jee-neet-benchmark / src /benchmark_runner.py
Reja1's picture
Integer type question evaluation fixed
1ab1a75
import argparse
import yaml
import os
import json
import logging
import datetime # Added for timestamp
from typing import Dict, Any, List, Set, Tuple # Added for type hinting
from datasets import load_dataset, Image as HFImage # Import Image feature type
from tqdm import tqdm
from PIL import Image as PILImage # Import PIL for type hinting
# ANSI escape codes for colors
GREEN = '\033[92m'
RED = '\033[91m'
RESET = '\033[0m'
YELLOW = '\033[93m' # For skipped
CYAN = '\033[96m' # For parse failures
MAGENTA = '\033[95m' # For API failures
# Import local modules
from utils import load_api_key
from llm_interface import get_openrouter_prediction
# Import evaluation functions
from evaluation import calculate_accuracy, calculate_exam_scores, calculate_single_question_score_details
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def get_available_models(config_path: str) -> List[str]:
"""Loads models from the benchmark configuration YAML file."""
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
models = config.get("openrouter_models", [])
if not models:
logging.warning(f"No models found in {config_path} under 'openrouter_models'.")
return models
except FileNotFoundError:
logging.error(f"Configuration file not found at {config_path} for model retrieval.")
return []
except yaml.YAMLError as e:
logging.error(f"Error parsing configuration file {config_path} for model retrieval: {e}")
return []
except Exception as e:
logging.error(f"Unexpected error retrieving models from {config_path}: {e}")
return []
def get_available_exam_details(metadata_path: str) -> Tuple[List[str], List[str]]:
"""Reads metadata.jsonl to get unique exam names and years."""
exam_names: Set[str] = set()
exam_years: Set[str] = set()
try:
with open(metadata_path, 'r') as f:
for line in f:
try:
data = json.loads(line)
if 'exam_name' in data:
exam_names.add(data['exam_name'])
if 'exam_year' in data:
exam_years.add(str(data['exam_year']))
except json.JSONDecodeError:
logging.warning(f"Skipping malformed JSON line in {metadata_path}: {line.strip()}")
sorted_exam_names = sorted(list(exam_names))
sorted_exam_years = sorted(list(exam_years))
if not sorted_exam_names:
logging.warning(f"No exam names found in {metadata_path}.")
if not sorted_exam_years:
logging.warning(f"No exam years found in {metadata_path}.")
return sorted_exam_names, sorted_exam_years
except FileNotFoundError:
logging.error(f"Metadata file not found at {metadata_path}.")
return [], []
except Exception as e:
logging.error(f"Unexpected error reading or parsing {metadata_path}: {e}")
return [], []
def load_config(config_path: str) -> dict:
"""Loads the benchmark configuration from a YAML file."""
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
logging.info(f"Configuration loaded from {config_path}")
return config
except FileNotFoundError:
logging.error(f"Configuration file not found at {config_path}")
raise
except yaml.YAMLError as e:
logging.error(f"Error parsing configuration file {config_path}: {e}")
raise
def append_prediction(result: Dict[str, Any], filepath: str):
"""Appends a single prediction result to a JSONL file."""
# Create a copy to avoid modifying the original dict that might be used elsewhere
# and remove evaluation-specific fields before saving to predictions.jsonl
prediction_data = result.copy()
prediction_data.pop('marks_awarded', None)
prediction_data.pop('evaluation_status', None)
prediction_data.pop('predicted_answer', None) # Remove predicted_answer
prediction_data.pop('ground_truth', None) # Remove ground_truth
try:
with open(filepath, 'a') as f:
json.dump(prediction_data, f)
f.write('\n')
except IOError as e:
logging.error(f"Failed to append prediction to {filepath}: {e}")
except Exception as e:
logging.error(f"Unexpected error appending prediction to {filepath}: {e}")
def append_summary_detail(result_detail: Dict[str, Any], filepath: str):
"""Appends a single question's summary details (evaluation status, marks, predicted, truth) to a JSONL file."""
try:
with open(filepath, 'a') as f:
json.dump(result_detail, f)
f.write('\n')
except IOError as e:
logging.error(f"Failed to append summary detail to {filepath}: {e}")
except Exception as e:
logging.error(f"Unexpected error appending summary detail to {filepath}: {e}")
# Removed save_summary function as summary.json is no longer needed.
def generate_markdown_summary(summary: Dict[str, Any], filepath: str):
"""Generates a human-readable Markdown summary from the results dictionary."""
