html_url
stringlengths
48
51
title
stringlengths
5
268
comments
stringlengths
70
51.8k
body
stringlengths
0
29.8k
comment_length
int64
16
1.52k
text
stringlengths
164
54.1k
embeddings
sequence
https://github.com/huggingface/datasets/issues/1857
Unable to upload "community provided" dataset - 400 Client Error
Hi ! We're in the process of switching the community datasets to git repos, exactly like what we're doing for models. You can find an example here: https://huggingface.co/datasets/lhoestq/custom_squad/tree/main We'll update the CLI in the coming days and do a new release :) Also cc @julien-c maybe we can make improve the error message ?
Hi, i'm trying to a upload a dataset as described [here](https://huggingface.co/docs/datasets/v1.2.0/share_dataset.html#sharing-a-community-provided-dataset). This is what happens: ``` $ datasets-cli login $ datasets-cli upload_dataset my_dataset About to upload file /path/to/my_dataset/dataset_infos.json to S3 under filename my_dataset/dataset_infos.json and namespace username About to upload file /path/to/my_dataset/my_dataset.py to S3 under filename my_dataset/my_dataset.py and namespace username Proceed? [Y/n] Y Uploading... This might take a while if files are large 400 Client Error: Bad Request for url: https://huggingface.co/api/datasets/presign huggingface.co migrated to a new model hosting system. You need to upgrade to transformers v3.5+ to upload new models. More info at https://discuss.hugginface.co or https://twitter.com/julien_c. Thank you! ``` I'm using the latest releases of datasets and transformers.
54
Unable to upload "community provided" dataset - 400 Client Error Hi, i'm trying to a upload a dataset as described [here](https://huggingface.co/docs/datasets/v1.2.0/share_dataset.html#sharing-a-community-provided-dataset). This is what happens: ``` $ datasets-cli login $ datasets-cli upload_dataset my_dataset About to upload file /path/to/my_dataset/dataset_infos.json to S3 under filename my_dataset/dataset_infos.json and namespace username About to upload file /path/to/my_dataset/my_dataset.py to S3 under filename my_dataset/my_dataset.py and namespace username Proceed? [Y/n] Y Uploading... This might take a while if files are large 400 Client Error: Bad Request for url: https://huggingface.co/api/datasets/presign huggingface.co migrated to a new model hosting system. You need to upgrade to transformers v3.5+ to upload new models. More info at https://discuss.hugginface.co or https://twitter.com/julien_c. Thank you! ``` I'm using the latest releases of datasets and transformers. Hi ! We're in the process of switching the community datasets to git repos, exactly like what we're doing for models. You can find an example here: https://huggingface.co/datasets/lhoestq/custom_squad/tree/main We'll update the CLI in the coming days and do a new release :) Also cc @julien-c maybe we can make improve the error message ?
[ -0.0915709883, -0.0363660008, 0.0344168991, 0.0672418922, 0.364970237, -0.0492854938, 0.1734051108, 0.0044842213, -0.2230455726, -0.1468115002, -0.1488376856, -0.0205997434, 0.0050857663, 0.3581643701, -0.0571105182, -0.106930241, -0.0269479081, 0.0025082603, -0.4462415278, 0.0053096488, -0.1092076674, 0.1308571398, 0.1841465533, 0.0065865908, -0.3465133011, -0.0758966058, -0.0069125891, 0.2234143317, -0.2710898817, -0.137696296, 0.4473816752, 0.1389373094, 0.2372481227, 0.5959691405, -0.0001169556, 0.0284553021, 0.3542060554, 0.0238104388, -0.6256381869, -0.3368652463, -0.0726401657, -0.1940684766, 0.0081890523, 0.1364578456, -0.1094309688, 0.0796102732, 0.1506979913, -0.0484020151, 0.5985030532, 0.0964820385, 0.1131024361, 0.2700645328, -0.0149943754, -0.2242382765, -0.2202049196, 0.3592701554, -0.1043352112, 0.217235595, 0.2370123565, 0.0222129747, 0.1814650595, 0.033542823, 0.1154124886, -0.1168876141, 0.3684588671, -0.1654309481, -0.4199376702, -0.2600349188, 0.1162153929, 0.3317759335, 0.5857561231, 0.0770775452, -0.5686396956, -0.2074168921, -0.026034575, -0.0701280162, 0.1815169156, 0.081520617, -0.0584622882, 0.119728297, -0.4374511242, -0.1708432436, -0.3639188707, -0.0612378269, 0.1857609302, 0.2177210152, -0.1954704225, 0.2356924862, -0.1176388413, -0.5343658328, -0.1227307692, -0.0399160907, 0.1515681744, 0.2014335692, -0.3247424364, -0.1058338732, 0.0912817046, 0.249974966, 0.3493945599, 0.4778478742, -0.1200059503, -0.3294022977, -0.1893021762, -0.0660496801, 0.2054422498, -0.1204177588, -0.0417396724, 0.0452686511, 0.0842115209, 0.4836537838, 0.3961299956, -0.0219665915, -0.2512883246, -0.0405342951, -0.2929286361, -0.1570432633, 0.4355098605, -0.012926355, -0.035722103, 0.0570331812, 0.2894051373, 0.091848813, 0.0366357677, 0.2619791031, 0.0178703628, -0.0107140504, -0.0824561119, 0.0342846587, 0.0659229383, -0.363963455, -0.0394503735, -0.1896139979, 0.0428133383, 0.0224775262, 0.1514207423, -0.2134019136, 0.093679212, -0.0295446292, 0.4580487907, 0.1253283322, -0.1442785561, 0.1845529228, -0.111005649, 0.3841727376, 0.1887930185, 0.4600848556, 0.086883612, -0.1932180077, -0.0594400018, -0.1539817452, -0.2070757747, -0.4029398561, -0.4708248973, 0.0277563073, 0.2076508999, -0.1514529288, -0.3534538746, -0.151958093, 0.066572547, -0.0373013541, -0.0678820089, 0.1048250049, -0.009003222, -0.040844623, 0.242905885, 0.6290038824, -0.1543012559, -0.13681449, -0.007055372, 0.2116969675, -0.1128644943, 0.4283788204, -0.1202706397, -0.3136936426, -0.1316830814, -0.0307034627, 0.1514885426, -0.4831228256, -0.5233074427, 0.3477799594, -0.1778278351, -0.1530864537, 0.0853089243, 0.1088342965, -0.1908691227, -0.0401855595, -0.0610546544, 0.3464682996, 0.0755402595, 0.1005182862, -0.1324570924, -0.3333358169, 0.0300013423, 0.0861645415, -0.2761985064, -0.055034183, 0.0439738892, 0.0051618628, 0.1278567612, -0.1416760683, 0.2658132017, 0.3532609046, 0.6264163852, -0.0552137233, 0.13923347, 0.1916908324, -0.4655217528, 0.1552380323, -0.0301757641, 0.1750134677, -0.3612290919, -0.0907871276, -0.4938574731, 0.1524475515, -0.2330337763, 0.1688340604, 0.0031362772, -0.1407905966, 0.0996626467, -0.2074012607, -0.0429638438, 0.476152122, -0.1568288058, 0.3111294806, -0.4384239316, 0.2664830983, -0.3046863675, -0.0398056582, 0.3985340595, -0.1630732715, 0.3846702278, 0.0297985263, -0.1488203108, 0.3252853751, -0.4254598618, 0.2014302313, 0.1874760538, 0.3789375722, 0.3259228468, -0.1913762987, -0.1845212281, 0.0234059989, -0.0551306717, 0.3489127755, -0.3237703443, 0.0068542957, -0.1706614792, 0.2133799642, 0.0049424991, 0.3508688807, 0.3105173707, 0.1342520863, -0.1620023996, 0.1888070703, 0.1251217425, -0.028107997, 0.4954767823, -0.1988338679, 0.1358232051, -0.0043299273, 0.021835275, 0.022726506, -0.0362490267, 0.1160141155, -0.100764513, -0.04274261, 0.2822443843, 0.3077145219, 0.075351879, -0.0590370595, -0.2393875718, -0.090059869, 0.1027621105, -0.0979994163, -0.0190008432, -0.1057620645, 0.1955444217, -0.0377551094, 0.2462146431, 0.2434728444, -0.2217591405, -0.1577918231, -0.0150156431, 0.1437563449, -0.3067654371, 0.0647428185, -0.0432587527, -0.257139653, 0.1904013455, 0.0039526559, -0.5359176397, -0.1126171723, -0.202963382, 0.0531675667, 0.0151662454, 0.1205601543, 0.2327254564, 0.3003388047, 0.3323478401, -0.0865683779, -0.3027799129, 0.2590973973, 0.0402395353, 0.0501029268, 0.1002201736, -0.4291408658, 0.1166407242, -0.0433381423, 0.352088511, -0.3359858394, -0.3338155746, 0.13104482, -0.1267151386, 0.4911321998, 0.1695732176, 0.4597927928, -0.1194785237, -0.115709275, 0.2414990962, -0.1196784824, -0.05329445, 0.0056241974, -0.1686969995, -0.1025475785, -0.0004045814, 0.1713877618, -0.0893219709, -0.2928873897, 0.34490785, 0.151379928, -0.0110918283, 0.3846886754, 0.199262917, 0.0767354071, -0.0966848135, 0.1581419408, -0.0142407287, -0.5848597288, 0.3816191852, -0.2026971281, -0.3429444432, -0.024603188, 0.1481398791, 0.2809791565, -0.237618655, -0.1241219565, -0.4074197114, -0.1366185397, 0.2894021273, 0.0676822215, 0.0077136792, 0.3739700317, -0.0090630986, 0.0658064261, -0.0294285566, -0.4492642879, -0.1344391853, 0.3306127787, 0.3022274375, -0.058361806, 0.1823434532, 0.0515650883, 0.8003925085, 0.5207505226, -0.1554863453, 0.4999685884, -0.004358137, 0.3545725048, 0.08321549, -0.153094694, -0.0170855522, 0.2352311313, 0.0399298742, 0.031725239, 0.2795097232, 0.2463769019, -0.1541665494, -0.1677061021, -0.1231177226, -0.0498756319, -0.3460412621, 0.0586700924, 0.196310997, 0.1161703616, -0.2394076139, -0.1919604391, -0.2947545946, 0.0026089363, 0.3673123717, 0.3208445311, 0.1394206733, -0.3435290158, 0.0137963928, -0.4768288732, 0.2295171618, -0.0217434391, 0.0656602979, -0.2315968424, 0.1908891052, -0.0122330934, -0.0165010281, 0.4541058242, -0.4889230728, -0.0582801849, -0.4311430454, 0.2210526317, -0.3148049712, 0.1968715489, 0.220786497, -0.0102752261, 0.1239135191, 0.49034518, -0.3415439725, -0.0220445823, -0.0865179002, -0.191245839, -0.1529006958, -0.1592626274, -0.2356319129, -0.469971031, -0.4909077883, -0.2192817032, 0.2149491906, 0.1797941029, 0.0512498245, 0.1261919886, 0.3211123645, 0.157087177, 0.1690644324, -0.0818526521, 0.1993989348, 0.3902918696, 0.0657231957, 0.0789734274, 0.2132924646, 0.3458925784, 0.7234185338, 0.0248381086, -0.4888080955, 0.091108799, 0.2046042383, 0.2360625416, 0.2299368978, 0.1936474741, 0.0403194875, 0.4569897056, 0.2494084239, -0.23063007, 0.1356469393, 0.300580889, -0.20504421, -0.3913976848, -0.067741096, 0.4168681502, -0.1035319641, 0.1218627095, -0.042635005, 0.4895396233, 0.0788980126, 0.0654914379, 0.1265355349, 1.0357900858, -0.2924601436, 0.2455257326, -0.1198335364, -0.5208821893, 0.7754580975, -0.0201137289, -0.1492319703, -0.4048443735, -0.1508546919, -0.0616817996, -0.0208096132, 0.0365291238, 0.0276637394, -0.1775851846, 0.0893839151, -0.314638257, 0.1403437406, -0.0592528991, 0.5753951669, -0.3577105105, -0.2095097601, -0.2162092626, 0.1285812408, -0.1896329671, 0.1998023689, -0.0824748725, -0.2414720654, -0.2121482193, -0.316080004, -0.2313428521, 0.1291576773, 0.0082552731, -0.0934868157, 0.4783602059, -0.215731442, 0.3904022276, 0.24867405, 0.236865297, 0.0964199901, -0.4975145161, 0.2585037351, -0.3437271714, -0.1752980202, -0.1725774407, 0.0312006883, 0.1753031015, -0.095413059, -0.0261520296, -0.1201227009, 0.0313036405, -0.0615021698, -0.2928435802, -0.1749283373, -0.1124108359, -0.5553351045, 0.1550165862, -0.2224550396, 0.0837307274, -0.0646315813, 0.021572208, 0.0818034112, 0.0439643674, -0.3981605768, 0.5290648937, 0.046909973, -0.0074927667, 0.3999331892, -0.2207381576, -0.1064391434, 0.506354332, 0.0868059844, -0.0409620143, 0.0550989434, 0.0000200272, 0.155379653, -0.7436203361, -0.0109058209, 0.2651928961, 0.0752897263, -0.1520249844, 0.1781108379, 0.204499647, -0.0692893565, 0.2705126405, 0.0362764895, -0.2207254469, -0.0655041113, -0.3735987246, -0.016707724, 0.1623820961, -0.0873611644, 0.4368788302, 0.0182804298, -0.2170923948, -0.1081433222, -0.3802975118, 0.0241261572, 0.4103032947, -0.2786550224, 0.0579216518, -0.0799692348, -0.0164359417, 0.0136638712, -0.3531113565, -0.0814255774, -0.2895402908, 0.2039218843, 0.3594951928, -0.3609606326, -0.1264453381, -0.1718745679, -0.1880277991, -0.0993752033, -0.197461307, -0.0555648021, 0.0901347846, -0.2200164646, 0.1662515551, 0.0927826837, -0.3215284348, 0.166559577, 0.2040170133, 0.1928846985, 0.1309168786, 0.1343376637, 0.0815956146, -0.0592797697, -0.1065379679, 0.2511461675, 0.4674802125, -0.0198132545, 0.3256030381, -0.3629274666, -0.0736230165, -0.0257283933, 0.4536916316, -0.0972910076, -0.3470794559, 0.0412581265, 0.0792225897, 0.1049643531, -0.0659512132, -0.0650139004, 0.0684913844, 0.1194637418, -0.0792729855, 0.0845514983, 0.2587442994, 0.0058866441, 0.2516894341, 0.1026484147, 0.5311477184, -0.0180531368, 0.0580719002, 0.0093471268, -0.1682479382, -0.0520488173, 0.4732302427, 0.050722342, -0.0654961318, -0.1305399239, -0.2922400236, 0.0339560956, -0.315936923, -0.027047962, 0.1887204349, -0.2837963104, 0.2764683664, -0.1694781929, 0.1638011038, 0.1581931263, 0.0279102027, 0.5838849545, -0.2007368207, 0.0259361677, -0.39015311, 0.1971657574, -0.0810165554, -0.2365207672, -0.1915610135, -0.1182718575, -0.200913012, 0.0433617756, -0.0816276222, -0.3174013197, 0.120280847, -0.0248027518, 0.0807827041, -0.4145545065, -0.0669586211, 0.4527416825, 0.0931214541, -0.1124559492, 0.3525934815, 0.3666303754, -0.1180026382, 0.097885482, 0.2067518234, 0.6063756943, 0.0039429851, 0.2722612619, 0.3868845403, 0.2554731965, 0.1195413172, 0.1990559548, 0.0681634694, 0.0598046035, 0.2382233441, 0.0997469276, 0.0371565484, -0.1150524318, -0.1154233664, -0.4080910385, 0.3273944855, -0.363391906, 0.1200132743, -0.4371238351, -0.1757615507, -0.2189851999, 0.1765095294, -0.2445443571, 0.3110895753, 0.5170583129, -0.0518473238, 0.0027796477, -0.5339075327, 0.0247855932, -0.0718071014, 0.4974350035, 0.6792610884, 0.0231113322, -0.0135582313, -0.2177399993, -0.3219082355, 0.1379477382, 0.0576832853, 0.2602820694, -0.0974857807, -0.0088561401, -0.0073963627, -0.1254076362, 0.1286446154, -0.2437612712, -0.2440416664, -0.0267157219, -0.0501536988, -0.0899465978, -0.0394922942, 0.0243941229, 0.0450283587, 0.0611171946, 0.2203257829, 0.235164687, -0.0289455131, -0.2344935834, -0.165599674, -0.1057445332, -0.2576321661, 0.167129755, 0.3643931448, 0.2754127979, -0.0435285196, -0.3752659559, -0.2265498638, -0.1034769118, -0.2364064604, 0.019788513, -0.0029049516, 0.3410148323, 0.054806985, -0.1026081443, -0.3389884233, -0.1286718249, -0.0888460726, -0.1113580018, -0.172430709, -0.1531215608, -0.2435725927, 0.0413383357, 0.1082697883, -0.1378849447, 0.1694571823, 0.0257010385, -0.252964139, -0.3108347654, 0.5455139279, -0.3568971157, -0.1854249537, 0.0470241457, 0.1835142672, -0.1315599531, -0.1658133715, -0.3201593459, 0.1859067231, 0.2529089153, -0.0348471515, -0.0790374801, 0.2278556377, -0.1121346503, -0.0029699281, -0.0513183251, 0.3933727443, 0.1405711174, -0.2213693112, 0.2974917889, 0.0010209009 ]
https://github.com/huggingface/datasets/issues/1856
load_dataset("amazon_polarity") NonMatchingChecksumError
Hi ! This issue may be related to #996 This comes probably from the Quota Exceeded error from Google Drive. Can you try again tomorrow and see if you still have the error ? On my side I didn't get any error today with `load_dataset("amazon_polarity")`
Hi, it seems that loading the amazon_polarity dataset gives a NonMatchingChecksumError. To reproduce: ``` load_dataset("amazon_polarity") ``` This will give the following error: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-3-8559a03fe0f8> in <module>() ----> 1 dataset = load_dataset("amazon_polarity") 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download'] ```
45
load_dataset("amazon_polarity") NonMatchingChecksumError Hi, it seems that loading the amazon_polarity dataset gives a NonMatchingChecksumError. To reproduce: ``` load_dataset("amazon_polarity") ``` This will give the following error: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-3-8559a03fe0f8> in <module>() ----> 1 dataset = load_dataset("amazon_polarity") 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download'] ``` Hi ! This issue may be related to #996 This comes probably from the Quota Exceeded error from Google Drive. Can you try again tomorrow and see if you still have the error ? On my side I didn't get any error today with `load_dataset("amazon_polarity")`
[ -0.1446349323, 0.1181076169, -0.1213069856, 0.2410931885, 0.1280621588, -0.003592357, 0.344352752, 0.0652999431, 0.2865491509, 0.2393916845, 0.0281220898, -0.0647890642, 0.009715829, 0.1506800652, -0.1385416389, 0.2059793025, 0.0107030235, -0.0445433743, -0.1888068914, 0.1773513854, -0.3683704138, 0.3735694289, -0.0902097449, -0.2902168632, -0.0568016991, 0.0482146367, 0.2492218018, 0.1227686405, -0.0999505445, -0.3141926527, 0.2892127335, 0.064164117, 0.1367654502, 0.3216084242, -0.0001227321, -0.0760454386, 0.4037210941, 0.0215305239, -0.3489624262, -0.3050134778, -0.3421132565, -0.2206280828, 0.078937158, -0.1413580626, 0.1984623969, 0.2262694389, -0.0134393154, -0.0203783065, 0.2310123742, 0.1465004981, 0.1646190882, 0.3472890258, 0.4247150123, 0.2376426756, 0.3362984657, 0.0346841067, 0.0294042304, 0.4239829183, 0.1685522497, -0.1180219725, -0.1515829712, 0.1364069283, -0.0350834839, 0.4699852169, 0.0731046721, -0.070981577, 0.1299198866, -0.3009368777, 0.2216950655, 0.2402326167, 0.5259541869, -0.1580469459, -0.3384305239, 0.0157189071, -0.2012750655, -0.3522209227, 0.3682412803, 0.387355268, -0.0813417956, -0.2479471862, -0.4934211373, 0.1273376346, -0.1564019322, 0.2325277627, -0.1409672946, 0.1816919446, -0.0141904652, 0.1430938691, 0.2745828629, -0.256382525, 0.4774480164, -0.1528464556, -0.0680743307, 0.1682093889, -0.5600781441, -0.101288937, -0.0274245366, 0.4298371077, 0.268658191, 0.5032896996, 0.1269347817, 0.2249222398, 0.0311236307, 0.213778019, 0.35840711, 0.2740330994, -0.224995032, 0.3298182487, 0.1838580668, 0.3255168498, 0.0376000255, 0.0343658812, -0.1291160882, -0.3544431031, 0.6708120108, 0.0256587751, 0.3402947187, -0.4990718961, -0.4904987812, 0.3258245885, -0.2727223635, -0.1630814373, -0.0561087653, 0.1552018523, -0.1133432612, 0.0365045927, 0.0853411257, -0.0136224311, -0.1336146891, 0.1910001636, -0.1091790497, 0.1557028741, -0.1040164977, 0.2002131045, 0.3021279573, -0.1143074483, 0.3013886809, -0.1079608798, 0.3744317889, -0.2520242929, 0.5605083704, -0.2755385339, -0.1011086181, 0.5101611018, -0.02662782, -0.0405236669, -0.0029192474, 0.2849736214, -0.1475281417, 0.2997646332, -0.2269749045, -0.2836968303, 0.0125996359, 0.108824335, -0.5122697949, -0.1845041215, -0.2347883284, -0.3862112463, 0.2250038385, -0.3119522631, -0.0775261819, -0.3307489455, 0.0302065611, -0.1781546175, 0.1285469979, 0.4043676257, -0.3409201503, 0.0198294669, -0.3198649585, -0.0909233317, 0.3040821254, 0.3598721325, -0.1228101477, 0.0390363187, -0.2570708394, -0.3024715185, -0.1342590451, -0.1597056091, -0.4444045126, 0.0475129262, -0.1507036239, 0.2654611468, -0.0001134239, -0.0001719967, 0.0030777603, 0.0456525348, 0.2740556002, 0.1631094813, -0.0405795984, 0.1599229723, -0.1626854837, -0.3306623995, 0.2296398431, 0.2303221077, 0.2603034079, -0.0007047467, 0.2450988591, -0.1309289187, 0.0556214824, -0.0284384936, -0.0195897799, 0.3621577621, 0.3402877152, -0.0940123349, -0.0205230583, -0.0889067799, -0.5740936399, 0.1598234028, -0.309571743, 0.1014346033, -0.13888973, 0.1446617693, -0.156430155, -0.2206204832, -0.0964880586, 0.048362229, 0.0302262604, 0.2930378318, 0.1999130547, -0.1771683395, 0.0637951642, -0.0643373653, -0.2649945021, 0.0469802953, -0.3821527064, 0.4421379566, -0.0644133464, -0.0300856419, 0.1348584443, -0.0121622384, 0.1962990761, -0.1785704345, -0.0394668207, 0.2556775212, 0.0993671492, 0.3484783471, -0.0179111157, 0.6057209373, 0.0546129346, -0.0496355444, -0.0530941188, 0.4482401609, 0.0615540519, -0.125373885, -0.235784471, 0.54142344, -0.1908320189, 0.292602092, -0.0797190145, 0.0411809906, 0.2328560054, -0.0834398568, -0.1304758936, -0.1458673477, 0.3699476719, 0.1853740215, -0.1306203902, -0.0103306584, -0.0284054503, -0.0796817839, 0.2859372497, -0.1639739275, 0.0210784189, 0.0837236047, -0.0233295299, -0.1471816003, 0.168970108, 0.7234518528, 0.475674212, 0.1242609322, -0.1934706867, -0.2028283775, -0.0221904386, -0.044249773, 0.1061170101, 0.1723460853, 0.0280856974, 0.4393386543, 0.2144735307, -0.1984520704, -0.3193224967, -0.2452726364, 0.23423706, 0.3231552839, -0.419835031, -0.0584388301, 0.0039447471, 0.1874769777, -0.2392982692, 0.0287347697, -0.209508121, -0.3734355569, -0.2640255392, 0.5433934331, -0.0794603378, 0.0803996474, -0.2748621404, 0.1581507772, 0.1703453064, -0.4426257014, 0.0031614676, -0.0818632692, -0.0020264289, -0.0054454468, 0.3528389335, -0.1443249732, 0.3782069981, -0.1511015892, 0.0522557423, -0.5995880961, -0.3102061152, 0.0240137782, -0.0560188964, 0.2117905915, 0.1166589558, 0.2397703528, -0.0549905486, -0.0856557935, -0.0146562085, 0.1234326363, -0.1965639293, 0.1444493532, -0.1703919023, 0.082832098, 0.0760666579, -0.1404231936, -0.0595666692, -0.3863201141, 0.1085541695, 0.4139727056, 0.2004535049, -0.0529638119, 0.0042032525, 0.0665591061, 0.0606757663, 0.1433401108, -0.2855792344, -0.5523831844, 0.4413994551, -0.0899475887, -0.2269183397, 0.0572411269, 0.0098023936, 0.2371595502, 0.4438065588, -0.4624611139, -0.2290544212, -0.3841305673, -0.1036192477, -0.0784263834, 0.1116173789, 0.2703568935, 0.1271469593, -0.0600732379, 0.0835443735, -0.4889649451, -0.0108483545, 0.2261229157, 0.3510300517, -0.0546092987, 0.2301254421, -0.3080965579, 0.549003005, -0.098739028, 0.0003191531, 0.1891234219, 0.2644509077, 0.3137305975, 0.0006332733, -0.118819207, -0.0111173913, -0.1578205228, 0.0573497042, 0.0866154879, -0.0329534896, -0.2033596486, -0.0622322448, -0.0875486135, -0.3918569982, -0.1945628077, 0.0748153478, -0.1392154098, 0.4881859124, 0.1346018463, -0.0214915574, -0.2688158751, -0.5046190023, -0.1889376193, -0.0647775456, 0.0630997047, -0.1009812281, -0.2334393412, -0.0225735232, -0.1421682537, 0.3643378615, -0.0353820994, 0.4224090576, 0.0193766579, -0.0043756291, 0.0461303964, -0.2466930747, 0.137350142, -0.1803700179, 0.1608522683, 0.0215208828, -0.2174909413, -0.1500658095, -0.1809919477, -0.3337965906, 0.2890724242, -0.064665556, 0.3597171009, -0.4139509201, 0.1336411536, 0.1360066235, 0.4626381993, -0.2675514221, -0.2452467382, -0.3585156202, -0.2845741808, -0.5091455579, 0.0698038191, -0.0466538593, 0.2883152366, -0.1866553128, 0.0993345901, 0.1112002358, -0.1078605801, 0.141736418, -0.1796577722, 0.4755510688, -0.0155177265, 0.1578666568, 0.202562049, -0.3639872074, 0.4272718132, 0.6419875622, -0.0033069355, -0.078378126, 0.266713798, -0.0911354274, -0.359560281, 0.2407392859, 0.1143722162, -0.0302241184, 0.4233918786, 0.1725850701, -0.0554399267, -0.2608543038, 0.1437499225, 0.189107433, -0.2571276128, -0.3033944964, 0.0415696092, -0.1116673648, -0.0516263992, 0.4951727986, 0.2201732546, -0.1880423129, 0.1546061933, 0.4347302318, 1.0237909555, -0.0492089465, 0.2442314029, -0.0516962297, -0.1728121936, 0.3330746889, -0.1814733744, 0.231436789, -0.4936195314, -0.02830033, -0.0025319383, -0.3672087193, 0.0202419311, -0.0002851891, 0.0402520746, 0.3705027401, -0.0152053311, 0.0481123179, 0.1073372811, 0.1459222585, -0.3727536798, 0.0209448785, 0.1946270317, 0.1011238843, -0.2460946888, 0.292678237, -0.2635617852, 0.1294311732, 0.22801736, -0.2702028751, -0.4946394861, -0.0237867646, -0.1600285023, 0.4113851786, 0.2236569375, -0.091355063, -0.1175964475, -0.0224001799, 0.1198652834, 0.1387789845, -0.2773255408, 0.0700235963, 0.2710629106, -0.1021823138, -0.0784413964, -0.0544874482, 0.2245150059, -0.0963889807, -0.260299623, -0.0037648976, 0.0314116068, -0.5006495118, -0.3535877466, 0.2000950426, -0.2833963931, -0.3202571273, -0.2009007186, -0.255900681, -0.3804830313, -0.1931126416, 0.1067074612, 0.2396747023, -0.1619657129, 0.3134119511, 0.1729705781, -0.2827112675, -0.2536540031, 0.5303876996, 0.0574305542, -0.1936879307, 0.5586516261, 0.0570108891, -0.152613312, -0.211524561, 0.0699740797, 0.0815584064, -0.4405601025, 0.2268465161, -0.2302013338, 0.1997333914, -0.1039065719, 0.3816926181, 0.3563077152, 0.3587633669, 0.1471939385, -0.6384472847, -0.1401278973, 0.0637325719, 0.0598135889, 0.3195616603, -0.2418228686, -0.3160447478, 0.0211862922, -0.2031255215, -0.2665424943, 0.186497286, -0.4010075629, 0.0106703416, 0.2122329324, -0.2468947023, 0.2790998518, 0.0829900056, 0.0980513096, 0.1335292459, -0.1468685567, -0.1415511221, -0.1775092483, 0.1733580381, 0.0693864226, -0.1976426244, 0.0750410855, -0.0982386991, 0.0330030806, 0.0126412623, 0.0078631938, 0.139043659, -0.1186558753, -0.0819461122, 0.1011997759, -0.1600309163, -0.0805133507, -0.087924771, -0.2624417245, -0.0095141083, 0.2319001257, 0.2567795515, 0.3299061358, 0.0053125992, -0.0946294665, 0.0166892335, 0.1174841672, -0.0694534183, 0.1595930457, -0.2571013868, -0.2200366706, 0.0047607645, 0.3969480991, 0.4484581351, -0.3414471149, -0.0623533987, 0.2812819779, 0.1999390721, -0.1703756154, -0.0777101666, 0.0245617032, -0.1246179938, 0.0377967283, 0.1070604175, -0.0396771058, -0.2999565601, 0.3996058404, 0.218570739, 0.235844776, -0.6298632026, 0.0965884775, 0.005411101, -0.1926879436, -0.1233177185, 0.3981253803, -0.0484690852, 0.0148388892, -0.1310553402, -0.0493789613, 0.1746673137, -0.2538438141, 0.1621407717, -0.2303245962, -0.5396323204, 0.4370325506, 0.2160806358, 0.033148855, 0.1858434081, 0.1410859674, 0.3841736317, -0.0615310445, 0.3127911389, -0.5757315755, -0.0219483078, -0.1935696751, -0.0189751685, -0.0807693005, -0.3122324049, 0.0624360591, 0.4120759964, 0.0994742811, -0.1274215877, 0.3273405135, 0.1988077462, -0.2762838602, -0.4806443155, 0.1116905212, 0.0681002587, -0.0663456619, -0.3008176982, 0.1126559898, 0.4403691888, -0.0299145319, -0.0137701733, 0.2593504786, 0.5040759444, 0.3554438353, -0.0053289235, 0.0508299023, -0.016612418, 0.0016247407, 0.0226879939, 0.5821032524, 0.1404579282, 0.085850656, 0.2327134758, 0.1287444234, -0.2031432688, 0.2377801687, -0.0915484428, -0.3499816656, -0.1010766476, 0.3797111511, 0.0623783544, -0.0163547099, -0.236140877, 0.0732195228, -0.4497529864, -0.3263027668, -0.0062239766, 0.1135476381, -0.0069785677, 0.0771602541, 0.0390185043, -0.1217344552, 0.4378731847, 0.3708484769, 0.2917268276, -0.4959542751, -0.0260206461, -0.6134390831, 0.2469729036, -0.2785330415, 0.2613338828, 0.0232958123, 0.2809862494, -0.2379383147, 0.1994631141, 0.1894418746, -0.0120893419, -0.1458260119, -0.1587491632, -0.2953235805, -0.0323914737, 0.4535719454, -0.137214452, -0.070707351, -0.3728674948, 0.0866372287, -0.0651711747, 0.0292799771, -0.2280117869, -0.0862380266, -0.090086244, 0.3646048307, 0.2749122381, 0.1641653776, 0.7399238348, -0.014219217, -0.1903961152, -0.3088876307, -0.2489167303, -0.0874361172, 0.0422235802, 0.1307716519, 0.5580555201, -0.0710166842, -0.4577331543, -0.3680811524, 0.3573643565, -0.2444419414, -0.4376507998, 0.021613799, -0.0160229467, 0.0019516945, 0.0234794952, -0.1015519872, 0.1670095921, 0.2402373105, 0.143089354, -0.2573788166, -0.2453722358, 0.4923163354, -0.289190799, -0.2053523958, 0.0971360207, 0.2429454476, 0.0788666829, -0.1983158737, -0.4701847434, 0.4567467272, 0.2685400546, 0.0661136806, -0.1953130662, 0.2482628375, -0.2461412549, 0.2198323607, 0.0062483102, 0.1118357256, 0.2052617371, -0.2532481551, -0.2365481257, -0.0854917765 ]
https://github.com/huggingface/datasets/issues/1856
load_dataset("amazon_polarity") NonMatchingChecksumError
@lhoestq Hi! I encounter the same error when loading `yelp_review_full`. ``` from datasets import load_dataset dataset_yp = load_dataset("yelp_review_full") ``` When you say the "Quota Exceeded from Google drive". Is this a quota from the dataset owner? or the quota from our (the runner) Google Drive?
Hi, it seems that loading the amazon_polarity dataset gives a NonMatchingChecksumError. To reproduce: ``` load_dataset("amazon_polarity") ``` This will give the following error: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-3-8559a03fe0f8> in <module>() ----> 1 dataset = load_dataset("amazon_polarity") 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download'] ```
45
load_dataset("amazon_polarity") NonMatchingChecksumError Hi, it seems that loading the amazon_polarity dataset gives a NonMatchingChecksumError. To reproduce: ``` load_dataset("amazon_polarity") ``` This will give the following error: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-3-8559a03fe0f8> in <module>() ----> 1 dataset = load_dataset("amazon_polarity") 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download'] ``` @lhoestq Hi! I encounter the same error when loading `yelp_review_full`. ``` from datasets import load_dataset dataset_yp = load_dataset("yelp_review_full") ``` When you say the "Quota Exceeded from Google drive". Is this a quota from the dataset owner? or the quota from our (the runner) Google Drive?
[ -0.0611731634, 0.1423271596, -0.1086320281, 0.2213834822, 0.1263366789, 0.1217511669, 0.2452764958, 0.0103796478, 0.3931339681, 0.1096664518, -0.1395587623, -0.0201449208, 0.0363817289, 0.0252376199, -0.1712938696, 0.3643230796, 0.0185447633, -0.0113468654, -0.0788376257, -0.0102700591, -0.3044540286, 0.2593732178, -0.0600828752, -0.0840562955, -0.0598398298, 0.1535959542, 0.3166563809, 0.0442228578, -0.0833671167, -0.3201698363, 0.4210701287, 0.1378976852, -0.0156709626, 0.3289818168, -0.0001259096, -0.050023973, 0.4167665839, 0.0320629403, -0.3987614214, -0.3099805713, -0.4581513107, -0.3251409233, 0.1509958208, -0.1007016152, 0.1499892026, 0.1633684039, 0.0053273849, -0.2619087696, 0.0953764468, 0.1001132205, 0.1172742248, 0.350199461, 0.105993256, 0.2015099376, 0.3452165127, 0.1226298809, -0.0187581927, 0.2913202643, 0.1881211698, -0.1821522117, -0.2705045342, 0.0405862741, -0.0015807226, 0.5240555406, 0.2074136883, -0.0658128411, 0.2831405699, -0.2702285349, 0.2464374453, 0.4334846437, 0.5518840551, -0.1611352712, -0.3142522275, -0.1084907874, -0.1443197578, -0.2082724124, 0.2683823705, 0.4797145426, -0.1679519415, -0.1982161552, -0.544487536, 0.1608866602, -0.050657846, 0.1889031529, -0.1325135976, 0.2468681186, 0.0346538201, 0.1829141378, 0.1495762616, -0.1724342406, 0.6086639166, -0.3743203878, 0.034923315, 0.2907087803, -0.5965976715, -0.0077695772, 0.0340767801, 0.5633317828, 0.2247849405, 0.5783305168, 0.1639448702, 0.2058052719, 0.0257191285, 0.2746677995, 0.5060391426, 0.2200189084, -0.1086444408, 0.3596938848, 0.193171367, 0.2153615654, 0.1479296982, 0.124406755, -0.0030036457, -0.2710253894, 0.6188275814, -0.0734219998, 0.2509360909, -0.5128176212, -0.5945708752, 0.3519123793, -0.2508150339, -0.122759074, 0.0529639088, 0.2121905386, -0.1759035885, 0.1633974165, -0.0488656349, -0.0933008194, -0.1332674921, 0.0890610516, -0.2012096792, 0.1213541627, -0.0276432708, 0.2276744843, 0.2279387116, -0.0355742574, 0.302708894, -0.1383720487, 0.3369035125, -0.2031570375, 0.4234707057, -0.1530130059, -0.1576986015, 0.4656790495, 0.018806316, 0.1361019015, 0.0771293864, 0.1752079278, -0.2254127562, 0.3178541958, -0.1811046302, -0.1913124919, 0.1732184291, 0.0843121335, -0.609844327, -0.1870334595, -0.2142935693, -0.4069155455, 0.3283526003, -0.3127761483, 0.0074011981, -0.3569788933, 0.0626096576, -0.1431141943, -0.0513428785, 0.4348810315, -0.2782552838, -0.1656879038, -0.391752094, -0.1966854334, 0.3818413019, 0.4646116495, -0.1238607317, 0.0903288871, -0.2280274332, -0.1686194241, 0.0388507359, -0.1546453089, -0.4479783773, 0.0987029448, -0.1993889064, 0.4591367245, 0.0024011172, 0.1677612662, -0.0978831202, -0.0189726148, 0.3111746013, 0.1539818794, -0.0105011314, 0.0756679699, -0.1189428493, -0.12855497, 0.3238055408, 0.2631973326, 0.1939359754, 0.0001205802, 0.1493892223, -0.076986447, 0.0875309408, -0.0165594462, -0.004411798, 0.2684109807, 0.3694297969, 0.1275032461, -0.0572716333, -0.0369686298, -0.4602804184, 0.1719498187, -0.4196959138, 0.0224222764, -0.0614068024, 0.0927610248, -0.1885296702, -0.1335383654, -0.2406833172, 0.0501292981, -0.0554184988, 0.3447309732, 0.1498190165, -0.1016499102, 0.0753721446, 0.0877257138, -0.4383293688, 0.0307365693, -0.4001359344, 0.2532047927, 0.0287609305, 0.13899827, 0.0798332691, 0.0776891261, 0.1592815667, -0.0172328167, -0.0203638915, 0.2922262251, 0.141229108, 0.4036794603, -0.0789691657, 0.4830582738, -0.028725123, -0.1002456248, -0.0511058196, 0.4246055484, 0.1246160045, -0.2297820151, -0.2653989792, 0.6342540979, -0.124693796, 0.3354458809, -0.0368466899, 0.1040458605, 0.272939682, 0.0248605832, -0.2758756578, -0.18607454, 0.4675987363, 0.1056900322, 0.0031511039, 0.1219842583, 0.0486667827, -0.1620048136, 0.3148170114, -0.3001985848, 0.0459324792, 0.0504413024, -0.0494229905, -0.2442613542, 0.1841947436, 0.6842710376, 0.5695007443, 0.0790138915, -0.0502620637, -0.1501577944, -0.1702572405, -0.1112228483, 0.0289549008, 0.1859031916, -0.0549862497, 0.4992835224, 0.1912121177, -0.2243994772, -0.4243575335, -0.1603446603, 0.1699374914, 0.3191202879, -0.4955602288, -0.0845630988, -0.1221750751, 0.2251874208, -0.2842990458, -0.0633716211, -0.1669769734, -0.5736444592, -0.1112600639, 0.4169121385, -0.0569942966, 0.1819699556, -0.4180185199, 0.1734414995, -0.053564813, -0.4603129923, 0.0476917028, -0.2303589582, -0.0511448495, -0.012347918, 0.3434803188, -0.0785728917, 0.3597754836, -0.2547627687, 0.1363713294, -0.6831151843, -0.229644388, 0.0053692334, -0.1194750965, 0.1411395371, 0.0413132422, 0.1324564219, -0.0009100512, -0.0025762804, 0.0279338509, 0.0969527513, -0.2848414183, 0.1665333807, -0.197871998, 0.0331815109, 0.1929995865, 0.0042981319, -0.1131906286, -0.3015258908, 0.1296283901, 0.4311295748, 0.0800786614, -0.0818813145, -0.1446490437, 0.1002123877, 0.1218441799, 0.307834059, -0.387255013, -0.4542713761, 0.5385528207, -0.0599845722, -0.1861255169, -0.0017486885, 0.0950818956, 0.2571620643, 0.4127821922, -0.4884946048, -0.1079787612, -0.3561543822, -0.1380744278, 0.0689078122, -0.0369923003, 0.2624651492, 0.0366227478, -0.0105525292, 0.0430207849, -0.4865608215, 0.0323371068, 0.0484947227, 0.3351130486, -0.0962452739, 0.1513508558, -0.2685442269, 0.5760500431, 0.0713522136, 0.0197701566, 0.0938149691, 0.2711072564, 0.3968069851, 0.0199431553, -0.0723111555, -0.0836176127, -0.0744834244, 0.0375230014, 0.1200054586, 0.0165874921, -0.2322214693, 0.0097658262, -0.0028806478, -0.2798802555, -0.1282061338, -0.0318136699, -0.1907249987, 0.3495222926, 0.1516785622, 0.0363004729, -0.2485704422, -0.5477302074, -0.2011633366, 0.1152137071, -0.0155691616, -0.1009354144, -0.3231312633, -0.0268976502, -0.0342555195, 0.3341205716, -0.0238243435, 0.4164538383, -0.0473055206, -0.2034256756, 0.221024856, -0.1795638055, 0.1422532797, -0.0516012758, 0.1998464167, -0.0585345887, -0.1162846759, -0.2715664506, -0.2060763985, -0.2619052827, 0.2453434616, -0.0776949227, 0.2267113626, -0.4026663601, 0.0427870788, 0.0687753186, 0.3809314966, -0.2973002791, -0.2171103656, -0.3158602118, -0.2742905021, -0.2834303081, -0.0560932793, -0.1054624319, 0.2077486217, -0.1203184053, 0.175126642, -0.0006154124, 0.0093423352, 0.3233750761, -0.0668395087, 0.3630559444, -0.1080758125, 0.1413898915, 0.0862659439, -0.3430891037, 0.302604109, 0.7589161396, -0.0703875721, -0.2291642427, 0.2544205189, -0.059363734, -0.3124516904, 0.2692409158, 0.1170492098, -0.0899831131, 0.3634100854, -0.0209081508, -0.0537426993, -0.2774035037, 0.1468384564, 0.1181071252, -0.3462933898, -0.4122240543, 0.1307945848, 0.0961118191, -0.1092518866, 0.4117062986, 0.2758304775, -0.1401702166, 0.0539927036, 0.4594939351, 0.9954115748, -0.1312537193, 0.2847004533, -0.0603057854, -0.0871822014, 0.3122883737, -0.2489346564, 0.1044020951, -0.3933148384, 0.1471040547, -0.1263303757, -0.3329877853, 0.0744591653, 0.0401638225, 0.2220614851, 0.4867370129, 0.0150610358, 0.1255378425, 0.1986961067, 0.0932462811, -0.3384929597, -0.0146009475, 0.1880652905, 0.0834587738, -0.2254422456, 0.3900941014, -0.1328976154, 0.2234780937, 0.0194444507, -0.1187901795, -0.531170547, -0.0363274999, -0.0562914833, 0.4472943544, 0.2374154031, -0.2032886147, -0.1788792163, 0.1081019491, 0.0135932043, 0.0053539034, -0.2681926787, 0.1548191607, 0.395529747, 0.0751509666, -0.0286449715, -0.0019436814, 0.2729856074, -0.0566021241, -0.1518229097, 0.0878180265, -0.0101669058, -0.5436390638, -0.3430449367, 0.2885995507, -0.2335120738, -0.3450497687, -0.2680540681, -0.224642843, -0.1828405559, -0.2051275373, 0.0665159822, 0.2343984842, -0.1421094537, 0.217369929, 0.1332428157, -0.3970555067, -0.2534720898, 0.5514842868, 0.1613259315, -0.1161003932, 0.5359879136, -0.1115479916, -0.2558027506, -0.1674053967, 0.032299161, 0.0732371062, -0.5194634795, 0.0728616565, -0.2384829521, 0.1712498218, -0.1284857392, 0.3552262783, 0.3510368764, 0.3508453071, -0.0265102461, -0.5613188744, -0.0033329837, -0.014284499, 0.0619172044, 0.3227636218, -0.2390573174, -0.220043093, -0.039936997, -0.1807189137, -0.2042579651, 0.1239504069, -0.4284905493, -0.0301421024, 0.1998593509, -0.0875157788, 0.166467309, 0.0576774739, 0.0722071379, 0.064972207, -0.2155697346, -0.1194586083, -0.1381193548, 0.2042919099, 0.1090287268, -0.1423731446, -0.0239585489, -0.0335938111, 0.0521022975, -0.0478167757, 0.0341454148, 0.3134577274, -0.1016387641, -0.0161756352, 0.1550465375, -0.1265354156, -0.1068242714, -0.0469963513, -0.2977288365, -0.0476186089, 0.185901776, 0.0903442279, 0.3465740085, 0.0605114996, -0.039232336, 0.1167160869, 0.1809928715, -0.1556667686, 0.147149384, -0.2417294532, -0.0341073684, -0.0012861229, 0.3312528133, 0.5788924694, -0.3147875667, -0.1804440022, 0.2346494645, 0.119418025, -0.1353297532, -0.0913541093, 0.0758087784, -0.0935795754, 0.0894162208, 0.1361350715, -0.0180285051, -0.2474398315, 0.4463032782, 0.1169830114, 0.37230286, -0.6105339527, 0.1710875332, 0.1364409178, -0.1175374612, 0.0375965387, 0.3581701517, -0.039460551, -0.0296007544, -0.1714910716, -0.1217368543, 0.1995049566, -0.3597775102, 0.1593437791, -0.2145534903, -0.6058477759, 0.4413037002, 0.3200618625, -0.0724707171, 0.227135852, 0.1714423597, 0.3912151158, -0.1395465732, 0.4165739417, -0.5694960952, -0.0349034891, -0.1443035603, -0.176099062, -0.132404983, -0.3570287824, 0.054708764, 0.3048051, 0.0694902018, -0.111663878, 0.1567238271, 0.05290718, -0.2609960139, -0.4940492213, 0.1442117989, -0.0984301865, -0.0799133852, -0.2667759657, 0.0581324622, 0.3363921046, -0.041169785, 0.1170061827, 0.1873485446, 0.4015203714, 0.3223709166, 0.0609494336, -0.0089959428, -0.1105553731, -0.0168923885, 0.0459279791, 0.734130919, 0.011859186, -0.1686288714, 0.2282499373, 0.1050967649, -0.1624015421, 0.3463480175, -0.0672929287, -0.1969518065, -0.2495878637, 0.5849604607, -0.074403435, 0.0405422598, -0.2656807303, 0.1646086574, -0.396841526, -0.4330812693, -0.0256164987, 0.0011062846, 0.006221503, -0.0262208804, 0.016119983, -0.1713747382, 0.4875511825, 0.4068423808, 0.0580722988, -0.4211578071, 0.0195165128, -0.6684355736, 0.3273192346, -0.380862087, 0.105636701, -0.0429516323, 0.3075515032, -0.1990819871, 0.306050837, 0.1197365969, 0.022201024, -0.3295070231, -0.2277276069, -0.1944902241, -0.1070675254, 0.333819896, -0.2107223123, -0.1293596625, -0.3248288631, 0.1042670012, 0.0008914694, 0.0082120374, -0.1230816767, -0.0285044685, -0.0221028402, 0.3299266696, 0.1967962533, 0.1362970918, 0.7609398961, 0.0671187341, -0.1331510097, -0.2573164105, -0.2398205101, -0.1036635786, 0.1768934727, -0.0367275104, 0.4463861585, -0.0211854167, -0.4058422744, -0.18121548, 0.4622706175, -0.1463848352, -0.4938635528, 0.0005715266, -0.0510115325, -0.106082648, 0.0742332041, -0.1120769829, 0.0930685252, 0.2723673284, 0.2488850206, -0.1138961762, -0.2186214328, 0.5264893174, -0.3776210546, -0.031740509, 0.1192819551, 0.196382612, 0.0453494079, -0.2616780102, -0.4460185766, 0.3479750156, 0.3618855774, 0.0610430799, -0.1220165417, 0.2319940329, -0.4572671354, 0.160850361, -0.0770440772, 0.0566180125, 0.1084922403, -0.2246619463, -0.1531858593, -0.164131701 ]
https://github.com/huggingface/datasets/issues/1856
load_dataset("amazon_polarity") NonMatchingChecksumError
> When you say the "Quota Exceeded from Google drive". Is this a quota from the dataset owner? or the quota from our (the runner) Google Drive? Each file on Google Drive can be downloaded only a certain amount of times per day because of a quota. The quota is reset every day. So if too many people download the dataset the same day, then the quota is likely to exceed. That's a really bad limitations of Google Drive and we should definitely find another host for these dataset than Google Drive. For now I would suggest to wait and try again later.. So far the issue happened with CNN DailyMail, Amazon Polarity and Yelp Reviews. Are you experiencing the issue with other datasets ? @calebchiam @dtch1997
Hi, it seems that loading the amazon_polarity dataset gives a NonMatchingChecksumError. To reproduce: ``` load_dataset("amazon_polarity") ``` This will give the following error: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-3-8559a03fe0f8> in <module>() ----> 1 dataset = load_dataset("amazon_polarity") 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download'] ```
127
load_dataset("amazon_polarity") NonMatchingChecksumError Hi, it seems that loading the amazon_polarity dataset gives a NonMatchingChecksumError. To reproduce: ``` load_dataset("amazon_polarity") ``` This will give the following error: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-3-8559a03fe0f8> in <module>() ----> 1 dataset = load_dataset("amazon_polarity") 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download'] ``` > When you say the "Quota Exceeded from Google drive". Is this a quota from the dataset owner? or the quota from our (the runner) Google Drive? Each file on Google Drive can be downloaded only a certain amount of times per day because of a quota. The quota is reset every day. So if too many people download the dataset the same day, then the quota is likely to exceed. That's a really bad limitations of Google Drive and we should definitely find another host for these dataset than Google Drive. For now I would suggest to wait and try again later.. So far the issue happened with CNN DailyMail, Amazon Polarity and Yelp Reviews. Are you experiencing the issue with other datasets ? @calebchiam @dtch1997
[ -0.1349430531, 0.0474776179, -0.1110619158, 0.2588095069, 0.0624819659, -0.0367824286, 0.2863380611, 0.0119940639, 0.3435028493, 0.2581290305, 0.0767342523, -0.0375789963, 0.003082078, 0.0379522145, -0.2337086499, 0.169568941, -0.021713376, -0.0736348853, -0.1117964983, 0.040674977, -0.2747720182, 0.2887173891, 0.0070181638, -0.2034480572, -0.039661862, 0.0087333601, 0.3278360069, 0.1175966561, -0.1759133339, -0.3116760254, 0.330022037, 0.0826126263, 0.0683188289, 0.3464249074, -0.0001204181, -0.068317987, 0.3942153752, 0.096576117, -0.4189596474, -0.2462108135, -0.3514715731, -0.3533968925, 0.0768762603, -0.1483186036, 0.1762085259, 0.3158309758, 0.1314929575, -0.2369056344, 0.1729606688, 0.1381314993, 0.1324190795, 0.4214166105, 0.1527192593, 0.1810043007, 0.3624846935, 0.0484378487, -0.0363256074, 0.2699772716, 0.215156585, -0.0621938668, -0.2929161489, 0.1053553745, -0.0394041985, 0.5324474573, 0.144199729, -0.0262995604, 0.1012792885, -0.3418426514, 0.1716111302, 0.3872764111, 0.5805895329, -0.1249106079, -0.2338674068, -0.0933413431, -0.2541102171, -0.3007954657, 0.3701967895, 0.4087914824, -0.1825316548, -0.2420869917, -0.4668251276, 0.2356193811, -0.1145985425, 0.164046675, -0.1773635596, 0.212567091, 0.0296119191, 0.2180983573, 0.2534273863, -0.0722891763, 0.5507884026, -0.3385269046, 0.0278643407, 0.2165494859, -0.5382952094, -0.0596627593, 0.0265302733, 0.4756052494, 0.1846511662, 0.5643036962, 0.1895439774, 0.1655358225, 0.0494823493, 0.2911805511, 0.4096364081, 0.1855697632, -0.2252953053, 0.2780072093, 0.2126201987, 0.1978702247, 0.1698426008, 0.0987501368, -0.0183394291, -0.3449648321, 0.6129300594, -0.0725438446, 0.1491271406, -0.4413726032, -0.5689799786, 0.3616558909, -0.2959183455, -0.147662878, 0.0714617074, 0.1275592297, -0.1886177361, -0.0284606256, 0.0131298676, -0.1142848283, -0.155423671, 0.0914224237, -0.1961930692, 0.1193028539, -0.097310245, 0.2034062445, 0.2082080692, -0.0458627641, 0.2794568837, -0.0408519059, 0.2950497866, -0.2197557986, 0.5377066731, -0.2721767426, -0.1807200164, 0.5546462536, -0.0523273386, 0.0112607852, 0.1048941612, 0.1803131104, -0.160294205, 0.2673658133, -0.1479071826, -0.127923131, 0.187157467, 0.1310718656, -0.5833472013, -0.2072045058, -0.164709121, -0.3109380305, 0.232026726, -0.2921413779, 0.0238495655, -0.3568730652, 0.0165802985, -0.2122599632, 0.0246518329, 0.4080348611, -0.2196416557, -0.0292681977, -0.3386442065, -0.178480491, 0.424197942, 0.335662663, -0.1659257561, 0.182777822, -0.254588306, -0.1609525979, 0.0107215047, -0.1088566184, -0.3976554871, 0.0501730144, -0.2954811156, 0.4057824016, 0.1434170455, 0.1928778291, 0.0143458173, 0.0030358471, 0.2835542262, 0.1582210064, -0.0147039313, 0.0361361429, -0.1703041196, -0.1570073664, 0.1708417237, 0.292681694, 0.2981024981, 0.0041952915, 0.2727927268, -0.1237248033, 0.0197501518, -0.0045748232, -0.0226049516, 0.2537457645, 0.1342646927, -0.0235798135, -0.0728579164, -0.0011673048, -0.5085255504, 0.2030845881, -0.3583151102, 0.049937129, -0.0378022045, 0.1098610908, -0.1467160583, -0.2290975451, -0.1428657174, 0.093814604, 0.0016224086, 0.3955662847, 0.1550280154, -0.1600454599, 0.1011646241, 0.1278329492, -0.4371519089, 0.0473451912, -0.4895061255, 0.2992719114, 0.018333422, 0.0552748553, 0.1059115529, -0.0228187144, 0.1357089728, -0.1147477776, 0.0340182707, 0.3085659146, 0.1717773527, 0.3997481763, 0.0409694314, 0.6185168624, -0.1008120552, -0.0422910899, -0.0050372956, 0.5124956965, 0.0809206665, -0.2270923555, -0.397221297, 0.6124411225, -0.23826617, 0.2321485728, -0.1331163347, 0.0842773914, 0.2649220824, -0.0140433088, -0.2797194719, 0.037605986, 0.44473508, 0.2148772329, -0.1085132807, 0.0594824627, -0.1257263273, -0.0875003934, 0.3686034083, -0.2639418542, -0.0099635553, 0.1531331837, -0.0149101652, -0.1758395433, 0.0952372849, 0.8160723448, 0.5828450322, 0.1383722723, 0.0651866347, -0.1881671697, -0.1472274065, -0.1379795671, 0.0860719234, 0.1756961942, -0.0989139676, 0.4286359549, 0.1037992686, -0.2119632363, -0.4885816276, -0.2679806948, 0.1950268596, 0.4274773598, -0.4311170876, 0.0080339387, -0.0060760677, 0.2277981937, -0.3302200139, 0.0214807391, -0.229028523, -0.4285724163, -0.1362853944, 0.5601521134, -0.0212819241, 0.0625668839, -0.3208750486, 0.2279881686, 0.0183127299, -0.4872388542, -0.0421908423, -0.0939056724, -0.1066755801, 0.0311305746, 0.4095045924, -0.1010926813, 0.4162184298, -0.3030727804, 0.1113953739, -0.5681462288, -0.2399625182, -0.0442505255, -0.1286788285, 0.1164731681, 0.0898445249, 0.2863660455, -0.0945335329, 0.0060077794, -0.0383623056, 0.1657683551, -0.2480382025, 0.1248965114, -0.1673419774, 0.0428202897, 0.1129245162, -0.180488199, -0.1032411009, -0.3451416492, 0.1504684538, 0.4686198235, 0.1605377942, -0.0503808521, 0.0320630781, 0.1036318839, 0.0961377025, 0.2149112225, -0.3637513518, -0.6516872644, 0.4263010025, 0.0288697481, -0.1900146008, 0.0495831221, 0.0850529671, 0.2140690088, 0.4236083031, -0.5703600645, -0.1277111173, -0.3932389319, -0.1056845263, -0.0140200695, 0.1253587157, 0.3836190104, 0.1056827754, -0.0706488788, 0.0531998649, -0.4380124807, 0.0243648887, 0.0625941008, 0.3301321268, -0.0929752737, 0.2045581341, -0.1958513856, 0.6013498306, 0.038845107, -0.0149961459, 0.0843247175, 0.2517701685, 0.4348465502, -0.000299532, -0.0227029473, 0.0428792238, -0.0642927215, -0.0343606472, 0.1285892725, -0.040477097, -0.2122771144, 0.0525673479, -0.0383901708, -0.1745992601, -0.1617651582, 0.1090541705, -0.0566073768, 0.3451623619, 0.0706645325, 0.0425656363, -0.2898290157, -0.4241089523, -0.2228245735, 0.1104777008, 0.0040398501, -0.0751191601, -0.3085340261, 0.059878435, -0.1164576709, 0.3225312233, -0.0794918835, 0.3666819334, -0.1161502078, -0.0807975307, 0.2194272131, -0.1463886946, 0.1137587652, -0.1069365367, 0.1028723717, -0.0610685833, -0.0469931141, -0.1138116419, -0.2126426101, -0.3106772304, 0.3325222731, -0.0191534981, 0.2525075674, -0.4487141073, 0.0448544361, 0.0557437204, 0.3680000603, -0.2528474331, -0.2449685037, -0.3576999307, -0.3070170879, -0.3425727487, 0.1855708808, 0.0011226833, 0.213873446, -0.1341522634, 0.0814421922, 0.0966468602, 0.0366720334, 0.2058680952, -0.0807238072, 0.3047990501, -0.0512736402, 0.0288873538, 0.2029772252, -0.3895150721, 0.2778030932, 0.6610249877, -0.0437910222, -0.0609286614, 0.2704161704, -0.0926646814, -0.3631850481, 0.2875850201, 0.0679404661, -0.0884702504, 0.4182352424, 0.125831157, -0.069960013, -0.2813867629, 0.216429323, 0.1614835858, -0.2466444075, -0.3831723928, 0.1160348803, 0.0151444152, -0.1279821843, 0.5681811571, 0.1725106984, -0.1188844368, 0.0885016322, 0.417309314, 1.1071869135, -0.1167680919, 0.2464446723, -0.0031253994, -0.1765982211, 0.3316376805, -0.2680208087, 0.192170769, -0.3988216817, 0.0398374535, -0.1273456961, -0.3764093816, 0.1355912238, -0.0464971364, 0.0921548158, 0.4239910543, -0.0516008958, 0.0821549594, 0.1611682922, 0.0710146427, -0.4011036754, 0.010940738, 0.2179976404, 0.1014788076, -0.2128029615, 0.3707579076, -0.2021788657, 0.1133663952, 0.1107490957, -0.2223914117, -0.4860479236, -0.0960518122, -0.0327839404, 0.2836486995, 0.2205229998, -0.1124434099, -0.2335150987, 0.0826689899, 0.1213996932, -0.0617822036, -0.1754771918, 0.1419453919, 0.2989317775, 0.0259446017, 0.0317300223, -0.0853982717, 0.2706811428, -0.1188426018, -0.1628625542, 0.0528548323, -0.0360289216, -0.569608748, -0.2322644442, 0.2447643876, -0.129294917, -0.2774000168, -0.1481332034, -0.1568337828, -0.3212552369, -0.2062816322, 0.11146155, 0.3105116189, -0.1522538215, 0.3884688318, 0.0536009148, -0.3761637807, -0.2494039237, 0.4735055864, 0.090381518, -0.0472883582, 0.4643450379, -0.0493590422, -0.2557544708, -0.2168322802, 0.0545881391, 0.0519265532, -0.4644052982, 0.1567273438, -0.2019971311, 0.204742223, -0.1024398208, 0.3309845328, 0.3380801678, 0.3494668007, -0.0752472952, -0.6224420667, -0.0548295639, -0.1099105626, 0.0315389968, 0.3769244552, -0.2181612253, -0.3497451246, 0.0394918248, -0.2079380751, -0.2735699713, 0.0982370079, -0.4265045822, -0.0077452203, 0.1820397973, -0.1430695206, 0.258816272, 0.0930419639, 0.0909408852, 0.0455213301, -0.3256875873, -0.1388731003, -0.1334291995, 0.1925508678, 0.0386028253, -0.1288578361, 0.0252979137, -0.0921924114, 0.0449750684, -0.0188253038, -0.0558863506, 0.2361634076, -0.1481455564, -0.1354155838, 0.1923216134, -0.0158993602, -0.1197671294, -0.1880187541, -0.3041900992, -0.1043625921, 0.1823473871, 0.1488693655, 0.187299192, -0.0496610254, -0.0694653988, 0.1183414981, 0.2726778984, -0.1055046842, 0.2189336419, -0.1947796494, -0.1653710604, -0.0994822532, 0.3385941088, 0.51910007, -0.2795705199, -0.2123017758, 0.239174813, 0.1850919574, -0.0813672543, -0.116411835, 0.0985700712, 0.0218693428, 0.0697928965, 0.193008393, -0.0143181384, -0.3089471161, 0.3804352283, 0.113440685, 0.3322175741, -0.7211830616, 0.0382431261, 0.094849363, -0.2230161726, -0.0489744656, 0.4857468605, -0.0627156422, -0.0028130896, -0.1344214678, -0.0995137244, 0.1665254235, -0.2666632533, 0.10251683, -0.3384127021, -0.5586658716, 0.4284241199, 0.3406718969, 0.0492293835, 0.147731185, 0.2172041833, 0.2795034051, -0.1171719283, 0.3882194757, -0.5804318786, 0.0083503444, -0.1292093396, -0.1199181825, -0.2150757164, -0.32334584, 0.0437494069, 0.3426987529, 0.0991774574, -0.119188942, 0.22628811, 0.0652912408, -0.2811635733, -0.3712744117, 0.0387418605, -0.033000119, -0.0986480713, -0.2912288904, 0.0770836771, 0.3421232402, -0.0295642987, 0.0117453504, 0.2095716596, 0.4396035075, 0.2685383558, 0.0999385417, 0.0597685985, -0.0781122297, 0.0021204576, -0.0750579834, 0.6987165213, -0.0252976045, -0.1015172154, 0.2111517638, 0.1382063478, -0.2075852752, 0.350379914, -0.1719440073, -0.3512225747, -0.1474413574, 0.524990201, 0.0583561063, 0.0321248323, -0.282296896, 0.1320527643, -0.43833673, -0.3146589696, -0.0094822831, 0.058176361, 0.0133782476, 0.0018398948, 0.0307001732, -0.1343363672, 0.4461657703, 0.3831962943, 0.1674169749, -0.4753986001, 0.0328937322, -0.6384223104, 0.2768553495, -0.393701762, 0.1002256423, -0.0358742438, 0.3426166475, -0.1548321247, 0.2197478265, 0.208404243, -0.0953629464, -0.1761243343, -0.0730254203, -0.146468699, -0.0286833066, 0.3783762753, -0.178762421, -0.1578900665, -0.3084831834, 0.2094822228, -0.1234286726, 0.0764031932, -0.1339642107, -0.0156032071, -0.0620613843, 0.2542668283, 0.2515354753, 0.1244904473, 0.6347793341, 0.0061345696, -0.098187685, -0.3610516787, -0.0923290402, -0.2160476446, 0.0614581481, 0.0253806189, 0.6215926409, -0.1001173109, -0.3572171628, -0.2692154646, 0.5112688541, -0.1436246037, -0.4518862665, 0.0984651819, -0.0592591241, -0.1322194189, 0.1841616929, -0.1086143628, 0.1654417813, 0.3128495812, 0.2070145309, -0.2399948537, -0.2264771461, 0.5082713366, -0.4022963643, -0.1337483227, 0.1396020502, 0.1908550858, 0.165187493, -0.1824493706, -0.439394325, 0.3990356028, 0.294940114, 0.0157093555, -0.16316396, 0.1695171297, -0.4015007913, 0.182202518, 0.0383052006, 0.039218843, 0.1061061695, -0.2178328186, -0.1542907059, -0.1948413253 ]
https://github.com/huggingface/datasets/issues/1856
load_dataset("amazon_polarity") NonMatchingChecksumError
@lhoestq Gotcha, that is quite problematic...for what it's worth, I've had no issues with the other datasets I tried, such as `yelp_reviews_full` and `amazon_reviews_multi`.
Hi, it seems that loading the amazon_polarity dataset gives a NonMatchingChecksumError. To reproduce: ``` load_dataset("amazon_polarity") ``` This will give the following error: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-3-8559a03fe0f8> in <module>() ----> 1 dataset = load_dataset("amazon_polarity") 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download'] ```
24
load_dataset("amazon_polarity") NonMatchingChecksumError Hi, it seems that loading the amazon_polarity dataset gives a NonMatchingChecksumError. To reproduce: ``` load_dataset("amazon_polarity") ``` This will give the following error: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-3-8559a03fe0f8> in <module>() ----> 1 dataset = load_dataset("amazon_polarity") 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download'] ``` @lhoestq Gotcha, that is quite problematic...for what it's worth, I've had no issues with the other datasets I tried, such as `yelp_reviews_full` and `amazon_reviews_multi`.
