text
stringlengths 15
7.82k
| ids
sequencelengths 1
7
|
---|---|
def METHOD_NAME(history_item):
"""
Returns the date of a history item
"""
return history_item['date'] | [
19,
351,
153
] |
def METHOD_NAME(self, inline_query_result_mpeg4_gif):
inst = inline_query_result_mpeg4_gif
for attr in inst.__slots__:
assert getattr(inst, attr, "err") != "err", f"got extra slot '{attr}'"
assert len(mro_slots(inst)) == len(set(mro_slots(inst))), "duplicate slot" | [
9,
3572,
3573
] |
def METHOD_NAME(request, year, pk):
fair = get_object_or_404(Fair, year=year)
user = get_object_or_404(User, pk=pk)
METHOD_NAME = Profile.objects.filter(user=user).first()
if not METHOD_NAME:
METHOD_NAME = Profile.objects.create(user=user, no_dietary_restrictions=False)
application = RecruitmentApplication.objects.filter(
user=user, status="accepted", recruitment_period__fair=fair
).first()
return TemplateResponse(
request,
"people/profile.html",
{
"fair": fair,
"profile": METHOD_NAME,
"role": application.delegated_role if application else None,
"roles": RecruitmentApplication.objects.filter(
user=user, status="accepted"
).order_by("recruitment_period__fair"),
},
) | [
337
] |
def METHOD_NAME():
# First four batches of labels, predictions: {TP, FP, TN, FN}
# with a threshold of 0.5:
# True, 1.0 -> TP; False, .75 -> FP; True, .25 -> FN
# False, 0.0 -> TN; True, 1.0 -> TP; False, .75 -> FP
# True, .25 -> FN; False, 0.0 -> TN; True, 1.0 -> TP
# False, .75 -> FP; True, .25 -> FN; False, 0.0 -> TN
return dataset_ops.Dataset.from_tensor_slices({
"labels": [True, False, True, False],
"predictions": [1.0, 0.75, 0.25, 0.]}).repeat().batch(
3, drop_remainder=True) | [
853,
126,
667
] |
def METHOD_NAME(self, build_configuration_file_path, integration_merge_configuration_file_path, disable_cache_on_retry=False):
"""
Loads configurations for external content to pull from source or cache, and attaches it to the Build Class
"""
self.build_configuration = yaml.safe_load(open(build_configuration_file_path))
if disable_cache_on_retry:
self.cache_enabled = False
else:
self.cache_enabled = self.build_configuration[0].get('config', {}).get('cache_enabled', False)
if not self.cache_enabled:
self.integration_mutations = OrderedDict(yaml.safe_load(open(integration_merge_configuration_file_path))) | [
557,
200
] |
def METHOD_NAME():
self.gui.lap.pause() | [
3609,
2009
] |
def METHOD_NAME(self):
log.info = self.old_log
super(DirUtilTestCase, self).METHOD_NAME() | [
531,
481
] |
def METHOD_NAME(self):
nodes = [ Defs(), Suite('s'), Family('f'), Task('t')]
sort_attr = ['event','meter','label','variable','all']
for attr in sort_attr:
for node in nodes:
node.sort_attributes(attr)
node.sort_attributes(attr,True)
node.sort_attributes(attr,True,['/path','/path2'])
sort_attr = [AttrType.event, AttrType.meter, AttrType.label,AttrType.variable, AttrType.all ]
for attr in sort_attr:
for node in nodes:
node.sort_attributes(attr)
node.sort_attributes(attr,True)
node.sort_attributes(attr,True,['/path','/path2']) | [
9,
266,
177,
58
] |
def METHOD_NAME(filename, extract_dir, progress_filter=default_filter):
"""Unpack tar/tar.gz/tar.bz2 `filename` to `extract_dir`
Raises ``UnrecognizedFormat`` if `filename` is not a tarfile (as determined
by ``tarfile.open()``). See ``unpack_archive()`` for an explanation
of the `progress_filter` argument.
"""
try:
tarobj = tarfile.open(filename)
except tarfile.TarError as e:
raise UnrecognizedFormat(
"%s is not a compressed or uncompressed tar file" % (filename,)
) from e
for member, final_dst in _iter_open_tar(
tarobj, extract_dir, progress_filter,
):
try:
# XXX Ugh
tarobj._extract_member(member, final_dst)
except tarfile.ExtractError:
# chown/chmod/mkfifo/mknode/makedev failed
pass
return True | [
789,
6041
] |
def METHOD_NAME(
in_dir: pathlib.Path,
out_dir: pathlib.Path,
*,
transformer=configCallTransformer(), | [
1112,
1537
] |
def METHOD_NAME(*args: Condition[TCallDetails]) -> Condition[TCallDetails]:
"""Returns a filter function that returns True if all filter functions
assigned matches conditions.
Args:
args (function): a list of filter function
Returns:
A filter function that returns True if all filter functions
assigned matches conditions.
