import argparse import yaml import os import json import logging import datetime # Added for timestamp from typing import Dict, Any, List, Set, Tuple # Added for type hinting from datasets import load_dataset, Image as HFImage # Import Image feature type from tqdm import tqdm from PIL import Image as PILImage # Import PIL for type hinting # ANSI escape codes for colors GREEN = '\033[92m' RED = '\033[91m' RESET = '\033[0m' YELLOW = '\033[93m' # For skipped CYAN = '\033[96m' # For parse failures MAGENTA = '\033[95m' # For API failures # Import local modules from utils import load_api_key from llm_interface import get_openrouter_prediction # Import evaluation functions from evaluation import calculate_accuracy, calculate_exam_scores, calculate_single_question_score_details # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') def get_available_models(config_path: str) -> List[str]: """Loads models from the benchmark configuration YAML file.""" try: with open(config_path, 'r') as f: config = yaml.safe_load(f) models = config.get("openrouter_models", []) if not models: logging.warning(f"No models found in {config_path} under 'openrouter_models'.") return models except FileNotFoundError: logging.error(f"Configuration file not found at {config_path} for model retrieval.") return [] except yaml.YAMLError as e: logging.error(f"Error parsing configuration file {config_path} for model retrieval: {e}") return [] except Exception as e: logging.error(f"Unexpected error retrieving models from {config_path}: {e}") return [] def get_available_exam_details(metadata_path: str) -> Tuple[List[str], List[str]]: """Reads metadata.jsonl to get unique exam names and years.""" exam_names: Set[str] = set() exam_years: Set[str] = set() try: with open(metadata_path, 'r') as f: for line in f: try: data = json.loads(line) if 'exam_name' in data: exam_names.add(data['exam_name']) if 'exam_year' in data: exam_years.add(str(data['exam_year'])) except json.JSONDecodeError: logging.warning(f"Skipping malformed JSON line in {metadata_path}: {line.strip()}") sorted_exam_names = sorted(list(exam_names)) sorted_exam_years = sorted(list(exam_years)) if not sorted_exam_names: logging.warning(f"No exam names found in {metadata_path}.") if not sorted_exam_years: logging.warning(f"No exam years found in {metadata_path}.") return sorted_exam_names, sorted_exam_years except FileNotFoundError: logging.error(f"Metadata file not found at {metadata_path}.") return [], [] except Exception as e: logging.error(f"Unexpected error reading or parsing {metadata_path}: {e}") return [], [] def load_config(config_path: str) -> dict: """Loads the benchmark configuration from a YAML file.""" try: with open(config_path, 'r') as f: config = yaml.safe_load(f) logging.info(f"Configuration loaded from {config_path}") return config except FileNotFoundError: logging.error(f"Configuration file not found at {config_path}") raise except yaml.YAMLError as e: logging.error(f"Error parsing configuration file {config_path}: {e}") raise def append_prediction(result: Dict[str, Any], filepath: str): """Appends a single prediction result to a JSONL file.""" # Create a copy to avoid modifying the original dict that might be used elsewhere # and remove evaluation-specific fields before saving to predictions.jsonl prediction_data = result.copy() prediction_data.pop('marks_awarded', None) prediction_data.pop('evaluation_status', None) prediction_data.pop('predicted_answer', None) # Remove predicted_answer prediction_data.pop('ground_truth', None) # Remove ground_truth try: with open(filepath, 'a') as f: json.dump(prediction_data, f) f.write('\n') except IOError as e: logging.error(f"Failed to append prediction to {filepath}: {e}") except Exception as e: logging.error(f"Unexpected error appending prediction to {filepath}: {e}") def append_summary_detail(result_detail: Dict[str, Any], filepath: str): """Appends a single question's summary details (evaluation status, marks, predicted, truth) to a JSONL file.""" try: with open(filepath, 'a') as f: json.dump(result_detail, f) f.write('\n') except IOError as e: logging.error(f"Failed to append summary detail to {filepath}: {e}") except Exception as e: logging.error(f"Unexpected error appending summary detail to {filepath}: {e}") # Removed save_summary function as summary.json is no longer needed. def generate_markdown_summary(summary: Dict[str, Any], filepath: str): """Generates a human-readable Markdown summary from the results dictionary.""" try: md_content = [] model_name = summary.get("model_name", "N/A") exam_name = summary.get("exam_name", "N/A") exam_year = summary.get("exam_year", "N/A") timestamp = summary.get("timestamp", "N/A") total_questions_in_dataset = summary.get("total_questions_in_dataset", 0) total_questions_processed_in_run = summary.get("total_questions_processed_in_run", 0) filtered_questions_count = 0 if total_questions_in_dataset > 0 and total_questions_processed_in_run > 0: filtered_questions_count = total_questions_in_dataset - total_questions_processed_in_run md_content.append(f"# Benchmark