File size: 24,784 Bytes
0054bcb 9768260 0054bcb 42b6a21 9768260 b8f8ef8 83876bf 681c581 d3acbc0 83876bf 9768260 c297299 9768260 b8f8ef8 83876bf 681c581 d3acbc0 9768260 c297299 13b0a95 205b23f 13b0a95 3eb0fcf 13b0a95 4d350b8 13b0a95 f046b25 13b0a95 f046b25 13b0a95 f046b25 c1fb9e5 8d1a77e c1fb9e5 f046b25 13b0a95 f046b25 13b0a95 205b23f f27fb1f 205b23f 4d350b8 205b23f 4d350b8 205b23f 4d350b8 205b23f 4d350b8 13b0a95 1b730c5 4d350b8 1b730c5 3eb0fcf 13b0a95 1b730c5 13b0a95 4d350b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
---
license: cc-by-4.0
pretty_name: Mega-scale experimental analysis of protein folding stability in biology
and design
tags:
- biology
- chemistry
repo: https://github.com/Rocklin-Lab/cdna-display-proteolysis-pipeline
citation_bibtex: '@article{Tsuboyama2023, title = {Mega-scale experimental analysis
of protein folding stability in biology and design}, volume = {620}, ISSN = {1476-4687},
url = {http://dx.doi.org/10.1038/s41586-023-06328-6}, DOI = {10.1038/s41586-023-06328-6},
number = {7973}, journal = {Nature}, publisher = {Springer Science and Business
Media LLC}, author = {Tsuboyama, Kotaro and Dauparas, Justas and Chen, Jonathan
and Laine, Elodie and Mohseni Behbahani, Yasser and Weinstein, Jonathan J. and
Mangan, Niall M. and Ovchinnikov, Sergey and Rocklin, Gabriel J.}, year = {2023},
month = jul, pages = {434–444} }'
citation_apa: Tsuboyama, K., Dauparas, J., Chen, J. et al. Mega-scale experimental
analysis of protein folding stability in biology and design. Nature 620, 434–444
(2023). https://doi.org/10.1038/s41586-023-06328-6
dataset_info:
- config_name: AlphaFold_model_PDBs
features:
- name: name
dtype: string
- name: pdb
dtype: string
splits:
- name: train
num_bytes: 59951444
num_examples: 862
download_size: 22129369
dataset_size: 59951444
- config_name: dataset1
features:
- name: name
dtype: string
- name: dna_seq
dtype: string
- name: log10_K50_t
dtype: float64
- name: log10_K50_t_95CI_high
dtype: float64
- name: log10_K50_t_95CI_low
dtype: float64
- name: log10_K50_t_95CI
dtype: float64
- name: fitting_error_t
dtype: float64
- name: log10_K50unfolded_t
dtype: float64
- name: deltaG_t
dtype: float64
- name: deltaG_t_95CI_high
dtype: float64
- name: deltaG_t_95CI_low
dtype: float64
- name: deltaG_t_95CI
dtype: float64
- name: log10_K50_c
dtype: float64
- name: log10_K50_c_95CI_high
dtype: float64
- name: log10_K50_c_95CI_low
dtype: float64
- name: log10_K50_c_95CI
dtype: float64
- name: fitting_error_c
dtype: float64
- name: log10_K50unfolded_c
dtype: float64
- name: deltaG_c
dtype: float64
- name: deltaG_c_95CI_high
dtype: float64
- name: deltaG_c_95CI_low
dtype: float64
- name: deltaG_c_95CI
dtype: float64
- name: deltaG
dtype: float64
- name: deltaG_95CI_high
dtype: float64
- name: deltaG_95CI_low
dtype: float64
- name: deltaG_95CI
dtype: float64
- name: log10_K50_trypsin_ML
dtype: float64
- name: log10_K50_chymotrypsin_ML
dtype: float64
splits:
- name: train
num_bytes: 821805209
num_examples: 1841285
download_size: 562388001
dataset_size: 821805209
- config_name: dataset2
features:
- name: name
dtype: string
- name: dna_seq