"""
def filter_fn(metadata):
return all(func(metadata) for func in args)
return filter_fn | [
75,
47
] |
def METHOD_NAME(self):
self.assertEqual(getAdapter(self.portal, ILanguageSchema).display_flags, False)
self.settings.display_flags = True
self.assertEqual(getAdapter(self.portal, ILanguageSchema).display_flags, True) | [
9,
19,
52,
1106
] |
def METHOD_NAME():
def func(z):
return z**2 - 1 + 2j
x0 = 2.0j
ftol = 1e-4
sol = root(func, x0, tol=ftol, method='DF-SANE')
assert_(sol.success)
f0 = np.linalg.norm(func(x0))
fx = np.linalg.norm(func(sol.x))
assert_(fx <= ftol*f0) | [
9,
2587
] |
def METHOD_NAME(
docs_file: typing.TextIO
) -> Tuple[Union[str, None], List[NodeParseError]]:
root_group = ParsedGroup("Miscellaneous", "Miscellaneous")
docs: Dict[str, Union[ParsedGroup, Variable]] = {"file": root_group}
getter_method_specs: List[GetterMethodSpec] = []
def visitor(node: Node):
nonlocal docs
if isinstance(node.details, Group):
group = ParsedGroup(node.name, node.details.group_description)
parent = typing.cast(ParsedGroup, docs[node.json_path])
parent.sub_groups.append(group)
docs[f'{node.json_path}.{node.name}'] = group
else:
parent = typing.cast(ParsedGroup, docs[node.json_path])
getter_method_specs.append(
GetterMethodSpec(node.name, node.details))
parent.variables[node.name] = node.details
errors = visit(docs_file, visitor)
if errors:
return None, errors
sections = render_sections(root_group)
env = Environment(
loader=PackageLoader("settings_manifest"),
autoescape=select_autoescape())
template = env.get_template("SettingsManifest.java.jinja")
return template.render(
sections=sections,
getter_method_specs=getter_method_specs,
writeable_mode=Mode.ADMIN_WRITEABLE), [] | [
567,
1220
] |
def METHOD_NAME():
assert Ob('x') == Ob('x') and Ob('x') != Ob('y') | [
9,
11254
] |
def METHOD_NAME(x, p):
"""Derivative of circumferential distance function.
Args:
x (float): first angle
p (float): second angle
Returns:
float: The derivative.
"""
# pylint: disable=chained-comparison,misplaced-comparison-constant
t = p - x
if t < -0.5 or (0 < t and t < 0.5):
return -1
if t > 0.5 or (-0.5 < t and t < 0):
return 1
return 0 | [
7996,
1225,
1260
] |
def METHOD_NAME(options):
from gevent import spawn, sleep
return test(spawn, sleep, options) | [
7608,
-1
] |
def METHOD_NAME(self):
pass | [
72,
710
] |
def METHOD_NAME(self) -> Optional[float]:
"""
Number of DNS Services using the DNS zone.
"""
return pulumi.get(self, "dns_services") | [
2455,
3186
] |
def METHOD_NAME(self, function_call) -> str:
r"""
Print function call.
:param function_call: a function call
:type function_call: ASTFunctionCall
:return: the corresponding string representation
"""
result = function_call.get_name()
symbols = {
"convolve": r"\\text{convolve}"
}
for symbol_find, symbol_replace in symbols.items():
result = re.sub(r"(?<![a-zA-Z])(" + symbol_find + ")(?![a-zA-Z])",
symbol_replace, result) # "whole word" match
if ASTUtils.needs_arguments(function_call):
n_args = len(function_call.get_args())
result += "(" + ", ".join(["%s" for _ in range(n_args)]) + ")"
else:
result += "()"
return result | [
38,
559,
128
] |
def METHOD_NAME(self):
teardown_imports() | [
531,
481
] |
def METHOD_NAME():
"""
API Endpoint to update a "trainspace" item using a trainspace ID
Params:
- trainspace_id: Unique trainspace id
- requestData: A dictionary containing the other table attributes to be updated, not including trainspace_id
Results:
- 200: Trainspace updated successfully
- 400: Error in updating trainspace
"""
try:
request_data = json.loads(request.data)
trainspace_id = request_data["trainspace_id"]
requestData = request_data["requestData"]
success = updateTrainspaceData(trainspace_id, requestData)
if success:
return send_success({"message": "Trainspace updated", "success": success})
else:
return send_error("Trainspace not updated")
except Exception:
print(traceback.format_exc())
return send_traceback_error() | [
86,
16976,
365,
623,
1267
] |
def METHOD_NAME():
f = Namespace(Dummy=Namespace())
_add_framework_name(f)
assert "Dummy" in f
assert f.Dummy.name == "Dummy" | [
9,
238,
1486,
156,
870,
130,
194
] |
def METHOD_NAME(self, value):
self._format = value | [
0,
275
] |
def METHOD_NAME(self) -> dict[Any, Any]:
errors: dict[Any, Any] = {}
for exception in self._exceptions:
errors.update(exception.METHOD_NAME())
return errors | [
1568,
1107
] |
def METHOD_NAME(given, expect, test_utf8=True):
givens = [given]
if not PY3 and test_utf8:
givens.append(given.encode('utf8'))
for given in givens:
(res, count) = scanstring(given, 1, None, True)
self.assertEqual(len(given), count)
self.assertEqual(res, expect) | [
638,
793
] |
def METHOD_NAME(oms_version, curr_oms_version, cpu_bits):
print("--------------------------------------------------------------------------------")
print("You are currently running OMS Verion {0}. There is a newer version\n"\
"available which may fix your issue (version {1}).".format(oms_version, curr_oms_version))
answer = get_input("Do you want to update? (y/n)", (lambda x : x.lower() in ['y','yes','n','no']),\
"Please type either 'y'/'yes' or 'n'/'no' to proceed.")