Results: {model_name}") if exam_name and exam_name not in ["N/A", "All_Exams"]: # Only display if a specific exam was targeted md_content.append(f"**Exam Name:** {exam_name}") if exam_year and exam_year not in ["N/A", "All_Years"]: # Only display if a specific year was targeted md_content.append(f"**Exam Year:** {exam_year}") md_content.append(f"**Timestamp:** {timestamp}") md_content.append(f"**Total Questions in Dataset:** {total_questions_in_dataset if total_questions_in_dataset > 0 else 'N/A'}") if filtered_questions_count > 0: md_content.append(f"**Questions Filtered Out:** {filtered_questions_count}") md_content.append(f"**Total Questions Processed in this Run:** {total_questions_processed_in_run}") # md_content.append(f"**Estimated Total API Cost:** ${total_api_cost:.6f}") # Removed md_content.append("\n---\n") # Check if NEET results are present (or any dataset with overall_score and section_breakdown) if "overall_score" in summary and "section_breakdown" in summary: # Generic check for score-based summary total_processed = summary.get("total_questions_processed", 0) overall_score = summary.get('overall_score', 'N/A') total_possible_score = summary.get('total_possible_score_for_processed_questions', 'N/A') correct_full_count = summary.get('overall_correct_full', 'N/A') partial_correct_count = summary.get('overall_partial_correct', 'N/A') incorrect_choice_count = summary.get('overall_incorrect_choice', 'N/A') skipped_count = summary.get('overall_skipped', 'N/A') failures_count = summary.get('overall_api_parse_failures', 'N/A') unmapped_count = summary.get('unmapped_section_questions', 'N/A') md_content.append("## Exam Scoring Results") md_content.append(f"**Overall Score:** **{overall_score}** / **{total_possible_score}**") md_content.append(f"- **Fully Correct Answers:** {correct_full_count}") if partial_correct_count != 'N/A' and partial_correct_count > 0 : md_content.append(f"- **Partially Correct Answers:** {partial_correct_count}") md_content.append(f"- **Incorrectly Answered (Choice Made):** {incorrect_choice_count}") md_content.append(f"- **Skipped Questions:** {skipped_count}") md_content.append(f"- **API/Parse Failures:** {failures_count}") md_content.append(f"- **Total Questions Processed:** {total_processed}") if unmapped_count > 0: md_content.append(f"- **Unmapped Section Questions:** {unmapped_count} *(Not included in section breakdown)*") md_content.append("\n### Detailed Score Calculation by Question Type") question_type_breakdown = summary.get("question_type_breakdown", {}) if question_type_breakdown: sorted_q_types = sorted(question_type_breakdown.keys()) for q_type in sorted_q_types: stats = question_type_breakdown[q_type] q_type_display = q_type.replace('_', ' ').title() max_score_per_q = stats.get('max_score_per_question', 0) correct_count_q = stats.get('correct_full', 0) partial_count_q = stats.get('partial_correct', 0) incorrect_count_q = stats.get('incorrect_choice', 0) skipped_count_q = stats.get('skipped', 0) api_fail_count_q = stats.get('api_parse_failures', 0) score_q = stats.get('score', 0) calculation_parts = [] if correct_count_q > 0: calculation_parts.append(f"{correct_count_q} Correct (+{max_score_per_q})") if partial_count_q > 0: # For partial, we can't easily show the exact score per question without more detail # For now, just indicate partials. calculation_parts.append(f"{partial_count_q} Partial") if incorrect_count_q > 0: # Need to know penalty for incorrect. Assuming -1 for MCQ_SINGLE_CORRECT, -2 for MCQ_MULTIPLE_CORRECT # For INTEGER, penalty is 0. This needs to be more robust if penalties vary. penalty_per_incorrect = 0 if q_type == "MCQ_SINGLE_CORRECT": penalty_per_incorrect = -1 elif q_type == "MCQ_MULTIPLE_CORRECT": penalty_per_incorrect = -2 calculation_parts.append(f"{incorrect_count_q} Incorrect ({penalty_per_incorrect})") if skipped_count_q > 0: calculation_parts.append(f"{skipped_count_q} Skipped (0)") if api_fail_count_q > 0: # Assuming -1 for API/Parse failures for non-integer types, 0 for integer penalty_per_api_fail = -1 if q_type == "INTEGER": penalty_per_api_fail = 0 calculation_parts.append(f"{api_fail_count_q} API/Parse Fail ({penalty_per_api_fail})") calculation_str = " + ".join(part for part in calculation_parts if part) if not calculation_str: calculation_str = "No questions of this type processed or all had 0 score change." md_content.append(f"**{q_type_display} ({stats.get('count', 0)} questions):** {score_q} marks") md_content.append(f" *Calculation:* {calculation_str} = {score_q}") else: md_content.append("No question type breakdown available.") md_content.append("\n### Section Breakdown") md_content.append("| Section | Score | Fully Correct | Partially Correct | Incorrect Choice | Skipped | API/Parse Failures |") md_content.append("|---------------|-------|---------------|-------------------|------------------|---------|--------------------|") section_breakdown = summary.get("section_breakdown", {}) sorted_section_names = sorted(section_breakdown.keys()) if not sorted_section_names and section_breakdown: logging.warning("Could not sort section names for Markdown summary; using unsorted.") sorted_section_names = list(section_breakdown.keys()) for section_name in sorted_section_names: stats = section_breakdown.get(section_name, {}) score = stats.get('score', 'N/A') s_correct = stats.get('correct', 'N/A') s_partial = stats.get('partial_correct', 'N/A') s_incorrect = stats.get('incorrect', 'N/A') s_skipped = stats.get('skipped', 'N/A') s_failures = stats.get('api_parse_failures', 'N/A') display_section_name = section_name.replace('_', ' ') md_content.append(f"| {display_section_name:<13} | {score:<5} | {s_correct:<13} | {s_partial:<17} | {s_incorrect:<16} | {s_skipped:<7} | {s_failures:<18} |") if not sorted_section_names: md_content.append("| No section data available | N/A | N/A | N/A | N/A | N/A | N/A |") # Fallback for simple accuracy (if exam scoring wasn't applicable or failed) elif "accuracy_on_parsed" in summary: md_content.append("## Simple Accuracy Results (Fallback)") md_content.append(f"- **Accuracy (on successfully parsed non-skipped):** {summary.get('accuracy_on_parsed', 'N/A'):.4f}") md_content.append(f"- **Total Processed Attempts:** {summary.get('total_processed_attempts', 'N/A')}") # Add other relevant simple stats if available else: md_content.append("## Summary") md_content.append("*(No specific Exam Scoring or Accuracy metrics found in summary)*") with open(filepath, 'w') as f: f.write("\n".join(md_content)) logging.info(f"Markdown summary saved to {filepath}") except IOError as e: logging.error(f"Failed to save markdown summary to {filepath}: {e}") except Exception as e: logging.error(f"Unexpected error generating or saving markdown summary to {filepath}: {e}") def run_benchmark( config: dict, api_key: str, model_to_run: str, # Changed from models_override output_dir_override: str | None = None, exam_name_choice: str | None = None, # Changed from exam_name_filter exam_year_choice: str | None = None, # Changed from exam_year_filter question_ids_str: str | None = None # New argument ): """Runs the benchmark evaluation loop with incremental saving and retries.""" # Determine models to run - now it's a single model models_to_run = [model_to_run] # Benchmark will run for the single specified model logging.info(f"Target model for this run: {model_to_run}") # Determine base output directory base_output_dir = output_dir_override if output_dir_override else config.get("results_base_dir", "results") os.makedirs(base_output_dir, exist_ok=True) # Load dataset dataset_path = config.get("dataset_path", ".") # Default to current dir if not specified try: # Load the dataset using the loading script from the specified path # Ensure the 'image' column is decoded # Explicitly specify data_files and data_dir for local loading. # data_dir should be the project root ('.') when loading a local script, # as the script is copied to a cache and needs to know where the actual data is. dataset = load_dataset(dataset_path, split='test', data_files={'test': 'data/metadata.jsonl'}, data_dir=os.getcwd(), trust_remote_code=True, download_mode="force_redownload") dataset = dataset.cast_column("image", HFImage(decode=True)) # Ensure images are loaded as PIL logging.info(f"Dataset loaded successfully from path: {dataset_path}. Original number of questions: {len(dataset)}") except Exception as e: logging.error(f"Failed to load dataset from path '{dataset_path}': {e}") logging.error("Ensure the path is correct and 'jee_neet_benchmark_dataset.py' exists.") return # Filter dataset based on choices original_dataset_size = len(dataset) # Filter by exam_name if exam_name_choice and exam_name_choice.lower() != "all": logging.info(f"Filtering dataset for exam_name: '{exam_name_choice}'") dataset = dataset.filter(lambda example: example.get('exam_name') == exam_name_choice) logging.info(f"Dataset size after exam_name filter: {len(dataset)} questions.") # Filter by exam_year if exam_year_choice and exam_year_choice.lower() != "all": try: filter_year_int = int(exam_year_choice) logging.info(f"Filtering dataset for exam_year: {filter_year_int}") dataset = dataset.filter(lambda example: example.get('exam_year') == filter_year_int) logging.info(f"Dataset size after exam_year filter: {len(dataset)} questions.") except ValueError: logging.error(f"Invalid exam_year provided: '{exam_year_choice}'. Must be an integer or 'all'. Year filtering skipped.") # Filter by specific question IDs if provided if question_ids_str: try: target_question_ids = {q_id.strip() for q_id in question_ids_str.split(',') if q_id.strip()} if target_question_ids: logging.info(f"Filtering dataset for specific question IDs: {target_question_ids}") dataset = dataset.filter(lambda example: example.get('question_id') in target_question_ids) logging.info(f"Dataset size after question_id filter: {len(dataset)} questions.") else: logging.warning("Empty or invalid question_ids string provided. No question ID filtering applied.") except Exception as e: logging.error(f"Error processing question_ids_str '{question_ids_str}': {e}. No question