File size: 52,143 Bytes
de60742 ea74ed3 5891c9a de60742 5891c9a de60742 6bc6a63 5891c9a de60742 5891c9a de60742 ea74ed3 a2cb2dd de60742 ea74ed3 a2cb2dd ea74ed3 de60742 ea74ed3 de60742 a2cb2dd de60742 a2cb2dd ea74ed3 a2cb2dd ea74ed3 a2cb2dd ea74ed3 a2cb2dd ea74ed3 c7f64e6 ea74ed3 45ee7d5 ea74ed3 c7f64e6 ea74ed3 c7f64e6 45ee7d5 ea74ed3 c7f64e6 6bc6a63 ea74ed3 6bc6a63 ea74ed3 a2cb2dd 6bc6a63 ea74ed3 a2cb2dd 6bc6a63 a2cb2dd 6bc6a63 ea74ed3 6bc6a63 ea74ed3 a2cb2dd ea74ed3 6bc6a63 ea74ed3 c7f64e6 6bc6a63 c7f64e6 6bc6a63 ea74ed3 a2cb2dd 6bc6a63 a2cb2dd 6bc6a63 c7f64e6 6bc6a63 a2cb2dd 6bc6a63 ea74ed3 6bc6a63 ea74ed3 6bc6a63 ea74ed3 de60742 ea74ed3 de60742 5891c9a ea74ed3 de60742 5891c9a de60742 ea74ed3 de60742 ea74ed3 de60742 1ab1a75 de60742 c7f64e6 de60742 5891c9a c7f64e6 5891c9a c7f64e6 5891c9a c7f64e6 5891c9a c7f64e6 de60742 ea74ed3 de60742 5891c9a de60742 ea74ed3 5891c9a c7f64e6 5891c9a c7f64e6 5891c9a c7f64e6 ea74ed3 a2cb2dd ea74ed3 5891c9a ea74ed3 5891c9a de60742 6bc6a63 ea74ed3 1ab1a75 ea74ed3 6bc6a63 ea74ed3 6bc6a63 ea74ed3 45ee7d5 ea74ed3 de60742 ea74ed3 45ee7d5 6bc6a63 45ee7d5 de60742 6bc6a63 ea74ed3 6bc6a63 ea74ed3 45ee7d5 ea74ed3 c7f64e6 ea74ed3 45ee7d5 ea74ed3 45ee7d5 ea74ed3 6bc6a63 ea74ed3 5891c9a ea74ed3 5891c9a 6bc6a63 5891c9a 45ee7d5 6bc6a63 45ee7d5 ea74ed3 45ee7d5 ea74ed3 6bc6a63 ea74ed3 6bc6a63 ea74ed3 6bc6a63 ea74ed3 de60742 6bc6a63 c7f64e6 6bc6a63 5891c9a c7f64e6 5891c9a ea74ed3 6bc6a63 c7f64e6 6bc6a63 ea74ed3 6bc6a63 5891c9a a2cb2dd ea74ed3 a2cb2dd ea74ed3 5891c9a de60742 5891c9a ea74ed3 6bc6a63 ea74ed3 5891c9a 6bc6a63 ea74ed3 5891c9a 6bc6a63 de60742 6bc6a63 45ee7d5 ea74ed3 de60742 ea74ed3 45ee7d5 ea74ed3 6bc6a63 ea74ed3 6bc6a63 45ee7d5 de60742 c7f64e6 6bc6a63 45ee7d5 ea74ed3 45ee7d5 ea74ed3 6bc6a63 ea74ed3 5891c9a 6bc6a63 5891c9a 6bc6a63 ea74ed3 45ee7d5 6bc6a63 ea74ed3 6bc6a63 ea74ed3 6bc6a63 c7f64e6 6bc6a63 5891c9a 6bc6a63 5891c9a 6bc6a63 ea74ed3 6bc6a63 5891c9a a2cb2dd 6bc6a63 a2cb2dd ea74ed3 5891c9a ea74ed3 6bc6a63 5891c9a 6bc6a63 5891c9a 6bc6a63 5891c9a 6bc6a63 5891c9a 6bc6a63 ea74ed3 6bc6a63 de60742 a2cb2dd ea74ed3 a2cb2dd ea74ed3 a2cb2dd ea74ed3 de60742 5891c9a de60742 5891c9a de60742 5891c9a de60742 5891c9a de60742 c7f64e6 5891c9a c7f64e6 5891c9a c7f64e6 de60742 5891c9a de60742 5891c9a de60742 5891c9a de60742 c7f64e6 5891c9a c7f64e6 de60742 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
import argparse
import yaml
import os
import json
import logging
import datetime # Added for timestamp
from typing import Dict, Any, List, Set, Tuple # Added for type hinting
from datasets import load_dataset, Image as HFImage # Import Image feature type
from tqdm import tqdm
from PIL import Image as PILImage # Import PIL for type hinting
# ANSI escape codes for colors
GREEN = '\033[92m'
RED = '\033[91m'
RESET = '\033[0m'
YELLOW = '\033[93m' # For skipped
CYAN = '\033[96m' # For parse failures
MAGENTA = '\033[95m' # For API failures
# Import local modules
from utils import load_api_key
from llm_interface import get_openrouter_prediction
# Import evaluation functions
from evaluation import calculate_accuracy, calculate_exam_scores, calculate_single_question_score_details
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def get_available_models(config_path: str) -> List[str]:
"""Loads models from the benchmark configuration YAML file."""
