|
--- |
|
license: cc-by-4.0 |
|
pretty_name: Mega-scale experimental analysis of protein folding stability in biology |
|
and design |
|
tags: |
|
- biology |
|
- chemistry |
|
repo: https://github.com/Rocklin-Lab/cdna-display-proteolysis-pipeline |
|
citation_bibtex: '@article{Tsuboyama2023, title = {Mega-scale experimental analysis |
|
of protein folding stability in biology and design}, volume = {620}, ISSN = {1476-4687}, |
|
url = {http://dx.doi.org/10.1038/s41586-023-06328-6}, DOI = {10.1038/s41586-023-06328-6}, |
|
number = {7973}, journal = {Nature}, publisher = {Springer Science and Business |
|
Media LLC}, author = {Tsuboyama, Kotaro and Dauparas, Justas and Chen, Jonathan |
|
and Laine, Elodie and Mohseni Behbahani, Yasser and Weinstein, Jonathan J. and |
|
Mangan, Niall M. and Ovchinnikov, Sergey and Rocklin, Gabriel J.}, year = {2023}, |
|
month = jul, pages = {434–444} }' |
|
citation_apa: Tsuboyama, K., Dauparas, J., Chen, J. et al. Mega-scale experimental |
|
analysis of protein folding stability in biology and design. Nature 620, 434–444 |
|
(2023). https://doi.org/10.1038/s41586-023-06328-6 |
|
dataset_info: |
|
- config_name: AlphaFold_model_PDBs |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: pdb |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 59951444 |
|
num_examples: 862 |
|
download_size: 22129369 |
|
dataset_size: 59951444 |
|
- config_name: dataset1 |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: dna_seq |
|
dtype: string |
|
- name: log10_K50_t |
|
dtype: float64 |
|
- name: log10_K50_t_95CI_high |
|
dtype: float64 |
|
- name: log10_K50_t_95CI_low |
|
dtype: float64 |
|
- name: log10_K50_t_95CI |
|
dtype: float64 |
|
- name: fitting_error_t |
|
dtype: float64 |
|
- name: log10_K50unfolded_t |
|
dtype: float64 |
|
- name: deltaG_t |
|
dtype: float64 |
|
- name: deltaG_t_95CI_high |
|
dtype: float64 |
|
- name: deltaG_t_95CI_low |
|
dtype: float64 |
|
- name: deltaG_t_95CI |
|
dtype: float64 |
|
- name: log10_K50_c |
|
dtype: float64 |
|
- name: log10_K50_c_95CI_high |
|
dtype: float64 |
|
- name: log10_K50_c_95CI_low |
|
dtype: float64 |
|
- name: log10_K50_c_95CI |
|
dtype: float64 |
|
- name: fitting_error_c |
|
dtype: float64 |
|
- name: log10_K50unfolded_c |
|
dtype: float64 |
|
- name: deltaG_c |
|
dtype: float64 |
|
- name: deltaG_c_95CI_high |
|
dtype: float64 |
|
- name: deltaG_c_95CI_low |
|
dtype: float64 |
|
- name: deltaG_c_95CI |
|
dtype: float64 |
|
- name: deltaG |
|
dtype: float64 |
|
- name: deltaG_95CI_high |
|
dtype: float64 |
|
- name: deltaG_95CI_low |
|
dtype: float64 |
|
- name: deltaG_95CI |
|
dtype: float64 |
|
- name: log10_K50_trypsin_ML |
|
dtype: float64 |
|
- name: log10_K50_chymotrypsin_ML |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 821805209 |
|
num_examples: 1841285 |
|
download_size: 562388001 |
|
dataset_size: 821805209 |
|
- config_name: dataset2 |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: dna_seq |
|
dtype: string |
|
- name: log10_K50_t |
|
dtype: float64 |
|
- name: log10_K50_t_95CI_high |
|
dtype: float64 |
|
- name: log10_K50_t_95CI_low |
|
dtype: float64 |
|
- name: log10_K50_t_95CI |
|
dtype: float64 |
|
- name: fitting_error_t |
|
dtype: float64 |
|
- name: log10_K50unfolded_t |
|
dtype: float64 |