try:
md_content = []
model_name = summary.get("model_name", "N/A")
exam_name = summary.get("exam_name", "N/A")
exam_year = summary.get("exam_year", "N/A")
timestamp = summary.get("timestamp", "N/A")
total_questions_in_dataset = summary.get("total_questions_in_dataset", 0)
total_questions_processed_in_run = summary.get("total_questions_processed_in_run", 0)
filtered_questions_count = 0
if total_questions_in_dataset > 0 and total_questions_processed_in_run > 0:
filtered_questions_count = total_questions_in_dataset - total_questions_processed_in_run
md_content.append(f"# Benchmark Results: {model_name}")
if exam_name and exam_name not in ["N/A", "All_Exams"]: # Only display if a specific exam was targeted
md_content.append(f"**Exam Name:** {exam_name}")
if exam_year and exam_year not in ["N/A", "All_Years"]: # Only display if a specific year was targeted
md_content.append(f"**Exam Year:** {exam_year}")
md_content.append(f"**Timestamp:** {timestamp}")
md_content.append(f"**Total Questions in Dataset:** {total_questions_in_dataset if total_questions_in_dataset > 0 else 'N/A'}")
if filtered_questions_count > 0:
md_content.append(f"**Questions Filtered Out:** {filtered_questions_count}")
md_content.append(f"**Total Questions Processed in this Run:** {total_questions_processed_in_run}")
# md_content.append(f"**Estimated Total API Cost:** ${total_api_cost:.6f}") # Removed
md_content.append("\n---\n")
# Check if NEET results are present (or any dataset with overall_score and section_breakdown)
if "overall_score" in summary and "section_breakdown" in summary: # Generic check for score-based summary
total_processed = summary.get("total_questions_processed", 0)
overall_score = summary.get('overall_score', 'N/A')
total_possible_score = summary.get('total_possible_score_for_processed_questions', 'N/A')
correct_full_count = summary.get('overall_correct_full', 'N/A')
partial_correct_count = summary.get('overall_partial_correct', 'N/A')
incorrect_choice_count = summary.get('overall_incorrect_choice', 'N/A')
skipped_count = summary.get('overall_skipped', 'N/A')
failures_count = summary.get('overall_api_parse_failures', 'N/A')
unmapped_count = summary.get('unmapped_section_questions', 'N/A')
md_content.append("## Exam Scoring Results")
md_content.append(f"**Overall Score:** **{overall_score}** / **{total_possible_score}**")
md_content.append(f"- **Fully Correct Answers:** {correct_full_count}")
if partial_correct_count != 'N/A' and partial_correct_count > 0 :
md_content.append(f"- **Partially Correct Answers:** {partial_correct_count}")
md_content.append(f"- **Incorrectly Answered (Choice Made):** {incorrect_choice_count}")
md_content.append(f"- **Skipped Questions:** {skipped_count}")
md_content.append(f"- **API/Parse Failures:** {failures_count}")
md_content.append(f"- **Total Questions Processed:** {total_processed}")
if unmapped_count > 0:
md_content.append(f"- **Unmapped Section Questions:** {unmapped_count} *(Not included in section breakdown)*")
md_content.append("\n### Detailed Score Calculation by Question Type")
question_type_breakdown = summary.get("question_type_breakdown", {})
if question_type_breakdown:
sorted_q_types = sorted(question_type_breakdown.keys())
for q_type in sorted_q_types:
stats = question_type_breakdown[q_type]
q_type_display = q_type.replace('_', ' ').title()
max_score_per_q = stats.get('max_score_per_question', 0)
correct_count_q = stats.get('correct_full', 0)
partial_count_q = stats.get('partial_correct', 0)
incorrect_count_q = stats.get('incorrect_choice', 0)
skipped_count_q = stats.get('skipped', 0)
api_fail_count_q = stats.get('api_parse_failures', 0)
score_q = stats.get('score', 0)
calculation_parts = []
if correct_count_q > 0:
calculation_parts.append(f"{correct_count_q} Correct (+{max_score_per_q})")
if partial_count_q > 0:
# For partial, we can't easily show the exact score per question without more detail
# For now, just indicate partials.
calculation_parts.append(f"{partial_count_q} Partial")
if incorrect_count_q > 0:
# Need to know penalty for incorrect. Assuming -1 for MCQ_SINGLE_CORRECT, -2 for MCQ_MULTIPLE_CORRECT
# For INTEGER, penalty is 0. This needs to be more robust if penalties vary.
penalty_per_incorrect = 0
if q_type == "MCQ_SINGLE_CORRECT": penalty_per_incorrect = -1
elif q_type == "MCQ_MULTIPLE_CORRECT": penalty_per_incorrect = -2
calculation_parts.append(f"{incorrect_count_q} Incorrect ({penalty_per_incorrect})")
if skipped_count_q > 0:
calculation_parts.append(f"{skipped_count_q} Skipped (0)")
if api_fail_count_q > 0:
# Assuming -1 for API/Parse failures for non-integer types, 0 for integer
penalty_per_api_fail = -1
if q_type == "INTEGER": penalty_per_api_fail = 0
calculation_parts.append(f"{api_fail_count_q} API/Parse Fail ({penalty_per_api_fail})")
calculation_str = " + ".join(part for part in calculation_parts if part)
if not calculation_str:
calculation_str = "No questions of this type processed or all had 0 score change."
md_content.append(f"**{q_type_display} ({stats.get('count', 0)} questions):** {score_q} marks")
md_content.append(f" *Calculation:* {calculation_str} = {score_q}")
else:
md_content.append("No question type breakdown available.")
md_content.append("\n### Section Breakdown")
md_content.append("| Section | Score | Fully Correct | Partially Correct | Incorrect Choice | Skipped | API/Parse Failures |")
md_content.append("|---------------|-------|---------------|-------------------|------------------|---------|--------------------|")
section_breakdown = summary.get("section_breakdown", {})
sorted_section_names = sorted(section_breakdown.keys())
if not sorted_section_names and section_breakdown:
logging.warning("Could not sort section names for Markdown summary; using unsorted.")