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
models = config.get("openrouter_models", [])
if not models:
logging.warning(f"No models found in {config_path} under 'openrouter_models'.")
return models
except FileNotFoundError:
logging.error(f"Configuration file not found at {config_path} for model retrieval.")
return []
except yaml.YAMLError as e:
logging.error(f"Error parsing configuration file {config_path} for model retrieval: {e}")
return []
except Exception as e:
logging.error(f"Unexpected error retrieving models from {config_path}: {e}")
return []
def get_available_exam_details(metadata_path: str) -> Tuple[List[str], List[str]]:
"""Reads metadata.jsonl to get unique exam names and years."""
exam_names: Set[str] = set()
exam_years: Set[str] = set()
try:
with open(metadata_path, 'r') as f:
for line in f:
try:
data = json.loads(line)
if 'exam_name' in data:
exam_names.add(data['exam_name'])
if 'exam_year' in data:
exam_years.add(str(data['exam_year']))
except json.JSONDecodeError:
logging.warning(f"Skipping malformed JSON line in {metadata_path}: {line.strip()}")
sorted_exam_names = sorted(list(exam_names))
sorted_exam_years = sorted(list(exam_years))
if not sorted_exam_names:
logging.warning(f"No exam names found in {metadata_path}.")
if not sorted_exam_years:
logging.warning(f"No exam years found in {metadata_path}.")
return sorted_exam_names, sorted_exam_years
except FileNotFoundError:
logging.error(f"Metadata file not found at {metadata_path}.")
return [], []
except Exception as e:
logging.error(f"Unexpected error reading or parsing {metadata_path}: {e}")
return [], []
def load_config(config_path: str) -> dict:
"""Loads the benchmark configuration from a YAML file."""
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
logging.info(f"Configuration loaded from {config_path}")
return config
except FileNotFoundError:
logging.error(f"Configuration file not found at {config_path}")
raise
except yaml.YAMLError as e:
logging.error(f"Error parsing configuration file {config_path}: {e}")
raise
def append_prediction(result: Dict[str, Any], filepath: str):
"""Appends a single prediction result to a JSONL file."""
# Create a copy to avoid modifying the original dict that might be used elsewhere
# and remove evaluation-specific fields before saving to predictions.jsonl
prediction_data = result.copy()
prediction_data.pop('marks_awarded', None)
prediction_data.pop('evaluation_status', None)
prediction_data.pop('predicted_answer', None) # Remove predicted_answer
prediction_data.pop('ground_truth', None) # Remove ground_truth
try:
with open(filepath, 'a') as f:
json.dump(prediction_data, f)
f.write('\n')
except IOError as e:
logging.error(f"Failed to append prediction to {filepath}: {e}")
except Exception as e:
logging.error(f"Unexpected error appending prediction to {filepath}: {e}")
def append_summary_detail(result_detail: Dict[str, Any], filepath: str):
"""Appends a single question's summary details (evaluation status, marks, predicted, truth) to a JSONL file."""
try:
with open(filepath, 'a') as f:
json.dump(result_detail, f)
f.write('\n')
except IOError as e:
logging.error(f"Failed to append summary detail to {filepath}: {e}")
except Exception as e:
logging.error(f"Unexpected error appending summary detail to {filepath}: {e}")
# Removed save_summary function as summary.json is no longer needed.
def generate_markdown_summary(summary: Dict[str, Any], filepath: str):
"""Generates a human-readable Markdown summary from the results dictionary."""
try:
md_content = []
model_name = summary.get("model_name", "N/A")
exam_name = summary.get("exam_name", "N/A")
exam_year = summary.get("exam_year", "N/A")
timestamp = summary.get("timestamp", "N/A")
total_questions_in_dataset = summary.get("total_questions_in_dataset", 0)
total_questions_processed_in_run = summary.get("total_questions_processed_in_run", 0)
filtered_questions_count = 0
if total_questions_in_dataset > 0 and total_questions_processed_in_run > 0:
filtered_questions_count = total_questions_in_dataset - total_questions_processed_in_run
md_content.append(f"# Benchmark Results: {model_name}")
if exam_name and exam_name not in ["N/A", "All_Exams"]: # Only display if a specific exam was targeted
md_content.append(f"**Exam Name:** {exam_name}")
if exam_year and exam_year not in ["N/A", "All_Years"]: # Only display if a specific year was targeted
md_content.append(f"**Exam Year:** {exam_year}")
md_content.append(f"**Timestamp:** {timestamp}")
md_content.append(f"**Total Questions in Dataset:** {total_questions_in_dataset if total_questions_in_dataset > 0 else 'N/A'}")
if filtered_questions_count > 0:
md_content.append(f"**Questions Filtered Out:** {filtered_questions_count}")
md_content.append(f"**Total Questions Processed in this Run:** {total_questions_processed_in_run}")
# md_content.append(f"**Estimated Total API Cost:** ${total_api_cost:.6f}") # Removed
md_content.append("\n---\n")
# Check if NEET results are present (or any dataset with overall_score and section_breakdown)
if "overall_score" in summary and "section_breakdown" in summary: # Generic check for score-based summary
total_processed = summary.get("total_questions_processed", 0)
overall_score = summary.get('overall_score', 'N/A')
total_possible_score = summary.get('total_possible_score_for_processed_questions', 'N/A')
correct_full_count = summary.get('overall_correct_full', 'N/A')
partial_correct_count = summary.get('overall_partial_correct', 'N/A')
incorrect_choice_count = summary.get('overall_incorrect_choice', 'N/A')
skipped_count = summary.get('overall_skipped', 'N/A')
failures_count = summary.get('overall_api_parse_failures', 'N/A')
unmapped_count = summary.get('unmapped_section_questions', 'N/A')
md_content.append("## Exam Scoring Results")
md_content.append(f"**Overall Score:** **{overall_score}** / **{total_possible_score}**")
md_content.append(f"- **Fully Correct Answers:** {correct_full_count}")
if partial_correct_count != 'N/A' and partial_correct_count > 0 :
md_content.append(f"- **Partially Correct Answers:** {partial_correct_count}")
md_content.append(f"- **Incorrectly Answered (Choice Made):** {incorrect_choice_count}")
md_content.append(f"- **Skipped Questions:** {skipped_count}")
md_content.append(f"- **API/Parse Failures:** {failures_count}")
md_content.append(f"- **Total Questions Processed:** {total_processed}")
if unmapped_count > 0:
md_content.append(f"- **Unmapped Section Questions:** {unmapped_count} *(Not included in section breakdown)*")
md_content.append("\n### Detailed Score Calculation by Question Type")
question_type_breakdown = summary.get("question_type_breakdown", {})
if question_type_breakdown:
sorted_q_types = sorted(question_type_breakdown.keys())
for q_type in sorted_q_types:
stats = question_type_breakdown[q_type]
q_type_display = q_type.replace('_', ' ').title()
max_score_per_q = stats.get('max_score_per_question', 0)
correct_count_q = stats.get('correct_full', 0)
partial_count_q = stats.get('partial_correct', 0)
incorrect_count_q = stats.get('incorrect_choice', 0)
skipped_count_q = stats.get('skipped', 0)
api_fail_count_q = stats.get('api_parse_failures', 0)
score_q = stats.get('score', 0)
calculation_parts = []
if correct_count_q > 0:
calculation_parts.append(f"{correct_count_q} Correct (+{max_score_per_q})")
if partial_count_q > 0:
# For partial, we can't easily show the exact score per question without more detail
# For now, just indicate partials.
calculation_parts.append(f"{partial_count_q} Partial")
if incorrect_count_q > 0:
# Need to know penalty for incorrect. Assuming -1 for MCQ_SINGLE_CORRECT, -2 for MCQ_MULTIPLE_CORRECT
# For INTEGER, penalty is 0. This needs to be more robust if penalties vary.
penalty_per_incorrect = 0
if q_type == "MCQ_SINGLE_CORRECT": penalty_per_incorrect = -1
elif q_type == "MCQ_MULTIPLE_CORRECT": penalty_per_incorrect = -2
calculation_parts.append(f"{incorrect_count_q} Incorrect ({penalty_per_incorrect})")
if skipped_count_q > 0:
calculation_parts.append(f"{skipped_count_q} Skipped (0)")
if api_fail_count_q > 0:
# Assuming -1 for API/Parse failures for non-integer types, 0 for integer
penalty_per_api_fail = -1
if q_type == "INTEGER": penalty_per_api_fail = 0
calculation_parts.append(f"{api_fail_count_q} API/Parse Fail ({penalty_per_api_fail})")
calculation_str = " + ".join(part for part in calculation_parts if part)
if not calculation_str:
calculation_str = "No questions of this type processed or all had 0 score change."
md_content.append(f"**{q_type_display} ({stats.get('count', 0)} questions):** {score_q} marks")
md_content.append(f" *Calculation:* {calculation_str} = {score_q}")
else:
md_content.append("No question type breakdown available.")
md_content.append("\n### Section Breakdown")
md_content.append("| Section | Score | Fully Correct | Partially Correct | Incorrect Choice | Skipped | API/Parse Failures |")
md_content.append("|---------------|-------|---------------|-------------------|------------------|---------|--------------------|")
section_breakdown = summary.get("section_breakdown", {})
sorted_section_names = sorted(section_breakdown.keys())
if not sorted_section_names and section_breakdown:
logging.warning("Could not sort section names for Markdown summary; using unsorted.")
sorted_section_names = list(section_breakdown.keys())
for section_name in sorted_section_names:
stats = section_breakdown.get(section_name, {})
score = stats.get('score', 'N/A')
s_correct = stats.get('correct', 'N/A')
s_partial = stats.get('partial_correct', 'N/A')
s_incorrect = stats.get('incorrect', 'N/A')
s_skipped = stats.get('skipped', 'N/A')
s_failures = stats.get('api_parse_failures', 'N/A')
display_section_name = section_name.replace('_', ' ')
md_content.append(f"| {display_section_name:<13} | {score:<5} | {s_correct:<13} | {s_partial:<17} | {s_incorrect:<16} | {s_skipped:<7} | {s_failures:<18} |")
if not sorted_section_names:
md_content.append("| No section data available | N/A | N/A | N/A | N/A | N/A | N/A |")
# Fallback for simple accuracy (if exam scoring wasn't applicable or failed)
elif "accuracy_on_parsed" in summary:
md_content.append("## Simple Accuracy Results (Fallback)")
md_content.append(f"- **Accuracy (on successfully parsed non-skipped):** {summary.get('accuracy_on_parsed', 'N/A'):.4f}")
md_content.append(f"- **Total Processed Attempts:** {summary.get('total_processed_attempts', 'N/A')}")
# Add other relevant simple stats if available
else:
md_content.append("## Summary")
md_content.append("*(No specific Exam Scoring or Accuracy metrics found in summary)*")
with open(filepath, 'w') as f:
f.write("\n".join(md_content))
logging.info(f"Markdown summary saved to {filepath}")
except IOError as e:
logging.error(f"Failed to save markdown summary to {filepath}: {e}")
except Exception as e:
logging.error(f"Unexpected error generating or saving markdown summary to {filepath}: {e}")
def run_benchmark(
config: dict,
api_key: str,
model_to_run: str, # Changed from models_override
output_dir_override: str | None = None,
exam_name_choice: str | None = None, # Changed from exam_name_filter
exam_year_choice: str | None = None, # Changed from exam_year_filter
question_ids_str: str | None = None # New argument
):
"""Runs the benchmark evaluation loop with incremental saving and retries."""