ID filtering applied.") if len(dataset) < original_dataset_size: logging.info(f"Final dataset size after all filters: {len(dataset)} (originally {original_dataset_size}).") if len(dataset) == 0: logging.warning("No questions to process after filtering. Skipping model benchmark.") return # --- Main Loop: Iterate through models --- for model_id in models_to_run: # total_questions here should refer to the length of the potentially filtered dataset current_total_questions = len(dataset) logging.info(f"--- Starting benchmark for model: {model_id} (Processing {current_total_questions} questions) ---") # Create timestamped output directory for this model run timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") safe_model_name = model_id.replace('/', '_') # model_id is already the single model_to_run dir_name_parts = [safe_model_name] # Append exam name and year to directory if they are specific (not "all") current_exam_name_for_dir = exam_name_choice if exam_name_choice and exam_name_choice.lower() != "all" else "AllExams" current_exam_year_for_dir = exam_year_choice if exam_year_choice and exam_year_choice.lower() != "all" else "AllYears" if current_exam_name_for_dir != "AllExams": dir_name_parts.append(current_exam_name_for_dir.replace('/', '_')) if current_exam_year_for_dir != "AllYears": dir_name_parts.append(str(current_exam_year_for_dir)) # Already string or 'all' dir_name_parts.append(timestamp) model_output_dir_name = "_".join(filter(None, dir_name_parts)) # Filter out None if any part was None model_output_dir = os.path.join(base_output_dir, model_output_dir_name) os.makedirs(model_output_dir, exist_ok=True) predictions_path = os.path.join(model_output_dir, "predictions.jsonl") summary_details_path = os.path.join(model_output_dir, "summary.jsonl") # New file for per-question summary details markdown_summary_path = os.path.join(model_output_dir, "summary.md") # Define path for MD summary logging.info(f"Results for {model_id} will be saved to: {model_output_dir}") model_results = [] # Stores results in memory for final calculation failed_questions_data = [] # Stores data needed to retry failed questions # Counters for tqdm postfix initial_correct_count = 0 initial_incorrect_count = 0 initial_skipped_count = 0 initial_parse_fail_count = 0 initial_api_fail_count = 0 # --- Initial Pass: Iterate through questions --- pbar_initial = tqdm(dataset, desc=f"Processing {model_id} (Initial Pass)", total=current_total_questions) for example in pbar_initial: question_id = example["question_id"] subject = example["subject"] exam_name_from_data = example.get("exam_name", "UNKNOWN_EXAM") # Get exam_name from data question_type_from_data = example.get("question_type", "MCQ_SINGLE_CORRECT") # Get question_type image: PILImage.Image = example["image"] truth = json.loads(example["correct_answer"]) # Parse the JSON string back to a list/list of lists result_data = { "question_id": question_id, "subject": subject, "exam_name": exam_name_from_data, # Store for evaluation "question_type": question_type_from_data, # Store for evaluation "ground_truth": truth, "predicted_answer": None, "raw_response": None, "parse_successful": False, "api_call_successful": False, "error": None, "attempt": 1, # "api_cost": None, # Removed "previous_raw_response_on_reprompt": None # For task 1 } try: # --- Initial API Call --- logging.info(f"Attempting API call for question: {question_id} with model: {model_id}") # Pass exam_name_from_data and question_type_from_data to get_openrouter_prediction parsed_answer, raw_response = get_openrouter_prediction( # No longer expect api_cost model_identifier=model_id, api_key=api_key, image=image, exam_name=exam_name_from_data, # Use exam_name from current data item exam_year=str(example.get("exam_year", "UNKNOWN_YEAR")), # Use exam_year from data question_type=question_type_from_data, # Pass question_type max_tokens=config.get("max_tokens", 100), request_timeout=config.get("request_timeout", 60) ) api_success_attempt1 = True # If no exception, API call itself was successful parse_success_attempt1 = parsed_answer is not None raw_response_attempt1 = raw_response # result_data["api_cost"] = api_cost # Removed # --- Re-prompt Logic --- if api_success_attempt1 and not parse_success_attempt1 and raw_response_attempt1 is not None: logging.warning(f"Question {question_id}: Initial parse failed. Attempting re-prompt.") result_data["previous_raw_response_on_reprompt"] = raw_response_attempt1 # Store previous response try: # Assuming re-prompt might also have a cost parsed_answer_rp, raw_response_rp = get_openrouter_prediction( # No longer expect api_cost model_identifier=model_id, api_key=api_key, previous_raw_response=raw_response_attempt1, question_type=question_type_from_data, # Pass question_type for re-prompt max_tokens=config.get("max_tokens", 100), request_timeout=config.get("request_timeout", 60) ) # Process parsed_answer_rp before assignment if isinstance(parsed_answer_rp, list): processed_answer_rp = [str(item) for item in parsed_answer_rp] else: processed_answer_rp = parsed_answer_rp result_data.update({ "predicted_answer": processed_answer_rp, "raw_response": raw_response_rp, "parse_successful": processed_answer_rp is not None, "api_call_successful": True, "attempt": 2 # Assuming api_cost_rp would be added to existing api_cost or handled separately }) # if api_cost_rp is not None: # Add re-prompt cost if available # Removed # result_data["api_cost"] = (result_data.get("api_cost") or 0.0) + api_cost_rp # Removed logging.info(f"Question {question_id}: Re-prompt {'succeeded' if result_data['parse_successful'] else 'failed to parse'}.") except Exception as e_rp: logging.error(f"Re-prompt API call failed for question {question_id}: {e_rp}") result_data.update({ "predicted_answer": None, "raw_response": raw_response_attempt1, "parse_successful": False, "api_call_successful": True, "error": f"Initial parse failed. Re-prompt API call failed: {str(e_rp)}", "attempt": 1 }) else: current_error = result_data.get("error") api_actually_successful = api_success_attempt1 if api_success_attempt1 and raw_response_attempt1 is None and parsed_answer is None: current_error = "Initial API call returned empty content. Re-prompt skipped." # Process parsed_answer before assignment if isinstance(parsed_answer, list): processed_initial_answer = [str(item) for item in parsed_answer] else: processed_initial_answer = parsed_answer result_data.update({ "predicted_answer": processed_initial_answer, "raw_response": raw_response_attempt1, "parse_successful": parse_success_attempt1, "api_call_successful": api_actually_successful, "error": current_error, "attempt": 1 }) # Calculate score details for the current result_data score_details = calculate_single_question_score_details(result_data) result_data['marks_awarded'] = score_details.get('marks_awarded') result_data['evaluation_status'] = score_details.get('evaluation_status') # Append evaluation details to summary.jsonl summary_detail_data = { "question_id": question_id, "marks_awarded": result_data['marks_awarded'], "evaluation_status": result_data['evaluation_status'], "predicted_answer": result_data['predicted_answer'], # Add predicted_answer "ground_truth": result_data['ground_truth'], # Add ground_truth "attempt": result_data['attempt'] } append_summary_detail(summary_detail_data, summary_details_path) model_results.append(result_data) append_prediction(result_data, predictions_path) # append_prediction now handles removing evaluation fields final_parsed_answer = result_data["predicted_answer"] log_message_prefix = f"Question {question_id}:" log_message_suffix = f"(Attempt {result_data['attempt']})" if not result_data["api_call_successful"]: initial_api_fail_count += 1 logging.info(f"{MAGENTA}{log_message_prefix} API Call Failed {log_message_suffix}{RESET}") elif not result_data["parse_successful"]: initial_parse_fail_count += 1 logging.info(f"{CYAN}{log_message_prefix} Failed to parse answer {log_message_suffix}{RESET}") elif final_parsed_answer == "SKIP": initial_skipped_count += 1 logging.info(f"{YELLOW}{log_message_prefix} Skipped {log_message_suffix}{RESET}") else: # This 'else' means API call was successful, parse was successful, and predicted_answer was not "SKIP" (by model) marks_awarded = result_data.get('marks_awarded', 0) evaluation_status_value = result_data.get('evaluation_status') # Prepare evaluation_status for checks and logging is_considered_correct = False log_display_status = "N/A" # What to show in the log for status status_check_string = "" # Uppercase string for "CORRECT" and "SKIPPED" checks if evaluation_status_value is True: is_considered_correct = True log_display_status = "True (Boolean)" status_check_string = "CORRECT_TRUE_BOOLEAN" # Contains "CORRECT" elif isinstance(evaluation_status_value, str): log_display_status = evaluation_status_value # Log original string status_check_string = evaluation_status_value.strip().upper() if "CORRECT" in status_check_string: is_considered_correct = True elif evaluation_status_value is None: log_display_status = "None" status_check_string = "NONE_STATUS" else: # Other types log_display_status = str(evaluation_status_value) status_check_string = str(evaluation_status_value).strip().upper() # Define known "skipped by evaluation" statuses (uppercase) known_eval_skip_statuses = ["SKIPPED_BY_EVAL", "SKIPPED"] if is_considered_correct: initial_correct_count +=1 logging.info(f"{GREEN}{log_message_prefix} Correct (log) - Marks: {marks_awarded}, Status: {log_display_status} {log_message_suffix}{RESET}") elif status_check_string in known_eval_skip_statuses: initial_skipped_count += 1 logging.info(f"{YELLOW}{log_message_prefix} Skipped by Eval - Marks: {marks_awarded}, Status: {log_display_status} {log_message_suffix}{RESET}") else: # All other statuses are treated as incorrect initial_incorrect_count += 1 logging.info(f"{RED}{log_message_prefix} Incorrect (log) - Marks: {marks_awarded}, Status: {log_display_status} {log_message_suffix}{RESET}") pbar_initial.set_postfix_str(f"✓:{initial_correct_count} ✗:{initial_incorrect_count} S:{initial_skipped_count} P!:{initial_parse_fail_count} A!:{initial_api_fail_count}") except