|
import math |
|
|
|
import torch |
|
import pytorch_kinematics as pk |
|
|
|
|
|
def quat_pos_from_transform3d(tg): |
|
m = tg.get_matrix() |
|
pos = m[:, :3, 3] |
|
rot = pk.matrix_to_quaternion(m[:, :3, :3]) |
|
return pos, rot |
|
|
|
|
|
def quaternion_equality(a, b): |
|
|
|
return torch.allclose(a, b) or torch.allclose(a, -b) |
|
|
|
|
|
def test_fkik(): |
|
data = '<robot name="test_robot">' \ |
|
'<link name="link1" />' \ |
|
'<link name="link2" />' \ |
|
'<link name="link3" />' \ |
|
'<joint name="joint1" type="revolute">' \ |
|
'<origin xyz="1.0 0.0 0.0"/>' \ |
|
'<parent link="link1"/>' \ |
|
'<child link="link2"/>' \ |
|
'</joint>' \ |
|
'<joint name="joint2" type="revolute">' \ |
|
'<origin xyz="1.0 0.0 0.0"/>' \ |
|
'<parent link="link2"/>' \ |
|
'<child link="link3"/>' \ |
|
'</joint>' \ |
|
'</robot>' |
|
chain = pk.build_serial_chain_from_urdf(data, 'link3') |
|
th1 = torch.tensor([0.42553542, 0.17529176]) |
|
tg = chain.forward_kinematics(th1) |
|
pos, rot = quat_pos_from_transform3d(tg) |
|
assert torch.allclose(pos, torch.tensor([[1.91081784, 0.41280851, 0.0000]])) |
|
assert quaternion_equality(rot, torch.tensor([[0.95521418, 0.0000, 0.0000, 0.2959153]])) |
|
print(tg) |
|
|
|
|
|
|
|
|
|
N = 20 |
|
th_batch = torch.rand(N, 2) |
|
tg_batch = chain.forward_kinematics(th_batch) |
|
m = tg_batch.get_matrix() |
|
for i in range(N): |
|
tg = chain.forward_kinematics(th_batch[i]) |
|
assert torch.allclose(tg.get_matrix().view(4, 4), m[i]) |
|
|
|
|
|
th2 = torch.tensor([0.42553542, 0.17529176], requires_grad=True) |
|
tg = chain.forward_kinematics(th2) |
|
pos, rot = quat_pos_from_transform3d(tg) |
|
|
|
assert th2.grad is None |
|
pos.norm().backward() |
|
assert th2.grad is not None |
|
|
|
|
|
def test_urdf(): |
|
chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7") |
|
print(chain) |
|
print(chain.get_joint_parameter_names()) |
|
th = [0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0] |
|
ret = chain.forward_kinematics(th, end_only=False) |
|
tg = ret['lbr_iiwa_link_7'] |
|
pos, rot = quat_pos_from_transform3d(tg) |
|
assert quaternion_equality(rot, torch.tensor([7.07106781e-01, 0, -7.07106781e-01, 0])) |
|
assert torch.allclose(pos, torch.tensor([-6.60827561e-01, 0, 3.74142136e-01])) |
|
|
|
N = 1000 |
|
d = "cuda" if torch.cuda.is_available() else "cpu" |
|
dtype = torch.float64 |
|
|
|
th_batch = torch.rand(N, len(chain.get_joint_parameter_names()), dtype=dtype, device=d) |
|
chain = chain.to(dtype=dtype, device=d) |
|
|
|
import time |
|
start = time.time() |
|
tg_batch = chain.forward_kinematics(th_batch) |
|
m = tg_batch.get_matrix() |
|
elapsed = time.time() - start |
|
print("elapsed {}s for N={} when parallel".format(elapsed, N)) |
|
|
|
start = time.time() |
|
elapsed = 0 |
|
for i in range(N): |
|
tg = chain.forward_kinematics(th_batch[i]) |
|
elapsed += time.time() - start |
|
start = time.time() |
|
assert torch.allclose(tg.get_matrix().view(4, 4), m[i]) |
|
print("elapsed {}s for N={} when serial".format(elapsed, N)) |
|
|
|
|
|
|
|
def test_fk_simple_arm(): |
|
chain = pk.build_chain_from_sdf(open("simple_arm.sdf").read()) |
|
|
|
|
