text
stringlengths 15
7.82k
| ids
sequencelengths 1
7
|
---|---|
def METHOD_NAME(request, room_number):
sections = Section.objects.filter(room=room_number).order_by("period")
if not sections.exists():
raise Http404
context = {"room_number": room_number, "classes": sections}
return render(request, "users/class_room.html", context) | [
1446,
604,
6703,
1179
] |
def METHOD_NAME(self, track):
assert self.__debugPrint("setTrack(track=%s)"%(track,))
if self.track is not None:
self.track.pause()
self.track = None
if track is not None:
track.start(self.stateTime)
self.track = track | [
0,
3068
] |
def METHOD_NAME(arg): # -> list[int]:
... | [
245,
47,
5841
] |
def METHOD_NAME(self):
# GIVEN
peak_allocations = [
MockAllocationRecord(
tid=1,
address=0x1000000,
size=1024,
allocator=AllocatorType.MALLOC,
stack_id=1,
n_allocations=1,
_stack=[],
),
]
# WHEN
table = TableReporter.from_snapshot(
peak_allocations, memory_records=[], native_traces=False
)
# THEN
assert table.data == [
{
"tid": "0x1",
"size": 1024,
"allocator": "malloc",
"n_allocations": 1,
"stack_trace": "???",
}
] | [
9,
35,
1501,
2576
] |
def METHOD_NAME(self):
super().METHOD_NAME()
self._add_defaults_build_sub_commands() | [
238,
1618
] |
def METHOD_NAME(self) -> str:
"""
Resource name.
"""
return pulumi.get(self, "name") | [
156
] |
def METHOD_NAME(self):
"""Test that a description must be at least 10 characters long
If description is less than 10 characters, an error should be raised
"""
expected_minimum_length = 10
minimum_description = 'x' * expected_minimum_length
project_obj = self.data.unsaved_object
project_obj.description = minimum_description[:-1]
with self.assertRaises(ValidationError):
project_obj.clean_fields()
project_obj.description = minimum_description
project_obj.clean_fields()
project_obj.save()
retrieved_obj = Project.objects.get(pk=project_obj.pk)
self.assertEqual(minimum_description, retrieved_obj.description) | [
9,
1067,
3353
] |
def METHOD_NAME(pregenerated_session_num: str) -> tuple:
base = ph.get_pregen_session_folder()
pcqs = np.load(Path(base) / f"session_{pregenerated_session_num}_ephys_pcqs.npy")
len_block = np.load(Path(base) / f"session_{pregenerated_session_num}_ephys_len_blocks.npy")
pos = pcqs[:, 0].tolist()
cont = pcqs[:, 1].tolist()
quies = pcqs[:, 2].tolist()
phase = pcqs[:, 3].tolist()
len_blocks = len_block.tolist()
# If phase patch file exists load that one
stim_phase_path = Path(base).joinpath(f"session_{pregenerated_session_num}_stim_phase.npy")
if stim_phase_path.exists():
phase = np.load(stim_phase_path).tolist()
assert len(pos) == len(cont) == len(quies) == len(phase) == sum(len_blocks)
return pos, cont, quies, phase, len_blocks | [
557,
-1,
240,
-1
] |
def METHOD_NAME(self) -> str:
"""
The name of the resource.
"""
return pulumi.get(self, "name") | [
156
] |
def METHOD_NAME():
widget = widget_output.Output()
# Try appending a Markdown object.
widget.append_display_data(Markdown("# snakes!"))
expected = (
{
'output_type': 'display_data',
'data': {
'text/plain': '<IPython.core.display.Markdown object>',
'text/markdown': '# snakes!'
},
'metadata': {}
},
)
assert widget.outputs == expected, repr(widget.outputs)
# Now try appending an Image.
image_data = b"foobar"
image_data_b64 = image_data if sys.version_info[0] < 3 else 'Zm9vYmFy\n'
widget.append_display_data(Image(image_data, width=123, height=456))
expected += (
{
'output_type': 'display_data',
'data': {
'image/png': image_data_b64,
'text/plain': '<IPython.core.display.Image object>'
},
'metadata': {
'image/png': {
'width': 123,
'height': 456
}
}
},
)
assert widget.outputs == expected, repr(widget.outputs) | [
9,
1459,
52,
365
] |
def METHOD_NAME(csa_str):
"""Read CSA header from string `csa_str`
Parameters
----------
csa_str : str
byte string containing CSA header information
Returns
-------
header : dict
header information as dict, where `header` has fields (at least)
``type, n_tags, tags``. ``header['tags']`` is also a dictionary
with one key, value pair for each tag in the header.
"""
csa_len = len(csa_str)
csa_dict = {'tags': {}}
hdr_id = csa_str[:4]
up_str = Unpacker(csa_str, endian='<')
if hdr_id == b'SV10': # CSA2
hdr_type = 2
up_str.ptr = 4 # omit the SV10
csa_dict['unused0'] = up_str.METHOD_NAME(4)
else: # CSA1
hdr_type = 1
csa_dict['type'] = hdr_type
csa_dict['n_tags'], csa_dict['check'] = up_str.unpack('2I')
if not 0 < csa_dict['n_tags'] <= MAX_CSA_ITEMS:
raise CSAReadError(
f'Number of tags `t` should be 0 < t <= {MAX_CSA_ITEMS}. '
f'Instead found {csa_dict["n_tags"]} tags.'
)
for tag_no in range(csa_dict['n_tags']):
name, vm, vr, syngodt, n_items, last3 = up_str.unpack('64si4s3i')
vr = nt_str(vr)
name = nt_str(name)
tag = {
'n_items': n_items,
'vm': vm, # value multiplicity
'vr': vr, # value representation
'syngodt': syngodt,
'last3': last3,
'tag_no': tag_no,
}
if vm == 0:
n_values = n_items
else:
n_values = vm
# data converter
converter = _CONVERTERS.get(vr)
# CSA1 specific length modifier
if tag_no == 1:
tag0_n_items = n_items
if n_items > MAX_CSA_ITEMS:
raise CSAReadError(f'Expected <= {MAX_CSA_ITEMS} tags, got {n_items}')
items = []
for item_no in range(n_items):
x0, x1, x2, x3 = up_str.unpack('4i')
ptr = up_str.ptr
if hdr_type == 1: # CSA1 - odd length calculation
item_len = x0 - tag0_n_items
if item_len < 0 or (ptr + item_len) > csa_len:
if item_no < vm:
items.append('')
break
else: # CSA2
item_len = x1
if (ptr + item_len) > csa_len:
raise CSAReadError('Item is too long, aborting read')
if item_no >= n_values:
assert item_len == 0
continue
item = nt_str(up_str.METHOD_NAME(item_len))
if converter:
# we may have fewer real items than are given in
# n_items, but we don't know how many - assume that
# we've reached the end when we hit an empty item
if item_len == 0:
n_values = item_no
continue
item = converter(item)
items.append(item)
# go to 4 byte boundary
plus4 = item_len % 4
if plus4 != 0:
up_str.ptr += 4 - plus4
tag['items'] = items
csa_dict['tags'][name] = tag
return csa_dict | [
203
] |
def METHOD_NAME(self):
"""Check that the topic and tutorial are already there and retrieve them."""