sorted_section_names = list(section_breakdown.keys())
for section_name in sorted_section_names:
stats = section_breakdown.get(section_name, {})
score = stats.get('score', 'N/A')
s_correct = stats.get('correct', 'N/A')
s_partial = stats.get('partial_correct', 'N/A')
s_incorrect = stats.get('incorrect', 'N/A')
s_skipped = stats.get('skipped', 'N/A')
s_failures = stats.get('api_parse_failures', 'N/A')
display_section_name = section_name.replace('_', ' ')
md_content.append(f"| {display_section_name:<13} | {score:<5} | {s_correct:<13} | {s_partial:<17} | {s_incorrect:<16} | {s_skipped:<7} | {s_failures:<18} |")
if not sorted_section_names:
md_content.append("| No section data available | N/A | N/A | N/A | N/A | N/A | N/A |")
# Fallback for simple accuracy (if exam scoring wasn't applicable or failed)
elif "accuracy_on_parsed" in summary:
md_content.append("## Simple Accuracy Results (Fallback)")
md_content.append(f"- **Accuracy (on successfully parsed non-skipped):** {summary.get('accuracy_on_parsed', 'N/A'):.4f}")
md_content.append(f"- **Total Processed Attempts:** {summary.get('total_processed_attempts', 'N/A')}")
# Add other relevant simple stats if available
else:
md_content.append("## Summary")
md_content.append("*(No specific Exam Scoring or Accuracy metrics found in summary)*")
with open(filepath, 'w') as f:
f.write("\n".join(md_content))
logging.info(f"Markdown summary saved to {filepath}")
except IOError as e:
logging.error(f"Failed to save markdown summary to {filepath}: {e}")
except Exception as e:
logging.error(f"Unexpected error generating or saving markdown summary to {filepath}: {e}")
def run_benchmark(
config: dict,
api_key: str,
model_to_run: str, # Changed from models_override
output_dir_override: str | None = None,
exam_name_choice: str | None = None, # Changed from exam_name_filter
exam_year_choice: str | None = None, # Changed from exam_year_filter
question_ids_str: str | None = None # New argument
):
"""Runs the benchmark evaluation loop with incremental saving and retries."""
# Determine models to run - now it's a single model
models_to_run = [model_to_run] # Benchmark will run for the single specified model
logging.info(f"Target model for this run: {model_to_run}")
# Determine base output directory
base_output_dir = output_dir_override if output_dir_override else config.get("results_base_dir", "results")
os.makedirs(base_output_dir, exist_ok=True)
# Load dataset
dataset_path = config.get("dataset_path", ".") # Default to current dir if not specified
try:
# Load the dataset using the loading script from the specified path
# Ensure the 'image' column is decoded
# Explicitly specify data_files and data_dir for local loading.
# data_dir should be the project root ('.') when loading a local script,
# as the script is copied to a cache and needs to know where the actual data is.
dataset = load_dataset(dataset_path, split='test', data_files={'test': 'data/metadata.jsonl'}, data_dir=os.getcwd(), trust_remote_code=True, download_mode="force_redownload")
dataset = dataset.cast_column("image", HFImage(decode=True)) # Ensure images are loaded as PIL
logging.info(f"Dataset loaded successfully from path: {dataset_path}. Original number of questions: {len(dataset)}")
except Exception as e:
logging.error(f"Failed to load dataset from path '{dataset_path}': {e}")
logging.error("Ensure the path is correct and 'jee_neet_benchmark_dataset.py' exists.")
return
# Filter dataset based on choices
original_dataset_size = len(dataset)
# Filter by exam_name
if exam_name_choice and exam_name_choice.lower() != "all":
logging.info(f"Filtering dataset for exam_name: '{exam_name_choice}'")
dataset = dataset.filter(lambda example: example.get('exam_name') == exam_name_choice)
logging.info(f"Dataset size after exam_name filter: {len(dataset)} questions.")
# Filter by exam_year
if exam_year_choice and exam_year_choice.lower() != "all":
try:
filter_year_int = int(exam_year_choice)
logging.info(f"Filtering dataset for exam_year: {filter_year_int}")
dataset = dataset.filter(lambda example: example.get('exam_year') == filter_year_int)
logging.info(f"Dataset size after exam_year filter: {len(dataset)} questions.")
except ValueError:
logging.error(f"Invalid exam_year provided: '{exam_year_choice}'. Must be an integer or 'all'. Year filtering skipped.")
