text
stringlengths
15
7.82k
ids
sequencelengths
1
7
def METHOD_NAME(cls, *args, **kwargs): if cls._args_schema is not None: return cls._args_schema cls._args_schema = super().METHOD_NAME(*args, **kwargs) # define Arg Group "" _args_schema = cls._args_schema _args_schema.resource_group = AAZResourceGroupNameArg( required=True, ) _args_schema.name = AAZStrArg( options=["-n", "--name"], help="Name of the VNet gateway.", required=True, id_part="name", ) return cls._args_schema
[ 56, 134, 135 ]
def METHOD_NAME(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, location=location, api_version=api_version, template_url=self.list.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( subscription_id=self._config.subscription_id, location=location, api_version=api_version, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request
[ 123, 377 ]
def METHOD_NAME(self): request_started.send(sender=self) fake_task.delay() assert fake_task_func.call_count == 0 request_finished.send_robust(sender=self) assert fake_task_func.call_count == 1
[ 9, 3738, 3005, 377, 17, 3351 ]
def METHOD_NAME(brightness: int, color_temp: int) -> State: return State( "light.test", STATE_ON, { ATTR_COLOR_MODE: ColorMode.COLOR_TEMP, ATTR_BRIGHTNESS: brightness, ATTR_COLOR_TEMP: color_temp, }, )
[ 129, 4322, 36, 963, 551 ]
def METHOD_NAME(self): async def serve_forever(ep): ucx = UCX(ep) self.comm = ucx self.ucp_server = ucp.create_listener(serve_forever)
[ 447 ]
def METHOD_NAME(self): G = nx.cycle_graph(4) pred = nx.predecessor(G, 0) assert pred[0] == [] assert pred[1] == [0] assert pred[2] in [[1, 3], [3, 1]] assert pred[3] == [0]
[ 9, 15464, 3351 ]
def METHOD_NAME(self): with ScratchDir("bad_groot") as d: assert d == test_dir
[ 9, 1068, 1563 ]
def METHOD_NAME(data, sampling_rate=1000, **kwargs): """**EDA Analysis on Interval-Related Data** Performs EDA analysis on longer periods of data (typically > 10 seconds), such as resting-state data. Parameters ---------- data : Union[dict, pd.DataFrame] A DataFrame containing the different processed signal(s) as different columns, typically generated by :func:`eda_process` or :func:`bio_process`. Can also take a dict containing sets of separately processed DataFrames. sampling_rate : int The sampling frequency of ``ecg_signal`` (in Hz, i.e., samples/second). Defaults to 1000. **kwargs Other arguments to be passed to the functions. Returns ------- DataFrame A dataframe containing the analyzed EDA features. The analyzed features consist of the following: * ``"SCR_Peaks_N"``: the number of occurrences of Skin Conductance Response (SCR). * ``"SCR_Peaks_Amplitude_Mean"``: the mean amplitude of the SCR peak occurrences. * ``"EDA_Tonic_SD"``: the mean amplitude of the SCR peak occurrences. * ``"EDA_Sympathetic"``: see :func:`eda_sympathetic` (only computed if signal duration > 64 sec). * ``"EDA_Autocorrelation"``: see :func:`eda_autocor` (only computed if signal duration > 30 sec). See Also -------- .bio_process, eda_eventrelated Examples ---------- .. ipython:: python import neurokit2 as nk # Download data data = nk.data("bio_resting_8min_100hz") # Process the data df, info = nk.eda_process(data["EDA"], sampling_rate=100) # Single dataframe is passed nk.eda_intervalrelated(df, sampling_rate=100) epochs = nk.epochs_create(df, events=[0, 25300], sampling_rate=100, epochs_end=20) nk.eda_intervalrelated(epochs, sampling_rate=100) """ # Format input if isinstance(data, pd.DataFrame): results = _eda_intervalrelated(data, sampling_rate=sampling_rate, **kwargs) results = pd.DataFrame.from_dict(results, orient="index").T elif isinstance(data, dict): results = {} for index in data: results[index] = {} # Initialize empty container # Add label info results[index]["Label"] = data[index]["Label"].iloc[0] results[index] = _eda_intervalrelated( data[index], results[index], sampling_rate=sampling_rate, **kwargs ) results = pd.DataFrame.from_dict(results, orient="index") return results
[ 3797, 7707 ]
def METHOD_NAME(): return 1.234567654231
[ 791 ]
def METHOD_NAME(self): cmake = CMake(self) cmake.configure() cmake.METHOD_NAME(target="libscip")
[ 56 ]
def METHOD_NAME(self): """Check defining of order clause with single expr ASC. """ expected = convert_output(""" x | s | sum ----+---+----- 1 | a | 2 1 | b | 2 2 | b | 4 """) execute_query( "SELECT x,s, sum(x) OVER (ORDER BY x ASC) AS sum FROM values('x Int8, s String', (1,'a'),(1,'b'),(2,'b'))", expected=expected )
[ 97, 2078, 4596 ]
def METHOD_NAME(test, params, env): """ Test for vhba hostdev passthrough. 1. create a vhba 2. prepare hostdev xml for lun device of the newly created vhba 3.1 If hot attach, attach-device the hostdev xml to vm 3.2 If cold attach, add the hostdev to vm and start it 4. login the vm and check the attached disk 5. detach-device the hostdev xml 6. login the vm to check the partitions """ def check_in_vm(vm, target, old_parts): """ Check mount/read/write disk in VM. :param vm: VM guest. :param target: Disk dev in VM. :return: True if check successfully. """ try: def get_attached_disk(): session = vm.wait_for_login() new_parts = utils_disk.get_parts_list(session) session.close() added_parts = list(set(new_parts).difference(set(old_parts))) return added_parts added_parts = utils_misc.wait_for(get_attached_disk, _TIMEOUT) logging.info("Added parts:%s", added_parts) if len(added_parts) != 1: logging.error("The number of new partitions is invalid in VM") return False added_part = None if target.startswith("vd"): if added_parts[0].startswith("vd"): added_part = added_parts[0] elif target.startswith("hd"): if added_parts[0].startswith("sd"): added_part = added_parts[0] if not added_part: logging.error("Can't see added partition in VM") return False cmd = ("fdisk -l /dev/{0} && mkfs.ext4 -F /dev/{0} && " "mkdir -p test && mount /dev/{0} test && echo" " teststring > test/testfile && umount test" .format(added_part)) try: cmd_status, cmd_output = session.cmd_status_output(cmd) except