File size: 24,784 Bytes
0054bcb
 
9768260
 
0054bcb
 
 
42b6a21
9768260
 
 
 
 
 
 
 
 
 
 
 
b8f8ef8
 
 
 
 
 
 
 
 
 
 
 
83876bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
681c581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3acbc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83876bf
9768260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c297299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9768260
b8f8ef8
 
 
 
83876bf
 
 
 
681c581
 
 
 
d3acbc0
 
 
 
9768260
 
 
 
 
 
 
 
c297299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b0a95
 
 
205b23f
 
 
 
 
 
13b0a95
3eb0fcf
 
 
13b0a95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d350b8
13b0a95
f046b25
 
13b0a95
 
 
f046b25
 
 
 
 
 
 
 
 
13b0a95
 
 
f046b25
 
c1fb9e5
 
 
 
 
 
8d1a77e
c1fb9e5
 
 
 
 
f046b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b0a95
f046b25
13b0a95
 
205b23f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f27fb1f
205b23f
 
 
4d350b8
205b23f
4d350b8
205b23f
4d350b8
205b23f
4d350b8
 
13b0a95
1b730c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d350b8
1b730c5
 
 
 
 
 
 
 
 
3eb0fcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b0a95
 
1b730c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b0a95
4d350b8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
---
license: cc-by-4.0
pretty_name: Mega-scale experimental analysis of protein folding stability in biology
  and design
tags:
- biology
- chemistry
repo: https://github.com/Rocklin-Lab/cdna-display-proteolysis-pipeline
citation_bibtex: '@article{Tsuboyama2023, title = {Mega-scale experimental analysis
  of protein folding stability in biology and design}, volume = {620}, ISSN = {1476-4687},
  url = {http://dx.doi.org/10.1038/s41586-023-06328-6}, DOI = {10.1038/s41586-023-06328-6},
  number = {7973}, journal = {Nature}, publisher = {Springer Science and Business
  Media LLC}, author = {Tsuboyama,  Kotaro and Dauparas,  Justas and Chen,  Jonathan
  and Laine,  Elodie and Mohseni Behbahani,  Yasser and Weinstein,  Jonathan J. and
  Mangan,  Niall M. and Ovchinnikov,  Sergey and Rocklin,  Gabriel J.}, year = {2023},
  month = jul, pages = {434–444} }'
citation_apa: Tsuboyama, K., Dauparas, J., Chen, J. et al. Mega-scale experimental
  analysis of protein folding stability in biology and design. Nature 620, 434–444
  (2023). https://doi.org/10.1038/s41586-023-06328-6
dataset_info:
- config_name: AlphaFold_model_PDBs
  features:
  - name: name
    dtype: string
  - name: pdb
    dtype: string
  splits:
  - name: train
    num_bytes: 59951444
    num_examples: 862
  download_size: 22129369
  dataset_size: 59951444
- config_name: dataset1
  features:
  - name: name
    dtype: string
  - name: dna_seq
    dtype: string
  - name: log10_K50_t
    dtype: float64
  - name: log10_K50_t_95CI_high
    dtype: float64
  - name: log10_K50_t_95CI_low
    dtype: float64
  - name: log10_K50_t_95CI
    dtype: float64
  - name: fitting_error_t
    dtype: float64
  - name: log10_K50unfolded_t
    dtype: float64
  - name: deltaG_t
    dtype: float64
  - name: deltaG_t_95CI_high
    dtype: float64
  - name: deltaG_t_95CI_low
    dtype: float64
  - name: deltaG_t_95CI
    dtype: float64
  - name: log10_K50_c
    dtype: float64
  - name: log10_K50_c_95CI_high
    dtype: float64
  - name: log10_K50_c_95CI_low
    dtype: float64
  - name: log10_K50_c_95CI
    dtype: float64
  - name: fitting_error_c
    dtype: float64
