Datasets:
Modalities:
Text
Formats:
text
Size:
< 1K
Tags:
humanoid-robotics
fall-prediction
machine-learning
sensor-data
robotics
temporal-convolutional-networks
License:
# Helper functions to reduce RAM utilization | |
# Please install dependencies before: | |
# pip install -r requirements.txt | |
# Import necessary libraries | |
import os | |
import pickle | |
import tarfile | |
import pandas as pd | |
import numpy as np | |
from tqdm import tqdm | |
from tqdm import trange | |
from pathlib import Path | |
from sklearn.model_selection import train_test_split | |
def delete_temporary_files(): | |
if Path('tmp_dataset_X.pkl').exists(): | |
os.remove('tmp_dataset_X.pkl') | |
if Path('tmp_dataset_y.pkl').exists(): | |
os.remove('tmp_dataset_y.pkl') | |
if Path('tmp_dataset_X.npy').exists(): | |
os.remove('tmp_dataset_X.npy') | |
if Path('tmp_dataset_y.npy').exists(): | |
os.remove('tmp_dataset_y.npy') | |
if Path('tmp_X_train.pkl').exists(): | |
os.remove('tmp_X_train.npy') | |
if Path('tmp_y_train.pkl').exists(): | |
os.remove('tmp_y_train.npy') | |
if Path('tmp_X_test.npy').exists(): | |
os.remove('tmp_X_test.npy') | |
if Path('tmp_y_test.npy').exists(): | |
os.remove('tmp_y_test.npy') | |
def load_dataset(file_path='dataset.tar.bz2'): | |
""" | |
Decompress and load already prepared dataset. | |
Parameters: | |
file_path (str): Path to the compressed version of the prepared dataset (default dataset.tar.bz2) | |
Returns: | |
X_train (np.memmap): Memory-mapped NumPy array of the X training data | |
X_test (np.memmap): Memory-mapped NumPy array of the X test data | |
y_train (np.memmap): Memory-mapped NumPy array of the y training data | |
y_test (np.memmap): Memory-mapped NumPy array of the y test data | |
""" | |
# Return the pepared dataset if it already exists | |
if Path('X_train.npy').exists() and Path('y_train.npy').exists() and Path('X_test.npy').exists() and Path('y_test.npy').exists(): | |
X_train = np.load('X_train.npy', mmap_mode='r') | |
y_train = np.load('y_train.npy', mmap_mode='r') | |
X_test = np.load('X_test.npy', mmap_mode='r') | |
y_test = np.load('y_test.npy', mmap_mode='r') | |
return X_train, X_test, y_train, y_test | |
# Decompress memory mapped files | |
if Path(file_path).exists(): | |
with tarfile.open(file_path) as dataset: | |
dataset.extractall(path='.') | |
# Load the dataset | |
dataset_X = np.load('dataset_X.npy', mmap_mode='r') | |
dataset_y = np.load('dataset_y.npy', mmap_mode='r') | |
# Create a train test split with memory mapped files | |
X_train, X_test, y_train, y_test = train_test_split_memmapped(dataset_X, dataset_y) | |
return X_train, X_test, y_train, y_test | |
else: | |
print('ERROR: file not found') | |
def convert_and_load_dataset(file_path='dataset.csv.bz2'): | |
""" | |
Converts a CSV dataset into a NumPy memory-mapped dataset and load it. | |
This function transforms a given CSV dataset into a memory-mapped NumPy array. | |
Memory-mapping helps to reduce RAM usage by loading the dataset in smaller chunks. | |
However, it requires additional disk space during the conversion process. | |
Parameters: | |
file_path (str): Path to the CSV dataset file (default dataset.csv.bz2) | |
Returns: | |
X_train (np.memmap): Memory-mapped NumPy array of the X training data | |
X_test (np.memmap): Memory-mapped NumPy array of the X test data | |
y_train (np.memmap): Memory-mapped NumPy array of the y training data | |
y_test (np.memmap): Memory-mapped NumPy array of the y test data | |
""" | |
# Return the pepared dataset if it already exists | |
if Path('X_train.npy').exists() and Path('y_train.npy').exists() and Path('X_test.npy').exists() and Path('y_test.npy').exists(): | |
return load_dataset() | |
# Load and prepare dataset | |
delete_temporary_files() | |
with open('tmp_dataset_X.pkl', 'ab') as tmp_dataset_X, open('tmp_dataset_y.pkl', 'ab') as tmp_dataset_y: | |
shape = None | |
num_of_chunks = 0 | |
# Load the dataset from a local file path | |
# Replace with Huggingface dataset call if applicable | |
for real_data_chunk in tqdm(pd.read_csv(file_path, compression='bz2', chunksize=4096), desc='Read and Prepare Dataset'): | |
# Select relevant columns (replace these with actual column names from your dataset) | |
# Here we assume that the dataset contains sensor readings like gyroscope and accelerometer data | |
relevant_columns = ['gyro_x', 'gyro_y', 'gyro_z', 'acc_x', 'acc_y', 'acc_z', 'upright'] | |
sensordata_chunk = real_data_chunk[relevant_columns] | |
# Split the data into features (X) and labels (y) | |
# 'fall_label' is assumed to be the column indicating whether a fall occurred | |
X_chunk = np.array(sensordata_chunk.drop(columns=['upright'])) # Replace 'fall_label' with the actual label column | |
y_chunk = np.array(sensordata_chunk['upright']) | |
