import math import torch import pytorch_kinematics as pk def test_correctness(): chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7") th = torch.tensor([0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0]) J = chain.jacobian(th) assert torch.allclose(J, torch.tensor([[[0, 1.41421356e-02, 0, 2.82842712e-01, 0, 0, 0], [-6.60827561e-01, 0, -4.57275649e-01, 0, 5.72756493e-02, 0, 0], [0, 6.60827561e-01, 0, -3.63842712e-01, 0, 8.10000000e-02, 0], [0, 0, -7.07106781e-01, 0, -7.07106781e-01, 0, -1], [0, 1, 0, -1, 0, 1, 0], [1, 0, 7.07106781e-01, 0, -7.07106781e-01, 0, 0]]])) chain = pk.build_chain_from_sdf(open("simple_arm.sdf").read()) chain = pk.SerialChain(chain, "arm_wrist_roll_frame") th = torch.tensor([0.8, 0.2, -0.5, -0.3]) J = chain.jacobian(th) torch.allclose(J, torch.tensor([[[0., -1.51017878, -0.46280904, 0.], [0., 0.37144033, 0.29716627, 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 1., 1., 1.]]])) def test_jacobian_at_different_loc_than_ee(): chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7") th = torch.tensor([0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0]) loc = torch.tensor([0.1, 0, 0]) J = chain.jacobian(th, locations=loc) J_c1 = torch.tensor([[[-0., 0.11414214, -0., 0.18284271, 0., 0.1, 0.], [-0.66082756, -0., -0.38656497, -0., 0.12798633, -0., 0.1], [-0., 0.66082756, -0., -0.36384271, 0., 0.081, -0.], [-0., -0., -0.70710678, -0., -0.70710678, 0., -1.], [0., 1., 0., -1., 0., 1., 0.], [1., 0., 0.70710678, 0., -0.70710678, -0., 0.]]]) assert torch.allclose(J, J_c1) loc = torch.tensor([-0.1, 0.05, 0]) J = chain.jacobian(th, locations=loc) J_c2 = torch.tensor([[[-0.05, -0.08585786, -0.03535534, 0.38284271, 0.03535534, -0.1, -0.], [-0.66082756, -0., -0.52798633, -0., -0.01343503, 0., -0.1], [-0., 0.66082756, -0.03535534, -0.36384271, -0.03535534, 0.081, -0.05], [-0., -0., -0.70710678, -0., -0.70710678, 0., -1.], [0., 1., 0., -1., 0., 1., 0.], [1., 0., 0.70710678, 0., -0.70710678, -0., 0.]]]) assert torch.allclose(J, J_c2) # check that batching the location is fine th = th.repeat(2, 1) loc = torch.tensor([[0.1, 0, 0], [-0.1, 0.05, 0]]) J = chain.jacobian(th, locations=loc) assert torch.allclose(J, torch.cat((J_c1, J_c2))) def test_parallel(): N = 100 chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7") th = torch.cat( (torch.tensor([[0.0, -math.pi / 4.0, 0.0, math.pi / 2.0, 0.0, math.pi / 4.0, 0.0]]), torch.rand(N, 7))) J = chain.jacobian(th) for i in range(N): J_i = chain.jacobian(th[i]) assert torch.allclose(J[i], J_i) def test_dtype_device(): N = 1000 d = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float64 chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7") chain = chain.to(dtype=dtype, device=d) th = torch.rand(N, 7, dtype=dtype, device=d) J = chain.jacobian(th) assert J.dtype is dtype def test_gradient(): N = 10 d = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float64 chain = pk.build_serial_chain_from_urdf(open("kuka_iiwa.urdf").read(), "lbr_iiwa_link_7") chain = chain.to(dtype=dtype, device=d) th = torch.rand(N, 7, dtype=dtype, device=d, requires_grad=True) J = chain.jacobian(th) assert th.grad is None J.norm().backward() assert th.grad is not None def test_jacobian_prismatic(): chain = pk.build_serial_chain_from_urdf(open("prismatic_robot.urdf").read(), "link4") th = torch.zeros(3) tg = chain.forward_kinematics(th) m = tg.get_matrix() pos = m[0, :3, 3] assert torch.allclose(pos, torch.tensor([0, 0, 1.])) th = torch.tensor([0, 0.1, 0]) tg = chain.forward_kinematics(th) m = tg.get_matrix() pos = m[0, :3, 3] assert torch.allclose(pos, torch.tensor([0, -0.1, 1.])) th = torch.tensor([0.1, 0.1, 0]) tg = chain.forward_kinematics(th) m = tg.get_matrix() pos = m[0, :3, 3] assert torch.allclose(pos, torch.tensor([0, -0.1, 1.1])) th = torch.tensor([0.1, 0.1, 0.1]) tg = chain.forward_kinematics(th) m = tg.get_matrix() pos = m[0, :3, 3] assert torch.allclose(pos, torch.tensor([0.1, -0.1, 1.1])) J = chain.jacobian(th) assert torch.allclose(J, torch.tensor([[[0., 0., 1.], [0., -1., 0.], [1., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]])) if __name__ == "__main__": test_correctness() test_parallel() test_dtype_device() test_gradient() test_jacobian_prismatic() test_jacobian_at_different_loc_than_ee()