text
stringlengths 0
211k
|
---|
double **b = ca_A_mZ(b0,i_mZ(RA,Cb)); |
double **X = i_mZ(RA,Cb); |
double **T = i_mZ(RA,Cb); |
double **Ab = i_Abr_Ac_bc_mZ(RA,CA,Cb); |
c_A_b_Ab_mZ(A,b,Ab); |
clrscrn(); |
printf(" \n"); |
printf(" Linear systems with common coefficient matrix.\n\n"); |
printf(" Ax1=b1 \n"); |
printf(" Ax2=b2 \n"); |
printf(" ... \n"); |
printf(" Axn=bn \n\n"); |
printf(" We can write these equalities in this maner. \n\n"); |
printf(" A|x1|x2|...|xn| = b1|b2|...|bn| \n\n"); |
printf(" or simply : \n\n"); |
printf(" AX = b \n\n"); |
printf(" where b = b1|b2|...|bn \n\n"); |
printf(" and X = x1|x2|...|xn \n\n"); |
stop(); |
clrscrn(); |
printf(" We want to find X such as, \n\n"); |
printf(" AX = b \n\n"); |
printf(" We can use the function, \n"); |
printf(" gaussjordan : gj_mZ(Ab); \n\n"); |
printf(" To verify the result you can \n"); |
printf(" multiply the matrix A by X. \n"); |
printf(" You must refind b. \n\n\n"); |
stop(); |
clrscrn(); |
printf(" A :\n"); |
p_mZ(A, S5,P0, S4,P0, C6); |
printf(" b1 b2 ... bn :\n"); |
p_mZ(b, S5,P0, S4,P0, C6); |
stop(); |
clrscrn(); |
printf(" gj1_mZ(Ab) :"); |
gj_mZ(Ab); |
p_mZ(Ab, S8,P4, S8,P4, C3); |
stop(); |
clrscrn(); |
printf(" gj1_mZ(Ab) :"); |
p_mZ(Ab, S10,P3, S4,P3, C4); |
printf(" X :"); |
p_mZ(c_Ab_b_mZ(Ab,X), S10,P3, S4,P3, C4); |
stop(); |
clrscrn(); |
clrscrn(); |
printf(" b1 b2 ... bn :"); |
p_mZ(b, S5,P0, S3,P0, C6); |
printf(" Ax1 Ax2 ... Axn :"); |
p_mZ(mul_mZ(A,X,T), S5,P0, S3,P0, C6); |
f_mZ(Ab); |
f_mZ(T); |
f_mZ(X); |
f_mZ(b); |
f_mZ(A); |
stop(); |
return 0; |
/* ------------------------------------ */ |
Exemple de sortie écran : |
Linear systems with common coefficient matrix. |
Ax1=b1 |
Ax2=b2 |
Axn=bn |
We can write these equalities in this maner. |
A|x1|x2|...|xn| = b1|b2|...|bn| |
or simply : |
AX = b |
where b = b1|b2|...|bn |
and X = x1|x2|...|xn |
Press return to continue. |
------------------------------------ |
We want to find X such as, |
AX = b |
We can use the function, |
gaussjordan : gj_mZ(Ab); |
To verify the result you can |
multiply the matrix A by X. |
You must refind b. |
Press return to continue. |
A : |
+1 +2i +3 +4i +5 +6i |
+5 +4i +1 +3i +6 +8i |
+7 +2i +5 +1i +1 +1i |
b1 b2 ... bn : |
+1 +4i +5 +4i +3 +1i |
+2 +5i +3 +5i +2 +3i |
+3 +6i +2 +6i +2 +4i |
Press return to continue. |
------------------------------------ |
gj1_mZ(Ab) : |
+1.0000 +0.0000i +0.0000 -0.0000i +0.0000 +0.0000i |
+0.0000 +0.0000i +1.0000 +0.0000i +0.0000 +0.0000i |
+0.0000 +0.0000i +0.0000 +0.0000i +1.0000 +0.0000i |
+0.3085 +0.3691i -0.2077 +0.6268i +0.0742 +0.5774i |
+0.3263 +0.4945i +0.8123 +0.2695i +0.4261 -0.0711i |
+0.2212 -0.2204i +0.3918 -0.5240i +0.0867 -0.3474i |
Press return to continue. |
gj1_mZ(Ab) : |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.