File size: 4,201 Bytes
a7d03ae
 
64342a8
 
 
 
542c0bb
 
a7d03ae
8e44a5c
 
 
 
 
4418cec
 
8e44a5c
a7d03ae
8e44a5c
 
 
 
a7d03ae
8e44a5c
a7d03ae
8e44a5c
 
 
a7d03ae
8e44a5c
 
a7d03ae
8e44a5c
a7d03ae
8e44a5c
a7d03ae
8e44a5c
 
 
 
7cfc14a
8e44a5c
 
 
7cfc14a
 
8e44a5c
 
 
 
 
 
 
 
 
 
 
 
 
7cfc14a
8e44a5c
 
7cfc14a
 
 
8e44a5c
7cfc14a
7daa2f1
8e44a5c
 
7cfc14a
 
8e44a5c
7cfc14a
8e44a5c
 
 
 
 
 
 
a7d03ae
 
8e44a5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ea1c46
26e4bcd
542c0bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: cc-by-nc-sa-4.0
task_categories:
- object-detection
tags:
- object_detection
- Object_tracking
- autonomous_driving
---
---
license: cc-by-nc-sa-4.0
---

# EMT Dataset
This dataset was presented in [EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region](https://huggingface.co/papers/2502.19260).


## Introduction
EMT is a comprehensive dataset for autonomous driving research, containing **57 minutes** of diverse urban traffic footage from the **Gulf Region**. It includes rich semantic annotations across two agent categories:

- **People**: Pedestrians and cyclists
- **Vehicles**: Seven different classes

Each video segment spans **2.5-3 minutes**, capturing challenging real-world scenarios:

- **Dense Urban Traffic** – Multi-agent interactions in congested environments
- **Weather Variations** – Clear and rainy conditions
- **Visual Challenges** – High reflections and adverse weather combinations (e.g., rainy nights)

### Dataset Annotations
This dataset provides annotations for:

- **Detection & Tracking** – Multi-object tracking with consistent IDs

For **intention prediction** and **trajectory prediction** annotations, please refer to our [GitHub repository](https://github.com/AV-Lab/emt-dataset).

---

## Quick Start
```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("KuAvLab/EMT", split="train")
```

### Available Labels
Each dataset sample contains two main components:

1. **Image** – The frame image
2. **Object** – The annotations for detected objects

#### Object Labels
- **bbox**: Bounding box coordinates (`x_min, y_min, x_max, y_max`)
- **track_id**: Tracking ID of detected objects
- **class_id**: Numeric class ID
- **class_name**: Object type (e.g., `car`, `pedestrian`)

#### Sample Usage
```python
import numpy as np

for data in dataset:
    # Convert image from PIL to OpenCV format (BGR)
    img = np.array(data['image'])
    
    print("Classes:", data['objects']['class_name'])
    print("Bboxes:",  data['objects']['bbox'])
    print("Track IDs:", data['objects']['track_id'])
    print("Class IDs:", data['objects']['class_id'])
```

---

## Data Collection
| Aspect      | Description                        |
|------------|----------------------------------|
| Duration   | 57 minutes total footage        |
| Segments   | 2.5-3 minutes per recording     |
| FPS        | 10 fps for annotated frames     |
| Agent Classes | 2 Person categories, 7 Vehicle categories |

### Agent Categories
#### **People**
- Pedestrians
- Cyclists

#### **Vehicles**
- Motorbike
- Small motorized vehicle
- Medium vehicle
- Large vehicle
- Car
- Bus
- Emergency vehicle

---

## Dataset Statistics
| Category           | Count       |
|-------------------|------------|
| Annotated Frames  | 34,386     |
| Bounding Boxes    | 626,634    |
| Unique Agents     | 9,094      |
| Vehicle Instances | 7,857      |
| Pedestrian Instances | 568  |

### Class Breakdown
| **Class**                 | **Description** | **Bounding Boxes** | **Unique Agents** |
|---------------------------|----------------|-------------------|----------------|
| Pedestrian                | Walking individuals  | 24,574 | 568 |
| Cyclist                   | Bicycle/e-bike riders  | 594 | 14 |
| Motorbike                 | Motorcycles, bikes, scooters  | 11,294 | 159 |
| Car                       | Standard automobiles | 429,705 | 6,559 |
| Small motorized vehicle   | Mobility scooters, quad bikes  | 767 | 13 |
| Medium vehicle            | Vans, tractors  | 51,257 | 741 |
| Large vehicle             | Lorries, trucks (6+ wheels) | 37,757 | 579 |
| Bus                       | School buses, single/double-deckers  | 19,244 | 200 |
| Emergency vehicle         | Ambulances, police cars, fire trucks  | 1,182 | 9 |
| **Overall**               | | **576,374** | **8,842** |

---

For more details , visit our [GitHub repository](https://github.com/AV-Lab/emt-dataset).  
Our paper can be found [Here](https://huggingface.co/papers/2502.19260.)    
For any inquires contact [[email protected]]([email protected]) or [https://huggingface.co/Murdism](https://huggingface.co/Murdism)