Upload 6 files
Browse files- outgen/.DS_Store +0 -0
- outgen/README.md +39 -0
- outgen/eval.py +274 -0
- outgen/test.jsonl +0 -0
- outgen/train.jsonl +0 -0
- outgen/valid.jsonl +0 -0
outgen/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
outgen/README.md
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Outline-Conditioned Generation Dataset
|
2 |
+
|
3 |
+
### Data Example
|
4 |
+
|
5 |
+
```
|
6 |
+
{
|
7 |
+
"story":
|
8 |
+
"有个人把神像放在驴子背上,赶着进城。凡是遇见他们的人都对着神像顶礼膜拜。驴子以为人们是向它致敬,便洋洋得意,大喊大叫,再也不肯往前走了。结果挨了驴夫狠狠的一棍。",
|
9 |
+
"outline":
|
10 |
+
["对着神像顶礼膜拜", "再也不肯往前走", "神像放在驴子", "赶着进城", "驴夫狠狠", "洋洋得意", "大喊大叫", "遇见"],
|
11 |
+
"title":
|
12 |
+
"运神像的驴子"
|
13 |
+
}
|
14 |
+
```
|
15 |
+
|
16 |
+
- "title" (`str`):input story title
|
17 |
+
- "outline"(`list of str`):input story outline (an out-of-order list of phrases)
|
18 |
+
- "story" (`str`):the target story
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
### Evaluation
|
23 |
+
|
24 |
+
The prediction result should have the same format with `test.jsonl`
|
25 |
+
|
26 |
+
```shell
|
27 |
+
python eval.py prediction_file test.jsonl
|
28 |
+
```
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
We use bleu, distinct, coverage and order as the evaluation metrics. The output of the script `eval.py` is a dictionary as follows:
|
33 |
+
|
34 |
+
```python
|
35 |
+
{'bleu-1': '_', 'bleu-2': '_', 'bleu-3': '_', 'bleu-4': '_', 'distinct-1': '_', 'distinct-2': '_', 'distinct-3': '_', 'distinct-4': '_', 'coverage': '_', 'order': '_'}
|
36 |
+
```
|
37 |
+
|
38 |
+
- Dependencies: rouge\=\=1.0.0, jieba=0.42.1, nltk=3.6.2, numpy=1.20.3
|
39 |
+
|
outgen/eval.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import argparse
|
3 |
+
from os import pread
|
4 |
+
import sys
|
5 |
+
import numpy as np
|
6 |
+
import jieba
|
7 |
+
import nltk
|
8 |
+
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
9 |
+
from nltk import ngrams
|
10 |
+
from rouge import Rouge
|
11 |
+
def bleu(data):
|
12 |
+
"""
|
13 |
+
compute rouge score
|
14 |
+
Args:
|
15 |
+
data (list of dict including reference and candidate):
|
16 |
+
Returns:
|
17 |
+
res (dict of list of scores): rouge score
|
18 |
+
"""
|
19 |
+
|
20 |
+
res = {}
|
21 |
+
for i in range(1, 5):
|
22 |
+
res["sentence-bleu-%d"%i] = []
|
23 |
+
res["corpus-bleu-%d"%i] = nltk.translate.bleu_score.corpus_bleu([[d["reference"].strip().split()] for d in data], [d["candidate"].strip().split() for d in data], weights=tuple([1./i for j in range(i)]))
|
24 |
+
for tmp_data in data:
|
25 |
+
origin_candidate = tmp_data['candidate']
|
26 |
+
origin_reference = tmp_data['reference']
|
27 |
+
assert isinstance(origin_candidate, str)
|
28 |
+
if not isinstance(origin_reference, list):
|
29 |
+
origin_reference = [origin_reference]
|
30 |
+
|
31 |
+
for i in range(1, 5):
|
32 |
+
res["sentence-bleu-%d"%i].append(sentence_bleu(references=[r.strip().split() for r in origin_reference], hypothesis=origin_candidate.strip().split(), weights=tuple([1./i for j in range(i)])))
|
33 |
+
|
34 |
+
for key in res:
|
35 |
+
if "sentence" in key:
|
36 |
+
res[key] = np.mean(res[key])
|
37 |
+
|
38 |
+
return res
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
def repetition_distinct(eval_data):
|
43 |
+
result = {}
|
44 |
+
for i in range(1, 5):
|
45 |
+
all_ngram, all_ngram_num = {}, 0.
