Datasets:
Modalities:
Text
Formats:
text
Size:
< 1K
Tags:
humanoid-robotics
fall-prediction
machine-learning
sensor-data
robotics
temporal-convolutional-networks
License:
Optimizing RAM utilization during dataset loading (#2)
Browse files- add venv folder and memory mapped files to gitignore (14ec4ba9bf703563dc2fe7dba6d8921a15b19937)
- add pycache folder (b4ce5310d64c155c6bb37673730777584f207e6d)
- add preprocessed dataset (55635196d2682016f5fb21c09e774dc46ba6a8a7)
- add RAM utilization note (ea1a1e5bfbd3c96cbce2530bb085d1c5d88b5e2e)
- .gitignore +3 -0
- README.md +29 -3
- convert_and_load_dataset.py +233 -0
- dataset.tar.bz2 +3 -0
- lightweight_dataset_usage_example.py +37 -0
- usage_example.py → plain_dataset_usage_example.py +2 -1
- requirements.txt +1 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.venv/
|
3 |
+
*.npy
|
README.md
CHANGED
@@ -43,6 +43,9 @@ If you use this dataset in your research, please cite it as follows:
|
|
43 |
|
44 |
To get started with the **Fall Prediction Dataset for Humanoid Robots**, follow the steps below:
|
45 |
|
|
|
|
|
|
|
46 |
### 1. Set Up a Virtual Environment
|
47 |
|
48 |
It's recommended to create a virtual environment to isolate dependencies. You can do this with the following command:
|
@@ -70,13 +73,20 @@ Once the virtual environment is active, install the necessary packages by runnin
|
|
70 |
```bash
|
71 |
pip install -r requirements.txt
|
72 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
### 3. Run the Example Script
|
75 |
|
76 |
-
To load and use the dataset for training a simple LSTM model, run the `
|
77 |
|
78 |
```bash
|
79 |
-
python
|
80 |
```
|
81 |
|
82 |
This script demonstrates how to:
|
@@ -86,7 +96,23 @@ This script demonstrates how to:
|
|
86 |
- Train a basic LSTM model to predict falls
|
87 |
- Evaluate the model on the test set
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
---
|
|
|
43 |
|
44 |
To get started with the **Fall Prediction Dataset for Humanoid Robots**, follow the steps below:
|
45 |
|
46 |
+
### 0. Clone the repository
|
47 |
+
Please make sure that you have installed git large file support (git-lfs) before cloning this repository.
|
48 |
+
|
49 |
### 1. Set Up a Virtual Environment
|
50 |
|
51 |
It's recommended to create a virtual environment to isolate dependencies. You can do this with the following command:
|
|
|
73 |
```bash
|
74 |
pip install -r requirements.txt
|
75 |
```
|
76 |
+
If you have trouble downloading the requirements, check your internet connection. Alternatively, try increasing the pip timeout or upgrading your pip installation:
|
77 |
+
```bash
|
78 |
+
# Increase the timeout by 120 seconds
|
79 |
+
pip install --default-timeout=120 -r requirements.txt
|
80 |
+
# or upgrade pip
|
81 |
+
python -m pip install --upgrade pip
|
82 |
+
```
|
83 |
|
84 |
### 3. Run the Example Script
|
85 |
|
86 |
+
To load and use the plain csv dataset for training a simple LSTM model, run the `plain_dataset_usage_example.py` script (RAM utilisation exceeds 16 GB):
|
87 |
|
88 |
```bash
|
89 |
+
python plain_dataset_usage_example.py
|
90 |
```
|
91 |
|
92 |
This script demonstrates how to:
|
|
|
96 |
- Train a basic LSTM model to predict falls
|
97 |
- Evaluate the model on the test set
|
98 |
|
99 |
+
To load and use a already prepared dataset, with reduced RAM utilisation, for training a simple LSTM model, run the `lightweight_dataset_usage_example.py` script (RAM utilisation less than 2 GB):
|
100 |
+
|
101 |
+
```bash
|
102 |
+
python lightweight_dataset_usage_example.py
|
103 |
+
```
|
104 |
+
|
105 |
+
This script demonstrates how to:
|
106 |
+
- Convert the csv dataset into a memory mapped file
|
107 |
+
- Load the memory mapped version of the dataset
|
108 |
+
- Train a basic LSTM model to predict falls
|
109 |
+
- Evaluate the model on the test set
|
110 |
+
|
111 |
+
The script `convert_and_load_dataset.py` used by the lightweight example demonstrates how to:
|
112 |
+
- Select the relevant sensor columns
|
113 |
+
- Split the data into training and test sets
|
114 |
+
|
115 |
+
Make sure to check the scripts and adjust the dataset paths if necessary. For further details, see the comments and docstrings within the scripts.