dtype: string
- name: log10_K50_t
dtype: float64
- name: log10_K50_t_95CI_high
dtype: float64
- name: log10_K50_t_95CI_low
dtype: float64
- name: log10_K50_t_95CI
dtype: float64
- name: fitting_error_t
dtype: float64
- name: log10_K50unfolded_t
dtype: float64
- name: deltaG_t
dtype: float64
- name: deltaG_t_95CI_high
dtype: float64
- name: deltaG_t_95CI_low
dtype: float64
- name: deltaG_t_95CI
dtype: float64
- name: log10_K50_c
dtype: float64
- name: log10_K50_c_95CI_high
dtype: float64
- name: log10_K50_c_95CI_low
dtype: float64
- name: log10_K50_c_95CI
dtype: float64
- name: fitting_error_c
dtype: float64
- name: log10_K50unfolded_c
dtype: float64
- name: deltaG_c
dtype: float64
- name: deltaG_c_95CI_high
dtype: float64
- name: deltaG_c_95CI_low
dtype: float64
- name: deltaG_c_95CI
dtype: float64
- name: deltaG
dtype: float64
- name: deltaG_95CI_high
dtype: float64
- name: deltaG_95CI_low
dtype: float64
- name: deltaG_95CI
dtype: float64
- name: aa_seq_full
dtype: string
- name: aa_seq
dtype: string
- name: mut_type
dtype: string
- name: WT_name
dtype: string
- name: WT_cluster
dtype: string
- name: log10_K50_trypsin_ML
dtype: string
- name: log10_K50_chymotrypsin_ML
dtype: string
- name: dG_ML
dtype: string
- name: ddG_ML
dtype: string
- name: Stabilizing_mut
dtype: string
- name: pair_name
dtype: string
splits:
- name: train
num_bytes: 542077948
num_examples: 776298
download_size: 291488588
dataset_size: 542077948
- config_name: dataset3
features:
- name: name
dtype: string
- name: dna_seq
dtype: string
- name: log10_K50_t
dtype: float64
- name: log10_K50_t_95CI_high
dtype: float64
- name: log10_K50_t_95CI_low
dtype: float64
- name: log10_K50_t_95CI
dtype: float64
- name: fitting_error_t
dtype: float64
- name: log10_K50unfolded_t
dtype: float64
- name: deltaG_t
dtype: float64
- name: deltaG_t_95CI_high
dtype: float64
- name: deltaG_t_95CI_low
dtype: float64
- name: deltaG_t_95CI
dtype: float64
- name: log10_K50_c
dtype: float64
- name: log10_K50_c_95CI_high
dtype: float64
- name: log10_K50_c_95CI_low
dtype: float64
- name: log10_K50_c_95CI
dtype: float64
- name: fitting_error_c
dtype: float64
- name: log10_K50unfolded_c
dtype: float64
- name: deltaG_c
dtype: float64
- name: deltaG_c_95CI_high
dtype: float64
- name: deltaG_c_95CI_low
dtype: float64
- name: deltaG_c_95CI
dtype: float64
- name: deltaG
dtype: float64
- name: deltaG_95CI_high
dtype: float64
- name: deltaG_95CI_low
dtype: float64
- name: deltaG_95CI
dtype: float64
- name: aa_seq_full
dtype: string
- name: aa_seq
dtype: string
- name: mut_type
dtype: string
- name: WT_name
dtype: string
- name: WT_cluster
dtype: string
- name: log10_K50_trypsin_ML
dtype: string
- name: log10_K50_chymotrypsin_ML
dtype: string
- name: dG_ML
dtype: string
- name: ddG_ML
dtype: string
- name: Stabilizing_mut
dtype: string
- name: pair_name
dtype: string
splits:
- name: train
num_bytes: 426187043
num_examples: 607839
download_size: 233585731
dataset_size: 426187043
- config_name: dataset3_single
features:
- name: name
dtype: string
- name: dna_seq
dtype: string
- name: log10_K50_t
dtype: float64
- name: log10_K50_t_95CI_high
dtype: float64