# user does want to update
if (answer.lower() in ['y', 'yes']):
print("--------------------------------------------------------------------------------")
print("Please head to the Github link below and click on 'Download Latest OMS Agent\n"\
"for Linux ({0})' in order to update to the newest version:".format(cpu_bits))
print("\n https://github.com/microsoft/OMS-Agent-for-Linux\n")
print("And follow the instructions given here:")
print("\n https://github.com/microsoft/OMS-Agent-for-Linux/blob/master/docs/"\
"OMS-Agent-for-Linux.md#upgrade-from-a-previous-release\n")
return USER_EXIT
# user doesn't want to update
elif (answer.lower() in ['n', 'no']):
print("Continuing on with troubleshooter...")
print("--------------------------------------------------------------------------------")
return NO_ERROR | [
4949,
86,
2228,
281
] |
def METHOD_NAME(self) -> Optional[float]:
"""Get the well's diameter, if circular."""
return self._definition.METHOD_NAME | [
9814
] |
def METHOD_NAME():
picture_dir = get_picture_dir()
assert isinstance(picture_dir, Path)
assert picture_dir.is_dir() | [
9,
12491,
1190
] |
def METHOD_NAME(xcorr_type, filename, jcurrent_selection, event_type, station_id, juser_id):
if filename is None or station_id is None or xcorr_type is None:
return {}
user_id = json.loads(juser_id)
nurio = provider.get_file_handler(user_id, filename)
fig = plotly.subplots.make_subplots(rows=1, cols=1)
keys = nurio.get_header()[station_id].keys()
if event_type == 'nu':
if stnp.nu_xcorrelations not in keys:
return {}
xcorrs = nurio.get_header()[station_id][stnp.nu_xcorrelations]
else:
if stnp.cr_xcorrelations not in keys:
return {}
xcorrs = nurio.get_header()[station_id][stnp.cr_xcorrelations]
if stnp.channels_max_amplitude in keys:
current_selection = json.loads(jcurrent_selection)
fig.append_trace(plotly.graph_objs.Scatter(
x=nurio.get_header()[station_id][stnp.channels_max_amplitude] / units.mV,
y=[xcorrs[i][xcorr_type] for i in range(len(xcorrs))],
text=[str(x) for x in nurio.get_event_ids()],
customdata=[x for x in range(nurio.get_n_events())],
mode='markers',
opacity=1,
selectedpoints=current_selection
), 1, 1)
else:
return {}
fig['layout'].update(default_layout)
fig['layout']['xaxis'].update({'type': 'log', 'title': 'maximum amplitude [mV]'})
fig['layout']['yaxis'].update({'title': xcorr_type, 'range': [0, 1]})
fig['layout']['hovermode'] = 'closest'
return fig | [
1288,
2429,
4746
] |
def METHOD_NAME(sdfg: dace.SDFG) -> int:
num = 0
for n, _ in sdfg.all_nodes_recursive():
if (isinstance(n, nodes.AccessNode) and isinstance(sdfg.arrays[n.data], data.View)):
num += 1
return num | [
29,
4632
] |
METHOD_NAME(self): | [
14271,
1046,
132,
12805
] |
def METHOD_NAME(self):
"""The workspace slug"""
return self.get_data("slug") | [
1231
] |
def METHOD_NAME(self, interface_name, speed):
"""Set interface speed according to the auto negotiation mode. When auto negotiation mode
is enabled, set the advertised speeds; otherwise, set the force speed.
Args:
interface_name (str): Interface name
speed (str): SONiC style interface speed. E.g, 1G=1000, 10G=10000, 100G=100000. If the speed
is None and auto negotiation mode is enabled, it sets the advertised speeds to all supported
speeds.
Returns:
boolean: True if success. Usually, the method return False only if the operation
is not supported or failed.
"""
return self.host.METHOD_NAME(interface_name, speed) | [
0,
1942
] |
def METHOD_NAME(neuron, feature, ax, bins=15, normed=True, cumulative=False):
"""
Plot a histogram of the selected feature for the population of morphologies.
Plots x-axis versus y-axis on a scatter|histogram|binned values plot.
Parameters :
morphologies : neuron list
feature : str
The feature of interest.
bins : int
Number of bins for the histogram.
cumulative : bool
Sets cumulative histogram on.
ax : axes object
the axes in which the plot is taking place
"""
feature_values = nm.get(feature, neuron)
# generate histogram
ax.hist(feature_values, bins=bins, cumulative=cumulative, normed=normed) | [
6069
] |
def METHOD_NAME(self):
# Make sure enabled is True when it's not included in the uploaded data
if 'enabled' not in self.data:
return True
else:
return self.cleaned_data['enabled'] | [
1356,
1111
] |
def METHOD_NAME(test_case, device):
output = np.array(
[
[
[[-0.0544118, -1.0509688], [-0.2696846, 0.4295622]],
[[-1.2834904, -0.4838651], [2.0891891, 0.6236691]],
],
[
[[-0.8555527, -0.3554582], [0.493019, -1.694826]],
[[1.8035311, 0.4155158], [0.6362644, -0.4424936]],
],
],
dtype=np.float32,
)
x = flow.tensor(input_arr, dtype=flow.float32, device=flow.device(device))
m = flow.nn.LayerNorm(x.size()[1:]).to(device=flow.device(device))
y = m(x)
test_case.assertTrue(np.allclose(y.numpy(), output, 1e-05, 1e-05)) | [
9,
8569
] |
def METHOD_NAME(self, attribute_name, request=None):
"""
Returns the URL of a page referenced by a foreign key
(or other attribute) matching the name ``attribute_name``.
If the field value is null, or links to something other
than a ``Page`` object, an empty string is returned.
The result is also cached per-object to facilitate
fast repeat access.
Raises an ``AttributeError`` if the object has no such
field or attribute.