Exception as e: initial_api_fail_count +=1 # Assume API failure if exception at this level pbar_initial.set_postfix_str(f"✓:{initial_correct_count} ✗:{initial_incorrect_count} S:{initial_skipped_count} P!:{initial_parse_fail_count} A!:{initial_api_fail_count}") logging.error(f"Initial API call failed for question {question_id} (Attempt 1): {e}") result_data["error"] = str(e) result_data["api_call_successful"] = False failed_questions_data.append(example) # Store original example for retry pass pbar_initial.close() # Ensure tqdm finishes cleanly # --- Retry Pass for questions with initial API failures --- if failed_questions_data: logging.info(f"--- Retrying {len(failed_questions_data)} questions with initial API failures for model: {model_id} ---") retry_correct_count = 0 retry_incorrect_count = 0 retry_skipped_count = 0 retry_parse_fail_count = 0 retry_api_fail_count = 0 pbar_retry = tqdm(failed_questions_data, desc=f"Processing {model_id} (API Retry Pass)", total=len(failed_questions_data)) for example_retry in pbar_retry: question_id_retry = example_retry["question_id"] subject_retry = example_retry["subject"] exam_name_retry = example_retry.get("exam_name", "UNKNOWN_EXAM") question_type_retry = example_retry.get("question_type", "MCQ_SINGLE_CORRECT") image_retry: PILImage.Image = example_retry["image"] truth_retry = example_retry["correct_answer"] result_data_retry = { "question_id": question_id_retry, "subject": subject_retry, "exam_name": exam_name_retry, "question_type": question_type_retry, "ground_truth": truth_retry, "predicted_answer": None, "raw_response": None, "parse_successful": False, "api_call_successful": False, "error": "Initial API call failed.", # Pre-fill error "attempt": 2, # "api_cost": None, # Removed "previous_raw_response_on_reprompt_after_api_retry": None # For task 1 } try: logging.info(f"Attempting API call for question: {question_id_retry} (API Retry Pass) with model: {model_id}") parsed_answer_retry, raw_response_retry = get_openrouter_prediction( # No longer expect api_cost model_identifier=model_id, api_key=api_key, image=image_retry, exam_name=exam_name_retry, exam_year=str(example_retry.get("exam_year", "UNKNOWN_YEAR")), question_type=question_type_retry, max_tokens=config.get("max_tokens", 100), request_timeout=config.get("request_timeout", 60) ) api_success_attempt2 = True parse_success_attempt2 = parsed_answer_retry is not None raw_response_attempt2 = raw_response_retry # result_data_retry["api_cost"] = api_cost_retry # Removed if api_success_attempt2 and not parse_success_attempt2 and raw_response_attempt2 is not None: logging.warning(f"Question {question_id_retry}: API Retry succeeded, but parse failed. Attempting re-prompt.") result_data_retry["previous_raw_response_on_reprompt_after_api_retry"] = raw_response_attempt2 # Store previous response try: # Assuming re-prompt might also have a cost parsed_answer_rp2, raw_response_rp2 = get_openrouter_prediction( # No longer expect api_cost model_identifier=model_id, api_key=api_key, previous_raw_response=raw_response_attempt2, question_type=question_type_retry, max_tokens=config.get("max_tokens", 100), request_timeout=config.get("request_timeout", 60) ) # Process parsed_answer_rp2 before assignment if isinstance(parsed_answer_rp2, list): processed_answer_rp2 = [str(item) for item in parsed_answer_rp2] else: processed_answer_rp2 = parsed_answer_rp2 result_data_retry.update({ "predicted_answer": processed_answer_rp2, "raw_response": raw_response_rp2, "parse_successful": processed_answer_rp2 is not None, "api_call_successful": True, "error": None if processed_answer_rp2 is not None else "Re-prompt after API retry failed to parse.", "attempt": 3 }) # if api_cost_rp2 is not None: # Add re-prompt cost if available # Removed # result_data_retry["api_cost"] = (result_data_retry.get("api_cost") or 0.0) + api_cost_rp2 # Removed logging.info(f"Question {question_id_retry}: API Retry + Re-prompt {'succeeded' if result_data_retry['parse_successful'] else 'failed to parse'}.") except Exception as e_rp2: logging.error(f"Re-prompt API call failed for question {question_id_retry} after API retry: {e_rp2}") result_data_retry.update({ "error": f"API retry ok, parse failed. Re-prompt API call failed: {str(e_rp2)}", "attempt": 2 # Stay at attempt 2 as re-prompt itself failed }) else: current_error_retry = result_data_retry.get("error") if api_success_attempt2 and raw_response_attempt2 is None and parsed_answer_retry is None: current_error_retry = "API retry call returned empty content. Re-prompt skipped." # Process parsed_answer_retry before assignment if isinstance(parsed_answer_retry, list): processed_retry_answer = [str(item) for item in parsed_answer_retry] else: processed_retry_answer = parsed_answer_retry result_data_retry.update({ "predicted_answer": processed_retry_answer, "raw_response": raw_response_attempt2, "parse_successful": parse_success_attempt2, "api_call_successful": api_success_attempt2, "error": None if parse_success_attempt2 else