maom commited on
Commit
c1fb9e5
·
verified ·
1 Parent(s): f046b25

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -20
README.md CHANGED
@@ -412,28 +412,19 @@ and the dataset is loaded as a `datasets.arrow_dataset.Dataset`
412
 
413
  >>> dataset3_single
414
  DatasetDict({
415
- train: Dataset({
416
- features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', '\
417
- deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfol\
418
- ded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_typ\
419
- e', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
420
- num_rows: 1503063
421
- })
422
- test: Dataset({
423
- features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', '\
424
- deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfol\
425
- ded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_typ\
426
- e', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
427
  num_rows: 169032
 
 
 
 
 
428
  })
429
- val: Dataset({
430
- features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', '\
431
- deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfol\
432
- ded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_typ\
433
- e', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
434
- num_rows: 163968
435
- })
436
- })
437
 
438
  which is a column oriented format that can be accessed directly, written to disk as a `parquet` file or converted in to a `pandas.DataFrame`, e.g.
439
 
 
412
 
413
  >>> dataset3_single
414
  DatasetDict({
415
+ train: Dataset({
416
+ features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
417
+ num_rows: 1503063
418
+ })
419
+ test: Dataset({
420
+ features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
 
 
 
 
 
 
421
  num_rows: 169032
422
+ })
423
+ val: Dataset({
424
+ features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', 'deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfolded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_type', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
425
+ num_rows: 163968
426
+ })
427
  })
 
 
 
 
 
 
 
 
428
 
429
  which is a column oriented format that can be accessed directly, written to disk as a `parquet` file or converted in to a `pandas.DataFrame`, e.g.
430