|
46 |
+
for k, tmp_data in enumerate(eval_data):
|
47 |
+
ngs = ["_".join(c) for c in ngrams(tmp_data["candidate"].strip().split(), i)]
|
48 |
+
all_ngram_num += len(ngs)
|
49 |
+
for s in ngs:
|
50 |
+
if s in all_ngram:
|
51 |
+
all_ngram[s] += 1
|
52 |
+
else:
|
53 |
+
all_ngram[s] = 1
|
54 |
+
result["distinct-%d"%i] = len(all_ngram) / float(all_ngram_num)
|
55 |
+
return result
|
56 |
+
|
57 |
+
|
58 |
+
def rouge(ipt, cand):
|
59 |
+
rouge_name = ["rouge-1", "rouge-2", "rouge-l"]
|
60 |
+
item_name = ["f", "p", "r"]
|
61 |
+
|
62 |
+
res = {}
|
63 |
+
for name1 in rouge_name:
|
64 |
+
for name2 in item_name:
|
65 |
+
res["%s-%s"%(name1, name2)] = []
|
66 |
+
for k, (tmp_ipt, tmp_cand) in enumerate(zip(ipt, cand)):
|
67 |
+
for tmp_ref in tmp_ipt.split("#"):
|
68 |
+
# print(tmp_ref.strip())
|
69 |
+
# print(" ".join(tmp_cand))
|
70 |
+
|
71 |
+
# tmp_ref = tmp_ref.strip()
|
72 |
+
# tmp_hyp = " ".join(tmp_cand).strip()
|
73 |
+
|
74 |
+
tmp_ref = " ".join([w for w in "".join(tmp_ref.strip().split())])
|
75 |
+
tmp_hyp = " ".join([w for w in "".join(tmp_cand.strip().split())])
|
76 |
+
# print(tmp_ref)
|
77 |
+
# print(tmp_hyp)
|
78 |
+
try:
|
79 |
+
tmp_res = Rouge().get_scores(refs=tmp_ref, hyps=tmp_hyp)[0]
|
80 |
+
for name1 in rouge_name:
|
81 |
+
for name2 in item_name:
|
82 |
+
res["%s-%s"%(name1, name2)].append(tmp_res[name1][name2])
|
83 |
+
except:
|
84 |
+
continue
|
85 |
+
for name1 in rouge_name:
|
86 |
+
for name2 in item_name:
|
87 |
+
res["%s-%s"%(name1, name2)] = np.mean(res["%s-%s"%(name1, name2)])
|
88 |
+
return {"coverage": res["rouge-l-r"]}
|
89 |
+
|
90 |
+
|
91 |
+
def LCS(x, y):
|
92 |
+
"""
|
93 |
+
Computes the length of the longest common subsequence (lcs) between two
|
94 |
+
strings. The implementation below uses a DP programming algorithm and runs
|
95 |
+
in O(nm) time where n = len(x) and m = len(y).
|
96 |
+
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
|
97 |
+
Args:
|
98 |
+
x: collection of words
|
99 |
+
y: collection of words
|
100 |
+
Returns:
|
101 |
+
Table of dictionary of coord and len lcs
|
102 |
+
"""
|
103 |
+
n, m = len(x), len(y)
|
104 |
+
table = dict()
|
105 |
+
for i in range(n + 1):
|
106 |
+
for j in range(m + 1):
|
107 |
+
if i == 0 or j == 0:
|
108 |
+
table[i, j] = 0
|
109 |
+
elif x[i - 1] == y[j - 1]:
|
110 |
+
table[i, j] = table[i - 1, j - 1] + 1
|
111 |
+
else:
|
112 |
+
table[i, j] = max(table[i - 1, j], table[i, j - 1])
|
113 |
+
return table
|
114 |
+
|
115 |
+
def Recon_LCS(x, y, exclusive=True):
|
116 |
+
"""
|
117 |
+
Returns the Longest Subsequence between x and y.
