text
stringlengths 15
7.82k
| ids
sequencelengths 1
7
|
---|---|
def METHOD_NAME(scale):
value = scale.get_value()
set_cfg("ratio", value)
self.emit("changed") | [
4517,
1180
] |
def METHOD_NAME(self):
self.check("*.jpg") | [
9,
557,
7121
] |
def METHOD_NAME(plugin_settings):
settings = get_settings()
assert settings.version == 1
settings_profile = settings.profiles[_DEFAULT_PROFILE]
assert settings_profile.scopes == {PluginScope.STORAGE: [TestPlugin.get_path()]}
assert settings_profile.settings == {
TestPlugin.get_path(): {
SettingsVar.SOME_SETTING: "bar",
_PLUGIN_VERSION_KEY: "0.1.0",
}
} | [
9,
19,
817
] |
def METHOD_NAME(*args, **kwargs):
assert self._indent > 0
self._indent -= 1
if logger.isEnabledFor(logging.INFO):
s: str = " " * self._indent
s += f"[!error!<-observed({suffix})] "
s += ",".join((str(x) for x in args))
for k, v in kwargs.items():
s += f"{k}->{v}"
logger.info(s) | [
-1
] |
def METHOD_NAME(cls):
cls.bot_reference = ZoneHParserBot
cls.default_input_message = ACCEPTED_REPORT
cls.sysconfig = {'feedname': 'Compromised-Website'} | [
0,
1227
] |
def METHOD_NAME(
info_list: list[_OptimizationHistoryInfo],
target_name: str,
) -> "Axes":
# Set up the graph style.
plt.style.use("ggplot") # Use ggplot style sheet for similar outputs to plotly.
_, ax = plt.subplots()
ax.set_title("Optimization History Plot")
ax.set_xlabel("Trial")
ax.set_ylabel(target_name)
cmap = plt.get_cmap("tab10") # Use tab10 colormap for similar outputs to plotly.
for i, (trial_numbers, values_info, best_values_info) in enumerate(info_list):
if values_info.stds is not None:
if (
_ValueState.Infeasible in values_info.states
or _ValueState.Incomplete in values_info.states
):
_logger.warning(
"Your study contains infeasible trials. "
"In optimization history plot, "
"error bars are calculated for only feasible trial values."
)
feasible_trial_numbers = trial_numbers
feasible_trial_values = values_info.values
plt.errorbar(
x=feasible_trial_numbers,
y=feasible_trial_values,
yerr=values_info.stds,
capsize=5,
fmt="o",
color="tab:blue",
)
infeasible_trial_numbers: list[int] = []
infeasible_trial_values: list[float] = []
else:
feasible_trial_numbers = [
n for n, s in zip(trial_numbers, values_info.states) if s == _ValueState.Feasible
]
infeasible_trial_numbers = [
n for n, s in zip(trial_numbers, values_info.states) if s == _ValueState.Infeasible
]
feasible_trial_values = []
for num in feasible_trial_numbers:
feasible_trial_values.append(values_info.values[num])
infeasible_trial_values = []
for num in infeasible_trial_numbers:
infeasible_trial_values.append(values_info.values[num])
ax.scatter(
x=feasible_trial_numbers,
y=feasible_trial_values,
color=cmap(0) if len(info_list) == 1 else cmap(2 * i),
alpha=1,
label=values_info.label_name,
)
if best_values_info is not None:
ax.plot(
trial_numbers,
best_values_info.values,
color=cmap(3) if len(info_list) == 1 else cmap(2 * i + 1),
alpha=0.5,
label=best_values_info.label_name,
)
if best_values_info.stds is not None:
lower = np.array(best_values_info.values) - np.array(best_values_info.stds)
upper = np.array(best_values_info.values) + np.array(best_values_info.stds)
ax.fill_between(
x=trial_numbers,
y1=lower,
y2=upper,
color="tab:red",
alpha=0.4,
)
ax.legend()
ax.scatter(
x=infeasible_trial_numbers,
y=infeasible_trial_values,
color="#cccccc",
)
plt.legend(bbox_to_anchor=(1.05, 1.0), loc="upper left")
return ax | [
19,
2123,
351,
1288
] |
def METHOD_NAME(self):
return self.IdString | [
19,
147,
144
] |
def METHOD_NAME(ctx, z):
return isinstance(z, complex) | [
137,
2587,
44
] |
def METHOD_NAME(schema, rootschema, props=None):
items = select_items_from_schema(schema, props)
return build_schema_table(items, rootschema) | [
123,
135,
410
] |
def METHOD_NAME(elem, loader=None):
if loader is None:
loader = default_loader
# look for xinclude elements
i = 0
while i < len(elem):
e = elem[i]
if e.tag == XINCLUDE_INCLUDE:
# process xinclude directive
href = e.get("href")
parse = e.get("parse", "xml")
if parse == "xml":
node = loader(href, parse)
if node is None:
raise FatalIncludeError(
"cannot load %r as %r" % (href, parse)
)
node = copy.copy(node)
if e.tail:
node.tail = (node.tail or "") + e.tail
elem[i] = node
elif parse == "text":
text = loader(href, parse, e.get("encoding"))
if text is None:
raise FatalIncludeError(
"cannot load %r as %r" % (href, parse)
)
if i:
node = elem[i-1]
node.tail = (node.tail or "") + text + (e.tail or "")
else:
elem.text = (elem.text or "") + text + (e.tail or "")
del elem[i]
continue
else:
raise FatalIncludeError(
"unknown parse type in xi:include tag (%r)" % parse
)
elif e.tag == XINCLUDE_FALLBACK:
raise FatalIncludeError(
"xi:fallback tag must be child of xi:include (%r)" % e.tag
)
else:
METHOD_NAME(e, loader)
i = i + 1 | [
1872
] |
def METHOD_NAME():
"""Total location events raises an error for a bad direction."""