|
ret = chain.forward_kinematics({'arm_elbow_pan_joint': math.pi / 2.0, 'arm_wrist_lift_joint': -0.5}) |
|
tg = ret['arm_wrist_roll'] |
|
pos, rot = quat_pos_from_transform3d(tg) |
|
assert quaternion_equality(rot, torch.tensor([0.70710678, 0., 0., 0.70710678])) |
|
assert torch.allclose(pos, torch.tensor([1.05, 0.55, 0.5])) |
|
|
|
N = 100 |
|
ret = chain.forward_kinematics({'arm_elbow_pan_joint': torch.rand(N, 1), 'arm_wrist_lift_joint': torch.rand(N, 1)}) |
|
tg = ret['arm_wrist_roll'] |
|
assert list(tg.get_matrix().shape) == [N, 4, 4] |
|
|
|
|
|
def test_cuda(): |
|
if torch.cuda.is_available(): |
|
d = "cuda" |
|
dtype = torch.float64 |
|
chain = pk.build_chain_from_sdf(open("simple_arm.sdf").read()) |
|
chain = chain.to(dtype=dtype, device=d) |
|
|
|
ret = chain.forward_kinematics({'arm_elbow_pan_joint': math.pi / 2.0, 'arm_wrist_lift_joint': -0.5}) |
|
tg = ret['arm_wrist_roll'] |
|
pos, rot = quat_pos_from_transform3d(tg) |
|
assert quaternion_equality(rot, torch.tensor([0.70710678, 0., 0., 0.70710678], dtype=dtype, device=d)) |
|
assert torch.allclose(pos, torch.tensor([1.05, 0.55, 0.5], dtype=dtype, device=d)) |
|
|
|
data = '<robot name="test_robot">' \ |
|
'<link name="link1" />' \ |
|
'<link name="link2" />' \ |
|
'<link name="link3" />' \ |
|
'<joint name="joint1" type="revolute">' \ |
|
'<origin xyz="1.0 0.0 0.0"/>' \ |
|
'<parent link="link1"/>' \ |
|
'<child link="link2"/>' \ |
|
'</joint>' \ |
|
'<joint name="joint2" type="revolute">' \ |
|
'<origin xyz="1.0 0.0 0.0"/>' \ |
|
'<parent link="link2"/>' \ |
|
'<child link="link3"/>' \ |
|
'</joint>' \ |
|
'</robot>' |
|
chain = pk.build_serial_chain_from_urdf(data, 'link3') |
|
chain = chain.to(dtype=dtype, device=d) |
|
N = 20 |
|
th_batch = torch.rand(N, 2).to(device=d, dtype=dtype) |
|
tg_batch = chain.forward_kinematics(th_batch) |
|
m = tg_batch.get_matrix() |
|
for i in range(N): |
|
tg = chain.forward_kinematics(th_batch[i]) |
|
assert torch.allclose(tg.get_matrix().view(4, 4), m[i]) |
|
|
|
|
|
|
|
def test_fk_mjcf(): |
|
chain = pk.build_chain_from_mjcf(open("ant.xml").read()) |
|
print(chain) |
|
print(chain.get_joint_parameter_names()) |
|
th = {'hip_1': 1.0, 'ankle_1': 1} |
|
ret = chain.forward_kinematics(th) |
|
tg = ret['aux_1_child'] |
|
pos, rot = quat_pos_from_transform3d(tg) |
|
assert quaternion_equality(rot, torch.tensor([0.87758256, 0., 0., 0.47942554])) |
|
assert torch.allclose(pos, torch.tensor([0.2, 0.2, 0.75])) |
|
tg = ret['front_left_foot_child'] |
|
pos, rot = quat_pos_from_transform3d(tg) |
|
assert quaternion_equality(rot, torch.tensor([0.77015115, -0.4600326, 0.13497724, 0.42073549])) |
|
assert torch.allclose(pos, torch.tensor([0.13976626, 0.47635466, 0.75])) |
|
print(ret) |
|
|
|
|
|
def test_fk_mjcf_humanoid(): |
|
chain = pk.build_chain_from_mjcf(open("humanoid.xml").read()) |
|
print(chain) |
|
print(chain.get_joint_parameter_names()) |
|
th = {'left_knee': 0.0, 'right_knee': 0.0} |
|
ret = chain.forward_kinematics(th) |
|
print(ret) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_fkik() |
|
test_fk_simple_arm() |
|
test_fk_mjcf() |
|
test_cuda() |
|
test_urdf() |
|
|
|
|