|
118 |
+
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
|
119 |
+
Args:
|
120 |
+
x: sequence of words
|
121 |
+
y: sequence of words
|
122 |
+
Returns:
|
123 |
+
sequence: LCS of x and y
|
124 |
+
"""
|
125 |
+
i, j = len(x), len(y)
|
126 |
+
table = LCS(x, y)
|
127 |
+
|
128 |
+
def _recon(i, j):
|
129 |
+
"""private recon calculation"""
|
130 |
+
if i == 0 or j == 0:
|
131 |
+
return []
|
132 |
+
elif x[i - 1] == y[j - 1]:
|
133 |
+
return _recon(i - 1, j - 1) + [(x[i - 1], i)]
|
134 |
+
elif table[i - 1, j] > table[i, j - 1]:
|
135 |
+
return _recon(i - 1, j)
|
136 |
+
else:
|
137 |
+
return _recon(i, j - 1)
|
138 |
+
|
139 |
+
recon_list = list(map(lambda x: x[0], _recon(i, j)))
|
140 |
+
if len(recon_list):
|
141 |
+
return "".join(recon_list).strip()
|
142 |
+
else:
|
143 |
+
return ""
|
144 |
+
# return Ngrams(recon_list, exclusive=exclusive)
|
145 |
+
# return recon_tuple
|
146 |
+
|
147 |
+
|
148 |
+
def lcs3_dp(input_x, input_y):
|
149 |
+
# input_y as column, input_x as row
|
150 |
+
dp = [([0] * (len(input_y)+1)) for i in range(len(input_x)+1)]
|
151 |
+
maxlen = maxindex = 0
|
152 |
+
for i in range(1, len(input_x)+1):
|
153 |
+
for j in range(1, len(input_y)+1):
|
154 |
+
if i == 0 or j == 0: # 在边界上,自行+1
|
155 |
+
dp[i][j] = 0
|
156 |
+
if input_x[i-1] == input_y[j-1]:
|
157 |
+
dp[i][j] = dp[i - 1][j - 1] + 1
|
158 |
+
if dp[i][j] > maxlen: # 随时更新最长长度和长度开始的位置
|
159 |
+
maxlen = dp[i][j]
|
160 |
+
maxindex = i - maxlen
|
161 |
+
# print('最长公共子串的长度是:%s' % maxlen)
|
162 |
+
# print('最长公共子串是:%s' % input_x[maxindex:maxindex + maxlen])
|
163 |
+
else:
|
164 |
+
dp[i][j] = 0
|
165 |
+
# for dp_line in dp:
|
166 |
+
# print(dp_line)
|
167 |
+
return input_x[maxindex:maxindex + maxlen]
|
168 |
+
|
169 |
+
def inversenum(a):
|
170 |
+
num = 0
|
171 |
+
all_num = 0
|
172 |
+
for i in range(0,len(a)):
|
173 |
+
for j in range(i,len(a)):
|
174 |
+
if a[i] > a[j]:
|
175 |
+
num += 1
|
176 |
+
all_num += 1
|
177 |
+
return num / float(all_num)
|
178 |
+
|
179 |
+
def find_all(sub,s):
|
180 |
+
index_list = []
|
181 |
+
index = s.find(sub)
|
182 |
+
while index != -1:
|
183 |
+
index_list.append(index)
|
184 |
+
index = s.find(sub,index+1)
|
185 |
+
|
186 |
+
if len(index_list) > 0:
|
187 |
+
return index_list
|
188 |
+
else:
|
189 |
+
return -1
|
190 |
+
|
191 |
+
def order(ipt, cand, kw2id):
|
192 |
+
num = []
|
193 |
+
for k, (tmp_ipt, tmp_cand, tmp_kw2id) in enumerate(zip(ipt, cand, kw2id)):
|
194 |
+
# all_pos = [[]]
|
195 |
+
pos = []
|
196 |
+
kw_list = list(tmp_kw2id.keys())
|
197 |
+
kw_list.reverse()
|
198 |
+
|
199 |
+
for tmp_ref in kw_list:
|
200 |
+
tmp_ref = "".join(tmp_ref.strip().split())
|
201 |
+
tmp_hyp = "".join(tmp_cand.strip().split())
