hash
stringlengths
64
64
content
stringlengths
0
1.51M
2fbd6fc01c9e8ea71a829bf3422267a9f0d811aac71b15c28b4a6373991038d2
""" ===================== Simple Axes Divider 2 ===================== """ import mpl_toolkits.axes_grid1.axes_size as Size from mpl_toolkits.axes_grid1 import Divider import matplotlib.pyplot as plt fig = plt.figure(figsize=(5.5, 4.)) # the rect parameter will be ignore as we will set axes_locator rect = (0.1, 0.1, 0.8, 0.8) ax = [fig.add_axes(rect, label="%d" % i) for i in range(4)] horiz = [Size.Scaled(1.5), Size.Fixed(.5), Size.Scaled(1.), Size.Scaled(.5)] vert = [Size.Scaled(1.), Size.Fixed(.5), Size.Scaled(1.5)] # divide the axes rectangle into grid whose size is specified by horiz * vert divider = Divider(fig, rect, horiz, vert, aspect=False) ax[0].set_axes_locator(divider.new_locator(nx=0, ny=0)) ax[1].set_axes_locator(divider.new_locator(nx=0, ny=2)) ax[2].set_axes_locator(divider.new_locator(nx=2, ny=2)) ax[3].set_axes_locator(divider.new_locator(nx=2, nx1=4, ny=0)) for ax1 in ax: ax1.tick_params(labelbottom=False, labelleft=False) plt.show()
ae075645d87eff97d6acce764d120b8851a806235a44035e03caebf1836e5f81
""" ===================== Simple Axes Divider 1 ===================== """ from mpl_toolkits.axes_grid1 import Size, Divider import matplotlib.pyplot as plt fig1 = plt.figure(1, (6, 6)) # fixed size in inch horiz = [Size.Fixed(1.), Size.Fixed(.5), Size.Fixed(1.5), Size.Fixed(.5)] vert = [Size.Fixed(1.5), Size.Fixed(.5), Size.Fixed(1.)] rect = (0.1, 0.1, 0.8, 0.8) # divide the axes rectangle into grid whose size is specified by horiz * vert divider = Divider(fig1, rect, horiz, vert, aspect=False) # the rect parameter will be ignore as we will set axes_locator ax1 = fig1.add_axes(rect, label="1") ax2 = fig1.add_axes(rect, label="2") ax3 = fig1.add_axes(rect, label="3") ax4 = fig1.add_axes(rect, label="4") ax1.set_axes_locator(divider.new_locator(nx=0, ny=0)) ax2.set_axes_locator(divider.new_locator(nx=0, ny=2)) ax3.set_axes_locator(divider.new_locator(nx=2, ny=2)) ax4.set_axes_locator(divider.new_locator(nx=2, nx1=4, ny=0)) plt.show()
ce77948b0e0de00d1465a5567cc6fd1da8e416bd958824e4cc68e6190d69c395
""" ============================================================== Controlling the position and size of colorbars with Inset Axes ============================================================== This example shows how to control the position, height, and width of colorbars using `~mpl_toolkits.axes_grid1.inset_axes`. Controlling the placement of the inset axes is done similarly as that of the legend: either by providing a location option ("upper right", "best", ...), or by providing a locator with respect to the parent bbox. """ import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes fig, (ax1, ax2) = plt.subplots(1, 2, figsize=[6, 3]) axins1 = inset_axes(ax1, width="50%", # width = 50% of parent_bbox width height="5%", # height : 5% loc='upper right') im1 = ax1.imshow([[1, 2], [2, 3]]) fig.colorbar(im1, cax=axins1, orientation="horizontal", ticks=[1, 2, 3]) axins1.xaxis.set_ticks_position("bottom") axins = inset_axes(ax2, width="5%", # width = 5% of parent_bbox width height="50%", # height : 50% loc='lower left', bbox_to_anchor=(1.05, 0., 1, 1), bbox_transform=ax2.transAxes, borderpad=0, ) # Controlling the placement of the inset axes is basically same as that # of the legend. you may want to play with the borderpad value and # the bbox_to_anchor coordinate. im = ax2.imshow([[1, 2], [2, 3]]) fig.colorbar(im, cax=axins, ticks=[1, 2, 3]) plt.show()
e2b3c230e942ef1b73434c8a5258c0fdff8ddd53dce024105f1d09e007d93340
""" ================= Demo Axes Divider ================= Axes divider to calculate location of axes and create a divider for them using existing axes instances. """ import matplotlib.pyplot as plt def get_demo_image(): import numpy as np from matplotlib.cbook import get_sample_data f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False) z = np.load(f) # z is a numpy array of 15x15 return z, (-3, 4, -4, 3) def demo_simple_image(ax): Z, extent = get_demo_image() im = ax.imshow(Z, extent=extent, interpolation="nearest") cb = plt.colorbar(im) plt.setp(cb.ax.get_yticklabels(), visible=False) def demo_locatable_axes_hard(fig): from mpl_toolkits.axes_grid1 import SubplotDivider, Size from mpl_toolkits.axes_grid1.mpl_axes import Axes divider = SubplotDivider(fig, 2, 2, 2, aspect=True) # axes for image ax = Axes(fig, divider.get_position()) # axes for colorbar ax_cb = Axes(fig, divider.get_position()) h = [Size.AxesX(ax), # main axes Size.Fixed(0.05), # padding, 0.1 inch Size.Fixed(0.2), # colorbar, 0.3 inch ] v = [Size.AxesY(ax)] divider.set_horizontal(h) divider.set_vertical(v) ax.set_axes_locator(divider.new_locator(nx=0, ny=0)) ax_cb.set_axes_locator(divider.new_locator(nx=2, ny=0)) fig.add_axes(ax) fig.add_axes(ax_cb) ax_cb.axis["left"].toggle(all=False) ax_cb.axis["right"].toggle(ticks=True) Z, extent = get_demo_image() im = ax.imshow(Z, extent=extent, interpolation="nearest") plt.colorbar(im, cax=ax_cb) plt.setp(ax_cb.get_yticklabels(), visible=False) def demo_locatable_axes_easy(ax): from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax) ax_cb = divider.new_horizontal(size="5%", pad=0.05) fig = ax.get_figure() fig.add_axes(ax_cb) Z, extent = get_demo_image() im = ax.imshow(Z, extent=extent, interpolation="nearest") plt.colorbar(im, cax=ax_cb) ax_cb.yaxis.tick_right() ax_cb.yaxis.set_tick_params(labelright=False) def demo_images_side_by_side(ax): from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax) Z, extent = get_demo_image() ax2 = divider.new_horizontal(size="100%", pad=0.05) fig1 = ax.get_figure() fig1.add_axes(ax2) ax.imshow(Z, extent=extent, interpolation="nearest") ax2.imshow(Z, extent=extent, interpolation="nearest") ax2.yaxis.set_tick_params(labelleft=False) def demo(): fig = plt.figure(figsize=(6, 6)) # PLOT 1 # simple image & colorbar ax = fig.add_subplot(2, 2, 1) demo_simple_image(ax) # PLOT 2 # image and colorbar whose location is adjusted in the drawing time. # a hard way demo_locatable_axes_hard(fig) # PLOT 3 # image and colorbar whose location is adjusted in the drawing time. # a easy way ax = fig.add_subplot(2, 2, 3) demo_locatable_axes_easy(ax) # PLOT 4 # two images side by side with fixed padding. ax = fig.add_subplot(2, 2, 4) demo_images_side_by_side(ax) plt.show() demo()
796b976b0c67bcbb1769115f22dab4840d9d75c507cc10ba536e3ae4825ce6f5
""" ================== Demo Edge Colorbar ================== This example shows how to use one common colorbar for each row or column of an image grid. """ import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import AxesGrid def get_demo_image(): import numpy as np from matplotlib.cbook import get_sample_data f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False) z = np.load(f) # z is a numpy array of 15x15 return z, (-3, 4, -4, 3) def demo_bottom_cbar(fig): """ A grid of 2x2 images with a colorbar for each column. """ grid = AxesGrid(fig, 121, # similar to subplot(121) nrows_ncols=(2, 2), axes_pad=0.10, share_all=True, label_mode="1", cbar_location="bottom", cbar_mode="edge", cbar_pad=0.25, cbar_size="15%", direction="column" ) Z, extent = get_demo_image() cmaps = [plt.get_cmap("autumn"), plt.get_cmap("summer")] for i in range(4): im = grid[i].imshow(Z, extent=extent, interpolation="nearest", cmap=cmaps[i//2]) if i % 2: cbar = grid.cbar_axes[i//2].colorbar(im) for cax in grid.cbar_axes: cax.toggle_label(True) cax.axis[cax.orientation].set_label("Bar") # This affects all axes as share_all = True. grid.axes_llc.set_xticks([-2, 0, 2]) grid.axes_llc.set_yticks([-2, 0, 2]) def demo_right_cbar(fig): """ A grid of 2x2 images. Each row has its own colorbar. """ grid = AxesGrid(fig, 122, # similar to subplot(122) nrows_ncols=(2, 2), axes_pad=0.10, label_mode="1", share_all=True, cbar_location="right", cbar_mode="edge", cbar_size="7%", cbar_pad="2%", ) Z, extent = get_demo_image() cmaps = [plt.get_cmap("spring"), plt.get_cmap("winter")] for i in range(4): im = grid[i].imshow(Z, extent=extent, interpolation="nearest", cmap=cmaps[i//2]) if i % 2: grid.cbar_axes[i//2].colorbar(im) for cax in grid.cbar_axes: cax.toggle_label(True) cax.axis[cax.orientation].set_label('Foo') # This affects all axes because we set share_all = True. grid.axes_llc.set_xticks([-2, 0, 2]) grid.axes_llc.set_yticks([-2, 0, 2]) fig = plt.figure(figsize=(5.5, 2.5)) fig.subplots_adjust(left=0.05, right=0.93) demo_bottom_cbar(fig) demo_right_cbar(fig) plt.show()
64450011d5107eacc76a0dee4a596fe514cbb3e3c92abc3b19877cb0a0c51ef3
""" ======================= Animated 3D random walk ======================= """ import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # Fixing random state for reproducibility np.random.seed(19680801) def gen_rand_line(length, dims=2): """ Create a line using a random walk algorithm length is the number of points for the line. dims is the number of dimensions the line has. """ line_data = np.empty((dims, length)) line_data[:, 0] = np.random.rand(dims) for index in range(1, length): # scaling the random numbers by 0.1 so # movement is small compared to position. # subtraction by 0.5 is to change the range to [-0.5, 0.5] # to allow a line to move backwards. step = (np.random.rand(dims) - 0.5) * 0.1 line_data[:, index] = line_data[:, index - 1] + step return line_data def update_lines(num, dataLines, lines): for line, data in zip(lines, dataLines): # NOTE: there is no .set_data() for 3 dim data... line.set_data(data[0:2, :num]) line.set_3d_properties(data[2, :num]) return lines # Attaching 3D axis to the figure fig = plt.figure() ax = fig.add_subplot(projection="3d") # Fifty lines of random 3-D lines data = [gen_rand_line(25, 3) for index in range(50)] # Creating fifty line objects. # NOTE: Can't pass empty arrays into 3d version of plot() lines = [ax.plot(dat[0, 0:1], dat[1, 0:1], dat[2, 0:1])[0] for dat in data] # Setting the axes properties ax.set_xlim3d([0.0, 1.0]) ax.set_xlabel('X') ax.set_ylim3d([0.0, 1.0]) ax.set_ylabel('Y') ax.set_zlim3d([0.0, 1.0]) ax.set_zlabel('Z') ax.set_title('3D Test') # Creating the Animation object line_ani = animation.FuncAnimation( fig, update_lines, 25, fargs=(data, lines), interval=50) plt.show()
d4fd97e436145777d50f7cb6a83e2583b88109d58944b2b2b724476e70588b62
""" ===== Decay ===== This example showcases: - using a generator to drive an animation, - changing axes limits during an animation. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation def data_gen(t=0): cnt = 0 while cnt < 1000: cnt += 1 t += 0.1 yield t, np.sin(2*np.pi*t) * np.exp(-t/10.) def init(): ax.set_ylim(-1.1, 1.1) ax.set_xlim(0, 10) del xdata[:] del ydata[:] line.set_data(xdata, ydata) return line, fig, ax = plt.subplots() line, = ax.plot([], [], lw=2) ax.grid() xdata, ydata = [], [] def run(data): # update the data t, y = data xdata.append(t) ydata.append(y) xmin, xmax = ax.get_xlim() if t >= xmax: ax.set_xlim(xmin, 2*xmax) ax.figure.canvas.draw() line.set_data(xdata, ydata) return line, ani = animation.FuncAnimation(fig, run, data_gen, blit=False, interval=10, repeat=False, init_func=init) plt.show()
32d0980786f114ea8f2be02e9a52ddae5350b1232df0f5c55e30c371fa6df5ad
""" ================ pyplot animation ================ Generating an animation by calling `~.pyplot.pause` between plotting commands. The method shown here is only suitable for simple, low-performance use. For more demanding applications, look at the :mod:`animation` module and the examples that use it. Note that calling `time.sleep` instead of `~.pyplot.pause` would *not* work. """ import matplotlib.pyplot as plt import numpy as np np.random.seed(19680801) data = np.random.random((50, 50, 50)) fig, ax = plt.subplots() for i in range(len(data)): ax.cla() ax.imshow(data[i]) ax.set_title("frame {}".format(i)) # Note that using time.sleep does *not* work here! plt.pause(0.1)
ff3d48983d4b911543370231c8b22df1722a588b719425d618fc2dc95cba74d9
""" =========================== The double pendulum problem =========================== This animation illustrates the double pendulum problem. Double pendulum formula translated from the C code at http://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.c """ from numpy import sin, cos import numpy as np import matplotlib.pyplot as plt import scipy.integrate as integrate import matplotlib.animation as animation G = 9.8 # acceleration due to gravity, in m/s^2 L1 = 1.0 # length of pendulum 1 in m L2 = 1.0 # length of pendulum 2 in m M1 = 1.0 # mass of pendulum 1 in kg M2 = 1.0 # mass of pendulum 2 in kg def derivs(state, t): dydx = np.zeros_like(state) dydx[0] = state[1] delta = state[2] - state[0] den1 = (M1+M2) * L1 - M2 * L1 * cos(delta) * cos(delta) dydx[1] = ((M2 * L1 * state[1] * state[1] * sin(delta) * cos(delta) + M2 * G * sin(state[2]) * cos(delta) + M2 * L2 * state[3] * state[3] * sin(delta) - (M1+M2) * G * sin(state[0])) / den1) dydx[2] = state[3] den2 = (L2/L1) * den1 dydx[3] = ((- M2 * L2 * state[3] * state[3] * sin(delta) * cos(delta) + (M1+M2) * G * sin(state[0]) * cos(delta) - (M1+M2) * L1 * state[1] * state[1] * sin(delta) - (M1+M2) * G * sin(state[2])) / den2) return dydx # create a time array from 0..100 sampled at 0.05 second steps dt = 0.05 t = np.arange(0, 20, dt) # th1 and th2 are the initial angles (degrees) # w10 and w20 are the initial angular velocities (degrees per second) th1 = 120.0 w1 = 0.0 th2 = -10.0 w2 = 0.0 # initial state state = np.radians([th1, w1, th2, w2]) # integrate your ODE using scipy.integrate. y = integrate.odeint(derivs, state, t) x1 = L1*sin(y[:, 0]) y1 = -L1*cos(y[:, 0]) x2 = L2*sin(y[:, 2]) + x1 y2 = -L2*cos(y[:, 2]) + y1 fig = plt.figure() ax = fig.add_subplot(111, autoscale_on=False, xlim=(-2, 2), ylim=(-2, 2)) ax.set_aspect('equal') ax.grid() line, = ax.plot([], [], 'o-', lw=2) time_template = 'time = %.1fs' time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes) def init(): line.set_data([], []) time_text.set_text('') return line, time_text def animate(i): thisx = [0, x1[i], x2[i]] thisy = [0, y1[i], y2[i]] line.set_data(thisx, thisy) time_text.set_text(time_template % (i*dt)) return line, time_text ani = animation.FuncAnimation(fig, animate, range(1, len(y)), interval=dt*1000, blit=True, init_func=init) plt.show()
faa36679788cccc02b6555c94c66dc308f6ea688a180088a7b9599b82a8ad7f4
""" ======================== MATPLOTLIB **UNCHAINED** ======================== Comparative path demonstration of frequency from a fake signal of a pulsar (mostly known because of the cover for Joy Division's Unknown Pleasures). Author: Nicolas P. Rougier """ import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # Fixing random state for reproducibility np.random.seed(19680801) # Create new Figure with black background fig = plt.figure(figsize=(8, 8), facecolor='black') # Add a subplot with no frame ax = plt.subplot(111, frameon=False) # Generate random data data = np.random.uniform(0, 1, (64, 75)) X = np.linspace(-1, 1, data.shape[-1]) G = 1.5 * np.exp(-4 * X ** 2) # Generate line plots lines = [] for i in range(len(data)): # Small reduction of the X extents to get a cheap perspective effect xscale = 1 - i / 200. # Same for linewidth (thicker strokes on bottom) lw = 1.5 - i / 100.0 line, = ax.plot(xscale * X, i + G * data[i], color="w", lw=lw) lines.append(line) # Set y limit (or first line is cropped because of thickness) ax.set_ylim(-1, 70) # No ticks ax.set_xticks([]) ax.set_yticks([]) # 2 part titles to get different font weights ax.text(0.5, 1.0, "MATPLOTLIB ", transform=ax.transAxes, ha="right", va="bottom", color="w", family="sans-serif", fontweight="light", fontsize=16) ax.text(0.5, 1.0, "UNCHAINED", transform=ax.transAxes, ha="left", va="bottom", color="w", family="sans-serif", fontweight="bold", fontsize=16) def update(*args): # Shift all data to the right data[:, 1:] = data[:, :-1] # Fill-in new values data[:, 0] = np.random.uniform(0, 1, len(data)) # Update data for i in range(len(data)): lines[i].set_ydata(i + G * data[i]) # Return modified artists return lines # Construct the animation, using the update function as the animation director. anim = animation.FuncAnimation(fig, update, interval=10) plt.show()
3533336f1829f8086be1c784639454753240673b7dcc572736c099b8c6ce7403
""" ================ The Bayes update ================ This animation displays the posterior estimate updates as it is refitted when new data arrives. The vertical line represents the theoretical value to which the plotted distribution should converge. """ import math import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation def beta_pdf(x, a, b): return (x**(a-1) * (1-x)**(b-1) * math.gamma(a + b) / (math.gamma(a) * math.gamma(b))) class UpdateDist(object): def __init__(self, ax, prob=0.5): self.success = 0 self.prob = prob self.line, = ax.plot([], [], 'k-') self.x = np.linspace(0, 1, 200) self.ax = ax # Set up plot parameters self.ax.set_xlim(0, 1) self.ax.set_ylim(0, 15) self.ax.grid(True) # This vertical line represents the theoretical value, to # which the plotted distribution should converge. self.ax.axvline(prob, linestyle='--', color='black') def init(self): self.success = 0 self.line.set_data([], []) return self.line, def __call__(self, i): # This way the plot can continuously run and we just keep # watching new realizations of the process if i == 0: return self.init() # Choose success based on exceed a threshold with a uniform pick if np.random.rand(1,) < self.prob: self.success += 1 y = beta_pdf(self.x, self.success + 1, (i - self.success) + 1) self.line.set_data(self.x, y) return self.line, # Fixing random state for reproducibility np.random.seed(19680801) fig, ax = plt.subplots() ud = UpdateDist(ax, prob=0.7) anim = FuncAnimation(fig, ud, frames=np.arange(100), init_func=ud.init, interval=100, blit=True) plt.show()
6d21b609c8ab01e70e8cb53f5effdc1dca6c685068231ea6fda891f46ebbfec3
""" ============== Frame grabbing ============== Use a MovieWriter directly to grab individual frames and write them to a file. This avoids any event loop integration, and thus works even with the Agg backend. This is not recommended for use in an interactive setting. """ import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from matplotlib.animation import FFMpegWriter # Fixing random state for reproducibility np.random.seed(19680801) metadata = dict(title='Movie Test', artist='Matplotlib', comment='Movie support!') writer = FFMpegWriter(fps=15, metadata=metadata) fig = plt.figure() l, = plt.plot([], [], 'k-o') plt.xlim(-5, 5) plt.ylim(-5, 5) x0, y0 = 0, 0 with writer.saving(fig, "writer_test.mp4", 100): for i in range(100): x0 += 0.1 * np.random.randn() y0 += 0.1 * np.random.randn() l.set_data(x0, y0) writer.grab_frame()
7dc4645fa37ca29e84b7afb26d84e627badd68e89e766da346f42875d92787a6
""" ================================================= Animated image using a precomputed list of images ================================================= """ import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig = plt.figure() def f(x, y): return np.sin(x) + np.cos(y) x = np.linspace(0, 2 * np.pi, 120) y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1) # ims is a list of lists, each row is a list of artists to draw in the # current frame; here we are just animating one artist, the image, in # each frame ims = [] for i in range(60): x += np.pi / 15. y += np.pi / 20. im = plt.imshow(f(x, y), animated=True) ims.append([im]) ani = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=1000) # To save the animation, use e.g. # # ani.save("movie.mp4") # # or # # from matplotlib.animation import FFMpegWriter # writer = FFMpegWriter(fps=15, metadata=dict(artist='Me'), bitrate=1800) # ani.save("movie.mp4", writer=writer) plt.show()
50f3013dc41048c75c43962d6e9d6edb8be942516f70a648dabf66eb4cec8f89
""" ================== Animated line plot ================== """ import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig, ax = plt.subplots() x = np.arange(0, 2*np.pi, 0.01) line, = ax.plot(x, np.sin(x)) def init(): # only required for blitting to give a clean slate. line.set_ydata([np.nan] * len(x)) return line, def animate(i): line.set_ydata(np.sin(x + i / 100)) # update the data. return line, ani = animation.FuncAnimation( fig, animate, init_func=init, interval=2, blit=True, save_count=50) # To save the animation, use e.g. # # ani.save("movie.mp4") # # or # # from matplotlib.animation import FFMpegWriter # writer = FFMpegWriter(fps=15, metadata=dict(artist='Me'), bitrate=1800) # ani.save("movie.mp4", writer=writer) plt.show()
7bf63c140ae3295b922f45f75e2fa829e305c3a131723c952bb7d4cc02c7d9fd
""" ============ Oscilloscope ============ Emulates an oscilloscope. """ import numpy as np from matplotlib.lines import Line2D import matplotlib.pyplot as plt import matplotlib.animation as animation class Scope(object): def __init__(self, ax, maxt=2, dt=0.02): self.ax = ax self.dt = dt self.maxt = maxt self.tdata = [0] self.ydata = [0] self.line = Line2D(self.tdata, self.ydata) self.ax.add_line(self.line) self.ax.set_ylim(-.1, 1.1) self.ax.set_xlim(0, self.maxt) def update(self, y): lastt = self.tdata[-1] if lastt > self.tdata[0] + self.maxt: # reset the arrays self.tdata = [self.tdata[-1]] self.ydata = [self.ydata[-1]] self.ax.set_xlim(self.tdata[0], self.tdata[0] + self.maxt) self.ax.figure.canvas.draw() t = self.tdata[-1] + self.dt self.tdata.append(t) self.ydata.append(y) self.line.set_data(self.tdata, self.ydata) return self.line, def emitter(p=0.03): 'return a random value with probability p, else 0' while True: v = np.random.rand(1) if v > p: yield 0. else: yield np.random.rand(1) # Fixing random state for reproducibility np.random.seed(19680801) fig, ax = plt.subplots() scope = Scope(ax) # pass a generator in "emitter" to produce data for the update func ani = animation.FuncAnimation(fig, scope.update, emitter, interval=10, blit=True) plt.show()
7d905a369b285b6f70ffc41fc61465b70ca33313161636e0093d888f614e3701
""" =============== Rain simulation =============== Simulates rain drops on a surface by animating the scale and opacity of 50 scatter points. Author: Nicolas P. Rougier """ import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation # Fixing random state for reproducibility np.random.seed(19680801) # Create new Figure and an Axes which fills it. fig = plt.figure(figsize=(7, 7)) ax = fig.add_axes([0, 0, 1, 1], frameon=False) ax.set_xlim(0, 1), ax.set_xticks([]) ax.set_ylim(0, 1), ax.set_yticks([]) # Create rain data n_drops = 50 rain_drops = np.zeros(n_drops, dtype=[('position', float, 2), ('size', float, 1), ('growth', float, 1), ('color', float, 4)]) # Initialize the raindrops in random positions and with # random growth rates. rain_drops['position'] = np.random.uniform(0, 1, (n_drops, 2)) rain_drops['growth'] = np.random.uniform(50, 200, n_drops) # Construct the scatter which we will update during animation # as the raindrops develop. scat = ax.scatter(rain_drops['position'][:, 0], rain_drops['position'][:, 1], s=rain_drops['size'], lw=0.5, edgecolors=rain_drops['color'], facecolors='none') def update(frame_number): # Get an index which we can use to re-spawn the oldest raindrop. current_index = frame_number % n_drops # Make all colors more transparent as time progresses. rain_drops['color'][:, 3] -= 1.0/len(rain_drops) rain_drops['color'][:, 3] = np.clip(rain_drops['color'][:, 3], 0, 1) # Make all circles bigger. rain_drops['size'] += rain_drops['growth'] # Pick a new position for oldest rain drop, resetting its size, # color and growth factor. rain_drops['position'][current_index] = np.random.uniform(0, 1, 2) rain_drops['size'][current_index] = 5 rain_drops['color'][current_index] = (0, 0, 0, 1) rain_drops['growth'][current_index] = np.random.uniform(50, 200) # Update the scatter collection, with the new colors, sizes and positions. scat.set_edgecolors(rain_drops['color']) scat.set_sizes(rain_drops['size']) scat.set_offsets(rain_drops['position']) # Construct the animation, using the update function as the animation director. animation = FuncAnimation(fig, update, interval=10) plt.show()
59caca0563afbcd352c4efd6768ef960eaad7f90993405e0a1932eb73799453f
""" ================== Animated histogram ================== Use a path patch to draw a bunch of rectangles for an animated histogram. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.path as path import matplotlib.animation as animation # Fixing random state for reproducibility np.random.seed(19680801) # histogram our data with numpy data = np.random.randn(1000) n, bins = np.histogram(data, 100) # get the corners of the rectangles for the histogram left = np.array(bins[:-1]) right = np.array(bins[1:]) bottom = np.zeros(len(left)) top = bottom + n nrects = len(left) ############################################################################### # Here comes the tricky part -- we have to set up the vertex and path codes # arrays using ``plt.Path.MOVETO``, ``plt.Path.LINETO`` and # ``plt.Path.CLOSEPOLY`` for each rect. # # * We need 1 ``MOVETO`` per rectangle, which sets the initial point. # * We need 3 ``LINETO``'s, which tell Matplotlib to draw lines from # vertex 1 to vertex 2, v2 to v3, and v3 to v4. # * We then need one ``CLOSEPOLY`` which tells Matplotlib to draw a line from # the v4 to our initial vertex (the ``MOVETO`` vertex), in order to close the # polygon. # # .. note:: # # The vertex for ``CLOSEPOLY`` is ignored, but we still need a placeholder # in the ``verts`` array to keep the codes aligned with the vertices. nverts = nrects * (1 + 3 + 1) verts = np.zeros((nverts, 2)) codes = np.ones(nverts, int) * path.Path.LINETO codes[0::5] = path.Path.MOVETO codes[4::5] = path.Path.CLOSEPOLY verts[0::5, 0] = left verts[0::5, 1] = bottom verts[1::5, 0] = left verts[1::5, 1] = top verts[2::5, 0] = right verts[2::5, 1] = top verts[3::5, 0] = right verts[3::5, 1] = bottom ############################################################################### # To animate the histogram, we need an ``animate`` function, which generates # a random set of numbers and updates the locations of the vertices for the # histogram (in this case, only the heights of each rectangle). ``patch`` will # eventually be a ``Patch`` object. patch = None def animate(i): # simulate new data coming in data = np.random.randn(1000) n, bins = np.histogram(data, 100) top = bottom + n verts[1::5, 1] = top verts[2::5, 1] = top return [patch, ] ############################################################################### # And now we build the `Path` and `Patch` instances for the histogram using # our vertices and codes. We add the patch to the `Axes` instance, and setup # the `FuncAnimation` with our animate function. fig, ax = plt.subplots() barpath = path.Path(verts, codes) patch = patches.PathPatch( barpath, facecolor='green', edgecolor='yellow', alpha=0.5) ax.add_patch(patch) ax.set_xlim(left[0], right[-1]) ax.set_ylim(bottom.min(), top.max()) ani = animation.FuncAnimation(fig, animate, 100, repeat=False, blit=True) plt.show()