with pytest.raises(ValueError):
TotalLocationEvents(
"2016-01-01",
"2016-01-04",
spatial_unit=make_spatial_unit("versioned-site"),
interval="min",
direction="BAD_DIRECTION",
) | [
9,
1068,
4065,
45,
168
] |
def METHOD_NAME(self):
# type: () -> None
self._client.METHOD_NAME() | [
1462
] |
def METHOD_NAME(self, vault_uri, **kwargs):
from azure.keyvault.keys import KeyClient
credential = self.get_credential(KeyClient)
return self.create_client_from_credential(KeyClient, credential=credential, vault_url=vault_uri, **kwargs ) | [
129,
59,
340
] |
def METHOD_NAME(self, path, commit_hash):
def checkout_existing(display_error):
# Deinit fails if no submodules, so ignore its failure
self._run_git(['-c', 'protocol.file.allow=always',
'submodule', 'deinit', '-f', '.'],
cwd=path, display_error=False, valid_return_codes=None)
self._run_git(['checkout', '-f', commit_hash],
cwd=path, display_error=display_error)
self._run_git(['clean', '-fdx'],
cwd=path, display_error=display_error)
self._run_git(['-c', 'protocol.file.allow=always',
'submodule', 'update', '--init', '--recursive'],
cwd=path, display_error=display_error)
if os.path.isdir(path):
try:
checkout_existing(display_error=False)
except util.ProcessError:
# Remove and try to re-clone
util.long_path_rmtree(path)
if not os.path.isdir(path):
self._run_git(['clone', '--shared', '--recursive', self._path, path],
cwd=None)
checkout_existing(display_error=True) | [
2170
] |
def METHOD_NAME(email_service_name: Optional[str] = None,
resource_group_name: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetEmailServiceResult:
"""
Get the EmailService and its properties.
:param str email_service_name: The name of the EmailService resource.
:param str resource_group_name: The name of the resource group. The name is case insensitive.
"""
__args__ = dict()
__args__['emailServiceName'] = email_service_name
__args__['resourceGroupName'] = resource_group_name
opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts)
__ret__ = pulumi.runtime.invoke('azure-native:communication/v20230401preview:getEmailService', __args__, opts=opts, typ=GetEmailServiceResult).value
return AwaitableGetEmailServiceResult(
data_location=pulumi.get(__ret__, 'data_location'),
id=pulumi.get(__ret__, 'id'),
location=pulumi.get(__ret__, 'location'),
name=pulumi.get(__ret__, 'name'),
provisioning_state=pulumi.get(__ret__, 'provisioning_state'),
system_data=pulumi.get(__ret__, 'system_data'),
tags=pulumi.get(__ret__, 'tags'),
type=pulumi.get(__ret__, 'type')) | [
19,
487,
549
] |
def METHOD_NAME(self) -> bool:
conf = self.col.decks.config_dict_for_deck_id(self.current_deck_id())
return conf["timer"] | [
427,
697,
2401
] |
def METHOD_NAME(self):
lib = self._get_userlibrary('kw1', 'Embedded ${arg}', 'kw2')
assert_equal(len(lib.handlers), 3)
assert_true('kw1' in lib.handlers)
assert_true('kw 2' in lib.handlers)
self._lib_has_embedded_arg_keyword(lib) | [
9,
4564,
2537,
1646,
1576,
61,
2314
] |
def METHOD_NAME(self, index):
return (index + self.MAX_FAN_PER_DRAWER - 1) / self.MAX_FAN_PER_DRAWER | [
197,
1337,
724,
24,
1450,
724
] |
def METHOD_NAME(futures, lithops_executor):
if mp_config.get_parameter(mp_config.EXPORT_EXECUTION_DETAILS):
try:
path = os.path.realpath(mp_config.get_parameter(mp_config.EXPORT_EXECUTION_DETAILS))
job_id = futures[0].job_id
plots_file_name = '{}_{}'.format(lithops_executor.executor_id, job_id)
lithops_executor.plot(fs=futures, dst=os.path.join(path, plots_file_name))
stats = {fut.call_id: fut.stats for fut in futures}
stats_file_name = '{}_{}_stats.json'.format(lithops_executor.executor_id, job_id)
with open(os.path.join(path, stats_file_name), 'w') as stats_file:
stats_json = json.dumps(stats, indent=4)
stats_file.write(stats_json)
except Exception as e:
logger.error('Error while exporting execution results: {}\n{}'.format(e, traceback.format_exc())) | [
294,
2046,
2051
] |
def METHOD_NAME(config):
"""
process optim configs for hybrid parallel
"""
config["Optimizer"]["multi_precision"] = config["Engine"]["mix_precision"]["enable"]
nranks = dist.get_world_size()
dp_degree = config["Distributed"]["dp_degree"]
sharding_degree = config["Distributed"]["sharding"]["sharding_degree"]
if config["Optimizer"].get("tensor_fusion", None):
assert (
nranks == dp_degree * sharding_degree
), "tensor_fusion only support single card train or data/sharding parallel train"
if config["Optimizer"]["lr"]["decay_steps"] is None:
config["Optimizer"]["lr"]["decay_steps"] = config["Engine"]["max_steps"]
config["Optimizer"]["lr"]["decay_steps"] *= config["Global"]["global_batch_size"] | [
356,
13051,
736
] |
def METHOD_NAME(self):
"""Simple Convnet model."""
model = tf.keras.Sequential()
model.add(
tf.keras.layers.Conv2D(
32,
kernel_size=(3, 3),
activation="relu",
input_shape=(28, 28, 1),
)
)
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation="relu"))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation="relu"))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(10, activation="softmax"))
return model | [
1697,
7222
] |
def METHOD_NAME(self):
config = ClientConfig()
assert config.dump() == {}
assert config.get("foo") is None
assert config.get("foo", default="bar") == "bar" | [
9,
235
] |
def METHOD_NAME(self):
calibration_script = os.path.join(self.args.intelai_models,
self.args.precision,
"generate_calibration_data.py")
script_args_list = [
"input_graph", "data_location",
"batch_size",
"num_inter_threads", "num_intra_threads"]
cmd_prefix = self.get_command_prefix(self.args.socket_id) + \
self.python_exe + " " + calibration_script
cmd = self.add_args_to_command(cmd_prefix, script_args_list)
self.run_command(cmd) | [
22,
2216
] |
def METHOD_NAME(dev, target):
_run_tests(dev, target, op_name="cumprod", gt_func=np.cumprod) | [
9,
14044
] |
def METHOD_NAME(self) -> Optional[str]:
"""
The resource location.