|
- name: deltaG_t |
|
dtype: float64 |
|
- name: deltaG_t_95CI_high |
|
dtype: float64 |
|
- name: deltaG_t_95CI_low |
|
dtype: float64 |
|
- name: deltaG_t_95CI |
|
dtype: float64 |
|
- name: log10_K50_c |
|
dtype: float64 |
|
- name: log10_K50_c_95CI_high |
|
dtype: float64 |
|
- name: log10_K50_c_95CI_low |
|
dtype: float64 |
|
- name: log10_K50_c_95CI |
|
dtype: float64 |
|
- name: fitting_error_c |
|
dtype: float64 |
|
- name: log10_K50unfolded_c |
|
dtype: float64 |
|
- name: deltaG_c |
|
dtype: float64 |
|
- name: deltaG_c_95CI_high |
|
dtype: float64 |
|
- name: deltaG_c_95CI_low |
|
dtype: float64 |
|
- name: deltaG_c_95CI |
|
dtype: float64 |
|
- name: deltaG |
|
dtype: float64 |
|
- name: deltaG_95CI_high |
|
dtype: float64 |
|
- name: deltaG_95CI_low |
|
dtype: float64 |
|
- name: deltaG_95CI |
|
dtype: float64 |
|
- name: aa_seq_full |
|
dtype: string |
|
- name: aa_seq |
|
dtype: string |
|
- name: mut_type |
|
dtype: string |
|
- name: WT_name |
|
dtype: string |
|
- name: WT_cluster |
|
dtype: string |
|
- name: log10_K50_trypsin_ML |
|
dtype: string |
|
- name: log10_K50_chymotrypsin_ML |
|
dtype: string |
|
- name: dG_ML |
|
dtype: string |
|
- name: ddG_ML |
|
dtype: string |
|
- name: Stabilizing_mut |
|
dtype: string |
|
- name: pair_name |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 542077948 |
|
num_examples: 776298 |
|
download_size: 291488588 |
|
dataset_size: 542077948 |
|
- config_name: dataset3 |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: dna_seq |
|
dtype: string |
|
- name: log10_K50_t |
|
dtype: float64 |
|
- name: log10_K50_t_95CI_high |
|
dtype: float64 |
|
- name: log10_K50_t_95CI_low |
|
dtype: float64 |
|
- name: log10_K50_t_95CI |
|
dtype: float64 |
|
- name: fitting_error_t |
|
dtype: float64 |
|
- name: log10_K50unfolded_t |
|
dtype: float64 |
|
- name: deltaG_t |
|
dtype: float64 |
|
- name: deltaG_t_95CI_high |
|
dtype: float64 |
|
- name: deltaG_t_95CI_low |
|
dtype: float64 |
|
- name: deltaG_t_95CI |
|
dtype: float64 |
|
- name: log10_K50_c |
|
dtype: float64 |
|
- name: log10_K50_c_95CI_high |
|
dtype: float64 |
|
- name: log10_K50_c_95CI_low |
|
dtype: float64 |
|
- name: log10_K50_c_95CI |
|
dtype: float64 |
|
- name: fitting_error_c |
|
dtype: float64 |
|
- name: log10_K50unfolded_c |
|
dtype: float64 |
|
- name: deltaG_c |
|
dtype: float64 |
|
- name: deltaG_c_95CI_high |
|
dtype: float64 |
|
- name: deltaG_c_95CI_low |
|
dtype: float64 |
|
- name: deltaG_c_95CI |
|
dtype: float64 |
|
- name: deltaG |
|
dtype: float64 |
|
- name: deltaG_95CI_high |
|
dtype: float64 |
|
- name: deltaG_95CI_low |
|
dtype: float64 |
|
- name: deltaG_95CI |
|
dtype: float64 |
|
- name: aa_seq_full |
|
dtype: string |
|
- name: aa_seq |
|
dtype: string |
|
- name: mut_type |
|
dtype: string |
|
- name: WT_name |
|
dtype: string |
|
- name: WT_cluster |
|
dtype: string |
|
- name: log10_K50_trypsin_ML |
|
dtype: string |
|
- name: log10_K50_chymotrypsin_ML |
|
dtype: string |
|
- name: dG_ML |
|
dtype: string |
|
- name: ddG_ML |
|
dtype: string |
|
- name: Stabilizing_mut |
|
dtype: string |
|
- name: pair_name |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 426187043 |
|
num_examples: 607839 |
|
download_size: 233585731 |
|
dataset_size: 426187043 |
