text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(self): if self.options.shared: self.options.rm_safe("fPIC")
[ 111 ]
f METHOD_NAME(self, **kwargs):
[ 1452 ]
def METHOD_NAME(inputPath: nimblephysics_libs._nimblephysics.common.Uri, skel: nimblephysics_libs._nimblephysics.dynamics.Skeleton, outputPath: str) -> None: pass
[ 369, 10562, 10563 ]
def METHOD_NAME(server_process, metrics, interval, socket): """ Monitor the metrics of server_process and its child processes """ while True: message = [] collected_metrics = get_metrics(server_process, get_child_processes(server_process), logger) metrics_msg = [] for metric in metrics: message.append(str(collected_metrics.get(metric, 0))) if collected_metrics.get(metric) is not None: metrics_msg.append("{0} : {1}".format(metric, collected_metrics.get(metric, 0))) message = "\t".join(message) + "\t\n" logger.info("%s", " -- ".join(metrics_msg)) if socket: try: socket.send(message.encode("latin-1")) except BrokenPipeError: logger.info("Stopping monitoring as socket connection is closed.") break # TODO - log metrics to a file METRICS_LOG_FILE if METRICS_LOG_FILE is provided gevent.sleep(interval)
[ 1863, 4491 ]
def METHOD_NAME(self) -> 'outputs.CollectorPropertiesResponse': return pulumi.get(self, "properties")
[ 748 ]
def METHOD_NAME( inputs, outputs, backend=CoreMLComputeUnit.CPU, allow_low_precision=True, quantization_mode=CoreMLQuantizationMode.NONE, mlmodel_export_path=None, ): return ( inputs, outputs, backend, allow_low_precision, quantization_mode, mlmodel_export_path, )
[ 296, 1457 ]
def METHOD_NAME(self): dims = self.dataset.shape.nav.dims if dims not in (1, 2, 3): raise ValueError( "can only handle 1D/2D/3D nav currently, received %s dimensions" % dims ) zyx = ( self.parameters.get('z'), self.parameters.get('y'), self.parameters.get('x'), ) messages = { 1: "Need x, not y and not z to index 1D dataset, received z=%s, y=%s, x=%s", 2: "Need x, y and not z to index 2D dataset, received z=%s, y=%s, x=%s", 3: "Need x, y z to index 3D dataset, received z=%s, y=%s, x=%s", } keep = zyx[-dims:] drop = zyx[:-dims] if (None in keep) or not all(d is None for d in drop): raise ValueError(messages[dims] % zyx) return keep
[ 19, 1788 ]
def METHOD_NAME(): # Create a list of dictionaries where each key is "labels(n)" # and each value is a list containing a node label labels = "MATCH (n) RETURN distinct labels(n)" query = run_query(labels) data = query.data() label_list = [] # Iterate through the list and dicitionaries to create a list # of node labels for dictionary in data: for key in dictionary: value = dictionary[key] value_string = value[0] label_list.append(value_string) return label_list
[ 1716, 415 ]
def METHOD_NAME(result: Result) -> Iterator[Row]: if "totals" in result: return itertools.chain(result["data"], [result["totals"]]) else: return iter(result["data"])
[ 3972, 1346 ]
def METHOD_NAME(func, lis): """Python2/3 compatibility. replace map(int, list) with lmap(int, list) that always returns a list instead of an iterator. Otherwise conflicts with np.array in python3. """ return list(map(func, lis))
[ -1 ]
def METHOD_NAME(config_filename): """Parse a INI config with profiles. This will parse an INI config file and map top level profiles into a top level "profile" key. If you want to parse an INI file and map all section names to top level keys, use ``raw_config_parse`` instead. """ ...
[ 557, 200 ]
def METHOD_NAME(): q0, q1 = cirq.LineQubit.range(2) circuit = cirq.Circuit(cirq.H(q0), cirq.CNOT(q0, q1)) bitstrings = [0, 1, 2] f1 = cirq.xeb_fidelity(circuit, bitstrings, (q0, q1)) f2 = cirq.xeb_fidelity(circuit, tuple(bitstrings), (q0, q1)) assert f1 == f2
[ 9, 12699, 9102, 1815, 362 ]
def METHOD_NAME(self) -> str: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type")
[ 44 ]
def METHOD_NAME(): package = Package.describe("data/tables/chunk*.csv") assert package.to_descriptor() == { "resources": [ { "path": "data/tables/chunk1.csv", "name": "chunk1", "type": "table", "scheme": "file", "format": "csv", "encoding": "utf-8", "mediatype": "text/csv", "schema": { "fields": [ {"name": "id", "type": "integer"}, {"name": "name", "type": "string"}, ] }, }, { "name": "chunk2", "path": "data/tables/chunk2.csv", "type": "table", "scheme": "file", "format": "csv", "encoding": "utf-8", "mediatype": "text/csv", "schema": { "fields": [ {"name": "id", "type": "integer"}, {"name": "name", "type": "string"}, ] }, }, ], }
[ 9, 2517, 360 ]
def METHOD_NAME(stub, model_name, model_input, metadata): with open(model_input, "rb") as f: data = f.read() input_data = {"data": data} response = stub.Predictions( inference_pb2.PredictionsRequest(model_name=model_name, input=input_data), metadata=metadata, ) try: prediction = response.prediction.decode("utf-8") print(prediction) except grpc.RpcError as e: exit(1)
[ 1852 ]
async def METHOD_NAME() -> None: """Test that scheduling an animation works.""" app = AnimApp() delay = 0.1 async with app.run_test() as pilot: styles = app.query_one(Static).styles styles.background = "black" styles.animate("background", "white", delay=delay, duration=0) await pilot.pause(0.9 * delay) assert styles.background.rgb == (0, 0, 0) # Still black await pilot.wait_for_scheduled_animations() assert styles.background.rgb == (255, 255, 255)
[ 9, 4817, 4537 ]
def METHOD_NAME(args): """Parses the command line to determine the Command and its arguments. :param args: the arguments provided at the command line :return: Command and command-specific arguments """ platforms = get_platforms() width = max(min(shutil.get_terminal_size().columns, 80) - 2, 20) briefcase_description = textwrap.fill( "Briefcase is a tool for converting a Python project " "into a standalone native application for distribution.", width=width, ) description_max_pad_len = max(len(cmd.command) for cmd in COMMANDS) + 2 command_description_list = "\n".join( f" {cmd.command}{' ' * (description_max_pad_len - len(cmd.command))}{cmd.description}" for cmd in COMMANDS ) platform_list = ", ".join(sorted(platforms, key=str.lower)) additional_instruction = textwrap.fill( "Each command, platform, and format has additional options. " "Use the -h option on a specific command for more details.", width=width, ) parser = argparse.ArgumentParser( prog="briefcase", description=( f"{briefcase_description}\n" "\n" "Commands:\n" f"{command_description_list}\n" "\n" "Platforms:\n" f" {platform_list}\n" "\n" f"{additional_instruction}" ), usage="briefcase [-h] <command> [<platform>] [<format>] ...", add_help=False, formatter_class=lambda prog: RawDescriptionHelpFormatter(prog, width=width), ) parser.add_argument("-V", "--version", action="version", version=__version__) # <command> isn't actually optional; but if it's marked as required, # there's no way to get help for subcommands. So; treat <command> # as optional, handle the case where <command> isn't provided # as the case where top-level help is displayed, and provide an explicit # usage string so that the instructions displayed are correct parser.add_argument( "command", choices=list(cmd.command for cmd in COMMANDS), metavar="command", nargs="?", help=argparse.SUPPRESS, ) # To make the UX a little forgiving, we normalize *any* case to the case # actually used to register the platform. This function maps the lower-case # version of the registered name to the actual registered name. def normalize(name): return {n.lower(): n for n in platforms.keys()}.get(name.lower(), name) # argparse handles `--` specially, so make the passthrough args bypass the parser. def parse_known_args(args): args, passthough = split_passthrough(args) options, extra = parser.parse_known_args(args) if passthough: extra += ["--"] + passthough return options, extra # Use parse_known_args to ensure any extra arguments can be ignored, # and parsed as part of subcommand handling. This will capture the # command, platform (filling a default if unspecified) and format # (with no value if unspecified). options, extra = parse_known_args(args) # If no command has been provided, display top-level help. if options.command