Datasets:
Modalities:
Text
Formats:
text
Size:
< 1K
Tags:
humanoid-robotics
fall-prediction
machine-learning
sensor-data
robotics
temporal-convolutional-networks
License:
File size: 9,900 Bytes
bbeb72c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# Helper functions to reduce RAM utilization
# Please install dependencies before:
# pip install -r requirements.txt
# Import necessary libraries
import os
import pickle
import tarfile
import pandas as pd
import numpy as np
from tqdm import tqdm
from tqdm import trange
from pathlib import Path
from sklearn.model_selection import train_test_split
def delete_temporary_files():
if Path('tmp_dataset_X.pkl').exists():
os.remove('tmp_dataset_X.pkl')
if Path('tmp_dataset_y.pkl').exists():
os.remove('tmp_dataset_y.pkl')
if Path('tmp_dataset_X.npy').exists():
os.remove('tmp_dataset_X.npy')
if Path('tmp_dataset_y.npy').exists():
os.remove('tmp_dataset_y.npy')
if Path('tmp_X_train.pkl').exists():
os.remove('tmp_X_train.npy')
if Path('tmp_y_train.pkl').exists():
os.remove('tmp_y_train.npy')
if Path('tmp_X_test.npy').exists():
os.remove('tmp_X_test.npy')
if Path('tmp_y_test.npy').exists():
os.remove('tmp_y_test.npy')
def load_dataset(file_path='dataset.tar.bz2'):
"""
Decompress and load already prepared dataset.
Parameters:
file_path (str): Path to the compressed version of the prepared dataset (default dataset.tar.bz2)
Returns:
X_train (np.memmap): Memory-mapped NumPy array of the X training data
X_test (np.memmap): Memory-mapped NumPy array of the X test data
y_train (np.memmap): Memory-mapped NumPy array of the y training data
y_test (np.memmap): Memory-mapped NumPy array of the y test data
"""
# Return the pepared dataset if it already exists
if Path('X_train.npy').exists() and Path('y_train.npy').exists() and Path('X_test.npy').exists() and Path('y_test.npy').exists():
X_train = np.load('X_train.npy', mmap_mode='r')
y_train = np.load('y_train.npy', mmap_mode='r')
X_test = np.load('X_test.npy', mmap_mode='r')
y_test = np.load('y_test.npy', mmap_mode='r')
return X_train, X_test, y_train, y_test
# Decompress memory mapped files
if Path(file_path).exists():
with tarfile.open(file_path) as dataset:
dataset.extractall(path='.')
# Load the dataset
dataset_X = np.load('dataset_X.npy', mmap_mode='r')
dataset_y = np.load('dataset_y.npy', mmap_mode='r')
# Create a train test split with memory mapped files
X_train, X_test, y_train, y_test = train_test_split_memmapped(dataset_X, dataset_y)
return X_train, X_test, y_train, y_test
else:
print('ERROR: file not found')
def convert_and_load_dataset(file_path='dataset.csv.bz2'):
"""
Converts a CSV dataset into a NumPy memory-mapped dataset and load it.
This function transforms a given CSV dataset into a memory-mapped NumPy array.
Memory-mapping helps to reduce RAM usage by loading the dataset in smaller chunks.
However, it requires additional disk space during the conversion process.
Parameters:
file_path (str): Path to the CSV dataset file (default dataset.csv.bz2)
Returns:
X_train (np.memmap): Memory-mapped NumPy array of the X training data
X_test (np.memmap): Memory-mapped NumPy array of the X test data
y_train (np.memmap): Memory-mapped NumPy array of the y training data
y_test (np.memmap): Memory-mapped NumPy array of the y test data
"""
# Return the pepared dataset if it already exists
if Path('X_train.npy').exists() and Path('y_train.npy').exists() and Path('X_test.npy').exists() and Path('y_test.npy').exists():
return load_dataset()
# Load and prepare dataset
delete_temporary_files()
with open('tmp_dataset_X.pkl', 'ab') as tmp_dataset_X, open('tmp_dataset_y.pkl', 'ab') as tmp_dataset_y:
shape = None
num_of_chunks = 0
# Load the dataset from a local file path
# Replace with Huggingface dataset call if applicable
for real_data_chunk in tqdm(pd.read_csv(file_path, compression='bz2', chunksize=4096), desc='Read and Prepare Dataset'):
# Select relevant columns (replace these with actual column names from your dataset)
# Here we assume that the dataset contains sensor readings like gyroscope and accelerometer data
relevant_columns = ['gyro_x', 'gyro_y', 'gyro_z', 'acc_x', 'acc_y', 'acc_z', 'upright']
sensordata_chunk = real_data_chunk[relevant_columns]
# Split the data into features (X) and labels (y)
# 'fall_label' is assumed to be the column indicating whether a fall occurred
X_chunk = np.array(sensordata_chunk.drop(columns=['upright'])) # Replace 'fall_label' with the actual label column
y_chunk = np.array(sensordata_chunk['upright'])
if shape is None:
# Preview the dataset
print('\n' + str(real_data_chunk.head()))
if shape is None:
shape = np.array(X_chunk.shape)
else:
shape[0] += X_chunk.shape[0]
pickle.dump(X_chunk, tmp_dataset_X)
pickle.dump(y_chunk, tmp_dataset_y)