[ -0.1947867572, 0.0554473549, -0.0836697668, 0.1578222364, 0.1719486117, 0.0804429278, 0.2375731468, 0.0991517454, 0.2416202426, -0.0136136115, -0.0839820504, 0.0607007742, -0.003998125, -0.1410382688, -0.3183494806, 0.3028689325, 0.0808664262, 0.0319712944, -0.1793724149, 0.0368185416, -0.3233240247, 0.2446758002, -0.0489678234, -0.2615429461, -0.1571847051, 0.1928242892, 0.195210427, 0.0186481029, -0.101296626, -0.3044861853, 0.5374702811, 0.1992497295, -0.0120764785, 0.3185726404, -0.0001195672, 0.0853059143, 0.3367521167, 0.0248467326, -0.3156444728, -0.3974167407, -0.3859307766, -0.2944520712, 0.0969609842, -0.0750944465, 0.1068803221, 0.177318126, 0.1115882695, -0.1239963025, 0.1156422272, 0.184881717, 0.205350697, 0.385219872, 0.1166313216, 0.1972649693, 0.312582165, 0.3064415753, -0.1069206148, 0.2679602802, 0.1251927614, -0.1011526287, -0.1667244136, 0.0929332227, -0.117069751, 0.3990475833, 0.1447161138, -0.040513888, 0.3200861812, -0.1548223943, 0.2880883515, 0.4979780018, 0.3820738494, -0.1294229329, -0.3618172407, 0.0308117121, -0.2295019925, -0.2095725387, 0.2629091144, 0.3812121153, -0.0578765571, -0.2178774476, -0.4667551517, 0.2266641855, -0.0254905969, 0.2627208829, 0.052506052, 0.3400255442, 0.1289118528, 0.1233243197, 0.1598108709, -0.2095302045, 0.499545753, -0.2441397309, -0.0085652824, 0.1588147283, -0.5495274067, 0.0090562552, -0.03149518, 0.4228042662, 0.2175270021, 0.5261782408, 0.1308600903, 0.2861517668, 0.0186717995, 0.2018933296, 0.2349799275, 0.1130000129, -0.0022750292, 0.3624727726, 0.1853781641, 0.2451710701, 0.0670079142, 0.1450262368, 0.091771923, -0.1510996819, 0.6740023494, -0.1330975294, 0.2948667407, -0.4654793739, -0.4914768338, 0.3247948587, -0.1839044988, -0.0913163126, 0.03147294, 0.2384023368, -0.1457655728, 0.2541001737, 0.0444368124, 0.0352185778, -0.1544975936, 0.2191963494, -0.1957146078, -0.0111429002, -0.0717066899, 0.2342015803, 0.2611872852, 0.0155254789, 0.399851203, -0.032010287, 0.2115762383, -0.1109664589, 0.3717315495, -0.1075840294, -0.0641365796, 0.38637802, -0.0871021599, 0.0800861642, 0.1076515839, 0.1205859035, -0.1914374232, 0.1178877205, -0.0960544497, -0.1347409636, -0.0384668298, 0.1501205862, -0.5645663142, -0.1816153228, 0.0755824, -0.377191782, 0.3030200899, -0.367533803, -0.0443701297, -0.4381238818, -0.0404127911, -0.1279565245, 0.007109873, 0.3058851361, -0.1130793244, -0.050740514, -0.332831502, -0.1052064598, 0.43379426, 0.2970632613, -0.0183741264, -0.0539243892, -0.145817101, -0.2737308443, -0.0362814963, -0.0873363465, -0.2959800065, 0.1222155914, -0.1102305576, 0.485884726, -0.0137298182, 0.3003834486, -0.207655862, 0.0164327398, 0.2473589629, 0.0874259174, 0.0156233292, 0.1271149814, -0.2721620202, -0.2168180943, 0.4197228849, 0.3042123616, 0.1447954774, -0.0549965128, 0.0315450616, -0.0375996903, 0.1919880509, 0.0012866016, -0.0891599208, 0.14625673, 0.3222912252, 0.0391501188, 0.0288950875, -0.0679282993, -0.4993548989, 0.203586325, -0.2444885373, 0.0501396507, -0.0717330053, 0.0586967245, -0.1447682381, -0.2020160854, -0.2211790979, 0.0414223336, 0.0379390493, 0.3838432133, 0.182515353, -0.1179739237, 0.0241603106, 0.1218320429, -0.3390524089, 0.0490048863, -0.458152324, 0.2769996524, 0.0410902128, 0.110389933, 0.1112273857, 0.0895711929, 0.0747309923, -0.0100381672, -0.0309221391, 0.3922052681, 0.0827846676, 0.209694922, -0.0304659046, 0.4936659336, -0.1033024266, -0.1565175056, -0.1688941121, 0.5129126906, 0.1365161687, -0.188918069, -0.2576064467, 0.5926943421, -0.1301006675, 0.397954464, -0.0644440204, 0.1393130124, 0.2574175894, -0.0767960697, -0.3569566607, -0.2310632765, 0.5517593622, -0.1549685299, -0.1069899797, 0.0832183287, -0.1572751403, -0.11697267, 0.049691774, -0.1312956363, 0.1258493066, 0.0575033054, 0.1097995937, -0.1443411112, 0.1292145103, 0.5851314664, 0.5111240745, 0.1082656756, -0.1515367031, -0.0196427684, -0.3857214749, -0.0863465667, 0.0441453829, 0.1460324526, 0.0405101888, 0.3825342059, 0.1978773624, -0.1548847854, -0.4980459809, -0.1963294595, 0.0285997987, 0.2656152248, -0.4287970662, 0.0746725947, -0.317643851, 0.2282881588, -0.3036856055, -0.0836182088, -0.1786006689, -0.5703513622, -0.0427637696, 0.3845749497, -0.0711473674, 0.2192088664, -0.5256516933, 0.1033715755, -0.0433534011, -0.4788769782, 0.0370991081, -0.2471615076, -0.0079332748, -0.0047993287, 0.3693634868, 0.0695810467, 0.4405274689, -0.2635099292, 0.0232034177, -0.535710156, -0.2607897818, -0.0754985288, -0.0963083804, 0.0138616953, 0.1456656158, 0.141827181, 0.0332269743, -0.204702124, 0.136899963, 0.047608383, -0.1899104714, 0.2861981988, -0.220289886, -0.1222566217, 0.1410216093, -0.1501271427, -0.0176321305, -0.2299503833, 0.0179054327, 0.3132328093, 0.1129756719, -0.0485047027, -0.002841901, 0.0647496283, -0.1155690551, 0.3681409657, -0.2924706042, -0.5026841164, 0.5586990118, 0.0010549799, -0.1893104464, 0.0034449026, 0.0448000878, 0.2240405679, 0.3211055398, -0.515547812, -0.0771050975, -0.3473513424, -0.1309497952, 0.1703903079, -0.0433540121, 0.3131449521, 0.121317938, -0.0129037537, -0.0031683147, -0.4504832029, 0.0553053357, -0.0679175109, 0.5599038601, -0.2180963755, 0.0785481557, -0.2356140316, 0.4960041642, 0.124428831, -0.152709648, -0.0077509861, 0.1388252825, 0.3288230896, -0.1095917374, -0.22578004, -0.1408217549, -0.1820831895, 0.0983357877, 0.020930171, 0.0388206244, -0.3366088271, -0.1184429973, 0.2828339934, -0.2413038611, -0.2129884064, -0.0104346266, -0.2640117705, 0.3414266706, 0.1733109802, 0.1471135914, -0.171830982, -0.5536514521, -0.1006063297, 0.0657590777, -0.1263183355, -0.1281958222, -0.3953514099, -0.0828720629, 0.0268553793, 0.3618725836, 0.0303685144, 0.5633283854, -0.0331770033, -0.2938786149, 0.0765322447, -0.1728954464, 0.0719012171, -0.2082015276, 0.188557893, 0.0929389149, -0.1472609043, -0.3871903718, -0.2017130554, -0.1949772984, 0.2555854321, -0.0511925742, 0.3263747394, -0.3654242158, 0.0443696529, 0.0988787338, 0.3995561898, -0.2119525969, -0.274200052, -0.3901989162, -0.1497897059, -0.1705014408, -0.0632799417, -0.2262339741, 0.1313824207, -0.1788989604, 0.1958273351, 0.0281605329, 0.046133399, 0.3407539427, 0.0278887562, 0.2946108282, -0.0845740214, 0.3027668595, 0.1313604116, -0.1791003644, 0.1014212891, 0.7728273273, -0.0677526593, -0.3344684243, 0.1764200628, -0.0949004665, -0.2939125299, 0.3029403985, 0.206092909, -0.0789724886, 0.3323391676, -0.0642489269, -0.0421118997, -0.1474909633, 0.1818186939, 0.0336115919, -0.3301465809, -0.1793641001, 0.0923852772, -0.0224106237, -0.0460617244, 0.4420633018, 0.1555277258, -0.0700891465, 0.310985297, 0.4530812204, 0.9685317874, 0.039915327, 0.2407520115, 0.0082417652, -0.2067375183, 0.1699522138, -0.1375617236, 0.1208815277, -0.441889286, 0.0415292867, -0.066954501, -0.2064250112, 0.0555016361, -0.0244675428, 0.1306655705, 0.344465673, 0.0549288988, 0.141139105, 0.0872212425, 0.0500622392, -0.2777732313, -0.0530602187, 0.1067030579, 0.1831930578, -0.1393306553, 0.2137444615, -0.1127011925, 0.2057653964, 0.0610126629, -0.1952587217, -0.4594776928, 0.0500411391, 0.1386648417, 0.4351474345, 0.4156048894, -0.0492290556, -0.2195997834, 0.0527028441, 0.1416324228, 0.0440180786, -0.351932019, 0.1094772816, 0.4287139177, 0.071122095, 0.0184636936, -0.1683941782, 0.3001397252, -0.0241655596, -0.1445745379, 0.0099766832, 0.0385393836, -0.461533159, -0.2100616693, 0.0240346063, -0.2081828713, -0.2153233588, -0.1697957218, -0.1131548136, -0.0830769241, -0.2635008097, 0.1405862123, 0.2836170197, -0.0946102962, 0.306080997, 0.2413632572, -0.3573018909, -0.1883840263, 0.5763756037, -0.0343192071, -0.1531593055, 0.3977427483, 0.0097037628, -0.2667921782, -0.2258933187, 0.2647128701, -0.0087204166, -0.5552689433, 0.0053584352, -0.2442555577, 0.094703868, -0.0603763796, 0.3846194744, 0.253462106, 0.152518779, 0.065535143, -0.5687196255, -0.0102746859, 0.0688735098, 0.170816049, 0.416354835, -0.3672190905, -0.3088110983, -0.0868049338, -0.1136469916, -0.2778410614, 0.0114197619, -0.3757005334, 0.0113294423, -0.1058378667, -0.0557275042, 0.1868760288, 0.0056306459, 0.1596181691, -0.0025284961, -0.2202314138, -0.1630436927, -0.2161618769, 0.1567676812, 0.1282971203, -0.1293984056, 0.1067015529, -0.0669194981, 0.0515742972, -0.0949598253, -0.1071284339, 0.3279500008, -0.1974290311, 0.0688087642, 0.0284847561, -0.0793268234, 0.0542711318, -0.2081381232, -0.3427084088, -0.1541705132, 0.2902841866, -0.0608393326, 0.1340804398, -0.0150651932, 0.1764712036, 0.1667007953, 0.0597368516, -0.1213478073, 0.3109099865, -0.2965932786, -0.0690155029, 0.0695432276, 0.3078795671, 0.5859783292, -0.3248097599, -0.0701039955, 0.2360535264, 0.1994351298, -0.2696749568, -0.1061145216, 0.0882229432, 0.096463263, 0.1012218893, 0.0777801201, -0.1369310319, -0.2971314788, 0.4733377993, 0.1976399869, 0.194473505, -0.7444224954, 0.1211018711, 0.1118925512, -0.2094278336, -0.0126873627, 0.221334666, -0.15342924, -0.090912126, -0.2060396075, -0.0669833124, 0.3816146255, -0.3638487458, 0.209220916, -0.2261682451, -0.3045946956, 0.3876191974, -0.0022027716, -0.0506289005, 0.187321946, 0.2213816643, 0.4170788229, -0.1789330542, 0.3228993416, -0.674023211, -0.1435573697, -0.0505537987, -0.1997707486, -0.3083727658, -0.2873628139, -0.0626990423, 0.1703533232, -0.0142222289, -0.0185895525, 0.3029107451, 0.0746687725, -0.2003738284, -0.6321528554, 0.1177445352, -0.1633833349, 0.0233812332, -0.1873858869, -0.0054063201, 0.4042904377, -0.0704315156, 0.0978625119, 0.1443993449, 0.3789831996, 0.3532222807, -0.0114158113, 0.0215935782, -0.2928698957, -0.0741366297, 0.0963458866, 0.8004983664, 0.1237494648, -0.116297096, 0.3406516314, 0.1436724365, -0.2166983485, 0.5199923515, -0.1479879916, -0.0157215353, -0.0350818634, 0.7006474137, 0.0540915206, 0.1681733727, -0.2048675716, 0.125487119, -0.3451824188, -0.4681112468, 0.0220953114, 0.1330068558, 0.0437427945, -0.0183662325, 0.0575388074, -0.04709775, 0.5547436476, 0.2790668011, 0.0183343366, -0.408436805, 0.0108958483, -0.6790776849, 0.2003026754, -0.3235703707, 0.1987062395, -0.0086519159, 0.3224903345, 0.0390092358, 0.4053060114, 0.0974019691, -0.12429557, -0.195633918, -0.0393811464, -0.2221727669, -0.0104105603, 0.2749225497, -0.1489658952, -0.0778452605, -0.2355690598, 0.0726661235, 0.0336347856, 0.0702487901, -0.0422696061, -0.2567171752, -0.0293311663, 0.2860661447, 0.1323136687, 0.075529702, 0.6710898876, 0.0472503528, -0.116292417, -0.4180581272, -0.2712436318, 0.0032965466, 0.122393623, -0.0506838933, 0.5432872772, -0.0329469405, -0.3503842354, -0.1806843728, 0.2976985574, -0.2001115382, -0.581173718, -0.1300953031, 0.0512186661, -0.0686126798, 0.2098843455, -0.236098662, 0.0555032492, 0.1703750491, 0.1922392547, -0.0983939469, -0.2720020115, 0.6404884458, -0.199348405, -0.0580996796, 0.0215245187, 0.1502721906, -0.0441079773, -0.1477538794, -0.5046075583, 0.1836394966, 0.2008160651, 0.042010963, -0.1002980694, 0.1392051876, -0.3728256226, 0.2734103203, -0.0902341083, 0.2114881724, 0.0914049894, -0.1839488149, -0.2237304896, -0.1556932181 ]
https://github.com/huggingface/datasets/issues/1856
load_dataset("amazon_polarity") NonMatchingChecksumError
Same issue today with "big_patent", though the symptoms are slightly different. When running ```py from datasets import load_dataset load_dataset("big_patent", split="validation") ``` I get the following `FileNotFoundError: Local file \huggingface\datasets\downloads\6159313604f4f2c01e7d1cac52139343b6c07f73f6de348d09be6213478455c5\bigPatentData\train.tar.gz doesn't exist` I had to look into `6159313604f4f2c01e7d1cac52139343b6c07f73f6de348d09be6213478455c5` (which is a file instead of a folder) and got the following: `<!DOCTYPE html><html><head><title>Google Drive - Quota exceeded</title><meta http-equiv="content-type" content="text/html; charset=utf-8"/><link href=&#47;static&#47;doclist&#47;client&#47;css&#47;4033072956&#45;untrustedcontent.css rel="stylesheet" nonce="JV0t61Smks2TEKdFCGAUFA"><link rel="icon" href="//ssl.gstatic.com/images/branding/product/1x/drive_2020q4_32dp.png"/><style nonce="JV0t61Smks2TEKdFCGAUFA">#gbar,#guser{font-size:13px;padding-top:0px !important;}#gbar{height:22px}#guser{padding-bottom:7px !important;text-align:right}.gbh,.gbd{border-top:1px solid #c9d7f1;font-size:1px}.gbh{height:0;position:absolute;top:24px;width:100%}@media all{.gb1{height:22px;margin-right:.5em;vertical-align:top}#gbar{float:left}}a.gb1,a.gb4{text-decoration:underline !important}a.gb1,a.gb4{color:#00c !important}.gbi .gb4{color:#dd8e27 !important}.gbf .gb4{color:#900 !important} </style><script nonce="iNUHigT+ENVQ3UZrLkFtRw"></script></head><body><div id=gbar><nobr><a target=_blank class=gb1 href="https://www.google.fr/webhp?tab=ow">Search</a> <a target=_blank class=gb1 href="http://www.google.fr/imghp?hl=en&tab=oi">Images</a> <a target=_blank class=gb1 href="https://maps.google.fr/maps?hl=en&tab=ol">Maps</a> <a target=_blank class=gb1 href="https://play.google.com/?hl=en&tab=o8">Play</a> <a target=_blank class=gb1 href="https://www.youtube.com/?gl=FR&tab=o1">YouTube</a> <a target=_blank class=gb1 href="https://news.google.com/?tab=on">News</a> <a target=_blank class=gb1 href="https://mail.google.com/mail/?tab=om">Gmail</a> <b class=gb1>Drive</b> <a target=_blank class=gb1 style="text-decoration:none" href="https://www.google.fr/intl/en/about/products?tab=oh"><u>More</u> &raquo;</a></nobr></div><div id=guser width=100%><nobr><span id=gbn class=gbi></span><span id=gbf class=gbf></span><span id=gbe></span><a target="_self" href="/settings?hl=en_US" class=gb4>Settings</a> | <a target=_blank href="//support.google.com/drive/?p=web_home&hl=en_US" class=gb4>Help</a> | <a target=_top id=gb_70 href="https://accounts.google.com/ServiceLogin?hl=en&passive=true&continue=https://drive.google.com/uc%3Fexport%3Ddownload%26id%3D1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa&service=writely&ec=GAZAMQ" class=gb4>Sign in</a></nobr></div><div class=gbh style=left:0></div><div class=gbh style=right:0></div><div class="uc-main"><div id="uc-text"><p class="uc-error-caption">Sorry, you can&#39;t view or download this file at this time.</p><p class="uc-error-subcaption">Too many users have viewed or downloaded this file recently. Please try accessing the file again later. If the file you are trying to access is particularly large or is shared with many people, it may take up to 24 hours to be able to view or download the file. If you still can't access a file after 24 hours, contact your domain administrator.</p></div></div><div class="uc-footer"><hr class="uc-footer-divider">&copy; 2021 Google - <a class="goog-link" href="//support.google.com/drive/?p=web_home">Help</a> - <a class="goog-link" href="//support.google.com/drive/bin/answer.py?hl=en_US&amp;answer=2450387">Privacy & Terms</a></div></body></html>`
Hi, it seems that loading the amazon_polarity dataset gives a NonMatchingChecksumError. To reproduce: ``` load_dataset("amazon_polarity") ``` This will give the following error: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-3-8559a03fe0f8> in <module>() ----> 1 dataset = load_dataset("amazon_polarity") 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download'] ```
230
load_dataset("amazon_polarity") NonMatchingChecksumError Hi, it seems that loading the amazon_polarity dataset gives a NonMatchingChecksumError. To reproduce: ``` load_dataset("amazon_polarity") ``` This will give the following error: ``` --------------------------------------------------------------------------- NonMatchingChecksumError Traceback (most recent call last) <ipython-input-3-8559a03fe0f8> in <module>() ----> 1 dataset = load_dataset("amazon_polarity") 3 frames /usr/local/lib/python3.6/dist-packages/datasets/utils/info_utils.py in verify_checksums(expected_checksums, recorded_checksums, verification_name) 37 if len(bad_urls) > 0: 38 error_msg = "Checksums didn't match" + for_verification_name + ":\n" ---> 39 raise NonMatchingChecksumError(error_msg + str(bad_urls)) 40 logger.info("All the checksums matched successfully" + for_verification_name) 41 NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/u/0/uc?id=0Bz8a_Dbh9QhbaW12WVVZS2drcnM&export=download'] ``` Same issue today with "big_patent", though the symptoms are slightly different. When running ```py from datasets import load_dataset load_dataset("big_patent", split="validation") ``` I get the following `FileNotFoundError: Local file \huggingface\datasets\downloads\6159313604f4f2c01e7d1cac52139343b6c07f73f6de348d09be6213478455c5\bigPatentData\train.tar.gz doesn't exist` I had to look into `6159313604f4f2c01e7d1cac52139343b6c07f73f6de348d09be6213478455c5` (which is a file instead of a folder) and got the following: `<!DOCTYPE html><html><head><title>Google Drive - Quota exceeded</title><meta http-equiv="content-type" content="text/html; charset=utf-8"/><link href=&#47;static&#47;doclist&#47;client&#47;css&#47;4033072956&#45;untrustedcontent.css rel="stylesheet" nonce="JV0t61Smks2TEKdFCGAUFA"><link rel="icon" href="//ssl.gstatic.com/images/branding/product/1x/drive_2020q4_32dp.png"/><style nonce="JV0t61Smks2TEKdFCGAUFA">#gbar,#guser{font-size:13px;padding-top:0px !important;}#gbar{height:22px}#guser{padding-bottom:7px !important;text-align:right}.gbh,.gbd{border-top:1px solid #c9d7f1;font-size:1px}.gbh{height:0;position:absolute;top:24px;width:100%}@media all{.gb1{height:22px;margin-right:.5em;vertical-align:top}#gbar{float:left}}a.gb1,a.gb4{text-decoration:underline !important}a.gb1,a.gb4{color:#00c !important}.gbi .gb4{color:#dd8e27 !important}.gbf .gb4{color:#900 !important} </style><script nonce="iNUHigT+ENVQ3UZrLkFtRw"></script></head><body><div id=gbar><nobr><a target=_blank class=gb1 href="https://www.google.fr/webhp?tab=ow">Search</a> <a target=_blank class=gb1 href="http://www.google.fr/imghp?hl=en&tab=oi">Images</a> <a target=_blank class=gb1 href="https://maps.google.fr/maps?hl=en&tab=ol">Maps</a> <a target=_blank class=gb1 href="https://play.google.com/?hl=en&tab=o8">Play</a> <a target=_blank class=gb1 href="https://www.youtube.com/?gl=FR&tab=o1">YouTube</a> <a target=_blank class=gb1 href="https://news.google.com/?tab=on">News</a> <a target=_blank class=gb1 href="https://mail.google.com/mail/?tab=om">Gmail</a> <b class=gb1>Drive</b> <a target=_blank class=gb1 style="text-decoration:none" href="https://www.google.fr/intl/en/about/products?tab=oh"><u>More</u> &raquo;</a></nobr></div><div id=guser width=100%><nobr><span id=gbn class=gbi></span><span id=gbf class=gbf></span><span id=gbe></span><a target="_self" href="/settings?hl=en_US" class=gb4>Settings</a> | <a target=_blank href="//support.google.com/drive/?p=web_home&hl=en_US" class=gb4>Help</a> | <a target=_top id=gb_70 href="https://accounts.google.com/ServiceLogin?hl=en&passive=true&continue=https://drive.google.com/uc%3Fexport%3Ddownload%26id%3D1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa&service=writely&ec=GAZAMQ" class=gb4>Sign in</a></nobr></div><div class=gbh style=left:0></div><div class=gbh style=right:0></div><div class="uc-main"><div id="uc-text"><p class="uc-error-caption">Sorry, you can&#39;t view or download this file at this time.</p><p class="uc-error-subcaption">Too many users have viewed or downloaded this file recently. Please try accessing the file again later. If the file you are trying to access is particularly large or is shared with many people, it may take up to 24 hours to be able to view or download the file. If you still can't access a file after 24 hours, contact your domain administrator.</p></div></div><div class="uc-footer"><hr class="uc-footer-divider">&copy; 2021 Google - <a class="goog-link" href="//support.google.com/drive/?p=web_home">Help</a> - <a class="goog-link" href="//support.google.com/drive/bin/answer.py?hl=en_US&amp;answer=2450387">Privacy & Terms</a></div></body></html>`
[ -0.197747618, 0.1699577272, -0.0510926656, 0.2398215681, 0.1494401842, -0.0500102788, 0.2648403347, 0.2264506519, 0.3186418414, 0.0602955297, -0.0621268116, 0.0072554164, -0.0048486441, -0.1367177367, -0.2075064778, 0.3518305719, 0.1385653019, -0.0169532374, -0.2259688526, 0.0192924067, -0.2470266372, 0.250721246, -0.0814838037, -0.1623282135, -0.0814457461, 0.2453397214, 0.1859199107, 0.1196512952, -0.092442438, -0.4332828522, 0.3541624546, 0.1207952574, 0.0554168671, 0.3615809977, -0.000124711, 0.1088825464, 0.3887197673, 0.0579436123, -0.2862359881, -0.1727551371, -0.4470107257, -0.3646291196, -0.0332946889, 0.000880748, 0.1849215478, 0.0702600479, 0.0694609731, -0.0631482452, 0.0055411868, 0.2387625724, 0.1421352178, 0.4269418716, 0.2395876944, 0.1177859306, 0.2658683658, 0.2129856646, -0.0901236609, 0.2691423297, 0.210395366, -0.2142740637, -0.2508120537, 0.1191417351, -0.1859520674, 0.414688617, 0.1036818326, 0.0116959475, 0.2535799146, -0.1878897399, 0.2364891917, 0.5302152634, 0.3473128676, -0.0848416835, -0.4574837983, -0.1686605364, -0.1927174777, -0.343121171, 0.3405180573, 0.2637240291, -0.0864370167, -0.1382091641, -0.3554593027, 0.1351722479, -0.0891587883, 0.2401625365, -0.0999407694, 0.1585041434, 0.1089748293, 0.0511107035, 0.0896145776, -0.2831463814, 0.4739673138, -0.4253408611, -0.0152056143, 0.1840302944, -0.5253769159, 0.0538722575, 0.0191311296, 0.5155974627, 0.3433682024, 0.4453732073, 0.1638208926, 0.1542470157, -0.1132086217, 0.1749997884, 0.1005780399, 0.1648574471, -0.1246675327, 0.2837974131, 0.3344494402, 0.2328184545, 0.066332683, 0.1549246311, -0.0565039888, -0.2741811275, 0.526784122, -0.1108525842, 0.3137876689, -0.5724888444, -0.4306187928, 0.3364916444, -0.1928468347, -0.0282171872, 0.067566812, 0.2280799299, -0.2387453914, 0.3099794984, -0.0643476024, 0.0004802691, -0.1664960086, 0.0502480231, -0.2033567429, -0.0187497772, -0.0810732767, 0.2882339358, 0.3058467507, -0.0299484301, 0.3222572803, -0.0148620047, 0.2578922808, -0.0937814489, 0.2736912072, -0.1426093429, 0.0097327158, 0.4259113669, -0.2763503194, 0.0317268595, 0.0826814026, 0.0599151403, -0.1499498934, 0.1888557076, -0.1219962835, -0.1037570164, 0.0341120213, 0.0855986327, -0.7176012993, -0.1909333467, 0.0236062147, -0.4370224178, 0.231975615, -0.4660429358, -0.0455500893, -0.5799201131, 0.0250524059, -0.1446426511, 0.1525877118, 0.3106123209, -0.1575124562, -0.1112047434, -0.1945011169, -0.0421194509, 0.3214513659, 0.3376631141, -0.0974223241, 0.0249706451, -0.2604074478, -0.1538294852, 0.0182921439, -0.2152293324, -0.4789546728, 0.0974529088, -0.163935557, 0.5817307234, 0.1618593782, 0.1649812311, -0.2130650133, 0.0506933294, 0.2002898157, 0.067691654, -0.012575794, 0.1630194485, -0.2348094583, -0.1929586083, 0.3607848883, 0.2327784002, 0.2313604802, -0.0246131457, 0.0942837596, -0.046942044, 0.2663872838, -0.0295548029, -0.1264049411, 0.1404905319, 0.2977232337, -0.0565802976, -0.0152169019, -0.0363363437, -0.4510758817, 0.2887569368, -0.1545189321, 0.0236895215, -0.1039603651, 0.1078214943, -0.1292864084, -0.2308780849, -0.2409704328, -0.0934643894, -0.0329292454, 0.4628790021, 0.1729545444, 0.003406547, 0.0280604064, 0.2453968227, -0.2640751004, 0.1012687236, -0.5871549249, 0.2537437677, 0.1094548032, 0.098246187, 0.0388325006, 0.0806017965, 0.0688661337, -0.0402694903, -0.048374448, 0.3387966156, 0.2107174993, 0.1517688781, -0.0045257444, 0.5949780345, -0.0514890626, -0.040112339, -0.0681994334, 0.4075597823, 0.1674460173, -0.1222715974, -0.259991914, 0.6478692293, -0.1487546712, 0.4013354182, -0.0244226679, -0.0253929943, 0.2595126927, -0.1413274407, -0.4156423807, -0.0606274605, 0.4904745817, -0.0587503538, -0.1178302914, 0.0945854411, -0.2039515227, -0.1534871161, 0.238400802, -0.1865178049, -0.0035638176, 0.025902871, -0.1144867241, -0.0729257613, 0.1115809157, 0.617387712, 0.6931015849, 0.0906758755, -0.1532774121, -0.0719935894, -0.2084602565, -0.1319142133, 0.0589388944, 0.1659446955, -0.0344938785, 0.4840494096, 0.2609240711, -0.1741529852, -0.4542830586, -0.2900516987, 0.0969520062, 0.1641112566, -0.4628483951, 0.080960691, -0.306466192, 0.1440184265, -0.4473998845, 0.0089253262, -0.30479756, -0.4628068507, -0.1676446795, 0.5472715497, -0.0157068744, 0.2009993196, -0.6645441651, 0.1647142768, -0.0594835542, -0.4675343633, 0.0693724006, -0.1088772267, -0.0143264467, -0.0495193936, 0.3760408163, -0.0842457041, 0.390868336, -0.1910766214, -0.0181507505, -0.5628096461, -0.4042611122, -0.0315472595, -0.096156776, -0.0866459832, 0.1487679034, 0.06610623, 0.2045080066, -0.1082297638, 0.1219895408, 0.0034573376, -0.2515310645, 0.19216609, -0.1392139792, -0.0867665038, 0.1303485036, -0.1573179513, -0.0555603206, -0.241615206, 0.126400739, 0.2230745107, 0.0426242352, 0.0844555646, -0.0340709575, 0.1342973411, -0.1846310049, 0.2868455052, -0.2110422552, -0.4735347629, 0.493922174, 0.0137702599, -0.2086323798, -0.1078977287, 0.011479795, 0.2031426728, 0.3830662668, -0.5122944713, -0.0500412434, -0.3821265697, -0.0122854486, 0.1495176107, -0.0381678306, 0.2434110045, 0.0776341259, 0.0006715693, -0.0634192154, -0.3752563894, 0.0119356439, -0.0515989773, 0.555439055, -0.1658079624, 0.1307978332, -0.2195648551, 0.5205672979, 0.0204536095, -0.1773886234, -0.0150976032, 0.1209324151, 0.4579958618, -0.0820354745, -0.2375095189, -0.0136436969, -0.0928558409, 0.031011574, 0.0167734139, -0.0459576845, -0.054607749, -0.0233056769, 0.1757572442, -0.1513456851, -0.1952744424, 0.0736329257, -0.2062533349, 0.2666285038, 0.1491877139, 0.0829502791, -0.273679018, -0.4601072371, -0.0883163065, 0.0990175754, 0.0131994095, -0.1141734794, -0.3601975143, 0.0028562322, -0.0865934789, 0.3694240451, 0.0677433908, 0.5374170542, 0.0034999549, -0.4062408507, -0.0274812877, -0.1980947852, 0.1366262585, 0.0413333252, 0.151866138, 0.0760892704, -0.2618227005, -0.2618717551, -0.3011710644, -0.1455930322, 0.1972532272, 0.0102232974, 0.4263958335, -0.3111902475, 0.0090127699, 0.0770429671, 0.5044953823, -0.1736926883, -0.1661169231, -0.3287205398, -0.1103907377, -0.2056303322, -0.067000553, -0.1488412619, 0.1898538172, -0.2760041356, 0.2880743146, -0.1159321666, -0.0420520864, 0.3881804645, 0.0811637193, 0.2963179946, -0.0851851404, 0.3596176803, 0.1865716875, -0.0997024328, 0.2935774028, 0.7036969066, -0.0759228915, -0.4403664768, 0.1370750219, -0.0812452957, -0.2529203892, 0.3446393013, 0.0421704724, -0.0207266249, 0.4141937792, -0.069385156, -0.1543787867, 0.0517624728, 0.2886784673, 0.1154754609, -0.3386642337, -0.238870874, 0.1438047886, 0.0697237849, -0.1526661515, 0.4629602134, 0.0509202294, -0.1079159006, 0.10112755, 0.120363988, 0.839363575, 0.1140440628, 0.3778194189, 0.0267083012, -0.0391326398, 0.2921770513, -0.0136153102, 0.2000629306, -0.4918192625, -0.2318003178, -0.0668821633, -0.3209643364, 0.1960909069, -0.1047169715, 0.2709475756, 0.435264647, 0.2198974341, 0.2370731533, 0.1346775591, 0.0994501263, -0.126551792, 0.0080758892, 0.0543686002, 0.0991846919, -0.1956765056, 0.4031541944, -0.0468655415, 0.0923539996, -0.0931582749, -0.2360896915, -0.4514451027, 0.1142917573, 0.0259426162, 0.4191180766, 0.3971006572, -0.0595747828, -0.2479575127, 0.1414901614, 0.1691746414, 0.0425859243, -0.2766377926, 0.1784694046, 0.4671688378, 0.0909840241, 0.0286953039, -0.2177682668, 0.320230931, 0.0191050246, -0.1145875528, -0.0044734348, -0.0086999238, -0.4215152264, -0.2650598586, -0.0038222559, -0.0179316979, -0.2658552825, -0.1391581446, -0.1247057021, -0.0123547688, -0.2472327948, 0.087194711, 0.3706962764, -0.1243253052, 0.2302157581, 0.1520811468, -0.3544492722, -0.2047873139, 0.5908535123, -0.1227725595, -0.2588188052, 0.5218559504, -0.1136020124, -0.1334782094, -0.1409384608, 0.2275195271, 0.0963110775, -0.4837854505, 0.0500918068, -0.2060239911, 0.0261199921, 0.0078297369, 0.2911915779, 0.2244147956, -0.0170452632, 0.0997877494, -0.5264371634, -0.0796761662, 0.0951930434, 0.0575177148, 0.4152062535, -0.2721102834, -0.238144666, -0.3541308939, -0.2754939198, -0.22713539, 0.0920685455, -0.2097597718, -0.0396226533, -0.0188899096, -0.0343640111, 0.242628932, -0.0293570496, 0.1448669583, 0.0459995121, -0.1230619699, -0.1212653816, -0.2768175304, 0.2021895051, 0.1157271266, -0.0981825739, 0.0693177208, -0.0941872746, 0.1100541055, -0.1127450317, 0.117711626, 0.2905295789, -0.1701914519, -0.0598584972, 0.015868701, -0.0449268222, 0.1417567283, -0.0080643259, -0.3633024693, -0.0902776718, 0.3748222291, 0.070459187, 0.024340529, 0.0274130553, 0.0599097908, 0.1317332834, -0.0310076997, -0.1302217394, 0.4147025347, -0.3255168796, -0.1937369406, 0.074336201, 0.2790161967, 0.6166606545, -0.3277211189, -0.1052144468, 0.2799762189, 0.1788962334, -0.2058531046, -0.1430954635, 0.197278887, -0.0152639765, 0.1052268893, 0.1560055017, -0.09996479, -0.2674521804, 0.3703504801, 0.157605499, 0.2714172006, -0.4941526651, 0.1963048279, 0.2657334208, -0.1613768041, -0.0107382871, 0.2556590438, -0.0921964869, -0.0656131357, 0.0056156763, -0.0532908663, 0.3297798038, -0.4341211915, 0.0854645222, -0.1895895898, -0.4409660101, 0.2892757654, 0.0798095018, -0.033783257, 0.2495213449, 0.1416721344, 0.3144393563, -0.2166257948, 0.3021008074, -0.5998128653, -0.0176934749, -0.0304029025, -0.1813414991, -0.1573518217, -0.3583910465, 0.0924844146, 0.2413349897, -0.0094319191, 0.025511492, 0.3337193429, 0.1591836214, -0.2511441708, -0.5507920384, -0.0835078284, -0.0567493513, 0.0359923542, -0.1781901419, 0.0337066725, 0.4150096178, -0.1086319238, 0.1495480239, 0.2184251994, 0.5513747931, 0.3730778992, 0.0504292175, -0.146550253, -0.22408849, -0.0177875385, 0.0449722931, 0.7161065936, -0.014010638, -0.0573879406, 0.3180462718, 0.0889363736, -0.131457448, 0.380856812, -0.2900706232, -0.1717514247, -0.0860812068, 0.6210689545, 0.0097142011, 0.1610928327, -0.2436222136, 0.1875258386, -0.3157784343, -0.3980679214, 0.1399552673, 0.1968462318, 0.0463996269, 0.0836222693, 0.0227409862, -0.1517201811, 0.5273540616, 0.3188102841, 0.0647684634, -0.4174140692, 0.0885212421, -0.722171247, 0.302490741, -0.3389047384, 0.1521536559, -0.0938105285, 0.2113610208, 0.0834679753, 0.2010389417, 0.0466541648, -0.2246113271, -0.120896332, -0.1212607473, -0.2425460219, -0.0915075541, 0.3232165277, -0.2168419063, -0.0514258072, -0.301135987, 0.1313195378, -0.0132246949, 0.0739569142, 0.0123020038, -0.0289636031, -0.1769029945, 0.2476477474, 0.1143126041, 0.1731816977, 0.7652644515, 0.0657587722, -0.2970634997, -0.468160063, -0.2858734727, -0.0980950147, 0.2642612159, -0.1359903216, 0.6043871641, -0.0054837354, -0.3212577403, -0.2743751407, 0.3681734204, -0.1599878222, -0.5791299343, 0.042579785, 0.0364807174, -0.1174707338, 0.2359935194, -0.1278226823, 0.1046720669, 0.1012216955, 0.2595419288, -0.1683455408, -0.313241899, 0.6432465911, -0.3836358786, -0.0290613361, -0.0133752003, 0.2157868445, -0.0461703651, -0.0788290501, -0.5784177184, 0.2646850944, 0.2759849429, 0.0526711605, -0.2628395855, 0.1017512605, -0.2769652605, 0.2739322186, -0.0319273099, 0.2957462966, 0.02211022, -0.3565128744, -0.1994652152, -0.0300635509 ]
https://github.com/huggingface/datasets/issues/1854
Feature Request: Dataset.add_item
Hi @sshleifer. I am not sure of understanding the need of the `add_item` approach... By just reading your "Desired API" section, I would say you could (nearly) get it with a 1-column Dataset: ```python data = {"input_ids": [np.array([4,4,2]), np.array([8,6,5,5,2]), np.array([3,3,31,5])]} ds = Dataset.from_dict(data) assert (ds["input_ids"][0] == np.array([4,4,2])).all() ```
I'm trying to integrate `huggingface/datasets` functionality into `fairseq`, which requires (afaict) being able to build a dataset through an `add_item` method, such as https://github.com/pytorch/fairseq/blob/master/fairseq/data/indexed_dataset.py#L318, as opposed to loading all the text into arrow, and then `dataset.map(binarizer)`. Is this possible at the moment? Is there an example? I'm happy to use raw `pa.Table` but not sure whether it will support uneven length entries. ### Desired API ```python import numpy as np tokenized: List[np.NDArray[np.int64]] = [np.array([4,4,2]), np.array([8,6,5,5,2]), np.array([3,3,31,5]) def build_dataset_from_tokenized(tokenized: List[np.NDArray[int]]) -> Dataset: """FIXME""" dataset = EmptyDataset() for t in tokenized: dataset.append(t) return dataset ds = build_dataset_from_tokenized(tokenized) assert (ds[0] == np.array([4,4,2])).all() ``` ### What I tried grep, google for "add one entry at a time", "datasets.append" ### Current Code This code achieves the same result but doesn't fit into the `add_item` abstraction. ```python dataset = load_dataset('text', data_files={'train': 'train.txt'}) tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_length=4096) def tokenize_function(examples): ids = tokenizer(examples['text'], return_attention_mask=False)['input_ids'] return {'input_ids': [x[1:] for x in ids]} ds = dataset.map(tokenize_function, batched=True, num_proc=4, remove_columns=['text'], load_from_cache_file=not overwrite_cache) print(ds['train'][0]) => np array ``` Thanks in advance!
48
Feature Request: Dataset.add_item I'm trying to integrate `huggingface/datasets` functionality into `fairseq`, which requires (afaict) being able to build a dataset through an `add_item` method, such as https://github.com/pytorch/fairseq/blob/master/fairseq/data/indexed_dataset.py#L318, as opposed to loading all the text into arrow, and then `dataset.map(binarizer)`. Is this possible at the moment? Is there an example? I'm happy to use raw `pa.Table` but not sure whether it will support uneven length entries. ### Desired API ```python import numpy as np tokenized: List[np.NDArray[np.int64]] = [np.array([4,4,2]), np.array([8,6,5,5,2]), np.array([3,3,31,5]) def build_dataset_from_tokenized(tokenized: List[np.NDArray[int]]) -> Dataset: """FIXME""" dataset = EmptyDataset() for t in tokenized: dataset.append(t) return dataset ds = build_dataset_from_tokenized(tokenized) assert (ds[0] == np.array([4,4,2])).all() ``` ### What I tried grep, google for "add one entry at a time", "datasets.append" ### Current Code This code achieves the same result but doesn't fit into the `add_item` abstraction. ```python dataset = load_dataset('text', data_files={'train': 'train.txt'}) tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_length=4096) def tokenize_function(examples): ids = tokenizer(examples['text'], return_attention_mask=False)['input_ids'] return {'input_ids': [x[1:] for x in ids]} ds = dataset.map(tokenize_function, batched=True, num_proc=4, remove_columns=['text'], load_from_cache_file=not overwrite_cache) print(ds['train'][0]) => np array ``` Thanks in advance! Hi @sshleifer. I am not sure of understanding the need of the `add_item` approach... By just reading your "Desired API" section, I would say you could (nearly) get it with a 1-column Dataset: ```python data = {"input_ids": [np.array([4,4,2]), np.array([8,6,5,5,2]), np.array([3,3,31,5])]} ds = Dataset.from_dict(data) assert (ds["input_ids"][0] == np.array([4,4,2])).all() ```
[ -0.2646303177, 0.1603155732, -0.0458904654, 0.1386153698, -0.0252808817, 0.1201700196, 0.1569382548, 0.1071406454, 0.0586706102, 0.0440860987, 0.1095489562, 0.5823289752, -0.1573914587, 0.1380069256, 0.4451276362, -0.1356470585, 0.1021329314, 0.2048071772, -0.1752962619, 0.070408769, -0.2645280659, -0.0905523151, -0.1519211084, -0.1790199429, -0.0579329208, -0.0613217428, -0.4128629863, -0.3023574948, -0.2655976415, -0.792965889, -0.0123856366, -0.0009121504, -0.0839302689, 0.2624163628, -0.0001283345, 0.0117334723, 0.1670984328, -0.0539959222, -0.5640702248, -0.0456965864, -0.1553969532, -0.2387477309, 0.1454960704, -0.3138718009, 0.2260570377, -0.7180806398, 0.3229592144, -0.154569447, 0.0890843049, 0.1250140965, -0.0003756769, 0.4948111773, 0.1991043836, -0.3639473021, 0.2621563077, -0.0453420393, -0.1395279467, -0.1721626073, 0.3763101995, -0.2068814635, 0.0824211538, -0.112596035, 0.2658930421, -0.0915567577, 0.4066396058, 0.1262134761, -0.0127455406, -0.1426646113, -0.1565272808, 0.2903876603, 0.2264159918, -0.4190440476, -0.6362020373, -0.4910079837, 0.3017783761, -0.0399684049, -0.1348127723, 0.0601553097, -0.0711731315, -0.0760375857, -0.0698098764, -0.3770204782, -0.1119121984, 0.2381708026, 0.0717940778, 0.4428232014, 0.1425430924, 0.1643605679, 0.1441979259, -0.1271940321, -0.2345666438, 0.0151866786, -0.1232946217, 0.3333287835, -0.1031111553, -0.1166457236, 0.1092309356, -0.0470123664, 0.4755122066, -0.0613001063, 0.1737270951, 0.1157121956, -0.3675785065, 0.086634174, 0.1714763343, -0.1008807942, 0.2137440145, -0.2119160295, -0.3128736317, 0.0772754848, 0.4092108309, 0.0620394647, -0.1824602485, 0.1073739082, -0.2618187666, -0.3582355976, -0.0681387559, 0.4037792385, -0.1207620427, -0.0273630582, -0.0106997639, 0.0841954201, -0.0472875126, 0.1736776978, 0.1717312783, -0.3679122925, -0.2393834889, 0.2014808059, 0.1263076663, -0.0102792196, 0.0816343129, 0.217959106, -0.1080403849, 0.1765948385, 0.1008232534, -0.0010518003, -0.0144494474, -0.064989306, 0.069193311, 0.0783882067, -0.0114105195, -0.1804758608, 0.2521995604, 0.0106605934, 0.0532551631, -0.0456526503, -0.1014853716, -0.4404919147, -0.4781495333, 0.2198811769, -0.1078880876, -0.1812903881, -0.2244121134, -0.0641980693, 0.0042391494, -0.1642895788, -0.1952675879, 0.5241125226, 0.3831297159, -0.2358408868, 0.1302086711, -0.1283588558, -0.5635916591, -0.1791514307, 0.1944268644, 0.3399139643, -0.4468759894, -0.3274410963, -0.101685375, -0.0158185363, -0.4132905602, 0.129502967, -0.094446227, 0.2800899446, -0.4338252544, 0.4084129333, 0.309163183, -0.1658167839, -0.2207369804, 0.1308987737, -0.1782538742, 0.0376556739, 0.0842341483, 0.3958652616, 0.2953098416, 0.06001978, 0.4510017633, 0.2585290372, -0.0795214772, -0.0899353027, 0.0736888647, -0.4146656394, 0.3007451892, -0.0111932829, -0.1263207197, -0.0905315951, 0.027958326, -0.5407938361, 0.1644917279, -0.1066173837, 0.3368986845, -0.0383562744, 0.4019219279, -0.0076308344, -0.1058239937, -0.5203374028, -0.3627278805, 0.1384118646, -0.0773243457, 0.1222195551, -0.1124036312, -0.4358095825, -0.1482962519, 0.4267141819, -0.1347390115, -0.0214690827, -0.0691513419, 0.0572069474, -0.0093462467, -0.1200827211, -0.4359640777, 0.1428781152, 0.2283412516, 0.3076541424, -0.4393087029, -0.0498375036, 0.268648535, -0.1849065125, -0.1217022464, 0.1733720154, -0.141075626, -0.144353196, 0.2083712667, 0.2823856175, -0.0867414176, -0.2701041698, 0.1203910857, 0.2604827881, 0.2900449038, 0.3060085773, -0.1001437828, -0.2057064176, 0.3140790462, -0.2532830834, -0.2291706502, 0.549986124, 0.0419303887, 0.4261952341, 0.1370569468, 0.0392846465, 0.0201955512, 0.2511621714, -0.2537922859, -0.2578030825, -0.0499060191, 0.1488568336, 0.21238482, -0.1196056381, -0.1045182273, 0.1626659781, 0.1422626823, 0.1596188247, 0.1770741642, 0.1443226486, -0.2144732624, 0.0623016432, 0.0679697096, 0.0149872229, 0.4575431943, 0.0544014946, 0.1145165637, 0.065915443, 0.1110455096, 0.0568909012, 0.0589826629, 0.0314613059, -0.1170741022, 0.038472563, 0.5389944911, 0.0615468919, -0.0218387619, -0.1388210058, 0.1136971191, -0.0432556421, -0.1218187362, 0.0397561863, 0.0448249876, 0.0722156838, -0.2530292273, -0.3716771007, -0.0849191844, -0.0843766034, 0.2689412832, 0.0314311571, 0.0156414136, 0.3010812998, 0.1379874647, 0.7158763409, 0.1047443449, -0.4731734097, -0.0859230161, 0.0065621138, 0.2182611227, -0.101071611, -0.1031733304, 0.3030093014, 0.4021120071, 0.0869902, -0.0316571184, -0.3475202918, -0.5039148927, 0.109527424, -0.0517879464, 0.4337319434, 0.3948707879, -0.3356014788, -0.1123427004, -0.2517047524, 0.1836484969, 0.037347652, -0.1394073963, -0.1860644817, -0.0976853222, -0.2373918146, -0.0496558361, 0.1030327678, -0.2060160339, -0.1766933948, 0.4733739793, 0.1536128223, 0.2519126534, -0.2228934467, 0.0982956514, 0.0336948447, -0.1396936774, -0.1208668351, 0.0718323663, -0.0042213202, 0.4730609655, -0.3619562984, -0.1762784421, -0.1606230587, -0.5109411478, 0.1114844084, 0.3774947524, -0.2879175544, -0.3993914723, -0.2613129914, 0.3807625771, -0.0936843902, 0.2705561817, 0.495557189, 0.0041031688, 0.153395623, 0.0573998839, -0.2879433036, 0.3740735054, 0.1856689155, 0.0599000677, 0.0809815377, 0.1704527438, 0.0867760852, 0.663498342, 0.1845436096, -0.1084078848, 0.1433630586, -0.5918191075, 0.3627536297, -0.2168655843, -0.2220131755, -0.1796465218, -0.1106622219, 0.0941361934, 0.0607792959, -0.0263928957, 0.1260302663, 0.071246013, 0.3468835056, 0.0541967154, -0.1985843182, 0.1793527603, 0.0210638195, 0.3373363316, -0.0193246715, -0.0224006623, -0.3871430159, 0.0173648149, -0.0409918725, 0.2764793932, 0.2389587909, -0.1770686507, -0.4978463054, -0.140987426, -0.3073575795, 0.0694865286, 0.3090183139, 0.4473899007, 0.2480773628, -0.1597182453, 0.0432343483, -0.2020529062, 0.7236326933, 0.3253346682, -0.4594321549, 0.0084283203, 0.0938181132, -0.2563484907, 0.1732940376, 0.0139205903, 0.5422023535, 0.1814725697, 0.2524054945, -0.4542911351, 0.2550081313, 0.2051482052, 0.1793888956, -0.1816657484, -0.1778386384, -0.1138084084, -0.1289125085, -0.2315630913, 0.1871425807, 0.1932210028, 0.2209282368, 0.4691874385, -0.0989605859, -0.4084219635, 0.0668776408, 0.1020533517, -0.0333170071, 0.0044960529, 0.1497972161, 0.5072351694, -0.1110387743, -0.2078589648, 0.4400338531, 0.4042307138, -0.1330382675, -0.4836505353, -0.1611760408, -0.2042247355, 0.4172761738, 0.279907912, 0.1667551398, 0.2738689184, 0.0489158854, 0.1679604948, -0.2383997738, 0.2513350546, 0.0925280824, -0.127725035, -0.3582014441, -0.3206032217, 0.4401082993, -0.050543353, -0.0510860905, 0.0931555182, 0.1860112846, -0.313215822, 0.3559415936, -0.0383065976, 0.8532409072, 0.014018517, 0.4227760434, 0.278111726, -0.0398603231, 0.3147440553, -0.0383674391, 0.2110482454, -0.4547418356, -0.2135487497, -0.0393986851, -0.1463225484, 0.1600403786, 0.2031613439, -0.1510427892, 0.2056575119, 0.2487071604, 0.0024851151, -0.1176301613, 0.2441383302, -0.2815453708, -0.4994775057, -0.3187266588, -0.0789422765, 0.1857922524, -0.067934379, -0.1185279414, -0.002344694, -0.0017805994, -0.2800907791, -0.3747286797, -0.3991494179, -0.3093167841, -0.1589403749, 0.6127160192, -0.2648887038, 0.2600622773, -0.0347002782, -0.0342629552, 0.1709602475, 0.1167393997, 0.0811088309, -0.0193568915, -0.1360164732, -0.0407433584, -0.3909029663, 0.1759611964, 0.2466166317, 0.0166307539, 0.2744945884, -0.1171828955, -0.2790032625, -0.2106476724, 0.2183814347, 0.2384331971, -0.2930263281, -0.2510791719, 0.1993107051, 0.1179539412, -0.2569964826, -0.115139477, 0.1747871935, -0.2499648333, 0.1552372873, 0.0525323749, -0.0369471163, -0.0058731083, 0.2975792587, -0.1896292865, -0.2781785131, 0.3539303541, 0.1428745091, -0.0727736726, -0.0792889968, -0.026616767, 0.4377447665, -0.213641271, -0.0719572455, 0.0547070652, -0.0483795553, -0.2827555537, 0.0705745965, 0.0742124319, 0.1839031577, -0.1051270366, -0.2911682725, -0.4044687748, 0.2763890922, 0.3002137244, 0.3721830547, 0.1848497838, 0.1702438295, -0.2524561286, 0.4358139932, -0.1169063449, 0.1479174644, 0.1459787488, 0.1502713114, 0.1854646951, 0.1160022765, -0.0826212019, 0.1280500591, -0.0782817081, 0.1550613642, -0.1440820247, 0.0151926354, -0.1747512966, 0.2127382308, 0.2331585884, -0.0112264715, -0.1478840113, -0.1146837994, -0.1762089729, -0.3947837353, 0.3163355887, -0.0946524516, -0.2700206637, -0.1996144652, 0.622436583, 0.2577292919, -0.0989502072, 0.5540857315, 0.2836504877, 0.4706645906, 0.1808959693, 0.2874781191, -0.3524555862, 0.0764462203, 0.3385861814, 0.4616110325, 0.3684317172, -0.0464078411, 0.0408414006, -0.2060328573, -0.0081245974, 0.1402797103, 0.2286501229, 0.584159255, -0.242476657, 0.0834471807, 0.3389269114, 0.0132566253, -0.1886739731, 0.0095985197, 0.2829732299, -0.1192659065, 0.2885174751, 0.4438748956, -0.1419070959, 0.1382752955, -0.1566468328, 0.0861743838, 0.0100408904, 0.0146584027, -0.1547354162, -0.0930767208, -0.03515248, -0.1431527734, 0.148010999, 0.3850336373, 0.3257231712, 0.5992692709, -0.2377144396, 0.4989941716, 0.5984042883, 0.0066026477, 0.1962074339, 0.0195392892, 0.0539926142, 0.526034236, 0.6944854856, 0.1154352501, 0.3511893451, 0.4129682481, -0.0707863793, -0.0713924915, 0.0020068362, 0.1799687594, 0.1909279078, -0.3396004736, 0.1210678667, -0.1997503638, -0.2255669236, -0.0936933309, -0.0438626371, -0.3908538222, 0.0556977503, -0.032867372, 0.3594784141, -0.4826162457, 0.0741700381, 0.2190118581, 0.0676170066, -0.306722343, 0.1683755219, 0.0193258487, 0.1612187624, 0.0985942036, 0.0885514021, 0.1539870799, 0.2236356288, -0.0412265845, 0.3775157928, -0.5520080924, 0.0923717618, -0.0642092228, -0.0626924112, -0.0128715076, -0.0502014756, 0.2981151938, -0.070372358, 0.0275404789, 0.1684703678, 0.2442590296, -0.1106704921, -0.5813176632, -0.0054788627, 0.0077514611, -0.276887536, -0.0820568353, -0.014521867, -0.0441371948, -0.0687597692, 0.2984172106, -0.3923065066, 0.0352503732, 0.1657793075, -0.0148205515, -0.1587477922, 0.1636199355, 0.5065177679, 0.2900008559, -0.0710302442, -0.2468838692, -0.5102571249, -0.0098482631, -0.111904189, -0.1957143247, -0.0556478053, 0.1179486439, 0.0269700736, 0.2001408488, 0.1611222923, -0.009064503, -0.0340887792, 0.3953379393, -0.1783085614, -0.0462917984, -0.0857854038, 0.1022697538, 0.1350230128, -0.2631913722, -0.1652936637, -0.0707385689, -0.1621328741, -0.1025687903, -0.009249486, -0.0537612513, -0.12468943, 0.5808816552, 0.2099565417, 0.1434175074, -0.1043719649, -0.014057368, -0.2172808945, -0.1125321984, -0.3362769186, 0.6051656008, 0.028250996, 0.0629273653, -0.1458365023, 0.0355635025, 0.0187912323, 0.0046901628, 0.0892239362, -0.1565243304, -0.1970904917, 0.3591448069, -0.3962659836, 0.1175951585, -0.1363483369, 0.3045373857, 0.2100230455, 0.2169963717, 0.184702754, -0.0915809199, 0.2319042385, -0.4541725516, -0.3235698938, -0.0779610127, 0.0218929425, 0.0010350067, -0.3787176311, -0.5221466422, -0.2875075042, 0.339666307, -0.0111594889, -0.0437440388, 0.0462232716, -0.1847164631, -0.123737067, -0.4769804776, 0.4785833359, -0.0198923629, -0.0834575519, -0.0986275822, -0.5801849961 ]
https://github.com/huggingface/datasets/issues/1854
Feature Request: Dataset.add_item
Hi @sshleifer :) We don't have methods like `Dataset.add_batch` or `Dataset.add_entry/add_item` yet. But that's something we'll add pretty soon. Would an API that looks roughly like this help ? Do you have suggestions ? ```python import numpy as np from datasets import Dataset tokenized = [np.array([4,4,2]), np.array([8,6,5,5,2]), np.array([3,3,31,5]) # API suggestion (not available yet) d = Dataset() for input_ids in tokenized: d.add_item({"input_ids": input_ids}) print(d[0]["input_ids"]) # [4, 4, 2] ``` Currently you can define a dataset with what @albertvillanova suggest, or via a generator using dataset builders. It's also possible to [concatenate datasets](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=concatenate#datasets.concatenate_datasets).
I'm trying to integrate `huggingface/datasets` functionality into `fairseq`, which requires (afaict) being able to build a dataset through an `add_item` method, such as https://github.com/pytorch/fairseq/blob/master/fairseq/data/indexed_dataset.py#L318, as opposed to loading all the text into arrow, and then `dataset.map(binarizer)`. Is this possible at the moment? Is there an example? I'm happy to use raw `pa.Table` but not sure whether it will support uneven length entries. ### Desired API ```python import numpy as np tokenized: List[np.NDArray[np.int64]] = [np.array([4,4,2]), np.array([8,6,5,5,2]), np.array([3,3,31,5]) def build_dataset_from_tokenized(tokenized: List[np.NDArray[int]]) -> Dataset: """FIXME""" dataset = EmptyDataset() for t in tokenized: dataset.append(t) return dataset ds = build_dataset_from_tokenized(tokenized) assert (ds[0] == np.array([4,4,2])).all() ``` ### What I tried grep, google for "add one entry at a time", "datasets.append" ### Current Code This code achieves the same result but doesn't fit into the `add_item` abstraction. ```python dataset = load_dataset('text', data_files={'train': 'train.txt'}) tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_length=4096) def tokenize_function(examples): ids = tokenizer(examples['text'], return_attention_mask=False)['input_ids'] return {'input_ids': [x[1:] for x in ids]} ds = dataset.map(tokenize_function, batched=True, num_proc=4, remove_columns=['text'], load_from_cache_file=not overwrite_cache) print(ds['train'][0]) => np array ``` Thanks in advance!
92
Feature Request: Dataset.add_item I'm trying to integrate `huggingface/datasets` functionality into `fairseq`, which requires (afaict) being able to build a dataset through an `add_item` method, such as https://github.com/pytorch/fairseq/blob/master/fairseq/data/indexed_dataset.py#L318, as opposed to loading all the text into arrow, and then `dataset.map(binarizer)`. Is this possible at the moment? Is there an example? I'm happy to use raw `pa.Table` but not sure whether it will support uneven length entries. ### Desired API ```python import numpy as np tokenized: List[np.NDArray[np.int64]] = [np.array([4,4,2]), np.array([8,6,5,5,2]), np.array([3,3,31,5]) def build_dataset_from_tokenized(tokenized: List[np.NDArray[int]]) -> Dataset: """FIXME""" dataset = EmptyDataset() for t in tokenized: dataset.append(t) return dataset ds = build_dataset_from_tokenized(tokenized) assert (ds[0] == np.array([4,4,2])).all() ``` ### What I tried grep, google for "add one entry at a time", "datasets.append" ### Current Code This code achieves the same result but doesn't fit into the `add_item` abstraction. ```python dataset = load_dataset('text', data_files={'train': 'train.txt'}) tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_length=4096) def tokenize_function(examples): ids = tokenizer(examples['text'], return_attention_mask=False)['input_ids'] return {'input_ids': [x[1:] for x in ids]} ds = dataset.map(tokenize_function, batched=True, num_proc=4, remove_columns=['text'], load_from_cache_file=not overwrite_cache) print(ds['train'][0]) => np array ``` Thanks in advance! Hi @sshleifer :) We don't have methods like `Dataset.add_batch` or `Dataset.add_entry/add_item` yet. But that's something we'll add pretty soon. Would an API that looks roughly like this help ? Do you have suggestions ? ```python import numpy as np from datasets import Dataset tokenized = [np.array([4,4,2]), np.array([8,6,5,5,2]), np.array([3,3,31,5]) # API suggestion (not available yet) d = Dataset() for input_ids in tokenized: d.add_item({"input_ids": input_ids}) print(d[0]["input_ids"]) # [4, 4, 2] ``` Currently you can define a dataset with what @albertvillanova suggest, or via a generator using dataset builders. It's also possible to [concatenate datasets](https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=concatenate#datasets.concatenate_datasets).