|
202 |
+
lcs = lcs3_dp(tmp_ref, tmp_hyp)
|
203 |
+
if len(lcs)>1:
|
204 |
+
pos.append(tmp_hyp.find(lcs))
|
205 |
+
else:
|
206 |
+
pos.append(-1)
|
207 |
+
idlist = list(range(len(pos)))
|
208 |
+
orderlist = sorted(idlist, key=lambda x: pos[x])
|
209 |
+
|
210 |
+
new_rank = [-1 for _ in idlist]
|
211 |
+
for idl, ord in zip(idlist, orderlist):
|
212 |
+
new_rank[idl] = tmp_kw2id[kw_list[ord]]
|
213 |
+
num.append(1-inversenum(new_rank))
|
214 |
+
|
215 |
+
return {"order": np.mean(num)}
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
def load_file(filename, pred=False):
|
220 |
+
data = []
|
221 |
+
with open(filename, "r") as f:
|
222 |
+
for line in f.readlines():
|
223 |
+
if pred:
|
224 |
+
data.append({"story": line.strip()})
|
225 |
+
else:
|
226 |
+
data.append(json.loads(line))
|
227 |
+
f.close()
|
228 |
+
return data
|
229 |
+
|
230 |
+
def proline(line):
|
231 |
+
return " ".join([w for w in jieba.cut("".join(line.strip().split()))])
|
232 |
+
|
233 |
+
|
234 |
+
def compute(golden_file, pred_file, return_dict=True):
|
235 |
+
golden_data = load_file(golden_file)
|
236 |
+
pred_data = load_file(pred_file)#, pred=True)
|
237 |
+
|
238 |
+
if len(golden_data) != len(pred_data):
|
239 |
+
raise RuntimeError("Wrong Predictions")
|
240 |
+
|
241 |
+
ipt = ["#".join(g["outline"]) for g in golden_data]
|
242 |
+
truth = [g["story"] for g in golden_data]
|
243 |
+
pred = [p["story"] for p in pred_data]
|
244 |
+
|
245 |
+
kw2id = []
|
246 |
+
for i1, t1 in zip(ipt, truth):
|
247 |
+
kw_list = i1.strip().split("#")
|
248 |
+
pos = [t1.strip().find(kw.strip()) for kw in kw_list]
|
249 |
+
|
250 |
+
idlist = list(range(len(pos)))
|
251 |
+
orderlist = sorted(idlist, key=lambda x: pos[x])
|
252 |
+
kw2id.append({})
|
253 |
+
for idl, ord in zip(idlist, orderlist):
|
254 |
+
kw2id[-1][kw_list[ord]] = idl
|
255 |
+
|
256 |
+
|
257 |
+
eval_data = [{"reference": proline(g["story"]), "candidate": proline(p["story"])} for g, p in zip(golden_data, pred_data)]
|
258 |
+
res = bleu(eval_data)
|
259 |
+
res.update(repetition_distinct(eval_data))
|
260 |
+
res.update(rouge(ipt=ipt, cand=pred))
|
261 |
+
res.update(order(ipt=ipt, cand=pred, kw2id=kw2id))
|
262 |
+
|
263 |
+
# for key in res:
|
264 |
+
# res[key] = "_"
|
265 |
+
return res
|
266 |
+
|
267 |
+
def main():
|
268 |
+
argv = sys.argv
|
269 |
+
print("预测结果:{}, 测试集: {}".format(argv[1], argv[2]))
|
270 |
+
print(compute(argv[2], argv[1]))
|
271 |
+
|
272 |
+
|
273 |
+
if __name__ == '__main__':
|
274 |
+
main()
|
outgen/test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
outgen/train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
outgen/valid.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|