text
stringlengths 15
7.82k
| ids
sequencelengths 1
7
|
---|---|
def METHOD_NAME(buff):
logs = []
line, sep, buff = buff.partition('\n')
while sep and line:
logs.append(LogLine(line))
line, sep, buff = buff.partition('\n')
if not sep:
buff = line # we put back the last unterminated line in the buffer
return logs, buff | [
214,
390
] |
def METHOD_NAME(model, data_loader, tmpdir=None, gpu_collect=False):
"""Test model with multiple gpus.
This method tests model with multiple gpus and collects the results
under two different modes: gpu and cpu modes. By setting
``gpu_collect=True``, it encodes results to gpu tensors and use gpu
communication for results collection. On cpu mode it saves the results on
different gpus to ``tmpdir`` and collects them by the rank 0 worker.
Args:
model (nn.Module): Model to be tested.
data_loader (nn.Dataloader): Pytorch data loader.
tmpdir (str): Path of directory to save the temporary results from
different gpus under cpu mode.
gpu_collect (bool): Option to use either gpu or cpu to collect results.
Returns:
list: The prediction results.
"""
model.eval()
results = []
dataset = data_loader.dataset
rank, world_size = get_dist_info()
if rank == 0:
prog_bar = mmcv.ProgressBar(len(dataset))
time.sleep(2) # This line can prevent deadlock problem in some cases.
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, **data)
results.extend(result)
if rank == 0:
batch_size = len(result)
batch_size_all = batch_size * world_size
if batch_size_all + prog_bar.completed > len(dataset):
batch_size_all = len(dataset) - prog_bar.completed
for _ in range(batch_size_all):
prog_bar.update()
# collect results from all ranks
if gpu_collect:
results = collect_results_gpu(results, len(dataset))
else:
results = collect_results_cpu(results, len(dataset), tmpdir)
return results | [
457,
1667,
9
] |
def METHOD_NAME(encoded_image):
image = tf.image.decode_jpeg(encoded_image, channels=3)
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
if self.do_eval:
return self._PreprocessForEval(image)
else:
return self._PreprocessForTraining(image) | [
1268,
61,
666,
206
] |
def METHOD_NAME(file: str) -> None:
logger.debug(f"Mark [{file}] as executable")
st = os.stat(file)
os.chmod(file, st.st_mode | stat.S_IEXEC) | [
1743,
2777
] |
def METHOD_NAME(self, dispatch_table):
for ancestor_class in self._loky_pickler_cls.mro():
dt_attribute = getattr(ancestor_class, "dispatch_table", None)
if isinstance(dt_attribute, types.MemberDescriptorType):
# Ancestor class (typically _pickle.Pickler) has a
# member_descriptor for its "dispatch_table" attribute. Use
# it to set the dispatch_table as a member instead of a
# dynamic attribute in the __dict__ of the instance,
# otherwise it will not be taken into account by the C
# implementation of the dump method if a subclass defines a
# class-level dispatch_table attribute as was done in
# cloudpickle 1.6.0:
# https://github.com/joblib/loky/pull/260
dt_attribute.__set__(self, dispatch_table)
break
# On top of member descriptor set, also use setattr such that code
# that directly access self.dispatch_table gets a consistent view
# of the same table.
self.dispatch_table = dispatch_table | [
0,
2506,
410
] |
def METHOD_NAME(p1, p2, fractions):
for fraction in fractions:
p = p1.interpolate(p2, fraction)
yield p | [
1783,
157
] |
def METHOD_NAME(self, outgoing: flight.ClientAuthSender,
incoming: flight.ClientAuthReader) -> None:
"""Authenticate with Dremio user credentials.
"""
basic_auth = flight.BasicAuth(self.username, self.password)
outgoing.write(basic_auth.serialize())
self.token = incoming.read() | [
1805
] |
def METHOD_NAME(self, conf: ConfigTree) -> None:
self._conf = conf
self.query = """query {
workbooks {
name
projectName
projectVizportalUrlId
vizportalUrlId
upstreamTables {
name
schema
database {
name
connectionType
}
}
}
}"""
self._extractor = self._build_extractor()
transformers = []
dict_to_model_transformer = DictToModel()
dict_to_model_transformer.METHOD_NAME(
conf=Scoped.get_scoped_conf(self._conf, dict_to_model_transformer.get_scope()).with_fallback(
ConfigFactory.from_dict(
{MODEL_CLASS: 'databuilder.models.dashboard.dashboard_table.DashboardTable'})))
transformers.append(dict_to_model_transformer)
self._transformer = ChainedTransformer(transformers=transformers) | [
176
] |
def METHOD_NAME(parent_item: ItemWidgetType, parent_folder: autokey.model.folder.Folder):
for folder in parent_folder.folders:
item = WidgetItemFactory._build_item(parent_item, folder)
WidgetItemFactory.METHOD_NAME(item, folder)
for childModelItem in parent_folder.items:
WidgetItemFactory._build_item(parent_item, childModelItem) | [
356,
451
] |
def METHOD_NAME(self, request_email):
# email notifications
if request_email.recipients:
site_display_name = get_setting('site', 'global', 'sitedisplayname')
site_url = get_setting('site', 'global', 'siteurl')
params = {
'SITE_GLOBAL_SITEDISPLAYNAME': site_display_name,
'SITE_GLOBAL_SITEURL': site_url,
'MODULE_DIRECTORIES_LABEL_PLURAL': get_setting('module', 'directories', 'label_plural'),
'directory': self.to_directory,
'from_directory': self.from_directory,
'message': request_email.message,
'first_name': request_email.sender.first_name,
'last_name': request_email.sender.last_name,
'affiliate_request': self.instance.affiliate_request,
}
# to to_directory owner
params['reply_to'] = request_email.sender.email
notification.METHOD_NAME(request_email.recipients,
'affiliate_requested_to_owner', params)
# to submitter
submitter_email = (request_email.sender.email).strip()
params['reply_to'] = request_email.recipients[0]
notification.METHOD_NAME([submitter_email],
'affiliate_requested_to_submitter', params) | [
353,
5814
] |
def METHOD_NAME(self):
self.closed = True
self.data = '' | [
1462
] |
def METHOD_NAME(self):
# 2b. Making a request to views.NewRegistration with new user request
country = Country.objects.get(name='country')
# We started to use the email as the username for new registrations
newusr = '[email protected]'
body = {
'email': newusr,
'username': newusr,
'password': '87654321',
'country': country.pk,
'organizationType': 'OTHR',
'organization': 'Zoo',
'firstname': 'Peter',
'lastname': 'Falk',
}
headers = {'CONTENT_TYPE': 'application/json'}
resp = self.client.post('/register', body, format='json', headers=headers)
# json.loads(resp.content): 'status': 'ok'
self.assertEqual(resp.status_code, 200)
# 3b. Accessing the Pending users table to obtain the user\'s token
pending_user = Pending.objects.get(user__username=newusr)
# 4b. Using the user token and user username to query views.VerifyEmail
body1 = {
'user': newusr,
'token': pending_user.token,
}
resp = self.client.get('/verify_email', body1, format='json', headers=headers)
# resp.content: ...validated your email address and your IFRC Go account is now approved
self.assertEqual(resp.status_code, 200)
# 5b. Confirming that a user with an official email is activated
boarded_user = User.objects.get(username=newusr)
self.assertTrue(boarded_user.is_active) | [
9,
13902,
487
] |
def METHOD_NAME(self):
path = os.path.dirname(
robjects.packages_utils.get_packagepath('stats')
)
stats = robjects.packages.importr('stats',
lib_loc=path,
on_conflict='warn',
suppress_messages=False)
assert isinstance(stats, robjects.packages.Package) | [
9,
512,
577,
41,
8377,
61,
-1
] |
def METHOD_NAME(project):
org = project.organization
rv = {}
exclude_fields_key = "sentry:safe_fields"
rv["excludeFields"] = org.get_option(exclude_fields_key, []) + project.get_option(
exclude_fields_key, []
)
if org.get_option("sentry:require_scrub_data", False) or project.get_option(
"sentry:scrub_data", True