[ -0.2646303177, 0.1603155732, -0.0458904654, 0.1386153698, -0.0252808817, 0.1201700196, 0.1569382548, 0.1071406454, 0.0586706102, 0.0440860987, 0.1095489562, 0.5823289752, -0.1573914587, 0.1380069256, 0.4451276362, -0.1356470585, 0.1021329314, 0.2048071772, -0.1752962619, 0.070408769, -0.2645280659, -0.0905523151, -0.1519211084, -0.1790199429, -0.0579329208, -0.0613217428, -0.4128629863, -0.3023574948, -0.2655976415, -0.792965889, -0.0123856366, -0.0009121504, -0.0839302689, 0.2624163628, -0.0001283345, 0.0117334723, 0.1670984328, -0.0539959222, -0.5640702248, -0.0456965864, -0.1553969532, -0.2387477309, 0.1454960704, -0.3138718009, 0.2260570377, -0.7180806398, 0.3229592144, -0.154569447, 0.0890843049, 0.1250140965, -0.0003756769, 0.4948111773, 0.1991043836, -0.3639473021, 0.2621563077, -0.0453420393, -0.1395279467, -0.1721626073, 0.3763101995, -0.2068814635, 0.0824211538, -0.112596035, 0.2658930421, -0.0915567577, 0.4066396058, 0.1262134761, -0.0127455406, -0.1426646113, -0.1565272808, 0.2903876603, 0.2264159918, -0.4190440476, -0.6362020373, -0.4910079837, 0.3017783761, -0.0399684049, -0.1348127723, 0.0601553097, -0.0711731315, -0.0760375857, -0.0698098764, -0.3770204782, -0.1119121984, 0.2381708026, 0.0717940778, 0.4428232014, 0.1425430924, 0.1643605679, 0.1441979259, -0.1271940321, -0.2345666438, 0.0151866786, -0.1232946217, 0.3333287835, -0.1031111553, -0.1166457236, 0.1092309356, -0.0470123664, 0.4755122066, -0.0613001063, 0.1737270951, 0.1157121956, -0.3675785065, 0.086634174, 0.1714763343, -0.1008807942, 0.2137440145, -0.2119160295, -0.3128736317, 0.0772754848, 0.4092108309, 0.0620394647, -0.1824602485, 0.1073739082, -0.2618187666, -0.3582355976, -0.0681387559, 0.4037792385, -0.1207620427, -0.0273630582, -0.0106997639, 0.0841954201, -0.0472875126, 0.1736776978, 0.1717312783, -0.3679122925, -0.2393834889, 0.2014808059, 0.1263076663, -0.0102792196, 0.0816343129, 0.217959106, -0.1080403849, 0.1765948385, 0.1008232534, -0.0010518003, -0.0144494474, -0.064989306, 0.069193311, 0.0783882067, -0.0114105195, -0.1804758608, 0.2521995604, 0.0106605934, 0.0532551631, -0.0456526503, -0.1014853716, -0.4404919147, -0.4781495333, 0.2198811769, -0.1078880876, -0.1812903881, -0.2244121134, -0.0641980693, 0.0042391494, -0.1642895788, -0.1952675879, 0.5241125226, 0.3831297159, -0.2358408868, 0.1302086711, -0.1283588558, -0.5635916591, -0.1791514307, 0.1944268644, 0.3399139643, -0.4468759894, -0.3274410963, -0.101685375, -0.0158185363, -0.4132905602, 0.129502967, -0.094446227, 0.2800899446, -0.4338252544, 0.4084129333, 0.309163183, -0.1658167839, -0.2207369804, 0.1308987737, -0.1782538742, 0.0376556739, 0.0842341483, 0.3958652616, 0.2953098416, 0.06001978, 0.4510017633, 0.2585290372, -0.0795214772, -0.0899353027, 0.0736888647, -0.4146656394, 0.3007451892, -0.0111932829, -0.1263207197, -0.0905315951, 0.027958326, -0.5407938361, 0.1644917279, -0.1066173837, 0.3368986845, -0.0383562744, 0.4019219279, -0.0076308344, -0.1058239937, -0.5203374028, -0.3627278805, 0.1384118646, -0.0773243457, 0.1222195551, -0.1124036312, -0.4358095825, -0.1482962519, 0.4267141819, -0.1347390115, -0.0214690827, -0.0691513419, 0.0572069474, -0.0093462467, -0.1200827211, -0.4359640777, 0.1428781152, 0.2283412516, 0.3076541424, -0.4393087029, -0.0498375036, 0.268648535, -0.1849065125, -0.1217022464, 0.1733720154, -0.141075626, -0.144353196, 0.2083712667, 0.2823856175, -0.0867414176, -0.2701041698, 0.1203910857, 0.2604827881, 0.2900449038, 0.3060085773, -0.1001437828, -0.2057064176, 0.3140790462, -0.2532830834, -0.2291706502, 0.549986124, 0.0419303887, 0.4261952341, 0.1370569468, 0.0392846465, 0.0201955512, 0.2511621714, -0.2537922859, -0.2578030825, -0.0499060191, 0.1488568336, 0.21238482, -0.1196056381, -0.1045182273, 0.1626659781, 0.1422626823, 0.1596188247, 0.1770741642, 0.1443226486, -0.2144732624, 0.0623016432, 0.0679697096, 0.0149872229, 0.4575431943, 0.0544014946, 0.1145165637, 0.065915443, 0.1110455096, 0.0568909012, 0.0589826629, 0.0314613059, -0.1170741022, 0.038472563, 0.5389944911, 0.0615468919, -0.0218387619, -0.1388210058, 0.1136971191, -0.0432556421, -0.1218187362, 0.0397561863, 0.0448249876, 0.0722156838, -0.2530292273, -0.3716771007, -0.0849191844, -0.0843766034, 0.2689412832, 0.0314311571, 0.0156414136, 0.3010812998, 0.1379874647, 0.7158763409, 0.1047443449, -0.4731734097, -0.0859230161, 0.0065621138, 0.2182611227, -0.101071611, -0.1031733304, 0.3030093014, 0.4021120071, 0.0869902, -0.0316571184, -0.3475202918, -0.5039148927, 0.109527424, -0.0517879464, 0.4337319434, 0.3948707879, -0.3356014788, -0.1123427004, -0.2517047524, 0.1836484969, 0.037347652, -0.1394073963, -0.1860644817, -0.0976853222, -0.2373918146, -0.0496558361, 0.1030327678, -0.2060160339, -0.1766933948, 0.4733739793, 0.1536128223, 0.2519126534, -0.2228934467, 0.0982956514, 0.0336948447, -0.1396936774, -0.1208668351, 0.0718323663, -0.0042213202, 0.4730609655, -0.3619562984, -0.1762784421, -0.1606230587, -0.5109411478, 0.1114844084, 0.3774947524, -0.2879175544, -0.3993914723, -0.2613129914, 0.3807625771, -0.0936843902, 0.2705561817, 0.495557189, 0.0041031688, 0.153395623, 0.0573998839, -0.2879433036, 0.3740735054, 0.1856689155, 0.0599000677, 0.0809815377, 0.1704527438, 0.0867760852, 0.663498342, 0.1845436096, -0.1084078848, 0.1433630586, -0.5918191075, 0.3627536297, -0.2168655843, -0.2220131755, -0.1796465218, -0.1106622219, 0.0941361934, 0.0607792959, -0.0263928957, 0.1260302663, 0.071246013, 0.3468835056, 0.0541967154, -0.1985843182, 0.1793527603, 0.0210638195, 0.3373363316, -0.0193246715, -0.0224006623, -0.3871430159, 0.0173648149, -0.0409918725, 0.2764793932, 0.2389587909, -0.1770686507, -0.4978463054, -0.140987426, -0.3073575795, 0.0694865286, 0.3090183139, 0.4473899007, 0.2480773628, -0.1597182453, 0.0432343483, -0.2020529062, 0.7236326933, 0.3253346682, -0.4594321549, 0.0084283203, 0.0938181132, -0.2563484907, 0.1732940376, 0.0139205903, 0.5422023535, 0.1814725697, 0.2524054945, -0.4542911351, 0.2550081313, 0.2051482052, 0.1793888956, -0.1816657484, -0.1778386384, -0.1138084084, -0.1289125085, -0.2315630913, 0.1871425807, 0.1932210028, 0.2209282368, 0.4691874385, -0.0989605859, -0.4084219635, 0.0668776408, 0.1020533517, -0.0333170071, 0.0044960529, 0.1497972161, 0.5072351694, -0.1110387743, -0.2078589648, 0.4400338531, 0.4042307138, -0.1330382675, -0.4836505353, -0.1611760408, -0.2042247355, 0.4172761738, 0.279907912, 0.1667551398, 0.2738689184, 0.0489158854, 0.1679604948, -0.2383997738, 0.2513350546, 0.0925280824, -0.127725035, -0.3582014441, -0.3206032217, 0.4401082993, -0.050543353, -0.0510860905, 0.0931555182, 0.1860112846, -0.313215822, 0.3559415936, -0.0383065976, 0.8532409072, 0.014018517, 0.4227760434, 0.278111726, -0.0398603231, 0.3147440553, -0.0383674391, 0.2110482454, -0.4547418356, -0.2135487497, -0.0393986851, -0.1463225484, 0.1600403786, 0.2031613439, -0.1510427892, 0.2056575119, 0.2487071604, 0.0024851151, -0.1176301613, 0.2441383302, -0.2815453708, -0.4994775057, -0.3187266588, -0.0789422765, 0.1857922524, -0.067934379, -0.1185279414, -0.002344694, -0.0017805994, -0.2800907791, -0.3747286797, -0.3991494179, -0.3093167841, -0.1589403749, 0.6127160192, -0.2648887038, 0.2600622773, -0.0347002782, -0.0342629552, 0.1709602475, 0.1167393997, 0.0811088309, -0.0193568915, -0.1360164732, -0.0407433584, -0.3909029663, 0.1759611964, 0.2466166317, 0.0166307539, 0.2744945884, -0.1171828955, -0.2790032625, -0.2106476724, 0.2183814347, 0.2384331971, -0.2930263281, -0.2510791719, 0.1993107051, 0.1179539412, -0.2569964826, -0.115139477, 0.1747871935, -0.2499648333, 0.1552372873, 0.0525323749, -0.0369471163, -0.0058731083, 0.2975792587, -0.1896292865, -0.2781785131, 0.3539303541, 0.1428745091, -0.0727736726, -0.0792889968, -0.026616767, 0.4377447665, -0.213641271, -0.0719572455, 0.0547070652, -0.0483795553, -0.2827555537, 0.0705745965, 0.0742124319, 0.1839031577, -0.1051270366, -0.2911682725, -0.4044687748, 0.2763890922, 0.3002137244, 0.3721830547, 0.1848497838, 0.1702438295, -0.2524561286, 0.4358139932, -0.1169063449, 0.1479174644, 0.1459787488, 0.1502713114, 0.1854646951, 0.1160022765, -0.0826212019, 0.1280500591, -0.0782817081, 0.1550613642, -0.1440820247, 0.0151926354, -0.1747512966, 0.2127382308, 0.2331585884, -0.0112264715, -0.1478840113, -0.1146837994, -0.1762089729, -0.3947837353, 0.3163355887, -0.0946524516, -0.2700206637, -0.1996144652, 0.622436583, 0.2577292919, -0.0989502072, 0.5540857315, 0.2836504877, 0.4706645906, 0.1808959693, 0.2874781191, -0.3524555862, 0.0764462203, 0.3385861814, 0.4616110325, 0.3684317172, -0.0464078411, 0.0408414006, -0.2060328573, -0.0081245974, 0.1402797103, 0.2286501229, 0.584159255, -0.242476657, 0.0834471807, 0.3389269114, 0.0132566253, -0.1886739731, 0.0095985197, 0.2829732299, -0.1192659065, 0.2885174751, 0.4438748956, -0.1419070959, 0.1382752955, -0.1566468328, 0.0861743838, 0.0100408904, 0.0146584027, -0.1547354162, -0.0930767208, -0.03515248, -0.1431527734, 0.148010999, 0.3850336373, 0.3257231712, 0.5992692709, -0.2377144396, 0.4989941716, 0.5984042883, 0.0066026477, 0.1962074339, 0.0195392892, 0.0539926142, 0.526034236, 0.6944854856, 0.1154352501, 0.3511893451, 0.4129682481, -0.0707863793, -0.0713924915, 0.0020068362, 0.1799687594, 0.1909279078, -0.3396004736, 0.1210678667, -0.1997503638, -0.2255669236, -0.0936933309, -0.0438626371, -0.3908538222, 0.0556977503, -0.032867372, 0.3594784141, -0.4826162457, 0.0741700381, 0.2190118581, 0.0676170066, -0.306722343, 0.1683755219, 0.0193258487, 0.1612187624, 0.0985942036, 0.0885514021, 0.1539870799, 0.2236356288, -0.0412265845, 0.3775157928, -0.5520080924, 0.0923717618, -0.0642092228, -0.0626924112, -0.0128715076, -0.0502014756, 0.2981151938, -0.070372358, 0.0275404789, 0.1684703678, 0.2442590296, -0.1106704921, -0.5813176632, -0.0054788627, 0.0077514611, -0.276887536, -0.0820568353, -0.014521867, -0.0441371948, -0.0687597692, 0.2984172106, -0.3923065066, 0.0352503732, 0.1657793075, -0.0148205515, -0.1587477922, 0.1636199355, 0.5065177679, 0.2900008559, -0.0710302442, -0.2468838692, -0.5102571249, -0.0098482631, -0.111904189, -0.1957143247, -0.0556478053, 0.1179486439, 0.0269700736, 0.2001408488, 0.1611222923, -0.009064503, -0.0340887792, 0.3953379393, -0.1783085614, -0.0462917984, -0.0857854038, 0.1022697538, 0.1350230128, -0.2631913722, -0.1652936637, -0.0707385689, -0.1621328741, -0.1025687903, -0.009249486, -0.0537612513, -0.12468943, 0.5808816552, 0.2099565417, 0.1434175074, -0.1043719649, -0.014057368, -0.2172808945, -0.1125321984, -0.3362769186, 0.6051656008, 0.028250996, 0.0629273653, -0.1458365023, 0.0355635025, 0.0187912323, 0.0046901628, 0.0892239362, -0.1565243304, -0.1970904917, 0.3591448069, -0.3962659836, 0.1175951585, -0.1363483369, 0.3045373857, 0.2100230455, 0.2169963717, 0.184702754, -0.0915809199, 0.2319042385, -0.4541725516, -0.3235698938, -0.0779610127, 0.0218929425, 0.0010350067, -0.3787176311, -0.5221466422, -0.2875075042, 0.339666307, -0.0111594889, -0.0437440388, 0.0462232716, -0.1847164631, -0.123737067, -0.4769804776, 0.4785833359, -0.0198923629, -0.0834575519, -0.0986275822, -0.5801849961 ]
https://github.com/huggingface/datasets/issues/1849
Add TIMIT
@patrickvonplaten Could you please help me with how the output text has to be represented in the data? TIMIT has Words, Phonemes and texts. Also has lot on info on the speaker and the dialect. Could you please help me? An example of how to arrange it would be super helpful!
## Adding a Dataset - **Name:** *TIMIT* - **Description:** *The TIMIT corpus of read speech has been designed to provide speech data for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition systems* - **Paper:** *Homepage*: http://groups.inf.ed.ac.uk/ami/corpus/ / *Wikipedia*: https://en.wikipedia.org/wiki/TIMIT - **Data:** *https://deepai.org/dataset/timit* - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
51
Add TIMIT ## Adding a Dataset - **Name:** *TIMIT* - **Description:** *The TIMIT corpus of read speech has been designed to provide speech data for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition systems* - **Paper:** *Homepage*: http://groups.inf.ed.ac.uk/ami/corpus/ / *Wikipedia*: https://en.wikipedia.org/wiki/TIMIT - **Data:** *https://deepai.org/dataset/timit* - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). @patrickvonplaten Could you please help me with how the output text has to be represented in the data? TIMIT has Words, Phonemes and texts. Also has lot on info on the speaker and the dialect. Could you please help me? An example of how to arrange it would be super helpful!
[ 0.0733408183, -0.3110238314, -0.1762831658, 0.1887156069, 0.0858766586, -0.1072417125, 0.1176898926, 0.0632873029, -0.4261903167, -0.1358920634, -0.2996534109, 0.1368213892, -0.0700436831, 0.3138225675, 0.2315152735, -0.3812042177, -0.092416063, 0.1239684671, -0.2485863566, -0.16811499, -0.0206747577, 0.2014278471, 0.0602086037, -0.017016571, -0.0788323805, -0.18578282, -0.1064578071, -0.1912970543, -0.2009379268, -0.4111646414, -0.1293075085, 0.0393785238, 0.0996626019, 0.5218946934, -0.0001090629, -0.1116429791, -0.0847964734, -0.2752180696, -0.0482067429, -0.197702229, 0.0026012957, 0.0172409564, -0.1876086742, 0.0332624763, -0.1161855906, 0.0043510161, 0.1767339855, -0.2566523552, 0.1526228487, 0.2560273707, 0.1796584725, -0.2397236377, 0.003753081, 0.1203195229, 0.1837880611, 0.353290081, -0.1659119725, -0.1861262619, 0.4423641264, 0.3691051602, 0.1545246989, 0.2054740041, -0.2338326871, -0.1602453291, 0.117222324, 0.1588021815, -0.1280132532, -0.4249423146, -0.2001318038, 0.1614858508, 1.080380559, -0.2730863988, -0.2102270275, -0.1682150066, -0.0067151375, -0.0388445482, 0.05452713, 0.0947851241, -0.1075403243, 0.2822041512, -0.1284113973, -0.0873560607, -0.4036228657, 0.2998382151, 0.1751087904, -0.0903959721, -0.1651897728, -0.0817209035, -0.2652520537, -0.0224783309, -0.1265888214, -0.0691511631, 0.1829088926, 0.1443704963, 0.1264308691, -0.2070369422, -0.0722235441, -0.2396785915, 0.1297906488, 0.0799333006, 0.1578903496, 0.1282499135, -0.361384213, -0.0355328582, 0.3212115467, -0.1483231783, 0.1604644656, -0.3020419478, 0.030455308, -0.3613663912, 0.1621887386, -0.2847992778, -0.2428911477, 0.2361746728, 0.1377906203, -0.0467890799, 0.1481567472, -0.2279858738, 0.0026647449, 0.0527140908, -0.0180346742, 0.0589291044, -0.0303588472, 0.0837379918, -0.1445213258, 0.1464490891, 0.1182099804, 0.2381438613, -0.0150137134, -0.1115038395, 0.0840685815, -0.0457721762, -0.255597949, 0.1817156374, 0.0520270094, -0.1000454575, 0.1685812771, 0.1960576177, -0.011818096, -0.0784358159, -0.1366564035, -0.1784199029, 0.2777072191, -0.1461723447, 0.052780807, 0.139026463, -0.190318808, -0.0470303483, -0.3633146882, 0.1211082637, 0.1679525673, -0.0422930866, -0.0453130156, 0.1867238879, -0.0124821253, -0.1562642157, -0.1769188643, 0.7114768624, 0.2749206126, -0.1027395055, -0.0075084232, 0.1939913183, -0.5860922933, -0.1050241813, 0.177643463, 0.0585592836, -0.6696820855, 0.0212522, -0.0378684141, 0.1611164063, 0.2975304723, 0.2125634998, 0.3395766616, 0.5863782763, 0.0210055485, 0.2667873502, 0.1717553139, -0.2706252038, -0.143110007, 0.1369377673, -0.159866482, -0.1170858219, -0.0473483652, 0.1449373811, 0.4792862535, -0.1018771082, 0.0294849537, 0.1940070093, -0.2014424503, -0.0235530175, -0.0290609226, -0.0371898562, -0.1204592288, 0.0778585076, -0.1989877522, -0.1067959964, -0.1251799166, 0.2177510262, 0.2246508598, 0.0652946681, 0.3470470905, 0.0692117587, 0.3847994804, 0.1909000278, 0.129735142, -0.4917135537, 0.4033921957, -0.1964216083, 0.1526653469, 0.4782302082, -0.1473187208, -0.1671423316, -0.3596302867, -0.2206088901, -0.0516641736, 0.2606675625, 0.2205815762, 0.1991177797, -0.0094561875, 0.0857204795, 0.0355816111, 0.4501102865, -0.0075561702, -0.2419347018, -0.3201273084, 0.2504457235, 0.0951381847, -0.3446831703, -0.0149478018, 0.4989423156, -0.0831926689, 0.1493802071, 0.1380867362, 0.2466289401, 0.0038793273, 0.0135977305, -0.2022037059, -0.1101445705, 0.2628403306, -0.4228824973, 0.331364125, 0.0626903549, 0.0637858659, -0.2258461416, 0.039355319, -0.0205577165, 0.1559749246, 0.0706198737, -0.1424724013, -0.1016158164, -0.1329062283, 0.0496606678, -0.0569053777, -0.1106609404, 0.064870283, 0.1193824187, -0.0562706143, -0.260048002, -0.2626470029, 0.2423311323, 0.2686447501, 0.0061956123, 0.0921061188, 0.0466343202, -0.2050528228, 0.2062923163, -0.0478997454, -0.4742147326, -0.0054339468, 0.2985426784, 0.1934999526, -0.0386916175, 0.1178182811, -0.0000569746, 0.0734978095, 0.1441573799, -0.1406796873, 0.2691238225, -0.1684087217, 0.0144769996, -0.2006815523, -0.0646962821, -0.2875882387, 0.0392234623, -0.176437825, -0.1992071122, 0.0765012279, -0.1841207147, -0.2453136146, -0.316724062, 0.0995120257, 0.0610860214, 0.2686390579, 0.1480072737, 0.0491267741, -0.0101224557, 0.2124203295, 0.1507260799, 0.0232350826, -0.0001344737, -0.0215185359, -0.032080356, -0.1561593413, 0.1696841568, 0.0760945976, 0.3061435819, 0.4528855085, -0.3062444329, 0.0146128088, 0.0802455693, -0.0178309679, 0.2304170132, -0.3757924736, 0.2834008932, 0.0289360881, -0.00002544, -0.3605327606, -0.4115386903, 0.0161463767, -0.0315227732, -0.2919287384, 0.0743877739, -0.0956788659, -0.1340013146, 0.1157218069, -0.4445347786, -0.2971717417, -0.302503705, 0.33529827, 0.0821447298, 0.2249579132, 0.1699915379, -0.1208078712, 0.1753782779, 0.1636454016, 0.434161216, -0.320228219, -0.3624621928, 0.3046228588, -0.2548817098, -0.2976195514, -0.087101467, 0.0060070604, 0.0260229483, 0.0635263026, -0.208830744, 0.1419959217, -0.0100440392, 0.0497107804, 0.0847021118, 0.1780131608, 0.1583240628, 0.0765187442, -0.0798772052, -0.2320669442, 0.0328552201, 0.1476106495, 0.1669754982, 0.1966293454, 0.2978931069, 0.014754897, 0.0068026111, 0.349337697, 0.4952245951, 0.0325855054, 0.062058527, 0.2822735906, 0.0033728955, -0.0174733885, -0.3049693704, 0.1944868416, 0.0497227274, 0.1094196364, 0.6189505458, 0.2590444684, -0.0316260681, -0.1296889484, -0.1573361456, -0.3830248117, -0.1344005466, 0.2337815762, -0.266225636, 0.1417680383, -0.3733880818, -0.1500869989, -0.0214479417, -0.1725010425, 0.064491123, -0.0231981613, 0.0695001855, 0.0170313939, -0.4599188864, -0.1179006249, -0.4404785037, -0.150028795, 0.3699204028, 0.0664686486, -0.2545387149, 0.0589633957, 0.0166571885, 0.4282950163, 0.2871988118, -0.3595502377, -0.0817506239, -0.0595476739, 0.3208387196, -0.2337533236, 0.3633398116, -0.3790823817, 0.0611298271, 0.2409208715, -0.0161086805, -0.194684267, 0.1699626297, 0.0684408471, 0.3552653491, -0.1093610451, -0.3979182839, 0.110733524, -0.3221363723, -0.0377206802, 0.0476120934, 0.2975733876, 0.0108381808, 0.2765031457, -0.3337190747, 0.3182638288, 0.2296828181, 0.5717841387, -0.0792509839, 0.1295107901, 0.1711015999, 0.100224413, 0.4372742474, 0.0810575336, 0.0613372475, 0.3355131149, -0.0084580183, -0.0838700384, 0.0423015468, -0.6474962831, 0.6383491158, 0.1778750122, 0.5054208636, 0.0578813776, -0.0988557115, -0.1791650951, -0.3123469949, 0.0829519331, 0.2765512168, 0.2287976295, -0.5406429768, -0.4827100337, 0.3688134849, -0.0508151166, -0.0160927027, 0.3932927847, 0.0866097957, -0.5273906589, 0.4000518024, 0.1346789896, 1.264555335, -0.0729821026, 0.0805897266, 0.016674187, 0.2139327526, 0.1104693264, -0.3328992128, -0.1002239883, -0.1184969768, 0.0039252937, -0.1840423048, 0.1489250958, -0.1124997661, 0.44660604, -0.6558454037, -0.2342242301, 0.1134621054, 0.1801484972, 0.0316668451, 0.2309562862, -0.0875616968, -0.5443077683, -0.1068463326, 0.1333285868, -0.0943770111, -0.1051524207, 0.0779341906, -0.1407402456, -0.0990866423, 0.1872478873, -0.5839387178, -0.1935069263, -0.2705625892, -0.2539993227, -0.264270097, -0.4549125135, 0.4614434838, 0.3034357429, 0.4711965621, 0.2648219466, -0.0988330469, -0.2700285316, 0.2565154731, -0.2440981567, 0.1132160723, -0.0564182475, 0.2361494303, -0.2565662861, -0.4020325541, 0.1199065596, 0.2340464294, 0.0558140427, -0.1997074187, -0.2428249866, 0.2773270011, -0.6060069203, 0.0332639515, 0.4039945304, 0.0392995626, 0.0561625659, 0.1593710482, 0.3219441772, -0.2703966498, 0.3919325769, -0.0728838518, -0.1171321869, -0.0917011499, -0.0140199959, 0.320959568, -0.09505409, 0.2667018473, 0.3177776933, -0.2066061199, -0.1901085973, 0.1254202425, -0.0025460199, -0.0699183419, -0.166809231, -0.0008292049, 0.0364961773, -0.2243148088, 0.2582899332, 0.2697298527, -0.1312966943, -0.2389480174, -0.1625152677, -0.4066061378, 0.1496086717, 0.2464057803, 0.2030086815, 0.0568581223, 0.1091364175, 0.1058472097, 0.1297783256, -0.3844205439, -0.3562227488, 0.1625211835, 0.3911123574, 0.2898438573, -0.0993198901, 0.0526222996, -0.1396074295, 0.1151625365, 0.1162931845, -0.1275240481, -0.2118366659, -0.1285018772, 0.1377587616, 0.1193390191, -0.2392580956, -0.0457862355, -0.155372113, -0.2056812495, -0.1629976332, -0.0004479289, 0.4357181191, 0.0395272747, 0.3720489144, 0.206815511, 0.1207291633, -0.1114289761, -0.1343022138, 0.0886633545, 0.0658337772, 0.1747951508, -0.0144563932, 0.0639537498, -0.1519784927, 0.0520472676, 0.3738810122, 0.3549923897, -0.1232144386, 0.1929377466, -0.1140263826, 0.2656602561, 0.3561335802, 0.2540928721, 0.1947009116, 0.1525964737, -0.1367120147, 0.1833352745, 0.2633681297, 0.0052772984, 0.074800089, -0.282259196, -0.1367001235, 0.051361233, 0.2769150734, 0.100864619, -0.085271664, 0.251465112, -0.073127389, 0.1488075405, -0.0841931105, -0.0641893893, 0.3689876199, 0.1300587952, -0.0457831174, 0.0508013219, 0.2202305794, 0.0176396854, 0.0883081853, 0.0042294133, 0.0974263474, -0.1153718904, 0.1003226638, 0.174871847, 0.0657180771, -0.0259540379, 0.2681542933, -0.1054069027, 0.1885497868, 0.2058895528, 0.6595246792, -0.0601864569, -0.1049589068, 0.1661820263, -0.0065033226, -0.0552186258, 0.0787566081, -0.6642007828, -0.2857767642, -0.053047426, -0.4137738049, 0.0484933183, -0.3519780338, 0.0782282278, 0.1137445867, 0.0702378675, -0.4151628315, -0.0527818836, -0.203050673, 0.3201818466, -0.2529438734, 0.2339253128, 0.2223713696, -0.04413414, 0.1609778404, 0.3641621768, 0.1534331739, -0.0533096977, -0.3757950664, 0.4693293869, -0.2915986478, -0.2523390353, 0.0952131897, 0.3439054489, 0.075894624, -0.0035802713, 0.1196694225, 0.1978463084, -0.0468990766, -0.1937183738, 0.4577819109, -0.364566952, 0.1280640364, 0.1383055747, 0.1133923084, -0.3378148675, -0.1734230816, -0.3441179991, -0.4632588327, 0.0062946044, 0.7435662746, -0.2706798315, -0.0127985068, -0.0472732633, 0.101656273, 0.0348436683, 0.0537345111, 0.5934008956, 0.2932859063, 0.1423204988, -0.1733774543, -0.146789372, 0.1080463976, 0.1389688402, -0.3366040289, -0.0652377382, -0.0520297959, 0.368201673, 0.3634086847, -0.0564642698, -0.3060184121, -0.7328795791, 0.2398664653, -0.1863746345, 0.0345148332, -0.0666829199, 0.6858643293, -0.1334247589, 0.0540284663, -0.2784757316, 0.3473326564, 0.0763168484, -0.4032466114, 0.1232482791, -0.0656642318, 0.2084629387, -0.1524843574, -0.0060836524, 0.4159909189, -0.3321262002, 0.1745472252, 0.1244740337, 0.0556592569, -0.328928411, 0.2753638923, 0.1652963161, 0.3569645286, -0.2938207984, 0.1285812855, 0.0174263045, 0.0891977847, 0.1250609308, 0.0432398841, -0.2158612907, 0.0552387685, -0.2938524187, -0.1764226705, 0.0560263507, 0.381771028, -0.0473239496, -0.0257542096, -0.3988318145, -0.4108402133, 0.0059380531, 0.0089299344, -0.4403367341, 0.1504616886, -0.0303871855, -0.0181618221, 0.2231642604, -0.7285832763, -0.0874038041, 0.455188036, 0.0201224014, 0.0890049338, 0.2369013578, 0.047530368, -0.1570270956, -0.0915603638, 0.4929831624, 0.10331738, -0.1523525715, -0.1984367669, -0.5478037 ]
https://github.com/huggingface/datasets/issues/1849
Add TIMIT
Hey @vrindaprabhu - sure I'll help you :-) Could you open a first PR for TIMIT where you copy-paste more or less the `librispeech_asr` script: https://github.com/huggingface/datasets/blob/28be129db862ec89a87ac9349c64df6b6118aff4/datasets/librispeech_asr/librispeech_asr.py#L93 (obviously replacing all the naming and links correctly...) and then you can list all possible outputs in the features dict: https://github.com/huggingface/datasets/blob/28be129db862ec89a87ac9349c64df6b6118aff4/datasets/librispeech_asr/librispeech_asr.py#L104 (words, phonemes should probably be of kind `datasets.Sequence(datasets.Value("string"))` and texts I think should be of type `"text": datasets.Value("string")`. When you've opened a first PR, I think it'll be much easier for us to take a look together :-)
## Adding a Dataset - **Name:** *TIMIT* - **Description:** *The TIMIT corpus of read speech has been designed to provide speech data for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition systems* - **Paper:** *Homepage*: http://groups.inf.ed.ac.uk/ami/corpus/ / *Wikipedia*: https://en.wikipedia.org/wiki/TIMIT - **Data:** *https://deepai.org/dataset/timit* - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
85
Add TIMIT ## Adding a Dataset - **Name:** *TIMIT* - **Description:** *The TIMIT corpus of read speech has been designed to provide speech data for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition systems* - **Paper:** *Homepage*: http://groups.inf.ed.ac.uk/ami/corpus/ / *Wikipedia*: https://en.wikipedia.org/wiki/TIMIT - **Data:** *https://deepai.org/dataset/timit* - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Hey @vrindaprabhu - sure I'll help you :-) Could you open a first PR for TIMIT where you copy-paste more or less the `librispeech_asr` script: https://github.com/huggingface/datasets/blob/28be129db862ec89a87ac9349c64df6b6118aff4/datasets/librispeech_asr/librispeech_asr.py#L93 (obviously replacing all the naming and links correctly...) and then you can list all possible outputs in the features dict: https://github.com/huggingface/datasets/blob/28be129db862ec89a87ac9349c64df6b6118aff4/datasets/librispeech_asr/librispeech_asr.py#L104 (words, phonemes should probably be of kind `datasets.Sequence(datasets.Value("string"))` and texts I think should be of type `"text": datasets.Value("string")`. When you've opened a first PR, I think it'll be much easier for us to take a look together :-)
[ -0.2446837276, -0.473105371, -0.1747952253, 0.0511884838, 0.1257331669, -0.0904711261, 0.0721050501, 0.2155634016, -0.2834855318, 0.1218880415, -0.3020027578, 0.1912914068, -0.3662655652, 0.164516896, 0.1355874985, -0.0494579412, -0.1529121399, 0.1166828647, -0.0651812106, -0.1085621044, -0.0938289091, 0.2661978304, -0.0076808482, -0.083105281, 0.0740490854, 0.0012330413, 0.0271246433, -0.2614451051, -0.226096198, -0.4311270714, -0.2807670236, 0.1097834185, 0.0420111008, 0.2606551051, -0.0001012167, -0.0995470956, 0.1022697687, -0.2563879192, -0.236408338, -0.2771129608, 0.0944209844, 0.2249712199, -0.1020733342, 0.0330962241, -0.3512918949, -0.087084122, 0.1736277193, -0.2990620732, 0.0942367092, 0.4483935237, 0.2870045006, 0.1087683365, 0.0172409043, -0.0470724627, 0.3513857126, 0.0892277211, -0.1679847091, -0.1017488688, 0.2633756697, 0.1719554663, -0.1154144183, 0.2804038525, -0.0734481514, -0.0649391636, 0.1699998528, 0.0632082671, -0.1534442306, -0.4414426386, -0.1258074939, 0.1919816583, 0.502395153, -0.3778833151, -0.2496578246, -0.2343383133, 0.0014070645, -0.2383289039, 0.0317012966, 0.0852818117, -0.4321382046, 0.2440623045, 0.0006119646, -0.1649399251, -0.1142217368, 0.2103409022, 0.356236279, -0.0661215335, -0.2036218196, -0.2457411885, 0.0624917001, -0.1129391491, -0.1985214055, 0.0873576254, 0.1447748244, 0.1188483164, -0.0219803602, -0.1750063747, 0.2242145687, -0.1459819973, 0.2494659126, 0.1811562777, 0.2915935218, 0.2477514744, -0.2751615644, -0.008246677, 0.0662308037, 0.0162247606, 0.2081095576, -0.3157512248, 0.1748333722, 0.0749878809, 0.1083328724, -0.1047927737, -0.1158109009, 0.3235090375, 0.0545795783, -0.0948985219, 0.1270522624, -0.197592482, -0.1494199634, -0.0654099137, -0.0892628655, -0.0529330559, 0.0261621289, 0.3333378136, -0.0332891196, 0.1628889143, 0.1877504289, 0.1965337992, -0.1016987264, -0.1391798258, -0.0169420689, 0.0719382316, -0.072069101, 0.1417972893, 0.2965693474, -0.1536232829, 0.2145944238, 0.0117748827, 0.0531401597, 0.0227486342, -0.089960739, -0.0020375177, 0.2373249382, -0.1218461543, 0.0231879875, -0.0782544464, -0.2007290125, -0.0473298915, -0.2776864469, -0.1355697066, 0.3456802666, -0.0079604462, -0.0829612911, 0.3332654536, -0.0892801285, -0.1117847115, 0.0752042457, 0.6522987485, 0.1052537858, -0.1494068503, -0.0124900229, 0.1218365803, -0.5117614269, -0.0822515413, 0.1544608176, 0.1537688076, -0.1783204675, -0.1735651344, 0.1369741261, 0.0502696894, 0.0950434804, 0.1664896458, 0.1406136304, 0.1440730244, -0.1438383609, 0.3682297468, 0.1132011563, -0.2234623432, -0.2475329041, -0.0302936547, -0.1698499322, -0.0815496296, 0.2441508919, 0.1658106297, 0.3559520245, -0.0554700568, 0.1300061345, 0.1874435246, 0.0038800947, -0.0674789399, -0.2416632473, -0.2077528387, -0.1962818652, 0.2166881412, -0.0796565562, 0.0269886442, 0.010064587, 0.2276185155, 0.2825479209, -0.1527370661, 0.3140547872, 0.0815115422, 0.3197664618, 0.0782918707, 0.1777439564, -0.5899120569, 0.2397324145, -0.2106176317, -0.0954104513, 0.5726773143, -0.145800665, -0.3300536573, -0.1602571905, -0.2373496592, 0.0323952287, 0.1230169237, 0.3529720306, 0.4523510933, 0.06818147, 0.1242339164, -0.0714042932, 0.2873800695, 0.0565588698, -0.1308621764, -0.2722581923, 0.0438386202, -0.073473081, -0.2239454389, 0.297445327, 0.3255220056, -0.1548390687, 0.0911601633, 0.120284006, 0.2255716622, -0.0497888215, 0.0233626906, -0.15309003, 0.0925229192, 0.1362107992, -0.4039681554, -0.0200885776, 0.1621866524, 0.0843093991, -0.0932025686, -0.0050542392, 0.1134389192, 0.4156906605, 0.0289985482, 0.2748602927, 0.0998299718, 0.0727254897, -0.0646631271, -0.2692371905, -0.0880863667, 0.239693433, -0.2024705708, 0.0311079025, -0.1333853304, -0.4374262393, 0.0921720415, 0.2956877649, -0.0518100671, 0.1979669183, 0.1582342386, -0.2827522457, 0.0848335102, -0.0343041681, -0.3078758121, -0.0230967253, 0.3893947899, 0.092301026, -0.0883166045, -0.0654006302, 0.0106031038, 0.0936967283, 0.1997480989, -0.2894543409, 0.2492715418, 0.1272998899, -0.1350731254, -0.5136489272, -0.1554000676, -0.2910386324, 0.0527027622, -0.1608415842, -0.1769309044, 0.0188003108, -0.2057592571, 0.0059285685, -0.1677860469, 0.0386995375, 0.0547489524, 0.3567637205, 0.2362375855, -0.1175402403, 0.0963417292, -0.0778369009, 0.1724696904, 0.0335890725, -0.0817210376, -0.1140219718, -0.0078583583, -0.0065518883, 0.2402793765, 0.1958117932, 0.2084475756, 0.4720807672, -0.0974765122, 0.0428007692, -0.0827959701, -0.1179543212, 0.267611742, -0.2731459737, 0.1502714902, 0.1284299791, -0.230182156, -0.1692815423, -0.5684157014, 0.0287908278, -0.1986545026, -0.3813608885, 0.105513826, -0.0323830396, -0.0563601255, -0.1398998499, -0.573769927, -0.1626614183, -0.5080016255, 0.4297771156, 0.306586802, 0.1278110147, 0.2718542218, -0.1408851147, 0.162119031, 0.000324823, 0.4808409512, -0.2825733423, -0.1073490903, 0.2177508175, -0.3385887146, -0.2448113859, -0.3268164992, -0.1765274107, 0.1740176976, 0.0678535104, -0.2126874477, -0.067854844, -0.0893663019, 0.2051258534, 0.0219375752, -0.0329814591, 0.2971881926, 0.2930378914, -0.2229778916, -0.1700276136, 0.0129986927, 0.2324618846, -0.0747021884, 0.0605603755, 0.2563907802, -0.0454869457, -0.0539088026, 0.3795759678, 0.1761091352, -0.0381133519, 0.3560259044, -0.0658758655, 0.1278850138, -0.0495067649, -0.2565588355, 0.1938408017, 0.0296877697, 0.0429253727, 0.5046948195, 0.0830398723, -0.1217174679, -0.1212030053, 0.0329744965, -0.2757847905, -0.2715739012, 0.0381204262, -0.1754385531, 0.2203867286, -0.2052230239, 0.0756828263, -0.0262290612, -0.1750724316, 0.2910820842, -0.0916287154, 0.0453076325, -0.1527988464, -0.3904539049, 0.0952762067, -0.4769836366, 0.121192053, 0.3720578253, 0.170333311, -0.1272706091, -0.3410028517, -0.1047668457, 0.1463620067, 0.0802325755, -0.3026002049, -0.104427956, 0.1990422904, 0.2179021835, -0.0960018933, 0.3850284219, -0.41272825, -0.1140463948, 0.1458298266, 0.1484434456, -0.3244853616, 0.1359175146, 0.1403784454, 0.2401781976, 0.0372511446, -0.0919589922, 0.0676746964, -0.2784251571, -0.2120245099, 0.0796397328, 0.1409569383, 0.0751515776, 0.0609380379, 0.017162621, 0.1617171317, 0.015729554, 0.6219588518, 0.1262019575, 0.2305984944, 0.0345700234, 0.3014826775, 0.1798689067, 0.0677936375, -0.0350243822, 0.3268324435, 0.0359718315, -0.3196763098, -0.030757362, -0.3156140149, 0.3362609744, 0.0105587542, 0.1693524569, 0.2757956088, 0.0207290016, 0.0480340756, -0.2243013531, 0.2289438844, 0.2475967109, 0.1215528324, -0.2556448579, -0.3392485976, 0.2284745723, -0.1506510079, -0.1627785563, 0.1830212772, -0.0899873823, -0.3301510215, 0.5516896248, -0.0942647159, 1.0282049179, -0.0590447001, 0.076819241, 0.105238609, 0.2488802224, 0.1212231219, -0.381313324, 0.135032475, -0.062169116, -0.1011091322, -0.0695615038, 0.1310075521, -0.2805926204, 0.208766073, -0.6060698032, -0.1267580688, 0.2254358381, 0.1357473433, 0.0467534959, 0.4178182483, -0.2107244432, -0.5592289567, -0.2329219282, 0.2671332359, 0.0596356355, 0.1550033242, 0.3905977011, -0.1615725607, 0.0116578564, -0.1391182244, -0.4064046741, -0.0549846105, -0.3689382076, -0.2309914827, -0.1944573075, -0.2307690978, 0.2400173545, 0.2623229027, 0.3207447231, 0.3633082807, -0.247701481, -0.1912377924, 0.2563920617, -0.0942570418, 0.022047773, 0.069421351, 0.2842488885, -0.129254669, -0.1618162692, 0.2573001683, 0.265827924, -0.0859073177, -0.1815214902, -0.24161838, 0.1066558808, -0.4168112278, 0.1245807111, 0.1638928056, -0.3157112896, -0.1993851811, 0.2443885058, 0.186686188, -0.3711588979, 0.1189582124, 0.2077975571, -0.050068289, -0.1599431932, 0.2226691693, 0.262287885, -0.1692531109, 0.3335681558, 0.149453938, -0.2238980979, -0.3878356814, -0.3032665849, -0.1698242426, -0.1835510731, 0.0154260956, 0.1517465413, -0.211646542, -0.0663771778, 0.2987139225, 0.1045918316, 0.0641606897, -0.2635017633, 0.0145309195, -0.5142242312, 0.2843689919, 0.1638563275, 0.3496057391, -0.0192267969, 0.1884607673, -0.0024210587, -0.0450603291, -0.5011373162, -0.2810206413, -0.2862842679, 0.2542151213, 0.2158783078, -0.2318918854, 0.2132060081, 0.043147698, 0.3190136254, 0.1415667832, -0.0317841284, -0.297187537, -0.1771238744, 0.0787457004, -0.014876713, 0.0569578558, -0.0445684791, 0.0414820984, -0.132698983, -0.0937610418, -0.0420444682, 0.3803983331, 0.0111431014, 0.2373117507, 0.1808620095, -0.0908325091, 0.2514035106, -0.094971016, -0.012563061, 0.108504571, 0.1166469455, 0.0050606253, -0.0760425925, -0.1288570464, 0.2272397876, 0.324350059, 0.3210976422, -0.2039870769, 0.1382919252, 0.0497836694, -0.058174938, 0.4174611866, 0.3369731307, 0.1587658823, -0.0449910723, -0.0270820521, 0.2871129811, 0.3827196062, -0.2486942708, 0.0387307927, -0.3137326837, -0.2704788446, 0.370323509, 0.3311014175, 0.0026772171, -0.1017885432, 0.3540278971, -0.0562129691, -0.092737481, -0.1735178828, -0.1018014476, 0.2736481428, 0.230781883, -0.1702148318, 0.0418854579, 0.0315528922, 0.158262521, 0.2494806498, -0.257976979, 0.1877665967, -0.1977006048, 0.1082633436, 0.3382606804, 0.1366468668, -0.0676297843, 0.1859735548, 0.0656737387, 0.3725653589, 0.0044237636, 0.7724084854, 0.0109548047, 0.0456991792, 0.0433551893, 0.2205902338, -0.1191812754, -0.1363267154, -0.2501595914, -0.282645762, -0.1302423477, -0.2654413581, 0.1874385625, -0.0811671913, 0.1288673878, 0.04959362, 0.0923405662, -0.2246062905, -0.1778486818, -0.164906323, 0.4222941399, -0.2740435004, 0.2454627454, 0.1257151514, 0.0839355886, 0.2143150568, 0.3574662209, 0.2837618887, -0.0000705328, -0.3314852118, 0.3597748876, -0.3336439133, -0.1156697273, -0.2068920732, 0.3654169142, 0.3015882969, 0.1280869544, 0.3135041893, 0.2218195945, -0.2273356318, -0.0564464331, 0.0746692345, -0.2550747693, -0.065004535, 0.1765320152, 0.0582244769, -0.1135058179, -0.4047633111, -0.2626591921, -0.5181839466, 0.1170390248, 0.3340690434, -0.0781931877, 0.089638561, -0.1309980303, 0.1565670073, 0.0163663849, 0.1215943396, 0.4205205739, 0.2626703382, 0.0787537694, -0.2565973103, -0.3723418713, 0.044585228, 0.1857998967, -0.1927734613, -0.1286534965, 0.0697547868, 0.4065461755, 0.331304729, -0.1891456693, -0.1789584756, -0.5281744003, 0.266297996, -0.2141935676, 0.1076398194, -0.0734553486, 0.2644223571, 0.1340923309, -0.1748875082, -0.1715753675, 0.1485581696, 0.2026434243, -0.3142871857, 0.1665385664, -0.1248750836, 0.0549205914, 0.0170086287, -0.0173107143, 0.3602307439, -0.5139235854, -0.1095195115, -0.0154573359, -0.1967189908, -0.3190587163, 0.0358933471, 0.1754813343, 0.4160299897, -0.0598516762, -0.0791882426, -0.0858860761, 0.1916795373, 0.2438000143, 0.0317474641, -0.1619947851, 0.1378453374, -0.2386987507, -0.0164061468, -0.0654052198, 0.3601767123, -0.0269405134, -0.0483536161, -0.3428601623, -0.6533915401, 0.3332827687, -0.1210149378, -0.2877955139, 0.0354314856, 0.2070013732, 0.0498086847, -0.0692190006, -0.71177423, -0.0491663963, 0.3691149354, 0.1050437689, -0.0063050017, 0.2704664171, -0.0664274618, -0.0887221992, -0.1651449651, 0.400582552, 0.282754153, -0.1001345068, -0.098555088, -0.4512084126 ]
https://github.com/huggingface/datasets/issues/1849
Add TIMIT
I am sorry! I created the PR [#1903](https://github.com/huggingface/datasets/pull/1903#). Requesting your comments! CircleCI tests are failing, will address them along with your comments!
## Adding a Dataset - **Name:** *TIMIT* - **Description:** *The TIMIT corpus of read speech has been designed to provide speech data for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition systems* - **Paper:** *Homepage*: http://groups.inf.ed.ac.uk/ami/corpus/ / *Wikipedia*: https://en.wikipedia.org/wiki/TIMIT - **Data:** *https://deepai.org/dataset/timit* - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
22
Add TIMIT ## Adding a Dataset - **Name:** *TIMIT* - **Description:** *The TIMIT corpus of read speech has been designed to provide speech data for the acquisition of acoustic-phonetic knowledge and for the development and evaluation of automatic speech recognition systems* - **Paper:** *Homepage*: http://groups.inf.ed.ac.uk/ami/corpus/ / *Wikipedia*: https://en.wikipedia.org/wiki/TIMIT - **Data:** *https://deepai.org/dataset/timit* - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). I am sorry! I created the PR [#1903](https://github.com/huggingface/datasets/pull/1903#). Requesting your comments! CircleCI tests are failing, will address them along with your comments!
[ -0.2418493927, -0.3422916532, -0.1415264606, 0.0710311979, -0.0340817571, -0.0950558931, 0.1323647797, 0.1322911233, -0.3182579875, 0.2184929252, -0.341648519, 0.1853346378, -0.2274643779, 0.2172827721, 0.1103415936, -0.274306953, -0.0984166265, 0.0761337057, 0.040977329, -0.0154816583, 0.002842389, 0.1751538515, -0.1123562753, -0.2232402414, -0.0304838531, -0.170917809, -0.0104659945, -0.1952396184, -0.2521419227, -0.4360910356, -0.2043972611, 0.1632163525, -0.0707423538, 0.4781771302, -0.000098801, -0.0432505682, 0.3008357882, -0.2335776389, -0.2098338604, -0.0855702013, 0.1470596194, 0.077586323, -0.2077465951, 0.0137369782, -0.3632182479, 0.081985876, 0.0991957411, -0.1189360619, 0.1455516517, 0.3298049271, 0.3028060198, 0.2105752975, 0.1843787283, -0.148405388, 0.2919990718, 0.1259449124, -0.2449662685, -0.0080540683, 0.3158091307, 0.2650030255, -0.0971472561, 0.3574872911, -0.0624654554, -0.0115333106, 0.0887950659, -0.0562798753, -0.1725318432, -0.2879773378, -0.0953775644, 0.2019650489, 0.6051998734, -0.3522334397, -0.3222530782, -0.1541467458, 0.1114052087, -0.2598360181, 0.0426241569, 0.0666832328, -0.3443674743, 0.2692183256, -0.1005103216, -0.1166080907, -0.1049026027, 0.1386530995, 0.1667456627, -0.0524286851, -0.1955410242, -0.2295538485, 0.0490063988, -0.1806078404, -0.3074804246, 0.1258797795, 0.0600781776, 0.0210448541, 0.0164982136, -0.26957196, 0.0644150376, -0.0103569292, 0.172012493, 0.2721131444, 0.2065290213, 0.272623986, -0.1945525706, 0.0149002997, 0.0328459591, -0.0967332795, -0.0139607266, -0.270267427, 0.2339606285, -0.0291967038, 0.0716518909, -0.0332952514, 0.0932587236, 0.252876848, -0.0303308591, -0.1892642379, -0.0086389408, -0.1349223405, -0.1671448648, -0.0076825656, -0.1076601893, -0.0317664593, 0.0806053579, 0.3081172407, -0.0160187967, 0.1887346357, 0.0280749798, 0.2908255458, -0.1090195328, -0.1577563286, -0.0441772975, 0.0036544353, 0.069357425, 0.2889716923, 0.3754377365, 0.0159708001, 0.3058302104, -0.0108977631, 0.0807984993, 0.0981954038, -0.0059636012, -0.0427168272, 0.2109496593, 0.0302291662, 0.1373907328, -0.0289440714, -0.1801176071, -0.0946732312, -0.2171856761, -0.1117169186, 0.1574798971, -0.0062219203, -0.1678813696, 0.3103875518, -0.0368772745, -0.2231859863, 0.0627779067, 0.5657606125, 0.1443596929, -0.2489611655, 0.0116325021, 0.2420763075, -0.5268592834, 0.0170174576, 0.128532365, 0.2361272573, -0.1103189066, -0.1806615442, 0.0284694396, 0.1733749658, 0.2071215808, 0.3799461126, 0.0689258724, 0.1884659529, -0.0609648563, 0.2828651071, 0.0272425786, -0.2947928011, -0.3006780446, -0.020589808, -0.2514830232, -0.0225672871, 0.1542676389, 0.104682669, 0.1874704808, -0.0937612057, 0.2120351195, -0.0455921516, 0.0191753786, -0.0072503015, -0.2553140521, -0.1871528029, -0.1492057741, 0.1607582271, -0.0763446242, -0.0939919502, 0.0210802816, 0.1162804663, 0.2667902112, -0.051669158, 0.2920296192, 0.2032509893, 0.3211776614, -0.0704511106, 0.1548585296, -0.4971802831, 0.3612621427, -0.1764656603, -0.0748253241, 0.5619052052, -0.1617318541, -0.317217648, -0.2374289185, -0.1571284682, 0.0772493482, 0.1063986048, 0.320533365, 0.2693746686, 0.0062882006, 0.247823149, -0.0563228391, 0.3235149086, -0.0477461666, -0.0809995383, -0.107513994, -0.0702728778, -0.1081744879, -0.1982402205, 0.2134745121, 0.3048529625, -0.2491970062, 0.1001493633, 0.1128683686, 0.2063150257, 0.0032751895, 0.1444822252, -0.0971878469, -0.0155650973, 0.3050768375, -0.5114292502, -0.0984994099, 0.1117217541, 0.1653170288, -0.100615643, -0.0515679233, 0.0679306984, 0.4120125771, -0.212426886, 0.0480911583, 0.0102543086, 0.1641913652, -0.000184454, -0.1825164557, -0.1345062107, 0.2180034667, 0.0489836335, 0.0848789662, -0.1027615368, -0.2898691893, 0.0887446105, 0.1933975667, -0.0700599849, 0.2708613873, 0.133052811, -0.2582093477, -0.0150861144, -0.0243685283, -0.2392416745, 0.0698271394, 0.3799446523, 0.1702328175, -0.0990798995, 0.0637879893, -0.1242573708, 0.1739596575, 0.1781299859, -0.3330643773, 0.2277118862, 0.1620795429, 0.0017153863, -0.5846604705, -0.01863195, -0.1945095956, 0.0477674827, -0.2202497572, -0.280426681, 0.08224006, -0.1402011514, 0.0397129357, -0.0347185433, -0.0160561576, 0.0751504302, 0.3684799969, 0.2897177041, -0.111967504, 0.0800264701, -0.0768051669, 0.3573745191, 0.0550495014, -0.0802040771, -0.1860487759, -0.1291746646, -0.0031823711, 0.2529430985, 0.1803860664, 0.0536896586, 0.4089684784, -0.1718646288, 0.2351416349, -0.0699668825, -0.2305310071, 0.2565394044, -0.3240991831, 0.1748984754, 0.0680628419, -0.0792356431, -0.3135062754, -0.5873501897, -0.0457591638, -0.2532630265, -0.3723109365, 0.0103995204, -0.2013487965, -0.154727608, -0.2350601405, -0.4306771159, -0.1491476297, -0.4586868882, 0.4364934862, 0.2045637071, -0.0967970788, 0.33829391, -0.2340957969, 0.1816583425, -0.0209203195, 0.5309720635, -0.3852647543, -0.3563809097, 0.2105847001, -0.3785658777, -0.3260813355, -0.2777754962, -0.082206957, 0.1823607534, 0.0284906812, -0.2786487937, -0.0456534848, -0.1603796333, 0.21617724, 0.0745413452, 0.0627593398, 0.190913707, 0.2142301351, -0.2686978579, -0.1128792241, -0.0405476764, 0.1360975355, 0.0716320351, 0.1438777447, 0.1299640536, -0.1350654662, 0.0226934329, 0.5563359261, 0.2371795177, 0.0118206237, 0.4369501472, -0.0162491016, 0.3077051342, -0.1899004877, -0.1996937394, 0.2642298639, 0.0733273476, 0.048660174, 0.46266523, 0.1490510404, -0.3474372625, -0.1562964469, -0.1398712993, -0.2432698905, -0.3702929914, -0.050472416, -0.0547603406, 0.2536340654, -0.1029001251, 0.0904583335, -0.1287586987, -0.2342312336, 0.2971386909, -0.0743985325, -0.0081653595, -0.214393273, -0.4703221917, -0.023581611, -0.5126327872, 0.0893502906, 0.4468320608, 0.2200340182, -0.2683327794, -0.3191053569, -0.0592534654, 0.1669137478, 0.1564604938, -0.3530776203, -0.1464748979, 0.1531502903, 0.2743319273, -0.2008211911, 0.4838940501, -0.3385246694, -0.0998315364, 0.0766775161, 0.126544416, -0.2530586421, 0.1895699799, 0.1489554495, 0.231554836, 0.0622264445, -0.0610580817, 0.08712174, -0.403660804, -0.1309871972, 0.2098192573, 0.2338941395, 0.1643756032, 0.2413668036, 0.0484710187, 0.1633080691, 0.0364836082, 0.4714269936, 0.1970905364, 0.1634082943, 0.2929780185, 0.2803604007, 0.1741773188, -0.0531518795, -0.061662741, 0.2690213025, 0.0211436003, -0.2379789799, -0.1562973112, -0.36319682, 0.2750832736, 0.1126737893, 0.2954683602, 0.2113282382, 0.004641084, 0.0090168491, -0.2982659638, 0.2084502131, 0.1584714651, 0.0363972932, -0.3152130246, -0.1567949653, 0.0635420084, 0.0378520116, -0.0335090831, 0.2742307782, 0.0955371037, -0.2251514941, 0.5279749036, -0.0991849229, 1.0494734049, -0.0231633186, 0.1142949164, 0.2058930099, 0.1653484702, 0.0297464505, -0.2530483305, 0.0583160184, 0.1028557941, -0.070530571, -0.0058251172, 0.1721448004, -0.2054259628, 0.0366013795, -0.4967793524, -0.2816059589, 0.2530697882, 0.1201019734, 0.0539748073, 0.3480636179, -0.3170425594, -0.4831200838, -0.1706654727, 0.3155546486, 0.1884324551, 0.1158037782, 0.2570296526, -0.1254664958, 0.013030991, -0.1530569345, -0.5004335046, -0.1846954823, -0.3475482762, -0.1061353013, -0.1295692325, -0.337996453, 0.2349823117, 0.2575418651, 0.4467593133, 0.3000096083, -0.4185540378, 0.0933612138, 0.1563785374, -0.0842721909, 0.0815118253, 0.0669743419, 0.2712978125, -0.1806642711, -0.1890214384, 0.2053755969, 0.1132970452, -0.148760736, -0.1699920148, -0.1286785007, 0.0244229324, -0.2915287912, 0.1959647834, 0.1739814132, -0.2148866802, -0.2101839036, 0.2649528384, 0.1141241491, -0.1910845935, 0.1638030857, 0.0705643669, -0.1502559185, -0.132353887, 0.3076869249, 0.1299341023, -0.0764305517, 0.2930133641, 0.0530184209, -0.2316913158, -0.425080806, -0.0415260345, -0.279217273, -0.201711908, 0.0445272364, 0.2725238204, -0.1493817568, 0.0377692506, 0.3083543777, 0.0711305737, -0.178223893, -0.1862172186, 0.1185572594, -0.5278727412, 0.2509501278, 0.0587297752, 0.2626578212, 0.1905259788, 0.2267744243, 0.0489660352, -0.1448142678, -0.5076662302, -0.2179992199, -0.236524418, 0.1522619873, 0.1029294059, -0.3303982913, 0.2165374607, -0.0312763825, 0.2940458655, 0.106874682, -0.0670449287, -0.3291208744, -0.1718227267, 0.0825051814, -0.0609481186, -0.0372559242, 0.067536816, 0.0461286306, -0.1900002807, -0.0798481554, 0.0884203166, 0.3399562538, 0.0525494292, 0.2045461982, 0.0548166633, 0.0351564214, 0.0885071233, -0.0793365687, 0.0393368453, 0.1243660077, 0.0693716407, -0.0636521131, -0.0231763143, -0.1475738734, 0.2409808934, 0.3583117127, 0.3597871661, -0.1791790128, 0.1444509327, 0.0110830907, -0.0464872979, 0.4243441224, 0.307215333, 0.1391831934, -0.0690600872, 0.0093761161, 0.3417518735, 0.3756940067, -0.2730282545, -0.0133550204, -0.2209355086, -0.21016635, 0.3712542951, 0.2329463959, 0.027400583, -0.1402465254, 0.2200193107, -0.0339206122, 0.0619056709, -0.2646510601, -0.1478274614, 0.1841290593, 0.2676276565, -0.1314221919, -0.0275136568, 0.0526317582, 0.172698319, 0.1547851264, -0.0378274471, 0.3055898249, -0.121230863, 0.217977941, 0.2608347237, 0.101679638, -0.0220484361, 0.0591827333, -0.0334416367, 0.3391270638, 0.1304329187, 0.7346743345, -0.0284301601, -0.1605458856, -0.1413049102, 0.1200401932, -0.074905619, -0.1871410161, -0.3938404918, -0.1689348966, -0.0201308206, -0.220729813, 0.1600559056, 0.0920048505, 0.0608783774, 0.0411278382, -0.0018079691, -0.4389414787, -0.239247486, -0.1338044852, 0.5131224394, -0.2622468472, 0.1553128809, 0.173809737, -0.114336431, 0.1716642976, 0.4402116537, 0.3661368489, -0.216847077, -0.2235012949, 0.2903327346, -0.3593679667, -0.1105690151, -0.2341606915, 0.4193157852, 0.3314053416, 0.0462881103, 0.2952575982, 0.2443085313, -0.2006038874, -0.1042795479, 0.1925423741, -0.1796626151, -0.1794961393, 0.1184091344, -0.1055968702, -0.0757158622, -0.372527957, -0.2455045879, -0.3838871121, 0.2319799662, 0.3348487914, -0.2079210281, 0.0855826139, -0.1815819591, 0.160781011, 0.1219332218, 0.2953212857, 0.3858645856, 0.0911168456, 0.1655750424, -0.2164628953, -0.4014788568, 0.0440532491, 0.1756744683, 0.1183042526, -0.1942744255, -0.0400504842, 0.3752783835, 0.2182667553, -0.1899237335, -0.2212154716, -0.5325393081, 0.1468910128, -0.2821149826, 0.2319545746, -0.1006963775, 0.2195291668, 0.086362496, -0.1229925081, -0.0546259433, 0.1186648086, 0.2042072415, -0.3010462523, 0.0513886511, -0.102908738, 0.0987628549, 0.1282830089, -0.0332264043, 0.2983714342, -0.4984865487, -0.0636937171, -0.1608519256, -0.1427330226, -0.2007304877, 0.0725730956, 0.1483578682, 0.3701213002, -0.125295341, -0.0370336659, 0.1789209545, 0.2303701788, 0.2046281844, 0.1254641414, -0.1938416213, 0.1363550425, -0.2121983171, -0.0349906906, -0.12036933, 0.363846004, -0.0856244117, -0.0155385062, -0.1982892454, -0.6546860933, 0.3485663235, -0.0960073248, -0.2456287444, 0.0618925542, 0.1563701034, -0.0887966603, -0.053786993, -0.636218071, 0.0021299422, 0.291018486, 0.0620848499, -0.1628781259, 0.3317236304, 0.0392945781, -0.23801741, -0.1869781315, 0.5860604048, 0.1730202734, -0.0988856032, -0.0449948385, -0.2793035805 ]
https://github.com/huggingface/datasets/issues/1844
Update Open Subtitles corpus with original sentence IDs
Hi ! You're right this can can useful. This should be easy to add, so feel free to give it a try if you want to contribute :) I think we just need to add it to the _generate_examples method of the OpenSubtitles dataset builder [here](https://github.com/huggingface/datasets/blob/master/datasets/open_subtitles/open_subtitles.py#L103)
Hi! It would be great if you could add the original sentence ids to [Open Subtitles](https://huggingface.co/datasets/open_subtitles). I can think of two reasons: first, it's possible to gather sentences for an entire document (the original ids contain media id, subtitle file id and sentence id), therefore somewhat allowing for document-level machine translation (and other document-level stuff which could be cool to have); second, it's possible to have parallel sentences in multiple languages, as they share the same ids across bitexts. I think I should tag @abhishekkrthakur as he's the one who added it in the first place. Thanks!
46
Update Open Subtitles corpus with original sentence IDs Hi! It would be great if you could add the original sentence ids to [Open Subtitles](https://huggingface.co/datasets/open_subtitles). I can think of two reasons: first, it's possible to gather sentences for an entire document (the original ids contain media id, subtitle file id and sentence id), therefore somewhat allowing for document-level machine translation (and other document-level stuff which could be cool to have); second, it's possible to have parallel sentences in multiple languages, as they share the same ids across bitexts. I think I should tag @abhishekkrthakur as he's the one who added it in the first place. Thanks! Hi ! You're right this can can useful. This should be easy to add, so feel free to give it a try if you want to contribute :) I think we just need to add it to the _generate_examples method of the OpenSubtitles dataset builder [here](https://github.com/huggingface/datasets/blob/master/datasets/open_subtitles/open_subtitles.py#L103)
[ 0.2011133134, 0.1604523063, -0.048341468, -0.2089408934, -0.1301655173, 0.2428106368, 0.2711247206, 0.257124126, -0.2969916463, -0.0386743546, -0.3145641387, 0.2453638017, 0.2158558965, -0.076309137, 0.0854991302, -0.332557112, 0.117993772, 0.0025804825, 0.5615063906, -0.2076054215, -0.3436257243, 0.196397081, 0.0123374313, -0.1273039728, -0.1921987236, 0.3085805774, -0.4058004916, 0.0476246439, 0.0575445667, -0.531326592, 0.023193419, 0.53368783, 0.2939294577, 0.0675307289, -0.0001140425, -0.1719847322, 0.2067975998, -0.239359051, -0.2624622583, -0.0709327236, 0.0878526494, -0.3210978508, -0.233664155, -0.3475589156, 0.0243870541, 0.0029207543, 0.0848526731, -0.3639574945, -0.1932421476, 0.1132183075, 0.1002751589, -0.0030482113, 0.0137685537, -0.1201961786, 0.5767486691, -0.030884739, 0.1840913445, 0.310872823, 0.5937850475, 0.2088733613, 0.1791090816, 0.3953014612, -0.4267848134, -0.4061585367, -0.2225935608, -0.0590542145, -0.0444156788, -0.2765919268, -0.075308159, 0.1490181088, 0.4300265312, -0.1163199395, -0.7273464203, -0.4193945825, 0.0371318832, -0.2022925019, -0.292547375, 0.4444061518, 0.302539438, 0.3318834603, 0.1208857447, -0.1308561563, 0.0879548863, -0.0798968673, 0.3085595369, 0.1870669723, 0.2493825555, -0.1455204636, 0.112364009, -0.131678462, -0.2491822988, 0.1970633268, -0.4026863575, 0.0355916433, -0.0091518946, -0.1193122268, -0.1048697308, -0.4867631495, -0.0857822895, -0.0360754207, 0.0594604835, 0.0893295705, -0.2421429902, -0.1071768701, 0.1065067276, 0.2985197604, 0.4347004294, 0.2094461769, -0.082204625, 0.0430529416, -0.1378404945, -0.0407983288, -0.2322014272, 0.2316167951, -0.3186008334, 0.2469430715, 0.1391961575, 0.0557128042, -0.0039229244, 0.1390762478, -0.454208076, -0.0586226024, -0.1460411549, 0.0145329833, 0.0881807655, 0.2370997518, 0.2280701995, 0.117612876, -0.0117671601, -0.3454347253, -0.098036699, -0.0226034187, 0.0525414422, 0.0726898983, -0.1043010652, -0.3754670918, 0.3222716451, -0.2243034989, -0.15497756, -0.1410828531, -0.2971782982, 0.1499843746, 0.0397363231, -0.1925654411, 0.0412539095, 0.0150705799, -0.1407558471, -0.2130509317, 0.0375020206, 0.2365285009, -0.1183131561, -0.3088009953, -0.3827461004, 0.1078481898, -0.3966288567, -0.3141871989, 0.3781788349, 0.3722530007, 0.1920828819, -0.253431201, 0.2706923783, 0.1460501105, -0.2637153566, 0.1551268101, -0.1551278532, 0.6188800931, -0.0313073397, -0.1125204116, 0.4339666963, 0.1616261601, 0.1579475254, 0.1029893011, 0.4129119217, 0.0553360656, -0.0109224953, 0.0593734682, -0.4170091748, -0.6448661089, -0.0132775512, 0.0297001489, 0.0956352353, 0.0773252845, 0.3346982002, -0.0057374239, 0.6432272792, -0.3904716671, -0.137805894, -0.0248267185, 0.0137321521, 0.1115527153, -0.1739796996, -0.1675907671, -0.2826332748, 0.1758718342, -0.065750435, 0.1716846228, 0.3092030287, 0.0702336878, 0.4772825837, -0.1497458071, 0.1135955453, 0.0308294035, -0.0855418742, 0.4020216465, 0.1651070565, 0.1393791288, 0.1653697491, 0.1226355061, 0.1077313647, 0.3007270098, 0.1516305804, -0.2972257733, -0.0077404305, -0.018493779, 0.1842530966, -0.2402285933, 0.0268615335, 0.0802456588, -0.1575200558, 0.2302195579, -0.3226489127, 0.1063887477, -0.1910546273, 0.0320155844, -0.2304762006, -0.1093334332, 0.1902425885, 0.0240315087, -0.0246544704, 0.3475861549, -0.1366314888, 0.1259581149, -0.136586979, 0.4836280942, -0.0706558079, 0.4251638651, 0.1638555378, -0.192009598, 0.3496680558, -0.2763003707, 0.1353273392, -0.0511861593, -0.1747100502, -0.0120674893, -0.0625551939, 0.0382838026, -0.032681182, -0.0537497215, -0.0300625786, 0.0676901713, -0.1735157073, 0.057038933, -0.5073083639, -0.3154095709, -0.0423309989, 0.0657230169, -0.4276809096, 0.0606065542, -0.1491331756, 0.1911705136, 0.1527018696, -0.3350784481, -0.016220998, 0.3151859939, -0.030840572, 0.0488443971, 0.0017455257, 0.1214136258, 0.033055611, 0.2184407413, 0.173177138, 0.1966903508, 0.5540255308, -0.3212428391, 0.2545955479, 0.3876332641, -0.2462096214, -0.0123351477, 0.2942354083, 0.2663764954, -0.2216772139, 0.5088399649, 0.0155414566, 0.030017117, -0.0983897373, 0.0024212599, -0.2300804257, -0.4314886928, 0.045122195, -0.4368388355, -0.0910850465, -0.0284290165, 0.2096205354, -0.2738000154, -0.3143652678, 0.3792943656, 0.2540468574, 0.2135634869, -0.1455389261, 0.0765377879, 0.0547241718, -0.5638501048, 0.2563209832, 0.0055907629, -0.1694337726, -0.140296489, 0.1002020687, -0.3154428899, 0.0940262228, -0.3524280488, -0.2280275375, -0.2467195988, -0.0456144176, -0.0267668702, 0.4491196275, -0.297927618, -0.1281397492, -0.2595206797, -0.0963045806, -0.0421306044, -0.1636428535, -0.2893580794, -0.0660984516, 0.0033798106, -0.2084629238, -0.1378662139, -0.2410983145, -0.4264028966, 0.4629018009, -0.0151850879, 0.1453615427, 0.3218551874, -0.1029269844, -0.1351841092, -0.0863544121, 0.1237723455, -0.047182925, -0.54834795, 0.1013470814, -0.2635506094, -0.0949599445, -0.2201229632, -0.1992485374, -0.1949390471, -0.3742793202, -0.1243758723, 0.1396120489, 0.1885882169, -0.1656321287, 0.5132588148, 0.3430974483, 0.0108566508, 0.0152140148, -0.0075512603, -0.1736866534, -0.248601079, 0.1173660904, 0.3763457537, 0.0978222936, 0.0116748288, 0.1348606646, 0.1020317376, 0.0141490549, 0.0617827997, 0.0384614691, 0.3445848525, 0.0913360491, 0.2637010217, 0.0993969962, -0.485050559, 0.1564116329, -0.1270903498, 0.0058013275, 0.469321996, 0.2017861754, -0.2209987044, -0.0731401742, -0.4381102026, -0.1139937937, -0.1537273228, -0.204785496, -0.3517327905, 0.2849878669, 0.2482717633, -0.1306211799, -0.2383815944, -0.0996628627, 0.0969207585, 0.0416918732, 0.5833785534, 0.0728275776, -0.0838388503, 0.1534335017, 0.2956739962, 0.1817957461, 0.4823206067, -0.1313952208, 0.3425041139, -0.1902778298, 0.0716254041, 0.2895001173, 0.3205425143, -0.1360016167, -0.3276409209, 0.0279128104, 0.0550178289, -0.0351120308, -0.1570398808, 0.2297176421, -0.3935570717, 0.5220838785, -0.131801486, -0.0809179395, 0.2195271254, 0.4611624181, -0.1875393242, -0.1322613209, -0.1874807179, -0.0238990784, -0.1624839008, -0.6518241763, 0.0132779535, 0.0223757103, -0.2079479843, 0.0520441309, 0.0171086341, 0.0400805175, 0.2363802493, 0.072011739, -0.1433664858, 0.0447874889, 0.5176131129, 0.2186273932, 0.1045111567, -0.1403055936, 0.1684899777, 0.4528072178, -0.4579146504, -0.0011403039, -0.2072569579, 0.0195944943, 0.3598827124, 0.3509308994, 0.4492094517, 0.0455076024, 0.1835979521, -0.2512089908, -0.0417624004, -0.0971117616, -0.1415282786, -0.0001775511, -0.11033649, -0.6272032857, 0.0798150226, -0.3005558848, -0.0808839574, -0.6132519841, 0.1487606913, -0.0729993433, 0.381727457, 0.3588349521, 0.9718950391, 0.1164777279, -0.0031880825, -0.1129503995, 0.0233062878, 0.5999667645, 0.1288736761, -0.1429367214, -0.154635489, -0.0774733946, 0.1147397384, 0.1504566222, -0.2465163618, -0.25541085, -0.3286197186, -0.0118872523, 0.4563322663, -0.0810526311, 0.2831677198, 0.166394338, 0.1266183853, -0.4115235209, 0.2408715934, 0.0531744882, -0.0161106288, 0.1222854629, 0.0293138996, -0.3416586518, 0.2991665006, -0.0420868732, -0.2901459634, -0.0062628388, -0.0229115859, -0.1737759709, 0.0083441399, -0.0163086206, -0.0314180665, 0.4820678532, 0.4039405882, 0.2079448849, 0.3259916902, 0.1558142751, 0.6453319788, -0.2428018451, 0.2031202167, 0.1655895412, 0.3280930519, -0.187698245, -0.3354989886, -0.1083371416, 0.2084196955, -0.0974551961, -0.1542143226, -0.1353328973, -0.0644014329, 0.120784983, -0.0536720306, 0.1561109126, -0.1290612668, -0.2635778785, 0.0345706046, 0.0693500489, -0.2068420649, -0.1044674814, -0.2120330334, -0.2099654078, -0.1732969582, 0.254755348, 0.0511986911, -0.3391388953, 0.2468512803, 0.4144499004, 0.0182324871, 0.1121769845, 0.0647427291, -0.4947629869, -0.3805941343, 0.081859909, -0.1477156579, -0.1053883433, -0.0382380262, 0.0030049244, 0.0654435605, 0.2761075199, 0.0773884431, 0.0610192567, -0.5125803351, 0.1417771876, -0.2169884145, 0.1952538043, -0.0705378056, -0.4104265273, -0.0972808301, 0.084956415, -0.2472591698, 0.1167718619, 0.0008761585, 0.0148648471, 0.5638490319, -0.0699845552, -0.2095898688, -0.3524312377, 0.0304108858, 0.1792790145, 0.137609899, -0.0730663538, -0.3910707235, 0.1469331682, -0.0028443784, 0.2071704417, -0.0267401617, -0.0675702393, 0.106500037, -0.207985118, -0.110426195, 0.3379042447, -0.0205732733, 0.4321051538, 0.1507403255, 0.1159461513, 0.0684217513, 0.0946977362, 0.1331354678, 0.2541621923, -0.0755662173, 0.1081780568, -0.2199721038, -0.1154975891, 0.3980037868, 0.1126648188, 0.3249570727, 0.1341477185, 0.3710055649, 0.1662261188, 0.2087054998, 0.3805685043, -0.0865022987, -0.0261105299, -0.1307561696, -0.0456684828, 0.0539925732, 0.1476756334, -0.2826768756, 0.2530395687, -0.1312071681, -0.0767037049, -0.0560722873, 0.3900169432, 0.2105635256, -0.110101819, 0.0204215609, 0.258775264, 0.1919858009, 0.2241390198, 0.245504871, 0.367341876, 0.1178025156, -0.1513083875, -0.2345249653, -0.121538274, 0.2363015711, -0.0868085176, -0.1539424956, 0.0963262469, 0.6369196177, 0.2987172902, 0.341781944, 0.2459932417, 0.2233005762, 0.1631589979, 0.1514849961, 0.1554123461, 0.1427953541, 0.1542402357, 0.3192988634, -0.0636925176, 0.1114109084, 0.8260486722, 0.1878916025, -0.3855326176, -0.3495057225, 0.0746231973, -0.0554979369, -0.2768776119, -0.0141081633, 0.0382537544, -0.401759088, 0.0768724903, 0.0168510061, -0.1180940792, -0.4902295768, -0.45928514, 0.5727484822, -0.2730342746, -0.0835946128, 0.3894759417, -0.0597277246, 0.4841771722, 0.6211233139, 0.3014128804, 0.0503498651, 0.0807083622, 0.4370155036, -0.2049176097, 0.0170682669, 0.2713006735, 0.2428082973, 0.1779887676, 0.1339823902, 0.0421237573, 0.0334004089, -0.0892525315, 0.0876793414, -0.0986580402, -0.0115443282, -0.0875258893, 0.4805682302, 0.1768521369, -0.2267640829, -0.1539187133, 0.2814249992, -0.3128556013, 0.1296313256, 0.0703218132, -0.0597440116, -0.1107530817, 0.0999839455, 0.0345617495, 0.1225445345, 0.2274811864, 0.5293460488, 0.0486859418, 0.0472997054, 0.0671929866, -0.3705390394, -0.2324555069, 0.3131974936, 0.1587541699, 0.1072218195, -0.261300683, 0.5000703335, 0.3267732263, -0.3188734055, -0.1576479375, -0.4547410011, 0.1657610834, -0.1472994834, 0.0039095031, 0.17365022, 0.1379594952, 0.0377808437, 0.342695117, -0.264275074, -0.4845809639, -0.0519277602, 0.1741727293, 0.0393898785, 0.0316819474, -0.0891748667, 0.0342589281, -0.1033952162, -0.0534459949, -0.1380849183, -0.1036242843, -0.1395944655, -0.513728261, -0.1348689646, 0.0003544968, -0.1134846732, 0.383510381, -0.0262156278, -0.1779435724, 0.1534843296, -0.2015997022, 0.069300428, -0.007451389, -0.5337440372, 0.0549644753, -0.0353372395, -0.1574745774, 0.2266076803, 0.1493810117, 0.1326280087, 0.2581684291, -0.4373934865, -0.4970724583, 0.5725140572, -0.2397772074, 0.1296594888, -0.2525004447, 0.2774395943, 0.1957235038, 0.0759674236, -0.5542810559, 0.0596111417, 0.3096806407, 0.0061817598, -0.3936902881, 0.1828483194, 0.1197394058, -0.0011749044, -0.1891240776, -0.3156069815, 0.2881159186, -0.1943173558, -0.2394298911, -0.0204113461 ]
https://github.com/huggingface/datasets/issues/1844
Update Open Subtitles corpus with original sentence IDs
Hey @lhoestq , absolutely yes! Just one question before I start implementing. The ids found in the zip file have this format: (the following is line `22497315` of the `ids` file of the `de-en` dump) `de/2017/7006210/7063319.xml.gz en/2017/7006210/7050201.xml.gz 335 339 340` (every space is actually a tab, aside from the space between `339` and `340`) Where filenames encode the information like this: `lang/year/imdb_id/opensubtitles_id.xml.gz` whereas the numbers correspond to the sentence ids which are linked together (i.e. sentence `335` of the German subtitle corresponds to lines `339` and `340` of the English file) That being said, do you think I should stick to the raw sentence id (and replace the current sequential id) or should I include more detailed metadata (or both things maybe)? Going with raw ID is surely simpler, but including `year`, `imdbId` and `subtitleId` should save space as they're just integers; besides, any operation (like filtering or grouping) will be much easier if users don't have to manually parse the ids every time. As for the language-specific sentenceIds, what could be the best option? A list of integers or a comma-separated string? **Note:** I did not find any official information about this encoding, but it appears to check out: https://www.imdb.com/title/tt7006210/, https://www.opensubtitles.org/en/subtitles/7063319 and https://www.opensubtitles.org/en/subtitles/7050201 all link to the same episode, so I guess (I hope!) it's correct.