|
116 |
|
117 |
|
118 |
---
|
convert_and_load_dataset.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Helper functions to reduce RAM utilization
|
2 |
+
# Please install dependencies before:
|
3 |
+
# pip install -r requirements.txt
|
4 |
+
|
5 |
+
# Import necessary libraries
|
6 |
+
import os
|
7 |
+
import pickle
|
8 |
+
import tarfile
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from tqdm import tqdm
|
13 |
+
from tqdm import trange
|
14 |
+
from pathlib import Path
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
|
17 |
+
|
18 |
+
def delete_temporary_files():
|
19 |
+
if Path('tmp_dataset_X.pkl').exists():
|
20 |
+
os.remove('tmp_dataset_X.pkl')
|
21 |
+
if Path('tmp_dataset_y.pkl').exists():
|
22 |
+
os.remove('tmp_dataset_y.pkl')
|
23 |
+
if Path('tmp_dataset_X.npy').exists():
|
24 |
+
os.remove('tmp_dataset_X.npy')
|
25 |
+
if Path('tmp_dataset_y.npy').exists():
|
26 |
+
os.remove('tmp_dataset_y.npy')
|
27 |
+
|
28 |
+
if Path('tmp_X_train.pkl').exists():
|
29 |
+
os.remove('tmp_X_train.npy')
|
30 |
+
if Path('tmp_y_train.pkl').exists():
|
31 |
+
os.remove('tmp_y_train.npy')
|
32 |
+
if Path('tmp_X_test.npy').exists():
|
33 |
+
os.remove('tmp_X_test.npy')
|
34 |
+
if Path('tmp_y_test.npy').exists():
|
35 |
+
os.remove('tmp_y_test.npy')
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
def load_dataset(file_path='dataset.tar.bz2'):
|
40 |
+
"""
|
41 |
+
Decompress and load already prepared dataset.
|
42 |
+
|
43 |
+
Parameters:
|
44 |
+
file_path (str): Path to the compressed version of the prepared dataset (default dataset.tar.bz2)
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
X_train (np.memmap): Memory-mapped NumPy array of the X training data
|
48 |
+
X_test (np.memmap): Memory-mapped NumPy array of the X test data
|
49 |
+
y_train (np.memmap): Memory-mapped NumPy array of the y training data
|
50 |
+
y_test (np.memmap): Memory-mapped NumPy array of the y test data
|
51 |
+
"""
|
52 |
+
|
53 |
+
# Return the pepared dataset if it already exists
|
54 |
+
if Path('X_train.npy').exists() and Path('y_train.npy').exists() and Path('X_test.npy').exists() and Path('y_test.npy').exists():
|
55 |
+
X_train = np.load('X_train.npy', mmap_mode='r')
|
56 |
+
y_train = np.load('y_train.npy', mmap_mode='r')
|
57 |
+
X_test = np.load('X_test.npy', mmap_mode='r')
|
58 |
+
y_test = np.load('y_test.npy', mmap_mode='r')
|
59 |
+
|
60 |
+
return X_train, X_test, y_train, y_test
|
61 |
+
|
62 |
+
# Decompress memory mapped files
|
63 |
+
if Path(file_path).exists():
|
64 |
+
with tarfile.open(file_path) as dataset:
|
65 |
+
dataset.extractall(path='.')