"""
if attribute_name in self._page_url_cache:
return self._page_url_cache[attribute_name]
if not hasattr(self, attribute_name):
raise AttributeError(
"'{}' object has no attribute '{}'".format(
self.__class__.__name__, attribute_name
)
)
page = getattr(self, attribute_name)
if hasattr(page, "specific"):
url = page.specific.get_url(getattr(self, "_request", None))
else:
url = ""
self._page_url_cache[attribute_name] = url
return url | [
19,
1174,
274
] |
def METHOD_NAME(
name,
srcs = [],
data = [],
deps = [],
src_prefix = "",
visibility = None,
target_compatible_with = None,
**kwargs):
"""Bazel rule to create a C++ capnproto library from capnp source files
Args:
name: library name
srcs: list of files to compile
data: additional files to provide to the compiler - data files and includes that need not to
be compiled
deps: other cc_capnp_library rules to depend on
src_prefix: src_prefix for capnp compiler to the source root
visibility: rule visibility
target_compatible_with: target compatibility
**kwargs: rest of the arguments to cc_library rule
"""
hdrs = [s + ".h" for s in srcs]
srcs_cpp = [s + ".c++" for s in srcs]
_capnp_gen(
name = name + "_gen",
srcs = srcs,
deps = [s + "_gen" for s in deps],
data = data,
outs = hdrs + srcs_cpp,
src_prefix = src_prefix,
visibility = visibility,
target_compatible_with = target_compatible_with,
)
native.cc_library(
name = name,
srcs = srcs_cpp,
hdrs = hdrs,
deps = deps + ["@capnp-cpp//src/capnp:capnp_runtime"],
visibility = visibility,
target_compatible_with = target_compatible_with,
**kwargs
) | [
1298,
9205,
3106
] |
def METHOD_NAME(train_dir, test_dir, output_train_dir, output_test_dir,
output_vocab_text, output_vocab_tag):
print("start constuct word dict")
vocab_text = build_dict(2, 0, train_dir, test_dir)
with io.open(output_vocab_text, "w", encoding='utf-8') as wf:
wf.write(u"{}\n".format(str(len(vocab_text))))
vocab_tag = build_dict(0, 0, train_dir, test_dir)
with io.open(output_vocab_tag, "w", encoding='utf-8') as wf:
wf.write(u"{}\n".format(str(len(vocab_tag))))
print("construct word dict done\n")
write_paddle(vocab_text, vocab_tag, train_dir, test_dir, output_train_dir,
output_test_dir) | [
8827
] |
def METHOD_NAME(self, name):
"""Default backend logout actions
Send a log message, clear some cookies, increment the logout counter.
"""
self.log.info("User logged out: %s", name)
self.clear_login_cookie()
self.statsd.incr('logout') | [
3127,
2431,
950
] |
def METHOD_NAME(*args: Any) -> None:
with open(os.path.join(LOG_DIR, "log.txt"), "a+") as log_file:
print(f"[ERROR] {' '.join(args)}", file=log_file) | [
38,
168
] |
def METHOD_NAME(root_vo, identity_key, id_type, email, issuer, default=False, password=None, vo='def', *, session: "Session"):
"""
Adds a membership association between identity and the root account for given VO.
:param root_vo: The VO whose root needs recovery
:param identity_key: The identity key name. For example x509 DN, or a username.
:param id_type: The type of the authentication (x509, gss, userpass, ssh, saml).
:param email: The Email address associated with the identity.
:param issuer: The issuer account.
:param default: If True, the account should be used by default with the provided identity.
:param password: Password if id_type is userpass.
:param vo: the VO to act on.
:param session: The database session in use.
"""
kwargs = {}
root_vo = vo_core.map_vo(root_vo)
if not has_permission(issuer=issuer, vo=vo, action='recover_vo_root_identity', kwargs=kwargs, session=session):
raise exception.AccessDenied('Account %s can not recover root identity' % (issuer))
account = InternalAccount('root', vo=root_vo)
return identity.add_account_identity(identity=identity_key, type_=IdentityType[id_type.upper()], default=default,
email=email, account=account, password=password, session=session) | [
2986,
3535,
1563,
2989
] |
def METHOD_NAME(name: Optional[str] = None,
resource_group_name: Optional[str] = None,
version: Optional[str] = None,
workspace_name: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetEnvironmentSpecificationVersionResult:
"""
Azure Resource Manager resource envelope.
:param str name: Container name.
:param str resource_group_name: The name of the resource group. The name is case insensitive.
:param str version: Version identifier.
:param str workspace_name: Name of Azure Machine Learning workspace.
"""
__args__ = dict()
__args__['name'] = name
__args__['resourceGroupName'] = resource_group_name
__args__['version'] = version
__args__['workspaceName'] = workspace_name
opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts)
__ret__ = pulumi.runtime.invoke('azure-native:machinelearningservices/v20210301preview:getEnvironmentSpecificationVersion', __args__, opts=opts, typ=GetEnvironmentSpecificationVersionResult).value
return AwaitableGetEnvironmentSpecificationVersionResult(
id=pulumi.get(__ret__, 'id'),
name=pulumi.get(__ret__, 'name'),
properties=pulumi.get(__ret__, 'properties'),
system_data=pulumi.get(__ret__, 'system_data'),
type=pulumi.get(__ret__, 'type')) | [
19,
1027,
3255,
281
] |
def METHOD_NAME(viewer):
"""Context manager checks that progress bar is added on construction"""
assert not qt_viewer_has_pbar(viewer)
yield
assert qt_viewer_has_pbar(viewer) | [
638,
11126,
4398,
24
] |
def METHOD_NAME(self, contents, overwrite=False, lease=None):
if self._lease is not None:
if not self._lease.is_valid(lease):
raise Exception("Invalid lease!")