  - name: log10_K50unfolded_c
    dtype: float64
  - name: deltaG_c
    dtype: float64
  - name: deltaG_c_95CI_high
    dtype: float64
  - name: deltaG_c_95CI_low
    dtype: float64
  - name: deltaG_c_95CI
    dtype: float64
  - name: deltaG
    dtype: float64
  - name: deltaG_95CI_high
    dtype: float64
  - name: deltaG_95CI_low
    dtype: float64
  - name: deltaG_95CI
    dtype: float64
  - name: log10_K50_trypsin_ML
    dtype: float64
  - name: log10_K50_chymotrypsin_ML
    dtype: float64
  splits:
  - name: train
    num_bytes: 821805209
    num_examples: 1841285
  download_size: 562388001
  dataset_size: 821805209
- config_name: dataset2
  features:
  - name: name
    dtype: string
  - name: dna_seq
    dtype: string
  - name: log10_K50_t
    dtype: float64
  - name: log10_K50_t_95CI_high
    dtype: float64
  - name: log10_K50_t_95CI_low
    dtype: float64
  - name: log10_K50_t_95CI
    dtype: float64
  - name: fitting_error_t
    dtype: float64
  - name: log10_K50unfolded_t
    dtype: float64
  - name: deltaG_t
    dtype: float64
  - name: deltaG_t_95CI_high
    dtype: float64
  - name: deltaG_t_95CI_low
    dtype: float64
  - name: deltaG_t_95CI
    dtype: float64
  - name: log10_K50_c
    dtype: float64
  - name: log10_K50_c_95CI_high
    dtype: float64
  - name: log10_K50_c_95CI_low
    dtype: float64
  - name: log10_K50_c_95CI
    dtype: float64
  - name: fitting_error_c
    dtype: float64
  - name: log10_K50unfolded_c
    dtype: float64
  - name: deltaG_c
    dtype: float64
  - name: deltaG_c_95CI_high
    dtype: float64
  - name: deltaG_c_95CI_low
    dtype: float64
  - name: deltaG_c_95CI
    dtype: float64
  - name: deltaG
    dtype: float64
  - name: deltaG_95CI_high
    dtype: float64
  - name: deltaG_95CI_low
    dtype: float64
  - name: deltaG_95CI
    dtype: float64
  - name: aa_seq_full
    dtype: string
  - name: aa_seq
    dtype: string
  - name: mut_type
    dtype: string
  - name: WT_name
    dtype: string
  - name: WT_cluster
    dtype: string
  - name: log10_K50_trypsin_ML
    dtype: string
  - name: log10_K50_chymotrypsin_ML
    dtype: string
  - name: dG_ML
    dtype: string
  - name: ddG_ML
    dtype: string
  - name: Stabilizing_mut
    dtype: string
  - name: pair_name
    dtype: string
  splits:
  - name: train
    num_bytes: 542077948
    num_examples: 776298
  download_size: 291488588
  dataset_size: 542077948
- config_name: dataset3
  features:
  - name: name
    dtype: string
  - name: dna_seq
    dtype: string
  - name: log10_K50_t
    dtype: float64
  - name: log10_K50_t_95CI_high
    dtype: float64
  - name: log10_K50_t_95CI_low
    dtype: float64
  - name: log10_K50_t_95CI
    dtype: float64
  - name: fitting_error_t
    dtype: float64
  - name: log10_K50unfolded_t
    dtype: float64
  - name: deltaG_t
    dtype: float64
  - name: deltaG_t_95CI_high
    dtype: float64
  - name: deltaG_t_95CI_low
    dtype: float64
  - name: deltaG_t_95CI
    dtype: float64
  - name: log10_K50_c
    dtype: float64
  - name: log10_K50_c_95CI_high
    dtype: float64
  - name: log10_K50_c_95CI_low
    dtype: float64
  - name: log10_K50_c_95CI
    dtype: float64
  - name: fitting_error_c
    dtype: float64
  - name: log10_K50unfolded_c
    dtype: float64
  - name: deltaG_c
    dtype: float64
  - name: deltaG_c_95CI_high
    dtype: float64
  - name: deltaG_c_95CI_low
    dtype: float64
  - name: deltaG_c_95CI
    dtype: float64
  - name: deltaG