|
66 |
+
|
67 |
+
# Load the dataset
|
68 |
+
dataset_X = np.load('dataset_X.npy', mmap_mode='r')
|
69 |
+
dataset_y = np.load('dataset_y.npy', mmap_mode='r')
|
70 |
+
|
71 |
+
# Create a train test split with memory mapped files
|
72 |
+
X_train, X_test, y_train, y_test = train_test_split_memmapped(dataset_X, dataset_y)
|
73 |
+
|
74 |
+
return X_train, X_test, y_train, y_test
|
75 |
+
else:
|
76 |
+
print('ERROR: file not found')
|
77 |
+
|
78 |
+
def convert_and_load_dataset(file_path='dataset.csv.bz2'):
|
79 |
+
"""
|
80 |
+
Converts a CSV dataset into a NumPy memory-mapped dataset and load it.
|
81 |
+
|
82 |
+
This function transforms a given CSV dataset into a memory-mapped NumPy array.
|
83 |
+
Memory-mapping helps to reduce RAM usage by loading the dataset in smaller chunks.
|
84 |
+
However, it requires additional disk space during the conversion process.
|
85 |
+
|
86 |
+
Parameters:
|
87 |
+
file_path (str): Path to the CSV dataset file (default dataset.csv.bz2)
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
X_train (np.memmap): Memory-mapped NumPy array of the X training data
|
91 |
+
X_test (np.memmap): Memory-mapped NumPy array of the X test data
|
92 |
+
y_train (np.memmap): Memory-mapped NumPy array of the y training data
|
93 |
+
y_test (np.memmap): Memory-mapped NumPy array of the y test data
|
94 |
+
"""
|
95 |
+
|
96 |
+
# Return the pepared dataset if it already exists
|
97 |
+
if Path('X_train.npy').exists() and Path('y_train.npy').exists() and Path('X_test.npy').exists() and Path('y_test.npy').exists():
|
98 |
+
return load_dataset()
|
99 |
+
|
100 |
+
# Load and prepare dataset
|
101 |
+
delete_temporary_files()
|
102 |
+
with open('tmp_dataset_X.pkl', 'ab') as tmp_dataset_X, open('tmp_dataset_y.pkl', 'ab') as tmp_dataset_y:
|
103 |
+
shape = None
|
104 |
+
num_of_chunks = 0
|
105 |
+
|
106 |
+
# Load the dataset from a local file path
|
107 |
+
# Replace with Huggingface dataset call if applicable
|
108 |
+
for real_data_chunk in tqdm(pd.read_csv(file_path, compression='bz2', chunksize=4096), desc='Read and Prepare Dataset'):
|
109 |
+
# Select relevant columns (replace these with actual column names from your dataset)
|
110 |
+
# Here we assume that the dataset contains sensor readings like gyroscope and accelerometer data
|
111 |
+
relevant_columns = ['gyro_x', 'gyro_y', 'gyro_z', 'acc_x', 'acc_y', 'acc_z', 'upright']
|
112 |
+
sensordata_chunk = real_data_chunk[relevant_columns]
|
113 |
+
|
114 |
+
# Split the data into features (X) and labels (y)
|
115 |
+
# 'fall_label' is assumed to be the column indicating whether a fall occurred
|
116 |
+
X_chunk = np.array(sensordata_chunk.drop(columns=['upright'])) # Replace 'fall_label' with the actual label column
|
117 |
+
y_chunk = np.array(sensordata_chunk['upright'])
|
118 |
+
|
119 |
+
if shape is None:
|
120 |
+
# Preview the dataset
|
121 |
+
print('\n' + str(real_data_chunk.head()))
|
122 |
+
|
123 |
+
if shape is None:
|
124 |
+
shape = np.array(X_chunk.shape)
|
125 |
+
else:
|
126 |
+
shape[0] += X_chunk.shape[0]
|
127 |
+
|
128 |
+
pickle.dump(X_chunk, tmp_dataset_X)
|
129 |
+
pickle.dump(y_chunk, tmp_dataset_y)