if self.contents is not None or overwrite is True:
if isinstance(contents, str):
self.contents = contents.encode("utf8")
elif isinstance(contents, io.BytesIO):
self.contents = contents.read()
elif isinstance(contents, io.StringIO):
self.contents = contents.read().encode("utf8")
elif isinstance(contents, bytes):
self.contents = contents
else:
self.contents = contents | [
172,
365
] |
def METHOD_NAME(self):
pass | [
72,
710
] |
def METHOD_NAME(train_batch_size, val_batch_size):
data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])
train_loader = DataLoader(
MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True
)
val_loader = DataLoader(
MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False
)
return train_loader, val_loader | [
19,
365,
196
] |
def METHOD_NAME(delta_rho, a, z, stationSpacing):
respEW = 0
gravity_change = []
xmax = 10.0
npts = int(1 / stationSpacing)
x = np.linspace(-xmax, xmax, num=npts)
y = x.copy()
X, Y = np.meshgrid(x, y)
for each in range(npts):
gravity_change.append(calculategravity(delta_rho, a, z, x[each]))
return respEW, gravity_change, X, Y | [
-1
] |
def METHOD_NAME(sender, json=None, record=None, index=None,
doc_type=None, arguments=None, **dummy_kwargs):
"""Signal sent before a record is indexed.
:param json: The dumped record dictionary which can be modified.
:param record: The record being indexed.
:param index: The index in which the record will be indexed.
:param doc_type: The doc_type for the record.
"""
if index.split('-')[0] == HoldingsSearch.Meta.index:
library_pid = None
organisation_pid = None
holding = next(HoldingsSearch()
.filter('term', pid=record.pid)
.source('holdings_type').scan(), None)
# get the number of items for ui paging
item_search = ItemsSearch()[0:0]\
.filter('term', holding__pid=record.pid)
if holding is not None and holding["holdings_type"] == 'serial':
item_search = ItemsSearch()[0:0]\
.filter('term', holding__pid=record.pid)\
.filter('term', issue__status="received")
# to compute the number of masked item
item_search.aggs.bucket('public_items', 'terms', field='_masked')
results = item_search.source(['organisation', 'library']).execute()
# number of items
json['items_count'] = results.hits.total.value
# number of masked items
number_of_masked_items = 0
for bucket in results.aggregations.public_items.buckets:
if bucket.key_as_string == 'true':
number_of_masked_items = bucket.doc_count
break
json['public_items_count'] = \
json['items_count'] - number_of_masked_items | [
644,
14542,
365
] |
def METHOD_NAME(self, key, default_value=None):
"""
A convenience method to extract a configuration value.
:type key: str
:param key: a field to look for in the ``self.config`` field
:type default_value: anything
:param default_value: the default value to return if a value for the
``key`` is not available
:return: a configuration value for the supplied ``key``
"""
log.debug("Getting config key %s, with supplied default value: %s",
key, default_value)
value = default_value
if isinstance(self.config, dict) and self.config.get(key):
value = self.config.get(key, default_value)
elif hasattr(self.config, key) and getattr(self.config, key):
value = getattr(self.config, key)
elif (self._config_parser.has_option(self.PROVIDER_ID, key) and
self._config_parser.get(self.PROVIDER_ID, key)):
value = self._config_parser.get(self.PROVIDER_ID, key)
if isinstance(value, six.string_types) and not isinstance(
value, six.text_type):
return six.u(value)
return value | [
19,
200,
99
] |
def METHOD_NAME(marker):
"""
Checks if marker has proper suffix.
"""
for s in OperationFactory.__suffix:
if marker.endswith(s):
return
raise NotSupportedOperationException(
"Incorrect marker format {}, suffix is missing.".format(marker)
) | [
250,
1464,
275
] |
def METHOD_NAME(next_link=None):
if not next_link:
request = build_list_request(
api_version=api_version,
template_url=self.list.metadata["url"],
headers=_headers,
params=_params,
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
else:
# make call to next link with the client's api-version
_parsed_next_link = urllib.parse.urlparse(next_link)
_next_request_params = case_insensitive_dict(
{
key: [urllib.parse.quote(v) for v in value]
for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
}
)
_next_request_params["api-version"] = self._config.api_version
request = HttpRequest(
"GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
request.method = "GET"
return request | [
123,
377
] |
def METHOD_NAME(self):
top = Topology.load(get_fn("benzene.mol2"))
for atom in top.sites:
assert atom.element.name in {"hydrogen", "carbon"} | [
9,
17160,
9881,
1532
] |
def METHOD_NAME(cls):
"""Return backend enabled status by checking Setting Model"""
try:
get_setting(scope='module', scope_category='users', name='facebook_app_id')
get_setting(scope='module', scope_category='users', name='facebook_api_secret')
except Setting.DoesNotExist:
return False
return True | [
1111
] |
def METHOD_NAME(self, instance):
code_types = ",".join(
[
code
for provider in instance.equipment_provider_manager._get_providers().values()
for code in provider.code_types
]
)
if not code_types:
abort(404, message='No code type exists into equipment provider')
return "stop_point.has_code_type(" + code_types + ")" | [
129,
527,
14420
] |
def METHOD_NAME(self) -> None: ... | [
19,
2938,
144
] |
def METHOD_NAME(self, Source):
source = Source()
_, _, extent = source.single_tile(0, 50)
assert extent == (0, 1, 50, 51) | [
9,
3523
] |
def METHOD_NAME(self):
group_url = "/buckets/beers/groups/users"
group = {**MINIMALIST_GROUP}
group["data"]["members"].append(self.principal)
self.app.put_json("/buckets/beers", MINIMALIST_BUCKET, headers=self.headers)
self.app.put_json(group_url, group, headers=self.headers)
response = self.app.get("/", headers=self.headers).json["user"]["principals"]
principals = ("system.Everyone", "system.Authenticated", group_url, self.principal)
self.assertEqual(sorted(response), sorted(principals)) | [
9,
610,
21,
10775,
217,
218
] |
def METHOD_NAME(self):
"""Signal to pause the main loop and wait for verification, the refresh settings."""