if shape is None: | |
# Preview the dataset | |
print('\n' + str(real_data_chunk.head())) | |
if shape is None: | |
shape = np.array(X_chunk.shape) | |
else: | |
shape[0] += X_chunk.shape[0] | |
pickle.dump(X_chunk, tmp_dataset_X) | |
pickle.dump(y_chunk, tmp_dataset_y) | |
num_of_chunks += 1 | |
# Convert dataset into a memory-mapped array stored in a binary file on disk. | |
X_idx = 0 | |
y_idx = 0 | |
dataset_X = np.memmap('tmp_dataset_X.npy', mode='w+', dtype=np.float32, shape=(shape[0], shape[1], 1)) | |
dataset_y = np.memmap('tmp_dataset_y.npy', mode='w+', dtype=np.float32, shape=(shape[0], 1)) | |
with open('tmp_dataset_X.pkl', 'rb') as tmp_dataset_X, open('tmp_dataset_y.pkl', 'rb') as tmp_dataset_y: | |
for _ in trange(0, num_of_chunks, 1, desc='Convert Dataset'): | |
X_chunk = pickle.load(tmp_dataset_X) | |
y_chunk = pickle.load(tmp_dataset_y) | |
# Reshape data for LSTM input (assuming time-series data) | |
# Adjust the reshaping based on your dataset structure | |
for X_data in X_chunk: | |
dataset_X[X_idx] = np.expand_dims(X_data, axis=-1) | |
X_idx += 1 | |
for y_data in y_chunk: | |
dataset_y[y_idx] = np.expand_dims(y_data, axis=-1) | |
y_idx += 1 | |
# Delete temporary files | |
os.remove('tmp_dataset_X.pkl') | |
os.remove('tmp_dataset_y.pkl') | |
# Save the memory-mapped arrays | |
with open('dataset_X.npy', 'wb') as dataset_x_file, open('dataset_y.npy', 'wb') as dataset_y_file: | |
np.save(dataset_x_file, dataset_X, allow_pickle=False, fix_imports=True) | |
np.save(dataset_y_file, dataset_y, allow_pickle=False, fix_imports=True) | |
# Delete temporary files | |
dataset_X._mmap.close() | |
dataset_y._mmap.close() | |
os.remove('tmp_dataset_X.npy') | |
os.remove('tmp_dataset_y.npy') | |
# Reload memory-mapped arrays | |
dataset_X = np.load('dataset_X.npy', mmap_mode='r') | |
dataset_y = np.load('dataset_y.npy', mmap_mode='r') | |
# Create a train test split with memory mapped files | |
X_train, X_test, y_train, y_test = train_test_split_memmapped(dataset_X, dataset_y) | |
return X_train, X_test, y_train, y_test | |
def train_test_split_memmapped(dataset_X, dataset_y, test_size=0.2, random_state=42): | |
""" | |
Create memory-mapped files for train and test datasets. | |
Parameters: | |
dataset_X (np.memmap): X part of the complete dataset | |
dataset_y (np.memmap): y part of the complete dataset | |
test_size (float): Propotion of the dataset used for the test split (default 0.2) | |
random_state (int): Random state used for repeatability (default 42) | |
Returns: | |
X_train (np.memmap): Memory-mapped NumPy array of the X training data | |
X_test (np.memmap): Memory-mapped NumPy array of the X test data | |
y_train (np.memmap): Memory-mapped NumPy array of the y training data | |
y_test (np.memmap): Memory-mapped NumPy array of the y test data | |
""" | |
delete_temporary_files() | |
# Split data into training and test sets | |
idxs = np.arange(dataset_X.shape[0]) | |
train_idx, test_idx = train_test_split(idxs, test_size=test_size, random_state=random_state) | |
# Create memory-mapped files for train and test sets | |
X_train = np.memmap('tmp_X_train.npy', dtype=dataset_X.dtype, mode='w+', shape=(len(train_idx), dataset_X.shape[1], 1)) | |
y_train = np.memmap('tmp_y_train.npy', dtype=dataset_y.dtype, mode='w+', shape=(len(train_idx), dataset_y.shape[1])) | |
X_test = np.memmap('tmp_X_test.npy', dtype=dataset_X.dtype, mode='w+', shape=(len(test_idx), dataset_X.shape[1], 1)) | |
y_test = np.memmap('tmp_y_test.npy', dtype=dataset_y.dtype, mode='w+', shape=(len(test_idx), dataset_y.shape[1])) | |
# Assign values to the train and test memmap arrays | |
X_train[:] = dataset_X[train_idx] | |
y_train[:] = dataset_y[train_idx] | |
X_test[:] = dataset_X[test_idx] | |
y_test[:] = dataset_y[test_idx] | |
# Save the memory-mapped arrays | |
with open('X_train.npy', 'wb') as X_train_file, open('y_train.npy', 'wb') as y_train_file, open('X_test.npy', 'wb') as X_test_file, open('y_test.npy', 'wb') as y_test_file: | |
np.save(X_train_file, X_train, allow_pickle=False, fix_imports=True) | |
np.save(y_train_file, y_train, allow_pickle=False, fix_imports=True) | |
np.save(X_test_file, X_test, allow_pickle=False, fix_imports=True) | |
np.save(y_test_file, y_test, allow_pickle=False, fix_imports=True) | |
X_train._mmap.close() | |
y_train._mmap.close() | |
X_test._mmap.close() | |
y_test._mmap.close() | |
# Delete temporary files | |
os.remove('tmp_X_train.npy') | |
os.remove('tmp_y_train.npy') | |
os.remove('tmp_X_test.npy') | |
os.remove('tmp_y_test.npy') | |
X_train = np.load('X_train.npy', mmap_mode='r') | |
y_train = np.load('y_train.npy', mmap_mode='r') | |
X_test = np.load('X_test.npy', mmap_mode='r') | |
y_test = np.load('y_test.npy', mmap_mode='r') | |
return X_train, X_test, y_train, y_test |