- name: log10_K50_t_95CI_low
dtype: float64
- name: log10_K50_t_95CI
dtype: float64
- name: fitting_error_t
dtype: float64
- name: log10_K50unfolded_t
dtype: float64
- name: deltaG_t
dtype: float64
- name: deltaG_t_95CI_high
dtype: float64
- name: deltaG_t_95CI_low
dtype: float64
- name: deltaG_t_95CI
dtype: float64
- name: log10_K50_c
dtype: float64
- name: log10_K50_c_95CI_high
dtype: float64
- name: log10_K50_c_95CI_low
dtype: float64
- name: log10_K50_c_95CI
dtype: float64
- name: fitting_error_c
dtype: float64
- name: log10_K50unfolded_c
dtype: float64
- name: deltaG_c
dtype: float64
- name: deltaG_c_95CI_high
dtype: float64
- name: deltaG_c_95CI_low
dtype: float64
- name: deltaG_c_95CI
dtype: float64
- name: deltaG
dtype: float64
- name: deltaG_95CI_high
dtype: float64
- name: deltaG_95CI_low
dtype: float64
- name: deltaG_95CI
dtype: float64
- name: aa_seq_full
dtype: string
- name: aa_seq
dtype: string
- name: mut_type
dtype: string
- name: WT_name
dtype: string
- name: WT_cluster
dtype: string
- name: log10_K50_trypsin_ML
dtype: string
- name: log10_K50_chymotrypsin_ML
dtype: string
- name: dG_ML
dtype: string
- name: ddG_ML
dtype: string
- name: Stabilizing_mut
dtype: string
- name: pair_name
dtype: string
- name: split_name
dtype: string
splits:
- name: train
num_bytes: 1017283318
num_examples: 1503063
- name: val
num_bytes: 110475434
num_examples: 163968
- name: test
num_bytes: 116788047
num_examples: 169032
download_size: 151448982
dataset_size: 1244546799
- config_name: dataset3_single_cv
features:
- name: name
dtype: string
- name: dna_seq
dtype: string
- name: log10_K50_t
dtype: float64
- name: log10_K50_t_95CI_high
dtype: float64
- name: log10_K50_t_95CI_low
dtype: float64
- name: log10_K50_t_95CI
dtype: float64
- name: fitting_error_t
dtype: float64
- name: log10_K50unfolded_t
dtype: float64
- name: deltaG_t
dtype: float64
- name: deltaG_t_95CI_high
dtype: float64
- name: deltaG_t_95CI_low
dtype: float64
- name: deltaG_t_95CI
dtype: float64
- name: log10_K50_c
dtype: float64
- name: log10_K50_c_95CI_high
dtype: float64
- name: log10_K50_c_95CI_low
dtype: float64
- name: log10_K50_c_95CI
dtype: float64
- name: fitting_error_c
dtype: float64
- name: log10_K50unfolded_c
dtype: float64
- name: deltaG_c
dtype: float64
- name: deltaG_c_95CI_high
dtype: float64
- name: deltaG_c_95CI_low
dtype: float64
- name: deltaG_c_95CI
dtype: float64
- name: deltaG
dtype: float64
- name: deltaG_95CI_high
dtype: float64
- name: deltaG_95CI_low
dtype: float64
- name: deltaG_95CI
dtype: float64
- name: aa_seq_full
dtype: string
- name: aa_seq
dtype: string
- name: mut_type
dtype: string
- name: WT_name
dtype: string
- name: WT_cluster
dtype: string
- name: log10_K50_trypsin_ML
dtype: float64
- name: log10_K50_chymotrypsin_ML
dtype: float64
- name: dG_ML
dtype: float64
- name: ddG_ML
dtype: float64
- name: Stabilizing_mut
dtype: string
- name: pair_name
dtype: string
splits:
- name: train_0
num_bytes: 97788595
num_examples: 164094
- name: train_1
num_bytes: 97324359
num_examples: 160686
- name: train_2
num_bytes: 99485827
num_examples: 161791
- name: train_3
num_bytes: 100203431