self.pause_loop = True
while not self.verify_pause_loop:
time.sleep(0.1)
self.logger.info("Refreshing conditional settings")
self.initialize_variables()
self.pause_loop = False
self.verify_pause_loop = False
return "Conditional settings successfully refreshed" | [
1920,
817
] |
def METHOD_NAME(f, option, value):
f.write(f'{option}="{bool_to_string(value)}"\n') | [
863,
1335,
797
] |
def METHOD_NAME(args):
master_handler = None
master_addr = os.getenv(NodeEnv.DLROVER_MASTER_ADDR, "")
use_dlrover_launch = False
if args.standalone:
master_handler, master_addr = _launch_dlrover_local_master()
os.environ[NodeEnv.DLROVER_MASTER_ADDR] = master_addr
if _check_dlrover_master_available(master_addr):
GlobalMasterClient.MASTER_CLIENT = build_master_client(master_addr)
use_dlrover_launch = True
else:
use_dlrover_launch = False
if args.standalone and not use_dlrover_launch:
args.rdzv_backend = "c10d"
args.rdzv_endpoint = "localhost:29400"
args.rdzv_id = str(uuid.uuid4())
logger.info(
f"\n**************************************\n"
f"Rendezvous info:\n"
f"--rdzv-backend={args.rdzv_backend} "
f"--rdzv-endpoint={args.rdzv_endpoint} "
f"--rdzv-id={args.rdzv_id}\n"
f"**************************************\n"
)
config, cmd, cmd_args = config_from_args(args)
setattr(config, "network_check", False)
setattr(config, "node_unit", 1)
if hasattr(args, "network_check"):
config.network_check = args.network_check
if hasattr(args, "node_unit"):
config.rdzv_configs["node_unit"] = args.node_unit
elastic_launch(
config=config, entrypoint=cmd, use_dlrover_launch=use_dlrover_launch
)(*cmd_args)
if master_handler:
master_handler.close() | [
22
] |
def METHOD_NAME(self, offer: "Offer") -> bool:
"""Prevent MAEngines from trading their counterpart's offers"""
return all(offer.id not in engine.forwarded_offers.keys() for engine in self.engines) | [
8655,
6179
] |
def METHOD_NAME(self):
parameters = {
**self.serialize_url_param(
"resourceGroupName", self.ctx.args.resource_group,
required=True,
),
**self.serialize_url_param(
"restorePointCollectionName", self.ctx.args.restore_point_collection_name,
required=True,
),
**self.serialize_url_param(
"restorePointName", self.ctx.args.restore_point_name,
required=True,
),
**self.serialize_url_param(
"subscriptionId", self.ctx.subscription_id,
required=True,
),
}
return parameters | [
274,
386
] |
def METHOD_NAME():
np.random.seed(42)
letters = string.ascii_letters
categories = [''.join(random.choice(letters) for _ in range(5)) for _ in range(300)]
train_data = np.concatenate([np.random.randn(1000, 1),
np.random.choice(a=categories, size=(1000, 1))],
axis=1)
test_data = np.concatenate([np.random.randn(1000, 1),
np.random.choice(a=categories, size=(1000, 1))],
axis=1)
df_train = pd.DataFrame(train_data,
columns=['numeric_without_drift', 'categorical_with_many_categories'])
df_test = pd.DataFrame(test_data, columns=df_train.columns)
df_test['categorical_with_many_categories'] = np.random.choice(a=categories[20:280], size=(1000, 1))
df_train = df_train.astype({'numeric_without_drift': 'float'})
df_test = df_test.astype({'numeric_without_drift': 'float'})
label = np.random.randint(0, 2, size=(df_train.shape[0],))
df_train['target'] = label
train_ds = Dataset(df_train, cat_features=['categorical_with_many_categories'], label='target')
label = np.random.randint(0, 2, size=(df_test.shape[0],))
df_test['target'] = label
test_ds = Dataset(df_test, cat_features=['categorical_with_many_categories'], label='target')
check = MultivariateDrift()
# Act
result = check.run(train_ds, test_ds)
# Assert
# we only care that it runs
assert_that(result.value['domain_classifier_auc']) | [
9,
3217,
-1,
2065,
623,
105
] |
def METHOD_NAME(self):
assert longitude_add(0.0, 179.0, 1000000) == constants.MAX_LON | [
9,
610,
232,
4877
] |
def METHOD_NAME(self):
from ckanext.hdx_users.helpers.permissions import Permissions
showcase_dict = generate_test_showcase(SYSADMIN, 'dataviz_showcase', True)
showcase_dict['notes'] = 'Modified'
showcase_dict['image_url'] = None
user_with_permission = factories.User(name='user_with_permission', email='[email protected]')
Permissions(user_with_permission['id']).set_permissions(
{'user': SYSADMIN},
[Permissions.PERMISSION_MANAGE_CAROUSEL]
)
context = {'model': model, 'session': model.Session, 'user': 'user_with_permission'}
showcase_dict = _get_action('ckanext_showcase_update')(context, showcase_dict)
assert showcase_dict['in_dataviz_gallery'] is True, \
'A user with carousel permission should be allowed to update a dataviz showcase'
del showcase_dict['dataviz_label']
try:
_get_action('ckanext_showcase_update')(context, showcase_dict)
assert False
except ValidationError as e:
assert True, 'Validation should fail for dataviz showcases without "dataviz_label"' | [
9,
86,
-1,
41,
13129,
204
] |
def METHOD_NAME(self):