Exception as detail: test.error("Error occurred when run cmd: fdisk, %s" % detail) logging.info("Check disk operation in VM:\n%s", cmd_output) session.close() if cmd_status != 0: return False return True except (remote.LoginError, virt_vm.VMError, aexpect.ShellError) as detail: logging.error(str(detail)) return False try: status_error = "yes" == params.get("status_error", "no") vm_name = params.get("main_vm", "avocado-vt-vm1") device_target = params.get("hostdev_disk_target", "hdb") scsi_wwnn = params.get("scsi_wwnn", "ENTER.YOUR.WWNN") scsi_wwpn = params.get("scsi_wwpn", "ENTER.YOUR.WWPN") attach_method = params.get('attach_method', 'hot') vm = env.get_vm(vm_name) vmxml_backup = vm_xml.VMXML.new_from_inactive_dumpxml(vm_name) virsh_dargs = {'debug': True, 'ignore_status': True} new_vhbas = [] if scsi_wwnn.count("ENTER.YOUR.WWNN") or \ scsi_wwpn.count("ENTER.YOUR.WWPN"): test.cancel("You didn't provide proper wwpn/wwnn") # Load sg module if necessary process.METHOD_NAME("modprobe sg", shell=True, ignore_status=True, verbose=True) if vm.is_dead(): vm.start() session = vm.wait_for_login() old_parts = utils_disk.get_parts_list(session) # find first online hba online_hbas = [] online_hbas = utils_npiv.find_hbas("hba") if not online_hbas: test.cancel("NO ONLINE HBAs!") first_online_hba = online_hbas[0] # enable multipath service process.METHOD_NAME("mpathconf --enable", shell=True) # create vhba based on the first online hba old_vhbas = utils_npiv.find_hbas("vhba") logging.debug("Original online vHBAs: %s", old_vhbas) new_vhba = utils_npiv.nodedev_create_from_xml( {"nodedev_parent": first_online_hba, "scsi_wwnn": scsi_wwnn, "scsi_wwpn": scsi_wwpn}) if not utils_misc.wait_for(lambda: utils_npiv.is_vhbas_added(old_vhbas), timeout=_TIMEOUT): test.fail("vhba not successfully created") new_vhbas.append(new_vhba) # find first available lun of the newly created vhba lun_dicts = [] first_lun = {} if not utils_misc.wait_for(lambda: utils_npiv.find_scsi_luns(new_vhba), timeout=_TIMEOUT): test.fail("There is no available lun storage for " "wwpn: %s, please check your wwns or " "contact IT admins" % scsi_wwpn) lun_dicts = utils_npiv.find_scsi_luns(new_vhba) logging.debug("The luns discovered are: %s", lun_dicts) first_lun = lun_dicts[0] # prepare hostdev xml for the first lun kwargs = {'addr_bus': first_lun['bus'], 'addr_target': first_lun['target'], 'addr_unit': first_lun['unit']} new_hostdev_xml = utils_npiv.create_hostdev_xml( adapter_name="scsi_host"+first_lun['scsi'], **kwargs) logging.info("New hostdev xml as follow:") logging.info(new_hostdev_xml) new_hostdev_xml.xmltreefile.write() if attach_method == "hot": # attach-device the lun's hostdev xml to guest vm result = virsh.attach_device(vm_name, new_hostdev_xml.xml) libvirt.check_exit_status(result, status_error) elif attach_method == "cold": if vm.is_alive(): vm.destroy(gracefully=False) vmxml = vm_xml.VMXML.new_from_inactive_dumpxml(vm_name) vmxml.devices = vmxml.devices.append(new_hostdev_xml) vmxml.sync() vm.start() session = vm.wait_for_login() logging.debug("The new vm's xml is: \n%s", vmxml) # login vm and check the disk check_result = check_in_vm(vm, device_target, old_parts) if not check_result: test.fail("check disk in vm failed") result = virsh.detach_device(vm_name, new_hostdev_xml.xml) libvirt.check_exit_status(result, status_error) # login vm and check disk actually removed if not vm.session: session = vm.wait_for_login() parts_after_detach = utils_disk.get_parts_list(session) old_parts.sort() parts_after_detach.sort() if parts_after_detach == old_parts: logging.info("hostdev successfully detached.") else: test.fail("Device not successfully detached. " "Still existing in vm's /proc/partitions") finally: utils_npiv.vhbas_cleanup(new_vhbas) # recover vm if vm.is_alive(): vm.destroy(gracefully=False) logging.info("Restoring vm...") vmxml_backup.sync() process.system('service multipathd restart', verbose=True)
[ 22 ]
def METHOD_NAME(): years = datetime.datetime.now().year return '(%s)' % '|'.join((str(year) for year in range(2014, years+1)))
[ 19, 306 ]
METHOD_NAME(self):
[ 9, 5354, 194, 14204 ]
def METHOD_NAME(self, f): """ Updates the internal header buffer. Returns a frame that should replace the current one. May throw exceptions if this frame is invalid. """ # Check if we're in the middle of a headers block. If we are, this # frame *must* be a CONTINUATION frame with the same stream ID as the # leading HEADERS or PUSH_PROMISE frame. Anything else is a # ProtocolError. If the frame *is* valid, append it to the header # buffer. if self._headers_buffer: stream_id = self._headers_buffer[0].stream_id valid_frame = ( f is not None and isinstance(f, ContinuationFrame) and f.stream_id == stream_id ) if not valid_frame: raise ProtocolError("Invalid frame during header block.") # Append the frame to the buffer. self._headers_buffer.append(f) if len(self._headers_buffer) > CONTINUATION_BACKLOG: raise ProtocolError("Too many continuation frames received.") # If this is the end of the header block, then we want to build a # mutant HEADERS frame that's massive. Use the original one we got, # then set END_HEADERS and set its data appopriately. If it's not # the end of the block, lose the current frame: we can't yield it. if 'END_HEADERS' in f.flags: f = self._headers_buffer[0] f.flags.add('END_HEADERS') f.data = b''.join(x.data for x in self._headers_buffer) self._headers_buffer = [] else: f = None elif (isinstance(f, (HeadersFrame, PushPromiseFrame)) and 'END_HEADERS' not in f.flags): # This is the start of a headers block! Save the frame off and then # act like we didn't receive one. self._headers_buffer.append(f) f = None return f
[ 86, 572, 2376 ]