Hi! It would be great if you could add the original sentence ids to [Open Subtitles](https://huggingface.co/datasets/open_subtitles). I can think of two reasons: first, it's possible to gather sentences for an entire document (the original ids contain media id, subtitle file id and sentence id), therefore somewhat allowing for document-level machine translation (and other document-level stuff which could be cool to have); second, it's possible to have parallel sentences in multiple languages, as they share the same ids across bitexts. I think I should tag @abhishekkrthakur as he's the one who added it in the first place. Thanks!
217
Update Open Subtitles corpus with original sentence IDs Hi! It would be great if you could add the original sentence ids to [Open Subtitles](https://huggingface.co/datasets/open_subtitles). I can think of two reasons: first, it's possible to gather sentences for an entire document (the original ids contain media id, subtitle file id and sentence id), therefore somewhat allowing for document-level machine translation (and other document-level stuff which could be cool to have); second, it's possible to have parallel sentences in multiple languages, as they share the same ids across bitexts. I think I should tag @abhishekkrthakur as he's the one who added it in the first place. Thanks! Hey @lhoestq , absolutely yes! Just one question before I start implementing. The ids found in the zip file have this format: (the following is line `22497315` of the `ids` file of the `de-en` dump) `de/2017/7006210/7063319.xml.gz en/2017/7006210/7050201.xml.gz 335 339 340` (every space is actually a tab, aside from the space between `339` and `340`) Where filenames encode the information like this: `lang/year/imdb_id/opensubtitles_id.xml.gz` whereas the numbers correspond to the sentence ids which are linked together (i.e. sentence `335` of the German subtitle corresponds to lines `339` and `340` of the English file) That being said, do you think I should stick to the raw sentence id (and replace the current sequential id) or should I include more detailed metadata (or both things maybe)? Going with raw ID is surely simpler, but including `year`, `imdbId` and `subtitleId` should save space as they're just integers; besides, any operation (like filtering or grouping) will be much easier if users don't have to manually parse the ids every time. As for the language-specific sentenceIds, what could be the best option? A list of integers or a comma-separated string? **Note:** I did not find any official information about this encoding, but it appears to check out: https://www.imdb.com/title/tt7006210/, https://www.opensubtitles.org/en/subtitles/7063319 and https://www.opensubtitles.org/en/subtitles/7050201 all link to the same episode, so I guess (I hope!) it's correct.
[ 0.25303936, 0.2482590377, -0.0133867301, -0.1263538897, -0.2649043798, 0.1654841006, 0.2578907311, 0.2178695202, -0.3385522366, -0.11331027, -0.3191734254, 0.3215393722, 0.1591857821, -0.1485188901, 0.0773391277, -0.2948979735, 0.1316310763, -0.1250016987, 0.4648747444, -0.2300008535, -0.3619816005, 0.3236780167, -0.0370356515, -0.0936008915, -0.0615346208, 0.3529783189, -0.4526571333, 0.2638052702, -0.0446696468, -0.4046933055, -0.0694764107, 0.5757679939, 0.3239983022, 0.1294882149, -0.00011813, -0.2874708474, 0.103488721, -0.3369553089, -0.1963879168, 0.013004005, -0.0088696778, -0.4548187256, -0.3890918493, -0.419270426, 0.1541499794, -0.0261844806, 0.1112109125, -0.3906293809, 0.1209636703, 0.0818597302, 0.0413355716, -0.2076830268, 0.1595657766, -0.075624153, 0.5919960737, 0.0116516706, 0.2608611286, 0.3210153282, 0.6891130805, 0.1703934371, 0.0037900321, 0.3019771576, -0.2869800627, -0.3634001911, -0.117845349, -0.0524755567, 0.1650877297, -0.337041229, -0.0982494354, 0.0535920709, 0.3832513988, -0.1271125227, -0.6749773622, -0.4048575759, -0.1287250668, -0.2527377009, -0.2395204455, 0.2474869937, 0.2107641101, 0.3021944165, 0.2062904686, -0.0832719207, 0.0339347124, -0.0094240177, 0.1293778867, 0.5042906404, 0.3008298874, -0.1367187798, 0.1875468642, -0.1222257465, -0.158346042, 0.1058050245, -0.3015628755, 0.0585047044, 0.094288215, -0.2353826463, -0.1615971923, -0.6308349371, 0.0744332597, -0.0400860161, 0.0709190592, 0.1509942114, -0.1224711761, -0.1361683309, 0.169824779, 0.4294912815, 0.4613444507, 0.1024647057, -0.152137056, 0.0124329701, 0.0659143627, 0.0766411871, -0.2118075788, 0.1515747011, -0.3587516546, 0.462374717, -0.0251667574, 0.0540589094, 0.0812719092, 0.1748129725, -0.3938657045, -0.1647635102, -0.1746283919, -0.16310817, 0.0896608904, 0.3201336265, 0.194527179, 0.0853314623, -0.024815917, -0.3484392762, -0.0304052178, -0.0231605005, -0.07965222, -0.0301867984, -0.0908202305, -0.2682775557, 0.2477035522, -0.2299617529, -0.1800292879, -0.1032723263, -0.2297185361, 0.128250435, 0.0665443838, -0.2357315719, -0.0581259653, 0.0051924288, -0.1624840796, -0.2596414387, -0.0665085018, 0.2597440481, -0.1997037083, -0.2225963324, -0.3762697577, 0.0550483502, -0.3740642965, -0.2558546066, 0.4713924825, 0.4103689492, 0.1603392661, -0.3092688918, 0.2056640387, 0.2361133844, -0.2818239629, 0.129348889, -0.2269666791, 0.678419888, -0.2738695145, 0.0262143016, 0.3277464211, 0.2242724597, 0.2916446626, 0.0869121403, 0.3488316238, -0.01804832, 0.1029497162, 0.1082908511, -0.3351134658, -0.5341980457, 0.0047102049, 0.1675185561, 0.0081040561, 0.1024181768, 0.3291330636, -0.097742416, 0.5350015759, -0.4903383553, -0.0055775121, -0.0045307372, -0.0041218586, 0.1031665653, -0.2395100892, -0.2100032419, -0.1895280033, 0.1265670359, -0.0182914697, 0.0177377239, 0.2712001801, 0.0873958915, 0.4465691149, -0.1188608259, 0.1369720399, 0.087090984, -0.1791393459, 0.4175781012, 0.1814685613, 0.3354213834, -0.0550516434, 0.0875707418, -0.0712573901, 0.2913719118, 0.0699671209, -0.2244156003, 0.0047411248, -0.0830377191, 0.1683906019, -0.2202782482, 0.0211333558, 0.2027320415, -0.0942852274, 0.0535805821, -0.3407466412, 0.0740645528, 0.0300338119, 0.0245650001, -0.3404153883, -0.0929091796, 0.0669452846, 0.0342076719, -0.063757427, 0.2528347671, -0.0690935552, -0.0418006852, -0.074191913, 0.4374390244, 0.0816070586, 0.1990163624, 0.0798430815, -0.1302947849, 0.4036840498, -0.1952099651, 0.3103134334, 0.008368589, -0.1633296013, -0.1201769561, -0.1196014285, 0.0521894991, -0.1344235986, -0.1201387942, -0.1318626404, -0.042954132, -0.180050835, 0.046214208, -0.5524293184, -0.3059341311, -0.125977546, 0.078228727, -0.3559446335, 0.2043480724, -0.0337420106, 0.0700294375, 0.1798921824, -0.3022330105, -0.1835568696, 0.2993930876, 0.1039045751, -0.0285237804, 0.0837328359, 0.1877775192, 0.1098017246, 0.2179262191, 0.2721733749, 0.1856481433, 0.5387428999, -0.3212421834, 0.1539240032, 0.3775053024, -0.2700378597, 0.0931312591, 0.1663888693, 0.337448895, -0.0746057853, 0.46131742, 0.1328694522, -0.0213730205, -0.0950564072, 0.1000732481, -0.1170583814, -0.487033546, 0.0527894124, -0.4062763751, -0.0933158249, -0.0032701679, 0.2948791087, -0.4022115767, -0.4209002852, 0.3982214034, 0.4475118518, 0.2819494605, -0.166098386, 0.0499902666, -0.0551486872, -0.5353002548, 0.1435554326, -0.0170987882, 0.0269799866, -0.0771983117, -0.0382113755, -0.3761481643, 0.0811533481, -0.2757059932, -0.371578306, -0.2372111529, -0.1024622619, 0.0563876927, 0.3251529932, -0.1816833019, -0.140833199, -0.3250475526, -0.0982268825, 0.0337392837, -0.1249263585, -0.2722987235, 0.0482243523, -0.0597654954, -0.2288581729, -0.1042750701, -0.3540493548, -0.3807478547, 0.3775185943, 0.0417256355, 0.250407815, 0.263256073, -0.1098388582, -0.2220445424, 0.0035445504, 0.0477156192, -0.0502439253, -0.5488937497, 0.146349892, -0.2529660165, -0.0806221664, -0.2395620346, -0.2055956721, -0.0889167041, -0.2992270887, -0.0037735626, 0.1729847938, 0.2357704043, -0.1624860466, 0.3506121635, 0.3530943692, 0.1605846137, 0.0126197599, 0.0374525934, -0.1594702005, -0.1314891577, 0.2338604927, 0.4142290056, 0.1699796915, 0.1112870947, 0.006885536, 0.2042995244, -0.0031317007, 0.0956228971, 0.0647795722, 0.2745955586, 0.2683444619, 0.1946623623, 0.0958649218, -0.3804879785, -0.0181422494, -0.0491971597, -0.0404902957, 0.5621248484, 0.1404632479, -0.3641775846, -0.2375996262, -0.2099019736, -0.0827556401, -0.1877186596, -0.1030847058, -0.1791368723, 0.1677153856, 0.1812948138, -0.1290346384, -0.3685337007, -0.0173306391, 0.0836431757, 0.0225301236, 0.5093560815, 0.1372775733, -0.0270875767, 0.2378227711, 0.15795739, 0.2556650937, 0.4453358352, -0.1813917458, 0.3057236969, -0.2214792669, 0.0665061399, 0.1207904369, 0.1276640892, -0.1393954605, -0.2735543549, 0.1430667341, 0.1358127296, 0.0053566173, -0.1844863147, 0.079370901, -0.5605741739, 0.6572231054, -0.2063104659, -0.3128502667, 0.113893263, 0.3463485539, -0.230078429, -0.0502518155, -0.1849712431, 0.1273476779, -0.2202017009, -0.5741531849, -0.0089016184, 0.1334369034, -0.2674990892, 0.189198792, 0.090398401, 0.1831367165, 0.2104639113, 0.1201455444, -0.1454619467, -0.1112169772, 0.5019409657, 0.0752013922, 0.1396638155, -0.1322806627, 0.1509733647, 0.3216266036, -0.4710193872, -0.0569669604, -0.12523067, -0.0659662634, 0.2320080101, 0.4689912498, 0.3784627318, -0.2232720852, 0.1639680862, -0.2812081575, -0.088896066, -0.1528403461, -0.051398389, 0.014265459, -0.0724853128, -0.5687923431, 0.0256694406, -0.1905834675, -0.2089549899, -0.4614224434, -0.0136134066, -0.1713095605, 0.5519626737, 0.4034877419, 1.0733829737, 0.1448940039, -0.0185301267, -0.1481231749, 0.0640092641, 0.4912929237, -0.0183077529, -0.1322435439, -0.0908878148, 0.0339586325, 0.0206842497, 0.1917441785, -0.1598875821, 0.0304868128, -0.332767427, 0.0120824575, 0.4895659983, -0.3025807142, 0.1646778584, 0.2287430912, 0.0793671608, -0.359392941, 0.2810900807, 0.0307745934, -0.0743216276, 0.1336572915, 0.0235898606, -0.4508494735, 0.0630012155, -0.1176925451, -0.177117914, -0.1022895277, -0.1640400589, -0.1470660865, -0.1571054757, 0.0631599575, -0.0823280141, 0.4446715415, 0.3506684601, 0.1507036388, 0.3611939549, 0.0309148692, 0.7040265799, -0.1592650861, 0.2576509714, 0.0856701806, 0.3726046383, -0.1405431926, -0.1735803336, -0.1560656279, 0.1223668009, -0.0519298129, -0.0958980769, -0.1476415992, 0.0959713012, 0.0769850165, 0.006542474, 0.3046070337, -0.3487659693, -0.0853957385, 0.0194904059, -0.0126292184, -0.2387196422, 0.0513567217, -0.3527489901, -0.1641179472, -0.1140380949, 0.2314560413, -0.0477935821, -0.3762440085, 0.0849554539, 0.3765700459, -0.0680619255, 0.158942163, 0.0315556377, -0.5533148646, -0.4605740905, -0.0533404648, -0.2023482323, -0.2377946228, -0.0632306337, 0.0316793546, 0.2875439823, 0.2954854369, 0.2739046216, 0.1388175935, -0.481105417, 0.2581268549, -0.1733326912, 0.2099065781, -0.0442113057, -0.5055649877, -0.1244231164, 0.0745825246, -0.2233343869, 0.2171487808, 0.1428263783, -0.033703465, 0.5198436379, -0.1664749682, -0.3323398829, -0.2878307104, -0.0012588724, 0.2772494853, 0.1212459952, -0.0247074068, -0.2537342608, 0.1573596895, 0.0411162414, -0.0572441742, 0.0772312433, -0.0840782672, 0.060328126, -0.1545599103, -0.0704462081, 0.2445054501, 0.0040303916, 0.3842099905, 0.3261346519, 0.2246761173, 0.0569049343, 0.2061655521, 0.2081816345, 0.3820981085, -0.1588954329, 0.1095413491, -0.2445549369, -0.14863199, 0.4011068344, 0.2084991634, 0.3131082356, 0.079979524, 0.3748274446, 0.1559558213, 0.1776859164, 0.4541480839, -0.1597458124, 0.1450906098, -0.1101405844, -0.1271139681, 0.1100172028, 0.1496826708, -0.1734430194, 0.2525628805, -0.0896003321, 0.1228641868, -0.076805979, 0.3847637177, 0.2813184261, -0.1984007508, 0.0618177913, 0.2656444907, 0.2513606548, 0.3486653864, 0.2069728673, 0.415263772, 0.0125702396, -0.0708376765, -0.3461153805, -0.0414787419, 0.2416093647, -0.2297042012, -0.1193147078, -0.0093491711, 0.6945896745, 0.3947246671, 0.1883924305, 0.0523945689, 0.0906517208, 0.3460867107, 0.286516577, 0.1587854028, 0.2790279388, 0.1509079188, 0.3806924522, -0.0695971847, 0.0784195662, 0.819908917, 0.156166926, -0.2231378406, -0.4024160504, 0.0478146076, -0.1816151738, -0.2417518646, -0.1596659273, -0.0478021242, -0.3144459426, 0.0778195262, 0.1436914206, 0.0147253424, -0.4442597926, -0.6542371511, 0.5127461553, -0.2960857451, 0.1453990787, 0.4529330134, -0.1335958391, 0.54296875, 0.5608373284, 0.2101540565, 0.0149210021, 0.1236908436, 0.3338791728, -0.2333032191, 0.0264719129, 0.1982180476, 0.3579054773, 0.1713338792, 0.0617688634, 0.0360177308, -0.0044265036, -0.0710460991, -0.1227646172, -0.0512359031, -0.0765377656, 0.1513159424, 0.4317427576, 0.2671121359, -0.1425496936, 0.0683981329, 0.0813965201, -0.3937860131, 0.0318677388, -0.0934435129, -0.011761032, 0.0356450491, 0.1442168206, 0.0090418383, 0.1034896523, 0.1283717304, 0.4288345873, -0.035428267, -0.0362747051, -0.0281196237, -0.3973757625, -0.2421238571, 0.3589134514, 0.2464031428, -0.0135070533, -0.2603780627, 0.4524378777, 0.4628761709, -0.34839046, -0.0927270353, -0.3676118553, 0.3355752826, -0.3471519947, 0.2463450134, 0.4343972206, 0.1993954927, 0.0708333701, 0.3511963189, -0.2094092965, -0.3332327902, -0.0804387331, 0.2059754431, -0.078526333, -0.0017291084, 0.0544988587, -0.0438445993, -0.0778150186, 0.0744738728, -0.1033187956, -0.0786034614, -0.095390752, -0.2745002806, -0.1010476574, 0.0002006683, -0.049228292, 0.3249866068, -0.0884422362, -0.1082543433, 0.0911930054, -0.2899888456, -0.0729306713, 0.0258132443, -0.671077311, 0.0293554068, -0.0577794202, -0.1040106714, 0.2080311477, 0.2772987485, 0.2454520762, 0.248041153, -0.4210082889, -0.4685884714, 0.5776048303, -0.0889927819, 0.0967506915, -0.2642003596, 0.1231488585, 0.2944211662, 0.1640366614, -0.3554762304, 0.0609461367, 0.1970300972, -0.0203462187, -0.2716576457, 0.077611804, -0.0175609626, -0.1964315921, -0.2448689044, -0.2925895452, 0.2346772403, -0.1828185022, -0.3121429682, -0.0581049435 ]
https://github.com/huggingface/datasets/issues/1844
Update Open Subtitles corpus with original sentence IDs
I like the idea of having `year`, `imdbId` and `subtitleId` as columns for filtering for example. And for the `sentenceIds` a list of integers is fine.
Hi! It would be great if you could add the original sentence ids to [Open Subtitles](https://huggingface.co/datasets/open_subtitles). I can think of two reasons: first, it's possible to gather sentences for an entire document (the original ids contain media id, subtitle file id and sentence id), therefore somewhat allowing for document-level machine translation (and other document-level stuff which could be cool to have); second, it's possible to have parallel sentences in multiple languages, as they share the same ids across bitexts. I think I should tag @abhishekkrthakur as he's the one who added it in the first place. Thanks!
26
Update Open Subtitles corpus with original sentence IDs Hi! It would be great if you could add the original sentence ids to [Open Subtitles](https://huggingface.co/datasets/open_subtitles). I can think of two reasons: first, it's possible to gather sentences for an entire document (the original ids contain media id, subtitle file id and sentence id), therefore somewhat allowing for document-level machine translation (and other document-level stuff which could be cool to have); second, it's possible to have parallel sentences in multiple languages, as they share the same ids across bitexts. I think I should tag @abhishekkrthakur as he's the one who added it in the first place. Thanks! I like the idea of having `year`, `imdbId` and `subtitleId` as columns for filtering for example. And for the `sentenceIds` a list of integers is fine.
[ 0.2025860846, 0.1520483792, -0.0463983342, -0.2151802331, -0.2097586393, 0.2218635678, 0.2927143276, 0.3270959556, -0.280744791, -0.0863664299, -0.3423934579, 0.1748222113, 0.181157425, -0.1334890127, 0.0285321958, -0.3397962153, 0.1369060725, -0.0015652739, 0.6896283031, -0.2206563801, -0.3582675457, 0.2426951081, -0.0653143823, -0.056227684, -0.1881901026, 0.2943156362, -0.4418636858, 0.1019459516, -0.0228529386, -0.4655095935, -0.1128993034, 0.5621753931, 0.3112182021, 0.0426080339, -0.0001207517, -0.2834956944, 0.1895885617, -0.2500921488, -0.2641489208, 0.0642995983, 0.0472480431, -0.2889763713, -0.1915719211, -0.3414881229, 0.0659719706, -0.0099867694, 0.017682204, -0.3728537858, -0.1840545982, 0.1396953017, 0.0585584119, -0.1017708331, 0.0272390842, -0.0978075117, 0.5829442143, -0.0597425215, 0.1945433319, 0.2558286488, 0.7497329712, 0.1804828197, 0.2259275317, 0.3277650476, -0.5435165763, -0.4296786785, -0.144540906, -0.0794593915, 0.0035766819, -0.2353163511, 0.0001521474, 0.1074098125, 0.4455193579, -0.043672543, -0.6220410466, -0.3864541054, -0.0650597513, -0.2182620466, -0.2932420075, 0.314231962, 0.2823573053, 0.3710575104, 0.1216529161, -0.1338570714, 0.1120787263, -0.0174105763, 0.2732361555, 0.2782099545, 0.288112402, -0.138828367, 0.1407510638, -0.1199689209, -0.2138812244, 0.152972579, -0.3576207161, 0.0235266984, 0.0143028833, -0.220835492, -0.1321438849, -0.5561721921, -0.1693899184, -0.0990578458, 0.0849320441, 0.1106008589, -0.0765195712, -0.1025683284, 0.1607459933, 0.2703852057, 0.4041803479, 0.138950631, -0.121618554, -0.0647508949, -0.1501908302, -0.0333114117, -0.225269258, 0.3126198649, -0.2768225074, 0.2574813366, 0.0592206866, 0.0287958905, 0.00507278, 0.1269139051, -0.4585179687, -0.0567227565, -0.1381126642, -0.0049003568, 0.1179995388, 0.2369012833, 0.2082664967, 0.1077234, 0.0242553875, -0.4484049976, -0.0871647224, 0.0246887468, 0.0525524616, -0.0359730609, -0.1140193418, -0.3677076995, 0.2324875295, -0.2234974355, -0.2207296193, -0.2021273077, -0.2647818327, 0.1669388711, 0.1120086014, -0.1280201823, 0.0895145461, 0.0608767122, -0.1455753595, -0.1422114074, 0.0009648055, 0.2889186442, -0.1694343537, -0.3882220387, -0.4193805456, 0.0715942085, -0.3491359353, -0.3035752773, 0.4186148047, 0.3618100882, 0.2122470886, -0.2627324462, 0.2700009644, 0.1401198208, -0.3034572303, 0.097314097, -0.2333875597, 0.5517140031, -0.1110350862, 0.0092211068, 0.2950665355, 0.231843546, 0.1940509975, 0.1153714955, 0.4618019462, 0.0065680295, 0.1139687747, 0.0176449269, -0.3239234388, -0.5405445099, 0.0531942323, 0.0289632231, 0.0920100436, 0.0365951359, 0.3335029483, 0.0249931663, 0.662499845, -0.4460941553, -0.0947645903, -0.0549964383, -0.0807457268, 0.0978232101, -0.1732605249, -0.1785654128, -0.3534194529, 0.1526335925, 0.0105058253, 0.1988874227, 0.361528486, 0.0638973713, 0.4545429349, -0.1058070809, 0.092937991, -0.006892466, -0.0940112174, 0.4595707059, 0.1689640433, 0.1794948578, 0.1452904195, 0.0608794838, 0.1969764084, 0.2431053221, 0.2571723461, -0.2650692761, -0.009863507, -0.0165853314, 0.3412770033, -0.1586160511, -0.0077306256, 0.1010711789, -0.1333782077, 0.1511721611, -0.4317302704, 0.1067717299, -0.2014318556, -0.0007566363, -0.1344540119, -0.1698811948, 0.1681280136, -0.0471918806, -0.0203972086, 0.2770134807, -0.1128406674, 0.1062748581, -0.0983021706, 0.4456537962, -0.073529169, 0.3537279963, 0.0585229136, -0.023234427, 0.2886245549, -0.2466838211, 0.1673653275, -0.1667590588, -0.1978949457, -0.0774783865, 0.0533047654, 0.0161477886, -0.0939231962, -0.080840528, -0.1326184571, 0.0365873203, -0.2571311295, 0.0656201914, -0.4624591172, -0.2456925064, -0.0678146929, 0.0629479811, -0.5987550616, 0.0871658176, -0.1913074851, 0.168656528, 0.074803248, -0.2727587819, 0.0040818155, 0.2686510682, 0.0531395152, -0.0229540244, -0.0408203155, 0.0461188108, 0.007834442, 0.1784644723, 0.1472986639, 0.1579868793, 0.5284188986, -0.2943544388, 0.2633441687, 0.4139410257, -0.3146461844, -0.0506793484, 0.2791539133, 0.3343713582, -0.1581017673, 0.5288504362, 0.0074888468, 0.0586321056, -0.0998240486, 0.0074821934, -0.1781915575, -0.4455887973, 0.2280276418, -0.4807478189, 0.025893867, 0.0110604391, 0.2136841863, -0.200071007, -0.3091622591, 0.2962978482, 0.1574106663, 0.3554839492, -0.1057544723, 0.1136803627, -0.0338432044, -0.4956922829, 0.219756633, -0.0266553629, -0.1890276074, -0.0995031521, 0.0717257559, -0.2529870868, 0.1459829211, -0.3089468479, -0.2556657791, -0.3172928095, -0.0103713861, 0.000021968, 0.3998180926, -0.1479938626, -0.2118764818, -0.2598625422, -0.1157899573, -0.0347121991, -0.1342361867, -0.2672851682, 0.0388932712, -0.0750015676, -0.1597888172, -0.0255383849, -0.1699216813, -0.4189923108, 0.2884585261, -0.0339389145, 0.1766665876, 0.2320150733, -0.0687868744, -0.2220522761, -0.0449985936, 0.1599312276, -0.0339267924, -0.5086304545, 0.0821540654, -0.1738780141, -0.06099746, -0.2035122514, -0.1848822981, -0.3007088304, -0.28544119, -0.0657980889, 0.2014681548, 0.2741650641, -0.268877089, 0.5612771511, 0.2155172825, 0.0484093577, -0.0393465012, 0.0312081203, -0.1745465398, -0.3107945919, 0.0906000137, 0.477796793, 0.1161536127, 0.0455287956, 0.1407917887, 0.0875348002, -0.036404524, 0.0177182257, 0.0103448192, 0.3364098072, 0.1912407428, 0.1911738813, 0.0350188278, -0.5634855032, 0.0837580115, -0.0302502811, -0.0681340769, 0.5521839857, 0.1922180057, -0.2857975364, -0.1458037198, -0.2934900224, -0.1148096174, -0.0804411992, -0.1262033135, -0.2518868744, 0.3526641428, 0.2575187683, -0.1440760195, -0.2897816896, -0.1491623372, 0.0508486181, 0.0984704942, 0.57423383, 0.1250553429, -0.0238490701, 0.190228492, 0.3251262605, 0.220634222, 0.4722903371, -0.1029445082, 0.2900042534, -0.2374358475, 0.1786754131, 0.3376530111, 0.2217261791, -0.2346444577, -0.3685334325, 0.0910917744, 0.0209175795, 0.0453174859, -0.1380935907, 0.2159672678, -0.5401027799, 0.6022509933, -0.1985389441, -0.0314700156, 0.2185079008, 0.4779142737, -0.2694034874, -0.1137059182, -0.2032183111, 0.0512442142, -0.1224553138, -0.5893529654, -0.0019225925, 0.0421618298, -0.2644688487, 0.1517617851, -0.0246822834, 0.0717378631, 0.2086344957, 0.0964044333, -0.1431053132, -0.0627297759, 0.5997661352, 0.1291747838, 0.1122451872, -0.1474158317, 0.179498598, 0.2560945153, -0.4961577356, 0.0931705236, -0.148269996, -0.0122064836, 0.3469994664, 0.394915849, 0.435719341, 0.0169927347, 0.1802898049, -0.3192501962, 0.0696511045, -0.1487431526, -0.1462886333, -0.0506360382, -0.0944408178, -0.6300877333, 0.0256788023, -0.2706145644, -0.1397592127, -0.5500947237, 0.1543127447, -0.0456877016, 0.4206377864, 0.410928607, 1.0612912178, 0.0454478376, -0.1464199871, -0.2469633967, 0.0419367999, 0.5492522717, 0.1620164961, -0.0913029611, -0.1607629359, 0.0321071334, 0.0989376456, 0.1161469519, -0.2794190049, -0.2541389465, -0.3178935349, -0.087288253, 0.4687188268, -0.10887748, 0.2544688284, 0.1779149026, 0.223087877, -0.3008316457, 0.3246658146, 0.0144248158, -0.0300621167, 0.1073244512, 0.0366572738, -0.3281348944, 0.2605347931, -0.0539073683, -0.3064030707, -0.1965386271, 0.0592802502, -0.1814665794, -0.0050467313, -0.0354712754, -0.0351260267, 0.4321233034, 0.4008661509, 0.119046174, 0.369836688, 0.024153512, 0.7271575928, -0.272967279, 0.1730534136, 0.1580004692, 0.3656670451, -0.1582156271, -0.2347856313, -0.0431226902, 0.2181019932, -0.2431645393, -0.1812125891, -0.0848314017, 0.103958115, 0.0822018981, -0.0676282272, 0.0914620385, -0.1539803296, -0.2264296412, -0.0026955893, 0.0611701757, -0.0550508574, -0.0891517103, -0.1379126012, -0.1850065887, -0.1715222299, 0.2025746852, 0.0605081655, -0.4358053803, 0.1626014113, 0.4246856868, -0.0069946423, 0.1647747457, -0.0002616495, -0.6238161922, -0.2848279774, 0.1141531616, -0.2611317337, -0.213448137, 0.0011069514, 0.0495725833, 0.099946022, 0.3431379497, 0.1333883256, 0.1001593918, -0.4750413895, 0.1921491921, -0.2563408017, 0.135614112, -0.1549532413, -0.479737401, -0.1053511202, 0.0146617349, -0.1941797435, 0.097800605, 0.0607115403, 0.0454817824, 0.5873952508, -0.0277255494, -0.3805015981, -0.3255668879, -0.0307497364, 0.1600887179, 0.1722456217, -0.0233360119, -0.275618434, 0.1958902478, 0.0542422272, 0.1653215885, -0.0756325871, -0.1026799157, 0.0672937334, -0.1668600142, -0.2070130706, 0.3138863444, 0.0144667272, 0.2859560251, 0.192288205, 0.0958615839, 0.0852892399, 0.1718427539, 0.1404540241, 0.2024043202, -0.1502433121, 0.1157498807, -0.1683475971, -0.1409148574, 0.5077627301, 0.143413052, 0.305277586, 0.0637397617, 0.3995049, 0.2278864384, 0.2209694237, 0.4789087176, -0.2055092752, 0.0251285955, -0.1554470658, -0.0812235847, -0.0376957953, 0.1249284223, -0.1966224462, 0.2986123264, -0.1273748726, 0.1797409654, -0.1088073328, 0.3950020075, 0.2268703878, -0.2164064944, 0.0876009986, 0.2835342288, 0.2482972443, 0.2138543725, 0.1780238599, 0.3404660225, 0.1227641627, -0.1538021863, -0.2184627056, -0.1127525717, 0.1651262194, -0.1620829254, -0.0731367022, -0.0563388988, 0.7049536109, 0.3048968911, 0.3184443414, 0.225451827, 0.2580072284, 0.2470723242, 0.1487862766, 0.1365233213, 0.2202596962, 0.0321094021, 0.4621676207, -0.0490973629, 0.0792939588, 0.7958596349, 0.0931009278, -0.2446575463, -0.4160206318, 0.0545523316, -0.0208301544, -0.3062519431, -0.0351624377, 0.1146577895, -0.3842497468, 0.0652933568, 0.0482194945, -0.0895354599, -0.4640112221, -0.4744279087, 0.5227255225, -0.2781194746, -0.1128940508, 0.3038094342, 0.0084642638, 0.6416424513, 0.5664152503, 0.2642948627, 0.1010478064, 0.0864193887, 0.4559992552, -0.2556851804, -0.0514410213, 0.2270277441, 0.3219724298, 0.2384667099, 0.148500964, -0.0434491485, -0.0042671543, -0.0499786995, 0.0832954124, -0.1263559163, 0.0581450984, -0.0181442648, 0.4207743108, 0.232318446, -0.2503960133, -0.0348533578, 0.2278524488, -0.2158733308, 0.1268188208, 0.0458425917, -0.0657673404, -0.1250668168, 0.131773442, -0.000003878, 0.1272657514, 0.0859873146, 0.5072783232, -0.0002076984, 0.0875702649, 0.0228957683, -0.2934546769, -0.2539838254, 0.3089722395, 0.2383248955, 0.1209153682, -0.2224772871, 0.5440022945, 0.4117051959, -0.284843266, -0.1010251865, -0.5488213897, 0.2706494331, -0.1794650853, 0.045836769, 0.2599024475, 0.169855386, -0.00332243, 0.3813748956, -0.1600141674, -0.5111726522, -0.0679682791, 0.1554606706, -0.0892325565, 0.0950697437, 0.1021834612, -0.0599107221, -0.0974348933, 0.002209425, -0.1403129697, 0.0257144719, -0.1727071106, -0.4073494673, -0.0814877003, -0.0174175836, -0.093230933, 0.3397623003, -0.0260919146, -0.1358442903, 0.217507273, -0.1546811908, 0.0144025236, -0.0258146673, -0.563881278, 0.0654304922, -0.0396908894, -0.0661319792, 0.2783847451, 0.0630612224, 0.1904575974, 0.2627519369, -0.4643502831, -0.5056293607, 0.5837916136, -0.2052418441, 0.0938969105, -0.2969118953, 0.3089847863, 0.2418887913, 0.1643210799, -0.4174594283, -0.0529586673, 0.2758620977, -0.0863201693, -0.3164334893, 0.1886345148, 0.1310430318, 0.0213291496, -0.1573974639, -0.3898942769, 0.3080565929, -0.1276141107, -0.3563331068, -0.0417051502 ]
https://github.com/huggingface/datasets/issues/1844
Update Open Subtitles corpus with original sentence IDs
Something like this? (adapted from [here](https://github.com/huggingface/datasets/blob/master/datasets/open_subtitles/open_subtitles.py#L114)) ```python result = ( sentence_counter, { "id": str(sentence_counter), "meta": { "year": year, "imdbId": imdb_id, "subtitleId": {l1: l1_sub_id, l2: l2_sub_id}, "sentenceIds": {l1: [... source_sids ...], l2: [... target_sids ...]}, # or maybe src/tgt? I'd go with the first one for consistency with 'translation' "subtitleId": {"src": l1_sub_id, "tgt": l2_sub_id}, "sentenceIds": {"src": [... source_sids ...], "tgt": [... target_sids ...]}, }, "translation": {l1: x, l2: y}, }, ) ``` Or at top level, avoiding nesting into 'meta'?
Hi! It would be great if you could add the original sentence ids to [Open Subtitles](https://huggingface.co/datasets/open_subtitles). I can think of two reasons: first, it's possible to gather sentences for an entire document (the original ids contain media id, subtitle file id and sentence id), therefore somewhat allowing for document-level machine translation (and other document-level stuff which could be cool to have); second, it's possible to have parallel sentences in multiple languages, as they share the same ids across bitexts. I think I should tag @abhishekkrthakur as he's the one who added it in the first place. Thanks!
79
Update Open Subtitles corpus with original sentence IDs Hi! It would be great if you could add the original sentence ids to [Open Subtitles](https://huggingface.co/datasets/open_subtitles). I can think of two reasons: first, it's possible to gather sentences for an entire document (the original ids contain media id, subtitle file id and sentence id), therefore somewhat allowing for document-level machine translation (and other document-level stuff which could be cool to have); second, it's possible to have parallel sentences in multiple languages, as they share the same ids across bitexts. I think I should tag @abhishekkrthakur as he's the one who added it in the first place. Thanks! Something like this? (adapted from [here](https://github.com/huggingface/datasets/blob/master/datasets/open_subtitles/open_subtitles.py#L114)) ```python result = ( sentence_counter, { "id": str(sentence_counter), "meta": { "year": year, "imdbId": imdb_id, "subtitleId": {l1: l1_sub_id, l2: l2_sub_id}, "sentenceIds": {l1: [... source_sids ...], l2: [... target_sids ...]}, # or maybe src/tgt? I'd go with the first one for consistency with 'translation' "subtitleId": {"src": l1_sub_id, "tgt": l2_sub_id}, "sentenceIds": {"src": [... source_sids ...], "tgt": [... target_sids ...]}, }, "translation": {l1: x, l2: y}, }, ) ``` Or at top level, avoiding nesting into 'meta'?
[ 0.2209788859, 0.0347744673, -0.0174862742, -0.1517956406, -0.2049601376, 0.3104094267, 0.3499246538, 0.2389915586, -0.4182050824, -0.1190220341, -0.3992200494, 0.2717108727, 0.2253196687, -0.1207074672, 0.105745621, -0.271032393, 0.1577948332, -0.0647956803, 0.599024713, -0.1972803771, -0.3916416168, 0.2315598428, 0.0232854187, -0.1052899659, -0.1919484735, 0.3326808512, -0.5179934502, 0.1893833876, 0.0558613464, -0.4463603795, -0.0519319326, 0.5385543108, 0.2594017684, 0.0686635077, -0.000120175, -0.1887045205, 0.1532708853, -0.2464020252, -0.247608453, -0.0682022274, 0.163022846, -0.2673366666, -0.2945558131, -0.3069764972, 0.0979103297, -0.0597782806, 0.0081205014, -0.4214206636, -0.1565286368, 0.0395494252, 0.0464883223, -0.0417842083, 0.0353235304, -0.1026241109, 0.5562958717, -0.0020263176, 0.2494297624, 0.3210563362, 0.6099582314, 0.2494790852, 0.2338643968, 0.3001664579, -0.4769385755, -0.4708836377, -0.1287601143, -0.0272082705, 0.0282104407, -0.1922350526, -0.0698112249, 0.0413390063, 0.3280802965, -0.1330784857, -0.7111257911, -0.4584237933, -0.0461185984, -0.2136905491, -0.4144753218, 0.3474138081, 0.3577759862, 0.3390950561, 0.0551949851, -0.1647027731, 0.1730964035, 0.0233029611, 0.2741304934, 0.2407241762, 0.2340877205, -0.071910128, 0.1593380123, -0.1263433099, -0.3018880486, 0.0961156785, -0.3530394733, -0.0231112055, 0.0552214496, -0.1803240776, -0.0399188921, -0.5612182617, -0.0688754842, -0.0634698272, 0.1200466305, 0.0367320962, -0.1203042567, -0.0787196457, 0.1772685647, 0.3284093142, 0.340431869, 0.0905415788, -0.1424032748, 0.0266588069, -0.1131898463, -0.011052289, -0.1618150473, 0.2903780043, -0.3519212604, 0.2706139386, 0.1015039831, 0.1630832255, -0.0103812292, 0.0979348421, -0.4913240075, -0.0882687718, -0.1628615111, 0.0120426202, 0.181301713, 0.2778910995, 0.2103710026, 0.2165265232, 0.0194926411, -0.3489282727, -0.1100479215, 0.0282667726, 0.0772971511, 0.0654940307, -0.1279764473, -0.3086250424, 0.322080791, -0.2250382602, -0.06506823, -0.2030835301, -0.3065248132, 0.1305768192, 0.0732709393, -0.1596949399, 0.0917130113, 0.0978728831, -0.1367485672, -0.1229437515, -0.0138523653, 0.2216386795, -0.1644516885, -0.3561444879, -0.2158157676, 0.0465603098, -0.3473251462, -0.3419599831, 0.2420505285, 0.4023240805, 0.226689443, -0.2590721846, 0.2422271073, 0.1845209599, -0.3498833477, 0.0592205971, -0.131371811, 0.623811245, -0.0077663139, -0.0832960904, 0.3877943158, 0.2720652819, 0.085915044, 0.1677534282, 0.4032238126, 0.0536363423, 0.0470075235, 0.0432607383, -0.4101874828, -0.6244880557, 0.0383596197, 0.0482288301, -0.0345018357, 0.1305965781, 0.3557190299, 0.0006948411, 0.5223431587, -0.4122364819, -0.0007475968, -0.0331966132, -0.015767023, 0.0964460149, -0.1680336595, -0.2356580943, -0.2997711599, 0.1134863049, -0.0649359152, 0.1316909194, 0.2948749959, 0.001358211, 0.4646084905, -0.1661218852, 0.0793836266, -0.0345392078, -0.0843928903, 0.3948903084, 0.1212477982, 0.192168802, -0.0429229736, 0.110750623, 0.1654114723, 0.2414630204, 0.191542387, -0.2982218266, 0.0493589118, -0.0343862139, 0.217804715, -0.2670889497, -0.0152095482, 0.1529757828, -0.1249367073, 0.1704559773, -0.3960725665, -0.016192073, -0.0776908621, 0.0775526166, -0.197288543, -0.1050522551, 0.1627872139, 0.0376424342, -0.0499209017, 0.3225729764, -0.085033834, 0.0583692789, 0.0013719425, 0.4663867354, -0.0264583435, 0.4859479666, 0.0477544889, -0.1175575852, 0.3558056355, -0.2490109503, 0.1458485574, -0.0890548006, -0.1667503864, -0.1384649575, -0.0018218942, 0.0463400632, -0.0706599504, -0.0386065878, -0.0371698886, -0.007378459, -0.3098458648, 0.0987725407, -0.48320961, -0.303807199, -0.0789628997, 0.093019709, -0.4492996931, 0.1416912675, -0.1375742406, 0.2361624539, 0.1031441912, -0.3040548563, -0.0771718621, 0.2178612351, -0.0448909998, -0.0042246729, -0.0443807729, 0.0655251592, 0.0941627473, 0.2101775706, 0.1771958321, 0.2408746034, 0.6037324071, -0.2918304205, 0.2677740157, 0.4215082824, -0.279859066, 0.0090125687, 0.3630820513, 0.3062954843, -0.1610844731, 0.5001880527, 0.0151149556, -0.0293458849, -0.1557151377, 0.0255987272, -0.1557438523, -0.3463329077, 0.0225588493, -0.5094445944, -0.0530929714, -0.0738402903, 0.1577113271, -0.2463457435, -0.3293327093, 0.247800529, 0.2494484782, 0.2426075935, -0.183251828, 0.0030818675, 0.0344854295, -0.528622508, 0.3113757968, -0.0645060688, -0.109100394, -0.1835633516, -0.0054506557, -0.3063257337, 0.0851272047, -0.3004767895, -0.2967131138, -0.2904576659, -0.1231257766, -0.030331457, 0.4129615724, -0.2559933066, -0.1472996175, -0.2908365428, 0.0264718868, 0.0178984702, -0.1615315825, -0.3175319433, 0.0234165229, -0.1008799598, -0.2108380944, -0.0929475874, -0.2280551046, -0.3786448836, 0.4878307879, -0.048348777, 0.1076343209, 0.2692920864, -0.0781847015, -0.2370770276, -0.1841222942, 0.1473934352, -0.0502744205, -0.5810416937, 0.0722611696, -0.1957201809, -0.0286290087, -0.2978213727, -0.1449044347, -0.2162142098, -0.3066575527, -0.0989225209, 0.1704222858, 0.2413603961, -0.2342205644, 0.5072843432, 0.36993137, -0.0104723237, -0.0442704298, 0.0359910652, -0.1981708109, -0.2408275604, 0.1244893074, 0.4949031472, 0.0304681137, 0.0134618841, 0.165533945, 0.1943967938, 0.1037396267, 0.0954167023, -0.0017626856, 0.3459443748, 0.1287502348, 0.2338255644, 0.0904995203, -0.6101648211, 0.0591400824, -0.127784431, -0.0400546826, 0.4969539642, 0.1766010821, -0.203374818, -0.1965547353, -0.3467212915, -0.0426352173, -0.1534169614, -0.1873703748, -0.1745568365, 0.2824783623, 0.255260855, -0.176839754, -0.2442920357, -0.0625848398, 0.0728168339, 0.1015820056, 0.5623084307, 0.1568125784, -0.0802049264, 0.1029935256, 0.2030632496, 0.2130462229, 0.5398967266, -0.101034075, 0.3852150142, -0.2962696552, 0.0736890286, 0.2467347234, 0.2528207898, -0.1431399584, -0.3250364065, 0.0906571075, -0.0771456659, -0.0479837768, -0.0847767442, 0.2388013005, -0.4861281514, 0.6551349759, -0.0446688086, -0.1383964717, 0.2207535505, 0.4505436122, -0.2518519461, -0.0614430383, -0.2097946703, -0.0086910054, -0.1219846457, -0.6096364856, -0.0574540868, 0.0375255197, -0.213802591, 0.1593489647, 0.0025438219, 0.0881801546, 0.1599778533, 0.147734046, -0.1215679646, -0.0827619657, 0.5291160941, 0.1702379882, 0.1728866547, -0.0909087881, 0.3126516342, 0.4004725218, -0.4411031306, 0.0555752553, -0.2909811437, 0.0360931754, 0.448168844, 0.3489753306, 0.3569920361, -0.0036156513, 0.1456637383, -0.289270848, -0.0880408585, -0.1421387196, -0.1054030508, -0.0229247957, -0.0424398333, -0.5799977183, 0.0873591304, -0.2452294677, -0.0597565472, -0.6179403663, 0.1658026427, -0.1191088483, 0.3421138227, 0.3598656952, 1.005318284, 0.123817265, 0.0880204737, -0.1164553165, 0.13195768, 0.5445365906, 0.1574392319, -0.1165829897, -0.1165346503, 0.0590393469, 0.126925528, 0.0888626724, -0.2667463422, -0.2439641505, -0.2833564878, -0.0237203408, 0.4424542487, -0.046177417, 0.2295760214, 0.130550772, 0.1871205121, -0.2922730744, 0.2862824798, -0.0227554906, 0.0141839739, 0.0568497442, 0.009498395, -0.312980324, 0.1403812766, -0.0934900269, -0.2328752577, -0.1617423296, -0.0839834511, -0.1442180872, -0.1318129748, -0.0091921538, -0.0283602029, 0.3801963329, 0.3602820635, 0.1380671859, 0.3586060405, -0.0239594728, 0.6386117935, -0.2633199394, 0.1427514553, 0.0863420069, 0.263228178, -0.0997210294, -0.2440456152, -0.1177797094, 0.2379371673, -0.1531136036, -0.2227315307, -0.0734130442, -0.0193207934, 0.1067311987, -0.1066041589, 0.2211957574, -0.1674105227, -0.2496605664, -0.0274972729, 0.0662304014, -0.1441970021, -0.1204330474, -0.2571229935, -0.227140069, -0.1521004885, 0.2999042571, 0.011011824, -0.3845519722, 0.1977354884, 0.4038411081, -0.0152922198, 0.2056400925, 0.0737698525, -0.560008049, -0.3261530399, 0.1543156803, -0.2055311203, -0.1241176575, -0.0972466692, 0.0944908857, 0.1175401658, 0.3015244901, 0.1594975889, 0.0825538486, -0.4828438759, 0.275320828, -0.266493082, 0.1754505634, -0.0306313075, -0.3450262547, -0.1609977484, 0.1279795021, -0.1914198399, 0.1795904189, 0.1290141344, -0.0228786804, 0.5700923204, -0.1385347247, -0.2587909698, -0.3195576072, -0.0174117219, 0.1505296826, 0.1474251896, -0.0189137999, -0.3108359277, 0.1858166754, 0.1050817892, 0.223849535, 0.0075438991, -0.0281082019, 0.0899481773, -0.226301074, -0.0896040872, 0.3430849612, 0.0869028717, 0.2806044221, 0.1832499206, 0.1089404002, -0.0115046948, 0.186208427, 0.2204468101, 0.1432763189, -0.1162979305, 0.081921488, -0.2621043921, -0.1171316281, 0.5180975795, 0.1331292838, 0.3920755982, 0.1230289042, 0.3813698888, 0.1814101338, 0.1523989439, 0.3915371597, -0.0962991714, 0.0503208227, -0.0888625383, -0.0469535291, -0.0595211089, 0.1010373384, -0.18007195, 0.2891719937, 0.0040014423, 0.110436663, -0.0288082957, 0.4164351225, 0.2267104089, -0.1072960496, -0.0603060834, 0.2415640652, 0.247913301, 0.336370796, 0.2434167862, 0.2799061537, 0.1374024451, -0.1132822782, -0.1982465833, 0.03177334, 0.2913258672, -0.1701085418, -0.1376565695, 0.0323028639, 0.6526060104, 0.1721732914, 0.4123956859, 0.2316217124, 0.2014798224, 0.2239353657, 0.3061029315, 0.1105272844, 0.1028879657, 0.1833376586, 0.4449327588, -0.0468249619, 0.1626707166, 0.8947770596, 0.113437593, -0.3787636757, -0.3137108088, 0.0661195219, -0.1021623909, -0.2968342304, -0.0913481414, -0.0967846587, -0.3326016963, 0.0546537787, 0.0810164213, -0.1187323257, -0.5291763544, -0.4242376089, 0.517698884, -0.3008618355, -0.0995450839, 0.4325686991, -0.0177168548, 0.5202097893, 0.5960310698, 0.3152926564, 0.0676187649, 0.0706431568, 0.4289952517, -0.2621093988, 0.0018365011, 0.2203691006, 0.257059902, 0.0967843309, 0.059392374, 0.0722727329, -0.0040695164, -0.0510767587, -0.0314322188, -0.054235056, 0.0711519867, -0.1385299861, 0.474090308, 0.0246090144, -0.1848057508, 0.0072492398, 0.3113253117, -0.3124316931, 0.1374708414, 0.0962599963, -0.0826241001, -0.1098145694, 0.1103905439, -0.0001244769, 0.1049863547, 0.1413682997, 0.4995459318, 0.0022363849, 0.0146098956, 0.0369579792, -0.3628649414, -0.2546317279, 0.3638896346, 0.2339005321, 0.0720462352, -0.1506694406, 0.5485126376, 0.4051660299, -0.2288869619, 0.0162167735, -0.5260785222, 0.2718016207, -0.1391752064, 0.0799047649, 0.1306470186, 0.0314915627, 0.0767936409, 0.4003415406, -0.3214033842, -0.4901400208, -0.0951820016, 0.1373240948, 0.0201026201, -0.0601179972, -0.093888551, -0.0482380986, -0.094065465, -0.0181728862, -0.0797825828, -0.1192049384, -0.2002190351, -0.4086732268, -0.1055348814, 0.0288716797, -0.1562329978, 0.3772958815, -0.1519804895, -0.1189950407, 0.180365175, -0.1950372905, 0.1351662576, -0.1404505074, -0.5362734795, 0.142504409, -0.0960059986, -0.143671453, 0.2505474985, 0.2519666851, 0.1538340002, 0.3209255934, -0.3875089884, -0.5163573027, 0.6283262968, -0.2368851751, 0.1326726377, -0.2854483426, 0.2763115466, 0.2571356595, 0.1662470549, -0.5226234794, 0.0320396721, 0.2893511057, -0.0206173211, -0.354516387, 0.1928045005, 0.0381169654, -0.1157731935, -0.1874919981, -0.357919991, 0.3021304607, -0.1233160496, -0.2482656837, -0.0722474456 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
That's awesome! Actually, I just noticed that this dataset might become a bit too big! MuST-C is the main dataset used for IWSLT19 and should probably be added as a standalone dataset. Would you be interested also in adding `datasets/MuST-C` instead? Description: _MuST-C is a multilingual speech translation corpus whose size and quality facilitates the training of end-to-end systems for speech translation from English into several languages. For each target language, MuST-C comprises several hundred hours of audio recordings from English TED Talks, which are automatically aligned at the sentence level with their manual transcriptions and translations._ Paper: https://www.aclweb.org/anthology/N19-1202.pdf Dataset: https://ict.fbk.eu/must-c/ (One needs to fill out a short from to download the data, but it's very easy). It would be awesome if you're interested in adding this datates. I'm very happy to guide you through the PR! I think the easiest way to start would probably be to read [this README on how to add a dataset](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md) and open a PR. Think you can copy & paste some code from: - Librispeech_asr: https://github.com/huggingface/datasets/blob/master/datasets/librispeech_asr/librispeech_asr.py - Flores Translation: https://github.com/huggingface/datasets/blob/master/datasets/flores/flores.py Think all the rest can be handled on the PR :-)
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
188
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). That's awesome! Actually, I just noticed that this dataset might become a bit too big! MuST-C is the main dataset used for IWSLT19 and should probably be added as a standalone dataset. Would you be interested also in adding `datasets/MuST-C` instead? Description: _MuST-C is a multilingual speech translation corpus whose size and quality facilitates the training of end-to-end systems for speech translation from English into several languages. For each target language, MuST-C comprises several hundred hours of audio recordings from English TED Talks, which are automatically aligned at the sentence level with their manual transcriptions and translations._ Paper: https://www.aclweb.org/anthology/N19-1202.pdf Dataset: https://ict.fbk.eu/must-c/ (One needs to fill out a short from to download the data, but it's very easy). It would be awesome if you're interested in adding this datates. I'm very happy to guide you through the PR! I think the easiest way to start would probably be to read [this README on how to add a dataset](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md) and open a PR. Think you can copy & paste some code from: - Librispeech_asr: https://github.com/huggingface/datasets/blob/master/datasets/librispeech_asr/librispeech_asr.py - Flores Translation: https://github.com/huggingface/datasets/blob/master/datasets/flores/flores.py Think all the rest can be handled on the PR :-)
[ -0.2875128686, 0.1752748191, -0.0523376502, -0.0160815082, -0.1027401239, 0.0413464084, 0.0322461352, 0.1573133469, -0.3544584215, 0.23967655, -0.2381988764, -0.1111768782, -0.1982448697, 0.1046881676, 0.1299679726, -0.1173931956, 0.0626325682, 0.1621663421, -0.2575623989, -0.242628783, -0.0848406404, -0.0210146494, -0.1676176786, -0.215430975, -0.2636868954, -0.2343584895, -0.3444107771, -0.0222434588, -0.2228299081, -0.1175919995, 0.1175154746, 0.2484132797, 0.2399589717, 0.4444425106, -0.0001051568, -0.1921424568, 0.1900987476, -0.3233172894, -0.3289245963, -0.0075078458, -0.2392942607, -0.1538306773, -0.5299215317, -0.0503164381, -0.0830947831, -0.3202905953, 0.0407134518, 0.1645171493, 0.2044691741, 0.5778821707, 0.2140561938, 0.1666962504, 0.348228991, -0.118855387, 0.2372101247, 0.1014453471, -0.1206196994, 0.1359512657, 0.3214258254, 0.0502923355, 0.1298285723, 0.3519300222, 0.0751623139, -0.207820788, -0.0013173381, -0.2970614433, -0.1703727841, -0.4697273374, 0.0546198525, 0.3466720879, 0.5668893456, -0.2300917059, -0.1379354447, -0.1885655075, 0.2385327369, -0.275393784, -0.1425795257, 0.101754427, -0.2468652725, 0.2201550603, 0.1338837743, -0.1983611286, -0.261756897, 0.4235548377, -0.0393223912, 0.2688906491, -0.0210250355, -0.0664190948, 0.1583764553, -0.2404519916, -0.273894757, -0.0225958116, 0.1015820131, -0.008362243, -0.2182196528, -0.3157849312, 0.2978574038, -0.1357146204, 0.1732510775, -0.3756063581, -0.1892128587, -0.1522245854, -0.1686467826, 0.0308304839, 0.1053946689, 0.3480730951, -0.1274257898, 0.1075960249, -0.0360945575, -0.167276144, 0.0026853532, 0.2127132714, -0.1308419406, 0.1524343789, -0.337041378, 0.2581075132, -0.1394640207, -0.1006493568, -0.2270866632, 0.1519318223, -0.154945299, 0.1976893842, -0.0497684181, 0.167873323, 0.1502227038, 0.412396282, -0.0852505416, 0.3266165555, 0.0435953364, -0.1859337687, -0.050011389, 0.1548002958, -0.2542716265, 0.256657064, 0.2378217131, 0.312987864, 0.1783684194, 0.0053794086, 0.3276023567, 0.0617622882, -0.0991265848, -0.0511567369, 0.2883898318, 0.1007131189, 0.1363553554, 0.0000258759, -0.2535657883, -0.1737265885, -0.2774484158, 0.0093005253, 0.1357424706, -0.1794616282, -0.158283934, 0.2379550338, -0.1018657088, -0.1741174012, -0.3040411472, 0.7007135153, -0.0606367402, -0.1210634261, 0.0528959557, -0.0532211848, -0.3657278419, 0.0342515185, -0.0872519314, 0.3126230836, -0.2872093618, 0.0393944234, 0.0574680641, 0.0726875067, 0.1355338395, 0.1585348397, -0.12878187, 0.3593229651, -0.0331005976, 0.3460194468, -0.0488749668, -0.4397503734, -0.2815992832, 0.1535724103, -0.2127692103, 0.096073404, 0.1783139408, -0.1073975414, 0.5414620638, -0.3718988299, 0.0349776782, 0.3706715107, -0.1727277488, 0.0340494588, -0.1894364208, -0.2846861482, 0.0788009763, 0.1839010566, -0.0323208198, -0.0800225139, -0.0435628258, 0.3727608919, 0.2667349875, -0.3871520162, 0.2202352136, 0.2563526928, -0.0447419398, -0.0748781487, -0.0283266902, -0.1960767508, -0.1836102903, -0.0590263456, 0.1912148148, 0.6219026446, 0.1550299972, -0.2531659901, -0.1419555545, -0.2369058728, -0.144393906, -0.0620132312, 0.2281483412, 0.3150977194, 0.1107614115, -0.1125979275, -0.0861273184, 0.2071200907, -0.5647339821, -0.2647088468, -0.1538940668, 0.1814262271, 0.0084680021, -0.2195853442, 0.3080780804, 0.4227021933, 0.0146599058, 0.0535549819, 0.0285549462, 0.1354119778, -0.1619796753, 0.257960856, 0.0781195462, 0.1648441851, 0.272785455, -0.5677771568, 0.1332101822, 0.4646580517, 0.0776262134, -0.1782424748, -0.0820305943, 0.1244489253, 0.298976779, 0.1829654872, 0.1640460938, -0.1839013696, 0.1819780171, -0.0004319921, -0.2123806775, -0.0435388982, 0.149896577, 0.1638148129, -0.2349283099, 0.0365414843, -0.354216665, 0.2235676795, 0.4518027604, -0.2263444811, 0.2648499906, 0.3474592268, -0.0424364805, -0.1756835878, -0.0004730653, -0.1034011468, 0.3319277167, 0.3627651334, 0.2422541678, 0.0071053598, 0.0717024654, -0.0730774477, 0.1388952732, 0.1237822771, -0.1127778739, 0.2940682769, 0.1811237186, -0.0422677919, -0.3254457116, -0.0892082006, -0.0382537842, 0.1844966263, -0.1044628099, -0.2978941202, 0.013378337, -0.2083916217, -0.2377453148, 0.0129813701, 0.0028976016, 0.0303691477, 0.354003638, 0.0479798913, -0.2579817772, 0.2546876669, 0.2618288398, 0.2677574754, -0.3453739882, -0.0791170895, 0.0545897186, -0.4009777606, -0.3158773184, 0.2158412933, 0.3016786277, 0.2556001842, 0.1860271692, -0.1914075762, 0.1003517583, -0.1630119234, -0.3969955742, 0.1623775512, -0.3061781824, 0.0612602085, -0.1400399208, 0.1018899679, 0.021082826, -0.5848551989, -0.2191082686, 0.1448173821, -0.1159875542, -0.1049958691, -0.5161015391, -0.1699136943, -0.0485325456, -0.6011014581, -0.4975527227, -0.4463849068, 0.2768110037, -0.1984016746, 0.0573748201, 0.0979481116, 0.1252349764, 0.0677638054, 0.0089159682, 0.178788811, -0.2338745743, -0.0812649131, 0.1727396846, -0.2196904421, -0.2960351706, -0.2503243685, -0.1269466579, 0.0345077626, -0.0453708209, -0.3076548576, 0.156870842, -0.1172694489, 0.186272651, 0.0695896298, 0.1646303087, 0.3058907688, -0.0366117992, -0.1327187419, -0.1065297648, -0.1093279421, 0.0363108516, 0.3674372733, 0.25476861, 0.0032194164, 0.0030397074, -0.0236489698, 0.5740106106, 0.2956702113, -0.1211550385, 0.1002703309, 0.0473233461, 0.2798264921, -0.1951165795, -0.3320176303, 0.4544560015, 0.0547159985, -0.0594977178, 0.5838136673, 0.0157409199, -0.4595155418, -0.0494787581, -0.2481125891, -0.2401514351, -0.292920053, 0.3575481176, 0.1684371233, 0.2732197642, -0.0738993883, -0.2694476247, -0.2592243552, -0.2080504, 0.1178255826, 0.1426765621, 0.031977348, 0.0350444354, -0.2550529242, -0.0148428269, -0.2404075563, -0.0514480397, 0.3507369161, 0.2669362128, -0.3556982875, 0.0085829645, -0.1341504753, 0.1201197654, 0.2352533042, -0.3290526867, -0.1241106689, 0.1691451073, 0.6236918569, 0.0580913201, 0.244986698, -0.2782993913, -0.407710284, 0.571348846, 0.3270938396, -0.3180732131, 0.0295585543, 0.180569604, 0.4551045001, 0.0196318477, -0.1199945509, 0.0669298545, -0.4188568592, -0.3954561949, 0.2638199925, 0.4192441106, -0.0302208699, 0.1444365382, 0.0513750613, 0.273914367, -0.0993724912, 0.5432240367, 0.0444293842, 0.0042275116, 0.5168450475, 0.0652428865, -0.0213872716, -0.1969533563, 0.1559518576, 0.2522525787, -0.0759337693, -0.2559382021, 0.0856125131, -0.196467042, 0.3721095026, 0.3864421844, 0.1251039952, 0.0152509641, -0.0959917307, 0.0340299793, -0.2213311195, 0.3231512308, 0.1718504429, 0.0787989125, -0.2946383059, -0.1797348857, 0.4043149948, 0.0214405283, -0.0749255046, 0.1412541866, 0.1843293756, -0.2057353258, 0.3513552547, -0.1385087669, 1.2044346333, 0.2380201221, 0.0568894818, 0.2659081519, -0.1096379235, 0.088328898, -0.4995722771, -0.0849642009, 0.390791893, 0.2597654164, -0.0190225132, 0.2098602504, -0.1178995222, 0.253715694, -0.4399804175, 0.2426092923, 0.1150808632, -0.0074013053, 0.2306422144, 0.5852324963, -0.1713496, -0.5080522299, -0.240368098, 0.2198499441, 0.0945752412, 0.067187123, 0.1623474956, -0.2743907869, 0.1177938581, -0.0123204514, -0.6150582433, 0.0930603668, -0.2432053983, -0.2029713839, -0.4296464324, -0.1472197324, 0.3799267411, 0.2104632407, 0.2985903025, 0.0168841854, -0.2263960093, 0.1732629091, 0.08656279, -0.0223946869, 0.0827473402, -0.1729468703, 0.4044260979, -0.2710450888, -0.2950925827, 0.200226143, 0.0704182461, 0.0133645162, -0.4002256393, -0.2600349784, 0.2456319928, 0.1467288136, 0.2403477877, 0.6309663057, -0.035969656, -0.2770217657, 0.1873919368, -0.1814451665, -0.3884576559, 0.224179253, -0.2762511373, -0.1189769283, -0.2200241983, 0.0615963414, 0.2748679221, -0.0635089576, 0.3337145746, 0.3225396872, -0.0669052452, -0.3963092566, 0.0304453969, -0.0104548447, -0.4409249127, -0.0201865006, 0.0905107558, -0.12795344, -0.2117038071, 0.4416196346, 0.2073621452, -0.0716664642, -0.0142575949, -0.0464508012, -0.3322636783, -0.0164139792, 0.0912041813, 0.1912331283, -0.09927582, 0.3792113662, -0.0325592496, 0.1184505224, -0.4336080551, 0.0761988461, -0.1626812965, 0.2437879741, 0.2632614076, -0.1426610798, 0.2488956749, 0.0414080732, 0.1591388434, 0.0102062281, -0.0619053692, -0.2223881781, -0.1657427102, 0.0845461711, 0.118475914, 0.1900931299, 0.0874157846, -0.0435397252, -0.1722628921, 0.1013929099, 0.2535377145, 0.1184066907, -0.0353021063, 0.1590711623, -0.0247713029, -0.0573764741, 0.1267610043, -0.0222571269, 0.3171492219, 0.3422955275, 0.0590776429, 0.1731784344, 0.0098035038, -0.216137439, -0.0024719015, 0.3561342955, 0.2103464901, 0.0230453722, 0.041377198, 0.1574686468, 0.0288916752, 0.235168308, 0.0491055399, 0.0548479222, -0.0470541567, -0.0214706846, 0.2766656876, 0.2646978498, -0.1533527672, 0.2425717115, -0.253762424, -0.3012733757, 0.1291771084, 0.1017608047, 0.1031927615, -0.1311921775, 0.2717267871, -0.105374448, -0.2317263931, 0.0490289703, -0.0357232727, 0.2377204001, 0.1284560114, -0.0859469175, -0.0562695116, 0.031223584, 0.2207508534, -0.0386744738, -0.1650406867, 0.5045080781, 0.0553666241, 0.0940547884, 0.2753016651, -0.1637170613, 0.0964043885, 0.0568491444, 0.2194769681, 0.1539338082, 0.051720798, 0.4231320918, 0.0482200235, -0.3117499352, -0.1460018158, 0.2333993018, 0.1063836664, 0.0108452663, -0.2279700041, -0.2169208527, -0.2533043623, -0.0314632654, 0.0169393457, -0.3470696211, -0.0472030267, 0.1584008336, -0.1348182857, -0.1955414563, -0.1827453524, -0.2227244228, 0.1587724388, -0.1729853153, 0.3621599972, 0.2358752191, -0.1519257724, 0.1546728313, 0.4195308387, 0.503429234, 0.0164719783, -0.2659990191, 0.2552723587, 0.0722156018, -0.113496393, 0.0042057037, 0.3613188863, 0.0438304693, 0.0530940033, 0.2383307815, 0.2213025689, -0.2607590258, -0.2357931584, 0.0998976231, -0.1937326193, -0.113430351, 0.0929465145, -0.0539522916, 0.1904904991, -0.4325956404, -0.0372573882, -0.6131446362, 0.1492976844, 0.51368469, -0.2391389012, 0.0791093633, -0.1282251477, 0.1162268668, -0.306720078, 0.3376325369, 0.3489735425, 0.1395457983, -0.21940732, -0.2014391571, -0.3209106326, -0.0147351548, -0.063130483, -0.1013233215, -0.3647856116, 0.098136723, 0.4524948597, 0.3658345938, -0.2682144046, -0.2221840024, -0.38075459, 0.1827524155, -0.314142704, 0.2570054829, -0.0253150091, 0.4205217957, 0.0902479365, -0.2413685024, -0.260753125, 0.1864534318, 0.0894532502, -0.1324122846, -0.0881004408, -0.1244734824, -0.0515836477, 0.1009030044, -0.0401930511, 0.525370419, -0.2989619374, -0.1234956831, -0.1656340063, 0.0010453425, -0.1861564517, -0.0595181137, -0.0427821353, 0.3104832172, -0.2220740914, 0.3915455341, -0.0350496992, -0.2125216424, 0.1208042949, 0.0612908825, -0.2969564795, 0.1123980135, -0.216397047, 0.0407535136, 0.0370625183, 0.3508245945, 0.0020809667, -0.0512154624, -0.2930358052, -0.2200296074, 0.5129660964, -0.1426166743, -0.2901851535, -0.0267885849, 0.3327945769, 0.12209557, 0.1083658636, -0.6881363392, 0.2756838799, 0.2302374393, 0.1484367847, -0.0474420711, 0.1926652491, 0.0583997294, -0.0780559778, -0.0438355878, -0.0487918742, 0.0565764457, -0.2192158997, 0.0728058368, -0.356744349 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
Hi @patrickvonplaten I have tried downloading this dataset, but the connection seems to reset all the time. I have tried it via the browser, wget, and using gdown . But it gives me an error message. _"The server is busy or down, pls try again"_ (rephrasing the message here) I have completed adding 4 datasets in the previous data sprint (including the IWSLT dataset #1676 ) ...so just checking if you are able to download it at your end. Otherwise will write to the dataset authors to update the links.
