File size: 7,056 Bytes
88237d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import math

import torch
import pytorch_kinematics as pk


def quat_pos_from_transform3d(tg):
    m = tg.get_matrix()
    pos = m[:, :3, 3]
    rot = pk.matrix_to_quaternion(m[:, :3, :3])
    return pos, rot


def quaternion_equality(a, b):
    # negative of a quaternion is the same rotation
    return torch.allclose(a, b) or torch.allclose(a, -b)


def test_fkik():
    data = '<robot name="test_robot">' \
           '<link name="link1" />' \
           '<link name="link2" />' \
           '<link name="link3" />' \
           '<joint name="joint1" type="revolute">' \
           '<origin xyz="1.0 0.0 0.0"/>' \
           '<parent link="link1"/>' \
           '<child link="link2"/>' \
           '</joint>' \
           '<joint name="joint2" type="revolute">' \
           '<origin xyz="1.0 0.0 0.0"/>' \
           '<parent link="link2"/>' \
           '<child link="link3"/>' \
           '</joint>' \
           '</robot>'
    chain = pk.build_serial_chain_from_urdf(data, 'link3')
    th1 = torch.tensor([0.42553542, 0.17529176])
    tg = chain.forward_kinematics(th1)
    pos, rot = quat_pos_from_transform3d(tg)
    assert torch.allclose(pos, torch.tensor([[1.91081784, 0.41280851, 0.0000]]))
    assert quaternion_equality(rot, torch.tensor([[0.95521418, 0.0000, 0.0000, 0.2959153]]))
    print(tg)
    # TODO implement and test inverse kinematics
    # th2 = chain.inverse_kinematics(tg)
    # self.assertTrue(np.allclose(th1, th2, atol=1.0e-6))
    # test batch kinematics
    N = 20
    th_batch = torch.rand(N, 2)
    tg_batch = chain.forward_kinematics(th_batch)
    m = tg_batch.get_matrix()
    for i in range(N):
        tg = chain.forward_kinematics(th_batch[i])
        assert torch.allclose(tg.get_matrix().view(4, 4), m[i])

    # check that gradients are passed through
    th2 = torch.tensor([0.42553542, 0.17529176], requires_grad=True)
    tg = chain.forward_kinematics(th2)
    pos, rot = quat_pos_from_transform3d(tg)
    # note that since we are using existing operations we are not checking grad calculation correctness
    assert th2.grad is None
    pos.norm().backward()
    assert th2.grad is not None


def test_urdf():
    chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
    print(chain)
    print(chain.get_joint_parameter_names())
    th = [0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0]
    ret = chain.forward_kinematics(th, end_only=False)
    tg = ret['lbr_iiwa_link_7']
    pos, rot = quat_pos_from_transform3d(tg)
    assert quaternion_equality(rot, torch.tensor([7.07106781e-01, 0, -7.07106781e-01, 0]))
    assert torch.allclose(pos, torch.tensor([-6.60827561e-01, 0, 3.74142136e-01]))

    N = 1000
    d = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float64

    th_batch = torch.rand(N, len(chain.get_joint_parameter_names()), dtype=dtype, device=d)
    chain = chain.to(dtype=dtype, device=d)

    import time
    start = time.time()
    tg_batch = chain.forward_kinematics(th_batch)
    m = tg_batch.get_matrix()
    elapsed = time.time() - start
    print("elapsed {}s for N={} when parallel".format(elapsed, N))

    start = time.time()
    elapsed = 0
    for i in range(N):
        tg = chain.forward_kinematics(th_batch[i])
        elapsed += time.time() - start
        start = time.time()
        assert torch.allclose(tg.get_matrix().view(4, 4), m[i])
    print("elapsed {}s for N={} when serial".format(elapsed, N))