def METHOD_NAME(self, tag): draft_release = self._get_editable_release() # If we already have a release version created and in Editable state, just use that. if draft_release: return draft_release # Create a new release in replicated params = {'name': tag, 'source': 'latest', 'sourcedata': 0} response = requests.post(self._get_request_endpoint('CREATE'), headers=self.auth_header, json=params) response.raise_for_status() return json.loads(response.text)
[ 19, 894, 129, 586 ]
def METHOD_NAME(x=[]): assert 0, ([s for s in x] + 1) pass
[ 17808 ]
def METHOD_NAME() -> Generator[dict, None, None]: for archive_id in iter_archive_ids(category="tools"): logger.info("Fetching tool variants for {}".format(archive_id)) for tool_name in tqdm(sorted(MetadataFactory(archive_id).fetch_tools())): if is_blacklisted_tool(tool_name): continue for tool_variant in MetadataFactory( archive_id, tool_name=tool_name ).getList(): yield { "os_name": archive_id.host, "target": archive_id.target, "tool_name": tool_name, "arch": tool_variant, }
[ 84, 3081, 7439 ]
f METHOD_NAME(self, preset_definition_values):
[ 203, 1319, 2181, 199 ]
def METHOD_NAME( self, src_uri: str, ) -> None: _args = [CLI, "-vvvv", self.name, "rm", src_uri] check_invoke(_args)
[ 5528 ]
def METHOD_NAME(db, client, username, password, value_id): client.login(username=username, password=password) url = reverse(urlnames['detail'], args=[value_id]) response = client.delete(url) if password: assert response.status_code == 405 else: assert response.status_code == 401
[ 9, 34 ]
def METHOD_NAME(self): h = self._create_pkg("somepkg") h2 = self._create_mod("sub.py", "somepkg") h2.write(b"test=123\n") h2.close() h.write(b"from .sub import *\nmain=321\n") h.close() s = ModuleScanner([self.d]) removed, added = s.rescan() self.failUnlessEqual(added, ["somepkg"]) self.failUnlessEqual(s.modules["somepkg"].module.main, 321) self.failUnlessEqual(s.modules["somepkg"].module.test, 123)
[ 9, 3401, 238, 360 ]
async def METHOD_NAME( cls, session: ProfileSession, connection_id: str ) -> bool: """Return whether a mediation record exists for the given connection. Args: session (ProfileSession): session connection_id (str): connection_id Returns: bool: whether record exists """ tag_filter = {"connection_id": connection_id} try: record = await cls.retrieve_by_tag_filter(session, tag_filter) except StorageNotFoundError: return False except StorageDuplicateError: return True return bool(record)
[ 954, 43, 550, 147 ]
def METHOD_NAME(self): # this test cannot pass because cast error x = np.random.rand(10) y = jt.float32(x) np.testing.assert_allclose(x, y.numpy())
[ 9, 877, 3723 ]
def METHOD_NAME(self, obj): return get_attribute_in_correct_language(obj, "custom_message", get_language())
[ 19, 343, 277 ]
def METHOD_NAME(self, evt): self.EndModal(wx.ID_OK)
[ 356, 7576 ]
f METHOD_NAME(self, comp, arg):
[ 4311 ]
def METHOD_NAME(self): """Generate tests. :param self: :return: test to run """ for test_string in test_strings: self.assertEqual(test_string, TEST_RESULT)
[ 9 ]
def METHOD_NAME(self, user_idx, item_idx=None): """Predict the scores/ratings of a user for an item. Parameters ---------- user_idx: int, required The index of the user for whom to perform score prediction. item_idx: int, optional, default: None The index of the item for which to perform score prediction. If None, scores for all known items will be returned. Returns ------- res : A scalar or a Numpy array Relative scores that the user gives to the item or to all known items """ if item_idx is None: if self.train_set.is_unk_user(user_idx): raise ScoreException( "Can't make score prediction for (user_id=%d)" % user_idx ) known_item_scores = self.V.dot(self.U[user_idx, :]) return known_item_scores else: if self.train_set.is_unk_user(user_idx) or self.train_set.is_unk_item( item_idx ): raise ScoreException( "Can't make score prediction for (user_id=%d, item_id=%d)" % (user_idx, item_idx) ) user_pred = self.V[item_idx, :].dot(self.U[user_idx, :]) return user_pred
[ 747 ]
def METHOD_NAME(): """ Test Cases: - No response provided; non-uuid value given for project """ project = project_exists("Test_Project") assert project.name == "Test_Project"
[ 9, 155, 954 ]
def METHOD_NAME(): """ Test to ensure that multiple kernel modules are loaded. """ name = "salted kernel" mods = ["cheese", "crackers"] ret = {"name": name, "result": True, "changes": {}} mock_mod_list = MagicMock(return_value=mods) with patch.dict(kmod.__salt__, {"kmod.mod_list": mock_mod_list}): call_ret = kmod.present(name, mods=mods) # Check comment independently: makes test more stable on PY3 comment = call_ret.pop("comment") assert "cheese" in comment assert "crackers" in comment assert "are already present" in comment # Assert against all other dictionary key/values assert ret == call_ret mock_mod_list = MagicMock(return_value=[]) with patch.dict(kmod.__salt__, {"kmod.mod_list": mock_mod_list}): with patch.dict(kmod.__opts__, {"test": True}): call_ret = kmod.present(name, mods=mods) ret.update({"result": None}) # Check comment independently: makes test more stable on PY3 comment = call_ret.pop("comment") assert "cheese" in comment assert "crackers" in comment assert "are set to be loaded" in comment # Assert against all other dictionary key/values assert ret == call_ret mock_mod_list = MagicMock(return_value=[]) mock_available = MagicMock(return_value=mods) mock_load = MagicMock(return_value=mods) with patch.dict( kmod.__salt__, { "kmod.mod_list": mock_mod_list, "kmod.available": mock_available, "kmod.load": mock_load, }, ): with patch.dict(kmod.__opts__, {"test": False}): call_ret = kmod.present(name, mods=mods) ret.update( {"result": True, "changes": {mods[0]: "loaded", mods[1]: "loaded"}} ) # Check comment independently: makes test more stable on PY3 comment = call_ret.pop("comment") assert "cheese" in comment assert "crackers" in comment assert "Loaded kernel modules" in comment # Assert against all other dictionary key/values assert ret == call_ret
[ 9, 2541, 457 ]
def METHOD_NAME(self, raise_on_empty_metrics: bool = False) -> None: self.provider.METHOD_NAME(raise_on_empty_metrics=raise_on_empty_metrics)
