the sequence of frames is completed. Defaults to *True*. blit : bool, optional Controls whether blitting is used to optimize drawing. Note: when using blitting any animated artists will be drawn according to their zorder. However, they will be drawn on top of any previous artists, regardless of their zorder. Defaults to *False*. cache_frame_data : bool, optional Controls whether frame data is cached. Defaults to *True*. Disabling cache might be helpful when frames contain large objects. """ def __init__(self, fig, func, frames=None, init_func=None, fargs=None, save_count=None, *, cache_frame_data=True, **kwargs): if fargs: self._args = fargs else: self._args = () self._func = func self._init_func = init_func # Amount of framedata to keep around for saving movies. This is only # used if we don't know how many frames there will be: in the case # of no generator or in the case of a callable. self.save_count = save_count # Set up a function that creates a new iterable when needed. If nothing # is passed in for frames, just use itertools.count, which will just # keep counting from 0. A callable passed in for frames is assumed to # be a generator. An iterable will be used as is, and anything else # will be treated as a number of frames. if frames is None: self._iter_gen = itertools.count elif callable(frames): self._iter_gen = frames elif np.iterable(frames): self._iter_gen = lambda: iter(frames) if hasattr(frames, '__len__'): self.save_count = len(frames) else: self._iter_gen = lambda: iter(range(frames)) self.save_count = frames if self.save_count is None: # If we're passed in and using the default, set save_count to 100. self.save_count = 100 else: # itertools.islice returns an error when passed a numpy int instead # of a native python int (http://bugs.python.org/issue30537). # As a workaround, convert save_count to a native python int. self.save_count = int(self.save_count) self._cache_frame_data = cache_frame_data # Needs to be initialized so the draw functions work without checking self._save_seq = [] TimedAnimation.__init__(self, fig, **kwargs) # Need to reset the saved seq, since right now it will contain data # for a single frame from init, which is not what we want. self._save_seq = [] def new_frame_seq(self): # Use the generating function to generate a new frame sequence return self._iter_gen() def new_saved_frame_seq(self): # Generate an iterator for the sequence of saved data. If there are # no saved frames, generate a new frame sequence and take the first # save_count entries in it. if self._save_seq: # While iterating we are going to update _save_seq # so make a copy to safely iterate over self._old_saved_seq = list(self._save_seq) return iter(self._old_saved_seq) else: if self.save_count is not None: return itertools.islice(self.new_frame_seq(), self.save_count) else: frame_seq = self.new_frame_seq() def gen(): try: for _ in range(100): yield next(frame_seq) except StopIteration: pass else: cbook.warn_deprecated( "2.2", message="FuncAnimation.save has truncated " "your animation to 100 frames. In the future, no " "such truncation will occur; please pass " "'save_count' accordingly.") return gen() def _init_draw(self): # Initialize the drawing either using the given init_func or by # calling the draw function with the first item of the frame sequence. # For blitting, the init_func should return a sequence of modified # artists. if self._init_func is None: self._draw_frame(next(self.new_frame_seq())) else: self._drawn_artists = self._init_func() if self._blit: if self._drawn_artists is None: raise RuntimeError('The init_func must return a ' 'sequence of Artist objects.') for a in self._drawn_artists: a.set_animated(self._blit) self._save_seq = [] def _draw_frame(self, framedata): if self._cache_frame_data: # Save the data for potential saving of movies. self._save_seq.append(framedata) # Make sure to respect save_count (keep only the last save_count # around) self._save_seq = self._save_seq[-self.save_count:] # Call the func with framedata and args. If blitting is desired, # func needs to return a sequence of any artists that were modified. self._drawn_artists = self._func(framedata, *self._args) if self._blit: if self._drawn_artists is None: raise RuntimeError('The animation function must return a ' 'sequence of Artist objects.') self._drawn_artists = sorted(self._drawn_artists, key=lambda x: x.get_zorder()) for a in self._drawn_artists: a.set_animated(self._blit)
2bda8bc9a7a2598a7ff749b1e320f2f598f842c322ba85ad039d7ba56ada4028
""" GUI neutral widgets =================== Widgets that are designed to work for any of the GUI backends. All of these widgets require you to predefine a :class:`matplotlib.axes.Axes` instance and pass that as the first arg. matplotlib doesn't try to be too smart with respect to layout -- you will have to figure out how wide and tall you want your Axes to be to accommodate your widget. """ import copy from numbers import Integral import numpy as np from . import cbook, rcParams from .lines import Line2D from .patches import Circle, Rectangle, Ellipse from .transforms import blended_transform_factory class LockDraw(object): """ Some widgets, like the cursor, draw onto the canvas, and this is not desirable under all circumstances, like when the toolbar is in zoom-to-rect mode and drawing a rectangle. To avoid this, a widget can acquire a canvas' lock with ``canvas.widgetlock(widget)`` before drawing on the canvas; this will prevent other widgets from doing so at the same time (if they also try to acquire the lock first). """ def __init__(self): self._owner = None def __call__(self, o): """Reserve the lock for *o*.""" if not self.available(o): raise ValueError('already locked') self._owner = o def release(self, o): """Release the lock from *o*.""" if not self.available(o): raise ValueError('you do not own this lock') self._owner = None def available(self, o): """Return whether drawing is available to *o*.""" return not self.locked() or self.isowner(o) def isowner(self, o): """Return whether *o* owns this lock.""" return self._owner is o def locked(self): """Return whether the lock is currently held by an owner.""" return self._owner is not None class Widget(object): """ Abstract base class for GUI neutral widgets """ drawon = True eventson = True _active = True def set_active(self, active): """Set whether the widget is active. """ self._active = active def get_active(self): """Get whether the widget is active. """ return self._active # set_active is overridden by SelectorWidgets. active = property(get_active, lambda self, active: self.set_active(active), doc="Is the widget active?") def ignore(self, event): """Return True if event should be ignored. This method (or a version of it) should be called at the beginning of any event callback. """ return not self.active class AxesWidget(Widget): """Widget that is connected to a single :class:`~matplotlib.axes.Axes`. To guarantee that the widget remains responsive and not garbage-collected, a reference to the object should be maintained by the user. This is necessary because the callback registry maintains only weak-refs to the functions, which are member functions of the widget. If there are no references to the widget object it may be garbage collected which will disconnect the callbacks. Attributes: *ax* : :class:`~matplotlib.axes.Axes` The parent axes for the widget *canvas* : :class:`~matplotlib.backend_bases.FigureCanvasBase` subclass The parent figure canvas for the widget. *active* : bool If False, the widget does not respond to events. """ def __init__(self, ax): self.ax = ax self.canvas = ax.figure.canvas self.cids = [] def connect_event(self, event, callback): """Connect callback with an event. This should be used in lieu of `figure.canvas.mpl_connect` since this function stores callback ids for later clean up. """ cid = self.canvas.mpl_connect(event, callback) self.cids.append(cid) def disconnect_events(self): """Disconnect all events created by this widget.""" for c in self.cids: self.canvas.mpl_disconnect(c) class Button(AxesWidget): """ A GUI neutral button. For the button to remain responsive you must keep a reference to it. Call :meth:`on_clicked` to connect to the button. Attributes ---------- ax The :class:`matplotlib.axes.Axes` the button renders into. label A :class:`matplotlib.text.Text` instance. color The color of the button when not hovering. hovercolor The color of the button when hovering. """ def __init__(self, ax, label, image=None, color='0.85', hovercolor='0.95'): """ Parameters ---------- ax : matplotlib.axes.Axes The :class:`matplotlib.axes.Axes` instance the button will be placed into. label : str The button text. Accepts string. image : array, mpl image, Pillow Image The image to place in the button, if not *None*. Can be any legal arg to imshow (numpy array, matplotlib Image instance, or Pillow Image). color : color The color of the button when not activated hovercolor : color The color of the button when the mouse is over it """ AxesWidget.__init__(self, ax) if image is not None: ax.imshow(image) self.label = ax.text(0.5, 0.5, label, verticalalignment='center', horizontalalignment='center', transform=ax.transAxes) self.cnt = 0 self.observers = {} self.connect_event('button_press_event', self._click) self.connect_event('button_release_event', self._release) self.connect_event('motion_notify_event', self._motion) ax.set_navigate(False) ax.set_facecolor(color) ax.set_xticks([]) ax.set_yticks([]) self.color = color self.hovercolor = hovercolor self._lastcolor = color def _click(self, event): if self.ignore(event): return if event.inaxes != self.ax: return if not self.eventson: return if event.canvas.mouse_grabber != self.ax: event.canvas.grab_mouse(self.ax) def _release(self, event): if self.ignore(event): return if event.canvas.mouse_grabber != self.ax: return event.canvas.release_mouse(self.ax) if not self.eventson: return if event.inaxes != self.ax: return for cid, func in self.observers.items(): func(event) def _motion(self, event): if self.ignore(event): return if event.inaxes == self.ax: c = self.hovercolor else: c = self.color if c != self._lastcolor: self.ax.set_facecolor(c) self._lastcolor = c if self.drawon: self.ax.figure.canvas.draw() def on_clicked(self, func): """ Connect the callback function *func* to button click events. Returns a connection id, which can be used to disconnect the callback. """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): """Remove the callback function with connection id *cid*.""" try: del self.observers[cid] except KeyError: pass class Slider(AxesWidget): """ A slider representing a floating point range. Create a slider from *valmin* to *valmax* in axes *ax*. For the slider to remain responsive you must maintain a reference to it. Call :meth:`on_changed` to connect to the slider event. Attributes ---------- val : float Slider value. """ def __init__(self, ax, label, valmin, valmax, valinit=0.5, valfmt='%1.2f', closedmin=True, closedmax=True, slidermin=None, slidermax=None, dragging=True, valstep=None, orientation='horizontal', **kwargs): """ Parameters ---------- ax : Axes The Axes to put the slider in. label : str Slider label. valmin : float The minimum value of the slider. valmax : float The maximum value of the slider. valinit : float, optional, default: 0.5 The slider initial position. valfmt : str, optional, default: "%1.2f" Used to format the slider value, fprint format string. closedmin : bool, optional, default: True Indicate whether the slider interval is closed on the bottom. closedmax : bool, optional, default: True Indicate whether the slider interval is closed on the top. slidermin : Slider, optional, default: None Do not allow the current slider to have a value less than the value of the Slider `slidermin`. slidermax : Slider, optional, default: None Do not allow the current slider to have a value greater than the value of the Slider `slidermax`. dragging : bool, optional, default: True If True the slider can be dragged by the mouse. valstep : float, optional, default: None If given, the slider will snap to multiples of `valstep`. orientation : str, 'horizontal' or 'vertical', default: 'horizontal' The orientation of the slider. Notes ----- Additional kwargs are passed on to ``self.poly`` which is the :class:`~matplotlib.patches.Rectangle` that draws the slider knob. See the :class:`~matplotlib.patches.Rectangle` documentation for valid property names (e.g., `facecolor`, `edgecolor`, `alpha`). """ AxesWidget.__init__(self, ax) if slidermin is not None and not hasattr(slidermin, 'val'): raise ValueError("Argument slidermin ({}) has no 'val'" .format(type(slidermin))) if slidermax is not None and not hasattr(slidermax, 'val'): raise ValueError("Argument slidermax ({}) has no 'val'" .format(type(slidermax))) if orientation not in ['horizontal', 'vertical']: raise ValueError("Argument orientation ({}) must be either" "'horizontal' or 'vertical'".format(orientation)) self.orientation = orientation self.closedmin = closedmin self.closedmax = closedmax self.slidermin = slidermin self.slidermax = slidermax self.drag_active = False self.valmin = valmin self.valmax = valmax self.valstep = valstep valinit = self._value_in_bounds(valinit) if valinit is None: valinit = valmin self.val = valinit self.valinit = valinit if orientation == 'vertical': self.poly = ax.axhspan(valmin, valinit, 0, 1, **kwargs) self.hline = ax.axhline(valinit, 0, 1, color='r', lw=1) else: self.poly = ax.axvspan(valmin, valinit, 0, 1, **kwargs) self.vline = ax.axvline(valinit, 0, 1, color='r', lw=1) self.valfmt = valfmt ax.set_yticks([]) if orientation == 'vertical': ax.set_ylim((valmin, valmax)) else: ax.set_xlim((valmin, valmax)) ax.set_xticks([]) ax.set_navigate(False) self.connect_event('button_press_event', self._update) self.connect_event('button_release_event', self._update) if dragging: self.connect_event('motion_notify_event', self._update) if orientation == 'vertical': self.label = ax.text(0.5, 1.02, label, transform=ax.transAxes, verticalalignment='bottom', horizontalalignment='center') self.valtext = ax.text(0.5, -0.02, valfmt % valinit, transform=ax.transAxes, verticalalignment='top', horizontalalignment='center') else: self.label = ax.text(-0.02, 0.5, label, transform=ax.transAxes, verticalalignment='center', horizontalalignment='right') self.valtext = ax.text(1.02, 0.5, valfmt % valinit, transform=ax.transAxes, verticalalignment='center', horizontalalignment='left') self.cnt = 0 self.observers = {} self.set_val(valinit) def _value_in_bounds(self, val): """Makes sure *val* is with given bounds.""" if self.valstep: val = np.round((val - self.valmin)/self.valstep)*self.valstep val += self.valmin if val <= self.valmin: if not self.closedmin: return val = self.valmin elif val >= self.valmax: if not self.closedmax: return val = self.valmax if self.slidermin is not None and val <= self.slidermin.val: if not self.closedmin: return val = self.slidermin.val if self.slidermax is not None and val >= self.slidermax.val: if not self.closedmax: return val = self.slidermax.val return val def _update(self, event): """Update the slider position.""" if self.ignore(event) or event.button != 1: return if event.name == 'button_press_event' and event.inaxes == self.ax: self.drag_active = True event.canvas.grab_mouse(self.ax) if not self.drag_active: return elif ((event.name == 'button_release_event') or (event.name == 'button_press_event' and event.inaxes != self.ax)): self.drag_active = False event.canvas.release_mouse(self.ax) return if self.orientation == 'vertical': val = self._value_in_bounds(event.ydata) else: val = self._value_in_bounds(event.xdata) if val not in [None, self.val]: self.set_val(val) def set_val(self, val): """ Set slider value to *val* Parameters ---------- val : float """ xy = self.poly.xy if self.orientation == 'vertical': xy[1] = 0, val xy[2] = 1, val else: xy[2] = val, 1 xy[3] = val, 0 self.poly.xy = xy self.valtext.set_text(self.valfmt % val) if self.drawon: self.ax.figure.canvas.draw_idle() self.val = val if not self.eventson: return for cid, func in self.observers.items(): func(val) def on_changed(self, func): """ When the slider value is changed call *func* with the new slider value Parameters ---------- func : callable Function to call when slider is changed. The function must accept a single float as its arguments. Returns ------- cid : int Connection id (which can be used to disconnect *func*) """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): """ Remove the observer with connection id *cid* Parameters ---------- cid : int Connection id of the observer to be removed """ try: del self.observers[cid] except KeyError: pass def reset(self): """Reset the slider to the initial value""" if self.val != self.valinit: self.set_val(self.valinit) class CheckButtons(AxesWidget): """ A GUI neutral set of check buttons. For the check buttons to remain responsive you must keep a reference to this object. The following attributes are exposed *ax* The :class:`matplotlib.axes.Axes` instance the buttons are located in *labels* List of :class:`matplotlib.text.Text` instances *lines* List of (line1, line2) tuples for the x's in the check boxes. These lines exist for each box, but have ``set_visible(False)`` when its box is not checked. *rectangles* List of :class:`matplotlib.patches.Rectangle` instances Connect to the CheckButtons with the :meth:`on_clicked` method """ def __init__(self, ax, labels, actives=None): """ Add check buttons to :class:`matplotlib.axes.Axes` instance *ax* Parameters ---------- ax : `~matplotlib.axes.Axes` The parent axes for the widget. labels : List[str] The labels of the check buttons. actives : List[bool], optional The initial check states of the buttons. The list must have the same length as *labels*. If not given, all buttons are unchecked. """ AxesWidget.__init__(self, ax) ax.set_xticks([]) ax.set_yticks([]) ax.set_navigate(False) if actives is None: actives = [False] * len(labels) if len(labels) > 1: dy = 1. / (len(labels) + 1) ys = np.linspace(1 - dy, dy, len(labels)) else: dy = 0.25 ys = [0.5] axcolor = ax.get_facecolor() self.labels = [] self.lines = [] self.rectangles = [] lineparams = {'color': 'k', 'linewidth': 1.25, 'transform': ax.transAxes, 'solid_capstyle': 'butt'} for y, label, active in zip(ys, labels, actives): t = ax.text(0.25, y, label, transform=ax.transAxes, horizontalalignment='left', verticalalignment='center') w, h = dy / 2, dy / 2 x, y = 0.05, y - h / 2 p = Rectangle(xy=(x, y), width=w, height=h, edgecolor='black', facecolor=axcolor, transform=ax.transAxes) l1 = Line2D([x, x + w], [y + h, y], **lineparams) l2 = Line2D([x, x + w], [y, y + h], **lineparams) l1.set_visible(active) l2.set_visible(active) self.labels.append(t) self.rectangles.append(p) self.lines.append((l1, l2)) ax.add_patch(p) ax.add_line(l1) ax.add_line(l2) self.connect_event('button_press_event', self._clicked) self.cnt = 0 self.observers = {} def _clicked(self, event): if self.ignore(event) or event.button != 1 or event.inaxes != self.ax: return for i, (p, t) in enumerate(zip(self.rectangles, self.labels)): if (t.get_window_extent().contains(event.x, event.y) or p.get_window_extent().contains(event.x, event.y)): self.set_active(i) break def set_active(self, index): """ Directly (de)activate a check button by index. *index* is an index into the original label list that this object was constructed with. Raises ValueError if *index* is invalid. Callbacks will be triggered if :attr:`eventson` is True. """ if 0 > index >= len(self.labels): raise ValueError("Invalid CheckButton index: %d" % index) l1, l2 = self.lines[index] l1.set_visible(not l1.get_visible()) l2.set_visible(not l2.get_visible()) if self.drawon: self.ax.figure.canvas.draw() if not self.eventson: return for cid, func in self.observers.items(): func(self.labels[index].get_text()) def get_status(self): """ returns a tuple of the status (True/False) of all of the check buttons """ return [l1.get_visible() for (l1, l2) in self.lines] def on_clicked(self, func): """ Connect the callback function *func* to button click events. Returns a connection id, which can be used to disconnect the callback. """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): """remove the observer with connection id *cid*""" try: del self.observers[cid] except KeyError: pass class TextBox(AxesWidget): """ A GUI neutral text input box. For the text box to remain responsive you must keep a reference to it. The following attributes are accessible: *ax* The :class:`matplotlib.axes.Axes` the button renders into. *label* A :class:`matplotlib.text.Text` instance. *color* The color of the text box when not hovering. *hovercolor* The color of the text box when hovering. Call :meth:`on_text_change` to be updated whenever the text changes. Call :meth:`on_submit` to be updated whenever the user hits enter or leaves the text entry field. """ def __init__(self, ax, label, initial='', color='.95', hovercolor='1', label_pad=.01): """ Parameters ---------- ax : matplotlib.axes.Axes The :class:`matplotlib.axes.Axes` instance the button will be placed into. label : str Label for this text box. Accepts string. initial : str Initial value in the text box color : color The color of the box hovercolor : color The color of the box when the mouse is over it label_pad : float the distance between the label and the right side of the textbox """ AxesWidget.__init__(self, ax) self.DIST_FROM_LEFT = .05 self.params_to_disable = [key for key in rcParams if 'keymap' in key] self.text = initial self.label = ax.text(-label_pad, 0.5, label, verticalalignment='center', horizontalalignment='right', transform=ax.transAxes) self.text_disp = self._make_text_disp(self.text) self.cnt = 0 self.change_observers = {} self.submit_observers = {} # If these lines are removed, the cursor won't appear the first # time the box is clicked: self.ax.set_xlim(0, 1) self.ax.set_ylim(0, 1) self.cursor_index = 0 # Because this is initialized, _render_cursor # can assume that cursor exists. self.cursor = self.ax.vlines(0, 0, 0) self.cursor.set_visible(False) self.connect_event('button_press_event', self._click) self.connect_event('button_release_event', self._release) self.connect_event('motion_notify_event', self._motion) self.connect_event('key_press_event', self._keypress) self.connect_event('resize_event', self._resize) ax.set_navigate(False) ax.set_facecolor(color) ax.set_xticks([]) ax.set_yticks([]) self.color = color self.hovercolor = hovercolor self._lastcolor = color self.capturekeystrokes = False def _make_text_disp(self, string): return self.ax.text(self.DIST_FROM_LEFT, 0.5, string, verticalalignment='center', horizontalalignment='left', transform=self.ax.transAxes) def _rendercursor(self): # this is a hack to figure out where the cursor should go. # we draw the text up to where the cursor should go, measure # and save its dimensions, draw the real text, then put the cursor # at the saved dimensions widthtext = self.text[:self.cursor_index] no_text = False if(widthtext == "" or widthtext == " " or widthtext == " "): no_text = widthtext == "" widthtext = "," wt_disp = self._make_text_disp(widthtext) self.ax.figure.canvas.draw() bb = wt_disp.get_window_extent() inv = self.ax.transData.inverted() bb = inv.transform(bb) wt_disp.set_visible(False) if no_text: bb[1, 0] = bb[0, 0] # hack done self.cursor.set_visible(False) self.cursor = self.ax.vlines(bb[1, 0], bb[0, 1], bb[1, 1]) self.ax.figure.canvas.draw() def _notify_submit_observers(self): for cid, func in self.submit_observers.items(): func(self.text) def _release(self, event): if self.ignore(event): return if event.canvas.mouse_grabber != self.ax: return event.canvas.release_mouse(self.ax) def _keypress(self, event): if self.ignore(event): return if self.capturekeystrokes: key = event.key if(len(key) == 1): self.text = (self.text[:self.cursor_index] + key + self.text[self.cursor_index:]) self.cursor_index += 1 elif key == "right": if self.cursor_index != len(self.text): self.cursor_index += 1 elif key == "left": if self.cursor_index != 0: self.cursor_index -= 1 elif key == "home": self.cursor_index = 0 elif key == "end": self.cursor_index = len(self.text) elif(key == "backspace"): if self.cursor_index != 0: self.text = (self.text[:self.cursor_index - 1] + self.text[self.cursor_index:]) self.cursor_index -= 1 elif(key == "delete"): if self.cursor_index != len(self.text): self.text = (self.text[:self.cursor_index] + self.text[self.cursor_index + 1:]) self.text_disp.remove() self.text_disp = self._make_text_disp(self.text) self._rendercursor() self._notify_change_observers() if key == "enter": self._notify_submit_observers() def set_val(self, val): newval = str(val) if self.text == newval: return self.text = newval self.text_disp.remove() self.text_disp = self._make_text_disp(self.text) self._rendercursor() self._notify_change_observers() self._notify_submit_observers() def _notify_change_observers(self): for cid, func in self.change_observers.items(): func(self.text) def begin_typing(self, x): self.capturekeystrokes = True # disable command keys so that the user can type without # command keys causing figure to be saved, etc self.reset_params = {} for key in self.params_to_disable: self.reset_params[key] = rcParams[key] rcParams[key] = [] def stop_typing(self): notifysubmit = False # because _notify_submit_users might throw an error in the # user's code, we only want to call it once we've already done # our cleanup. if self.capturekeystrokes: # since the user is no longer typing, # reactivate the standard command keys for key in self.params_to_disable: rcParams[key] = self.reset_params[key] notifysubmit = True self.capturekeystrokes = False self.cursor.set_visible(False) self.ax.figure.canvas.draw() if notifysubmit: self._notify_submit_observers() def position_cursor(self, x): # now, we have to figure out where the cursor goes. # approximate it based on assuming all characters the same length if len(self.text) == 0: self.cursor_index = 0 else: bb = self.text_disp.get_window_extent() trans = self.ax.transData inv = self.ax.transData.inverted() bb = trans.transform(inv.transform(bb)) text_start = bb[0, 0] text_end = bb[1, 0] ratio = (x - text_start) / (text_end - text_start) if ratio < 0: ratio = 0 if ratio > 1: ratio = 1 self.cursor_index = int(len(self.text) * ratio) self._rendercursor() def _click(self, event): if self.ignore(event): return if event.inaxes != self.ax: self.stop_typing() return if not self.eventson: return if event.canvas.mouse_grabber != self.ax: event.canvas.grab_mouse(self.ax) if not self.capturekeystrokes: self.begin_typing(event.x) self.position_cursor(event.x) def _resize(self, event): self.stop_typing() def _motion(self, event): if self.ignore(event): return if event.inaxes == self.ax: c = self.hovercolor else: c = self.color if c != self._lastcolor: self.ax.set_facecolor(c) self._lastcolor = c if self.drawon: self.ax.figure.canvas.draw() def on_text_change(self, func): """ When the text changes, call this *func* with event. A connection id is returned which can be used to disconnect. """ cid = self.cnt self.change_observers[cid] = func self.cnt += 1 return cid def on_submit(self, func): """ When the user hits enter or leaves the submission box, call this *func* with event. A connection id is returned which can be used to disconnect. """ cid = self.cnt self.submit_observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): """Remove the observer with connection id *cid*.""" for reg in [self.change_observers, self.submit_observers]: try: del reg[cid] except KeyError: pass class RadioButtons(AxesWidget): """ A GUI neutral radio button. For the buttons to remain responsive you must keep a reference to this object. Connect to the RadioButtons with the :meth:`on_clicked` method. Attributes ---------- ax The containing `~.axes.Axes` instance. activecolor The color of the selected button. labels A list of `~.text.Text` instances containing the button labels. circles A list of `~.patches.Circle` instances defining the buttons. value_selected : str The label text of the currently selected button. """ def __init__(self, ax, labels, active=0, activecolor='blue'): """ Add radio buttons to an `~.axes.Axes`. Parameters ---------- ax : `~matplotlib.axes.Axes` The axes to add the buttons to. labels : list of str The button labels. active : int The index of the initially selected button. activecolor : color The color of the selected button. """ AxesWidget.__init__(self, ax) self.activecolor = activecolor self.value_selected = None ax.set_xticks([]) ax.set_yticks([]) ax.set_navigate(False) dy = 1. / (len(labels) + 1) ys = np.linspace(1 - dy, dy, len(labels)) cnt = 0 axcolor = ax.get_facecolor() # scale the radius of the circle with the spacing between each one circle_radius = (dy / 2) - 0.01 # defaul to hard-coded value if the radius becomes too large if(circle_radius > 0.05): circle_radius = 0.05 self.labels = [] self.circles = [] for y, label in zip(ys, labels): t = ax.text(0.25, y, label, transform=ax.transAxes, horizontalalignment='left', verticalalignment='center') if cnt == active: self.value_selected = label facecolor = activecolor else: facecolor = axcolor p = Circle(xy=(0.15, y), radius=circle_radius, edgecolor='black', facecolor=facecolor, transform=ax.transAxes) self.labels.append(t) self.circles.append(p) ax.add_patch(p) cnt += 1 self.connect_event('button_press_event', self._clicked) self.cnt = 0 self.observers = {} def _clicked(self, event): if self.ignore(event) or event.button != 1 or event.inaxes != self.ax: return xy = self.ax.transAxes.inverted().transform_point((event.x, event.y)) pclicked = np.array([xy[0], xy[1]]) distances = {} for i, (p, t) in enumerate(zip(self.circles, self.labels)): if (t.get_window_extent().contains(event.x, event.y) or np.linalg.norm(pclicked - p.center) < p.radius): distances[i] = np.linalg.norm(pclicked - p.center) if len(distances) > 0: closest = min(distances, key=distances.get) self.set_active(closest) def set_active(self, index): """ Select button with number *index*. Callbacks will be triggered if :attr:`eventson` is True. """ if 0 > index >= len(self.labels): raise ValueError("Invalid RadioButton index: %d" % index) self.value_selected = self.labels[index].get_text() for i, p in enumerate(self.circles): if i == index: color = self.activecolor else: color = self.ax.get_facecolor() p.set_facecolor(color) if self.drawon: self.ax.figure.canvas.draw() if not self.eventson: return for cid, func in self.observers.items(): func(self.labels[index].get_text()) def on_clicked(self, func): """ Connect the callback function *func* to button click events. Returns a connection id, which can be used to disconnect the callback. """ cid = self.cnt self.observers[cid] = func self.cnt += 1 return cid def disconnect(self, cid): """Remove the observer with connection id *cid*.""" try: del self.observers[cid] except KeyError: pass class SubplotTool(Widget): """ A tool to adjust the subplot params of a :class:`matplotlib.figure.Figure`. """ def __init__(self, targetfig, toolfig): """ *targetfig* The figure instance to adjust. *toolfig* The figure instance to embed the subplot tool into. If *None*, a default figure will be created. If you are using this from the GUI """ # FIXME: The docstring seems to just abruptly end without... self.targetfig = targetfig toolfig.subplots_adjust(left=0.2, right=0.9) self.axleft = toolfig.add_subplot(711) self.axleft.set_title('Click on slider to adjust subplot param') self.axleft.set_navigate(False) self.sliderleft = Slider(self.axleft, 'left', 0, 1, targetfig.subplotpars.left, closedmax=False) self.sliderleft.on_changed(self.funcleft) self.axbottom = toolfig.add_subplot(712) self.axbottom.set_navigate(False) self.sliderbottom = Slider(self.axbottom, 'bottom', 0, 1, targetfig.subplotpars.bottom, closedmax=False) self.sliderbottom.on_changed(self.funcbottom) self.axright = toolfig.add_subplot(713) self.axright.set_navigate(False) self.sliderright = Slider(self.axright, 'right', 0, 1, targetfig.subplotpars.right, closedmin=False) self.sliderright.on_changed(self.funcright) self.axtop = toolfig.add_subplot(714) self.axtop.set_navigate(False) self.slidertop = Slider(self.axtop, 'top', 0, 1, targetfig.subplotpars.top, closedmin=False) self.slidertop.on_changed(self.functop) self.axwspace = toolfig.add_subplot(715) self.axwspace.set_navigate(False) self.sliderwspace = Slider(self.axwspace, 'wspace', 0, 1, targetfig.subplotpars.wspace, closedmax=False) self.sliderwspace.on_changed(self.funcwspace) self.axhspace = toolfig.add_subplot(716) self.axhspace.set_navigate(False) self.sliderhspace = Slider(self.axhspace, 'hspace', 0, 1, targetfig.subplotpars.hspace, closedmax=False) self.sliderhspace.on_changed(self.funchspace) # constraints self.sliderleft.slidermax = self.sliderright self.sliderright.slidermin = self.sliderleft self.sliderbottom.slidermax = self.slidertop self.slidertop.slidermin = self.sliderbottom bax = toolfig.add_axes([0.8, 0.05, 0.15, 0.075]) self.buttonreset = Button(bax, 'Reset') sliders = (self.sliderleft, self.sliderbottom, self.sliderright, self.slidertop, self.sliderwspace, self.sliderhspace,) def func(event): thisdrawon = self.drawon self.drawon = False # store the drawon state of each slider bs = [] for slider in sliders: bs.append(slider.drawon) slider.drawon = False # reset the slider to the initial position for slider in sliders: slider.reset() # reset drawon for slider, b in zip(sliders, bs): slider.drawon = b # draw the canvas self.drawon = thisdrawon if self.drawon: toolfig.canvas.draw() self.targetfig.canvas.draw() # during reset there can be a temporary invalid state # depending on the order of the reset so we turn off # validation for the resetting validate = toolfig.subplotpars.validate toolfig.subplotpars.validate = False self.buttonreset.on_clicked(func) toolfig.subplotpars.validate = validate def funcleft(self, val): self.targetfig.subplots_adjust(left=val) if self.drawon: self.targetfig.canvas.draw() def funcright(self, val): self.targetfig.subplots_adjust(right=val) if self.drawon: self.targetfig.canvas.draw() def funcbottom(self, val): self.targetfig.subplots_adjust(bottom=val) if self.drawon: self.targetfig.canvas.draw() def functop(self, val): self.targetfig.subplots_adjust(top=val) if self.drawon: self.targetfig.canvas.draw() def funcwspace(self, val): self.targetfig.subplots_adjust(wspace=val) if self.drawon: self.targetfig.canvas.draw() def funchspace(self, val): self.targetfig.subplots_adjust(hspace=val) if self.drawon: self.targetfig.canvas.draw() class Cursor(AxesWidget): """ A crosshair cursor that spans the axes and moves with mouse cursor. For the cursor to remain responsive you must keep a reference to it. Parameters ---------- ax : `matplotlib.axes.Axes` The `~.axes.Axes` to attach the cursor to. horizOn : bool, optional, default: True Whether to draw the horizontal line. vertOn : bool, optional, default: True Whether to draw the vertical line. useblit : bool, optional, default: False Use blitting for faster drawing if supported by the backend. Other Parameters ---------------- **lineprops `.Line2D` properties that control the appearance of the lines. See also `~.Axes.axhline`. Examples -------- See :doc:`/gallery/widgets/cursor`. """ def __init__(self, ax, horizOn=True, vertOn=True, useblit=False, **lineprops): AxesWidget.__init__(self, ax) self.connect_event('motion_notify_event', self.onmove) self.connect_event('draw_event', self.clear) self.visible = True self.horizOn = horizOn self.vertOn = vertOn self.useblit = useblit and self.canvas.supports_blit if self.useblit: lineprops['animated'] = True self.lineh = ax.axhline(ax.get_ybound()[0], visible=False, **lineprops) self.linev = ax.axvline(ax.get_xbound()[0], visible=False, **lineprops) self.background = None self.needclear = False def clear(self, event): """Internal event handler to clear the cursor.""" if self.ignore(event): return if self.useblit: self.background = self.canvas.copy_from_bbox(self.ax.bbox) self.linev.set_visible(False) self.lineh.set_visible(False) def onmove(self, event): """Internal event handler to draw the cursor when the mouse moves.""" if self.ignore(event): return if not self.canvas.widgetlock.available(self): return if event.inaxes != self.ax: self.linev.set_visible(False) self.lineh.set_visible(False) if self.needclear: self.canvas.draw() self.needclear = False return self.needclear = True if not self.visible: return self.linev.set_xdata((event.xdata, event.xdata)) self.lineh.set_ydata((event.ydata, event.ydata)) self.linev.set_visible(self.visible and self.vertOn) self.lineh.set_visible(self.visible and self.horizOn) self._update() def _update(self): if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) self.ax.draw_artist(self.linev) self.ax.draw_artist(self.lineh) self.canvas.blit(self.ax.bbox) else: self.canvas.draw_idle() return False class MultiCursor(Widget): """ Provide a vertical (default) and/or horizontal line cursor shared between multiple axes. For the cursor to remain responsive you must keep a reference to it. Example usage:: from matplotlib.widgets import MultiCursor import matplotlib.pyplot as plt import numpy as np fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) t = np.arange(0.0, 2.0, 0.01) ax1.plot(t, np.sin(2*np.pi*t)) ax2.plot(t, np.sin(4*np.pi*t)) multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1, horizOn=False, vertOn=True) plt.show() """ def __init__(self, canvas, axes, useblit=True, horizOn=False, vertOn=True, **lineprops): self.canvas = canvas self.axes = axes self.horizOn = horizOn self.vertOn = vertOn xmin, xmax = axes[-1].get_xlim() ymin, ymax = axes[-1].get_ylim() xmid = 0.5 * (xmin + xmax) ymid = 0.5 * (ymin + ymax) self.visible = True self.useblit = useblit and self.canvas.supports_blit self.background = None self.needclear = False if self.useblit: lineprops['animated'] = True if vertOn: self.vlines = [ax.axvline(xmid, visible=False, **lineprops) for ax in axes] else: self.vlines = [] if horizOn: self.hlines = [ax.axhline(ymid, visible=False, **lineprops) for ax in axes] else: self.hlines = [] self.connect() def connect(self): """connect events""" self._cidmotion = self.canvas.mpl_connect('motion_notify_event', self.onmove) self._ciddraw = self.canvas.mpl_connect('draw_event', self.clear) def disconnect(self): """disconnect events""" self.canvas.mpl_disconnect(self._cidmotion) self.canvas.mpl_disconnect(self._ciddraw) def clear(self, event): """clear the cursor""" if self.ignore(event): return if self.useblit: self.background = ( self.canvas.copy_from_bbox(self.canvas.figure.bbox)) for line in self.vlines + self.hlines: line.set_visible(False) def onmove(self, event): if self.ignore(event): return if event.inaxes is None: return if not self.canvas.widgetlock.available(self): return self.needclear = True if not self.visible: return if self.vertOn: for line in self.vlines: line.set_xdata((event.xdata, event.xdata)) line.set_visible(self.visible) if self.horizOn: for line in self.hlines: line.set_ydata((event.ydata, event.ydata)) line.set_visible(self.visible) self._update() def _update(self): if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) if self.vertOn: for ax, line in zip(self.axes, self.vlines): ax.draw_artist(line) if self.horizOn: for ax, line in zip(self.axes, self.hlines): ax.draw_artist(line) self.canvas.blit(self.canvas.figure.bbox) else: self.canvas.draw_idle() class _SelectorWidget(AxesWidget): def __init__(self, ax, onselect, useblit=False, button=None, state_modifier_keys=None): AxesWidget.__init__(self, ax) self.visible = True self.onselect = onselect self.useblit = useblit and self.canvas.supports_blit self.connect_default_events() self.state_modifier_keys = dict(move=' ', clear='escape', square='shift', center='control') self.state_modifier_keys.update(state_modifier_keys or {}) self.background = None self.artists = [] if isinstance(button, Integral): self.validButtons = [button] else: self.validButtons = button # will save the data (position at mouseclick) self.eventpress = None # will save the data (pos. at mouserelease) self.eventrelease = None self._prev_event = None self.state = set() def set_active(self, active): AxesWidget.set_active(self, active) if active: self.update_background(None) def update_background(self, event): """force an update of the background""" # If you add a call to `ignore` here, you'll want to check edge case: # `release` can call a draw event even when `ignore` is True. if self.useblit: self.background = self.canvas.copy_from_bbox(self.ax.bbox) def connect_default_events(self): """Connect the major canvas events to methods.""" self.connect_event('motion_notify_event', self.onmove) self.connect_event('button_press_event', self.press) self.connect_event('button_release_event', self.release) self.connect_event('draw_event', self.update_background) self.connect_event('key_press_event', self.on_key_press) self.connect_event('key_release_event', self.on_key_release) self.connect_event('scroll_event', self.on_scroll) def ignore(self, event): """return *True* if *event* should be ignored""" if not self.active or not self.ax.get_visible(): return True # If canvas was locked if not self.canvas.widgetlock.available(self): return True if not hasattr(event, 'button'): event.button = None # Only do rectangle selection if event was triggered # with a desired button if self.validButtons is not None: if event.button not in self.validButtons: return True # If no button was pressed yet ignore the event if it was out # of the axes if self.eventpress is None: return event.inaxes != self.ax # If a button was pressed, check if the release-button is the # same. if event.button == self.eventpress.button: return False # If a button was pressed, check if the release-button is the # same. return (event.inaxes != self.ax or event.button != self.eventpress.button) def update(self): """draw using newfangled blit or oldfangled draw depending on useblit """ if not self.ax.get_visible(): return False if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) for artist in self.artists: self.ax.draw_artist(artist) self.canvas.blit(self.ax.bbox) else: self.canvas.draw_idle() return False def _get_data(self, event): """Get the xdata and ydata for event, with limits""" if event.xdata is None: return None, None x0, x1 = self.ax.get_xbound() y0, y1 = self.ax.get_ybound() xdata = max(x0, event.xdata) xdata = min(x1, xdata) ydata = max(y0, event.ydata) ydata = min(y1, ydata) return xdata, ydata def _clean_event(self, event): """Clean up an event Use prev event if there is no xdata Limit the xdata and ydata to the axes limits Set the prev event """ if event.xdata is None: event = self._prev_event else: event = copy.copy(event) event.xdata, event.ydata = self._get_data(event) self._prev_event = event return event def press(self, event): """Button press handler and validator""" if not self.ignore(event): event = self._clean_event(event) self.eventpress = event self._prev_event = event key = event.key or '' key = key.replace('ctrl', 'control') # move state is locked in on a button press if key == self.state_modifier_keys['move']: self.state.add('move') self._press(event) return True return False def _press(self, event): """Button press handler""" pass def release(self, event): """Button release event handler and validator""" if not self.ignore(event) and self.eventpress: event = self._clean_event(event) self.eventrelease = event self._release(event) self.eventpress = None self.eventrelease = None self.state.discard('move') return True return False def _release(self, event): """Button release event handler""" pass def onmove(self, event): """Cursor move event handler and validator""" if not self.ignore(event) and self.eventpress: event = self._clean_event(event) self._onmove(event) return True return False def _onmove(self, event): """Cursor move event handler""" pass def on_scroll(self, event): """Mouse scroll event handler and validator""" if not self.ignore(event): self._on_scroll(event) def _on_scroll(self, event): """Mouse scroll event handler""" pass def on_key_press(self, event): """Key press event handler and validator for all selection widgets""" if self.active: key = event.key or '' key = key.replace('ctrl', 'control') if key == self.state_modifier_keys['clear']: for artist in self.artists: artist.set_visible(False) self.update() return for (state, modifier) in self.state_modifier_keys.items(): if modifier in key: self.state.add(state) self._on_key_press(event) def _on_key_press(self, event): """Key press event handler - use for widget-specific key press actions. """ pass def on_key_release(self, event): """Key release event handler and validator.""" if self.active: key = event.key or '' for (state, modifier) in self.state_modifier_keys.items(): if modifier in key: self.state.discard(state) self._on_key_release(event) def _on_key_release(self, event): """Key release event handler.""" def set_visible(self, visible): """Set the visibility of our artists.""" self.visible = visible for artist in self.artists: artist.set_visible(visible) class SpanSelector(_SelectorWidget): """ Visually select a min/max range on a single axis and call a function with those values. To guarantee that the selector remains responsive, keep a reference to it. In order to turn off the SpanSelector, set `span_selector.active=False`. To turn it back on, set `span_selector.active=True`. Parameters ---------- ax : :class:`matplotlib.axes.Axes` object onselect : func(min, max), min/max are floats direction : "horizontal" or "vertical" The axis along which to draw the span selector minspan : float, default is None If selection is less than *minspan*, do not call *onselect* useblit : bool, default is False If True, use the backend-dependent blitting features for faster canvas updates. rectprops : dict, default is None Dictionary of :class:`matplotlib.patches.Patch` properties onmove_callback : func(min, max), min/max are floats, default is None Called on mouse move while the span is being selected span_stays : bool, default is False If True, the span stays visible after the mouse is released button : int or list of ints Determines which mouse buttons activate the span selector 1 = left mouse button\n 2 = center mouse button (scroll wheel)\n 3 = right mouse button\n Examples -------- >>> import matplotlib.pyplot as plt >>> import matplotlib.widgets as mwidgets >>> fig, ax = plt.subplots() >>> ax.plot([1, 2, 3], [10, 50, 100]) >>> def onselect(vmin, vmax): ... print(vmin, vmax) >>> rectprops = dict(facecolor='blue', alpha=0.5) >>> span = mwidgets.SpanSelector(ax, onselect, 'horizontal', ... rectprops=rectprops) >>> fig.show() See also: :doc:`/gallery/widgets/span_selector` """ def __init__(self, ax, onselect, direction, minspan=None, useblit=False, rectprops=None, onmove_callback=None, span_stays=False, button=None): _SelectorWidget.__init__(self, ax, onselect, useblit=useblit, button=button) if rectprops is None: rectprops = dict(facecolor='red', alpha=0.5) rectprops['animated'] = self.useblit cbook._check_in_list(['horizontal', 'vertical'], direction=direction) self.direction = direction self.rect = None self.pressv = None self.rectprops = rectprops self.onmove_callback = onmove_callback self.minspan = minspan self.span_stays = span_stays # Needed when dragging out of axes self.prev = (0, 0) # Reset canvas so that `new_axes` connects events. self.canvas = None self.new_axes(ax) def new_axes(self, ax): """Set SpanSelector to operate on a new Axes""" self.ax = ax if self.canvas is not ax.figure.canvas: if self.canvas is not None: self.disconnect_events() self.canvas = ax.figure.canvas self.connect_default_events() if self.direction == 'horizontal': trans = blended_transform_factory(self.ax.transData, self.ax.transAxes) w, h = 0, 1 else: trans = blended_transform_factory(self.ax.transAxes, self.ax.transData) w, h = 1, 0 self.rect = Rectangle((0, 0), w, h, transform=trans, visible=False, **self.rectprops) if self.span_stays: self.stay_rect = Rectangle((0, 0), w, h, transform=trans, visible=False, **self.rectprops) self.stay_rect.set_animated(False) self.ax.add_patch(self.stay_rect) self.ax.add_patch(self.rect) self.artists = [self.rect] def ignore(self, event): """return *True* if *event* should be ignored""" return _SelectorWidget.ignore(self, event) or not self.visible def _press(self, event): """on button press event""" self.rect.set_visible(self.visible) if self.span_stays: self.stay_rect.set_visible(False) # really force a draw so that the stay rect is not in # the blit background if self.useblit: self.canvas.draw() xdata, ydata = self._get_data(event) if self.direction == 'horizontal': self.pressv = xdata else: self.pressv = ydata self._set_span_xy(event) return False def _release(self, event): """on button release event""" if self.pressv is None: return self.rect.set_visible(False) if self.span_stays: self.stay_rect.set_x(self.rect.get_x()) self.stay_rect.set_y(self.rect.get_y()) self.stay_rect.set_width(self.rect.get_width()) self.stay_rect.set_height(self.rect.get_height()) self.stay_rect.set_visible(True) self.canvas.draw_idle() vmin = self.pressv xdata, ydata = self._get_data(event) if self.direction == 'horizontal': vmax = xdata or self.prev[0] else: vmax = ydata or self.prev[1] if vmin > vmax: vmin, vmax = vmax, vmin span = vmax - vmin if self.minspan is not None and span < self.minspan: return self.onselect(vmin, vmax) self.pressv = None return False @cbook.deprecated("3.1") @property def buttonDown(self): return False def _onmove(self, event): """on motion notify event""" if self.pressv is None: return self._set_span_xy(event) if self.onmove_callback is not None: vmin = self.pressv xdata, ydata = self._get_data(event) if self.direction == 'horizontal': vmax = xdata or self.prev[0] else: vmax = ydata or self.prev[1] if vmin > vmax: vmin, vmax = vmax, vmin self.onmove_callback(vmin, vmax) self.update() return False def _set_span_xy(self, event): """Setting the span coordinates""" x, y = self._get_data(event) if x is None: return self.prev = x, y if self.direction == 'horizontal': v = x else: v = y minv, maxv = v, self.pressv if minv > maxv: minv, maxv = maxv, minv if self.direction == 'horizontal': self.rect.set_x(minv) self.rect.set_width(maxv - minv) else: self.rect.set_y(minv) self.rect.set_height(maxv - minv) class ToolHandles(object): """Control handles for canvas tools. Parameters ---------- ax : :class:`matplotlib.axes.Axes` Matplotlib axes where tool handles are displayed. x, y : 1D arrays Coordinates of control handles. marker : str Shape of marker used to display handle. See `matplotlib.pyplot.plot`. marker_props : dict Additional marker properties. See :class:`matplotlib.lines.Line2D`. """ def __init__(self, ax, x, y, marker='o', marker_props=None, useblit=True): self.ax = ax props = dict(marker=marker, markersize=7, mfc='w', ls='none', alpha=0.5, visible=False, label='_nolegend_') props.update(marker_props if marker_props is not None else {}) self._markers = Line2D(x, y, animated=useblit, **props) self.ax.add_line(self._markers) self.artist = self._markers @property def x(self): return self._markers.get_xdata() @property def y(self): return self._markers.get_ydata() def set_data(self, pts, y=None): """Set x and y positions of handles""" if y is not None: x = pts pts = np.array([x, y]) self._markers.set_data(pts) def set_visible(self, val): self._markers.set_visible(val) def set_animated(self, val): self._markers.set_animated(val) def closest(self, x, y): """Return index and pixel distance to closest index.""" pts = np.transpose((self.x, self.y)) # Transform data coordinates to pixel coordinates. pts = self.ax.transData.transform(pts) diff = pts - ((x, y)) if diff.ndim == 2: dist = np.sqrt(np.sum(diff ** 2, axis=1)) return np.argmin(dist), np.min(dist) else: return 0, np.sqrt(np.sum(diff ** 2)) class RectangleSelector(_SelectorWidget): """ Select a rectangular region of an axes. For the cursor to remain responsive you must keep a reference to it. Example usage:: import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import RectangleSelector def onselect(eclick, erelease): "eclick and erelease are matplotlib events at press and release." print('startposition: (%f, %f)' % (eclick.xdata, eclick.ydata)) print('endposition : (%f, %f)' % (erelease.xdata, erelease.ydata)) print('used button : ', eclick.button) def toggle_selector(event): print('Key pressed.') if event.key in ['Q', 'q'] and toggle_selector.RS.active: print('RectangleSelector deactivated.') toggle_selector.RS.set_active(False) if event.key in ['A', 'a'] and not toggle_selector.RS.active: print('RectangleSelector activated.') toggle_selector.RS.set_active(True) x = np.arange(100.) / 99 y = np.sin(x) fig, ax = plt.subplots() ax.plot(x, y) toggle_selector.RS = RectangleSelector(ax, onselect, drawtype='line') fig.canvas.mpl_connect('key_press_event', toggle_selector) plt.show() """ _shape_klass = Rectangle def __init__(self, ax, onselect, drawtype='box', minspanx=None, minspany=None, useblit=False, lineprops=None, rectprops=None, spancoords='data', button=None, maxdist=10, marker_props=None, interactive=False, state_modifier_keys=None): """ Create a selector in *ax*. When a selection is made, clear the span and call onselect with:: onselect(pos_1, pos_2) and clear the drawn box/line. The ``pos_1`` and ``pos_2`` are arrays of length 2 containing the x- and y-coordinate. If *minspanx* is not *None* then events smaller than *minspanx* in x direction are ignored (it's the same for y). The rectangle is drawn with *rectprops*; default:: rectprops = dict(facecolor='red', edgecolor = 'black', alpha=0.2, fill=True) The line is drawn with *lineprops*; default:: lineprops = dict(color='black', linestyle='-', linewidth = 2, alpha=0.5) Use *drawtype* if you want the mouse to draw a line, a box or nothing between click and actual position by setting ``drawtype = 'line'``, ``drawtype='box'`` or ``drawtype = 'none'``. Drawing a line would result in a line from vertex A to vertex C in a rectangle ABCD. *spancoords* is one of 'data' or 'pixels'. If 'data', *minspanx* and *minspanx* will be interpreted in the same coordinates as the x and y axis. If 'pixels', they are in pixels. *button* is a list of integers indicating which mouse buttons should be used for rectangle selection. You can also specify a single integer if only a single button is desired. Default is *None*, which does not limit which button can be used. Note, typically: 1 = left mouse button 2 = center mouse button (scroll wheel) 3 = right mouse button *interactive* will draw a set of handles and allow you interact with the widget after it is drawn. *state_modifier_keys* are keyboard modifiers that affect the behavior of the widget. The defaults are: dict(move=' ', clear='escape', square='shift', center='ctrl') Keyboard modifiers, which: 'move': Move the existing shape. 'clear': Clear the current shape. 'square': Makes the shape square. 'center': Make the initial point the center of the shape. 'square' and 'center' can be combined. """ _SelectorWidget.__init__(self, ax, onselect, useblit=useblit, button=button, state_modifier_keys=state_modifier_keys) self.to_draw = None self.visible = True self.interactive = interactive if drawtype == 'none': drawtype = 'line' # draw a line but make it self.visible = False # invisible if drawtype == 'box': if rectprops is None: rectprops = dict(facecolor='red', edgecolor='black', alpha=0.2, fill=True) rectprops['animated'] = self.useblit self.rectprops = rectprops self.to_draw = self._shape_klass((0, 0), 0, 1, visible=False, **self.rectprops) self.ax.add_patch(self.to_draw) if drawtype == 'line': if lineprops is None: lineprops = dict(color='black', linestyle='-', linewidth=2, alpha=0.5) lineprops['animated'] = self.useblit self.lineprops = lineprops self.to_draw = Line2D([0, 0], [0, 0], visible=False, **self.lineprops) self.ax.add_line(self.to_draw) self.minspanx = minspanx self.minspany = minspany cbook._check_in_list(['data', 'pixels'], spancoords=spancoords) self.spancoords = spancoords self.drawtype = drawtype self.maxdist = maxdist if rectprops is None: props = dict(mec='r') else: props = dict(mec=rectprops.get('edgecolor', 'r')) self._corner_order = ['NW', 'NE', 'SE', 'SW'] xc, yc = self.corners self._corner_handles = ToolHandles(self.ax, xc, yc, marker_props=props, useblit=self.useblit) self._edge_order = ['W', 'N', 'E', 'S'] xe, ye = self.edge_centers self._edge_handles = ToolHandles(self.ax, xe, ye, marker='s', marker_props=props, useblit=self.useblit) xc, yc = self.center self._center_handle = ToolHandles(self.ax, [xc], [yc], marker='s', marker_props=props, useblit=self.useblit) self.active_handle = None self.artists = [self.to_draw, self._center_handle.artist, self._corner_handles.artist, self._edge_handles.artist] if not self.interactive: self.artists = [self.to_draw] self._extents_on_press = None def _press(self, event): """on button press event""" # make the drawed box/line visible get the click-coordinates, # button, ... if self.interactive and self.to_draw.get_visible(): self._set_active_handle(event) else: self.active_handle = None if self.active_handle is None or not self.interactive: # Clear previous rectangle before drawing new rectangle. self.update() if not self.interactive: x = event.xdata y = event.ydata self.extents = x, x, y, y self.set_visible(self.visible) def _release(self, event): """on button release event""" if not self.interactive: self.to_draw.set_visible(False) # update the eventpress and eventrelease with the resulting extents x1, x2, y1, y2 = self.extents self.eventpress.xdata = x1 self.eventpress.ydata = y1 xy1 = self.ax.transData.transform_point([x1, y1]) self.eventpress.x, self.eventpress.y = xy1 self.eventrelease.xdata = x2 self.eventrelease.ydata = y2 xy2 = self.ax.transData.transform_point([x2, y2]) self.eventrelease.x, self.eventrelease.y = xy2 if self.spancoords == 'data': xmin, ymin = self.eventpress.xdata, self.eventpress.ydata xmax, ymax = self.eventrelease.xdata, self.eventrelease.ydata # calculate dimensions of box or line get values in the right order elif self.spancoords == 'pixels': xmin, ymin = self.eventpress.x, self.eventpress.y xmax, ymax = self.eventrelease.x, self.eventrelease.y else: cbook._check_in_list(['data', 'pixels'], spancoords=self.spancoords) if xmin > xmax: xmin, xmax = xmax, xmin if ymin > ymax: ymin, ymax = ymax, ymin spanx = xmax - xmin spany = ymax - ymin xproblems = self.minspanx is not None and spanx < self.minspanx yproblems = self.minspany is not None and spany < self.minspany # check if drawn distance (if it exists) is not too small in # either x or y-direction if self.drawtype != 'none' and (xproblems or yproblems): for artist in self.artists: artist.set_visible(False) self.update() return # call desired function self.onselect(self.eventpress, self.eventrelease) self.update() return False def _onmove(self, event): """on motion notify event if box/line is wanted""" # resize an existing shape if self.active_handle and not self.active_handle == 'C': x1, x2, y1, y2 = self._extents_on_press if self.active_handle in ['E', 'W'] + self._corner_order: x2 = event.xdata if self.active_handle in ['N', 'S'] + self._corner_order: y2 = event.ydata # move existing shape elif (('move' in self.state or self.active_handle == 'C') and self._extents_on_press is not None): x1, x2, y1, y2 = self._extents_on_press dx = event.xdata - self.eventpress.xdata dy = event.ydata - self.eventpress.ydata x1 += dx x2 += dx y1 += dy y2 += dy # new shape else: center = [self.eventpress.xdata, self.eventpress.ydata] center_pix = [self.eventpress.x, self.eventpress.y] dx = (event.xdata - center[0]) / 2. dy = (event.ydata - center[1]) / 2. # square shape if 'square' in self.state: dx_pix = abs(event.x - center_pix[0]) dy_pix = abs(event.y - center_pix[1]) if not dx_pix: return maxd = max(abs(dx_pix), abs(dy_pix)) if abs(dx_pix) < maxd: dx *= maxd / (abs(dx_pix) + 1e-6) if abs(dy_pix) < maxd: dy *= maxd / (abs(dy_pix) + 1e-6) # from center if 'center' in self.state: dx *= 2 dy *= 2 # from corner else: center[0] += dx center[1] += dy x1, x2, y1, y2 = (center[0] - dx, center[0] + dx, center[1] - dy, center[1] + dy) self.extents = x1, x2, y1, y2 @property def _rect_bbox(self): if self.drawtype == 'box': x0 = self.to_draw.get_x() y0 = self.to_draw.get_y() width = self.to_draw.get_width() height = self.to_draw.get_height() return x0, y0, width, height else: x, y = self.to_draw.get_data() x0, x1 = min(x), max(x) y0, y1 = min(y), max(y) return x0, y0, x1 - x0, y1 - y0 @property def corners(self): """Corners of rectangle from lower left, moving clockwise.""" x0, y0, width, height = self._rect_bbox xc = x0, x0 + width, x0 + width, x0 yc = y0, y0, y0 + height, y0 + height return xc, yc @property def edge_centers(self): """Midpoint of rectangle edges from left, moving clockwise.""" x0, y0, width, height = self._rect_bbox w = width / 2. h = height / 2. xe = x0, x0 + w, x0 + width, x0 + w ye = y0 + h, y0, y0 + h, y0 + height return xe, ye @property def center(self): """Center of rectangle""" x0, y0, width, height = self._rect_bbox return x0 + width / 2., y0 + height / 2. @property def extents(self): """Return (xmin, xmax, ymin, ymax).""" x0, y0, width, height = self._rect_bbox xmin, xmax = sorted([x0, x0 + width]) ymin, ymax = sorted([y0, y0 + height]) return xmin, xmax, ymin, ymax @extents.setter def extents(self, extents): # Update displayed shape self.draw_shape(extents) # Update displayed handles self._corner_handles.set_data(*self.corners) self._edge_handles.set_data(*self.edge_centers) self._center_handle.set_data(*self.center) self.set_visible(self.visible) self.update() def draw_shape(self, extents): x0, x1, y0, y1 = extents xmin, xmax = sorted([x0, x1]) ymin, ymax = sorted([y0, y1]) xlim = sorted(self.ax.get_xlim()) ylim = sorted(self.ax.get_ylim()) xmin = max(xlim[0], xmin) ymin = max(ylim[0], ymin) xmax = min(xmax, xlim[1]) ymax = min(ymax, ylim[1]) if self.drawtype == 'box': self.to_draw.set_x(xmin) self.to_draw.set_y(ymin) self.to_draw.set_width(xmax - xmin) self.to_draw.set_height(ymax - ymin) elif self.drawtype == 'line': self.to_draw.set_data([xmin, xmax], [ymin, ymax]) def _set_active_handle(self, event): """Set active handle based on the location of the mouse event""" # Note: event.xdata/ydata in data coordinates, event.x/y in pixels c_idx, c_dist = self._corner_handles.closest(event.x, event.y) e_idx, e_dist = self._edge_handles.closest(event.x, event.y) m_idx, m_dist = self._center_handle.closest(event.x, event.y) if 'move' in self.state: self.active_handle = 'C' self._extents_on_press = self.extents # Set active handle as closest handle, if mouse click is close enough. elif m_dist < self.maxdist * 2: self.active_handle = 'C' elif c_dist > self.maxdist and e_dist > self.maxdist: self.active_handle = None return elif c_dist < e_dist: self.active_handle = self._corner_order[c_idx] else: self.active_handle = self._edge_order[e_idx] # Save coordinates of rectangle at the start of handle movement. x1, x2, y1, y2 = self.extents # Switch variables so that only x2 and/or y2 are updated on move. if self.active_handle in ['W', 'SW', 'NW']: x1, x2 = x2, event.xdata if self.active_handle in ['N', 'NW', 'NE']: y1, y2 = y2, event.ydata self._extents_on_press = x1, x2, y1, y2 @property def geometry(self): """ Returns numpy.ndarray of shape (2,5) containing x (``RectangleSelector.geometry[1,:]``) and y (``RectangleSelector.geometry[0,:]``) coordinates of the four corners of the rectangle starting and ending in the top left corner. """ if hasattr(self.to_draw, 'get_verts'): xfm = self.ax.transData.inverted() y, x = xfm.transform(self.to_draw.get_verts()).T return np.array([x, y]) else: return np.array(self.to_draw.get_data()) class EllipseSelector(RectangleSelector): """ Select an elliptical region of an axes. For the cursor to remain responsive you must keep a reference to it. Example usage:: import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import EllipseSelector def onselect(eclick, erelease): "eclick and erelease are matplotlib events at press and release." print('startposition: (%f, %f)' % (eclick.xdata, eclick.ydata)) print('endposition : (%f, %f)' % (erelease.xdata, erelease.ydata)) print('used button : ', eclick.button) def toggle_selector(event): print(' Key pressed.') if event.key in ['Q', 'q'] and toggle_selector.ES.active: print('EllipseSelector deactivated.') toggle_selector.RS.set_active(False) if event.key in ['A', 'a'] and not toggle_selector.ES.active: print('EllipseSelector activated.') toggle_selector.ES.set_active(True) x = np.arange(100.) / 99 y = np.sin(x) fig, ax = plt.subplots() ax.plot(x, y) toggle_selector.ES = EllipseSelector(ax, onselect, drawtype='line') fig.canvas.mpl_connect('key_press_event', toggle_selector) plt.show() """ _shape_klass = Ellipse def draw_shape(self, extents): x1, x2, y1, y2 = extents xmin, xmax = sorted([x1, x2]) ymin, ymax = sorted([y1, y2]) center = [x1 + (x2 - x1) / 2., y1 + (y2 - y1) / 2.] a = (xmax - xmin) / 2. b = (ymax - ymin) / 2. if self.drawtype == 'box': self.to_draw.center = center self.to_draw.width = 2 * a self.to_draw.height = 2 * b else: rad = np.deg2rad(np.arange(31) * 12) x = a * np.cos(rad) + center[0] y = b * np.sin(rad) + center[1] self.to_draw.set_data(x, y) @property def _rect_bbox(self): if self.drawtype == 'box': x, y = self.to_draw.center width = self.to_draw.width height = self.to_draw.height return x - width / 2., y - height / 2., width, height else: x, y = self.to_draw.get_data() x0, x1 = min(x), max(x) y0, y1 = min(y), max(y) return x0, y0, x1 - x0, y1 - y0 class LassoSelector(_SelectorWidget): """ Selection curve of an arbitrary shape. For the selector to remain responsive you must keep a reference to it. The selected path can be used in conjunction with `~.Path.contains_point` to select data points from an image. In contrast to `Lasso`, `LassoSelector` is written with an interface similar to `RectangleSelector` and `SpanSelector`, and will continue to interact with the axes until disconnected. Example usage:: ax = subplot(111) ax.plot(x,y) def onselect(verts): print(verts) lasso = LassoSelector(ax, onselect) Parameters ---------- ax : :class:`~matplotlib.axes.Axes` The parent axes for the widget. onselect : function Whenever the lasso is released, the *onselect* function is called and passed the vertices of the selected path. button : List[Int], optional A list of integers indicating which mouse buttons should be used for rectangle selection. You can also specify a single integer if only a single button is desired. Default is ``None``, which does not limit which button can be used. Note, typically: - 1 = left mouse button - 2 = center mouse button (scroll wheel) - 3 = right mouse button """ def __init__(self, ax, onselect=None, useblit=True, lineprops=None, button=None): _SelectorWidget.__init__(self, ax, onselect, useblit=useblit, button=button) self.verts = None if lineprops is None: lineprops = dict() if useblit: lineprops['animated'] = True self.line = Line2D([], [], **lineprops) self.line.set_visible(False) self.ax.add_line(self.line) self.artists = [self.line] def onpress(self, event): self.press(event) def _press(self, event): self.verts = [self._get_data(event)] self.line.set_visible(True) def onrelease(self, event): self.release(event) def _release(self, event): if self.verts is not None: self.verts.append(self._get_data(event)) self.onselect(self.verts) self.line.set_data([[], []]) self.line.set_visible(False) self.verts = None def _onmove(self, event): if self.verts is None: return self.verts.append(self._get_data(event)) self.line.set_data(list(zip(*self.verts))) self.update() class PolygonSelector(_SelectorWidget): """Select a polygon region of an axes. Place vertices with each mouse click, and make the selection by completing the polygon (clicking on the first vertex). Hold the *ctrl* key and click and drag a vertex to reposition it (the *ctrl* key is not necessary if the polygon has already been completed). Hold the *shift* key and click and drag anywhere in the axes to move all vertices. Press the *esc* key to start a new polygon. For the selector to remain responsive you must keep a reference to it. Parameters ---------- ax : :class:`~matplotlib.axes.Axes` The parent axes for the widget. onselect : function When a polygon is completed or modified after completion, the `onselect` function is called and passed a list of the vertices as ``(xdata, ydata)`` tuples. useblit : bool, optional lineprops : dict, optional The line for the sides of the polygon is drawn with the properties given by `lineprops`. The default is ``dict(color='k', linestyle='-', linewidth=2, alpha=0.5)``. markerprops : dict, optional The markers for the vertices of the polygon are drawn with the properties given by `markerprops`. The default is ``dict(marker='o', markersize=7, mec='k', mfc='k', alpha=0.5)``. vertex_select_radius : float, optional A vertex is selected (to complete the polygon or to move a vertex) if the mouse click is within `vertex_select_radius` pixels of the vertex. The default radius is 15 pixels. Examples -------- :doc:`/gallery/widgets/polygon_selector_demo` """ def __init__(self, ax, onselect, useblit=False, lineprops=None, markerprops=None, vertex_select_radius=15): # The state modifiers 'move', 'square', and 'center' are expected by # _SelectorWidget but are not supported by PolygonSelector # Note: could not use the existing 'move' state modifier in-place of # 'move_all' because _SelectorWidget automatically discards 'move' # from the state on button release. state_modifier_keys = dict(clear='escape', move_vertex='control', move_all='shift', move='not-applicable', square='not-applicable', center='not-applicable') _SelectorWidget.__init__(self, ax, onselect, useblit=useblit, state_modifier_keys=state_modifier_keys) self._xs, self._ys = [0], [0] self._polygon_completed = False if lineprops is None: lineprops = dict(color='k', linestyle='-', linewidth=2, alpha=0.5) lineprops['animated'] = self.useblit self.line = Line2D(self._xs, self._ys, **lineprops) self.ax.add_line(self.line) if markerprops is None: markerprops = dict(mec='k', mfc=lineprops.get('color', 'k')) self._polygon_handles = ToolHandles(self.ax, self._xs, self._ys, useblit=self.useblit, marker_props=markerprops) self._active_handle_idx = -1 self.vertex_select_radius = vertex_select_radius self.artists = [self.line, self._polygon_handles.artist] self.set_visible(True) def _press(self, event): """Button press event handler""" # Check for selection of a tool handle. if ((self._polygon_completed or 'move_vertex' in self.state) and len(self._xs) > 0): h_idx, h_dist = self._polygon_handles.closest(event.x, event.y) if h_dist < self.vertex_select_radius: self._active_handle_idx = h_idx # Save the vertex positions at the time of the press event (needed to # support the 'move_all' state modifier). self._xs_at_press, self._ys_at_press = self._xs[:], self._ys[:] def _release(self, event): """Button release event handler""" # Release active tool handle. if self._active_handle_idx >= 0: self._active_handle_idx = -1 # Complete the polygon. elif (len(self._xs) > 3 and self._xs[-1] == self._xs[0] and self._ys[-1] == self._ys[0]): self._polygon_completed = True # Place new vertex. elif (not self._polygon_completed and 'move_all' not in self.state and 'move_vertex' not in self.state): self._xs.insert(-1, event.xdata) self._ys.insert(-1, event.ydata) if self._polygon_completed: self.onselect(self.verts) def onmove(self, event): """Cursor move event handler and validator""" # Method overrides _SelectorWidget.onmove because the polygon selector # needs to process the move callback even if there is no button press. # _SelectorWidget.onmove include logic to ignore move event if # eventpress is None. if not self.ignore(event): event = self._clean_event(event) self._onmove(event) return True return False def _onmove(self, event): """Cursor move event handler""" # Move the active vertex (ToolHandle). if self._active_handle_idx >= 0: idx = self._active_handle_idx self._xs[idx], self._ys[idx] = event.xdata, event.ydata # Also update the end of the polygon line if the first vertex is # the active handle and the polygon is completed. if idx == 0 and self._polygon_completed: self._xs[-1], self._ys[-1] = event.xdata, event.ydata # Move all vertices. elif 'move_all' in self.state and self.eventpress: dx = event.xdata - self.eventpress.xdata dy = event.ydata - self.eventpress.ydata for k in range(len(self._xs)): self._xs[k] = self._xs_at_press[k] + dx self._ys[k] = self._ys_at_press[k] + dy # Do nothing if completed or waiting for a move. elif (self._polygon_completed or 'move_vertex' in self.state or 'move_all' in self.state): return # Position pending vertex. else: # Calculate distance to the start vertex. x0, y0 = self.line.get_transform().transform((self._xs[0], self._ys[0])) v0_dist = np.hypot(x0 - event.x, y0 - event.y) # Lock on to the start vertex if near it and ready to complete. if len(self._xs) > 3 and v0_dist < self.vertex_select_radius: self._xs[-1], self._ys[-1] = self._xs[0], self._ys[0] else: self._xs[-1], self._ys[-1] = event.xdata, event.ydata self._draw_polygon() def _on_key_press(self, event): """Key press event handler""" # Remove the pending vertex if entering the 'move_vertex' or # 'move_all' mode if (not self._polygon_completed and ('move_vertex' in self.state or 'move_all' in self.state)): self._xs, self._ys = self._xs[:-1], self._ys[:-1] self._draw_polygon() def _on_key_release(self, event): """Key release event handler""" # Add back the pending vertex if leaving the 'move_vertex' or # 'move_all' mode (by checking the released key) if (not self._polygon_completed and (event.key == self.state_modifier_keys.get('move_vertex') or event.key == self.state_modifier_keys.get('move_all'))): self._xs.append(event.xdata) self._ys.append(event.ydata) self._draw_polygon() # Reset the polygon if the released key is the 'clear' key. elif event.key == self.state_modifier_keys.get('clear'): event = self._clean_event(event) self._xs, self._ys = [event.xdata], [event.ydata] self._polygon_completed = False self.set_visible(True) def _draw_polygon(self): """Redraw the polygon based on the new vertex positions.""" self.line.set_data(self._xs, self._ys) # Only show one tool handle at the start and end vertex of the polygon # if the polygon is completed or the user is locked on to the start # vertex. if (self._polygon_completed or (len(self._xs) > 3 and self._xs[-1] == self._xs[0] and self._ys[-1] == self._ys[0])): self._polygon_handles.set_data(self._xs[:-1], self._ys[:-1]) else: self._polygon_handles.set_data(self._xs, self._ys) self.update() @property def verts(self): """Get the polygon vertices. Returns ------- list A list of the vertices of the polygon as ``(xdata, ydata)`` tuples. """ return list(zip(self._xs[:-1], self._ys[:-1])) class Lasso(AxesWidget): """Selection curve of an arbitrary shape. The selected path can be used in conjunction with :func:`~matplotlib.path.Path.contains_point` to select data points from an image. Unlike :class:`LassoSelector`, this must be initialized with a starting point `xy`, and the `Lasso` events are destroyed upon release. Parameters ---------- ax : `~matplotlib.axes.Axes` The parent axes for the widget. xy : (float, float) Coordinates of the start of the lasso. callback : callable Whenever the lasso is released, the `callback` function is called and passed the vertices of the selected path. """ def __init__(self, ax, xy, callback=None, useblit=True): AxesWidget.__init__(self, ax) self.useblit = useblit and self.canvas.supports_blit if self.useblit: self.background = self.canvas.copy_from_bbox(self.ax.bbox) x, y = xy self.verts = [(x, y)] self.line = Line2D([x], [y], linestyle='-', color='black', lw=2) self.ax.add_line(self.line) self.callback = callback self.connect_event('button_release_event', self.onrelease) self.connect_event('motion_notify_event', self.onmove) def onrelease(self, event): if self.ignore(event): return if self.verts is not None: self.verts.append((event.xdata, event.ydata)) if len(self.verts) > 2: self.callback(self.verts) self.ax.lines.remove(self.line) self.verts = None self.disconnect_events() def onmove(self, event): if self.ignore(event): return if self.verts is None: return if event.inaxes != self.ax: return if event.button != 1: return self.verts.append((event.xdata, event.ydata)) self.line.set_data(list(zip(*self.verts))) if self.useblit: self.canvas.restore_region(self.background) self.ax.draw_artist(self.line) self.canvas.blit(self.ax.bbox) else: self.canvas.draw_idle()
18034b47cb7c2cd357b82a64e8a81bfeec6273a417d9f4f3800e66a51bd97a30
""" Abstract base classes define the primitives for Tools. These tools are used by `matplotlib.backend_managers.ToolManager` :class:`ToolBase` Simple stateless tool :class:`ToolToggleBase` Tool that has two states, only one Toggle tool can be active at any given time for the same `matplotlib.backend_managers.ToolManager` """ from enum import IntEnum import logging import re import time from types import SimpleNamespace from weakref import WeakKeyDictionary import numpy as np from matplotlib import rcParams from matplotlib._pylab_helpers import Gcf import matplotlib.cbook as cbook _log = logging.getLogger(__name__) class Cursors(IntEnum): # Must subclass int for the macOS backend. """Backend-independent cursor types.""" HAND, POINTER, SELECT_REGION, MOVE, WAIT = range(5) cursors = Cursors # Backcompat. # Views positions tool _views_positions = 'viewpos' class ToolBase(object): """ Base tool class A base tool, only implements `trigger` method or not method at all. The tool is instantiated by `matplotlib.backend_managers.ToolManager` Attributes ---------- toolmanager : `matplotlib.backend_managers.ToolManager` ToolManager that controls this Tool figure : `FigureCanvas` Figure instance that is affected by this Tool name : string Used as **Id** of the tool, has to be unique among tools of the same ToolManager """ default_keymap = None """ Keymap to associate with this tool **String**: List of comma separated keys that will be used to call this tool when the keypress event of *self.figure.canvas* is emitted """ description = None """ Description of the Tool **String**: If the Tool is included in the Toolbar this text is used as a Tooltip """ image = None """ Filename of the image **String**: Filename of the image to use in the toolbar. If None, the `name` is used as a label in the toolbar button """ def __init__(self, toolmanager, name): cbook._warn_external( 'The new Tool classes introduced in v1.5 are experimental; their ' 'API (including names) will likely change in future versions.') self._name = name self._toolmanager = toolmanager self._figure = None @property def figure(self): return self._figure @figure.setter def figure(self, figure): self.set_figure(figure) @property def canvas(self): if not self._figure: return None return self._figure.canvas @property def toolmanager(self): return self._toolmanager def _make_classic_style_pseudo_toolbar(self): """ Return a placeholder object with a single `canvas` attribute. This is useful to reuse the implementations of tools already provided by the classic Toolbars. """ return SimpleNamespace(canvas=self.canvas) def set_figure(self, figure): """ Assign a figure to the tool Parameters ---------- figure : `Figure` """ self._figure = figure def trigger(self, sender, event, data=None): """ Called when this tool gets used This method is called by `matplotlib.backend_managers.ToolManager.trigger_tool` Parameters ---------- event : `Event` The Canvas event that caused this tool to be called sender : object Object that requested the tool to be triggered data : object Extra data """ pass @property def name(self): """Tool Id""" return self._name def destroy(self): """ Destroy the tool This method is called when the tool is removed by `matplotlib.backend_managers.ToolManager.remove_tool` """ pass class ToolToggleBase(ToolBase): """ Toggleable tool Every time it is triggered, it switches between enable and disable Parameters ---------- ``*args`` Variable length argument to be used by the Tool ``**kwargs`` `toggled` if present and True, sets the initial state of the Tool Arbitrary keyword arguments to be consumed by the Tool """ radio_group = None """Attribute to group 'radio' like tools (mutually exclusive) **String** that identifies the group or **None** if not belonging to a group """ cursor = None """Cursor to use when the tool is active""" default_toggled = False """Default of toggled state""" def __init__(self, *args, **kwargs): self._toggled = kwargs.pop('toggled', self.default_toggled) ToolBase.__init__(self, *args, **kwargs) def trigger(self, sender, event, data=None): """Calls `enable` or `disable` based on `toggled` value""" if self._toggled: self.disable(event) else: self.enable(event) self._toggled = not self._toggled def enable(self, event=None): """ Enable the toggle tool `trigger` calls this method when `toggled` is False """ pass def disable(self, event=None): """ Disable the toggle tool `trigger` call this method when `toggled` is True. This can happen in different circumstances * Click on the toolbar tool button * Call to `matplotlib.backend_managers.ToolManager.trigger_tool` * Another `ToolToggleBase` derived tool is triggered (from the same `ToolManager`) """ pass @property def toggled(self): """State of the toggled tool""" return self._toggled def set_figure(self, figure): toggled = self.toggled if toggled: if self.figure: self.trigger(self, None) else: # if no figure the internal state is not changed # we change it here so next call to trigger will change it back self._toggled = False ToolBase.set_figure(self, figure) if toggled: if figure: self.trigger(self, None) else: # if there is no figure, trigger won't change the internal # state we change it back self._toggled = True class SetCursorBase(ToolBase): """ Change to the current cursor while inaxes This tool, keeps track of all `ToolToggleBase` derived tools, and calls set_cursor when a tool gets triggered """ def __init__(self, *args, **kwargs): ToolBase.__init__(self, *args, **kwargs) self._idDrag = None self._cursor = None self._default_cursor = cursors.POINTER self._last_cursor = self._default_cursor self.toolmanager.toolmanager_connect('tool_added_event', self._add_tool_cbk) # process current tools for tool in self.toolmanager.tools.values(): self._add_tool(tool) def set_figure(self, figure): if self._idDrag: self.canvas.mpl_disconnect(self._idDrag) ToolBase.set_figure(self, figure) if figure: self._idDrag = self.canvas.mpl_connect( 'motion_notify_event', self._set_cursor_cbk) def _tool_trigger_cbk(self, event): if event.tool.toggled: self._cursor = event.tool.cursor else: self._cursor = None self._set_cursor_cbk(event.canvasevent) def _add_tool(self, tool): """Set the cursor when the tool is triggered.""" if getattr(tool, 'cursor', None) is not None: self.toolmanager.toolmanager_connect('tool_trigger_%s' % tool.name, self._tool_trigger_cbk) def _add_tool_cbk(self, event): """Process every newly added tool.""" if event.tool is self: return self._add_tool(event.tool) def _set_cursor_cbk(self, event): if not event: return if not getattr(event, 'inaxes', False) or not self._cursor: if self._last_cursor != self._default_cursor: self.set_cursor(self._default_cursor) self._last_cursor = self._default_cursor elif self._cursor: cursor = self._cursor if cursor and self._last_cursor != cursor: self.set_cursor(cursor) self._last_cursor = cursor def set_cursor(self, cursor): """ Set the cursor This method has to be implemented per backend """ raise NotImplementedError class ToolCursorPosition(ToolBase): """ Send message with the current pointer position This tool runs in the background reporting the position of the cursor """ def __init__(self, *args, **kwargs): self._idDrag = None ToolBase.__init__(self, *args, **kwargs) def set_figure(self, figure): if self._idDrag: self.canvas.mpl_disconnect(self._idDrag) ToolBase.set_figure(self, figure) if figure: self._idDrag = self.canvas.mpl_connect( 'motion_notify_event', self.send_message) def send_message(self, event): """Call `matplotlib.backend_managers.ToolManager.message_event`""" if self.toolmanager.messagelock.locked(): return message = ' ' if event.inaxes and event.inaxes.get_navigate(): try: s = event.inaxes.format_coord(event.xdata, event.ydata) except (ValueError, OverflowError): pass else: artists = [a for a in event.inaxes._mouseover_set if a.contains(event) and a.get_visible()] if artists: a = cbook._topmost_artist(artists) if a is not event.inaxes.patch: data = a.get_cursor_data(event) if data is not None: data_str = a.format_cursor_data(data) if data_str is not None: s = s + ' ' + data_str message = s self.toolmanager.message_event(message, self) class RubberbandBase(ToolBase): """Draw and remove rubberband""" def trigger(self, sender, event, data): """Call `draw_rubberband` or `remove_rubberband` based on data""" if not self.figure.canvas.widgetlock.available(sender): return if data is not None: self.draw_rubberband(*data) else: self.remove_rubberband() def draw_rubberband(self, *data): """ Draw rubberband This method must get implemented per backend """ raise NotImplementedError def remove_rubberband(self): """ Remove rubberband This method should get implemented per backend """ pass class ToolQuit(ToolBase): """Tool to call the figure manager destroy method""" description = 'Quit the figure' default_keymap = rcParams['keymap.quit'] def trigger(self, sender, event, data=None): Gcf.destroy_fig(self.figure) class ToolQuitAll(ToolBase): """Tool to call the figure manager destroy method""" description = 'Quit all figures' default_keymap = rcParams['keymap.quit_all'] def trigger(self, sender, event, data=None): Gcf.destroy_all() class ToolEnableAllNavigation(ToolBase): """Tool to enable all axes for toolmanager interaction""" description = 'Enable all axes toolmanager' default_keymap = rcParams['keymap.all_axes'] def trigger(self, sender, event, data=None): if event.inaxes is None: return for a in self.figure.get_axes(): if (event.x is not None and event.y is not None and a.in_axes(event)): a.set_navigate(True) class ToolEnableNavigation(ToolBase): """Tool to enable a specific axes for toolmanager interaction""" description = 'Enable one axes toolmanager' default_keymap = (1, 2, 3, 4, 5, 6, 7, 8, 9) def trigger(self, sender, event, data=None): if event.inaxes is None: return n = int(event.key) - 1 if n < len(self.figure.get_axes()): for i, a in enumerate(self.figure.get_axes()): if (event.x is not None and event.y is not None and a.in_axes(event)): a.set_navigate(i == n) class _ToolGridBase(ToolBase): """Common functionality between ToolGrid and ToolMinorGrid.""" _cycle = [(False, False), (True, False), (True, True), (False, True)] def trigger(self, sender, event, data=None): ax = event.inaxes if ax is None: return try: x_state, x_which, y_state, y_which = self._get_next_grid_states(ax) except ValueError: pass else: ax.grid(x_state, which=x_which, axis="x") ax.grid(y_state, which=y_which, axis="y") ax.figure.canvas.draw_idle() @staticmethod def _get_uniform_grid_state(ticks): """ Check whether all grid lines are in the same visibility state. Returns True/False if all grid lines are on or off, None if they are not all in the same state. """ if all(tick.gridline.get_visible() for tick in ticks): return True elif not any(tick.gridline.get_visible() for tick in ticks): return False else: return None class ToolGrid(_ToolGridBase): """Tool to toggle the major grids of the figure""" description = 'Toggle major grids' default_keymap = rcParams['keymap.grid'] def _get_next_grid_states(self, ax): if None in map(self._get_uniform_grid_state, [ax.xaxis.minorTicks, ax.yaxis.minorTicks]): # Bail out if minor grids are not in a uniform state. raise ValueError x_state, y_state = map(self._get_uniform_grid_state, [ax.xaxis.majorTicks, ax.yaxis.majorTicks]) cycle = self._cycle # Bail out (via ValueError) if major grids are not in a uniform state. x_state, y_state = ( cycle[(cycle.index((x_state, y_state)) + 1) % len(cycle)]) return (x_state, "major" if x_state else "both", y_state, "major" if y_state else "both") class ToolMinorGrid(_ToolGridBase): """Tool to toggle the major and minor grids of the figure""" description = 'Toggle major and minor grids' default_keymap = rcParams['keymap.grid_minor'] def _get_next_grid_states(self, ax): if None in map(self._get_uniform_grid_state, [ax.xaxis.majorTicks, ax.yaxis.majorTicks]): # Bail out if major grids are not in a uniform state. raise ValueError x_state, y_state = map(self._get_uniform_grid_state, [ax.xaxis.minorTicks, ax.yaxis.minorTicks]) cycle = self._cycle # Bail out (via ValueError) if minor grids are not in a uniform state. x_state, y_state = ( cycle[(cycle.index((x_state, y_state)) + 1) % len(cycle)]) return x_state, "both", y_state, "both" class ToolFullScreen(ToolToggleBase): """Tool to toggle full screen""" description = 'Toggle fullscreen mode' default_keymap = rcParams['keymap.fullscreen'] def enable(self, event): self.figure.canvas.manager.full_screen_toggle() def disable(self, event): self.figure.canvas.manager.full_screen_toggle() class AxisScaleBase(ToolToggleBase): """Base Tool to toggle between linear and logarithmic""" def trigger(self, sender, event, data=None): if event.inaxes is None: return ToolToggleBase.trigger(self, sender, event, data) def enable(self, event): self.set_scale(event.inaxes, 'log') self.figure.canvas.draw_idle() def disable(self, event): self.set_scale(event.inaxes, 'linear') self.figure.canvas.draw_idle() class ToolYScale(AxisScaleBase): """Tool to toggle between linear and logarithmic scales on the Y axis""" description = 'Toggle scale Y axis' default_keymap = rcParams['keymap.yscale'] def set_scale(self, ax, scale): ax.set_yscale(scale) class ToolXScale(AxisScaleBase): """Tool to toggle between linear and logarithmic scales on the X axis""" description = 'Toggle scale X axis' default_keymap = rcParams['keymap.xscale'] def set_scale(self, ax, scale): ax.set_xscale(scale) class ToolViewsPositions(ToolBase): """ Auxiliary Tool to handle changes in views and positions Runs in the background and should get used by all the tools that need to access the figure's history of views and positions, e.g. * `ToolZoom` * `ToolPan` * `ToolHome` * `ToolBack` * `ToolForward` """ def __init__(self, *args, **kwargs): self.views = WeakKeyDictionary() self.positions = WeakKeyDictionary() self.home_views = WeakKeyDictionary() ToolBase.__init__(self, *args, **kwargs) def add_figure(self, figure): """Add the current figure to the stack of views and positions""" if figure not in self.views: self.views[figure] = cbook.Stack() self.positions[figure] = cbook.Stack() self.home_views[figure] = WeakKeyDictionary() # Define Home self.push_current(figure) # Make sure we add a home view for new axes as they're added figure.add_axobserver(lambda fig: self.update_home_views(fig)) def clear(self, figure): """Reset the axes stack""" if figure in self.views: self.views[figure].clear() self.positions[figure].clear() self.home_views[figure].clear() self.update_home_views() def update_view(self): """ Update the view limits and position for each axes from the current stack position. If any axes are present in the figure that aren't in the current stack position, use the home view limits for those axes and don't update *any* positions. """ views = self.views[self.figure]() if views is None: return pos = self.positions[self.figure]() if pos is None: return home_views = self.home_views[self.figure] all_axes = self.figure.get_axes() for a in all_axes: if a in views: cur_view = views[a] else: cur_view = home_views[a] a._set_view(cur_view) if set(all_axes).issubset(pos): for a in all_axes: # Restore both the original and modified positions a._set_position(pos[a][0], 'original') a._set_position(pos[a][1], 'active') self.figure.canvas.draw_idle() def push_current(self, figure=None): """ Push the current view limits and position onto their respective stacks """ if not figure: figure = self.figure views = WeakKeyDictionary() pos = WeakKeyDictionary() for a in figure.get_axes(): views[a] = a._get_view() pos[a] = self._axes_pos(a) self.views[figure].push(views) self.positions[figure].push(pos) def _axes_pos(self, ax): """ Return the original and modified positions for the specified axes Parameters ---------- ax : (matplotlib.axes.AxesSubplot) The axes to get the positions for Returns ------- limits : (tuple) A tuple of the original and modified positions """ return (ax.get_position(True).frozen(), ax.get_position().frozen()) def update_home_views(self, figure=None): """ Make sure that self.home_views has an entry for all axes present in the figure """ if not figure: figure = self.figure for a in figure.get_axes(): if a not in self.home_views[figure]: self.home_views[figure][a] = a._get_view() def refresh_locators(self): """Redraw the canvases, update the locators""" for a in self.figure.get_axes(): xaxis = getattr(a, 'xaxis', None) yaxis = getattr(a, 'yaxis', None) zaxis = getattr(a, 'zaxis', None) locators = [] if xaxis is not None: locators.append(xaxis.get_major_locator()) locators.append(xaxis.get_minor_locator()) if yaxis is not None: locators.append(yaxis.get_major_locator()) locators.append(yaxis.get_minor_locator()) if zaxis is not None: locators.append(zaxis.get_major_locator()) locators.append(zaxis.get_minor_locator()) for loc in locators: loc.refresh() self.figure.canvas.draw_idle() def home(self): """Recall the first view and position from the stack""" self.views[self.figure].home() self.positions[self.figure].home() def back(self): """Back one step in the stack of views and positions""" self.views[self.figure].back() self.positions[self.figure].back() def forward(self): """Forward one step in the stack of views and positions""" self.views[self.figure].forward() self.positions[self.figure].forward() class ViewsPositionsBase(ToolBase): """Base class for `ToolHome`, `ToolBack` and `ToolForward`""" _on_trigger = None def trigger(self, sender, event, data=None): self.toolmanager.get_tool(_views_positions).add_figure(self.figure) getattr(self.toolmanager.get_tool(_views_positions), self._on_trigger)() self.toolmanager.get_tool(_views_positions).update_view() class ToolHome(ViewsPositionsBase): """Restore the original view lim""" description = 'Reset original view' image = 'home' default_keymap = rcParams['keymap.home'] _on_trigger = 'home' class ToolBack(ViewsPositionsBase): """Move back up the view lim stack""" description = 'Back to previous view' image = 'back' default_keymap = rcParams['keymap.back'] _on_trigger = 'back' class ToolForward(ViewsPositionsBase): """Move forward in the view lim stack""" description = 'Forward to next view' image = 'forward' default_keymap = rcParams['keymap.forward'] _on_trigger = 'forward' class ConfigureSubplotsBase(ToolBase): """Base tool for the configuration of subplots""" description = 'Configure subplots' image = 'subplots' class SaveFigureBase(ToolBase): """Base tool for figure saving""" description = 'Save the figure' image = 'filesave' default_keymap = rcParams['keymap.save'] class ZoomPanBase(ToolToggleBase): """Base class for `ToolZoom` and `ToolPan`""" def __init__(self, *args): ToolToggleBase.__init__(self, *args) self._button_pressed = None self._xypress = None self._idPress = None self._idRelease = None self._idScroll = None self.base_scale = 2. self.scrollthresh = .5 # .5 second scroll threshold self.lastscroll = time.time()-self.scrollthresh def enable(self, event): """Connect press/release events and lock the canvas""" self.figure.canvas.widgetlock(self) self._idPress = self.figure.canvas.mpl_connect( 'button_press_event', self._press) self._idRelease = self.figure.canvas.mpl_connect( 'button_release_event', self._release) self._idScroll = self.figure.canvas.mpl_connect( 'scroll_event', self.scroll_zoom) def disable(self, event): """Release the canvas and disconnect press/release events""" self._cancel_action() self.figure.canvas.widgetlock.release(self) self.figure.canvas.mpl_disconnect(self._idPress) self.figure.canvas.mpl_disconnect(self._idRelease) self.figure.canvas.mpl_disconnect(self._idScroll) def trigger(self, sender, event, data=None): self.toolmanager.get_tool(_views_positions).add_figure(self.figure) ToolToggleBase.trigger(self, sender, event, data) def scroll_zoom(self, event): # https://gist.github.com/tacaswell/3144287 if event.inaxes is None: return if event.button == 'up': # deal with zoom in scl = self.base_scale elif event.button == 'down': # deal with zoom out scl = 1/self.base_scale else: # deal with something that should never happen scl = 1 ax = event.inaxes ax._set_view_from_bbox([event.x, event.y, scl]) # If last scroll was done within the timing threshold, delete the # previous view if (time.time()-self.lastscroll) < self.scrollthresh: self.toolmanager.get_tool(_views_positions).back() self.figure.canvas.draw_idle() # force re-draw self.lastscroll = time.time() self.toolmanager.get_tool(_views_positions).push_current() class ToolZoom(ZoomPanBase): """Zoom to rectangle""" description = 'Zoom to rectangle' image = 'zoom_to_rect' default_keymap = rcParams['keymap.zoom'] cursor = cursors.SELECT_REGION radio_group = 'default' def __init__(self, *args): ZoomPanBase.__init__(self, *args) self._ids_zoom = [] def _cancel_action(self): for zoom_id in self._ids_zoom: self.figure.canvas.mpl_disconnect(zoom_id) self.toolmanager.trigger_tool('rubberband', self) self.toolmanager.get_tool(_views_positions).refresh_locators() self._xypress = None self._button_pressed = None self._ids_zoom = [] return def _press(self, event): """Callback for mouse button presses in zoom-to-rectangle mode.""" # If we're already in the middle of a zoom, pressing another # button works to "cancel" if self._ids_zoom != []: self._cancel_action() if event.button == 1: self._button_pressed = 1 elif event.button == 3: self._button_pressed = 3 else: self._cancel_action() return x, y = event.x, event.y self._xypress = [] for i, a in enumerate(self.figure.get_axes()): if (x is not None and y is not None and a.in_axes(event) and a.get_navigate() and a.can_zoom()): self._xypress.append((x, y, a, i, a._get_view())) id1 = self.figure.canvas.mpl_connect( 'motion_notify_event', self._mouse_move) id2 = self.figure.canvas.mpl_connect( 'key_press_event', self._switch_on_zoom_mode) id3 = self.figure.canvas.mpl_connect( 'key_release_event', self._switch_off_zoom_mode) self._ids_zoom = id1, id2, id3 self._zoom_mode = event.key def _switch_on_zoom_mode(self, event): self._zoom_mode = event.key self._mouse_move(event) def _switch_off_zoom_mode(self, event): self._zoom_mode = None self._mouse_move(event) def _mouse_move(self, event): """Callback for mouse moves in zoom-to-rectangle mode.""" if self._xypress: x, y = event.x, event.y lastx, lasty, a, ind, view = self._xypress[0] (x1, y1), (x2, y2) = np.clip( [[lastx, lasty], [x, y]], a.bbox.min, a.bbox.max) if self._zoom_mode == "x": y1, y2 = a.bbox.intervaly elif self._zoom_mode == "y": x1, x2 = a.bbox.intervalx self.toolmanager.trigger_tool( 'rubberband', self, data=(x1, y1, x2, y2)) def _release(self, event): """Callback for mouse button releases in zoom-to-rectangle mode.""" for zoom_id in self._ids_zoom: self.figure.canvas.mpl_disconnect(zoom_id) self._ids_zoom = [] if not self._xypress: self._cancel_action() return last_a = [] for cur_xypress in self._xypress: x, y = event.x, event.y lastx, lasty, a, _ind, view = cur_xypress # ignore singular clicks - 5 pixels is a threshold if abs(x - lastx) < 5 or abs(y - lasty) < 5: self._cancel_action() return # detect twinx,y axes and avoid double zooming twinx, twiny = False, False if last_a: for la in last_a: if a.get_shared_x_axes().joined(a, la): twinx = True if a.get_shared_y_axes().joined(a, la): twiny = True last_a.append(a) if self._button_pressed == 1: direction = 'in' elif self._button_pressed == 3: direction = 'out' else: continue a._set_view_from_bbox((lastx, lasty, x, y), direction, self._zoom_mode, twinx, twiny) self._zoom_mode = None self.toolmanager.get_tool(_views_positions).push_current() self._cancel_action() class ToolPan(ZoomPanBase): """Pan axes with left mouse, zoom with right""" default_keymap = rcParams['keymap.pan'] description = 'Pan axes with left mouse, zoom with right' image = 'move' cursor = cursors.MOVE radio_group = 'default' def __init__(self, *args): ZoomPanBase.__init__(self, *args) self._idDrag = None def _cancel_action(self): self._button_pressed = None self._xypress = [] self.figure.canvas.mpl_disconnect(self._idDrag) self.toolmanager.messagelock.release(self) self.toolmanager.get_tool(_views_positions).refresh_locators() def _press(self, event): if event.button == 1: self._button_pressed = 1 elif event.button == 3: self._button_pressed = 3 else: self._cancel_action() return x, y = event.x, event.y self._xypress = [] for i, a in enumerate(self.figure.get_axes()): if (x is not None and y is not None and a.in_axes(event) and a.get_navigate() and a.can_pan()): a.start_pan(x, y, event.button) self._xypress.append((a, i)) self.toolmanager.messagelock(self) self._idDrag = self.figure.canvas.mpl_connect( 'motion_notify_event', self._mouse_move) def _release(self, event): if self._button_pressed is None: self._cancel_action() return self.figure.canvas.mpl_disconnect(self._idDrag) self.toolmanager.messagelock.release(self) for a, _ind in self._xypress: a.end_pan() if not self._xypress: self._cancel_action() return self.toolmanager.get_tool(_views_positions).push_current() self._cancel_action() def _mouse_move(self, event): for a, _ind in self._xypress: # safer to use the recorded button at the _press than current # button: # multiple button can get pressed during motion... a.drag_pan(self._button_pressed, event.key, event.x, event.y) self.toolmanager.canvas.draw_idle() class ToolHelpBase(ToolBase): description = 'Print tool list, shortcuts and description' default_keymap = rcParams['keymap.help'] image = 'help.png' @staticmethod def format_shortcut(key_sequence): """ Converts a shortcut string from the notation used in rc config to the standard notation for displaying shortcuts, e.g. 'ctrl+a' -> 'Ctrl+A'. """ return (key_sequence if len(key_sequence) == 1 else re.sub(r"\+[A-Z]", r"+Shift\g<0>", key_sequence).title()) def _format_tool_keymap(self, name): keymaps = self.toolmanager.get_tool_keymap(name) return ", ".join(self.format_shortcut(keymap) for keymap in keymaps) def _get_help_entries(self): entries = [] for name, tool in sorted(self.toolmanager.tools.items()): if not tool.description: continue entries.append((name, self._format_tool_keymap(name), tool.description)) return entries def _get_help_text(self): entries = self._get_help_entries() entries = ["{}: {}\n\t{}".format(*entry) for entry in entries] return "\n".join(entries) def _get_help_html(self): fmt = "<tr><td>{}</td><td>{}</td><td>{}</td></tr>" rows = [fmt.format( "<b>Action</b>", "<b>Shortcuts</b>", "<b>Description</b>")] rows += [fmt.format(*row) for row in self._get_help_entries()] return ("<style>td {padding: 0px 4px}</style>" "<table><thead>" + rows[0] + "</thead>" "<tbody>".join(rows[1:]) + "</tbody></table>") class ToolCopyToClipboardBase(ToolBase): """Tool to copy the figure to the clipboard""" description = 'Copy the canvas figure to clipboard' default_keymap = rcParams['keymap.copy'] def trigger(self, *args, **kwargs): message = "Copy tool is not available" self.toolmanager.message_event(message, self) default_tools = {'home': ToolHome, 'back': ToolBack, 'forward': ToolForward, 'zoom': ToolZoom, 'pan': ToolPan, 'subplots': 'ToolConfigureSubplots', 'save': 'ToolSaveFigure', 'grid': ToolGrid, 'grid_minor': ToolMinorGrid, 'fullscreen': ToolFullScreen, 'quit': ToolQuit, 'quit_all': ToolQuitAll, 'allnav': ToolEnableAllNavigation, 'nav': ToolEnableNavigation, 'xscale': ToolXScale, 'yscale': ToolYScale, 'position': ToolCursorPosition, _views_positions: ToolViewsPositions, 'cursor': 'ToolSetCursor', 'rubberband': 'ToolRubberband', 'help': 'ToolHelp', 'copy': 'ToolCopyToClipboard', } """Default tools""" default_toolbar_tools = [['navigation', ['home', 'back', 'forward']], ['zoompan', ['pan', 'zoom', 'subplots']], ['io', ['save', 'help']]] """Default tools in the toolbar""" def add_tools_to_manager(toolmanager, tools=default_tools): """ Add multiple tools to `ToolManager` Parameters ---------- toolmanager : ToolManager `backend_managers.ToolManager` object that will get the tools added tools : {str: class_like}, optional The tools to add in a {name: tool} dict, see `add_tool` for more info. """ for name, tool in tools.items(): toolmanager.add_tool(name, tool) def add_tools_to_container(container, tools=default_toolbar_tools): """ Add multiple tools to the container. Parameters ---------- container : Container `backend_bases.ToolContainerBase` object that will get the tools added tools : list, optional List in the form [[group1, [tool1, tool2 ...]], [group2, [...]]] Where the tools given by tool1, and tool2 will display in group1. See `add_tool` for details. """ for group, grouptools in tools: for position, tool in enumerate(grouptools): container.add_tool(tool, group, position)
93d927d69dc29b34b1282d7b3f3b05531ff7181353a1d3f551f6ac2901c7fee0
""" Contains a classes for generating hatch patterns. """ import numpy as np from matplotlib.path import Path class HatchPatternBase(object): """ The base class for a hatch pattern. """ pass class HorizontalHatch(HatchPatternBase): def __init__(self, hatch, density): self.num_lines = int((hatch.count('-') + hatch.count('+')) * density) self.num_vertices = self.num_lines * 2 def set_vertices_and_codes(self, vertices, codes): steps, stepsize = np.linspace(0.0, 1.0, self.num_lines, False, retstep=True) steps += stepsize / 2. vertices[0::2, 0] = 0.0 vertices[0::2, 1] = steps vertices[1::2, 0] = 1.0 vertices[1::2, 1] = steps codes[0::2] = Path.MOVETO codes[1::2] = Path.LINETO class VerticalHatch(HatchPatternBase): def __init__(self, hatch, density): self.num_lines = int((hatch.count('|') + hatch.count('+')) * density) self.num_vertices = self.num_lines * 2 def set_vertices_and_codes(self, vertices, codes): steps, stepsize = np.linspace(0.0, 1.0, self.num_lines, False, retstep=True) steps += stepsize / 2. vertices[0::2, 0] = steps vertices[0::2, 1] = 0.0 vertices[1::2, 0] = steps vertices[1::2, 1] = 1.0 codes[0::2] = Path.MOVETO codes[1::2] = Path.LINETO class NorthEastHatch(HatchPatternBase): def __init__(self, hatch, density): self.num_lines = int((hatch.count('/') + hatch.count('x') + hatch.count('X')) * density) if self.num_lines: self.num_vertices = (self.num_lines + 1) * 2 else: self.num_vertices = 0 def set_vertices_and_codes(self, vertices, codes): steps = np.linspace(-0.5, 0.5, self.num_lines + 1, True) vertices[0::2, 0] = 0.0 + steps vertices[0::2, 1] = 0.0 - steps vertices[1::2, 0] = 1.0 + steps vertices[1::2, 1] = 1.0 - steps codes[0::2] = Path.MOVETO codes[1::2] = Path.LINETO class SouthEastHatch(HatchPatternBase): def __init__(self, hatch, density): self.num_lines = int((hatch.count('\\') + hatch.count('x') + hatch.count('X')) * density) self.num_vertices = (self.num_lines + 1) * 2 if self.num_lines: self.num_vertices = (self.num_lines + 1) * 2 else: self.num_vertices = 0 def set_vertices_and_codes(self, vertices, codes): steps = np.linspace(-0.5, 0.5, self.num_lines + 1, True) vertices[0::2, 0] = 0.0 + steps vertices[0::2, 1] = 1.0 + steps vertices[1::2, 0] = 1.0 + steps vertices[1::2, 1] = 0.0 + steps codes[0::2] = Path.MOVETO codes[1::2] = Path.LINETO class Shapes(HatchPatternBase): filled = False def __init__(self, hatch, density): if self.num_rows == 0: self.num_shapes = 0 self.num_vertices = 0 else: self.num_shapes = ((self.num_rows // 2 + 1) * (self.num_rows + 1) + (self.num_rows // 2) * (self.num_rows)) self.num_vertices = (self.num_shapes * len(self.shape_vertices) * (1 if self.filled else 2)) def set_vertices_and_codes(self, vertices, codes): offset = 1.0 / self.num_rows shape_vertices = self.shape_vertices * offset * self.size if not self.filled: inner_vertices = shape_vertices[::-1] * 0.9 shape_codes = self.shape_codes shape_size = len(shape_vertices) cursor = 0 for row in range(self.num_rows + 1): if row % 2 == 0: cols = np.linspace(0.0, 1.0, self.num_rows + 1, True) else: cols = np.linspace(offset / 2.0, 1.0 - offset / 2.0, self.num_rows, True) row_pos = row * offset for col_pos in cols: vertices[cursor:cursor + shape_size] = (shape_vertices + (col_pos, row_pos)) codes[cursor:cursor + shape_size] = shape_codes cursor += shape_size if not self.filled: vertices[cursor:cursor + shape_size] = (inner_vertices + (col_pos, row_pos)) codes[cursor:cursor + shape_size] = shape_codes cursor += shape_size class Circles(Shapes): def __init__(self, hatch, density): path = Path.unit_circle() self.shape_vertices = path.vertices self.shape_codes = path.codes Shapes.__init__(self, hatch, density) class SmallCircles(Circles): size = 0.2 def __init__(self, hatch, density): self.num_rows = (hatch.count('o')) * density Circles.__init__(self, hatch, density) class LargeCircles(Circles): size = 0.35 def __init__(self, hatch, density): self.num_rows = (hatch.count('O')) * density Circles.__init__(self, hatch, density) class SmallFilledCircles(SmallCircles): size = 0.1 filled = True def __init__(self, hatch, density): self.num_rows = (hatch.count('.')) * density Circles.__init__(self, hatch, density) class Stars(Shapes): size = 1.0 / 3.0 filled = True def __init__(self, hatch, density): self.num_rows = (hatch.count('*')) * density path = Path.unit_regular_star(5) self.shape_vertices = path.vertices self.shape_codes = np.full(len(self.shape_vertices), Path.LINETO, dtype=Path.code_type) self.shape_codes[0] = Path.MOVETO Shapes.__init__(self, hatch, density) _hatch_types = [ HorizontalHatch, VerticalHatch, NorthEastHatch, SouthEastHatch, SmallCircles, LargeCircles, SmallFilledCircles, Stars ] def get_path(hatchpattern, density=6): """ Given a hatch specifier, *hatchpattern*, generates Path to render the hatch in a unit square. *density* is the number of lines per unit square. """ density = int(density) patterns = [hatch_type(hatchpattern, density) for hatch_type in _hatch_types] num_vertices = sum([pattern.num_vertices for pattern in patterns]) if num_vertices == 0: return Path(np.empty((0, 2))) vertices = np.empty((num_vertices, 2)) codes = np.empty(num_vertices, Path.code_type) cursor = 0 for pattern in patterns: if pattern.num_vertices != 0: vertices_chunk = vertices[cursor:cursor + pattern.num_vertices] codes_chunk = codes[cursor:cursor + pattern.num_vertices] pattern.set_vertices_and_codes(vertices_chunk, codes_chunk) cursor += pattern.num_vertices return Path(vertices, codes)
af91bdca771fd05dbe2fc88d4076169d7005817ae43879ad68fb590dd6c61c59
""" Numerical python functions written for compatibility with MATLAB commands with the same names. Most numerical python functions can be found in the `numpy` and `scipy` libraries. What remains here is code for performing spectral computations. Spectral functions ------------------- `cohere` Coherence (normalized cross spectral density) `csd` Cross spectral density using Welch's average periodogram `detrend` Remove the mean or best fit line from an array `psd` Power spectral density using Welch's average periodogram `specgram` Spectrogram (spectrum over segments of time) `complex_spectrum` Return the complex-valued frequency spectrum of a signal `magnitude_spectrum` Return the magnitude of the frequency spectrum of a signal `angle_spectrum` Return the angle (wrapped phase) of the frequency spectrum of a signal `phase_spectrum` Return the phase (unwrapped angle) of the frequency spectrum of a signal `detrend_mean` Remove the mean from a line. `detrend_linear` Remove the best fit line from a line. `detrend_none` Return the original line. `stride_windows` Get all windows in an array in a memory-efficient manner `stride_repeat` Repeat an array in a memory-efficient manner `apply_window` Apply a window along a given axis """ import csv import inspect import numpy as np import matplotlib.cbook as cbook from matplotlib import docstring def window_hanning(x): ''' Return x times the hanning window of len(x). See Also -------- window_none : Another window algorithm. ''' return np.hanning(len(x))*x def window_none(x): ''' No window function; simply return x. See Also -------- window_hanning : Another window algorithm. ''' return x def apply_window(x, window, axis=0, return_window=None): ''' Apply the given window to the given 1D or 2D array along the given axis. Parameters ---------- x : 1D or 2D array or sequence Array or sequence containing the data. window : function or array. Either a function to generate a window or an array with length *x*.shape[*axis*] axis : integer The axis over which to do the repetition. Must be 0 or 1. The default is 0 return_window : bool If true, also return the 1D values of the window that was applied ''' x = np.asarray(x) if x.ndim < 1 or x.ndim > 2: raise ValueError('only 1D or 2D arrays can be used') if axis+1 > x.ndim: raise ValueError('axis(=%s) out of bounds' % axis) xshape = list(x.shape) xshapetarg = xshape.pop(axis) if np.iterable(window): if len(window) != xshapetarg: raise ValueError('The len(window) must be the same as the shape ' 'of x for the chosen axis') windowVals = window else: windowVals = window(np.ones(xshapetarg, dtype=x.dtype)) if x.ndim == 1: if return_window: return windowVals * x, windowVals else: return windowVals * x xshapeother = xshape.pop() otheraxis = (axis+1) % 2 windowValsRep = stride_repeat(windowVals, xshapeother, axis=otheraxis) if return_window: return windowValsRep * x, windowVals else: return windowValsRep * x def detrend(x, key=None, axis=None): ''' Return x with its trend removed. Parameters ---------- x : array or sequence Array or sequence containing the data. key : [ 'default' | 'constant' | 'mean' | 'linear' | 'none'] or function Specifies the detrend algorithm to use. 'default' is 'mean', which is the same as `detrend_mean`. 'constant' is the same. 'linear' is the same as `detrend_linear`. 'none' is the same as `detrend_none`. The default is 'mean'. See the corresponding functions for more details regarding the algorithms. Can also be a function that carries out the detrend operation. axis : integer The axis along which to do the detrending. See Also -------- detrend_mean : Implementation of the 'mean' algorithm. detrend_linear : Implementation of the 'linear' algorithm. detrend_none : Implementation of the 'none' algorithm. ''' if key is None or key in ['constant', 'mean', 'default']: return detrend(x, key=detrend_mean, axis=axis) elif key == 'linear': return detrend(x, key=detrend_linear, axis=axis) elif key == 'none': return detrend(x, key=detrend_none, axis=axis) elif isinstance(key, str): raise ValueError("Unknown value for key %s, must be one of: " "'default', 'constant', 'mean', " "'linear', or a function" % key) if not callable(key): raise ValueError("Unknown value for key %s, must be one of: " "'default', 'constant', 'mean', " "'linear', or a function" % key) x = np.asarray(x) if axis is not None and axis+1 > x.ndim: raise ValueError('axis(=%s) out of bounds' % axis) if (axis is None and x.ndim == 0) or (not axis and x.ndim == 1): return key(x) # try to use the 'axis' argument if the function supports it, # otherwise use apply_along_axis to do it try: return key(x, axis=axis) except TypeError: return np.apply_along_axis(key, axis=axis, arr=x) @cbook.deprecated("3.1", alternative="detrend_mean") def demean(x, axis=0): ''' Return x minus its mean along the specified axis. Parameters ---------- x : array or sequence Array or sequence containing the data Can have any dimensionality axis : integer The axis along which to take the mean. See numpy.mean for a description of this argument. See Also -------- detrend_mean : Same as `demean` except for the default *axis*. ''' return detrend_mean(x, axis=axis) def detrend_mean(x, axis=None): ''' Return x minus the mean(x). Parameters ---------- x : array or sequence Array or sequence containing the data Can have any dimensionality axis : integer The axis along which to take the mean. See numpy.mean for a description of this argument. See Also -------- detrend_linear : Another detrend algorithm. detrend_none : Another detrend algorithm. detrend : A wrapper around all the detrend algorithms. ''' x = np.asarray(x) if axis is not None and axis+1 > x.ndim: raise ValueError('axis(=%s) out of bounds' % axis) return x - x.mean(axis, keepdims=True) def detrend_none(x, axis=None): ''' Return x: no detrending. Parameters ---------- x : any object An object containing the data axis : integer This parameter is ignored. It is included for compatibility with detrend_mean See Also -------- detrend_mean : Another detrend algorithm. detrend_linear : Another detrend algorithm. detrend : A wrapper around all the detrend algorithms. ''' return x def detrend_linear(y): ''' Return x minus best fit line; 'linear' detrending. Parameters ---------- y : 0-D or 1-D array or sequence Array or sequence containing the data axis : integer The axis along which to take the mean. See numpy.mean for a description of this argument. See Also -------- detrend_mean : Another detrend algorithm. detrend_none : Another detrend algorithm. detrend : A wrapper around all the detrend algorithms. ''' # This is faster than an algorithm based on linalg.lstsq. y = np.asarray(y) if y.ndim > 1: raise ValueError('y cannot have ndim > 1') # short-circuit 0-D array. if not y.ndim: return np.array(0., dtype=y.dtype) x = np.arange(y.size, dtype=float) C = np.cov(x, y, bias=1) b = C[0, 1]/C[0, 0] a = y.mean() - b*x.mean() return y - (b*x + a) def stride_windows(x, n, noverlap=None, axis=0): ''' Get all windows of x with length n as a single array, using strides to avoid data duplication. .. warning:: It is not safe to write to the output array. Multiple elements may point to the same piece of memory, so modifying one value may change others. Parameters ---------- x : 1D array or sequence Array or sequence containing the data. n : integer The number of data points in each window. noverlap : integer The overlap between adjacent windows. Default is 0 (no overlap) axis : integer The axis along which the windows will run. References ---------- `stackoverflow: Rolling window for 1D arrays in Numpy? <http://stackoverflow.com/a/6811241>`_ `stackoverflow: Using strides for an efficient moving average filter <http://stackoverflow.com/a/4947453>`_ ''' if noverlap is None: noverlap = 0 if noverlap >= n: raise ValueError('noverlap must be less than n') if n < 1: raise ValueError('n cannot be less than 1') x = np.asarray(x) if x.ndim != 1: raise ValueError('only 1-dimensional arrays can be used') if n == 1 and noverlap == 0: if axis == 0: return x[np.newaxis] else: return x[np.newaxis].transpose() if n > x.size: raise ValueError('n cannot be greater than the length of x') # np.lib.stride_tricks.as_strided easily leads to memory corruption for # non integer shape and strides, i.e. noverlap or n. See #3845. noverlap = int(noverlap) n = int(n) step = n - noverlap if axis == 0: shape = (n, (x.shape[-1]-noverlap)//step) strides = (x.strides[0], step*x.strides[0]) else: shape = ((x.shape[-1]-noverlap)//step, n) strides = (step*x.strides[0], x.strides[0]) return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) def stride_repeat(x, n, axis=0): ''' Repeat the values in an array in a memory-efficient manner. Array x is stacked vertically n times. .. warning:: It is not safe to write to the output array. Multiple elements may point to the same piece of memory, so modifying one value may change others. Parameters ---------- x : 1D array or sequence Array or sequence containing the data. n : integer The number of time to repeat the array. axis : integer The axis along which the data will run. References ---------- `stackoverflow: Repeat NumPy array without replicating data? <http://stackoverflow.com/a/5568169>`_ ''' if axis not in [0, 1]: raise ValueError('axis must be 0 or 1') x = np.asarray(x) if x.ndim != 1: raise ValueError('only 1-dimensional arrays can be used') if n == 1: if axis == 0: return np.atleast_2d(x) else: return np.atleast_2d(x).T if n < 1: raise ValueError('n cannot be less than 1') # np.lib.stride_tricks.as_strided easily leads to memory corruption for # non integer shape and strides, i.e. n. See #3845. n = int(n) if axis == 0: shape = (n, x.size) strides = (0, x.strides[0]) else: shape = (x.size, n) strides = (x.strides[0], 0) return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) def _spectral_helper(x, y=None, NFFT=None, Fs=None, detrend_func=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, mode=None): ''' This is a helper function that implements the commonality between the psd, csd, spectrogram and complex, magnitude, angle, and phase spectrums. It is *NOT* meant to be used outside of mlab and may change at any time. ''' if y is None: # if y is None use x for y same_data = True else: # The checks for if y is x are so that we can use the same function to # implement the core of psd(), csd(), and spectrogram() without doing # extra calculations. We return the unaveraged Pxy, freqs, and t. same_data = y is x if Fs is None: Fs = 2 if noverlap is None: noverlap = 0 if detrend_func is None: detrend_func = detrend_none if window is None: window = window_hanning # if NFFT is set to None use the whole signal if NFFT is None: NFFT = 256 if mode is None or mode == 'default': mode = 'psd' elif mode not in ['psd', 'complex', 'magnitude', 'angle', 'phase']: raise ValueError("Unknown value for mode %s, must be one of: " "'default', 'psd', 'complex', " "'magnitude', 'angle', 'phase'" % mode) if not same_data and mode != 'psd': raise ValueError("x and y must be equal if mode is not 'psd'") # Make sure we're dealing with a numpy array. If y and x were the same # object to start with, keep them that way x = np.asarray(x) if not same_data: y = np.asarray(y) if sides is None or sides == 'default': if np.iscomplexobj(x): sides = 'twosided' else: sides = 'onesided' elif sides not in ['onesided', 'twosided']: raise ValueError("Unknown value for sides %s, must be one of: " "'default', 'onesided', or 'twosided'" % sides) # zero pad x and y up to NFFT if they are shorter than NFFT if len(x) < NFFT: n = len(x) x = np.resize(x, NFFT) x[n:] = 0 if not same_data and len(y) < NFFT: n = len(y) y = np.resize(y, NFFT) y[n:] = 0 if pad_to is None: pad_to = NFFT if mode != 'psd': scale_by_freq = False elif scale_by_freq is None: scale_by_freq = True # For real x, ignore the negative frequencies unless told otherwise if sides == 'twosided': numFreqs = pad_to if pad_to % 2: freqcenter = (pad_to - 1)//2 + 1 else: freqcenter = pad_to//2 scaling_factor = 1. elif sides == 'onesided': if pad_to % 2: numFreqs = (pad_to + 1)//2 else: numFreqs = pad_to//2 + 1 scaling_factor = 2. result = stride_windows(x, NFFT, noverlap, axis=0) result = detrend(result, detrend_func, axis=0) result, windowVals = apply_window(result, window, axis=0, return_window=True) result = np.fft.fft(result, n=pad_to, axis=0)[:numFreqs, :] freqs = np.fft.fftfreq(pad_to, 1/Fs)[:numFreqs] if not same_data: # if same_data is False, mode must be 'psd' resultY = stride_windows(y, NFFT, noverlap) resultY = detrend(resultY, detrend_func, axis=0) resultY = apply_window(resultY, window, axis=0) resultY = np.fft.fft(resultY, n=pad_to, axis=0)[:numFreqs, :] result = np.conj(result) * resultY elif mode == 'psd': result = np.conj(result) * result elif mode == 'magnitude': result = np.abs(result) / np.abs(windowVals).sum() elif mode == 'angle' or mode == 'phase': # we unwrap the phase later to handle the onesided vs. twosided case result = np.angle(result) elif mode == 'complex': result /= np.abs(windowVals).sum() if mode == 'psd': # Also include scaling factors for one-sided densities and dividing by # the sampling frequency, if desired. Scale everything, except the DC # component and the NFFT/2 component: # if we have a even number of frequencies, don't scale NFFT/2 if not NFFT % 2: slc = slice(1, -1, None) # if we have an odd number, just don't scale DC else: slc = slice(1, None, None) result[slc] *= scaling_factor # MATLAB divides by the sampling frequency so that density function # has units of dB/Hz and can be integrated by the plotted frequency # values. Perform the same scaling here. if scale_by_freq: result /= Fs # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2. result /= (np.abs(windowVals)**2).sum() else: # In this case, preserve power in the segment, not amplitude result /= np.abs(windowVals).sum()**2 t = np.arange(NFFT/2, len(x) - NFFT/2 + 1, NFFT - noverlap)/Fs if sides == 'twosided': # center the frequency range at zero freqs = np.concatenate((freqs[freqcenter:], freqs[:freqcenter])) result = np.concatenate((result[freqcenter:, :], result[:freqcenter, :]), 0) elif not pad_to % 2: # get the last value correctly, it is negative otherwise freqs[-1] *= -1 # we unwrap the phase here to handle the onesided vs. twosided case if mode == 'phase': result = np.unwrap(result, axis=0) return result, freqs, t def _single_spectrum_helper(x, mode, Fs=None, window=None, pad_to=None, sides=None): ''' This is a helper function that implements the commonality between the complex, magnitude, angle, and phase spectrums. It is *NOT* meant to be used outside of mlab and may change at any time. ''' if mode is None or mode == 'psd' or mode == 'default': raise ValueError('_single_spectrum_helper does not work with %s mode' % mode) if pad_to is None: pad_to = len(x) spec, freqs, _ = _spectral_helper(x=x, y=None, NFFT=len(x), Fs=Fs, detrend_func=detrend_none, window=window, noverlap=0, pad_to=pad_to, sides=sides, scale_by_freq=False, mode=mode) if mode != 'complex': spec = spec.real if spec.ndim == 2 and spec.shape[1] == 1: spec = spec[:, 0] return spec, freqs # Split out these keyword docs so that they can be used elsewhere docstring.interpd.update(Spectral=inspect.cleandoc(""" Fs : scalar The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit. The default value is 2. window : callable or ndarray A function or a vector of length *NFFT*. To create window vectors see `window_hanning`, `window_none`, `numpy.blackman`, `numpy.hamming`, `numpy.bartlett`, `scipy.signal`, `scipy.signal.get_window`, etc. The default is `window_hanning`. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. sides : {'default', 'onesided', 'twosided'} Specifies which sides of the spectrum to return. Default gives the default behavior, which returns one-sided for real data and both for complex data. 'onesided' forces the return of a one-sided spectrum, while 'twosided' forces two-sided. """)) docstring.interpd.update(Single_Spectrum=inspect.cleandoc(""" pad_to : int The number of points to which the data segment is padded when performing the FFT. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to the length of the input signal (i.e. no padding). """)) docstring.interpd.update(PSD=inspect.cleandoc(""" pad_to : int The number of points to which the data segment is padded when performing the FFT. This can be different from *NFFT*, which specifies the number of data points used. While not increasing the actual resolution of the spectrum (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to *NFFT* NFFT : int The number of data points used in each block for the FFT. A power 2 is most efficient. The default value is 256. This should *NOT* be used to get zero padding, or the scaling of the result will be incorrect. Use *pad_to* for this instead. detrend : {'none', 'mean', 'linear'} or callable, default 'none' The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in MATLAB, where the *detrend* parameter is a vector, in Matplotlib is it a function. The :mod:`~matplotlib.mlab` module defines `.detrend_none`, `.detrend_mean`, and `.detrend_linear`, but you can use a custom function as well. You can also use a string to choose one of the functions: 'none' calls `.detrend_none`. 'mean' calls `.detrend_mean`. 'linear' calls `.detrend_linear`. scale_by_freq : bool, optional Specifies whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MATLAB compatibility. """)) @docstring.dedent_interpd def psd(x, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None): r""" Compute the power spectral density. The power spectral density :math:`P_{xx}` by Welch's average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute :math:`P_{xx}`. If len(*x*) < *NFFT*, it will be zero padded to *NFFT*. Parameters ---------- x : 1-D array or sequence Array or sequence containing the data %(Spectral)s %(PSD)s noverlap : integer The number of points of overlap between segments. The default value is 0 (no overlap). Returns ------- Pxx : 1-D array The values for the power spectrum `P_{xx}` (real valued) freqs : 1-D array The frequencies corresponding to the elements in *Pxx* References ---------- Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) See Also -------- specgram `specgram` differs in the default overlap; in not returning the mean of the segment periodograms; and in returning the times of the segments. magnitude_spectrum : returns the magnitude spectrum. csd : returns the spectral density between two signals. """ Pxx, freqs = csd(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq) return Pxx.real, freqs @docstring.dedent_interpd def csd(x, y, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None): """ Compute the cross-spectral density. The cross spectral density :math:`P_{xy}` by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*. Parameters ---------- x, y : 1-D arrays or sequences Arrays or sequences containing the data %(Spectral)s %(PSD)s noverlap : integer The number of points of overlap between segments. The default value is 0 (no overlap). Returns ------- Pxy : 1-D array The values for the cross spectrum `P_{xy}` before scaling (real valued) freqs : 1-D array The frequencies corresponding to the elements in *Pxy* References ---------- Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) See Also -------- psd : equivalent to setting ``y = x``. """ if NFFT is None: NFFT = 256 Pxy, freqs, _ = _spectral_helper(x=x, y=y, NFFT=NFFT, Fs=Fs, detrend_func=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode='psd') if Pxy.ndim == 2: if Pxy.shape[1] > 1: Pxy = Pxy.mean(axis=1) else: Pxy = Pxy[:, 0] return Pxy, freqs @docstring.dedent_interpd def complex_spectrum(x, Fs=None, window=None, pad_to=None, sides=None): """ Compute the complex-valued frequency spectrum of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal. Parameters ---------- x : 1-D array or sequence Array or sequence containing the data %(Spectral)s %(Single_Spectrum)s Returns ------- spectrum : 1-D array The values for the complex spectrum (complex valued) freqs : 1-D array The frequencies corresponding to the elements in *spectrum* See Also -------- magnitude_spectrum Returns the absolute value of this function. angle_spectrum Returns the angle of this function. phase_spectrum Returns the phase (unwrapped angle) of this function. specgram Can return the complex spectrum of segments within the signal. """ return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to, sides=sides, mode='complex') @docstring.dedent_interpd def magnitude_spectrum(x, Fs=None, window=None, pad_to=None, sides=None): """ Compute the magnitude (absolute value) of the frequency spectrum of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal. Parameters ---------- x : 1-D array or sequence Array or sequence containing the data %(Spectral)s %(Single_Spectrum)s Returns ------- spectrum : 1-D array The values for the magnitude spectrum (real valued) freqs : 1-D array The frequencies corresponding to the elements in *spectrum* See Also -------- psd Returns the power spectral density. complex_spectrum This function returns the absolute value of `complex_spectrum`. angle_spectrum Returns the angles of the corresponding frequencies. phase_spectrum Returns the phase (unwrapped angle) of the corresponding frequencies. specgram Can return the complex spectrum of segments within the signal. """ return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to, sides=sides, mode='magnitude') @docstring.dedent_interpd def angle_spectrum(x, Fs=None, window=None, pad_to=None, sides=None): """ Compute the angle of the frequency spectrum (wrapped phase spectrum) of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal. Parameters ---------- x : 1-D array or sequence Array or sequence containing the data %(Spectral)s %(Single_Spectrum)s Returns ------- spectrum : 1-D array The values for the angle spectrum in radians (real valued) freqs : 1-D array The frequencies corresponding to the elements in *spectrum* See Also -------- complex_spectrum This function returns the angle value of `complex_spectrum`. magnitude_spectrum Returns the magnitudes of the corresponding frequencies. phase_spectrum Returns the phase (unwrapped angle) of the corresponding frequencies. specgram Can return the complex spectrum of segments within the signal. """ return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to, sides=sides, mode='angle') @docstring.dedent_interpd def phase_spectrum(x, Fs=None, window=None, pad_to=None, sides=None): """ Compute the phase of the frequency spectrum (unwrapped angle spectrum) of *x*. Data is padded to a length of *pad_to* and the windowing function *window* is applied to the signal. Parameters ---------- x : 1-D array or sequence Array or sequence containing the data %(Spectral)s %(Single_Spectrum)s Returns ------- spectrum : 1-D array The values for the phase spectrum in radians (real valued) freqs : 1-D array The frequencies corresponding to the elements in *spectrum* See Also -------- complex_spectrum This function returns the phase value of `complex_spectrum`. magnitude_spectrum Returns the magnitudes of the corresponding frequencies. angle_spectrum Returns the angle (wrapped phase) of the corresponding frequencies. specgram Can return the complex spectrum of segments within the signal. """ return _single_spectrum_helper(x=x, Fs=Fs, window=window, pad_to=pad_to, sides=sides, mode='phase') @docstring.dedent_interpd def specgram(x, NFFT=None, Fs=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, mode=None): """ Compute a spectrogram. Compute and plot a spectrogram of data in x. Data are split into NFFT length segments and the spectrum of each section is computed. The windowing function window is applied to each segment, and the amount of overlap of each segment is specified with noverlap. Parameters ---------- x : array_like 1-D array or sequence. %(Spectral)s %(PSD)s noverlap : int, optional The number of points of overlap between blocks. The default value is 128. mode : str, optional What sort of spectrum to use, default is 'psd'. 'psd' Returns the power spectral density. 'complex' Returns the complex-valued frequency spectrum. 'magnitude' Returns the magnitude spectrum. 'angle' Returns the phase spectrum without unwrapping. 'phase' Returns the phase spectrum with unwrapping. Returns ------- spectrum : array_like 2-D array, columns are the periodograms of successive segments. freqs : array_like 1-D array, frequencies corresponding to the rows in *spectrum*. t : array_like 1-D array, the times corresponding to midpoints of segments (i.e the columns in *spectrum*). See Also -------- psd : differs in the overlap and in the return values. complex_spectrum : similar, but with complex valued frequencies. magnitude_spectrum : similar single segment when mode is 'magnitude'. angle_spectrum : similar to single segment when mode is 'angle'. phase_spectrum : similar to single segment when mode is 'phase'. Notes ----- detrend and scale_by_freq only apply when *mode* is set to 'psd'. """ if noverlap is None: noverlap = 128 # default in _spectral_helper() is noverlap = 0 if NFFT is None: NFFT = 256 # same default as in _spectral_helper() if len(x) <= NFFT: cbook._warn_external("Only one segment is calculated since parameter " "NFFT (=%d) >= signal length (=%d)." % (NFFT, len(x))) spec, freqs, t = _spectral_helper(x=x, y=None, NFFT=NFFT, Fs=Fs, detrend_func=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode) if mode != 'complex': spec = spec.real # Needed since helper implements generically return spec, freqs, t _coh_error = """Coherence is calculated by averaging over *NFFT* length segments. Your signal is too short for your choice of *NFFT*. """ @docstring.dedent_interpd def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} Parameters ---------- x, y Array or sequence containing the data %(Spectral)s %(PSD)s noverlap : integer The number of points of overlap between blocks. The default value is 0 (no overlap). Returns ------- The return value is the tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. For cohere, scaling the individual densities by the sampling frequency has no effect, since the factors cancel out. See Also -------- :func:`psd`, :func:`csd` : For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ if len(x) < 2 * NFFT: raise ValueError(_coh_error) Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Cxy = np.abs(Pxy) ** 2 / (Pxx * Pyy) return Cxy, f def _csv2rec(fname, comments='#', skiprows=0, checkrows=0, delimiter=',', converterd=None, names=None, missing='', missingd=None, use_mrecords=False, dayfirst=False, yearfirst=False): """ Load data from comma/space/tab delimited file in *fname* into a numpy record array and return the record array. If *names* is *None*, a header row is required to automatically assign the recarray names. The headers will be lower cased, spaces will be converted to underscores, and illegal attribute name characters removed. If *names* is not *None*, it is a sequence of names to use for the column names. In this case, it is assumed there is no header row. - *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' - *comments*: the character used to indicate the start of a comment in the file, or *None* to switch off the removal of comments - *skiprows*: is the number of rows from the top to skip - *checkrows*: is the number of rows to check to validate the column data type. When set to zero all rows are validated. - *converterd*: if not *None*, is a dictionary mapping column number or munged column name to a converter function. - *names*: if not None, is a list of header names. In this case, no header will be read from the file - *missingd* is a dictionary mapping munged column names to field values which signify that the field does not contain actual data and should be masked, e.g., '0000-00-00' or 'unused' - *missing*: a string whose value signals a missing field regardless of the column it appears in - *use_mrecords*: if True, return an mrecords.fromrecords record array if any of the data are missing - *dayfirst*: default is False so that MM-DD-YY has precedence over DD-MM-YY. See http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47 for further information. - *yearfirst*: default is False so that MM-DD-YY has precedence over YY-MM-DD. See http://labix.org/python-dateutil#head-b95ce2094d189a89f80f5ae52a05b4ab7b41af47 for further information. If no rows are found, *None* is returned """ if converterd is None: converterd = dict() if missingd is None: missingd = {} import dateutil.parser import datetime fh = cbook.to_filehandle(fname) delimiter = str(delimiter) class FH: """ For space-delimited files, we want different behavior than comma or tab. Generally, we want multiple spaces to be treated as a single separator, whereas with comma and tab we want multiple commas to return multiple (empty) fields. The join/strip trick below effects this. """ def __init__(self, fh): self.fh = fh def close(self): self.fh.close() def seek(self, arg): self.fh.seek(arg) def fix(self, s): return ' '.join(s.split()) def __next__(self): return self.fix(next(self.fh)) def __iter__(self): for line in self.fh: yield self.fix(line) if delimiter == ' ': fh = FH(fh) reader = csv.reader(fh, delimiter=delimiter) def process_skiprows(reader): if skiprows: for i, row in enumerate(reader): if i >= (skiprows-1): break return fh, reader process_skiprows(reader) def ismissing(name, val): "Should the value val in column name be masked?" return val == missing or val == missingd.get(name) or val == '' def with_default_value(func, default): def newfunc(name, val): if ismissing(name, val): return default else: return func(val) return newfunc def mybool(x): if x == 'True': return True elif x == 'False': return False else: raise ValueError('invalid bool') dateparser = dateutil.parser.parse def mydateparser(x): # try and return a datetime object d = dateparser(x, dayfirst=dayfirst, yearfirst=yearfirst) return d mydateparser = with_default_value(mydateparser, datetime.datetime(1, 1, 1)) myfloat = with_default_value(float, np.nan) myint = with_default_value(int, -1) mystr = with_default_value(str, '') mybool = with_default_value(mybool, None) def mydate(x): # try and return a date object d = dateparser(x, dayfirst=dayfirst, yearfirst=yearfirst) if d.hour > 0 or d.minute > 0 or d.second > 0: raise ValueError('not a date') return d.date() mydate = with_default_value(mydate, datetime.date(1, 1, 1)) def get_func(name, item, func): # promote functions in this order funcs = [mybool, myint, myfloat, mydate, mydateparser, mystr] for func in funcs[funcs.index(func):]: try: func(name, item) except Exception: continue return func raise ValueError('Could not find a working conversion function') # map column names that clash with builtins -- TODO - extend this list itemd = { 'return': 'return_', 'file': 'file_', 'print': 'print_', } def get_converters(reader, comments): converters = None i = 0 for row in reader: if (len(row) and comments is not None and row[0].startswith(comments)): continue if i == 0: converters = [mybool]*len(row) if checkrows and i > checkrows: break i += 1 for j, (name, item) in enumerate(zip(names, row)): func = converterd.get(j) if func is None: func = converterd.get(name) if func is None: func = converters[j] if len(item.strip()): func = get_func(name, item, func) else: # how should we handle custom converters and defaults? func = with_default_value(func, None) converters[j] = func return converters # Get header and remove invalid characters needheader = names is None if needheader: for row in reader: if (len(row) and comments is not None and row[0].startswith(comments)): continue headers = row break # remove these chars delete = set(r"""~!@#$%^&*()-=+~\|}[]{';: /?.>,<""") delete.add('"') names = [] seen = dict() for i, item in enumerate(headers): item = item.strip().lower().replace(' ', '_') item = ''.join([c for c in item if c not in delete]) if not len(item): item = 'column%d' % i item = itemd.get(item, item) cnt = seen.get(item, 0) if cnt > 0: names.append(item + '_%d' % cnt) else: names.append(item) seen[item] = cnt+1 else: if isinstance(names, str): names = [n.strip() for n in names.split(',')] # get the converter functions by inspecting checkrows converters = get_converters(reader, comments) if converters is None: raise ValueError('Could not find any valid data in CSV file') # reset the reader and start over fh.seek(0) reader = csv.reader(fh, delimiter=delimiter) process_skiprows(reader) if needheader: while True: # skip past any comments and consume one line of column header row = next(reader) if (len(row) and comments is not None and row[0].startswith(comments)): continue break # iterate over the remaining rows and convert the data to date # objects, ints, or floats as appropriate rows = [] rowmasks = [] for i, row in enumerate(reader): if not len(row): continue if comments is not None and row[0].startswith(comments): continue # Ensure that the row returned always has the same nr of elements row.extend([''] * (len(converters) - len(row))) rows.append([func(name, val) for func, name, val in zip(converters, names, row)]) rowmasks.append([ismissing(name, val) for name, val in zip(names, row)]) fh.close() if not len(rows): return None if use_mrecords and np.any(rowmasks): r = np.ma.mrecords.fromrecords(rows, names=names, mask=rowmasks) else: r = np.rec.fromrecords(rows, names=names) return r class GaussianKDE(object): """ Representation of a kernel-density estimate using Gaussian kernels. Parameters ---------- dataset : array_like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `GaussianKDE` instance as only parameter and return a scalar. If None (default), 'scott' is used. Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. dim : int Number of dimensions. num_dp : int Number of datapoints. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of `dataset`, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of `covariance`. Methods ------- kde.evaluate(points) : ndarray Evaluate the estimated pdf on a provided set of points. kde(points) : ndarray Same as kde.evaluate(points) """ # This implementation with minor modification was too good to pass up. # from scipy: https://github.com/scipy/scipy/blob/master/scipy/stats/kde.py def __init__(self, dataset, bw_method=None): self.dataset = np.atleast_2d(dataset) if not np.array(self.dataset).size > 1: raise ValueError("`dataset` input should have multiple elements.") self.dim, self.num_dp = np.array(self.dataset).shape isString = isinstance(bw_method, str) if bw_method is None: pass elif (isString and bw_method == 'scott'): self.covariance_factor = self.scotts_factor elif (isString and bw_method == 'silverman'): self.covariance_factor = self.silverman_factor elif (np.isscalar(bw_method) and not isString): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: raise ValueError("`bw_method` should be 'scott', 'silverman', a " "scalar or a callable") # Computes the covariance matrix for each Gaussian kernel using # covariance_factor(). self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): self.data_covariance = np.atleast_2d( np.cov( self.dataset, rowvar=1, bias=False)) self.data_inv_cov = np.linalg.inv(self.data_covariance) self.covariance = self.data_covariance * self.factor ** 2 self.inv_cov = self.data_inv_cov / self.factor ** 2 self.norm_factor = np.sqrt( np.linalg.det( 2 * np.pi * self.covariance)) * self.num_dp def scotts_factor(self): return np.power(self.num_dp, -1. / (self.dim + 4)) def silverman_factor(self): return np.power( self.num_dp * (self.dim + 2.0) / 4.0, -1. / (self.dim + 4)) # Default method to calculate bandwidth, can be overwritten by subclass covariance_factor = scotts_factor def evaluate(self, points): """Evaluate the estimated pdf on a set of points. Parameters ---------- points : (# of dimensions, # of points)-array Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point. Returns ------- values : (# of points,)-array The values at each point. Raises ------ ValueError : if the dimensionality of the input points is different than the dimensionality of the KDE. """ points = np.atleast_2d(points) dim, num_m = np.array(points).shape if dim != self.dim: raise ValueError("points have dimension {}, dataset has dimension " "{}".format(dim, self.dim)) result = np.zeros(num_m) if num_m >= self.num_dp: # there are more points than data, so loop over data for i in range(self.num_dp): diff = self.dataset[:, i, np.newaxis] - points tdiff = np.dot(self.inv_cov, diff) energy = np.sum(diff * tdiff, axis=0) / 2.0 result = result + np.exp(-energy) else: # loop over points for i in range(num_m): diff = self.dataset - points[:, i, np.newaxis] tdiff = np.dot(self.inv_cov, diff) energy = np.sum(diff * tdiff, axis=0) / 2.0 result[i] = np.sum(np.exp(-energy), axis=0) result = result / self.norm_factor return result __call__ = evaluate
b3b1908e8b86414f701de77a5b87dad0b5eba1d5d433211efeba834a7a43702e
""" A module for reading dvi files output by TeX. Several limitations make this not (currently) useful as a general-purpose dvi preprocessor, but it is currently used by the pdf backend for processing usetex text. Interface:: with Dvi(filename, 72) as dvi: # iterate over pages: for page in dvi: w, h, d = page.width, page.height, page.descent for x, y, font, glyph, width in page.text: fontname = font.texname pointsize = font.size ... for x, y, height, width in page.boxes: ... """ from collections import namedtuple import enum from functools import lru_cache, partial, wraps import logging import os import re import struct import textwrap import numpy as np from matplotlib import cbook, rcParams _log = logging.getLogger(__name__) # Many dvi related files are looked for by external processes, require # additional parsing, and are used many times per rendering, which is why they # are cached using lru_cache(). # Dvi is a bytecode format documented in # http://mirrors.ctan.org/systems/knuth/dist/texware/dvitype.web # http://texdoc.net/texmf-dist/doc/generic/knuth/texware/dvitype.pdf # # The file consists of a preamble, some number of pages, a postamble, # and a finale. Different opcodes are allowed in different contexts, # so the Dvi object has a parser state: # # pre: expecting the preamble # outer: between pages (followed by a page or the postamble, # also e.g. font definitions are allowed) # page: processing a page # post_post: state after the postamble (our current implementation # just stops reading) # finale: the finale (unimplemented in our current implementation) _dvistate = enum.Enum('DviState', 'pre outer inpage post_post finale') # The marks on a page consist of text and boxes. A page also has dimensions. Page = namedtuple('Page', 'text boxes height width descent') Text = namedtuple('Text', 'x y font glyph width') Box = namedtuple('Box', 'x y height width') # Opcode argument parsing # # Each of the following functions takes a Dvi object and delta, # which is the difference between the opcode and the minimum opcode # with the same meaning. Dvi opcodes often encode the number of # argument bytes in this delta. def _arg_raw(dvi, delta): """Return *delta* without reading anything more from the dvi file""" return delta def _arg(bytes, signed, dvi, _): """Read *bytes* bytes, returning the bytes interpreted as a signed integer if *signed* is true, unsigned otherwise.""" return dvi._arg(bytes, signed) def _arg_slen(dvi, delta): """Signed, length *delta* Read *delta* bytes, returning None if *delta* is zero, and the bytes interpreted as a signed integer otherwise.""" if delta == 0: return None return dvi._arg(delta, True) def _arg_slen1(dvi, delta): """Signed, length *delta*+1 Read *delta*+1 bytes, returning the bytes interpreted as signed.""" return dvi._arg(delta+1, True) def _arg_ulen1(dvi, delta): """Unsigned length *delta*+1 Read *delta*+1 bytes, returning the bytes interpreted as unsigned.""" return dvi._arg(delta+1, False) def _arg_olen1(dvi, delta): """Optionally signed, length *delta*+1 Read *delta*+1 bytes, returning the bytes interpreted as unsigned integer for 0<=*delta*<3 and signed if *delta*==3.""" return dvi._arg(delta + 1, delta == 3) _arg_mapping = dict(raw=_arg_raw, u1=partial(_arg, 1, False), u4=partial(_arg, 4, False), s4=partial(_arg, 4, True), slen=_arg_slen, olen1=_arg_olen1, slen1=_arg_slen1, ulen1=_arg_ulen1) def _dispatch(table, min, max=None, state=None, args=('raw',)): """Decorator for dispatch by opcode. Sets the values in *table* from *min* to *max* to this method, adds a check that the Dvi state matches *state* if not None, reads arguments from the file according to *args*. *table* the dispatch table to be filled in *min* minimum opcode for calling this function *max* maximum opcode for calling this function, None if only *min* is allowed *state* state of the Dvi object in which these opcodes are allowed *args* sequence of argument specifications: ``'raw'``: opcode minus minimum ``'u1'``: read one unsigned byte ``'u4'``: read four bytes, treat as an unsigned number ``'s4'``: read four bytes, treat as a signed number ``'slen'``: read (opcode - minimum) bytes, treat as signed ``'slen1'``: read (opcode - minimum + 1) bytes, treat as signed ``'ulen1'``: read (opcode - minimum + 1) bytes, treat as unsigned ``'olen1'``: read (opcode - minimum + 1) bytes, treat as unsigned if under four bytes, signed if four bytes """ def decorate(method): get_args = [_arg_mapping[x] for x in args] @wraps(method) def wrapper(self, byte): if state is not None and self.state != state: raise ValueError("state precondition failed") return method(self, *[f(self, byte-min) for f in get_args]) if max is None: table[min] = wrapper else: for i in range(min, max+1): assert table[i] is None table[i] = wrapper return wrapper return decorate class Dvi(object): """ A reader for a dvi ("device-independent") file, as produced by TeX. The current implementation can only iterate through pages in order, and does not even attempt to verify the postamble. This class can be used as a context manager to close the underlying file upon exit. Pages can be read via iteration. Here is an overly simple way to extract text without trying to detect whitespace:: >>> with matplotlib.dviread.Dvi('input.dvi', 72) as dvi: ... for page in dvi: ... print(''.join(chr(t.glyph) for t in page.text)) """ # dispatch table _dtable = [None] * 256 _dispatch = partial(_dispatch, _dtable) def __init__(self, filename, dpi): """ Read the data from the file named *filename* and convert TeX's internal units to units of *dpi* per inch. *dpi* only sets the units and does not limit the resolution. Use None to return TeX's internal units. """ _log.debug('Dvi: %s', filename) self.file = open(filename, 'rb') self.dpi = dpi self.fonts = {} self.state = _dvistate.pre self.baseline = self._get_baseline(filename) def _get_baseline(self, filename): if rcParams['text.latex.preview']: base, ext = os.path.splitext(filename) baseline_filename = base + ".baseline" if os.path.exists(baseline_filename): with open(baseline_filename, 'rb') as fd: l = fd.read().split() height, depth, width = l return float(depth) return None def __enter__(self): """ Context manager enter method, does nothing. """ return self def __exit__(self, etype, evalue, etrace): """ Context manager exit method, closes the underlying file if it is open. """ self.close() def __iter__(self): """ Iterate through the pages of the file. Yields ------ Page Details of all the text and box objects on the page. The Page tuple contains lists of Text and Box tuples and the page dimensions, and the Text and Box tuples contain coordinates transformed into a standard Cartesian coordinate system at the dpi value given when initializing. The coordinates are floating point numbers, but otherwise precision is not lost and coordinate values are not clipped to integers. """ while self._read(): yield self._output() def close(self): """ Close the underlying file if it is open. """ if not self.file.closed: self.file.close() def _output(self): """ Output the text and boxes belonging to the most recent page. page = dvi._output() """ minx, miny, maxx, maxy = np.inf, np.inf, -np.inf, -np.inf maxy_pure = -np.inf for elt in self.text + self.boxes: if isinstance(elt, Box): x, y, h, w = elt e = 0 # zero depth else: # glyph x, y, font, g, w = elt h, e = font._height_depth_of(g) minx = min(minx, x) miny = min(miny, y - h) maxx = max(maxx, x + w) maxy = max(maxy, y + e) maxy_pure = max(maxy_pure, y) if self.dpi is None: # special case for ease of debugging: output raw dvi coordinates return Page(text=self.text, boxes=self.boxes, width=maxx-minx, height=maxy_pure-miny, descent=maxy-maxy_pure) # convert from TeX's "scaled points" to dpi units d = self.dpi / (72.27 * 2**16) if self.baseline is None: descent = (maxy - maxy_pure) * d else: descent = self.baseline text = [Text((x-minx)*d, (maxy-y)*d - descent, f, g, w*d) for (x, y, f, g, w) in self.text] boxes = [Box((x-minx)*d, (maxy-y)*d - descent, h*d, w*d) for (x, y, h, w) in self.boxes] return Page(text=text, boxes=boxes, width=(maxx-minx)*d, height=(maxy_pure-miny)*d, descent=descent) def _read(self): """ Read one page from the file. Return True if successful, False if there were no more pages. """ while True: byte = self.file.read(1)[0] self._dtable[byte](self, byte) if byte == 140: # end of page return True if self.state is _dvistate.post_post: # end of file self.close() return False def _arg(self, nbytes, signed=False): """ Read and return an integer argument *nbytes* long. Signedness is determined by the *signed* keyword. """ str = self.file.read(nbytes) value = str[0] if signed and value >= 0x80: value = value - 0x100 for i in range(1, nbytes): value = 0x100*value + str[i] return value @_dispatch(min=0, max=127, state=_dvistate.inpage) def _set_char_immediate(self, char): self._put_char_real(char) self.h += self.fonts[self.f]._width_of(char) @_dispatch(min=128, max=131, state=_dvistate.inpage, args=('olen1',)) def _set_char(self, char): self._put_char_real(char) self.h += self.fonts[self.f]._width_of(char) @_dispatch(132, state=_dvistate.inpage, args=('s4', 's4')) def _set_rule(self, a, b): self._put_rule_real(a, b) self.h += b @_dispatch(min=133, max=136, state=_dvistate.inpage, args=('olen1',)) def _put_char(self, char): self._put_char_real(char) def _put_char_real(self, char): font = self.fonts[self.f] if font._vf is None: self.text.append(Text(self.h, self.v, font, char, font._width_of(char))) else: scale = font._scale for x, y, f, g, w in font._vf[char].text: newf = DviFont(scale=_mul2012(scale, f._scale), tfm=f._tfm, texname=f.texname, vf=f._vf) self.text.append(Text(self.h + _mul2012(x, scale), self.v + _mul2012(y, scale), newf, g, newf._width_of(g))) self.boxes.extend([Box(self.h + _mul2012(x, scale), self.v + _mul2012(y, scale), _mul2012(a, scale), _mul2012(b, scale)) for x, y, a, b in font._vf[char].boxes]) @_dispatch(137, state=_dvistate.inpage, args=('s4', 's4')) def _put_rule(self, a, b): self._put_rule_real(a, b) def _put_rule_real(self, a, b): if a > 0 and b > 0: self.boxes.append(Box(self.h, self.v, a, b)) @_dispatch(138) def _nop(self, _): pass @_dispatch(139, state=_dvistate.outer, args=('s4',)*11) def _bop(self, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, p): self.state = _dvistate.inpage self.h, self.v, self.w, self.x, self.y, self.z = 0, 0, 0, 0, 0, 0 self.stack = [] self.text = [] # list of Text objects self.boxes = [] # list of Box objects @_dispatch(140, state=_dvistate.inpage) def _eop(self, _): self.state = _dvistate.outer del self.h, self.v, self.w, self.x, self.y, self.z, self.stack @_dispatch(141, state=_dvistate.inpage) def _push(self, _): self.stack.append((self.h, self.v, self.w, self.x, self.y, self.z)) @_dispatch(142, state=_dvistate.inpage) def _pop(self, _): self.h, self.v, self.w, self.x, self.y, self.z = self.stack.pop() @_dispatch(min=143, max=146, state=_dvistate.inpage, args=('slen1',)) def _right(self, b): self.h += b @_dispatch(min=147, max=151, state=_dvistate.inpage, args=('slen',)) def _right_w(self, new_w): if new_w is not None: self.w = new_w self.h += self.w @_dispatch(min=152, max=156, state=_dvistate.inpage, args=('slen',)) def _right_x(self, new_x): if new_x is not None: self.x = new_x self.h += self.x @_dispatch(min=157, max=160, state=_dvistate.inpage, args=('slen1',)) def _down(self, a): self.v += a @_dispatch(min=161, max=165, state=_dvistate.inpage, args=('slen',)) def _down_y(self, new_y): if new_y is not None: self.y = new_y self.v += self.y @_dispatch(min=166, max=170, state=_dvistate.inpage, args=('slen',)) def _down_z(self, new_z): if new_z is not None: self.z = new_z self.v += self.z @_dispatch(min=171, max=234, state=_dvistate.inpage) def _fnt_num_immediate(self, k): self.f = k @_dispatch(min=235, max=238, state=_dvistate.inpage, args=('olen1',)) def _fnt_num(self, new_f): self.f = new_f @_dispatch(min=239, max=242, args=('ulen1',)) def _xxx(self, datalen): special = self.file.read(datalen) _log.debug( 'Dvi._xxx: encountered special: %s', ''.join([chr(ch) if 32 <= ch < 127 else '<%02x>' % ch for ch in special])) @_dispatch(min=243, max=246, args=('olen1', 'u4', 'u4', 'u4', 'u1', 'u1')) def _fnt_def(self, k, c, s, d, a, l): self._fnt_def_real(k, c, s, d, a, l) def _fnt_def_real(self, k, c, s, d, a, l): n = self.file.read(a + l) fontname = n[-l:].decode('ascii') tfm = _tfmfile(fontname) if tfm is None: raise FileNotFoundError("missing font metrics file: %s" % fontname) if c != 0 and tfm.checksum != 0 and c != tfm.checksum: raise ValueError('tfm checksum mismatch: %s' % n) vf = _vffile(fontname) self.fonts[k] = DviFont(scale=s, tfm=tfm, texname=n, vf=vf) @_dispatch(247, state=_dvistate.pre, args=('u1', 'u4', 'u4', 'u4', 'u1')) def _pre(self, i, num, den, mag, k): comment = self.file.read(k) if i != 2: raise ValueError("Unknown dvi format %d" % i) if num != 25400000 or den != 7227 * 2**16: raise ValueError("nonstandard units in dvi file") # meaning: TeX always uses those exact values, so it # should be enough for us to support those # (There are 72.27 pt to an inch so 7227 pt = # 7227 * 2**16 sp to 100 in. The numerator is multiplied # by 10^5 to get units of 10**-7 meters.) if mag != 1000: raise ValueError("nonstandard magnification in dvi file") # meaning: LaTeX seems to frown on setting \mag, so # I think we can assume this is constant self.state = _dvistate.outer @_dispatch(248, state=_dvistate.outer) def _post(self, _): self.state = _dvistate.post_post # TODO: actually read the postamble and finale? # currently post_post just triggers closing the file @_dispatch(249) def _post_post(self, _): raise NotImplementedError @_dispatch(min=250, max=255) def _malformed(self, offset): raise ValueError("unknown command: byte %d", 250 + offset) class DviFont(object): """ Encapsulation of a font that a DVI file can refer to. This class holds a font's texname and size, supports comparison, and knows the widths of glyphs in the same units as the AFM file. There are also internal attributes (for use by dviread.py) that are *not* used for comparison. The size is in Adobe points (converted from TeX points). Parameters ---------- scale : float Factor by which the font is scaled from its natural size. tfm : Tfm TeX font metrics for this font texname : bytes Name of the font as used internally by TeX and friends, as an ASCII bytestring. This is usually very different from any external font names, and :class:`dviread.PsfontsMap` can be used to find the external name of the font. vf : Vf A TeX "virtual font" file, or None if this font is not virtual. Attributes ---------- texname : bytes size : float Size of the font in Adobe points, converted from the slightly smaller TeX points. widths : list Widths of glyphs in glyph-space units, typically 1/1000ths of the point size. """ __slots__ = ('texname', 'size', 'widths', '_scale', '_vf', '_tfm') def __init__(self, scale, tfm, texname, vf): if not isinstance(texname, bytes): raise ValueError("texname must be a bytestring, got %s" % type(texname)) self._scale = scale self._tfm = tfm self.texname = texname self._vf = vf self.size = scale * (72.0 / (72.27 * 2**16)) try: nchars = max(tfm.width) + 1 except ValueError: nchars = 0 self.widths = [(1000*tfm.width.get(char, 0)) >> 20 for char in range(nchars)] def __eq__(self, other): return (type(self) == type(other) and self.texname == other.texname and self.size == other.size) def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "<{}: {}>".format(type(self).__name__, self.texname) def _width_of(self, char): """Width of char in dvi units.""" width = self._tfm.width.get(char, None) if width is not None: return _mul2012(width, self._scale) _log.debug('No width for char %d in font %s.', char, self.texname) return 0 def _height_depth_of(self, char): """Height and depth of char in dvi units.""" result = [] for metric, name in ((self._tfm.height, "height"), (self._tfm.depth, "depth")): value = metric.get(char, None) if value is None: _log.debug('No %s for char %d in font %s', name, char, self.texname) result.append(0) else: result.append(_mul2012(value, self._scale)) return result class Vf(Dvi): r""" A virtual font (\*.vf file) containing subroutines for dvi files. Usage:: vf = Vf(filename) glyph = vf[code] glyph.text, glyph.boxes, glyph.width Parameters ---------- filename : string or bytestring Notes ----- The virtual font format is a derivative of dvi: http://mirrors.ctan.org/info/knuth/virtual-fonts This class reuses some of the machinery of `Dvi` but replaces the `_read` loop and dispatch mechanism. """ def __init__(self, filename): Dvi.__init__(self, filename, 0) try: self._first_font = None self._chars = {} self._read() finally: self.close() def __getitem__(self, code): return self._chars[code] def _read(self): """ Read one page from the file. Return True if successful, False if there were no more pages. """ packet_char, packet_ends = None, None packet_len, packet_width = None, None while True: byte = self.file.read(1)[0] # If we are in a packet, execute the dvi instructions if self.state is _dvistate.inpage: byte_at = self.file.tell()-1 if byte_at == packet_ends: self._finalize_packet(packet_char, packet_width) packet_len, packet_char, packet_width = None, None, None # fall through to out-of-packet code elif byte_at > packet_ends: raise ValueError("Packet length mismatch in vf file") else: if byte in (139, 140) or byte >= 243: raise ValueError( "Inappropriate opcode %d in vf file" % byte) Dvi._dtable[byte](self, byte) continue # We are outside a packet if byte < 242: # a short packet (length given by byte) packet_len = byte packet_char, packet_width = self._arg(1), self._arg(3) packet_ends = self._init_packet(byte) self.state = _dvistate.inpage elif byte == 242: # a long packet packet_len, packet_char, packet_width = \ [self._arg(x) for x in (4, 4, 4)] self._init_packet(packet_len) elif 243 <= byte <= 246: k = self._arg(byte - 242, byte == 246) c, s, d, a, l = [self._arg(x) for x in (4, 4, 4, 1, 1)] self._fnt_def_real(k, c, s, d, a, l) if self._first_font is None: self._first_font = k elif byte == 247: # preamble i, k = self._arg(1), self._arg(1) x = self.file.read(k) cs, ds = self._arg(4), self._arg(4) self._pre(i, x, cs, ds) elif byte == 248: # postamble (just some number of 248s) break else: raise ValueError("unknown vf opcode %d" % byte) def _init_packet(self, pl): if self.state != _dvistate.outer: raise ValueError("Misplaced packet in vf file") self.h, self.v, self.w, self.x, self.y, self.z = 0, 0, 0, 0, 0, 0 self.stack, self.text, self.boxes = [], [], [] self.f = self._first_font return self.file.tell() + pl def _finalize_packet(self, packet_char, packet_width): self._chars[packet_char] = Page( text=self.text, boxes=self.boxes, width=packet_width, height=None, descent=None) self.state = _dvistate.outer def _pre(self, i, x, cs, ds): if self.state is not _dvistate.pre: raise ValueError("pre command in middle of vf file") if i != 202: raise ValueError("Unknown vf format %d" % i) if len(x): _log.debug('vf file comment: %s', x) self.state = _dvistate.outer # cs = checksum, ds = design size def _fix2comp(num): """Convert from two's complement to negative.""" assert 0 <= num < 2**32 if num & 2**31: return num - 2**32 else: return num def _mul2012(num1, num2): """Multiply two numbers in 20.12 fixed point format.""" # Separated into a function because >> has surprising precedence return (num1*num2) >> 20 class Tfm(object): """ A TeX Font Metric file. This implementation covers only the bare minimum needed by the Dvi class. Parameters ---------- filename : string or bytestring Attributes ---------- checksum : int Used for verifying against the dvi file. design_size : int Design size of the font (unknown units) width, height, depth : dict Dimensions of each character, need to be scaled by the factor specified in the dvi file. These are dicts because indexing may not start from 0. """ __slots__ = ('checksum', 'design_size', 'width', 'height', 'depth') def __init__(self, filename): _log.debug('opening tfm file %s', filename) with open(filename, 'rb') as file: header1 = file.read(24) lh, bc, ec, nw, nh, nd = \ struct.unpack('!6H', header1[2:14]) _log.debug('lh=%d, bc=%d, ec=%d, nw=%d, nh=%d, nd=%d', lh, bc, ec, nw, nh, nd) header2 = file.read(4*lh) self.checksum, self.design_size = \ struct.unpack('!2I', header2[:8]) # there is also encoding information etc. char_info = file.read(4*(ec-bc+1)) widths = file.read(4*nw) heights = file.read(4*nh) depths = file.read(4*nd) self.width, self.height, self.depth = {}, {}, {} widths, heights, depths = \ [struct.unpack('!%dI' % (len(x)/4), x) for x in (widths, heights, depths)] for idx, char in enumerate(range(bc, ec+1)): byte0 = char_info[4*idx] byte1 = char_info[4*idx+1] self.width[char] = _fix2comp(widths[byte0]) self.height[char] = _fix2comp(heights[byte1 >> 4]) self.depth[char] = _fix2comp(depths[byte1 & 0xf]) PsFont = namedtuple('Font', 'texname psname effects encoding filename') class PsfontsMap(object): """ A psfonts.map formatted file, mapping TeX fonts to PS fonts. Usage:: >>> map = PsfontsMap(find_tex_file('pdftex.map')) >>> entry = map[b'ptmbo8r'] >>> entry.texname b'ptmbo8r' >>> entry.psname b'Times-Bold' >>> entry.encoding '/usr/local/texlive/2008/texmf-dist/fonts/enc/dvips/base/8r.enc' >>> entry.effects {'slant': 0.16700000000000001} >>> entry.filename Parameters ---------- filename : string or bytestring Notes ----- For historical reasons, TeX knows many Type-1 fonts by different names than the outside world. (For one thing, the names have to fit in eight characters.) Also, TeX's native fonts are not Type-1 but Metafont, which is nontrivial to convert to PostScript except as a bitmap. While high-quality conversions to Type-1 format exist and are shipped with modern TeX distributions, we need to know which Type-1 fonts are the counterparts of which native fonts. For these reasons a mapping is needed from internal font names to font file names. A texmf tree typically includes mapping files called e.g. :file:`psfonts.map`, :file:`pdftex.map`, or :file:`dvipdfm.map`. The file :file:`psfonts.map` is used by :program:`dvips`, :file:`pdftex.map` by :program:`pdfTeX`, and :file:`dvipdfm.map` by :program:`dvipdfm`. :file:`psfonts.map` might avoid embedding the 35 PostScript fonts (i.e., have no filename for them, as in the Times-Bold example above), while the pdf-related files perhaps only avoid the "Base 14" pdf fonts. But the user may have configured these files differently. """ __slots__ = ('_font', '_filename') # Create a filename -> PsfontsMap cache, so that calling # `PsfontsMap(filename)` with the same filename a second time immediately # returns the same object. @lru_cache() def __new__(cls, filename): self = object.__new__(cls) self._font = {} self._filename = os.fsdecode(filename) with open(filename, 'rb') as file: self._parse(file) return self def __getitem__(self, texname): assert isinstance(texname, bytes) try: result = self._font[texname] except KeyError: fmt = ('A PostScript file for the font whose TeX name is "{0}" ' 'could not be found in the file "{1}". The dviread module ' 'can only handle fonts that have an associated PostScript ' 'font file. ' 'This problem can often be solved by installing ' 'a suitable PostScript font package in your (TeX) ' 'package manager.') msg = fmt.format(texname.decode('ascii'), self._filename) msg = textwrap.fill(msg, break_on_hyphens=False, break_long_words=False) _log.info(msg) raise fn, enc = result.filename, result.encoding if fn is not None and not fn.startswith(b'/'): fn = find_tex_file(fn) if enc is not None and not enc.startswith(b'/'): enc = find_tex_file(result.encoding) return result._replace(filename=fn, encoding=enc) def _parse(self, file): """ Parse the font mapping file. The format is, AFAIK: texname fontname [effects and filenames] Effects are PostScript snippets like ".177 SlantFont", filenames begin with one or two less-than signs. A filename ending in enc is an encoding file, other filenames are font files. This can be overridden with a left bracket: <[foobar indicates an encoding file named foobar. There is some difference between <foo.pfb and <<bar.pfb in subsetting, but I have no example of << in my TeX installation. """ # If the map file specifies multiple encodings for a font, we # follow pdfTeX in choosing the last one specified. Such # entries are probably mistakes but they have occurred. # http://tex.stackexchange.com/questions/10826/ # http://article.gmane.org/gmane.comp.tex.pdftex/4914 empty_re = re.compile(br'%|\s*$') word_re = re.compile( br'''(?x) (?: "<\[ (?P<enc1> [^"]+ )" | # quoted encoding marked by [ "< (?P<enc2> [^"]+.enc)" | # quoted encoding, ends in .enc "<<? (?P<file1> [^"]+ )" | # quoted font file name " (?P<eff1> [^"]+ )" | # quoted effects or font name <\[ (?P<enc3> \S+ ) | # encoding marked by [ < (?P<enc4> \S+ .enc) | # encoding, ends in .enc <<? (?P<file2> \S+ ) | # font file name (?P<eff2> \S+ ) # effects or font name )''') effects_re = re.compile( br'''(?x) (?P<slant> -?[0-9]*(?:\.[0-9]+)) \s* SlantFont | (?P<extend>-?[0-9]*(?:\.[0-9]+)) \s* ExtendFont''') lines = (line.strip() for line in file if not empty_re.match(line)) for line in lines: effects, encoding, filename = b'', None, None words = word_re.finditer(line) # The named groups are mutually exclusive and are # referenced below at an estimated order of probability of # occurrence based on looking at my copy of pdftex.map. # The font names are probably unquoted: w = next(words) texname = w.group('eff2') or w.group('eff1') w = next(words) psname = w.group('eff2') or w.group('eff1') for w in words: # Any effects are almost always quoted: eff = w.group('eff1') or w.group('eff2') if eff: effects = eff continue # Encoding files usually have the .enc suffix # and almost never need quoting: enc = (w.group('enc4') or w.group('enc3') or w.group('enc2') or w.group('enc1')) if enc: if encoding is not None: _log.debug('Multiple encodings for %s = %s', texname, psname) encoding = enc continue # File names are probably unquoted: filename = w.group('file2') or w.group('file1') effects_dict = {} for match in effects_re.finditer(effects): slant = match.group('slant') if slant: effects_dict['slant'] = float(slant) else: effects_dict['extend'] = float(match.group('extend')) self._font[texname] = PsFont( texname=texname, psname=psname, effects=effects_dict, encoding=encoding, filename=filename) class Encoding(object): r""" Parses a \*.enc file referenced from a psfonts.map style file. The format this class understands is a very limited subset of PostScript. Usage (subject to change):: for name in Encoding(filename): whatever(name) Parameters ---------- filename : string or bytestring Attributes ---------- encoding : list List of character names """ __slots__ = ('encoding',) def __init__(self, filename): with open(filename, 'rb') as file: _log.debug('Parsing TeX encoding %s', filename) self.encoding = self._parse(file) _log.debug('Result: %s', self.encoding) def __iter__(self): yield from self.encoding @staticmethod def _parse(file): lines = (line.split(b'%', 1)[0].strip() for line in file) data = b''.join(lines) beginning = data.find(b'[') if beginning < 0: raise ValueError("Cannot locate beginning of encoding in {}" .format(file)) data = data[beginning:] end = data.find(b']') if end < 0: raise ValueError("Cannot locate end of encoding in {}" .format(file)) data = data[:end] return re.findall(br'/([^][{}<>\s]+)', data) # Note: this function should ultimately replace the Encoding class, which # appears to be mostly broken: because it uses b''.join(), there is no # whitespace left between glyph names (only slashes) so the final re.findall # returns a single string with all glyph names. However this does not appear # to bother backend_pdf, so that needs to be investigated more. (The fixed # version below is necessary for textpath/backend_svg, though.) def _parse_enc(path): r""" Parses a \*.enc file referenced from a psfonts.map style file. The format this class understands is a very limited subset of PostScript. Parameters ---------- path : os.PathLike Returns ------- encoding : list The nth entry of the list is the PostScript glyph name of the nth glyph. """ with open(path, encoding="ascii") as file: no_comments = "\n".join(line.split("%")[0].rstrip() for line in file) array = re.search(r"(?s)\[(.*)\]", no_comments).group(1) lines = [line for line in array.split("\n") if line] if all(line.startswith("/") for line in lines): return [line[1:] for line in lines] else: raise ValueError( "Failed to parse {} as Postscript encoding".format(path)) @lru_cache() def find_tex_file(filename, format=None): """ Find a file in the texmf tree. Calls :program:`kpsewhich` which is an interface to the kpathsea library [1]_. Most existing TeX distributions on Unix-like systems use kpathsea. It is also available as part of MikTeX, a popular distribution on Windows. *If the file is not found, an empty string is returned*. Parameters ---------- filename : string or bytestring format : string or bytestring Used as the value of the `--format` option to :program:`kpsewhich`. Could be e.g. 'tfm' or 'vf' to limit the search to that type of files. References ---------- .. [1] `Kpathsea documentation <http://www.tug.org/kpathsea/>`_ The library that :program:`kpsewhich` is part of. """ # we expect these to always be ascii encoded, but use utf-8 # out of caution if isinstance(filename, bytes): filename = filename.decode('utf-8', errors='replace') if isinstance(format, bytes): format = format.decode('utf-8', errors='replace') if os.name == 'nt': # On Windows only, kpathsea can use utf-8 for cmd args and output. # The `command_line_encoding` environment variable is set to force it # to always use utf-8 encoding. See mpl issue #11848 for more info. kwargs = dict(env=dict(os.environ, command_line_encoding='utf-8')) else: kwargs = {} cmd = ['kpsewhich'] if format is not None: cmd += ['--format=' + format] cmd += [filename] try: result = cbook._check_and_log_subprocess(cmd, _log, **kwargs) except RuntimeError: return '' if os.name == 'nt': return result.decode('utf-8').rstrip('\r\n') else: return os.fsdecode(result).rstrip('\n') @lru_cache() def _fontfile(cls, suffix, texname): filename = find_tex_file(texname + suffix) return cls(filename) if filename else None _tfmfile = partial(_fontfile, Tfm, ".tfm") _vffile = partial(_fontfile, Vf, ".vf") if __name__ == '__main__': from argparse import ArgumentParser import itertools parser = ArgumentParser() parser.add_argument("filename") parser.add_argument("dpi", nargs="?", type=float, default=None) args = parser.parse_args() with Dvi(args.filename, args.dpi) as dvi: fontmap = PsfontsMap(find_tex_file('pdftex.map')) for page in dvi: print('=== new page ===') for font, group in itertools.groupby( page.text, lambda text: text.font): print('font', font.texname, 'scaled', font._scale / 2 ** 20) for text in group: print(text.x, text.y, text.glyph, chr(text.glyph) if chr(text.glyph).isprintable() else ".", text.width) for x, y, w, h in page.boxes: print(x, y, 'BOX', w, h)