|
- config_name: dataset3_single |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: dna_seq |
|
dtype: string |
|
- name: log10_K50_t |
|
dtype: float64 |
|
- name: log10_K50_t_95CI_high |
|
dtype: float64 |
|
- name: log10_K50_t_95CI_low |
|
dtype: float64 |
|
- name: log10_K50_t_95CI |
|
dtype: float64 |
|
- name: fitting_error_t |
|
dtype: float64 |
|
- name: log10_K50unfolded_t |
|
dtype: float64 |
|
- name: deltaG_t |
|
dtype: float64 |
|
- name: deltaG_t_95CI_high |
|
dtype: float64 |
|
- name: deltaG_t_95CI_low |
|
dtype: float64 |
|
- name: deltaG_t_95CI |
|
dtype: float64 |
|
- name: log10_K50_c |
|
dtype: float64 |
|
- name: log10_K50_c_95CI_high |
|
dtype: float64 |
|
- name: log10_K50_c_95CI_low |
|
dtype: float64 |
|
- name: log10_K50_c_95CI |
|
dtype: float64 |
|
- name: fitting_error_c |
|
dtype: float64 |
|
- name: log10_K50unfolded_c |
|
dtype: float64 |
|
- name: deltaG_c |
|
dtype: float64 |
|
- name: deltaG_c_95CI_high |
|
dtype: float64 |
|
- name: deltaG_c_95CI_low |
|
dtype: float64 |
|
- name: deltaG_c_95CI |
|
dtype: float64 |
|
- name: deltaG |
|
dtype: float64 |
|
- name: deltaG_95CI_high |
|
dtype: float64 |
|
- name: deltaG_95CI_low |
|
dtype: float64 |
|
- name: deltaG_95CI |
|
dtype: float64 |
|
- name: aa_seq_full |
|
dtype: string |
|
- name: aa_seq |
|
dtype: string |
|
- name: mut_type |
|
dtype: string |
|
- name: WT_name |
|
dtype: string |
|
- name: WT_cluster |
|
dtype: string |
|
- name: log10_K50_trypsin_ML |
|
dtype: string |
|
- name: log10_K50_chymotrypsin_ML |
|
dtype: string |
|
- name: dG_ML |
|
dtype: string |
|
- name: ddG_ML |
|
dtype: string |
|
- name: Stabilizing_mut |
|
dtype: string |
|
- name: pair_name |
|
dtype: string |
|
- name: split_name |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1017283318 |
|
num_examples: 1503063 |
|
- name: val |
|
num_bytes: 110475434 |
|
num_examples: 163968 |
|
- name: test |
|
num_bytes: 116788047 |
|
num_examples: 169032 |
|
download_size: 151448982 |
|
dataset_size: 1244546799 |
|
- config_name: dataset3_single_cv |
|
features: |
|
- name: name |
|
dtype: string |
|
- name: dna_seq |
|
dtype: string |
|
- name: log10_K50_t |
|
dtype: float64 |
|
- name: log10_K50_t_95CI_high |
|
dtype: float64 |
|
- name: log10_K50_t_95CI_low |
|
dtype: float64 |
|
- name: log10_K50_t_95CI |
|
dtype: float64 |
|
- name: fitting_error_t |
|
dtype: float64 |
|
- name: log10_K50unfolded_t |
|
dtype: float64 |
|
- name: deltaG_t |
|
dtype: float64 |
|
- name: deltaG_t_95CI_high |
|
dtype: float64 |
|
- name: deltaG_t_95CI_low |
|
dtype: float64 |
|
- name: deltaG_t_95CI |
|
dtype: float64 |
|
- name: log10_K50_c |
|
dtype: float64 |
|
- name: log10_K50_c_95CI_high |
|
dtype: float64 |
|
- name: log10_K50_c_95CI_low |
|
dtype: float64 |
|
- name: log10_K50_c_95CI |
|
dtype: float64 |
|
- name: fitting_error_c |
|
dtype: float64 |
|
- name: log10_K50unfolded_c |
|
dtype: float64 |
|
- name: deltaG_c |
|
dtype: float64 |
|
- name: deltaG_c_95CI_high |
|
dtype: float64 |
|
- name: deltaG_c_95CI_low |
|
dtype: float64 |
|
- name: deltaG_c_95CI |
|
dtype: float64 |
|
- name: deltaG |
|
dtype: float64 |
|
- name: deltaG_95CI_high |
|
dtype: float64 |
|
- name: deltaG_95CI_low |
|
dtype: float64 |
|
- name: deltaG_95CI |
|
dtype: float64 |