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
90
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Hi @patrickvonplaten I have tried downloading this dataset, but the connection seems to reset all the time. I have tried it via the browser, wget, and using gdown . But it gives me an error message. _"The server is busy or down, pls try again"_ (rephrasing the message here) I have completed adding 4 datasets in the previous data sprint (including the IWSLT dataset #1676 ) ...so just checking if you are able to download it at your end. Otherwise will write to the dataset authors to update the links.
[ -0.4057505131, 0.1195164323, -0.0039106496, 0.1509026438, 0.0220463015, -0.0853215754, -0.1335308105, -0.0062557831, -0.2400021553, 0.1257294118, -0.2750506997, -0.3189469576, 0.1023330316, 0.1398474574, 0.1449168324, -0.0939305946, 0.1205430776, 0.0259055775, -0.3361465335, -0.2657546997, -0.0817216933, 0.0491210073, -0.2169910371, -0.2889324427, -0.2452687472, -0.0799724087, -0.35138309, -0.1246385723, -0.4012852311, -0.1996174306, 0.1150276363, 0.2857922316, 0.0613891333, 0.3938319385, -0.0001092176, -0.1187216565, 0.2797665596, -0.2949183583, -0.4690210521, -0.2130618095, -0.4673832953, -0.2018319964, -0.3875803351, 0.0961185396, -0.0633574575, -0.1115118191, 0.2050203383, 0.1171562672, 0.3408110142, 0.5179668069, 0.1969757527, 0.069820635, 0.4441022277, -0.2930302918, 0.0693573281, -0.0417870954, -0.0196986087, 0.2912700772, 0.2534229755, 0.0211748481, 0.1961009055, 0.0892121941, -0.0523032658, -0.139849022, -0.0679247156, -0.2415893674, -0.0877482742, -0.4039773941, 0.4737977386, 0.3026016355, 0.8854359984, -0.123551771, -0.0572133102, 0.0557517856, 0.3473542929, -0.1545782536, 0.0594960041, -0.0361596607, -0.2303111106, 0.2189462036, 0.0370012969, -0.3095417917, -0.2542935908, 0.4501919746, -0.0263030753, 0.3299730718, -0.0426364765, 0.0961555094, 0.1398079842, -0.2091664523, -0.1120558381, -0.0645512193, -0.10944435, 0.1329550147, -0.3483418822, -0.0717625916, 0.1117440313, -0.0141075701, 0.0450830385, -0.2468641698, -0.2309933305, 0.0057507884, -0.0893442482, -0.0871773809, 0.1881147772, 0.3799709678, -0.0295600705, -0.1159550026, 0.1522289515, -0.0173909254, 0.0141996592, 0.0099379569, -0.1114291102, 0.0547406934, -0.3408962786, 0.16528593, 0.0806235969, -0.2036335319, -0.2136306167, 0.0881193727, -0.2003662288, -0.0466208234, -0.1008244753, 0.4376765192, -0.0591086634, 0.3093276322, -0.0603773594, 0.1930450201, -0.1479224563, -0.3695370853, -0.0871265158, -0.0167541672, -0.2718515396, 0.0807317048, 0.2328398526, 0.2596519589, 0.0590134412, 0.0937124789, 0.0492128804, -0.0665862411, -0.2398620546, -0.0384639539, 0.2115904987, 0.1285419017, 0.0698486939, 0.2205138206, -0.0920843482, -0.2250450999, -0.0426823199, 0.1004711539, 0.0837399513, -0.0745027959, -0.1287996471, 0.1920665503, -0.1797730625, -0.3141010702, -0.3180534244, 0.5080111027, -0.2414617389, -0.0652868524, 0.0323656574, 0.1024619341, -0.4688640833, -0.021020364, 0.040726006, 0.5596448779, -0.4436157644, -0.0307838991, 0.0880187377, -0.0309040044, 0.1453657597, 0.1575250328, -0.1545806825, 0.3193619847, -0.0214487575, 0.3011640906, -0.0285098776, -0.2230502367, -0.6605324149, 0.0781062767, -0.0966480747, -0.0666843951, 0.0618455037, -0.0090195984, 0.6679303646, 0.0456296727, -0.1564013362, 0.446623683, 0.0494117811, -0.0715121403, -0.1420309693, -0.331917882, 0.2892174423, -0.0197951756, 0.1687024534, -0.0537234657, 0.1330806315, 0.3083946407, 0.3169300854, -0.0140786096, 0.2964544892, 0.3474654257, 0.0816650912, -0.0188956037, 0.0484903902, 0.0245991349, -0.3104142249, 0.1486807764, 0.2196631134, 0.4836667776, -0.097878322, 0.0032812953, -0.2344828099, -0.1308934987, -0.3603483737, -0.1023183763, 0.1876636893, 0.3728758693, 0.1479762048, 0.0966860652, -0.0775567442, 0.3941009641, -0.2766841352, -0.1055154353, -0.0879715234, 0.4249129593, -0.0061780862, -0.2714397609, 0.1861999035, 0.2040860653, 0.3342065215, -0.0953064561, -0.0261944123, 0.2505724132, -0.2482033968, 0.3651419878, 0.1121957451, 0.0992308706, 0.2652238607, -0.5659905076, 0.219937712, 0.4432967603, 0.220699966, -0.3255324662, 0.0056892792, -0.1550022811, 0.2652454078, 0.1565916836, 0.0905763209, 0.0290947407, 0.4552963674, -0.081478633, -0.1654934883, 0.0345613509, 0.2561270893, 0.2251248211, -0.1797233969, -0.1153324768, -0.2786638439, 0.2571586967, 0.3868488073, -0.3051298857, 0.2623224556, 0.1570495665, -0.0361988991, -0.2613961697, -0.0196967069, -0.100915283, 0.2762658, 0.1733913422, 0.3040486574, 0.0963481739, 0.0565762818, -0.0622086413, 0.2041078508, 0.0213306006, -0.1722146422, 0.2142884433, 0.1372827739, -0.2012932152, -0.3991734684, 0.0878322721, 0.1849182397, 0.3150725067, -0.0980791897, -0.2744602859, -0.211319387, -0.2693475485, -0.306542486, -0.0919742733, -0.3515455425, -0.0807793662, 0.1875156164, 0.071919255, 0.1317642629, 0.2187929899, 0.224371165, 0.2338602096, -0.3013221025, -0.0422890112, 0.0280263871, -0.3736099005, -0.418372035, 0.0749586821, 0.3446517587, 0.2606090605, 0.2495828867, -0.1936531365, 0.0172340944, -0.3335565329, -0.2054550499, 0.2699442506, -0.1151761115, 0.0498559102, -0.2566851676, 0.3304832876, -0.0554927252, -0.2536814809, -0.1510607302, -0.0729966164, 0.0780907422, -0.0291396454, -0.3341872692, -0.1840233803, 0.0849073529, -0.5110992193, -0.4248250425, -0.2990660071, 0.3247786462, -0.3723614514, -0.071372062, 0.1569875181, 0.0470278189, 0.1290336847, -0.0799251646, 0.004536666, -0.4204453826, -0.0920868814, 0.1620256603, -0.0662743226, -0.4101419449, 0.1232521087, 0.1440683156, 0.1636270285, -0.0456787199, -0.3998606801, 0.2495921105, -0.1116472185, 0.2885932326, 0.2177089453, 0.1170540676, 0.3275976181, -0.1510179788, -0.076458998, -0.1397577524, -0.1971050948, 0.0362464264, 0.3786498606, 0.4517076015, 0.1034540311, 0.0949351043, 0.0015623346, 0.5036545992, 0.2424415052, -0.0031207451, 0.1995591372, -0.0323327482, 0.3451849222, -0.1202698052, -0.478410989, 0.3422197998, -0.1209316477, -0.1080134958, 0.3984335363, -0.0237385314, -0.4457191229, -0.2867485285, -0.2088176161, -0.1730730832, -0.394839108, 0.20358558, 0.324883759, 0.1942498386, 0.0894131735, -0.0677352697, -0.0699246377, -0.2438025922, 0.2530319691, 0.1920572072, -0.1503225118, 0.0457890816, -0.2262022644, -0.0615707859, -0.5227596164, -0.0031610876, 0.0883579031, 0.6162899733, -0.5153847337, 0.2788065076, 0.1637889445, 0.1118772253, 0.4498527646, -0.4674552083, 0.0256741755, 0.2579939961, 0.5658133626, -0.024493333, 0.0852504075, -0.1826390326, -0.3291039169, 0.7147038579, 0.1901455373, -0.2403815985, 0.1496543586, 0.0743120462, 0.4221893251, -0.0912756994, -0.106273368, 0.0818332061, -0.4652069509, -0.3623043299, 0.0167632457, 0.2197956145, 0.0232239068, 0.3030979335, 0.1681035161, 0.2868336439, -0.0858305469, 0.2700435817, -0.0696941391, -0.065388009, 0.6191545129, 0.1840451658, 0.1778920144, -0.0954331905, -0.1222425997, 0.3881081641, -0.1137280911, -0.3406707346, 0.0815932304, -0.2186899483, 0.2896746993, 0.447706759, 0.1923991442, 0.1342248023, 0.0914107785, 0.0541126467, -0.2861169875, 0.2485789955, 0.293659687, 0.1774264425, -0.3353132904, -0.4066302478, 0.4526827037, -0.1107046977, -0.0792787969, 0.1087719426, 0.1136893481, -0.1474588662, 0.1033299118, -0.2280926853, 1.3418979645, 0.2603317201, -0.1036200225, 0.1596803069, -0.3964626789, 0.0489219576, -0.4883714616, 0.05775268, 0.2418988645, 0.1264490783, -0.0792926475, 0.2386053354, -0.0768333822, 0.0488622487, -0.4408450723, 0.4517142177, 0.0355283618, 0.0824261159, 0.2013558447, 0.5475211143, -0.1408497989, -0.2970796824, -0.1880217344, 0.2220741808, 0.1191571802, 0.424729228, 0.0701707155, -0.1490737051, 0.1583410501, -0.0846648663, -0.8224695325, 0.1091839075, -0.339235872, -0.0396399945, -0.4534524381, -0.0467163026, 0.1759992987, 0.0454417095, 0.3028598428, -0.0096310824, -0.3284364641, 0.3235788941, -0.1158065945, -0.0665796399, 0.1293948889, -0.1058984548, 0.255230993, -0.2061973512, -0.4552622736, 0.1773909032, 0.1539207399, 0.0073601529, -0.3866432905, -0.2827109993, 0.0224933363, 0.0962965488, 0.2535406649, 0.5415591002, 0.0558381677, -0.1877817065, 0.1313237846, -0.1040623635, -0.2573300302, 0.2665681541, -0.2013325989, -0.2123295218, -0.2359618247, 0.4419167936, 0.0364745185, -0.072395362, 0.456273824, 0.5152435899, -0.1842772663, -0.2891139388, -0.1190692857, -0.0773095042, -0.5514756441, -0.0808720365, -0.0493546762, 0.0920355618, -0.2553324699, 0.3498766422, 0.0698791295, 0.0173564143, -0.0959341452, -0.1991745234, -0.1558382064, -0.09776178, 0.2887165844, 0.2710490823, -0.2001206279, 0.1303314418, 0.2551153898, -0.1390502751, -0.3407120705, 0.1193631366, -0.1413018107, 0.1880839169, 0.2851235271, -0.2964828312, 0.3054429591, 0.0053746402, 0.0820792019, -0.1342371553, -0.0878642425, -0.1190019548, -0.0458481684, 0.1082144603, 0.0690947473, -0.0024016425, -0.1677381247, -0.3603917658, -0.1549485773, 0.2408120185, 0.1800762713, 0.2694817185, -0.1145241112, 0.0228335708, -0.0059333621, 0.0147905983, 0.1496972442, 0.0004004063, 0.2844320536, 0.5005567074, 0.1575221121, 0.2174273431, 0.0594816878, -0.0265240148, -0.2028449178, 0.3382104933, 0.1522678286, -0.1635856181, 0.1632890701, -0.0093590412, 0.0980005562, 0.1910674423, 0.1548511684, 0.2413558066, -0.0416814908, -0.1847532988, 0.4256336391, 0.1649841368, -0.1744550467, 0.0280382223, -0.1418952346, -0.0508347228, 0.0231788009, 0.0487719923, -0.0049959421, -0.320276916, 0.1585066617, -0.0347118489, 0.0083876662, 0.0832315236, 0.0358868688, 0.2588763833, 0.0304732621, -0.1739491224, 0.0840405822, 0.0398262776, -0.0776166692, -0.0406236164, -0.1657270342, 0.3330054581, -0.0622349828, 0.2478657067, 0.1206943914, -0.2034355998, 0.0679399818, 0.1265936345, 0.067818284, 0.0898022354, 0.0554200336, 0.4078163207, 0.03878491, -0.1463384479, -0.2957153022, 0.3513890207, 0.1444031447, -0.0664986446, -0.098627612, -0.3691882789, -0.3593113422, 0.1443934739, 0.0553787798, -0.2998840213, 0.0408999398, 0.284096688, -0.1750615984, -0.1625922918, -0.3025870919, -0.2162391692, 0.0407694615, -0.3084472716, 0.3035302162, 0.1948904097, -0.0240650438, 0.1623737067, 0.5255326033, 0.4240312874, 0.1362577528, -0.2181155086, 0.4244424403, 0.1053225324, -0.0706631094, 0.0954014957, 0.4309614897, 0.1197753772, 0.0317173749, 0.2487390935, 0.1331912428, -0.1352529824, -0.0908406973, 0.0301532801, 0.0016618818, -0.1724865288, 0.0589379482, 0.0017152932, 0.3237995505, -0.5256592631, -0.1704332232, -0.6494346261, 0.1055364311, 0.3118799031, -0.2809124291, 0.2777457833, -0.2200428098, 0.0765104219, -0.3534976244, 0.3516309857, 0.3177811205, 0.1568412781, -0.2055829614, -0.2269178629, -0.4249224365, -0.139757067, -0.1353376508, 0.093421869, -0.2800357938, 0.0973807648, 0.2640996575, 0.2254627943, 0.0399105437, -0.0119216964, -0.4218788743, 0.3082429171, -0.1878540516, 0.1051818728, 0.1375588626, 0.5417034626, -0.0504845679, -0.0852683187, -0.0351543054, 0.1570748687, 0.0131979734, -0.0613508523, -0.2157161832, -0.1166855097, -0.2601780891, 0.1119749844, 0.0490540788, 0.5883557796, -0.1400184035, -0.0703616291, -0.4372203052, -0.1042066813, -0.030135192, -0.0435720719, -0.0192246418, 0.1632123142, -0.088364318, 0.3698636889, -0.2326095402, -0.2443537414, -0.0902948827, 0.3523514569, -0.3444111645, -0.0661147088, -0.1640639603, 0.1683384776, -0.0599138923, 0.1166470349, -0.0266477503, -0.0575412288, -0.2933111787, -0.0979804546, 0.4137925804, -0.1922769547, -0.377227813, -0.2222600579, 0.3068434, -0.0149475187, 0.1455418319, -0.6260257959, 0.2453351915, 0.2247812152, 0.0561951734, -0.0877759829, 0.1486870795, 0.1426644772, 0.1332051754, -0.06931784, 0.0554346815, 0.23442325, -0.2237692028, 0.2015015781, -0.2066238523 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
@skyprince999, I think I'm getting the same error you're getting :-/ ``` Sorry, you can't view or download this file at this time. Too many users have viewed or downloaded this file recently. Please try accessing the file again later. If the file you are trying to access is particularly large or is shared with many people, it may take up to 24 hours to be able to view or download the file. If you still can't access a file after 24 hours, contact your domain administrator. ``` It would be great if you could write the authors to see whether they can fix it. Also cc @lhoestq - do you think we could mirror the dataset?
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
117
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). @skyprince999, I think I'm getting the same error you're getting :-/ ``` Sorry, you can't view or download this file at this time. Too many users have viewed or downloaded this file recently. Please try accessing the file again later. If the file you are trying to access is particularly large or is shared with many people, it may take up to 24 hours to be able to view or download the file. If you still can't access a file after 24 hours, contact your domain administrator. ``` It would be great if you could write the authors to see whether they can fix it. Also cc @lhoestq - do you think we could mirror the dataset?
[ -0.3741526604, 0.0519907027, -0.0482889898, 0.0795521885, -0.0135707371, 0.0174990222, 0.0815657601, 0.1886133999, -0.2064033002, 0.3855746984, -0.3391421437, -0.5373647809, -0.0532581881, -0.0104367808, 0.130561471, -0.2101036608, 0.0005452745, -0.0619699806, -0.2461217046, -0.1063695475, -0.105447337, 0.0369486213, -0.1291823983, -0.0238435864, -0.2057794333, -0.1044687405, -0.3355355859, -0.067364417, -0.3276141584, -0.2688933015, 0.0196576118, 0.2734158337, 0.1154997796, 0.4012145996, -0.0001045743, 0.0001493618, 0.4067373574, -0.0481947735, -0.3458152115, -0.1742511988, -0.1645573527, -0.2898883224, -0.435611248, 0.0596618503, -0.2253370136, -0.1871687174, 0.2630773783, 0.0461968407, 0.3312254548, 0.5269781947, 0.2198280245, -0.0575608388, 0.3618278205, -0.3024640679, 0.3061885536, -0.1263415217, -0.0886301398, 0.378872931, 0.3622795939, 0.1281085014, 0.1928504109, 0.2564087808, -0.0494400002, -0.1281775236, 0.0093111349, -0.3232198656, -0.0619877875, -0.3781903088, 0.112661615, 0.2508862913, 0.8849614859, 0.1165097356, -0.2376439571, -0.0453704298, 0.1858689338, -0.08202824, 0.1716371775, 0.0819960311, -0.0974981785, 0.2420728356, 0.0106667168, -0.2699160576, -0.2761209011, 0.284578383, 0.0610822737, 0.1404554844, -0.0721466616, 0.1089526117, 0.2183658183, -0.2003876716, -0.2603641152, 0.182706967, -0.0952959061, 0.2284320891, -0.1151504368, -0.0316389725, 0.2358842492, -0.1671476513, -0.0537563488, -0.1710320115, -0.1305034459, -0.1916556656, -0.2057006955, 0.0987524241, -0.0011434238, 0.4225840569, -0.0258222446, -0.0939659849, 0.2431903481, -0.1216181889, -0.0408768356, 0.0672028959, -0.1611659676, -0.1563169658, -0.474142611, 0.2587383389, 0.0858988836, -0.1574455202, -0.2232066542, 0.0081403591, -0.0643865764, -0.026837768, 0.026604522, 0.3763578236, -0.0467444807, 0.2172407359, 0.072246626, 0.2495345622, -0.0725355372, -0.3502614498, -0.0644996315, 0.0966744274, -0.5013256073, 0.1774251014, 0.3367811143, 0.127094686, 0.0228372887, -0.0218098387, 0.1430230737, -0.15200001, -0.1542094052, -0.1316497475, 0.0718263015, 0.147397846, 0.1632303298, 0.2887653708, -0.0635254532, -0.2075774074, -0.0414890796, 0.0201895386, -0.1272519082, -0.3853570521, -0.1358783245, 0.264046073, -0.1239972934, -0.0538657494, -0.3378989697, 0.4284422994, -0.2500940263, -0.2704098225, -0.1836604476, 0.2193415612, -0.4041488171, -0.0989937037, -0.0616135001, 0.5527364612, -0.2626290619, 0.1005535051, -0.0642995164, -0.0722765476, 0.0727328211, 0.3385044634, -0.3098074198, 0.2924596369, -0.1130012572, 0.2416451871, 0.0820235312, -0.3433907926, -0.6367419362, 0.1574756652, -0.3702495694, -0.1231476292, 0.3622515202, -0.0813824087, 0.7645024061, -0.3859053254, -0.0415779725, 0.2580484748, 0.2841432095, 0.0082383752, -0.2456492782, -0.2950385511, 0.1285577416, 0.099328354, 0.0345424376, 0.1200494766, 0.2588185072, 0.3030827641, 0.314530313, -0.1403215975, 0.190446198, 0.3736027777, 0.0648752674, 0.1424502134, -0.0410018787, -0.0335047655, -0.0772661865, 0.0428797454, 0.1194466501, 0.2878558636, 0.1323677003, -0.1839857996, -0.3479400277, -0.2124459147, -0.3899980187, -0.0671338812, 0.2137280107, 0.3639139831, 0.1334800869, 0.0546987951, 0.1492209733, 0.3630466461, -0.3433392048, -0.1681853831, -0.1203391999, 0.3763390779, -0.1943971813, -0.0972452089, 0.2011357546, 0.1818709075, 0.3316044807, -0.0948617458, -0.0286074877, 0.1882954389, -0.2663231194, 0.2544401586, 0.2089388967, 0.1866559833, 0.2824366391, -0.7307380438, 0.300378412, 0.3212947845, 0.2425290048, -0.1243082955, -0.1257095188, -0.0305300131, 0.259216398, 0.0685495287, 0.1028055847, -0.0509609394, 0.4734236598, 0.0043287352, -0.0741569698, -0.0254055262, 0.2493099421, 0.2675669789, -0.3308171034, -0.1631771922, -0.1564381868, 0.089323543, 0.3958441913, -0.1409757137, 0.0304455943, 0.2175440639, 0.0073722154, -0.1856973767, -0.0386354327, -0.1548445374, 0.1878663599, 0.294044137, 0.2710776329, 0.0418886542, 0.1936339289, -0.115600653, 0.2262293994, 0.0844290778, -0.2344626784, 0.1612134278, 0.1995626986, 0.0113992058, -0.1993485987, -0.1330866516, 0.2303617001, 0.2885450721, -0.1960633993, -0.3173702061, 0.0356169641, -0.2672511041, -0.1209782213, -0.0798082203, -0.2716396749, -0.1120492816, 0.1761443168, 0.2219207138, -0.1300326586, 0.0525015742, 0.3018542528, 0.2663786709, -0.2395296693, 0.1697391421, -0.0898992866, -0.2039330602, -0.2418344021, 0.1517958492, 0.3139508367, -0.023503121, 0.2608111203, -0.1703242809, 0.2581348419, -0.4193352461, -0.2484348416, 0.0725552142, -0.1565434784, 0.1284316778, -0.385817349, 0.2875353992, 0.0410727262, -0.4558403492, -0.0480209626, -0.0496228337, -0.0067898221, 0.0222999156, -0.2981387973, -0.1353984624, 0.0043052286, -0.5185346603, -0.5353161693, -0.4876825809, 0.3409767151, -0.2174546272, 0.0469315574, 0.1393299103, 0.1168729588, 0.1593002677, -0.099360384, 0.1808667034, -0.2902186215, -0.2010565102, 0.1514415741, -0.3761218786, -0.3692209125, 0.0950602517, 0.2483449131, -0.0426924229, -0.1107677892, -0.4823296964, 0.1688350886, -0.3414815366, 0.1768950522, 0.0542201772, 0.0261528771, 0.1799417883, -0.1657059938, -0.1313550025, -0.0023244545, -0.2000384331, -0.0619425923, 0.308488369, 0.2828817666, -0.1465215832, 0.1768688112, 0.1262534857, 0.7308597565, 0.3372605741, 0.2193730474, 0.2254805118, 0.059250921, 0.3217622042, -0.2576298416, -0.4247919917, 0.4319261014, -0.1959529519, 0.0024233088, 0.452238977, 0.0829086006, -0.3256209195, -0.2853494883, -0.4064798355, -0.3902540505, -0.4201671481, 0.0551183745, 0.327070415, 0.0952719823, 0.1288487166, -0.1303881407, -0.1808486283, -0.2825466096, 0.2367131561, 0.3933315575, -0.0613270067, 0.0482301973, -0.0554151982, -0.1063751727, -0.2948362529, 0.1687138975, 0.1141623706, 0.3505269885, -0.5199874043, 0.2094111741, 0.2939940393, 0.1402667761, 0.5945845842, -0.3036941588, 0.2389888763, 0.0857536048, 0.4931540787, 0.0129787698, 0.0822298378, -0.1953359246, -0.2238648981, 0.6836928129, 0.2362920195, -0.2247054279, 0.2338270396, 0.179115206, 0.2137949616, -0.0391465425, -0.1097555533, 0.0356495976, -0.3531953394, -0.4895447195, 0.1220327616, 0.3398804069, 0.1282111406, 0.066260241, 0.0115316659, 0.2779923677, -0.1156474203, 0.3644887805, 0.03953024, 0.0247258469, 0.6241255999, 0.149708122, 0.1796760559, -0.0925605446, -0.1748547256, 0.504924953, -0.0045215543, -0.2721609473, 0.0529046878, -0.1828316897, 0.1526128203, 0.4952750206, 0.0034148134, -0.0024313703, 0.1519777924, 0.0838477761, -0.2381068766, 0.3139927089, 0.204749912, 0.005121801, -0.4276715517, -0.3296126425, 0.4816827178, 0.0816813111, -0.1838091314, 0.2121184468, 0.1973605901, -0.0482706428, 0.1212411821, -0.3054201901, 1.2670211792, -0.0345084295, -0.0262743793, 0.1436279416, -0.2191210836, 0.0564317405, -0.5175654888, 0.0886530429, 0.211225003, -0.012560986, 0.0200397968, 0.09092246, 0.0053874552, 0.149871245, -0.3562776744, 0.0733414814, 0.0318917781, 0.0326334648, -0.0236462094, 0.5749597549, -0.1809686869, -0.1283801943, -0.1721372902, 0.2032584697, 0.0231015645, 0.3418019116, 0.0594901405, -0.2116237134, 0.0384424776, -0.1193578392, -0.7108004093, 0.1404064894, -0.2019816339, -0.014248726, -0.5004389286, -0.1042035073, 0.4435340166, 0.1194508672, 0.1769237369, 0.2440028191, -0.3941906095, 0.241664052, -0.146607846, -0.1694498211, -0.0521145388, -0.0279145278, 0.3019591272, -0.2829476595, -0.3729138374, 0.2836355269, -0.0017943196, 0.0282253921, -0.460077256, -0.0511175469, 0.1826191992, 0.0197834596, 0.2207044661, 0.3797983527, -0.1771150082, -0.2517741323, 0.1449235678, -0.0685281008, -0.3642729223, -0.0433898643, -0.167324543, -0.2443782687, 0.0272838883, 0.3833366036, 0.1490148902, -0.1059540361, 0.5424473286, 0.3601783514, -0.2853144109, -0.2442193627, -0.1411848813, -0.1164883003, -0.7241873145, -0.0106915701, 0.0764477849, 0.0580204576, -0.1022747084, 0.225374043, 0.2350115031, -0.0569153577, -0.0101075172, -0.3057069182, -0.2525344193, -0.0836957246, -0.0783476904, 0.0156386849, -0.0557723418, 0.2327732146, 0.2338801026, -0.0516495705, -0.3866990805, 0.0963932648, -0.1417026222, 0.1572552472, 0.3518306911, -0.262668997, 0.2583803833, 0.0998057127, 0.1214569658, 0.036853306, -0.1825639904, -0.1610726416, -0.0565742515, 0.1114049703, 0.0681373551, -0.0288579687, -0.0404423401, -0.3640971184, -0.0717705339, 0.2755314112, 0.210009113, 0.1929805279, -0.0068821982, -0.0666664317, -0.0738980472, -0.0178618766, 0.2682752609, 0.2190891951, 0.0859693587, 0.4051484466, 0.1010475606, 0.2030219734, 0.0525424778, -0.0890605599, -0.2841538489, 0.1198026463, 0.1499394774, 0.0518203527, 0.1336271763, -0.0791229159, 0.2745363116, 0.2660780251, 0.1616653651, 0.0666778535, -0.0928051919, -0.0901128575, 0.4874471426, 0.2030069381, -0.241547823, 0.0762770176, -0.1121353954, -0.1848821044, 0.0124608725, -0.1028382927, 0.1134570241, -0.2010248601, 0.1946463883, -0.0380837545, -0.028169997, -0.0194156971, 0.0293575935, 0.3393169343, -0.0418850444, -0.2344799191, 0.1169251576, 0.1433212608, -0.0137235709, 0.2548775077, -0.1808047146, 0.2845473289, -0.0537582934, 0.222052604, 0.0302966051, -0.356372118, 0.112045005, 0.0706906617, -0.0667740405, 0.2324641049, -0.0055032633, 0.2380446494, -0.001826752, 0.0617613681, -0.2219622433, 0.304499805, 0.1409573406, 0.0731001198, 0.0690341815, -0.2575114965, -0.244553104, 0.0742554292, -0.0776849985, -0.2890951037, -0.1114569008, 0.2190823108, -0.2013316154, -0.1336745769, -0.1104750559, -0.163109988, 0.1939911842, -0.3072600961, 0.3899514675, 0.0809237808, -0.0012232978, 0.390175879, 0.399512887, 0.4556732178, 0.0792811215, -0.1206801534, 0.2690317631, -0.0715334713, -0.1090682745, 0.0018280596, 0.5251638293, 0.3019499183, 0.1344430894, 0.3727324307, 0.1574205756, -0.1941334754, -0.1215396821, 0.0120797725, -0.031494569, -0.1955310851, 0.1012362391, -0.2375436127, -0.0593922623, -0.4787732959, -0.1821278632, -0.7445862889, 0.0120569393, 0.4457139671, -0.2951317728, 0.1217686012, -0.2555832267, 0.0848085657, -0.1629757881, 0.278334409, 0.4391410053, 0.2204273343, -0.0607468933, -0.0793665349, -0.5453097224, 0.0916671753, -0.1029384136, 0.2013348192, -0.2300069481, 0.1344804168, 0.1855963767, 0.1058829129, 0.0845327899, -0.0155992918, -0.2895377576, 0.1473765224, -0.1530162841, 0.0604416803, 0.1155014634, 0.4367622435, -0.0457752943, -0.1615926623, -0.0311629623, 0.0709578246, 0.0324437842, -0.0576380827, -0.100095585, -0.2733290195, -0.2293983698, 0.2840519547, 0.1085324883, 0.5500638485, -0.1439039111, -0.0561833233, -0.417640239, -0.1313672662, 0.0082358457, 0.0296614841, 0.1782098114, 0.2597200274, -0.140337348, 0.2682731152, -0.0455154367, -0.2081949115, -0.116861321, 0.1763538122, -0.3187261224, -0.0397252217, -0.1087753028, 0.1464365125, 0.0685594082, 0.0935342312, 0.1244539768, -0.2427156568, -0.3076226115, -0.1533099115, 0.5325171947, -0.2489626259, -0.4053454399, 0.0748476386, 0.4408690333, -0.018105194, 0.1790778339, -0.5474324822, 0.3000044227, 0.3179768026, 0.1242565513, 0.0236968622, 0.121131666, -0.0514777452, -0.0300047621, -0.0176147483, -0.073943831, 0.1150656417, -0.1863278151, 0.2279140055, -0.2254250348 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
Also there are huge those datasets. Think downloading MuST-C v1.2 amounts to ~ 1000GB... because there are 14 possible configs each around 60-70GB. I think users mostly will only use one of the 14 configs so that they would only need, in theory, will have to download ~60GB which is ok. But I think this functionality doesn't exist yet in `datasets` no? cc @lhoestq
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
64
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Also there are huge those datasets. Think downloading MuST-C v1.2 amounts to ~ 1000GB... because there are 14 possible configs each around 60-70GB. I think users mostly will only use one of the 14 configs so that they would only need, in theory, will have to download ~60GB which is ok. But I think this functionality doesn't exist yet in `datasets` no? cc @lhoestq
[ -0.3945279121, 0.275619626, -0.0875779688, 0.0062159374, -0.0652417094, 0.0286357403, -0.1824724674, 0.2685897946, -0.2595129609, 0.3226702809, -0.293676734, -0.2957715988, -0.1945612878, 0.1870186925, 0.2089397311, 0.091052264, 0.03006652, 0.2597108185, -0.4889111221, -0.104781054, -0.0244905502, 0.1415160298, -0.1815803349, -0.1668797284, -0.204527244, -0.0136401057, -0.3177773952, -0.291628629, -0.3166219592, -0.338955462, 0.2591307759, 0.4024865627, 0.2682637572, 0.2643736005, -0.0001165047, -0.1814155132, 0.1977111697, -0.2872519493, -0.4984129667, 0.0147205368, -0.2707026005, -0.399599582, -0.4279792309, 0.0496152043, 0.0131070092, -0.258694768, 0.2993297875, 0.1313708127, 0.1540210992, 0.6043409705, 0.1189384684, 0.1227990836, 0.1979774833, -0.2026143819, 0.3769964874, 0.0362643749, -0.0884145349, 0.2486228943, 0.2113147974, 0.0940598696, 0.3303393722, 0.3243899941, 0.2032754272, -0.1683718562, 0.0405364707, -0.3225007653, -0.2506560087, -0.5101642609, -0.0138994958, 0.4631098509, 0.6668590307, -0.310122788, -0.1322304904, -0.1701138914, 0.2439388335, -0.1759988666, 0.0123597011, 0.0486718342, -0.2894201875, 0.2103220969, 0.0058160238, -0.3425409198, -0.2323834598, 0.3928027451, -0.1653023362, 0.0985151753, -0.1363165677, -0.0438101403, 0.2220847607, -0.2304327786, -0.2993950844, -0.0486108065, -0.0103294216, 0.0844986886, -0.2337270975, -0.4959621429, 0.1698435694, -0.0315785259, 0.1768457592, -0.4561895132, -0.1986816376, -0.2189818919, -0.2775394619, 0.0029938701, 0.1145824566, 0.3686309457, 0.0728997886, 0.0945082009, 0.1670209169, -0.3023113608, 0.1047605574, 0.0855698586, -0.1426622123, 0.1373976171, -0.4395268559, 0.1589256227, -0.1422382593, -0.0756255835, -0.3051211238, 0.1805665195, -0.0362612754, 0.1540668011, -0.0433285125, 0.1592667252, 0.0638661534, 0.3321656585, 0.0086354986, 0.2712831795, 0.0737077445, -0.2359880209, -0.0156378448, 0.074316293, -0.1880131662, 0.2972604632, 0.3724645674, 0.1695255637, 0.2306045443, -0.1234049797, 0.2562733591, 0.2554159164, -0.1575927138, -0.0771214664, 0.0842523277, 0.2003102303, -0.0076147914, 0.0768665075, -0.3242165446, 0.0385290682, -0.3530518413, 0.1165568531, 0.1461153179, -0.1681926101, -0.0042420728, 0.1208605692, -0.1454243213, -0.184690401, -0.3141505718, 0.6670891047, -0.1658896953, -0.1884398758, -0.0326194763, -0.0620023198, -0.3356944919, 0.0928695053, -0.2054016888, 0.3628074527, -0.4599135518, -0.0312914327, 0.051673539, -0.0194719322, -0.016583126, 0.2870407701, -0.1658417881, 0.2281007618, -0.1118805707, 0.1431228966, 0.1121345609, -0.3574815094, -0.4023278952, 0.2297328413, -0.0250994861, -0.0528224818, 0.3132530153, -0.015470054, 0.6000573039, -0.4032658339, -0.1561004072, 0.3050539196, 0.0663900077, -0.0649885982, -0.2170979977, -0.550621748, 0.0757223442, 0.082010448, 0.2562988102, 0.0670406967, 0.1327700764, 0.4450989068, 0.4237915576, -0.2013008744, 0.1830310822, 0.1810792089, 0.1005278528, -0.0762892216, -0.0904815271, -0.3603587747, -0.2245749682, 0.0752417818, 0.1699468493, 0.2961943746, 0.2997468114, -0.3767050803, 0.0566247702, -0.2456872761, 0.0667728409, -0.0151305357, 0.098712489, 0.2176591158, 0.2734746039, -0.1541106105, -0.1304289401, 0.3823816776, -0.4641738236, -0.2312880009, 0.0643945038, 0.147885263, 0.0651067048, -0.1028501838, 0.1676029116, 0.0703045428, 0.1173248291, 0.0539963394, 0.0847353637, 0.1348593831, -0.1568976641, 0.1102482751, -0.0723440349, 0.0968141407, 0.3385639787, -0.4492700696, 0.2706464529, 0.3665557504, 0.1374396086, -0.0989106819, -0.236275211, 0.0285661444, 0.2820814848, 0.1219367981, 0.2826951444, -0.1613167226, 0.2331680059, 0.1416086853, -0.1827304363, -0.3336019516, 0.1005614847, 0.3341188431, -0.2534898818, 0.1324933171, -0.2808023691, -0.0448419265, 0.5708270073, -0.0869841129, 0.3257893622, 0.4019413292, -0.0270679332, -0.2196686715, 0.1617396325, -0.1772950292, 0.3905668259, 0.4227868915, 0.4028220773, 0.0894211754, 0.0876602232, -0.1421586871, 0.1728158891, -0.0489126034, -0.2792553604, 0.1039385945, 0.0364371836, -0.0634938627, -0.3835654855, -0.1189082712, 0.0626149997, 0.1745644659, -0.1854745448, -0.4444788694, -0.169307515, -0.1456028074, -0.0709974989, 0.0894656181, -0.0064907223, -0.0500766672, 0.2922295332, 0.1339639276, -0.1373101771, 0.1132405251, 0.0293734893, 0.4036889076, -0.3597383797, -0.0985201597, -0.0108862668, -0.1740552783, -0.3488501012, 0.1027490571, 0.1526206732, 0.035141509, 0.0346485674, -0.2288290709, 0.1461687535, -0.1769774854, -0.4210932255, 0.20963341, -0.1606574655, 0.0314973891, -0.1883481145, 0.1851783693, 0.0184183195, -0.2307132483, -0.3356031179, 0.0843587294, -0.1430410594, -0.0794478208, -0.4712268114, -0.0872178078, -0.0490196832, -0.3670850992, -0.4791996479, -0.4064485133, 0.4187774062, -0.13183254, 0.1176661253, 0.1957016289, 0.1825721711, 0.0393263362, -0.2441081852, 0.1794230342, -0.1795470268, -0.2061037123, 0.304410547, -0.2531210184, -0.1693059504, -0.1619274914, 0.1287619919, 0.0721427649, 0.1599913836, -0.471698761, 0.2716135681, -0.3734461963, 0.3990855813, 0.0809291452, 0.1973962337, 0.3172205389, -0.2313881218, -0.0570687689, -0.0361833647, -0.1424658895, 0.0372337326, 0.4006440341, 0.1502835155, -0.1070053875, 0.0874564573, 0.2645626664, 0.6685683727, 0.2341577411, 0.0370726287, 0.1252325475, 0.1093168259, 0.6374331713, -0.2302096933, -0.1813358068, 0.415643096, 0.2194649577, 0.0160644948, 0.439476192, 0.039807111, -0.3308630586, -0.114027299, -0.2987891734, -0.0439484082, -0.2636797428, 0.2918445468, -0.0301601123, 0.1868847609, 0.0441699401, -0.1829177141, -0.1949278265, -0.1114954799, 0.0028249808, 0.1889385879, 0.0259739291, 0.1535167843, -0.1168708056, -0.1004864722, -0.2401670069, -0.0825168118, 0.090208292, 0.3649485409, -0.3448265791, 0.0559176654, -0.1013513356, 0.1461898983, 0.3217299879, -0.2075680941, -0.1045046449, 0.0868099853, 0.6164699793, -0.2222559303, 0.0991289243, -0.1585007459, -0.450209409, 0.5935949087, 0.1860442609, -0.2508347034, -0.0868007839, 0.2934372723, 0.3685334623, 0.0084276721, -0.166043669, 0.0170779824, -0.2766519487, -0.4073577225, 0.3156574667, 0.3849785924, -0.1538510323, 0.2192333043, -0.0300266854, 0.0518158004, -0.2847198248, 0.3886930645, -0.0245379433, -0.1007305384, 0.5650277138, 0.1747565567, -0.0981940925, -0.4175641239, 0.0092702489, 0.3048290014, -0.0742587894, -0.3260020912, 0.0351704285, -0.0817232877, 0.3339950442, 0.459690094, -0.1333197355, -0.0458887406, -0.1416230351, 0.0858748034, -0.1006511524, 0.4539073706, 0.11331743, -0.0340530947, -0.2912556529, -0.3026302457, 0.4794855714, 0.0659985617, -0.1266180873, 0.2027906179, 0.0990393311, -0.3326154053, 0.0656474233, -0.1355229318, 1.2328357697, 0.1060665697, 0.1131637916, 0.0218701847, -0.278885901, 0.2806352973, -0.6616116166, -0.0141230226, 0.4549620152, 0.1489108503, -0.0561078116, 0.223075673, 0.1939224601, 0.3626055121, -0.3357537687, 0.3182622492, 0.1121501774, 0.1734451503, 0.2129336745, 0.5456158519, -0.5706208944, -0.3597720265, -0.1181828678, 0.1514993608, 0.1357630789, 0.168772772, 0.0115255341, -0.1516529769, 0.3683596849, -0.0621875972, -0.6386958361, 0.1000989676, -0.3431994021, -0.1112853885, -0.5482457876, 0.0690913796, 0.3296595216, 0.2797996104, 0.2434126437, 0.3696205914, -0.3438284993, 0.2961903214, -0.0447204858, 0.029231742, 0.1249241829, -0.1796912253, 0.1681113988, -0.3176144361, -0.1660710573, 0.1971087903, 0.1828443706, -0.0068472102, -0.3814733028, -0.1982240826, 0.1744089872, 0.2231497765, 0.1668538153, 0.633223176, -0.0268849358, -0.1847649217, 0.0941915363, -0.0539351441, -0.2978715301, 0.2821994424, -0.4007062018, -0.2325911969, -0.3334190547, 0.2964724898, 0.2167979479, -0.0397386141, 0.2869241834, 0.0810228884, -0.2079162896, -0.3785051703, 0.0075604916, -0.231905818, -0.4202313125, 0.0416330248, 0.0250495002, -0.119592011, -0.3540140688, 0.4248911142, 0.2778805494, -0.1271969676, 0.1037698835, -0.0079146177, -0.3289752603, -0.1241015196, 0.1137881577, 0.2326823473, -0.0208350793, 0.2385649532, 0.0373870656, 0.0770755112, -0.3000095487, 0.0434973612, 0.1029212847, 0.1660786569, 0.109402746, 0.125208199, 0.2947097123, 0.0223570801, 0.0217251703, 0.1234144419, -0.0627962425, -0.0628795028, -0.1510154158, 0.1382301897, 0.1991147101, 0.251187861, -0.0107894912, -0.1329910606, -0.1390428543, 0.0840049088, 0.3748179078, 0.3341174722, -0.1051127389, 0.2455534339, -0.0621529818, -0.1095393449, 0.1172339618, 0.0981836766, 0.3158513904, 0.3510115445, 0.2124055624, 0.3487105966, 0.0388750248, -0.169639796, -0.087938264, 0.4134812355, -0.0203129798, -0.0497466028, -0.0338478461, 0.1199691445, 0.0941872448, 0.2626898885, -0.0582998954, 0.2162444293, 0.0737692416, -0.0963563025, 0.4845877886, 0.1590505391, -0.1836367249, 0.1744568795, -0.3760048747, -0.189887017, 0.0168812871, 0.1298242211, 0.0204857737, -0.1960723698, 0.4394220412, -0.0681828111, -0.2496245503, 0.1491875052, 0.1073626131, 0.2614361048, 0.1854946911, -0.1375294775, 0.1784849465, 0.0797980428, 0.2343600392, 0.2207277417, -0.3789797127, 0.2936008275, 0.1280775964, 0.1260852963, 0.1932242364, -0.3421129286, 0.1357569546, 0.2370890081, 0.0199660212, 0.1160637811, 0.0408362374, 0.0434153602, 0.0027097501, -0.0969313383, -0.3338381648, 0.0546515435, 0.0608655661, 0.000347361, -0.1674051285, -0.2518036366, -0.0856498182, 0.1786960065, 0.0157076791, -0.5163862705, -0.0341339037, 0.242174089, -0.1619965881, -0.3491896391, 0.0915442854, -0.2302367389, 0.1470190883, -0.3118007183, 0.4185451269, 0.0030814894, -0.1227412969, 0.2632629275, 0.3552527428, 0.3930786252, 0.0928429663, 0.0519842319, 0.1928480268, -0.0420667641, -0.065275453, -0.1556446552, 0.3456255794, 0.0366830342, 0.4378799498, 0.2163713723, 0.1574175209, -0.1573794782, -0.1653936356, 0.0571069345, -0.1900060773, -0.3627472222, 0.2912068069, 0.0606484786, 0.190256685, -0.2029945701, 0.0283356253, -0.5914894342, -0.0446673781, 0.4822024107, -0.3417669535, 0.2164017856, -0.2335921377, 0.0536474288, -0.2062035948, 0.2428195775, 0.3525643647, -0.0174203012, -0.2116132677, -0.0569504425, -0.2593864501, -0.2869324088, -0.1189724207, 0.0825195014, -0.3457995057, 0.2447004616, 0.2578909695, 0.3945358992, -0.2088100761, 0.2064207345, -0.2922373712, 0.0576989539, -0.231418997, 0.2513569891, 0.0288173519, 0.6024891138, 0.0707646161, -0.3821690083, -0.1606888771, 0.0845790952, -0.0325328931, -0.2092237771, -0.003352955, 0.0119190365, -0.1906454712, 0.3746901155, -0.0606211349, 0.5547398925, -0.1299277544, -0.0191289261, -0.2614653707, 0.1284421533, -0.1860154569, -0.1669569016, -0.0351504907, 0.2119606137, -0.3294381201, 0.3177522719, -0.0082026981, -0.0343668163, 0.0126503184, 0.0495777279, 0.0258299112, -0.0817401409, -0.2075354904, 0.1316099316, 0.0134996101, 0.2541103661, -0.0143942945, -0.1189334691, -0.2897936106, -0.2972884774, 0.3701491058, -0.1548675001, -0.2318076938, -0.1498016566, 0.3886856437, 0.2876123488, -0.0012166649, -0.5777562857, 0.2842464447, 0.3728412688, 0.1047300249, 0.070694916, 0.2855326235, -0.0053190365, -0.0531593487, -0.1251319945, 0.185873121, 0.0784617439, -0.3833415508, -0.0848382413, -0.4800364971 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
> Also cc @lhoestq - do you think we could mirror the dataset? Yes we can mirror it if the authors are fine with it. You can create a dataset repo on huggingface.co (possibly under the relevant org) and add the mirrored data files. > I think users mostly will only use one of the 14 configs so that they would only need, in theory, will have to download ~60GB which is ok. But I think this functionality doesn't exist yet in datasets no? cc @lhoestq If there are different download links for each configuration we can make the dataset builder download only the files related to the requested configuration.
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
110
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). > Also cc @lhoestq - do you think we could mirror the dataset? Yes we can mirror it if the authors are fine with it. You can create a dataset repo on huggingface.co (possibly under the relevant org) and add the mirrored data files. > I think users mostly will only use one of the 14 configs so that they would only need, in theory, will have to download ~60GB which is ok. But I think this functionality doesn't exist yet in datasets no? cc @lhoestq If there are different download links for each configuration we can make the dataset builder download only the files related to the requested configuration.