# check topic
if not self.topic.exists():
raise Exception("The topic %s does not exists. It should be created" % self.topic.name)
self.topic.init_from_metadata()
# initiate the tutorial
self.tuto = Tutorial(training=self, topic=self.topic)
self.tuto.init_from_existing_tutorial(self.kwds["tutorial_name"])
if "datatypes" in self.kwds:
self.tuto.datatype_fp = self.kwds["datatypes"]
if "workflow" in self.kwds:
self.tuto.init_wf_fp = self.kwds["workflow"]
if "workflow_id" in self.kwds:
self.tuto.init_wf_id = self.kwds["workflow_id"] | [
250,
39,
176,
-1
] |
def METHOD_NAME(accounts, tester):
addr = accounts[1]
value = ["blahblah", addr, ["yesyesyes", "0x1234"]]
tester.setTuple(value)
with brownie.multicall:
# the value hasn't been fetched so ret_value is just the proxy
# but if we access ret_val again it will update
# so use getattr_static to see it has yet to update
ret_val = tester.getTuple(addr)
assert inspect.getattr_static(ret_val, "__wrapped__") != value
assert isinstance(ret_val, Proxy)
assert ret_val.__wrapped__ == value | [
9,
127,
279,
137,
2475,
280,
1929
] |
def METHOD_NAME(self):
"""
Repair all ships.
Pages:
in: PORT_CHECK
out: PORT_CHECK
"""
self.ui_click(PORT_GOTO_DOCK, appear_button=PORT_CHECK, check_button=PORT_DOCK_CHECK,
skip_first_screenshot=True)
skip_first_screenshot = True
repaired = False
while 1:
if skip_first_screenshot:
skip_first_screenshot = False
else:
self.device.screenshot()
# End
if self.info_bar_count():
break
if repaired and self.appear(PORT_DOCK_CHECK, offset=(20, 20)):
break
# PORT_DOCK_CHECK is button to repair all.
if self.appear_then_click(PORT_DOCK_CHECK, offset=(20, 20), interval=2):
continue
if self.handle_popup_confirm('DOCK_REPAIR'):
repaired = True
continue
self.ui_back(appear_button=PORT_DOCK_CHECK, check_button=PORT_CHECK, skip_first_screenshot=True) | [
237,
5134,
4894
] |
def METHOD_NAME(n_cascade_levels, n_models=1):
"""
Generate skill starting at default_start_skill which decay exponentially with scale.
"""
start_skill = np.resize(default_start_skill, n_models)
powers = np.arange(1, n_cascade_levels + 1)
return pow(start_skill[:, np.newaxis], powers) | [
567,
3110,
7260
] |
def METHOD_NAME(compiler):
"""Do platform-specific customizations of compilers on unix platforms."""
if compiler.compiler_type == "unix":
(cc, cxx, cflags) = get_config_vars("CC", "CXX", "CFLAGS")
if "CC" in os.environ:
cc = os.environ["CC"]
if "CXX" in os.environ:
cxx = os.environ["CXX"]
if "CFLAGS" in os.environ:
cflags = cflags + " " + os.environ["CFLAGS"]
cc_cmd = cc + " " + cflags
# We update executables in compiler to take advantage of distutils arg splitting
compiler.set_executables(compiler=cc_cmd, compiler_cxx=cxx) | [
7822,
1436
] |
def METHOD_NAME(self) -> Dict[str, str]:
return self._product_versions | [
24,
553
] |
def METHOD_NAME(self, row, parent, align):
""" Given a row of text, build table cells. """
tr = etree.SubElement(parent, 'tr')
tag = 'td'
if parent.tag == 'thead':
tag = 'th'
cells = self._split_row(row)
# We use align here rather than cells to ensure every row
# contains the same number of columns.
for i, a in enumerate(align):
c = etree.SubElement(tr, tag)
try:
c.text = cells[i].strip()
except IndexError: # pragma: no cover
c.text = ""
if a:
c.set('align', a) | [
56,
843
] |
def METHOD_NAME():
# Inject a fake object in the leader-election monitoring logic
# don't forget to update the [testenv] in tox.ini with the 'kube' dependency
with mock.patch(
'datadog_checks.kube_scheduler.KubeSchedulerCheck._get_record',
return_value=ElectionRecordAnnotation(
"endpoints",
'{"holderIdentity":"pod1","leaseDurationSeconds":15,"leaderTransitions":3,'
+ '"acquireTime":"2018-12-19T18:23:24Z","renewTime":"2019-01-02T16:30:07Z"}',
),
):
yield | [
248,
2919
] |
def METHOD_NAME(self):
return re.sub(r"\[(.+?)\|(.+?)\]", r"\2", self.sentence).replace(" ", " ") | [
13909,
3421
] |
def METHOD_NAME(self, models, sample, **kwargs):
"""Score a batch of translations."""
net_input = sample["net_input"]
def batch_for_softmax(dec_out, target):
# assumes decoder_out[0] is the only thing needed (may not be correct for future models!)
first, rest = dec_out[0], dec_out[1:]
bsz, tsz, dim = first.shape
if bsz * tsz < self.softmax_batch:
yield dec_out, target, True
else:
flat = first.contiguous().view(1, -1, dim)
flat_tgt = target.contiguous().view(flat.shape[:-1])
s = 0
while s < flat.size(1):
e = s + self.softmax_batch
yield (flat[:, s:e],) + rest, flat_tgt[:, s:e], False
s = e
def gather_target_probs(probs, target):
probs = probs.gather(
dim=2,
index=target.unsqueeze(-1),
)
return probs
orig_target = sample["target"]
# compute scores for each model in the ensemble
avg_probs = None
avg_attn = None
for model in models:
model.eval()
decoder_out = model(**net_input)
attn = decoder_out[1] if len(decoder_out) > 1 else None
if type(attn) is dict:
attn = attn.get("attn", None)
batched = batch_for_softmax(decoder_out, orig_target)
probs, idx = None, 0
for bd, tgt, is_single in batched:
sample["target"] = tgt
curr_prob = model.get_normalized_probs(
bd, log_probs=len(models) == 1, sample=sample
).data
if is_single:
probs = gather_target_probs(curr_prob, orig_target)
else:
if probs is None:
probs = curr_prob.new(orig_target.numel())
step = curr_prob.size(0) * curr_prob.size(1)
end = step + idx
tgt_probs = gather_target_probs(
curr_prob.view(tgt.shape + (curr_prob.size(-1),)), tgt
)
probs[idx:end] = tgt_probs.view(-1)
idx = end
sample["target"] = orig_target
probs = probs.view(sample["target"].shape)
if avg_probs is None:
avg_probs = probs
else:
avg_probs.add_(probs)
if attn is not None:
if torch.is_tensor(attn):
attn = attn.data
else:
attn = attn[0]
if avg_attn is None:
avg_attn = attn
else:
avg_attn.add_(attn)
if len(models) > 1:
avg_probs.div_(len(models))
avg_probs.log_()
if avg_attn is not None:
avg_attn.div_(len(models))
bsz = avg_probs.size(0)
hypos = []
start_idxs = sample["start_indices"] if "start_indices" in sample else [0] * bsz
for i in range(bsz):
# remove padding from ref
ref = (
utils.strip_pad(sample["target"][i, start_idxs[i] :], self.pad)
if sample["target"] is not None
else None
)
tgt_len = ref.numel()
avg_probs_i = avg_probs[i][start_idxs[i] : start_idxs[i] + tgt_len]
score_i = avg_probs_i.sum() / tgt_len
if avg_attn is not None:
avg_attn_i = avg_attn[i]
if self.compute_alignment:
alignment = utils.extract_hard_alignment(
avg_attn_i,
sample["net_input"]["src_tokens"][i],
sample["target"][i],
self.pad,
self.eos,
)
else:
alignment = None
else:
avg_attn_i = alignment = None
hypos.append(
[
{
"tokens": ref,
"score": score_i,
"attention": avg_attn_i,
"alignment": alignment,
"positional_scores": avg_probs_i,
}
]
)
return hypos | [
567
] |
def METHOD_NAME(self):
"""
Errors added through the L{PyUnitResultAdapter} have the same
traceback information as if there were no adapter at all, even
if the Failure that held the information has been cleaned.