):
rv["scrubData"] = True
if org.get_option("sentry:require_scrub_ip_address", False) or project.get_option(
"sentry:scrub_ip_address", False
):
rv["scrubIpAddresses"] = True
sensitive_fields_key = "sentry:sensitive_fields"
rv["sensitiveFields"] = org.get_option(sensitive_fields_key, []) + project.get_option(
sensitive_fields_key, []
)
rv["scrubDefaults"] = org.get_option(
"sentry:require_scrub_defaults", False
) or project.get_option("sentry:scrub_defaults", True)
return rv | [
19,
-1,
817
] |
def METHOD_NAME(self) -> Optional['outputs.CassandraKeyspaceGetPropertiesResponseResource']:
return pulumi.get(self, "resource") | [
191
] |
def METHOD_NAME(mock_secret_provider):
with mock.patch(
"paasta_tools.secret_providers.vault.get_secret_name_from_ref", autospec=True
) as mock_get_secret_name_from_ref, mock.patch(
"paasta_tools.secret_providers.vault.get_plaintext", autospec=False
) as mock_get_plaintext:
mock_get_plaintext.return_value = b"SECRETSQUIRREL"
mock_env = {
"MY_VAR": "SECRET(test-secret)",
"ANOTHER_VAR": "SECRET(another-secret)",
}
mock_get_secret_name_from_ref.return_value = "secret_name"
ret = mock_secret_provider.decrypt_environment(
environment=mock_env, some="kwarg"
)
mock_get_secret_name_from_ref.assert_has_calls(
[mock.call("SECRET(test-secret)"), mock.call("SECRET(another-secret)")]
)
expected = {"MY_VAR": "SECRETSQUIRREL", "ANOTHER_VAR": "SECRETSQUIRREL"}
assert ret == expected | [
9,
443,
1027
] |
def METHOD_NAME(crispin_client, account_id, message_id):
"""
Create an email on the remote backend. Generic providers expect
us to create a copy of the message in the sent folder.
"""
remote_save_sent(crispin_client, account_id, message_id) | [
73,
2876,
487
] |
def METHOD_NAME(self):
self.requires("freetype/2.12.1")
if Version(self.version) < "1.10":
self.requires("lodepng/cci.20200615")
else:
self.requires("libpng/1.6.39")
self.requires("tinyxml2/9.0.0") | [
5186
] |
async def METHOD_NAME(bot: Bot) -> None:
"""Load the Egghead Quiz Cog."""
await bot.add_cog(EggheadQuiz()) | [
102
] |
def METHOD_NAME(self, dest, src):
dest.data[:] += src.data | [
411
] |
def METHOD_NAME(string: str) -> bool:
return string.islower() | [
137,
826
] |
def METHOD_NAME(self, resource_uri: str, **kwargs: Any) -> AsyncIterable["_models.MetricDefinition"]:
"""Lists the metric definitions for the resource.
:param resource_uri: The identifier of the resource. Required.
:type resource_uri: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: An iterator like instance of either MetricDefinition or the result of cls(response)
:rtype:
~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.monitor.v2017_05_01_preview.models.MetricDefinition]
:raises ~azure.core.exceptions.HttpResponseError:
"""
_headers = kwargs.pop("headers", {}) or {}
_params = case_insensitive_dict(kwargs.pop("params", {}) or {})
api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2017-05-01-preview"))
cls: ClsType[_models.MetricDefinitionCollection] = kwargs.pop("cls", None)
error_map = {
401: ClientAuthenticationError,
404: ResourceNotFoundError,
409: ResourceExistsError,
304: ResourceNotModifiedError,
}
error_map.update(kwargs.pop("error_map", {}) or {})
def prepare_request(next_link=None):
if not next_link:
request = build_list_request(
resource_uri=resource_uri,
api_version=api_version,
template_url=self.METHOD_NAME.metadata["url"],
headers=_headers,
params=_params,
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
else:
# make call to next link with the client's api-version
_parsed_next_link = urllib.parse.urlparse(next_link)
_next_request_params = case_insensitive_dict(
{
key: [urllib.parse.quote(v) for v in value]
for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items()
}
)
_next_request_params["api-version"] = self._config.api_version
request = HttpRequest(
"GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params
)
request = _convert_request(request)
request.url = self._client.format_url(request.url)
request.method = "GET"
return request
async def extract_data(pipeline_response):
deserialized = self._deserialize("MetricDefinitionCollection", pipeline_response)
list_of_elem = deserialized.value
if cls:
list_of_elem = cls(list_of_elem) # type: ignore
return None, AsyncList(list_of_elem)
async def get_next(next_link=None):
request = prepare_request(next_link)
_stream = False
pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
request, stream=_stream, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
return pipeline_response
return AsyncItemPaged(get_next, extract_data) | [
245
] |
def METHOD_NAME(project_dir, env_names, debug=False):
# pylint: disable=import-outside-toplevel
from platformio import app
from platformio.run.cli import cli as cmd_run
args = ["--project-dir", project_dir, "--target", "__idedata"]
if debug:
args.extend(["--target", "__debug"])
for name in env_names:
args.extend(["-e", name])
app.set_session_var("pause_telemetry", True)
result = CliRunner().invoke(cmd_run, args)
app.set_session_var("pause_telemetry", False)
if result.exit_code != 0 and not isinstance(
result.exception, exception.ReturnErrorCode
):
raise result.exception
if '"includes":' not in result.output:
raise exception.UserSideException(result.output)
return _get_cached_build_metadata(project_dir, env_names) | [
557,
56,
773
] |
def METHOD_NAME(self, obj: Project) -> bool:
return (
self.context["migration_status"]
== ProjectIdentityMigrationStatus.MIGRATION_COMPLETED.value
) | [
19,
1080,
540,
7949
] |
def METHOD_NAME(
readme_content, expected_metadata_configs_dict, expected_default_config_name
):
with tempfile.TemporaryDirectory() as tmp_dir:
path = Path(tmp_dir) / "README.md"
with open(path, "w+") as readme_file:
readme_file.write(readme_content)
dataset_card_data = DatasetCard.load(path).data
metadata_configs_dict = MetadataConfigs.from_dataset_card_data(dataset_card_data)
assert metadata_configs_dict == expected_metadata_configs_dict
assert metadata_configs_dict.get_default_config_name() == expected_default_config_name | [
9,
773,
736,
126,
5427,
365
] |
f METHOD_NAME(self): | [
1224,
156
] |
def METHOD_NAME(self):
# capture output to stdout
self.mocked_stdout = NativeStringIO()
self.patch(sys, "stdout", self.mocked_stdout)
# generate OS specific relative path to buildbot.tac inside basedir
self.tac_file_path = os.path.join("testdir", "buildbot.tac") | [
0,
1
] |
def METHOD_NAME(
target_host, agent_binary_downloaded, mssql_exploit_client
) -> Callable[[], Tuple[bool, bool]]:
def _inner() -> Tuple[bool, bool]:
return mssql_exploit_client.METHOD_NAME(
target_host,
MSSQLOptions(agent_binary_download_timeout=0.001),
CREDENTIALS,
DOWNLOAD_COMMAND,
LAUNCH_COMMAND,
agent_binary_downloaded,
set(),
)
return _inner | [
4714,
1806
] |
def METHOD_NAME() -> List[str]:
raise NotImplementedError() | [
19,
3403,
4774
] |
def METHOD_NAME(self):
not_my_password = factories.PasswordFactory(user=factories.UserFactory())
self.assertEqual(1, models.Password.objects.all().count())
request = self.client.delete("/api/passwords/%s/" % not_my_password.id)
self.assertEqual(404, request.status_code)
self.assertEqual(1, models.Password.objects.all().count()) | [
9,
3438,
34,
2395,
2897
] |
def METHOD_NAME(
self, conn: sqlite3.Connection, isolation_level: Optional[int]
) -> None:
# All transactions are SERIALIZABLE by default in sqlite
pass | [
3142,
24,
0,
5167,
33
] |
def METHOD_NAME(self, enc_min, enc_max, is_symmetric, is_strict):
"""
Test that the recomputed encoding within libpymo TensorQuantizer matches with the way encodings are recomputed
in calculate_delta_offset and compute_min_max_given_delta_offset.