is None: raise NoCommandError(parser.format_help()) # Commands agnostic to the platform and format if options.command == "new": Command = NewCommand elif options.command == "dev": Command = DevCommand elif options.command == "upgrade": Command = UpgradeCommand # Commands dependent on the platform and format else: parser.add_argument( "platform", choices=list(platforms.keys()), default={ "darwin": "macOS", "linux": "linux", "win32": "windows", }[sys.platform], metavar="platform", nargs="?", type=normalize, help="The platform to target (one of %(choices)s; default: %(default)s", ) # <format> is also optional, with the default being platform dependent. # There's no way to encode option-dependent choices, so allow *any* # input, and we'll manually validate. parser.add_argument( "output_format", metavar="format", nargs="?", help="The output format to use (the available output formats are platform dependent)", ) # Re-parse the arguments, now that we know it is a command that makes use # of platform/output_format. options, extra = parse_known_args(args) # Import the platform module platform_module = platforms[options.platform] # If the output format wasn't explicitly specified, check to see # Otherwise, extract and use the default output_format for the platform. if options.output_format is None: output_format = platform_module.DEFAULT_OUTPUT_FORMAT else: output_format = options.output_format output_formats = get_output_formats(options.platform) # Normalise casing of output_format to be more forgiving. output_format = {n.lower(): n for n in output_formats}.get( output_format.lower(), output_format ) # We now know the command, platform, and format. # Get the command class that corresponds to that definition. try: format_module = output_formats[output_format] Command = getattr(format_module, options.command) except KeyError: raise InvalidFormatError( requested=output_format, choices=list(output_formats.keys()), ) except AttributeError: raise UnsupportedCommandError( platform=options.platform, output_format=output_format, command=options.command, ) return Command, extra
[ 214, 4518 ]
def METHOD_NAME(self): return orm.SqliteLogCollection(self)
[ 1099 ]
def METHOD_NAME( http_proxy: Optional[str] = None, https_proxy: Optional[str] = None, retry_sleeps: Optional[List[float]] = None, ) -> None: """ Configure snap to use http and https proxies. :param http_proxy: http proxy to be used by snap. If None, it will not be configured :param https_proxy: https proxy to be used by snap. If None, it will not be configured :param retry_sleeps: Optional list of sleep lengths to apply between retries. Specifying a list of [0.5, 1] tells subp to retry twice on failure; sleeping half a second before the first retry and 1 second before the second retry. """ if not is_snapd_installed(): LOG.debug("Skipping configure snap proxy. snapd is not installed.") return if http_proxy or https_proxy: event.info(messages.SETTING_SERVICE_PROXY.format(service="snap")) if http_proxy: system.subp( ["snap", "set", "system", "proxy.http={}".format(http_proxy)], retry_sleeps=retry_sleeps, ) if https_proxy: system.subp( ["snap", "set", "system", "proxy.https={}".format(https_proxy)], retry_sleeps=retry_sleeps, )
[ 111, 4792, 127 ]
def METHOD_NAME(url: str) -> List: """ Returns the list of known repositories from the given url. The list of repos are known hence not using any parsers. This allows us not add any additional packages. In the future, we may want to change the approach to include parsers if the requirement changes. Args: url (str): The link to check for the presence of known repositories. Returns: list - of repos """ repos = list() try: url.rstrip("/") r = requests.get(f"{url}/compose") if "MON" in r.text: repos.append("MON") if "OSD" in r.text: repos.append("OSD") if "Tools" in r.text: repos.append("Tools") except BaseException as be: # noqa LOG.error(be) return repos
[ 19, 4822 ]
def METHOD_NAME(self): """ Tests creating and renaming an instance on EC2 (classic) """ # create the instance ret_val = self.run_cloud( "-p ec2-test {} --no-deploy".format(self.instance_name), timeout=TIMEOUT ) # check if instance returned self.assertInstanceExists(ret_val) changed_name = self.instance_name + "-changed" rename_result = self.run_cloud( "-a rename {} newname={} --assume-yes".format( self.instance_name, changed_name ), timeout=TIMEOUT, ) self.assertFalse( self._instance_exists(), "Instance wasn't renamed: |\n{}".format(rename_result), ) self.assertInstanceExists(instance_name=changed_name) self.assertDestroyInstance(changed_name)
[ 9, 89, 2010 ]
def METHOD_NAME(self, expression): eav = {":id": {"S": "asdasdasd"}} desired_hash_key, comparison, range_values = parse_expression( expression_attribute_values=eav, key_condition_expression=expression, schema=self.schema, expression_attribute_names=dict(), ) assert desired_hash_key == eav[":id"] assert comparison is None assert range_values == []
[ 9, 1161, 59, 246 ]
def METHOD_NAME(cls, _schema): if cls._schema_sub_resource_read is not None: _schema.id = cls._schema_sub_resource_read.id return cls._schema_sub_resource_read = _schema_sub_resource_read = AAZObjectType() sub_resource_read = _schema_sub_resource_read sub_resource_read.id = AAZStrType() _schema.id = cls._schema_sub_resource_read.id
[ 56, 135, 1066, 191, 203 ]
def METHOD_NAME(): detector = managers.plugin_manager.detector face_plugins = managers.plugin_manager.filter_face_plugins( _get_face_plugin_names() ) face_plugins = face_detection_skip_check(face_plugins) rawfile = base64.b64decode(request.get_json()["file"]) faces = detector( img=read_img(rawfile), det_prob_threshold=_get_det_prob_threshold(), face_plugins=face_plugins ) plugins_versions = {p.slug: str(p) for p in [detector] + face_plugins} faces = _limit(faces, request.values.get(ARG.LIMIT)) FaceDetection.SKIPPING_FACE_DETECTION = False return jsonify(plugins_versions=plugins_versions, result=faces)
[ 416, 5626, 2426, 72 ]
def METHOD_NAME(self, **kwargs: Any) -> Iterable["_models.Sku"]: """Lists the available SKUs supported by Microsoft.Storage for given subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either Sku or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.storage.v2017_06_01.models.Sku] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._api_version or "2017-06-01")) cls: ClsType[_models.StorageSkuListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.METHOD_NAME.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("StorageSkuListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data)
[ 245 ]
def METHOD_NAME(self): with self._open_file(self.filename) as data_file: for array_key, ds_name in self.datasets.items(): if ds_name not in data_file: raise RuntimeError("%s not in %s" % (ds_name, self.filename)) spec = self.__read_spec(array_key, data_file, ds_name) self.provides(array_key, spec)
[ 102 ]
async def METHOD_NAME(metadata_store, rest_api): """ Test whether an error is returned if try to modify both the status and name of a torrent """ with db_session: chan = metadata_store.ChannelMetadata.create_channel(title="bla") patch_params = {'status': TODELETE, 'title': 'test'} await do_request( rest_api, 'metadata/%s/%i' % (hexlify(chan.public_key), chan.id_), request_type='PATCH', post_data=patch_params, expected_code=400, )
[ 9, 86, 475, 452, 61, 156 ]
def METHOD_NAME(self): """Puts in a non dictionary header""" self.header_dict = "nchans nifs nbits fch1 foff tstart"
[ 9, 256, 553 ]
def METHOD_NAME(self, window: Any) -> Any: raise NotImplementedError
[ 129, 1519 ]
def METHOD_NAME(self): """Tests the DefAttributesUsingSerialize overload WITH docstrings. """ # Basic read / write. dut = MyData2(some_double=1.0) self.assertEqual(dut.some_double, 1.0) dut.some_double = -1.0 self.assertEqual(dut.some_double, -1.0) # We'll just spot-check a few of the docs; that should be enough. self.assertEqual(inspect.getdoc(MyData2.some_double), "Field docstring for a double.") self.assertEqual(inspect.getdoc(MyData2.some_vector), "Field docstring for a vector.") # N.B. Fields are tested below.