"""
try:
1 / 0
except ZeroDivisionError:
exc_info = sys.exc_info()
f = Failure()
f.cleanFailure()
pyresult = pyunit.TestResult()
result = PyUnitResultAdapter(pyresult)
result.addError(self, f)
tback = "".join(traceback.format_exception(*exc_info))
self.assertEqual(
pyresult.errors[0][1].endswith("ZeroDivisionError: division by zero\n"),
tback.endswith("ZeroDivisionError: division by zero\n"),
) | [
9,
8890,
280,
1356,
374
] |
def METHOD_NAME(self) -> Any:
self.input_file = open(self.table_lineage_file_location, 'r')
lineage_event = (json.loads(line) for line in self.input_file)
table_lineage = (TableLineage(table_key=lineage['input'],
downstream_deps=[lineage['output']])
for lineage in self._extract_dataset_info(lineage_event))
self._iter = table_lineage | [
557,
7227,
417
] |
def METHOD_NAME(os_window_id: int, tab_id: int, colors: Sequence[int], wg: WindowGroup, borders: bool = False) -> None:
geometry = wg.geometry
if geometry is None:
return
pl, pt = wg.effective_padding('left'), wg.effective_padding('top')
pr, pb = wg.effective_padding('right'), wg.effective_padding('bottom')
left = geometry.left - pl
top = geometry.top - pt
lr = geometry.right
right = lr + pr
bt = geometry.bottom
bottom = bt + pb
if borders:
width = wg.effective_border()
bt = bottom
lr = right
left -= width
top -= width
right += width
bottom += width
pl = pr = pb = pt = width
horizontal_edge(os_window_id, tab_id, colors[1], pt, left, right, top)
horizontal_edge(os_window_id, tab_id, colors[3], pb, left, right, bt)
vertical_edge(os_window_id, tab_id, colors[0], pl, top, bottom, left)
vertical_edge(os_window_id, tab_id, colors[2], pr, top, bottom, lr) | [
1100,
491
] |
def METHOD_NAME(self):
subdir = "msys64" # top-level directoy in tarball
return os.path.join(self.source_folder, subdir) | [
-1,
1190
] |
f METHOD_NAME(self, batch_size): | [
9,
476,
477
] |
def METHOD_NAME(sagemaker_session):
estimator = _build_tf(sagemaker_session, framework_version="1.15.0", py_version="py2")
assert estimator.py_version == "py2"
estimator = _build_tf(sagemaker_session, framework_version="2.0.0", py_version="py2")
assert estimator.py_version == "py2" | [
9,
3952,
281,
137,
130,
2497
] |
def METHOD_NAME(next_link=None):
request = prepare_request(next_link)
pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
return pipeline_response | [
19,
243
] |
def METHOD_NAME(self) -> str:
"""
The url to get the next page of results, if any.
"""
return pulumi.get(self, "next_link") | [
243,
548
] |
def METHOD_NAME(self):
request = self.request_factory.post("/")
request.user = self.user
data = {
"name": "vfrgthj",
"time_recurrences": [
{
"days": [1, 2, 3, 4, 5],
"start": "00:00:00",
"end": "16:00:00",
}
],
}
serializer = TimeslotSerializer(
data=data,
context={"request": request},
)
self.assertTrue(serializer.is_valid(), serializer.errors) | [
9,
10637,
1386,
137,
1205,
41,
668
] |
def METHOD_NAME():
return mock.MagicMock() | [
-1,
248
] |
def METHOD_NAME(
type: str,
name: str,
crontab: str,
owners: list[User],
timezone: Optional[str] = None,
sql: Optional[str] = None,
description: Optional[str] = None,
chart: Optional[Slice] = None,
dashboard: Optional[Dashboard] = None,
database: Optional[Database] = None,
validator_type: Optional[str] = None,
validator_config_json: Optional[str] = None,
log_retention: Optional[int] = None,
last_state: Optional[ReportState] = None,
grace_period: Optional[int] = None,
recipients: Optional[list[ReportRecipients]] = None,
report_format: Optional[ReportDataFormat] = None,
logs: Optional[list[ReportExecutionLog]] = None,
extra: Optional[dict[Any, Any]] = None,
force_screenshot: bool = False,
) -> ReportSchedule:
owners = owners or []
recipients = recipients or []
logs = logs or []
last_state = last_state or ReportState.NOOP
with override_user(owners[0]):
report_schedule = ReportSchedule(
type=type,
name=name,
crontab=crontab,
timezone=timezone,
sql=sql,
description=description,
chart=chart,
dashboard=dashboard,
database=database,
owners=owners,
validator_type=validator_type,
validator_config_json=validator_config_json,
log_retention=log_retention,
grace_period=grace_period,
recipients=recipients,
logs=logs,
last_state=last_state,
report_format=report_format,
extra=extra,
force_screenshot=force_screenshot,
)
db.session.add(report_schedule)
db.session.commit()
return report_schedule | [
408,
339,
507
] |
def METHOD_NAME(function = None, section = "MANUAL"):
"""
Decorator for profiling the specific methods.
It can be used in two ways:
@profile
def method(...):
...
or
@profile(section="SECTION"):
def method(...):
...
The second form is equivalent to the first with section = "MANUAL".
Profiling section is a named set of methods which should be profiled.
Supported values of section are listed in SverchokPreferences.profiling_sections.
The @profile(section) decorator does profile the method only if all following
conditions are met:
* profiling for specified section is enabled in settings (profile_mode option),
* profiling is currently active.
