superglue / README.md
Hyukkyu's picture
Update README.md
f676491 verified
|
raw
history blame
8.25 kB
metadata
annotations_creators:
  - other
language_creators:
  - other
multilinguality:
  - monolingual
source_datasets:
  - original
paperswithcode_id: superglue
arxiv: 1905.00537
pretty_name: SuperGLUE Benchmark Datasets
tags:
  - superglue
  - nlp
  - benchmark
license: mit
language:
  - en
dataset_info:
  - config_name: boolq
    features:
      - name: question
        dtype: string
      - name: passage
        dtype: string
      - name: idx
        dtype: int64
      - name: label
        dtype: bool
    splits:
      - name: train
        num_bytes: 6136774
        num_examples: 9427
      - name: validation
        num_bytes: 2103781
        num_examples: 3270
      - name: test
        num_bytes: 2093385
        num_examples: 3245
    download_size: 6439045
    dataset_size: 10333940
  - config_name: cb
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype: string
      - name: idx
        dtype: int64
    splits:
      - name: train
        num_bytes: 89859
        num_examples: 250
      - name: validation
        num_bytes: 22480
        num_examples: 56
      - name: test
        num_bytes: 93492
        num_examples: 250
    download_size: 137099
    dataset_size: 205831
  - config_name: copa
    features:
      - name: premise
        dtype: string
      - name: choice1
        dtype: string
      - name: choice2
        dtype: string
      - name: question
        dtype: string
      - name: label
        dtype: int64
      - name: idx
        dtype: int64
    splits:
      - name: train
        num_bytes: 50833
        num_examples: 400
      - name: validation
        num_bytes: 12879
        num_examples: 100
      - name: test
        num_bytes: 61846
        num_examples: 500
    download_size: 84158
    dataset_size: 125558
  - config_name: multirc
    features:
      - name: idx
        dtype: int64
      - name: version
        dtype: float64
      - name: passage
        struct:
          - name: questions
            list:
              - name: answers
                list:
                  - name: idx
                    dtype: int64
                  - name: label
                    dtype: int64
                  - name: text
                    dtype: string
              - name: idx
                dtype: int64
              - name: question
                dtype: string
          - name: text
            dtype: string
    splits:
      - name: train
        num_bytes: 2393721
        num_examples: 456
      - name: validation
        num_bytes: 429255
        num_examples: 83
      - name: test
        num_bytes: 858870
        num_examples: 166
    download_size: 2053244
    dataset_size: 3681846
  - config_name: record
    features:
      - name: source
        dtype: string
      - name: passage
        struct:
          - name: entities
            list:
              - name: end
                dtype: int64
              - name: start
                dtype: int64
          - name: text
            dtype: string
      - name: qas
        list:
          - name: answers
            list:
              - name: end
                dtype: int64
              - name: start
                dtype: int64
              - name: text
                dtype: string
          - name: idx
            dtype: int64
          - name: query
            dtype: string
      - name: idx
        dtype: int64
    splits:
      - name: train
        num_bytes: 110591940
        num_examples: 65709
      - name: validation
        num_bytes: 12375907
        num_examples: 7481
      - name: test
        num_bytes: 11509574
        num_examples: 7484
    download_size: 71256085
    dataset_size: 134477421
  - config_name: rte
    features:
      - name: premise
        dtype: string
      - name: hypothesis
        dtype: string
      - name: label
        dtype: string
      - name: idx
        dtype: int64
    splits:
      - name: train
        num_bytes: 877041
        num_examples: 2490
      - name: validation
        num_bytes: 94010
        num_examples: 277
      - name: test
        num_bytes: 973916
        num_examples: 3000
    download_size: 1269005
    dataset_size: 1944967
  - config_name: wic
    features:
      - name: word
        dtype: string
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: idx
        dtype: int64
      - name: label
        dtype: bool
      - name: start1
        dtype: int64
      - name: start2
        dtype: int64
      - name: end1
        dtype: int64
      - name: end2
        dtype: int64
      - name: version
        dtype: float64
    splits:
      - name: train
        num_bytes: 767620
        num_examples: 5428
      - name: validation
        num_bytes: 94651
        num_examples: 638
      - name: test
        num_bytes: 207006
        num_examples: 1400
    download_size: 591526
    dataset_size: 1069277
  - config_name: wsc
    features:
      - name: text
        dtype: string
      - name: target
        struct:
          - name: span1_index
            dtype: int64
          - name: span1_text
            dtype: string
          - name: span2_index
            dtype: int64
          - name: span2_text
            dtype: string
      - name: idx
        dtype: int64
      - name: label
        dtype: bool
    splits:
      - name: train
        num_bytes: 91597
        num_examples: 554
      - name: validation
        num_bytes: 21950
        num_examples: 104
      - name: test
        num_bytes: 32011
        num_examples: 146
    download_size: 47100
    dataset_size: 145558
configs:
  - config_name: boolq
    data_files:
      - split: train
        path: boolq/train-*
      - split: validation
        path: boolq/validation-*
      - split: test
        path: boolq/test-*
  - config_name: cb
    data_files:
      - split: train
        path: cb/train-*
      - split: validation
        path: cb/validation-*
      - split: test
        path: cb/test-*
  - config_name: copa
    data_files:
      - split: train
        path: copa/train-*
      - split: validation
        path: copa/validation-*
      - split: test
        path: copa/test-*
  - config_name: multirc
    data_files:
      - split: train
        path: multirc/train-*
      - split: validation
        path: multirc/validation-*
      - split: test
        path: multirc/test-*
  - config_name: record
    data_files:
      - split: train
        path: record/train-*
      - split: validation
        path: record/validation-*
      - split: test
        path: record/test-*
  - config_name: rte
    data_files:
      - split: train
        path: rte/train-*
      - split: validation
        path: rte/validation-*
      - split: test
        path: rte/test-*
  - config_name: wic
    data_files:
      - split: train
        path: wic/train-*
      - split: validation
        path: wic/validation-*
      - split: test
        path: wic/test-*
  - config_name: wsc
    data_files:
      - split: train
        path: wsc/train-*
      - split: validation
        path: wsc/validation-*
      - split: test
        path: wsc/test-*