"""
return pulumi.get(self, "location") | [
708
] |
def METHOD_NAME(mt: 'hl.MatrixTable', no_props=False):
assert mt.rows().collect() == \
[ hl.Struct(row_idx=0, **unless(no_props, {'foo': 'a'}))
, hl.Struct(row_idx=1, **unless(no_props, {'foo': 'b'}))
] | [
638,
855,
1346
] |
def METHOD_NAME(self):
self.assertEqual(self.harvester_class.ratings(), 4.67) | [
9,
4622
] |
def METHOD_NAME(self, obj: Any) -> bytes:
... | [
947,
1479
] |
def METHOD_NAME(load, fnd):
"""
Return a chunk from a file based on the data received
"""
return _gitfs().METHOD_NAME(load, fnd) | [
3124,
171
] |
def METHOD_NAME(self):
# Check that setting the optional (non-ellipse) args works.
crs = Mercator(
longitude_of_projection_origin=27,
standard_parallel=157.4,
false_easting=13,
false_northing=12,
)
self.assertEqualAndKind(crs.longitude_of_projection_origin, 27.0)
self.assertEqualAndKind(crs.standard_parallel, 157.4)
self.assertEqualAndKind(crs.false_easting, 13.0)
self.assertEqualAndKind(crs.false_northing, 12.0) | [
9,
0,
665,
335
] |
def METHOD_NAME(xy_of_hex):
"""Test scipy Voronoi names are mapped to landlab-style names."""
voronoi = Voronoi(xy_of_hex)
delaunay = Delaunay(xy_of_hex)
graph = VoronoiDelaunay(xy_of_hex)
voronoi.regions, voronoi.point_region = VoronoiDelaunay._remove_empty_regions(
voronoi.regions, voronoi.point_region
)
assert np.all(graph.x_of_node == approx(voronoi.points[:, 0]))
assert np.all(graph.y_of_node == approx(voronoi.points[:, 1]))
assert np.all(graph.x_of_corner == approx(voronoi.vertices[:, 0]))
assert np.all(graph.y_of_corner == approx(voronoi.vertices[:, 1]))
assert np.all(graph.nodes_at_link == voronoi.ridge_points)
assert tuple(graph.n_corners_at_cell) == tuple(
len(region) for region in voronoi.regions
)
for cell, corners in enumerate(graph.corners_at_cell):
assert np.all(corners[: graph.n_corners_at_cell[cell]] == voronoi.regions[cell])
assert np.all(corners[graph.n_corners_at_cell[cell] :] == -1)
assert np.all(graph.corners_at_face == voronoi.ridge_vertices)
assert np.all(graph.nodes_at_face == voronoi.ridge_points)
assert np.all(graph.cell_at_node == voronoi.point_region)
assert np.all(graph.nodes_at_patch == delaunay.simplices) | [
9,
6071,
156,
445
] |
def METHOD_NAME(self):
"""
function to start the draw ROI function
"""
# If there is a ROI Selected
if self.list_of_ROIs.currentItem() is not None:
roi = self.list_of_ROIs.currentItem()
self.roi_name = str(roi.text())
# Call function on UIDrawWindow so it has selected ROI
self.signal_roi_name.emit(self.roi_name)
self.close() | [
69,
1472,
65,
2859
] |
f METHOD_NAME(self) -> Iterator[None]: | [
129
] |
def METHOD_NAME(self) -> bool:
return self.global_rank == 0 | [
137,
285,
313
] |
def METHOD_NAME(self) -> Optional[str]:
"""
The type of identity that last modified the resource.
"""
return pulumi.get(self, "last_modified_by_type") | [
679,
680,
604,
44
] |
def METHOD_NAME(
ivp: problems.InitialValueProblem,
locations: Union[Sequence, np.ndarray],
ode_information_operator: information_operators.InformationOperator,
approx_strategy: Optional[approx_strategies.ApproximationStrategy] = None,
ode_measurement_variance: Optional[FloatLike] = 0.0,
exclude_initial_condition=False,
):
"""Transform an initial value problem into a regression problem.
Parameters
----------
ivp
Initial value problem to be transformed.
locations
Locations of the time-grid-points.
ode_information_operator
ODE information operator to use.
approx_strategy
Approximation strategy to use. Optional. Default is `EK1()`.
ode_measurement_variance
Artificial ODE measurement noise. Optional. Default is 0.0.
exclude_initial_condition
Whether to exclude the initial condition from the regression problem.
Optional. Default is False, in which case the returned measurement model list
consist of [`initcond_mm`, `ode_mm`, ..., `ode_mm`].
Returns
-------
problems.TimeSeriesRegressionProblem
Time-series regression problem.
"""
# Construct data and solution
N = len(locations)
data = np.zeros((N, ivp.dimension))
if ivp.solution is not None:
solution = np.stack([ivp.solution(t) for t in locations])
else:
solution = None
ode_information_operator.incorporate_ode(ivp)
# Construct measurement models
measmod_initial_condition, measmod_ode = _construct_measurement_models(
ivp, ode_information_operator, approx_strategy, ode_measurement_variance
)
if exclude_initial_condition:
measmod_list = [measmod_ode] * N
else:
measmod_list = [measmod_initial_condition] + [measmod_ode] * (N - 1)
# Return regression problem
return problems.TimeSeriesRegressionProblem(
locations=locations,
observations=data,
measurement_models=measmod_list,
solution=solution,
) | [
-1,
24,
1399,
3095
] |
def METHOD_NAME(self):
r"""Does the dataset contain temporal graphs
Returns
-------
bool
"""
return True | [
137,
6346
] |
def METHOD_NAME():
date = "2001-01-01"
response = GoogleAds.parse_single_result(SAMPLE_SCHEMA, MockedDateSegment(date))
assert response == response | [
9,
214,
97,
1571
] |
def METHOD_NAME(
self, api: _PageApi, max_results: int | None, limit: int | None
) -> Generator[_HubSpotResult, None, None]:
after = None
count = 0
# HubSpot returns a 400 HTTP error when trying to fetch more than 100 results
if limit is not None:
limit = min(limit, 100)
while True:
page = self._fetch_page(api, after=after, limit=limit)
for result in page.results:
if max_results is not None and count >= max_results:
return
yield result
count += 1
if (after := page.next_page_after()) is None:
return | [
1571,
640
] |
def METHOD_NAME(self, segment, states):
# Split a full word (segment) into subwords (units)
return self.spm['src'].EncodeAsPieces(segment) | [
4373,
24,
1878
] |
def METHOD_NAME(cls, original_object: Any, pr_id: int) -> "PullRequest":
pull_request = original_object.get_pr(pr_id)
pull_request._status = PRStatus.closed
return pull_request | [
1933,
1462
] |
def METHOD_NAME(path):
"""
Make sure the directory path ends with a slash.