"""
tensor_quantizer = libpymo.TensorQuantizer(libpymo.QuantizationMode.QUANTIZATION_TF,
libpymo.RoundingMode.ROUND_NEAREST)
tensor_quantizer.isEncodingValid = True
in_tensor = np.array([-100.0, 100.0])
out_tensor = np.zeros(in_tensor.shape).astype(np.float32)
tensor_quantizer.quantizeDequantize(in_tensor, out_tensor, enc_min, enc_max, 3, False)
delta, offset = calculate_delta_offset(enc_min, enc_max, 3, is_symmetric, is_strict)
new_enc_min, new_enc_max = compute_min_max_given_delta_offset(delta, offset, 3, is_symmetric, is_strict)
assert np.allclose(out_tensor[0], new_enc_min, atol=1e-5)
assert np.allclose(out_tensor[1], new_enc_max, atol=1e-5) | [
9,
2300,
49,
7111,
440,
2505,
7728
] |
def METHOD_NAME(source_git_config):
assert source_git_config["upstream_project_url"] == "https://example.com/hello.git"
assert source_git_config["upstream_ref"] == HELLO_RELEASE
assert source_git_config["downstream_package_name"] == "hello"
assert source_git_config["specfile_path"] == ".distro/hello.spec"
assert source_git_config["patch_generation_ignore_paths"] == [DISTRO_DIR]
assert source_git_config["sync_changelog"] is True
assert source_git_config["files_to_sync"] == [
{
"src": ".distro/",
"dest": ".",
"delete": True,
"filters": [
"protect .git*",
"protect sources",
f"exclude {SRC_GIT_CONFIG}",
"exclude .gitignore",
],
}
]
assert source_git_config["sources"][0]["path"] == f"hello-{HELLO_RELEASE}.tar.gz" | [
250,
1458,
1493,
200
] |
def METHOD_NAME(self):
"""
This test suite tests exceeding cput.
"""
a = {'Resource_List.cput': 10}
j = Job(TEST_USER, a)
# we need at least two processes otherwise the kernel
# would kill the process first
test = []
test += ['#!/bin/bash']
test += ['dd if=/dev/zero of=/dev/null & \ | [
9,
13231,
-1
] |
def METHOD_NAME(self) -> ReadOnlyCredentials:
self._refresh()
with self._lock:
return ReadOnlyCredentials(self._access_key, self._secret_key, self._token) | [
19,
2639,
3568
] |
def METHOD_NAME(
tx_to_address: str,
tx_data: bytes,
tx_type: int,
access_list: List[AccessList],
call_beacon_root_contract: bool,
) -> Transaction:
"""
Prepares transaction to call the beacon root precompile caller account.
"""
to = BEACON_ROOT_CONTRACT_ADDRESS if call_beacon_root_contract else tx_to_address
kwargs: Dict = {
"ty": tx_type,
"nonce": 0,
"data": tx_data,
"to": to,
"value": 0,
"gas_limit": 1000000,
}
if tx_type > 0:
kwargs["access_list"] = access_list
if tx_type <= 1:
kwargs["gas_price"] = 7
else:
kwargs["max_fee_per_gas"] = 7
kwargs["max_priority_fee_per_gas"] = 0
if tx_type == 3:
kwargs["max_fee_per_blob_gas"] = 1
kwargs["blob_versioned_hashes"] = add_kzg_version([0], BLOB_COMMITMENT_VERSION_KZG)
if tx_type > 3:
raise Exception(f"Unexpected transaction type: '{tx_type}'. Test requires update.")
return Transaction(**kwargs) | [
2543
] |
def METHOD_NAME(self, statusList, detail=True):
# FIXME: this method needs to be fixed accordingly
if statusList == 'staged':
specName = "ReRecoTest_v%sEmulator" % self.count
specUrl =self.specGenerator.createReRecoSpec(specName, "file",
self.splitter,
assignKwargs={'SiteWhitelist': ['T2_XX_SiteA']})
self.names.append(specName)
self.status[specName] = 'staged'
#specName = "FakeProductionSpec_%s" % self.count
#specUrl =self.specGenerator.createProductionSpec(specName, "file")
#specName = "FakeProcessingSpec_%s" % self.count
#specUrl =self.specGenerator.createProcessingSpec(specName, "file")
self.count += 1
# returns list of list(rquest name, spec url)
return [[specName, specUrl],]
else:
return [ | [
19,
377,
604,
452
] |
def METHOD_NAME(self) -> None:
indexes = [
IndexModel([("sender_id", pymongo.ASCENDING), ("event.event", pymongo.ASCENDING)]),
IndexModel([("type", pymongo.ASCENDING), ("timestamp", pymongo.ASCENDING)]),
IndexModel([("sender_id", pymongo.ASCENDING), ("conversation_id", pymongo.ASCENDING)]),
IndexModel([("event.event", pymongo.ASCENDING), ("event.timestamp", pymongo.DESCENDING)]),
IndexModel([("event.name", pymongo.ASCENDING), ("event.timestamp", pymongo.DESCENDING)]),
IndexModel([("event.timestamp", pymongo.DESCENDING)])
]
self.conversations.create_indexes(indexes) | [
602,
1894
] |
def METHOD_NAME(self, batch):
"""Fits train batches"""
preds = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(preds, batch, sb.Stage.TRAIN)
loss.backward()
if self.check_gradients(loss):
self.optimizer.step()
self.optimizer.zero_grad()
return loss.detach() | [
90,
2277
] |
def METHOD_NAME(self, preprocessor):
"""Check that an error is raised when the grade id is blank"""
nb = self._read_nb(os.path.join("files", "blank-grade-id.ipynb"), validate=False)
with pytest.raises(ValidationError):
preprocessor.preprocess(nb, {}) | [
9,
2882,
5560,
147
] |
def METHOD_NAME(self):
pred_proba, confidence = self.clf.predict_proba(self.X_test,
method='linear',
return_confidence=True)
assert (pred_proba.min() >= 0)
assert (pred_proba.max() <= 1)
assert_equal(confidence.shape, self.y_test.shape)
assert (confidence.min() >= 0)
assert (confidence.max() <= 1) | [
9,
2726,
2550,
1783,
2727
] |
def METHOD_NAME(
self, blackboard_api_client, plugin, grouping_service, course
):
blackboard_api_client.group_set_groups.side_effect = ExternalRequestError(
response=Mock(status_code=500)
)
with pytest.raises(ExternalRequestError):
plugin.get_groups_for_instructor(
grouping_service, course, sentinel.group_set_id
) | [
9,
19,
861,
43,
6755,
45
] |
def METHOD_NAME(self) -> str:
"""
The name of the resource
"""
return pulumi.get(self, "name") | [
156
] |
def METHOD_NAME(cert_byes, pk_bytes, password=None,
encoding=Encoding.PEM):
"""Create an SSL Context with the supplied cert/password.