[ 9, 177, 626, 183, 41, 672 ]
def METHOD_NAME( y_pred: npt.NDArray[np.float32], y_true: npt.NDArray[np.float32] ) -> npt.NDArray[np.float32]: """ Computes the mean reciprocal rank of the predictions. Args: y_pred: Array of shape [N, D] with the predictions (N: number of elements, D: number of metrics). y_true: Array of shape [N, D] with the true metrics. Returns: Array of shape [D] with the average MRR for each metric. """ minimum_indices = y_pred.argmin(0) # [D] true_ranks = st.rankdata(y_true, method="min", axis=0) # [N, D] ranks = np.take_along_axis( true_ranks, minimum_indices[None, :], axis=0 ) # [N, D] result = 1 / ranks return result.mean(0)
[ 8996 ]
def METHOD_NAME(example_subarray, tmp_path): """Test plain array display""" from ctapipe.visualization.bokeh import ArrayDisplay display = ArrayDisplay(example_subarray) output_path = tmp_path / "test.html" output_file(output_path) save(display.figure, filename=output_path)
[ 9, 877, 52, 654, 199 ]
def METHOD_NAME(self, thread_factory, executable_factory): """ HEARTBEAT (CORE): Multiple instance with removal""" pids = [self._pid() for _ in range(4)] threads = [thread_factory() for _ in range(4)] executable = executable_factory() assert live(executable, 'host0', pids[0], threads[0]) == {'assign_thread': 0, 'nr_threads': 1} assert live(executable, 'host1', pids[1], threads[1]) == {'assign_thread': 1, 'nr_threads': 2} assert live(executable, 'host0', pids[0], threads[0]) == {'assign_thread': 0, 'nr_threads': 2} assert live(executable, 'host2', pids[2], threads[2]) == {'assign_thread': 2, 'nr_threads': 3} assert live(executable, 'host0', pids[0], threads[0]) == {'assign_thread': 0, 'nr_threads': 3} die(executable, 'host0', pids[0], threads[0]) assert live(executable, 'host3', pids[3], threads[3]) == {'assign_thread': 2, 'nr_threads': 3} assert live(executable, 'host1', pids[1], threads[1]) == {'assign_thread': 0, 'nr_threads': 3} assert live(executable, 'host2', pids[2], threads[2]) == {'assign_thread': 1, 'nr_threads': 3} die(executable, 'host2', pids[2], threads[2]) assert live(executable, 'host3', pids[3], threads[3]) == {'assign_thread': 1, 'nr_threads': 2}
[ 9, 1797, 988 ]
def METHOD_NAME(self): server, client = self._connected_pair() ep = select.epoll(2) ep2 = select.epoll.fromfd(ep.fileno()) ep2.register(server.fileno(), select.EPOLLIN | select.EPOLLOUT) ep2.register(client.fileno(), select.EPOLLIN | select.EPOLLOUT) events = ep.poll(1, 4) events2 = ep2.poll(0.9, 4) self.assertEqual(len(events), 2) self.assertEqual(len(events2), 2) ep.close() try: ep2.poll(1, 4) except IOError, e: self.assertEqual(e.args[0], errno.EBADF, e) else: self.fail("epoll on closed fd didn't raise EBADF")
[ 9, 3465 ]
def METHOD_NAME( query_body: MutableMapping[str, Any], expected_entity: EntityKey, ) -> None: dataset = get_dataset("discover") # HACK until these are converted to proper SnQL queries if not query_body.get("conditions"): query_body["conditions"] = [] query_body["conditions"] += [ ["timestamp", ">=", "2020-01-01T12:00:00"], ["timestamp", "<", "2020-01-02T12:00:00"], ["project_id", "=", 1], ] if not query_body.get("selected_columns"): query_body["selected_columns"] = ["project_id"] request = json_to_snql(query_body, "discover") request.validate() query, _ = parse_snql_query(str(request.query), dataset) entity = query.get_from_clause() assert isinstance(entity, EntitySource) assert entity.key == expected_entity
[ 9, 365, 1458 ]
def METHOD_NAME(): mx.rnd.seed(seed_state=1234) model = DeepTPPPredictionNetwork( num_marks=5, time_distr_output=WeibullOutput(), interval_length=1.0, prediction_interval_length=10.0, ) model.initialize() past_ia_times = nd.array([[0.1, 0.2, 0.1, 0.12], [0.3, 0.15, 0.1, 0.12]]) past_marks = nd.array([[1, 2, 0, 2], [0, 0, 1, 2]]) past_valid_length = nd.array([3, 4]) past_target = nd.stack(past_ia_times, past_marks, axis=-1) pred_target, pred_valid_length = model(past_target, past_valid_length) # pred_target must have shape # (num_parallel_samples, batch_size, max_sequence_length, 2) assert pred_target.ndim == 4 assert pred_target.shape[0] == model.num_parallel_samples assert pred_target.shape[1] == past_ia_times.shape[0] assert pred_target.shape[3] == 2 # TPP prediction contains ia_time & mark # pred_valid_length must have shape (num_parallel_samples, batch_size) assert pred_valid_length.ndim == 2 assert pred_valid_length.shape[0] == model.num_parallel_samples assert pred_valid_length.shape[1] == past_ia_times.shape[0] pred_ia_times = pred_target[..., 0].asnumpy() pred_marks = pred_target[..., 1].asnumpy() assert pred_marks.min() >= 0 assert pred_marks.max() < model.num_marks assert (pred_ia_times >= 0).all() # ia_times are set to zero above valid_length (see DeepTPPPredictionNetwork) assert (pred_ia_times.sum(-1) < model.prediction_interval_length).all()
[ 9, 2726, 1228, 146 ]
def METHOD_NAME(self, fn): out.info(u'Skipping existing file "%s".' % fn)
[ 1985, 3451 ]
def METHOD_NAME(): return { docker_mod: {"__context__": {"docker.docker_version": ""}}, docker_state: {"__opts__": {"test": False}}, }
[ 111, 467, 468 ]
def METHOD_NAME(): """Create a graphic with the additive adjustment factors estimated after applying the adapt_freq method.""" n = 10000 x = series(synth_rainfall(2, 2, wet_freq=0.25, size=n), "pr") # sim y = series(synth_rainfall(2, 2, wet_freq=0.5, size=n), "pr") # ref xp = adapt_freq(x, y, thresh=0).sim_ad fig, (ax1, ax2) = plt.subplots(2, 1) sx = x.sortby(x) sy = y.sortby(y) sxp = xp.sortby(xp) # Original and corrected series ax1.plot(sx.values, color="blue", lw=1.5, label="x : sim") ax1.plot(sxp.values, color="pink", label="xp : sim corrected") ax1.plot(sy.values, color="k", label="y : ref") ax1.legend() # Compute qm factors qm_add = QuantileDeltaMapping(kind="+", group="time").train(y, x).ds qm_mul = QuantileDeltaMapping(kind="*", group="time").train(y, x).ds qm_add_p = QuantileDeltaMapping(kind="+", group="time").train(y, xp).ds qm_mul_p = QuantileDeltaMapping(kind="*", group="time").train(y, xp).ds qm_add.cf.plot(ax=ax2, color="cyan", ls="--", label="+: y-x") qm_add_p.cf.plot(ax=ax2, color="cyan", label="+: y-xp") qm_mul.cf.plot(ax=ax2, color="brown", ls="--", label="*: y/x") qm_mul_p.cf.plot(ax=ax2, color="brown", label="*: y/xp") ax2.legend(loc="upper left", frameon=False) return fig
[ 3655, 3702, 303 ]