"""
def profiling_decorator(func):
def wrapper(*args, **kwargs):
if is_profiling_enabled(section):
global _profile_nesting
METHOD_NAME = get_global_profile()
_profile_nesting += 1
if _profile_nesting == 1:
METHOD_NAME.enable()
result = func(*args, **kwargs)
_profile_nesting -= 1
if _profile_nesting == 0:
METHOD_NAME.disable()
return result
else:
return func(*args, **kwargs)
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
return wrapper
if callable(function):
return profiling_decorator(function)
else:
return profiling_decorator | [
337
] |
def METHOD_NAME(self, *args, **kwargs):
if "data" in kwargs:
kwargs["data"]["consultation"] = PatientConsultation.objects.get(
external_id=self.kwargs["consultation_external_id"]
).id
return super().METHOD_NAME(*args, **kwargs) | [
19,
1386
] |
def METHOD_NAME(population_1, population_2, window_size, critical_quantile):
"""
Computes the equivalence test to show that mean 2 - window_size/2 < mean 1 < mean 2 + window_size/2
Inputs:
- population_1, np.array 1D: an array of 1 dimension with the observations of 1st group
- population_2, np.array 1D: an array of 1 dimension with the observations of 2nd group
- threshold, float: small value that determines the maximal difference that can be between means
- quantile, float: the level of significance, is the 1-q quantile of the distribution
Output, bool: True if the null is rejected and False if there is not enough evidence
"""
population_2_up = population_2 + window_size / 2.0
population_2_low = population_2 - window_size / 2.0
if np.array_equal(population_1, population_2):
p_value_low, p_value_up = 0.0, 0.0
else:
p_value_up = stats.wilcoxon(population_1, population_2_up, alternative="less")[1]
p_value_low = stats.wilcoxon(population_1, population_2_low, alternative="greater")[1]
test_up = p_value_up < critical_quantile
test_low = p_value_low < critical_quantile
if test_low and test_up:
print("null hypothesis rejected at a level of significance", critical_quantile)
return True, max(p_value_low, p_value_up)
else:
print("not enough evidence to reject null hypothesis")
return False, max(p_value_low, p_value_up) | [
516,
12051
] |
def METHOD_NAME(self):
result = self.integration.details(self.existing_bug_url)
self.assertEqual("Hello GitHub", result["title"])
self.assertEqual(
"This issue is used in automated tests that verify Kiwi TCMS - GitHub "
"bug tracking integration!",
result["description"],
) | [
9,
2051,
43,
1609,
274
] |
def METHOD_NAME(
self, configuration: Optional[ExpectationConfiguration]
) -> None:
"""
Validates that a configuration has been set, and sets a configuration if it has yet to be set. Ensures that
necessary configuration arguments have been provided for the validation of the expectation.
Args:
configuration (OPTIONAL[ExpectationConfiguration]): \
An optional Expectation Configuration entry that will be used to configure the expectation
Returns:
None. Raises InvalidExpectationConfigurationError if the config is not validated successfully
"""
super().METHOD_NAME(configuration)
configuration = configuration or self.configuration
# # Check other things in configuration.kwargs and raise Exceptions if needed
# try:
# assert (
# ...
# ), "message"
# assert (
# ...
# ), "message"
# except AssertionError as e:
# raise InvalidExpectationConfigurationError(str(e))
return True | [
187,
830
] |
def METHOD_NAME(df: pd.DataFrame, mappings: dict[str, dict[str, str]]):
"""
Clean partition columns.
The values in `partition_cols` may have characters that are illegal in
filenames. Strip them out and return a dataframe we can write into a parquet
file.
"""
for col, val_map in mappings.items():
df[col] = df[col].map(val_map)
return df | [
1356,
2312,
1959
] |
def METHOD_NAME(self, tx: BaseTransaction, partial: bool = True) -> None:
"""Update 'deps' and 'needed' sub-indexes, removing them when necessary (i.e. validation is complete).
Note: this method is idempotent.
"""
raise NotImplementedError | [
238,
2543
] |
def METHOD_NAME(self, size=500):
return self.compose(filters.METHOD_NAME(size)) | [
266
] |
def METHOD_NAME(event):
"""Show statusbar comments from menu selection."""
index = main_window.call(event.widget, "index", "active")
if index == 0:
statustext.set("More information about this program")
elif index == 2:
statustext.set("Terminate the program")
else:
statustext.set("This is the statusbar") | [
0,
8443
] |
def METHOD_NAME():
try:
resp = requests.get(
"https://api.github.com/repos/Dummerle/Rare/releases/latest", timeout=2,
)
tag = resp.json()["tag_name"]
return tag
except requests.exceptions.ConnectionError:
return "0.0.0" | [
19,
893,
281
] |
def METHOD_NAME(
self,
interface,
pvc_factory,
pod_factory,
dc_pod_factory,
bucket_factory,
rgw_bucket_factory,
):
"""
Knip-678 Automated recovery from failed nodes
Proactive case - IPI
"""
# Get OSD running nodes
osd_running_nodes = get_osd_running_nodes()
log.info(f"OSDs are running on nodes {osd_running_nodes}")
# Label osd nodes with fedora app
label_worker_node(osd_running_nodes, label_key="dc", label_value="fedora")
# Create DC app pods
log.info("Creating DC based app pods")
interface = (
constants.CEPHBLOCKPOOL if interface == "rbd" else constants.CEPHFILESYSTEM
)
dc_pod_obj = []
for i in range(2):
dc_pod = dc_pod_factory(interface=interface, node_selector={"dc": "fedora"})
pod.run_io_in_bg(dc_pod, fedora_dc=True)
dc_pod_obj.append(dc_pod)
# Get app pods running nodes
dc_pod_node_name = get_app_pod_running_nodes(dc_pod_obj)
log.info(f"DC app pod running nodes are {dc_pod_node_name}")
# Get both osd and app pod running node
common_nodes = get_both_osd_and_app_pod_running_node(
osd_running_nodes, dc_pod_node_name
)
msg = "Common OSD and app running node(s) NOT found"
assert len(common_nodes) > 0, msg
log.info(f"Common OSD and app pod running nodes are {common_nodes}")
# Get the machine name using the node name
machine_name = machine.get_machine_from_node_name(common_nodes[0])
log.info(f"{common_nodes[0]} associated machine is {machine_name}")
# Get the machineset name using machine name
machineset_name = machine.get_machineset_from_machine_name(machine_name)
log.info(f"{common_nodes[0]} associated machineset is {machineset_name}")
# Add a new node and label it
add_new_node_and_label_it(machineset_name)
# Delete the machine
machine.delete_machine(machine_name)
log.info(f"Successfully deleted machine {machine_name}")
# DC app pods on the failed node will get automatically created on
# other running node. Waiting for all dc app pod to reach running
# state
pod.wait_for_dc_app_pods_to_reach_running_state(dc_pod_obj)
log.info("All the dc pods reached running state")