self._package_path()
return self.development_path | [
19,
10305,
157
] |
def METHOD_NAME(
scope,
x,
num_groups=32,
group_size=None,
epsilon=1e-6,
dtype=jnp.float32,
bias=True,
scale=True,
bias_init=initializers.zeros_init(),
scale_init=initializers.ones_init(), | [
846,
387
] |
def METHOD_NAME(
except_cls, msg, check_context=True
):
return _expect_raises(except_cls, msg=msg, check_context=check_context) | [
1297,
45,
277,
41,
3736,
198
] |
def METHOD_NAME(entry):
compiler_name = translated_compiler_name(entry["name"])
paths = entry["executables"]
# to instantiate a compiler class we may need a concrete version:
version = "={}".format(entry["version"])
arch = entry["arch"]
operating_system = arch["os"]
target = arch["target"]
compiler_cls = spack.compilers.class_for_compiler_name(compiler_name)
spec = spack.spec.CompilerSpec(compiler_cls.name, version)
paths = [paths.get(x, None) for x in ("cc", "cxx", "f77", "fc")]
return compiler_cls(spec, operating_system, target, paths) | [
1436,
280,
475
] |
def METHOD_NAME(self):
self.update_editor() | [
414,
274,
1180
] |
def METHOD_NAME(self):
"""Create a community with no platform, just a constitution community"""
constitution_community = ConstitutionCommunity.objects.create(community_name="my community")
community = constitution_community.community
self.assertEqual(community.community_name, "my community")
self.assertEqual(community.constitution_community, constitution_community)
self.assertEqual(community.get_platform_communities().count(), 0) | [
9,
654,
2773,
6649
] |
def METHOD_NAME(self, apt_mock):
modules = {'apt': apt_mock}
self.module_patcher = patch.dict('sys.modules', modules)
self.module_patcher.start()
self.addCleanup(self.module_patcher.stop) | [
248,
10991
] |
def METHOD_NAME(self):
return super().METHOD_NAME() | [
73
] |
async def METHOD_NAME(project, node):
await delete("/projects/{}/nodes/{}".format(project["project_id"], node["node_id"])) | [
34,
1716
] |
def METHOD_NAME(self, p: Any, cycle: bool):
"""iPython (Jupyter) pretty print."""
if cycle:
# There should never be a cycle. This is just in case.
p.text('StateVectorTrialResult(...)')
else:
p.text(str(self)) | [
92,
885
] |
def METHOD_NAME(self, command_args):
super().METHOD_NAME(command_args)
self._execute_operations()
return self._output() | [
1519
] |
def METHOD_NAME(
staff_api_client,
gift_card,
permission_manage_gift_card,
permission_manage_users,
permission_manage_apps,
):
# given
gift_card.is_active = False
gift_card.save(update_fields=["is_active"])
assert not gift_card.is_active
variables = {"id": graphene.Node.to_global_id("GiftCard", gift_card.id)}
# when
response = staff_api_client.post_graphql(
ACTIVATE_GIFT_CARD_MUTATION,
variables,
permissions=[
permission_manage_gift_card,
permission_manage_users,
permission_manage_apps,
],
)
# then
content = get_graphql_content(response)
data = content["data"]["giftCardActivate"]["giftCard"]
assert data["isActive"]
events = data["events"]
assert len(events) == 1
assert events[0]["type"] == GiftCardEvents.ACTIVATED.upper()
assert events[0]["user"]["email"] == staff_api_client.user.email
assert events[0]["app"] is None | [
9,
1284,
4755,
5427,
604,
1045
] |
def METHOD_NAME(self, x, h_prev, x_mask, h_mask):
s0 = self._compute_init_state(x, h_prev, x_mask, h_mask)
states = [s0]
for i, (name, pred) in enumerate(self.genotype.recurrent):
s_prev = states[pred]
if self.training:
ch = (s_prev * h_mask).mm(self._Ws[i])
else:
ch = s_prev.mm(self._Ws[i])
c, h = torch.split(ch, self.nhid, dim=-1)
c = c.sigmoid()
fn = self._get_activation(name)
h = fn(h)
s = s_prev + c * (h - s_prev)
states += [s]
output = torch.mean(torch.stack([states[i] for i in self.genotype.concat], -1), -1)
return output | [
118
] |
def METHOD_NAME(identity, force_restart):
"""Set given identity (one of: 0, 1, 2)
Might require stopping other smart card services to connect directly to the device over CCID interface.
These will be restarted after operation, if it is required.
This could be replaced with:
gpg-connect-agent "SCD APDU 00 85 00 0<IDENTITY>"
"""
if not identity.isdigit():
local_critical("identity number must be a digit")
identity = int(identity)
if identity < 0 or identity > 2:
local_critical("identity must be 0, 1 or 2")
local_print(f"Setting identity to {identity}")
for x in range(3):
try:
gnuk = get_gnuk_device()
with gnuk.release_on_exit() as gnuk:
gnuk.cmd_select_openpgp()
try:
gnuk.cmd_set_identity(identity)
break
except USBError:
local_print(f"Reset done - now active identity: {identity}")
break
except OnlyBusyICCError:
local_print(
"Device is occupied by some other service and cannot be connected to. Identity not changed."
)
break
except ValueError as e:
if "No ICC present" in str(e):
local_print(
"Device is occupied by some other service and cannot be connected to. Identity not changed."
