KuAvLab commited on
Commit
7cfc14a
·
verified ·
1 Parent(s): a7d03ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -0
README.md CHANGED
@@ -17,6 +17,32 @@ The dataset provides dense annotations for:
17
  Validated through benchmarking on state-of-the-art models across tracking, trajectory prediction, and intention prediction tasks, with corresponding ground truth annotations for each benchmark.
18
 
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  ### Data Collection
21
  | Aspect | Description |
22
  |:-------|:------------|
 
17
  Validated through benchmarking on state-of-the-art models across tracking, trajectory prediction, and intention prediction tasks, with corresponding ground truth annotations for each benchmark.
18
 
19
 
20
+ ## Quick start
21
+ ``` bash
22
+ from datasets import load_dataset
23
+ # Load the dataset again with the 'force_redownload' option
24
+ dataset = load_dataset("KuAvLab/EMT", split="train")#download_mode="reuse_cache_if_exists")# download_mode="force_redownload") or split train
25
+ ```
26
+ ### Avaiable labels:
27
+ - Data from datatset has two outputs: image and object:
28
+ - Image contains the frame image while object contains annotation:
29
+ ``` # object labels
30
+ bbox: bbox of detected objects
31
+ track_id: tracking id of detected object
32
+ class_id: class id of object
33
+ class_name: type of object
34
+ ```
35
+
36
+ Sample use case:
37
+ ```python
38
+ for data in dataset:
39
+ # Convert image from PIL to OpenCV format (BGR)
40
+ img = np.array(data['image'])
41
+ print("Classes:", data['objects']['class_name'])
42
+ print("Bboxes:", len(data['objects']['bbox']),"\nTrack IDs:", data['objects']['track_id']),"\nclass IDs:", data['objects']['class_id']) )
43
+ ```
44
+
45
+
46
  ### Data Collection
47
  | Aspect | Description |
48
  |:-------|:------------|