def METHOD_NAME( video=False, port=None, address=None, remote=False, desktop=None ): """Runs the FiftyOne quickstart. This method loads an interesting dataset from the Dataset Zoo, launches the App, and prints some suggestions for exploring the dataset. Args: video (False): whether to launch a video dataset port (None): the port number to serve the App. If None, ``fiftyone.config.default_app_port`` is used address (None): the address to serve the App. If None, ``fiftyone.config.default_app_address`` is used remote (False): whether this is a remote session, and opening the App should not be attempted desktop (None): whether to launch the App in the browser (False) or as a desktop App (True). If None, ``fiftyone.config.desktop_app`` is used. Not applicable to notebook contexts Returns: a tuple containing - dataset: the :class:`fiftyone.core.dataset.Dataset` that was loaded - session: the :class:`fiftyone.core.session.Session` instance for the App that was launched """ if video: return _video_quickstart(port, address, remote, desktop) return _quickstart(port, address, remote, desktop)
[ 9240 ]
def METHOD_NAME(self) -> int: return int(math.ceil(float(self.get_length_in_bits() / 8.0)))
[ 799, 623, 321 ]
def METHOD_NAME( graphql_client, site_factory, generic_page_factory, locale ): root_site_1 = generic_page_factory() root_site_2 = generic_page_factory() page_1 = generic_page_factory( slug="bubble-tea", locale=locale("en"), parent=root_site_1, body__0__text_section__title__value="I've Got a Lovely Bunch of Coconuts", ) page_2 = generic_page_factory( slug="chocolate", locale=locale("en"), parent=root_site_2, body__0__text_section__title__value="There they are, all standing in a row", ) site_factory(hostname="site1", root_page=root_site_1) site_factory(hostname="site2", root_page=root_site_2) page_1.copy_for_translation(locale=locale("it")) page_2.copy_for_translation(locale=locale("it")) query = """ query Page ($hostname: String!, $language: String!, $slug: String!) { cmsPage(hostname: $hostname, language: $language, slug: $slug){ ...on GenericPage { body { ...on TextSection { title } } } } } """ response = graphql_client.query( query, variables={"hostname": "site2", "slug": "chocolate", "language": "en"} ) assert response.data == { "cmsPage": {"body": [{"title": "There they are, all standing in a row"}]} }
[ 9, 1174, 527, 604, 1055, 61, 2938 ]
f METHOD_NAME(self):
[ 656 ]
def METHOD_NAME(typecode_or_type, size_or_initializer): ''' Returns a ctypes array allocated from shared memory ''' type_ = typecode_to_type.get(typecode_or_type, typecode_or_type) if isinstance(size_or_initializer, int): type_ = type_ * size_or_initializer obj = _new_value(type_) ctypes.memset(ctypes.addressof(obj), 0, ctypes.sizeof(obj)) return obj else: type_ = type_ * len(size_or_initializer) result = _new_value(type_) result.__init__(*size_or_initializer) return result
[ 772, 877 ]
def METHOD_NAME(cls, project_paths): projects = None for project_path in project_paths: try: with open(project_path, 'r') as projects_file: projects = cls() projects.load(projects_file) break except: projects = None if not projects: raise RuntimeError('No project definitions found in {!r}'.format( project_paths)) return projects
[ 1070 ]
def METHOD_NAME(self): """ Security API: Cannot create a guest token without authorization """ self.login(username="gamma") response = self.client.post(self.uri) self.assert403(response)
[ 9, 72, 6483, 466, 3166 ]
def METHOD_NAME(delay): run_coroutine(asyncio.sleep, delay)
[ 958, 5893 ]
def METHOD_NAME(): input_map = dict( args=dict( argstr="%s", ), count=dict( argstr="-count %s", sep=",", ), environ=dict( nohash=True, usedefault=True, ), flip_any_direction=dict( argstr="-any_direction", xor=( "flip_positive_direction", "flip_negative_direction", "flip_any_direction", ), ), flip_negative_direction=dict( argstr="-negative_direction", xor=( "flip_positive_direction", "flip_negative_direction", "flip_any_direction", ), ), flip_positive_direction=dict( argstr="-positive_direction", xor=( "flip_positive_direction", "flip_negative_direction", "flip_any_direction", ), ), flip_x_any=dict( argstr="-xanydirection", xor=("flip_x_positive", "flip_x_negative", "flip_x_any"), ), flip_x_negative=dict( argstr="-xdirection", xor=("flip_x_positive", "flip_x_negative", "flip_x_any"), ), flip_x_positive=dict( argstr="+xdirection", xor=("flip_x_positive", "flip_x_negative", "flip_x_any"), ), flip_y_any=dict( argstr="-yanydirection", xor=("flip_y_positive", "flip_y_negative", "flip_y_any"), ), flip_y_negative=dict( argstr="-ydirection", xor=("flip_y_positive", "flip_y_negative", "flip_y_any"), ), flip_y_positive=dict( argstr="+ydirection", xor=("flip_y_positive", "flip_y_negative", "flip_y_any"), ), flip_z_any=dict( argstr="-zanydirection", xor=("flip_z_positive", "flip_z_negative", "flip_z_any"), ), flip_z_negative=dict( argstr="-zdirection", xor=("flip_z_positive", "flip_z_negative", "flip_z_any"), ), flip_z_positive=dict( argstr="+zdirection", xor=("flip_z_positive", "flip_z_negative", "flip_z_any"), ), image_maximum=dict( argstr="-image_maximum %s", ), image_minimum=dict( argstr="-image_minimum %s", ), image_range=dict( argstr="-image_range %s %s", ), input_file=dict( argstr="%s", extensions=None, mandatory=True, position=-2, ), nonormalize=dict( argstr="-nonormalize", xor=("normalize", "nonormalize"), ), normalize=dict( argstr="-normalize", xor=("normalize", "nonormalize"), ), out_file=dict( argstr="> %s", extensions=None, genfile=True, position=-1, ), output_file=dict( extensions=None, hash_files=False, keep_extension=False, name_source=["input_file"], name_template="%s.raw", position=-1, ), start=dict( argstr="-start %s", sep=",", ), write_ascii=dict( argstr="-ascii", xor=( "write_ascii", "write_ascii", "write_byte", "write_short", "write_int", "write_long", "write_float", "write_double", "write_signed", "write_unsigned", ), ), write_byte=dict( argstr="-byte", xor=( "write_ascii", "write_ascii", "write_byte", "write_short", "write_int", "write_long", "write_float", "write_double", "write_signed", "write_unsigned", ), ), write_double=dict( argstr="-double", xor=( "write_ascii", "write_ascii", "write_byte", "write_short", "write_int", "write_long", "write_float", "write_double", "write_signed", "write_unsigned", ), ), write_float=dict( argstr="-float", xor=( "write_ascii", "write_ascii", "write_byte", "write_short", "write_int", "write_long", "write_float", "write_double", "write_signed", "write_unsigned", ), ), write_int=dict( argstr="-int", xor=( "write_ascii", "write_ascii", "write_byte", "write_short", "write_int", "write_long", "write_float", "write_double", "write_signed", "write_unsigned", ), ), write_long=dict( argstr="-long", xor=( "write_ascii", "write_ascii", "write_byte", "write_short", "write_int", "write_long", "write_float", "write_double", "write_signed", "write_unsigned", ), ), write_range=dict( argstr="-range %s %s", ), write_short=dict( argstr="-short", xor=( "write_ascii", "write_ascii", "write_byte", "write_short", "write_int", "write_long", "write_float", "write_double", "write_signed", "write_unsigned", ), ), write_signed=dict( argstr="-signed", xor=("write_signed", "write_unsigned"), ), write_unsigned=dict( argstr="-unsigned", xor=("write_signed", "write_unsigned"), ), ) inputs = Extract.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value