# Determine models to run - now it's a single model
models_to_run = [model_to_run] # Benchmark will run for the single specified model
logging.info(f"Target model for this run: {model_to_run}")
# Determine base output directory
base_output_dir = output_dir_override if output_dir_override else config.get("results_base_dir", "results")
os.makedirs(base_output_dir, exist_ok=True)
# Load dataset
dataset_path = config.get("dataset_path", ".") # Default to current dir if not specified
try:
# Load the dataset using the loading script from the specified path
# Ensure the 'image' column is decoded
# Explicitly specify data_files and data_dir for local loading.
# data_dir should be the project root ('.') when loading a local script,
# as the script is copied to a cache and needs to know where the actual data is.
dataset = load_dataset(dataset_path, split='test', data_files={'test': 'data/metadata.jsonl'}, data_dir=os.getcwd(), trust_remote_code=True, download_mode="force_redownload")
dataset = dataset.cast_column("image", HFImage(decode=True)) # Ensure images are loaded as PIL
logging.info(f"Dataset loaded successfully from path: {dataset_path}. Original number of questions: {len(dataset)}")
except Exception as e:
logging.error(f"Failed to load dataset from path '{dataset_path}': {e}")
logging.error("Ensure the path is correct and 'jee_neet_benchmark_dataset.py' exists.")
return
# Filter dataset based on choices
original_dataset_size = len(dataset)
# Filter by exam_name
if exam_name_choice and exam_name_choice.lower() != "all":
logging.info(f"Filtering dataset for exam_name: '{exam_name_choice}'")
dataset = dataset.filter(lambda example: example.get('exam_name') == exam_name_choice)
logging.info(f"Dataset size after exam_name filter: {len(dataset)} questions.")
# Filter by exam_year
if exam_year_choice and exam_year_choice.lower() != "all":
try:
filter_year_int = int(exam_year_choice)
logging.info(f"Filtering dataset for exam_year: {filter_year_int}")
dataset = dataset.filter(lambda example: example.get('exam_year') == filter_year_int)
logging.info(f"Dataset size after exam_year filter: {len(dataset)} questions.")
except ValueError:
logging.error(f"Invalid exam_year provided: '{exam_year_choice}'. Must be an integer or 'all'. Year filtering skipped.")
# Filter by specific question IDs if provided
if question_ids_str:
try:
target_question_ids = {q_id.strip() for q_id in question_ids_str.split(',') if q_id.strip()}
if target_question_ids:
logging.info(f"Filtering dataset for specific question IDs: {target_question_ids}")
dataset = dataset.filter(lambda example: example.get('question_id') in target_question_ids)
logging.info(f"Dataset size after question_id filter: {len(dataset)} questions.")
else:
logging.warning("Empty or invalid question_ids string provided. No question ID filtering applied.")
except Exception as e:
logging.error(f"Error processing question_ids_str '{question_ids_str}': {e}. No question ID filtering applied.")
if len(dataset) < original_dataset_size:
logging.info(f"Final dataset size after all filters: {len(dataset)} (originally {original_dataset_size}).")
if len(dataset) == 0:
logging.warning("No questions to process after filtering. Skipping model benchmark.")
return
# --- Main Loop: Iterate through models ---
for model_id in models_to_run:
# total_questions here should refer to the length of the potentially filtered dataset
current_total_questions = len(dataset)
logging.info(f"--- Starting benchmark for model: {model_id} (Processing {current_total_questions} questions) ---")
# Create timestamped output directory for this model run
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
safe_model_name = model_id.replace('/', '_') # model_id is already the single model_to_run
dir_name_parts = [safe_model_name]
# Append exam name and year to directory if they are specific (not "all")
current_exam_name_for_dir = exam_name_choice if exam_name_choice and exam_name_choice.lower() != "all" else "AllExams"
current_exam_year_for_dir = exam_year_choice if exam_year_choice and exam_year_choice.lower() != "all" else "AllYears"
if current_exam_name_for_dir != "AllExams":
dir_name_parts.append(current_exam_name_for_dir.replace('/', '_'))
if current_exam_year_for_dir != "AllYears":
dir_name_parts.append(str(current_exam_year_for_dir)) # Already string or 'all'
dir_name_parts.append(timestamp)
model_output_dir_name = "_".join(filter(None, dir_name_parts)) # Filter out None if any part was None
model_output_dir = os.path.join(base_output_dir, model_output_dir_name)
os.makedirs(model_output_dir, exist_ok=True)
predictions_path = os.path.join(model_output_dir, "predictions.jsonl")
summary_details_path = os.path.join(model_output_dir, "summary.jsonl") # New file for per-question summary details
markdown_summary_path = os.path.join(model_output_dir, "summary.md") # Define path for MD summary
logging.info(f"Results for {model_id} will be saved to: {model_output_dir}")
model_results = [] # Stores results in memory for final calculation
failed_questions_data = [] # Stores data needed to retry failed questions
# Counters for tqdm postfix
initial_correct_count = 0
initial_incorrect_count = 0
initial_skipped_count = 0
initial_parse_fail_count = 0
initial_api_fail_count = 0
# --- Initial Pass: Iterate through questions ---
pbar_initial = tqdm(dataset, desc=f"Processing {model_id} (Initial Pass)", total=current_total_questions)
for example in pbar_initial:
question_id = example["question_id"]
subject = example["subject"]
exam_name_from_data = example.get("exam_name", "UNKNOWN_EXAM") # Get exam_name from data
question_type_from_data = example.get("question_type", "MCQ_SINGLE_CORRECT") # Get question_type
image: PILImage.Image = example["image"]
truth = json.loads(example["correct_answer"]) # Parse the JSON string back to a list/list of lists
result_data = {
"question_id": question_id,
"subject": subject,
"exam_name": exam_name_from_data, # Store for evaluation
"question_type": question_type_from_data, # Store for evaluation
"ground_truth": truth,
"predicted_answer": None,
"raw_response": None,
"parse_successful": False,
"api_call_successful": False,
"error": None,
"attempt": 1,
# "api_cost": None, # Removed
"previous_raw_response_on_reprompt": None # For task 1
}
try:
# --- Initial API Call ---
logging.info(f"Attempting API call for question: {question_id} with model: {model_id}")
# Pass exam_name_from_data and question_type_from_data to get_openrouter_prediction
parsed_answer, raw_response = get_openrouter_prediction( # No longer expect api_cost
model_identifier=model_id,
api_key=api_key,
image=image,
exam_name=exam_name_from_data, # Use exam_name from current data item
exam_year=str(example.get("exam_year", "UNKNOWN_YEAR")), # Use exam_year from data
question_type=question_type_from_data, # Pass question_type
max_tokens=config.get("max_tokens", 100),
request_timeout=config.get("request_timeout", 60)
)
api_success_attempt1 = True # If no exception, API call itself was successful
parse_success_attempt1 = parsed_answer is not None
raw_response_attempt1 = raw_response
# result_data["api_cost"] = api_cost # Removed
# --- Re-prompt Logic ---
if api_success_attempt1 and not parse_success_attempt1 and raw_response_attempt1 is not None:
logging.warning(f"Question {question_id}: Initial parse failed. Attempting re-prompt.")