num_examples: 162090
- name: train_4
num_bytes: 100206394
num_examples: 165032
- name: val_0
num_bytes: 34689107
num_examples: 55592
- name: val_1
num_bytes: 32989126
num_examples: 54953
- name: val_2
num_bytes: 32527088
num_examples: 54487
- name: val_3
num_bytes: 32271722
num_examples: 54654
- name: val_4
num_bytes: 32525383
num_examples: 51545
- name: test_0
num_bytes: 32525383
num_examples: 51545
- name: test_1
num_bytes: 34689107
num_examples: 55592
- name: test_2
num_bytes: 32989126
num_examples: 54953
- name: test_3
num_bytes: 32527088
num_examples: 54487
- name: test_4
num_bytes: 32271722
num_examples: 54654
download_size: 467205297
dataset_size: 825013458
configs:
- config_name: AlphaFold_model_PDBs
data_files:
- split: train
path: AlphaFold_model_PDBs/data/train-*
- config_name: dataset1
data_files:
- split: train
path: dataset1/data/train-*
- config_name: dataset2
data_files:
- split: train
path: dataset2/data/train-*
- config_name: dataset3
data_files:
- split: train
path: dataset3/data/train-*
- config_name: dataset3_single
data_files:
- split: train
path: dataset3_single/data/train-*
- split: val
path: dataset3_single/data/val-*
- split: test
path: dataset3_single/data/test-*
- config_name: dataset3_single_cv
data_files:
- split: train_0
path: datase3_single_cv/data/train_0-*
- split: train_1
path: datase3_single_cv/data/train_1-*
- split: train_2
path: datase3_single_cv/data/train_2-*
- split: train_3
path: datase3_single_cv/data/train_3-*
- split: train_4
path: datase3_single_cv/data/train_4-*
- split: val_0
path: datase3_single_cv/data/val_0-*
- split: val_1
path: datase3_single_cv/data/val_1-*
- split: val_2
path: datase3_single_cv/data/val_2-*
- split: val_3
path: datase3_single_cv/data/val_3-*
- split: val_4
path: datase3_single_cv/data/val_4-*
- split: test_0
path: datase3_single_cv/data/test_0-*
- split: test_1
path: datase3_single_cv/data/test_1-*
- split: test_2
path: datase3_single_cv/data/test_2-*
- split: test_3
path: datase3_single_cv/data/test_3-*
- split: test_4
path: datase3_single_cv/data/test_4-*
---
# Mega-scale experimental analysis of protein folding stability in biology and design
The full MegaScale dataset contains 1,841,285 thermodynamic folding stability measurements
using cDNA display proteolysis of natural and designed proteins. From these 776,298 high-quality folding
stabilities (`dataset2`) cover all single amino acid variants and selected double mutants of 331 natural
and 148 de novo designed protein domains 40–72 amino acids in length. Of these mutations, 607,839 have
the wild-type ΔG is below 4.75 kcal mol^−1 (`dataset3`) allowing for the estimate of the ΔΔG of mutation.
Of these
*** **IMPORTANT! Please [register your use](https://forms.gle/wuHv8MKmEu4EEMA99) of these data so that we (the Rocklin Lab) can continue to release new useful datasets!! This will take 10 seconds!!** ***
## Quickstart Usage
### Install HuggingFace Datasets package
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
First, from the command line install the `datasets` library
$ pip install datasets
Optionally set the cache directory, e.g.