0a6285456ea65c226a8194906a234e486fd5527f56892c791eb83ee2a2889f5e
""" font data tables for truetype and afm computer modern fonts """ latex_to_bakoma = { '\\__sqrt__' : ('cmex10', 0x70), '\\bigcap' : ('cmex10', 0x5c), '\\bigcup' : ('cmex10', 0x5b), '\\bigodot' : ('cmex10', 0x4b), '\\bigoplus' : ('cmex10', 0x4d), '\\bigotimes' : ('cmex10', 0x4f), '\\biguplus' : ('cmex10', 0x5d), '\\bigvee' : ('cmex10', 0x5f), '\\bigwedge' : ('cmex10', 0x5e), '\\coprod' : ('cmex10', 0x61), '\\int' : ('cmex10', 0x5a), '\\langle' : ('cmex10', 0xad), '\\leftangle' : ('cmex10', 0xad), '\\leftbrace' : ('cmex10', 0xa9), '\\oint' : ('cmex10', 0x49), '\\prod' : ('cmex10', 0x59), '\\rangle' : ('cmex10', 0xae), '\\rightangle' : ('cmex10', 0xae), '\\rightbrace' : ('cmex10', 0xaa), '\\sum' : ('cmex10', 0x58), '\\widehat' : ('cmex10', 0x62), '\\widetilde' : ('cmex10', 0x65), '\\{' : ('cmex10', 0xa9), '\\}' : ('cmex10', 0xaa), '{' : ('cmex10', 0xa9), '}' : ('cmex10', 0xaa), ',' : ('cmmi10', 0x3b), '.' : ('cmmi10', 0x3a), '/' : ('cmmi10', 0x3d), '<' : ('cmmi10', 0x3c), '>' : ('cmmi10', 0x3e), '\\alpha' : ('cmmi10', 0xae), '\\beta' : ('cmmi10', 0xaf), '\\chi' : ('cmmi10', 0xc2), '\\combiningrightarrowabove' : ('cmmi10', 0x7e), '\\delta' : ('cmmi10', 0xb1), '\\ell' : ('cmmi10', 0x60), '\\epsilon' : ('cmmi10', 0xb2), '\\eta' : ('cmmi10', 0xb4), '\\flat' : ('cmmi10', 0x5b), '\\frown' : ('cmmi10', 0x5f), '\\gamma' : ('cmmi10', 0xb0), '\\imath' : ('cmmi10', 0x7b), '\\iota' : ('cmmi10', 0xb6), '\\jmath' : ('cmmi10', 0x7c), '\\kappa' : ('cmmi10', 0x2219), '\\lambda' : ('cmmi10', 0xb8), '\\leftharpoondown' : ('cmmi10', 0x29), '\\leftharpoonup' : ('cmmi10', 0x28), '\\mu' : ('cmmi10', 0xb9), '\\natural' : ('cmmi10', 0x5c), '\\nu' : ('cmmi10', 0xba), '\\omega' : ('cmmi10', 0x21), '\\phi' : ('cmmi10', 0xc1), '\\pi' : ('cmmi10', 0xbc), '\\psi' : ('cmmi10', 0xc3), '\\rho' : ('cmmi10', 0xbd), '\\rightharpoondown' : ('cmmi10', 0x2b), '\\rightharpoonup' : ('cmmi10', 0x2a), '\\sharp' : ('cmmi10', 0x5d), '\\sigma' : ('cmmi10', 0xbe), '\\smile' : ('cmmi10', 0x5e), '\\tau' : ('cmmi10', 0xbf), '\\theta' : ('cmmi10', 0xb5), '\\triangleleft' : ('cmmi10', 0x2f), '\\triangleright' : ('cmmi10', 0x2e), '\\upsilon' : ('cmmi10', 0xc0), '\\varepsilon' : ('cmmi10', 0x22), '\\varphi' : ('cmmi10', 0x27), '\\varrho' : ('cmmi10', 0x25), '\\varsigma' : ('cmmi10', 0x26), '\\vartheta' : ('cmmi10', 0x23), '\\wp' : ('cmmi10', 0x7d), '\\xi' : ('cmmi10', 0xbb), '\\zeta' : ('cmmi10', 0xb3), '!' : ('cmr10', 0x21), '%' : ('cmr10', 0x25), '&' : ('cmr10', 0x26), '(' : ('cmr10', 0x28), ')' : ('cmr10', 0x29), '+' : ('cmr10', 0x2b), '0' : ('cmr10', 0x30), '1' : ('cmr10', 0x31), '2' : ('cmr10', 0x32), '3' : ('cmr10', 0x33), '4' : ('cmr10', 0x34), '5' : ('cmr10', 0x35), '6' : ('cmr10', 0x36), '7' : ('cmr10', 0x37), '8' : ('cmr10', 0x38), '9' : ('cmr10', 0x39), ':' : ('cmr10', 0x3a), ';' : ('cmr10', 0x3b), '=' : ('cmr10', 0x3d), '?' : ('cmr10', 0x3f), '@' : ('cmr10', 0x40), '[' : ('cmr10', 0x5b), '\\#' : ('cmr10', 0x23), '\\$' : ('cmr10', 0x24), '\\%' : ('cmr10', 0x25), '\\Delta' : ('cmr10', 0xa2), '\\Gamma' : ('cmr10', 0xa1), '\\Lambda' : ('cmr10', 0xa4), '\\Omega' : ('cmr10', 0xad), '\\Phi' : ('cmr10', 0xa9), '\\Pi' : ('cmr10', 0xa6), '\\Psi' : ('cmr10', 0xaa), '\\Sigma' : ('cmr10', 0xa7), '\\Theta' : ('cmr10', 0xa3), '\\Upsilon' : ('cmr10', 0xa8), '\\Xi' : ('cmr10', 0xa5), '\\circumflexaccent' : ('cmr10', 0x5e), '\\combiningacuteaccent' : ('cmr10', 0xb6), '\\combiningbreve' : ('cmr10', 0xb8), '\\combiningdiaeresis' : ('cmr10', 0xc4), '\\combiningdotabove' : ('cmr10', 0x5f), '\\combininggraveaccent' : ('cmr10', 0xb5), '\\combiningoverline' : ('cmr10', 0xb9), '\\combiningtilde' : ('cmr10', 0x7e), '\\leftbracket' : ('cmr10', 0x5b), '\\leftparen' : ('cmr10', 0x28), '\\rightbracket' : ('cmr10', 0x5d), '\\rightparen' : ('cmr10', 0x29), '\\widebar' : ('cmr10', 0xb9), ']' : ('cmr10', 0x5d), '*' : ('cmsy10', 0xa4), '-' : ('cmsy10', 0xa1), '\\Downarrow' : ('cmsy10', 0x2b), '\\Im' : ('cmsy10', 0x3d), '\\Leftarrow' : ('cmsy10', 0x28), '\\Leftrightarrow' : ('cmsy10', 0x2c), '\\P' : ('cmsy10', 0x7b), '\\Re' : ('cmsy10', 0x3c), '\\Rightarrow' : ('cmsy10', 0x29), '\\S' : ('cmsy10', 0x78), '\\Uparrow' : ('cmsy10', 0x2a), '\\Updownarrow' : ('cmsy10', 0x6d), '\\Vert' : ('cmsy10', 0x6b), '\\aleph' : ('cmsy10', 0x40), '\\approx' : ('cmsy10', 0xbc), '\\ast' : ('cmsy10', 0xa4), '\\asymp' : ('cmsy10', 0xb3), '\\backslash' : ('cmsy10', 0x6e), '\\bigcirc' : ('cmsy10', 0xb0), '\\bigtriangledown' : ('cmsy10', 0x35), '\\bigtriangleup' : ('cmsy10', 0x34), '\\bot' : ('cmsy10', 0x3f), '\\bullet' : ('cmsy10', 0xb2), '\\cap' : ('cmsy10', 0x5c), '\\cdot' : ('cmsy10', 0xa2), '\\circ' : ('cmsy10', 0xb1), '\\clubsuit' : ('cmsy10', 0x7c), '\\cup' : ('cmsy10', 0x5b), '\\dag' : ('cmsy10', 0x79), '\\dashv' : ('cmsy10', 0x61), '\\ddag' : ('cmsy10', 0x7a), '\\diamond' : ('cmsy10', 0xa6), '\\diamondsuit' : ('cmsy10', 0x7d), '\\div' : ('cmsy10', 0xa5), '\\downarrow' : ('cmsy10', 0x23), '\\emptyset' : ('cmsy10', 0x3b), '\\equiv' : ('cmsy10', 0xb4), '\\exists' : ('cmsy10', 0x39), '\\forall' : ('cmsy10', 0x38), '\\geq' : ('cmsy10', 0xb8), '\\gg' : ('cmsy10', 0xc0), '\\heartsuit' : ('cmsy10', 0x7e), '\\in' : ('cmsy10', 0x32), '\\infty' : ('cmsy10', 0x31), '\\lbrace' : ('cmsy10', 0x66), '\\lceil' : ('cmsy10', 0x64), '\\leftarrow' : ('cmsy10', 0xc3), '\\leftrightarrow' : ('cmsy10', 0x24), '\\leq' : ('cmsy10', 0x2219), '\\lfloor' : ('cmsy10', 0x62), '\\ll' : ('cmsy10', 0xbf), '\\mid' : ('cmsy10', 0x6a), '\\mp' : ('cmsy10', 0xa8), '\\nabla' : ('cmsy10', 0x72), '\\nearrow' : ('cmsy10', 0x25), '\\neg' : ('cmsy10', 0x3a), '\\ni' : ('cmsy10', 0x33), '\\nwarrow' : ('cmsy10', 0x2d), '\\odot' : ('cmsy10', 0xaf), '\\ominus' : ('cmsy10', 0xaa), '\\oplus' : ('cmsy10', 0xa9), '\\oslash' : ('cmsy10', 0xae), '\\otimes' : ('cmsy10', 0xad), '\\pm' : ('cmsy10', 0xa7), '\\prec' : ('cmsy10', 0xc1), '\\preceq' : ('cmsy10', 0xb9), '\\prime' : ('cmsy10', 0x30), '\\propto' : ('cmsy10', 0x2f), '\\rbrace' : ('cmsy10', 0x67), '\\rceil' : ('cmsy10', 0x65), '\\rfloor' : ('cmsy10', 0x63), '\\rightarrow' : ('cmsy10', 0x21), '\\searrow' : ('cmsy10', 0x26), '\\sim' : ('cmsy10', 0xbb), '\\simeq' : ('cmsy10', 0x27), '\\slash' : ('cmsy10', 0x36), '\\spadesuit' : ('cmsy10', 0xc4), '\\sqcap' : ('cmsy10', 0x75), '\\sqcup' : ('cmsy10', 0x74), '\\sqsubseteq' : ('cmsy10', 0x76), '\\sqsupseteq' : ('cmsy10', 0x77), '\\subset' : ('cmsy10', 0xbd), '\\subseteq' : ('cmsy10', 0xb5), '\\succ' : ('cmsy10', 0xc2), '\\succeq' : ('cmsy10', 0xba), '\\supset' : ('cmsy10', 0xbe), '\\supseteq' : ('cmsy10', 0xb6), '\\swarrow' : ('cmsy10', 0x2e), '\\times' : ('cmsy10', 0xa3), '\\to' : ('cmsy10', 0x21), '\\top' : ('cmsy10', 0x3e), '\\uparrow' : ('cmsy10', 0x22), '\\updownarrow' : ('cmsy10', 0x6c), '\\uplus' : ('cmsy10', 0x5d), '\\vdash' : ('cmsy10', 0x60), '\\vee' : ('cmsy10', 0x5f), '\\vert' : ('cmsy10', 0x6a), '\\wedge' : ('cmsy10', 0x5e), '\\wr' : ('cmsy10', 0x6f), '\\|' : ('cmsy10', 0x6b), '|' : ('cmsy10', 0x6a), '\\_' : ('cmtt10', 0x5f) } latex_to_cmex = { r'\__sqrt__' : 112, r'\bigcap' : 92, r'\bigcup' : 91, r'\bigodot' : 75, r'\bigoplus' : 77, r'\bigotimes' : 79, r'\biguplus' : 93, r'\bigvee' : 95, r'\bigwedge' : 94, r'\coprod' : 97, r'\int' : 90, r'\leftangle' : 173, r'\leftbrace' : 169, r'\oint' : 73, r'\prod' : 89, r'\rightangle' : 174, r'\rightbrace' : 170, r'\sum' : 88, r'\widehat' : 98, r'\widetilde' : 101, } latex_to_standard = { r'\cong' : ('psyr', 64), r'\Delta' : ('psyr', 68), r'\Phi' : ('psyr', 70), r'\Gamma' : ('psyr', 89), r'\alpha' : ('psyr', 97), r'\beta' : ('psyr', 98), r'\chi' : ('psyr', 99), r'\delta' : ('psyr', 100), r'\varepsilon' : ('psyr', 101), r'\phi' : ('psyr', 102), r'\gamma' : ('psyr', 103), r'\eta' : ('psyr', 104), r'\iota' : ('psyr', 105), r'\varpsi' : ('psyr', 106), r'\kappa' : ('psyr', 108), r'\nu' : ('psyr', 110), r'\pi' : ('psyr', 112), r'\theta' : ('psyr', 113), r'\rho' : ('psyr', 114), r'\sigma' : ('psyr', 115), r'\tau' : ('psyr', 116), r'\upsilon' : ('psyr', 117), r'\varpi' : ('psyr', 118), r'\omega' : ('psyr', 119), r'\xi' : ('psyr', 120), r'\psi' : ('psyr', 121), r'\zeta' : ('psyr', 122), r'\sim' : ('psyr', 126), r'\leq' : ('psyr', 163), r'\infty' : ('psyr', 165), r'\clubsuit' : ('psyr', 167), r'\diamondsuit' : ('psyr', 168), r'\heartsuit' : ('psyr', 169), r'\spadesuit' : ('psyr', 170), r'\leftrightarrow' : ('psyr', 171), r'\leftarrow' : ('psyr', 172), r'\uparrow' : ('psyr', 173), r'\rightarrow' : ('psyr', 174), r'\downarrow' : ('psyr', 175), r'\pm' : ('psyr', 176), r'\geq' : ('psyr', 179), r'\times' : ('psyr', 180), r'\propto' : ('psyr', 181), r'\partial' : ('psyr', 182), r'\bullet' : ('psyr', 183), r'\div' : ('psyr', 184), r'\neq' : ('psyr', 185), r'\equiv' : ('psyr', 186), r'\approx' : ('psyr', 187), r'\ldots' : ('psyr', 188), r'\aleph' : ('psyr', 192), r'\Im' : ('psyr', 193), r'\Re' : ('psyr', 194), r'\wp' : ('psyr', 195), r'\otimes' : ('psyr', 196), r'\oplus' : ('psyr', 197), r'\oslash' : ('psyr', 198), r'\cap' : ('psyr', 199), r'\cup' : ('psyr', 200), r'\supset' : ('psyr', 201), r'\supseteq' : ('psyr', 202), r'\subset' : ('psyr', 204), r'\subseteq' : ('psyr', 205), r'\in' : ('psyr', 206), r'\notin' : ('psyr', 207), r'\angle' : ('psyr', 208), r'\nabla' : ('psyr', 209), r'\textregistered' : ('psyr', 210), r'\copyright' : ('psyr', 211), r'\texttrademark' : ('psyr', 212), r'\Pi' : ('psyr', 213), r'\prod' : ('psyr', 213), r'\surd' : ('psyr', 214), r'\__sqrt__' : ('psyr', 214), r'\cdot' : ('psyr', 215), r'\urcorner' : ('psyr', 216), r'\vee' : ('psyr', 217), r'\wedge' : ('psyr', 218), r'\Leftrightarrow' : ('psyr', 219), r'\Leftarrow' : ('psyr', 220), r'\Uparrow' : ('psyr', 221), r'\Rightarrow' : ('psyr', 222), r'\Downarrow' : ('psyr', 223), r'\Diamond' : ('psyr', 224), r'\Sigma' : ('psyr', 229), r'\sum' : ('psyr', 229), r'\forall' : ('psyr', 34), r'\exists' : ('psyr', 36), r'\lceil' : ('psyr', 233), r'\lbrace' : ('psyr', 123), r'\Psi' : ('psyr', 89), r'\bot' : ('psyr', 0o136), r'\Omega' : ('psyr', 0o127), r'\leftbracket' : ('psyr', 0o133), r'\rightbracket' : ('psyr', 0o135), r'\leftbrace' : ('psyr', 123), r'\leftparen' : ('psyr', 0o50), r'\prime' : ('psyr', 0o242), r'\sharp' : ('psyr', 0o43), r'\slash' : ('psyr', 0o57), r'\Lamda' : ('psyr', 0o114), r'\neg' : ('psyr', 0o330), r'\Upsilon' : ('psyr', 0o241), r'\rightbrace' : ('psyr', 0o175), r'\rfloor' : ('psyr', 0o373), r'\lambda' : ('psyr', 0o154), r'\to' : ('psyr', 0o256), r'\Xi' : ('psyr', 0o130), r'\emptyset' : ('psyr', 0o306), r'\lfloor' : ('psyr', 0o353), r'\rightparen' : ('psyr', 0o51), r'\rceil' : ('psyr', 0o371), r'\ni' : ('psyr', 0o47), r'\epsilon' : ('psyr', 0o145), r'\Theta' : ('psyr', 0o121), r'\langle' : ('psyr', 0o341), r'\leftangle' : ('psyr', 0o341), r'\rangle' : ('psyr', 0o361), r'\rightangle' : ('psyr', 0o361), r'\rbrace' : ('psyr', 0o175), r'\circ' : ('psyr', 0o260), r'\diamond' : ('psyr', 0o340), r'\mu' : ('psyr', 0o155), r'\mid' : ('psyr', 0o352), r'\imath' : ('pncri8a', 105), r'\%' : ('pncr8a', 37), r'\$' : ('pncr8a', 36), r'\{' : ('pncr8a', 123), r'\}' : ('pncr8a', 125), r'\backslash' : ('pncr8a', 92), r'\ast' : ('pncr8a', 42), r'\#' : ('pncr8a', 35), r'\circumflexaccent' : ('pncri8a', 124), # for \hat r'\combiningbreve' : ('pncri8a', 81), # for \breve r'\combininggraveaccent' : ('pncri8a', 114), # for \grave r'\combiningacuteaccent' : ('pncri8a', 63), # for \accute r'\combiningdiaeresis' : ('pncri8a', 91), # for \ddot r'\combiningtilde' : ('pncri8a', 75), # for \tilde r'\combiningrightarrowabove' : ('pncri8a', 110), # for \vec r'\combiningdotabove' : ('pncri8a', 26), # for \dot } # Automatically generated. type12uni = { 'uni24C8' : 9416, 'aring' : 229, 'uni22A0' : 8864, 'uni2292' : 8850, 'quotedblright' : 8221, 'uni03D2' : 978, 'uni2215' : 8725, 'uni03D0' : 976, 'V' : 86, 'dollar' : 36, 'uni301E' : 12318, 'uni03D5' : 981, 'four' : 52, 'uni25A0' : 9632, 'uni013C' : 316, 'uni013B' : 315, 'uni013E' : 318, 'Yacute' : 221, 'uni25DE' : 9694, 'uni013F' : 319, 'uni255A' : 9562, 'uni2606' : 9734, 'uni0180' : 384, 'uni22B7' : 8887, 'uni044F' : 1103, 'uni22B5' : 8885, 'uni22B4' : 8884, 'uni22AE' : 8878, 'uni22B2' : 8882, 'uni22B1' : 8881, 'uni22B0' : 8880, 'uni25CD' : 9677, 'uni03CE' : 974, 'uni03CD' : 973, 'uni03CC' : 972, 'uni03CB' : 971, 'uni03CA' : 970, 'uni22B8' : 8888, 'uni22C9' : 8905, 'uni0449' : 1097, 'uni20DD' : 8413, 'uni20DC' : 8412, 'uni20DB' : 8411, 'uni2231' : 8753, 'uni25CF' : 9679, 'uni306E' : 12398, 'uni03D1' : 977, 'uni01A1' : 417, 'uni20D7' : 8407, 'uni03D6' : 982, 'uni2233' : 8755, 'uni20D2' : 8402, 'uni20D1' : 8401, 'uni20D0' : 8400, 'P' : 80, 'uni22BE' : 8894, 'uni22BD' : 8893, 'uni22BC' : 8892, 'uni22BB' : 8891, 'underscore' : 95, 'uni03C8' : 968, 'uni03C7' : 967, 'uni0328' : 808, 'uni03C5' : 965, 'uni03C4' : 964, 'uni03C3' : 963, 'uni03C2' : 962, 'uni03C1' : 961, 'uni03C0' : 960, 'uni2010' : 8208, 'uni0130' : 304, 'uni0133' : 307, 'uni0132' : 306, 'uni0135' : 309, 'uni0134' : 308, 'uni0137' : 311, 'uni0136' : 310, 'uni0139' : 313, 'uni0138' : 312, 'uni2244' : 8772, 'uni229A' : 8858, 'uni2571' : 9585, 'uni0278' : 632, 'uni2239' : 8761, 'p' : 112, 'uni3019' : 12313, 'uni25CB' : 9675, 'uni03DB' : 987, 'uni03DC' : 988, 'uni03DA' : 986, 'uni03DF' : 991, 'uni03DD' : 989, 'uni013D' : 317, 'uni220A' : 8714, 'uni220C' : 8716, 'uni220B' : 8715, 'uni220E' : 8718, 'uni220D' : 8717, 'uni220F' : 8719, 'uni22CC' : 8908, 'Otilde' : 213, 'uni25E5' : 9701, 'uni2736' : 10038, 'perthousand' : 8240, 'zero' : 48, 'uni279B' : 10139, 'dotlessi' : 305, 'uni2279' : 8825, 'Scaron' : 352, 'zcaron' : 382, 'uni21D8' : 8664, 'egrave' : 232, 'uni0271' : 625, 'uni01AA' : 426, 'uni2332' : 9010, 'section' : 167, 'uni25E4' : 9700, 'Icircumflex' : 206, 'ntilde' : 241, 'uni041E' : 1054, 'ampersand' : 38, 'uni041C' : 1052, 'uni041A' : 1050, 'uni22AB' : 8875, 'uni21DB' : 8667, 'dotaccent' : 729, 'uni0416' : 1046, 'uni0417' : 1047, 'uni0414' : 1044, 'uni0415' : 1045, 'uni0412' : 1042, 'uni0413' : 1043, 'degree' : 176, 'uni0411' : 1041, 'K' : 75, 'uni25EB' : 9707, 'uni25EF' : 9711, 'uni0418' : 1048, 'uni0419' : 1049, 'uni2263' : 8803, 'uni226E' : 8814, 'uni2251' : 8785, 'uni02C8' : 712, 'uni2262' : 8802, 'acircumflex' : 226, 'uni22B3' : 8883, 'uni2261' : 8801, 'uni2394' : 9108, 'Aring' : 197, 'uni2260' : 8800, 'uni2254' : 8788, 'uni0436' : 1078, 'uni2267' : 8807, 'k' : 107, 'uni22C8' : 8904, 'uni226A' : 8810, 'uni231F' : 8991, 'smalltilde' : 732, 'uni2201' : 8705, 'uni2200' : 8704, 'uni2203' : 8707, 'uni02BD' : 701, 'uni2205' : 8709, 'uni2204' : 8708, 'Agrave' : 192, 'uni2206' : 8710, 'uni2209' : 8713, 'uni2208' : 8712, 'uni226D' : 8813, 'uni2264' : 8804, 'uni263D' : 9789, 'uni2258' : 8792, 'uni02D3' : 723, 'uni02D2' : 722, 'uni02D1' : 721, 'uni02D0' : 720, 'uni25E1' : 9697, 'divide' : 247, 'uni02D5' : 725, 'uni02D4' : 724, 'ocircumflex' : 244, 'uni2524' : 9508, 'uni043A' : 1082, 'uni24CC' : 9420, 'asciitilde' : 126, 'uni22B9' : 8889, 'uni24D2' : 9426, 'uni211E' : 8478, 'uni211D' : 8477, 'uni24DD' : 9437, 'uni211A' : 8474, 'uni211C' : 8476, 'uni211B' : 8475, 'uni25C6' : 9670, 'uni017F' : 383, 'uni017A' : 378, 'uni017C' : 380, 'uni017B' : 379, 'uni0346' : 838, 'uni22F1' : 8945, 'uni22F0' : 8944, 'two' : 50, 'uni2298' : 8856, 'uni24D1' : 9425, 'E' : 69, 'uni025D' : 605, 'scaron' : 353, 'uni2322' : 8994, 'uni25E3' : 9699, 'uni22BF' : 8895, 'F' : 70, 'uni0440' : 1088, 'uni255E' : 9566, 'uni22BA' : 8890, 'uni0175' : 373, 'uni0174' : 372, 'uni0177' : 375, 'uni0176' : 374, 'bracketleft' : 91, 'uni0170' : 368, 'uni0173' : 371, 'uni0172' : 370, 'asciicircum' : 94, 'uni0179' : 377, 'uni2590' : 9616, 'uni25E2' : 9698, 'uni2119' : 8473, 'uni2118' : 8472, 'uni25CC' : 9676, 'f' : 102, 'ordmasculine' : 186, 'uni229B' : 8859, 'uni22A1' : 8865, 'uni2111' : 8465, 'uni2110' : 8464, 'uni2113' : 8467, 'uni2112' : 8466, 'mu' : 181, 'uni2281' : 8833, 'paragraph' : 182, 'nine' : 57, 'uni25EC' : 9708, 'v' : 118, 'uni040C' : 1036, 'uni0113' : 275, 'uni22D0' : 8912, 'uni21CC' : 8652, 'uni21CB' : 8651, 'uni21CA' : 8650, 'uni22A5' : 8869, 'uni21CF' : 8655, 'uni21CE' : 8654, 'uni21CD' : 8653, 'guilsinglleft' : 8249, 'backslash' : 92, 'uni2284' : 8836, 'uni224E' : 8782, 'uni224D' : 8781, 'uni224F' : 8783, 'uni224A' : 8778, 'uni2287' : 8839, 'uni224C' : 8780, 'uni224B' : 8779, 'uni21BD' : 8637, 'uni2286' : 8838, 'uni030F' : 783, 'uni030D' : 781, 'uni030E' : 782, 'uni030B' : 779, 'uni030C' : 780, 'uni030A' : 778, 'uni026E' : 622, 'uni026D' : 621, 'six' : 54, 'uni026A' : 618, 'uni026C' : 620, 'uni25C1' : 9665, 'uni20D6' : 8406, 'uni045B' : 1115, 'uni045C' : 1116, 'uni256B' : 9579, 'uni045A' : 1114, 'uni045F' : 1119, 'uni045E' : 1118, 'A' : 65, 'uni2569' : 9577, 'uni0458' : 1112, 'uni0459' : 1113, 'uni0452' : 1106, 'uni0453' : 1107, 'uni2562' : 9570, 'uni0451' : 1105, 'uni0456' : 1110, 'uni0457' : 1111, 'uni0454' : 1108, 'uni0455' : 1109, 'icircumflex' : 238, 'uni0307' : 775, 'uni0304' : 772, 'uni0305' : 773, 'uni0269' : 617, 'uni0268' : 616, 'uni0300' : 768, 'uni0301' : 769, 'uni0265' : 613, 'uni0264' : 612, 'uni0267' : 615, 'uni0266' : 614, 'uni0261' : 609, 'uni0260' : 608, 'uni0263' : 611, 'uni0262' : 610, 'a' : 97, 'uni2207' : 8711, 'uni2247' : 8775, 'uni2246' : 8774, 'uni2241' : 8769, 'uni2240' : 8768, 'uni2243' : 8771, 'uni2242' : 8770, 'uni2312' : 8978, 'ogonek' : 731, 'uni2249' : 8777, 'uni2248' : 8776, 'uni3030' : 12336, 'q' : 113, 'uni21C2' : 8642, 'uni21C1' : 8641, 'uni21C0' : 8640, 'uni21C7' : 8647, 'uni21C6' : 8646, 'uni21C5' : 8645, 'uni21C4' : 8644, 'uni225F' : 8799, 'uni212C' : 8492, 'uni21C8' : 8648, 'uni2467' : 9319, 'oacute' : 243, 'uni028F' : 655, 'uni028E' : 654, 'uni026F' : 623, 'uni028C' : 652, 'uni028B' : 651, 'uni028A' : 650, 'uni2510' : 9488, 'ograve' : 242, 'edieresis' : 235, 'uni22CE' : 8910, 'uni22CF' : 8911, 'uni219F' : 8607, 'comma' : 44, 'uni22CA' : 8906, 'uni0429' : 1065, 'uni03C6' : 966, 'uni0427' : 1063, 'uni0426' : 1062, 'uni0425' : 1061, 'uni0424' : 1060, 'uni0423' : 1059, 'uni0422' : 1058, 'uni0421' : 1057, 'uni0420' : 1056, 'uni2465' : 9317, 'uni24D0' : 9424, 'uni2464' : 9316, 'uni0430' : 1072, 'otilde' : 245, 'uni2661' : 9825, 'uni24D6' : 9430, 'uni2466' : 9318, 'uni24D5' : 9429, 'uni219A' : 8602, 'uni2518' : 9496, 'uni22B6' : 8886, 'uni2461' : 9313, 'uni24D4' : 9428, 'uni2460' : 9312, 'uni24EA' : 9450, 'guillemotright' : 187, 'ecircumflex' : 234, 'greater' : 62, 'uni2011' : 8209, 'uacute' : 250, 'uni2462' : 9314, 'L' : 76, 'bullet' : 8226, 'uni02A4' : 676, 'uni02A7' : 679, 'cedilla' : 184, 'uni02A2' : 674, 'uni2015' : 8213, 'uni22C4' : 8900, 'uni22C5' : 8901, 'uni22AD' : 8877, 'uni22C7' : 8903, 'uni22C0' : 8896, 'uni2016' : 8214, 'uni22C2' : 8898, 'uni22C3' : 8899, 'uni24CF' : 9423, 'uni042F' : 1071, 'uni042E' : 1070, 'uni042D' : 1069, 'ydieresis' : 255, 'l' : 108, 'logicalnot' : 172, 'uni24CA' : 9418, 'uni0287' : 647, 'uni0286' : 646, 'uni0285' : 645, 'uni0284' : 644, 'uni0283' : 643, 'uni0282' : 642, 'uni0281' : 641, 'uni027C' : 636, 'uni2664' : 9828, 'exclamdown' : 161, 'uni25C4' : 9668, 'uni0289' : 649, 'uni0288' : 648, 'uni039A' : 922, 'endash' : 8211, 'uni2640' : 9792, 'uni20E4' : 8420, 'uni0473' : 1139, 'uni20E1' : 8417, 'uni2642' : 9794, 'uni03B8' : 952, 'uni03B9' : 953, 'agrave' : 224, 'uni03B4' : 948, 'uni03B5' : 949, 'uni03B6' : 950, 'uni03B7' : 951, 'uni03B0' : 944, 'uni03B1' : 945, 'uni03B2' : 946, 'uni03B3' : 947, 'uni2555' : 9557, 'Adieresis' : 196, 'germandbls' : 223, 'Odieresis' : 214, 'space' : 32, 'uni0126' : 294, 'uni0127' : 295, 'uni0124' : 292, 'uni0125' : 293, 'uni0122' : 290, 'uni0123' : 291, 'uni0120' : 288, 'uni0121' : 289, 'quoteright' : 8217, 'uni2560' : 9568, 'uni2556' : 9558, 'ucircumflex' : 251, 'uni2561' : 9569, 'uni2551' : 9553, 'uni25B2' : 9650, 'uni2550' : 9552, 'uni2563' : 9571, 'uni2553' : 9555, 'G' : 71, 'uni2564' : 9572, 'uni2552' : 9554, 'quoteleft' : 8216, 'uni2565' : 9573, 'uni2572' : 9586, 'uni2568' : 9576, 'uni2566' : 9574, 'W' : 87, 'uni214A' : 8522, 'uni012F' : 303, 'uni012D' : 301, 'uni012E' : 302, 'uni012B' : 299, 'uni012C' : 300, 'uni255C' : 9564, 'uni012A' : 298, 'uni2289' : 8841, 'Q' : 81, 'uni2320' : 8992, 'uni2321' : 8993, 'g' : 103, 'uni03BD' : 957, 'uni03BE' : 958, 'uni03BF' : 959, 'uni2282' : 8834, 'uni2285' : 8837, 'uni03BA' : 954, 'uni03BB' : 955, 'uni03BC' : 956, 'uni2128' : 8488, 'uni25B7' : 9655, 'w' : 119, 'uni0302' : 770, 'uni03DE' : 990, 'uni25DA' : 9690, 'uni0303' : 771, 'uni0463' : 1123, 'uni0462' : 1122, 'uni3018' : 12312, 'uni2514' : 9492, 'question' : 63, 'uni25B3' : 9651, 'uni24E1' : 9441, 'one' : 49, 'uni200A' : 8202, 'uni2278' : 8824, 'ring' : 730, 'uni0195' : 405, 'figuredash' : 8210, 'uni22EC' : 8940, 'uni0339' : 825, 'uni0338' : 824, 'uni0337' : 823, 'uni0336' : 822, 'uni0335' : 821, 'uni0333' : 819, 'uni0332' : 818, 'uni0331' : 817, 'uni0330' : 816, 'uni01C1' : 449, 'uni01C0' : 448, 'uni01C3' : 451, 'uni01C2' : 450, 'uni2353' : 9043, 'uni0308' : 776, 'uni2218' : 8728, 'uni2219' : 8729, 'uni2216' : 8726, 'uni2217' : 8727, 'uni2214' : 8724, 'uni0309' : 777, 'uni2609' : 9737, 'uni2213' : 8723, 'uni2210' : 8720, 'uni2211' : 8721, 'uni2245' : 8773, 'B' : 66, 'uni25D6' : 9686, 'iacute' : 237, 'uni02E6' : 742, 'uni02E7' : 743, 'uni02E8' : 744, 'uni02E9' : 745, 'uni221D' : 8733, 'uni221E' : 8734, 'Ydieresis' : 376, 'uni221C' : 8732, 'uni22D7' : 8919, 'uni221A' : 8730, 'R' : 82, 'uni24DC' : 9436, 'uni033F' : 831, 'uni033E' : 830, 'uni033C' : 828, 'uni033B' : 827, 'uni033A' : 826, 'b' : 98, 'uni228A' : 8842, 'uni22DB' : 8923, 'uni2554' : 9556, 'uni046B' : 1131, 'uni046A' : 1130, 'r' : 114, 'uni24DB' : 9435, 'Ccedilla' : 199, 'minus' : 8722, 'uni24DA' : 9434, 'uni03F0' : 1008, 'uni03F1' : 1009, 'uni20AC' : 8364, 'uni2276' : 8822, 'uni24C0' : 9408, 'uni0162' : 354, 'uni0163' : 355, 'uni011E' : 286, 'uni011D' : 285, 'uni011C' : 284, 'uni011B' : 283, 'uni0164' : 356, 'uni0165' : 357, 'Lslash' : 321, 'uni0168' : 360, 'uni0169' : 361, 'uni25C9' : 9673, 'uni02E5' : 741, 'uni21C3' : 8643, 'uni24C4' : 9412, 'uni24E2' : 9442, 'uni2277' : 8823, 'uni013A' : 314, 'uni2102' : 8450, 'Uacute' : 218, 'uni2317' : 8983, 'uni2107' : 8455, 'uni221F' : 8735, 'yacute' : 253, 'uni3012' : 12306, 'Ucircumflex' : 219, 'uni015D' : 349, 'quotedbl' : 34, 'uni25D9' : 9689, 'uni2280' : 8832, 'uni22AF' : 8879, 'onehalf' : 189, 'uni221B' : 8731, 'Thorn' : 222, 'uni2226' : 8742, 'M' : 77, 'uni25BA' : 9658, 'uni2463' : 9315, 'uni2336' : 9014, 'eight' : 56, 'uni2236' : 8758, 'multiply' : 215, 'uni210C' : 8460, 'uni210A' : 8458, 'uni21C9' : 8649, 'grave' : 96, 'uni210E' : 8462, 'uni0117' : 279, 'uni016C' : 364, 'uni0115' : 277, 'uni016A' : 362, 'uni016F' : 367, 'uni0112' : 274, 'uni016D' : 365, 'uni016E' : 366, 'Ocircumflex' : 212, 'uni2305' : 8965, 'm' : 109, 'uni24DF' : 9439, 'uni0119' : 281, 'uni0118' : 280, 'uni20A3' : 8355, 'uni20A4' : 8356, 'uni20A7' : 8359, 'uni2288' : 8840, 'uni24C3' : 9411, 'uni251C' : 9500, 'uni228D' : 8845, 'uni222F' : 8751, 'uni222E' : 8750, 'uni222D' : 8749, 'uni222C' : 8748, 'uni222B' : 8747, 'uni222A' : 8746, 'uni255B' : 9563, 'Ugrave' : 217, 'uni24DE' : 9438, 'guilsinglright' : 8250, 'uni250A' : 9482, 'Ntilde' : 209, 'uni0279' : 633, 'questiondown' : 191, 'uni256C' : 9580, 'Atilde' : 195, 'uni0272' : 626, 'uni0273' : 627, 'uni0270' : 624, 'ccedilla' : 231, 'uni0276' : 630, 'uni0277' : 631, 'uni0274' : 628, 'uni0275' : 629, 'uni2252' : 8786, 'uni041F' : 1055, 'uni2250' : 8784, 'Z' : 90, 'uni2256' : 8790, 'uni2257' : 8791, 'copyright' : 169, 'uni2255' : 8789, 'uni043D' : 1085, 'uni043E' : 1086, 'uni043F' : 1087, 'yen' : 165, 'uni041D' : 1053, 'uni043B' : 1083, 'uni043C' : 1084, 'uni21B0' : 8624, 'uni21B1' : 8625, 'uni21B2' : 8626, 'uni21B3' : 8627, 'uni21B4' : 8628, 'uni21B5' : 8629, 'uni21B6' : 8630, 'uni21B7' : 8631, 'uni21B8' : 8632, 'Eacute' : 201, 'uni2311' : 8977, 'uni2310' : 8976, 'uni228F' : 8847, 'uni25DB' : 9691, 'uni21BA' : 8634, 'uni21BB' : 8635, 'uni21BC' : 8636, 'uni2017' : 8215, 'uni21BE' : 8638, 'uni21BF' : 8639, 'uni231C' : 8988, 'H' : 72, 'uni0293' : 659, 'uni2202' : 8706, 'uni22A4' : 8868, 'uni231E' : 8990, 'uni2232' : 8754, 'uni225B' : 8795, 'uni225C' : 8796, 'uni24D9' : 9433, 'uni225A' : 8794, 'uni0438' : 1080, 'uni0439' : 1081, 'uni225D' : 8797, 'uni225E' : 8798, 'uni0434' : 1076, 'X' : 88, 'uni007F' : 127, 'uni0437' : 1079, 'Idieresis' : 207, 'uni0431' : 1073, 'uni0432' : 1074, 'uni0433' : 1075, 'uni22AC' : 8876, 'uni22CD' : 8909, 'uni25A3' : 9635, 'bar' : 124, 'uni24BB' : 9403, 'uni037E' : 894, 'uni027B' : 635, 'h' : 104, 'uni027A' : 634, 'uni027F' : 639, 'uni027D' : 637, 'uni027E' : 638, 'uni2227' : 8743, 'uni2004' : 8196, 'uni2225' : 8741, 'uni2224' : 8740, 'uni2223' : 8739, 'uni2222' : 8738, 'uni2221' : 8737, 'uni2220' : 8736, 'x' : 120, 'uni2323' : 8995, 'uni2559' : 9561, 'uni2558' : 9560, 'uni2229' : 8745, 'uni2228' : 8744, 'udieresis' : 252, 'uni029D' : 669, 'ordfeminine' : 170, 'uni22CB' : 8907, 'uni233D' : 9021, 'uni0428' : 1064, 'uni24C6' : 9414, 'uni22DD' : 8925, 'uni24C7' : 9415, 'uni015C' : 348, 'uni015B' : 347, 'uni015A' : 346, 'uni22AA' : 8874, 'uni015F' : 351, 'uni015E' : 350, 'braceleft' : 123, 'uni24C5' : 9413, 'uni0410' : 1040, 'uni03AA' : 938, 'uni24C2' : 9410, 'uni03AC' : 940, 'uni03AB' : 939, 'macron' : 175, 'uni03AD' : 941, 'uni03AF' : 943, 'uni0294' : 660, 'uni0295' : 661, 'uni0296' : 662, 'uni0297' : 663, 'uni0290' : 656, 'uni0291' : 657, 'uni0292' : 658, 'atilde' : 227, 'Acircumflex' : 194, 'uni2370' : 9072, 'uni24C1' : 9409, 'uni0298' : 664, 'uni0299' : 665, 'Oslash' : 216, 'uni029E' : 670, 'C' : 67, 'quotedblleft' : 8220, 'uni029B' : 667, 'uni029C' : 668, 'uni03A9' : 937, 'uni03A8' : 936, 'S' : 83, 'uni24C9' : 9417, 'uni03A1' : 929, 'uni03A0' : 928, 'exclam' : 33, 'uni03A5' : 933, 'uni03A4' : 932, 'uni03A7' : 935, 'Zcaron' : 381, 'uni2133' : 8499, 'uni2132' : 8498, 'uni0159' : 345, 'uni0158' : 344, 'uni2137' : 8503, 'uni2005' : 8197, 'uni2135' : 8501, 'uni2134' : 8500, 'uni02BA' : 698, 'uni2033' : 8243, 'uni0151' : 337, 'uni0150' : 336, 'uni0157' : 343, 'equal' : 61, 'uni0155' : 341, 'uni0154' : 340, 's' : 115, 'uni233F' : 9023, 'eth' : 240, 'uni24BE' : 9406, 'uni21E9' : 8681, 'uni2060' : 8288, 'Egrave' : 200, 'uni255D' : 9565, 'uni24CD' : 9421, 'uni21E1' : 8673, 'uni21B9' : 8633, 'hyphen' : 45, 'uni01BE' : 446, 'uni01BB' : 443, 'period' : 46, 'igrave' : 236, 'uni01BA' : 442, 'uni2296' : 8854, 'uni2297' : 8855, 'uni2294' : 8852, 'uni2295' : 8853, 'colon' : 58, 'uni2293' : 8851, 'uni2290' : 8848, 'uni2291' : 8849, 'uni032D' : 813, 'uni032E' : 814, 'uni032F' : 815, 'uni032A' : 810, 'uni032B' : 811, 'uni032C' : 812, 'uni231D' : 8989, 'Ecircumflex' : 202, 'uni24D7' : 9431, 'uni25DD' : 9693, 'trademark' : 8482, 'Aacute' : 193, 'cent' : 162, 'uni0445' : 1093, 'uni266E' : 9838, 'uni266D' : 9837, 'uni266B' : 9835, 'uni03C9' : 969, 'uni2003' : 8195, 'uni2047' : 8263, 'lslash' : 322, 'uni03A6' : 934, 'uni2043' : 8259, 'uni250C' : 9484, 'uni2040' : 8256, 'uni255F' : 9567, 'uni24CB' : 9419, 'uni0472' : 1138, 'uni0446' : 1094, 'uni0474' : 1140, 'uni0475' : 1141, 'uni2508' : 9480, 'uni2660' : 9824, 'uni2506' : 9478, 'uni2502' : 9474, 'c' : 99, 'uni2500' : 9472, 'N' : 78, 'uni22A6' : 8870, 'uni21E7' : 8679, 'uni2130' : 8496, 'uni2002' : 8194, 'breve' : 728, 'uni0442' : 1090, 'Oacute' : 211, 'uni229F' : 8863, 'uni25C7' : 9671, 'uni229D' : 8861, 'uni229E' : 8862, 'guillemotleft' : 171, 'uni0329' : 809, 'uni24E5' : 9445, 'uni011F' : 287, 'uni0324' : 804, 'uni0325' : 805, 'uni0326' : 806, 'uni0327' : 807, 'uni0321' : 801, 'uni0322' : 802, 'n' : 110, 'uni2032' : 8242, 'uni2269' : 8809, 'uni2268' : 8808, 'uni0306' : 774, 'uni226B' : 8811, 'uni21EA' : 8682, 'uni0166' : 358, 'uni203B' : 8251, 'uni01B5' : 437, 'idieresis' : 239, 'uni02BC' : 700, 'uni01B0' : 432, 'braceright' : 125, 'seven' : 55, 'uni02BB' : 699, 'uni011A' : 282, 'uni29FB' : 10747, 'brokenbar' : 166, 'uni2036' : 8246, 'uni25C0' : 9664, 'uni0156' : 342, 'uni22D5' : 8917, 'uni0258' : 600, 'ugrave' : 249, 'uni22D6' : 8918, 'uni22D1' : 8913, 'uni2034' : 8244, 'uni22D3' : 8915, 'uni22D2' : 8914, 'uni203C' : 8252, 'uni223E' : 8766, 'uni02BF' : 703, 'uni22D9' : 8921, 'uni22D8' : 8920, 'uni25BD' : 9661, 'uni25BE' : 9662, 'uni25BF' : 9663, 'uni041B' : 1051, 'periodcentered' : 183, 'uni25BC' : 9660, 'uni019E' : 414, 'uni019B' : 411, 'uni019A' : 410, 'uni2007' : 8199, 'uni0391' : 913, 'uni0390' : 912, 'uni0393' : 915, 'uni0392' : 914, 'uni0395' : 917, 'uni0394' : 916, 'uni0397' : 919, 'uni0396' : 918, 'uni0399' : 921, 'uni0398' : 920, 'uni25C8' : 9672, 'uni2468' : 9320, 'sterling' : 163, 'uni22EB' : 8939, 'uni039C' : 924, 'uni039B' : 923, 'uni039E' : 926, 'uni039D' : 925, 'uni039F' : 927, 'I' : 73, 'uni03E1' : 993, 'uni03E0' : 992, 'uni2319' : 8985, 'uni228B' : 8843, 'uni25B5' : 9653, 'uni25B6' : 9654, 'uni22EA' : 8938, 'uni24B9' : 9401, 'uni044E' : 1102, 'uni0199' : 409, 'uni2266' : 8806, 'Y' : 89, 'uni22A2' : 8866, 'Eth' : 208, 'uni266F' : 9839, 'emdash' : 8212, 'uni263B' : 9787, 'uni24BD' : 9405, 'uni22DE' : 8926, 'uni0360' : 864, 'uni2557' : 9559, 'uni22DF' : 8927, 'uni22DA' : 8922, 'uni22DC' : 8924, 'uni0361' : 865, 'i' : 105, 'uni24BF' : 9407, 'uni0362' : 866, 'uni263E' : 9790, 'uni028D' : 653, 'uni2259' : 8793, 'uni0323' : 803, 'uni2265' : 8805, 'daggerdbl' : 8225, 'y' : 121, 'uni010A' : 266, 'plusminus' : 177, 'less' : 60, 'uni21AE' : 8622, 'uni0315' : 789, 'uni230B' : 8971, 'uni21AF' : 8623, 'uni21AA' : 8618, 'uni21AC' : 8620, 'uni21AB' : 8619, 'uni01FB' : 507, 'uni01FC' : 508, 'uni223A' : 8762, 'uni01FA' : 506, 'uni01FF' : 511, 'uni01FD' : 509, 'uni01FE' : 510, 'uni2567' : 9575, 'uni25E0' : 9696, 'uni0104' : 260, 'uni0105' : 261, 'uni0106' : 262, 'uni0107' : 263, 'uni0100' : 256, 'uni0101' : 257, 'uni0102' : 258, 'uni0103' : 259, 'uni2038' : 8248, 'uni2009' : 8201, 'uni2008' : 8200, 'uni0108' : 264, 'uni0109' : 265, 'uni02A1' : 673, 'uni223B' : 8763, 'uni226C' : 8812, 'uni25AC' : 9644, 'uni24D3' : 9427, 'uni21E0' : 8672, 'uni21E3' : 8675, 'Udieresis' : 220, 'uni21E2' : 8674, 'D' : 68, 'uni21E5' : 8677, 'uni2621' : 9761, 'uni21D1' : 8657, 'uni203E' : 8254, 'uni22C6' : 8902, 'uni21E4' : 8676, 'uni010D' : 269, 'uni010E' : 270, 'uni010F' : 271, 'five' : 53, 'T' : 84, 'uni010B' : 267, 'uni010C' : 268, 'uni2605' : 9733, 'uni2663' : 9827, 'uni21E6' : 8678, 'uni24B6' : 9398, 'uni22C1' : 8897, 'oslash' : 248, 'acute' : 180, 'uni01F0' : 496, 'd' : 100, 'OE' : 338, 'uni22E3' : 8931, 'Igrave' : 204, 'uni2308' : 8968, 'uni2309' : 8969, 'uni21A9' : 8617, 't' : 116, 'uni2313' : 8979, 'uni03A3' : 931, 'uni21A4' : 8612, 'uni21A7' : 8615, 'uni21A6' : 8614, 'uni21A1' : 8609, 'uni21A0' : 8608, 'uni21A3' : 8611, 'uni21A2' : 8610, 'parenright' : 41, 'uni256A' : 9578, 'uni25DC' : 9692, 'uni24CE' : 9422, 'uni042C' : 1068, 'uni24E0' : 9440, 'uni042B' : 1067, 'uni0409' : 1033, 'uni0408' : 1032, 'uni24E7' : 9447, 'uni25B4' : 9652, 'uni042A' : 1066, 'uni228E' : 8846, 'uni0401' : 1025, 'adieresis' : 228, 'uni0403' : 1027, 'quotesingle' : 39, 'uni0405' : 1029, 'uni0404' : 1028, 'uni0407' : 1031, 'uni0406' : 1030, 'uni229C' : 8860, 'uni2306' : 8966, 'uni2253' : 8787, 'twodotenleader' : 8229, 'uni2131' : 8497, 'uni21DA' : 8666, 'uni2234' : 8756, 'uni2235' : 8757, 'uni01A5' : 421, 'uni2237' : 8759, 'uni2230' : 8752, 'uni02CC' : 716, 'slash' : 47, 'uni01A0' : 416, 'ellipsis' : 8230, 'uni2299' : 8857, 'uni2238' : 8760, 'numbersign' : 35, 'uni21A8' : 8616, 'uni223D' : 8765, 'uni01AF' : 431, 'uni223F' : 8767, 'uni01AD' : 429, 'uni01AB' : 427, 'odieresis' : 246, 'uni223C' : 8764, 'uni227D' : 8829, 'uni0280' : 640, 'O' : 79, 'uni227E' : 8830, 'uni21A5' : 8613, 'uni22D4' : 8916, 'uni25D4' : 9684, 'uni227F' : 8831, 'uni0435' : 1077, 'uni2302' : 8962, 'uni2669' : 9833, 'uni24E3' : 9443, 'uni2720' : 10016, 'uni22A8' : 8872, 'uni22A9' : 8873, 'uni040A' : 1034, 'uni22A7' : 8871, 'oe' : 339, 'uni040B' : 1035, 'uni040E' : 1038, 'uni22A3' : 8867, 'o' : 111, 'uni040F' : 1039, 'Edieresis' : 203, 'uni25D5' : 9685, 'plus' : 43, 'uni044D' : 1101, 'uni263C' : 9788, 'uni22E6' : 8934, 'uni2283' : 8835, 'uni258C' : 9612, 'uni219E' : 8606, 'uni24E4' : 9444, 'uni2136' : 8502, 'dagger' : 8224, 'uni24B7' : 9399, 'uni219B' : 8603, 'uni22E5' : 8933, 'three' : 51, 'uni210B' : 8459, 'uni2534' : 9524, 'uni24B8' : 9400, 'uni230A' : 8970, 'hungarumlaut' : 733, 'parenleft' : 40, 'uni0148' : 328, 'uni0149' : 329, 'uni2124' : 8484, 'uni2125' : 8485, 'uni2126' : 8486, 'uni2127' : 8487, 'uni0140' : 320, 'uni2129' : 8489, 'uni25C5' : 9669, 'uni0143' : 323, 'uni0144' : 324, 'uni0145' : 325, 'uni0146' : 326, 'uni0147' : 327, 'uni210D' : 8461, 'fraction' : 8260, 'uni2031' : 8241, 'uni2196' : 8598, 'uni2035' : 8245, 'uni24E6' : 9446, 'uni016B' : 363, 'uni24BA' : 9402, 'uni266A' : 9834, 'uni0116' : 278, 'uni2115' : 8469, 'registered' : 174, 'J' : 74, 'uni25DF' : 9695, 'uni25CE' : 9678, 'uni273D' : 10045, 'dieresis' : 168, 'uni212B' : 8491, 'uni0114' : 276, 'uni212D' : 8493, 'uni212E' : 8494, 'uni212F' : 8495, 'uni014A' : 330, 'uni014B' : 331, 'uni014C' : 332, 'uni014D' : 333, 'uni014E' : 334, 'uni014F' : 335, 'uni025E' : 606, 'uni24E8' : 9448, 'uni0111' : 273, 'uni24E9' : 9449, 'Ograve' : 210, 'j' : 106, 'uni2195' : 8597, 'uni2194' : 8596, 'uni2197' : 8599, 'uni2037' : 8247, 'uni2191' : 8593, 'uni2190' : 8592, 'uni2193' : 8595, 'uni2192' : 8594, 'uni29FA' : 10746, 'uni2713' : 10003, 'z' : 122, 'uni2199' : 8601, 'uni2198' : 8600, 'uni2667' : 9831, 'ae' : 230, 'uni0448' : 1096, 'semicolon' : 59, 'uni2666' : 9830, 'uni038F' : 911, 'uni0444' : 1092, 'uni0447' : 1095, 'uni038E' : 910, 'uni0441' : 1089, 'uni038C' : 908, 'uni0443' : 1091, 'uni038A' : 906, 'uni0250' : 592, 'uni0251' : 593, 'uni0252' : 594, 'uni0253' : 595, 'uni0254' : 596, 'at' : 64, 'uni0256' : 598, 'uni0257' : 599, 'uni0167' : 359, 'uni0259' : 601, 'uni228C' : 8844, 'uni2662' : 9826, 'uni0319' : 793, 'uni0318' : 792, 'uni24BC' : 9404, 'uni0402' : 1026, 'uni22EF' : 8943, 'Iacute' : 205, 'uni22ED' : 8941, 'uni22EE' : 8942, 'uni0311' : 785, 'uni0310' : 784, 'uni21E8' : 8680, 'uni0312' : 786, 'percent' : 37, 'uni0317' : 791, 'uni0316' : 790, 'uni21D6' : 8662, 'uni21D7' : 8663, 'uni21D4' : 8660, 'uni21D5' : 8661, 'uni21D2' : 8658, 'uni21D3' : 8659, 'uni21D0' : 8656, 'uni2138' : 8504, 'uni2270' : 8816, 'uni2271' : 8817, 'uni2272' : 8818, 'uni2273' : 8819, 'uni2274' : 8820, 'uni2275' : 8821, 'bracketright' : 93, 'uni21D9' : 8665, 'uni21DF' : 8671, 'uni21DD' : 8669, 'uni21DE' : 8670, 'AE' : 198, 'uni03AE' : 942, 'uni227A' : 8826, 'uni227B' : 8827, 'uni227C' : 8828, 'asterisk' : 42, 'aacute' : 225, 'uni226F' : 8815, 'uni22E2' : 8930, 'uni0386' : 902, 'uni22E0' : 8928, 'uni22E1' : 8929, 'U' : 85, 'uni22E7' : 8935, 'uni22E4' : 8932, 'uni0387' : 903, 'uni031A' : 794, 'eacute' : 233, 'uni22E8' : 8936, 'uni22E9' : 8937, 'uni24D8' : 9432, 'uni025A' : 602, 'uni025B' : 603, 'uni025C' : 604, 'e' : 101, 'uni0128' : 296, 'uni025F' : 607, 'uni2665' : 9829, 'thorn' : 254, 'uni0129' : 297, 'uni253C' : 9532, 'uni25D7' : 9687, 'u' : 117, 'uni0388' : 904, 'uni0389' : 905, 'uni0255' : 597, 'uni0171' : 369, 'uni0384' : 900, 'uni0385' : 901, 'uni044A' : 1098, 'uni252C' : 9516, 'uni044C' : 1100, 'uni044B' : 1099 } uni2type1 = {v: k for k, v in type12uni.items()} tex2uni = { 'widehat' : 0x0302, 'widetilde' : 0x0303, 'widebar' : 0x0305, 'langle' : 0x27e8, 'rangle' : 0x27e9, 'perp' : 0x27c2, 'neq' : 0x2260, 'Join' : 0x2a1d, 'leqslant' : 0x2a7d, 'geqslant' : 0x2a7e, 'lessapprox' : 0x2a85, 'gtrapprox' : 0x2a86, 'lesseqqgtr' : 0x2a8b, 'gtreqqless' : 0x2a8c, 'triangleeq' : 0x225c, 'eqslantless' : 0x2a95, 'eqslantgtr' : 0x2a96, 'backepsilon' : 0x03f6, 'precapprox' : 0x2ab7, 'succapprox' : 0x2ab8, 'fallingdotseq' : 0x2252, 'subseteqq' : 0x2ac5, 'supseteqq' : 0x2ac6, 'varpropto' : 0x221d, 'precnapprox' : 0x2ab9, 'succnapprox' : 0x2aba, 'subsetneqq' : 0x2acb, 'supsetneqq' : 0x2acc, 'lnapprox' : 0x2ab9, 'gnapprox' : 0x2aba, 'longleftarrow' : 0x27f5, 'longrightarrow' : 0x27f6, 'longleftrightarrow' : 0x27f7, 'Longleftarrow' : 0x27f8, 'Longrightarrow' : 0x27f9, 'Longleftrightarrow' : 0x27fa, 'longmapsto' : 0x27fc, 'leadsto' : 0x21dd, 'dashleftarrow' : 0x290e, 'dashrightarrow' : 0x290f, 'circlearrowleft' : 0x21ba, 'circlearrowright' : 0x21bb, 'leftrightsquigarrow' : 0x21ad, 'leftsquigarrow' : 0x219c, 'rightsquigarrow' : 0x219d, 'Game' : 0x2141, 'hbar' : 0x0127, 'hslash' : 0x210f, 'ldots' : 0x2026, 'vdots' : 0x22ee, 'doteqdot' : 0x2251, 'doteq' : 8784, 'partial' : 8706, 'gg' : 8811, 'asymp' : 8781, 'blacktriangledown' : 9662, 'otimes' : 8855, 'nearrow' : 8599, 'varpi' : 982, 'vee' : 8744, 'vec' : 8407, 'smile' : 8995, 'succnsim' : 8937, 'gimel' : 8503, 'vert' : 124, '|' : 124, 'varrho' : 1009, 'P' : 182, 'approxident' : 8779, 'Swarrow' : 8665, 'textasciicircum' : 94, 'imageof' : 8887, 'ntriangleleft' : 8938, 'nleq' : 8816, 'div' : 247, 'nparallel' : 8742, 'Leftarrow' : 8656, 'lll' : 8920, 'oiint' : 8751, 'ngeq' : 8817, 'Theta' : 920, 'origof' : 8886, 'blacksquare' : 9632, 'solbar' : 9023, 'neg' : 172, 'sum' : 8721, 'Vdash' : 8873, 'coloneq' : 8788, 'degree' : 176, 'bowtie' : 8904, 'blacktriangleright' : 9654, 'varsigma' : 962, 'leq' : 8804, 'ggg' : 8921, 'lneqq' : 8808, 'scurel' : 8881, 'stareq' : 8795, 'BbbN' : 8469, 'nLeftarrow' : 8653, 'nLeftrightarrow' : 8654, 'k' : 808, 'bot' : 8869, 'BbbC' : 8450, 'Lsh' : 8624, 'leftleftarrows' : 8647, 'BbbZ' : 8484, 'digamma' : 989, 'BbbR' : 8477, 'BbbP' : 8473, 'BbbQ' : 8474, 'vartriangleright' : 8883, 'succsim' : 8831, 'wedge' : 8743, 'lessgtr' : 8822, 'veebar' : 8891, 'mapsdown' : 8615, 'Rsh' : 8625, 'chi' : 967, 'prec' : 8826, 'nsubseteq' : 8840, 'therefore' : 8756, 'eqcirc' : 8790, 'textexclamdown' : 161, 'nRightarrow' : 8655, 'flat' : 9837, 'notin' : 8713, 'llcorner' : 8990, 'varepsilon' : 949, 'bigtriangleup' : 9651, 'aleph' : 8501, 'dotminus' : 8760, 'upsilon' : 965, 'Lambda' : 923, 'cap' : 8745, 'barleftarrow' : 8676, 'mu' : 956, 'boxplus' : 8862, 'mp' : 8723, 'circledast' : 8859, 'tau' : 964, 'in' : 8712, 'backslash' : 92, 'varnothing' : 8709, 'sharp' : 9839, 'eqsim' : 8770, 'gnsim' : 8935, 'Searrow' : 8664, 'updownarrows' : 8645, 'heartsuit' : 9825, 'trianglelefteq' : 8884, 'ddag' : 8225, 'sqsubseteq' : 8849, 'mapsfrom' : 8612, 'boxbar' : 9707, 'sim' : 8764, 'Nwarrow' : 8662, 'nequiv' : 8802, 'succ' : 8827, 'vdash' : 8866, 'Leftrightarrow' : 8660, 'parallel' : 8741, 'invnot' : 8976, 'natural' : 9838, 'ss' : 223, 'uparrow' : 8593, 'nsim' : 8769, 'hookrightarrow' : 8618, 'Equiv' : 8803, 'approx' : 8776, 'Vvdash' : 8874, 'nsucc' : 8833, 'leftrightharpoons' : 8651, 'Re' : 8476, 'boxminus' : 8863, 'equiv' : 8801, 'Lleftarrow' : 8666, 'll' : 8810, 'Cup' : 8915, 'measeq' : 8798, 'upharpoonleft' : 8639, 'lq' : 8216, 'Upsilon' : 933, 'subsetneq' : 8842, 'greater' : 62, 'supsetneq' : 8843, 'Cap' : 8914, 'L' : 321, 'spadesuit' : 9824, 'lrcorner' : 8991, 'not' : 824, 'bar' : 772, 'rightharpoonaccent' : 8401, 'boxdot' : 8865, 'l' : 322, 'leftharpoondown' : 8637, 'bigcup' : 8899, 'iint' : 8748, 'bigwedge' : 8896, 'downharpoonleft' : 8643, 'textasciitilde' : 126, 'subset' : 8834, 'leqq' : 8806, 'mapsup' : 8613, 'nvDash' : 8877, 'looparrowleft' : 8619, 'nless' : 8814, 'rightarrowbar' : 8677, 'Vert' : 8214, 'downdownarrows' : 8650, 'uplus' : 8846, 'simeq' : 8771, 'napprox' : 8777, 'ast' : 8727, 'twoheaduparrow' : 8607, 'doublebarwedge' : 8966, 'Sigma' : 931, 'leftharpoonaccent' : 8400, 'ntrianglelefteq' : 8940, 'nexists' : 8708, 'times' : 215, 'measuredangle' : 8737, 'bumpeq' : 8783, 'carriagereturn' : 8629, 'adots' : 8944, 'checkmark' : 10003, 'lambda' : 955, 'xi' : 958, 'rbrace' : 125, 'rbrack' : 93, 'Nearrow' : 8663, 'maltese' : 10016, 'clubsuit' : 9827, 'top' : 8868, 'overarc' : 785, 'varphi' : 966, 'Delta' : 916, 'iota' : 953, 'nleftarrow' : 8602, 'candra' : 784, 'supset' : 8835, 'triangleleft' : 9665, 'gtreqless' : 8923, 'ntrianglerighteq' : 8941, 'quad' : 8195, 'Xi' : 926, 'gtrdot' : 8919, 'leftthreetimes' : 8907, 'minus' : 8722, 'preccurlyeq' : 8828, 'nleftrightarrow' : 8622, 'lambdabar' : 411, 'blacktriangle' : 9652, 'kernelcontraction' : 8763, 'Phi' : 934, 'angle' : 8736, 'spadesuitopen' : 9828, 'eqless' : 8924, 'mid' : 8739, 'varkappa' : 1008, 'Ldsh' : 8626, 'updownarrow' : 8597, 'beta' : 946, 'textquotedblleft' : 8220, 'rho' : 961, 'alpha' : 945, 'intercal' : 8890, 'beth' : 8502, 'grave' : 768, 'acwopencirclearrow' : 8634, 'nmid' : 8740, 'nsupset' : 8837, 'sigma' : 963, 'dot' : 775, 'Rightarrow' : 8658, 'turnednot' : 8985, 'backsimeq' : 8909, 'leftarrowtail' : 8610, 'approxeq' : 8778, 'curlyeqsucc' : 8927, 'rightarrowtail' : 8611, 'Psi' : 936, 'copyright' : 169, 'yen' : 165, 'vartriangleleft' : 8882, 'rasp' : 700, 'triangleright' : 9655, 'precsim' : 8830, 'infty' : 8734, 'geq' : 8805, 'updownarrowbar' : 8616, 'precnsim' : 8936, 'H' : 779, 'ulcorner' : 8988, 'looparrowright' : 8620, 'ncong' : 8775, 'downarrow' : 8595, 'circeq' : 8791, 'subseteq' : 8838, 'bigstar' : 9733, 'prime' : 8242, 'lceil' : 8968, 'Rrightarrow' : 8667, 'oiiint' : 8752, 'curlywedge' : 8911, 'vDash' : 8872, 'lfloor' : 8970, 'ddots' : 8945, 'exists' : 8707, 'underbar' : 817, 'Pi' : 928, 'leftrightarrows' : 8646, 'sphericalangle' : 8738, 'coprod' : 8720, 'circledcirc' : 8858, 'gtrsim' : 8819, 'gneqq' : 8809, 'between' : 8812, 'theta' : 952, 'complement' : 8705, 'arceq' : 8792, 'nVdash' : 8878, 'S' : 167, 'wr' : 8768, 'wp' : 8472, 'backcong' : 8780, 'lasp' : 701, 'c' : 807, 'nabla' : 8711, 'dotplus' : 8724, 'eta' : 951, 'forall' : 8704, 'eth' : 240, 'colon' : 58, 'sqcup' : 8852, 'rightrightarrows' : 8649, 'sqsupset' : 8848, 'mapsto' : 8614, 'bigtriangledown' : 9661, 'sqsupseteq' : 8850, 'propto' : 8733, 'pi' : 960, 'pm' : 177, 'dots' : 0x2026, 'nrightarrow' : 8603, 'textasciiacute' : 180, 'Doteq' : 8785, 'breve' : 774, 'sqcap' : 8851, 'twoheadrightarrow' : 8608, 'kappa' : 954, 'vartriangle' : 9653, 'diamondsuit' : 9826, 'pitchfork' : 8916, 'blacktriangleleft' : 9664, 'nprec' : 8832, 'curvearrowright' : 8631, 'barwedge' : 8892, 'multimap' : 8888, 'textquestiondown' : 191, 'cong' : 8773, 'rtimes' : 8906, 'rightzigzagarrow' : 8669, 'rightarrow' : 8594, 'leftarrow' : 8592, '__sqrt__' : 8730, 'twoheaddownarrow' : 8609, 'oint' : 8750, 'bigvee' : 8897, 'eqdef' : 8797, 'sterling' : 163, 'phi' : 981, 'Updownarrow' : 8661, 'backprime' : 8245, 'emdash' : 8212, 'Gamma' : 915, 'i' : 305, 'rceil' : 8969, 'leftharpoonup' : 8636, 'Im' : 8465, 'curvearrowleft' : 8630, 'wedgeq' : 8793, 'curlyeqprec' : 8926, 'questeq' : 8799, 'less' : 60, 'upuparrows' : 8648, 'tilde' : 771, 'textasciigrave' : 96, 'smallsetminus' : 8726, 'ell' : 8467, 'cup' : 8746, 'danger' : 9761, 'nVDash' : 8879, 'cdotp' : 183, 'cdots' : 8943, 'hat' : 770, 'eqgtr' : 8925, 'psi' : 968, 'frown' : 8994, 'acute' : 769, 'downzigzagarrow' : 8623, 'ntriangleright' : 8939, 'cupdot' : 8845, 'circleddash' : 8861, 'oslash' : 8856, 'mho' : 8487, 'd' : 803, 'sqsubset' : 8847, 'cdot' : 8901, 'Omega' : 937, 'OE' : 338, 'veeeq' : 8794, 'Finv' : 8498, 't' : 865, 'leftrightarrow' : 8596, 'swarrow' : 8601, 'rightthreetimes' : 8908, 'rightleftharpoons' : 8652, 'lesssim' : 8818, 'searrow' : 8600, 'because' : 8757, 'gtrless' : 8823, 'star' : 8902, 'nsubset' : 8836, 'zeta' : 950, 'dddot' : 8411, 'bigcirc' : 9675, 'Supset' : 8913, 'circ' : 8728, 'slash' : 8725, 'ocirc' : 778, 'prod' : 8719, 'twoheadleftarrow' : 8606, 'daleth' : 8504, 'upharpoonright' : 8638, 'odot' : 8857, 'Uparrow' : 8657, 'O' : 216, 'hookleftarrow' : 8617, 'trianglerighteq' : 8885, 'nsime' : 8772, 'oe' : 339, 'nwarrow' : 8598, 'o' : 248, 'ddddot' : 8412, 'downharpoonright' : 8642, 'succcurlyeq' : 8829, 'gamma' : 947, 'scrR' : 8475, 'dag' : 8224, 'thickspace' : 8197, 'frakZ' : 8488, 'lessdot' : 8918, 'triangledown' : 9663, 'ltimes' : 8905, 'scrB' : 8492, 'endash' : 8211, 'scrE' : 8496, 'scrF' : 8497, 'scrH' : 8459, 'scrI' : 8464, 'rightharpoondown' : 8641, 'scrL' : 8466, 'scrM' : 8499, 'frakC' : 8493, 'nsupseteq' : 8841, 'circledR' : 174, 'circledS' : 9416, 'ngtr' : 8815, 'bigcap' : 8898, 'scre' : 8495, 'Downarrow' : 8659, 'scrg' : 8458, 'overleftrightarrow' : 8417, 'scro' : 8500, 'lnsim' : 8934, 'eqcolon' : 8789, 'curlyvee' : 8910, 'urcorner' : 8989, 'lbrace' : 123, 'Bumpeq' : 8782, 'delta' : 948, 'boxtimes' : 8864, 'overleftarrow' : 8406, 'prurel' : 8880, 'clubsuitopen' : 9831, 'cwopencirclearrow' : 8635, 'geqq' : 8807, 'rightleftarrows' : 8644, 'ac' : 8766, 'ae' : 230, 'int' : 8747, 'rfloor' : 8971, 'risingdotseq' : 8787, 'nvdash' : 8876, 'diamond' : 8900, 'ddot' : 776, 'backsim' : 8765, 'oplus' : 8853, 'triangleq' : 8796, 'check' : 780, 'ni' : 8715, 'iiint' : 8749, 'ne' : 8800, 'lesseqgtr' : 8922, 'obar' : 9021, 'supseteq' : 8839, 'nu' : 957, 'AA' : 197, 'AE' : 198, 'models' : 8871, 'ominus' : 8854, 'dashv' : 8867, 'omega' : 969, 'rq' : 8217, 'Subset' : 8912, 'rightharpoonup' : 8640, 'Rdsh' : 8627, 'bullet' : 8729, 'divideontimes' : 8903, 'lbrack' : 91, 'textquotedblright' : 8221, 'Colon' : 8759, '%' : 37, '$' : 36, '{' : 123, '}' : 125, '_' : 95, '#' : 35, 'imath' : 0x131, 'circumflexaccent' : 770, 'combiningbreve' : 774, 'combiningoverline' : 772, 'combininggraveaccent' : 768, 'combiningacuteaccent' : 769, 'combiningdiaeresis' : 776, 'combiningtilde' : 771, 'combiningrightarrowabove' : 8407, 'combiningdotabove' : 775, 'to' : 8594, 'succeq' : 8829, 'emptyset' : 8709, 'leftparen' : 40, 'rightparen' : 41, 'bigoplus' : 10753, 'leftangle' : 10216, 'rightangle' : 10217, 'leftbrace' : 124, 'rightbrace' : 125, 'jmath' : 567, 'bigodot' : 10752, 'preceq' : 8828, 'biguplus' : 10756, 'epsilon' : 949, 'vartheta' : 977, 'bigotimes' : 10754, 'guillemotleft' : 171, 'ring' : 730, 'Thorn' : 222, 'guilsinglright' : 8250, 'perthousand' : 8240, 'macron' : 175, 'cent' : 162, 'guillemotright' : 187, 'equal' : 61, 'asterisk' : 42, 'guilsinglleft' : 8249, 'plus' : 43, 'thorn' : 254, 'dagger' : 8224 } # Each element is a 4-tuple of the form: # src_start, src_end, dst_font, dst_start # stix_virtual_fonts = { 'bb': { 'rm': [ (0x0030, 0x0039, 'rm', 0x1d7d8), # 0-9 (0x0041, 0x0042, 'rm', 0x1d538), # A-B (0x0043, 0x0043, 'rm', 0x2102), # C (0x0044, 0x0047, 'rm', 0x1d53b), # D-G (0x0048, 0x0048, 'rm', 0x210d), # H (0x0049, 0x004d, 'rm', 0x1d540), # I-M (0x004e, 0x004e, 'rm', 0x2115), # N (0x004f, 0x004f, 'rm', 0x1d546), # O (0x0050, 0x0051, 'rm', 0x2119), # P-Q (0x0052, 0x0052, 'rm', 0x211d), # R (0x0053, 0x0059, 'rm', 0x1d54a), # S-Y (0x005a, 0x005a, 'rm', 0x2124), # Z (0x0061, 0x007a, 'rm', 0x1d552), # a-z (0x0393, 0x0393, 'rm', 0x213e), # \Gamma (0x03a0, 0x03a0, 'rm', 0x213f), # \Pi (0x03a3, 0x03a3, 'rm', 0x2140), # \Sigma (0x03b3, 0x03b3, 'rm', 0x213d), # \gamma (0x03c0, 0x03c0, 'rm', 0x213c), # \pi ], 'it': [ (0x0030, 0x0039, 'rm', 0x1d7d8), # 0-9 (0x0041, 0x0042, 'it', 0xe154), # A-B (0x0043, 0x0043, 'it', 0x2102), # C (0x0044, 0x0044, 'it', 0x2145), # D (0x0045, 0x0047, 'it', 0xe156), # E-G (0x0048, 0x0048, 'it', 0x210d), # H (0x0049, 0x004d, 'it', 0xe159), # I-M (0x004e, 0x004e, 'it', 0x2115), # N (0x004f, 0x004f, 'it', 0xe15e), # O (0x0050, 0x0051, 'it', 0x2119), # P-Q (0x0052, 0x0052, 'it', 0x211d), # R (0x0053, 0x0059, 'it', 0xe15f), # S-Y (0x005a, 0x005a, 'it', 0x2124), # Z (0x0061, 0x0063, 'it', 0xe166), # a-c (0x0064, 0x0065, 'it', 0x2146), # d-e (0x0066, 0x0068, 'it', 0xe169), # f-h (0x0069, 0x006a, 'it', 0x2148), # i-j (0x006b, 0x007a, 'it', 0xe16c), # k-z (0x0393, 0x0393, 'it', 0x213e), # \Gamma (not in beta STIX fonts) (0x03a0, 0x03a0, 'it', 0x213f), # \Pi (0x03a3, 0x03a3, 'it', 0x2140), # \Sigma (not in beta STIX fonts) (0x03b3, 0x03b3, 'it', 0x213d), # \gamma (not in beta STIX fonts) (0x03c0, 0x03c0, 'it', 0x213c), # \pi ], 'bf': [ (0x0030, 0x0039, 'rm', 0x1d7d8), # 0-9 (0x0041, 0x0042, 'bf', 0xe38a), # A-B (0x0043, 0x0043, 'bf', 0x2102), # C (0x0044, 0x0044, 'bf', 0x2145), # D (0x0045, 0x0047, 'bf', 0xe38d), # E-G (0x0048, 0x0048, 'bf', 0x210d), # H (0x0049, 0x004d, 'bf', 0xe390), # I-M (0x004e, 0x004e, 'bf', 0x2115), # N (0x004f, 0x004f, 'bf', 0xe395), # O (0x0050, 0x0051, 'bf', 0x2119), # P-Q (0x0052, 0x0052, 'bf', 0x211d), # R (0x0053, 0x0059, 'bf', 0xe396), # S-Y (0x005a, 0x005a, 'bf', 0x2124), # Z (0x0061, 0x0063, 'bf', 0xe39d), # a-c (0x0064, 0x0065, 'bf', 0x2146), # d-e (0x0066, 0x0068, 'bf', 0xe3a2), # f-h (0x0069, 0x006a, 'bf', 0x2148), # i-j (0x006b, 0x007a, 'bf', 0xe3a7), # k-z (0x0393, 0x0393, 'bf', 0x213e), # \Gamma (0x03a0, 0x03a0, 'bf', 0x213f), # \Pi (0x03a3, 0x03a3, 'bf', 0x2140), # \Sigma (0x03b3, 0x03b3, 'bf', 0x213d), # \gamma (0x03c0, 0x03c0, 'bf', 0x213c), # \pi ], }, 'cal': [ (0x0041, 0x005a, 'it', 0xe22d), # A-Z ], 'circled': { 'rm': [ (0x0030, 0x0030, 'rm', 0x24ea), # 0 (0x0031, 0x0039, 'rm', 0x2460), # 1-9 (0x0041, 0x005a, 'rm', 0x24b6), # A-Z (0x0061, 0x007a, 'rm', 0x24d0) # a-z ], 'it': [ (0x0030, 0x0030, 'rm', 0x24ea), # 0 (0x0031, 0x0039, 'rm', 0x2460), # 1-9 (0x0041, 0x005a, 'it', 0x24b6), # A-Z (0x0061, 0x007a, 'it', 0x24d0) # a-z ], 'bf': [ (0x0030, 0x0030, 'bf', 0x24ea), # 0 (0x0031, 0x0039, 'bf', 0x2460), # 1-9 (0x0041, 0x005a, 'bf', 0x24b6), # A-Z (0x0061, 0x007a, 'bf', 0x24d0) # a-z ], }, 'frak': { 'rm': [ (0x0041, 0x0042, 'rm', 0x1d504), # A-B (0x0043, 0x0043, 'rm', 0x212d), # C (0x0044, 0x0047, 'rm', 0x1d507), # D-G (0x0048, 0x0048, 'rm', 0x210c), # H (0x0049, 0x0049, 'rm', 0x2111), # I (0x004a, 0x0051, 'rm', 0x1d50d), # J-Q (0x0052, 0x0052, 'rm', 0x211c), # R (0x0053, 0x0059, 'rm', 0x1d516), # S-Y (0x005a, 0x005a, 'rm', 0x2128), # Z (0x0061, 0x007a, 'rm', 0x1d51e), # a-z ], 'it': [ (0x0041, 0x0042, 'rm', 0x1d504), # A-B (0x0043, 0x0043, 'rm', 0x212d), # C (0x0044, 0x0047, 'rm', 0x1d507), # D-G (0x0048, 0x0048, 'rm', 0x210c), # H (0x0049, 0x0049, 'rm', 0x2111), # I (0x004a, 0x0051, 'rm', 0x1d50d), # J-Q (0x0052, 0x0052, 'rm', 0x211c), # R (0x0053, 0x0059, 'rm', 0x1d516), # S-Y (0x005a, 0x005a, 'rm', 0x2128), # Z (0x0061, 0x007a, 'rm', 0x1d51e), # a-z ], 'bf': [ (0x0041, 0x005a, 'bf', 0x1d56c), # A-Z (0x0061, 0x007a, 'bf', 0x1d586), # a-z ], }, 'scr': [ (0x0041, 0x0041, 'it', 0x1d49c), # A (0x0042, 0x0042, 'it', 0x212c), # B (0x0043, 0x0044, 'it', 0x1d49e), # C-D (0x0045, 0x0046, 'it', 0x2130), # E-F (0x0047, 0x0047, 'it', 0x1d4a2), # G (0x0048, 0x0048, 'it', 0x210b), # H (0x0049, 0x0049, 'it', 0x2110), # I (0x004a, 0x004b, 'it', 0x1d4a5), # J-K (0x004c, 0x004c, 'it', 0x2112), # L (0x004d, 0x004d, 'it', 0x2133), # M (0x004e, 0x0051, 'it', 0x1d4a9), # N-Q (0x0052, 0x0052, 'it', 0x211b), # R (0x0053, 0x005a, 'it', 0x1d4ae), # S-Z (0x0061, 0x0064, 'it', 0x1d4b6), # a-d (0x0065, 0x0065, 'it', 0x212f), # e (0x0066, 0x0066, 'it', 0x1d4bb), # f (0x0067, 0x0067, 'it', 0x210a), # g (0x0068, 0x006e, 'it', 0x1d4bd), # h-n (0x006f, 0x006f, 'it', 0x2134), # o (0x0070, 0x007a, 'it', 0x1d4c5), # p-z ], 'sf': { 'rm': [ (0x0030, 0x0039, 'rm', 0x1d7e2), # 0-9 (0x0041, 0x005a, 'rm', 0x1d5a0), # A-Z (0x0061, 0x007a, 'rm', 0x1d5ba), # a-z (0x0391, 0x03a9, 'rm', 0xe17d), # \Alpha-\Omega (0x03b1, 0x03c9, 'rm', 0xe196), # \alpha-\omega (0x03d1, 0x03d1, 'rm', 0xe1b0), # theta variant (0x03d5, 0x03d5, 'rm', 0xe1b1), # phi variant (0x03d6, 0x03d6, 'rm', 0xe1b3), # pi variant (0x03f1, 0x03f1, 'rm', 0xe1b2), # rho variant (0x03f5, 0x03f5, 'rm', 0xe1af), # lunate epsilon (0x2202, 0x2202, 'rm', 0xe17c), # partial differential ], 'it': [ # These numerals are actually upright. We don't actually # want italic numerals ever. (0x0030, 0x0039, 'rm', 0x1d7e2), # 0-9 (0x0041, 0x005a, 'it', 0x1d608), # A-Z (0x0061, 0x007a, 'it', 0x1d622), # a-z (0x0391, 0x03a9, 'rm', 0xe17d), # \Alpha-\Omega (0x03b1, 0x03c9, 'it', 0xe1d8), # \alpha-\omega (0x03d1, 0x03d1, 'it', 0xe1f2), # theta variant (0x03d5, 0x03d5, 'it', 0xe1f3), # phi variant (0x03d6, 0x03d6, 'it', 0xe1f5), # pi variant (0x03f1, 0x03f1, 'it', 0xe1f4), # rho variant (0x03f5, 0x03f5, 'it', 0xe1f1), # lunate epsilon ], 'bf': [ (0x0030, 0x0039, 'bf', 0x1d7ec), # 0-9 (0x0041, 0x005a, 'bf', 0x1d5d4), # A-Z (0x0061, 0x007a, 'bf', 0x1d5ee), # a-z (0x0391, 0x03a9, 'bf', 0x1d756), # \Alpha-\Omega (0x03b1, 0x03c9, 'bf', 0x1d770), # \alpha-\omega (0x03d1, 0x03d1, 'bf', 0x1d78b), # theta variant (0x03d5, 0x03d5, 'bf', 0x1d78d), # phi variant (0x03d6, 0x03d6, 'bf', 0x1d78f), # pi variant (0x03f0, 0x03f0, 'bf', 0x1d78c), # kappa variant (0x03f1, 0x03f1, 'bf', 0x1d78e), # rho variant (0x03f5, 0x03f5, 'bf', 0x1d78a), # lunate epsilon (0x2202, 0x2202, 'bf', 0x1d789), # partial differential (0x2207, 0x2207, 'bf', 0x1d76f), # \Nabla ], }, 'tt': [ (0x0030, 0x0039, 'rm', 0x1d7f6), # 0-9 (0x0041, 0x005a, 'rm', 0x1d670), # A-Z (0x0061, 0x007a, 'rm', 0x1d68a) # a-z ], }
6d000e5cf29f556a0190665b0b472445c95d80b27c78151ed88b13f1442981a6
""" This module is to support *bbox_inches* option in savefig command. """ from matplotlib.transforms import Bbox, TransformedBbox, Affine2D def adjust_bbox(fig, bbox_inches, fixed_dpi=None): """ Temporarily adjust the figure so that only the specified area (bbox_inches) is saved. It modifies fig.bbox, fig.bbox_inches, fig.transFigure._boxout, and fig.patch. While the figure size changes, the scale of the original figure is conserved. A function which restores the original values are returned. """ origBbox = fig.bbox origBboxInches = fig.bbox_inches orig_tight_layout = fig.get_tight_layout() _boxout = fig.transFigure._boxout fig.set_tight_layout(False) asp_list = [] locator_list = [] for ax in fig.axes: pos = ax.get_position(original=False).frozen() locator_list.append(ax.get_axes_locator()) asp_list.append(ax.get_aspect()) def _l(a, r, pos=pos): return pos ax.set_axes_locator(_l) ax.set_aspect("auto") def restore_bbox(): for ax, asp, loc in zip(fig.axes, asp_list, locator_list): ax.set_aspect(asp) ax.set_axes_locator(loc) fig.bbox = origBbox fig.bbox_inches = origBboxInches fig.set_tight_layout(orig_tight_layout) fig.transFigure._boxout = _boxout fig.transFigure.invalidate() fig.patch.set_bounds(0, 0, 1, 1) if fixed_dpi is not None: tr = Affine2D().scale(fixed_dpi) dpi_scale = fixed_dpi / fig.dpi else: tr = Affine2D().scale(fig.dpi) dpi_scale = 1. _bbox = TransformedBbox(bbox_inches, tr) fig.bbox_inches = Bbox.from_bounds(0, 0, bbox_inches.width, bbox_inches.height) x0, y0 = _bbox.x0, _bbox.y0 w1, h1 = fig.bbox.width * dpi_scale, fig.bbox.height * dpi_scale fig.transFigure._boxout = Bbox.from_bounds(-x0, -y0, w1, h1) fig.transFigure.invalidate() fig.bbox = TransformedBbox(fig.bbox_inches, tr) fig.patch.set_bounds(x0 / w1, y0 / h1, fig.bbox.width / w1, fig.bbox.height / h1) return restore_bbox def process_figure_for_rasterizing(fig, bbox_inches_restore, fixed_dpi=None): """ This need to be called when figure dpi changes during the drawing (e.g., rasterizing). It recovers the bbox and re-adjust it with the new dpi. """ bbox_inches, restore_bbox = bbox_inches_restore restore_bbox() r = adjust_bbox(fig, bbox_inches, fixed_dpi) return bbox_inches, r
8e90c1afa6ef9e58549cbc3c3975f5aada54ef0921da3373c480e70edcc0946f
r""" This module supports embedded TeX expressions in matplotlib via dvipng and dvips for the raster and postscript backends. The tex and dvipng/dvips information is cached in ~/.matplotlib/tex.cache for reuse between sessions Requirements: * latex * \*Agg backends: dvipng>=1.6 * PS backend: psfrag, dvips, and Ghostscript>=8.60 Backends: * \*Agg * PS * PDF For raster output, you can get RGBA numpy arrays from TeX expressions as follows:: texmanager = TexManager() s = ('\TeX\ is Number ' '$\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!') Z = texmanager.get_rgba(s, fontsize=12, dpi=80, rgb=(1,0,0)) To enable tex rendering of all text in your matplotlib figure, set :rc:`text.usetex` to True. """ import copy import functools import glob import hashlib import logging import os from pathlib import Path import re import subprocess import numpy as np import matplotlib as mpl from matplotlib import cbook, dviread, rcParams _log = logging.getLogger(__name__) class TexManager(object): """ Convert strings to dvi files using TeX, caching the results to a directory. Repeated calls to this constructor always return the same instance. """ cachedir = mpl.get_cachedir() if cachedir is not None: texcache = os.path.join(cachedir, 'tex.cache') Path(texcache).mkdir(parents=True, exist_ok=True) else: # Should only happen in a restricted environment (such as Google App # Engine). Deal with this gracefully by not creating a cache directory. texcache = None # Caches. rgba_arrayd = {} grey_arrayd = {} serif = ('cmr', '') sans_serif = ('cmss', '') monospace = ('cmtt', '') cursive = ('pzc', r'\usepackage{chancery}') font_family = 'serif' font_families = ('serif', 'sans-serif', 'cursive', 'monospace') font_info = { 'new century schoolbook': ('pnc', r'\renewcommand{\rmdefault}{pnc}'), 'bookman': ('pbk', r'\renewcommand{\rmdefault}{pbk}'), 'times': ('ptm', r'\usepackage{mathptmx}'), 'palatino': ('ppl', r'\usepackage{mathpazo}'), 'zapf chancery': ('pzc', r'\usepackage{chancery}'), 'cursive': ('pzc', r'\usepackage{chancery}'), 'charter': ('pch', r'\usepackage{charter}'), 'serif': ('cmr', ''), 'sans-serif': ('cmss', ''), 'helvetica': ('phv', r'\usepackage{helvet}'), 'avant garde': ('pag', r'\usepackage{avant}'), 'courier': ('pcr', r'\usepackage{courier}'), 'monospace': ('cmtt', ''), 'computer modern roman': ('cmr', ''), 'computer modern sans serif': ('cmss', ''), 'computer modern typewriter': ('cmtt', '')} _rc_cache = None _rc_cache_keys = ( ('text.latex.preamble', 'text.latex.unicode', 'text.latex.preview', 'font.family') + tuple('font.' + n for n in font_families)) @functools.lru_cache() # Always return the same instance. def __new__(cls): self = object.__new__(cls) self._reinit() return self def _reinit(self): if self.texcache is None: raise RuntimeError('Cannot create TexManager, as there is no ' 'cache directory available') Path(self.texcache).mkdir(parents=True, exist_ok=True) ff = rcParams['font.family'] if len(ff) == 1 and ff[0].lower() in self.font_families: self.font_family = ff[0].lower() elif isinstance(ff, str) and ff.lower() in self.font_families: self.font_family = ff.lower() else: _log.info('font.family must be one of (%s) when text.usetex is ' 'True. serif will be used by default.', ', '.join(self.font_families)) self.font_family = 'serif' fontconfig = [self.font_family] for font_family in self.font_families: font_family_attr = font_family.replace('-', '_') for font in rcParams['font.' + font_family]: if font.lower() in self.font_info: setattr(self, font_family_attr, self.font_info[font.lower()]) _log.debug('family: %s, font: %s, info: %s', font_family, font, self.font_info[font.lower()]) break else: _log.debug('%s font is not compatible with usetex.', font_family) else: _log.info('No LaTeX-compatible font found for the %s font ' 'family in rcParams. Using default.', font_family) setattr(self, font_family_attr, self.font_info[font_family]) fontconfig.append(getattr(self, font_family_attr)[0]) # Add a hash of the latex preamble to self._fontconfig so that the # correct png is selected for strings rendered with same font and dpi # even if the latex preamble changes within the session preamble_bytes = self.get_custom_preamble().encode('utf-8') fontconfig.append(hashlib.md5(preamble_bytes).hexdigest()) self._fontconfig = ''.join(fontconfig) # The following packages and commands need to be included in the latex # file's preamble: cmd = [self.serif[1], self.sans_serif[1], self.monospace[1]] if self.font_family == 'cursive': cmd.append(self.cursive[1]) self._font_preamble = '\n'.join( [r'\usepackage{type1cm}'] + cmd + [r'\usepackage{textcomp}']) def get_basefile(self, tex, fontsize, dpi=None): """ Return a filename based on a hash of the string, fontsize, and dpi. """ s = ''.join([tex, self.get_font_config(), '%f' % fontsize, self.get_custom_preamble(), str(dpi or '')]) return os.path.join( self.texcache, hashlib.md5(s.encode('utf-8')).hexdigest()) def get_font_config(self): """Reinitializes self if relevant rcParams on have changed.""" if self._rc_cache is None: self._rc_cache = dict.fromkeys(self._rc_cache_keys) changed = [par for par in self._rc_cache_keys if rcParams[par] != self._rc_cache[par]] if changed: _log.debug('following keys changed: %s', changed) for k in changed: _log.debug('%-20s: %-10s -> %-10s', k, self._rc_cache[k], rcParams[k]) # deepcopy may not be necessary, but feels more future-proof self._rc_cache[k] = copy.deepcopy(rcParams[k]) _log.debug('RE-INIT\nold fontconfig: %s', self._fontconfig) self._reinit() _log.debug('fontconfig: %s', self._fontconfig) return self._fontconfig def get_font_preamble(self): """ Return a string containing font configuration for the tex preamble. """ return self._font_preamble def get_custom_preamble(self): """Return a string containing user additions to the tex preamble.""" return rcParams['text.latex.preamble'] def make_tex(self, tex, fontsize): """ Generate a tex file to render the tex string at a specific font size. Return the file name. """ basefile = self.get_basefile(tex, fontsize) texfile = '%s.tex' % basefile custom_preamble = self.get_custom_preamble() fontcmd = {'sans-serif': r'{\sffamily %s}', 'monospace': r'{\ttfamily %s}'}.get(self.font_family, r'{\rmfamily %s}') tex = fontcmd % tex if rcParams['text.latex.unicode']: unicode_preamble = r""" \usepackage[utf8]{inputenc}""" else: unicode_preamble = '' s = r""" \documentclass{article} %s %s %s \usepackage[papersize={72in,72in},body={70in,70in},margin={1in,1in}]{geometry} \pagestyle{empty} \begin{document} \fontsize{%f}{%f}%s \end{document} """ % (self._font_preamble, unicode_preamble, custom_preamble, fontsize, fontsize * 1.25, tex) with open(texfile, 'wb') as fh: if rcParams['text.latex.unicode']: fh.write(s.encode('utf8')) else: try: fh.write(s.encode('ascii')) except UnicodeEncodeError as err: _log.info("You are using unicode and latex, but have not " "enabled the 'text.latex.unicode' rcParam.") raise return texfile _re_vbox = re.compile( r"MatplotlibBox:\(([\d.]+)pt\+([\d.]+)pt\)x([\d.]+)pt") def make_tex_preview(self, tex, fontsize): """ Generate a tex file to render the tex string at a specific font size. It uses the preview.sty to determine the dimension (width, height, descent) of the output. Return the file name. """ basefile = self.get_basefile(tex, fontsize) texfile = '%s.tex' % basefile custom_preamble = self.get_custom_preamble() fontcmd = {'sans-serif': r'{\sffamily %s}', 'monospace': r'{\ttfamily %s}'}.get(self.font_family, r'{\rmfamily %s}') tex = fontcmd % tex if rcParams['text.latex.unicode']: unicode_preamble = r""" \usepackage[utf8]{inputenc}""" else: unicode_preamble = '' # newbox, setbox, immediate, etc. are used to find the box # extent of the rendered text. s = r""" \documentclass{article} %s %s %s \usepackage[active,showbox,tightpage]{preview} \usepackage[papersize={72in,72in},body={70in,70in},margin={1in,1in}]{geometry} %% we override the default showbox as it is treated as an error and makes %% the exit status not zero \def\showbox#1%% {\immediate\write16{MatplotlibBox:(\the\ht#1+\the\dp#1)x\the\wd#1}} \begin{document} \begin{preview} {\fontsize{%f}{%f}%s} \end{preview} \end{document} """ % (self._font_preamble, unicode_preamble, custom_preamble, fontsize, fontsize * 1.25, tex) with open(texfile, 'wb') as fh: if rcParams['text.latex.unicode']: fh.write(s.encode('utf8')) else: try: fh.write(s.encode('ascii')) except UnicodeEncodeError as err: _log.info("You are using unicode and latex, but have not " "enabled the 'text.latex.unicode' rcParam.") raise return texfile def _run_checked_subprocess(self, command, tex): _log.debug(command) try: report = subprocess.check_output(command, cwd=self.texcache, stderr=subprocess.STDOUT) except FileNotFoundError as exc: raise RuntimeError( 'Failed to process string with tex because {} could not be ' 'found'.format(command[0])) from exc except subprocess.CalledProcessError as exc: raise RuntimeError( '{prog} was not able to process the following string:\n' '{tex!r}\n\n' 'Here is the full report generated by {prog}:\n' '{exc}\n\n'.format( prog=command[0], tex=tex.encode('unicode_escape'), exc=exc.output.decode('utf-8'))) from exc _log.debug(report) return report def make_dvi(self, tex, fontsize): """ Generate a dvi file containing latex's layout of tex string. Return the file name. """ if rcParams['text.latex.preview']: return self.make_dvi_preview(tex, fontsize) basefile = self.get_basefile(tex, fontsize) dvifile = '%s.dvi' % basefile if not os.path.exists(dvifile): texfile = self.make_tex(tex, fontsize) with cbook._lock_path(texfile): self._run_checked_subprocess( ["latex", "-interaction=nonstopmode", "--halt-on-error", texfile], tex) for fname in glob.glob(basefile + '*'): if not fname.endswith(('dvi', 'tex')): try: os.remove(fname) except OSError: pass return dvifile def make_dvi_preview(self, tex, fontsize): """ Generate a dvi file containing latex's layout of tex string. It calls make_tex_preview() method and store the size information (width, height, descent) in a separate file. Return the file name. """ basefile = self.get_basefile(tex, fontsize) dvifile = '%s.dvi' % basefile baselinefile = '%s.baseline' % basefile if not os.path.exists(dvifile) or not os.path.exists(baselinefile): texfile = self.make_tex_preview(tex, fontsize) report = self._run_checked_subprocess( ["latex", "-interaction=nonstopmode", "--halt-on-error", texfile], tex) # find the box extent information in the latex output # file and store them in ".baseline" file m = TexManager._re_vbox.search(report.decode("utf-8")) with open(basefile + '.baseline', "w") as fh: fh.write(" ".join(m.groups())) for fname in glob.glob(basefile + '*'): if not fname.endswith(('dvi', 'tex', 'baseline')): try: os.remove(fname) except OSError: pass return dvifile def make_png(self, tex, fontsize, dpi): """ Generate a png file containing latex's rendering of tex string. Return the file name. """ basefile = self.get_basefile(tex, fontsize, dpi) pngfile = '%s.png' % basefile # see get_rgba for a discussion of the background if not os.path.exists(pngfile): dvifile = self.make_dvi(tex, fontsize) self._run_checked_subprocess( ["dvipng", "-bg", "Transparent", "-D", str(dpi), "-T", "tight", "-o", pngfile, dvifile], tex) return pngfile def get_grey(self, tex, fontsize=None, dpi=None): """Return the alpha channel.""" from matplotlib import _png key = tex, self.get_font_config(), fontsize, dpi alpha = self.grey_arrayd.get(key) if alpha is None: pngfile = self.make_png(tex, fontsize, dpi) X = _png.read_png(os.path.join(self.texcache, pngfile)) self.grey_arrayd[key] = alpha = X[:, :, -1] return alpha def get_rgba(self, tex, fontsize=None, dpi=None, rgb=(0, 0, 0)): """Return latex's rendering of the tex string as an rgba array.""" if not fontsize: fontsize = rcParams['font.size'] if not dpi: dpi = rcParams['savefig.dpi'] r, g, b = rgb key = tex, self.get_font_config(), fontsize, dpi, tuple(rgb) Z = self.rgba_arrayd.get(key) if Z is None: alpha = self.get_grey(tex, fontsize, dpi) Z = np.dstack([r, g, b, alpha]) self.rgba_arrayd[key] = Z return Z def get_text_width_height_descent(self, tex, fontsize, renderer=None): """Return width, height and descent of the text.""" if tex.strip() == '': return 0, 0, 0 dpi_fraction = renderer.points_to_pixels(1.) if renderer else 1 if rcParams['text.latex.preview']: # use preview.sty basefile = self.get_basefile(tex, fontsize) baselinefile = '%s.baseline' % basefile if not os.path.exists(baselinefile): dvifile = self.make_dvi_preview(tex, fontsize) with open(baselinefile) as fh: l = fh.read().split() height, depth, width = [float(l1) * dpi_fraction for l1 in l] return width, height + depth, depth else: # use dviread. It sometimes returns a wrong descent. dvifile = self.make_dvi(tex, fontsize) with dviread.Dvi(dvifile, 72 * dpi_fraction) as dvi: page, = dvi # A total height (including the descent) needs to be returned. return page.width, page.height + page.descent, page.descent
5acd7815245c0f83f1e363b253dba791e8c5c13d0660fbdc5d81602af780a9cd
""" Matplotlib provides sophisticated date plotting capabilities, standing on the shoulders of python :mod:`datetime` and the add-on module :mod:`dateutil`. .. _date-format: Matplotlib date format ---------------------- Matplotlib represents dates using floating point numbers specifying the number of days since 0001-01-01 UTC, plus 1. For example, 0001-01-01, 06:00 is 1.25, not 0.25. Values < 1, i.e. dates before 0001-01-01 UTC are not supported. There are a number of helper functions to convert between :mod:`datetime` objects and Matplotlib dates: .. currentmodule:: matplotlib.dates .. autosummary:: :nosignatures: datestr2num date2num num2date num2timedelta epoch2num num2epoch mx2num drange .. note:: Like Python's datetime, mpl uses the Gregorian calendar for all conversions between dates and floating point numbers. This practice is not universal, and calendar differences can cause confusing differences between what Python and mpl give as the number of days since 0001-01-01 and what other software and databases yield. For example, the US Naval Observatory uses a calendar that switches from Julian to Gregorian in October, 1582. Hence, using their calculator, the number of days between 0001-01-01 and 2006-04-01 is 732403, whereas using the Gregorian calendar via the datetime module we find:: In [1]: date(2006, 4, 1).toordinal() - date(1, 1, 1).toordinal() Out[1]: 732401 All the Matplotlib date converters, tickers and formatters are timezone aware. If no explicit timezone is provided, the rcParam ``timezone`` is assumed. If you want to use a custom time zone, pass a :class:`datetime.tzinfo` instance with the tz keyword argument to :func:`num2date`, :func:`.plot_date`, and any custom date tickers or locators you create. A wide range of specific and general purpose date tick locators and formatters are provided in this module. See :mod:`matplotlib.ticker` for general information on tick locators and formatters. These are described below. The dateutil_ module provides additional code to handle date ticking, making it easy to place ticks on any kinds of dates. See examples below. .. _dateutil: https://dateutil.readthedocs.io Date tickers ------------ Most of the date tickers can locate single or multiple values. For example:: # import constants for the days of the week from matplotlib.dates import MO, TU, WE, TH, FR, SA, SU # tick on mondays every week loc = WeekdayLocator(byweekday=MO, tz=tz) # tick on mondays and saturdays loc = WeekdayLocator(byweekday=(MO, SA)) In addition, most of the constructors take an interval argument:: # tick on mondays every second week loc = WeekdayLocator(byweekday=MO, interval=2) The rrule locator allows completely general date ticking:: # tick every 5th easter rule = rrulewrapper(YEARLY, byeaster=1, interval=5) loc = RRuleLocator(rule) Here are all the date tickers: * :class:`MicrosecondLocator`: locate microseconds * :class:`SecondLocator`: locate seconds * :class:`MinuteLocator`: locate minutes * :class:`HourLocator`: locate hours * :class:`DayLocator`: locate specified days of the month * :class:`WeekdayLocator`: Locate days of the week, e.g., MO, TU * :class:`MonthLocator`: locate months, e.g., 7 for july * :class:`YearLocator`: locate years that are multiples of base * :class:`RRuleLocator`: locate using a `matplotlib.dates.rrulewrapper`. `.rrulewrapper` is a simple wrapper around dateutil_'s `dateutil.rrule` which allow almost arbitrary date tick specifications. See :doc:`rrule example </gallery/ticks_and_spines/date_demo_rrule>`. * :class:`AutoDateLocator`: On autoscale, this class picks the best :class:`DateLocator` (e.g., :class:`RRuleLocator`) to set the view limits and the tick locations. If called with ``interval_multiples=True`` it will make ticks line up with sensible multiples of the tick intervals. E.g. if the interval is 4 hours, it will pick hours 0, 4, 8, etc as ticks. This behaviour is not guaranteed by default. Date formatters --------------- Here all all the date formatters: * :class:`AutoDateFormatter`: attempts to figure out the best format to use. This is most useful when used with the :class:`AutoDateLocator`. * :class:`ConciseDateFormatter`: also attempts to figure out the best format to use, and to make the format as compact as possible while still having complete date information. This is most useful when used with the :class:`AutoDateLocator`. * :class:`DateFormatter`: use :func:`strftime` format strings * :class:`IndexDateFormatter`: date plots with implicit *x* indexing. """ import datetime import functools import logging import math import re import time import warnings from dateutil.rrule import (rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY) from dateutil.relativedelta import relativedelta import dateutil.parser import dateutil.tz import numpy as np import matplotlib from matplotlib import rcParams import matplotlib.units as units import matplotlib.cbook as cbook import matplotlib.ticker as ticker __all__ = ('datestr2num', 'date2num', 'num2date', 'num2timedelta', 'drange', 'epoch2num', 'num2epoch', 'mx2num', 'DateFormatter', 'ConciseDateFormatter', 'IndexDateFormatter', 'AutoDateFormatter', 'DateLocator', 'RRuleLocator', 'AutoDateLocator', 'YearLocator', 'MonthLocator', 'WeekdayLocator', 'DayLocator', 'HourLocator', 'MinuteLocator', 'SecondLocator', 'MicrosecondLocator', 'rrule', 'MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU', 'YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 'HOURLY', 'MINUTELY', 'SECONDLY', 'MICROSECONDLY', 'relativedelta', 'seconds', 'minutes', 'hours', 'weeks') _log = logging.getLogger(__name__) UTC = datetime.timezone.utc def _get_rc_timezone(): """Retrieve the preferred timezone from the rcParams dictionary.""" s = matplotlib.rcParams['timezone'] if s == 'UTC': return UTC return dateutil.tz.gettz(s) """ Time-related constants. """ EPOCH_OFFSET = float(datetime.datetime(1970, 1, 1).toordinal()) JULIAN_OFFSET = 1721424.5 # Julian date at 0001-01-01 MICROSECONDLY = SECONDLY + 1 HOURS_PER_DAY = 24. MIN_PER_HOUR = 60. SEC_PER_MIN = 60. MONTHS_PER_YEAR = 12. DAYS_PER_WEEK = 7. DAYS_PER_MONTH = 30. DAYS_PER_YEAR = 365.0 MINUTES_PER_DAY = MIN_PER_HOUR * HOURS_PER_DAY SEC_PER_HOUR = SEC_PER_MIN * MIN_PER_HOUR SEC_PER_DAY = SEC_PER_HOUR * HOURS_PER_DAY SEC_PER_WEEK = SEC_PER_DAY * DAYS_PER_WEEK MUSECONDS_PER_DAY = 1e6 * SEC_PER_DAY MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = ( MO, TU, WE, TH, FR, SA, SU) WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) def _to_ordinalf(dt): """ Convert :mod:`datetime` or :mod:`date` to the Gregorian date as UTC float days, preserving hours, minutes, seconds and microseconds. Return value is a :func:`float`. """ # Convert to UTC tzi = getattr(dt, 'tzinfo', None) if tzi is not None: dt = dt.astimezone(UTC) tzi = UTC base = float(dt.toordinal()) # If it's sufficiently datetime-like, it will have a `date()` method cdate = getattr(dt, 'date', lambda: None)() if cdate is not None: # Get a datetime object at midnight UTC midnight_time = datetime.time(0, tzinfo=tzi) rdt = datetime.datetime.combine(cdate, midnight_time) # Append the seconds as a fraction of a day base += (dt - rdt).total_seconds() / SEC_PER_DAY return base # a version of _to_ordinalf that can operate on numpy arrays _to_ordinalf_np_vectorized = np.vectorize(_to_ordinalf) def _dt64_to_ordinalf(d): """ Convert `numpy.datetime64` or an ndarray of those types to Gregorian date as UTC float. Roundoff is via float64 precision. Practically: microseconds for dates between 290301 BC, 294241 AD, milliseconds for larger dates (see `numpy.datetime64`). Nanoseconds aren't possible because we do times compared to ``0001-01-01T00:00:00`` (plus one day). """ # the "extra" ensures that we at least allow the dynamic range out to # seconds. That should get out to +/-2e11 years. extra = (d - d.astype('datetime64[s]')).astype('timedelta64[ns]') t0 = np.datetime64('0001-01-01T00:00:00', 's') dt = (d.astype('datetime64[s]') - t0).astype(np.float64) dt += extra.astype(np.float64) / 1.0e9 dt = dt / SEC_PER_DAY + 1.0 NaT_int = np.datetime64('NaT').astype(np.int64) d_int = d.astype(np.int64) try: dt[d_int == NaT_int] = np.nan except TypeError: if d_int == NaT_int: dt = np.nan return dt def _from_ordinalf(x, tz=None): """ Convert Gregorian float of the date, preserving hours, minutes, seconds and microseconds. Return value is a `.datetime`. The input date *x* is a float in ordinal days at UTC, and the output will be the specified `.datetime` object corresponding to that time in timezone *tz*, or if *tz* is ``None``, in the timezone specified in :rc:`timezone`. """ if tz is None: tz = _get_rc_timezone() ix, remainder = divmod(x, 1) ix = int(ix) if ix < 1: raise ValueError('Cannot convert {} to a date. This often happens if ' 'non-datetime values are passed to an axis that ' 'expects datetime objects.'.format(ix)) dt = datetime.datetime.fromordinal(ix).replace(tzinfo=UTC) # Since the input date `x` float is unable to preserve microsecond # precision of time representation in non-antique years, the # resulting datetime is rounded to the nearest multiple of # `musec_prec`. A value of 20 is appropriate for current dates. musec_prec = 20 remainder_musec = int(round(remainder * MUSECONDS_PER_DAY / musec_prec) * musec_prec) # For people trying to plot with full microsecond precision, enable # an early-year workaround if x < 30 * 365: remainder_musec = int(round(remainder * MUSECONDS_PER_DAY)) # add hours, minutes, seconds, microseconds dt += datetime.timedelta(microseconds=remainder_musec) return dt.astimezone(tz) # a version of _from_ordinalf that can operate on numpy arrays _from_ordinalf_np_vectorized = np.vectorize(_from_ordinalf) @cbook.deprecated( "3.1", alternative="time.strptime or dateutil.parser.parse or datestr2num") class strpdate2num(object): """ Use this class to parse date strings to matplotlib datenums when you know the date format string of the date you are parsing. """ def __init__(self, fmt): """ fmt: any valid strptime format is supported """ self.fmt = fmt def __call__(self, s): """s : string to be converted return value: a date2num float """ return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6])) @cbook.deprecated( "3.1", alternative="time.strptime or dateutil.parser.parse or datestr2num") class bytespdate2num(strpdate2num): """ Use this class to parse date strings to matplotlib datenums when you know the date format string of the date you are parsing. See :doc:`/gallery/misc/load_converter.py`. """ def __init__(self, fmt, encoding='utf-8'): """ Args: fmt: any valid strptime format is supported encoding: encoding to use on byte input (default: 'utf-8') """ super().__init__(fmt) self.encoding = encoding def __call__(self, b): """ Args: b: byte input to be converted Returns: A date2num float """ s = b.decode(self.encoding) return super().__call__(s) # a version of dateutil.parser.parse that can operate on numpy arrays _dateutil_parser_parse_np_vectorized = np.vectorize(dateutil.parser.parse) def datestr2num(d, default=None): """ Convert a date string to a datenum using :func:`dateutil.parser.parse`. Parameters ---------- d : string or sequence of strings The dates to convert. default : datetime instance, optional The default date to use when fields are missing in *d*. """ if isinstance(d, str): dt = dateutil.parser.parse(d, default=default) return date2num(dt) else: if default is not None: d = [dateutil.parser.parse(s, default=default) for s in d] d = np.asarray(d) if not d.size: return d return date2num(_dateutil_parser_parse_np_vectorized(d)) def date2num(d): """ Convert datetime objects to Matplotlib dates. Parameters ---------- d : `datetime.datetime` or `numpy.datetime64` or sequences of these Returns ------- float or sequence of floats Number of days (fraction part represents hours, minutes, seconds, ms) since 0001-01-01 00:00:00 UTC, plus one. Notes ----- The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not universal practice. For details see the module docstring. """ if hasattr(d, "values"): # this unpacks pandas series or dataframes... d = d.values if not np.iterable(d): if (isinstance(d, np.datetime64) or (isinstance(d, np.ndarray) and np.issubdtype(d.dtype, np.datetime64))): return _dt64_to_ordinalf(d) return _to_ordinalf(d) else: d = np.asarray(d) if np.issubdtype(d.dtype, np.datetime64): return _dt64_to_ordinalf(d) if not d.size: return d return _to_ordinalf_np_vectorized(d) def julian2num(j): """ Convert a Julian date (or sequence) to a Matplotlib date (or sequence). Parameters ---------- j : float or sequence of floats Julian date(s) Returns ------- float or sequence of floats Matplotlib date(s) """ if np.iterable(j): j = np.asarray(j) return j - JULIAN_OFFSET def num2julian(n): """ Convert a Matplotlib date (or sequence) to a Julian date (or sequence). Parameters ---------- n : float or sequence of floats Matplotlib date(s) Returns ------- float or sequence of floats Julian date(s) """ if np.iterable(n): n = np.asarray(n) return n + JULIAN_OFFSET def num2date(x, tz=None): """ Convert Matplotlib dates to `~datetime.datetime` objects. Parameters ---------- x : float or sequence of floats Number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC, plus one. tz : string, optional Timezone of *x* (defaults to rcparams ``timezone``). Returns ------- `~datetime.datetime` or sequence of `~datetime.datetime` Dates are returned in timezone *tz*. If *x* is a sequence, a sequence of :class:`datetime` objects will be returned. Notes ----- The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not universal practice. For details, see the module docstring. """ if tz is None: tz = _get_rc_timezone() if not np.iterable(x): return _from_ordinalf(x, tz) else: x = np.asarray(x) if not x.size: return x return _from_ordinalf_np_vectorized(x, tz).tolist() def _ordinalf_to_timedelta(x): return datetime.timedelta(days=x) _ordinalf_to_timedelta_np_vectorized = np.vectorize(_ordinalf_to_timedelta) def num2timedelta(x): """ Convert number of days to a `~datetime.timedelta` object. If *x* is a sequence, a sequence of `~datetime.timedelta` objects will be returned. Parameters ---------- x : float, sequence of floats Number of days. The fraction part represents hours, minutes, seconds. Returns ------- `datetime.timedelta` or list[`datetime.timedelta`] """ if not np.iterable(x): return _ordinalf_to_timedelta(x) else: x = np.asarray(x) if not x.size: return x return _ordinalf_to_timedelta_np_vectorized(x).tolist() def drange(dstart, dend, delta): """ Return a sequence of equally spaced Matplotlib dates. The dates start at *dstart* and reach up to, but not including *dend*. They are spaced by *delta*. Parameters ---------- dstart, dend : `~datetime.datetime` The date limits. delta : `datetime.timedelta` Spacing of the dates. Returns ------- drange : `numpy.array` A list floats representing Matplotlib dates. """ f1 = date2num(dstart) f2 = date2num(dend) step = delta.total_seconds() / SEC_PER_DAY # calculate the difference between dend and dstart in times of delta num = int(np.ceil((f2 - f1) / step)) # calculate end of the interval which will be generated dinterval_end = dstart + num * delta # ensure, that an half open interval will be generated [dstart, dend) if dinterval_end >= dend: # if the endpoint is greater than dend, just subtract one delta dinterval_end -= delta num -= 1 f2 = date2num(dinterval_end) # new float-endpoint return np.linspace(f1, f2, num + 1) ## date tickers and formatters ### class DateFormatter(ticker.Formatter): """ Tick location is seconds since the epoch. Use a :func:`strftime` format string. Python only supports :mod:`datetime` :func:`strftime` formatting for years greater than 1900. Thanks to Andrew Dalke, Dalke Scientific Software who contributed the :func:`strftime` code below to include dates earlier than this year. """ illegal_s = re.compile(r"((^|[^%])(%%)*%s)") def __init__(self, fmt, tz=None): """ *fmt* is a :func:`strftime` format string; *tz* is the :class:`tzinfo` instance. """ if tz is None: tz = _get_rc_timezone() self.fmt = fmt self.tz = tz def __call__(self, x, pos=0): if x == 0: raise ValueError('DateFormatter found a value of x=0, which is ' 'an illegal date; this usually occurs because ' 'you have not informed the axis that it is ' 'plotting dates, e.g., with ax.xaxis_date()') return num2date(x, self.tz).strftime(self.fmt) def set_tzinfo(self, tz): self.tz = tz @cbook.deprecated("3.0") def _replace_common_substr(self, s1, s2, sub1, sub2, replacement): """Helper function for replacing substrings sub1 and sub2 located at the same indexes in strings s1 and s2 respectively, with the string replacement. It is expected that sub1 and sub2 have the same length. Returns the pair s1, s2 after the substitutions. """ # Find common indexes of substrings sub1 in s1 and sub2 in s2 # and make substitutions inplace. Because this is inplace, # it is okay if len(replacement) != len(sub1), len(sub2). i = 0 while True: j = s1.find(sub1, i) if j == -1: break i = j + 1 if s2[j:j + len(sub2)] != sub2: continue s1 = s1[:j] + replacement + s1[j + len(sub1):] s2 = s2[:j] + replacement + s2[j + len(sub2):] return s1, s2 @cbook.deprecated("3.0") def strftime_pre_1900(self, dt, fmt=None): """Call time.strftime for years before 1900 by rolling forward a multiple of 28 years. *fmt* is a :func:`strftime` format string. Dalke: I hope I did this math right. Every 28 years the calendar repeats, except through century leap years excepting the 400 year leap years. But only if you're using the Gregorian calendar. """ if fmt is None: fmt = self.fmt # Since python's time module's strftime implementation does not # support %f microsecond (but the datetime module does), use a # regular expression substitution to replace instances of %f. # Note that this can be useful since python's floating-point # precision representation for datetime causes precision to be # more accurate closer to year 0 (around the year 2000, precision # can be at 10s of microseconds). fmt = re.sub(r'((^|[^%])(%%)*)%f', r'\g<1>{0:06d}'.format(dt.microsecond), fmt) year = dt.year # For every non-leap year century, advance by # 6 years to get into the 28-year repeat cycle delta = 2000 - year off = 6 * (delta // 100 + delta // 400) year = year + off # Move to between the years 1973 and 2000 year1 = year + ((2000 - year) // 28) * 28 year2 = year1 + 28 timetuple = dt.timetuple() # Generate timestamp string for year and year+28 s1 = time.strftime(fmt, (year1,) + timetuple[1:]) s2 = time.strftime(fmt, (year2,) + timetuple[1:]) # Replace instances of respective years (both 2-digit and 4-digit) # that are located at the same indexes of s1, s2 with dt's year. # Note that C++'s strftime implementation does not use padded # zeros or padded whitespace for %y or %Y for years before 100, but # uses padded zeros for %x. (For example, try the runnable examples # with .tm_year in the interval [-1900, -1800] on # http://en.cppreference.com/w/c/chrono/strftime.) For ease of # implementation, we always use padded zeros for %y, %Y, and %x. s1, s2 = self._replace_common_substr(s1, s2, "{0:04d}".format(year1), "{0:04d}".format(year2), "{0:04d}".format(dt.year)) s1, s2 = self._replace_common_substr(s1, s2, "{0:02d}".format(year1 % 100), "{0:02d}".format(year2 % 100), "{0:02d}".format(dt.year % 100)) return cbook.unicode_safe(s1) @cbook.deprecated("3.0") def strftime(self, dt, fmt=None): """ Refer to documentation for :meth:`datetime.datetime.strftime` *fmt* is a :meth:`datetime.datetime.strftime` format string. Warning: For years before 1900, depending upon the current locale it is possible that the year displayed with %x might be incorrect. For years before 100, %y and %Y will yield zero-padded strings. """ if fmt is None: fmt = self.fmt fmt = self.illegal_s.sub(r"\1", fmt) fmt = fmt.replace("%s", "s") if dt.year >= 1900: # Note: in python 3.3 this is okay for years >= 1000, # refer to http://bugs.python.org/issue1777412 return cbook.unicode_safe(dt.strftime(fmt)) return self.strftime_pre_1900(dt, fmt) class IndexDateFormatter(ticker.Formatter): """ Use with :class:`~matplotlib.ticker.IndexLocator` to cycle format strings by index. """ def __init__(self, t, fmt, tz=None): """ *t* is a sequence of dates (floating point days). *fmt* is a :func:`strftime` format string. """ if tz is None: tz = _get_rc_timezone() self.t = t self.fmt = fmt self.tz = tz def __call__(self, x, pos=0): 'Return the label for time *x* at position *pos*' ind = int(np.round(x)) if ind >= len(self.t) or ind <= 0: return '' return num2date(self.t[ind], self.tz).strftime(self.fmt) class ConciseDateFormatter(ticker.Formatter): """ This class attempts to figure out the best format to use for the date, and to make it as compact as possible, but still be complete. This is most useful when used with the :class:`AutoDateLocator`:: >>> locator = AutoDateLocator() >>> formatter = ConciseDateFormatter(locator) Parameters ---------- locator : `.ticker.Locator` Locator that this axis is using. tz : string, optional Passed to `.dates.date2num`. formats : list of 6 strings, optional Format strings for 6 levels of tick labelling: mostly years, months, days, hours, minutes, and seconds. Strings use the same format codes as `strftime`. Default is ``['%Y', '%b', '%d', '%H:%M', '%H:%M', '%S.%f']`` zero_formats : list of 6 strings, optional Format strings for tick labels that are "zeros" for a given tick level. For instance, if most ticks are months, ticks around 1 Jan 2005 will be labeled "Dec", "2005", "Feb". The default is ``['', '%Y', '%b', '%b-%d', '%H:%M', '%H:%M']`` offset_formats : list of 6 strings, optional Format strings for the 6 levels that is applied to the "offset" string found on the right side of an x-axis, or top of a y-axis. Combined with the tick labels this should completely specify the date. The default is:: ['', '%Y', '%Y-%b', '%Y-%b-%d', '%Y-%b-%d', '%Y-%b-%d %H:%M'] show_offset : bool Whether to show the offset or not. Default is ``True``. Examples -------- See :doc:`/gallery/ticks_and_spines/date_concise_formatter` .. plot:: import datetime import matplotlib.dates as mdates base = datetime.datetime(2005, 2, 1) dates = np.array([base + datetime.timedelta(hours=(2 * i)) for i in range(732)]) N = len(dates) np.random.seed(19680801) y = np.cumsum(np.random.randn(N)) fig, ax = plt.subplots(constrained_layout=True) locator = mdates.AutoDateLocator() formatter = mdates.ConciseDateFormatter(locator) ax.xaxis.set_major_locator(locator) ax.xaxis.set_major_formatter(formatter) ax.plot(dates, y) ax.set_title('Concise Date Formatter') """ def __init__(self, locator, tz=None, formats=None, offset_formats=None, zero_formats=None, show_offset=True): """ Autoformat the date labels. The default format is used to form an initial string, and then redundant elements are removed. """ self._locator = locator self._tz = tz self.defaultfmt = '%Y' # there are 6 levels with each level getting a specific format # 0: mostly years, 1: months, 2: days, # 3: hours, 4: minutes, 5: seconds if formats: if len(formats) != 6: raise ValueError('formats argument must be a list of ' '6 format strings (or None)') self.formats = formats else: self.formats = ['%Y', # ticks are mostly years '%b', # ticks are mostly months '%d', # ticks are mostly days '%H:%M', # hrs '%H:%M', # min '%S.%f', # secs ] # fmt for zeros ticks at this level. These are # ticks that should be labeled w/ info the level above. # like 1 Jan can just be labled "Jan". 02:02:00 can # just be labeled 02:02. if zero_formats: if len(formats) != 6: raise ValueError('zero_formats argument must be a list of ' '6 format strings (or None)') self.zero_formats = zero_formats elif formats: # use the users formats for the zero tick formats self.zero_formats = [''] + self.formats[:-1] else: # make the defaults a bit nicer: self.zero_formats = [''] + self.formats[:-1] self.zero_formats[3] = '%b-%d' if offset_formats: if len(offset_formats) != 6: raise ValueError('offsetfmts argument must be a list of ' '6 format strings (or None)') self.offset_formats = offset_formats else: self.offset_formats = ['', '%Y', '%Y-%b', '%Y-%b-%d', '%Y-%b-%d', '%Y-%b-%d %H:%M'] self.offset_string = '' self.show_offset = show_offset def __call__(self, x, pos=None): formatter = DateFormatter(self.defaultfmt, self._tz) return formatter(x, pos=pos) def format_ticks(self, values): tickdatetime = [num2date(value) for value in values] tickdate = np.array([tdt.timetuple()[:6] for tdt in tickdatetime]) # basic algorithm: # 1) only display a part of the date if it changes over the ticks. # 2) don't display the smaller part of the date if: # it is always the same or if it is the start of the # year, month, day etc. # fmt for most ticks at this level fmts = self.formats # format beginnings of days, months, years, etc... zerofmts = self.zero_formats # offset fmt are for the offset in the upper left of the # or lower right of the axis. offsetfmts = self.offset_formats # determine the level we will label at: # mostly 0: years, 1: months, 2: days, # 3: hours, 4: minutes, 5: seconds, 6: microseconds for level in range(5, -1, -1): if len(np.unique(tickdate[:, level])) > 1: break # level is the basic level we will label at. # now loop through and decide the actual ticklabels zerovals = [0, 1, 1, 0, 0, 0, 0] labels = [''] * len(tickdate) for nn in range(len(tickdate)): if level < 5: if tickdate[nn][level] == zerovals[level]: fmt = zerofmts[level] else: fmt = fmts[level] else: # special handling for seconds + microseconds if (tickdatetime[nn].second == tickdatetime[nn].microsecond == 0): fmt = zerofmts[level] else: fmt = fmts[level] labels[nn] = tickdatetime[nn].strftime(fmt) # special handling of seconds and microseconds: # strip extra zeros and decimal if possible. # this is complicated by two factors. 1) we have some level-4 strings # here (i.e. 03:00, '0.50000', '1.000') 2) we would like to have the # same number of decimals for each string (i.e. 0.5 and 1.0). if level >= 5: trailing_zeros = min( (len(s) - len(s.rstrip('0')) for s in labels if '.' in s), default=None) if trailing_zeros: for nn in range(len(labels)): if '.' in labels[nn]: labels[nn] = labels[nn][:-trailing_zeros].rstrip('.') if self.show_offset: # set the offset string: self.offset_string = tickdatetime[-1].strftime(offsetfmts[level]) return labels def get_offset(self): return self.offset_string def format_data_short(self, value): return num2date(value).strftime('%Y-%m-%d %H:%M:%S') class AutoDateFormatter(ticker.Formatter): """ This class attempts to figure out the best format to use. This is most useful when used with the :class:`AutoDateLocator`. The AutoDateFormatter has a scale dictionary that maps the scale of the tick (the distance in days between one major tick) and a format string. The default looks like this:: self.scaled = { DAYS_PER_YEAR: rcParams['date.autoformat.year'], DAYS_PER_MONTH: rcParams['date.autoformat.month'], 1.0: rcParams['date.autoformat.day'], 1. / HOURS_PER_DAY: rcParams['date.autoformat.hour'], 1. / (MINUTES_PER_DAY): rcParams['date.autoformat.minute'], 1. / (SEC_PER_DAY): rcParams['date.autoformat.second'], 1. / (MUSECONDS_PER_DAY): rcParams['date.autoformat.microsecond'], } The algorithm picks the key in the dictionary that is >= the current scale and uses that format string. You can customize this dictionary by doing:: >>> locator = AutoDateLocator() >>> formatter = AutoDateFormatter(locator) >>> formatter.scaled[1/(24.*60.)] = '%M:%S' # only show min and sec A custom :class:`~matplotlib.ticker.FuncFormatter` can also be used. The following example shows how to use a custom format function to strip trailing zeros from decimal seconds and adds the date to the first ticklabel:: >>> def my_format_function(x, pos=None): ... x = matplotlib.dates.num2date(x) ... if pos == 0: ... fmt = '%D %H:%M:%S.%f' ... else: ... fmt = '%H:%M:%S.%f' ... label = x.strftime(fmt) ... label = label.rstrip("0") ... label = label.rstrip(".") ... return label >>> from matplotlib.ticker import FuncFormatter >>> formatter.scaled[1/(24.*60.)] = FuncFormatter(my_format_function) """ # This can be improved by providing some user-level direction on # how to choose the best format (precedence, etc...) # Perhaps a 'struct' that has a field for each time-type where a # zero would indicate "don't show" and a number would indicate # "show" with some sort of priority. Same priorities could mean # show all with the same priority. # Or more simply, perhaps just a format string for each # possibility... def __init__(self, locator, tz=None, defaultfmt='%Y-%m-%d'): """ Autoformat the date labels. The default format is the one to use if none of the values in ``self.scaled`` are greater than the unit returned by ``locator._get_unit()``. """ self._locator = locator self._tz = tz self.defaultfmt = defaultfmt self._formatter = DateFormatter(self.defaultfmt, tz) self.scaled = {DAYS_PER_YEAR: rcParams['date.autoformatter.year'], DAYS_PER_MONTH: rcParams['date.autoformatter.month'], 1.0: rcParams['date.autoformatter.day'], 1. / HOURS_PER_DAY: rcParams['date.autoformatter.hour'], 1. / (MINUTES_PER_DAY): rcParams['date.autoformatter.minute'], 1. / (SEC_PER_DAY): rcParams['date.autoformatter.second'], 1. / (MUSECONDS_PER_DAY): rcParams['date.autoformatter.microsecond']} def _set_locator(self, locator): self._locator = locator def __call__(self, x, pos=None): try: locator_unit_scale = float(self._locator._get_unit()) except AttributeError: locator_unit_scale = 1 # Pick the first scale which is greater than the locator unit. fmt = next((fmt for scale, fmt in sorted(self.scaled.items()) if scale >= locator_unit_scale), self.defaultfmt) if isinstance(fmt, str): self._formatter = DateFormatter(fmt, self._tz) result = self._formatter(x, pos) elif callable(fmt): result = fmt(x, pos) else: raise TypeError('Unexpected type passed to {0!r}.'.format(self)) return result class rrulewrapper(object): def __init__(self, freq, tzinfo=None, **kwargs): kwargs['freq'] = freq self._base_tzinfo = tzinfo self._update_rrule(**kwargs) def set(self, **kwargs): self._construct.update(kwargs) self._update_rrule(**self._construct) def _update_rrule(self, **kwargs): tzinfo = self._base_tzinfo # rrule does not play nicely with time zones - especially pytz time # zones, it's best to use naive zones and attach timezones once the # datetimes are returned if 'dtstart' in kwargs: dtstart = kwargs['dtstart'] if dtstart.tzinfo is not None: if tzinfo is None: tzinfo = dtstart.tzinfo else: dtstart = dtstart.astimezone(tzinfo) kwargs['dtstart'] = dtstart.replace(tzinfo=None) if 'until' in kwargs: until = kwargs['until'] if until.tzinfo is not None: if tzinfo is not None: until = until.astimezone(tzinfo) else: raise ValueError('until cannot be aware if dtstart ' 'is naive and tzinfo is None') kwargs['until'] = until.replace(tzinfo=None) self._construct = kwargs.copy() self._tzinfo = tzinfo self._rrule = rrule(**self._construct) def _attach_tzinfo(self, dt, tzinfo): # pytz zones are attached by "localizing" the datetime if hasattr(tzinfo, 'localize'): return tzinfo.localize(dt, is_dst=True) return dt.replace(tzinfo=tzinfo) def _aware_return_wrapper(self, f, returns_list=False): """Decorator function that allows rrule methods to handle tzinfo.""" # This is only necessary if we're actually attaching a tzinfo if self._tzinfo is None: return f # All datetime arguments must be naive. If they are not naive, they are # converted to the _tzinfo zone before dropping the zone. def normalize_arg(arg): if isinstance(arg, datetime.datetime) and arg.tzinfo is not None: if arg.tzinfo is not self._tzinfo: arg = arg.astimezone(self._tzinfo) return arg.replace(tzinfo=None) return arg def normalize_args(args, kwargs): args = tuple(normalize_arg(arg) for arg in args) kwargs = {kw: normalize_arg(arg) for kw, arg in kwargs.items()} return args, kwargs # There are two kinds of functions we care about - ones that return # dates and ones that return lists of dates. if not returns_list: def inner_func(*args, **kwargs): args, kwargs = normalize_args(args, kwargs) dt = f(*args, **kwargs) return self._attach_tzinfo(dt, self._tzinfo) else: def inner_func(*args, **kwargs): args, kwargs = normalize_args(args, kwargs) dts = f(*args, **kwargs) return [self._attach_tzinfo(dt, self._tzinfo) for dt in dts] return functools.wraps(f)(inner_func) def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] f = getattr(self._rrule, name) if name in {'after', 'before'}: return self._aware_return_wrapper(f) elif name in {'xafter', 'xbefore', 'between'}: return self._aware_return_wrapper(f, returns_list=True) else: return f def __setstate__(self, state): self.__dict__.update(state) class DateLocator(ticker.Locator): """ Determines the tick locations when plotting dates. This class is subclassed by other Locators and is not meant to be used on its own. """ hms0d = {'byhour': 0, 'byminute': 0, 'bysecond': 0} def __init__(self, tz=None): """ *tz* is a :class:`tzinfo` instance. """ if tz is None: tz = _get_rc_timezone() self.tz = tz def set_tzinfo(self, tz): """ Set time zone info. """ self.tz = tz def datalim_to_dt(self): """ Convert axis data interval to datetime objects. """ dmin, dmax = self.axis.get_data_interval() if dmin > dmax: dmin, dmax = dmax, dmin if dmin < 1: raise ValueError('datalim minimum {} is less than 1 and ' 'is an invalid Matplotlib date value. This often ' 'happens if you pass a non-datetime ' 'value to an axis that has datetime units' .format(dmin)) return num2date(dmin, self.tz), num2date(dmax, self.tz) def viewlim_to_dt(self): """ Converts the view interval to datetime objects. """ vmin, vmax = self.axis.get_view_interval() if vmin > vmax: vmin, vmax = vmax, vmin if vmin < 1: raise ValueError('view limit minimum {} is less than 1 and ' 'is an invalid Matplotlib date value. This ' 'often happens if you pass a non-datetime ' 'value to an axis that has datetime units' .format(vmin)) return num2date(vmin, self.tz), num2date(vmax, self.tz) def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1 def _get_interval(self): """ Return the number of units for each tick. """ return 1 def nonsingular(self, vmin, vmax): """ Given the proposed upper and lower extent, adjust the range if it is too close to being singular (i.e. a range of ~0). """ unit = self._get_unit() interval = self._get_interval() if abs(vmax - vmin) < 1e-6: vmin -= 2 * unit * interval vmax += 2 * unit * interval return vmin, vmax class RRuleLocator(DateLocator): # use the dateutil rrule instance def __init__(self, o, tz=None): DateLocator.__init__(self, tz) self.rule = o def __call__(self): # if no data have been set, this will tank with a ValueError try: dmin, dmax = self.viewlim_to_dt() except ValueError: return [] return self.tick_values(dmin, dmax) def tick_values(self, vmin, vmax): delta = relativedelta(vmax, vmin) # We need to cap at the endpoints of valid datetime try: start = vmin - delta except (ValueError, OverflowError): start = _from_ordinalf(1.0) try: stop = vmax + delta except (ValueError, OverflowError): # The magic number! stop = _from_ordinalf(3652059.9999999) self.rule.set(dtstart=start, until=stop) dates = self.rule.between(vmin, vmax, True) if len(dates) == 0: return date2num([vmin, vmax]) return self.raise_if_exceeds(date2num(dates)) def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ freq = self.rule._rrule._freq return self.get_unit_generic(freq) @staticmethod def get_unit_generic(freq): if freq == YEARLY: return DAYS_PER_YEAR elif freq == MONTHLY: return DAYS_PER_MONTH elif freq == WEEKLY: return DAYS_PER_WEEK elif freq == DAILY: return 1.0 elif freq == HOURLY: return 1.0 / HOURS_PER_DAY elif freq == MINUTELY: return 1.0 / MINUTES_PER_DAY elif freq == SECONDLY: return 1.0 / SEC_PER_DAY else: # error return -1 # or should this just return '1'? def _get_interval(self): return self.rule._rrule._interval def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() delta = relativedelta(dmax, dmin) # We need to cap at the endpoints of valid datetime try: start = dmin - delta except ValueError: start = _from_ordinalf(1.0) try: stop = dmax + delta except ValueError: # The magic number! stop = _from_ordinalf(3652059.9999999) self.rule.set(dtstart=start, until=stop) dmin, dmax = self.datalim_to_dt() vmin = self.rule.before(dmin, True) if not vmin: vmin = dmin vmax = self.rule.after(dmax, True) if not vmax: vmax = dmax vmin = date2num(vmin) vmax = date2num(vmax) return self.nonsingular(vmin, vmax) class AutoDateLocator(DateLocator): """ On autoscale, this class picks the best :class:`DateLocator` to set the view limits and the tick locations. """ def __init__(self, tz=None, minticks=5, maxticks=None, interval_multiples=True): """ *minticks* is the minimum number of ticks desired, which is used to select the type of ticking (yearly, monthly, etc.). *maxticks* is the maximum number of ticks desired, which controls any interval between ticks (ticking every other, every 3, etc.). For really fine-grained control, this can be a dictionary mapping individual rrule frequency constants (YEARLY, MONTHLY, etc.) to their own maximum number of ticks. This can be used to keep the number of ticks appropriate to the format chosen in :class:`AutoDateFormatter`. Any frequency not specified in this dictionary is given a default value. *tz* is a :class:`tzinfo` instance. *interval_multiples* is a boolean that indicates whether ticks should be chosen to be multiple of the interval. This will lock ticks to 'nicer' locations. For example, this will force the ticks to be at hours 0,6,12,18 when hourly ticking is done at 6 hour intervals. The AutoDateLocator has an interval dictionary that maps the frequency of the tick (a constant from dateutil.rrule) and a multiple allowed for that ticking. The default looks like this:: self.intervald = { YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000, 2000, 4000, 5000, 10000], MONTHLY : [1, 2, 3, 4, 6], DAILY : [1, 2, 3, 7, 14], HOURLY : [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30], MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000], } The interval is used to specify multiples that are appropriate for the frequency of ticking. For instance, every 7 days is sensible for daily ticks, but for minutes/seconds, 15 or 30 make sense. You can customize this dictionary by doing:: locator = AutoDateLocator() locator.intervald[HOURLY] = [3] # only show every 3 hours """ DateLocator.__init__(self, tz) self._locator = YearLocator(tz=tz) self._freq = YEARLY self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY, SECONDLY, MICROSECONDLY] self.minticks = minticks self.maxticks = {YEARLY: 11, MONTHLY: 12, DAILY: 11, HOURLY: 12, MINUTELY: 11, SECONDLY: 11, MICROSECONDLY: 8} if maxticks is not None: try: self.maxticks.update(maxticks) except TypeError: # Assume we were given an integer. Use this as the maximum # number of ticks for every frequency and create a # dictionary for this self.maxticks = dict.fromkeys(self._freqs, maxticks) self.interval_multiples = interval_multiples self.intervald = { YEARLY: [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000, 2000, 4000, 5000, 10000], MONTHLY: [1, 2, 3, 4, 6], DAILY: [1, 2, 3, 7, 14, 21], HOURLY: [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30], MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000]} if interval_multiples: # Swap "3" for "4" in the DAILY list; If we use 3 we get bad # tick loc for months w/ 31 days: 1, 4,..., 28, 31, 1 # If we use 4 then we get: 1, 5, ... 25, 29, 1 self.intervald[DAILY] = [1, 2, 4, 7, 14, 21] self._byranges = [None, range(1, 13), range(1, 32), range(0, 24), range(0, 60), range(0, 60), None] def __call__(self): 'Return the locations of the ticks' self.refresh() return self._locator() def tick_values(self, vmin, vmax): return self.get_locator(vmin, vmax).tick_values(vmin, vmax) def nonsingular(self, vmin, vmax): # whatever is thrown at us, we can scale the unit. # But default nonsingular date plots at an ~4 year period. if vmin == vmax: vmin = vmin - DAYS_PER_YEAR * 2 vmax = vmax + DAYS_PER_YEAR * 2 return vmin, vmax def set_axis(self, axis): DateLocator.set_axis(self, axis) self._locator.set_axis(axis) def refresh(self): 'Refresh internal information based on current limits.' dmin, dmax = self.viewlim_to_dt() self._locator = self.get_locator(dmin, dmax) def _get_unit(self): if self._freq in [MICROSECONDLY]: return 1. / MUSECONDS_PER_DAY else: return RRuleLocator.get_unit_generic(self._freq) def autoscale(self): 'Try to choose the view limits intelligently.' dmin, dmax = self.datalim_to_dt() self._locator = self.get_locator(dmin, dmax) return self._locator.autoscale() def get_locator(self, dmin, dmax): 'Pick the best locator based on a distance.' delta = relativedelta(dmax, dmin) tdelta = dmax - dmin # take absolute difference if dmin > dmax: delta = -delta tdelta = -tdelta # The following uses a mix of calls to relativedelta and timedelta # methods because there is incomplete overlap in the functionality of # these similar functions, and it's best to avoid doing our own math # whenever possible. numYears = float(delta.years) numMonths = numYears * MONTHS_PER_YEAR + delta.months numDays = tdelta.days # Avoids estimates of days/month, days/year numHours = numDays * HOURS_PER_DAY + delta.hours numMinutes = numHours * MIN_PER_HOUR + delta.minutes numSeconds = np.floor(tdelta.total_seconds()) numMicroseconds = np.floor(tdelta.total_seconds() * 1e6) nums = [numYears, numMonths, numDays, numHours, numMinutes, numSeconds, numMicroseconds] use_rrule_locator = [True] * 6 + [False] # Default setting of bymonth, etc. to pass to rrule # [unused (for year), bymonth, bymonthday, byhour, byminute, # bysecond, unused (for microseconds)] byranges = [None, 1, 1, 0, 0, 0, None] # Loop over all the frequencies and try to find one that gives at # least a minticks tick positions. Once this is found, look for # an interval from an list specific to that frequency that gives no # more than maxticks tick positions. Also, set up some ranges # (bymonth, etc.) as appropriate to be passed to rrulewrapper. for i, (freq, num) in enumerate(zip(self._freqs, nums)): # If this particular frequency doesn't give enough ticks, continue if num < self.minticks: # Since we're not using this particular frequency, set # the corresponding by_ to None so the rrule can act as # appropriate byranges[i] = None continue # Find the first available interval that doesn't give too many # ticks for interval in self.intervald[freq]: if num <= interval * (self.maxticks[freq] - 1): break else: # We went through the whole loop without breaking, default to # the last interval in the list and raise a warning cbook._warn_external('AutoDateLocator was unable to pick an ' 'appropriate interval for this date ' 'range. It may be necessary to add an ' 'interval value to the ' 'AutoDateLocator\'s intervald ' 'dictionary. Defaulting to {0}.' .format(interval)) # Set some parameters as appropriate self._freq = freq if self._byranges[i] and self.interval_multiples: byranges[i] = self._byranges[i][::interval] if i in (DAILY, WEEKLY): if interval == 14: # just make first and 15th. Avoids 30th. byranges[i] = [1, 15] elif interval == 7: byranges[i] = [1, 8, 15, 22] interval = 1 else: byranges[i] = self._byranges[i] break else: raise ValueError('No sensible date limit could be found in the ' 'AutoDateLocator.') if (freq == YEARLY) and self.interval_multiples: locator = YearLocator(interval, tz=self.tz) elif use_rrule_locator[i]: _, bymonth, bymonthday, byhour, byminute, bysecond, _ = byranges rrule = rrulewrapper(self._freq, interval=interval, dtstart=dmin, until=dmax, bymonth=bymonth, bymonthday=bymonthday, byhour=byhour, byminute=byminute, bysecond=bysecond) locator = RRuleLocator(rrule, self.tz) else: locator = MicrosecondLocator(interval, tz=self.tz) if dmin.year > 20 and interval < 1000: _log.warning('Plotting microsecond time intervals is not well ' 'supported. Please see the MicrosecondLocator ' 'documentation for details.') locator.set_axis(self.axis) if self.axis is not None: locator.set_view_interval(*self.axis.get_view_interval()) locator.set_data_interval(*self.axis.get_data_interval()) return locator class YearLocator(DateLocator): """ Make ticks on a given day of each year that is a multiple of base. Examples:: # Tick every year on Jan 1st locator = YearLocator() # Tick every 5 years on July 4th locator = YearLocator(5, month=7, day=4) """ def __init__(self, base=1, month=1, day=1, tz=None): """ Mark years that are multiple of base on a given month and day (default jan 1). """ DateLocator.__init__(self, tz) self.base = ticker._Edge_integer(base, 0) self.replaced = {'month': month, 'day': day, 'hour': 0, 'minute': 0, 'second': 0, } if not hasattr(tz, 'localize'): # if tz is pytz, we need to do this w/ the localize fcn, # otherwise datetime.replace works fine... self.replaced['tzinfo'] = tz def __call__(self): # if no data have been set, this will tank with a ValueError try: dmin, dmax = self.viewlim_to_dt() except ValueError: return [] return self.tick_values(dmin, dmax) def tick_values(self, vmin, vmax): ymin = self.base.le(vmin.year) * self.base.step ymax = self.base.ge(vmax.year) * self.base.step vmin = vmin.replace(year=ymin, **self.replaced) if hasattr(self.tz, 'localize'): # look after pytz if not vmin.tzinfo: vmin = self.tz.localize(vmin, is_dst=True) ticks = [vmin] while True: dt = ticks[-1] if dt.year >= ymax: return date2num(ticks) year = dt.year + self.base.step dt = dt.replace(year=year, **self.replaced) if hasattr(self.tz, 'localize'): # look after pytz if not dt.tzinfo: dt = self.tz.localize(dt, is_dst=True) ticks.append(dt) def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() ymin = self.base.le(dmin.year) ymax = self.base.ge(dmax.year) vmin = dmin.replace(year=ymin, **self.replaced) vmin = vmin.astimezone(self.tz) vmax = dmax.replace(year=ymax, **self.replaced) vmax = vmax.astimezone(self.tz) vmin = date2num(vmin) vmax = date2num(vmax) return self.nonsingular(vmin, vmax) class MonthLocator(RRuleLocator): """ Make ticks on occurrences of each month, e.g., 1, 3, 12. """ def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None): """ Mark every month in *bymonth*; *bymonth* can be an int or sequence. Default is ``range(1,13)``, i.e. every month. *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if bymonth is None: bymonth = range(1, 13) elif isinstance(bymonth, np.ndarray): # This fixes a bug in dateutil <= 2.3 which prevents the use of # numpy arrays in (among other things) the bymonthday, byweekday # and bymonth parameters. bymonth = [x.item() for x in bymonth.astype(int)] rule = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, rule, tz) class WeekdayLocator(RRuleLocator): """ Make ticks on occurrences of each weekday. """ def __init__(self, byweekday=1, interval=1, tz=None): """ Mark every weekday in *byweekday*; *byweekday* can be a number or sequence. Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA, SU, the constants from :mod:`dateutil.rrule`, which have been imported into the :mod:`matplotlib.dates` namespace. *interval* specifies the number of weeks to skip. For example, ``interval=2`` plots every second week. """ if isinstance(byweekday, np.ndarray): # This fixes a bug in dateutil <= 2.3 which prevents the use of # numpy arrays in (among other things) the bymonthday, byweekday # and bymonth parameters. [x.item() for x in byweekday.astype(int)] rule = rrulewrapper(DAILY, byweekday=byweekday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, rule, tz) class DayLocator(RRuleLocator): """ Make ticks on occurrences of each day of the month. For example, 1, 15, 30. """ def __init__(self, bymonthday=None, interval=1, tz=None): """ Mark every day in *bymonthday*; *bymonthday* can be an int or sequence. Default is to tick every day of the month: ``bymonthday=range(1,32)`` """ if not interval == int(interval) or interval < 1: raise ValueError("interval must be an integer greater than 0") if bymonthday is None: bymonthday = range(1, 32) elif isinstance(bymonthday, np.ndarray): # This fixes a bug in dateutil <= 2.3 which prevents the use of # numpy arrays in (among other things) the bymonthday, byweekday # and bymonth parameters. bymonthday = [x.item() for x in bymonthday.astype(int)] rule = rrulewrapper(DAILY, bymonthday=bymonthday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, rule, tz) class HourLocator(RRuleLocator): """ Make ticks on occurrences of each hour. """ def __init__(self, byhour=None, interval=1, tz=None): """ Mark every hour in *byhour*; *byhour* can be an int or sequence. Default is to tick every hour: ``byhour=range(24)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if byhour is None: byhour = range(24) rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval, byminute=0, bysecond=0) RRuleLocator.__init__(self, rule, tz) class MinuteLocator(RRuleLocator): """ Make ticks on occurrences of each minute. """ def __init__(self, byminute=None, interval=1, tz=None): """ Mark every minute in *byminute*; *byminute* can be an int or sequence. Default is to tick every minute: ``byminute=range(60)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if byminute is None: byminute = range(60) rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval, bysecond=0) RRuleLocator.__init__(self, rule, tz) class SecondLocator(RRuleLocator): """ Make ticks on occurrences of each second. """ def __init__(self, bysecond=None, interval=1, tz=None): """ Mark every second in *bysecond*; *bysecond* can be an int or sequence. Default is to tick every second: ``bysecond = range(60)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if bysecond is None: bysecond = range(60) rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval) RRuleLocator.__init__(self, rule, tz) class MicrosecondLocator(DateLocator): """ Make ticks on regular intervals of one or more microsecond(s). .. note:: Due to the floating point representation of time in days since 0001-01-01 UTC (plus 1), plotting data with microsecond time resolution does not work well with current dates. If you want microsecond resolution time plots, it is strongly recommended to use floating point seconds, not datetime-like time representation. If you really must use datetime.datetime() or similar and still need microsecond precision, your only chance is to use very early years; using year 0001 is recommended. """ def __init__(self, interval=1, tz=None): """ *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second microsecond. """ self._interval = interval self._wrapped_locator = ticker.MultipleLocator(interval) self.tz = tz def set_axis(self, axis): self._wrapped_locator.set_axis(axis) return DateLocator.set_axis(self, axis) def set_view_interval(self, vmin, vmax): self._wrapped_locator.set_view_interval(vmin, vmax) return DateLocator.set_view_interval(self, vmin, vmax) def set_data_interval(self, vmin, vmax): self._wrapped_locator.set_data_interval(vmin, vmax) return DateLocator.set_data_interval(self, vmin, vmax) def __call__(self): # if no data have been set, this will tank with a ValueError try: dmin, dmax = self.viewlim_to_dt() except ValueError: return [] return self.tick_values(dmin, dmax) def tick_values(self, vmin, vmax): nmin, nmax = date2num((vmin, vmax)) nmin *= MUSECONDS_PER_DAY nmax *= MUSECONDS_PER_DAY ticks = self._wrapped_locator.tick_values(nmin, nmax) ticks = [tick / MUSECONDS_PER_DAY for tick in ticks] return ticks def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1. / MUSECONDS_PER_DAY def _get_interval(self): """ Return the number of units for each tick. """ return self._interval def epoch2num(e): """ Convert an epoch or sequence of epochs to the new date format, that is days since 0001. """ return EPOCH_OFFSET + np.asarray(e) / SEC_PER_DAY def num2epoch(d): """ Convert days since 0001 to epoch. *d* can be a number or sequence. """ return (np.asarray(d) - EPOCH_OFFSET) * SEC_PER_DAY def mx2num(mxdates): """ Convert mx :class:`datetime` instance (or sequence of mx instances) to the new date format. """ scalar = False if not np.iterable(mxdates): scalar = True mxdates = [mxdates] ret = epoch2num([m.ticks() for m in mxdates]) if scalar: return ret[0] else: return ret def date_ticker_factory(span, tz=None, numticks=5): """ Create a date locator with *numticks* (approx) and a date formatter for *span* in days. Return value is (locator, formatter). """ if span == 0: span = 1 / HOURS_PER_DAY mins = span * MINUTES_PER_DAY hrs = span * HOURS_PER_DAY days = span wks = span / DAYS_PER_WEEK months = span / DAYS_PER_MONTH # Approx years = span / DAYS_PER_YEAR # Approx if years > numticks: locator = YearLocator(int(years / numticks), tz=tz) # define fmt = '%Y' elif months > numticks: locator = MonthLocator(tz=tz) fmt = '%b %Y' elif wks > numticks: locator = WeekdayLocator(tz=tz) fmt = '%a, %b %d' elif days > numticks: locator = DayLocator(interval=math.ceil(days / numticks), tz=tz) fmt = '%b %d' elif hrs > numticks: locator = HourLocator(interval=math.ceil(hrs / numticks), tz=tz) fmt = '%H:%M\n%b %d' elif mins > numticks: locator = MinuteLocator(interval=math.ceil(mins / numticks), tz=tz) fmt = '%H:%M:%S' else: locator = MinuteLocator(tz=tz) fmt = '%H:%M:%S' formatter = DateFormatter(fmt, tz=tz) return locator, formatter @cbook.deprecated("3.1") def seconds(s): """ Return seconds as days. """ return s / SEC_PER_DAY @cbook.deprecated("3.1") def minutes(m): """ Return minutes as days. """ return m / MINUTES_PER_DAY @cbook.deprecated("3.1") def hours(h): """ Return hours as days. """ return h / HOURS_PER_DAY @cbook.deprecated("3.1") def weeks(w): """ Return weeks as days. """ return w * DAYS_PER_WEEK class DateConverter(units.ConversionInterface): """ Converter for datetime.date and datetime.datetime data, or for date/time data represented as it would be converted by :func:`date2num`. The 'unit' tag for such data is None or a tzinfo instance. """ @staticmethod def axisinfo(unit, axis): """ Return the :class:`~matplotlib.units.AxisInfo` for *unit*. *unit* is a tzinfo instance or None. The *axis* argument is required but not used. """ tz = unit majloc = AutoDateLocator(tz=tz) majfmt = AutoDateFormatter(majloc, tz=tz) datemin = datetime.date(2000, 1, 1) datemax = datetime.date(2010, 1, 1) return units.AxisInfo(majloc=majloc, majfmt=majfmt, label='', default_limits=(datemin, datemax)) @staticmethod def convert(value, unit, axis): """ If *value* is not already a number or sequence of numbers, convert it with :func:`date2num`. The *unit* and *axis* arguments are not used. """ return date2num(value) @staticmethod def default_units(x, axis): """ Return the tzinfo instance of *x* or of its first element, or None """ if isinstance(x, np.ndarray): x = x.ravel() try: x = cbook.safe_first_element(x) except (TypeError, StopIteration): pass try: return x.tzinfo except AttributeError: pass return None class ConciseDateConverter(DateConverter): """ Converter for datetime.date and datetime.datetime data, or for date/time data represented as it would be converted by :func:`date2num`. The 'unit' tag for such data is None or a tzinfo instance. """ def __init__(self, formats=None, zero_formats=None, offset_formats=None, show_offset=True): self._formats = formats self._zero_formats = zero_formats self._offset_formats = offset_formats self._show_offset = show_offset super().__init__() def axisinfo(self, unit, axis): """ Return the :class:`~matplotlib.units.AxisInfo` for *unit*. *unit* is a tzinfo instance or None. The *axis* argument is required but not used. """ tz = unit majloc = AutoDateLocator(tz=tz) majfmt = ConciseDateFormatter(majloc, tz=tz, formats=self._formats, zero_formats=self._zero_formats, offset_formats=self._offset_formats, show_offset=self._show_offset) datemin = datetime.date(2000, 1, 1) datemax = datetime.date(2010, 1, 1) return units.AxisInfo(majloc=majloc, majfmt=majfmt, label='', default_limits=(datemin, datemax)) units.registry[np.datetime64] = DateConverter() units.registry[datetime.date] = DateConverter() units.registry[datetime.datetime] = DateConverter()
935fd029396c277842ba1886ac4d3c4954c79fe91e54607181237d00fdb79280
""" Module for creating Sankey diagrams using Matplotlib. """ import logging from types import SimpleNamespace import numpy as np from matplotlib.path import Path from matplotlib.patches import PathPatch from matplotlib.transforms import Affine2D from matplotlib import docstring from matplotlib import rcParams _log = logging.getLogger(__name__) __author__ = "Kevin L. Davies" __credits__ = ["Yannick Copin"] __license__ = "BSD" __version__ = "2011/09/16" # Angles [deg/90] RIGHT = 0 UP = 1 # LEFT = 2 DOWN = 3 class Sankey(object): """ Sankey diagram. Sankey diagrams are a specific type of flow diagram, in which the width of the arrows is shown proportionally to the flow quantity. They are typically used to visualize energy or material or cost transfers between processes. `Wikipedia (6/1/2011) <https://en.wikipedia.org/wiki/Sankey_diagram>`_ """ def __init__(self, ax=None, scale=1.0, unit='', format='%G', gap=0.25, radius=0.1, shoulder=0.03, offset=0.15, head_angle=100, margin=0.4, tolerance=1e-6, **kwargs): """ Create a new Sankey instance. Optional keyword arguments: =============== =================================================== Field Description =============== =================================================== *ax* axes onto which the data should be plotted If *ax* isn't provided, new axes will be created. *scale* scaling factor for the flows *scale* sizes the width of the paths in order to maintain proper layout. The same scale is applied to all subdiagrams. The value should be chosen such that the product of the scale and the sum of the inputs is approximately 1.0 (and the product of the scale and the sum of the outputs is approximately -1.0). *unit* string representing the physical unit associated with the flow quantities If *unit* is None, then none of the quantities are labeled. *format* a Python number formatting string to be used in labeling the flow as a quantity (i.e., a number times a unit, where the unit is given) *gap* space between paths that break in/break away to/from the top or bottom *radius* inner radius of the vertical paths *shoulder* size of the shoulders of output arrowS *offset* text offset (from the dip or tip of the arrow) *head_angle* angle of the arrow heads (and negative of the angle of the tails) [deg] *margin* minimum space between Sankey outlines and the edge of the plot area *tolerance* acceptable maximum of the magnitude of the sum of flows The magnitude of the sum of connected flows cannot be greater than *tolerance*. =============== =================================================== The optional arguments listed above are applied to all subdiagrams so that there is consistent alignment and formatting. If :class:`Sankey` is instantiated with any keyword arguments other than those explicitly listed above (``**kwargs``), they will be passed to :meth:`add`, which will create the first subdiagram. In order to draw a complex Sankey diagram, create an instance of :class:`Sankey` by calling it without any kwargs:: sankey = Sankey() Then add simple Sankey sub-diagrams:: sankey.add() # 1 sankey.add() # 2 #... sankey.add() # n Finally, create the full diagram:: sankey.finish() Or, instead, simply daisy-chain those calls:: Sankey().add().add... .add().finish() See Also -------- Sankey.add Sankey.finish Examples -------- .. plot:: gallery/specialty_plots/sankey_basics.py """ # Check the arguments. if gap < 0: raise ValueError( "'gap' is negative, which is not allowed because it would " "cause the paths to overlap") if radius > gap: raise ValueError( "'radius' is greater than 'gap', which is not allowed because " "it would cause the paths to overlap") if head_angle < 0: raise ValueError( "'head_angle' is negative, which is not allowed because it " "would cause inputs to look like outputs and vice versa") if tolerance < 0: raise ValueError( "'tolerance' is negative, but it must be a magnitude") # Create axes if necessary. if ax is None: import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[]) self.diagrams = [] # Store the inputs. self.ax = ax self.unit = unit self.format = format self.scale = scale self.gap = gap self.radius = radius self.shoulder = shoulder self.offset = offset self.margin = margin self.pitch = np.tan(np.pi * (1 - head_angle / 180.0) / 2.0) self.tolerance = tolerance # Initialize the vertices of tight box around the diagram(s). self.extent = np.array((np.inf, -np.inf, np.inf, -np.inf)) # If there are any kwargs, create the first subdiagram. if len(kwargs): self.add(**kwargs) def _arc(self, quadrant=0, cw=True, radius=1, center=(0, 0)): """ Return the codes and vertices for a rotated, scaled, and translated 90 degree arc. Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *quadrant* uses 0-based indexing (0, 1, 2, or 3) *cw* if True, clockwise *center* (x, y) tuple of the arc's center =============== ========================================== """ # Note: It would be possible to use matplotlib's transforms to rotate, # scale, and translate the arc, but since the angles are discrete, # it's just as easy and maybe more efficient to do it here. ARC_CODES = [Path.LINETO, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4] # Vertices of a cubic Bezier curve approximating a 90 deg arc # These can be determined by Path.arc(0,90). ARC_VERTICES = np.array([[1.00000000e+00, 0.00000000e+00], [1.00000000e+00, 2.65114773e-01], [8.94571235e-01, 5.19642327e-01], [7.07106781e-01, 7.07106781e-01], [5.19642327e-01, 8.94571235e-01], [2.65114773e-01, 1.00000000e+00], # Insignificant # [6.12303177e-17, 1.00000000e+00]]) [0.00000000e+00, 1.00000000e+00]]) if quadrant == 0 or quadrant == 2: if cw: vertices = ARC_VERTICES else: vertices = ARC_VERTICES[:, ::-1] # Swap x and y. elif quadrant == 1 or quadrant == 3: # Negate x. if cw: # Swap x and y. vertices = np.column_stack((-ARC_VERTICES[:, 1], ARC_VERTICES[:, 0])) else: vertices = np.column_stack((-ARC_VERTICES[:, 0], ARC_VERTICES[:, 1])) if quadrant > 1: radius = -radius # Rotate 180 deg. return list(zip(ARC_CODES, radius * vertices + np.tile(center, (ARC_VERTICES.shape[0], 1)))) def _add_input(self, path, angle, flow, length): """ Add an input to a path and return its tip and label locations. """ if angle is None: return [0, 0], [0, 0] else: x, y = path[-1][1] # Use the last point as a reference. dipdepth = (flow / 2) * self.pitch if angle == RIGHT: x -= length dip = [x + dipdepth, y + flow / 2.0] path.extend([(Path.LINETO, [x, y]), (Path.LINETO, dip), (Path.LINETO, [x, y + flow]), (Path.LINETO, [x + self.gap, y + flow])]) label_location = [dip[0] - self.offset, dip[1]] else: # Vertical x -= self.gap if angle == UP: sign = 1 else: sign = -1 dip = [x - flow / 2, y - sign * (length - dipdepth)] if angle == DOWN: quadrant = 2 else: quadrant = 1 # Inner arc isn't needed if inner radius is zero if self.radius: path.extend(self._arc(quadrant=quadrant, cw=angle == UP, radius=self.radius, center=(x + self.radius, y - sign * self.radius))) else: path.append((Path.LINETO, [x, y])) path.extend([(Path.LINETO, [x, y - sign * length]), (Path.LINETO, dip), (Path.LINETO, [x - flow, y - sign * length])]) path.extend(self._arc(quadrant=quadrant, cw=angle == DOWN, radius=flow + self.radius, center=(x + self.radius, y - sign * self.radius))) path.append((Path.LINETO, [x - flow, y + sign * flow])) label_location = [dip[0], dip[1] - sign * self.offset] return dip, label_location def _add_output(self, path, angle, flow, length): """ Append an output to a path and return its tip and label locations. .. note:: *flow* is negative for an output. """ if angle is None: return [0, 0], [0, 0] else: x, y = path[-1][1] # Use the last point as a reference. tipheight = (self.shoulder - flow / 2) * self.pitch if angle == RIGHT: x += length tip = [x + tipheight, y + flow / 2.0] path.extend([(Path.LINETO, [x, y]), (Path.LINETO, [x, y + self.shoulder]), (Path.LINETO, tip), (Path.LINETO, [x, y - self.shoulder + flow]), (Path.LINETO, [x, y + flow]), (Path.LINETO, [x - self.gap, y + flow])]) label_location = [tip[0] + self.offset, tip[1]] else: # Vertical x += self.gap if angle == UP: sign = 1 else: sign = -1 tip = [x - flow / 2.0, y + sign * (length + tipheight)] if angle == UP: quadrant = 3 else: quadrant = 0 # Inner arc isn't needed if inner radius is zero if self.radius: path.extend(self._arc(quadrant=quadrant, cw=angle == UP, radius=self.radius, center=(x - self.radius, y + sign * self.radius))) else: path.append((Path.LINETO, [x, y])) path.extend([(Path.LINETO, [x, y + sign * length]), (Path.LINETO, [x - self.shoulder, y + sign * length]), (Path.LINETO, tip), (Path.LINETO, [x + self.shoulder - flow, y + sign * length]), (Path.LINETO, [x - flow, y + sign * length])]) path.extend(self._arc(quadrant=quadrant, cw=angle == DOWN, radius=self.radius - flow, center=(x - self.radius, y + sign * self.radius))) path.append((Path.LINETO, [x - flow, y + sign * flow])) label_location = [tip[0], tip[1] + sign * self.offset] return tip, label_location def _revert(self, path, first_action=Path.LINETO): """ A path is not simply reversible by path[::-1] since the code specifies an action to take from the **previous** point. """ reverse_path = [] next_code = first_action for code, position in path[::-1]: reverse_path.append((next_code, position)) next_code = code return reverse_path # This might be more efficient, but it fails because 'tuple' object # doesn't support item assignment: # path[1] = path[1][-1:0:-1] # path[1][0] = first_action # path[2] = path[2][::-1] # return path @docstring.dedent_interpd def add(self, patchlabel='', flows=None, orientations=None, labels='', trunklength=1.0, pathlengths=0.25, prior=None, connect=(0, 0), rotation=0, **kwargs): """ Add a simple Sankey diagram with flows at the same hierarchical level. Parameters ---------- patchlabel : str Label to be placed at the center of the diagram. Note that *label* (not *patchlabel*) can be passed as keyword argument to create an entry in the legend. flows : list of float Array of flow values. By convention, inputs are positive and outputs are negative. Flows are placed along the top of the diagram from the inside out in order of their index within *flows*. They are placed along the sides of the diagram from the top down and along the bottom from the outside in. If the sum of the inputs and outputs is nonzero, the discrepancy will appear as a cubic Bezier curve along the top and bottom edges of the trunk. orientations : list of {-1, 0, 1} List of orientations of the flows (or a single orientation to be used for all flows). Valid values are 0 (inputs from the left, outputs to the right), 1 (from and to the top) or -1 (from and to the bottom). labels : list of (str or None) List of labels for the flows (or a single label to be used for all flows). Each label may be *None* (no label), or a labeling string. If an entry is a (possibly empty) string, then the quantity for the corresponding flow will be shown below the string. However, if the *unit* of the main diagram is None, then quantities are never shown, regardless of the value of this argument. trunklength : float Length between the bases of the input and output groups (in data-space units). pathlengths : list of float List of lengths of the vertical arrows before break-in or after break-away. If a single value is given, then it will be applied to the first (inside) paths on the top and bottom, and the length of all other arrows will be justified accordingly. The *pathlengths* are not applied to the horizontal inputs and outputs. prior : int Index of the prior diagram to which this diagram should be connected. connect : (int, int) A (prior, this) tuple indexing the flow of the prior diagram and the flow of this diagram which should be connected. If this is the first diagram or *prior* is *None*, *connect* will be ignored. rotation : float Angle of rotation of the diagram in degrees. The interpretation of the *orientations* argument will be rotated accordingly (e.g., if *rotation* == 90, an *orientations* entry of 1 means to/from the left). *rotation* is ignored if this diagram is connected to an existing one (using *prior* and *connect*). Returns ------- Sankey The current `.Sankey` instance. Other Parameters ---------------- **kwargs Additional keyword arguments set `matplotlib.patches.PathPatch` properties, listed below. For example, one may want to use ``fill=False`` or ``label="A legend entry"``. %(Patch)s See Also -------- Sankey.finish """ # Check and preprocess the arguments. if flows is None: flows = np.array([1.0, -1.0]) else: flows = np.array(flows) n = flows.shape[0] # Number of flows if rotation is None: rotation = 0 else: # In the code below, angles are expressed in deg/90. rotation /= 90.0 if orientations is None: orientations = 0 try: orientations = np.broadcast_to(orientations, n) except ValueError: raise ValueError( f"The shapes of 'flows' {np.shape(flows)} and 'orientations' " f"{np.shape(orientations)} are incompatible" ) from None try: labels = np.broadcast_to(labels, n) except ValueError: raise ValueError( f"The shapes of 'flows' {np.shape(flows)} and 'labels' " f"{np.shape(labels)} are incompatible" ) from None if trunklength < 0: raise ValueError( "'trunklength' is negative, which is not allowed because it " "would cause poor layout") if np.abs(np.sum(flows)) > self.tolerance: _log.info("The sum of the flows is nonzero (%f; patchlabel=%r); " "is the system not at steady state?", np.sum(flows), patchlabel) scaled_flows = self.scale * flows gain = sum(max(flow, 0) for flow in scaled_flows) loss = sum(min(flow, 0) for flow in scaled_flows) if prior is not None: if prior < 0: raise ValueError("The index of the prior diagram is negative") if min(connect) < 0: raise ValueError( "At least one of the connection indices is negative") if prior >= len(self.diagrams): raise ValueError( f"The index of the prior diagram is {prior}, but there " f"are only {len(self.diagrams)} other diagrams") if connect[0] >= len(self.diagrams[prior].flows): raise ValueError( "The connection index to the source diagram is {}, but " "that diagram has only {} flows".format( connect[0], len(self.diagrams[prior].flows))) if connect[1] >= n: raise ValueError( f"The connection index to this diagram is {connect[1]}, " f"but this diagram has only {n} flows") if self.diagrams[prior].angles[connect[0]] is None: raise ValueError( f"The connection cannot be made, which may occur if the " f"magnitude of flow {connect[0]} of diagram {prior} is " f"less than the specified tolerance") flow_error = (self.diagrams[prior].flows[connect[0]] + flows[connect[1]]) if abs(flow_error) >= self.tolerance: raise ValueError( f"The scaled sum of the connected flows is {flow_error}, " f"which is not within the tolerance ({self.tolerance})") # Determine if the flows are inputs. are_inputs = [None] * n for i, flow in enumerate(flows): if flow >= self.tolerance: are_inputs[i] = True elif flow <= -self.tolerance: are_inputs[i] = False else: _log.info( "The magnitude of flow %d (%f) is below the tolerance " "(%f).\nIt will not be shown, and it cannot be used in a " "connection.", i, flow, self.tolerance) # Determine the angles of the arrows (before rotation). angles = [None] * n for i, (orient, is_input) in enumerate(zip(orientations, are_inputs)): if orient == 1: if is_input: angles[i] = DOWN elif not is_input: # Be specific since is_input can be None. angles[i] = UP elif orient == 0: if is_input is not None: angles[i] = RIGHT else: if orient != -1: raise ValueError( f"The value of orientations[{i}] is {orient}, " f"but it must be -1, 0, or 1") if is_input: angles[i] = UP elif not is_input: angles[i] = DOWN # Justify the lengths of the paths. if np.iterable(pathlengths): if len(pathlengths) != n: raise ValueError( f"The lengths of 'flows' ({n}) and 'pathlengths' " f"({len(pathlengths)}) are incompatible") else: # Make pathlengths into a list. urlength = pathlengths ullength = pathlengths lrlength = pathlengths lllength = pathlengths d = dict(RIGHT=pathlengths) pathlengths = [d.get(angle, 0) for angle in angles] # Determine the lengths of the top-side arrows # from the middle outwards. for i, (angle, is_input, flow) in enumerate(zip(angles, are_inputs, scaled_flows)): if angle == DOWN and is_input: pathlengths[i] = ullength ullength += flow elif angle == UP and not is_input: pathlengths[i] = urlength urlength -= flow # Flow is negative for outputs. # Determine the lengths of the bottom-side arrows # from the middle outwards. for i, (angle, is_input, flow) in enumerate(reversed(list(zip( angles, are_inputs, scaled_flows)))): if angle == UP and is_input: pathlengths[n - i - 1] = lllength lllength += flow elif angle == DOWN and not is_input: pathlengths[n - i - 1] = lrlength lrlength -= flow # Determine the lengths of the left-side arrows # from the bottom upwards. has_left_input = False for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, zip(scaled_flows, pathlengths))))): if angle == RIGHT: if is_input: if has_left_input: pathlengths[n - i - 1] = 0 else: has_left_input = True # Determine the lengths of the right-side arrows # from the top downwards. has_right_output = False for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == RIGHT: if not is_input: if has_right_output: pathlengths[i] = 0 else: has_right_output = True # Begin the subpaths, and smooth the transition if the sum of the flows # is nonzero. urpath = [(Path.MOVETO, [(self.gap - trunklength / 2.0), # Upper right gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0, gain / 2.0]), (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0, gain / 2.0]), (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0, -loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0, -loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap), -loss / 2.0])] llpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap), # Lower left loss / 2.0]), (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0, loss / 2.0]), (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0, loss / 2.0]), (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0, -gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0, -gain / 2.0]), (Path.LINETO, [(self.gap - trunklength / 2.0), -gain / 2.0])] lrpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap), # Lower right loss / 2.0])] ulpath = [(Path.LINETO, [self.gap - trunklength / 2.0, # Upper left gain / 2.0])] # Add the subpaths and assign the locations of the tips and labels. tips = np.zeros((n, 2)) label_locations = np.zeros((n, 2)) # Add the top-side inputs and outputs from the middle outwards. for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == DOWN and is_input: tips[i, :], label_locations[i, :] = self._add_input( ulpath, angle, *spec) elif angle == UP and not is_input: tips[i, :], label_locations[i, :] = self._add_output( urpath, angle, *spec) # Add the bottom-side inputs and outputs from the middle outwards. for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == UP and is_input: tip, label_location = self._add_input(llpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location elif angle == DOWN and not is_input: tip, label_location = self._add_output(lrpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location # Add the left-side inputs from the bottom upwards. has_left_input = False for i, (angle, is_input, spec) in enumerate(reversed(list(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))))): if angle == RIGHT and is_input: if not has_left_input: # Make sure the lower path extends # at least as far as the upper one. if llpath[-1][1][0] > ulpath[-1][1][0]: llpath.append((Path.LINETO, [ulpath[-1][1][0], llpath[-1][1][1]])) has_left_input = True tip, label_location = self._add_input(llpath, angle, *spec) tips[n - i - 1, :] = tip label_locations[n - i - 1, :] = label_location # Add the right-side outputs from the top downwards. has_right_output = False for i, (angle, is_input, spec) in enumerate(zip( angles, are_inputs, list(zip(scaled_flows, pathlengths)))): if angle == RIGHT and not is_input: if not has_right_output: # Make sure the upper path extends # at least as far as the lower one. if urpath[-1][1][0] < lrpath[-1][1][0]: urpath.append((Path.LINETO, [lrpath[-1][1][0], urpath[-1][1][1]])) has_right_output = True tips[i, :], label_locations[i, :] = self._add_output( urpath, angle, *spec) # Trim any hanging vertices. if not has_left_input: ulpath.pop() llpath.pop() if not has_right_output: lrpath.pop() urpath.pop() # Concatenate the subpaths in the correct order (clockwise from top). path = (urpath + self._revert(lrpath) + llpath + self._revert(ulpath) + [(Path.CLOSEPOLY, urpath[0][1])]) # Create a patch with the Sankey outline. codes, vertices = zip(*path) vertices = np.array(vertices) def _get_angle(a, r): if a is None: return None else: return a + r if prior is None: if rotation != 0: # By default, none of this is needed. angles = [_get_angle(angle, rotation) for angle in angles] rotate = Affine2D().rotate_deg(rotation * 90).transform_affine tips = rotate(tips) label_locations = rotate(label_locations) vertices = rotate(vertices) text = self.ax.text(0, 0, s=patchlabel, ha='center', va='center') else: rotation = (self.diagrams[prior].angles[connect[0]] - angles[connect[1]]) angles = [_get_angle(angle, rotation) for angle in angles] rotate = Affine2D().rotate_deg(rotation * 90).transform_affine tips = rotate(tips) offset = self.diagrams[prior].tips[connect[0]] - tips[connect[1]] translate = Affine2D().translate(*offset).transform_affine tips = translate(tips) label_locations = translate(rotate(label_locations)) vertices = translate(rotate(vertices)) kwds = dict(s=patchlabel, ha='center', va='center') text = self.ax.text(*offset, **kwds) if rcParams['_internal.classic_mode']: fc = kwargs.pop('fc', kwargs.pop('facecolor', '#bfd1d4')) lw = kwargs.pop('lw', kwargs.pop('linewidth', 0.5)) else: fc = kwargs.pop('fc', kwargs.pop('facecolor', None)) lw = kwargs.pop('lw', kwargs.pop('linewidth', None)) if fc is None: fc = next(self.ax._get_patches_for_fill.prop_cycler)['color'] patch = PathPatch(Path(vertices, codes), fc=fc, lw=lw, **kwargs) self.ax.add_patch(patch) # Add the path labels. texts = [] for number, angle, label, location in zip(flows, angles, labels, label_locations): if label is None or angle is None: label = '' elif self.unit is not None: quantity = self.format % abs(number) + self.unit if label != '': label += "\n" label += quantity texts.append(self.ax.text(x=location[0], y=location[1], s=label, ha='center', va='center')) # Text objects are placed even they are empty (as long as the magnitude # of the corresponding flow is larger than the tolerance) in case the # user wants to provide labels later. # Expand the size of the diagram if necessary. self.extent = (min(np.min(vertices[:, 0]), np.min(label_locations[:, 0]), self.extent[0]), max(np.max(vertices[:, 0]), np.max(label_locations[:, 0]), self.extent[1]), min(np.min(vertices[:, 1]), np.min(label_locations[:, 1]), self.extent[2]), max(np.max(vertices[:, 1]), np.max(label_locations[:, 1]), self.extent[3])) # Include both vertices _and_ label locations in the extents; there are # where either could determine the margins (e.g., arrow shoulders). # Add this diagram as a subdiagram. self.diagrams.append( SimpleNamespace(patch=patch, flows=flows, angles=angles, tips=tips, text=text, texts=texts)) # Allow a daisy-chained call structure (see docstring for the class). return self def finish(self): """ Adjust the axes and return a list of information about the Sankey subdiagram(s). Return value is a list of subdiagrams represented with the following fields: =============== =================================================== Field Description =============== =================================================== *patch* Sankey outline (an instance of :class:`~matplotlib.patches.PathPatch`) *flows* values of the flows (positive for input, negative for output) *angles* list of angles of the arrows [deg/90] For example, if the diagram has not been rotated, an input to the top side will have an angle of 3 (DOWN), and an output from the top side will have an angle of 1 (UP). If a flow has been skipped (because its magnitude is less than *tolerance*), then its angle will be *None*. *tips* array in which each row is an [x, y] pair indicating the positions of the tips (or "dips") of the flow paths If the magnitude of a flow is less the *tolerance* for the instance of :class:`Sankey`, the flow is skipped and its tip will be at the center of the diagram. *text* :class:`~matplotlib.text.Text` instance for the label of the diagram *texts* list of :class:`~matplotlib.text.Text` instances for the labels of flows =============== =================================================== See Also -------- Sankey.add """ self.ax.axis([self.extent[0] - self.margin, self.extent[1] + self.margin, self.extent[2] - self.margin, self.extent[3] + self.margin]) self.ax.set_aspect('equal', adjustable='datalim') return self.diagrams
3e62926da3d9c965627a63ce785581bc1d624f80fc87d11a25d067a47a5a0ea8