444340a3720a518589ccf85829fb9a79a453c95d43de1e51c562445897b8361d
""" ========== Evans test ========== A mockup "Foo" units class which supports conversion and different tick formatting depending on the "unit". Here the "unit" is just a scalar conversion factor, but this example shows that Matplotlib is entirely agnostic to what kind of units client packages use. """ import numpy as np import matplotlib.units as units import matplotlib.ticker as ticker import matplotlib.pyplot as plt class Foo(object): def __init__(self, val, unit=1.0): self.unit = unit self._val = val * unit def value(self, unit): if unit is None: unit = self.unit return self._val / unit class FooConverter(units.ConversionInterface): @staticmethod def axisinfo(unit, axis): 'return the Foo AxisInfo' if unit == 1.0 or unit == 2.0: return units.AxisInfo( majloc=ticker.IndexLocator(8, 0), majfmt=ticker.FormatStrFormatter("VAL: %s"), label='foo', ) else: return None @staticmethod def convert(obj, unit, axis): """ convert obj using unit. If obj is a sequence, return the converted sequence """ if units.ConversionInterface.is_numlike(obj): return obj if np.iterable(obj): return [o.value(unit) for o in obj] else: return obj.value(unit) @staticmethod def default_units(x, axis): 'return the default unit for x or None' if np.iterable(x): for thisx in x: return thisx.unit else: return x.unit units.registry[Foo] = FooConverter() # create some Foos x = [] for val in range(0, 50, 2): x.append(Foo(val, 1.0)) # and some arbitrary y data y = [i for i in range(len(x))] fig, (ax1, ax2) = plt.subplots(1, 2) fig.suptitle("Custom units") fig.subplots_adjust(bottom=0.2) # plot specifying units ax2.plot(x, y, 'o', xunits=2.0) ax2.set_title("xunits = 2.0") plt.setp(ax2.get_xticklabels(), rotation=30, ha='right') # plot without specifying units; will use the None branch for axisinfo ax1.plot(x, y) # uses default units ax1.set_title('default units') plt.setp(ax1.get_xticklabels(), rotation=30, ha='right') plt.show()
45a5cc8bf126de448ff604e0773575049475a0bc9f624fd5a09ef94e036cc1a0
""" ================== Ellipse With Units ================== Compare the ellipse generated with arcs versus a polygonal approximation .. only:: builder_html This example requires :download:`basic_units.py <basic_units.py>` """ from basic_units import cm import numpy as np from matplotlib import patches import matplotlib.pyplot as plt xcenter, ycenter = 0.38*cm, 0.52*cm width, height = 1e-1*cm, 3e-1*cm angle = -30 theta = np.deg2rad(np.arange(0.0, 360.0, 1.0)) x = 0.5 * width * np.cos(theta) y = 0.5 * height * np.sin(theta) rtheta = np.radians(angle) R = np.array([ [np.cos(rtheta), -np.sin(rtheta)], [np.sin(rtheta), np.cos(rtheta)], ]) x, y = np.dot(R, np.array([x, y])) x += xcenter y += ycenter ############################################################################### fig = plt.figure() ax = fig.add_subplot(211, aspect='auto') ax.fill(x, y, alpha=0.2, facecolor='yellow', edgecolor='yellow', linewidth=1, zorder=1) e1 = patches.Ellipse((xcenter, ycenter), width, height, angle=angle, linewidth=2, fill=False, zorder=2) ax.add_patch(e1) ax = fig.add_subplot(212, aspect='equal') ax.fill(x, y, alpha=0.2, facecolor='green', edgecolor='green', zorder=1) e2 = patches.Ellipse((xcenter, ycenter), width, height, angle=angle, linewidth=2, fill=False, zorder=2) ax.add_patch(e2) fig.savefig('ellipse_compare') ############################################################################### fig = plt.figure() ax = fig.add_subplot(211, aspect='auto') ax.fill(x, y, alpha=0.2, facecolor='yellow', edgecolor='yellow', linewidth=1, zorder=1) e1 = patches.Arc((xcenter, ycenter), width, height, angle=angle, linewidth=2, fill=False, zorder=2) ax.add_patch(e1) ax = fig.add_subplot(212, aspect='equal') ax.fill(x, y, alpha=0.2, facecolor='green', edgecolor='green', zorder=1) e2 = patches.Arc((xcenter, ycenter), width, height, angle=angle, linewidth=2, fill=False, zorder=2) ax.add_patch(e2) fig.savefig('arc_compare') plt.show()
2bed042ba034940fdc9f372ac8aa57b99e91d10f53cd2da7f0485e07592ea321
""" ============ Artist tests ============ Test unit support with each of the Matplotlib primitive artist types. The axis handles unit conversions and the artists keep a pointer to their axis parent. You must initialize the artists with the axis instance if you want to use them with unit data, or else they will not know how to convert the units to scalars. .. only:: builder_html This example requires :download:`basic_units.py <basic_units.py>` """ import random import matplotlib.lines as lines import matplotlib.patches as patches import matplotlib.text as text import matplotlib.collections as collections from basic_units import cm, inch import numpy as np import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.xaxis.set_units(cm) ax.yaxis.set_units(cm) # Fixing random state for reproducibility np.random.seed(19680801) if 0: # test a line collection # Not supported at present. verts = [] for i in range(10): # a random line segment in inches verts.append(zip(*inch*10*np.random.rand(2, random.randint(2, 15)))) lc = collections.LineCollection(verts, axes=ax) ax.add_collection(lc) # test a plain-ol-line line = lines.Line2D([0*cm, 1.5*cm], [0*cm, 2.5*cm], lw=2, color='black', axes=ax) ax.add_line(line) if 0: # test a patch # Not supported at present. rect = patches.Rectangle((1*cm, 1*cm), width=5*cm, height=2*cm, alpha=0.2, axes=ax) ax.add_patch(rect) t = text.Text(3*cm, 2.5*cm, 'text label', ha='left', va='bottom', axes=ax) ax.add_artist(t) ax.set_xlim(-1*cm, 10*cm) ax.set_ylim(-1*cm, 10*cm) # ax.xaxis.set_units(inch) ax.grid(True) ax.set_title("Artists with units") plt.show()
9194fe99fca083aea1bab4b867898f7ef726b2f92a156bc02423d98c5a0af351
""" =================== Bar demo with units =================== A plot using a variety of centimetre and inch conversions. This example shows how default unit introspection works (ax1), how various keywords can be used to set the x and y units to override the defaults (ax2, ax3, ax4) and how one can set the xlimits using scalars (ax3, current units assumed) or units (conversions applied to get the numbers to current units). .. only:: builder_html This example requires :download:`basic_units.py <basic_units.py>` """ import numpy as np from basic_units import cm, inch import matplotlib.pyplot as plt cms = cm * np.arange(0, 10, 2) bottom = 0 * cm width = 0.8 * cm fig, axs = plt.subplots(2, 2) axs[0, 0].bar(cms, cms, bottom=bottom) axs[0, 1].bar(cms, cms, bottom=bottom, width=width, xunits=cm, yunits=inch) axs[1, 0].bar(cms, cms, bottom=bottom, width=width, xunits=inch, yunits=cm) axs[1, 0].set_xlim(2, 6) # scalars are interpreted in current units axs[1, 1].bar(cms, cms, bottom=bottom, width=width, xunits=inch, yunits=inch) axs[1, 1].set_xlim(2 * cm, 6 * cm) # cm are converted to inches fig.tight_layout() plt.show()
54bce718126d4fa2d7e6c526404bfffeaa81fc7b7645157d7443aced5893f0a5
""" ========================= Group barchart with units ========================= This is the same example as :doc:`the barchart</gallery/lines_bars_and_markers/barchart>` in centimeters. .. only:: builder_html This example requires :download:`basic_units.py <basic_units.py>` """ import numpy as np from basic_units import cm, inch import matplotlib.pyplot as plt N = 5 menMeans = (150*cm, 160*cm, 146*cm, 172*cm, 155*cm) menStd = (20*cm, 30*cm, 32*cm, 10*cm, 20*cm) fig, ax = plt.subplots() ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars p1 = ax.bar(ind, menMeans, width, bottom=0*cm, yerr=menStd) womenMeans = (145*cm, 149*cm, 172*cm, 165*cm, 200*cm) womenStd = (30*cm, 25*cm, 20*cm, 31*cm, 22*cm) p2 = ax.bar(ind + width, womenMeans, width, bottom=0*cm, yerr=womenStd) ax.set_title('Scores by group and gender') ax.set_xticks(ind + width / 2) ax.set_xticklabels(('G1', 'G2', 'G3', 'G4', 'G5')) ax.legend((p1[0], p2[0]), ('Men', 'Women')) ax.yaxis.set_units(inch) ax.autoscale_view() plt.show()
4de2b66287f129cd61b06968042cd157b387546b535c2ffbb842f76dd6313418
""" ============ Radian ticks ============ Plot with radians from the basic_units mockup example package. This example shows how the unit class can determine the tick locating, formatting and axis labeling. .. only:: builder_html This example requires :download:`basic_units.py <basic_units.py>` """ import matplotlib.pyplot as plt import numpy as np from basic_units import radians, degrees, cos x = [val*radians for val in np.arange(0, 15, 0.01)] fig, axs = plt.subplots(2) axs[0].plot(x, cos(x), xunits=radians) axs[1].plot(x, cos(x), xunits=degrees) fig.tight_layout() plt.show()
146e5a5f38a8d8bee8ca99fd2642c60f9510cbd0b494951c1c59e4e454a3a58e
""" ============= Unit handling ============= The example below shows support for unit conversions over masked arrays. .. only:: builder_html This example requires :download:`basic_units.py <basic_units.py>` """ import numpy as np import matplotlib.pyplot as plt from basic_units import secs, hertz, minutes # create masked array data = (1, 2, 3, 4, 5, 6, 7, 8) mask = (1, 0, 1, 0, 0, 0, 1, 0) xsecs = secs * np.ma.MaskedArray(data, mask, float) fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, sharex=True) ax1.scatter(xsecs, xsecs) ax1.yaxis.set_units(secs) ax1.axis([0, 10, 0, 10]) ax2.scatter(xsecs, xsecs, yunits=hertz) ax2.axis([0, 10, 0, 1]) ax3.scatter(xsecs, xsecs, yunits=minutes) ax3.axis([0, 10, 0, 0.2]) fig.tight_layout() plt.show()
403a3dfd325d2d5a2b4b441f4b43f3c1e3a3f38739e9fb73b06611bd1168216c
""" ====================== Inches and Centimeters ====================== The example illustrates the ability to override default x and y units (ax1) to inches and centimeters using the `xunits` and `yunits` parameters for the `plot` function. Note that conversions are applied to get numbers to correct units. .. only:: builder_html This example requires :download:`basic_units.py <basic_units.py>` """ from basic_units import cm, inch import matplotlib.pyplot as plt import numpy as np cms = cm * np.arange(0, 10, 2) fig, axs = plt.subplots(2, 2) axs[0, 0].plot(cms, cms) axs[0, 1].plot(cms, cms, xunits=cm, yunits=inch) axs[1, 0].plot(cms, cms, xunits=inch, yunits=cm) axs[1, 0].set_xlim(3, 6) # scalars are interpreted in current units axs[1, 1].plot(cms, cms, xunits=inch, yunits=inch) axs[1, 1].set_xlim(3*cm, 6*cm) # cm are converted to inches plt.show()
cb4cd68a8e52a8a824604e4aa63c6947036c174b71de11abe8e596c464a22fa2
""" ===================== Annotation with units ===================== The example illustrates how to create text and arrow annotations using a centimeter-scale plot. .. only:: builder_html This example requires :download:`basic_units.py <basic_units.py>` """ import matplotlib.pyplot as plt from basic_units import cm fig, ax = plt.subplots() ax.annotate("Note 01", [0.5*cm, 0.5*cm]) # xy and text both unitized ax.annotate('local max', xy=(3*cm, 1*cm), xycoords='data', xytext=(0.8*cm, 0.95*cm), textcoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='right', verticalalignment='top') # mixing units w/ nonunits ax.annotate('local max', xy=(3*cm, 1*cm), xycoords='data', xytext=(0.8, 0.95), textcoords='axes fraction', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='right', verticalalignment='top') ax.set_xlim(0*cm, 4*cm) ax.set_ylim(0*cm, 4*cm) plt.show()
d404e8eabbab4d27c90120e6fa592514ce55d94ab751e5413375ea86a885c3c6
""" =========== Basic Units =========== """ import math import numpy as np import matplotlib.units as units import matplotlib.ticker as ticker class ProxyDelegate(object): def __init__(self, fn_name, proxy_type): self.proxy_type = proxy_type self.fn_name = fn_name def __get__(self, obj, objtype=None): return self.proxy_type(self.fn_name, obj) class TaggedValueMeta(type): def __init__(self, name, bases, dict): for fn_name in self._proxies: try: dummy = getattr(self, fn_name) except AttributeError: setattr(self, fn_name, ProxyDelegate(fn_name, self._proxies[fn_name])) class PassThroughProxy(object): def __init__(self, fn_name, obj): self.fn_name = fn_name self.target = obj.proxy_target def __call__(self, *args): fn = getattr(self.target, self.fn_name) ret = fn(*args) return ret class ConvertArgsProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): converted_args = [] for a in args: try: converted_args.append(a.convert_to(self.unit)) except AttributeError: converted_args.append(TaggedValue(a, self.unit)) converted_args = tuple([c.get_value() for c in converted_args]) return PassThroughProxy.__call__(self, *converted_args) class ConvertReturnProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): ret = PassThroughProxy.__call__(self, *args) return (NotImplemented if ret is NotImplemented else TaggedValue(ret, self.unit)) class ConvertAllProxy(PassThroughProxy): def __init__(self, fn_name, obj): PassThroughProxy.__init__(self, fn_name, obj) self.unit = obj.unit def __call__(self, *args): converted_args = [] arg_units = [self.unit] for a in args: if hasattr(a, 'get_unit') and not hasattr(a, 'convert_to'): # if this arg has a unit type but no conversion ability, # this operation is prohibited return NotImplemented if hasattr(a, 'convert_to'): try: a = a.convert_to(self.unit) except Exception: pass arg_units.append(a.get_unit()) converted_args.append(a.get_value()) else: converted_args.append(a) if hasattr(a, 'get_unit'): arg_units.append(a.get_unit()) else: arg_units.append(None) converted_args = tuple(converted_args) ret = PassThroughProxy.__call__(self, *converted_args) if ret is NotImplemented: return NotImplemented ret_unit = unit_resolver(self.fn_name, arg_units) if ret_unit is NotImplemented: return NotImplemented return TaggedValue(ret, ret_unit) class TaggedValue(metaclass=TaggedValueMeta): _proxies = {'__add__': ConvertAllProxy, '__sub__': ConvertAllProxy, '__mul__': ConvertAllProxy, '__rmul__': ConvertAllProxy, '__cmp__': ConvertAllProxy, '__lt__': ConvertAllProxy, '__gt__': ConvertAllProxy, '__len__': PassThroughProxy} def __new__(cls, value, unit): # generate a new subclass for value value_class = type(value) try: subcls = type(f'TaggedValue_of_{value_class.__name__}', (cls, value_class), {}) if subcls not in units.registry: units.registry[subcls] = basicConverter return object.__new__(subcls) except TypeError: if cls not in units.registry: units.registry[cls] = basicConverter return object.__new__(cls) def __init__(self, value, unit): self.value = value self.unit = unit self.proxy_target = self.value def __getattribute__(self, name): if name.startswith('__'): return object.__getattribute__(self, name) variable = object.__getattribute__(self, 'value') if hasattr(variable, name) and name not in self.__class__.__dict__: return getattr(variable, name) return object.__getattribute__(self, name) def __array__(self, dtype=object): return np.asarray(self.value).astype(dtype) def __array_wrap__(self, array, context): return TaggedValue(array, self.unit) def __repr__(self): return 'TaggedValue({!r}, {!r})'.format(self.value, self.unit) def __str__(self): return str(self.value) + ' in ' + str(self.unit) def __len__(self): return len(self.value) def __iter__(self): # Return a generator expression rather than use `yield`, so that # TypeError is raised by iter(self) if appropriate when checking for # iterability. return (TaggedValue(inner, self.unit) for inner in self.value) def get_compressed_copy(self, mask): new_value = np.ma.masked_array(self.value, mask=mask).compressed() return TaggedValue(new_value, self.unit) def convert_to(self, unit): if unit == self.unit or not unit: return self try: new_value = self.unit.convert_value_to(self.value, unit) except AttributeError: new_value = self return TaggedValue(new_value, unit) def get_value(self): return self.value def get_unit(self): return self.unit class BasicUnit(object): def __init__(self, name, fullname=None): self.name = name if fullname is None: fullname = name self.fullname = fullname self.conversions = dict() def __repr__(self): return f'BasicUnit({self.name})' def __str__(self): return self.fullname def __call__(self, value): return TaggedValue(value, self) def __mul__(self, rhs): value = rhs unit = self if hasattr(rhs, 'get_unit'): value = rhs.get_value() unit = rhs.get_unit() unit = unit_resolver('__mul__', (self, unit)) if unit is NotImplemented: return NotImplemented return TaggedValue(value, unit) def __rmul__(self, lhs): return self*lhs def __array_wrap__(self, array, context): return TaggedValue(array, self) def __array__(self, t=None, context=None): ret = np.array([1]) if t is not None: return ret.astype(t) else: return ret def add_conversion_factor(self, unit, factor): def convert(x): return x*factor self.conversions[unit] = convert def add_conversion_fn(self, unit, fn): self.conversions[unit] = fn def get_conversion_fn(self, unit): return self.conversions[unit] def convert_value_to(self, value, unit): conversion_fn = self.conversions[unit] ret = conversion_fn(value) return ret def get_unit(self): return self class UnitResolver(object): def addition_rule(self, units): for unit_1, unit_2 in zip(units[:-1], units[1:]): if unit_1 != unit_2: return NotImplemented return units[0] def multiplication_rule(self, units): non_null = [u for u in units if u] if len(non_null) > 1: return NotImplemented return non_null[0] op_dict = { '__mul__': multiplication_rule, '__rmul__': multiplication_rule, '__add__': addition_rule, '__radd__': addition_rule, '__sub__': addition_rule, '__rsub__': addition_rule} def __call__(self, operation, units): if operation not in self.op_dict: return NotImplemented return self.op_dict[operation](self, units) unit_resolver = UnitResolver() cm = BasicUnit('cm', 'centimeters') inch = BasicUnit('inch', 'inches') inch.add_conversion_factor(cm, 2.54) cm.add_conversion_factor(inch, 1/2.54) radians = BasicUnit('rad', 'radians') degrees = BasicUnit('deg', 'degrees') radians.add_conversion_factor(degrees, 180.0/np.pi) degrees.add_conversion_factor(radians, np.pi/180.0) secs = BasicUnit('s', 'seconds') hertz = BasicUnit('Hz', 'Hertz') minutes = BasicUnit('min', 'minutes') secs.add_conversion_fn(hertz, lambda x: 1./x) secs.add_conversion_factor(minutes, 1/60.0) # radians formatting def rad_fn(x, pos=None): if x >= 0: n = int((x / np.pi) * 2.0 + 0.25) else: n = int((x / np.pi) * 2.0 - 0.25) if n == 0: return '0' elif n == 1: return r'$\pi/2$' elif n == 2: return r'$\pi$' elif n == -1: return r'$-\pi/2$' elif n == -2: return r'$-\pi$' elif n % 2 == 0: return fr'${n//2}\pi$' else: return fr'${n}\pi/2$' class BasicUnitConverter(units.ConversionInterface): @staticmethod def axisinfo(unit, axis): 'return AxisInfo instance for x and unit' if unit == radians: return units.AxisInfo( majloc=ticker.MultipleLocator(base=np.pi/2), majfmt=ticker.FuncFormatter(rad_fn), label=unit.fullname, ) elif unit == degrees: return units.AxisInfo( majloc=ticker.AutoLocator(), majfmt=ticker.FormatStrFormatter(r'$%i^\circ$'), label=unit.fullname, ) elif unit is not None: if hasattr(unit, 'fullname'): return units.AxisInfo(label=unit.fullname) elif hasattr(unit, 'unit'): return units.AxisInfo(label=unit.unit.fullname) return None @staticmethod def convert(val, unit, axis): if units.ConversionInterface.is_numlike(val): return val if np.iterable(val): if isinstance(val, np.ma.MaskedArray): val = val.astype(float).filled(np.nan) out = np.empty(len(val)) for i, thisval in enumerate(val): if np.ma.is_masked(thisval): out[i] = np.nan else: try: out[i] = thisval.convert_to(unit).get_value() except AttributeError: out[i] = thisval return out if np.ma.is_masked(val): return np.nan else: return val.convert_to(unit).get_value() @staticmethod def default_units(x, axis): 'return the default unit for x or None' if np.iterable(x): for thisx in x: return thisx.unit return x.unit def cos(x): if np.iterable(x): return [math.cos(val.convert_to(radians).get_value()) for val in x] else: return math.cos(x.convert_to(radians).get_value()) basicConverter = BasicUnitConverter() units.registry[BasicUnit] = basicConverter units.registry[TaggedValue] = basicConverter
43c41dd342cc5d3cd7507db714264418a767bd33cb1eca2c71b338543da33f5c
""" ======================= Figure Axes Enter Leave ======================= Illustrate the figure and axes enter and leave events by changing the frame colors on enter and leave """ import matplotlib.pyplot as plt def enter_axes(event): print('enter_axes', event.inaxes) event.inaxes.patch.set_facecolor('yellow') event.canvas.draw() def leave_axes(event): print('leave_axes', event.inaxes) event.inaxes.patch.set_facecolor('white') event.canvas.draw() def enter_figure(event): print('enter_figure', event.canvas.figure) event.canvas.figure.patch.set_facecolor('red') event.canvas.draw() def leave_figure(event): print('leave_figure', event.canvas.figure) event.canvas.figure.patch.set_facecolor('grey') event.canvas.draw() ############################################################################### fig1, (ax, ax2) = plt.subplots(2, 1) fig1.suptitle('mouse hover over figure or axes to trigger events') fig1.canvas.mpl_connect('figure_enter_event', enter_figure) fig1.canvas.mpl_connect('figure_leave_event', leave_figure) fig1.canvas.mpl_connect('axes_enter_event', enter_axes) fig1.canvas.mpl_connect('axes_leave_event', leave_axes) ############################################################################### fig2, (ax, ax2) = plt.subplots(2, 1) fig2.suptitle('mouse hover over figure or axes to trigger events') fig2.canvas.mpl_connect('figure_enter_event', enter_figure) fig2.canvas.mpl_connect('figure_leave_event', leave_figure) fig2.canvas.mpl_connect('axes_enter_event', enter_axes) fig2.canvas.mpl_connect('axes_leave_event', leave_axes) plt.show()
044c926aade68c253c86e3605dc42ec0e56417e91c64e6c8a7c35473f8f2274c
""" ===================== Interactive functions ===================== This provides examples of uses of interactive functions, such as ginput, waitforbuttonpress and manual clabel placement. This script must be run interactively using a backend that has a graphical user interface (for example, using GTK3Agg backend, but not PS backend). """ import time import numpy as np import matplotlib.pyplot as plt def tellme(s): print(s) plt.title(s, fontsize=16) plt.draw() ################################################## # Define a triangle by clicking three points plt.clf() plt.axis([-1., 1., -1., 1.]) plt.setp(plt.gca(), autoscale_on=False) tellme('You will define a triangle, click to begin') plt.waitforbuttonpress() while True: pts = [] while len(pts) < 3: tellme('Select 3 corners with mouse') pts = np.asarray(plt.ginput(3, timeout=-1)) if len(pts) < 3: tellme('Too few points, starting over') time.sleep(1) # Wait a second ph = plt.fill(pts[:, 0], pts[:, 1], 'r', lw=2) tellme('Happy? Key click for yes, mouse click for no') if plt.waitforbuttonpress(): break # Get rid of fill for p in ph: p.remove() ################################################## # Now contour according to distance from triangle # corners - just an example # Define a nice function of distance from individual pts def f(x, y, pts): z = np.zeros_like(x) for p in pts: z = z + 1/(np.sqrt((x - p[0])**2 + (y - p[1])**2)) return 1/z X, Y = np.meshgrid(np.linspace(-1, 1, 51), np.linspace(-1, 1, 51)) Z = f(X, Y, pts) CS = plt.contour(X, Y, Z, 20) tellme('Use mouse to select contour label locations, middle button to finish') CL = plt.clabel(CS, manual=True) ################################################## # Now do a zoom tellme('Now do a nested zoom, click to begin') plt.waitforbuttonpress() while True: tellme('Select two corners of zoom, middle mouse button to finish') pts = np.asarray(plt.ginput(2, timeout=-1)) if len(pts) < 2: break pts = np.sort(pts, axis=0) plt.axis(pts.T.ravel()) tellme('All Done!') plt.show()
5b2d0a226de181c381a13a8727d2fa7340973e021cef721868aaefc3858c4d3c
""" =============== Resampling Data =============== Downsampling lowers the sample rate or sample size of a signal. In this tutorial, the signal is downsampled when the plot is adjusted through dragging and zooming. """ import numpy as np import matplotlib.pyplot as plt # A class that will downsample the data and recompute when zoomed. class DataDisplayDownsampler(object): def __init__(self, xdata, ydata): self.origYData = ydata self.origXData = xdata self.max_points = 50 self.delta = xdata[-1] - xdata[0] def downsample(self, xstart, xend): # get the points in the view range mask = (self.origXData > xstart) & (self.origXData < xend) # dilate the mask by one to catch the points just outside # of the view range to not truncate the line mask = np.convolve([1, 1], mask, mode='same').astype(bool) # sort out how many points to drop ratio = max(np.sum(mask) // self.max_points, 1) # mask data xdata = self.origXData[mask] ydata = self.origYData[mask] # downsample data xdata = xdata[::ratio] ydata = ydata[::ratio] print("using {} of {} visible points".format( len(ydata), np.sum(mask))) return xdata, ydata def update(self, ax): # Update the line lims = ax.viewLim if np.abs(lims.width - self.delta) > 1e-8: self.delta = lims.width xstart, xend = lims.intervalx self.line.set_data(*self.downsample(xstart, xend)) ax.figure.canvas.draw_idle() # Create a signal xdata = np.linspace(16, 365, (365-16)*4) ydata = np.sin(2*np.pi*xdata/153) + np.cos(2*np.pi*xdata/127) d = DataDisplayDownsampler(xdata, ydata) fig, ax = plt.subplots() # Hook up the line d.line, = ax.plot(xdata, ydata, 'o-') ax.set_autoscale_on(False) # Otherwise, infinite loop # Connect for changing the view limits ax.callbacks.connect('xlim_changed', d.update) ax.set_xlim(16, 365) plt.show()