|
- name: aa_seq_full |
|
dtype: string |
|
- name: aa_seq |
|
dtype: string |
|
- name: mut_type |
|
dtype: string |
|
- name: WT_name |
|
dtype: string |
|
- name: WT_cluster |
|
dtype: string |
|
- name: log10_K50_trypsin_ML |
|
dtype: float64 |
|
- name: log10_K50_chymotrypsin_ML |
|
dtype: float64 |
|
- name: dG_ML |
|
dtype: float64 |
|
- name: ddG_ML |
|
dtype: float64 |
|
- name: Stabilizing_mut |
|
dtype: string |
|
- name: pair_name |
|
dtype: string |
|
splits: |
|
- name: train_0 |
|
num_bytes: 97788595 |
|
num_examples: 164094 |
|
- name: train_1 |
|
num_bytes: 97324359 |
|
num_examples: 160686 |
|
- name: train_2 |
|
num_bytes: 99485827 |
|
num_examples: 161791 |
|
- name: train_3 |
|
num_bytes: 100203431 |
|
num_examples: 162090 |
|
- name: train_4 |
|
num_bytes: 100206394 |
|
num_examples: 165032 |
|
- name: val_0 |
|
num_bytes: 34689107 |
|
num_examples: 55592 |
|
- name: val_1 |
|
num_bytes: 32989126 |
|
num_examples: 54953 |
|
- name: val_2 |
|
num_bytes: 32527088 |
|
num_examples: 54487 |
|
- name: val_3 |
|
num_bytes: 32271722 |
|
num_examples: 54654 |
|
- name: val_4 |
|
num_bytes: 32525383 |
|
num_examples: 51545 |
|
- name: test_0 |
|
num_bytes: 32525383 |
|
num_examples: 51545 |
|
- name: test_1 |
|
num_bytes: 34689107 |
|
num_examples: 55592 |
|
- name: test_2 |
|
num_bytes: 32989126 |
|
num_examples: 54953 |
|
- name: test_3 |
|
num_bytes: 32527088 |
|
num_examples: 54487 |
|
- name: test_4 |
|
num_bytes: 32271722 |
|
num_examples: 54654 |
|
download_size: 467205297 |
|
dataset_size: 825013458 |
|
configs: |
|
- config_name: AlphaFold_model_PDBs |
|
data_files: |
|
- split: train |
|
path: AlphaFold_model_PDBs/data/train-* |
|
- config_name: dataset1 |
|
data_files: |
|
- split: train |
|
path: dataset1/data/train-* |
|
- config_name: dataset2 |
|
data_files: |
|
- split: train |
|
path: dataset2/data/train-* |
|
- config_name: dataset3 |
|
data_files: |
|
- split: train |
|
path: dataset3/data/train-* |
|
- config_name: dataset3_single |
|
data_files: |
|
- split: train |
|
path: dataset3_single/data/train-* |
|
- split: val |
|
path: dataset3_single/data/val-* |
|
- split: test |
|
path: dataset3_single/data/test-* |
|
- config_name: dataset3_single_cv |
|
data_files: |
|
- split: train_0 |
|
path: datase3_single_cv/data/train_0-* |
|
- split: train_1 |
|
path: datase3_single_cv/data/train_1-* |
|
- split: train_2 |
|
path: datase3_single_cv/data/train_2-* |
|
- split: train_3 |
|
path: datase3_single_cv/data/train_3-* |
|
- split: train_4 |
|
path: datase3_single_cv/data/train_4-* |
|
- split: val_0 |
|
path: datase3_single_cv/data/val_0-* |
|
- split: val_1 |
|
path: datase3_single_cv/data/val_1-* |
|
- split: val_2 |
|
path: datase3_single_cv/data/val_2-* |
|
- split: val_3 |
|
path: datase3_single_cv/data/val_3-* |
|
- split: val_4 |
|
path: datase3_single_cv/data/val_4-* |
|
- split: test_0 |
|
path: datase3_single_cv/data/test_0-* |
|
- split: test_1 |
|
path: datase3_single_cv/data/test_1-* |
|
- split: test_2 |
|
path: datase3_single_cv/data/test_2-* |
|
- split: test_3 |
|
path: datase3_single_cv/data/test_3-* |
|
- split: test_4 |
|
path: datase3_single_cv/data/test_4-* |
|
--- |
|
|
|
# Mega-scale experimental analysis of protein folding stability in biology and design |
|