pod.wait_for_storage_pods()
# Check basic cluster functionality by creating resources
# (pools, storageclasses, PVCs, pods - both CephFS and RBD),
# run IO and delete the resources
self.sanity_helpers.create_resources(
pvc_factory, pod_factory, bucket_factory, rgw_bucket_factory
)
self.sanity_helpers.delete_resources()
# Perform cluster and Ceph health checks
self.sanity_helpers.health_check() | [
9,
16661,
1300,
280,
1423,
480,
1213
] |
def METHOD_NAME(self, now):
nowsecs = str(int(now))[:-1]
now = self.now
nonstandard_expectations = (
# These are standard but don't have predictable output
('%c', fixasctime(time.asctime(now)), 'near-asctime() format'),
('%x', '%02d/%02d/%02d' % (now[1], now[2], (now[0]%100)),
'%m/%d/%y %H:%M:%S'),
('%Z', '%s' % self.tz, 'time zone name'),
# These are some platform specific extensions
('%D', '%02d/%02d/%02d' % (now[1], now[2], (now[0]%100)), 'mm/dd/yy'),
('%e', '%2d' % now[2], 'day of month as number, blank padded ( 0-31)'),
('%h', calendar.month_abbr[now[1]], 'abbreviated month name'),
('%k', '%2d' % now[3], 'hour, blank padded ( 0-23)'),
('%n', '\n', 'newline character'),
('%r', '%02d:%02d:%02d %s' % (self.clock12, now[4], now[5], self.ampm),
'%I:%M:%S %p'),
('%R', '%02d:%02d' % (now[3], now[4]), '%H:%M'),
('%s', nowsecs, 'seconds since the Epoch in UCT'),
('%t', '\t', 'tab character'),
('%T', '%02d:%02d:%02d' % (now[3], now[4], now[5]), '%H:%M:%S'),
('%3y', '%03d' % (now[0]%100),
'year without century rendered using fieldwidth'),
)
for e in nonstandard_expectations:
try:
result = time.strftime(e[0], now)
except ValueError as result:
msg = "Error for nonstandard '%s' format (%s): %s" % \
(e[0], e[2], str(result))
if support.verbose:
print(msg)
continue
if re.match(escapestr(e[1], self.ampm), result):
if support.verbose:
print("Supports nonstandard '%s' format (%s)" % (e[0], e[2]))
elif not result or result[0] == '%':
if support.verbose:
print("Does not appear to support '%s' format (%s)" % \
(e[0], e[2]))
else:
if support.verbose:
print("Conflict for nonstandard '%s' format (%s):" % \
(e[0], e[2]))
print(" Expected %s, but got %s" % (e[1], result)) | [
16958
] |
def METHOD_NAME():
p = angr.Project(os.path.join(test_location, "x86_64", "all"), auto_load_libs=False, load_debug_info=True)
cfg = p.analyses.CFG(data_references=True, normalize=True)
main_func = cfg.kb.functions["main"]
# convert function blocks to AIL blocks
clinic = p.analyses.Clinic(main_func)
# recover regions
ri = p.analyses.RegionIdentifier(main_func, graph=clinic.graph)
# structure it
rs = p.analyses.RecursiveStructurer(ri.region)
# simplify it
s = p.analyses.RegionSimplifier(main_func, rs.result)
codegen = p.analyses.StructuredCodeGenerator(main_func, s.result, cfg=cfg, ail_graph=clinic.graph)
print(codegen.text) | [
9,
53
] |
def METHOD_NAME(spec, state):
slashed_indices = _setup_process_slashings_test(spec, state)
yield from run_process_slashings(spec, state)
for i in slashed_indices:
assert state.balances[i] == 0 | [
9,
232,
15320
] |
def METHOD_NAME(self) -> str:
"""
Provisioning state of the resource.
"""
return pulumi.get(self, "provisioning_state") | [
1994,
551
] |
def METHOD_NAME(self, model: BaseModel, dataset: Dataset, meta: pd.DataFrame):
features = model.meta.feature_names or dataset.columns.drop(dataset.target, errors="ignore")
df_with_meta = dataset.df.join(meta, how="right")
column_types = dataset.column_types.copy()
column_types[self.LOSS_COLUMN_NAME] = "numeric"
dataset_with_meta = Dataset(
df_with_meta,
target=dataset.target,
column_types=column_types,
validation=False,
)
# For performance
dataset_with_meta.load_metadata_from_instance(dataset.column_meta)
# Find slices
sf = SliceFinder(numerical_slicer=self._numerical_slicer_method)
sliced = sf.run(dataset_with_meta, features, target=self.LOSS_COLUMN_NAME)
slices = sum(sliced.values(), start=[])
# Keep only slices of size at least 5% of the dataset or 20 samples (whatever is larger)
slices = [s for s in slices if max(0.05 * len(dataset), 20) <= len(dataset_with_meta.slice(s))]
return slices | [
416,
920
] |
def METHOD_NAME(self, library) -> None:
print_d(f"Reading playlist directory {self.pl_dir} (library: {library})")
try:
fns = os.listdir(self.pl_dir)
except FileNotFoundError as e:
print_w(f"No playlist dir found in {self.pl_dir!r}, creating. ({e})")
os.mkdir(self.pl_dir)
fns = []
# Populate this library by relying on existing signal passing.
# Weird, but allows keeping the logic in one place
failed = []
for fn in fns:
full_path = os.path.join(self.pl_dir, fn)
if os.path.isdir(full_path):
continue
if HIDDEN_RE.match(fsn2text(fn)):
print_d(f"Ignoring hidden file {fn!r}")
continue
try:
XSPFBackedPlaylist(self.pl_dir, fn, songs_lib=library, pl_lib=self)
except TypeError as e:
# Don't add to library - it's temporary
legacy = FileBackedPlaylist(self.pl_dir, fn,
songs_lib=library, pl_lib=None)
if not len(legacy):
try:
size = os.stat(legacy._last_fn).st_size
if size >= _MIN_NON_EMPTY_PL_BYTES:
data = {"filename": fn, "size": size / 1024}
print_w(_("No library songs found in legacy playlist "
"%(filename)r (of size %(size).1f kB).") % data +
" " +
_("Have you changed library root dir(s), "
"but not this playlist?"))
continue
except OSError:
print_e(f"Problem reading {legacy._last_fn!r}")
continue
finally:
failed.append(fn)
print_w(f"Converting {fn!r} to XSPF format ({e})")
XSPFBackedPlaylist.from_playlist(legacy, songs_lib=library, pl_lib=self)
except EnvironmentError:
print_w(f"Invalid Playlist {fn!r}")
failed.append(fn)
if failed:
total = len(failed)
print_e(ngettext("%d playlist failed to convert",
"%d playlists failed to convert", total) % len(failed)) | [
203,
9828
] |
def METHOD_NAME(schema_uri):
l = logging.getLogger(__name__)
l.debug('Loading schema from %s', schema_uri)
url_scheme = six.moves.urllib.parse.urlparse(schema_uri).scheme
l.debug('Parsed URL: %s', schema_uri)
scheme_dispatch = {
'file': load_json_schema_from_file,
'http': load_json_schema_from_web,
'https': load_json_schema_from_web
}
try:
return scheme_dispatch[url_scheme](schema_uri)
except KeyError:
raise IrodsError('ERROR: Invalid schema url: {}'.format(schema_uri)) | [
557,
763,
135
] |
def METHOD_NAME(self, response: Dict[str, Any]) -> None:
if not response.get('ok'):
err = response['error']
if response.get('tb'):
err += '\n' + response['tb']
self.print_on_fail = err
self.quit_loop(1)
return
res = response.get('data')
if res:
self.cmd.bell() | [
69,
13931,
1660,
17
] |
def METHOD_NAME():
# create tables
for db in (db1, db2, db3, db4):
Base.metadata.create_all(db) | [
102
] |
def METHOD_NAME(self, task, entry, config=None):
"""
Search for name from torrentleech.