:param cert_bytes array of bytes containing the cert encoded
using the method supplied in the ``encoding`` parameter
:param pk_bytes array of bytes containing the private key encoded
using the method supplied in the ``encoding`` parameter
:param password array of bytes containing the passphrase to be used
with the supplied private key. None if unencrypted.
Defaults to None.
:param encoding ``cryptography.hazmat.primitives.serialization.Encoding``
details the encoding method used on the ``cert_bytes`` and
``pk_bytes`` parameters. Can be either PEM or DER.
Defaults to PEM.
"""
backend = default_backend()
cert = None
key = None
if encoding == Encoding.PEM:
cert = x509.load_pem_x509_certificate(cert_byes, backend)
key = load_pem_private_key(pk_bytes, password, backend)
elif encoding == Encoding.DER:
cert = x509.load_der_x509_certificate(cert_byes, backend)
key = load_der_private_key(pk_bytes, password, backend)
else:
raise ValueError('Invalid encoding provided: Must be PEM or DER')
if not (cert and key):
raise ValueError('Cert and key could not be parsed from '
'provided data')
check_cert_dates(cert)
ssl_context = PyOpenSSLContext(PROTOCOL)
ssl_context._ctx.use_certificate(X509.from_cryptography(cert))
ssl_context._ctx.use_privatekey(PKey.from_cryptography_key(key))
return ssl_context | [
129,
1247,
198
] |
def METHOD_NAME(f, surf, include_ga, row, guesses, g):
"""return the endpoints (L,R) contained in the frustum f; if only one voxel both endpoints will be the same; if none both will be None
f: frustum object
surf: surface voxels
row: current row
guesses: estimates for endpoints
g: grid boundaries"""
# +x or right endpoint
Rend, Lend = None, None
check_surf_L, check_surf_R = (None, None), (None, None)
stop = False
Ri = guesses[1]
ogrverts = verts_in(f, (Ri, row[0], row[1]), surf, g)
if ogrverts == 0:
going_in = True
elif 1 <= ogrverts < 8:
going_in = False
check_surf_R = (True, Ri)
else:
going_in = False
while (0 <= Ri and (g["xlo"] + (Ri) * g["dx"]) < g["xhi"]) and not stop:
verts = verts_in(f, (Ri, row[0], row[1]), surf, g)
if verts == 0:
if not going_in:
stop = True
continue
else:
if Ri == guesses[0]:
# row is empty between guesses
return (None, None)
Ri -= 1
continue
elif verts == 8:
Rend = Ri
Ri += 1
continue
else:
Rend = Ri
if going_in:
check_surf_R = (True, Ri)
break
Ri += 1
# the -x or left endpoint
stop = False
Li = guesses[0]
oglverts = verts_in(f, (Li, row[0], row[1]), surf, g)
if oglverts == 0:
going_in = True
elif 1 <= oglverts < 8:
going_in = False
check_surf_L = (True, Li)
else:
going_in = False
while (0 <= Li and (g["xlo"] + (Li) * g["dx"]) < g["xhi"]) and not stop:
verts = verts_in(f, (Li, row[0], row[1]), surf, g)
if verts == 0:
if not going_in:
stop = True
continue
else:
# it's not empty or would have already returned
Li += 1
continue
elif verts == 8:
Lend = Li
Li -= 1
continue
else:
Lend = Li
if going_in:
check_surf_L = (True, Li)
break
Li -= 1
# check for extra surface voxels missed
if check_surf_R[0] and Lend is not None:
r = check_surf_R[1]
while r > Lend:
verts = verts_in(f, (r, row[0], row[1]), surf, g)
if verts == 8:
break
else:
r -= 1
if check_surf_L[0] and Rend is not None:
l = check_surf_L[1]
while l < Rend:
verts = verts_in(f, (l, row[0], row[1]), surf, g)
if verts == 8:
break
else:
l += 1
# if keeping non-surface but grid-adjacent voxels:
if include_ga:
surf.add((Lend, row[0], row[1]))
surf.add((Rend, row[0], row[1]))
return (Lend, Rend) | [
416,
1197
] |
def METHOD_NAME(self, other: GEOSGeometry) -> GEOSGeometry: ... | [
2845
] |
def METHOD_NAME(self, ignite_version):
"""
Test add, update and remove user
"""
config = IgniteConfiguration(
cluster_state="INACTIVE",
auth_enabled=True,
version=IgniteVersion(ignite_version),
data_storage=DataStorageConfiguration(
default=DataRegionConfiguration(persistence_enabled=True)),
client_connector_configuration=ClientConnectorConfiguration()
)
servers = IgniteService(self.test_context, config=config, num_nodes=self.NUM_NODES - 1)
servers.start()
ControlUtility(cluster=servers, username=DEFAULT_AUTH_USERNAME, password=DEFAULT_AUTH_PASSWORD).activate()
client_cfg = IgniteThinClientConfiguration(
addresses=[servers.nodes[0].account.hostname + ":" + str(config.client_connector_configuration.port)],
version=IgniteVersion(ignite_version),
username=DEFAULT_AUTH_USERNAME,
password=DEFAULT_AUTH_PASSWORD)
# Add new user
check_authenticate(servers, TEST_USERNAME, TEST_PASSWORD, True)
self.run_with_creds(client_cfg, ADD_USER, TEST_USERNAME, TEST_PASSWORD)
check_authenticate(servers, TEST_USERNAME, TEST_PASSWORD)
# Update user password
check_authenticate(servers, TEST_USERNAME, TEST_PASSWORD2, True)
self.run_with_creds(client_cfg, UPDATE_USER, TEST_USERNAME, TEST_PASSWORD2)
check_authenticate(servers, TEST_USERNAME, TEST_PASSWORD, True)
check_authenticate(servers, TEST_USERNAME, TEST_PASSWORD2)
# Remove user
self.run_with_creds(client_cfg, REMOVE_USER, TEST_USERNAME, free=False)
check_authenticate(servers, TEST_USERNAME, TEST_PASSWORD2, True) | [
9,
194,
3467
] |
def METHOD_NAME(exitcodes):
"""Format a list of exit code with names of the signals if possible"""
str_exitcodes = [
f"{_get_exitcode_name(e)}({e})" for e in exitcodes if e is not None
]
return "{" + ", ".join(str_exitcodes) + "}" | [
275,
12251
] |
def METHOD_NAME(path):
return normsep(os.path.METHOD_NAME(path)) | [
2680
] |
def METHOD_NAME(self):
self.assertEqual(
self.gf.namePattern, 'np', 'namePattern not initialised as np')
self.assertEqual(
self.gf.localDir, '', 'localDir not default initialised as None')
g1 = GoogleFile()
self.assertEqual(
g1.namePattern, '', 'namePattern not default initialised as empty')
self.assertEqual(
g1.localDir, '', 'localDir not default initialised as None')
g2 = GoogleFile(namePattern='np')
self.assertEqual(
g2.namePattern, 'np', 'namePattern not keyword initialised as np')
self.assertEqual(
g1.localDir, '', 'localDir not default initialised as None') | [
9,
176
] |
def METHOD_NAME(self, username):
ldap_user = LDAPUser(self, username=username)
user = ldap_user.METHOD_NAME()
return user | [
3914,
21
] |
def METHOD_NAME():
boto_session = MagicMock("boto_session")
resource_mock = Mock("resource")
client_mock = MagicMock("client")
boto_attrs = {"region_name": "us-east-1"}
boto_session.configure_mock(**boto_attrs)
boto_session.resource = Mock(name="resource", return_value=resource_mock)
boto_session.client = Mock(name="client", return_value=client_mock)
local_session = sagemaker.local.local_session.LocalSession(
boto_session=boto_session, s3_endpoint_url=ENDPOINT_URL
)
local_session.default_bucket = Mock(name="default_bucket", return_value=BUCKET_NAME)
return local_session | [
9638,
240,
343,
841
] |
def METHOD_NAME(num_attempts: int, time_scale: float) -> datetime.timedelta:
"""Computes a delay to the next attempt to poll the Vertex service.
