text
stringlengths 0
211k
|
---|
smul_mR(s,UxV_T,s_UxV_T); |
// (su x v) |
c_r_mR(sU_T, R1, A, R2); |
c_r_mR(V_T, R1, A, R3); |
c_s_mR(cofactor_R(A, R1, C1), sUxV_T, R1, C1); |
c_s_mR(cofactor_R(A, R1, C2), sUxV_T, R1, C2); |
c_s_mR(cofactor_R(A, R1, C3), sUxV_T, R1, C3); |
// (u x sv) |
c_r_mR(U_T, R1, A, R2); |
c_r_mR(sV_T, R1, A, R3); |
c_s_mR(cofactor_R(A, R1, C1), UxsV_T, R1, C1); |
c_s_mR(cofactor_R(A, R1, C2), UxsV_T, R1, C2); |
c_s_mR(cofactor_R(A, R1, C3), UxsV_T, R1, C3); |
clrscrn(); |
printf(" s = %+.0f\n\n",s); |
printf(" u_T :"); |
p_mR(U_T, S4, P0, C6); |
printf(" v_T :"); |
p_mR(V_T, S4, P0, C6); |
printf("\n" |
" s (uxv) == su x v == u x sv\n\n" |
" s (uxv) :" ); |
p_mR(s_UxV_T, S5, P0, C6); |
printf(" su x v :" ); |
p_mR(sUxV_T, S5, P0, C6); |
printf(" u x sv :" ); |
p_mR(UxsV_T, S5, P0, C6); |
f_mR(U_T); |
f_mR(V_T); |
f_mR(sU_T); |
f_mR(sV_T); |
f_mR(UxV_T); |
f_mR(s_UxV_T); |
f_mR(sUxV_T); |
f_mR(UxsV_T); |
f_mR(A); |
/* ------------------------------------ */ |
int main(void) |
time_t t; |
srand(time(&t)); |
do |
fun(); |
} while(stop_w()); |
return 0; |
/* ------------------------------------ */ |
Les vecteurs en mathématiques sont supposés être des vecteurs colonnes, c'est pour cela que j'utilise _T pour afficher des vecteurs lignes. |
Exemple de sortie écran : |
s = -3 |
u_T : |
+6 +2 -2 |
v_T : |
-5 +3 -7 |
s (uxv) == su x v == u x sv |
s (uxv) : |
+24 -156 -84 |
su x v : |
+24 -156 -84 |
u x sv : |
+24 -156 -84 |
Press return to continue |
Press X return to stop |
Mathc matrices/a249 |
Application |
Installer et compiler ces fichiers dans votre répertoire de travail. |
/* Save as : c00a.c */ |
void fun(void) |
double s = 5; |
double u_T[R1*C3] = { 4, 2, 5}; |
double v_T[R1*C3] = { 3, 4, 1}; |
double **U_T = ca_A_mR(u_T , i_mR(R1, C3)); |
double **V_T = ca_A_mR(v_T , i_mR(R1, C3)); |
double **sU_T = smul_mR(s,U_T,i_mR(R1, C3)); |
double **sV_T = smul_mR(s,V_T,i_mR(R1, C3)); |
double **UxV_T = i_mR(R1, C3); |
double **s_UxV_T = i_mR(R1, C3); |
double **sUxV_T = i_mR(R1, C3); |
double **UxsV_T = i_mR(R1, C3); |
double **A = rp_mR(i_mR(R3, C3), 1); |
// s (u x v) |
c_r_mR(U_T, R1, A, R2); |
c_r_mR(V_T, R1, A, R3); |
c_s_mR(cofactor_R(A, R1, C1), UxV_T, R1, C1); |
c_s_mR(cofactor_R(A, R1, C2), UxV_T, R1, C2); |
c_s_mR(cofactor_R(A, R1, C3), UxV_T, R1, C3); |
smul_mR(s,UxV_T,s_UxV_T); |
// (su x v) |
c_r_mR(sU_T, R1, A, R2); |
c_r_mR(V_T, R1, A, R3); |
c_s_mR(cofactor_R(A, R1, C1), sUxV_T, R1, C1); |
c_s_mR(cofactor_R(A, R1, C2), sUxV_T, R1, C2); |
c_s_mR(cofactor_R(A, R1, C3), sUxV_T, R1, C3); |
// (u x sv) |
c_r_mR(U_T, R1, A, R2); |
c_r_mR(sV_T, R1, A, R3); |
c_s_mR(cofactor_R(A, R1, C1), UxsV_T, R1, C1); |
Subsets and Splits