    dtype: float64
  - name: deltaG_95CI_high
    dtype: float64
  - name: deltaG_95CI_low
    dtype: float64
  - name: deltaG_95CI
    dtype: float64
  - name: aa_seq_full
    dtype: string
  - name: aa_seq
    dtype: string
  - name: mut_type
    dtype: string
  - name: WT_name
    dtype: string
  - name: WT_cluster
    dtype: string
  - name: log10_K50_trypsin_ML
    dtype: string
  - name: log10_K50_chymotrypsin_ML
    dtype: string
  - name: dG_ML
    dtype: string
  - name: ddG_ML
    dtype: string
  - name: Stabilizing_mut
    dtype: string
  - name: pair_name
    dtype: string
  splits:
  - name: train
    num_bytes: 426187043
    num_examples: 607839
  download_size: 233585731
  dataset_size: 426187043
- config_name: dataset3_single
  features:
  - name: name
    dtype: string
  - name: dna_seq
    dtype: string
  - name: log10_K50_t
    dtype: float64
  - name: log10_K50_t_95CI_high
    dtype: float64
  - name: log10_K50_t_95CI_low
    dtype: float64
  - name: log10_K50_t_95CI
    dtype: float64
  - name: fitting_error_t
    dtype: float64
  - name: log10_K50unfolded_t
    dtype: float64
  - name: deltaG_t
    dtype: float64
  - name: deltaG_t_95CI_high
    dtype: float64
  - name: deltaG_t_95CI_low
    dtype: float64
  - name: deltaG_t_95CI
    dtype: float64
  - name: log10_K50_c
    dtype: float64
  - name: log10_K50_c_95CI_high
    dtype: float64
  - name: log10_K50_c_95CI_low
    dtype: float64
  - name: log10_K50_c_95CI
    dtype: float64
  - name: fitting_error_c
    dtype: float64
  - name: log10_K50unfolded_c
    dtype: float64
  - name: deltaG_c
    dtype: float64
  - name: deltaG_c_95CI_high
    dtype: float64
  - name: deltaG_c_95CI_low
    dtype: float64
  - name: deltaG_c_95CI
    dtype: float64
  - name: deltaG
    dtype: float64
  - name: deltaG_95CI_high
    dtype: float64
  - name: deltaG_95CI_low
    dtype: float64
  - name: deltaG_95CI
    dtype: float64
  - name: aa_seq_full
    dtype: string
  - name: aa_seq
    dtype: string
  - name: mut_type
    dtype: string
  - name: WT_name
    dtype: string
  - name: WT_cluster
    dtype: string
  - name: log10_K50_trypsin_ML
    dtype: string
  - name: log10_K50_chymotrypsin_ML
    dtype: string
  - name: dG_ML
    dtype: string
  - name: ddG_ML
    dtype: string
  - name: Stabilizing_mut
    dtype: string
  - name: pair_name
    dtype: string
  - name: split_name
    dtype: string
  splits:
  - name: train
    num_bytes: 1017283318
    num_examples: 1503063
  - name: val
    num_bytes: 110475434
    num_examples: 163968
  - name: test
    num_bytes: 116788047
    num_examples: 169032
  download_size: 151448982
  dataset_size: 1244546799
- config_name: dataset3_single_cv
  features:
  - name: name
    dtype: string
  - name: dna_seq
    dtype: string
  - name: log10_K50_t
    dtype: float64
  - name: log10_K50_t_95CI_high
    dtype: float64
  - name: log10_K50_t_95CI_low
    dtype: float64
  - name: log10_K50_t_95CI
    dtype: float64
  - name: fitting_error_t
    dtype: float64
  - name: log10_K50unfolded_t
    dtype: float64
  - name: deltaG_t
    dtype: float64
  - name: deltaG_t_95CI_high
    dtype: float64
  - name: deltaG_t_95CI_low
    dtype: float64
  - name: deltaG_t_95CI
    dtype: float64
  - name: log10_K50_c
    dtype: float64
  - name: log10_K50_c_95CI_high
    dtype: float64
  - name: log10_K50_c_95CI_low
    dtype: float64
  - name: log10_K50_c_95CI
    dtype: float64
  - name: fitting_error_c