|
130 |
+
num_of_chunks += 1
|
131 |
+
|
132 |
+
# Convert dataset into a memory-mapped array stored in a binary file on disk.
|
133 |
+
X_idx = 0
|
134 |
+
y_idx = 0
|
135 |
+
dataset_X = np.memmap('tmp_dataset_X.npy', mode='w+', dtype=np.float32, shape=(shape[0], shape[1], 1))
|
136 |
+
dataset_y = np.memmap('tmp_dataset_y.npy', mode='w+', dtype=np.float32, shape=(shape[0], 1))
|
137 |
+
with open('tmp_dataset_X.pkl', 'rb') as tmp_dataset_X, open('tmp_dataset_y.pkl', 'rb') as tmp_dataset_y:
|
138 |
+
for _ in trange(0, num_of_chunks, 1, desc='Convert Dataset'):
|
139 |
+
X_chunk = pickle.load(tmp_dataset_X)
|
140 |
+
y_chunk = pickle.load(tmp_dataset_y)
|
141 |
+
|
142 |
+
# Reshape data for LSTM input (assuming time-series data)
|
143 |
+
# Adjust the reshaping based on your dataset structure
|
144 |
+
for X_data in X_chunk:
|
145 |
+
dataset_X[X_idx] = np.expand_dims(X_data, axis=-1)
|
146 |
+
X_idx += 1
|
147 |
+
for y_data in y_chunk:
|
148 |
+
dataset_y[y_idx] = np.expand_dims(y_data, axis=-1)
|
149 |
+
y_idx += 1
|
150 |
+
|
151 |
+
# Delete temporary files
|
152 |
+
os.remove('tmp_dataset_X.pkl')
|
153 |
+
os.remove('tmp_dataset_y.pkl')
|
154 |
+
|
155 |
+
# Save the memory-mapped arrays
|
156 |
+
with open('dataset_X.npy', 'wb') as dataset_x_file, open('dataset_y.npy', 'wb') as dataset_y_file:
|
157 |
+
np.save(dataset_x_file, dataset_X, allow_pickle=False, fix_imports=True)
|
158 |
+
np.save(dataset_y_file, dataset_y, allow_pickle=False, fix_imports=True)
|
159 |
+
|
160 |
+
# Delete temporary files
|
161 |
+
dataset_X._mmap.close()
|
162 |
+
dataset_y._mmap.close()
|
163 |
+
os.remove('tmp_dataset_X.npy')
|
164 |
+
os.remove('tmp_dataset_y.npy')
|
165 |
+
|
166 |
+
# Reload memory-mapped arrays
|
167 |
+
dataset_X = np.load('dataset_X.npy', mmap_mode='r')
|
168 |
+
dataset_y = np.load('dataset_y.npy', mmap_mode='r')
|
169 |
+
|
170 |
+
# Create a train test split with memory mapped files
|
171 |
+
X_train, X_test, y_train, y_test = train_test_split_memmapped(dataset_X, dataset_y)
|
172 |
+
|
173 |
+
return X_train, X_test, y_train, y_test
|
174 |
+
|
175 |
+
|
176 |
+
def train_test_split_memmapped(dataset_X, dataset_y, test_size=0.2, random_state=42):
|
177 |
+
"""
|
178 |
+
Create memory-mapped files for train and test datasets.
