lhslhslhs's picture
add
88237d1
import math
import torch
import pytorch_kinematics as pk
def test_correctness():
chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
th = torch.tensor([0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0])
J = chain.jacobian(th)
assert torch.allclose(J, torch.tensor([[[0, 1.41421356e-02, 0, 2.82842712e-01, 0, 0, 0],
[-6.60827561e-01, 0, -4.57275649e-01, 0, 5.72756493e-02, 0, 0],
[0, 6.60827561e-01, 0, -3.63842712e-01, 0, 8.10000000e-02, 0],
[0, 0, -7.07106781e-01, 0, -7.07106781e-01, 0, -1],
[0, 1, 0, -1, 0, 1, 0],
[1, 0, 7.07106781e-01, 0, -7.07106781e-01, 0, 0]]]))
chain = pk.build_chain_from_sdf(open("simple_arm.sdf").read())
chain = pk.SerialChain(chain, "arm_wrist_roll_frame")
th = torch.tensor([0.8, 0.2, -0.5, -0.3])
J = chain.jacobian(th)
torch.allclose(J, torch.tensor([[[0., -1.51017878, -0.46280904, 0.],
[0., 0.37144033, 0.29716627, 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 1., 1., 1.]]]))
def test_jacobian_at_different_loc_than_ee():
chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
th = torch.tensor([0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0])
loc = torch.tensor([0.1, 0, 0])
J = chain.jacobian(th, locations=loc)
J_c1 = torch.tensor([[[-0., 0.11414214, -0., 0.18284271, 0., 0.1, 0.],
[-0.66082756, -0., -0.38656497, -0., 0.12798633, -0., 0.1],
[-0., 0.66082756, -0., -0.36384271, 0., 0.081, -0.],
[-0., -0., -0.70710678, -0., -0.70710678, 0., -1.],
[0., 1., 0., -1., 0., 1., 0.],
[1., 0., 0.70710678, 0., -0.70710678, -0., 0.]]])
assert torch.allclose(J, J_c1)
loc = torch.tensor([-0.1, 0.05, 0])
J = chain.jacobian(th, locations=loc)
J_c2 = torch.tensor([[[-0.05, -0.08585786, -0.03535534, 0.38284271, 0.03535534, -0.1, -0.],
[-0.66082756, -0., -0.52798633, -0., -0.01343503, 0., -0.1],
[-0., 0.66082756, -0.03535534, -0.36384271, -0.03535534, 0.081, -0.05],
[-0., -0., -0.70710678, -0., -0.70710678, 0., -1.],
[0., 1., 0., -1., 0., 1., 0.],
[1., 0., 0.70710678, 0., -0.70710678, -0., 0.]]])
assert torch.allclose(J, J_c2)
# check that batching the location is fine
th = th.repeat(2, 1)
loc = torch.tensor([[0.1, 0, 0], [-0.1, 0.05, 0]])
J = chain.jacobian(th, locations=loc)
assert torch.allclose(J, torch.cat((J_c1, J_c2)))
def test_parallel():
N = 100
chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
th = torch.cat(
(torch.tensor([[0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0]]), torch.rand(N, 7)))
J = chain.jacobian(th)
for i in range(N):
J_i = chain.jacobian(th[i])
assert torch.allclose(J[i], J_i)
def test_dtype_device():
N = 1000
d = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float64
chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
chain = chain.to(dtype=dtype, device=d)
th = torch.rand(N, 7, dtype=dtype, device=d)
J = chain.jacobian(th)
assert J.dtype is dtype
def test_gradient():
N = 10
d = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float64
chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
chain = chain.to(dtype=dtype, device=d)
th = torch.rand(N, 7, dtype=dtype, device=d, requires_grad=True)
J = chain.jacobian(th)
assert th.grad is None
J.norm().backward()
assert th.grad is not None
def test_jacobian_prismatic():
chain = pk.build_serial_chain_from_urdf(open("prismatic_robot.urdf").read(), "link4")
th = torch.zeros(3)
tg = chain.forward_kinematics(th)
m = tg.get_matrix()
pos = m[0, :3, 3]
assert torch.allclose(pos, torch.tensor([0, 0, 1.]))
th = torch.tensor([0, 0.1, 0])
tg = chain.forward_kinematics(th)
m = tg.get_matrix()
pos = m[0, :3, 3]
assert torch.allclose(pos, torch.tensor([0, -0.1, 1.]))
th = torch.tensor([0.1, 0.1, 0])
tg = chain.forward_kinematics(th)
m = tg.get_matrix()
pos = m[0, :3, 3]
assert torch.allclose(pos, torch.tensor([0, -0.1, 1.1]))
th = torch.tensor([0.1, 0.1, 0.1])
tg = chain.forward_kinematics(th)
m = tg.get_matrix()
pos = m[0, :3, 3]
assert torch.allclose(pos, torch.tensor([0.1, -0.1, 1.1]))
J = chain.jacobian(th)
assert torch.allclose(J, torch.tensor([[[0., 0., 1.],
[0., -1., 0.],
[1., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]]))
if __name__ == "__main__":
test_correctness()
test_parallel()
test_dtype_device()
test_gradient()
test_jacobian_prismatic()
test_jacobian_at_different_loc_than_ee()