text
stringlengths
0
211k
+1.000+0.000i +0.000-0.000i +0.000+0.000i +0.309+0.369i
+0.000+0.000i +1.000+0.000i +0.000+0.000i +0.326+0.495i
+0.000+0.000i +0.000+0.000i +1.000+0.000i +0.221-0.220i
-0.208+0.627i +0.074+0.577i
+0.812+0.270i +0.426-0.071i
+0.392-0.524i +0.087-0.347i
X :
+0.309+0.369i -0.208+0.627i +0.074+0.577i
+0.326+0.495i +0.812+0.270i +0.426-0.071i
+0.221-0.220i +0.392-0.524i +0.087-0.347i
Press return to continue.
------------------------------------
b1 b2 ... bn :
+1 +4i +5 +4i +3 +1i
+2 +5i +3 +5i +2 +3i
+3 +6i +2 +6i +2 +4i
Ax1 Ax2 ... Axn :
+1 +4i +5 +4i +3 +1i
+2 +5i +3 +5i +2 +3i
+3 +6i +2 +6i +2 +4i
Press return to continue.
Mathc complexes/a191
Application
Installer et compiler ces fichiers dans votre répertoire de travail.
/* Save as : c00a.c */
int main(void)
double a[RA*(CA*C2)] = { 1,2, 3,4, 5,6,
5,4, 1,3, 6,8,
7,2, 5,1, 1,1};
double b0[RA*(Cb*C2)] ={ 1,4,
2,5,
3,6};
double **A = ca_A_mZ(a, i_mZ(RA,CA));
double **B = ca_A_mZ(b0,i_mZ(RA,Cb));
double **Inv = i_mZ(RA,CA);
double **X = i_mZ(RA,Cb);
double **T = i_mZ(RA,Cb);
clrscrn();
printf(" We want to find X such as, \n\n");
printf(" AX = B \n\n");
printf(" If A is a square matrix and, \n\n");
printf(" If A has an inverse matrix, \n\n");
printf(" you can find X by this method\n\n");
printf(" X = inv(A) B \n\n\n");
printf(" To verify the result you can \n\n");
printf(" multiply the matrix A by X. \n\n");
printf(" You must refind B. \n\n");
stop();
clrscrn();
printf(" A :");
p_mZ(A, S5,P0, S4,P0, C6);
printf(" B :");
p_mZ(B, S5,P0, S4,P0, C6);
stop();
clrscrn();
printf(" invgj_mZ(A,Inv) :");
pE_mZ(invgj_mZ(A,Inv), S12,P4, S8,P4, C3);
printf(" X = invgj_mZ(A,Inv) * B :");
p_mZ(mul_mZ(Inv,B,X), S12,P4, S2, P4, C6);
stop();
clrscrn();
printf(" B :");
p_mZ(B, S5,P0, S4,P0, C6);
printf(" AX :");
p_mZ(mul_mZ(A,X,T), S5,P0, S4,P0, C6);
f_mZ(T);
f_mZ(X);
f_mZ(B);
f_mZ(Inv);
f_mZ(A);
stop();
return 0;
/* ------------------------------------ */
--------------------- */
Exemple de sortie écran :
We want to find X such as,
AX = B
If A is a square matrix and,
If A has an inverse matrix,
you can find X by this method
X = inv(A) B
To verify the result you can
multiply the matrix A by X.
You must refind B.
Press return to continue.
------------------------------------
A :
+1 +2i +3 +4i +5 +6i
+5 +4i +1 +3i +6 +8i
+7 +2i +5 +1i +1 +1i
B :
+1 +4i
+2 +5i
+3 +6i
Press return to continue.