# Filter by specific question IDs if provided
if question_ids_str:
try:
target_question_ids = {q_id.strip() for q_id in question_ids_str.split(',') if q_id.strip()}
if target_question_ids:
logging.info(f"Filtering dataset for specific question IDs: {target_question_ids}")
dataset = dataset.filter(lambda example: example.get('question_id') in target_question_ids)
logging.info(f"Dataset size after question_id filter: {len(dataset)} questions.")
else:
logging.warning("Empty or invalid question_ids string provided. No question ID filtering applied.")
except Exception as e:
logging.error(f"Error processing question_ids_str '{question_ids_str}': {e}. No question ID filtering applied.")
if len(dataset) < original_dataset_size:
logging.info(f"Final dataset size after all filters: {len(dataset)} (originally {original_dataset_size}).")
if len(dataset) == 0:
logging.warning("No questions to process after filtering. Skipping model benchmark.")
return
# --- Main Loop: Iterate through models ---
for model_id in models_to_run:
# total_questions here should refer to the length of the potentially filtered dataset
current_total_questions = len(dataset)
logging.info(f"--- Starting benchmark for model: {model_id} (Processing {current_total_questions} questions) ---")
# Create timestamped output directory for this model run
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
safe_model_name = model_id.replace('/', '_') # model_id is already the single model_to_run
dir_name_parts = [safe_model_name]
# Append exam name and year to directory if they are specific (not "all")
current_exam_name_for_dir = exam_name_choice if exam_name_choice and exam_name_choice.lower() != "all" else "AllExams"
current_exam_year_for_dir = exam_year_choice if exam_year_choice and exam_year_choice.lower() != "all" else "AllYears"
if current_exam_name_for_dir != "AllExams":
dir_name_parts.append(current_exam_name_for_dir.replace('/', '_'))
if current_exam_year_for_dir != "AllYears":
dir_name_parts.append(str(current_exam_year_for_dir)) # Already string or 'all'
dir_name_parts.append(timestamp)
model_output_dir_name = "_".join(filter(None, dir_name_parts)) # Filter out None if any part was None
model_output_dir = os.path.join(base_output_dir, model_output_dir_name)
os.makedirs(model_output_dir, exist_ok=True)
predictions_path = os.path.join(model_output_dir, "predictions.jsonl")
summary_details_path = os.path.join(model_output_dir, "summary.jsonl") # New file for per-question summary details
markdown_summary_path = os.path.join(model_output_dir, "summary.md") # Define path for MD summary
logging.info(f"Results for {model_id} will be saved to: {model_output_dir}")
model_results = [] # Stores results in memory for final calculation
failed_questions_data = [] # Stores data needed to retry failed questions
# Counters for tqdm postfix
initial_correct_count = 0
initial_incorrect_count = 0
initial_skipped_count = 0
initial_parse_fail_count = 0
initial_api_fail_count = 0
# --- Initial Pass: Iterate through questions ---
pbar_initial = tqdm(dataset, desc=f"Processing {model_id} (Initial Pass)", total=current_total_questions)
for example in pbar_initial:
question_id = example["question_id"]
subject = example["subject"]
exam_name_from_data = example.get("exam_name", "UNKNOWN_EXAM") # Get exam_name from data
question_type_from_data = example.get("question_type", "MCQ_SINGLE_CORRECT") # Get question_type
image: PILImage.Image = example["image"]
truth = json.loads(example["correct_answer"]) # Parse the JSON string back to a list/list of lists
result_data = {
"question_id": question_id,
"subject": subject,
"exam_name": exam_name_from_data, # Store for evaluation
"question_type": question_type_from_data, # Store for evaluation
"ground_truth": truth,
"predicted_answer": None,
"raw_response": None,
"parse_successful": False,
"api_call_successful": False,
"error": None,
"attempt": 1,
# "api_cost": None, # Removed
"previous_raw_response_on_reprompt": None # For task 1
}
try:
# --- Initial API Call ---
logging.info(f"Attempting API call for question: {question_id} with model: {model_id}")
# Pass exam_name_from_data and question_type_from_data to get_openrouter_prediction
parsed_answer, raw_response = get_openrouter_prediction( # No longer expect api_cost
model_identifier=model_id,
api_key=api_key,
image=image,
exam_name=exam_name_from_data, # Use exam_name from current data item
exam_year=str(example.get("exam_year", "UNKNOWN_YEAR")), # Use exam_year from data
question_type=question_type_from_data, # Pass question_type
max_tokens=config.get("max_tokens", 100),
request_timeout=config.get("request_timeout", 60)
)
api_success_attempt1 = True # If no exception, API call itself was successful
parse_success_attempt1 = parsed_answer is not None
raw_response_attempt1 = raw_response
# result_data["api_cost"] = api_cost # Removed
# --- Re-prompt Logic ---
if api_success_attempt1 and not parse_success_attempt1 and raw_response_attempt1 is not None:
logging.warning(f"Question {question_id}: Initial parse failed. Attempting re-prompt.")
result_data["previous_raw_response_on_reprompt"] = raw_response_attempt1 # Store previous response
try:
# Assuming re-prompt might also have a cost
parsed_answer_rp, raw_response_rp = get_openrouter_prediction( # No longer expect api_cost
model_identifier=model_id,
api_key=api_key,
previous_raw_response=raw_response_attempt1,
question_type=question_type_from_data, # Pass question_type for re-prompt
max_tokens=config.get("max_tokens", 100),
request_timeout=config.get("request_timeout", 60)
)
# Process parsed_answer_rp before assignment
if isinstance(parsed_answer_rp, list):
processed_answer_rp = [str(item) for item in parsed_answer_rp]
else:
processed_answer_rp = parsed_answer_rp
result_data.update({
"predicted_answer": processed_answer_rp,
"raw_response": raw_response_rp,
"parse_successful": processed_answer_rp is not None,
"api_call_successful": True,
"attempt": 2
# Assuming api_cost_rp would be added to existing api_cost or handled separately
})
# if api_cost_rp is not None: # Add re-prompt cost if available # Removed
# result_data["api_cost"] = (result_data.get("api_cost") or 0.0) + api_cost_rp # Removed
logging.info(f"Question {question_id}: Re-prompt {'succeeded' if result_data['parse_successful'] else 'failed to parse'}.")
