Update README.md
Browse files
README.md
CHANGED
@@ -1,88 +1,117 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
## Introduction
|
5 |
-
EMT is a comprehensive dataset for autonomous driving research, containing 57 minutes of diverse urban traffic footage from the Gulf Region
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
- **Weather Variations**: Clear and rainy conditions
|
9 |
-
- **Visual Challenges**: High reflections from road surfaces and adverse weather combinations (rainy nights)
|
10 |
|
11 |
-
|
12 |
-
- **
|
13 |
-
- **
|
14 |
-
- **Intention Prediction**: Behavior understanding in complex scenarios - Refer to the github repo
|
15 |
|
|
|
|
|
16 |
|
17 |
-
|
18 |
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
from datasets import load_dataset
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
### Avaiable labels:
|
27 |
-
- Data from datatset has two outputs: image and object:
|
28 |
-
- Image contains the frame image while object contains annotation:
|
29 |
-
``` # object labels
|
30 |
-
bbox: bbox of detected objects
|
31 |
-
track_id: tracking id of detected object
|
32 |
-
class_id: class id of object
|
33 |
-
class_name: type of object
|
34 |
```
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
```python
|
|
|
|
|
38 |
for data in dataset:
|
39 |
# Convert image from PIL to OpenCV format (BGR)
|
40 |
img = np.array(data['image'])
|
|
|
41 |
print("Classes:", data['objects']['class_name'])
|
42 |
-
print("Bboxes:", len(data['objects']['bbox'])
|
|
|
|
|
43 |
```
|
44 |
|
|
|
45 |
|
46 |
-
|
47 |
-
| Aspect
|
48 |
-
|
49 |
-
| Duration
|
50 |
-
| Segments
|
51 |
-
| FPS
|
52 |
-
| Agent Classes | 2 Person
|
53 |
|
54 |
### Agent Categories
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
72 |
-
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
77 |
-
|
|
78 |
-
|
79 |
-
|
80 |
-
|
|
81 |
-
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
---
|
4 |
+
---
|
5 |
+
license: cc-by-nc-sa-4.0
|
6 |
+
---
|
7 |
+
|
8 |
+
# EMT Dataset
|
9 |
+
|
10 |
## Introduction
|
11 |
+
EMT is a comprehensive dataset for autonomous driving research, containing **57 minutes** of diverse urban traffic footage from the **Gulf Region**. It includes rich semantic annotations across two agent categories:
|
12 |
+
|
13 |
+
- **People**: Pedestrians and cyclists
|
14 |
+
- **Vehicles**: Seven different classes
|
15 |
|
16 |
+
Each video segment spans **2.5-3 minutes**, capturing challenging real-world scenarios:
|
|
|
|
|
17 |
|
18 |
+
- **Dense Urban Traffic** – Multi-agent interactions in congested environments
|
19 |
+
- **Weather Variations** – Clear and rainy conditions
|
20 |
+
- **Visual Challenges** – High reflections and adverse weather combinations (e.g., rainy nights)
|
|
|
21 |
|
22 |
+
### Dataset Annotations
|
23 |
+
This dataset provides annotations for:
|
24 |
|
25 |
+
- **Detection & Tracking** – Multi-object tracking with consistent IDs
|
26 |
|
27 |
+
For **intention prediction** and **trajectory prediction** annotations, please refer to our [GitHub repository](https://github.com/AV-Lab/emt-dataset).