[ 9, 297, 1461 ]
def METHOD_NAME(args): """remove a repository from Spack's configuration""" repos = spack.config.get("repos", scope=args.scope) namespace_or_path = args.namespace_or_path # If the argument is a path, remove that repository from config. canon_path = spack.util.path.canonicalize_path(namespace_or_path) for repo_path in repos: repo_canon_path = spack.util.path.canonicalize_path(repo_path) if canon_path == repo_canon_path: repos.remove(repo_path) spack.config.set("repos", repos, args.scope) tty.msg("Removed repository %s" % repo_path) return # If it is a namespace, remove corresponding repo for path in repos: try: repo = spack.repo.Repo(path) if repo.namespace == namespace_or_path: repos.remove(path) spack.config.set("repos", repos, args.scope) tty.msg("Removed repository %s with namespace '%s'." % (repo.root, repo.namespace)) return except spack.repo.RepoError: continue tty.die("No repository with path or namespace: %s" % namespace_or_path)
[ 522, 188 ]
def METHOD_NAME(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags")
[ 114 ]
def METHOD_NAME(fpath): try: with open(fpath, "rb") as f: return f.read(4) == b"TZif" except Exception: # pragma: nocover return False
[ 1205, 59 ]
def METHOD_NAME(disk): storage_id = disk.get("storage_id") if storage_id: storage = get_dict_from_item_in_table("storage", storage_id) disk.update( { "file": _get_filename(storage), "parent": storage.get("parent"), "path_selected": storage.get("directory_path"), } )
[ 408, 948 ]
async def METHOD_NAME(app): # placeholder LOGGER.info(">>>>> on_cleanup() <<<<<")
[ 69, 991, 950 ]
def METHOD_NAME(number): # type: (int) -> str """ Given a number, format result as a C array of words (little-endian, same as ESP32 RSA peripheral or mbedTLS) """ result = [] while number != 0: result.append('0x%08x' % (number & 0xFFFFFFFF)) number >>= 32 return '{ ' + ', '.join(result) + ' }'
[ 106, 947, 17811, 1473 ]
def METHOD_NAME(port, per_listener, global_en, user_en, pattern_en): acl_file = os.path.basename(__file__).replace('.py', '.acl') write_acl(acl_file, global_en=global_en, user_en=user_en, pattern_en=pattern_en) if global_en: single_test(port, per_listener, username=None, topic="topic/global", expect_deny=False) single_test(port, per_listener, username="username", topic="topic/global", expect_deny=True) single_test(port, per_listener, username=None, topic="topic/global/except", expect_deny=True) if user_en: single_test(port, per_listener, username=None, topic="topic/username", expect_deny=True) single_test(port, per_listener, username="username", topic="topic/username", expect_deny=False) single_test(port, per_listener, username="username", topic="topic/username/except", expect_deny=True) if pattern_en: single_test(port, per_listener, username=None, topic="pattern/username", expect_deny=True) single_test(port, per_listener, username="username", topic="pattern/username", expect_deny=False) single_test(port, per_listener, username="username", topic="pattern/username/except", expect_deny=True)
[ 1918, 9 ]
def METHOD_NAME() -> None: """ Check that the autograph=False for quadrature.ndiagquad does not throw an error. Regression test for https://github.com/GPflow/GPflow/issues/1547. """ @tf.function(autograph=False) def func_ndiagquad_autograph_false() -> tf.Tensor: mu: AnyNDArray = np.array([1.0, 1.3]) var: AnyNDArray = np.array([3.0, 3.5]) num_gauss_hermite_points = 25 return quadrature.ndiagquad( [lambda *X: tf.exp(X[0])], num_gauss_hermite_points, [mu], [var] ) func_ndiagquad_autograph_false()
[ 9, 17781, 870, 130, 1471, 168 ]
def METHOD_NAME(collection): collection.load()
[ 557, 1098 ]
def METHOD_NAME(self): pass
[ 86, -1 ]
def METHOD_NAME(self, request: HttpRequest, **kwargs: Any) -> HttpResponse: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = client._send_request(request) <HttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.HttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs)
[ 353, 377 ]
def METHOD_NAME(self): pass
[ 709, 710 ]
def METHOD_NAME(logdir): """Create an empty event file if not already exists. This event file indicates that we have a plugins/profile/ directory in the current logdir. Args: logdir: log directory. """ for file_name in gfile.ListDirectory(logdir): if file_name.endswith(_EVENT_FILE_SUFFIX): return # TODO(b/127330388): Use summary_ops_v2.create_file_writer instead. event_writer = pywrap_tensorflow.EventsWriter( compat.as_bytes(os.path.join(logdir, 'events'))) event_writer.InitWithSuffix(compat.as_bytes(_EVENT_FILE_SUFFIX))
[ 2946, 129, 417, 171 ]
def METHOD_NAME(self): """ Test ActivationSampler for a Conv module """ AimetLogger.set_level_for_all_areas(logging.DEBUG) model = TinyModel().eval() sim = QuantizationSimModel(model, dummy_input=torch.randn(1, 3, 32, 32), quant_scheme='tf_enhanced', default_param_bw=4) for module in sim.model.modules(): if isinstance(module, QcQuantizeWrapper): for quantizer in module.input_quantizers + module.output_quantizers: quantizer.enabled = False quantizer.enabled = False for quantizer in sim.model.conv1.input_quantizers + sim.model.conv1.output_quantizers: self.assertFalse(quantizer.encoding) self.assertTrue(sim.model.conv1.param_quantizers['weight']) dataset_size = 100 batch_size = 10 image_size = (3, 32, 32) data_loader = create_fake_data_loader(dataset_size, batch_size, image_size) possible_batches = dataset_size // batch_size def forward_fn(model, inputs): inputs, _ = inputs model(inputs) act_sampler = ActivationSampler(model.conv1, sim.model.conv1, model, sim.model, forward_fn) quant_inp, orig_out = act_sampler.sample_and_place_all_acts_on_cpu(data_loader) self.assertEqual(list(quant_inp.shape), [batch_size * possible_batches, 3, 32, 32]) self.assertEqual(list(orig_out.shape), [batch_size * possible_batches, 32, 18, 18])