result_data["previous_raw_response_on_reprompt"] = raw_response_attempt1 # Store previous response
try:
# Assuming re-prompt might also have a cost
parsed_answer_rp, raw_response_rp = get_openrouter_prediction( # No longer expect api_cost
model_identifier=model_id,
api_key=api_key,
previous_raw_response=raw_response_attempt1,
question_type=question_type_from_data, # Pass question_type for re-prompt
max_tokens=config.get("max_tokens", 100),
request_timeout=config.get("request_timeout", 60)
)
# Process parsed_answer_rp before assignment
if isinstance(parsed_answer_rp, list):
processed_answer_rp = [str(item) for item in parsed_answer_rp]
else:
processed_answer_rp = parsed_answer_rp
result_data.update({
"predicted_answer": processed_answer_rp,
"raw_response": raw_response_rp,
"parse_successful": processed_answer_rp is not None,
"api_call_successful": True,
"attempt": 2
# Assuming api_cost_rp would be added to existing api_cost or handled separately
})
# if api_cost_rp is not None: # Add re-prompt cost if available # Removed
# result_data["api_cost"] = (result_data.get("api_cost") or 0.0) + api_cost_rp # Removed
logging.info(f"Question {question_id}: Re-prompt {'succeeded' if result_data['parse_successful'] else 'failed to parse'}.")
except Exception as e_rp:
logging.error(f"Re-prompt API call failed for question {question_id}: {e_rp}")
result_data.update({
"predicted_answer": None,
"raw_response": raw_response_attempt1,
"parse_successful": False,
"api_call_successful": True,
"error": f"Initial parse failed. Re-prompt API call failed: {str(e_rp)}",
"attempt": 1
})
else:
current_error = result_data.get("error")
api_actually_successful = api_success_attempt1
if api_success_attempt1 and raw_response_attempt1 is None and parsed_answer is None:
current_error = "Initial API call returned empty content. Re-prompt skipped."
# Process parsed_answer before assignment
if isinstance(parsed_answer, list):
processed_initial_answer = [str(item) for item in parsed_answer]
else:
processed_initial_answer = parsed_answer
result_data.update({
"predicted_answer": processed_initial_answer,
"raw_response": raw_response_attempt1,
"parse_successful": parse_success_attempt1,
"api_call_successful": api_actually_successful,
"error": current_error,
"attempt": 1
})
# Calculate score details for the current result_data
score_details = calculate_single_question_score_details(result_data)
result_data['marks_awarded'] = score_details.get('marks_awarded')
result_data['evaluation_status'] = score_details.get('evaluation_status')
# Append evaluation details to summary.jsonl
summary_detail_data = {
"question_id": question_id,
"marks_awarded": result_data['marks_awarded'],
"evaluation_status": result_data['evaluation_status'],
"predicted_answer": result_data['predicted_answer'], # Add predicted_answer
"ground_truth": result_data['ground_truth'], # Add ground_truth
"attempt": result_data['attempt']
}
append_summary_detail(summary_detail_data, summary_details_path)
model_results.append(result_data)
append_prediction(result_data, predictions_path) # append_prediction now handles removing evaluation fields
final_parsed_answer = result_data["predicted_answer"]
log_message_prefix = f"Question {question_id}:"
log_message_suffix = f"(Attempt {result_data['attempt']})"
if not result_data["api_call_successful"]:
initial_api_fail_count += 1
logging.info(f"{MAGENTA}{log_message_prefix} API Call Failed {log_message_suffix}{RESET}")
elif not result_data["parse_successful"]:
initial_parse_fail_count += 1
logging.info(f"{CYAN}{log_message_prefix} Failed to parse answer {log_message_suffix}{RESET}")
elif final_parsed_answer == "SKIP":
initial_skipped_count += 1
logging.info(f"{YELLOW}{log_message_prefix} Skipped {log_message_suffix}{RESET}")
else: # This 'else' means API call was successful, parse was successful, and predicted_answer was not "SKIP" (by model)
marks_awarded = result_data.get('marks_awarded', 0)
evaluation_status_value = result_data.get('evaluation_status')
# Prepare evaluation_status for checks and logging
is_considered_correct = False
log_display_status = "N/A" # What to show in the log for status
status_check_string = "" # Uppercase string for "CORRECT" and "SKIPPED" checks
if evaluation_status_value is True:
is_considered_correct = True
log_display_status = "True (Boolean)"
status_check_string = "CORRECT_TRUE_BOOLEAN" # Contains "CORRECT"
elif isinstance(evaluation_status_value, str):
log_display_status = evaluation_status_value # Log original string
status_check_string = evaluation_status_value.strip().upper()
if "CORRECT" in status_check_string:
is_considered_correct = True
elif evaluation_status_value is None:
log_display_status = "None"
status_check_string = "NONE_STATUS"
else: # Other types
log_display_status = str(evaluation_status_value)
status_check_string = str(evaluation_status_value).strip().upper()
