LOT / outgen /README.md
Jiann's picture
Upload 6 files
f5a0329 verified

Outline-Conditioned Generation Dataset

Data Example

{
    "story":
        "有个人把神像放在驴子背上,赶着进城。凡是遇见他们的人都对着神像顶礼膜拜。驴子以为人们是向它致敬,便洋洋得意,大喊大叫,再也不肯往前走了。结果挨了驴夫狠狠的一棍。", 
    "outline":
      ["对着神像顶礼膜拜", "再也不肯往前走", "神像放在驴子", "赶着进城", "驴夫狠狠", "洋洋得意", "大喊大叫", "遇见"], 
    "title":
        "运神像的驴子"
}
  • "title" (str):input story title
  • "outline"(list of str):input story outline (an out-of-order list of phrases)
  • "story" (str):the target story

Evaluation

The prediction result should have the same format with test.jsonl

python eval.py prediction_file test.jsonl

We use bleu, distinct, coverage and order as the evaluation metrics. The output of the script eval.py is a dictionary as follows:

{'bleu-1': '_', 'bleu-2': '_', 'bleu-3': '_', 'bleu-4': '_', 'distinct-1': '_', 'distinct-2': '_',  'distinct-3': '_', 'distinct-4': '_', 'coverage': '_', 'order': '_'}
  • Dependencies: rouge==1.0.0, jieba=0.42.1, nltk=3.6.2, numpy=1.20.3