The full MegaScale dataset contains 1,841,285 thermodynamic folding stability measurements |
|
using cDNA display proteolysis of natural and designed proteins. From these 776,298 high-quality folding |
|
stabilities (`dataset2`) cover all single amino acid variants and selected double mutants of 331 natural |
|
and 148 de novo designed protein domains 40–72 amino acids in length. Of these mutations, 607,839 have |
|
the wild-type ΔG is below 4.75 kcal mol^−1 (`dataset3`) allowing for the estimate of the ΔΔG of mutation. |
|
Of these |
|
|
|
*** **IMPORTANT! Please [register your use](https://forms.gle/wuHv8MKmEu4EEMA99) of these data so that we (the Rocklin Lab) can continue to release new useful datasets!! This will take 10 seconds!!** *** |
|
|
|
|
|
## Quickstart Usage |
|
|
|
### Install HuggingFace Datasets package |
|
|
|
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library. |
|
First, from the command line install the `datasets` library |
|
|
|
$ pip install datasets |
|
|
|
Optionally set the cache directory, e.g. |
|
|
|
$ HF_HOME=${HOME}/.cache/huggingface/ |
|
$ export HF_HOME |
|
|
|
then, from within python load the datasets library |
|
|
|
>>> import datasets |
|
|
|
### Load model datasets |
|
|
|
To load one of the `MegaScale` model datasets (see available datasets below), use `datasets.load_dataset(...)`: |
|
|
|
>>> dataset_tag = "dataset3_single" |
|
>>> dataset3_single = datasets.load_dataset( |
|
path = "RosettaCommons/MegaScale", |
|
name = dataset_tag, |
|
data_dir = dataset_tag) |
|
Downloading readme: 100%|██████████████████████████████| 17.0k/17.0k [00:00<00:00, 290kB/s] |
|
Downloading data: 100%|███████████████████████████████| 39.8M/39.8M [00:01<00:00, 36.9MB/s] |
|
Downloading data: 100%|███████████████████████████████| 41.2M/41.2M [00:00<00:00, 57.3MB/s] |
|
Downloading data: 100%|███████████████████████████████| 40.0M/40.0M [00:00<00:00, 43.9MB/s] |
|
Downloading data: 100%|███████████████████████████████| 15.5M/15.5M [00:00<00:00, 26.8MB/s] |
|
Downloading data: 100%|███████████████████████████████| 14.9M/14.9M [00:00<00:00, 29.4MB/s] |
|
Generating train split: 100%|█████████| 1503063/1503063 [00:05<00:00, 262031.56 examples/s] |
|
Generating test split: 100%|████████████| 169032/169032 [00:00<00:00, 264056.98 examples/s] |
|
Generating val split: 100%|█████████████| 163968/163968 [00:00<00:00, 251806.22 examples/s] |
|
|
|
and the dataset is loaded as a `datasets.arrow_dataset.Dataset` |
|
|
|
>>> dataset3_single |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'], |
|
num_rows: 1503063 |
|
}) |
|
test: Dataset({ |
|
features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'], |
|
num_rows: 169032 |
|
}) |
|
val: Dataset({ |
|
features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'], |
|
num_rows: 163968 |
|
}) |
|
}) |
|
|
|
which is a column oriented format that can be accessed directly, written to disk as a `parquet` file or converted in to a `pandas.DataFrame`, e.g. |
|
|
|
>>> dataset3_single['train'].data.column('name') |
|
>>> dataset3_single['train'].to_parquet("dataset3_single_train.parquet") |
|
>>> dataset3_single.to_pandas()[[WT_name', 'mut_type', 'dG_ML', 'ddG_ML']] |
|
WT_name mut_type dG_ML ddG_ML |
|