    dtype: float64
  - name: log10_K50unfolded_c
    dtype: float64
  - name: deltaG_c
    dtype: float64
  - name: deltaG_c_95CI_high
    dtype: float64
  - name: deltaG_c_95CI_low
    dtype: float64
  - name: deltaG_c_95CI
    dtype: float64
  - name: deltaG
    dtype: float64
  - name: deltaG_95CI_high
    dtype: float64
  - name: deltaG_95CI_low
    dtype: float64
  - name: deltaG_95CI
    dtype: float64
  - name: aa_seq_full
    dtype: string
  - name: aa_seq
    dtype: string
  - name: mut_type
    dtype: string
  - name: WT_name
    dtype: string
  - name: WT_cluster
    dtype: string
  - name: log10_K50_trypsin_ML
    dtype: float64
  - name: log10_K50_chymotrypsin_ML
    dtype: float64
  - name: dG_ML
    dtype: float64
  - name: ddG_ML
    dtype: float64
  - name: Stabilizing_mut
    dtype: string
  - name: pair_name
    dtype: string
  splits:
  - name: train_0
    num_bytes: 97788595
    num_examples: 164094
  - name: train_1
    num_bytes: 97324359
    num_examples: 160686
  - name: train_2
    num_bytes: 99485827
    num_examples: 161791
  - name: train_3
    num_bytes: 100203431
    num_examples: 162090
  - name: train_4
    num_bytes: 100206394
    num_examples: 165032
  - name: val_0
    num_bytes: 34689107
    num_examples: 55592
  - name: val_1
    num_bytes: 32989126
    num_examples: 54953
  - name: val_2
    num_bytes: 32527088
    num_examples: 54487
  - name: val_3
    num_bytes: 32271722
    num_examples: 54654
  - name: val_4
    num_bytes: 32525383
    num_examples: 51545
  - name: test_0
    num_bytes: 32525383
    num_examples: 51545
  - name: test_1
    num_bytes: 34689107
    num_examples: 55592
  - name: test_2
    num_bytes: 32989126
    num_examples: 54953
  - name: test_3
    num_bytes: 32527088
    num_examples: 54487
  - name: test_4
    num_bytes: 32271722
    num_examples: 54654
  download_size: 467205297
  dataset_size: 825013458
configs:
- config_name: AlphaFold_model_PDBs
  data_files:
  - split: train
    path: AlphaFold_model_PDBs/data/train-*
- config_name: dataset1
  data_files:
  - split: train
    path: dataset1/data/train-*
- config_name: dataset2
  data_files:
  - split: train
    path: dataset2/data/train-*
- config_name: dataset3
  data_files:
  - split: train
    path: dataset3/data/train-*
- config_name: dataset3_single
  data_files:
  - split: train
    path: dataset3_single/data/train-*
  - split: val
    path: dataset3_single/data/val-*
  - split: test
    path: dataset3_single/data/test-*
- config_name: dataset3_single_cv
  data_files:
  - split: train_0
    path: datase3_single_cv/data/train_0-*
  - split: train_1
    path: datase3_single_cv/data/train_1-*
  - split: train_2
    path: datase3_single_cv/data/train_2-*
  - split: train_3
    path: datase3_single_cv/data/train_3-*
  - split: train_4
    path: datase3_single_cv/data/train_4-*
  - split: val_0
    path: datase3_single_cv/data/val_0-*
  - split: val_1
    path: datase3_single_cv/data/val_1-*
  - split: val_2
    path: datase3_single_cv/data/val_2-*
  - split: val_3
    path: datase3_single_cv/data/val_3-*
  - split: val_4
    path: datase3_single_cv/data/val_4-*
  - split: test_0
    path: datase3_single_cv/data/test_0-*
  - split: test_1
    path: datase3_single_cv/data/test_1-*
  - split: test_2
    path: datase3_single_cv/data/test_2-*
  - split: test_3
    path: datase3_single_cv/data/test_3-*
  - split: test_4
    path: datase3_single_cv/data/test_4-*
---