[ -0.3701685071, 0.0756931603, -0.0500220209, 0.142800957, -0.1143723279, -0.0225356594, 0.0245046467, 0.2528820932, -0.2171293199, 0.2163130492, -0.363476932, -0.271386683, -0.0952888727, 0.2548372149, 0.1178232357, -0.225666672, 0.0715245605, 0.0628930628, -0.493439734, -0.1806571335, -0.0167998374, 0.0800376907, -0.0771323293, -0.1608680636, -0.2286909968, 0.0514314324, -0.3497376442, -0.2192531973, -0.3488776684, -0.2112866491, 0.0303793848, 0.2346599698, 0.2090708762, 0.3533754945, -0.0001047188, -0.0938933343, 0.2101815939, -0.227552563, -0.4023522437, -0.14741759, -0.1694559157, -0.2165040374, -0.4638260305, 0.0432071239, -0.2301789224, -0.1932921708, 0.1055441871, 0.0908902958, 0.3507658541, 0.3985463679, 0.2088296413, 0.1681185514, 0.1384951025, -0.1770464331, 0.1294427216, -0.0271134153, -0.0644719526, 0.1953022629, 0.2781895697, 0.2423402667, 0.0250677671, 0.4822726846, 0.0510127395, -0.1121774241, 0.0645826161, -0.3023506403, -0.1228585839, -0.4970507622, 0.0585183278, 0.4549773932, 0.7421860099, -0.2327513695, -0.2601964772, -0.3296449482, 0.2417100966, -0.0608054027, -0.0412629731, 0.1268950999, -0.2630254626, 0.3054473698, -0.0407550335, -0.3075761199, -0.1850807071, 0.3004447818, -0.024644427, 0.2349759787, -0.1525675952, -0.0494457968, 0.0938342363, -0.3000545204, -0.3330554664, -0.13879776, -0.0195222646, 0.183954224, -0.1306202412, -0.3575484753, 0.1271689534, -0.0699245483, 0.2695180774, -0.246839568, -0.1844829172, -0.160242483, -0.1086534262, -0.0174748283, 0.1974956542, 0.4110046625, 0.0508599207, -0.0448151082, 0.0490414761, -0.2103945613, 0.0838980079, 0.0806302577, -0.0542863198, 0.2022230625, -0.4636358619, 0.0314629748, -0.0657023937, -0.1599666476, -0.106928587, 0.0018304996, 0.045621492, 0.0221909545, 0.0139317028, 0.2629641294, -0.0254199002, 0.2773422301, -0.0889123306, 0.3318889141, 0.0076960847, -0.2727166414, -0.0556418262, 0.0387541503, -0.2634618282, 0.252884984, 0.2420614362, 0.2499383092, 0.2341477871, -0.0182294548, 0.2714517117, 0.073462896, -0.1332447082, -0.0212272555, 0.1294781864, 0.0178691447, 0.0261995643, 0.1165113598, -0.2889257073, -0.1574311256, -0.3001945019, -0.0070913285, 0.0725396127, -0.1672896743, -0.1503562629, 0.2312589884, -0.276588887, -0.21987921, -0.3784281611, 0.7613044977, -0.1571653187, -0.0671316087, -0.0258612186, 0.1604847759, -0.4984613657, 0.0312190317, -0.0184655488, 0.5725066662, -0.2136999071, -0.2364329994, 0.1852801144, -0.0407376066, -0.0329278372, 0.3206633925, -0.1548605263, 0.2370498478, -0.0643226653, 0.3969774842, 0.0862113833, -0.3365669549, -0.3337923288, 0.2003621161, -0.1630745232, 0.0126824528, 0.2968085408, -0.1083987504, 0.6236364841, -0.3085471392, -0.0656215549, 0.4407992065, 0.0436888933, 0.0763146579, -0.2191425562, -0.4411574006, 0.1737980694, 0.2197505534, 0.0945776254, 0.0077126212, -0.054191988, 0.3305040896, 0.2851981521, -0.2774310112, 0.3457453251, 0.1845484078, -0.0375551507, -0.0314104743, -0.0289488118, -0.2494549453, -0.2396084666, 0.070197463, 0.1038627774, 0.4097926915, 0.2049586475, -0.2575560212, -0.143522501, -0.2272382081, -0.2329360992, -0.1436644942, 0.2024190724, 0.1730021536, 0.2226164937, -0.0140868872, -0.1622645408, 0.327618897, -0.3089621067, -0.1129499823, -0.1202504039, 0.213465929, 0.0581183434, -0.1602449715, 0.2480311245, 0.3261514902, 0.105511032, 0.0229460634, 0.0819456279, 0.1655614525, -0.2360562384, 0.2517372072, 0.1058905944, 0.2329817861, 0.3496471643, -0.4438669086, 0.3718275428, 0.322609812, 0.1047072783, -0.1649801284, -0.2093897611, 0.1110280156, 0.3269997835, 0.1179435998, 0.145189926, -0.0675861239, 0.285610944, 0.0367301702, -0.2883067131, -0.1736772358, 0.1110666096, 0.1211391687, 0.0097598508, 0.1580419987, -0.3687123656, 0.1698783934, 0.4562642574, -0.1424194872, 0.1689661592, 0.3246620893, -0.2069307566, -0.1832820028, 0.0871323794, -0.1043375954, 0.2261551768, 0.3713856339, 0.3932771981, 0.1242209449, 0.2300580442, -0.0834783316, 0.1232808232, -0.1006212384, -0.2778013945, 0.1717962027, -0.0068289153, -0.0828556269, -0.3244180083, 0.0117569268, -0.0339590907, 0.1024274975, -0.1919403374, -0.4238790274, -0.0389806144, -0.4275492728, -0.3429191113, 0.0687208474, -0.2192067802, 0.0812050328, 0.3772012889, 0.0171468053, -0.2011988461, 0.1920419931, 0.2446413636, 0.2857397795, -0.37916857, -0.0679685101, -0.029263556, -0.2193162292, -0.1448602676, 0.1591055691, 0.2893210948, 0.1332321167, 0.2628845572, -0.2597984076, 0.0545176417, -0.2878355384, -0.3296544552, 0.259139657, -0.181673944, 0.034245275, -0.2146518975, 0.1287188977, -0.0098622888, -0.3360489905, -0.1346302927, 0.1360160708, -0.0662713274, -0.1435025632, -0.36943838, -0.1905807555, 0.015816994, -0.4421799183, -0.5470237732, -0.4363860488, 0.4418893456, -0.2328885496, -0.0117503665, 0.0389079563, 0.1485844553, 0.0861272737, -0.2614700794, 0.1999531388, -0.278072089, -0.2521600127, 0.1967476755, -0.2384421378, -0.3239276409, -0.2167913169, 0.1482233703, 0.0329869241, -0.058827132, -0.3675884008, 0.0656408221, -0.217186898, 0.3849048018, 0.1657077074, 0.3021328747, 0.2084795386, -0.0548926108, -0.0997458249, -0.0484946482, -0.1371174306, 0.0944611803, 0.2940379679, 0.1207406893, -0.0373632237, -0.0135128452, 0.0706402063, 0.7331618071, 0.4433306456, 0.0359319523, 0.1378313154, 0.0668265969, 0.4425567389, -0.2520737648, -0.2575766146, 0.4864842892, 0.1110292524, 0.048015967, 0.5023179054, 0.1446160972, -0.3531344533, -0.1621279418, -0.3827893734, -0.1612782478, -0.3055438995, 0.3122987151, 0.1487030387, 0.1491456926, 0.0018653423, -0.2088147998, -0.1799125969, -0.0995179117, 0.141110003, 0.1865562201, -0.0672529191, 0.1155246496, -0.2071301639, -0.0609680489, -0.4196374714, -0.1190640256, 0.1540754586, 0.1639533341, -0.3308214247, 0.064585641, -0.0311976522, 0.1847552806, 0.3390970528, -0.1980143189, -0.0449628755, -0.0339771472, 0.3296682239, -0.0582749136, 0.2281970084, -0.1363881826, -0.3484120965, 0.5243239999, 0.3274694681, -0.4339469373, -0.0851389766, 0.1836049855, 0.4520296454, -0.0459544919, -0.2049321234, 0.1689304411, -0.3000574112, -0.4342631102, 0.2032824308, 0.4088583589, -0.1114470065, 0.1911323667, 0.0783083141, 0.2157871574, -0.0504505709, 0.3658595383, 0.1175389811, -0.003035415, 0.4130163491, 0.2029375434, 0.0896570534, -0.0690989643, -0.0898937061, 0.3772082925, -0.0236033611, -0.304322958, -0.1228892505, -0.2131721675, 0.2043744624, 0.3947959542, 0.0938251242, -0.0437684879, -0.0077699441, 0.1236339062, -0.2165965289, 0.1542899907, 0.1270650029, 0.2224366814, -0.3160658181, -0.3919178545, 0.512501955, 0.0450157374, -0.0917448997, 0.0586714409, 0.2783918381, -0.2230504155, 0.1936855614, -0.2150405049, 1.2153539658, 0.1881244928, 0.1148180813, 0.2017797977, -0.2469555289, 0.2023083121, -0.3942829669, -0.1897051036, 0.2721055448, 0.2457346022, 0.0009762123, 0.2117396891, -0.081331566, 0.2784787118, -0.4962839484, 0.27118963, 0.111390084, 0.0455693789, 0.088385731, 0.5809124112, -0.4232156575, -0.474290669, -0.3706197739, 0.2387134731, 0.0902496576, 0.1875306368, 0.1156487763, -0.2339890301, 0.1649766862, -0.0428297557, -0.6325407028, 0.108403638, -0.2850007117, -0.2105821967, -0.3871233165, -0.0091049969, 0.3368225694, 0.2709599733, 0.2840486467, 0.019789502, -0.3268595934, 0.2202640027, -0.084544301, 0.0496502966, 0.0946389437, -0.099122718, 0.4290615916, -0.3332928419, -0.2859703898, 0.0680477023, 0.1607717276, 0.1462598741, -0.4129219651, -0.2794246376, 0.0710081905, -0.0287153702, 0.1341013312, 0.5576697588, 0.0208148956, -0.1288645566, 0.1656281352, -0.0068198238, -0.4491666555, 0.2423339933, -0.1395211965, -0.2203084528, -0.1989902854, 0.2189776003, 0.2148142904, -0.058596462, 0.3552798033, 0.2256364673, -0.1796316653, -0.304404825, -0.068485871, 0.0781838298, -0.5221434236, 0.0359213278, 0.0717628971, -0.1466498077, -0.3378516138, 0.2661675811, 0.2490735799, -0.1029823422, 0.0247283801, 0.0002231598, -0.2718349099, 0.026480671, 0.1696318537, 0.1759605706, -0.1232427806, 0.2195599973, 0.1706391573, -0.078008458, -0.4171722233, 0.0327238813, -0.0236657895, 0.1987484246, 0.3878062665, -0.0310054757, 0.156235218, 0.0350586101, 0.1031297147, -0.0903012007, -0.2246173024, -0.2040345818, -0.2099710703, 0.095698446, 0.1128563136, 0.1228677034, 0.0327093303, -0.1171437204, -0.1364217103, 0.059191253, 0.3521561027, 0.3154355586, -0.0766701475, 0.2034243345, 0.0385510437, -0.0821072757, 0.0648194924, 0.1983173192, 0.342834264, 0.3074678779, 0.1040438786, 0.2209668458, 0.0071884096, -0.1154132858, 0.0740619153, 0.3046559095, 0.1857201457, 0.0020022094, 0.0726078153, 0.1045007482, 0.2016431689, 0.2957168818, 0.1713348776, 0.1734621227, -0.0500464961, -0.0748888701, 0.4209253788, 0.2539655566, -0.1479904056, 0.1724186987, -0.012595403, -0.2478968948, 0.1724132448, 0.148293823, 0.1070314497, -0.0411761478, 0.2748093903, -0.1327526569, -0.115359582, 0.1135309413, 0.066015102, 0.2415053397, 0.1296443492, -0.0722671747, 0.0194692034, 0.1619675756, 0.1729011685, 0.0256020334, -0.266692698, 0.3512327969, -0.0096799154, 0.2321713567, 0.200237602, -0.1344333738, 0.1186262369, 0.1756957769, 0.1315771788, 0.2086505592, -0.0427126512, 0.3043559194, 0.0406308696, -0.2704009712, -0.1132575348, 0.3184619844, 0.0908868462, -0.0968169346, -0.1420930475, -0.2933769822, -0.3084367812, 0.1166448742, -0.0699635744, -0.4248720109, -0.0010502078, 0.182661429, -0.0767161101, -0.1978779584, -0.0527085848, -0.1791318655, 0.1575366259, -0.2776766419, 0.3628769815, 0.1634910256, -0.1249060631, 0.3019220829, 0.5595840812, 0.4070014954, -0.0130085964, -0.0583067015, 0.3310623467, 0.0331278108, -0.0445072837, -0.1409431696, 0.2963183224, 0.0173038375, 0.0616052747, 0.2934179604, 0.1977272928, -0.2278092504, -0.2308119982, -0.0280465148, -0.2064988613, -0.211259231, 0.0871777833, -0.0741599649, 0.1321626157, -0.4074137807, -0.1699424535, -0.6608302593, 0.1593292356, 0.4730759859, -0.2615093291, 0.1429407299, -0.1474591792, 0.1028150022, -0.1227622852, 0.3599655926, 0.3447947204, 0.0295284446, -0.1041114479, -0.1327615976, -0.4292392135, -0.2139894068, 0.0377323367, 0.0893613994, -0.2855094671, 0.150934726, 0.2879430652, 0.3707044125, -0.1318274587, 0.0075489059, -0.4060833454, 0.0943481028, -0.2334733605, 0.1123219803, -0.0499992147, 0.6286008954, 0.1807159036, -0.1337848008, -0.1789537668, 0.1858934462, 0.0299874842, -0.0430677235, 0.1070522517, -0.2027401924, -0.4029409885, 0.0968326181, 0.0080999378, 0.4688539207, -0.2251965553, -0.0255575031, -0.1893642694, -0.034189485, -0.366324693, -0.0267943516, -0.025911713, 0.2615013719, -0.2757115662, 0.2454530597, -0.0735746101, -0.1564111412, 0.0753838271, -0.0169627201, -0.2175990641, 0.0414992049, -0.1102007553, 0.0860511214, -0.0224215984, 0.3933383524, -0.1096890867, -0.0977686495, -0.2531040609, -0.249000892, 0.4857109785, -0.1461964697, -0.2277174443, -0.0556891114, 0.1905221045, 0.1770894527, -0.0430360027, -0.7272625566, 0.3224760294, 0.2632124126, 0.1082132906, 0.0752159059, 0.2462014258, 0.029301215, -0.0844959319, -0.1843972057, 0.0642647147, 0.1196353585, -0.2461562455, 0.1379874051, -0.345920682 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
I have written to the dataset authors, highlighting this issue. Waiting for their response. Update on 25th Feb: The authors have replied back, they are updating the download link and will revert back shortly! ``` first of all thanks a lot for being interested in MuST-C and for building the data-loader. Before answering your request, I'd like to clarify that the creation, maintenance, and expansion of MuST-c are not supported by any funded project, so this means that we need to find economic support for all these activities. This also includes permanently moving all the data to AWS or GCP. We are working at this with the goal of facilitating the use of MuST-C, but this is not something that can happen today. We hope to have some news ASAP and you will be among the first to be informed. I hope you understand our situation. ```
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
147
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). I have written to the dataset authors, highlighting this issue. Waiting for their response. Update on 25th Feb: The authors have replied back, they are updating the download link and will revert back shortly! ``` first of all thanks a lot for being interested in MuST-C and for building the data-loader. Before answering your request, I'd like to clarify that the creation, maintenance, and expansion of MuST-c are not supported by any funded project, so this means that we need to find economic support for all these activities. This also includes permanently moving all the data to AWS or GCP. We are working at this with the goal of facilitating the use of MuST-C, but this is not something that can happen today. We hope to have some news ASAP and you will be among the first to be informed. I hope you understand our situation. ```
[ -0.1994687617, 0.2436537445, -0.0974726528, -0.0784688592, -0.0106337508, -0.1451658607, 0.0524758138, 0.0750115514, -0.1210072562, 0.3005027771, -0.1688123792, -0.1214634925, -0.0929058343, 0.1014919281, 0.0492406152, 0.0520470515, 0.0159370601, 0.1417455524, -0.4235430658, -0.213757664, 0.067691721, 0.1652443707, -0.197170645, -0.1185604036, -0.2417683005, -0.0051750606, -0.1987968981, -0.1627390385, -0.2773722112, -0.1755133271, 0.309640497, 0.1861111522, -0.0493674837, 0.4138039351, -0.0001041711, -0.0886683688, 0.2680433989, -0.2699058056, -0.5759396553, -0.1869332343, -0.2699013352, -0.301694572, -0.3962217569, 0.0005755723, -0.1565586329, -0.2501753569, 0.1901203543, 0.0845212936, 0.1982961595, 0.5663026571, 0.2318572253, 0.1294274032, 0.1595145762, -0.281353265, 0.2131445408, 0.1161141098, -0.1201321259, 0.3304125667, 0.3230337501, -0.0537695885, 0.0512336865, 0.3351778984, 0.1430388093, -0.1815524101, -0.0345125236, -0.4015656412, -0.1171022356, -0.2742467523, 0.0207960177, 0.2020589709, 0.6257654428, -0.2948607802, -0.128382802, -0.0489040464, 0.2616829872, -0.0491094477, 0.0734442621, -0.0219561048, -0.1568529457, 0.2644259334, 0.2554606795, -0.1469136626, -0.3002216816, 0.3491798341, -0.1034196988, 0.2759411037, -0.1623290777, -0.0958296806, 0.0670065433, -0.1347406209, -0.1982250512, 0.0434116311, 0.079489015, 0.0268597417, -0.2630913258, -0.237475127, 0.1905120909, -0.1299904883, -0.0011347905, -0.25184232, -0.0330652334, -0.1378910244, -0.2423714995, 0.1690666378, 0.0275314301, 0.391599685, 0.0478049442, 0.0258966163, 0.0454385467, -0.1120335907, 0.0168953538, 0.0804202855, -0.0751740932, 0.1211414933, -0.439923197, 0.2164540291, -0.1125945002, -0.0830753222, -0.3828399777, 0.2213925123, 0.0121349394, 0.2058012486, -0.0827771053, 0.2824522853, 0.1129049212, 0.3342097998, 0.0786047354, 0.3183700144, -0.0523517281, -0.2399517745, -0.0853366256, 0.1575846523, -0.3082747161, 0.1993890852, 0.3140443563, 0.1970309615, 0.2421514839, 0.0385024697, 0.334785074, 0.1033798754, -0.2505066991, 0.0173221193, 0.1628823429, 0.1811020523, 0.0541350543, 0.1432271898, -0.1262160838, -0.107607834, -0.1103476733, -0.0072381124, 0.1177455187, -0.1387743801, -0.1597449034, 0.279383868, -0.0914551243, -0.1464096159, -0.256420821, 0.4864545465, -0.166696161, -0.232205525, -0.0334206223, -0.0739757866, -0.2427845448, 0.0647968724, -0.057057973, 0.374424696, -0.4999315739, -0.0448739156, -0.0608990751, 0.0390915573, 0.2153462768, 0.2850776315, -0.1969278455, 0.2209673822, -0.1583907306, 0.1526075751, -0.0754715353, -0.3909392655, -0.4706938565, 0.2447118908, -0.1340877712, 0.0226220638, 0.2044218779, -0.141387254, 0.4970313311, -0.3135373294, -0.0905555189, 0.22671251, 0.1310693026, 0.0209008455, -0.3485866785, -0.2638442516, 0.2214567363, 0.0960477889, -0.0052675344, 0.0703202933, 0.1484972686, 0.2947321832, 0.2475509644, -0.1966796517, 0.1935805082, 0.2508866787, 0.0429263562, -0.1177094579, 0.0268253535, -0.0362827778, -0.2171427011, 0.0160811171, 0.0533795208, 0.5594961643, 0.0495684966, -0.1825214922, -0.2243377268, -0.0805798396, -0.0910210609, -0.0941778794, 0.2362571061, 0.2504652739, -0.0004790202, -0.0016523674, 0.0261908472, 0.3673693538, -0.5647369027, -0.3607931435, -0.0539694242, 0.3357366621, -0.0739978552, -0.196598202, 0.1826987863, 0.1574586481, 0.20130454, 0.063133575, -0.0389978066, 0.0641013533, -0.1801028699, 0.3866425157, -0.0082451366, 0.0721092373, 0.2638547719, -0.6111437082, 0.2364504784, 0.3763166964, 0.2113752663, -0.2172632515, -0.1177737713, 0.1943622679, 0.2179943323, 0.1046343222, 0.1812200099, -0.1003984436, 0.4180652201, 0.0332071036, -0.1543390602, -0.2184642255, 0.1855137348, 0.2518807352, -0.234492287, 0.0502597988, -0.2499331236, 0.1158877611, 0.5303114653, -0.0432325937, 0.2990736663, 0.2960608304, -0.0204638913, -0.2250286043, 0.1431711614, -0.1725825369, 0.3313244283, 0.3123632073, 0.1839496344, 0.0182747263, 0.1111946627, -0.2318572402, 0.2586856186, 0.0642225444, -0.1848547906, 0.2662468255, 0.1669275761, -0.0963259712, -0.4054496884, -0.0904432535, 0.10065189, 0.1656440645, -0.2015104592, -0.2808839083, -0.0934414342, -0.0040672272, -0.0340438448, 0.0120926946, -0.115172185, -0.1763387918, 0.3696876764, 0.145101279, -0.2763327956, 0.2118782252, 0.1701673269, 0.272069782, -0.3504618406, -0.1271257997, -0.2708379924, -0.3859516978, -0.3327585459, 0.1698758304, 0.1569403857, 0.2146904171, 0.1392997652, -0.1036741436, 0.1219486445, -0.2698877156, -0.3286659122, 0.1964508593, -0.2829559445, 0.1926414669, -0.1522850692, 0.1086610407, -0.0662890822, -0.3872901201, -0.1975036561, -0.0399689265, -0.1109137684, 0.0299122781, -0.4460122883, -0.041985888, -0.1716646552, -0.4508724511, -0.5141522884, -0.487308234, 0.1961438358, -0.2305826545, 0.0891243294, 0.2859636545, 0.180277437, -0.0689477846, 0.0484408364, 0.1605437994, -0.3384576738, -0.3026745915, 0.2091612071, -0.2544575632, -0.2924200892, -0.1641887128, 0.0963805541, 0.274587512, -0.1203302145, -0.392546773, 0.2880354524, -0.1640598327, 0.3043845296, 0.0473779216, 0.0017231349, 0.3503230214, -0.1856280714, -0.1792619228, -0.2170029134, -0.1752569824, 0.0425246023, 0.3976612389, 0.2070634812, -0.0541817136, 0.0527155139, 0.1086417511, 0.5772773623, 0.1353756785, -0.0217989292, 0.261528194, 0.090939641, 0.4808557928, -0.2286505997, -0.3318847418, 0.3099712729, 0.1430050135, -0.0537470728, 0.4422287643, -0.0603726916, -0.3396677375, -0.0721120089, -0.248397857, -0.2171345502, -0.2148475051, 0.2890900075, 0.0168242361, 0.2655293345, 0.073643595, -0.1033730134, -0.2026956677, -0.136035502, 0.1813147962, 0.1113094464, 0.0707901567, -0.0174175035, -0.0759067386, 0.023656711, -0.2593643665, -0.0969194323, 0.1112839133, 0.3617001772, -0.4803869724, 0.0305346772, 0.0340187773, 0.0966956913, 0.3674913347, -0.2934882939, 0.0435049646, 0.3052768707, 0.6362547278, -0.1275075078, 0.1157647967, -0.2674595416, -0.3658494055, 0.620419383, 0.1698509604, -0.2620612979, -0.0169062614, 0.0119898077, 0.2751437128, -0.0156396404, -0.2267958522, 0.033833161, -0.3036284447, -0.3658410907, 0.2329226434, 0.4387889802, 0.0009311289, 0.0862247199, 0.0877385288, 0.1206987873, -0.1233058274, 0.4253792167, -0.0216818042, 0.0568762757, 0.4672923088, 0.1263459027, -0.0997462869, -0.2278053164, -0.0194399096, 0.4284513295, 0.0437315479, -0.2520923018, 0.193125546, -0.150516063, 0.3266112506, 0.359015286, 0.0778016001, -0.081198059, -0.1051642746, 0.0309053902, -0.1180352718, 0.2863197625, 0.1681916416, -0.0060652047, -0.2975888848, -0.1450773776, 0.2908438444, -0.1543271393, -0.1423891634, 0.0550683141, 0.1246231198, -0.1998979747, 0.2963705361, -0.1650329232, 1.2194262743, 0.2236504257, 0.0149552925, 0.1721474081, -0.256272465, 0.0460311323, -0.5465513468, -0.101193428, 0.2851533592, 0.0596449822, 0.0313025117, 0.2506733537, 0.0618707463, 0.3207920194, -0.3977724016, 0.1666982174, 0.0624939799, 0.0478254668, 0.252681613, 0.4872467518, -0.2954548001, -0.4569346309, -0.4111872911, 0.2819784582, 0.1554117501, 0.1700686961, 0.1263746619, -0.2567602992, 0.3119807243, -0.0656575337, -0.4868176579, 0.2926015854, -0.2412973344, -0.0754531771, -0.4149532914, -0.0019797385, 0.5006418228, 0.146586746, 0.1877938062, 0.1889210343, -0.2083658129, 0.3673818707, 0.074062109, 0.000978563, 0.1497962028, -0.0317178257, 0.3177671731, -0.2601960003, -0.2962606847, 0.2222312987, 0.0458430946, -0.1283568591, -0.3481414318, -0.1422813237, 0.1343331486, 0.127708897, 0.1980602145, 0.4806859791, -0.1119991392, -0.3046717048, 0.198163718, -0.1300951093, -0.3827234507, 0.2528735697, -0.2519679666, -0.2997050881, -0.2446001768, 0.3813956976, 0.1768238395, 0.0369801447, 0.4371754229, 0.2896380126, -0.2361140698, -0.4695905149, -0.1110735536, -0.0607450344, -0.6077984571, 0.0801754743, 0.1317828596, -0.1747784913, -0.1215535849, 0.4586312771, 0.1244468689, -0.0960197002, -0.0495021604, -0.1959713399, -0.3087390065, -0.180286333, 0.0763666928, 0.139309302, 0.0840596855, 0.2793384194, -0.0072219782, -0.0307109673, -0.4479880333, 0.0897060111, -0.1554457247, 0.1697262675, 0.0266739018, -0.1896653026, 0.4018848836, 0.0606182516, 0.1980848014, 0.1059879661, -0.0371595547, -0.2394753397, -0.1474311203, 0.0904163942, 0.1901025474, 0.3105751872, -0.1229276955, -0.1192800775, -0.1477825195, 0.1248562187, 0.3903586566, 0.2951335311, -0.1126849204, 0.2286195159, -0.1275030971, 0.1538879126, 0.2071767747, -0.1238395125, 0.2368003577, 0.3739459515, 0.0692301691, 0.1296349913, -0.0193297006, -0.1698898077, -0.0997857004, 0.3650919497, -0.0363298357, 0.1720941067, 0.1370666921, 0.0365987122, 0.1279013157, 0.1474030018, 0.0161564052, -0.0191267915, -0.0250654798, -0.2337159216, 0.4090495706, 0.298119843, -0.3287238777, 0.1198652536, -0.4833682775, -0.1793807149, 0.1237439215, -0.0178301483, 0.1064966023, -0.1830838621, 0.482024014, -0.0061357506, -0.1658014357, -0.0534814857, -0.0371487401, 0.1106406301, 0.0659910589, -0.0492980443, 0.1264678836, -0.0264142621, 0.0328793526, 0.1168874949, -0.2144123763, 0.4423992634, 0.1650193334, 0.2033480406, 0.154912442, -0.2464082837, 0.0635346919, 0.1194190681, 0.0035674013, 0.282030195, 0.0636542141, 0.1650800705, -0.0772741213, -0.1518950611, -0.2547220588, 0.058193367, -0.019144753, 0.0379879884, -0.2861799598, -0.1999128759, -0.1709946692, 0.0485198051, 0.0050857021, -0.2091920078, 0.0001078881, 0.1914758533, -0.2331340015, -0.2815383375, -0.1237732023, -0.1230674684, 0.1728275865, -0.2622761726, 0.4665760398, 0.1278894395, 0.0108111529, 0.1999355853, 0.3350884616, 0.4866561592, 0.0178170837, -0.0781435221, 0.0981001556, -0.0484181866, -0.1608694792, -0.0345882997, 0.4915324748, 0.0595956221, 0.2903473377, 0.233367607, 0.2629182637, -0.2601222992, -0.2237100601, 0.2366570532, -0.0909164101, -0.1318199933, 0.2377181947, 0.0385783501, 0.1602681577, -0.4732816219, -0.0502790511, -0.6061915159, -0.0987742096, 0.3786171079, -0.2255296409, 0.2581451535, -0.2684156001, 0.1497335732, -0.2498276532, 0.3377900124, 0.3482753336, -0.0147106592, -0.2086767107, -0.1243184656, -0.2474951744, -0.0501401797, 0.0780660957, 0.0436140448, -0.42005983, 0.1117459759, 0.4651492238, 0.1475226879, -0.1727707684, 0.11166697, -0.2946405411, 0.073541835, -0.3131275177, 0.3269433975, 0.1025161892, 0.4720637202, 0.0635335147, -0.2327401638, -0.3049165905, 0.2680447102, 0.0959119946, -0.1254853904, -0.1032619178, -0.1006208807, -0.08354792, 0.3423154354, -0.0357188471, 0.4685292244, -0.2829301357, -0.0095798224, -0.2334052622, -0.1146845445, -0.0461460575, -0.0356919207, -0.0001258664, 0.2495297194, -0.0652913451, 0.2796508074, -0.0938512683, -0.0676363558, 0.0154784396, 0.0632471889, -0.2129352391, 0.1720929146, -0.216368407, 0.0971577317, -0.241495952, 0.2002521753, 0.1039343327, -0.1538536251, -0.3313706219, -0.2756564617, 0.38220644, -0.1417801529, -0.3627892733, 0.003198009, 0.3467355967, 0.1424879879, 0.0543964282, -0.5818463564, 0.204076767, 0.2936168909, 0.0626480579, 0.0974664986, 0.1681449711, 0.0184589848, -0.0131428763, -0.1100516766, 0.0396539792, 0.1952482164, -0.2644458115, 0.0578302816, -0.3341227174 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
Awesome, actually @lhoestq let's just ask the authors if we should host the dataset no? They could just use our links then as well for their website - what do you think? Is it fine to use our AWS dataset storage also as external links?
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
45
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Awesome, actually @lhoestq let's just ask the authors if we should host the dataset no? They could just use our links then as well for their website - what do you think? Is it fine to use our AWS dataset storage also as external links?
[ -0.1768890917, 0.2350077033, -0.0860686004, 0.2041037232, -0.2330980301, -0.0434642807, 0.3742263317, -0.0443167761, 0.0654880628, 0.1011235565, -0.4423068762, -0.2948475778, -0.0530129969, 0.1902222484, 0.188555494, 0.0627988651, 0.1907828301, -0.2238712162, -0.1670015007, -0.1965385228, -0.1766089797, -0.0732584819, 0.0706344694, -0.0558956973, -0.1098692715, -0.0346705131, -0.2770484388, -0.2518582344, -0.1346012652, -0.109384656, -0.0887259394, 0.0714736581, 0.2122814506, 0.3748488426, -0.0001111458, -0.0383178815, 0.1957085431, -0.0565415546, -0.3509972095, -0.1693966836, -0.5732915998, 0.0660443828, -0.571903944, -0.1017439514, -0.1267907619, -0.2210607231, -0.0247830246, -0.0262527764, -0.02177817, 0.4211543202, 0.1724236012, 0.0767068639, -0.0757347941, 0.071216777, 0.5016143322, 0.1903970689, -0.1208541542, 0.0486079417, 0.1575182825, 0.2447095513, 0.0380538926, 0.483859092, -0.0023887306, -0.0943235755, 0.1407905519, -0.0652170032, -0.2729617953, -0.210596174, -0.058488857, 0.1272960007, 0.9238363504, -0.0804877579, -0.3618768156, -0.0867210776, 0.1270468384, 0.0256301165, -0.0225615725, 0.3293755949, 0.0880340636, 0.4814623296, 0.0730028227, -0.5656750202, -0.2542559505, 0.4220225215, -0.007557556, 0.4286478758, -0.1196793914, 0.0645302385, -0.2250848711, -0.0072907521, 0.1006185859, -0.3901227713, 0.0825692415, -0.1444491744, 0.0219039246, -0.2602430284, 0.1390445977, -0.0016058385, -0.0352104045, -0.1127783358, -0.028062176, -0.2498502731, -0.1836347133, 0.1759288311, 0.1128893495, 0.1946852207, -0.0557105541, 0.1234204769, 0.3331665993, -0.1184014976, 0.1024454683, 0.0535905249, 0.0506213345, 0.3487092555, -0.6194530725, -0.1546133012, 0.0535444617, -0.1730271131, -0.2532060444, 0.2715061009, 0.0761087984, 0.0811216831, 0.0938498527, 0.2281718403, 0.115490593, 0.0970763713, -0.0982917398, 0.4322943687, 0.2728835344, -0.2129610926, 0.0688251853, 0.0687557682, -0.1255344599, 0.2854405344, -0.0134511739, 0.4373064637, 0.0432117656, 0.0723349899, 0.4536826015, -0.0496406965, 0.0844457, -0.0790757984, 0.1410629898, 0.1844742, 0.1113332659, 0.2003936768, -0.2696185112, -0.0829067379, -0.0982415378, 0.1392479539, 0.0410658196, -0.4283362627, -0.2054241598, 0.1530167609, -0.2411667705, -0.1772439331, -0.3937391639, 0.4677193463, -0.1089806706, -0.1580186188, 0.0668163374, 0.3648849726, -0.5243887901, 0.0320258811, -0.2461237609, 0.3035158515, -0.2656872272, 0.1624668539, 0.1506846547, 0.3610345721, -0.0026281253, 0.363070339, -0.3029227853, 0.3589444757, -0.0468869805, 0.2667207718, 0.19629471, -0.231615603, -0.3109976351, 0.3833300471, -0.1581404805, -0.0803027451, 0.1202456355, -0.0930226445, 0.3154142201, -0.2549364865, 0.0380155109, 0.3598025739, 0.3089080453, 0.1584501415, -0.2977127135, -0.3035259247, 0.1937772036, 0.2918931842, -0.0053831525, 0.0401416756, 0.2056321949, 0.1810539663, 0.0813514367, -0.4483516812, 0.3314915895, 0.1831410378, 0.0647250116, -0.0849555284, -0.0895158201, 0.0210449025, -0.2334610224, -0.0143253058, 0.1769768298, 0.5444402695, 0.0163454711, -0.3388361335, -0.1066398621, -0.0903185904, -0.1211050302, -0.2375424206, 0.1293759644, 0.1012216583, -0.0226106346, 0.2113002539, -0.1514017135, 0.1217543483, -0.3733399212, -0.128669396, -0.0627998859, 0.3903955221, -0.0269160233, 0.1604228616, 0.0997133404, 0.2631117105, 0.018151395, -0.1116649061, 0.1229360998, 0.1779538393, -0.1991262734, 0.4674474895, 0.2875539064, 0.2718806863, 0.4537719786, -0.4568030834, 0.4307048321, 0.1117926687, 0.0557064563, -0.2708333731, -0.0953094661, 0.1411744058, 0.0712655634, 0.279833287, -0.0812823027, -0.0139909424, 0.1227946877, 0.1529697925, -0.3194538653, -0.067554459, 0.1192980111, 0.3907162845, -0.0500784591, 0.0840570703, -0.2486938834, 0.2649683952, 0.2224399, -0.1401567757, 0.1298118532, 0.2051117569, -0.161811471, -0.3060460389, 0.3169538081, 0.0108896643, 0.3427010179, 0.2259630114, 0.3396803141, -0.0380175821, 0.202564165, -0.1947644353, 0.399869442, 0.121273905, -0.2317923307, 0.0261173639, 0.0598337092, -0.2210961729, -0.1962628067, -0.1436422914, 0.0685111806, -0.0220153555, -0.2928753495, -0.1260189116, 0.3531066477, -0.2213847041, -0.1454388201, -0.0889573544, -0.2236861289, -0.0737027302, 0.2939586937, 0.0261518322, -0.3882162571, 0.0527431667, 0.1434534341, 0.4267386496, -0.4990487993, -0.2249460667, -0.1499334872, -0.3044841588, -0.0568169355, 0.1155419275, 0.4216356874, 0.0927078873, 0.1239768416, 0.0199195072, 0.1607159823, -0.57592237, -0.0878567398, 0.1158383116, -0.2258939147, 0.104783766, -0.1758355796, 0.005703412, -0.1109206751, -0.3367812634, -0.1069710702, 0.257475853, 0.3168447614, -0.2773307264, -0.1600441188, -0.1456629783, 0.027771458, -0.3274395168, -0.4971730113, -0.2563109398, 0.2121651918, -0.1605939269, -0.0363458954, -0.1856091917, 0.1209094524, 0.027658388, 0.2640102208, -0.1219027936, -0.357771337, -0.445705533, 0.277197659, -0.2792564631, -0.3186753988, -0.2165586054, 0.220229134, 0.3044362366, 0.0072867423, -0.5050762296, 0.1221700534, 0.1136532724, 0.2336245477, 0.1658104062, 0.2572156787, -0.1163071394, -0.045630943, -0.097223416, -0.0335045345, -0.0529944673, -0.014532499, 0.351126641, 0.1141986847, 0.1847339869, -0.0652749985, 0.0465932265, 0.8114855886, 0.2052144706, 0.0942452103, 0.2072391063, 0.1222640276, 0.2584121227, -0.1096867174, -0.2326768935, 0.450755775, -0.0110753849, -0.4531013072, 0.4092396796, 0.1936357766, -0.4243687987, -0.1811831594, -0.1927424967, -0.2558114529, -0.2215337157, 0.2201714814, -0.0004186693, 0.2325729579, 0.2550107837, -0.3409237862, -0.1501011401, -0.2251626104, 0.173824966, 0.1080892533, 0.1500467211, -0.0339223519, -0.157317847, 0.007291548, -0.4244353771, 0.1223910525, 0.1036444604, -0.0535740443, -0.1505930275, 0.0437565297, 0.2378763556, 0.0467573255, 0.2373411059, -0.6042848825, -0.2336083651, -0.1005125195, 0.5441199541, -0.0872382, 0.2938613892, -0.0709453449, -0.3217414021, 0.432436794, 0.0796393827, -0.3160793781, 0.1735692322, -0.0378493145, 0.1786251962, 0.0154049918, -0.2483054996, 0.1622094214, -0.262695998, -0.350733608, 0.0245764647, 0.4427523613, -0.2547819018, 0.116740115, 0.1065272689, 0.1845449656, 0.1730903387, 0.3746157587, 0.0278273597, -0.2092148662, 0.268453151, -0.1993254125, -0.0012187194, -0.0303352177, 0.1117542088, 0.5347269773, 0.1244177073, -0.0920627713, -0.0659508556, -0.3150817752, 0.2478330433, 0.4789133668, 0.154198736, -0.01927533, -0.1379909515, 0.0182346497, -0.2363639623, 0.1149393469, 0.0447649211, 0.169680953, -0.1691151112, -0.3124707937, 0.4716694057, -0.1161424965, -0.274843961, 0.1353506446, 0.461055845, -0.3331755102, 0.3812475502, -0.0777213573, 1.2574038506, 0.2091271281, 0.3034161925, 0.1667197049, -0.2147899121, 0.3622975349, -0.8011131883, -0.3374129534, 0.2467020005, 0.4070870876, -0.1861030906, 0.0539328903, -0.1168698445, 0.2588733137, -0.260206908, 0.1085948199, 0.3884546161, 0.2679692209, 0.0473132432, 0.6848992705, -0.1614896804, -0.3734573126, -0.3993864954, 0.2234208584, -0.0549956709, 0.1194543019, -0.1127429754, -0.0717186332, 0.0267600119, -0.0208311528, -0.4345807731, 0.0507642776, -0.1732656956, 0.1041239277, -0.7388638854, -0.1987112164, 0.4851576984, 0.2617509961, 0.3026668429, -0.1319669485, -0.3229514062, 0.100310795, -0.1360891461, 0.2056322992, 0.0788023919, -0.279351145, 0.2490210086, -0.1946904063, -0.1699617356, 0.3036074936, 0.1826767325, -0.12577492, -0.186967805, -0.2314064652, -0.0634150505, -0.1014574915, 0.0645371228, 0.7086159587, -0.1242265403, -0.1423466057, 0.0898192972, -0.0355188623, -0.1823467314, 0.0630243421, -0.1724217534, -0.2583630383, -0.295876056, 0.2627399564, 0.143610239, -0.1657793075, 0.1606545448, 0.2066292167, -0.2030224502, -0.2332347035, 0.2971603572, -0.1968928277, -0.4040930867, -0.0978972018, 0.1039420366, 0.0089093298, -0.6479463577, 0.0122773387, 0.3014069796, 0.0565672889, 0.0124745965, -0.0032779276, -0.1057598218, 0.1153569221, 0.1963128, 0.1957066059, -0.0041365921, 0.0221757703, -0.0040192679, -0.2936592698, -0.3257690668, 0.1216533631, 0.132205978, 0.0151427984, 0.2304725647, -0.0559252985, 0.3730339408, -0.1303083003, 0.0037820935, -0.2780871093, -0.132163465, -0.1266549677, -0.0902469382, 0.133996591, 0.3759601116, -0.1065245494, -0.3196527362, -0.3233653307, -0.1000311077, 0.1722381115, 0.2496543974, 0.2512975335, -0.2086665332, 0.0241669379, -0.0898844451, -0.0730439201, -0.1285450011, 0.0532145426, 0.201170519, 0.4249559641, -0.0661374554, 0.2151749283, 0.2274161279, -0.1533636153, -0.0283833575, 0.3125062883, 0.0812125877, 0.3080122769, 0.2752336264, 0.0044600759, 0.1644080728, 0.1426968575, 0.1786898077, 0.2465072572, -0.1580421329, -0.248328954, 0.2400383949, 0.1879076064, -0.0149298348, 0.124880895, -0.2457342744, -0.1061559618, 0.1178542152, 0.123541221, 0.4039233029, 0.1374645233, -0.0056466646, -0.037706323, -0.0336985402, -0.0729511231, -0.0440828614, 0.0375486165, -0.0480995476, 0.2122243196, -0.05621057, 0.1301836669, 0.0564599894, 0.140294373, -0.2529904246, 0.4280240536, 0.3958535194, 0.0609933175, 0.2322164476, 0.1827018559, 0.0395144336, -0.1088228002, 0.0987525135, 0.1106773019, 0.1932627261, 0.1029564887, 0.0499598272, -0.0883620232, -0.1628960073, 0.2212502956, 0.1559378058, -0.0546392128, -0.3222889304, -0.2264623344, -0.2032478154, 0.0393441692, -0.2180351615, -0.3061272204, -0.0036362559, 0.1827470511, 0.0185771156, -0.1639655232, 0.2126780003, -0.1389380395, 0.1095731556, -0.1786134839, 0.2214948684, 0.1773700118, 0.0518768653, 0.1455043852, 0.5054803491, 0.4030260742, -0.0954720974, -0.1177582219, 0.2130495459, -0.0850207508, -0.0415264666, -0.0501511917, 0.3698762655, -0.0947632194, -0.0204170868, 0.4580844939, 0.1208323315, -0.122844629, 0.0358986296, -0.0657824278, -0.0155151878, -0.1848284006, 0.2088819742, -0.0647200197, -0.0888615251, -0.1972196102, -0.2323085964, -0.4567828476, 0.0873136222, 0.628559351, -0.4415357411, 0.1877527237, -0.1688582301, 0.063790746, -0.1417004019, 0.4888125956, 0.2291918099, 0.1223844588, -0.3486630321, -0.0772762522, -0.3244712353, -0.084490329, 0.0308250263, 0.1885186434, -0.5234078169, 0.1661743075, 0.3957470059, 0.4661050439, -0.3010930419, 0.057813067, -0.7391778231, 0.1325214207, -0.263207078, 0.2868499756, -0.2400150597, 0.7252264619, -0.0947532356, 0.0952448919, -0.0840793997, 0.2825772464, -0.0699168295, -0.2538464665, 0.0970697403, -0.1875062138, -0.2575336993, 0.3402141929, -0.0026480537, 0.2787727714, -0.189904511, 0.0229579732, -0.2257592529, -0.2839414477, -0.0533417538, 0.1128792316, -0.1534740031, 0.2266210765, -0.2143363506, 0.0166561734, -0.0317105614, -0.2789259851, -0.0395812429, 0.2307523191, -0.1291417778, -0.0628191531, -0.2441751063, 0.1129019409, -0.0918310657, 0.3301849663, -0.0257875808, -0.0822927952, -0.2801315486, -0.2600486279, 0.3812658489, -0.0150174089, -0.2919613123, 0.3405652344, 0.3671386838, 0.2214135528, -0.0475076921, -0.7940036058, 0.1044562459, 0.33248505, 0.1010682583, -0.0450565815, 0.0702171028, 0.1605488956, -0.0245242119, -0.2514030337, 0.0185317881, -0.1145185083, -0.2685372531, -0.1067237332, -0.3115552068 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
Yes definitely. Shall we suggest them to create a dataset repository under their org on huggingface.co ? @julien-c The dataset is around 1TB
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
23
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Yes definitely. Shall we suggest them to create a dataset repository under their org on huggingface.co ? @julien-c The dataset is around 1TB
[ -0.2819742858, 0.1316507757, -0.1142893881, 0.1891249865, -0.0761730745, 0.0238954499, -0.0151863433, 0.1323356479, -0.292786479, 0.1568827033, -0.2882781029, -0.2273529768, -0.1356898099, 0.177146256, 0.197710827, -0.1647577584, 0.1265197396, -0.0231165849, -0.3271676302, -0.2998179197, -0.0985967666, 0.0761502907, -0.0886971354, -0.1920022964, -0.26979357, -0.0368122905, -0.3112087846, -0.2177722752, -0.3672375977, -0.2110484987, 0.0392681584, 0.0594675653, 0.1656422466, 0.5584837198, -0.0001052459, -0.1206116378, 0.1992838681, -0.2385991812, -0.2963815928, -0.13447541, -0.2026969492, -0.2349894047, -0.6540788412, 0.0331207961, -0.2515170574, -0.149775207, 0.0242078472, -0.0051268712, 0.1849746555, 0.50320822, 0.2287638187, 0.1169011444, 0.2910440266, -0.1472679973, 0.2438443303, 0.0753874108, -0.1609887481, 0.1551644653, 0.2891928554, 0.2260186672, 0.1128319502, 0.5088256598, 0.0498544872, -0.2827506363, -0.003575475, -0.3058143854, -0.1964978278, -0.4243426919, 0.1494261622, 0.2748365998, 0.5471498966, -0.227817744, -0.2290820479, -0.1697383374, 0.2611937225, -0.1568033993, -0.0499192514, 0.1122891828, -0.1689759344, 0.3771131039, 0.1019049734, -0.3955150247, -0.2112721503, 0.2854036689, 0.0232806355, 0.2817802131, -0.1576868892, -0.0990015715, 0.1004228443, -0.2646622062, -0.3853083551, -0.0833878666, -0.0077065439, 0.0923125893, -0.1722642779, -0.3142675757, 0.2135918438, -0.0067903139, 0.2582921684, -0.3227829933, -0.2262988687, -0.1516024321, -0.193173632, -0.0800541267, 0.0986221731, 0.3844141364, -0.0672854036, -0.0160433725, 0.1091504619, -0.2292178273, 0.0716154724, 0.1443648636, -0.0746074542, 0.1786739528, -0.4144826531, 0.0734652504, 0.029187426, -0.2194574028, -0.1896158159, 0.1206263378, -0.0307188183, 0.0599309728, -0.0112488046, 0.3262391686, 0.0525543988, 0.2642126381, -0.1074371487, 0.3535130322, -0.0494071245, -0.2231225818, -0.0907087848, 0.1249394715, -0.1816268712, 0.1585262716, 0.2224280238, 0.2521287799, 0.0808240548, -0.0307098199, 0.2543049753, 0.1120357811, -0.2170093358, -0.0438582711, 0.2266109586, 0.0343671441, -0.0065227076, 0.0574700534, -0.2188865095, -0.1199042872, -0.2017614096, 0.0561886653, 0.073798731, -0.1303480864, -0.2450789213, 0.2372364253, -0.1433439255, -0.2346130311, -0.3658264577, 0.662466526, -0.0989391506, -0.061883077, 0.091561608, 0.2291859537, -0.4113318622, 0.0413750187, -0.0740235895, 0.3984494805, -0.137350738, -0.1309414953, 0.1131426916, 0.0383190066, 0.0138819367, 0.2907515168, -0.038374193, 0.1933074147, -0.0324505642, 0.3480068445, 0.0341859646, -0.4046072364, -0.4445277154, 0.149279967, -0.2617087364, -0.0849768445, 0.230522871, -0.0753992051, 0.563113451, -0.2706467211, -0.0062917806, 0.2914617062, -0.0247245338, 0.0928734243, -0.2349770963, -0.4155744016, 0.2283695638, 0.1699578911, 0.0837146193, -0.045387391, -0.0390069894, 0.3225706518, 0.1939519495, -0.2640470862, 0.2739544809, 0.2638481557, 0.1122645661, -0.1178824529, -0.010532137, -0.2265530676, -0.1622185409, -0.0458204895, 0.1651749164, 0.5588307977, 0.0393421575, -0.248207435, -0.1093648076, -0.1796626598, -0.1966805309, -0.1557610929, 0.2379556745, 0.2530167699, 0.1944986433, 0.1405171007, -0.1418553591, 0.2613067329, -0.3185064495, -0.185055688, -0.1366380602, 0.239134565, -0.0062543238, -0.2149601579, 0.2408412397, 0.4956154525, 0.0868683085, -0.0789920539, 0.0718963295, 0.0554575548, -0.3503280282, 0.1738539785, 0.1244392991, 0.2339426279, 0.3275002837, -0.5012205243, 0.2246927321, 0.2709726691, 0.1081656963, -0.1598507315, -0.1166043282, 0.1506721079, 0.2914886773, 0.0830970258, 0.0569926351, -0.0883579552, 0.3350684345, 0.0963169336, -0.129433006, -0.0824156702, 0.118436493, 0.1973694116, 0.0082631186, 0.1231062114, -0.3071096539, 0.175460875, 0.5225208998, -0.182234019, 0.3080970943, 0.3316547871, -0.0987377614, -0.1355236471, 0.0856194943, -0.1874742657, 0.2695053518, 0.3026123941, 0.217922464, -0.0037573306, 0.323841989, -0.0748647824, 0.1274348795, 0.0160294306, -0.2442696691, 0.1969397515, 0.1947351694, -0.1007380038, -0.346871376, 0.0454014689, -0.0385370702, 0.2338497788, -0.0725074038, -0.3474928439, 0.130944103, -0.2900647521, -0.263168633, 0.0869789422, -0.2649090588, 0.0776728019, 0.3261660337, -0.0220973454, -0.0791150555, 0.2016183287, 0.2447789758, 0.3428671956, -0.4011154175, -0.0804303512, -0.0175809562, -0.3277688324, -0.1439278275, 0.1810657084, 0.2856896222, 0.1181081682, 0.2969578803, -0.1818916053, 0.1476241499, -0.2822352648, -0.3307646513, 0.224247396, -0.2791384459, 0.0409083143, -0.1901493818, 0.0344598703, -0.057505101, -0.3769900203, -0.1464238614, 0.0630079657, -0.113753736, -0.1005484164, -0.4217523634, -0.1302696317, 0.0265242308, -0.4483317137, -0.5188706517, -0.4268541038, 0.4857851863, -0.2541285157, -0.0696324855, 0.0043212995, 0.0223771222, 0.1944217533, -0.0926835909, 0.186672911, -0.2760031819, -0.2769815326, 0.1621169597, -0.2088312656, -0.3052785397, -0.2177151591, 0.0425681174, 0.0888220221, -0.1137359142, -0.4125669599, 0.1012406126, -0.150097385, 0.3791906536, 0.1974512935, 0.1598881632, 0.2622484267, -0.1320287436, -0.1125875637, -0.1074821725, -0.2057560235, 0.0209981464, 0.3534581959, 0.2022942752, -0.0050761001, 0.1006616801, 0.0742812008, 0.6177756786, 0.3007918, -0.0149304979, 0.2079490423, 0.1091747209, 0.4607523978, -0.2662662864, -0.4412494898, 0.5007209778, 0.1288644224, 0.0066465512, 0.4606541693, 0.1416968256, -0.3381608427, -0.123424001, -0.4403934777, -0.1857143641, -0.2916959524, 0.3045725524, 0.1676306725, 0.2078149766, -0.0655807704, -0.2340804785, -0.2560778856, -0.1412125826, 0.2151406407, 0.1932207048, -0.0028481632, 0.0096072406, -0.1996280253, -0.0454898961, -0.5053683519, -0.0774151981, 0.1700083017, 0.2866503298, -0.4697832465, 0.1019583046, 0.0151187703, 0.1103733182, 0.3322485387, -0.2976498902, -0.081496641, 0.1211559027, 0.3847762346, 0.041549027, 0.3428760767, -0.1924237013, -0.1800602376, 0.5656816959, 0.3200421035, -0.4232357144, -0.0473002195, 0.2894097567, 0.3699549735, -0.0223508775, -0.1071490198, 0.1150703132, -0.3763305247, -0.367184341, 0.2561838031, 0.4782504439, 0.0149076581, 0.2987657189, 0.1430375874, 0.1744927764, -0.0785180032, 0.4322349727, -0.0849005058, -0.0709434003, 0.4809971452, 0.1570384502, 0.049844604, -0.0119311642, -0.0471392125, 0.3187123835, -0.0961808562, -0.3610301912, 0.0101584569, -0.2590030134, 0.3601125479, 0.3817857206, 0.1650250852, 0.0477343164, -0.0667487681, 0.0995850861, -0.2544428706, 0.1495522261, 0.2385511547, 0.2091665566, -0.3974749148, -0.2317344397, 0.3972525299, 0.0181853995, -0.0362246856, 0.0221507717, 0.3118011951, -0.2192684263, 0.2298460156, -0.1993251741, 1.2992118597, 0.1632505357, 0.0903648138, 0.219797045, -0.2111109495, 0.1376823187, -0.3781125247, -0.1761220247, 0.2771657109, 0.2005892098, 0.0001146644, 0.2628121376, -0.0071458966, 0.1968726516, -0.4309054017, 0.2430018038, 0.0824817568, 0.1120304167, 0.0918791294, 0.5037056804, -0.212363869, -0.4368634522, -0.4565170109, 0.265936017, 0.1328685433, 0.2141066194, 0.109077327, -0.2810111642, 0.1247555614, -0.0385292433, -0.6611132026, 0.018588841, -0.2485932559, -0.0987377912, -0.3499999046, -0.1787730157, 0.3545898795, 0.2069098502, 0.3911925852, 0.0065711299, -0.2554776967, 0.1793652922, -0.0539301187, -0.0166111551, 0.2345944792, -0.112986289, 0.3398461342, -0.3037158847, -0.3038265109, 0.1185789853, 0.1789138913, -0.0587758236, -0.4278463721, -0.1975935698, 0.0824828893, 0.0208464265, 0.1324303597, 0.571629405, -0.0725072846, -0.1865530461, 0.1920007616, 0.0037563201, -0.3681875765, 0.1715868115, -0.1264360696, -0.2424499393, -0.2466190904, 0.2281707227, 0.2111572623, -0.0708639547, 0.3206340969, 0.2639297843, -0.2118223459, -0.3511909544, -0.0277416408, 0.1581448168, -0.6010569334, -0.0237749368, 0.1153094321, -0.1478649676, -0.2918295562, 0.2249107957, 0.1622529775, -0.1301773041, -0.0217071772, 0.0005145371, -0.3193923831, 0.0408909395, 0.1909766346, 0.1279999167, -0.0940306112, 0.2617276907, 0.0842408836, -0.1070796847, -0.4264662862, 0.1015552282, -0.0928598717, 0.1503615677, 0.3520089686, -0.1229468584, 0.1642505229, -0.0084655993, 0.1471760124, -0.0499448068, -0.1253852993, -0.2292290181, -0.1027222723, 0.0912542194, 0.0468072519, 0.1537686288, 0.0253819413, -0.1104473695, -0.2151512355, 0.1217313707, 0.3245625794, 0.2861368954, 0.0006523244, 0.0900776386, -0.0167494174, -0.0522097722, 0.1707631052, 0.0709105432, 0.3654760122, 0.3459138572, 0.1199681833, 0.1675561219, 0.0461907908, -0.1234661713, -0.0178631097, 0.3209614456, 0.2223623097, 0.057494875, 0.0683491901, 0.0039027166, 0.1513946056, 0.4949725866, 0.0559026375, -0.0193859339, -0.1128307879, -0.0122190006, 0.4042257667, 0.2655511498, -0.2175686657, 0.1577073634, -0.1165620983, -0.2681825459, 0.1453455687, 0.1360539496, 0.0259581506, 0.0493243486, 0.2134723514, -0.0500252955, -0.1125886887, 0.1113783792, 0.0332525261, 0.1568786651, 0.1774016619, -0.040456403, 0.0792258456, 0.1081674099, 0.1449201703, 0.0022455403, -0.212818414, 0.479362607, 0.0601190068, 0.1790769845, 0.27768749, -0.0578015894, 0.0460842103, 0.201046139, 0.1733364165, 0.1591446698, -0.0010346621, 0.4170066118, 0.0103538595, -0.3126988411, -0.1372695565, 0.2817864716, -0.0407525264, -0.0422517285, 0.0398400724, -0.2205162346, -0.2530547082, 0.0342657939, -0.0721731186, -0.3266575634, -0.0358870514, 0.1790007949, -0.1568441391, -0.2047486603, -0.1355968416, -0.1744439304, 0.1936502159, -0.1843628585, 0.410190165, 0.1932414621, -0.0974403471, 0.1663822979, 0.5504937172, 0.5049690604, -0.0284654982, -0.1132411808, 0.273232162, -0.0776152238, -0.0731149912, -0.0507640094, 0.4047095776, 0.0104426965, 0.114254266, 0.2026078403, 0.2117383778, -0.1936114728, -0.192745015, 0.1268787086, -0.1338592619, -0.2348508835, 0.1727150381, -0.1869640052, 0.0905514881, -0.5943130255, -0.1308285296, -0.5543195009, 0.1238446459, 0.4093554318, -0.30347386, 0.1066184044, -0.19987607, 0.106345199, -0.1901712716, 0.3664021492, 0.311494112, 0.0490187705, -0.1517062187, -0.167656973, -0.4584261775, -0.118476592, 0.0661525577, 0.1342479587, -0.3691918552, 0.107271798, 0.3487349749, 0.3570181727, -0.1373610795, -0.1399358809, -0.4183529317, 0.0804429278, -0.3068990111, 0.1913909316, 0.012566966, 0.5848876238, 0.1708801091, -0.1409067214, -0.1698656678, 0.2786668837, 0.0636015311, -0.1539647579, 0.0959110707, -0.3254548907, -0.3092287183, 0.1015461832, 0.0018899906, 0.3967323899, -0.2579966187, -0.1228035837, -0.1681183726, -0.1251891553, -0.1553908288, 0.0849931985, -0.0137855522, 0.281028688, -0.2272485495, 0.2192290276, -0.0145048387, -0.1148027033, 0.0029684603, 0.037186116, -0.2482939065, 0.1114627421, -0.1198013946, 0.0042511225, -0.1065742522, 0.3087837696, -0.0339314193, -0.0553761423, -0.2479549348, -0.2358029932, 0.4588890672, -0.1182505041, -0.2737711668, -0.0208789855, 0.3357263207, 0.1670117676, -0.1263705343, -0.7813286185, 0.2783121765, 0.2228352875, 0.2146984339, -0.009277761, 0.2461496145, -0.0099822115, -0.1109782234, -0.1276861131, 0.0075312499, -0.0001097945, -0.2153112739, 0.2524287105, -0.278328836 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
Sounds good! Order of magnitude is storage costs ~$20 per TB per month (not including bandwidth). Happy to provide this to the community as I feel this is an important dataset. Let us know what the authors want to do!
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
40
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Sounds good! Order of magnitude is storage costs ~$20 per TB per month (not including bandwidth). Happy to provide this to the community as I feel this is an important dataset. Let us know what the authors want to do!