except Exception as e_rp:
logging.error(f"Re-prompt API call failed for question {question_id}: {e_rp}")
result_data.update({
"predicted_answer": None,
"raw_response": raw_response_attempt1,
"parse_successful": False,
"api_call_successful": True,
"error": f"Initial parse failed. Re-prompt API call failed: {str(e_rp)}",
"attempt": 1
})
else:
current_error = result_data.get("error")
api_actually_successful = api_success_attempt1
if api_success_attempt1 and raw_response_attempt1 is None and parsed_answer is None:
current_error = "Initial API call returned empty content. Re-prompt skipped."
# Process parsed_answer before assignment
if isinstance(parsed_answer, list):
processed_initial_answer = [str(item) for item in parsed_answer]
else:
processed_initial_answer = parsed_answer
result_data.update({
"predicted_answer": processed_initial_answer,
"raw_response": raw_response_attempt1,
"parse_successful": parse_success_attempt1,
"api_call_successful": api_actually_successful,
"error": current_error,
"attempt": 1
})
# Calculate score details for the current result_data
score_details = calculate_single_question_score_details(result_data)
result_data['marks_awarded'] = score_details.get('marks_awarded')
result_data['evaluation_status'] = score_details.get('evaluation_status')
# Append evaluation details to summary.jsonl
summary_detail_data = {
"question_id": question_id,
"marks_awarded": result_data['marks_awarded'],
"evaluation_status": result_data['evaluation_status'],
"predicted_answer": result_data['predicted_answer'], # Add predicted_answer
"ground_truth": result_data['ground_truth'], # Add ground_truth
"attempt": result_data['attempt']
}
append_summary_detail(summary_detail_data, summary_details_path)
model_results.append(result_data)
append_prediction(result_data, predictions_path) # append_prediction now handles removing evaluation fields
final_parsed_answer = result_data["predicted_answer"]
log_message_prefix = f"Question {question_id}:"
log_message_suffix = f"(Attempt {result_data['attempt']})"
if not result_data["api_call_successful"]:
initial_api_fail_count += 1
logging.info(f"{MAGENTA}{log_message_prefix} API Call Failed {log_message_suffix}{RESET}")
elif not result_data["parse_successful"]:
initial_parse_fail_count += 1
logging.info(f"{CYAN}{log_message_prefix} Failed to parse answer {log_message_suffix}{RESET}")
elif final_parsed_answer == "SKIP":
initial_skipped_count += 1
logging.info(f"{YELLOW}{log_message_prefix} Skipped {log_message_suffix}{RESET}")
else: # This 'else' means API call was successful, parse was successful, and predicted_answer was not "SKIP" (by model)
marks_awarded = result_data.get('marks_awarded', 0)
evaluation_status_value = result_data.get('evaluation_status')
# Prepare evaluation_status for checks and logging
is_considered_correct = False
log_display_status = "N/A" # What to show in the log for status
status_check_string = "" # Uppercase string for "CORRECT" and "SKIPPED" checks
if evaluation_status_value is True:
is_considered_correct = True
log_display_status = "True (Boolean)"
status_check_string = "CORRECT_TRUE_BOOLEAN" # Contains "CORRECT"
elif isinstance(evaluation_status_value, str):
log_display_status = evaluation_status_value # Log original string
status_check_string = evaluation_status_value.strip().upper()
if "CORRECT" in status_check_string:
is_considered_correct = True
elif evaluation_status_value is None:
log_display_status = "None"
status_check_string = "NONE_STATUS"
else: # Other types
log_display_status = str(evaluation_status_value)
status_check_string = str(evaluation_status_value).strip().upper()
# Define known "skipped by evaluation" statuses (uppercase)
known_eval_skip_statuses = ["SKIPPED_BY_EVAL", "SKIPPED"]
if is_considered_correct:
initial_correct_count +=1
logging.info(f"{GREEN}{log_message_prefix} Correct (log) - Marks: {marks_awarded}, Status: {log_display_status} {log_message_suffix}{RESET}")
elif status_check_string in known_eval_skip_statuses:
initial_skipped_count += 1
logging.info(f"{YELLOW}{log_message_prefix} Skipped by Eval - Marks: {marks_awarded}, Status: {log_display_status} {log_message_suffix}{RESET}")
else: # All other statuses are treated as incorrect
initial_incorrect_count += 1
logging.info(f"{RED}{log_message_prefix} Incorrect (log) - Marks: {marks_awarded}, Status: {log_display_status} {log_message_suffix}{RESET}")
pbar_initial.set_postfix_str(f"✓:{initial_correct_count} ✗:{initial_incorrect_count} S:{initial_skipped_count} P!:{initial_parse_fail_count} A!:{initial_api_fail_count}")