|
179 |
+
|
180 |
+
Parameters:
|
181 |
+
dataset_X (np.memmap): X part of the complete dataset
|
182 |
+
dataset_y (np.memmap): y part of the complete dataset
|
183 |
+
test_size (float): Propotion of the dataset used for the test split (default 0.2)
|
184 |
+
random_state (int): Random state used for repeatability (default 42)
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
X_train (np.memmap): Memory-mapped NumPy array of the X training data
|
188 |
+
X_test (np.memmap): Memory-mapped NumPy array of the X test data
|
189 |
+
y_train (np.memmap): Memory-mapped NumPy array of the y training data
|
190 |
+
y_test (np.memmap): Memory-mapped NumPy array of the y test data
|
191 |
+
"""
|
192 |
+
delete_temporary_files()
|
193 |
+
|
194 |
+
# Split data into training and test sets
|
195 |
+
idxs = np.arange(dataset_X.shape[0])
|
196 |
+
train_idx, test_idx = train_test_split(idxs, test_size=test_size, random_state=random_state)
|
197 |
+
|
198 |
+
# Create memory-mapped files for train and test sets
|
199 |
+
X_train = np.memmap('tmp_X_train.npy', dtype=dataset_X.dtype, mode='w+', shape=(len(train_idx), dataset_X.shape[1], 1))
|
200 |
+
y_train = np.memmap('tmp_y_train.npy', dtype=dataset_y.dtype, mode='w+', shape=(len(train_idx), dataset_y.shape[1]))
|
201 |
+
X_test = np.memmap('tmp_X_test.npy', dtype=dataset_X.dtype, mode='w+', shape=(len(test_idx), dataset_X.shape[1], 1))
|
202 |
+
y_test = np.memmap('tmp_y_test.npy', dtype=dataset_y.dtype, mode='w+', shape=(len(test_idx), dataset_y.shape[1]))
|
203 |
+
|
204 |
+
# Assign values to the train and test memmap arrays
|
205 |
+
X_train[:] = dataset_X[train_idx]
|
206 |
+
y_train[:] = dataset_y[train_idx]
|
207 |
+
X_test[:] = dataset_X[test_idx]
|
208 |
+
y_test[:] = dataset_y[test_idx]
|
209 |
+
|
210 |
+
# Save the memory-mapped arrays
|
211 |
+
with open('X_train.npy', 'wb') as X_train_file, open('y_train.npy', 'wb') as y_train_file, open('X_test.npy', 'wb') as X_test_file, open('y_test.npy', 'wb') as y_test_file:
|
212 |
+
np.save(X_train_file, X_train, allow_pickle=False, fix_imports=True)
|
213 |
+
np.save(y_train_file, y_train, allow_pickle=False, fix_imports=True)
|
214 |
+
np.save(X_test_file, X_test, allow_pickle=False, fix_imports=True)
|
215 |
+
np.save(y_test_file, y_test, allow_pickle=False, fix_imports=True)
|
216 |
+
|
217 |
+
X_train._mmap.close()
|
218 |
+
y_train._mmap.close()
|
219 |
+
X_test._mmap.close()
|
220 |
+
y_test._mmap.close()
|
221 |
+
|
222 |
+
# Delete temporary files
|
223 |
+
os.remove('tmp_X_train.npy')
|
224 |
+
os.remove('tmp_y_train.npy')
|
225 |
+
os.remove('tmp_X_test.npy')
|
226 |
+
os.remove('tmp_y_test.npy')
|
227 |
+
|
228 |
+
X_train = np.load('X_train.npy', mmap_mode='r')
|
229 |
+
y_train = np.load('y_train.npy', mmap_mode='r')
|
230 |
+
X_test = np.load('X_test.npy', mmap_mode='r')
|
231 |
+
y_test = np.load('y_test.npy', mmap_mode='r')
|
232 |
+
|
233 |
+
return X_train, X_test, y_train, y_test
|
dataset.tar.bz2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b32bfbbc2d3dececb55185fc344bd8e1c0228c70fdb5970ba0b9c9e04216d9b