[ 1579, 1097 ]
def METHOD_NAME(): conn = boto3.client("managedblockchain", region_name="us-east-1") # Create network - need a good network network_id = conn.create_network( Name="testnetwork1", Framework="HYPERLEDGER_FABRIC", FrameworkVersion="1.2", FrameworkConfiguration=helpers.default_frameworkconfiguration, VotingPolicy=helpers.default_votingpolicy, MemberConfiguration=helpers.default_memberconfiguration, )["NetworkId"] with pytest.raises(ClientError) as ex: conn.create_proposal( NetworkId=network_id, MemberId="m-ABCDEFGHIJKLMNOP0123456789", Actions=helpers.default_policy_actions, ) err = ex.value.response["Error"] assert err["Code"] == "ResourceNotFoundException" assert "Member m-ABCDEFGHIJKLMNOP0123456789 not found" in err["Message"]
[ 9, 129, 4229, -1 ]
def METHOD_NAME(self): """ test service.get_enabled and service.enable module """ # disable service before test self.assertTrue(self.run_function("service.disable", [self.service_name])) self.assertTrue(self.run_function("service.enable", [self.service_name])) self.assertIn(self.service_name, self.run_function("service.get_enabled"))
[ 9, 549, 1317 ]
def METHOD_NAME(vm): """Installs tomcat on the server.""" vm.Install('tomcat') _IncreaseMaxOpenFiles(vm) tomcat.Start(vm)
[ 123, 163 ]
def METHOD_NAME(next_link=None): if not next_link: request = build_list_request( api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request
[ 123, 377 ]
def METHOD_NAME(self, enable): """ Allow to disable the default behaviour of the QComboBox which update the current index to 0 when the model crow from an empty state. """ if self.__updateDefaultIndexUpdate == enable: return self.__updateDefaultIndexUpdate = enable self.__updateModelConnection(not enable) if enable: if self.model() is not None: self.__modelWasEmpty = self.model().rowCount() == 0
[ 0, 86, 1056, 724, 1111 ]
def METHOD_NAME(self, n, Re): """Returns normalisation of the sersic profile such that Re is the half light radius given n_sersic slope.""" bn = self.b_n(n) k = bn * Re ** (-1.0 / n) return k, bn
[ 4407, 3849 ]
def METHOD_NAME(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" del current_params_types del eval_results del loss_type lr = get_learning_rate(global_step, hyperparameters) optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) outputs = pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, per_device_rngs, lr) new_model_state, new_optimizer_state, new_params, loss, grad_norm = outputs if global_step <= 1000 or global_step % 100 == 0: logging.info('%d) loss = %0.3f, grad_norm = %0.3f lr = %0.6f', global_step, loss.mean(), grad_norm.mean(), lr) if workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'train_step_ctc_loss': loss.mean(), 'grad_norm': grad_norm.mean(), 'learning_rate': lr, }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state
[ 86, 434 ]
def METHOD_NAME(state): # For now runs on only two processes if state.num_processes != 2: return tensor = create_tensor(state) reduced_tensor = reduce(tensor, "mean") truth_tensor = torch.tensor([2.0, 3]).to(state.device) assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}"
[ 9, 332, 314 ]
def METHOD_NAME(self, site): self.site = site
[ 0, 1055 ]
def METHOD_NAME(self): mags = torch.tensor([0, 0.5, 1.0], device=self.device, dtype=self.dtype) self._assert_consistency(F.frequency_impulse_response, (mags,))
[ 9, 3702, 5925 ]
def METHOD_NAME(self): with open(sync.DEFAULT_PATH + '/genesis/members.s.py') as f: code = f.read() code_obj = compile(code, '', 'exec') code_blob = marshal.dumps(code_obj) self.contract_driver.set_var('masternodes', CODE_KEY, value=code) self.contract_driver.set_var('masternodes', COMPILED_KEY, value=code_blob)
[ 0, 1522, 544 ]
def METHOD_NAME(path): """Check whether the path is probably a TF Events file containing Summary. Args: path: A file path to check if it is an event file containing `Summary` protos. Returns: If path is formatted like a TensorFlowEventsFile. Dummy files such as those created with the '.profile-empty' suffixes and meant to hold no `Summary` protos are treated as `False`. For background, see: https://github.com/tensorflow/tensorboard/issues/2084. """ return IsTensorFlowEventsFile(path) and not path.endswith(".profile-empty")
[ 137, 2718, 239, 171 ]
def METHOD_NAME(): day = time.strftime("%a") hour = time.strftime("%I") minutes = time.strftime("%M") ampm = time.strftime("%p") date_label.config(text=f"{day} {hour}:{minutes} {ampm}") date_label.after(1000, METHOD_NAME)
[ 3329 ]
def METHOD_NAME(benchmark_spec): """Create metadata dict to be used in run results. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns: metadata dict """ metadata = mnist_benchmark.CreateMetadataDict(benchmark_spec) metadata.update({ 'model': benchmark_spec.model, 'problem': benchmark_spec.problem, 'hparams_set': benchmark_spec.hparams_set, 'data_dir': benchmark_spec.data_dir, 'model_dir': benchmark_spec.model_dir, 'train_steps': benchmark_spec.train_steps, 'eval_steps': benchmark_spec.eval_steps}) return metadata
[ 129, 773, 553 ]
def METHOD_NAME(): open(SYNCFILE, "wb").close()
[ 129, 164, 171 ]
def METHOD_NAME(self): relative_time = time.time() - self.global_start to_run = [] for job in self.jobs: if job.due_to_run(relative_time): to_run.append(job) logger.debug(f'scheduler found {job.name} to run, {relative_time - job.next_run} seconds after target') job.mark_run(relative_time) return to_run
[ 19, 61, 1743, 1359 ]
def METHOD_NAME(self, bash): output = assert_bash_exec(bash, "__tester '\"$v\"'", want_output=True) assert output.strip() == "<var>"
[ 9, 1136, 11891, 1170 ]