[ -0.2674561739, 0.3468383849, -0.1150632203, 0.0743555129, -0.1094926447, 0.028010644, 0.0628129244, 0.2007727325, -0.3066087365, 0.2189829648, -0.2691016197, -0.206533134, -0.1899870038, 0.1393332183, 0.1780729145, -0.1505707055, 0.1918691695, 0.0074418671, -0.287493825, -0.2704443634, -0.0860425979, -0.0386056975, -0.1379611939, -0.268512547, -0.2299305797, -0.0946118012, -0.3455684781, -0.2869121432, -0.3232318759, -0.1962367892, -0.0556506589, 0.1350368261, 0.1240529642, 0.4940175712, -0.0001045567, -0.2592284679, 0.1250715703, -0.2645713389, -0.3532473147, -0.0380954891, -0.1996167302, -0.1757062823, -0.6599072218, 0.0304601938, -0.0956023932, -0.2508482933, 0.0672221184, -0.0263301507, 0.1266009063, 0.5544307232, 0.214015156, -0.0130660869, 0.1716797948, -0.1371424496, 0.287140727, 0.0758829489, -0.2084584683, 0.0772270113, 0.3049245477, 0.1136056781, 0.0316926092, 0.4821650684, -0.0075356439, -0.2882493138, -0.0318448432, -0.3790360093, -0.177218169, -0.4207234085, 0.1050823554, 0.3116881251, 0.6529279947, -0.2026353031, -0.1981210113, -0.0961152539, 0.2668232024, -0.1598117352, -0.0498972572, 0.1737095714, -0.1241334155, 0.3310910761, 0.1392671168, -0.2483857572, -0.2472927272, 0.3075197041, 0.0544653535, 0.3040257692, -0.0862309784, -0.0989884138, 0.0883809477, -0.2742250562, -0.2766878903, -0.0626632944, 0.007282245, 0.1095098257, -0.1418616474, -0.3701092303, 0.2169778347, -0.1320180744, 0.0793472454, -0.3674499393, -0.1592273116, -0.136339128, -0.0830791146, 0.071302861, -0.0183542855, 0.3584365845, -0.0802806765, -0.0780768991, 0.1004719585, -0.273757875, 0.0465739146, 0.1279942393, -0.0759718344, 0.3356278837, -0.3972551227, 0.0821801201, -0.0861615241, -0.1665340662, -0.2463088483, 0.1953469664, -0.0466939025, 0.0915034264, -0.0893514007, 0.3172928393, 0.0441726632, 0.3904412389, -0.0830958635, 0.3368876874, 0.0517916456, -0.1928991824, -0.0603897423, 0.2241699994, -0.2017293572, 0.2546376884, 0.2324509025, 0.4521967173, 0.0494432226, 0.0183007866, 0.2040764987, 0.0686424077, -0.0888894945, -0.0491718799, 0.2716390491, 0.025958145, -0.0311120749, -0.0047630034, -0.2496472299, -0.1610576957, -0.2035469413, -0.0107688624, 0.1420149058, -0.110174343, -0.2979938984, 0.2533714771, -0.0716988295, -0.2677493393, -0.2793785632, 0.7518093586, -0.1782981008, -0.1115568876, 0.069704771, 0.1738109291, -0.4604186118, 0.0459395908, -0.136811465, 0.3723903, -0.2363214344, -0.0399013534, 0.0980855227, 0.2054736018, 0.0443733856, 0.2060775161, -0.0810587704, 0.2622191012, 0.0549093187, 0.3178979754, 0.0442695618, -0.4065379798, -0.446320653, 0.1585049033, -0.176058352, -0.1846075356, 0.2989751697, -0.0001525693, 0.6347366571, -0.3393871188, -0.0137220621, 0.3644087613, -0.0631119832, 0.0718455613, -0.2582840621, -0.4786252081, 0.1988210827, 0.1503829658, 0.0412006304, -0.0575377941, 0.0644192994, 0.3694820106, 0.218316704, -0.3277609348, 0.240490824, 0.2785543501, 0.0622735769, -0.1536899805, -0.0451558121, -0.1693331003, -0.1587281823, -0.0830607712, 0.1781625897, 0.4612792432, 0.1114620417, -0.2092919648, -0.0072707273, -0.217067495, -0.1183113158, -0.1257411242, 0.2582395971, 0.2570563853, 0.1128952205, 0.1188966781, -0.124571614, 0.1912956983, -0.2764886022, -0.2479797751, 0.0048351176, 0.2340552509, 0.055653505, -0.2928237021, 0.2693488896, 0.4156479239, 0.1235691905, 0.0075204819, -0.0354684591, 0.121560812, -0.2071394026, 0.2657059133, 0.1701868922, 0.30674541, 0.2318330556, -0.4714109004, 0.306521982, 0.3407138884, 0.1727471352, -0.2098977268, -0.2183401287, 0.1196065322, 0.3287130594, 0.0522699617, 0.0505120903, -0.0918182582, 0.2911435962, 0.0929449052, -0.1188123971, -0.1293873042, 0.1732149869, 0.2709851563, -0.0985395983, 0.1335846037, -0.2680143118, 0.2048005909, 0.5615862608, -0.1304109693, 0.3069729209, 0.1990510374, -0.0527810864, -0.2780837715, 0.1204250678, -0.1962437332, 0.2916372418, 0.2810157537, 0.2256421447, 0.0164781678, 0.2985716164, -0.1521058381, 0.190084219, -0.0507355668, -0.2516882718, 0.1603917181, 0.2035173774, -0.1073488295, -0.3217074275, 0.0468222126, 0.0054197758, 0.1432107389, 0.0397218466, -0.2647112608, 0.1132283211, -0.2363810688, -0.1619858444, 0.0370659158, -0.1596761644, -0.0032519363, 0.3915065527, 0.0485029332, -0.2069421262, 0.1535014212, 0.216516912, 0.3693397641, -0.3941745758, -0.082814835, 0.0096046627, -0.3672119677, -0.1786137968, 0.1865741611, 0.1984502971, 0.1628400683, 0.2797740102, -0.1282356977, 0.1851773858, -0.2126666605, -0.3121668696, 0.1550999433, -0.2662827373, 0.0524387136, -0.2734867632, 0.0183254778, -0.0566889644, -0.382049948, -0.2653372586, 0.0315835178, 0.0263815001, 0.0323770642, -0.3927342296, -0.1335775852, 0.02083496, -0.3891123235, -0.5565212965, -0.4471621811, 0.3865203559, -0.2517313957, -0.0092636961, -0.0017907061, 0.0099094473, 0.1746542156, -0.0799355507, 0.2039349675, -0.2852185369, -0.2310415804, 0.1599522829, -0.2169170976, -0.3349026442, -0.1540764123, 0.0391131416, 0.0620787218, -0.1150848567, -0.4363948703, 0.1783678532, -0.0987032726, 0.333451122, 0.1652608514, 0.0101326928, 0.2976228297, -0.1061076969, -0.1565747857, -0.1825392246, -0.1687903404, -0.0481084213, 0.4235717058, 0.1204995662, -0.0134770125, -0.0380833447, 0.122332707, 0.5573824644, 0.205423981, 0.0274667162, 0.2063636482, 0.1498257816, 0.4568345547, -0.2330974191, -0.3974889815, 0.5278067589, 0.1368786097, -0.0743882284, 0.524137795, 0.0732342675, -0.5568891168, -0.1071177721, -0.3339171708, -0.0818360895, -0.2224313617, 0.3396263123, 0.0992458463, 0.1561365128, 0.0206615627, -0.1405636817, -0.2554543614, -0.2717416883, 0.189590022, 0.0959593728, -0.047878284, 0.0006997921, -0.1602262855, -0.0620184541, -0.3980843723, -0.1072700247, 0.1569577008, 0.2464651167, -0.5303563476, 0.0870729759, 0.0046209209, 0.1763380319, 0.1798845977, -0.3207390308, -0.0812350288, 0.2342449278, 0.5497137308, -0.0188401155, 0.1853070259, -0.2950845957, -0.3423020244, 0.570908308, 0.3086680174, -0.1830258369, 0.0339105204, 0.167701602, 0.4645701945, -0.0490051135, -0.0457136668, 0.1397288591, -0.3151709139, -0.3120530844, 0.3089372814, 0.4163508713, -0.0146754533, 0.2681359947, 0.1516006589, 0.1820184886, -0.0082618296, 0.4942663014, -0.0771509334, -0.1044255644, 0.4753469229, 0.0918051898, -0.037799798, -0.1117254943, -0.0847391337, 0.1528487951, -0.0612772256, -0.2044247538, 0.0375261977, -0.3595804274, 0.3538600802, 0.4210063517, 0.1246668845, 0.0118688904, -0.1096943319, 0.1038223356, -0.3049685359, 0.1741947681, 0.2645324171, 0.1056656912, -0.3500519991, -0.2346190512, 0.3728397787, 0.0606271029, -0.1213387251, 0.0969008356, 0.1682979167, -0.2165052295, 0.3552688956, -0.1398266107, 1.3028795719, 0.2360527962, 0.1526298672, 0.1917191446, -0.2324959338, 0.0736012608, -0.3725522757, -0.1548820287, 0.3520878553, 0.1767764986, -0.0249603838, 0.2205833346, -0.0468531884, 0.2085401118, -0.5711343884, 0.2264650166, -0.0092795268, 0.1269483417, 0.1225560606, 0.4747869372, -0.2686775923, -0.4689059258, -0.2684133649, 0.2912666798, 0.1350041032, 0.0400319882, 0.1509645432, -0.2544362843, 0.1512271762, 0.0626956671, -0.7009255886, 0.1211341172, -0.1179798692, -0.0274632871, -0.5845332742, -0.0470113903, 0.2115433812, 0.1814660579, 0.3393003047, 0.0038951482, -0.2309700698, 0.1532795131, -0.0033091921, 0.0046117641, 0.227683872, -0.1418342888, 0.4154862463, -0.3145347834, -0.2073203325, 0.222332716, 0.1595190018, 0.0323579237, -0.4593443274, -0.1939762086, 0.1733253002, 0.0496671274, 0.2545644939, 0.5486979485, -0.1140184253, -0.2271647751, 0.1972654015, -0.0021890756, -0.3667445183, 0.2793438435, -0.2162351012, -0.2433763742, -0.2037614435, 0.2019093186, 0.2641421854, -0.0414039269, 0.2854689062, 0.2260184139, -0.2272041142, -0.4182305932, 0.0625825822, -0.0068316609, -0.483725965, 0.0208746567, 0.0344048962, -0.2015657425, -0.3309279382, 0.206953615, 0.0655926317, -0.1283619851, -0.084793672, -0.0409498662, -0.2633299828, 0.0133853089, 0.1992595047, 0.1133462936, -0.1020511538, 0.1707703173, 0.0079119876, -0.0708649531, -0.4309118688, 0.1298056841, -0.044153139, 0.1981442869, 0.2045235485, -0.141671747, 0.1859093457, 0.0071455128, 0.1405666769, -0.0905826911, -0.1317283511, -0.2335892916, -0.1661422253, 0.09327095, 0.1177336648, 0.194555074, 0.0184494704, -0.188773483, -0.2421474308, 0.0682540536, 0.2440643758, 0.2484222949, -0.0795719922, 0.1264839172, -0.0289052054, 0.0478286073, 0.2515588999, 0.0576372072, 0.3243320286, 0.4395712018, -0.0565371625, 0.1609666944, 0.086514309, -0.2113105357, -0.0255999155, 0.3494977653, 0.0573616028, 0.0000110995, 0.1125312969, 0.0271211676, 0.2247647941, 0.3390498757, -0.0655513555, 0.0401952639, -0.0590093806, -0.0711369514, 0.3415954411, 0.2797174454, -0.1062905043, 0.0915032178, -0.1858473122, -0.1766532362, 0.1557303965, 0.1183875948, 0.1122665256, -0.1109628528, 0.2080166638, -0.0815590099, -0.171395123, 0.0737802833, 0.0376245715, 0.1666729748, 0.1785569936, -0.101987347, -0.033260759, 0.1056907922, 0.137499094, 0.0014790669, -0.1647671908, 0.4625000954, 0.1857183278, 0.1034674197, 0.1984200478, -0.0124747455, 0.1337441206, 0.1642797291, 0.0860122964, 0.2504079938, 0.0465904213, 0.2660346627, -0.0584482551, -0.3078385592, -0.1115981415, 0.2143592238, 0.04984257, 0.0185077116, -0.0203734413, -0.1985639334, -0.2563599348, 0.0705058724, -0.0141695421, -0.2123467177, -0.0601291694, 0.2392933369, -0.0922075287, -0.1058358327, -0.052646406, -0.1634945273, 0.2898860872, -0.2593404353, 0.3642907441, 0.1571878195, -0.0409318916, 0.21520257, 0.4409633875, 0.479742378, -0.0814106315, -0.2035111189, 0.3172039092, -0.0881626457, -0.1225336045, -0.0130270012, 0.4353645444, 0.0154378619, 0.1728735119, 0.173520714, 0.2133731246, -0.1836390793, -0.1990481913, 0.1639767289, -0.0699499846, -0.1323809177, 0.1319434792, -0.0558502004, 0.1001107022, -0.5145982504, -0.1135333776, -0.5816861391, 0.1198293567, 0.4090067744, -0.3190313578, 0.1662038863, -0.1266601086, 0.1159003526, -0.1748053432, 0.3187253475, 0.2675613463, 0.0338464081, -0.0751666278, -0.1109835282, -0.2891765237, -0.1746109724, 0.1318370998, 0.2151115239, -0.393813163, 0.132258445, 0.3189953864, 0.3898983598, -0.1670445502, -0.0444369242, -0.5264095664, 0.1136263832, -0.3879904151, 0.2637176514, 0.1613399833, 0.6632791162, 0.0919786021, -0.1655251682, -0.1893276572, 0.2305865139, 0.09485019, -0.1951651871, -0.092003651, -0.2894489467, -0.2229045779, 0.1501594335, -0.051627785, 0.3096757829, -0.2479177266, -0.119045943, -0.1820568889, -0.0348701254, -0.1049265265, -0.0867209882, 0.0125220362, 0.2685785294, -0.2493439466, 0.3319284916, 0.0971075296, -0.0566969588, -0.0484258942, 0.0773957372, -0.2554421425, 0.092958957, -0.1670759618, 0.1511124969, -0.1869543195, 0.2303743064, -0.043243181, -0.0868729129, -0.2548586726, -0.1970849633, 0.447843492, -0.1070511788, -0.3662915528, -0.0358733907, 0.3192022443, 0.1614575684, 0.0437977165, -0.6474661827, 0.2208113074, 0.2300784886, 0.1481010914, 0.0356305093, 0.2190487832, 0.0091547444, -0.0858051106, -0.1326686889, -0.038729649, 0.0105593968, -0.182444185, 0.1066595614, -0.3101610243 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
Great! @skyprince999, do you think you could ping the authors here or link to this thread? I think it could be a cool idea to host the dataset on our side then
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
32
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Great! @skyprince999, do you think you could ping the authors here or link to this thread? I think it could be a cool idea to host the dataset on our side then
[ -0.2638154626, 0.2556506991, -0.1020892411, 0.0674260557, -0.1163013875, 0.004987143, 0.2088763714, 0.1324667335, -0.2380465716, 0.1958873868, -0.2925173044, -0.1947899461, -0.1235651448, 0.17620942, 0.2179547399, -0.0965979695, 0.1338679194, -0.0480609201, -0.2836484611, -0.3060131669, -0.0538712367, -0.0600476712, -0.1137716621, -0.1840386093, -0.2231120914, -0.0314403251, -0.3102772236, -0.2115968466, -0.2723539174, -0.2186131179, 0.0249475017, 0.1433050036, 0.1645148396, 0.4807238579, -0.000103108, -0.116042681, 0.1976709813, -0.1972871572, -0.2979803383, -0.1132876277, -0.2479347587, -0.1520432085, -0.6573243141, 0.0125980079, -0.3099522293, -0.250946939, 0.0265708324, 0.0222529769, 0.1163541824, 0.5167063475, 0.2408426702, 0.0554728508, 0.1673072428, -0.134919107, 0.2340430319, 0.1127672717, -0.2015991807, 0.10496068, 0.3035978377, 0.1237046346, 0.0485423803, 0.4394955635, -0.0261506736, -0.2713293135, -0.0585946664, -0.3038039505, -0.2033456266, -0.3597016931, 0.0331386365, 0.3472296298, 0.6664747596, -0.1610846072, -0.1860350072, -0.1502619982, 0.2188353837, -0.1186535358, -0.0508357733, 0.0833063424, -0.1209418029, 0.3679972887, 0.1617061049, -0.304497242, -0.2177587152, 0.2728986442, 0.0427064747, 0.4257722497, -0.0621482655, -0.0788863748, -0.0586891249, -0.2083938718, -0.2132153064, -0.0897470042, 0.0146057177, 0.0752056465, -0.1660140455, -0.3493967652, 0.3036047816, -0.15039213, 0.160119772, -0.3179899454, -0.1644589603, -0.1152171642, -0.1738075167, 0.0288685262, 0.070121184, 0.3264150321, -0.0232374854, -0.043852035, 0.1637262553, -0.1892007589, 0.0626122579, 0.1544868499, -0.0323630646, 0.2342713326, -0.4513016343, 0.2286695689, 0.0270995721, -0.1980847716, -0.238577798, 0.1215213165, -0.0300241783, 0.081644699, 0.0075868368, 0.2975359857, 0.0489690676, 0.3509750962, -0.1010929495, 0.3271930218, -0.0031222925, -0.2137390971, -0.0711700693, 0.133699283, -0.2383322865, 0.172057718, 0.2494342178, 0.4215913117, 0.0535094589, 0.0821037665, 0.3226334155, 0.0747347474, -0.1555283517, 0.0260726213, 0.2722118795, -0.0337341391, 0.0475035906, 0.0337499976, -0.2039002627, -0.1663175821, -0.2246451676, 0.0592589229, 0.1313939393, -0.1161019653, -0.287276268, 0.2791669071, -0.1298478395, -0.2352982759, -0.27715379, 0.7251243591, -0.1624796093, -0.0774154365, 0.1132645383, 0.2274982333, -0.4088669121, 0.0521916114, -0.0945318118, 0.3656324446, -0.251701653, -0.0169545561, 0.1709531695, 0.1352587789, 0.0225041267, 0.1482346207, -0.0828430802, 0.3158317208, -0.0581727922, 0.3497923315, 0.0392581336, -0.3666364551, -0.3150377274, 0.1317055523, -0.2357327938, -0.0350294001, 0.2565309107, -0.1328446716, 0.6240296364, -0.3125279844, -0.0122896172, 0.4339909256, 0.0065103304, 0.1316176951, -0.198285833, -0.3214909434, 0.2360377163, 0.1815402806, -0.005643731, -0.0182659067, 0.0441292562, 0.2750938535, 0.2775230408, -0.3302542567, 0.2896015942, 0.2214818299, 0.0354990959, -0.1381880492, 0.0164783113, -0.1379675269, -0.154586345, -0.075024426, 0.1970406324, 0.5770366192, 0.1224241406, -0.2467804253, -0.1696621627, -0.1954881251, -0.1923281252, -0.1729776263, 0.2730988264, 0.2822175026, 0.0562132969, 0.1398084909, -0.1364931166, 0.2650598884, -0.3373710513, -0.2161518335, -0.0441901609, 0.2488891482, 0.0547000468, -0.2353995293, 0.1652755737, 0.4716207683, 0.1654153913, -0.0317697823, 0.004643891, 0.0743106976, -0.2732062936, 0.2347430438, 0.1541244984, 0.21907489, 0.3090024889, -0.5264612436, 0.2203458697, 0.2899044752, 0.0991032422, -0.2010913491, -0.073640503, 0.1721482724, 0.299225688, 0.1554921865, 0.0093085989, -0.0116546825, 0.3077350557, 0.0305271447, -0.1802012622, -0.0600099452, 0.1324460506, 0.286077112, -0.1437013149, 0.0011756029, -0.2945253551, 0.2530354857, 0.4543095529, -0.1788547933, 0.2692894638, 0.1650079489, -0.045525521, -0.1397265792, 0.1442495883, -0.24067384, 0.238683939, 0.3034238815, 0.3387000859, 0.0237405431, 0.2088298798, -0.0828206763, 0.192258358, -0.0472443104, -0.3074478805, 0.1286101788, 0.181854859, -0.1868812293, -0.3317625523, -0.0036382601, -0.0241872258, 0.1092717573, -0.1317533553, -0.2908284068, 0.1634643674, -0.2110123932, -0.2189670503, -0.0618506446, -0.2294011116, 0.0262311399, 0.429807514, 0.0383163989, -0.2114008665, 0.2007107884, 0.2322894633, 0.3449687064, -0.4511021376, -0.0329894945, -0.0573885292, -0.3996436596, -0.1822762787, 0.200116694, 0.2146734893, 0.1815420985, 0.2603406608, -0.118647784, 0.1492659748, -0.2710833251, -0.3136159778, 0.1868880689, -0.2719039321, 0.1208987981, -0.1901512444, 0.0092402361, -0.0203031525, -0.4290501773, -0.201688379, 0.088761799, -0.0304204114, -0.0855749473, -0.4141587615, -0.088871628, -0.0415386185, -0.4858822227, -0.4796180427, -0.4333896041, 0.2988659441, -0.2710740864, -0.0247240476, -0.0173537061, 0.0402076356, 0.0702036172, -0.0206965785, 0.168784529, -0.3169857264, -0.2643292248, 0.1111537367, -0.318125844, -0.2912341356, -0.2173938751, 0.0507117733, 0.1230553389, -0.1351745725, -0.3304982483, 0.1405245066, -0.0506784916, 0.359983772, 0.1792306155, 0.093456313, 0.2319625914, -0.0519552082, -0.1444594413, -0.1684287935, -0.14502424, 0.0257615149, 0.3778434694, 0.1647443175, 0.0651209205, -0.0047894563, 0.0589621291, 0.6301651597, 0.1760897338, 0.0472843945, 0.2631706297, 0.0810744837, 0.3796308339, -0.2192725688, -0.4116690159, 0.5353419185, 0.1132870018, -0.0897993594, 0.43732512, 0.0851417929, -0.4881735146, -0.1443246603, -0.3178869486, -0.2233301997, -0.2553177476, 0.2832992077, 0.0877096504, 0.1678837836, 0.0171088278, -0.176442802, -0.2634769678, -0.1980425566, 0.2678226829, 0.1296082139, 0.048440896, -0.0313363634, -0.1926929951, -0.0355720595, -0.4021428227, -0.0952869654, 0.1271766275, 0.2549345493, -0.4831462502, 0.0363272652, 0.0602480955, 0.1474112272, 0.3275743425, -0.3593382537, -0.0768367946, 0.1758432239, 0.5461903811, 0.0617824644, 0.2076321989, -0.1776829958, -0.3074547052, 0.5304546952, 0.3000189066, -0.346390754, 0.0579849631, 0.1593799293, 0.3236676753, -0.0097101629, -0.1332707852, 0.1316141188, -0.3605437279, -0.3184637725, 0.2939845026, 0.5474277735, -0.0116181262, 0.207188338, 0.1299880147, 0.2318964452, 0.0447096527, 0.441534102, 0.0112904906, -0.103831321, 0.4746819139, 0.0690965354, 0.0515170321, -0.00453093, -0.17095761, 0.2669606209, -0.033877857, -0.3202100396, 0.0158546232, -0.2754024863, 0.4106704593, 0.4015179276, 0.2056025118, -0.0078713708, -0.1076527759, -0.006329108, -0.2898711562, 0.1949423999, 0.1890248954, 0.1542856693, -0.3492987156, -0.3161612153, 0.3706457317, -0.0070748478, -0.142612353, 0.1222490072, 0.219723478, -0.2660683393, 0.3476285934, -0.1886656284, 1.2954564095, 0.2701726258, 0.1189186573, 0.2170180529, -0.2496719807, 0.07938914, -0.4509883523, -0.1310374141, 0.2621337175, 0.2415785789, -0.026086431, 0.193732053, -0.130273968, 0.249768734, -0.4515493512, 0.2120072991, 0.0375549197, 0.1302316338, 0.1148658916, 0.4553402066, -0.1565754414, -0.4293520153, -0.3479398191, 0.2875843346, 0.0790940821, 0.1252752841, 0.1066233069, -0.2575729787, 0.1208453178, -0.0314745456, -0.6170526147, 0.119183898, -0.1857527047, -0.1361580938, -0.4633794427, -0.1735292077, 0.3035571277, 0.1740547717, 0.4051638246, 0.0084423851, -0.243630752, 0.2013787329, 0.0321879275, 0.0925619602, 0.1775132418, -0.1293594837, 0.3848472536, -0.2787675261, -0.3417518139, 0.2409652472, 0.1634781063, -0.0591216683, -0.4578174055, -0.2084454, 0.1368908137, 0.0406023934, 0.2614337504, 0.594109118, 0.0673772916, -0.2787320316, 0.2033430934, -0.0537999906, -0.4027837515, 0.1477175802, -0.14250727, -0.2563800812, -0.1985164285, 0.1851537824, 0.2306477576, -0.0645661801, 0.2740061879, 0.3334344029, -0.1919664145, -0.3687167466, -0.0361464992, 0.1379782856, -0.5049198866, -0.0674844086, 0.1038749218, -0.1910449117, -0.3406739831, 0.2093653679, 0.0821784735, -0.0386001468, -0.0855514184, -0.0327417403, -0.2290893197, -0.0254448131, 0.1295962483, 0.1540959179, -0.0890787467, 0.2274130881, 0.0232218727, -0.1621652693, -0.4529195428, 0.0261782408, -0.0793686882, 0.1665610224, 0.2855004668, -0.1601020396, 0.1523312628, 0.0281258374, 0.1663668007, -0.133190155, -0.0903980285, -0.2454136908, -0.1575044096, 0.0915340632, 0.1256605387, 0.1855221838, -0.0839323997, -0.167889595, -0.2096365988, 0.0896462351, 0.3444302678, 0.2475686371, -0.0392634235, 0.1491406113, -0.0606040582, 0.011017249, 0.1845856756, 0.0411360301, 0.3104197979, 0.349860698, 0.0484576002, 0.1458674222, 0.024168808, -0.1723856628, 0.0252199471, 0.3243963718, 0.163180694, 0.1204419136, 0.0427913666, 0.0964935422, 0.1619206071, 0.3878926933, 0.0490577519, -0.0044773147, -0.0939861014, -0.0907652453, 0.3871543407, 0.3003925085, -0.158911109, 0.1513035893, -0.1665881127, -0.2660661638, 0.1886513233, 0.1115134358, 0.1221078485, -0.0199775994, 0.1961946487, -0.0571288131, -0.1632781327, 0.0669500455, -0.0034567751, 0.1657529175, 0.057228595, -0.0530494004, 0.0404479355, 0.0304171182, 0.0658820719, 0.0716318339, -0.1389862597, 0.4980090261, 0.1549905688, 0.061730288, 0.2575605512, -0.0103117377, 0.1385449171, 0.0412833579, 0.1509948075, 0.1869844794, 0.0523679517, 0.3182859421, -0.08225815, -0.2897353768, -0.1189625859, 0.243565321, 0.0293786526, 0.0245356597, -0.0946949869, -0.2003643215, -0.262145102, -0.0636342764, -0.0260883942, -0.2240584791, -0.0124689229, 0.1375155747, -0.1763923615, -0.0828601867, -0.1658294797, -0.2099786252, 0.1894331872, -0.199305594, 0.3392786682, 0.1630560458, -0.0761635825, 0.2180657387, 0.5704174638, 0.4618905783, -0.0398194157, -0.2486362606, 0.2552427351, -0.0810580328, -0.1269970685, -0.0386593752, 0.4618116617, -0.0094138645, 0.1187773347, 0.2067557871, 0.2340578884, -0.2017280012, -0.1915639341, 0.152447015, -0.1433837116, -0.1096105874, 0.1693622768, -0.0820121914, 0.0917657465, -0.5450371504, -0.2100185752, -0.575599432, 0.0418753289, 0.4760664105, -0.2757144868, 0.1057838351, -0.2261265665, 0.1240855753, -0.1559840888, 0.3006067872, 0.2919946909, 0.0539027005, -0.1142711043, -0.0973611847, -0.4213626981, -0.0655748025, 0.1224702597, 0.1246524528, -0.3954900801, 0.0311454535, 0.4504885674, 0.3158789873, -0.1747766435, -0.1054391116, -0.4539691508, 0.1466944218, -0.3867601156, 0.2035494447, 0.0492767282, 0.6177334189, 0.0677590072, -0.1090951115, -0.1967783421, 0.3445986509, 0.0974614248, -0.1278107613, -0.0802885443, -0.1693015993, -0.2848248482, 0.1839171648, -0.0156084821, 0.4005244672, -0.2893491983, -0.1023579016, -0.201245904, -0.1380588561, -0.1710935235, -0.0229493305, -0.1017469317, 0.2447321862, -0.1519681811, 0.2543821037, 0.0081154592, -0.1654624343, -0.0068539977, 0.109278731, -0.2397544533, 0.0936175883, -0.1706960499, 0.0245554186, -0.1309183836, 0.2695031762, -0.004462935, -0.0716408342, -0.23016496, -0.2515612543, 0.4586348534, -0.1334100217, -0.3858566284, -0.0362836644, 0.3588255644, 0.0566279814, 0.0253870841, -0.6963675022, 0.2384621352, 0.2274995595, 0.1636924744, 0.0862355679, 0.1958485991, 0.0844280869, -0.0169707015, -0.1064810157, -0.0184865482, 0.040272709, -0.169226408, 0.100318864, -0.2969769835 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
Done. They replied back, and they want to have a call over a meet/ skype. Is that possible ? Btw @patrickvonplaten you are looped in that email (_pls check you gmail account_)
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
32
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Done. They replied back, and they want to have a call over a meet/ skype. Is that possible ? Btw @patrickvonplaten you are looped in that email (_pls check you gmail account_)
[ -0.2442643791, 0.0763141215, -0.1269343793, 0.129224956, -0.0602061413, -0.1081658751, 0.0954098031, 0.0292592421, -0.1983944625, 0.2287620753, -0.2163420916, -0.3068771362, -0.0361021906, 0.2048375905, 0.1446812153, -0.1205038428, -0.0763829648, 0.0352110825, -0.2530812323, -0.3930395246, -0.0704429001, 0.0100739989, -0.0025771409, -0.1456604153, -0.1974944919, -0.1006903201, -0.466963768, 0.0041092457, -0.2524196208, 0.1215430871, 0.0929485559, 0.1669028699, -0.0617972054, 0.2232317924, -0.0001050486, -0.1927652657, 0.3581829369, -0.1252590269, -0.2843264639, -0.1371054649, -0.1715058982, -0.1608717293, -0.5996176004, -0.0578072965, -0.3517879248, -0.055130437, -0.0297535248, 0.0172304288, 0.3423307538, 0.5917041302, 0.200846374, 0.0822755694, 0.4183855057, -0.1769323945, 0.1135302782, 0.12897484, -0.0161012262, 0.1953625083, 0.0792288333, 0.0627072603, 0.411452651, 0.1769377142, -0.0387609787, -0.3774366975, -0.1423316896, -0.2057390213, -0.2638554573, -0.4930152297, 0.13223508, 0.2659471333, 0.6440942287, 0.0132193081, -0.1394030899, -0.0239855126, 0.2538206577, -0.2253901064, -0.0104754344, -0.1447002143, -0.2681514621, 0.2021638155, 0.0474272668, -0.3013006151, -0.1538134962, 0.473157078, 0.0228782296, 0.1806114614, -0.0149978008, 0.0553301945, -0.050350301, -0.2177548856, -0.3165234029, 0.0157896057, -0.0045935232, 0.1769248843, -0.2343797982, -0.4343777299, 0.3938581049, -0.0072432719, 0.0716758072, -0.1693591326, -0.1928205639, -0.0508285426, -0.1116916388, -0.0749313682, 0.2485027164, 0.3352706134, 0.1783811748, -0.0656065568, -0.011993615, -0.2647522092, 0.188094452, 0.0778415352, -0.0760272443, 0.125034824, -0.4210847616, 0.4101142287, 0.0816385001, -0.1434596479, -0.2587288618, 0.1653541923, -0.1884836853, 0.170343101, -0.088241674, 0.3126606941, -0.0846310705, 0.1850611418, 0.0221624374, 0.1708113402, -0.0871562213, -0.1974158585, -0.1289277226, 0.2370902151, -0.2407020032, 0.1692815125, 0.0548066571, 0.4120903015, -0.0461805612, 0.1059569418, 0.4214024842, -0.0272012353, -0.1701069623, 0.0301685408, 0.1526646167, -0.0049022892, 0.110462904, 0.1051588655, -0.1240601391, 0.0427508503, -0.1227745637, 0.0407651141, 0.0630776584, 0.0138621926, -0.1744504124, 0.26804322, -0.0474990681, -0.190568313, -0.3329373598, 0.4064126015, -0.2053745687, 0.0053358525, 0.2562302351, 0.1369541287, -0.3320628703, 0.1441873908, -0.0461157486, 0.1919253469, -0.2280555218, 0.002673775, -0.0838655308, 0.130882144, 0.2019741684, 0.1595882028, -0.1489663422, 0.2493914664, -0.1373119652, 0.3556198478, 0.0983255208, -0.4499589503, -0.3781093657, 0.0318882838, -0.3757969737, -0.0230688639, 0.0745264366, -0.2259065509, 0.5838215351, -0.1840154827, 0.0712355599, 0.3171504438, -0.112762861, -0.0508954972, -0.0999282524, -0.3261000812, 0.1334503442, 0.0884799212, -0.0340640917, 0.0560392104, 0.0298630223, 0.3126595616, 0.1648179889, -0.2535804808, 0.0642087758, 0.3471504152, 0.1375507861, -0.0733178556, -0.0467643701, -0.0150373057, -0.1890813708, -0.0601271167, 0.1309000552, 0.6019636989, 0.1781747192, -0.3046551943, -0.150704354, -0.170573771, -0.0035083722, -0.1373825967, 0.238170892, 0.1877824366, 0.1591785848, 0.0274824575, 0.056103766, 0.2445231378, -0.3581732512, -0.3407775462, -0.0449754447, 0.2606641054, -0.0048401062, -0.2591899335, 0.1548843086, 0.3563864529, 0.3486474156, 0.0376998894, 0.0571807511, -0.0660998523, -0.2662835717, 0.1654438376, -0.001878723, 0.0922556147, 0.1486008614, -0.4431711435, 0.1591225713, 0.206589818, 0.2204488814, -0.3144568205, -0.0670315027, 0.4534629583, 0.4891098142, 0.0362772606, 0.1073852703, 0.0254022405, 0.317967236, -0.0415217616, -0.186000526, -0.0038361326, 0.1625525504, 0.2636129856, 0.0410095677, -0.093446821, -0.4189377725, 0.2829908431, 0.7185620666, -0.1966497004, 0.2558174729, 0.2333910614, 0.0314023122, -0.2271121144, 0.0466248617, -0.4440738559, 0.2549782395, 0.2788483202, 0.2681046724, 0.1341445595, 0.1781598032, 0.048304785, 0.1395657659, -0.0660698935, -0.2460414171, 0.1130762026, 0.08998698, -0.0876072049, -0.251493752, 0.0853271186, -0.0450359881, 0.1253266037, -0.2006134689, -0.3033836484, 0.1786469519, -0.1797260642, -0.163015157, -0.1822065115, -0.3148114383, -0.0592149757, 0.1858025342, 0.043219272, -0.0497576296, 0.0558337122, 0.3885272741, 0.4585469961, -0.184538871, 0.069118306, -0.1597394049, -0.2830005586, -0.2647771537, 0.1832285672, 0.1687720716, 0.2608469427, 0.3231381476, -0.1066254079, 0.081850037, -0.3442073762, -0.3076980412, 0.2393376529, -0.2616443336, 0.1837856323, -0.0070955083, 0.1523659527, -0.0198828503, -0.2366359383, -0.1570146829, 0.2015193403, -0.2649659514, -0.0971164629, -0.3870857954, 0.0635424778, -0.0555425659, -0.4665721357, -0.5568022728, -0.2878604531, 0.4521854818, -0.2267305106, -0.0383328758, 0.0272002816, 0.0805594474, 0.1978021413, -0.0809098631, 0.0113968365, -0.4675089121, -0.2478351295, 0.0229904875, -0.1271911114, -0.3666253984, -0.2452193946, 0.0304950178, 0.1717574298, -0.3337721229, -0.3176516294, -0.0713891014, -0.205530256, 0.2488628179, 0.1033207104, -0.1296607107, 0.3361965418, -0.3622722626, -0.2165346742, -0.1875328124, -0.0991904214, 0.1613567173, 0.3437242806, 0.1981703937, 0.1143773496, 0.2781980932, -0.0740978867, 0.6019593477, 0.130101949, 0.046801839, 0.1444500983, -0.0279520266, 0.2085115463, -0.2176885754, -0.5086157322, 0.429248035, 0.1167942882, -0.2174567133, 0.2087636292, -0.1543011218, -0.3772740662, -0.1395046264, -0.4591852129, -0.0745694414, -0.2913772464, 0.3191238642, 0.0843888596, -0.0995166898, 0.0068288743, -0.1941949725, -0.2185035944, -0.1206644773, 0.1302908212, 0.1267641634, 0.0362557955, 0.0884378552, -0.320933342, -0.1458195746, -0.4038725495, 0.0179747045, 0.1851764917, 0.4507625401, -0.5764360428, 0.288474232, 0.0859707147, 0.00882921, 0.3867128491, -0.2152967751, 0.0027770558, 0.2585444748, 0.4470022321, 0.2073514462, 0.2832024693, -0.1960411072, -0.2514165044, 0.4858675301, 0.3070962429, -0.2200409472, 0.0301258862, 0.2143295705, 0.1848351955, -0.1372193694, 0.0297854021, 0.0585821271, -0.3915016055, -0.3112424314, 0.3392795324, 0.5661069155, -0.0368627906, -0.0179796349, 0.0295433402, 0.2167554498, 0.0054742396, 0.4134858251, -0.2228556871, -0.0817755833, 0.3747666478, -0.0040295348, 0.114848204, -0.0174324643, -0.0260494389, 0.3623434007, 0.1521308422, -0.2679069638, 0.0653058663, -0.3942694664, 0.4741293788, 0.3924327791, 0.0945784748, -0.0311350673, -0.0038033351, 0.1406331658, -0.2975137234, 0.2862843275, 0.3217406571, 0.2720932364, -0.3405789435, -0.3129267097, 0.3925612569, 0.0251367241, 0.0352511406, 0.2253888249, 0.2407793701, -0.1957076788, -0.0217288285, -0.0940744728, 1.3331973553, 0.4469960928, 0.1533775926, 0.1418835223, -0.248510778, 0.1071062237, -0.2331623435, -0.2041024566, 0.2581063807, 0.2154223621, -0.0954049155, 0.2230087668, -0.0015438572, 0.3154428303, -0.3548343778, 0.2400842309, -0.2109328508, -0.0999531746, 0.1728615761, 0.4671244919, -0.0979205817, -0.20798482, -0.2588573992, 0.2586875558, 0.0988279581, 0.223910287, 0.1647277921, -0.2662481964, -0.0426421762, -0.301889956, -0.6961417794, 0.1005691588, -0.318400979, -0.3417182863, -0.5454695225, -0.1299561858, 0.2826796472, 0.0361796394, 0.1627370417, 0.0652979463, -0.2807627022, 0.2030223459, 0.0098910835, 0.0995787382, 0.1526010633, -0.1482619494, 0.4521447718, -0.2773122191, -0.3156797588, 0.2550989091, 0.0058667399, -0.0623254776, -0.5047737956, -0.0513580292, 0.0118713677, 0.016231887, 0.1043765843, 0.4319217503, 0.0432413667, -0.2051659524, 0.1985978484, -0.1214137524, -0.2531971037, 0.0750247091, -0.0975750238, -0.2755209208, -0.1646802872, 0.4504114687, 0.1498969495, -0.226539731, 0.4809002876, 0.3105871379, -0.1643415987, -0.3908767402, -0.083686471, 0.2494300604, -0.5234822035, 0.0770240426, -0.0282259285, 0.0369155705, -0.3390371203, 0.29420048, -0.0409762748, 0.0386597589, -0.0992505178, -0.2383690476, -0.1947495937, -0.0597779937, 0.0821994394, 0.1365946531, -0.0713142902, 0.3921563029, 0.1377863437, -0.2278037816, -0.4338136911, -0.0222942643, -0.2262012661, 0.2120445669, 0.431514293, -0.1325905323, 0.2558008134, -0.04972798, 0.1494171917, -0.1051431, 0.0277970731, -0.2623109519, -0.0429910645, 0.0823613852, 0.1180304587, 0.1856121123, 0.1323125362, -0.1052466258, -0.1197077334, 0.2483599782, 0.2296339571, 0.1773598939, 0.0611486621, 0.0486337803, -0.098958537, 0.1509980857, 0.1123549342, -0.1394870132, 0.3923626244, 0.4167675972, -0.1348114014, 0.1931631267, 0.0181411281, -0.0772505775, 0.0899371207, 0.1283000708, 0.2243921161, 0.0542402901, -0.0995734558, 0.144725427, 0.1009741277, 0.2663752735, 0.0774746388, -0.0208057426, -0.1561099291, 0.0022618845, 0.2824701667, 0.2942678332, -0.0485587828, 0.1614083946, -0.1919210106, -0.3825163543, 0.0310919955, 0.0224928446, -0.0433146879, 0.1234691441, 0.1932405233, -0.2046182156, -0.1561028212, 0.0526255183, 0.0568563975, 0.1983303428, -0.1778891385, -0.0611466244, 0.2848473489, 0.0491130836, -0.0254123807, 0.1481499374, -0.1519914716, 0.264829576, 0.1013057828, 0.2109748721, 0.2045420557, -0.1911023557, 0.1317056119, 0.1000524238, 0.1552891135, 0.3295290768, -0.0076281652, 0.3978162408, -0.0441614166, -0.2146417797, -0.0362163335, 0.3101048172, -0.0988663882, 0.0822316706, -0.0502833724, -0.2062363327, -0.4170132875, 0.0113111809, -0.0209573358, -0.1331255883, -0.0127670281, 0.0111772269, -0.2615370452, 0.0350766927, -0.365824908, -0.269230485, -0.0033944771, -0.3910617232, 0.4116283953, 0.2446996272, -0.1039438993, 0.1712741405, 0.4762532413, 0.4604894519, 0.0131834988, -0.1329054832, 0.2254962176, 0.1744077504, -0.1647977531, 0.0581594035, 0.3664776683, 0.0562981367, 0.043499466, 0.0573601723, 0.2743002474, -0.2606215775, 0.0106907468, 0.0669602156, 0.1382455081, -0.2532538474, 0.1898958534, -0.107958205, 0.2467455566, -0.7149043679, -0.0774589255, -0.5943195224, -0.039199356, 0.4606372714, -0.0898031443, 0.1058057845, -0.3524137735, 0.1392451972, -0.3943320513, 0.3255028427, 0.2473965436, 0.2696202397, -0.0399879031, 0.012463361, -0.1745155007, -0.0506960675, 0.1536046565, 0.1097062156, -0.3314900994, -0.0374084301, 0.3865399063, 0.1827249527, 0.0390683301, -0.1203205884, -0.4215038419, 0.1672345102, -0.3105469644, 0.2724179029, 0.000334153, 0.5711426735, 0.1239024848, -0.1267718673, -0.0959694237, 0.3232109547, 0.1145707518, -0.2118296623, -0.2216753364, -0.0772076696, -0.0915917158, 0.0529424623, 0.0604759827, 0.8049708605, -0.2886036634, -0.0835206285, 0.068930991, 0.0784924775, -0.1489467025, -0.0074676536, -0.0729133487, 0.2028148621, 0.0365355611, 0.3054823875, -0.0990560949, -0.2375448346, -0.0839897692, 0.0064914972, -0.2925958633, 0.0100086629, -0.141581893, -0.0667388365, -0.1746593714, 0.2418538481, -0.0125431977, -0.0749785528, -0.2496630102, -0.12446253, 0.457058847, -0.0845227167, -0.2663295269, -0.092423737, 0.3227205575, -0.039157521, -0.0024179388, -0.5286852717, 0.158645317, 0.2303326577, 0.085934639, 0.1709735394, 0.2076752037, 0.2388165295, 0.1207790375, -0.1116504073, -0.010602884, 0.2412822545, 0.0256329477, 0.1639563739, -0.3027094603 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
@gegallego there were some concerns regarding dataset usage & attribution by a for-profit company, so couldn't take it forward. Also the download links were unstable. But I guess if you want to test the fairseq benchmarks, you can connect with them directly for downloading the dataset.
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
46
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). @gegallego there were some concerns regarding dataset usage & attribution by a for-profit company, so couldn't take it forward. Also the download links were unstable. But I guess if you want to test the fairseq benchmarks, you can connect with them directly for downloading the dataset.
[ -0.3551786542, 0.2733172774, -0.0848914683, 0.0439702496, -0.2106078118, -0.0997215137, 0.0143611021, 0.1664299816, -0.3334969878, 0.185872674, -0.2543602586, -0.0773929358, 0.0546253622, -0.1191614196, 0.1883628666, -0.2674564123, 0.1272604018, 0.0159448236, -0.4990532696, -0.2887563705, -0.0022719726, 0.0825286508, -0.3534404635, -0.06582883, -0.2267102003, -0.001548484, -0.3274194598, -0.1423065066, -0.2602277398, -0.2481782138, -0.0593226701, 0.1865082234, 0.0723315552, 0.503970325, -0.0001057738, -0.1889287233, 0.3732987642, -0.248880282, -0.3008490801, 0.0820415989, -0.2667972744, 0.0794178918, -0.5366250277, -0.0851108879, -0.2278634757, -0.2843919396, 0.021157803, -0.0545337908, 0.149531275, 0.637439549, 0.2225167453, 0.2601230145, 0.0848622397, -0.1991486996, 0.1856090426, -0.1639839113, -0.0690778121, 0.1905389279, 0.2750359476, -0.0210329331, -0.0819743797, 0.2998502851, 0.1042218804, -0.0445655324, -0.2373770773, -0.3053141534, -0.1707397699, -0.3454195857, 0.1246996745, 0.5373837352, 0.5419611335, -0.1456474066, -0.3013559878, -0.0213012248, 0.2159662098, -0.0139280781, -0.0258550718, 0.000662528, -0.1379161626, 0.2246891558, -0.0034158677, -0.0748562813, -0.2043163776, 0.1544622928, -0.0655702949, 0.4908934236, -0.021509029, -0.1548564732, 0.1846321374, -0.2481156588, -0.270160377, -0.0257911198, -0.2289425433, 0.044423569, -0.1947866231, -0.3074368238, 0.219810918, -0.1459587961, 0.1053979844, -0.5148682594, -0.2520375848, 0.0767927319, -0.0298418887, 0.0380185694, 0.0287983678, 0.4303641021, 0.0822538361, 0.0139241107, 0.014389148, -0.128682971, -0.0248531476, 0.2848427892, 0.0085044801, 0.1234901696, -0.6589147449, 0.2396981269, -0.1956280768, -0.342302531, -0.3911926746, 0.1041130573, 0.1085192561, 0.0121730156, -0.1071961895, 0.3425156176, -0.0321459919, 0.1186417267, -0.288852036, 0.3779185712, -0.2201809883, -0.3948866725, -0.0638382584, 0.2210028023, -0.2729831338, 0.077253364, 0.338773787, 0.4771772027, 0.1867391467, -0.0889019892, 0.2831929028, 0.0326979831, -0.0412759222, -0.0644000471, 0.2550360262, -0.0618502982, 0.091840066, 0.0108093321, -0.1270466447, -0.2597826421, -0.2591841221, -0.0066582114, 0.1293064952, -0.0338124707, -0.1639391482, 0.230129227, -0.1351459324, -0.2654017508, -0.2642099559, 0.6950770617, -0.2816908956, -0.1759263873, 0.1762406528, 0.0513029955, -0.4213478565, 0.2301774025, -0.0083592907, 0.3726106286, -0.3870707154, -0.0569725074, 0.1288460195, 0.1356602162, -0.020216614, 0.1602199376, -0.1545455903, 0.2842655182, -0.0705448613, 0.342921555, 0.1554590911, -0.4663979411, -0.4266597033, 0.1362532079, -0.0537788272, -0.0149402544, 0.1475269347, -0.2671595514, 0.7280393243, -0.2025389671, -0.0357540883, 0.3976617157, 0.1310448498, 0.1978922188, -0.2383537292, -0.2894971073, 0.3342308402, 0.1956881732, -0.0242709592, -0.0691485256, -0.0218079947, 0.0838324279, 0.1579403132, -0.2965839505, 0.1482632607, 0.1980036497, -0.016970763, -0.3243283033, 0.1154377237, -0.1188993901, 0.014397908, 0.0877885222, -0.1610722542, 0.5759599805, 0.3111335635, -0.146951139, -0.2139984518, -0.2347023487, -0.0771125481, -0.3021523952, 0.222833544, 0.1802976131, 0.1322677881, 0.2183844745, -0.0627425313, 0.1829937696, -0.1797518134, -0.3059767783, 0.0632374063, 0.1546318531, 0.0335875079, -0.2636297047, 0.2943399549, 0.2889518738, -0.008817682, -0.0170700103, -0.1283517033, 0.1494233757, -0.1889591813, 0.3021013737, 0.3540578485, 0.0878098309, 0.255705744, -0.5296877027, 0.1047678813, 0.4869788289, 0.174332574, -0.0821095407, -0.2045047134, 0.401404798, 0.3025275171, 0.0774851143, 0.2597225308, -0.1715655327, 0.2747778296, 0.011066094, -0.1812473834, 0.0398396552, 0.3730657399, 0.2577482462, -0.1858858764, -0.0040041413, -0.2110435963, 0.202878952, 0.6933563948, -0.1499212086, 0.4464185238, 0.2341546714, -0.1473683864, -0.2394638956, 0.1144063026, -0.3307742774, 0.3838000894, 0.2252086699, 0.328740567, 0.0317136869, 0.1154778302, -0.0175302923, 0.2093214542, -0.0489868745, -0.4404382706, 0.0404121876, 0.2045614719, -0.2765513062, -0.2801454067, -0.0269130021, 0.0115180761, 0.1130230799, -0.1419906765, -0.1876503527, 0.0164451897, -0.0435457081, -0.1173078418, -0.028065376, -0.2799031138, -0.0129601583, 0.4996728897, 0.0351664126, -0.077668637, 0.2945324779, 0.2281566709, 0.4096616507, -0.2071636766, -0.061527051, -0.1380939335, -0.4016678631, -0.3557343781, 0.2032829523, 0.1243809611, 0.4340554178, 0.0677913353, -0.1708563268, 0.2648131251, -0.1478479654, -0.1642361581, 0.2659852505, -0.2536757886, 0.3071205616, -0.3555361927, -0.0992634147, -0.2620581388, -0.2119555175, -0.1934892535, -0.1172834784, -0.0193767138, 0.0092811584, -0.3579934835, -0.2484479547, 0.0018926114, -0.4207036197, -0.357475847, -0.3441027701, 0.2667473555, -0.3142562509, -0.0457540266, -0.2331578135, 0.0538049117, 0.2283512503, -0.1181004345, 0.1282989383, -0.3086585402, -0.3723419905, 0.2361966819, -0.3731283545, -0.4347383678, -0.190166682, 0.1128439307, 0.2009083182, -0.196230188, -0.2799494267, 0.0898404568, -0.0757874399, 0.2916797101, 0.1934453845, 0.0735821426, 0.2507288158, -0.2208979279, -0.146087274, -0.076767832, -0.1419752091, 0.1074152738, 0.4329065979, 0.1741037667, -0.1641848236, -0.0780731067, -0.0397776887, 0.7484599352, 0.1818691492, -0.0361331105, 0.155089885, -0.1157270372, 0.2861979008, -0.1794916987, -0.20037058, 0.4559270144, 0.0702141672, 0.0796505734, 0.5873459578, -0.0596503541, -0.4037901759, -0.1314626336, -0.063421309, -0.3109100461, -0.2188237011, 0.2448404133, 0.1556646526, 0.120245114, 0.0925122201, 0.0067122504, -0.1499151289, -0.214937672, 0.3076748252, 0.0630064979, 0.0040883906, -0.053976059, -0.1839212924, -0.0986999571, -0.233060956, 0.0450905561, 0.1255948246, 0.4172134697, -0.3388792276, 0.105962798, 0.014138516, 0.0712675303, 0.3088397384, -0.2470691353, 0.0061386973, 0.2674687505, 0.4904706478, -0.0374632068, 0.1244218871, -0.3506261706, -0.2744368613, 0.5050275922, 0.0443200842, -0.206030786, 0.1372442544, 0.1844472587, 0.1801810116, -0.0555902086, -0.0532876253, -0.1777567714, -0.3515923023, -0.1624941081, 0.4372068048, 0.2988064289, -0.0007256083, -0.0671831518, 0.2452921569, 0.1170034856, -0.0811979547, 0.392260462, 0.1679966599, -0.029373249, 0.3057390153, 0.0886814073, 0.0284568444, -0.2849121392, -0.1788624823, 0.176320672, 0.2273957133, -0.1764001697, 0.2287475616, -0.2436407208, 0.2854172587, 0.2611729503, 0.1136238053, -0.0513848923, -0.0946045369, -0.0017239153, -0.1671428978, 0.2643267512, 0.2562307119, 0.273663342, -0.2923051119, -0.0853916407, 0.4494595528, -0.0086118318, -0.0877857804, 0.0416329764, 0.1138874069, -0.2260625362, 0.2638061643, -0.1847441643, 1.1430464983, 0.1728737354, 0.0363623612, 0.2057210803, -0.1620518118, 0.1455422193, -0.512242794, -0.0285772271, 0.2491751313, -0.0642719269, -0.0600982979, 0.1466672421, 0.1465675533, 0.1577016711, -0.6139907837, 0.4243778288, 0.1543360054, -0.1389874369, 0.243360132, 0.537838161, -0.0495264716, -0.3192805052, -0.394587636, 0.2510225773, 0.0403647199, 0.211050868, 0.2064960301, -0.1221383139, -0.0591706447, -0.0198471323, -0.5190372467, 0.2081207037, -0.0438887253, -0.1314903796, -0.192487821, -0.0350577235, 0.2932005525, 0.083399944, 0.2890951037, 0.0464949124, -0.271497637, 0.3969092369, -0.0166860893, 0.0681995153, 0.3073758483, -0.1166911274, 0.236959666, -0.2375442535, -0.3936285973, 0.431437403, 0.1235585064, -0.0235863701, -0.408691287, -0.3094982505, 0.0325174592, 0.1146952212, 0.2270227522, 0.4223168492, -0.0373035073, -0.2104548514, 0.1770060658, -0.1110258847, -0.4937490523, 0.3757805526, -0.0994273871, -0.3258653283, -0.1752555519, 0.312081039, 0.0449589789, -0.0160844997, 0.2687597871, 0.3269920051, -0.0578743145, -0.3581146002, -0.1832263172, 0.1534424126, -0.5673996806, -0.0913339704, -0.1173205674, -0.1728061885, -0.1916523129, 0.3114619851, 0.0914901793, -0.0470951349, -0.0389836319, 0.0308085158, -0.1744137704, -0.0822181106, 0.1760894209, 0.1084945202, -0.1208396405, 0.1085437089, 0.0495063066, -0.0634691119, -0.4071822762, 0.0170546547, -0.1513054669, 0.1756137609, 0.1496409774, -0.1506813318, 0.1005389839, 0.1411654651, 0.1392618418, 0.0018438287, -0.1265975535, -0.2410284877, -0.1531740129, 0.0793248788, 0.0233222768, 0.096177347, -0.162037015, -0.0405348837, -0.1994911879, 0.0279434808, 0.1965476274, -0.0815807134, -0.1364137083, 0.1721743196, 0.0433889106, -0.1003306508, 0.1493706703, 0.0396925285, 0.287995249, 0.384116143, 0.0771043077, 0.3171367049, 0.0695788413, -0.1613860428, -0.0354912803, 0.356321454, 0.0811972171, 0.1574625969, 0.0134864841, -0.0027524447, 0.2572340667, 0.1577939391, 0.1114851981, 0.0853400081, -0.1115769446, -0.3110026419, 0.3851221204, 0.2449855506, -0.1600892842, 0.0531221852, -0.1723873019, -0.1483216435, 0.2773469985, 0.0131060481, -0.0054738149, -0.0127048343, 0.4179857373, -0.0069041476, -0.131126374, 0.1008442119, -0.0612864792, -0.12407884, -0.0041738153, -0.053004548, 0.0302392114, 0.025292825, 0.0865382925, -0.0241769701, -0.0087009557, 0.5746209621, 0.2038388997, 0.3148150444, 0.1140261143, -0.0255138949, 0.1445304304, 0.1809160411, 0.209010005, 0.3537560701, 0.0860843807, 0.147968322, -0.2432383746, -0.3147221208, -0.385666579, 0.0855124593, 0.2059395015, -0.1256523579, 0.1257866025, -0.2386726141, -0.2533558905, 0.0628036037, -0.0704087615, -0.0133121405, -0.0797578394, 0.0935593098, -0.0858784914, -0.1089209691, -0.2355789393, -0.2524142861, 0.1721627414, -0.1859839261, 0.4769241512, 0.1065453142, -0.0075560864, 0.1642941236, 0.6191946268, 0.2939888835, -0.0460431278, -0.4676012993, 0.1814697236, -0.148886174, -0.017234873, 0.1076631397, 0.4670608938, 0.12898615, -0.0136795202, 0.2001290023, 0.2269101143, -0.1932051033, -0.1744663864, 0.0669059157, -0.1085860282, -0.2420455217, -0.0239252448, -0.0304642487, 0.3559219241, -0.4321718216, -0.2356846333, -0.5966392756, -0.0325611457, 0.2817839384, -0.2985128164, 0.0642385632, -0.1308933645, 0.1120688692, -0.2124724835, 0.4738661647, 0.2863328159, 0.4016744196, -0.1726591885, -0.1763753444, -0.3388217092, 0.0885568708, 0.0695938021, 0.1894708276, -0.2420597076, 0.2347685099, 0.2082524002, 0.4279850721, 0.0092798471, 0.0389022045, -0.4901141226, 0.1881481707, -0.3655136824, 0.2048386186, -0.187496841, 0.4944733083, 0.0081430674, -0.1845749915, -0.1346405745, 0.1167539954, 0.0916789249, 0.0334011652, -0.1726953685, 0.0375835449, -0.2308256179, 0.2265027761, 0.0099932719, 0.454685688, -0.1057840958, -0.1265780628, -0.1931913197, -0.0731506944, 0.0316830091, -0.1231089383, -0.0400569737, 0.1766233444, -0.0161217153, 0.2943891287, 0.0081639104, 0.0185417421, 0.1709728986, 0.0798274726, -0.2254879475, -0.0110626034, -0.096383892, 0.02714343, -0.109600462, 0.2335271239, 0.0589972623, 0.1276866645, -0.1161568314, 0.0397124738, 0.4405522346, -0.3146029711, -0.3092559576, -0.1535416096, 0.3522536159, 0.0573386773, -0.1025384665, -0.55952847, 0.1816338599, 0.3045869172, 0.1808071285, 0.1467272043, 0.1256610602, 0.0741314813, 0.0858888626, -0.156419456, 0.0440295078, 0.0584050566, -0.0969722942, 0.165468812, -0.2397264987 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
Yes, that dataset is not easy to download... I had to copy it to my Google Drive and use `rsync` to be able to download it. However, we could add the dataset with a manual download, right?
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
37
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Yes, that dataset is not easy to download... I had to copy it to my Google Drive and use `rsync` to be able to download it. However, we could add the dataset with a manual download, right?
[ -0.326169908, 0.258577019, -0.0921741575, -0.0333683118, -0.0554308966, 0.0201774687, 0.0042869784, 0.1221487373, -0.3325343728, 0.2870289087, -0.2463113368, -0.1663524806, -0.0883383304, 0.043066971, 0.151954338, -0.0460930802, 0.1005880386, 0.0084114373, -0.2816009521, -0.317071557, -0.0999769047, 0.0702601224, -0.1038935781, -0.1798481941, -0.1023107618, -0.1136203259, -0.2879878283, -0.1292616725, -0.3628215194, -0.1610620916, 0.0828775838, 0.2118587792, 0.1054185182, 0.3385770321, -0.0001049832, -0.1688216627, 0.2188209146, -0.2101088166, -0.4650354683, -0.1227780133, -0.2633396089, -0.1900155246, -0.5593047142, -0.0589389503, -0.1318371892, -0.1538988501, 0.1906306744, 0.1063847542, 0.1001443192, 0.5843328238, 0.2289638817, 0.0718082786, 0.1717672646, -0.2216981202, 0.3009499907, 0.1132300496, -0.1445610523, 0.2121604234, 0.2020396888, 0.1368399262, 0.1879912019, 0.2498558164, 0.0623003393, -0.1541407406, -0.0312926546, -0.2617184818, -0.1831342131, -0.460536778, 0.1067016199, 0.4221015871, 0.6699701548, -0.1604392827, -0.2226742357, -0.111276485, 0.3161411881, -0.1318678558, -0.0415672846, 0.0762251616, -0.1802821904, 0.2422287762, 0.0878618956, -0.3472366333, -0.1816346049, 0.2786093354, 0.0030742884, 0.3151154816, -0.0989241153, -0.0851305276, 0.0590564758, -0.1815015972, -0.3160819113, -0.0776873007, 0.0200672653, 0.1641682982, -0.0484421812, -0.2551891208, 0.2603026927, -0.1156943813, 0.1274391115, -0.3338727355, -0.190826267, -0.112936452, -0.1809575707, 0.0327017903, -0.0087536341, 0.3533171415, -0.0389140546, 0.0067527555, 0.160317719, -0.2577745616, 0.131754145, 0.0949306786, -0.1060986966, 0.1061942875, -0.4424648285, 0.2819642723, 0.0175169334, -0.1521289647, -0.3608735204, 0.0009047128, -0.0983711109, 0.0952642858, -0.1840294152, 0.2711251974, 0.0594114959, 0.2206316441, -0.0299462974, 0.3511986732, -0.0816175416, -0.1676339209, -0.0635017231, 0.1821157336, -0.1835427582, 0.1410636008, 0.2064752579, 0.4040094912, 0.1354859173, -0.0382834896, 0.2191950977, 0.1065602303, -0.2609093487, -0.0230159909, 0.1315096617, 0.0475588478, 0.130535692, 0.2011222243, -0.2909491658, -0.2401167005, -0.3164711595, 0.0372383147, 0.1165109202, -0.0324811116, -0.1799693555, 0.2699032724, -0.114936769, -0.2823366523, -0.3300670385, 0.6548680067, -0.1671613455, -0.1585750878, 0.0269491505, 0.1318164766, -0.4072477221, 0.0298858024, -0.0919472426, 0.3723155856, -0.3409878016, -0.0958040431, 0.0407782234, 0.0129323825, 0.1060930341, 0.1649014056, -0.0454859808, 0.3797602654, -0.127212435, 0.3340145051, 0.1738112867, -0.2973581851, -0.4280662835, 0.1087311059, -0.1839876771, 0.0562565848, 0.2124158889, -0.0888004825, 0.674035728, -0.2896540761, -0.0530238226, 0.5153853893, -0.0072862459, 0.072659336, -0.1864731908, -0.387589395, 0.2624824345, 0.1165394485, 0.1313605756, 0.1088278592, 0.1810252815, 0.3644091785, 0.350025177, -0.2707989216, 0.1428897679, 0.3335072398, 0.1223837435, -0.1555510163, 0.0128870122, -0.0379686542, -0.2598907351, 0.0124907419, 0.0837916881, 0.521741271, 0.0192422867, -0.2437838018, -0.1016325727, -0.2844206989, -0.1674673855, -0.097772792, 0.2394648194, 0.302895546, 0.1553970724, 0.0371331573, 0.0348584354, 0.2901744246, -0.3526085019, -0.2636920214, -0.0762506425, 0.1294237375, -0.0167734865, -0.1908476353, 0.1762055308, 0.227156505, 0.1990327984, -0.0735969245, -0.0170368478, 0.1629077792, -0.2328376174, 0.3128563464, 0.0464001335, 0.1513506919, 0.3106355369, -0.5115106106, 0.157294184, 0.4161932468, 0.146790117, -0.2736437619, -0.2458366603, 0.1721503437, 0.3308231831, 0.1557471603, 0.2433721721, -0.0184063166, 0.4958959818, 0.1071760058, -0.1974098086, -0.0540438294, 0.1498034596, 0.369420588, -0.0956166238, -0.0542921051, -0.3067093492, 0.2138965726, 0.6212288737, -0.1969291717, 0.2406691462, 0.2520478368, -0.0788208693, -0.1463532448, 0.0290926527, -0.1906290352, 0.2503051758, 0.3527507782, 0.3592059314, 0.1053779647, 0.1532029063, -0.1018713266, 0.1213006899, 0.0863635838, -0.2057516277, 0.1337577105, 0.1239678711, -0.0941410214, -0.4168773592, 0.0197333917, 0.0448350161, 0.1779798418, -0.1667903811, -0.3204416037, 0.1141041592, -0.1600841284, -0.1768815815, 0.0601245388, -0.1996939331, -0.1120591015, 0.3303551972, 0.0985859185, -0.1896596253, 0.2049132884, 0.28343153, 0.2777814865, -0.4166873991, -0.1525233239, -0.0159282982, -0.3203989863, -0.2732066214, 0.1860575378, 0.2324531376, 0.2177063823, 0.2699487209, -0.2892926931, 0.1873936653, -0.335677892, -0.3198472857, 0.2317836881, -0.2485967427, 0.0674069747, -0.2411665767, 0.0807213709, 0.0027065054, -0.355166465, -0.2997345328, -0.0125588626, -0.1087992489, -0.0983538553, -0.4978316724, -0.2145539224, -0.0878383964, -0.532808125, -0.5634722114, -0.3825628459, 0.3526052833, -0.1424565464, -0.0276192315, 0.0433121361, 0.0040827878, 0.1098219901, 0.0293348394, 0.2357148826, -0.2832211256, -0.0561406277, 0.2433838546, -0.2432823181, -0.4001319706, -0.1083380729, 0.0537579358, 0.0501198769, -0.0360999368, -0.3312396705, 0.2080509514, -0.1621939838, 0.3929624856, 0.1319548637, 0.12935929, 0.3479272425, -0.1876190752, -0.1273125261, -0.1407837123, -0.1103450954, 0.0769039318, 0.4300547838, 0.2432564944, -0.0991315991, 0.1157810614, 0.0324397385, 0.6805477738, 0.1629748642, 0.0503175855, 0.1335608661, -0.0671359375, 0.4736745954, -0.2270118892, -0.2605066299, 0.4579937756, 0.0427092128, -0.1145171151, 0.4364801347, 0.0087466948, -0.4343087077, -0.1088698879, -0.1994492114, -0.2343459874, -0.2816280127, 0.2488922626, 0.1271236986, 0.0976996422, 0.2011643797, -0.0411906168, -0.1799497306, -0.1331416965, 0.2895575464, 0.1178947613, 0.0575454161, 0.028898757, -0.1530008018, -0.06469246, -0.5273177624, -0.0531558618, 0.2005158067, 0.2830533981, -0.4398044944, 0.0145414919, -0.0356193148, 0.0901985615, 0.3260071278, -0.2868441045, -0.0256014727, 0.2564721107, 0.6237989664, -0.032748796, 0.0954101235, -0.3140833378, -0.3194311261, 0.6827361584, 0.3148846626, -0.3408998847, 0.0824548453, 0.1701375544, 0.4130093753, -0.0726604164, -0.0695412979, 0.0070252046, -0.5352041721, -0.3132354617, 0.21338588, 0.4288984835, -0.0136697292, 0.104539834, 0.1903575212, 0.1677884161, 0.0067860931, 0.3933691382, -0.0670757294, -0.0267137662, 0.5132444501, 0.0416399539, 0.0016663233, -0.0651834309, -0.187314406, 0.4569404721, -0.0155068273, -0.3477780223, 0.0907881558, -0.3210060596, 0.2761229277, 0.4049692154, 0.1350338161, -0.0484028459, -0.0832802057, 0.0696668327, -0.2109884471, 0.2506784201, 0.2178116143, 0.0417518243, -0.3729912043, -0.3129323721, 0.4149704278, 0.0086601228, -0.1362978667, 0.1076714247, 0.204851985, -0.2556140423, 0.2249558419, -0.2107973397, 1.2595272064, 0.2037076056, 0.0730993375, 0.2657436728, -0.3186555803, 0.1554654539, -0.535012722, -0.0945442766, 0.3271149695, 0.198490262, -0.022485815, 0.2317280322, -0.0671637058, 0.209056437, -0.4089981318, 0.3646213412, 0.056059286, 0.1115285382, 0.2294221818, 0.5157216787, -0.1826919764, -0.3492082059, -0.0984334871, 0.2707853615, 0.1393751502, 0.2220139056, 0.1090833247, -0.2663984001, 0.2003505975, -0.1368198693, -0.605157733, 0.2714416981, -0.2138936222, -0.0572080612, -0.5069352984, -0.1218898296, 0.2273204625, 0.1364028752, 0.3495369554, 0.0322387293, -0.2490320653, 0.2839081883, 0.0242670458, 0.1254821718, 0.2574919462, -0.0583839826, 0.3492228985, -0.2727704346, -0.195381552, 0.1996142268, -0.0340938456, -0.0502965935, -0.4092878997, -0.2993158698, 0.0274302159, 0.2117248774, 0.1471365392, 0.6069579124, -0.1461932808, -0.2696574926, 0.186294198, -0.1487138122, -0.3434028625, 0.2365073562, -0.2207865119, -0.3309105635, -0.2700929344, 0.3704414368, 0.1846064925, -0.0184139758, 0.375865221, 0.2097629011, -0.2423906326, -0.3236143887, -0.0837293565, 0.0862247646, -0.5519272089, -0.0809665918, 0.0311012976, -0.0119348913, -0.3298691213, 0.3230454028, 0.0454691797, 0.0178415217, -0.126611039, -0.047195375, -0.1949786544, -0.0875412077, 0.1722128689, 0.0628001317, -0.0167927593, 0.1922248304, 0.0846421868, -0.1631114781, -0.4355679154, -0.0034866743, -0.0785136297, 0.1691964716, 0.2199093997, -0.0283616148, 0.2350350171, -0.013018351, 0.1801446676, -0.0255131051, -0.0644685626, -0.2282112837, -0.1437915564, 0.0878662765, 0.1438536942, 0.2226474136, 0.015805576, -0.1309380531, -0.2310611606, 0.1258000284, 0.3019751012, 0.2664956152, -0.0947366208, 0.0670524836, -0.1655737162, 0.0737226158, 0.1628742814, 0.0094176773, 0.2201150358, 0.4262753725, 0.0311134793, 0.2439987212, 0.0128678046, -0.0977618471, -0.0377023369, 0.2497141957, 0.1582272947, 0.0288494937, 0.0082284436, 0.0374664664, 0.1866352707, 0.2259089351, 0.0351681337, 0.0453835577, -0.1083497107, -0.1105622798, 0.4241483808, 0.2845560908, -0.2480107099, 0.1591355652, -0.3266994357, -0.2526808977, 0.1391418427, 0.0563155264, 0.0221231282, -0.1091681123, 0.3056881428, -0.1232891008, -0.144387573, 0.0170919336, 0.0236962661, 0.2435691357, 0.0832448378, -0.0350533426, 0.0318380147, 0.0566628017, 0.0050730966, 0.1370354891, -0.2571681738, 0.3858579397, 0.0796107799, 0.151974678, 0.1933547556, -0.1582801044, 0.0465591364, 0.072977595, 0.0578019731, 0.2665906549, 0.1312708706, 0.1293393224, -0.167839691, -0.1768582165, -0.2061100155, 0.125301376, 0.063460283, 0.0756325275, -0.0524190962, -0.2231835127, -0.2190260291, 0.11126481, -0.012350074, -0.2395029813, -0.1248282045, 0.1331841052, -0.119933337, -0.0448736586, -0.1700451225, -0.3792726696, 0.1237502396, -0.2863720059, 0.3407933414, 0.1289920062, -0.0486202501, 0.1464825124, 0.4481003881, 0.3994745314, 0.1007556468, -0.1546637565, 0.2085208297, 0.0182338841, -0.1115252525, 0.0180642903, 0.4138026536, 0.114951998, 0.0738476515, 0.1876872033, 0.2296489626, -0.2241993546, -0.0325602926, 0.1206863672, -0.0927176923, -0.0940520763, 0.2184555382, -0.1428851336, 0.1763341725, -0.5103026032, -0.1138626039, -0.5821377039, 0.0136062913, 0.3610703349, -0.2312155664, 0.1926645488, -0.159798786, 0.1138642877, -0.211067915, 0.3706653714, 0.3844025433, 0.1041262224, -0.0818358213, -0.0960430577, -0.3968753219, -0.1387014836, 0.0472263992, 0.088529788, -0.3193566203, 0.2028830051, 0.3951244652, 0.2992739975, -0.0766487271, 0.0462787263, -0.3797619343, 0.1133729219, -0.2828351855, 0.1392634809, 0.0671833158, 0.5116137862, 0.0102854818, -0.2501456738, -0.1518009305, 0.1326693445, 0.1015393883, -0.1446298063, -0.0052604377, -0.1481236964, -0.1814875305, 0.2580214441, -0.0673451051, 0.4292947054, -0.2882858515, -0.1358595639, -0.1584320366, -0.0069515668, -0.112157017, -0.0225910246, -0.1224217415, 0.1981576383, -0.0691538304, 0.340810895, -0.0444213338, -0.147134304, -0.0413161404, 0.078604579, -0.3951103389, 0.0934318975, -0.2726102769, 0.1314875484, -0.1290508807, 0.1855121404, -0.0007184148, -0.1341257393, -0.2878395915, -0.1664862335, 0.4465271235, -0.1318196505, -0.2964192331, -0.0705263689, 0.3546959162, 0.1290850788, 0.0069307629, -0.5353890657, 0.2554196715, 0.2577600479, 0.0432404503, 0.0403938964, 0.1596985757, 0.0577773862, -0.0230261162, -0.0984334052, -0.0063537471, 0.0906568915, -0.2219182551, 0.0700241029, -0.4112513959 ]
https://github.com/huggingface/datasets/issues/1843
MustC Speech Translation
yes that is possible. I couldn't unfortunately complete this PR, If you would like to add it, please feel free to do it.
## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
23
MustC Speech Translation ## Adding a Dataset - **Name:** *IWSLT19* - **Description:** *The Speech Translation Task addresses the translation of English audio into German and Portuguese text.* - **Hompage:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - **Data:** *https://sites.google.com/view/iwslt-evaluation-2019/speech-translation* - all data under "Allowed Training Data" and "Development and Evalutaion Data for TED/How2" - **Motivation:** Important speech dataset If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). yes that is possible. I couldn't unfortunately complete this PR, If you would like to add it, please feel free to do it.
[ -0.3144165277, 0.2407134175, -0.0985175446, 0.0024262611, -0.0414732918, -0.036333479, 0.0861026794, 0.1563125551, -0.3312877417, 0.1687451899, -0.3144815266, -0.087228179, -0.0800839514, 0.1177139953, 0.2429232299, -0.2341311872, 0.1259044558, 0.0504560545, -0.3424841464, -0.2494600117, -0.0213388503, 0.0672672838, -0.078842625, -0.1344389617, -0.1448360234, 0.0321703404, -0.27955091, -0.2341865748, -0.3020344973, -0.1368786097, -0.0195759423, 0.1097839847, 0.1033441871, 0.3815740943, -0.0001027024, -0.1275226623, 0.2527960241, -0.2727613449, -0.3388966024, -0.1278549582, -0.1810853481, -0.0817265213, -0.5909468532, 0.0052009225, -0.3022562861, -0.2398954183, -0.0072254268, 0.0997399688, 0.2261944562, 0.5919895172, 0.2505138516, 0.0701195151, 0.2464674711, -0.1765382886, 0.2097939104, 0.1342857778, -0.1943411827, 0.0748920143, 0.2492661327, 0.1058406532, 0.1341982484, 0.3547527194, 0.0958013535, -0.1933065802, -0.0836800039, -0.2805369794, -0.0862782374, -0.3472282588, 0.0963436365, 0.3862763941, 0.5706558824, -0.1490596682, -0.2005539984, -0.1098023653, 0.3191329837, -0.2181978822, -0.1030060053, 0.071357809, -0.2441440076, 0.2761050165, 0.1657108068, -0.3014530838, -0.1601062268, 0.2586256266, 0.0814659297, 0.345028609, -0.0852065682, -0.1223038733, 0.0375879891, -0.2455188483, -0.254019469, 0.0060669929, -0.0461182222, 0.0812639967, -0.1872425824, -0.2806800306, 0.2276116461, -0.1033082828, 0.1497879922, -0.3863220215, -0.1564144939, -0.1269340366, -0.1921890974, 0.0440051034, 0.1150011569, 0.3788424432, -0.0264627822, 0.0377749801, 0.0474919043, -0.2518249452, 0.0497716069, 0.1109479815, 0.0034477785, 0.1197196543, -0.455919981, 0.2956075668, -0.0350671299, -0.1681343019, -0.2250044644, 0.0103601404, -0.096156843, 0.1125092208, -0.0918736905, 0.2835099995, 0.1321019232, 0.2797351778, -0.0397722907, 0.3609427214, -0.0224743225, -0.1811031103, -0.0242143944, 0.2069828957, -0.2713599801, 0.1940349936, 0.1961508691, 0.412207514, 0.1024270877, 0.0247087069, 0.299533546, 0.0639064014, -0.204353556, 0.030298017, 0.2913412452, -0.0242089368, 0.0846229494, 0.0053420216, -0.2197913975, -0.2398740649, -0.2191123515, 0.0841146708, 0.1576313525, 0.0178694353, -0.2563846409, 0.2600444853, -0.0684515908, -0.2423564643, -0.2785381377, 0.7449659705, -0.1015021652, -0.1297563463, 0.0934247226, 0.1164593101, -0.4105380177, 0.1627673209, -0.069776088, 0.2469457239, -0.1938311011, -0.1282407194, 0.1705830097, 0.0346945487, -0.0142724775, 0.1706643999, -0.0773137361, 0.21621418, -0.1221640557, 0.3464403749, 0.069822669, -0.3657928407, -0.2103001773, 0.0862001479, -0.1694947779, -0.0346862264, 0.2378328145, -0.1547815055, 0.6538501978, -0.2722485065, 0.0153092416, 0.384372592, -0.0367776752, 0.0969170108, -0.1929129511, -0.3223567903, 0.3236686289, 0.1244848147, 0.0395548269, 0.0809631199, -0.0471454561, 0.3634018898, 0.3307483792, -0.3230010271, 0.2720316648, 0.2625041902, 0.0517392494, -0.194039166, 0.0653445721, -0.1876686215, -0.0207856297, -0.1414247155, 0.1056059748, 0.6179713607, 0.215401873, -0.2642191648, -0.1249605268, -0.3051589429, -0.1202375144, -0.2097999007, 0.2888029814, 0.2694252133, 0.0702560991, 0.0411875397, -0.0988671631, 0.2438776791, -0.2970071137, -0.297580719, -0.0182526391, 0.247878924, 0.0196488276, -0.2429096252, 0.222289741, 0.4088078141, 0.1572903991, 0.0352289379, -0.0504622906, 0.0414016768, -0.2443633974, 0.2295622677, 0.0951732546, 0.172172755, 0.2641622126, -0.4821300507, 0.1307531595, 0.3708104789, 0.0634708107, -0.1844885647, -0.097876817, 0.2177420706, 0.4107006192, 0.1522423029, 0.1553034335, -0.0280254334, 0.4273425043, -0.0319918096, -0.2193308175, -0.0738400221, 0.0980243683, 0.2268736213, -0.154548198, -0.0578119904, -0.3017584682, 0.1953023374, 0.5034914613, -0.1534007788, 0.294339031, 0.221470803, -0.0552389696, -0.1172669679, 0.0382305011, -0.2572183013, 0.2364934981, 0.3023201227, 0.3069227338, 0.0311730634, 0.1960681975, -0.0299287084, 0.1378579438, -0.0343161598, -0.2566355169, 0.1840292364, 0.2056989819, -0.238939032, -0.38774544, 0.0946667343, 0.0309748277, 0.1088090464, -0.1727690548, -0.3300412595, 0.0964134559, -0.2699223161, -0.2532963455, 0.0454055108, -0.1398634613, 0.0259383097, 0.4245879352, 0.055831369, -0.1760518849, 0.2835522294, 0.34056288, 0.2605618238, -0.46049124, 0.0429375842, -0.105883792, -0.3384135067, -0.1501804888, 0.2364141643, 0.1870855391, 0.2369818985, 0.1945244074, -0.1454203427, 0.0693439916, -0.2870317698, -0.2716107368, 0.248845309, -0.2595187426, 0.0837695524, -0.2471224368, -0.0334553905, 0.0305461287, -0.4345566928, -0.2007728815, 0.0139666349, -0.1261315346, -0.1129613742, -0.446598947, -0.1231423169, -0.1197628677, -0.4519712329, -0.5385050178, -0.4178850055, 0.392436564, -0.1968695819, -0.0586532354, -0.0799920112, -0.0288544409, 0.0384504385, -0.0433624908, 0.1207180619, -0.3419518173, -0.1426251233, 0.0722504556, -0.3547128439, -0.3084485233, -0.2175136656, 0.02547957, 0.1171076447, -0.1903254539, -0.1839784235, 0.0840393007, -0.0518382713, 0.3439906836, 0.0942205936, 0.0520406291, 0.2340597659, -0.1334276199, -0.1558544934, -0.1684499383, -0.1474100649, 0.087096259, 0.4020910561, 0.2011593878, -0.0141407475, -0.015215477, -0.0106179267, 0.5695926547, 0.2129810899, 0.0032868665, 0.1964778602, -0.069117777, 0.4202746749, -0.3030354977, -0.2824949026, 0.4688383639, 0.0441650189, -0.0698982552, 0.4359489679, 0.0320684798, -0.4763182998, -0.0940274224, -0.2504989207, -0.2837277949, -0.2808145881, 0.3004733324, 0.1049328297, 0.1418052912, 0.0175235271, -0.1853661537, -0.2366907299, -0.1386939436, 0.3092557192, 0.0952273905, 0.105848223, -0.0109564047, -0.238320455, -0.0322099403, -0.3911240995, -0.1759315431, 0.1685517728, 0.2604579628, -0.4749262929, 0.1247686297, -0.0968389064, 0.1260517538, 0.3391442299, -0.3525820673, -0.031048188, 0.305185616, 0.4792061448, 0.0872482583, 0.1870062351, -0.2485227287, -0.3464484513, 0.628909111, 0.3033207059, -0.3392403722, 0.0734627694, 0.1714068502, 0.3540356159, -0.0567145906, -0.1258446723, 0.103625603, -0.3130620122, -0.3513382971, 0.294185102, 0.5863972306, -0.0044179857, 0.1327321678, 0.0856682658, 0.1573932767, -0.033005394, 0.4120714962, -0.0565562621, 0.0049820729, 0.5083366632, 0.0741573423, -0.0585309081, -0.0996989757, -0.1360975057, 0.2360037267, -0.0294904057, -0.3625950515, 0.0410942882, -0.3179113269, 0.3410195708, 0.3419690132, 0.1969086826, 0.0554197393, -0.115166381, -0.0049270391, -0.1786258519, 0.1787164062, 0.2119582295, 0.2197776735, -0.2665581107, -0.2907716632, 0.3327901959, 0.0238478482, -0.1356427521, 0.0800258815, 0.1426534355, -0.2639537454, 0.30238083, -0.2055172175, 1.2013115883, 0.2142939866, 0.0708873421, 0.1853226423, -0.2761234641, 0.0556957759, -0.4282708168, -0.1648580879, 0.2509614229, 0.1383726746, 0.0014106631, 0.2332966924, -0.0927020237, 0.1877398193, -0.4681077302, 0.2074913681, -0.0331508368, 0.054917179, 0.1473741233, 0.4590067863, -0.1414239258, -0.4073213935, -0.3770545721, 0.276476413, 0.1617032737, 0.1001481786, 0.1867162585, -0.3114007711, 0.1649113297, -0.0229206681, -0.6706445217, 0.1773020178, -0.1828344464, -0.1868109405, -0.4717204571, -0.1523206532, 0.2350882739, 0.2190217674, 0.4069217741, -0.0199952181, -0.2431346029, 0.2917391658, 0.0239372253, 0.1518758535, 0.1312965453, -0.06025346, 0.3363068104, -0.3078970313, -0.2724236846, 0.2259281576, 0.0713615865, -0.0757806078, -0.3984651566, -0.2754771411, 0.0963084847, 0.158393532, 0.2444712818, 0.5786367655, -0.0220876336, -0.3135791421, 0.2143933475, -0.115998365, -0.4537072182, 0.1347677112, -0.1388079822, -0.2421626747, -0.1848854125, 0.2223584056, 0.2763395607, 0.0056739524, 0.3082562983, 0.2500695586, -0.1052583978, -0.3605339527, -0.1390839666, 0.1891148984, -0.4564021826, -0.0212938525, 0.1425501853, -0.1546452492, -0.2860094905, 0.27140674, 0.0331894718, 0.0567181334, -0.1672997177, -0.0124394447, -0.2301465571, -0.0923009962, 0.1138133705, 0.0898482502, -0.0456600413, 0.3371574283, 0.0558031127, -0.0954175666, -0.4461349249, 0.0046954155, -0.1053115875, 0.2245196849, 0.2490906715, -0.1189702153, 0.0917531103, 0.0116867945, 0.1757111251, -0.0036672223, -0.0317334905, -0.2695859969, -0.1937433183, 0.0764045641, 0.1505882144, 0.2530786395, -0.0092549361, -0.0582828335, -0.1696681082, 0.0840198249, 0.3346138597, 0.2620314956, -0.0697770044, 0.1393530965, -0.0488859601, 0.0339897685, 0.2634318769, -0.0036809342, 0.3496932387, 0.2920740545, 0.0416923203, 0.1540034711, 0.0411524698, -0.0830359757, -0.0032430328, 0.2300280482, 0.1934447885, 0.1171965748, -0.0611625053, 0.1571458578, 0.1814698726, 0.2435403168, 0.0742652044, 0.0299629383, -0.0770980641, -0.0151864402, 0.3908577263, 0.3026227057, -0.2279475927, 0.1720365882, -0.2025794685, -0.3291873932, 0.1894779801, 0.0683881789, 0.0471171737, -0.0691952184, 0.3555960059, -0.122953251, -0.275238961, 0.0246606134, 0.0792319328, 0.1658144146, 0.0947474316, -0.0498003364, 0.021851683, -0.0467497595, 0.0743335038, 0.0160365999, -0.1718970239, 0.4392324686, 0.1295552403, 0.1724379957, 0.2956698537, 0.0815520585, 0.0978176668, 0.027422905, 0.1782462299, 0.2709983885, 0.1174813062, 0.289726913, -0.0029120706, -0.3623559773, -0.1611572206, 0.2655171752, 0.0546873733, -0.0238856114, -0.0480709784, -0.1641686857, -0.215149343, -0.0387396179, -0.0059955195, -0.1757561862, -0.1309617311, 0.1293320358, -0.1634708792, -0.0372237116, -0.1534482688, -0.2295435369, 0.1345551163, -0.2233675271, 0.3498357534, 0.1768846661, -0.0774556249, 0.212263763, 0.5102561712, 0.4451506734, -0.0017901082, -0.160640806, 0.1599896252, -0.0294543263, -0.0854599029, 0.0235633254, 0.3419022262, 0.1673724502, 0.0670704693, 0.1742616296, 0.2570086122, -0.2493706942, -0.1158060059, 0.131418705, -0.0973993167, -0.0916336924, 0.1299996674, -0.0769674629, 0.1917341352, -0.6140165925, -0.2166842669, -0.5189556479, 0.1008452326, 0.3167090416, -0.2451286763, 0.0856405273, -0.0976702869, 0.1314334571, -0.1694405824, 0.2627632618, 0.2098893672, 0.0779373199, -0.0809129477, -0.1441600472, -0.3445731401, -0.0600718483, 0.1162444502, 0.0893856585, -0.3636898398, 0.0120037571, 0.4930261672, 0.3169738352, -0.1438659877, -0.1319649369, -0.3537134528, 0.179270342, -0.4054430723, 0.2229897231, 0.06749852, 0.6136320829, 0.1962836087, -0.1255869418, -0.2397259176, 0.273729533, 0.1132914573, -0.0416437611, -0.0516673885, -0.2366298884, -0.2126130462, 0.1456015408, -0.0530784056, 0.4831129909, -0.3111391664, -0.0611143708, -0.0497693717, -0.1624682993, -0.1949467063, 0.0023762621, -0.0452824458, 0.2194714844, -0.1070500985, 0.2709203362, -0.0405503027, -0.178035304, -0.0465671234, 0.0609512925, -0.2925067246, 0.1395406723, -0.1016313583, 0.0202328451, -0.1936718225, 0.2009615302, -0.0456455387, -0.0938915014, -0.2283536196, -0.1869201511, 0.4489101768, -0.1410412192, -0.3384420872, -0.0648676306, 0.3041791916, 0.0984931737, -0.0679304674, -0.6517701149, 0.2181301117, 0.2331312299, 0.1671429276, 0.1549943984, 0.1583144069, 0.0599940196, 0.0549562722, -0.1076407582, -0.0592301004, 0.1667319536, -0.1569560319, 0.0428395122, -0.3223868608 ]
https://github.com/huggingface/datasets/issues/1840
Add common voice
Hey @BirgerMoell - awesome that you started working on Common Voice. Common Voice is a bit special since, there is no direct download link to download the data. In these cases we usually consider two options: 1) Find a hacky solution to extract the download link somehow from the XLM tree of the website 2) If this doesn't work we force the user to download the data himself and add a `"data_dir"` as an input parameter. E.g. you can take a look at how it is done for [this](https://github.com/huggingface/datasets/blob/66f2a7eece98d2778bd22bb5034cb7c2376032d4/datasets/arxiv_dataset/arxiv_dataset.py#L66) Also the documentation here: https://huggingface.co/docs/datasets/add_dataset.html?highlight=data_dir#downloading-data-files-and-organizing-splits (especially the "note") might be helpful.