import contextlib import functools import inspect import math from numbers import Number import textwrap import numpy as np import matplotlib as mpl from . import artist, cbook, colors, docstring, lines as mlines, transforms from .bezier import ( NonIntersectingPathException, concatenate_paths, get_cos_sin, get_intersection, get_parallels, inside_circle, make_path_regular, make_wedged_bezier2, split_bezier_intersecting_with_closedpath, split_path_inout) from .path import Path @cbook._define_aliases({ "antialiased": ["aa"], "edgecolor": ["ec"], "facecolor": ["fc"], "linestyle": ["ls"], "linewidth": ["lw"], }) class Patch(artist.Artist): """ A patch is a 2D artist with a face color and an edge color. If any of *edgecolor*, *facecolor*, *linewidth*, or *antialiased* are *None*, they default to their rc params setting. """ zorder = 1 validCap = ('butt', 'round', 'projecting') validJoin = ('miter', 'round', 'bevel') # Whether to draw an edge by default. Set on a # subclass-by-subclass basis. _edge_default = False def __init__(self, edgecolor=None, facecolor=None, color=None, linewidth=None, linestyle=None, antialiased=None, hatch=None, fill=True, capstyle=None, joinstyle=None, **kwargs): """ The following kwarg properties are supported %(Patch)s """ artist.Artist.__init__(self) if linewidth is None: linewidth = mpl.rcParams['patch.linewidth'] if linestyle is None: linestyle = "solid" if capstyle is None: capstyle = 'butt' if joinstyle is None: joinstyle = 'miter' if antialiased is None: antialiased = mpl.rcParams['patch.antialiased'] self._hatch_color = colors.to_rgba(mpl.rcParams['hatch.color']) self._fill = True # needed for set_facecolor call if color is not None: if edgecolor is not None or facecolor is not None: cbook._warn_external( "Setting the 'color' property will override" "the edgecolor or facecolor properties.") self.set_color(color) else: self.set_edgecolor(edgecolor) self.set_facecolor(facecolor) # unscaled dashes. Needed to scale dash patterns by lw self._us_dashes = None self._linewidth = 0 self.set_fill(fill) self.set_linestyle(linestyle) self.set_linewidth(linewidth) self.set_antialiased(antialiased) self.set_hatch(hatch) self.set_capstyle(capstyle) self.set_joinstyle(joinstyle) if len(kwargs): self.update(kwargs) def get_verts(self): """ Return a copy of the vertices used in this patch If the patch contains Bezier curves, the curves will be interpolated by line segments. To access the curves as curves, use :meth:`get_path`. """ trans = self.get_transform() path = self.get_path() polygons = path.to_polygons(trans) if len(polygons): return polygons[0] return [] def _process_radius(self, radius): if radius is not None: return radius if isinstance(self._picker, Number): _radius = self._picker else: if self.get_edgecolor()[3] == 0: _radius = 0 else: _radius = self.get_linewidth() return _radius def contains(self, mouseevent, radius=None): """Test whether the mouse event occurred in the patch. Returns T/F, {} """ if self._contains is not None: return self._contains(self, mouseevent) radius = self._process_radius(radius) codes = self.get_path().codes vertices = self.get_path().vertices # if the current path is concatenated by multiple sub paths. # get the indexes of the starting code(MOVETO) of all sub paths idxs, = np.where(codes == Path.MOVETO) # Don't split before the first MOVETO. idxs = idxs[1:] return any( subpath.contains_point( (mouseevent.x, mouseevent.y), self.get_transform(), radius) for subpath in map( Path, np.split(vertices, idxs), np.split(codes, idxs))), {} def contains_point(self, point, radius=None): """ Returns ``True`` if the given *point* is inside the path (transformed with its transform attribute). *radius* allows the path to be made slightly larger or smaller. """ radius = self._process_radius(radius) return self.get_path().contains_point(point, self.get_transform(), radius) def contains_points(self, points, radius=None): """ Returns a bool array which is ``True`` if the (closed) path contains the corresponding point. (transformed with its transform attribute). *points* must be Nx2 array. *radius* allows the path to be made slightly larger or smaller. """ radius = self._process_radius(radius) return self.get_path().contains_points(points, self.get_transform(), radius) def update_from(self, other): """ Updates this :class:`Patch` from the properties of *other*. """ artist.Artist.update_from(self, other) # For some properties we don't need or don't want to go through the # getters/setters, so we just copy them directly. self._edgecolor = other._edgecolor self._facecolor = other._facecolor self._original_edgecolor = other._original_edgecolor self._original_facecolor = other._original_facecolor self._fill = other._fill self._hatch = other._hatch self._hatch_color = other._hatch_color # copy the unscaled dash pattern self._us_dashes = other._us_dashes self.set_linewidth(other._linewidth) # also sets dash properties self.set_transform(other.get_data_transform()) # If the transform of other needs further initialization, then it will # be the case for this artist too. self._transformSet = other.is_transform_set() def get_extents(self): """ Return the `Patch`'s axis-aligned extents as a `~.transforms.Bbox`. """ return self.get_path().get_extents(self.get_transform()) def get_transform(self): """Return the `~.transforms.Transform` applied to the `Patch`.""" return self.get_patch_transform() + artist.Artist.get_transform(self) def get_data_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` instance which maps data coordinates to physical coordinates. """ return artist.Artist.get_transform(self) def get_patch_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` instance which takes patch coordinates to data coordinates. For example, one may define a patch of a circle which represents a radius of 5 by providing coordinates for a unit circle, and a transform which scales the coordinates (the patch coordinate) by 5. """ return transforms.IdentityTransform() def get_antialiased(self): """ Returns True if the :class:`Patch` is to be drawn with antialiasing. """ return self._antialiased def get_edgecolor(self): """ Return the edge color of the :class:`Patch`. """ return self._edgecolor def get_facecolor(self): """ Return the face color of the :class:`Patch`. """ return self._facecolor def get_linewidth(self): """ Return the line width in points. """ return self._linewidth def get_linestyle(self): """ Return the linestyle. """ return self._linestyle def set_antialiased(self, aa): """ Set whether to use antialiased rendering. Parameters ---------- b : bool or None """ if aa is None: aa = mpl.rcParams['patch.antialiased'] self._antialiased = aa self.stale = True def _set_edgecolor(self, color): set_hatch_color = True if color is None: if (mpl.rcParams['patch.force_edgecolor'] or not self._fill or self._edge_default): color = mpl.rcParams['patch.edgecolor'] else: color = 'none' set_hatch_color = False self._edgecolor = colors.to_rgba(color, self._alpha) if set_hatch_color: self._hatch_color = self._edgecolor self.stale = True def set_edgecolor(self, color): """ Set the patch edge color. Parameters ---------- color : color or None or 'auto' """ self._original_edgecolor = color self._set_edgecolor(color) def _set_facecolor(self, color): if color is None: color = mpl.rcParams['patch.facecolor'] alpha = self._alpha if self._fill else 0 self._facecolor = colors.to_rgba(color, alpha) self.stale = True def set_facecolor(self, color): """ Set the patch face color. Parameters ---------- color : color or None """ self._original_facecolor = color self._set_facecolor(color) def set_color(self, c): """ Set both the edgecolor and the facecolor. Parameters ---------- c : color See Also -------- Patch.set_facecolor, Patch.set_edgecolor For setting the edge or face color individually. """ self.set_facecolor(c) self.set_edgecolor(c) def set_alpha(self, alpha): # docstring inherited super().set_alpha(alpha) self._set_facecolor(self._original_facecolor) self._set_edgecolor(self._original_edgecolor) # stale is already True def set_linewidth(self, w): """ Set the patch linewidth in points. Parameters ---------- w : float or None """ if w is None: w = mpl.rcParams['patch.linewidth'] if w is None: w = mpl.rcParams['axes.linewidth'] self._linewidth = float(w) # scale the dash pattern by the linewidth offset, ls = self._us_dashes self._dashoffset, self._dashes = mlines._scale_dashes( offset, ls, self._linewidth) self.stale = True def set_linestyle(self, ls): """ Set the patch linestyle. =========================== ================= linestyle description =========================== ================= ``'-'`` or ``'solid'`` solid line ``'--'`` or ``'dashed'`` dashed line ``'-.'`` or ``'dashdot'`` dash-dotted line ``':'`` or ``'dotted'`` dotted line =========================== ================= Alternatively a dash tuple of the following form can be provided:: (offset, onoffseq), where ``onoffseq`` is an even length tuple of on and off ink in points. Parameters ---------- ls : {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} The line style. """ if ls is None: ls = "solid" self._linestyle = ls # get the unscaled dash pattern offset, ls = self._us_dashes = mlines._get_dash_pattern(ls) # scale the dash pattern by the linewidth self._dashoffset, self._dashes = mlines._scale_dashes( offset, ls, self._linewidth) self.stale = True def set_fill(self, b): """ Set whether to fill the patch. Parameters ---------- b : bool """ self._fill = bool(b) self._set_facecolor(self._original_facecolor) self._set_edgecolor(self._original_edgecolor) self.stale = True def get_fill(self): 'return whether fill is set' return self._fill # Make fill a property so as to preserve the long-standing # but somewhat inconsistent behavior in which fill was an # attribute. fill = property(get_fill, set_fill) def set_capstyle(self, s): """ Set the patch capstyle Parameters ---------- s : {'butt', 'round', 'projecting'} """ s = s.lower() if s not in self.validCap: raise ValueError('set_capstyle passed "%s";\n' % (s,) + 'valid capstyles are %s' % (self.validCap,)) self._capstyle = s self.stale = True def get_capstyle(self): "Return the current capstyle" return self._capstyle def set_joinstyle(self, s): """ Set the patch joinstyle Parameters ---------- s : {'miter', 'round', 'bevel'} """ s = s.lower() if s not in self.validJoin: raise ValueError('set_joinstyle passed "%s";\n' % (s,) + 'valid joinstyles are %s' % (self.validJoin,)) self._joinstyle = s self.stale = True def get_joinstyle(self): "Return the current joinstyle" return self._joinstyle def set_hatch(self, hatch): r""" Set the hatching pattern *hatch* can be one of:: / - diagonal hatching \ - back diagonal | - vertical - - horizontal + - crossed x - crossed diagonal o - small circle O - large circle . - dots * - stars Letters can be combined, in which case all the specified hatchings are done. If same letter repeats, it increases the density of hatching of that pattern. Hatching is supported in the PostScript, PDF, SVG and Agg backends only. Parameters ---------- hatch : {'/', '\\', '|', '-', '+', 'x', 'o', 'O', '.', '*'} """ self._hatch = hatch self.stale = True def get_hatch(self): 'Return the current hatching pattern' return self._hatch @contextlib.contextmanager def _bind_draw_path_function(self, renderer): """ ``draw()`` helper factored out for sharing with `FancyArrowPatch`. Yields a callable ``dp`` such that calling ``dp(*args, **kwargs)`` is equivalent to calling ``renderer1.draw_path(gc, *args, **kwargs)`` where ``renderer1`` and ``gc`` have been suitably set from ``renderer`` and the artist's properties. """ renderer.open_group('patch', self.get_gid()) gc = renderer.new_gc() gc.set_foreground(self._edgecolor, isRGBA=True) lw = self._linewidth if self._edgecolor[3] == 0: lw = 0 gc.set_linewidth(lw) gc.set_dashes(self._dashoffset, self._dashes) gc.set_capstyle(self._capstyle) gc.set_joinstyle(self._joinstyle) gc.set_antialiased(self._antialiased) self._set_gc_clip(gc) gc.set_url(self._url) gc.set_snap(self.get_snap()) gc.set_alpha(self._alpha) if self._hatch: gc.set_hatch(self._hatch) try: gc.set_hatch_color(self._hatch_color) except AttributeError: # if we end up with a GC that does not have this method cbook.warn_deprecated( "3.1", message="Your backend does not support setting the " "hatch color; such backends will become unsupported in " "Matplotlib 3.3.") if self.get_sketch_params() is not None: gc.set_sketch_params(*self.get_sketch_params()) if self.get_path_effects(): from matplotlib.patheffects import PathEffectRenderer renderer = PathEffectRenderer(self.get_path_effects(), renderer) # In `with _bind_draw_path_function(renderer) as draw_path: ...` # (in the implementations of `draw()` below), calls to `draw_path(...)` # will occur as if they took place here with `gc` inserted as # additional first argument. yield functools.partial(renderer.draw_path, gc) gc.restore() renderer.close_group('patch') self.stale = False @artist.allow_rasterization def draw(self, renderer): 'Draw the :class:`Patch` to the given *renderer*.' if not self.get_visible(): return # Patch has traditionally ignored the dashoffset. with cbook._setattr_cm(self, _dashoffset=0), \ self._bind_draw_path_function(renderer) as draw_path: path = self.get_path() transform = self.get_transform() tpath = transform.transform_path_non_affine(path) affine = transform.get_affine() draw_path(tpath, affine, # Work around a bug in the PDF and SVG renderers, which # do not draw the hatches if the facecolor is fully # transparent, but do if it is None. self._facecolor if self._facecolor[3] else None) def get_path(self): """ Return the path of this patch """ raise NotImplementedError('Derived must override') def get_window_extent(self, renderer=None): return self.get_path().get_extents(self.get_transform()) def _convert_xy_units(self, xy): """ Convert x and y units for a tuple (x, y) """ x = self.convert_xunits(xy[0]) y = self.convert_yunits(xy[1]) return (x, y) patchdoc = artist.kwdoc(Patch) for k in ('Rectangle', 'Circle', 'RegularPolygon', 'Polygon', 'Wedge', 'Arrow', 'FancyArrow', 'YAArrow', 'CirclePolygon', 'Ellipse', 'Arc', 'FancyBboxPatch', 'Patch'): docstring.interpd.update({k: patchdoc}) # define Patch.__init__ docstring after the class has been added to interpd docstring.dedent_interpd(Patch.__init__) class Shadow(Patch): def __str__(self): return "Shadow(%s)" % (str(self.patch)) @docstring.dedent_interpd def __init__(self, patch, ox, oy, props=None, **kwargs): """ Create a shadow of the given *patch* offset by *ox*, *oy*. *props*, if not *None*, is a patch property update dictionary. If *None*, the shadow will have have the same color as the face, but darkened. kwargs are %(Patch)s """ Patch.__init__(self) self.patch = patch self.props = props self._ox, self._oy = ox, oy self._shadow_transform = transforms.Affine2D() self._update() def _update(self): self.update_from(self.patch) # Place the shadow patch directly behind the inherited patch. self.set_zorder(np.nextafter(self.patch.zorder, -np.inf)) if self.props is not None: self.update(self.props) else: color = .3 * np.asarray(colors.to_rgb(self.patch.get_facecolor())) self.set_facecolor(color) self.set_edgecolor(color) self.set_alpha(0.5) def _update_transform(self, renderer): ox = renderer.points_to_pixels(self._ox) oy = renderer.points_to_pixels(self._oy) self._shadow_transform.clear().translate(ox, oy) def _get_ox(self): return self._ox def _set_ox(self, ox): self._ox = ox def _get_oy(self): return self._oy def _set_oy(self, oy): self._oy = oy def get_path(self): return self.patch.get_path() def get_patch_transform(self): return self.patch.get_patch_transform() + self._shadow_transform def draw(self, renderer): self._update_transform(renderer) Patch.draw(self, renderer) class Rectangle(Patch): """ Draw a rectangle with lower left at *xy* = (*x*, *y*) with specified *width*, *height* and rotation *angle*. """ def __str__(self): pars = self._x0, self._y0, self._width, self._height, self.angle fmt = "Rectangle(xy=(%g, %g), width=%g, height=%g, angle=%g)" return fmt % pars @docstring.dedent_interpd def __init__(self, xy, width, height, angle=0.0, **kwargs): """ Parameters ---------- xy : (float, float) The bottom and left rectangle coordinates width : float Rectangle width height : float Rectangle height angle : float, optional rotation in degrees anti-clockwise about *xy* (default is 0.0) fill : bool, optional Whether to fill the rectangle (default is ``True``) Notes ----- Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) self._x0 = xy[0] self._y0 = xy[1] self._width = width self._height = height self._x1 = self._x0 + self._width self._y1 = self._y0 + self._height self.angle = float(angle) # Note: This cannot be calculated until this is added to an Axes self._rect_transform = transforms.IdentityTransform() def get_path(self): """ Return the vertices of the rectangle. """ return Path.unit_rectangle() def _update_patch_transform(self): """NOTE: This cannot be called until after this has been added to an Axes, otherwise unit conversion will fail. This makes it very important to call the accessor method and not directly access the transformation member variable. """ x0, y0, x1, y1 = self._convert_units() bbox = transforms.Bbox.from_extents(x0, y0, x1, y1) rot_trans = transforms.Affine2D() rot_trans.rotate_deg_around(x0, y0, self.angle) self._rect_transform = transforms.BboxTransformTo(bbox) self._rect_transform += rot_trans def _update_x1(self): self._x1 = self._x0 + self._width def _update_y1(self): self._y1 = self._y0 + self._height def _convert_units(self): """ Convert bounds of the rectangle. """ x0 = self.convert_xunits(self._x0) y0 = self.convert_yunits(self._y0) x1 = self.convert_xunits(self._x1) y1 = self.convert_yunits(self._y1) return x0, y0, x1, y1 def get_patch_transform(self): self._update_patch_transform() return self._rect_transform def get_x(self): "Return the left coord of the rectangle." return self._x0 def get_y(self): "Return the bottom coord of the rectangle." return self._y0 def get_xy(self): "Return the left and bottom coords of the rectangle." return self._x0, self._y0 def get_width(self): "Return the width of the rectangle." return self._width def get_height(self): "Return the height of the rectangle." return self._height def set_x(self, x): "Set the left coord of the rectangle." self._x0 = x self._update_x1() self.stale = True def set_y(self, y): "Set the bottom coord of the rectangle." self._y0 = y self._update_y1() self.stale = True def set_xy(self, xy): """ Set the left and bottom coords of the rectangle. Parameters ---------- xy : (float, float) """ self._x0, self._y0 = xy self._update_x1() self._update_y1() self.stale = True def set_width(self, w): "Set the width of the rectangle." self._width = w self._update_x1() self.stale = True def set_height(self, h): "Set the height of the rectangle." self._height = h self._update_y1() self.stale = True def set_bounds(self, *args): """ Set the bounds of the rectangle: l,b,w,h ACCEPTS: (left, bottom, width, height) """ if len(args) == 1: l, b, w, h = args[0] else: l, b, w, h = args self._x0 = l self._y0 = b self._width = w self._height = h self._update_x1() self._update_y1() self.stale = True def get_bbox(self): x0, y0, x1, y1 = self._convert_units() return transforms.Bbox.from_extents(x0, y0, x1, y1) xy = property(get_xy, set_xy) class RegularPolygon(Patch): """ A regular polygon patch. """ def __str__(self): s = "RegularPolygon((%g, %g), %d, radius=%g, orientation=%g)" return s % (self._xy[0], self._xy[1], self._numVertices, self._radius, self._orientation) @docstring.dedent_interpd def __init__(self, xy, numVertices, radius=5, orientation=0, **kwargs): """ Constructor arguments: *xy* A length 2 tuple (*x*, *y*) of the center. *numVertices* the number of vertices. *radius* The distance from the center to each of the vertices. *orientation* rotates the polygon (in radians). Valid kwargs are: %(Patch)s """ self._xy = xy self._numVertices = numVertices self._orientation = orientation self._radius = radius self._path = Path.unit_regular_polygon(numVertices) self._poly_transform = transforms.Affine2D() self._update_transform() Patch.__init__(self, **kwargs) def _update_transform(self): self._poly_transform.clear() \ .scale(self.radius) \ .rotate(self.orientation) \ .translate(*self.xy) @property def xy(self): return self._xy @xy.setter def xy(self, xy): self._xy = xy self._update_transform() @property def orientation(self): return self._orientation @orientation.setter def orientation(self, orientation): self._orientation = orientation self._update_transform() @property def radius(self): return self._radius @radius.setter def radius(self, radius): self._radius = radius self._update_transform() @property def numvertices(self): return self._numVertices @numvertices.setter def numvertices(self, numVertices): self._numVertices = numVertices def get_path(self): return self._path def get_patch_transform(self): self._update_transform() return self._poly_transform class PathPatch(Patch): """ A general polycurve path patch. """ _edge_default = True def __str__(self): s = "PathPatch%d((%g, %g) ...)" return s % (len(self._path.vertices), *tuple(self._path.vertices[0])) @docstring.dedent_interpd def __init__(self, path, **kwargs): """ *path* is a :class:`matplotlib.path.Path` object. Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) self._path = path def get_path(self): return self._path class Polygon(Patch): """ A general polygon patch. """ def __str__(self): s = "Polygon%d((%g, %g) ...)" return s % (len(self._path.vertices), *tuple(self._path.vertices[0])) @docstring.dedent_interpd def __init__(self, xy, closed=True, **kwargs): """ *xy* is a numpy array with shape Nx2. If *closed* is *True*, the polygon will be closed so the starting and ending points are the same. Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) self._closed = closed self.set_xy(xy) def get_path(self): """ Get the path of the polygon Returns ------- path : Path The `~.path.Path` object for the polygon. """ return self._path def get_closed(self): """ Returns if the polygon is closed Returns ------- closed : bool If the path is closed """ return self._closed def set_closed(self, closed): """ Set if the polygon is closed Parameters ---------- closed : bool True if the polygon is closed """ if self._closed == bool(closed): return self._closed = bool(closed) self.set_xy(self.get_xy()) self.stale = True def get_xy(self): """ Get the vertices of the path. Returns ------- vertices : (N, 2) numpy array The coordinates of the vertices. """ return self._path.vertices def set_xy(self, xy): """ Set the vertices of the polygon. Parameters ---------- xy : (N, 2) array-like The coordinates of the vertices. """ xy = np.asarray(xy) if self._closed: if len(xy) and (xy[0] != xy[-1]).any(): xy = np.concatenate([xy, [xy[0]]]) else: if len(xy) > 2 and (xy[0] == xy[-1]).all(): xy = xy[:-1] self._path = Path(xy, closed=self._closed) self.stale = True _get_xy = get_xy _set_xy = set_xy xy = property(get_xy, set_xy, doc='The vertices of the path as (N, 2) numpy array.') class Wedge(Patch): """ Wedge shaped patch. """ def __str__(self): pars = (self.center[0], self.center[1], self.r, self.theta1, self.theta2, self.width) fmt = "Wedge(center=(%g, %g), r=%g, theta1=%g, theta2=%g, width=%s)" return fmt % pars @docstring.dedent_interpd def __init__(self, center, r, theta1, theta2, width=None, **kwargs): """ Draw a wedge centered at *x*, *y* center with radius *r* that sweeps *theta1* to *theta2* (in degrees). If *width* is given, then a partial wedge is drawn from inner radius *r* - *width* to outer radius *r*. Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) self.center = center self.r, self.width = r, width self.theta1, self.theta2 = theta1, theta2 self._patch_transform = transforms.IdentityTransform() self._recompute_path() def _recompute_path(self): # Inner and outer rings are connected unless the annulus is complete if abs((self.theta2 - self.theta1) - 360) <= 1e-12: theta1, theta2 = 0, 360 connector = Path.MOVETO else: theta1, theta2 = self.theta1, self.theta2 connector = Path.LINETO # Form the outer ring arc = Path.arc(theta1, theta2) if self.width is not None: # Partial annulus needs to draw the outer ring # followed by a reversed and scaled inner ring v1 = arc.vertices v2 = arc.vertices[::-1] * (self.r - self.width) / self.r v = np.vstack([v1, v2, v1[0, :], (0, 0)]) c = np.hstack([arc.codes, arc.codes, connector, Path.CLOSEPOLY]) c[len(arc.codes)] = connector else: # Wedge doesn't need an inner ring v = np.vstack([arc.vertices, [(0, 0), arc.vertices[0, :], (0, 0)]]) c = np.hstack([arc.codes, [connector, connector, Path.CLOSEPOLY]]) # Shift and scale the wedge to the final location. v *= self.r v += np.asarray(self.center) self._path = Path(v, c) def set_center(self, center): self._path = None self.center = center self.stale = True def set_radius(self, radius): self._path = None self.r = radius self.stale = True def set_theta1(self, theta1): self._path = None self.theta1 = theta1 self.stale = True def set_theta2(self, theta2): self._path = None self.theta2 = theta2 self.stale = True def set_width(self, width): self._path = None self.width = width self.stale = True def get_path(self): if self._path is None: self._recompute_path() return self._path # COVERAGE NOTE: Not used internally or from examples class Arrow(Patch): """ An arrow patch. """ def __str__(self): return "Arrow()" _path = Path([[0.0, 0.1], [0.0, -0.1], [0.8, -0.1], [0.8, -0.3], [1.0, 0.0], [0.8, 0.3], [0.8, 0.1], [0.0, 0.1]], closed=True) @docstring.dedent_interpd def __init__(self, x, y, dx, dy, width=1.0, **kwargs): """ Draws an arrow from (*x*, *y*) to (*x* + *dx*, *y* + *dy*). The width of the arrow is scaled by *width*. Parameters ---------- x : scalar x coordinate of the arrow tail y : scalar y coordinate of the arrow tail dx : scalar Arrow length in the x direction dy : scalar Arrow length in the y direction width : scalar, optional (default: 1) Scale factor for the width of the arrow. With a default value of 1, the tail width is 0.2 and head width is 0.6. **kwargs Keyword arguments control the `Patch` properties: %(Patch)s See Also -------- :class:`FancyArrow` : Patch that allows independent control of the head and tail properties """ Patch.__init__(self, **kwargs) L = np.hypot(dx, dy) if L != 0: cx = dx / L sx = dy / L else: # Account for division by zero cx, sx = 0, 1 trans1 = transforms.Affine2D().scale(L, width) trans2 = transforms.Affine2D.from_values(cx, sx, -sx, cx, 0.0, 0.0) trans3 = transforms.Affine2D().translate(x, y) trans = trans1 + trans2 + trans3 self._patch_transform = trans.frozen() def get_path(self): return self._path def get_patch_transform(self): return self._patch_transform class FancyArrow(Polygon): """ Like Arrow, but lets you set head width and head height independently. """ _edge_default = True def __str__(self): return "FancyArrow()" @docstring.dedent_interpd def __init__(self, x, y, dx, dy, width=0.001, length_includes_head=False, head_width=None, head_length=None, shape='full', overhang=0, head_starts_at_zero=False, **kwargs): """ Constructor arguments *width*: float (default: 0.001) width of full arrow tail *length_includes_head*: bool (default: False) True if head is to be counted in calculating the length. *head_width*: float or None (default: 3*width) total width of the full arrow head *head_length*: float or None (default: 1.5 * head_width) length of arrow head *shape*: ['full', 'left', 'right'] (default: 'full') draw the left-half, right-half, or full arrow *overhang*: float (default: 0) fraction that the arrow is swept back (0 overhang means triangular shape). Can be negative or greater than one. *head_starts_at_zero*: bool (default: False) if True, the head starts being drawn at coordinate 0 instead of ending at coordinate 0. Other valid kwargs (inherited from :class:`Patch`) are: %(Patch)s """ if head_width is None: head_width = 3 * width if head_length is None: head_length = 1.5 * head_width distance = np.hypot(dx, dy) if length_includes_head: length = distance else: length = distance + head_length if not length: verts = np.empty([0, 2]) # display nothing if empty else: # start by drawing horizontal arrow, point at (0,0) hw, hl, hs, lw = head_width, head_length, overhang, width left_half_arrow = np.array([ [0.0, 0.0], # tip [-hl, -hw / 2], # leftmost [-hl * (1 - hs), -lw / 2], # meets stem [-length, -lw / 2], # bottom left [-length, 0], ]) # if we're not including the head, shift up by head length if not length_includes_head: left_half_arrow += [head_length, 0] # if the head starts at 0, shift up by another head length if head_starts_at_zero: left_half_arrow += [head_length / 2, 0] # figure out the shape, and complete accordingly if shape == 'left': coords = left_half_arrow else: right_half_arrow = left_half_arrow * [1, -1] if shape == 'right': coords = right_half_arrow elif shape == 'full': # The half-arrows contain the midpoint of the stem, # which we can omit from the full arrow. Including it # twice caused a problem with xpdf. coords = np.concatenate([left_half_arrow[:-1], right_half_arrow[-2::-1]]) else: raise ValueError("Got unknown shape: %s" % shape) if distance != 0: cx = dx / distance sx = dy / distance else: # Account for division by zero cx, sx = 0, 1 M = [[cx, sx], [-sx, cx]] verts = np.dot(coords, M) + (x + dx, y + dy) super().__init__(verts, closed=True, **kwargs) docstring.interpd.update({"FancyArrow": FancyArrow.__init__.__doc__}) @cbook.deprecated("3.0", alternative="FancyArrowPatch") class YAArrow(Patch): """ Yet another arrow class. This is an arrow that is defined in display space and has a tip at *x1*, *y1* and a base at *x2*, *y2*. """ def __str__(self): return "YAArrow()" @docstring.dedent_interpd def __init__(self, figure, xytip, xybase, width=4, frac=0.1, headwidth=12, **kwargs): """ Constructor arguments: *xytip* (*x*, *y*) location of arrow tip *xybase* (*x*, *y*) location the arrow base mid point *figure* The `Figure` instance (used to get the dpi setting). *width* The width of the arrow in points *frac* The fraction of the arrow length occupied by the head *headwidth* The width of the base of the arrow head in points Valid kwargs are: %(Patch)s """ self.xytip = xytip self.xybase = xybase self.width = width self.frac = frac self.headwidth = headwidth Patch.__init__(self, **kwargs) # Set self.figure after Patch.__init__, since it sets self.figure to # None self.figure = figure def get_path(self): # Since this is dpi dependent, we need to recompute the path # every time. # the base vertices x1, y1 = self.xytip x2, y2 = self.xybase k1 = self.width * self.figure.dpi / 72. / 2. k2 = self.headwidth * self.figure.dpi / 72. / 2. xb1, yb1, xb2, yb2 = self.getpoints(x1, y1, x2, y2, k1) # a point on the segment 20% of the distance from the tip to the base xm = x1 + self.frac * (x2 - x1) ym = y1 + self.frac * (y2 - y1) xc1, yc1, xc2, yc2 = self.getpoints(x1, y1, xm, ym, k1) xd1, yd1, xd2, yd2 = self.getpoints(x1, y1, xm, ym, k2) xs = self.convert_xunits([xb1, xb2, xc2, xd2, x1, xd1, xc1, xb1]) ys = self.convert_yunits([yb1, yb2, yc2, yd2, y1, yd1, yc1, yb1]) return Path(np.column_stack([xs, ys]), closed=True) def get_patch_transform(self): return transforms.IdentityTransform() def getpoints(self, x1, y1, x2, y2, k): """ For line segment defined by (*x1*, *y1*) and (*x2*, *y2*) return the points on the line that is perpendicular to the line and intersects (*x2*, *y2*) and the distance from (*x2*, *y2*) of the returned points is *k*. """ x1, y1, x2, y2, k = map(float, (x1, y1, x2, y2, k)) if y2 - y1 == 0: return x2, y2 + k, x2, y2 - k elif x2 - x1 == 0: return x2 + k, y2, x2 - k, y2 m = (y2 - y1) / (x2 - x1) pm = -1. / m a = 1 b = -2 * y2 c = y2 ** 2. - k ** 2. * pm ** 2. / (1. + pm ** 2.) y3a = (-b + math.sqrt(b ** 2 - 4 * a * c)) / (2 * a) x3a = (y3a - y2) / pm + x2 y3b = (-b - math.sqrt(b ** 2 - 4 * a * c)) / (2 * a) x3b = (y3b - y2) / pm + x2 return x3a, y3a, x3b, y3b class CirclePolygon(RegularPolygon): """ A polygon-approximation of a circle patch. """ def __str__(self): s = "CirclePolygon((%g, %g), radius=%g, resolution=%d)" return s % (self._xy[0], self._xy[1], self._radius, self._numVertices) @docstring.dedent_interpd def __init__(self, xy, radius=5, resolution=20, # the number of vertices ** kwargs): """ Create a circle at *xy* = (*x*, *y*) with given *radius*. This circle is approximated by a regular polygon with *resolution* sides. For a smoother circle drawn with splines, see :class:`~matplotlib.patches.Circle`. Valid kwargs are: %(Patch)s """ RegularPolygon.__init__(self, xy, resolution, radius, orientation=0, **kwargs) class Ellipse(Patch): """ A scale-free ellipse. """ def __str__(self): pars = (self._center[0], self._center[1], self.width, self.height, self.angle) fmt = "Ellipse(xy=(%s, %s), width=%s, height=%s, angle=%s)" return fmt % pars @docstring.dedent_interpd def __init__(self, xy, width, height, angle=0, **kwargs): """ Parameters ---------- xy : (float, float) xy coordinates of ellipse centre. width : float Total length (diameter) of horizontal axis. height : float Total length (diameter) of vertical axis. angle : scalar, optional Rotation in degrees anti-clockwise. Notes ----- Valid keyword arguments are %(Patch)s """ Patch.__init__(self, **kwargs) self._center = xy self.width, self.height = width, height self.angle = angle self._path = Path.unit_circle() # Note: This cannot be calculated until this is added to an Axes self._patch_transform = transforms.IdentityTransform() def _recompute_transform(self): """NOTE: This cannot be called until after this has been added to an Axes, otherwise unit conversion will fail. This makes it very important to call the accessor method and not directly access the transformation member variable. """ center = (self.convert_xunits(self._center[0]), self.convert_yunits(self._center[1])) width = self.convert_xunits(self.width) height = self.convert_yunits(self.height) self._patch_transform = transforms.Affine2D() \ .scale(width * 0.5, height * 0.5) \ .rotate_deg(self.angle) \ .translate(*center) def get_path(self): """ Return the vertices of the rectangle """ return self._path def get_patch_transform(self): self._recompute_transform() return self._patch_transform def set_center(self, xy): """ Set the center of the ellipse. Parameters ---------- xy : (float, float) """ self._center = xy self.stale = True def get_center(self): """ Return the center of the ellipse """ return self._center center = property(get_center, set_center) class Circle(Ellipse): """ A circle patch. """ def __str__(self): pars = self.center[0], self.center[1], self.radius fmt = "Circle(xy=(%g, %g), radius=%g)" return fmt % pars @docstring.dedent_interpd def __init__(self, xy, radius=5, **kwargs): """ Create true circle at center *xy* = (*x*, *y*) with given *radius*. Unlike :class:`~matplotlib.patches.CirclePolygon` which is a polygonal approximation, this uses Bezier splines and is much closer to a scale-free circle. Valid kwargs are: %(Patch)s """ Ellipse.__init__(self, xy, radius * 2, radius * 2, **kwargs) self.radius = radius def set_radius(self, radius): """ Set the radius of the circle Parameters ---------- radius : float """ self.width = self.height = 2 * radius self.stale = True def get_radius(self): """ Return the radius of the circle """ return self.width / 2. radius = property(get_radius, set_radius) class Arc(Ellipse): """ An elliptical arc, i.e. a segment of an ellipse. Due to internal optimizations, there are certain restrictions on using Arc: - The arc cannot be filled. - The arc must be used in an :class:`~.axes.Axes` instance---it can not be added directly to a `.Figure`---because it is optimized to only render the segments that are inside the axes bounding box with high resolution. """ def __str__(self): pars = (self.center[0], self.center[1], self.width, self.height, self.angle, self.theta1, self.theta2) fmt = ("Arc(xy=(%g, %g), width=%g, " "height=%g, angle=%g, theta1=%g, theta2=%g)") return fmt % pars @docstring.dedent_interpd def __init__(self, xy, width, height, angle=0.0, theta1=0.0, theta2=360.0, **kwargs): """ Parameters ---------- xy : (float, float) The center of the ellipse. width : float The length of the horizontal axis. height : float The length of the vertical axis. angle : float Rotation of the ellipse in degrees (counterclockwise). theta1, theta2 : float, optional Starting and ending angles of the arc in degrees. These values are relative to *angle*, e.g. if *angle* = 45 and *theta1* = 90 the absolute starting angle is 135. Default *theta1* = 0, *theta2* = 360, i.e. a complete ellipse. The arc is drawn in the counterclockwise direction. Angles greater than or equal to 360, or smaller than 0, are represented by an equivalent angle in the range [0, 360), by taking the input value mod 360. Other Parameters ---------------- **kwargs : `.Patch` properties Most `.Patch` properties are supported as keyword arguments, with the exception of *fill* and *facecolor* because filling is not supported. %(Patch)s """ fill = kwargs.setdefault('fill', False) if fill: raise ValueError("Arc objects can not be filled") Ellipse.__init__(self, xy, width, height, angle, **kwargs) self.theta1 = theta1 self.theta2 = theta2 @artist.allow_rasterization def draw(self, renderer): """ Draw the arc to the given *renderer*. Notes ----- Ellipses are normally drawn using an approximation that uses eight cubic Bezier splines. The error of this approximation is 1.89818e-6, according to this unverified source: Lancaster, Don. *Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines.* http://www.tinaja.com/glib/ellipse4.pdf There is a use case where very large ellipses must be drawn with very high accuracy, and it is too expensive to render the entire ellipse with enough segments (either splines or line segments). Therefore, in the case where either radius of the ellipse is large enough that the error of the spline approximation will be visible (greater than one pixel offset from the ideal), a different technique is used. In that case, only the visible parts of the ellipse are drawn, with each visible arc using a fixed number of spline segments (8). The algorithm proceeds as follows: 1. The points where the ellipse intersects the axes bounding box are located. (This is done be performing an inverse transformation on the axes bbox such that it is relative to the unit circle -- this makes the intersection calculation much easier than doing rotated ellipse intersection directly). This uses the "line intersecting a circle" algorithm from: Vince, John. *Geometry for Computer Graphics: Formulae, Examples & Proofs.* London: Springer-Verlag, 2005. 2. The angles of each of the intersection points are calculated. 3. Proceeding counterclockwise starting in the positive x-direction, each of the visible arc-segments between the pairs of vertices are drawn using the Bezier arc approximation technique implemented in :meth:`matplotlib.path.Path.arc`. """ if not hasattr(self, 'axes'): raise RuntimeError('Arcs can only be used in Axes instances') self._recompute_transform() width = self.convert_xunits(self.width) height = self.convert_yunits(self.height) # If the width and height of ellipse are not equal, take into account # stretching when calculating angles to draw between def theta_stretch(theta, scale): theta = np.deg2rad(theta) x = np.cos(theta) y = np.sin(theta) return np.rad2deg(np.arctan2(scale * y, x)) theta1 = theta_stretch(self.theta1, width / height) theta2 = theta_stretch(self.theta2, width / height) # Get width and height in pixels width, height = self.get_transform().transform_point((width, height)) inv_error = (1.0 / 1.89818e-6) * 0.5 if width < inv_error and height < inv_error: self._path = Path.arc(theta1, theta2) return Patch.draw(self, renderer) def iter_circle_intersect_on_line(x0, y0, x1, y1): dx = x1 - x0 dy = y1 - y0 dr2 = dx * dx + dy * dy D = x0 * y1 - x1 * y0 D2 = D * D discrim = dr2 - D2 # Single (tangential) intersection if discrim == 0.0: x = (D * dy) / dr2 y = (-D * dx) / dr2 yield x, y elif discrim > 0.0: # The definition of "sign" here is different from # np.sign: we never want to get 0.0 if dy < 0.0: sign_dy = -1.0 else: sign_dy = 1.0 sqrt_discrim = np.sqrt(discrim) for sign in (1., -1.): x = (D * dy + sign * sign_dy * dx * sqrt_discrim) / dr2 y = (-D * dx + sign * np.abs(dy) * sqrt_discrim) / dr2 yield x, y def iter_circle_intersect_on_line_seg(x0, y0, x1, y1): epsilon = 1e-9 if x1 < x0: x0e, x1e = x1, x0 else: x0e, x1e = x0, x1 if y1 < y0: y0e, y1e = y1, y0 else: y0e, y1e = y0, y1 x0e -= epsilon y0e -= epsilon x1e += epsilon y1e += epsilon for x, y in iter_circle_intersect_on_line(x0, y0, x1, y1): if x0e <= x <= x1e and y0e <= y <= y1e: yield x, y # Transforms the axes box_path so that it is relative to the unit # circle in the same way that it is relative to the desired # ellipse. box_path = Path.unit_rectangle() box_path_transform = transforms.BboxTransformTo(self.axes.bbox) + \ self.get_transform().inverted() box_path = box_path.transformed(box_path_transform) thetas = set() # For each of the point pairs, there is a line segment for p0, p1 in zip(box_path.vertices[:-1], box_path.vertices[1:]): x0, y0 = p0 x1, y1 = p1 for x, y in iter_circle_intersect_on_line_seg(x0, y0, x1, y1): theta = np.arccos(x) if y < 0: theta = 2 * np.pi - theta # Convert radians to angles theta = np.rad2deg(theta) if theta1 < theta < theta2: thetas.add(theta) thetas = sorted(thetas) + [theta2] last_theta = theta1 theta1_rad = np.deg2rad(theta1) inside = box_path.contains_point((np.cos(theta1_rad), np.sin(theta1_rad))) # save original path path_original = self._path for theta in thetas: if inside: self._path = Path.arc(last_theta, theta, 8) Patch.draw(self, renderer) inside = False else: inside = True last_theta = theta # restore original path self._path = path_original def bbox_artist(artist, renderer, props=None, fill=True): """ This is a debug function to draw a rectangle around the bounding box returned by :meth:`~matplotlib.artist.Artist.get_window_extent` of an artist, to test whether the artist is returning the correct bbox. *props* is a dict of rectangle props with the additional property 'pad' that sets the padding around the bbox in points. """ if props is None: props = {} props = props.copy() # don't want to alter the pad externally pad = props.pop('pad', 4) pad = renderer.points_to_pixels(pad) bbox = artist.get_window_extent(renderer) l, b, w, h = bbox.bounds l -= pad / 2. b -= pad / 2. w += pad h += pad r = Rectangle(xy=(l, b), width=w, height=h, fill=fill, ) r.set_transform(transforms.IdentityTransform()) r.set_clip_on(False) r.update(props) r.draw(renderer) def draw_bbox(bbox, renderer, color='k', trans=None): """ This is a debug function to draw a rectangle around the bounding box returned by :meth:`~matplotlib.artist.Artist.get_window_extent` of an artist, to test whether the artist is returning the correct bbox. """ l, b, w, h = bbox.bounds r = Rectangle(xy=(l, b), width=w, height=h, edgecolor=color, fill=False, ) if trans is not None: r.set_transform(trans) r.set_clip_on(False) r.draw(renderer) def _pprint_table(table, leadingspace=2): """ Given the list of list of strings, return a string of REST table format. """ col_len = [max(len(cell) for cell in column) for column in zip(*table)] table_formatstr = ' '.join('=' * cl for cl in col_len) lines = [ '', table_formatstr, ' '.join(cell.ljust(cl) for cell, cl in zip(table[0], col_len)), table_formatstr, *[' '.join(cell.ljust(cl) for cell, cl in zip(row, col_len)) for row in table[1:]], table_formatstr, '', ] return textwrap.indent('\n'.join(lines), ' ' * leadingspace) def _pprint_styles(_styles): """ A helper function for the _Style class. Given the dictionary of {stylename: styleclass}, return a formatted string listing all the styles. Used to update the documentation. """ import inspect _table = [["Class", "Name", "Attrs"]] for name, cls in sorted(_styles.items()): spec = inspect.getfullargspec(cls.__init__) if spec.defaults: argstr = ", ".join(map( "{}={}".format, spec.args[-len(spec.defaults):], spec.defaults )) else: argstr = 'None' # adding ``quotes`` since - and | have special meaning in reST _table.append([cls.__name__, "``%s``" % name, argstr]) return _pprint_table(_table) def _simpleprint_styles(_styles): """ A helper function for the _Style class. Given the dictionary of {stylename: styleclass}, return a string rep of the list of keys. Used to update the documentation. """ return "[{}]".format("|".join(map(" '{}' ".format, sorted(_styles)))) class _Style(object): """ A base class for the Styles. It is meant to be a container class, where actual styles are declared as subclass of it, and it provides some helper functions. """ def __new__(cls, stylename, **kw): """ return the instance of the subclass with the given style name. """ # The "class" should have the _style_list attribute, which is a mapping # of style names to style classes. _list = stylename.replace(" ", "").split(",") _name = _list[0].lower() try: _cls = cls._style_list[_name] except KeyError: raise ValueError("Unknown style : %s" % stylename) try: _args_pair = [cs.split("=") for cs in _list[1:]] _args = {k: float(v) for k, v in _args_pair} except ValueError: raise ValueError("Incorrect style argument : %s" % stylename) _args.update(kw) return _cls(**_args) @classmethod def get_styles(cls): """ A class method which returns a dictionary of available styles. """ return cls._style_list @classmethod def pprint_styles(cls): """ A class method which returns a string of the available styles. """ return _pprint_styles(cls._style_list) @classmethod def register(cls, name, style): """ Register a new style. """ if not issubclass(style, cls._Base): raise ValueError("%s must be a subclass of %s" % (style, cls._Base)) cls._style_list[name] = style def _register_style(style_list, cls=None, *, name=None): """Class decorator that stashes a class in a (style) dictionary.""" if cls is None: return functools.partial(_register_style, style_list, name=name) style_list[name or cls.__name__.lower()] = cls return cls class BoxStyle(_Style): """ :class:`BoxStyle` is a container class which defines several boxstyle classes, which are used for :class:`FancyBboxPatch`. A style object can be created as:: BoxStyle.Round(pad=0.2) or:: BoxStyle("Round", pad=0.2) or:: BoxStyle("Round, pad=0.2") Following boxstyle classes are defined. %(AvailableBoxstyles)s An instance of any boxstyle class is an callable object, whose call signature is:: __call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.) and returns a :class:`Path` instance. *x0*, *y0*, *width* and *height* specify the location and size of the box to be drawn. *mutation_scale* determines the overall size of the mutation (by which I mean the transformation of the rectangle to the fancy box). *mutation_aspect* determines the aspect-ratio of the mutation. """ _style_list = {} class _Base(object): """ :class:`BBoxTransmuterBase` and its derivatives are used to make a fancy box around a given rectangle. The :meth:`__call__` method returns the :class:`~matplotlib.path.Path` of the fancy box. This class is not an artist and actual drawing of the fancy box is done by the :class:`FancyBboxPatch` class. """ # The derived classes are required to be able to be initialized # w/o arguments, i.e., all its argument (except self) must have # the default values. def transmute(self, x0, y0, width, height, mutation_size): """ The transmute method is a very core of the :class:`BboxTransmuter` class and must be overridden in the subclasses. It receives the location and size of the rectangle, and the mutation_size, with which the amount of padding and etc. will be scaled. It returns a :class:`~matplotlib.path.Path` instance. """ raise NotImplementedError('Derived must override') def __call__(self, x0, y0, width, height, mutation_size, aspect_ratio=1.): """ Given the location and size of the box, return the path of the box around it. - *x0*, *y0*, *width*, *height* : location and size of the box - *mutation_size* : a reference scale for the mutation. - *aspect_ratio* : aspect-ration for the mutation. """ # The __call__ method is a thin wrapper around the transmute method # and takes care of the aspect. if aspect_ratio is not None: # Squeeze the given height by the aspect_ratio y0, height = y0 / aspect_ratio, height / aspect_ratio # call transmute method with squeezed height. path = self.transmute(x0, y0, width, height, mutation_size) vertices, codes = path.vertices, path.codes # Restore the height vertices[:, 1] = vertices[:, 1] * aspect_ratio return Path(vertices, codes) else: return self.transmute(x0, y0, width, height, mutation_size) @_register_style(_style_list) class Square(_Base): """ A simple square box. """ def __init__(self, pad=0.3): """ *pad* amount of padding """ self.pad = pad super().__init__() def transmute(self, x0, y0, width, height, mutation_size): pad = mutation_size * self.pad # width and height with padding added. width, height = width + 2*pad, height + 2*pad # boundary of the padded box x0, y0 = x0 - pad, y0 - pad, x1, y1 = x0 + width, y0 + height vertices = [(x0, y0), (x1, y0), (x1, y1), (x0, y1), (x0, y0)] codes = [Path.MOVETO] + [Path.LINETO] * 3 + [Path.CLOSEPOLY] return Path(vertices, codes) @_register_style(_style_list) class Circle(_Base): """A simple circle box.""" def __init__(self, pad=0.3): """ Parameters ---------- pad : float The amount of padding around the original box. """ self.pad = pad super().__init__() def transmute(self, x0, y0, width, height, mutation_size): pad = mutation_size * self.pad width, height = width + 2 * pad, height + 2 * pad # boundary of the padded box x0, y0 = x0 - pad, y0 - pad, return Path.circle((x0 + width / 2, y0 + height / 2), max(width, height) / 2) @_register_style(_style_list) class LArrow(_Base): """ (left) Arrow Box """ def __init__(self, pad=0.3): self.pad = pad super().__init__() def transmute(self, x0, y0, width, height, mutation_size): # padding pad = mutation_size * self.pad # width and height with padding added. width, height = width + 2. * pad, height + 2. * pad # boundary of the padded box x0, y0 = x0 - pad, y0 - pad, x1, y1 = x0 + width, y0 + height dx = (y1 - y0) / 2. dxx = dx * .5 # adjust x0. 1.4 <- sqrt(2) x0 = x0 + pad / 1.4 cp = [(x0 + dxx, y0), (x1, y0), (x1, y1), (x0 + dxx, y1), (x0 + dxx, y1 + dxx), (x0 - dx, y0 + dx), (x0 + dxx, y0 - dxx), # arrow (x0 + dxx, y0), (x0 + dxx, y0)] com = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] path = Path(cp, com) return path @_register_style(_style_list) class RArrow(LArrow): """ (right) Arrow Box """ def __init__(self, pad=0.3): super().__init__(pad) def transmute(self, x0, y0, width, height, mutation_size): p = BoxStyle.LArrow.transmute(self, x0, y0, width, height, mutation_size) p.vertices[:, 0] = 2 * x0 + width - p.vertices[:, 0] return p @_register_style(_style_list) class DArrow(_Base): """ (Double) Arrow Box """ # This source is copied from LArrow, # modified to add a right arrow to the bbox. def __init__(self, pad=0.3): self.pad = pad super().__init__() def transmute(self, x0, y0, width, height, mutation_size): # padding pad = mutation_size * self.pad # width and height with padding added. # The width is padded by the arrows, so we don't need to pad it. height = height + 2. * pad # boundary of the padded box x0, y0 = x0 - pad, y0 - pad x1, y1 = x0 + width, y0 + height dx = (y1 - y0) / 2 dxx = dx * .5 # adjust x0. 1.4 <- sqrt(2) x0 = x0 + pad / 1.4 cp = [(x0 + dxx, y0), (x1, y0), # bot-segment (x1, y0 - dxx), (x1 + dx + dxx, y0 + dx), (x1, y1 + dxx), # right-arrow (x1, y1), (x0 + dxx, y1), # top-segment (x0 + dxx, y1 + dxx), (x0 - dx, y0 + dx), (x0 + dxx, y0 - dxx), # left-arrow (x0 + dxx, y0), (x0 + dxx, y0)] # close-poly com = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] path = Path(cp, com) return path @_register_style(_style_list) class Round(_Base): """ A box with round corners. """ def __init__(self, pad=0.3, rounding_size=None): """ *pad* amount of padding *rounding_size* rounding radius of corners. *pad* if None """ self.pad = pad self.rounding_size = rounding_size super().__init__() def transmute(self, x0, y0, width, height, mutation_size): # padding pad = mutation_size * self.pad # size of the rounding corner if self.rounding_size: dr = mutation_size * self.rounding_size else: dr = pad width, height = width + 2. * pad, height + 2. * pad x0, y0 = x0 - pad, y0 - pad, x1, y1 = x0 + width, y0 + height # Round corners are implemented as quadratic Bezier, e.g., # [(x0, y0-dr), (x0, y0), (x0+dr, y0)] for lower left corner. cp = [(x0 + dr, y0), (x1 - dr, y0), (x1, y0), (x1, y0 + dr), (x1, y1 - dr), (x1, y1), (x1 - dr, y1), (x0 + dr, y1), (x0, y1), (x0, y1 - dr), (x0, y0 + dr), (x0, y0), (x0 + dr, y0), (x0 + dr, y0)] com = [Path.MOVETO, Path.LINETO, Path.CURVE3, Path.CURVE3, Path.LINETO, Path.CURVE3, Path.CURVE3, Path.LINETO, Path.CURVE3, Path.CURVE3, Path.LINETO, Path.CURVE3, Path.CURVE3, Path.CLOSEPOLY] path = Path(cp, com) return path @_register_style(_style_list) class Round4(_Base): """ Another box with round edges. """ def __init__(self, pad=0.3, rounding_size=None): """ *pad* amount of padding *rounding_size* rounding size of edges. *pad* if None """ self.pad = pad self.rounding_size = rounding_size super().__init__() def transmute(self, x0, y0, width, height, mutation_size): # padding pad = mutation_size * self.pad # Rounding size; defaults to half of the padding. if self.rounding_size: dr = mutation_size * self.rounding_size else: dr = pad / 2. width, height = (width + 2. * pad - 2 * dr, height + 2. * pad - 2 * dr) x0, y0 = x0 - pad + dr, y0 - pad + dr, x1, y1 = x0 + width, y0 + height cp = [(x0, y0), (x0 + dr, y0 - dr), (x1 - dr, y0 - dr), (x1, y0), (x1 + dr, y0 + dr), (x1 + dr, y1 - dr), (x1, y1), (x1 - dr, y1 + dr), (x0 + dr, y1 + dr), (x0, y1), (x0 - dr, y1 - dr), (x0 - dr, y0 + dr), (x0, y0), (x0, y0)] com = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CURVE4, Path.CLOSEPOLY] path = Path(cp, com) return path @_register_style(_style_list) class Sawtooth(_Base): """ A sawtooth box. """ def __init__(self, pad=0.3, tooth_size=None): """ *pad* amount of padding *tooth_size* size of the sawtooth. pad* if None """ self.pad = pad self.tooth_size = tooth_size super().__init__() def _get_sawtooth_vertices(self, x0, y0, width, height, mutation_size): # padding pad = mutation_size * self.pad # size of sawtooth if self.tooth_size is None: tooth_size = self.pad * .5 * mutation_size else: tooth_size = self.tooth_size * mutation_size tooth_size2 = tooth_size / 2. width, height = (width + 2. * pad - tooth_size, height + 2. * pad - tooth_size) # the sizes of the vertical and horizontal sawtooth are # separately adjusted to fit the given box size. dsx_n = int(np.round((width - tooth_size) / (tooth_size * 2))) * 2 dsx = (width - tooth_size) / dsx_n dsy_n = int(np.round((height - tooth_size) / (tooth_size * 2))) * 2 dsy = (height - tooth_size) / dsy_n x0, y0 = x0 - pad + tooth_size2, y0 - pad + tooth_size2 x1, y1 = x0 + width, y0 + height bottom_saw_x = [ x0, *(x0 + tooth_size2 + dsx * .5 * np.arange(dsx_n * 2)), x1 - tooth_size2, ] bottom_saw_y = [ y0, *([y0 - tooth_size2, y0, y0 + tooth_size2, y0] * dsx_n), y0 - tooth_size2, ] right_saw_x = [ x1, *([x1 + tooth_size2, x1, x1 - tooth_size2, x1] * dsx_n), x1 + tooth_size2, ] right_saw_y = [ y0, *(y0 + tooth_size2 + dsy * .5 * np.arange(dsy_n * 2)), y1 - tooth_size2, ] top_saw_x = [ x1, *(x1 - tooth_size2 - dsx * .5 * np.arange(dsx_n * 2)), x0 + tooth_size2, ] top_saw_y = [ y1, *([y1 + tooth_size2, y1, y1 - tooth_size2, y1] * dsx_n), y1 + tooth_size2, ] left_saw_x = [ x0, *([x0 - tooth_size2, x0, x0 + tooth_size2, x0] * dsy_n), x0 - tooth_size2, ] left_saw_y = [ y1, *(y1 - tooth_size2 - dsy * .5 * np.arange(dsy_n * 2)), y0 + tooth_size2, ] saw_vertices = [*zip(bottom_saw_x, bottom_saw_y), *zip(right_saw_x, right_saw_y), *zip(top_saw_x, top_saw_y), *zip(left_saw_x, left_saw_y), (bottom_saw_x[0], bottom_saw_y[0])] return saw_vertices def transmute(self, x0, y0, width, height, mutation_size): saw_vertices = self._get_sawtooth_vertices(x0, y0, width, height, mutation_size) path = Path(saw_vertices, closed=True) return path @_register_style(_style_list) class Roundtooth(Sawtooth): """A rounded tooth box.""" def __init__(self, pad=0.3, tooth_size=None): """ *pad* amount of padding *tooth_size* size of the sawtooth. pad* if None """ super().__init__(pad, tooth_size) def transmute(self, x0, y0, width, height, mutation_size): saw_vertices = self._get_sawtooth_vertices(x0, y0, width, height, mutation_size) # Add a trailing vertex to allow us to close the polygon correctly saw_vertices = np.concatenate([np.array(saw_vertices), [saw_vertices[0]]], axis=0) codes = ([Path.MOVETO] + [Path.CURVE3, Path.CURVE3] * ((len(saw_vertices)-1)//2) + [Path.CLOSEPOLY]) return Path(saw_vertices, codes) if __doc__: # __doc__ could be None if -OO optimization is enabled __doc__ = inspect.cleandoc(__doc__) % { "AvailableBoxstyles": _pprint_styles(_style_list)} docstring.interpd.update( AvailableBoxstyles=_pprint_styles(BoxStyle._style_list), ListBoxstyles=_simpleprint_styles(BoxStyle._style_list)) class FancyBboxPatch(Patch): """ Draw a fancy box around a rectangle with lower left at *xy*=(*x*, *y*) with specified width and height. :class:`FancyBboxPatch` class is similar to :class:`Rectangle` class, but it draws a fancy box around the rectangle. The transformation of the rectangle box to the fancy box is delegated to the :class:`BoxTransmuterBase` and its derived classes. """ _edge_default = True def __str__(self): s = self.__class__.__name__ + "((%g, %g), width=%g, height=%g)" return s % (self._x, self._y, self._width, self._height) @docstring.dedent_interpd def __init__(self, xy, width, height, boxstyle="round", bbox_transmuter=None, mutation_scale=1., mutation_aspect=None, **kwargs): """ *xy* = lower left corner *width*, *height* *boxstyle* determines what kind of fancy box will be drawn. It can be a string of the style name with a comma separated attribute, or an instance of :class:`BoxStyle`. Following box styles are available. %(AvailableBoxstyles)s *mutation_scale* : a value with which attributes of boxstyle (e.g., pad) will be scaled. default=1. *mutation_aspect* : The height of the rectangle will be squeezed by this value before the mutation and the mutated box will be stretched by the inverse of it. default=None. Valid kwargs are: %(Patch)s """ Patch.__init__(self, **kwargs) self._x = xy[0] self._y = xy[1] self._width = width self._height = height if boxstyle == "custom": if bbox_transmuter is None: raise ValueError("bbox_transmuter argument is needed with " "custom boxstyle") self._bbox_transmuter = bbox_transmuter else: self.set_boxstyle(boxstyle) self._mutation_scale = mutation_scale self._mutation_aspect = mutation_aspect self.stale = True @docstring.dedent_interpd def set_boxstyle(self, boxstyle=None, **kw): """ Set the box style. *boxstyle* can be a string with boxstyle name with optional comma-separated attributes. Alternatively, the attrs can be provided as keywords:: set_boxstyle("round,pad=0.2") set_boxstyle("round", pad=0.2) Old attrs simply are forgotten. Without argument (or with *boxstyle* = None), it returns available box styles. The following boxstyles are available: %(AvailableBoxstyles)s ACCEPTS: %(ListBoxstyles)s """ if boxstyle is None: return BoxStyle.pprint_styles() if isinstance(boxstyle, BoxStyle._Base) or callable(boxstyle): self._bbox_transmuter = boxstyle else: self._bbox_transmuter = BoxStyle(boxstyle, **kw) self.stale = True def set_mutation_scale(self, scale): """ Set the mutation scale. Parameters ---------- scale : float """ self._mutation_scale = scale self.stale = True def get_mutation_scale(self): """ Return the mutation scale. """ return self._mutation_scale def set_mutation_aspect(self, aspect): """ Set the aspect ratio of the bbox mutation. Parameters ---------- aspect : float """ self._mutation_aspect = aspect self.stale = True def get_mutation_aspect(self): """ Return the aspect ratio of the bbox mutation. """ return self._mutation_aspect def get_boxstyle(self): "Return the boxstyle object" return self._bbox_transmuter def get_path(self): """ Return the mutated path of the rectangle """ _path = self.get_boxstyle()(self._x, self._y, self._width, self._height, self.get_mutation_scale(), self.get_mutation_aspect()) return _path # Following methods are borrowed from the Rectangle class. def get_x(self): "Return the left coord of the rectangle" return self._x def get_y(self): "Return the bottom coord of the rectangle" return self._y def get_width(self): "Return the width of the rectangle" return self._width def get_height(self): "Return the height of the rectangle" return self._height def set_x(self, x): """ Set the left coord of the rectangle. Parameters ---------- x : float """ self._x = x self.stale = True def set_y(self, y): """ Set the bottom coord of the rectangle. Parameters ---------- y : float """ self._y = y self.stale = True def set_width(self, w): """ Set the rectangle width. Parameters ---------- w : float """ self._width = w self.stale = True def set_height(self, h): """ Set the rectangle height. Parameters ---------- h : float """ self._height = h self.stale = True def set_bounds(self, *args): """ Set the bounds of the rectangle: l,b,w,h ACCEPTS: (left, bottom, width, height) """ if len(args) == 1: l, b, w, h = args[0] else: l, b, w, h = args self._x = l self._y = b self._width = w self._height = h self.stale = True def get_bbox(self): return transforms.Bbox.from_bounds(self._x, self._y, self._width, self._height) class ConnectionStyle(_Style): """ :class:`ConnectionStyle` is a container class which defines several connectionstyle classes, which is used to create a path between two points. These are mainly used with :class:`FancyArrowPatch`. A connectionstyle object can be either created as:: ConnectionStyle.Arc3(rad=0.2) or:: ConnectionStyle("Arc3", rad=0.2) or:: ConnectionStyle("Arc3, rad=0.2") The following classes are defined %(AvailableConnectorstyles)s An instance of any connection style class is an callable object, whose call signature is:: __call__(self, posA, posB, patchA=None, patchB=None, shrinkA=2., shrinkB=2.) and it returns a :class:`Path` instance. *posA* and *posB* are tuples of x,y coordinates of the two points to be connected. *patchA* (or *patchB*) is given, the returned path is clipped so that it start (or end) from the boundary of the patch. The path is further shrunk by *shrinkA* (or *shrinkB*) which is given in points. """ _style_list = {} class _Base(object): """ A base class for connectionstyle classes. The subclass needs to implement a *connect* method whose call signature is:: connect(posA, posB) where posA and posB are tuples of x, y coordinates to be connected. The method needs to return a path connecting two points. This base class defines a __call__ method, and a few helper methods. """ class SimpleEvent: def __init__(self, xy): self.x, self.y = xy def _clip(self, path, patchA, patchB): """ Clip the path to the boundary of the patchA and patchB. The starting point of the path needed to be inside of the patchA and the end point inside the patch B. The *contains* methods of each patch object is utilized to test if the point is inside the path. """ if patchA: def insideA(xy_display): xy_event = ConnectionStyle._Base.SimpleEvent(xy_display) return patchA.contains(xy_event)[0] try: left, right = split_path_inout(path, insideA) except ValueError: right = path path = right if patchB: def insideB(xy_display): xy_event = ConnectionStyle._Base.SimpleEvent(xy_display) return patchB.contains(xy_event)[0] try: left, right = split_path_inout(path, insideB) except ValueError: left = path path = left return path def _shrink(self, path, shrinkA, shrinkB): """ Shrink the path by fixed size (in points) with shrinkA and shrinkB. """ if shrinkA: insideA = inside_circle(*path.vertices[0], shrinkA) try: left, path = split_path_inout(path, insideA) except ValueError: pass if shrinkB: insideB = inside_circle(*path.vertices[-1], shrinkB) try: path, right = split_path_inout(path, insideB) except ValueError: pass return path def __call__(self, posA, posB, shrinkA=2., shrinkB=2., patchA=None, patchB=None): """ Calls the *connect* method to create a path between *posA* and *posB*. The path is clipped and shrunken. """ path = self.connect(posA, posB) clipped_path = self._clip(path, patchA, patchB) shrunk_path = self._shrink(clipped_path, shrinkA, shrinkB) return shrunk_path @_register_style(_style_list) class Arc3(_Base): """ Creates a simple quadratic Bezier curve between two points. The curve is created so that the middle control point (C1) is located at the same distance from the start (C0) and end points(C2) and the distance of the C1 to the line connecting C0-C2 is *rad* times the distance of C0-C2. """ def __init__(self, rad=0.): """ *rad* curvature of the curve. """ self.rad = rad def connect(self, posA, posB): x1, y1 = posA x2, y2 = posB x12, y12 = (x1 + x2) / 2., (y1 + y2) / 2. dx, dy = x2 - x1, y2 - y1 f = self.rad cx, cy = x12 + f * dy, y12 - f * dx vertices = [(x1, y1), (cx, cy), (x2, y2)] codes = [Path.MOVETO, Path.CURVE3, Path.CURVE3] return Path(vertices, codes) @_register_style(_style_list) class Angle3(_Base): """ Creates a simple quadratic Bezier curve between two points. The middle control points is placed at the intersecting point of two lines which cross the start and end point, and have a slope of angleA and angleB, respectively. """ def __init__(self, angleA=90, angleB=0): """ *angleA* starting angle of the path *angleB* ending angle of the path """ self.angleA = angleA self.angleB = angleB def connect(self, posA, posB): x1, y1 = posA x2, y2 = posB cosA = math.cos(math.radians(self.angleA)) sinA = math.sin(math.radians(self.angleA)) cosB = math.cos(math.radians(self.angleB)) sinB = math.sin(math.radians(self.angleB)) cx, cy = get_intersection(x1, y1, cosA, sinA, x2, y2, cosB, sinB) vertices = [(x1, y1), (cx, cy), (x2, y2)] codes = [Path.MOVETO, Path.CURVE3, Path.CURVE3] return Path(vertices, codes) @_register_style(_style_list) class Angle(_Base): """ Creates a piecewise continuous quadratic Bezier path between two points. The path has a one passing-through point placed at the intersecting point of two lines which cross the start and end point, and have a slope of angleA and angleB, respectively. The connecting edges are rounded with *rad*. """ def __init__(self, angleA=90, angleB=0, rad=0.): """ *angleA* starting angle of the path *angleB* ending angle of the path *rad* rounding radius of the edge """ self.angleA = angleA self.angleB = angleB self.rad = rad def connect(self, posA, posB): x1, y1 = posA x2, y2 = posB cosA = math.cos(math.radians(self.angleA)) sinA = math.sin(math.radians(self.angleA)) cosB = math.cos(math.radians(self.angleB)) sinB = math.sin(math.radians(self.angleB)) cx, cy = get_intersection(x1, y1, cosA, sinA, x2, y2, cosB, sinB) vertices = [(x1, y1)] codes = [Path.MOVETO] if self.rad == 0.: vertices.append((cx, cy)) codes.append(Path.LINETO) else: dx1, dy1 = x1 - cx, y1 - cy d1 = np.hypot(dx1, dy1) f1 = self.rad / d1 dx2, dy2 = x2 - cx, y2 - cy d2 = np.hypot(dx2, dy2) f2 = self.rad / d2 vertices.extend([(cx + dx1 * f1, cy + dy1 * f1), (cx, cy), (cx + dx2 * f2, cy + dy2 * f2)]) codes.extend([Path.LINETO, Path.CURVE3, Path.CURVE3]) vertices.append((x2, y2)) codes.append(Path.LINETO) return Path(vertices, codes) @_register_style(_style_list) class Arc(_Base): """ Creates a piecewise continuous quadratic Bezier path between two points. The path can have two passing-through points, a point placed at the distance of armA and angle of angleA from point A, another point with respect to point B. The edges are rounded with *rad*. """ def __init__(self, angleA=0, angleB=0, armA=None, armB=None, rad=0.): """ *angleA* : starting angle of the path *angleB* : ending angle of the path *armA* : length of the starting arm *armB* : length of the ending arm *rad* : rounding radius of the edges """ self.angleA = angleA self.angleB = angleB self.armA = armA self.armB = armB self.rad = rad def connect(self, posA, posB): x1, y1 = posA x2, y2 = posB vertices = [(x1, y1)] rounded = [] codes = [Path.MOVETO] if self.armA: cosA = math.cos(math.radians(self.angleA)) sinA = math.sin(math.radians(self.angleA)) # x_armA, y_armB d = self.armA - self.rad rounded.append((x1 + d * cosA, y1 + d * sinA)) d = self.armA rounded.append((x1 + d * cosA, y1 + d * sinA)) if self.armB: cosB = math.cos(math.radians(self.angleB)) sinB = math.sin(math.radians(self.angleB)) x_armB, y_armB = x2 + self.armB * cosB, y2 + self.armB * sinB if rounded: xp, yp = rounded[-1] dx, dy = x_armB - xp, y_armB - yp dd = (dx * dx + dy * dy) ** .5 rounded.append((xp + self.rad * dx / dd, yp + self.rad * dy / dd)) vertices.extend(rounded) codes.extend([Path.LINETO, Path.CURVE3, Path.CURVE3]) else: xp, yp = vertices[-1] dx, dy = x_armB - xp, y_armB - yp dd = (dx * dx + dy * dy) ** .5 d = dd - self.rad rounded = [(xp + d * dx / dd, yp + d * dy / dd), (x_armB, y_armB)] if rounded: xp, yp = rounded[-1] dx, dy = x2 - xp, y2 - yp dd = (dx * dx + dy * dy) ** .5 rounded.append((xp + self.rad * dx / dd, yp + self.rad * dy / dd)) vertices.extend(rounded) codes.extend([Path.LINETO, Path.CURVE3, Path.CURVE3]) vertices.append((x2, y2)) codes.append(Path.LINETO) return Path(vertices, codes) @_register_style(_style_list) class Bar(_Base): """ A line with *angle* between A and B with *armA* and *armB*. One of the arms is extended so that they are connected in a right angle. The length of armA is determined by (*armA* + *fraction* x AB distance). Same for armB. """ def __init__(self, armA=0., armB=0., fraction=0.3, angle=None): """ Parameters ---------- armA : float minimum length of armA armB : float minimum length of armB fraction : float a fraction of the distance between two points that will be added to armA and armB. angle : float or None angle of the connecting line (if None, parallel to A and B) """ self.armA = armA self.armB = armB self.fraction = fraction self.angle = angle def connect(self, posA, posB): x1, y1 = posA x20, y20 = x2, y2 = posB theta1 = math.atan2(y2 - y1, x2 - x1) dx, dy = x2 - x1, y2 - y1 dd = (dx * dx + dy * dy) ** .5 ddx, ddy = dx / dd, dy / dd armA, armB = self.armA, self.armB if self.angle is not None: theta0 = np.deg2rad(self.angle) dtheta = theta1 - theta0 dl = dd * math.sin(dtheta) dL = dd * math.cos(dtheta) x2, y2 = x1 + dL * math.cos(theta0), y1 + dL * math.sin(theta0) armB = armB - dl # update dx, dy = x2 - x1, y2 - y1 dd2 = (dx * dx + dy * dy) ** .5 ddx, ddy = dx / dd2, dy / dd2 arm = max(armA, armB) f = self.fraction * dd + arm cx1, cy1 = x1 + f * ddy, y1 - f * ddx cx2, cy2 = x2 + f * ddy, y2 - f * ddx vertices = [(x1, y1), (cx1, cy1), (cx2, cy2), (x20, y20)] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO] return Path(vertices, codes) if __doc__: __doc__ = inspect.cleandoc(__doc__) % { "AvailableConnectorstyles": _pprint_styles(_style_list)} def _point_along_a_line(x0, y0, x1, y1, d): """ find a point along a line connecting (x0, y0) -- (x1, y1) whose distance from (x0, y0) is d. """ dx, dy = x0 - x1, y0 - y1 ff = d / (dx * dx + dy * dy) ** .5 x2, y2 = x0 - ff * dx, y0 - ff * dy return x2, y2 class ArrowStyle(_Style): """ :class:`ArrowStyle` is a container class which defines several arrowstyle classes, which is used to create an arrow path along a given path. These are mainly used with :class:`FancyArrowPatch`. A arrowstyle object can be either created as:: ArrowStyle.Fancy(head_length=.4, head_width=.4, tail_width=.4) or:: ArrowStyle("Fancy", head_length=.4, head_width=.4, tail_width=.4) or:: ArrowStyle("Fancy, head_length=.4, head_width=.4, tail_width=.4") The following classes are defined %(AvailableArrowstyles)s An instance of any arrow style class is a callable object, whose call signature is:: __call__(self, path, mutation_size, linewidth, aspect_ratio=1.) and it returns a tuple of a :class:`Path` instance and a boolean value. *path* is a :class:`Path` instance along which the arrow will be drawn. *mutation_size* and *aspect_ratio* have the same meaning as in :class:`BoxStyle`. *linewidth* is a line width to be stroked. This is meant to be used to correct the location of the head so that it does not overshoot the destination point, but not all classes support it. """ _style_list = {} class _Base(object): """ Arrow Transmuter Base class ArrowTransmuterBase and its derivatives are used to make a fancy arrow around a given path. The __call__ method returns a path (which will be used to create a PathPatch instance) and a boolean value indicating the path is open therefore is not fillable. This class is not an artist and actual drawing of the fancy arrow is done by the FancyArrowPatch class. """ # The derived classes are required to be able to be initialized # w/o arguments, i.e., all its argument (except self) must have # the default values. @staticmethod def ensure_quadratic_bezier(path): """ Some ArrowStyle class only works with a simple quadratic Bezier curve (created with Arc3Connection or Angle3Connector). This static method is to check if the provided path is a simple quadratic Bezier curve and returns its control points if true. """ segments = list(path.iter_segments()) if (len(segments) != 2 or segments[0][1] != Path.MOVETO or segments[1][1] != Path.CURVE3): raise ValueError( "'path' is not a valid quadratic Bezier curve") return [*segments[0][0], *segments[1][0]] def transmute(self, path, mutation_size, linewidth): """ The transmute method is the very core of the ArrowStyle class and must be overridden in the subclasses. It receives the path object along which the arrow will be drawn, and the mutation_size, with which the arrow head etc. will be scaled. The linewidth may be used to adjust the path so that it does not pass beyond the given points. It returns a tuple of a Path instance and a boolean. The boolean value indicate whether the path can be filled or not. The return value can also be a list of paths and list of booleans of a same length. """ raise NotImplementedError('Derived must override') def __call__(self, path, mutation_size, linewidth, aspect_ratio=1.): """ The __call__ method is a thin wrapper around the transmute method and takes care of the aspect ratio. """ path = make_path_regular(path) if aspect_ratio is not None: # Squeeze the given height by the aspect_ratio vertices, codes = path.vertices[:], path.codes[:] # Squeeze the height vertices[:, 1] = vertices[:, 1] / aspect_ratio path_shrunk = Path(vertices, codes) # call transmute method with squeezed height. path_mutated, fillable = self.transmute(path_shrunk, linewidth, mutation_size) if np.iterable(fillable): path_list = [] for p in zip(path_mutated): v, c = p.vertices, p.codes # Restore the height v[:, 1] = v[:, 1] * aspect_ratio path_list.append(Path(v, c)) return path_list, fillable else: return path_mutated, fillable else: return self.transmute(path, mutation_size, linewidth) class _Curve(_Base): """ A simple arrow which will work with any path instance. The returned path is simply concatenation of the original path + at most two paths representing the arrow head at the begin point and the at the end point. The arrow heads can be either open or closed. """ def __init__(self, beginarrow=None, endarrow=None, fillbegin=False, fillend=False, head_length=.2, head_width=.1): """ The arrows are drawn if *beginarrow* and/or *endarrow* are true. *head_length* and *head_width* determines the size of the arrow relative to the *mutation scale*. The arrowhead at the begin (or end) is closed if fillbegin (or fillend) is True. """ self.beginarrow, self.endarrow = beginarrow, endarrow self.head_length, self.head_width = head_length, head_width self.fillbegin, self.fillend = fillbegin, fillend super().__init__() def _get_arrow_wedge(self, x0, y0, x1, y1, head_dist, cos_t, sin_t, linewidth ): """ Return the paths for arrow heads. Since arrow lines are drawn with capstyle=projected, The arrow goes beyond the desired point. This method also returns the amount of the path to be shrunken so that it does not overshoot. """ # arrow from x0, y0 to x1, y1 dx, dy = x0 - x1, y0 - y1 cp_distance = np.hypot(dx, dy) # pad_projected : amount of pad to account the # overshooting of the projection of the wedge pad_projected = (.5 * linewidth / sin_t) # Account for division by zero if cp_distance == 0: cp_distance = 1 # apply pad for projected edge ddx = pad_projected * dx / cp_distance ddy = pad_projected * dy / cp_distance # offset for arrow wedge dx = dx / cp_distance * head_dist dy = dy / cp_distance * head_dist dx1, dy1 = cos_t * dx + sin_t * dy, -sin_t * dx + cos_t * dy dx2, dy2 = cos_t * dx - sin_t * dy, sin_t * dx + cos_t * dy vertices_arrow = [(x1 + ddx + dx1, y1 + ddy + dy1), (x1 + ddx, y1 + ddy), (x1 + ddx + dx2, y1 + ddy + dy2)] codes_arrow = [Path.MOVETO, Path.LINETO, Path.LINETO] return vertices_arrow, codes_arrow, ddx, ddy def transmute(self, path, mutation_size, linewidth): head_length = self.head_length * mutation_size head_width = self.head_width * mutation_size head_dist = np.hypot(head_length, head_width) cos_t, sin_t = head_length / head_dist, head_width / head_dist # begin arrow x0, y0 = path.vertices[0] x1, y1 = path.vertices[1] # If there is no room for an arrow and a line, then skip the arrow has_begin_arrow = self.beginarrow and (x0, y0) != (x1, y1) verticesA, codesA, ddxA, ddyA = ( self._get_arrow_wedge(x1, y1, x0, y0, head_dist, cos_t, sin_t, linewidth) if has_begin_arrow else ([], [], 0, 0) ) # end arrow x2, y2 = path.vertices[-2] x3, y3 = path.vertices[-1] # If there is no room for an arrow and a line, then skip the arrow has_end_arrow = self.endarrow and (x2, y2) != (x3, y3) verticesB, codesB, ddxB, ddyB = ( self._get_arrow_wedge(x2, y2, x3, y3, head_dist, cos_t, sin_t, linewidth) if has_end_arrow else ([], [], 0, 0) ) # This simple code will not work if ddx, ddy is greater than the # separation between vertices. _path = [Path(np.concatenate([[(x0 + ddxA, y0 + ddyA)], path.vertices[1:-1], [(x3 + ddxB, y3 + ddyB)]]), path.codes)] _fillable = [False] if has_begin_arrow: if self.fillbegin: p = np.concatenate([verticesA, [verticesA[0], verticesA[0]], ]) c = np.concatenate([codesA, [Path.LINETO, Path.CLOSEPOLY]]) _path.append(Path(p, c)) _fillable.append(True) else: _path.append(Path(verticesA, codesA)) _fillable.append(False) if has_end_arrow: if self.fillend: _fillable.append(True) p = np.concatenate([verticesB, [verticesB[0], verticesB[0]], ]) c = np.concatenate([codesB, [Path.LINETO, Path.CLOSEPOLY]]) _path.append(Path(p, c)) else: _fillable.append(False) _path.append(Path(verticesB, codesB)) return _path, _fillable @_register_style(_style_list, name="-") class Curve(_Curve): """ A simple curve without any arrow head. """ def __init__(self): super().__init__(beginarrow=False, endarrow=False) @_register_style(_style_list, name="<-") class CurveA(_Curve): """ An arrow with a head at its begin point. """ def __init__(self, head_length=.4, head_width=.2): """ Parameters ---------- head_length : float, optional, default : 0.4 Length of the arrow head head_width : float, optional, default : 0.2 Width of the arrow head """ super().__init__(beginarrow=True, endarrow=False, head_length=head_length, head_width=head_width) @_register_style(_style_list, name="->") class CurveB(_Curve): """ An arrow with a head at its end point. """ def __init__(self, head_length=.4, head_width=.2): """ Parameters ---------- head_length : float, optional, default : 0.4 Length of the arrow head head_width : float, optional, default : 0.2 Width of the arrow head """ super().__init__(beginarrow=False, endarrow=True, head_length=head_length, head_width=head_width) @_register_style(_style_list, name="<->") class CurveAB(_Curve): """ An arrow with heads both at the begin and the end point. """ def __init__(self, head_length=.4, head_width=.2): """ Parameters ---------- head_length : float, optional, default : 0.4 Length of the arrow head head_width : float, optional, default : 0.2 Width of the arrow head """ super().__init__(beginarrow=True, endarrow=True, head_length=head_length, head_width=head_width) @_register_style(_style_list, name="<|-") class CurveFilledA(_Curve): """ An arrow with filled triangle head at the begin. """ def __init__(self, head_length=.4, head_width=.2): """ Parameters ---------- head_length : float, optional, default : 0.4 Length of the arrow head head_width : float, optional, default : 0.2 Width of the arrow head """ super().__init__(beginarrow=True, endarrow=False, fillbegin=True, fillend=False, head_length=head_length, head_width=head_width) @_register_style(_style_list, name="-|>") class CurveFilledB(_Curve): """ An arrow with filled triangle head at the end. """ def __init__(self, head_length=.4, head_width=.2): """ Parameters ---------- head_length : float, optional, default : 0.4 Length of the arrow head head_width : float, optional, default : 0.2 Width of the arrow head """ super().__init__(beginarrow=False, endarrow=True, fillbegin=False, fillend=True, head_length=head_length, head_width=head_width) @_register_style(_style_list, name="<|-|>") class CurveFilledAB(_Curve): """ An arrow with filled triangle heads at both ends. """ def __init__(self, head_length=.4, head_width=.2): """ Parameters ---------- head_length : float, optional, default : 0.4 Length of the arrow head head_width : float, optional, default : 0.2 Width of the arrow head """ super().__init__(beginarrow=True, endarrow=True, fillbegin=True, fillend=True, head_length=head_length, head_width=head_width) class _Bracket(_Base): def __init__(self, bracketA=None, bracketB=None, widthA=1., widthB=1., lengthA=0.2, lengthB=0.2, angleA=None, angleB=None, scaleA=None, scaleB=None): self.bracketA, self.bracketB = bracketA, bracketB self.widthA, self.widthB = widthA, widthB self.lengthA, self.lengthB = lengthA, lengthB self.angleA, self.angleB = angleA, angleB self.scaleA, self.scaleB = scaleA, scaleB def _get_bracket(self, x0, y0, cos_t, sin_t, width, length): # arrow from x0, y0 to x1, y1 from matplotlib.bezier import get_normal_points x1, y1, x2, y2 = get_normal_points(x0, y0, cos_t, sin_t, width) dx, dy = length * cos_t, length * sin_t vertices_arrow = [(x1 + dx, y1 + dy), (x1, y1), (x2, y2), (x2 + dx, y2 + dy)] codes_arrow = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO] return vertices_arrow, codes_arrow def transmute(self, path, mutation_size, linewidth): if self.scaleA is None: scaleA = mutation_size else: scaleA = self.scaleA if self.scaleB is None: scaleB = mutation_size else: scaleB = self.scaleB vertices_list, codes_list = [], [] if self.bracketA: x0, y0 = path.vertices[0] x1, y1 = path.vertices[1] cos_t, sin_t = get_cos_sin(x1, y1, x0, y0) verticesA, codesA = self._get_bracket(x0, y0, cos_t, sin_t, self.widthA * scaleA, self.lengthA * scaleA) vertices_list.append(verticesA) codes_list.append(codesA) vertices_list.append(path.vertices) codes_list.append(path.codes) if self.bracketB: x0, y0 = path.vertices[-1] x1, y1 = path.vertices[-2] cos_t, sin_t = get_cos_sin(x1, y1, x0, y0) verticesB, codesB = self._get_bracket(x0, y0, cos_t, sin_t, self.widthB * scaleB, self.lengthB * scaleB) vertices_list.append(verticesB) codes_list.append(codesB) vertices = np.concatenate(vertices_list) codes = np.concatenate(codes_list) p = Path(vertices, codes) return p, False @_register_style(_style_list, name="]-[") class BracketAB(_Bracket): """ An arrow with a bracket(]) at both ends. """ def __init__(self, widthA=1., lengthA=0.2, angleA=None, widthB=1., lengthB=0.2, angleB=None): """ Parameters ---------- widthA : float, optional, default : 1.0 Width of the bracket lengthA : float, optional, default : 0.2 Length of the bracket angleA : float, optional, default : None Angle between the bracket and the line widthB : float, optional, default : 1.0 Width of the bracket lengthB : float, optional, default : 0.2 Length of the bracket angleB : float, optional, default : None Angle between the bracket and the line """ super().__init__(True, True, widthA=widthA, lengthA=lengthA, angleA=angleA, widthB=widthB, lengthB=lengthB, angleB=angleB) @_register_style(_style_list, name="]-") class BracketA(_Bracket): """ An arrow with a bracket(]) at its end. """ def __init__(self, widthA=1., lengthA=0.2, angleA=None): """ Parameters ---------- widthA : float, optional, default : 1.0 Width of the bracket lengthA : float, optional, default : 0.2 Length of the bracket angleA : float, optional, default : None Angle between the bracket and the line """ super().__init__(True, None, widthA=widthA, lengthA=lengthA, angleA=angleA) @_register_style(_style_list, name="-[") class BracketB(_Bracket): """ An arrow with a bracket([) at its end. """ def __init__(self, widthB=1., lengthB=0.2, angleB=None): """ Parameters ---------- widthB : float, optional, default : 1.0 Width of the bracket lengthB : float, optional, default : 0.2 Length of the bracket angleB : float, optional, default : None Angle between the bracket and the line """ super().__init__(None, True, widthB=widthB, lengthB=lengthB, angleB=angleB) @_register_style(_style_list, name="|-|") class BarAB(_Bracket): """ An arrow with a bar(|) at both ends. """ def __init__(self, widthA=1., angleA=None, widthB=1., angleB=None): """ Parameters ---------- widthA : float, optional, default : 1.0 Width of the bracket angleA : float, optional, default : None Angle between the bracket and the line widthB : float, optional, default : 1.0 Width of the bracket angleB : float, optional, default : None Angle between the bracket and the line """ super().__init__(True, True, widthA=widthA, lengthA=0, angleA=angleA, widthB=widthB, lengthB=0, angleB=angleB) @_register_style(_style_list) class Simple(_Base): """ A simple arrow. Only works with a quadratic Bezier curve. """ def __init__(self, head_length=.5, head_width=.5, tail_width=.2): """ Parameters ---------- head_length : float, optional, default : 0.5 Length of the arrow head head_width : float, optional, default : 0.5 Width of the arrow head tail_width : float, optional, default : 0.2 Width of the arrow tail """ self.head_length, self.head_width, self.tail_width = \ head_length, head_width, tail_width super().__init__() def transmute(self, path, mutation_size, linewidth): x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path) # divide the path into a head and a tail head_length = self.head_length * mutation_size in_f = inside_circle(x2, y2, head_length) arrow_path = [(x0, y0), (x1, y1), (x2, y2)] try: arrow_out, arrow_in = \ split_bezier_intersecting_with_closedpath( arrow_path, in_f, tolerance=0.01) except NonIntersectingPathException: # if this happens, make a straight line of the head_length # long. x0, y0 = _point_along_a_line(x2, y2, x1, y1, head_length) x1n, y1n = 0.5 * (x0 + x2), 0.5 * (y0 + y2) arrow_in = [(x0, y0), (x1n, y1n), (x2, y2)] arrow_out = None # head head_width = self.head_width * mutation_size head_left, head_right = make_wedged_bezier2(arrow_in, head_width / 2., wm=.5) # tail if arrow_out is not None: tail_width = self.tail_width * mutation_size tail_left, tail_right = get_parallels(arrow_out, tail_width / 2.) patch_path = [(Path.MOVETO, tail_right[0]), (Path.CURVE3, tail_right[1]), (Path.CURVE3, tail_right[2]), (Path.LINETO, head_right[0]), (Path.CURVE3, head_right[1]), (Path.CURVE3, head_right[2]), (Path.CURVE3, head_left[1]), (Path.CURVE3, head_left[0]), (Path.LINETO, tail_left[2]), (Path.CURVE3, tail_left[1]), (Path.CURVE3, tail_left[0]), (Path.LINETO, tail_right[0]), (Path.CLOSEPOLY, tail_right[0]), ] else: patch_path = [(Path.MOVETO, head_right[0]), (Path.CURVE3, head_right[1]), (Path.CURVE3, head_right[2]), (Path.CURVE3, head_left[1]), (Path.CURVE3, head_left[0]), (Path.CLOSEPOLY, head_left[0]), ] path = Path([p for c, p in patch_path], [c for c, p in patch_path]) return path, True @_register_style(_style_list) class Fancy(_Base): """ A fancy arrow. Only works with a quadratic Bezier curve. """ def __init__(self, head_length=.4, head_width=.4, tail_width=.4): """ Parameters ---------- head_length : float, optional, default : 0.4 Length of the arrow head head_width : float, optional, default : 0.4 Width of the arrow head tail_width : float, optional, default : 0.4 Width of the arrow tail """ self.head_length, self.head_width, self.tail_width = \ head_length, head_width, tail_width super().__init__() def transmute(self, path, mutation_size, linewidth): x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path) # divide the path into a head and a tail head_length = self.head_length * mutation_size arrow_path = [(x0, y0), (x1, y1), (x2, y2)] # path for head in_f = inside_circle(x2, y2, head_length) try: path_out, path_in = split_bezier_intersecting_with_closedpath( arrow_path, in_f, tolerance=0.01) except NonIntersectingPathException: # if this happens, make a straight line of the head_length # long. x0, y0 = _point_along_a_line(x2, y2, x1, y1, head_length) x1n, y1n = 0.5 * (x0 + x2), 0.5 * (y0 + y2) arrow_path = [(x0, y0), (x1n, y1n), (x2, y2)] path_head = arrow_path else: path_head = path_in # path for head in_f = inside_circle(x2, y2, head_length * .8) path_out, path_in = split_bezier_intersecting_with_closedpath( arrow_path, in_f, tolerance=0.01) path_tail = path_out # head head_width = self.head_width * mutation_size head_l, head_r = make_wedged_bezier2(path_head, head_width / 2., wm=.6) # tail tail_width = self.tail_width * mutation_size tail_left, tail_right = make_wedged_bezier2(path_tail, tail_width * .5, w1=1., wm=0.6, w2=0.3) # path for head in_f = inside_circle(x0, y0, tail_width * .3) path_in, path_out = split_bezier_intersecting_with_closedpath( arrow_path, in_f, tolerance=0.01) tail_start = path_in[-1] head_right, head_left = head_r, head_l patch_path = [(Path.MOVETO, tail_start), (Path.LINETO, tail_right[0]), (Path.CURVE3, tail_right[1]), (Path.CURVE3, tail_right[2]), (Path.LINETO, head_right[0]), (Path.CURVE3, head_right[1]), (Path.CURVE3, head_right[2]), (Path.CURVE3, head_left[1]), (Path.CURVE3, head_left[0]), (Path.LINETO, tail_left[2]), (Path.CURVE3, tail_left[1]), (Path.CURVE3, tail_left[0]), (Path.LINETO, tail_start), (Path.CLOSEPOLY, tail_start), ] path = Path([p for c, p in patch_path], [c for c, p in patch_path]) return path, True @_register_style(_style_list) class Wedge(_Base): """ Wedge(?) shape. Only works with a quadratic Bezier curve. The begin point has a width of the tail_width and the end point has a width of 0. At the middle, the width is shrink_factor*tail_width. """ def __init__(self, tail_width=.3, shrink_factor=0.5): """ Parameters ---------- tail_width : float, optional, default : 0.3 Width of the tail shrink_factor : float, optional, default : 0.5 Fraction of the arrow width at the middle point """ self.tail_width = tail_width self.shrink_factor = shrink_factor super().__init__() def transmute(self, path, mutation_size, linewidth): x0, y0, x1, y1, x2, y2 = self.ensure_quadratic_bezier(path) arrow_path = [(x0, y0), (x1, y1), (x2, y2)] b_plus, b_minus = make_wedged_bezier2( arrow_path, self.tail_width * mutation_size / 2., wm=self.shrink_factor) patch_path = [(Path.MOVETO, b_plus[0]), (Path.CURVE3, b_plus[1]), (Path.CURVE3, b_plus[2]), (Path.LINETO, b_minus[2]), (Path.CURVE3, b_minus[1]), (Path.CURVE3, b_minus[0]), (Path.CLOSEPOLY, b_minus[0]), ] path = Path([p for c, p in patch_path], [c for c, p in patch_path]) return path, True if __doc__: __doc__ = inspect.cleandoc(__doc__) % { "AvailableArrowstyles": _pprint_styles(_style_list)} docstring.interpd.update( AvailableArrowstyles=_pprint_styles(ArrowStyle._style_list), AvailableConnectorstyles=_pprint_styles(ConnectionStyle._style_list), ) class FancyArrowPatch(Patch): """ A fancy arrow patch. It draws an arrow using the :class:`ArrowStyle`. The head and tail positions are fixed at the specified start and end points of the arrow, but the size and shape (in display coordinates) of the arrow does not change when the axis is moved or zoomed. """ _edge_default = True def __str__(self): if self._posA_posB is not None: (x1, y1), (x2, y2) = self._posA_posB return self.__class__.__name__ \ + "((%g, %g)->(%g, %g))" % (x1, y1, x2, y2) else: return self.__class__.__name__ \ + "(%s)" % (str(self._path_original),) @docstring.dedent_interpd def __init__(self, posA=None, posB=None, path=None, arrowstyle="simple", arrow_transmuter=None, connectionstyle="arc3", connector=None, patchA=None, patchB=None, shrinkA=2, shrinkB=2, mutation_scale=1, mutation_aspect=None, dpi_cor=1, **kwargs): """ There are two ways for defining an arrow: - If *posA* and *posB* are given, a path connecting two points is created according to *connectionstyle*. The path will be clipped with *patchA* and *patchB* and further shrunken by *shrinkA* and *shrinkB*. An arrow is drawn along this resulting path using the *arrowstyle* parameter. - Alternatively if *path* is provided, an arrow is drawn along this path and *patchA*, *patchB*, *shrinkA*, and *shrinkB* are ignored. Parameters ---------- posA, posB : (float, float), optional (default: None) (x,y) coordinates of arrow tail and arrow head respectively. path : `~matplotlib.path.Path`, optional (default: None) If provided, an arrow is drawn along this path and *patchA*, *patchB*, *shrinkA*, and *shrinkB* are ignored. arrowstyle : str or `.ArrowStyle`, optional (default: 'simple') Describes how the fancy arrow will be drawn. It can be string of the available arrowstyle names, with optional comma-separated attributes, or an :class:`ArrowStyle` instance. The optional attributes are meant to be scaled with the *mutation_scale*. The following arrow styles are available: %(AvailableArrowstyles)s arrow_transmuter Ignored. connectionstyle : str or `.ConnectionStyle` or None, optional \ (default: 'arc3') Describes how *posA* and *posB* are connected. It can be an instance of the :class:`ConnectionStyle` class or a string of the connectionstyle name, with optional comma-separated attributes. The following connection styles are available: %(AvailableConnectorstyles)s connector Ignored. patchA, patchB : `.Patch`, optional (default: None) Head and tail patch respectively. :class:`matplotlib.patch.Patch` instance. shrinkA, shrinkB : float, optional (default: 2) Shrinking factor of the tail and head of the arrow respectively. mutation_scale : float, optional (default: 1) Value with which attributes of *arrowstyle* (e.g., *head_length*) will be scaled. mutation_aspect : None or float, optional (default: None) The height of the rectangle will be squeezed by this value before the mutation and the mutated box will be stretched by the inverse of it. dpi_cor : float, optional (default: 1) dpi_cor is currently used for linewidth-related things and shrink factor. Mutation scale is affected by this. Other Parameters ---------------- **kwargs : `.Patch` properties, optional Here is a list of available `.Patch` properties: %(Patch)s In contrast to other patches, the default ``capstyle`` and ``joinstyle`` for `FancyArrowPatch` are set to ``"round"``. """ if arrow_transmuter is not None: cbook.warn_deprecated( 3.0, message=('The "arrow_transmuter" keyword argument is not used,' ' and will be removed in Matplotlib 3.1'), name='arrow_transmuter', obj_type='keyword argument') if connector is not None: cbook.warn_deprecated( 3.0, message=('The "connector" keyword argument is not used,' ' and will be removed in Matplotlib 3.1'), name='connector', obj_type='keyword argument') # Traditionally, the cap- and joinstyle for FancyArrowPatch are round kwargs.setdefault("joinstyle", "round") kwargs.setdefault("capstyle", "round") Patch.__init__(self, **kwargs) if posA is not None and posB is not None and path is None: self._posA_posB = [posA, posB] if connectionstyle is None: connectionstyle = "arc3" self.set_connectionstyle(connectionstyle) elif posA is None and posB is None and path is not None: self._posA_posB = None else: raise ValueError("either posA and posB, or path need to provided") self.patchA = patchA self.patchB = patchB self.shrinkA = shrinkA self.shrinkB = shrinkB self._path_original = path self.set_arrowstyle(arrowstyle) self._mutation_scale = mutation_scale self._mutation_aspect = mutation_aspect self.set_dpi_cor(dpi_cor) def set_dpi_cor(self, dpi_cor): """ dpi_cor is currently used for linewidth-related things and shrink factor. Mutation scale is affected by this. Parameters ---------- dpi_cor : scalar """ self._dpi_cor = dpi_cor self.stale = True def get_dpi_cor(self): """ dpi_cor is currently used for linewidth-related things and shrink factor. Mutation scale is affected by this. Returns ------- dpi_cor : scalar """ return self._dpi_cor def set_positions(self, posA, posB): """ Set the begin and end positions of the connecting path. Parameters ---------- posA, posB : None, tuple (x,y) coordinates of arrow tail and arrow head respectively. If `None` use current value. """ if posA is not None: self._posA_posB[0] = posA if posB is not None: self._posA_posB[1] = posB self.stale = True def set_patchA(self, patchA): """ Set the tail patch. Parameters ---------- patchA : Patch :class:`matplotlib.patch.Patch` instance. """ self.patchA = patchA self.stale = True def set_patchB(self, patchB): """ Set the head patch. Parameters ---------- patchB : Patch :class:`matplotlib.patch.Patch` instance. """ self.patchB = patchB self.stale = True def set_connectionstyle(self, connectionstyle, **kw): """ Set the connection style. Old attributes are forgotten. Parameters ---------- connectionstyle : None, ConnectionStyle instance, or string Can be a string with connectionstyle name with optional comma-separated attributes, e.g.:: set_connectionstyle("arc,angleA=0,armA=30,rad=10") Alternatively, the attributes can be provided as keywords, e.g.:: set_connectionstyle("arc", angleA=0,armA=30,rad=10) Without any arguments (or with ``connectionstyle=None``), return available styles as a list of strings. """ if connectionstyle is None: return ConnectionStyle.pprint_styles() if (isinstance(connectionstyle, ConnectionStyle._Base) or callable(connectionstyle)): self._connector = connectionstyle else: self._connector = ConnectionStyle(connectionstyle, **kw) self.stale = True def get_connectionstyle(self): """ Return the :class:`ConnectionStyle` instance. """ return self._connector def set_arrowstyle(self, arrowstyle=None, **kw): """ Set the arrow style. Old attributes are forgotten. Without arguments (or with ``arrowstyle=None``) returns available box styles as a list of strings. Parameters ---------- arrowstyle : None, ArrowStyle, str, optional (default: None) Can be a string with arrowstyle name with optional comma-separated attributes, e.g.:: set_arrowstyle("Fancy,head_length=0.2") Alternatively attributes can be provided as keywords, e.g.:: set_arrowstyle("fancy", head_length=0.2) """ if arrowstyle is None: return ArrowStyle.pprint_styles() if isinstance(arrowstyle, ArrowStyle._Base): self._arrow_transmuter = arrowstyle else: self._arrow_transmuter = ArrowStyle(arrowstyle, **kw) self.stale = True def get_arrowstyle(self): """ Return the arrowstyle object. """ return self._arrow_transmuter def set_mutation_scale(self, scale): """ Set the mutation scale. Parameters ---------- scale : scalar """ self._mutation_scale = scale self.stale = True def get_mutation_scale(self): """ Return the mutation scale. Returns ------- scale : scalar """ return self._mutation_scale def set_mutation_aspect(self, aspect): """ Set the aspect ratio of the bbox mutation. Parameters ---------- aspect : scalar """ self._mutation_aspect = aspect self.stale = True def get_mutation_aspect(self): """ Return the aspect ratio of the bbox mutation. """ return self._mutation_aspect def get_path(self): """ Return the path of the arrow in the data coordinates. Use get_path_in_displaycoord() method to retrieve the arrow path in display coordinates. """ _path, fillable = self.get_path_in_displaycoord() if np.iterable(fillable): _path = concatenate_paths(_path) return self.get_transform().inverted().transform_path(_path) def get_path_in_displaycoord(self): """ Return the mutated path of the arrow in display coordinates. """ dpi_cor = self.get_dpi_cor() if self._posA_posB is not None: posA = self._convert_xy_units(self._posA_posB[0]) posB = self._convert_xy_units(self._posA_posB[1]) posA = self.get_transform().transform_point(posA) posB = self.get_transform().transform_point(posB) _path = self.get_connectionstyle()(posA, posB, patchA=self.patchA, patchB=self.patchB, shrinkA=self.shrinkA * dpi_cor, shrinkB=self.shrinkB * dpi_cor ) else: _path = self.get_transform().transform_path(self._path_original) _path, fillable = self.get_arrowstyle()( _path, self.get_mutation_scale() * dpi_cor, self.get_linewidth() * dpi_cor, self.get_mutation_aspect()) # if not fillable: # self._fill = False return _path, fillable def draw(self, renderer): if not self.get_visible(): return with self._bind_draw_path_function(renderer) as draw_path: # FIXME : dpi_cor is for the dpi-dependency of the linewidth. There # could be room for improvement. self.set_dpi_cor(renderer.points_to_pixels(1.)) path, fillable = self.get_path_in_displaycoord() if not np.iterable(fillable): path = [path] fillable = [fillable] affine = transforms.IdentityTransform() for p, f in zip(path, fillable): draw_path( p, affine, self._facecolor if f and self._facecolor[3] else None) class ConnectionPatch(FancyArrowPatch): """ A :class:`~matplotlib.patches.ConnectionPatch` class is to make connecting lines between two points (possibly in different axes). """ def __str__(self): return "ConnectionPatch((%g, %g), (%g, %g))" % \ (self.xy1[0], self.xy1[1], self.xy2[0], self.xy2[1]) @docstring.dedent_interpd def __init__(self, xyA, xyB, coordsA, coordsB=None, axesA=None, axesB=None, arrowstyle="-", arrow_transmuter=None, connectionstyle="arc3", connector=None, patchA=None, patchB=None, shrinkA=0., shrinkB=0., mutation_scale=10., mutation_aspect=None, clip_on=False, dpi_cor=1., **kwargs): """ Connect point *xyA* in *coordsA* with point *xyB* in *coordsB* Valid keys are =============== ====================================================== Key Description =============== ====================================================== arrowstyle the arrow style connectionstyle the connection style relpos default is (0.5, 0.5) patchA default is bounding box of the text patchB default is None shrinkA default is 2 points shrinkB default is 2 points mutation_scale default is text size (in points) mutation_aspect default is 1. ? any key for :class:`matplotlib.patches.PathPatch` =============== ====================================================== *coordsA* and *coordsB* are strings that indicate the coordinates of *xyA* and *xyB*. ================= =================================================== Property Description ================= =================================================== 'figure points' points from the lower left corner of the figure 'figure pixels' pixels from the lower left corner of the figure 'figure fraction' 0,0 is lower left of figure and 1,1 is upper, right 'axes points' points from lower left corner of axes 'axes pixels' pixels from lower left corner of axes 'axes fraction' 0,1 is lower left of axes and 1,1 is upper right 'data' use the coordinate system of the object being annotated (default) 'offset points' Specify an offset (in points) from the *xy* value 'polar' you can specify *theta*, *r* for the annotation, even in cartesian plots. Note that if you are using a polar axes, you do not need to specify polar for the coordinate system since that is the native "data" coordinate system. ================= =================================================== Alternatively they can be set to any valid `~matplotlib.transforms.Transform`. """ if coordsB is None: coordsB = coordsA # we'll draw ourself after the artist we annotate by default self.xy1 = xyA self.xy2 = xyB self.coords1 = coordsA self.coords2 = coordsB self.axesA = axesA self.axesB = axesB FancyArrowPatch.__init__(self, posA=(0, 0), posB=(1, 1), arrowstyle=arrowstyle, arrow_transmuter=arrow_transmuter, connectionstyle=connectionstyle, connector=connector, patchA=patchA, patchB=patchB, shrinkA=shrinkA, shrinkB=shrinkB, mutation_scale=mutation_scale, mutation_aspect=mutation_aspect, clip_on=clip_on, dpi_cor=dpi_cor, **kwargs) # if True, draw annotation only if self.xy is inside the axes self._annotation_clip = None def _get_xy(self, x, y, s, axes=None): """ calculate the pixel position of given point """ if axes is None: axes = self.axes if s == 'data': trans = axes.transData x = float(self.convert_xunits(x)) y = float(self.convert_yunits(y)) return trans.transform_point((x, y)) elif s == 'offset points': # convert the data point dx, dy = self.xy # prevent recursion if self.xycoords == 'offset points': return self._get_xy(dx, dy, 'data') dx, dy = self._get_xy(dx, dy, self.xycoords) # convert the offset dpi = self.figure.get_dpi() x *= dpi / 72. y *= dpi / 72. # add the offset to the data point x += dx y += dy return x, y elif s == 'polar': theta, r = x, y x = r * np.cos(theta) y = r * np.sin(theta) trans = axes.transData return trans.transform_point((x, y)) elif s == 'figure points': # points from the lower left corner of the figure dpi = self.figure.dpi l, b, w, h = self.figure.bbox.bounds r = l + w t = b + h x *= dpi / 72. y *= dpi / 72. if x < 0: x = r + x if y < 0: y = t + y return x, y elif s == 'figure pixels': # pixels from the lower left corner of the figure l, b, w, h = self.figure.bbox.bounds r = l + w t = b + h if x < 0: x = r + x if y < 0: y = t + y return x, y elif s == 'figure fraction': # (0,0) is lower left, (1,1) is upper right of figure trans = self.figure.transFigure return trans.transform_point((x, y)) elif s == 'axes points': # points from the lower left corner of the axes dpi = self.figure.dpi l, b, w, h = axes.bbox.bounds r = l + w t = b + h if x < 0: x = r + x * dpi / 72. else: x = l + x * dpi / 72. if y < 0: y = t + y * dpi / 72. else: y = b + y * dpi / 72. return x, y elif s == 'axes pixels': #pixels from the lower left corner of the axes l, b, w, h = axes.bbox.bounds r = l + w t = b + h if x < 0: x = r + x else: x = l + x if y < 0: y = t + y else: y = b + y return x, y elif s == 'axes fraction': #(0,0) is lower left, (1,1) is upper right of axes trans = axes.transAxes return trans.transform_point((x, y)) elif isinstance(s, transforms.Transform): return s.transform_point((x, y)) else: raise ValueError("{} is not a valid coordinate " "transformation.".format(s)) def set_annotation_clip(self, b): """ set *annotation_clip* attribute. * True: the annotation will only be drawn when self.xy is inside the axes. * False: the annotation will always be drawn regardless of its position. * None: the self.xy will be checked only if *xycoords* is "data" """ self._annotation_clip = b self.stale = True def get_annotation_clip(self): """ Return *annotation_clip* attribute. See :meth:`set_annotation_clip` for the meaning of return values. """ return self._annotation_clip def get_path_in_displaycoord(self): """ Return the mutated path of the arrow in the display coord """ dpi_cor = self.get_dpi_cor() x, y = self.xy1 posA = self._get_xy(x, y, self.coords1, self.axesA) x, y = self.xy2 posB = self._get_xy(x, y, self.coords2, self.axesB) _path = self.get_connectionstyle()(posA, posB, patchA=self.patchA, patchB=self.patchB, shrinkA=self.shrinkA * dpi_cor, shrinkB=self.shrinkB * dpi_cor ) _path, fillable = self.get_arrowstyle()( _path, self.get_mutation_scale() * dpi_cor, self.get_linewidth() * dpi_cor, self.get_mutation_aspect() ) return _path, fillable def _check_xy(self, renderer): """Check whether the annotation needs to be drawn.""" b = self.get_annotation_clip() if b or (b is None and self.coords1 == "data"): x, y = self.xy1 xy_pixel = self._get_xy(x, y, self.coords1, self.axesA) if not self.axes.contains_point(xy_pixel): return False if b or (b is None and self.coords2 == "data"): x, y = self.xy2 xy_pixel = self._get_xy(x, y, self.coords2, self.axesB) if self.axesB is None: axes = self.axes else: axes = self.axesB if not axes.contains_point(xy_pixel): return False return True def draw(self, renderer): if renderer is not None: self._renderer = renderer if not self.get_visible() or not self._check_xy(renderer): return FancyArrowPatch.draw(self, renderer)
6dbcc8c1a4f1b9307f149d162c1e5619f703774393c4f80d6b7db86c46f67e7c
""" This module contains all the 2D line class which can draw with a variety of line styles, markers and colors. """ # TODO: expose cap and join style attrs from numbers import Integral, Number, Real import logging import numpy as np from . import artist, cbook, colors as mcolors, docstring, rcParams from .artist import Artist, allow_rasterization from .cbook import ( _to_unmasked_float_array, ls_mapper, ls_mapper_r, STEP_LOOKUP_MAP) from .markers import MarkerStyle from .path import Path from .transforms import Bbox, TransformedPath # Imported here for backward compatibility, even though they don't # really belong. from . import _path from .markers import ( CARETLEFT, CARETRIGHT, CARETUP, CARETDOWN, CARETLEFTBASE, CARETRIGHTBASE, CARETUPBASE, CARETDOWNBASE, TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN) _log = logging.getLogger(__name__) def _get_dash_pattern(style): """Convert linestyle -> dash pattern """ # go from short hand -> full strings if isinstance(style, str): style = ls_mapper.get(style, style) # un-dashed styles if style in ['solid', 'None']: offset, dashes = None, None # dashed styles elif style in ['dashed', 'dashdot', 'dotted']: offset = 0 dashes = tuple(rcParams['lines.{}_pattern'.format(style)]) # elif isinstance(style, tuple): offset, dashes = style else: raise ValueError('Unrecognized linestyle: %s' % str(style)) # normalize offset to be positive and shorter than the dash cycle if dashes is not None and offset is not None: dsum = sum(dashes) if dsum: offset %= dsum return offset, dashes def _scale_dashes(offset, dashes, lw): if not rcParams['lines.scale_dashes']: return offset, dashes scaled_offset = scaled_dashes = None if offset is not None: scaled_offset = offset * lw if dashes is not None: scaled_dashes = [x * lw if x is not None else None for x in dashes] return scaled_offset, scaled_dashes def segment_hits(cx, cy, x, y, radius): """ Return the indices of the segments in the polyline with coordinates (*cx*, *cy*) that are within a distance *radius* of the point (*x*, *y*). """ # Process single points specially if len(x) <= 1: res, = np.nonzero((cx - x) ** 2 + (cy - y) ** 2 <= radius ** 2) return res # We need to lop the last element off a lot. xr, yr = x[:-1], y[:-1] # Only look at line segments whose nearest point to C on the line # lies within the segment. dx, dy = x[1:] - xr, y[1:] - yr Lnorm_sq = dx ** 2 + dy ** 2 # Possibly want to eliminate Lnorm==0 u = ((cx - xr) * dx + (cy - yr) * dy) / Lnorm_sq candidates = (u >= 0) & (u <= 1) # Note that there is a little area near one side of each point # which will be near neither segment, and another which will # be near both, depending on the angle of the lines. The # following radius test eliminates these ambiguities. point_hits = (cx - x) ** 2 + (cy - y) ** 2 <= radius ** 2 candidates = candidates & ~(point_hits[:-1] | point_hits[1:]) # For those candidates which remain, determine how far they lie away # from the line. px, py = xr + u * dx, yr + u * dy line_hits = (cx - px) ** 2 + (cy - py) ** 2 <= radius ** 2 line_hits = line_hits & candidates points, = point_hits.ravel().nonzero() lines, = line_hits.ravel().nonzero() return np.concatenate((points, lines)) def _mark_every_path(markevery, tpath, affine, ax_transform): """ Helper function that sorts out how to deal the input `markevery` and returns the points where markers should be drawn. Takes in the `markevery` value and the line path and returns the sub-sampled path. """ # pull out the two bits of data we want from the path codes, verts = tpath.codes, tpath.vertices def _slice_or_none(in_v, slc): ''' Helper function to cope with `codes` being an ndarray or `None` ''' if in_v is None: return None return in_v[slc] # if just an int, assume starting at 0 and make a tuple if isinstance(markevery, Integral): markevery = (0, markevery) # if just a float, assume starting at 0.0 and make a tuple elif isinstance(markevery, Real): markevery = (0.0, markevery) if isinstance(markevery, tuple): if len(markevery) != 2: raise ValueError('`markevery` is a tuple but its len is not 2; ' 'markevery={}'.format(markevery)) start, step = markevery # if step is an int, old behavior if isinstance(step, Integral): # tuple of 2 int is for backwards compatibility, if not isinstance(start, Integral): raise ValueError( '`markevery` is a tuple with len 2 and second element is ' 'an int, but the first element is not an int; markevery={}' .format(markevery)) # just return, we are done here return Path(verts[slice(start, None, step)], _slice_or_none(codes, slice(start, None, step))) elif isinstance(step, Real): if not isinstance(start, Real): raise ValueError( '`markevery` is a tuple with len 2 and second element is ' 'a float, but the first element is not a float or an int; ' 'markevery={}'.format(markevery)) # calc cumulative distance along path (in display coords): disp_coords = affine.transform(tpath.vertices) delta = np.empty((len(disp_coords), 2)) delta[0, :] = 0 delta[1:, :] = disp_coords[1:, :] - disp_coords[:-1, :] delta = np.sum(delta**2, axis=1) delta = np.sqrt(delta) delta = np.cumsum(delta) # calc distance between markers along path based on the axes # bounding box diagonal being a distance of unity: scale = ax_transform.transform(np.array([[0, 0], [1, 1]])) scale = np.diff(scale, axis=0) scale = np.sum(scale**2) scale = np.sqrt(scale) marker_delta = np.arange(start * scale, delta[-1], step * scale) # find closest actual data point that is closest to # the theoretical distance along the path: inds = np.abs(delta[np.newaxis, :] - marker_delta[:, np.newaxis]) inds = inds.argmin(axis=1) inds = np.unique(inds) # return, we are done here return Path(verts[inds], _slice_or_none(codes, inds)) else: raise ValueError( f"markevery={markevery!r} is a tuple with len 2, but its " f"second element is not an int or a float") elif isinstance(markevery, slice): # mazol tov, it's already a slice, just return return Path(verts[markevery], _slice_or_none(codes, markevery)) elif np.iterable(markevery): # fancy indexing try: return Path(verts[markevery], _slice_or_none(codes, markevery)) except (ValueError, IndexError): raise ValueError( f"markevery={markevery!r} is iterable but not a valid numpy " f"fancy index") else: raise ValueError(f"markevery={markevery!r} is not a recognized value") @cbook._define_aliases({ "antialiased": ["aa"], "color": ["c"], "drawstyle": ["ds"], "linestyle": ["ls"], "linewidth": ["lw"], "markeredgecolor": ["mec"], "markeredgewidth": ["mew"], "markerfacecolor": ["mfc"], "markerfacecoloralt": ["mfcalt"], "markersize": ["ms"], }) class Line2D(Artist): """ A line - the line can have both a solid linestyle connecting all the vertices, and a marker at each vertex. Additionally, the drawing of the solid line is influenced by the drawstyle, e.g., one can create "stepped" lines in various styles. """ lineStyles = _lineStyles = { # hidden names deprecated '-': '_draw_solid', '--': '_draw_dashed', '-.': '_draw_dash_dot', ':': '_draw_dotted', 'None': '_draw_nothing', ' ': '_draw_nothing', '': '_draw_nothing', } _drawStyles_l = { 'default': '_draw_lines', 'steps-mid': '_draw_steps_mid', 'steps-pre': '_draw_steps_pre', 'steps-post': '_draw_steps_post', } _drawStyles_s = { 'steps': '_draw_steps_pre', } # drawStyles should now be deprecated. drawStyles = {**_drawStyles_l, **_drawStyles_s} # Need a list ordered with long names first: drawStyleKeys = [*_drawStyles_l, *_drawStyles_s] # Referenced here to maintain API. These are defined in # MarkerStyle markers = MarkerStyle.markers filled_markers = MarkerStyle.filled_markers fillStyles = MarkerStyle.fillstyles zorder = 2 validCap = ('butt', 'round', 'projecting') validJoin = ('miter', 'round', 'bevel') def __str__(self): if self._label != "": return f"Line2D({self._label})" elif self._x is None: return "Line2D()" elif len(self._x) > 3: return "Line2D((%g,%g),(%g,%g),...,(%g,%g))" % ( self._x[0], self._y[0], self._x[0], self._y[0], self._x[-1], self._y[-1]) else: return "Line2D(%s)" % ",".join( map("({:g},{:g})".format, self._x, self._y)) def __init__(self, xdata, ydata, linewidth=None, # all Nones default to rc linestyle=None, color=None, marker=None, markersize=None, markeredgewidth=None, markeredgecolor=None, markerfacecolor=None, markerfacecoloralt='none', fillstyle=None, antialiased=None, dash_capstyle=None, solid_capstyle=None, dash_joinstyle=None, solid_joinstyle=None, pickradius=5, drawstyle=None, markevery=None, **kwargs ): """ Create a :class:`~matplotlib.lines.Line2D` instance with *x* and *y* data in sequences *xdata*, *ydata*. The kwargs are :class:`~matplotlib.lines.Line2D` properties: %(_Line2D_docstr)s See :meth:`set_linestyle` for a description of the line styles, :meth:`set_marker` for a description of the markers, and :meth:`set_drawstyle` for a description of the draw styles. """ Artist.__init__(self) #convert sequences to numpy arrays if not np.iterable(xdata): raise RuntimeError('xdata must be a sequence') if not np.iterable(ydata): raise RuntimeError('ydata must be a sequence') if linewidth is None: linewidth = rcParams['lines.linewidth'] if linestyle is None: linestyle = rcParams['lines.linestyle'] if marker is None: marker = rcParams['lines.marker'] if markerfacecolor is None: markerfacecolor = rcParams['lines.markerfacecolor'] if markeredgecolor is None: markeredgecolor = rcParams['lines.markeredgecolor'] if color is None: color = rcParams['lines.color'] if markersize is None: markersize = rcParams['lines.markersize'] if antialiased is None: antialiased = rcParams['lines.antialiased'] if dash_capstyle is None: dash_capstyle = rcParams['lines.dash_capstyle'] if dash_joinstyle is None: dash_joinstyle = rcParams['lines.dash_joinstyle'] if solid_capstyle is None: solid_capstyle = rcParams['lines.solid_capstyle'] if solid_joinstyle is None: solid_joinstyle = rcParams['lines.solid_joinstyle'] if isinstance(linestyle, str): ds, ls = self._split_drawstyle_linestyle(linestyle) if ds is not None and drawstyle is not None and ds != drawstyle: raise ValueError("Inconsistent drawstyle ({!r}) and linestyle " "({!r})".format(drawstyle, linestyle)) linestyle = ls if ds is not None: drawstyle = ds if drawstyle is None: drawstyle = 'default' self._dashcapstyle = None self._dashjoinstyle = None self._solidjoinstyle = None self._solidcapstyle = None self.set_dash_capstyle(dash_capstyle) self.set_dash_joinstyle(dash_joinstyle) self.set_solid_capstyle(solid_capstyle) self.set_solid_joinstyle(solid_joinstyle) self._linestyles = None self._drawstyle = None self._linewidth = linewidth # scaled dash + offset self._dashSeq = None self._dashOffset = 0 # unscaled dash + offset # this is needed scaling the dash pattern by linewidth self._us_dashSeq = None self._us_dashOffset = 0 self.set_linewidth(linewidth) self.set_linestyle(linestyle) self.set_drawstyle(drawstyle) self._color = None self.set_color(color) self._marker = MarkerStyle(marker, fillstyle) self._markevery = None self._markersize = None self._antialiased = None self.set_markevery(markevery) self.set_antialiased(antialiased) self.set_markersize(markersize) self._markeredgecolor = None self._markeredgewidth = None self._markerfacecolor = None self._markerfacecoloralt = None self.set_markerfacecolor(markerfacecolor) self.set_markerfacecoloralt(markerfacecoloralt) self.set_markeredgecolor(markeredgecolor) self.set_markeredgewidth(markeredgewidth) # update kwargs before updating data to give the caller a # chance to init axes (and hence unit support) self.update(kwargs) self.pickradius = pickradius self.ind_offset = 0 if isinstance(self._picker, Number): self.pickradius = self._picker self._xorig = np.asarray([]) self._yorig = np.asarray([]) self._invalidx = True self._invalidy = True self._x = None self._y = None self._xy = None self._path = None self._transformed_path = None self._subslice = False self._x_filled = None # used in subslicing; only x is needed self.set_data(xdata, ydata) @cbook.deprecated("3.1") @property def verticalOffset(self): return None def contains(self, mouseevent): """ Test whether the mouse event occurred on the line. The pick radius determines the precision of the location test (usually within five points of the value). Use :meth:`~matplotlib.lines.Line2D.get_pickradius` or :meth:`~matplotlib.lines.Line2D.set_pickradius` to view or modify it. Parameters ---------- mouseevent : `matplotlib.backend_bases.MouseEvent` Returns ------- contains : bool Whether any values are within the radius. details : dict A dictionary ``{'ind': pointlist}``, where *pointlist* is a list of points of the line that are within the pickradius around the event position. TODO: sort returned indices by distance """ if callable(self._contains): return self._contains(self, mouseevent) if not isinstance(self.pickradius, Number): raise ValueError("pick radius should be a distance") # Make sure we have data to plot if self._invalidy or self._invalidx: self.recache() if len(self._xy) == 0: return False, {} # Convert points to pixels transformed_path = self._get_transformed_path() path, affine = transformed_path.get_transformed_path_and_affine() path = affine.transform_path(path) xy = path.vertices xt = xy[:, 0] yt = xy[:, 1] # Convert pick radius from points to pixels if self.figure is None: _log.warning('no figure set when check if mouse is on line') pixels = self.pickradius else: pixels = self.figure.dpi / 72. * self.pickradius # The math involved in checking for containment (here and inside of # segment_hits) assumes that it is OK to overflow, so temporarily set # the error flags accordingly. with np.errstate(all='ignore'): # Check for collision if self._linestyle in ['None', None]: # If no line, return the nearby point(s) ind, = np.nonzero( (xt - mouseevent.x) ** 2 + (yt - mouseevent.y) ** 2 <= pixels ** 2) else: # If line, return the nearby segment(s) ind = segment_hits(mouseevent.x, mouseevent.y, xt, yt, pixels) if self._drawstyle.startswith("steps"): ind //= 2 ind += self.ind_offset # Return the point(s) within radius return len(ind) > 0, dict(ind=ind) def get_pickradius(self): """ Return the pick radius used for containment tests. See `.contains` for more details. """ return self.pickradius def set_pickradius(self, d): """Set the pick radius used for containment tests. See `.contains` for more details. Parameters ---------- d : float Pick radius, in points. """ self.pickradius = d def get_fillstyle(self): """ Return the marker fill style. See also `~.Line2D.set_fillstyle`. """ return self._marker.get_fillstyle() def set_fillstyle(self, fs): """ Set the marker fill style. Parameters ---------- fs : {'full', 'left', 'right', 'bottom', 'top', 'none'} Possible values: - 'full': Fill the whole marker with the *markerfacecolor*. - 'left', 'right', 'bottom', 'top': Fill the marker half at the given side with the *markerfacecolor*. The other half of the marker is filled with *markerfacecoloralt*. - 'none': No filling. For examples see :doc:`/gallery/lines_bars_and_markers/marker_fillstyle_reference`. """ self._marker.set_fillstyle(fs) self.stale = True def set_markevery(self, every): """Set the markevery property to subsample the plot when using markers. e.g., if `every=5`, every 5-th marker will be plotted. Parameters ---------- every : None or int or (int, int) or slice or List[int] or float or \ (float, float) Which markers to plot. - every=None, every point will be plotted. - every=N, every N-th marker will be plotted starting with marker 0. - every=(start, N), every N-th marker, starting at point start, will be plotted. - every=slice(start, end, N), every N-th marker, starting at point start, up to but not including point end, will be plotted. - every=[i, j, m, n], only markers at points i, j, m, and n will be plotted. - every=0.1, (i.e. a float) then markers will be spaced at approximately equal distances along the line; the distance along the line between markers is determined by multiplying the display-coordinate distance of the axes bounding-box diagonal by the value of every. - every=(0.5, 0.1) (i.e. a length-2 tuple of float), the same functionality as every=0.1 is exhibited but the first marker will be 0.5 multiplied by the display-coordinate-diagonal-distance along the line. Notes ----- Setting the markevery property will only show markers at actual data points. When using float arguments to set the markevery property on irregularly spaced data, the markers will likely not appear evenly spaced because the actual data points do not coincide with the theoretical spacing between markers. When using a start offset to specify the first marker, the offset will be from the first data point which may be different from the first the visible data point if the plot is zoomed in. If zooming in on a plot when using float arguments then the actual data points that have markers will change because the distance between markers is always determined from the display-coordinates axes-bounding-box-diagonal regardless of the actual axes data limits. """ if self._markevery != every: self.stale = True self._markevery = every def get_markevery(self): """ Return the markevery setting for marker subsampling. See also `~.Line2D.set_markevery`. """ return self._markevery def set_picker(self, p): """Sets the event picker details for the line. Parameters ---------- p : float or callable[[Artist, Event], Tuple[bool, dict]] If a float, it is used as the pick radius in points. """ if callable(p): self._contains = p else: self.pickradius = p self._picker = p def get_window_extent(self, renderer): bbox = Bbox([[0, 0], [0, 0]]) trans_data_to_xy = self.get_transform().transform bbox.update_from_data_xy(trans_data_to_xy(self.get_xydata()), ignore=True) # correct for marker size, if any if self._marker: ms = (self._markersize / 72.0 * self.figure.dpi) * 0.5 bbox = bbox.padded(ms) return bbox @Artist.axes.setter def axes(self, ax): # call the set method from the base-class property Artist.axes.fset(self, ax) if ax is not None: # connect unit-related callbacks if ax.xaxis is not None: self._xcid = ax.xaxis.callbacks.connect('units', self.recache_always) if ax.yaxis is not None: self._ycid = ax.yaxis.callbacks.connect('units', self.recache_always) def set_data(self, *args): """ Set the x and y data. Parameters ---------- *args : (N, 2) array or two 1D arrays """ if len(args) == 1: (x, y), = args else: x, y = args self.set_xdata(x) self.set_ydata(y) def recache_always(self): self.recache(always=True) def recache(self, always=False): if always or self._invalidx: xconv = self.convert_xunits(self._xorig) x = _to_unmasked_float_array(xconv).ravel() else: x = self._x if always or self._invalidy: yconv = self.convert_yunits(self._yorig) y = _to_unmasked_float_array(yconv).ravel() else: y = self._y self._xy = np.column_stack(np.broadcast_arrays(x, y)).astype(float) self._x, self._y = self._xy.T # views self._subslice = False if (self.axes and len(x) > 1000 and self._is_sorted(x) and self.axes.name == 'rectilinear' and self.axes.get_xscale() == 'linear' and self._markevery is None and self.get_clip_on()): self._subslice = True nanmask = np.isnan(x) if nanmask.any(): self._x_filled = self._x.copy() indices = np.arange(len(x)) self._x_filled[nanmask] = np.interp(indices[nanmask], indices[~nanmask], self._x[~nanmask]) else: self._x_filled = self._x if self._path is not None: interpolation_steps = self._path._interpolation_steps else: interpolation_steps = 1 xy = STEP_LOOKUP_MAP[self._drawstyle](*self._xy.T) self._path = Path(np.asarray(xy).T, _interpolation_steps=interpolation_steps) self._transformed_path = None self._invalidx = False self._invalidy = False def _transform_path(self, subslice=None): """ Puts a TransformedPath instance at self._transformed_path; all invalidation of the transform is then handled by the TransformedPath instance. """ # Masked arrays are now handled by the Path class itself if subslice is not None: xy = STEP_LOOKUP_MAP[self._drawstyle](*self._xy[subslice, :].T) _path = Path(np.asarray(xy).T, _interpolation_steps=self._path._interpolation_steps) else: _path = self._path self._transformed_path = TransformedPath(_path, self.get_transform()) def _get_transformed_path(self): """ Return the :class:`~matplotlib.transforms.TransformedPath` instance of this line. """ if self._transformed_path is None: self._transform_path() return self._transformed_path def set_transform(self, t): """ Set the Transformation instance used by this artist. Parameters ---------- t : `matplotlib.transforms.Transform` """ Artist.set_transform(self, t) self._invalidx = True self._invalidy = True self.stale = True def _is_sorted(self, x): """Return whether x is sorted in ascending order.""" # We don't handle the monotonically decreasing case. return _path.is_sorted(x) @allow_rasterization def draw(self, renderer): # docstring inherited from Artist.draw. if not self.get_visible(): return if self._invalidy or self._invalidx: self.recache() self.ind_offset = 0 # Needed for contains() method. if self._subslice and self.axes: x0, x1 = self.axes.get_xbound() i0 = self._x_filled.searchsorted(x0, 'left') i1 = self._x_filled.searchsorted(x1, 'right') subslice = slice(max(i0 - 1, 0), i1 + 1) self.ind_offset = subslice.start self._transform_path(subslice) else: subslice = None if self.get_path_effects(): from matplotlib.patheffects import PathEffectRenderer renderer = PathEffectRenderer(self.get_path_effects(), renderer) renderer.open_group('line2d', self.get_gid()) if self._lineStyles[self._linestyle] != '_draw_nothing': tpath, affine = (self._get_transformed_path() .get_transformed_path_and_affine()) if len(tpath.vertices): gc = renderer.new_gc() self._set_gc_clip(gc) lc_rgba = mcolors.to_rgba(self._color, self._alpha) gc.set_foreground(lc_rgba, isRGBA=True) gc.set_antialiased(self._antialiased) gc.set_linewidth(self._linewidth) if self.is_dashed(): cap = self._dashcapstyle join = self._dashjoinstyle else: cap = self._solidcapstyle join = self._solidjoinstyle gc.set_joinstyle(join) gc.set_capstyle(cap) gc.set_snap(self.get_snap()) if self.get_sketch_params() is not None: gc.set_sketch_params(*self.get_sketch_params()) gc.set_dashes(self._dashOffset, self._dashSeq) renderer.draw_path(gc, tpath, affine.frozen()) gc.restore() if self._marker and self._markersize > 0: gc = renderer.new_gc() self._set_gc_clip(gc) gc.set_linewidth(self._markeredgewidth) gc.set_antialiased(self._antialiased) ec_rgba = mcolors.to_rgba( self.get_markeredgecolor(), self._alpha) fc_rgba = mcolors.to_rgba( self._get_markerfacecolor(), self._alpha) fcalt_rgba = mcolors.to_rgba( self._get_markerfacecolor(alt=True), self._alpha) # If the edgecolor is "auto", it is set according to the *line* # color but inherits the alpha value of the *face* color, if any. if (cbook._str_equal(self._markeredgecolor, "auto") and not cbook._str_lower_equal( self.get_markerfacecolor(), "none")): ec_rgba = ec_rgba[:3] + (fc_rgba[3],) gc.set_foreground(ec_rgba, isRGBA=True) if self.get_sketch_params() is not None: scale, length, randomness = self.get_sketch_params() gc.set_sketch_params(scale/2, length/2, 2*randomness) marker = self._marker # Markers *must* be drawn ignoring the drawstyle (but don't pay the # recaching if drawstyle is already "default"). if self.get_drawstyle() != "default": with cbook._setattr_cm( self, _drawstyle="default", _transformed_path=None): self.recache() self._transform_path(subslice) tpath, affine = (self._get_transformed_path() .get_transformed_path_and_affine()) else: tpath, affine = (self._get_transformed_path() .get_transformed_path_and_affine()) if len(tpath.vertices): # subsample the markers if markevery is not None markevery = self.get_markevery() if markevery is not None: subsampled = _mark_every_path(markevery, tpath, affine, self.axes.transAxes) else: subsampled = tpath snap = marker.get_snap_threshold() if isinstance(snap, Real): snap = renderer.points_to_pixels(self._markersize) >= snap gc.set_snap(snap) gc.set_joinstyle(marker.get_joinstyle()) gc.set_capstyle(marker.get_capstyle()) marker_path = marker.get_path() marker_trans = marker.get_transform() w = renderer.points_to_pixels(self._markersize) if cbook._str_equal(marker.get_marker(), ","): gc.set_linewidth(0) else: # Don't scale for pixels, and don't stroke them marker_trans = marker_trans.scale(w) renderer.draw_markers(gc, marker_path, marker_trans, subsampled, affine.frozen(), fc_rgba) alt_marker_path = marker.get_alt_path() if alt_marker_path: alt_marker_trans = marker.get_alt_transform() alt_marker_trans = alt_marker_trans.scale(w) renderer.draw_markers( gc, alt_marker_path, alt_marker_trans, subsampled, affine.frozen(), fcalt_rgba) gc.restore() renderer.close_group('line2d') self.stale = False def get_antialiased(self): """Return whether antialiased rendering is used.""" return self._antialiased def get_color(self): """ Return the line color. See also `~.Line2D.set_color`. """ return self._color def get_drawstyle(self): """ Return the drawstyle. See also `~.Line2D.set_drawstyle`. """ return self._drawstyle def get_linestyle(self): """ Return the linestyle. See also `~.Line2D.set_linestyle`. """ return self._linestyle def get_linewidth(self): """ Return the linewidth in points. See also `~.Line2D.set_linewidth`. """ return self._linewidth def get_marker(self): """ Return the line marker. See also `~.Line2D.set_marker`. """ return self._marker.get_marker() def get_markeredgecolor(self): """ Return the marker edge color. See also `~.Line2D.set_markeredgecolor`. """ mec = self._markeredgecolor if cbook._str_equal(mec, 'auto'): if rcParams['_internal.classic_mode']: if self._marker.get_marker() in ('.', ','): return self._color if self._marker.is_filled() and self.get_fillstyle() != 'none': return 'k' # Bad hard-wired default... return self._color else: return mec def get_markeredgewidth(self): """ Return the marker edge width in points. See also `~.Line2D.set_markeredgewidth`. """ return self._markeredgewidth def _get_markerfacecolor(self, alt=False): fc = self._markerfacecoloralt if alt else self._markerfacecolor if cbook._str_lower_equal(fc, 'auto'): if self.get_fillstyle() == 'none': return 'none' else: return self._color else: return fc def get_markerfacecolor(self): """ Return the marker face color. See also `~.Line2D.set_markerfacecolor`. """ return self._get_markerfacecolor(alt=False) def get_markerfacecoloralt(self): """ Return the alternate marker face color. See also `~.Line2D.set_markerfacecoloralt`. """ return self._get_markerfacecolor(alt=True) def get_markersize(self): """ Return the marker size in points. See also `~.Line2D.set_markersize`. """ return self._markersize def get_data(self, orig=True): """ Return the xdata, ydata. If *orig* is *True*, return the original data. """ return self.get_xdata(orig=orig), self.get_ydata(orig=orig) def get_xdata(self, orig=True): """ Return the xdata. If *orig* is *True*, return the original data, else the processed data. """ if orig: return self._xorig if self._invalidx: self.recache() return self._x def get_ydata(self, orig=True): """ Return the ydata. If *orig* is *True*, return the original data, else the processed data. """ if orig: return self._yorig if self._invalidy: self.recache() return self._y def get_path(self): """ Return the :class:`~matplotlib.path.Path` object associated with this line. """ if self._invalidy or self._invalidx: self.recache() return self._path def get_xydata(self): """ Return the *xy* data as a Nx2 numpy array. """ if self._invalidy or self._invalidx: self.recache() return self._xy def set_antialiased(self, b): """ Set whether to use antialiased rendering. Parameters ---------- b : bool """ if self._antialiased != b: self.stale = True self._antialiased = b def set_color(self, color): """ Set the color of the line. Parameters ---------- color : color """ self._color = color self.stale = True def set_drawstyle(self, drawstyle): """ Set the drawstyle of the plot. The drawstyle determines how the points are connected. Parameters ---------- drawstyle : {'default', 'steps', 'steps-pre', 'steps-mid', \ 'steps-post'}, default: 'default' For 'default', the points are connected with straight lines. The steps variants connect the points with step-like lines, i.e. horizontal lines with vertical steps. They differ in the location of the step: - 'steps-pre': The step is at the beginning of the line segment, i.e. the line will be at the y-value of point to the right. - 'steps-mid': The step is halfway between the points. - 'steps-post: The step is at the end of the line segment, i.e. the line will be at the y-value of the point to the left. - 'steps' is equal to 'steps-pre' and is maintained for backward-compatibility. """ if drawstyle is None: drawstyle = 'default' cbook._check_in_list(self.drawStyles, drawstyle=drawstyle) if self._drawstyle != drawstyle: self.stale = True # invalidate to trigger a recache of the path self._invalidx = True self._drawstyle = drawstyle def set_linewidth(self, w): """ Set the line width in points. Parameters ---------- w : float """ w = float(w) if self._linewidth != w: self.stale = True self._linewidth = w # rescale the dashes + offset self._dashOffset, self._dashSeq = _scale_dashes( self._us_dashOffset, self._us_dashSeq, self._linewidth) def _split_drawstyle_linestyle(self, ls): """ Split drawstyle from linestyle string. If *ls* is only a drawstyle default to returning a linestyle of '-'. Parameters ---------- ls : str The linestyle to be processed Returns ------- ret_ds : str or None If the linestyle string does not contain a drawstyle prefix return None, otherwise return it. ls : str The linestyle with the drawstyle (if any) stripped. """ for ds in self.drawStyleKeys: # long names are first in the list if ls.startswith(ds): cbook.warn_deprecated( "3.1", message="Passing the drawstyle with the linestyle " "as a single string is deprecated since Matplotlib " "%(since)s and support will be removed %(removal)s; " "please pass the drawstyle separately using the drawstyle " "keyword argument to Line2D or set_drawstyle() method (or " "ds/set_ds()).") return ds, ls[len(ds):] or '-' return None, ls def set_linestyle(self, ls): """ Set the linestyle of the line. Parameters ---------- ls : {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} Possible values: - A string: =============================== ================= Linestyle Description =============================== ================= ``'-'`` or ``'solid'`` solid line ``'--'`` or ``'dashed'`` dashed line ``'-.'`` or ``'dashdot'`` dash-dotted line ``':'`` or ``'dotted'`` dotted line ``'None'`` or ``' '`` or ``''`` draw nothing =============================== ================= Optionally, the string may be preceded by a drawstyle, e.g. ``'steps--'``. See :meth:`set_drawstyle` for details. - Alternatively a dash tuple of the following form can be provided:: (offset, onoffseq) where ``onoffseq`` is an even length tuple of on and off ink in points. See also :meth:`set_dashes`. """ if isinstance(ls, str): ds, ls = self._split_drawstyle_linestyle(ls) if ds is not None: self.set_drawstyle(ds) if ls in [' ', '', 'none']: ls = 'None' cbook._check_in_list([*self._lineStyles, *ls_mapper_r], ls=ls) if ls not in self._lineStyles: ls = ls_mapper_r[ls] self._linestyle = ls else: self._linestyle = '--' # get the unscaled dashes self._us_dashOffset, self._us_dashSeq = _get_dash_pattern(ls) # compute the linewidth scaled dashes self._dashOffset, self._dashSeq = _scale_dashes( self._us_dashOffset, self._us_dashSeq, self._linewidth) @docstring.dedent_interpd def set_marker(self, marker): """ Set the line marker. Parameters ---------- marker : marker style See `~matplotlib.markers` for full description of possible arguments. """ self._marker.set_marker(marker) self.stale = True def set_markeredgecolor(self, ec): """ Set the marker edge color. Parameters ---------- ec : color """ if ec is None: ec = 'auto' if (self._markeredgecolor is None or np.any(self._markeredgecolor != ec)): self.stale = True self._markeredgecolor = ec def set_markeredgewidth(self, ew): """ Set the marker edge width in points. Parameters ---------- ew : float """ if ew is None: ew = rcParams['lines.markeredgewidth'] if self._markeredgewidth != ew: self.stale = True self._markeredgewidth = ew def set_markerfacecolor(self, fc): """ Set the marker face color. Parameters ---------- fc : color """ if fc is None: fc = 'auto' if np.any(self._markerfacecolor != fc): self.stale = True self._markerfacecolor = fc def set_markerfacecoloralt(self, fc): """ Set the alternate marker face color. Parameters ---------- fc : color """ if fc is None: fc = 'auto' if np.any(self._markerfacecoloralt != fc): self.stale = True self._markerfacecoloralt = fc def set_markersize(self, sz): """ Set the marker size in points. Parameters ---------- sz : float """ sz = float(sz) if self._markersize != sz: self.stale = True self._markersize = sz def set_xdata(self, x): """ Set the data array for x. Parameters ---------- x : 1D array """ self._xorig = x self._invalidx = True self.stale = True def set_ydata(self, y): """ Set the data array for y. Parameters ---------- y : 1D array """ self._yorig = y self._invalidy = True self.stale = True def set_dashes(self, seq): """ Set the dash sequence. The dash sequence is a sequence of floats of even length describing the length of dashes and spaces in points. For example, (5, 2, 1, 2) describes a sequence of 5 point and 1 point dashes separated by 2 point spaces. Parameters ---------- seq : sequence of floats (on/off ink in points) or (None, None) If *seq* is empty or ``(None, None)``, the linestyle will be set to solid. """ if seq == (None, None) or len(seq) == 0: self.set_linestyle('-') else: self.set_linestyle((0, seq)) def update_from(self, other): """Copy properties from other to self.""" Artist.update_from(self, other) self._linestyle = other._linestyle self._linewidth = other._linewidth self._color = other._color self._markersize = other._markersize self._markerfacecolor = other._markerfacecolor self._markerfacecoloralt = other._markerfacecoloralt self._markeredgecolor = other._markeredgecolor self._markeredgewidth = other._markeredgewidth self._dashSeq = other._dashSeq self._us_dashSeq = other._us_dashSeq self._dashOffset = other._dashOffset self._us_dashOffset = other._us_dashOffset self._dashcapstyle = other._dashcapstyle self._dashjoinstyle = other._dashjoinstyle self._solidcapstyle = other._solidcapstyle self._solidjoinstyle = other._solidjoinstyle self._linestyle = other._linestyle self._marker = MarkerStyle(other._marker.get_marker(), other._marker.get_fillstyle()) self._drawstyle = other._drawstyle def set_dash_joinstyle(self, s): """ Set the join style for dashed lines. Parameters ---------- s : {'miter', 'round', 'bevel'} For examples see :doc:`/gallery/lines_bars_and_markers/joinstyle`. """ s = s.lower() cbook._check_in_list(self.validJoin, s=s) if self._dashjoinstyle != s: self.stale = True self._dashjoinstyle = s def set_solid_joinstyle(self, s): """ Set the join style for solid lines. Parameters ---------- s : {'miter', 'round', 'bevel'} For examples see :doc:`/gallery/lines_bars_and_markers/joinstyle`. """ s = s.lower() cbook._check_in_list(self.validJoin, s=s) if self._solidjoinstyle != s: self.stale = True self._solidjoinstyle = s def get_dash_joinstyle(self): """ Return the join style for dashed lines. See also `~.Line2D.set_dash_joinstyle`. """ return self._dashjoinstyle def get_solid_joinstyle(self): """ Return the join style for solid lines. See also `~.Line2D.set_solid_joinstyle`. """ return self._solidjoinstyle def set_dash_capstyle(self, s): """ Set the cap style for dashed lines. Parameters ---------- s : {'butt', 'round', 'projecting'} """ s = s.lower() cbook._check_in_list(self.validCap, s=s) if self._dashcapstyle != s: self.stale = True self._dashcapstyle = s def set_solid_capstyle(self, s): """ Set the cap style for solid lines. Parameters ---------- s : {'butt', 'round', 'projecting'} """ s = s.lower() cbook._check_in_list(self.validCap, s=s) if self._solidcapstyle != s: self.stale = True self._solidcapstyle = s def get_dash_capstyle(self): """ Return the cap style for dashed lines. See also `~.Line2D.set_dash_capstyle`. """ return self._dashcapstyle def get_solid_capstyle(self): """ Return the cap style for solid lines. See also `~.Line2D.set_solid_capstyle`. """ return self._solidcapstyle def is_dashed(self): """ Return whether line has a dashed linestyle. See also `~.Line2D.set_linestyle`. """ return self._linestyle in ('--', '-.', ':') class VertexSelector(object): """ Manage the callbacks to maintain a list of selected vertices for :class:`matplotlib.lines.Line2D`. Derived classes should override :meth:`~matplotlib.lines.VertexSelector.process_selected` to do something with the picks. Here is an example which highlights the selected verts with red circles:: import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as lines class HighlightSelected(lines.VertexSelector): def __init__(self, line, fmt='ro', **kwargs): lines.VertexSelector.__init__(self, line) self.markers, = self.axes.plot([], [], fmt, **kwargs) def process_selected(self, ind, xs, ys): self.markers.set_data(xs, ys) self.canvas.draw() fig, ax = plt.subplots() x, y = np.random.rand(2, 30) line, = ax.plot(x, y, 'bs-', picker=5) selector = HighlightSelected(line) plt.show() """ def __init__(self, line): """ Initialize the class with a :class:`matplotlib.lines.Line2D` instance. The line should already be added to some :class:`matplotlib.axes.Axes` instance and should have the picker property set. """ if line.axes is None: raise RuntimeError('You must first add the line to the Axes') if line.get_picker() is None: raise RuntimeError('You must first set the picker property ' 'of the line') self.axes = line.axes self.line = line self.canvas = self.axes.figure.canvas self.cid = self.canvas.mpl_connect('pick_event', self.onpick) self.ind = set() def process_selected(self, ind, xs, ys): """ Default "do nothing" implementation of the :meth:`process_selected` method. *ind* are the indices of the selected vertices. *xs* and *ys* are the coordinates of the selected vertices. """ pass def onpick(self, event): """When the line is picked, update the set of selected indices.""" if event.artist is not self.line: return self.ind ^= set(event.ind) ind = sorted(self.ind) xdata, ydata = self.line.get_data() self.process_selected(ind, xdata[ind], ydata[ind]) lineStyles = Line2D._lineStyles lineMarkers = MarkerStyle.markers drawStyles = Line2D.drawStyles fillStyles = MarkerStyle.fillstyles docstring.interpd.update(_Line2D_docstr=artist.kwdoc(Line2D)) # You can not set the docstring of an instancemethod, # but you can on the underlying function. Go figure. docstring.dedent_interpd(Line2D.__init__)
c82966331e8afb2ea98c6dc57476a7711c918729de16e0446d067f9617b3572b
# Javascript template for HTMLWriter JS_INCLUDE = """ <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/ css/font-awesome.min.css"> <script language="javascript"> function isInternetExplorer() { ua = navigator.userAgent; /* MSIE used to detect old browsers and Trident used to newer ones*/ return ua.indexOf("MSIE ") > -1 || ua.indexOf("Trident/") > -1; } /* Define the Animation class */ function Animation(frames, img_id, slider_id, interval, loop_select_id){ this.img_id = img_id; this.slider_id = slider_id; this.loop_select_id = loop_select_id; this.interval = interval; this.current_frame = 0; this.direction = 0; this.timer = null; this.frames = new Array(frames.length); for (var i=0; i<frames.length; i++) { this.frames[i] = new Image(); this.frames[i].src = frames[i]; } var slider = document.getElementById(this.slider_id); slider.max = this.frames.length - 1; if (isInternetExplorer()) { // switch from oninput to onchange because IE <= 11 does not conform // with W3C specification. It ignores oninput and onchange behaves // like oninput. In contrast, Mircosoft Edge behaves correctly. slider.setAttribute('onchange', slider.getAttribute('oninput')); slider.setAttribute('oninput', null); } this.set_frame(this.current_frame); } Animation.prototype.get_loop_state = function(){ var button_group = document[this.loop_select_id].state; for (var i = 0; i < button_group.length; i++) { var button = button_group[i]; if (button.checked) { return button.value; } } return undefined; } Animation.prototype.set_frame = function(frame){ this.current_frame = frame; document.getElementById(this.img_id).src = this.frames[this.current_frame].src; document.getElementById(this.slider_id).value = this.current_frame; } Animation.prototype.next_frame = function() { this.set_frame(Math.min(this.frames.length - 1, this.current_frame + 1)); } Animation.prototype.previous_frame = function() { this.set_frame(Math.max(0, this.current_frame - 1)); } Animation.prototype.first_frame = function() { this.set_frame(0); } Animation.prototype.last_frame = function() { this.set_frame(this.frames.length - 1); } Animation.prototype.slower = function() { this.interval /= 0.7; if(this.direction > 0){this.play_animation();} else if(this.direction < 0){this.reverse_animation();} } Animation.prototype.faster = function() { this.interval *= 0.7; if(this.direction > 0){this.play_animation();} else if(this.direction < 0){this.reverse_animation();} } Animation.prototype.anim_step_forward = function() { this.current_frame += 1; if(this.current_frame < this.frames.length){ this.set_frame(this.current_frame); }else{ var loop_state = this.get_loop_state(); if(loop_state == "loop"){ this.first_frame(); }else if(loop_state == "reflect"){ this.last_frame(); this.reverse_animation(); }else{ this.pause_animation(); this.last_frame(); } } } Animation.prototype.anim_step_reverse = function() { this.current_frame -= 1; if(this.current_frame >= 0){ this.set_frame(this.current_frame); }else{ var loop_state = this.get_loop_state(); if(loop_state == "loop"){ this.last_frame(); }else if(loop_state == "reflect"){ this.first_frame(); this.play_animation(); }else{ this.pause_animation(); this.first_frame(); } } } Animation.prototype.pause_animation = function() { this.direction = 0; if (this.timer){ clearInterval(this.timer); this.timer = null; } } Animation.prototype.play_animation = function() { this.pause_animation(); this.direction = 1; var t = this; if (!this.timer) this.timer = setInterval(function() { t.anim_step_forward(); }, this.interval); } Animation.prototype.reverse_animation = function() { this.pause_animation(); this.direction = -1; var t = this; if (!this.timer) this.timer = setInterval(function() { t.anim_step_reverse(); }, this.interval); } </script> """ # Style definitions for the HTML template STYLE_INCLUDE = """ <style> .animation { display: inline-block; text-align: center; } input[type=range].anim-slider { width: 374px; margin-left: auto; margin-right: auto; } .anim-buttons { margin: 8px 0px; } .anim-buttons button { padding: 0; width: 36px; } .anim-state label { margin-right: 8px; } .anim-state input { margin: 0; vertical-align: middle; } </style> """ # HTML template for HTMLWriter DISPLAY_TEMPLATE = """ <div class="animation"> <img id="_anim_img{id}"> <div class="anim-controls"> <input id="_anim_slider{id}" type="range" class="anim-slider" name="points" min="0" max="1" step="1" value="0" oninput="anim{id}.set_frame(parseInt(this.value));"></input> <div class="anim-buttons"> <button onclick="anim{id}.slower()"><i class="fa fa-minus"></i></button> <button onclick="anim{id}.first_frame()"><i class="fa fa-fast-backward"> </i></button> <button onclick="anim{id}.previous_frame()"> <i class="fa fa-step-backward"></i></button> <button onclick="anim{id}.reverse_animation()"> <i class="fa fa-play fa-flip-horizontal"></i></button> <button onclick="anim{id}.pause_animation()"><i class="fa fa-pause"> </i></button> <button onclick="anim{id}.play_animation()"><i class="fa fa-play"></i> </button> <button onclick="anim{id}.next_frame()"><i class="fa fa-step-forward"> </i></button> <button onclick="anim{id}.last_frame()"><i class="fa fa-fast-forward"> </i></button> <button onclick="anim{id}.faster()"><i class="fa fa-plus"></i></button> </div> <form action="#n" name="_anim_loop_select{id}" class="anim-state"> <input type="radio" name="state" value="once" id="_anim_radio1_{id}" {once_checked}> <label for="_anim_radio1_{id}">Once</label> <input type="radio" name="state" value="loop" id="_anim_radio2_{id}" {loop_checked}> <label for="_anim_radio2_{id}">Loop</label> <input type="radio" name="state" value="reflect" id="_anim_radio3_{id}" {reflect_checked}> <label for="_anim_radio3_{id}">Reflect</label> </form> </div> </div> <script language="javascript"> /* Instantiate the Animation class. */ /* The IDs given should match those used in the template above. */ (function() {{ var img_id = "_anim_img{id}"; var slider_id = "_anim_slider{id}"; var loop_select_id = "_anim_loop_select{id}"; var frames = new Array({Nframes}); {fill_frames} /* set a timeout to make sure all the above elements are created before the object is initialized. */ setTimeout(function() {{ anim{id} = new Animation(frames, img_id, slider_id, {interval}, loop_select_id); }}, 0); }})() </script> """ INCLUDED_FRAMES = """ for (var i=0; i<{Nframes}; i++){{ frames[i] = "{frame_dir}/frame" + ("0000000" + i).slice(-7) + ".{frame_format}"; }} """
6c9e6741e316038918696db16101495e82b96f0a49afb59fdd2ceef5f0ee95b7
import logging import matplotlib.cbook as cbook import matplotlib.widgets as widgets from matplotlib.rcsetup import validate_stringlist import matplotlib.backend_tools as tools _log = logging.getLogger(__name__) class ToolEvent(object): """Event for tool manipulation (add/remove).""" def __init__(self, name, sender, tool, data=None): self.name = name self.sender = sender self.tool = tool self.data = data class ToolTriggerEvent(ToolEvent): """Event to inform that a tool has been triggered.""" def __init__(self, name, sender, tool, canvasevent=None, data=None): ToolEvent.__init__(self, name, sender, tool, data) self.canvasevent = canvasevent class ToolManagerMessageEvent(object): """ Event carrying messages from toolmanager. Messages usually get displayed to the user by the toolbar. """ def __init__(self, name, sender, message): self.name = name self.sender = sender self.message = message class ToolManager(object): """ Manager for actions triggered by user interactions (key press, toolbar clicks, ...) on a Figure. Attributes ---------- figure : `Figure` keypresslock : `widgets.LockDraw` `LockDraw` object to know if the `canvas` key_press_event is locked messagelock : `widgets.LockDraw` `LockDraw` object to know if the message is available to write """ def __init__(self, figure=None): _log.warning('Treat the new Tool classes introduced in v1.5 as ' 'experimental for now, the API will likely change in ' 'version 2.1 and perhaps the rcParam as well') self._key_press_handler_id = None self._tools = {} self._keys = {} self._toggled = {} self._callbacks = cbook.CallbackRegistry() # to process keypress event self.keypresslock = widgets.LockDraw() self.messagelock = widgets.LockDraw() self._figure = None self.set_figure(figure) @property def canvas(self): """Canvas managed by FigureManager.""" if not self._figure: return None return self._figure.canvas @property def figure(self): """Figure that holds the canvas.""" return self._figure @figure.setter def figure(self, figure): self.set_figure(figure) def set_figure(self, figure, update_tools=True): """ Bind the given figure to the tools. Parameters ---------- figure : `.Figure` update_tools : bool Force tools to update figure """ if self._key_press_handler_id: self.canvas.mpl_disconnect(self._key_press_handler_id) self._figure = figure if figure: self._key_press_handler_id = self.canvas.mpl_connect( 'key_press_event', self._key_press) if update_tools: for tool in self._tools.values(): tool.figure = figure def toolmanager_connect(self, s, func): """ Connect event with string *s* to *func*. Parameters ---------- s : String Name of the event The following events are recognized - 'tool_message_event' - 'tool_removed_event' - 'tool_added_event' For every tool added a new event is created - 'tool_trigger_TOOLNAME` Where TOOLNAME is the id of the tool. func : function Function to be called with signature def func(event) """ return self._callbacks.connect(s, func) def toolmanager_disconnect(self, cid): """ Disconnect callback id *cid*. Example usage:: cid = toolmanager.toolmanager_connect('tool_trigger_zoom', onpress) #...later toolmanager.toolmanager_disconnect(cid) """ return self._callbacks.disconnect(cid) def message_event(self, message, sender=None): """Emit a `ToolManagerMessageEvent`.""" if sender is None: sender = self s = 'tool_message_event' event = ToolManagerMessageEvent(s, sender, message) self._callbacks.process(s, event) @property def active_toggle(self): """Currently toggled tools.""" return self._toggled def get_tool_keymap(self, name): """ Get the keymap associated with the specified tool. Parameters ---------- name : string Name of the Tool Returns ------- list : list of keys associated with the Tool """ keys = [k for k, i in self._keys.items() if i == name] return keys def _remove_keys(self, name): for k in self.get_tool_keymap(name): del self._keys[k] def update_keymap(self, name, *keys): """ Set the keymap to associate with the specified tool. Parameters ---------- name : string Name of the Tool keys : keys to associate with the Tool """ if name not in self._tools: raise KeyError('%s not in Tools' % name) self._remove_keys(name) for key in keys: for k in validate_stringlist(key): if k in self._keys: cbook._warn_external('Key %s changed from %s to %s' % (k, self._keys[k], name)) self._keys[k] = name def remove_tool(self, name): """ Remove tool named *name*. Parameters ---------- name : string Name of the Tool """ tool = self.get_tool(name) tool.destroy() # If is a toggle tool and toggled, untoggle if getattr(tool, 'toggled', False): self.trigger_tool(tool, 'toolmanager') self._remove_keys(name) s = 'tool_removed_event' event = ToolEvent(s, self, tool) self._callbacks.process(s, event) del self._tools[name] def add_tool(self, name, tool, *args, **kwargs): """ Add *tool* to `ToolManager`. If successful, adds a new event ``tool_trigger_{name}`` where ``{name}`` is the *name* of the tool; the event is fired everytime the tool is triggered. Parameters ---------- name : str Name of the tool, treated as the ID, has to be unique. tool : class_like, i.e. str or type Reference to find the class of the Tool to added. Notes ----- args and kwargs get passed directly to the tools constructor. See Also -------- matplotlib.backend_tools.ToolBase : The base class for tools. """ tool_cls = self._get_cls_to_instantiate(tool) if not tool_cls: raise ValueError('Impossible to find class for %s' % str(tool)) if name in self._tools: cbook._warn_external('A "Tool class" with the same name already ' 'exists, not added') return self._tools[name] tool_obj = tool_cls(self, name, *args, **kwargs) self._tools[name] = tool_obj if tool_cls.default_keymap is not None: self.update_keymap(name, tool_cls.default_keymap) # For toggle tools init the radio_group in self._toggled if isinstance(tool_obj, tools.ToolToggleBase): # None group is not mutually exclusive, a set is used to keep track # of all toggled tools in this group if tool_obj.radio_group is None: self._toggled.setdefault(None, set()) else: self._toggled.setdefault(tool_obj.radio_group, None) # If initially toggled if tool_obj.toggled: self._handle_toggle(tool_obj, None, None, None) tool_obj.set_figure(self.figure) self._tool_added_event(tool_obj) return tool_obj def _tool_added_event(self, tool): s = 'tool_added_event' event = ToolEvent(s, self, tool) self._callbacks.process(s, event) def _handle_toggle(self, tool, sender, canvasevent, data): """ Toggle tools, need to untoggle prior to using other Toggle tool. Called from trigger_tool. Parameters ---------- tool : Tool object sender : object Object that wishes to trigger the tool canvasevent : Event Original Canvas event or None data : Object Extra data to pass to the tool when triggering """ radio_group = tool.radio_group # radio_group None is not mutually exclusive # just keep track of toggled tools in this group if radio_group is None: if tool.name in self._toggled[None]: self._toggled[None].remove(tool.name) else: self._toggled[None].add(tool.name) return # If the tool already has a toggled state, untoggle it if self._toggled[radio_group] == tool.name: toggled = None # If no tool was toggled in the radio_group # toggle it elif self._toggled[radio_group] is None: toggled = tool.name # Other tool in the radio_group is toggled else: # Untoggle previously toggled tool self.trigger_tool(self._toggled[radio_group], self, canvasevent, data) toggled = tool.name # Keep track of the toggled tool in the radio_group self._toggled[radio_group] = toggled def _get_cls_to_instantiate(self, callback_class): # Find the class that corresponds to the tool if isinstance(callback_class, str): # FIXME: make more complete searching structure if callback_class in globals(): callback_class = globals()[callback_class] else: mod = 'backend_tools' current_module = __import__(mod, globals(), locals(), [mod], 1) callback_class = getattr(current_module, callback_class, False) if callable(callback_class): return callback_class else: return None def trigger_tool(self, name, sender=None, canvasevent=None, data=None): """ Trigger a tool and emit the ``tool_trigger_{name}`` event. Parameters ---------- name : string Name of the tool sender : object Object that wishes to trigger the tool canvasevent : Event Original Canvas event or None data : Object Extra data to pass to the tool when triggering """ tool = self.get_tool(name) if tool is None: return if sender is None: sender = self self._trigger_tool(name, sender, canvasevent, data) s = 'tool_trigger_%s' % name event = ToolTriggerEvent(s, sender, tool, canvasevent, data) self._callbacks.process(s, event) def _trigger_tool(self, name, sender=None, canvasevent=None, data=None): """Actually trigger a tool.""" tool = self.get_tool(name) if isinstance(tool, tools.ToolToggleBase): self._handle_toggle(tool, sender, canvasevent, data) # Important!!! # This is where the Tool object gets triggered tool.trigger(sender, canvasevent, data) def _key_press(self, event): if event.key is None or self.keypresslock.locked(): return name = self._keys.get(event.key, None) if name is None: return self.trigger_tool(name, canvasevent=event) @property def tools(self): """A dict mapping tool name -> controlled tool.""" return self._tools def get_tool(self, name, warn=True): """ Return the tool object, also accepts the actual tool for convenience. Parameters ---------- name : str, ToolBase Name of the tool, or the tool itself warn : bool, optional If this method should give warnings. """ if isinstance(name, tools.ToolBase) and name.name in self._tools: return name if name not in self._tools: if warn: cbook._warn_external("ToolManager does not control tool " "%s" % name) return None return self._tools[name]
300a695b52a85d9cb4e371b1072438c9aa5d56a343de3e6b193848a32ac8effe
""" The OffsetBox is a simple container artist. The child artist are meant to be drawn at a relative position to its parent. The [VH]Packer, DrawingArea and TextArea are derived from the OffsetBox. The [VH]Packer automatically adjust the relative positions of their children, which should be instances of the OffsetBox. This is used to align similar artists together, e.g., in legend. The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height. The position of children relative to the parent is fixed. The TextArea is contains a single Text instance. The width and height of the TextArea instance is the width and height of the its child text. """ import numpy as np from matplotlib import cbook, docstring, rcParams import matplotlib.artist as martist import matplotlib.path as mpath import matplotlib.text as mtext import matplotlib.transforms as mtransforms from matplotlib.font_manager import FontProperties from matplotlib.image import BboxImage from matplotlib.patches import ( FancyBboxPatch, FancyArrowPatch, bbox_artist as mbbox_artist) from matplotlib.text import _AnnotationBase from matplotlib.transforms import Bbox, BboxBase, TransformedBbox DEBUG = False # for debugging use def bbox_artist(*args, **kwargs): if DEBUG: mbbox_artist(*args, **kwargs) # _get_packed_offsets() and _get_aligned_offsets() are coded assuming # that we are packing boxes horizontally. But same function will be # used with vertical packing. def _get_packed_offsets(wd_list, total, sep, mode="fixed"): """ Given a list of (width, xdescent) of each boxes, calculate the total width and the x-offset positions of each items according to *mode*. xdescent is analogous to the usual descent, but along the x-direction. xdescent values are currently ignored. *wd_list* : list of (width, xdescent) of boxes to be packed. *sep* : spacing between boxes *total* : Intended total length. None if not used. *mode* : packing mode. 'fixed', 'expand', or 'equal'. """ w_list, d_list = zip(*wd_list) # d_list is currently not used. if mode == "fixed": offsets_ = np.cumsum([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] if total is None: total = offsets_[-1] - sep return total, offsets elif mode == "expand": # This is a bit of a hack to avoid a TypeError when *total* # is None and used in conjugation with tight layout. if total is None: total = 1 if len(w_list) > 1: sep = (total - sum(w_list)) / (len(w_list) - 1) else: sep = 0 offsets_ = np.cumsum([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] return total, offsets elif mode == "equal": maxh = max(w_list) if total is None: total = (maxh + sep) * len(w_list) else: sep = total / len(w_list) - maxh offsets = (maxh + sep) * np.arange(len(w_list)) return total, offsets else: raise ValueError("Unknown mode : %s" % (mode,)) def _get_aligned_offsets(hd_list, height, align="baseline"): """ Given a list of (height, descent) of each boxes, align the boxes with *align* and calculate the y-offsets of each boxes. total width and the offset positions of each items according to *mode*. xdescent is analogous to the usual descent, but along the x-direction. xdescent values are currently ignored. *hd_list* : list of (width, xdescent) of boxes to be aligned. *sep* : spacing between boxes *height* : Intended total length. None if not used. *align* : align mode. 'baseline', 'top', 'bottom', or 'center'. """ if height is None: height = max(h for h, d in hd_list) if align == "baseline": height_descent = max(h - d for h, d in hd_list) descent = max(d for h, d in hd_list) height = height_descent + descent offsets = [0. for h, d in hd_list] elif align in ["left", "top"]: descent = 0. offsets = [d for h, d in hd_list] elif align in ["right", "bottom"]: descent = 0. offsets = [height - h + d for h, d in hd_list] elif align == "center": descent = 0. offsets = [(height - h) * .5 + d for h, d in hd_list] else: raise ValueError("Unknown Align mode : %s" % (align,)) return height, descent, offsets class OffsetBox(martist.Artist): """ The OffsetBox is a simple container artist. The child artist are meant to be drawn at a relative position to its parent. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Clipping has not been implemented in the OffesetBox family, so # disable the clip flag for consistency. It can always be turned back # on to zero effect. self.set_clip_on(False) self._children = [] self._offset = (0, 0) def set_figure(self, fig): """ Set the figure accepts a class:`~matplotlib.figure.Figure` instance """ martist.Artist.set_figure(self, fig) for c in self.get_children(): c.set_figure(fig) @martist.Artist.axes.setter def axes(self, ax): # TODO deal with this better martist.Artist.axes.fset(self, ax) for c in self.get_children(): if c is not None: c.axes = ax def contains(self, mouseevent): for c in self.get_children(): a, b = c.contains(mouseevent) if a: return a, b return False, {} def set_offset(self, xy): """ Set the offset. Parameters ---------- xy : (float, float) or callable The (x,y) coordinates of the offset in display units. A callable must have the signature:: def offset(width, height, xdescent, ydescent, renderer) \ -> (float, float) """ self._offset = xy self.stale = True def get_offset(self, width, height, xdescent, ydescent, renderer): """ Get the offset accepts extent of the box """ return (self._offset(width, height, xdescent, ydescent, renderer) if callable(self._offset) else self._offset) def set_width(self, width): """ Set the width accepts float """ self.width = width self.stale = True def set_height(self, height): """ Set the height accepts float """ self.height = height self.stale = True def get_visible_children(self): """ Return a list of visible artists it contains. """ return [c for c in self._children if c.get_visible()] def get_children(self): """ Return a list of artists it contains. """ return self._children def get_extent_offsets(self, renderer): raise Exception("") def get_extent(self, renderer): """ Return with, height, xdescent, ydescent of box """ w, h, xd, yd, offsets = self.get_extent_offsets(renderer) return w, h, xd, yd def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd, offsets = self.get_extent_offsets(renderer) px, py = self.get_offset(w, h, xd, yd, renderer) return mtransforms.Bbox.from_bounds(px - xd, py - yd, w, h) def draw(self, renderer): """ Update the location of children if necessary and draw them to the given *renderer*. """ width, height, xdescent, ydescent, offsets = self.get_extent_offsets( renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) for c, (ox, oy) in zip(self.get_visible_children(), offsets): c.set_offset((px + ox, py + oy)) c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class PackerBase(OffsetBox): def __init__(self, pad=None, sep=None, width=None, height=None, align=None, mode=None, children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional Width and height of the container box, calculated if `None`. align : str, optional Alignment of boxes. Can be one of ``top``, ``bottom``, ``left``, ``right``, ``center`` and ``baseline`` mode : str, optional Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super().__init__() self.height = height self.width = width self.sep = sep self.pad = pad self.mode = mode self.align = align self._children = children class VPacker(PackerBase): """ The VPacker has its children packed vertically. It automatically adjust the relative positions of children in the drawing time. """ def __init__(self, pad=None, sep=None, width=None, height=None, align="baseline", mode="fixed", children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional width and height of the container box, calculated if `None`. align : str, optional Alignment of boxes. mode : str, optional Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super().__init__(pad, sep, width, height, align, mode, children) def get_extent_offsets(self, renderer): """ update offset of childrens and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor sep = self.sep * dpicor if self.width is not None: for c in self.get_visible_children(): if isinstance(c, PackerBase) and c.mode == "expand": c.set_width(self.width) whd_list = [c.get_extent(renderer) for c in self.get_visible_children()] whd_list = [(w, h, xd, (h - yd)) for w, h, xd, yd in whd_list] wd_list = [(w, xd) for w, h, xd, yd in whd_list] width, xdescent, xoffsets = _get_aligned_offsets(wd_list, self.width, self.align) pack_list = [(h, yd) for w, h, xd, yd in whd_list] height, yoffsets_ = _get_packed_offsets(pack_list, self.height, sep, self.mode) yoffsets = yoffsets_ + [yd for w, h, xd, yd in whd_list] ydescent = height - yoffsets[0] yoffsets = height - yoffsets yoffsets = yoffsets - ydescent return (width + 2 * pad, height + 2 * pad, xdescent + pad, ydescent + pad, list(zip(xoffsets, yoffsets))) class HPacker(PackerBase): """ The HPacker has its children packed horizontally. It automatically adjusts the relative positions of children at draw time. """ def __init__(self, pad=None, sep=None, width=None, height=None, align="baseline", mode="fixed", children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional Width and height of the container box, calculated if `None`. align : str Alignment of boxes. mode : str Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super().__init__(pad, sep, width, height, align, mode, children) def get_extent_offsets(self, renderer): """ update offset of children and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor sep = self.sep * dpicor whd_list = [c.get_extent(renderer) for c in self.get_visible_children()] if not whd_list: return 2 * pad, 2 * pad, pad, pad, [] if self.height is None: height_descent = max(h - yd for w, h, xd, yd in whd_list) ydescent = max(yd for w, h, xd, yd in whd_list) height = height_descent + ydescent else: height = self.height - 2 * pad # width w/o pad hd_list = [(h, yd) for w, h, xd, yd in whd_list] height, ydescent, yoffsets = _get_aligned_offsets(hd_list, self.height, self.align) pack_list = [(w, xd) for w, h, xd, yd in whd_list] width, xoffsets_ = _get_packed_offsets(pack_list, self.width, sep, self.mode) xoffsets = xoffsets_ + [xd for w, h, xd, yd in whd_list] xdescent = whd_list[0][2] xoffsets = xoffsets - xdescent return (width + 2 * pad, height + 2 * pad, xdescent + pad, ydescent + pad, list(zip(xoffsets, yoffsets))) class PaddedBox(OffsetBox): def __init__(self, child, pad=None, draw_frame=False, patch_attrs=None): """ *pad* : boundary pad .. note:: *pad* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super().__init__() self.pad = pad self._children = [child] self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=1, # self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=0) if patch_attrs is not None: self.patch.update(patch_attrs) self._drawFrame = draw_frame def get_extent_offsets(self, renderer): """ update offset of childrens and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor w, h, xd, yd = self._children[0].get_extent(renderer) return w + 2 * pad, h + 2 * pad, \ xd + pad, yd + pad, \ [(0, 0)] def draw(self, renderer): """ Update the location of children if necessary and draw them to the given *renderer*. """ width, height, xdescent, ydescent, offsets = self.get_extent_offsets( renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) for c, (ox, oy) in zip(self.get_visible_children(), offsets): c.set_offset((px + ox, py + oy)) self.draw_frame(renderer) for c in self.get_visible_children(): c.draw(renderer) #bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False def update_frame(self, bbox, fontsize=None): self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) if fontsize: self.patch.set_mutation_scale(fontsize) self.stale = True def draw_frame(self, renderer): # update the location and size of the legend bbox = self.get_window_extent(renderer) self.update_frame(bbox) if self._drawFrame: self.patch.draw(renderer) class DrawingArea(OffsetBox): """ The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height. The position of children relative to the parent is fixed. The children can be clipped at the boundaries of the parent. """ def __init__(self, width, height, xdescent=0., ydescent=0., clip=False): """ *width*, *height* : width and height of the container box. *xdescent*, *ydescent* : descent of the box in x- and y-direction. *clip* : Whether to clip the children """ super().__init__() self.width = width self.height = height self.xdescent = xdescent self.ydescent = ydescent self._clip_children = clip self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) self.dpi_transform = mtransforms.Affine2D() @property def clip_children(self): """ If the children of this DrawingArea should be clipped by DrawingArea bounding box. """ return self._clip_children @clip_children.setter def clip_children(self, val): self._clip_children = bool(val) self.stale = True def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` applied to the children """ return self.dpi_transform + self.offset_transform def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ Set the offset of the container. Parameters ---------- xy : (float, float) The (x,y) coordinates of the offset in display units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) self.stale = True def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): """ Return with, height, xdescent, ydescent of box """ dpi_cor = renderer.points_to_pixels(1.) return self.width * dpi_cor, self.height * dpi_cor, \ self.xdescent * dpi_cor, self.ydescent * dpi_cor def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the container box' self._children.append(a) if not a.is_transform_set(): a.set_transform(self.get_transform()) if self.axes is not None: a.axes = self.axes fig = self.figure if fig is not None: a.set_figure(fig) def draw(self, renderer): """ Draw the children """ dpi_cor = renderer.points_to_pixels(1.) self.dpi_transform.clear() self.dpi_transform.scale(dpi_cor, dpi_cor) # At this point the DrawingArea has a transform # to the display space so the path created is # good for clipping children tpath = mtransforms.TransformedPath( mpath.Path([[0, 0], [0, self.height], [self.width, self.height], [self.width, 0]]), self.get_transform()) for c in self._children: if self._clip_children and not (c.clipbox or c._clippath): c.set_clip_path(tpath) c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class TextArea(OffsetBox): """ The TextArea is contains a single Text instance. The text is placed at (0,0) with baseline+left alignment. The width and height of the TextArea instance is the width and height of the its child text. """ def __init__(self, s, textprops=None, multilinebaseline=None, minimumdescent=True, ): """ Parameters ---------- s : str a string to be displayed. textprops : dictionary, optional, default: None Dictionary of keyword parameters to be passed to the `~matplotlib.text.Text` instance contained inside TextArea. multilinebaseline : bool, optional If `True`, baseline for multiline text is adjusted so that it is (approximately) center-aligned with singleline text. minimumdescent : bool, optional If `True`, the box has a minimum descent of "p". """ if textprops is None: textprops = {} if "va" not in textprops: textprops["va"] = "baseline" self._text = mtext.Text(0, 0, s, **textprops) OffsetBox.__init__(self) self._children = [self._text] self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) self._baseline_transform = mtransforms.Affine2D() self._text.set_transform(self.offset_transform + self._baseline_transform) self._multilinebaseline = multilinebaseline self._minimumdescent = minimumdescent def set_text(self, s): "Set the text of this area as a string." self._text.set_text(s) self.stale = True def get_text(self): "Returns the string representation of this area's text" return self._text.get_text() def set_multilinebaseline(self, t): """ Set multilinebaseline . If True, baseline for multiline text is adjusted so that it is (approximately) center-aligned with single-line text. """ self._multilinebaseline = t self.stale = True def get_multilinebaseline(self): """ get multilinebaseline . """ return self._multilinebaseline def set_minimumdescent(self, t): """ Set minimumdescent . If True, extent of the single line text is adjusted so that it has minimum descent of "p" """ self._minimumdescent = t self.stale = True def get_minimumdescent(self): """ get minimumdescent. """ return self._minimumdescent def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ Set the offset of the container. Parameters ---------- xy : (float, float) The (x,y) coordinates of the offset in display units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) self.stale = True def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): _, h_, d_ = renderer.get_text_width_height_descent( "lp", self._text._fontproperties, ismath=False) bbox, info, d = self._text._get_layout(renderer) w, h = bbox.width, bbox.height self._baseline_transform.clear() if len(info) > 1 and self._multilinebaseline: d_new = 0.5 * h - 0.5 * (h_ - d_) self._baseline_transform.translate(0, d - d_new) d = d_new else: # single line h_d = max(h_ - d_, h - d) if self.get_minimumdescent(): ## to have a minimum descent, #i.e., "l" and "p" have same ## descents. d = max(d, d_) #else: # d = d h = h_d + d return w, h, 0., d def draw(self, renderer): """ Draw the children """ self._text.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class AuxTransformBox(OffsetBox): """ Offset Box with the aux_transform. Its children will be transformed with the aux_transform first then will be offseted. The absolute coordinate of the aux_transform is meaning as it will be automatically adjust so that the left-lower corner of the bounding box of children will be set to (0,0) before the offset transform. It is similar to drawing area, except that the extent of the box is not predetermined but calculated from the window extent of its children. Furthermore, the extent of the children will be calculated in the transformed coordinate. """ def __init__(self, aux_transform): self.aux_transform = aux_transform OffsetBox.__init__(self) self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) # ref_offset_transform is used to make the offset_transform is # always reference to the lower-left corner of the bbox of its # children. self.ref_offset_transform = mtransforms.Affine2D() self.ref_offset_transform.clear() def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the container box' self._children.append(a) a.set_transform(self.get_transform()) self.stale = True def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` applied to the children """ return self.aux_transform + \ self.ref_offset_transform + \ self.offset_transform def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ Set the offset of the container. Parameters ---------- xy : (float, float) The (x,y) coordinates of the offset in display units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) self.stale = True def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): # clear the offset transforms _off = self.offset_transform.to_values() # to be restored later self.ref_offset_transform.clear() self.offset_transform.clear() # calculate the extent bboxes = [c.get_window_extent(renderer) for c in self._children] ub = mtransforms.Bbox.union(bboxes) # adjust ref_offset_transform self.ref_offset_transform.translate(-ub.x0, -ub.y0) # restor offset transform mtx = self.offset_transform.matrix_from_values(*_off) self.offset_transform.set_matrix(mtx) return ub.width, ub.height, 0., 0. def draw(self, renderer): """ Draw the children """ for c in self._children: c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class AnchoredOffsetbox(OffsetBox): """ An offset box placed according to the legend location loc. AnchoredOffsetbox has a single child. When multiple children is needed, use other OffsetBox class to enclose them. By default, the offset box is anchored against its parent axes. You may explicitly specify the bbox_to_anchor. """ zorder = 5 # zorder of the legend # Location codes codes = {'upper right': 1, 'upper left': 2, 'lower left': 3, 'lower right': 4, 'right': 5, 'center left': 6, 'center right': 7, 'lower center': 8, 'upper center': 9, 'center': 10, } def __init__(self, loc, pad=0.4, borderpad=0.5, child=None, prop=None, frameon=True, bbox_to_anchor=None, bbox_transform=None, **kwargs): """ loc is a string or an integer specifying the legend location. The valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, (same as 'center right', for back-compatibility) 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10, pad : pad around the child for drawing a frame. given in fraction of fontsize. borderpad : pad between offsetbox frame and the bbox_to_anchor, child : OffsetBox instance that will be anchored. prop : font property. This is only used as a reference for paddings. frameon : draw a frame box if True. bbox_to_anchor : bbox to anchor. Use self.axes.bbox if None. bbox_transform : with which the bbox_to_anchor will be transformed. """ super().__init__(**kwargs) self.set_bbox_to_anchor(bbox_to_anchor, bbox_transform) self.set_child(child) if isinstance(loc, str): try: loc = self.codes[loc] except KeyError: raise ValueError('Unrecognized location "%s". Valid ' 'locations are\n\t%s\n' % (loc, '\n\t'.join(self.codes))) self.loc = loc self.borderpad = borderpad self.pad = pad if prop is None: self.prop = FontProperties(size=rcParams["legend.fontsize"]) elif isinstance(prop, dict): self.prop = FontProperties(**prop) if "size" not in prop: self.prop.set_size(rcParams["legend.fontsize"]) else: self.prop = prop self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=0) self._drawFrame = frameon def set_child(self, child): "set the child to be anchored" self._child = child if child is not None: child.axes = self.axes self.stale = True def get_child(self): "return the child" return self._child def get_children(self): "return the list of children" return [self._child] def get_extent(self, renderer): """ return the extent of the artist. The extent of the child added with the pad is returned """ w, h, xd, yd = self.get_child().get_extent(renderer) fontsize = renderer.points_to_pixels(self.prop.get_size_in_points()) pad = self.pad * fontsize return w + 2 * pad, h + 2 * pad, xd + pad, yd + pad def get_bbox_to_anchor(self): """ return the bbox that the legend will be anchored """ if self._bbox_to_anchor is None: return self.axes.bbox else: transform = self._bbox_to_anchor_transform if transform is None: return self._bbox_to_anchor else: return TransformedBbox(self._bbox_to_anchor, transform) def set_bbox_to_anchor(self, bbox, transform=None): """ set the bbox that the child will be anchored. *bbox* can be a Bbox instance, a list of [left, bottom, width, height], or a list of [left, bottom] where the width and height will be assumed to be zero. The bbox will be transformed to display coordinate by the given transform. """ if bbox is None or isinstance(bbox, BboxBase): self._bbox_to_anchor = bbox else: try: l = len(bbox) except TypeError: raise ValueError("Invalid argument for bbox : %s" % str(bbox)) if l == 2: bbox = [bbox[0], bbox[1], 0, 0] self._bbox_to_anchor = Bbox.from_bounds(*bbox) self._bbox_to_anchor_transform = transform self.stale = True def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' self._update_offset_func(renderer) w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset(w, h, xd, yd, renderer) return Bbox.from_bounds(ox - xd, oy - yd, w, h) def _update_offset_func(self, renderer, fontsize=None): """ Update the offset func which depends on the dpi of the renderer (because of the padding). """ if fontsize is None: fontsize = renderer.points_to_pixels( self.prop.get_size_in_points()) def _offset(w, h, xd, yd, renderer, fontsize=fontsize, self=self): bbox = Bbox.from_bounds(0, 0, w, h) borderpad = self.borderpad * fontsize bbox_to_anchor = self.get_bbox_to_anchor() x0, y0 = self._get_anchored_bbox(self.loc, bbox, bbox_to_anchor, borderpad) return x0 + xd, y0 + yd self.set_offset(_offset) def update_frame(self, bbox, fontsize=None): self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) if fontsize: self.patch.set_mutation_scale(fontsize) def draw(self, renderer): "draw the artist" if not self.get_visible(): return fontsize = renderer.points_to_pixels(self.prop.get_size_in_points()) self._update_offset_func(renderer, fontsize) if self._drawFrame: # update the location and size of the legend bbox = self.get_window_extent(renderer) self.update_frame(bbox, fontsize) self.patch.draw(renderer) width, height, xdescent, ydescent = self.get_extent(renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) self.get_child().set_offset((px, py)) self.get_child().draw(renderer) self.stale = False def _get_anchored_bbox(self, loc, bbox, parentbbox, borderpad): """ return the position of the bbox anchored at the parentbbox with the loc code, with the borderpad. """ assert loc in range(1, 11) # called only internally BEST, UR, UL, LL, LR, R, CL, CR, LC, UC, C = range(11) anchor_coefs = {UR: "NE", UL: "NW", LL: "SW", LR: "SE", R: "E", CL: "W", CR: "E", LC: "S", UC: "N", C: "C"} c = anchor_coefs[loc] container = parentbbox.padded(-borderpad) anchored_box = bbox.anchored(c, container=container) return anchored_box.x0, anchored_box.y0 class AnchoredText(AnchoredOffsetbox): """ AnchoredOffsetbox with Text. """ def __init__(self, s, loc, pad=0.4, borderpad=0.5, prop=None, **kwargs): """ Parameters ---------- s : string Text. loc : str Location code. pad : float, optional Pad between the text and the frame as fraction of the font size. borderpad : float, optional Pad between the frame and the axes (or *bbox_to_anchor*). prop : dictionary, optional, default: None Dictionary of keyword parameters to be passed to the `~matplotlib.text.Text` instance contained inside AnchoredText. Notes ----- Other keyword parameters of `AnchoredOffsetbox` are also allowed. """ if prop is None: prop = {} badkwargs = {'ha', 'horizontalalignment', 'va', 'verticalalignment'} if badkwargs & set(prop): cbook.warn_deprecated( "3.1", message="Mixing horizontalalignment or " "verticalalignment with AnchoredText is not supported, " "deprecated since %(version)s, and will raise an exception " "%(removal)s.") self.txt = TextArea(s, textprops=prop, minimumdescent=False) fp = self.txt._text.get_fontproperties() super().__init__( loc, pad=pad, borderpad=borderpad, child=self.txt, prop=fp, **kwargs) class OffsetImage(OffsetBox): def __init__(self, arr, zoom=1, cmap=None, norm=None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample=False, dpi_cor=True, **kwargs ): OffsetBox.__init__(self) self._dpi_cor = dpi_cor self.image = BboxImage(bbox=self.get_window_extent, cmap=cmap, norm=norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs ) self._children = [self.image] self.set_zoom(zoom) self.set_data(arr) def set_data(self, arr): self._data = np.asarray(arr) self.image.set_data(self._data) self.stale = True def get_data(self): return self._data def set_zoom(self, zoom): self._zoom = zoom self.stale = True def get_zoom(self): return self._zoom # def set_axes(self, axes): # self.image.set_axes(axes) # martist.Artist.set_axes(self, axes) # def set_offset(self, xy): # """ # Set the offset of the container. # # Parameters # ---------- # xy : (float, float) # The (x,y) coordinates of the offset in display units. # """ # self._offset = xy # self.offset_transform.clear() # self.offset_transform.translate(xy[0], xy[1]) def get_offset(self): """ return offset of the container. """ return self._offset def get_children(self): return [self.image] def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): if self._dpi_cor: # True, do correction dpi_cor = renderer.points_to_pixels(1.) else: dpi_cor = 1. zoom = self.get_zoom() data = self.get_data() ny, nx = data.shape[:2] w, h = dpi_cor * nx * zoom, dpi_cor * ny * zoom return w, h, 0, 0 def draw(self, renderer): """ Draw the children """ self.image.draw(renderer) # bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class AnnotationBbox(martist.Artist, _AnnotationBase): """ Annotation-like class, but with offsetbox instead of Text. """ zorder = 3 def __str__(self): return "AnnotationBbox(%g,%g)" % (self.xy[0], self.xy[1]) @docstring.dedent_interpd def __init__(self, offsetbox, xy, xybox=None, xycoords='data', boxcoords=None, frameon=True, pad=0.4, # BboxPatch annotation_clip=None, box_alignment=(0.5, 0.5), bboxprops=None, arrowprops=None, fontsize=None, **kwargs): """ *offsetbox* : OffsetBox instance *xycoords* : same as Annotation but can be a tuple of two strings which are interpreted as x and y coordinates. *boxcoords* : similar to textcoords as Annotation but can be a tuple of two strings which are interpreted as x and y coordinates. *box_alignment* : a tuple of two floats for a vertical and horizontal alignment of the offset box w.r.t. the *boxcoords*. The lower-left corner is (0.0) and upper-right corner is (1.1). other parameters are identical to that of Annotation. """ martist.Artist.__init__(self, **kwargs) _AnnotationBase.__init__(self, xy, xycoords=xycoords, annotation_clip=annotation_clip) self.offsetbox = offsetbox self.arrowprops = arrowprops self.set_fontsize(fontsize) if xybox is None: self.xybox = xy else: self.xybox = xybox if boxcoords is None: self.boxcoords = xycoords else: self.boxcoords = boxcoords if arrowprops is not None: self._arrow_relpos = self.arrowprops.pop("relpos", (0.5, 0.5)) self.arrow_patch = FancyArrowPatch((0, 0), (1, 1), **self.arrowprops) else: self._arrow_relpos = None self.arrow_patch = None self._box_alignment = box_alignment # frame self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=pad) if bboxprops: self.patch.set(**bboxprops) self._drawFrame = frameon @property def xyann(self): return self.xybox @xyann.setter def xyann(self, xyann): self.xybox = xyann self.stale = True @property def anncoords(self): return self.boxcoords @anncoords.setter def anncoords(self, coords): self.boxcoords = coords self.stale = True def contains(self, event): t, tinfo = self.offsetbox.contains(event) #if self.arrow_patch is not None: # a,ainfo=self.arrow_patch.contains(event) # t = t or a # self.arrow_patch is currently not checked as this can be a line - JJ return t, tinfo def get_children(self): children = [self.offsetbox, self.patch] if self.arrow_patch: children.append(self.arrow_patch) return children def set_figure(self, fig): if self.arrow_patch is not None: self.arrow_patch.set_figure(fig) self.offsetbox.set_figure(fig) martist.Artist.set_figure(self, fig) def set_fontsize(self, s=None): """ set fontsize in points """ if s is None: s = rcParams["legend.fontsize"] self.prop = FontProperties(size=s) self.stale = True def get_fontsize(self, s=None): """ return fontsize in points """ return self.prop.get_size_in_points() def update_positions(self, renderer): """ Update the pixel positions of the annotated point and the text. """ xy_pixel = self._get_position_xy(renderer) self._update_position_xybox(renderer, xy_pixel) mutation_scale = renderer.points_to_pixels(self.get_fontsize()) self.patch.set_mutation_scale(mutation_scale) if self.arrow_patch: self.arrow_patch.set_mutation_scale(mutation_scale) def _update_position_xybox(self, renderer, xy_pixel): """ Update the pixel positions of the annotation text and the arrow patch. """ x, y = self.xybox if isinstance(self.boxcoords, tuple): xcoord, ycoord = self.boxcoords x1, y1 = self._get_xy(renderer, x, y, xcoord) x2, y2 = self._get_xy(renderer, x, y, ycoord) ox0, oy0 = x1, y2 else: ox0, oy0 = self._get_xy(renderer, x, y, self.boxcoords) w, h, xd, yd = self.offsetbox.get_extent(renderer) _fw, _fh = self._box_alignment self.offsetbox.set_offset((ox0 - _fw * w + xd, oy0 - _fh * h + yd)) # update patch position bbox = self.offsetbox.get_window_extent(renderer) #self.offsetbox.set_offset((ox0-_fw*w, oy0-_fh*h)) self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) x, y = xy_pixel ox1, oy1 = x, y if self.arrowprops: d = self.arrowprops.copy() # Use FancyArrowPatch if self.arrowprops has "arrowstyle" key. # adjust the starting point of the arrow relative to # the textbox. # TODO : Rotation needs to be accounted. relpos = self._arrow_relpos ox0 = bbox.x0 + bbox.width * relpos[0] oy0 = bbox.y0 + bbox.height * relpos[1] # The arrow will be drawn from (ox0, oy0) to (ox1, # oy1). It will be first clipped by patchA and patchB. # Then it will be shrunk by shrinkA and shrinkB # (in points). If patch A is not set, self.bbox_patch # is used. self.arrow_patch.set_positions((ox0, oy0), (ox1, oy1)) fs = self.prop.get_size_in_points() mutation_scale = d.pop("mutation_scale", fs) mutation_scale = renderer.points_to_pixels(mutation_scale) self.arrow_patch.set_mutation_scale(mutation_scale) patchA = d.pop("patchA", self.patch) self.arrow_patch.set_patchA(patchA) def draw(self, renderer): """ Draw the :class:`Annotation` object to the given *renderer*. """ if renderer is not None: self._renderer = renderer if not self.get_visible(): return xy_pixel = self._get_position_xy(renderer) if not self._check_xy(renderer, xy_pixel): return self.update_positions(renderer) if self.arrow_patch is not None: if self.arrow_patch.figure is None and self.figure is not None: self.arrow_patch.figure = self.figure self.arrow_patch.draw(renderer) if self._drawFrame: self.patch.draw(renderer) self.offsetbox.draw(renderer) self.stale = False class DraggableBase(object): """ helper code for a draggable artist (legend, offsetbox) The derived class must override following two method. def save_offset(self): pass def update_offset(self, dx, dy): pass *save_offset* is called when the object is picked for dragging and it is meant to save reference position of the artist. *update_offset* is called during the dragging. dx and dy is the pixel offset from the point where the mouse drag started. Optionally you may override following two methods. def artist_picker(self, artist, evt): return self.ref_artist.contains(evt) def finalize_offset(self): pass *artist_picker* is a picker method that will be used. *finalize_offset* is called when the mouse is released. In current implementation of DraggableLegend and DraggableAnnotation, *update_offset* places the artists simply in display coordinates. And *finalize_offset* recalculate their position in the normalized axes coordinate and set a relevant attribute. """ def __init__(self, ref_artist, use_blit=False): self.ref_artist = ref_artist self.got_artist = False self.canvas = self.ref_artist.figure.canvas self._use_blit = use_blit and self.canvas.supports_blit c2 = self.canvas.mpl_connect('pick_event', self.on_pick) c3 = self.canvas.mpl_connect('button_release_event', self.on_release) ref_artist.set_picker(self.artist_picker) self.cids = [c2, c3] def on_motion(self, evt): if self._check_still_parented() and self.got_artist: dx = evt.x - self.mouse_x dy = evt.y - self.mouse_y self.update_offset(dx, dy) self.canvas.draw() def on_motion_blit(self, evt): if self._check_still_parented() and self.got_artist: dx = evt.x - self.mouse_x dy = evt.y - self.mouse_y self.update_offset(dx, dy) self.canvas.restore_region(self.background) self.ref_artist.draw(self.ref_artist.figure._cachedRenderer) self.canvas.blit(self.ref_artist.figure.bbox) def on_pick(self, evt): if self._check_still_parented() and evt.artist == self.ref_artist: self.mouse_x = evt.mouseevent.x self.mouse_y = evt.mouseevent.y self.got_artist = True if self._use_blit: self.ref_artist.set_animated(True) self.canvas.draw() self.background = self.canvas.copy_from_bbox( self.ref_artist.figure.bbox) self.ref_artist.draw(self.ref_artist.figure._cachedRenderer) self.canvas.blit(self.ref_artist.figure.bbox) self._c1 = self.canvas.mpl_connect('motion_notify_event', self.on_motion_blit) else: self._c1 = self.canvas.mpl_connect('motion_notify_event', self.on_motion) self.save_offset() def on_release(self, event): if self._check_still_parented() and self.got_artist: self.finalize_offset() self.got_artist = False self.canvas.mpl_disconnect(self._c1) if self._use_blit: self.ref_artist.set_animated(False) def _check_still_parented(self): if self.ref_artist.figure is None: self.disconnect() return False else: return True def disconnect(self): """disconnect the callbacks""" for cid in self.cids: self.canvas.mpl_disconnect(cid) try: c1 = self._c1 except AttributeError: pass else: self.canvas.mpl_disconnect(c1) def artist_picker(self, artist, evt): return self.ref_artist.contains(evt) def save_offset(self): pass def update_offset(self, dx, dy): pass def finalize_offset(self): pass class DraggableOffsetBox(DraggableBase): def __init__(self, ref_artist, offsetbox, use_blit=False): DraggableBase.__init__(self, ref_artist, use_blit=use_blit) self.offsetbox = offsetbox def save_offset(self): offsetbox = self.offsetbox renderer = offsetbox.figure._cachedRenderer w, h, xd, yd = offsetbox.get_extent(renderer) offset = offsetbox.get_offset(w, h, xd, yd, renderer) self.offsetbox_x, self.offsetbox_y = offset self.offsetbox.set_offset(offset) def update_offset(self, dx, dy): loc_in_canvas = self.offsetbox_x + dx, self.offsetbox_y + dy self.offsetbox.set_offset(loc_in_canvas) def get_loc_in_canvas(self): offsetbox = self.offsetbox renderer = offsetbox.figure._cachedRenderer w, h, xd, yd = offsetbox.get_extent(renderer) ox, oy = offsetbox._offset loc_in_canvas = (ox - xd, oy - yd) return loc_in_canvas class DraggableAnnotation(DraggableBase): def __init__(self, annotation, use_blit=False): DraggableBase.__init__(self, annotation, use_blit=use_blit) self.annotation = annotation def save_offset(self): ann = self.annotation self.ox, self.oy = ann.get_transform().transform(ann.xyann) def update_offset(self, dx, dy): ann = self.annotation ann.xyann = ann.get_transform().inverted().transform( (self.ox + dx, self.oy + dy))