>>> assert path_prettify('/foo/bar') == '/foo/bar/'
>>> assert path_prettify('/foo/bar//') == '/foo/bar/'
:param path: The path to process.
:type path: str
:return: Returns the prettified path.
:rtype: str
"""
assert isinstance(path, str)
return '{}/'.format(path.rstrip('/')) | [
157,
2191
] |
def METHOD_NAME(self):
"""Return a list of surveys for MAGPIS"""
return self.surveys | [
245,
9058
] |
f METHOD_NAME(self): | [
9,
73,
24,
35,
105
] |
def METHOD_NAME(self):
"""Check for errors after having set a property and log them.
Called if :code:`check_set_errors=True` is set for that property.
:return: List of error entries.
"""
response = self.read()
return [] if response == "" else [response] | [
250,
0,
1096
] |
def METHOD_NAME(s, *p):
path = s
for t in p:
if (not path) or isabs(t):
path = t
continue
if t[:1] == ':':
t = t[1:]
if ':' not in path:
path = ':' + path
if path[-1:] != ':':
path = path + ':'
path = path + t
return path | [
2831
] |
def METHOD_NAME(self):
self.image1.load_image()
self.image2.load_image()
self.image3.load_image()
self.assertTrue(self.image3.set_image_import(self.image2))
self.assertFalse(self.image3.set_image_import(self.image1)) | [
9,
0,
660,
512
] |
def METHOD_NAME(self) -> str:
"""
Resource type.
"""
return pulumi.get(self, "type") | [
44
] |
def METHOD_NAME(tmp_path, mocker, capsys, backend, status_runner, container_type):
# given
unsynced_container = prepare_metadata_container(container_type=container_type, path=tmp_path, last_ack_version=1)
synced_container = prepare_metadata_container(container_type=container_type, path=tmp_path, last_ack_version=3)
get_container_impl = generate_get_metadata_container(registered_containers=(unsynced_container, synced_container))
# and
mocker.patch.object(backend, "get_metadata_container", get_container_impl)
mocker.patch.object(Operation, "from_dict")
# when
status_runner.synchronization_status(tmp_path)
# then
captured = capsys.readouterr()
assert captured.out.splitlines() == [
"Unsynchronized objects:",
f"- {get_qualified_name(unsynced_container)}",
"",
"Please run with the `neptune sync --help` to see example commands.",
] | [
9,
245,
2954
] |
def METHOD_NAME(self, ip):
if len(ip.split(".")) == 4:
return True
else:
return False | [
137,
1213,
8046
] |
def METHOD_NAME(self):
self.run_location_tests([
["Superbunny Cave - Top", False, []],
["Superbunny Cave - Top", True, ['Pegasus Boots']],
["Superbunny Cave - Bottom", False, []],
["Superbunny Cave - Bottom", True, ['Pegasus Boots']],
["Hookshot Cave - Bottom Right", False, []],
["Hookshot Cave - Bottom Right", False, [], ['Hookshot', 'Pegasus Boots']],
["Hookshot Cave - Bottom Right", False, [], ['Progressive Glove', 'Pegasus Boots', 'Magic Mirror']],
["Hookshot Cave - Bottom Right", True, ['Pegasus Boots']],
["Hookshot Cave - Bottom Left", False, []],
["Hookshot Cave - Bottom Left", False, [], ['Hookshot']],
["Hookshot Cave - Bottom Left", False, [], ['Progressive Glove', 'Pegasus Boots', 'Magic Mirror']],
["Hookshot Cave - Bottom Left", True, ['Pegasus Boots', 'Hookshot']],
["Hookshot Cave - Top Left", False, []],
["Hookshot Cave - Top Left", False, [], ['Hookshot']],
["Hookshot Cave - Top Left", False, [], ['Progressive Glove', 'Pegasus Boots', 'Magic Mirror']],
["Hookshot Cave - Top Left", True, ['Pegasus Boots', 'Hookshot']],
["Hookshot Cave - Top Right", False, []],
["Hookshot Cave - Top Right", False, [], ['Hookshot']],
["Hookshot Cave - Top Right", False, [], ['Progressive Glove', 'Pegasus Boots', 'Magic Mirror']],
["Hookshot Cave - Top Right", True, ['Pegasus Boots', 'Hookshot']],
] | [
9,
14745,
6022,
3021,
570,
-1
] |
def METHOD_NAME(goal):
txinfo, err = goal.app_create(goal.account, goal.assemble(TEAL))
assert not err, f"err: {err}"
appid = txinfo["application-index"]
creator_min_balance = int.from_bytes(b64decode(txinfo["logs"][2]), byteorder="big")
return appid, creator_min_balance | [
129,
5703,
1835,
3101,
991
] |
def METHOD_NAME(status_tree):
status_tree.setdefault("children", {})
status_tree.pop("created_time", "")
started_time = status_tree.pop("started_time", None)
archived_time = status_tree.pop("archived_time", None)
if "elapsed_time" not in status_tree:
status_tree["elapsed_time"] = calculate_elapsed_time(started_time, archived_time)
status_tree["start_time"] = format_datetime(started_time) if started_time else None
status_tree["finish_time"] = format_datetime(archived_time) if archived_time else None | [
275,
452,
104
] |
def METHOD_NAME(self, *args, **kwargs) -> IterDataPipe:
res = self.deterministic_fn(*args, **kwargs) # type: ignore
if not isinstance(res, bool):
raise TypeError(
"deterministic_fn of `non_deterministic` decorator is required "
"to return a boolean value, but {} is found".format(type(res))
)
global _determinism
if _determinism and res:
raise TypeError(
"{} is non-deterministic with the inputs, but you set "
"'guaranteed_datapipes_determinism'. You can turn off determinism "
"for this DataPipe if that is acceptable for your application".format(
self.cls.__name__
)
) # type: ignore
return self.cls(*args, **kwargs) # type: ignore | [
4665,
291,
667
] |
def METHOD_NAME(self, image: ndarray, camera: str) -> str:
r = self._get("image/signed_urls")
presigned_urls = r.json()
if not r.ok:
raise Exception("Unable to get signed urls")
# resize and submit original
files = {"file": get_jpg_bytes(image, 1920, 85)}
data = presigned_urls["original"]["fields"]
data["content-type"] = "image/jpeg"
r = requests.post(presigned_urls["original"]["url"], files=files, data=data)
if not r.ok:
logger.error(f"Failed to upload original: {r.status_code} {r.text}")
raise Exception(r.text)
# resize and submit annotate
files = {"file": get_jpg_bytes(image, 640, 70)}
data = presigned_urls["annotate"]["fields"]
data["content-type"] = "image/jpeg"
r = requests.post(presigned_urls["annotate"]["url"], files=files, data=data)
if not r.ok:
logger.error(f"Failed to upload annotate: {r.status_code} {r.text}")
raise Exception(r.text)
# resize and submit thumbnail
files = {"file": get_jpg_bytes(image, 200, 70)}
data = presigned_urls["thumbnail"]["fields"]
data["content-type"] = "image/jpeg"
r = requests.post(presigned_urls["thumbnail"]["url"], files=files, data=data)
if not r.ok:
logger.error(f"Failed to upload thumbnail: {r.status_code} {r.text}")
raise Exception(r.text)
# create image
r = self._post(
"image/create", {"id": presigned_urls["imageId"], "camera": camera}
)
if not r.ok:
raise Exception(r.text)
# return image id
return str(presigned_urls.get("imageId")) | [
172,
660
] |
def METHOD_NAME(stream):
import cStringIO
return cStringIO.StringIO( stream.read() ) | [
1645,
948
] |
def METHOD_NAME(self, ProtocolList):
self.ProtocolList = ProtocolList | [
0,
234,
245
] |
def METHOD_NAME(self, position: Union[pygame.math.Vector2,
Tuple[int, int],
Tuple[float, float]]):
"""
Method to directly set the relative rect position of an element.