def METHOD_NAME(): client = ComputeManagementClient( credential=DefaultAzureCredential(), subscription_id="{subscription-id}", ) response = client.virtual_machine_scale_sets.begin_create_or_update( resource_group_name="myResourceGroup", vm_scale_set_name="{vmss-name}", parameters={ "location": "eastus2euap", "properties": { "overprovision": True, "upgradePolicy": {"automaticOSUpgradePolicy": {"enableAutomaticOSUpgrade": True}, "mode": "Automatic"}, "virtualMachineProfile": { "networkProfile": { "networkInterfaceConfigurations": [ { "name": "{vmss-name}", "properties": { "enableIPForwarding": True, "ipConfigurations": [ { "name": "{vmss-name}", "properties": { "subnet": { "id": "/subscriptions/{subscription-id}/resourceGroups/myResourceGroup/providers/Microsoft.Network/virtualNetworks/{existing-virtual-network-name}/subnets/{existing-subnet-name}" } }, } ], "primary": True, }, } ] }, "osProfile": { "adminPassword": "{your-password}", "adminUsername": "{your-username}", "computerNamePrefix": "{vmss-name}", }, "serviceArtifactReference": { "id": "/subscriptions/{subscription-id}/resourceGroups/myResourceGroup/providers/Microsoft.Compute/galleries/myGalleryName/serviceArtifacts/serviceArtifactName/vmArtifactsProfiles/vmArtifactsProfilesName" }, "storageProfile": { "imageReference": { "offer": "WindowsServer", "publisher": "MicrosoftWindowsServer", "sku": "2022-Datacenter", "version": "latest", }, "osDisk": {"caching": "ReadWrite", "createOption": "FromImage", "name": "osDisk"}, }, }, }, "sku": {"capacity": 3, "name": "Standard_A1", "tier": "Standard"}, }, ).result() print(response)
[ 57 ]
def METHOD_NAME(self, items, build_dir): """Write a dict containing filename->binary data""" for filename, data in items: # Determine where to write the file to dest = os.path.join(build_dir, filename) path = os.path.dirname(dest) self._makedir(path) # Write file self.log.debug("Writing %i bytes to %s", len(data), dest) with open(dest, "wb") as f: f.write(data)
[ 77, 1768 ]
def METHOD_NAME(environment_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetManagedEnvironmentAuthTokenResult: """ Checks if resource name is available. :param str environment_name: Name of the Managed Environment. :param str resource_group_name: The name of the resource group. The name is case insensitive. """ __args__ = dict() __args__['environmentName'] = environment_name __args__['resourceGroupName'] = resource_group_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure-native:app/v20221001:getManagedEnvironmentAuthToken', __args__, opts=opts, typ=GetManagedEnvironmentAuthTokenResult).value return AwaitableGetManagedEnvironmentAuthTokenResult( expires=pulumi.get(__ret__, 'expires'), id=pulumi.get(__ret__, 'id'), location=pulumi.get(__ret__, 'location'), name=pulumi.get(__ret__, 'name'), system_data=pulumi.get(__ret__, 'system_data'), tags=pulumi.get(__ret__, 'tags'), token=pulumi.get(__ret__, 'token'), type=pulumi.get(__ret__, 'type'))
[ 19, 3627, 1027, 2433, 466 ]
def METHOD_NAME(self, argcomplete_on): app = MainApp() completions = set(self.run_completer(app, "app --")) assert completions > {'--Application.', '--MainApp.'} assert "--SubApp1." not in completions and "--SubApp2." not in completions
[ 9, 676, 10893, 57 ]
def METHOD_NAME(): for vector in PERMISSIONS_TEST_VECTORS: (line, with_group, permissions_owner, permissions_group, permissions_other, owner, group, path, owned_by_root_user, owned_by_root_user_and_group, only_root_can_read, only_root_can_write) = vector p = FilePermissions(line) assert p.perms_owner == permissions_owner assert p.perms_group == permissions_group assert p.perms_other == permissions_other assert p.owner == owner assert p.group == group assert p.owned_by('root', also_check_group=False) == owned_by_root_user assert p.owned_by('root', also_check_group=True) == owned_by_root_user_and_group assert p.only_root_can_read(root_group_can_read=with_group) == only_root_can_read assert p.only_root_can_write(root_group_can_write=with_group) == only_root_can_write assert p.all_zero() == all((p.perms_owner == '---', p.perms_group == '---', p.perms_other == '---')) assert p.owner_can_read() == ('r' in p.perms_owner) assert p.owner_can_write() == ('w' in p.perms_owner) assert p.owner_can_only_read() == ('r--' == p.perms_owner) assert p.group_can_read() == ('r' in p.perms_group) assert p.group_can_write() == ('w' in p.perms_group) assert p.group_can_only_read() == ('r--' == p.perms_group) assert p.others_can_read() == ('r' in p.perms_other) assert p.others_can_write() == ('w' in p.perms_other) assert p.others_can_only_read() == ('r--' == p.perms_other)
[ 9, 804 ]
def METHOD_NAME(self): super(type(self), self).METHOD_NAME() initializeTestModule_SingleInstance(self)
[ 0, 1 ]
def METHOD_NAME(self): """Prune unkown Jenkins fails gracefully""" with self.assertRaises(SystemExit) as ex: self.executeBobJenkinsCmd("prune doesnotexist") self.assertEqual(ex.exception.code, 1)
[ 9, 3724, 46 ]
def METHOD_NAME(self): self._delete("subject")
[ 188, 2533 ]
def METHOD_NAME(seriesname,simname,tmplfile,maxLevel,maxCoarseSize, simplesweeps, simplerelax, usesimplec, coarsesimplesweeps, coarsesimplerelax, coarseusesimplec, relsmootype, relsmooiter, relsmoodamp, schursmootype, schursmoofill, procs, jobfile): # generate filenames filename_out = seriesname + simname + "_" + str(simplesweeps) + "Simple" + str(simplerelax) + "_" + str(coarsesimplesweeps) + str(usesimplec) + "Simple" + str(coarsesimplerelax) + str(coarseusesimplec) + "_" + str(relsmootype) + str(relsmooiter) + str(relsmoodamp) + "_" + str(schursmootype) + str(schursmoofill) + "_maxL" + str(maxLevel) + "_maxCoarseSize" + str(maxCoarseSize) + "_" + str(procs) + "proc" if (relsmootype == "SGS"): relsmootype = "Symmetric Gauss-Seidel" elif (relsmootype == "GS"): relsmootype = "Gauss-Seidel" elif (relsmootype == "JAC"): relsmootype = "Jacobi" # generate filenames filename_log = filename_out + ".log" filename_xml = filename_out + ".xml" # generate XML file for pre_exodus if os.path.isfile(filename_xml): os.remove(filename_xml) o = open(filename_xml,"a") for line in open(tmplfile): line = line.replace("$MAXLEVEL", str(maxLevel)) line = line.replace("$MAXCOARSESIZE", str(maxCoarseSize)) line = line.replace("$RELSMOOTYPE", str(relsmootype)) line = line.replace("$RELSMOOITER", str(relsmooiter)) line = line.replace("$RELSMOODAMP", str(relsmoodamp)) line = line.replace("$SCHURSMOOTYPE", str(schursmootype)) line = line.replace("$SCHURSMOOFILL", str(schursmoofill)) line = line.replace("$COARSESIMPLESWEEPS", str(coarsesimplesweeps)) line = line.replace("$COARSESIMPLERELAX", str(coarsesimplerelax)) line = line.replace("$COARSEUSESIMPLEC", str(coarseusesimplec)) line = line.replace("$SIMPLESWEEPS", str(simplesweeps)) line = line.replace("$SIMPLERELAX", str(simplesweeps)) line = line.replace("$USESIMPLEC", str(usesimplec)) o.write(line) o.close() jobfile.write("mpirun -np " + str(procs) + " ./MueLu_CradaDriver.exe --xml=" + filename_xml + " --split=1 --thyra=0 --matrixfile=grid_50_50_30/A0.m --rhsfile=grid_50_50_30/b0.m --coordinatesfile=grid_50_50_30/coordinates.m --specialfile=grid_50_50_30/special.m --nspfile= --linAlgebra=Epetra --tol=1e-10 --maxits=150 --output=" + filename_out + " | tee " + filename_out + ".txt\n\n\n")
[ 370, 171 ]
def METHOD_NAME(self): """Make sure we can build multiple simultanious builds on both the front-end and the nodes.""" arg_parser = arguments.get_parser() args = arg_parser.parse_args([ 'run', '-H', 'this', 'build_parallel' ]) run_cmd = commands.get_command(args.command_name) run_ret = run_cmd.run(self.pav_cfg, args) run_cmd.outfile.seek(0) self.assertEqual(run_ret, 0, msg=run_cmd.outfile.read()) for test in run_cmd.last_tests: test.wait(timeout=10) # Make sure we actually built separate builds builds = [test.builder for test in run_cmd.last_tests] build_names = set([b.name for b in builds]) self.assertEqual(len(build_names), 4) for test in run_cmd.last_tests: if test.skipped: continue self.assertEqual(test.results['result'], 'PASS', msg='Test {} status: {}' .format(test.id, test.status.current()))
[ 9, 457, 56 ]
def METHOD_NAME(curr_uttr): """Extract entities as topics for news request. If no entities found, extract nounphrases. Args: curr_uttr: current human utterance dictionary Returns: list of mentioned entities/nounphrases """ entities = get_entities(curr_uttr, only_named=True, with_labels=False) entities = [ent.lower() for ent in entities] entities = [ ent for ent in entities if not (ent == "alexa" and curr_uttr["text"].lower()[:5] == "alexa") and "news" not in ent ] if len(entities) == 0: for ent in get_entities(curr_uttr, only_named=False, with_labels=False): if ent.lower() not in BANNED_UNIGRAMS and "news" not in ent.lower(): if ent in entities: pass else: entities.append(ent) entities = [ent for ent in entities if len(ent) > 0] return entities
[ 297, 8532 ]
def METHOD_NAME(period, target): """ :param period: 'hourly', 'daily', 'weekly', or 'monthly' :param target: The 15-minute-aligned point in time we are targeting for a match :return: generator of couch view kwargs to use in view query for 'reportconfig/all_notifications' """ assert target.minute % 15 == 0 assert target.second == 0 assert target.microsecond == 0 if target.minute == 0: # for legacy purposes, on the hour also include reports that didn't have a minute set minutes = (None, target.minute) else: minutes = (target.minute,) if period == 'hourly' and target.minute == 0: yield { 'startkey': [period], 'endkey': [period, {}] } elif period == 'daily': for minute in minutes: yield { 'startkey': [period, target.hour, minute], 'endkey': [period, target.hour, minute, {}], } elif period == 'weekly': for minute in minutes: yield { 'key': [period, target.hour, minute, target.weekday()], } else: # monthly for minute in minutes: yield { 'key': [period, target.hour, minute, target.day] } if target.day == monthrange(target.year, target.month)[1]: for day in range(target.day + 1, 32): for minute in minutes: yield { 'key': [period, target.hour, minute, day] }
[ 93, 75, 857, 1179, 219 ]
def METHOD_NAME(self, obj): assert isinstance(obj, ASTObject) assert not isinstance(obj, Reference) assert len(self.scopes) > 0 if not hasattr(obj, 'name') or obj.name is None: return scope_type = type(obj) if scope_type in [Group, Instance]: scope_type = "group/component" else: scope_type = type(obj).__name__ duplicate = self.scopes[-1][obj.name].get(scope_type) if duplicate is not None: raise ParseError('duplicate definition of %s \'%s\'; previous ' 'definition was at %s:%s' % (scope_type, obj.name, duplicate.filename or '<unnamed>', duplicate.lineno), obj.location) self.scopes[-1][obj.name][scope_type] = obj
[ 372 ]
def METHOD_NAME(): content = [ Strip([Segment("foo")]), Strip([Segment("bar")]), Strip([Segment("baz")]), ] styles = Styles() styles.padding = 1 cache = StylesCache() lines = cache.render( styles, Size(5, 5), Color.parse("blue"), Color.parse("green"), content.__getitem__, Console(), None, None, content_size=Size(3, 3), ) text_content = _extract_content(lines) expected_text = [ " ", " foo ", " bar ", " baz ", " ", ] assert text_content == expected_text
[ 9, 746 ]
def METHOD_NAME(config_content: str) -> str: """Return a legacy authorization header.""" conf = _load_potentially_base64_config(config_content) auth = _get_macaroons_from_conf(conf) return base64.b64encode(json.dumps(auth).encode()).decode()
[ 19, 2433 ]
def METHOD_NAME(target, predicted_labels, predicted_probas): figures = [] try: # fig = plt.figure(figsize=(10, 7)) ax1 = fig.add_subplot(1, 1, 1) _ = skplt.metrics.plot_confusion_matrix( target, predicted_labels, normalize=False, ax=ax1 ) figures += [ { "title": "Confusion Matrix", "fname": "confusion_matrix.png", "figure": fig, } ] # fig = plt.figure(figsize=(10, 7)) ax1 = fig.add_subplot(1, 1, 1) _ = skplt.metrics.plot_confusion_matrix( target, predicted_labels, normalize=True, ax=ax1 ) figures += [ { "title": "Normalized Confusion Matrix", "fname": "confusion_matrix_normalized.png", "figure": fig, } ] # fig = plt.figure(figsize=(10, 7)) ax1 = fig.add_subplot(1, 1, 1) _ = skplt.metrics.plot_roc(target, predicted_probas, ax=ax1) figures += [{"title": "ROC Curve", "fname": "roc_curve.png", "figure": fig}] # fig = plt.figure(figsize=(10, 7)) ax1 = fig.add_subplot(1, 1, 1) _ = skplt.metrics.plot_precision_recall(target, predicted_probas, ax=ax1) figures += [ { "title": "Precision Recall Curve", "fname": "precision_recall_curve.png", "figure": fig, } ] plt.close("all") except Exception as e: print(str(e)) return figures
