text
stringlengths 0
211k
|
---|
+1.000+0.000i +0.000-0.000i +0.000+0.000i +0.309+0.369i |
+0.000+0.000i +1.000+0.000i +0.000+0.000i +0.326+0.495i |
+0.000+0.000i +0.000+0.000i +1.000+0.000i +0.221-0.220i |
-0.208+0.627i +0.074+0.577i |
+0.812+0.270i +0.426-0.071i |
+0.392-0.524i +0.087-0.347i |
X : |
+0.309+0.369i -0.208+0.627i +0.074+0.577i |
+0.326+0.495i +0.812+0.270i +0.426-0.071i |
+0.221-0.220i +0.392-0.524i +0.087-0.347i |
Press return to continue. |
------------------------------------ |
b1 b2 ... bn : |
+1 +4i +5 +4i +3 +1i |
+2 +5i +3 +5i +2 +3i |
+3 +6i +2 +6i +2 +4i |
Ax1 Ax2 ... Axn : |
+1 +4i +5 +4i +3 +1i |
+2 +5i +3 +5i +2 +3i |
+3 +6i +2 +6i +2 +4i |
Press return to continue. |
Mathc complexes/a191 |
Application |
Installer et compiler ces fichiers dans votre répertoire de travail. |
/* Save as : c00a.c */ |
int main(void) |
double a[RA*(CA*C2)] = { 1,2, 3,4, 5,6, |
5,4, 1,3, 6,8, |
7,2, 5,1, 1,1}; |
double b0[RA*(Cb*C2)] ={ 1,4, |
2,5, |
3,6}; |
double **A = ca_A_mZ(a, i_mZ(RA,CA)); |
double **B = ca_A_mZ(b0,i_mZ(RA,Cb)); |
double **Inv = i_mZ(RA,CA); |
double **X = i_mZ(RA,Cb); |
double **T = i_mZ(RA,Cb); |
clrscrn(); |
printf(" We want to find X such as, \n\n"); |
printf(" AX = B \n\n"); |
printf(" If A is a square matrix and, \n\n"); |
printf(" If A has an inverse matrix, \n\n"); |
printf(" you can find X by this method\n\n"); |
printf(" X = inv(A) B \n\n\n"); |
printf(" To verify the result you can \n\n"); |
printf(" multiply the matrix A by X. \n\n"); |
printf(" You must refind B. \n\n"); |
stop(); |
clrscrn(); |
printf(" A :"); |
p_mZ(A, S5,P0, S4,P0, C6); |
printf(" B :"); |
p_mZ(B, S5,P0, S4,P0, C6); |
stop(); |
clrscrn(); |
printf(" invgj_mZ(A,Inv) :"); |
pE_mZ(invgj_mZ(A,Inv), S12,P4, S8,P4, C3); |
printf(" X = invgj_mZ(A,Inv) * B :"); |
p_mZ(mul_mZ(Inv,B,X), S12,P4, S2, P4, C6); |
stop(); |
clrscrn(); |
printf(" B :"); |
p_mZ(B, S5,P0, S4,P0, C6); |
printf(" AX :"); |
p_mZ(mul_mZ(A,X,T), S5,P0, S4,P0, C6); |
f_mZ(T); |
f_mZ(X); |
f_mZ(B); |
f_mZ(Inv); |
f_mZ(A); |
stop(); |
return 0; |
/* ------------------------------------ */ |
--------------------- */ |
Exemple de sortie écran : |
We want to find X such as, |
AX = B |
If A is a square matrix and, |
If A has an inverse matrix, |
you can find X by this method |
X = inv(A) B |
To verify the result you can |
multiply the matrix A by X. |
You must refind B. |
Press return to continue. |
------------------------------------ |
A : |
+1 +2i +3 +4i +5 +6i |
+5 +4i +1 +3i +6 +8i |
+7 +2i +5 +1i +1 +1i |
B : |
+1 +4i |
+2 +5i |
+3 +6i |
Press return to continue. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.