Datasets:
Modalities:
Text
Formats:
text
Size:
< 1K
Tags:
humanoid-robotics
fall-prediction
machine-learning
sensor-data
robotics
temporal-convolutional-networks
License:
File size: 1,224 Bytes
bbeb72c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
# Usage Example for the Fall Prediction Dataset
# Please install dependencies before:
# pip install -r requirements.txt
# Import necessary libraries
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Dropout, Input
from convert_and_load_dataset import load_dataset, convert_and_load_dataset
# Example for local converting and loading (frist time usage take a while)
# X_train, X_test, y_train, y_test = convert_and_load_dataset()
# Example for local loading (first time usage may take a while)
X_train, X_test, y_train, y_test = load_dataset()
# Define a simple LSTM model
model = Sequential()
model.add(Input((X_train.shape[1], 1)))
model.add(LSTM(64))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model
history = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_data=(X_test, y_test))
# Evaluate the model on the test set
loss, accuracy = model.evaluate(X_test, y_test)
print(f"Test Accuracy: {accuracy * 100:.2f}%")
# You can save the model if needed
# model.save('fall_prediction_model.h5') |