d3ec87f746df28fdb166c7a3b539c67f41bdf1b5059f01a276a22c825b06f9bf
""" ==================== Trifinder Event Demo ==================== Example showing the use of a TriFinder object. As the mouse is moved over the triangulation, the triangle under the cursor is highlighted and the index of the triangle is displayed in the plot title. """ import matplotlib.pyplot as plt from matplotlib.tri import Triangulation from matplotlib.patches import Polygon import numpy as np def update_polygon(tri): if tri == -1: points = [0, 0, 0] else: points = triang.triangles[tri] xs = triang.x[points] ys = triang.y[points] polygon.set_xy(np.column_stack([xs, ys])) def motion_notify(event): if event.inaxes is None: tri = -1 else: tri = trifinder(event.xdata, event.ydata) update_polygon(tri) plt.title('In triangle %i' % tri) event.canvas.draw() # Create a Triangulation. n_angles = 16 n_radii = 5 min_radius = 0.25 radii = np.linspace(min_radius, 0.95, n_radii) angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False) angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1) angles[:, 1::2] += np.pi / n_angles x = (radii*np.cos(angles)).flatten() y = (radii*np.sin(angles)).flatten() triang = Triangulation(x, y) triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1), y[triang.triangles].mean(axis=1)) < min_radius) # Use the triangulation's default TriFinder object. trifinder = triang.get_trifinder() # Setup plot and callbacks. plt.subplot(111, aspect='equal') plt.triplot(triang, 'bo-') polygon = Polygon([[0, 0], [0, 0]], facecolor='y') # dummy data for xs,ys update_polygon(-1) plt.gca().add_patch(polygon) plt.gcf().canvas.mpl_connect('motion_notify_event', motion_notify) plt.show()
3f396a15fd03ed186edde4fae876fdd521e34854eba1c98aa2f3808b55fa6d35
""" =========== Close Event =========== Example to show connecting events that occur when the figure closes. """ import matplotlib.pyplot as plt def handle_close(evt): print('Closed Figure!') fig = plt.figure() fig.canvas.mpl_connect('close_event', handle_close) plt.text(0.35, 0.5, 'Close Me!', dict(size=30)) plt.show()
826b6bb9a2dbc577abd19687dd75361593c796ab0ee037bbed417acba89d4d87
""" =========== Zoom Window =========== This example shows how to connect events in one window, for example, a mouse press, to another figure window. If you click on a point in the first window, the z and y limits of the second will be adjusted so that the center of the zoom in the second window will be the x,y coordinates of the clicked point. Note the diameter of the circles in the scatter are defined in points**2, so their size is independent of the zoom. """ import matplotlib.pyplot as plt import numpy as np figsrc, axsrc = plt.subplots() figzoom, axzoom = plt.subplots() axsrc.set(xlim=(0, 1), ylim=(0, 1), autoscale_on=False, title='Click to zoom') axzoom.set(xlim=(0.45, 0.55), ylim=(0.4, 0.6), autoscale_on=False, title='Zoom window') x, y, s, c = np.random.rand(4, 200) s *= 200 axsrc.scatter(x, y, s, c) axzoom.scatter(x, y, s, c) def onpress(event): if event.button != 1: return x, y = event.xdata, event.ydata axzoom.set_xlim(x - 0.1, x + 0.1) axzoom.set_ylim(y - 0.1, y + 0.1) figzoom.canvas.draw() figsrc.canvas.mpl_connect('button_press_event', onpress) plt.show()
9231ebd7ffcfaeaf752a1185e261b6a78d4a2023f1fc2ff5789153496103b75d
""" =================== Image Slices Viewer =================== Scroll through 2D image slices of a 3D array. """ import numpy as np import matplotlib.pyplot as plt class IndexTracker(object): def __init__(self, ax, X): self.ax = ax ax.set_title('use scroll wheel to navigate images') self.X = X rows, cols, self.slices = X.shape self.ind = self.slices//2 self.im = ax.imshow(self.X[:, :, self.ind]) self.update() def onscroll(self, event): print("%s %s" % (event.button, event.step)) if event.button == 'up': self.ind = (self.ind + 1) % self.slices else: self.ind = (self.ind - 1) % self.slices self.update() def update(self): self.im.set_data(self.X[:, :, self.ind]) self.ax.set_ylabel('slice %s' % self.ind) self.im.axes.figure.canvas.draw() fig, ax = plt.subplots(1, 1) X = np.random.rand(20, 20, 40) tracker = IndexTracker(ax, X) fig.canvas.mpl_connect('scroll_event', tracker.onscroll) plt.show()
94473bb08688d1c646bdb2bd70094bc84b8ad6a8b0e8eafd5d1508df98ecc369
""" ============= Looking Glass ============= Example using mouse events to simulate a looking glass for inspecting data. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches # Fixing random state for reproducibility np.random.seed(19680801) x, y = np.random.rand(2, 200) fig, ax = plt.subplots() circ = patches.Circle((0.5, 0.5), 0.25, alpha=0.8, fc='yellow') ax.add_patch(circ) ax.plot(x, y, alpha=0.2) line, = ax.plot(x, y, alpha=1.0, clip_path=circ) ax.set_title("Left click and drag to move looking glass") class EventHandler(object): def __init__(self): fig.canvas.mpl_connect('button_press_event', self.onpress) fig.canvas.mpl_connect('button_release_event', self.onrelease) fig.canvas.mpl_connect('motion_notify_event', self.onmove) self.x0, self.y0 = circ.center self.pressevent = None def onpress(self, event): if event.inaxes != ax: return if not circ.contains(event)[0]: return self.pressevent = event def onrelease(self, event): self.pressevent = None self.x0, self.y0 = circ.center def onmove(self, event): if self.pressevent is None or event.inaxes != self.pressevent.inaxes: return dx = event.xdata - self.pressevent.xdata dy = event.ydata - self.pressevent.ydata circ.center = self.x0 + dx, self.y0 + dy line.set_clip_path(circ) fig.canvas.draw() handler = EventHandler() plt.show()
8bc449a40cc566872cb57f53f9f912521115063320283d291b94cf6d290ac96d
""" ======== Viewlims ======== Creates two identical panels. Zooming in on the right panel will show a rectangle in the first panel, denoting the zoomed region. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle # We just subclass Rectangle so that it can be called with an Axes # instance, causing the rectangle to update its shape to match the # bounds of the Axes class UpdatingRect(Rectangle): def __call__(self, ax): self.set_bounds(*ax.viewLim.bounds) ax.figure.canvas.draw_idle() # A class that will regenerate a fractal set as we zoom in, so that you # can actually see the increasing detail. A box in the left panel will show # the area to which we are zoomed. class MandelbrotDisplay(object): def __init__(self, h=500, w=500, niter=50, radius=2., power=2): self.height = h self.width = w self.niter = niter self.radius = radius self.power = power def __call__(self, xstart, xend, ystart, yend): self.x = np.linspace(xstart, xend, self.width) self.y = np.linspace(ystart, yend, self.height).reshape(-1, 1) c = self.x + 1.0j * self.y threshold_time = np.zeros((self.height, self.width)) z = np.zeros(threshold_time.shape, dtype=complex) mask = np.ones(threshold_time.shape, dtype=bool) for i in range(self.niter): z[mask] = z[mask]**self.power + c[mask] mask = (np.abs(z) < self.radius) threshold_time += mask return threshold_time def ax_update(self, ax): ax.set_autoscale_on(False) # Otherwise, infinite loop # Get the number of points from the number of pixels in the window dims = ax.patch.get_window_extent().bounds self.width = int(dims[2] + 0.5) self.height = int(dims[2] + 0.5) # Get the range for the new area xstart, ystart, xdelta, ydelta = ax.viewLim.bounds xend = xstart + xdelta yend = ystart + ydelta # Update the image object with our new data and extent im = ax.images[-1] im.set_data(self.__call__(xstart, xend, ystart, yend)) im.set_extent((xstart, xend, ystart, yend)) ax.figure.canvas.draw_idle() md = MandelbrotDisplay() Z = md(-2., 0.5, -1.25, 1.25) fig1, (ax1, ax2) = plt.subplots(1, 2) ax1.imshow(Z, origin='lower', extent=(md.x.min(), md.x.max(), md.y.min(), md.y.max())) ax2.imshow(Z, origin='lower', extent=(md.x.min(), md.x.max(), md.y.min(), md.y.max())) rect = UpdatingRect([0, 0], 0, 0, facecolor='None', edgecolor='black', linewidth=1.0) rect.set_bounds(*ax2.viewLim.bounds) ax1.add_patch(rect) # Connect for changing the view limits ax2.callbacks.connect('xlim_changed', rect) ax2.callbacks.connect('ylim_changed', rect) ax2.callbacks.connect('xlim_changed', md.ax_update) ax2.callbacks.connect('ylim_changed', md.ax_update) ax2.set_title("Zoom here") plt.show()
6f4bb6e010bf26b34c2deb31b231511056def6e8c1f01419cef9a582203f893b
""" ====== Timers ====== Simple example of using general timer objects. This is used to update the time placed in the title of the figure. """ import matplotlib.pyplot as plt import numpy as np from datetime import datetime def update_title(axes): axes.set_title(datetime.now()) axes.figure.canvas.draw() fig, ax = plt.subplots() x = np.linspace(-3, 3) ax.plot(x, x ** 2) # Create a new timer object. Set the interval to 100 milliseconds # (1000 is default) and tell the timer what function should be called. timer = fig.canvas.new_timer(interval=100) timer.add_callback(update_title, ax) timer.start() # Or could start the timer on first figure draw #def start_timer(evt): # timer.start() # fig.canvas.mpl_disconnect(drawid) #drawid = fig.canvas.mpl_connect('draw_event', start_timer) plt.show()
682c9026e6f34db832682dff6e64ab7d819a708affad3a93ecde91cc0e8cc4a6
""" ============== Legend Picking ============== Enable picking on the legend to toggle the original line on and off """ import numpy as np import matplotlib.pyplot as plt t = np.arange(0.0, 0.2, 0.1) y1 = 2*np.sin(2*np.pi*t) y2 = 4*np.sin(2*np.pi*2*t) fig, ax = plt.subplots() ax.set_title('Click on legend line to toggle line on/off') line1, = ax.plot(t, y1, lw=2, label='1 HZ') line2, = ax.plot(t, y2, lw=2, label='2 HZ') leg = ax.legend(loc='upper left', fancybox=True, shadow=True) leg.get_frame().set_alpha(0.4) # we will set up a dict mapping legend line to orig line, and enable # picking on the legend line lines = [line1, line2] lined = dict() for legline, origline in zip(leg.get_lines(), lines): legline.set_picker(5) # 5 pts tolerance lined[legline] = origline def onpick(event): # on the pick event, find the orig line corresponding to the # legend proxy line, and toggle the visibility legline = event.artist origline = lined[legline] vis = not origline.get_visible() origline.set_visible(vis) # Change the alpha on the line in the legend so we can see what lines # have been toggled if vis: legline.set_alpha(1.0) else: legline.set_alpha(0.2) fig.canvas.draw() fig.canvas.mpl_connect('pick_event', onpick) plt.show()
9b5e8d124debd9af2ba0f7de0e3ebdfb77d8298ec9809ce73f9ad3f419f85449
""" =========== Path Editor =========== Sharing events across GUIs. This example demonstrates a cross-GUI application using Matplotlib event handling to interact with and modify objects on the canvas. """ import numpy as np import matplotlib.path as mpath import matplotlib.patches as mpatches import matplotlib.pyplot as plt Path = mpath.Path fig, ax = plt.subplots() pathdata = [ (Path.MOVETO, (1.58, -2.57)), (Path.CURVE4, (0.35, -1.1)), (Path.CURVE4, (-1.75, 2.0)), (Path.CURVE4, (0.375, 2.0)), (Path.LINETO, (0.85, 1.15)), (Path.CURVE4, (2.2, 3.2)), (Path.CURVE4, (3, 0.05)), (Path.CURVE4, (2.0, -0.5)), (Path.CLOSEPOLY, (1.58, -2.57)), ] codes, verts = zip(*pathdata) path = mpath.Path(verts, codes) patch = mpatches.PathPatch(path, facecolor='green', edgecolor='yellow', alpha=0.5) ax.add_patch(patch) class PathInteractor(object): """ An path editor. Key-bindings 't' toggle vertex markers on and off. When vertex markers are on, you can move them, delete them """ showverts = True epsilon = 5 # max pixel distance to count as a vertex hit def __init__(self, pathpatch): self.ax = pathpatch.axes canvas = self.ax.figure.canvas self.pathpatch = pathpatch self.pathpatch.set_animated(True) x, y = zip(*self.pathpatch.get_path().vertices) self.line, = ax.plot(x, y, marker='o', markerfacecolor='r', animated=True) self._ind = None # the active vert canvas.mpl_connect('draw_event', self.draw_callback) canvas.mpl_connect('button_press_event', self.button_press_callback) canvas.mpl_connect('key_press_event', self.key_press_callback) canvas.mpl_connect('button_release_event', self.button_release_callback) canvas.mpl_connect('motion_notify_event', self.motion_notify_callback) self.canvas = canvas def draw_callback(self, event): self.background = self.canvas.copy_from_bbox(self.ax.bbox) self.ax.draw_artist(self.pathpatch) self.ax.draw_artist(self.line) self.canvas.blit(self.ax.bbox) def pathpatch_changed(self, pathpatch): 'this method is called whenever the pathpatchgon object is called' # only copy the artist props to the line (except visibility) vis = self.line.get_visible() plt.Artist.update_from(self.line, pathpatch) self.line.set_visible(vis) # don't use the pathpatch visibility state def get_ind_under_point(self, event): 'get the index of the vertex under point if within epsilon tolerance' # display coords xy = np.asarray(self.pathpatch.get_path().vertices) xyt = self.pathpatch.get_transform().transform(xy) xt, yt = xyt[:, 0], xyt[:, 1] d = np.sqrt((xt - event.x)**2 + (yt - event.y)**2) ind = d.argmin() if d[ind] >= self.epsilon: ind = None return ind def button_press_callback(self, event): 'whenever a mouse button is pressed' if not self.showverts: return if event.inaxes is None: return if event.button != 1: return self._ind = self.get_ind_under_point(event) def button_release_callback(self, event): 'whenever a mouse button is released' if not self.showverts: return if event.button != 1: return self._ind = None def key_press_callback(self, event): 'whenever a key is pressed' if not event.inaxes: return if event.key == 't': self.showverts = not self.showverts self.line.set_visible(self.showverts) if not self.showverts: self._ind = None self.canvas.draw() def motion_notify_callback(self, event): 'on mouse movement' if not self.showverts: return if self._ind is None: return if event.inaxes is None: return if event.button != 1: return x, y = event.xdata, event.ydata vertices = self.pathpatch.get_path().vertices vertices[self._ind] = x, y self.line.set_data(zip(*vertices)) self.canvas.restore_region(self.background) self.ax.draw_artist(self.pathpatch) self.ax.draw_artist(self.line) self.canvas.blit(self.ax.bbox) interactor = PathInteractor(patch) ax.set_title('drag vertices to update path') ax.set_xlim(-3, 4) ax.set_ylim(-3, 4) plt.show()
d390994cf3ad84e2ecdc099343d19cb790a32448ee3b7ab262f5444e126f5b52
""" ================ Pick Event Demo2 ================ compute the mean and standard deviation (stddev) of 100 data sets and plot mean vs stddev. When you click on one of the mu, sigma points, plot the raw data from the dataset that generated the mean and stddev. """ import numpy as np import matplotlib.pyplot as plt X = np.random.rand(100, 1000) xs = np.mean(X, axis=1) ys = np.std(X, axis=1) fig, ax = plt.subplots() ax.set_title('click on point to plot time series') line, = ax.plot(xs, ys, 'o', picker=5) # 5 points tolerance def onpick(event): if event.artist != line: return True N = len(event.ind) if not N: return True figi, axs = plt.subplots(N, squeeze=False) for ax, dataind in zip(axs.flat, event.ind): ax.plot(X[dataind]) ax.text(.05, .9, 'mu=%1.3f\nsigma=%1.3f' % (xs[dataind], ys[dataind]), transform=ax.transAxes, va='top') ax.set_ylim(-0.5, 1.5) figi.show() return True fig.canvas.mpl_connect('pick_event', onpick) plt.show()
66d745c441577a3a1f1ef7ee06f44ced50f428891b9d5e8e608d00fdc55a3763
""" =============== Pick Event Demo =============== You can enable picking by setting the "picker" property of an artist (for example, a matplotlib Line2D, Text, Patch, Polygon, AxesImage, etc...) There are a variety of meanings of the picker property None - picking is disabled for this artist (default) boolean - if True then picking will be enabled and the artist will fire a pick event if the mouse event is over the artist float - if picker is a number it is interpreted as an epsilon tolerance in points and the artist will fire off an event if it's data is within epsilon of the mouse event. For some artists like lines and patch collections, the artist may provide additional data to the pick event that is generated, for example, the indices of the data within epsilon of the pick event function - if picker is callable, it is a user supplied function which determines whether the artist is hit by the mouse event. hit, props = picker(artist, mouseevent) to determine the hit test. If the mouse event is over the artist, return hit=True and props is a dictionary of properties you want added to the PickEvent attributes After you have enabled an artist for picking by setting the "picker" property, you need to connect to the figure canvas pick_event to get pick callbacks on mouse press events. For example, def pick_handler(event): mouseevent = event.mouseevent artist = event.artist # now do something with this... The pick event (matplotlib.backend_bases.PickEvent) which is passed to your callback is always fired with two attributes: mouseevent - the mouse event that generate the pick event. The mouse event in turn has attributes like x and y (the coordinates in display space, such as pixels from left, bottom) and xdata, ydata (the coords in data space). Additionally, you can get information about which buttons were pressed, which keys were pressed, which Axes the mouse is over, etc. See matplotlib.backend_bases.MouseEvent for details. artist - the matplotlib.artist that generated the pick event. Additionally, certain artists like Line2D and PatchCollection may attach additional meta data like the indices into the data that meet the picker criteria (for example, all the points in the line that are within the specified epsilon tolerance) The examples below illustrate each of these methods. """ import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.patches import Rectangle from matplotlib.text import Text from matplotlib.image import AxesImage import numpy as np from numpy.random import rand def pick_simple(): # simple picking, lines, rectangles and text fig, (ax1, ax2) = plt.subplots(2, 1) ax1.set_title('click on points, rectangles or text', picker=True) ax1.set_ylabel('ylabel', picker=True, bbox=dict(facecolor='red')) line, = ax1.plot(rand(100), 'o', picker=5) # 5 points tolerance # pick the rectangle bars = ax2.bar(range(10), rand(10), picker=True) for label in ax2.get_xticklabels(): # make the xtick labels pickable label.set_picker(True) def onpick1(event): if isinstance(event.artist, Line2D): thisline = event.artist xdata = thisline.get_xdata() ydata = thisline.get_ydata() ind = event.ind print('onpick1 line:', np.column_stack([xdata[ind], ydata[ind]])) elif isinstance(event.artist, Rectangle): patch = event.artist print('onpick1 patch:', patch.get_path()) elif isinstance(event.artist, Text): text = event.artist print('onpick1 text:', text.get_text()) fig.canvas.mpl_connect('pick_event', onpick1) def pick_custom_hit(): # picking with a custom hit test function # you can define custom pickers by setting picker to a callable # function. The function has the signature # # hit, props = func(artist, mouseevent) # # to determine the hit test. if the mouse event is over the artist, # return hit=True and props is a dictionary of # properties you want added to the PickEvent attributes def line_picker(line, mouseevent): """ find the points within a certain distance from the mouseclick in data coords and attach some extra attributes, pickx and picky which are the data points that were picked """ if mouseevent.xdata is None: return False, dict() xdata = line.get_xdata() ydata = line.get_ydata() maxd = 0.05 d = np.sqrt( (xdata - mouseevent.xdata)**2 + (ydata - mouseevent.ydata)**2) ind, = np.nonzero(d <= maxd) if len(ind): pickx = xdata[ind] picky = ydata[ind] props = dict(ind=ind, pickx=pickx, picky=picky) return True, props else: return False, dict() def onpick2(event): print('onpick2 line:', event.pickx, event.picky) fig, ax = plt.subplots() ax.set_title('custom picker for line data') line, = ax.plot(rand(100), rand(100), 'o', picker=line_picker) fig.canvas.mpl_connect('pick_event', onpick2) def pick_scatter_plot(): # picking on a scatter plot (matplotlib.collections.RegularPolyCollection) x, y, c, s = rand(4, 100) def onpick3(event): ind = event.ind print('onpick3 scatter:', ind, x[ind], y[ind]) fig, ax = plt.subplots() col = ax.scatter(x, y, 100*s, c, picker=True) #fig.savefig('pscoll.eps') fig.canvas.mpl_connect('pick_event', onpick3) def pick_image(): # picking images (matplotlib.image.AxesImage) fig, ax = plt.subplots() im1 = ax.imshow(rand(10, 5), extent=(1, 2, 1, 2), picker=True) im2 = ax.imshow(rand(5, 10), extent=(3, 4, 1, 2), picker=True) im3 = ax.imshow(rand(20, 25), extent=(1, 2, 3, 4), picker=True) im4 = ax.imshow(rand(30, 12), extent=(3, 4, 3, 4), picker=True) ax.axis([0, 5, 0, 5]) def onpick4(event): artist = event.artist if isinstance(artist, AxesImage): im = artist A = im.get_array() print('onpick4 image', A.shape) fig.canvas.mpl_connect('pick_event', onpick4) if __name__ == '__main__': pick_simple() pick_custom_hit() pick_scatter_plot() pick_image() plt.show()
bdfd9e328d9c500c040aa45282797b1288f1c50a111ececb89dde6904636fabe
""" =========== Poly Editor =========== This is an example to show how to build cross-GUI applications using Matplotlib event handling to interact with objects on the canvas. """ import numpy as np from matplotlib.lines import Line2D from matplotlib.artist import Artist def dist(x, y): """ Return the distance between two points. """ d = x - y return np.sqrt(np.dot(d, d)) def dist_point_to_segment(p, s0, s1): """ Get the distance of a point to a segment. *p*, *s0*, *s1* are *xy* sequences This algorithm from http://geomalgorithms.com/a02-_lines.html """ v = s1 - s0 w = p - s0 c1 = np.dot(w, v) if c1 <= 0: return dist(p, s0) c2 = np.dot(v, v) if c2 <= c1: return dist(p, s1) b = c1 / c2 pb = s0 + b * v return dist(p, pb) class PolygonInteractor(object): """ A polygon editor. Key-bindings 't' toggle vertex markers on and off. When vertex markers are on, you can move them, delete them 'd' delete the vertex under point 'i' insert a vertex at point. You must be within epsilon of the line connecting two existing vertices """ showverts = True epsilon = 5 # max pixel distance to count as a vertex hit def __init__(self, ax, poly): if poly.figure is None: raise RuntimeError('You must first add the polygon to a figure ' 'or canvas before defining the interactor') self.ax = ax canvas = poly.figure.canvas self.poly = poly x, y = zip(*self.poly.xy) self.line = Line2D(x, y, marker='o', markerfacecolor='r', animated=True) self.ax.add_line(self.line) self.cid = self.poly.add_callback(self.poly_changed) self._ind = None # the active vert canvas.mpl_connect('draw_event', self.draw_callback) canvas.mpl_connect('button_press_event', self.button_press_callback) canvas.mpl_connect('key_press_event', self.key_press_callback) canvas.mpl_connect('button_release_event', self.button_release_callback) canvas.mpl_connect('motion_notify_event', self.motion_notify_callback) self.canvas = canvas def draw_callback(self, event): self.background = self.canvas.copy_from_bbox(self.ax.bbox) self.ax.draw_artist(self.poly) self.ax.draw_artist(self.line) # do not need to blit here, this will fire before the screen is # updated def poly_changed(self, poly): 'this method is called whenever the polygon object is called' # only copy the artist props to the line (except visibility) vis = self.line.get_visible() Artist.update_from(self.line, poly) self.line.set_visible(vis) # don't use the poly visibility state def get_ind_under_point(self, event): 'get the index of the vertex under point if within epsilon tolerance' # display coords xy = np.asarray(self.poly.xy) xyt = self.poly.get_transform().transform(xy) xt, yt = xyt[:, 0], xyt[:, 1] d = np.hypot(xt - event.x, yt - event.y) indseq, = np.nonzero(d == d.min()) ind = indseq[0] if d[ind] >= self.epsilon: ind = None return ind def button_press_callback(self, event): 'whenever a mouse button is pressed' if not self.showverts: return if event.inaxes is None: return if event.button != 1: return self._ind = self.get_ind_under_point(event) def button_release_callback(self, event): 'whenever a mouse button is released' if not self.showverts: return if event.button != 1: return self._ind = None def key_press_callback(self, event): 'whenever a key is pressed' if not event.inaxes: return if event.key == 't': self.showverts = not self.showverts self.line.set_visible(self.showverts) if not self.showverts: self._ind = None elif event.key == 'd': ind = self.get_ind_under_point(event) if ind is not None: self.poly.xy = np.delete(self.poly.xy, ind, axis=0) self.line.set_data(zip(*self.poly.xy)) elif event.key == 'i': xys = self.poly.get_transform().transform(self.poly.xy) p = event.x, event.y # display coords for i in range(len(xys) - 1): s0 = xys[i] s1 = xys[i + 1] d = dist_point_to_segment(p, s0, s1) if d <= self.epsilon: self.poly.xy = np.insert( self.poly.xy, i+1, [event.xdata, event.ydata], axis=0) self.line.set_data(zip(*self.poly.xy)) break if self.line.stale: self.canvas.draw_idle() def motion_notify_callback(self, event): 'on mouse movement' if not self.showverts: return if self._ind is None: return if event.inaxes is None: return if event.button != 1: return x, y = event.xdata, event.ydata self.poly.xy[self._ind] = x, y if self._ind == 0: self.poly.xy[-1] = x, y elif self._ind == len(self.poly.xy) - 1: self.poly.xy[0] = x, y self.line.set_data(zip(*self.poly.xy)) self.canvas.restore_region(self.background) self.ax.draw_artist(self.poly) self.ax.draw_artist(self.line) self.canvas.blit(self.ax.bbox) if __name__ == '__main__': import matplotlib.pyplot as plt from matplotlib.patches import Polygon theta = np.arange(0, 2*np.pi, 0.1) r = 1.5 xs = r * np.cos(theta) ys = r * np.sin(theta) poly = Polygon(np.column_stack([xs, ys]), animated=True) fig, ax = plt.subplots() ax.add_patch(poly) p = PolygonInteractor(ax, poly) ax.set_title('Click and drag a point to move it') ax.set_xlim((-2, 2)) ax.set_ylim((-2, 2)) plt.show()
e9bb6362590401e27e43e8d91899b0f68c3bac636cbb5501f039879e0df1dbdd
