File size: 4,201 Bytes
a7d03ae 64342a8 542c0bb a7d03ae 8e44a5c 4418cec 8e44a5c a7d03ae 8e44a5c a7d03ae 8e44a5c a7d03ae 8e44a5c a7d03ae 8e44a5c a7d03ae 8e44a5c a7d03ae 8e44a5c a7d03ae 8e44a5c 7cfc14a 8e44a5c 7cfc14a 8e44a5c 7cfc14a 8e44a5c 7cfc14a 8e44a5c 7cfc14a 7daa2f1 8e44a5c 7cfc14a 8e44a5c 7cfc14a 8e44a5c a7d03ae 8e44a5c 5ea1c46 26e4bcd 542c0bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: cc-by-nc-sa-4.0
task_categories:
- object-detection
tags:
- object_detection
- Object_tracking
- autonomous_driving
---
---
license: cc-by-nc-sa-4.0
---
# EMT Dataset
This dataset was presented in [EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region](https://huggingface.co/papers/2502.19260).
## Introduction
EMT is a comprehensive dataset for autonomous driving research, containing **57 minutes** of diverse urban traffic footage from the **Gulf Region**. It includes rich semantic annotations across two agent categories:
- **People**: Pedestrians and cyclists
- **Vehicles**: Seven different classes
Each video segment spans **2.5-3 minutes**, capturing challenging real-world scenarios:
- **Dense Urban Traffic** β Multi-agent interactions in congested environments
- **Weather Variations** β Clear and rainy conditions
- **Visual Challenges** β High reflections and adverse weather combinations (e.g., rainy nights)
### Dataset Annotations
This dataset provides annotations for:
- **Detection & Tracking** β Multi-object tracking with consistent IDs
For **intention prediction** and **trajectory prediction** annotations, please refer to our [GitHub repository](https://github.com/AV-Lab/emt-dataset).
---
## Quick Start
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("KuAvLab/EMT", split="train")
```
### Available Labels
Each dataset sample contains two main components:
1. **Image** β The frame image
2. **Object** β The annotations for detected objects
#### Object Labels
- **bbox**: Bounding box coordinates (`x_min, y_min, x_max, y_max`)
- **track_id**: Tracking ID of detected objects
- **class_id**: Numeric class ID
- **class_name**: Object type (e.g., `car`, `pedestrian`)
#### Sample Usage
```python
import numpy as np
for data in dataset:
# Convert image from PIL to OpenCV format (BGR)
img = np.array(data['image'])
print("Classes:", data['objects']['class_name'])
print("Bboxes:", data['objects']['bbox'])
print("Track IDs:", data['objects']['track_id'])
print("Class IDs:", data['objects']['class_id'])
```
---
## Data Collection
| Aspect | Description |
|------------|----------------------------------|
| Duration | 57 minutes total footage |
| Segments | 2.5-3 minutes per recording |
| FPS | 10 fps for annotated frames |
| Agent Classes | 2 Person categories, 7 Vehicle categories |
### Agent Categories
#### **People**
- Pedestrians
- Cyclists
#### **Vehicles**
- Motorbike
- Small motorized vehicle
- Medium vehicle
- Large vehicle
- Car
- Bus
- Emergency vehicle
---
## Dataset Statistics
| Category | Count |
|-------------------|------------|
| Annotated Frames | 34,386 |
| Bounding Boxes | 626,634 |
| Unique Agents | 9,094 |
| Vehicle Instances | 7,857 |
| Pedestrian Instances | 568 |
### Class Breakdown
| **Class** | **Description** | **Bounding Boxes** | **Unique Agents** |
|---------------------------|----------------|-------------------|----------------|
| Pedestrian | Walking individuals | 24,574 | 568 |
| Cyclist | Bicycle/e-bike riders | 594 | 14 |
| Motorbike | Motorcycles, bikes, scooters | 11,294 | 159 |
| Car | Standard automobiles | 429,705 | 6,559 |
| Small motorized vehicle | Mobility scooters, quad bikes | 767 | 13 |
| Medium vehicle | Vans, tractors | 51,257 | 741 |
| Large vehicle | Lorries, trucks (6+ wheels) | 37,757 | 579 |
| Bus | School buses, single/double-deckers | 19,244 | 200 |
| Emergency vehicle | Ambulances, police cars, fire trucks | 1,182 | 9 |
| **Overall** | | **576,374** | **8,842** |
---
For more details , visit our [GitHub repository](https://github.com/AV-Lab/emt-dataset).
Our paper can be found [Here](https://huggingface.co/papers/2502.19260.)
For any inquires contact [[email protected]]([email protected]) or [https://huggingface.co/Murdism](https://huggingface.co/Murdism) |