# Define known "skipped by evaluation" statuses (uppercase)
known_eval_skip_statuses = ["SKIPPED_BY_EVAL", "SKIPPED"]
if is_considered_correct:
initial_correct_count +=1
logging.info(f"{GREEN}{log_message_prefix} Correct (log) - Marks: {marks_awarded}, Status: {log_display_status} {log_message_suffix}{RESET}")
elif status_check_string in known_eval_skip_statuses:
initial_skipped_count += 1
logging.info(f"{YELLOW}{log_message_prefix} Skipped by Eval - Marks: {marks_awarded}, Status: {log_display_status} {log_message_suffix}{RESET}")
else: # All other statuses are treated as incorrect
initial_incorrect_count += 1
logging.info(f"{RED}{log_message_prefix} Incorrect (log) - Marks: {marks_awarded}, Status: {log_display_status} {log_message_suffix}{RESET}")
pbar_initial.set_postfix_str(f"β:{initial_correct_count} β:{initial_incorrect_count} S:{initial_skipped_count} P!:{initial_parse_fail_count} A!:{initial_api_fail_count}")
except Exception as e:
initial_api_fail_count +=1 # Assume API failure if exception at this level
pbar_initial.set_postfix_str(f"β:{initial_correct_count} β:{initial_incorrect_count} S:{initial_skipped_count} P!:{initial_parse_fail_count} A!:{initial_api_fail_count}")
logging.error(f"Initial API call failed for question {question_id} (Attempt 1): {e}")
result_data["error"] = str(e)
result_data["api_call_successful"] = False
failed_questions_data.append(example) # Store original example for retry pass
pbar_initial.close() # Ensure tqdm finishes cleanly
# --- Retry Pass for questions with initial API failures ---
if failed_questions_data:
logging.info(f"--- Retrying {len(failed_questions_data)} questions with initial API failures for model: {model_id} ---")
retry_correct_count = 0
retry_incorrect_count = 0
retry_skipped_count = 0
retry_parse_fail_count = 0
retry_api_fail_count = 0
pbar_retry = tqdm(failed_questions_data, desc=f"Processing {model_id} (API Retry Pass)", total=len(failed_questions_data))
for example_retry in pbar_retry:
question_id_retry = example_retry["question_id"]
subject_retry = example_retry["subject"]
exam_name_retry = example_retry.get("exam_name", "UNKNOWN_EXAM")
question_type_retry = example_retry.get("question_type", "MCQ_SINGLE_CORRECT")
image_retry: PILImage.Image = example_retry["image"]
truth_retry = example_retry["correct_answer"]
result_data_retry = {
"question_id": question_id_retry,
"subject": subject_retry,
"exam_name": exam_name_retry,
"question_type": question_type_retry,
"ground_truth": truth_retry,
"predicted_answer": None,
"raw_response": None,
"parse_successful": False,
"api_call_successful": False,
"error": "Initial API call failed.", # Pre-fill error
"attempt": 2,
# "api_cost": None, # Removed
"previous_raw_response_on_reprompt_after_api_retry": None # For task 1
}
try:
logging.info(f"Attempting API call for question: {question_id_retry} (API Retry Pass) with model: {model_id}")
parsed_answer_retry, raw_response_retry = get_openrouter_prediction( # No longer expect api_cost
model_identifier=model_id,
api_key=api_key,
image=image_retry,
exam_name=exam_name_retry,
exam_year=str(example_retry.get("exam_year", "UNKNOWN_YEAR")),
question_type=question_type_retry,
max_tokens=config.get("max_tokens", 100),
request_timeout=config.get("request_timeout", 60)
)
api_success_attempt2 = True
parse_success_attempt2 = parsed_answer_retry is not None
raw_response_attempt2 = raw_response_retry
# result_data_retry["api_cost"] = api_cost_retry # Removed
if api_success_attempt2 and not parse_success_attempt2 and raw_response_attempt2 is not None:
logging.warning(f"Question {question_id_retry}: API Retry succeeded, but parse failed. Attempting re-prompt.")
result_data_retry["previous_raw_response_on_reprompt_after_api_retry"] = raw_response_attempt2 # Store previous response
try:
# Assuming re-prompt might also have a cost
parsed_answer_rp2, raw_response_rp2 = get_openrouter_prediction( # No longer expect api_cost
model_identifier=model_id,
api_key=api_key,
previous_raw_response=raw_response_attempt2,
question_type=question_type_retry,
max_tokens=config.get("max_tokens", 100),
request_timeout=config.get("request_timeout", 60)
)
# Process parsed_answer_rp2 before assignment
if isinstance(parsed_answer_rp2, list):
processed_answer_rp2 = [str(item) for item in parsed_answer_rp2]
else:
processed_answer_rp2 = parsed_answer_rp2
result_data_retry.update({
"predicted_answer": processed_answer_rp2, "raw_response": raw_response_rp2,
"parse_successful": processed_answer_rp2 is not None, "api_call_successful": True,
"error": None if processed_answer_rp2 is not None else "Re-prompt after API retry failed to parse.",
"attempt": 3
})
# if api_cost_rp2 is not None: # Add re-prompt cost if available # Removed
# result_data_retry["api_cost"] = (result_data_retry.get("api_cost") or 0.0) + api_cost_rp2 # Removed
logging.info(f"Question {question_id_retry}: API Retry + Re-prompt {'succeeded' if result_data_retry['parse_successful'] else 'failed to parse'}.")