""" ============= Keypress Demo ============= Show how to connect to keypress events """ import sys import numpy as np import matplotlib.pyplot as plt def press(event): print('press', event.key) sys.stdout.flush() if event.key == 'x': visible = xl.get_visible() xl.set_visible(not visible) fig.canvas.draw() # Fixing random state for reproducibility np.random.seed(19680801) fig, ax = plt.subplots() fig.canvas.mpl_connect('key_press_event', press) ax.plot(np.random.rand(12), np.random.rand(12), 'go') xl = ax.set_xlabel('easy come, easy go') ax.set_title('Press a key') plt.show()
0393bdbfac930f6b08e5fa2074a5a31a7b82bfef99837a41b5d9403e2e40edc4
""" ==== Pong ==== A small game demo using Matplotlib. .. only:: builder_html This example requires :download:`pipong.py <pipong.py>` """ import time import matplotlib.pyplot as plt import pipong fig, ax = plt.subplots() canvas = ax.figure.canvas animation = pipong.Game(ax) # disable the default key bindings if fig.canvas.manager.key_press_handler_id is not None: canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id) # reset the blitting background on redraw def handle_redraw(event): animation.background = None # bootstrap after the first draw def start_anim(event): canvas.mpl_disconnect(start_anim.cid) def local_draw(): if animation.ax.get_renderer_cache(): animation.draw(None) start_anim.timer.add_callback(local_draw) start_anim.timer.start() canvas.mpl_connect('draw_event', handle_redraw) start_anim.cid = canvas.mpl_connect('draw_event', start_anim) start_anim.timer = animation.canvas.new_timer() start_anim.timer.interval = 1 tstart = time.time() plt.show() print('FPS: %f' % (animation.cnt/(time.time() - tstart)))
c3fa159d40d8acb9b6b1da32fbde8b5cc78e55b3aa1ee1a28bff31ca63188a01
""" ============ Data Browser ============ Connecting data between multiple canvases. This example covers how to interact data with multiple canvases. This let's you select and highlight a point on one axis, and generating the data of that point on the other axis. """ import numpy as np class PointBrowser(object): """ Click on a point to select and highlight it -- the data that generated the point will be shown in the lower axes. Use the 'n' and 'p' keys to browse through the next and previous points """ def __init__(self): self.lastind = 0 self.text = ax.text(0.05, 0.95, 'selected: none', transform=ax.transAxes, va='top') self.selected, = ax.plot([xs[0]], [ys[0]], 'o', ms=12, alpha=0.4, color='yellow', visible=False) def onpress(self, event): if self.lastind is None: return if event.key not in ('n', 'p'): return if event.key == 'n': inc = 1 else: inc = -1 self.lastind += inc self.lastind = np.clip(self.lastind, 0, len(xs) - 1) self.update() def onpick(self, event): if event.artist != line: return True N = len(event.ind) if not N: return True # the click locations x = event.mouseevent.xdata y = event.mouseevent.ydata distances = np.hypot(x - xs[event.ind], y - ys[event.ind]) indmin = distances.argmin() dataind = event.ind[indmin] self.lastind = dataind self.update() def update(self): if self.lastind is None: return dataind = self.lastind ax2.cla() ax2.plot(X[dataind]) ax2.text(0.05, 0.9, 'mu=%1.3f\nsigma=%1.3f' % (xs[dataind], ys[dataind]), transform=ax2.transAxes, va='top') ax2.set_ylim(-0.5, 1.5) self.selected.set_visible(True) self.selected.set_data(xs[dataind], ys[dataind]) self.text.set_text('selected: %d' % dataind) fig.canvas.draw() if __name__ == '__main__': import matplotlib.pyplot as plt # Fixing random state for reproducibility np.random.seed(19680801) X = np.random.rand(100, 200) xs = np.mean(X, axis=1) ys = np.std(X, axis=1) fig, (ax, ax2) = plt.subplots(2, 1) ax.set_title('click on point to plot time series') line, = ax.plot(xs, ys, 'o', picker=5) # 5 points tolerance browser = PointBrowser() fig.canvas.mpl_connect('pick_event', browser.onpick) fig.canvas.mpl_connect('key_press_event', browser.onpress) plt.show()
32720b060b63d10b6630c83990b6196ac5b43e2acb18e07cc8855759f84894ff
""" ========== Lasso Demo ========== Show how to use a lasso to select a set of points and get the indices of the selected points. A callback is used to change the color of the selected points This is currently a proof-of-concept implementation (though it is usable as is). There will be some refinement of the API. """ from matplotlib import colors as mcolors, path from matplotlib.collections import RegularPolyCollection import matplotlib.pyplot as plt from matplotlib.widgets import Lasso import numpy as np class Datum(object): colorin = mcolors.to_rgba("red") colorout = mcolors.to_rgba("blue") def __init__(self, x, y, include=False): self.x = x self.y = y if include: self.color = self.colorin else: self.color = self.colorout class LassoManager(object): def __init__(self, ax, data): self.axes = ax self.canvas = ax.figure.canvas self.data = data self.Nxy = len(data) facecolors = [d.color for d in data] self.xys = [(d.x, d.y) for d in data] self.collection = RegularPolyCollection( 6, sizes=(100,), facecolors=facecolors, offsets=self.xys, transOffset=ax.transData) ax.add_collection(self.collection) self.cid = self.canvas.mpl_connect('button_press_event', self.onpress) def callback(self, verts): facecolors = self.collection.get_facecolors() p = path.Path(verts) ind = p.contains_points(self.xys) for i in range(len(self.xys)): if ind[i]: facecolors[i] = Datum.colorin else: facecolors[i] = Datum.colorout self.canvas.draw_idle() self.canvas.widgetlock.release(self.lasso) del self.lasso def onpress(self, event): if self.canvas.widgetlock.locked(): return if event.inaxes is None: return self.lasso = Lasso(event.inaxes, (event.xdata, event.ydata), self.callback) # acquire a lock on the widget drawing self.canvas.widgetlock(self.lasso) if __name__ == '__main__': np.random.seed(19680801) data = [Datum(*xy) for xy in np.random.rand(100, 2)] ax = plt.axes(xlim=(0, 1), ylim=(0, 1), autoscale_on=False) ax.set_title('Lasso points using left mouse button') lman = LassoManager(ax, data) plt.show()
8ae8597d5dae24dfc1b669eb7e04dd55327f82de4caaf5ef81a05cbeca0a5eec
""" ====== Pipong ====== A Matplotlib based game of Pong illustrating one way to write interactive animation which are easily ported to multiple backends pipong.py was written by Paul Ivanov <http://pirsquared.org> """ import numpy as np import matplotlib.pyplot as plt from numpy.random import randn, randint from matplotlib.font_manager import FontProperties instructions = """ Player A: Player B: 'e' up 'i' 'd' down 'k' press 't' -- close these instructions (animation will be much faster) press 'a' -- add a puck press 'A' -- remove a puck press '1' -- slow down all pucks press '2' -- speed up all pucks press '3' -- slow down distractors press '4' -- speed up distractors press ' ' -- reset the first puck press 'n' -- toggle distractors on/off press 'g' -- toggle the game on/off """ class Pad(object): def __init__(self, disp, x, y, type='l'): self.disp = disp self.x = x self.y = y self.w = .3 self.score = 0 self.xoffset = 0.3 self.yoffset = 0.1 if type == 'r': self.xoffset *= -1.0 if type == 'l' or type == 'r': self.signx = -1.0 self.signy = 1.0 else: self.signx = 1.0 self.signy = -1.0 def contains(self, loc): return self.disp.get_bbox().contains(loc.x, loc.y) class Puck(object): def __init__(self, disp, pad, field): self.vmax = .2 self.disp = disp self.field = field self._reset(pad) def _reset(self, pad): self.x = pad.x + pad.xoffset if pad.y < 0: self.y = pad.y + pad.yoffset else: self.y = pad.y - pad.yoffset self.vx = pad.x - self.x self.vy = pad.y + pad.w/2 - self.y self._speedlimit() self._slower() self._slower() def update(self, pads): self.x += self.vx self.y += self.vy for pad in pads: if pad.contains(self): self.vx *= 1.2 * pad.signx self.vy *= 1.2 * pad.signy fudge = .001 # probably cleaner with something like... if self.x < fudge: pads[1].score += 1 self._reset(pads[0]) return True if self.x > 7 - fudge: pads[0].score += 1 self._reset(pads[1]) return True if self.y < -1 + fudge or self.y > 1 - fudge: self.vy *= -1.0 # add some randomness, just to make it interesting self.vy -= (randn()/300.0 + 1/300.0) * np.sign(self.vy) self._speedlimit() return False def _slower(self): self.vx /= 5.0 self.vy /= 5.0 def _faster(self): self.vx *= 5.0 self.vy *= 5.0 def _speedlimit(self): if self.vx > self.vmax: self.vx = self.vmax if self.vx < -self.vmax: self.vx = -self.vmax if self.vy > self.vmax: self.vy = self.vmax if self.vy < -self.vmax: self.vy = -self.vmax class Game(object): def __init__(self, ax): # create the initial line self.ax = ax ax.set_ylim([-1, 1]) ax.set_xlim([0, 7]) padAx = 0 padBx = .50 padAy = padBy = .30 padBx += 6.3 # pads pA, = self.ax.barh(padAy, .2, height=.3, color='k', alpha=.5, edgecolor='b', lw=2, label="Player B", animated=True) pB, = self.ax.barh(padBy, .2, height=.3, left=padBx, color='k', alpha=.5, edgecolor='r', lw=2, label="Player A", animated=True) # distractors self.x = np.arange(0, 2.22*np.pi, 0.01) self.line, = self.ax.plot(self.x, np.sin(self.x), "r", animated=True, lw=4) self.line2, = self.ax.plot(self.x, np.cos(self.x), "g", animated=True, lw=4) self.line3, = self.ax.plot(self.x, np.cos(self.x), "g", animated=True, lw=4) self.line4, = self.ax.plot(self.x, np.cos(self.x), "r", animated=True, lw=4) # center line self.centerline, = self.ax.plot([3.5, 3.5], [1, -1], 'k', alpha=.5, animated=True, lw=8) # puck (s) self.puckdisp = self.ax.scatter([1], [1], label='_nolegend_', s=200, c='g', alpha=.9, animated=True) self.canvas = self.ax.figure.canvas self.background = None self.cnt = 0 self.distract = True self.res = 100.0 self.on = False self.inst = True # show instructions from the beginning self.background = None self.pads = [] self.pads.append(Pad(pA, padAx, padAy)) self.pads.append(Pad(pB, padBx, padBy, 'r')) self.pucks = [] self.i = self.ax.annotate(instructions, (.5, 0.5), name='monospace', verticalalignment='center', horizontalalignment='center', multialignment='left', textcoords='axes fraction', animated=False) self.canvas.mpl_connect('key_press_event', self.key_press) def draw(self, evt): draw_artist = self.ax.draw_artist if self.background is None: self.background = self.canvas.copy_from_bbox(self.ax.bbox) # restore the clean slate background self.canvas.restore_region(self.background) # show the distractors if self.distract: self.line.set_ydata(np.sin(self.x + self.cnt/self.res)) self.line2.set_ydata(np.cos(self.x - self.cnt/self.res)) self.line3.set_ydata(np.tan(self.x + self.cnt/self.res)) self.line4.set_ydata(np.tan(self.x - self.cnt/self.res)) draw_artist(self.line) draw_artist(self.line2) draw_artist(self.line3) draw_artist(self.line4) # pucks and pads if self.on: self.ax.draw_artist(self.centerline) for pad in self.pads: pad.disp.set_y(pad.y) pad.disp.set_x(pad.x) self.ax.draw_artist(pad.disp) for puck in self.pucks: if puck.update(self.pads): # we only get here if someone scored self.pads[0].disp.set_label( " " + str(self.pads[0].score)) self.pads[1].disp.set_label( " " + str(self.pads[1].score)) self.ax.legend(loc='center', framealpha=.2, facecolor='0.5', prop=FontProperties(size='xx-large', weight='bold')) self.background = None self.ax.figure.canvas.draw_idle() return True puck.disp.set_offsets([[puck.x, puck.y]]) self.ax.draw_artist(puck.disp) # just redraw the axes rectangle self.canvas.blit(self.ax.bbox) self.canvas.flush_events() if self.cnt == 50000: # just so we don't get carried away print("...and you've been playing for too long!!!") plt.close() self.cnt += 1 return True def key_press(self, event): if event.key == '3': self.res *= 5.0 if event.key == '4': self.res /= 5.0 if event.key == 'e': self.pads[0].y += .1 if self.pads[0].y > 1 - .3: self.pads[0].y = 1 - .3 if event.key == 'd': self.pads[0].y -= .1 if self.pads[0].y < -1: self.pads[0].y = -1 if event.key == 'i': self.pads[1].y += .1 if self.pads[1].y > 1 - .3: self.pads[1].y = 1 - .3 if event.key == 'k': self.pads[1].y -= .1 if self.pads[1].y < -1: self.pads[1].y = -1 if event.key == 'a': self.pucks.append(Puck(self.puckdisp, self.pads[randint(2)], self.ax.bbox)) if event.key == 'A' and len(self.pucks): self.pucks.pop() if event.key == ' ' and len(self.pucks): self.pucks[0]._reset(self.pads[randint(2)]) if event.key == '1': for p in self.pucks: p._slower() if event.key == '2': for p in self.pucks: p._faster() if event.key == 'n': self.distract = not self.distract if event.key == 'g': self.on = not self.on if event.key == 't': self.inst = not self.inst self.i.set_visible(not self.i.get_visible()) self.background = None self.canvas.draw_idle() if event.key == 'q': plt.close()
3c0dff8c79ebef14fdb3fab8e2d5a6b2e2f52609bab92b3a8a73c6f9a00f97af
""" =========== Coords demo =========== An example of how to interact with the plotting canvas by connecting to move and click events. """ from matplotlib.backend_bases import MouseButton import matplotlib.pyplot as plt import numpy as np t = np.arange(0.0, 1.0, 0.01) s = np.sin(2 * np.pi * t) fig, ax = plt.subplots() ax.plot(t, s) def on_move(event): # get the x and y pixel coords x, y = event.x, event.y if event.inaxes: ax = event.inaxes # the axes instance print('data coords %f %f' % (event.xdata, event.ydata)) def on_click(event): if event.button is MouseButton.LEFT: print('disconnecting callback') plt.disconnect(binding_id) binding_id = plt.connect('motion_notify_event', on_move) plt.connect('button_press_event', on_click) plt.show()
8e2fc8352dd85a1aba1542c4708a07c7738cd8e71fc4db502d0118c7cc8af341
""" ============ Custom scale ============ Create a custom scale, by implementing the scaling use for latitude data in a Mercator Projection. Unless you are making special use of the `~.Transform` class, you probably don't need to use this verbose method, and instead can use `~.matplotlib.scale.FuncScale` and the ``'function'`` option of `~.matplotlib.axes.Axes.set_xscale` and `~.matplotlib.axes.Axes.set_yscale`. See the last example in :doc:`/gallery/scales/scales`. """ import numpy as np from numpy import ma from matplotlib import scale as mscale from matplotlib import transforms as mtransforms from matplotlib.ticker import Formatter, FixedLocator from matplotlib import rcParams # BUG: this example fails with any other setting of axisbelow rcParams['axes.axisbelow'] = False class MercatorLatitudeScale(mscale.ScaleBase): """ Scales data in range -pi/2 to pi/2 (-90 to 90 degrees) using the system used to scale latitudes in a Mercator projection. The scale function: ln(tan(y) + sec(y)) The inverse scale function: atan(sinh(y)) Since the Mercator scale tends to infinity at +/- 90 degrees, there is user-defined threshold, above and below which nothing will be plotted. This defaults to +/- 85 degrees. source: http://en.wikipedia.org/wiki/Mercator_projection """ # The scale class must have a member ``name`` that defines the string used # to select the scale. For example, ``gca().set_yscale("mercator")`` would # be used to select this scale. name = 'mercator' def __init__(self, axis, *, thresh=np.deg2rad(85), **kwargs): """ Any keyword arguments passed to ``set_xscale`` and ``set_yscale`` will be passed along to the scale's constructor. thresh: The degree above which to crop the data. """ super().__init__(axis) if thresh >= np.pi / 2: raise ValueError("thresh must be less than pi/2") self.thresh = thresh def get_transform(self): """ Override this method to return a new instance that does the actual transformation of the data. The MercatorLatitudeTransform class is defined below as a nested class of this one. """ return self.MercatorLatitudeTransform(self.thresh) def set_default_locators_and_formatters(self, axis): """ Override to set up the locators and formatters to use with the scale. This is only required if the scale requires custom locators and formatters. Writing custom locators and formatters is rather outside the scope of this example, but there are many helpful examples in ``ticker.py``. In our case, the Mercator example uses a fixed locator from -90 to 90 degrees and a custom formatter class to put convert the radians to degrees and put a degree symbol after the value:: """ class DegreeFormatter(Formatter): def __call__(self, x, pos=None): return "%d\N{DEGREE SIGN}" % np.degrees(x) axis.set_major_locator(FixedLocator( np.radians(np.arange(-90, 90, 10)))) axis.set_major_formatter(DegreeFormatter()) axis.set_minor_formatter(DegreeFormatter()) def limit_range_for_scale(self, vmin, vmax, minpos): """ Override to limit the bounds of the axis to the domain of the transform. In the case of Mercator, the bounds should be limited to the threshold that was passed in. Unlike the autoscaling provided by the tick locators, this range limiting will always be adhered to, whether the axis range is set manually, determined automatically or changed through panning and zooming. """ return max(vmin, -self.thresh), min(vmax, self.thresh) class MercatorLatitudeTransform(mtransforms.Transform): # There are two value members that must be defined. # ``input_dims`` and ``output_dims`` specify number of input # dimensions and output dimensions to the transformation. # These are used by the transformation framework to do some # error checking and prevent incompatible transformations from # being connected together. When defining transforms for a # scale, which are, by definition, separable and have only one # dimension, these members should always be set to 1. input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, thresh): mtransforms.Transform.__init__(self) self.thresh = thresh def transform_non_affine(self, a): """ This transform takes an Nx1 ``numpy`` array and returns a transformed copy. Since the range of the Mercator scale is limited by the user-specified threshold, the input array must be masked to contain only valid values. ``matplotlib`` will handle masked arrays and remove the out-of-range data from the plot. Importantly, the ``transform`` method *must* return an array that is the same shape as the input array, since these values need to remain synchronized with values in the other dimension. """ masked = ma.masked_where((a < -self.thresh) | (a > self.thresh), a) if masked.mask.any(): return ma.log(np.abs(ma.tan(masked) + 1.0 / ma.cos(masked))) else: return np.log(np.abs(np.tan(a) + 1.0 / np.cos(a))) def inverted(self): """ Override this method so matplotlib knows how to get the inverse transform for this transform. """ return MercatorLatitudeScale.InvertedMercatorLatitudeTransform( self.thresh) class InvertedMercatorLatitudeTransform(mtransforms.Transform): input_dims = 1 output_dims = 1 is_separable = True has_inverse = True def __init__(self, thresh): mtransforms.Transform.__init__(self) self.thresh = thresh def transform_non_affine(self, a): return np.arctan(np.sinh(a)) def inverted(self): return MercatorLatitudeScale.MercatorLatitudeTransform(self.thresh) # Now that the Scale class has been defined, it must be registered so # that ``matplotlib`` can find it. mscale.register_scale(MercatorLatitudeScale) if __name__ == '__main__': import matplotlib.pyplot as plt t = np.arange(-180.0, 180.0, 0.1) s = np.radians(t)/2. plt.plot(t, s, '-', lw=2) plt.gca().set_yscale('mercator') plt.xlabel('Longitude') plt.ylabel('Latitude') plt.title('Mercator: Projection of the Oppressor') plt.grid(True) plt.show()
eba985bb35ea8cbc12decd0f391eb95e752948db2603fa9facecfd7eb035e205
""" ======================== Exploring normalizations ======================== Various normalization on a multivariate normal distribution. """ import matplotlib.pyplot as plt import matplotlib.colors as mcolors import numpy as np from numpy.random import multivariate_normal data = np.vstack([ multivariate_normal([10, 10], [[3, 2], [2, 3]], size=100000), multivariate_normal([30, 20], [[2, 3], [1, 3]], size=1000) ]) gammas = [0.8, 0.5, 0.3] fig, axes = plt.subplots(nrows=2, ncols=2) axes[0, 0].set_title('Linear normalization') axes[0, 0].hist2d(data[:, 0], data[:, 1], bins=100) for ax, gamma in zip(axes.flat[1:], gammas): ax.set_title(r'Power law $(\gamma=%1.1f)$' % gamma) ax.hist2d(data[:, 0], data[:, 1], bins=100, norm=mcolors.PowerNorm(gamma)) fig.tight_layout() plt.show() ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions, methods, classes and modules is shown # in this example: import matplotlib matplotlib.colors matplotlib.colors.PowerNorm matplotlib.axes.Axes.hist2d matplotlib.pyplot.hist2d
77a5e6ac50f07488fed18817509b845b16e634c630df13baba646bef21fa62c6
""" ====== Scales ====== Illustrate the scale transformations applied to axes, e.g. log, symlog, logit. The last two examples are examples of using the ``'function'`` scale by supplying forward and inverse functions for the scale transformation. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import NullFormatter, FixedLocator # Fixing random state for reproducibility np.random.seed(19680801) # make up some data in the interval ]0, 1[ y = np.random.normal(loc=0.5, scale=0.4, size=1000) y = y[(y > 0) & (y < 1)] y.sort() x = np.arange(len(y)) # plot with various axes scales fig, axs = plt.subplots(3, 2, figsize=(6, 8), constrained_layout=True) # linear ax = axs[0, 0] ax.plot(x, y) ax.set_yscale('linear') ax.set_title('linear') ax.grid(True) # log ax = axs[0, 1] ax.plot(x, y) ax.set_yscale('log') ax.set_title('log') ax.grid(True) # symmetric log ax = axs[1, 1] ax.plot(x, y - y.mean()) ax.set_yscale('symlog', linthreshy=0.02) ax.set_title('symlog') ax.grid(True) # logit ax = axs[1, 0] ax.plot(x, y) ax.set_yscale('logit') ax.set_title('logit') ax.grid(True) # Format the minor tick labels of the y-axis into empty strings with # `NullFormatter`, to avoid cumbering the axis with too many labels. ax.yaxis.set_minor_formatter(NullFormatter()) # Function x**(1/2) def forward(x): return x**(1/2) def inverse(x): return x**2 ax = axs[2, 0] ax.plot(x, y) ax.set_yscale('function', functions=(forward, inverse)) ax.set_title('function: $x^{1/2}$') ax.grid(True) ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 1, 0.2)**2)) ax.yaxis.set_major_locator(FixedLocator(np.arange(0, 1, 0.2))) # Function Mercator transform def forward(a): a = np.deg2rad(a) return np.rad2deg(np.log(np.abs(np.tan(a) + 1.0 / np.cos(a)))) def inverse(a): a = np.deg2rad(a) return np.rad2deg(np.arctan(np.sinh(a))) ax = axs[2, 1] t = np.arange(-170.0, 170.0, 0.1) s = t / 2. ax.plot(t, s, '-', lw=2) ax.set_yscale('function', functions=(forward, inverse)) ax.set_title('function: Mercator') ax.grid(True) ax.set_xlim([-180, 180]) ax.yaxis.set_minor_formatter(NullFormatter()) ax.yaxis.set_major_locator(FixedLocator(np.arange(-90, 90, 30))) plt.show() ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions, methods, classes and modules is shown # in this example: import matplotlib matplotlib.axes.Axes.set_yscale matplotlib.axes.Axes.set_xscale matplotlib.axis.Axis.set_major_locator matplotlib.scale.LogitScale matplotlib.scale.LogScale matplotlib.scale.LinearScale matplotlib.scale.SymmetricalLogScale matplotlib.scale.FuncScale
e6feb8ee3201223a893714f11e3bce2c911199228a8b422a4903d6c35f608f81
""" ======== Log Axis ======== This is an example of assigning a log-scale for the x-axis using `semilogx`. """ import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots() dt = 0.01 t = np.arange(dt, 20.0, dt) ax.semilogx(t, np.exp(-t / 5.0)) ax.grid() plt.show()
60517ab54b2416d693a8dbbd95b976c1dbbc714ba7739716e9883a998a70acd6
""" ============= Loglog Aspect ============= """ import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2) ax1.set_xscale("log") ax1.set_yscale("log") ax1.set_xlim(1e1, 1e3) ax1.set_ylim(1e2, 1e3) ax1.set_aspect(1) ax1.set_title("adjustable = box") ax2.set_xscale("log") ax2.set_yscale("log") ax2.set_adjustable("datalim") ax2.plot([1, 3, 10], [1, 9, 100], "o-") ax2.set_xlim(1e-1, 1e2) ax2.set_ylim(1e-1, 1e3) ax2.set_aspect(1) ax2.set_title("adjustable = datalim") plt.show()
2b5dffa71afaededfb05a802cee87dcff52981198def44063eb07128f74f7948
""" =========== Symlog Demo =========== Example use of symlog (symmetric log) axis scaling. """ import matplotlib.pyplot as plt import numpy as np dt = 0.01 x = np.arange(-50.0, 50.0, dt) y = np.arange(0, 100.0, dt) plt.subplot(311) plt.plot(x, y) plt.xscale('symlog') plt.ylabel('symlogx') plt.grid(True) plt.gca().xaxis.grid(True, which='minor') # minor grid on too plt.subplot(312) plt.plot(y, x) plt.yscale('symlog') plt.ylabel('symlogy') plt.subplot(313) plt.plot(x, np.sin(x / 3.0)) plt.xscale('symlog') plt.yscale('symlog', linthreshy=0.015) plt.grid(True) plt.ylabel('symlog both') plt.tight_layout() plt.show()
1558af3c1875d381c508fd9052439718562a15a5a3af3c9e9cd72656921c2e66
""" ======== Log Demo ======== Examples of plots with logarithmic axes. """ import numpy as np import matplotlib.pyplot as plt # Data for plotting t = np.arange(0.01, 20.0, 0.01) # Create figure fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) # log y axis ax1.semilogy(t, np.exp(-t / 5.0)) ax1.set(title='semilogy') ax1.grid() # log x axis ax2.semilogx(t, np.sin(2 * np.pi * t)) ax2.set(title='semilogx') ax2.grid() # log x and y axis ax3.loglog(t, 20 * np.exp(-t / 10.0), basex=2) ax3.set(title='loglog base 2 on x') ax3.grid() # With errorbars: clip non-positive values # Use new data for plotting x = 10.0**np.linspace(0.0, 2.0, 20) y = x**2.0 ax4.set_xscale("log", nonposx='clip') ax4.set_yscale("log", nonposy='clip') ax4.set(title='Errorbars go negative') ax4.errorbar(x, y, xerr=0.1 * x, yerr=5.0 + 0.75 * y) # ylim must be set after errorbar to allow errorbar to autoscale limits ax4.set_ylim(bottom=0.1) fig.tight_layout() plt.show()
15aac1e1a3b868ba63b6957865cd235c32eac3989123f4539421a06ef296bc48
""" ======= Log Bar ======= Plotting a bar chart with a logarithmic y-axis. """ import matplotlib.pyplot as plt import numpy as np data = ((3, 1000), (10, 3), (100, 30), (500, 800), (50, 1)) dim = len(data[0]) w = 0.75 dimw = w / dim fig, ax = plt.subplots() x = np.arange(len(data)) for i in range(len(data[0])): y = [d[i] for d in data] b = ax.bar(x + i * dimw, y, dimw, bottom=0.001) ax.set_xticks(x + dimw / 2, map(str, x)) ax.set_yscale('log') ax.set_xlabel('x') ax.set_ylabel('y') plt.show()
36ff2da371862e8a3c16c66a8639c2c2765c8a30dcd25cebf0e743bc52e91492
