File size: 4,915 Bytes
88e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f6e05a
88e3654
 
2f6e05a
15372ff
88e3654
2f6e05a
7a5a207
f9fc69e
88e3654
04db8c1
 
 
 
 
 
 
 
 
 
 
 
 
 
88e3654
 
 
 
 
 
2f6e05a
88e3654
 
 
 
 
162faa0
88e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
2f6e05a
88e3654
2f6e05a
 
88e3654
2f6e05a
88e3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f6e05a
 
 
 
 
 
 
 
 
 
 
04db8c1
2f6e05a
 
 
 
 
 
 
 
 
 
 
 
 
 
88e3654
 
2f6e05a
 
88e3654
 
2f6e05a
88e3654
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""EMT dataset."""

import os
import datasets

_HOMEPAGE = "https://github.com/AV-Lab/emt-dataset"
_LICENSE = "CC-BY-SA 4.0"

_CITATION = """  
@article{EMTdataset2025,  
      title={EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region},  
      author={Nadya Abdel Madjid and Murad Mebrahtu and Abdelmoamen Nasser and Bilal Hassan and Naoufel Werghi and Jorge Dias and Majid Khonji},  
      year={2025},  
      eprint={2502.19260},  
      archivePrefix={arXiv},  
      primaryClass={cs.CV},  
      url={https://arxiv.org/abs/2502.19260}  
}  
""" 

_DESCRIPTION = """\
A multi-task dataset for detection, tracking, prediction, and intention prediction. 
This dataset includes 34,386 annotated frames collected over 57 minutes of driving, with annotations for detection + tracking.
"""

# Image archive URL
_IMAGE_ARCHIVE_URL = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/emt_images.tar.gz"

# Annotations URL (organized in train/test subfolders)
_ANNOTATION_REPO = "https://huggingface.co/datasets/KuAvLab/EMT/resolve/main/annotations"
# "https://huggingface.co/datasets/Murdism/EMT/resolve/main/annotations"

_GT_OBJECT_CLASSES = {
    0: "Pedestrian",
    1: "Cyclist",
    2: "Motorbike",
    3: "Small_motorised_vehicle",
    4: "Car",
    5: "Medium_vehicle",
    6: "Large_vehicle",
    7: "Bus",
    8: "Emergency_vehicle",
}

# Update: Consider using a predefined set of object classes for easier filtering
OBJECT_CLASSES = {v: k for k, v in _GT_OBJECT_CLASSES.items()}

class EMT(datasets.GeneratorBasedBuilder):
    """EMT dataset."""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "objects": datasets.Sequence(
                        {
                            "bbox": datasets.Sequence(datasets.Value("float32")),
                            "class_id": datasets.Value("int32"),
                            "track_id": datasets.Value("int32"),
                            "class_name": datasets.Value("string"),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive_path = dl_manager.download(_IMAGE_ARCHIVE_URL)
        annotation_paths = {
            "train": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/train/"),
            "test": dl_manager.download_and_extract(f"{_ANNOTATION_REPO}/test/"),
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": dl_manager.iter_archive(archive_path),
                    "annotation_path": annotation_paths["train"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "images": dl_manager.iter_archive(archive_path),
                    "annotation_path": annotation_paths["test"],
                },
            ),
        ]

    def _generate_examples(self, images, annotation_path):
        """Generate examples from annotations and image archive."""

        # Load annotation files
        annotations = {}
        for root, _, files in os.walk(annotation_path):
            for file in files:
                with open(os.path.join(root, file), "r", encoding="utf-8") as f:
                    for line in f:
                        parts = line.strip().split()
                        frame_id, track_id, class_name = parts[:3]
                        bbox = list(map(float, parts[4:8]))  # Extract bounding box
                        class_id = _GT_OBJECT_CLASSES.get(class_name, -1)  # Convert class_name to numeric ID, default to -1 if not found

                        img_path = f"{frame_id}.jpg"
                        if img_path not in annotations:
                            annotations[img_path] = []
                        annotations[img_path].append(
                            {
                                "bbox": bbox,
                                "class_id": class_id,
                                "track_id": int(track_id),
                                "class_name": class_name,
                            }
                        )

        # Yield dataset entries
        idx = 0
        for file_path, file_obj in images:
            img_name = os.path.basename(file_path)
            if img_name in annotations:
                yield idx, {
                    "image": {"path": file_path, "bytes": file_obj.read()},
                    "objects": annotations[img_name],
                }
                idx += 1