except Exception as e_rp2:
logging.error(f"Re-prompt API call failed for question {question_id_retry} after API retry: {e_rp2}")
result_data_retry.update({
"error": f"API retry ok, parse failed. Re-prompt API call failed: {str(e_rp2)}",
"attempt": 2 # Stay at attempt 2 as re-prompt itself failed
})
else:
current_error_retry = result_data_retry.get("error")
if api_success_attempt2 and raw_response_attempt2 is None and parsed_answer_retry is None:
current_error_retry = "API retry call returned empty content. Re-prompt skipped."
# Process parsed_answer_retry before assignment
if isinstance(parsed_answer_retry, list):
processed_retry_answer = [str(item) for item in parsed_answer_retry]
else:
processed_retry_answer = parsed_answer_retry
result_data_retry.update({
"predicted_answer": processed_retry_answer, "raw_response": raw_response_attempt2,
"parse_successful": parse_success_attempt2, "api_call_successful": api_success_attempt2,
"error": None if parse_success_attempt2 else current_error_retry, # Clear initial error if parse now ok
"attempt": 2
})
except Exception as e_retry_api:
logging.error(f"API call failed permanently for question {question_id_retry} (Attempt 2 API Retry): {e_retry_api}")
result_data_retry["error"] = f"Initial API fail. Retry API call also failed: {str(e_retry_api)}"
result_data_retry["api_call_successful"] = False
# Calculate score details for the current result_data_retry
score_details_retry = calculate_single_question_score_details(result_data_retry)
result_data_retry['marks_awarded'] = score_details_retry.get('marks_awarded')
result_data_retry['evaluation_status'] = score_details_retry.get('evaluation_status')
# Append evaluation details to summary.jsonl for retry pass
summary_detail_data_retry = {
"question_id": question_id_retry,
"marks_awarded": result_data_retry['marks_awarded'],
"evaluation_status": result_data_retry['evaluation_status'],
"predicted_answer": result_data_retry['predicted_answer'], # Add predicted_answer
"ground_truth": result_data_retry['ground_truth'], # Add ground_truth
"attempt": result_data_retry['attempt']
}
append_summary_detail(summary_detail_data_retry, summary_details_path)
model_results.append(result_data_retry)
append_prediction(result_data_retry, predictions_path) # append_prediction now handles removing evaluation fields
# Logging for retry pass
log_message_prefix_retry = f"Question {question_id_retry} (Retry):"
log_message_suffix_retry = f"(Attempt {result_data_retry['attempt']})"
final_parsed_answer_retry = result_data_retry["predicted_answer"]
if not result_data_retry["api_call_successful"]:
retry_api_fail_count += 1
logging.info(f"{MAGENTA}{log_message_prefix_retry} API Call Failed {log_message_suffix_retry}{RESET}")
elif not result_data_retry["parse_successful"]:
retry_parse_fail_count += 1
logging.info(f"{CYAN}{log_message_prefix_retry} Failed to parse answer {log_message_suffix_retry}{RESET}")
elif final_parsed_answer_retry == "SKIP":
retry_skipped_count += 1
logging.info(f"{YELLOW}{log_message_prefix_retry} Skipped {log_message_suffix_retry}{RESET}")
else: # This 'else' means API call was successful, parse was successful, and predicted_answer was not "SKIP" (by model)
marks_awarded_retry = result_data_retry.get('marks_awarded', 0)
evaluation_status_value_retry = result_data_retry.get('evaluation_status')
is_considered_correct_retry = False
log_display_status_retry = "N/A"
status_check_string_retry = ""
if evaluation_status_value_retry is True:
is_considered_correct_retry = True
log_display_status_retry = "True (Boolean)"
status_check_string_retry = "CORRECT_TRUE_BOOLEAN"
elif isinstance(evaluation_status_value_retry, str):
log_display_status_retry = evaluation_status_value_retry
status_check_string_retry = evaluation_status_value_retry.strip().upper()
if "CORRECT" in status_check_string_retry:
is_considered_correct_retry = True
elif evaluation_status_value_retry is None:
log_display_status_retry = "None"
status_check_string_retry = "NONE_STATUS"
else: # Other types
log_display_status_retry = str(evaluation_status_value_retry)
status_check_string_retry = str(evaluation_status_value_retry).strip().upper()
known_eval_skip_statuses_retry = ["SKIPPED_BY_EVAL", "SKIPPED"]
if is_considered_correct_retry:
retry_correct_count +=1
logging.info(f"{GREEN}{log_message_prefix_retry} Correct (log) - Marks: {marks_awarded_retry}, Status: {log_display_status_retry} {log_message_suffix_retry}{RESET}")
elif status_check_string_retry in known_eval_skip_statuses_retry:
retry_skipped_count += 1
logging.info(f"{YELLOW}{log_message_prefix_retry} Skipped by Eval - Marks: {marks_awarded_retry}, Status: {log_display_status_retry} {log_message_suffix_retry}{RESET}")
else:
retry_incorrect_count += 1
logging.info(f"{RED}{log_message_prefix_retry} Incorrect (log) - Marks: {marks_awarded_retry}, Status: {log_display_status_retry} {log_message_suffix_retry}{RESET}")
pbar_retry.set_postfix_str(f"β:{retry_correct_count} β:{retry_incorrect_count} S:{retry_skipped_count} P!:{retry_parse_fail_count} A!:{retry_api_fail_count}")
pbar_retry.close() # Ensure tqdm finishes cleanly
# --- Final Evaluation for the current model ---
logging.info(f"--- Calculating final results for model: {model_id} ---")
# Always use calculate_exam_scores now
evaluation_summary = calculate_exam_scores(model_results) # model_results modified in-place
# Use the actual choices for the summary, defaulting to "All" if not specified or "all"
summary_exam_name_display = exam_name_choice if exam_name_choice and exam_name_choice.lower() != "all" else "All_Exams"
