File size: 5,652 Bytes
88237d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import math
import torch
import pytorch_kinematics as pk


def test_correctness():
    chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
    th = torch.tensor([0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0])
    J = chain.jacobian(th)

    assert torch.allclose(J, torch.tensor([[[0, 1.41421356e-02, 0, 2.82842712e-01, 0, 0, 0],
                                            [-6.60827561e-01, 0, -4.57275649e-01, 0, 5.72756493e-02, 0, 0],
                                            [0, 6.60827561e-01, 0, -3.63842712e-01, 0, 8.10000000e-02, 0],
                                            [0, 0, -7.07106781e-01, 0, -7.07106781e-01, 0, -1],
                                            [0, 1, 0, -1, 0, 1, 0],
                                            [1, 0, 7.07106781e-01, 0, -7.07106781e-01, 0, 0]]]))

    chain = pk.build_chain_from_sdf(open("simple_arm.sdf").read())
    chain = pk.SerialChain(chain, "arm_wrist_roll_frame")
    th = torch.tensor([0.8, 0.2, -0.5, -0.3])
    J = chain.jacobian(th)
    torch.allclose(J, torch.tensor([[[0., -1.51017878, -0.46280904, 0.],
                                     [0., 0.37144033, 0.29716627, 0.],
                                     [0., 0., 0., 0.],
                                     [0., 0., 0., 0.],
                                     [0., 0., 0., 0.],
                                     [0., 1., 1., 1.]]]))


def test_jacobian_at_different_loc_than_ee():
    chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
    th = torch.tensor([0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0])
    loc = torch.tensor([0.1, 0, 0])
    J = chain.jacobian(th, locations=loc)
    J_c1 = torch.tensor([[[-0., 0.11414214, -0., 0.18284271, 0., 0.1, 0.],
                          [-0.66082756, -0., -0.38656497, -0., 0.12798633, -0., 0.1],
                          [-0., 0.66082756, -0., -0.36384271, 0., 0.081, -0.],
                          [-0., -0., -0.70710678, -0., -0.70710678, 0., -1.],
                          [0., 1., 0., -1., 0., 1., 0.],
                          [1., 0., 0.70710678, 0., -0.70710678, -0., 0.]]])

    assert torch.allclose(J, J_c1)

    loc = torch.tensor([-0.1, 0.05, 0])
    J = chain.jacobian(th, locations=loc)
    J_c2 = torch.tensor([[[-0.05, -0.08585786, -0.03535534, 0.38284271, 0.03535534, -0.1, -0.],
                          [-0.66082756, -0., -0.52798633, -0., -0.01343503, 0., -0.1],
                          [-0., 0.66082756, -0.03535534, -0.36384271, -0.03535534, 0.081, -0.05],
                          [-0., -0., -0.70710678, -0., -0.70710678, 0., -1.],
                          [0., 1., 0., -1., 0., 1., 0.],
                          [1., 0., 0.70710678, 0., -0.70710678, -0., 0.]]])

    assert torch.allclose(J, J_c2)

    # check that batching the location is fine
    th = th.repeat(2, 1)
    loc = torch.tensor([[0.1, 0, 0], [-0.1, 0.05, 0]])
    J = chain.jacobian(th, locations=loc)
    assert torch.allclose(J, torch.cat((J_c1, J_c2)))


def test_parallel():
    N = 100
    chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
    th = torch.cat(
        (torch.tensor([[0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0]]), torch.rand(N, 7)))
    J = chain.jacobian(th)
    for i in range(N):
        J_i = chain.jacobian(th[i])
        assert torch.allclose(J[i], J_i)


def test_dtype_device():
    N = 1000
    d = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float64

    chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
    chain = chain.to(dtype=dtype, device=d)
    th = torch.rand(N, 7, dtype=dtype, device=d)
    J = chain.jacobian(th)
    assert J.dtype is dtype


def test_gradient():
    N = 10
    d = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float64

    chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7")
    chain = chain.to(dtype=dtype, device=d)
    th = torch.rand(N, 7, dtype=dtype, device=d, requires_grad=True)
    J = chain.jacobian(th)
    assert th.grad is None
    J.norm().backward()
    assert th.grad is not None


def test_jacobian_prismatic():
    chain = pk.build_serial_chain_from_urdf(open("prismatic_robot.urdf").read(), "link4")
    th = torch.zeros(3)
    tg = chain.forward_kinematics(th)
    m = tg.get_matrix()
    pos = m[0, :3, 3]
    assert torch.allclose(pos, torch.tensor([0, 0, 1.]))
    th = torch.tensor([0, 0.1, 0])
    tg = chain.forward_kinematics(th)
    m = tg.get_matrix()
    pos = m[0, :3, 3]
    assert torch.allclose(pos, torch.tensor([0, -0.1, 1.]))
    th = torch.tensor([0.1, 0.1, 0])
    tg = chain.forward_kinematics(th)
    m = tg.get_matrix()
    pos = m[0, :3, 3]
    assert torch.allclose(pos, torch.tensor([0, -0.1, 1.1]))
    th = torch.tensor([0.1, 0.1, 0.1])
    tg = chain.forward_kinematics(th)
    m = tg.get_matrix()
    pos = m[0, :3, 3]
    assert torch.allclose(pos, torch.tensor([0.1, -0.1, 1.1]))

    J = chain.jacobian(th)
    assert torch.allclose(J, torch.tensor([[[0., 0., 1.],
                                            [0., -1., 0.],
                                            [1., 0., 0.],
                                            [0., 0., 0.],
                                            [0., 0., 0.],
                                            [0., 0., 0.]]]))


if __name__ == "__main__":
    test_correctness()
    test_parallel()
    test_dtype_device()
    test_gradient()
    test_jacobian_prismatic()
    test_jacobian_at_different_loc_than_ee()