[ 9, 648, 8755, 1306 ]
def METHOD_NAME(self): """Applies the controls. I.e. sets the variables from the controls.""" if not super().METHOD_NAME() or self.lock: return False return True
[ 231, 2004, 1103 ]
async def METHOD_NAME(self, root: Root) -> None: url_type = PlatformURIType() fobj = Path(__file__).parent ret = await url_type._find_matches(fobj.as_uri() + "/", root) assert [i.value for i in ret] == [ f.name + "/" if f.is_dir() else f.name for f in fobj.iterdir() ] assert {i.type for i in ret} == {"uri"} assert {i.prefix for i in ret} == {fobj.as_uri() + "/"}
[ 9, 416, 855, 1190 ]
def METHOD_NAME( plan: dict[str, Any]) -> tuple[list[str], list[str], list[str]]: ''' Given a Postgres Query Plan object (parsed from the output of an EXPLAIN query), returns a tuple with three items: * A list of tables involved * A list of remaining queries to parse * A list of function names involved ''' table_names: list[str] = [] queries: list[str] = [] functions: list[str] = [] if plan.get('Relation Name'): table_names.append(plan['Relation Name']) if 'Function Name' in plan: if plan['Function Name'].startswith( 'crosstab'): try: queries.append(_get_subquery_from_crosstab_call( plan['Function Call'])) except ValueError: table_names.append('_unknown_crosstab_sql') else: functions.append(plan['Function Name']) if 'Plans' in plan: for child_plan in plan['Plans']: t, q, f = METHOD_NAME(child_plan) table_names.extend(t) queries.extend(q) functions.extend(f) return table_names, queries, functions
[ 214, 539, 145 ]
def METHOD_NAME(self, subject_id, entities=None, check_not_on_or_after=True): """Get all the identity information that has been received and are still valid about the subject. :param subject_id: The identifier of the subject :param entities: The identifiers of the entities whoes assertions are interesting. If the list is empty all entities are interesting. :return: A 2-tuple consisting of the identity information (a dictionary of attributes and values) and the list of entities whoes information has timed out. """ res = {} oldees = [] if not entities: for item in self._cache.find({"subject_id": subject_id}): try: info = self._get_info(item, check_not_on_or_after) except TooOld: oldees.append(item["entity_id"]) continue for key, vals in info["ava"].items(): try: tmp = set(res[key]).union(set(vals)) res[key] = list(tmp) except KeyError: res[key] = vals else: for entity_id in entities: try: info = self.get(subject_id, entity_id, check_not_on_or_after) except TooOld: oldees.append(entity_id) continue for key, vals in info["ava"].items(): try: tmp = set(res[key]).union(set(vals)) res[key] = list(tmp) except KeyError: res[key] = vals return res, oldees
[ 19, 2989 ]
def METHOD_NAME(self): surface = surfaces.RevolutionSurface3D.load_from_file( "surfaces/objects_revolution_tests/revolutionsurface_linesegment2d_to_3d.json") linesegment1 = vme.LineSegment2D.load_from_file("surfaces/objects_revolution_tests/linesegment2d_arc3d.json") arc = surface.linesegment2d_to_3d(linesegment1)[0] self.assertAlmostEqual(arc.circle.radius, 0.02404221842799788) linesegment2 = vme.LineSegment2D.load_from_file( "surfaces/objects_revolution_tests/linesegment2d_rotated_primitive.json") arc = surface.linesegment2d_to_3d(linesegment2)[0] self.assertAlmostEqual(arc.circle.radius, 0.022500000035448893) self.assertAlmostEqual(arc.angle, 0.7195087615152496, 5) linesegment3 = vme.LineSegment2D.load_from_file( "surfaces/objects_revolution_tests/linesegment2d_split_primitive.json") arc = surface.linesegment2d_to_3d(linesegment3)[0] self.assertAlmostEqual(arc.circle.radius, 0.022500000035448893) self.assertAlmostEqual(arc.angle, 0.15581712793343738)
[ 9, -1, 24, 1529 ]
def METHOD_NAME(self, userid): """ Login as specified user, does not depend on auth backend (hopefully) This is based on Client.login() with a small hack that does not require the call to authenticate() """ if not 'django.contrib.sessions' in settings.INSTALLED_APPS: raise AssertionError("Unable to login without django.contrib.sessions in INSTALLED_APPS") try: user = User.objects.get(username=userid) except User.DoesNotExist: user = User(username=userid, password='') user.save() user.backend = "%s.%s" % ("django.contrib.auth.backends", "ModelBackend") engine = import_module(settings.SESSION_ENGINE) # Create a fake request to store login details. request = HttpRequest() #if self.session: # request.session = self.session #else: request.session = engine.SessionStore() login(request, user) # Set the cookie to represent the session. session_cookie = settings.SESSION_COOKIE_NAME self.cookies[session_cookie] = request.session.session_key cookie_data = { 'max-age': None, 'path': '/', 'domain': settings.SESSION_COOKIE_DOMAIN, 'secure': settings.SESSION_COOKIE_SECURE or None, 'expires': None, } self.cookies[session_cookie].update(cookie_data) # Save the session values. request.session.save()
[ 273, 21 ]
def METHOD_NAME() -> Position: x, y, z = np.random.random(3) * 2 - 1 return Position(x, y, z)
[ 236, 195 ]
METHOD_NAME(self, plugin_name):
[ 19, 2793, 1200 ]
def METHOD_NAME(app): app.add_css_file('css/other.css') app.is_parallel_allowed('write')
[ 102 ]
def METHOD_NAME(self): self.install() # change_data_dir runs 'mysql -u root' which assumes there is no mysql password, i # and changing that is too ugly to be worth it: #self.set_root_password() self.change_data_dir()
[ 57 ]