summary_exam_year_display = exam_year_choice if exam_year_choice and exam_year_choice.lower() != "all" else "All_Years"
summary = {
"model_name": model_id, # This is model_to_run
"exam_name": summary_exam_name_display,
"exam_year": summary_exam_year_display,
"question_ids_filter": question_ids_str if question_ids_str else "None", # Add question ID filter info
"timestamp": timestamp,
"total_questions_in_dataset": original_dataset_size, # Total before any filtering
"total_questions_processed_in_run": len(dataset), # Total after filtering for this run
**evaluation_summary
}
logging.info(f"Overall Score: {summary.get('overall_score')}")
logging.info(f"Full Correct: {summary.get('overall_correct_full')}, Partial Correct: {summary.get('overall_partial_correct')}, Incorrect Choice: {summary.get('overall_incorrect_choice')}, Skipped: {summary.get('overall_skipped')}, API/Parse Failures: {summary.get('overall_api_parse_failures')}")
logging.info(f"--- Results Summary for model: {model_id} ---")
logging.info(json.dumps(summary, indent=2, sort_keys=True))
logging.info("-------------------------------------")
# The model_results list was modified in-place by calculate_exam_scores
# to include evaluation_status and marks_awarded.
# predictions.jsonl is now written incrementally without evaluation details.
# No need to overwrite predictions.jsonl here.
# Save final summary (Markdown) for the current model
# The summary.json file is no longer generated as per user request.
generate_markdown_summary(summary, markdown_summary_path) # Call the new function
logging.info("Benchmark run completed.")
if __name__ == "__main__":
# Get available choices for arguments
# Assuming benchmark_config.yaml is in a 'configs' directory relative to script or a fixed path
# Assuming metadata.jsonl is in a 'data' directory relative to script or a fixed path
default_config_path = "configs/benchmark_config.yaml"
default_metadata_path = "data/metadata.jsonl"
available_models = get_available_models(default_config_path)
available_exam_names, available_exam_years = get_available_exam_details(default_metadata_path)
# Add "all" option for exams and years
exam_name_choices = ["all"] + available_exam_names
exam_year_choices = ["all"] + available_exam_years
parser = argparse.ArgumentParser(description="Run JEE/NEET LLM Benchmark.")
parser.add_argument(
"--config",
type=str,
default=default_config_path,
help=f"Path to the benchmark configuration YAML file (default: {default_config_path})."
)
parser.add_argument(
"--model", # Changed from --models
type=str,
required=True if available_models else False, # Required if models are available
choices=available_models if available_models else None,
help="Select the model to run." + (f" Available: {', '.join(available_models)}." if available_models else " (No models found in config)")
)
parser.add_argument(
"--output_dir",
type=str,
help="Override the base output directory specified in the config file."
)
parser.add_argument(
"--exam_name",
type=str,
default="all",
choices=exam_name_choices if exam_name_choices else ["all"],
help="Select the exam name to run, or 'all' for all exams." + (f" Available: {', '.join(available_exam_names)}." if available_exam_names else "")
)
parser.add_argument(
"--exam_year",
type=str,
default="all",
choices=exam_year_choices if exam_year_choices else ["all"],
help="Select the exam year to run, or 'all' for all years." + (f" Available: {', '.join(available_exam_years)}." if available_exam_years else "")
)
parser.add_argument(
"--question_ids",
type=str,
default=None,
help="Optional: Comma-separated list of specific question IDs to run (e.g., ID1,ID2,ID3)."
)
args = parser.parse_args()
# Dynamically update config path if user provides a different one
if args.config != default_config_path:
logging.info(f"User provided config path: {args.config}. Re-fetching models if necessary.")
# If models were not found with default, or if user specified a different config, try to load models from it.
if not available_models or args.model not in available_models:
user_config_models = get_available_models(args.config)
if args.model not in user_config_models:
logging.error(f"Selected model '{args.model}' not found in the specified config '{args.config}'. Exiting.")
exit(1) # Or handle more gracefully
# Potentially update choices if parser allowed any string due to no initial models
# This is complex with argparse after parsing. For now, we rely on the initial check or error out.
try:
# Load API key first - fail fast if not set
api_key = load_api_key()
# Load configuration using the (potentially user-overridden) config path
config = load_config(args.config)
# Ensure the selected model is valid if it was dynamically loaded
if args.model not in config.get("openrouter_models", []):
# This check is important if args.model was accepted because available_models was initially empty
if args.model not in get_available_models(args.config): # Double check with the final config
logging.error(f"The model '{args.model}' specified is not listed in the config file '{args.config}'. Please check the model name or the config file.")
exit(1)
# Run the benchmark
run_benchmark(
config=config,
api_key=api_key,
model_to_run=args.model,
output_dir_override=args.output_dir,
exam_name_choice=args.exam_name,
exam_year_choice=args.exam_year,
question_ids_str=args.question_ids
)
except (ValueError, FileNotFoundError, yaml.YAMLError) as e:
logging.error(f"Setup failed: {e}")
except Exception as e:
logging.error(f"An unexpected error occurred during benchmark execution: {e}", exc_info=True)
|