Update README.md
Browse files
README.md
CHANGED
@@ -17,6 +17,32 @@ The dataset provides dense annotations for:
|
|
17 |
Validated through benchmarking on state-of-the-art models across tracking, trajectory prediction, and intention prediction tasks, with corresponding ground truth annotations for each benchmark.
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
### Data Collection
|
21 |
| Aspect | Description |
|
22 |
|:-------|:------------|
|
|
|
17 |
Validated through benchmarking on state-of-the-art models across tracking, trajectory prediction, and intention prediction tasks, with corresponding ground truth annotations for each benchmark.
|
18 |
|
19 |
|
20 |
+
## Quick start
|
21 |
+
``` bash
|
22 |
+
from datasets import load_dataset
|
23 |
+
# Load the dataset again with the 'force_redownload' option
|
24 |
+
dataset = load_dataset("KuAvLab/EMT", split="train")#download_mode="reuse_cache_if_exists")# download_mode="force_redownload") or split train
|
25 |
+
```
|
26 |
+
### Avaiable labels:
|
27 |
+
- Data from datatset has two outputs: image and object:
|
28 |
+
- Image contains the frame image while object contains annotation:
|
29 |
+
``` # object labels
|
30 |
+
bbox: bbox of detected objects
|
31 |
+
track_id: tracking id of detected object
|
32 |
+
class_id: class id of object
|
33 |
+
class_name: type of object
|
34 |
+
```
|
35 |
+
|
36 |
+
Sample use case:
|
37 |
+
```python
|
38 |
+
for data in dataset:
|
39 |
+
# Convert image from PIL to OpenCV format (BGR)
|
40 |
+
img = np.array(data['image'])
|
41 |
+
print("Classes:", data['objects']['class_name'])
|
42 |
+
print("Bboxes:", len(data['objects']['bbox']),"\nTrack IDs:", data['objects']['track_id']),"\nclass IDs:", data['objects']['class_id']) )
|
43 |
+
```
|
44 |
+
|
45 |
+
|
46 |
### Data Collection
|
47 |
| Aspect | Description |
|
48 |
|:-------|:------------|
|