This does bounded exponential backoff, starting with $time_scale.
If $time_scale == 0, it starts with a small time interval, less than
1 second.
Args:
num_attempts: The number of times have we polled and found that the
desired result was not yet available.
time_scale: The shortest polling interval, in seconds, or zero. Zero is
treated as a small interval, less than 1 second.
Returns:
A recommended delay interval, in seconds.
"""
# The polling schedule is slow initially , and then gets faster until 4
# attempts (after that the sleeping time remains the same).
small_interval = 30.0 # Seconds
interval = max(time_scale, small_interval) * 0.76 ** min(num_attempts, 4)
return datetime.timedelta(seconds=interval) | [
2510,
1344
] |
async def METHOD_NAME(next_link=None):
request = prepare_request(next_link)
_stream = False
pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access
request, stream=_stream, **kwargs
)
response = pipeline_response.http_response
if response.status_code not in [200]:
map_error(status_code=response.status_code, response=response, error_map=error_map)
raise HttpResponseError(response=response, error_format=ARMErrorFormat)
return pipeline_response | [
19,
243
] |
def METHOD_NAME(self) -> str:
"""
Contents of the Policy as defined by the format.
"""
return pulumi.get(self, "value") | [
99
] |
def METHOD_NAME():
output = """
select cast(l.source_dataset as varchar) || '-__-' ||
cast(l.unique_id as varchar) as concat_id
"""
output = sqlglot.parse_one(output).sql()
sql = "select l.source_dataset || '-__-' || l.unique_id as concat_id"
transformed_sql = sql = sqlglot_transform_sql(sql, cast_concat_as_varchar)
assert transformed_sql == output
sql = """
select cast(l.source_dataset as varchar) || '-__-' ||
l.unique_id as concat_id
"""
transformed_sql = sql = sqlglot_transform_sql(sql, cast_concat_as_varchar)
assert transformed_sql == output
sql = """
select cast(l.source_dataset as varchar) || '-__-' ||
cast(l.unique_id as varchar) as concat_id
"""
transformed_sql = sql = sqlglot_transform_sql(sql, cast_concat_as_varchar)
assert transformed_sql == output
sql = "select source_dataset || '-__-' || unique_id as concat_id"
transformed_sql = sql = sqlglot_transform_sql(sql, cast_concat_as_varchar)
assert transformed_sql == output.replace("l.", "") | [
9,
3723,
2008,
947,
16324
] |
f METHOD_NAME(cls, model): | [
280,
578
] |
def METHOD_NAME(item):
columns = [
{
"fieldname": "variant_name",
"label": _("Variant"),
"fieldtype": "Link",
"options": "Item",
"width": 200,
}
]
item_doc = frappe.get_doc("Item", item)
for entry in item_doc.attributes:
columns.append(
{
"fieldname": frappe.scrub(entry.attribute),
"label": entry.attribute,
"fieldtype": "Data",
"width": 100,
}
)
additional_columns = [
{
"fieldname": "avg_buying_price_list_rate",
"label": _("Avg. Buying Price List Rate"),
"fieldtype": "Currency",
"width": 150,
},
{
"fieldname": "avg_selling_price_list_rate",
"label": _("Avg. Selling Price List Rate"),
"fieldtype": "Currency",
"width": 150,
},
{"fieldname": "current_stock", "label": _("Current Stock"), "fieldtype": "Float", "width": 120},
{"fieldname": "in_production", "label": _("In Production"), "fieldtype": "Float", "width": 150},
{
"fieldname": "open_orders",
"label": _("Open Sales Orders"),
"fieldtype": "Float",
"width": 150,
},
]
columns.extend(additional_columns)
return columns | [
19,
1951
] |
def METHOD_NAME(self):
add_layer = GlobalRandomDroppingPoints(drop_rate=0.5)
point_clouds = np.random.random(size=(1, 50, 2)).astype("float32")
point_clouds = np.concatenate([point_clouds, point_clouds], axis=0)
bounding_boxes = np.random.random(size=(2, 10, 7)).astype("float32")
inputs = {POINT_CLOUDS: point_clouds, BOUNDING_BOXES: bounding_boxes}
outputs = add_layer(inputs)
self.assertNotAllClose(inputs, outputs)
# The augmented point clouds in the first frame should be the same as
# the augmented point clouds in the second frame.
self.assertAllClose(outputs[POINT_CLOUDS][0], outputs[POINT_CLOUDS][1]) | [
9,
3303,
3725,
1669,
3793,
61,
1538
] |
def METHOD_NAME(self):
"""Returns the model properties as a dict"""
result = {}
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.METHOD_NAME() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.METHOD_NAME()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].METHOD_NAME())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result | [
24,
553
] |
def METHOD_NAME(tmp_path, create_model_config):
"""
Test calibration of a forecast using a rainforests approach where
thresholds are specified with json file.
"""
rainforests_dir = acc.kgo_root() / "apply-rainforests-calibration"
kgo_path = rainforests_dir / "basic" / "kgo.nc"
forecast_path = (
rainforests_dir
/ "features"
/ "20200802T0000Z-PT0024H00M-precipitation_accumulation-PT24H.nc"
)
feature_paths = (rainforests_dir / "features").glob("20200802T0000Z-PT00*-PT24H.nc")
model_config = create_model_config
output_path = tmp_path / "output.nc"
json_path = rainforests_dir / "threshold_config" / "thresholds.json"
args = [
forecast_path,
*feature_paths,
"--model-config",
model_config,
"--output-threshold-config",
json_path,
"--output",
output_path,
]
run_cli(args)
acc.compare(output_path, kgo_path) | [
9,
763,
853,
200
] |
def METHOD_NAME(helm_release: HelmRelease) -> FindingSeverity:
if helm_release.info.status in ["deployed", "uninstalled"]:
return FindingSeverity.INFO
return FindingSeverity.HIGH | [
19,
32
] |
def METHOD_NAME(amplitude, N, dt, model, full_output=False, **kwargs):
"""
returns the voltage trace of an emitter
We implement only the time-domain solution and obtain the frequency spectrum
via FFT (with the standard normalization of NuRadioMC). This approach assures
that the units are interpreted correctly. In the time domain, the amplitudes
are well defined and not details about fourier transform normalizations needs
to be known by the user.