19790ccf1699ac97a68463c89ad906551a99e5cccfd55039977e643570f78823
r""" A module for dealing with the polylines used throughout Matplotlib. The primary class for polyline handling in Matplotlib is `Path`. Almost all vector drawing makes use of `Path`\s somewhere in the drawing pipeline. Whilst a `Path` instance itself cannot be drawn, some `.Artist` subclasses, such as `.PathPatch` and `.PathCollection`, can be used for convenient `Path` visualisation. """ from functools import lru_cache from weakref import WeakValueDictionary import numpy as np from . import _path, cbook, rcParams from .cbook import _to_unmasked_float_array, simple_linear_interpolation class Path(object): """ :class:`Path` represents a series of possibly disconnected, possibly closed, line and curve segments. The underlying storage is made up of two parallel numpy arrays: - *vertices*: an Nx2 float array of vertices - *codes*: an N-length uint8 array of vertex types These two arrays always have the same length in the first dimension. For example, to represent a cubic curve, you must provide three vertices as well as three codes ``CURVE3``. The code types are: - ``STOP`` : 1 vertex (ignored) A marker for the end of the entire path (currently not required and ignored) - ``MOVETO`` : 1 vertex Pick up the pen and move to the given vertex. - ``LINETO`` : 1 vertex Draw a line from the current position to the given vertex. - ``CURVE3`` : 1 control point, 1 endpoint Draw a quadratic Bezier curve from the current position, with the given control point, to the given end point. - ``CURVE4`` : 2 control points, 1 endpoint Draw a cubic Bezier curve from the current position, with the given control points, to the given end point. - ``CLOSEPOLY`` : 1 vertex (ignored) Draw a line segment to the start point of the current polyline. Users of Path objects should not access the vertices and codes arrays directly. Instead, they should use :meth:`iter_segments` or :meth:`cleaned` to get the vertex/code pairs. This is important, since many :class:`Path` objects, as an optimization, do not store a *codes* at all, but have a default one provided for them by :meth:`iter_segments`. Some behavior of Path objects can be controlled by rcParams. See the rcParams whose keys contain 'path.'. .. note:: The vertices and codes arrays should be treated as immutable -- there are a number of optimizations and assumptions made up front in the constructor that will not change when the data changes. """ code_type = np.uint8 # Path codes STOP = code_type(0) # 1 vertex MOVETO = code_type(1) # 1 vertex LINETO = code_type(2) # 1 vertex CURVE3 = code_type(3) # 2 vertices CURVE4 = code_type(4) # 3 vertices CLOSEPOLY = code_type(79) # 1 vertex #: A dictionary mapping Path codes to the number of vertices that the #: code expects. NUM_VERTICES_FOR_CODE = {STOP: 1, MOVETO: 1, LINETO: 1, CURVE3: 2, CURVE4: 3, CLOSEPOLY: 1} def __init__(self, vertices, codes=None, _interpolation_steps=1, closed=False, readonly=False): """ Create a new path with the given vertices and codes. Parameters ---------- vertices : array_like The ``(n, 2)`` float array, masked array or sequence of pairs representing the vertices of the path. If *vertices* contains masked values, they will be converted to NaNs which are then handled correctly by the Agg PathIterator and other consumers of path data, such as :meth:`iter_segments`. codes : {None, array_like}, optional n-length array integers representing the codes of the path. If not None, codes must be the same length as vertices. If None, *vertices* will be treated as a series of line segments. _interpolation_steps : int, optional Used as a hint to certain projections, such as Polar, that this path should be linearly interpolated immediately before drawing. This attribute is primarily an implementation detail and is not intended for public use. closed : bool, optional If *codes* is None and closed is True, vertices will be treated as line segments of a closed polygon. readonly : bool, optional Makes the path behave in an immutable way and sets the vertices and codes as read-only arrays. """ vertices = _to_unmasked_float_array(vertices) if vertices.ndim != 2 or vertices.shape[1] != 2: raise ValueError( "'vertices' must be a 2D list or array with shape Nx2") if codes is not None: codes = np.asarray(codes, self.code_type) if codes.ndim != 1 or len(codes) != len(vertices): raise ValueError("'codes' must be a 1D list or array with the " "same length of 'vertices'") if len(codes) and codes[0] != self.MOVETO: raise ValueError("The first element of 'code' must be equal " "to 'MOVETO' ({})".format(self.MOVETO)) elif closed and len(vertices): codes = np.empty(len(vertices), dtype=self.code_type) codes[0] = self.MOVETO codes[1:-1] = self.LINETO codes[-1] = self.CLOSEPOLY self._vertices = vertices self._codes = codes self._interpolation_steps = _interpolation_steps self._update_values() if readonly: self._vertices.flags.writeable = False if self._codes is not None: self._codes.flags.writeable = False self._readonly = True else: self._readonly = False @classmethod def _fast_from_codes_and_verts(cls, verts, codes, internals_from=None): """ Creates a Path instance without the expense of calling the constructor. Parameters ---------- verts : numpy array codes : numpy array internals_from : Path or None If not None, another `Path` from which the attributes ``should_simplify``, ``simplify_threshold``, and ``interpolation_steps`` will be copied. Note that ``readonly`` is never copied, and always set to ``False`` by this constructor. """ pth = cls.__new__(cls) pth._vertices = _to_unmasked_float_array(verts) pth._codes = codes pth._readonly = False if internals_from is not None: pth._should_simplify = internals_from._should_simplify pth._simplify_threshold = internals_from._simplify_threshold pth._interpolation_steps = internals_from._interpolation_steps else: pth._should_simplify = True pth._simplify_threshold = rcParams['path.simplify_threshold'] pth._interpolation_steps = 1 return pth def _update_values(self): self._simplify_threshold = rcParams['path.simplify_threshold'] self._should_simplify = ( self._simplify_threshold > 0 and rcParams['path.simplify'] and len(self._vertices) >= 128 and (self._codes is None or np.all(self._codes <= Path.LINETO)) ) @property def vertices(self): """ The list of vertices in the `Path` as an Nx2 numpy array. """ return self._vertices @vertices.setter def vertices(self, vertices): if self._readonly: raise AttributeError("Can't set vertices on a readonly Path") self._vertices = vertices self._update_values() @property def codes(self): """ The list of codes in the `Path` as a 1-D numpy array. Each code is one of `STOP`, `MOVETO`, `LINETO`, `CURVE3`, `CURVE4` or `CLOSEPOLY`. For codes that correspond to more than one vertex (`CURVE3` and `CURVE4`), that code will be repeated so that the length of `self.vertices` and `self.codes` is always the same. """ return self._codes @codes.setter def codes(self, codes): if self._readonly: raise AttributeError("Can't set codes on a readonly Path") self._codes = codes self._update_values() @property def simplify_threshold(self): """ The fraction of a pixel difference below which vertices will be simplified out. """ return self._simplify_threshold @simplify_threshold.setter def simplify_threshold(self, threshold): self._simplify_threshold = threshold @cbook.deprecated( "3.1", alternative="not np.isfinite(self.vertices).all()") @property def has_nonfinite(self): """ `True` if the vertices array has nonfinite values. """ return not np.isfinite(self._vertices).all() @property def should_simplify(self): """ `True` if the vertices array should be simplified. """ return self._should_simplify @should_simplify.setter def should_simplify(self, should_simplify): self._should_simplify = should_simplify @property def readonly(self): """ `True` if the `Path` is read-only. """ return self._readonly def __copy__(self): """ Returns a shallow copy of the `Path`, which will share the vertices and codes with the source `Path`. """ import copy return copy.copy(self) copy = __copy__ def __deepcopy__(self, memo=None): """ Returns a deepcopy of the `Path`. The `Path` will not be readonly, even if the source `Path` is. """ try: codes = self.codes.copy() except AttributeError: codes = None return self.__class__( self.vertices.copy(), codes, _interpolation_steps=self._interpolation_steps) deepcopy = __deepcopy__ @classmethod def make_compound_path_from_polys(cls, XY): """ Make a compound path object to draw a number of polygons with equal numbers of sides XY is a (numpolys x numsides x 2) numpy array of vertices. Return object is a :class:`Path` .. plot:: gallery/misc/histogram_path.py """ # for each poly: 1 for the MOVETO, (numsides-1) for the LINETO, 1 for # the CLOSEPOLY; the vert for the closepoly is ignored but we still # need it to keep the codes aligned with the vertices numpolys, numsides, two = XY.shape if two != 2: raise ValueError("The third dimension of 'XY' must be 2") stride = numsides + 1 nverts = numpolys * stride verts = np.zeros((nverts, 2)) codes = np.full(nverts, cls.LINETO, dtype=cls.code_type) codes[0::stride] = cls.MOVETO codes[numsides::stride] = cls.CLOSEPOLY for i in range(numsides): verts[i::stride] = XY[:, i] return cls(verts, codes) @classmethod def make_compound_path(cls, *args): """Make a compound path from a list of Path objects.""" # Handle an empty list in args (i.e. no args). if not args: return Path(np.empty([0, 2], dtype=np.float32)) lengths = [len(x) for x in args] total_length = sum(lengths) vertices = np.vstack([x.vertices for x in args]) vertices.reshape((total_length, 2)) codes = np.empty(total_length, dtype=cls.code_type) i = 0 for path in args: if path.codes is None: codes[i] = cls.MOVETO codes[i + 1:i + len(path.vertices)] = cls.LINETO else: codes[i:i + len(path.codes)] = path.codes i += len(path.vertices) return cls(vertices, codes) def __repr__(self): return "Path(%r, %r)" % (self.vertices, self.codes) def __len__(self): return len(self.vertices) def iter_segments(self, transform=None, remove_nans=True, clip=None, snap=False, stroke_width=1.0, simplify=None, curves=True, sketch=None): """ Iterates over all of the curve segments in the path. Each iteration returns a 2-tuple ``(vertices, code)``, where ``vertices`` is a sequence of 1-3 coordinate pairs, and ``code`` is a `Path` code. Additionally, this method can provide a number of standard cleanups and conversions to the path. Parameters ---------- transform : None or :class:`~matplotlib.transforms.Transform` If not None, the given affine transformation will be applied to the path. remove_nans : bool, optional Whether to remove all NaNs from the path and skip over them using MOVETO commands. clip : None or (float, float, float, float), optional If not None, must be a four-tuple (x1, y1, x2, y2) defining a rectangle in which to clip the path. snap : None or bool, optional If True, snap all nodes to pixels; if False, don't snap them. If None, perform snapping if the path contains only segments parallel to the x or y axes, and no more than 1024 of them. stroke_width : float, optional The width of the stroke being drawn (used for path snapping). simplify : None or bool, optional Whether to simplify the path by removing vertices that do not affect its appearance. If None, use the :attr:`should_simplify` attribute. See also :rc:`path.simplify` and :rc:`path.simplify_threshold`. curves : bool, optional If True, curve segments will be returned as curve segments. If False, all curves will be converted to line segments. sketch : None or sequence, optional If not None, must be a 3-tuple of the form (scale, length, randomness), representing the sketch parameters. """ if not len(self): return cleaned = self.cleaned(transform=transform, remove_nans=remove_nans, clip=clip, snap=snap, stroke_width=stroke_width, simplify=simplify, curves=curves, sketch=sketch) # Cache these object lookups for performance in the loop. NUM_VERTICES_FOR_CODE = self.NUM_VERTICES_FOR_CODE STOP = self.STOP vertices = iter(cleaned.vertices) codes = iter(cleaned.codes) for curr_vertices, code in zip(vertices, codes): if code == STOP: break extra_vertices = NUM_VERTICES_FOR_CODE[code] - 1 if extra_vertices: for i in range(extra_vertices): next(codes) curr_vertices = np.append(curr_vertices, next(vertices)) yield curr_vertices, code def cleaned(self, transform=None, remove_nans=False, clip=None, quantize=False, simplify=False, curves=False, stroke_width=1.0, snap=False, sketch=None): """ Return a new Path with vertices and codes cleaned according to the parameters. See Also -------- Path.iter_segments : for details of the keyword arguments. """ vertices, codes = _path.cleanup_path( self, transform, remove_nans, clip, snap, stroke_width, simplify, curves, sketch) pth = Path._fast_from_codes_and_verts(vertices, codes, self) if not simplify: pth._should_simplify = False return pth def transformed(self, transform): """ Return a transformed copy of the path. See Also -------- matplotlib.transforms.TransformedPath A specialized path class that will cache the transformed result and automatically update when the transform changes. """ return Path(transform.transform(self.vertices), self.codes, self._interpolation_steps) def contains_point(self, point, transform=None, radius=0.0): """ Returns whether the (closed) path contains the given point. If *transform* is not ``None``, the path will be transformed before performing the test. *radius* allows the path to be made slightly larger or smaller. """ if transform is not None: transform = transform.frozen() # `point_in_path` does not handle nonlinear transforms, so we # transform the path ourselves. If `transform` is affine, letting # `point_in_path` handle the transform avoids allocating an extra # buffer. if transform and not transform.is_affine: self = transform.transform_path(self) transform = None return _path.point_in_path(point[0], point[1], radius, self, transform) def contains_points(self, points, transform=None, radius=0.0): """ Returns a bool array which is ``True`` if the (closed) path contains the corresponding point. If *transform* is not ``None``, the path will be transformed before performing the test. *radius* allows the path to be made slightly larger or smaller. """ if transform is not None: transform = transform.frozen() result = _path.points_in_path(points, radius, self, transform) return result.astype('bool') def contains_path(self, path, transform=None): """ Returns whether this (closed) path completely contains the given path. If *transform* is not ``None``, the path will be transformed before performing the test. """ if transform is not None: transform = transform.frozen() return _path.path_in_path(self, None, path, transform) def get_extents(self, transform=None): """ Returns the extents (*xmin*, *ymin*, *xmax*, *ymax*) of the path. Unlike computing the extents on the *vertices* alone, this algorithm will take into account the curves and deal with control points appropriately. """ from .transforms import Bbox path = self if transform is not None: transform = transform.frozen() if not transform.is_affine: path = self.transformed(transform) transform = None return Bbox(_path.get_path_extents(path, transform)) def intersects_path(self, other, filled=True): """ Returns *True* if this path intersects another given path. *filled*, when True, treats the paths as if they were filled. That is, if one path completely encloses the other, :meth:`intersects_path` will return True. """ return _path.path_intersects_path(self, other, filled) def intersects_bbox(self, bbox, filled=True): """ Returns *True* if this path intersects a given :class:`~matplotlib.transforms.Bbox`. *filled*, when True, treats the path as if it was filled. That is, if the path completely encloses the bounding box, :meth:`intersects_bbox` will return True. The bounding box is always considered filled. """ return _path.path_intersects_rectangle(self, bbox.x0, bbox.y0, bbox.x1, bbox.y1, filled) def interpolated(self, steps): """ Returns a new path resampled to length N x steps. Does not currently handle interpolating curves. """ if steps == 1: return self vertices = simple_linear_interpolation(self.vertices, steps) codes = self.codes if codes is not None: new_codes = np.full((len(codes) - 1) * steps + 1, Path.LINETO, dtype=self.code_type) new_codes[0::steps] = codes else: new_codes = None return Path(vertices, new_codes) def to_polygons(self, transform=None, width=0, height=0, closed_only=True): """ Convert this path to a list of polygons or polylines. Each polygon/polyline is an Nx2 array of vertices. In other words, each polygon has no ``MOVETO`` instructions or curves. This is useful for displaying in backends that do not support compound paths or Bezier curves. If *width* and *height* are both non-zero then the lines will be simplified so that vertices outside of (0, 0), (width, height) will be clipped. If *closed_only* is `True` (default), only closed polygons, with the last point being the same as the first point, will be returned. Any unclosed polylines in the path will be explicitly closed. If *closed_only* is `False`, any unclosed polygons in the path will be returned as unclosed polygons, and the closed polygons will be returned explicitly closed by setting the last point to the same as the first point. """ if len(self.vertices) == 0: return [] if transform is not None: transform = transform.frozen() if self.codes is None and (width == 0 or height == 0): vertices = self.vertices if closed_only: if len(vertices) < 3: return [] elif np.any(vertices[0] != vertices[-1]): vertices = [*vertices, vertices[0]] if transform is None: return [vertices] else: return [transform.transform(vertices)] # Deal with the case where there are curves and/or multiple # subpaths (using extension code) return _path.convert_path_to_polygons( self, transform, width, height, closed_only) _unit_rectangle = None @classmethod def unit_rectangle(cls): """ Return a `Path` instance of the unit rectangle from (0, 0) to (1, 1). """ if cls._unit_rectangle is None: cls._unit_rectangle = \ cls([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]], [cls.MOVETO, cls.LINETO, cls.LINETO, cls.LINETO, cls.CLOSEPOLY], readonly=True) return cls._unit_rectangle _unit_regular_polygons = WeakValueDictionary() @classmethod def unit_regular_polygon(cls, numVertices): """ Return a :class:`Path` instance for a unit regular polygon with the given *numVertices* and radius of 1.0, centered at (0, 0). """ if numVertices <= 16: path = cls._unit_regular_polygons.get(numVertices) else: path = None if path is None: theta = ((2 * np.pi / numVertices) * np.arange(numVertices + 1) # This initial rotation is to make sure the polygon always # "points-up". + np.pi / 2) verts = np.column_stack((np.cos(theta), np.sin(theta))) codes = np.empty(numVertices + 1) codes[0] = cls.MOVETO codes[1:-1] = cls.LINETO codes[-1] = cls.CLOSEPOLY path = cls(verts, codes, readonly=True) if numVertices <= 16: cls._unit_regular_polygons[numVertices] = path return path _unit_regular_stars = WeakValueDictionary() @classmethod def unit_regular_star(cls, numVertices, innerCircle=0.5): """ Return a :class:`Path` for a unit regular star with the given numVertices and radius of 1.0, centered at (0, 0). """ if numVertices <= 16: path = cls._unit_regular_stars.get((numVertices, innerCircle)) else: path = None if path is None: ns2 = numVertices * 2 theta = (2*np.pi/ns2 * np.arange(ns2 + 1)) # This initial rotation is to make sure the polygon always # "points-up" theta += np.pi / 2.0 r = np.ones(ns2 + 1) r[1::2] = innerCircle verts = np.vstack((r*np.cos(theta), r*np.sin(theta))).transpose() codes = np.empty((ns2 + 1,)) codes[0] = cls.MOVETO codes[1:-1] = cls.LINETO codes[-1] = cls.CLOSEPOLY path = cls(verts, codes, readonly=True) if numVertices <= 16: cls._unit_regular_stars[(numVertices, innerCircle)] = path return path @classmethod def unit_regular_asterisk(cls, numVertices): """ Return a :class:`Path` for a unit regular asterisk with the given numVertices and radius of 1.0, centered at (0, 0). """ return cls.unit_regular_star(numVertices, 0.0) _unit_circle = None @classmethod def unit_circle(cls): """ Return the readonly :class:`Path` of the unit circle. For most cases, :func:`Path.circle` will be what you want. """ if cls._unit_circle is None: cls._unit_circle = cls.circle(center=(0, 0), radius=1, readonly=True) return cls._unit_circle @classmethod def circle(cls, center=(0., 0.), radius=1., readonly=False): """ Return a `Path` representing a circle of a given radius and center. Parameters ---------- center : pair of floats The center of the circle. Default ``(0, 0)``. radius : float The radius of the circle. Default is 1. readonly : bool Whether the created path should have the "readonly" argument set when creating the Path instance. Notes ----- The circle is approximated using 8 cubic Bezier curves, as described in Lancaster, Don. `Approximating a Circle or an Ellipse Using Four Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_. """ MAGIC = 0.2652031 SQRTHALF = np.sqrt(0.5) MAGIC45 = SQRTHALF * MAGIC vertices = np.array([[0.0, -1.0], [MAGIC, -1.0], [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45], [SQRTHALF, -SQRTHALF], [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45], [1.0, -MAGIC], [1.0, 0.0], [1.0, MAGIC], [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45], [SQRTHALF, SQRTHALF], [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45], [MAGIC, 1.0], [0.0, 1.0], [-MAGIC, 1.0], [-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45], [-SQRTHALF, SQRTHALF], [-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45], [-1.0, MAGIC], [-1.0, 0.0], [-1.0, -MAGIC], [-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45], [-SQRTHALF, -SQRTHALF], [-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45], [-MAGIC, -1.0], [0.0, -1.0], [0.0, -1.0]], dtype=float) codes = [cls.CURVE4] * 26 codes[0] = cls.MOVETO codes[-1] = cls.CLOSEPOLY return Path(vertices * radius + center, codes, readonly=readonly) _unit_circle_righthalf = None @classmethod def unit_circle_righthalf(cls): """ Return a `Path` of the right half of a unit circle. See `Path.circle` for the reference on the approximation used. """ if cls._unit_circle_righthalf is None: MAGIC = 0.2652031 SQRTHALF = np.sqrt(0.5) MAGIC45 = SQRTHALF * MAGIC vertices = np.array( [[0.0, -1.0], [MAGIC, -1.0], [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45], [SQRTHALF, -SQRTHALF], [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45], [1.0, -MAGIC], [1.0, 0.0], [1.0, MAGIC], [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45], [SQRTHALF, SQRTHALF], [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45], [MAGIC, 1.0], [0.0, 1.0], [0.0, -1.0]], float) codes = np.full(14, cls.CURVE4, dtype=cls.code_type) codes[0] = cls.MOVETO codes[-1] = cls.CLOSEPOLY cls._unit_circle_righthalf = cls(vertices, codes, readonly=True) return cls._unit_circle_righthalf @classmethod def arc(cls, theta1, theta2, n=None, is_wedge=False): """ Return the unit circle arc from angles *theta1* to *theta2* (in degrees). *theta2* is unwrapped to produce the shortest arc within 360 degrees. That is, if *theta2* > *theta1* + 360, the arc will be from *theta1* to *theta2* - 360 and not a full circle plus some extra overlap. If *n* is provided, it is the number of spline segments to make. If *n* is not provided, the number of spline segments is determined based on the delta between *theta1* and *theta2*. Masionobe, L. 2003. `Drawing an elliptical arc using polylines, quadratic or cubic Bezier curves <http://www.spaceroots.org/documents/ellipse/index.html>`_. """ halfpi = np.pi * 0.5 eta1 = theta1 eta2 = theta2 - 360 * np.floor((theta2 - theta1) / 360) # Ensure 2pi range is not flattened to 0 due to floating-point errors, # but don't try to expand existing 0 range. if theta2 != theta1 and eta2 <= eta1: eta2 += 360 eta1, eta2 = np.deg2rad([eta1, eta2]) # number of curve segments to make if n is None: n = int(2 ** np.ceil((eta2 - eta1) / halfpi)) if n < 1: raise ValueError("n must be >= 1 or None") deta = (eta2 - eta1) / n t = np.tan(0.5 * deta) alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0 steps = np.linspace(eta1, eta2, n + 1, True) cos_eta = np.cos(steps) sin_eta = np.sin(steps) xA = cos_eta[:-1] yA = sin_eta[:-1] xA_dot = -yA yA_dot = xA xB = cos_eta[1:] yB = sin_eta[1:] xB_dot = -yB yB_dot = xB if is_wedge: length = n * 3 + 4 vertices = np.zeros((length, 2), float) codes = np.full(length, cls.CURVE4, dtype=cls.code_type) vertices[1] = [xA[0], yA[0]] codes[0:2] = [cls.MOVETO, cls.LINETO] codes[-2:] = [cls.LINETO, cls.CLOSEPOLY] vertex_offset = 2 end = length - 2 else: length = n * 3 + 1 vertices = np.empty((length, 2), float) codes = np.full(length, cls.CURVE4, dtype=cls.code_type) vertices[0] = [xA[0], yA[0]] codes[0] = cls.MOVETO vertex_offset = 1 end = length vertices[vertex_offset:end:3, 0] = xA + alpha * xA_dot vertices[vertex_offset:end:3, 1] = yA + alpha * yA_dot vertices[vertex_offset+1:end:3, 0] = xB - alpha * xB_dot vertices[vertex_offset+1:end:3, 1] = yB - alpha * yB_dot vertices[vertex_offset+2:end:3, 0] = xB vertices[vertex_offset+2:end:3, 1] = yB return cls(vertices, codes, readonly=True) @classmethod def wedge(cls, theta1, theta2, n=None): """ Return the unit circle wedge from angles *theta1* to *theta2* (in degrees). *theta2* is unwrapped to produce the shortest wedge within 360 degrees. That is, if *theta2* > *theta1* + 360, the wedge will be from *theta1* to *theta2* - 360 and not a full circle plus some extra overlap. If *n* is provided, it is the number of spline segments to make. If *n* is not provided, the number of spline segments is determined based on the delta between *theta1* and *theta2*. See `Path.arc` for the reference on the approximation used. """ return cls.arc(theta1, theta2, n, True) @staticmethod @lru_cache(8) def hatch(hatchpattern, density=6): """ Given a hatch specifier, *hatchpattern*, generates a Path that can be used in a repeated hatching pattern. *density* is the number of lines per unit square. """ from matplotlib.hatch import get_path return (get_path(hatchpattern, density) if hatchpattern is not None else None) def clip_to_bbox(self, bbox, inside=True): """ Clip the path to the given bounding box. The path must be made up of one or more closed polygons. This algorithm will not behave correctly for unclosed paths. If *inside* is `True`, clip to the inside of the box, otherwise to the outside of the box. """ # Use make_compound_path_from_polys verts = _path.clip_path_to_rect(self, bbox, inside) paths = [Path(poly) for poly in verts] return self.make_compound_path(*paths) def get_path_collection_extents( master_transform, paths, transforms, offsets, offset_transform): r""" Given a sequence of `Path`\s, `~.Transform`\s objects, and offsets, as found in a `~.PathCollection`, returns the bounding box that encapsulates all of them. Parameters ---------- master_transform : `~.Transform` Global transformation applied to all paths. paths : list of `Path` transform : list of `~.Affine2D` offsets : (N, 2) array-like offset_transform : `~.Affine2D` Transform applied to the offsets before offsetting the path. Notes ----- The way that *paths*, *transforms* and *offsets* are combined follows the same method as for collections: Each is iterated over independently, so if you have 3 paths, 2 transforms and 1 offset, their combinations are as follows: (A, A, A), (B, B, A), (C, A, A) """ from .transforms import Bbox if len(paths) == 0: raise ValueError("No paths provided") return Bbox.from_extents(*_path.get_path_collection_extents( master_transform, paths, np.atleast_3d(transforms), offsets, offset_transform)) @cbook.deprecated("3.1", alternative="get_paths_collection_extents") def get_paths_extents(paths, transforms=[]): """ Given a sequence of :class:`Path` objects and optional :class:`~matplotlib.transforms.Transform` objects, returns the bounding box that encapsulates all of them. *paths* is a sequence of :class:`Path` instances. *transforms* is an optional sequence of :class:`~matplotlib.transforms.Affine2D` instances to apply to each path. """ from .transforms import Bbox, Affine2D if len(paths) == 0: raise ValueError("No paths provided") return Bbox.from_extents(*_path.get_path_collection_extents( Affine2D(), paths, transforms, [], Affine2D()))
d17e3a30f63b7e8ab039e5276c2c23e39d0fa39ba6b6db291671bb73b1c555a4
""" The classes here provide support for using custom classes with Matplotlib, e.g., those that do not expose the array interface but know how to convert themselves to arrays. It also supports classes with units and units conversion. Use cases include converters for custom objects, e.g., a list of datetime objects, as well as for objects that are unit aware. We don't assume any particular units implementation; rather a units implementation must provide the register with the Registry converter dictionary and a `ConversionInterface`. For example, here is a complete implementation which supports plotting with native datetime objects:: import matplotlib.units as units import matplotlib.dates as dates import matplotlib.ticker as ticker import datetime class DateConverter(units.ConversionInterface): @staticmethod def convert(value, unit, axis): 'Convert a datetime value to a scalar or array' return dates.date2num(value) @staticmethod def axisinfo(unit, axis): 'Return major and minor tick locators and formatters' if unit!='date': return None majloc = dates.AutoDateLocator() majfmt = dates.AutoDateFormatter(majloc) return AxisInfo(majloc=majloc, majfmt=majfmt, label='date') @staticmethod def default_units(x, axis): 'Return the default unit for x or None' return 'date' # Finally we register our object type with the Matplotlib units registry. units.registry[datetime.date] = DateConverter() """ from numbers import Number import numpy as np from matplotlib import cbook class ConversionError(TypeError): pass class AxisInfo(object): """ Information to support default axis labeling, tick labeling, and limits. An instance of this class must be returned by `ConversionInterface.axisinfo`. """ def __init__(self, majloc=None, minloc=None, majfmt=None, minfmt=None, label=None, default_limits=None): """ Parameters ---------- majloc, minloc : Locator, optional Tick locators for the major and minor ticks. majfmt, minfmt : Formatter, optional Tick formatters for the major and minor ticks. label : str, optional The default axis label. default_limits : optional The default min and max limits of the axis if no data has been plotted. Notes ----- If any of the above are ``None``, the axis will simply use the default value. """ self.majloc = majloc self.minloc = minloc self.majfmt = majfmt self.minfmt = minfmt self.label = label self.default_limits = default_limits class ConversionInterface(object): """ The minimal interface for a converter to take custom data types (or sequences) and convert them to values Matplotlib can use. """ @staticmethod def axisinfo(unit, axis): """ Return an `~units.AxisInfo` for the axis with the specified units. """ return None @staticmethod def default_units(x, axis): """ Return the default unit for *x* or ``None`` for the given axis. """ return None @staticmethod def convert(obj, unit, axis): """ Convert *obj* using *unit* for the specified *axis*. If *obj* is a sequence, return the converted sequence. The output must be a sequence of scalars that can be used by the numpy array layer. """ return obj @staticmethod def is_numlike(x): """ The Matplotlib datalim, autoscaling, locators etc work with scalars which are the units converted to floats given the current unit. The converter may be passed these floats, or arrays of them, even when units are set. """ if np.iterable(x): for thisx in x: return isinstance(thisx, Number) else: return isinstance(x, Number) class Registry(dict): """Register types with conversion interface.""" def get_converter(self, x): """Get the converter interface instance for *x*, or None.""" if hasattr(x, "values"): x = x.values # Unpack pandas Series and DataFrames. if isinstance(x, np.ndarray): # In case x in a masked array, access the underlying data (only its # type matters). If x is a regular ndarray, getdata() just returns # the array itself. x = np.ma.getdata(x).ravel() # If there are no elements in x, infer the units from its dtype if not x.size: return self.get_converter(np.array([0], dtype=x.dtype)) try: # Look up in the cache. return self[type(x)] except KeyError: try: # If cache lookup fails, look up based on first element... first = cbook.safe_first_element(x) except (TypeError, StopIteration): pass else: # ... and avoid infinite recursion for pathological iterables # where indexing returns instances of the same iterable class. if type(first) is not type(x): return self.get_converter(first) return None registry = Registry()
1342bc87c3d54c9d2333529fbb4a03a47b84b781cf4d912f19cdca0432f0a741
""" A module for finding, managing, and using fonts across platforms. This module provides a single :class:`FontManager` instance that can be shared across backends and platforms. The :func:`findfont` function returns the best TrueType (TTF) font file in the local or system font path that matches the specified :class:`FontProperties` instance. The :class:`FontManager` also handles Adobe Font Metrics (AFM) font files for use by the PostScript backend. The design is based on the `W3C Cascading Style Sheet, Level 1 (CSS1) font specification <http://www.w3.org/TR/1998/REC-CSS2-19980512/>`_. Future versions may implement the Level 2 or 2.1 specifications. """ # KNOWN ISSUES # # - documentation # - font variant is untested # - font stretch is incomplete # - font size is incomplete # - default font algorithm needs improvement and testing # - setWeights function needs improvement # - 'light' is an invalid weight value, remove it. from functools import lru_cache import json import logging from numbers import Number import os from pathlib import Path import subprocess import sys try: from threading import Timer except ImportError: from dummy_threading import Timer import matplotlib as mpl from matplotlib import afm, cbook, ft2font, rcParams from matplotlib.fontconfig_pattern import ( parse_fontconfig_pattern, generate_fontconfig_pattern) _log = logging.getLogger(__name__) font_scalings = { 'xx-small' : 0.579, 'x-small' : 0.694, 'small' : 0.833, 'medium' : 1.0, 'large' : 1.200, 'x-large' : 1.440, 'xx-large' : 1.728, 'larger' : 1.2, 'smaller' : 0.833, None : 1.0} stretch_dict = { 'ultra-condensed' : 100, 'extra-condensed' : 200, 'condensed' : 300, 'semi-condensed' : 400, 'normal' : 500, 'semi-expanded' : 600, 'expanded' : 700, 'extra-expanded' : 800, 'ultra-expanded' : 900} weight_dict = { 'ultralight' : 100, 'light' : 200, 'normal' : 400, 'regular' : 400, 'book' : 400, 'medium' : 500, 'roman' : 500, 'semibold' : 600, 'demibold' : 600, 'demi' : 600, 'bold' : 700, 'heavy' : 800, 'extra bold' : 800, 'black' : 900} font_family_aliases = { 'serif', 'sans-serif', 'sans serif', 'cursive', 'fantasy', 'monospace', 'sans'} # OS Font paths MSFolders = \ r'Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders' MSFontDirectories = [ r'SOFTWARE\Microsoft\Windows NT\CurrentVersion\Fonts', r'SOFTWARE\Microsoft\Windows\CurrentVersion\Fonts'] MSUserFontDirectories = [ os.path.join(str(Path.home()), r'AppData\Local\Microsoft\Windows\Fonts'), os.path.join(str(Path.home()), r'AppData\Roaming\Microsoft\Windows\Fonts')] X11FontDirectories = [ # an old standard installation point "/usr/X11R6/lib/X11/fonts/TTF/", "/usr/X11/lib/X11/fonts", # here is the new standard location for fonts "/usr/share/fonts/", # documented as a good place to install new fonts "/usr/local/share/fonts/", # common application, not really useful "/usr/lib/openoffice/share/fonts/truetype/", # user fonts str(Path(os.environ.get('XDG_DATA_HOME', Path.home() / ".local/share")) / "fonts"), str(Path.home() / ".fonts"), ] OSXFontDirectories = [ "/Library/Fonts/", "/Network/Library/Fonts/", "/System/Library/Fonts/", # fonts installed via MacPorts "/opt/local/share/fonts", # user fonts str(Path.home() / "Library/Fonts"), ] def get_fontext_synonyms(fontext): """ Return a list of file extensions extensions that are synonyms for the given file extension *fileext*. """ return { 'afm': ['afm'], 'otf': ['otf', 'ttc', 'ttf'], 'ttc': ['otf', 'ttc', 'ttf'], 'ttf': ['otf', 'ttc', 'ttf'], }[fontext] def list_fonts(directory, extensions): """ Return a list of all fonts matching any of the extensions, found recursively under the directory. """ extensions = ["." + ext for ext in extensions] return [os.path.join(dirpath, filename) # os.walk ignores access errors, unlike Path.glob. for dirpath, _, filenames in os.walk(directory) for filename in filenames if Path(filename).suffix.lower() in extensions] def win32FontDirectory(): r""" Return the user-specified font directory for Win32. This is looked up from the registry key:: \\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Fonts If the key is not found, ``%WINDIR%\Fonts`` will be returned. """ import winreg try: with winreg.OpenKey(winreg.HKEY_CURRENT_USER, MSFolders) as user: return winreg.QueryValueEx(user, 'Fonts')[0] except OSError: return os.path.join(os.environ['WINDIR'], 'Fonts') def _win32RegistryFonts(reg_domain, base_dir): r""" Searches for fonts in the Windows registry. Parameters ---------- reg_domain : int The top level registry domain (e.g. HKEY_LOCAL_MACHINE). base_dir : str The path to the folder where the font files are usually located (e.g. C:\Windows\Fonts). If only the filename of the font is stored in the registry, the absolute path is built relative to this base directory. Returns ------- `set` `pathlib.Path` objects with the absolute path to the font files found. """ import winreg items = set() for reg_path in MSFontDirectories: try: with winreg.OpenKey(reg_domain, reg_path) as local: for j in range(winreg.QueryInfoKey(local)[1]): # value may contain the filename of the font or its # absolute path. key, value, tp = winreg.EnumValue(local, j) if not isinstance(value, str): continue # Work around for https://bugs.python.org/issue25778, which # is fixed in Py>=3.6.1. value = value.split("\0", 1)[0] try: # If value contains already an absolute path, then it # is not changed further. path = Path(base_dir, value).resolve() except RuntimeError: # Don't fail with invalid entries. continue items.add(path) except (OSError, MemoryError): continue return items def win32InstalledFonts(directory=None, fontext='ttf'): """ Search for fonts in the specified font directory, or use the system directories if none given. Additionally, it is searched for user fonts installed. A list of TrueType font filenames are returned by default, or AFM fonts if *fontext* == 'afm'. """ import winreg if directory is None: directory = win32FontDirectory() fontext = ['.' + ext for ext in get_fontext_synonyms(fontext)] items = set() # System fonts items.update(_win32RegistryFonts(winreg.HKEY_LOCAL_MACHINE, directory)) # User fonts for userdir in MSUserFontDirectories: items.update(_win32RegistryFonts(winreg.HKEY_CURRENT_USER, userdir)) # Keep only paths with matching file extension. return [str(path) for path in items if path.suffix.lower() in fontext] @cbook.deprecated("3.1") def OSXInstalledFonts(directories=None, fontext='ttf'): """Get list of font files on OS X.""" if directories is None: directories = OSXFontDirectories return [path for directory in directories for path in list_fonts(directory, get_fontext_synonyms(fontext))] @lru_cache() def _call_fc_list(): """Cache and list the font filenames known to `fc-list`. """ # Delay the warning by 5s. timer = Timer(5, lambda: _log.warning( 'Matplotlib is building the font cache using fc-list. ' 'This may take a moment.')) timer.start() try: out = subprocess.check_output(['fc-list', '--format=%{file}\\n']) except (OSError, subprocess.CalledProcessError): return [] finally: timer.cancel() return [os.fsdecode(fname) for fname in out.split(b'\n')] def get_fontconfig_fonts(fontext='ttf'): """List the font filenames known to `fc-list` having the given extension. """ fontext = ['.' + ext for ext in get_fontext_synonyms(fontext)] return [fname for fname in _call_fc_list() if Path(fname).suffix.lower() in fontext] def findSystemFonts(fontpaths=None, fontext='ttf'): """ Search for fonts in the specified font paths. If no paths are given, will use a standard set of system paths, as well as the list of fonts tracked by fontconfig if fontconfig is installed and available. A list of TrueType fonts are returned by default with AFM fonts as an option. """ fontfiles = set() fontexts = get_fontext_synonyms(fontext) if fontpaths is None: if sys.platform == 'win32': fontpaths = MSUserFontDirectories + [win32FontDirectory()] # now get all installed fonts directly... fontfiles.update(win32InstalledFonts(fontext=fontext)) else: fontpaths = X11FontDirectories if sys.platform == 'darwin': fontpaths = [*X11FontDirectories, *OSXFontDirectories] fontfiles.update(get_fontconfig_fonts(fontext)) elif isinstance(fontpaths, str): fontpaths = [fontpaths] for path in fontpaths: fontfiles.update(map(os.path.abspath, list_fonts(path, fontexts))) return [fname for fname in fontfiles if os.path.exists(fname)] class FontEntry(object): """ A class for storing Font properties. It is used when populating the font lookup dictionary. """ def __init__(self, fname ='', name ='', style ='normal', variant='normal', weight ='normal', stretch='normal', size ='medium', ): self.fname = fname self.name = name self.style = style self.variant = variant self.weight = weight self.stretch = stretch try: self.size = str(float(size)) except ValueError: self.size = size def __repr__(self): return "<Font '%s' (%s) %s %s %s %s>" % ( self.name, os.path.basename(self.fname), self.style, self.variant, self.weight, self.stretch) def ttfFontProperty(font): """ Extract information from a TrueType font file. Parameters ---------- font : `.FT2Font` The TrueType font file from which information will be extracted. Returns ------- `FontEntry` The extracted font properties. """ name = font.family_name # Styles are: italic, oblique, and normal (default) sfnt = font.get_sfnt() # These tables are actually mac_roman-encoded, but mac_roman support may be # missing in some alternative Python implementations and we are only going # to look for ASCII substrings, where any ASCII-compatible encoding works # - or big-endian UTF-16, since important Microsoft fonts use that. sfnt2 = (sfnt.get((1, 0, 0, 2), b'').decode('latin-1').lower() or sfnt.get((3, 1, 0x0409, 2), b'').decode('utf_16_be').lower()) sfnt4 = (sfnt.get((1, 0, 0, 4), b'').decode('latin-1').lower() or sfnt.get((3, 1, 0x0409, 4), b'').decode('utf_16_be').lower()) if sfnt4.find('oblique') >= 0: style = 'oblique' elif sfnt4.find('italic') >= 0: style = 'italic' elif sfnt2.find('regular') >= 0: style = 'normal' elif font.style_flags & ft2font.ITALIC: style = 'italic' else: style = 'normal' # Variants are: small-caps and normal (default) # !!!! Untested if name.lower() in ['capitals', 'small-caps']: variant = 'small-caps' else: variant = 'normal' weight = next((w for w in weight_dict if sfnt4.find(w) >= 0), None) if not weight: if font.style_flags & ft2font.BOLD: weight = 700 else: weight = 400 # Stretch can be absolute and relative # Absolute stretches are: ultra-condensed, extra-condensed, condensed, # semi-condensed, normal, semi-expanded, expanded, extra-expanded, # and ultra-expanded. # Relative stretches are: wider, narrower # Child value is: inherit if (sfnt4.find('narrow') >= 0 or sfnt4.find('condensed') >= 0 or sfnt4.find('cond') >= 0): stretch = 'condensed' elif sfnt4.find('demi cond') >= 0: stretch = 'semi-condensed' elif sfnt4.find('wide') >= 0 or sfnt4.find('expanded') >= 0: stretch = 'expanded' else: stretch = 'normal' # Sizes can be absolute and relative. # Absolute sizes are: xx-small, x-small, small, medium, large, x-large, # and xx-large. # Relative sizes are: larger, smaller # Length value is an absolute font size, e.g., 12pt # Percentage values are in 'em's. Most robust specification. if not font.scalable: raise NotImplementedError("Non-scalable fonts are not supported") size = 'scalable' return FontEntry(font.fname, name, style, variant, weight, stretch, size) def afmFontProperty(fontpath, font): """ Extract information from an AFM font file. Parameters ---------- font : `.AFM` The AFM font file from which information will be extracted. Returns ------- `FontEntry` The extracted font properties. """ name = font.get_familyname() fontname = font.get_fontname().lower() # Styles are: italic, oblique, and normal (default) if font.get_angle() != 0 or 'italic' in name.lower(): style = 'italic' elif 'oblique' in name.lower(): style = 'oblique' else: style = 'normal' # Variants are: small-caps and normal (default) # !!!! Untested if name.lower() in ['capitals', 'small-caps']: variant = 'small-caps' else: variant = 'normal' weight = font.get_weight().lower() if weight not in weight_dict: weight = 'normal' # Stretch can be absolute and relative # Absolute stretches are: ultra-condensed, extra-condensed, condensed, # semi-condensed, normal, semi-expanded, expanded, extra-expanded, # and ultra-expanded. # Relative stretches are: wider, narrower # Child value is: inherit if 'demi cond' in fontname: stretch = 'semi-condensed' elif 'narrow' in fontname or 'cond' in fontname: stretch = 'condensed' elif 'wide' in fontname or 'expanded' in fontname: stretch = 'expanded' else: stretch = 'normal' # Sizes can be absolute and relative. # Absolute sizes are: xx-small, x-small, small, medium, large, x-large, # and xx-large. # Relative sizes are: larger, smaller # Length value is an absolute font size, e.g., 12pt # Percentage values are in 'em's. Most robust specification. # All AFM fonts are apparently scalable. size = 'scalable' return FontEntry(fontpath, name, style, variant, weight, stretch, size) def createFontList(fontfiles, fontext='ttf'): """ A function to create a font lookup list. The default is to create a list of TrueType fonts. An AFM font list can optionally be created. """ fontlist = [] # Add fonts from list of known font files. seen = set() for fpath in fontfiles: _log.debug('createFontDict: %s', fpath) fname = os.path.split(fpath)[1] if fname in seen: continue if fontext == 'afm': try: with open(fpath, 'rb') as fh: font = afm.AFM(fh) except EnvironmentError: _log.info("Could not open font file %s", fpath) continue except RuntimeError: _log.info("Could not parse font file %s", fpath) continue try: prop = afmFontProperty(fpath, font) except KeyError as exc: _log.info("Could not extract properties for %s: %s", fpath, exc) continue else: try: font = ft2font.FT2Font(fpath) except (OSError, RuntimeError) as exc: _log.info("Could not open font file %s: %s", fpath, exc) continue except UnicodeError: _log.info("Cannot handle unicode filenames") continue try: prop = ttfFontProperty(font) except (KeyError, RuntimeError, ValueError, NotImplementedError) as exc: _log.info("Could not extract properties for %s: %s", fpath, exc) continue fontlist.append(prop) seen.add(fname) return fontlist class FontProperties(object): """ A class for storing and manipulating font properties. The font properties are those described in the `W3C Cascading Style Sheet, Level 1 <http://www.w3.org/TR/1998/REC-CSS2-19980512/>`_ font specification. The six properties are: - family: A list of font names in decreasing order of priority. The items may include a generic font family name, either 'serif', 'sans-serif', 'cursive', 'fantasy', or 'monospace'. In that case, the actual font to be used will be looked up from the associated rcParam. - style: Either 'normal', 'italic' or 'oblique'. - variant: Either 'normal' or 'small-caps'. - stretch: A numeric value in the range 0-1000 or one of 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded' or 'ultra-expanded' - weight: A numeric value in the range 0-1000 or one of 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black' - size: Either an relative value of 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large' or an absolute font size, e.g., 12 The default font property for TrueType fonts (as specified in the default rcParams) is:: sans-serif, normal, normal, normal, normal, scalable. Alternatively, a font may be specified using an absolute path to a .ttf file, by using the *fname* kwarg. The preferred usage of font sizes is to use the relative values, e.g., 'large', instead of absolute font sizes, e.g., 12. This approach allows all text sizes to be made larger or smaller based on the font manager's default font size. This class will also accept a fontconfig_ pattern_, if it is the only argument provided. This support does not depend on fontconfig; we are merely borrowing its pattern syntax for use here. .. _fontconfig: https://www.freedesktop.org/wiki/Software/fontconfig/ .. _pattern: https://www.freedesktop.org/software/fontconfig/fontconfig-user.html Note that Matplotlib's internal font manager and fontconfig use a different algorithm to lookup fonts, so the results of the same pattern may be different in Matplotlib than in other applications that use fontconfig. """ def __init__(self, family = None, style = None, variant= None, weight = None, stretch= None, size = None, fname = None, # if set, it's a hardcoded filename to use ): self._family = _normalize_font_family(rcParams['font.family']) self._slant = rcParams['font.style'] self._variant = rcParams['font.variant'] self._weight = rcParams['font.weight'] self._stretch = rcParams['font.stretch'] self._size = rcParams['font.size'] self._file = None if isinstance(family, str): # Treat family as a fontconfig pattern if it is the only # parameter provided. if (style is None and variant is None and weight is None and stretch is None and size is None and fname is None): self.set_fontconfig_pattern(family) return self.set_family(family) self.set_style(style) self.set_variant(variant) self.set_weight(weight) self.set_stretch(stretch) self.set_file(fname) self.set_size(size) def _parse_fontconfig_pattern(self, pattern): return parse_fontconfig_pattern(pattern) def __hash__(self): l = (tuple(self.get_family()), self.get_slant(), self.get_variant(), self.get_weight(), self.get_stretch(), self.get_size_in_points(), self.get_file()) return hash(l) def __eq__(self, other): return hash(self) == hash(other) def __str__(self): return self.get_fontconfig_pattern() def get_family(self): """ Return a list of font names that comprise the font family. """ return self._family def get_name(self): """ Return the name of the font that best matches the font properties. """ return get_font(findfont(self)).family_name def get_style(self): """ Return the font style. Values are: 'normal', 'italic' or 'oblique'. """ return self._slant get_slant = get_style def get_variant(self): """ Return the font variant. Values are: 'normal' or 'small-caps'. """ return self._variant def get_weight(self): """ Set the font weight. Options are: A numeric value in the range 0-1000 or one of 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black' """ return self._weight def get_stretch(self): """ Return the font stretch or width. Options are: 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded', 'ultra-expanded'. """ return self._stretch def get_size(self): """ Return the font size. """ return self._size def get_size_in_points(self): return self._size def get_file(self): """ Return the filename of the associated font. """ return self._file def get_fontconfig_pattern(self): """ Get a fontconfig_ pattern_ suitable for looking up the font as specified with fontconfig's ``fc-match`` utility. This support does not depend on fontconfig; we are merely borrowing its pattern syntax for use here. """ return generate_fontconfig_pattern(self) def set_family(self, family): """ Change the font family. May be either an alias (generic name is CSS parlance), such as: 'serif', 'sans-serif', 'cursive', 'fantasy', or 'monospace', a real font name or a list of real font names. Real font names are not supported when `text.usetex` is `True`. """ if family is None: family = rcParams['font.family'] self._family = _normalize_font_family(family) set_name = set_family def set_style(self, style): """ Set the font style. Values are: 'normal', 'italic' or 'oblique'. """ if style is None: style = rcParams['font.style'] cbook._check_in_list(['normal', 'italic', 'oblique'], style=style) self._slant = style set_slant = set_style def set_variant(self, variant): """ Set the font variant. Values are: 'normal' or 'small-caps'. """ if variant is None: variant = rcParams['font.variant'] cbook._check_in_list(['normal', 'small-caps'], variant=variant) self._variant = variant def set_weight(self, weight): """ Set the font weight. May be either a numeric value in the range 0-1000 or one of 'ultralight', 'light', 'normal', 'regular', 'book', 'medium', 'roman', 'semibold', 'demibold', 'demi', 'bold', 'heavy', 'extra bold', 'black' """ if weight is None: weight = rcParams['font.weight'] try: weight = int(weight) if weight < 0 or weight > 1000: raise ValueError() except ValueError: if weight not in weight_dict: raise ValueError("weight is invalid") self._weight = weight def set_stretch(self, stretch): """ Set the font stretch or width. Options are: 'ultra-condensed', 'extra-condensed', 'condensed', 'semi-condensed', 'normal', 'semi-expanded', 'expanded', 'extra-expanded' or 'ultra-expanded', or a numeric value in the range 0-1000. """ if stretch is None: stretch = rcParams['font.stretch'] try: stretch = int(stretch) if stretch < 0 or stretch > 1000: raise ValueError() except ValueError: if stretch not in stretch_dict: raise ValueError("stretch is invalid") self._stretch = stretch def set_size(self, size): """ Set the font size. Either an relative value of 'xx-small', 'x-small', 'small', 'medium', 'large', 'x-large', 'xx-large' or an absolute font size, e.g., 12. """ if size is None: size = rcParams['font.size'] try: size = float(size) except ValueError: try: scale = font_scalings[size] except KeyError: raise ValueError( "Size is invalid. Valid font size are " + ", ".join(map(str, font_scalings))) else: size = scale * FontManager.get_default_size() if size < 1.0: _log.info('Fontsize %1.2f < 1.0 pt not allowed by FreeType. ' 'Setting fontsize = 1 pt', size) size = 1.0 self._size = size def set_file(self, file): """ Set the filename of the fontfile to use. In this case, all other properties will be ignored. """ self._file = file def set_fontconfig_pattern(self, pattern): """ Set the properties by parsing a fontconfig_ *pattern*. This support does not depend on fontconfig; we are merely borrowing its pattern syntax for use here. """ for key, val in self._parse_fontconfig_pattern(pattern).items(): if type(val) == list: getattr(self, "set_" + key)(val[0]) else: getattr(self, "set_" + key)(val) def copy(self): """Return a copy of self.""" new = type(self)() vars(new).update(vars(self)) return new class JSONEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, FontManager): return dict(o.__dict__, __class__='FontManager') elif isinstance(o, FontEntry): d = dict(o.__dict__, __class__='FontEntry') try: # Cache paths of fonts shipped with mpl relative to the mpl # data path, which helps in the presence of venvs. d["fname"] = str( Path(d["fname"]).relative_to(mpl.get_data_path())) except ValueError: pass return d else: return super().default(o) def _json_decode(o): cls = o.pop('__class__', None) if cls is None: return o elif cls == 'FontManager': r = FontManager.__new__(FontManager) r.__dict__.update(o) return r elif cls == 'FontEntry': r = FontEntry.__new__(FontEntry) r.__dict__.update(o) if not os.path.isabs(r.fname): r.fname = os.path.join(mpl.get_data_path(), r.fname) return r else: raise ValueError("don't know how to deserialize __class__=%s" % cls) def json_dump(data, filename): """ Dumps a data structure as JSON in the named file. Handles FontManager and its fields. File paths that are children of the Matplotlib data path (typically, fonts shipped with Matplotlib) are stored relative to that data path (to remain valid across virtualenvs). """ with open(filename, 'w') as fh: try: json.dump(data, fh, cls=JSONEncoder, indent=2) except OSError as e: _log.warning('Could not save font_manager cache {}'.format(e)) def json_load(filename): """ Loads a data structure as JSON from the named file. Handles FontManager and its fields. Relative file paths are interpreted as being relative to the Matplotlib data path, and transformed into absolute paths. """ with open(filename, 'r') as fh: return json.load(fh, object_hook=_json_decode) def _normalize_font_family(family): if isinstance(family, str): family = [family] return family @cbook.deprecated("3.0") class TempCache(object): """ A class to store temporary caches that are (a) not saved to disk and (b) invalidated whenever certain font-related rcParams---namely the family lookup lists---are changed or the font cache is reloaded. This avoids the expensive linear search through all fonts every time a font is looked up. """ # A list of rcparam names that, when changed, invalidated this # cache. invalidating_rcparams = ( 'font.serif', 'font.sans-serif', 'font.cursive', 'font.fantasy', 'font.monospace') def __init__(self): self._lookup_cache = {} self._last_rcParams = self.make_rcparams_key() def make_rcparams_key(self): return [id(fontManager)] + [ rcParams[param] for param in self.invalidating_rcparams] def get(self, prop): key = self.make_rcparams_key() if key != self._last_rcParams: self._lookup_cache = {} self._last_rcParams = key return self._lookup_cache.get(prop) def set(self, prop, value): key = self.make_rcparams_key() if key != self._last_rcParams: self._lookup_cache = {} self._last_rcParams = key self._lookup_cache[prop] = value class FontManager(object): """ On import, the :class:`FontManager` singleton instance creates a list of TrueType fonts based on the font properties: name, style, variant, weight, stretch, and size. The :meth:`findfont` method does a nearest neighbor search to find the font that most closely matches the specification. If no good enough match is found, a default font is returned. """ # Increment this version number whenever the font cache data # format or behavior has changed and requires a existing font # cache files to be rebuilt. __version__ = 310 def __init__(self, size=None, weight='normal'): self._version = self.__version__ self.__default_weight = weight self.default_size = size paths = [os.path.join(rcParams['datapath'], 'fonts', 'ttf'), os.path.join(rcParams['datapath'], 'fonts', 'afm'), os.path.join(rcParams['datapath'], 'fonts', 'pdfcorefonts')] # Create list of font paths for pathname in ['TTFPATH', 'AFMPATH']: if pathname in os.environ: ttfpath = os.environ[pathname] if ttfpath.find(';') >= 0: # win32 style paths.extend(ttfpath.split(';')) elif ttfpath.find(':') >= 0: # unix style paths.extend(ttfpath.split(':')) else: paths.append(ttfpath) _log.debug('font search path %s', str(paths)) # Load TrueType fonts and create font dictionary. self.defaultFamily = { 'ttf': 'DejaVu Sans', 'afm': 'Helvetica'} ttffiles = findSystemFonts(paths) + findSystemFonts() self.ttflist = createFontList(ttffiles) afmfiles = (findSystemFonts(paths, fontext='afm') + findSystemFonts(fontext='afm')) self.afmlist = createFontList(afmfiles, fontext='afm') @cbook.deprecated("3.0") @property def ttffiles(self): return [font.fname for font in self.ttflist] @cbook.deprecated("3.0") @property def afmfiles(self): return [font.fname for font in self.afmlist] @property def defaultFont(self): # Lazily evaluated (findfont then caches the result) to avoid including # the venv path in the json serialization. return {ext: self.findfont(family, fontext=ext) for ext, family in self.defaultFamily.items()} def get_default_weight(self): """ Return the default font weight. """ return self.__default_weight @staticmethod def get_default_size(): """ Return the default font size. """ return rcParams['font.size'] def set_default_weight(self, weight): """ Set the default font weight. The initial value is 'normal'. """ self.__default_weight = weight # Each of the scoring functions below should return a value between # 0.0 (perfect match) and 1.0 (terrible match) def score_family(self, families, family2): """ Returns a match score between the list of font families in *families* and the font family name *family2*. An exact match at the head of the list returns 0.0. A match further down the list will return between 0 and 1. No match will return 1.0. """ if not isinstance(families, (list, tuple)): families = [families] elif len(families) == 0: return 1.0 family2 = family2.lower() step = 1 / len(families) for i, family1 in enumerate(families): family1 = family1.lower() if family1 in font_family_aliases: if family1 in ('sans', 'sans serif'): family1 = 'sans-serif' options = rcParams['font.' + family1] options = [x.lower() for x in options] if family2 in options: idx = options.index(family2) return (i + (idx / len(options))) * step elif family1 == family2: # The score should be weighted by where in the # list the font was found. return i * step return 1.0 def score_style(self, style1, style2): """ Returns a match score between *style1* and *style2*. An exact match returns 0.0. A match between 'italic' and 'oblique' returns 0.1. No match returns 1.0. """ if style1 == style2: return 0.0 elif (style1 in ('italic', 'oblique') and style2 in ('italic', 'oblique')): return 0.1 return 1.0 def score_variant(self, variant1, variant2): """ Returns a match score between *variant1* and *variant2*. An exact match returns 0.0, otherwise 1.0. """ if variant1 == variant2: return 0.0 else: return 1.0 def score_stretch(self, stretch1, stretch2): """ Returns a match score between *stretch1* and *stretch2*. The result is the absolute value of the difference between the CSS numeric values of *stretch1* and *stretch2*, normalized between 0.0 and 1.0. """ try: stretchval1 = int(stretch1) except ValueError: stretchval1 = stretch_dict.get(stretch1, 500) try: stretchval2 = int(stretch2) except ValueError: stretchval2 = stretch_dict.get(stretch2, 500) return abs(stretchval1 - stretchval2) / 1000.0 def score_weight(self, weight1, weight2): """ Returns a match score between *weight1* and *weight2*. The result is 0.0 if both weight1 and weight 2 are given as strings and have the same value. Otherwise, the result is the absolute value of the difference between the CSS numeric values of *weight1* and *weight2*, normalized between 0.05 and 1.0. """ # exact match of the weight names, e.g. weight1 == weight2 == "regular" if cbook._str_equal(weight1, weight2): return 0.0 w1 = weight1 if isinstance(weight1, Number) else weight_dict[weight1] w2 = weight2 if isinstance(weight2, Number) else weight_dict[weight2] return 0.95 * (abs(w1 - w2) / 1000) + 0.05 def score_size(self, size1, size2): """ Returns a match score between *size1* and *size2*. If *size2* (the size specified in the font file) is 'scalable', this function always returns 0.0, since any font size can be generated. Otherwise, the result is the absolute distance between *size1* and *size2*, normalized so that the usual range of font sizes (6pt - 72pt) will lie between 0.0 and 1.0. """ if size2 == 'scalable': return 0.0 # Size value should have already been try: sizeval1 = float(size1) except ValueError: sizeval1 = self.default_size * font_scalings[size1] try: sizeval2 = float(size2) except ValueError: return 1.0 return abs(sizeval1 - sizeval2) / 72 def findfont(self, prop, fontext='ttf', directory=None, fallback_to_default=True, rebuild_if_missing=True): """ Find a font that most closely matches the given font properties. Parameters ---------- prop : str or `~matplotlib.font_manager.FontProperties` The font properties to search for. This can be either a `.FontProperties` object or a string defining a `fontconfig patterns`_. fontext : {'ttf', 'afm'}, optional, default: 'ttf' The extension of the font file: - 'ttf': TrueType and OpenType fonts (.ttf, .ttc, .otf) - 'afm': Adobe Font Metrics (.afm) directory : str, optional If given, only search this directory and its subdirectories. fallback_to_default : bool If True, will fallback to the default font family (usually "DejaVu Sans" or "Helvetica") if the first lookup hard-fails. rebuild_if_missing : bool Whether to rebuild the font cache and search again if no match is found. Returns ------- fontfile : str The filename of the best matching font. Notes ----- This performs a nearest neighbor search. Each font is given a similarity score to the target font properties. The first font with the highest score is returned. If no matches below a certain threshold are found, the default font (usually DejaVu Sans) is returned. The result is cached, so subsequent lookups don't have to perform the O(n) nearest neighbor search. See the `W3C Cascading Style Sheet, Level 1 <http://www.w3.org/TR/1998/REC-CSS2-19980512/>`_ documentation for a description of the font finding algorithm. .. _fontconfig patterns: https://www.freedesktop.org/software/fontconfig/fontconfig-user.html """ # Pass the relevant rcParams (and the font manager, as `self`) to # _findfont_cached so to prevent using a stale cache entry after an # rcParam was changed. rc_params = tuple(tuple(rcParams[key]) for key in [ "font.serif", "font.sans-serif", "font.cursive", "font.fantasy", "font.monospace"]) return self._findfont_cached( prop, fontext, directory, fallback_to_default, rebuild_if_missing, rc_params) @lru_cache() def _findfont_cached(self, prop, fontext, directory, fallback_to_default, rebuild_if_missing, rc_params): if not isinstance(prop, FontProperties): prop = FontProperties(prop) fname = prop.get_file() if fname is not None: return fname if fontext == 'afm': fontlist = self.afmlist else: fontlist = self.ttflist best_score = 1e64 best_font = None _log.debug('findfont: Matching %s.', prop) for font in fontlist: if (directory is not None and Path(directory) not in Path(font.fname).parents): continue # Matching family should have top priority, so multiply it by 10. score = (self.score_family(prop.get_family(), font.name) * 10 + self.score_style(prop.get_style(), font.style) + self.score_variant(prop.get_variant(), font.variant) + self.score_weight(prop.get_weight(), font.weight) + self.score_stretch(prop.get_stretch(), font.stretch) + self.score_size(prop.get_size(), font.size)) _log.debug('findfont: score(%s) = %s', font, score) if score < best_score: best_score = score best_font = font if score == 0: break if best_font is None or best_score >= 10.0: if fallback_to_default: _log.warning( 'findfont: Font family %s not found. Falling back to %s.', prop.get_family(), self.defaultFamily[fontext]) default_prop = prop.copy() default_prop.set_family(self.defaultFamily[fontext]) return self.findfont(default_prop, fontext, directory, False) else: # This is a hard fail -- we can't find anything reasonable, # so just return the DejaVuSans.ttf _log.warning('findfont: Could not match %s. Returning %s.', prop, self.defaultFont[fontext]) result = self.defaultFont[fontext] else: _log.debug('findfont: Matching %s to %s (%r) with score of %f.', prop, best_font.name, best_font.fname, best_score) result = best_font.fname if not os.path.isfile(result): if rebuild_if_missing: _log.info( 'findfont: Found a missing font file. Rebuilding cache.') _rebuild() return fontManager.findfont( prop, fontext, directory, True, False) else: raise ValueError("No valid font could be found") return result @lru_cache() def is_opentype_cff_font(filename): """ Return whether the given font is a Postscript Compact Font Format Font embedded in an OpenType wrapper. Used by the PostScript and PDF backends that can not subset these fonts. """ if os.path.splitext(filename)[1].lower() == '.otf': with open(filename, 'rb') as fd: return fd.read(4) == b"OTTO" else: return False _get_font = lru_cache(64)(ft2font.FT2Font) _fmcache = os.path.join( mpl.get_cachedir(), 'fontlist-v{}.json'.format(FontManager.__version__)) fontManager = None def get_font(filename, hinting_factor=None): if hinting_factor is None: hinting_factor = rcParams['text.hinting_factor'] return _get_font(filename, hinting_factor) def _rebuild(): global fontManager fontManager = FontManager() with cbook._lock_path(_fmcache): json_dump(fontManager, _fmcache) _log.info("generated new fontManager") try: fontManager = json_load(_fmcache) except Exception: _rebuild() else: if getattr(fontManager, '_version', object()) != FontManager.__version__: _rebuild() else: _log.debug("Using fontManager instance from %s", _fmcache) findfont = fontManager.findfont
338599c31e2075cfdcab5ef5a218de2ad9a3cc119fd95a4ba3106d7a08b74d8f
""" Builtin colormaps, colormap handling utilities, and the `ScalarMappable` mixin. .. seealso:: :doc:`/gallery/color/colormap_reference` for a list of builtin colormaps. :doc:`/tutorials/colors/colormap-manipulation` for examples of how to make colormaps and :doc:`/tutorials/colors/colormaps` an in-depth discussion of choosing colormaps. :doc:`/tutorials/colors/colormapnorms` for more details about data normalization """ import functools import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cbook as cbook from matplotlib._cm import datad from matplotlib._cm_listed import cmaps as cmaps_listed cmap_d = {} # reverse all the colormaps. # reversed colormaps have '_r' appended to the name. def _reverser(f, x=None): """Helper such that ``_reverser(f)(x) == f(1 - x)``.""" if x is None: # Returning a partial object keeps it picklable. return functools.partial(_reverser, f) return f(1 - x) def revcmap(data): """Can only handle specification *data* in dictionary format.""" data_r = {} for key, val in data.items(): if callable(val): valnew = _reverser(val) # This doesn't work: lambda x: val(1-x) # The same "val" (the first one) is used # each time, so the colors are identical # and the result is shades of gray. else: # Flip x and exchange the y values facing x = 0 and x = 1. valnew = [(1.0 - x, y1, y0) for x, y0, y1 in reversed(val)] data_r[key] = valnew return data_r def _reverse_cmap_spec(spec): """Reverses cmap specification *spec*, can handle both dict and tuple type specs.""" if 'listed' in spec: return {'listed': spec['listed'][::-1]} if 'red' in spec: return revcmap(spec) else: revspec = list(reversed(spec)) if len(revspec[0]) == 2: # e.g., (1, (1.0, 0.0, 1.0)) revspec = [(1.0 - a, b) for a, b in revspec] return revspec def _generate_cmap(name, lutsize): """Generates the requested cmap from its *name*. The lut size is *lutsize*.""" spec = datad[name] # Generate the colormap object. if 'red' in spec: return colors.LinearSegmentedColormap(name, spec, lutsize) elif 'listed' in spec: return colors.ListedColormap(spec['listed'], name) else: return colors.LinearSegmentedColormap.from_list(name, spec, lutsize) LUTSIZE = mpl.rcParams['image.lut'] # Generate the reversed specifications (all at once, to avoid # modify-when-iterating). datad.update({cmapname + '_r': _reverse_cmap_spec(spec) for cmapname, spec in datad.items()}) # Precache the cmaps with ``lutsize = LUTSIZE``. # Also add the reversed ones added in the section above: for cmapname in datad: cmap_d[cmapname] = _generate_cmap(cmapname, LUTSIZE) cmap_d.update(cmaps_listed) locals().update(cmap_d) # Continue with definitions ... def register_cmap(name=None, cmap=None, data=None, lut=None): """ Add a colormap to the set recognized by :func:`get_cmap`. It can be used in two ways:: register_cmap(name='swirly', cmap=swirly_cmap) register_cmap(name='choppy', data=choppydata, lut=128) In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap` instance. The *name* is optional; if absent, the name will be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*. In the second case, the three arguments are passed to the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer, and the resulting colormap is registered. """ if name is None: try: name = cmap.name except AttributeError: raise ValueError("Arguments must include a name or a Colormap") if not isinstance(name, str): raise ValueError("Colormap name must be a string") if isinstance(cmap, colors.Colormap): cmap_d[name] = cmap return # For the remainder, let exceptions propagate. if lut is None: lut = mpl.rcParams['image.lut'] cmap = colors.LinearSegmentedColormap(name, data, lut) cmap_d[name] = cmap def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None. Colormaps added with :func:`register_cmap` take precedence over built-in colormaps. If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be returned. If *lut* is not None it must be an integer giving the number of entries desired in the lookup table, and *name* must be a standard mpl colormap name. """ if name is None: name = mpl.rcParams['image.cmap'] if isinstance(name, colors.Colormap): return name cbook._check_in_list(sorted(cmap_d), name=name) if lut is None: return cmap_d[name] else: return cmap_d[name]._resample(lut) class ScalarMappable(object): """ This is a mixin class to support scalar data to RGBA mapping. The ScalarMappable makes use of data normalization before returning RGBA colors from the given colormap. """ def __init__(self, norm=None, cmap=None): r""" Parameters ---------- norm : :class:`matplotlib.colors.Normalize` instance The normalizing object which scales data, typically into the interval ``[0, 1]``. If *None*, *norm* defaults to a *colors.Normalize* object which initializes its scaling based on the first data processed. cmap : str or :class:`~matplotlib.colors.Colormap` instance The colormap used to map normalized data values to RGBA colors. """ self.callbacksSM = cbook.CallbackRegistry() if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None #: The Normalization instance of this ScalarMappable. self.norm = norm #: The Colormap instance of this ScalarMappable. self.cmap = get_cmap(cmap) #: The last colorbar associated with this ScalarMappable. May be None. self.colorbar = None self.update_dict = {'array': False} def to_rgba(self, x, alpha=None, bytes=False, norm=True): """ Return a normalized rgba array corresponding to *x*. In the normal case, *x* is a 1-D or 2-D sequence of scalars, and the corresponding ndarray of rgba values will be returned, based on the norm and colormap set for this ScalarMappable. There is one special case, for handling images that are already rgb or rgba, such as might have been read from an image file. If *x* is an ndarray with 3 dimensions, and the last dimension is either 3 or 4, then it will be treated as an rgb or rgba array, and no mapping will be done. The array can be uint8, or it can be floating point with values in the 0-1 range; otherwise a ValueError will be raised. If it is a masked array, the mask will be ignored. If the last dimension is 3, the *alpha* kwarg (defaulting to 1) will be used to fill in the transparency. If the last dimension is 4, the *alpha* kwarg is ignored; it does not replace the pre-existing alpha. A ValueError will be raised if the third dimension is other than 3 or 4. In either case, if *bytes* is *False* (default), the rgba array will be floats in the 0-1 range; if it is *True*, the returned rgba array will be uint8 in the 0 to 255 range. If norm is False, no normalization of the input data is performed, and it is assumed to be in the range (0-1). """ # First check for special case, image input: try: if x.ndim == 3: if x.shape[2] == 3: if alpha is None: alpha = 1 if x.dtype == np.uint8: alpha = np.uint8(alpha * 255) m, n = x.shape[:2] xx = np.empty(shape=(m, n, 4), dtype=x.dtype) xx[:, :, :3] = x xx[:, :, 3] = alpha elif x.shape[2] == 4: xx = x else: raise ValueError("third dimension must be 3 or 4") if xx.dtype.kind == 'f': if norm and (xx.max() > 1 or xx.min() < 0): raise ValueError("Floating point image RGB values " "must be in the 0..1 range.") if bytes: xx = (xx * 255).astype(np.uint8) elif xx.dtype == np.uint8: if not bytes: xx = xx.astype(np.float32) / 255 else: raise ValueError("Image RGB array must be uint8 or " "floating point; found %s" % xx.dtype) return xx except AttributeError: # e.g., x is not an ndarray; so try mapping it pass # This is the normal case, mapping a scalar array: x = ma.asarray(x) if norm: x = self.norm(x) rgba = self.cmap(x, alpha=alpha, bytes=bytes) return rgba def set_array(self, A): """Set the image array from numpy array *A*. Parameters ---------- A : ndarray """ self._A = A self.update_dict['array'] = True def get_array(self): 'Return the array' return self._A def get_cmap(self): 'return the colormap' return self.cmap def get_clim(self): 'return the min, max of the color limits for image scaling' return self.norm.vmin, self.norm.vmax def set_clim(self, vmin=None, vmax=None): """ set the norm limits for image scaling; if *vmin* is a length2 sequence, interpret it as ``(vmin, vmax)`` which is used to support setp ACCEPTS: a length 2 sequence of floats; may be overridden in methods that have ``vmin`` and ``vmax`` kwargs. """ if vmax is None: try: vmin, vmax = vmin except (TypeError, ValueError): pass if vmin is not None: self.norm.vmin = colors._sanitize_extrema(vmin) if vmax is not None: self.norm.vmax = colors._sanitize_extrema(vmax) self.changed() def get_alpha(self): """ Returns ------- alpha : float Always returns 1. """ # This method is intended to be overridden by Artist sub-classes return 1. def set_cmap(self, cmap): """ set the colormap for luminance data Parameters ---------- cmap : colormap or registered colormap name """ cmap = get_cmap(cmap) self.cmap = cmap self.changed() def set_norm(self, norm): """Set the normalization instance. Parameters ---------- norm : `.Normalize` Notes ----- If there are any colorbars using the mappable for this norm, setting the norm of the mappable will reset the norm, locator, and formatters on the colorbar to default. """ if norm is None: norm = colors.Normalize() self.norm = norm self.changed() def autoscale(self): """ Autoscale the scalar limits on the norm instance using the current array """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale(self._A) self.changed() def autoscale_None(self): """ Autoscale the scalar limits on the norm instance using the current array, changing only limits that are None """ if self._A is None: raise TypeError('You must first set_array for mappable') self.norm.autoscale_None(self._A) self.changed() def add_checker(self, checker): """ Add an entry to a dictionary of boolean flags that are set to True when the mappable is changed. """ self.update_dict[checker] = False def check_update(self, checker): """ If mappable has changed since the last check, return True; else return False """ if self.update_dict[checker]: self.update_dict[checker] = False return True return False def changed(self): """ Call this whenever the mappable is changed to notify all the callbackSM listeners to the 'changed' signal """ self.callbacksSM.process('changed', self) for key in self.update_dict: self.update_dict[key] = True self.stale = True
4d86c96ab2cde7a72c370340257f255a6ab9c0052466ee3b5295bbc025100fc6
""" Conventions: "constrain_x" means to constrain the variable with either another kiwisolver variable, or a float. i.e. `constrain_width(0.2)` will set a constraint that the width has to be 0.2 and this constraint is permanent - i.e. it will not be removed if it becomes obsolete. "edit_x" means to set x to a value (just a float), and that this value can change. So `edit_width(0.2)` will set width to be 0.2, but `edit_width(0.3)` will allow it to change to 0.3 later. Note that these values are still just "suggestions" in `kiwisolver` parlance, and could be over-ridden by other constrains. """ import itertools import kiwisolver as kiwi import logging import numpy as np _log = logging.getLogger(__name__) # renderers can be complicated def get_renderer(fig): if fig._cachedRenderer: renderer = fig._cachedRenderer else: canvas = fig.canvas if canvas and hasattr(canvas, "get_renderer"): renderer = canvas.get_renderer() else: # not sure if this can happen # seems to with PDF... _log.info("constrained_layout : falling back to Agg renderer") from matplotlib.backends.backend_agg import FigureCanvasAgg canvas = FigureCanvasAgg(fig) renderer = canvas.get_renderer() return renderer class LayoutBox(object): """ Basic rectangle representation using kiwi solver variables """ def __init__(self, parent=None, name='', tightwidth=False, tightheight=False, artist=None, lower_left=(0, 0), upper_right=(1, 1), pos=False, subplot=False, h_pad=None, w_pad=None): Variable = kiwi.Variable self.parent = parent self.name = name sn = self.name + '_' if parent is None: self.solver = kiwi.Solver() self.constrained_layout_called = 0 else: self.solver = parent.solver self.constrained_layout_called = None # parent wants to know about this child! parent.add_child(self) # keep track of artist associated w/ this layout. Can be none self.artist = artist # keep track if this box is supposed to be a pos that is constrained # by the parent. self.pos = pos # keep track of whether we need to match this subplot up with others. self.subplot = subplot # we need the str below for Py 2 which complains the string is unicode self.top = Variable(str(sn + 'top')) self.bottom = Variable(str(sn + 'bottom')) self.left = Variable(str(sn + 'left')) self.right = Variable(str(sn + 'right')) self.width = Variable(str(sn + 'width')) self.height = Variable(str(sn + 'height')) self.h_center = Variable(str(sn + 'h_center')) self.v_center = Variable(str(sn + 'v_center')) self.min_width = Variable(str(sn + 'min_width')) self.min_height = Variable(str(sn + 'min_height')) self.pref_width = Variable(str(sn + 'pref_width')) self.pref_height = Variable(str(sn + 'pref_height')) # margins are only used for axes-position layout boxes. maybe should # be a separate subclass: self.left_margin = Variable(str(sn + 'left_margin')) self.right_margin = Variable(str(sn + 'right_margin')) self.bottom_margin = Variable(str(sn + 'bottom_margin')) self.top_margin = Variable(str(sn + 'top_margin')) # mins self.left_margin_min = Variable(str(sn + 'left_margin_min')) self.right_margin_min = Variable(str(sn + 'right_margin_min')) self.bottom_margin_min = Variable(str(sn + 'bottom_margin_min')) self.top_margin_min = Variable(str(sn + 'top_margin_min')) right, top = upper_right left, bottom = lower_left self.tightheight = tightheight self.tightwidth = tightwidth self.add_constraints() self.children = [] self.subplotspec = None if self.pos: self.constrain_margins() self.h_pad = h_pad self.w_pad = w_pad def constrain_margins(self): """ Only do this for pos. This sets a variable distance margin between the position of the axes and the outer edge of the axes. Margins are variable because they change with the figure size. Margin minimums are set to make room for axes decorations. However, the margins can be larger if we are mathicng the position size to other axes. """ sol = self.solver # left if not sol.hasEditVariable(self.left_margin_min): sol.addEditVariable(self.left_margin_min, 'strong') sol.suggestValue(self.left_margin_min, 0.0001) c = (self.left_margin == self.left - self.parent.left) self.solver.addConstraint(c | 'required') c = (self.left_margin >= self.left_margin_min) self.solver.addConstraint(c | 'strong') # right if not sol.hasEditVariable(self.right_margin_min): sol.addEditVariable(self.right_margin_min, 'strong') sol.suggestValue(self.right_margin_min, 0.0001) c = (self.right_margin == self.parent.right - self.right) self.solver.addConstraint(c | 'required') c = (self.right_margin >= self.right_margin_min) self.solver.addConstraint(c | 'required') # bottom if not sol.hasEditVariable(self.bottom_margin_min): sol.addEditVariable(self.bottom_margin_min, 'strong') sol.suggestValue(self.bottom_margin_min, 0.0001) c = (self.bottom_margin == self.bottom - self.parent.bottom) self.solver.addConstraint(c | 'required') c = (self.bottom_margin >= self.bottom_margin_min) self.solver.addConstraint(c | 'required') # top if not sol.hasEditVariable(self.top_margin_min): sol.addEditVariable(self.top_margin_min, 'strong') sol.suggestValue(self.top_margin_min, 0.0001) c = (self.top_margin == self.parent.top - self.top) self.solver.addConstraint(c | 'required') c = (self.top_margin >= self.top_margin_min) self.solver.addConstraint(c | 'required') def add_child(self, child): self.children += [child] def remove_child(self, child): try: self.children.remove(child) except ValueError: _log.info("Tried to remove child that doesn't belong to parent") def add_constraints(self): sol = self.solver # never let width and height go negative. for i in [self.min_width, self.min_height]: sol.addEditVariable(i, 1e9) sol.suggestValue(i, 0.0) # define relation ships between things thing width and right and left self.hard_constraints() # self.soft_constraints() if self.parent: self.parent_constrain() # sol.updateVariables() def parent_constrain(self): parent = self.parent hc = [self.left >= parent.left, self.bottom >= parent.bottom, self.top <= parent.top, self.right <= parent.right] for c in hc: self.solver.addConstraint(c | 'required') def hard_constraints(self): hc = [self.width == self.right - self.left, self.height == self.top - self.bottom, self.h_center == (self.left + self.right) * 0.5, self.v_center == (self.top + self.bottom) * 0.5, self.width >= self.min_width, self.height >= self.min_height] for c in hc: self.solver.addConstraint(c | 'required') def soft_constraints(self): sol = self.solver if self.tightwidth: suggest = 0. else: suggest = 20. c = (self.pref_width == suggest) for i in c: sol.addConstraint(i | 'required') if self.tightheight: suggest = 0. else: suggest = 20. c = (self.pref_height == suggest) for i in c: sol.addConstraint(i | 'required') c = [(self.width >= suggest), (self.height >= suggest)] for i in c: sol.addConstraint(i | 150000) def set_parent(self, parent): ''' replace the parent of this with the new parent ''' self.parent = parent self.parent_constrain() def constrain_geometry(self, left, bottom, right, top, strength='strong'): hc = [self.left == left, self.right == right, self.bottom == bottom, self.top == top] for c in hc: self.solver.addConstraint(c | strength) # self.solver.updateVariables() def constrain_same(self, other, strength='strong'): """ Make the layoutbox have same position as other layoutbox """ hc = [self.left == other.left, self.right == other.right, self.bottom == other.bottom, self.top == other.top] for c in hc: self.solver.addConstraint(c | strength) def constrain_left_margin(self, margin, strength='strong'): c = (self.left == self.parent.left + margin) self.solver.addConstraint(c | strength) def edit_left_margin_min(self, margin): self.solver.suggestValue(self.left_margin_min, margin) def constrain_right_margin(self, margin, strength='strong'): c = (self.right == self.parent.right - margin) self.solver.addConstraint(c | strength) def edit_right_margin_min(self, margin): self.solver.suggestValue(self.right_margin_min, margin) def constrain_bottom_margin(self, margin, strength='strong'): c = (self.bottom == self.parent.bottom + margin) self.solver.addConstraint(c | strength) def edit_bottom_margin_min(self, margin): self.solver.suggestValue(self.bottom_margin_min, margin) def constrain_top_margin(self, margin, strength='strong'): c = (self.top == self.parent.top - margin) self.solver.addConstraint(c | strength) def edit_top_margin_min(self, margin): self.solver.suggestValue(self.top_margin_min, margin) def get_rect(self): return (self.left.value(), self.bottom.value(), self.width.value(), self.height.value()) def update_variables(self): ''' Update *all* the variables that are part of the solver this LayoutBox is created with ''' self.solver.updateVariables() def edit_height(self, height, strength='strong'): ''' Set the height of the layout box. This is done as an editable variable so that the value can change due to resizing. ''' sol = self.solver for i in [self.height]: if not sol.hasEditVariable(i): sol.addEditVariable(i, strength) sol.suggestValue(self.height, height) def constrain_height(self, height, strength='strong'): ''' Constrain the height of the layout box. height is either a float or a layoutbox.height. ''' c = (self.height == height) self.solver.addConstraint(c | strength) def constrain_height_min(self, height, strength='strong'): c = (self.height >= height) self.solver.addConstraint(c | strength) def edit_width(self, width, strength='strong'): sol = self.solver for i in [self.width]: if not sol.hasEditVariable(i): sol.addEditVariable(i, strength) sol.suggestValue(self.width, width) def constrain_width(self, width, strength='strong'): ''' Constrain the width of the layout box. `width` is either a float or a layoutbox.width. ''' c = (self.width == width) self.solver.addConstraint(c | strength) def constrain_width_min(self, width, strength='strong'): c = (self.width >= width) self.solver.addConstraint(c | strength) def constrain_left(self, left, strength='strong'): c = (self.left == left) self.solver.addConstraint(c | strength) def constrain_bottom(self, bottom, strength='strong'): c = (self.bottom == bottom) self.solver.addConstraint(c | strength) def constrain_right(self, right, strength='strong'): c = (self.right == right) self.solver.addConstraint(c | strength) def constrain_top(self, top, strength='strong'): c = (self.top == top) self.solver.addConstraint(c | strength) def _is_subplotspec_layoutbox(self): ''' Helper to check if this layoutbox is the layoutbox of a subplotspec ''' name = (self.name).split('.')[-1] return name[:2] == 'ss' def _is_gridspec_layoutbox(self): ''' Helper to check if this layoutbox is the layoutbox of a gridspec ''' name = (self.name).split('.')[-1] return name[:8] == 'gridspec' def find_child_subplots(self): ''' Find children of this layout box that are subplots. We want to line poss up, and this is an easy way to find them all. ''' if self.subplot: subplots = [self] else: subplots = [] for child in self.children: subplots += child.find_child_subplots() return subplots def layout_from_subplotspec(self, subspec, name='', artist=None, pos=False): ''' Make a layout box from a subplotspec. The layout box is constrained to be a fraction of the width/height of the parent, and be a fraction of the parent width/height from the left/bottom of the parent. Therefore the parent can move around and the layout for the subplot spec should move with it. The parent is *usually* the gridspec that made the subplotspec.?? ''' lb = LayoutBox(parent=self, name=name, artist=artist, pos=pos) gs = subspec.get_gridspec() nrows, ncols = gs.get_geometry() parent = self.parent # OK, now, we want to set the position of this subplotspec # based on its subplotspec parameters. The new gridspec will inherit. # from gridspec. prob should be new method in gridspec left = 0.0 right = 1.0 bottom = 0.0 top = 1.0 totWidth = right-left totHeight = top-bottom hspace = 0. wspace = 0. # calculate accumulated heights of columns cellH = totHeight / (nrows + hspace * (nrows - 1)) sepH = hspace*cellH if gs._row_height_ratios is not None: netHeight = cellH * nrows tr = float(sum(gs._row_height_ratios)) cellHeights = [netHeight*r/tr for r in gs._row_height_ratios] else: cellHeights = [cellH] * nrows sepHeights = [0] + ([sepH] * (nrows - 1)) cellHs = np.add.accumulate(np.ravel( list(zip(sepHeights, cellHeights)))) # calculate accumulated widths of rows cellW = totWidth/(ncols + wspace * (ncols - 1)) sepW = wspace*cellW if gs._col_width_ratios is not None: netWidth = cellW * ncols tr = float(sum(gs._col_width_ratios)) cellWidths = [netWidth * r / tr for r in gs._col_width_ratios] else: cellWidths = [cellW] * ncols sepWidths = [0] + ([sepW] * (ncols - 1)) cellWs = np.add.accumulate(np.ravel(list(zip(sepWidths, cellWidths)))) figTops = [top - cellHs[2 * rowNum] for rowNum in range(nrows)] figBottoms = [top - cellHs[2 * rowNum + 1] for rowNum in range(nrows)] figLefts = [left + cellWs[2 * colNum] for colNum in range(ncols)] figRights = [left + cellWs[2 * colNum + 1] for colNum in range(ncols)] rowNum1, colNum1 = divmod(subspec.num1, ncols) rowNum2, colNum2 = divmod(subspec.num2, ncols) figBottom = min(figBottoms[rowNum1], figBottoms[rowNum2]) figTop = max(figTops[rowNum1], figTops[rowNum2]) figLeft = min(figLefts[colNum1], figLefts[colNum2]) figRight = max(figRights[colNum1], figRights[colNum2]) # These are numbers relative to 0,0,1,1. Need to constrain # relative to parent. width = figRight - figLeft height = figTop - figBottom parent = self.parent cs = [self.left == parent.left + parent.width * figLeft, self.bottom == parent.bottom + parent.height * figBottom, self.width == parent.width * width, self.height == parent.height * height] for c in cs: self.solver.addConstraint(c | 'required') return lb def __repr__(self): args = (self.name, self.left.value(), self.bottom.value(), self.right.value(), self.top.value()) return ('LayoutBox: %25s, (left: %1.3f) (bot: %1.3f) ' '(right: %1.3f) (top: %1.3f) ') % args # Utility functions that act on layoutboxes... def hstack(boxes, padding=0, strength='strong'): ''' Stack LayoutBox instances from left to right. `padding` is in figure-relative units. ''' for i in range(1, len(boxes)): c = (boxes[i-1].right + padding <= boxes[i].left) boxes[i].solver.addConstraint(c | strength) def hpack(boxes, padding=0, strength='strong'): ''' Stack LayoutBox instances from left to right. ''' for i in range(1, len(boxes)): c = (boxes[i-1].right + padding == boxes[i].left) boxes[i].solver.addConstraint(c | strength) def vstack(boxes, padding=0, strength='strong'): ''' Stack LayoutBox instances from top to bottom ''' for i in range(1, len(boxes)): c = (boxes[i-1].bottom - padding >= boxes[i].top) boxes[i].solver.addConstraint(c | strength) def vpack(boxes, padding=0, strength='strong'): ''' Stack LayoutBox instances from top to bottom ''' for i in range(1, len(boxes)): c = (boxes[i-1].bottom - padding >= boxes[i].top) boxes[i].solver.addConstraint(c | strength) def match_heights(boxes, height_ratios=None, strength='medium'): ''' Stack LayoutBox instances from top to bottom ''' if height_ratios is None: height_ratios = np.ones(len(boxes)) for i in range(1, len(boxes)): c = (boxes[i-1].height == boxes[i].height*height_ratios[i-1]/height_ratios[i]) boxes[i].solver.addConstraint(c | strength) def match_widths(boxes, width_ratios=None, strength='medium'): ''' Stack LayoutBox instances from top to bottom ''' if width_ratios is None: width_ratios = np.ones(len(boxes)) for i in range(1, len(boxes)): c = (boxes[i-1].width == boxes[i].width*width_ratios[i-1]/width_ratios[i]) boxes[i].solver.addConstraint(c | strength) def vstackeq(boxes, padding=0, height_ratios=None): vstack(boxes, padding=padding) match_heights(boxes, height_ratios=height_ratios) def hstackeq(boxes, padding=0, width_ratios=None): hstack(boxes, padding=padding) match_widths(boxes, width_ratios=width_ratios) def align(boxes, attr, strength='strong'): cons = [] for box in boxes[1:]: cons = (getattr(boxes[0], attr) == getattr(box, attr)) boxes[0].solver.addConstraint(cons | strength) def match_top_margins(boxes, levels=1): box0 = boxes[0] top0 = box0 for n in range(levels): top0 = top0.parent for box in boxes[1:]: topb = box for n in range(levels): topb = topb.parent c = (box0.top-top0.top == box.top-topb.top) box0.solver.addConstraint(c | 'strong') def match_bottom_margins(boxes, levels=1): box0 = boxes[0] top0 = box0 for n in range(levels): top0 = top0.parent for box in boxes[1:]: topb = box for n in range(levels): topb = topb.parent c = (box0.bottom-top0.bottom == box.bottom-topb.bottom) box0.solver.addConstraint(c | 'strong') def match_left_margins(boxes, levels=1): box0 = boxes[0] top0 = box0 for n in range(levels): top0 = top0.parent for box in boxes[1:]: topb = box for n in range(levels): topb = topb.parent c = (box0.left-top0.left == box.left-topb.left) box0.solver.addConstraint(c | 'strong') def match_right_margins(boxes, levels=1): box0 = boxes[0] top0 = box0 for n in range(levels): top0 = top0.parent for box in boxes[1:]: topb = box for n in range(levels): topb = topb.parent c = (box0.right-top0.right == box.right-topb.right) box0.solver.addConstraint(c | 'strong') def match_width_margins(boxes, levels=1): match_left_margins(boxes, levels=levels) match_right_margins(boxes, levels=levels) def match_height_margins(boxes, levels=1): match_top_margins(boxes, levels=levels) match_bottom_margins(boxes, levels=levels) def match_margins(boxes, levels=1): match_width_margins(boxes, levels=levels) match_height_margins(boxes, levels=levels) _layoutboxobjnum = itertools.count() def seq_id(): ''' Generate a short sequential id for layoutbox objects... ''' global _layoutboxobjnum return ('%06d' % (next(_layoutboxobjnum))) def print_children(lb): ''' Print the children of the layoutbox ''' print(lb) for child in lb.children: print_children(child) def nonetree(lb): ''' Make all elements in this tree none... This signals not to do any more layout. ''' if lb is not None: if lb.parent is None: # Clear the solver. Hopefully this garbage collects. lb.solver.reset() nonechildren(lb) else: nonetree(lb.parent) def nonechildren(lb): for child in lb.children: nonechildren(child) lb.artist._layoutbox = None lb = None def print_tree(lb): ''' Print the tree of layoutboxes ''' if lb.parent is None: print('LayoutBox Tree\n') print('==============\n') print_children(lb) print('\n') else: print_tree(lb.parent) def plot_children(fig, box, level=0, printit=True): ''' Simple plotting to show where boxes are ''' import matplotlib import matplotlib.pyplot as plt if isinstance(fig, matplotlib.figure.Figure): ax = fig.add_axes([0., 0., 1., 1.]) ax.set_facecolor([1., 1., 1., 0.7]) ax.set_alpha(0.3) fig.draw(fig.canvas.get_renderer()) else: ax = fig import matplotlib.patches as patches colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] if printit: print("Level:", level) for child in box.children: if printit: print(child) ax.add_patch( patches.Rectangle( (child.left.value(), child.bottom.value()), # (x,y) child.width.value(), # width child.height.value(), # height fc='none', alpha=0.8, ec=colors[level] ) ) if level > 0: name = child.name.split('.')[-1] if level % 2 == 0: ax.text(child.left.value(), child.bottom.value(), name, size=12-level, color=colors[level]) else: ax.text(child.right.value(), child.top.value(), name, ha='right', va='top', size=12-level, color=colors[level]) plot_children(ax, child, level=level+1, printit=printit)
5e1fee15a3aae02075ef4fd8d5d5b430e35b08eca288d9c5fd17fc58abe81da4
""" Stacked area plot for 1D arrays inspired by Douglas Y'barbo's stackoverflow answer: http://stackoverflow.com/questions/2225995/how-can-i-create-stacked-line-graph-with-matplotlib (http://stackoverflow.com/users/66549/doug) """ import numpy as np __all__ = ['stackplot'] def stackplot(axes, x, *args, labels=(), colors=None, baseline='zero', **kwargs): """ Draw a stacked area plot. Parameters ---------- x : 1d array of dimension N y : 2d array (dimension MxN), or sequence of 1d arrays (each dimension 1xN) The data is assumed to be unstacked. Each of the following calls is legal:: stackplot(x, y) # where y is MxN stackplot(x, y1, y2, y3, y4) # where y1, y2, y3, y4, are all 1xNm baseline : {'zero', 'sym', 'wiggle', 'weighted_wiggle'} Method used to calculate the baseline: - ``'zero'``: Constant zero baseline, i.e. a simple stacked plot. - ``'sym'``: Symmetric around zero and is sometimes called 'ThemeRiver'. - ``'wiggle'``: Minimizes the sum of the squared slopes. - ``'weighted_wiggle'``: Does the same but weights to account for size of each layer. It is also called 'Streamgraph'-layout. More details can be found at http://leebyron.com/streamgraph/. labels : Length N sequence of strings Labels to assign to each data series. colors : Length N sequence of colors A list or tuple of colors. These will be cycled through and used to colour the stacked areas. **kwargs All other keyword arguments are passed to `Axes.fill_between()`. Returns ------- list : list of `.PolyCollection` A list of `.PolyCollection` instances, one for each element in the stacked area plot. """ y = np.row_stack(args) labels = iter(labels) if colors is not None: axes.set_prop_cycle(color=colors) # Assume data passed has not been 'stacked', so stack it here. # We'll need a float buffer for the upcoming calculations. stack = np.cumsum(y, axis=0, dtype=np.promote_types(y.dtype, np.float32)) if baseline == 'zero': first_line = 0. elif baseline == 'sym': first_line = -np.sum(y, 0) * 0.5 stack += first_line[None, :] elif baseline == 'wiggle': m = y.shape[0] first_line = (y * (m - 0.5 - np.arange(m)[:, None])).sum(0) first_line /= -m stack += first_line elif baseline == 'weighted_wiggle': total = np.sum(y, 0) # multiply by 1/total (or zero) to avoid infinities in the division: inv_total = np.zeros_like(total) mask = total > 0 inv_total[mask] = 1.0 / total[mask] increase = np.hstack((y[:, 0:1], np.diff(y))) below_size = total - stack below_size += 0.5 * y move_up = below_size * inv_total move_up[:, 0] = 0.5 center = (move_up - 0.5) * increase center = np.cumsum(center.sum(0)) first_line = center - 0.5 * total stack += first_line else: errstr = "Baseline method %s not recognised. " % baseline errstr += "Expected 'zero', 'sym', 'wiggle' or 'weighted_wiggle'" raise ValueError(errstr) # Color between x = 0 and the first array. color = axes._get_lines.get_next_color() coll = axes.fill_between(x, first_line, stack[0, :], facecolor=color, label=next(labels, None), **kwargs) coll.sticky_edges.y[:] = [0] r = [coll] # Color between array i-1 and array i for i in range(len(y) - 1): color = axes._get_lines.get_next_color() r.append(axes.fill_between(x, stack[i, :], stack[i + 1, :], facecolor=color, label=next(labels, None), **kwargs)) return r
4f0210f704fc62b4d02af30d567d97a7ef454cdbb5d43670563b5be9dfaec970
""" Classes for the ticks and x and y axis. """ import datetime import logging import numpy as np from matplotlib import rcParams import matplotlib.artist as martist import matplotlib.cbook as cbook import matplotlib.font_manager as font_manager import matplotlib.lines as mlines import matplotlib.scale as mscale import matplotlib.text as mtext import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms import matplotlib.units as munits _log = logging.getLogger(__name__) GRIDLINE_INTERPOLATION_STEPS = 180 # This list is being used for compatibility with Axes.grid, which # allows all Line2D kwargs. _line_AI = martist.ArtistInspector(mlines.Line2D) _line_param_names = _line_AI.get_setters() _line_param_aliases = [list(d)[0] for d in _line_AI.aliasd.values()] _gridline_param_names = ['grid_' + name for name in _line_param_names + _line_param_aliases] class Tick(martist.Artist): """ Abstract base class for the axis ticks, grid lines and labels. Ticks mark a position on an Axis. They contain two lines as markers and two labels; one each for the bottom and top positions (in case of an `.XAxis`) or for the left and right positions (in case of a `.YAxis`). Attributes ---------- tick1line : `.Line2D` The left/bottom tick marker. tick2line : `.Line2D` The right/top tick marker. gridline : `.Line2D` The grid line associated with the label position. label1 : `.Text` The left/bottom tick label. label2 : `.Text` The right/top tick label. """ def __init__(self, axes, loc, label, size=None, # points width=None, color=None, tickdir=None, pad=None, labelsize=None, labelcolor=None, zorder=None, gridOn=None, # defaults to axes.grid depending on # axes.grid.which tick1On=True, tick2On=True, label1On=True, label2On=False, major=True, labelrotation=0, grid_color=None, grid_linestyle=None, grid_linewidth=None, grid_alpha=None, **kw # Other Line2D kwargs applied to gridlines. ): """ bbox is the Bound2D bounding box in display coords of the Axes loc is the tick location in data coords size is the tick size in points """ martist.Artist.__init__(self) if gridOn is None: if major and (rcParams['axes.grid.which'] in ('both', 'major')): gridOn = rcParams['axes.grid'] elif (not major) and (rcParams['axes.grid.which'] in ('both', 'minor')): gridOn = rcParams['axes.grid'] else: gridOn = False self.set_figure(axes.figure) self.axes = axes name = self.__name__.lower() self._name = name self._loc = loc if size is None: if major: size = rcParams['%s.major.size' % name] else: size = rcParams['%s.minor.size' % name] self._size = size if width is None: if major: width = rcParams['%s.major.width' % name] else: width = rcParams['%s.minor.width' % name] self._width = width if color is None: color = rcParams['%s.color' % name] self._color = color if pad is None: if major: pad = rcParams['%s.major.pad' % name] else: pad = rcParams['%s.minor.pad' % name] self._base_pad = pad if labelcolor is None: labelcolor = rcParams['%s.color' % name] self._labelcolor = labelcolor if labelsize is None: labelsize = rcParams['%s.labelsize' % name] self._labelsize = labelsize self._set_labelrotation(labelrotation) if zorder is None: if major: zorder = mlines.Line2D.zorder + 0.01 else: zorder = mlines.Line2D.zorder self._zorder = zorder self._grid_color = (rcParams['grid.color'] if grid_color is None else grid_color) self._grid_linestyle = (rcParams['grid.linestyle'] if grid_linestyle is None else grid_linestyle) self._grid_linewidth = (rcParams['grid.linewidth'] if grid_linewidth is None else grid_linewidth) self._grid_alpha = (rcParams['grid.alpha'] if grid_alpha is None else grid_alpha) self._grid_kw = {k[5:]: v for k, v in kw.items()} self.apply_tickdir(tickdir) self.tick1line = self._get_tick1line() self.tick2line = self._get_tick2line() self.gridline = self._get_gridline() self.label1 = self._get_text1() self.label2 = self._get_text2() self.gridline.set_visible(gridOn) self.tick1line.set_visible(tick1On) self.tick2line.set_visible(tick2On) self.label1.set_visible(label1On) self.label2.set_visible(label2On) self.update_position(loc) for _old_name, _new_name in [ ("gridOn", "gridline"), ("tick1On", "tick1line"), ("tick2On", "tick2line"), ("label1On", "label1"), ("label2On", "label2")]: locals()[_old_name] = property( cbook.deprecated( "3.1", name=_old_name, alternative="Tick.{}.get_visible".format(_new_name))( lambda self, _new_name=_new_name: getattr(self, _new_name).get_visible()), cbook.deprecated( "3.1", name=_old_name, alternative="Tick.{}.set_visible".format(_new_name))( lambda self, value, _new_name=_new_name: getattr(self, _new_name).set_visible(value))) del _old_name, _new_name @property @cbook.deprecated("3.1", alternative="Tick.label1", pending=True) def label(self): return self.label1 def _set_labelrotation(self, labelrotation): if isinstance(labelrotation, str): mode = labelrotation angle = 0 elif isinstance(labelrotation, (tuple, list)): mode, angle = labelrotation else: mode = 'default' angle = labelrotation cbook._check_in_list(['auto', 'default'], labelrotation=mode) self._labelrotation = (mode, angle) def apply_tickdir(self, tickdir): """Calculate self._pad and self._tickmarkers.""" def get_tickdir(self): return self._tickdir def get_tick_padding(self): """Get the length of the tick outside of the axes.""" padding = { 'in': 0.0, 'inout': 0.5, 'out': 1.0 } return self._size * padding[self._tickdir] def get_children(self): children = [self.tick1line, self.tick2line, self.gridline, self.label1, self.label2] return children def set_clip_path(self, clippath, transform=None): # docstring inherited martist.Artist.set_clip_path(self, clippath, transform) self.gridline.set_clip_path(clippath, transform) self.stale = True def get_pad_pixels(self): return self.figure.dpi * self._base_pad / 72 def contains(self, mouseevent): """ Test whether the mouse event occurred in the Tick marks. This function always returns false. It is more useful to test if the axis as a whole contains the mouse rather than the set of tick marks. """ if self._contains is not None: return self._contains(self, mouseevent) return False, {} def set_pad(self, val): """ Set the tick label pad in points Parameters ---------- val : float """ self._apply_params(pad=val) self.stale = True def get_pad(self): 'Get the value of the tick label pad in points' return self._base_pad def _get_text1(self): 'Get the default Text 1 instance' pass def _get_text2(self): 'Get the default Text 2 instance' pass def _get_tick1line(self): 'Get the default line2D instance for tick1' pass def _get_tick2line(self): 'Get the default line2D instance for tick2' pass def _get_gridline(self): 'Get the default grid Line2d instance for this tick' pass def get_loc(self): 'Return the tick location (data coords) as a scalar' return self._loc @martist.allow_rasterization def draw(self, renderer): if not self.get_visible(): self.stale = False return renderer.open_group(self.__name__) for artist in [self.gridline, self.tick1line, self.tick2line, self.label1, self.label2]: artist.draw(renderer) renderer.close_group(self.__name__) self.stale = False def set_label1(self, s): """ Set the label1 text. Parameters ---------- s : str """ self.label1.set_text(s) self.stale = True set_label = set_label1 def set_label2(self, s): """ Set the label2 text. Parameters ---------- s : str """ self.label2.set_text(s) self.stale = True def _set_artist_props(self, a): a.set_figure(self.figure) def get_view_interval(self): 'return the view Interval instance for the axis this tick is ticking' raise NotImplementedError('Derived must override') def _apply_params(self, **kw): for name, target in [("gridOn", self.gridline), ("tick1On", self.tick1line), ("tick2On", self.tick2line), ("label1On", self.label1), ("label2On", self.label2)]: if name in kw: target.set_visible(kw.pop(name)) if any(k in kw for k in ['size', 'width', 'pad', 'tickdir']): self._size = kw.pop('size', self._size) # Width could be handled outside this block, but it is # convenient to leave it here. self._width = kw.pop('width', self._width) self._base_pad = kw.pop('pad', self._base_pad) # apply_tickdir uses _size and _base_pad to make _pad, # and also makes _tickmarkers. self.apply_tickdir(kw.pop('tickdir', self._tickdir)) self.tick1line.set_marker(self._tickmarkers[0]) self.tick2line.set_marker(self._tickmarkers[1]) for line in (self.tick1line, self.tick2line): line.set_markersize(self._size) line.set_markeredgewidth(self._width) # _get_text1_transform uses _pad from apply_tickdir. trans = self._get_text1_transform()[0] self.label1.set_transform(trans) trans = self._get_text2_transform()[0] self.label2.set_transform(trans) tick_kw = {k: v for k, v in kw.items() if k in ['color', 'zorder']} self.tick1line.set(**tick_kw) self.tick2line.set(**tick_kw) for k, v in tick_kw.items(): setattr(self, '_' + k, v) if 'labelrotation' in kw: self._set_labelrotation(kw.pop('labelrotation')) self.label1.set(rotation=self._labelrotation[1]) self.label2.set(rotation=self._labelrotation[1]) label_kw = {k[5:]: v for k, v in kw.items() if k in ['labelsize', 'labelcolor']} self.label1.set(**label_kw) self.label2.set(**label_kw) for k, v in label_kw.items(): # for labelsize the text objects covert str ('small') # -> points. grab the integer from the `Text` object # instead of saving the string representation v = getattr(self.label1, 'get_' + k)() setattr(self, '_label' + k, v) grid_kw = {k[5:]: v for k, v in kw.items() if k in _gridline_param_names} self.gridline.set(**grid_kw) for k, v in grid_kw.items(): setattr(self, '_grid_' + k, v) def update_position(self, loc): 'Set the location of tick in data coords with scalar *loc*' raise NotImplementedError('Derived must override') def _get_text1_transform(self): raise NotImplementedError('Derived must override') def _get_text2_transform(self): raise NotImplementedError('Derived must override') class XTick(Tick): """ Contains all the Artists needed to make an x tick - the tick line, the label text and the grid line """ __name__ = 'xtick' def _get_text1_transform(self): return self.axes.get_xaxis_text1_transform(self._pad) def _get_text2_transform(self): return self.axes.get_xaxis_text2_transform(self._pad) def apply_tickdir(self, tickdir): if tickdir is None: tickdir = rcParams['%s.direction' % self._name] self._tickdir = tickdir if self._tickdir == 'in': self._tickmarkers = (mlines.TICKUP, mlines.TICKDOWN) elif self._tickdir == 'inout': self._tickmarkers = ('|', '|') else: self._tickmarkers = (mlines.TICKDOWN, mlines.TICKUP) self._pad = self._base_pad + self.get_tick_padding() self.stale = True def _get_text1(self): 'Get the default Text instance' # the y loc is 3 points below the min of y axis # get the affine as an a,b,c,d,tx,ty list # x in data coords, y in axes coords trans, vert, horiz = self._get_text1_transform() t = mtext.Text( x=0, y=0, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_text2(self): 'Get the default Text 2 instance' # x in data coords, y in axes coords trans, vert, horiz = self._get_text2_transform() t = mtext.Text( x=0, y=1, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_tick1line(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0,), ydata=(0,), color=self._color, linestyle='None', marker=self._tickmarkers[0], markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_xaxis_transform(which='tick1')) self._set_artist_props(l) return l def _get_tick2line(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0,), ydata=(1,), color=self._color, linestyle='None', marker=self._tickmarkers[1], markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_xaxis_transform(which='tick2')) self._set_artist_props(l) return l def _get_gridline(self): 'Get the default line2D instance' # x in data coords, y in axes coords l = mlines.Line2D(xdata=(0.0, 0.0), ydata=(0, 1.0), color=self._grid_color, linestyle=self._grid_linestyle, linewidth=self._grid_linewidth, alpha=self._grid_alpha, markersize=0, **self._grid_kw) l.set_transform(self.axes.get_xaxis_transform(which='grid')) l.get_path()._interpolation_steps = GRIDLINE_INTERPOLATION_STEPS self._set_artist_props(l) return l def update_position(self, loc): """Set the location of tick in data coords with scalar *loc*.""" self.tick1line.set_xdata((loc,)) self.tick2line.set_xdata((loc,)) self.gridline.set_xdata((loc,)) self.label1.set_x(loc) self.label2.set_x(loc) self._loc = loc self.stale = True def get_view_interval(self): # docstring inherited return self.axes.viewLim.intervalx class YTick(Tick): """ Contains all the Artists needed to make a Y tick - the tick line, the label text and the grid line """ __name__ = 'ytick' def _get_text1_transform(self): return self.axes.get_yaxis_text1_transform(self._pad) def _get_text2_transform(self): return self.axes.get_yaxis_text2_transform(self._pad) def apply_tickdir(self, tickdir): if tickdir is None: tickdir = rcParams['%s.direction' % self._name] self._tickdir = tickdir if self._tickdir == 'in': self._tickmarkers = (mlines.TICKRIGHT, mlines.TICKLEFT) elif self._tickdir == 'inout': self._tickmarkers = ('_', '_') else: self._tickmarkers = (mlines.TICKLEFT, mlines.TICKRIGHT) self._pad = self._base_pad + self.get_tick_padding() self.stale = True # how far from the y axis line the right of the ticklabel are def _get_text1(self): 'Get the default Text instance' # x in axes coords, y in data coords trans, vert, horiz = self._get_text1_transform() t = mtext.Text( x=0, y=0, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_text2(self): 'Get the default Text instance' # x in axes coords, y in data coords trans, vert, horiz = self._get_text2_transform() t = mtext.Text( x=1, y=0, fontproperties=font_manager.FontProperties(size=self._labelsize), color=self._labelcolor, verticalalignment=vert, horizontalalignment=horiz, ) t.set_transform(trans) self._set_artist_props(t) return t def _get_tick1line(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D((0,), (0,), color=self._color, marker=self._tickmarkers[0], linestyle='None', markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_yaxis_transform(which='tick1')) self._set_artist_props(l) return l def _get_tick2line(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D((1,), (0,), color=self._color, marker=self._tickmarkers[1], linestyle='None', markersize=self._size, markeredgewidth=self._width, zorder=self._zorder) l.set_transform(self.axes.get_yaxis_transform(which='tick2')) self._set_artist_props(l) return l def _get_gridline(self): 'Get the default line2D instance' # x in axes coords, y in data coords l = mlines.Line2D(xdata=(0, 1), ydata=(0, 0), color=self._grid_color, linestyle=self._grid_linestyle, linewidth=self._grid_linewidth, alpha=self._grid_alpha, markersize=0, **self._grid_kw) l.set_transform(self.axes.get_yaxis_transform(which='grid')) l.get_path()._interpolation_steps = GRIDLINE_INTERPOLATION_STEPS self._set_artist_props(l) return l def update_position(self, loc): """Set the location of tick in data coords with scalar *loc*.""" self.tick1line.set_ydata((loc,)) self.tick2line.set_ydata((loc,)) self.gridline.set_ydata((loc,)) self.label1.set_y(loc) self.label2.set_y(loc) self._loc = loc self.stale = True def get_view_interval(self): """Return the Interval instance for this axis view limits.""" return self.axes.viewLim.intervaly class Ticker(object): """ A container for the objects defining tick position and format. Attributes ---------- locator : `matplotlib.ticker.Locator` subclass Determines the positions of the ticks. formatter : `matplotlib.ticker.Formatter` subclass Determines the format of the tick labels. """ locator = None formatter = None class _LazyTickList(object): """ A descriptor for lazy instantiation of tick lists. See comment above definition of the ``majorTicks`` and ``minorTicks`` attributes. """ def __init__(self, major): self._major = major def __get__(self, instance, cls): if instance is None: return self else: # instance._get_tick() can itself try to access the majorTicks # attribute (e.g. in certain projection classes which override # e.g. get_xaxis_text1_transform). In order to avoid infinite # recursion, first set the majorTicks on the instance to an empty # list, then create the tick and append it. if self._major: instance.majorTicks = [] tick = instance._get_tick(major=True) instance.majorTicks.append(tick) return instance.majorTicks else: instance.minorTicks = [] tick = instance._get_tick(major=False) instance.minorTicks.append(tick) return instance.minorTicks class Axis(martist.Artist): """ Base class for `.XAxis` and `.YAxis`. Attributes ---------- isDefault_label : bool axes : `matplotlib.axes.Axes` The `~.axes.Axes` to which the Axis belongs. major : `matplotlib.axis.Ticker` Determines the major tick positions and their label format. minor : `matplotlib.axis.Ticker` Determines the minor tick positions and their label format. callbacks : `matplotlib.cbook.CallbackRegistry` label : `.Text` The axis label. labelpad : float The distance between the axis label and the tick labels. Defaults to :rc:`axes.labelpad` = 4. offsetText : `.Text` A `.Text` object containing the data offset of the ticks (if any). pickradius : float The acceptance radius for containment tests. See also `.Axis.contains`. majorTicks : list of `.Tick` The major ticks. minorTicks : list of `.Tick` The minor ticks. """ OFFSETTEXTPAD = 3 def __str__(self): return self.__class__.__name__ \ + "(%f,%f)" % tuple(self.axes.transAxes.transform_point((0, 0))) def __init__(self, axes, pickradius=15): """ Parameters ---------- axes : `matplotlib.axes.Axes` The `~.axes.Axes` to which the created Axis belongs. pickradius : float The acceptance radius for containment tests. See also `.Axis.contains`. """ martist.Artist.__init__(self) self._remove_overlapping_locs = True self.set_figure(axes.figure) self.isDefault_label = True self.axes = axes self.major = Ticker() self.minor = Ticker() self.callbacks = cbook.CallbackRegistry() self._autolabelpos = True self._smart_bounds = False self.label = self._get_label() self.labelpad = rcParams['axes.labelpad'] self.offsetText = self._get_offset_text() self.pickradius = pickradius # Initialize here for testing; later add API self._major_tick_kw = dict() self._minor_tick_kw = dict() self.cla() self._set_scale('linear') # During initialization, Axis objects often create ticks that are later # unused; this turns out to be a very slow step. Instead, use a custom # descriptor to make the tick lists lazy and instantiate them as needed. majorTicks = _LazyTickList(major=True) minorTicks = _LazyTickList(major=False) def get_remove_overlapping_locs(self): return self._remove_overlapping_locs def set_remove_overlapping_locs(self, val): self._remove_overlapping_locs = bool(val) remove_overlapping_locs = property( get_remove_overlapping_locs, set_remove_overlapping_locs, doc=('If minor ticker locations that overlap with major ' 'ticker locations should be trimmed.')) def set_label_coords(self, x, y, transform=None): """ Set the coordinates of the label. By default, the x coordinate of the y label is determined by the tick label bounding boxes, but this can lead to poor alignment of multiple ylabels if there are multiple axes. Ditto for the y coordinate of the x label. You can also specify the coordinate system of the label with the transform. If None, the default coordinate system will be the axes coordinate system (0,0) is (left,bottom), (0.5, 0.5) is middle, etc """ self._autolabelpos = False if transform is None: transform = self.axes.transAxes self.label.set_transform(transform) self.label.set_position((x, y)) self.stale = True def get_transform(self): return self._scale.get_transform() def get_scale(self): return self._scale.name def _set_scale(self, value, **kwargs): self._scale = mscale.scale_factory(value, self, **kwargs) self._scale.set_default_locators_and_formatters(self) self.isDefault_majloc = True self.isDefault_minloc = True self.isDefault_majfmt = True self.isDefault_minfmt = True def limit_range_for_scale(self, vmin, vmax): return self._scale.limit_range_for_scale(vmin, vmax, self.get_minpos()) def get_children(self): children = [self.label, self.offsetText] majorticks = self.get_major_ticks() minorticks = self.get_minor_ticks() children.extend(majorticks) children.extend(minorticks) return children def cla(self): 'clear the current axis' self.label.set_text('') # self.set_label_text would change isDefault_ self._set_scale('linear') # Clear the callback registry for this axis, or it may "leak" self.callbacks = cbook.CallbackRegistry() # whether the grids are on self._gridOnMajor = (rcParams['axes.grid'] and rcParams['axes.grid.which'] in ('both', 'major')) self._gridOnMinor = (rcParams['axes.grid'] and rcParams['axes.grid.which'] in ('both', 'minor')) self.reset_ticks() self.converter = None self.units = None self.set_units(None) self.stale = True def reset_ticks(self): """ Re-initialize the major and minor Tick lists. Each list starts with a single fresh Tick. """ # Restore the lazy tick lists. try: del self.majorTicks except AttributeError: pass try: del self.minorTicks except AttributeError: pass try: self.set_clip_path(self.axes.patch) except AttributeError: pass def set_tick_params(self, which='major', reset=False, **kw): """ Set appearance parameters for ticks, ticklabels, and gridlines. For documentation of keyword arguments, see :meth:`matplotlib.axes.Axes.tick_params`. """ dicts = [] if which == 'major' or which == 'both': dicts.append(self._major_tick_kw) if which == 'minor' or which == 'both': dicts.append(self._minor_tick_kw) kwtrans = self._translate_tick_kw(kw) # this stashes the parameter changes so any new ticks will # automatically get them for d in dicts: if reset: d.clear() d.update(kwtrans) if reset: self.reset_ticks() else: # apply the new kwargs to the existing ticks if which == 'major' or which == 'both': for tick in self.majorTicks: tick._apply_params(**kwtrans) if which == 'minor' or which == 'both': for tick in self.minorTicks: tick._apply_params(**kwtrans) # special-case label color to also apply to the offset # text if 'labelcolor' in kwtrans: self.offsetText.set_color(kwtrans['labelcolor']) self.stale = True @staticmethod def _translate_tick_kw(kw): # The following lists may be moved to a more accessible location. kwkeys = ['size', 'width', 'color', 'tickdir', 'pad', 'labelsize', 'labelcolor', 'zorder', 'gridOn', 'tick1On', 'tick2On', 'label1On', 'label2On', 'length', 'direction', 'left', 'bottom', 'right', 'top', 'labelleft', 'labelbottom', 'labelright', 'labeltop', 'labelrotation'] + _gridline_param_names kwtrans = {} if 'length' in kw: kwtrans['size'] = kw.pop('length') if 'direction' in kw: kwtrans['tickdir'] = kw.pop('direction') if 'rotation' in kw: kwtrans['labelrotation'] = kw.pop('rotation') if 'left' in kw: kwtrans['tick1On'] = kw.pop('left') if 'bottom' in kw: kwtrans['tick1On'] = kw.pop('bottom') if 'right' in kw: kwtrans['tick2On'] = kw.pop('right') if 'top' in kw: kwtrans['tick2On'] = kw.pop('top') if 'labelleft' in kw: kwtrans['label1On'] = kw.pop('labelleft') if 'labelbottom' in kw: kwtrans['label1On'] = kw.pop('labelbottom') if 'labelright' in kw: kwtrans['label2On'] = kw.pop('labelright') if 'labeltop' in kw: kwtrans['label2On'] = kw.pop('labeltop') if 'colors' in kw: c = kw.pop('colors') kwtrans['color'] = c kwtrans['labelcolor'] = c # Maybe move the checking up to the caller of this method. for key in kw: if key not in kwkeys: raise ValueError( "keyword %s is not recognized; valid keywords are %s" % (key, kwkeys)) kwtrans.update(kw) return kwtrans def set_clip_path(self, clippath, transform=None): martist.Artist.set_clip_path(self, clippath, transform) for child in self.majorTicks + self.minorTicks: child.set_clip_path(clippath, transform) self.stale = True def get_view_interval(self): """Return the Interval instance for this axis view limits.""" raise NotImplementedError('Derived must override') def set_view_interval(self, vmin, vmax, ignore=False): """ Set the axis view limits. This method is for internal use; Matplotlib users should typically use e.g. `~Axes.set_xlim` and `~Axes.set_ylim`. If *ignore* is False (the default), this method will never reduce the preexisting view limits, only expand them if *vmin* or *vmax* are not within them. Moreover, the order of *vmin* and *vmax* does not matter; the orientation of the axis will not change. If *ignore* is True, the view limits will be set exactly to ``(vmin, vmax)`` in that order. """ raise NotImplementedError('Derived must override') def get_data_interval(self): """Return the Interval instance for this axis data limits.""" raise NotImplementedError('Derived must override') def set_data_interval(self, vmin, vmax, ignore=False): """ Set the axis data limits. This method is for internal use. If *ignore* is False (the default), this method will never reduce the preexisting data limits, only expand them if *vmin* or *vmax* are not within them. Moreover, the order of *vmin* and *vmax* does not matter; the orientation of the axis will not change. If *ignore* is True, the data limits will be set exactly to ``(vmin, vmax)`` in that order. """ raise NotImplementedError('Derived must override') def get_inverted(self): """ Return whether the axis is oriented in the "inverse" direction. The "normal" direction is increasing to the right for the x-axis and to the top for the y-axis; the "inverse" direction is increasing to the left for the x-axis and to the bottom for the y-axis. """ low, high = self.get_view_interval() return high < low def set_inverted(self, inverted): """ Set whether the axis is oriented in the "inverse" direction. The "normal" direction is increasing to the right for the x-axis and to the top for the y-axis; the "inverse" direction is increasing to the left for the x-axis and to the bottom for the y-axis. """ a, b = self.get_view_interval() if inverted: self.set_view_interval(max(a, b), min(a, b), ignore=True) else: self.set_view_interval(min(a, b), max(a, b), ignore=True) def set_default_intervals(self): """ Set the default limits for the axis data and view interval if they have not been not mutated yet. """ # this is mainly in support of custom object plotting. For # example, if someone passes in a datetime object, we do not # know automagically how to set the default min/max of the # data and view limits. The unit conversion AxisInfo # interface provides a hook for custom types to register # default limits through the AxisInfo.default_limits # attribute, and the derived code below will check for that # and use it if is available (else just use 0..1) def _set_artist_props(self, a): if a is None: return a.set_figure(self.figure) @cbook.deprecated("3.1") def iter_ticks(self): """ Yield ``(Tick, location, label)`` tuples for major and minor ticks. """ major_locs = self.get_majorticklocs() major_labels = self.major.formatter.format_ticks(major_locs) major_ticks = self.get_major_ticks(len(major_locs)) yield from zip(major_ticks, major_locs, major_labels) minor_locs = self.get_minorticklocs() minor_labels = self.minor.formatter.format_ticks(minor_locs) minor_ticks = self.get_minor_ticks(len(minor_locs)) yield from zip(minor_ticks, minor_locs, minor_labels) def get_ticklabel_extents(self, renderer): """ Get the extents of the tick labels on either side of the axes. """ ticks_to_draw = self._update_ticks() ticklabelBoxes, ticklabelBoxes2 = self._get_tick_bboxes(ticks_to_draw, renderer) if len(ticklabelBoxes): bbox = mtransforms.Bbox.union(ticklabelBoxes) else: bbox = mtransforms.Bbox.from_extents(0, 0, 0, 0) if len(ticklabelBoxes2): bbox2 = mtransforms.Bbox.union(ticklabelBoxes2) else: bbox2 = mtransforms.Bbox.from_extents(0, 0, 0, 0) return bbox, bbox2 def set_smart_bounds(self, value): """set the axis to have smart bounds""" self._smart_bounds = value self.stale = True def get_smart_bounds(self): """get whether the axis has smart bounds""" return self._smart_bounds def _update_ticks(self): """ Update ticks (position and labels) using the current data interval of the axes. Return the list of ticks that will be drawn. """ major_locs = self.get_majorticklocs() major_labels = self.major.formatter.format_ticks(major_locs) major_ticks = self.get_major_ticks(len(major_locs)) self.major.formatter.set_locs(major_locs) for tick, loc, label in zip(major_ticks, major_locs, major_labels): tick.update_position(loc) tick.set_label1(label) tick.set_label2(label) minor_locs = self.get_minorticklocs() minor_labels = self.minor.formatter.format_ticks(minor_locs) minor_ticks = self.get_minor_ticks(len(minor_locs)) self.minor.formatter.set_locs(minor_locs) for tick, loc, label in zip(minor_ticks, minor_locs, minor_labels): tick.update_position(loc) tick.set_label1(label) tick.set_label2(label) ticks = [*major_ticks, *minor_ticks] # mark the ticks that we will not be using as not visible for t in (self.minorTicks[len(minor_locs):] + self.majorTicks[len(major_locs):]): t.set_visible(False) view_low, view_high = self.get_view_interval() if view_low > view_high: view_low, view_high = view_high, view_low if self._smart_bounds and ticks: # handle inverted limits data_low, data_high = sorted(self.get_data_interval()) locs = np.sort([tick.get_loc() for tick in ticks]) if data_low <= view_low: # data extends beyond view, take view as limit ilow = view_low else: # data stops within view, take best tick good_locs = locs[locs <= data_low] if len(good_locs): # last tick prior or equal to first data point ilow = good_locs[-1] else: # No ticks (why not?), take first tick ilow = locs[0] if data_high >= view_high: # data extends beyond view, take view as limit ihigh = view_high else: # data stops within view, take best tick good_locs = locs[locs >= data_high] if len(good_locs): # first tick after or equal to last data point ihigh = good_locs[0] else: # No ticks (why not?), take last tick ihigh = locs[-1] ticks = [tick for tick in ticks if ilow <= tick.get_loc() <= ihigh] interval_t = self.get_transform().transform([view_low, view_high]) ticks_to_draw = [] for tick in ticks: try: loc_t = self.get_transform().transform(tick.get_loc()) except AssertionError: # transforms.transform doesn't allow masked values but # some scales might make them, so we need this try/except. pass else: if mtransforms._interval_contains_close(interval_t, loc_t): ticks_to_draw.append(tick) return ticks_to_draw def _get_tick_bboxes(self, ticks, renderer): """Return lists of bboxes for ticks' label1's and label2's.""" return ([tick.label1.get_window_extent(renderer) for tick in ticks if tick.label1.get_visible()], [tick.label2.get_window_extent(renderer) for tick in ticks if tick.label2.get_visible()]) def get_tightbbox(self, renderer): """ Return a bounding box that encloses the axis. It only accounts tick labels, axis label, and offsetText. """ if not self.get_visible(): return ticks_to_draw = self._update_ticks() self._update_label_position(renderer) # go back to just this axis's tick labels ticklabelBoxes, ticklabelBoxes2 = self._get_tick_bboxes( ticks_to_draw, renderer) self._update_offset_text_position(ticklabelBoxes, ticklabelBoxes2) self.offsetText.set_text(self.major.formatter.get_offset()) bboxes = [ *(a.get_window_extent(renderer) for a in [self.label, self.offsetText] if a.get_visible()), *ticklabelBoxes, *ticklabelBoxes2, ] bboxes = [b for b in bboxes if 0 < b.width < np.inf and 0 < b.height < np.inf] if bboxes: return mtransforms.Bbox.union(bboxes) else: return None def get_tick_padding(self): values = [] if len(self.majorTicks): values.append(self.majorTicks[0].get_tick_padding()) if len(self.minorTicks): values.append(self.minorTicks[0].get_tick_padding()) return max(values, default=0) @martist.allow_rasterization def draw(self, renderer, *args, **kwargs): 'Draw the axis lines, grid lines, tick lines and labels' if not self.get_visible(): return renderer.open_group(__name__) ticks_to_draw = self._update_ticks() ticklabelBoxes, ticklabelBoxes2 = self._get_tick_bboxes(ticks_to_draw, renderer) for tick in ticks_to_draw: tick.draw(renderer) # scale up the axis label box to also find the neighbors, not # just the tick labels that actually overlap note we need a # *copy* of the axis label box because we don't wan't to scale # the actual bbox self._update_label_position(renderer) self.label.draw(renderer) self._update_offset_text_position(ticklabelBoxes, ticklabelBoxes2) self.offsetText.set_text(self.major.formatter.get_offset()) self.offsetText.draw(renderer) renderer.close_group(__name__) self.stale = False def _get_label(self): raise NotImplementedError('Derived must override') def _get_offset_text(self): raise NotImplementedError('Derived must override') def get_gridlines(self): 'Return the grid lines as a list of Line2D instance' ticks = self.get_major_ticks() return cbook.silent_list('Line2D gridline', [tick.gridline for tick in ticks]) def get_label(self): 'Return the axis label as a Text instance' return self.label def get_offset_text(self): 'Return the axis offsetText as a Text instance' return self.offsetText def get_pickradius(self): 'Return the depth of the axis used by the picker' return self.pickradius def get_majorticklabels(self): 'Return a list of Text instances for the major ticklabels.' ticks = self.get_major_ticks() labels1 = [tick.label1 for tick in ticks if tick.label1.get_visible()] labels2 = [tick.label2 for tick in ticks if tick.label2.get_visible()] return cbook.silent_list('Text major ticklabel', labels1 + labels2) def get_minorticklabels(self): 'Return a list of Text instances for the minor ticklabels.' ticks = self.get_minor_ticks() labels1 = [tick.label1 for tick in ticks if tick.label1.get_visible()] labels2 = [tick.label2 for tick in ticks if tick.label2.get_visible()] return cbook.silent_list('Text minor ticklabel', labels1 + labels2) def get_ticklabels(self, minor=False, which=None): """ Get the tick labels as a list of `~matplotlib.text.Text` instances. Parameters ---------- minor : bool If True return the minor ticklabels, else return the major ticklabels which : None, ('minor', 'major', 'both') Overrides `minor`. Selects which ticklabels to return Returns ------- ret : list List of `~matplotlib.text.Text` instances. """ if which is not None: if which == 'minor': return self.get_minorticklabels() elif which == 'major': return self.get_majorticklabels() elif which == 'both': return self.get_majorticklabels() + self.get_minorticklabels() else: cbook._check_in_list(['major', 'minor', 'both'], which=which) if minor: return self.get_minorticklabels() return self.get_majorticklabels() def get_majorticklines(self): 'Return the major tick lines as a list of Line2D instances' lines = [] ticks = self.get_major_ticks() for tick in ticks: lines.append(tick.tick1line) lines.append(tick.tick2line) return cbook.silent_list('Line2D ticklines', lines) def get_minorticklines(self): 'Return the minor tick lines as a list of Line2D instances' lines = [] ticks = self.get_minor_ticks() for tick in ticks: lines.append(tick.tick1line) lines.append(tick.tick2line) return cbook.silent_list('Line2D ticklines', lines) def get_ticklines(self, minor=False): 'Return the tick lines as a list of Line2D instances' if minor: return self.get_minorticklines() return self.get_majorticklines() def get_majorticklocs(self): """Get the array of major tick locations in data coordinates.""" return self.major.locator() def get_minorticklocs(self): """Get the array of minor tick locations in data coordinates.""" # Remove minor ticks duplicating major ticks. major_locs = self.major.locator() minor_locs = self.minor.locator() transform = self._scale.get_transform() tr_minor_locs = transform.transform(minor_locs) tr_major_locs = transform.transform(major_locs) lo, hi = sorted(transform.transform(self.get_view_interval())) # Use the transformed view limits as scale. 1e-5 is the default rtol # for np.isclose. tol = (hi - lo) * 1e-5 if self.remove_overlapping_locs: minor_locs = [ loc for loc, tr_loc in zip(minor_locs, tr_minor_locs) if ~np.isclose(tr_loc, tr_major_locs, atol=tol, rtol=0).any()] return minor_locs def get_ticklocs(self, minor=False): """Get the array of tick locations in data coordinates.""" return self.get_minorticklocs() if minor else self.get_majorticklocs() def get_ticks_direction(self, minor=False): """ Get the tick directions as a numpy array Parameters ---------- minor : boolean True to return the minor tick directions, False to return the major tick directions, Default is False Returns ------- numpy array of tick directions """ if minor: return np.array( [tick._tickdir for tick in self.get_minor_ticks()]) else: return np.array( [tick._tickdir for tick in self.get_major_ticks()]) def _get_tick(self, major): 'return the default tick instance' raise NotImplementedError('derived must override') def _copy_tick_props(self, src, dest): 'Copy the props from src tick to dest tick' if src is None or dest is None: return dest.label1.update_from(src.label1) dest.label2.update_from(src.label2) dest.tick1line.update_from(src.tick1line) dest.tick2line.update_from(src.tick2line) dest.gridline.update_from(src.gridline) def get_label_text(self): 'Get the text of the label' return self.label.get_text() def get_major_locator(self): 'Get the locator of the major ticker' return self.major.locator def get_minor_locator(self): 'Get the locator of the minor ticker' return self.minor.locator def get_major_formatter(self): 'Get the formatter of the major ticker' return self.major.formatter def get_minor_formatter(self): 'Get the formatter of the minor ticker' return self.minor.formatter def get_major_ticks(self, numticks=None): 'Get the tick instances; grow as necessary.' if numticks is None: numticks = len(self.get_majorticklocs()) while len(self.majorTicks) < numticks: # Update the new tick label properties from the old. tick = self._get_tick(major=True) self.majorTicks.append(tick) tick.gridline.set_visible(self._gridOnMajor) self._copy_tick_props(self.majorTicks[0], tick) return self.majorTicks[:numticks] def get_minor_ticks(self, numticks=None): 'Get the minor tick instances; grow as necessary.' if numticks is None: numticks = len(self.get_minorticklocs()) while len(self.minorTicks) < numticks: # Update the new tick label properties from the old. tick = self._get_tick(major=False) self.minorTicks.append(tick) tick.gridline.set_visible(self._gridOnMinor) self._copy_tick_props(self.minorTicks[0], tick) return self.minorTicks[:numticks] def grid(self, b=None, which='major', **kwargs): """ Configure the grid lines. Parameters ---------- b : bool or None Whether to show the grid lines. If any *kwargs* are supplied, it is assumed you want the grid on and *b* will be set to True. If *b* is *None* and there are no *kwargs*, this toggles the visibility of the lines. which : {'major', 'minor', 'both'} The grid lines to apply the changes on. **kwargs : `.Line2D` properties Define the line properties of the grid, e.g.:: grid(color='r', linestyle='-', linewidth=2) """ if len(kwargs): if not b and b is not None: # something false-like but not None cbook._warn_external('First parameter to grid() is false, ' 'but line properties are supplied. The ' 'grid will be enabled.') b = True which = which.lower() cbook._check_in_list(['major', 'minor', 'both'], which=which) gridkw = {'grid_' + item[0]: item[1] for item in kwargs.items()} if which in ['minor', 'both']: if b is None: self._gridOnMinor = not self._gridOnMinor else: self._gridOnMinor = b self.set_tick_params(which='minor', gridOn=self._gridOnMinor, **gridkw) if which in ['major', 'both']: if b is None: self._gridOnMajor = not self._gridOnMajor else: self._gridOnMajor = b self.set_tick_params(which='major', gridOn=self._gridOnMajor, **gridkw) self.stale = True def update_units(self, data): """ introspect *data* for units converter and update the axis.converter instance if necessary. Return *True* if *data* is registered for unit conversion. """ converter = munits.registry.get_converter(data) if converter is None: return False neednew = self.converter != converter self.converter = converter default = self.converter.default_units(data, self) if default is not None and self.units is None: self.set_units(default) if neednew: self._update_axisinfo() self.stale = True return True def _update_axisinfo(self): """ check the axis converter for the stored units to see if the axis info needs to be updated """ if self.converter is None: return info = self.converter.axisinfo(self.units, self) if info is None: return if info.majloc is not None and \ self.major.locator != info.majloc and self.isDefault_majloc: self.set_major_locator(info.majloc) self.isDefault_majloc = True if info.minloc is not None and \ self.minor.locator != info.minloc and self.isDefault_minloc: self.set_minor_locator(info.minloc) self.isDefault_minloc = True if info.majfmt is not None and \ self.major.formatter != info.majfmt and self.isDefault_majfmt: self.set_major_formatter(info.majfmt) self.isDefault_majfmt = True if info.minfmt is not None and \ self.minor.formatter != info.minfmt and self.isDefault_minfmt: self.set_minor_formatter(info.minfmt) self.isDefault_minfmt = True if info.label is not None and self.isDefault_label: self.set_label_text(info.label) self.isDefault_label = True self.set_default_intervals() def have_units(self): return self.converter is not None or self.units is not None def convert_units(self, x): # If x is already a number, doesn't need converting if munits.ConversionInterface.is_numlike(x): return x if self.converter is None: self.converter = munits.registry.get_converter(x) if self.converter is None: return x try: ret = self.converter.convert(x, self.units, self) except Exception as e: raise munits.ConversionError('Failed to convert value(s) to axis ' f'units: {x!r}') from e return ret def set_units(self, u): """ Set the units for axis. Parameters ---------- u : units tag """ pchanged = False if u is None: self.units = None pchanged = True else: if u != self.units: self.units = u pchanged = True if pchanged: self._update_axisinfo() self.callbacks.process('units') self.callbacks.process('units finalize') self.stale = True def get_units(self): """Return the units for axis.""" return self.units def set_label_text(self, label, fontdict=None, **kwargs): """ Set the text value of the axis label. Parameters ---------- label : str Text string. fontdict : dict Text properties. **kwargs Merged into fontdict. """ self.isDefault_label = False self.label.set_text(label) if fontdict is not None: self.label.update(fontdict) self.label.update(kwargs) self.stale = True return self.label def set_major_formatter(self, formatter): """ Set the formatter of the major ticker. Parameters ---------- formatter : ~matplotlib.ticker.Formatter """ if not isinstance(formatter, mticker.Formatter): raise TypeError("formatter argument should be instance of " "matplotlib.ticker.Formatter") self.isDefault_majfmt = False self.major.formatter = formatter formatter.set_axis(self) self.stale = True def set_minor_formatter(self, formatter): """ Set the formatter of the minor ticker. Parameters ---------- formatter : ~matplotlib.ticker.Formatter """ if not isinstance(formatter, mticker.Formatter): raise TypeError("formatter argument should be instance of " "matplotlib.ticker.Formatter") self.isDefault_minfmt = False self.minor.formatter = formatter formatter.set_axis(self) self.stale = True def set_major_locator(self, locator): """ Set the locator of the major ticker. Parameters ---------- locator : ~matplotlib.ticker.Locator """ if not isinstance(locator, mticker.Locator): raise TypeError("locator argument should be instance of " "matplotlib.ticker.Locator") self.isDefault_majloc = False self.major.locator = locator if self.major.formatter: self.major.formatter._set_locator(locator) locator.set_axis(self) self.stale = True def set_minor_locator(self, locator): """ Set the locator of the minor ticker. Parameters ---------- locator : ~matplotlib.ticker.Locator """ if not isinstance(locator, mticker.Locator): raise TypeError("locator argument should be instance of " "matplotlib.ticker.Locator") self.isDefault_minloc = False self.minor.locator = locator if self.minor.formatter: self.minor.formatter._set_locator(locator) locator.set_axis(self) self.stale = True def set_pickradius(self, pickradius): """ Set the depth of the axis used by the picker. Parameters ---------- pickradius : float """ self.pickradius = pickradius def set_ticklabels(self, ticklabels, *args, minor=False, **kwargs): r""" Set the text values of the tick labels. Parameters ---------- ticklabels : sequence of str or of `Text`\s List of texts for tick labels; must include values for non-visible labels. minor : bool If True, set minor ticks instead of major ticks. **kwargs Text properties. Returns ------- labels : list of `Text`\s For each tick, includes ``tick.label1`` if it is visible, then ``tick.label2`` if it is visible, in that order. """ if args: cbook.warn_deprecated( "3.1", message="Additional positional arguments to " "set_ticklabels are ignored, and deprecated since Matplotlib " "3.1; passing them will raise a TypeError in Matplotlib 3.3.") get_labels = [] for t in ticklabels: # try calling get_text() to check whether it is Text object # if it is Text, get label content try: get_labels.append(t.get_text()) # otherwise add the label to the list directly except AttributeError: get_labels.append(t) # replace the ticklabels list with the processed one ticklabels = get_labels if minor: self.set_minor_formatter(mticker.FixedFormatter(ticklabels)) ticks = self.get_minor_ticks() else: self.set_major_formatter(mticker.FixedFormatter(ticklabels)) ticks = self.get_major_ticks() ret = [] for tick_label, tick in zip(ticklabels, ticks): # deal with label1 tick.label1.set_text(tick_label) tick.label1.update(kwargs) # deal with label2 tick.label2.set_text(tick_label) tick.label2.update(kwargs) # only return visible tick labels if tick.label1.get_visible(): ret.append(tick.label1) if tick.label2.get_visible(): ret.append(tick.label2) self.stale = True return ret def set_ticks(self, ticks, minor=False): """ Set the locations of the tick marks from sequence ticks Parameters ---------- ticks : sequence of floats minor : bool """ # XXX if the user changes units, the information will be lost here ticks = self.convert_units(ticks) if len(ticks) > 1: xleft, xright = self.get_view_interval() if xright > xleft: self.set_view_interval(min(ticks), max(ticks)) else: self.set_view_interval(max(ticks), min(ticks)) if minor: self.set_minor_locator(mticker.FixedLocator(ticks)) return self.get_minor_ticks(len(ticks)) else: self.set_major_locator(mticker.FixedLocator(ticks)) return self.get_major_ticks(len(ticks)) def _get_tick_boxes_siblings(self, xdir, renderer): """ Get the bounding boxes for this `.axis` and its siblings as set by `.Figure.align_xlabels` or `.Figure.align_ylablels`. By default it just gets bboxes for self. """ raise NotImplementedError('Derived must override') def _update_label_position(self, renderer): """ Update the label position based on the bounding box enclosing all the ticklabels and axis spine """ raise NotImplementedError('Derived must override') def _update_offset_text_position(self, bboxes, bboxes2): """ Update the label position based on the sequence of bounding boxes of all the ticklabels """ raise NotImplementedError('Derived must override') def pan(self, numsteps): 'Pan *numsteps* (can be positive or negative)' self.major.locator.pan(numsteps) def zoom(self, direction): "Zoom in/out on axis; if *direction* is >0 zoom in, else zoom out" self.major.locator.zoom(direction) def axis_date(self, tz=None): """ Sets up x-axis ticks and labels that treat the x data as dates. Parameters ---------- tz : tzinfo or str or None The timezone used to create date labels. """ # By providing a sample datetime instance with the desired timezone, # the registered converter can be selected, and the "units" attribute, # which is the timezone, can be set. if isinstance(tz, str): import dateutil.tz tz = dateutil.tz.gettz(tz) self.update_units(datetime.datetime(2009, 1, 1, 0, 0, 0, 0, tz)) def get_tick_space(self): """ Return the estimated number of ticks that can fit on the axis. """ # Must be overridden in the subclass raise NotImplementedError() def _get_ticks_position(self): """ Helper for `XAxis.get_ticks_position` and `YAxis.get_ticks_position`. Check the visibility of tick1line, label1, tick2line, and label2 on the first major and the first minor ticks, and return - 1 if only tick1line and label1 are visible (which corresponds to "bottom" for the x-axis and "left" for the y-axis); - 2 if only tick2line and label2 are visible (which corresponds to "top" for the x-axis and "right" for the y-axis); - "default" if only tick1line, tick2line and label1 are visible; - "unknown" otherwise. """ major = self.majorTicks[0] minor = self.minorTicks[0] if all(tick.tick1line.get_visible() and not tick.tick2line.get_visible() and tick.label1.get_visible() and not tick.label2.get_visible() for tick in [major, minor]): return 1 elif all(tick.tick2line.get_visible() and not tick.tick1line.get_visible() and tick.label2.get_visible() and not tick.label1.get_visible() for tick in [major, minor]): return 2 elif all(tick.tick1line.get_visible() and tick.tick2line.get_visible() and tick.label1.get_visible() and not tick.label2.get_visible() for tick in [major, minor]): return "default" else: return "unknown" def get_label_position(self): """ Return the label position (top or bottom) """ return self.label_position def set_label_position(self, position): """ Set the label position (top or bottom) Parameters ---------- position : {'top', 'bottom'} """ raise NotImplementedError() def get_minpos(self): raise NotImplementedError() class XAxis(Axis): __name__ = 'xaxis' axis_name = 'x' def contains(self, mouseevent): """Test whether the mouse event occurred in the x axis. """ if self._contains is not None: return self._contains(self, mouseevent) x, y = mouseevent.x, mouseevent.y try: trans = self.axes.transAxes.inverted() xaxes, yaxes = trans.transform_point((x, y)) except ValueError: return False, {} l, b = self.axes.transAxes.transform_point((0, 0)) r, t = self.axes.transAxes.transform_point((1, 1)) inaxis = 0 <= xaxes <= 1 and ( b - self.pickradius < y < b or t < y < t + self.pickradius) return inaxis, {} def _get_tick(self, major): if major: tick_kw = self._major_tick_kw else: tick_kw = self._minor_tick_kw return XTick(self.axes, 0, '', major=major, **tick_kw) def _get_label(self): # x in axes coords, y in display coords (to be updated at draw # time by _update_label_positions) label = mtext.Text(x=0.5, y=0, fontproperties=font_manager.FontProperties( size=rcParams['axes.labelsize'], weight=rcParams['axes.labelweight']), color=rcParams['axes.labelcolor'], verticalalignment='top', horizontalalignment='center') label.set_transform(mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform())) self._set_artist_props(label) self.label_position = 'bottom' return label def _get_offset_text(self): # x in axes coords, y in display coords (to be updated at draw time) offsetText = mtext.Text(x=1, y=0, fontproperties=font_manager.FontProperties( size=rcParams['xtick.labelsize']), color=rcParams['xtick.color'], verticalalignment='top', horizontalalignment='right') offsetText.set_transform(mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform()) ) self._set_artist_props(offsetText) self.offset_text_position = 'bottom' return offsetText def set_label_position(self, position): """ Set the label position (top or bottom) Parameters ---------- position : {'top', 'bottom'} """ if position == 'top': self.label.set_verticalalignment('baseline') elif position == 'bottom': self.label.set_verticalalignment('top') else: raise ValueError("Position accepts only 'top' or 'bottom'") self.label_position = position self.stale = True def _get_tick_boxes_siblings(self, renderer): """ Get the bounding boxes for this `.axis` and its siblings as set by `.Figure.align_xlabels` or `.Figure.align_ylablels`. By default it just gets bboxes for self. """ bboxes = [] bboxes2 = [] # get the Grouper that keeps track of x-label groups for this figure grp = self.figure._align_xlabel_grp # if we want to align labels from other axes: for nn, axx in enumerate(grp.get_siblings(self.axes)): ticks_to_draw = axx.xaxis._update_ticks() tlb, tlb2 = axx.xaxis._get_tick_bboxes(ticks_to_draw, renderer) bboxes.extend(tlb) bboxes2.extend(tlb2) return bboxes, bboxes2 def _update_label_position(self, renderer): """ Update the label position based on the bounding box enclosing all the ticklabels and axis spine """ if not self._autolabelpos: return # get bounding boxes for this axis and any siblings # that have been set by `fig.align_xlabels()` bboxes, bboxes2 = self._get_tick_boxes_siblings(renderer=renderer) x, y = self.label.get_position() if self.label_position == 'bottom': try: spine = self.axes.spines['bottom'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes + [spinebbox]) bottom = bbox.y0 self.label.set_position( (x, bottom - self.labelpad * self.figure.dpi / 72) ) else: try: spine = self.axes.spines['top'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes2 + [spinebbox]) top = bbox.y1 self.label.set_position( (x, top + self.labelpad * self.figure.dpi / 72) ) def _update_offset_text_position(self, bboxes, bboxes2): """ Update the offset_text position based on the sequence of bounding boxes of all the ticklabels """ x, y = self.offsetText.get_position() if not len(bboxes): bottom = self.axes.bbox.ymin else: bbox = mtransforms.Bbox.union(bboxes) bottom = bbox.y0 self.offsetText.set_position( (x, bottom - self.OFFSETTEXTPAD * self.figure.dpi / 72) ) def get_text_heights(self, renderer): """ Returns the amount of space one should reserve for text above and below the axes. Returns a tuple (above, below) """ bbox, bbox2 = self.get_ticklabel_extents(renderer) # MGDTODO: Need a better way to get the pad padPixels = self.majorTicks[0].get_pad_pixels() above = 0.0 if bbox2.height: above += bbox2.height + padPixels below = 0.0 if bbox.height: below += bbox.height + padPixels if self.get_label_position() == 'top': above += self.label.get_window_extent(renderer).height + padPixels else: below += self.label.get_window_extent(renderer).height + padPixels return above, below def set_ticks_position(self, position): """ Set the ticks position (top, bottom, both, default or none) both sets the ticks to appear on both positions, but does not change the tick labels. 'default' resets the tick positions to the default: ticks on both positions, labels at bottom. 'none' can be used if you don't want any ticks. 'none' and 'both' affect only the ticks, not the labels. Parameters ---------- position : {'top', 'bottom', 'both', 'default', 'none'} """ if position == 'top': self.set_tick_params(which='both', top=True, labeltop=True, bottom=False, labelbottom=False) elif position == 'bottom': self.set_tick_params(which='both', top=False, labeltop=False, bottom=True, labelbottom=True) elif position == 'both': self.set_tick_params(which='both', top=True, bottom=True) elif position == 'none': self.set_tick_params(which='both', top=False, bottom=False) elif position == 'default': self.set_tick_params(which='both', top=True, labeltop=False, bottom=True, labelbottom=True) else: raise ValueError("invalid position: %s" % position) self.stale = True def tick_top(self): """ Move ticks and ticklabels (if present) to the top of the axes. """ label = True if 'label1On' in self._major_tick_kw: label = (self._major_tick_kw['label1On'] or self._major_tick_kw['label2On']) self.set_ticks_position('top') # If labels were turned off before this was called, leave them off. self.set_tick_params(which='both', labeltop=label) def tick_bottom(self): """ Move ticks and ticklabels (if present) to the bottom of the axes. """ label = True if 'label1On' in self._major_tick_kw: label = (self._major_tick_kw['label1On'] or self._major_tick_kw['label2On']) self.set_ticks_position('bottom') # If labels were turned off before this was called, leave them off. self.set_tick_params(which='both', labelbottom=label) def get_ticks_position(self): """ Return the ticks position ("top", "bottom", "default", or "unknown"). """ return {1: "bottom", 2: "top", "default": "default", "unknown": "unknown"}[ self._get_ticks_position()] def get_view_interval(self): # docstring inherited return self.axes.viewLim.intervalx def set_view_interval(self, vmin, vmax, ignore=False): # docstring inherited if ignore: self.axes.viewLim.intervalx = vmin, vmax else: Vmin, Vmax = self.get_view_interval() if Vmin < Vmax: self.axes.viewLim.intervalx = (min(vmin, vmax, Vmin), max(vmin, vmax, Vmax)) else: self.axes.viewLim.intervalx = (max(vmin, vmax, Vmin), min(vmin, vmax, Vmax)) def get_minpos(self): return self.axes.dataLim.minposx def get_data_interval(self): # docstring inherited return self.axes.dataLim.intervalx def set_data_interval(self, vmin, vmax, ignore=False): # docstring inherited if ignore: self.axes.dataLim.intervalx = vmin, vmax else: Vmin, Vmax = self.get_data_interval() self.axes.dataLim.intervalx = min(vmin, Vmin), max(vmax, Vmax) self.stale = True def set_default_intervals(self): # docstring inherited xmin, xmax = 0., 1. dataMutated = self.axes.dataLim.mutatedx() viewMutated = self.axes.viewLim.mutatedx() if not dataMutated or not viewMutated: if self.converter is not None: info = self.converter.axisinfo(self.units, self) if info.default_limits is not None: valmin, valmax = info.default_limits xmin = self.converter.convert(valmin, self.units, self) xmax = self.converter.convert(valmax, self.units, self) if not dataMutated: self.axes.dataLim.intervalx = xmin, xmax if not viewMutated: self.axes.viewLim.intervalx = xmin, xmax self.stale = True def get_tick_space(self): ends = self.axes.transAxes.transform([[0, 0], [1, 0]]) length = ((ends[1][0] - ends[0][0]) / self.axes.figure.dpi) * 72 tick = self._get_tick(True) # There is a heuristic here that the aspect ratio of tick text # is no more than 3:1 size = tick.label1.get_size() * 3 if size > 0: return int(np.floor(length / size)) else: return 2**31 - 1 class YAxis(Axis): __name__ = 'yaxis' axis_name = 'y' def contains(self, mouseevent): """Test whether the mouse event occurred in the y axis. Returns *True* | *False* """ if self._contains is not None: return self._contains(self, mouseevent) x, y = mouseevent.x, mouseevent.y try: trans = self.axes.transAxes.inverted() xaxes, yaxes = trans.transform_point((x, y)) except ValueError: return False, {} l, b = self.axes.transAxes.transform_point((0, 0)) r, t = self.axes.transAxes.transform_point((1, 1)) inaxis = 0 <= yaxes <= 1 and ( l - self.pickradius < x < l or r < x < r + self.pickradius) return inaxis, {} def _get_tick(self, major): if major: tick_kw = self._major_tick_kw else: tick_kw = self._minor_tick_kw return YTick(self.axes, 0, '', major=major, **tick_kw) def _get_label(self): # x in display coords (updated by _update_label_position) # y in axes coords label = mtext.Text(x=0, y=0.5, # todo: get the label position fontproperties=font_manager.FontProperties( size=rcParams['axes.labelsize'], weight=rcParams['axes.labelweight']), color=rcParams['axes.labelcolor'], verticalalignment='bottom', horizontalalignment='center', rotation='vertical', rotation_mode='anchor') label.set_transform(mtransforms.blended_transform_factory( mtransforms.IdentityTransform(), self.axes.transAxes)) self._set_artist_props(label) self.label_position = 'left' return label def _get_offset_text(self): # x in display coords, y in axes coords (to be updated at draw time) offsetText = mtext.Text(x=0, y=0.5, fontproperties=font_manager.FontProperties( size=rcParams['ytick.labelsize'] ), color=rcParams['ytick.color'], verticalalignment='baseline', horizontalalignment='left') offsetText.set_transform(mtransforms.blended_transform_factory( self.axes.transAxes, mtransforms.IdentityTransform()) ) self._set_artist_props(offsetText) self.offset_text_position = 'left' return offsetText def set_label_position(self, position): """ Set the label position (left or right) Parameters ---------- position : {'left', 'right'} """ self.label.set_rotation_mode('anchor') self.label.set_horizontalalignment('center') if position == 'left': self.label.set_verticalalignment('bottom') elif position == 'right': self.label.set_verticalalignment('top') else: raise ValueError("Position accepts only 'left' or 'right'") self.label_position = position self.stale = True def _get_tick_boxes_siblings(self, renderer): """ Get the bounding boxes for this `.axis` and its siblings as set by `.Figure.align_xlabels` or `.Figure.align_ylablels`. By default it just gets bboxes for self. """ bboxes = [] bboxes2 = [] # get the Grouper that keeps track of y-label groups for this figure grp = self.figure._align_ylabel_grp # if we want to align labels from other axes: for axx in grp.get_siblings(self.axes): ticks_to_draw = axx.yaxis._update_ticks() tlb, tlb2 = axx.yaxis._get_tick_bboxes(ticks_to_draw, renderer) bboxes.extend(tlb) bboxes2.extend(tlb2) return bboxes, bboxes2 def _update_label_position(self, renderer): """ Update the label position based on the bounding box enclosing all the ticklabels and axis spine """ if not self._autolabelpos: return # get bounding boxes for this axis and any siblings # that have been set by `fig.align_ylabels()` bboxes, bboxes2 = self._get_tick_boxes_siblings(renderer=renderer) x, y = self.label.get_position() if self.label_position == 'left': try: spine = self.axes.spines['left'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes + [spinebbox]) left = bbox.x0 self.label.set_position( (left - self.labelpad * self.figure.dpi / 72, y) ) else: try: spine = self.axes.spines['right'] spinebbox = spine.get_transform().transform_path( spine.get_path()).get_extents() except KeyError: # use axes if spine doesn't exist spinebbox = self.axes.bbox bbox = mtransforms.Bbox.union(bboxes2 + [spinebbox]) right = bbox.x1 self.label.set_position( (right + self.labelpad * self.figure.dpi / 72, y) ) def _update_offset_text_position(self, bboxes, bboxes2): """ Update the offset_text position based on the sequence of bounding boxes of all the ticklabels """ x, y = self.offsetText.get_position() top = self.axes.bbox.ymax self.offsetText.set_position( (x, top + self.OFFSETTEXTPAD * self.figure.dpi / 72) ) def set_offset_position(self, position): """ Parameters ---------- position : {'left', 'right'} """ x, y = self.offsetText.get_position() if position == 'left': x = 0 elif position == 'right': x = 1 else: raise ValueError("Position accepts only [ 'left' | 'right' ]") self.offsetText.set_ha(position) self.offsetText.set_position((x, y)) self.stale = True def get_text_widths(self, renderer): bbox, bbox2 = self.get_ticklabel_extents(renderer) # MGDTODO: Need a better way to get the pad padPixels = self.majorTicks[0].get_pad_pixels() left = 0.0 if bbox.width: left += bbox.width + padPixels right = 0.0 if bbox2.width: right += bbox2.width + padPixels if self.get_label_position() == 'left': left += self.label.get_window_extent(renderer).width + padPixels else: right += self.label.get_window_extent(renderer).width + padPixels return left, right def set_ticks_position(self, position): """ Set the ticks position (left, right, both, default or none) 'both' sets the ticks to appear on both positions, but does not change the tick labels. 'default' resets the tick positions to the default: ticks on both positions, labels at left. 'none' can be used if you don't want any ticks. 'none' and 'both' affect only the ticks, not the labels. Parameters ---------- position : {'left', 'right', 'both', 'default', 'none'} """ if position == 'right': self.set_tick_params(which='both', right=True, labelright=True, left=False, labelleft=False) self.set_offset_position(position) elif position == 'left': self.set_tick_params(which='both', right=False, labelright=False, left=True, labelleft=True) self.set_offset_position(position) elif position == 'both': self.set_tick_params(which='both', right=True, left=True) elif position == 'none': self.set_tick_params(which='both', right=False, left=False) elif position == 'default': self.set_tick_params(which='both', right=True, labelright=False, left=True, labelleft=True) else: raise ValueError("invalid position: %s" % position) self.stale = True def tick_right(self): """ Move ticks and ticklabels (if present) to the right of the axes. """ label = True if 'label1On' in self._major_tick_kw: label = (self._major_tick_kw['label1On'] or self._major_tick_kw['label2On']) self.set_ticks_position('right') # if labels were turned off before this was called # leave them off self.set_tick_params(which='both', labelright=label) def tick_left(self): """ Move ticks and ticklabels (if present) to the left of the axes. """ label = True if 'label1On' in self._major_tick_kw: label = (self._major_tick_kw['label1On'] or self._major_tick_kw['label2On']) self.set_ticks_position('left') # if labels were turned off before this was called # leave them off self.set_tick_params(which='both', labelleft=label) def get_ticks_position(self): """ Return the ticks position ("left", "right", "default", or "unknown"). """ return {1: "left", 2: "right", "default": "default", "unknown": "unknown"}[ self._get_ticks_position()] def get_view_interval(self): # docstring inherited return self.axes.viewLim.intervaly def set_view_interval(self, vmin, vmax, ignore=False): # docstring inherited if ignore: self.axes.viewLim.intervaly = vmin, vmax else: Vmin, Vmax = self.get_view_interval() if Vmin < Vmax: self.axes.viewLim.intervaly = (min(vmin, vmax, Vmin), max(vmin, vmax, Vmax)) else: self.axes.viewLim.intervaly = (max(vmin, vmax, Vmin), min(vmin, vmax, Vmax)) self.stale = True def get_minpos(self): return self.axes.dataLim.minposy def get_data_interval(self): # docstring inherited return self.axes.dataLim.intervaly def set_data_interval(self, vmin, vmax, ignore=False): # docstring inherited if ignore: self.axes.dataLim.intervaly = vmin, vmax else: Vmin, Vmax = self.get_data_interval() self.axes.dataLim.intervaly = min(vmin, Vmin), max(vmax, Vmax) self.stale = True def set_default_intervals(self): # docstring inherited ymin, ymax = 0., 1. dataMutated = self.axes.dataLim.mutatedy() viewMutated = self.axes.viewLim.mutatedy() if not dataMutated or not viewMutated: if self.converter is not None: info = self.converter.axisinfo(self.units, self) if info.default_limits is not None: valmin, valmax = info.default_limits ymin = self.converter.convert(valmin, self.units, self) ymax = self.converter.convert(valmax, self.units, self) if not dataMutated: self.axes.dataLim.intervaly = ymin, ymax if not viewMutated: self.axes.viewLim.intervaly = ymin, ymax self.stale = True def get_tick_space(self): ends = self.axes.transAxes.transform([[0, 0], [0, 1]]) length = ((ends[1][1] - ends[0][1]) / self.axes.figure.dpi) * 72 tick = self._get_tick(True) # Having a spacing of at least 2 just looks good. size = tick.label1.get_size() * 2.0 if size > 0: return int(np.floor(length / size)) else: return 2**31 - 1