$ HF_HOME=${HOME}/.cache/huggingface/
$ export HF_HOME
then, from within python load the datasets library
>>> import datasets
### Load model datasets
To load one of the `MegaScale` model datasets (see available datasets below), use `datasets.load_dataset(...)`:
>>> dataset_tag = "dataset3_single"
>>> dataset3_single = datasets.load_dataset(
path = "RosettaCommons/MegaScale",
name = dataset_tag,
data_dir = dataset_tag)
Downloading readme: 100%|██████████████████████████████| 17.0k/17.0k [00:00<00:00, 290kB/s]
Downloading data: 100%|███████████████████████████████| 39.8M/39.8M [00:01<00:00, 36.9MB/s]
Downloading data: 100%|███████████████████████████████| 41.2M/41.2M [00:00<00:00, 57.3MB/s]
Downloading data: 100%|███████████████████████████████| 40.0M/40.0M [00:00<00:00, 43.9MB/s]
Downloading data: 100%|███████████████████████████████| 15.5M/15.5M [00:00<00:00, 26.8MB/s]
Downloading data: 100%|███████████████████████████████| 14.9M/14.9M [00:00<00:00, 29.4MB/s]
Generating train split: 100%|█████████| 1503063/1503063 [00:05<00:00, 262031.56 examples/s]
Generating test split: 100%|████████████| 169032/169032 [00:00<00:00, 264056.98 examples/s]
Generating val split: 100%|█████████████| 163968/163968 [00:00<00:00, 251806.22 examples/s]
and the dataset is loaded as a `datasets.arrow_dataset.Dataset`
>>> dataset3_single
DatasetDict({
train: Dataset({
features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
num_rows: 1503063
})
test: Dataset({
features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
num_rows: 169032
})
val: Dataset({
features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
num_rows: 163968
})
})
which is a column oriented format that can be accessed directly, written to disk as a `parquet` file or converted in to a `pandas.DataFrame`, e.g.
>>> dataset3_single['train'].data.column('name')
>>> dataset3_single['train'].to_parquet("dataset3_single_train.parquet")
>>> dataset3_single.to_pandas()[[WT_name', 'mut_type', 'dG_ML', 'ddG_ML']]
WT_name mut_type dG_ML ddG_ML
0 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
1 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
2 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
3 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
4 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
... ... ... ... ...
1503058 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
1503059 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
1503060 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
1503061 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
1503062 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
## Overview of Datasets
**`dataset1`**:
The whole dataset 1,841,285 stability measurements
* All mutations in G0-G11 (see below)
**`dataset2`**:
The curated a set of `776,298` high-quality folding stabilities covers
* All mutations in G0 + G1 (see below)
* all single amino acid variants and selected double mutants of `331` natural and `148` de novo designed protein domains `40–72` amino acids in length
* comprehensive double mutations at 559 site pairs spread across `190` domains (a total of `210,118` double mutants)
* `36` different 3-residue networks
* all possible single and double substitutions in both the wild-type background and the background in which the third amino acid was replaced by alanine
* (`400` mutants × 3 pairs × 2 backgrounds ≈ `2,400` mutants in total for each triplet)
**`dataset3`**:
Curated set of `325,132` ΔG measurements at `17,093` sites in `365` domains
* All mutations in G0
* All mutations in `dataset2` where the wild-type ΔG is below 4.75 kcal mol^−1 (`dataset3`) allowing for the estimate of the ΔΔG of mutation.
