import math import torch import pytorch_kinematics as pk def quat_pos_from_transform3d(tg): m = tg.get_matrix() pos = m[:, :3, 3] rot = pk.matrix_to_quaternion(m[:, :3, :3]) return pos, rot def quaternion_equality(a, b): # negative of a quaternion is the same rotation return torch.allclose(a, b) or torch.allclose(a, -b) def test_fkik(): data = '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' chain = pk.build_serial_chain_from_urdf(data, 'link3') th1 = torch.tensor([0.42553542, 0.17529176]) tg = chain.forward_kinematics(th1) pos, rot = quat_pos_from_transform3d(tg) assert torch.allclose(pos, torch.tensor([[1.91081784, 0.41280851, 0.0000]])) assert quaternion_equality(rot, torch.tensor([[0.95521418, 0.0000, 0.0000, 0.2959153]])) print(tg) # TODO implement and test inverse kinematics # th2 = chain.inverse_kinematics(tg) # self.assertTrue(np.allclose(th1, th2, atol=1.0e-6)) # test batch kinematics N = 20 th_batch = torch.rand(N, 2) tg_batch = chain.forward_kinematics(th_batch) m = tg_batch.get_matrix() for i in range(N): tg = chain.forward_kinematics(th_batch[i]) assert torch.allclose(tg.get_matrix().view(4, 4), m[i]) # check that gradients are passed through th2 = torch.tensor([0.42553542, 0.17529176], requires_grad=True) tg = chain.forward_kinematics(th2) pos, rot = quat_pos_from_transform3d(tg) # note that since we are using existing operations we are not checking grad calculation correctness assert th2.grad is None pos.norm().backward() assert th2.grad is not None def test_urdf(): chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7") print(chain) print(chain.get_joint_parameter_names()) th = [0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0] ret = chain.forward_kinematics(th, end_only=False) tg = ret['lbr_iiwa_link_7'] pos, rot = quat_pos_from_transform3d(tg) assert quaternion_equality(rot, torch.tensor([7.07106781e-01, 0, -7.07106781e-01, 0])) assert torch.allclose(pos, torch.tensor([-6.60827561e-01, 0, 3.74142136e-01])) N = 1000 d = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float64 th_batch = torch.rand(N, len(chain.get_joint_parameter_names()), dtype=dtype, device=d) chain = chain.to(dtype=dtype, device=d) import time start = time.time() tg_batch = chain.forward_kinematics(th_batch) m = tg_batch.get_matrix() elapsed = time.time() - start print("elapsed {}s for N={} when parallel".format(elapsed, N)) start = time.time() elapsed = 0 for i in range(N): tg = chain.forward_kinematics(th_batch[i]) elapsed += time.time() - start start = time.time() assert torch.allclose(tg.get_matrix().view(4, 4), m[i]) print("elapsed {}s for N={} when serial".format(elapsed, N)) # test robot with prismatic and fixed joints def test_fk_simple_arm(): chain = pk.build_chain_from_sdf(open("simple_arm.sdf").read()) # print(chain) # print(chain.get_joint_parameter_names()) ret = chain.forward_kinematics({'arm_elbow_pan_joint': math.pi / 2.0, 'arm_wrist_lift_joint': -0.5}) tg = ret['arm_wrist_roll'] pos, rot = quat_pos_from_transform3d(tg) assert quaternion_equality(rot, torch.tensor([0.70710678, 0., 0., 0.70710678])) assert torch.allclose(pos, torch.tensor([1.05, 0.55, 0.5])) N = 100 ret = chain.forward_kinematics({'arm_elbow_pan_joint': torch.rand(N, 1), 'arm_wrist_lift_joint': torch.rand(N, 1)}) tg = ret['arm_wrist_roll'] assert list(tg.get_matrix().shape) == [N, 4, 4] def test_cuda(): if torch.cuda.is_available(): d = "cuda" dtype = torch.float64 chain = pk.build_chain_from_sdf(open("simple_arm.sdf").read()) chain = chain.to(dtype=dtype, device=d) ret = chain.forward_kinematics({'arm_elbow_pan_joint': math.pi / 2.0, 'arm_wrist_lift_joint': -0.5}) tg = ret['arm_wrist_roll'] pos, rot = quat_pos_from_transform3d(tg) assert quaternion_equality(rot, torch.tensor([0.70710678, 0., 0., 0.70710678], dtype=dtype, device=d)) assert torch.allclose(pos, torch.tensor([1.05, 0.55, 0.5], dtype=dtype, device=d)) data = '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' \ '' chain = pk.build_serial_chain_from_urdf(data, 'link3') chain = chain.to(dtype=dtype, device=d) N = 20 th_batch = torch.rand(N, 2).to(device=d, dtype=dtype) tg_batch = chain.forward_kinematics(th_batch) m = tg_batch.get_matrix() for i in range(N): tg = chain.forward_kinematics(th_batch[i]) assert torch.allclose(tg.get_matrix().view(4, 4), m[i]) # test more complex robot and the MJCF parser def test_fk_mjcf(): chain = pk.build_chain_from_mjcf(open("ant.xml").read()) print(chain) print(chain.get_joint_parameter_names()) th = {'hip_1': 1.0, 'ankle_1': 1} ret = chain.forward_kinematics(th) tg = ret['aux_1_child'] pos, rot = quat_pos_from_transform3d(tg) assert quaternion_equality(rot, torch.tensor([0.87758256, 0., 0., 0.47942554])) assert torch.allclose(pos, torch.tensor([0.2, 0.2, 0.75])) tg = ret['front_left_foot_child'] pos, rot = quat_pos_from_transform3d(tg) assert quaternion_equality(rot, torch.tensor([0.77015115, -0.4600326, 0.13497724, 0.42073549])) assert torch.allclose(pos, torch.tensor([0.13976626, 0.47635466, 0.75])) print(ret) def test_fk_mjcf_humanoid(): chain = pk.build_chain_from_mjcf(open("humanoid.xml").read()) print(chain) print(chain.get_joint_parameter_names()) th = {'left_knee': 0.0, 'right_knee': 0.0} ret = chain.forward_kinematics(th) print(ret) if __name__ == "__main__": test_fkik() test_fk_simple_arm() test_fk_mjcf() test_cuda() test_urdf() # test_fk_mjcf_humanoid()