except Exception as e:
initial_api_fail_count +=1 # Assume API failure if exception at this level
pbar_initial.set_postfix_str(f"✓:{initial_correct_count} ✗:{initial_incorrect_count} S:{initial_skipped_count} P!:{initial_parse_fail_count} A!:{initial_api_fail_count}")
logging.error(f"Initial API call failed for question {question_id} (Attempt 1): {e}")
result_data["error"] = str(e)
result_data["api_call_successful"] = False
failed_questions_data.append(example) # Store original example for retry pass
pbar_initial.close() # Ensure tqdm finishes cleanly
# --- Retry Pass for questions with initial API failures ---
if failed_questions_data:
logging.info(f"--- Retrying {len(failed_questions_data)} questions with initial API failures for model: {model_id} ---")
retry_correct_count = 0
retry_incorrect_count = 0
retry_skipped_count = 0
retry_parse_fail_count = 0
retry_api_fail_count = 0
pbar_retry = tqdm(failed_questions_data, desc=f"Processing {model_id} (API Retry Pass)", total=len(failed_questions_data))
for example_retry in pbar_retry:
question_id_retry = example_retry["question_id"]
subject_retry = example_retry["subject"]
exam_name_retry = example_retry.get("exam_name", "UNKNOWN_EXAM")
question_type_retry = example_retry.get("question_type", "MCQ_SINGLE_CORRECT")
image_retry: PILImage.Image = example_retry["image"]
truth_retry = example_retry["correct_answer"]
result_data_retry = {
"question_id": question_id_retry,
"subject": subject_retry,
"exam_name": exam_name_retry,
"question_type": question_type_retry,
"ground_truth": truth_retry,
"predicted_answer": None,
"raw_response": None,
"parse_successful": False,
"api_call_successful": False,
"error": "Initial API call failed.", # Pre-fill error
"attempt": 2,
# "api_cost": None, # Removed
"previous_raw_response_on_reprompt_after_api_retry": None # For task 1
}
try:
logging.info(f"Attempting API call for question: {question_id_retry} (API Retry Pass) with model: {model_id}")
parsed_answer_retry, raw_response_retry = get_openrouter_prediction( # No longer expect api_cost
model_identifier=model_id,
api_key=api_key,
image=image_retry,
exam_name=exam_name_retry,
exam_year=str(example_retry.get("exam_year", "UNKNOWN_YEAR")),
question_type=question_type_retry,
max_tokens=config.get("max_tokens", 100),
request_timeout=config.get("request_timeout", 60)
)
api_success_attempt2 = True
parse_success_attempt2 = parsed_answer_retry is not None
raw_response_attempt2 = raw_response_retry
# result_data_retry["api_cost"] = api_cost_retry # Removed
if api_success_attempt2 and not parse_success_attempt2 and raw_response_attempt2 is not None:
logging.warning(f"Question {question_id_retry}: API Retry succeeded, but parse failed. Attempting re-prompt.")
result_data_retry["previous_raw_response_on_reprompt_after_api_retry"] = raw_response_attempt2 # Store previous response
try:
# Assuming re-prompt might also have a cost
parsed_answer_rp2, raw_response_rp2 = get_openrouter_prediction( # No longer expect api_cost
model_identifier=model_id,
api_key=api_key,
previous_raw_response=raw_response_attempt2,
question_type=question_type_retry,
max_tokens=config.get("max_tokens", 100),
request_timeout=config.get("request_timeout", 60)
)
# Process parsed_answer_rp2 before assignment
if isinstance(parsed_answer_rp2, list):
processed_answer_rp2 = [str(item) for item in parsed_answer_rp2]
else:
processed_answer_rp2 = parsed_answer_rp2
result_data_retry.update({
"predicted_answer": processed_answer_rp2, "raw_response": raw_response_rp2,
"parse_successful": processed_answer_rp2 is not None, "api_call_successful": True,
"error": None if processed_answer_rp2 is not None else "Re-prompt after API retry failed to parse.",
"attempt": 3
})
# if api_cost_rp2 is not None: # Add re-prompt cost if available # Removed
# result_data_retry["api_cost"] = (result_data_retry.get("api_cost") or 0.0) + api_cost_rp2 # Removed
logging.info(f"Question {question_id_retry}: API Retry + Re-prompt {'succeeded' if result_data_retry['parse_successful'] else 'failed to parse'}.")
except Exception as e_rp2:
logging.error(f"Re-prompt API call failed for question {question_id_retry} after API retry: {e_rp2}")
result_data_retry.update({
"error": f"API retry ok, parse failed. Re-prompt API call failed: {str(e_rp2)}",
"attempt": 2 # Stay at attempt 2 as re-prompt itself failed
})
else:
current_error_retry = result_data_retry.get("error")
if api_success_attempt2 and raw_response_attempt2 is None and parsed_answer_retry is None:
current_error_retry = "API retry call returned empty content. Re-prompt skipped."