0 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686 |
|
1 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686 |
|
2 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686 |
|
3 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686 |
|
4 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686 |
|
... ... ... ... ... |
|
1503058 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329 |
|
1503059 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329 |
|
1503060 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329 |
|
1503061 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329 |
|
1503062 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329 |
|
|
|
|
|
|
|
|
|
## Overview of Datasets |
|
|
|
**`dataset1`**: |
|
The whole dataset 1,841,285 stability measurements |
|
* All mutations in G0-G11 (see below) |
|
|
|
**`dataset2`**: |
|
The curated a set of `776,298` high-quality folding stabilities covers |
|
* All mutations in G0 + G1 (see below) |
|
* all single amino acid variants and selected double mutants of `331` natural and `148` de novo designed protein domains `40–72` amino acids in length |
|
* comprehensive double mutations at 559 site pairs spread across `190` domains (a total of `210,118` double mutants) |
|
* `36` different 3-residue networks |
|
* all possible single and double substitutions in both the wild-type background and the background in which the third amino acid was replaced by alanine |
|
* (`400` mutants × 3 pairs × 2 backgrounds ≈ `2,400` mutants in total for each triplet) |
|
|
|
**`dataset3`**: |
|
Curated set of `325,132` ΔG measurements at `17,093` sites in `365` domains |
|
* All mutations in G0 |
|
* All mutations in `dataset2` where the wild-type ΔG is below 4.75 kcal mol^−1 (`dataset3`) allowing for the estimate of the ΔΔG of mutation. |
|
|
|
**`dataset3_single`**: |
|
The single point mutations in `dataset3` |
|
* Using the train/val/test splits defined in ThermoMPNN [(Dieckhaus, et al., 2024)](https://www.pnas.org/doi/abs/10.1073/pnas.2314853121) |
|
|
|
**`dataset3_single_cv`**: |
|
The single point mutations in `dataset3` |
|
* Using the 5-fold cross validation splits (`train_[0-4]`/`val_[0-4]`/`test_[0-4]`) defined in ThermoMPNN [(Dieckhaus, et al., 2024)](https://www.pnas.org/doi/abs/10.1073/pnas.2314853121) |
|
|
|
**`AlphaFold_model_PDBs`**: |
|
AlphaFold predicted structures of wildtype domains (even if structures exist in the Protein Databank) |
|
|
|
### Target Selection |
|
Targets consist of natural, designed, and destabilized wild-type |
|
|
|
983 **natural targets** were selected from the all monomeric proteins in the protein databank having 30–100 amino |
|
acid length range that met the following criteria: |
|
* Conisted of more than a single helix |
|
* Did not contain other molecules (for example, proteins, nucleic acids or metals) |
|
* Were not annotated to have DNAse, RNAse, or protease inhibition activity |
|
* Had at most four cysteins |
|
* Were not sequence redundant (amino acid sequence distance <2) with another selected sequence |
|
These were then processed by |
|
* AlphaFold was used to predict the structure (including those that had solved structures in the PDB), |
|
which was used to trim amino acids from the N- and C termini that had a low number of contacts with any other residues. |