:param position: The new position to set.
""" | [
0,
1821,
195
] |
def METHOD_NAME(self, session):
pass | [
69,
2333
] |
f METHOD_NAME(self): | [
1911,
5490,
947,
695,
2779
] |
def METHOD_NAME(msg: MsgInSignTx) -> None:
data_length = msg.data_length # local_cache_attribute
if data_length > 0:
if not msg.data_initial_chunk:
raise DataError("Data length provided, but no initial chunk")
# Our encoding only supports transactions up to 2^24 bytes. To
# prevent exceeding the limit we use a stricter limit on data length.
if data_length > 16_000_000:
raise DataError("Data length exceeds limit")
if len(msg.data_initial_chunk) > data_length:
raise DataError("Invalid size of initial chunk")
if len(msg.to) not in (0, 40, 42):
raise DataError("Invalid recipient address")
if not msg.to and data_length == 0:
# sending transaction to address 0 (contract creation) without a data field
raise DataError("Contract creation without data")
if msg.chain_id == 0:
raise DataError("Chain ID out of bounds") | [
250,
67,
342
] |
def METHOD_NAME(lr, x):
"""Classify an observation into a class."""
probs = calculate(lr, x)
if probs[0] > probs[1]:
return 0
return 1 | [
6144
] |
def METHOD_NAME():
example(
resource_name='PXI1Slot2/0',
options={'simulate': True, 'driver_setup': {'Model': '4190', 'BoardType': 'PXIe', }, },
lcr_frequency=10.0e3,
lcr_impedance_range=100.0,
cable_length=nidcpower.CableLength.NI_STANDARD_2M,
lcr_voltage_rms=700.0e-3,
lcr_dc_bias_source=nidcpower.LCRDCBiasSource.OFF,
lcr_dc_bias_voltage_level=0.0,
lcr_measurement_time=nidcpower.LCRMeasurementTime.MEDIUM,
lcr_custom_measurement_time=10.0e-3,
lcr_source_delay_mode=nidcpower.LCRSourceDelayMode.AUTOMATIC,
source_delay=16.66e-3,
) | [
9,
1441
] |
async def METHOD_NAME(self, req):
# based on https://github.com/oetiker/aio-reverse-proxy/blob/master/paraview-proxy.py
ws_server = aiohttp.web.WebSocketResponse()
await ws_server.prepare(req)
async with self.session.ws_connect(
self.next_url + "/ws", headers=req.headers
) as ws_client:
async def ws_forward(ws_from, ws_to):
async for msg in ws_from:
if ws_to.closed:
await ws_to.close(code=ws_to.close_code, message=msg.extra)
return
if msg.type == aiohttp.WSMsgType.TEXT:
await ws_to.send_str(msg.data)
elif msg.type == aiohttp.WSMsgType.BINARY:
await ws_to.send_bytes(msg.data)
elif msg.type == aiohttp.WSMsgType.PING:
await ws_to.ping()
elif msg.type == aiohttp.WSMsgType.PONG:
await ws_to.pong()
else:
raise ValueError(f'unexpected message type: {msg}')
# keep forwarding websocket data in both directions
await asyncio.wait(
[
ws_forward(ws_server, ws_client),
ws_forward(ws_client, ws_server)
],
return_when=asyncio.FIRST_COMPLETED)
return ws_server | [
368,
1519
] |
def METHOD_NAME(self):
auth = self.server.auth()
session = self.client.session
session[auth._token_key] = 'token'
session[auth._state_key] = 'state'
session[auth._user_key] = 'user'
session.save()
url = reverse('ci:bitbucket:sign_out', args=[self.server.name])
response = self.client.get(url)
self.assertEqual(response.status_code, 302) # redirect
# make sure the session variables are gone
self.assertNotIn(auth._token_key, self.client.session)
self.assertNotIn(auth._state_key, self.client.session)
self.assertNotIn(auth._user_key, self.client.session)
data = {'source_url': reverse('ci:main')}
response = self.client.get(url, data)
self.assertEqual(response.status_code, 302) # redirect | [
9,
2452,
1737
] |
def METHOD_NAME(pricing_client):
response = pricing_client.describe_services(FormatVersion='aws_v1')
service_codes = map(lambda service: service['ServiceCode'], response['Services'])
return service_codes | [
19,
874,
549,
1114
] |
def METHOD_NAME(self, bitstring: str) -> bool:
"""Evaluate the expression on a bitstring.
This evaluation is done classically.
Args:
bitstring: The bitstring for which to evaluate.
Returns:
bool: result of the evaluation.