# Process parsed_answer_retry before assignment
if isinstance(parsed_answer_retry, list):
processed_retry_answer = [str(item) for item in parsed_answer_retry]
else:
processed_retry_answer = parsed_answer_retry
result_data_retry.update({
"predicted_answer": processed_retry_answer, "raw_response": raw_response_attempt2,
"parse_successful": parse_success_attempt2, "api_call_successful": api_success_attempt2,
"error": None if parse_success_attempt2 else current_error_retry, # Clear initial error if parse now ok
"attempt": 2
})
except Exception as e_retry_api:
logging.error(f"API call failed permanently for question {question_id_retry} (Attempt 2 API Retry): {e_retry_api}")
result_data_retry["error"] = f"Initial API fail. Retry API call also failed: {str(e_retry_api)}"
result_data_retry["api_call_successful"] = False
# Calculate score details for the current result_data_retry
score_details_retry = calculate_single_question_score_details(result_data_retry)
result_data_retry['marks_awarded'] = score_details_retry.get('marks_awarded')
result_data_retry['evaluation_status'] = score_details_retry.get('evaluation_status')
# Append evaluation details to summary.jsonl for retry pass
summary_detail_data_retry = {
"question_id": question_id_retry,
"marks_awarded": result_data_retry['marks_awarded'],
"evaluation_status": result_data_retry['evaluation_status'],
"predicted_answer": result_data_retry['predicted_answer'], # Add predicted_answer
"ground_truth": result_data_retry['ground_truth'], # Add ground_truth
"attempt": result_data_retry['attempt']
}
append_summary_detail(summary_detail_data_retry, summary_details_path)
model_results.append(result_data_retry)
append_prediction(result_data_retry, predictions_path) # append_prediction now handles removing evaluation fields
# Logging for retry pass
log_message_prefix_retry = f"Question {question_id_retry} (Retry):"
log_message_suffix_retry = f"(Attempt {result_data_retry['attempt']})"
final_parsed_answer_retry = result_data_retry["predicted_answer"]
if not result_data_retry["api_call_successful"]:
retry_api_fail_count += 1
logging.info(f"{MAGENTA}{log_message_prefix_retry} API Call Failed {log_message_suffix_retry}{RESET}")
elif not result_data_retry["parse_successful"]:
retry_parse_fail_count += 1
logging.info(f"{CYAN}{log_message_prefix_retry} Failed to parse answer {log_message_suffix_retry}{RESET}")
elif final_parsed_answer_retry == "SKIP":
retry_skipped_count += 1
logging.info(f"{YELLOW}{log_message_prefix_retry} Skipped {log_message_suffix_retry}{RESET}")
else: # This 'else' means API call was successful, parse was successful, and predicted_answer was not "SKIP" (by model)
marks_awarded_retry = result_data_retry.get('marks_awarded', 0)
evaluation_status_value_retry = result_data_retry.get('evaluation_status')
is_considered_correct_retry = False
log_display_status_retry = "N/A"
status_check_string_retry = ""
if evaluation_status_value_retry is True:
is_considered_correct_retry = True
log_display_status_retry = "True (Boolean)"
status_check_string_retry = "CORRECT_TRUE_BOOLEAN"
elif isinstance(evaluation_status_value_retry, str):
log_display_status_retry = evaluation_status_value_retry
status_check_string_retry = evaluation_status_value_retry.strip().upper()
if "CORRECT" in status_check_string_retry:
is_considered_correct_retry = True
elif evaluation_status_value_retry is None:
log_display_status_retry = "None"
status_check_string_retry = "NONE_STATUS"
else: # Other types
log_display_status_retry = str(evaluation_status_value_retry)
status_check_string_retry = str(evaluation_status_value_retry).strip().upper()
known_eval_skip_statuses_retry = ["SKIPPED_BY_EVAL", "SKIPPED"]
if is_considered_correct_retry:
retry_correct_count +=1
logging.info(f"{GREEN}{log_message_prefix_retry} Correct (log) - Marks: {marks_awarded_retry}, Status: {log_display_status_retry} {log_message_suffix_retry}{RESET}")
elif status_check_string_retry in known_eval_skip_statuses_retry:
retry_skipped_count += 1
logging.info(f"{YELLOW}{log_message_prefix_retry} Skipped by Eval - Marks: {marks_awarded_retry}, Status: {log_display_status_retry} {log_message_suffix_retry}{RESET}")
else:
retry_incorrect_count += 1
logging.info(f"{RED}{log_message_prefix_retry} Incorrect (log) - Marks: {marks_awarded_retry}, Status: {log_display_status_retry} {log_message_suffix_retry}{RESET}")
pbar_retry.set_postfix_str(f"✓:{retry_correct_count} ✗:{retry_incorrect_count} S:{retry_skipped_count} P!:{retry_parse_fail_count} A!:{retry_api_fail_count}")
pbar_retry.close() # Ensure tqdm finishes cleanly
# --- Final Evaluation for the current model ---
logging.info(f"--- Calculating final results for model: {model_id} ---")
# Always use calculate_exam_scores now
evaluation_summary = calculate_exam_scores(model_results) # model_results modified in-place
# Use the actual choices for the summary, defaulting to "All" if not specified or "all"
summary_exam_name_display = exam_name_choice if exam_name_choice and exam_name_choice.lower() != "all" else "All_Exams"
summary_exam_year_display = exam_year_choice if exam_year_choice and exam_year_choice.lower() != "all" else "All_Years"
summary = {
"model_name": model_id, # This is model_to_run
"exam_name": summary_exam_name_display,
"exam_year": summary_exam_year_display,
"question_ids_filter": question_ids_str if question_ids_str else "None", # Add question ID filter info
"timestamp": timestamp,
"total_questions_in_dataset": original_dataset_size, # Total before any filtering
"total_questions_processed_in_run": len(dataset), # Total after filtering for this run
**evaluation_summary
}
logging.info(f"Overall Score: {summary.get('overall_score')}")
logging.info(f"Full Correct: {summary.get('overall_correct_full')}, Partial Correct: {summary.get('overall_partial_correct')}, Incorrect Choice: {summary.get('overall_incorrect_choice')}, Skipped: {summary.get('overall_skipped')}, API/Parse Failures: {summary.get('overall_api_parse_failures')}")
logging.info(f"--- Results Summary for model: {model_id} ---")
logging.info(json.dumps(summary, indent=2, sort_keys=True))
logging.info("-------------------------------------")