""" ================== Violin plot basics ================== Violin plots are similar to histograms and box plots in that they show an abstract representation of the probability distribution of the sample. Rather than showing counts of data points that fall into bins or order statistics, violin plots use kernel density estimation (KDE) to compute an empirical distribution of the sample. That computation is controlled by several parameters. This example demonstrates how to modify the number of points at which the KDE is evaluated (``points``) and how to modify the band-width of the KDE (``bw_method``). For more information on violin plots and KDE, the scikit-learn docs have a great section: http://scikit-learn.org/stable/modules/density.html """ import numpy as np import matplotlib.pyplot as plt # Fixing random state for reproducibility np.random.seed(19680801) # fake data fs = 10 # fontsize pos = [1, 2, 4, 5, 7, 8] data = [np.random.normal(0, std, size=100) for std in pos] fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6, 6)) axes[0, 0].violinplot(data, pos, points=20, widths=0.3, showmeans=True, showextrema=True, showmedians=True) axes[0, 0].set_title('Custom violinplot 1', fontsize=fs) axes[0, 1].violinplot(data, pos, points=40, widths=0.5, showmeans=True, showextrema=True, showmedians=True, bw_method='silverman') axes[0, 1].set_title('Custom violinplot 2', fontsize=fs) axes[0, 2].violinplot(data, pos, points=60, widths=0.7, showmeans=True, showextrema=True, showmedians=True, bw_method=0.5) axes[0, 2].set_title('Custom violinplot 3', fontsize=fs) axes[1, 0].violinplot(data, pos, points=80, vert=False, widths=0.7, showmeans=True, showextrema=True, showmedians=True) axes[1, 0].set_title('Custom violinplot 4', fontsize=fs) axes[1, 1].violinplot(data, pos, points=100, vert=False, widths=0.9, showmeans=True, showextrema=True, showmedians=True, bw_method='silverman') axes[1, 1].set_title('Custom violinplot 5', fontsize=fs) axes[1, 2].violinplot(data, pos, points=200, vert=False, widths=1.1, showmeans=True, showextrema=True, showmedians=True, bw_method=0.5) axes[1, 2].set_title('Custom violinplot 6', fontsize=fs) for ax in axes.flatten(): ax.set_yticklabels([]) fig.suptitle("Violin Plotting Examples") fig.subplots_adjust(hspace=0.4) plt.show()
c5110786c69622ab279df02121a924fd3cb145e6b1c2356d02528f41205d579c
""" ==================================================== Creating boxes from error bars using PatchCollection ==================================================== In this example, we snazz up a pretty standard error bar plot by adding a rectangle patch defined by the limits of the bars in both the x- and y- directions. To do this, we have to write our own custom function called ``make_error_boxes``. Close inspection of this function will reveal the preferred pattern in writing functions for matplotlib: 1. an ``Axes`` object is passed directly to the function 2. the function operates on the `Axes` methods directly, not through the ``pyplot`` interface 3. plotting kwargs that could be abbreviated are spelled out for better code readability in the future (for example we use ``facecolor`` instead of ``fc``) 4. the artists returned by the ``Axes`` plotting methods are then returned by the function so that, if desired, their styles can be modified later outside of the function (they are not modified in this example). """ import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import Rectangle # Number of data points n = 5 # Dummy data np.random.seed(19680801) x = np.arange(0, n, 1) y = np.random.rand(n) * 5. # Dummy errors (above and below) xerr = np.random.rand(2, n) + 0.1 yerr = np.random.rand(2, n) + 0.2 def make_error_boxes(ax, xdata, ydata, xerror, yerror, facecolor='r', edgecolor='None', alpha=0.5): # Create list for all the error patches errorboxes = [] # Loop over data points; create box from errors at each point for x, y, xe, ye in zip(xdata, ydata, xerror.T, yerror.T): rect = Rectangle((x - xe[0], y - ye[0]), xe.sum(), ye.sum()) errorboxes.append(rect) # Create patch collection with specified colour/alpha pc = PatchCollection(errorboxes, facecolor=facecolor, alpha=alpha, edgecolor=edgecolor) # Add collection to axes ax.add_collection(pc) # Plot errorbars artists = ax.errorbar(xdata, ydata, xerr=xerror, yerr=yerror, fmt='None', ecolor='k') return artists # Create figure and axes fig, ax = plt.subplots(1) # Call function to create error boxes _ = make_error_boxes(ax, x, y, xerr, yerr) plt.show()
fbd93dbf98155e92f01d4d8f2564a68d13461403aa5b043a61f45243e923fb7d
""" ======== Boxplots ======== Visualizing boxplots with matplotlib. The following examples show off how to visualize boxplots with Matplotlib. There are many options to control their appearance and the statistics that they use to summarize the data. """ import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import Polygon # Fixing random state for reproducibility np.random.seed(19680801) # fake up some data spread = np.random.rand(50) * 100 center = np.ones(25) * 50 flier_high = np.random.rand(10) * 100 + 100 flier_low = np.random.rand(10) * -100 data = np.concatenate((spread, center, flier_high, flier_low)) fig, axs = plt.subplots(2, 3) # basic plot axs[0, 0].boxplot(data) axs[0, 0].set_title('basic plot') # notched plot axs[0, 1].boxplot(data, 1) axs[0, 1].set_title('notched plot') # change outlier point symbols axs[0, 2].boxplot(data, 0, 'gD') axs[0, 2].set_title('change outlier\npoint symbols') # don't show outlier points axs[1, 0].boxplot(data, 0, '') axs[1, 0].set_title("don't show\noutlier points") # horizontal boxes axs[1, 1].boxplot(data, 0, 'rs', 0) axs[1, 1].set_title('horizontal boxes') # change whisker length axs[1, 2].boxplot(data, 0, 'rs', 0, 0.75) axs[1, 2].set_title('change whisker length') fig.subplots_adjust(left=0.08, right=0.98, bottom=0.05, top=0.9, hspace=0.4, wspace=0.3) # fake up some more data spread = np.random.rand(50) * 100 center = np.ones(25) * 40 flier_high = np.random.rand(10) * 100 + 100 flier_low = np.random.rand(10) * -100 d2 = np.concatenate((spread, center, flier_high, flier_low)) data.shape = (-1, 1) d2.shape = (-1, 1) # Making a 2-D array only works if all the columns are the # same length. If they are not, then use a list instead. # This is actually more efficient because boxplot converts # a 2-D array into a list of vectors internally anyway. data = [data, d2, d2[::2, 0]] # Multiple box plots on one Axes fig, ax = plt.subplots() ax.boxplot(data) plt.show() ############################################################################### # Below we'll generate data from five different probability distributions, # each with different characteristics. We want to play with how an IID # bootstrap resample of the data preserves the distributional # properties of the original sample, and a boxplot is one visual tool # to make this assessment random_dists = ['Normal(1,1)', ' Lognormal(1,1)', 'Exp(1)', 'Gumbel(6,4)', 'Triangular(2,9,11)'] N = 500 norm = np.random.normal(1, 1, N) logn = np.random.lognormal(1, 1, N) expo = np.random.exponential(1, N) gumb = np.random.gumbel(6, 4, N) tria = np.random.triangular(2, 9, 11, N) # Generate some random indices that we'll use to resample the original data # arrays. For code brevity, just use the same random indices for each array bootstrap_indices = np.random.randint(0, N, N) data = [ norm, norm[bootstrap_indices], logn, logn[bootstrap_indices], expo, expo[bootstrap_indices], gumb, gumb[bootstrap_indices], tria, tria[bootstrap_indices], ] fig, ax1 = plt.subplots(figsize=(10, 6)) fig.canvas.set_window_title('A Boxplot Example') fig.subplots_adjust(left=0.075, right=0.95, top=0.9, bottom=0.25) bp = ax1.boxplot(data, notch=0, sym='+', vert=1, whis=1.5) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') # Add a horizontal grid to the plot, but make it very light in color # so we can use it for reading data values but not be distracting ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) # Hide these grid behind plot objects ax1.set_axisbelow(True) ax1.set_title('Comparison of IID Bootstrap Resampling Across Five Distributions') ax1.set_xlabel('Distribution') ax1.set_ylabel('Value') # Now fill the boxes with desired colors box_colors = ['darkkhaki', 'royalblue'] num_boxes = len(data) medians = np.empty(num_boxes) for i in range(num_boxes): box = bp['boxes'][i] boxX = [] boxY = [] for j in range(5): boxX.append(box.get_xdata()[j]) boxY.append(box.get_ydata()[j]) box_coords = np.column_stack([boxX, boxY]) # Alternate between Dark Khaki and Royal Blue ax1.add_patch(Polygon(box_coords, facecolor=box_colors[i % 2])) # Now draw the median lines back over what we just filled in med = bp['medians'][i] medianX = [] medianY = [] for j in range(2): medianX.append(med.get_xdata()[j]) medianY.append(med.get_ydata()[j]) ax1.plot(medianX, medianY, 'k') medians[i] = medianY[0] # Finally, overplot the sample averages, with horizontal alignment # in the center of each box ax1.plot(np.average(med.get_xdata()), np.average(data[i]), color='w', marker='*', markeredgecolor='k') # Set the axes ranges and axes labels ax1.set_xlim(0.5, num_boxes + 0.5) top = 40 bottom = -5 ax1.set_ylim(bottom, top) ax1.set_xticklabels(np.repeat(random_dists, 2), rotation=45, fontsize=8) # Due to the Y-axis scale being different across samples, it can be # hard to compare differences in medians across the samples. Add upper # X-axis tick labels with the sample medians to aid in comparison # (just use two decimal places of precision) pos = np.arange(num_boxes) + 1 upper_labels = [str(np.round(s, 2)) for s in medians] weights = ['bold', 'semibold'] for tick, label in zip(range(num_boxes), ax1.get_xticklabels()): k = tick % 2 ax1.text(pos[tick], .95, upper_labels[tick], transform=ax1.get_xaxis_transform(), horizontalalignment='center', size='x-small', weight=weights[k], color=box_colors[k]) # Finally, add a basic legend fig.text(0.80, 0.08, f'{N} Random Numbers', backgroundcolor=box_colors[0], color='black', weight='roman', size='x-small') fig.text(0.80, 0.045, 'IID Bootstrap Resample', backgroundcolor=box_colors[1], color='white', weight='roman', size='x-small') fig.text(0.80, 0.015, '*', color='white', backgroundcolor='silver', weight='roman', size='medium') fig.text(0.815, 0.013, ' Average Value', color='black', weight='roman', size='x-small') plt.show() ############################################################################### # Here we write a custom function to bootstrap confidence intervals. # We can then use the boxplot along with this function to show these intervals. def fakeBootStrapper(n): ''' This is just a placeholder for the user's method of bootstrapping the median and its confidence intervals. Returns an arbitrary median and confidence intervals packed into a tuple ''' if n == 1: med = 0.1 CI = (-0.25, 0.25) else: med = 0.2 CI = (-0.35, 0.50) return med, CI inc = 0.1 e1 = np.random.normal(0, 1, size=500) e2 = np.random.normal(0, 1, size=500) e3 = np.random.normal(0, 1 + inc, size=500) e4 = np.random.normal(0, 1 + 2*inc, size=500) treatments = [e1, e2, e3, e4] med1, CI1 = fakeBootStrapper(1) med2, CI2 = fakeBootStrapper(2) medians = [None, None, med1, med2] conf_intervals = [None, None, CI1, CI2] fig, ax = plt.subplots() pos = np.array(range(len(treatments))) + 1 bp = ax.boxplot(treatments, sym='k+', positions=pos, notch=1, bootstrap=5000, usermedians=medians, conf_intervals=conf_intervals) ax.set_xlabel('treatment') ax.set_ylabel('response') plt.setp(bp['whiskers'], color='k', linestyle='-') plt.setp(bp['fliers'], markersize=3.0) plt.show()
4dc6c728d9bbe8282ac05214ba44d51b852034f92968979ba3e4cb936409370c
""" ================================================================ Demo of the histogram function's different ``histtype`` settings ================================================================ * Histogram with step curve that has a color fill. * Histogram with custom and unequal bin widths. Selecting different bin counts and sizes can significantly affect the shape of a histogram. The Astropy docs have a great section on how to select these parameters: http://docs.astropy.org/en/stable/visualization/histogram.html """ import numpy as np import matplotlib.pyplot as plt np.random.seed(19680801) mu = 200 sigma = 25 x = np.random.normal(mu, sigma, size=100) fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(8, 4)) ax0.hist(x, 20, density=True, histtype='stepfilled', facecolor='g', alpha=0.75) ax0.set_title('stepfilled') # Create a histogram by providing the bin edges (unequally spaced). bins = [100, 150, 180, 195, 205, 220, 250, 300] ax1.hist(x, bins, density=True, histtype='bar', rwidth=0.8) ax1.set_title('unequal bins') fig.tight_layout() plt.show()
385f7781dae8735f21f8fdfdb27f6edce5e63f9b68e9b0d9aba71e207f978173
""" ================================================== Using histograms to plot a cumulative distribution ================================================== This shows how to plot a cumulative, normalized histogram as a step function in order to visualize the empirical cumulative distribution function (CDF) of a sample. We also show the theoretical CDF. A couple of other options to the ``hist`` function are demonstrated. Namely, we use the ``normed`` parameter to normalize the histogram and a couple of different options to the ``cumulative`` parameter. The ``normed`` parameter takes a boolean value. When ``True``, the bin heights are scaled such that the total area of the histogram is 1. The ``cumulative`` kwarg is a little more nuanced. Like ``normed``, you can pass it True or False, but you can also pass it -1 to reverse the distribution. Since we're showing a normalized and cumulative histogram, these curves are effectively the cumulative distribution functions (CDFs) of the samples. In engineering, empirical CDFs are sometimes called "non-exceedance" curves. In other words, you can look at the y-value for a given-x-value to get the probability of and observation from the sample not exceeding that x-value. For example, the value of 225 on the x-axis corresponds to about 0.85 on the y-axis, so there's an 85% chance that an observation in the sample does not exceed 225. Conversely, setting, ``cumulative`` to -1 as is done in the last series for this example, creates a "exceedance" curve. Selecting different bin counts and sizes can significantly affect the shape of a histogram. The Astropy docs have a great section on how to select these parameters: http://docs.astropy.org/en/stable/visualization/histogram.html """ import numpy as np import matplotlib.pyplot as plt np.random.seed(19680801) mu = 200 sigma = 25 n_bins = 50 x = np.random.normal(mu, sigma, size=100) fig, ax = plt.subplots(figsize=(8, 4)) # plot the cumulative histogram n, bins, patches = ax.hist(x, n_bins, density=True, histtype='step', cumulative=True, label='Empirical') # Add a line showing the expected distribution. y = ((1 / (np.sqrt(2 * np.pi) * sigma)) * np.exp(-0.5 * (1 / sigma * (bins - mu))**2)) y = y.cumsum() y /= y[-1] ax.plot(bins, y, 'k--', linewidth=1.5, label='Theoretical') # Overlay a reversed cumulative histogram. ax.hist(x, bins=bins, density=True, histtype='step', cumulative=-1, label='Reversed emp.') # tidy up the figure ax.grid(True) ax.legend(loc='right') ax.set_title('Cumulative step histograms') ax.set_xlabel('Annual rainfall (mm)') ax.set_ylabel('Likelihood of occurrence') plt.show()
14acca033933fed8976829340b76629bcbeda8362890f8688f4a379ac6f5da03
""" ===================================================== The histogram (hist) function with multiple data sets ===================================================== Plot histogram with multiple sample sets and demonstrate: * Use of legend with multiple sample sets * Stacked bars * Step curve with no fill * Data sets of different sample sizes Selecting different bin counts and sizes can significantly affect the shape of a histogram. The Astropy docs have a great section on how to select these parameters: http://docs.astropy.org/en/stable/visualization/histogram.html """ import numpy as np import matplotlib.pyplot as plt np.random.seed(19680801) n_bins = 10 x = np.random.randn(1000, 3) fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flatten() colors = ['red', 'tan', 'lime'] ax0.hist(x, n_bins, density=True, histtype='bar', color=colors, label=colors) ax0.legend(prop={'size': 10}) ax0.set_title('bars with legend') ax1.hist(x, n_bins, density=True, histtype='bar', stacked=True) ax1.set_title('stacked bar') ax2.hist(x, n_bins, histtype='step', stacked=True, fill=False) ax2.set_title('stack step (unfilled)') # Make a multiple-histogram of data-sets with different length. x_multi = [np.random.randn(n) for n in [10000, 5000, 2000]] ax3.hist(x_multi, n_bins, histtype='bar') ax3.set_title('different sample sizes') fig.tight_layout() plt.show()
a342c28d7a80beeffc50df25d82329b3160a2af4acf097703386ea5eec8ed419
""" ========================= Violin plot customization ========================= This example demonstrates how to fully customize violin plots. The first plot shows the default style by providing only the data. The second plot first limits what matplotlib draws with additional kwargs. Then a simplified representation of a box plot is drawn on top. Lastly, the styles of the artists of the violins are modified. For more information on violin plots, the scikit-learn docs have a great section: http://scikit-learn.org/stable/modules/density.html """ import matplotlib.pyplot as plt import numpy as np def adjacent_values(vals, q1, q3): upper_adjacent_value = q3 + (q3 - q1) * 1.5 upper_adjacent_value = np.clip(upper_adjacent_value, q3, vals[-1]) lower_adjacent_value = q1 - (q3 - q1) * 1.5 lower_adjacent_value = np.clip(lower_adjacent_value, vals[0], q1) return lower_adjacent_value, upper_adjacent_value def set_axis_style(ax, labels): ax.get_xaxis().set_tick_params(direction='out') ax.xaxis.set_ticks_position('bottom') ax.set_xticks(np.arange(1, len(labels) + 1)) ax.set_xticklabels(labels) ax.set_xlim(0.25, len(labels) + 0.75) ax.set_xlabel('Sample name') # create test data np.random.seed(19680801) data = [sorted(np.random.normal(0, std, 100)) for std in range(1, 5)] fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(9, 4), sharey=True) ax1.set_title('Default violin plot') ax1.set_ylabel('Observed values') ax1.violinplot(data) ax2.set_title('Customized violin plot') parts = ax2.violinplot( data, showmeans=False, showmedians=False, showextrema=False) for pc in parts['bodies']: pc.set_facecolor('#D43F3A') pc.set_edgecolor('black') pc.set_alpha(1) quartile1, medians, quartile3 = np.percentile(data, [25, 50, 75], axis=1) whiskers = np.array([ adjacent_values(sorted_array, q1, q3) for sorted_array, q1, q3 in zip(data, quartile1, quartile3)]) whiskersMin, whiskersMax = whiskers[:, 0], whiskers[:, 1] inds = np.arange(1, len(medians) + 1) ax2.scatter(inds, medians, marker='o', color='white', s=30, zorder=3) ax2.vlines(inds, quartile1, quartile3, color='k', linestyle='-', lw=5) ax2.vlines(inds, whiskersMin, whiskersMax, color='k', linestyle='-', lw=1) # set style for the axes labels = ['A', 'B', 'C', 'D'] for ax in [ax1, ax2]: set_axis_style(ax, labels) plt.subplots_adjust(bottom=0.15, wspace=0.05) plt.show()
ccc63bedfdba7619cce18899b3282ed36743e362432115d99b65e86879fd6e31
""" =================================== Percentiles as horizontal bar chart =================================== Bar charts are useful for visualizing counts, or summary statistics with error bars. Also see the :doc:`/gallery/lines_bars_and_markers/barchart` or the :doc:`/gallery/lines_bars_and_markers/barh` example for simpler versions of those features. This example comes from an application in which grade school gym teachers wanted to be able to show parents how their child did across a handful of fitness tests, and importantly, relative to how other children did. To extract the plotting code for demo purposes, we'll just make up some data for little Johnny Doe. """ import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from collections import namedtuple np.random.seed(42) Student = namedtuple('Student', ['name', 'grade', 'gender']) Score = namedtuple('Score', ['score', 'percentile']) # GLOBAL CONSTANTS testNames = ['Pacer Test', 'Flexed Arm\n Hang', 'Mile Run', 'Agility', 'Push Ups'] testMeta = dict(zip(testNames, ['laps', 'sec', 'min:sec', 'sec', ''])) def attach_ordinal(num): """helper function to add ordinal string to integers 1 -> 1st 56 -> 56th """ suffixes = {str(i): v for i, v in enumerate(['th', 'st', 'nd', 'rd', 'th', 'th', 'th', 'th', 'th', 'th'])} v = str(num) # special case early teens if v in {'11', '12', '13'}: return v + 'th' return v + suffixes[v[-1]] def format_score(scr, test): """ Build up the score labels for the right Y-axis by first appending a carriage return to each string and then tacking on the appropriate meta information (i.e., 'laps' vs 'seconds'). We want the labels centered on the ticks, so if there is no meta info (like for pushups) then don't add the carriage return to the string """ md = testMeta[test] if md: return '{0}\n{1}'.format(scr, md) else: return scr def format_ycursor(y): y = int(y) if y < 0 or y >= len(testNames): return '' else: return testNames[y] def plot_student_results(student, scores, cohort_size): # create the figure fig, ax1 = plt.subplots(figsize=(9, 7)) fig.subplots_adjust(left=0.115, right=0.88) fig.canvas.set_window_title('Eldorado K-8 Fitness Chart') pos = np.arange(len(testNames)) rects = ax1.barh(pos, [scores[k].percentile for k in testNames], align='center', height=0.5, tick_label=testNames) ax1.set_title(student.name) ax1.set_xlim([0, 100]) ax1.xaxis.set_major_locator(MaxNLocator(11)) ax1.xaxis.grid(True, linestyle='--', which='major', color='grey', alpha=.25) # Plot a solid vertical gridline to highlight the median position ax1.axvline(50, color='grey', alpha=0.25) # Set the right-hand Y-axis ticks and labels ax2 = ax1.twinx() scoreLabels = [format_score(scores[k].score, k) for k in testNames] # set the tick locations ax2.set_yticks(pos) # make sure that the limits are set equally on both yaxis so the # ticks line up ax2.set_ylim(ax1.get_ylim()) # set the tick labels ax2.set_yticklabels(scoreLabels) ax2.set_ylabel('Test Scores') xlabel = ('Percentile Ranking Across {grade} Grade {gender}s\n' 'Cohort Size: {cohort_size}') ax1.set_xlabel(xlabel.format(grade=attach_ordinal(student.grade), gender=student.gender.title(), cohort_size=cohort_size)) rect_labels = [] # Lastly, write in the ranking inside each bar to aid in interpretation for rect in rects: # Rectangle widths are already integer-valued but are floating # type, so it helps to remove the trailing decimal point and 0 by # converting width to int type width = int(rect.get_width()) rankStr = attach_ordinal(width) # The bars aren't wide enough to print the ranking inside if width < 40: # Shift the text to the right side of the right edge xloc = 5 # Black against white background clr = 'black' align = 'left' else: # Shift the text to the left side of the right edge xloc = -5 # White on magenta clr = 'white' align = 'right' # Center the text vertically in the bar yloc = rect.get_y() + rect.get_height() / 2 label = ax1.annotate(rankStr, xy=(width, yloc), xytext=(xloc, 0), textcoords="offset points", ha=align, va='center', color=clr, weight='bold', clip_on=True) rect_labels.append(label) # make the interactive mouse over give the bar title ax2.fmt_ydata = format_ycursor # return all of the artists created return {'fig': fig, 'ax': ax1, 'ax_right': ax2, 'bars': rects, 'perc_labels': rect_labels} student = Student('Johnny Doe', 2, 'boy') scores = dict(zip(testNames, (Score(v, p) for v, p in zip(['7', '48', '12:52', '17', '14'], np.round(np.random.uniform(0, 1, len(testNames)) * 100, 0))))) cohort_size = 62 # The number of other 2nd grade boys arts = plot_student_results(student, scores, cohort_size) plt.show() ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions, methods and classes is shown # in this example: matplotlib.axes.Axes.bar matplotlib.pyplot.bar matplotlib.axes.Axes.annotate matplotlib.pyplot.annotate matplotlib.axes.Axes.twinx
fbf06f2632a0f38ba8d2cc13ed8d9a686baef21aff533f62423aca7ce4854b3d
""" ================= Errorbar function ================= This exhibits the most basic use of the error bar method. In this case, constant values are provided for the error in both the x- and y-directions. """ import numpy as np import matplotlib.pyplot as plt # example data x = np.arange(0.1, 4, 0.5) y = np.exp(-x) fig, ax = plt.subplots() ax.errorbar(x, y, xerr=0.2, yerr=0.4) plt.show()
fa5167184dd3b70725ac5dcff36a5f7ad9a57de93aa439c7f63f14f52c7cb14a
""" =========== Hexbin Demo =========== Plotting hexbins with Matplotlib. Hexbin is an axes method or pyplot function that is essentially a pcolor of a 2-D histogram with hexagonal cells. It can be much more informative than a scatter plot. In the first plot below, try substituting 'scatter' for 'hexbin'. """ import numpy as np import matplotlib.pyplot as plt # Fixing random state for reproducibility np.random.seed(19680801) n = 100000 x = np.random.standard_normal(n) y = 2.0 + 3.0 * x + 4.0 * np.random.standard_normal(n) xmin = x.min() xmax = x.max() ymin = y.min() ymax = y.max() fig, axs = plt.subplots(ncols=2, sharey=True, figsize=(7, 4)) fig.subplots_adjust(hspace=0.5, left=0.07, right=0.93) ax = axs[0] hb = ax.hexbin(x, y, gridsize=50, cmap='inferno') ax.axis([xmin, xmax, ymin, ymax]) ax.set_title("Hexagon binning") cb = fig.colorbar(hb, ax=ax) cb.set_label('counts') ax = axs[1] hb = ax.hexbin(x, y, gridsize=50, bins='log', cmap='inferno') ax.axis([xmin, xmax, ymin, ymax]) ax.set_title("With a log color scale") cb = fig.colorbar(hb, ax=ax) cb.set_label('log10(N)') plt.show()
f2e719042f7f2a036c8a8959a1bdf6b5603fc4e0ad4f51acaada2a1930ad0ae6