SuperGLUE Benchmark Datasets

This repository contains the SuperGLUE benchmark datasets uploaded to the Hugging Face Hub. Each dataset is available as a separate configuration, making it easy to load individual datasets using the datasets library.

Datasets Included

The repository includes the following SuperGLUE datasets:

  • BoolQ
  • CB
  • COPA
  • MultiRC
  • ReCoRD
  • RTE
  • WiC
  • WSC

Each dataset has been preprocessed to ensure consistency across train, validation, and test splits. Missing keys in the test split have been filled with dummy values (type-aware) to match the features found in the training and validation splits.

Usage

You can load any of the datasets using the Hugging Face datasets library. For example, to load the BoolQ dataset, run:

from datasets import load_dataset

# Load the BoolQ dataset from the SuperGLUE benchmark
dataset = load_dataset("Hyukkyu/superglue", "BoolQ")

# Access train, validation, and test splits
train_split = dataset["train"]
validation_split = dataset["validation"]
test_split = dataset["test"]

print(train_split)

Replace "BoolQ" with the desired configuration name (e.g., "CB", "COPA", "MultiRC", etc.) to load other datasets.

Data Processing

  • Schema Consistency: A recursive procedure was used to infer the schema from the train and validation splits and fill in missing keys in the test split with dummy values. This ensures that all splits have the same features, preventing issues during model training or evaluation.
  • Type-Aware Dummy Values: Dummy values are inserted based on the expected type. For instance, missing boolean fields are filled with False, integer fields with -1, float fields with -1.0, and string fields with an empty string.

Citation

@article{wang2019superglue,
  title={Superglue: A stickier benchmark for general-purpose language understanding systems},
  author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel},
  journal={Advances in neural information processing systems},
  volume={32},
  year={2019}
}