num_of_chunks += 1
# Convert dataset into a memory-mapped array stored in a binary file on disk.
X_idx = 0
y_idx = 0
dataset_X = np.memmap('tmp_dataset_X.npy', mode='w+', dtype=np.float32, shape=(shape[0], shape[1], 1))
dataset_y = np.memmap('tmp_dataset_y.npy', mode='w+', dtype=np.float32, shape=(shape[0], 1))
with open('tmp_dataset_X.pkl', 'rb') as tmp_dataset_X, open('tmp_dataset_y.pkl', 'rb') as tmp_dataset_y:
for _ in trange(0, num_of_chunks, 1, desc='Convert Dataset'):
X_chunk = pickle.load(tmp_dataset_X)
y_chunk = pickle.load(tmp_dataset_y)
# Reshape data for LSTM input (assuming time-series data)
# Adjust the reshaping based on your dataset structure
for X_data in X_chunk:
dataset_X[X_idx] = np.expand_dims(X_data, axis=-1)
X_idx += 1
for y_data in y_chunk:
dataset_y[y_idx] = np.expand_dims(y_data, axis=-1)
y_idx += 1
# Delete temporary files
os.remove('tmp_dataset_X.pkl')
os.remove('tmp_dataset_y.pkl')
# Save the memory-mapped arrays
with open('dataset_X.npy', 'wb') as dataset_x_file, open('dataset_y.npy', 'wb') as dataset_y_file:
np.save(dataset_x_file, dataset_X, allow_pickle=False, fix_imports=True)
np.save(dataset_y_file, dataset_y, allow_pickle=False, fix_imports=True)
# Delete temporary files
dataset_X._mmap.close()
dataset_y._mmap.close()
os.remove('tmp_dataset_X.npy')
os.remove('tmp_dataset_y.npy')
# Reload memory-mapped arrays
dataset_X = np.load('dataset_X.npy', mmap_mode='r')
dataset_y = np.load('dataset_y.npy', mmap_mode='r')
# Create a train test split with memory mapped files
X_train, X_test, y_train, y_test = train_test_split_memmapped(dataset_X, dataset_y)
return X_train, X_test, y_train, y_test
def train_test_split_memmapped(dataset_X, dataset_y, test_size=0.2, random_state=42):
"""
Create memory-mapped files for train and test datasets.
Parameters:
dataset_X (np.memmap): X part of the complete dataset
dataset_y (np.memmap): y part of the complete dataset
test_size (float): Propotion of the dataset used for the test split (default 0.2)
random_state (int): Random state used for repeatability (default 42)
Returns:
X_train (np.memmap): Memory-mapped NumPy array of the X training data
X_test (np.memmap): Memory-mapped NumPy array of the X test data
y_train (np.memmap): Memory-mapped NumPy array of the y training data
y_test (np.memmap): Memory-mapped NumPy array of the y test data
"""
delete_temporary_files()
# Split data into training and test sets
idxs = np.arange(dataset_X.shape[0])
train_idx, test_idx = train_test_split(idxs, test_size=test_size, random_state=random_state)
# Create memory-mapped files for train and test sets
X_train = np.memmap('tmp_X_train.npy', dtype=dataset_X.dtype, mode='w+', shape=(len(train_idx), dataset_X.shape[1], 1))
y_train = np.memmap('tmp_y_train.npy', dtype=dataset_y.dtype, mode='w+', shape=(len(train_idx), dataset_y.shape[1]))
X_test = np.memmap('tmp_X_test.npy', dtype=dataset_X.dtype, mode='w+', shape=(len(test_idx), dataset_X.shape[1], 1))
y_test = np.memmap('tmp_y_test.npy', dtype=dataset_y.dtype, mode='w+', shape=(len(test_idx), dataset_y.shape[1]))
# Assign values to the train and test memmap arrays
X_train[:] = dataset_X[train_idx]
y_train[:] = dataset_y[train_idx]
X_test[:] = dataset_X[test_idx]
y_test[:] = dataset_y[test_idx]
# Save the memory-mapped arrays
with open('X_train.npy', 'wb') as X_train_file, open('y_train.npy', 'wb') as y_train_file, open('X_test.npy', 'wb') as X_test_file, open('y_test.npy', 'wb') as y_test_file:
np.save(X_train_file, X_train, allow_pickle=False, fix_imports=True)
np.save(y_train_file, y_train, allow_pickle=False, fix_imports=True)
np.save(X_test_file, X_test, allow_pickle=False, fix_imports=True)
np.save(y_test_file, y_test, allow_pickle=False, fix_imports=True)
X_train._mmap.close()
y_train._mmap.close()
X_test._mmap.close()
y_test._mmap.close()
# Delete temporary files
os.remove('tmp_X_train.npy')
os.remove('tmp_y_train.npy')
os.remove('tmp_X_test.npy')
os.remove('tmp_y_test.npy')
X_train = np.load('X_train.npy', mmap_mode='r')
y_train = np.load('y_train.npy', mmap_mode='r')
X_test = np.load('X_test.npy', mmap_mode='r')
y_test = np.load('y_test.npy', mmap_mode='r')
return X_train, X_test, y_train, y_test |