"""
request_headers = {'User-Agent': 'curl/7.54.0'}
rss_key = config['rss_key']
# build the form request:
data = {'username': config['username'], 'password': config['password']}
# POST the login form:
try:
login = task.requests.post(
'https://www.torrentleech.org/user/account/login/',
data=data,
headers=request_headers,
allow_redirects=True,
)
except RequestException as e:
raise PluginError('Could not connect to torrentleech: %s' % str(e))
if login.url.endswith('/user/account/login/'):
raise PluginError('Could not login to torrentleech, faulty credentials?')
if not isinstance(config, dict):
config = {}
# sort = SORT.get(config.get('sort_by', 'seeds'))
# if config.get('sort_reverse'):
# sort += 1
categories = config.get('category', 'all')
# Make sure categories is a list
if not isinstance(categories, list):
categories = [categories]
# If there are any text categories, turn them into their id number
categories = [c if isinstance(c, int) else CATEGORIES[c] for c in categories]
filter_url = '/categories/{}'.format(','.join(str(c) for c in categories))
entries = set()
for search_string in entry.get('search_strings', [entry['title']]):
query = normalize_unicode(search_string).replace(":", "")
# urllib.quote will crash if the unicode string has non ascii characters,
# so encode in utf-8 beforehand
url = (
'https://www.torrentleech.org/torrents/browse/list/query/'
+ quote(query.encode('utf-8'))
+ filter_url
)
logger.debug('Using {} as torrentleech search url', url)
results = task.requests.get(url, headers=request_headers, cookies=login.cookies).json()
for torrent in results['torrentList']:
entry = Entry()
entry['download_headers'] = request_headers
entry['title'] = torrent['name']
# construct download URL
torrent_url = 'https://www.torrentleech.org/rss/download/{}/{}/{}'.format(
torrent['fid'], rss_key, torrent['filename']
)
logger.debug('RSS-ified download link: {}', torrent_url)
entry['url'] = torrent_url
# seeders/leechers
entry['torrent_seeds'] = torrent['seeders']
entry['torrent_leeches'] = torrent['leechers']
entry['torrent_availability'] = torrent_availability(
entry['torrent_seeds'], entry['torrent_leeches']
)
entry['content_size'] = parse_filesize(str(torrent['size']) + ' b')
entries.add(entry)
return sorted(entries, reverse=True, key=lambda x: x.get('torrent_availability')) | [
1070
] |
def METHOD_NAME():
from dateutil import rrule | [
9,
512,
11086,
280
] |
f METHOD_NAME(self): | [
9,
19,
1208,
210,
107,
6873
] |
def METHOD_NAME():
remote = {'url': 'https://s3.amazonaws.com/openneuro.org',
'uuid': '57894849-d0c8-4c62-8418-3627be18a196'}
url = parse_rmet_line(
remote, """1590213748.042921433s 57894849-d0c8-4c62-8418-3627be18a196:V +iVcEk18e3J2WQys4zr_ANaTPfpUufW4Y#ds002778/dataset_description.json""")
assert url == 'https://s3.amazonaws.com/openneuro.org/ds002778/dataset_description.json?versionId=iVcEk18e3J2WQys4zr_ANaTPfpUufW4Y' | [
9,
214,
7673,
534,
3905
] |
def METHOD_NAME(self):
# see also test_root_location_id_supplied
location = SQLLocation.objects.get(domain=self.domain, name='Suffolk')
location.is_archived = True
location.save()
exporter = LocationExporter(
self.domain,
is_archived=False,
root_location_ids=[location.location_id],
)
self.assertEqual(exporter.base_query.count(), 1)
self.assertEqual(exporter.base_query[0].name, 'Boston')
# Reset to previous state
location.is_archived = False
location.save() | [
9,
1563,
708,
147,
8374,
923,
246
] |
def METHOD_NAME():
run_fdtd_2d(dace.dtypes.DeviceType.CPU) | [
9,
2265
] |
def METHOD_NAME(self, *args, **kwargs):
body = self.request.body
self.request.jsoncall = True
if body is not None:
decoded = body.decode()
if decoded:
self.request.body = json.loads(decoded)
result = method(self, *args, **kwargs)
if result is not None:
self.set_header('Content-Type', 'application/json; charset=UTF-8')
self.write(json.dumps(result, default=json_handler))
else:
self.set_header('Content-Type', 'text/plain; charset=UTF-8')
self.set_status(204) | [
291
] |
def METHOD_NAME(
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
) -> LogitsProcessorList:
processor_list = LogitsProcessorList()
if temperature is not None and temperature != 1.0:
processor_list.append(TemperatureLogitsWarper(temperature))
if top_k is not None and top_k != 0:
processor_list.append(TopKLogitsWarper(top_k))
if top_p is not None and top_p < 1.0:
processor_list.append(TopPLogitsWarper(top_p))
return processor_list | [
123,
9016,
2422
] |
def METHOD_NAME():
installed_rpms = [
RPM(name='sendmail', version='8.14.7', release='5.el7', epoch='0',
packager='foo', arch='x86_64', pgpsig='bar'),
RPM(name='vsftpd', version='3.0.2', release='25.el7', epoch='0',
packager='foo', arch='x86_64', pgpsig='bar'),
RPM(name='postfix', version='2.10.1', release='7.el7', epoch='0',
packager='foo', arch='x86_64', pgpsig='bar')]
installed_rpm_facts = InstalledRedHatSignedRPM(items=installed_rpms)
res = vsftpdconfigread.is_processable(installed_rpm_facts)
assert res is True | [
9,
137,
14958,
9792,
1255
] |
def METHOD_NAME():
# ### commands auto generated by Alembic - please adjust! ###
# op.drop_constraint(None, 'vulnerability', type_='foreignkey')
op.drop_column('vulnerability', 'cvssv2_id')
op.drop_column('vulnerability', 'cvssv3_id')
op.drop_table('cvss_v3')
op.drop_table('cvss_v2')
op.drop_table('cvss_base')
op.execute('drop type cvss_attack_complexity')
op.execute('drop type cvss_access_vector')
op.execute('drop type cvss_access_complexity')
op.execute('drop type cvss_attack_vector')
op.execute('drop type cvss_authentication')
op.execute('drop type cvss_privileges_required')
op.execute('drop type cvss_scope')
op.execute('drop type cvss_user_interaction')
op.execute('drop type cvss_impact_types_v2')
op.execute('drop type cvss_impact_types_v3')
#
# ### end Alembic commands ### | [
1502
] |
def METHOD_NAME(dirname):
# TODO check source/plugins.rst output and give proper string
return dirname | [
-1
] |
def METHOD_NAME(self) -> Iterable[Path]:
return self.data_dir.joinpath("parquet").glob("*.parquet") | [
9,
1537
] |
def METHOD_NAME(self) -> tuple[int, int]:
"""Return the range (from,to) of this pattern."""
return self.range_from, self.range_to | [
19,
661
] |
def METHOD_NAME():
m = Model.model_validate(Model(a=10.2))
assert m.model_dump() == {'a': 10.2, 'b': 10} | [
9,
578,
187,
6231
] |
def METHOD_NAME(hprinter: _win32typing.PyPrinterHANDLE, Form) -> None: ... | [
238,
1029
] |
def METHOD_NAME(self):
try:
os.mkdir(test_support.TESTFN)
except OSError:
pass
files = set()
for name in self.files:
name = os.path.join(test_support.TESTFN, self.norm(name))
with open(name, 'w') as f:
f.write((name+'\n').encode("utf-8"))
os.stat(name)
files.add(name)
self.files = files | [
0,
1
] |
def METHOD_NAME(cls, v: str, values: dict[str, Any]) -> Any:
"""Build Postgres connection from environment variables."""