# Mega-scale experimental analysis of protein folding stability in biology and design
The full MegaScale dataset contains 1,841,285 thermodynamic folding stability measurements
using cDNA display proteolysis of natural and designed proteins. From these 776,298 high-quality folding
stabilities (`dataset2`) cover all single amino acid variants and selected double mutants of 331 natural
and 148 de novo designed protein domains 40–72 amino acids in length. Of these mutations, 607,839 have 
the wild-type ΔG is below 4.75 kcal mol^−1 (`dataset3`) allowing for the estimate of the ΔΔG of mutation.
Of these 

*** **IMPORTANT! Please [register your use](https://forms.gle/wuHv8MKmEu4EEMA99) of these data so that we (the Rocklin Lab) can continue to release new useful datasets!! This will take 10 seconds!!** ***


## Quickstart Usage

### Install HuggingFace Datasets package

Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
First, from the command line install the `datasets` library

    $ pip install datasets

Optionally set the cache directory, e.g.

    $ HF_HOME=${HOME}/.cache/huggingface/
    $ export HF_HOME

then, from within python load the datasets library

    >>> import datasets

### Load model datasets
   
To load one of the `MegaScale` model datasets (see available datasets below), use `datasets.load_dataset(...)`:

    >>> dataset_tag = "dataset3_single"
    >>> dataset3_single = datasets.load_dataset(
      path = "RosettaCommons/MegaScale",
      name = dataset_tag,
      data_dir = dataset_tag)
    Downloading readme: 100%|██████████████████████████████| 17.0k/17.0k [00:00<00:00, 290kB/s]
    Downloading data: 100%|███████████████████████████████| 39.8M/39.8M [00:01<00:00, 36.9MB/s]
    Downloading data: 100%|███████████████████████████████| 41.2M/41.2M [00:00<00:00, 57.3MB/s]
    Downloading data: 100%|███████████████████████████████| 40.0M/40.0M [00:00<00:00, 43.9MB/s]
    Downloading data: 100%|███████████████████████████████| 15.5M/15.5M [00:00<00:00, 26.8MB/s]
    Downloading data: 100%|███████████████████████████████| 14.9M/14.9M [00:00<00:00, 29.4MB/s]
    Generating train split: 100%|█████████| 1503063/1503063 [00:05<00:00, 262031.56 examples/s]
    Generating test split: 100%|████████████| 169032/169032 [00:00<00:00, 264056.98 examples/s]
    Generating val split: 100%|█████████████| 163968/163968 [00:00<00:00, 251806.22 examples/s]

and the dataset is loaded as a `datasets.arrow_dataset.Dataset`

    >>> dataset3_single
    DatasetDict({
        train: Dataset({
            features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
            num_rows: 1503063
        })
        test: Dataset({
            features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
            num_rows: 169032
        })
        val: Dataset({
            features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
            num_rows: 163968
        })
    })

which is a column oriented format that can be accessed directly, written to disk as a `parquet` file or converted in to a `pandas.DataFrame`, e.g.

    >>> dataset3_single['train'].data.column('name')
    >>> dataset3_single['train'].to_parquet("dataset3_single_train.parquet")
    >>> dataset3_single.to_pandas()[[WT_name', 'mut_type', 'dG_ML', 'ddG_ML']]
                            WT_name mut_type               dG_ML               ddG_ML
    0        r10_437_TrROS_Hall.pdb      E1Q  2.9212264903176783   0.2949200736672686
    1        r10_437_TrROS_Hall.pdb      E1Q  2.9212264903176783   0.2949200736672686
    2        r10_437_TrROS_Hall.pdb      E1Q  2.9212264903176783   0.2949200736672686
    3        r10_437_TrROS_Hall.pdb      E1Q  2.9212264903176783   0.2949200736672686
    4        r10_437_TrROS_Hall.pdb      E1Q  2.9212264903176783   0.2949200736672686
    ...                         ...      ...                 ...                  ...
    1503058       HEEH_rd3_0055.pdb     L43C   1.629862324762064  0.07132877903687329
    1503059       HEEH_rd3_0055.pdb     L43C   1.629862324762064  0.07132877903687329
    1503060       HEEH_rd3_0055.pdb     L43C   1.629862324762064  0.07132877903687329
    1503061       HEEH_rd3_0055.pdb     L43C   1.629862324762064  0.07132877903687329
    1503062       HEEH_rd3_0055.pdb     L43C   1.629862324762064  0.07132877903687329

    


## Overview of Datasets

**`dataset1`**:
The whole dataset 1,841,285 stability measurements
  * All mutations in G0-G11 (see below)

**`dataset2`**:
The curated a set of `776,298` high-quality folding stabilities covers
  * All mutations in G0 + G1 (see below)
  * all single amino acid variants and selected double mutants of `331` natural and `148` de novo designed protein domains `40–72` amino acids in length
  * comprehensive double mutations at 559 site pairs spread across `190` domains (a total of `210,118` double mutants)
  * `36` different 3-residue networks
    * all possible single and double substitutions in both the wild-type background and the background in which the third amino acid was replaced by alanine
    * (`400` mutants × 3 pairs × 2 backgrounds ≈ `2,400` mutants in total for each triplet)

**`dataset3`**:
Curated set of `325,132` ΔG measurements at `17,093` sites in `365` domains
  * All mutations in G0
  * All mutations in `dataset2` where the wild-type ΔG is below 4.75 kcal mol^−1 (`dataset3`) allowing for the estimate of the ΔΔG of mutation.