|
28 |
|
29 |
+
---
|
30 |
+
|
31 |
+
## Quick Start
|
32 |
+
```python
|
33 |
from datasets import load_dataset
|
34 |
+
|
35 |
+
# Load the dataset
|
36 |
+
dataset = load_dataset("KuAvLab/EMT", split="train")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
```
|
38 |
|
39 |
+
### Available Labels
|
40 |
+
Each dataset sample contains two main components:
|
41 |
+
|
42 |
+
1. **Image** – The frame image
|
43 |
+
2. **Object** – The annotations for detected objects
|
44 |
+
|
45 |
+
#### Object Labels
|
46 |
+
- **bbox**: Bounding box coordinates (`x_min, y_min, x_max, y_max`)
|
47 |
+
- **track_id**: Tracking ID of detected objects
|
48 |
+
- **class_id**: Numeric class ID
|
49 |
+
- **class_name**: Object type (e.g., `car`, `pedestrian`)
|
50 |
+
|
51 |
+
#### Sample Usage
|
52 |
```python
|
53 |
+
import numpy as np
|
54 |
+
|
55 |
for data in dataset:
|
56 |
# Convert image from PIL to OpenCV format (BGR)
|
57 |
img = np.array(data['image'])
|
58 |
+
|
59 |
print("Classes:", data['objects']['class_name'])
|
60 |
+
print("Bboxes:", len(data['objects']['bbox']))
|
61 |
+
print("Track IDs:", data['objects']['track_id'])
|
62 |
+
print("Class IDs:", data['objects']['class_id'])
|
63 |
```
|
64 |
|
65 |
+
---
|
66 |
|
67 |
+
## Data Collection
|
68 |
+
| Aspect | Description |
|
69 |
+
|------------|----------------------------------|
|
70 |
+
| Duration | 57 minutes total footage |
|
71 |
+
| Segments | 2.5-3 minutes per recording |
|
72 |
+
| FPS | 10 fps for annotated frames |
|
73 |
+
| Agent Classes | 2 Person categories, 7 Vehicle categories |
|
74 |
|
75 |
### Agent Categories
|
76 |
+
#### **People**
|
77 |
+
- Pedestrians
|
78 |
+
- Cyclists
|
79 |
+
|
80 |
+
#### **Vehicles**
|
81 |
+
- Motorbike
|
82 |
+
- Small motorized vehicle
|
83 |
+
- Medium vehicle
|
84 |
+
- Large vehicle
|
85 |
+
- Car
|
86 |
+
- Bus
|
87 |
+
- Emergency vehicle
|
88 |
+
|
89 |
+
---
|
90 |
+
|
91 |
+
## Dataset Statistics
|
92 |
+
| Category | Count |
|
93 |
+
|-------------------|------------|
|
94 |
+
| Annotated Frames | 34,386 |
|
95 |
+
| Bounding Boxes | 626,634 |
|
96 |
+
| Unique Agents | 9,094 |
|
97 |
+
| Vehicle Instances | 7,857 |
|
98 |
+
| Pedestrian Instances | 568 |
|
99 |
+
|
100 |
+
### Class Breakdown
|
101 |
+
| **Class** | **Description** | **Bounding Boxes** | **Unique Agents** |
|
102 |
+
|---------------------------|----------------|-------------------|----------------|
|
103 |
+
| Pedestrian | Walking individuals | 24,574 | 568 |
|
104 |
+
| Cyclist | Bicycle/e-bike riders | 594 | 14 |
|
105 |
+
| Motorbike | Motorcycles, bikes, scooters | 11,294 | 159 |
|
106 |
+
| Car | Standard automobiles | 429,705 | 6,559 |
|
107 |
+
| Small motorized vehicle | Mobility scooters, quad bikes | 767 | 13 |
|
108 |
+
| Medium vehicle | Vans, tractors | 51,257 | 741 |
|
109 |
+
| Large vehicle | Lorries, trucks (6+ wheels) | 37,757 | 579 |
|
110 |
+
| Bus | School buses, single/double-deckers | 19,244 | 200 |
|
111 |
+
| Emergency vehicle | Ambulances, police cars, fire trucks | 1,182 | 9 |
|
112 |
+
| **Overall** | | **576,374** | **8,842** |
|
113 |
+
|
114 |
+
---
|
115 |
+
|
116 |
+
For more details , visit our [GitHub repository](https://github.com/AV-Lab/emt-dataset).
|
117 |
+
|