**`dataset3_single`**:
The single point mutations in `dataset3`
* Using the train/val/test splits defined in ThermoMPNN [(Dieckhaus, et al., 2024)](https://www.pnas.org/doi/abs/10.1073/pnas.2314853121)
**`dataset3_single_cv`**:
The single point mutations in `dataset3`
* Using the 5-fold cross validation splits (`train_[0-4]`/`val_[0-4]`/`test_[0-4]`) defined in ThermoMPNN [(Dieckhaus, et al., 2024)](https://www.pnas.org/doi/abs/10.1073/pnas.2314853121)
**`AlphaFold_model_PDBs`**:
AlphaFold predicted structures of wildtype domains (even if structures exist in the Protein Databank)
### Target Selection
Targets consist of natural, designed, and destabilized wild-type
983 **natural targets** were selected from the all monomeric proteins in the protein databank having 30–100 amino
acid length range that met the following criteria:
* Conisted of more than a single helix
* Did not contain other molecules (for example, proteins, nucleic acids or metals)
* Were not annotated to have DNAse, RNAse, or protease inhibition activity
* Had at most four cysteins
* Were not sequence redundant (amino acid sequence distance <2) with another selected sequence
These were then processed by
* AlphaFold was used to predict the structure (including those that had solved structures in the PDB),
which was used to trim amino acids from the N- and C termini that had a low number of contacts with any other residues.
* selected domains with up to 72 amino acids after excluding N- or C-terminal flexible loops
**designed targets** were selected from
* previous Rosetta designs with ααα, αββα, βαββ, and ββαββ topologies (40 to 43 amino acids)
* new ββαα proteins designed using Rosetta (47 amino acids)
* new domains designed by trRosetta hallucination (46 to 69 amino acids)
121 **destabilized wild-type backgrounds** targets were also included.
### Library construction
The cDNA proteolysis screening was conducted as four giant synthetic DNA oligonucleotide libraries
and obtained K50 values for 2,520,337 sequences, 1,841,285 of these measurements are included here:
* Library 1:
* ~250 designed proteins and ~50 natural proteins that are shorter than 45 amino acids
* padding by Gly, Ala and Ser amino acids so that all sequences have 44 amino acids
* ~244,000 sequences Purchased from Agilent Technologies, length 230 nt.
* Library 2:
* ~350 natural proteins that have PDB structures that are in a monomer state and have 72 or less amino acids after removing N and C-terminal linkers
* padding by Gly, Ala and Ser amino acids so that all sequences have 72 amino acids
* ~650,000 sequences
* also includes scramble sequences to construct unfolded state model.
* Purchased from Twist Bioscience, length 250 nt.
* Library 3:
* ~150 designed proteins
* comprehensive deletion and Gly or Ala insertion of all wild-type proteins included in Library 1 and Libary 2
* amino acid sequences for comprehensive double mutant analysis on polar amino acid pairs
* ~840,000 sequences
* Purchased from Twist Bioscience, length 250 nt.
* Library 4:
* Amino acid sequences for exhaustive double mutant analysis on amino acid pairs located in close proximity
* overlapped sequences to calibrate effective protease concentration and to check consistency between libraries
* ~900,000 sequences
* Purchased from Twist Bioscience, length 300 nt.
### Bayesian Stability Analysis
Each target was analyzed and given a single quality category score G0-G11, which were then sorted into one of three datasets. The quality scores are
* G0: Good (wild-type ΔG values below 4.75 kcal mol^−1)
* G1: Good but WT outside dynamic range
* G2: Too much missing data
* G3: WT dG is too low
* G4: WT dG is inconsistent
* G5: Poor trypsin vs. chymotrypsin correlation
* G6: Poor trypsin vs. chymotrypsin slope
* G7: Too many stabilizing mutants
* G8: Multiple cysteins (probably folded properly)
* G9: Multiple cysteins (probably misfolded)
* G10: Poor T-C intercept
* G11: Probably cleaved in folded state(s)
## ThermoMPNN splits
ThermoMPNN is a message passing neural network that predicts protein ΔΔG of mutation
based on ProteinMPNN [(Dauparas et al., 2022)](https://www.science.org/doi/10.1126/science.add2187).
ThermoMPNN uses in part data from the MegaScale dataset. From the mutations in `dataset2`,
272,712 mutations across 298 proteins were curated that were single point mutants, reliable,
and where the baseline is wildtype.
|