Hyukkyu commited on
Commit
f676491
·
verified ·
1 Parent(s): d0953f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md CHANGED
@@ -1,4 +1,22 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: boolq
4
  features:
@@ -300,3 +318,57 @@ configs:
300
  - split: test
301
  path: wsc/test-*
302
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - other
4
+ language_creators:
5
+ - other
6
+ multilinguality:
7
+ - monolingual
8
+ source_datasets:
9
+ - original
10
+ paperswithcode_id: superglue
11
+ arxiv: 1905.00537
12
+ pretty_name: SuperGLUE Benchmark Datasets
13
+ tags:
14
+ - superglue
15
+ - nlp
16
+ - benchmark
17
+ license: mit
18
+ language:
19
+ - en
20
  dataset_info:
21
  - config_name: boolq
22
  features:
 
318
  - split: test
319
  path: wsc/test-*
320
  ---
321
+ # SuperGLUE Benchmark Datasets
322
+
323
+ This repository contains the [**SuperGLUE**](https://arxiv.org/pdf/1905.00537) benchmark datasets uploaded to the Hugging Face Hub. Each dataset is available as a separate configuration, making it easy to load individual datasets using the [datasets](https://github.com/huggingface/datasets) library.
324
+
325
+ ## Datasets Included
326
+
327
+ The repository includes the following SuperGLUE datasets:
328
+
329
+ - **BoolQ**
330
+ - **CB**
331
+ - **COPA**
332
+ - **MultiRC**
333
+ - **ReCoRD**
334
+ - **RTE**
335
+ - **WiC**
336
+ - **WSC**
337
+
338
+ Each dataset has been preprocessed to ensure consistency across train, validation, and test splits. Missing keys in the test split have been filled with dummy values (type-aware) to match the features found in the training and validation splits.
339
+
340
+ ## Usage
341
+
342
+ You can load any of the datasets using the Hugging Face `datasets` library. For example, to load the BoolQ dataset, run:
343
+
344
+ ```python
345
+ from datasets import load_dataset
346
+
347
+ # Load the BoolQ dataset from the SuperGLUE benchmark
348
+ dataset = load_dataset("Hyukkyu/superglue", "BoolQ")
349
+
350
+ # Access train, validation, and test splits
351
+ train_split = dataset["train"]
352
+ validation_split = dataset["validation"]
353
+ test_split = dataset["test"]
354
+
355
+ print(train_split)
356
+ ```
357
+ Replace "BoolQ" with the desired configuration name (e.g., "CB", "COPA", "MultiRC", etc.) to load other datasets.
358
+
359
+ ## Data Processing
360
+ - Schema Consistency:
361
+ A recursive procedure was used to infer the schema from the train and validation splits and fill in missing keys in the test split with dummy values. This ensures that all splits have the same features, preventing issues during model training or evaluation.
362
+ - Type-Aware Dummy Values:
363
+ Dummy values are inserted based on the expected type. For instance, missing boolean fields are filled with False, integer fields with -1, float fields with -1.0, and string fields with an empty string.
364
+
365
+ ## Citation
366
+ ```text
367
+ @article{wang2019superglue,
368
+ title={Superglue: A stickier benchmark for general-purpose language understanding systems},
369
+ author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel},
370
+ journal={Advances in neural information processing systems},
371
+ volume={32},
372
+ year={2019}
373
+ }
374
+ ```