Parameters
----------
amplitude : float
strength of a pulse
N : int
number of samples in the time domain
dt: float
time bin width, i.e. the inverse of the sampling rate
model: string
specifies the signal model
* delta_pulse: a simple signal model of a delta pulse emitter
* cw : a sinusoidal wave of given frequency
* square : a rectangular pulse of given amplituede and width
* tone_burst : a short sine wave pulse of given frequency and desired width
* idl1 & hvsp1 : these are the waveforms generated in KU lab and stored in hdf5 files
* gaussian : represents a gaussian pulse where sigma is defined through the half width at half maximum
* ARA02-calPulser : a new normalized voltage signal which depicts the original CalPulser shape used in ARA-02
full_output: bool (default False)
if True, can return additional output
Returns
-------
time trace: 2d array, shape (3, N)
the amplitudes for each time bin
additional information: dict
only available if `full_output` enabled
"""
half_width = kwargs.get("half_width")
emitter_frequency = kwargs.get("emitter_frequency")
trace = None
additional_output = {}
if(amplitude == 0):
trace = np.zeros(3, N)
if(model == 'delta_pulse'): # this takes delta signal as input voltage
trace = np.zeros(N)
trace[N // 2] = amplitude
elif(model == 'cw'): # generates a sine wave of given frequency
time = np.linspace(-(N / 2) * dt, ((N - 1) - N / 2) * dt, N)
trace = amplitude * np.sin(2 * np.pi * emitter_frequency * time)
elif(model == 'square' or model == 'tone_burst'): # generates a rectangular or tone_burst signal of given width and frequency
if(half_width > int(N / 2)):
raise NotImplementedError(" half_width {} should be < half of the number of samples N " . format(half_width))
time = np.linspace(-(N / 2) * dt, ((N - 1) - N / 2) * dt, N)
voltage = np.zeros(N)
for i in range(0, N):
if time[i] >= -half_width and time[i] <= half_width:
voltage[i] = amplitude
if(model == 'square'):
trace = voltage
else:
trace = voltage * np.sin(2 * np.pi * emitter_frequency * time)
elif(model == 'gaussian'): # generates gaussian pulse where half_width represents the half width at half maximum
time = np.linspace(-(N / 2) * dt, ((N - 1) - N / 2) * dt, N)
sigma = half_width / (np.sqrt(2 * np.log(2)))
trace = 1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(-1 / 2 * ((time - 500) / sigma) ** 2)
trace = amplitude * 1 / np.max(np.abs(trace)) * trace
elif(model == 'idl1' or model == 'hvsp1' or model == 'ARA02_calPulser'): # the idl1 & hvsp1 waveforms gemerated in KU Lab stored in hdf5 file
path = os.path.dirname(os.path.dirname(__file__))
if(model == 'idl1'):
input_file = os.path.join(path, 'data/idl1_data.hdf5')
elif(model == 'hvsp1'):
input_file = os.path.join(path, 'data/hvsp1_data.hdf5')
else:
input_file = os.path.join(path, 'data/ARA02_Cal_data.hdf5')
read_file = h5py.File(input_file, 'r')
time_original = read_file.get('time')
voltage_original = read_file.get('voltage')
time_new = np.linspace(time_original[0], time_original[len(time_original) - 1], (int((time_original[len(time_original) - 1] - time_original[0]) / dt) + 1))
interpolation = interp1d(time_original, voltage_original, kind='cubic')
voltage_new = interpolation(time_new)
# if the interpolated waveform has larger sample size than N , it will truncate the data keeping peak amplitude at center
if len(voltage_new) > N:
peak_amplitude_index = np.where(np.abs(voltage_new) == np.max(np.abs(voltage_new)))[0][0]
voltage_new = np.roll(voltage_new, int(len(voltage_new) / 2) - peak_amplitude_index)
lower_index = int(len(voltage_new) / 2 - N / 2)
trace = voltage_new[lower_index: lower_index + N] # this truncate data making trace lenght of N
# for the case with larger N, trace size will be adjusted depending on whether the number (N + len(voltage_new)) is even or odd
else:
add_zeros = int((N - len(voltage_new)) / 2)
adjustment = 0
if ((N + len(voltage_new)) % 2 != 0):
adjustment = 1
trace = np.pad(voltage_new, (add_zeros + adjustment, add_zeros), 'constant', constant_values=(0, 0))
trace = amplitude * trace / np.max(np.abs(trace)) # trace now has dimension of amplitude given from event generation file
peak_amplitude_index_new = np.where(np.abs(trace) == np.max(np.abs(trace)))[0][0]
trace = np.roll(trace, int(N / 2) - peak_amplitude_index_new) # this rolls the array(trace) to keep peak amplitude at center
else:
raise NotImplementedError("model {} unknown".format(model))
if(full_output):
return trace, additional_output
else:
return trace | [
19,
104,
2576
] |
def METHOD_NAME():
"""
Function to parse comman line arguments.
"""
parser = argparse.ArgumentParser(description='Create embedding database file.')
parser.add_argument('--db', '-db-path', type=str, default='db',
help='path for face images')
parser.add_argument('--db-filename', type=str, default='embeddings',
help='filename to store embeddings')
parser.add_argument('--include-path', type=str, default='embeddings',
help='path to include folder')
args = parser.parse_args()
return args | [
214,
134
] |
def METHOD_NAME(self, reddit):
"""Make the Reddit instance read-only."""
# Require tests to explicitly disable read_only mode.
reddit.METHOD_NAME = True | [
203,
246
] |
def METHOD_NAME():
ds = sc.Dataset({'a': sc.data.table_xyz(10), 'b': sc.data.table_xyz(10) * 1.123})
ds['x', ds.coords['x'][0]] = ds['x', ds.coords['x'][1]]
assert sc.identical(ds['a'][0].data, ds['a'][1].data)
assert sc.identical(ds['b'][0].data, ds['b'][1].data) | [
9,
5719,
126,
99,
1435,
55
] |
def METHOD_NAME(self):
"""Return time elapsed using the start time and current time."""
return self.current_time - self.start_time | [
3229
] |
def METHOD_NAME(img, lower=0.5, upper=1.5):
e = np.random.uniform(lower, upper)
return ImageEnhance.Color(img).enhance(e) | [
236,
36
] |
def METHOD_NAME(schema_obj):
"""
Test whether expected columns are present and the requirement level is
applied correctly.
This should be robust with respect to schema format.