current_error_retry, # Clear initial error if parse now ok "attempt": 2 }) except Exception as e_retry_api: logging.error(f"API call failed permanently for question {question_id_retry} (Attempt 2 API Retry): {e_retry_api}") result_data_retry["error"] = f"Initial API fail. Retry API call also failed: {str(e_retry_api)}" result_data_retry["api_call_successful"] = False # Calculate score details for the current result_data_retry score_details_retry = calculate_single_question_score_details(result_data_retry) result_data_retry['marks_awarded'] = score_details_retry.get('marks_awarded') result_data_retry['evaluation_status'] = score_details_retry.get('evaluation_status') # Append evaluation details to summary.jsonl for retry pass summary_detail_data_retry = { "question_id": question_id_retry, "marks_awarded": result_data_retry['marks_awarded'], "evaluation_status": result_data_retry['evaluation_status'], "predicted_answer": result_data_retry['predicted_answer'], # Add predicted_answer "ground_truth": result_data_retry['ground_truth'], # Add ground_truth "attempt": result_data_retry['attempt'] } append_summary_detail(summary_detail_data_retry, summary_details_path) model_results.append(result_data_retry) append_prediction(result_data_retry, predictions_path) # append_prediction now handles removing evaluation fields # Logging for retry pass log_message_prefix_retry = f"Question {question_id_retry} (Retry):" log_message_suffix_retry = f"(Attempt {result_data_retry['attempt']})" final_parsed_answer_retry = result_data_retry["predicted_answer"] if not result_data_retry["api_call_successful"]: retry_api_fail_count += 1 logging.info(f"{MAGENTA}{log_message_prefix_retry} API Call Failed {log_message_suffix_retry}{RESET}") elif not result_data_retry["parse_successful"]: retry_parse_fail_count += 1 logging.info(f"{CYAN}{log_message_prefix_retry} Failed to parse answer {log_message_suffix_retry}{RESET}") elif final_parsed_answer_retry == "SKIP": retry_skipped_count += 1 logging.info(f"{YELLOW}{log_message_prefix_retry} Skipped {log_message_suffix_retry}{RESET}") else: # This 'else' means API call was successful, parse was successful, and predicted_answer was not "SKIP" (by model) marks_awarded_retry = result_data_retry.get('marks_awarded', 0) evaluation_status_value_retry = result_data_retry.get('evaluation_status') is_considered_correct_retry = False log_display_status_retry = "N/A" status_check_string_retry = "" if evaluation_status_value_retry is True: is_considered_correct_retry = True log_display_status_retry = "True (Boolean)" status_check_string_retry = "CORRECT_TRUE_BOOLEAN" elif isinstance(evaluation_status_value_retry, str): log_display_status_retry = evaluation_status_value_retry status_check_string_retry = evaluation_status_value_retry.strip().upper() if "CORRECT" in status_check_string_retry: is_considered_correct_retry = True elif evaluation_status_value_retry is None: log_display_status_retry = "None" status_check_string_retry = "NONE_STATUS" else: # Other types log_display_status_retry = str(evaluation_status_value_retry) status_check_string_retry = str(evaluation_status_value_retry).strip().upper() known_eval_skip_statuses_retry = ["SKIPPED_BY_EVAL", "SKIPPED"] if is_considered_correct_retry: retry_correct_count +=1 logging.info(f"{GREEN}{log_message_prefix_retry} Correct (log) - Marks: {marks_awarded_retry}, Status: {log_display_status_retry} {log_message_suffix_retry}{RESET}") elif status_check_string_retry in known_eval_skip_statuses_retry: retry_skipped_count += 1 logging.info(f"{YELLOW}{log_message_prefix_retry} Skipped by Eval - Marks: {marks_awarded_retry}, Status: {log_display_status_retry} {log_message_suffix_retry}{RESET}") else: retry_incorrect_count += 1 logging.info(f"{RED}{log_message_prefix_retry} Incorrect (log) - Marks: {marks_awarded_retry}, Status: {log_display_status_retry} {log_message_suffix_retry}{RESET}") pbar_retry.set_postfix_str(f"✓:{retry_correct_count} ✗:{retry_incorrect_count} S:{retry_skipped_count} P!:{retry_parse_fail_count} A!:{retry_api_fail_count}") pbar_retry.close() # Ensure tqdm finishes cleanly # --- Final Evaluation for the current model --- logging.info(f"--- Calculating final results for model: {model_id} ---") # Always use calculate_exam_scores now evaluation_summary = calculate_exam_scores(model_results) # model_results modified in-place # Use the actual choices for the summary, defaulting to "All" if not specified or "all" summary_exam_name_display = exam_name_choice if exam_name_choice and exam_name_choice.lower() != "all" else "All_Exams" summary_exam_year_display = exam_year_choice if exam_year_choice and exam_year_choice.lower() != "all" else "All_Years" summary = { "model_name": model_id, # This is model_to_run "exam_name": summary_exam_name_display, "exam_year": summary_exam_year_display, "question_ids_filter": question_ids_str if question_ids_str else "None", # Add question ID filter info "timestamp": timestamp, "total_questions_in_dataset": original_dataset_size, # Total before any filtering "total_questions_processed_in_run": len(dataset), # Total