""" ====================================================== Plot a confidence ellipse of a two-dimensional dataset ====================================================== This example shows how to plot a confidence ellipse of a two-dimensional dataset, using its pearson correlation coefficient. The approach that is used to obtain the correct geometry is explained and proved here: https://carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html The method avoids the use of an iterative eigen decomposition algorithm and makes use of the fact that a normalized covariance matrix (composed of pearson correlation coefficients and ones) is particularly easy to handle. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import matplotlib.transforms as transforms ############################################################################# # # The plotting function itself # """""""""""""""""""""""""""" # # This function plots the confidence ellipse of the covariance of the given # array-like variables x and y. The ellipse is plotted into the given # axes-object ax. # # The radiuses of the ellipse can be controlled by n_std which is the number # of standard deviations. The default value is 3 which makes the ellipse # enclose 99.7% of the points (given the data is normally distributed # like in these examples). def confidence_ellipse(x, y, ax, n_std=3.0, facecolor='none', **kwargs): """ Create a plot of the covariance confidence ellipse of `x` and `y` Parameters ---------- x, y : array_like, shape (n, ) Input data. ax : matplotlib.axes.Axes The axes object to draw the ellipse into. n_std : float The number of standard deviations to determine the ellipse's radiuses. Returns ------- matplotlib.patches.Ellipse Other parameters ---------------- kwargs : `~matplotlib.patches.Patch` properties """ if x.size != y.size: raise ValueError("x and y must be the same size") cov = np.cov(x, y) pearson = cov[0, 1]/np.sqrt(cov[0, 0] * cov[1, 1]) # Using a special case to obtain the eigenvalues of this # two-dimensionl dataset. ell_radius_x = np.sqrt(1 + pearson) ell_radius_y = np.sqrt(1 - pearson) ellipse = Ellipse((0, 0), width=ell_radius_x * 2, height=ell_radius_y * 2, facecolor=facecolor, **kwargs) # Calculating the stdandard deviation of x from # the squareroot of the variance and multiplying # with the given number of standard deviations. scale_x = np.sqrt(cov[0, 0]) * n_std mean_x = np.mean(x) # calculating the stdandard deviation of y ... scale_y = np.sqrt(cov[1, 1]) * n_std mean_y = np.mean(y) transf = transforms.Affine2D() \ .rotate_deg(45) \ .scale(scale_x, scale_y) \ .translate(mean_x, mean_y) ellipse.set_transform(transf + ax.transData) return ax.add_patch(ellipse) ############################################################################# # # A helper function to create a correlated dataset # """""""""""""""""""""""""""""""""""""""""""""""" # # Creates a random two-dimesional dataset with the specified # two-dimensional mean (mu) and dimensions (scale). # The correlation can be controlled by the param 'dependency', # a 2x2 matrix. def get_correlated_dataset(n, dependency, mu, scale): latent = np.random.randn(n, 2) dependent = latent.dot(dependency) scaled = dependent * scale scaled_with_offset = scaled + mu # return x and y of the new, correlated dataset return scaled_with_offset[:, 0], scaled_with_offset[:, 1] ############################################################################# # # Positive, negative and weak correlation # """"""""""""""""""""""""""""""""""""""" # # Note that the shape for the weak correlation (right) is an ellipse, # not a circle because x and y are differently scaled. # However, the fact that x and y are uncorrelated is shown by # the axes of the ellipse being aligned with the x- and y-axis # of the coordinate system. np.random.seed(0) PARAMETERS = { 'Positive correlation': np.array([[0.85, 0.35], [0.15, -0.65]]), 'Negative correlation': np.array([[0.9, -0.4], [0.1, -0.6]]), 'Weak correlation': np.array([[1, 0], [0, 1]]), } mu = 2, 4 scale = 3, 5 fig, axs = plt.subplots(1, 3, figsize=(9, 3)) for ax, (title, dependency) in zip(axs, PARAMETERS.items()): x, y = get_correlated_dataset(800, dependency, mu, scale) ax.scatter(x, y, s=0.5) ax.axvline(c='grey', lw=1) ax.axhline(c='grey', lw=1) confidence_ellipse(x, y, ax, edgecolor='red') ax.scatter(mu[0], mu[1], c='red', s=3) ax.set_title(title) plt.show() ############################################################################# # # Different number of standard deviations # """"""""""""""""""""""""""""""""""""""" # # A plot with n_std = 3 (blue), 2 (purple) and 1 (red) fig, ax_nstd = plt.subplots(figsize=(6, 6)) dependency_nstd = np.array([ [0.8, 0.75], [-0.2, 0.35] ]) mu = 0, 0 scale = 8, 5 ax_nstd.axvline(c='grey', lw=1) ax_nstd.axhline(c='grey', lw=1) x, y = get_correlated_dataset(500, dependency_nstd, mu, scale) ax_nstd.scatter(x, y, s=0.5) confidence_ellipse(x, y, ax_nstd, n_std=1, label=r'$1\sigma$', edgecolor='firebrick') confidence_ellipse(x, y, ax_nstd, n_std=2, label=r'$2\sigma$', edgecolor='fuchsia', linestyle='--') confidence_ellipse(x, y, ax_nstd, n_std=3, label=r'$3\sigma$', edgecolor='blue', linestyle=':') ax_nstd.scatter(mu[0], mu[1], c='red', s=3) ax_nstd.set_title('Different standard deviations') ax_nstd.legend() plt.show() ############################################################################# # # Using the keyword arguments # """"""""""""""""""""""""""" # # Use the kwargs specified for matplotlib.patches.Patch in order # to have the ellipse rendered in different ways. fig, ax_kwargs = plt.subplots(figsize=(6, 6)) dependency_kwargs = np.array([ [-0.8, 0.5], [-0.2, 0.5] ]) mu = 2, -3 scale = 6, 5 ax_kwargs.axvline(c='grey', lw=1) ax_kwargs.axhline(c='grey', lw=1) x, y = get_correlated_dataset(500, dependency_kwargs, mu, scale) # Plot the ellipse with zorder=0 in order to demonstrate # its transparency (caused by the use of alpha). confidence_ellipse(x, y, ax_kwargs, alpha=0.5, facecolor='pink', edgecolor='purple', zorder=0) ax_kwargs.scatter(x, y, s=0.5) ax_kwargs.scatter(mu[0], mu[1], c='red', s=3) ax_kwargs.set_title(f'Using kwargs') fig.subplots_adjust(hspace=0.25) plt.show()
c4f54eaf43deffd1feaf01dbaee8290e2efb285e56b7a421ca93677401901682
""" ======================================= Different ways of specifying error bars ======================================= Errors can be specified as a constant value (as shown in `errorbar_demo.py`). However, this example demonstrates how they vary by specifying arrays of error values. If the raw ``x`` and ``y`` data have length N, there are two options: Array of shape (N,): Error varies for each point, but the error values are symmetric (i.e. the lower and upper values are equal). Array of shape (2, N): Error varies for each point, and the lower and upper limits (in that order) are different (asymmetric case) In addition, this example demonstrates how to use log scale with error bars. """ import numpy as np import matplotlib.pyplot as plt # example data x = np.arange(0.1, 4, 0.5) y = np.exp(-x) # example error bar values that vary with x-position error = 0.1 + 0.2 * x fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True) ax0.errorbar(x, y, yerr=error, fmt='-o') ax0.set_title('variable, symmetric error') # error bar values w/ different -/+ errors that # also vary with the x-position lower_error = 0.4 * error upper_error = error asymmetric_error = [lower_error, upper_error] ax1.errorbar(x, y, xerr=asymmetric_error, fmt='o') ax1.set_title('variable, asymmetric error') ax1.set_yscale('log') plt.show()
e68c246fc8fe3cf2a429ca79e86e2199dfc84114854e74a2c41cf21bfaf18417
""" ============================================== Including upper and lower limits in error bars ============================================== In matplotlib, errors bars can have "limits". Applying limits to the error bars essentially makes the error unidirectional. Because of that, upper and lower limits can be applied in both the y- and x-directions via the ``uplims``, ``lolims``, ``xuplims``, and ``xlolims`` parameters, respectively. These parameters can be scalar or boolean arrays. For example, if ``xlolims`` is ``True``, the x-error bars will only extend from the data towards increasing values. If ``uplims`` is an array filled with ``False`` except for the 4th and 7th values, all of the y-error bars will be bidirectional, except the 4th and 7th bars, which will extend from the data towards decreasing y-values. """ import numpy as np import matplotlib.pyplot as plt # example data x = np.array([0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]) y = np.exp(-x) xerr = 0.1 yerr = 0.2 # lower & upper limits of the error lolims = np.array([0, 0, 1, 0, 1, 0, 0, 0, 1, 0], dtype=bool) uplims = np.array([0, 1, 0, 0, 0, 1, 0, 0, 0, 1], dtype=bool) ls = 'dotted' fig, ax = plt.subplots(figsize=(7, 4)) # standard error bars ax.errorbar(x, y, xerr=xerr, yerr=yerr, linestyle=ls) # including upper limits ax.errorbar(x, y + 0.5, xerr=xerr, yerr=yerr, uplims=uplims, linestyle=ls) # including lower limits ax.errorbar(x, y + 1.0, xerr=xerr, yerr=yerr, lolims=lolims, linestyle=ls) # including upper and lower limits ax.errorbar(x, y + 1.5, xerr=xerr, yerr=yerr, lolims=lolims, uplims=uplims, marker='o', markersize=8, linestyle=ls) # Plot a series with lower and upper limits in both x & y # constant x-error with varying y-error xerr = 0.2 yerr = np.full_like(x, 0.2) yerr[[3, 6]] = 0.3 # mock up some limits by modifying previous data xlolims = lolims xuplims = uplims lolims = np.zeros(x.shape) uplims = np.zeros(x.shape) lolims[[6]] = True # only limited at this index uplims[[3]] = True # only limited at this index # do the plotting ax.errorbar(x, y + 2.1, xerr=xerr, yerr=yerr, xlolims=xlolims, xuplims=xuplims, uplims=uplims, lolims=lolims, marker='o', markersize=8, linestyle='none') # tidy up the figure ax.set_xlim((0, 5.5)) ax.set_title('Errorbar upper and lower limits') plt.show()
f06edbf625d25c2ee1f41435aef2d1c5d6896ad913ec1ded52bcab679dc5b362
""" ========================================== Producing multiple histograms side by side ========================================== This example plots horizontal histograms of different samples along a categorical x-axis. Additionally, the histograms are plotted to be symmetrical about their x-position, thus making them very similar to violin plots. To make this highly specialized plot, we can't use the standard ``hist`` method. Instead we use ``barh`` to draw the horizontal bars directly. The vertical positions and lengths of the bars are computed via the ``np.histogram`` function. The histograms for all the samples are computed using the same range (min and max values) and number of bins, so that the bins for each sample are in the same vertical positions. Selecting different bin counts and sizes can significantly affect the shape of a histogram. The Astropy docs have a great section on how to select these parameters: http://docs.astropy.org/en/stable/visualization/histogram.html """ import numpy as np import matplotlib.pyplot as plt np.random.seed(19680801) number_of_bins = 20 # An example of three data sets to compare number_of_data_points = 387 labels = ["A", "B", "C"] data_sets = [np.random.normal(0, 1, number_of_data_points), np.random.normal(6, 1, number_of_data_points), np.random.normal(-3, 1, number_of_data_points)] # Computed quantities to aid plotting hist_range = (np.min(data_sets), np.max(data_sets)) binned_data_sets = [ np.histogram(d, range=hist_range, bins=number_of_bins)[0] for d in data_sets ] binned_maximums = np.max(binned_data_sets, axis=1) x_locations = np.arange(0, sum(binned_maximums), np.max(binned_maximums)) # The bin_edges are the same for all of the histograms bin_edges = np.linspace(hist_range[0], hist_range[1], number_of_bins + 1) centers = 0.5 * (bin_edges + np.roll(bin_edges, 1))[:-1] heights = np.diff(bin_edges) # Cycle through and plot each histogram fig, ax = plt.subplots() for x_loc, binned_data in zip(x_locations, binned_data_sets): lefts = x_loc - 0.5 * binned_data ax.barh(centers, binned_data, height=heights, left=lefts) ax.set_xticks(x_locations) ax.set_xticklabels(labels) ax.set_ylabel("Data values") ax.set_xlabel("Data sets") plt.show()
b6ab72b79a7618e04e2dbdbc6984568aa6bcf60d0b5413437adde90b9123c080
""" ================================= Box plots with custom fill colors ================================= This plot illustrates how to create two types of box plots (rectangular and notched), and how to fill them with custom colors by accessing the properties of the artists of the box plots. Additionally, the ``labels`` parameter is used to provide x-tick labels for each sample. A good general reference on boxplots and their history can be found here: http://vita.had.co.nz/papers/boxplots.pdf """ import matplotlib.pyplot as plt import numpy as np # Random test data np.random.seed(19680801) all_data = [np.random.normal(0, std, size=100) for std in range(1, 4)] labels = ['x1', 'x2', 'x3'] fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(9, 4)) # rectangular box plot bplot1 = axes[0].boxplot(all_data, vert=True, # vertical box alignment patch_artist=True, # fill with color labels=labels) # will be used to label x-ticks axes[0].set_title('Rectangular box plot') # notch shape box plot bplot2 = axes[1].boxplot(all_data, notch=True, # notch shape vert=True, # vertical box alignment patch_artist=True, # fill with color labels=labels) # will be used to label x-ticks axes[1].set_title('Notched box plot') # fill with colors colors = ['pink', 'lightblue', 'lightgreen'] for bplot in (bplot1, bplot2): for patch, color in zip(bplot['boxes'], colors): patch.set_facecolor(color) # adding horizontal grid lines for ax in axes: ax.yaxis.grid(True) ax.set_xlabel('Three separate samples') ax.set_ylabel('Observed values') plt.show()
e45e2f028a2ad51fe4449959ca3350721400b8157ce9897b0555247aa9577f23
""" ========== Histograms ========== Demonstrates how to plot histograms with matplotlib. """ import matplotlib.pyplot as plt import numpy as np from matplotlib import colors from matplotlib.ticker import PercentFormatter # Fixing random state for reproducibility np.random.seed(19680801) ############################################################################### # Generate data and plot a simple histogram # ----------------------------------------- # # To generate a 1D histogram we only need a single vector of numbers. For a 2D # histogram we'll need a second vector. We'll generate both below, and show # the histogram for each vector. N_points = 100000 n_bins = 20 # Generate a normal distribution, center at x=0 and y=5 x = np.random.randn(N_points) y = .4 * x + np.random.randn(100000) + 5 fig, axs = plt.subplots(1, 2, sharey=True, tight_layout=True) # We can set the number of bins with the `bins` kwarg axs[0].hist(x, bins=n_bins) axs[1].hist(y, bins=n_bins) ############################################################################### # Updating histogram colors # ------------------------- # # The histogram method returns (among other things) a `patches` object. This # gives us access to the properties of the objects drawn. Using this, we can # edit the histogram to our liking. Let's change the color of each bar # based on its y value. fig, axs = plt.subplots(1, 2, tight_layout=True) # N is the count in each bin, bins is the lower-limit of the bin N, bins, patches = axs[0].hist(x, bins=n_bins) # We'll color code by height, but you could use any scalar fracs = N / N.max() # we need to normalize the data to 0..1 for the full range of the colormap norm = colors.Normalize(fracs.min(), fracs.max()) # Now, we'll loop through our objects and set the color of each accordingly for thisfrac, thispatch in zip(fracs, patches): color = plt.cm.viridis(norm(thisfrac)) thispatch.set_facecolor(color) # We can also normalize our inputs by the total number of counts axs[1].hist(x, bins=n_bins, density=True) # Now we format the y-axis to display percentage axs[1].yaxis.set_major_formatter(PercentFormatter(xmax=1)) ############################################################################### # Plot a 2D histogram # ------------------- # # To plot a 2D histogram, one only needs two vectors of the same length, # corresponding to each axis of the histogram. fig, ax = plt.subplots(tight_layout=True) hist = ax.hist2d(x, y) ############################################################################### # Customizing your histogram # -------------------------- # # Customizing a 2D histogram is similar to the 1D case, you can control # visual components such as the bin size or color normalization. fig, axs = plt.subplots(3, 1, figsize=(5, 15), sharex=True, sharey=True, tight_layout=True) # We can increase the number of bins on each axis axs[0].hist2d(x, y, bins=40) # As well as define normalization of the colors axs[1].hist2d(x, y, bins=40, norm=colors.LogNorm()) # We can also define custom numbers of bins for each axis axs[2].hist2d(x, y, bins=(80, 10), norm=colors.LogNorm()) plt.show()
59a74919b322ee65079d4ab3d17e40159d9ca0e279b86a3765299ae1f843bfdb
""" ======================= Boxplot drawer function ======================= This example demonstrates how to pass pre-computed box plot statistics to the box plot drawer. The first figure demonstrates how to remove and add individual components (note that the mean is the only value not shown by default). The second figure demonstrates how the styles of the artists can be customized. A good general reference on boxplots and their history can be found here: http://vita.had.co.nz/papers/boxplots.pdf """ import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # fake data np.random.seed(19680801) data = np.random.lognormal(size=(37, 4), mean=1.5, sigma=1.75) labels = list('ABCD') # compute the boxplot stats stats = cbook.boxplot_stats(data, labels=labels, bootstrap=10000) ############################################################################### # After we've computed the stats, we can go through and change anything. # Just to prove it, I'll set the median of each set to the median of all # the data, and double the means for n in range(len(stats)): stats[n]['med'] = np.median(data) stats[n]['mean'] *= 2 print(list(stats[0])) fs = 10 # fontsize ############################################################################### # Demonstrate how to toggle the display of different elements: fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6, 6), sharey=True) axes[0, 0].bxp(stats) axes[0, 0].set_title('Default', fontsize=fs) axes[0, 1].bxp(stats, showmeans=True) axes[0, 1].set_title('showmeans=True', fontsize=fs) axes[0, 2].bxp(stats, showmeans=True, meanline=True) axes[0, 2].set_title('showmeans=True,\nmeanline=True', fontsize=fs) axes[1, 0].bxp(stats, showbox=False, showcaps=False) tufte_title = 'Tufte Style\n(showbox=False,\nshowcaps=False)' axes[1, 0].set_title(tufte_title, fontsize=fs) axes[1, 1].bxp(stats, shownotches=True) axes[1, 1].set_title('notch=True', fontsize=fs) axes[1, 2].bxp(stats, showfliers=False) axes[1, 2].set_title('showfliers=False', fontsize=fs) for ax in axes.flatten(): ax.set_yscale('log') ax.set_yticklabels([]) fig.subplots_adjust(hspace=0.4) plt.show() ############################################################################### # Demonstrate how to customize the display different elements: boxprops = dict(linestyle='--', linewidth=3, color='darkgoldenrod') flierprops = dict(marker='o', markerfacecolor='green', markersize=12, linestyle='none') medianprops = dict(linestyle='-.', linewidth=2.5, color='firebrick') meanpointprops = dict(marker='D', markeredgecolor='black', markerfacecolor='firebrick') meanlineprops = dict(linestyle='--', linewidth=2.5, color='purple') fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(6, 6), sharey=True) axes[0, 0].bxp(stats, boxprops=boxprops) axes[0, 0].set_title('Custom boxprops', fontsize=fs) axes[0, 1].bxp(stats, flierprops=flierprops, medianprops=medianprops) axes[0, 1].set_title('Custom medianprops\nand flierprops', fontsize=fs) axes[1, 0].bxp(stats, meanprops=meanpointprops, meanline=False, showmeans=True) axes[1, 0].set_title('Custom mean\nas point', fontsize=fs) axes[1, 1].bxp(stats, meanprops=meanlineprops, meanline=True, showmeans=True) axes[1, 1].set_title('Custom mean\nas line', fontsize=fs) for ax in axes.flatten(): ax.set_yscale('log') ax.set_yticklabels([]) fig.suptitle("I never said they'd be pretty") fig.subplots_adjust(hspace=0.4) plt.show()
f80d8b21816dfa45bee1ce6721cb232f04d96e13a03a58506464e31c39fa2ae0
""" =================================== Box plot vs. violin plot comparison =================================== Note that although violin plots are closely related to Tukey's (1977) box plots, they add useful information such as the distribution of the sample data (density trace). By default, box plots show data points outside 1.5 * the inter-quartile range as outliers above or below the whiskers whereas violin plots show the whole range of the data. A good general reference on boxplots and their history can be found here: http://vita.had.co.nz/papers/boxplots.pdf Violin plots require matplotlib >= 1.4. For more information on violin plots, the scikit-learn docs have a great section: http://scikit-learn.org/stable/modules/density.html """ import matplotlib.pyplot as plt import numpy as np fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(9, 4)) # Fixing random state for reproducibility np.random.seed(19680801) # generate some random test data all_data = [np.random.normal(0, std, 100) for std in range(6, 10)] # plot violin plot axes[0].violinplot(all_data, showmeans=False, showmedians=True) axes[0].set_title('Violin plot') # plot box plot axes[1].boxplot(all_data) axes[1].set_title('Box plot') # adding horizontal grid lines for ax in axes: ax.yaxis.grid(True) ax.set_xticks([y + 1 for y in range(len(all_data))]) ax.set_xlabel('Four separate samples') ax.set_ylabel('Observed values') # add x-tick labels plt.setp(axes, xticks=[y + 1 for y in range(len(all_data))], xticklabels=['x1', 'x2', 'x3', 'x4']) plt.show()
d3c52a06242263c1aae652f61edb453a404edb70325e7a9c848c356688f2e05c
""" ========================================================= Demo of the histogram (hist) function with a few features ========================================================= In addition to the basic histogram, this demo shows a few optional features: * Setting the number of data bins. * The ``normed`` flag, which normalizes bin heights so that the integral of the histogram is 1. The resulting histogram is an approximation of the probability density function. * Setting the face color of the bars. * Setting the opacity (alpha value). Selecting different bin counts and sizes can significantly affect the shape of a histogram. The Astropy docs have a great section_ on how to select these parameters. .. _section: http://docs.astropy.org/en/stable/visualization/histogram.html """ import matplotlib import numpy as np import matplotlib.pyplot as plt np.random.seed(19680801) # example data mu = 100 # mean of distribution sigma = 15 # standard deviation of distribution x = mu + sigma * np.random.randn(437) num_bins = 50 fig, ax = plt.subplots() # the histogram of the data n, bins, patches = ax.hist(x, num_bins, density=1) # add a 'best fit' line y = ((1 / (np.sqrt(2 * np.pi) * sigma)) * np.exp(-0.5 * (1 / sigma * (bins - mu))**2)) ax.plot(bins, y, '--') ax.set_xlabel('Smarts') ax.set_ylabel('Probability density') ax.set_title(r'Histogram of IQ: $\mu=100$, $\sigma=15$') # Tweak spacing to prevent clipping of ylabel fig.tight_layout() plt.show() ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions and methods is shown in this example: matplotlib.axes.Axes.hist matplotlib.axes.Axes.set_title matplotlib.axes.Axes.set_xlabel matplotlib.axes.Axes.set_ylabel
c5c87311647c672481ebe620fb984f36b80e9bb997a9f8546bb96f999d6845cc
""" ================================= Artist customization in box plots ================================= This example demonstrates how to use the various kwargs to fully customize box plots. The first figure demonstrates how to remove and add individual components (note that the mean is the only value not shown by default). The second figure demonstrates how the styles of the artists can be customized. It also demonstrates how to set the limit of the whiskers to specific percentiles (lower right axes) A good general reference on boxplots and their history can be found here: http://vita.had.co.nz/papers/boxplots.pdf """ import numpy as np import matplotlib.pyplot as plt # fake data np.random.seed(19680801) data = np.random.lognormal(size=(37, 4), mean=1.5, sigma=1.75) labels = list('ABCD') fs = 10 # fontsize ############################################################################### # Demonstrate how to toggle the display of different elements: fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6, 6), sharey=True) axes[0, 0].boxplot(data, labels=labels) axes[0, 0].set_title('Default', fontsize=fs) axes[0, 1].boxplot(data, labels=labels, showmeans=True) axes[0, 1].set_title('showmeans=True', fontsize=fs) axes[0, 2].boxplot(data, labels=labels, showmeans=True, meanline=True) axes[0, 2].set_title('showmeans=True,\nmeanline=True', fontsize=fs) axes[1, 0].boxplot(data, labels=labels, showbox=False, showcaps=False) tufte_title = 'Tufte Style \n(showbox=False,\nshowcaps=False)' axes[1, 0].set_title(tufte_title, fontsize=fs) axes[1, 1].boxplot(data, labels=labels, notch=True, bootstrap=10000) axes[1, 1].set_title('notch=True,\nbootstrap=10000', fontsize=fs) axes[1, 2].boxplot(data, labels=labels, showfliers=False) axes[1, 2].set_title('showfliers=False', fontsize=fs) for ax in axes.flatten(): ax.set_yscale('log') ax.set_yticklabels([]) fig.subplots_adjust(hspace=0.4) plt.show() ############################################################################### # Demonstrate how to customize the display different elements: boxprops = dict(linestyle='--', linewidth=3, color='darkgoldenrod') flierprops = dict(marker='o', markerfacecolor='green', markersize=12, linestyle='none') medianprops = dict(linestyle='-.', linewidth=2.5, color='firebrick') meanpointprops = dict(marker='D', markeredgecolor='black', markerfacecolor='firebrick') meanlineprops = dict(linestyle='--', linewidth=2.5, color='purple') fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6, 6), sharey=True) axes[0, 0].boxplot(data, boxprops=boxprops) axes[0, 0].set_title('Custom boxprops', fontsize=fs) axes[0, 1].boxplot(data, flierprops=flierprops, medianprops=medianprops) axes[0, 1].set_title('Custom medianprops\nand flierprops', fontsize=fs) axes[0, 2].boxplot(data, whis='range') axes[0, 2].set_title('whis="range"', fontsize=fs) axes[1, 0].boxplot(data, meanprops=meanpointprops, meanline=False, showmeans=True) axes[1, 0].set_title('Custom mean\nas point', fontsize=fs) axes[1, 1].boxplot(data, meanprops=meanlineprops, meanline=True, showmeans=True) axes[1, 1].set_title('Custom mean\nas line', fontsize=fs) axes[1, 2].boxplot(data, whis=[15, 85]) axes[1, 2].set_title('whis=[15, 85]\n#percentiles', fontsize=fs) for ax in axes.flatten(): ax.set_yscale('log') ax.set_yticklabels([]) fig.suptitle("I never said they'd be pretty") fig.subplots_adjust(hspace=0.4) plt.show()
