Datasets:
Modalities:
Text
Formats:
text
Size:
< 1K
Tags:
humanoid-robotics
fall-prediction
machine-learning
sensor-data
robotics
temporal-convolutional-networks
License:
# Usage Example for the Fall Prediction Dataset | |
# Please install dependencies before: | |
# pip install -r requirements.txt | |
# Import necessary libraries | |
import tensorflow as tf | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Dense, LSTM, Dropout, Input | |
from convert_and_load_dataset import load_dataset, convert_and_load_dataset | |
# Example for local converting and loading (frist time usage take a while) | |
# X_train, X_test, y_train, y_test = convert_and_load_dataset() | |
# Example for local loading (first time usage may take a while) | |
X_train, X_test, y_train, y_test = load_dataset() | |
# Define a simple LSTM model | |
model = Sequential() | |
model.add(Input((X_train.shape[1], 1))) | |
model.add(LSTM(64)) | |
model.add(Dropout(0.2)) | |
model.add(Dense(1, activation='sigmoid')) | |
# Compile the model | |
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) | |
# Train the model | |
history = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_data=(X_test, y_test)) | |
# Evaluate the model on the test set | |
loss, accuracy = model.evaluate(X_test, y_test) | |
print(f"Test Accuracy: {accuracy * 100:.2f}%") | |
# You can save the model if needed | |
# model.save('fall_prediction_model.h5') |