27f310253efd541211f23e8a4869a48937bafe01f982154bcee11121fb783544
""" This is a procedural interface to the matplotlib object-oriented plotting library. The following plotting commands are provided; the majority have MATLAB |reg| [*]_ analogs and similar arguments. .. |reg| unicode:: 0xAE _Plotting commands acorr - plot the autocorrelation function annotate - annotate something in the figure arrow - add an arrow to the axes axes - Create a new axes axhline - draw a horizontal line across axes axvline - draw a vertical line across axes axhspan - draw a horizontal bar across axes axvspan - draw a vertical bar across axes axis - Set or return the current axis limits autoscale - turn axis autoscaling on or off, and apply it bar - make a bar chart barh - a horizontal bar chart broken_barh - a set of horizontal bars with gaps box - set the axes frame on/off state boxplot - make a box and whisker plot violinplot - make a violin plot cla - clear current axes clabel - label a contour plot clf - clear a figure window clim - adjust the color limits of the current image close - close a figure window colorbar - add a colorbar to the current figure cohere - make a plot of coherence contour - make a contour plot contourf - make a filled contour plot csd - make a plot of cross spectral density delaxes - delete an axes from the current figure draw - Force a redraw of the current figure errorbar - make an errorbar graph figlegend - make legend on the figure rather than the axes figimage - make a figure image figtext - add text in figure coords figure - create or change active figure fill - make filled polygons findobj - recursively find all objects matching some criteria gca - return the current axes gcf - return the current figure gci - get the current image, or None getp - get a graphics property grid - set whether gridding is on hist - make a histogram ioff - turn interaction mode off ion - turn interaction mode on isinteractive - return True if interaction mode is on imread - load image file into array imsave - save array as an image file imshow - plot image data legend - make an axes legend locator_params - adjust parameters used in locating axis ticks loglog - a log log plot matshow - display a matrix in a new figure preserving aspect margins - set margins used in autoscaling pause - pause for a specified interval pcolor - make a pseudocolor plot pcolormesh - make a pseudocolor plot using a quadrilateral mesh pie - make a pie chart plot - make a line plot plot_date - plot dates plotfile - plot column data from an ASCII tab/space/comma delimited file pie - pie charts polar - make a polar plot on a PolarAxes psd - make a plot of power spectral density quiver - make a direction field (arrows) plot rc - control the default params rgrids - customize the radial grids and labels for polar savefig - save the current figure scatter - make a scatter plot setp - set a graphics property semilogx - log x axis semilogy - log y axis show - show the figures specgram - a spectrogram plot spy - plot sparsity pattern using markers or image stem - make a stem plot subplot - make one subplot (numrows, numcols, axesnum) subplots - make a figure with a set of (numrows, numcols) subplots subplots_adjust - change the params controlling the subplot positions of current figure subplot_tool - launch the subplot configuration tool suptitle - add a figure title table - add a table to the plot text - add some text at location x,y to the current axes thetagrids - customize the radial theta grids and labels for polar tick_params - control the appearance of ticks and tick labels ticklabel_format - control the format of tick labels title - add a title to the current axes tricontour - make a contour plot on a triangular grid tricontourf - make a filled contour plot on a triangular grid tripcolor - make a pseudocolor plot on a triangular grid triplot - plot a triangular grid xcorr - plot the autocorrelation function of x and y xlim - set/get the xlimits ylim - set/get the ylimits xticks - set/get the xticks yticks - set/get the yticks xlabel - add an xlabel to the current axes ylabel - add a ylabel to the current axes autumn - set the default colormap to autumn bone - set the default colormap to bone cool - set the default colormap to cool copper - set the default colormap to copper flag - set the default colormap to flag gray - set the default colormap to gray hot - set the default colormap to hot hsv - set the default colormap to hsv jet - set the default colormap to jet pink - set the default colormap to pink prism - set the default colormap to prism spring - set the default colormap to spring summer - set the default colormap to summer winter - set the default colormap to winter _Event handling connect - register an event handler disconnect - remove a connected event handler _Matrix commands cumprod - the cumulative product along a dimension cumsum - the cumulative sum along a dimension detrend - remove the mean or besdt fit line from an array diag - the k-th diagonal of matrix diff - the n-th difference of an array eig - the eigenvalues and eigen vectors of v eye - a matrix where the k-th diagonal is ones, else zero find - return the indices where a condition is nonzero fliplr - flip the rows of a matrix up/down flipud - flip the columns of a matrix left/right linspace - a linear spaced vector of N values from min to max inclusive logspace - a log spaced vector of N values from min to max inclusive meshgrid - repeat x and y to make regular matrices ones - an array of ones rand - an array from the uniform distribution [0,1] randn - an array from the normal distribution rot90 - rotate matrix k*90 degrees counterclockwise squeeze - squeeze an array removing any dimensions of length 1 tri - a triangular matrix tril - a lower triangular matrix triu - an upper triangular matrix vander - the Vandermonde matrix of vector x svd - singular value decomposition zeros - a matrix of zeros _Probability rand - random numbers from the uniform distribution randn - random numbers from the normal distribution _Statistics amax - the maximum along dimension m amin - the minimum along dimension m corrcoef - correlation coefficient cov - covariance matrix mean - the mean along dimension m median - the median along dimension m norm - the norm of vector x prod - the product along dimension m ptp - the max-min along dimension m std - the standard deviation along dimension m asum - the sum along dimension m ksdensity - the kernel density estimate _Time series analysis bartlett - M-point Bartlett window blackman - M-point Blackman window cohere - the coherence using average periodogram csd - the cross spectral density using average periodogram fft - the fast Fourier transform of vector x hamming - M-point Hamming window hanning - M-point Hanning window hist - compute the histogram of x kaiser - M length Kaiser window psd - the power spectral density using average periodogram sinc - the sinc function of array x _Dates date2num - convert python datetimes to numeric representation drange - create an array of numbers for date plots num2date - convert numeric type (float days since 0001) to datetime _Other angle - the angle of a complex array load - Deprecated--please use loadtxt. loadtxt - load ASCII data into array. polyfit - fit x, y to an n-th order polynomial polyval - evaluate an n-th order polynomial roots - the roots of the polynomial coefficients in p save - Deprecated--please use savetxt. savetxt - save an array to an ASCII file. trapz - trapezoidal integration __end .. [*] MATLAB is a registered trademark of The MathWorks, Inc. """ from matplotlib.cbook import flatten, silent_list, iterable, dedent import matplotlib as mpl from matplotlib.dates import ( date2num, num2date, datestr2num, strpdate2num, drange, epoch2num, num2epoch, mx2num, DateFormatter, IndexDateFormatter, DateLocator, RRuleLocator, YearLocator, MonthLocator, WeekdayLocator, DayLocator, HourLocator, MinuteLocator, SecondLocator, rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY, relativedelta) # bring all the symbols in so folks can import them from # pylab in one fell swoop ## We are still importing too many things from mlab; more cleanup is needed. from matplotlib.mlab import ( demean, detrend, detrend_linear, detrend_mean, detrend_none, window_hanning, window_none) from matplotlib import cbook, mlab, pyplot as plt from matplotlib.pyplot import * from numpy import * from numpy.fft import * from numpy.random import * from numpy.linalg import * import numpy as np import numpy.ma as ma # don't let numpy's datetime hide stdlib import datetime # This is needed, or bytes will be numpy.random.bytes from # "from numpy.random import *" above bytes = __import__("builtins").bytes
eb51fc2e00aec5fe0b746d9943b1063249a54c082ca7229eba1a6e0fd24a91ac
import matplotlib.cbook as cbook import matplotlib.artist as martist class Container(tuple): """ Base class for containers. Containers are classes that collect semantically related Artists such as the bars of a bar plot. """ def __repr__(self): return ("<{} object of {} artists>" .format(type(self).__name__, len(self))) def __new__(cls, *args, **kwargs): return tuple.__new__(cls, args[0]) def __init__(self, kl, label=None): self.eventson = False # fire events only if eventson self._oid = 0 # an observer id self._propobservers = {} # a dict from oids to funcs self._remove_method = None self.set_label(label) @cbook.deprecated("3.0") def set_remove_method(self, f): self._remove_method = f def remove(self): for c in cbook.flatten( self, scalarp=lambda x: isinstance(x, martist.Artist)): if c is not None: c.remove() if self._remove_method: self._remove_method(self) def get_label(self): """ Get the label used for this artist in the legend. """ return self._label def set_label(self, s): """ Set the label to *s* for auto legend. Parameters ---------- s : object Any object other than None gets converted to its `str`. """ if s is not None: self._label = str(s) else: self._label = None self.pchanged() def add_callback(self, func): """ Adds a callback function that will be called whenever one of the :class:`Artist`'s properties changes. Returns an *id* that is useful for removing the callback with :meth:`remove_callback` later. """ oid = self._oid self._propobservers[oid] = func self._oid += 1 return oid def remove_callback(self, oid): """ Remove a callback based on its *id*. .. seealso:: :meth:`add_callback` For adding callbacks """ try: del self._propobservers[oid] except KeyError: pass def pchanged(self): """ Fire an event when property changed, calling all of the registered callbacks. """ for oid, func in list(self._propobservers.items()): func(self) def get_children(self): return [child for child in cbook.flatten(self) if child is not None] class BarContainer(Container): """ Container for the artists of bar plots (e.g. created by `.Axes.bar`). The container can be treated as a tuple of the *patches* themselves. Additionally, you can access these and further parameters by the attributes. Attributes ---------- patches : list of :class:`~matplotlib.patches.Rectangle` The artists of the bars. errorbar : None or :class:`~matplotlib.container.ErrorbarContainer` A container for the error bar artists if error bars are present. *None* otherwise. """ def __init__(self, patches, errorbar=None, **kwargs): self.patches = patches self.errorbar = errorbar Container.__init__(self, patches, **kwargs) class ErrorbarContainer(Container): """ Container for the artists of error bars (e.g. created by `.Axes.errorbar`). The container can be treated as the *lines* tuple itself. Additionally, you can access these and further parameters by the attributes. Attributes ---------- lines : tuple Tuple of ``(data_line, caplines, barlinecols)``. - data_line : :class:`~matplotlib.lines.Line2D` instance of x, y plot markers and/or line. - caplines : tuple of :class:`~matplotlib.lines.Line2D` instances of the error bar caps. - barlinecols : list of :class:`~matplotlib.collections.LineCollection` with the horizontal and vertical error ranges. has_xerr, has_yerr : bool ``True`` if the errorbar has x/y errors. """ def __init__(self, lines, has_xerr=False, has_yerr=False, **kwargs): self.lines = lines self.has_xerr = has_xerr self.has_yerr = has_yerr Container.__init__(self, lines, **kwargs) class StemContainer(Container): """ Container for the artists created in a :meth:`.Axes.stem` plot. The container can be treated like a namedtuple ``(markerline, stemlines, baseline)``. Attributes ---------- markerline : :class:`~matplotlib.lines.Line2D` The artist of the markers at the stem heads. stemlines : list of :class:`~matplotlib.lines.Line2D` The artists of the vertical lines for all stems. baseline : :class:`~matplotlib.lines.Line2D` The artist of the horizontal baseline. """ def __init__(self, markerline_stemlines_baseline, **kwargs): """ Parameters ---------- markerline_stemlines_baseline : tuple Tuple of ``(markerline, stemlines, baseline)``. ``markerline`` contains the `LineCollection` of the markers, ``stemlines`` is a `LineCollection` of the main lines, ``baseline`` is the `Line2D` of the baseline. """ markerline, stemlines, baseline = markerline_stemlines_baseline self.markerline = markerline self.stemlines = stemlines self.baseline = baseline Container.__init__(self, markerline_stemlines_baseline, **kwargs)
03a4b5bd061bb58a945637ea9598a09854397efe645f4713c5567f1d5f7d0f3f
# Note: The first part of this file can be modified in place, but the latter # part is autogenerated by the boilerplate.py script. """ `matplotlib.pyplot` is a state-based interface to matplotlib. It provides a MATLAB-like way of plotting. pyplot is mainly intended for interactive plots and simple cases of programmatic plot generation:: import numpy as np import matplotlib.pyplot as plt x = np.arange(0, 5, 0.1) y = np.sin(x) plt.plot(x, y) The object-oriented API is recommended for more complex plots. """ import functools import importlib import inspect import logging from numbers import Number import re import sys import time from cycler import cycler import matplotlib import matplotlib.colorbar import matplotlib.image from matplotlib import rcsetup, style from matplotlib import _pylab_helpers, interactive from matplotlib import cbook from matplotlib.cbook import dedent, deprecated, silent_list, warn_deprecated from matplotlib import docstring from matplotlib.backend_bases import FigureCanvasBase from matplotlib.figure import Figure, figaspect from matplotlib.gridspec import GridSpec from matplotlib import rcParams, rcParamsDefault, get_backend, rcParamsOrig from matplotlib import rc_context from matplotlib.rcsetup import interactive_bk as _interactive_bk from matplotlib.artist import getp, get, Artist from matplotlib.artist import setp as _setp from matplotlib.axes import Axes, Subplot from matplotlib.projections import PolarAxes from matplotlib import mlab # for _csv2rec, detrend_none, window_hanning from matplotlib.scale import get_scale_docs, get_scale_names from matplotlib import cm from matplotlib.cm import get_cmap, register_cmap import numpy as np # We may not need the following imports here: from matplotlib.colors import Normalize from matplotlib.lines import Line2D from matplotlib.text import Text, Annotation from matplotlib.patches import Polygon, Rectangle, Circle, Arrow from matplotlib.widgets import SubplotTool, Button, Slider, Widget from .ticker import TickHelper, Formatter, FixedFormatter, NullFormatter,\ FuncFormatter, FormatStrFormatter, ScalarFormatter,\ LogFormatter, LogFormatterExponent, LogFormatterMathtext,\ Locator, IndexLocator, FixedLocator, NullLocator,\ LinearLocator, LogLocator, AutoLocator, MultipleLocator,\ MaxNLocator from matplotlib.backends import pylab_setup, _get_running_interactive_framework _log = logging.getLogger(__name__) ## Global ## _IP_REGISTERED = None _INSTALL_FIG_OBSERVER = False def install_repl_displayhook(): """ Install a repl display hook so that any stale figure are automatically redrawn when control is returned to the repl. This works both with IPython and with vanilla python shells. """ global _IP_REGISTERED global _INSTALL_FIG_OBSERVER class _NotIPython(Exception): pass # see if we have IPython hooks around, if use them try: if 'IPython' in sys.modules: from IPython import get_ipython ip = get_ipython() if ip is None: raise _NotIPython() if _IP_REGISTERED: return def post_execute(): if matplotlib.is_interactive(): draw_all() # IPython >= 2 try: ip.events.register('post_execute', post_execute) except AttributeError: # IPython 1.x ip.register_post_execute(post_execute) _IP_REGISTERED = post_execute _INSTALL_FIG_OBSERVER = False # trigger IPython's eventloop integration, if available from IPython.core.pylabtools import backend2gui ipython_gui_name = backend2gui.get(get_backend()) if ipython_gui_name: ip.enable_gui(ipython_gui_name) else: _INSTALL_FIG_OBSERVER = True # import failed or ipython is not running except (ImportError, _NotIPython): _INSTALL_FIG_OBSERVER = True def uninstall_repl_displayhook(): """ Uninstall the matplotlib display hook. .. warning Need IPython >= 2 for this to work. For IPython < 2 will raise a ``NotImplementedError`` .. warning If you are using vanilla python and have installed another display hook this will reset ``sys.displayhook`` to what ever function was there when matplotlib installed it's displayhook, possibly discarding your changes. """ global _IP_REGISTERED global _INSTALL_FIG_OBSERVER if _IP_REGISTERED: from IPython import get_ipython ip = get_ipython() try: ip.events.unregister('post_execute', _IP_REGISTERED) except AttributeError: raise NotImplementedError("Can not unregister events " "in IPython < 2.0") _IP_REGISTERED = None if _INSTALL_FIG_OBSERVER: _INSTALL_FIG_OBSERVER = False draw_all = _pylab_helpers.Gcf.draw_all @functools.wraps(matplotlib.set_loglevel) def set_loglevel(*args, **kwargs): # Ensure this appears in the pyplot docs. return matplotlib.set_loglevel(*args, **kwargs) @docstring.copy(Artist.findobj) def findobj(o=None, match=None, include_self=True): if o is None: o = gcf() return o.findobj(match, include_self=include_self) def switch_backend(newbackend): """ Close all open figures and set the Matplotlib backend. The argument is case-insensitive. Switching to an interactive backend is possible only if no event loop for another interactive backend has started. Switching to and from non-interactive backends is always possible. Parameters ---------- newbackend : str The name of the backend to use. """ close("all") if newbackend is rcsetup._auto_backend_sentinel: # Don't try to fallback on the cairo-based backends as they each have # an additional dependency (pycairo) over the agg-based backend, and # are of worse quality. for candidate in ["macosx", "qt5agg", "qt4agg", "gtk3agg", "tkagg", "wxagg", "agg"]: try: switch_backend(candidate) except ImportError: continue else: rcParamsOrig['backend'] = candidate return backend_name = ( newbackend[9:] if newbackend.startswith("module://") else "matplotlib.backends.backend_{}".format(newbackend.lower())) backend_mod = importlib.import_module(backend_name) Backend = type( "Backend", (matplotlib.backends._Backend,), vars(backend_mod)) _log.debug("Loaded backend %s version %s.", newbackend, Backend.backend_version) required_framework = Backend.required_interactive_framework if required_framework is not None: current_framework = \ matplotlib.backends._get_running_interactive_framework() if (current_framework and required_framework and current_framework != required_framework): raise ImportError( "Cannot load backend {!r} which requires the {!r} interactive " "framework, as {!r} is currently running".format( newbackend, required_framework, current_framework)) rcParams['backend'] = rcParamsDefault['backend'] = newbackend global _backend_mod, new_figure_manager, draw_if_interactive, _show _backend_mod = backend_mod new_figure_manager = Backend.new_figure_manager draw_if_interactive = Backend.draw_if_interactive _show = Backend.show # Need to keep a global reference to the backend for compatibility reasons. # See https://github.com/matplotlib/matplotlib/issues/6092 matplotlib.backends.backend = newbackend def show(*args, **kw): """ Display a figure. When running in ipython with its pylab mode, display all figures and return to the ipython prompt. In non-interactive mode, display all figures and block until the figures have been closed; in interactive mode it has no effect unless figures were created prior to a change from non-interactive to interactive mode (not recommended). In that case it displays the figures but does not block. A single experimental keyword argument, *block*, may be set to True or False to override the blocking behavior described above. """ global _show return _show(*args, **kw) def isinteractive(): """Return the status of interactive mode.""" return matplotlib.is_interactive() def ioff(): """Turn the interactive mode off.""" matplotlib.interactive(False) uninstall_repl_displayhook() def ion(): """Turn the interactive mode on.""" matplotlib.interactive(True) install_repl_displayhook() def pause(interval): """ Pause for *interval* seconds. If there is an active figure, it will be updated and displayed before the pause, and the GUI event loop (if any) will run during the pause. This can be used for crude animation. For more complex animation, see :mod:`matplotlib.animation`. Notes ----- This function is experimental; its behavior may be changed or extended in a future release. """ manager = _pylab_helpers.Gcf.get_active() if manager is not None: canvas = manager.canvas if canvas.figure.stale: canvas.draw_idle() show(block=False) canvas.start_event_loop(interval) else: time.sleep(interval) @docstring.copy(matplotlib.rc) def rc(group, **kwargs): matplotlib.rc(group, **kwargs) @docstring.copy(matplotlib.rc_context) def rc_context(rc=None, fname=None): return matplotlib.rc_context(rc, fname) @docstring.copy(matplotlib.rcdefaults) def rcdefaults(): matplotlib.rcdefaults() if matplotlib.is_interactive(): draw_all() ## Current image ## def gci(): """ Get the current colorable artist. Specifically, returns the current :class:`~matplotlib.cm.ScalarMappable` instance (image or patch collection), or *None* if no images or patch collections have been defined. The commands :func:`~matplotlib.pyplot.imshow` and :func:`~matplotlib.pyplot.figimage` create :class:`~matplotlib.image.Image` instances, and the commands :func:`~matplotlib.pyplot.pcolor` and :func:`~matplotlib.pyplot.scatter` create :class:`~matplotlib.collections.Collection` instances. The current image is an attribute of the current axes, or the nearest earlier axes in the current figure that contains an image. """ return gcf()._gci() ## Any Artist ## # (getp is simply imported) @docstring.copy(_setp) def setp(obj, *args, **kwargs): return _setp(obj, *args, **kwargs) def xkcd(scale=1, length=100, randomness=2): """ Turn on `xkcd <https://xkcd.com/>`_ sketch-style drawing mode. This will only have effect on things drawn after this function is called. For best results, the "Humor Sans" font should be installed: it is not included with matplotlib. Parameters ---------- scale : float, optional The amplitude of the wiggle perpendicular to the source line. length : float, optional The length of the wiggle along the line. randomness : float, optional The scale factor by which the length is shrunken or expanded. Notes ----- This function works by a number of rcParams, so it will probably override others you have set before. If you want the effects of this function to be temporary, it can be used as a context manager, for example:: with plt.xkcd(): # This figure will be in XKCD-style fig1 = plt.figure() # ... # This figure will be in regular style fig2 = plt.figure() """ if rcParams['text.usetex']: raise RuntimeError( "xkcd mode is not compatible with text.usetex = True") from matplotlib import patheffects return rc_context({ 'font.family': ['xkcd', 'Humor Sans', 'Comic Sans MS'], 'font.size': 14.0, 'path.sketch': (scale, length, randomness), 'path.effects': [patheffects.withStroke(linewidth=4, foreground="w")], 'axes.linewidth': 1.5, 'lines.linewidth': 2.0, 'figure.facecolor': 'white', 'grid.linewidth': 0.0, 'axes.grid': False, 'axes.unicode_minus': False, 'axes.edgecolor': 'black', 'xtick.major.size': 8, 'xtick.major.width': 3, 'ytick.major.size': 8, 'ytick.major.width': 3, }) ## Figures ## def figure(num=None, # autoincrement if None, else integer from 1-N figsize=None, # defaults to rc figure.figsize dpi=None, # defaults to rc figure.dpi facecolor=None, # defaults to rc figure.facecolor edgecolor=None, # defaults to rc figure.edgecolor frameon=True, FigureClass=Figure, clear=False, **kwargs ): """ Create a new figure. Parameters ---------- num : integer or string, optional, default: None If not provided, a new figure will be created, and the figure number will be incremented. The figure objects holds this number in a `number` attribute. If num is provided, and a figure with this id already exists, make it active, and returns a reference to it. If this figure does not exists, create it and returns it. If num is a string, the window title will be set to this figure's `num`. figsize : (float, float), optional, default: None width, height in inches. If not provided, defaults to :rc:`figure.figsize` = ``[6.4, 4.8]``. dpi : integer, optional, default: None resolution of the figure. If not provided, defaults to :rc:`figure.dpi` = ``100``. facecolor : color spec the background color. If not provided, defaults to :rc:`figure.facecolor` = ``'w'``. edgecolor : color spec the border color. If not provided, defaults to :rc:`figure.edgecolor` = ``'w'``. frameon : bool, optional, default: True If False, suppress drawing the figure frame. FigureClass : subclass of `~matplotlib.figure.Figure` Optionally use a custom `.Figure` instance. clear : bool, optional, default: False If True and the figure already exists, then it is cleared. Returns ------- figure : `~matplotlib.figure.Figure` The `.Figure` instance returned will also be passed to new_figure_manager in the backends, which allows to hook custom `.Figure` classes into the pyplot interface. Additional kwargs will be passed to the `.Figure` init function. Notes ----- If you are creating many figures, make sure you explicitly call :func:`.pyplot.close` on the figures you are not using, because this will enable pyplot to properly clean up the memory. `~matplotlib.rcParams` defines the default values, which can be modified in the matplotlibrc file. """ if figsize is None: figsize = rcParams['figure.figsize'] if dpi is None: dpi = rcParams['figure.dpi'] if facecolor is None: facecolor = rcParams['figure.facecolor'] if edgecolor is None: edgecolor = rcParams['figure.edgecolor'] allnums = get_fignums() next_num = max(allnums) + 1 if allnums else 1 figLabel = '' if num is None: num = next_num elif isinstance(num, str): figLabel = num allLabels = get_figlabels() if figLabel not in allLabels: if figLabel == 'all': cbook._warn_external( "close('all') closes all existing figures") num = next_num else: inum = allLabels.index(figLabel) num = allnums[inum] else: num = int(num) # crude validation of num argument figManager = _pylab_helpers.Gcf.get_fig_manager(num) if figManager is None: max_open_warning = rcParams['figure.max_open_warning'] if len(allnums) >= max_open_warning >= 1: cbook._warn_external( "More than %d figures have been opened. Figures " "created through the pyplot interface " "(`matplotlib.pyplot.figure`) are retained until " "explicitly closed and may consume too much memory. " "(To control this warning, see the rcParam " "`figure.max_open_warning`)." % max_open_warning, RuntimeWarning) if get_backend().lower() == 'ps': dpi = 72 figManager = new_figure_manager(num, figsize=figsize, dpi=dpi, facecolor=facecolor, edgecolor=edgecolor, frameon=frameon, FigureClass=FigureClass, **kwargs) if figLabel: figManager.set_window_title(figLabel) figManager.canvas.figure.set_label(figLabel) # make this figure current on button press event def make_active(event): _pylab_helpers.Gcf.set_active(figManager) cid = figManager.canvas.mpl_connect('button_press_event', make_active) figManager._cidgcf = cid _pylab_helpers.Gcf.set_active(figManager) fig = figManager.canvas.figure fig.number = num # make sure backends (inline) that we don't ship that expect this # to be called in plotting commands to make the figure call show # still work. There is probably a better way to do this in the # FigureManager base class. if matplotlib.is_interactive(): draw_if_interactive() if _INSTALL_FIG_OBSERVER: fig.stale_callback = _auto_draw_if_interactive if clear: figManager.canvas.figure.clear() return figManager.canvas.figure def _auto_draw_if_interactive(fig, val): """ This is an internal helper function for making sure that auto-redrawing works as intended in the plain python repl. Parameters ---------- fig : Figure A figure object which is assumed to be associated with a canvas """ if val and matplotlib.is_interactive() and not fig.canvas.is_saving(): fig.canvas.draw_idle() def gcf(): """Get a reference to the current figure.""" figManager = _pylab_helpers.Gcf.get_active() if figManager is not None: return figManager.canvas.figure else: return figure() def fignum_exists(num): """Return whether the figure with the given id exists.""" return _pylab_helpers.Gcf.has_fignum(num) or num in get_figlabels() def get_fignums(): """Return a list of existing figure numbers.""" return sorted(_pylab_helpers.Gcf.figs) def get_figlabels(): """Return a list of existing figure labels.""" figManagers = _pylab_helpers.Gcf.get_all_fig_managers() figManagers.sort(key=lambda m: m.num) return [m.canvas.figure.get_label() for m in figManagers] def get_current_fig_manager(): """ Return the figure manager of the active figure. If there is currently no active figure, a new one is created. """ figManager = _pylab_helpers.Gcf.get_active() if figManager is None: gcf() # creates an active figure as a side effect figManager = _pylab_helpers.Gcf.get_active() return figManager @docstring.copy(FigureCanvasBase.mpl_connect) def connect(s, func): return get_current_fig_manager().canvas.mpl_connect(s, func) @docstring.copy(FigureCanvasBase.mpl_disconnect) def disconnect(cid): return get_current_fig_manager().canvas.mpl_disconnect(cid) def close(fig=None): """ Close a figure window. Parameters ---------- fig : None or int or str or `.Figure` The figure to close. There are a number of ways to specify this: - *None*: the current figure - `.Figure`: the given `.Figure` instance - ``int``: a figure number - ``str``: a figure name - 'all': all figures """ if fig is None: figManager = _pylab_helpers.Gcf.get_active() if figManager is None: return else: _pylab_helpers.Gcf.destroy(figManager.num) elif fig == 'all': _pylab_helpers.Gcf.destroy_all() elif isinstance(fig, int): _pylab_helpers.Gcf.destroy(fig) elif hasattr(fig, 'int'): # if we are dealing with a type UUID, we # can use its integer representation _pylab_helpers.Gcf.destroy(fig.int) elif isinstance(fig, str): allLabels = get_figlabels() if fig in allLabels: num = get_fignums()[allLabels.index(fig)] _pylab_helpers.Gcf.destroy(num) elif isinstance(fig, Figure): _pylab_helpers.Gcf.destroy_fig(fig) else: raise TypeError("close() argument must be a Figure, an int, a string, " "or None, not '%s'") def clf(): """Clear the current figure.""" gcf().clf() def draw(): """Redraw the current figure. This is used to update a figure that has been altered, but not automatically re-drawn. If interactive mode is on (:func:`.ion()`), this should be only rarely needed, but there may be ways to modify the state of a figure without marking it as `stale`. Please report these cases as bugs. A more object-oriented alternative, given any :class:`~matplotlib.figure.Figure` instance, :attr:`fig`, that was created using a :mod:`~matplotlib.pyplot` function, is:: fig.canvas.draw_idle() """ get_current_fig_manager().canvas.draw_idle() @docstring.copy(Figure.savefig) def savefig(*args, **kwargs): fig = gcf() res = fig.savefig(*args, **kwargs) fig.canvas.draw_idle() # need this if 'transparent=True' to reset colors return res ## Putting things in figures ## def figlegend(*args, **kwargs): return gcf().legend(*args, **kwargs) if Figure.legend.__doc__: figlegend.__doc__ = Figure.legend.__doc__.replace("legend(", "figlegend(") ## Axes ## @docstring.dedent_interpd def axes(arg=None, **kwargs): """ Add an axes to the current figure and make it the current axes. Call signatures:: plt.axes() plt.axes(rect, projection=None, polar=False, **kwargs) plt.axes(ax) Parameters ---------- arg : { None, 4-tuple, Axes } The exact behavior of this function depends on the type: - *None*: A new full window axes is added using ``subplot(111, **kwargs)`` - 4-tuple of floats *rect* = ``[left, bottom, width, height]``. A new axes is added with dimensions *rect* in normalized (0, 1) units using `~.Figure.add_axes` on the current figure. - `~.axes.Axes`: This is equivalent to `.pyplot.sca`. It sets the current axes to *arg*. Note: This implicitly changes the current figure to the parent of *arg*. .. note:: The use of an `.axes.Axes` as an argument is deprecated and will be removed in v3.0. Please use `.pyplot.sca` instead. projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \ 'polar', 'rectilinear', str}, optional The projection type of the `~.axes.Axes`. *str* is the name of a costum projection, see `~matplotlib.projections`. The default None results in a 'rectilinear' projection. polar : boolean, optional If True, equivalent to projection='polar'. sharex, sharey : `~.axes.Axes`, optional Share the x or y `~matplotlib.axis` with sharex and/or sharey. The axis will have the same limits, ticks, and scale as the axis of the shared axes. label : str A label for the returned axes. Other Parameters ---------------- **kwargs This method also takes the keyword arguments for the returned axes class. The keyword arguments for the rectilinear axes class `~.axes.Axes` can be found in the following table but there might also be other keyword arguments if another projection is used, see the actual axes class. %(Axes)s Returns ------- axes : `~.axes.Axes` (or a subclass of `~.axes.Axes`) The returned axes class depends on the projection used. It is `~.axes.Axes` if rectilinear projection are used and `.projections.polar.PolarAxes` if polar projection are used. Notes ----- If the figure already has a axes with key (*args*, *kwargs*) then it will simply make that axes current and return it. This behavior is deprecated. Meanwhile, if you do not want this behavior (i.e., you want to force the creation of a new axes), you must use a unique set of args and kwargs. The axes *label* attribute has been exposed for this purpose: if you want two axes that are otherwise identical to be added to the figure, make sure you give them unique labels. See Also -------- .Figure.add_axes .pyplot.subplot .Figure.add_subplot .Figure.subplots .pyplot.subplots Examples -------- :: # Creating a new full window axes plt.axes() # Creating a new axes with specified dimensions and some kwargs plt.axes((left, bottom, width, height), facecolor='w') """ if arg is None: return subplot(111, **kwargs) else: return gcf().add_axes(arg, **kwargs) def delaxes(ax=None): """ Remove the `Axes` *ax* (defaulting to the current axes) from its figure. A KeyError is raised if the axes doesn't exist. """ if ax is None: ax = gca() ax.figure.delaxes(ax) def sca(ax): """ Set the current Axes instance to *ax*. The current Figure is updated to the parent of *ax*. """ managers = _pylab_helpers.Gcf.get_all_fig_managers() for m in managers: if ax in m.canvas.figure.axes: _pylab_helpers.Gcf.set_active(m) m.canvas.figure.sca(ax) return raise ValueError("Axes instance argument was not found in a figure") def gca(**kwargs): """ Get the current :class:`~matplotlib.axes.Axes` instance on the current figure matching the given keyword args, or create one. Examples -------- To get the current polar axes on the current figure:: plt.gca(projection='polar') If the current axes doesn't exist, or isn't a polar one, the appropriate axes will be created and then returned. See Also -------- matplotlib.figure.Figure.gca : The figure's gca method. """ return gcf().gca(**kwargs) ## More ways of creating axes ## @docstring.dedent_interpd def subplot(*args, **kwargs): """ Add a subplot to the current figure. Wrapper of `.Figure.add_subplot` with a difference in behavior explained in the notes section. Call signatures:: subplot(nrows, ncols, index, **kwargs) subplot(pos, **kwargs) subplot(ax) Parameters ---------- *args Either a 3-digit integer or three separate integers describing the position of the subplot. If the three integers are *nrows*, *ncols*, and *index* in order, the subplot will take the *index* position on a grid with *nrows* rows and *ncols* columns. *index* starts at 1 in the upper left corner and increases to the right. *pos* is a three digit integer, where the first digit is the number of rows, the second the number of columns, and the third the index of the subplot. i.e. fig.add_subplot(235) is the same as fig.add_subplot(2, 3, 5). Note that all integers must be less than 10 for this form to work. projection : {None, 'aitoff', 'hammer', 'lambert', 'mollweide', \ 'polar', 'rectilinear', str}, optional The projection type of the subplot (`~.axes.Axes`). *str* is the name of a costum projection, see `~matplotlib.projections`. The default None results in a 'rectilinear' projection. polar : boolean, optional If True, equivalent to projection='polar'. sharex, sharey : `~.axes.Axes`, optional Share the x or y `~matplotlib.axis` with sharex and/or sharey. The axis will have the same limits, ticks, and scale as the axis of the shared axes. label : str A label for the returned axes. Other Parameters ---------------- **kwargs This method also takes the keyword arguments for the returned axes base class. The keyword arguments for the rectilinear base class `~.axes.Axes` can be found in the following table but there might also be other keyword arguments if another projection is used. %(Axes)s Returns ------- axes : an `.axes.SubplotBase` subclass of `~.axes.Axes` (or a subclass \ of `~.axes.Axes`) The axes of the subplot. The returned axes base class depends on the projection used. It is `~.axes.Axes` if rectilinear projection are used and `.projections.polar.PolarAxes` if polar projection are used. The returned axes is then a subplot subclass of the base class. Notes ----- Creating a subplot will delete any pre-existing subplot that overlaps with it beyond sharing a boundary:: import matplotlib.pyplot as plt # plot a line, implicitly creating a subplot(111) plt.plot([1,2,3]) # now create a subplot which represents the top plot of a grid # with 2 rows and 1 column. Since this subplot will overlap the # first, the plot (and its axes) previously created, will be removed plt.subplot(211) If you do not want this behavior, use the `.Figure.add_subplot` method or the `.pyplot.axes` function instead. If the figure already has a subplot with key (*args*, *kwargs*) then it will simply make that subplot current and return it. This behavior is deprecated. Meanwhile, if you do not want this behavior (i.e., you want to force the creation of a new subplot), you must use a unique set of args and kwargs. The axes *label* attribute has been exposed for this purpose: if you want two subplots that are otherwise identical to be added to the figure, make sure you give them unique labels. In rare circumstances, `.add_subplot` may be called with a single argument, a subplot axes instance already created in the present figure but not in the figure's list of axes. See Also -------- .Figure.add_subplot .pyplot.subplots .pyplot.axes .Figure.subplots Examples -------- :: plt.subplot(221) # equivalent but more general ax1=plt.subplot(2, 2, 1) # add a subplot with no frame ax2=plt.subplot(222, frameon=False) # add a polar subplot plt.subplot(223, projection='polar') # add a red subplot that shares the x-axis with ax1 plt.subplot(224, sharex=ax1, facecolor='red') # delete ax2 from the figure plt.delaxes(ax2) # add ax2 to the figure again plt.subplot(ax2) """ # if subplot called without arguments, create subplot(1,1,1) if len(args) == 0: args = (1, 1, 1) # This check was added because it is very easy to type # subplot(1, 2, False) when subplots(1, 2, False) was intended # (sharex=False, that is). In most cases, no error will # ever occur, but mysterious behavior can result because what was # intended to be the sharex argument is instead treated as a # subplot index for subplot() if len(args) >= 3 and isinstance(args[2], bool): cbook._warn_external("The subplot index argument to subplot() appears " "to be a boolean. Did you intend to use " "subplots()?") fig = gcf() a = fig.add_subplot(*args, **kwargs) bbox = a.bbox byebye = [] for other in fig.axes: if other == a: continue if bbox.fully_overlaps(other.bbox): byebye.append(other) for ax in byebye: delaxes(ax) return a def subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw): """ Create a figure and a set of subplots. This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call. Parameters ---------- nrows, ncols : int, optional, default: 1 Number of rows/columns of the subplot grid. sharex, sharey : bool or {'none', 'all', 'row', 'col'}, default: False Controls sharing of properties among x (`sharex`) or y (`sharey`) axes: - True or 'all': x- or y-axis will be shared among all subplots. - False or 'none': each subplot x- or y-axis will be independent. - 'row': each subplot row will share an x- or y-axis. - 'col': each subplot column will share an x- or y-axis. When subplots have a shared x-axis along a column, only the x tick labels of the bottom subplot are created. Similarly, when subplots have a shared y-axis along a row, only the y tick labels of the first column subplot are created. To later turn other subplots' ticklabels on, use `~matplotlib.axes.Axes.tick_params`. squeeze : bool, optional, default: True - If True, extra dimensions are squeezed out from the returned array of `~matplotlib.axes.Axes`: - if only one subplot is constructed (nrows=ncols=1), the resulting single Axes object is returned as a scalar. - for Nx1 or 1xM subplots, the returned object is a 1D numpy object array of Axes objects. - for NxM, subplots with N>1 and M>1 are returned as a 2D array. - If False, no squeezing at all is done: the returned Axes object is always a 2D array containing Axes instances, even if it ends up being 1x1. num : integer or string, optional, default: None A `.pyplot.figure` keyword that sets the figure number or label. subplot_kw : dict, optional Dict with keywords passed to the `~matplotlib.figure.Figure.add_subplot` call used to create each subplot. gridspec_kw : dict, optional Dict with keywords passed to the `~matplotlib.gridspec.GridSpec` constructor used to create the grid the subplots are placed on. **fig_kw All additional keyword arguments are passed to the `.pyplot.figure` call. Returns ------- fig : `~.figure.Figure` ax : `.axes.Axes` object or array of Axes objects. *ax* can be either a single `~matplotlib.axes.Axes` object or an array of Axes objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. Examples -------- :: # First create some toy data: x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2) # Creates just a figure and only one subplot fig, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Creates two subplots and unpacks the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Creates four polar axes, and accesses them through the returned array fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True)) axes[0, 0].plot(x, y) axes[1, 1].scatter(x, y) # Share a X axis with each column of subplots plt.subplots(2, 2, sharex='col') # Share a Y axis with each row of subplots plt.subplots(2, 2, sharey='row') # Share both X and Y axes with all subplots plt.subplots(2, 2, sharex='all', sharey='all') # Note that this is the same as plt.subplots(2, 2, sharex=True, sharey=True) # Creates figure number 10 with a single subplot # and clears it if it already exists. fig, ax=plt.subplots(num=10, clear=True) See Also -------- .pyplot.figure .pyplot.subplot .pyplot.axes .Figure.subplots .Figure.add_subplot """ fig = figure(**fig_kw) axs = fig.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, squeeze=squeeze, subplot_kw=subplot_kw, gridspec_kw=gridspec_kw) return fig, axs def subplot2grid(shape, loc, rowspan=1, colspan=1, fig=None, **kwargs): """ Create an axis at specific location inside a regular grid. Parameters ---------- shape : sequence of 2 ints Shape of grid in which to place axis. First entry is number of rows, second entry is number of columns. loc : sequence of 2 ints Location to place axis within grid. First entry is row number, second entry is column number. rowspan : int Number of rows for the axis to span to the right. colspan : int Number of columns for the axis to span downwards. fig : `Figure`, optional Figure to place axis in. Defaults to current figure. **kwargs Additional keyword arguments are handed to `add_subplot`. Notes ----- The following call :: subplot2grid(shape, loc, rowspan=1, colspan=1) is identical to :: gridspec=GridSpec(shape[0], shape[1]) subplotspec=gridspec.new_subplotspec(loc, rowspan, colspan) subplot(subplotspec) """ if fig is None: fig = gcf() s1, s2 = shape subplotspec = GridSpec(s1, s2).new_subplotspec(loc, rowspan=rowspan, colspan=colspan) a = fig.add_subplot(subplotspec, **kwargs) bbox = a.bbox byebye = [] for other in fig.axes: if other == a: continue if bbox.fully_overlaps(other.bbox): byebye.append(other) for ax in byebye: delaxes(ax) return a def twinx(ax=None): """ Make and return a second axes that shares the *x*-axis. The new axes will overlay *ax* (or the current axes if *ax* is *None*), and its ticks will be on the right. Examples -------- :doc:`/gallery/subplots_axes_and_figures/two_scales` """ if ax is None: ax = gca() ax1 = ax.twinx() return ax1 def twiny(ax=None): """ Make and return a second axes that shares the *y*-axis. The new axes will overlay *ax* (or the current axes if *ax* is *None*), and its ticks will be on the top. Examples -------- :doc:`/gallery/subplots_axes_and_figures/two_scales` """ if ax is None: ax = gca() ax1 = ax.twiny() return ax1 def subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None): """ Tune the subplot layout. The parameter meanings (and suggested defaults) are:: left = 0.125 # the left side of the subplots of the figure right = 0.9 # the right side of the subplots of the figure bottom = 0.1 # the bottom of the subplots of the figure top = 0.9 # the top of the subplots of the figure wspace = 0.2 # the amount of width reserved for space between subplots, # expressed as a fraction of the average axis width hspace = 0.2 # the amount of height reserved for space between subplots, # expressed as a fraction of the average axis height The actual defaults are controlled by the rc file """ fig = gcf() fig.subplots_adjust(left, bottom, right, top, wspace, hspace) def subplot_tool(targetfig=None): """ Launch a subplot tool window for a figure. A :class:`matplotlib.widgets.SubplotTool` instance is returned. """ tbar = rcParams['toolbar'] # turn off navigation toolbar for the toolfig rcParams['toolbar'] = 'None' if targetfig is None: manager = get_current_fig_manager() targetfig = manager.canvas.figure else: # find the manager for this figure for manager in _pylab_helpers.Gcf._activeQue: if manager.canvas.figure == targetfig: break else: raise RuntimeError('Could not find manager for targetfig') toolfig = figure(figsize=(6, 3)) toolfig.subplots_adjust(top=0.9) ret = SubplotTool(targetfig, toolfig) rcParams['toolbar'] = tbar _pylab_helpers.Gcf.set_active(manager) # restore the current figure return ret def tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None): """ Automatically adjust subplot parameters to give specified padding. Parameters ---------- pad : float Padding between the figure edge and the edges of subplots, as a fraction of the font size. h_pad, w_pad : float, optional Padding (height/width) between edges of adjacent subplots, as a fraction of the font size. Defaults to *pad*. rect : tuple (left, bottom, right, top), optional A rectangle (left, bottom, right, top) in the normalized figure coordinate that the whole subplots area (including labels) will fit into. Default is (0, 0, 1, 1). """ gcf().tight_layout(pad=pad, h_pad=h_pad, w_pad=w_pad, rect=rect) def box(on=None): """ Turn the axes box on or off on the current axes. Parameters ---------- on : bool or None The new `~matplotlib.axes.Axes` box state. If ``None``, toggle the state. See Also -------- :meth:`matplotlib.axes.Axes.set_frame_on` :meth:`matplotlib.axes.Axes.get_frame_on` """ ax = gca() if on is None: on = not ax.get_frame_on() ax.set_frame_on(on) ## Axis ## def xlim(*args, **kwargs): """ Get or set the x limits of the current axes. Call signatures:: left, right = xlim() # return the current xlim xlim((left, right)) # set the xlim to left, right xlim(left, right) # set the xlim to left, right If you do not specify args, you can pass *left* or *right* as kwargs, i.e.:: xlim(right=3) # adjust the right leaving left unchanged xlim(left=1) # adjust the left leaving right unchanged Setting limits turns autoscaling off for the x-axis. Returns ------- left, right A tuple of the new x-axis limits. Notes ----- Calling this function with no arguments (e.g. ``xlim()``) is the pyplot equivalent of calling `~.Axes.get_xlim` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_xlim` on the current axes. All arguments are passed though. """ ax = gca() if not args and not kwargs: return ax.get_xlim() ret = ax.set_xlim(*args, **kwargs) return ret def ylim(*args, **kwargs): """ Get or set the y-limits of the current axes. Call signatures:: bottom, top = ylim() # return the current ylim ylim((bottom, top)) # set the ylim to bottom, top ylim(bottom, top) # set the ylim to bottom, top If you do not specify args, you can alternatively pass *bottom* or *top* as kwargs, i.e.:: ylim(top=3) # adjust the top leaving bottom unchanged ylim(bottom=1) # adjust the bottom leaving top unchanged Setting limits turns autoscaling off for the y-axis. Returns ------- bottom, top A tuple of the new y-axis limits. Notes ----- Calling this function with no arguments (e.g. ``ylim()``) is the pyplot equivalent of calling `~.Axes.get_ylim` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_ylim` on the current axes. All arguments are passed though. """ ax = gca() if not args and not kwargs: return ax.get_ylim() ret = ax.set_ylim(*args, **kwargs) return ret def xticks(ticks=None, labels=None, **kwargs): """ Get or set the current tick locations and labels of the x-axis. Call signatures:: locs, labels = xticks() # Get locations and labels xticks(ticks, [labels], **kwargs) # Set locations and labels Parameters ---------- ticks : array_like A list of positions at which ticks should be placed. You can pass an empty list to disable xticks. labels : array_like, optional A list of explicit labels to place at the given *locs*. **kwargs :class:`.Text` properties can be used to control the appearance of the labels. Returns ------- locs An array of label locations. labels A list of `.Text` objects. Notes ----- Calling this function with no arguments (e.g. ``xticks()``) is the pyplot equivalent of calling `~.Axes.get_xticks` and `~.Axes.get_xticklabels` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_xticks` and `~.Axes.set_xticklabels` on the current axes. Examples -------- Get the current locations and labels: >>> locs, labels = xticks() Set label locations: >>> xticks(np.arange(0, 1, step=0.2)) Set text labels: >>> xticks(np.arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue')) Set text labels and properties: >>> xticks(np.arange(12), calendar.month_name[1:13], rotation=20) Disable xticks: >>> xticks([]) """ ax = gca() if ticks is None and labels is None: locs = ax.get_xticks() labels = ax.get_xticklabels() elif labels is None: locs = ax.set_xticks(ticks) labels = ax.get_xticklabels() else: locs = ax.set_xticks(ticks) labels = ax.set_xticklabels(labels, **kwargs) for l in labels: l.update(kwargs) return locs, silent_list('Text xticklabel', labels) def yticks(ticks=None, labels=None, **kwargs): """ Get or set the current tick locations and labels of the y-axis. Call signatures:: locs, labels = yticks() # Get locations and labels yticks(ticks, [labels], **kwargs) # Set locations and labels Parameters ---------- ticks : array_like A list of positions at which ticks should be placed. You can pass an empty list to disable yticks. labels : array_like, optional A list of explicit labels to place at the given *locs*. **kwargs :class:`.Text` properties can be used to control the appearance of the labels. Returns ------- locs An array of label locations. labels A list of `.Text` objects. Notes ----- Calling this function with no arguments (e.g. ``yticks()``) is the pyplot equivalent of calling `~.Axes.get_yticks` and `~.Axes.get_yticklabels` on the current axes. Calling this function with arguments is the pyplot equivalent of calling `~.Axes.set_yticks` and `~.Axes.set_yticklabels` on the current axes. Examples -------- Get the current locations and labels: >>> locs, labels = yticks() Set label locations: >>> yticks(np.arange(0, 1, step=0.2)) Set text labels: >>> yticks(np.arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue')) Set text labels and properties: >>> yticks(np.arange(12), calendar.month_name[1:13], rotation=45) Disable yticks: >>> yticks([]) """ ax = gca() if ticks is None and labels is None: locs = ax.get_yticks() labels = ax.get_yticklabels() elif labels is None: locs = ax.set_yticks(ticks) labels = ax.get_yticklabels() else: locs = ax.set_yticks(ticks) labels = ax.set_yticklabels(labels, **kwargs) for l in labels: l.update(kwargs) return locs, silent_list('Text yticklabel', labels) def rgrids(*args, **kwargs): """ Get or set the radial gridlines on the current polar plot. Call signatures:: lines, labels = rgrids() lines, labels = rgrids(radii, labels=None, angle=22.5, fmt=None, **kwargs) When called with no arguments, `.rgrids` simply returns the tuple (*lines*, *labels*). When called with arguments, the labels will appear at the specified radial distances and angle. Parameters ---------- radii : tuple with floats The radii for the radial gridlines labels : tuple with strings or None The labels to use at each radial gridline. The `matplotlib.ticker.ScalarFormatter` will be used if None. angle : float The angular position of the radius labels in degrees. fmt : str or None Format string used in `matplotlib.ticker.FormatStrFormatter`. For example '%f'. Returns ------- lines, labels : list of `.lines.Line2D`, list of `.text.Text` *lines* are the radial gridlines and *labels* are the tick labels. Other Parameters ---------------- **kwargs *kwargs* are optional `~.Text` properties for the labels. Examples -------- :: # set the locations of the radial gridlines lines, labels = rgrids( (0.25, 0.5, 1.0) ) # set the locations and labels of the radial gridlines lines, labels = rgrids( (0.25, 0.5, 1.0), ('Tom', 'Dick', 'Harry' )) See Also -------- .pyplot.thetagrids .projections.polar.PolarAxes.set_rgrids .Axis.get_gridlines .Axis.get_ticklabels """ ax = gca() if not isinstance(ax, PolarAxes): raise RuntimeError('rgrids only defined for polar axes') if len(args) == 0: lines = ax.yaxis.get_gridlines() labels = ax.yaxis.get_ticklabels() else: lines, labels = ax.set_rgrids(*args, **kwargs) return (silent_list('Line2D rgridline', lines), silent_list('Text rgridlabel', labels)) def thetagrids(*args, **kwargs): """ Get or set the theta gridlines on the current polar plot. Call signatures:: lines, labels = thetagrids() lines, labels = thetagrids(angles, labels=None, fmt=None, **kwargs) When called with no arguments, `.thetagrids` simply returns the tuple (*lines*, *labels*). When called with arguments, the labels will appear at the specified angles. Parameters ---------- angles : tuple with floats, degrees The angles of the theta gridlines. labels : tuple with strings or None The labels to use at each radial gridline. The `.projections.polar.ThetaFormatter` will be used if None. fmt : str or None Format string used in `matplotlib.ticker.FormatStrFormatter`. For example '%f'. Note that the angle in radians will be used. Returns ------- lines, labels : list of `.lines.Line2D`, list of `.text.Text` *lines* are the theta gridlines and *labels* are the tick labels. Other Parameters ---------------- **kwargs *kwargs* are optional `~.Text` properties for the labels. Examples -------- :: # set the locations of the angular gridlines lines, labels = thetagrids( range(45,360,90) ) # set the locations and labels of the angular gridlines lines, labels = thetagrids( range(45,360,90), ('NE', 'NW', 'SW','SE') ) See Also -------- .pyplot.rgrids .projections.polar.PolarAxes.set_thetagrids .Axis.get_gridlines .Axis.get_ticklabels """ ax = gca() if not isinstance(ax, PolarAxes): raise RuntimeError('thetagrids only defined for polar axes') if len(args) == 0: lines = ax.xaxis.get_ticklines() labels = ax.xaxis.get_ticklabels() else: lines, labels = ax.set_thetagrids(*args, **kwargs) return (silent_list('Line2D thetagridline', lines), silent_list('Text thetagridlabel', labels)) ## Plotting Info ## def plotting(): pass def get_plot_commands(): """ Get a sorted list of all of the plotting commands. """ # This works by searching for all functions in this module and removing # a few hard-coded exclusions, as well as all of the colormap-setting # functions, and anything marked as private with a preceding underscore. exclude = {'colormaps', 'colors', 'connect', 'disconnect', 'get_plot_commands', 'get_current_fig_manager', 'ginput', 'plotting', 'waitforbuttonpress'} exclude |= set(colormaps()) this_module = inspect.getmodule(get_plot_commands) return sorted( name for name, obj in globals().items() if not name.startswith('_') and name not in exclude and inspect.isfunction(obj) and inspect.getmodule(obj) is this_module) def colormaps(): """ Matplotlib provides a number of colormaps, and others can be added using :func:`~matplotlib.cm.register_cmap`. This function documents the built-in colormaps, and will also return a list of all registered colormaps if called. You can set the colormap for an image, pcolor, scatter, etc, using a keyword argument:: imshow(X, cmap=cm.hot) or using the :func:`set_cmap` function:: imshow(X) pyplot.set_cmap('hot') pyplot.set_cmap('jet') In interactive mode, :func:`set_cmap` will update the colormap post-hoc, allowing you to see which one works best for your data. All built-in colormaps can be reversed by appending ``_r``: For instance, ``gray_r`` is the reverse of ``gray``. There are several common color schemes used in visualization: Sequential schemes for unipolar data that progresses from low to high Diverging schemes for bipolar data that emphasizes positive or negative deviations from a central value Cyclic schemes for plotting values that wrap around at the endpoints, such as phase angle, wind direction, or time of day Qualitative schemes for nominal data that has no inherent ordering, where color is used only to distinguish categories Matplotlib ships with 4 perceptually uniform color maps which are the recommended color maps for sequential data: ========= =================================================== Colormap Description ========= =================================================== inferno perceptually uniform shades of black-red-yellow magma perceptually uniform shades of black-red-white plasma perceptually uniform shades of blue-red-yellow viridis perceptually uniform shades of blue-green-yellow ========= =================================================== The following colormaps are based on the `ColorBrewer <http://colorbrewer2.org>`_ color specifications and designs developed by Cynthia Brewer: ColorBrewer Diverging (luminance is highest at the midpoint, and decreases towards differently-colored endpoints): ======== =================================== Colormap Description ======== =================================== BrBG brown, white, blue-green PiYG pink, white, yellow-green PRGn purple, white, green PuOr orange, white, purple RdBu red, white, blue RdGy red, white, gray RdYlBu red, yellow, blue RdYlGn red, yellow, green Spectral red, orange, yellow, green, blue ======== =================================== ColorBrewer Sequential (luminance decreases monotonically): ======== ==================================== Colormap Description ======== ==================================== Blues white to dark blue BuGn white, light blue, dark green BuPu white, light blue, dark purple GnBu white, light green, dark blue Greens white to dark green Greys white to black (not linear) Oranges white, orange, dark brown OrRd white, orange, dark red PuBu white, light purple, dark blue PuBuGn white, light purple, dark green PuRd white, light purple, dark red Purples white to dark purple RdPu white, pink, dark purple Reds white to dark red YlGn light yellow, dark green YlGnBu light yellow, light green, dark blue YlOrBr light yellow, orange, dark brown YlOrRd light yellow, orange, dark red ======== ==================================== ColorBrewer Qualitative: (For plotting nominal data, :class:`ListedColormap` is used, not :class:`LinearSegmentedColormap`. Different sets of colors are recommended for different numbers of categories.) * Accent * Dark2 * Paired * Pastel1 * Pastel2 * Set1 * Set2 * Set3 A set of colormaps derived from those of the same name provided with Matlab are also included: ========= ======================================================= Colormap Description ========= ======================================================= autumn sequential linearly-increasing shades of red-orange-yellow bone sequential increasing black-white color map with a tinge of blue, to emulate X-ray film cool linearly-decreasing shades of cyan-magenta copper sequential increasing shades of black-copper flag repetitive red-white-blue-black pattern (not cyclic at endpoints) gray sequential linearly-increasing black-to-white grayscale hot sequential black-red-yellow-white, to emulate blackbody radiation from an object at increasing temperatures jet a spectral map with dark endpoints, blue-cyan-yellow-red; based on a fluid-jet simulation by NCSA [#]_ pink sequential increasing pastel black-pink-white, meant for sepia tone colorization of photographs prism repetitive red-yellow-green-blue-purple-...-green pattern (not cyclic at endpoints) spring linearly-increasing shades of magenta-yellow summer sequential linearly-increasing shades of green-yellow winter linearly-increasing shades of blue-green ========= ======================================================= A set of palettes from the `Yorick scientific visualisation package <https://dhmunro.github.io/yorick-doc/>`_, an evolution of the GIST package, both by David H. Munro are included: ============ ======================================================= Colormap Description ============ ======================================================= gist_earth mapmaker's colors from dark blue deep ocean to green lowlands to brown highlands to white mountains gist_heat sequential increasing black-red-orange-white, to emulate blackbody radiation from an iron bar as it grows hotter gist_ncar pseudo-spectral black-blue-green-yellow-red-purple-white colormap from National Center for Atmospheric Research [#]_ gist_rainbow runs through the colors in spectral order from red to violet at full saturation (like *hsv* but not cyclic) gist_stern "Stern special" color table from Interactive Data Language software ============ ======================================================= A set of cyclic color maps: ================ ================================================= Colormap Description ================ ================================================= hsv red-yellow-green-cyan-blue-magenta-red, formed by changing the hue component in the HSV color space twilight perceptually uniform shades of white-blue-black-red-white twilight_shifted perceptually uniform shades of black-blue-white-red-black ================ ================================================= Other miscellaneous schemes: ============= ======================================================= Colormap Description ============= ======================================================= afmhot sequential black-orange-yellow-white blackbody spectrum, commonly used in atomic force microscopy brg blue-red-green bwr diverging blue-white-red coolwarm diverging blue-gray-red, meant to avoid issues with 3D shading, color blindness, and ordering of colors [#]_ CMRmap "Default colormaps on color images often reproduce to confusing grayscale images. The proposed colormap maintains an aesthetically pleasing color image that automatically reproduces to a monotonic grayscale with discrete, quantifiable saturation levels." [#]_ cubehelix Unlike most other color schemes cubehelix was designed by D.A. Green to be monotonically increasing in terms of perceived brightness. Also, when printed on a black and white postscript printer, the scheme results in a greyscale with monotonically increasing brightness. This color scheme is named cubehelix because the r,g,b values produced can be visualised as a squashed helix around the diagonal in the r,g,b color cube. gnuplot gnuplot's traditional pm3d scheme (black-blue-red-yellow) gnuplot2 sequential color printable as gray (black-blue-violet-yellow-white) ocean green-blue-white rainbow spectral purple-blue-green-yellow-orange-red colormap with diverging luminance seismic diverging blue-white-red nipy_spectral black-purple-blue-green-yellow-red-white spectrum, originally from the Neuroimaging in Python project terrain mapmaker's colors, blue-green-yellow-brown-white, originally from IGOR Pro ============= ======================================================= The following colormaps are redundant and may be removed in future versions. It's recommended to use the names in the descriptions instead, which produce identical output: ========= ======================================================= Colormap Description ========= ======================================================= gist_gray identical to *gray* gist_yarg identical to *gray_r* binary identical to *gray_r* ========= ======================================================= .. rubric:: Footnotes .. [#] Rainbow colormaps, ``jet`` in particular, are considered a poor choice for scientific visualization by many researchers: `Rainbow Color Map (Still) Considered Harmful <http://ieeexplore.ieee.org/document/4118486/?arnumber=4118486>`_ .. [#] Resembles "BkBlAqGrYeOrReViWh200" from NCAR Command Language. See `Color Table Gallery <https://www.ncl.ucar.edu/Document/Graphics/color_table_gallery.shtml>`_ .. [#] See `Diverging Color Maps for Scientific Visualization <http://www.kennethmoreland.com/color-maps/>`_ by Kenneth Moreland. .. [#] See `A Color Map for Effective Black-and-White Rendering of Color-Scale Images <https://www.mathworks.com/matlabcentral/fileexchange/2662-cmrmap-m>`_ by Carey Rappaport """ return sorted(cm.cmap_d) def _setup_pyplot_info_docstrings(): """ Generates the plotting docstring. These must be done after the entire module is imported, so it is called from the end of this module, which is generated by boilerplate.py. """ commands = get_plot_commands() first_sentence = re.compile(r"(?:\s*).+?\.(?:\s+|$)", flags=re.DOTALL) # Collect the first sentence of the docstring for all of the # plotting commands. rows = [] max_name = len("Function") max_summary = len("Description") for name in commands: doc = globals()[name].__doc__ summary = '' if doc is not None: match = first_sentence.match(doc) if match is not None: summary = inspect.cleandoc(match.group(0)).replace('\n', ' ') name = '`%s`' % name rows.append([name, summary]) max_name = max(max_name, len(name)) max_summary = max(max_summary, len(summary)) separator = '=' * max_name + ' ' + '=' * max_summary lines = [ separator, '{:{}} {:{}}'.format('Function', max_name, 'Description', max_summary), separator, ] + [ '{:{}} {:{}}'.format(name, max_name, summary, max_summary) for name, summary in rows ] + [ separator, ] plotting.__doc__ = '\n'.join(lines) ## Plotting part 1: manually generated functions and wrappers ## def colorbar(mappable=None, cax=None, ax=None, **kw): if mappable is None: mappable = gci() if mappable is None: raise RuntimeError('No mappable was found to use for colorbar ' 'creation. First define a mappable such as ' 'an image (with imshow) or a contour set (' 'with contourf).') if ax is None: ax = gca() ret = gcf().colorbar(mappable, cax=cax, ax=ax, **kw) return ret colorbar.__doc__ = matplotlib.colorbar.colorbar_doc def clim(vmin=None, vmax=None): """ Set the color limits of the current image. To apply clim to all axes images do:: clim(0, 0.5) If either *vmin* or *vmax* is None, the image min/max respectively will be used for color scaling. If you want to set the clim of multiple images, use, for example:: for im in gca().get_images(): im.set_clim(0, 0.05) """ im = gci() if im is None: raise RuntimeError('You must first define an image, e.g., with imshow') im.set_clim(vmin, vmax) def set_cmap(cmap): """ Set the default colormap. Applies to the current image if any. See help(colormaps) for more information. *cmap* must be a :class:`~matplotlib.colors.Colormap` instance, or the name of a registered colormap. See :func:`matplotlib.cm.register_cmap` and :func:`matplotlib.cm.get_cmap`. """ cmap = cm.get_cmap(cmap) rc('image', cmap=cmap.name) im = gci() if im is not None: im.set_cmap(cmap) @docstring.copy(matplotlib.image.imread) def imread(fname, format=None): return matplotlib.image.imread(fname, format) @docstring.copy(matplotlib.image.imsave) def imsave(fname, arr, **kwargs): return matplotlib.image.imsave(fname, arr, **kwargs) def matshow(A, fignum=None, **kwargs): """ Display an array as a matrix in a new figure window. The origin is set at the upper left hand corner and rows (first dimension of the array) are displayed horizontally. The aspect ratio of the figure window is that of the array, unless this would make an excessively short or narrow figure. Tick labels for the xaxis are placed on top. Parameters ---------- A : array-like(M, N) The matrix to be displayed. fignum : None or int or False If *None*, create a new figure window with automatic numbering. If a nonzero integer, draw into the figure with the given number (create it if it does not exist). If 0, use the current axes (or create one if it does not exist). .. note:: Because of how `.Axes.matshow` tries to set the figure aspect ratio to be the one of the array, strange things may happen if you reuse an existing figure. Returns ------- image : `~matplotlib.image.AxesImage` Other Parameters ---------------- **kwargs : `~matplotlib.axes.Axes.imshow` arguments """ A = np.asanyarray(A) if fignum == 0: ax = gca() else: # Extract actual aspect ratio of array and make appropriately sized # figure. fig = figure(fignum, figsize=figaspect(A)) ax = fig.add_axes([0.15, 0.09, 0.775, 0.775]) im = ax.matshow(A, **kwargs) sci(im) return im def polar(*args, **kwargs): """ Make a polar plot. call signature:: polar(theta, r, **kwargs) Multiple *theta*, *r* arguments are supported, with format strings, as in :func:`~matplotlib.pyplot.plot`. """ # If an axis already exists, check if it has a polar projection if gcf().get_axes(): if not isinstance(gca(), PolarAxes): cbook._warn_external('Trying to create polar plot on an axis ' 'that does not have a polar projection.') ax = gca(polar=True) ret = ax.plot(*args, **kwargs) return ret def plotfile(fname, cols=(0,), plotfuncs=None, comments='#', skiprows=0, checkrows=5, delimiter=',', names=None, subplots=True, newfig=True, **kwargs): """ Plot the data in a file. *cols* is a sequence of column identifiers to plot. An identifier is either an int or a string. If it is an int, it indicates the column number. If it is a string, it indicates the column header. matplotlib will make column headers lower case, replace spaces with underscores, and remove all illegal characters; so ``'Adj Close*'`` will have name ``'adj_close'``. - If len(*cols*) == 1, only that column will be plotted on the *y* axis. - If len(*cols*) > 1, the first element will be an identifier for data for the *x* axis and the remaining elements will be the column indexes for multiple subplots if *subplots* is *True* (the default), or for lines in a single subplot if *subplots* is *False*. *plotfuncs*, if not *None*, is a dictionary mapping identifier to an :class:`~matplotlib.axes.Axes` plotting function as a string. Default is 'plot', other choices are 'semilogy', 'fill', 'bar', etc. You must use the same type of identifier in the *cols* vector as you use in the *plotfuncs* dictionary, e.g., integer column numbers in both or column names in both. If *subplots* is *False*, then including any function such as 'semilogy' that changes the axis scaling will set the scaling for all columns. - *comments*: the character used to indicate the start of a comment in the file, or *None* to switch off the removal of comments - *skiprows*: is the number of rows from the top to skip - *checkrows*: is the number of rows to check to validate the column data type. When set to zero all rows are validated. - *delimiter*: is the character(s) separating row items - *names*: if not None, is a list of header names. In this case, no header will be read from the file If *newfig* is *True*, the plot always will be made in a new figure; if *False*, it will be made in the current figure if one exists, else in a new figure. kwargs are passed on to plotting functions. Example usage:: # plot the 2nd and 4th column against the 1st in two subplots plotfile(fname, (0,1,3)) # plot using column names; specify an alternate plot type for volume plotfile(fname, ('date', 'volume', 'adj_close'), plotfuncs={'volume': 'semilogy'}) Note: plotfile is intended as a convenience for quickly plotting data from flat files; it is not intended as an alternative interface to general plotting with pyplot or matplotlib. """ if newfig: fig = figure() else: fig = gcf() if len(cols) < 1: raise ValueError('must have at least one column of data') if plotfuncs is None: plotfuncs = {} with cbook._suppress_matplotlib_deprecation_warning(): r = mlab._csv2rec(fname, comments=comments, skiprows=skiprows, checkrows=checkrows, delimiter=delimiter, names=names) def getname_val(identifier): 'return the name and column data for identifier' if isinstance(identifier, str): return identifier, r[identifier] elif isinstance(identifier, Number): name = r.dtype.names[int(identifier)] return name, r[name] else: raise TypeError('identifier must be a string or integer') xname, x = getname_val(cols[0]) ynamelist = [] if len(cols) == 1: ax1 = fig.add_subplot(1, 1, 1) funcname = plotfuncs.get(cols[0], 'plot') func = getattr(ax1, funcname) func(x, **kwargs) ax1.set_ylabel(xname) else: N = len(cols) for i in range(1, N): if subplots: if i == 1: ax = ax1 = fig.add_subplot(N - 1, 1, i) else: ax = fig.add_subplot(N - 1, 1, i, sharex=ax1) elif i == 1: ax = fig.add_subplot(1, 1, 1) yname, y = getname_val(cols[i]) ynamelist.append(yname) funcname = plotfuncs.get(cols[i], 'plot') func = getattr(ax, funcname) func(x, y, **kwargs) if subplots: ax.set_ylabel(yname) if ax.is_last_row(): ax.set_xlabel(xname) else: ax.set_xlabel('') if not subplots: ax.legend(ynamelist) if xname == 'date': fig.autofmt_xdate() # If rcParams['backend_fallback'] is true, and an interactive backend is # requested, ignore rcParams['backend'] and force selection of a backend that # is compatible with the current running interactive framework. if (rcParams["backend_fallback"] and dict.__getitem__(rcParams, "backend") in _interactive_bk and _get_running_interactive_framework()): dict.__setitem__(rcParams, "backend", rcsetup._auto_backend_sentinel) # Set up the backend. switch_backend(rcParams["backend"]) # Just to be safe. Interactive mode can be turned on without # calling `plt.ion()` so register it again here. # This is safe because multiple calls to `install_repl_displayhook` # are no-ops and the registered function respect `mpl.is_interactive()` # to determine if they should trigger a draw. install_repl_displayhook() ################# REMAINING CONTENT GENERATED BY boilerplate.py ############## # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Figure.figimage) def figimage( X, xo=0, yo=0, alpha=None, norm=None, cmap=None, vmin=None, vmax=None, origin=None, resize=False, **kwargs): return gcf().figimage( X, xo=xo, yo=yo, alpha=alpha, norm=norm, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin, resize=resize, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Figure.text) def figtext( x, y, s, fontdict=None, withdash=cbook.deprecation._deprecated_parameter, **kwargs): return gcf().text( x, y, s, fontdict=fontdict, withdash=withdash, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Figure.ginput) def ginput( n=1, timeout=30, show_clicks=True, mouse_add=1, mouse_pop=3, mouse_stop=2): return gcf().ginput( n=n, timeout=timeout, show_clicks=show_clicks, mouse_add=mouse_add, mouse_pop=mouse_pop, mouse_stop=mouse_stop) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Figure.suptitle) def suptitle(t, **kwargs): return gcf().suptitle(t, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Figure.waitforbuttonpress) def waitforbuttonpress(timeout=-1): return gcf().waitforbuttonpress(timeout=timeout) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.acorr) def acorr(x, *, data=None, **kwargs): return gca().acorr( x, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.angle_spectrum) def angle_spectrum( x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, *, data=None, **kwargs): return gca().angle_spectrum( x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.annotate) def annotate(s, xy, *args, **kwargs): return gca().annotate(s, xy, *args, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.arrow) def arrow(x, y, dx, dy, **kwargs): return gca().arrow(x, y, dx, dy, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.autoscale) def autoscale(enable=True, axis='both', tight=None): return gca().autoscale(enable=enable, axis=axis, tight=tight) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.axhline) def axhline(y=0, xmin=0, xmax=1, **kwargs): return gca().axhline(y=y, xmin=xmin, xmax=xmax, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.axhspan) def axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs): return gca().axhspan(ymin, ymax, xmin=xmin, xmax=xmax, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.axis) def axis(*args, **kwargs): return gca().axis(*args, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.axvline) def axvline(x=0, ymin=0, ymax=1, **kwargs): return gca().axvline(x=x, ymin=ymin, ymax=ymax, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.axvspan) def axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs): return gca().axvspan(xmin, xmax, ymin=ymin, ymax=ymax, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.bar) def bar( x, height, width=0.8, bottom=None, *, align='center', data=None, **kwargs): return gca().bar( x, height, width=width, bottom=bottom, align=align, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.barbs) def barbs(*args, data=None, **kw): return gca().barbs( *args, **({"data": data} if data is not None else {}), **kw) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.barh) def barh(y, width, height=0.8, left=None, *, align='center', **kwargs): return gca().barh( y, width, height=height, left=left, align=align, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.boxplot) def boxplot( x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_ticks=True, autorange=False, zorder=None, *, data=None): return gca().boxplot( x, notch=notch, sym=sym, vert=vert, whis=whis, positions=positions, widths=widths, patch_artist=patch_artist, bootstrap=bootstrap, usermedians=usermedians, conf_intervals=conf_intervals, meanline=meanline, showmeans=showmeans, showcaps=showcaps, showbox=showbox, showfliers=showfliers, boxprops=boxprops, labels=labels, flierprops=flierprops, medianprops=medianprops, meanprops=meanprops, capprops=capprops, whiskerprops=whiskerprops, manage_ticks=manage_ticks, autorange=autorange, zorder=zorder, **({"data": data} if data is not None else {})) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.broken_barh) def broken_barh(xranges, yrange, *, data=None, **kwargs): return gca().broken_barh( xranges, yrange, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.cla) def cla(): return gca().cla() # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.clabel) def clabel(CS, *args, **kwargs): return gca().clabel(CS, *args, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.cohere) def cohere( x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, *, data=None, **kwargs): return gca().cohere( x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.contour) def contour(*args, data=None, **kwargs): __ret = gca().contour( *args, **({"data": data} if data is not None else {}), **kwargs) if __ret._A is not None: sci(__ret) # noqa return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.contourf) def contourf(*args, data=None, **kwargs): __ret = gca().contourf( *args, **({"data": data} if data is not None else {}), **kwargs) if __ret._A is not None: sci(__ret) # noqa return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.csd) def csd( x, y, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, return_line=None, *, data=None, **kwargs): return gca().csd( x, y, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, return_line=return_line, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.errorbar) def errorbar( x, y, yerr=None, xerr=None, fmt='', ecolor=None, elinewidth=None, capsize=None, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, errorevery=1, capthick=None, *, data=None, **kwargs): return gca().errorbar( x, y, yerr=yerr, xerr=xerr, fmt=fmt, ecolor=ecolor, elinewidth=elinewidth, capsize=capsize, barsabove=barsabove, lolims=lolims, uplims=uplims, xlolims=xlolims, xuplims=xuplims, errorevery=errorevery, capthick=capthick, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.eventplot) def eventplot( positions, orientation='horizontal', lineoffsets=1, linelengths=1, linewidths=None, colors=None, linestyles='solid', *, data=None, **kwargs): return gca().eventplot( positions, orientation=orientation, lineoffsets=lineoffsets, linelengths=linelengths, linewidths=linewidths, colors=colors, linestyles=linestyles, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.fill) def fill(*args, data=None, **kwargs): return gca().fill( *args, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.fill_between) def fill_between( x, y1, y2=0, where=None, interpolate=False, step=None, *, data=None, **kwargs): return gca().fill_between( x, y1, y2=y2, where=where, interpolate=interpolate, step=step, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.fill_betweenx) def fill_betweenx( y, x1, x2=0, where=None, step=None, interpolate=False, *, data=None, **kwargs): return gca().fill_betweenx( y, x1, x2=x2, where=where, step=step, interpolate=interpolate, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.grid) def grid(b=None, which='major', axis='both', **kwargs): return gca().grid(b=b, which=which, axis=axis, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.hexbin) def hexbin( x, y, C=None, gridsize=100, bins=None, xscale='linear', yscale='linear', extent=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='face', reduce_C_function=np.mean, mincnt=None, marginals=False, *, data=None, **kwargs): __ret = gca().hexbin( x, y, C=C, gridsize=gridsize, bins=bins, xscale=xscale, yscale=yscale, extent=extent, cmap=cmap, norm=norm, vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths, edgecolors=edgecolors, reduce_C_function=reduce_C_function, mincnt=mincnt, marginals=marginals, **({"data": data} if data is not None else {}), **kwargs) sci(__ret) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.hist) def hist( x, bins=None, range=None, density=None, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, normed=None, *, data=None, **kwargs): return gca().hist( x, bins=bins, range=range, density=density, weights=weights, cumulative=cumulative, bottom=bottom, histtype=histtype, align=align, orientation=orientation, rwidth=rwidth, log=log, color=color, label=label, stacked=stacked, normed=normed, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.hist2d) def hist2d( x, y, bins=10, range=None, density=False, weights=None, cmin=None, cmax=None, *, data=None, **kwargs): __ret = gca().hist2d( x, y, bins=bins, range=range, density=density, weights=weights, cmin=cmin, cmax=cmax, **({"data": data} if data is not None else {}), **kwargs) sci(__ret[-1]) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.hlines) def hlines( y, xmin, xmax, colors='k', linestyles='solid', label='', *, data=None, **kwargs): return gca().hlines( y, xmin, xmax, colors=colors, linestyles=linestyles, label=label, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.imshow) def imshow( X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=cbook.deprecation._deprecated_parameter, filternorm=1, filterrad=4.0, imlim=cbook.deprecation._deprecated_parameter, resample=None, url=None, *, data=None, **kwargs): __ret = gca().imshow( X, cmap=cmap, norm=norm, aspect=aspect, interpolation=interpolation, alpha=alpha, vmin=vmin, vmax=vmax, origin=origin, extent=extent, shape=shape, filternorm=filternorm, filterrad=filterrad, imlim=imlim, resample=resample, url=url, **({"data": data} if data is not None else {}), **kwargs) sci(__ret) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.legend) def legend(*args, **kwargs): return gca().legend(*args, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.locator_params) def locator_params(axis='both', tight=None, **kwargs): return gca().locator_params(axis=axis, tight=tight, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.loglog) def loglog(*args, **kwargs): return gca().loglog(*args, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.magnitude_spectrum) def magnitude_spectrum( x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, scale=None, *, data=None, **kwargs): return gca().magnitude_spectrum( x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, scale=scale, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.margins) def margins(*margins, x=None, y=None, tight=True): return gca().margins(*margins, x=x, y=y, tight=tight) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.minorticks_off) def minorticks_off(): return gca().minorticks_off() # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.minorticks_on) def minorticks_on(): return gca().minorticks_on() # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.pcolor) def pcolor( *args, alpha=None, norm=None, cmap=None, vmin=None, vmax=None, data=None, **kwargs): __ret = gca().pcolor( *args, alpha=alpha, norm=norm, cmap=cmap, vmin=vmin, vmax=vmax, **({"data": data} if data is not None else {}), **kwargs) sci(__ret) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.pcolormesh) def pcolormesh( *args, alpha=None, norm=None, cmap=None, vmin=None, vmax=None, shading='flat', antialiased=False, data=None, **kwargs): __ret = gca().pcolormesh( *args, alpha=alpha, norm=norm, cmap=cmap, vmin=vmin, vmax=vmax, shading=shading, antialiased=antialiased, **({"data": data} if data is not None else {}), **kwargs) sci(__ret) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.phase_spectrum) def phase_spectrum( x, Fs=None, Fc=None, window=None, pad_to=None, sides=None, *, data=None, **kwargs): return gca().phase_spectrum( x, Fs=Fs, Fc=Fc, window=window, pad_to=pad_to, sides=sides, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.pie) def pie( x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, rotatelabels=False, *, data=None): return gca().pie( x, explode=explode, labels=labels, colors=colors, autopct=autopct, pctdistance=pctdistance, shadow=shadow, labeldistance=labeldistance, startangle=startangle, radius=radius, counterclock=counterclock, wedgeprops=wedgeprops, textprops=textprops, center=center, frame=frame, rotatelabels=rotatelabels, **({"data": data} if data is not None else {})) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.plot) def plot(*args, scalex=True, scaley=True, data=None, **kwargs): return gca().plot( *args, scalex=scalex, scaley=scaley, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.plot_date) def plot_date( x, y, fmt='o', tz=None, xdate=True, ydate=False, *, data=None, **kwargs): return gca().plot_date( x, y, fmt=fmt, tz=tz, xdate=xdate, ydate=ydate, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.psd) def psd( x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, pad_to=None, sides=None, scale_by_freq=None, return_line=None, *, data=None, **kwargs): return gca().psd( x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, return_line=return_line, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.quiver) def quiver(*args, data=None, **kw): __ret = gca().quiver( *args, **({"data": data} if data is not None else {}), **kw) sci(__ret) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.quiverkey) def quiverkey(Q, X, Y, U, label, **kw): return gca().quiverkey(Q, X, Y, U, label, **kw) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.scatter) def scatter( x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, *, plotnonfinite=False, data=None, **kwargs): __ret = gca().scatter( x, y, s=s, c=c, marker=marker, cmap=cmap, norm=norm, vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths, verts=verts, edgecolors=edgecolors, plotnonfinite=plotnonfinite, **({"data": data} if data is not None else {}), **kwargs) sci(__ret) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.semilogx) def semilogx(*args, **kwargs): return gca().semilogx(*args, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.semilogy) def semilogy(*args, **kwargs): return gca().semilogy(*args, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.specgram) def specgram( x, NFFT=None, Fs=None, Fc=None, detrend=None, window=None, noverlap=None, cmap=None, xextent=None, pad_to=None, sides=None, scale_by_freq=None, mode=None, scale=None, vmin=None, vmax=None, *, data=None, **kwargs): __ret = gca().specgram( x, NFFT=NFFT, Fs=Fs, Fc=Fc, detrend=detrend, window=window, noverlap=noverlap, cmap=cmap, xextent=xextent, pad_to=pad_to, sides=sides, scale_by_freq=scale_by_freq, mode=mode, scale=scale, vmin=vmin, vmax=vmax, **({"data": data} if data is not None else {}), **kwargs) sci(__ret[-1]) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.spy) def spy( Z, precision=0, marker=None, markersize=None, aspect='equal', origin='upper', **kwargs): __ret = gca().spy( Z, precision=precision, marker=marker, markersize=markersize, aspect=aspect, origin=origin, **kwargs) if isinstance(__ret, cm.ScalarMappable): sci(__ret) # noqa return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.stackplot) def stackplot( x, *args, labels=(), colors=None, baseline='zero', data=None, **kwargs): return gca().stackplot( x, *args, labels=labels, colors=colors, baseline=baseline, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.stem) def stem( *args, linefmt=None, markerfmt=None, basefmt=None, bottom=0, label=None, use_line_collection=False, data=None): return gca().stem( *args, linefmt=linefmt, markerfmt=markerfmt, basefmt=basefmt, bottom=bottom, label=label, use_line_collection=use_line_collection, **({"data": data} if data is not None else {})) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.step) def step(x, y, *args, where='pre', data=None, **kwargs): return gca().step( x, y, *args, where=where, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.streamplot) def streamplot( x, y, u, v, density=1, linewidth=None, color=None, cmap=None, norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1, transform=None, zorder=None, start_points=None, maxlength=4.0, integration_direction='both', *, data=None): __ret = gca().streamplot( x, y, u, v, density=density, linewidth=linewidth, color=color, cmap=cmap, norm=norm, arrowsize=arrowsize, arrowstyle=arrowstyle, minlength=minlength, transform=transform, zorder=zorder, start_points=start_points, maxlength=maxlength, integration_direction=integration_direction, **({"data": data} if data is not None else {})) sci(__ret.lines) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.table) def table( cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None, edges='closed', **kwargs): return gca().table( cellText=cellText, cellColours=cellColours, cellLoc=cellLoc, colWidths=colWidths, rowLabels=rowLabels, rowColours=rowColours, rowLoc=rowLoc, colLabels=colLabels, colColours=colColours, colLoc=colLoc, loc=loc, bbox=bbox, edges=edges, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.text) def text( x, y, s, fontdict=None, withdash=cbook.deprecation._deprecated_parameter, **kwargs): return gca().text(x, y, s, fontdict=fontdict, withdash=withdash, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.tick_params) def tick_params(axis='both', **kwargs): return gca().tick_params(axis=axis, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.ticklabel_format) def ticklabel_format( *, axis='both', style='', scilimits=None, useOffset=None, useLocale=None, useMathText=None): return gca().ticklabel_format( axis=axis, style=style, scilimits=scilimits, useOffset=useOffset, useLocale=useLocale, useMathText=useMathText) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.tricontour) def tricontour(*args, **kwargs): __ret = gca().tricontour(*args, **kwargs) if __ret._A is not None: sci(__ret) # noqa return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.tricontourf) def tricontourf(*args, **kwargs): __ret = gca().tricontourf(*args, **kwargs) if __ret._A is not None: sci(__ret) # noqa return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.tripcolor) def tripcolor( *args, alpha=1.0, norm=None, cmap=None, vmin=None, vmax=None, shading='flat', facecolors=None, **kwargs): __ret = gca().tripcolor( *args, alpha=alpha, norm=norm, cmap=cmap, vmin=vmin, vmax=vmax, shading=shading, facecolors=facecolors, **kwargs) sci(__ret) return __ret # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.triplot) def triplot(*args, **kwargs): return gca().triplot(*args, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.violinplot) def violinplot( dataset, positions=None, vert=True, widths=0.5, showmeans=False, showextrema=True, showmedians=False, points=100, bw_method=None, *, data=None): return gca().violinplot( dataset, positions=positions, vert=vert, widths=widths, showmeans=showmeans, showextrema=showextrema, showmedians=showmedians, points=points, bw_method=bw_method, **({"data": data} if data is not None else {})) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.vlines) def vlines( x, ymin, ymax, colors='k', linestyles='solid', label='', *, data=None, **kwargs): return gca().vlines( x, ymin, ymax, colors=colors, linestyles=linestyles, label=label, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.xcorr) def xcorr( x, y, normed=True, detrend=mlab.detrend_none, usevlines=True, maxlags=10, *, data=None, **kwargs): return gca().xcorr( x, y, normed=normed, detrend=detrend, usevlines=usevlines, maxlags=maxlags, **({"data": data} if data is not None else {}), **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes._sci) def sci(im): return gca()._sci(im) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.set_title) def title(label, fontdict=None, loc=None, pad=None, **kwargs): return gca().set_title( label, fontdict=fontdict, loc=loc, pad=pad, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.set_xlabel) def xlabel(xlabel, fontdict=None, labelpad=None, **kwargs): return gca().set_xlabel( xlabel, fontdict=fontdict, labelpad=labelpad, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.set_ylabel) def ylabel(ylabel, fontdict=None, labelpad=None, **kwargs): return gca().set_ylabel( ylabel, fontdict=fontdict, labelpad=labelpad, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.set_xscale) def xscale(value, **kwargs): return gca().set_xscale(value, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. @docstring.copy(Axes.set_yscale) def yscale(value, **kwargs): return gca().set_yscale(value, **kwargs) # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def autumn(): """ Set the colormap to "autumn". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("autumn") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def bone(): """ Set the colormap to "bone". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("bone") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def cool(): """ Set the colormap to "cool". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("cool") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def copper(): """ Set the colormap to "copper". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("copper") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def flag(): """ Set the colormap to "flag". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("flag") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def gray(): """ Set the colormap to "gray". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("gray") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def hot(): """ Set the colormap to "hot". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("hot") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def hsv(): """ Set the colormap to "hsv". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("hsv") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def jet(): """ Set the colormap to "jet". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("jet") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def pink(): """ Set the colormap to "pink". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("pink") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def prism(): """ Set the colormap to "prism". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("prism") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def spring(): """ Set the colormap to "spring". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("spring") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def summer(): """ Set the colormap to "summer". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("summer") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def winter(): """ Set the colormap to "winter". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("winter") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def magma(): """ Set the colormap to "magma". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("magma") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def inferno(): """ Set the colormap to "inferno". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("inferno") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def plasma(): """ Set the colormap to "plasma". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("plasma") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def viridis(): """ Set the colormap to "viridis". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("viridis") # Autogenerated by boilerplate.py. Do not edit as changes will be lost. def nipy_spectral(): """ Set the colormap to "nipy_spectral". This changes the default colormap as well as the colormap of the current image if there is one. See ``help(colormaps)`` for more information. """ set_cmap("nipy_spectral") _setup_pyplot_info_docstrings()
b5b125726a9bdd4bd0ccc00ddd38623837c551dc4ada1301da475d5e75dd0b2e
from collections import OrderedDict BASE_COLORS = { 'b': (0, 0, 1), 'g': (0, 0.5, 0), 'r': (1, 0, 0), 'c': (0, 0.75, 0.75), 'm': (0.75, 0, 0.75), 'y': (0.75, 0.75, 0), 'k': (0, 0, 0), 'w': (1, 1, 1)} # These colors are from Tableau TABLEAU_COLORS = ( ('blue', '#1f77b4'), ('orange', '#ff7f0e'), ('green', '#2ca02c'), ('red', '#d62728'), ('purple', '#9467bd'), ('brown', '#8c564b'), ('pink', '#e377c2'), ('gray', '#7f7f7f'), ('olive', '#bcbd22'), ('cyan', '#17becf'), ) # Normalize name to "tab:<name>" to avoid name collisions. TABLEAU_COLORS = OrderedDict( ('tab:' + name, value) for name, value in TABLEAU_COLORS) # This mapping of color names -> hex values is taken from # a survey run by Randall Munroe see: # http://blog.xkcd.com/2010/05/03/color-survey-results/ # for more details. The results are hosted at # https://xkcd.com/color/rgb.txt # # License: http://creativecommons.org/publicdomain/zero/1.0/ XKCD_COLORS = { 'cloudy blue': '#acc2d9', 'dark pastel green': '#56ae57', 'dust': '#b2996e', 'electric lime': '#a8ff04', 'fresh green': '#69d84f', 'light eggplant': '#894585', 'nasty green': '#70b23f', 'really light blue': '#d4ffff', 'tea': '#65ab7c', 'warm purple': '#952e8f', 'yellowish tan': '#fcfc81', 'cement': '#a5a391', 'dark grass green': '#388004', 'dusty teal': '#4c9085', 'grey teal': '#5e9b8a', 'macaroni and cheese': '#efb435', 'pinkish tan': '#d99b82', 'spruce': '#0a5f38', 'strong blue': '#0c06f7', 'toxic green': '#61de2a', 'windows blue': '#3778bf', 'blue blue': '#2242c7', 'blue with a hint of purple': '#533cc6', 'booger': '#9bb53c', 'bright sea green': '#05ffa6', 'dark green blue': '#1f6357', 'deep turquoise': '#017374', 'green teal': '#0cb577', 'strong pink': '#ff0789', 'bland': '#afa88b', 'deep aqua': '#08787f', 'lavender pink': '#dd85d7', 'light moss green': '#a6c875', 'light seafoam green': '#a7ffb5', 'olive yellow': '#c2b709', 'pig pink': '#e78ea5', 'deep lilac': '#966ebd', 'desert': '#ccad60', 'dusty lavender': '#ac86a8', 'purpley grey': '#947e94', 'purply': '#983fb2', 'candy pink': '#ff63e9', 'light pastel green': '#b2fba5', 'boring green': '#63b365', 'kiwi green': '#8ee53f', 'light grey green': '#b7e1a1', 'orange pink': '#ff6f52', 'tea green': '#bdf8a3', 'very light brown': '#d3b683', 'egg shell': '#fffcc4', 'eggplant purple': '#430541', 'powder pink': '#ffb2d0', 'reddish grey': '#997570', 'baby shit brown': '#ad900d', 'liliac': '#c48efd', 'stormy blue': '#507b9c', 'ugly brown': '#7d7103', 'custard': '#fffd78', 'darkish pink': '#da467d', 'deep brown': '#410200', 'greenish beige': '#c9d179', 'manilla': '#fffa86', 'off blue': '#5684ae', 'battleship grey': '#6b7c85', 'browny green': '#6f6c0a', 'bruise': '#7e4071', 'kelley green': '#009337', 'sickly yellow': '#d0e429', 'sunny yellow': '#fff917', 'azul': '#1d5dec', 'darkgreen': '#054907', 'green/yellow': '#b5ce08', 'lichen': '#8fb67b', 'light light green': '#c8ffb0', 'pale gold': '#fdde6c', 'sun yellow': '#ffdf22', 'tan green': '#a9be70', 'burple': '#6832e3', 'butterscotch': '#fdb147', 'toupe': '#c7ac7d', 'dark cream': '#fff39a', 'indian red': '#850e04', 'light lavendar': '#efc0fe', 'poison green': '#40fd14', 'baby puke green': '#b6c406', 'bright yellow green': '#9dff00', 'charcoal grey': '#3c4142', 'squash': '#f2ab15', 'cinnamon': '#ac4f06', 'light pea green': '#c4fe82', 'radioactive green': '#2cfa1f', 'raw sienna': '#9a6200', 'baby purple': '#ca9bf7', 'cocoa': '#875f42', 'light royal blue': '#3a2efe', 'orangeish': '#fd8d49', 'rust brown': '#8b3103', 'sand brown': '#cba560', 'swamp': '#698339', 'tealish green': '#0cdc73', 'burnt siena': '#b75203', 'camo': '#7f8f4e', 'dusk blue': '#26538d', 'fern': '#63a950', 'old rose': '#c87f89', 'pale light green': '#b1fc99', 'peachy pink': '#ff9a8a', 'rosy pink': '#f6688e', 'light bluish green': '#76fda8', 'light bright green': '#53fe5c', 'light neon green': '#4efd54', 'light seafoam': '#a0febf', 'tiffany blue': '#7bf2da', 'washed out green': '#bcf5a6', 'browny orange': '#ca6b02', 'nice blue': '#107ab0', 'sapphire': '#2138ab', 'greyish teal': '#719f91', 'orangey yellow': '#fdb915', 'parchment': '#fefcaf', 'straw': '#fcf679', 'very dark brown': '#1d0200', 'terracota': '#cb6843', 'ugly blue': '#31668a', 'clear blue': '#247afd', 'creme': '#ffffb6', 'foam green': '#90fda9', 'grey/green': '#86a17d', 'light gold': '#fddc5c', 'seafoam blue': '#78d1b6', 'topaz': '#13bbaf', 'violet pink': '#fb5ffc', 'wintergreen': '#20f986', 'yellow tan': '#ffe36e', 'dark fuchsia': '#9d0759', 'indigo blue': '#3a18b1', 'light yellowish green': '#c2ff89', 'pale magenta': '#d767ad', 'rich purple': '#720058', 'sunflower yellow': '#ffda03', 'green/blue': '#01c08d', 'leather': '#ac7434', 'racing green': '#014600', 'vivid purple': '#9900fa', 'dark royal blue': '#02066f', 'hazel': '#8e7618', 'muted pink': '#d1768f', 'booger green': '#96b403', 'canary': '#fdff63', 'cool grey': '#95a3a6', 'dark taupe': '#7f684e', 'darkish purple': '#751973', 'true green': '#089404', 'coral pink': '#ff6163', 'dark sage': '#598556', 'dark slate blue': '#214761', 'flat blue': '#3c73a8', 'mushroom': '#ba9e88', 'rich blue': '#021bf9', 'dirty purple': '#734a65', 'greenblue': '#23c48b', 'icky green': '#8fae22', 'light khaki': '#e6f2a2', 'warm blue': '#4b57db', 'dark hot pink': '#d90166', 'deep sea blue': '#015482', 'carmine': '#9d0216', 'dark yellow green': '#728f02', 'pale peach': '#ffe5ad', 'plum purple': '#4e0550', 'golden rod': '#f9bc08', 'neon red': '#ff073a', 'old pink': '#c77986', 'very pale blue': '#d6fffe', 'blood orange': '#fe4b03', 'grapefruit': '#fd5956', 'sand yellow': '#fce166', 'clay brown': '#b2713d', 'dark blue grey': '#1f3b4d', 'flat green': '#699d4c', 'light green blue': '#56fca2', 'warm pink': '#fb5581', 'dodger blue': '#3e82fc', 'gross green': '#a0bf16', 'ice': '#d6fffa', 'metallic blue': '#4f738e', 'pale salmon': '#ffb19a', 'sap green': '#5c8b15', 'algae': '#54ac68', 'bluey grey': '#89a0b0', 'greeny grey': '#7ea07a', 'highlighter green': '#1bfc06', 'light light blue': '#cafffb', 'light mint': '#b6ffbb', 'raw umber': '#a75e09', 'vivid blue': '#152eff', 'deep lavender': '#8d5eb7', 'dull teal': '#5f9e8f', 'light greenish blue': '#63f7b4', 'mud green': '#606602', 'pinky': '#fc86aa', 'red wine': '#8c0034', 'shit green': '#758000', 'tan brown': '#ab7e4c', 'darkblue': '#030764', 'rosa': '#fe86a4', 'lipstick': '#d5174e', 'pale mauve': '#fed0fc', 'claret': '#680018', 'dandelion': '#fedf08', 'orangered': '#fe420f', 'poop green': '#6f7c00', 'ruby': '#ca0147', 'dark': '#1b2431', 'greenish turquoise': '#00fbb0', 'pastel red': '#db5856', 'piss yellow': '#ddd618', 'bright cyan': '#41fdfe', 'dark coral': '#cf524e', 'algae green': '#21c36f', 'darkish red': '#a90308', 'reddy brown': '#6e1005', 'blush pink': '#fe828c', 'camouflage green': '#4b6113', 'lawn green': '#4da409', 'putty': '#beae8a', 'vibrant blue': '#0339f8', 'dark sand': '#a88f59', 'purple/blue': '#5d21d0', 'saffron': '#feb209', 'twilight': '#4e518b', 'warm brown': '#964e02', 'bluegrey': '#85a3b2', 'bubble gum pink': '#ff69af', 'duck egg blue': '#c3fbf4', 'greenish cyan': '#2afeb7', 'petrol': '#005f6a', 'royal': '#0c1793', 'butter': '#ffff81', 'dusty orange': '#f0833a', 'off yellow': '#f1f33f', 'pale olive green': '#b1d27b', 'orangish': '#fc824a', 'leaf': '#71aa34', 'light blue grey': '#b7c9e2', 'dried blood': '#4b0101', 'lightish purple': '#a552e6', 'rusty red': '#af2f0d', 'lavender blue': '#8b88f8', 'light grass green': '#9af764', 'light mint green': '#a6fbb2', 'sunflower': '#ffc512', 'velvet': '#750851', 'brick orange': '#c14a09', 'lightish red': '#fe2f4a', 'pure blue': '#0203e2', 'twilight blue': '#0a437a', 'violet red': '#a50055', 'yellowy brown': '#ae8b0c', 'carnation': '#fd798f', 'muddy yellow': '#bfac05', 'dark seafoam green': '#3eaf76', 'deep rose': '#c74767', 'dusty red': '#b9484e', 'grey/blue': '#647d8e', 'lemon lime': '#bffe28', 'purple/pink': '#d725de', 'brown yellow': '#b29705', 'purple brown': '#673a3f', 'wisteria': '#a87dc2', 'banana yellow': '#fafe4b', 'lipstick red': '#c0022f', 'water blue': '#0e87cc', 'brown grey': '#8d8468', 'vibrant purple': '#ad03de', 'baby green': '#8cff9e', 'barf green': '#94ac02', 'eggshell blue': '#c4fff7', 'sandy yellow': '#fdee73', 'cool green': '#33b864', 'pale': '#fff9d0', 'blue/grey': '#758da3', 'hot magenta': '#f504c9', 'greyblue': '#77a1b5', 'purpley': '#8756e4', 'baby shit green': '#889717', 'brownish pink': '#c27e79', 'dark aquamarine': '#017371', 'diarrhea': '#9f8303', 'light mustard': '#f7d560', 'pale sky blue': '#bdf6fe', 'turtle green': '#75b84f', 'bright olive': '#9cbb04', 'dark grey blue': '#29465b', 'greeny brown': '#696006', 'lemon green': '#adf802', 'light periwinkle': '#c1c6fc', 'seaweed green': '#35ad6b', 'sunshine yellow': '#fffd37', 'ugly purple': '#a442a0', 'medium pink': '#f36196', 'puke brown': '#947706', 'very light pink': '#fff4f2', 'viridian': '#1e9167', 'bile': '#b5c306', 'faded yellow': '#feff7f', 'very pale green': '#cffdbc', 'vibrant green': '#0add08', 'bright lime': '#87fd05', 'spearmint': '#1ef876', 'light aquamarine': '#7bfdc7', 'light sage': '#bcecac', 'yellowgreen': '#bbf90f', 'baby poo': '#ab9004', 'dark seafoam': '#1fb57a', 'deep teal': '#00555a', 'heather': '#a484ac', 'rust orange': '#c45508', 'dirty blue': '#3f829d', 'fern green': '#548d44', 'bright lilac': '#c95efb', 'weird green': '#3ae57f', 'peacock blue': '#016795', 'avocado green': '#87a922', 'faded orange': '#f0944d', 'grape purple': '#5d1451', 'hot green': '#25ff29', 'lime yellow': '#d0fe1d', 'mango': '#ffa62b', 'shamrock': '#01b44c', 'bubblegum': '#ff6cb5', 'purplish brown': '#6b4247', 'vomit yellow': '#c7c10c', 'pale cyan': '#b7fffa', 'key lime': '#aeff6e', 'tomato red': '#ec2d01', 'lightgreen': '#76ff7b', 'merlot': '#730039', 'night blue': '#040348', 'purpleish pink': '#df4ec8', 'apple': '#6ecb3c', 'baby poop green': '#8f9805', 'green apple': '#5edc1f', 'heliotrope': '#d94ff5', 'yellow/green': '#c8fd3d', 'almost black': '#070d0d', 'cool blue': '#4984b8', 'leafy green': '#51b73b', 'mustard brown': '#ac7e04', 'dusk': '#4e5481', 'dull brown': '#876e4b', 'frog green': '#58bc08', 'vivid green': '#2fef10', 'bright light green': '#2dfe54', 'fluro green': '#0aff02', 'kiwi': '#9cef43', 'seaweed': '#18d17b', 'navy green': '#35530a', 'ultramarine blue': '#1805db', 'iris': '#6258c4', 'pastel orange': '#ff964f', 'yellowish orange': '#ffab0f', 'perrywinkle': '#8f8ce7', 'tealish': '#24bca8', 'dark plum': '#3f012c', 'pear': '#cbf85f', 'pinkish orange': '#ff724c', 'midnight purple': '#280137', 'light urple': '#b36ff6', 'dark mint': '#48c072', 'greenish tan': '#bccb7a', 'light burgundy': '#a8415b', 'turquoise blue': '#06b1c4', 'ugly pink': '#cd7584', 'sandy': '#f1da7a', 'electric pink': '#ff0490', 'muted purple': '#805b87', 'mid green': '#50a747', 'greyish': '#a8a495', 'neon yellow': '#cfff04', 'banana': '#ffff7e', 'carnation pink': '#ff7fa7', 'tomato': '#ef4026', 'sea': '#3c9992', 'muddy brown': '#886806', 'turquoise green': '#04f489', 'buff': '#fef69e', 'fawn': '#cfaf7b', 'muted blue': '#3b719f', 'pale rose': '#fdc1c5', 'dark mint green': '#20c073', 'amethyst': '#9b5fc0', 'blue/green': '#0f9b8e', 'chestnut': '#742802', 'sick green': '#9db92c', 'pea': '#a4bf20', 'rusty orange': '#cd5909', 'stone': '#ada587', 'rose red': '#be013c', 'pale aqua': '#b8ffeb', 'deep orange': '#dc4d01', 'earth': '#a2653e', 'mossy green': '#638b27', 'grassy green': '#419c03', 'pale lime green': '#b1ff65', 'light grey blue': '#9dbcd4', 'pale grey': '#fdfdfe', 'asparagus': '#77ab56', 'blueberry': '#464196', 'purple red': '#990147', 'pale lime': '#befd73', 'greenish teal': '#32bf84', 'caramel': '#af6f09', 'deep magenta': '#a0025c', 'light peach': '#ffd8b1', 'milk chocolate': '#7f4e1e', 'ocher': '#bf9b0c', 'off green': '#6ba353', 'purply pink': '#f075e6', 'lightblue': '#7bc8f6', 'dusky blue': '#475f94', 'golden': '#f5bf03', 'light beige': '#fffeb6', 'butter yellow': '#fffd74', 'dusky purple': '#895b7b', 'french blue': '#436bad', 'ugly yellow': '#d0c101', 'greeny yellow': '#c6f808', 'orangish red': '#f43605', 'shamrock green': '#02c14d', 'orangish brown': '#b25f03', 'tree green': '#2a7e19', 'deep violet': '#490648', 'gunmetal': '#536267', 'blue/purple': '#5a06ef', 'cherry': '#cf0234', 'sandy brown': '#c4a661', 'warm grey': '#978a84', 'dark indigo': '#1f0954', 'midnight': '#03012d', 'bluey green': '#2bb179', 'grey pink': '#c3909b', 'soft purple': '#a66fb5', 'blood': '#770001', 'brown red': '#922b05', 'medium grey': '#7d7f7c', 'berry': '#990f4b', 'poo': '#8f7303', 'purpley pink': '#c83cb9', 'light salmon': '#fea993', 'snot': '#acbb0d', 'easter purple': '#c071fe', 'light yellow green': '#ccfd7f', 'dark navy blue': '#00022e', 'drab': '#828344', 'light rose': '#ffc5cb', 'rouge': '#ab1239', 'purplish red': '#b0054b', 'slime green': '#99cc04', 'baby poop': '#937c00', 'irish green': '#019529', 'pink/purple': '#ef1de7', 'dark navy': '#000435', 'greeny blue': '#42b395', 'light plum': '#9d5783', 'pinkish grey': '#c8aca9', 'dirty orange': '#c87606', 'rust red': '#aa2704', 'pale lilac': '#e4cbff', 'orangey red': '#fa4224', 'primary blue': '#0804f9', 'kermit green': '#5cb200', 'brownish purple': '#76424e', 'murky green': '#6c7a0e', 'wheat': '#fbdd7e', 'very dark purple': '#2a0134', 'bottle green': '#044a05', 'watermelon': '#fd4659', 'deep sky blue': '#0d75f8', 'fire engine red': '#fe0002', 'yellow ochre': '#cb9d06', 'pumpkin orange': '#fb7d07', 'pale olive': '#b9cc81', 'light lilac': '#edc8ff', 'lightish green': '#61e160', 'carolina blue': '#8ab8fe', 'mulberry': '#920a4e', 'shocking pink': '#fe02a2', 'auburn': '#9a3001', 'bright lime green': '#65fe08', 'celadon': '#befdb7', 'pinkish brown': '#b17261', 'poo brown': '#885f01', 'bright sky blue': '#02ccfe', 'celery': '#c1fd95', 'dirt brown': '#836539', 'strawberry': '#fb2943', 'dark lime': '#84b701', 'copper': '#b66325', 'medium brown': '#7f5112', 'muted green': '#5fa052', "robin's egg": '#6dedfd', 'bright aqua': '#0bf9ea', 'bright lavender': '#c760ff', 'ivory': '#ffffcb', 'very light purple': '#f6cefc', 'light navy': '#155084', 'pink red': '#f5054f', 'olive brown': '#645403', 'poop brown': '#7a5901', 'mustard green': '#a8b504', 'ocean green': '#3d9973', 'very dark blue': '#000133', 'dusty green': '#76a973', 'light navy blue': '#2e5a88', 'minty green': '#0bf77d', 'adobe': '#bd6c48', 'barney': '#ac1db8', 'jade green': '#2baf6a', 'bright light blue': '#26f7fd', 'light lime': '#aefd6c', 'dark khaki': '#9b8f55', 'orange yellow': '#ffad01', 'ocre': '#c69c04', 'maize': '#f4d054', 'faded pink': '#de9dac', 'british racing green': '#05480d', 'sandstone': '#c9ae74', 'mud brown': '#60460f', 'light sea green': '#98f6b0', 'robin egg blue': '#8af1fe', 'aqua marine': '#2ee8bb', 'dark sea green': '#11875d', 'soft pink': '#fdb0c0', 'orangey brown': '#b16002', 'cherry red': '#f7022a', 'burnt yellow': '#d5ab09', 'brownish grey': '#86775f', 'camel': '#c69f59', 'purplish grey': '#7a687f', 'marine': '#042e60', 'greyish pink': '#c88d94', 'pale turquoise': '#a5fbd5', 'pastel yellow': '#fffe71', 'bluey purple': '#6241c7', 'canary yellow': '#fffe40', 'faded red': '#d3494e', 'sepia': '#985e2b', 'coffee': '#a6814c', 'bright magenta': '#ff08e8', 'mocha': '#9d7651', 'ecru': '#feffca', 'purpleish': '#98568d', 'cranberry': '#9e003a', 'darkish green': '#287c37', 'brown orange': '#b96902', 'dusky rose': '#ba6873', 'melon': '#ff7855', 'sickly green': '#94b21c', 'silver': '#c5c9c7', 'purply blue': '#661aee', 'purpleish blue': '#6140ef', 'hospital green': '#9be5aa', 'shit brown': '#7b5804', 'mid blue': '#276ab3', 'amber': '#feb308', 'easter green': '#8cfd7e', 'soft blue': '#6488ea', 'cerulean blue': '#056eee', 'golden brown': '#b27a01', 'bright turquoise': '#0ffef9', 'red pink': '#fa2a55', 'red purple': '#820747', 'greyish brown': '#7a6a4f', 'vermillion': '#f4320c', 'russet': '#a13905', 'steel grey': '#6f828a', 'lighter purple': '#a55af4', 'bright violet': '#ad0afd', 'prussian blue': '#004577', 'slate green': '#658d6d', 'dirty pink': '#ca7b80', 'dark blue green': '#005249', 'pine': '#2b5d34', 'yellowy green': '#bff128', 'dark gold': '#b59410', 'bluish': '#2976bb', 'darkish blue': '#014182', 'dull red': '#bb3f3f', 'pinky red': '#fc2647', 'bronze': '#a87900', 'pale teal': '#82cbb2', 'military green': '#667c3e', 'barbie pink': '#fe46a5', 'bubblegum pink': '#fe83cc', 'pea soup green': '#94a617', 'dark mustard': '#a88905', 'shit': '#7f5f00', 'medium purple': '#9e43a2', 'very dark green': '#062e03', 'dirt': '#8a6e45', 'dusky pink': '#cc7a8b', 'red violet': '#9e0168', 'lemon yellow': '#fdff38', 'pistachio': '#c0fa8b', 'dull yellow': '#eedc5b', 'dark lime green': '#7ebd01', 'denim blue': '#3b5b92', 'teal blue': '#01889f', 'lightish blue': '#3d7afd', 'purpley blue': '#5f34e7', 'light indigo': '#6d5acf', 'swamp green': '#748500', 'brown green': '#706c11', 'dark maroon': '#3c0008', 'hot purple': '#cb00f5', 'dark forest green': '#002d04', 'faded blue': '#658cbb', 'drab green': '#749551', 'light lime green': '#b9ff66', 'snot green': '#9dc100', 'yellowish': '#faee66', 'light blue green': '#7efbb3', 'bordeaux': '#7b002c', 'light mauve': '#c292a1', 'ocean': '#017b92', 'marigold': '#fcc006', 'muddy green': '#657432', 'dull orange': '#d8863b', 'steel': '#738595', 'electric purple': '#aa23ff', 'fluorescent green': '#08ff08', 'yellowish brown': '#9b7a01', 'blush': '#f29e8e', 'soft green': '#6fc276', 'bright orange': '#ff5b00', 'lemon': '#fdff52', 'purple grey': '#866f85', 'acid green': '#8ffe09', 'pale lavender': '#eecffe', 'violet blue': '#510ac9', 'light forest green': '#4f9153', 'burnt red': '#9f2305', 'khaki green': '#728639', 'cerise': '#de0c62', 'faded purple': '#916e99', 'apricot': '#ffb16d', 'dark olive green': '#3c4d03', 'grey brown': '#7f7053', 'green grey': '#77926f', 'true blue': '#010fcc', 'pale violet': '#ceaefa', 'periwinkle blue': '#8f99fb', 'light sky blue': '#c6fcff', 'blurple': '#5539cc', 'green brown': '#544e03', 'bluegreen': '#017a79', 'bright teal': '#01f9c6', 'brownish yellow': '#c9b003', 'pea soup': '#929901', 'forest': '#0b5509', 'barney purple': '#a00498', 'ultramarine': '#2000b1', 'purplish': '#94568c', 'puke yellow': '#c2be0e', 'bluish grey': '#748b97', 'dark periwinkle': '#665fd1', 'dark lilac': '#9c6da5', 'reddish': '#c44240', 'light maroon': '#a24857', 'dusty purple': '#825f87', 'terra cotta': '#c9643b', 'avocado': '#90b134', 'marine blue': '#01386a', 'teal green': '#25a36f', 'slate grey': '#59656d', 'lighter green': '#75fd63', 'electric green': '#21fc0d', 'dusty blue': '#5a86ad', 'golden yellow': '#fec615', 'bright yellow': '#fffd01', 'light lavender': '#dfc5fe', 'umber': '#b26400', 'poop': '#7f5e00', 'dark peach': '#de7e5d', 'jungle green': '#048243', 'eggshell': '#ffffd4', 'denim': '#3b638c', 'yellow brown': '#b79400', 'dull purple': '#84597e', 'chocolate brown': '#411900', 'wine red': '#7b0323', 'neon blue': '#04d9ff', 'dirty green': '#667e2c', 'light tan': '#fbeeac', 'ice blue': '#d7fffe', 'cadet blue': '#4e7496', 'dark mauve': '#874c62', 'very light blue': '#d5ffff', 'grey purple': '#826d8c', 'pastel pink': '#ffbacd', 'very light green': '#d1ffbd', 'dark sky blue': '#448ee4', 'evergreen': '#05472a', 'dull pink': '#d5869d', 'aubergine': '#3d0734', 'mahogany': '#4a0100', 'reddish orange': '#f8481c', 'deep green': '#02590f', 'vomit green': '#89a203', 'purple pink': '#e03fd8', 'dusty pink': '#d58a94', 'faded green': '#7bb274', 'camo green': '#526525', 'pinky purple': '#c94cbe', 'pink purple': '#db4bda', 'brownish red': '#9e3623', 'dark rose': '#b5485d', 'mud': '#735c12', 'brownish': '#9c6d57', 'emerald green': '#028f1e', 'pale brown': '#b1916e', 'dull blue': '#49759c', 'burnt umber': '#a0450e', 'medium green': '#39ad48', 'clay': '#b66a50', 'light aqua': '#8cffdb', 'light olive green': '#a4be5c', 'brownish orange': '#cb7723', 'dark aqua': '#05696b', 'purplish pink': '#ce5dae', 'dark salmon': '#c85a53', 'greenish grey': '#96ae8d', 'jade': '#1fa774', 'ugly green': '#7a9703', 'dark beige': '#ac9362', 'emerald': '#01a049', 'pale red': '#d9544d', 'light magenta': '#fa5ff7', 'sky': '#82cafc', 'light cyan': '#acfffc', 'yellow orange': '#fcb001', 'reddish purple': '#910951', 'reddish pink': '#fe2c54', 'orchid': '#c875c4', 'dirty yellow': '#cdc50a', 'orange red': '#fd411e', 'deep red': '#9a0200', 'orange brown': '#be6400', 'cobalt blue': '#030aa7', 'neon pink': '#fe019a', 'rose pink': '#f7879a', 'greyish purple': '#887191', 'raspberry': '#b00149', 'aqua green': '#12e193', 'salmon pink': '#fe7b7c', 'tangerine': '#ff9408', 'brownish green': '#6a6e09', 'red brown': '#8b2e16', 'greenish brown': '#696112', 'pumpkin': '#e17701', 'pine green': '#0a481e', 'charcoal': '#343837', 'baby pink': '#ffb7ce', 'cornflower': '#6a79f7', 'blue violet': '#5d06e9', 'chocolate': '#3d1c02', 'greyish green': '#82a67d', 'scarlet': '#be0119', 'green yellow': '#c9ff27', 'dark olive': '#373e02', 'sienna': '#a9561e', 'pastel purple': '#caa0ff', 'terracotta': '#ca6641', 'aqua blue': '#02d8e9', 'sage green': '#88b378', 'blood red': '#980002', 'deep pink': '#cb0162', 'grass': '#5cac2d', 'moss': '#769958', 'pastel blue': '#a2bffe', 'bluish green': '#10a674', 'green blue': '#06b48b', 'dark tan': '#af884a', 'greenish blue': '#0b8b87', 'pale orange': '#ffa756', 'vomit': '#a2a415', 'forrest green': '#154406', 'dark lavender': '#856798', 'dark violet': '#34013f', 'purple blue': '#632de9', 'dark cyan': '#0a888a', 'olive drab': '#6f7632', 'pinkish': '#d46a7e', 'cobalt': '#1e488f', 'neon purple': '#bc13fe', 'light turquoise': '#7ef4cc', 'apple green': '#76cd26', 'dull green': '#74a662', 'wine': '#80013f', 'powder blue': '#b1d1fc', 'off white': '#ffffe4', 'electric blue': '#0652ff', 'dark turquoise': '#045c5a', 'blue purple': '#5729ce', 'azure': '#069af3', 'bright red': '#ff000d', 'pinkish red': '#f10c45', 'cornflower blue': '#5170d7', 'light olive': '#acbf69', 'grape': '#6c3461', 'greyish blue': '#5e819d', 'purplish blue': '#601ef9', 'yellowish green': '#b0dd16', 'greenish yellow': '#cdfd02', 'medium blue': '#2c6fbb', 'dusty rose': '#c0737a', 'light violet': '#d6b4fc', 'midnight blue': '#020035', 'bluish purple': '#703be7', 'red orange': '#fd3c06', 'dark magenta': '#960056', 'greenish': '#40a368', 'ocean blue': '#03719c', 'coral': '#fc5a50', 'cream': '#ffffc2', 'reddish brown': '#7f2b0a', 'burnt sienna': '#b04e0f', 'brick': '#a03623', 'sage': '#87ae73', 'grey green': '#789b73', 'white': '#ffffff', "robin's egg blue": '#98eff9', 'moss green': '#658b38', 'steel blue': '#5a7d9a', 'eggplant': '#380835', 'light yellow': '#fffe7a', 'leaf green': '#5ca904', 'light grey': '#d8dcd6', 'puke': '#a5a502', 'pinkish purple': '#d648d7', 'sea blue': '#047495', 'pale purple': '#b790d4', 'slate blue': '#5b7c99', 'blue grey': '#607c8e', 'hunter green': '#0b4008', 'fuchsia': '#ed0dd9', 'crimson': '#8c000f', 'pale yellow': '#ffff84', 'ochre': '#bf9005', 'mustard yellow': '#d2bd0a', 'light red': '#ff474c', 'cerulean': '#0485d1', 'pale pink': '#ffcfdc', 'deep blue': '#040273', 'rust': '#a83c09', 'light teal': '#90e4c1', 'slate': '#516572', 'goldenrod': '#fac205', 'dark yellow': '#d5b60a', 'dark grey': '#363737', 'army green': '#4b5d16', 'grey blue': '#6b8ba4', 'seafoam': '#80f9ad', 'puce': '#a57e52', 'spring green': '#a9f971', 'dark orange': '#c65102', 'sand': '#e2ca76', 'pastel green': '#b0ff9d', 'mint': '#9ffeb0', 'light orange': '#fdaa48', 'bright pink': '#fe01b1', 'chartreuse': '#c1f80a', 'deep purple': '#36013f', 'dark brown': '#341c02', 'taupe': '#b9a281', 'pea green': '#8eab12', 'puke green': '#9aae07', 'kelly green': '#02ab2e', 'seafoam green': '#7af9ab', 'blue green': '#137e6d', 'khaki': '#aaa662', 'burgundy': '#610023', 'dark teal': '#014d4e', 'brick red': '#8f1402', 'royal purple': '#4b006e', 'plum': '#580f41', 'mint green': '#8fff9f', 'gold': '#dbb40c', 'baby blue': '#a2cffe', 'yellow green': '#c0fb2d', 'bright purple': '#be03fd', 'dark red': '#840000', 'pale blue': '#d0fefe', 'grass green': '#3f9b0b', 'navy': '#01153e', 'aquamarine': '#04d8b2', 'burnt orange': '#c04e01', 'neon green': '#0cff0c', 'bright blue': '#0165fc', 'rose': '#cf6275', 'light pink': '#ffd1df', 'mustard': '#ceb301', 'indigo': '#380282', 'lime': '#aaff32', 'sea green': '#53fca1', 'periwinkle': '#8e82fe', 'dark pink': '#cb416b', 'olive green': '#677a04', 'peach': '#ffb07c', 'pale green': '#c7fdb5', 'light brown': '#ad8150', 'hot pink': '#ff028d', 'black': '#000000', 'lilac': '#cea2fd', 'navy blue': '#001146', 'royal blue': '#0504aa', 'beige': '#e6daa6', 'salmon': '#ff796c', 'olive': '#6e750e', 'maroon': '#650021', 'bright green': '#01ff07', 'dark purple': '#35063e', 'mauve': '#ae7181', 'forest green': '#06470c', 'aqua': '#13eac9', 'cyan': '#00ffff', 'tan': '#d1b26f', 'dark blue': '#00035b', 'lavender': '#c79fef', 'turquoise': '#06c2ac', 'dark green': '#033500', 'violet': '#9a0eea', 'light purple': '#bf77f6', 'lime green': '#89fe05', 'grey': '#929591', 'sky blue': '#75bbfd', 'yellow': '#ffff14', 'magenta': '#c20078', 'light green': '#96f97b', 'orange': '#f97306', 'teal': '#029386', 'light blue': '#95d0fc', 'red': '#e50000', 'brown': '#653700', 'pink': '#ff81c0', 'blue': '#0343df', 'green': '#15b01a', 'purple': '#7e1e9c'} # Normalize name to "xkcd:<name>" to avoid name collisions. XKCD_COLORS = {'xkcd:' + name: value for name, value in XKCD_COLORS.items()} # https://drafts.csswg.org/css-color-4/#named-colors CSS4_COLORS = { 'aliceblue': '#F0F8FF', 'antiquewhite': '#FAEBD7', 'aqua': '#00FFFF', 'aquamarine': '#7FFFD4', 'azure': '#F0FFFF', 'beige': '#F5F5DC', 'bisque': '#FFE4C4', 'black': '#000000', 'blanchedalmond': '#FFEBCD', 'blue': '#0000FF', 'blueviolet': '#8A2BE2', 'brown': '#A52A2A', 'burlywood': '#DEB887', 'cadetblue': '#5F9EA0', 'chartreuse': '#7FFF00', 'chocolate': '#D2691E', 'coral': '#FF7F50', 'cornflowerblue': '#6495ED', 'cornsilk': '#FFF8DC', 'crimson': '#DC143C', 'cyan': '#00FFFF', 'darkblue': '#00008B', 'darkcyan': '#008B8B', 'darkgoldenrod': '#B8860B', 'darkgray': '#A9A9A9', 'darkgreen': '#006400', 'darkgrey': '#A9A9A9', 'darkkhaki': '#BDB76B', 'darkmagenta': '#8B008B', 'darkolivegreen': '#556B2F', 'darkorange': '#FF8C00', 'darkorchid': '#9932CC', 'darkred': '#8B0000', 'darksalmon': '#E9967A', 'darkseagreen': '#8FBC8F', 'darkslateblue': '#483D8B', 'darkslategray': '#2F4F4F', 'darkslategrey': '#2F4F4F', 'darkturquoise': '#00CED1', 'darkviolet': '#9400D3', 'deeppink': '#FF1493', 'deepskyblue': '#00BFFF', 'dimgray': '#696969', 'dimgrey': '#696969', 'dodgerblue': '#1E90FF', 'firebrick': '#B22222', 'floralwhite': '#FFFAF0', 'forestgreen': '#228B22', 'fuchsia': '#FF00FF', 'gainsboro': '#DCDCDC', 'ghostwhite': '#F8F8FF', 'gold': '#FFD700', 'goldenrod': '#DAA520', 'gray': '#808080', 'green': '#008000', 'greenyellow': '#ADFF2F', 'grey': '#808080', 'honeydew': '#F0FFF0', 'hotpink': '#FF69B4', 'indianred': '#CD5C5C', 'indigo': '#4B0082', 'ivory': '#FFFFF0', 'khaki': '#F0E68C', 'lavender': '#E6E6FA', 'lavenderblush': '#FFF0F5', 'lawngreen': '#7CFC00', 'lemonchiffon': '#FFFACD', 'lightblue': '#ADD8E6', 'lightcoral': '#F08080', 'lightcyan': '#E0FFFF', 'lightgoldenrodyellow': '#FAFAD2', 'lightgray': '#D3D3D3', 'lightgreen': '#90EE90', 'lightgrey': '#D3D3D3', 'lightpink': '#FFB6C1', 'lightsalmon': '#FFA07A', 'lightseagreen': '#20B2AA', 'lightskyblue': '#87CEFA', 'lightslategray': '#778899', 'lightslategrey': '#778899', 'lightsteelblue': '#B0C4DE', 'lightyellow': '#FFFFE0', 'lime': '#00FF00', 'limegreen': '#32CD32', 'linen': '#FAF0E6', 'magenta': '#FF00FF', 'maroon': '#800000', 'mediumaquamarine': '#66CDAA', 'mediumblue': '#0000CD', 'mediumorchid': '#BA55D3', 'mediumpurple': '#9370DB', 'mediumseagreen': '#3CB371', 'mediumslateblue': '#7B68EE', 'mediumspringgreen': '#00FA9A', 'mediumturquoise': '#48D1CC', 'mediumvioletred': '#C71585', 'midnightblue': '#191970', 'mintcream': '#F5FFFA', 'mistyrose': '#FFE4E1', 'moccasin': '#FFE4B5', 'navajowhite': '#FFDEAD', 'navy': '#000080', 'oldlace': '#FDF5E6', 'olive': '#808000', 'olivedrab': '#6B8E23', 'orange': '#FFA500', 'orangered': '#FF4500', 'orchid': '#DA70D6', 'palegoldenrod': '#EEE8AA', 'palegreen': '#98FB98', 'paleturquoise': '#AFEEEE', 'palevioletred': '#DB7093', 'papayawhip': '#FFEFD5', 'peachpuff': '#FFDAB9', 'peru': '#CD853F', 'pink': '#FFC0CB', 'plum': '#DDA0DD', 'powderblue': '#B0E0E6', 'purple': '#800080', 'rebeccapurple': '#663399', 'red': '#FF0000', 'rosybrown': '#BC8F8F', 'royalblue': '#4169E1', 'saddlebrown': '#8B4513', 'salmon': '#FA8072', 'sandybrown': '#F4A460', 'seagreen': '#2E8B57', 'seashell': '#FFF5EE', 'sienna': '#A0522D', 'silver': '#C0C0C0', 'skyblue': '#87CEEB', 'slateblue': '#6A5ACD', 'slategray': '#708090', 'slategrey': '#708090', 'snow': '#FFFAFA', 'springgreen': '#00FF7F', 'steelblue': '#4682B4', 'tan': '#D2B48C', 'teal': '#008080', 'thistle': '#D8BFD8', 'tomato': '#FF6347', 'turquoise': '#40E0D0', 'violet': '#EE82EE', 'wheat': '#F5DEB3', 'white': '#FFFFFF', 'whitesmoke': '#F5F5F5', 'yellow': '#FFFF00', 'yellowgreen': '#9ACD32'}
b07030e1614cae5dd3916d6eef5493ca3c878dbb232ed1c18ba75fecf103262c
""" Defines classes for path effects. The path effects are supported in :class:`~matplotlib.text.Text`, :class:`~matplotlib.lines.Line2D` and :class:`~matplotlib.patches.Patch`. """ from matplotlib.backend_bases import RendererBase from matplotlib import colors as mcolors from matplotlib import patches as mpatches from matplotlib import transforms as mtransforms class AbstractPathEffect(object): """ A base class for path effects. Subclasses should override the ``draw_path`` method to add effect functionality. """ def __init__(self, offset=(0., 0.)): """ Parameters ---------- offset : pair of floats The offset to apply to the path, measured in points. """ self._offset = offset self._offset_trans = mtransforms.Affine2D() def _offset_transform(self, renderer, transform): """Apply the offset to the given transform.""" offset_x = renderer.points_to_pixels(self._offset[0]) offset_y = renderer.points_to_pixels(self._offset[1]) return transform + self._offset_trans.clear().translate(offset_x, offset_y) def _update_gc(self, gc, new_gc_dict): """ Update the given GraphicsCollection with the given dictionary of properties. The keys in the dictionary are used to identify the appropriate set_ method on the gc. """ new_gc_dict = new_gc_dict.copy() dashes = new_gc_dict.pop("dashes", None) if dashes: gc.set_dashes(**dashes) for k, v in new_gc_dict.items(): set_method = getattr(gc, 'set_' + k, None) if not callable(set_method): raise AttributeError('Unknown property {0}'.format(k)) set_method(v) return gc def draw_path(self, renderer, gc, tpath, affine, rgbFace=None): """ Derived should override this method. The arguments are the same as :meth:`matplotlib.backend_bases.RendererBase.draw_path` except the first argument is a renderer. """ # Get the real renderer, not a PathEffectRenderer. if isinstance(renderer, PathEffectRenderer): renderer = renderer._renderer return renderer.draw_path(gc, tpath, affine, rgbFace) class PathEffectRenderer(RendererBase): """ Implements a Renderer which contains another renderer. This proxy then intercepts draw calls, calling the appropriate :class:`AbstractPathEffect` draw method. .. note:: Not all methods have been overridden on this RendererBase subclass. It may be necessary to add further methods to extend the PathEffects capabilities further. """ def __init__(self, path_effects, renderer): """ Parameters ---------- path_effects : iterable of :class:`AbstractPathEffect` The path effects which this renderer represents. renderer : :class:`matplotlib.backend_bases.RendererBase` instance """ self._path_effects = path_effects self._renderer = renderer def new_gc(self): # docstring inherited return self._renderer.new_gc() def copy_with_path_effect(self, path_effects): return self.__class__(path_effects, self._renderer) def draw_path(self, gc, tpath, affine, rgbFace=None): for path_effect in self._path_effects: path_effect.draw_path(self._renderer, gc, tpath, affine, rgbFace) def draw_markers( self, gc, marker_path, marker_trans, path, *args, **kwargs): # We do a little shimmy so that all markers are drawn for each path # effect in turn. Essentially, we induce recursion (depth 1) which is # terminated once we have just a single path effect to work with. if len(self._path_effects) == 1: # Call the base path effect function - this uses the unoptimised # approach of calling "draw_path" multiple times. return RendererBase.draw_markers(self, gc, marker_path, marker_trans, path, *args, **kwargs) for path_effect in self._path_effects: renderer = self.copy_with_path_effect([path_effect]) # Recursively call this method, only next time we will only have # one path effect. renderer.draw_markers(gc, marker_path, marker_trans, path, *args, **kwargs) def draw_path_collection(self, gc, master_transform, paths, *args, **kwargs): # We do a little shimmy so that all paths are drawn for each path # effect in turn. Essentially, we induce recursion (depth 1) which is # terminated once we have just a single path effect to work with. if len(self._path_effects) == 1: # Call the base path effect function - this uses the unoptimised # approach of calling "draw_path" multiple times. return RendererBase.draw_path_collection(self, gc, master_transform, paths, *args, **kwargs) for path_effect in self._path_effects: renderer = self.copy_with_path_effect([path_effect]) # Recursively call this method, only next time we will only have # one path effect. renderer.draw_path_collection(gc, master_transform, paths, *args, **kwargs) def points_to_pixels(self, points): # docstring inherited return self._renderer.points_to_pixels(points) def _draw_text_as_path(self, gc, x, y, s, prop, angle, ismath): # Implements the naive text drawing as is found in RendererBase. path, transform = self._get_text_path_transform(x, y, s, prop, angle, ismath) color = gc.get_rgb() gc.set_linewidth(0.0) self.draw_path(gc, path, transform, rgbFace=color) def __getattribute__(self, name): if name in ['_text2path', 'flipy', 'height', 'width']: return getattr(self._renderer, name) else: return object.__getattribute__(self, name) class Normal(AbstractPathEffect): """ The "identity" PathEffect. The Normal PathEffect's sole purpose is to draw the original artist with no special path effect. """ pass class Stroke(AbstractPathEffect): """A line based PathEffect which re-draws a stroke.""" def __init__(self, offset=(0, 0), **kwargs): """ The path will be stroked with its gc updated with the given keyword arguments, i.e., the keyword arguments should be valid gc parameter values. """ super().__init__(offset) self._gc = kwargs def draw_path(self, renderer, gc, tpath, affine, rgbFace): """ draw the path with updated gc. """ # Do not modify the input! Use copy instead. gc0 = renderer.new_gc() gc0.copy_properties(gc) gc0 = self._update_gc(gc0, self._gc) trans = self._offset_transform(renderer, affine) renderer.draw_path(gc0, tpath, trans, rgbFace) gc0.restore() class withStroke(Stroke): """ Adds a simple :class:`Stroke` and then draws the original Artist to avoid needing to call :class:`Normal`. """ def draw_path(self, renderer, gc, tpath, affine, rgbFace): Stroke.draw_path(self, renderer, gc, tpath, affine, rgbFace) renderer.draw_path(gc, tpath, affine, rgbFace) class SimplePatchShadow(AbstractPathEffect): """A simple shadow via a filled patch.""" def __init__(self, offset=(2, -2), shadow_rgbFace=None, alpha=None, rho=0.3, **kwargs): """ Parameters ---------- offset : pair of floats The offset of the shadow in points. shadow_rgbFace : color The shadow color. alpha : float The alpha transparency of the created shadow patch. Default is 0.3. http://matplotlib.1069221.n5.nabble.com/path-effects-question-td27630.html rho : float A scale factor to apply to the rgbFace color if `shadow_rgbFace` is not specified. Default is 0.3. **kwargs Extra keywords are stored and passed through to :meth:`AbstractPathEffect._update_gc`. """ super().__init__(offset) if shadow_rgbFace is None: self._shadow_rgbFace = shadow_rgbFace else: self._shadow_rgbFace = mcolors.to_rgba(shadow_rgbFace) if alpha is None: alpha = 0.3 self._alpha = alpha self._rho = rho #: The dictionary of keywords to update the graphics collection with. self._gc = kwargs def draw_path(self, renderer, gc, tpath, affine, rgbFace): """ Overrides the standard draw_path to add the shadow offset and necessary color changes for the shadow. """ # IMPORTANT: Do not modify the input - we copy everything instead. affine0 = self._offset_transform(renderer, affine) gc0 = renderer.new_gc() gc0.copy_properties(gc) if self._shadow_rgbFace is None: r, g, b = (rgbFace or (1., 1., 1.))[:3] # Scale the colors by a factor to improve the shadow effect. shadow_rgbFace = (r * self._rho, g * self._rho, b * self._rho) else: shadow_rgbFace = self._shadow_rgbFace gc0.set_foreground("none") gc0.set_alpha(self._alpha) gc0.set_linewidth(0) gc0 = self._update_gc(gc0, self._gc) renderer.draw_path(gc0, tpath, affine0, shadow_rgbFace) gc0.restore() class withSimplePatchShadow(SimplePatchShadow): """ Adds a simple :class:`SimplePatchShadow` and then draws the original Artist to avoid needing to call :class:`Normal`. """ def draw_path(self, renderer, gc, tpath, affine, rgbFace): SimplePatchShadow.draw_path(self, renderer, gc, tpath, affine, rgbFace) renderer.draw_path(gc, tpath, affine, rgbFace) class SimpleLineShadow(AbstractPathEffect): """A simple shadow via a line.""" def __init__(self, offset=(2, -2), shadow_color='k', alpha=0.3, rho=0.3, **kwargs): """ Parameters ---------- offset : pair of floats The offset to apply to the path, in points. shadow_color : color The shadow color. Default is black. A value of ``None`` takes the original artist's color with a scale factor of `rho`. alpha : float The alpha transparency of the created shadow patch. Default is 0.3. rho : float A scale factor to apply to the rgbFace color if `shadow_rgbFace` is ``None``. Default is 0.3. **kwargs Extra keywords are stored and passed through to :meth:`AbstractPathEffect._update_gc`. """ super().__init__(offset) if shadow_color is None: self._shadow_color = shadow_color else: self._shadow_color = mcolors.to_rgba(shadow_color) self._alpha = alpha self._rho = rho #: The dictionary of keywords to update the graphics collection with. self._gc = kwargs def draw_path(self, renderer, gc, tpath, affine, rgbFace): """ Overrides the standard draw_path to add the shadow offset and necessary color changes for the shadow. """ # IMPORTANT: Do not modify the input - we copy everything instead. affine0 = self._offset_transform(renderer, affine) gc0 = renderer.new_gc() gc0.copy_properties(gc) if self._shadow_color is None: r, g, b = (gc0.get_foreground() or (1., 1., 1.))[:3] # Scale the colors by a factor to improve the shadow effect. shadow_rgbFace = (r * self._rho, g * self._rho, b * self._rho) else: shadow_rgbFace = self._shadow_color fill_color = None gc0.set_foreground(shadow_rgbFace) gc0.set_alpha(self._alpha) gc0 = self._update_gc(gc0, self._gc) renderer.draw_path(gc0, tpath, affine0, fill_color) gc0.restore() class PathPatchEffect(AbstractPathEffect): """ Draws a :class:`~matplotlib.patches.PathPatch` instance whose Path comes from the original PathEffect artist. """ def __init__(self, offset=(0, 0), **kwargs): """ Parameters ---------- offset : pair of floats The offset to apply to the path, in points. **kwargs All keyword arguments are passed through to the :class:`~matplotlib.patches.PathPatch` constructor. The properties which cannot be overridden are "path", "clip_box" "transform" and "clip_path". """ super().__init__(offset=offset) self.patch = mpatches.PathPatch([], **kwargs) def draw_path(self, renderer, gc, tpath, affine, rgbFace): affine = self._offset_transform(renderer, affine) self.patch._path = tpath self.patch.set_transform(affine) self.patch.set_clip_box(gc.get_clip_rectangle()) clip_path = gc.get_clip_path() if clip_path: self.patch.set_clip_path(*clip_path) self.patch.draw(renderer)
7e84469dc76d93c60aabdc3fc7bc11891d10f193d096bbf3ecdebfa22feb3e2f
from collections import OrderedDict import functools import logging import urllib.parse import numpy as np from matplotlib import cbook, dviread, font_manager, rcParams from matplotlib.font_manager import FontProperties, get_font from matplotlib.ft2font import ( KERNING_DEFAULT, LOAD_NO_HINTING, LOAD_TARGET_LIGHT) from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib.transforms import Affine2D _log = logging.getLogger(__name__) class TextToPath(object): """A class that converts strings to paths.""" FONT_SCALE = 100. DPI = 72 def __init__(self): self.mathtext_parser = MathTextParser('path') self._texmanager = None @property @cbook.deprecated("3.0") def tex_font_map(self): return dviread.PsfontsMap(dviread.find_tex_file('pdftex.map')) def _get_font(self, prop): """ Find the `FT2Font` matching font properties *prop*, with its size set. """ fname = font_manager.findfont(prop) font = get_font(fname) font.set_size(self.FONT_SCALE, self.DPI) return font def _get_hinting_flag(self): return LOAD_NO_HINTING def _get_char_id(self, font, ccode): """ Return a unique id for the given font and character-code set. """ return urllib.parse.quote('{}-{}'.format(font.postscript_name, ccode)) def _get_char_id_ps(self, font, ccode): """ Return a unique id for the given font and character-code set (for tex). """ ps_name = font.get_ps_font_info()[2] char_id = urllib.parse.quote('%s-%d' % (ps_name, ccode)) return char_id @cbook.deprecated( "3.1", alternative="font.get_path() and manual translation of the vertices") def glyph_to_path(self, font, currx=0.): """Convert the *font*'s current glyph to a (vertices, codes) pair.""" verts, codes = font.get_path() if currx != 0.0: verts[:, 0] += currx return verts, codes def get_text_width_height_descent(self, s, prop, ismath): if rcParams['text.usetex']: texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent(s, fontsize, renderer=None) return w, h, d fontsize = prop.get_size_in_points() scale = fontsize / self.FONT_SCALE if ismath: prop = prop.copy() prop.set_size(self.FONT_SCALE) width, height, descent, trash, used_characters = \ self.mathtext_parser.parse(s, 72, prop) return width * scale, height * scale, descent * scale font = self._get_font(prop) font.set_text(s, 0.0, flags=LOAD_NO_HINTING) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 d = font.get_descent() d /= 64.0 return w * scale, h * scale, d * scale @cbook._delete_parameter("3.1", "usetex") def get_text_path(self, prop, s, ismath=False, usetex=False): """ Convert text *s* to path (a tuple of vertices and codes for matplotlib.path.Path). Parameters ---------- prop : `matplotlib.font_manager.FontProperties` instance The font properties for the text. s : str The text to be converted. ismath : {False, True, "TeX"} If True, use mathtext parser. If "TeX", use tex for renderering. usetex : bool, optional If set, forces *ismath* to True. This parameter is deprecated. Returns ------- verts, codes : tuple of lists *verts* is a list of numpy arrays containing the x and y coordinates of the vertices. *codes* is a list of path codes. Examples -------- Create a list of vertices and codes from a text, and create a `Path` from those:: from matplotlib.path import Path from matplotlib.textpath import TextToPath from matplotlib.font_manager import FontProperties fp = FontProperties(family="Humor Sans", style="italic") verts, codes = TextToPath().get_text_path(fp, "ABC") path = Path(verts, codes, closed=False) Also see `TextPath` for a more direct way to create a path from a text. """ if usetex: ismath = "TeX" if ismath == "TeX": glyph_info, glyph_map, rects = self.get_glyphs_tex(prop, s) elif not ismath: font = self._get_font(prop) glyph_info, glyph_map, rects = self.get_glyphs_with_font(font, s) else: glyph_info, glyph_map, rects = self.get_glyphs_mathtext(prop, s) verts, codes = [], [] for glyph_id, xposition, yposition, scale in glyph_info: verts1, codes1 = glyph_map[glyph_id] if len(verts1): verts1 = np.array(verts1) * scale + [xposition, yposition] verts.extend(verts1) codes.extend(codes1) for verts1, codes1 in rects: verts.extend(verts1) codes.extend(codes1) return verts, codes def get_glyphs_with_font(self, font, s, glyph_map=None, return_new_glyphs_only=False): """ Convert string *s* to vertices and codes using the provided ttf font. """ # Mostly copied from backend_svg.py. lastgind = None currx = 0 xpositions = [] glyph_ids = [] if glyph_map is None: glyph_map = OrderedDict() if return_new_glyphs_only: glyph_map_new = OrderedDict() else: glyph_map_new = glyph_map # I'm not sure if I get kernings right. Needs to be verified. -JJL for c in s: ccode = ord(c) gind = font.get_char_index(ccode) if gind is None: ccode = ord('?') gind = 0 if lastgind is not None: kern = font.get_kerning(lastgind, gind, KERNING_DEFAULT) else: kern = 0 glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) horiz_advance = glyph.linearHoriAdvance / 65536 char_id = self._get_char_id(font, ccode) if char_id not in glyph_map: glyph_map_new[char_id] = font.get_path() currx += kern / 64 xpositions.append(currx) glyph_ids.append(char_id) currx += horiz_advance lastgind = gind ypositions = [0] * len(xpositions) sizes = [1.] * len(xpositions) rects = [] return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, rects) def get_glyphs_mathtext(self, prop, s, glyph_map=None, return_new_glyphs_only=False): """ Parse mathtext string *s* and convert it to a (vertices, codes) pair. """ prop = prop.copy() prop.set_size(self.FONT_SCALE) width, height, descent, glyphs, rects = self.mathtext_parser.parse( s, self.DPI, prop) if not glyph_map: glyph_map = OrderedDict() if return_new_glyphs_only: glyph_map_new = OrderedDict() else: glyph_map_new = glyph_map xpositions = [] ypositions = [] glyph_ids = [] sizes = [] for font, fontsize, ccode, ox, oy in glyphs: char_id = self._get_char_id(font, ccode) if char_id not in glyph_map: font.clear() font.set_size(self.FONT_SCALE, self.DPI) glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) glyph_map_new[char_id] = font.get_path() xpositions.append(ox) ypositions.append(oy) glyph_ids.append(char_id) size = fontsize / self.FONT_SCALE sizes.append(size) myrects = [] for ox, oy, w, h in rects: vert1 = [(ox, oy), (ox, oy + h), (ox + w, oy + h), (ox + w, oy), (ox, oy), (0, 0)] code1 = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] myrects.append((vert1, code1)) return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, myrects) def get_texmanager(self): """Return the cached `~.texmanager.TexManager` instance.""" if self._texmanager is None: from matplotlib.texmanager import TexManager self._texmanager = TexManager() return self._texmanager def get_glyphs_tex(self, prop, s, glyph_map=None, return_new_glyphs_only=False): """Convert the string *s* to vertices and codes using usetex mode.""" # Mostly borrowed from pdf backend. dvifile = self.get_texmanager().make_dvi(s, self.FONT_SCALE) with dviread.Dvi(dvifile, self.DPI) as dvi: page, = dvi if glyph_map is None: glyph_map = OrderedDict() if return_new_glyphs_only: glyph_map_new = OrderedDict() else: glyph_map_new = glyph_map glyph_ids, xpositions, ypositions, sizes = [], [], [], [] # Gather font information and do some setup for combining # characters into strings. for x1, y1, dvifont, glyph, width in page.text: font, enc = self._get_ps_font_and_encoding(dvifont.texname) char_id = self._get_char_id_ps(font, glyph) if char_id not in glyph_map: font.clear() font.set_size(self.FONT_SCALE, self.DPI) # See comments in _get_ps_font_and_encoding. if enc is not None: if glyph not in enc: _log.warning( "The glyph %d of font %s cannot be converted with " "the encoding; glyph may be wrong.", glyph, font.fname) font.load_char(glyph, flags=LOAD_TARGET_LIGHT) else: index = font.get_name_index(enc[glyph]) font.load_glyph(index, flags=LOAD_TARGET_LIGHT) else: index = glyph font.load_char(index, flags=LOAD_TARGET_LIGHT) glyph_map_new[char_id] = font.get_path() glyph_ids.append(char_id) xpositions.append(x1) ypositions.append(y1) sizes.append(dvifont.size / self.FONT_SCALE) myrects = [] for ox, oy, h, w in page.boxes: vert1 = [(ox, oy), (ox + w, oy), (ox + w, oy + h), (ox, oy + h), (ox, oy), (0, 0)] code1 = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] myrects.append((vert1, code1)) return (list(zip(glyph_ids, xpositions, ypositions, sizes)), glyph_map_new, myrects) @staticmethod @functools.lru_cache(50) def _get_ps_font_and_encoding(texname): tex_font_map = dviread.PsfontsMap(dviread.find_tex_file('pdftex.map')) font_bunch = tex_font_map[texname] if font_bunch.filename is None: raise ValueError( f"No usable font file found for {font_bunch.psname} " f"({texname}). The font may lack a Type-1 version.") font = get_font(font_bunch.filename) if font_bunch.encoding: # If psfonts.map specifies an encoding, use it: it gives us a # mapping of glyph indices to Adobe glyph names; use it to convert # dvi indices to glyph names and use the FreeType-synthesized # unicode charmap to convert glyph names to glyph indices (with # FT_Get_Name_Index/get_name_index), and load the glyph using # FT_Load_Glyph/load_glyph. (That charmap has a coverage at least # as good as, and possibly better than, the native charmaps.) enc = dviread._parse_enc(font_bunch.encoding) else: # If psfonts.map specifies no encoding, the indices directly # map to the font's "native" charmap; so don't use the # FreeType-synthesized charmap but the native ones (we can't # directly identify it but it's typically an Adobe charmap), and # directly load the dvi glyph indices using FT_Load_Char/load_char. for charmap_name, charmap_code in [ ("ADOBE_CUSTOM", 1094992451), ("ADOBE_STANDARD", 1094995778), ]: try: font.select_charmap(charmap_code) except (ValueError, RuntimeError): pass else: break else: charmap_name = "" _log.warning("No supported encoding in font (%s).", font_bunch.filename) enc = None return font, enc text_to_path = TextToPath() class TextPath(Path): """ Create a path from the text. """ def __init__(self, xy, s, size=None, prop=None, _interpolation_steps=1, usetex=False, *args, **kwargs): r""" Create a path from the text. Note that it simply is a path, not an artist. You need to use the `~.PathPatch` (or other artists) to draw this path onto the canvas. Parameters ---------- xy : tuple or array of two float values Position of the text. For no offset, use ``xy=(0, 0)``. s : str The text to convert to a path. size : float, optional Font size in points. Defaults to the size specified via the font properties *prop*. prop : `matplotlib.font_manager.FontProperties`, optional Font property. If not provided, will use a default ``FontProperties`` with parameters from the :ref:`rcParams <matplotlib-rcparams>`. _interpolation_steps : integer, optional (Currently ignored) usetex : bool, optional Whether to use tex rendering. Defaults to ``False``. Examples -------- The following creates a path from the string "ABC" with Helvetica font face; and another path from the latex fraction 1/2:: from matplotlib.textpath import TextPath from matplotlib.font_manager import FontProperties fp = FontProperties(family="Helvetica", style="italic") path1 = TextPath((12,12), "ABC", size=12, prop=fp) path2 = TextPath((0,0), r"$\frac{1}{2}$", size=12, usetex=True) Also see :doc:`/gallery/text_labels_and_annotations/demo_text_path`. """ # Circular import. from matplotlib.text import Text if args or kwargs: cbook.warn_deprecated( "3.1", message="Additional arguments to TextPath used to be " "ignored, but will trigger a TypeError %(removal)s.") if prop is None: prop = FontProperties() if size is None: size = prop.get_size_in_points() self._xy = xy self.set_size(size) self._cached_vertices = None s, ismath = Text(usetex=usetex)._preprocess_math(s) self._vertices, self._codes = text_to_path.get_text_path( prop, s, ismath=ismath) self._should_simplify = False self._simplify_threshold = rcParams['path.simplify_threshold'] self._interpolation_steps = _interpolation_steps def set_size(self, size): """Set the text size.""" self._size = size self._invalid = True def get_size(self): """Get the text size.""" return self._size @property def vertices(self): """ Return the cached path after updating it if necessary. """ self._revalidate_path() return self._cached_vertices @property def codes(self): """ Return the codes """ return self._codes def _revalidate_path(self): """ Update the path if necessary. The path for the text is initially create with the font size of `~.FONT_SCALE`, and this path is rescaled to other size when necessary. """ if self._invalid or self._cached_vertices is None: tr = Affine2D().scale( self._size / text_to_path.FONT_SCALE, self._size / text_to_path.FONT_SCALE).translate(*self._xy) self._cached_vertices = tr.transform(self._vertices) self._invalid = False @cbook.deprecated("3.1") def is_math_text(self, s): """ Returns True if the given string *s* contains any mathtext. """ # copied from Text.is_math_text -JJL # Did we find an even number of non-escaped dollar signs? # If so, treat is as math text. dollar_count = s.count(r'$') - s.count(r'\$') even_dollars = (dollar_count > 0 and dollar_count % 2 == 0) if rcParams['text.usetex']: return s, 'TeX' if even_dollars: return s, True else: return s.replace(r'\$', '$'), False @cbook.deprecated("3.1", alternative="TextPath") def text_get_vertices_codes(self, prop, s, usetex): """ Convert string *s* to a (vertices, codes) pair using font property *prop*. """ # Mostly copied from backend_svg.py. if usetex: return text_to_path.get_text_path(prop, s, usetex=True) else: clean_line, ismath = self.is_math_text(s) return text_to_path.get_text_path(prop, clean_line, ismath=ismath)
c92d69fa8b3019c8ada86a7768eed3c67d2ad78e238e30485c715847ebe50980
""" This module provides routines to adjust subplot params so that subplots are nicely fit in the figure. In doing so, only axis labels, tick labels, axes titles and offsetboxes that are anchored to axes are currently considered. Internally, it assumes that the margins (left_margin, etc.) which are differences between ax.get_tightbbox and ax.bbox are independent of axes position. This may fail if Axes.adjustable is datalim. Also, This will fail for some cases (for example, left or right margin is affected by xlabel). """ from matplotlib import cbook, rcParams from matplotlib.font_manager import FontProperties from matplotlib.transforms import TransformedBbox, Bbox def _get_left(tight_bbox, axes_bbox): return axes_bbox.xmin - tight_bbox.xmin def _get_right(tight_bbox, axes_bbox): return tight_bbox.xmax - axes_bbox.xmax def _get_bottom(tight_bbox, axes_bbox): return axes_bbox.ymin - tight_bbox.ymin def _get_top(tight_bbox, axes_bbox): return tight_bbox.ymax - axes_bbox.ymax def auto_adjust_subplotpars( fig, renderer, nrows_ncols, num1num2_list, subplot_list, ax_bbox_list=None, pad=1.08, h_pad=None, w_pad=None, rect=None): """ Return a dict of subplot parameters to adjust spacing between subplots or ``None`` if resulting axes would have zero height or width. Note that this function ignores geometry information of subplot itself, but uses what is given by the *nrows_ncols* and *num1num2_list* parameters. Also, the results could be incorrect if some subplots have ``adjustable=datalim``. Parameters ---------- nrows_ncols : Tuple[int, int] Number of rows and number of columns of the grid. num1num2_list : List[int] List of numbers specifying the area occupied by the subplot subplot_list : list of subplots List of subplots that will be used to calculate optimal subplot_params. pad : float Padding between the figure edge and the edges of subplots, as a fraction of the font size. h_pad, w_pad : float Padding (height/width) between edges of adjacent subplots, as a fraction of the font size. Defaults to *pad*. rect : Tuple[float, float, float, float] [left, bottom, right, top] in normalized (0, 1) figure coordinates. """ rows, cols = nrows_ncols font_size_inches = ( FontProperties(size=rcParams["font.size"]).get_size_in_points() / 72) pad_inches = pad * font_size_inches if h_pad is not None: vpad_inches = h_pad * font_size_inches else: vpad_inches = pad_inches if w_pad is not None: hpad_inches = w_pad * font_size_inches else: hpad_inches = pad_inches if len(num1num2_list) != len(subplot_list) or len(subplot_list) == 0: raise ValueError if rect is None: margin_left = margin_bottom = margin_right = margin_top = None else: margin_left, margin_bottom, _right, _top = rect if _right: margin_right = 1 - _right else: margin_right = None if _top: margin_top = 1 - _top else: margin_top = None vspaces = [[] for i in range((rows + 1) * cols)] hspaces = [[] for i in range(rows * (cols + 1))] union = Bbox.union if ax_bbox_list is None: ax_bbox_list = [] for subplots in subplot_list: ax_bbox = union([ax.get_position(original=True) for ax in subplots]) ax_bbox_list.append(ax_bbox) for subplots, ax_bbox, (num1, num2) in zip(subplot_list, ax_bbox_list, num1num2_list): if all(not ax.get_visible() for ax in subplots): continue tight_bbox_raw = union([ax.get_tightbbox(renderer) for ax in subplots if ax.get_visible()]) tight_bbox = TransformedBbox(tight_bbox_raw, fig.transFigure.inverted()) row1, col1 = divmod(num1, cols) if num2 is None: # left hspaces[row1 * (cols + 1) + col1].append( _get_left(tight_bbox, ax_bbox)) # right hspaces[row1 * (cols + 1) + (col1 + 1)].append( _get_right(tight_bbox, ax_bbox)) # top vspaces[row1 * cols + col1].append( _get_top(tight_bbox, ax_bbox)) # bottom vspaces[(row1 + 1) * cols + col1].append( _get_bottom(tight_bbox, ax_bbox)) else: row2, col2 = divmod(num2, cols) for row_i in range(row1, row2 + 1): # left hspaces[row_i * (cols + 1) + col1].append( _get_left(tight_bbox, ax_bbox)) # right hspaces[row_i * (cols + 1) + (col2 + 1)].append( _get_right(tight_bbox, ax_bbox)) for col_i in range(col1, col2 + 1): # top vspaces[row1 * cols + col_i].append( _get_top(tight_bbox, ax_bbox)) # bottom vspaces[(row2 + 1) * cols + col_i].append( _get_bottom(tight_bbox, ax_bbox)) fig_width_inch, fig_height_inch = fig.get_size_inches() # margins can be negative for axes with aspect applied. And we # append + [0] to make minimum margins 0 if not margin_left: margin_left = max([sum(s) for s in hspaces[::cols + 1]] + [0]) margin_left += pad_inches / fig_width_inch if not margin_right: margin_right = max([sum(s) for s in hspaces[cols::cols + 1]] + [0]) margin_right += pad_inches / fig_width_inch if not margin_top: margin_top = max([sum(s) for s in vspaces[:cols]] + [0]) margin_top += pad_inches / fig_height_inch if not margin_bottom: margin_bottom = max([sum(s) for s in vspaces[-cols:]] + [0]) margin_bottom += pad_inches / fig_height_inch if margin_left + margin_right >= 1: cbook._warn_external('Tight layout not applied. The left and right ' 'margins cannot be made large enough to ' 'accommodate all axes decorations. ') return None if margin_bottom + margin_top >= 1: cbook._warn_external('Tight layout not applied. The bottom and top ' 'margins cannot be made large enough to ' 'accommodate all axes decorations. ') return None kwargs = dict(left=margin_left, right=1 - margin_right, bottom=margin_bottom, top=1 - margin_top) if cols > 1: hspace = ( max(sum(s) for i in range(rows) for s in hspaces[i * (cols + 1) + 1:(i + 1) * (cols + 1) - 1]) + hpad_inches / fig_width_inch) # axes widths: h_axes = (1 - margin_right - margin_left - hspace * (cols - 1)) / cols if h_axes < 0: cbook._warn_external('Tight layout not applied. tight_layout ' 'cannot make axes width small enough to ' 'accommodate all axes decorations') return None else: kwargs["wspace"] = hspace / h_axes if rows > 1: vspace = (max(sum(s) for s in vspaces[cols:-cols]) + vpad_inches / fig_height_inch) v_axes = (1 - margin_top - margin_bottom - vspace * (rows - 1)) / rows if v_axes < 0: cbook._warn_external('Tight layout not applied. tight_layout ' 'cannot make axes height small enough to ' 'accommodate all axes decorations') return None else: kwargs["hspace"] = vspace / v_axes return kwargs def get_renderer(fig): if fig._cachedRenderer: renderer = fig._cachedRenderer else: canvas = fig.canvas if canvas and hasattr(canvas, "get_renderer"): renderer = canvas.get_renderer() else: # not sure if this can happen cbook._warn_external("tight_layout : falling back to Agg renderer") from matplotlib.backends.backend_agg import FigureCanvasAgg canvas = FigureCanvasAgg(fig) renderer = canvas.get_renderer() return renderer def get_subplotspec_list(axes_list, grid_spec=None): """Return a list of subplotspec from the given list of axes. For an instance of axes that does not support subplotspec, None is inserted in the list. If grid_spec is given, None is inserted for those not from the given grid_spec. """ subplotspec_list = [] for ax in axes_list: axes_or_locator = ax.get_axes_locator() if axes_or_locator is None: axes_or_locator = ax if hasattr(axes_or_locator, "get_subplotspec"): subplotspec = axes_or_locator.get_subplotspec() subplotspec = subplotspec.get_topmost_subplotspec() gs = subplotspec.get_gridspec() if grid_spec is not None: if gs != grid_spec: subplotspec = None elif gs.locally_modified_subplot_params(): subplotspec = None else: subplotspec = None subplotspec_list.append(subplotspec) return subplotspec_list def get_tight_layout_figure(fig, axes_list, subplotspec_list, renderer, pad=1.08, h_pad=None, w_pad=None, rect=None): """ Return subplot parameters for tight-layouted-figure with specified padding. Parameters ---------- fig : Figure axes_list : list of Axes subplotspec_list : list of `.SubplotSpec` The subplotspecs of each axes. renderer : renderer pad : float Padding between the figure edge and the edges of subplots, as a fraction of the font size. h_pad, w_pad : float Padding (height/width) between edges of adjacent subplots. Defaults to *pad_inches*. rect : Tuple[float, float, float, float], optional (left, bottom, right, top) rectangle in normalized figure coordinates that the whole subplots area (including labels) will fit into. Defaults to using the entire figure. Returns ------- subplotspec or None subplotspec kwargs to be passed to `.Figure.subplots_adjust` or None if tight_layout could not be accomplished. """ subplot_list = [] nrows_list = [] ncols_list = [] ax_bbox_list = [] subplot_dict = {} # Multiple axes can share same subplot_interface (e.g., # axes_grid1); thus we need to join them together. subplotspec_list2 = [] for ax, subplotspec in zip(axes_list, subplotspec_list): if subplotspec is None: continue subplots = subplot_dict.setdefault(subplotspec, []) if not subplots: myrows, mycols, _, _ = subplotspec.get_geometry() nrows_list.append(myrows) ncols_list.append(mycols) subplotspec_list2.append(subplotspec) subplot_list.append(subplots) ax_bbox_list.append(subplotspec.get_position(fig)) subplots.append(ax) if len(nrows_list) == 0 or len(ncols_list) == 0: return {} max_nrows = max(nrows_list) max_ncols = max(ncols_list) num1num2_list = [] for subplotspec in subplotspec_list2: rows, cols, num1, num2 = subplotspec.get_geometry() div_row, mod_row = divmod(max_nrows, rows) div_col, mod_col = divmod(max_ncols, cols) if mod_row != 0: cbook._warn_external('tight_layout not applied: number of rows ' 'in subplot specifications must be ' 'multiples of one another.') return {} if mod_col != 0: cbook._warn_external('tight_layout not applied: number of ' 'columns in subplot specifications must be ' 'multiples of one another.') return {} rowNum1, colNum1 = divmod(num1, cols) if num2 is None: rowNum2, colNum2 = rowNum1, colNum1 else: rowNum2, colNum2 = divmod(num2, cols) num1num2_list.append((rowNum1 * div_row * max_ncols + colNum1 * div_col, ((rowNum2 + 1) * div_row - 1) * max_ncols + (colNum2 + 1) * div_col - 1)) kwargs = auto_adjust_subplotpars(fig, renderer, nrows_ncols=(max_nrows, max_ncols), num1num2_list=num1num2_list, subplot_list=subplot_list, ax_bbox_list=ax_bbox_list, pad=pad, h_pad=h_pad, w_pad=w_pad) # kwargs can be none if tight_layout fails... if rect is not None and kwargs is not None: # if rect is given, the whole subplots area (including # labels) will fit into the rect instead of the # figure. Note that the rect argument of # *auto_adjust_subplotpars* specify the area that will be # covered by the total area of axes.bbox. Thus we call # auto_adjust_subplotpars twice, where the second run # with adjusted rect parameters. left, bottom, right, top = rect if left is not None: left += kwargs["left"] if bottom is not None: bottom += kwargs["bottom"] if right is not None: right -= (1 - kwargs["right"]) if top is not None: top -= (1 - kwargs["top"]) kwargs = auto_adjust_subplotpars(fig, renderer, nrows_ncols=(max_nrows, max_ncols), num1num2_list=num1num2_list, subplot_list=subplot_list, ax_bbox_list=ax_bbox_list, pad=pad, h_pad=h_pad, w_pad=w_pad, rect=(left, bottom, right, top)) return kwargs