|
* selected domains with up to 72 amino acids after excluding N- or C-terminal flexible loops |
|
|
|
**designed targets** were selected from |
|
* previous Rosetta designs with ααα, αββα, βαββ, and ββαββ topologies (40 to 43 amino acids) |
|
* new ββαα proteins designed using Rosetta (47 amino acids) |
|
* new domains designed by trRosetta hallucination (46 to 69 amino acids) |
|
|
|
121 **destabilized wild-type backgrounds** targets were also included. |
|
|
|
### Library construction |
|
The cDNA proteolysis screening was conducted as four giant synthetic DNA oligonucleotide libraries |
|
and obtained K50 values for 2,520,337 sequences, 1,841,285 of these measurements are included here: |
|
* Library 1: |
|
* ~250 designed proteins and ~50 natural proteins that are shorter than 45 amino acids |
|
* padding by Gly, Ala and Ser amino acids so that all sequences have 44 amino acids |
|
* ~244,000 sequences Purchased from Agilent Technologies, length 230 nt. |
|
* Library 2: |
|
* ~350 natural proteins that have PDB structures that are in a monomer state and have 72 or less amino acids after removing N and C-terminal linkers |
|
* padding by Gly, Ala and Ser amino acids so that all sequences have 72 amino acids |
|
* ~650,000 sequences |
|
* also includes scramble sequences to construct unfolded state model. |
|
* Purchased from Twist Bioscience, length 250 nt. |
|
* Library 3: |
|
* ~150 designed proteins |
|
* comprehensive deletion and Gly or Ala insertion of all wild-type proteins included in Library 1 and Libary 2 |
|
* amino acid sequences for comprehensive double mutant analysis on polar amino acid pairs |
|
* ~840,000 sequences |
|
* Purchased from Twist Bioscience, length 250 nt. |
|
* Library 4: |
|
* Amino acid sequences for exhaustive double mutant analysis on amino acid pairs located in close proximity |
|
* overlapped sequences to calibrate effective protease concentration and to check consistency between libraries |
|
* ~900,000 sequences |
|
* Purchased from Twist Bioscience, length 300 nt. |
|
|
|
|
|
### Bayesian Stability Analysis |
|
Each target was analyzed and given a single quality category score G0-G11, which were then sorted into one of three datasets. The quality scores are |
|
* G0: Good (wild-type ΔG values below 4.75 kcal mol^−1) |
|
* G1: Good but WT outside dynamic range |
|
* G2: Too much missing data |
|
* G3: WT dG is too low |
|
* G4: WT dG is inconsistent |
|
* G5: Poor trypsin vs. chymotrypsin correlation |
|
* G6: Poor trypsin vs. chymotrypsin slope |
|
* G7: Too many stabilizing mutants |
|
* G8: Multiple cysteins (probably folded properly) |
|
* G9: Multiple cysteins (probably misfolded) |
|
* G10: Poor T-C intercept |
|
* G11: Probably cleaved in folded state(s) |
|
|
|
|
|
## ThermoMPNN splits |
|
ThermoMPNN is a message passing neural network that predicts protein ΔΔG of mutation |
|
based on ProteinMPNN [(Dauparas et al., 2022)](https://www.science.org/doi/10.1126/science.add2187). |
|
ThermoMPNN uses in part data from the MegaScale dataset. From the mutations in `dataset2`, |
|
272,712 mutations across 298 proteins were curated that were single point mutants, reliable, |
|
and where the baseline is wildtype. |
|
|