27b7eb227b16f72d35d30d4b24abcc8158572d53b6e8dfdefce634f945aac1a6
""" ================ Matplotlib Logos ================ Displays some matplotlib logos. Thanks to Tony Yu <[email protected]> for the logo design """ import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.cm as cm mpl.rcParams['xtick.labelsize'] = 10 mpl.rcParams['ytick.labelsize'] = 12 mpl.rcParams['axes.edgecolor'] = 'gray' axalpha = 0.05 figcolor = 'white' dpi = 80 fig = plt.figure(figsize=(6, 1.1), dpi=dpi) fig.patch.set_edgecolor(figcolor) fig.patch.set_facecolor(figcolor) def add_math_background(): ax = fig.add_axes([0., 0., 1., 1.]) text = [] text.append( (r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = " r"U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2}" r"\int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 " r"\left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - " r"\alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} " r"}{U^{0\beta}_{\rho_1 \sigma_2}}\right]$", (0.7, 0.2), 20)) text.append((r"$\frac{d\rho}{d t} + \rho \vec{v}\cdot\nabla\vec{v} " r"= -\nabla p + \mu\nabla^2 \vec{v} + \rho \vec{g}$", (0.35, 0.9), 20)) text.append((r"$\int_{-\infty}^\infty e^{-x^2}dx=\sqrt{\pi}$", (0.15, 0.3), 25)) text.append((r"$F_G = G\frac{m_1m_2}{r^2}$", (0.85, 0.7), 30)) for eq, (x, y), size in text: ax.text(x, y, eq, ha='center', va='center', color="#11557c", alpha=0.25, transform=ax.transAxes, fontsize=size) ax.set_axis_off() return ax def add_matplotlib_text(ax): ax.text(0.95, 0.5, 'matplotlib', color='#11557c', fontsize=65, ha='right', va='center', alpha=1.0, transform=ax.transAxes) def add_polar_bar(): ax = fig.add_axes([0.025, 0.075, 0.2, 0.85], projection='polar') ax.patch.set_alpha(axalpha) ax.set_axisbelow(True) N = 7 arc = 2. * np.pi theta = np.arange(0.0, arc, arc/N) radii = 10 * np.array([0.2, 0.6, 0.8, 0.7, 0.4, 0.5, 0.8]) width = np.pi / 4 * np.array([0.4, 0.4, 0.6, 0.8, 0.2, 0.5, 0.3]) bars = ax.bar(theta, radii, width=width, bottom=0.0) for r, bar in zip(radii, bars): bar.set_facecolor(cm.jet(r/10.)) bar.set_alpha(0.6) ax.tick_params(labelbottom=False, labeltop=False, labelleft=False, labelright=False) ax.grid(lw=0.8, alpha=0.9, ls='-', color='0.5') ax.set_yticks(np.arange(1, 9, 2)) ax.set_rmax(9) if __name__ == '__main__': main_axes = add_math_background() add_polar_bar() add_matplotlib_text(main_axes) plt.show()
6dd5c5d940f6969c2f885e8b6579ba90984858fd75dfaadb03d18928bc9ccc29
""" ====================== Plotting with keywords ====================== There are some instances where you have data in a format that lets you access particular variables with strings. For example, with :class:`numpy.recarray` or :class:`pandas.DataFrame`. Matplotlib allows you provide such an object with the ``data`` keyword argument. If provided, then you may generate plots with the strings corresponding to these variables. """ import numpy as np import matplotlib.pyplot as plt np.random.seed(19680801) data = {'a': np.arange(50), 'c': np.random.randint(0, 50, 50), 'd': np.random.randn(50)} data['b'] = data['a'] + 10 * np.random.randn(50) data['d'] = np.abs(data['d']) * 100 fig, ax = plt.subplots() ax.scatter('a', 'b', c='c', s='d', data=data) ax.set(xlabel='entry a', ylabel='entry b') plt.show()
8811017612b1bef731a06421a0ee01a143fae671c24d7da6d6d9ac1128a9f90b
""" ================= Custom projection ================= Showcase Hammer projection by alleviating many features of Matplotlib. """ import matplotlib from matplotlib.axes import Axes from matplotlib.patches import Circle from matplotlib.path import Path from matplotlib.ticker import NullLocator, Formatter, FixedLocator from matplotlib.transforms import Affine2D, BboxTransformTo, Transform from matplotlib.projections import register_projection import matplotlib.spines as mspines import matplotlib.axis as maxis import numpy as np rcParams = matplotlib.rcParams # This example projection class is rather long, but it is designed to # illustrate many features, not all of which will be used every time. # It is also common to factor out a lot of these methods into common # code used by a number of projections with similar characteristics # (see geo.py). class GeoAxes(Axes): """ An abstract base class for geographic projections """ class ThetaFormatter(Formatter): """ Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __init__(self, round_to=1.0): self._round_to = round_to def __call__(self, x, pos=None): degrees = np.round(np.rad2deg(x) / self._round_to) * self._round_to if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % degrees else: return "%0.0f\N{DEGREE SIGN}" % degrees RESOLUTION = 75 def _init_axis(self): self.xaxis = maxis.XAxis(self) self.yaxis = maxis.YAxis(self) # Do not register xaxis or yaxis with spines -- as done in # Axes._init_axis() -- until GeoAxes.xaxis.cla() works. # self.spines['geo'].register_axis(self.yaxis) self._update_transScale() def cla(self): Axes.cla(self) self.set_longitude_grid(30) self.set_latitude_grid(15) self.set_longitude_grid_ends(75) self.xaxis.set_minor_locator(NullLocator()) self.yaxis.set_minor_locator(NullLocator()) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.yaxis.set_tick_params(label1On=True) # Why do we need to turn on yaxis tick labels, but # xaxis tick labels are already on? self.grid(rcParams['axes.grid']) Axes.set_xlim(self, -np.pi, np.pi) Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0) def _set_lim_and_transforms(self): # A (possibly non-linear) projection on the (already scaled) data # There are three important coordinate spaces going on here: # # 1. Data space: The space of the data itself # # 2. Axes space: The unit rectangle (0, 0) to (1, 1) # covering the entire plot area. # # 3. Display space: The coordinates of the resulting image, # often in pixels or dpi/inch. # This function makes heavy use of the Transform classes in # ``lib/matplotlib/transforms.py.`` For more information, see # the inline documentation there. # The goal of the first two transformations is to get from the # data space (in this case longitude and latitude) to axes # space. It is separated into a non-affine and affine part so # that the non-affine part does not have to be recomputed when # a simple affine change to the figure has been made (such as # resizing the window or changing the dpi). # 1) The core transformation from data space into # rectilinear space defined in the HammerTransform class. self.transProjection = self._get_core_transform(self.RESOLUTION) # 2) The above has an output range that is not in the unit # rectangle, so scale and translate it so it fits correctly # within the axes. The peculiar calculations of xscale and # yscale are specific to a Aitoff-Hammer projection, so don't # worry about them too much. self.transAffine = self._get_affine_transform() # 3) This is the transformation from axes space to display # space. self.transAxes = BboxTransformTo(self.bbox) # Now put these 3 transforms together -- from data all the way # to display coordinates. Using the '+' operator, these # transforms will be applied "in order". The transforms are # automatically simplified, if possible, by the underlying # transformation framework. self.transData = \ self.transProjection + \ self.transAffine + \ self.transAxes # The main data transformation is set up. Now deal with # gridlines and tick labels. # Longitude gridlines and ticklabels. The input to these # transforms are in display space in x and axes space in y. # Therefore, the input values will be in range (-xmin, 0), # (xmax, 1). The goal of these transforms is to go from that # space to display space. The tick labels will be offset 4 # pixels from the equator. self._xaxis_pretransform = \ Affine2D() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap) self._xaxis_transform = \ self._xaxis_pretransform + \ self.transData self._xaxis_text1_transform = \ Affine2D().scale(1.0, 0.0) + \ self.transData + \ Affine2D().translate(0.0, 4.0) self._xaxis_text2_transform = \ Affine2D().scale(1.0, 0.0) + \ self.transData + \ Affine2D().translate(0.0, -4.0) # Now set up the transforms for the latitude ticks. The input to # these transforms are in axes space in x and display space in # y. Therefore, the input values will be in range (0, -ymin), # (1, ymax). The goal of these transforms is to go from that # space to display space. The tick labels will be offset 4 # pixels from the edge of the axes ellipse. yaxis_stretch = Affine2D().scale(np.pi*2, 1).translate(-np.pi, 0) yaxis_space = Affine2D().scale(1.0, 1.1) self._yaxis_transform = \ yaxis_stretch + \ self.transData yaxis_text_base = \ yaxis_stretch + \ self.transProjection + \ (yaxis_space + self.transAffine + self.transAxes) self._yaxis_text1_transform = \ yaxis_text_base + \ Affine2D().translate(-8.0, 0.0) self._yaxis_text2_transform = \ yaxis_text_base + \ Affine2D().translate(8.0, 0.0) def _get_affine_transform(self): transform = self._get_core_transform(1) xscale, _ = transform.transform_point((np.pi, 0)) _, yscale = transform.transform_point((0, np.pi / 2.0)) return Affine2D() \ .scale(0.5 / xscale, 0.5 / yscale) \ .translate(0.5, 0.5) def get_xaxis_transform(self, which='grid'): """ Override this method to provide a transformation for the x-axis tick labels. Returns a tuple of the form (transform, valign, halign) """ if which not in ['tick1', 'tick2', 'grid']: raise ValueError( "'which' must be one of 'tick1', 'tick2', or 'grid'") return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'bottom', 'center' def get_xaxis_text2_transform(self, pad): """ Override this method to provide a transformation for the secondary x-axis tick labels. Returns a tuple of the form (transform, valign, halign) """ return self._xaxis_text2_transform, 'top', 'center' def get_yaxis_transform(self, which='grid'): """ Override this method to provide a transformation for the y-axis grid and ticks. """ if which not in ['tick1', 'tick2', 'grid']: raise ValueError( "'which' must be one of 'tick1', 'tick2', or 'grid'") return self._yaxis_transform def get_yaxis_text1_transform(self, pad): """ Override this method to provide a transformation for the y-axis tick labels. Returns a tuple of the form (transform, valign, halign) """ return self._yaxis_text1_transform, 'center', 'right' def get_yaxis_text2_transform(self, pad): """ Override this method to provide a transformation for the secondary y-axis tick labels. Returns a tuple of the form (transform, valign, halign) """ return self._yaxis_text2_transform, 'center', 'left' def _gen_axes_patch(self): """ Override this method to define the shape that is used for the background of the plot. It should be a subclass of Patch. In this case, it is a Circle (that may be warped by the axes transform into an ellipse). Any data and gridlines will be clipped to this shape. """ return Circle((0.5, 0.5), 0.5) def _gen_axes_spines(self): return {'geo': mspines.Spine.circular_spine(self, (0.5, 0.5), 0.5)} def set_yscale(self, *args, **kwargs): if args[0] != 'linear': raise NotImplementedError # Prevent the user from applying scales to one or both of the # axes. In this particular case, scaling the axes wouldn't make # sense, so we don't allow it. set_xscale = set_yscale # Prevent the user from changing the axes limits. In our case, we # want to display the whole sphere all the time, so we override # set_xlim and set_ylim to ignore any input. This also applies to # interactive panning and zooming in the GUI interfaces. def set_xlim(self, *args, **kwargs): raise TypeError("It is not possible to change axes limits " "for geographic projections. Please consider " "using Basemap or Cartopy.") set_ylim = set_xlim def format_coord(self, lon, lat): """ Override this method to change how the values are displayed in the status bar. In this case, we want them to be displayed in degrees N/S/E/W. """ lon, lat = np.rad2deg([lon, lat]) if lat >= 0.0: ns = 'N' else: ns = 'S' if lon >= 0.0: ew = 'E' else: ew = 'W' return ('%f\N{DEGREE SIGN}%s, %f\N{DEGREE SIGN}%s' % (abs(lat), ns, abs(lon), ew)) def set_longitude_grid(self, degrees): """ Set the number of degrees between each longitude grid. This is an example method that is specific to this projection class -- it provides a more convenient interface to set the ticking than set_xticks would. """ # Skip -180 and 180, which are the fixed limits. grid = np.arange(-180 + degrees, 180, degrees) self.xaxis.set_major_locator(FixedLocator(np.deg2rad(grid))) self.xaxis.set_major_formatter(self.ThetaFormatter(degrees)) def set_latitude_grid(self, degrees): """ Set the number of degrees between each longitude grid. This is an example method that is specific to this projection class -- it provides a more convenient interface than set_yticks would. """ # Skip -90 and 90, which are the fixed limits. grid = np.arange(-90 + degrees, 90, degrees) self.yaxis.set_major_locator(FixedLocator(np.deg2rad(grid))) self.yaxis.set_major_formatter(self.ThetaFormatter(degrees)) def set_longitude_grid_ends(self, degrees): """ Set the latitude(s) at which to stop drawing the longitude grids. Often, in geographic projections, you wouldn't want to draw longitude gridlines near the poles. This allows the user to specify the degree at which to stop drawing longitude grids. This is an example method that is specific to this projection class -- it provides an interface to something that has no analogy in the base Axes class. """ self._longitude_cap = np.deg2rad(degrees) self._xaxis_pretransform \ .clear() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap) def get_data_ratio(self): """ Return the aspect ratio of the data itself. This method should be overridden by any Axes that have a fixed data ratio. """ return 1.0 # Interactive panning and zooming is not supported with this projection, # so we override all of the following methods to disable it. def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. This axes object does not support interactive zoom box. """ return False def can_pan(self): """ Return *True* if this axes supports the pan/zoom button functionality. This axes object does not support interactive pan/zoom. """ return False def start_pan(self, x, y, button): pass def end_pan(self): pass def drag_pan(self, button, key, x, y): pass class HammerAxes(GeoAxes): """ A custom class for the Aitoff-Hammer projection, an equal-area map projection. https://en.wikipedia.org/wiki/Hammer_projection """ # The projection must specify a name. This will be used by the # user to select the projection, # i.e. ``subplot(111, projection='custom_hammer')``. name = 'custom_hammer' class HammerTransform(Transform): """ The base Hammer transform. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Hammer transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Hammer space. """ Transform.__init__(self) self._resolution = resolution def transform_non_affine(self, ll): longitude, latitude = ll.T # Pre-compute some values half_long = longitude / 2 cos_latitude = np.cos(latitude) sqrt2 = np.sqrt(2) alpha = np.sqrt(1 + cos_latitude * np.cos(half_long)) x = (2 * sqrt2) * (cos_latitude * np.sin(half_long)) / alpha y = (sqrt2 * np.sin(latitude)) / alpha return np.column_stack([x, y]) def transform_path_non_affine(self, path): # vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) def inverted(self): return HammerAxes.InvertedHammerTransform(self._resolution) class InvertedHammerTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform_non_affine(self, xy): x, y = xy.T z = np.sqrt(1 - (x / 4) ** 2 - (y / 2) ** 2) longitude = 2 * np.arctan((z * x) / (2 * (2 * z ** 2 - 1))) latitude = np.arcsin(y*z) return np.column_stack([longitude, latitude]) def inverted(self): return HammerAxes.HammerTransform(self._resolution) def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla() def _get_core_transform(self, resolution): return self.HammerTransform(resolution) # Now register the projection with Matplotlib so the user can select it. register_projection(HammerAxes) if __name__ == '__main__': import matplotlib.pyplot as plt # Now make a simple example using the custom projection. plt.subplot(111, projection="custom_hammer") p = plt.plot([-1, 1, 1], [-1, -1, 1], "o-") plt.grid(True) plt.show()
3414f221aafd68df9ded7c63cbe05907c2983b2dd619699f6e7dbefab0a51356
""" ============ Multiprocess ============ Demo of using multiprocessing for generating data in one process and plotting in another. Written by Robert Cimrman """ import multiprocessing as mp import time import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) ############################################################################### # # Processing Class # ================ # # This class plots data it receives from a pipe. # class ProcessPlotter(object): def __init__(self): self.x = [] self.y = [] def terminate(self): plt.close('all') def call_back(self): while self.pipe.poll(): command = self.pipe.recv() if command is None: self.terminate() return False else: self.x.append(command[0]) self.y.append(command[1]) self.ax.plot(self.x, self.y, 'ro') self.fig.canvas.draw() return True def __call__(self, pipe): print('starting plotter...') self.pipe = pipe self.fig, self.ax = plt.subplots() timer = self.fig.canvas.new_timer(interval=1000) timer.add_callback(self.call_back) timer.start() print('...done') plt.show() ############################################################################### # # Plotting class # ============== # # This class uses multiprocessing to spawn a process to run code from the # class above. When initialized, it creates a pipe and an instance of # ``ProcessPlotter`` which will be run in a separate process. # # When run from the command line, the parent process sends data to the spawned # process which is then plotted via the callback function specified in # ``ProcessPlotter:__call__``. # class NBPlot(object): def __init__(self): self.plot_pipe, plotter_pipe = mp.Pipe() self.plotter = ProcessPlotter() self.plot_process = mp.Process( target=self.plotter, args=(plotter_pipe,), daemon=True) self.plot_process.start() def plot(self, finished=False): send = self.plot_pipe.send if finished: send(None) else: data = np.random.random(2) send(data) def main(): pl = NBPlot() for ii in range(10): pl.plot() time.sleep(0.5) pl.plot(finished=True) if __name__ == '__main__': if plt.get_backend() == "MacOSX": mp.set_start_method("forkserver") main()
7a198d47f47b1e47292adf9801eb28c7dd107414ccab5bf89f13a94a9ee9c5d7
''' =========== Transoffset =========== This illustrates the use of transforms.offset_copy to make a transform that positions a drawing element such as a text string at a specified offset in screen coordinates (dots or inches) relative to a location given in any coordinates. Every Artist--the mpl class from which classes such as Text and Line are derived--has a transform that can be set when the Artist is created, such as by the corresponding pyplot command. By default this is usually the Axes.transData transform, going from data units to screen dots. We can use the offset_copy function to make a modified copy of this transform, where the modification consists of an offset. ''' import matplotlib.pyplot as plt import matplotlib.transforms as mtransforms import numpy as np xs = np.arange(7) ys = xs**2 fig = plt.figure(figsize=(5, 10)) ax = plt.subplot(2, 1, 1) # If we want the same offset for each text instance, # we only need to make one transform. To get the # transform argument to offset_copy, we need to make the axes # first; the subplot command above is one way to do this. trans_offset = mtransforms.offset_copy(ax.transData, fig=fig, x=0.05, y=0.10, units='inches') for x, y in zip(xs, ys): plt.plot(x, y, 'ro') plt.text(x, y, '%d, %d' % (int(x), int(y)), transform=trans_offset) # offset_copy works for polar plots also. ax = plt.subplot(2, 1, 2, projection='polar') trans_offset = mtransforms.offset_copy(ax.transData, fig=fig, y=6, units='dots') for x, y in zip(xs, ys): plt.polar(x, y, 'ro') plt.text(x, y, '%d, %d' % (int(x), int(y)), transform=trans_offset, horizontalalignment='center', verticalalignment='bottom') plt.show()
880a58ab62a233e396067b0edf826fd64da21a1c4cdd0f65468f1a09b2ab56d7
""" ========== Hyperlinks ========== This example demonstrates how to set a hyperlinks on various kinds of elements. This currently only works with the SVG backend. """ import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt ############################################################################### f = plt.figure() s = plt.scatter([1, 2, 3], [4, 5, 6]) s.set_urls(['http://www.bbc.co.uk/news', 'http://www.google.com', None]) f.savefig('scatter.svg') ############################################################################### f = plt.figure() delta = 0.025 x = y = np.arange(-3.0, 3.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 im = plt.imshow(Z, interpolation='bilinear', cmap=cm.gray, origin='lower', extent=[-3, 3, -3, 3]) im.set_url('http://www.google.com') f.savefig('image.svg')
46b98060ab932b94a99d91e0581ecc68c8b3b97c4ae1696b7dc8d7932688ef30
""" ========== Ribbon Box ========== """ import numpy as np from matplotlib import cbook, colors as mcolors from matplotlib.image import BboxImage import matplotlib.pyplot as plt class RibbonBox: original_image = plt.imread( cbook.get_sample_data("Minduka_Present_Blue_Pack.png")) cut_location = 70 b_and_h = original_image[:, :, 2:3] color = original_image[:, :, 2:3] - original_image[:, :, 0:1] alpha = original_image[:, :, 3:4] nx = original_image.shape[1] def __init__(self, color): rgb = mcolors.to_rgba(color)[:3] self.im = np.dstack( [self.b_and_h - self.color * (1 - np.array(rgb)), self.alpha]) def get_stretched_image(self, stretch_factor): stretch_factor = max(stretch_factor, 1) ny, nx, nch = self.im.shape ny2 = int(ny*stretch_factor) return np.vstack( [self.im[:self.cut_location], np.broadcast_to( self.im[self.cut_location], (ny2 - ny, nx, nch)), self.im[self.cut_location:]]) class RibbonBoxImage(BboxImage): zorder = 1 def __init__(self, bbox, color, **kwargs): super().__init__(bbox, **kwargs) self._ribbonbox = RibbonBox(color) def draw(self, renderer, *args, **kwargs): bbox = self.get_window_extent(renderer) stretch_factor = bbox.height / bbox.width ny = int(stretch_factor*self._ribbonbox.nx) if self.get_array() is None or self.get_array().shape[0] != ny: arr = self._ribbonbox.get_stretched_image(stretch_factor) self.set_array(arr) super().draw(renderer, *args, **kwargs) if True: from matplotlib.transforms import Bbox, TransformedBbox from matplotlib.ticker import ScalarFormatter # Fixing random state for reproducibility np.random.seed(19680801) fig, ax = plt.subplots() years = np.arange(2004, 2009) box_colors = [(0.8, 0.2, 0.2), (0.2, 0.8, 0.2), (0.2, 0.2, 0.8), (0.7, 0.5, 0.8), (0.3, 0.8, 0.7), ] heights = np.random.random(years.shape) * 7000 + 3000 fmt = ScalarFormatter(useOffset=False) ax.xaxis.set_major_formatter(fmt) for year, h, bc in zip(years, heights, box_colors): bbox0 = Bbox.from_extents(year - 0.4, 0., year + 0.4, h) bbox = TransformedBbox(bbox0, ax.transData) rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic") ax.add_artist(rb_patch) ax.annotate(r"%d" % (int(h/100.)*100), (year, h), va="bottom", ha="center") patch_gradient = BboxImage(ax.bbox, interpolation="bicubic", zorder=0.1) gradient = np.zeros((2, 2, 4)) gradient[:, :, :3] = [1, 1, 0.] gradient[:, :, 3] = [[0.1, 0.3], [0.3, 0.5]] # alpha channel patch_gradient.set_array(gradient) ax.add_artist(patch_gradient) ax.set_xlim(years[0] - 0.5, years[-1] + 0.5) ax.set_ylim(0, 10000) plt.show()
9a35c34ec58a7f7d8605fc7aa3500ad35a09866dc047a5fa6673d7e8638df547
""" ================== Rasterization Demo ================== """ import numpy as np import matplotlib.pyplot as plt d = np.arange(100).reshape(10, 10) x, y = np.meshgrid(np.arange(11), np.arange(11)) theta = 0.25*np.pi xx = x*np.cos(theta) - y*np.sin(theta) yy = x*np.sin(theta) + y*np.cos(theta) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) ax1.set_aspect(1) ax1.pcolormesh(xx, yy, d) ax1.set_title("No Rasterization") ax2.set_aspect(1) ax2.set_title("Rasterization") m = ax2.pcolormesh(xx, yy, d) m.set_rasterized(True) ax3.set_aspect(1) ax3.pcolormesh(xx, yy, d) ax3.text(0.5, 0.5, "Text", alpha=0.2, va="center", ha="center", size=50, transform=ax3.transAxes) ax3.set_title("No Rasterization") ax4.set_aspect(1) m = ax4.pcolormesh(xx, yy, d) m.set_zorder(-20) ax4.text(0.5, 0.5, "Text", alpha=0.2, zorder=-15, va="center", ha="center", size=50, transform=ax4.transAxes) ax4.set_rasterization_zorder(-10) ax4.set_title("Rasterization z$<-10$") # ax2.title.set_rasterized(True) # should display a warning plt.savefig("test_rasterization.pdf", dpi=150) plt.savefig("test_rasterization.eps", dpi=150) if not plt.rcParams["text.usetex"]: plt.savefig("test_rasterization.svg", dpi=150) # svg backend currently ignores the dpi
9dc97b6bcb72a481fcfcd81bd91c80a1d4694948f2edaa931e22cfc2b96d4328
""" =========== Fill Spiral =========== """ import matplotlib.pyplot as plt import numpy as np theta = np.arange(0, 8*np.pi, 0.1) a = 1 b = .2 for dt in np.arange(0, 2*np.pi, np.pi/2.0): x = a*np.cos(theta + dt)*np.exp(b*theta) y = a*np.sin(theta + dt)*np.exp(b*theta) dt = dt + np.pi/4.0 x2 = a*np.cos(theta + dt)*np.exp(b*theta) y2 = a*np.sin(theta + dt)*np.exp(b*theta) xf = np.concatenate((x, x2[::-1])) yf = np.concatenate((y, y2[::-1])) p1 = plt.fill(xf, yf) plt.show()
76573b4200d6be07edce4f304b682f935e0fac6e682f685e7246d4a58244a407