"""
from tweedledum import BitVec # pylint: disable=import-error
bits = []
for bit in bitstring:
bits.append(BitVec(1, bit))
return bool(self._tweedledum_bool_expression.METHOD_NAME(*bits)) | [
1792
] |
def METHOD_NAME(project):
"""Test defining indirect inputs."""
path_1 = "/some/absolute/path"
path_2 = "relative/path"
path_3 = "a/path with white-spaces"
input_1 = Input("input-1", path_1)
with Project() as project:
input_2 = Input("input-2", path_2)
input_3 = Input("input-3", path_3)
assert Path(path_1) == input_1.path
assert Path(path_2) == input_2.path
assert Path(path_3) == input_3.path
content = get_indirect_inputs_path(project.path).read_text()
assert {path_1, path_2, path_3} == set(yaml.safe_load(content).values())
assert {input_1.name, input_2.name, input_3.name} == set(yaml.safe_load(content).keys()) | [
9,
2500,
1461
] |
def METHOD_NAME(reviewers):
messages = []
for role, reviewers_ in group_reviewers(reviewers).items():
message = ', '.join(str(reviewer) for reviewer in reviewers_)
if role:
message += _(' as {role}').format(role=str(role))
message += '.'
messages.append(message)
return messages | [
7471,
277
] |
def METHOD_NAME(self):
if self._cmake:
return self._cmake
self._cmake = CMake(self)
self._cmake.definitions["BUILD_PLUGIN"] = False
self._cmake.definitions["BUILD_SHARED"] = self.options.shared
self._cmake.definitions["BUILD_STATIC"] = not self.options.shared
self._cmake.definitions["BUILD_TESTING"] = False
self._cmake.configure(build_folder=self._build_subfolder)
return self._cmake | [
111,
334
] |
def METHOD_NAME(args):
options = parser.parse_args(args)
with codecs.open(options.spec, "r", encoding="utf-8") as spec_file:
spec_yaml = yaml.safe_load(spec_file)
if not isinstance(spec_yaml, list):
raise ValueError("expected a list of micro-kernels in the spec")
tests = """\ | [
57
] |
def METHOD_NAME(self, ev):
ev.stopPropagation()
self.score.tabs[-2].add_close_button()
self.score.tabs[-2].select()
del self.score.tabs[-1]
del self.score.bars[-1]
self.remove() | [
1462
] |
def METHOD_NAME(operational_insights_resource_provider: Optional[str] = None,
resource_group_name: Optional[str] = None,
settings_name: Optional[str] = None,
workspace_name: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetEyesOnResult:
"""
Gets a setting.
:param str operational_insights_resource_provider: The namespace of workspaces resource provider- Microsoft.OperationalInsights.
:param str resource_group_name: The name of the resource group. The name is case insensitive.
:param str settings_name: The setting name. Supports - Anomalies, EyesOn, EntityAnalytics, Ueba
:param str workspace_name: The name of the workspace.
"""
__args__ = dict()
__args__['operationalInsightsResourceProvider'] = operational_insights_resource_provider
__args__['resourceGroupName'] = resource_group_name
__args__['settingsName'] = settings_name
__args__['workspaceName'] = workspace_name
opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts)
__ret__ = pulumi.runtime.invoke('azure-native:securityinsights/v20210301preview:getEyesOn', __args__, opts=opts, typ=GetEyesOnResult).value
return AwaitableGetEyesOnResult(
etag=pulumi.get(__ret__, 'etag'),
id=pulumi.get(__ret__, 'id'),
is_enabled=pulumi.get(__ret__, 'is_enabled'),
kind=pulumi.get(__ret__, 'kind'),
name=pulumi.get(__ret__, 'name'),
system_data=pulumi.get(__ret__, 'system_data'),
type=pulumi.get(__ret__, 'type')) | [
19,
11976,
69
] |
def METHOD_NAME():
plugin = catkin_tools.CatkinToolsPlugin(part_name="my-part", options=lambda: None)
assert plugin.get_build_packages() == {
"python3-rosdep",
"python3-catkin-tools",
} | [
9,
19,
56,
2975
] |
def METHOD_NAME(self) -> list:
"""
Returns the list of underlay links for this device
"""
underlay_links = []
underlay_links.extend(self._uplinks)
if self.shared_utils.fabric_sflow_uplinks is not None:
for uplink in underlay_links:
uplink.update({"sflow": {"enable": self.shared_utils.fabric_sflow_uplinks}})
for peer in self._avd_peers:
peer_facts = self.shared_utils.get_peer_facts(peer, required=True)
for uplink in peer_facts["uplinks"]:
if uplink["peer"] == self.shared_utils.hostname:
link = {
"interface": uplink["peer_interface"],
"peer": peer,
"peer_interface": uplink["interface"],
"peer_type": get(peer_facts, "type"),
"peer_is_deployed": peer_facts["is_deployed"],
"peer_bgp_as": get(peer_facts, "bgp_as"),
"type": get(uplink, "type", required=True),
"speed": get(uplink, "speed"),
"ip_address": get(uplink, "peer_ip_address"),
"peer_ip_address": get(uplink, "ip_address"),
"channel_group_id": get(uplink, "peer_channel_group_id"),
"peer_channel_group_id": get(uplink, "channel_group_id"),
"channel_description": get(uplink, "peer_channel_description"),
"vlans": get(uplink, "vlans"),
"native_vlan": get(uplink, "native_vlan"),
"trunk_groups": get(uplink, "peer_trunk_groups"),
"bfd": get(uplink, "bfd"),
"ptp": get(uplink, "ptp"),
"mac_security": get(uplink, "mac_security"),
"short_esi": get(uplink, "peer_short_esi"),
"underlay_multicast": get(uplink, "underlay_multicast"),
"ipv6_enable": get(uplink, "ipv6_enable"),
"sflow": {"enable": self.shared_utils.fabric_sflow_downlinks},
"structured_config": get(uplink, "structured_config"),
}
underlay_links.append(strip_empties_from_dict(link))
return natural_sort(underlay_links, "interface") | [
5606,
1127
] |
def METHOD_NAME(env, source, expect):
t = env.from_string(source)
result = t.render(value=expect)
assert isinstance(result, bool)
assert result is expect | [
9,
5294
] |
def METHOD_NAME(self):
mf = dft.UKS(h4)
mf.grids.level = 4
mf.xc = 'lda,vwn'
mf.conv_tol = 1e-14
mf.kernel()
hobj = mf.Hessian()
e2 = hobj.partial_hess_elec(mf.mo_energy, mf.mo_coeff, mf.mo_occ)
e2 += hobj.hess_nuc(h4)
e2ref = finite_partial_diff(mf)
self.assertAlmostEqual(abs(e2-e2ref).max(), 0, 6) | [