def METHOD_NAME( subject, runs, path=None, force_update=False, update_path=None, base_url=EEGMI_URL, verbose=None, ): # noqa: D301 """Get paths to local copies of EEGBCI dataset files. This will fetch data for the EEGBCI dataset :footcite:`SchalkEtAl2004`, which is also available at PhysioNet :footcite:`GoldbergerEtAl2000`. Parameters ---------- subject : int The subject to use. Can be in the range of 1-109 (inclusive). runs : int | list of int The runs to use (see Notes for details). path : None | path-like Location of where to look for the EEGBCI data. If ``None``, the environment variable or config parameter ``MNE_DATASETS_EEGBCI_PATH`` is used. If neither exists, the ``~/mne_data`` directory is used. If the EEGBCI dataset is not found under the given path, the data will be automatically downloaded to the specified folder. force_update : bool Force update of the dataset even if a local copy exists. update_path : bool | None If ``True``, set ``MNE_DATASETS_EEGBCI_PATH`` in the configuration to the given path. If ``None``, the user is prompted. base_url : str The URL root for the data. %(verbose)s Returns ------- paths : list List of local data paths of the given type. Notes ----- The run numbers correspond to: ========= =================================== run task ========= =================================== 1 Baseline, eyes open 2 Baseline, eyes closed 3, 7, 11 Motor execution: left vs right hand 4, 8, 12 Motor imagery: left vs right hand 5, 9, 13 Motor execution: hands vs feet 6, 10, 14 Motor imagery: hands vs feet ========= =================================== For example, one could do:: >>> from mne.datasets import eegbci >>> eegbci.load_data(1, [6, 10, 14], "~/datasets") # doctest:+SKIP This would download runs 6, 10, and 14 (hand/foot motor imagery) runs from subject 1 in the EEGBCI dataset to "~/datasets" and prompt the user to store this path in the config (if it does not already exist). References ---------- .. footbibliography:: """ import pooch t0 = time.time() if not hasattr(runs, "__iter__"): runs = [runs] # get local storage path config_key = "MNE_DATASETS_EEGBCI_PATH" folder = "MNE-eegbci-data" name = "EEGBCI" path = _get_path(path, config_key, name) # extract path parts pattern = r"(?:https?://.*)(files)/(eegmmidb)/(\d+\.\d+\.\d+)/?" match = re.compile(pattern).match(base_url) if match is None: raise ValueError( "base_url does not match the expected EEGMI folder " "structure. Please notify MNE-Python developers." ) base_path = op.join(path, folder, *match.groups()) # create the download manager fetcher = pooch.create( path=base_path, base_url=base_url, version=None, # data versioning is decoupled from MNE-Python version registry=None, # registry is loaded from file (below) retry_if_failed=2, # 2 retries = 3 total attempts ) # load the checksum registry registry = files("mne").joinpath("data", "eegbci_checksums.txt") fetcher.load_registry(registry) # fetch the file(s) data_paths = [] sz = 0 for run in runs: file_part = f"S{subject:03d}/S{subject:03d}R{run:02d}.edf" destination = Path(base_path, file_part) data_paths.append(destination) if destination.exists(): if force_update: destination.unlink() else: continue if sz == 0: # log once logger.info("Downloading EEGBCI data") fetcher.fetch(file_part) # update path in config if desired sz += destination.stat().st_size _do_path_update(path, update_path, config_key, name) if sz > 0: _log_time_size(t0, sz) return data_paths
[ 557, 365 ]
def METHOD_NAME(*messages: str) -> t.List[dict]: """Create a list of compacted sections blocks""" return [ { "type": "section", "fields": [ { "type": "mrkdwn", "text": normalize_message(message), } for message in messages[i : i + 2] ], } for i in range(0, len(messages), 2) ]
[ -1, 1446, 37 ]
def METHOD_NAME(self) -> Tuple[slice, str]: """Generate a tuple of this fix for deduping.""" return (self.source_slice, self.fixed_raw)
[ 3696, 1815 ]
def METHOD_NAME(self): changed_files = 0 for source, config in self.main_config.get_sources_with_configs(): self.config = config disabler_finder = RegisterDisablers(self.config.formatting.start_line, self.config.formatting.end_line) try: stdin = False if str(source) == "-": stdin = True if self.config.verbose: click.echo("Loading file from stdin") source = self.load_from_stdin() elif self.config.verbose: click.echo(f"Transforming {source} file") model = self.get_model(source) model_path = model.source disabler_finder.visit(model) if disabler_finder.file_disabled: continue diff, old_model, new_model, model = self.transform_until_stable(model, disabler_finder) if diff: changed_files += 1 self.output_diff(model_path, old_model, new_model) if stdin: self.print_to_stdout(new_model) elif diff: self.save_model(model_path, model) except DataError: click.echo( f"Failed to decode {source}. Default supported encoding by Robot Framework is UTF-8. Skipping file" ) pass if not self.config.check or not changed_files: return 0 return 1
[ 1053, 1537 ]
def METHOD_NAME(metadata_file): """Populate dictionary with hash-including filenames from the given file.""" metadata = load_json(tempdir / metadata_file) for target, target_data in metadata['signed']['targets'].items(): for hash_ in target_data['hashes'].values(): target_path = Path(target) target_with_hash = 'targets' / target_path.parent / f'{hash_}.{target_path.name}' hashed_target_files.setdefault(target, []).append(str(target_with_hash))
[ 557, 1030, 3932 ]
def METHOD_NAME(): try: self_test() except: print("sr_http: TEST FAILED") raise
[ 57 ]
def METHOD_NAME(): '''Test the _operator method.''' meta_arg = OperatorArgMetadata("GH_REAL", "GH_WRITE", "W0", "W1") metadata = LFRicKernelMetadata( operates_on="cell_column", meta_args=[meta_arg]) cls = call_method("_operator", meta_arg, metadata) assert len(cls._info) == 1 # pylint: disable=unsubscriptable-object assert cls._info[1] == 0 assert cls._index == 2
[ 9, 837 ]
def METHOD_NAME(self, active_config): """Create a bot.""" active_config.extend({"webdriver_type": "firefox"}) from dallinger.bots import BotBase bot = BotBase("http://dallinger.io") assert isinstance(bot.driver, webdriver.Firefox)
[ 9, 1227, 626, 4663 ]
def METHOD_NAME(self, user_id, project_id): group = f"creds_{project_id}" key = f"creds_{project_id}_{user_id}" val = None if self.rds.hexists(group, key): val = self.rds.hget(group, key) if val == "True": val = True else: val = False return val
[ 19, 6904, 596 ]
def METHOD_NAME(self): """ Test width and height on <td> tag; If it works, width: 2pt will be equal to 2.0 and height: 3pt will be equal to 3.0 in the ReportLab table """ html = """ <html> <head> <style> td { width: 2pt; height: 3pt } </style> </head> <body> <table> <tr> <td>AAA</td> <td>BBB</td> </tr> <tr> <td>CCC</td> <td>DDD</td> </tr> </table> </body> </html> """ context = pisaParser(BytesIO(html.encode('utf-8')), pisaContext(None)) table = context.story[0] col_widths = table._colWidths row_heights = table._rowHeights for width in col_widths: self.assertEqual(width, 2.0, '<td> width in CSS not equal with output!') for height in row_heights: self.assertEqual(height, 3.0, '<td> height in CSS not equal with output!')