# test robot with prismatic and fixed joints
def test_fk_simple_arm():
    chain = pk.build_chain_from_sdf(open("simple_arm.sdf").read())
    # print(chain)
    # print(chain.get_joint_parameter_names())
    ret = chain.forward_kinematics({'arm_elbow_pan_joint': math.pi / 2.0, 'arm_wrist_lift_joint': -0.5})
    tg = ret['arm_wrist_roll']
    pos, rot = quat_pos_from_transform3d(tg)
    assert quaternion_equality(rot, torch.tensor([0.70710678, 0., 0., 0.70710678]))
    assert torch.allclose(pos, torch.tensor([1.05, 0.55, 0.5]))

    N = 100
    ret = chain.forward_kinematics({'arm_elbow_pan_joint': torch.rand(N, 1), 'arm_wrist_lift_joint': torch.rand(N, 1)})
    tg = ret['arm_wrist_roll']
    assert list(tg.get_matrix().shape) == [N, 4, 4]


def test_cuda():
    if torch.cuda.is_available():
        d = "cuda"
        dtype = torch.float64
        chain = pk.build_chain_from_sdf(open("simple_arm.sdf").read())
        chain = chain.to(dtype=dtype, device=d)

        ret = chain.forward_kinematics({'arm_elbow_pan_joint': math.pi / 2.0, 'arm_wrist_lift_joint': -0.5})
        tg = ret['arm_wrist_roll']
        pos, rot = quat_pos_from_transform3d(tg)
        assert quaternion_equality(rot, torch.tensor([0.70710678, 0., 0., 0.70710678], dtype=dtype, device=d))
        assert torch.allclose(pos, torch.tensor([1.05, 0.55, 0.5], dtype=dtype, device=d))

        data = '<robot name="test_robot">' \
               '<link name="link1" />' \
               '<link name="link2" />' \
               '<link name="link3" />' \
               '<joint name="joint1" type="revolute">' \
               '<origin xyz="1.0 0.0 0.0"/>' \
               '<parent link="link1"/>' \
               '<child link="link2"/>' \
               '</joint>' \
               '<joint name="joint2" type="revolute">' \
               '<origin xyz="1.0 0.0 0.0"/>' \
               '<parent link="link2"/>' \
               '<child link="link3"/>' \
               '</joint>' \
               '</robot>'
        chain = pk.build_serial_chain_from_urdf(data, 'link3')
        chain = chain.to(dtype=dtype, device=d)
        N = 20
        th_batch = torch.rand(N, 2).to(device=d, dtype=dtype)
        tg_batch = chain.forward_kinematics(th_batch)
        m = tg_batch.get_matrix()
        for i in range(N):
            tg = chain.forward_kinematics(th_batch[i])
            assert torch.allclose(tg.get_matrix().view(4, 4), m[i])


# test more complex robot and the MJCF parser
def test_fk_mjcf():
    chain = pk.build_chain_from_mjcf(open("ant.xml").read())
    print(chain)
    print(chain.get_joint_parameter_names())
    th = {'hip_1': 1.0, 'ankle_1': 1}
    ret = chain.forward_kinematics(th)
    tg = ret['aux_1_child']
    pos, rot = quat_pos_from_transform3d(tg)
    assert quaternion_equality(rot, torch.tensor([0.87758256, 0., 0., 0.47942554]))
    assert torch.allclose(pos, torch.tensor([0.2, 0.2, 0.75]))
    tg = ret['front_left_foot_child']
    pos, rot = quat_pos_from_transform3d(tg)
    assert quaternion_equality(rot, torch.tensor([0.77015115, -0.4600326, 0.13497724, 0.42073549]))
    assert torch.allclose(pos, torch.tensor([0.13976626, 0.47635466, 0.75]))
    print(ret)


def test_fk_mjcf_humanoid():
    chain = pk.build_chain_from_mjcf(open("humanoid.xml").read())
    print(chain)
    print(chain.get_joint_parameter_names())
    th = {'left_knee': 0.0, 'right_knee': 0.0}
    ret = chain.forward_kinematics(th)
    print(ret)


if __name__ == "__main__":
    test_fkik()
    test_fk_simple_arm()
    test_fk_mjcf()
    test_cuda()
    test_urdf()
    # test_fk_mjcf_humanoid()