""" ============== SVG Filter Pie ============== Demonstrate SVG filtering effects which might be used with mpl. The pie chart drawing code is borrowed from pie_demo.py Note that the filtering effects are only effective if your svg renderer support it. """ import matplotlib.pyplot as plt from matplotlib.patches import Shadow # make a square figure and axes fig = plt.figure(figsize=(6, 6)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' fracs = [15, 30, 45, 10] explode = (0, 0.05, 0, 0) # We want to draw the shadow for each pie but we will not use "shadow" # option as it does'n save the references to the shadow patches. pies = ax.pie(fracs, explode=explode, labels=labels, autopct='%1.1f%%') for w in pies[0]: # set the id with the label. w.set_gid(w.get_label()) # we don't want to draw the edge of the pie w.set_edgecolor("none") for w in pies[0]: # create shadow patch s = Shadow(w, -0.01, -0.01) s.set_gid(w.get_gid() + "_shadow") s.set_zorder(w.get_zorder() - 0.1) ax.add_patch(s) # save from io import BytesIO f = BytesIO() plt.savefig(f, format="svg") import xml.etree.cElementTree as ET # filter definition for shadow using a gaussian blur # and lightening effect. # The lightening filter is copied from http://www.w3.org/TR/SVG/filters.html # I tested it with Inkscape and Firefox3. "Gaussian blur" is supported # in both, but the lightening effect only in the Inkscape. Also note # that, Inkscape's exporting also may not support it. filter_def = """ <defs xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'> <filter id='dropshadow' height='1.2' width='1.2'> <feGaussianBlur result='blur' stdDeviation='2'/> </filter> <filter id='MyFilter' filterUnits='objectBoundingBox' x='0' y='0' width='1' height='1'> <feGaussianBlur in='SourceAlpha' stdDeviation='4%' result='blur'/> <feOffset in='blur' dx='4%' dy='4%' result='offsetBlur'/> <feSpecularLighting in='blur' surfaceScale='5' specularConstant='.75' specularExponent='20' lighting-color='#bbbbbb' result='specOut'> <fePointLight x='-5000%' y='-10000%' z='20000%'/> </feSpecularLighting> <feComposite in='specOut' in2='SourceAlpha' operator='in' result='specOut'/> <feComposite in='SourceGraphic' in2='specOut' operator='arithmetic' k1='0' k2='1' k3='1' k4='0'/> </filter> </defs> """ tree, xmlid = ET.XMLID(f.getvalue()) # insert the filter definition in the svg dom tree. tree.insert(0, ET.XML(filter_def)) for i, pie_name in enumerate(labels): pie = xmlid[pie_name] pie.set("filter", 'url(#MyFilter)') shadow = xmlid[pie_name + "_shadow"] shadow.set("filter", 'url(#dropshadow)') fn = "svg_filter_pie.svg" print("Saving '%s'" % fn) ET.ElementTree(tree).write(fn)
11d3a71d23a906d9d0fd61e4f875f88ad9cac40733eda7b66a683f8a38a84fdb
""" =============== Font properties =============== This example lists the attributes of an `FT2Font` object, which describe global font properties. For individual character metrics, use the `Glyph` object, as returned by `load_char`. """ import os import matplotlib import matplotlib.ft2font as ft font = ft.FT2Font( # Use a font shipped with Matplotlib. os.path.join(matplotlib.get_data_path(), 'fonts/ttf/DejaVuSans-Oblique.ttf')) print('Num faces :', font.num_faces) # number of faces in file print('Num glyphs :', font.num_glyphs) # number of glyphs in the face print('Family name :', font.family_name) # face family name print('Style name :', font.style_name) # face style name print('PS name :', font.postscript_name) # the postscript name print('Num fixed :', font.num_fixed_sizes) # number of embedded bitmap in face # the following are only available if face.scalable if font.scalable: # the face global bounding box (xmin, ymin, xmax, ymax) print('Bbox :', font.bbox) # number of font units covered by the EM print('EM :', font.units_per_EM) # the ascender in 26.6 units print('Ascender :', font.ascender) # the descender in 26.6 units print('Descender :', font.descender) # the height in 26.6 units print('Height :', font.height) # maximum horizontal cursor advance print('Max adv width :', font.max_advance_width) # same for vertical layout print('Max adv height :', font.max_advance_height) # vertical position of the underline bar print('Underline pos :', font.underline_position) # vertical thickness of the underline print('Underline thickness :', font.underline_thickness) for style in ('Italic', 'Bold', 'Scalable', 'Fixed sizes', 'Fixed width', 'SFNT', 'Horizontal', 'Vertical', 'Kerning', 'Fast glyphs', 'Multiple masters', 'Glyph names', 'External stream'): bitpos = getattr(ft, style.replace(' ', '_').upper()) - 1 print('%-17s:' % style, bool(font.style_flags & (1 << bitpos)))
3f9915e5df1cb21118e1b31705f7cc766cb6057a284e3241b8db664fc001e6c5
""" ============ Print Stdout ============ print png to standard out usage: python print_stdout.py > somefile.png """ import sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt plt.plot([1, 2, 3]) plt.savefig(sys.stdout.buffer)
a3b8323b24811467896e8dd48b030b15ba5763b88cf86c3b7319b4dd68ff619a
""" ========== Agg Buffer ========== Use backend agg to access the figure canvas as an RGB string and then convert it to an array and pass it to Pillow for rendering. """ import numpy as np from matplotlib.backends.backend_agg import FigureCanvasAgg import matplotlib.pyplot as plt plt.plot([1, 2, 3]) canvas = plt.get_current_fig_manager().canvas agg = canvas.switch_backends(FigureCanvasAgg) agg.draw() s, (width, height) = agg.print_to_buffer() # Convert to a NumPy array. X = np.frombuffer(s, np.uint8).reshape((height, width, 4)) # Pass off to PIL. from PIL import Image im = Image.frombytes("RGBA", (width, height), s) # Uncomment this line to display the image using ImageMagick's `display` tool. # im.show()
93a60de2251c1a4df04201b523a67ce9bb3e5137b01a829ede17d80963f325ed
""" =========================================== Changing colors of lines intersecting a box =========================================== The lines intersecting the rectangle are colored in red, while the others are left as blue lines. This example showcases the `intersect_bbox` function. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.transforms import Bbox from matplotlib.path import Path # Fixing random state for reproducibility np.random.seed(19680801) left, bottom, width, height = (-1, -1, 2, 2) rect = plt.Rectangle((left, bottom), width, height, facecolor="black", alpha=0.1) fig, ax = plt.subplots() ax.add_patch(rect) bbox = Bbox.from_bounds(left, bottom, width, height) for i in range(12): vertices = (np.random.random((2, 2)) - 0.5) * 6.0 path = Path(vertices) if path.intersects_bbox(bbox): color = 'r' else: color = 'b' ax.plot(vertices[:, 0], vertices[:, 1], color=color) plt.show()
04a463537724e6beaf6e85e9bfad633ca661089eaa718382f9e18c39925c3ad8
""" ============== Load converter ============== This example demonstrates passing a custom converter to `numpy.genfromtxt` to extract dates from a CSV file. """ import dateutil.parser from matplotlib import cbook, dates import matplotlib.pyplot as plt import numpy as np datafile = cbook.get_sample_data('msft.csv', asfileobj=False) print('loading', datafile) data = np.genfromtxt( datafile, delimiter=',', names=True, dtype=None, converters={0: dateutil.parser.parse}) fig, ax = plt.subplots() ax.plot(data['Date'], data['High'], '-') fig.autofmt_xdate() plt.show()
0e21b9b2082fc75ac7e553119acef633e2f4a2040a90913ccb65df33d73da697
""" ================ Anchored Artists ================ This example illustrates the use of the anchored objects without the helper classes found in the :ref:`toolkit_axesgrid1-index`. This version of the figure is similar to the one found in :doc:`/gallery/axes_grid1/simple_anchored_artists`, but it is implemented using only the matplotlib namespace, without the help of additional toolkits. """ from matplotlib import pyplot as plt from matplotlib.patches import Rectangle, Ellipse from matplotlib.offsetbox import ( AnchoredOffsetbox, AuxTransformBox, DrawingArea, TextArea, VPacker) class AnchoredText(AnchoredOffsetbox): def __init__(self, s, loc, pad=0.4, borderpad=0.5, prop=None, frameon=True): self.txt = TextArea(s, minimumdescent=False) super().__init__(loc, pad=pad, borderpad=borderpad, child=self.txt, prop=prop, frameon=frameon) def draw_text(ax): """ Draw a text-box anchored to the upper-left corner of the figure. """ at = AnchoredText("Figure 1a", loc='upper left', frameon=True) at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") ax.add_artist(at) class AnchoredDrawingArea(AnchoredOffsetbox): def __init__(self, width, height, xdescent, ydescent, loc, pad=0.4, borderpad=0.5, prop=None, frameon=True): self.da = DrawingArea(width, height, xdescent, ydescent) super().__init__(loc, pad=pad, borderpad=borderpad, child=self.da, prop=None, frameon=frameon) def draw_circle(ax): """ Draw a circle in axis coordinates """ from matplotlib.patches import Circle ada = AnchoredDrawingArea(20, 20, 0, 0, loc='upper right', pad=0., frameon=False) p = Circle((10, 10), 10) ada.da.add_artist(p) ax.add_artist(ada) class AnchoredEllipse(AnchoredOffsetbox): def __init__(self, transform, width, height, angle, loc, pad=0.1, borderpad=0.1, prop=None, frameon=True): """ Draw an ellipse the size in data coordinate of the give axes. pad, borderpad in fraction of the legend font size (or prop) """ self._box = AuxTransformBox(transform) self.ellipse = Ellipse((0, 0), width, height, angle) self._box.add_artist(self.ellipse) super().__init__(loc, pad=pad, borderpad=borderpad, child=self._box, prop=prop, frameon=frameon) def draw_ellipse(ax): """ Draw an ellipse of width=0.1, height=0.15 in data coordinates """ ae = AnchoredEllipse(ax.transData, width=0.1, height=0.15, angle=0., loc='lower left', pad=0.5, borderpad=0.4, frameon=True) ax.add_artist(ae) class AnchoredSizeBar(AnchoredOffsetbox): def __init__(self, transform, size, label, loc, pad=0.1, borderpad=0.1, sep=2, prop=None, frameon=True): """ Draw a horizontal bar with the size in data coordinate of the given axes. A label will be drawn underneath (center-aligned). pad, borderpad in fraction of the legend font size (or prop) sep in points. """ self.size_bar = AuxTransformBox(transform) self.size_bar.add_artist(Rectangle((0, 0), size, 0, ec="black", lw=1.0)) self.txt_label = TextArea(label, minimumdescent=False) self._box = VPacker(children=[self.size_bar, self.txt_label], align="center", pad=0, sep=sep) super().__init__(loc, pad=pad, borderpad=borderpad, child=self._box, prop=prop, frameon=frameon) def draw_sizebar(ax): """ Draw a horizontal bar with length of 0.1 in data coordinates, with a fixed label underneath. """ asb = AnchoredSizeBar(ax.transData, 0.1, r"1$^{\prime}$", loc='lower center', pad=0.1, borderpad=0.5, sep=5, frameon=False) ax.add_artist(asb) ax = plt.gca() ax.set_aspect(1.) draw_text(ax) draw_circle(ax) draw_ellipse(ax) draw_sizebar(ax) plt.show()
ad7a2f2dc5083110747af2985dbd9469b80918a2195f436e351b654da5fa588e
""" ======================================================== Building histograms using Rectangles and PolyCollections ======================================================== Using a path patch to draw rectangles. The technique of using lots of Rectangle instances, or the faster method of using PolyCollections, were implemented before we had proper paths with moveto/lineto, closepoly etc in mpl. Now that we have them, we can draw collections of regularly shaped objects with homogeneous properties more efficiently with a PathCollection. This example makes a histogram -- it's more work to set up the vertex arrays at the outset, but it should be much faster for large numbers of objects. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.path as path fig, ax = plt.subplots() # Fixing random state for reproducibility np.random.seed(19680801) # histogram our data with numpy data = np.random.randn(1000) n, bins = np.histogram(data, 50) # get the corners of the rectangles for the histogram left = np.array(bins[:-1]) right = np.array(bins[1:]) bottom = np.zeros(len(left)) top = bottom + n # we need a (numrects x numsides x 2) numpy array for the path helper # function to build a compound path XY = np.array([[left, left, right, right], [bottom, top, top, bottom]]).T # get the Path object barpath = path.Path.make_compound_path_from_polys(XY) # make a patch out of it patch = patches.PathPatch(barpath) ax.add_patch(patch) # update the view limits ax.set_xlim(left[0], right[-1]) ax.set_ylim(bottom.min(), top.max()) plt.show() ############################################################################# # It should be noted that instead of creating a three-dimensional array and # using `~.path.Path.make_compound_path_from_polys`, we could as well create # the compound path directly using vertices and codes as shown below nrects = len(left) nverts = nrects*(1+3+1) verts = np.zeros((nverts, 2)) codes = np.ones(nverts, int) * path.Path.LINETO codes[0::5] = path.Path.MOVETO codes[4::5] = path.Path.CLOSEPOLY verts[0::5, 0] = left verts[0::5, 1] = bottom verts[1::5, 0] = left verts[1::5, 1] = top verts[2::5, 0] = right verts[2::5, 1] = top verts[3::5, 0] = right verts[3::5, 1] = bottom barpath = path.Path(verts, codes) ############################################################################# # # ------------ # # References # """""""""" # # The use of the following functions, methods, classes and modules is shown # in this example: import matplotlib matplotlib.patches matplotlib.patches.PathPatch matplotlib.path matplotlib.path.Path matplotlib.path.Path.make_compound_path_from_polys matplotlib.axes.Axes.add_patch matplotlib.collections.PathCollection # This example shows an alternative to matplotlib.collections.PolyCollection matplotlib.axes.Axes.hist
9c5edd1eac026d6b0fe47f49040676325df1f1e74f729e8693a613e8c0e5b28a
""" =============== SVG Filter Line =============== Demonstrate SVG filtering effects which might be used with mpl. Note that the filtering effects are only effective if your svg renderer support it. """ import matplotlib.pyplot as plt import matplotlib.transforms as mtransforms fig1 = plt.figure() ax = fig1.add_axes([0.1, 0.1, 0.8, 0.8]) # draw lines l1, = ax.plot([0.1, 0.5, 0.9], [0.1, 0.9, 0.5], "bo-", mec="b", lw=5, ms=10, label="Line 1") l2, = ax.plot([0.1, 0.5, 0.9], [0.5, 0.2, 0.7], "rs-", mec="r", lw=5, ms=10, color="r", label="Line 2") for l in [l1, l2]: # draw shadows with same lines with slight offset and gray colors. xx = l.get_xdata() yy = l.get_ydata() shadow, = ax.plot(xx, yy) shadow.update_from(l) # adjust color shadow.set_color("0.2") # adjust zorder of the shadow lines so that it is drawn below the # original lines shadow.set_zorder(l.get_zorder() - 0.5) # offset transform ot = mtransforms.offset_copy(l.get_transform(), fig1, x=4.0, y=-6.0, units='points') shadow.set_transform(ot) # set the id for a later use shadow.set_gid(l.get_label() + "_shadow") ax.set_xlim(0., 1.) ax.set_ylim(0., 1.) # save the figure as a bytes string in the svg format. from io import BytesIO f = BytesIO() plt.savefig(f, format="svg") import xml.etree.cElementTree as ET # filter definition for a gaussian blur filter_def = """ <defs xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink'> <filter id='dropshadow' height='1.2' width='1.2'> <feGaussianBlur result='blur' stdDeviation='3'/> </filter> </defs> """ # read in the saved svg tree, xmlid = ET.XMLID(f.getvalue()) # insert the filter definition in the svg dom tree. tree.insert(0, ET.XML(filter_def)) for l in [l1, l2]: # pick up the svg element with given id shadow = xmlid[l.get_label() + "_shadow"] # apply shadow filter shadow.set("filter", 'url(#dropshadow)') fn = "svg_filter_line.svg" print("Saving '%s'" % fn) ET.ElementTree(tree).write(fn)
6d912b3108f8aa879bcc778ba84da722af66a0f2369166acd95f9d0a79e6f80a
""" =========== Set And Get =========== The pyplot interface allows you to use setp and getp to set and get object properties, as well as to do introspection on the object set === To set the linestyle of a line to be dashed, you can do:: >>> line, = plt.plot([1,2,3]) >>> plt.setp(line, linestyle='--') If you want to know the valid types of arguments, you can provide the name of the property you want to set without a value:: >>> plt.setp(line, 'linestyle') linestyle: [ '-' | '--' | '-.' | ':' | 'steps' | 'None' ] If you want to see all the properties that can be set, and their possible values, you can do:: >>> plt.setp(line) set operates on a single instance or a list of instances. If you are in query mode introspecting the possible values, only the first instance in the sequence is used. When actually setting values, all the instances will be set. e.g., suppose you have a list of two lines, the following will make both lines thicker and red:: >>> x = np.arange(0,1.0,0.01) >>> y1 = np.sin(2*np.pi*x) >>> y2 = np.sin(4*np.pi*x) >>> lines = plt.plot(x, y1, x, y2) >>> plt.setp(lines, linewidth=2, color='r') get === get returns the value of a given attribute. You can use get to query the value of a single attribute:: >>> plt.getp(line, 'linewidth') 0.5 or all the attribute/value pairs:: >>> plt.getp(line) aa = True alpha = 1.0 antialiased = True c = b clip_on = True color = b ... long listing skipped ... Aliases ======= To reduce keystrokes in interactive mode, a number of properties have short aliases, e.g., 'lw' for 'linewidth' and 'mec' for 'markeredgecolor'. When calling set or get in introspection mode, these properties will be listed as 'fullname or aliasname'. """ import matplotlib.pyplot as plt import numpy as np x = np.arange(0, 1.0, 0.01) y1 = np.sin(2*np.pi*x) y2 = np.sin(4*np.pi*x) lines = plt.plot(x, y1, x, y2) l1, l2 = lines plt.setp(lines, linestyle='--') # set both to dashed plt.setp(l1, linewidth=2, color='r') # line1 is thick and red plt.setp(l2, linewidth=1, color='g') # line2 is thinner and green print('Line setters') plt.setp(l1) print('Line getters') plt.getp(l1) print('Rectangle setters') plt.setp(plt.gca().patch) print('Rectangle getters') plt.getp(plt.gca().patch) t = plt.title('Hi mom') print('Text setters') plt.setp(t) print('Text getters') plt.getp(t) plt.show()
873bf888ac9ae89272035b068b71c9ec5e3c525564d5bea4de2ba78190a28349
""" ============= Multipage PDF ============= This is a demo of creating a pdf file with several pages, as well as adding metadata and annotations to pdf files. If you want to use a multipage pdf file using LaTeX, you need to use `from matplotlib.backends.backend_pgf import PdfPages`. This version however does not support `attach_note`. """ import datetime import numpy as np from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt # Create the PdfPages object to which we will save the pages: # The with statement makes sure that the PdfPages object is closed properly at # the end of the block, even if an Exception occurs. with PdfPages('multipage_pdf.pdf') as pdf: plt.figure(figsize=(3, 3)) plt.plot(range(7), [3, 1, 4, 1, 5, 9, 2], 'r-o') plt.title('Page One') pdf.savefig() # saves the current figure into a pdf page plt.close() # if LaTeX is not installed or error caught, change to `usetex=False` plt.rc('text', usetex=True) plt.figure(figsize=(8, 6)) x = np.arange(0, 5, 0.1) plt.plot(x, np.sin(x), 'b-') plt.title('Page Two') pdf.attach_note("plot of sin(x)") # you can add a pdf note to # attach metadata to a page pdf.savefig() plt.close() plt.rc('text', usetex=False) fig = plt.figure(figsize=(4, 5)) plt.plot(x, x ** 2, 'ko') plt.title('Page Three') pdf.savefig(fig) # or you can pass a Figure object to pdf.savefig plt.close() # We can also set the file's metadata via the PdfPages object: d = pdf.infodict() d['Title'] = 'Multipage PDF Example' d['Author'] = 'Jouni K. Sepp\xe4nen' d['Subject'] = 'How to create a multipage pdf file and set its metadata' d['Keywords'] = 'PdfPages multipage keywords author title subject' d['CreationDate'] = datetime.datetime(2009, 11, 13) d['ModDate'] = datetime.datetime.today()
7216d09e90de06cad3874991fd4ea574bbff42be91fdaaa911bee2c0e240db80
""" =================== Pythonic Matplotlib =================== Some people prefer to write more pythonic, object-oriented code rather than use the pyplot interface to matplotlib. This example shows you how. Unless you are an application developer, I recommend using part of the pyplot interface, particularly the figure, close, subplot, axes, and show commands. These hide a lot of complexity from you that you don't need to see in normal figure creation, like instantiating DPI instances, managing the bounding boxes of the figure elements, creating and realizing GUI windows and embedding figures in them. If you are an application developer and want to embed matplotlib in your application, follow the lead of examples/embedding_in_wx.py, examples/embedding_in_gtk.py or examples/embedding_in_tk.py. In this case you will want to control the creation of all your figures, embedding them in application windows, etc. If you are a web application developer, you may want to use the example in webapp_demo.py, which shows how to use the backend agg figure canvas directly, with none of the globals (current figure, current axes) that are present in the pyplot interface. Note that there is no reason why the pyplot interface won't work for web application developers, however. If you see an example in the examples dir written in pyplot interface, and you want to emulate that using the true python method calls, there is an easy mapping. Many of those examples use 'set' to control figure properties. Here's how to map those commands onto instance methods The syntax of set is:: plt.setp(object or sequence, somestring, attribute) if called with an object, set calls:: object.set_somestring(attribute) if called with a sequence, set does:: for object in sequence: object.set_somestring(attribute) So for your example, if a is your axes object, you can do:: a.set_xticklabels([]) a.set_yticklabels([]) a.set_xticks([]) a.set_yticks([]) """ import matplotlib.pyplot as plt import numpy as np t = np.arange(0.0, 1.0, 0.01) fig, (ax1, ax2) = plt.subplots(2) ax1.plot(t, np.sin(2*np.pi * t)) ax1.grid(True) ax1.set_ylim((-2, 2)) ax1.set_ylabel('1 Hz') ax1.set_title('A sine wave or two') ax1.xaxis.set_tick_params(labelcolor='r') ax2.plot(t, np.sin(2 * 2*np.pi * t)) ax2.grid(True) ax2.set_ylim((-2, 2)) l = ax2.set_xlabel('Hi mom') l.set_color('g') l.set_fontsize('large') plt.show()
11f89e71a39340d09e531e9bafea1aaa2ffe2d5de27ef7efe9765c4e63cf136a
""" =============== Image Thumbnail =============== You can use matplotlib to generate thumbnails from existing images. matplotlib natively supports PNG files on the input side, and other image types transparently if your have PIL installed """ # build thumbnails of all images in a directory import sys import os import glob import matplotlib.image as image if len(sys.argv) != 2: print('Usage: python %s IMAGEDIR' % __file__) raise SystemExit indir = sys.argv[1] if not os.path.isdir(indir): print('Could not find input directory "%s"' % indir) raise SystemExit outdir = 'thumbs' if not os.path.exists(outdir): os.makedirs(outdir) for fname in glob.glob(os.path.join(indir, '*.png')): basedir, basename = os.path.split(fname) outfile = os.path.join(outdir, basename) fig = image.thumbnail(fname, outfile, scale=0.15) print('saved thumbnail of %s to %s' % (fname, outfile))
e018326bc67a0e720969bfb8c63b037cfe28cffb9aef96b0652575b729cd7344
""" ============ Customize Rc ============ I'm not trying to make a good looking figure here, but just to show some examples of customizing rc params on the fly If you like to work interactively, and need to create different sets of defaults for figures (e.g., one set of defaults for publication, one set for interactive exploration), you may want to define some functions in a custom module that set the defaults, e.g.,:: def set_pub(): rc('font', weight='bold') # bold fonts are easier to see rc('tick', labelsize=15) # tick labels bigger rc('lines', lw=1, color='k') # thicker black lines rc('grid', c='0.5', ls='-', lw=0.5) # solid gray grid lines rc('savefig', dpi=300) # higher res outputs Then as you are working interactively, you just need to do:: >>> set_pub() >>> subplot(111) >>> plot([1,2,3]) >>> savefig('myfig') >>> rcdefaults() # restore the defaults """ import matplotlib.pyplot as plt plt.subplot(311) plt.plot([1, 2, 3]) # the axes attributes need to be set before the call to subplot plt.rc('font', weight='bold') plt.rc('xtick.major', size=5, pad=7) plt.rc('xtick', labelsize=15) # using aliases for color, linestyle and linewidth; gray, solid, thick plt.rc('grid', c='0.5', ls='-', lw=5) plt.rc('lines', lw=2, color='g') plt.subplot(312) plt.plot([1, 2, 3]) plt.grid(True) plt.rcdefaults() plt.subplot(313) plt.plot([1, 2, 3]) plt.grid(True) plt.show()
1c16316c18c3c65c0a8dbad736b43571690711d4c884c7b08f329d960a2376fd
""" =========== Zorder Demo =========== The default drawing order for axes is patches, lines, text. This order is determined by the zorder attribute. The following defaults are set ======================= ======= Artist Z-order ======================= ======= Patch / PatchCollection 1 Line2D / LineCollection 2 Text 3 ======================= ======= You can change the order for individual artists by setting the zorder. Any individual plot() call can set a value for the zorder of that particular item. In the fist subplot below, the lines are drawn above the patch collection from the scatter, which is the default. In the subplot below, the order is reversed. The second figure shows how to control the zorder of individual lines. """ import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) x = np.random.random(20) y = np.random.random(20) ############################################################################### # Lines on top of scatter plt.figure() plt.subplot(211) plt.plot(x, y, 'C3', lw=3) plt.scatter(x, y, s=120) plt.title('Lines on top of dots') # Scatter plot on top of lines plt.subplot(212) plt.plot(x, y, 'C3', zorder=1, lw=3) plt.scatter(x, y, s=120, zorder=2) plt.title('Dots on top of lines') plt.tight_layout() ############################################################################### # A new figure, with individually ordered items x = np.linspace(0, 2*np.pi, 100) plt.rcParams['lines.linewidth'] = 10 plt.figure() plt.plot(x, np.sin(x), label='zorder=10', zorder=10) # on top plt.plot(x, np.sin(1.1*x), label='zorder=1', zorder=1) # bottom plt.plot(x, np.sin(1.2*x), label='zorder=3', zorder=3) plt.axhline(0, label='zorder=2', color='grey', zorder=2) plt.title('Custom order of elements') l = plt.legend(loc='upper right') l.set_zorder(20) # put the legend on top plt.show()