"""
# mri.MRISpatialEncoding selected for having some level and description addenda
rendered_table = tables.make_columns_table(
schema_obj,
"modality_agnostic.Participants",
).split("\n")
assert rendered_table[0].startswith("| **Column name**")
assert rendered_table[1].startswith("|----------------")
fields = schema_obj.rules.tabular_data.modality_agnostic.Participants.columns
assert len(rendered_table) == len(fields) + 3 # header + orientation + add. cols. row
for field, render_row in zip(fields, rendered_table[2:-1]):
assert render_row.startswith(f"| [{field}](")
spec = fields[field]
if isinstance(spec, str):
level = spec
level_addendum = ""
description_addendum = ""
else:
level = spec["level"]
level_addendum = spec.get("level_addendum", "").replace("required", "REQUIRED")
description_addendum = spec.get("description_addendum", "")
assert level.upper() in render_row
assert level_addendum.split("\n")[0] in render_row
assert description_addendum.split("\n")[0] in render_row | [
9,
93,
1951,
410
] |
def METHOD_NAME(fortran_reader):
''' Tests for the _copy_full_base_reference utility method. '''
code = ("subroutine my_sub()\n"
" use some_mod, only: my_type\n"
" type(my_type) :: var, vars(3)\n"
" var%region%subgrid(3)%data(:) = 1.0\n"
" vars(1)%region%subgrid(3)%data(:) = 1.0\n"
" vars(1)%region%subgrid(:)%data(:) = 1.0\n"
" vars(:)%region%subgrid(3)%xstop = 1.0\n"
"end subroutine my_sub\n")
psyir = fortran_reader.psyir_from_source(code)
assignments = psyir.walk(Assignment)
# var%region%subgrid(3)%data(:)
assign = assignments[0]
arg = _copy_full_base_reference(assign.lhs.member.member.member)
assert arg.member.member.member.name == "data"
assert isinstance(arg.member.member.member, Member)
assert not isinstance(arg.member.member.member, ArrayMember)
# vars(1)%region%subgrid(3)%data(:)
assign = assignments[1]
arg = _copy_full_base_reference(assign.lhs.member.member.member)
assert arg.member.member.member.name == "data"
assert isinstance(arg.member.member.member, Member)
assert not isinstance(arg.member.member.member, ArrayMember)
# vars(1)%region%subgrid(:)%data(:)
assign = assignments[2]
# For the first colon
arg = _copy_full_base_reference(assign.lhs.member.member)
assert arg.member.member.name == "subgrid"
assert isinstance(arg.member.member, Member)
assert not isinstance(arg.member.member, (ArrayMember, StructureMember))
# For the second colon
arg = _copy_full_base_reference(assign.lhs.member.member.member)
assert arg.member.member.member.name == "data"
assert isinstance(arg.member.member.member, Member)
assert not isinstance(arg.member.member.member, ArrayMember)
# vars(:)%region%subgrid(3)%xstop
assign = assignments[3]
arg = _copy_full_base_reference(assign.lhs)
assert arg.symbol.name == "vars"
assert isinstance(arg, Reference)
assert not isinstance(arg, ArrayReference) | [
9,
16982,
17693,
718
] |
def METHOD_NAME(self) -> str:
"""
Fully qualified resource ID for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName}
"""
return pulumi.get(self, "id") | [
147
] |
def METHOD_NAME():
ret = {
}
# Magic to generate unique ids
for s, v in checkMetadataTable.items():
if s == "None":
continue
splits = s.split("-")
main_id = int(splits[0], 16)
sub_id = 0
if len(splits) > 1:
sub_id = splits[1]
if sub_id.isnumeric():
sub_id = (int(sub_id) + 1) * 1000
else:
sub_id = 1000
name = f"{v.name} ({v.area})"
ret[name] = BASE_ID + main_id + sub_id
return ret | [
19,
1081,
24,
147
] |
def METHOD_NAME(data):
return (len(data) == 2 and
ord(data[0]) >= 0xD800 and ord(data[0]) <= 0xDBFF and
ord(data[1]) >= 0xDC00 and ord(data[1]) <= 0xDFFF) | [
137,
9148,
637
] |
def METHOD_NAME(self):
env = self.server.base_environ.copy()
env['SERVER_PROTOCOL'] = self.request_version
env['SERVER_SOFTWARE'] = self.server_version
env['REQUEST_METHOD'] = self.command
if '?' in self.path:
path,query = self.path.split('?',1)
else:
path,query = self.path,''
env['PATH_INFO'] = urllib.parse.unquote(path, 'iso-8859-1')
env['QUERY_STRING'] = query
host = self.address_string()
if host != self.client_address[0]:
env['REMOTE_HOST'] = host
env['REMOTE_ADDR'] = self.client_address[0]
if self.headers.get('content-type') is None:
env['CONTENT_TYPE'] = self.headers.get_content_type()
else:
env['CONTENT_TYPE'] = self.headers['content-type']
length = self.headers.get('content-length')
if length:
env['CONTENT_LENGTH'] = length
for k, v in self.headers.items():
k=k.replace('-','_').upper(); v=v.strip()
if k in env:
continue # skip content length, type,etc.
if 'HTTP_'+k in env:
env['HTTP_'+k] += ','+v # comma-separate multiple headers
else:
env['HTTP_'+k] = v
return env | [
19,
4686
] |
f METHOD_NAME(self, func_name, arg1, arg2): | [
947,
808,
559
] |
def METHOD_NAME():
transformations = enumerate_transformations()
for index, transformation in enumerate(transformations):
print(f'{index} {transformation}')
print(f'There are {len(transformations)} transformations.') | [
29
] |
def METHOD_NAME():
"""
Fetch the SENTRY_CONF value, either from the click context
if available, or SENTRY_CONF environment variable.
"""
try:
ctx = click.get_current_context()
return ctx.obj["config"]
except (RuntimeError, KeyError, TypeError):
try:
return os.environ["SENTRY_CONF"]
except KeyError:
return "~/.sentry" | [
19,
1063,
2546
] |
def METHOD_NAME(
contract_order: contractOrder, config: AlgoConfig
) -> contractOrder:
contract_order.algo_to_use = config.market_algo
return contract_order | [
783,
686,
6080
] |
def METHOD_NAME(self):
self.course_financial_mode.save()
self.request.user = None
assert not FinancialAssistanceTool().is_enabled(self.request, self.course.id) | [
9,
3081,
130,
2999,
1646,
21,
130
] |
def METHOD_NAME(self):
"""string: the version of this running JBoss progress."""
return self._parsed.METHOD_NAME | [
281
] |
f METHOD_NAME(self): | [
9,
808,
493
] |
def METHOD_NAME(
data, kernel, stride, padding, dilation, count_include_pad, oshape, odtype="float16"
):
"""avg_pool2d compute"""
if odtype != "float16":
raise RuntimeError(f"Unsupported output dtype '{odtype}'")
kh, kw = kernel
rh = te.reduce_axis((0, kh), name="rh")
rw = te.reduce_axis((0, kw), name="rw")
sh, sw = stride
dh, dw = dilation
dilated_kh = (kh - 1) * dh + 1
dilated_kw = (kw - 1) * dw + 1
pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
get_const_tuple(padding), (dilated_kh, dilated_kw)
)
# DOPAD
if pad_top != 0 or pad_down != 0 or pad_left != 0 or pad_right != 0:
pad_before = (0, 0, pad_top, pad_left)
pad_after = (0, 0, pad_down, pad_right)
data_pad = pad(data, pad_before, pad_after, name="data_pad")
else:
# By definition when True, zero-padding will be included in the averaging calculation
# This is equivalent to PoolArea = (kh * kw)
count_include_pad = True
data_pad = data
Sum = te.compute(
oshape,
lambda b, c, h, w: te.sum(
data_pad[b, c, h * sh + dh * rh, w * sw + dw * rw].astype("float32"), axis=[rh, rw]
),
name="pool_sum",
)
if not count_include_pad:
# Compute PoolArea using unpadded input tensor
_, _, oh, ow = oshape
_, _, ih, iw = data.shape
PoolArea = te.compute(
(oh, ow),
lambda i, j: compute_PoolArea(i, j, ih, iw, kh, kw, sh, sw, dh, dw, pad_top, pad_left),
name="pool_area",
)
InvArea = te.compute(
(oh, ow),
lambda i, j: tir.if_then_else(
tir.all(PoolArea[i, j] > 0), (float(1) / PoolArea[i, j]), 0
),
name="inverse_area",
)
Avg = te.compute(
oshape,
lambda b, c, h, w: (Sum[b, c, h, w] * InvArea[h, w]).astype(odtype),
name="pool_avg",
)
else:
InvArea = float(1) / (kh * kw)
Avg = te.compute(
oshape, lambda b, c, h, w: (Sum[b, c, h, w] * InvArea).astype(odtype), name="pool_avg"
)
return Avg | [
1654,
6768,
5234
] |
def METHOD_NAME(filename):
# Read file.
with open (filename, 'rb') as f:
lines = f.readlines()
fcontents = ''.join(lines)
# Build line break index.
line_starts = [0]
for line in lines:
line_starts.append(line_starts[-1] + len(line))