9,
4516,
2443,
5018,
2351,
5019,
5020
] |
def METHOD_NAME(self):
pair_table = []
spk_paths = set()
with open(self.meta_data, "r") as f:
usage_list = f.readlines()
for pair in usage_list:
list_pair = pair.split()
pair_1= os.path.join(self.root, list_pair[1])
pair_2= os.path.join(self.root, list_pair[2])
spk_paths.add(pair_1)
spk_paths.add(pair_2)
one_pair = [list_pair[0],pair_1,pair_2 ]
pair_table.append(one_pair)
return {
"spk_paths": list(spk_paths),
"total_spk_num": None,
"pair_table": pair_table
} | [
3613
] |
def METHOD_NAME(self, buff):
inits = self.params
# Make a controller object
code = (
"%(name)s = hardware.eyetracker.EyetrackerControl(\n"
)
buff.writeIndentedLines(code % inits)
buff.setIndentLevel(1, relative=True)
code = (
"tracker=eyetracker,\n"
"actionType=%(actionType)s\n"
)
buff.writeIndentedLines(code % inits)
buff.setIndentLevel(-1, relative=True)
code = (
")"
)
buff.writeIndentedLines(code % inits) | [
77,
176,
544
] |
def METHOD_NAME(path):
files = os.listdir(path)
for file in files:
if path != '.':
file=f'{path}/{file}'
if os.path.isdir(file):
METHOD_NAME(file)
elif os.path.isfile(file):
process_file(file) | [
19,
1537
] |
def METHOD_NAME(tmp_path):
from muse.examples import copy_model
from muse.readers.csv import read_initial_assets
copy_model("default", tmp_path / "default")
copy_model("trade", tmp_path / "trade")
def path(x, y):
return (
tmp_path / x / "model" / "technodata" / "gas" / f"Existing{y.title()}.csv"
)
assets = read_initial_assets(path("default", "capacity"))
assert set(assets.dims) == {"year", "region", "asset"}
assets = read_initial_assets(path("trade", "trade"))
assert set(assets.dims) == {"year", "region", "asset", "dst_region"} | [
9,
2471,
3407
] |
def METHOD_NAME(self, device):
"""Return multiple vars."""
n_wires = 2
dev = device(n_wires)
obs1 = qml.Projector([0], wires=0)
obs2 = qml.PauliZ(wires=1)
func = qubit_ansatz
def circuit(x):
func(x)
return qml.var(obs1), qml.var(obs2)
qnode = qml.QNode(circuit, dev, diff_method=None)
res = qnode(0.5)
assert isinstance(res, tuple)
assert len(res) == 2
assert isinstance(res[0], np.ndarray)
assert res[0].shape == ()
assert isinstance(res[1], np.ndarray)
assert res[1].shape == () | [
9,
107,
486
] |
def METHOD_NAME():
bad_file = os.path.join('./', 'CLISShio.txtX')
bad_yeardata_path = os.path.join('./', 'Data', 'yeardata')
with pytest.raises(IOError):
CyShioTime(bad_file)
with pytest.raises(IOError):
shio = CyShioTime(shio_file)
shio.set_shio_yeardata_path(bad_yeardata_path) | [
9,
504
] |
def METHOD_NAME(instance, func_name, data):
try:
func = getattr(instance, func_name)
except AttributeError as exc:
raise InvalidPathError(f'Function {func_name} not found') from exc
if isinstance(data, dict):
return func(**data)
if data is not None:
return func(data)
return func() | [
128,
89,
717
] |
def METHOD_NAME():
"""Test that named numpy methods are the same as the numpy function."""
x = np.random.randn(100)
res_a = algo.bootstrap(x, func="mean", seed=0)
res_b = algo.bootstrap(x, func=np.mean, seed=0)
assert np.array_equal(res_a, res_b)
res_a = algo.bootstrap(x, func="std", seed=0)
res_b = algo.bootstrap(x, func=np.std, seed=0)
assert np.array_equal(res_a, res_b)
with pytest.raises(AttributeError):
algo.bootstrap(x, func="not_a_method_name") | [
9,
904,
144,
717
] |
def METHOD_NAME(self):
pricing_types = (
PRICING_EPHEMERAL,
PRICING_HARD,
PRICING_SPECIAL,
PRICING_VM,
)
# Count nodes by type
count_by_type = {t: 0 for t in pricing_types}
for node in self.nodes:
count_by_type[node.pricing_type] += 1
# Yield metrics
for pricing_type, count in count_by_type.items():
yield {
"name": self.metric,
"group": self.group,
"set": count,
"labels": {
"type": pricing_type.lower(),
},
} | [
567
] |
def METHOD_NAME(self, tmpdir, data_node, repo):
repository = repo()
repository.base_path = tmpdir
# Create 5 entities with version 1.0 and 5 entities with version 2.0
for i in range(10):
data_node.id = DataNodeId(f"data_node-{i}")
data_node._version = f"{(i+1) // 5}.0"
repository._save(data_node)
objs = repository._load_all()
assert len(objs) == 10
repository._delete_by("version", "1.0")
assert len(repository._load_all()) == 5 | [
9,
34,
604
] |
def METHOD_NAME(data):
try:
response = response = urlquick.post(URL + 'documents', data=data)
if 'key' in response.json():
result = URL + response.json()['key']
return True, result
if 'message' in response.json():
return False, "Unable to upload log file: " + response.json()['message']
Script.log('error: %s' % response.text)
return False, "Unable to upload log file"
except Exception:
return False, "Unable to retrieve the paste url" | [
72,
390
] |
def METHOD_NAME(self, name: str) -> None:
events = self._module_basename('qapi-events', name)
types = self._module_basename('qapi-types', name)
visit = self._module_basename('qapi-visit', name)
self._genc.add(mcgen(''' | [
3287,
21,
298
] |
def METHOD_NAME(value, pattern):
if next(iter(re.finditer(pattern, value)), None):
return '"{}"'.format(re.sub(r'(\\*)"', r'\1\1\\"', value))
return value | [
3565,
217,
1992
] |
def METHOD_NAME() -> Architecture:
machine = platform.machine().lower()
if machine == "x86_64" or machine == "amd64":
return Architecture.X86_64
elif machine == "aarch64" or machine == "arm64":
return Architecture.ARM64
else:
return Architecture.Other | [
1056,
4290
] |
def METHOD_NAME(meta, fname):
"""
Write metadata files in ISCE format (.vrt and .xml files)
"""
import isce
import isceobj
# create isce object for xml file
img = isceobj.createDemImage()
img.setFilename(os.path.abspath(fname))
img.setWidth(meta.width)
img.setLength(meta.length)
img.setAccessMode('READ')
img.bands = 1
img.dataType = 'SHORT'
img.scheme = 'BIP'
img.reference = 'WGS84'
img.firstLatitude = meta.north + meta.lat_step / 2.