30ba75febc2c4d4a2eacb28256c68762aee431b17b3903c0f616f967faa760b9
""" Streamline plotting for 2D vector fields. """ import numpy as np import matplotlib import matplotlib.cm as cm import matplotlib.colors as mcolors import matplotlib.collections as mcollections import matplotlib.lines as mlines import matplotlib.patches as patches __all__ = ['streamplot'] def streamplot(axes, x, y, u, v, density=1, linewidth=None, color=None, cmap=None, norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1, transform=None, zorder=None, start_points=None, maxlength=4.0, integration_direction='both'): """ Draw streamlines of a vector flow. Parameters ---------- x, y : 1d arrays An evenly spaced grid. u, v : 2d arrays *x* and *y*-velocities. Number of rows should match length of *y*, and the number of columns should match *x*. density : float or 2-tuple Controls the closeness of streamlines. When ``density = 1``, the domain is divided into a 30x30 grid---*density* linearly scales this grid. Each cell in the grid can have, at most, one traversing streamline. For different densities in each direction, use [density_x, density_y]. linewidth : numeric or 2d array Vary linewidth when given a 2d array with the same shape as velocities. color : matplotlib color code, or 2d array Streamline color. When given an array with the same shape as velocities, *color* values are converted to colors using *cmap*. cmap : `~matplotlib.colors.Colormap` Colormap used to plot streamlines and arrows. Only necessary when using an array input for *color*. norm : `~matplotlib.colors.Normalize` Normalize object used to scale luminance data to 0, 1. If ``None``, stretch (min, max) to (0, 1). Only necessary when *color* is an array. arrowsize : float Factor scale arrow size. arrowstyle : str Arrow style specification. See `~matplotlib.patches.FancyArrowPatch`. minlength : float Minimum length of streamline in axes coordinates. start_points : Nx2 array Coordinates of starting points for the streamlines. In data coordinates, the same as the *x* and *y* arrays. zorder : int Any number. maxlength : float Maximum length of streamline in axes coordinates. integration_direction : ['forward' | 'backward' | 'both'] Integrate the streamline in forward, backward or both directions. default is ``'both'``. Returns ------- stream_container : StreamplotSet Container object with attributes - lines: `matplotlib.collections.LineCollection` of streamlines - arrows: collection of `matplotlib.patches.FancyArrowPatch` objects representing arrows half-way along stream lines. This container will probably change in the future to allow changes to the colormap, alpha, etc. for both lines and arrows, but these changes should be backward compatible. """ grid = Grid(x, y) mask = StreamMask(density) dmap = DomainMap(grid, mask) if zorder is None: zorder = mlines.Line2D.zorder # default to data coordinates if transform is None: transform = axes.transData if color is None: color = axes._get_lines.get_next_color() if linewidth is None: linewidth = matplotlib.rcParams['lines.linewidth'] line_kw = {} arrow_kw = dict(arrowstyle=arrowstyle, mutation_scale=10 * arrowsize) if integration_direction not in ['both', 'forward', 'backward']: errstr = ("Integration direction '%s' not recognised. " "Expected 'both', 'forward' or 'backward'." % integration_direction) raise ValueError(errstr) if integration_direction == 'both': maxlength /= 2. use_multicolor_lines = isinstance(color, np.ndarray) if use_multicolor_lines: if color.shape != grid.shape: raise ValueError( "If 'color' is given, must have the shape of 'Grid(x,y)'") line_colors = [] color = np.ma.masked_invalid(color) else: line_kw['color'] = color arrow_kw['color'] = color if isinstance(linewidth, np.ndarray): if linewidth.shape != grid.shape: raise ValueError( "If 'linewidth' is given, must have the shape of 'Grid(x,y)'") line_kw['linewidth'] = [] else: line_kw['linewidth'] = linewidth arrow_kw['linewidth'] = linewidth line_kw['zorder'] = zorder arrow_kw['zorder'] = zorder ## Sanity checks. if u.shape != grid.shape or v.shape != grid.shape: raise ValueError("'u' and 'v' must be of shape 'Grid(x,y)'") u = np.ma.masked_invalid(u) v = np.ma.masked_invalid(v) integrate = get_integrator(u, v, dmap, minlength, maxlength, integration_direction) trajectories = [] if start_points is None: for xm, ym in _gen_starting_points(mask.shape): if mask[ym, xm] == 0: xg, yg = dmap.mask2grid(xm, ym) t = integrate(xg, yg) if t is not None: trajectories.append(t) else: sp2 = np.asanyarray(start_points, dtype=float).copy() # Check if start_points are outside the data boundaries for xs, ys in sp2: if not (grid.x_origin <= xs <= grid.x_origin + grid.width and grid.y_origin <= ys <= grid.y_origin + grid.height): raise ValueError("Starting point ({}, {}) outside of data " "boundaries".format(xs, ys)) # Convert start_points from data to array coords # Shift the seed points from the bottom left of the data so that # data2grid works properly. sp2[:, 0] -= grid.x_origin sp2[:, 1] -= grid.y_origin for xs, ys in sp2: xg, yg = dmap.data2grid(xs, ys) t = integrate(xg, yg) if t is not None: trajectories.append(t) if use_multicolor_lines: if norm is None: norm = mcolors.Normalize(color.min(), color.max()) if cmap is None: cmap = cm.get_cmap(matplotlib.rcParams['image.cmap']) else: cmap = cm.get_cmap(cmap) streamlines = [] arrows = [] for t in trajectories: tgx = np.array(t[0]) tgy = np.array(t[1]) # Rescale from grid-coordinates to data-coordinates. tx, ty = dmap.grid2data(*np.array(t)) tx += grid.x_origin ty += grid.y_origin points = np.transpose([tx, ty]).reshape(-1, 1, 2) streamlines.extend(np.hstack([points[:-1], points[1:]])) # Add arrows half way along each trajectory. s = np.cumsum(np.hypot(np.diff(tx), np.diff(ty))) n = np.searchsorted(s, s[-1] / 2.) arrow_tail = (tx[n], ty[n]) arrow_head = (np.mean(tx[n:n + 2]), np.mean(ty[n:n + 2])) if isinstance(linewidth, np.ndarray): line_widths = interpgrid(linewidth, tgx, tgy)[:-1] line_kw['linewidth'].extend(line_widths) arrow_kw['linewidth'] = line_widths[n] if use_multicolor_lines: color_values = interpgrid(color, tgx, tgy)[:-1] line_colors.append(color_values) arrow_kw['color'] = cmap(norm(color_values[n])) p = patches.FancyArrowPatch( arrow_tail, arrow_head, transform=transform, **arrow_kw) axes.add_patch(p) arrows.append(p) lc = mcollections.LineCollection( streamlines, transform=transform, **line_kw) lc.sticky_edges.x[:] = [grid.x_origin, grid.x_origin + grid.width] lc.sticky_edges.y[:] = [grid.y_origin, grid.y_origin + grid.height] if use_multicolor_lines: lc.set_array(np.ma.hstack(line_colors)) lc.set_cmap(cmap) lc.set_norm(norm) axes.add_collection(lc) axes.autoscale_view() ac = matplotlib.collections.PatchCollection(arrows) stream_container = StreamplotSet(lc, ac) return stream_container class StreamplotSet(object): def __init__(self, lines, arrows, **kwargs): self.lines = lines self.arrows = arrows # Coordinate definitions # ======================== class DomainMap(object): """Map representing different coordinate systems. Coordinate definitions: * axes-coordinates goes from 0 to 1 in the domain. * data-coordinates are specified by the input x-y coordinates. * grid-coordinates goes from 0 to N and 0 to M for an N x M grid, where N and M match the shape of the input data. * mask-coordinates goes from 0 to N and 0 to M for an N x M mask, where N and M are user-specified to control the density of streamlines. This class also has methods for adding trajectories to the StreamMask. Before adding a trajectory, run `start_trajectory` to keep track of regions crossed by a given trajectory. Later, if you decide the trajectory is bad (e.g., if the trajectory is very short) just call `undo_trajectory`. """ def __init__(self, grid, mask): self.grid = grid self.mask = mask # Constants for conversion between grid- and mask-coordinates self.x_grid2mask = (mask.nx - 1) / grid.nx self.y_grid2mask = (mask.ny - 1) / grid.ny self.x_mask2grid = 1. / self.x_grid2mask self.y_mask2grid = 1. / self.y_grid2mask self.x_data2grid = 1. / grid.dx self.y_data2grid = 1. / grid.dy def grid2mask(self, xi, yi): """Return nearest space in mask-coords from given grid-coords.""" return (int(xi * self.x_grid2mask + 0.5), int(yi * self.y_grid2mask + 0.5)) def mask2grid(self, xm, ym): return xm * self.x_mask2grid, ym * self.y_mask2grid def data2grid(self, xd, yd): return xd * self.x_data2grid, yd * self.y_data2grid def grid2data(self, xg, yg): return xg / self.x_data2grid, yg / self.y_data2grid def start_trajectory(self, xg, yg): xm, ym = self.grid2mask(xg, yg) self.mask._start_trajectory(xm, ym) def reset_start_point(self, xg, yg): xm, ym = self.grid2mask(xg, yg) self.mask._current_xy = (xm, ym) def update_trajectory(self, xg, yg): if not self.grid.within_grid(xg, yg): raise InvalidIndexError xm, ym = self.grid2mask(xg, yg) self.mask._update_trajectory(xm, ym) def undo_trajectory(self): self.mask._undo_trajectory() class Grid(object): """Grid of data.""" def __init__(self, x, y): if x.ndim == 1: pass elif x.ndim == 2: x_row = x[0, :] if not np.allclose(x_row, x): raise ValueError("The rows of 'x' must be equal") x = x_row else: raise ValueError("'x' can have at maximum 2 dimensions") if y.ndim == 1: pass elif y.ndim == 2: y_col = y[:, 0] if not np.allclose(y_col, y.T): raise ValueError("The columns of 'y' must be equal") y = y_col else: raise ValueError("'y' can have at maximum 2 dimensions") self.nx = len(x) self.ny = len(y) self.dx = x[1] - x[0] self.dy = y[1] - y[0] self.x_origin = x[0] self.y_origin = y[0] self.width = x[-1] - x[0] self.height = y[-1] - y[0] if not np.allclose(np.diff(x), self.width / (self.nx - 1)): raise ValueError("'x' values must be equally spaced") if not np.allclose(np.diff(y), self.height / (self.ny - 1)): raise ValueError("'y' values must be equally spaced") @property def shape(self): return self.ny, self.nx def within_grid(self, xi, yi): """Return True if point is a valid index of grid.""" # Note that xi/yi can be floats; so, for example, we can't simply check # `xi < self.nx` since `xi` can be `self.nx - 1 < xi < self.nx` return xi >= 0 and xi <= self.nx - 1 and yi >= 0 and yi <= self.ny - 1 class StreamMask(object): """Mask to keep track of discrete regions crossed by streamlines. The resolution of this grid determines the approximate spacing between trajectories. Streamlines are only allowed to pass through zeroed cells: When a streamline enters a cell, that cell is set to 1, and no new streamlines are allowed to enter. """ def __init__(self, density): try: self.nx, self.ny = (30 * np.broadcast_to(density, 2)).astype(int) except ValueError: raise ValueError("'density' must be a scalar or be of length 2") if self.nx < 0 or self.ny < 0: raise ValueError("'density' must be positive") self._mask = np.zeros((self.ny, self.nx)) self.shape = self._mask.shape self._current_xy = None def __getitem__(self, *args): return self._mask.__getitem__(*args) def _start_trajectory(self, xm, ym): """Start recording streamline trajectory""" self._traj = [] self._update_trajectory(xm, ym) def _undo_trajectory(self): """Remove current trajectory from mask""" for t in self._traj: self._mask.__setitem__(t, 0) def _update_trajectory(self, xm, ym): """Update current trajectory position in mask. If the new position has already been filled, raise `InvalidIndexError`. """ if self._current_xy != (xm, ym): if self[ym, xm] == 0: self._traj.append((ym, xm)) self._mask[ym, xm] = 1 self._current_xy = (xm, ym) else: raise InvalidIndexError class InvalidIndexError(Exception): pass class TerminateTrajectory(Exception): pass # Integrator definitions #======================== def get_integrator(u, v, dmap, minlength, maxlength, integration_direction): # rescale velocity onto grid-coordinates for integrations. u, v = dmap.data2grid(u, v) # speed (path length) will be in axes-coordinates u_ax = u / dmap.grid.nx v_ax = v / dmap.grid.ny speed = np.ma.sqrt(u_ax ** 2 + v_ax ** 2) def forward_time(xi, yi): ds_dt = interpgrid(speed, xi, yi) if ds_dt == 0: raise TerminateTrajectory() dt_ds = 1. / ds_dt ui = interpgrid(u, xi, yi) vi = interpgrid(v, xi, yi) return ui * dt_ds, vi * dt_ds def backward_time(xi, yi): dxi, dyi = forward_time(xi, yi) return -dxi, -dyi def integrate(x0, y0): """Return x, y grid-coordinates of trajectory based on starting point. Integrate both forward and backward in time from starting point in grid coordinates. Integration is terminated when a trajectory reaches a domain boundary or when it crosses into an already occupied cell in the StreamMask. The resulting trajectory is None if it is shorter than `minlength`. """ stotal, x_traj, y_traj = 0., [], [] try: dmap.start_trajectory(x0, y0) except InvalidIndexError: return None if integration_direction in ['both', 'backward']: s, xt, yt = _integrate_rk12(x0, y0, dmap, backward_time, maxlength) stotal += s x_traj += xt[::-1] y_traj += yt[::-1] if integration_direction in ['both', 'forward']: dmap.reset_start_point(x0, y0) s, xt, yt = _integrate_rk12(x0, y0, dmap, forward_time, maxlength) if len(x_traj) > 0: xt = xt[1:] yt = yt[1:] stotal += s x_traj += xt y_traj += yt if stotal > minlength: return x_traj, y_traj else: # reject short trajectories dmap.undo_trajectory() return None return integrate def _integrate_rk12(x0, y0, dmap, f, maxlength): """2nd-order Runge-Kutta algorithm with adaptive step size. This method is also referred to as the improved Euler's method, or Heun's method. This method is favored over higher-order methods because: 1. To get decent looking trajectories and to sample every mask cell on the trajectory we need a small timestep, so a lower order solver doesn't hurt us unless the data is *very* high resolution. In fact, for cases where the user inputs data smaller or of similar grid size to the mask grid, the higher order corrections are negligible because of the very fast linear interpolation used in `interpgrid`. 2. For high resolution input data (i.e. beyond the mask resolution), we must reduce the timestep. Therefore, an adaptive timestep is more suited to the problem as this would be very hard to judge automatically otherwise. This integrator is about 1.5 - 2x as fast as both the RK4 and RK45 solvers in most setups on my machine. I would recommend removing the other two to keep things simple. """ # This error is below that needed to match the RK4 integrator. It # is set for visual reasons -- too low and corners start # appearing ugly and jagged. Can be tuned. maxerror = 0.003 # This limit is important (for all integrators) to avoid the # trajectory skipping some mask cells. We could relax this # condition if we use the code which is commented out below to # increment the location gradually. However, due to the efficient # nature of the interpolation, this doesn't boost speed by much # for quite a bit of complexity. maxds = min(1. / dmap.mask.nx, 1. / dmap.mask.ny, 0.1) ds = maxds stotal = 0 xi = x0 yi = y0 xf_traj = [] yf_traj = [] while dmap.grid.within_grid(xi, yi): xf_traj.append(xi) yf_traj.append(yi) try: k1x, k1y = f(xi, yi) k2x, k2y = f(xi + ds * k1x, yi + ds * k1y) except IndexError: # Out of the domain on one of the intermediate integration steps. # Take an Euler step to the boundary to improve neatness. ds, xf_traj, yf_traj = _euler_step(xf_traj, yf_traj, dmap, f) stotal += ds break except TerminateTrajectory: break dx1 = ds * k1x dy1 = ds * k1y dx2 = ds * 0.5 * (k1x + k2x) dy2 = ds * 0.5 * (k1y + k2y) nx, ny = dmap.grid.shape # Error is normalized to the axes coordinates error = np.hypot((dx2 - dx1) / nx, (dy2 - dy1) / ny) # Only save step if within error tolerance if error < maxerror: xi += dx2 yi += dy2 try: dmap.update_trajectory(xi, yi) except InvalidIndexError: break if stotal + ds > maxlength: break stotal += ds # recalculate stepsize based on step error if error == 0: ds = maxds else: ds = min(maxds, 0.85 * ds * (maxerror / error) ** 0.5) return stotal, xf_traj, yf_traj def _euler_step(xf_traj, yf_traj, dmap, f): """Simple Euler integration step that extends streamline to boundary.""" ny, nx = dmap.grid.shape xi = xf_traj[-1] yi = yf_traj[-1] cx, cy = f(xi, yi) if cx == 0: dsx = np.inf elif cx < 0: dsx = xi / -cx else: dsx = (nx - 1 - xi) / cx if cy == 0: dsy = np.inf elif cy < 0: dsy = yi / -cy else: dsy = (ny - 1 - yi) / cy ds = min(dsx, dsy) xf_traj.append(xi + cx * ds) yf_traj.append(yi + cy * ds) return ds, xf_traj, yf_traj # Utility functions # ======================== def interpgrid(a, xi, yi): """Fast 2D, linear interpolation on an integer grid""" Ny, Nx = np.shape(a) if isinstance(xi, np.ndarray): x = xi.astype(int) y = yi.astype(int) # Check that xn, yn don't exceed max index xn = np.clip(x + 1, 0, Nx - 1) yn = np.clip(y + 1, 0, Ny - 1) else: x = int(xi) y = int(yi) # conditional is faster than clipping for integers if x == (Nx - 1): xn = x else: xn = x + 1 if y == (Ny - 1): yn = y else: yn = y + 1 a00 = a[y, x] a01 = a[y, xn] a10 = a[yn, x] a11 = a[yn, xn] xt = xi - x yt = yi - y a0 = a00 * (1 - xt) + a01 * xt a1 = a10 * (1 - xt) + a11 * xt ai = a0 * (1 - yt) + a1 * yt if not isinstance(xi, np.ndarray): if np.ma.is_masked(ai): raise TerminateTrajectory return ai def _gen_starting_points(shape): """Yield starting points for streamlines. Trying points on the boundary first gives higher quality streamlines. This algorithm starts with a point on the mask corner and spirals inward. This algorithm is inefficient, but fast compared to rest of streamplot. """ ny, nx = shape xfirst = 0 yfirst = 1 xlast = nx - 1 ylast = ny - 1 x, y = 0, 0 direction = 'right' for i in range(nx * ny): yield x, y if direction == 'right': x += 1 if x >= xlast: xlast -= 1 direction = 'up' elif direction == 'up': y += 1 if y >= ylast: ylast -= 1 direction = 'left' elif direction == 'left': x -= 1 if x <= xfirst: xfirst += 1 direction = 'down' elif direction == 'down': y -= 1 if y <= yfirst: yfirst += 1 direction = 'right'
5d587a8e071064a5a783539702433a80adce9e26d118ec75c7adb9c5941b28f6
""" This module defines default legend handlers. It is strongly encouraged to have read the :doc:`legend guide </tutorials/intermediate/legend_guide>` before this documentation. Legend handlers are expected to be a callable object with a following signature. :: legend_handler(legend, orig_handle, fontsize, handlebox) Where *legend* is the legend itself, *orig_handle* is the original plot, *fontsize* is the fontsize in pixels, and *handlebox* is a OffsetBox instance. Within the call, you should create relevant artists (using relevant properties from the *legend* and/or *orig_handle*) and add them into the handlebox. The artists needs to be scaled according to the fontsize (note that the size is in pixel, i.e., this is dpi-scaled value). This module includes definition of several legend handler classes derived from the base class (HandlerBase) with the following method:: def legend_artist(self, legend, orig_handle, fontsize, handlebox) """ from itertools import cycle import numpy as np from matplotlib.lines import Line2D from matplotlib.patches import Rectangle import matplotlib.collections as mcoll import matplotlib.colors as mcolors def update_from_first_child(tgt, src): first_child = next(iter(src.get_children()), None) if first_child is not None: tgt.update_from(first_child) class HandlerBase(object): """ A Base class for default legend handlers. The derived classes are meant to override *create_artists* method, which has a following signature.:: def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): The overridden method needs to create artists of the given transform that fits in the given dimension (xdescent, ydescent, width, height) that are scaled by fontsize if necessary. """ def __init__(self, xpad=0., ypad=0., update_func=None): self._xpad, self._ypad = xpad, ypad self._update_prop_func = update_func def _update_prop(self, legend_handle, orig_handle): if self._update_prop_func is None: self._default_update_prop(legend_handle, orig_handle) else: self._update_prop_func(legend_handle, orig_handle) def _default_update_prop(self, legend_handle, orig_handle): legend_handle.update_from(orig_handle) def update_prop(self, legend_handle, orig_handle, legend): self._update_prop(legend_handle, orig_handle) legend._set_artist_props(legend_handle) legend_handle.set_clip_box(None) legend_handle.set_clip_path(None) def adjust_drawing_area(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, ): xdescent = xdescent - self._xpad * fontsize ydescent = ydescent - self._ypad * fontsize width = width - self._xpad * fontsize height = height - self._ypad * fontsize return xdescent, ydescent, width, height def legend_artist(self, legend, orig_handle, fontsize, handlebox): """ Return the artist that this HandlerBase generates for the given original artist/handle. Parameters ---------- legend : :class:`matplotlib.legend.Legend` instance The legend for which these legend artists are being created. orig_handle : :class:`matplotlib.artist.Artist` or similar The object for which these legend artists are being created. fontsize : float or int The fontsize in pixels. The artists being created should be scaled according to the given fontsize. handlebox : :class:`matplotlib.offsetbox.OffsetBox` instance The box which has been created to hold this legend entry's artists. Artists created in the `legend_artist` method must be added to this handlebox inside this method. """ xdescent, ydescent, width, height = self.adjust_drawing_area( legend, orig_handle, handlebox.xdescent, handlebox.ydescent, handlebox.width, handlebox.height, fontsize) artists = self.create_artists(legend, orig_handle, xdescent, ydescent, width, height, fontsize, handlebox.get_transform()) # create_artists will return a list of artists. for a in artists: handlebox.add_artist(a) # we only return the first artist return artists[0] def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): raise NotImplementedError('Derived must override') class HandlerNpoints(HandlerBase): """ A legend handler that shows *numpoints* points in the legend entry. """ def __init__(self, marker_pad=0.3, numpoints=None, **kw): """ Parameters ---------- marker_pad : float Padding between points in legend entry. numpoints : int Number of points to show in legend entry. Notes ----- Any other keyword arguments are given to `HandlerBase`. """ HandlerBase.__init__(self, **kw) self._numpoints = numpoints self._marker_pad = marker_pad def get_numpoints(self, legend): if self._numpoints is None: return legend.numpoints else: return self._numpoints def get_xdata(self, legend, xdescent, ydescent, width, height, fontsize): numpoints = self.get_numpoints(legend) if numpoints > 1: # we put some pad here to compensate the size of the marker pad = self._marker_pad * fontsize xdata = np.linspace(-xdescent + pad, -xdescent + width - pad, numpoints) xdata_marker = xdata else: xdata = np.linspace(-xdescent, -xdescent + width, 2) xdata_marker = [-xdescent + 0.5 * width] return xdata, xdata_marker class HandlerNpointsYoffsets(HandlerNpoints): """ A legend handler that shows *numpoints* in the legend, and allows them to be individually offest in the y-direction. """ def __init__(self, numpoints=None, yoffsets=None, **kw): """ Parameters ---------- numpoints : int Number of points to show in legend entry. yoffsets : array of floats Length *numpoints* list of y offsets for each point in legend entry. Notes ----- Any other keyword arguments are given to `HandlerNpoints`. """ HandlerNpoints.__init__(self, numpoints=numpoints, **kw) self._yoffsets = yoffsets def get_ydata(self, legend, xdescent, ydescent, width, height, fontsize): if self._yoffsets is None: ydata = height * legend._scatteryoffsets else: ydata = height * np.asarray(self._yoffsets) return ydata class HandlerLine2D(HandlerNpoints): """ Handler for `.Line2D` instances. """ def __init__(self, marker_pad=0.3, numpoints=None, **kw): """ Parameters ---------- marker_pad : float Padding between points in legend entry. numpoints : int Number of points to show in legend entry. Notes ----- Any other keyword arguments are given to `HandlerNpoints`. """ HandlerNpoints.__init__(self, marker_pad=marker_pad, numpoints=numpoints, **kw) def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): xdata, xdata_marker = self.get_xdata(legend, xdescent, ydescent, width, height, fontsize) ydata = np.full_like(xdata, ((height - ydescent) / 2)) legline = Line2D(xdata, ydata) self.update_prop(legline, orig_handle, legend) legline.set_drawstyle('default') legline.set_marker("") legline_marker = Line2D(xdata_marker, ydata[:len(xdata_marker)]) self.update_prop(legline_marker, orig_handle, legend) legline_marker.set_linestyle('None') if legend.markerscale != 1: newsz = legline_marker.get_markersize() * legend.markerscale legline_marker.set_markersize(newsz) # we don't want to add this to the return list because # the texts and handles are assumed to be in one-to-one # correspondence. legline._legmarker = legline_marker legline.set_transform(trans) legline_marker.set_transform(trans) return [legline, legline_marker] class HandlerPatch(HandlerBase): """ Handler for `.Patch` instances. """ def __init__(self, patch_func=None, **kw): """ Parameters ---------- patch_func : callable, optional The function that creates the legend key artist. *patch_func* should have the signature:: def patch_func(legend=legend, orig_handle=orig_handle, xdescent=xdescent, ydescent=ydescent, width=width, height=height, fontsize=fontsize) Subsequently the created artist will have its ``update_prop`` method called and the appropriate transform will be applied. Notes ----- Any other keyword arguments are given to `HandlerBase`. """ HandlerBase.__init__(self, **kw) self._patch_func = patch_func def _create_patch(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize): if self._patch_func is None: p = Rectangle(xy=(-xdescent, -ydescent), width=width, height=height) else: p = self._patch_func(legend=legend, orig_handle=orig_handle, xdescent=xdescent, ydescent=ydescent, width=width, height=height, fontsize=fontsize) return p def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): p = self._create_patch(legend, orig_handle, xdescent, ydescent, width, height, fontsize) self.update_prop(p, orig_handle, legend) p.set_transform(trans) return [p] class HandlerLineCollection(HandlerLine2D): """ Handler for `.LineCollection` instances. """ def get_numpoints(self, legend): if self._numpoints is None: return legend.scatterpoints else: return self._numpoints def _default_update_prop(self, legend_handle, orig_handle): lw = orig_handle.get_linewidths()[0] dashes = orig_handle._us_linestyles[0] color = orig_handle.get_colors()[0] legend_handle.set_color(color) legend_handle.set_linestyle(dashes) legend_handle.set_linewidth(lw) def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): xdata, xdata_marker = self.get_xdata(legend, xdescent, ydescent, width, height, fontsize) ydata = ((height - ydescent) / 2.) * np.ones(xdata.shape, float) legline = Line2D(xdata, ydata) self.update_prop(legline, orig_handle, legend) legline.set_transform(trans) return [legline] class HandlerRegularPolyCollection(HandlerNpointsYoffsets): """ Handler for `.RegularPolyCollections`. """ def __init__(self, yoffsets=None, sizes=None, **kw): HandlerNpointsYoffsets.__init__(self, yoffsets=yoffsets, **kw) self._sizes = sizes def get_numpoints(self, legend): if self._numpoints is None: return legend.scatterpoints else: return self._numpoints def get_sizes(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize): if self._sizes is None: handle_sizes = orig_handle.get_sizes() if not len(handle_sizes): handle_sizes = [1] size_max = max(handle_sizes) * legend.markerscale ** 2 size_min = min(handle_sizes) * legend.markerscale ** 2 numpoints = self.get_numpoints(legend) if numpoints < 4: sizes = [.5 * (size_max + size_min), size_max, size_min][:numpoints] else: rng = (size_max - size_min) sizes = rng * np.linspace(0, 1, numpoints) + size_min else: sizes = self._sizes return sizes def update_prop(self, legend_handle, orig_handle, legend): self._update_prop(legend_handle, orig_handle) legend_handle.set_figure(legend.figure) # legend._set_artist_props(legend_handle) legend_handle.set_clip_box(None) legend_handle.set_clip_path(None) def create_collection(self, orig_handle, sizes, offsets, transOffset): p = type(orig_handle)(orig_handle.get_numsides(), rotation=orig_handle.get_rotation(), sizes=sizes, offsets=offsets, transOffset=transOffset, ) return p def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): xdata, xdata_marker = self.get_xdata(legend, xdescent, ydescent, width, height, fontsize) ydata = self.get_ydata(legend, xdescent, ydescent, width, height, fontsize) sizes = self.get_sizes(legend, orig_handle, xdescent, ydescent, width, height, fontsize) p = self.create_collection(orig_handle, sizes, offsets=list(zip(xdata_marker, ydata)), transOffset=trans) self.update_prop(p, orig_handle, legend) p._transOffset = trans return [p] class HandlerPathCollection(HandlerRegularPolyCollection): """ Handler for `.PathCollections`, which are used by `~.Axes.scatter`. """ def create_collection(self, orig_handle, sizes, offsets, transOffset): p = type(orig_handle)([orig_handle.get_paths()[0]], sizes=sizes, offsets=offsets, transOffset=transOffset, ) return p class HandlerCircleCollection(HandlerRegularPolyCollection): """ Handler for `.CircleCollections`. """ def create_collection(self, orig_handle, sizes, offsets, transOffset): p = type(orig_handle)(sizes, offsets=offsets, transOffset=transOffset, ) return p class HandlerErrorbar(HandlerLine2D): """ Handler for Errorbars. """ def __init__(self, xerr_size=0.5, yerr_size=None, marker_pad=0.3, numpoints=None, **kw): self._xerr_size = xerr_size self._yerr_size = yerr_size HandlerLine2D.__init__(self, marker_pad=marker_pad, numpoints=numpoints, **kw) def get_err_size(self, legend, xdescent, ydescent, width, height, fontsize): xerr_size = self._xerr_size * fontsize if self._yerr_size is None: yerr_size = xerr_size else: yerr_size = self._yerr_size * fontsize return xerr_size, yerr_size def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): plotlines, caplines, barlinecols = orig_handle xdata, xdata_marker = self.get_xdata(legend, xdescent, ydescent, width, height, fontsize) ydata = ((height - ydescent) / 2.) * np.ones(xdata.shape, float) legline = Line2D(xdata, ydata) xdata_marker = np.asarray(xdata_marker) ydata_marker = np.asarray(ydata[:len(xdata_marker)]) xerr_size, yerr_size = self.get_err_size(legend, xdescent, ydescent, width, height, fontsize) legline_marker = Line2D(xdata_marker, ydata_marker) # when plotlines are None (only errorbars are drawn), we just # make legline invisible. if plotlines is None: legline.set_visible(False) legline_marker.set_visible(False) else: self.update_prop(legline, plotlines, legend) legline.set_drawstyle('default') legline.set_marker('None') self.update_prop(legline_marker, plotlines, legend) legline_marker.set_linestyle('None') if legend.markerscale != 1: newsz = legline_marker.get_markersize() * legend.markerscale legline_marker.set_markersize(newsz) handle_barlinecols = [] handle_caplines = [] if orig_handle.has_xerr: verts = [((x - xerr_size, y), (x + xerr_size, y)) for x, y in zip(xdata_marker, ydata_marker)] coll = mcoll.LineCollection(verts) self.update_prop(coll, barlinecols[0], legend) handle_barlinecols.append(coll) if caplines: capline_left = Line2D(xdata_marker - xerr_size, ydata_marker) capline_right = Line2D(xdata_marker + xerr_size, ydata_marker) self.update_prop(capline_left, caplines[0], legend) self.update_prop(capline_right, caplines[0], legend) capline_left.set_marker("|") capline_right.set_marker("|") handle_caplines.append(capline_left) handle_caplines.append(capline_right) if orig_handle.has_yerr: verts = [((x, y - yerr_size), (x, y + yerr_size)) for x, y in zip(xdata_marker, ydata_marker)] coll = mcoll.LineCollection(verts) self.update_prop(coll, barlinecols[0], legend) handle_barlinecols.append(coll) if caplines: capline_left = Line2D(xdata_marker, ydata_marker - yerr_size) capline_right = Line2D(xdata_marker, ydata_marker + yerr_size) self.update_prop(capline_left, caplines[0], legend) self.update_prop(capline_right, caplines[0], legend) capline_left.set_marker("_") capline_right.set_marker("_") handle_caplines.append(capline_left) handle_caplines.append(capline_right) artists = [] artists.extend(handle_barlinecols) artists.extend(handle_caplines) artists.append(legline) artists.append(legline_marker) for artist in artists: artist.set_transform(trans) return artists class HandlerStem(HandlerNpointsYoffsets): """ Handler for plots produced by `~.Axes.stem`. """ def __init__(self, marker_pad=0.3, numpoints=None, bottom=None, yoffsets=None, **kw): """ Parameters ---------- marker_pad : float Padding between points in legend entry. Default is 0.3. numpoints : int, optional Number of points to show in legend entry. bottom : float, optional yoffsets : array of floats, optional Length *numpoints* list of y offsets for each point in legend entry. Notes ----- Any other keyword arguments are given to `HandlerNpointsYoffsets`. """ HandlerNpointsYoffsets.__init__(self, marker_pad=marker_pad, numpoints=numpoints, yoffsets=yoffsets, **kw) self._bottom = bottom def get_ydata(self, legend, xdescent, ydescent, width, height, fontsize): if self._yoffsets is None: ydata = height * (0.5 * legend._scatteryoffsets + 0.5) else: ydata = height * np.asarray(self._yoffsets) return ydata def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): markerline, stemlines, baseline = orig_handle # Check to see if the stemcontainer is storing lines as a list or a # LineCollection. Eventually using a list will be removed, and this # logic can also be removed. using_linecoll = isinstance(stemlines, mcoll.LineCollection) xdata, xdata_marker = self.get_xdata(legend, xdescent, ydescent, width, height, fontsize) ydata = self.get_ydata(legend, xdescent, ydescent, width, height, fontsize) if self._bottom is None: bottom = 0. else: bottom = self._bottom leg_markerline = Line2D(xdata_marker, ydata[:len(xdata_marker)]) self.update_prop(leg_markerline, markerline, legend) leg_stemlines = [Line2D([x, x], [bottom, y]) for x, y in zip(xdata_marker, ydata)] if using_linecoll: # change the function used by update_prop() from the default # to one that handles LineCollection orig_update_func = self._update_prop_func self._update_prop_func = self._copy_collection_props for line in leg_stemlines: self.update_prop(line, stemlines, legend) else: for lm, m in zip(leg_stemlines, stemlines): self.update_prop(lm, m, legend) if using_linecoll: self._update_prop_func = orig_update_func leg_baseline = Line2D([np.min(xdata), np.max(xdata)], [bottom, bottom]) self.update_prop(leg_baseline, baseline, legend) artists = leg_stemlines artists.append(leg_baseline) artists.append(leg_markerline) for artist in artists: artist.set_transform(trans) return artists def _copy_collection_props(self, legend_handle, orig_handle): """ Method to copy properties from a LineCollection (orig_handle) to a Line2D (legend_handle). """ legend_handle.set_color(orig_handle.get_color()[0]) legend_handle.set_linestyle(orig_handle.get_linestyle()[0]) class HandlerTuple(HandlerBase): """ Handler for Tuple. Additional kwargs are passed through to `HandlerBase`. Parameters ---------- ndivide : int, optional The number of sections to divide the legend area into. If None, use the length of the input tuple. Default is 1. pad : float, optional If None, fall back to ``legend.borderpad`` as the default. In units of fraction of font size. Default is None. """ def __init__(self, ndivide=1, pad=None, **kwargs): self._ndivide = ndivide self._pad = pad HandlerBase.__init__(self, **kwargs) def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): handler_map = legend.get_legend_handler_map() if self._ndivide is None: ndivide = len(orig_handle) else: ndivide = self._ndivide if self._pad is None: pad = legend.borderpad * fontsize else: pad = self._pad * fontsize if ndivide > 1: width = (width - pad * (ndivide - 1)) / ndivide xds_cycle = cycle(xdescent - (width + pad) * np.arange(ndivide)) a_list = [] for handle1 in orig_handle: handler = legend.get_legend_handler(handler_map, handle1) _a_list = handler.create_artists( legend, handle1, next(xds_cycle), ydescent, width, height, fontsize, trans) a_list.extend(_a_list) return a_list class HandlerPolyCollection(HandlerBase): """ Handler for `.PolyCollection` used in `~.Axes.fill_between` and `~.Axes.stackplot`. """ def _update_prop(self, legend_handle, orig_handle): def first_color(colors): if colors is None: return None colors = mcolors.to_rgba_array(colors) if len(colors): return colors[0] else: return "none" def get_first(prop_array): if len(prop_array): return prop_array[0] else: return None edgecolor = getattr(orig_handle, '_original_edgecolor', orig_handle.get_edgecolor()) legend_handle.set_edgecolor(first_color(edgecolor)) facecolor = getattr(orig_handle, '_original_facecolor', orig_handle.get_facecolor()) legend_handle.set_facecolor(first_color(facecolor)) legend_handle.set_fill(orig_handle.get_fill()) legend_handle.set_hatch(orig_handle.get_hatch()) legend_handle.set_linewidth(get_first(orig_handle.get_linewidths())) legend_handle.set_linestyle(get_first(orig_handle.get_linestyles())) legend_handle.set_transform(get_first(orig_handle.get_transforms())) legend_handle.set_figure(orig_handle.get_figure()) legend_handle.set_alpha(orig_handle.get_alpha()) def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): p = Rectangle(xy=(-xdescent, -ydescent), width=width, height=height) self.update_prop(p, orig_handle, legend) p.set_transform(trans) return [p]
70b722b34b0b1f7d07cd23fa96308f26e35d10489cd5ad9d8314e334d286a632
""" This provides several classes used for blocking interaction with figure windows: `BlockingInput` Creates a callable object to retrieve events in a blocking way for interactive sessions. Base class of the other classes listed here. `BlockingKeyMouseInput` Creates a callable object to retrieve key or mouse clicks in a blocking way for interactive sessions. Used by `waitforbuttonpress`. `BlockingMouseInput` Creates a callable object to retrieve mouse clicks in a blocking way for interactive sessions. Used by `ginput`. `BlockingContourLabeler` Creates a callable object to retrieve mouse clicks in a blocking way that will then be used to place labels on a `ContourSet`. Used by `clabel`. """ import logging from numbers import Integral import matplotlib.lines as mlines _log = logging.getLogger(__name__) class BlockingInput(object): """Callable for retrieving events in a blocking way.""" def __init__(self, fig, eventslist=()): self.fig = fig self.eventslist = eventslist def on_event(self, event): """ Event handler; will be passed to the current figure to retrieve events. """ # Add a new event to list - using a separate function is overkill for # the base class, but this is consistent with subclasses. self.add_event(event) _log.info("Event %i", len(self.events)) # This will extract info from events. self.post_event() # Check if we have enough events already. if len(self.events) >= self.n > 0: self.fig.canvas.stop_event_loop() def post_event(self): """For baseclass, do nothing but collect events.""" def cleanup(self): """Disconnect all callbacks.""" for cb in self.callbacks: self.fig.canvas.mpl_disconnect(cb) self.callbacks = [] def add_event(self, event): """For base class, this just appends an event to events.""" self.events.append(event) def pop_event(self, index=-1): """ Remove an event from the event list -- by default, the last. Note that this does not check that there are events, much like the normal pop method. If no events exist, this will throw an exception. """ self.events.pop(index) pop = pop_event def __call__(self, n=1, timeout=30): """Blocking call to retrieve *n* events.""" if not isinstance(n, Integral): raise ValueError("Requires an integer argument") self.n = n self.events = [] if hasattr(self.fig.canvas, "manager"): # Ensure that the figure is shown, if we are managing it. self.fig.show() # Connect the events to the on_event function call. self.callbacks = [self.fig.canvas.mpl_connect(name, self.on_event) for name in self.eventslist] try: # Start event loop. self.fig.canvas.start_event_loop(timeout=timeout) finally: # Run even on exception like ctrl-c. # Disconnect the callbacks. self.cleanup() # Return the events in this case. return self.events class BlockingMouseInput(BlockingInput): """ Callable for retrieving mouse clicks in a blocking way. This class will also retrieve keypresses and map them to mouse clicks: delete and backspace are like mouse button 3, enter is like mouse button 2 and all others are like mouse button 1. """ button_add = 1 button_pop = 3 button_stop = 2 def __init__(self, fig, mouse_add=1, mouse_pop=3, mouse_stop=2): BlockingInput.__init__(self, fig=fig, eventslist=('button_press_event', 'key_press_event')) self.button_add = mouse_add self.button_pop = mouse_pop self.button_stop = mouse_stop def post_event(self): """Process an event.""" if len(self.events) == 0: _log.warning("No events yet") elif self.events[-1].name == 'key_press_event': self.key_event() else: self.mouse_event() def mouse_event(self): """Process a mouse click event.""" event = self.events[-1] button = event.button if button == self.button_pop: self.mouse_event_pop(event) elif button == self.button_stop: self.mouse_event_stop(event) elif button == self.button_add: self.mouse_event_add(event) def key_event(self): """ Process a key press event, mapping keys to appropriate mouse clicks. """ event = self.events[-1] if event.key is None: # At least in OSX gtk backend some keys return None. return key = event.key.lower() if key in ['backspace', 'delete']: self.mouse_event_pop(event) elif key in ['escape', 'enter']: self.mouse_event_stop(event) else: self.mouse_event_add(event) def mouse_event_add(self, event): """ Process an button-1 event (add a click if inside axes). Parameters ---------- event : `~.backend_bases.MouseEvent` """ if event.inaxes: self.add_click(event) else: # If not a valid click, remove from event list. BlockingInput.pop(self) def mouse_event_stop(self, event): """ Process an button-2 event (end blocking input). Parameters ---------- event : `~.backend_bases.MouseEvent` """ # Remove last event just for cleanliness. BlockingInput.pop(self) # This will exit even if not in infinite mode. This is consistent with # MATLAB and sometimes quite useful, but will require the user to test # how many points were actually returned before using data. self.fig.canvas.stop_event_loop() def mouse_event_pop(self, event): """ Process an button-3 event (remove the last click). Parameters ---------- event : `~.backend_bases.MouseEvent` """ # Remove this last event. BlockingInput.pop(self) # Now remove any existing clicks if possible. if self.events: self.pop(event) def add_click(self, event): """ Add the coordinates of an event to the list of clicks. Parameters ---------- event : `~.backend_bases.MouseEvent` """ self.clicks.append((event.xdata, event.ydata)) _log.info("input %i: %f, %f", len(self.clicks), event.xdata, event.ydata) # If desired, plot up click. if self.show_clicks: line = mlines.Line2D([event.xdata], [event.ydata], marker='+', color='r') event.inaxes.add_line(line) self.marks.append(line) self.fig.canvas.draw() def pop_click(self, event, index=-1): """ Remove a click (by default, the last) from the list of clicks. Parameters ---------- event : `~.backend_bases.MouseEvent` """ self.clicks.pop(index) if self.show_clicks: self.marks.pop(index).remove() self.fig.canvas.draw() def pop(self, event, index=-1): """ Removes a click and the associated event from the list of clicks. Defaults to the last click. """ self.pop_click(event, index) BlockingInput.pop(self, index) def cleanup(self, event=None): """ Parameters ---------- event : `~.backend_bases.MouseEvent`, optional Not used """ # Clean the figure. if self.show_clicks: for mark in self.marks: mark.remove() self.marks = [] self.fig.canvas.draw() # Call base class to remove callbacks. BlockingInput.cleanup(self) def __call__(self, n=1, timeout=30, show_clicks=True): """ Blocking call to retrieve *n* coordinate pairs through mouse clicks. """ self.show_clicks = show_clicks self.clicks = [] self.marks = [] BlockingInput.__call__(self, n=n, timeout=timeout) return self.clicks class BlockingContourLabeler(BlockingMouseInput): """ Callable for retrieving mouse clicks and key presses in a blocking way. Used to place contour labels. """ def __init__(self, cs): self.cs = cs BlockingMouseInput.__init__(self, fig=cs.ax.figure) def add_click(self, event): self.button1(event) def pop_click(self, event, index=-1): self.button3(event) def button1(self, event): """ Process an button-1 event (add a label to a contour). Parameters ---------- event : `~.backend_bases.MouseEvent` """ # Shorthand if event.inaxes == self.cs.ax: self.cs.add_label_near(event.x, event.y, self.inline, inline_spacing=self.inline_spacing, transform=False) self.fig.canvas.draw() else: # Remove event if not valid BlockingInput.pop(self) def button3(self, event): """ Process an button-3 event (remove a label if not in inline mode). Unfortunately, if one is doing inline labels, then there is currently no way to fix the broken contour - once humpty-dumpty is broken, he can't be put back together. In inline mode, this does nothing. Parameters ---------- event : `~.backend_bases.MouseEvent` """ if self.inline: pass else: self.cs.pop_label() self.cs.ax.figure.canvas.draw() def __call__(self, inline, inline_spacing=5, n=-1, timeout=-1): self.inline = inline self.inline_spacing = inline_spacing BlockingMouseInput.__call__(self, n=n, timeout=timeout, show_clicks=False) class BlockingKeyMouseInput(BlockingInput): """ Callable for retrieving mouse clicks and key presses in a blocking way. """ def __init__(self, fig): BlockingInput.__init__(self, fig=fig, eventslist=( 'button_press_event', 'key_press_event')) def post_event(self): """Determine if it is a key event.""" if self.events: self.keyormouse = self.events[-1].name == 'key_press_event' else: _log.warning("No events yet.") def __call__(self, timeout=30): """ Blocking call to retrieve a single mouse click or key press. Returns ``True`` if key press, ``False`` if mouse click, or ``None`` if timed out. """ self.keyormouse = None BlockingInput.__call__(self, n=1, timeout=timeout) return self.keyormouse
bb906eb35bca3df607c4fd84456f307d5fb94586892bd4a9217d063d1d559fb7
""" These are classes to support contour plotting and labelling for the Axes class. """ from numbers import Integral import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.path as mpath import matplotlib.ticker as ticker import matplotlib.cm as cm import matplotlib.colors as mcolors import matplotlib.collections as mcoll import matplotlib.font_manager as font_manager import matplotlib.text as text import matplotlib.cbook as cbook import matplotlib.mathtext as mathtext import matplotlib.patches as mpatches import matplotlib.texmanager as texmanager import matplotlib.transforms as mtransforms # Import needed for adding manual selection capability to clabel from matplotlib.blocking_input import BlockingContourLabeler # We can't use a single line collection for contour because a line # collection can have only a single line style, and we want to be able to have # dashed negative contours, for example, and solid positive contours. # We could use a single polygon collection for filled contours, but it # seems better to keep line and filled contours similar, with one collection # per level. class ClabelText(text.Text): """ Unlike the ordinary text, the get_rotation returns an updated angle in the pixel coordinate assuming that the input rotation is an angle in data coordinate (or whatever transform set). """ def get_rotation(self): angle = text.Text.get_rotation(self) trans = self.get_transform() x, y = self.get_position() new_angles = trans.transform_angles(np.array([angle]), np.array([[x, y]])) return new_angles[0] class ContourLabeler(object): """Mixin to provide labelling capability to `.ContourSet`.""" def clabel(self, *args, fontsize=None, inline=True, inline_spacing=5, fmt='%1.3f', colors=None, use_clabeltext=False, manual=False, rightside_up=True): """ Label a contour plot. Call signature:: clabel(cs, [levels,] **kwargs) Adds labels to line contours in *cs*, where *cs* is a :class:`~matplotlib.contour.ContourSet` object returned by ``contour()``. Parameters ---------- cs : `.ContourSet` The ContourSet to label. levels : array-like, optional A list of level values, that should be labeled. The list must be a subset of ``cs.levels``. If not given, all levels are labeled. fontsize : string or float, optional Size in points or relative size e.g., 'smaller', 'x-large'. See `.Text.set_size` for accepted string values. colors : color-spec, optional The label colors: - If *None*, the color of each label matches the color of the corresponding contour. - If one string color, e.g., *colors* = 'r' or *colors* = 'red', all labels will be plotted in this color. - If a tuple of matplotlib color args (string, float, rgb, etc), different labels will be plotted in different colors in the order specified. inline : bool, optional If ``True`` the underlying contour is removed where the label is placed. Default is ``True``. inline_spacing : float, optional Space in pixels to leave on each side of label when placing inline. Defaults to 5. This spacing will be exact for labels at locations where the contour is straight, less so for labels on curved contours. fmt : string or dict, optional A format string for the label. Default is '%1.3f' Alternatively, this can be a dictionary matching contour levels with arbitrary strings to use for each contour level (i.e., fmt[level]=string), or it can be any callable, such as a :class:`~matplotlib.ticker.Formatter` instance, that returns a string when called with a numeric contour level. manual : bool or iterable, optional If ``True``, contour labels will be placed manually using mouse clicks. Click the first button near a contour to add a label, click the second button (or potentially both mouse buttons at once) to finish adding labels. The third button can be used to remove the last label added, but only if labels are not inline. Alternatively, the keyboard can be used to select label locations (enter to end label placement, delete or backspace act like the third mouse button, and any other key will select a label location). *manual* can also be an iterable object of x,y tuples. Contour labels will be created as if mouse is clicked at each x,y positions. rightside_up : bool, optional If ``True``, label rotations will always be plus or minus 90 degrees from level. Default is ``True``. use_clabeltext : bool, optional If ``True``, `.ClabelText` class (instead of `.Text`) is used to create labels. `ClabelText` recalculates rotation angles of texts during the drawing time, therefore this can be used if aspect of the axes changes. Default is ``False``. Returns ------- labels A list of `.Text` instances for the labels. """ """ NOTES on how this all works: clabel basically takes the input arguments and uses them to add a list of "label specific" attributes to the ContourSet object. These attributes are all of the form label* and names should be fairly self explanatory. Once these attributes are set, clabel passes control to the labels method (case of automatic label placement) or `BlockingContourLabeler` (case of manual label placement). """ self.labelFmt = fmt self._use_clabeltext = use_clabeltext # Detect if manual selection is desired and remove from argument list. self.labelManual = manual self.rightside_up = rightside_up if len(args) == 0: levels = self.levels indices = list(range(len(self.cvalues))) elif len(args) == 1: levlabs = list(args[0]) indices, levels = [], [] for i, lev in enumerate(self.levels): if lev in levlabs: indices.append(i) levels.append(lev) if len(levels) < len(levlabs): raise ValueError("Specified levels {} don't match available " "levels {}".format(levlabs, self.levels)) else: raise TypeError("Illegal arguments to clabel, see help(clabel)") self.labelLevelList = levels self.labelIndiceList = indices self.labelFontProps = font_manager.FontProperties() self.labelFontProps.set_size(fontsize) font_size_pts = self.labelFontProps.get_size_in_points() self.labelFontSizeList = [font_size_pts] * len(levels) if colors is None: self.labelMappable = self self.labelCValueList = np.take(self.cvalues, self.labelIndiceList) else: cmap = mcolors.ListedColormap(colors, N=len(self.labelLevelList)) self.labelCValueList = list(range(len(self.labelLevelList))) self.labelMappable = cm.ScalarMappable(cmap=cmap, norm=mcolors.NoNorm()) self.labelXYs = [] if np.iterable(self.labelManual): for x, y in self.labelManual: self.add_label_near(x, y, inline, inline_spacing) elif self.labelManual: print('Select label locations manually using first mouse button.') print('End manual selection with second mouse button.') if not inline: print('Remove last label by clicking third mouse button.') blocking_contour_labeler = BlockingContourLabeler(self) blocking_contour_labeler(inline, inline_spacing) else: self.labels(inline, inline_spacing) self.labelTextsList = cbook.silent_list('text.Text', self.labelTexts) return self.labelTextsList cl = cbook.deprecated("3.0", alternative="labelTexts")(property( lambda self: self.labelTexts)) cl_xy = cbook.deprecated("3.0", alternative="labelXYs")(property( lambda self: self.labelXYs)) cl_cvalues = cbook.deprecated("3.0", alternative="labelCValues")(property( lambda self: self.labelCValues)) def print_label(self, linecontour, labelwidth): "Return *False* if contours are too short for a label." return (len(linecontour) > 10 * labelwidth or (np.ptp(linecontour, axis=0) > 1.2 * labelwidth).any()) def too_close(self, x, y, lw): "Return *True* if a label is already near this location." thresh = (1.2 * lw) ** 2 return any((x - loc[0]) ** 2 + (y - loc[1]) ** 2 < thresh for loc in self.labelXYs) def get_label_coords(self, distances, XX, YY, ysize, lw): """ Return x, y, and the index of a label location. Labels are plotted at a location with the smallest deviation of the contour from a straight line unless there is another label nearby, in which case the next best place on the contour is picked up. If all such candidates are rejected, the beginning of the contour is chosen. """ hysize = int(ysize / 2) adist = np.argsort(distances) for ind in adist: x, y = XX[ind][hysize], YY[ind][hysize] if self.too_close(x, y, lw): continue return x, y, ind ind = adist[0] x, y = XX[ind][hysize], YY[ind][hysize] return x, y, ind def get_label_width(self, lev, fmt, fsize): """ Return the width of the label in points. """ if not isinstance(lev, str): lev = self.get_text(lev, fmt) lev, ismath = text.Text()._preprocess_math(lev) if ismath == 'TeX': if not hasattr(self, '_TeX_manager'): self._TeX_manager = texmanager.TexManager() lw, _, _ = self._TeX_manager.get_text_width_height_descent(lev, fsize) elif ismath: if not hasattr(self, '_mathtext_parser'): self._mathtext_parser = mathtext.MathTextParser('bitmap') img, _ = self._mathtext_parser.parse(lev, dpi=72, prop=self.labelFontProps) lw = img.get_width() # at dpi=72, the units are PostScript points else: # width is much less than "font size" lw = (len(lev)) * fsize * 0.6 return lw def set_label_props(self, label, text, color): """Set the label properties - color, fontsize, text.""" label.set_text(text) label.set_color(color) label.set_fontproperties(self.labelFontProps) label.set_clip_box(self.ax.bbox) def get_text(self, lev, fmt): """Get the text of the label.""" if isinstance(lev, str): return lev else: if isinstance(fmt, dict): return fmt.get(lev, '%1.3f') elif callable(fmt): return fmt(lev) else: return fmt % lev def locate_label(self, linecontour, labelwidth): """ Find good place to draw a label (relatively flat part of the contour). """ # Number of contour points nsize = len(linecontour) if labelwidth > 1: xsize = int(np.ceil(nsize / labelwidth)) else: xsize = 1 if xsize == 1: ysize = nsize else: ysize = int(labelwidth) XX = np.resize(linecontour[:, 0], (xsize, ysize)) YY = np.resize(linecontour[:, 1], (xsize, ysize)) # I might have fouled up the following: yfirst = YY[:, :1] ylast = YY[:, -1:] xfirst = XX[:, :1] xlast = XX[:, -1:] s = (yfirst - YY) * (xlast - xfirst) - (xfirst - XX) * (ylast - yfirst) L = np.hypot(xlast - xfirst, ylast - yfirst) # Ignore warning that divide by zero throws, as this is a valid option with np.errstate(divide='ignore', invalid='ignore'): dist = np.sum(np.abs(s) / L, axis=-1) x, y, ind = self.get_label_coords(dist, XX, YY, ysize, labelwidth) # There must be a more efficient way... lc = [tuple(l) for l in linecontour] dind = lc.index((x, y)) return x, y, dind def calc_label_rot_and_inline(self, slc, ind, lw, lc=None, spacing=5): """ This function calculates the appropriate label rotation given the linecontour coordinates in screen units, the index of the label location and the label width. It will also break contour and calculate inlining if *lc* is not empty (lc defaults to the empty list if None). *spacing* is the space around the label in pixels to leave empty. Do both of these tasks at once to avoid calculating path lengths multiple times, which is relatively costly. The method used here involves calculating the path length along the contour in pixel coordinates and then looking approximately label width / 2 away from central point to determine rotation and then to break contour if desired. """ if lc is None: lc = [] # Half the label width hlw = lw / 2.0 # Check if closed and, if so, rotate contour so label is at edge closed = _is_closed_polygon(slc) if closed: slc = np.r_[slc[ind:-1], slc[:ind + 1]] if len(lc): # Rotate lc also if not empty lc = np.r_[lc[ind:-1], lc[:ind + 1]] ind = 0 # Calculate path lengths pl = np.zeros(slc.shape[0], dtype=float) dx = np.diff(slc, axis=0) pl[1:] = np.cumsum(np.hypot(dx[:, 0], dx[:, 1])) pl = pl - pl[ind] # Use linear interpolation to get points around label xi = np.array([-hlw, hlw]) if closed: # Look at end also for closed contours dp = np.array([pl[-1], 0]) else: dp = np.zeros_like(xi) # Get angle of vector between the two ends of the label - must be # calculated in pixel space for text rotation to work correctly. (dx,), (dy,) = (np.diff(np.interp(dp + xi, pl, slc_col)) for slc_col in slc.T) rotation = np.rad2deg(np.arctan2(dy, dx)) if self.rightside_up: # Fix angle so text is never upside-down rotation = (rotation + 90) % 180 - 90 # Break contour if desired nlc = [] if len(lc): # Expand range by spacing xi = dp + xi + np.array([-spacing, spacing]) # Get (integer) indices near points of interest; use -1 as marker # for out of bounds. I = np.interp(xi, pl, np.arange(len(pl)), left=-1, right=-1) I = [np.floor(I[0]).astype(int), np.ceil(I[1]).astype(int)] if I[0] != -1: xy1 = [np.interp(xi[0], pl, lc_col) for lc_col in lc.T] if I[1] != -1: xy2 = [np.interp(xi[1], pl, lc_col) for lc_col in lc.T] # Actually break contours if closed: # This will remove contour if shorter than label if all(i != -1 for i in I): nlc.append(np.row_stack([xy2, lc[I[1]:I[0]+1], xy1])) else: # These will remove pieces of contour if they have length zero if I[0] != -1: nlc.append(np.row_stack([lc[:I[0]+1], xy1])) if I[1] != -1: nlc.append(np.row_stack([xy2, lc[I[1]:]])) # The current implementation removes contours completely # covered by labels. Uncomment line below to keep # original contour if this is the preferred behavior. # if not len(nlc): nlc = [ lc ] return rotation, nlc def _get_label_text(self, x, y, rotation): dx, dy = self.ax.transData.inverted().transform_point((x, y)) t = text.Text(dx, dy, rotation=rotation, horizontalalignment='center', verticalalignment='center') return t def _get_label_clabeltext(self, x, y, rotation): # x, y, rotation is given in pixel coordinate. Convert them to # the data coordinate and create a label using ClabelText # class. This way, the rotation of the clabel is along the # contour line always. transDataInv = self.ax.transData.inverted() dx, dy = transDataInv.transform_point((x, y)) drotation = transDataInv.transform_angles(np.array([rotation]), np.array([[x, y]])) t = ClabelText(dx, dy, rotation=drotation[0], horizontalalignment='center', verticalalignment='center') return t def _add_label(self, t, x, y, lev, cvalue): color = self.labelMappable.to_rgba(cvalue, alpha=self.alpha) _text = self.get_text(lev, self.labelFmt) self.set_label_props(t, _text, color) self.labelTexts.append(t) self.labelCValues.append(cvalue) self.labelXYs.append((x, y)) # Add label to plot here - useful for manual mode label selection self.ax.add_artist(t) def add_label(self, x, y, rotation, lev, cvalue): """ Add contour label using :class:`~matplotlib.text.Text` class. """ t = self._get_label_text(x, y, rotation) self._add_label(t, x, y, lev, cvalue) def add_label_clabeltext(self, x, y, rotation, lev, cvalue): """ Add contour label using :class:`ClabelText` class. """ # x, y, rotation is given in pixel coordinate. Convert them to # the data coordinate and create a label using ClabelText # class. This way, the rotation of the clabel is along the # contour line always. t = self._get_label_clabeltext(x, y, rotation) self._add_label(t, x, y, lev, cvalue) def add_label_near(self, x, y, inline=True, inline_spacing=5, transform=None): """ Add a label near the point (x, y). If transform is None (default), (x, y) is in data coordinates; if transform is False, (x, y) is in display coordinates; otherwise, the specified transform will be used to translate (x, y) into display coordinates. Parameters ---------- x, y : float The approximate location of the label. inline : bool, optional, default: True If *True* remove the segment of the contour beneath the label. inline_spacing : int, optional, default: 5 Space in pixels to leave on each side of label when placing inline. This spacing will be exact for labels at locations where the contour is straight, less so for labels on curved contours. """ if transform is None: transform = self.ax.transData if transform: x, y = transform.transform_point((x, y)) # find the nearest contour _in screen units_ conmin, segmin, imin, xmin, ymin = self.find_nearest_contour( x, y, self.labelIndiceList)[:5] # The calc_label_rot_and_inline routine requires that (xmin,ymin) # be a vertex in the path. So, if it isn't, add a vertex here # grab the paths from the collections paths = self.collections[conmin].get_paths() # grab the correct segment active_path = paths[segmin] # grab its vertices lc = active_path.vertices # sort out where the new vertex should be added data-units xcmin = self.ax.transData.inverted().transform_point([xmin, ymin]) # if there isn't a vertex close enough if not np.allclose(xcmin, lc[imin]): # insert new data into the vertex list lc = np.r_[lc[:imin], np.array(xcmin)[None, :], lc[imin:]] # replace the path with the new one paths[segmin] = mpath.Path(lc) # Get index of nearest level in subset of levels used for labeling lmin = self.labelIndiceList.index(conmin) # Coordinates of contour paths = self.collections[conmin].get_paths() lc = paths[segmin].vertices # In pixel/screen space slc = self.ax.transData.transform(lc) # Get label width for rotating labels and breaking contours lw = self.get_label_width(self.labelLevelList[lmin], self.labelFmt, self.labelFontSizeList[lmin]) # lw is in points. lw *= self.ax.figure.dpi / 72.0 # scale to screen coordinates # now lw in pixels # Figure out label rotation. if inline: lcarg = lc else: lcarg = None rotation, nlc = self.calc_label_rot_and_inline( slc, imin, lw, lcarg, inline_spacing) self.add_label(xmin, ymin, rotation, self.labelLevelList[lmin], self.labelCValueList[lmin]) if inline: # Remove old, not looping over paths so we can do this up front paths.pop(segmin) # Add paths if not empty or single point for n in nlc: if len(n) > 1: paths.append(mpath.Path(n)) def pop_label(self, index=-1): """Defaults to removing last label, but any index can be supplied""" self.labelCValues.pop(index) t = self.labelTexts.pop(index) t.remove() def labels(self, inline, inline_spacing): if self._use_clabeltext: add_label = self.add_label_clabeltext else: add_label = self.add_label for icon, lev, fsize, cvalue in zip( self.labelIndiceList, self.labelLevelList, self.labelFontSizeList, self.labelCValueList): con = self.collections[icon] trans = con.get_transform() lw = self.get_label_width(lev, self.labelFmt, fsize) lw *= self.ax.figure.dpi / 72.0 # scale to screen coordinates additions = [] paths = con.get_paths() for segNum, linepath in enumerate(paths): lc = linepath.vertices # Line contour slc0 = trans.transform(lc) # Line contour in screen coords # For closed polygons, add extra point to avoid division by # zero in print_label and locate_label. Other than these # functions, this is not necessary and should probably be # eventually removed. if _is_closed_polygon(lc): slc = np.r_[slc0, slc0[1:2, :]] else: slc = slc0 # Check if long enough for a label if self.print_label(slc, lw): x, y, ind = self.locate_label(slc, lw) if inline: lcarg = lc else: lcarg = None rotation, new = self.calc_label_rot_and_inline( slc0, ind, lw, lcarg, inline_spacing) # Actually add the label add_label(x, y, rotation, lev, cvalue) # If inline, add new contours if inline: for n in new: # Add path if not empty or single point if len(n) > 1: additions.append(mpath.Path(n)) else: # If not adding label, keep old path additions.append(linepath) # After looping over all segments on a contour, remove old # paths and add new ones if inlining if inline: del paths[:] paths.extend(additions) def _find_closest_point_on_leg(p1, p2, p0): """Find the closest point to p0 on line segment connecting p1 and p2.""" # handle degenerate case if np.all(p2 == p1): d = np.sum((p0 - p1)**2) return d, p1 d21 = p2 - p1 d01 = p0 - p1 # project on to line segment to find closest point proj = np.dot(d01, d21) / np.dot(d21, d21) if proj < 0: proj = 0 if proj > 1: proj = 1 pc = p1 + proj * d21 # find squared distance d = np.sum((pc-p0)**2) return d, pc def _is_closed_polygon(X): """ Return whether first and last object in a sequence are the same. These are presumably coordinates on a polygonal curve, in which case this function tests if that curve is closed. """ return np.all(X[0] == X[-1]) def _find_closest_point_on_path(lc, point): """ Parameters ---------- lc : coordinates of vertices point : coordinates of test point """ # find index of closest vertex for this segment ds = np.sum((lc - point[None, :])**2, 1) imin = np.argmin(ds) dmin = np.inf xcmin = None legmin = (None, None) closed = _is_closed_polygon(lc) # build list of legs before and after this vertex legs = [] if imin > 0 or closed: legs.append(((imin-1) % len(lc), imin)) if imin < len(lc) - 1 or closed: legs.append((imin, (imin+1) % len(lc))) for leg in legs: d, xc = _find_closest_point_on_leg(lc[leg[0]], lc[leg[1]], point) if d < dmin: dmin = d xcmin = xc legmin = leg return (dmin, xcmin, legmin) class ContourSet(cm.ScalarMappable, ContourLabeler): """ Store a set of contour lines or filled regions. User-callable method: `~.axes.Axes.clabel` Parameters ---------- ax : `~.axes.Axes` levels : [level0, level1, ..., leveln] A list of floating point numbers indicating the contour levels. allsegs : [level0segs, level1segs, ...] List of all the polygon segments for all the *levels*. For contour lines ``len(allsegs) == len(levels)``, and for filled contour regions ``len(allsegs) = len(levels)-1``. The lists should look like:: level0segs = [polygon0, polygon1, ...] polygon0 = array_like [[x0,y0], [x1,y1], ...] allkinds : ``None`` or [level0kinds, level1kinds, ...] Optional list of all the polygon vertex kinds (code types), as described and used in Path. This is used to allow multiply- connected paths such as holes within filled polygons. If not ``None``, ``len(allkinds) == len(allsegs)``. The lists should look like:: level0kinds = [polygon0kinds, ...] polygon0kinds = [vertexcode0, vertexcode1, ...] If *allkinds* is not ``None``, usually all polygons for a particular contour level are grouped together so that ``level0segs = [polygon0]`` and ``level0kinds = [polygon0kinds]``. **kwargs Keyword arguments are as described in the docstring of `~.axes.Axes.contour`. Attributes ---------- ax The axes object in which the contours are drawn. collections A silent_list of LineCollections or PolyCollections. levels Contour levels. layers Same as levels for line contours; half-way between levels for filled contours. See :meth:`_process_colors`. """ def __init__(self, ax, *args, levels=None, filled=False, linewidths=None, linestyles=None, alpha=None, origin=None, extent=None, cmap=None, colors=None, norm=None, vmin=None, vmax=None, extend='neither', antialiased=None, **kwargs): """ Draw contour lines or filled regions, depending on whether keyword arg *filled* is ``False`` (default) or ``True``. Call signature:: ContourSet(ax, levels, allsegs, [allkinds], **kwargs) Parameters ---------- ax : `~.axes.Axes` The `~.axes.Axes` object to draw on. levels : [level0, level1, ..., leveln] A list of floating point numbers indicating the contour levels. allsegs : [level0segs, level1segs, ...] List of all the polygon segments for all the *levels*. For contour lines ``len(allsegs) == len(levels)``, and for filled contour regions ``len(allsegs) = len(levels)-1``. The lists should look like:: level0segs = [polygon0, polygon1, ...] polygon0 = array_like [[x0,y0], [x1,y1], ...] allkinds : [level0kinds, level1kinds, ...], optional Optional list of all the polygon vertex kinds (code types), as described and used in Path. This is used to allow multiply- connected paths such as holes within filled polygons. If not ``None``, ``len(allkinds) == len(allsegs)``. The lists should look like:: level0kinds = [polygon0kinds, ...] polygon0kinds = [vertexcode0, vertexcode1, ...] If *allkinds* is not ``None``, usually all polygons for a particular contour level are grouped together so that ``level0segs = [polygon0]`` and ``level0kinds = [polygon0kinds]``. **kwargs Keyword arguments are as described in the docstring of `~axes.Axes.contour`. """ self.ax = ax self.levels = levels self.filled = filled self.linewidths = linewidths self.linestyles = linestyles self.hatches = kwargs.pop('hatches', [None]) self.alpha = alpha self.origin = origin self.extent = extent self.colors = colors self.extend = extend self.antialiased = antialiased if self.antialiased is None and self.filled: self.antialiased = False # eliminate artifacts; we are not # stroking the boundaries. # The default for line contours will be taken from the # LineCollection default, which uses :rc:`lines.antialiased`. self.nchunk = kwargs.pop('nchunk', 0) self.locator = kwargs.pop('locator', None) if (isinstance(norm, mcolors.LogNorm) or isinstance(self.locator, ticker.LogLocator)): self.logscale = True if norm is None: norm = mcolors.LogNorm() else: self.logscale = False cbook._check_in_list([None, 'lower', 'upper', 'image'], origin=origin) if self.extent is not None and len(self.extent) != 4: raise ValueError("If given, *extent* must be '[ *None* |" " (x0,x1,y0,y1) ]'") if self.colors is not None and cmap is not None: raise ValueError('Either colors or cmap must be None') if self.origin == 'image': self.origin = mpl.rcParams['image.origin'] self._transform = kwargs.pop('transform', None) kwargs = self._process_args(*args, **kwargs) self._process_levels() if self.colors is not None: ncolors = len(self.levels) if self.filled: ncolors -= 1 i0 = 0 # Handle the case where colors are given for the extended # parts of the contour. extend_min = self.extend in ['min', 'both'] extend_max = self.extend in ['max', 'both'] use_set_under_over = False # if we are extending the lower end, and we've been given enough # colors then skip the first color in the resulting cmap. For the # extend_max case we don't need to worry about passing more colors # than ncolors as ListedColormap will clip. total_levels = ncolors + int(extend_min) + int(extend_max) if len(self.colors) == total_levels and (extend_min or extend_max): use_set_under_over = True if extend_min: i0 = 1 cmap = mcolors.ListedColormap(self.colors[i0:None], N=ncolors) if use_set_under_over: if extend_min: cmap.set_under(self.colors[0]) if extend_max: cmap.set_over(self.colors[-1]) if self.filled: self.collections = cbook.silent_list('mcoll.PathCollection') else: self.collections = cbook.silent_list('mcoll.LineCollection') # label lists must be initialized here self.labelTexts = [] self.labelCValues = [] kw = {'cmap': cmap} if norm is not None: kw['norm'] = norm # sets self.cmap, norm if needed; cm.ScalarMappable.__init__(self, **kw) if vmin is not None: self.norm.vmin = vmin if vmax is not None: self.norm.vmax = vmax self._process_colors() self.allsegs, self.allkinds = self._get_allsegs_and_allkinds() if self.filled: if self.linewidths is not None: cbook._warn_external('linewidths is ignored by contourf') # Lower and upper contour levels. lowers, uppers = self._get_lowers_and_uppers() # Ensure allkinds can be zipped below. if self.allkinds is None: self.allkinds = [None] * len(self.allsegs) # Default zorder taken from Collection zorder = kwargs.pop('zorder', 1) for level, level_upper, segs, kinds in \ zip(lowers, uppers, self.allsegs, self.allkinds): paths = self._make_paths(segs, kinds) col = mcoll.PathCollection( paths, antialiaseds=(self.antialiased,), edgecolors='none', alpha=self.alpha, transform=self.get_transform(), zorder=zorder) self.ax.add_collection(col, autolim=False) self.collections.append(col) else: tlinewidths = self._process_linewidths() self.tlinewidths = tlinewidths tlinestyles = self._process_linestyles() aa = self.antialiased if aa is not None: aa = (self.antialiased,) # Default zorder taken from LineCollection zorder = kwargs.pop('zorder', 2) for level, width, lstyle, segs in \ zip(self.levels, tlinewidths, tlinestyles, self.allsegs): col = mcoll.LineCollection( segs, antialiaseds=aa, linewidths=width, linestyles=[lstyle], alpha=self.alpha, transform=self.get_transform(), zorder=zorder) col.set_label('_nolegend_') self.ax.add_collection(col, autolim=False) self.collections.append(col) for col in self.collections: col.sticky_edges.x[:] = [self._mins[0], self._maxs[0]] col.sticky_edges.y[:] = [self._mins[1], self._maxs[1]] self.ax.update_datalim([self._mins, self._maxs]) self.ax.autoscale_view(tight=True) self.changed() # set the colors if kwargs: s = ", ".join(map(repr, kwargs)) cbook._warn_external('The following kwargs were not used by ' 'contour: ' + s) def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` instance used by this ContourSet. """ if self._transform is None: self._transform = self.ax.transData elif (not isinstance(self._transform, mtransforms.Transform) and hasattr(self._transform, '_as_mpl_transform')): self._transform = self._transform._as_mpl_transform(self.ax) return self._transform def __getstate__(self): state = self.__dict__.copy() # the C object _contour_generator cannot currently be pickled. This # isn't a big issue as it is not actually used once the contour has # been calculated. state['_contour_generator'] = None return state def legend_elements(self, variable_name='x', str_format=str): """ Return a list of artists and labels suitable for passing through to :func:`plt.legend` which represent this ContourSet. The labels have the form "0 < x <= 1" stating the data ranges which the artists represent. Parameters ---------- variable_name : str The string used inside the inequality used on the labels. str_format : function: float -> str Function used to format the numbers in the labels. Returns ------- artists : List[`.Artist`] A list of the artists. labels : List[str] A list of the labels. """ artists = [] labels = [] if self.filled: lowers, uppers = self._get_lowers_and_uppers() n_levels = len(self.collections) for i, (collection, lower, upper) in enumerate( zip(self.collections, lowers, uppers)): patch = mpatches.Rectangle( (0, 0), 1, 1, facecolor=collection.get_facecolor()[0], hatch=collection.get_hatch(), alpha=collection.get_alpha()) artists.append(patch) lower = str_format(lower) upper = str_format(upper) if i == 0 and self.extend in ('min', 'both'): labels.append(r'$%s \leq %s$' % (variable_name, lower)) elif i == n_levels - 1 and self.extend in ('max', 'both'): labels.append(r'$%s > %s$' % (variable_name, upper)) else: labels.append(r'$%s < %s \leq %s$' % (lower, variable_name, upper)) else: for collection, level in zip(self.collections, self.levels): patch = mcoll.LineCollection(None) patch.update_from(collection) artists.append(patch) # format the level for insertion into the labels level = str_format(level) labels.append(r'$%s = %s$' % (variable_name, level)) return artists, labels def _process_args(self, *args, **kwargs): """ Process *args* and *kwargs*; override in derived classes. Must set self.levels, self.zmin and self.zmax, and update axes limits. """ self.levels = args[0] self.allsegs = args[1] self.allkinds = len(args) > 2 and args[2] or None self.zmax = np.max(self.levels) self.zmin = np.min(self.levels) # Check lengths of levels and allsegs. if self.filled: if len(self.allsegs) != len(self.levels) - 1: raise ValueError('must be one less number of segments as ' 'levels') else: if len(self.allsegs) != len(self.levels): raise ValueError('must be same number of segments as levels') # Check length of allkinds. if (self.allkinds is not None and len(self.allkinds) != len(self.allsegs)): raise ValueError('allkinds has different length to allsegs') # Determine x,y bounds and update axes data limits. flatseglist = [s for seg in self.allsegs for s in seg] points = np.concatenate(flatseglist, axis=0) self._mins = points.min(axis=0) self._maxs = points.max(axis=0) return kwargs def _get_allsegs_and_allkinds(self): """ Override in derived classes to create and return allsegs and allkinds. allkinds can be None. """ return self.allsegs, self.allkinds def _get_lowers_and_uppers(self): """ Return (lowers,uppers) for filled contours. """ lowers = self._levels[:-1] if self.zmin == lowers[0]: # Include minimum values in lowest interval lowers = lowers.copy() # so we don't change self._levels if self.logscale: lowers[0] = 0.99 * self.zmin else: lowers[0] -= 1 uppers = self._levels[1:] return (lowers, uppers) def _make_paths(self, segs, kinds): if kinds is not None: return [mpath.Path(seg, codes=kind) for seg, kind in zip(segs, kinds)] else: return [mpath.Path(seg) for seg in segs] def changed(self): tcolors = [(tuple(rgba),) for rgba in self.to_rgba(self.cvalues, alpha=self.alpha)] self.tcolors = tcolors hatches = self.hatches * len(tcolors) for color, hatch, collection in zip(tcolors, hatches, self.collections): if self.filled: collection.set_facecolor(color) # update the collection's hatch (may be None) collection.set_hatch(hatch) else: collection.set_color(color) for label, cv in zip(self.labelTexts, self.labelCValues): label.set_alpha(self.alpha) label.set_color(self.labelMappable.to_rgba(cv)) # add label colors cm.ScalarMappable.changed(self) def _autolev(self, N): """ Select contour levels to span the data. The target number of levels, *N*, is used only when the scale is not log and default locator is used. We need two more levels for filled contours than for line contours, because for the latter we need to specify the lower and upper boundary of each range. For example, a single contour boundary, say at z = 0, requires only one contour line, but two filled regions, and therefore three levels to provide boundaries for both regions. """ if self.locator is None: if self.logscale: self.locator = ticker.LogLocator() else: self.locator = ticker.MaxNLocator(N + 1, min_n_ticks=1) lev = self.locator.tick_values(self.zmin, self.zmax) try: if self.locator._symmetric: return lev except AttributeError: pass # Trim excess levels the locator may have supplied. under = np.nonzero(lev < self.zmin)[0] i0 = under[-1] if len(under) else 0 over = np.nonzero(lev > self.zmax)[0] i1 = over[0] + 1 if len(over) else len(lev) if self.extend in ('min', 'both'): i0 += 1 if self.extend in ('max', 'both'): i1 -= 1 if i1 - i0 < 3: i0, i1 = 0, len(lev) return lev[i0:i1] def _contour_level_args(self, z, args): """ Determine the contour levels and store in self.levels. """ if self.levels is None: if len(args) == 0: levels_arg = 7 # Default, hard-wired. else: levels_arg = args[0] else: levels_arg = self.levels if isinstance(levels_arg, Integral): self.levels = self._autolev(levels_arg) else: self.levels = np.asarray(levels_arg).astype(np.float64) if not self.filled: inside = (self.levels > self.zmin) & (self.levels < self.zmax) levels_in = self.levels[inside] if len(levels_in) == 0: self.levels = [self.zmin] cbook._warn_external( "No contour levels were found within the data range.") if self.filled and len(self.levels) < 2: raise ValueError("Filled contours require at least 2 levels.") if len(self.levels) > 1 and np.min(np.diff(self.levels)) <= 0.0: raise ValueError("Contour levels must be increasing") def _process_levels(self): """ Assign values to :attr:`layers` based on :attr:`levels`, adding extended layers as needed if contours are filled. For line contours, layers simply coincide with levels; a line is a thin layer. No extended levels are needed with line contours. """ # Make a private _levels to include extended regions; we # want to leave the original levels attribute unchanged. # (Colorbar needs this even for line contours.) self._levels = list(self.levels) if self.logscale: lower, upper = 1e-250, 1e250 else: lower, upper = -1e250, 1e250 if self.extend in ('both', 'min'): self._levels.insert(0, lower) if self.extend in ('both', 'max'): self._levels.append(upper) self._levels = np.asarray(self._levels) if not self.filled: self.layers = self.levels return # Layer values are mid-way between levels in screen space. if self.logscale: # Avoid overflow by taking sqrt before multiplying. self.layers = (np.sqrt(self._levels[:-1]) * np.sqrt(self._levels[1:])) else: self.layers = 0.5 * (self._levels[:-1] + self._levels[1:]) def _process_colors(self): """ Color argument processing for contouring. Note that we base the color mapping on the contour levels and layers, not on the actual range of the Z values. This means we don't have to worry about bad values in Z, and we always have the full dynamic range available for the selected levels. The color is based on the midpoint of the layer, except for extended end layers. By default, the norm vmin and vmax are the extreme values of the non-extended levels. Hence, the layer color extremes are not the extreme values of the colormap itself, but approach those values as the number of levels increases. An advantage of this scheme is that line contours, when added to filled contours, take on colors that are consistent with those of the filled regions; for example, a contour line on the boundary between two regions will have a color intermediate between those of the regions. """ self.monochrome = self.cmap.monochrome if self.colors is not None: # Generate integers for direct indexing. i0, i1 = 0, len(self.levels) if self.filled: i1 -= 1 # Out of range indices for over and under: if self.extend in ('both', 'min'): i0 -= 1 if self.extend in ('both', 'max'): i1 += 1 self.cvalues = list(range(i0, i1)) self.set_norm(mcolors.NoNorm()) else: self.cvalues = self.layers self.set_array(self.levels) self.autoscale_None() if self.extend in ('both', 'max', 'min'): self.norm.clip = False # self.tcolors are set by the "changed" method def _process_linewidths(self): linewidths = self.linewidths Nlev = len(self.levels) if linewidths is None: tlinewidths = [(mpl.rcParams['lines.linewidth'],)] * Nlev else: if not np.iterable(linewidths): linewidths = [linewidths] * Nlev else: linewidths = list(linewidths) if len(linewidths) < Nlev: nreps = int(np.ceil(Nlev / len(linewidths))) linewidths = linewidths * nreps if len(linewidths) > Nlev: linewidths = linewidths[:Nlev] tlinewidths = [(w,) for w in linewidths] return tlinewidths def _process_linestyles(self): linestyles = self.linestyles Nlev = len(self.levels) if linestyles is None: tlinestyles = ['solid'] * Nlev if self.monochrome: neg_ls = mpl.rcParams['contour.negative_linestyle'] eps = - (self.zmax - self.zmin) * 1e-15 for i, lev in enumerate(self.levels): if lev < eps: tlinestyles[i] = neg_ls else: if isinstance(linestyles, str): tlinestyles = [linestyles] * Nlev elif np.iterable(linestyles): tlinestyles = list(linestyles) if len(tlinestyles) < Nlev: nreps = int(np.ceil(Nlev / len(linestyles))) tlinestyles = tlinestyles * nreps if len(tlinestyles) > Nlev: tlinestyles = tlinestyles[:Nlev] else: raise ValueError("Unrecognized type for linestyles kwarg") return tlinestyles def get_alpha(self): """returns alpha to be applied to all ContourSet artists""" return self.alpha def set_alpha(self, alpha): """ Set the alpha blending value for all ContourSet artists. *alpha* must be between 0 (transparent) and 1 (opaque). """ self.alpha = alpha self.changed() def find_nearest_contour(self, x, y, indices=None, pixel=True): """ Finds contour that is closest to a point. Defaults to measuring distance in pixels (screen space - useful for manual contour labeling), but this can be controlled via a keyword argument. Returns a tuple containing the contour, segment, index of segment, x & y of segment point and distance to minimum point. Optional keyword arguments: *indices*: Indexes of contour levels to consider when looking for nearest point. Defaults to using all levels. *pixel*: If *True*, measure distance in pixel space, if not, measure distance in axes space. Defaults to *True*. """ # This function uses a method that is probably quite # inefficient based on converting each contour segment to # pixel coordinates and then comparing the given point to # those coordinates for each contour. This will probably be # quite slow for complex contours, but for normal use it works # sufficiently well that the time is not noticeable. # Nonetheless, improvements could probably be made. if indices is None: indices = list(range(len(self.levels))) dmin = np.inf conmin = None segmin = None xmin = None ymin = None point = np.array([x, y]) for icon in indices: con = self.collections[icon] trans = con.get_transform() paths = con.get_paths() for segNum, linepath in enumerate(paths): lc = linepath.vertices # transfer all data points to screen coordinates if desired if pixel: lc = trans.transform(lc) d, xc, leg = _find_closest_point_on_path(lc, point) if d < dmin: dmin = d conmin = icon segmin = segNum imin = leg[1] xmin = xc[0] ymin = xc[1] return (conmin, segmin, imin, xmin, ymin, dmin) class QuadContourSet(ContourSet): """ Create and store a set of contour lines or filled regions. User-callable method: `~axes.Axes.clabel` Attributes ---------- ax The axes object in which the contours are drawn. collections A silent_list of LineCollections or PolyCollections. levels Contour levels. layers Same as levels for line contours; half-way between levels for filled contours. See :meth:`_process_colors` method. """ def _process_args(self, *args, **kwargs): """ Process args and kwargs. """ if isinstance(args[0], QuadContourSet): if self.levels is None: self.levels = args[0].levels self.zmin = args[0].zmin self.zmax = args[0].zmax self._corner_mask = args[0]._corner_mask contour_generator = args[0]._contour_generator self._mins = args[0]._mins self._maxs = args[0]._maxs else: import matplotlib._contour as _contour self._corner_mask = kwargs.pop('corner_mask', None) if self._corner_mask is None: self._corner_mask = mpl.rcParams['contour.corner_mask'] x, y, z = self._contour_args(args, kwargs) _mask = ma.getmask(z) if _mask is ma.nomask or not _mask.any(): _mask = None contour_generator = _contour.QuadContourGenerator( x, y, z.filled(), _mask, self._corner_mask, self.nchunk) t = self.get_transform() # if the transform is not trans data, and some part of it # contains transData, transform the xs and ys to data coordinates if (t != self.ax.transData and any(t.contains_branch_seperately(self.ax.transData))): trans_to_data = t - self.ax.transData pts = (np.vstack([x.flat, y.flat]).T) transformed_pts = trans_to_data.transform(pts) x = transformed_pts[..., 0] y = transformed_pts[..., 1] self._mins = [ma.min(x), ma.min(y)] self._maxs = [ma.max(x), ma.max(y)] self._contour_generator = contour_generator return kwargs def _get_allsegs_and_allkinds(self): """Compute ``allsegs`` and ``allkinds`` using C extension.""" allsegs = [] if self.filled: lowers, uppers = self._get_lowers_and_uppers() allkinds = [] for level, level_upper in zip(lowers, uppers): vertices, kinds = \ self._contour_generator.create_filled_contour( level, level_upper) allsegs.append(vertices) allkinds.append(kinds) else: allkinds = None for level in self.levels: vertices = self._contour_generator.create_contour(level) allsegs.append(vertices) return allsegs, allkinds def _contour_args(self, args, kwargs): if self.filled: fn = 'contourf' else: fn = 'contour' Nargs = len(args) if Nargs <= 2: z = ma.asarray(args[0], dtype=np.float64) x, y = self._initialize_x_y(z) args = args[1:] elif Nargs <= 4: x, y, z = self._check_xyz(args[:3], kwargs) args = args[3:] else: raise TypeError("Too many arguments to %s; see help(%s)" % (fn, fn)) z = ma.masked_invalid(z, copy=False) self.zmax = float(z.max()) self.zmin = float(z.min()) if self.logscale and self.zmin <= 0: z = ma.masked_where(z <= 0, z) cbook._warn_external('Log scale: values of z <= 0 have been ' 'masked') self.zmin = float(z.min()) self._contour_level_args(z, args) return (x, y, z) def _check_xyz(self, args, kwargs): """ For functions like contour, check that the dimensions of the input arrays match; if x and y are 1D, convert them to 2D using meshgrid. Possible change: I think we should make and use an ArgumentError Exception class (here and elsewhere). """ x, y = args[:2] kwargs = self.ax._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x = self.ax.convert_xunits(x) y = self.ax.convert_yunits(y) x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) z = ma.asarray(args[2], dtype=np.float64) if z.ndim != 2: raise TypeError("Input z must be a 2D array.") elif z.shape[0] < 2 or z.shape[1] < 2: raise TypeError("Input z must be at least a 2x2 array.") else: Ny, Nx = z.shape if x.ndim != y.ndim: raise TypeError("Number of dimensions of x and y should match.") if x.ndim == 1: nx, = x.shape ny, = y.shape if nx != Nx: raise TypeError("Length of x must be number of columns in z.") if ny != Ny: raise TypeError("Length of y must be number of rows in z.") x, y = np.meshgrid(x, y) elif x.ndim == 2: if x.shape != z.shape: raise TypeError("Shape of x does not match that of z: found " "{0} instead of {1}.".format(x.shape, z.shape)) if y.shape != z.shape: raise TypeError("Shape of y does not match that of z: found " "{0} instead of {1}.".format(y.shape, z.shape)) else: raise TypeError("Inputs x and y must be 1D or 2D.") return x, y, z def _initialize_x_y(self, z): """ Return X, Y arrays such that contour(Z) will match imshow(Z) if origin is not None. The center of pixel Z[i,j] depends on origin: if origin is None, x = j, y = i; if origin is 'lower', x = j + 0.5, y = i + 0.5; if origin is 'upper', x = j + 0.5, y = Nrows - i - 0.5 If extent is not None, x and y will be scaled to match, as in imshow. If origin is None and extent is not None, then extent will give the minimum and maximum values of x and y. """ if z.ndim != 2: raise TypeError("Input must be a 2D array.") elif z.shape[0] < 2 or z.shape[1] < 2: raise TypeError("Input z must be at least a 2x2 array.") else: Ny, Nx = z.shape if self.origin is None: # Not for image-matching. if self.extent is None: return np.meshgrid(np.arange(Nx), np.arange(Ny)) else: x0, x1, y0, y1 = self.extent x = np.linspace(x0, x1, Nx) y = np.linspace(y0, y1, Ny) return np.meshgrid(x, y) # Match image behavior: if self.extent is None: x0, x1, y0, y1 = (0, Nx, 0, Ny) else: x0, x1, y0, y1 = self.extent dx = (x1 - x0) / Nx dy = (y1 - y0) / Ny x = x0 + (np.arange(Nx) + 0.5) * dx y = y0 + (np.arange(Ny) + 0.5) * dy if self.origin == 'upper': y = y[::-1] return np.meshgrid(x, y) _contour_doc = """ Plot contours. Call signature:: contour([X, Y,] Z, [levels], **kwargs) `.contour` and `.contourf` draw contour lines and filled contours, respectively. Except as noted, function signatures and return values are the same for both versions. Parameters ---------- X, Y : array-like, optional The coordinates of the values in *Z*. *X* and *Y* must both be 2-D with the same shape as *Z* (e.g. created via `numpy.meshgrid`), or they must both be 1-D such that ``len(X) == M`` is the number of columns in *Z* and ``len(Y) == N`` is the number of rows in *Z*. If not given, they are assumed to be integer indices, i.e. ``X = range(M)``, ``Y = range(N)``. Z : array-like(N, M) The height values over which the contour is drawn. levels : int or array-like, optional Determines the number and positions of the contour lines / regions. If an int *n*, use *n* data intervals; i.e. draw *n+1* contour lines. The level heights are automatically chosen. If array-like, draw contour lines at the specified levels. The values must be in increasing order. Returns ------- c : `~.contour.QuadContourSet` Other Parameters ---------------- corner_mask : bool, optional Enable/disable corner masking, which only has an effect if *Z* is a masked array. If ``False``, any quad touching a masked point is masked out. If ``True``, only the triangular corners of quads nearest those points are always masked out, other triangular corners comprising three unmasked points are contoured as usual. Defaults to :rc:`contour.corner_mask`, which defaults to ``True``. colors : color string or sequence of colors, optional The colors of the levels, i.e. the lines for `.contour` and the areas for `.contourf`. The sequence is cycled for the levels in ascending order. If the sequence is shorter than the number of levels, it's repeated. As a shortcut, single color strings may be used in place of one-element lists, i.e. ``'red'`` instead of ``['red']`` to color all levels with the same color. This shortcut does only work for color strings, not for other ways of specifying colors. By default (value *None*), the colormap specified by *cmap* will be used. alpha : float, optional The alpha blending value, between 0 (transparent) and 1 (opaque). cmap : str or `.Colormap`, optional A `.Colormap` instance or registered colormap name. The colormap maps the level values to colors. Defaults to :rc:`image.cmap`. If given, *colors* take precedence over *cmap*. norm : `~matplotlib.colors.Normalize`, optional If a colormap is used, the `.Normalize` instance scales the level values to the canonical colormap range [0, 1] for mapping to colors. If not given, the default linear scaling is used. vmin, vmax : float, optional If not *None*, either or both of these values will be supplied to the `.Normalize` instance, overriding the default color scaling based on *levels*. origin : {*None*, 'upper', 'lower', 'image'}, optional Determines the orientation and exact position of *Z* by specifying the position of ``Z[0, 0]``. This is only relevant, if *X*, *Y* are not given. - *None*: ``Z[0, 0]`` is at X=0, Y=0 in the lower left corner. - 'lower': ``Z[0, 0]`` is at X=0.5, Y=0.5 in the lower left corner. - 'upper': ``Z[0, 0]`` is at X=N+0.5, Y=0.5 in the upper left corner. - 'image': Use the value from :rc:`image.origin`. extent : (x0, x1, y0, y1), optional If *origin* is not *None*, then *extent* is interpreted as in `.imshow`: it gives the outer pixel boundaries. In this case, the position of Z[0,0] is the center of the pixel, not a corner. If *origin* is *None*, then (*x0*, *y0*) is the position of Z[0,0], and (*x1*, *y1*) is the position of Z[-1,-1]. This argument is ignored if *X* and *Y* are specified in the call to contour. locator : ticker.Locator subclass, optional The locator is used to determine the contour levels if they are not given explicitly via *levels*. Defaults to `~.ticker.MaxNLocator`. extend : {'neither', 'both', 'min', 'max'}, optional, default: \ 'neither' Determines the ``contourf``-coloring of values that are outside the *levels* range. If 'neither', values outside the *levels* range are not colored. If 'min', 'max' or 'both', color the values below, above or below and above the *levels* range. Values below ``min(levels)`` and above ``max(levels)`` are mapped to the under/over values of the `.Colormap`. Note, that most colormaps do not have dedicated colors for these by default, so that the over and under values are the edge values of the colormap. You may want to set these values explicitly using `.Colormap.set_under` and `.Colormap.set_over`. .. note:: An exising `.QuadContourSet` does not get notified if properties of its colormap are changed. Therefore, an explicit call `.QuadContourSet.changed()` is needed after modifying the colormap. The explicit call can be left out, if a colorbar is assigned to the `.QuadContourSet` because it internally calls `.QuadContourSet.changed()`. Example:: x = np.arange(1, 10) y = x.reshape(-1, 1) h = x * y cs = plt.contourf(h, levels=[10, 30, 50], colors=['#808080', '#A0A0A0', '#C0C0C0'], extend='both') cs.cmap.set_over('red') cs.cmap.set_under('blue') cs.changed() xunits, yunits : registered units, optional Override axis units by specifying an instance of a :class:`matplotlib.units.ConversionInterface`. antialiased : bool, optional Enable antialiasing, overriding the defaults. For filled contours, the default is *True*. For line contours, it is taken from :rc:`lines.antialiased`. Nchunk : int >= 0, optional If 0, no subdivision of the domain. Specify a positive integer to divide the domain into subdomains of *nchunk* by *nchunk* quads. Chunking reduces the maximum length of polygons generated by the contouring algorithm which reduces the rendering workload passed on to the backend and also requires slightly less RAM. It can however introduce rendering artifacts at chunk boundaries depending on the backend, the *antialiased* flag and value of *alpha*. linewidths : float or sequence of float, optional *Only applies to* `.contour`. The line width of the contour lines. If a number, all levels will be plotted with this linewidth. If a sequence, the levels in ascending order will be plotted with the linewidths in the order specified. Defaults to :rc:`lines.linewidth`. linestyles : {*None*, 'solid', 'dashed', 'dashdot', 'dotted'}, optional *Only applies to* `.contour`. If *linestyles* is *None*, the default is 'solid' unless the lines are monochrome. In that case, negative contours will take their linestyle from :rc:`contour.negative_linestyle` setting. *linestyles* can also be an iterable of the above strings specifying a set of linestyles to be used. If this iterable is shorter than the number of contour levels it will be repeated as necessary. hatches : List[str], optional *Only applies to* `.contourf`. A list of cross hatch patterns to use on the filled areas. If None, no hatching will be added to the contour. Hatching is supported in the PostScript, PDF, SVG and Agg backends only. Notes ----- 1. `.contourf` differs from the MATLAB version in that it does not draw the polygon edges. To draw edges, add line contours with calls to `.contour`. 2. `.contourf` fills intervals that are closed at the top; that is, for boundaries *z1* and *z2*, the filled region is:: z1 < Z <= z2 except for the lowest interval, which is closed on both sides (i.e. it includes the lowest value). """
a2dfea37d0f8d8314cc0f73ca879d5403ff2fd137436151a48b2f6078edf62af
""" This is a python interface to Adobe Font Metrics Files. Although a number of other python implementations exist, and may be more complete than this, it was decided not to go with them because they were either: 1) copyrighted or used a non-BSD compatible license 2) had too many dependencies and a free standing lib was needed 3) Did more than needed and it was easier to write afresh rather than figure out how to get just what was needed. It is pretty easy to use, and requires only built-in python libs: >>> from matplotlib import rcParams >>> import os.path >>> afm_fname = os.path.join(rcParams['datapath'], ... 'fonts', 'afm', 'ptmr8a.afm') >>> >>> from matplotlib.afm import AFM >>> with open(afm_fname, 'rb') as fh: ... afm = AFM(fh) >>> afm.string_width_height('What the heck?') (6220.0, 694) >>> afm.get_fontname() 'Times-Roman' >>> afm.get_kern_dist('A', 'f') 0 >>> afm.get_kern_dist('A', 'y') -92.0 >>> afm.get_bbox_char('!') [130, -9, 238, 676] As in the Adobe Font Metrics File Format Specification, all dimensions are given in units of 1/1000 of the scale factor (point size) of the font being used. """ from collections import namedtuple import logging import re from ._mathtext_data import uni2type1 from matplotlib.cbook import deprecated _log = logging.getLogger(__name__) def _to_int(x): # Some AFM files have floats where we are expecting ints -- there is # probably a better way to handle this (support floats, round rather # than truncate). But I don't know what the best approach is now and # this change to _to_int should at least prevent mpl from crashing on # these JDH (2009-11-06) return int(float(x)) def _to_float(x): # Some AFM files use "," instead of "." as decimal separator -- this # shouldn't be ambiguous (unless someone is wicked enough to use "," as # thousands separator...). if isinstance(x, bytes): # Encoding doesn't really matter -- if we have codepoints >127 the call # to float() will error anyways. x = x.decode('latin-1') return float(x.replace(',', '.')) def _to_str(x): return x.decode('utf8') def _to_list_of_ints(s): s = s.replace(b',', b' ') return [_to_int(val) for val in s.split()] def _to_list_of_floats(s): return [_to_float(val) for val in s.split()] def _to_bool(s): if s.lower().strip() in (b'false', b'0', b'no'): return False else: return True def _sanity_check(fh): """ Check if the file looks like AFM; if it doesn't, raise `RuntimeError`. """ # Remember the file position in case the caller wants to # do something else with the file. pos = fh.tell() try: line = next(fh) finally: fh.seek(pos, 0) # AFM spec, Section 4: The StartFontMetrics keyword [followed by a # version number] must be the first line in the file, and the # EndFontMetrics keyword must be the last non-empty line in the # file. We just check the first line. if not line.startswith(b'StartFontMetrics'): raise RuntimeError('Not an AFM file') def _parse_header(fh): """ Reads the font metrics header (up to the char metrics) and returns a dictionary mapping *key* to *val*. *val* will be converted to the appropriate python type as necessary; e.g.: * 'False'->False * '0'->0 * '-168 -218 1000 898'-> [-168, -218, 1000, 898] Dictionary keys are StartFontMetrics, FontName, FullName, FamilyName, Weight, ItalicAngle, IsFixedPitch, FontBBox, UnderlinePosition, UnderlineThickness, Version, Notice, EncodingScheme, CapHeight, XHeight, Ascender, Descender, StartCharMetrics """ header_converters = { b'StartFontMetrics': _to_float, b'FontName': _to_str, b'FullName': _to_str, b'FamilyName': _to_str, b'Weight': _to_str, b'ItalicAngle': _to_float, b'IsFixedPitch': _to_bool, b'FontBBox': _to_list_of_ints, b'UnderlinePosition': _to_float, b'UnderlineThickness': _to_float, b'Version': _to_str, # Some AFM files have non-ASCII characters (which are not allowed by # the spec). Given that there is actually no public API to even access # this field, just return it as straight bytes. b'Notice': lambda x: x, b'EncodingScheme': _to_str, b'CapHeight': _to_float, # Is the second version a mistake, or b'Capheight': _to_float, # do some AFM files contain 'Capheight'? -JKS b'XHeight': _to_float, b'Ascender': _to_float, b'Descender': _to_float, b'StdHW': _to_float, b'StdVW': _to_float, b'StartCharMetrics': _to_int, b'CharacterSet': _to_str, b'Characters': _to_int, } d = {} for line in fh: line = line.rstrip() if line.startswith(b'Comment'): continue lst = line.split(b' ', 1) key = lst[0] if len(lst) == 2: val = lst[1] else: val = b'' try: converter = header_converters[key] except KeyError: _log.error('Found an unknown keyword in AFM header (was %r)' % key) continue try: d[key] = converter(val) except ValueError: _log.error('Value error parsing header in AFM: %s, %s', key, val) continue if key == b'StartCharMetrics': return d raise RuntimeError('Bad parse') CharMetrics = namedtuple('CharMetrics', 'width, name, bbox') CharMetrics.__doc__ = """ Represents the character metrics of a single character. Notes ----- The fields do currently only describe a subset of character metrics information defined in the AFM standard. """ CharMetrics.width.__doc__ = """The character width (WX).""" CharMetrics.name.__doc__ = """The character name (N).""" CharMetrics.bbox.__doc__ = """ The bbox of the character (B) as a tuple (*llx*, *lly*, *urx*, *ury*).""" def _parse_char_metrics(fh): """ Parse the given filehandle for character metrics information and return the information as dicts. It is assumed that the file cursor is on the line behind 'StartCharMetrics'. Returns ------- ascii_d : dict A mapping "ASCII num of the character" to `.CharMetrics`. name_d : dict A mapping "character name" to `.CharMetrics`. Notes ----- This function is incomplete per the standard, but thus far parses all the sample afm files tried. """ required_keys = {'C', 'WX', 'N', 'B'} ascii_d = {} name_d = {} for line in fh: # We are defensively letting values be utf8. The spec requires # ascii, but there are non-compliant fonts in circulation line = _to_str(line.rstrip()) # Convert from byte-literal if line.startswith('EndCharMetrics'): return ascii_d, name_d # Split the metric line into a dictionary, keyed by metric identifiers vals = dict(s.strip().split(' ', 1) for s in line.split(';') if s) # There may be other metrics present, but only these are needed if not required_keys.issubset(vals): raise RuntimeError('Bad char metrics line: %s' % line) num = _to_int(vals['C']) wx = _to_float(vals['WX']) name = vals['N'] bbox = _to_list_of_floats(vals['B']) bbox = list(map(int, bbox)) metrics = CharMetrics(wx, name, bbox) # Workaround: If the character name is 'Euro', give it the # corresponding character code, according to WinAnsiEncoding (see PDF # Reference). if name == 'Euro': num = 128 if num != -1: ascii_d[num] = metrics name_d[name] = metrics raise RuntimeError('Bad parse') def _parse_kern_pairs(fh): """ Return a kern pairs dictionary; keys are (*char1*, *char2*) tuples and values are the kern pair value. For example, a kern pairs line like ``KPX A y -50`` will be represented as:: d[ ('A', 'y') ] = -50 """ line = next(fh) if not line.startswith(b'StartKernPairs'): raise RuntimeError('Bad start of kern pairs data: %s' % line) d = {} for line in fh: line = line.rstrip() if not line: continue if line.startswith(b'EndKernPairs'): next(fh) # EndKernData return d vals = line.split() if len(vals) != 4 or vals[0] != b'KPX': raise RuntimeError('Bad kern pairs line: %s' % line) c1, c2, val = _to_str(vals[1]), _to_str(vals[2]), _to_float(vals[3]) d[(c1, c2)] = val raise RuntimeError('Bad kern pairs parse') CompositePart = namedtuple('CompositePart', 'name, dx, dy') CompositePart.__doc__ = """ Represents the information on a composite element of a composite char.""" CompositePart.name.__doc__ = """Name of the part, e.g. 'acute'.""" CompositePart.dx.__doc__ = """x-displacement of the part from the origin.""" CompositePart.dy.__doc__ = """y-displacement of the part from the origin.""" def _parse_composites(fh): """ Parse the given filehandle for composites information return them as a dict. It is assumed that the file cursor is on the line behind 'StartComposites'. Returns ------- composites : dict A dict mapping composite character names to a parts list. The parts list is a list of `.CompositePart` entries describing the parts of the composite. Example ------- A composite definition line:: CC Aacute 2 ; PCC A 0 0 ; PCC acute 160 170 ; will be represented as:: composites['Aacute'] = [CompositePart(name='A', dx=0, dy=0), CompositePart(name='acute', dx=160, dy=170)] """ composites = {} for line in fh: line = line.rstrip() if not line: continue if line.startswith(b'EndComposites'): return composites vals = line.split(b';') cc = vals[0].split() name, numParts = cc[1], _to_int(cc[2]) pccParts = [] for s in vals[1:-1]: pcc = s.split() part = CompositePart(pcc[1], _to_float(pcc[2]), _to_float(pcc[3])) pccParts.append(part) composites[name] = pccParts raise RuntimeError('Bad composites parse') def _parse_optional(fh): """ Parse the optional fields for kern pair data and composites. Returns ------- kern_data : dict A dict containing kerning information. May be empty. See `._parse_kern_pairs`. composites : dict A dict containing composite information. May be empty. See `._parse_composites`. """ optional = { b'StartKernData': _parse_kern_pairs, b'StartComposites': _parse_composites, } d = {b'StartKernData': {}, b'StartComposites': {}} for line in fh: line = line.rstrip() if not line: continue key = line.split()[0] if key in optional: d[key] = optional[key](fh) return d[b'StartKernData'], d[b'StartComposites'] @deprecated("3.0", alternative="the AFM class") def parse_afm(fh): return _parse_afm(fh) def _parse_afm(fh): """ Parse the Adobe Font Metrics file in file handle *fh*. Returns ------- header : dict A header dict. See :func:`_parse_header`. cmetrics_by_ascii : dict From :func:`_parse_char_metrics`. cmetrics_by_name : dict From :func:`_parse_char_metrics`. kernpairs : dict From :func:`_parse_kern_pairs`. composites : dict From :func:`_parse_composites` """ _sanity_check(fh) header = _parse_header(fh) cmetrics_by_ascii, cmetrics_by_name = _parse_char_metrics(fh) kernpairs, composites = _parse_optional(fh) return header, cmetrics_by_ascii, cmetrics_by_name, kernpairs, composites class AFM(object): def __init__(self, fh): """Parse the AFM file in file object *fh*.""" (self._header, self._metrics, self._metrics_by_name, self._kern, self._composite) = _parse_afm(fh) def get_bbox_char(self, c, isord=False): if not isord: c = ord(c) return self._metrics[c].bbox def string_width_height(self, s): """ Return the string width (including kerning) and string height as a (*w*, *h*) tuple. """ if not len(s): return 0, 0 total_width = 0 namelast = None miny = 1e9 maxy = 0 for c in s: if c == '\n': continue wx, name, bbox = self._metrics[ord(c)] total_width += wx + self._kern.get((namelast, name), 0) l, b, w, h = bbox miny = min(miny, b) maxy = max(maxy, b + h) namelast = name return total_width, maxy - miny def get_str_bbox_and_descent(self, s): """Return the string bounding box and the maximal descent.""" if not len(s): return 0, 0, 0, 0, 0 total_width = 0 namelast = None miny = 1e9 maxy = 0 left = 0 if not isinstance(s, str): s = _to_str(s) for c in s: if c == '\n': continue name = uni2type1.get(ord(c), 'question') try: wx, _, bbox = self._metrics_by_name[name] except KeyError: name = 'question' wx, _, bbox = self._metrics_by_name[name] total_width += wx + self._kern.get((namelast, name), 0) l, b, w, h = bbox left = min(left, l) miny = min(miny, b) maxy = max(maxy, b + h) namelast = name return left, miny, total_width, maxy - miny, -miny def get_str_bbox(self, s): """Return the string bounding box.""" return self.get_str_bbox_and_descent(s)[:4] def get_name_char(self, c, isord=False): """Get the name of the character, i.e., ';' is 'semicolon'.""" if not isord: c = ord(c) return self._metrics[c].name def get_width_char(self, c, isord=False): """ Get the width of the character from the character metric WX field. """ if not isord: c = ord(c) return self._metrics[c].width def get_width_from_char_name(self, name): """Get the width of the character from a type1 character name.""" return self._metrics_by_name[name].width def get_height_char(self, c, isord=False): """Get the bounding box (ink) height of character *c* (space is 0).""" if not isord: c = ord(c) return self._metrics[c].bbox[-1] def get_kern_dist(self, c1, c2): """ Return the kerning pair distance (possibly 0) for chars *c1* and *c2*. """ name1, name2 = self.get_name_char(c1), self.get_name_char(c2) return self.get_kern_dist_from_name(name1, name2) def get_kern_dist_from_name(self, name1, name2): """ Return the kerning pair distance (possibly 0) for chars *name1* and *name2*. """ return self._kern.get((name1, name2), 0) def get_fontname(self): """Return the font name, e.g., 'Times-Roman'.""" return self._header[b'FontName'] def get_fullname(self): """Return the font full name, e.g., 'Times-Roman'.""" name = self._header.get(b'FullName') if name is None: # use FontName as a substitute name = self._header[b'FontName'] return name def get_familyname(self): """Return the font family name, e.g., 'Times'.""" name = self._header.get(b'FamilyName') if name is not None: return name # FamilyName not specified so we'll make a guess name = self.get_fullname() extras = (r'(?i)([ -](regular|plain|italic|oblique|bold|semibold|' r'light|ultralight|extra|condensed))+$') return re.sub(extras, '', name) @property def family_name(self): """The font family name, e.g., 'Times'.""" return self.get_familyname() def get_weight(self): """Return the font weight, e.g., 'Bold' or 'Roman'.""" return self._header[b'Weight'] def get_angle(self): """Return the fontangle as float.""" return self._header[b'ItalicAngle'] def get_capheight(self): """Return the cap height as float.""" return self._header[b'CapHeight'] def get_xheight(self): """Return the xheight as float.""" return self._header[b'XHeight'] def get_underline_thickness(self): """Return the underline thickness as float.""" return self._header[b'UnderlineThickness'] def get_horizontal_stem_width(self): """ Return the standard horizontal stem width as float, or *None* if not specified in AFM file. """ return self._header.get(b'StdHW', None) def get_vertical_stem_width(self): """ Return the standard vertical stem width as float, or *None* if not specified in AFM file. """ return self._header.get(b'StdVW', None)
c151a2efe995e6c9f574605786d8ee0fd48b8addb837873c943251c9553070f0
""" A module providing some utility functions regarding bezier path manipulation. """ import numpy as np import matplotlib.cbook as cbook from matplotlib.path import Path class NonIntersectingPathException(ValueError): pass # some functions def get_intersection(cx1, cy1, cos_t1, sin_t1, cx2, cy2, cos_t2, sin_t2): """ Return the intersection between the line through (*cx1*, *cy1*) at angle *t1* and the line through (*cx2, cy2) at angle *t2*. """ # line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0. # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1 line1_rhs = sin_t1 * cx1 - cos_t1 * cy1 line2_rhs = sin_t2 * cx2 - cos_t2 * cy2 # rhs matrix a, b = sin_t1, -cos_t1 c, d = sin_t2, -cos_t2 ad_bc = a * d - b * c if np.abs(ad_bc) < 1.0e-12: raise ValueError("Given lines do not intersect. Please verify that " "the angles are not equal or differ by 180 degrees.") # rhs_inverse a_, b_ = d, -b c_, d_ = -c, a a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]] x = a_ * line1_rhs + b_ * line2_rhs y = c_ * line1_rhs + d_ * line2_rhs return x, y def get_normal_points(cx, cy, cos_t, sin_t, length): """ For a line passing through (*cx*, *cy*) and having a angle *t*, return locations of the two points located along its perpendicular line at the distance of *length*. """ if length == 0.: return cx, cy, cx, cy cos_t1, sin_t1 = sin_t, -cos_t cos_t2, sin_t2 = -sin_t, cos_t x1, y1 = length * cos_t1 + cx, length * sin_t1 + cy x2, y2 = length * cos_t2 + cx, length * sin_t2 + cy return x1, y1, x2, y2 # BEZIER routines # subdividing bezier curve # http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html def _de_casteljau1(beta, t): next_beta = beta[:-1] * (1 - t) + beta[1:] * t return next_beta def split_de_casteljau(beta, t): """ Split a bezier segment defined by its control points *beta* into two separate segments divided at *t* and return their control points. """ beta = np.asarray(beta) beta_list = [beta] while True: beta = _de_casteljau1(beta, t) beta_list.append(beta) if len(beta) == 1: break left_beta = [beta[0] for beta in beta_list] right_beta = [beta[-1] for beta in reversed(beta_list)] return left_beta, right_beta @cbook._rename_parameter("3.1", "tolerence", "tolerance") def find_bezier_t_intersecting_with_closedpath( bezier_point_at_t, inside_closedpath, t0=0., t1=1., tolerance=0.01): """ Find a parameter t0 and t1 of the given bezier path which bounds the intersecting points with a provided closed path(*inside_closedpath*). Search starts from *t0* and *t1* and it uses a simple bisecting algorithm therefore one of the end point must be inside the path while the other doesn't. The search stop when |t0-t1| gets smaller than the given tolerance. value for - bezier_point_at_t : a function which returns x, y coordinates at *t* - inside_closedpath : return True if the point is inside the path """ # inside_closedpath : function start = bezier_point_at_t(t0) end = bezier_point_at_t(t1) start_inside = inside_closedpath(start) end_inside = inside_closedpath(end) if start_inside == end_inside and start != end: raise NonIntersectingPathException( "Both points are on the same side of the closed path") while True: # return if the distance is smaller than the tolerance if np.hypot(start[0] - end[0], start[1] - end[1]) < tolerance: return t0, t1 # calculate the middle point middle_t = 0.5 * (t0 + t1) middle = bezier_point_at_t(middle_t) middle_inside = inside_closedpath(middle) if start_inside ^ middle_inside: t1 = middle_t end = middle end_inside = middle_inside else: t0 = middle_t start = middle start_inside = middle_inside class BezierSegment(object): """ A simple class of a 2-dimensional bezier segment """ # Higher order bezier lines can be supported by simplying adding # corresponding values. _binom_coeff = {1: np.array([1., 1.]), 2: np.array([1., 2., 1.]), 3: np.array([1., 3., 3., 1.])} def __init__(self, control_points): """ *control_points* : location of contol points. It needs have a shape of n * 2, where n is the order of the bezier line. 1<= n <= 3 is supported. """ _o = len(control_points) self._orders = np.arange(_o) _coeff = BezierSegment._binom_coeff[_o - 1] xx, yy = np.asarray(control_points).T self._px = xx * _coeff self._py = yy * _coeff def point_at_t(self, t): "evaluate a point at t" tt = ((1 - t) ** self._orders)[::-1] * t ** self._orders _x = np.dot(tt, self._px) _y = np.dot(tt, self._py) return _x, _y @cbook._rename_parameter("3.1", "tolerence", "tolerance") def split_bezier_intersecting_with_closedpath( bezier, inside_closedpath, tolerance=0.01): """ bezier : control points of the bezier segment inside_closedpath : a function which returns true if the point is inside the path """ bz = BezierSegment(bezier) bezier_point_at_t = bz.point_at_t t0, t1 = find_bezier_t_intersecting_with_closedpath( bezier_point_at_t, inside_closedpath, tolerance=tolerance) _left, _right = split_de_casteljau(bezier, (t0 + t1) / 2.) return _left, _right @cbook.deprecated("3.1") @cbook._rename_parameter("3.1", "tolerence", "tolerance") def find_r_to_boundary_of_closedpath( inside_closedpath, xy, cos_t, sin_t, rmin=0., rmax=1., tolerance=0.01): """ Find a radius r (centered at *xy*) between *rmin* and *rmax* at which it intersect with the path. inside_closedpath : function cx, cy : center cos_t, sin_t : cosine and sine for the angle rmin, rmax : """ cx, cy = xy def _f(r): return cos_t * r + cx, sin_t * r + cy find_bezier_t_intersecting_with_closedpath( _f, inside_closedpath, t0=rmin, t1=rmax, tolerance=tolerance) # matplotlib specific @cbook._rename_parameter("3.1", "tolerence", "tolerance") def split_path_inout(path, inside, tolerance=0.01, reorder_inout=False): """ divide a path into two segment at the point where inside(x, y) becomes False. """ path_iter = path.iter_segments() ctl_points, command = next(path_iter) begin_inside = inside(ctl_points[-2:]) # true if begin point is inside ctl_points_old = ctl_points concat = np.concatenate iold = 0 i = 1 for ctl_points, command in path_iter: iold = i i += len(ctl_points) // 2 if inside(ctl_points[-2:]) != begin_inside: bezier_path = concat([ctl_points_old[-2:], ctl_points]) break ctl_points_old = ctl_points else: raise ValueError("The path does not intersect with the patch") bp = bezier_path.reshape((-1, 2)) left, right = split_bezier_intersecting_with_closedpath( bp, inside, tolerance) if len(left) == 2: codes_left = [Path.LINETO] codes_right = [Path.MOVETO, Path.LINETO] elif len(left) == 3: codes_left = [Path.CURVE3, Path.CURVE3] codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3] elif len(left) == 4: codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4] codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] else: raise AssertionError("This should never be reached") verts_left = left[1:] verts_right = right[:] if path.codes is None: path_in = Path(concat([path.vertices[:i], verts_left])) path_out = Path(concat([verts_right, path.vertices[i:]])) else: path_in = Path(concat([path.vertices[:iold], verts_left]), concat([path.codes[:iold], codes_left])) path_out = Path(concat([verts_right, path.vertices[i:]]), concat([codes_right, path.codes[i:]])) if reorder_inout and not begin_inside: path_in, path_out = path_out, path_in return path_in, path_out def inside_circle(cx, cy, r): r2 = r ** 2 def _f(xy): x, y = xy return (x - cx) ** 2 + (y - cy) ** 2 < r2 return _f # quadratic bezier lines def get_cos_sin(x0, y0, x1, y1): dx, dy = x1 - x0, y1 - y0 d = (dx * dx + dy * dy) ** .5 # Account for divide by zero if d == 0: return 0.0, 0.0 return dx / d, dy / d @cbook._rename_parameter("3.1", "tolerence", "tolerance") def check_if_parallel(dx1, dy1, dx2, dy2, tolerance=1.e-5): """ returns * 1 if two lines are parallel in same direction * -1 if two lines are parallel in opposite direction * 0 otherwise """ theta1 = np.arctan2(dx1, dy1) theta2 = np.arctan2(dx2, dy2) dtheta = np.abs(theta1 - theta2) if dtheta < tolerance: return 1 elif np.abs(dtheta - np.pi) < tolerance: return -1 else: return False def get_parallels(bezier2, width): """ Given the quadratic bezier control points *bezier2*, returns control points of quadratic bezier lines roughly parallel to given one separated by *width*. """ # The parallel bezier lines are constructed by following ways. # c1 and c2 are control points representing the begin and end of the # bezier line. # cm is the middle point c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c2x, c2y = bezier2[2] parallel_test = check_if_parallel(c1x - cmx, c1y - cmy, cmx - c2x, cmy - c2y) if parallel_test == -1: cbook._warn_external( "Lines do not intersect. A straight line is used instead.") cos_t1, sin_t1 = get_cos_sin(c1x, c1y, c2x, c2y) cos_t2, sin_t2 = cos_t1, sin_t1 else: # t1 and t2 is the angle between c1 and cm, cm, c2. They are # also a angle of the tangential line of the path at c1 and c2 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y) # find c1_left, c1_right which are located along the lines # through c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c2_left and # c2_right with respect to c2. c1x_left, c1y_left, c1x_right, c1y_right = ( get_normal_points(c1x, c1y, cos_t1, sin_t1, width) ) c2x_left, c2y_left, c2x_right, c2y_right = ( get_normal_points(c2x, c2y, cos_t2, sin_t2, width) ) # find cm_left which is the intersecting point of a line through # c1_left with angle t1 and a line through c2_left with angle # t2. Same with cm_right. if parallel_test != 0: # a special case for a straight line, i.e., angle between two # lines are smaller than some (arbitrary) value. cmx_left, cmy_left = ( 0.5 * (c1x_left + c2x_left), 0.5 * (c1y_left + c2y_left) ) cmx_right, cmy_right = ( 0.5 * (c1x_right + c2x_right), 0.5 * (c1y_right + c2y_right) ) else: cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1, sin_t1, c2x_left, c2y_left, cos_t2, sin_t2) cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1, sin_t1, c2x_right, c2y_right, cos_t2, sin_t2) # the parallel bezier lines are created with control points of # [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right] path_left = [(c1x_left, c1y_left), (cmx_left, cmy_left), (c2x_left, c2y_left)] path_right = [(c1x_right, c1y_right), (cmx_right, cmy_right), (c2x_right, c2y_right)] return path_left, path_right def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y): """ Find control points of the Bezier curve passing through (*c1x*, *c1y*), (*mmx*, *mmy*), and (*c2x*, *c2y*), at parametric values 0, 0.5, and 1. """ cmx = .5 * (4 * mmx - (c1x + c2x)) cmy = .5 * (4 * mmy - (c1y + c2y)) return [(c1x, c1y), (cmx, cmy), (c2x, c2y)] def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.): """ Being similar to get_parallels, returns control points of two quadratic bezier lines having a width roughly parallel to given one separated by *width*. """ # c1, cm, c2 c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c3x, c3y = bezier2[2] # t1 and t2 is the angle between c1 and cm, cm, c3. # They are also a angle of the tangential line of the path at c1 and c3 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y) # find c1_left, c1_right which are located along the lines # through c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c3_left and # c3_right with respect to c3. c1x_left, c1y_left, c1x_right, c1y_right = ( get_normal_points(c1x, c1y, cos_t1, sin_t1, width * w1) ) c3x_left, c3y_left, c3x_right, c3y_right = ( get_normal_points(c3x, c3y, cos_t2, sin_t2, width * w2) ) # find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and # c12-c23 c12x, c12y = (c1x + cmx) * .5, (c1y + cmy) * .5 c23x, c23y = (cmx + c3x) * .5, (cmy + c3y) * .5 c123x, c123y = (c12x + c23x) * .5, (c12y + c23y) * .5 # tangential angle of c123 (angle between c12 and c23) cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y) c123x_left, c123y_left, c123x_right, c123y_right = ( get_normal_points(c123x, c123y, cos_t123, sin_t123, width * wm) ) path_left = find_control_points(c1x_left, c1y_left, c123x_left, c123y_left, c3x_left, c3y_left) path_right = find_control_points(c1x_right, c1y_right, c123x_right, c123y_right, c3x_right, c3y_right) return path_left, path_right def make_path_regular(p): """ If the :attr:`codes` attribute of `Path` *p* is None, return a copy of *p* with the :attr:`codes` set to (MOVETO, LINETO, LINETO, ..., LINETO); otherwise return *p* itself. """ c = p.codes if c is None: c = np.full(len(p.vertices), Path.LINETO, dtype=Path.code_type) c[0] = Path.MOVETO return Path(p.vertices, c) else: return p def concatenate_paths(paths): """Concatenate a list of paths into a single path.""" vertices = np.concatenate([p.vertices for p in paths]) codes = np.concatenate([make_path_regular(p).codes for p in paths]) return Path(vertices, codes)
a453439025dd44716268195e225449c40cac957773133cfcbcabb51e99ce4e2b
""" The legend module defines the Legend class, which is responsible for drawing legends associated with axes and/or figures. .. important:: It is unlikely that you would ever create a Legend instance manually. Most users would normally create a legend via the :meth:`~matplotlib.axes.Axes.legend` function. For more details on legends there is also a :doc:`legend guide </tutorials/intermediate/legend_guide>`. The Legend class can be considered as a container of legend handles and legend texts. Creation of corresponding legend handles from the plot elements in the axes or figures (e.g., lines, patches, etc.) are specified by the handler map, which defines the mapping between the plot elements and the legend handlers to be used (the default legend handlers are defined in the :mod:`~matplotlib.legend_handler` module). Note that not all kinds of artist are supported by the legend yet by default but it is possible to extend the legend handler's capabilities to support arbitrary objects. See the :doc:`legend guide </tutorials/intermediate/legend_guide>` for more information. """ import logging import numpy as np from matplotlib import cbook from matplotlib import rcParams from matplotlib import cbook, docstring from matplotlib.artist import Artist, allow_rasterization from matplotlib.cbook import silent_list, is_hashable, warn_deprecated from matplotlib.font_manager import FontProperties from matplotlib.lines import Line2D from matplotlib.patches import Patch, Rectangle, Shadow, FancyBboxPatch from matplotlib.collections import (LineCollection, RegularPolyCollection, CircleCollection, PathCollection, PolyCollection) from matplotlib.transforms import Bbox, BboxBase, TransformedBbox from matplotlib.transforms import BboxTransformTo, BboxTransformFrom from matplotlib.offsetbox import HPacker, VPacker, TextArea, DrawingArea from matplotlib.offsetbox import DraggableOffsetBox from matplotlib.container import ErrorbarContainer, BarContainer, StemContainer from . import legend_handler class DraggableLegend(DraggableOffsetBox): def __init__(self, legend, use_blit=False, update="loc"): """ Wrapper around a `.Legend` to support mouse dragging. Parameters ---------- legend : `.Legend` The `.Legend` instance to wrap. use_blit : bool, optional Use blitting for faster image composition. For details see :ref:`func-animation`. update : {'loc', 'bbox'}, optional If "loc", update the *loc* parameter of the legend upon finalizing. If "bbox", update the *bbox_to_anchor* parameter. """ self.legend = legend if update in ["loc", "bbox"]: self._update = update else: raise ValueError("update parameter '%s' is not supported." % update) DraggableOffsetBox.__init__(self, legend, legend._legend_box, use_blit=use_blit) def artist_picker(self, legend, evt): return self.legend.contains(evt) def finalize_offset(self): loc_in_canvas = self.get_loc_in_canvas() if self._update == "loc": self._update_loc(loc_in_canvas) elif self._update == "bbox": self._update_bbox_to_anchor(loc_in_canvas) else: raise RuntimeError("update parameter '%s' is not supported." % self.update) def _update_loc(self, loc_in_canvas): bbox = self.legend.get_bbox_to_anchor() # if bbox has zero width or height, the transformation is # ill-defined. Fall back to the defaul bbox_to_anchor. if bbox.width == 0 or bbox.height == 0: self.legend.set_bbox_to_anchor(None) bbox = self.legend.get_bbox_to_anchor() _bbox_transform = BboxTransformFrom(bbox) self.legend._loc = tuple( _bbox_transform.transform_point(loc_in_canvas) ) def _update_bbox_to_anchor(self, loc_in_canvas): tr = self.legend.axes.transAxes loc_in_bbox = tr.transform_point(loc_in_canvas) self.legend.set_bbox_to_anchor(loc_in_bbox) _legend_kw_doc = ''' loc : str or pair of floats, default: :rc:`legend.loc` ('best' for axes, \ 'upper right' for figures) The location of the legend. The strings ``'upper left', 'upper right', 'lower left', 'lower right'`` place the legend at the corresponding corner of the axes/figure. The strings ``'upper center', 'lower center', 'center left', 'center right'`` place the legend at the center of the corresponding edge of the axes/figure. The string ``'center'`` places the legend at the center of the axes/figure. The string ``'best'`` places the legend at the location, among the nine locations defined so far, with the minimum overlap with other drawn artists. This option can be quite slow for plots with large amounts of data; your plotting speed may benefit from providing a specific location. The location can also be a 2-tuple giving the coordinates of the lower-left corner of the legend in axes coordinates (in which case *bbox_to_anchor* will be ignored). For back-compatibility, ``'center right'`` (but no other location) can also be spelled ``'right'``, and each "string" locations can also be given as a numeric value: =============== ============= Location String Location Code =============== ============= 'best' 0 'upper right' 1 'upper left' 2 'lower left' 3 'lower right' 4 'right' 5 'center left' 6 'center right' 7 'lower center' 8 'upper center' 9 'center' 10 =============== ============= bbox_to_anchor : `.BboxBase`, 2-tuple, or 4-tuple of floats Box that is used to position the legend in conjunction with *loc*. Defaults to `axes.bbox` (if called as a method to `.Axes.legend`) or `figure.bbox` (if `.Figure.legend`). This argument allows arbitrary placement of the legend. Bbox coordinates are interpreted in the coordinate system given by `bbox_transform`, with the default transform Axes or Figure coordinates, depending on which ``legend`` is called. If a 4-tuple or `.BboxBase` is given, then it specifies the bbox ``(x, y, width, height)`` that the legend is placed in. To put the legend in the best location in the bottom right quadrant of the axes (or figure):: loc='best', bbox_to_anchor=(0.5, 0., 0.5, 0.5) A 2-tuple ``(x, y)`` places the corner of the legend specified by *loc* at x, y. For example, to put the legend's upper right-hand corner in the center of the axes (or figure) the following keywords can be used:: loc='upper right', bbox_to_anchor=(0.5, 0.5) ncol : integer The number of columns that the legend has. Default is 1. prop : None or :class:`matplotlib.font_manager.FontProperties` or dict The font properties of the legend. If None (default), the current :data:`matplotlib.rcParams` will be used. fontsize : int or float or {'xx-small', 'x-small', 'small', 'medium', \ 'large', 'x-large', 'xx-large'} Controls the font size of the legend. If the value is numeric the size will be the absolute font size in points. String values are relative to the current default font size. This argument is only used if `prop` is not specified. numpoints : None or int The number of marker points in the legend when creating a legend entry for a `.Line2D` (line). Default is ``None``, which will take the value from :rc:`legend.numpoints`. scatterpoints : None or int The number of marker points in the legend when creating a legend entry for a `.PathCollection` (scatter plot). Default is ``None``, which will take the value from :rc:`legend.scatterpoints`. scatteryoffsets : iterable of floats The vertical offset (relative to the font size) for the markers created for a scatter plot legend entry. 0.0 is at the base the legend text, and 1.0 is at the top. To draw all markers at the same height, set to ``[0.5]``. Default is ``[0.375, 0.5, 0.3125]``. markerscale : None or int or float The relative size of legend markers compared with the originally drawn ones. Default is ``None``, which will take the value from :rc:`legend.markerscale`. markerfirst : bool If *True*, legend marker is placed to the left of the legend label. If *False*, legend marker is placed to the right of the legend label. Default is *True*. frameon : None or bool Control whether the legend should be drawn on a patch (frame). Default is ``None``, which will take the value from :rc:`legend.frameon`. fancybox : None or bool Control whether round edges should be enabled around the :class:`~matplotlib.patches.FancyBboxPatch` which makes up the legend's background. Default is ``None``, which will take the value from :rc:`legend.fancybox`. shadow : None or bool Control whether to draw a shadow behind the legend. Default is ``None``, which will take the value from :rc:`legend.shadow`. framealpha : None or float Control the alpha transparency of the legend's background. Default is ``None``, which will take the value from :rc:`legend.framealpha`. If shadow is activated and *framealpha* is ``None``, the default value is ignored. facecolor : None or "inherit" or a color spec Control the legend's background color. Default is ``None``, which will take the value from :rc:`legend.facecolor`. If ``"inherit"``, it will take :rc:`axes.facecolor`. edgecolor : None or "inherit" or a color spec Control the legend's background patch edge color. Default is ``None``, which will take the value from :rc:`legend.edgecolor` If ``"inherit"``, it will take :rc:`axes.edgecolor`. mode : {"expand", None} If `mode` is set to ``"expand"`` the legend will be horizontally expanded to fill the axes area (or `bbox_to_anchor` if defines the legend's size). bbox_transform : None or :class:`matplotlib.transforms.Transform` The transform for the bounding box (`bbox_to_anchor`). For a value of ``None`` (default) the Axes' :data:`~matplotlib.axes.Axes.transAxes` transform will be used. title : str or None The legend's title. Default is no title (``None``). title_fontsize: str or None The fontsize of the legend's title. Default is the default fontsize. borderpad : float or None The fractional whitespace inside the legend border. Measured in font-size units. Default is ``None``, which will take the value from :rc:`legend.borderpad`. labelspacing : float or None The vertical space between the legend entries. Measured in font-size units. Default is ``None``, which will take the value from :rc:`legend.labelspacing`. handlelength : float or None The length of the legend handles. Measured in font-size units. Default is ``None``, which will take the value from :rc:`legend.handlelength`. handletextpad : float or None The pad between the legend handle and text. Measured in font-size units. Default is ``None``, which will take the value from :rc:`legend.handletextpad`. borderaxespad : float or None The pad between the axes and legend border. Measured in font-size units. Default is ``None``, which will take the value from :rc:`legend.borderaxespad`. columnspacing : float or None The spacing between columns. Measured in font-size units. Default is ``None``, which will take the value from :rc:`legend.columnspacing`. handler_map : dict or None The custom dictionary mapping instances or types to a legend handler. This `handler_map` updates the default handler map found at :func:`matplotlib.legend.Legend.get_legend_handler_map`. ''' docstring.interpd.update(_legend_kw_doc=_legend_kw_doc) class Legend(Artist): """ Place a legend on the axes at location loc. """ codes = {'best': 0, # only implemented for axes legends 'upper right': 1, 'upper left': 2, 'lower left': 3, 'lower right': 4, 'right': 5, 'center left': 6, 'center right': 7, 'lower center': 8, 'upper center': 9, 'center': 10, } zorder = 5 def __str__(self): return "Legend" @docstring.dedent_interpd def __init__(self, parent, handles, labels, loc=None, numpoints=None, # the number of points in the legend line markerscale=None, # the relative size of legend markers # vs. original markerfirst=True, # controls ordering (left-to-right) of # legend marker and label scatterpoints=None, # number of scatter points scatteryoffsets=None, prop=None, # properties for the legend texts fontsize=None, # keyword to set font size directly # spacing & pad defined as a fraction of the font-size borderpad=None, # the whitespace inside the legend border labelspacing=None, # the vertical space between the legend # entries handlelength=None, # the length of the legend handles handleheight=None, # the height of the legend handles handletextpad=None, # the pad between the legend handle # and text borderaxespad=None, # the pad between the axes and legend # border columnspacing=None, # spacing between columns ncol=1, # number of columns mode=None, # mode for horizontal distribution of columns. # None, "expand" fancybox=None, # True use a fancy box, false use a rounded # box, none use rc shadow=None, title=None, # set a title for the legend title_fontsize=None, # set to ax.fontsize if None framealpha=None, # set frame alpha edgecolor=None, # frame patch edgecolor facecolor=None, # frame patch facecolor bbox_to_anchor=None, # bbox that the legend will be anchored. bbox_transform=None, # transform for the bbox frameon=None, # draw frame handler_map=None, ): """ Parameters ---------- parent : `~matplotlib.axes.Axes` or `.Figure` The artist that contains the legend. handles : sequence of `.Artist` A list of Artists (lines, patches) to be added to the legend. labels : sequence of strings A list of labels to show next to the artists. The length of handles and labels should be the same. If they are not, they are truncated to the smaller of both lengths. Other Parameters ---------------- %(_legend_kw_doc)s Notes ----- Users can specify any arbitrary location for the legend using the *bbox_to_anchor* keyword argument. bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. See :meth:`set_bbox_to_anchor` for more detail. The legend location can be specified by setting *loc* with a tuple of 2 floats, which is interpreted as the lower-left corner of the legend in the normalized axes coordinate. """ # local import only to avoid circularity from matplotlib.axes import Axes from matplotlib.figure import Figure Artist.__init__(self) if prop is None: if fontsize is not None: self.prop = FontProperties(size=fontsize) else: self.prop = FontProperties(size=rcParams["legend.fontsize"]) elif isinstance(prop, dict): self.prop = FontProperties(**prop) if "size" not in prop: self.prop.set_size(rcParams["legend.fontsize"]) else: self.prop = prop self._fontsize = self.prop.get_size_in_points() self.texts = [] self.legendHandles = [] self._legend_title_box = None #: A dictionary with the extra handler mappings for this Legend #: instance. self._custom_handler_map = handler_map locals_view = locals() for name in ["numpoints", "markerscale", "shadow", "columnspacing", "scatterpoints", "handleheight", 'borderpad', 'labelspacing', 'handlelength', 'handletextpad', 'borderaxespad']: if locals_view[name] is None: value = rcParams["legend." + name] else: value = locals_view[name] setattr(self, name, value) del locals_view # trim handles and labels if illegal label... _lab, _hand = [], [] for label, handle in zip(labels, handles): if isinstance(label, str) and label.startswith('_'): cbook._warn_external('The handle {!r} has a label of {!r} ' 'which cannot be automatically added to' ' the legend.'.format(handle, label)) else: _lab.append(label) _hand.append(handle) labels, handles = _lab, _hand handles = list(handles) if len(handles) < 2: ncol = 1 self._ncol = ncol if self.numpoints <= 0: raise ValueError("numpoints must be > 0; it was %d" % numpoints) # introduce y-offset for handles of the scatter plot if scatteryoffsets is None: self._scatteryoffsets = np.array([3. / 8., 4. / 8., 2.5 / 8.]) else: self._scatteryoffsets = np.asarray(scatteryoffsets) reps = self.scatterpoints // len(self._scatteryoffsets) + 1 self._scatteryoffsets = np.tile(self._scatteryoffsets, reps)[:self.scatterpoints] # _legend_box is an OffsetBox instance that contains all # legend items and will be initialized from _init_legend_box() # method. self._legend_box = None if isinstance(parent, Axes): self.isaxes = True self.axes = parent self.set_figure(parent.figure) elif isinstance(parent, Figure): self.isaxes = False self.set_figure(parent) else: raise TypeError("Legend needs either Axes or Figure as parent") self.parent = parent self._loc_used_default = loc is None if loc is None: loc = rcParams["legend.loc"] if not self.isaxes and loc in [0, 'best']: loc = 'upper right' if isinstance(loc, str): if loc not in self.codes: if self.isaxes: cbook.warn_deprecated( "3.1", message="Unrecognized location {!r}. Falling " "back on 'best'; valid locations are\n\t{}\n" "This will raise an exception %(removal)s." .format(loc, '\n\t'.join(self.codes))) loc = 0 else: cbook.warn_deprecated( "3.1", message="Unrecognized location {!r}. Falling " "back on 'upper right'; valid locations are\n\t{}\n'" "This will raise an exception %(removal)s." .format(loc, '\n\t'.join(self.codes))) loc = 1 else: loc = self.codes[loc] if not self.isaxes and loc == 0: cbook.warn_deprecated( "3.1", message="Automatic legend placement (loc='best') not " "implemented for figure legend. Falling back on 'upper " "right'. This will raise an exception %(removal)s.") loc = 1 self._mode = mode self.set_bbox_to_anchor(bbox_to_anchor, bbox_transform) # We use FancyBboxPatch to draw a legend frame. The location # and size of the box will be updated during the drawing time. if facecolor is None: facecolor = rcParams["legend.facecolor"] if facecolor == 'inherit': facecolor = rcParams["axes.facecolor"] if edgecolor is None: edgecolor = rcParams["legend.edgecolor"] if edgecolor == 'inherit': edgecolor = rcParams["axes.edgecolor"] self.legendPatch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor=facecolor, edgecolor=edgecolor, mutation_scale=self._fontsize, snap=True ) # The width and height of the legendPatch will be set (in the # draw()) to the length that includes the padding. Thus we set # pad=0 here. if fancybox is None: fancybox = rcParams["legend.fancybox"] if fancybox: self.legendPatch.set_boxstyle("round", pad=0, rounding_size=0.2) else: self.legendPatch.set_boxstyle("square", pad=0) self._set_artist_props(self.legendPatch) self._drawFrame = frameon if frameon is None: self._drawFrame = rcParams["legend.frameon"] # init with null renderer self._init_legend_box(handles, labels, markerfirst) # If shadow is activated use framealpha if not # explicitly passed. See Issue 8943 if framealpha is None: if shadow: self.get_frame().set_alpha(1) else: self.get_frame().set_alpha(rcParams["legend.framealpha"]) else: self.get_frame().set_alpha(framealpha) tmp = self._loc_used_default self._set_loc(loc) self._loc_used_default = tmp # ignore changes done by _set_loc # figure out title fontsize: if title_fontsize is None: title_fontsize = rcParams['legend.title_fontsize'] tprop = FontProperties(size=title_fontsize) self.set_title(title, prop=tprop) self._draggable = None def _set_artist_props(self, a): """ Set the boilerplate props for artists added to axes. """ a.set_figure(self.figure) if self.isaxes: # a.set_axes(self.axes) a.axes = self.axes a.set_transform(self.get_transform()) def _set_loc(self, loc): # find_offset function will be provided to _legend_box and # _legend_box will draw itself at the location of the return # value of the find_offset. self._loc_used_default = False self._loc_real = loc self.stale = True self._legend_box.set_offset(self._findoffset) def _get_loc(self): return self._loc_real _loc = property(_get_loc, _set_loc) def _findoffset(self, width, height, xdescent, ydescent, renderer): "Helper function to locate the legend." if self._loc == 0: # "best". x, y = self._find_best_position(width, height, renderer) elif self._loc in Legend.codes.values(): # Fixed location. bbox = Bbox.from_bounds(0, 0, width, height) x, y = self._get_anchored_bbox(self._loc, bbox, self.get_bbox_to_anchor(), renderer) else: # Axes or figure coordinates. fx, fy = self._loc bbox = self.get_bbox_to_anchor() x, y = bbox.x0 + bbox.width * fx, bbox.y0 + bbox.height * fy return x + xdescent, y + ydescent @allow_rasterization def draw(self, renderer): "Draw everything that belongs to the legend." if not self.get_visible(): return renderer.open_group('legend') fontsize = renderer.points_to_pixels(self._fontsize) # if mode == fill, set the width of the legend_box to the # width of the parent (minus pads) if self._mode in ["expand"]: pad = 2 * (self.borderaxespad + self.borderpad) * fontsize self._legend_box.set_width(self.get_bbox_to_anchor().width - pad) # update the location and size of the legend. This needs to # be done in any case to clip the figure right. bbox = self._legend_box.get_window_extent(renderer) self.legendPatch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) self.legendPatch.set_mutation_scale(fontsize) if self._drawFrame: if self.shadow: shadow = Shadow(self.legendPatch, 2, -2) shadow.draw(renderer) self.legendPatch.draw(renderer) self._legend_box.draw(renderer) renderer.close_group('legend') self.stale = False def _approx_text_height(self, renderer=None): """ Return the approximate height of the text. This is used to place the legend handle. """ if renderer is None: return self._fontsize else: return renderer.points_to_pixels(self._fontsize) # _default_handler_map defines the default mapping between plot # elements and the legend handlers. _default_handler_map = { StemContainer: legend_handler.HandlerStem(), ErrorbarContainer: legend_handler.HandlerErrorbar(), Line2D: legend_handler.HandlerLine2D(), Patch: legend_handler.HandlerPatch(), LineCollection: legend_handler.HandlerLineCollection(), RegularPolyCollection: legend_handler.HandlerRegularPolyCollection(), CircleCollection: legend_handler.HandlerCircleCollection(), BarContainer: legend_handler.HandlerPatch( update_func=legend_handler.update_from_first_child), tuple: legend_handler.HandlerTuple(), PathCollection: legend_handler.HandlerPathCollection(), PolyCollection: legend_handler.HandlerPolyCollection() } # (get|set|update)_default_handler_maps are public interfaces to # modify the default handler map. @classmethod def get_default_handler_map(cls): """ A class method that returns the default handler map. """ return cls._default_handler_map @classmethod def set_default_handler_map(cls, handler_map): """ A class method to set the default handler map. """ cls._default_handler_map = handler_map @classmethod def update_default_handler_map(cls, handler_map): """ A class method to update the default handler map. """ cls._default_handler_map.update(handler_map) def get_legend_handler_map(self): """ Return the handler map. """ default_handler_map = self.get_default_handler_map() if self._custom_handler_map: hm = default_handler_map.copy() hm.update(self._custom_handler_map) return hm else: return default_handler_map @staticmethod def get_legend_handler(legend_handler_map, orig_handle): """ Return a legend handler from *legend_handler_map* that corresponds to *orig_handler*. *legend_handler_map* should be a dictionary object (that is returned by the get_legend_handler_map method). It first checks if the *orig_handle* itself is a key in the *legend_handler_map* and return the associated value. Otherwise, it checks for each of the classes in its method-resolution-order. If no matching key is found, it returns ``None``. """ try: return legend_handler_map[orig_handle] except (TypeError, KeyError): # TypeError if unhashable. pass for handle_type in type(orig_handle).mro(): try: return legend_handler_map[handle_type] except KeyError: pass return None def _init_legend_box(self, handles, labels, markerfirst=True): """ Initialize the legend_box. The legend_box is an instance of the OffsetBox, which is packed with legend handles and texts. Once packed, their location is calculated during the drawing time. """ fontsize = self._fontsize # legend_box is a HPacker, horizontally packed with # columns. Each column is a VPacker, vertically packed with # legend items. Each legend item is HPacker packed with # legend handleBox and labelBox. handleBox is an instance of # offsetbox.DrawingArea which contains legend handle. labelBox # is an instance of offsetbox.TextArea which contains legend # text. text_list = [] # the list of text instances handle_list = [] # the list of text instances handles_and_labels = [] label_prop = dict(verticalalignment='baseline', horizontalalignment='left', fontproperties=self.prop, ) # The approximate height and descent of text. These values are # only used for plotting the legend handle. descent = 0.35 * self._approx_text_height() * (self.handleheight - 0.7) # 0.35 and 0.7 are just heuristic numbers and may need to be improved. height = self._approx_text_height() * self.handleheight - descent # each handle needs to be drawn inside a box of (x, y, w, h) = # (0, -descent, width, height). And their coordinates should # be given in the display coordinates. # The transformation of each handle will be automatically set # to self.get_transform(). If the artist does not use its # default transform (e.g., Collections), you need to # manually set their transform to the self.get_transform(). legend_handler_map = self.get_legend_handler_map() for orig_handle, lab in zip(handles, labels): handler = self.get_legend_handler(legend_handler_map, orig_handle) if handler is None: cbook._warn_external( "Legend does not support {!r} instances.\nA proxy artist " "may be used instead.\nSee: " "http://matplotlib.org/users/legend_guide.html" "#creating-artists-specifically-for-adding-to-the-legend-" "aka-proxy-artists".format(orig_handle)) # We don't have a handle for this artist, so we just defer # to None. handle_list.append(None) else: textbox = TextArea(lab, textprops=label_prop, multilinebaseline=True, minimumdescent=True) handlebox = DrawingArea(width=self.handlelength * fontsize, height=height, xdescent=0., ydescent=descent) text_list.append(textbox._text) # Create the artist for the legend which represents the # original artist/handle. handle_list.append(handler.legend_artist(self, orig_handle, fontsize, handlebox)) handles_and_labels.append((handlebox, textbox)) if handles_and_labels: # We calculate number of rows in each column. The first # (num_largecol) columns will have (nrows+1) rows, and remaining # (num_smallcol) columns will have (nrows) rows. ncol = min(self._ncol, len(handles_and_labels)) nrows, num_largecol = divmod(len(handles_and_labels), ncol) num_smallcol = ncol - num_largecol # starting index of each column and number of rows in it. rows_per_col = [nrows + 1] * num_largecol + [nrows] * num_smallcol start_idxs = np.concatenate([[0], np.cumsum(rows_per_col)[:-1]]) cols = zip(start_idxs, rows_per_col) else: cols = [] columnbox = [] for i0, di in cols: # pack handleBox and labelBox into itemBox itemBoxes = [HPacker(pad=0, sep=self.handletextpad * fontsize, children=[h, t] if markerfirst else [t, h], align="baseline") for h, t in handles_and_labels[i0:i0 + di]] # minimumdescent=False for the text of the last row of the column if markerfirst: itemBoxes[-1].get_children()[1].set_minimumdescent(False) else: itemBoxes[-1].get_children()[0].set_minimumdescent(False) # pack columnBox alignment = "baseline" if markerfirst else "right" columnbox.append(VPacker(pad=0, sep=self.labelspacing * fontsize, align=alignment, children=itemBoxes)) mode = "expand" if self._mode == "expand" else "fixed" sep = self.columnspacing * fontsize self._legend_handle_box = HPacker(pad=0, sep=sep, align="baseline", mode=mode, children=columnbox) self._legend_title_box = TextArea("") self._legend_box = VPacker(pad=self.borderpad * fontsize, sep=self.labelspacing * fontsize, align="center", children=[self._legend_title_box, self._legend_handle_box]) self._legend_box.set_figure(self.figure) self.texts = text_list self.legendHandles = handle_list def _auto_legend_data(self): """ Returns list of vertices and extents covered by the plot. Returns a two long list. First element is a list of (x, y) vertices (in display-coordinates) covered by all the lines and line collections, in the legend's handles. Second element is a list of bounding boxes for all the patches in the legend's handles. """ # should always hold because function is only called internally assert self.isaxes ax = self.parent bboxes = [] lines = [] offsets = [] for handle in ax.lines: assert isinstance(handle, Line2D) path = handle.get_path() trans = handle.get_transform() tpath = trans.transform_path(path) lines.append(tpath) for handle in ax.patches: assert isinstance(handle, Patch) if isinstance(handle, Rectangle): transform = handle.get_data_transform() bboxes.append(handle.get_bbox().transformed(transform)) else: transform = handle.get_transform() bboxes.append(handle.get_path().get_extents(transform)) for handle in ax.collections: transform, transOffset, hoffsets, paths = handle._prepare_points() if len(hoffsets): for offset in transOffset.transform(hoffsets): offsets.append(offset) try: vertices = np.concatenate([l.vertices for l in lines]) except ValueError: vertices = np.array([]) return [vertices, bboxes, lines, offsets] def draw_frame(self, b): ''' Set draw frame to b. Parameters ---------- b : bool ''' self.set_frame_on(b) def get_children(self): 'Return a list of child artists.' children = [] if self._legend_box: children.append(self._legend_box) children.append(self.get_frame()) return children def get_frame(self): ''' Return the `~.patches.Rectangle` instances used to frame the legend. ''' return self.legendPatch def get_lines(self): 'Return a list of `~.lines.Line2D` instances in the legend.' return [h for h in self.legendHandles if isinstance(h, Line2D)] def get_patches(self): 'Return a list of `~.patches.Patch` instances in the legend.' return silent_list('Patch', [h for h in self.legendHandles if isinstance(h, Patch)]) def get_texts(self): 'Return a list of `~.text.Text` instances in the legend.' return silent_list('Text', self.texts) def set_title(self, title, prop=None): """ Set the legend title. Fontproperties can be optionally set with *prop* parameter. """ self._legend_title_box._text.set_text(title) if title: self._legend_title_box._text.set_visible(True) self._legend_title_box.set_visible(True) else: self._legend_title_box._text.set_visible(False) self._legend_title_box.set_visible(False) if prop is not None: if isinstance(prop, dict): prop = FontProperties(**prop) self._legend_title_box._text.set_fontproperties(prop) self.stale = True def get_title(self): 'Return the `.Text` instance for the legend title.' return self._legend_title_box._text def get_window_extent(self, renderer=None): 'Return extent of the legend.' if renderer is None: renderer = self.figure._cachedRenderer return self._legend_box.get_window_extent(renderer=renderer) def get_tightbbox(self, renderer): """ Like `.Legend.get_window_extent`, but uses the box for the legend. Parameters ---------- renderer : `.RendererBase` instance renderer that will be used to draw the figures (i.e. ``fig.canvas.get_renderer()``) Returns ------- `.BboxBase` : containing the bounding box in figure pixel co-ordinates. """ return self._legend_box.get_window_extent(renderer) def get_frame_on(self): """Get whether the legend box patch is drawn.""" return self._drawFrame def set_frame_on(self, b): """ Set whether the legend box patch is drawn. Parameters ---------- b : bool """ self._drawFrame = b self.stale = True def get_bbox_to_anchor(self): """Return the bbox that the legend will be anchored to.""" if self._bbox_to_anchor is None: return self.parent.bbox else: return self._bbox_to_anchor def set_bbox_to_anchor(self, bbox, transform=None): """ Set the bbox that the legend will be anchored to. *bbox* can be - A `.BboxBase` instance - A tuple of ``(left, bottom, width, height)`` in the given transform (normalized axes coordinate if None) - A tuple of ``(left, bottom)`` where the width and height will be assumed to be zero. """ if bbox is None: self._bbox_to_anchor = None return elif isinstance(bbox, BboxBase): self._bbox_to_anchor = bbox else: try: l = len(bbox) except TypeError: raise ValueError("Invalid argument for bbox : %s" % str(bbox)) if l == 2: bbox = [bbox[0], bbox[1], 0, 0] self._bbox_to_anchor = Bbox.from_bounds(*bbox) if transform is None: transform = BboxTransformTo(self.parent.bbox) self._bbox_to_anchor = TransformedBbox(self._bbox_to_anchor, transform) self.stale = True def _get_anchored_bbox(self, loc, bbox, parentbbox, renderer): """ Place the *bbox* inside the *parentbbox* according to a given location code. Return the (x,y) coordinate of the bbox. - loc: a location code in range(1, 11). This corresponds to the possible values for self._loc, excluding "best". - bbox: bbox to be placed, display coordinate units. - parentbbox: a parent box which will contain the bbox. In display coordinates. """ assert loc in range(1, 11) # called only internally BEST, UR, UL, LL, LR, R, CL, CR, LC, UC, C = range(11) anchor_coefs = {UR: "NE", UL: "NW", LL: "SW", LR: "SE", R: "E", CL: "W", CR: "E", LC: "S", UC: "N", C: "C"} c = anchor_coefs[loc] fontsize = renderer.points_to_pixels(self._fontsize) container = parentbbox.padded(-(self.borderaxespad) * fontsize) anchored_box = bbox.anchored(c, container=container) return anchored_box.x0, anchored_box.y0 def _find_best_position(self, width, height, renderer, consider=None): """ Determine the best location to place the legend. *consider* is a list of ``(x, y)`` pairs to consider as a potential lower-left corner of the legend. All are display coords. """ # should always hold because function is only called internally assert self.isaxes verts, bboxes, lines, offsets = self._auto_legend_data() if self._loc_used_default and verts.shape[0] > 200000: # this size results in a 3+ second render time on a good machine cbook._warn_external( 'Creating legend with loc="best" can be slow with large ' 'amounts of data.' ) bbox = Bbox.from_bounds(0, 0, width, height) if consider is None: consider = [self._get_anchored_bbox(x, bbox, self.get_bbox_to_anchor(), renderer) for x in range(1, len(self.codes))] candidates = [] for idx, (l, b) in enumerate(consider): legendBox = Bbox.from_bounds(l, b, width, height) badness = 0 # XXX TODO: If markers are present, it would be good to # take them into account when checking vertex overlaps in # the next line. badness = (legendBox.count_contains(verts) + legendBox.count_contains(offsets) + legendBox.count_overlaps(bboxes) + sum(line.intersects_bbox(legendBox, filled=False) for line in lines)) if badness == 0: return l, b # Include the index to favor lower codes in case of a tie. candidates.append((badness, idx, (l, b))) _, _, (l, b) = min(candidates) return l, b def contains(self, event): return self.legendPatch.contains(event) def set_draggable(self, state, use_blit=False, update='loc'): """ Enable or disable mouse dragging support of the legend. Parameters ---------- state : bool Whether mouse dragging is enabled. use_blit : bool, optional Use blitting for faster image composition. For details see :ref:`func-animation`. update : {'loc', 'bbox'}, optional The legend parameter to be changed when dragged: - 'loc': update the *loc* parameter of the legend - 'bbox': update the *bbox_to_anchor* parameter of the legend Returns ------- If *state* is ``True`` this returns the `~.DraggableLegend` helper instance. Otherwise this returns ``None``. """ if state: if self._draggable is None: self._draggable = DraggableLegend(self, use_blit, update=update) else: if self._draggable is not None: self._draggable.disconnect() self._draggable = None return self._draggable def get_draggable(self): """Return ``True`` if the legend is draggable, ``False`` otherwise.""" return self._draggable is not None # Helper functions to parse legend arguments for both `figure.legend` and # `axes.legend`: def _get_legend_handles(axs, legend_handler_map=None): """ Return a generator of artists that can be used as handles in a legend. """ handles_original = [] for ax in axs: handles_original += (ax.lines + ax.patches + ax.collections + ax.containers) # support parasite axes: if hasattr(ax, 'parasites'): for axx in ax.parasites: handles_original += (axx.lines + axx.patches + axx.collections + axx.containers) handler_map = Legend.get_default_handler_map() if legend_handler_map is not None: handler_map = handler_map.copy() handler_map.update(legend_handler_map) has_handler = Legend.get_legend_handler for handle in handles_original: label = handle.get_label() if label != '_nolegend_' and has_handler(handler_map, handle): yield handle def _get_legend_handles_labels(axs, legend_handler_map=None): """ Return handles and labels for legend, internal method. """ handles = [] labels = [] for handle in _get_legend_handles(axs, legend_handler_map): label = handle.get_label() if label and not label.startswith('_'): handles.append(handle) labels.append(label) return handles, labels def _parse_legend_args(axs, *args, handles=None, labels=None, **kwargs): """ Get the handles and labels from the calls to either ``figure.legend`` or ``axes.legend``. ``axs`` is a list of axes (to get legend artists from) """ log = logging.getLogger(__name__) handlers = kwargs.get('handler_map', {}) or {} extra_args = () if (handles is not None or labels is not None) and args: cbook._warn_external("You have mixed positional and keyword " "arguments, some input may be discarded.") # if got both handles and labels as kwargs, make same length if handles and labels: handles, labels = zip(*zip(handles, labels)) elif handles is not None and labels is None: labels = [handle.get_label() for handle in handles] elif labels is not None and handles is None: # Get as many handles as there are labels. handles = [handle for handle, label in zip(_get_legend_handles(axs, handlers), labels)] # No arguments - automatically detect labels and handles. elif len(args) == 0: handles, labels = _get_legend_handles_labels(axs, handlers) if not handles: log.warning('No handles with labels found to put in legend.') # One argument. User defined labels - automatic handle detection. elif len(args) == 1: labels, = args # Get as many handles as there are labels. handles = [handle for handle, label in zip(_get_legend_handles(axs, handlers), labels)] # Two arguments: # * user defined handles and labels elif len(args) >= 2: handles, labels = args[:2] extra_args = args[2:] else: raise TypeError('Invalid arguments to legend.') return handles, labels, extra_args, kwargs
59218c80b489015704e8fe60b99490ad75b46f4a85c7a6c869ae80950d519b56