[ 2809, 592 ]
def METHOD_NAME(dir): assert dir == "/template_dir" return [ "/template_dir/debian_file1.in", "/template_dir/debian_file2.in", "/template_dir/debian_file3", "/template_dir/debian_file4", ]
[ 248, 2778 ]
def METHOD_NAME(self,controlKey,activeFlag): if controlKey == PlasmaControlKeys.kKeyExitMode: self.IQuitTelescope() elif controlKey == PlasmaControlKeys.kKeyMoveBackward or controlKey == PlasmaControlKeys.kKeyRotateLeft or controlKey == PlasmaControlKeys.kKeyRotateRight: self.IQuitTelescope()
[ 69, 401, 59, 417 ]
async def METHOD_NAME(self, n: int = None) -> bytes: return await self.stream.receive_some(n)
[ 203 ]
def METHOD_NAME(request, response): return pluginManagerGlobal.globalPlug(request, METHOD_NAME, response)
[ 72, 6702, 581 ]
def METHOD_NAME(self, mocked_init): rm_pbspro = PBSPro(cfg=None, log=None, prof=None) rm_pbspro._log = mock.Mock() with mock.patch('radical.pilot.agent.resource_manager.pbspro.' 'ru.sh_callout') as mocked_callout: mocked_callout.return_value = [ 'exec_vnode = (vnode1:cpu=10)+(vnode2:cpu=10)+\n' '(vnode3:cpu=10)\n' 'other_attr = some_value', '', 0] nodes, cores_per_node = rm_pbspro._parse_pbspro_vnodes() self.assertEqual(nodes, ['vnode1', 'vnode2', 'vnode3']) self.assertEqual(cores_per_node, 10)
[ 9, 214, -1, 17251 ]
def METHOD_NAME(): """ Run a benchmark. BENCHMARK:: sage: from sage.misc.benchmark import * sage: print(bench7()[0]) Compute the Mordell-Weil group of y^2 = x^3 + 37*x - 997. """ desc = """Compute the Mordell-Weil group of y^2 = x^3 + 37*x - 997.""" E = EllipticCurve([0,0,0,37,-997]) t = cputime() G = E.gens() return (desc, cputime(t))
[ -1 ]
def METHOD_NAME(node, indent=0): print(" " * indent, node) for child in node.children: METHOD_NAME(child, indent + 2)
[ 38, 151 ]
async def METHOD_NAME(self, hash, params): self._warema_shades[self._warema_channel].set_shade_position( 0 ) # 0=open; 100=closed state = self._warema_shades[self._warema_channel].get_shade_state( True ) # Force update and get shade state (position, ismoving, date) = state self._warema_position = str(int(position)) self._warema_ismoving = ismoving await self.updateDeviceReadings()
[ 0, 1 ]
def METHOD_NAME(self): response = self.publish(self.folder_path + '/set_cookie') self.assertEqual(response.getStatus(), 200) self.assertEqual(response.getCookie('foo').get('value'), 'Bar') self.assertEqual(response.getCookie('foo').get('Path'), '/')
[ 9, 4177 ]
def METHOD_NAME(self): rho0 = 1 Rs = 3 m_tot = self.profile.mass_tot(rho0, Rs) npt.assert_almost_equal(m_tot, 169.64600329384882, decimal=6)
[ 9, 2858, 9419 ]
async def METHOD_NAME(pipeline_response): deserialized = self._deserialize( "ResourceProviderOperationList", pipeline_response ) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem)
[ 297, 365 ]
def METHOD_NAME(self): expected_str = ( "Flow run received invalid parameters:\n - num: value is not a valid" " integer" ) try: ValidationTestModel(**{"num": "not an int", "string": "a string"}) except Exception as exc: pte = ParameterTypeError.from_validation_error(exc) assert str(pte) == expected_str assert pte.args == ParameterTypeError(expected_str).args
[ 9, 2801, 280, 97, 437, 168 ]
def METHOD_NAME(test_path): create_secure_directory(test_path) assert_linux_permissions(test_path)
[ 9, 129, 3271, 2851, 2878, 3031 ]
def METHOD_NAME(self, dataset_values): input_shape = INPUT_SHAPE METHOD_NAME = [np.zeros(input_shape), np.ones(input_shape)] for i, value in enumerate(dataset_values): METHOD_NAME[0][i, 0, 0] = value["max"] METHOD_NAME[0][i, 0, 1] = value["min"] return METHOD_NAME
[ 126, 700 ]
def METHOD_NAME(seeded): """Tests that the seed data functions can create and delete seed data""" expected_programs = len(seeded.raw_data["programs"]) expected_courses = len(seeded.raw_data["courses"]) expected_course_runs = sum( len(course_data.get("course_runs", [])) for course_data in seeded.raw_data["courses"] ) # Hardcoding this value since it would be annoying to check for it programatically expected_products = 12 expected_resource_pages = len(seeded.raw_data["resource_pages"]) assert Program.objects.count() == expected_programs assert ProgramPage.objects.count() == expected_programs assert Course.objects.count() == expected_courses assert CoursePage.objects.count() == expected_courses assert CourseRun.objects.count() == expected_course_runs assert ResourcePage.objects.count() == expected_resource_pages assert Product.objects.count() == expected_products assert ProductVersion.objects.count() == expected_products with unprotect_version_tables(): seeded.loader.delete_seed_data(seeded.raw_data) assert Program.objects.count() == 0 assert ProgramPage.objects.count() == 0 assert Course.objects.count() == 0 assert CoursePage.objects.count() == 0 assert CourseRun.objects.count() == 0 assert ResourcePage.objects.count() == 0 assert Product.objects.count() == 0 assert ProductVersion.objects.count() == 0
[ 9, 484, 61, -1, 365 ]
def METHOD_NAME(self, **kwargs): return self._oauth2_connector.METHOD_NAME(**kwargs)
[ 56, 1355, 274 ]
def METHOD_NAME( benchmark_time_copy: int, benchmark_time_unload: int, path: str, redshift_table: str, redshift_con: Connection, databases_parameters: Dict[str, str], request, ) -> None: df = wr.s3.read_parquet(path=[f"s3://ursa-labs-taxi-data/2018/{i}/data.parquet" for i in range(10, 13)]) with ExecutionTimer(request, "redshift_copy") as timer: wr.redshift.copy( df=df, path=path, con=redshift_con, schema="public", table=redshift_table, mode="overwrite", iam_role=databases_parameters["redshift"]["role"], ) assert timer.elapsed_time < benchmark_time_copy with ExecutionTimer(request, "redshift_unload") as timer: df2 = wr.redshift.unload( sql=f"SELECT * FROM public.{redshift_table}", con=redshift_con, iam_role=databases_parameters["redshift"]["role"], path=path, keep_files=False, ) assert timer.elapsed_time < benchmark_time_unload assert df.shape == df2.shape