|
3 |
+
size 100001092
|
lightweight_dataset_usage_example.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Usage Example for the Fall Prediction Dataset
|
2 |
+
# Please install dependencies before:
|
3 |
+
# pip install -r requirements.txt
|
4 |
+
|
5 |
+
# Import necessary libraries
|
6 |
+
import tensorflow as tf
|
7 |
+
|
8 |
+
from tensorflow.keras.models import Sequential
|
9 |
+
from tensorflow.keras.layers import Dense, LSTM, Dropout, Input
|
10 |
+
from convert_and_load_dataset import load_dataset, convert_and_load_dataset
|
11 |
+
|
12 |
+
|
13 |
+
# Example for local converting and loading (frist time usage take a while)
|
14 |
+
# X_train, X_test, y_train, y_test = convert_and_load_dataset()
|
15 |
+
|
16 |
+
# Example for local loading (first time usage may take a while)
|
17 |
+
X_train, X_test, y_train, y_test = load_dataset()
|
18 |
+
|
19 |
+
# Define a simple LSTM model
|
20 |
+
model = Sequential()
|
21 |
+
model.add(Input((X_train.shape[1], 1)))
|
22 |
+
model.add(LSTM(64))
|
23 |
+
model.add(Dropout(0.2))
|
24 |
+
model.add(Dense(1, activation='sigmoid'))
|
25 |
+
|
26 |
+
# Compile the model
|
27 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
28 |
+
|
29 |
+
# Train the model
|
30 |
+
history = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_data=(X_test, y_test))
|
31 |
+
|
32 |
+
# Evaluate the model on the test set
|
33 |
+
loss, accuracy = model.evaluate(X_test, y_test)
|
34 |
+
print(f"Test Accuracy: {accuracy * 100:.2f}%")
|
35 |
+
|
36 |
+
# You can save the model if needed
|
37 |
+
# model.save('fall_prediction_model.h5')
|
usage_example.py → plain_dataset_usage_example.py
RENAMED
@@ -6,7 +6,7 @@
|
|
6 |
import pandas as pd
|
7 |
import tensorflow as tf
|
8 |
from tensorflow.keras.models import Sequential
|
9 |
-
from tensorflow.keras.layers import Dense, LSTM, Dropout
|
10 |
from sklearn.model_selection import train_test_split
|
11 |
|
12 |
# Load the dataset from Huggingface or a local file path
|
@@ -36,6 +36,7 @@ X_test = X_test.values.reshape(X_test.shape[0], X_test.shape[1], 1)
|
|
36 |
|
37 |
# Define a simple LSTM model
|
38 |
model = Sequential()
|
|
|
39 |
model.add(LSTM(64, input_shape=(X_train.shape[1], 1)))
|
40 |
model.add(Dropout(0.2))
|
41 |
model.add(Dense(1, activation='sigmoid'))
|
|
|
6 |
import pandas as pd
|
7 |
import tensorflow as tf
|
8 |
from tensorflow.keras.models import Sequential
|
9 |
+
from tensorflow.keras.layers import Dense, LSTM, Dropout, Input
|
10 |
from sklearn.model_selection import train_test_split
|
11 |
|
12 |
# Load the dataset from Huggingface or a local file path
|
|
|
36 |
|
37 |
# Define a simple LSTM model
|
38 |
model = Sequential()
|
39 |
+
model.add(Input((X_train.shape[1], 1)))
|
40 |
model.add(LSTM(64, input_shape=(X_train.shape[1], 1)))
|
41 |
model.add(Dropout(0.2))
|
42 |
model.add(Dense(1, activation='sigmoid'))
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
pandas
|
2 |
tensorflow
|
3 |
scikit-learn
|
|
|
1 |
+
tqdm
|
2 |
pandas
|
3 |
tensorflow
|
4 |
scikit-learn
|