if isinstance(v, str):
return v
if not (user := values.get("FMTM_DB_USER")):
raise ValueError("FMTM_DB_USER is not present in the environment")
if not (password := values.get("FMTM_DB_PASSWORD")):
raise ValueError("FMTM_DB_PASSWORD is not present in the environment")
if not (host := values.get("FMTM_DB_HOST")):
raise ValueError("FMTM_DB_HOST is not present in the environment")
return PostgresDsn.build(
scheme="postgresql",
user=user,
password=password,
host=host,
path=f"/{values.get('FMTM_DB_NAME') or ''}",
) | [
1893,
1267,
550
] |
def METHOD_NAME(self):
return super().METHOD_NAME().filter(organisation=self.organisation) | [
19,
2386
] |
async def METHOD_NAME(
z: int,
x: int,
y: int,
db: Connection = Depends(database.db),
params: commons_params.Params = Depends(commons_params.params), | [
4818,
13453
] |
def METHOD_NAME(model_path: str, in_path: str, out_path: str):
Args = namedtuple("Args", ["sentencepiece_model"])
args = Args(sentencepiece_model=model_path)
tokenizer = SentencepieceBPE(args)
with open(in_path) as f, open(out_path, "w") as f_o:
for s in f:
f_o.write(tokenizer.encode(s.strip()) + "\n") | [
231,
3138
] |
def METHOD_NAME(env, configuration_name):
flavor = GetProjetDirName(env, configuration_name)
build_dir = env.Dir("build").Dir(flavor)
return env.SConscript(
"firmware.scons",
variant_dir=build_dir,
duplicate=0,
exports={
"ENV": env,
"fw_build_meta": {
"type": configuration_name,
"flavor": flavor,
"build_dir": build_dir,
},
},
) | [
129,
7412,
56,
465
] |
def METHOD_NAME():
data = "Rică nu știa să zică râu, rățușcă, rămurică."
with tempfile.NamedTemporaryFile(mode="wb") as test_file:
test_file.write(str.encode(data, "utf-16"))
test_file.seek(0)
with utils.open_guess_encoding(test_file.name) as fd:
assert fd.read() == data | [
9,
1452,
1363,
2300
] |
def METHOD_NAME(height, diameter):
r"""
Calculates volume and total surface of a hot water storage.
.. calculate_storage_dimensions-equations:
:math:`V = \pi \frac{d^2}{4} \cdot h`
:math:`A = \pi d h + \pi \frac{d^2}{2}`
Parameters
----------
height : numeric
Height of the storage [m]
diameter : numeric
Diameter of the storage [m]
Returns
-------
volume : numeric
Volume of storage
surface : numeric
Total surface of storage [m2]
"""
volume = 0.25 * np.pi * diameter ** 2 * height
surface = np.pi * diameter * height + 0.5 * np.pi * diameter ** 2
return volume, surface | [
1593,
948,
5164
] |
def METHOD_NAME(hamiltonian, eigenvalues, eigenstates):
test_values, test_states = hamiltonian.eigenstates()
eigenvalues = np.array(eigenvalues)
eigenstates = np.array(eigenstates)
test_order = np.argsort(test_values)
test_vectors = [_canonicalise_eigenvector(test_states[i].full())
for i in test_order]
expected_order = np.argsort(eigenvalues)
expected_vectors = [_canonicalise_eigenvector(eigenstates[i])
for i in expected_order]
np.testing.assert_allclose(test_values[test_order],
eigenvalues[expected_order],
atol=1e-10)
for test, expected in zip(test_vectors, expected_vectors):
np.testing.assert_allclose(test, expected, atol=1e-10) | [
9,
3478,
15403
] |
def METHOD_NAME(self):
bin_obj = self._bin_obj_generator()
small_table = self.gen_data(10000, 50, 2)
split_points = bin_obj.fit_split_points(small_table)
iv_calculator = IvCalculator(adjustment_factor=0.5, role="guest", party_id=9999)
ivs = iv_calculator.cal_local_iv(small_table, split_points)
print(f"iv result: {ivs.summary()}") | [
9,
2754,
8688
] |
def METHOD_NAME():
# check the influence of the seed when computing the hashes
raw_X = [
["foo", "bar", "baz", "foo".encode("ascii")],
["bar".encode("ascii"), "baz", "quux"],
]
raw_X_ = (((f, 1) for f in x) for x in raw_X)
indices, indptr, _ = _hashing_transform(raw_X_, 2**7, str, False)
raw_X_ = (((f, 1) for f in x) for x in raw_X)
indices_0, indptr_0, _ = _hashing_transform(raw_X_, 2**7, str, False, seed=0)
assert_array_equal(indices, indices_0)
assert_array_equal(indptr, indptr_0)
raw_X_ = (((f, 1) for f in x) for x in raw_X)
indices_1, _, _ = _hashing_transform(raw_X_, 2**7, str, False, seed=1)
with pytest.raises(AssertionError):
assert_array_equal(indices, indices_1) | [
9,
6476,
1053,
484
] |
def METHOD_NAME(shelve_type, g_s_b):
"""
Test if all parameter combinations from gain (g), slope (s), and
bandwidth (b) yield the correct values. Two out of the three parameters
must be given.
"""
# test with missing third parameter
g_s_b_test = _shelving_cascade_slope_parameters(
g_s_b[0], g_s_b[1], None, shelve_type)
npt.assert_equal(g_s_b_test, g_s_b)
# test with missing second parameter
g_s_b_test = _shelving_cascade_slope_parameters(
g_s_b[0], None, g_s_b[2], shelve_type)
npt.assert_equal(g_s_b_test, g_s_b)
# test with missing first parameter
g_s_b_test = _shelving_cascade_slope_parameters(
None, g_s_b[1], g_s_b[2], shelve_type)
npt.assert_equal(g_s_b_test, g_s_b) | [
9,
15533,
3285,
95,
386
] |
def METHOD_NAME(self, client, host):
with client.renders_template("generic_form.html"):
client.assert_url_ok(url_for("host.interface_create", host_id=host.id)) | [
9,
129,
1090,
19
] |
def METHOD_NAME(self, response: HTTPResponse, request: Request) -> Sequence[Cookie]: ... | [
93,
880
] |
def METHOD_NAME(self):
"""
Remove all items from this OrderedSet.