img.firstLongitude = meta.west + meta.lon_step / 2.
img.deltaLatitude = meta.lat_step
img.deltaLongitude = meta.lon_step
# write to xml file
xml_file = fname + '.xml'
img.dump(xml_file)
return xml_file | [
77,
-1,
773
] |
async def METHOD_NAME(crl_file_name: Path) -> x509.CertificateRevocationList:
"""Load a single crl from file
Args:
crl_file_name (Path): file to load
Returns:
x509.CertificateRevocationList: Return loaded CRL
"""
content = await get_content(crl_file_name)
if crl_file_name.suffix.lower() == '.der':
return x509.load_der_x509_crl(content)
return x509.load_pem_x509_crl(content) | [
557,
8709
] |
def METHOD_NAME(data, indices, indptr, weight, bias=None):
# pylint: disable=invalid-name
"""The default implementation of csrmm in topi.
Parameters
----------
data : tvm.te.Tensor
1-D with shape [nonzeros]
indices : tvm.te.Tensor
1-D with shape [nonzeros]
indptr : tvm.te.Tensor
1-D with shape [m+1]
weight : tvm.te.Tensor
2-D with shape [k, n]
bias : tvm.te.Tensor, optional
1-D with shape [m]
Returns
-------
output : tvm.te.Tensor
2-D with shape [m, n]
"""
assert (
len(data.shape) == 1
and len(indices.shape) == 1
and len(indptr.shape) == 1
and len(weight.shape) == 2
), "only support 2-dim csrmm"
assert isinstance(
weight, te.tensor.Tensor
), f"weight matrix is assumed to be tvm.te.Tensor, but weight is `{type(weight)}`"
assert (
data.dtype == weight.dtype
), f"Data and weight must have the same dtype, but they have {data.dtype} and {weight.dtype}"
if bias is not None:
assert len(bias.shape) == 1
M = simplify(indptr.shape[0] - 1)
_, N = weight.shape
def csrmm_default_ir(data, indices, indptr, weight, out):
"""define ir for csrmm"""
irb = tvm.tir.ir_builder.create()
data_ptr = irb.buffer_ptr(data)
indices_ptr = irb.buffer_ptr(indices)
indptr_ptr = irb.buffer_ptr(indptr)
weight_ptr = irb.buffer_ptr(weight)
out_ptr = irb.buffer_ptr(out)
M = simplify(indptr.shape[0] - 1)
_, N = weight.shape
with irb.for_range(0, N, kind="vectorize", name="n") as n:
with irb.for_range(0, M, kind="parallel", name="row") as row:
dot = irb.allocate(data.dtype, (1,), name="dot", scope="local")
out_ptr[row * N + n] = cast(0, data.dtype)
dot[0] = cast(0, data.dtype)
row_start = indptr_ptr[row]
row_end = indptr_ptr[row + 1]
row_elems = row_end - row_start
with irb.for_range(0, row_elems, name="idx") as idx:
elem = row_start + idx
dot[0] += data_ptr[elem] * weight_ptr[indices_ptr[elem] * N + n]
out_ptr[row * N + n] += dot[0]
return irb.get()
oshape = (M, N)
matmul = te.extern(
oshape,
[data, indices, indptr, weight],
lambda ins, outs: csrmm_default_ir(ins[0], ins[1], ins[2], ins[3], outs[0]),
tag="csrmm",
dtype=data.dtype,
name="out",
)
if bias is not None:
matmul = te.compute(oshape, lambda i, j: matmul[i, j] + bias[i], tag=tag.BROADCAST)
return matmul | [
15479,
235
] |
def METHOD_NAME(commcare_user):
data = {"user_id": commcare_user.get_id, "time": int(time.time())}
return b64_aes_encrypt(json.dumps(data)) | [
2196,
598,
3056,
100
] |
def METHOD_NAME(self):
pass | [
618
] |
def METHOD_NAME(self):
stdout, stderr, retc = lib.base.coe(lib.shell.shell_exec(self.check + ' --test=stdout/EXAMPLE03,,0'))
self.assertRegex(stdout, r'Everything is ok.')
self.assertEqual(stderr, '')
self.assertEqual(retc, STATE_OK) | [
9,
217,
250,
420,
4248,
-1
] |
def METHOD_NAME(self, files):
"""
Return the number of files failed
"""
self.acquired.commit()
self.available.commit()
self.failed.commit()
self.completed.commit()
for i in files:
# Check each set, instead of elif, just in case something has
# got out of synch
if i in self.available.files:
self.available.files.remove(i)
if i in self.completed.files:
self.completed.files.remove(i)
if i in self.acquired.files:
self.acquired.files.remove(i)
self.failed.addFile(i) | [
180,
1537
] |
def METHOD_NAME(client, phase_factory, idea_factory):
phase, module, project, idea = setup_phase(
phase_factory, idea_factory, phases.RatingPhase
)
url = reverse(
"meinberlin_ideas:idea-delete",
kwargs={"pk": idea.pk, "year": idea.created.year},
)
with freeze_phase(phase):
count = models.Idea.objects.all().count()
assert count == 1
moderator = idea.module.project.moderators.first()
client.login(username=moderator.email, password="password")
response = client.get(url)
assert_template_response(response, "meinberlin_ideas/idea_confirm_delete.html")
response = client.post(url)
assert redirect_target(response) == "project-detail"
assert response.status_code == 302
count = models.Idea.objects.all().count()
assert count == 0 | [
9,
4070,
1046,
34,
623,
909,
3200
] |
def METHOD_NAME(actions, state):
del state
return actions | [
784,
734,
-1
] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.