[ 9, 7653, 2327, 61, 1877 ]
f METHOD_NAME(self):
[ 10203, 434 ]
def METHOD_NAME(self): return "g{0}".format(self.version.up_to(1))
[ 4197, 156 ]
def METHOD_NAME(work: LightningWork, to_trim: typing.List[str]) -> typing.Iterator[None]: """Context manager to trim the work object to remove attributes that are not picklable.""" holder = {} for arg in to_trim: holder[arg] = getattr(work, arg) setattr(work, arg, None) yield for arg in to_trim: setattr(work, arg, holder[arg])
[ 2441, 3160 ]
def METHOD_NAME(self, xp, dtype, order): # from cupy/cupy#4193 a = self._test_ndim_limit(xp, 32, dtype, order) return a
[ 9, 4333, -1 ]
def METHOD_NAME(): strings_value = ['first', 'second', 'third'] integer_value = 2 model = init_from_tuple(UnitTestModel, ('strings', 'integer'), (strings_value, integer_value)) assert model.strings == ['first', 'second', 'third'] and model.integer == integer_value
[ 9, 176, 280, 1815 ]
def METHOD_NAME(): # Create our simulation object. sim = TestSimulation("globalids", "globalids.sim2") sim.addargument("-echo") # Test that we can start and connect to the simulation. started, connected = TestSimStartAndConnect("globalids00", sim) # Perform our tests. if connected: # Make sure the metadata is right. TestSimMetaData("globalids01", sim.metadata()) test0(sim) test1(sim) # Close down the simulation. if started: sim.endsim()
[ 57 ]
f METHOD_NAME( self, label_batch: spec.Tensor, # Dense or one-hot labels. logits_batch: spec.Tensor, mask_batch: Optional[spec.Tensor] = None, label_smoothing: float = 0.0) -> Dict[str, spec.Tensor]: # differentiable
[ 1572, 667 ]
def METHOD_NAME(self, with_error): """Runs and tests server and client in parallel.""" server_flags = ["--file=" + file, "--done_file=" + done_file] client_flags = ["--file=" + file] if with_error: server_flags += ["--with_error"] client_flags += ["--stop_on_error"] with scoped_file(file, is_fifo=True), scoped_file(done_file): with open(done_file, 'w') as f: f.write("0\n") # Start client. client = subprocess.Popen([client_bin] + client_flags) # Start server. server = subprocess.Popen([server_bin] + server_flags) # Join with processes, check return codes. server_valid_statuses = [0] if with_error: # If the C++ binary has not finished by the time the Python # client exits due to failure, then the C++ binary will fail # with SIGPIPE. server_valid_statuses.append(SIGPIPE_STATUS) self.assertIn(server.wait(), server_valid_statuses) if not with_error: # Execute once more. server = subprocess.Popen([server_bin] + server_flags) self.assertIn(server.wait(), server_valid_statuses) # Wait until the client has indicated that the server process # has run twice. We want to run twice to ensure that looping on # the client end runs correctly. wait_for_done_count(2) client.send_signal(signal.SIGINT) client_status = client.wait() self.assertEqual(client_status, int(with_error))
[ 22, 163, 61, 340 ]
def METHOD_NAME(): """Run command.""" from mne.commands.utils import get_optparser, _add_verbose_flag parser = get_optparser(__file__) parser.add_option( "-s", "--subject", dest="subject", help="Subject name (required)", default=None ) parser.add_option( "--model", dest="model", help="Output file name. Use a name <dir>/<name>-bem.fif", default=None, type="string", ) parser.add_option( "--ico", dest="ico", help="The surface ico downsampling to use, e.g. " " 5=20484, 4=5120, 3=1280. If None, no subsampling" " is applied.", default=None, type="int", ) parser.add_option( "--brainc", dest="brainc", help="Defines the brain compartment conductivity. " "The default value is 0.3 S/m.", default=0.3, type="float", ) parser.add_option( "--skullc", dest="skullc", help="Defines the skull compartment conductivity. " "The default value is 0.006 S/m.", default=None, type="float", ) parser.add_option( "--scalpc", dest="scalpc", help="Defines the scalp compartment conductivity. " "The default value is 0.3 S/m.", default=None, type="float", ) parser.add_option( "--homog", dest="homog", help="Use a single compartment model (brain only) " "instead a three layer one (scalp, skull, and " " brain). If this flag is specified, the options " "--skullc and --scalpc are irrelevant.", default=None, action="store_true", ) parser.add_option( "-d", "--subjects-dir", dest="subjects_dir", help="Subjects directory", default=None, ) _add_verbose_flag(parser) options, args = parser.parse_args() if options.subject is None: parser.print_help() sys.exit(1) subject = options.subject fname = options.model subjects_dir = options.subjects_dir ico = options.ico brainc = options.brainc skullc = options.skullc scalpc = options.scalpc homog = True if options.homog is not None else False verbose = True if options.verbose is not None else False # Parse conductivity option if homog is True: if skullc is not None: warn( "Trying to set the skull conductivity for a single layer " "model. To use a 3 layer model, do not set the --homog flag." ) if scalpc is not None: warn( "Trying to set the scalp conductivity for a single layer " "model. To use a 3 layer model, do not set the --homog flag." ) # Single layer conductivity = [brainc] else: if skullc is None: skullc = 0.006 if scalpc is None: scalpc = 0.3 conductivity = [brainc, skullc, scalpc] # Create source space bem_model = mne.make_bem_model( subject, ico=ico, conductivity=conductivity, subjects_dir=subjects_dir, verbose=verbose, ) # Generate filename if fname is None: n_faces = list(str(len(surface["tris"])) for surface in bem_model) fname = subject + "-" + "-".join(n_faces) + "-bem.fif" else: if not (fname.endswith("-bem.fif") or fname.endswith("_bem.fif")): fname = fname + "-bem.fif" # Save to subject's directory subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) fname = subjects_dir / subject / "bem" / fname # Save source space to file mne.write_bem_surfaces(fname, bem_model) # Compute the solution sol_fname = os.path.splitext(str(fname))[0] + "-sol.fif" bem_sol = mne.make_bem_solution(bem_model, verbose=verbose) mne.write_bem_solution(sol_fname, bem_sol)
[ 22 ]
def METHOD_NAME(self): app = self.make_app({"multiauth.policies": "basicauth"}) self.headers["Authorization"] = "Carrier" app.get(self.plural_url, headers=self.headers, status=401) self.headers["Authorization"] = "Carrier pigeon" app.get(self.plural_url, headers=self.headers, status=401)
[ 9, 4632, 472, 4422, 217, 46, 2433 ]
def METHOD_NAME(self): if self.bdist_dir is None: bdist_base = self.get_finalized_command('bdist').bdist_base self.bdist_dir = os.path.join(bdist_base, 'dumb') if self.format is None: try: self.format = self.default_format[os.name] except KeyError: raise DistutilsPlatformError( "don't know how to create dumb built distributions " "on platform %s" % os.name) self.set_undefined_options('bdist', ('dist_dir', 'dist_dir'), ('plat_name', 'plat_name'), ('skip_build', 'skip_build'))
[ 977, 1881 ]
def METHOD_NAME(cobbler_api: CobblerAPI) -> replicate.Replicate: """ Creates a blank replicate object for a single test. """ return replicate.Replicate(cobbler_api)
[ 3275, 122 ]
def METHOD_NAME(self, width): height = self.doLayout(QRect(0, 0, width, 0), True) return height
[ 1877, 43, 2327 ]
def METHOD_NAME(self) -> None: known_hosts_file = self._identity_dir + "/known_hosts" with open(known_hosts_file, "w") as f: f.write(self._known_hosts) os.chmod(known_hosts_file, 0o600) self.known_hosts_file = known_hosts_file
[ 176, 3478, 3175, 171 ]
def METHOD_NAME(etherscan): count = 0 def mock_requests_get(_url, timeout): # pylint: disable=unused-argument nonlocal count if count == 0: response = ( '{"status":"0","message":"NOTOK",' '"result":"Max rate limit reached, please use API Key for higher rate limit"}' ) else: response = '{"jsonrpc":"2.0","id":1,"result":"0x1337"}' count += 1 return MockResponse(200, response) return patch.object(etherscan.session, 'get', wraps=mock_requests_get)
[ 1575, -1 ]
def METHOD_NAME(v0, v1): for i in range(0, 3): assert v0[0].value() == v1[0]
[ 638, 926 ]
def METHOD_NAME(self): ''' *Histrogram generated by calling an optimized C++ function that calculates all the profile at once.* ''' bm.sparse_histogram(self.Beam.dt, self.n_macroparticles_array, self.cut_left_array, self.cut_right_array, self.bunch_indexes, self.n_slices_bucket)
[ 6069, 2629 ]
def METHOD_NAME(staged_logs): for logger, level, obj, args, kwargs in staged_logs: with logger.as_raw(): logger.log(level, obj, *args, **kwargs)
[ 1579 ]