r""" :mod:`~matplotlib.mathtext` is a module for parsing a subset of the TeX math syntax and drawing them to a matplotlib backend. For a tutorial of its usage see :doc:`/tutorials/text/mathtext`. This document is primarily concerned with implementation details. The module uses pyparsing_ to parse the TeX expression. .. _pyparsing: http://pyparsing.wikispaces.com/ The Bakoma distribution of the TeX Computer Modern fonts, and STIX fonts are supported. There is experimental support for using arbitrary fonts, but results may vary without proper tweaking and metrics for those fonts. """ from collections import namedtuple import functools from io import StringIO import logging import os import types import unicodedata import numpy as np from pyparsing import ( Combine, Empty, FollowedBy, Forward, Group, Literal, oneOf, OneOrMore, Optional, ParseBaseException, ParseFatalException, ParserElement, QuotedString, Regex, StringEnd, Suppress, ZeroOrMore) ParserElement.enablePackrat() from matplotlib import cbook, colors as mcolors, get_data_path, rcParams from matplotlib.afm import AFM from matplotlib.cbook import get_realpath_and_stat from matplotlib.ft2font import FT2Image, KERNING_DEFAULT, LOAD_NO_HINTING from matplotlib.font_manager import findfont, FontProperties, get_font from matplotlib._mathtext_data import (latex_to_bakoma, latex_to_standard, tex2uni, latex_to_cmex, stix_virtual_fonts) _log = logging.getLogger(__name__) ############################################################################## # FONTS def get_unicode_index(symbol, math=True): r""" Return the integer index (from the Unicode table) of *symbol*. Parameters ---------- symbol : str A single unicode character, a TeX command (e.g. r'\pi') or a Type1 symbol name (e.g. 'phi'). math : bool, default is True If False, always treat as a single unicode character. """ # for a non-math symbol, simply return its unicode index if not math: return ord(symbol) # From UTF #25: U+2212 minus sign is the preferred # representation of the unary and binary minus sign rather than # the ASCII-derived U+002D hyphen-minus, because minus sign is # unambiguous and because it is rendered with a more desirable # length, usually longer than a hyphen. if symbol == '-': return 0x2212 try: # This will succeed if symbol is a single unicode char return ord(symbol) except TypeError: pass try: # Is symbol a TeX symbol (i.e. \alpha) return tex2uni[symbol.strip("\\")] except KeyError: raise ValueError( "'{}' is not a valid Unicode character or TeX/Type1 symbol" .format(symbol)) unichr_safe = cbook.deprecated("3.0")(chr) class MathtextBackend(object): """ The base class for the mathtext backend-specific code. The purpose of :class:`MathtextBackend` subclasses is to interface between mathtext and a specific matplotlib graphics backend. Subclasses need to override the following: - :meth:`render_glyph` - :meth:`render_rect_filled` - :meth:`get_results` And optionally, if you need to use a FreeType hinting style: - :meth:`get_hinting_type` """ def __init__(self): self.width = 0 self.height = 0 self.depth = 0 def set_canvas_size(self, w, h, d): 'Dimension the drawing canvas' self.width = w self.height = h self.depth = d def render_glyph(self, ox, oy, info): """ Draw a glyph described by *info* to the reference point (*ox*, *oy*). """ raise NotImplementedError() def render_rect_filled(self, x1, y1, x2, y2): """ Draw a filled black rectangle from (*x1*, *y1*) to (*x2*, *y2*). """ raise NotImplementedError() def get_results(self, box): """ Return a backend-specific tuple to return to the backend after all processing is done. """ raise NotImplementedError() def get_hinting_type(self): """ Get the FreeType hinting type to use with this particular backend. """ return LOAD_NO_HINTING class MathtextBackendAgg(MathtextBackend): """ Render glyphs and rectangles to an FTImage buffer, which is later transferred to the Agg image by the Agg backend. """ def __init__(self): self.ox = 0 self.oy = 0 self.image = None self.mode = 'bbox' self.bbox = [0, 0, 0, 0] MathtextBackend.__init__(self) def _update_bbox(self, x1, y1, x2, y2): self.bbox = [min(self.bbox[0], x1), min(self.bbox[1], y1), max(self.bbox[2], x2), max(self.bbox[3], y2)] def set_canvas_size(self, w, h, d): MathtextBackend.set_canvas_size(self, w, h, d) if self.mode != 'bbox': self.image = FT2Image(np.ceil(w), np.ceil(h + max(d, 0))) def render_glyph(self, ox, oy, info): if self.mode == 'bbox': self._update_bbox(ox + info.metrics.xmin, oy - info.metrics.ymax, ox + info.metrics.xmax, oy - info.metrics.ymin) else: info.font.draw_glyph_to_bitmap( self.image, ox, oy - info.metrics.iceberg, info.glyph, antialiased=rcParams['text.antialiased']) def render_rect_filled(self, x1, y1, x2, y2): if self.mode == 'bbox': self._update_bbox(x1, y1, x2, y2) else: height = max(int(y2 - y1) - 1, 0) if height == 0: center = (y2 + y1) / 2.0 y = int(center - (height + 1) / 2.0) else: y = int(y1) self.image.draw_rect_filled(int(x1), y, np.ceil(x2), y + height) def get_results(self, box, used_characters): self.mode = 'bbox' orig_height = box.height orig_depth = box.depth ship(0, 0, box) bbox = self.bbox bbox = [bbox[0] - 1, bbox[1] - 1, bbox[2] + 1, bbox[3] + 1] self.mode = 'render' self.set_canvas_size( bbox[2] - bbox[0], (bbox[3] - bbox[1]) - orig_depth, (bbox[3] - bbox[1]) - orig_height) ship(-bbox[0], -bbox[1], box) result = (self.ox, self.oy, self.width, self.height + self.depth, self.depth, self.image, used_characters) self.image = None return result def get_hinting_type(self): from matplotlib.backends import backend_agg return backend_agg.get_hinting_flag() class MathtextBackendBitmap(MathtextBackendAgg): def get_results(self, box, used_characters): ox, oy, width, height, depth, image, characters = \ MathtextBackendAgg.get_results(self, box, used_characters) return image, depth class MathtextBackendPs(MathtextBackend): """ Store information to write a mathtext rendering to the PostScript backend. """ _PSResult = namedtuple( "_PSResult", "width height depth pswriter used_characters") def __init__(self): self.pswriter = StringIO() self.lastfont = None def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset postscript_name = info.postscript_name fontsize = info.fontsize symbol_name = info.symbol_name if (postscript_name, fontsize) != self.lastfont: ps = """/%(postscript_name)s findfont %(fontsize)s scalefont setfont """ % locals() self.lastfont = postscript_name, fontsize self.pswriter.write(ps) ps = """%(ox)f %(oy)f moveto /%(symbol_name)s glyphshow\n """ % locals() self.pswriter.write(ps) def render_rect_filled(self, x1, y1, x2, y2): ps = "%f %f %f %f rectfill\n" % ( x1, self.height - y2, x2 - x1, y2 - y1) self.pswriter.write(ps) def get_results(self, box, used_characters): ship(0, 0, box) return self._PSResult(self.width, self.height + self.depth, self.depth, self.pswriter, used_characters) class MathtextBackendPdf(MathtextBackend): """Store information to write a mathtext rendering to the PDF backend.""" _PDFResult = namedtuple( "_PDFResult", "width height depth glyphs rects used_characters") def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): filename = info.font.fname oy = self.height - oy + info.offset self.glyphs.append( (ox, oy, filename, info.fontsize, info.num, info.symbol_name)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append((x1, self.height - y2, x2 - x1, y2 - y1)) def get_results(self, box, used_characters): ship(0, 0, box) return self._PDFResult(self.width, self.height + self.depth, self.depth, self.glyphs, self.rects, used_characters) class MathtextBackendSvg(MathtextBackend): """ Store information to write a mathtext rendering to the SVG backend. """ def __init__(self): self.svg_glyphs = [] self.svg_rects = [] def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset self.svg_glyphs.append( (info.font, info.fontsize, info.num, ox, oy, info.metrics)) def render_rect_filled(self, x1, y1, x2, y2): self.svg_rects.append( (x1, self.height - y1 + 1, x2 - x1, y2 - y1)) def get_results(self, box, used_characters): ship(0, 0, box) svg_elements = types.SimpleNamespace(svg_glyphs=self.svg_glyphs, svg_rects=self.svg_rects) return (self.width, self.height + self.depth, self.depth, svg_elements, used_characters) class MathtextBackendPath(MathtextBackend): """ Store information to write a mathtext rendering to the text path machinery. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset thetext = info.num self.glyphs.append( (info.font, info.fontsize, thetext, ox, oy)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append((x1, self.height - y2, x2 - x1, y2 - y1)) def get_results(self, box, used_characters): ship(0, 0, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects) class MathtextBackendCairo(MathtextBackend): """ Store information to write a mathtext rendering to the Cairo backend. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): oy = oy - info.offset - self.height thetext = chr(info.num) self.glyphs.append( (info.font, info.fontsize, thetext, ox, oy)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append( (x1, y1 - self.height, x2 - x1, y2 - y1)) def get_results(self, box, used_characters): ship(0, 0, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects) class Fonts(object): """ An abstract base class for a system of fonts to use for mathtext. The class must be able to take symbol keys and font file names and return the character metrics. It also delegates to a backend class to do the actual drawing. """ def __init__(self, default_font_prop, mathtext_backend): """ *default_font_prop*: A :class:`~matplotlib.font_manager.FontProperties` object to use for the default non-math font, or the base font for Unicode (generic) font rendering. *mathtext_backend*: A subclass of :class:`MathTextBackend` used to delegate the actual rendering. """ self.default_font_prop = default_font_prop self.mathtext_backend = mathtext_backend self.used_characters = {} def destroy(self): """ Fix any cyclical references before the object is about to be destroyed. """ self.used_characters = None def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): """ Get the kerning distance for font between *sym1* and *sym2*. *fontX*: one of the TeX font names:: tt, it, rm, cal, sf, bf or default/regular (non-math) *fontclassX*: TODO *symX*: a symbol in raw TeX form. e.g., '1', 'x' or '\\sigma' *fontsizeX*: the fontsize in points *dpi*: the current dots-per-inch """ return 0. def get_metrics(self, font, font_class, sym, fontsize, dpi, math=True): """ *font*: one of the TeX font names:: tt, it, rm, cal, sf, bf or default/regular (non-math) *font_class*: TODO *sym*: a symbol in raw TeX form. e.g., '1', 'x' or '\\sigma' *fontsize*: font size in points *dpi*: current dots-per-inch *math*: whether sym is a math character Returns an object with the following attributes: - *advance*: The advance distance (in points) of the glyph. - *height*: The height of the glyph in points. - *width*: The width of the glyph in points. - *xmin*, *xmax*, *ymin*, *ymax* - the ink rectangle of the glyph - *iceberg* - the distance from the baseline to the top of the glyph. This corresponds to TeX's definition of "height". """ info = self._get_info(font, font_class, sym, fontsize, dpi, math) return info.metrics def set_canvas_size(self, w, h, d): """ Set the size of the buffer used to render the math expression. Only really necessary for the bitmap backends. """ self.width, self.height, self.depth = np.ceil([w, h, d]) self.mathtext_backend.set_canvas_size( self.width, self.height, self.depth) def render_glyph(self, ox, oy, facename, font_class, sym, fontsize, dpi): """ Draw a glyph at - *ox*, *oy*: position - *facename*: One of the TeX face names - *font_class*: - *sym*: TeX symbol name or single character - *fontsize*: fontsize in points - *dpi*: The dpi to draw at. """ info = self._get_info(facename, font_class, sym, fontsize, dpi) realpath, stat_key = get_realpath_and_stat(info.font.fname) used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].add(info.num) self.mathtext_backend.render_glyph(ox, oy, info) def render_rect_filled(self, x1, y1, x2, y2): """ Draw a filled rectangle from (*x1*, *y1*) to (*x2*, *y2*). """ self.mathtext_backend.render_rect_filled(x1, y1, x2, y2) def get_xheight(self, font, fontsize, dpi): """ Get the xheight for the given *font* and *fontsize*. """ raise NotImplementedError() def get_underline_thickness(self, font, fontsize, dpi): """ Get the line thickness that matches the given font. Used as a base unit for drawing lines such as in a fraction or radical. """ raise NotImplementedError() def get_used_characters(self): """ Get the set of characters that were used in the math expression. Used by backends that need to subset fonts so they know which glyphs to include. """ return self.used_characters def get_results(self, box): """ Get the data needed by the backend to render the math expression. The return value is backend-specific. """ result = self.mathtext_backend.get_results( box, self.get_used_characters()) self.destroy() return result def get_sized_alternatives_for_symbol(self, fontname, sym): """ Override if your font provides multiple sizes of the same symbol. Should return a list of symbols matching *sym* in various sizes. The expression renderer will select the most appropriate size for a given situation from this list. """ return [(fontname, sym)] class TruetypeFonts(Fonts): """ A generic base class for all font setups that use Truetype fonts (through FT2Font). """ def __init__(self, default_font_prop, mathtext_backend): Fonts.__init__(self, default_font_prop, mathtext_backend) self.glyphd = {} self._fonts = {} filename = findfont(default_font_prop) default_font = get_font(filename) self._fonts['default'] = default_font self._fonts['regular'] = default_font def destroy(self): self.glyphd = None Fonts.destroy(self) def _get_font(self, font): if font in self.fontmap: basename = self.fontmap[font] else: basename = font cached_font = self._fonts.get(basename) if cached_font is None and os.path.exists(basename): cached_font = get_font(basename) self._fonts[basename] = cached_font self._fonts[cached_font.postscript_name] = cached_font self._fonts[cached_font.postscript_name.lower()] = cached_font return cached_font def _get_offset(self, font, glyph, fontsize, dpi): if font.postscript_name == 'Cmex10': return ((glyph.height/64.0/2.0) + (fontsize/3.0 * dpi/72.0)) return 0. def _get_info(self, fontname, font_class, sym, fontsize, dpi, math=True): key = fontname, font_class, sym, fontsize, dpi bunch = self.glyphd.get(key) if bunch is not None: return bunch font, num, symbol_name, fontsize, slanted = \ self._get_glyph(fontname, font_class, sym, fontsize, math) font.set_size(fontsize, dpi) glyph = font.load_char( num, flags=self.mathtext_backend.get_hinting_type()) xmin, ymin, xmax, ymax = [val/64.0 for val in glyph.bbox] offset = self._get_offset(font, glyph, fontsize, dpi) metrics = types.SimpleNamespace( advance = glyph.linearHoriAdvance/65536.0, height = glyph.height/64.0, width = glyph.width/64.0, xmin = xmin, xmax = xmax, ymin = ymin+offset, ymax = ymax+offset, # iceberg is the equivalent of TeX's "height" iceberg = glyph.horiBearingY/64.0 + offset, slanted = slanted ) result = self.glyphd[key] = types.SimpleNamespace( font = font, fontsize = fontsize, postscript_name = font.postscript_name, metrics = metrics, symbol_name = symbol_name, num = num, glyph = glyph, offset = offset ) return result def get_xheight(self, fontname, fontsize, dpi): font = self._get_font(fontname) font.set_size(fontsize, dpi) pclt = font.get_sfnt_table('pclt') if pclt is None: # Some fonts don't store the xHeight, so we do a poor man's xHeight metrics = self.get_metrics( fontname, rcParams['mathtext.default'], 'x', fontsize, dpi) return metrics.iceberg xHeight = (pclt['xHeight'] / 64.0) * (fontsize / 12.0) * (dpi / 100.0) return xHeight def get_underline_thickness(self, font, fontsize, dpi): # This function used to grab underline thickness from the font # metrics, but that information is just too un-reliable, so it # is now hardcoded. return ((0.75 / 12.0) * fontsize * dpi) / 72.0 def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): if font1 == font2 and fontsize1 == fontsize2: info1 = self._get_info(font1, fontclass1, sym1, fontsize1, dpi) info2 = self._get_info(font2, fontclass2, sym2, fontsize2, dpi) font = info1.font return font.get_kerning(info1.num, info2.num, KERNING_DEFAULT) / 64 return Fonts.get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi) class BakomaFonts(TruetypeFonts): """ Use the Bakoma TrueType fonts for rendering. Symbols are strewn about a number of font files, each of which has its own proprietary 8-bit encoding. """ _fontmap = { 'cal' : 'cmsy10', 'rm' : 'cmr10', 'tt' : 'cmtt10', 'it' : 'cmmi10', 'bf' : 'cmb10', 'sf' : 'cmss10', 'ex' : 'cmex10' } def __init__(self, *args, **kwargs): self._stix_fallback = StixFonts(*args, **kwargs) TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for key, val in self._fontmap.items(): fullpath = findfont(val) self.fontmap[key] = fullpath self.fontmap[val] = fullpath _slanted_symbols = set(r"\int \oint".split()) def _get_glyph(self, fontname, font_class, sym, fontsize, math=True): symbol_name = None font = None if fontname in self.fontmap and sym in latex_to_bakoma: basename, num = latex_to_bakoma[sym] slanted = (basename == "cmmi10") or sym in self._slanted_symbols font = self._get_font(basename) elif len(sym) == 1: slanted = (fontname == "it") font = self._get_font(fontname) if font is not None: num = ord(sym) if font is not None: gid = font.get_char_index(num) if gid != 0: symbol_name = font.get_glyph_name(gid) if symbol_name is None: return self._stix_fallback._get_glyph( fontname, font_class, sym, fontsize, math) return font, num, symbol_name, fontsize, slanted # The Bakoma fonts contain many pre-sized alternatives for the # delimiters. The AutoSizedChar class will use these alternatives # and select the best (closest sized) glyph. _size_alternatives = { '(' : [('rm', '('), ('ex', '\xa1'), ('ex', '\xb3'), ('ex', '\xb5'), ('ex', '\xc3')], ')' : [('rm', ')'), ('ex', '\xa2'), ('ex', '\xb4'), ('ex', '\xb6'), ('ex', '\x21')], '{' : [('cal', '{'), ('ex', '\xa9'), ('ex', '\x6e'), ('ex', '\xbd'), ('ex', '\x28')], '}' : [('cal', '}'), ('ex', '\xaa'), ('ex', '\x6f'), ('ex', '\xbe'), ('ex', '\x29')], # The fourth size of '[' is mysteriously missing from the BaKoMa # font, so I've omitted it for both '[' and ']' '[' : [('rm', '['), ('ex', '\xa3'), ('ex', '\x68'), ('ex', '\x22')], ']' : [('rm', ']'), ('ex', '\xa4'), ('ex', '\x69'), ('ex', '\x23')], r'\lfloor' : [('ex', '\xa5'), ('ex', '\x6a'), ('ex', '\xb9'), ('ex', '\x24')], r'\rfloor' : [('ex', '\xa6'), ('ex', '\x6b'), ('ex', '\xba'), ('ex', '\x25')], r'\lceil' : [('ex', '\xa7'), ('ex', '\x6c'), ('ex', '\xbb'), ('ex', '\x26')], r'\rceil' : [('ex', '\xa8'), ('ex', '\x6d'), ('ex', '\xbc'), ('ex', '\x27')], r'\langle' : [('ex', '\xad'), ('ex', '\x44'), ('ex', '\xbf'), ('ex', '\x2a')], r'\rangle' : [('ex', '\xae'), ('ex', '\x45'), ('ex', '\xc0'), ('ex', '\x2b')], r'\__sqrt__' : [('ex', '\x70'), ('ex', '\x71'), ('ex', '\x72'), ('ex', '\x73')], r'\backslash': [('ex', '\xb2'), ('ex', '\x2f'), ('ex', '\xc2'), ('ex', '\x2d')], r'/' : [('rm', '/'), ('ex', '\xb1'), ('ex', '\x2e'), ('ex', '\xcb'), ('ex', '\x2c')], r'\widehat' : [('rm', '\x5e'), ('ex', '\x62'), ('ex', '\x63'), ('ex', '\x64')], r'\widetilde': [('rm', '\x7e'), ('ex', '\x65'), ('ex', '\x66'), ('ex', '\x67')], r'<' : [('cal', 'h'), ('ex', 'D')], r'>' : [('cal', 'i'), ('ex', 'E')] } for alias, target in [(r'\leftparen', '('), (r'\rightparent', ')'), (r'\leftbrace', '{'), (r'\rightbrace', '}'), (r'\leftbracket', '['), (r'\rightbracket', ']'), (r'\{', '{'), (r'\}', '}'), (r'\[', '['), (r'\]', ']')]: _size_alternatives[alias] = _size_alternatives[target] def get_sized_alternatives_for_symbol(self, fontname, sym): return self._size_alternatives.get(sym, [(fontname, sym)]) class UnicodeFonts(TruetypeFonts): """ An abstract base class for handling Unicode fonts. While some reasonably complete Unicode fonts (such as DejaVu) may work in some situations, the only Unicode font I'm aware of with a complete set of math symbols is STIX. This class will "fallback" on the Bakoma fonts when a required symbol can not be found in the font. """ use_cmex = True def __init__(self, *args, **kwargs): # This must come first so the backend's owner is set correctly if rcParams['mathtext.fallback_to_cm']: self.cm_fallback = BakomaFonts(*args, **kwargs) else: self.cm_fallback = None TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for texfont in "cal rm tt it bf sf".split(): prop = rcParams['mathtext.' + texfont] font = findfont(prop) self.fontmap[texfont] = font prop = FontProperties('cmex10') font = findfont(prop) self.fontmap['ex'] = font _slanted_symbols = set(r"\int \oint".split()) def _map_virtual_font(self, fontname, font_class, uniindex): return fontname, uniindex def _get_glyph(self, fontname, font_class, sym, fontsize, math=True): found_symbol = False if self.use_cmex: uniindex = latex_to_cmex.get(sym) if uniindex is not None: fontname = 'ex' found_symbol = True if not found_symbol: try: uniindex = get_unicode_index(sym, math) found_symbol = True except ValueError: uniindex = ord('?') _log.warning( "No TeX to unicode mapping for {!a}.".format(sym)) fontname, uniindex = self._map_virtual_font( fontname, font_class, uniindex) new_fontname = fontname # Only characters in the "Letter" class should be italicized in 'it' # mode. Greek capital letters should be Roman. if found_symbol: if fontname == 'it' and uniindex < 0x10000: char = chr(uniindex) if (not unicodedata.category(char)[0] == "L" or unicodedata.name(char).startswith("GREEK CAPITAL")): new_fontname = 'rm' slanted = (new_fontname == 'it') or sym in self._slanted_symbols found_symbol = False font = self._get_font(new_fontname) if font is not None: glyphindex = font.get_char_index(uniindex) if glyphindex != 0: found_symbol = True if not found_symbol: if self.cm_fallback: if isinstance(self.cm_fallback, BakomaFonts): _log.warning( "Substituting with a symbol from Computer Modern.") if (fontname in ('it', 'regular') and isinstance(self.cm_fallback, StixFonts)): return self.cm_fallback._get_glyph( 'rm', font_class, sym, fontsize) else: return self.cm_fallback._get_glyph( fontname, font_class, sym, fontsize) else: if (fontname in ('it', 'regular') and isinstance(self, StixFonts)): return self._get_glyph('rm', font_class, sym, fontsize) _log.warning("Font {!r} does not have a glyph for {!a} " "[U+{:x}], substituting with a dummy " "symbol.".format(new_fontname, sym, uniindex)) fontname = 'rm' font = self._get_font(fontname) uniindex = 0xA4 # currency char, for lack of anything better glyphindex = font.get_char_index(uniindex) slanted = False symbol_name = font.get_glyph_name(glyphindex) return font, uniindex, symbol_name, fontsize, slanted def get_sized_alternatives_for_symbol(self, fontname, sym): if self.cm_fallback: return self.cm_fallback.get_sized_alternatives_for_symbol( fontname, sym) return [(fontname, sym)] class DejaVuFonts(UnicodeFonts): use_cmex = False def __init__(self, *args, **kwargs): # This must come first so the backend's owner is set correctly if isinstance(self, DejaVuSerifFonts): self.cm_fallback = StixFonts(*args, **kwargs) else: self.cm_fallback = StixSansFonts(*args, **kwargs) self.bakoma = BakomaFonts(*args, **kwargs) TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} # Include Stix sized alternatives for glyphs self._fontmap.update({ 1 : 'STIXSizeOneSym', 2 : 'STIXSizeTwoSym', 3 : 'STIXSizeThreeSym', 4 : 'STIXSizeFourSym', 5 : 'STIXSizeFiveSym'}) for key, name in self._fontmap.items(): fullpath = findfont(name) self.fontmap[key] = fullpath self.fontmap[name] = fullpath def _get_glyph(self, fontname, font_class, sym, fontsize, math=True): # Override prime symbol to use Bakoma. if sym == r'\prime': return self.bakoma._get_glyph( fontname, font_class, sym, fontsize, math) else: # check whether the glyph is available in the display font uniindex = get_unicode_index(sym) font = self._get_font('ex') if font is not None: glyphindex = font.get_char_index(uniindex) if glyphindex != 0: return super()._get_glyph( 'ex', font_class, sym, fontsize, math) # otherwise return regular glyph return super()._get_glyph( fontname, font_class, sym, fontsize, math) class DejaVuSerifFonts(DejaVuFonts): """ A font handling class for the DejaVu Serif fonts If a glyph is not found it will fallback to Stix Serif """ _fontmap = { 'rm' : 'DejaVu Serif', 'it' : 'DejaVu Serif:italic', 'bf' : 'DejaVu Serif:weight=bold', 'sf' : 'DejaVu Sans', 'tt' : 'DejaVu Sans Mono', 'ex' : 'DejaVu Serif Display', 0 : 'DejaVu Serif', } class DejaVuSansFonts(DejaVuFonts): """ A font handling class for the DejaVu Sans fonts If a glyph is not found it will fallback to Stix Sans """ _fontmap = { 'rm' : 'DejaVu Sans', 'it' : 'DejaVu Sans:italic', 'bf' : 'DejaVu Sans:weight=bold', 'sf' : 'DejaVu Sans', 'tt' : 'DejaVu Sans Mono', 'ex' : 'DejaVu Sans Display', 0 : 'DejaVu Sans', } class StixFonts(UnicodeFonts): """ A font handling class for the STIX fonts. In addition to what UnicodeFonts provides, this class: - supports "virtual fonts" which are complete alpha numeric character sets with different font styles at special Unicode code points, such as "Blackboard". - handles sized alternative characters for the STIXSizeX fonts. """ _fontmap = { 'rm' : 'STIXGeneral', 'it' : 'STIXGeneral:italic', 'bf' : 'STIXGeneral:weight=bold', 'nonunirm' : 'STIXNonUnicode', 'nonuniit' : 'STIXNonUnicode:italic', 'nonunibf' : 'STIXNonUnicode:weight=bold', 0 : 'STIXGeneral', 1 : 'STIXSizeOneSym', 2 : 'STIXSizeTwoSym', 3 : 'STIXSizeThreeSym', 4 : 'STIXSizeFourSym', 5 : 'STIXSizeFiveSym' } use_cmex = False cm_fallback = False _sans = False def __init__(self, *args, **kwargs): TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for key, name in self._fontmap.items(): fullpath = findfont(name) self.fontmap[key] = fullpath self.fontmap[name] = fullpath def _map_virtual_font(self, fontname, font_class, uniindex): # Handle these "fonts" that are actually embedded in # other fonts. mapping = stix_virtual_fonts.get(fontname) if (self._sans and mapping is None and fontname not in ('regular', 'default')): mapping = stix_virtual_fonts['sf'] doing_sans_conversion = True else: doing_sans_conversion = False if mapping is not None: if isinstance(mapping, dict): try: mapping = mapping[font_class] except KeyError: mapping = mapping['rm'] # Binary search for the source glyph lo = 0 hi = len(mapping) while lo < hi: mid = (lo+hi)//2 range = mapping[mid] if uniindex < range[0]: hi = mid elif uniindex <= range[1]: break else: lo = mid + 1 if range[0] <= uniindex <= range[1]: uniindex = uniindex - range[0] + range[3] fontname = range[2] elif not doing_sans_conversion: # This will generate a dummy character uniindex = 0x1 fontname = rcParams['mathtext.default'] # Handle private use area glyphs if fontname in ('it', 'rm', 'bf') and 0xe000 <= uniindex <= 0xf8ff: fontname = 'nonuni' + fontname return fontname, uniindex _size_alternatives = {} def get_sized_alternatives_for_symbol(self, fontname, sym): fixes = {'\\{': '{', '\\}': '}', '\\[': '[', '\\]': ']'} sym = fixes.get(sym, sym) alternatives = self._size_alternatives.get(sym) if alternatives: return alternatives alternatives = [] try: uniindex = get_unicode_index(sym) except ValueError: return [(fontname, sym)] fix_ups = { ord('<'): 0x27e8, ord('>'): 0x27e9 } uniindex = fix_ups.get(uniindex, uniindex) for i in range(6): font = self._get_font(i) glyphindex = font.get_char_index(uniindex) if glyphindex != 0: alternatives.append((i, chr(uniindex))) # The largest size of the radical symbol in STIX has incorrect # metrics that cause it to be disconnected from the stem. if sym == r'\__sqrt__': alternatives = alternatives[:-1] self._size_alternatives[sym] = alternatives return alternatives class StixSansFonts(StixFonts): """ A font handling class for the STIX fonts (that uses sans-serif characters by default). """ _sans = True class StandardPsFonts(Fonts): """ Use the standard postscript fonts for rendering to backend_ps Unlike the other font classes, BakomaFont and UnicodeFont, this one requires the Ps backend. """ basepath = os.path.join(get_data_path(), 'fonts', 'afm') fontmap = { 'cal' : 'pzcmi8a', # Zapf Chancery 'rm' : 'pncr8a', # New Century Schoolbook 'tt' : 'pcrr8a', # Courier 'it' : 'pncri8a', # New Century Schoolbook Italic 'sf' : 'phvr8a', # Helvetica 'bf' : 'pncb8a', # New Century Schoolbook Bold None : 'psyr' # Symbol } def __init__(self, default_font_prop): Fonts.__init__(self, default_font_prop, MathtextBackendPs()) self.glyphd = {} self.fonts = {} filename = findfont(default_font_prop, fontext='afm', directory=self.basepath) if filename is None: filename = findfont('Helvetica', fontext='afm', directory=self.basepath) with open(filename, 'rb') as fd: default_font = AFM(fd) default_font.fname = filename self.fonts['default'] = default_font self.fonts['regular'] = default_font self.pswriter = StringIO() def _get_font(self, font): if font in self.fontmap: basename = self.fontmap[font] else: basename = font cached_font = self.fonts.get(basename) if cached_font is None: fname = os.path.join(self.basepath, basename + ".afm") with open(fname, 'rb') as fd: cached_font = AFM(fd) cached_font.fname = fname self.fonts[basename] = cached_font self.fonts[cached_font.get_fontname()] = cached_font return cached_font def _get_info(self, fontname, font_class, sym, fontsize, dpi, math=True): 'load the cmfont, metrics and glyph with caching' key = fontname, sym, fontsize, dpi tup = self.glyphd.get(key) if tup is not None: return tup # Only characters in the "Letter" class should really be italicized. # This class includes greek letters, so we're ok if (fontname == 'it' and (len(sym) > 1 or not unicodedata.category(sym).startswith("L"))): fontname = 'rm' found_symbol = False if sym in latex_to_standard: fontname, num = latex_to_standard[sym] glyph = chr(num) found_symbol = True elif len(sym) == 1: glyph = sym num = ord(glyph) found_symbol = True else: _log.warning( "No TeX to built-in Postscript mapping for {!r}".format(sym)) slanted = (fontname == 'it') font = self._get_font(fontname) if found_symbol: try: symbol_name = font.get_name_char(glyph) except KeyError: _log.warning( "No glyph in standard Postscript font {!r} for {!r}" .format(font.get_fontname(), sym)) found_symbol = False if not found_symbol: glyph = '?' num = ord(glyph) symbol_name = font.get_name_char(glyph) offset = 0 scale = 0.001 * fontsize xmin, ymin, xmax, ymax = [val * scale for val in font.get_bbox_char(glyph)] metrics = types.SimpleNamespace( advance = font.get_width_char(glyph) * scale, width = font.get_width_char(glyph) * scale, height = font.get_height_char(glyph) * scale, xmin = xmin, xmax = xmax, ymin = ymin+offset, ymax = ymax+offset, # iceberg is the equivalent of TeX's "height" iceberg = ymax + offset, slanted = slanted ) self.glyphd[key] = types.SimpleNamespace( font = font, fontsize = fontsize, postscript_name = font.get_fontname(), metrics = metrics, symbol_name = symbol_name, num = num, glyph = glyph, offset = offset ) return self.glyphd[key] def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): if font1 == font2 and fontsize1 == fontsize2: info1 = self._get_info(font1, fontclass1, sym1, fontsize1, dpi) info2 = self._get_info(font2, fontclass2, sym2, fontsize2, dpi) font = info1.font return (font.get_kern_dist(info1.glyph, info2.glyph) * 0.001 * fontsize1) return Fonts.get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi) def get_xheight(self, font, fontsize, dpi): font = self._get_font(font) return font.get_xheight() * 0.001 * fontsize def get_underline_thickness(self, font, fontsize, dpi): font = self._get_font(font) return font.get_underline_thickness() * 0.001 * fontsize ############################################################################## # TeX-LIKE BOX MODEL # The following is based directly on the document 'woven' from the # TeX82 source code. This information is also available in printed # form: # # Knuth, Donald E.. 1986. Computers and Typesetting, Volume B: # TeX: The Program. Addison-Wesley Professional. # # The most relevant "chapters" are: # Data structures for boxes and their friends # Shipping pages out (Ship class) # Packaging (hpack and vpack) # Data structures for math mode # Subroutines for math mode # Typesetting math formulas # # Many of the docstrings below refer to a numbered "node" in that # book, e.g., node123 # # Note that (as TeX) y increases downward, unlike many other parts of # matplotlib. # How much text shrinks when going to the next-smallest level. GROW_FACTOR # must be the inverse of SHRINK_FACTOR. SHRINK_FACTOR = 0.7 GROW_FACTOR = 1.0 / SHRINK_FACTOR # The number of different sizes of chars to use, beyond which they will not # get any smaller NUM_SIZE_LEVELS = 6 class FontConstantsBase(object): """ A set of constants that controls how certain things, such as sub- and superscripts are laid out. These are all metrics that can't be reliably retrieved from the font metrics in the font itself. """ # Percentage of x-height of additional horiz. space after sub/superscripts script_space = 0.05 # Percentage of x-height that sub/superscripts drop below the baseline subdrop = 0.4 # Percentage of x-height that superscripts are raised from the baseline sup1 = 0.7 # Percentage of x-height that subscripts drop below the baseline sub1 = 0.3 # Percentage of x-height that subscripts drop below the baseline when a # superscript is present sub2 = 0.5 # Percentage of x-height that sub/supercripts are offset relative to the # nucleus edge for non-slanted nuclei delta = 0.025 # Additional percentage of last character height above 2/3 of the # x-height that supercripts are offset relative to the subscript # for slanted nuclei delta_slanted = 0.2 # Percentage of x-height that supercripts and subscripts are offset for # integrals delta_integral = 0.1 class ComputerModernFontConstants(FontConstantsBase): script_space = 0.075 subdrop = 0.2 sup1 = 0.45 sub1 = 0.2 sub2 = 0.3 delta = 0.075 delta_slanted = 0.3 delta_integral = 0.3 class STIXFontConstants(FontConstantsBase): script_space = 0.1 sup1 = 0.8 sub2 = 0.6 delta = 0.05 delta_slanted = 0.3 delta_integral = 0.3 class STIXSansFontConstants(FontConstantsBase): script_space = 0.05 sup1 = 0.8 delta_slanted = 0.6 delta_integral = 0.3 class DejaVuSerifFontConstants(FontConstantsBase): pass class DejaVuSansFontConstants(FontConstantsBase): pass # Maps font family names to the FontConstantBase subclass to use _font_constant_mapping = { 'DejaVu Sans': DejaVuSansFontConstants, 'DejaVu Sans Mono': DejaVuSansFontConstants, 'DejaVu Serif': DejaVuSerifFontConstants, 'cmb10': ComputerModernFontConstants, 'cmex10': ComputerModernFontConstants, 'cmmi10': ComputerModernFontConstants, 'cmr10': ComputerModernFontConstants, 'cmss10': ComputerModernFontConstants, 'cmsy10': ComputerModernFontConstants, 'cmtt10': ComputerModernFontConstants, 'STIXGeneral': STIXFontConstants, 'STIXNonUnicode': STIXFontConstants, 'STIXSizeFiveSym': STIXFontConstants, 'STIXSizeFourSym': STIXFontConstants, 'STIXSizeThreeSym': STIXFontConstants, 'STIXSizeTwoSym': STIXFontConstants, 'STIXSizeOneSym': STIXFontConstants, # Map the fonts we used to ship, just for good measure 'Bitstream Vera Sans': DejaVuSansFontConstants, 'Bitstream Vera': DejaVuSansFontConstants, } def _get_font_constant_set(state): constants = _font_constant_mapping.get( state.font_output._get_font(state.font).family_name, FontConstantsBase) # STIX sans isn't really its own fonts, just different code points # in the STIX fonts, so we have to detect this one separately. if (constants is STIXFontConstants and isinstance(state.font_output, StixSansFonts)): return STIXSansFontConstants return constants class MathTextWarning(Warning): pass class Node(object): """ A node in the TeX box model """ def __init__(self): self.size = 0 def __repr__(self): return self.__class__.__name__ def get_kerning(self, next): return 0.0 def shrink(self): """ Shrinks one level smaller. There are only three levels of sizes, after which things will no longer get smaller. """ self.size += 1 def grow(self): """ Grows one level larger. There is no limit to how big something can get. """ self.size -= 1 def render(self, x, y): pass class Box(Node): """ Represents any node with a physical location. """ def __init__(self, width, height, depth): Node.__init__(self) self.width = width self.height = height self.depth = depth def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.width *= SHRINK_FACTOR self.height *= SHRINK_FACTOR self.depth *= SHRINK_FACTOR def grow(self): Node.grow(self) self.width *= GROW_FACTOR self.height *= GROW_FACTOR self.depth *= GROW_FACTOR def render(self, x1, y1, x2, y2): pass class Vbox(Box): """ A box with only height (zero width). """ def __init__(self, height, depth): Box.__init__(self, 0., height, depth) class Hbox(Box): """ A box with only width (zero height and depth). """ def __init__(self, width): Box.__init__(self, width, 0., 0.) class Char(Node): """ Represents a single character. Unlike TeX, the font information and metrics are stored with each :class:`Char` to make it easier to lookup the font metrics when needed. Note that TeX boxes have a width, height, and depth, unlike Type1 and Truetype which use a full bounding box and an advance in the x-direction. The metrics must be converted to the TeX way, and the advance (if different from width) must be converted into a :class:`Kern` node when the :class:`Char` is added to its parent :class:`Hlist`. """ def __init__(self, c, state, math=True): Node.__init__(self) self.c = c self.font_output = state.font_output self.font = state.font self.font_class = state.font_class self.fontsize = state.fontsize self.dpi = state.dpi self.math = math # The real width, height and depth will be set during the # pack phase, after we know the real fontsize self._update_metrics() def __repr__(self): return '`%s`' % self.c def _update_metrics(self): metrics = self._metrics = self.font_output.get_metrics( self.font, self.font_class, self.c, self.fontsize, self.dpi, self.math) if self.c == ' ': self.width = metrics.advance else: self.width = metrics.width self.height = metrics.iceberg self.depth = -(metrics.iceberg - metrics.height) def is_slanted(self): return self._metrics.slanted def get_kerning(self, next): """ Return the amount of kerning between this and the given character. Called when characters are strung together into :class:`Hlist` to create :class:`Kern` nodes. """ advance = self._metrics.advance - self.width kern = 0. if isinstance(next, Char): kern = self.font_output.get_kern( self.font, self.font_class, self.c, self.fontsize, next.font, next.font_class, next.c, next.fontsize, self.dpi) return advance + kern def render(self, x, y): """ Render the character to the canvas """ self.font_output.render_glyph( x, y, self.font, self.font_class, self.c, self.fontsize, self.dpi) def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.fontsize *= SHRINK_FACTOR self.width *= SHRINK_FACTOR self.height *= SHRINK_FACTOR self.depth *= SHRINK_FACTOR def grow(self): Node.grow(self) self.fontsize *= GROW_FACTOR self.width *= GROW_FACTOR self.height *= GROW_FACTOR self.depth *= GROW_FACTOR class Accent(Char): """ The font metrics need to be dealt with differently for accents, since they are already offset correctly from the baseline in TrueType fonts. """ def _update_metrics(self): metrics = self._metrics = self.font_output.get_metrics( self.font, self.font_class, self.c, self.fontsize, self.dpi) self.width = metrics.xmax - metrics.xmin self.height = metrics.ymax - metrics.ymin self.depth = 0 def shrink(self): Char.shrink(self) self._update_metrics() def grow(self): Char.grow(self) self._update_metrics() def render(self, x, y): """ Render the character to the canvas. """ self.font_output.render_glyph( x - self._metrics.xmin, y + self._metrics.ymin, self.font, self.font_class, self.c, self.fontsize, self.dpi) class List(Box): """ A list of nodes (either horizontal or vertical). """ def __init__(self, elements): Box.__init__(self, 0., 0., 0.) self.shift_amount = 0. # An arbitrary offset self.children = elements # The child nodes of this list # The following parameters are set in the vpack and hpack functions self.glue_set = 0. # The glue setting of this list self.glue_sign = 0 # 0: normal, -1: shrinking, 1: stretching self.glue_order = 0 # The order of infinity (0 - 3) for the glue def __repr__(self): return '[%s <%.02f %.02f %.02f %.02f> %s]' % ( super().__repr__(), self.width, self.height, self.depth, self.shift_amount, ' '.join([repr(x) for x in self.children])) @staticmethod def _determine_order(totals): """ Determine the highest order of glue used by the members of this list. Helper function used by vpack and hpack. """ for i in range(len(totals))[::-1]: if totals[i] != 0: return i return 0 def _set_glue(self, x, sign, totals, error_type): o = self._determine_order(totals) self.glue_order = o self.glue_sign = sign if totals[o] != 0.: self.glue_set = x / totals[o] else: self.glue_sign = 0 self.glue_ratio = 0. if o == 0: if len(self.children): _log.warning("%s %s: %r", error_type, self.__class__.__name__, self) def shrink(self): for child in self.children: child.shrink() Box.shrink(self) if self.size < NUM_SIZE_LEVELS: self.shift_amount *= SHRINK_FACTOR self.glue_set *= SHRINK_FACTOR def grow(self): for child in self.children: child.grow() Box.grow(self) self.shift_amount *= GROW_FACTOR self.glue_set *= GROW_FACTOR class Hlist(List): """ A horizontal list of boxes. """ def __init__(self, elements, w=0., m='additional', do_kern=True): List.__init__(self, elements) if do_kern: self.kern() self.hpack() def kern(self): """ Insert :class:`Kern` nodes between :class:`Char` nodes to set kerning. The :class:`Char` nodes themselves determine the amount of kerning they need (in :meth:`~Char.get_kerning`), and this function just creates the linked list in the correct way. """ new_children = [] num_children = len(self.children) if num_children: for i in range(num_children): elem = self.children[i] if i < num_children - 1: next = self.children[i + 1] else: next = None new_children.append(elem) kerning_distance = elem.get_kerning(next) if kerning_distance != 0.: kern = Kern(kerning_distance) new_children.append(kern) self.children = new_children # This is a failed experiment to fake cross-font kerning. # def get_kerning(self, next): # if len(self.children) >= 2 and isinstance(self.children[-2], Char): # if isinstance(next, Char): # print "CASE A" # return self.children[-2].get_kerning(next) # elif (isinstance(next, Hlist) and len(next.children) # and isinstance(next.children[0], Char)): # print "CASE B" # result = self.children[-2].get_kerning(next.children[0]) # print result # return result # return 0.0 def hpack(self, w=0., m='additional'): """ The main duty of :meth:`hpack` is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all of the material inside the new box; but some items may stick out if negative glue is used, if the box is overfull, or if a ``\\vbox`` includes other boxes that have been shifted left. - *w*: specifies a width - *m*: is either 'exactly' or 'additional'. Thus, ``hpack(w, 'exactly')`` produces a box whose width is exactly *w*, while ``hpack(w, 'additional')`` yields a box whose width is the natural width plus *w*. The default values produce a box with the natural width. """ # I don't know why these get reset in TeX. Shift_amount is pretty # much useless if we do. # self.shift_amount = 0. h = 0. d = 0. x = 0. total_stretch = [0.] * 4 total_shrink = [0.] * 4 for p in self.children: if isinstance(p, Char): x += p.width h = max(h, p.height) d = max(d, p.depth) elif isinstance(p, Box): x += p.width if not np.isinf(p.height) and not np.isinf(p.depth): s = getattr(p, 'shift_amount', 0.) h = max(h, p.height - s) d = max(d, p.depth + s) elif isinstance(p, Glue): glue_spec = p.glue_spec x += glue_spec.width total_stretch[glue_spec.stretch_order] += glue_spec.stretch total_shrink[glue_spec.shrink_order] += glue_spec.shrink elif isinstance(p, Kern): x += p.width self.height = h self.depth = d if m == 'additional': w += x self.width = w x = w - x if x == 0.: self.glue_sign = 0 self.glue_order = 0 self.glue_ratio = 0. return if x > 0.: self._set_glue(x, 1, total_stretch, "Overfull") else: self._set_glue(x, -1, total_shrink, "Underfull") class Vlist(List): """ A vertical list of boxes. """ def __init__(self, elements, h=0., m='additional'): List.__init__(self, elements) self.vpack() def vpack(self, h=0., m='additional', l=np.inf): """ The main duty of :meth:`vpack` is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. - *h*: specifies a height - *m*: is either 'exactly' or 'additional'. - *l*: a maximum height Thus, ``vpack(h, 'exactly')`` produces a box whose height is exactly *h*, while ``vpack(h, 'additional')`` yields a box whose height is the natural height plus *h*. The default values produce a box with the natural width. """ # I don't know why these get reset in TeX. Shift_amount is pretty # much useless if we do. # self.shift_amount = 0. w = 0. d = 0. x = 0. total_stretch = [0.] * 4 total_shrink = [0.] * 4 for p in self.children: if isinstance(p, Box): x += d + p.height d = p.depth if not np.isinf(p.width): s = getattr(p, 'shift_amount', 0.) w = max(w, p.width + s) elif isinstance(p, Glue): x += d d = 0. glue_spec = p.glue_spec x += glue_spec.width total_stretch[glue_spec.stretch_order] += glue_spec.stretch total_shrink[glue_spec.shrink_order] += glue_spec.shrink elif isinstance(p, Kern): x += d + p.width d = 0. elif isinstance(p, Char): raise RuntimeError( "Internal mathtext error: Char node found in Vlist") self.width = w if d > l: x += d - l self.depth = l else: self.depth = d if m == 'additional': h += x self.height = h x = h - x if x == 0: self.glue_sign = 0 self.glue_order = 0 self.glue_ratio = 0. return if x > 0.: self._set_glue(x, 1, total_stretch, "Overfull") else: self._set_glue(x, -1, total_shrink, "Underfull") class Rule(Box): """ A :class:`Rule` node stands for a solid black rectangle; it has *width*, *depth*, and *height* fields just as in an :class:`Hlist`. However, if any of these dimensions is inf, the actual value will be determined by running the rule up to the boundary of the innermost enclosing box. This is called a "running dimension." The width is never running in an :class:`Hlist`; the height and depth are never running in a :class:`Vlist`. """ def __init__(self, width, height, depth, state): Box.__init__(self, width, height, depth) self.font_output = state.font_output def render(self, x, y, w, h): self.font_output.render_rect_filled(x, y, x + w, y + h) class Hrule(Rule): """ Convenience class to create a horizontal rule. """ def __init__(self, state, thickness=None): if thickness is None: thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) height = depth = thickness * 0.5 Rule.__init__(self, np.inf, height, depth, state) class Vrule(Rule): """ Convenience class to create a vertical rule. """ def __init__(self, state): thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) Rule.__init__(self, thickness, np.inf, np.inf, state) class Glue(Node): """ Most of the information in this object is stored in the underlying :class:`GlueSpec` class, which is shared between multiple glue objects. (This is a memory optimization which probably doesn't matter anymore, but it's easier to stick to what TeX does.) """ def __init__(self, glue_type, copy=False): Node.__init__(self) self.glue_subtype = 'normal' if isinstance(glue_type, str): glue_spec = GlueSpec.factory(glue_type) elif isinstance(glue_type, GlueSpec): glue_spec = glue_type else: raise ValueError("glue_type must be a glue spec name or instance") if copy: glue_spec = glue_spec.copy() self.glue_spec = glue_spec def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: if self.glue_spec.width != 0.: self.glue_spec = self.glue_spec.copy() self.glue_spec.width *= SHRINK_FACTOR def grow(self): Node.grow(self) if self.glue_spec.width != 0.: self.glue_spec = self.glue_spec.copy() self.glue_spec.width *= GROW_FACTOR class GlueSpec(object): """ See :class:`Glue`. """ def __init__(self, width=0., stretch=0., stretch_order=0, shrink=0., shrink_order=0): self.width = width self.stretch = stretch self.stretch_order = stretch_order self.shrink = shrink self.shrink_order = shrink_order def copy(self): return GlueSpec( self.width, self.stretch, self.stretch_order, self.shrink, self.shrink_order) def factory(cls, glue_type): return cls._types[glue_type] factory = classmethod(factory) GlueSpec._types = { 'fil': GlueSpec(0., 1., 1, 0., 0), 'fill': GlueSpec(0., 1., 2, 0., 0), 'filll': GlueSpec(0., 1., 3, 0., 0), 'neg_fil': GlueSpec(0., 0., 0, 1., 1), 'neg_fill': GlueSpec(0., 0., 0, 1., 2), 'neg_filll': GlueSpec(0., 0., 0, 1., 3), 'empty': GlueSpec(0., 0., 0, 0., 0), 'ss': GlueSpec(0., 1., 1, -1., 1) } # Some convenient ways to get common kinds of glue class Fil(Glue): def __init__(self): Glue.__init__(self, 'fil') class Fill(Glue): def __init__(self): Glue.__init__(self, 'fill') class Filll(Glue): def __init__(self): Glue.__init__(self, 'filll') class NegFil(Glue): def __init__(self): Glue.__init__(self, 'neg_fil') class NegFill(Glue): def __init__(self): Glue.__init__(self, 'neg_fill') class NegFilll(Glue): def __init__(self): Glue.__init__(self, 'neg_filll') class SsGlue(Glue): def __init__(self): Glue.__init__(self, 'ss') class HCentered(Hlist): """ A convenience class to create an :class:`Hlist` whose contents are centered within its enclosing box. """ def __init__(self, elements): Hlist.__init__(self, [SsGlue()] + elements + [SsGlue()], do_kern=False) class VCentered(Hlist): """ A convenience class to create a :class:`Vlist` whose contents are centered within its enclosing box. """ def __init__(self, elements): Vlist.__init__(self, [SsGlue()] + elements + [SsGlue()]) class Kern(Node): """ A :class:`Kern` node has a width field to specify a (normally negative) amount of spacing. This spacing correction appears in horizontal lists between letters like A and V when the font designer said that it looks better to move them closer together or further apart. A kern node can also appear in a vertical list, when its *width* denotes additional spacing in the vertical direction. """ height = 0 depth = 0 def __init__(self, width): Node.__init__(self) self.width = width def __repr__(self): return "k%.02f" % self.width def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.width *= SHRINK_FACTOR def grow(self): Node.grow(self) self.width *= GROW_FACTOR class SubSuperCluster(Hlist): """ :class:`SubSuperCluster` is a sort of hack to get around that fact that this code do a two-pass parse like TeX. This lets us store enough information in the hlist itself, namely the nucleus, sub- and super-script, such that if another script follows that needs to be attached, it can be reconfigured on the fly. """ def __init__(self): self.nucleus = None self.sub = None self.super = None Hlist.__init__(self, []) class AutoHeightChar(Hlist): """ :class:`AutoHeightChar` will create a character as close to the given height and depth as possible. When using a font with multiple height versions of some characters (such as the BaKoMa fonts), the correct glyph will be selected, otherwise this will always just return a scaled version of the glyph. """ def __init__(self, c, height, depth, state, always=False, factor=None): alternatives = state.font_output.get_sized_alternatives_for_symbol( state.font, c) xHeight = state.font_output.get_xheight( state.font, state.fontsize, state.dpi) state = state.copy() target_total = height + depth for fontname, sym in alternatives: state.font = fontname char = Char(sym, state) # Ensure that size 0 is chosen when the text is regular sized but # with descender glyphs by subtracting 0.2 * xHeight if char.height + char.depth >= target_total - 0.2 * xHeight: break shift = 0 if state.font != 0: if factor is None: factor = (target_total) / (char.height + char.depth) state.fontsize *= factor char = Char(sym, state) shift = (depth - char.depth) Hlist.__init__(self, [char]) self.shift_amount = shift class AutoWidthChar(Hlist): """ :class:`AutoWidthChar` will create a character as close to the given width as possible. When using a font with multiple width versions of some characters (such as the BaKoMa fonts), the correct glyph will be selected, otherwise this will always just return a scaled version of the glyph. """ def __init__(self, c, width, state, always=False, char_class=Char): alternatives = state.font_output.get_sized_alternatives_for_symbol( state.font, c) state = state.copy() for fontname, sym in alternatives: state.font = fontname char = char_class(sym, state) if char.width >= width: break factor = width / char.width state.fontsize *= factor char = char_class(sym, state) Hlist.__init__(self, [char]) self.width = char.width class Ship(object): """ Once the boxes have been set up, this sends them to output. Since boxes can be inside of boxes inside of boxes, the main work of :class:`Ship` is done by two mutually recursive routines, :meth:`hlist_out` and :meth:`vlist_out`, which traverse the :class:`Hlist` nodes and :class:`Vlist` nodes inside of horizontal and vertical boxes. The global variables used in TeX to store state as it processes have become member variables here. """ def __call__(self, ox, oy, box): self.max_push = 0 # Deepest nesting of push commands so far self.cur_s = 0 self.cur_v = 0. self.cur_h = 0. self.off_h = ox self.off_v = oy + box.height self.hlist_out(box) def clamp(value): if value < -1000000000.: return -1000000000. if value > 1000000000.: return 1000000000. return value clamp = staticmethod(clamp) def hlist_out(self, box): cur_g = 0 cur_glue = 0. glue_order = box.glue_order glue_sign = box.glue_sign base_line = self.cur_v left_edge = self.cur_h self.cur_s += 1 self.max_push = max(self.cur_s, self.max_push) clamp = self.clamp for p in box.children: if isinstance(p, Char): p.render(self.cur_h + self.off_h, self.cur_v + self.off_v) self.cur_h += p.width elif isinstance(p, Kern): self.cur_h += p.width elif isinstance(p, List): # node623 if len(p.children) == 0: self.cur_h += p.width else: edge = self.cur_h self.cur_v = base_line + p.shift_amount if isinstance(p, Hlist): self.hlist_out(p) else: # p.vpack(box.height + box.depth, 'exactly') self.vlist_out(p) self.cur_h = edge + p.width self.cur_v = base_line elif isinstance(p, Box): # node624 rule_height = p.height rule_depth = p.depth rule_width = p.width if np.isinf(rule_height): rule_height = box.height if np.isinf(rule_depth): rule_depth = box.depth if rule_height > 0 and rule_width > 0: self.cur_v = base_line + rule_depth p.render(self.cur_h + self.off_h, self.cur_v + self.off_v, rule_width, rule_height) self.cur_v = base_line self.cur_h += rule_width elif isinstance(p, Glue): # node625 glue_spec = p.glue_spec rule_width = glue_spec.width - cur_g if glue_sign != 0: # normal if glue_sign == 1: # stretching if glue_spec.stretch_order == glue_order: cur_glue += glue_spec.stretch cur_g = round(clamp(box.glue_set * cur_glue)) elif glue_spec.shrink_order == glue_order: cur_glue += glue_spec.shrink cur_g = round(clamp(box.glue_set * cur_glue)) rule_width += cur_g self.cur_h += rule_width self.cur_s -= 1 def vlist_out(self, box): cur_g = 0 cur_glue = 0. glue_order = box.glue_order glue_sign = box.glue_sign self.cur_s += 1 self.max_push = max(self.max_push, self.cur_s) left_edge = self.cur_h self.cur_v -= box.height top_edge = self.cur_v clamp = self.clamp for p in box.children: if isinstance(p, Kern): self.cur_v += p.width elif isinstance(p, List): if len(p.children) == 0: self.cur_v += p.height + p.depth else: self.cur_v += p.height self.cur_h = left_edge + p.shift_amount save_v = self.cur_v p.width = box.width if isinstance(p, Hlist): self.hlist_out(p) else: self.vlist_out(p) self.cur_v = save_v + p.depth self.cur_h = left_edge elif isinstance(p, Box): rule_height = p.height rule_depth = p.depth rule_width = p.width if np.isinf(rule_width): rule_width = box.width rule_height += rule_depth if rule_height > 0 and rule_depth > 0: self.cur_v += rule_height p.render(self.cur_h + self.off_h, self.cur_v + self.off_v, rule_width, rule_height) elif isinstance(p, Glue): glue_spec = p.glue_spec rule_height = glue_spec.width - cur_g if glue_sign != 0: # normal if glue_sign == 1: # stretching if glue_spec.stretch_order == glue_order: cur_glue += glue_spec.stretch cur_g = round(clamp(box.glue_set * cur_glue)) elif glue_spec.shrink_order == glue_order: # shrinking cur_glue += glue_spec.shrink cur_g = round(clamp(box.glue_set * cur_glue)) rule_height += cur_g self.cur_v += rule_height elif isinstance(p, Char): raise RuntimeError( "Internal mathtext error: Char node found in vlist") self.cur_s -= 1 ship = Ship() ############################################################################## # PARSER def Error(msg): """ Helper class to raise parser errors. """ def raise_error(s, loc, toks): raise ParseFatalException(s, loc, msg) empty = Empty() empty.setParseAction(raise_error) return empty class Parser(object): """ This is the pyparsing-based parser for math expressions. It actually parses full strings *containing* math expressions, in that raw text may also appear outside of pairs of ``$``. The grammar is based directly on that in TeX, though it cuts a few corners. """ _math_style_dict = dict(displaystyle=0, textstyle=1, scriptstyle=2, scriptscriptstyle=3) _binary_operators = set(''' + * - \\pm \\sqcap \\rhd \\mp \\sqcup \\unlhd \\times \\vee \\unrhd \\div \\wedge \\oplus \\ast \\setminus \\ominus \\star \\wr \\otimes \\circ \\diamond \\oslash \\bullet \\bigtriangleup \\odot \\cdot \\bigtriangledown \\bigcirc \\cap \\triangleleft \\dagger \\cup \\triangleright \\ddagger \\uplus \\lhd \\amalg'''.split()) _relation_symbols = set(''' = < > : \\leq \\geq \\equiv \\models \\prec \\succ \\sim \\perp \\preceq \\succeq \\simeq \\mid \\ll \\gg \\asymp \\parallel \\subset \\supset \\approx \\bowtie \\subseteq \\supseteq \\cong \\Join \\sqsubset \\sqsupset \\neq \\smile \\sqsubseteq \\sqsupseteq \\doteq \\frown \\in \\ni \\propto \\vdash \\dashv \\dots \\dotplus \\doteqdot'''.split()) _arrow_symbols = set(''' \\leftarrow \\longleftarrow \\uparrow \\Leftarrow \\Longleftarrow \\Uparrow \\rightarrow \\longrightarrow \\downarrow \\Rightarrow \\Longrightarrow \\Downarrow \\leftrightarrow \\longleftrightarrow \\updownarrow \\Leftrightarrow \\Longleftrightarrow \\Updownarrow \\mapsto \\longmapsto \\nearrow \\hookleftarrow \\hookrightarrow \\searrow \\leftharpoonup \\rightharpoonup \\swarrow \\leftharpoondown \\rightharpoondown \\nwarrow \\rightleftharpoons \\leadsto'''.split()) _spaced_symbols = _binary_operators | _relation_symbols | _arrow_symbols _punctuation_symbols = set(r', ; . ! \ldotp \cdotp'.split()) _overunder_symbols = set(r''' \sum \prod \coprod \bigcap \bigcup \bigsqcup \bigvee \bigwedge \bigodot \bigotimes \bigoplus \biguplus '''.split()) _overunder_functions = set( "lim liminf limsup sup max min".split()) _dropsub_symbols = set(r'''\int \oint'''.split()) _fontnames = set( "rm cal it tt sf bf default bb frak circled scr regular".split()) _function_names = set(""" arccos csc ker min arcsin deg lg Pr arctan det lim sec arg dim liminf sin cos exp limsup sinh cosh gcd ln sup cot hom log tan coth inf max tanh""".split()) _ambi_delim = set(""" | \\| / \\backslash \\uparrow \\downarrow \\updownarrow \\Uparrow \\Downarrow \\Updownarrow . \\vert \\Vert \\\\|""".split()) _left_delim = set(r"( [ \{ < \lfloor \langle \lceil".split()) _right_delim = set(r") ] \} > \rfloor \rangle \rceil".split()) def __init__(self): p = types.SimpleNamespace() # All forward declarations are here p.accent = Forward() p.ambi_delim = Forward() p.apostrophe = Forward() p.auto_delim = Forward() p.binom = Forward() p.bslash = Forward() p.c_over_c = Forward() p.customspace = Forward() p.end_group = Forward() p.float_literal = Forward() p.font = Forward() p.frac = Forward() p.dfrac = Forward() p.function = Forward() p.genfrac = Forward() p.group = Forward() p.int_literal = Forward() p.latexfont = Forward() p.lbracket = Forward() p.left_delim = Forward() p.lbrace = Forward() p.main = Forward() p.math = Forward() p.math_string = Forward() p.non_math = Forward() p.operatorname = Forward() p.overline = Forward() p.placeable = Forward() p.rbrace = Forward() p.rbracket = Forward() p.required_group = Forward() p.right_delim = Forward() p.right_delim_safe = Forward() p.simple = Forward() p.simple_group = Forward() p.single_symbol = Forward() p.snowflake = Forward() p.space = Forward() p.sqrt = Forward() p.stackrel = Forward() p.start_group = Forward() p.subsuper = Forward() p.subsuperop = Forward() p.symbol = Forward() p.symbol_name = Forward() p.token = Forward() p.unknown_symbol = Forward() # Set names on everything -- very useful for debugging for key, val in vars(p).items(): if not key.startswith('_'): val.setName(key) p.float_literal <<= Regex(r"[-+]?([0-9]+\.?[0-9]*|\.[0-9]+)") p.int_literal <<= Regex("[-+]?[0-9]+") p.lbrace <<= Literal('{').suppress() p.rbrace <<= Literal('}').suppress() p.lbracket <<= Literal('[').suppress() p.rbracket <<= Literal(']').suppress() p.bslash <<= Literal('\\') p.space <<= oneOf(list(self._space_widths)) p.customspace <<= ( Suppress(Literal(r'\hspace')) - ((p.lbrace + p.float_literal + p.rbrace) | Error(r"Expected \hspace{n}")) ) unicode_range = "\U00000080-\U0001ffff" p.single_symbol <<= Regex( r"([a-zA-Z0-9 +\-*/<>=:,.;!\?&'@()\[\]|%s])|(\\[%%${}\[\]_|])" % unicode_range) p.snowflake <<= Suppress(p.bslash) + oneOf(self._snowflake) p.symbol_name <<= ( Combine(p.bslash + oneOf(list(tex2uni))) + FollowedBy(Regex("[^A-Za-z]").leaveWhitespace() | StringEnd()) ) p.symbol <<= (p.single_symbol | p.symbol_name).leaveWhitespace() p.apostrophe <<= Regex("'+") p.c_over_c <<= ( Suppress(p.bslash) + oneOf(list(self._char_over_chars)) ) p.accent <<= Group( Suppress(p.bslash) + oneOf([*self._accent_map, *self._wide_accents]) - p.placeable ) p.function <<= ( Suppress(p.bslash) + oneOf(list(self._function_names)) ) p.start_group <<= Optional(p.latexfont) + p.lbrace p.end_group <<= p.rbrace.copy() p.simple_group <<= Group(p.lbrace + ZeroOrMore(p.token) + p.rbrace) p.required_group<<= Group(p.lbrace + OneOrMore(p.token) + p.rbrace) p.group <<= Group( p.start_group + ZeroOrMore(p.token) + p.end_group ) p.font <<= Suppress(p.bslash) + oneOf(list(self._fontnames)) p.latexfont <<= ( Suppress(p.bslash) + oneOf(['math' + x for x in self._fontnames]) ) p.frac <<= Group( Suppress(Literal(r"\frac")) - ((p.required_group + p.required_group) | Error(r"Expected \frac{num}{den}")) ) p.dfrac <<= Group( Suppress(Literal(r"\dfrac")) - ((p.required_group + p.required_group) | Error(r"Expected \dfrac{num}{den}")) ) p.stackrel <<= Group( Suppress(Literal(r"\stackrel")) - ((p.required_group + p.required_group) | Error(r"Expected \stackrel{num}{den}")) ) p.binom <<= Group( Suppress(Literal(r"\binom")) - ((p.required_group + p.required_group) | Error(r"Expected \binom{num}{den}")) ) p.ambi_delim <<= oneOf(list(self._ambi_delim)) p.left_delim <<= oneOf(list(self._left_delim)) p.right_delim <<= oneOf(list(self._right_delim)) p.right_delim_safe <<= oneOf([*(self._right_delim - {'}'}), r'\}']) p.genfrac <<= Group( Suppress(Literal(r"\genfrac")) - (( (p.lbrace + Optional(p.ambi_delim | p.left_delim, default='') + p.rbrace) + (p.lbrace + Optional(p.ambi_delim | p.right_delim_safe, default='') + p.rbrace) + (p.lbrace + p.float_literal + p.rbrace) + p.simple_group + p.required_group + p.required_group) | Error("Expected " r"\genfrac{ldelim}{rdelim}{rulesize}{style}{num}{den}")) ) p.sqrt <<= Group( Suppress(Literal(r"\sqrt")) - ((Optional(p.lbracket + p.int_literal + p.rbracket, default=None) + p.required_group) | Error("Expected \\sqrt{value}")) ) p.overline <<= Group( Suppress(Literal(r"\overline")) - (p.required_group | Error("Expected \\overline{value}")) ) p.unknown_symbol<<= Combine(p.bslash + Regex("[A-Za-z]*")) p.operatorname <<= Group( Suppress(Literal(r"\operatorname")) - ((p.lbrace + ZeroOrMore(p.simple | p.unknown_symbol) + p.rbrace) | Error("Expected \\operatorname{value}")) ) p.placeable <<= ( p.snowflake # Must be before accent so named symbols that are # prefixed with an accent name work | p.accent # Must be before symbol as all accents are symbols | p.symbol # Must be third to catch all named symbols and single # chars not in a group | p.c_over_c | p.function | p.group | p.frac | p.dfrac | p.stackrel | p.binom | p.genfrac | p.sqrt | p.overline | p.operatorname ) p.simple <<= ( p.space | p.customspace | p.font | p.subsuper ) p.subsuperop <<= oneOf(["_", "^"]) p.subsuper <<= Group( (Optional(p.placeable) + OneOrMore(p.subsuperop - p.placeable) + Optional(p.apostrophe)) | (p.placeable + Optional(p.apostrophe)) | p.apostrophe ) p.token <<= ( p.simple | p.auto_delim | p.unknown_symbol # Must be last ) p.auto_delim <<= ( Suppress(Literal(r"\left")) - ((p.left_delim | p.ambi_delim) | Error("Expected a delimiter")) + Group(ZeroOrMore(p.simple | p.auto_delim)) + Suppress(Literal(r"\right")) - ((p.right_delim | p.ambi_delim) | Error("Expected a delimiter")) ) p.math <<= OneOrMore(p.token) p.math_string <<= QuotedString('$', '\\', unquoteResults=False) p.non_math <<= Regex(r"(?:(?:\\[$])|[^$])*").leaveWhitespace() p.main <<= ( p.non_math + ZeroOrMore(p.math_string + p.non_math) + StringEnd() ) # Set actions for key, val in vars(p).items(): if not key.startswith('_'): if hasattr(self, key): val.setParseAction(getattr(self, key)) self._expression = p.main self._math_expression = p.math def parse(self, s, fonts_object, fontsize, dpi): """ Parse expression *s* using the given *fonts_object* for output, at the given *fontsize* and *dpi*. Returns the parse tree of :class:`Node` instances. """ self._state_stack = [ self.State(fonts_object, 'default', 'rm', fontsize, dpi)] self._em_width_cache = {} try: result = self._expression.parseString(s) except ParseBaseException as err: raise ValueError("\n".join(["", err.line, " " * (err.column - 1) + "^", str(err)])) self._state_stack = None self._em_width_cache = {} self._expression.resetCache() return result[0] # The state of the parser is maintained in a stack. Upon # entering and leaving a group { } or math/non-math, the stack # is pushed and popped accordingly. The current state always # exists in the top element of the stack. class State(object): """ Stores the state of the parser. States are pushed and popped from a stack as necessary, and the "current" state is always at the top of the stack. """ def __init__(self, font_output, font, font_class, fontsize, dpi): self.font_output = font_output self._font = font self.font_class = font_class self.fontsize = fontsize self.dpi = dpi def copy(self): return Parser.State( self.font_output, self.font, self.font_class, self.fontsize, self.dpi) @property def font(self): return self._font @font.setter def font(self, name): if name == "circled": cbook.warn_deprecated( "3.1", name="\\mathcircled", obj_type="mathtext command", alternative="unicode characters (e.g. '\\N{CIRCLED LATIN " "CAPITAL LETTER A}' or '\\u24b6')") if name in ('rm', 'it', 'bf'): self.font_class = name self._font = name def get_state(self): """ Get the current :class:`State` of the parser. """ return self._state_stack[-1] def pop_state(self): """ Pop a :class:`State` off of the stack. """ self._state_stack.pop() def push_state(self): """ Push a new :class:`State` onto the stack which is just a copy of the current state. """ self._state_stack.append(self.get_state().copy()) def main(self, s, loc, toks): return [Hlist(toks)] def math_string(self, s, loc, toks): return self._math_expression.parseString(toks[0][1:-1]) def math(self, s, loc, toks): hlist = Hlist(toks) self.pop_state() return [hlist] def non_math(self, s, loc, toks): s = toks[0].replace(r'\$', '$') symbols = [Char(c, self.get_state(), math=False) for c in s] hlist = Hlist(symbols) # We're going into math now, so set font to 'it' self.push_state() self.get_state().font = rcParams['mathtext.default'] return [hlist] def _make_space(self, percentage): # All spaces are relative to em width state = self.get_state() key = (state.font, state.fontsize, state.dpi) width = self._em_width_cache.get(key) if width is None: metrics = state.font_output.get_metrics( state.font, rcParams['mathtext.default'], 'm', state.fontsize, state.dpi) width = metrics.advance self._em_width_cache[key] = width return Kern(width * percentage) _space_widths = { r'\,' : 0.16667, # 3/18 em = 3 mu r'\thinspace' : 0.16667, # 3/18 em = 3 mu r'\/' : 0.16667, # 3/18 em = 3 mu r'\>' : 0.22222, # 4/18 em = 4 mu r'\:' : 0.22222, # 4/18 em = 4 mu r'\;' : 0.27778, # 5/18 em = 5 mu r'\ ' : 0.33333, # 6/18 em = 6 mu r'~' : 0.33333, # 6/18 em = 6 mu, nonbreakable r'\enspace' : 0.5, # 9/18 em = 9 mu r'\quad' : 1, # 1 em = 18 mu r'\qquad' : 2, # 2 em = 36 mu r'\!' : -0.16667, # -3/18 em = -3 mu } def space(self, s, loc, toks): assert len(toks)==1 num = self._space_widths[toks[0]] box = self._make_space(num) return [box] def customspace(self, s, loc, toks): return [self._make_space(float(toks[0]))] def symbol(self, s, loc, toks): c = toks[0] try: char = Char(c, self.get_state()) except ValueError: raise ParseFatalException(s, loc, "Unknown symbol: %s" % c) if c in self._spaced_symbols: # iterate until we find previous character, needed for cases # such as ${ -2}$, $ -2$, or $ -2$. prev_char = next((c for c in s[:loc][::-1] if c != ' '), '') # Binary operators at start of string should not be spaced if (c in self._binary_operators and (len(s[:loc].split()) == 0 or prev_char == '{' or prev_char in self._left_delim)): return [char] else: return [Hlist([self._make_space(0.2), char, self._make_space(0.2)], do_kern = True)] elif c in self._punctuation_symbols: # Do not space commas between brackets if c == ',': prev_char = next((c for c in s[:loc][::-1] if c != ' '), '') next_char = next((c for c in s[loc + 1:] if c != ' '), '') if prev_char == '{' and next_char == '}': return [char] # Do not space dots as decimal separators if c == '.' and s[loc - 1].isdigit() and s[loc + 1].isdigit(): return [char] else: return [Hlist([char, self._make_space(0.2)], do_kern = True)] return [char] snowflake = symbol def unknown_symbol(self, s, loc, toks): c = toks[0] raise ParseFatalException(s, loc, "Unknown symbol: %s" % c) _char_over_chars = { # The first 2 entries in the tuple are (font, char, sizescale) for # the two symbols under and over. The third element is the space # (in multiples of underline height) r'AA': (('it', 'A', 1.0), (None, '\\circ', 0.5), 0.0), } def c_over_c(self, s, loc, toks): sym = toks[0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) under_desc, over_desc, space = \ self._char_over_chars.get(sym, (None, None, 0.0)) if under_desc is None: raise ParseFatalException("Error parsing symbol") over_state = state.copy() if over_desc[0] is not None: over_state.font = over_desc[0] over_state.fontsize *= over_desc[2] over = Accent(over_desc[1], over_state) under_state = state.copy() if under_desc[0] is not None: under_state.font = under_desc[0] under_state.fontsize *= under_desc[2] under = Char(under_desc[1], under_state) width = max(over.width, under.width) over_centered = HCentered([over]) over_centered.hpack(width, 'exactly') under_centered = HCentered([under]) under_centered.hpack(width, 'exactly') return Vlist([ over_centered, Vbox(0., thickness * space), under_centered ]) _accent_map = { r'hat' : r'\circumflexaccent', r'breve' : r'\combiningbreve', r'bar' : r'\combiningoverline', r'grave' : r'\combininggraveaccent', r'acute' : r'\combiningacuteaccent', r'tilde' : r'\combiningtilde', r'dot' : r'\combiningdotabove', r'ddot' : r'\combiningdiaeresis', r'vec' : r'\combiningrightarrowabove', r'"' : r'\combiningdiaeresis', r"`" : r'\combininggraveaccent', r"'" : r'\combiningacuteaccent', r'~' : r'\combiningtilde', r'.' : r'\combiningdotabove', r'^' : r'\circumflexaccent', r'overrightarrow' : r'\rightarrow', r'overleftarrow' : r'\leftarrow', r'mathring' : r'\circ' } _wide_accents = set(r"widehat widetilde widebar".split()) # make a lambda and call it to get the namespace right _snowflake = (lambda am: [p for p in tex2uni if any(p.startswith(a) and a != p for a in am)] ) (set(_accent_map)) def accent(self, s, loc, toks): assert len(toks)==1 state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) if len(toks[0]) != 2: raise ParseFatalException("Error parsing accent") accent, sym = toks[0] if accent in self._wide_accents: accent_box = AutoWidthChar( '\\' + accent, sym.width, state, char_class=Accent) else: accent_box = Accent(self._accent_map[accent], state) if accent == 'mathring': accent_box.shrink() accent_box.shrink() centered = HCentered([Hbox(sym.width / 4.0), accent_box]) centered.hpack(sym.width, 'exactly') return Vlist([ centered, Vbox(0., thickness * 2.0), Hlist([sym]) ]) def function(self, s, loc, toks): self.push_state() state = self.get_state() state.font = 'rm' hlist = Hlist([Char(c, state) for c in toks[0]]) self.pop_state() hlist.function_name = toks[0] return hlist def operatorname(self, s, loc, toks): self.push_state() state = self.get_state() state.font = 'rm' # Change the font of Chars, but leave Kerns alone for c in toks[0]: if isinstance(c, Char): c.font = 'rm' c._update_metrics() self.pop_state() return Hlist(toks[0]) def start_group(self, s, loc, toks): self.push_state() # Deal with LaTeX-style font tokens if len(toks): self.get_state().font = toks[0][4:] return [] def group(self, s, loc, toks): grp = Hlist(toks[0]) return [grp] required_group = simple_group = group def end_group(self, s, loc, toks): self.pop_state() return [] def font(self, s, loc, toks): assert len(toks)==1 name = toks[0] self.get_state().font = name return [] def is_overunder(self, nucleus): if isinstance(nucleus, Char): return nucleus.c in self._overunder_symbols elif isinstance(nucleus, Hlist) and hasattr(nucleus, 'function_name'): return nucleus.function_name in self._overunder_functions return False def is_dropsub(self, nucleus): if isinstance(nucleus, Char): return nucleus.c in self._dropsub_symbols return False def is_slanted(self, nucleus): if isinstance(nucleus, Char): return nucleus.is_slanted() return False def is_between_brackets(self, s, loc): return False def subsuper(self, s, loc, toks): assert len(toks)==1 nucleus = None sub = None super = None # Pick all of the apostrophes out, including first apostrophes that # have been parsed as characters napostrophes = 0 new_toks = [] for tok in toks[0]: if isinstance(tok, str) and tok not in ('^', '_'): napostrophes += len(tok) elif isinstance(tok, Char) and tok.c == "'": napostrophes += 1 else: new_toks.append(tok) toks = new_toks if len(toks) == 0: assert napostrophes nucleus = Hbox(0.0) elif len(toks) == 1: if not napostrophes: return toks[0] # .asList() else: nucleus = toks[0] elif len(toks) in (2, 3): # single subscript or superscript nucleus = toks[0] if len(toks) == 3 else Hbox(0.0) op, next = toks[-2:] if op == '_': sub = next else: super = next elif len(toks) in (4, 5): # subscript and superscript nucleus = toks[0] if len(toks) == 5 else Hbox(0.0) op1, next1, op2, next2 = toks[-4:] if op1 == op2: if op1 == '_': raise ParseFatalException("Double subscript") else: raise ParseFatalException("Double superscript") if op1 == '_': sub = next1 super = next2 else: super = next1 sub = next2 else: raise ParseFatalException( "Subscript/superscript sequence is too long. " "Use braces { } to remove ambiguity.") state = self.get_state() rule_thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) xHeight = state.font_output.get_xheight( state.font, state.fontsize, state.dpi) if napostrophes: if super is None: super = Hlist([]) for i in range(napostrophes): super.children.extend(self.symbol(s, loc, ['\\prime'])) # kern() and hpack() needed to get the metrics right after # extending super.kern() super.hpack() # Handle over/under symbols, such as sum or integral if self.is_overunder(nucleus): vlist = [] shift = 0. width = nucleus.width if super is not None: super.shrink() width = max(width, super.width) if sub is not None: sub.shrink() width = max(width, sub.width) if super is not None: hlist = HCentered([super]) hlist.hpack(width, 'exactly') vlist.extend([hlist, Kern(rule_thickness * 3.0)]) hlist = HCentered([nucleus]) hlist.hpack(width, 'exactly') vlist.append(hlist) if sub is not None: hlist = HCentered([sub]) hlist.hpack(width, 'exactly') vlist.extend([Kern(rule_thickness * 3.0), hlist]) shift = hlist.height vlist = Vlist(vlist) vlist.shift_amount = shift + nucleus.depth result = Hlist([vlist]) return [result] # We remove kerning on the last character for consistency (otherwise # it will compute kerning based on non-shrunk characters and may put # them too close together when superscripted) # We change the width of the last character to match the advance to # consider some fonts with weird metrics: e.g. stix's f has a width of # 7.75 and a kerning of -4.0 for an advance of 3.72, and we want to put # the superscript at the advance last_char = nucleus if isinstance(nucleus, Hlist): new_children = nucleus.children if len(new_children): # remove last kern if (isinstance(new_children[-1], Kern) and hasattr(new_children[-2], '_metrics')): new_children = new_children[:-1] last_char = new_children[-1] if hasattr(last_char, '_metrics'): last_char.width = last_char._metrics.advance # create new Hlist without kerning nucleus = Hlist(new_children, do_kern=False) else: if isinstance(nucleus, Char): last_char.width = last_char._metrics.advance nucleus = Hlist([nucleus]) # Handle regular sub/superscripts constants = _get_font_constant_set(state) lc_height = last_char.height lc_baseline = 0 if self.is_dropsub(last_char): lc_baseline = last_char.depth # Compute kerning for sub and super superkern = constants.delta * xHeight subkern = constants.delta * xHeight if self.is_slanted(last_char): superkern += constants.delta * xHeight superkern += (constants.delta_slanted * (lc_height - xHeight * 2. / 3.)) if self.is_dropsub(last_char): subkern = (3 * constants.delta - constants.delta_integral) * lc_height superkern = (3 * constants.delta + constants.delta_integral) * lc_height else: subkern = 0 if super is None: # node757 x = Hlist([Kern(subkern), sub]) x.shrink() if self.is_dropsub(last_char): shift_down = lc_baseline + constants.subdrop * xHeight else: shift_down = constants.sub1 * xHeight x.shift_amount = shift_down else: x = Hlist([Kern(superkern), super]) x.shrink() if self.is_dropsub(last_char): shift_up = lc_height - constants.subdrop * xHeight else: shift_up = constants.sup1 * xHeight if sub is None: x.shift_amount = -shift_up else: # Both sub and superscript y = Hlist([Kern(subkern), sub]) y.shrink() if self.is_dropsub(last_char): shift_down = lc_baseline + constants.subdrop * xHeight else: shift_down = constants.sub2 * xHeight # If sub and superscript collide, move super up clr = (2.0 * rule_thickness - ((shift_up - x.depth) - (y.height - shift_down))) if clr > 0.: shift_up += clr x = Vlist([ x, Kern((shift_up - x.depth) - (y.height - shift_down)), y]) x.shift_amount = shift_down if not self.is_dropsub(last_char): x.width += constants.script_space * xHeight result = Hlist([nucleus, x]) return [result] def _genfrac(self, ldelim, rdelim, rule, style, num, den): state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) rule = float(rule) # If style != displaystyle == 0, shrink the num and den if style != self._math_style_dict['displaystyle']: num.shrink() den.shrink() cnum = HCentered([num]) cden = HCentered([den]) width = max(num.width, den.width) cnum.hpack(width, 'exactly') cden.hpack(width, 'exactly') vlist = Vlist([cnum, # numerator Vbox(0, thickness * 2.0), # space Hrule(state, rule), # rule Vbox(0, thickness * 2.0), # space cden # denominator ]) # Shift so the fraction line sits in the middle of the # equals sign metrics = state.font_output.get_metrics( state.font, rcParams['mathtext.default'], '=', state.fontsize, state.dpi) shift = (cden.height - ((metrics.ymax + metrics.ymin) / 2 - thickness * 3.0)) vlist.shift_amount = shift result = [Hlist([vlist, Hbox(thickness * 2.)])] if ldelim or rdelim: if ldelim == '': ldelim = '.' if rdelim == '': rdelim = '.' return self._auto_sized_delimiter(ldelim, result, rdelim) return result def genfrac(self, s, loc, toks): assert len(toks) == 1 assert len(toks[0]) == 6 return self._genfrac(*tuple(toks[0])) def frac(self, s, loc, toks): assert len(toks) == 1 assert len(toks[0]) == 2 state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) num, den = toks[0] return self._genfrac('', '', thickness, self._math_style_dict['textstyle'], num, den) def dfrac(self, s, loc, toks): assert len(toks) == 1 assert len(toks[0]) == 2 state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) num, den = toks[0] return self._genfrac('', '', thickness, self._math_style_dict['displaystyle'], num, den) @cbook.deprecated("3.1", obj_type="mathtext command", alternative=r"\genfrac") def stackrel(self, s, loc, toks): assert len(toks) == 1 assert len(toks[0]) == 2 num, den = toks[0] return self._genfrac('', '', 0.0, self._math_style_dict['textstyle'], num, den) def binom(self, s, loc, toks): assert len(toks) == 1 assert len(toks[0]) == 2 num, den = toks[0] return self._genfrac('(', ')', 0.0, self._math_style_dict['textstyle'], num, den) def sqrt(self, s, loc, toks): root, body = toks[0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) # Determine the height of the body, and add a little extra to # the height so it doesn't seem cramped height = body.height - body.shift_amount + thickness * 5.0 depth = body.depth + body.shift_amount check = AutoHeightChar(r'\__sqrt__', height, depth, state, always=True) height = check.height - check.shift_amount depth = check.depth + check.shift_amount # Put a little extra space to the left and right of the body padded_body = Hlist([Hbox(thickness * 2.0), body, Hbox(thickness * 2.0)]) rightside = Vlist([Hrule(state), Fill(), padded_body]) # Stretch the glue between the hrule and the body rightside.vpack(height + (state.fontsize * state.dpi) / (100.0 * 12.0), 'exactly', depth) # Add the root and shift it upward so it is above the tick. # The value of 0.6 is a hard-coded hack ;) if root is None: root = Box(check.width * 0.5, 0., 0.) else: root = Hlist([Char(x, state) for x in root]) root.shrink() root.shrink() root_vlist = Vlist([Hlist([root])]) root_vlist.shift_amount = -height * 0.6 hlist = Hlist([root_vlist, # Root # Negative kerning to put root over tick Kern(-check.width * 0.5), check, # Check rightside]) # Body return [hlist] def overline(self, s, loc, toks): assert len(toks)==1 assert len(toks[0])==1 body = toks[0][0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) height = body.height - body.shift_amount + thickness * 3.0 depth = body.depth + body.shift_amount # Place overline above body rightside = Vlist([Hrule(state), Fill(), Hlist([body])]) # Stretch the glue between the hrule and the body rightside.vpack(height + (state.fontsize * state.dpi) / (100.0 * 12.0), 'exactly', depth) hlist = Hlist([rightside]) return [hlist] def _auto_sized_delimiter(self, front, middle, back): state = self.get_state() if len(middle): height = max(x.height for x in middle) depth = max(x.depth for x in middle) factor = None else: height = 0 depth = 0 factor = 1.0 parts = [] # \left. and \right. aren't supposed to produce any symbols if front != '.': parts.append( AutoHeightChar(front, height, depth, state, factor=factor)) parts.extend(middle) if back != '.': parts.append( AutoHeightChar(back, height, depth, state, factor=factor)) hlist = Hlist(parts) return hlist def auto_delim(self, s, loc, toks): front, middle, back = toks return self._auto_sized_delimiter(front, middle.asList(), back) ############################################################################## # MAIN class MathTextParser(object): _parser = None _backend_mapping = { 'bitmap': MathtextBackendBitmap, 'agg' : MathtextBackendAgg, 'ps' : MathtextBackendPs, 'pdf' : MathtextBackendPdf, 'svg' : MathtextBackendSvg, 'path' : MathtextBackendPath, 'cairo' : MathtextBackendCairo, 'macosx': MathtextBackendAgg, } _font_type_mapping = { 'cm' : BakomaFonts, 'dejavuserif' : DejaVuSerifFonts, 'dejavusans' : DejaVuSansFonts, 'stix' : StixFonts, 'stixsans' : StixSansFonts, 'custom' : UnicodeFonts } def __init__(self, output): """ Create a MathTextParser for the given backend *output*. """ self._output = output.lower() @functools.lru_cache(50) def parse(self, s, dpi = 72, prop = None): """ Parse the given math expression *s* at the given *dpi*. If *prop* is provided, it is a :class:`~matplotlib.font_manager.FontProperties` object specifying the "default" font to use in the math expression, used for all non-math text. The results are cached, so multiple calls to :meth:`parse` with the same expression should be fast. """ if prop is None: prop = FontProperties() if self._output == 'ps' and rcParams['ps.useafm']: font_output = StandardPsFonts(prop) else: backend = self._backend_mapping[self._output]() fontset = rcParams['mathtext.fontset'].lower() cbook._check_in_list(self._font_type_mapping, fontset=fontset) fontset_class = self._font_type_mapping[fontset] font_output = fontset_class(prop, backend) fontsize = prop.get_size_in_points() # This is a class variable so we don't rebuild the parser # with each request. if self._parser is None: self.__class__._parser = Parser() box = self._parser.parse(s, font_output, fontsize, dpi) font_output.set_canvas_size(box.width, box.height, box.depth) return font_output.get_results(box) def to_mask(self, texstr, dpi=120, fontsize=14): r""" Parameters ---------- texstr : str A valid mathtext string, e.g., r'IQ: $\sigma_i=15$'. dpi : float The dots-per-inch setting used to render the text. fontsize : int The font size in points Returns ------- array : 2D uint8 alpha Mask array of rasterized tex. depth : int Offset of the baseline from the bottom of the image, in pixels. """ assert self._output == "bitmap" prop = FontProperties(size=fontsize) ftimage, depth = self.parse(texstr, dpi=dpi, prop=prop) x = ftimage.as_array() return x, depth def to_rgba(self, texstr, color='black', dpi=120, fontsize=14): r""" Parameters ---------- texstr : str A valid mathtext string, e.g., r'IQ: $\sigma_i=15$'. color : color The text color. dpi : float The dots-per-inch setting used to render the text. fontsize : int The font size in points. Returns ------- array : (M, N, 4) array RGBA color values of rasterized tex, colorized with *color*. depth : int Offset of the baseline from the bottom of the image, in pixels. """ x, depth = self.to_mask(texstr, dpi=dpi, fontsize=fontsize) r, g, b, a = mcolors.to_rgba(color) RGBA = np.zeros((x.shape[0], x.shape[1], 4), dtype=np.uint8) RGBA[:, :, 0] = 255 * r RGBA[:, :, 1] = 255 * g RGBA[:, :, 2] = 255 * b RGBA[:, :, 3] = x return RGBA, depth def to_png(self, filename, texstr, color='black', dpi=120, fontsize=14): r""" Render a tex expression to a PNG file. Parameters ---------- filename A writable filename or fileobject. texstr : str A valid mathtext string, e.g., r'IQ: $\sigma_i=15$'. color : color The text color. dpi : float The dots-per-inch setting used to render the text. fontsize : int The font size in points. Returns ------- depth : int Offset of the baseline from the bottom of the image, in pixels. """ from matplotlib import _png rgba, depth = self.to_rgba( texstr, color=color, dpi=dpi, fontsize=fontsize) _png.write_png(rgba, filename) return depth def get_depth(self, texstr, dpi=120, fontsize=14): r""" Parameters ---------- texstr : str A valid mathtext string, e.g., r'IQ: $\sigma_i=15$'. dpi : float The dots-per-inch setting used to render the text. Returns ------- depth : int Offset of the baseline from the bottom of the image, in pixels. """ assert self._output=="bitmap" prop = FontProperties(size=fontsize) ftimage, depth = self.parse(texstr, dpi=dpi, prop=prop) return depth def math_to_image(s, filename_or_obj, prop=None, dpi=None, format=None): """ Given a math expression, renders it in a closely-clipped bounding box to an image file. *s* A math expression. The math portion should be enclosed in dollar signs. *filename_or_obj* A filepath or writable file-like object to write the image data to. *prop* If provided, a FontProperties() object describing the size and style of the text. *dpi* Override the output dpi, otherwise use the default associated with the output format. *format* The output format, e.g., 'svg', 'pdf', 'ps' or 'png'. If not provided, will be deduced from the filename. """ from matplotlib import figure # backend_agg supports all of the core output formats from matplotlib.backends import backend_agg if prop is None: prop = FontProperties() parser = MathTextParser('path') width, height, depth, _, _ = parser.parse(s, dpi=72, prop=prop) fig = figure.Figure(figsize=(width / 72.0, height / 72.0)) fig.text(0, depth/height, s, fontproperties=prop) backend_agg.FigureCanvasAgg(fig) fig.savefig(filename_or_obj, dpi=dpi, format=format) return depth
c38b82e5f241e83edbbe9bcfdcb8747f11071b32fbc8b7c950e38260a0059edb
try: __import__('pkg_resources').declare_namespace(__name__) except ImportError: pass # must not have setuptools
559ed87853254eb06ce7ff31d1e932119fbef16695988524e8e83a1daf09f21f
from .. import axes, cbook from .geo import AitoffAxes, HammerAxes, LambertAxes, MollweideAxes from .polar import PolarAxes from mpl_toolkits.mplot3d import Axes3D class ProjectionRegistry: """ Manages the set of projections available to the system. """ def __init__(self): self._all_projection_types = {} def register(self, *projections): """ Register a new set of projections. """ for projection in projections: name = projection.name self._all_projection_types[name] = projection def get_projection_class(self, name): """ Get a projection class from its *name*. """ return self._all_projection_types[name] def get_projection_names(self): """ Get a list of the names of all projections currently registered. """ return sorted(self._all_projection_types) projection_registry = ProjectionRegistry() projection_registry.register( axes.Axes, PolarAxes, AitoffAxes, HammerAxes, LambertAxes, MollweideAxes, Axes3D, ) def register_projection(cls): projection_registry.register(cls) def get_projection_class(projection=None): """ Get a projection class from its name. If *projection* is None, a standard rectilinear projection is returned. """ if projection is None: projection = 'rectilinear' try: return projection_registry.get_projection_class(projection) except KeyError: raise ValueError("Unknown projection %r" % projection) @cbook.deprecated("3.1") def process_projection_requirements(figure, *args, **kwargs): return figure._process_projection_requirements(*args, **kwargs) def get_projection_names(): """ Get a list of acceptable projection names. """ return projection_registry.get_projection_names()
44dd23e8b3c57d119f246b44b0721f8ea56574bb1d1a90c0c415deab33adcc06
from collections import OrderedDict import types import numpy as np from matplotlib import cbook, rcParams from matplotlib.axes import Axes import matplotlib.axis as maxis import matplotlib.markers as mmarkers import matplotlib.patches as mpatches import matplotlib.path as mpath import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms import matplotlib.spines as mspines class PolarTransform(mtransforms.Transform): """ The base polar transform. This handles projection *theta* and *r* into Cartesian coordinate space *x* and *y*, but does not perform the ultimate affine transformation into the correct position. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, axis=None, use_rmin=True, _apply_theta_transforms=True): mtransforms.Transform.__init__(self) self._axis = axis self._use_rmin = use_rmin self._apply_theta_transforms = _apply_theta_transforms def __str__(self): return ("{}(\n" "{},\n" " use_rmin={},\n" " _apply_theta_transforms={})" .format(type(self).__name__, mtransforms._indent_str(self._axis), self._use_rmin, self._apply_theta_transforms)) def transform_non_affine(self, tr): # docstring inherited t, r = np.transpose(tr) # PolarAxes does not use the theta transforms here, but apply them for # backwards-compatibility if not being used by it. if self._apply_theta_transforms and self._axis is not None: t *= self._axis.get_theta_direction() t += self._axis.get_theta_offset() if self._use_rmin and self._axis is not None: r = (r - self._axis.get_rorigin()) * self._axis.get_rsign() r = np.where(r >= 0, r, np.nan) return np.column_stack([r * np.cos(t), r * np.sin(t)]) def transform_path_non_affine(self, path): # docstring inherited vertices = path.vertices if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]: return mpath.Path(self.transform(vertices), path.codes) ipath = path.interpolated(path._interpolation_steps) return mpath.Path(self.transform(ipath.vertices), ipath.codes) def inverted(self): # docstring inherited return PolarAxes.InvertedPolarTransform(self._axis, self._use_rmin, self._apply_theta_transforms) class PolarAffine(mtransforms.Affine2DBase): """ The affine part of the polar projection. Scales the output so that maximum radius rests on the edge of the axes circle. """ def __init__(self, scale_transform, limits): """ *limits* is the view limit of the data. The only part of its bounds that is used is the y limits (for the radius limits). The theta range is handled by the non-affine transform. """ mtransforms.Affine2DBase.__init__(self) self._scale_transform = scale_transform self._limits = limits self.set_children(scale_transform, limits) self._mtx = None def __str__(self): return ("{}(\n" "{},\n" "{})" .format(type(self).__name__, mtransforms._indent_str(self._scale_transform), mtransforms._indent_str(self._limits))) def get_matrix(self): # docstring inherited if self._invalid: limits_scaled = self._limits.transformed(self._scale_transform) yscale = limits_scaled.ymax - limits_scaled.ymin affine = mtransforms.Affine2D() \ .scale(0.5 / yscale) \ .translate(0.5, 0.5) self._mtx = affine.get_matrix() self._inverted = None self._invalid = 0 return self._mtx class InvertedPolarTransform(mtransforms.Transform): """ The inverse of the polar transform, mapping Cartesian coordinate space *x* and *y* back to *theta* and *r*. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, axis=None, use_rmin=True, _apply_theta_transforms=True): mtransforms.Transform.__init__(self) self._axis = axis self._use_rmin = use_rmin self._apply_theta_transforms = _apply_theta_transforms def __str__(self): return ("{}(\n" "{},\n" " use_rmin={},\n" " _apply_theta_transforms={})" .format(type(self).__name__, mtransforms._indent_str(self._axis), self._use_rmin, self._apply_theta_transforms)) def transform_non_affine(self, xy): # docstring inherited x = xy[:, 0:1] y = xy[:, 1:] r = np.hypot(x, y) theta = (np.arctan2(y, x) + 2 * np.pi) % (2 * np.pi) # PolarAxes does not use the theta transforms here, but apply them for # backwards-compatibility if not being used by it. if self._apply_theta_transforms and self._axis is not None: theta -= self._axis.get_theta_offset() theta *= self._axis.get_theta_direction() theta %= 2 * np.pi if self._use_rmin and self._axis is not None: r += self._axis.get_rorigin() r *= self._axis.get_rsign() return np.concatenate((theta, r), 1) def inverted(self): # docstring inherited return PolarAxes.PolarTransform(self._axis, self._use_rmin, self._apply_theta_transforms) class ThetaFormatter(mticker.Formatter): """ Used to format the *theta* tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __call__(self, x, pos=None): vmin, vmax = self.axis.get_view_interval() d = np.rad2deg(abs(vmax - vmin)) digits = max(-int(np.log10(d) - 1.5), 0) if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: format_str = r"${value:0.{digits:d}f}^\circ$" return format_str.format(value=np.rad2deg(x), digits=digits) else: # we use unicode, rather than mathtext with \circ, so # that it will work correctly with any arbitrary font # (assuming it has a degree sign), whereas $5\circ$ # will only work correctly with one of the supported # math fonts (Computer Modern and STIX) format_str = "{value:0.{digits:d}f}\N{DEGREE SIGN}" return format_str.format(value=np.rad2deg(x), digits=digits) class _AxisWrapper(object): def __init__(self, axis): self._axis = axis def get_view_interval(self): return np.rad2deg(self._axis.get_view_interval()) def set_view_interval(self, vmin, vmax): self._axis.set_view_interval(*np.deg2rad((vmin, vmax))) def get_minpos(self): return np.rad2deg(self._axis.get_minpos()) def get_data_interval(self): return np.rad2deg(self._axis.get_data_interval()) def set_data_interval(self, vmin, vmax): self._axis.set_data_interval(*np.deg2rad((vmin, vmax))) def get_tick_space(self): return self._axis.get_tick_space() class ThetaLocator(mticker.Locator): """ Used to locate theta ticks. This will work the same as the base locator except in the case that the view spans the entire circle. In such cases, the previously used default locations of every 45 degrees are returned. """ def __init__(self, base): self.base = base self.axis = self.base.axis = _AxisWrapper(self.base.axis) def set_axis(self, axis): self.axis = _AxisWrapper(axis) self.base.set_axis(self.axis) def __call__(self): lim = self.axis.get_view_interval() if _is_full_circle_deg(lim[0], lim[1]): return np.arange(8) * 2 * np.pi / 8 else: return np.deg2rad(self.base()) def autoscale(self): return self.base.autoscale() def pan(self, numsteps): return self.base.pan(numsteps) def refresh(self): return self.base.refresh() def view_limits(self, vmin, vmax): vmin, vmax = np.rad2deg((vmin, vmax)) return np.deg2rad(self.base.view_limits(vmin, vmax)) def zoom(self, direction): return self.base.zoom(direction) class ThetaTick(maxis.XTick): """ A theta-axis tick. This subclass of `XTick` provides angular ticks with some small modification to their re-positioning such that ticks are rotated based on tick location. This results in ticks that are correctly perpendicular to the arc spine. When 'auto' rotation is enabled, labels are also rotated to be parallel to the spine. The label padding is also applied here since it's not possible to use a generic axes transform to produce tick-specific padding. """ def __init__(self, axes, *args, **kwargs): self._text1_translate = mtransforms.ScaledTranslation( 0, 0, axes.figure.dpi_scale_trans) self._text2_translate = mtransforms.ScaledTranslation( 0, 0, axes.figure.dpi_scale_trans) super().__init__(axes, *args, **kwargs) def _get_text1(self): t = super()._get_text1() t.set_rotation_mode('anchor') t.set_transform(t.get_transform() + self._text1_translate) return t def _get_text2(self): t = super()._get_text2() t.set_rotation_mode('anchor') t.set_transform(t.get_transform() + self._text2_translate) return t def _apply_params(self, **kw): super()._apply_params(**kw) # Ensure transform is correct; sometimes this gets reset. trans = self.label1.get_transform() if not trans.contains_branch(self._text1_translate): self.label1.set_transform(trans + self._text1_translate) trans = self.label2.get_transform() if not trans.contains_branch(self._text2_translate): self.label2.set_transform(trans + self._text2_translate) def _update_padding(self, pad, angle): padx = pad * np.cos(angle) / 72 pady = pad * np.sin(angle) / 72 self._text1_translate._t = (padx, pady) self._text1_translate.invalidate() self._text2_translate._t = (-padx, -pady) self._text2_translate.invalidate() def update_position(self, loc): super().update_position(loc) axes = self.axes angle = loc * axes.get_theta_direction() + axes.get_theta_offset() text_angle = np.rad2deg(angle) % 360 - 90 angle -= np.pi / 2 marker = self.tick1line.get_marker() if marker in (mmarkers.TICKUP, '|'): trans = mtransforms.Affine2D().scale(1, 1).rotate(angle) elif marker == mmarkers.TICKDOWN: trans = mtransforms.Affine2D().scale(1, -1).rotate(angle) else: # Don't modify custom tick line markers. trans = self.tick1line._marker._transform self.tick1line._marker._transform = trans marker = self.tick2line.get_marker() if marker in (mmarkers.TICKUP, '|'): trans = mtransforms.Affine2D().scale(1, 1).rotate(angle) elif marker == mmarkers.TICKDOWN: trans = mtransforms.Affine2D().scale(1, -1).rotate(angle) else: # Don't modify custom tick line markers. trans = self.tick2line._marker._transform self.tick2line._marker._transform = trans mode, user_angle = self._labelrotation if mode == 'default': text_angle = user_angle else: if text_angle > 90: text_angle -= 180 elif text_angle < -90: text_angle += 180 text_angle += user_angle self.label1.set_rotation(text_angle) self.label2.set_rotation(text_angle) # This extra padding helps preserve the look from previous releases but # is also needed because labels are anchored to their center. pad = self._pad + 7 self._update_padding(pad, self._loc * axes.get_theta_direction() + axes.get_theta_offset()) class ThetaAxis(maxis.XAxis): """ A theta Axis. This overrides certain properties of an `XAxis` to provide special-casing for an angular axis. """ __name__ = 'thetaaxis' axis_name = 'theta' def _get_tick(self, major): if major: tick_kw = self._major_tick_kw else: tick_kw = self._minor_tick_kw return ThetaTick(self.axes, 0, '', major=major, **tick_kw) def _wrap_locator_formatter(self): self.set_major_locator(ThetaLocator(self.get_major_locator())) self.set_major_formatter(ThetaFormatter()) self.isDefault_majloc = True self.isDefault_majfmt = True def cla(self): super().cla() self.set_ticks_position('none') self._wrap_locator_formatter() def _set_scale(self, value, **kwargs): super()._set_scale(value, **kwargs) self._wrap_locator_formatter() def _copy_tick_props(self, src, dest): 'Copy the props from src tick to dest tick' if src is None or dest is None: return super()._copy_tick_props(src, dest) # Ensure that tick transforms are independent so that padding works. trans = dest._get_text1_transform()[0] dest.label1.set_transform(trans + dest._text1_translate) trans = dest._get_text2_transform()[0] dest.label2.set_transform(trans + dest._text2_translate) class RadialLocator(mticker.Locator): """ Used to locate radius ticks. Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base :class:`~matplotlib.ticker.Locator` (which may be different depending on the scale of the *r*-axis. """ def __init__(self, base, axes=None): self.base = base self._axes = axes def __call__(self): show_all = True # Ensure previous behaviour with full circle non-annular views. if self._axes: if _is_full_circle_rad(*self._axes.viewLim.intervalx): rorigin = self._axes.get_rorigin() * self._axes.get_rsign() if self._axes.get_rmin() <= rorigin: show_all = False if show_all: return self.base() else: return [tick for tick in self.base() if tick > rorigin] def autoscale(self): return self.base.autoscale() def pan(self, numsteps): return self.base.pan(numsteps) def zoom(self, direction): return self.base.zoom(direction) def refresh(self): return self.base.refresh() def view_limits(self, vmin, vmax): vmin, vmax = self.base.view_limits(vmin, vmax) if vmax > vmin: # this allows inverted r/y-lims vmin = min(0, vmin) return mtransforms.nonsingular(vmin, vmax) class _ThetaShift(mtransforms.ScaledTranslation): """ Apply a padding shift based on axes theta limits. This is used to create padding for radial ticks. Parameters ---------- axes : matplotlib.axes.Axes The owning axes; used to determine limits. pad : float The padding to apply, in points. start : str, {'min', 'max', 'rlabel'} Whether to shift away from the start (``'min'``) or the end (``'max'``) of the axes, or using the rlabel position (``'rlabel'``). """ def __init__(self, axes, pad, mode): mtransforms.ScaledTranslation.__init__(self, pad, pad, axes.figure.dpi_scale_trans) self.set_children(axes._realViewLim) self.axes = axes self.mode = mode self.pad = pad def __str__(self): return ("{}(\n" "{},\n" "{},\n" "{})" .format(type(self).__name__, mtransforms._indent_str(self.axes), mtransforms._indent_str(self.pad), mtransforms._indent_str(repr(self.mode)))) def get_matrix(self): if self._invalid: if self.mode == 'rlabel': angle = ( np.deg2rad(self.axes.get_rlabel_position()) * self.axes.get_theta_direction() + self.axes.get_theta_offset() ) else: if self.mode == 'min': angle = self.axes._realViewLim.xmin elif self.mode == 'max': angle = self.axes._realViewLim.xmax if self.mode in ('rlabel', 'min'): padx = np.cos(angle - np.pi / 2) pady = np.sin(angle - np.pi / 2) else: padx = np.cos(angle + np.pi / 2) pady = np.sin(angle + np.pi / 2) self._t = (self.pad * padx / 72, self.pad * pady / 72) return mtransforms.ScaledTranslation.get_matrix(self) class RadialTick(maxis.YTick): """ A radial-axis tick. This subclass of `YTick` provides radial ticks with some small modification to their re-positioning such that ticks are rotated based on axes limits. This results in ticks that are correctly perpendicular to the spine. Labels are also rotated to be perpendicular to the spine, when 'auto' rotation is enabled. """ def _get_text1(self): t = super()._get_text1() t.set_rotation_mode('anchor') return t def _get_text2(self): t = super()._get_text2() t.set_rotation_mode('anchor') return t def _determine_anchor(self, mode, angle, start): # Note: angle is the (spine angle - 90) because it's used for the tick # & text setup, so all numbers below are -90 from (normed) spine angle. if mode == 'auto': if start: if -90 <= angle <= 90: return 'left', 'center' else: return 'right', 'center' else: if -90 <= angle <= 90: return 'right', 'center' else: return 'left', 'center' else: if start: if angle < -68.5: return 'center', 'top' elif angle < -23.5: return 'left', 'top' elif angle < 22.5: return 'left', 'center' elif angle < 67.5: return 'left', 'bottom' elif angle < 112.5: return 'center', 'bottom' elif angle < 157.5: return 'right', 'bottom' elif angle < 202.5: return 'right', 'center' elif angle < 247.5: return 'right', 'top' else: return 'center', 'top' else: if angle < -68.5: return 'center', 'bottom' elif angle < -23.5: return 'right', 'bottom' elif angle < 22.5: return 'right', 'center' elif angle < 67.5: return 'right', 'top' elif angle < 112.5: return 'center', 'top' elif angle < 157.5: return 'left', 'top' elif angle < 202.5: return 'left', 'center' elif angle < 247.5: return 'left', 'bottom' else: return 'center', 'bottom' def update_position(self, loc): super().update_position(loc) axes = self.axes thetamin = axes.get_thetamin() thetamax = axes.get_thetamax() direction = axes.get_theta_direction() offset_rad = axes.get_theta_offset() offset = np.rad2deg(offset_rad) full = _is_full_circle_deg(thetamin, thetamax) if full: angle = (axes.get_rlabel_position() * direction + offset) % 360 - 90 tick_angle = 0 else: angle = (thetamin * direction + offset) % 360 - 90 if direction > 0: tick_angle = np.deg2rad(angle) else: tick_angle = np.deg2rad(angle + 180) text_angle = (angle + 90) % 180 - 90 # between -90 and +90. mode, user_angle = self._labelrotation if mode == 'auto': text_angle += user_angle else: text_angle = user_angle if full: ha = self.label1.get_horizontalalignment() va = self.label1.get_verticalalignment() else: ha, va = self._determine_anchor(mode, angle, direction > 0) self.label1.set_horizontalalignment(ha) self.label1.set_verticalalignment(va) self.label1.set_rotation(text_angle) marker = self.tick1line.get_marker() if marker == mmarkers.TICKLEFT: trans = mtransforms.Affine2D().rotate(tick_angle) elif marker == '_': trans = mtransforms.Affine2D().rotate(tick_angle + np.pi / 2) elif marker == mmarkers.TICKRIGHT: trans = mtransforms.Affine2D().scale(-1, 1).rotate(tick_angle) else: # Don't modify custom tick line markers. trans = self.tick1line._marker._transform self.tick1line._marker._transform = trans if full: self.label2.set_visible(False) self.tick2line.set_visible(False) angle = (thetamax * direction + offset) % 360 - 90 if direction > 0: tick_angle = np.deg2rad(angle) else: tick_angle = np.deg2rad(angle + 180) text_angle = (angle + 90) % 180 - 90 # between -90 and +90. mode, user_angle = self._labelrotation if mode == 'auto': text_angle += user_angle else: text_angle = user_angle ha, va = self._determine_anchor(mode, angle, direction < 0) self.label2.set_ha(ha) self.label2.set_va(va) self.label2.set_rotation(text_angle) marker = self.tick2line.get_marker() if marker == mmarkers.TICKLEFT: trans = mtransforms.Affine2D().rotate(tick_angle) elif marker == '_': trans = mtransforms.Affine2D().rotate(tick_angle + np.pi / 2) elif marker == mmarkers.TICKRIGHT: trans = mtransforms.Affine2D().scale(-1, 1).rotate(tick_angle) else: # Don't modify custom tick line markers. trans = self.tick2line._marker._transform self.tick2line._marker._transform = trans class RadialAxis(maxis.YAxis): """ A radial Axis. This overrides certain properties of a `YAxis` to provide special-casing for a radial axis. """ __name__ = 'radialaxis' axis_name = 'radius' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.sticky_edges.y.append(0) def _get_tick(self, major): if major: tick_kw = self._major_tick_kw else: tick_kw = self._minor_tick_kw return RadialTick(self.axes, 0, '', major=major, **tick_kw) def _wrap_locator_formatter(self): self.set_major_locator(RadialLocator(self.get_major_locator(), self.axes)) self.isDefault_majloc = True def cla(self): super().cla() self.set_ticks_position('none') self._wrap_locator_formatter() def _set_scale(self, value, **kwargs): super()._set_scale(value, **kwargs) self._wrap_locator_formatter() def _is_full_circle_deg(thetamin, thetamax): """ Determine if a wedge (in degrees) spans the full circle. The condition is derived from :class:`~matplotlib.patches.Wedge`. """ return abs(abs(thetamax - thetamin) - 360.0) < 1e-12 def _is_full_circle_rad(thetamin, thetamax): """ Determine if a wedge (in radians) spans the full circle. The condition is derived from :class:`~matplotlib.patches.Wedge`. """ return abs(abs(thetamax - thetamin) - 2 * np.pi) < 1.74e-14 class _WedgeBbox(mtransforms.Bbox): """ Transform (theta,r) wedge Bbox into axes bounding box. Parameters ---------- center : (float, float) Center of the wedge viewLim : `~matplotlib.transforms.Bbox` Bbox determining the boundaries of the wedge originLim : `~matplotlib.transforms.Bbox` Bbox determining the origin for the wedge, if different from *viewLim* """ def __init__(self, center, viewLim, originLim, **kwargs): mtransforms.Bbox.__init__(self, np.array([[0.0, 0.0], [1.0, 1.0]], np.float), **kwargs) self._center = center self._viewLim = viewLim self._originLim = originLim self.set_children(viewLim, originLim) def __str__(self): return ("{}(\n" "{},\n" "{},\n" "{})" .format(type(self).__name__, mtransforms._indent_str(self._center), mtransforms._indent_str(self._viewLim), mtransforms._indent_str(self._originLim))) def get_points(self): # docstring inherited if self._invalid: points = self._viewLim.get_points().copy() # Scale angular limits to work with Wedge. points[:, 0] *= 180 / np.pi if points[0, 0] > points[1, 0]: points[:, 0] = points[::-1, 0] # Scale radial limits based on origin radius. points[:, 1] -= self._originLim.y0 # Scale radial limits to match axes limits. rscale = 0.5 / points[1, 1] points[:, 1] *= rscale width = min(points[1, 1] - points[0, 1], 0.5) # Generate bounding box for wedge. wedge = mpatches.Wedge(self._center, points[1, 1], points[0, 0], points[1, 0], width=width) self.update_from_path(wedge.get_path()) # Ensure equal aspect ratio. w, h = self._points[1] - self._points[0] deltah = max(w - h, 0) / 2 deltaw = max(h - w, 0) / 2 self._points += np.array([[-deltaw, -deltah], [deltaw, deltah]]) self._invalid = 0 return self._points class PolarAxes(Axes): """ A polar graph projection, where the input dimensions are *theta*, *r*. Theta starts pointing east and goes anti-clockwise. """ name = 'polar' def __init__(self, *args, theta_offset=0, theta_direction=1, rlabel_position=22.5, **kwargs): # docstring inherited self._default_theta_offset = theta_offset self._default_theta_direction = theta_direction self._default_rlabel_position = np.deg2rad(rlabel_position) super().__init__(*args, **kwargs) self.use_sticky_edges = True self.set_aspect('equal', adjustable='box', anchor='C') self.cla() def cla(self): Axes.cla(self) self.title.set_y(1.05) start = self.spines.get('start', None) if start: start.set_visible(False) end = self.spines.get('end', None) if end: end.set_visible(False) self.set_xlim(0.0, 2 * np.pi) self.grid(rcParams['polaraxes.grid']) inner = self.spines.get('inner', None) if inner: inner.set_visible(False) self.set_rorigin(None) self.set_theta_offset(self._default_theta_offset) self.set_theta_direction(self._default_theta_direction) def _init_axis(self): "move this out of __init__ because non-separable axes don't use it" self.xaxis = ThetaAxis(self) self.yaxis = RadialAxis(self) # Calling polar_axes.xaxis.cla() or polar_axes.xaxis.cla() # results in weird artifacts. Therefore we disable this for # now. # self.spines['polar'].register_axis(self.yaxis) self._update_transScale() def _set_lim_and_transforms(self): # A view limit where the minimum radius can be locked if the user # specifies an alternate origin. self._originViewLim = mtransforms.LockableBbox(self.viewLim) # Handle angular offset and direction. self._direction = mtransforms.Affine2D() \ .scale(self._default_theta_direction, 1.0) self._theta_offset = mtransforms.Affine2D() \ .translate(self._default_theta_offset, 0.0) self.transShift = mtransforms.composite_transform_factory( self._direction, self._theta_offset) # A view limit shifted to the correct location after accounting for # orientation and offset. self._realViewLim = mtransforms.TransformedBbox(self.viewLim, self.transShift) # Transforms the x and y axis separately by a scale factor # It is assumed that this part will have non-linear components self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) # Scale view limit into a bbox around the selected wedge. This may be # smaller than the usual unit axes rectangle if not plotting the full # circle. self.axesLim = _WedgeBbox((0.5, 0.5), self._realViewLim, self._originViewLim) # Scale the wedge to fill the axes. self.transWedge = mtransforms.BboxTransformFrom(self.axesLim) # Scale the axes to fill the figure. self.transAxes = mtransforms.BboxTransformTo(self.bbox) # A (possibly non-linear) projection on the (already scaled) # data. This one is aware of rmin self.transProjection = self.PolarTransform( self, _apply_theta_transforms=False) # Add dependency on rorigin. self.transProjection.set_children(self._originViewLim) # An affine transformation on the data, generally to limit the # range of the axes self.transProjectionAffine = self.PolarAffine(self.transScale, self._originViewLim) # The complete data transformation stack -- from data all the # way to display coordinates self.transData = ( self.transScale + self.transShift + self.transProjection + (self.transProjectionAffine + self.transWedge + self.transAxes)) # This is the transform for theta-axis ticks. It is # equivalent to transData, except it always puts r == 0.0 and r == 1.0 # at the edge of the axis circles. self._xaxis_transform = ( mtransforms.blended_transform_factory( mtransforms.IdentityTransform(), mtransforms.BboxTransformTo(self.viewLim)) + self.transData) # The theta labels are flipped along the radius, so that text 1 is on # the outside by default. This should work the same as before. flipr_transform = mtransforms.Affine2D() \ .translate(0.0, -0.5) \ .scale(1.0, -1.0) \ .translate(0.0, 0.5) self._xaxis_text_transform = flipr_transform + self._xaxis_transform # This is the transform for r-axis ticks. It scales the theta # axis so the gridlines from 0.0 to 1.0, now go from thetamin to # thetamax. self._yaxis_transform = ( mtransforms.blended_transform_factory( mtransforms.BboxTransformTo(self.viewLim), mtransforms.IdentityTransform()) + self.transData) # The r-axis labels are put at an angle and padded in the r-direction self._r_label_position = mtransforms.Affine2D() \ .translate(self._default_rlabel_position, 0.0) self._yaxis_text_transform = mtransforms.TransformWrapper( self._r_label_position + self.transData) def get_xaxis_transform(self, which='grid'): cbook._check_in_list(['tick1', 'tick2', 'grid'], which=which) return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text_transform, 'center', 'center' def get_xaxis_text2_transform(self, pad): return self._xaxis_text_transform, 'center', 'center' def get_yaxis_transform(self, which='grid'): if which in ('tick1', 'tick2'): return self._yaxis_text_transform elif which == 'grid': return self._yaxis_transform else: cbook._check_in_list(['tick1', 'tick2', 'grid'], which=which) def get_yaxis_text1_transform(self, pad): thetamin, thetamax = self._realViewLim.intervalx if _is_full_circle_rad(thetamin, thetamax): return self._yaxis_text_transform, 'bottom', 'left' elif self.get_theta_direction() > 0: halign = 'left' pad_shift = _ThetaShift(self, pad, 'min') else: halign = 'right' pad_shift = _ThetaShift(self, pad, 'max') return self._yaxis_text_transform + pad_shift, 'center', halign def get_yaxis_text2_transform(self, pad): if self.get_theta_direction() > 0: halign = 'right' pad_shift = _ThetaShift(self, pad, 'max') else: halign = 'left' pad_shift = _ThetaShift(self, pad, 'min') return self._yaxis_text_transform + pad_shift, 'center', halign def draw(self, *args, **kwargs): thetamin, thetamax = np.rad2deg(self._realViewLim.intervalx) if thetamin > thetamax: thetamin, thetamax = thetamax, thetamin rmin, rmax = ((self._realViewLim.intervaly - self.get_rorigin()) * self.get_rsign()) if isinstance(self.patch, mpatches.Wedge): # Backwards-compatibility: Any subclassed Axes might override the # patch to not be the Wedge that PolarAxes uses. center = self.transWedge.transform_point((0.5, 0.5)) self.patch.set_center(center) self.patch.set_theta1(thetamin) self.patch.set_theta2(thetamax) edge, _ = self.transWedge.transform_point((1, 0)) radius = edge - center[0] width = min(radius * (rmax - rmin) / rmax, radius) self.patch.set_radius(radius) self.patch.set_width(width) inner_width = radius - width inner = self.spines.get('inner', None) if inner: inner.set_visible(inner_width != 0.0) visible = not _is_full_circle_deg(thetamin, thetamax) # For backwards compatibility, any subclassed Axes might override the # spines to not include start/end that PolarAxes uses. start = self.spines.get('start', None) end = self.spines.get('end', None) if start: start.set_visible(visible) if end: end.set_visible(visible) if visible: yaxis_text_transform = self._yaxis_transform else: yaxis_text_transform = self._r_label_position + self.transData if self._yaxis_text_transform != yaxis_text_transform: self._yaxis_text_transform.set(yaxis_text_transform) self.yaxis.reset_ticks() self.yaxis.set_clip_path(self.patch) Axes.draw(self, *args, **kwargs) def _gen_axes_patch(self): return mpatches.Wedge((0.5, 0.5), 0.5, 0.0, 360.0) def _gen_axes_spines(self): spines = OrderedDict([ ('polar', mspines.Spine.arc_spine(self, 'top', (0.5, 0.5), 0.5, 0.0, 360.0)), ('start', mspines.Spine.linear_spine(self, 'left')), ('end', mspines.Spine.linear_spine(self, 'right')), ('inner', mspines.Spine.arc_spine(self, 'bottom', (0.5, 0.5), 0.0, 0.0, 360.0)) ]) spines['polar'].set_transform(self.transWedge + self.transAxes) spines['inner'].set_transform(self.transWedge + self.transAxes) spines['start'].set_transform(self._yaxis_transform) spines['end'].set_transform(self._yaxis_transform) return spines def set_thetamax(self, thetamax): self.viewLim.x1 = np.deg2rad(thetamax) def get_thetamax(self): return np.rad2deg(self.viewLim.xmax) def set_thetamin(self, thetamin): self.viewLim.x0 = np.deg2rad(thetamin) def get_thetamin(self): return np.rad2deg(self.viewLim.xmin) def set_thetalim(self, *args, **kwargs): if 'thetamin' in kwargs: kwargs['xmin'] = np.deg2rad(kwargs.pop('thetamin')) if 'thetamax' in kwargs: kwargs['xmax'] = np.deg2rad(kwargs.pop('thetamax')) return tuple(np.rad2deg(self.set_xlim(*args, **kwargs))) def set_theta_offset(self, offset): """ Set the offset for the location of 0 in radians. """ mtx = self._theta_offset.get_matrix() mtx[0, 2] = offset self._theta_offset.invalidate() def get_theta_offset(self): """ Get the offset for the location of 0 in radians. """ return self._theta_offset.get_matrix()[0, 2] def set_theta_zero_location(self, loc, offset=0.0): """ Sets the location of theta's zero. (Calls set_theta_offset with the correct value in radians under the hood.) loc : str May be one of "N", "NW", "W", "SW", "S", "SE", "E", or "NE". offset : float, optional An offset in degrees to apply from the specified `loc`. **Note:** this offset is *always* applied counter-clockwise regardless of the direction setting. """ mapping = { 'N': np.pi * 0.5, 'NW': np.pi * 0.75, 'W': np.pi, 'SW': np.pi * 1.25, 'S': np.pi * 1.5, 'SE': np.pi * 1.75, 'E': 0, 'NE': np.pi * 0.25} return self.set_theta_offset(mapping[loc] + np.deg2rad(offset)) def set_theta_direction(self, direction): """ Set the direction in which theta increases. clockwise, -1: Theta increases in the clockwise direction counterclockwise, anticlockwise, 1: Theta increases in the counterclockwise direction """ mtx = self._direction.get_matrix() if direction in ('clockwise', -1): mtx[0, 0] = -1 elif direction in ('counterclockwise', 'anticlockwise', 1): mtx[0, 0] = 1 else: cbook._check_in_list( [-1, 1, 'clockwise', 'counterclockwise', 'anticlockwise'], direction=direction) self._direction.invalidate() def get_theta_direction(self): """ Get the direction in which theta increases. -1: Theta increases in the clockwise direction 1: Theta increases in the counterclockwise direction """ return self._direction.get_matrix()[0, 0] def set_rmax(self, rmax): self.viewLim.y1 = rmax def get_rmax(self): return self.viewLim.ymax def set_rmin(self, rmin): self.viewLim.y0 = rmin def get_rmin(self): return self.viewLim.ymin def set_rorigin(self, rorigin): self._originViewLim.locked_y0 = rorigin def get_rorigin(self): return self._originViewLim.y0 def get_rsign(self): return np.sign(self._originViewLim.y1 - self._originViewLim.y0) def set_rlim(self, bottom=None, top=None, emit=True, auto=False, **kwargs): """ See `~.polar.PolarAxes.set_ylim`. """ if 'rmin' in kwargs: if bottom is None: bottom = kwargs.pop('rmin') else: raise ValueError('Cannot supply both positional "bottom"' 'argument and kwarg "rmin"') if 'rmax' in kwargs: if top is None: top = kwargs.pop('rmax') else: raise ValueError('Cannot supply both positional "top"' 'argument and kwarg "rmax"') return self.set_ylim(bottom=bottom, top=top, emit=emit, auto=auto, **kwargs) def set_ylim(self, bottom=None, top=None, emit=True, auto=False, *, ymin=None, ymax=None): """ Set the data limits for the radial axis. Parameters ---------- bottom : scalar, optional The bottom limit (default: None, which leaves the bottom limit unchanged). The bottom and top ylims may be passed as the tuple (*bottom*, *top*) as the first positional argument (or as the *bottom* keyword argument). top : scalar, optional The top limit (default: None, which leaves the top limit unchanged). emit : bool, optional Whether to notify observers of limit change (default: True). auto : bool or None, optional Whether to turn on autoscaling of the y-axis. True turns on, False turns off (default action), None leaves unchanged. ymin, ymax : scalar, optional These arguments are deprecated and will be removed in a future version. They are equivalent to *bottom* and *top* respectively, and it is an error to pass both *ymin* and *bottom* or *ymax* and *top*. Returns ------- bottom, top : (float, float) The new y-axis limits in data coordinates. """ if ymin is not None: if bottom is not None: raise ValueError('Cannot supply both positional "bottom" ' 'argument and kwarg "ymin"') else: bottom = ymin if ymax is not None: if top is not None: raise ValueError('Cannot supply both positional "top" ' 'argument and kwarg "ymax"') else: top = ymax if top is None and np.iterable(bottom): bottom, top = bottom[0], bottom[1] return super().set_ylim(bottom=bottom, top=top, emit=emit, auto=auto) def get_rlabel_position(self): """ Returns ------- float The theta position of the radius labels in degrees. """ return np.rad2deg(self._r_label_position.get_matrix()[0, 2]) def set_rlabel_position(self, value): """Updates the theta position of the radius labels. Parameters ---------- value : number The angular position of the radius labels in degrees. """ self._r_label_position.clear().translate(np.deg2rad(value), 0.0) def set_yscale(self, *args, **kwargs): Axes.set_yscale(self, *args, **kwargs) self.yaxis.set_major_locator( self.RadialLocator(self.yaxis.get_major_locator(), self)) def set_rscale(self, *args, **kwargs): return Axes.set_yscale(self, *args, **kwargs) def set_rticks(self, *args, **kwargs): return Axes.set_yticks(self, *args, **kwargs) def set_thetagrids(self, angles, labels=None, fmt=None, **kwargs): """ Set the theta gridlines in a polar plot. Parameters ---------- angles : tuple with floats, degrees The angles of the theta gridlines. labels : tuple with strings or None The labels to use at each theta gridline. The `.projections.polar.ThetaFormatter` will be used if None. fmt : str or None Format string used in `matplotlib.ticker.FormatStrFormatter`. For example '%f'. Note that the angle that is used is in radians. Returns ------- lines, labels : list of `.lines.Line2D`, list of `.text.Text` *lines* are the theta gridlines and *labels* are the tick labels. Other Parameters ---------------- **kwargs *kwargs* are optional `~.Text` properties for the labels. See Also -------- .PolarAxes.set_rgrids .Axis.get_gridlines .Axis.get_ticklabels """ # Make sure we take into account unitized data angles = self.convert_yunits(angles) angles = np.deg2rad(angles) self.set_xticks(angles) if labels is not None: self.set_xticklabels(labels) elif fmt is not None: self.xaxis.set_major_formatter(mticker.FormatStrFormatter(fmt)) for t in self.xaxis.get_ticklabels(): t.update(kwargs) return self.xaxis.get_ticklines(), self.xaxis.get_ticklabels() def set_rgrids(self, radii, labels=None, angle=None, fmt=None, **kwargs): """ Set the radial gridlines on a polar plot. Parameters ---------- radii : tuple with floats The radii for the radial gridlines labels : tuple with strings or None The labels to use at each radial gridline. The `matplotlib.ticker.ScalarFormatter` will be used if None. angle : float The angular position of the radius labels in degrees. fmt : str or None Format string used in `matplotlib.ticker.FormatStrFormatter`. For example '%f'. Returns ------- lines, labels : list of `.lines.Line2D`, list of `.text.Text` *lines* are the radial gridlines and *labels* are the tick labels. Other Parameters ---------------- **kwargs *kwargs* are optional `~.Text` properties for the labels. See Also -------- .PolarAxes.set_thetagrids .Axis.get_gridlines .Axis.get_ticklabels """ # Make sure we take into account unitized data radii = self.convert_xunits(radii) radii = np.asarray(radii) self.set_yticks(radii) if labels is not None: self.set_yticklabels(labels) elif fmt is not None: self.yaxis.set_major_formatter(mticker.FormatStrFormatter(fmt)) if angle is None: angle = self.get_rlabel_position() self.set_rlabel_position(angle) for t in self.yaxis.get_ticklabels(): t.update(kwargs) return self.yaxis.get_gridlines(), self.yaxis.get_ticklabels() def set_xscale(self, scale, *args, **kwargs): if scale != 'linear': raise NotImplementedError( "You can not set the xscale on a polar plot.") def format_coord(self, theta, r): """ Return a format string formatting the coordinate using Unicode characters. """ if theta < 0: theta += 2 * np.pi theta /= np.pi return ('\N{GREEK SMALL LETTER THETA}=%0.3f\N{GREEK SMALL LETTER PI} ' '(%0.3f\N{DEGREE SIGN}), r=%0.3f') % (theta, theta * 180.0, r) def get_data_ratio(self): ''' Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0 ''' return 1.0 # # # Interactive panning def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. Polar axes do not support zoom boxes. """ return False def can_pan(self): """ Return *True* if this axes supports the pan/zoom button functionality. For polar axes, this is slightly misleading. Both panning and zooming are performed by the same button. Panning is performed in azimuth while zooming is done along the radial. """ return True def start_pan(self, x, y, button): angle = np.deg2rad(self.get_rlabel_position()) mode = '' if button == 1: epsilon = np.pi / 45.0 t, r = self.transData.inverted().transform_point((x, y)) if angle - epsilon <= t <= angle + epsilon: mode = 'drag_r_labels' elif button == 3: mode = 'zoom' self._pan_start = types.SimpleNamespace( rmax=self.get_rmax(), trans=self.transData.frozen(), trans_inverse=self.transData.inverted().frozen(), r_label_angle=self.get_rlabel_position(), x=x, y=y, mode=mode) def end_pan(self): del self._pan_start def drag_pan(self, button, key, x, y): p = self._pan_start if p.mode == 'drag_r_labels': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) # Deal with theta dt0 = t - startt dt1 = startt - t if abs(dt1) < abs(dt0): dt = abs(dt1) * np.sign(dt0) * -1.0 else: dt = dt0 * -1.0 dt = (dt / np.pi) * 180.0 self.set_rlabel_position(p.r_label_angle - dt) trans, vert1, horiz1 = self.get_yaxis_text1_transform(0.0) trans, vert2, horiz2 = self.get_yaxis_text2_transform(0.0) for t in self.yaxis.majorTicks + self.yaxis.minorTicks: t.label1.set_va(vert1) t.label1.set_ha(horiz1) t.label2.set_va(vert2) t.label2.set_ha(horiz2) elif p.mode == 'zoom': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) # Deal with r scale = r / startr self.set_rmax(p.rmax / scale) # to keep things all self contained, we can put aliases to the Polar classes # defined above. This isn't strictly necessary, but it makes some of the # code more readable (and provides a backwards compatible Polar API) PolarAxes.PolarTransform = PolarTransform PolarAxes.PolarAffine = PolarAffine PolarAxes.InvertedPolarTransform = InvertedPolarTransform PolarAxes.ThetaFormatter = ThetaFormatter PolarAxes.RadialLocator = RadialLocator PolarAxes.ThetaLocator = ThetaLocator
31ba620549a3d91ff0eb1afb4a76703589b9f426ea1a2a6821fe4336aaea0bea
import numpy as np from matplotlib import cbook, rcParams from matplotlib.axes import Axes import matplotlib.axis as maxis from matplotlib.patches import Circle from matplotlib.path import Path import matplotlib.spines as mspines from matplotlib.ticker import ( Formatter, NullLocator, FixedLocator, NullFormatter) from matplotlib.transforms import Affine2D, BboxTransformTo, Transform class GeoAxes(Axes): """An abstract base class for geographic projections.""" class ThetaFormatter(Formatter): """ Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __init__(self, round_to=1.0): self._round_to = round_to def __call__(self, x, pos=None): degrees = (x / np.pi) * 180.0 degrees = np.round(degrees / self._round_to) * self._round_to if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % degrees else: return "%0.0f\N{DEGREE SIGN}" % degrees RESOLUTION = 75 def _init_axis(self): self.xaxis = maxis.XAxis(self) self.yaxis = maxis.YAxis(self) # Do not register xaxis or yaxis with spines -- as done in # Axes._init_axis() -- until GeoAxes.xaxis.cla() works. # self.spines['geo'].register_axis(self.yaxis) self._update_transScale() def cla(self): Axes.cla(self) self.set_longitude_grid(30) self.set_latitude_grid(15) self.set_longitude_grid_ends(75) self.xaxis.set_minor_locator(NullLocator()) self.yaxis.set_minor_locator(NullLocator()) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.yaxis.set_tick_params(label1On=True) # Why do we need to turn on yaxis tick labels, but # xaxis tick labels are already on? self.grid(rcParams['axes.grid']) Axes.set_xlim(self, -np.pi, np.pi) Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0) def _set_lim_and_transforms(self): # A (possibly non-linear) projection on the (already scaled) data self.transProjection = self._get_core_transform(self.RESOLUTION) self.transAffine = self._get_affine_transform() self.transAxes = BboxTransformTo(self.bbox) # The complete data transformation stack -- from data all the # way to display coordinates self.transData = \ self.transProjection + \ self.transAffine + \ self.transAxes # This is the transform for longitude ticks. self._xaxis_pretransform = \ Affine2D() \ .scale(1, self._longitude_cap * 2) \ .translate(0, -self._longitude_cap) self._xaxis_transform = \ self._xaxis_pretransform + \ self.transData self._xaxis_text1_transform = \ Affine2D().scale(1, 0) + \ self.transData + \ Affine2D().translate(0, 4) self._xaxis_text2_transform = \ Affine2D().scale(1, 0) + \ self.transData + \ Affine2D().translate(0, -4) # This is the transform for latitude ticks. yaxis_stretch = Affine2D().scale(np.pi * 2, 1).translate(-np.pi, 0) yaxis_space = Affine2D().scale(1, 1.1) self._yaxis_transform = \ yaxis_stretch + \ self.transData yaxis_text_base = \ yaxis_stretch + \ self.transProjection + \ (yaxis_space + \ self.transAffine + \ self.transAxes) self._yaxis_text1_transform = \ yaxis_text_base + \ Affine2D().translate(-8, 0) self._yaxis_text2_transform = \ yaxis_text_base + \ Affine2D().translate(8, 0) def _get_affine_transform(self): transform = self._get_core_transform(1) xscale, _ = transform.transform_point((np.pi, 0)) _, yscale = transform.transform_point((0, np.pi / 2)) return Affine2D() \ .scale(0.5 / xscale, 0.5 / yscale) \ .translate(0.5, 0.5) def get_xaxis_transform(self, which='grid'): cbook._check_in_list(['tick1', 'tick2', 'grid'], which=which) return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'bottom', 'center' def get_xaxis_text2_transform(self, pad): return self._xaxis_text2_transform, 'top', 'center' def get_yaxis_transform(self, which='grid'): cbook._check_in_list(['tick1', 'tick2', 'grid'], which=which) return self._yaxis_transform def get_yaxis_text1_transform(self, pad): return self._yaxis_text1_transform, 'center', 'right' def get_yaxis_text2_transform(self, pad): return self._yaxis_text2_transform, 'center', 'left' def _gen_axes_patch(self): return Circle((0.5, 0.5), 0.5) def _gen_axes_spines(self): return {'geo': mspines.Spine.circular_spine(self, (0.5, 0.5), 0.5)} def set_yscale(self, *args, **kwargs): if args[0] != 'linear': raise NotImplementedError set_xscale = set_yscale def set_xlim(self, *args, **kwargs): raise TypeError("It is not possible to change axes limits " "for geographic projections. Please consider " "using Basemap or Cartopy.") set_ylim = set_xlim def format_coord(self, lon, lat): 'return a format string formatting the coordinate' lon, lat = np.rad2deg([lon, lat]) if lat >= 0.0: ns = 'N' else: ns = 'S' if lon >= 0.0: ew = 'E' else: ew = 'W' return ('%f\N{DEGREE SIGN}%s, %f\N{DEGREE SIGN}%s' % (abs(lat), ns, abs(lon), ew)) def set_longitude_grid(self, degrees): """ Set the number of degrees between each longitude grid. """ # Skip -180 and 180, which are the fixed limits. grid = np.arange(-180 + degrees, 180, degrees) self.xaxis.set_major_locator(FixedLocator(np.deg2rad(grid))) self.xaxis.set_major_formatter(self.ThetaFormatter(degrees)) def set_latitude_grid(self, degrees): """ Set the number of degrees between each latitude grid. """ # Skip -90 and 90, which are the fixed limits. grid = np.arange(-90 + degrees, 90, degrees) self.yaxis.set_major_locator(FixedLocator(np.deg2rad(grid))) self.yaxis.set_major_formatter(self.ThetaFormatter(degrees)) def set_longitude_grid_ends(self, degrees): """ Set the latitude(s) at which to stop drawing the longitude grids. """ self._longitude_cap = np.deg2rad(degrees) self._xaxis_pretransform \ .clear() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap) def get_data_ratio(self): ''' Return the aspect ratio of the data itself. ''' return 1.0 ### Interactive panning def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. This axes object does not support interactive zoom box. """ return False def can_pan(self) : """ Return *True* if this axes supports the pan/zoom button functionality. This axes object does not support interactive pan/zoom. """ return False def start_pan(self, x, y, button): pass def end_pan(self): pass def drag_pan(self, button, key, x, y): pass class _GeoTransform(Transform): # Factoring out some common functionality. input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new geographical transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved space. """ Transform.__init__(self) self._resolution = resolution def __str__(self): return "{}({})".format(type(self).__name__, self._resolution) def transform_path_non_affine(self, path): # docstring inherited ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) class AitoffAxes(GeoAxes): name = 'aitoff' class AitoffTransform(_GeoTransform): """The base Aitoff transform.""" def transform_non_affine(self, ll): # docstring inherited longitude = ll[:, 0] latitude = ll[:, 1] # Pre-compute some values half_long = longitude / 2.0 cos_latitude = np.cos(latitude) alpha = np.arccos(cos_latitude * np.cos(half_long)) # Avoid divide-by-zero errors using same method as NumPy. alpha[alpha == 0.0] = 1e-20 # We want unnormalized sinc. numpy.sinc gives us normalized sinc_alpha = np.sin(alpha) / alpha xy = np.empty_like(ll, float) xy[:, 0] = (cos_latitude * np.sin(half_long)) / sinc_alpha xy[:, 1] = np.sin(latitude) / sinc_alpha return xy def inverted(self): # docstring inherited return AitoffAxes.InvertedAitoffTransform(self._resolution) class InvertedAitoffTransform(_GeoTransform): def transform_non_affine(self, xy): # docstring inherited # MGDTODO: Math is hard ;( return xy def inverted(self): # docstring inherited return AitoffAxes.AitoffTransform(self._resolution) def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.AitoffTransform(resolution) class HammerAxes(GeoAxes): name = 'hammer' class HammerTransform(_GeoTransform): """The base Hammer transform.""" def transform_non_affine(self, ll): # docstring inherited longitude = ll[:, 0:1] latitude = ll[:, 1:2] # Pre-compute some values half_long = longitude / 2.0 cos_latitude = np.cos(latitude) sqrt2 = np.sqrt(2.0) alpha = np.sqrt(1.0 + cos_latitude * np.cos(half_long)) x = (2.0 * sqrt2) * (cos_latitude * np.sin(half_long)) / alpha y = (sqrt2 * np.sin(latitude)) / alpha return np.concatenate((x, y), 1) def inverted(self): # docstring inherited return HammerAxes.InvertedHammerTransform(self._resolution) class InvertedHammerTransform(_GeoTransform): def transform_non_affine(self, xy): # docstring inherited x, y = xy.T z = np.sqrt(1 - (x / 4) ** 2 - (y / 2) ** 2) longitude = 2 * np.arctan((z * x) / (2 * (2 * z ** 2 - 1))) latitude = np.arcsin(y*z) return np.column_stack([longitude, latitude]) def inverted(self): # docstring inherited return HammerAxes.HammerTransform(self._resolution) def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.HammerTransform(resolution) class MollweideAxes(GeoAxes): name = 'mollweide' class MollweideTransform(_GeoTransform): """The base Mollweide transform.""" def transform_non_affine(self, ll): # docstring inherited def d(theta): delta = (-(theta + np.sin(theta) - pi_sin_l) / (1 + np.cos(theta))) return delta, np.abs(delta) > 0.001 longitude = ll[:, 0] latitude = ll[:, 1] clat = np.pi/2 - np.abs(latitude) ihigh = clat < 0.087 # within 5 degrees of the poles ilow = ~ihigh aux = np.empty(latitude.shape, dtype=float) if ilow.any(): # Newton-Raphson iteration pi_sin_l = np.pi * np.sin(latitude[ilow]) theta = 2.0 * latitude[ilow] delta, large_delta = d(theta) while np.any(large_delta): theta[large_delta] += delta[large_delta] delta, large_delta = d(theta) aux[ilow] = theta / 2 if ihigh.any(): # Taylor series-based approx. solution e = clat[ihigh] d = 0.5 * (3 * np.pi * e**2) ** (1.0/3) aux[ihigh] = (np.pi/2 - d) * np.sign(latitude[ihigh]) xy = np.empty(ll.shape, dtype=float) xy[:, 0] = (2.0 * np.sqrt(2.0) / np.pi) * longitude * np.cos(aux) xy[:, 1] = np.sqrt(2.0) * np.sin(aux) return xy def inverted(self): # docstring inherited return MollweideAxes.InvertedMollweideTransform(self._resolution) class InvertedMollweideTransform(_GeoTransform): def transform_non_affine(self, xy): # docstring inherited x = xy[:, 0:1] y = xy[:, 1:2] # from Equations (7, 8) of # http://mathworld.wolfram.com/MollweideProjection.html theta = np.arcsin(y / np.sqrt(2)) lon = (np.pi / (2 * np.sqrt(2))) * x / np.cos(theta) lat = np.arcsin((2 * theta + np.sin(2 * theta)) / np.pi) return np.concatenate((lon, lat), 1) def inverted(self): # docstring inherited return MollweideAxes.MollweideTransform(self._resolution) def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.MollweideTransform(resolution) class LambertAxes(GeoAxes): name = 'lambert' class LambertTransform(_GeoTransform): """The base Lambert transform.""" def __init__(self, center_longitude, center_latitude, resolution): """ Create a new Lambert transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Lambert space. """ _GeoTransform.__init__(self, resolution) self._center_longitude = center_longitude self._center_latitude = center_latitude def transform_non_affine(self, ll): # docstring inherited longitude = ll[:, 0:1] latitude = ll[:, 1:2] clong = self._center_longitude clat = self._center_latitude cos_lat = np.cos(latitude) sin_lat = np.sin(latitude) diff_long = longitude - clong cos_diff_long = np.cos(diff_long) inner_k = np.maximum( # Prevent divide-by-zero problems 1 + np.sin(clat)*sin_lat + np.cos(clat)*cos_lat*cos_diff_long, 1e-15) k = np.sqrt(2 / inner_k) x = k * cos_lat*np.sin(diff_long) y = k * (np.cos(clat)*sin_lat - np.sin(clat)*cos_lat*cos_diff_long) return np.concatenate((x, y), 1) def inverted(self): # docstring inherited return LambertAxes.InvertedLambertTransform( self._center_longitude, self._center_latitude, self._resolution) class InvertedLambertTransform(_GeoTransform): def __init__(self, center_longitude, center_latitude, resolution): _GeoTransform.__init__(self, resolution) self._center_longitude = center_longitude self._center_latitude = center_latitude def transform_non_affine(self, xy): # docstring inherited x = xy[:, 0:1] y = xy[:, 1:2] clong = self._center_longitude clat = self._center_latitude p = np.maximum(np.hypot(x, y), 1e-9) c = 2 * np.arcsin(0.5 * p) sin_c = np.sin(c) cos_c = np.cos(c) lat = np.arcsin(cos_c*np.sin(clat) + ((y*sin_c*np.cos(clat)) / p)) lon = clong + np.arctan( (x*sin_c) / (p*np.cos(clat)*cos_c - y*np.sin(clat)*sin_c)) return np.concatenate((lon, lat), 1) def inverted(self): # docstring inherited return LambertAxes.LambertTransform( self._center_longitude, self._center_latitude, self._resolution) def __init__(self, *args, center_longitude=0, center_latitude=0, **kwargs): self._longitude_cap = np.pi / 2 self._center_longitude = center_longitude self._center_latitude = center_latitude GeoAxes.__init__(self, *args, **kwargs) self.set_aspect('equal', adjustable='box', anchor='C') self.cla() def cla(self): GeoAxes.cla(self) self.yaxis.set_major_formatter(NullFormatter()) def _get_core_transform(self, resolution): return self.LambertTransform( self._center_longitude, self._center_latitude, resolution) def _get_affine_transform(self): return Affine2D() \ .scale(0.25) \ .translate(0.5, 0.5)
35959ffc1f6e2a02c751bc2a8314962387ec55e86e5159d5e4539db8895d6565
""" Core functions and attributes for the matplotlib style library: ``use`` Select style sheet to override the current matplotlib settings. ``context`` Context manager to use a style sheet temporarily. ``available`` List available style sheets. ``library`` A dictionary of style names and matplotlib settings. """ import contextlib import logging import os import re import warnings import matplotlib as mpl from matplotlib import cbook, rc_params_from_file, rcParamsDefault _log = logging.getLogger(__name__) __all__ = ['use', 'context', 'available', 'library', 'reload_library'] BASE_LIBRARY_PATH = os.path.join(mpl.get_data_path(), 'stylelib') # Users may want multiple library paths, so store a list of paths. USER_LIBRARY_PATHS = [os.path.join(mpl.get_configdir(), 'stylelib')] STYLE_EXTENSION = 'mplstyle' STYLE_FILE_PATTERN = re.compile(r'([\S]+).%s$' % STYLE_EXTENSION) # A list of rcParams that should not be applied from styles STYLE_BLACKLIST = { 'interactive', 'backend', 'backend.qt4', 'webagg.port', 'webagg.address', 'webagg.port_retries', 'webagg.open_in_browser', 'backend_fallback', 'toolbar', 'timezone', 'datapath', 'figure.max_open_warning', 'savefig.directory', 'tk.window_focus', 'docstring.hardcopy'} def _remove_blacklisted_style_params(d, warn=True): o = {} for key, val in d.items(): if key in STYLE_BLACKLIST: if warn: cbook._warn_external( "Style includes a parameter, '{0}', that is not related " "to style. Ignoring".format(key)) else: o[key] = val return o def is_style_file(filename): """Return True if the filename looks like a style file.""" return STYLE_FILE_PATTERN.match(filename) is not None def _apply_style(d, warn=True): mpl.rcParams.update(_remove_blacklisted_style_params(d, warn=warn)) def use(style): """Use matplotlib style settings from a style specification. The style name of 'default' is reserved for reverting back to the default style settings. Parameters ---------- style : str, dict, or list A style specification. Valid options are: +------+-------------------------------------------------------------+ | str | The name of a style or a path/URL to a style file. For a | | | list of available style names, see `style.available`. | +------+-------------------------------------------------------------+ | dict | Dictionary with valid key/value pairs for | | | `matplotlib.rcParams`. | +------+-------------------------------------------------------------+ | list | A list of style specifiers (str or dict) applied from first | | | to last in the list. | +------+-------------------------------------------------------------+ """ style_alias = {'mpl20': 'default', 'mpl15': 'classic'} if isinstance(style, str) or hasattr(style, 'keys'): # If name is a single str or dict, make it a single element list. styles = [style] else: styles = style styles = (style_alias.get(s, s) if isinstance(s, str) else s for s in styles) for style in styles: if not isinstance(style, str): _apply_style(style) elif style == 'default': # Deprecation warnings were already handled when creating # rcParamsDefault, no need to reemit them here. with cbook._suppress_matplotlib_deprecation_warning(): _apply_style(rcParamsDefault, warn=False) elif style in library: _apply_style(library[style]) else: try: rc = rc_params_from_file(style, use_default_template=False) _apply_style(rc) except IOError: raise IOError( "{!r} not found in the style library and input is not a " "valid URL or path; see `style.available` for list of " "available styles".format(style)) @contextlib.contextmanager def context(style, after_reset=False): """Context manager for using style settings temporarily. Parameters ---------- style : str, dict, or list A style specification. Valid options are: +------+-------------------------------------------------------------+ | str | The name of a style or a path/URL to a style file. For a | | | list of available style names, see `style.available`. | +------+-------------------------------------------------------------+ | dict | Dictionary with valid key/value pairs for | | | `matplotlib.rcParams`. | +------+-------------------------------------------------------------+ | list | A list of style specifiers (str or dict) applied from first | | | to last in the list. | +------+-------------------------------------------------------------+ after_reset : bool If True, apply style after resetting settings to their defaults; otherwise, apply style on top of the current settings. """ with mpl.rc_context(): if after_reset: mpl.rcdefaults() use(style) yield def load_base_library(): """Load style library defined in this package.""" library = read_style_directory(BASE_LIBRARY_PATH) return library def iter_user_libraries(): for stylelib_path in USER_LIBRARY_PATHS: stylelib_path = os.path.expanduser(stylelib_path) if os.path.exists(stylelib_path) and os.path.isdir(stylelib_path): yield stylelib_path def update_user_library(library): """Update style library with user-defined rc files""" for stylelib_path in iter_user_libraries(): styles = read_style_directory(stylelib_path) update_nested_dict(library, styles) return library def iter_style_files(style_dir): """Yield file path and name of styles in the given directory.""" for path in os.listdir(style_dir): filename = os.path.basename(path) if is_style_file(filename): match = STYLE_FILE_PATTERN.match(filename) path = os.path.abspath(os.path.join(style_dir, path)) yield path, match.group(1) def read_style_directory(style_dir): """Return dictionary of styles defined in `style_dir`.""" styles = dict() for path, name in iter_style_files(style_dir): with warnings.catch_warnings(record=True) as warns: styles[name] = rc_params_from_file(path, use_default_template=False) for w in warns: message = 'In %s: %s' % (path, w.message) _log.warning(message) return styles def update_nested_dict(main_dict, new_dict): """Update nested dict (only level of nesting) with new values. Unlike dict.update, this assumes that the values of the parent dict are dicts (or dict-like), so you shouldn't replace the nested dict if it already exists. Instead you should update the sub-dict. """ # update named styles specified by user for name, rc_dict in new_dict.items(): main_dict.setdefault(name, {}).update(rc_dict) return main_dict # Load style library # ================== _base_library = load_base_library() library = None available = [] def reload_library(): """Reload style library.""" global library available[:] = library = update_user_library(_base_library) reload_library()
104c4e01402adeefebb1c53091f2ad6681202c0e67a6696d0ab61938ff5fb63c
from .core import use, context, available, library, reload_library
54366d60d5a310248680a41b483432ba771fb48e58fe9e45a2b4f3ab769d192e
""" A directive for including a matplotlib plot in a Sphinx document. By default, in HTML output, `plot` will include a .png file with a link to a high-res .png and .pdf. In LaTeX output, it will include a .pdf. The source code for the plot may be included in one of three ways: 1. **A path to a source file** as the argument to the directive:: .. plot:: path/to/plot.py When a path to a source file is given, the content of the directive may optionally contain a caption for the plot:: .. plot:: path/to/plot.py This is the caption for the plot Additionally, one may specify the name of a function to call (with no arguments) immediately after importing the module:: .. plot:: path/to/plot.py plot_function1 2. Included as **inline content** to the directive:: .. plot:: import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np img = mpimg.imread('_static/stinkbug.png') imgplot = plt.imshow(img) 3. Using **doctest** syntax:: .. plot:: A plotting example: >>> import matplotlib.pyplot as plt >>> plt.plot([1,2,3], [4,5,6]) Options ------- The ``plot`` directive supports the following options: format : {'python', 'doctest'} Specify the format of the input include-source : bool Whether to display the source code. The default can be changed using the `plot_include_source` variable in conf.py encoding : str If this source file is in a non-UTF8 or non-ASCII encoding, the encoding must be specified using the `:encoding:` option. The encoding will not be inferred using the ``-*- coding -*-`` metacomment. context : bool or str If provided, the code will be run in the context of all previous plot directives for which the `:context:` option was specified. This only applies to inline code plot directives, not those run from files. If the ``:context: reset`` option is specified, the context is reset for this and future plots, and previous figures are closed prior to running the code. ``:context:close-figs`` keeps the context but closes previous figures before running the code. nofigs : bool If specified, the code block will be run, but no figures will be inserted. This is usually useful with the ``:context:`` option. Additionally, this directive supports all of the options of the `image` directive, except for `target` (since plot will add its own target). These include `alt`, `height`, `width`, `scale`, `align` and `class`. Configuration options --------------------- The plot directive has the following configuration options: plot_include_source Default value for the include-source option plot_html_show_source_link Whether to show a link to the source in HTML. plot_pre_code Code that should be executed before each plot. If not specified or None it will default to a string containing:: import numpy as np from matplotlib import pyplot as plt plot_basedir Base directory, to which ``plot::`` file names are relative to. (If None or empty, file names are relative to the directory where the file containing the directive is.) plot_formats File formats to generate. List of tuples or strings:: [(suffix, dpi), suffix, ...] that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. When passing from the command line through sphinx_build the list should be passed as suffix:dpi,suffix:dpi, .... plot_html_show_formats Whether to show links to the files in HTML. plot_rcparams A dictionary containing any non-standard rcParams that should be applied before each plot. plot_apply_rcparams By default, rcParams are applied when `context` option is not used in a plot directive. This configuration option overrides this behavior and applies rcParams before each plot. plot_working_directory By default, the working directory will be changed to the directory of the example, so the code can get at its data files, if any. Also its path will be added to `sys.path` so it can import any helper modules sitting beside it. This configuration option can be used to specify a central directory (also added to `sys.path`) where data files and helper modules for all code are located. plot_template Provide a customized template for preparing restructured text. """ import contextlib from io import StringIO import itertools import os from os.path import relpath from pathlib import Path import re import shutil import sys import textwrap import traceback import warnings from docutils.parsers.rst import directives, Directive from docutils.parsers.rst.directives.images import Image import jinja2 # Sphinx dependency. import matplotlib from matplotlib.backend_bases import FigureManagerBase try: with warnings.catch_warnings(record=True): warnings.simplefilter("error", UserWarning) matplotlib.use('Agg') except UserWarning: import matplotlib.pyplot as plt plt.switch_backend("Agg") else: import matplotlib.pyplot as plt from matplotlib import _pylab_helpers, cbook align = Image.align __version__ = 2 # ----------------------------------------------------------------------------- # Registration hook # ----------------------------------------------------------------------------- @cbook.deprecated("3.1", alternative="PlotDirective") def plot_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): """Implementation of the ``.. plot::`` directive. See the module docstring for details. """ return run(arguments, content, options, state_machine, state, lineno) def _option_boolean(arg): if not arg or not arg.strip(): # no argument given, assume used as a flag return True elif arg.strip().lower() in ('no', '0', 'false'): return False elif arg.strip().lower() in ('yes', '1', 'true'): return True else: raise ValueError('"%s" unknown boolean' % arg) def _option_context(arg): if arg in [None, 'reset', 'close-figs']: return arg raise ValueError("argument should be None or 'reset' or 'close-figs'") def _option_format(arg): return directives.choice(arg, ('python', 'doctest')) def _option_align(arg): return directives.choice(arg, ("top", "middle", "bottom", "left", "center", "right")) def mark_plot_labels(app, document): """ To make plots referenceable, we need to move the reference from the "htmlonly" (or "latexonly") node to the actual figure node itself. """ for name, explicit in document.nametypes.items(): if not explicit: continue labelid = document.nameids[name] if labelid is None: continue node = document.ids[labelid] if node.tagname in ('html_only', 'latex_only'): for n in node: if n.tagname == 'figure': sectname = name for c in n: if c.tagname == 'caption': sectname = c.astext() break node['ids'].remove(labelid) node['names'].remove(name) n['ids'].append(labelid) n['names'].append(name) document.settings.env.labels[name] = \ document.settings.env.docname, labelid, sectname break class PlotDirective(Directive): """Implementation of the ``.. plot::`` directive. See the module docstring for details. """ has_content = True required_arguments = 0 optional_arguments = 2 final_argument_whitespace = False option_spec = { 'alt': directives.unchanged, 'height': directives.length_or_unitless, 'width': directives.length_or_percentage_or_unitless, 'scale': directives.nonnegative_int, 'align': _option_align, 'class': directives.class_option, 'include-source': _option_boolean, 'format': _option_format, 'context': _option_context, 'nofigs': directives.flag, 'encoding': directives.encoding, } def run(self): """Run the plot directive.""" return run(self.arguments, self.content, self.options, self.state_machine, self.state, self.lineno) def setup(app): import matplotlib setup.app = app setup.config = app.config setup.confdir = app.confdir app.add_directive('plot', PlotDirective) app.add_config_value('plot_pre_code', None, True) app.add_config_value('plot_include_source', False, True) app.add_config_value('plot_html_show_source_link', True, True) app.add_config_value('plot_formats', ['png', 'hires.png', 'pdf'], True) app.add_config_value('plot_basedir', None, True) app.add_config_value('plot_html_show_formats', True, True) app.add_config_value('plot_rcparams', {}, True) app.add_config_value('plot_apply_rcparams', False, True) app.add_config_value('plot_working_directory', None, True) app.add_config_value('plot_template', None, True) app.connect('doctree-read', mark_plot_labels) metadata = {'parallel_read_safe': True, 'parallel_write_safe': True, 'version': matplotlib.__version__} return metadata # ----------------------------------------------------------------------------- # Doctest handling # ----------------------------------------------------------------------------- def contains_doctest(text): try: # check if it's valid Python as-is compile(text, '<string>', 'exec') return False except SyntaxError: pass r = re.compile(r'^\s*>>>', re.M) m = r.search(text) return bool(m) def unescape_doctest(text): """ Extract code from a piece of text, which contains either Python code or doctests. """ if not contains_doctest(text): return text code = "" for line in text.split("\n"): m = re.match(r'^\s*(>>>|\.\.\.) (.*)$', line) if m: code += m.group(2) + "\n" elif line.strip(): code += "# " + line.strip() + "\n" else: code += "\n" return code def split_code_at_show(text): """Split code at plt.show().""" parts = [] is_doctest = contains_doctest(text) part = [] for line in text.split("\n"): if (not is_doctest and line.strip() == 'plt.show()') or \ (is_doctest and line.strip() == '>>> plt.show()'): part.append(line) parts.append("\n".join(part)) part = [] else: part.append(line) if "\n".join(part).strip(): parts.append("\n".join(part)) return parts def remove_coding(text): r"""Remove the coding comment, which six.exec\_ doesn't like.""" cbook.warn_deprecated('3.0', name='remove_coding', removal='3.1') sub_re = re.compile(r"^#\s*-\*-\s*coding:\s*.*-\*-$", flags=re.MULTILINE) return sub_re.sub("", text) # ----------------------------------------------------------------------------- # Template # ----------------------------------------------------------------------------- TEMPLATE = """ {{ source_code }} {{ only_html }} {% if source_link or (html_show_formats and not multi_image) %} ( {%- if source_link -%} `Source code <{{ source_link }}>`__ {%- endif -%} {%- if html_show_formats and not multi_image -%} {%- for img in images -%} {%- for fmt in img.formats -%} {%- if source_link or not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} {%- endfor -%} {%- endif -%} ) {% endif %} {% for img in images %} .. figure:: {{ build_dir }}/{{ img.basename }}.{{ default_fmt }} {% for option in options -%} {{ option }} {% endfor %} {% if html_show_formats and multi_image -%} ( {%- for fmt in img.formats -%} {%- if not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} ) {%- endif -%} {{ caption }} {% endfor %} {{ only_latex }} {% for img in images %} {% if 'pdf' in img.formats -%} .. figure:: {{ build_dir }}/{{ img.basename }}.pdf {% for option in options -%} {{ option }} {% endfor %} {{ caption }} {% endif -%} {% endfor %} {{ only_texinfo }} {% for img in images %} {% if 'png' in img.formats -%} .. image:: {{ build_dir }}/{{ img.basename }}.png {% for option in options -%} {{ option }} {% endfor %} {% endif -%} {% endfor %} """ exception_template = """ .. only:: html [`source code <%(linkdir)s/%(basename)s.py>`__] Exception occurred rendering plot. """ # the context of the plot for all directives specified with the # :context: option plot_context = dict() class ImageFile(object): def __init__(self, basename, dirname): self.basename = basename self.dirname = dirname self.formats = [] def filename(self, format): return os.path.join(self.dirname, "%s.%s" % (self.basename, format)) def filenames(self): return [self.filename(fmt) for fmt in self.formats] def out_of_date(original, derived): """ Return whether *derived* is out-of-date relative to *original*, both of which are full file paths. """ return (not os.path.exists(derived) or (os.path.exists(original) and os.stat(derived).st_mtime < os.stat(original).st_mtime)) class PlotError(RuntimeError): pass def run_code(code, code_path, ns=None, function_name=None): """ Import a Python module from a path, and run the function given by name, if function_name is not None. """ # Change the working directory to the directory of the example, so # it can get at its data files, if any. Add its path to sys.path # so it can import any helper modules sitting beside it. pwd = os.getcwd() if setup.config.plot_working_directory is not None: try: os.chdir(setup.config.plot_working_directory) except OSError as err: raise OSError(str(err) + '\n`plot_working_directory` option in' 'Sphinx configuration file must be a valid ' 'directory path') except TypeError as err: raise TypeError(str(err) + '\n`plot_working_directory` option in ' 'Sphinx configuration file must be a string or ' 'None') elif code_path is not None: dirname = os.path.abspath(os.path.dirname(code_path)) os.chdir(dirname) with cbook._setattr_cm( sys, argv=[code_path], path=[os.getcwd(), *sys.path]), \ contextlib.redirect_stdout(StringIO()): try: code = unescape_doctest(code) if ns is None: ns = {} if not ns: if setup.config.plot_pre_code is None: exec('import numpy as np\n' 'from matplotlib import pyplot as plt\n', ns) else: exec(str(setup.config.plot_pre_code), ns) if "__main__" in code: ns['__name__'] = '__main__' # Patch out non-interactive show() to avoid triggering a warning. with cbook._setattr_cm(FigureManagerBase, show=lambda self: None): exec(code, ns) if function_name is not None: exec(function_name + "()", ns) except (Exception, SystemExit) as err: raise PlotError(traceback.format_exc()) finally: os.chdir(pwd) return ns def clear_state(plot_rcparams, close=True): if close: plt.close('all') matplotlib.rc_file_defaults() matplotlib.rcParams.update(plot_rcparams) def get_plot_formats(config): default_dpi = {'png': 80, 'hires.png': 200, 'pdf': 200} formats = [] plot_formats = config.plot_formats for fmt in plot_formats: if isinstance(fmt, str): if ':' in fmt: suffix, dpi = fmt.split(':') formats.append((str(suffix), int(dpi))) else: formats.append((fmt, default_dpi.get(fmt, 80))) elif isinstance(fmt, (tuple, list)) and len(fmt) == 2: formats.append((str(fmt[0]), int(fmt[1]))) else: raise PlotError('invalid image format "%r" in plot_formats' % fmt) return formats def render_figures(code, code_path, output_dir, output_base, context, function_name, config, context_reset=False, close_figs=False): """ Run a pyplot script and save the images in *output_dir*. Save the images under *output_dir* with file names derived from *output_base* """ formats = get_plot_formats(config) # -- Try to determine if all images already exist code_pieces = split_code_at_show(code) # Look for single-figure output files first all_exists = True img = ImageFile(output_base, output_dir) if not any(out_of_date(code_path, img.filename(fmt)) for fmt, dpi in formats): return [(code, [img])] img.formats.extend(fmt for fmt, dpi in formats) # Then look for multi-figure output files results = [] all_exists = True for i, code_piece in enumerate(code_pieces): images = [] for j in itertools.count(): if len(code_pieces) > 1: img = ImageFile('%s_%02d_%02d' % (output_base, i, j), output_dir) else: img = ImageFile('%s_%02d' % (output_base, j), output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) # assume that if we have one, we have them all if not all_exists: all_exists = (j > 0) break images.append(img) if not all_exists: break results.append((code_piece, images)) if all_exists: return results # We didn't find the files, so build them results = [] if context: ns = plot_context else: ns = {} if context_reset: clear_state(config.plot_rcparams) plot_context.clear() close_figs = not context or close_figs for i, code_piece in enumerate(code_pieces): if not context or config.plot_apply_rcparams: clear_state(config.plot_rcparams, close_figs) elif close_figs: plt.close('all') run_code(code_piece, code_path, ns, function_name) images = [] fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() for j, figman in enumerate(fig_managers): if len(fig_managers) == 1 and len(code_pieces) == 1: img = ImageFile(output_base, output_dir) elif len(code_pieces) == 1: img = ImageFile("%s_%02d" % (output_base, j), output_dir) else: img = ImageFile("%s_%02d_%02d" % (output_base, i, j), output_dir) images.append(img) for format, dpi in formats: try: figman.canvas.figure.savefig(img.filename(format), dpi=dpi) except Exception as err: raise PlotError(traceback.format_exc()) img.formats.append(format) results.append((code_piece, images)) if not context or config.plot_apply_rcparams: clear_state(config.plot_rcparams, close=not context) return results def run(arguments, content, options, state_machine, state, lineno): document = state_machine.document config = document.settings.env.config nofigs = 'nofigs' in options formats = get_plot_formats(config) default_fmt = formats[0][0] options.setdefault('include-source', config.plot_include_source) keep_context = 'context' in options context_opt = None if not keep_context else options['context'] rst_file = document.attributes['source'] rst_dir = os.path.dirname(rst_file) if len(arguments): if not config.plot_basedir: source_file_name = os.path.join(setup.app.builder.srcdir, directives.uri(arguments[0])) else: source_file_name = os.path.join(setup.confdir, config.plot_basedir, directives.uri(arguments[0])) # If there is content, it will be passed as a caption. caption = '\n'.join(content) # If the optional function name is provided, use it if len(arguments) == 2: function_name = arguments[1] else: function_name = None code = Path(source_file_name).read_text(encoding='utf-8') output_base = os.path.basename(source_file_name) else: source_file_name = rst_file code = textwrap.dedent("\n".join(map(str, content))) counter = document.attributes.get('_plot_counter', 0) + 1 document.attributes['_plot_counter'] = counter base, ext = os.path.splitext(os.path.basename(source_file_name)) output_base = '%s-%d.py' % (base, counter) function_name = None caption = '' base, source_ext = os.path.splitext(output_base) if source_ext in ('.py', '.rst', '.txt'): output_base = base else: source_ext = '' # ensure that LaTeX includegraphics doesn't choke in foo.bar.pdf filenames output_base = output_base.replace('.', '-') # is it in doctest format? is_doctest = contains_doctest(code) if 'format' in options: if options['format'] == 'python': is_doctest = False else: is_doctest = True # determine output directory name fragment source_rel_name = relpath(source_file_name, setup.confdir) source_rel_dir = os.path.dirname(source_rel_name) while source_rel_dir.startswith(os.path.sep): source_rel_dir = source_rel_dir[1:] # build_dir: where to place output files (temporarily) build_dir = os.path.join(os.path.dirname(setup.app.doctreedir), 'plot_directive', source_rel_dir) # get rid of .. in paths, also changes pathsep # see note in Python docs for warning about symbolic links on Windows. # need to compare source and dest paths at end build_dir = os.path.normpath(build_dir) if not os.path.exists(build_dir): os.makedirs(build_dir) # output_dir: final location in the builder's directory dest_dir = os.path.abspath(os.path.join(setup.app.builder.outdir, source_rel_dir)) if not os.path.exists(dest_dir): os.makedirs(dest_dir) # no problem here for me, but just use built-ins # how to link to files from the RST file dest_dir_link = os.path.join(relpath(setup.confdir, rst_dir), source_rel_dir).replace(os.path.sep, '/') try: build_dir_link = relpath(build_dir, rst_dir).replace(os.path.sep, '/') except ValueError: # on Windows, relpath raises ValueError when path and start are on # different mounts/drives build_dir_link = build_dir source_link = dest_dir_link + '/' + output_base + source_ext # make figures try: results = render_figures(code, source_file_name, build_dir, output_base, keep_context, function_name, config, context_reset=context_opt == 'reset', close_figs=context_opt == 'close-figs') errors = [] except PlotError as err: reporter = state.memo.reporter sm = reporter.system_message( 2, "Exception occurred in plotting {}\n from {}:\n{}".format( output_base, source_file_name, err), line=lineno) results = [(code, [])] errors = [sm] # Properly indent the caption caption = '\n'.join(' ' + line.strip() for line in caption.split('\n')) # generate output restructuredtext total_lines = [] for j, (code_piece, images) in enumerate(results): if options['include-source']: if is_doctest: lines = ['', *code_piece.splitlines()] else: lines = ['.. code-block:: python', '', *textwrap.indent(code_piece, ' ').splitlines()] source_code = "\n".join(lines) else: source_code = "" if nofigs: images = [] opts = [ ':%s: %s' % (key, val) for key, val in options.items() if key in ('alt', 'height', 'width', 'scale', 'align', 'class')] only_html = ".. only:: html" only_latex = ".. only:: latex" only_texinfo = ".. only:: texinfo" # Not-None src_link signals the need for a source link in the generated # html if j == 0 and config.plot_html_show_source_link: src_link = source_link else: src_link = None result = jinja2.Template(config.plot_template or TEMPLATE).render( default_fmt=default_fmt, dest_dir=dest_dir_link, build_dir=build_dir_link, source_link=src_link, multi_image=len(images) > 1, only_html=only_html, only_latex=only_latex, only_texinfo=only_texinfo, options=opts, images=images, source_code=source_code, html_show_formats=config.plot_html_show_formats and len(images), caption=caption) total_lines.extend(result.split("\n")) total_lines.extend("\n") if total_lines: state_machine.insert_input(total_lines, source=source_file_name) # copy image files to builder's output directory, if necessary Path(dest_dir).mkdir(parents=True, exist_ok=True) for code_piece, images in results: for img in images: for fn in img.filenames(): destimg = os.path.join(dest_dir, os.path.basename(fn)) if fn != destimg: shutil.copyfile(fn, destimg) # copy script (if necessary) Path(dest_dir, output_base + source_ext).write_text( unescape_doctest(code) if source_file_name == rst_file else code, encoding='utf-8') return errors
8d3ab005fc4b2c68f1fb84f0133c18be2d96742a09a6a1df0dc6cb2ab81c2acb
import hashlib import os import sys from docutils import nodes from docutils.parsers.rst import Directive, directives import sphinx from matplotlib import rcParams from matplotlib import cbook from matplotlib.mathtext import MathTextParser rcParams['mathtext.fontset'] = 'cm' mathtext_parser = MathTextParser("Bitmap") # Define LaTeX math node: class latex_math(nodes.General, nodes.Element): pass def fontset_choice(arg): return directives.choice(arg, ['cm', 'stix', 'stixsans']) def math_role(role, rawtext, text, lineno, inliner, options={}, content=[]): i = rawtext.find('`') latex = rawtext[i+1:-1] node = latex_math(rawtext) node['latex'] = latex node['fontset'] = options.get('fontset', 'cm') return [node], [] math_role.options = {'fontset': fontset_choice} @cbook.deprecated("3.1", alternative="MathDirective") def math_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): latex = ''.join(content) node = latex_math(block_text) node['latex'] = latex node['fontset'] = options.get('fontset', 'cm') return [node] class MathDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 0 final_argument_whitespace = False option_spec = {'fontset': fontset_choice} def run(self): latex = ''.join(self.content) node = latex_math(self.block_text) node['latex'] = latex node['fontset'] = self.options.get('fontset', 'cm') return [node] # This uses mathtext to render the expression def latex2png(latex, filename, fontset='cm'): latex = "$%s$" % latex orig_fontset = rcParams['mathtext.fontset'] rcParams['mathtext.fontset'] = fontset if os.path.exists(filename): depth = mathtext_parser.get_depth(latex, dpi=100) else: try: depth = mathtext_parser.to_png(filename, latex, dpi=100) except Exception: cbook._warn_external("Could not render math expression %s" % latex, Warning) depth = 0 rcParams['mathtext.fontset'] = orig_fontset sys.stdout.write("#") sys.stdout.flush() return depth # LaTeX to HTML translation stuff: def latex2html(node, source): inline = isinstance(node.parent, nodes.TextElement) latex = node['latex'] name = 'math-%s' % hashlib.md5(latex.encode()).hexdigest()[-10:] destdir = os.path.join(setup.app.builder.outdir, '_images', 'mathmpl') if not os.path.exists(destdir): os.makedirs(destdir) dest = os.path.join(destdir, '%s.png' % name) path = '/'.join((setup.app.builder.imgpath, 'mathmpl')) depth = latex2png(latex, dest, node['fontset']) if inline: cls = '' else: cls = 'class="center" ' if inline and depth != 0: style = 'style="position: relative; bottom: -%dpx"' % (depth + 1) else: style = '' return '<img src="%s/%s.png" %s%s/>' % (path, name, cls, style) def setup(app): setup.app = app # Add visit/depart methods to HTML-Translator: def visit_latex_math_html(self, node): source = self.document.attributes['source'] self.body.append(latex2html(node, source)) def depart_latex_math_html(self, node): pass # Add visit/depart methods to LaTeX-Translator: def visit_latex_math_latex(self, node): inline = isinstance(node.parent, nodes.TextElement) if inline: self.body.append('$%s$' % node['latex']) else: self.body.extend(['\\begin{equation}', node['latex'], '\\end{equation}']) def depart_latex_math_latex(self, node): pass app.add_node(latex_math, html=(visit_latex_math_html, depart_latex_math_html), latex=(visit_latex_math_latex, depart_latex_math_latex)) app.add_role('mathmpl', math_role) app.add_directive('mathmpl', MathDirective) if sphinx.version_info < (1, 8): app.add_role('math', math_role) app.add_directive('math', MathDirective) metadata = {'parallel_read_safe': True, 'parallel_write_safe': True} return metadata
bca542efa4021eba6ccb6da9e19fd5c7651945f8803d4dd0afb7f076b7feb313