# The model_results list was modified in-place by calculate_exam_scores
# to include evaluation_status and marks_awarded.
# predictions.jsonl is now written incrementally without evaluation details.
# No need to overwrite predictions.jsonl here.
# Save final summary (Markdown) for the current model
# The summary.json file is no longer generated as per user request.
generate_markdown_summary(summary, markdown_summary_path) # Call the new function
logging.info("Benchmark run completed.")
if __name__ == "__main__":
# Get available choices for arguments
# Assuming benchmark_config.yaml is in a 'configs' directory relative to script or a fixed path
# Assuming metadata.jsonl is in a 'data' directory relative to script or a fixed path
default_config_path = "configs/benchmark_config.yaml"
default_metadata_path = "data/metadata.jsonl"
available_models = get_available_models(default_config_path)
available_exam_names, available_exam_years = get_available_exam_details(default_metadata_path)
# Add "all" option for exams and years
exam_name_choices = ["all"] + available_exam_names
exam_year_choices = ["all"] + available_exam_years
parser = argparse.ArgumentParser(description="Run JEE/NEET LLM Benchmark.")
parser.add_argument(
"--config",
type=str,
default=default_config_path,
help=f"Path to the benchmark configuration YAML file (default: {default_config_path})."
)
parser.add_argument(
"--model", # Changed from --models
type=str,
required=True if available_models else False, # Required if models are available
choices=available_models if available_models else None,
help="Select the model to run." + (f" Available: {', '.join(available_models)}." if available_models else " (No models found in config)")
)
parser.add_argument(
"--output_dir",
type=str,
help="Override the base output directory specified in the config file."
)
parser.add_argument(
"--exam_name",
type=str,
default="all",
choices=exam_name_choices if exam_name_choices else ["all"],
help="Select the exam name to run, or 'all' for all exams." + (f" Available: {', '.join(available_exam_names)}." if available_exam_names else "")
)
parser.add_argument(
"--exam_year",
type=str,
default="all",
choices=exam_year_choices if exam_year_choices else ["all"],
help="Select the exam year to run, or 'all' for all years." + (f" Available: {', '.join(available_exam_years)}." if available_exam_years else "")
)
parser.add_argument(
"--question_ids",
type=str,
default=None,
help="Optional: Comma-separated list of specific question IDs to run (e.g., ID1,ID2,ID3)."
)
args = parser.parse_args()
# Dynamically update config path if user provides a different one
if args.config != default_config_path:
logging.info(f"User provided config path: {args.config}. Re-fetching models if necessary.")
# If models were not found with default, or if user specified a different config, try to load models from it.
if not available_models or args.model not in available_models:
user_config_models = get_available_models(args.config)
if args.model not in user_config_models:
logging.error(f"Selected model '{args.model}' not found in the specified config '{args.config}'. Exiting.")
exit(1) # Or handle more gracefully
# Potentially update choices if parser allowed any string due to no initial models
# This is complex with argparse after parsing. For now, we rely on the initial check or error out.
try:
# Load API key first - fail fast if not set
api_key = load_api_key()
# Load configuration using the (potentially user-overridden) config path
config = load_config(args.config)
# Ensure the selected model is valid if it was dynamically loaded
if args.model not in config.get("openrouter_models", []):
# This check is important if args.model was accepted because available_models was initially empty
if args.model not in get_available_models(args.config): # Double check with the final config
logging.error(f"The model '{args.model}' specified is not listed in the config file '{args.config}'. Please check the model name or the config file.")
exit(1)
# Run the benchmark
run_benchmark(
config=config,
api_key=api_key,
model_to_run=args.model,
output_dir_override=args.output_dir,
exam_name_choice=args.exam_name,
exam_year_choice=args.exam_year,
question_ids_str=args.question_ids
)
except (ValueError, FileNotFoundError, yaml.YAMLError) as e:
logging.error(f"Setup failed: {e}")
except Exception as e:
logging.error(f"An unexpected error occurred during benchmark execution: {e}", exc_info=True)