[ 9, 7477, 215, 5473 ]
def METHOD_NAME(self): return { "my_macro.sql": my_macro_sql, }
[ 6048 ]
def METHOD_NAME(self): with pytest.raises(ValueError): IPRange.from_string('10.0.0.0/8/24')
[ 9, 457, 361, 427, 241 ]
def METHOD_NAME(self): if verbose: print '\n', '-=' * 30 print "Running %s.test02_threaded..." % self.__class__.__name__ threads = [] threads.append(Thread(target = self.theThread, args=(db.DB_LOCK_WRITE,))) threads.append(Thread(target = self.theThread, args=(db.DB_LOCK_READ,))) threads.append(Thread(target = self.theThread, args=(db.DB_LOCK_READ,))) threads.append(Thread(target = self.theThread, args=(db.DB_LOCK_WRITE,))) threads.append(Thread(target = self.theThread, args=(db.DB_LOCK_READ,))) threads.append(Thread(target = self.theThread, args=(db.DB_LOCK_READ,))) threads.append(Thread(target = self.theThread, args=(db.DB_LOCK_WRITE,))) threads.append(Thread(target = self.theThread, args=(db.DB_LOCK_WRITE,))) threads.append(Thread(target = self.theThread, args=(db.DB_LOCK_WRITE,))) for t in threads: import sys if sys.version_info[0] < 3 : t.setDaemon(True) else : t.daemon = True t.start() for t in threads: t.join()
[ 315, 6861 ]
def METHOD_NAME(name, schema, column_names, engine, comment, data_file): dialect = csv.dialect.SimpleDialect(data_file.delimiter, data_file.quotechar, data_file.escapechar) encoding = get_file_encoding(data_file.file) table = create_string_column_table( name=name, schema_oid=schema.oid, column_names=column_names, engine=engine, comment=comment, ) insert_records_from_csv( table, engine, data_file.file.path, column_names, data_file.header, delimiter=dialect.delimiter, escape=dialect.escapechar, quote=dialect.quotechar, encoding=encoding ) return table
[ 408, 2530, 280, 732, 365, 171 ]
def METHOD_NAME(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order)
[ 2687, 1894 ]
def METHOD_NAME(): test_list = [ { "provider": "cluster-self-vpc", "vpc_name": "cluster-name", "cidr_block": "10.25.0.0/16", }, { "provider": "account-vpc", "vpc_name": "vpc-name-1", "cidr_block": "10.18.0.0/18", }, { "provider": "account-vpc", "vpc_name": "vpc-name-2", "cidr_block": "10.18.0.0/18", }, ] cluster_name = "cluster-name" assert find_cidr_overlap(cluster_name, test_list) is True
[ 9, 187, 187, 7470, 2820 ]
def METHOD_NAME(self) -> str: """ Resource provisioning state. """ return pulumi.get(self, "provisioning_state")
[ 1994, 551 ]
def METHOD_NAME(self, input, factor, quality=0): if input: sr = len(input) else: sr = 44100 METHOD_NAME = Resample(inputSampleRate = sr, outputSampleRate = int(factor*sr), quality = quality) pool = Pool() gen = VectorInput(input) gen.data >> METHOD_NAME.signal METHOD_NAME.signal >> (pool, 'signal') run(gen) if not pool.descriptorNames() : return [] return pool['signal']
[ 4182 ]
async def METHOD_NAME( cls, actor_pool_config: ActorPoolConfig, process_index: int, start_method: str = None, ): status_queue = multiprocessing.Queue() return ( asyncio.create_task( cls._create_sub_pool(actor_pool_config, process_index, status_queue) ), status_queue, )
[ 447, 1066, 1567 ]
def METHOD_NAME(model, edges=False, **kwargs): dataset = TestDataset( [ _get_graph( n_nodes=n_nodes, n_features=n_node_features, n_edge_features=n_edge_features if edges else None, ) for _ in range(batch_size) ] ) loader = loaders.BatchLoader(dataset, epochs=1, batch_size=batch_size) inputs = loader.__next__() model_instance = model(**kwargs) output = model_instance(inputs)
[ 9, 2277, 854 ]
def METHOD_NAME(self): return self.queryset.count()
[ 1346, 29 ]
f METHOD_NAME(chars, s, start, end):
[ 16115, 2147 ]
def METHOD_NAME(self): from cbuild.util import cargo for crate in []: cargo.clear_vendor_checksums(self, crate, vendor_dir="third_party/rust")
[ 72, 1575 ]
def METHOD_NAME(self, key): '''Get config default_value for a specific key. Args: key (str): Config key Retruns: python object ''' return self._get_by_key(key, 'default_value')
[ 19, 235, 1259 ]
def METHOD_NAME(self, *args, **kwargs): kwargs.setdefault("timeout", settings.DEFAULT_TIMEOUT_REQUESTS) return self._original_request(*args, **kwargs)
[ 80, 377 ]
def METHOD_NAME(data_fixture): session_id = "1010" user = data_fixture.create_user(session_id=session_id) table = data_fixture.create_database_table(user=user) grid_view = data_fixture.create_grid_view(table=table) number_field = data_fixture.create_number_field( table=table, name="value", number_decimal_places=1 ) assert ViewSort.objects.count() == 0 view_sort = action_type_registry.get_by_type(CreateViewSortActionType).do( user, grid_view, number_field, "DESC" ) assert ViewSort.objects.filter(pk=view_sort.id).count() == 1 assert view_sort.view.id == grid_view.id assert view_sort.field.id == number_field.id assert view_sort.order == "DESC" ActionHandler.undo(user, [ViewActionScopeType.value(grid_view.id)], session_id) assert ViewSort.objects.filter(pk=view_sort.id).count() == 0
[ 9, 1046, 2796, 4564, 1179, 266 ]
async def METHOD_NAME(_: "ASGIConnection", route_handler: "BaseRouteHandler") -> None: if not route_handler.opt or not route_handler.opt.get("allow_all"): raise PermissionDeniedException("local")
[ 125, 1586 ]
def METHOD_NAME(program, model, keywords): if not has_program(program): pytest.skip("Program '{}' not found.".format(program)) molecule = _get_molecule(program) inp = AtomicInput(molecule=molecule, driver="energy", model=model, keywords=keywords) with pytest.raises(qcng.exceptions.InputError) as e: qcng.compute(inp, program, raise_error=True) assert "QCSchema BasisSet for model.basis not implemented" in str(e.value)
[ 9, 226, 5121, -1, 1189 ]