"""
del self.items[:]
self.map.METHOD_NAME() | [
537
] |
def METHOD_NAME(self):
"Test updating recipe through auth"
changed = auth.create_analysis(project=self.project,
json_text=self.recipe.json_text,
template=self.recipe.template,
uid=self.recipe.uid, update=True)
self.assertEqual(changed.uid, self.recipe.uid) | [
9,
3912,
86
] |
def METHOD_NAME(response):
""" handler work_weixin response and errcode
"""
try:
response = response.json()
except ValueError:
logger.error(response)
return None
errcode = response.get('errcode', None)
if errcode != 0:
logger.error(json.dumps(response))
return None
return response | [
1519,
3160,
498,
58,
17
] |
def METHOD_NAME(ds):
feed_dict = {}
feed_dict["batch_nodes"] = np.array(ds.nodes_idx, dtype="int64")
feed_dict["labels"] = np.array(ds.labels, dtype="int64")
def r():
yield feed_dict
return r | [
324,
2277,
-1
] |
def METHOD_NAME():
binary_tteesstt("thicken", centrosome.cpmorphology.thicken) | [
9,
808,
-1
] |
def METHOD_NAME(self):
resize = Resize(spatial_size=(128, 64), mode="bilinear")
set_track_meta(False)
for p in TEST_NDARRAYS_ALL:
im = p(self.imt[0])
result = resize(im)
assert_allclose(im, result, type_test=False)
set_track_meta(True) | [
9,
16676
] |
def METHOD_NAME():
"""Get kwargs for the analyzer.
Returns:
Info to connect to MISP.
"""
misp_url = current_app.config.get("MISP_URL")
misp_api_key = current_app.config.get("MISP_API_KEY")
if not misp_api_key or not misp_url:
logger.error("MISP conf not found")
return []
matcher_kwargs = [{"misp_url": misp_url, "misp_api_key": misp_api_key}]
return matcher_kwargs | [
19,
1475
] |
def METHOD_NAME(self):
self.pre_operations()
yield self.VirtualMachineScaleSetRollingUpgradesCancel(ctx=self.ctx)()
self.post_operations() | [
750,
710
] |
def METHOD_NAME(self, path, md5, size):
self.records.append(ManifestRecordFile(path, md5, size)) | [
238,
171
] |
def METHOD_NAME(test, params, env):
"""
Test for adding controller for usb.
"""
# get the params from params
vm_name = params.get("main_vm", "avocado-vt-vm1")
vm = env.get_vm(vm_name)
index = params.get("index", "1")
index_conflict = "yes" == params.get("index_conflict", "no")
index_multiple = index == "multiple"
model = params.get("model", "nec-xhci")
status_error = "yes" == params.get("status_error", "no")
vm_xml = VMXML.new_from_inactive_dumpxml(vm_name)
vm_xml_backup = vm_xml.copy()
controllers = vm_xml.get_devices(device_type="controller")
devices = vm_xml.get_devices()
for dev in controllers:
if dev.type == "usb":
devices.remove(dev)
# Test add multiple controllers in disorder.
if index_multiple:
# Remove input devices dependent on usb controller.
inputs = vm_xml.get_devices(device_type="input")
for input_device in inputs:
if input_device.type_name == "tablet":
vm_xml.del_device(input_device)
model = 'ich9-hci'
# Initialize one usb controller list.
controller_list = [('0', 'ich9-uhci2'),
('2', 'ich9-uhci2'),
('0', 'ich9-uhci3'),
('1', 'ich9-uhci1'),
('2', 'ich9-uhci3'),
('0', 'ich9-ehci1'),
('2', 'ich9-ehci1'),
('1', 'ich9-uhci3'),
('1', 'ich9-uhci2'),
('1', 'ich9-ehci1'),
('2', 'ich9-uhci1'),
('0', 'ich9-uhci1')]
# Add multiple usb controllers in random order.
for usb_tuple in controller_list:
controller = Controller("controller")
controller.type = "usb"
controller.index = usb_tuple[0]
controller.model = usb_tuple[1]
devices.append(controller)
else:
controller = Controller("controller")
controller.type = "usb"
controller.index = index
controller.model = model
devices.append(controller)
if index_conflict:
controller_1 = Controller("controller")
controller_1.type = "usb"
controller_1.index = index
devices.append(controller)
vm_xml.set_devices(devices)
try:
try:
vm_xml.sync()
vm.start()
# Validate multiple usb controllers result, disorder controllers will be organized by index group.
if index_multiple:
validate_multiple_controller(test, vm_name)
if status_error:
test.fail("Add controller successfully in negative case.")
else:
try:
session = vm.wait_for_login()
except (LoginError, ShellError) as e:
error_msg = "Test failed in positive case.\n error: %s\n" % e
test.fail(error_msg)
cmd = "dmesg -c | grep %s" % model.split('-')[-1]
stat_dmesg = session.cmd_status(cmd)
if stat_dmesg != 0:
test.cancel("Fail to run dmesg in guest")
session.close()
except (LibvirtXMLError, VMStartError) as e:
if not status_error:
test.fail("Add controller failed. Detail: %s" % e)
finally:
vm_xml_backup.sync() | [
22
] |
def METHOD_NAME():
raise m.MyException("nested error") | [
1471,
-1
] |
def METHOD_NAME(cls):
# import source parameters type, connection, query, path are always str
return str | [
19,
616,
1461,
119
] |
def METHOD_NAME(get_configuration):
"""
Restart Authd.
"""
truncate_file(LOG_FILE_PATH)
control_service("restart", daemon=DAEMON_NAME) | [
1141,
11575
] |
def METHOD_NAME(self, config):
self.config = config
self.config.readSubscriptionConf()
if self.config.is_subscribe_done:
try:
from mmc.plugins.dashboard.manager import DashboardManager
from mmc.plugins.base.panel import SupportPanel
DM = DashboardManager()
DM.register_panel(SupportPanel("support"))
except ImportError:
pass | [
176
] |
async def METHOD_NAME(self) -> None:
await self._client.METHOD_NAME() | [
1462
] |
def METHOD_NAME(cls, criteria_cls_name) -> "ComparisonCriteria":
"""`criteria_cls_name` must be a valid criteria class name."""
return locate(f"framework.stats.criteria.{criteria_cls_name}") | [
19
] |
def METHOD_NAME(self):
"""Ensure that creating an instance of a deprecated class emits a warning."""
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
_ = self.DeprecatedClass() # Instantiate the deprecated class
self.assertEqual(len(w), 1) | [
9,
2,
3527,
3437
] |
def METHOD_NAME(self):
urls = {
build_operation_url("https://app.stage.neptune.ai", "api/leaderboard/v1/attributes/download"),
build_operation_url(
"https://app.stage.neptune.ai",
"/api/leaderboard/v1/attributes/download",
),
build_operation_url(
"https://app.stage.neptune.ai/",
"api/leaderboard/v1/attributes/download",
),
build_operation_url(
"https://app.stage.neptune.ai/",
"/api/leaderboard/v1/attributes/download",
),
build_operation_url("app.stage.neptune.ai", "api/leaderboard/v1/attributes/download"),
build_operation_url("app.stage.neptune.ai", "/api/leaderboard/v1/attributes/download"),
build_operation_url("app.stage.neptune.ai/", "api/leaderboard/v1/attributes/download"),
build_operation_url("app.stage.neptune.ai/", "/api/leaderboard/v1/attributes/download"),
}
self.assertEqual(
{"https://app.stage.neptune.ai/api/leaderboard/v1/attributes/download"},
urls,
) | [
9,
4218,
2206,
274
] |
def METHOD_NAME(self, signal_name, callback):
"""
Connect a responder to a specific signal.
Args:
signal_name (str): The name of the signal to respond to
callback (callable): The callable that is called when the signal is queried
"""
signal_responders = self.responders.setdefault(signal_name, [])
if callback not in signal_responders:
signal_responders.append(callback) | [
238,
11677
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.