)
else:
local_critical(e)
except Exception as e:
local_critical(e) | [
0,
2989
] |
def METHOD_NAME(
question_freeze_after_option_after_deadline,
):
assert question_freeze_after_option_after_deadline.read_only is True | [
9,
1745,
1042,
3125,
1887,
1335,
1887
] |
def METHOD_NAME(session):
stream = FileStream(session, "/path/to/file")
assert stream.__json__() == {
"type": "file",
"path": "/path/to/file",
} | [
9,
171,
919,
157
] |
def METHOD_NAME(self):
def foo(a):
return {"a": a * 2}
d = {"a": 2}
dres = adaptor(foo, {"a": "a"})(d)
self.assertEqual(dres["a"], 4)
d = {"b": 2}
dres = adaptor(foo, {"a": "b"}, {"b": "a"})(d)
self.assertEqual(dres["b"], 4) | [
9,
553,
1737
] |
def METHOD_NAME(inpath, outpath, **args):
try:
template = Template(filename=inpath)
rendered = template.render(**args)
rendered = re.sub(r"\r\n", r"\n", rendered)
with open(outpath, 'w') as fout:
fout.write(rendered)
makoFileList.append(outpath)
return len(rendered.splitlines())
except:
traceback = RichTraceback()
#for (filename, lineno, function, line) in traceback.traceback:
# print("%s(%s) : error in %s" % (filename, lineno, function))
# print(line, "\n")
line = "%s: %s" % (str(traceback.error.__class__.__name__), traceback.error)
makoErrorList.append(line)
print(line)
raise | [
12900,
77
] |
def METHOD_NAME(self) -> None:
df = self.df_with_index
self.data.add_df_index(df, column_name="IndexColumnName")
self.data.add_df(df)
self.assertEqual(
self.data_with_index,
self.data.build(),
) | [
9,
724
] |
def METHOD_NAME(conf_file_name, bdf):
filestring = "filename=trtype=PCIe traddr=0000." + bdf.replace(":", ".") + " ns=1"
with open(conf_file_name, "a") as conf_file:
conf_file.write(filestring + "\n") | [
238,
1147,
24,
2546
] |
def METHOD_NAME(resource_name: str,
id: pulumi.Input[str],
opts: Optional[pulumi.ResourceOptions] = None) -> 'Vendor':
"""
Get an existing Vendor resource's state with the given name, id, and optional extra
properties used to qualify the lookup.
:param str resource_name: The unique name of the resulting resource.
:param pulumi.Input[str] id: The unique provider ID of the resource to lookup.
:param pulumi.ResourceOptions opts: Options for the resource.
"""
opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id))
__props__ = VendorArgs.__new__(VendorArgs)
__props__.__dict__["name"] = None
__props__.__dict__["provisioning_state"] = None
__props__.__dict__["skus"] = None
__props__.__dict__["system_data"] = None
__props__.__dict__["type"] = None
return Vendor(resource_name, opts=opts, __props__=__props__) | [
19
] |
f METHOD_NAME(self): | [
1668,
3551,
126,
41,
246,
7728,
4244
] |
def METHOD_NAME(self):
"""Test that executing a state measurement with shots raises a warning."""
class MyMeasurement(StateMeasurement):
def process_state(self, state, wire_order):
return qml.math.sum(state)
dev = qml.device("default.qubit.legacy", wires=2, shots=1000)
@qml.qnode(dev)
def circuit():
return MyMeasurement()
with pytest.warns(
UserWarning,
match="Requested measurement MyMeasurement with finite shots",
):
circuit() | [
9,
734,
479,
41,
5968
] |
def METHOD_NAME(client):
with pytest.raises(OverflowError):
deserialize_iso(client.datetime.get_local_negative_offset_uppercase_max_date_time()) | [
9,
19,
125,
2927,
1540,
8391,
232
] |
def METHOD_NAME(self):
return "tap_tester_mongodb_oplog_aged_out" | [
156
] |
def METHOD_NAME(self):
"""
Cleanup data related to quest.
"""
del self.quester.db.test_quest_counter | [
950
] |
f METHOD_NAME(self): | [
9,
661
] |
def METHOD_NAME(self, ranges=None):
# Render table
axes = self.handles['axis']
element = self.hmap.last
table = self._render_table(element, axes)
self.handles['artist'] = table
# Add to axes
axes.set_axis_off()
axes.add_table(table)
return self._finalize_axis(self.keys[-1], element=element) | [
15,
1288
] |
def METHOD_NAME(fake_config_dir):
return fake_config_dir / "default.cfg" | [
235,
171
] |
def METHOD_NAME(evm: Evm) -> None:
"""
Signed integer division of the top two elements of the stack. Pushes the
result back on the stack.
Parameters
----------
evm :
The current EVM frame.
"""
# STACK
dividend = pop(evm.stack).to_signed()
divisor = pop(evm.stack).to_signed()
# GAS
charge_gas(evm, GAS_LOW)
# OPERATION
if divisor == 0:
quotient = 0
elif dividend == -U255_CEIL_VALUE and divisor == -1:
quotient = -U255_CEIL_VALUE
else:
sign = get_sign(dividend * divisor)
quotient = sign * (abs(dividend) // abs(divisor))
push(evm.stack, U256.from_signed(quotient))
# PROGRAM COUNTER
evm.pc += 1 | [
13440
] |
def METHOD_NAME(self):
"""Returns global batch size."""
return self.batch_size * self._num_devices | [
285,
2277,
1318
] |
def METHOD_NAME(background_job, execute_fn):
""" Common way of `BackgroundTask.submit`
"""
background_job.save()
execute_fn.schedule(args=(background_job.id,), delay=10) | [
579,
604,
2272,
202
] |
def METHOD_NAME(m):
return "".join(choice([str.upper, str.lower])(c) for c in m[1]), None | [
214,
-1
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.