""" Displays Agg images in the browser, with interactivity """ # The WebAgg backend is divided into two modules: # # - `backend_webagg_core.py` contains code necessary to embed a WebAgg # plot inside of a web application, and communicate in an abstract # way over a web socket. # # - `backend_webagg.py` contains a concrete implementation of a basic # application, implemented with tornado. from contextlib import contextmanager import errno from io import BytesIO import json from pathlib import Path import random import sys import signal import socket import threading try: import tornado except ImportError: raise RuntimeError("The WebAgg backend requires Tornado.") import tornado.web import tornado.ioloop import tornado.websocket from matplotlib import rcParams from matplotlib.backend_bases import _Backend from matplotlib._pylab_helpers import Gcf from . import backend_webagg_core as core from .backend_webagg_core import TimerTornado class ServerThread(threading.Thread): def run(self): tornado.ioloop.IOLoop.instance().start() webagg_server_thread = ServerThread() class FigureCanvasWebAgg(core.FigureCanvasWebAggCore): def show(self): # show the figure window global show # placates pyflakes: created by @_Backend.export below show() def new_timer(self, *args, **kwargs): # docstring inherited return TimerTornado(*args, **kwargs) class WebAggApplication(tornado.web.Application): initialized = False started = False class FavIcon(tornado.web.RequestHandler): def get(self): self.set_header('Content-Type', 'image/png') image_path = Path(rcParams["datapath"], "images", "matplotlib.png") self.write(image_path.read_bytes()) class SingleFigurePage(tornado.web.RequestHandler): def __init__(self, application, request, *, url_prefix='', **kwargs): self.url_prefix = url_prefix super().__init__(application, request, **kwargs) def get(self, fignum): fignum = int(fignum) manager = Gcf.get_fig_manager(fignum) ws_uri = 'ws://{req.host}{prefix}/'.format(req=self.request, prefix=self.url_prefix) self.render( "single_figure.html", prefix=self.url_prefix, ws_uri=ws_uri, fig_id=fignum, toolitems=core.NavigationToolbar2WebAgg.toolitems, canvas=manager.canvas) class AllFiguresPage(tornado.web.RequestHandler): def __init__(self, application, request, *, url_prefix='', **kwargs): self.url_prefix = url_prefix super().__init__(application, request, **kwargs) def get(self): ws_uri = 'ws://{req.host}{prefix}/'.format(req=self.request, prefix=self.url_prefix) self.render( "all_figures.html", prefix=self.url_prefix, ws_uri=ws_uri, figures=sorted(Gcf.figs.items()), toolitems=core.NavigationToolbar2WebAgg.toolitems) class MplJs(tornado.web.RequestHandler): def get(self): self.set_header('Content-Type', 'application/javascript') js_content = core.FigureManagerWebAgg.get_javascript() self.write(js_content) class Download(tornado.web.RequestHandler): def get(self, fignum, fmt): fignum = int(fignum) manager = Gcf.get_fig_manager(fignum) # TODO: Move this to a central location mimetypes = { 'ps': 'application/postscript', 'eps': 'application/postscript', 'pdf': 'application/pdf', 'svg': 'image/svg+xml', 'png': 'image/png', 'jpeg': 'image/jpeg', 'tif': 'image/tiff', 'emf': 'application/emf' } self.set_header('Content-Type', mimetypes.get(fmt, 'binary')) buff = BytesIO() manager.canvas.figure.savefig(buff, format=fmt) self.write(buff.getvalue()) class WebSocket(tornado.websocket.WebSocketHandler): supports_binary = True def open(self, fignum): self.fignum = int(fignum) self.manager = Gcf.get_fig_manager(self.fignum) self.manager.add_web_socket(self) if hasattr(self, 'set_nodelay'): self.set_nodelay(True) def on_close(self): self.manager.remove_web_socket(self) def on_message(self, message): message = json.loads(message) # The 'supports_binary' message is on a client-by-client # basis. The others affect the (shared) canvas as a # whole. if message['type'] == 'supports_binary': self.supports_binary = message['value'] else: manager = Gcf.get_fig_manager(self.fignum) # It is possible for a figure to be closed, # but a stale figure UI is still sending messages # from the browser. if manager is not None: manager.handle_json(message) def send_json(self, content): self.write_message(json.dumps(content)) def send_binary(self, blob): if self.supports_binary: self.write_message(blob, binary=True) else: data_uri = "data:image/png;base64,{0}".format( blob.encode('base64').replace('\n', '')) self.write_message(data_uri) def __init__(self, url_prefix=''): if url_prefix: assert url_prefix[0] == '/' and url_prefix[-1] != '/', \ 'url_prefix must start with a "/" and not end with one.' super().__init__( [ # Static files for the CSS and JS (url_prefix + r'/_static/(.*)', tornado.web.StaticFileHandler, {'path': core.FigureManagerWebAgg.get_static_file_path()}), # An MPL favicon (url_prefix + r'/favicon.ico', self.FavIcon), # The page that contains all of the pieces (url_prefix + r'/([0-9]+)', self.SingleFigurePage, {'url_prefix': url_prefix}), # The page that contains all of the figures (url_prefix + r'/?', self.AllFiguresPage, {'url_prefix': url_prefix}), (url_prefix + r'/js/mpl.js', self.MplJs), # Sends images and events to the browser, and receives # events from the browser (url_prefix + r'/([0-9]+)/ws', self.WebSocket), # Handles the downloading (i.e., saving) of static images (url_prefix + r'/([0-9]+)/download.([a-z0-9.]+)', self.Download), ], template_path=core.FigureManagerWebAgg.get_static_file_path()) @classmethod def initialize(cls, url_prefix='', port=None, address=None): if cls.initialized: return # Create the class instance app = cls(url_prefix=url_prefix) cls.url_prefix = url_prefix # This port selection algorithm is borrowed, more or less # verbatim, from IPython. def random_ports(port, n): """ Generate a list of n random ports near the given port. The first 5 ports will be sequential, and the remaining n-5 will be randomly selected in the range [port-2*n, port+2*n]. """ for i in range(min(5, n)): yield port + i for i in range(n - 5): yield port + random.randint(-2 * n, 2 * n) if address is None: cls.address = rcParams['webagg.address'] else: cls.address = address cls.port = rcParams['webagg.port'] for port in random_ports(cls.port, rcParams['webagg.port_retries']): try: app.listen(port, cls.address) except socket.error as e: if e.errno != errno.EADDRINUSE: raise else: cls.port = port break else: raise SystemExit( "The webagg server could not be started because an available " "port could not be found") cls.initialized = True @classmethod def start(cls): if cls.started: return """ IOLoop.running() was removed as of Tornado 2.4; see for example https://groups.google.com/forum/#!topic/python-tornado/QLMzkpQBGOY Thus there is no correct way to check if the loop has already been launched. We may end up with two concurrently running loops in that unlucky case with all the expected consequences. """ ioloop = tornado.ioloop.IOLoop.instance() def shutdown(): ioloop.stop() print("Server is stopped") sys.stdout.flush() cls.started = False @contextmanager def catch_sigint(): old_handler = signal.signal( signal.SIGINT, lambda sig, frame: ioloop.add_callback_from_signal(shutdown)) try: yield finally: signal.signal(signal.SIGINT, old_handler) # Set the flag to True *before* blocking on ioloop.start() cls.started = True print("Press Ctrl+C to stop WebAgg server") sys.stdout.flush() with catch_sigint(): ioloop.start() def ipython_inline_display(figure): import tornado.template WebAggApplication.initialize() if not webagg_server_thread.is_alive(): webagg_server_thread.start() fignum = figure.number tpl = Path(core.FigureManagerWebAgg.get_static_file_path(), "ipython_inline_figure.html").read_text() t = tornado.template.Template(tpl) return t.generate( prefix=WebAggApplication.url_prefix, fig_id=fignum, toolitems=core.NavigationToolbar2WebAgg.toolitems, canvas=figure.canvas, port=WebAggApplication.port).decode('utf-8') @_Backend.export class _BackendWebAgg(_Backend): FigureCanvas = FigureCanvasWebAgg FigureManager = core.FigureManagerWebAgg @staticmethod def trigger_manager_draw(manager): manager.canvas.draw_idle() @staticmethod def show(): WebAggApplication.initialize() url = "http://{address}:{port}{prefix}".format( address=WebAggApplication.address, port=WebAggApplication.port, prefix=WebAggApplication.url_prefix) if rcParams['webagg.open_in_browser']: import webbrowser webbrowser.open(url) else: print("To view figure, visit {0}".format(url)) WebAggApplication.start()
2e9421b1aec678f22b2104d6b73bf2d33a645046c55848a199542e123560a20d
""" A PDF matplotlib backend Author: Jouni K Seppänen <[email protected]> """ import codecs import collections from datetime import datetime from functools import total_ordering from io import BytesIO import logging import math import os import pathlib import re import struct import time import types import warnings import zlib import numpy as np from matplotlib import cbook, __version__, rcParams from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import ( _Backend, FigureCanvasBase, FigureManagerBase, GraphicsContextBase, RendererBase) from matplotlib.backends.backend_mixed import MixedModeRenderer from matplotlib.figure import Figure from matplotlib.font_manager import findfont, is_opentype_cff_font, get_font from matplotlib.afm import AFM import matplotlib.type1font as type1font import matplotlib.dviread as dviread from matplotlib.ft2font import (FIXED_WIDTH, ITALIC, LOAD_NO_SCALE, LOAD_NO_HINTING, KERNING_UNFITTED) from matplotlib.mathtext import MathTextParser from matplotlib.transforms import Affine2D, BboxBase from matplotlib.path import Path from matplotlib.dates import UTC from matplotlib import _path from matplotlib import _png from matplotlib import ttconv from . import _backend_pdf_ps _log = logging.getLogger(__name__) # Overview # # The low-level knowledge about pdf syntax lies mainly in the pdfRepr # function and the classes Reference, Name, Operator, and Stream. The # PdfFile class knows about the overall structure of pdf documents. # It provides a "write" method for writing arbitrary strings in the # file, and an "output" method that passes objects through the pdfRepr # function before writing them in the file. The output method is # called by the RendererPdf class, which contains the various draw_foo # methods. RendererPdf contains a GraphicsContextPdf instance, and # each draw_foo calls self.check_gc before outputting commands. This # method checks whether the pdf graphics state needs to be modified # and outputs the necessary commands. GraphicsContextPdf represents # the graphics state, and its "delta" method returns the commands that # modify the state. # Add "pdf.use14corefonts: True" in your configuration file to use only # the 14 PDF core fonts. These fonts do not need to be embedded; every # PDF viewing application is required to have them. This results in very # light PDF files you can use directly in LaTeX or ConTeXt documents # generated with pdfTeX, without any conversion. # These fonts are: Helvetica, Helvetica-Bold, Helvetica-Oblique, # Helvetica-BoldOblique, Courier, Courier-Bold, Courier-Oblique, # Courier-BoldOblique, Times-Roman, Times-Bold, Times-Italic, # Times-BoldItalic, Symbol, ZapfDingbats. # # Some tricky points: # # 1. The clip path can only be widened by popping from the state # stack. Thus the state must be pushed onto the stack before narrowing # the clip path. This is taken care of by GraphicsContextPdf. # # 2. Sometimes it is necessary to refer to something (e.g., font, # image, or extended graphics state, which contains the alpha value) # in the page stream by a name that needs to be defined outside the # stream. PdfFile provides the methods fontName, imageObject, and # alphaState for this purpose. The implementations of these methods # should perhaps be generalized. # TODOs: # # * encoding of fonts, including mathtext fonts and unicode support # * TTF support has lots of small TODOs, e.g., how do you know if a font # is serif/sans-serif, or symbolic/non-symbolic? # * draw_markers, draw_line_collection, etc. def fill(strings, linelen=75): """Make one string from sequence of strings, with whitespace in between. The whitespace is chosen to form lines of at most linelen characters, if possible.""" currpos = 0 lasti = 0 result = [] for i, s in enumerate(strings): length = len(s) if currpos + length < linelen: currpos += length + 1 else: result.append(b' '.join(strings[lasti:i])) lasti = i currpos = length result.append(b' '.join(strings[lasti:])) return b'\n'.join(result) # PDF strings are supposed to be able to include any eight-bit data, # except that unbalanced parens and backslashes must be escaped by a # backslash. However, sf bug #2708559 shows that the carriage return # character may get read as a newline; these characters correspond to # \gamma and \Omega in TeX's math font encoding. Escaping them fixes # the bug. _string_escape_regex = re.compile(br'([\\()\r\n])') def _string_escape(match): m = match.group(0) if m in br'\()': return b'\\' + m elif m == b'\n': return br'\n' elif m == b'\r': return br'\r' assert False def pdfRepr(obj): """Map Python objects to PDF syntax.""" # Some objects defined later have their own pdfRepr method. if hasattr(obj, 'pdfRepr'): return obj.pdfRepr() # Floats. PDF does not have exponential notation (1.0e-10) so we # need to use %f with some precision. Perhaps the precision # should adapt to the magnitude of the number? elif isinstance(obj, (float, np.floating)): if not np.isfinite(obj): raise ValueError("Can only output finite numbers in PDF") r = b"%.10f" % obj return r.rstrip(b'0').rstrip(b'.') # Booleans. Needs to be tested before integers since # isinstance(True, int) is true. elif isinstance(obj, bool): return [b'false', b'true'][obj] # Integers are written as such. elif isinstance(obj, (int, np.integer)): return b"%d" % obj # Unicode strings are encoded in UTF-16BE with byte-order mark. elif isinstance(obj, str): try: # But maybe it's really ASCII? s = obj.encode('ASCII') return pdfRepr(s) except UnicodeEncodeError: s = codecs.BOM_UTF16_BE + obj.encode('UTF-16BE') return pdfRepr(s) # Strings are written in parentheses, with backslashes and parens # escaped. Actually balanced parens are allowed, but it is # simpler to escape them all. TODO: cut long strings into lines; # I believe there is some maximum line length in PDF. elif isinstance(obj, bytes): return b'(' + _string_escape_regex.sub(_string_escape, obj) + b')' # Dictionaries. The keys must be PDF names, so if we find strings # there, we make Name objects from them. The values may be # anything, so the caller must ensure that PDF names are # represented as Name objects. elif isinstance(obj, dict): r = [b"<<"] r.extend([Name(key).pdfRepr() + b" " + pdfRepr(obj[key]) for key in sorted(obj)]) r.append(b">>") return fill(r) # Lists. elif isinstance(obj, (list, tuple)): r = [b"["] r.extend([pdfRepr(val) for val in obj]) r.append(b"]") return fill(r) # The null keyword. elif obj is None: return b'null' # A date. elif isinstance(obj, datetime): r = obj.strftime('D:%Y%m%d%H%M%S') z = obj.utcoffset() if z is not None: z = z.seconds else: if time.daylight: z = time.altzone else: z = time.timezone if z == 0: r += 'Z' elif z < 0: r += "+%02d'%02d'" % ((-z) // 3600, (-z) % 3600) else: r += "-%02d'%02d'" % (z // 3600, z % 3600) return pdfRepr(r) # A bounding box elif isinstance(obj, BboxBase): return fill([pdfRepr(val) for val in obj.bounds]) else: raise TypeError("Don't know a PDF representation for {} objects" .format(type(obj))) class Reference(object): """PDF reference object. Use PdfFile.reserveObject() to create References. """ def __init__(self, id): self.id = id def __repr__(self): return "<Reference %d>" % self.id def pdfRepr(self): return b"%d 0 R" % self.id def write(self, contents, file): write = file.write write(b"%d 0 obj\n" % self.id) write(pdfRepr(contents)) write(b"\nendobj\n") @total_ordering class Name(object): """PDF name object.""" __slots__ = ('name',) _regex = re.compile(r'[^!-~]') def __init__(self, name): if isinstance(name, Name): self.name = name.name else: if isinstance(name, bytes): name = name.decode('ascii') self.name = self._regex.sub(Name.hexify, name).encode('ascii') def __repr__(self): return "<Name %s>" % self.name def __str__(self): return '/' + str(self.name) def __eq__(self, other): return isinstance(other, Name) and self.name == other.name def __lt__(self, other): return isinstance(other, Name) and self.name < other.name def __hash__(self): return hash(self.name) @staticmethod def hexify(match): return '#%02x' % ord(match.group()) def pdfRepr(self): return b'/' + self.name class Operator(object): """PDF operator object.""" __slots__ = ('op',) def __init__(self, op): self.op = op def __repr__(self): return '<Operator %s>' % self.op def pdfRepr(self): return self.op class Verbatim(object): """Store verbatim PDF command content for later inclusion in the stream.""" def __init__(self, x): self._x = x def pdfRepr(self): return self._x # PDF operators (not an exhaustive list) _pdfops = dict( close_fill_stroke=b'b', fill_stroke=b'B', fill=b'f', closepath=b'h', close_stroke=b's', stroke=b'S', endpath=b'n', begin_text=b'BT', end_text=b'ET', curveto=b'c', rectangle=b're', lineto=b'l', moveto=b'm', concat_matrix=b'cm', use_xobject=b'Do', setgray_stroke=b'G', setgray_nonstroke=b'g', setrgb_stroke=b'RG', setrgb_nonstroke=b'rg', setcolorspace_stroke=b'CS', setcolorspace_nonstroke=b'cs', setcolor_stroke=b'SCN', setcolor_nonstroke=b'scn', setdash=b'd', setlinejoin=b'j', setlinecap=b'J', setgstate=b'gs', gsave=b'q', grestore=b'Q', textpos=b'Td', selectfont=b'Tf', textmatrix=b'Tm', show=b'Tj', showkern=b'TJ', setlinewidth=b'w', clip=b'W', shading=b'sh') Op = types.SimpleNamespace(**{name: Operator(value) for name, value in _pdfops.items()}) def _paint_path(fill, stroke): """Return the PDF operator to paint a path in the following way: fill: fill the path with the fill color stroke: stroke the outline of the path with the line color""" if stroke: if fill: return Op.fill_stroke else: return Op.stroke else: if fill: return Op.fill else: return Op.endpath Op.paint_path = _paint_path class Stream(object): """PDF stream object. This has no pdfRepr method. Instead, call begin(), then output the contents of the stream by calling write(), and finally call end(). """ __slots__ = ('id', 'len', 'pdfFile', 'file', 'compressobj', 'extra', 'pos') def __init__(self, id, len, file, extra=None, png=None): """id: object id of stream; len: an unused Reference object for the length of the stream, or None (to use a memory buffer); file: a PdfFile; extra: a dictionary of extra key-value pairs to include in the stream header; png: if the data is already png compressed, the decode parameters""" self.id = id # object id self.len = len # id of length object self.pdfFile = file self.file = file.fh # file to which the stream is written self.compressobj = None # compression object if extra is None: self.extra = dict() else: self.extra = extra.copy() if png is not None: self.extra.update({'Filter': Name('FlateDecode'), 'DecodeParms': png}) self.pdfFile.recordXref(self.id) if rcParams['pdf.compression'] and not png: self.compressobj = zlib.compressobj(rcParams['pdf.compression']) if self.len is None: self.file = BytesIO() else: self._writeHeader() self.pos = self.file.tell() def _writeHeader(self): write = self.file.write write(b"%d 0 obj\n" % self.id) dict = self.extra dict['Length'] = self.len if rcParams['pdf.compression']: dict['Filter'] = Name('FlateDecode') write(pdfRepr(dict)) write(b"\nstream\n") def end(self): """Finalize stream.""" self._flush() if self.len is None: contents = self.file.getvalue() self.len = len(contents) self.file = self.pdfFile.fh self._writeHeader() self.file.write(contents) self.file.write(b"\nendstream\nendobj\n") else: length = self.file.tell() - self.pos self.file.write(b"\nendstream\nendobj\n") self.pdfFile.writeObject(self.len, length) def write(self, data): """Write some data on the stream.""" if self.compressobj is None: self.file.write(data) else: compressed = self.compressobj.compress(data) self.file.write(compressed) def _flush(self): """Flush the compression object.""" if self.compressobj is not None: compressed = self.compressobj.flush() self.file.write(compressed) self.compressobj = None class PdfFile(object): """PDF file object.""" def __init__(self, filename, metadata=None): self.nextObject = 1 # next free object id self.xrefTable = [[0, 65535, 'the zero object']] self.passed_in_file_object = False self.original_file_like = None self.tell_base = 0 fh, opened = cbook.to_filehandle(filename, "wb", return_opened=True) if not opened: try: self.tell_base = filename.tell() except IOError: fh = BytesIO() self.original_file_like = filename else: fh = filename self.passed_in_file_object = True self._core14fontdir = os.path.join( rcParams['datapath'], 'fonts', 'pdfcorefonts') self.fh = fh self.currentstream = None # stream object to write to, if any fh.write(b"%PDF-1.4\n") # 1.4 is the first version to have alpha # Output some eight-bit chars as a comment so various utilities # recognize the file as binary by looking at the first few # lines (see note in section 3.4.1 of the PDF reference). fh.write(b"%\254\334 \253\272\n") self.rootObject = self.reserveObject('root') self.pagesObject = self.reserveObject('pages') self.pageList = [] self.fontObject = self.reserveObject('fonts') self.alphaStateObject = self.reserveObject('extended graphics states') self.hatchObject = self.reserveObject('tiling patterns') self.gouraudObject = self.reserveObject('Gouraud triangles') self.XObjectObject = self.reserveObject('external objects') self.resourceObject = self.reserveObject('resources') root = {'Type': Name('Catalog'), 'Pages': self.pagesObject} self.writeObject(self.rootObject, root) # get source date from SOURCE_DATE_EPOCH, if set # See https://reproducible-builds.org/specs/source-date-epoch/ source_date_epoch = os.getenv("SOURCE_DATE_EPOCH") if source_date_epoch: source_date = datetime.utcfromtimestamp(int(source_date_epoch)) source_date = source_date.replace(tzinfo=UTC) else: source_date = datetime.today() self.infoDict = { 'Creator': 'matplotlib %s, http://matplotlib.org' % __version__, 'Producer': 'matplotlib pdf backend %s' % __version__, 'CreationDate': source_date } if metadata is not None: self.infoDict.update(metadata) self.infoDict = {k: v for (k, v) in self.infoDict.items() if v is not None} self.fontNames = {} # maps filenames to internal font names self.nextFont = 1 # next free internal font name self.dviFontInfo = {} # maps dvi font names to embedding information # differently encoded Type-1 fonts may share the same descriptor self.type1Descriptors = {} self.used_characters = {} self.alphaStates = {} # maps alpha values to graphics state objects self.nextAlphaState = 1 # reproducible writeHatches needs an ordered dict: self.hatchPatterns = collections.OrderedDict() self.nextHatch = 1 self.gouraudTriangles = [] self._images = collections.OrderedDict() # reproducible writeImages self.nextImage = 1 self.markers = collections.OrderedDict() # reproducible writeMarkers self.multi_byte_charprocs = {} self.paths = [] self.pageAnnotations = [] # A list of annotations for the # current page # The PDF spec recommends to include every procset procsets = [Name(x) for x in "PDF Text ImageB ImageC ImageI".split()] # Write resource dictionary. # Possibly TODO: more general ExtGState (graphics state dictionaries) # ColorSpace Pattern Shading Properties resources = {'Font': self.fontObject, 'XObject': self.XObjectObject, 'ExtGState': self.alphaStateObject, 'Pattern': self.hatchObject, 'Shading': self.gouraudObject, 'ProcSet': procsets} self.writeObject(self.resourceObject, resources) def newPage(self, width, height): self.endStream() self.width, self.height = width, height contentObject = self.reserveObject('page contents') thePage = {'Type': Name('Page'), 'Parent': self.pagesObject, 'Resources': self.resourceObject, 'MediaBox': [0, 0, 72 * width, 72 * height], 'Contents': contentObject, 'Group': {'Type': Name('Group'), 'S': Name('Transparency'), 'CS': Name('DeviceRGB')}, 'Annots': self.pageAnnotations, } pageObject = self.reserveObject('page') self.writeObject(pageObject, thePage) self.pageList.append(pageObject) self.beginStream(contentObject.id, self.reserveObject('length of content stream')) # Initialize the pdf graphics state to match the default mpl # graphics context: currently only the join style needs to be set self.output(GraphicsContextPdf.joinstyles['round'], Op.setlinejoin) # Clear the list of annotations for the next page self.pageAnnotations = [] def newTextnote(self, text, positionRect=[-100, -100, 0, 0]): # Create a new annotation of type text theNote = {'Type': Name('Annot'), 'Subtype': Name('Text'), 'Contents': text, 'Rect': positionRect, } annotObject = self.reserveObject('annotation') self.writeObject(annotObject, theNote) self.pageAnnotations.append(annotObject) def finalize(self): "Write out the various deferred objects and the pdf end matter." self.endStream() self.writeFonts() self.writeObject( self.alphaStateObject, {val[0]: val[1] for val in self.alphaStates.values()}) self.writeHatches() self.writeGouraudTriangles() xobjects = { name: ob for image, name, ob in self._images.values()} for tup in self.markers.values(): xobjects[tup[0]] = tup[1] for name, value in self.multi_byte_charprocs.items(): xobjects[name] = value for name, path, trans, ob, join, cap, padding, filled, stroked \ in self.paths: xobjects[name] = ob self.writeObject(self.XObjectObject, xobjects) self.writeImages() self.writeMarkers() self.writePathCollectionTemplates() self.writeObject(self.pagesObject, {'Type': Name('Pages'), 'Kids': self.pageList, 'Count': len(self.pageList)}) self.writeInfoDict() # Finalize the file self.writeXref() self.writeTrailer() def close(self): "Flush all buffers and free all resources." self.endStream() if self.passed_in_file_object: self.fh.flush() else: if self.original_file_like is not None: self.original_file_like.write(self.fh.getvalue()) self.fh.close() def write(self, data): if self.currentstream is None: self.fh.write(data) else: self.currentstream.write(data) def output(self, *data): self.write(fill([pdfRepr(x) for x in data])) self.write(b'\n') def beginStream(self, id, len, extra=None, png=None): assert self.currentstream is None self.currentstream = Stream(id, len, self, extra, png) def endStream(self): if self.currentstream is not None: self.currentstream.end() self.currentstream = None def fontName(self, fontprop): """ Select a font based on fontprop and return a name suitable for Op.selectfont. If fontprop is a string, it will be interpreted as the filename of the font. """ if isinstance(fontprop, str): filename = fontprop elif rcParams['pdf.use14corefonts']: filename = findfont( fontprop, fontext='afm', directory=self._core14fontdir) if filename is None: filename = findfont( "Helvetica", fontext='afm', directory=self._core14fontdir) else: filename = findfont(fontprop) Fx = self.fontNames.get(filename) if Fx is None: Fx = Name('F%d' % self.nextFont) self.fontNames[filename] = Fx self.nextFont += 1 _log.debug('Assigning font %s = %r', Fx, filename) return Fx @cbook.deprecated("3.0") @property def texFontMap(self): # lazy-load texFontMap, it takes a while to parse # and usetex is a relatively rare use case return dviread.PsfontsMap(dviread.find_tex_file('pdftex.map')) def dviFontName(self, dvifont): """ Given a dvi font object, return a name suitable for Op.selectfont. This registers the font information in self.dviFontInfo if not yet registered. """ dvi_info = self.dviFontInfo.get(dvifont.texname) if dvi_info is not None: return dvi_info.pdfname tex_font_map = dviread.PsfontsMap(dviread.find_tex_file('pdftex.map')) psfont = tex_font_map[dvifont.texname] if psfont.filename is None: raise ValueError( "No usable font file found for {} (TeX: {}); " "the font may lack a Type-1 version" .format(psfont.psname, dvifont.texname)) pdfname = Name('F%d' % self.nextFont) self.nextFont += 1 _log.debug('Assigning font %s = %s (dvi)', pdfname, dvifont.texname) self.dviFontInfo[dvifont.texname] = types.SimpleNamespace( dvifont=dvifont, pdfname=pdfname, fontfile=psfont.filename, basefont=psfont.psname, encodingfile=psfont.encoding, effects=psfont.effects) return pdfname def writeFonts(self): fonts = {} for dviname, info in sorted(self.dviFontInfo.items()): Fx = info.pdfname _log.debug('Embedding Type-1 font %s from dvi.', dviname) fonts[Fx] = self._embedTeXFont(info) for filename in sorted(self.fontNames): Fx = self.fontNames[filename] _log.debug('Embedding font %s.', filename) if filename.endswith('.afm'): # from pdf.use14corefonts _log.debug('Writing AFM font.') fonts[Fx] = self._write_afm_font(filename) else: # a normal TrueType font _log.debug('Writing TrueType font.') realpath, stat_key = cbook.get_realpath_and_stat(filename) chars = self.used_characters.get(stat_key) if chars is not None and len(chars[1]): fonts[Fx] = self.embedTTF(realpath, chars[1]) self.writeObject(self.fontObject, fonts) def _write_afm_font(self, filename): with open(filename, 'rb') as fh: font = AFM(fh) fontname = font.get_fontname() fontdict = {'Type': Name('Font'), 'Subtype': Name('Type1'), 'BaseFont': Name(fontname), 'Encoding': Name('WinAnsiEncoding')} fontdictObject = self.reserveObject('font dictionary') self.writeObject(fontdictObject, fontdict) return fontdictObject def _embedTeXFont(self, fontinfo): _log.debug('Embedding TeX font %s - fontinfo=%s', fontinfo.dvifont.texname, fontinfo.__dict__) # Widths widthsObject = self.reserveObject('font widths') self.writeObject(widthsObject, fontinfo.dvifont.widths) # Font dictionary fontdictObject = self.reserveObject('font dictionary') fontdict = { 'Type': Name('Font'), 'Subtype': Name('Type1'), 'FirstChar': 0, 'LastChar': len(fontinfo.dvifont.widths) - 1, 'Widths': widthsObject, } # Encoding (if needed) if fontinfo.encodingfile is not None: enc = dviread.Encoding(fontinfo.encodingfile) differencesArray = [Name(ch) for ch in enc] differencesArray = [0] + differencesArray fontdict['Encoding'] = \ {'Type': Name('Encoding'), 'Differences': differencesArray} # If no file is specified, stop short if fontinfo.fontfile is None: _log.warning( "Because of TeX configuration (pdftex.map, see updmap option " "pdftexDownloadBase14) the font %s is not embedded. This is " "deprecated as of PDF 1.5 and it may cause the consumer " "application to show something that was not intended.", fontinfo.basefont) fontdict['BaseFont'] = Name(fontinfo.basefont) self.writeObject(fontdictObject, fontdict) return fontdictObject # We have a font file to embed - read it in and apply any effects t1font = type1font.Type1Font(fontinfo.fontfile) if fontinfo.effects: t1font = t1font.transform(fontinfo.effects) fontdict['BaseFont'] = Name(t1font.prop['FontName']) # Font descriptors may be shared between differently encoded # Type-1 fonts, so only create a new descriptor if there is no # existing descriptor for this font. effects = (fontinfo.effects.get('slant', 0.0), fontinfo.effects.get('extend', 1.0)) fontdesc = self.type1Descriptors.get((fontinfo.fontfile, effects)) if fontdesc is None: fontdesc = self.createType1Descriptor(t1font, fontinfo.fontfile) self.type1Descriptors[(fontinfo.fontfile, effects)] = fontdesc fontdict['FontDescriptor'] = fontdesc self.writeObject(fontdictObject, fontdict) return fontdictObject def createType1Descriptor(self, t1font, fontfile): # Create and write the font descriptor and the font file # of a Type-1 font fontdescObject = self.reserveObject('font descriptor') fontfileObject = self.reserveObject('font file') italic_angle = t1font.prop['ItalicAngle'] fixed_pitch = t1font.prop['isFixedPitch'] flags = 0 # fixed width if fixed_pitch: flags |= 1 << 0 # TODO: serif if 0: flags |= 1 << 1 # TODO: symbolic (most TeX fonts are) if 1: flags |= 1 << 2 # non-symbolic else: flags |= 1 << 5 # italic if italic_angle: flags |= 1 << 6 # TODO: all caps if 0: flags |= 1 << 16 # TODO: small caps if 0: flags |= 1 << 17 # TODO: force bold if 0: flags |= 1 << 18 ft2font = get_font(fontfile) descriptor = { 'Type': Name('FontDescriptor'), 'FontName': Name(t1font.prop['FontName']), 'Flags': flags, 'FontBBox': ft2font.bbox, 'ItalicAngle': italic_angle, 'Ascent': ft2font.ascender, 'Descent': ft2font.descender, 'CapHeight': 1000, # TODO: find this out 'XHeight': 500, # TODO: this one too 'FontFile': fontfileObject, 'FontFamily': t1font.prop['FamilyName'], 'StemV': 50, # TODO # (see also revision 3874; but not all TeX distros have AFM files!) # 'FontWeight': a number where 400 = Regular, 700 = Bold } self.writeObject(fontdescObject, descriptor) self.beginStream(fontfileObject.id, None, {'Length1': len(t1font.parts[0]), 'Length2': len(t1font.parts[1]), 'Length3': 0}) self.currentstream.write(t1font.parts[0]) self.currentstream.write(t1font.parts[1]) self.endStream() return fontdescObject def _get_xobject_symbol_name(self, filename, symbol_name): return "%s-%s" % ( os.path.splitext(os.path.basename(filename))[0], symbol_name) _identityToUnicodeCMap = b"""/CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (Adobe) /Ordering (UCS) /Supplement 0 >> def /CMapName /Adobe-Identity-UCS def /CMapType 2 def 1 begincodespacerange <0000> <ffff> endcodespacerange %d beginbfrange %s endbfrange endcmap CMapName currentdict /CMap defineresource pop end end""" def embedTTF(self, filename, characters): """Embed the TTF font from the named file into the document.""" font = get_font(filename) fonttype = rcParams['pdf.fonttype'] def cvt(length, upe=font.units_per_EM, nearest=True): "Convert font coordinates to PDF glyph coordinates" value = length / upe * 1000 if nearest: return np.round(value) # Perhaps best to round away from zero for bounding # boxes and the like if value < 0: return math.floor(value) else: return math.ceil(value) def embedTTFType3(font, characters, descriptor): """The Type 3-specific part of embedding a Truetype font""" widthsObject = self.reserveObject('font widths') fontdescObject = self.reserveObject('font descriptor') fontdictObject = self.reserveObject('font dictionary') charprocsObject = self.reserveObject('character procs') differencesArray = [] firstchar, lastchar = 0, 255 bbox = [cvt(x, nearest=False) for x in font.bbox] fontdict = { 'Type': Name('Font'), 'BaseFont': ps_name, 'FirstChar': firstchar, 'LastChar': lastchar, 'FontDescriptor': fontdescObject, 'Subtype': Name('Type3'), 'Name': descriptor['FontName'], 'FontBBox': bbox, 'FontMatrix': [.001, 0, 0, .001, 0, 0], 'CharProcs': charprocsObject, 'Encoding': { 'Type': Name('Encoding'), 'Differences': differencesArray}, 'Widths': widthsObject } # Make the "Widths" array from encodings import cp1252 # The "decoding_map" was changed # to a "decoding_table" as of Python 2.5. if hasattr(cp1252, 'decoding_map'): def decode_char(charcode): return cp1252.decoding_map[charcode] or 0 else: def decode_char(charcode): return ord(cp1252.decoding_table[charcode]) def get_char_width(charcode): s = decode_char(charcode) width = font.load_char( s, flags=LOAD_NO_SCALE | LOAD_NO_HINTING).horiAdvance return cvt(width) with warnings.catch_warnings(): # Ignore 'Required glyph missing from current font' warning # from ft2font: here we're just building the widths table, but # the missing glyphs may not even be used in the actual string. warnings.filterwarnings("ignore") widths = [get_char_width(charcode) for charcode in range(firstchar, lastchar+1)] descriptor['MaxWidth'] = max(widths) # Make the "Differences" array, sort the ccodes < 255 from # the multi-byte ccodes, and build the whole set of glyph ids # that we need from this font. glyph_ids = [] differences = [] multi_byte_chars = set() for c in characters: ccode = c gind = font.get_char_index(ccode) glyph_ids.append(gind) glyph_name = font.get_glyph_name(gind) if ccode <= 255: differences.append((ccode, glyph_name)) else: multi_byte_chars.add(glyph_name) differences.sort() last_c = -2 for c, name in differences: if c != last_c + 1: differencesArray.append(c) differencesArray.append(Name(name)) last_c = c # Make the charprocs array (using ttconv to generate the # actual outlines) try: rawcharprocs = ttconv.get_pdf_charprocs( os.fsencode(filename), glyph_ids) except RuntimeError: _log.warning("The PDF backend does not currently support the " "selected font.") raise charprocs = {} for charname in sorted(rawcharprocs): stream = rawcharprocs[charname] charprocDict = {'Length': len(stream)} # The 2-byte characters are used as XObjects, so they # need extra info in their dictionary if charname in multi_byte_chars: charprocDict['Type'] = Name('XObject') charprocDict['Subtype'] = Name('Form') charprocDict['BBox'] = bbox # Each glyph includes bounding box information, # but xpdf and ghostscript can't handle it in a # Form XObject (they segfault!!!), so we remove it # from the stream here. It's not needed anyway, # since the Form XObject includes it in its BBox # value. stream = stream[stream.find(b"d1") + 2:] charprocObject = self.reserveObject('charProc') self.beginStream(charprocObject.id, None, charprocDict) self.currentstream.write(stream) self.endStream() # Send the glyphs with ccode > 255 to the XObject dictionary, # and the others to the font itself if charname in multi_byte_chars: name = self._get_xobject_symbol_name(filename, charname) self.multi_byte_charprocs[name] = charprocObject else: charprocs[charname] = charprocObject # Write everything out self.writeObject(fontdictObject, fontdict) self.writeObject(fontdescObject, descriptor) self.writeObject(widthsObject, widths) self.writeObject(charprocsObject, charprocs) return fontdictObject def embedTTFType42(font, characters, descriptor): """The Type 42-specific part of embedding a Truetype font""" fontdescObject = self.reserveObject('font descriptor') cidFontDictObject = self.reserveObject('CID font dictionary') type0FontDictObject = self.reserveObject('Type 0 font dictionary') cidToGidMapObject = self.reserveObject('CIDToGIDMap stream') fontfileObject = self.reserveObject('font file stream') wObject = self.reserveObject('Type 0 widths') toUnicodeMapObject = self.reserveObject('ToUnicode map') cidFontDict = { 'Type': Name('Font'), 'Subtype': Name('CIDFontType2'), 'BaseFont': ps_name, 'CIDSystemInfo': { 'Registry': 'Adobe', 'Ordering': 'Identity', 'Supplement': 0}, 'FontDescriptor': fontdescObject, 'W': wObject, 'CIDToGIDMap': cidToGidMapObject } type0FontDict = { 'Type': Name('Font'), 'Subtype': Name('Type0'), 'BaseFont': ps_name, 'Encoding': Name('Identity-H'), 'DescendantFonts': [cidFontDictObject], 'ToUnicode': toUnicodeMapObject } # Make fontfile stream descriptor['FontFile2'] = fontfileObject length1Object = self.reserveObject('decoded length of a font') self.beginStream( fontfileObject.id, self.reserveObject('length of font stream'), {'Length1': length1Object}) with open(filename, 'rb') as fontfile: length1 = 0 while True: data = fontfile.read(4096) if not data: break length1 += len(data) self.currentstream.write(data) self.endStream() self.writeObject(length1Object, length1) # Make the 'W' (Widths) array, CidToGidMap and ToUnicode CMap # at the same time cid_to_gid_map = ['\0'] * 65536 widths = [] max_ccode = 0 for c in characters: ccode = c gind = font.get_char_index(ccode) glyph = font.load_char(ccode, flags=LOAD_NO_SCALE | LOAD_NO_HINTING) widths.append((ccode, cvt(glyph.horiAdvance))) if ccode < 65536: cid_to_gid_map[ccode] = chr(gind) max_ccode = max(ccode, max_ccode) widths.sort() cid_to_gid_map = cid_to_gid_map[:max_ccode + 1] last_ccode = -2 w = [] max_width = 0 unicode_groups = [] for ccode, width in widths: if ccode != last_ccode + 1: w.append(ccode) w.append([width]) unicode_groups.append([ccode, ccode]) else: w[-1].append(width) unicode_groups[-1][1] = ccode max_width = max(max_width, width) last_ccode = ccode unicode_bfrange = [] for start, end in unicode_groups: unicode_bfrange.append( b"<%04x> <%04x> [%s]" % (start, end, b" ".join(b"<%04x>" % x for x in range(start, end+1)))) unicode_cmap = (self._identityToUnicodeCMap % (len(unicode_groups), b"\n".join(unicode_bfrange))) # CIDToGIDMap stream cid_to_gid_map = "".join(cid_to_gid_map).encode("utf-16be") self.beginStream(cidToGidMapObject.id, None, {'Length': len(cid_to_gid_map)}) self.currentstream.write(cid_to_gid_map) self.endStream() # ToUnicode CMap self.beginStream(toUnicodeMapObject.id, None, {'Length': unicode_cmap}) self.currentstream.write(unicode_cmap) self.endStream() descriptor['MaxWidth'] = max_width # Write everything out self.writeObject(cidFontDictObject, cidFontDict) self.writeObject(type0FontDictObject, type0FontDict) self.writeObject(fontdescObject, descriptor) self.writeObject(wObject, w) return type0FontDictObject # Beginning of main embedTTF function... ps_name = font.postscript_name.encode('ascii', 'replace') ps_name = Name(ps_name) pclt = font.get_sfnt_table('pclt') or {'capHeight': 0, 'xHeight': 0} post = font.get_sfnt_table('post') or {'italicAngle': (0, 0)} ff = font.face_flags sf = font.style_flags flags = 0 symbolic = False # ps_name.name in ('Cmsy10', 'Cmmi10', 'Cmex10') if ff & FIXED_WIDTH: flags |= 1 << 0 if 0: # TODO: serif flags |= 1 << 1 if symbolic: flags |= 1 << 2 else: flags |= 1 << 5 if sf & ITALIC: flags |= 1 << 6 if 0: # TODO: all caps flags |= 1 << 16 if 0: # TODO: small caps flags |= 1 << 17 if 0: # TODO: force bold flags |= 1 << 18 descriptor = { 'Type': Name('FontDescriptor'), 'FontName': ps_name, 'Flags': flags, 'FontBBox': [cvt(x, nearest=False) for x in font.bbox], 'Ascent': cvt(font.ascender, nearest=False), 'Descent': cvt(font.descender, nearest=False), 'CapHeight': cvt(pclt['capHeight'], nearest=False), 'XHeight': cvt(pclt['xHeight']), 'ItalicAngle': post['italicAngle'][1], # ??? 'StemV': 0 # ??? } # The font subsetting to a Type 3 font does not work for # OpenType (.otf) that embed a Postscript CFF font, so avoid that -- # save as a (non-subsetted) Type 42 font instead. if is_opentype_cff_font(filename): fonttype = 42 _log.warning("%r can not be subsetted into a Type 3 font. The " "entire font will be embedded in the output.", os.path.basename(filename)) if fonttype == 3: return embedTTFType3(font, characters, descriptor) elif fonttype == 42: return embedTTFType42(font, characters, descriptor) def alphaState(self, alpha): """Return name of an ExtGState that sets alpha to the given value.""" state = self.alphaStates.get(alpha, None) if state is not None: return state[0] name = Name('A%d' % self.nextAlphaState) self.nextAlphaState += 1 self.alphaStates[alpha] = \ (name, {'Type': Name('ExtGState'), 'CA': alpha[0], 'ca': alpha[1]}) return name def hatchPattern(self, hatch_style): # The colors may come in as numpy arrays, which aren't hashable if hatch_style is not None: edge, face, hatch = hatch_style if edge is not None: edge = tuple(edge) if face is not None: face = tuple(face) hatch_style = (edge, face, hatch) pattern = self.hatchPatterns.get(hatch_style, None) if pattern is not None: return pattern name = Name('H%d' % self.nextHatch) self.nextHatch += 1 self.hatchPatterns[hatch_style] = name return name def writeHatches(self): hatchDict = dict() sidelen = 72.0 for hatch_style, name in self.hatchPatterns.items(): ob = self.reserveObject('hatch pattern') hatchDict[name] = ob res = {'Procsets': [Name(x) for x in "PDF Text ImageB ImageC ImageI".split()]} self.beginStream( ob.id, None, {'Type': Name('Pattern'), 'PatternType': 1, 'PaintType': 1, 'TilingType': 1, 'BBox': [0, 0, sidelen, sidelen], 'XStep': sidelen, 'YStep': sidelen, 'Resources': res, # Change origin to match Agg at top-left. 'Matrix': [1, 0, 0, 1, 0, self.height * 72]}) stroke_rgb, fill_rgb, path = hatch_style self.output(stroke_rgb[0], stroke_rgb[1], stroke_rgb[2], Op.setrgb_stroke) if fill_rgb is not None: self.output(fill_rgb[0], fill_rgb[1], fill_rgb[2], Op.setrgb_nonstroke, 0, 0, sidelen, sidelen, Op.rectangle, Op.fill) self.output(rcParams['hatch.linewidth'], Op.setlinewidth) self.output(*self.pathOperations( Path.hatch(path), Affine2D().scale(sidelen), simplify=False)) self.output(Op.fill_stroke) self.endStream() self.writeObject(self.hatchObject, hatchDict) def addGouraudTriangles(self, points, colors): name = Name('GT%d' % len(self.gouraudTriangles)) self.gouraudTriangles.append((name, points, colors)) return name def writeGouraudTriangles(self): gouraudDict = dict() for name, points, colors in self.gouraudTriangles: ob = self.reserveObject('Gouraud triangle') gouraudDict[name] = ob shape = points.shape flat_points = points.reshape((shape[0] * shape[1], 2)) flat_colors = colors.reshape((shape[0] * shape[1], 4)) points_min = np.min(flat_points, axis=0) - (1 << 8) points_max = np.max(flat_points, axis=0) + (1 << 8) factor = 0xffffffff / (points_max - points_min) self.beginStream( ob.id, None, {'ShadingType': 4, 'BitsPerCoordinate': 32, 'BitsPerComponent': 8, 'BitsPerFlag': 8, 'ColorSpace': Name('DeviceRGB'), 'AntiAlias': True, 'Decode': [points_min[0], points_max[0], points_min[1], points_max[1], 0, 1, 0, 1, 0, 1] }) streamarr = np.empty( (shape[0] * shape[1],), dtype=[('flags', 'u1'), ('points', '>u4', (2,)), ('colors', 'u1', (3,))]) streamarr['flags'] = 0 streamarr['points'] = (flat_points - points_min) * factor streamarr['colors'] = flat_colors[:, :3] * 255.0 self.write(streamarr.tostring()) self.endStream() self.writeObject(self.gouraudObject, gouraudDict) def imageObject(self, image): """Return name of an image XObject representing the given image.""" entry = self._images.get(id(image), None) if entry is not None: return entry[1] name = Name('I%d' % self.nextImage) ob = self.reserveObject('image %d' % self.nextImage) self.nextImage += 1 self._images[id(image)] = (image, name, ob) return name def _unpack(self, im): """ Unpack the image object im into height, width, data, alpha, where data and alpha are HxWx3 (RGB) or HxWx1 (grayscale or alpha) arrays, except alpha is None if the image is fully opaque. """ h, w = im.shape[:2] im = im[::-1] if im.ndim == 2: return h, w, im, None else: rgb = im[:, :, :3] rgb = np.array(rgb, order='C') # PDF needs a separate alpha image if im.shape[2] == 4: alpha = im[:, :, 3][..., None] if np.all(alpha == 255): alpha = None else: alpha = np.array(alpha, order='C') else: alpha = None return h, w, rgb, alpha def _writePng(self, data): """ Write the image *data* into the pdf file using png predictors with Flate compression. """ buffer = BytesIO() _png.write_png(data, buffer) buffer.seek(8) while True: length, type = struct.unpack(b'!L4s', buffer.read(8)) if type == b'IDAT': data = buffer.read(length) if len(data) != length: raise RuntimeError("truncated data") self.currentstream.write(data) elif type == b'IEND': break else: buffer.seek(length, 1) buffer.seek(4, 1) # skip CRC def _writeImg(self, data, height, width, grayscale, id, smask=None): """ Write the image *data* of size *height* x *width*, as grayscale if *grayscale* is true and RGB otherwise, as pdf object *id* and with the soft mask (alpha channel) *smask*, which should be either None or a *height* x *width* x 1 array. """ obj = {'Type': Name('XObject'), 'Subtype': Name('Image'), 'Width': width, 'Height': height, 'ColorSpace': Name('DeviceGray' if grayscale else 'DeviceRGB'), 'BitsPerComponent': 8} if smask: obj['SMask'] = smask if rcParams['pdf.compression']: png = {'Predictor': 10, 'Colors': 1 if grayscale else 3, 'Columns': width} else: png = None self.beginStream( id, self.reserveObject('length of image stream'), obj, png=png ) if png: self._writePng(data) else: self.currentstream.write(data.tostring()) self.endStream() def writeImages(self): for img, name, ob in self._images.values(): height, width, data, adata = self._unpack(img) if adata is not None: smaskObject = self.reserveObject("smask") self._writeImg(adata, height, width, True, smaskObject.id) else: smaskObject = None self._writeImg(data, height, width, False, ob.id, smaskObject) def markerObject(self, path, trans, fill, stroke, lw, joinstyle, capstyle): """Return name of a marker XObject representing the given path.""" # self.markers used by markerObject, writeMarkers, close: # mapping from (path operations, fill?, stroke?) to # [name, object reference, bounding box, linewidth] # This enables different draw_markers calls to share the XObject # if the gc is sufficiently similar: colors etc can vary, but # the choices of whether to fill and whether to stroke cannot. # We need a bounding box enclosing all of the XObject path, # but since line width may vary, we store the maximum of all # occurring line widths in self.markers. # close() is somewhat tightly coupled in that it expects the # first two components of each value in self.markers to be the # name and object reference. pathops = self.pathOperations(path, trans, simplify=False) key = (tuple(pathops), bool(fill), bool(stroke), joinstyle, capstyle) result = self.markers.get(key) if result is None: name = Name('M%d' % len(self.markers)) ob = self.reserveObject('marker %d' % len(self.markers)) bbox = path.get_extents(trans) self.markers[key] = [name, ob, bbox, lw] else: if result[-1] < lw: result[-1] = lw name = result[0] return name def writeMarkers(self): for ((pathops, fill, stroke, joinstyle, capstyle), (name, ob, bbox, lw)) in self.markers.items(): bbox = bbox.padded(lw * 0.5) self.beginStream( ob.id, None, {'Type': Name('XObject'), 'Subtype': Name('Form'), 'BBox': list(bbox.extents)}) self.output(GraphicsContextPdf.joinstyles[joinstyle], Op.setlinejoin) self.output(GraphicsContextPdf.capstyles[capstyle], Op.setlinecap) self.output(*pathops) self.output(Op.paint_path(fill, stroke)) self.endStream() def pathCollectionObject(self, gc, path, trans, padding, filled, stroked): name = Name('P%d' % len(self.paths)) ob = self.reserveObject('path %d' % len(self.paths)) self.paths.append( (name, path, trans, ob, gc.get_joinstyle(), gc.get_capstyle(), padding, filled, stroked)) return name def writePathCollectionTemplates(self): for (name, path, trans, ob, joinstyle, capstyle, padding, filled, stroked) in self.paths: pathops = self.pathOperations(path, trans, simplify=False) bbox = path.get_extents(trans) if not np.all(np.isfinite(bbox.extents)): extents = [0, 0, 0, 0] else: bbox = bbox.padded(padding) extents = list(bbox.extents) self.beginStream( ob.id, None, {'Type': Name('XObject'), 'Subtype': Name('Form'), 'BBox': extents}) self.output(GraphicsContextPdf.joinstyles[joinstyle], Op.setlinejoin) self.output(GraphicsContextPdf.capstyles[capstyle], Op.setlinecap) self.output(*pathops) self.output(Op.paint_path(filled, stroked)) self.endStream() @staticmethod def pathOperations(path, transform, clip=None, simplify=None, sketch=None): return [Verbatim(_path.convert_to_string( path, transform, clip, simplify, sketch, 6, [Op.moveto.op, Op.lineto.op, b'', Op.curveto.op, Op.closepath.op], True))] def writePath(self, path, transform, clip=False, sketch=None): if clip: clip = (0.0, 0.0, self.width * 72, self.height * 72) simplify = path.should_simplify else: clip = None simplify = False cmds = self.pathOperations(path, transform, clip, simplify=simplify, sketch=sketch) self.output(*cmds) def reserveObject(self, name=''): """Reserve an ID for an indirect object. The name is used for debugging in case we forget to print out the object with writeObject. """ id = self.nextObject self.nextObject += 1 self.xrefTable.append([None, 0, name]) return Reference(id) def recordXref(self, id): self.xrefTable[id][0] = self.fh.tell() - self.tell_base def writeObject(self, object, contents): self.recordXref(object.id) object.write(contents, self) def writeXref(self): """Write out the xref table.""" self.startxref = self.fh.tell() - self.tell_base self.write(b"xref\n0 %d\n" % self.nextObject) for i, (offset, generation, name) in enumerate(self.xrefTable): if offset is None: raise AssertionError( 'No offset for object %d (%s)' % (i, name)) else: key = b"f" if name == 'the zero object' else b"n" text = b"%010d %05d %b \n" % (offset, generation, key) self.write(text) def writeInfoDict(self): """Write out the info dictionary, checking it for good form""" def is_string_like(x): return isinstance(x, str) def is_date(x): return isinstance(x, datetime) check_trapped = (lambda x: isinstance(x, Name) and x.name in ('True', 'False', 'Unknown')) keywords = {'Title': is_string_like, 'Author': is_string_like, 'Subject': is_string_like, 'Keywords': is_string_like, 'Creator': is_string_like, 'Producer': is_string_like, 'CreationDate': is_date, 'ModDate': is_date, 'Trapped': check_trapped} for k in self.infoDict: if k not in keywords: cbook._warn_external('Unknown infodict keyword: %s' % k) else: if not keywords[k](self.infoDict[k]): cbook._warn_external( 'Bad value for infodict keyword %s' % k) self.infoObject = self.reserveObject('info') self.writeObject(self.infoObject, self.infoDict) def writeTrailer(self): """Write out the PDF trailer.""" self.write(b"trailer\n") self.write(pdfRepr( {'Size': self.nextObject, 'Root': self.rootObject, 'Info': self.infoObject})) # Could add 'ID' self.write(b"\nstartxref\n%d\n%%%%EOF\n" % self.startxref) class RendererPdf(_backend_pdf_ps.RendererPDFPSBase): @property @cbook.deprecated("3.1") def afm_font_cache(self, _cache=cbook.maxdict(50)): return _cache _afm_font_dir = pathlib.Path(rcParams["datapath"], "fonts", "pdfcorefonts") _use_afm_rc_name = "pdf.use14corefonts" def __init__(self, file, image_dpi, height, width): RendererBase.__init__(self) self.height = height self.width = width self.file = file self.gc = self.new_gc() self.mathtext_parser = MathTextParser("Pdf") self.image_dpi = image_dpi def finalize(self): self.file.output(*self.gc.finalize()) def check_gc(self, gc, fillcolor=None): orig_fill = getattr(gc, '_fillcolor', (0., 0., 0.)) gc._fillcolor = fillcolor orig_alphas = getattr(gc, '_effective_alphas', (1.0, 1.0)) if gc.get_rgb() is None: # It should not matter what color here since linewidth should be # 0 unless affected by global settings in rcParams, hence setting # zero alpha just in case. gc.set_foreground((0, 0, 0, 0), isRGBA=True) if gc._forced_alpha: gc._effective_alphas = (gc._alpha, gc._alpha) elif fillcolor is None or len(fillcolor) < 4: gc._effective_alphas = (gc._rgb[3], 1.0) else: gc._effective_alphas = (gc._rgb[3], fillcolor[3]) delta = self.gc.delta(gc) if delta: self.file.output(*delta) # Restore gc to avoid unwanted side effects gc._fillcolor = orig_fill gc._effective_alphas = orig_alphas def track_characters(self, font, s): """Keeps track of which characters are required from each font.""" if isinstance(font, str): fname = font else: fname = font.fname realpath, stat_key = cbook.get_realpath_and_stat(fname) used_characters = self.file.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].update(map(ord, s)) def merge_used_characters(self, other): for stat_key, (realpath, charset) in other.items(): used_characters = self.file.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].update(charset) def get_image_magnification(self): return self.image_dpi/72.0 def draw_image(self, gc, x, y, im, transform=None): # docstring inherited h, w = im.shape[:2] if w == 0 or h == 0: return if transform is None: # If there's no transform, alpha has already been applied gc.set_alpha(1.0) self.check_gc(gc) w = 72.0 * w / self.image_dpi h = 72.0 * h / self.image_dpi imob = self.file.imageObject(im) if transform is None: self.file.output(Op.gsave, w, 0, 0, h, x, y, Op.concat_matrix, imob, Op.use_xobject, Op.grestore) else: tr1, tr2, tr3, tr4, tr5, tr6 = transform.frozen().to_values() self.file.output(Op.gsave, 1, 0, 0, 1, x, y, Op.concat_matrix, tr1, tr2, tr3, tr4, tr5, tr6, Op.concat_matrix, imob, Op.use_xobject, Op.grestore) def draw_path(self, gc, path, transform, rgbFace=None): # docstring inherited self.check_gc(gc, rgbFace) self.file.writePath( path, transform, rgbFace is None and gc.get_hatch_path() is None, gc.get_sketch_params()) self.file.output(self.gc.paint()) def draw_path_collection(self, gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): # We can only reuse the objects if the presence of fill and # stroke (and the amount of alpha for each) is the same for # all of them can_do_optimization = True facecolors = np.asarray(facecolors) edgecolors = np.asarray(edgecolors) if not len(facecolors): filled = False can_do_optimization = not gc.get_hatch() else: if np.all(facecolors[:, 3] == facecolors[0, 3]): filled = facecolors[0, 3] != 0.0 else: can_do_optimization = False if not len(edgecolors): stroked = False else: if np.all(np.asarray(linewidths) == 0.0): stroked = False elif np.all(edgecolors[:, 3] == edgecolors[0, 3]): stroked = edgecolors[0, 3] != 0.0 else: can_do_optimization = False # Is the optimization worth it? Rough calculation: # cost of emitting a path in-line is len_path * uses_per_path # cost of XObject is len_path + 5 for the definition, # uses_per_path for the uses len_path = len(paths[0].vertices) if len(paths) > 0 else 0 uses_per_path = self._iter_collection_uses_per_path( paths, all_transforms, offsets, facecolors, edgecolors) should_do_optimization = \ len_path + uses_per_path + 5 < len_path * uses_per_path if (not can_do_optimization) or (not should_do_optimization): return RendererBase.draw_path_collection( self, gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position) padding = np.max(linewidths) path_codes = [] for i, (path, transform) in enumerate(self._iter_collection_raw_paths( master_transform, paths, all_transforms)): name = self.file.pathCollectionObject( gc, path, transform, padding, filled, stroked) path_codes.append(name) output = self.file.output output(*self.gc.push()) lastx, lasty = 0, 0 for xo, yo, path_id, gc0, rgbFace in self._iter_collection( gc, master_transform, all_transforms, path_codes, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): self.check_gc(gc0, rgbFace) dx, dy = xo - lastx, yo - lasty output(1, 0, 0, 1, dx, dy, Op.concat_matrix, path_id, Op.use_xobject) lastx, lasty = xo, yo output(*self.gc.pop()) def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): # docstring inherited # Same logic as in draw_path_collection len_marker_path = len(marker_path) uses = len(path) if len_marker_path * uses < len_marker_path + uses + 5: RendererBase.draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace) return self.check_gc(gc, rgbFace) fill = gc.fill(rgbFace) stroke = gc.stroke() output = self.file.output marker = self.file.markerObject( marker_path, marker_trans, fill, stroke, self.gc._linewidth, gc.get_joinstyle(), gc.get_capstyle()) output(Op.gsave) lastx, lasty = 0, 0 for vertices, code in path.iter_segments( trans, clip=(0, 0, self.file.width*72, self.file.height*72), simplify=False): if len(vertices): x, y = vertices[-2:] if not (0 <= x <= self.file.width * 72 and 0 <= y <= self.file.height * 72): continue dx, dy = x - lastx, y - lasty output(1, 0, 0, 1, dx, dy, Op.concat_matrix, marker, Op.use_xobject) lastx, lasty = x, y output(Op.grestore) def draw_gouraud_triangle(self, gc, points, colors, trans): self.draw_gouraud_triangles(gc, points.reshape((1, 3, 2)), colors.reshape((1, 3, 4)), trans) def draw_gouraud_triangles(self, gc, points, colors, trans): assert len(points) == len(colors) assert points.ndim == 3 assert points.shape[1] == 3 assert points.shape[2] == 2 assert colors.ndim == 3 assert colors.shape[1] == 3 assert colors.shape[2] == 4 shape = points.shape points = points.reshape((shape[0] * shape[1], 2)) tpoints = trans.transform(points) tpoints = tpoints.reshape(shape) name = self.file.addGouraudTriangles(tpoints, colors) self.check_gc(gc) self.file.output(name, Op.shading) def _setup_textpos(self, x, y, angle, oldx=0, oldy=0, oldangle=0): if angle == oldangle == 0: self.file.output(x - oldx, y - oldy, Op.textpos) else: angle = math.radians(angle) self.file.output(math.cos(angle), math.sin(angle), -math.sin(angle), math.cos(angle), x, y, Op.textmatrix) self.file.output(0, 0, Op.textpos) def draw_mathtext(self, gc, x, y, s, prop, angle): # TODO: fix positioning and encoding width, height, descent, glyphs, rects, used_characters = \ self.mathtext_parser.parse(s, 72, prop) self.merge_used_characters(used_characters) # When using Type 3 fonts, we can't use character codes higher # than 255, so we use the "Do" command to render those # instead. global_fonttype = rcParams['pdf.fonttype'] # Set up a global transformation matrix for the whole math expression a = math.radians(angle) self.file.output(Op.gsave) self.file.output(math.cos(a), math.sin(a), -math.sin(a), math.cos(a), x, y, Op.concat_matrix) self.check_gc(gc, gc._rgb) self.file.output(Op.begin_text) prev_font = None, None oldx, oldy = 0, 0 for ox, oy, fontname, fontsize, num, symbol_name in glyphs: if is_opentype_cff_font(fontname): fonttype = 42 else: fonttype = global_fonttype if fonttype == 42 or num <= 255: self._setup_textpos(ox, oy, 0, oldx, oldy) oldx, oldy = ox, oy if (fontname, fontsize) != prev_font: self.file.output(self.file.fontName(fontname), fontsize, Op.selectfont) prev_font = fontname, fontsize self.file.output(self.encode_string(chr(num), fonttype), Op.show) self.file.output(Op.end_text) # If using Type 3 fonts, render all of the multi-byte characters # as XObjects using the 'Do' command. if global_fonttype == 3: for ox, oy, fontname, fontsize, num, symbol_name in glyphs: if is_opentype_cff_font(fontname): fonttype = 42 else: fonttype = global_fonttype if fonttype == 3 and num > 255: self.file.fontName(fontname) self.file.output(Op.gsave, 0.001 * fontsize, 0, 0, 0.001 * fontsize, ox, oy, Op.concat_matrix) name = self.file._get_xobject_symbol_name( fontname, symbol_name) self.file.output(Name(name), Op.use_xobject) self.file.output(Op.grestore) # Draw any horizontal lines in the math layout for ox, oy, width, height in rects: self.file.output(Op.gsave, ox, oy, width, height, Op.rectangle, Op.fill, Op.grestore) # Pop off the global transformation self.file.output(Op.grestore) def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!', mtext=None): # docstring inherited texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() dvifile = texmanager.make_dvi(s, fontsize) with dviread.Dvi(dvifile, 72) as dvi: page, = dvi # Gather font information and do some setup for combining # characters into strings. The variable seq will contain a # sequence of font and text entries. A font entry is a list # ['font', name, size] where name is a Name object for the # font. A text entry is ['text', x, y, glyphs, x+w] where x # and y are the starting coordinates, w is the width, and # glyphs is a list; in this phase it will always contain just # one one-character string, but later it may have longer # strings interspersed with kern amounts. oldfont, seq = None, [] for x1, y1, dvifont, glyph, width in page.text: if dvifont != oldfont: pdfname = self.file.dviFontName(dvifont) seq += [['font', pdfname, dvifont.size]] oldfont = dvifont seq += [['text', x1, y1, [bytes([glyph])], x1+width]] # Find consecutive text strings with constant y coordinate and # combine into a sequence of strings and kerns, or just one # string (if any kerns would be less than 0.1 points). i, curx, fontsize = 0, 0, None while i < len(seq)-1: elt, nxt = seq[i:i+2] if elt[0] == 'font': fontsize = elt[2] elif elt[0] == nxt[0] == 'text' and elt[2] == nxt[2]: offset = elt[4] - nxt[1] if abs(offset) < 0.1: elt[3][-1] += nxt[3][0] elt[4] += nxt[4]-nxt[1] else: elt[3] += [offset*1000.0/fontsize, nxt[3][0]] elt[4] = nxt[4] del seq[i+1] continue i += 1 # Create a transform to map the dvi contents to the canvas. mytrans = Affine2D().rotate_deg(angle).translate(x, y) # Output the text. self.check_gc(gc, gc._rgb) self.file.output(Op.begin_text) curx, cury, oldx, oldy = 0, 0, 0, 0 for elt in seq: if elt[0] == 'font': self.file.output(elt[1], elt[2], Op.selectfont) elif elt[0] == 'text': curx, cury = mytrans.transform_point((elt[1], elt[2])) self._setup_textpos(curx, cury, angle, oldx, oldy) oldx, oldy = curx, cury if len(elt[3]) == 1: self.file.output(elt[3][0], Op.show) else: self.file.output(elt[3], Op.showkern) else: assert False self.file.output(Op.end_text) # Then output the boxes (e.g., variable-length lines of square # roots). boxgc = self.new_gc() boxgc.copy_properties(gc) boxgc.set_linewidth(0) pathops = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] for x1, y1, h, w in page.boxes: path = Path([[x1, y1], [x1+w, y1], [x1+w, y1+h], [x1, y1+h], [0, 0]], pathops) self.draw_path(boxgc, path, mytrans, gc._rgb) def encode_string(self, s, fonttype): if fonttype in (1, 3): return s.encode('cp1252', 'replace') return s.encode('utf-16be', 'replace') def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): # docstring inherited # TODO: combine consecutive texts into one BT/ET delimited section # This function is rather complex, since there is no way to # access characters of a Type 3 font with codes > 255. (Type # 3 fonts can not have a CIDMap). Therefore, we break the # string into chunks, where each chunk contains exclusively # 1-byte or exclusively 2-byte characters, and output each # chunk a separate command. 1-byte characters use the regular # text show command (Tj), whereas 2-byte characters use the # use XObject command (Do). If using Type 42 fonts, all of # this complication is avoided, but of course, those fonts can # not be subsetted. self.check_gc(gc, gc._rgb) if ismath: return self.draw_mathtext(gc, x, y, s, prop, angle) fontsize = prop.get_size_in_points() if rcParams['pdf.use14corefonts']: font = self._get_font_afm(prop) fonttype = 1 else: font = self._get_font_ttf(prop) self.track_characters(font, s) font.set_text(s, 0.0, flags=LOAD_NO_HINTING) fonttype = rcParams['pdf.fonttype'] # We can't subset all OpenType fonts, so switch to Type 42 # in that case. if is_opentype_cff_font(font.fname): fonttype = 42 def check_simple_method(s): """ Determine if we should use the simple or woven method to output this text, and chunks the string into 1-byte and 2-byte sections if necessary. """ use_simple_method = True chunks = [] if not rcParams['pdf.use14corefonts']: if fonttype == 3 and not isinstance(s, bytes) and len(s) != 0: # Break the string into chunks where each chunk is either # a string of chars <= 255, or a single character > 255. s = str(s) for c in s: if ord(c) <= 255: char_type = 1 else: char_type = 2 if len(chunks) and chunks[-1][0] == char_type: chunks[-1][1].append(c) else: chunks.append((char_type, [c])) use_simple_method = (len(chunks) == 1 and chunks[-1][0] == 1) return use_simple_method, chunks def draw_text_simple(): """Outputs text using the simple method.""" self.file.output(Op.begin_text, self.file.fontName(prop), fontsize, Op.selectfont) self._setup_textpos(x, y, angle) self.file.output(self.encode_string(s, fonttype), Op.show, Op.end_text) def draw_text_woven(chunks): """ Outputs text using the woven method, alternating between chunks of 1-byte and 2-byte characters. Only used for Type 3 fonts. """ chunks = [(a, ''.join(b)) for a, b in chunks] # Do the rotation and global translation as a single matrix # concatenation up front self.file.output(Op.gsave) a = math.radians(angle) self.file.output(math.cos(a), math.sin(a), -math.sin(a), math.cos(a), x, y, Op.concat_matrix) # Output all the 1-byte characters in a BT/ET group, then # output all the 2-byte characters. for mode in (1, 2): newx = oldx = 0 # Output a 1-byte character chunk if mode == 1: self.file.output(Op.begin_text, self.file.fontName(prop), fontsize, Op.selectfont) for chunk_type, chunk in chunks: if mode == 1 and chunk_type == 1: self._setup_textpos(newx, 0, 0, oldx, 0, 0) self.file.output(self.encode_string(chunk, fonttype), Op.show) oldx = newx lastgind = None for c in chunk: ccode = ord(c) gind = font.get_char_index(ccode) if gind is not None: if mode == 2 and chunk_type == 2: glyph_name = font.get_glyph_name(gind) self.file.output(Op.gsave) self.file.output(0.001 * fontsize, 0, 0, 0.001 * fontsize, newx, 0, Op.concat_matrix) name = self.file._get_xobject_symbol_name( font.fname, glyph_name) self.file.output(Name(name), Op.use_xobject) self.file.output(Op.grestore) # Move the pointer based on the character width # and kerning glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) if lastgind is not None: kern = font.get_kerning( lastgind, gind, KERNING_UNFITTED) else: kern = 0 lastgind = gind newx += kern/64.0 + glyph.linearHoriAdvance/65536.0 if mode == 1: self.file.output(Op.end_text) self.file.output(Op.grestore) use_simple_method, chunks = check_simple_method(s) if use_simple_method: return draw_text_simple() else: return draw_text_woven(chunks) def new_gc(self): # docstring inherited return GraphicsContextPdf(self.file) class GraphicsContextPdf(GraphicsContextBase): def __init__(self, file): GraphicsContextBase.__init__(self) self._fillcolor = (0.0, 0.0, 0.0) self._effective_alphas = (1.0, 1.0) self.file = file self.parent = None def __repr__(self): d = dict(self.__dict__) del d['file'] del d['parent'] return repr(d) def stroke(self): """ Predicate: does the path need to be stroked (its outline drawn)? This tests for the various conditions that disable stroking the path, in which case it would presumably be filled. """ # _linewidth > 0: in pdf a line of width 0 is drawn at minimum # possible device width, but e.g., agg doesn't draw at all return (self._linewidth > 0 and self._alpha > 0 and (len(self._rgb) <= 3 or self._rgb[3] != 0.0)) def fill(self, *args): """ Predicate: does the path need to be filled? An optional argument can be used to specify an alternative _fillcolor, as needed by RendererPdf.draw_markers. """ if len(args): _fillcolor = args[0] else: _fillcolor = self._fillcolor return (self._hatch or (_fillcolor is not None and (len(_fillcolor) <= 3 or _fillcolor[3] != 0.0))) def paint(self): """ Return the appropriate pdf operator to cause the path to be stroked, filled, or both. """ return Op.paint_path(self.fill(), self.stroke()) capstyles = {'butt': 0, 'round': 1, 'projecting': 2} joinstyles = {'miter': 0, 'round': 1, 'bevel': 2} def capstyle_cmd(self, style): return [self.capstyles[style], Op.setlinecap] def joinstyle_cmd(self, style): return [self.joinstyles[style], Op.setlinejoin] def linewidth_cmd(self, width): return [width, Op.setlinewidth] def dash_cmd(self, dashes): offset, dash = dashes if dash is None: dash = [] offset = 0 return [list(dash), offset, Op.setdash] def alpha_cmd(self, alpha, forced, effective_alphas): name = self.file.alphaState(effective_alphas) return [name, Op.setgstate] def hatch_cmd(self, hatch, hatch_color): if not hatch: if self._fillcolor is not None: return self.fillcolor_cmd(self._fillcolor) else: return [Name('DeviceRGB'), Op.setcolorspace_nonstroke] else: hatch_style = (hatch_color, self._fillcolor, hatch) name = self.file.hatchPattern(hatch_style) return [Name('Pattern'), Op.setcolorspace_nonstroke, name, Op.setcolor_nonstroke] def rgb_cmd(self, rgb): if rcParams['pdf.inheritcolor']: return [] if rgb[0] == rgb[1] == rgb[2]: return [rgb[0], Op.setgray_stroke] else: return [*rgb[:3], Op.setrgb_stroke] def fillcolor_cmd(self, rgb): if rgb is None or rcParams['pdf.inheritcolor']: return [] elif rgb[0] == rgb[1] == rgb[2]: return [rgb[0], Op.setgray_nonstroke] else: return [*rgb[:3], Op.setrgb_nonstroke] def push(self): parent = GraphicsContextPdf(self.file) parent.copy_properties(self) parent.parent = self.parent self.parent = parent return [Op.gsave] def pop(self): assert self.parent is not None self.copy_properties(self.parent) self.parent = self.parent.parent return [Op.grestore] def clip_cmd(self, cliprect, clippath): """Set clip rectangle. Calls self.pop() and self.push().""" cmds = [] # Pop graphics state until we hit the right one or the stack is empty while ((self._cliprect, self._clippath) != (cliprect, clippath) and self.parent is not None): cmds.extend(self.pop()) # Unless we hit the right one, set the clip polygon if ((self._cliprect, self._clippath) != (cliprect, clippath) or self.parent is None): cmds.extend(self.push()) if self._cliprect != cliprect: cmds.extend([cliprect, Op.rectangle, Op.clip, Op.endpath]) if self._clippath != clippath: path, affine = clippath.get_transformed_path_and_affine() cmds.extend( PdfFile.pathOperations(path, affine, simplify=False) + [Op.clip, Op.endpath]) return cmds commands = ( # must come first since may pop (('_cliprect', '_clippath'), clip_cmd), (('_alpha', '_forced_alpha', '_effective_alphas'), alpha_cmd), (('_capstyle',), capstyle_cmd), (('_fillcolor',), fillcolor_cmd), (('_joinstyle',), joinstyle_cmd), (('_linewidth',), linewidth_cmd), (('_dashes',), dash_cmd), (('_rgb',), rgb_cmd), # must come after fillcolor and rgb (('_hatch', '_hatch_color'), hatch_cmd), ) def delta(self, other): """ Copy properties of other into self and return PDF commands needed to transform self into other. """ cmds = [] fill_performed = False for params, cmd in self.commands: different = False for p in params: ours = getattr(self, p) theirs = getattr(other, p) try: if ours is None or theirs is None: different = ours is not theirs else: different = bool(ours != theirs) except ValueError: ours = np.asarray(ours) theirs = np.asarray(theirs) different = (ours.shape != theirs.shape or np.any(ours != theirs)) if different: break # Need to update hatching if we also updated fillcolor if params == ('_hatch', '_hatch_color') and fill_performed: different = True if different: if params == ('_fillcolor',): fill_performed = True theirs = [getattr(other, p) for p in params] cmds.extend(cmd(self, *theirs)) for p in params: setattr(self, p, getattr(other, p)) return cmds def copy_properties(self, other): """ Copy properties of other into self. """ GraphicsContextBase.copy_properties(self, other) fillcolor = getattr(other, '_fillcolor', self._fillcolor) effective_alphas = getattr(other, '_effective_alphas', self._effective_alphas) self._fillcolor = fillcolor self._effective_alphas = effective_alphas def finalize(self): """ Make sure every pushed graphics state is popped. """ cmds = [] while self.parent is not None: cmds.extend(self.pop()) return cmds ######################################################################## # # The following functions and classes are for pylab and implement # window/figure managers, etc... # ######################################################################## class PdfPages(object): """ A multi-page PDF file. Examples -------- >>> import matplotlib.pyplot as plt >>> # Initialize: >>> with PdfPages('foo.pdf') as pdf: ... # As many times as you like, create a figure fig and save it: ... fig = plt.figure() ... pdf.savefig(fig) ... # When no figure is specified the current figure is saved ... pdf.savefig() Notes ----- In reality :class:`PdfPages` is a thin wrapper around :class:`PdfFile`, in order to avoid confusion when using :func:`~matplotlib.pyplot.savefig` and forgetting the format argument. """ __slots__ = ('_file', 'keep_empty') def __init__(self, filename, keep_empty=True, metadata=None): """ Create a new PdfPages object. Parameters ---------- filename : str Plots using :meth:`PdfPages.savefig` will be written to a file at this location. The file is opened at once and any older file with the same name is overwritten. keep_empty : bool, optional If set to False, then empty pdf files will be deleted automatically when closed. metadata : dictionary, optional Information dictionary object (see PDF reference section 10.2.1 'Document Information Dictionary'), e.g.: `{'Creator': 'My software', 'Author': 'Me', 'Title': 'Awesome fig'}` The standard keys are `'Title'`, `'Author'`, `'Subject'`, `'Keywords'`, `'Creator'`, `'Producer'`, `'CreationDate'`, `'ModDate'`, and `'Trapped'`. Values have been predefined for `'Creator'`, `'Producer'` and `'CreationDate'`. They can be removed by setting them to `None`. """ self._file = PdfFile(filename, metadata=metadata) self.keep_empty = keep_empty def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def close(self): """ Finalize this object, making the underlying file a complete PDF file. """ self._file.finalize() self._file.close() if (self.get_pagecount() == 0 and not self.keep_empty and not self._file.passed_in_file_object): os.remove(self._file.fh.name) self._file = None def infodict(self): """ Return a modifiable information dictionary object (see PDF reference section 10.2.1 'Document Information Dictionary'). """ return self._file.infoDict def savefig(self, figure=None, **kwargs): """ Saves a :class:`~matplotlib.figure.Figure` to this file as a new page. Any other keyword arguments are passed to :meth:`~matplotlib.figure.Figure.savefig`. Parameters ---------- figure : :class:`~matplotlib.figure.Figure` or int, optional Specifies what figure is saved to file. If not specified, the active figure is saved. If a :class:`~matplotlib.figure.Figure` instance is provided, this figure is saved. If an int is specified, the figure instance to save is looked up by number. """ if not isinstance(figure, Figure): if figure is None: manager = Gcf.get_active() else: manager = Gcf.get_fig_manager(figure) if manager is None: raise ValueError("No figure {}".format(figure)) figure = manager.canvas.figure # Force use of pdf backend, as PdfPages is tightly coupled with it. try: orig_canvas = figure.canvas figure.canvas = FigureCanvasPdf(figure) figure.savefig(self, format="pdf", **kwargs) finally: figure.canvas = orig_canvas def get_pagecount(self): """ Returns the current number of pages in the multipage pdf file. """ return len(self._file.pageList) def attach_note(self, text, positionRect=[-100, -100, 0, 0]): """ Add a new text note to the page to be saved next. The optional positionRect specifies the position of the new note on the page. It is outside the page per default to make sure it is invisible on printouts. """ self._file.newTextnote(text, positionRect) class FigureCanvasPdf(FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Attributes ---------- figure : `matplotlib.figure.Figure` A high-level Figure instance """ fixed_dpi = 72 def draw(self): pass filetypes = {'pdf': 'Portable Document Format'} def get_default_filetype(self): return 'pdf' def print_pdf(self, filename, *, dpi=72, # dpi to use for images bbox_inches_restore=None, metadata=None, **kwargs): self.figure.set_dpi(72) # there are 72 pdf points to an inch width, height = self.figure.get_size_inches() if isinstance(filename, PdfPages): file = filename._file else: file = PdfFile(filename, metadata=metadata) try: file.newPage(width, height) renderer = MixedModeRenderer( self.figure, width, height, dpi, RendererPdf(file, dpi, height, width), bbox_inches_restore=bbox_inches_restore) self.figure.draw(renderer) renderer.finalize() if not isinstance(filename, PdfPages): file.finalize() finally: if isinstance(filename, PdfPages): # finish off this page file.endStream() else: # we opened the file above; now finish it off file.close() FigureManagerPdf = FigureManagerBase @_Backend.export class _BackendPdf(_Backend): FigureCanvas = FigureCanvasPdf
b79e211202f122e4034f5d0286da010500a7fd5341ec680e1798452efccf4788
import functools import os import re import signal import sys import traceback import matplotlib from matplotlib import backend_tools, cbook from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import ( _Backend, FigureCanvasBase, FigureManagerBase, NavigationToolbar2, TimerBase, cursors, ToolContainerBase, StatusbarBase, MouseButton) import matplotlib.backends.qt_editor.figureoptions as figureoptions from matplotlib.backends.qt_editor.formsubplottool import UiSubplotTool from matplotlib.backend_managers import ToolManager from .qt_compat import ( QtCore, QtGui, QtWidgets, _getSaveFileName, is_pyqt5, __version__, QT_API) backend_version = __version__ # SPECIAL_KEYS are keys that do *not* return their unicode name # instead they have manually specified names SPECIAL_KEYS = {QtCore.Qt.Key_Control: 'control', QtCore.Qt.Key_Shift: 'shift', QtCore.Qt.Key_Alt: 'alt', QtCore.Qt.Key_Meta: 'super', QtCore.Qt.Key_Return: 'enter', QtCore.Qt.Key_Left: 'left', QtCore.Qt.Key_Up: 'up', QtCore.Qt.Key_Right: 'right', QtCore.Qt.Key_Down: 'down', QtCore.Qt.Key_Escape: 'escape', QtCore.Qt.Key_F1: 'f1', QtCore.Qt.Key_F2: 'f2', QtCore.Qt.Key_F3: 'f3', QtCore.Qt.Key_F4: 'f4', QtCore.Qt.Key_F5: 'f5', QtCore.Qt.Key_F6: 'f6', QtCore.Qt.Key_F7: 'f7', QtCore.Qt.Key_F8: 'f8', QtCore.Qt.Key_F9: 'f9', QtCore.Qt.Key_F10: 'f10', QtCore.Qt.Key_F11: 'f11', QtCore.Qt.Key_F12: 'f12', QtCore.Qt.Key_Home: 'home', QtCore.Qt.Key_End: 'end', QtCore.Qt.Key_PageUp: 'pageup', QtCore.Qt.Key_PageDown: 'pagedown', QtCore.Qt.Key_Tab: 'tab', QtCore.Qt.Key_Backspace: 'backspace', QtCore.Qt.Key_Enter: 'enter', QtCore.Qt.Key_Insert: 'insert', QtCore.Qt.Key_Delete: 'delete', QtCore.Qt.Key_Pause: 'pause', QtCore.Qt.Key_SysReq: 'sysreq', QtCore.Qt.Key_Clear: 'clear', } # define which modifier keys are collected on keyboard events. # elements are (mpl names, Modifier Flag, Qt Key) tuples SUPER = 0 ALT = 1 CTRL = 2 SHIFT = 3 MODIFIER_KEYS = [('super', QtCore.Qt.MetaModifier, QtCore.Qt.Key_Meta), ('alt', QtCore.Qt.AltModifier, QtCore.Qt.Key_Alt), ('ctrl', QtCore.Qt.ControlModifier, QtCore.Qt.Key_Control), ('shift', QtCore.Qt.ShiftModifier, QtCore.Qt.Key_Shift), ] if sys.platform == 'darwin': # in OSX, the control and super (aka cmd/apple) keys are switched, so # switch them back. SPECIAL_KEYS.update({QtCore.Qt.Key_Control: 'cmd', # cmd/apple key QtCore.Qt.Key_Meta: 'control', }) MODIFIER_KEYS[0] = ('cmd', QtCore.Qt.ControlModifier, QtCore.Qt.Key_Control) MODIFIER_KEYS[2] = ('ctrl', QtCore.Qt.MetaModifier, QtCore.Qt.Key_Meta) cursord = { cursors.MOVE: QtCore.Qt.SizeAllCursor, cursors.HAND: QtCore.Qt.PointingHandCursor, cursors.POINTER: QtCore.Qt.ArrowCursor, cursors.SELECT_REGION: QtCore.Qt.CrossCursor, cursors.WAIT: QtCore.Qt.WaitCursor, } # make place holder qApp = None def _create_qApp(): """ Only one qApp can exist at a time, so check before creating one. """ global qApp if qApp is None: app = QtWidgets.QApplication.instance() if app is None: # check for DISPLAY env variable on X11 build of Qt if is_pyqt5(): try: from PyQt5 import QtX11Extras is_x11_build = True except ImportError: is_x11_build = False else: is_x11_build = hasattr(QtGui, "QX11Info") if is_x11_build: display = os.environ.get('DISPLAY') if display is None or not re.search(r':\d', display): raise RuntimeError('Invalid DISPLAY variable') qApp = QtWidgets.QApplication([b"matplotlib"]) qApp.lastWindowClosed.connect(qApp.quit) else: qApp = app if is_pyqt5(): try: qApp.setAttribute(QtCore.Qt.AA_UseHighDpiPixmaps) qApp.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling) except AttributeError: pass def _allow_super_init(__init__): """ Decorator for ``__init__`` to allow ``super().__init__`` on PyQt4/PySide2. """ if QT_API == "PyQt5": return __init__ else: # To work around lack of cooperative inheritance in PyQt4, PySide, # and PySide2, when calling FigureCanvasQT.__init__, we temporarily # patch QWidget.__init__ by a cooperative version, that first calls # QWidget.__init__ with no additional arguments, and then finds the # next class in the MRO with an __init__ that does support cooperative # inheritance (i.e., not defined by the PyQt4, PySide, PySide2, sip # or Shiboken packages), and manually call its `__init__`, once again # passing the additional arguments. qwidget_init = QtWidgets.QWidget.__init__ def cooperative_qwidget_init(self, *args, **kwargs): qwidget_init(self) mro = type(self).__mro__ next_coop_init = next( cls for cls in mro[mro.index(QtWidgets.QWidget) + 1:] if cls.__module__.split(".")[0] not in [ "PyQt4", "sip", "PySide", "PySide2", "Shiboken"]) next_coop_init.__init__(self, *args, **kwargs) @functools.wraps(__init__) def wrapper(self, *args, **kwargs): with cbook._setattr_cm(QtWidgets.QWidget, __init__=cooperative_qwidget_init): __init__(self, *args, **kwargs) return wrapper class TimerQT(TimerBase): ''' Subclass of :class:`backend_bases.TimerBase` that uses Qt timer events. Attributes ---------- interval : int The time between timer events in milliseconds. Default is 1000 ms. single_shot : bool Boolean flag indicating whether this timer should operate as single shot (run once and then stop). Defaults to False. callbacks : list Stores list of (func, args) tuples that will be called upon timer events. This list can be manipulated directly, or the functions `add_callback` and `remove_callback` can be used. ''' def __init__(self, *args, **kwargs): TimerBase.__init__(self, *args, **kwargs) # Create a new timer and connect the timeout() signal to the # _on_timer method. self._timer = QtCore.QTimer() self._timer.timeout.connect(self._on_timer) self._timer_set_interval() def _timer_set_single_shot(self): self._timer.setSingleShot(self._single) def _timer_set_interval(self): self._timer.setInterval(self._interval) def _timer_start(self): self._timer.start() def _timer_stop(self): self._timer.stop() class FigureCanvasQT(QtWidgets.QWidget, FigureCanvasBase): # map Qt button codes to MouseEvent's ones: buttond = {QtCore.Qt.LeftButton: MouseButton.LEFT, QtCore.Qt.MidButton: MouseButton.MIDDLE, QtCore.Qt.RightButton: MouseButton.RIGHT, QtCore.Qt.XButton1: MouseButton.BACK, QtCore.Qt.XButton2: MouseButton.FORWARD, } @_allow_super_init def __init__(self, figure): _create_qApp() super().__init__(figure=figure) self.figure = figure # We don't want to scale up the figure DPI more than once. # Note, we don't handle a signal for changing DPI yet. figure._original_dpi = figure.dpi self._update_figure_dpi() # In cases with mixed resolution displays, we need to be careful if the # dpi_ratio changes - in this case we need to resize the canvas # accordingly. We could watch for screenChanged events from Qt, but # the issue is that we can't guarantee this will be emitted *before* # the first paintEvent for the canvas, so instead we keep track of the # dpi_ratio value here and in paintEvent we resize the canvas if # needed. self._dpi_ratio_prev = None self._draw_pending = False self._is_drawing = False self._draw_rect_callback = lambda painter: None self.setAttribute(QtCore.Qt.WA_OpaquePaintEvent) self.setMouseTracking(True) self.resize(*self.get_width_height()) # Key auto-repeat enabled by default self._keyautorepeat = True palette = QtGui.QPalette(QtCore.Qt.white) self.setPalette(palette) def _update_figure_dpi(self): dpi = self._dpi_ratio * self.figure._original_dpi self.figure._set_dpi(dpi, forward=False) @property def _dpi_ratio(self): # Not available on Qt4 or some older Qt5. try: # self.devicePixelRatio() returns 0 in rare cases return self.devicePixelRatio() or 1 except AttributeError: return 1 def _update_dpi(self): # As described in __init__ above, we need to be careful in cases with # mixed resolution displays if dpi_ratio is changing between painting # events. # Return whether we triggered a resizeEvent (and thus a paintEvent) # from within this function. if self._dpi_ratio != self._dpi_ratio_prev: # We need to update the figure DPI. self._update_figure_dpi() self._dpi_ratio_prev = self._dpi_ratio # The easiest way to resize the canvas is to emit a resizeEvent # since we implement all the logic for resizing the canvas for # that event. event = QtGui.QResizeEvent(self.size(), self.size()) self.resizeEvent(event) # resizeEvent triggers a paintEvent itself, so we exit this one # (after making sure that the event is immediately handled). return True return False def get_width_height(self): w, h = FigureCanvasBase.get_width_height(self) return int(w / self._dpi_ratio), int(h / self._dpi_ratio) def enterEvent(self, event): try: x, y = self.mouseEventCoords(event.pos()) except AttributeError: # the event from PyQt4 does not include the position x = y = None FigureCanvasBase.enter_notify_event(self, guiEvent=event, xy=(x, y)) def leaveEvent(self, event): QtWidgets.QApplication.restoreOverrideCursor() FigureCanvasBase.leave_notify_event(self, guiEvent=event) def mouseEventCoords(self, pos): """Calculate mouse coordinates in physical pixels Qt5 use logical pixels, but the figure is scaled to physical pixels for rendering. Transform to physical pixels so that all of the down-stream transforms work as expected. Also, the origin is different and needs to be corrected. """ dpi_ratio = self._dpi_ratio x = pos.x() # flip y so y=0 is bottom of canvas y = self.figure.bbox.height / dpi_ratio - pos.y() return x * dpi_ratio, y * dpi_ratio def mousePressEvent(self, event): x, y = self.mouseEventCoords(event.pos()) button = self.buttond.get(event.button()) if button is not None: FigureCanvasBase.button_press_event(self, x, y, button, guiEvent=event) def mouseDoubleClickEvent(self, event): x, y = self.mouseEventCoords(event.pos()) button = self.buttond.get(event.button()) if button is not None: FigureCanvasBase.button_press_event(self, x, y, button, dblclick=True, guiEvent=event) def mouseMoveEvent(self, event): x, y = self.mouseEventCoords(event) FigureCanvasBase.motion_notify_event(self, x, y, guiEvent=event) def mouseReleaseEvent(self, event): x, y = self.mouseEventCoords(event) button = self.buttond.get(event.button()) if button is not None: FigureCanvasBase.button_release_event(self, x, y, button, guiEvent=event) if is_pyqt5(): def wheelEvent(self, event): x, y = self.mouseEventCoords(event) # from QWheelEvent::delta doc if event.pixelDelta().x() == 0 and event.pixelDelta().y() == 0: steps = event.angleDelta().y() / 120 else: steps = event.pixelDelta().y() if steps: FigureCanvasBase.scroll_event( self, x, y, steps, guiEvent=event) else: def wheelEvent(self, event): x = event.x() # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y() # from QWheelEvent::delta doc steps = event.delta() / 120 if event.orientation() == QtCore.Qt.Vertical: FigureCanvasBase.scroll_event( self, x, y, steps, guiEvent=event) def keyPressEvent(self, event): key = self._get_key(event) if key is not None: FigureCanvasBase.key_press_event(self, key, guiEvent=event) def keyReleaseEvent(self, event): key = self._get_key(event) if key is not None: FigureCanvasBase.key_release_event(self, key, guiEvent=event) @cbook.deprecated("3.0", alternative="event.guiEvent.isAutoRepeat") @property def keyAutoRepeat(self): """ If True, enable auto-repeat for key events. """ return self._keyautorepeat @keyAutoRepeat.setter def keyAutoRepeat(self, val): self._keyautorepeat = bool(val) def resizeEvent(self, event): # _dpi_ratio_prev will be set the first time the canvas is painted, and # the rendered buffer is useless before anyways. if self._dpi_ratio_prev is None: return w = event.size().width() * self._dpi_ratio h = event.size().height() * self._dpi_ratio dpival = self.figure.dpi winch = w / dpival hinch = h / dpival self.figure.set_size_inches(winch, hinch, forward=False) # pass back into Qt to let it finish QtWidgets.QWidget.resizeEvent(self, event) # emit our resize events FigureCanvasBase.resize_event(self) def sizeHint(self): w, h = self.get_width_height() return QtCore.QSize(w, h) def minumumSizeHint(self): return QtCore.QSize(10, 10) def _get_key(self, event): if not self._keyautorepeat and event.isAutoRepeat(): return None event_key = event.key() event_mods = int(event.modifiers()) # actually a bitmask # get names of the pressed modifier keys # bit twiddling to pick out modifier keys from event_mods bitmask, # if event_key is a MODIFIER, it should not be duplicated in mods mods = [name for name, mod_key, qt_key in MODIFIER_KEYS if event_key != qt_key and (event_mods & mod_key) == mod_key] try: # for certain keys (enter, left, backspace, etc) use a word for the # key, rather than unicode key = SPECIAL_KEYS[event_key] except KeyError: # unicode defines code points up to 0x0010ffff # QT will use Key_Codes larger than that for keyboard keys that are # are not unicode characters (like multimedia keys) # skip these # if you really want them, you should add them to SPECIAL_KEYS MAX_UNICODE = 0x10ffff if event_key > MAX_UNICODE: return None key = chr(event_key) # qt delivers capitalized letters. fix capitalization # note that capslock is ignored if 'shift' in mods: mods.remove('shift') else: key = key.lower() mods.reverse() return '+'.join(mods + [key]) def new_timer(self, *args, **kwargs): # docstring inherited return TimerQT(*args, **kwargs) def flush_events(self): # docstring inherited qApp.processEvents() def start_event_loop(self, timeout=0): # docstring inherited if hasattr(self, "_event_loop") and self._event_loop.isRunning(): raise RuntimeError("Event loop already running") self._event_loop = event_loop = QtCore.QEventLoop() if timeout: timer = QtCore.QTimer.singleShot(timeout * 1000, event_loop.quit) event_loop.exec_() def stop_event_loop(self, event=None): # docstring inherited if hasattr(self, "_event_loop"): self._event_loop.quit() def draw(self): """Render the figure, and queue a request for a Qt draw. """ # The renderer draw is done here; delaying causes problems with code # that uses the result of the draw() to update plot elements. if self._is_drawing: return with cbook._setattr_cm(self, _is_drawing=True): super().draw() self.update() def draw_idle(self): """Queue redraw of the Agg buffer and request Qt paintEvent. """ # The Agg draw needs to be handled by the same thread matplotlib # modifies the scene graph from. Post Agg draw request to the # current event loop in order to ensure thread affinity and to # accumulate multiple draw requests from event handling. # TODO: queued signal connection might be safer than singleShot if not (self._draw_pending or self._is_drawing): self._draw_pending = True QtCore.QTimer.singleShot(0, self._draw_idle) def _draw_idle(self): if self.height() < 0 or self.width() < 0: self._draw_pending = False if not self._draw_pending: return try: self.draw() except Exception: # Uncaught exceptions are fatal for PyQt5, so catch them instead. traceback.print_exc() finally: self._draw_pending = False def drawRectangle(self, rect): # Draw the zoom rectangle to the QPainter. _draw_rect_callback needs # to be called at the end of paintEvent. if rect is not None: def _draw_rect_callback(painter): pen = QtGui.QPen(QtCore.Qt.black, 1 / self._dpi_ratio, QtCore.Qt.DotLine) painter.setPen(pen) painter.drawRect(*(pt / self._dpi_ratio for pt in rect)) else: def _draw_rect_callback(painter): return self._draw_rect_callback = _draw_rect_callback self.update() class MainWindow(QtWidgets.QMainWindow): closing = QtCore.Signal() def closeEvent(self, event): self.closing.emit() QtWidgets.QMainWindow.closeEvent(self, event) class FigureManagerQT(FigureManagerBase): """ Attributes ---------- canvas : `FigureCanvas` The FigureCanvas instance num : int or str The Figure number toolbar : qt.QToolBar The qt.QToolBar window : qt.QMainWindow The qt.QMainWindow """ def __init__(self, canvas, num): FigureManagerBase.__init__(self, canvas, num) self.canvas = canvas self.window = MainWindow() self.window.closing.connect(canvas.close_event) self.window.closing.connect(self._widgetclosed) self.window.setWindowTitle("Figure %d" % num) image = os.path.join(matplotlib.rcParams['datapath'], 'images', 'matplotlib.svg') self.window.setWindowIcon(QtGui.QIcon(image)) # Give the keyboard focus to the figure instead of the # manager; StrongFocus accepts both tab and click to focus and # will enable the canvas to process event w/o clicking. # ClickFocus only takes the focus is the window has been # clicked # on. http://qt-project.org/doc/qt-4.8/qt.html#FocusPolicy-enum or # http://doc.qt.digia.com/qt/qt.html#FocusPolicy-enum self.canvas.setFocusPolicy(QtCore.Qt.StrongFocus) self.canvas.setFocus() self.window._destroying = False self.toolmanager = self._get_toolmanager() self.toolbar = self._get_toolbar(self.canvas, self.window) self.statusbar = None if self.toolmanager: backend_tools.add_tools_to_manager(self.toolmanager) if self.toolbar: backend_tools.add_tools_to_container(self.toolbar) self.statusbar = StatusbarQt(self.window, self.toolmanager) if self.toolbar is not None: self.window.addToolBar(self.toolbar) if not self.toolmanager: # add text label to status bar statusbar_label = QtWidgets.QLabel() self.window.statusBar().addWidget(statusbar_label) self.toolbar.message.connect(statusbar_label.setText) tbs_height = self.toolbar.sizeHint().height() else: tbs_height = 0 # resize the main window so it will display the canvas with the # requested size: cs = canvas.sizeHint() sbs = self.window.statusBar().sizeHint() height = cs.height() + tbs_height + sbs.height() self.window.resize(cs.width(), height) self.window.setCentralWidget(self.canvas) if matplotlib.is_interactive(): self.window.show() self.canvas.draw_idle() self.window.raise_() def full_screen_toggle(self): if self.window.isFullScreen(): self.window.showNormal() else: self.window.showFullScreen() def _widgetclosed(self): if self.window._destroying: return self.window._destroying = True try: Gcf.destroy(self.num) except AttributeError: pass # It seems that when the python session is killed, # Gcf can get destroyed before the Gcf.destroy # line is run, leading to a useless AttributeError. def _get_toolbar(self, canvas, parent): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2QT(canvas, parent, False) elif matplotlib.rcParams['toolbar'] == 'toolmanager': toolbar = ToolbarQt(self.toolmanager, self.window) else: toolbar = None return toolbar def _get_toolmanager(self): if matplotlib.rcParams['toolbar'] == 'toolmanager': toolmanager = ToolManager(self.canvas.figure) else: toolmanager = None return toolmanager def resize(self, width, height): # these are Qt methods so they return sizes in 'virtual' pixels # so we do not need to worry about dpi scaling here. extra_width = self.window.width() - self.canvas.width() extra_height = self.window.height() - self.canvas.height() self.window.resize(width+extra_width, height+extra_height) def show(self): self.window.show() self.window.activateWindow() self.window.raise_() def destroy(self, *args): # check for qApp first, as PySide deletes it in its atexit handler if QtWidgets.QApplication.instance() is None: return if self.window._destroying: return self.window._destroying = True if self.toolbar: self.toolbar.destroy() self.window.close() def get_window_title(self): return self.window.windowTitle() def set_window_title(self, title): self.window.setWindowTitle(title) class NavigationToolbar2QT(NavigationToolbar2, QtWidgets.QToolBar): message = QtCore.Signal(str) def __init__(self, canvas, parent, coordinates=True): """ coordinates: should we show the coordinates on the right? """ self.canvas = canvas self.parent = parent self.coordinates = coordinates self._actions = {} """A mapping of toolitem method names to their QActions""" QtWidgets.QToolBar.__init__(self, parent) NavigationToolbar2.__init__(self, canvas) def _icon(self, name): if is_pyqt5(): name = name.replace('.png', '_large.png') pm = QtGui.QPixmap(os.path.join(self.basedir, name)) if hasattr(pm, 'setDevicePixelRatio'): pm.setDevicePixelRatio(self.canvas._dpi_ratio) return QtGui.QIcon(pm) def _init_toolbar(self): self.basedir = os.path.join(matplotlib.rcParams['datapath'], 'images') for text, tooltip_text, image_file, callback in self.toolitems: if text is None: self.addSeparator() else: a = self.addAction(self._icon(image_file + '.png'), text, getattr(self, callback)) self._actions[callback] = a if callback in ['zoom', 'pan']: a.setCheckable(True) if tooltip_text is not None: a.setToolTip(tooltip_text) if text == 'Subplots': a = self.addAction(self._icon("qt4_editor_options.png"), 'Customize', self.edit_parameters) a.setToolTip('Edit axis, curve and image parameters') # Add the x,y location widget at the right side of the toolbar # The stretch factor is 1 which means any resizing of the toolbar # will resize this label instead of the buttons. if self.coordinates: self.locLabel = QtWidgets.QLabel("", self) self.locLabel.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTop) self.locLabel.setSizePolicy( QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Ignored)) labelAction = self.addWidget(self.locLabel) labelAction.setVisible(True) # Esthetic adjustments - we need to set these explicitly in PyQt5 # otherwise the layout looks different - but we don't want to set it if # not using HiDPI icons otherwise they look worse than before. if is_pyqt5(): self.setIconSize(QtCore.QSize(24, 24)) self.layout().setSpacing(12) @cbook.deprecated("3.1") @property def buttons(self): return {} @cbook.deprecated("3.1") @property def adj_window(self): return None if is_pyqt5(): # For some reason, self.setMinimumHeight doesn't seem to carry over to # the actual sizeHint, so override it instead in order to make the # aesthetic adjustments noted above. def sizeHint(self): size = super().sizeHint() size.setHeight(max(48, size.height())) return size def edit_parameters(self): axes = self.canvas.figure.get_axes() if not axes: QtWidgets.QMessageBox.warning( self.parent, "Error", "There are no axes to edit.") return elif len(axes) == 1: ax, = axes else: titles = [ ax.get_label() or ax.get_title() or " - ".join(filter(None, [ax.get_xlabel(), ax.get_ylabel()])) or f"<anonymous {type(ax).__name__}>" for ax in axes] duplicate_titles = [ title for title in titles if titles.count(title) > 1] for i, ax in enumerate(axes): if titles[i] in duplicate_titles: titles[i] += f" (id: {id(ax):#x})" # Deduplicate titles. item, ok = QtWidgets.QInputDialog.getItem( self.parent, 'Customize', 'Select axes:', titles, 0, False) if not ok: return ax = axes[titles.index(item)] figureoptions.figure_edit(ax, self) def _update_buttons_checked(self): # sync button checkstates to match active mode self._actions['pan'].setChecked(self._active == 'PAN') self._actions['zoom'].setChecked(self._active == 'ZOOM') def pan(self, *args): super().pan(*args) self._update_buttons_checked() def zoom(self, *args): super().zoom(*args) self._update_buttons_checked() def set_message(self, s): self.message.emit(s) if self.coordinates: self.locLabel.setText(s) def set_cursor(self, cursor): self.canvas.setCursor(cursord[cursor]) def draw_rubberband(self, event, x0, y0, x1, y1): height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 rect = [int(val) for val in (x0, y0, x1 - x0, y1 - y0)] self.canvas.drawRectangle(rect) def remove_rubberband(self): self.canvas.drawRectangle(None) def configure_subplots(self): image = os.path.join(matplotlib.rcParams['datapath'], 'images', 'matplotlib.png') dia = SubplotToolQt(self.canvas.figure, self.canvas.parent()) dia.setWindowIcon(QtGui.QIcon(image)) dia.exec_() def save_figure(self, *args): filetypes = self.canvas.get_supported_filetypes_grouped() sorted_filetypes = sorted(filetypes.items()) default_filetype = self.canvas.get_default_filetype() startpath = os.path.expanduser( matplotlib.rcParams['savefig.directory']) start = os.path.join(startpath, self.canvas.get_default_filename()) filters = [] selectedFilter = None for name, exts in sorted_filetypes: exts_list = " ".join(['*.%s' % ext for ext in exts]) filter = '%s (%s)' % (name, exts_list) if default_filetype in exts: selectedFilter = filter filters.append(filter) filters = ';;'.join(filters) fname, filter = _getSaveFileName(self.canvas.parent(), "Choose a filename to save to", start, filters, selectedFilter) if fname: # Save dir for next time, unless empty str (i.e., use cwd). if startpath != "": matplotlib.rcParams['savefig.directory'] = ( os.path.dirname(fname)) try: self.canvas.figure.savefig(fname) except Exception as e: QtWidgets.QMessageBox.critical( self, "Error saving file", str(e), QtWidgets.QMessageBox.Ok, QtWidgets.QMessageBox.NoButton) def set_history_buttons(self): can_backward = self._nav_stack._pos > 0 can_forward = self._nav_stack._pos < len(self._nav_stack._elements) - 1 self._actions['back'].setEnabled(can_backward) self._actions['forward'].setEnabled(can_forward) class SubplotToolQt(UiSubplotTool): def __init__(self, targetfig, parent): UiSubplotTool.__init__(self, None) self._figure = targetfig for lower, higher in [("bottom", "top"), ("left", "right")]: self._widgets[lower].valueChanged.connect( lambda val: self._widgets[higher].setMinimum(val + .001)) self._widgets[higher].valueChanged.connect( lambda val: self._widgets[lower].setMaximum(val - .001)) self._attrs = ["top", "bottom", "left", "right", "hspace", "wspace"] self._defaults = {attr: vars(self._figure.subplotpars)[attr] for attr in self._attrs} # Set values after setting the range callbacks, but before setting up # the redraw callbacks. self._reset() for attr in self._attrs: self._widgets[attr].valueChanged.connect(self._on_value_changed) for action, method in [("Export values", self._export_values), ("Tight layout", self._tight_layout), ("Reset", self._reset), ("Close", self.close)]: self._widgets[action].clicked.connect(method) def _export_values(self): # Explicitly round to 3 decimals (which is also the spinbox precision) # to avoid numbers of the form 0.100...001. dialog = QtWidgets.QDialog() layout = QtWidgets.QVBoxLayout() dialog.setLayout(layout) text = QtWidgets.QPlainTextEdit() text.setReadOnly(True) layout.addWidget(text) text.setPlainText( ",\n".join("{}={:.3}".format(attr, self._widgets[attr].value()) for attr in self._attrs)) # Adjust the height of the text widget to fit the whole text, plus # some padding. size = text.maximumSize() size.setHeight( QtGui.QFontMetrics(text.document().defaultFont()) .size(0, text.toPlainText()).height() + 20) text.setMaximumSize(size) dialog.exec_() def _on_value_changed(self): self._figure.subplots_adjust(**{attr: self._widgets[attr].value() for attr in self._attrs}) self._figure.canvas.draw_idle() def _tight_layout(self): self._figure.tight_layout() for attr in self._attrs: widget = self._widgets[attr] widget.blockSignals(True) widget.setValue(vars(self._figure.subplotpars)[attr]) widget.blockSignals(False) self._figure.canvas.draw_idle() def _reset(self): for attr, value in self._defaults.items(): self._widgets[attr].setValue(value) class ToolbarQt(ToolContainerBase, QtWidgets.QToolBar): def __init__(self, toolmanager, parent): ToolContainerBase.__init__(self, toolmanager) QtWidgets.QToolBar.__init__(self, parent) self._toolitems = {} self._groups = {} @property def _icon_extension(self): if is_pyqt5(): return '_large.png' return '.png' def add_toolitem( self, name, group, position, image_file, description, toggle): button = QtWidgets.QToolButton(self) button.setIcon(self._icon(image_file)) button.setText(name) if description: button.setToolTip(description) def handler(): self.trigger_tool(name) if toggle: button.setCheckable(True) button.toggled.connect(handler) else: button.clicked.connect(handler) self._toolitems.setdefault(name, []) self._add_to_group(group, name, button, position) self._toolitems[name].append((button, handler)) def _add_to_group(self, group, name, button, position): gr = self._groups.get(group, []) if not gr: sep = self.addSeparator() gr.append(sep) before = gr[position] widget = self.insertWidget(before, button) gr.insert(position, widget) self._groups[group] = gr def _icon(self, name): pm = QtGui.QPixmap(name) if hasattr(pm, 'setDevicePixelRatio'): pm.setDevicePixelRatio(self.toolmanager.canvas._dpi_ratio) return QtGui.QIcon(pm) def toggle_toolitem(self, name, toggled): if name not in self._toolitems: return for button, handler in self._toolitems[name]: button.toggled.disconnect(handler) button.setChecked(toggled) button.toggled.connect(handler) def remove_toolitem(self, name): for button, handler in self._toolitems[name]: button.setParent(None) del self._toolitems[name] class StatusbarQt(StatusbarBase, QtWidgets.QLabel): def __init__(self, window, *args, **kwargs): StatusbarBase.__init__(self, *args, **kwargs) QtWidgets.QLabel.__init__(self) window.statusBar().addWidget(self) def set_message(self, s): self.setText(s) class ConfigureSubplotsQt(backend_tools.ConfigureSubplotsBase): def trigger(self, *args): NavigationToolbar2QT.configure_subplots( self._make_classic_style_pseudo_toolbar()) class SaveFigureQt(backend_tools.SaveFigureBase): def trigger(self, *args): NavigationToolbar2QT.save_figure( self._make_classic_style_pseudo_toolbar()) class SetCursorQt(backend_tools.SetCursorBase): def set_cursor(self, cursor): NavigationToolbar2QT.set_cursor( self._make_classic_style_pseudo_toolbar(), cursor) class RubberbandQt(backend_tools.RubberbandBase): def draw_rubberband(self, x0, y0, x1, y1): NavigationToolbar2QT.draw_rubberband( self._make_classic_style_pseudo_toolbar(), None, x0, y0, x1, y1) def remove_rubberband(self): NavigationToolbar2QT.remove_rubberband( self._make_classic_style_pseudo_toolbar()) class HelpQt(backend_tools.ToolHelpBase): def trigger(self, *args): QtWidgets.QMessageBox.information(None, "Help", self._get_help_html()) class ToolCopyToClipboardQT(backend_tools.ToolCopyToClipboardBase): def trigger(self, *args, **kwargs): pixmap = self.canvas.grab() qApp.clipboard().setPixmap(pixmap) backend_tools.ToolSaveFigure = SaveFigureQt backend_tools.ToolConfigureSubplots = ConfigureSubplotsQt backend_tools.ToolSetCursor = SetCursorQt backend_tools.ToolRubberband = RubberbandQt backend_tools.ToolHelp = HelpQt backend_tools.ToolCopyToClipboard = ToolCopyToClipboardQT @cbook.deprecated("3.0") def error_msg_qt(msg, parent=None): if not isinstance(msg, str): msg = ','.join(map(str, msg)) QtWidgets.QMessageBox.warning(None, "Matplotlib", msg, QtGui.QMessageBox.Ok) @cbook.deprecated("3.0") def exception_handler(type, value, tb): """Handle uncaught exceptions It does not catch SystemExit """ msg = '' # get the filename attribute if available (for IOError) if hasattr(value, 'filename') and value.filename is not None: msg = value.filename + ': ' if hasattr(value, 'strerror') and value.strerror is not None: msg += value.strerror else: msg += str(value) if len(msg): error_msg_qt(msg) @_Backend.export class _BackendQT5(_Backend): required_interactive_framework = "qt5" FigureCanvas = FigureCanvasQT FigureManager = FigureManagerQT @staticmethod def trigger_manager_draw(manager): manager.canvas.draw_idle() @staticmethod def mainloop(): old_signal = signal.getsignal(signal.SIGINT) # allow SIGINT exceptions to close the plot window. signal.signal(signal.SIGINT, signal.SIG_DFL) try: qApp.exec_() finally: # reset the SIGINT exception handler signal.signal(signal.SIGINT, old_signal)
3de21440789ccf991e55fb05e06fab21c8f5d9f036cad88426ff588ce30298e1
""" An agg http://antigrain.com/ backend Features that are implemented * capstyles and join styles * dashes * linewidth * lines, rectangles, ellipses * clipping to a rectangle * output to RGBA and PNG, optionally JPEG and TIFF * alpha blending * DPI scaling properly - everything scales properly (dashes, linewidths, etc) * draw polygon * freetype2 w/ ft2font TODO: * integrate screen dpi w/ ppi and text """ try: import threading except ImportError: import dummy_threading as threading import numpy as np from collections import OrderedDict from math import radians, cos, sin from matplotlib import cbook, rcParams, __version__ from matplotlib.backend_bases import ( _Backend, FigureCanvasBase, FigureManagerBase, RendererBase) from matplotlib.font_manager import findfont, get_font from matplotlib.ft2font import (LOAD_FORCE_AUTOHINT, LOAD_NO_HINTING, LOAD_DEFAULT, LOAD_NO_AUTOHINT) from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib.transforms import Bbox, BboxBase from matplotlib import colors as mcolors from matplotlib.backends._backend_agg import RendererAgg as _RendererAgg from matplotlib.backend_bases import _has_pil if _has_pil: from PIL import Image backend_version = 'v2.2' def get_hinting_flag(): mapping = { True: LOAD_FORCE_AUTOHINT, False: LOAD_NO_HINTING, 'either': LOAD_DEFAULT, 'native': LOAD_NO_AUTOHINT, 'auto': LOAD_FORCE_AUTOHINT, 'none': LOAD_NO_HINTING } return mapping[rcParams['text.hinting']] class RendererAgg(RendererBase): """ The renderer handles all the drawing primitives using a graphics context instance that controls the colors/styles """ # we want to cache the fonts at the class level so that when # multiple figures are created we can reuse them. This helps with # a bug on windows where the creation of too many figures leads to # too many open file handles. However, storing them at the class # level is not thread safe. The solution here is to let the # FigureCanvas acquire a lock on the fontd at the start of the # draw, and release it when it is done. This allows multiple # renderers to share the cached fonts, but only one figure can # draw at time and so the font cache is used by only one # renderer at a time. lock = threading.RLock() def __init__(self, width, height, dpi): RendererBase.__init__(self) self.dpi = dpi self.width = width self.height = height self._renderer = _RendererAgg(int(width), int(height), dpi) self._filter_renderers = [] self._update_methods() self.mathtext_parser = MathTextParser('Agg') self.bbox = Bbox.from_bounds(0, 0, self.width, self.height) def __getstate__(self): # We only want to preserve the init keywords of the Renderer. # Anything else can be re-created. return {'width': self.width, 'height': self.height, 'dpi': self.dpi} def __setstate__(self, state): self.__init__(state['width'], state['height'], state['dpi']) def _update_methods(self): self.draw_gouraud_triangle = self._renderer.draw_gouraud_triangle self.draw_gouraud_triangles = self._renderer.draw_gouraud_triangles self.draw_image = self._renderer.draw_image self.draw_markers = self._renderer.draw_markers self.draw_path_collection = self._renderer.draw_path_collection self.draw_quad_mesh = self._renderer.draw_quad_mesh self.copy_from_bbox = self._renderer.copy_from_bbox self.get_content_extents = self._renderer.get_content_extents def tostring_rgba_minimized(self): extents = self.get_content_extents() bbox = [[extents[0], self.height - (extents[1] + extents[3])], [extents[0] + extents[2], self.height - extents[1]]] region = self.copy_from_bbox(bbox) return np.array(region), extents def draw_path(self, gc, path, transform, rgbFace=None): # docstring inherited nmax = rcParams['agg.path.chunksize'] # here at least for testing npts = path.vertices.shape[0] if (nmax > 100 and npts > nmax and path.should_simplify and rgbFace is None and gc.get_hatch() is None): nch = np.ceil(npts / nmax) chsize = int(np.ceil(npts / nch)) i0 = np.arange(0, npts, chsize) i1 = np.zeros_like(i0) i1[:-1] = i0[1:] - 1 i1[-1] = npts for ii0, ii1 in zip(i0, i1): v = path.vertices[ii0:ii1, :] c = path.codes if c is not None: c = c[ii0:ii1] c[0] = Path.MOVETO # move to end of last chunk p = Path(v, c) try: self._renderer.draw_path(gc, p, transform, rgbFace) except OverflowError: raise OverflowError("Exceeded cell block limit (set " "'agg.path.chunksize' rcparam)") else: try: self._renderer.draw_path(gc, path, transform, rgbFace) except OverflowError: raise OverflowError("Exceeded cell block limit (set " "'agg.path.chunksize' rcparam)") def draw_mathtext(self, gc, x, y, s, prop, angle): """ Draw the math text using matplotlib.mathtext """ ox, oy, width, height, descent, font_image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) xd = descent * sin(radians(angle)) yd = descent * cos(radians(angle)) x = np.round(x + ox + xd) y = np.round(y - oy + yd) self._renderer.draw_text_image(font_image, x, y + 1, angle, gc) def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): # docstring inherited if ismath: return self.draw_mathtext(gc, x, y, s, prop, angle) flags = get_hinting_flag() font = self._get_agg_font(prop) if font is None: return None if len(s) == 1 and ord(s) > 127: font.load_char(ord(s), flags=flags) else: # We pass '0' for angle here, since it will be rotated (in raster # space) in the following call to draw_text_image). font.set_text(s, 0, flags=flags) font.draw_glyphs_to_bitmap(antialiased=rcParams['text.antialiased']) d = font.get_descent() / 64.0 # The descent needs to be adjusted for the angle. xo, yo = font.get_bitmap_offset() xo /= 64.0 yo /= 64.0 xd = -d * sin(radians(angle)) yd = d * cos(radians(angle)) self._renderer.draw_text_image( font, np.round(x - xd + xo), np.round(y + yd + yo) + 1, angle, gc) def get_text_width_height_descent(self, s, prop, ismath): # docstring inherited if ismath in ["TeX", "TeX!"]: # todo: handle props texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent( s, fontsize, renderer=self) return w, h, d if ismath: ox, oy, width, height, descent, fonts, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) return width, height, descent flags = get_hinting_flag() font = self._get_agg_font(prop) font.set_text(s, 0.0, flags=flags) w, h = font.get_width_height() # width and height of unrotated string d = font.get_descent() w /= 64.0 # convert from subpixels h /= 64.0 d /= 64.0 return w, h, d def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!', mtext=None): # docstring inherited # todo, handle props, angle, origins size = prop.get_size_in_points() texmanager = self.get_texmanager() Z = texmanager.get_grey(s, size, self.dpi) Z = np.array(Z * 255.0, np.uint8) w, h, d = self.get_text_width_height_descent(s, prop, ismath) xd = d * sin(radians(angle)) yd = d * cos(radians(angle)) x = np.round(x + xd) y = np.round(y + yd) self._renderer.draw_text_image(Z, x, y, angle, gc) def get_canvas_width_height(self): # docstring inherited return self.width, self.height def _get_agg_font(self, prop): """ Get the font for text instance t, caching for efficiency """ fname = findfont(prop) font = get_font(fname) font.clear() size = prop.get_size_in_points() font.set_size(size, self.dpi) return font def points_to_pixels(self, points): # docstring inherited return points * self.dpi / 72 def buffer_rgba(self): return memoryview(self._renderer) def tostring_argb(self): return np.asarray(self._renderer).take([3, 0, 1, 2], axis=2).tobytes() def tostring_rgb(self): return np.asarray(self._renderer).take([0, 1, 2], axis=2).tobytes() def clear(self): self._renderer.clear() def option_image_nocomposite(self): # docstring inherited # It is generally faster to composite each image directly to # the Figure, and there's no file size benefit to compositing # with the Agg backend return True def option_scale_image(self): # docstring inherited return False def restore_region(self, region, bbox=None, xy=None): """ Restore the saved region. If bbox (instance of BboxBase, or its extents) is given, only the region specified by the bbox will be restored. *xy* (a pair of floats) optionally specifies the new position (the LLC of the original region, not the LLC of the bbox) where the region will be restored. >>> region = renderer.copy_from_bbox() >>> x1, y1, x2, y2 = region.get_extents() >>> renderer.restore_region(region, bbox=(x1+dx, y1, x2, y2), ... xy=(x1-dx, y1)) """ if bbox is not None or xy is not None: if bbox is None: x1, y1, x2, y2 = region.get_extents() elif isinstance(bbox, BboxBase): x1, y1, x2, y2 = bbox.extents else: x1, y1, x2, y2 = bbox if xy is None: ox, oy = x1, y1 else: ox, oy = xy # The incoming data is float, but the _renderer type-checking wants # to see integers. self._renderer.restore_region(region, int(x1), int(y1), int(x2), int(y2), int(ox), int(oy)) else: self._renderer.restore_region(region) def start_filter(self): """ Start filtering. It simply create a new canvas (the old one is saved). """ self._filter_renderers.append(self._renderer) self._renderer = _RendererAgg(int(self.width), int(self.height), self.dpi) self._update_methods() def stop_filter(self, post_processing): """ Save the plot in the current canvas as a image and apply the *post_processing* function. def post_processing(image, dpi): # ny, nx, depth = image.shape # image (numpy array) has RGBA channels and has a depth of 4. ... # create a new_image (numpy array of 4 channels, size can be # different). The resulting image may have offsets from # lower-left corner of the original image return new_image, offset_x, offset_y The saved renderer is restored and the returned image from post_processing is plotted (using draw_image) on it. """ width, height = int(self.width), int(self.height) buffer, (l, b, w, h) = self.tostring_rgba_minimized() self._renderer = self._filter_renderers.pop() self._update_methods() if w > 0 and h > 0: img = np.frombuffer(buffer, np.uint8) img, ox, oy = post_processing(img.reshape((h, w, 4)) / 255., self.dpi) gc = self.new_gc() if img.dtype.kind == 'f': img = np.asarray(img * 255., np.uint8) img = img[::-1] self._renderer.draw_image(gc, l + ox, height - b - h + oy, img) class FigureCanvasAgg(FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Attributes ---------- figure : `matplotlib.figure.Figure` A high-level Figure instance """ def copy_from_bbox(self, bbox): renderer = self.get_renderer() return renderer.copy_from_bbox(bbox) def restore_region(self, region, bbox=None, xy=None): renderer = self.get_renderer() return renderer.restore_region(region, bbox, xy) def draw(self): """ Draw the figure using the renderer. """ self.renderer = self.get_renderer(cleared=True) with RendererAgg.lock: self.figure.draw(self.renderer) # A GUI class may be need to update a window using this draw, so # don't forget to call the superclass. super().draw() def get_renderer(self, cleared=False): l, b, w, h = self.figure.bbox.bounds key = w, h, self.figure.dpi reuse_renderer = (hasattr(self, "renderer") and getattr(self, "_lastKey", None) == key) if not reuse_renderer: self.renderer = RendererAgg(w, h, self.figure.dpi) self._lastKey = key elif cleared: self.renderer.clear() return self.renderer def tostring_rgb(self): """Get the image as an RGB byte string. `draw` must be called at least once before this function will work and to update the renderer for any subsequent changes to the Figure. Returns ------- bytes """ return self.renderer.tostring_rgb() def tostring_argb(self): """Get the image as an ARGB byte string. `draw` must be called at least once before this function will work and to update the renderer for any subsequent changes to the Figure. Returns ------- bytes """ return self.renderer.tostring_argb() def buffer_rgba(self): """Get the image as a memoryview to the renderer's buffer. `draw` must be called at least once before this function will work and to update the renderer for any subsequent changes to the Figure. Returns ------- memoryview """ return self.renderer.buffer_rgba() def print_raw(self, filename_or_obj, *args, **kwargs): FigureCanvasAgg.draw(self) renderer = self.get_renderer() with cbook._setattr_cm(renderer, dpi=self.figure.dpi), \ cbook.open_file_cm(filename_or_obj, "wb") as fh: fh.write(renderer._renderer.buffer_rgba()) print_rgba = print_raw def print_png(self, filename_or_obj, *args, metadata=None, pil_kwargs=None, **kwargs): """ Write the figure to a PNG file. Parameters ---------- filename_or_obj : str or PathLike or file-like object The file to write to. metadata : dict, optional Metadata in the PNG file as key-value pairs of bytes or latin-1 encodable strings. According to the PNG specification, keys must be shorter than 79 chars. The `PNG specification`_ defines some common keywords that may be used as appropriate: - Title: Short (one line) title or caption for image. - Author: Name of image's creator. - Description: Description of image (possibly long). - Copyright: Copyright notice. - Creation Time: Time of original image creation (usually RFC 1123 format). - Software: Software used to create the image. - Disclaimer: Legal disclaimer. - Warning: Warning of nature of content. - Source: Device used to create the image. - Comment: Miscellaneous comment; conversion from other image format. Other keywords may be invented for other purposes. If 'Software' is not given, an autogenerated value for matplotlib will be used. For more details see the `PNG specification`_. .. _PNG specification: \ https://www.w3.org/TR/2003/REC-PNG-20031110/#11keywords pil_kwargs : dict, optional If set to a non-None value, use Pillow to save the figure instead of Matplotlib's builtin PNG support, and pass these keyword arguments to `PIL.Image.save`. If the 'pnginfo' key is present, it completely overrides *metadata*, including the default 'Software' key. """ from matplotlib import _png if metadata is None: metadata = {} metadata = { "Software": f"matplotlib version{__version__}, http://matplotlib.org/", **metadata, } if pil_kwargs is not None: from PIL import Image from PIL.PngImagePlugin import PngInfo buf, size = self.print_to_buffer() # Only use the metadata kwarg if pnginfo is not set, because the # semantics of duplicate keys in pnginfo is unclear. if "pnginfo" not in pil_kwargs: pnginfo = PngInfo() for k, v in metadata.items(): pnginfo.add_text(k, v) pil_kwargs["pnginfo"] = pnginfo pil_kwargs.setdefault("dpi", (self.figure.dpi, self.figure.dpi)) (Image.frombuffer("RGBA", size, buf, "raw", "RGBA", 0, 1) .save(filename_or_obj, format="png", **pil_kwargs)) else: FigureCanvasAgg.draw(self) renderer = self.get_renderer() with cbook._setattr_cm(renderer, dpi=self.figure.dpi), \ cbook.open_file_cm(filename_or_obj, "wb") as fh: _png.write_png(renderer._renderer, fh, self.figure.dpi, metadata=metadata) def print_to_buffer(self): FigureCanvasAgg.draw(self) renderer = self.get_renderer() with cbook._setattr_cm(renderer, dpi=self.figure.dpi): return (renderer._renderer.buffer_rgba(), (int(renderer.width), int(renderer.height))) if _has_pil: # Note that these methods should typically be called via savefig() and # print_figure(), and the latter ensures that `self.figure.dpi` already # matches the dpi kwarg (if any). def print_jpg(self, filename_or_obj, *args, dryrun=False, pil_kwargs=None, **kwargs): """ Write the figure to a JPEG file. Parameters ---------- filename_or_obj : str or PathLike or file-like object The file to write to. Other Parameters ---------------- quality : int The image quality, on a scale from 1 (worst) to 100 (best). The default is :rc:`savefig.jpeg_quality`. Values above 95 should be avoided; 100 completely disables the JPEG quantization stage. optimize : bool If present, indicates that the encoder should make an extra pass over the image in order to select optimal encoder settings. progressive : bool If present, indicates that this image should be stored as a progressive JPEG file. pil_kwargs : dict, optional Additional keyword arguments that are passed to `PIL.Image.save` when saving the figure. These take precedence over *quality*, *optimize* and *progressive*. """ buf, size = self.print_to_buffer() if dryrun: return # The image is "pasted" onto a white background image to safely # handle any transparency image = Image.frombuffer('RGBA', size, buf, 'raw', 'RGBA', 0, 1) rgba = mcolors.to_rgba(rcParams['savefig.facecolor']) color = tuple([int(x * 255) for x in rgba[:3]]) background = Image.new('RGB', size, color) background.paste(image, image) if pil_kwargs is None: pil_kwargs = {} for k in ["quality", "optimize", "progressive"]: if k in kwargs: pil_kwargs.setdefault(k, kwargs[k]) pil_kwargs.setdefault("quality", rcParams["savefig.jpeg_quality"]) pil_kwargs.setdefault("dpi", (self.figure.dpi, self.figure.dpi)) return background.save( filename_or_obj, format='jpeg', **pil_kwargs) print_jpeg = print_jpg def print_tif(self, filename_or_obj, *args, dryrun=False, pil_kwargs=None, **kwargs): buf, size = self.print_to_buffer() if dryrun: return image = Image.frombuffer('RGBA', size, buf, 'raw', 'RGBA', 0, 1) if pil_kwargs is None: pil_kwargs = {} pil_kwargs.setdefault("dpi", (self.figure.dpi, self.figure.dpi)) return image.save(filename_or_obj, format='tiff', **pil_kwargs) print_tiff = print_tif @_Backend.export class _BackendAgg(_Backend): FigureCanvas = FigureCanvasAgg FigureManager = FigureManagerBase
2e64415301a9e691c1870e834d03082b23004d725a71b43e94b2700c03e5b85e
""" MS Windows-specific helper for the TkAgg backend. With rcParams['tk.window_focus'] default of False, it is effectively disabled. It uses a tiny C++ extension module to access MS Win functions. This module is deprecated and will be removed in version 3.2 """ from matplotlib import rcParams, cbook cbook.warn_deprecated('3.0', obj_type='module', name='backends.windowing') try: if not rcParams['tk.window_focus']: raise ImportError from matplotlib.backends._tkagg import ( Win32_GetForegroundWindow as GetForegroundWindow, Win32_SetForegroundWindow as SetForegroundWindow) except ImportError: def GetForegroundWindow(): return 0 def SetForegroundWindow(hwnd): pass class FocusManager(object): def __init__(self): self._shellWindow = GetForegroundWindow() def __del__(self): SetForegroundWindow(self._shellWindow)
ad4a64ce6940b92ffde4caa060f48eb973456b0168707c9ae57a451c9c60c518
""" A PostScript backend, which can produce both PostScript .ps and .eps. """ import datetime import glob from io import StringIO, TextIOWrapper import logging import os import pathlib import re import shutil import subprocess from tempfile import TemporaryDirectory import textwrap import time import numpy as np import matplotlib as mpl from matplotlib import ( cbook, _path, __version__, rcParams, checkdep_ghostscript) from matplotlib.backend_bases import ( _Backend, FigureCanvasBase, FigureManagerBase, GraphicsContextBase, RendererBase) from matplotlib.cbook import (get_realpath_and_stat, is_writable_file_like, file_requires_unicode) from matplotlib.font_manager import is_opentype_cff_font, get_font from matplotlib.ft2font import KERNING_DEFAULT, LOAD_NO_HINTING from matplotlib.ttconv import convert_ttf_to_ps from matplotlib.mathtext import MathTextParser from matplotlib._mathtext_data import uni2type1 from matplotlib.path import Path from matplotlib.transforms import Affine2D from matplotlib.backends.backend_mixed import MixedModeRenderer from . import _backend_pdf_ps _log = logging.getLogger(__name__) backend_version = 'Level II' debugPS = 0 class PsBackendHelper(object): def __init__(self): self._cached = {} @cbook.deprecated("3.1") @property def gs_exe(self): """ executable name of ghostscript. """ try: return self._cached["gs_exe"] except KeyError: pass gs_exe, gs_version = checkdep_ghostscript() if gs_exe is None: gs_exe = 'gs' self._cached["gs_exe"] = str(gs_exe) return str(gs_exe) @cbook.deprecated("3.1") @property def gs_version(self): """ version of ghostscript. """ try: return self._cached["gs_version"] except KeyError: pass s = subprocess.Popen( [self.gs_exe, "--version"], stdout=subprocess.PIPE) pipe, stderr = s.communicate() ver = pipe.decode('ascii') try: gs_version = tuple(map(int, ver.strip().split("."))) except ValueError: # if something went wrong parsing return null version number gs_version = (0, 0) self._cached["gs_version"] = gs_version return gs_version @cbook.deprecated("3.1") @property def supports_ps2write(self): """ True if the installed ghostscript supports ps2write device. """ return self.gs_version[0] >= 9 ps_backend_helper = PsBackendHelper() papersize = {'letter': (8.5, 11), 'legal': (8.5, 14), 'ledger': (11, 17), 'a0': (33.11, 46.81), 'a1': (23.39, 33.11), 'a2': (16.54, 23.39), 'a3': (11.69, 16.54), 'a4': (8.27, 11.69), 'a5': (5.83, 8.27), 'a6': (4.13, 5.83), 'a7': (2.91, 4.13), 'a8': (2.07, 2.91), 'a9': (1.457, 2.05), 'a10': (1.02, 1.457), 'b0': (40.55, 57.32), 'b1': (28.66, 40.55), 'b2': (20.27, 28.66), 'b3': (14.33, 20.27), 'b4': (10.11, 14.33), 'b5': (7.16, 10.11), 'b6': (5.04, 7.16), 'b7': (3.58, 5.04), 'b8': (2.51, 3.58), 'b9': (1.76, 2.51), 'b10': (1.26, 1.76)} def _get_papertype(w, h): for key, (pw, ph) in sorted(papersize.items(), reverse=True): if key.startswith('l'): continue if w < pw and h < ph: return key return 'a0' def _num_to_str(val): if isinstance(val, str): return val ival = int(val) if val == ival: return str(ival) s = "%1.3f" % val s = s.rstrip("0") s = s.rstrip(".") return s def _nums_to_str(*args): return ' '.join(map(_num_to_str, args)) def quote_ps_string(s): "Quote dangerous characters of S for use in a PostScript string constant." s = s.replace(b"\\", b"\\\\") s = s.replace(b"(", b"\\(") s = s.replace(b")", b"\\)") s = s.replace(b"'", b"\\251") s = s.replace(b"`", b"\\301") s = re.sub(br"[^ -~\n]", lambda x: br"\%03o" % ord(x.group()), s) return s.decode('ascii') def _move_path_to_path_or_stream(src, dst): """ Move the contents of file at *src* to path-or-filelike *dst*. If *dst* is a path, the metadata of *src* are *not* copied. """ if is_writable_file_like(dst): fh = (open(src, 'r', encoding='latin-1') if file_requires_unicode(dst) else open(src, 'rb')) with fh: shutil.copyfileobj(fh, dst) else: shutil.move(src, dst, copy_function=shutil.copyfile) class RendererPS(_backend_pdf_ps.RendererPDFPSBase): """ The renderer handles all the drawing primitives using a graphics context instance that controls the colors/styles. """ @property @cbook.deprecated("3.1") def afmfontd(self, _cache=cbook.maxdict(50)): return _cache _afm_font_dir = pathlib.Path(rcParams["datapath"], "fonts", "afm") _use_afm_rc_name = "ps.useafm" def __init__(self, width, height, pswriter, imagedpi=72): # Although postscript itself is dpi independent, we need to inform the # image code about a requested dpi to generate high resolution images # and them scale them before embedding them. RendererBase.__init__(self) self.width = width self.height = height self._pswriter = pswriter if rcParams['text.usetex']: self.textcnt = 0 self.psfrag = [] self.imagedpi = imagedpi # current renderer state (None=uninitialised) self.color = None self.linewidth = None self.linejoin = None self.linecap = None self.linedash = None self.fontname = None self.fontsize = None self._hatches = {} self.image_magnification = imagedpi / 72 self._clip_paths = {} self._path_collection_id = 0 self.used_characters = {} self.mathtext_parser = MathTextParser("PS") def track_characters(self, font, s): """Keeps track of which characters are required from each font.""" realpath, stat_key = get_realpath_and_stat(font.fname) used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].update(map(ord, s)) def merge_used_characters(self, other): for stat_key, (realpath, charset) in other.items(): used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].update(charset) def set_color(self, r, g, b, store=1): if (r, g, b) != self.color: if r == g and r == b: self._pswriter.write("%1.3f setgray\n" % r) else: self._pswriter.write( "%1.3f %1.3f %1.3f setrgbcolor\n" % (r, g, b)) if store: self.color = (r, g, b) def set_linewidth(self, linewidth, store=1): linewidth = float(linewidth) if linewidth != self.linewidth: self._pswriter.write("%1.3f setlinewidth\n" % linewidth) if store: self.linewidth = linewidth def set_linejoin(self, linejoin, store=1): if linejoin != self.linejoin: self._pswriter.write("%d setlinejoin\n" % linejoin) if store: self.linejoin = linejoin def set_linecap(self, linecap, store=1): if linecap != self.linecap: self._pswriter.write("%d setlinecap\n" % linecap) if store: self.linecap = linecap def set_linedash(self, offset, seq, store=1): if self.linedash is not None: oldo, oldseq = self.linedash if np.array_equal(seq, oldseq) and oldo == offset: return if seq is not None and len(seq): s = "[%s] %d setdash\n" % (_nums_to_str(*seq), offset) self._pswriter.write(s) else: self._pswriter.write("[] 0 setdash\n") if store: self.linedash = (offset, seq) def set_font(self, fontname, fontsize, store=1): if rcParams['ps.useafm']: return if (fontname, fontsize) != (self.fontname, self.fontsize): out = ("/%s findfont\n" "%1.3f scalefont\n" "setfont\n" % (fontname, fontsize)) self._pswriter.write(out) if store: self.fontname = fontname self.fontsize = fontsize def create_hatch(self, hatch): sidelen = 72 if hatch in self._hatches: return self._hatches[hatch] name = 'H%d' % len(self._hatches) linewidth = rcParams['hatch.linewidth'] pageheight = self.height * 72 self._pswriter.write("""\ << /PatternType 1 /PaintType 2 /TilingType 2 /BBox[0 0 %(sidelen)d %(sidelen)d] /XStep %(sidelen)d /YStep %(sidelen)d /PaintProc { pop %(linewidth)f setlinewidth """ % locals()) self._pswriter.write( self._convert_path(Path.hatch(hatch), Affine2D().scale(sidelen), simplify=False)) self._pswriter.write("""\ fill stroke } bind >> matrix 0.0 %(pageheight)f translate makepattern /%(name)s exch def """ % locals()) self._hatches[hatch] = name return name def get_image_magnification(self): """ Get the factor by which to magnify images passed to draw_image. Allows a backend to have images at a different resolution to other artists. """ return self.image_magnification def draw_image(self, gc, x, y, im, transform=None): # docstring inherited h, w = im.shape[:2] imagecmd = "false 3 colorimage" data = im[::-1, :, :3] # Vertically flipped rgb values. # data.tobytes().hex() has no spaces, so can be linewrapped by relying # on textwrap.fill breaking long words. hexlines = textwrap.fill(data.tobytes().hex(), 128) if transform is None: matrix = "1 0 0 1 0 0" xscale = w / self.image_magnification yscale = h / self.image_magnification else: matrix = " ".join(map(str, transform.frozen().to_values())) xscale = 1.0 yscale = 1.0 figh = self.height * 72 bbox = gc.get_clip_rectangle() clippath, clippath_trans = gc.get_clip_path() clip = [] if bbox is not None: clipx, clipy, clipw, cliph = bbox.bounds clip.append( '%s clipbox' % _nums_to_str(clipw, cliph, clipx, clipy)) if clippath is not None: id = self._get_clip_path(clippath, clippath_trans) clip.append('%s' % id) clip = '\n'.join(clip) ps = """gsave %(clip)s %(x)s %(y)s translate [%(matrix)s] concat %(xscale)s %(yscale)s scale /DataString %(w)s string def %(w)s %(h)s 8 [ %(w)s 0 0 -%(h)s 0 %(h)s ] { currentfile DataString readhexstring pop } bind %(imagecmd)s %(hexlines)s grestore """ % locals() self._pswriter.write(ps) def _convert_path(self, path, transform, clip=False, simplify=None): if clip: clip = (0.0, 0.0, self.width * 72.0, self.height * 72.0) else: clip = None return _path.convert_to_string( path, transform, clip, simplify, None, 6, [b'm', b'l', b'', b'c', b'cl'], True).decode('ascii') def _get_clip_path(self, clippath, clippath_transform): key = (clippath, id(clippath_transform)) pid = self._clip_paths.get(key) if pid is None: pid = 'c%x' % len(self._clip_paths) ps_cmd = ['/%s {' % pid] ps_cmd.append(self._convert_path(clippath, clippath_transform, simplify=False)) ps_cmd.extend(['clip', 'newpath', '} bind def\n']) self._pswriter.write('\n'.join(ps_cmd)) self._clip_paths[key] = pid return pid def draw_path(self, gc, path, transform, rgbFace=None): # docstring inherited clip = rgbFace is None and gc.get_hatch_path() is None simplify = path.should_simplify and clip ps = self._convert_path(path, transform, clip=clip, simplify=simplify) self._draw_ps(ps, gc, rgbFace) def draw_markers( self, gc, marker_path, marker_trans, path, trans, rgbFace=None): # docstring inherited if debugPS: self._pswriter.write('% draw_markers \n') ps_color = ( None if _is_transparent(rgbFace) else '%1.3f setgray' % rgbFace[0] if rgbFace[0] == rgbFace[1] == rgbFace[2] else '%1.3f %1.3f %1.3f setrgbcolor' % rgbFace[:3]) # construct the generic marker command: # don't want the translate to be global ps_cmd = ['/o {', 'gsave', 'newpath', 'translate'] lw = gc.get_linewidth() alpha = (gc.get_alpha() if gc.get_forced_alpha() or len(gc.get_rgb()) == 3 else gc.get_rgb()[3]) stroke = lw > 0 and alpha > 0 if stroke: ps_cmd.append('%.1f setlinewidth' % lw) jint = gc.get_joinstyle() ps_cmd.append('%d setlinejoin' % jint) cint = gc.get_capstyle() ps_cmd.append('%d setlinecap' % cint) ps_cmd.append(self._convert_path(marker_path, marker_trans, simplify=False)) if rgbFace: if stroke: ps_cmd.append('gsave') if ps_color: ps_cmd.extend([ps_color, 'fill']) if stroke: ps_cmd.append('grestore') if stroke: ps_cmd.append('stroke') ps_cmd.extend(['grestore', '} bind def']) for vertices, code in path.iter_segments( trans, clip=(0, 0, self.width*72, self.height*72), simplify=False): if len(vertices): x, y = vertices[-2:] ps_cmd.append("%g %g o" % (x, y)) ps = '\n'.join(ps_cmd) self._draw_ps(ps, gc, rgbFace, fill=False, stroke=False) def draw_path_collection(self, gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): # Is the optimization worth it? Rough calculation: # cost of emitting a path in-line is # (len_path + 2) * uses_per_path # cost of definition+use is # (len_path + 3) + 3 * uses_per_path len_path = len(paths[0].vertices) if len(paths) > 0 else 0 uses_per_path = self._iter_collection_uses_per_path( paths, all_transforms, offsets, facecolors, edgecolors) should_do_optimization = \ len_path + 3 * uses_per_path + 3 < (len_path + 2) * uses_per_path if not should_do_optimization: return RendererBase.draw_path_collection( self, gc, master_transform, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position) write = self._pswriter.write path_codes = [] for i, (path, transform) in enumerate(self._iter_collection_raw_paths( master_transform, paths, all_transforms)): name = 'p%x_%x' % (self._path_collection_id, i) ps_cmd = ['/%s {' % name, 'newpath', 'translate'] ps_cmd.append(self._convert_path(path, transform, simplify=False)) ps_cmd.extend(['} bind def\n']) write('\n'.join(ps_cmd)) path_codes.append(name) for xo, yo, path_id, gc0, rgbFace in self._iter_collection( gc, master_transform, all_transforms, path_codes, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls, offset_position): ps = "%g %g %s" % (xo, yo, path_id) self._draw_ps(ps, gc0, rgbFace) self._path_collection_id += 1 def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!', mtext=None): # docstring inherited w, h, bl = self.get_text_width_height_descent(s, prop, ismath) fontsize = prop.get_size_in_points() thetext = 'psmarker%d' % self.textcnt color = '%1.3f,%1.3f,%1.3f' % gc.get_rgb()[:3] fontcmd = {'sans-serif': r'{\sffamily %s}', 'monospace': r'{\ttfamily %s}'}.get( rcParams['font.family'][0], r'{\rmfamily %s}') s = fontcmd % s tex = r'\color[rgb]{%s} %s' % (color, s) corr = 0 # w/2*(fontsize-10)/10 if rcParams['text.latex.preview']: # use baseline alignment! pos = _nums_to_str(x-corr, y) self.psfrag.append( r'\psfrag{%s}[Bl][Bl][1][%f]{\fontsize{%f}{%f}%s}' % ( thetext, angle, fontsize, fontsize*1.25, tex)) else: # Stick to the bottom alignment, but this may give incorrect # baseline some times. pos = _nums_to_str(x-corr, y-bl) self.psfrag.append( r'\psfrag{%s}[bl][bl][1][%f]{\fontsize{%f}{%f}%s}' % ( thetext, angle, fontsize, fontsize*1.25, tex)) ps = """\ gsave %(pos)s moveto (%(thetext)s) show grestore """ % locals() self._pswriter.write(ps) self.textcnt += 1 def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): # docstring inherited # local to avoid repeated attribute lookups write = self._pswriter.write if debugPS: write("% text\n") if _is_transparent(gc.get_rgb()): return # Special handling for fully transparent. if ismath == 'TeX': return self.draw_tex(gc, x, y, s, prop, angle) elif ismath: return self.draw_mathtext(gc, x, y, s, prop, angle) elif rcParams['ps.useafm']: self.set_color(*gc.get_rgb()) font = self._get_font_afm(prop) fontname = font.get_fontname() fontsize = prop.get_size_in_points() scale = 0.001 * fontsize thisx = 0 thisy = font.get_str_bbox_and_descent(s)[4] * scale last_name = None lines = [] for c in s: name = uni2type1.get(ord(c), 'question') try: width = font.get_width_from_char_name(name) except KeyError: name = 'question' width = font.get_width_char('?') if last_name is not None: kern = font.get_kern_dist_from_name(last_name, name) else: kern = 0 last_name = name thisx += kern * scale lines.append('%f %f m /%s glyphshow' % (thisx, thisy, name)) thisx += width * scale thetext = "\n".join(lines) ps = """\ gsave /%(fontname)s findfont %(fontsize)s scalefont setfont %(x)f %(y)f translate %(angle)f rotate %(thetext)s grestore """ % locals() self._pswriter.write(ps) else: font = self._get_font_ttf(prop) font.set_text(s, 0, flags=LOAD_NO_HINTING) self.track_characters(font, s) self.set_color(*gc.get_rgb()) ps_name = (font.postscript_name .encode('ascii', 'replace').decode('ascii')) self.set_font(ps_name, prop.get_size_in_points()) lastgind = None lines = [] thisx = 0 thisy = 0 for c in s: ccode = ord(c) gind = font.get_char_index(ccode) if gind is None: ccode = ord('?') name = '.notdef' gind = 0 else: name = font.get_glyph_name(gind) glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) if lastgind is not None: kern = font.get_kerning(lastgind, gind, KERNING_DEFAULT) else: kern = 0 lastgind = gind thisx += kern / 64 lines.append('%f %f m /%s glyphshow' % (thisx, thisy, name)) thisx += glyph.linearHoriAdvance / 65536 thetext = '\n'.join(lines) ps = """gsave %(x)f %(y)f translate %(angle)f rotate %(thetext)s grestore """ % locals() self._pswriter.write(ps) def new_gc(self): # docstring inherited return GraphicsContextPS() def draw_mathtext(self, gc, x, y, s, prop, angle): """Draw the math text using matplotlib.mathtext.""" if debugPS: self._pswriter.write("% mathtext\n") width, height, descent, pswriter, used_characters = \ self.mathtext_parser.parse(s, 72, prop) self.merge_used_characters(used_characters) self.set_color(*gc.get_rgb()) thetext = pswriter.getvalue() ps = """gsave %(x)f %(y)f translate %(angle)f rotate %(thetext)s grestore """ % locals() self._pswriter.write(ps) def draw_gouraud_triangle(self, gc, points, colors, trans): self.draw_gouraud_triangles(gc, points.reshape((1, 3, 2)), colors.reshape((1, 3, 4)), trans) def draw_gouraud_triangles(self, gc, points, colors, trans): assert len(points) == len(colors) assert points.ndim == 3 assert points.shape[1] == 3 assert points.shape[2] == 2 assert colors.ndim == 3 assert colors.shape[1] == 3 assert colors.shape[2] == 4 shape = points.shape flat_points = points.reshape((shape[0] * shape[1], 2)) flat_points = trans.transform(flat_points) flat_colors = colors.reshape((shape[0] * shape[1], 4)) points_min = np.min(flat_points, axis=0) - (1 << 12) points_max = np.max(flat_points, axis=0) + (1 << 12) factor = np.ceil((2 ** 32 - 1) / (points_max - points_min)) xmin, ymin = points_min xmax, ymax = points_max streamarr = np.empty( (shape[0] * shape[1],), dtype=[('flags', 'u1'), ('points', '>u4', (2,)), ('colors', 'u1', (3,))]) streamarr['flags'] = 0 streamarr['points'] = (flat_points - points_min) * factor streamarr['colors'] = flat_colors[:, :3] * 255.0 stream = quote_ps_string(streamarr.tostring()) self._pswriter.write(""" gsave << /ShadingType 4 /ColorSpace [/DeviceRGB] /BitsPerCoordinate 32 /BitsPerComponent 8 /BitsPerFlag 8 /AntiAlias true /Decode [ %(xmin)f %(xmax)f %(ymin)f %(ymax)f 0 1 0 1 0 1 ] /DataSource (%(stream)s) >> shfill grestore """ % locals()) def _draw_ps(self, ps, gc, rgbFace, fill=True, stroke=True, command=None): """ Emit the PostScript snippet 'ps' with all the attributes from 'gc' applied. 'ps' must consist of PostScript commands to construct a path. The fill and/or stroke kwargs can be set to False if the 'ps' string already includes filling and/or stroking, in which case _draw_ps is just supplying properties and clipping. """ # local variable eliminates all repeated attribute lookups write = self._pswriter.write if debugPS and command: write("% "+command+"\n") mightstroke = (gc.get_linewidth() > 0 and not _is_transparent(gc.get_rgb())) if not mightstroke: stroke = False if _is_transparent(rgbFace): fill = False hatch = gc.get_hatch() if mightstroke: self.set_linewidth(gc.get_linewidth()) jint = gc.get_joinstyle() self.set_linejoin(jint) cint = gc.get_capstyle() self.set_linecap(cint) self.set_linedash(*gc.get_dashes()) self.set_color(*gc.get_rgb()[:3]) write('gsave\n') cliprect = gc.get_clip_rectangle() if cliprect: x, y, w, h = cliprect.bounds write('%1.4g %1.4g %1.4g %1.4g clipbox\n' % (w, h, x, y)) clippath, clippath_trans = gc.get_clip_path() if clippath: id = self._get_clip_path(clippath, clippath_trans) write('%s\n' % id) # Jochen, is the strip necessary? - this could be a honking big string write(ps.strip()) write("\n") if fill: if stroke or hatch: write("gsave\n") self.set_color(store=0, *rgbFace[:3]) write("fill\n") if stroke or hatch: write("grestore\n") if hatch: hatch_name = self.create_hatch(hatch) write("gsave\n") write("%f %f %f " % gc.get_hatch_color()[:3]) write("%s setpattern fill grestore\n" % hatch_name) if stroke: write("stroke\n") write("grestore\n") def _is_transparent(rgb_or_rgba): if rgb_or_rgba is None: return True # Consistent with rgbFace semantics. elif len(rgb_or_rgba) == 4: if rgb_or_rgba[3] == 0: return True if rgb_or_rgba[3] != 1: _log.warning( "The PostScript backend does not support transparency; " "partially transparent artists will be rendered opaque.") return False else: # len() == 3. return False class GraphicsContextPS(GraphicsContextBase): def get_capstyle(self): return {'butt': 0, 'round': 1, 'projecting': 2}[ GraphicsContextBase.get_capstyle(self)] def get_joinstyle(self): return {'miter': 0, 'round': 1, 'bevel': 2}[ GraphicsContextBase.get_joinstyle(self)] @cbook.deprecated("3.1") def shouldstroke(self): return (self.get_linewidth() > 0.0 and (len(self.get_rgb()) <= 3 or self.get_rgb()[3] != 0.0)) class FigureCanvasPS(FigureCanvasBase): fixed_dpi = 72 def draw(self): pass filetypes = {'ps': 'Postscript', 'eps': 'Encapsulated Postscript'} def get_default_filetype(self): return 'ps' def print_ps(self, outfile, *args, **kwargs): return self._print_ps(outfile, 'ps', *args, **kwargs) def print_eps(self, outfile, *args, **kwargs): return self._print_ps(outfile, 'eps', *args, **kwargs) def _print_ps(self, outfile, format, *args, papertype=None, dpi=72, facecolor='w', edgecolor='w', orientation='portrait', **kwargs): if papertype is None: papertype = rcParams['ps.papersize'] papertype = papertype.lower() if papertype == 'auto': pass elif papertype not in papersize: raise RuntimeError('%s is not a valid papertype. Use one of %s' % (papertype, ', '.join(papersize))) orientation = orientation.lower() cbook._check_in_list(['landscape', 'portrait'], orientation=orientation) isLandscape = (orientation == 'landscape') self.figure.set_dpi(72) # Override the dpi kwarg if rcParams['text.usetex']: self._print_figure_tex(outfile, format, dpi, facecolor, edgecolor, orientation, isLandscape, papertype, **kwargs) else: self._print_figure(outfile, format, dpi, facecolor, edgecolor, orientation, isLandscape, papertype, **kwargs) def _print_figure( self, outfile, format, dpi=72, facecolor='w', edgecolor='w', orientation='portrait', isLandscape=False, papertype=None, metadata=None, *, dryrun=False, bbox_inches_restore=None, **kwargs): """ Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because some of the GUIs have a gray figure face color background and you'll probably want to override this on hardcopy If outfile is a string, it is interpreted as a file name. If the extension matches .ep* write encapsulated postscript, otherwise write a stand-alone PostScript file. If outfile is a file object, a stand-alone PostScript file is written into this file object. metadata must be a dictionary. Currently, only the value for the key 'Creator' is used. """ isEPSF = format == 'eps' if isinstance(outfile, (str, os.PathLike)): outfile = title = os.fspath(outfile) title = title.encode("ascii", "replace").decode("ascii") passed_in_file_object = False elif is_writable_file_like(outfile): title = None passed_in_file_object = True else: raise ValueError("outfile must be a path or a file-like object") # find the appropriate papertype width, height = self.figure.get_size_inches() if papertype == 'auto': if isLandscape: papertype = _get_papertype(height, width) else: papertype = _get_papertype(width, height) if isLandscape: paperHeight, paperWidth = papersize[papertype] else: paperWidth, paperHeight = papersize[papertype] if rcParams['ps.usedistiller'] and not papertype == 'auto': # distillers will improperly clip eps files if the pagesize is # too small if width > paperWidth or height > paperHeight: if isLandscape: papertype = _get_papertype(height, width) paperHeight, paperWidth = papersize[papertype] else: papertype = _get_papertype(width, height) paperWidth, paperHeight = papersize[papertype] # center the figure on the paper xo = 72 * 0.5 * (paperWidth - width) yo = 72 * 0.5 * (paperHeight - height) l, b, w, h = self.figure.bbox.bounds llx = xo lly = yo urx = llx + w ury = lly + h rotation = 0 if isLandscape: llx, lly, urx, ury = lly, llx, ury, urx xo, yo = 72 * paperHeight - yo, xo rotation = 90 bbox = (llx, lly, urx, ury) # generate PostScript code for the figure and store it in a string origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) if dryrun: class NullWriter(object): def write(self, *args, **kwargs): pass self._pswriter = NullWriter() else: self._pswriter = StringIO() # mixed mode rendering ps_renderer = RendererPS(width, height, self._pswriter, imagedpi=dpi) renderer = MixedModeRenderer( self.figure, width, height, dpi, ps_renderer, bbox_inches_restore=bbox_inches_restore) self.figure.draw(renderer) if dryrun: # return immediately if dryrun (tightbbox=True) return self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) # check for custom metadata if metadata is not None and 'Creator' in metadata: creator_str = metadata['Creator'] else: creator_str = "matplotlib version " + __version__ + \ ", http://matplotlib.org/" def print_figure_impl(fh): # write the PostScript headers if isEPSF: print("%!PS-Adobe-3.0 EPSF-3.0", file=fh) else: print("%!PS-Adobe-3.0\n" "%%DocumentPaperSizes: {papertype}\n" "%%Pages: 1\n".format(papertype=papertype), end="", file=fh) if title: print("%%Title: " + title, file=fh) # get source date from SOURCE_DATE_EPOCH, if set # See https://reproducible-builds.org/specs/source-date-epoch/ source_date_epoch = os.getenv("SOURCE_DATE_EPOCH") if source_date_epoch: source_date = datetime.datetime.utcfromtimestamp( int(source_date_epoch)).strftime("%a %b %d %H:%M:%S %Y") else: source_date = time.ctime() print("%%Creator: {creator_str}\n" "%%CreationDate: {source_date}\n" "%%Orientation: {orientation}\n" "%%BoundingBox: {bbox[0]} {bbox[1]} {bbox[2]} {bbox[3]}\n" "%%EndComments\n" .format(creator_str=creator_str, source_date=source_date, orientation=orientation, bbox=bbox), end="", file=fh) Ndict = len(psDefs) print("%%BeginProlog", file=fh) if not rcParams['ps.useafm']: Ndict += len(ps_renderer.used_characters) print("/mpldict %d dict def" % Ndict, file=fh) print("mpldict begin", file=fh) for d in psDefs: d = d.strip() for l in d.split('\n'): print(l.strip(), file=fh) if not rcParams['ps.useafm']: for font_filename, chars in \ ps_renderer.used_characters.values(): if len(chars): font = get_font(font_filename) glyph_ids = [font.get_char_index(c) for c in chars] fonttype = rcParams['ps.fonttype'] # Can not use more than 255 characters from a # single font for Type 3 if len(glyph_ids) > 255: fonttype = 42 # The ttf to ps (subsetting) support doesn't work for # OpenType fonts that are Postscript inside (like the # STIX fonts). This will simply turn that off to avoid # errors. if is_opentype_cff_font(font_filename): raise RuntimeError( "OpenType CFF fonts can not be saved using " "the internal Postscript backend at this " "time; consider using the Cairo backend") else: fh.flush() try: convert_ttf_to_ps(os.fsencode(font_filename), fh, fonttype, glyph_ids) except RuntimeError: _log.warning("The PostScript backend does not " "currently support the selected " "font.") raise print("end", file=fh) print("%%EndProlog", file=fh) if not isEPSF: print("%%Page: 1 1", file=fh) print("mpldict begin", file=fh) print("%s translate" % _nums_to_str(xo, yo), file=fh) if rotation: print("%d rotate" % rotation, file=fh) print("%s clipbox" % _nums_to_str(width*72, height*72, 0, 0), file=fh) # write the figure content = self._pswriter.getvalue() if not isinstance(content, str): content = content.decode('ascii') print(content, file=fh) # write the trailer print("end", file=fh) print("showpage", file=fh) if not isEPSF: print("%%EOF", file=fh) fh.flush() if rcParams['ps.usedistiller']: # We are going to use an external program to process the output. # Write to a temporary file. with TemporaryDirectory() as tmpdir: tmpfile = os.path.join(tmpdir, "tmp.ps") with open(tmpfile, 'w', encoding='latin-1') as fh: print_figure_impl(fh) if rcParams['ps.usedistiller'] == 'ghostscript': gs_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) elif rcParams['ps.usedistiller'] == 'xpdf': xpdf_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) _move_path_to_path_or_stream(tmpfile, outfile) else: # Write directly to outfile. if passed_in_file_object: requires_unicode = file_requires_unicode(outfile) if not requires_unicode: fh = TextIOWrapper(outfile, encoding="latin-1") # Prevent the TextIOWrapper from closing the underlying # file. fh.close = lambda: None else: fh = outfile print_figure_impl(fh) else: with open(outfile, 'w', encoding='latin-1') as fh: print_figure_impl(fh) def _print_figure_tex( self, outfile, format, dpi, facecolor, edgecolor, orientation, isLandscape, papertype, metadata=None, *, dryrun=False, bbox_inches_restore=None, **kwargs): """ If text.usetex is True in rc, a temporary pair of tex/eps files are created to allow tex to manage the text layout via the PSFrags package. These files are processed to yield the final ps or eps file. metadata must be a dictionary. Currently, only the value for the key 'Creator' is used. """ isEPSF = format == 'eps' if is_writable_file_like(outfile): title = None else: try: title = os.fspath(outfile) except TypeError: raise ValueError( "outfile must be a path or a file-like object") self.figure.dpi = 72 # ignore the dpi kwarg width, height = self.figure.get_size_inches() xo = 0 yo = 0 l, b, w, h = self.figure.bbox.bounds llx = xo lly = yo urx = llx + w ury = lly + h bbox = (llx, lly, urx, ury) # generate PostScript code for the figure and store it in a string origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) if dryrun: class NullWriter(object): def write(self, *args, **kwargs): pass self._pswriter = NullWriter() else: self._pswriter = StringIO() # mixed mode rendering ps_renderer = RendererPS(width, height, self._pswriter, imagedpi=dpi) renderer = MixedModeRenderer(self.figure, width, height, dpi, ps_renderer, bbox_inches_restore=bbox_inches_restore) self.figure.draw(renderer) if dryrun: # return immediately if dryrun (tightbbox=True) return self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) # check for custom metadata if metadata is not None and 'Creator' in metadata: creator_str = metadata['Creator'] else: creator_str = "matplotlib version " + __version__ + \ ", http://matplotlib.org/" # write to a temp file, we'll move it to outfile when done with TemporaryDirectory() as tmpdir: tmpfile = os.path.join(tmpdir, "tmp.ps") with open(tmpfile, 'w', encoding='latin-1') as fh: # write the Encapsulated PostScript headers print("%!PS-Adobe-3.0 EPSF-3.0", file=fh) if title: print("%%Title: "+title, file=fh) # get source date from SOURCE_DATE_EPOCH, if set # See https://reproducible-builds.org/specs/source-date-epoch/ source_date_epoch = os.getenv("SOURCE_DATE_EPOCH") if source_date_epoch: source_date = datetime.datetime.utcfromtimestamp( int(source_date_epoch)).strftime( "%a %b %d %H:%M:%S %Y") else: source_date = time.ctime() print( "%%Creator: {creator_str}\n" "%%CreationDate: {source_date}\n" "%%BoundingBox: {bbox[0]} {bbox[1]} {bbox[2]} {bbox[3]}\n" "%%EndComments\n" .format(creator_str=creator_str, source_date=source_date, bbox=bbox), end="", file=fh) print("%%BeginProlog\n" "/mpldict {len_psDefs} dict def\n" "mpldict begin\n" "{psDefs}\n" "end\n" "%%EndProlog\n" .format(len_psDefs=len(psDefs), psDefs="\n".join(psDefs)), end="", file=fh) print("mpldict begin", file=fh) print("%s translate" % _nums_to_str(xo, yo), file=fh) print("%s clipbox" % _nums_to_str(width*72, height*72, 0, 0), file=fh) # write the figure print(self._pswriter.getvalue(), file=fh) # write the trailer print("end", file=fh) print("showpage", file=fh) fh.flush() if isLandscape: # now we are ready to rotate isLandscape = True width, height = height, width bbox = (lly, llx, ury, urx) # set the paper size to the figure size if isEPSF. The # resulting ps file has the given size with correct bounding # box so that there is no need to call 'pstoeps' if isEPSF: paperWidth, paperHeight = self.figure.get_size_inches() if isLandscape: paperWidth, paperHeight = paperHeight, paperWidth else: temp_papertype = _get_papertype(width, height) if papertype == 'auto': papertype = temp_papertype paperWidth, paperHeight = papersize[temp_papertype] else: paperWidth, paperHeight = papersize[papertype] if (width > paperWidth or height > paperHeight) and isEPSF: paperWidth, paperHeight = papersize[temp_papertype] _log.info('Your figure is too big to fit on %s paper. ' '%s paper will be used to prevent clipping.', papertype, temp_papertype) texmanager = ps_renderer.get_texmanager() font_preamble = texmanager.get_font_preamble() custom_preamble = texmanager.get_custom_preamble() psfrag_rotated = convert_psfrags(tmpfile, ps_renderer.psfrag, font_preamble, custom_preamble, paperWidth, paperHeight, orientation) if (rcParams['ps.usedistiller'] == 'ghostscript' or rcParams['text.usetex']): gs_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox, rotated=psfrag_rotated) elif rcParams['ps.usedistiller'] == 'xpdf': xpdf_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox, rotated=psfrag_rotated) _move_path_to_path_or_stream(tmpfile, outfile) def convert_psfrags(tmpfile, psfrags, font_preamble, custom_preamble, paperWidth, paperHeight, orientation): """ When we want to use the LaTeX backend with postscript, we write PSFrag tags to a temporary postscript file, each one marking a position for LaTeX to render some text. convert_psfrags generates a LaTeX document containing the commands to convert those tags to text. LaTeX/dvips produces the postscript file that includes the actual text. """ tmpdir = os.path.split(tmpfile)[0] epsfile = tmpfile+'.eps' shutil.move(tmpfile, epsfile) latexfile = tmpfile+'.tex' dvifile = tmpfile+'.dvi' psfile = tmpfile+'.ps' if orientation == 'landscape': angle = 90 else: angle = 0 if rcParams['text.latex.unicode']: unicode_preamble = """\\usepackage{ucs} \\usepackage[utf8x]{inputenc}""" else: unicode_preamble = '' s = r"""\documentclass{article} %s %s %s \usepackage[ dvips, papersize={%sin,%sin}, body={%sin,%sin}, margin={0in,0in}]{geometry} \usepackage{psfrag} \usepackage[dvips]{graphicx} \usepackage{color} \pagestyle{empty} \begin{document} \begin{figure} \centering \leavevmode %s \includegraphics*[angle=%s]{%s} \end{figure} \end{document} """ % (font_preamble, unicode_preamble, custom_preamble, paperWidth, paperHeight, paperWidth, paperHeight, '\n'.join(psfrags), angle, os.path.split(epsfile)[-1]) try: pathlib.Path(latexfile).write_text( s, encoding='utf-8' if rcParams['text.latex.unicode'] else 'ascii') except UnicodeEncodeError: _log.info("You are using unicode and latex, but have not enabled the " "Matplotlib 'text.latex.unicode' rcParam.") raise # Replace \\ for / so latex does not think there is a function call latexfile = latexfile.replace("\\", "/") # Replace ~ so Latex does not think it is line break latexfile = latexfile.replace("~", "\\string~") cbook._check_and_log_subprocess( ["latex", "-interaction=nonstopmode", '"%s"' % latexfile], _log, cwd=tmpdir) cbook._check_and_log_subprocess( ['dvips', '-q', '-R0', '-o', os.path.basename(psfile), os.path.basename(dvifile)], _log, cwd=tmpdir) os.remove(epsfile) shutil.move(psfile, tmpfile) # check if the dvips created a ps in landscape paper. Somehow, # above latex+dvips results in a ps file in a landscape mode for a # certain figure sizes (e.g., 8.3in,5.8in which is a5). And the # bounding box of the final output got messed up. We check see if # the generated ps file is in landscape and return this # information. The return value is used in pstoeps step to recover # the correct bounding box. 2010-06-05 JJL with open(tmpfile) as fh: if "Landscape" in fh.read(1000): psfrag_rotated = True else: psfrag_rotated = False if not debugPS: for fname in glob.glob(tmpfile+'.*'): os.remove(fname) return psfrag_rotated def gs_distill(tmpfile, eps=False, ptype='letter', bbox=None, rotated=False): """ Use ghostscript's pswrite or epswrite device to distill a file. This yields smaller files without illegal encapsulated postscript operators. The output is low-level, converting text to outlines. """ if eps: paper_option = "-dEPSCrop" else: paper_option = "-sPAPERSIZE=%s" % ptype psfile = tmpfile + '.ps' dpi = rcParams['ps.distiller.res'] cbook._check_and_log_subprocess( [mpl._get_executable_info("gs").executable, "-dBATCH", "-dNOPAUSE", "-r%d" % dpi, "-sDEVICE=ps2write", paper_option, "-sOutputFile=%s" % psfile, tmpfile], _log) os.remove(tmpfile) shutil.move(psfile, tmpfile) # While it is best if above steps preserve the original bounding # box, there seem to be cases when it is not. For those cases, # the original bbox can be restored during the pstoeps step. if eps: # For some versions of gs, above steps result in an ps file where the # original bbox is no more correct. Do not adjust bbox for now. pstoeps(tmpfile, bbox, rotated=rotated) def xpdf_distill(tmpfile, eps=False, ptype='letter', bbox=None, rotated=False): """ Use ghostscript's ps2pdf and xpdf's/poppler's pdftops to distill a file. This yields smaller files without illegal encapsulated postscript operators. This distiller is preferred, generating high-level postscript output that treats text as text. """ pdffile = tmpfile + '.pdf' psfile = tmpfile + '.ps' # Pass options as `-foo#bar` instead of `-foo=bar` to keep Windows happy # (https://www.ghostscript.com/doc/9.22/Use.htm#MS_Windows). cbook._check_and_log_subprocess( ["ps2pdf", "-dAutoFilterColorImages#false", "-dAutoFilterGrayImages#false", "-dAutoRotatePages#false", "-sGrayImageFilter#FlateEncode", "-sColorImageFilter#FlateEncode", "-dEPSCrop" if eps else "-sPAPERSIZE#%s" % ptype, tmpfile, pdffile], _log) cbook._check_and_log_subprocess( ["pdftops", "-paper", "match", "-level2", pdffile, psfile], _log) os.remove(tmpfile) shutil.move(psfile, tmpfile) if eps: pstoeps(tmpfile) for fname in glob.glob(tmpfile+'.*'): os.remove(fname) def get_bbox_header(lbrt, rotated=False): """ return a postscript header string for the given bbox lbrt=(l, b, r, t). Optionally, return rotate command. """ l, b, r, t = lbrt if rotated: rotate = "%.2f %.2f translate\n90 rotate" % (l+r, 0) else: rotate = "" bbox_info = '%%%%BoundingBox: %d %d %d %d' % (l, b, np.ceil(r), np.ceil(t)) hires_bbox_info = '%%%%HiResBoundingBox: %.6f %.6f %.6f %.6f' % ( l, b, r, t) return '\n'.join([bbox_info, hires_bbox_info]), rotate # get_bbox is deprecated. I don't see any reason to use ghostscript to # find the bounding box, as the required bounding box is alread known. @cbook.deprecated("3.0") def get_bbox(tmpfile, bbox): """ Use ghostscript's bbox device to find the center of the bounding box. Return an appropriately sized bbox centered around that point. A bit of a hack. """ gs_exe = ps_backend_helper.gs_exe command = [gs_exe, "-dBATCH", "-dNOPAUSE", "-sDEVICE=bbox", "%s" % tmpfile] _log.debug(command) p = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True) (stdout, stderr) = (p.stdout, p.stderr) _log.debug(stdout.read()) bbox_info = stderr.read() _log.info(bbox_info) bbox_found = re.search('%%HiResBoundingBox: .*', bbox_info) if bbox_found: bbox_info = bbox_found.group() else: raise RuntimeError( 'Ghostscript was not able to extract a bounding box.' 'Here is the Ghostscript output:\n\n%s' % bbox_info) l, b, r, t = [float(i) for i in bbox_info.split()[-4:]] # this is a hack to deal with the fact that ghostscript does not return the # intended bbox, but a tight bbox. For now, we just center the ink in the # intended bbox. This is not ideal, users may intend the ink to not be # centered. if bbox is None: l, b, r, t = (l-1, b-1, r+1, t+1) else: x = (l+r)/2 y = (b+t)/2 dx = (bbox[2]-bbox[0])/2 dy = (bbox[3]-bbox[1])/2 l, b, r, t = (x-dx, y-dy, x+dx, y+dy) bbox_info = '%%%%BoundingBox: %d %d %d %d' % (l, b, np.ceil(r), np.ceil(t)) hires_bbox_info = '%%%%HiResBoundingBox: %.6f %.6f %.6f %.6f' % ( l, b, r, t) return '\n'.join([bbox_info, hires_bbox_info]) def pstoeps(tmpfile, bbox=None, rotated=False): """ Convert the postscript to encapsulated postscript. The bbox of the eps file will be replaced with the given *bbox* argument. If None, original bbox will be used. """ # if rotated==True, the output eps file need to be rotated if bbox: bbox_info, rotate = get_bbox_header(bbox, rotated=rotated) else: bbox_info, rotate = None, None epsfile = tmpfile + '.eps' with open(epsfile, 'wb') as epsh, open(tmpfile, 'rb') as tmph: write = epsh.write # Modify the header: for line in tmph: if line.startswith(b'%!PS'): write(b"%!PS-Adobe-3.0 EPSF-3.0\n") if bbox: write(bbox_info.encode('ascii') + b'\n') elif line.startswith(b'%%EndComments'): write(line) write(b'%%BeginProlog\n' b'save\n' b'countdictstack\n' b'mark\n' b'newpath\n' b'/showpage {} def\n' b'/setpagedevice {pop} def\n' b'%%EndProlog\n' b'%%Page 1 1\n') if rotate: write(rotate.encode('ascii') + b'\n') break elif bbox and line.startswith((b'%%Bound', b'%%HiResBound', b'%%DocumentMedia', b'%%Pages')): pass else: write(line) # Now rewrite the rest of the file, and modify the trailer. # This is done in a second loop such that the header of the embedded # eps file is not modified. for line in tmph: if line.startswith(b'%%EOF'): write(b'cleartomark\n' b'countdictstack\n' b'exch sub { end } repeat\n' b'restore\n' b'showpage\n' b'%%EOF\n') elif line.startswith(b'%%PageBoundingBox'): pass else: write(line) os.remove(tmpfile) shutil.move(epsfile, tmpfile) FigureManagerPS = FigureManagerBase # The following Python dictionary psDefs contains the entries for the # PostScript dictionary mpldict. This dictionary implements most of # the matplotlib primitives and some abbreviations. # # References: # http://www.adobe.com/products/postscript/pdfs/PLRM.pdf # http://www.mactech.com/articles/mactech/Vol.09/09.04/PostscriptTutorial/ # http://www.math.ubc.ca/people/faculty/cass/graphics/text/www/ # # The usage comments use the notation of the operator summary # in the PostScript Language reference manual. psDefs = [ # x y *m* - "/m { moveto } bind def", # x y *l* - "/l { lineto } bind def", # x y *r* - "/r { rlineto } bind def", # x1 y1 x2 y2 x y *c* - "/c { curveto } bind def", # *closepath* - "/cl { closepath } bind def", # w h x y *box* - """/box { m 1 index 0 r 0 exch r neg 0 r cl } bind def""", # w h x y *clipbox* - """/clipbox { box clip newpath } bind def""", ] @_Backend.export class _BackendPS(_Backend): FigureCanvas = FigureCanvasPS
ac0e18c8ae9cab72c7b5b3d85ec5092a0350e1f22a79549c373e1a4b94b13931
import importlib import logging import os import sys import matplotlib from matplotlib import cbook from matplotlib.backend_bases import _Backend _log = logging.getLogger(__name__) # NOTE: plt.switch_backend() (called at import time) will add a "backend" # attribute here for backcompat. def _get_running_interactive_framework(): """ Return the interactive framework whose event loop is currently running, if any, or "headless" if no event loop can be started, or None. Returns ------- Optional[str] One of the following values: "qt5", "qt4", "gtk3", "wx", "tk", "macosx", "headless", ``None``. """ QtWidgets = (sys.modules.get("PyQt5.QtWidgets") or sys.modules.get("PySide2.QtWidgets")) if QtWidgets and QtWidgets.QApplication.instance(): return "qt5" QtGui = (sys.modules.get("PyQt4.QtGui") or sys.modules.get("PySide.QtGui")) if QtGui and QtGui.QApplication.instance(): return "qt4" Gtk = sys.modules.get("gi.repository.Gtk") if Gtk and Gtk.main_level(): return "gtk3" wx = sys.modules.get("wx") if wx and wx.GetApp(): return "wx" tkinter = sys.modules.get("tkinter") if tkinter: for frame in sys._current_frames().values(): while frame: if frame.f_code == tkinter.mainloop.__code__: return "tk" frame = frame.f_back if 'matplotlib.backends._macosx' in sys.modules: if sys.modules["matplotlib.backends._macosx"].event_loop_is_running(): return "macosx" if sys.platform.startswith("linux") and not os.environ.get("DISPLAY"): return "headless" return None @cbook.deprecated("3.0") def pylab_setup(name=None): """ Return new_figure_manager, draw_if_interactive and show for pyplot. This provides the backend-specific functions that are used by pyplot to abstract away the difference between backends. Parameters ---------- name : str, optional The name of the backend to use. If `None`, falls back to ``matplotlib.get_backend()`` (which return :rc:`backend`). Returns ------- backend_mod : module The module which contains the backend of choice new_figure_manager : function Create a new figure manager (roughly maps to GUI window) draw_if_interactive : function Redraw the current figure if pyplot is interactive show : function Show (and possibly block) any unshown figures. """ # Import the requested backend into a generic module object. if name is None: name = matplotlib.get_backend() backend_name = (name[9:] if name.startswith("module://") else "matplotlib.backends.backend_{}".format(name.lower())) backend_mod = importlib.import_module(backend_name) # Create a local Backend class whose body corresponds to the contents of # the backend module. This allows the Backend class to fill in the missing # methods through inheritance. Backend = type("Backend", (_Backend,), vars(backend_mod)) # Need to keep a global reference to the backend for compatibility reasons. # See https://github.com/matplotlib/matplotlib/issues/6092 global backend backend = name _log.debug('backend %s version %s', name, Backend.backend_version) return (backend_mod, Backend.new_figure_manager, Backend.draw_if_interactive, Backend.show)
4fcc7f356028f7f5af9e9c3a1e7b2779123d032031729f344c37becf67a8b1b3
""" Common functionality between the PDF and PS backends. """ import functools import matplotlib as mpl from .. import font_manager, ft2font from ..afm import AFM from ..backend_bases import RendererBase @functools.lru_cache(50) def _cached_get_afm_from_fname(fname): with open(fname, "rb") as fh: return AFM(fh) class RendererPDFPSBase(RendererBase): # The following attributes must be defined by the subclasses: # - _afm_font_dir # - _use_afm_rc_name def flipy(self): # docstring inherited return False # y increases from bottom to top. def option_scale_image(self): # docstring inherited return True # PDF and PS support arbitrary image scaling. def option_image_nocomposite(self): # docstring inherited # Decide whether to composite image based on rcParam value. return not mpl.rcParams["image.composite_image"] def get_canvas_width_height(self): # docstring inherited return self.width * 72.0, self.height * 72.0 def get_text_width_height_descent(self, s, prop, ismath): # docstring inherited if mpl.rcParams["text.usetex"]: texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() w, h, d = texmanager.get_text_width_height_descent( s, fontsize, renderer=self) return w, h, d elif ismath: parse = self.mathtext_parser.parse(s, 72, prop) return parse.width, parse.height, parse.depth elif mpl.rcParams[self._use_afm_rc_name]: font = self._get_font_afm(prop) l, b, w, h, d = font.get_str_bbox_and_descent(s) scale = prop.get_size_in_points() / 1000 w *= scale h *= scale d *= scale return w, h, d else: font = self._get_font_ttf(prop) font.set_text(s, 0.0, flags=ft2font.LOAD_NO_HINTING) w, h = font.get_width_height() d = font.get_descent() scale = 1 / 64 w *= scale h *= scale d *= scale return w, h, d def _get_font_afm(self, prop): fname = ( font_manager.findfont( prop, fontext="afm", directory=self._afm_font_dir) or font_manager.findfont( "Helvetica", fontext="afm", directory=self._afm_font_dir)) return _cached_get_afm_from_fname(fname) def _get_font_ttf(self, prop): fname = font_manager.findfont(prop) font = font_manager.get_font(fname) font.clear() font.set_size(prop.get_size_in_points(), 72) return font