text
stringlengths 0
211k
|
---|
Mathc matrices/a234 |
Application |
Installer et compiler ces fichiers dans votre répertoire de travail. |
/* Save as : c01a.c */ |
void fun(int r) |
double **u = r_mR( i_mR(r,C1),9.); |
double **v = r_mR( i_mR(r,C1),9.); |
clrscrn(); |
printf(" u :"); |
p_mR(u,S3,P0,C6); |
printf(" v :"); |
p_mR(v,S3,P0,C6); |
printf(" Cauchy-Schwarz : |<u,v>| <= ||u|| ||v|| \n\n" |
" |<u,v>| = %+.0f\t ||u|| ||v|| = %+.0f\n\n\n" |
" |<u,v>|\t <= ||u|| ||v|| \n" |
" %+.0f\t <= %+.0f \n", |
fabs( dot_uv_R(u, v)), |
norm_uv_R(u) * norm_uv_R(v), |
fabs( dot_uv_R(u, v)), |
norm_uv_R(u) * norm_uv_R(v) ); |
f_mR(u); |
f_mR(v); |
/* ------------------------------------ */ |
int main(void) |
time_t t; |
srand(time(&t)); |
do |
fun(rp_I(R3)+R2); |
} while(stop_w()); |
return 0; |
/* ------------------------------------ */ |
Nous vérifions une des propriétés de la norme : norm_uv_R(u); |
Exemple de sortie écran : |
u : |
+7 |
+4 |
+9 |
+6 |
-4 |
v : |
+8 |
-2 |
+6 |
+9 |
+7 |
Cauchy-Schwarz : |<u,v>| <= ||u|| ||v|| |
|<u,v>| = +128 ||u|| ||v|| = +215 |
|<u,v>| <= ||u|| ||v|| |
+128 <= +215 |
Press return to continue |
Press X return to stop |
Mathc matrices/a235 |
Propriétés |
u x v : |
u x v == - v x u : |
u x (v+w) == (uxv) + (uxw) : |
(v+w) x u == (vxu) + (wxu): |
s (uxv) == su x v == u x sv : |
If u and v are colinear then u x v == 0 : |
u.(u x v) == 0 : |
u.(u x v) == det(A) == 0 : |
Mathc matrices/a236 |
Application |
Installer et compiler ces fichiers dans votre répertoire de travail. |
/* Save as : c00a.c */ |
void fun(void) |
double **U_T = r_mR(i_mR(R1, C3), 9); |
double **V_T = r_mR(i_mR(R1, C3), 9); |
double **A = rp_mR(i_mR(R3, C3), 1); |
double **B = rp_mR(i_mR(R3, C3), 1); |
c_r_mR(U_T, R1, A, R2); |
c_r_mR(V_T, R1, A, R3); |
c_r_mR(V_T, R1, B, R2); |
c_r_mR(U_T, R1, B, R3); |
clrscrn(); |
printf(" u_T :"); |
p_mR(U_T, S3, P0, C6); |
printf(" v_T :"); |
p_mR(V_T, S3, P0, C6); |
printf("\n u x v == -v x u C* = cofactors \n\n" |
" u x v = (C11, C12, C13) = (%+.0f, %+.0f, %+.0f) \n" |
" v x u = (C11, C12, C13) = (%+.0f, %+.0f, %+.0f)\n\n", |
cofactor_R(A, R1, C1), |
cofactor_R(A, R1, C2), |
cofactor_R(A, R1, C3), |
cofactor_R(B, R1, C1), |
cofactor_R(B, R1, C2), |
cofactor_R(B, R1, C3) ); |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.