after filtering for this run **evaluation_summary } logging.info(f"Overall Score: {summary.get('overall_score')}") logging.info(f"Full Correct: {summary.get('overall_correct_full')}, Partial Correct: {summary.get('overall_partial_correct')}, Incorrect Choice: {summary.get('overall_incorrect_choice')}, Skipped: {summary.get('overall_skipped')}, API/Parse Failures: {summary.get('overall_api_parse_failures')}") logging.info(f"--- Results Summary for model: {model_id} ---") logging.info(json.dumps(summary, indent=2, sort_keys=True)) logging.info("-------------------------------------") # The model_results list was modified in-place by calculate_exam_scores # to include evaluation_status and marks_awarded. # predictions.jsonl is now written incrementally without evaluation details. # No need to overwrite predictions.jsonl here. # Save final summary (Markdown) for the current model # The summary.json file is no longer generated as per user request. generate_markdown_summary(summary, markdown_summary_path) # Call the new function logging.info("Benchmark run completed.") if __name__ == "__main__": # Get available choices for arguments # Assuming benchmark_config.yaml is in a 'configs' directory relative to script or a fixed path # Assuming metadata.jsonl is in a 'data' directory relative to script or a fixed path default_config_path = "configs/benchmark_config.yaml" default_metadata_path = "data/metadata.jsonl" available_models = get_available_models(default_config_path) available_exam_names, available_exam_years = get_available_exam_details(default_metadata_path) # Add "all" option for exams and years exam_name_choices = ["all"] + available_exam_names exam_year_choices = ["all"] + available_exam_years parser = argparse.ArgumentParser(description="Run JEE/NEET LLM Benchmark.") parser.add_argument( "--config", type=str, default=default_config_path, help=f"Path to the benchmark configuration YAML file (default: {default_config_path})." ) parser.add_argument( "--model", # Changed from --models type=str, required=True if available_models else False, # Required if models are available choices=available_models if available_models else None, help="Select the model to run." + (f" Available: {', '.join(available_models)}." if available_models else " (No models found in config)") ) parser.add_argument( "--output_dir", type=str, help="Override the base output directory specified in the config file." ) parser.add_argument( "--exam_name", type=str, default="all", choices=exam_name_choices if exam_name_choices else ["all"], help="Select the exam name to run, or 'all' for all exams." + (f" Available: {', '.join(available_exam_names)}." if available_exam_names else "") ) parser.add_argument( "--exam_year", type=str, default="all", choices=exam_year_choices if exam_year_choices else ["all"], help="Select the exam year to run, or 'all' for all years." + (f" Available: {', '.join(available_exam_years)}." if available_exam_years else "") ) parser.add_argument( "--question_ids", type=str, default=None, help="Optional: Comma-separated list of specific question IDs to run (e.g., ID1,ID2,ID3)." ) args = parser.parse_args() # Dynamically update config path if user provides a different one if args.config != default_config_path: logging.info(f"User provided config path: {args.config}. Re-fetching models if necessary.") # If models were not found with default, or if user specified a different config, try to load models from it. if not available_models or args.model not in available_models: user_config_models = get_available_models(args.config) if args.model not in user_config_models: logging.error(f"Selected model '{args.model}' not found in the specified config '{args.config}'. Exiting.") exit(1) # Or handle more gracefully # Potentially update choices if parser allowed any string due to no initial models # This is complex with argparse after parsing. For now, we rely on the initial check or error out. try: # Load API key first - fail fast if not set api_key = load_api_key() # Load configuration using the (potentially user-overridden) config path config = load_config(args.config) # Ensure the selected model is valid if it was dynamically loaded if args.model not in config.get("openrouter_models", []): # This check is important if args.model was accepted because available_models was initially empty if args.model not in get_available_models(args.config): # Double check with the final config logging.error(f"The model '{args.model}' specified is not listed in the config file '{args.config}'. Please check the model name or the config file.") exit(1) # Run the benchmark run_benchmark( config=config, api_key=api_key, model_to_run=args.model, output_dir_override=args.output_dir, exam_name_choice=args.exam_name, exam_year_choice=args.exam_year, question_ids_str=args.question_ids ) except (ValueError, FileNotFoundError, yaml.YAMLError) as e: logging.error(f"Setup failed: {e}") except Exception as e: logging.error(f"An unexpected error occurred during benchmark execution: {e}", exc_info=True)