**`dataset3_single`**:
The single point mutations in `dataset3`
  * Using the train/val/test splits defined in ThermoMPNN [(Dieckhaus, et al., 2024)](https://www.pnas.org/doi/abs/10.1073/pnas.2314853121)

**`dataset3_single_cv`**:
The single point mutations in `dataset3`
  * Using the 5-fold cross validation splits (`train_[0-4]`/`val_[0-4]`/`test_[0-4]`) defined in ThermoMPNN [(Dieckhaus, et al., 2024)](https://www.pnas.org/doi/abs/10.1073/pnas.2314853121)

**`AlphaFold_model_PDBs`**:
AlphaFold predicted structures of wildtype domains (even if structures exist in the Protein Databank)

### Target Selection
Targets consist of natural, designed, and destabilized wild-type

983 **natural targets** were selected from the all monomeric proteins in the protein databank having 30–100 amino
acid length range that met the following criteria:
  * Conisted of more than a single helix
  * Did not contain other molecules (for example, proteins, nucleic acids or metals)
  * Were not annotated to have DNAse, RNAse, or protease inhibition activity
  * Had at most four cysteins
  * Were not sequence redundant (amino acid sequence distance <2) with another selected sequence
These were then processed by
  * AlphaFold was used to predict the structure (including those that had solved structures in the PDB),
    which was used to trim amino acids from the N- and C termini that had a low number of contacts with any other residues.
  * selected domains with up to 72 amino acids after excluding N- or C-terminal flexible loops

**designed targets** were selected from
  * previous Rosetta designs with ααα, αββα, βαββ, and ββαββ topologies (40 to 43 amino acids)
  *  new ββαα proteins designed using Rosetta (47 amino acids)
  * new domains designed by trRosetta hallucination (46 to 69 amino acids)

121 **destabilized wild-type backgrounds** targets were also included.

### Library construction
The cDNA proteolysis screening was conducted as four giant synthetic DNA oligonucleotide libraries
and obtained K50 values for 2,520,337 sequences, 1,841,285 of these measurements are included here:
  * Library 1:
    * ~250 designed proteins and ~50 natural proteins that are shorter than 45 amino acids
    * padding by Gly, Ala and Ser amino acids so that all sequences have 44 amino acids
    * ~244,000 sequences Purchased from Agilent Technologies, length 230 nt.
  * Library 2:
    * ~350 natural proteins that have PDB structures that are in a monomer state and have 72 or less amino acids after removing N and C-terminal linkers
    * padding by Gly, Ala and Ser amino acids so that all sequences have 72 amino acids
    * ~650,000 sequences
    * also includes scramble sequences to construct unfolded state model.
    * Purchased from Twist Bioscience, length 250 nt.
  * Library 3:
    * ~150 designed proteins
    * comprehensive deletion and Gly or Ala insertion of all wild-type proteins included in Library 1 and Libary 2
    * amino acid sequences for comprehensive double mutant analysis on polar amino acid pairs
    * ~840,000 sequences
    * Purchased from Twist Bioscience, length 250 nt.
  * Library 4:
    * Amino acid sequences for exhaustive double mutant analysis on amino acid pairs located in close proximity
    * overlapped sequences to calibrate effective protease concentration and to check consistency between libraries
    * ~900,000 sequences
    * Purchased from Twist Bioscience, length 300 nt.


### Bayesian Stability Analysis
Each target was analyzed and given a single quality category score G0-G11, which were then sorted into one of three datasets. The quality scores are
  * G0: Good (wild-type ΔG values below 4.75 kcal mol^−1)
  * G1: Good but WT outside dynamic range
  * G2: Too much missing data
  * G3: WT dG is too low
  * G4: WT dG is inconsistent
  * G5: Poor trypsin vs. chymotrypsin correlation
  * G6: Poor trypsin vs. chymotrypsin slope
  * G7: Too many stabilizing mutants
  * G8: Multiple cysteins (probably folded properly)
  * G9: Multiple cysteins (probably misfolded)
  * G10: Poor T-C intercept
  * G11: Probably cleaved in folded state(s)


## ThermoMPNN splits
ThermoMPNN is a message passing neural network that predicts protein ΔΔG of mutation
based on ProteinMPNN [(Dauparas et al., 2022)](https://www.science.org/doi/10.1126/science.add2187).
ThermoMPNN uses in part data from the MegaScale dataset. From the mutations in `dataset2`,
272,712 mutations across 298 proteins were curated that were single point mutants, reliable,
and where the baseline is wildtype.