#print line_starts
# Search for all comments.
pattern = re.compile(
r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"',
re.DOTALL | re.MULTILINE)
for match in re.finditer(pattern, fcontents):
line_start = bisect.bisect(line_starts, match.start(0))
line_end = bisect.bisect(line_starts, match.end(0) - 1)
column_start = match.start(0) - line_starts[line_start - 1]
column_end = match.end(0) - line_starts[line_end - 1]
yield (SourceLocation(filename, line_start, column_start + 1, match.start(0)),
SourceLocation(filename, line_end, column_end + 1, match.end(0)),
match.group(0)) | [
702,
3528
] |
def METHOD_NAME(plugin_name: str, local_plugin_dir: str):
module_name = plugin_name.replace("-", "_")
module = _load_compat_x_prefix(plugin_name, module_name, local_plugin_dir)
if module is None:
sys.path = [local_plugin_dir] + sys.path
logger.debug(
f"Loading plugin module {module_name!r} with sys.path {sys.path!r}"
)
try:
module = importlib.import_module(module_name)
finally:
sys.path.pop(0)
return module | [
557,
125
] |
def METHOD_NAME(self, engine: Engine, usage: Union[str, MetricUsage] = EpochWise()) -> None:
usage = self._check_usage(usage)
# remove from engine
super(MetricsLambda, self).METHOD_NAME(engine, usage)
self.engine = None | [
646
] |
def METHOD_NAME(self, execute_task):
task = execute_task('test_multi_torrent_is_root_dir')
assert (
len(task.accepted) == 1
), 'Should have accepted multi_file_with_diff because its size is within threshold'
assert task.accepted[0]['path'] == 'torrent_match_test_dir' | [
9,
457,
3564,
137,
1563,
1190
] |
def METHOD_NAME(
product, attribute_value_generator
):
"""Ensure multiple values in proper order are assigned."""
old_assignment = product.attributes.first()
assert old_assignment is not None, "The product doesn't have attribute-values"
assert old_assignment.values.count() == 1
attribute = old_assignment.attribute
attribute_value_generator(
attribute=attribute,
slug="attr-value2",
)
values = attribute.values.all()
# Assign new values
new_assignment = associate_attribute_values_to_instance(
product, attribute, values[1], values[0]
)
# Ensure the new assignment was created and ordered correctly
assert new_assignment.pk == old_assignment.pk
assert new_assignment.values.count() == 2
assert list(
new_assignment.productvalueassignment.values_list("value_id", "sort_order")
) == [(values[1].pk, 0), (values[0].pk, 1)] | [
9,
6888,
309,
24,
1188,
89,
107
] |
def METHOD_NAME(cls, database_id: int) -> dict[str, Any]:
database: Any = cls.find_by_id(database_id)
datasets = database.tables
dataset_ids = [dataset.id for dataset in datasets]
charts = (
db.session.query(Slice)
.filter(
Slice.datasource_id.in_(dataset_ids),
Slice.datasource_type == DatasourceType.TABLE,
)
.all()
)
chart_ids = [chart.id for chart in charts]
dashboards = (
(
db.session.query(Dashboard)
.join(Dashboard.slices)
.filter(Slice.id.in_(chart_ids))
)
.distinct()
.all()
)
sqllab_tab_states = (
db.session.query(TabState).filter(TabState.database_id == database_id).all()
)
return {
"charts": charts,
"dashboards": dashboards,
"sqllab_tab_states": sqllab_tab_states,
} | [
19,
252,
635
] |
def METHOD_NAME(self):
self.assertEqual(
Article._get_objects_for_user(self.superuser).count(),
Article.objects.count()
)
self.assertEqual(
LongArticle._get_objects_for_user(self.superuser).count(),
LongArticle.objects.count()
) | [
9,
19,
279,
43,
5733
] |
def METHOD_NAME(
mocked_notify, site_settings, customer_user, channel_PLN
):
old_email = "[email protected]"
notifications.send_user_change_email_notification(
old_email, customer_user, get_plugins_manager(), channel_slug=channel_PLN.slug
)
expected_payload = {
"user": get_default_user_payload(customer_user),
"recipient_email": old_email,
"channel_slug": channel_PLN.slug,
"old_email": old_email,
"new_email": customer_user.email,
**get_site_context_payload(site_settings.site),
}
mocked_notify.assert_called_once_with(
UserNotifyEvent.ACCOUNT_CHANGE_EMAIL_CONFIRM,
payload=expected_payload,
channel_slug=channel_PLN.slug,
) | [
9,
353,
487,
1180,
857
] |
def METHOD_NAME(session, generator, eval_names, eval_func, iterations):
"""
Evaluates the graph's performance by running data through the network
and calling an evaluation function to generate the performance metric.
:param session: The tensorflow session that contains the graph
:param generator: The data generator providing the network with batch data
:param eval_names: The names providing the nodes on which the network's performance should be judged
:param eval_func: The customized function to evaluate the performance of the network
:param iterations: The number of iterations (batches) to run through the network
:return:
"""
# Ensure any uninitialized variables are initialized
initialize_uninitialized_vars(session)
# Get the first batch and ue it to create the tensor map
t_map = _create_map_of_input_tensors(generator, session)
eval_outputs = []
for name in eval_names:
op = session.graph.get_operation_by_name(name)
eval_outputs.append(op.outputs[0])
# Run the graph and verify the data is being updated properly for each iteration
avg_metric = 0
log.info("Evaluating graph for %i iterations", iterations)
for _, batch in zip(range(iterations), generator):
# Setup the feed dictionary
feed_dict = {}
for name, data in batch.items():
feed_dict[t_map[name]] = data
output_data = session.run(eval_outputs, feed_dict=feed_dict)
avg_metric += eval_func(list(zip(eval_names, output_data)))
log.info("Completed graph evaluation for %i iterations", iterations)
return avg_metric / iterations | [
1195,
303
] |
def METHOD_NAME(self, project):
# test command
vars_dict = {
"test_run_schema": project.test_schema,
}
run_dbt(["seed", "--vars", yaml.safe_dump(vars_dict)])
results = run_dbt(["run", "--vars", yaml.safe_dump(vars_dict)])
assert len(results) == 4 | [
9,
9999,
450
] |
def METHOD_NAME(*args):
return numpy.METHOD_NAME(datetime.datetime(*args)) | [
10332
] |
def METHOD_NAME(n_dim, order):
assert n_dim > 0
assert order > 1
x = [[0.0, 1.0]] * (n_dim - 1)
x.append(list(np.arange(0, order) / (order - 1.0)))
x_data = _quadrature_combine(x)
return x_data | [
129,
4431,
753,
246,
5112
] |
def METHOD_NAME(val: float) -> str:
"""writes a Nastran formatted 11.4 float"""
v2 = '%11.4E' % val
if v2 in (' 0.0000E+00', '-0.0000E+00'):
v2 = ' 0.0'
return v2 | [
77,
1819,
-1
] |
def METHOD_NAME(self) -> str:
"""
The provider-assigned unique ID for this managed resource.
"""
return pulumi.get(self, "id") | [
147
] |
def METHOD_NAME(self):
"""
Verifies that going to the courseware with a required, but non-existing survey, does not redirect
"""
resp = self.client.get(
reverse(
'course_survey',
kwargs={'course_id': str(self.course_without_survey.id)}
)
)
self.assertRedirects(
resp,
course_home_url(self.course_without_survey.id),
fetch_redirect_response=False,
) | [
9,
7528,
1281,
41,
654,
1122,
1281
] |
def METHOD_NAME(prefix):
return prefix[:8] == olefile.MAGIC | [
1437
] |
f METHOD_NAME(self,
num_elements,
tag1="record_latency",
tag2="record_latency_2"): | [
56,
126,
107,
114
] |
def METHOD_NAME(self, tmpdir):
with setuptools.sandbox.DirectorySandbox(str(tmpdir)):
self._file_writer(os.devnull) | [
9,
-1
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.