## Adding a Dataset - **Name:** *common voice* - **Description:** *Mozilla Common Voice Dataset* - **Paper:** Homepage: https://voice.mozilla.org/en/datasets - **Data:** https://voice.mozilla.org/en/datasets - **Motivation:** Important speech dataset - **TFDatasets Implementation**: https://www.tensorflow.org/datasets/catalog/common_voice If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
100
Add common voice ## Adding a Dataset - **Name:** *common voice* - **Description:** *Mozilla Common Voice Dataset* - **Paper:** Homepage: https://voice.mozilla.org/en/datasets - **Data:** https://voice.mozilla.org/en/datasets - **Motivation:** Important speech dataset - **TFDatasets Implementation**: https://www.tensorflow.org/datasets/catalog/common_voice If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Hey @BirgerMoell - awesome that you started working on Common Voice. Common Voice is a bit special since, there is no direct download link to download the data. In these cases we usually consider two options: 1) Find a hacky solution to extract the download link somehow from the XLM tree of the website 2) If this doesn't work we force the user to download the data himself and add a `"data_dir"` as an input parameter. E.g. you can take a look at how it is done for [this](https://github.com/huggingface/datasets/blob/66f2a7eece98d2778bd22bb5034cb7c2376032d4/datasets/arxiv_dataset/arxiv_dataset.py#L66) Also the documentation here: https://huggingface.co/docs/datasets/add_dataset.html?highlight=data_dir#downloading-data-files-and-organizing-splits (especially the "note") might be helpful.
[ -0.191414237, -0.2330223471, -0.0579188652, -0.1640419215, 0.1464048624, -0.0773414671, 0.2238349319, 0.2807312012, -0.2090620399, 0.3071740866, -0.4487542212, 0.0414792076, -0.0504974723, -0.0618106872, 0.1337498128, -0.1799685061, -0.2989139259, 0.0928417295, 0.0731952041, -0.0893016383, 0.1916295588, 0.0703535751, 0.0067792684, 0.0103026535, -0.064863354, -0.0836325735, 0.0658921599, -0.0585372448, 0.0435861722, -0.1326307207, -0.101937592, 0.2207967043, -0.1319610775, 0.4909032285, -0.0000958251, -0.0298784971, 0.1239592358, -0.171576336, -0.1875042468, -0.1483193934, -0.2629150152, 0.1999738216, -0.3399197757, 0.1386552155, -0.2324214429, -0.0841774642, 0.0835846588, -0.1736223251, 0.3670108616, 0.4226415753, 0.3214831948, 0.1754924059, -0.0685999393, 0.0331243202, 0.198900938, 0.1055696309, -0.1864420474, 0.1450783908, 0.1981418729, -0.0047170445, -0.0269430168, 0.3730792999, 0.040143162, -0.1104226857, -0.14066571, 0.0541817099, -0.0711616129, -0.4051722288, 0.0466369726, 0.4960677028, 0.581314683, -0.2943412066, -0.1319929659, -0.2549913526, 0.0939377695, -0.0744588226, -0.0119609125, 0.1040293947, -0.3731025755, 0.2526132166, 0.14004457, -0.1729527116, -0.0926649868, 0.1806473732, 0.0982043296, 0.2873306572, -0.090239875, -0.3477494717, 0.0350276306, -0.1297869831, -0.2782453895, 0.1741711795, 0.3745586276, 0.0719092637, -0.2025437802, -0.2045182437, 0.1722052693, -0.4943509698, 0.3373634219, -0.2338498682, 0.3088485599, 0.1937014312, -0.2733049691, 0.1480512321, -0.0929490179, 0.1415395588, 0.0336594433, -0.2610836923, 0.4790061712, 0.0796313435, 0.1017046869, 0.0869898647, -0.0355172269, 0.0955113471, -0.1683770716, 0.0081456769, 0.1157437488, 0.1286966503, -0.2746973932, -0.0248592645, -0.0774223953, 0.0341903195, 0.1007623076, 0.3143830895, -0.1674358696, 0.2423109263, 0.0129373893, 0.1006356403, -0.0871868581, -0.4383675158, -0.1132012904, -0.090150401, -0.0422652364, 0.2203018069, 0.2512873113, 0.0081319064, 0.1794686615, -0.0383706763, 0.3635951579, -0.0449106507, -0.0580289811, 0.1659002006, -0.1160877869, -0.0063174963, 0.1776337773, 0.1012065187, -0.0947205648, -0.0506713241, -0.1521700025, -0.081401512, 0.0066566989, -0.2400237769, -0.2349160016, 0.3818751872, 0.2067498863, -0.0916207135, 0.1750999689, 0.4059945047, 0.0205772817, -0.1133107543, 0.0576029904, 0.270498395, -0.3937546909, 0.0019520633, 0.2353147864, 0.138697803, -0.1030029505, -0.2127182186, -0.088700667, 0.0259470828, -0.089971669, 0.2812160552, -0.0547239445, 0.1473566443, -0.0783702582, 0.5168426037, 0.3876641095, -0.3474629521, -0.3929832578, 0.1568108797, -0.3701218367, -0.0025551915, 0.1129033715, -0.0325602144, 0.2321353555, 0.005464036, 0.308616221, 0.2736942172, -0.0658043399, 0.2518996596, -0.2528395653, -0.2755355239, -0.1130037531, 0.2201483399, -0.2039204687, -0.0475506857, -0.0219952762, 0.0114410147, 0.3305031657, -0.2774733901, 0.2274193168, 0.1372635961, 0.3657885194, 0.0801175535, 0.034929648, -0.1751103848, -0.0472086668, -0.0706853345, -0.0469404683, 0.2627594471, -0.119619064, -0.542286098, -0.3234483004, -0.2906111181, -0.0741246641, 0.067882821, 0.3533306122, 0.2043396682, 0.1240553707, 0.0903272778, -0.1320171952, 0.1620309353, -0.0152113922, 0.0198960081, 0.0743765086, 0.0913551897, -0.2356635779, 0.0062164553, 0.2639212608, 0.1740457714, -0.1094262749, -0.0470192097, 0.0121949911, 0.4601742923, -0.3491535485, 0.4136951864, -0.0707973391, 0.2818541527, 0.2362558097, -0.2704651654, 0.0932089537, 0.2370879799, 0.0308206864, -0.0098861977, 0.1947710514, 0.020402018, 0.4368934929, -0.1829052269, 0.2546639442, -0.0160996914, 0.3013765812, -0.0786268413, -0.104842335, -0.0826985613, -0.0274505131, -0.0776250809, 0.1535746157, -0.1632679254, -0.5607645512, 0.2125446051, 0.5365676284, -0.1590390205, 0.3975815475, 0.2310606539, -0.3788745105, -0.0340255052, 0.0417587087, -0.1818193495, 0.0579484291, 0.3344875574, 0.2248822898, 0.0508947819, -0.0263419934, -0.2014660239, 0.1271745563, -0.0536994301, -0.2016316354, 0.3989917934, 0.1725076139, -0.010492092, -0.563757658, -0.1607818305, -0.1286461353, -0.098063305, -0.2647340894, -0.1571463645, -0.1429145336, -0.4420361221, -0.1284153461, 0.0389534608, -0.1304063946, -0.1147743836, 0.4792996645, 0.3162688911, -0.0680869669, 0.2069613487, 0.0379834622, 0.3899507225, 0.0894136354, -0.0279650632, 0.0022462755, -0.0561510026, -0.1687339097, 0.2636246681, 0.0540255308, -0.123838909, 0.2293985784, -0.045298107, 0.1493048668, -0.0334433988, -0.3091453314, 0.3005314469, -0.1655349731, -0.3047589958, -0.1206969619, 0.0727315545, 0.1589966267, -0.337480545, -0.0105488263, -0.1580182314, -0.2190055251, -0.0341280922, 0.0229271986, -0.0131088775, -0.3320541382, -0.4506054819, -0.2056813836, -0.5207064152, 0.1198897883, -0.259111762, 0.1161837578, 0.1122035906, -0.2233249098, 0.1942958832, -0.1867545396, 0.4712707996, -0.3216319084, -0.1863493025, 0.3625209928, -0.3688290417, -0.3724724352, -0.1673840284, -0.060676381, 0.3532103002, -0.0775348842, -0.2152739465, -0.1116482541, -0.0815468356, 0.1689911932, -0.0473103486, 0.0326158553, 0.1993015409, 0.1591004729, -0.2522542775, -0.1729519963, 0.0519595742, 0.0556864887, 0.2103473842, 0.0103446804, 0.0118939057, 0.0778005272, 0.2278719395, 0.7560041547, 0.0810775608, -0.0760718584, 0.1922337562, -0.2419106066, 0.0715439394, 0.0979514271, -0.058021903, 0.3411955237, 0.1354031116, 0.1990298331, 0.5835257173, 0.1346817762, -0.1079588085, -0.0935438946, 0.019406803, -0.3015475571, -0.4096613526, 0.0197023991, -0.0651296824, 0.1474784613, -0.0145648047, -0.0210396871, -0.0140762106, -0.0204695333, 0.4538123608, 0.1323341876, -0.1864848435, -0.1799762696, 0.2131436169, 0.1475816667, -0.3176471889, 0.1330754906, 0.2769828737, 0.0023008138, -0.2478592396, -0.2487753332, -0.1171031296, 0.1313937753, 0.2856898308, -0.1399199814, -0.1206068322, -0.1598565876, 0.2348414809, -0.0035141632, 0.3497114182, -0.1370621324, -0.3063140213, 0.1263978034, -0.0062398314, -0.3253070712, -0.0157700442, -0.1843079329, 0.0775360018, -0.0926554799, -0.0158219486, -0.0043913797, -0.2653483152, -0.230548203, 0.0171844587, 0.0867439955, 0.0055585019, -0.0511265621, -0.1443827152, 0.4201827645, -0.2546160221, 0.3220590949, 0.2204241157, -0.0859736577, 0.2481718063, 0.0731481761, 0.1424102485, 0.1460678577, 0.0163868908, 0.1482809186, 0.2338846922, -0.2542988658, -0.2496322691, -0.1874732375, 0.1962053329, 0.1179956868, 0.1918426454, 0.0696485415, 0.0070576631, 0.1785701364, -0.1386415958, 0.2552043498, 0.2867578864, 0.1282339543, -0.0800250769, -0.2555854619, 0.1926198006, -0.1053229123, -0.1015550569, 0.2771303058, 0.0240955185, -0.3037808836, -0.0706025064, -0.2882118225, 1.0026526451, 0.118343614, 0.1908111721, 0.341057837, 0.0726651698, 0.1709720939, -0.4545092583, 0.2086753547, 0.1632050723, -0.1537919343, -0.0546542592, 0.1420120597, -0.2863588035, 0.1268391907, -0.3761079609, -0.0616793856, -0.0214053318, 0.0627398342, 0.1325073838, 0.4239198864, -0.1510881335, -0.4788645804, -0.3154272437, 0.2642376423, -0.0867284238, 0.2362650484, 0.2626686692, -0.252989918, -0.1149282455, -0.0637132674, -0.1541440487, 0.2917875946, -0.2924611866, -0.0493436791, -0.2072126865, 0.099813059, 0.2420372814, 0.1741277874, 0.2320066988, 0.1393323988, -0.3067488074, 0.1588183939, 0.1939473301, 0.1440843791, -0.0995000303, 0.0591386408, 0.3088832498, -0.2716982365, -0.1698356271, 0.239430353, 0.2570656836, -0.0698951334, -0.2673348188, -0.3158335686, -0.0035014879, -0.0966451466, 0.3100903928, 0.3235733509, -0.1549088657, -0.1027553678, 0.264454633, 0.0209739432, -0.2815412581, -0.1108626202, 0.2335282117, 0.0327756703, -0.1501262933, 0.2513995171, 0.0610241927, -0.009882614, 0.2471794784, 0.0241860002, -0.1909645796, -0.3668531775, -0.2549312115, -0.2306806743, -0.1314144731, -0.1306540221, -0.1345624626, -0.2067376673, -0.2458793521, 0.1564695835, -0.1442664266, 0.1952609718, -0.0851775706, 0.0032714233, -0.3673198521, 0.0618112013, 0.1946363896, 0.1336251497, -0.1124667004, 0.310348928, 0.0774400681, 0.0023240186, -0.5247673392, -0.2034434378, 0.0491655767, -0.0354601033, 0.3234438896, -0.1927636266, 0.4031951427, 0.0124777965, 0.3258101344, 0.0486926958, -0.0774479061, -0.3793224096, -0.2583362162, 0.0795324668, 0.2376998663, -0.0187286641, 0.0788433701, 0.0648451895, -0.1420837343, -0.0164444931, 0.3288494647, 0.0724925399, 0.0079334117, 0.0902181864, -0.0863250121, 0.0552420318, 0.0965062678, -0.1942554116, -0.0503231511, 0.2289918512, 0.1543938369, 0.0242108237, -0.123921141, -0.2402873486, -0.1021336764, 0.1974297166, 0.3567433357, -0.0804348364, 0.2329961061, 0.0097970162, -0.1402050704, 0.129304722, 0.3861316144, -0.0911688209, -0.2412332147, -0.1275301278, 0.2536958456, 0.4083325267, -0.2138856798, 0.1225512624, -0.0603865571, -0.329177022, 0.3680535555, 0.1795027852, -0.130282104, 0.2072899342, 0.0437909588, -0.0316704325, -0.1217086315, -0.1171461344, 0.0613426417, 0.1134324223, -0.0481743142, 0.0056474833, 0.0096606538, -0.0278046802, 0.3023862243, 0.0677329451, -0.3583761752, 0.201892361, 0.0399667546, -0.0862172991, 0.4024352431, 0.0703887865, -0.0735234916, 0.015338555, -0.1396112293, 0.216504544, 0.1023060232, 0.4589156806, -0.1830163151, -0.0195774902, 0.0281379074, 0.3724352419, 0.0333434939, -0.0442901701, -0.2614046335, -0.0473420471, -0.2303523123, -0.163677752, 0.2782405615, -0.0706568211, 0.0411743633, 0.0363366939, -0.0496932268, -0.1757365614, -0.0177372247, 0.0439617746, 0.4665777087, -0.081801489, 0.1076578647, 0.0078298971, -0.2480557859, 0.1456407011, 0.2919993699, 0.0938508064, -0.073476702, -0.2089617103, 0.3558447361, -0.0780875236, -0.076782912, -0.1104156375, 0.0555465445, 0.2791466415, 0.1199440584, 0.2118848115, 0.2674849331, -0.348251462, -0.1066889912, 0.0184001699, -0.0197684839, -0.0893205851, 0.1595230103, -0.1001287103, 0.0307627022, -0.3655954599, -0.2546173334, -0.5871134996, -0.0298461728, 0.3238989711, -0.135387212, 0.139384985, -0.3521344662, 0.1749688387, 0.0543309562, 0.264128983, 0.2829346061, 0.0492218845, 0.3644107282, -0.0616457462, -0.4385338724, 0.2595624924, 0.2388587296, -0.0972763374, -0.3690241575, 0.0233483762, 0.2873704731, 0.1467655599, -0.0101036206, -0.2942482233, -0.271573931, -0.2155801356, -0.1658014208, 0.1621249914, -0.3059237301, 0.2832653821, 0.2129464447, -0.311722666, 0.0671114996, -0.0784237906, 0.2411319017, -0.0460234508, 0.1796016544, -0.1786735654, -0.3356565237, 0.240175724, -0.1234485805, 0.2430977374, -0.3953341246, -0.2057669461, 0.1390500069, -0.0050312765, -0.2132122219, -0.0577719659, 0.1126817912, 0.3333132863, 0.0756598413, -0.0800967142, -0.2306822836, 0.1676315516, 0.1834656, -0.1587757766, -0.0100848563, 0.0971832648, -0.0229347497, -0.0381480642, 0.0862877518, 0.16101861, -0.255032599, -0.0684332252, -0.1331647336, -0.547457695, 0.2972134352, -0.1807412952, -0.117797561, -0.1195980906, 0.3474226594, 0.0213249847, 0.0512088835, -0.3489222825, 0.1687338352, 0.2328532338, 0.0347477347, -0.1949571073, 0.1563554555, 0.0093391128, -0.2200106084, -0.1283112168, 0.4098034501, 0.2252566814, -0.0901622921, 0.097625792, -0.3563472033 ]
https://github.com/huggingface/datasets/issues/1840
Add common voice
I added a Work in Progress pull request (hope that is ok). I've made a card for the dataset and filled out the common_voice.py file with information about the datset (not completely). I didn't manage to get the tagging tool working locally on my machine but will look into that later. Left to do. - Tag the dataset - Add missing information and update common_voice.py https://github.com/huggingface/datasets/pull/1886
## Adding a Dataset - **Name:** *common voice* - **Description:** *Mozilla Common Voice Dataset* - **Paper:** Homepage: https://voice.mozilla.org/en/datasets - **Data:** https://voice.mozilla.org/en/datasets - **Motivation:** Important speech dataset - **TFDatasets Implementation**: https://www.tensorflow.org/datasets/catalog/common_voice If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
66
Add common voice ## Adding a Dataset - **Name:** *common voice* - **Description:** *Mozilla Common Voice Dataset* - **Paper:** Homepage: https://voice.mozilla.org/en/datasets - **Data:** https://voice.mozilla.org/en/datasets - **Motivation:** Important speech dataset - **TFDatasets Implementation**: https://www.tensorflow.org/datasets/catalog/common_voice If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). I added a Work in Progress pull request (hope that is ok). I've made a card for the dataset and filled out the common_voice.py file with information about the datset (not completely). I didn't manage to get the tagging tool working locally on my machine but will look into that later. Left to do. - Tag the dataset - Add missing information and update common_voice.py https://github.com/huggingface/datasets/pull/1886
[ -0.134446919, -0.2228566408, 0.000192944, -0.1578851491, 0.1937065274, 0.0049484447, 0.2681257427, 0.3020454347, -0.2495006174, 0.1795226038, -0.3955019712, 0.2300343066, -0.0425769165, -0.026486259, 0.0067096017, -0.1008292139, -0.1025350764, 0.1595252454, 0.1041881293, -0.2480208874, 0.1949150413, 0.0668467432, 0.1133063063, -0.0790027082, -0.3241567612, -0.1644456685, 0.0231046751, -0.1435562819, -0.0003258698, -0.1549273282, -0.0453543887, 0.27155599, -0.2102988064, 0.6402716637, -0.0001004911, -0.0444369167, 0.0341920704, -0.2457213402, -0.0831900686, -0.1936040223, -0.1155187935, 0.1076659858, -0.2947712243, 0.1147530079, -0.2959161103, -0.2513286173, -0.0181471016, -0.2323180139, 0.3075144291, 0.308676213, 0.2740312219, 0.0791775584, 0.0037060753, 0.1020498574, 0.1946552992, 0.1500168741, -0.2205498815, 0.171419248, 0.3242518008, -0.136610359, -0.0471705794, 0.4662685096, 0.0955390334, -0.2063772231, 0.0721228868, 0.0336855762, -0.140847981, -0.4390892982, 0.0748788267, 0.4949433506, 0.5199840665, -0.4264082909, -0.3617736101, -0.317340374, 0.1082021594, -0.2514177561, 0.1010295376, -0.1179753244, -0.255739361, 0.2239131629, 0.1083865315, -0.1283466965, -0.0489873737, 0.0811170861, 0.129468888, 0.4218023717, 0.0317737758, -0.2574906647, -0.0835852623, -0.1344357729, -0.4091208577, 0.2767674029, 0.2451606989, 0.2131907791, -0.2955949306, -0.1637171805, 0.2193738669, -0.5752831101, 0.2983843684, -0.1418930292, 0.2043367028, 0.1789838225, -0.3365128338, 0.1185015142, -0.0730811656, 0.1383013129, 0.122995764, -0.1810260415, 0.2307826579, -0.077523075, -0.0508181676, 0.0256608222, -0.0354845002, 0.1108120531, -0.0737336576, 0.0099485442, 0.1576350182, 0.0028997362, -0.21170789, 0.1503163427, -0.1971746087, -0.0134342946, 0.0216209367, 0.294563055, -0.1580663174, 0.3248329759, -0.0321695544, 0.0962950289, 0.0461162776, -0.1675424576, -0.116362907, -0.1051342264, -0.0598574318, 0.1783372462, 0.2899333537, -0.2306269705, 0.2474513799, 0.0906159133, 0.2151053399, 0.0239893049, -0.1130205616, 0.148895964, 0.0352116004, 0.0130949467, -0.0530400947, 0.1488323808, -0.0161979683, -0.0461042002, -0.1122687012, -0.1488525271, 0.1025853157, -0.0991443247, -0.4022323191, 0.3375138044, 0.1065637693, -0.0816782117, 0.3401315808, 0.3973251283, 0.1810902655, -0.2607650757, 0.0863160565, 0.204462558, -0.4028560221, -0.13372311, 0.2988263965, 0.0428128988, -0.2501434088, -0.1295455694, -0.0037452839, 0.0662232339, -0.0445566997, 0.2206293643, 0.0588410608, 0.0657692552, -0.0801881552, 0.4226996601, 0.2906522453, -0.291836977, -0.3610618711, 0.1677826941, -0.2368707657, 0.141633749, 0.1983560622, -0.1059636474, 0.2048779428, -0.0048461594, 0.5065509677, 0.2191433758, -0.2216198146, 0.0596207157, -0.2887992263, -0.1531592607, 0.08183413, 0.0917184278, -0.1394612193, -0.0696657524, -0.1532016993, -0.1108910441, 0.2634885609, -0.2050187737, 0.1799526513, 0.1328167021, 0.4978138506, 0.1184106767, 0.1031951085, -0.2038645744, -0.188420251, 0.0100558028, 0.0054535493, 0.3142546117, -0.0859168768, -0.523368597, -0.2934357822, -0.3056116998, -0.1241283566, 0.0104293786, 0.3078225553, 0.2625296414, 0.0256663933, 0.0203965157, -0.2492904663, 0.1213693768, 0.0112153366, 0.0795271248, 0.023015935, 0.089784205, -0.2401885688, -0.1604064107, 0.2288625389, 0.3455806077, -0.1591655016, -0.0602732822, -0.0589506924, 0.3045244515, -0.3686720133, 0.3352653682, -0.0782309771, 0.3569925427, 0.1849015951, -0.1701761037, 0.0201044325, 0.1942463964, 0.0741205662, -0.1760628223, 0.1142838672, 0.1050395668, 0.3372461498, -0.1475911289, 0.0875651091, -0.1600451767, 0.3091046214, 0.0102097169, -0.0980092883, -0.0631409436, -0.0762403905, -0.1810004562, 0.216141507, -0.0155314086, -0.603913486, 0.2193377614, 0.6066964865, -0.050264366, 0.2664572597, 0.1890584975, -0.3052853644, 0.0091059655, 0.0964586958, -0.2371927202, 0.0776583701, 0.268239975, 0.1686559618, 0.0385634974, -0.0325511917, -0.1328755617, 0.028776668, -0.0617647283, -0.0482397228, 0.5199926496, 0.2396480739, 0.1290623546, -0.4704149067, -0.2076027393, -0.1037412435, 0.0820090026, -0.2697701454, -0.1634815335, -0.0728348419, -0.3710719943, -0.0508549139, -0.0506700054, -0.340868175, -0.1255006492, 0.3960848749, 0.3298535943, 0.0087161884, 0.4096942246, 0.0511544868, 0.1571532637, 0.0600987822, -0.1292621493, -0.0713003129, -0.0899613649, -0.1671463251, 0.2367100418, 0.1432025135, -0.1959049702, 0.233914569, -0.0050528422, 0.1264350563, 0.035935685, -0.4879773855, 0.1857513934, -0.4026751816, -0.2273771167, 0.0057524927, 0.0000287145, 0.0893840343, -0.4461909533, 0.0706718266, -0.2756735682, -0.2109455168, -0.091303952, -0.1745147407, 0.0008465089, -0.3001881242, -0.5085431337, -0.1244487166, -0.5271831155, 0.1792958379, -0.2819220126, 0.1161314473, 0.2779877782, -0.1688765734, 0.1067908779, -0.2514389753, 0.445471257, -0.308019042, -0.2258506715, 0.2266339362, -0.1953064948, -0.3069177568, 0.0314140618, -0.1508214176, 0.5303364396, -0.0159360245, -0.0882409662, -0.1784494519, -0.0283809919, 0.2868047655, -0.0314259119, 0.0683949739, 0.2362620831, 0.2672896683, -0.2033076882, -0.1630728096, -0.1307863444, 0.0234084744, 0.1973060519, 0.0784572586, -0.0149754314, 0.1801189482, 0.1350790262, 0.828818202, 0.0600882992, -0.2452114522, 0.2792578936, -0.2965866029, 0.2424114048, 0.0120590869, -0.2315930724, 0.3489262164, 0.136329636, 0.1873924881, 0.4802671969, 0.0852962136, -0.014055145, -0.0935030058, 0.0953893065, -0.3411554694, -0.3090347052, 0.2123464346, -0.1360478699, 0.1384045035, 0.0214222297, 0.0657251775, -0.195952341, -0.1094431728, 0.3681483269, 0.1309854388, -0.0633035153, -0.1535941958, 0.144322142, -0.0149171166, -0.3111484349, 0.0432718545, 0.2908509374, 0.1650208235, -0.303366363, -0.1587878466, -0.2049722821, 0.2093764395, 0.2548339963, -0.2075529546, -0.1739872545, 0.1600527316, 0.2465019375, 0.0190075189, 0.2726392448, -0.0969247967, -0.116656363, 0.1592394412, 0.1634501517, -0.3500539064, -0.057679262, -0.2100786865, 0.2365631163, -0.0404830836, 0.0786971152, -0.0489068516, -0.2119987905, -0.2692862451, -0.0303382389, 0.0934457034, -0.0216287188, -0.0165640991, -0.0174632892, 0.3813256323, -0.2355317026, 0.415155232, 0.3084320426, 0.0095392354, 0.2811663449, 0.2500530481, 0.1180645153, 0.222377345, 0.0232110117, 0.3118491173, 0.1129248887, -0.2161218524, -0.1879102588, -0.1973952055, 0.4451720715, 0.1190073341, 0.2169221342, 0.0825162828, -0.0761464983, 0.029180523, -0.1812072992, 0.3324917853, 0.307197243, 0.2214365304, -0.1813533902, -0.2902562618, 0.1426407397, -0.0060958266, -0.1787078828, 0.3708265424, -0.0113302991, -0.3125833869, 0.1201829612, -0.3805452585, 1.0539367199, 0.1060056388, 0.1705634743, 0.3440308571, 0.1708268374, 0.2144336998, -0.4325194359, 0.141215533, 0.0622886717, -0.21152924, 0.0575012714, 0.1662165523, -0.1885238588, 0.0331700519, -0.3631227911, 0.060266003, 0.0159083158, 0.0602485128, 0.1308224499, 0.3993851542, -0.0664181635, -0.4873315394, -0.2496804893, 0.1965698004, -0.1272592396, 0.2601578236, 0.178609401, -0.2498537153, -0.2813638747, -0.0841069221, -0.2218984365, 0.2095036209, -0.2499835789, -0.2165776938, -0.0586405434, 0.0542161465, 0.2628611326, 0.0235475451, 0.2635436654, 0.1367251575, -0.2656133175, 0.1696123779, 0.203576684, 0.1425754726, -0.0395375714, 0.1031611711, 0.4867220521, -0.2618867159, -0.1868193895, 0.1463111192, 0.0967750922, -0.0080746785, -0.3674501181, -0.3758534193, 0.0626383126, -0.2191754729, 0.3816476762, 0.2362188548, -0.074613601, -0.1278436035, 0.2453705519, 0.1814092994, -0.3947036862, 0.0122830868, 0.1293306798, 0.0621429384, -0.1587812304, 0.1683377028, 0.1127036065, -0.0496093892, 0.3067158461, 0.1275480241, -0.0575349107, -0.3017158806, -0.3166988194, 0.0235545337, -0.2233231664, -0.3351828158, 0.0105898306, -0.3136930764, -0.1052808166, 0.2668183148, 0.0611059591, 0.1855637431, 0.0070174187, -0.0553817935, -0.5129722357, 0.1031639352, 0.0867876559, 0.1530071944, -0.2143235058, 0.3322764039, 0.1086514592, 0.1653894931, -0.5192534328, -0.2462421656, 0.0332907289, 0.1924852282, 0.1842328161, -0.2702381313, 0.3270451128, -0.1153577119, 0.3327234685, 0.0361935869, -0.0305368323, -0.3145812452, -0.2067762017, 0.0717499405, 0.2016595155, -0.0041058622, 0.14886944, 0.1970042884, -0.2191010118, -0.1433821768, 0.2331745327, 0.060771361, -0.0100693032, 0.1859633029, 0.0054923235, 0.0829419717, 0.2363808155, -0.3351302147, 0.0773632675, 0.1577957571, 0.1253007054, -0.0204269439, -0.2257258594, -0.2216386795, 0.0209905952, 0.1940124184, 0.1762097031, -0.0812987387, 0.2119423151, -0.0126769263, -0.1316139996, 0.2430471033, 0.4936256409, 0.0372072384, -0.1053428352, -0.0177304968, 0.3020397127, 0.375621736, -0.3024634421, 0.1557870507, 0.1194754392, -0.1814776063, 0.3449590504, 0.1164902449, -0.0015552491, 0.1204199791, -0.0463926122, -0.0269504823, -0.0555052981, -0.2370208353, 0.029638648, 0.0303876139, -0.0536547601, 0.0260658935, 0.1019399315, -0.0088631166, 0.3165411949, 0.2017359883, -0.2197792977, 0.3501241207, 0.1147178486, -0.1532220095, 0.4321586788, -0.0566323251, 0.0155751063, 0.0331122167, -0.0650248006, 0.2184813023, 0.0824345946, 0.5198345184, -0.1819768995, -0.2765975595, 0.1574692577, 0.3043006659, -0.06080525, -0.0519483909, -0.1380878687, -0.0286541581, -0.1211853325, -0.281013906, 0.2142594159, -0.034556523, 0.1360971481, -0.02273212, -0.1195065081, -0.0947603062, -0.2054437101, 0.0951798707, 0.5703047514, -0.048862882, 0.2297982424, 0.094303444, -0.3598147631, 0.1032423824, 0.3485671878, 0.2855007052, -0.1141804606, -0.1702525914, 0.451878041, -0.1236322373, -0.0518494025, -0.0853940323, 0.1682271361, 0.2482922971, 0.0372163914, 0.0963400826, 0.2396828979, -0.2887353301, -0.1879403591, 0.0163460281, 0.0142058022, -0.0523940846, 0.1453013122, -0.1879597455, -0.1568938941, -0.3550961912, -0.1093553156, -0.5188398957, -0.1269155443, 0.4577676952, 0.0951126516, 0.1440896392, -0.3524831533, 0.150307253, 0.0776494294, 0.1650588959, 0.3841644824, 0.1056904048, 0.2553603053, 0.0124900937, -0.4982588887, 0.2732189596, 0.1742072403, -0.078728579, -0.30843696, -0.0202902555, 0.3806375265, 0.0694626868, 0.0583563, -0.2635870874, -0.1606089771, -0.3106975257, -0.2541221678, -0.0120292623, -0.3438554108, 0.1505672783, 0.2203055769, -0.1960607767, 0.0125347255, -0.2732776403, 0.2478052974, -0.153352499, 0.0855226964, -0.0575330779, -0.1711978614, 0.222947672, -0.0461710617, 0.2796876431, -0.3314432502, -0.2411100864, -0.0077008046, -0.1423583925, -0.3083870113, 0.122563839, 0.070388481, 0.516258955, 0.0552990809, -0.1387812644, -0.2611919045, 0.1268995106, 0.1418104917, -0.2411367744, -0.1124153882, 0.3134896159, -0.0218005106, 0.0789324194, 0.1139827818, 0.2645880878, -0.1810565889, -0.0235570185, -0.2825871408, -0.5902605653, 0.405139178, -0.2649811506, -0.2718050182, -0.2290441692, 0.2613844275, 0.0491730943, 0.0327174962, -0.5370389819, 0.1134294719, 0.2650886178, 0.1048497483, -0.2321514785, 0.0350143537, -0.01135909, -0.2713632882, -0.0993942618, 0.2948487103, 0.0960319638, -0.0531831905, 0.1073334068, -0.2708474994 ]
https://github.com/huggingface/datasets/issues/1838
Add tedlium
Hi @patrickvonplaten I can have a look to this dataset later since I am trying to add the OpenSLR dataset https://github.com/huggingface/datasets/pull/2173 Hopefully I have enough space since the compressed file is 21GB. The release 3 is even bigger: 54GB :-0
## Adding a Dataset - **Name:** *tedlium* - **Description:** *The TED-LIUM 1-3 corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech.* - **Paper:** Homepage: http://www.openslr.org/7/, https://lium.univ-lemans.fr/en/ted-lium2/ &, https://www.openslr.org/51/ - **Data:** http://www.openslr.org/7/ - **Motivation:** Important speech dataset - **TFDatasets Implementation**: https://www.tensorflow.org/datasets/catalog/tedlium If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
40
Add tedlium ## Adding a Dataset - **Name:** *tedlium* - **Description:** *The TED-LIUM 1-3 corpus is English-language TED talks, with transcriptions, sampled at 16kHz. It contains about 118 hours of speech.* - **Paper:** Homepage: http://www.openslr.org/7/, https://lium.univ-lemans.fr/en/ted-lium2/ &, https://www.openslr.org/51/ - **Data:** http://www.openslr.org/7/ - **Motivation:** Important speech dataset - **TFDatasets Implementation**: https://www.tensorflow.org/datasets/catalog/tedlium If interested in tackling this issue, feel free to tag @patrickvonplaten Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Hi @patrickvonplaten I can have a look to this dataset later since I am trying to add the OpenSLR dataset https://github.com/huggingface/datasets/pull/2173 Hopefully I have enough space since the compressed file is 21GB. The release 3 is even bigger: 54GB :-0
[ -0.3431774676, 0.0705062449, -0.0683078617, 0.133311972, 0.0683672503, -0.0204195008, 0.0353580266, 0.3795071542, -0.4294743836, 0.2744410336, -0.2579483688, 0.3504006565, -0.2084368914, -0.0917881131, 0.2269741446, -0.3618196547, -0.1412836611, 0.1973719597, -0.1658696085, -0.1800618172, 0.0470727682, 0.1284919977, -0.0539655387, -0.4520362914, -0.266046375, -0.0807280764, -0.1142627969, 0.0259984732, -0.1803572178, -0.0326376706, -0.0110000111, 0.1045879275, 0.0020431057, 0.5920301676, -0.0001060044, 0.0762012601, 0.2563406825, -0.1970418692, -0.1261662245, -0.0920041651, 0.2239136398, -0.1876973212, -0.4069094658, 0.0164640844, -0.2588903904, -0.3076376617, 0.0834537372, -0.0051605329, 0.2092912197, 0.3986493349, 0.2353916317, 0.524744451, 0.3459708691, -0.1376192868, 0.2615658641, 0.0599571951, -0.1879625916, -0.0069514867, 0.1280575246, 0.1660990715, 0.0979945362, 0.3711439073, -0.0610381998, -0.1315061152, -0.0925382823, 0.045580171, -0.3500024676, -0.2385313213, 0.0007923255, 0.5430954099, 0.6054990888, -0.013903847, -0.1867123693, -0.1310667396, 0.0636984408, -0.4326331019, 0.0834903121, 0.1428717375, -0.238803491, 0.1338604689, 0.1494441628, -0.1192981973, -0.3330069482, 0.4302210808, 0.1375623941, 0.215786159, -0.1452151239, -0.092525363, 0.1593596041, -0.175065428, -0.2267786562, 0.1349190772, 0.0857591629, 0.0308889076, -0.2997761965, -0.1899608374, 0.0482357703, -0.3286364973, 0.3431007266, -0.1068291888, 0.0370585099, 0.0968604386, -0.1972140223, -0.0967445895, -0.1431961656, 0.1244439483, -0.196145311, 0.0562933311, 0.0263552442, -0.0768795758, -0.0339644067, 0.0444281735, -0.1801438034, 0.005401928, -0.198944062, -0.1756487638, 0.0056035221, 0.0284629613, 0.0730409399, 0.0255739093, -0.1170154214, -0.0077278875, -0.0521264113, 0.2615169585, -0.0737616867, 0.1935299486, 0.0640941039, 0.1793646067, -0.0668101832, -0.2273433506, -0.2411784828, 0.2027685344, 0.0086699054, 0.183422938, 0.2094157189, -0.1675248295, 0.4441901147, -0.0717102736, 0.3050295413, 0.1925254166, 0.2671249807, -0.0930965543, 0.121770069, 0.3277336955, 0.0867615864, 0.1370451301, -0.0186533555, -0.1039516106, -0.0937547982, 0.1236059517, -0.0426069461, -0.1835628152, -0.3241639435, 0.2468049675, 0.0472359508, -0.1724040955, -0.2665523589, 0.4495432079, 0.0254363399, 0.0115749389, -0.0133620761, 0.0912325382, -0.4628691375, 0.0088448748, 0.1388835609, 0.0660545081, -0.1856432855, 0.0794806108, -0.0098769143, 0.2739852965, 0.3011516333, 0.3396630883, -0.1163511649, 0.1494064778, -0.0522678383, 0.3731700778, 0.3246431947, -0.5450292826, -0.4533585906, 0.1047695428, -0.3069198132, 0.051935114, 0.2519705892, 0.1499706507, 0.3737607896, -0.083045423, 0.4227799177, 0.2034452856, 0.0110581573, -0.1320338547, -0.3299341798, -0.2108198106, 0.0721384957, 0.2334443927, -0.0465112627, -0.1430466473, -0.1827772856, 0.5555554032, 0.2120672464, -0.171860829, 0.1172852442, 0.3281381726, 0.0591604374, 0.0588179268, -0.0172087252, -0.2287879437, -0.0749337971, -0.1233115792, 0.2061927468, 0.512347579, 0.3007344306, -0.2830672562, -0.1193275303, -0.2881747484, -0.0058938172, -0.0049293656, 0.2434927672, 0.1954975575, 0.1445726305, 0.0592780486, -0.1752581, 0.206708163, -0.3404851556, 0.086543344, -0.3777465522, 0.1474137306, -0.075884819, -0.2832171023, 0.3221103251, 0.0795250833, -0.0662515536, -0.2212487161, 0.1154897735, 0.134041518, -0.2328932881, 0.209972173, -0.0679041594, 0.2508222461, 0.243024379, -0.2084756792, -0.0438279063, 0.3286621273, -0.0376209207, -0.1305458844, -0.0450521894, -0.0507195815, 0.2623153329, -0.2446400821, -0.0181982964, -0.0320664831, 0.3046453893, -0.0850438178, -0.1413041949, -0.1966559291, 0.2957744002, 0.2194464356, -0.1282253861, -0.0062853834, -0.4803934693, 0.2296601087, 0.3415327668, -0.1680432856, 0.1300327778, 0.2549462318, -0.288251847, -0.0319422558, -0.0485631265, -0.1839370131, 0.2958205342, 0.3423230648, 0.1862988919, -0.0109876953, 0.0324564502, -0.2777962685, 0.1596099585, -0.0229555145, 0.017058678, 0.3979534507, 0.2667992115, 0.1027614176, -0.4513928592, -0.0100578219, 0.0496095493, 0.2514970303, -0.1109843999, -0.2317357957, -0.2771236598, -0.2104729712, -0.1024402529, -0.1342396736, 0.0055293832, -0.0401665904, 0.2574994564, 0.3070297837, -0.1106539816, 0.1858116388, 0.1710908711, 0.0387197137, 0.156296134, -0.1112630814, 0.021046564, 0.0019962117, -0.1498083919, 0.1764421761, 0.1308522075, 0.1032981947, 0.331048578, -0.0567960478, 0.0055517852, -0.1606167704, -0.5656263232, 0.2793066502, -0.3847058415, 0.0875758827, -0.0339027904, 0.2460290194, 0.1505428404, -0.4598918557, 0.0292266794, 0.0852553546, -0.2532882094, -0.0471896008, -0.1832280755, -0.1032626927, -0.1788063049, -0.4804842174, -0.1146158054, -0.5522742271, 0.1962410659, 0.0653062239, 0.0634837821, 0.4290142953, -0.0963238627, 0.1765255332, 0.0646985024, 0.1573939621, -0.3818118572, -0.2910321355, 0.5326831341, -0.3773009479, -0.4238978922, -0.0934121534, -0.1186186373, 0.1072216555, -0.0012680441, -0.3916936517, -0.3313252032, -0.1392497718, -0.0491272658, -0.0511929579, 0.020505162, 0.2427382469, -0.1608286649, -0.2102481723, -0.1863904297, 0.0076033026, 0.1623862386, 0.1766282618, 0.0679418147, -0.1042770818, 0.1803441048, -0.0273176357, 0.2320993245, 0.3803941607, -0.1308207363, 0.2389179468, -0.1293283403, 0.2053575665, -0.2161741555, -0.1501191258, 0.3080950677, 0.2239319086, 0.1004343256, 0.4423478842, 0.0839699507, -0.0068218131, 0.0487059355, -0.2918667197, -0.0460136048, -0.2875134945, 0.2097433209, 0.3304285705, 0.0942362174, -0.0393198729, -0.1384405196, -0.2583667338, -0.3234784603, 0.1980765313, 0.2372494638, -0.1127187759, -0.0732655376, -0.4805629253, 0.3063942194, -0.6605839729, 0.046913527, 0.1685171425, 0.2397177964, -0.2350106239, -0.0548122525, -0.090299949, 0.0348620825, 0.5300666094, -0.2390968055, -0.1194761544, 0.1587285399, 0.1821476817, -0.1653633416, 0.3114030659, -0.2298673689, -0.2269603908, 0.297804445, 0.473562777, -0.3214168251, 0.006511353, 0.3584797382, 0.3582868576, 0.0707359239, -0.0315970927, -0.1629657298, -0.5779340863, -0.1653147638, -0.1091420427, 0.2232021242, 0.2961623967, 0.2642085552, -0.2336867452, 0.2393155843, -0.1497081816, 0.3835007846, -0.1288927197, 0.1693980396, 0.4644765556, 0.1934643984, -0.0260810349, -0.001299697, 0.1690483391, 0.1843130291, 0.125510022, -0.3187143505, 0.0965067521, -0.4157077968, 0.0775485709, 0.1177684516, -0.0081365481, 0.2131833881, -0.3196206987, 0.3337207139, -0.2375827134, 0.4872474968, 0.309024334, 0.0380469598, -0.3609594405, -0.2262146473, 0.397845149, 0.0200645775, 0.16308707, 0.616382122, 0.1752378047, -0.2517214715, 0.2007863075, -0.112639077, 1.0684711933, 0.0045056688, 0.149381429, 0.4984116852, 0.151950404, 0.4557755888, -0.4085037708, 0.0911289901, 0.324739635, -0.2284525484, 0.047040388, 0.1397038698, -0.1672050357, -0.0858508572, -0.4916424155, -0.0697976798, -0.0202877373, -0.0910470337, 0.0303602889, 0.5705028772, 0.0527487472, -0.4545190334, -0.4049417973, 0.23123312, 0.2329305708, 0.1113295853, 0.141417712, -0.1698577553, -0.2318778932, -0.0795403421, -0.3921777606, -0.0085454062, -0.1524391174, -0.1035654992, -0.0707161427, -0.3387394547, 0.1403520703, 0.2051343322, 0.4466015399, 0.065349862, -0.245350793, 0.1592054069, -0.354391098, -0.2051929832, 0.020993337, -0.1798769087, 0.3663348258, -0.3109209538, 0.0339888334, 0.2256443799, 0.1066407412, -0.2248930633, -0.1531496197, -0.2863203883, -0.1165718436, -0.1228961945, 0.0417498872, 0.432759732, -0.2238212973, -0.1410496682, 0.2016900182, -0.0093423687, -0.3379739523, -0.0702150166, 0.1814673543, -0.1663376391, -0.0131688267, 0.2401929796, 0.3308609724, -0.0417895876, 0.4671468437, 0.2751143873, -0.1293350458, -0.2495832443, -0.2251671404, -0.0619668476, -0.2933134437, 0.0238814764, 0.142777428, 0.0241409093, 0.0520798862, 0.5436137319, 0.0070555359, -0.1038080156, -0.1791741252, 0.0176181346, -0.4704026878, 0.0602731481, -0.1382645965, 0.110406816, -0.0739546567, 0.495085746, -0.0599418581, 0.2071553767, -0.4044065177, 0.0280526131, -0.1069912836, 0.1881233305, 0.3210679591, -0.1531080306, 0.3761627376, -0.0098048039, 0.1706488431, 0.0929280892, -0.1838899553, -0.2533869743, -0.2344508469, 0.0626202822, 0.1027789563, -0.0843748152, 0.0830770731, -0.1179249436, -0.2884898782, -0.0309628602, 0.3303532302, 0.0796072185, -0.0639198646, -0.0082840435, 0.0102669373, -0.0215126723, 0.1327533424, -0.0385547802, 0.1275245249, 0.2622138858, 0.0845994577, -0.0269373506, 0.0792344064, -0.1881306171, -0.1115225255, 0.2177869827, 0.1796778589, -0.2291118801, 0.2372366935, -0.1142948717, -0.0921006873, 0.154526785, 0.1713132262, -0.1187018454, -0.1974863559, 0.0427707359, 0.2852046192, 0.2801287174, -0.3212324977, -0.0242036823, 0.1220372021, -0.0426601246, 0.2153819501, 0.0679902658, 0.0246067494, 0.0851311535, 0.0855643451, 0.0616789386, 0.0512074791, 0.0290990882, 0.1072221324, 0.0947460905, 0.0521773994, 0.0136732254, -0.088162899, -0.0236839242, 0.1438584179, -0.0494964868, -0.0420296192, 0.4759679139, 0.0604074523, 0.0208889209, 0.1528876871, -0.0818345249, -0.1796119213, 0.2707374692, 0.1482346058, 0.3688293695, -0.0102098882, 0.5753251314, 0.0780445635, -0.0832346454, -0.0323195457, 0.3308321536, -0.0300841909, -0.1051603407, -0.2205191702, -0.0847393721, -0.1759758294, -0.0009996593, 0.176751107, -0.099597387, -0.3618552089, 0.2024532557, -0.1753320992, -0.0102822222, -0.1182259321, 0.0362015627, 0.0217509922, -0.1454071701, 0.3191004097, 0.1787222624, -0.1570979059, 0.0954253078, 0.3117291927, 0.3932824135, -0.0346175358, -0.0325846337, 0.3784399927, -0.0071041416, -0.0426683389, -0.1095700413, 0.3652692437, 0.3000547588, -0.1450002342, 0.2046091408, 0.1762264371, -0.3138990104, -0.0101081049, 0.0198190585, -0.0988435894, -0.2141608447, -0.1133592799, -0.0454504415, 0.0276539624, -0.4261871874, -0.2730329335, -0.4859864116, 0.2697595656, 0.4382815957, -0.1422920823, 0.0545794368, -0.0869012773, 0.1318081319, -0.3137733936, 0.3943660557, 0.3168164492, 0.1392352432, 0.0983060449, -0.4539982378, -0.4440171719, 0.3314889073, -0.1936248541, -0.3071639538, -0.1699743271, 0.2537256479, 0.4797626734, 0.2120731771, -0.0576487482, -0.6558500528, -0.1115342528, 0.0202353094, -0.3238795102, 0.2111012489, -0.1695872247, 0.1898113936, 0.1044225544, -0.1229847148, -0.0006067902, 0.028497532, 0.145163998, -0.4149313271, 0.2897211909, -0.2087985724, 0.0127344076, 0.1909816861, -0.0722943544, 0.2729308605, -0.3162320554, -0.130689472, -0.1338274181, 0.1307645589, -0.249092266, -0.2017722875, 0.1591510326, 0.377884984, -0.1294213086, 0.2802937925, -0.1098822057, 0.3118393123, 0.0115892738, -0.0270206109, -0.3153156638, 0.2775219083, -0.1067404598, -0.10656555, 0.1228877604, 0.4937787652, -0.0332551971, -0.0316832997, -0.2956223786, -0.555195868, 0.4337228537, -0.5333989263, -0.2663989067, 0.1070918143, 0.0360707007, 0.1670576334, -0.0112621542, -0.7686283588, 0.208308354, 0.2306219041, 0.2212305069, -0.1843512654, 0.3145613074, 0.068567425, -0.0572856441, -0.0314868353, 0.1010668576, 0.1317490339, -0.2307507992, -0.1234086603, -0.3093238771 ]
https://github.com/huggingface/datasets/issues/1831
Some question about raw dataset download info in the project .
Hi ! The `dl_manager` is a `DownloadManager` object and is responsible for downloading the raw data files. It is used by dataset builders in their `_split_generators` method to download the raw data files that are necessary to build the datasets splits. The `Conll2003` class is a dataset builder, and so you can download all the raw data files by calling `_split_generators` with a download manager: ```python from datasets import DownloadManager from datasets.load import import_main_class conll2003_builder = import_main_class(...) dl_manager = DownloadManager() splis_generators = conll2003_builder._split_generators(dl_manager) ``` Then you can see what files have been downloaded with ```python dl_manager.get_recorded_sizes_checksums() ``` It returns a dictionary with the format {url: {num_bytes: int, checksum: str}} Then you can get the actual location of the downloaded files with ```python from datasets import cached_path local_path_to_downloaded_file = cached_path(url) ``` ------------------ Note that you can also get the urls from the Dataset object: ```python from datasets import load_dataset conll2003 = load_dataset("conll2003") print(conll2003["train"].download_checksums) ``` It returns the same dictionary with the format {url: {num_bytes: int, checksum: str}}
Hi , i review the code in https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py in the _split_generators function is the truly logic of download raw datasets with dl_manager and use Conll2003 cls by use import_main_class in load_dataset function My question is that , with this logic it seems that i can not have the raw dataset download location in variable in downloaded_files in _split_generators. If someone also want use huggingface datasets as raw dataset downloader, how can he retrieve the raw dataset download path from attributes in datasets.dataset_dict.DatasetDict ?
166
Some question about raw dataset download info in the project . Hi , i review the code in https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py in the _split_generators function is the truly logic of download raw datasets with dl_manager and use Conll2003 cls by use import_main_class in load_dataset function My question is that , with this logic it seems that i can not have the raw dataset download location in variable in downloaded_files in _split_generators. If someone also want use huggingface datasets as raw dataset downloader, how can he retrieve the raw dataset download path from attributes in datasets.dataset_dict.DatasetDict ? Hi ! The `dl_manager` is a `DownloadManager` object and is responsible for downloading the raw data files. It is used by dataset builders in their `_split_generators` method to download the raw data files that are necessary to build the datasets splits. The `Conll2003` class is a dataset builder, and so you can download all the raw data files by calling `_split_generators` with a download manager: ```python from datasets import DownloadManager from datasets.load import import_main_class conll2003_builder = import_main_class(...) dl_manager = DownloadManager() splis_generators = conll2003_builder._split_generators(dl_manager) ``` Then you can see what files have been downloaded with ```python dl_manager.get_recorded_sizes_checksums() ``` It returns a dictionary with the format {url: {num_bytes: int, checksum: str}} Then you can get the actual location of the downloaded files with ```python from datasets import cached_path local_path_to_downloaded_file = cached_path(url) ``` ------------------ Note that you can also get the urls from the Dataset object: ```python from datasets import load_dataset conll2003 = load_dataset("conll2003") print(conll2003["train"].download_checksums) ``` It returns the same dictionary with the format {url: {num_bytes: int, checksum: str}}
[ -0.139295578, -0.0969950855, -0.0575437769, 0.5315552354, 0.1806542128, -0.0776941031, 0.1291477382, -0.0684929788, 0.1307475269, 0.1263671666, -0.4010902643, 0.1903986633, -0.0717179775, 0.5283395052, 0.1642404199, -0.0650986061, -0.1106834114, 0.1475781798, -0.0933765098, -0.0730433613, -0.3944442868, 0.2827209234, -0.3126272261, 0.1286268234, -0.1304438859, 0.0052318498, -0.0375590846, 0.2881942689, -0.4633622169, -0.2766463757, 0.3559415936, 0.2283115089, 0.4103102684, 0.2549622655, -0.0001227949, 0.0453442335, 0.2947669029, -0.3216659725, -0.5304579735, -0.350463599, -0.6374022961, -0.0066078119, -0.0876585916, -0.3026114106, 0.0727005303, -0.044414416, -0.0704486892, -0.2377198189, 0.1179705411, 0.1020431668, 0.0789082199, 0.2801709175, -0.0258045942, 0.0432846174, 0.2848972976, 0.2803590596, 0.0525381714, 0.1077032834, -0.0747684091, 0.4011951685, 0.250582397, 0.3100157082, 0.1377084851, 0.1574472636, 0.5022883415, 0.3205776513, -0.2726311088, -0.3046388626, 0.1046134681, 0.193516314, 0.4040811062, -0.3673971295, -0.5436564684, -0.3483604491, -0.1683369875, -0.5926066637, 0.0322040245, 0.1467378438, -0.3645540476, 0.306946516, -0.552496016, -0.4242556393, -0.1069238409, -0.0295138173, -0.1963632852, 0.3718147278, -0.3595741093, 0.0653246343, 0.0780688226, 0.429474026, 0.1998228729, -0.2933292687, -0.0176406354, 0.2759222686, -0.1726804376, -0.0890775993, -0.0210976973, 0.3046436906, 0.1916782111, -0.0031785527, -0.1185901016, -0.1960318387, 0.0644786805, 0.0911547989, 0.360283047, 0.1348408163, 0.122005105, 0.2713000178, 0.2210542858, 0.1582036018, 0.1628747582, -0.2994874418, -0.0399509817, -0.0499703698, -0.3093300462, 0.1616627872, 0.0709266663, -0.1226645261, -0.1993658841, -0.2141619027, -0.1070422232, -0.2923627794, 0.3221350908, 0.4048186243, -0.1120624244, 0.0731317624, -0.0197029188, 0.0484820493, 0.1325500906, -0.2103043199, -0.1068651974, -0.1425913572, -0.1424523294, 0.1309209466, -0.2759810686, -0.0752523541, 0.3806263506, 0.0523513518, 0.0155302659, 0.0070274472, 0.02054777, -0.1392771304, 0.2036898136, 0.1511137486, -0.0131358206, 0.3002579212, -0.1582263261, -0.3350557983, -0.195061028, -0.0940050557, -0.3649281263, -0.4216024578, 0.0158249494, 0.0255181417, -0.2253227681, 0.1036866605, -0.3064570725, -0.0258362908, 0.1035284251, 0.3552069664, 0.0736039281, -0.041304253, -0.4622365236, -0.2665116489, 0.4400365949, 0.4818972945, -0.248183772, -0.1428894699, 0.0488602519, -0.3707983792, 0.1104977578, 0.0247115977, -0.3937753737, 0.5463497639, -0.4110984504, -0.1288509071, 0.4111627936, -0.4205349386, -0.274371773, 0.5594004393, 0.1189889461, -0.0040635616, 0.3508142233, -0.0029531419, 0.2521325946, -0.0863131136, -0.1183064654, 0.5005720854, 0.1785055399, -0.1154287606, -0.0150469318, -0.1998095959, -0.1504228562, -0.1076832414, -0.1324989349, 0.2510328591, 0.0363785587, -0.0930611119, 0.5309391618, -0.1145965531, 0.1999672949, 0.3154317737, 0.0265688635, 0.2461877316, -0.0191208236, 0.0292347148, -0.6519915462, 0.166053921, -0.3580190539, -0.2422893643, -0.3038730323, -0.3468749523, -0.3359969854, 0.1526376903, -0.2951543331, -0.371160537, -0.0584717169, 0.164930746, 0.4927287102, -0.0335014313, -0.3086251616, 0.5376634002, -0.077112861, 0.1103709042, -0.1524744481, 0.0215066597, 0.1099479795, 0.1840834022, -0.0664965361, 0.1019265354, 0.1083981767, -0.1885494292, 0.059881676, 0.5309789181, 0.2396332622, 0.1818333268, 0.1540876031, 0.0292206779, 0.2496579438, 0.1244920343, -0.0728942379, -0.219705373, 0.2130740881, 0.2021095604, 0.0957583189, 0.4194439352, 0.0039163567, 0.2770683169, 0.1396988183, -0.0781482458, 0.1378965378, -0.0618101507, 0.1554040313, -0.1600991637, -0.1753716916, 0.204728052, 0.3687292933, 0.1324185431, -0.2014483809, 0.1954445988, 0.3635002971, -0.0819680765, -0.2479621917, 0.0165174548, -0.2928121388, -0.0403004177, 0.0202459563, 0.7880975008, 0.4842377901, 0.0099113323, 0.1930086017, 0.0817182437, 0.2897279859, -0.1300811321, 0.4044664204, 0.1461007148, -0.0709933862, -0.0335520469, -0.4765409231, -0.1736864746, 0.1612806469, -0.0182555988, 0.1560420841, 0.1374088228, -0.3770775199, 0.1228540391, -0.2453244328, -0.359323144, -0.282525301, -0.1824905872, 0.0796570182, -0.1788533926, -0.3023647666, -0.0960525423, -0.0865743086, -0.196185112, -0.028490942, 0.0078614801, -0.2690335214, 0.0346265137, -0.1725914776, -0.1846225262, -0.1305115819, -0.0738444179, 0.1662777215, 0.0342104472, 0.0837582797, -0.4706434011, 0.0689174533, -0.1695146561, 0.1759638786, 0.3247345686, 0.0570173487, 0.1776965261, 0.3906326294, 0.142886728, -0.1417599022, 0.0228356272, -0.0706347376, 0.1046681777, -0.1442243308, -0.3927350938, 0.1336804777, 0.0608388595, -0.1003026515, -0.1797953248, -0.7018498778, -0.0942712054, 0.148400858, -0.1141361296, 0.2285626829, -0.0634751096, -0.1833597124, 0.1142902821, -0.2739401162, 0.0497957096, -0.2346083373, -0.7871108055, 0.2894405425, -0.3476835489, -0.2662127316, -0.0440543033, -0.0977248773, 0.1984017491, 0.0154913478, -0.2537752092, -0.0317409933, -0.2202953994, 0.1711454391, 0.1069123149, 0.3687535822, 0.012761306, -0.1026368439, 0.1300040334, -0.1975701153, -0.0617831796, 0.1827079505, -0.3824942708, 0.3085656762, 0.3824218512, -0.0335212797, 0.1748529524, 0.7821302414, 0.2444397509, -0.1355071962, 0.1809846163, -0.0758560151, 0.4101740718, 0.2839822769, -0.2186226547, -0.0489327163, -0.0339052379, -0.1078485548, 0.144003585, 0.060469877, 0.1896634698, -0.3165881634, -0.1123696566, -0.1500530392, -0.1517049372, -0.1255156398, 0.5231509805, 0.1893753111, 0.0615994632, 0.1974448115, -0.0065825582, 0.0912794545, 0.06185681, 0.430603683, 0.3460766673, 0.1975971162, -0.1960726976, -0.0857733786, -0.2044927627, 0.1164890826, 0.2858867645, -0.1161120832, 0.179692179, 0.1200831831, 0.179028213, 0.1177055687, 0.6446794271, 0.0226203632, -0.0401948541, -0.1275090575, -0.3101218045, -0.0760789812, 0.1280731261, -0.1500324607, 0.0737534463, 0.4213219881, 0.1637878418, -0.4036842883, -0.3825345635, 0.0745411366, 0.1352341473, -0.2881729007, -0.1495439112, -0.1488922536, -0.2091284841, -0.1788700968, -0.230876416, 0.1296274215, 0.1278058887, 0.0346977413, 0.0025440603, 0.0505959019, 0.1193704456, 0.0030728839, 0.0747292787, 0.3675095737, -0.0561989062, -0.105741173, 0.3754264116, 0.3393508792, 0.1690378189, 0.4490530789, -0.3288885951, -0.1851524115, -0.0648365691, 0.0975713506, 0.6481596231, 0.149682641, -0.4898107648, 0.0493489429, 0.0348548256, -0.1490057856, -0.3897596896, 0.2432522327, 0.2638328671, 0.0071810968, -0.0993554443, -0.7190076709, 0.4855563045, -0.0073400959, -0.2285359353, 0.1606071293, 0.0833800957, -0.3551579714, -0.1382275969, 0.0349194556, 0.8198546171, 0.134267211, 0.0822529122, 0.1007779837, -0.4830280542, 0.5889970064, -0.0602165535, -0.1731591821, -0.2225249559, 0.0222351365, -0.1520211548, -0.2860233784, 0.0705219954, -0.0760802403, -0.1098828688, 0.3645527959, -0.0983016342, 0.0498235822, 0.0435953811, 0.510430932, -0.0831176043, -0.1409684867, 0.0753671676, -0.0840003937, 0.1918084025, 0.4800060391, -0.1140030771, -0.4310253561, -0.2550568581, 0.0795696676, -0.0654510856, -0.101783663, -0.4333570898, 0.0302240551, 0.013373645, -0.3217694163, -0.0371247381, 0.6608508229, 0.279050082, 0.0164367706, -0.2199331522, 0.0636703148, -0.0920164064, 0.1273367703, 0.2503714561, 0.1239110157, -0.0576395616, -0.0534838811, -0.162935093, 0.1557441354, -0.0058321841, -0.1810480654, 0.174849838, -0.1016857326, 0.2125199884, -0.2507413626, -0.0561158843, -0.0108209811, 0.0626068413, -0.0681611449, -0.000663369, 0.2437829822, -0.3698797822, 0.0706728548, -0.2798642516, -0.4227116108, -0.1907725781, 0.360604167, -0.0719439238, 0.0788180083, 0.2684697509, -0.1025509015, -0.2249787003, -0.0309101194, 0.2886567116, -0.1091568545, -0.3159406781, 0.2659704685, 0.3049019575, 0.1788381785, -0.4056988657, 0.2560831308, 0.0011083093, -0.2817427516, -0.222293824, -0.4993056059, -0.2070185393, 0.1097564474, -0.2958481908, 0.1551877558, -0.0127376914, 0.170650214, 0.1040888876, 0.0283850897, -0.1955249906, 0.0157604925, -0.0842283815, -0.1064329743, 0.3375104368, 0.0971303433, 0.248239547, -0.0030778497, -0.0589601845, -0.0390097238, -0.090046674, -0.0314560346, -0.2268639952, 0.188749969, -0.083984673, -0.2017305046, 0.0876311213, -0.0617090203, -0.0786992311, 0.0590818748, 0.2508066297, 0.266122669, 0.1293436587, 0.397865653, -0.0577155054, -0.0034344941, -0.5778407454, 0.3355062306, 0.0692231506, 0.4035034478, -0.077930443, 0.4459480643, -0.3849083781, -0.1046706364, 0.1254523098, -0.1211469322, 0.0126703959, -0.0886182413, 0.4348565936, -0.0435952395, 0.108125627, 0.1174717173, 0.2370525301, 0.2382541597, -0.0896987915, 0.0296731666, 0.1940100342, -0.0273521245, -0.0085731447, 0.0239259601, -0.1370307803, -0.0406365171, 0.024102658, 0.3481299877, 0.3333753943, 0.0385599434, -0.0778063685, -0.27102229, 0.4011267722, 0.4406714141, 0.0460215323, 0.5709134936, 0.1283136159, 0.3627935946, 0.2117370665, 0.6090323925, 0.1564061344, 0.3393490016, -0.2610029876, -0.0089798225, -0.0874102116, 0.2450072318, 0.3107305169, -0.4485321641, 0.1722416729, 0.2022881806, -0.2262047529, 0.0219259486, -0.2994127274, 0.5222718716, -0.1551602483, 0.1328140646, -0.1060102433, 0.4710696638, 0.0457520261, -0.2884922028, -0.1762336195, -0.1881161183, -0.1317504346, 0.1523732096, -0.0461347215, -0.4370724261, 0.1362343282, -0.1464453638, 0.0427223146, 0.0183532536, 0.053093221, 0.1040965095, 0.0215952266, -0.2122960091, 0.1915367991, -0.0416562892, 0.29096663, 0.3288472295, 0.2829506695, 0.067396462, 0.3388291895, 0.1462306082, -0.2136943936, 0.221427843, -0.0688988715, -0.0874905065, 0.0249391384, -0.2010525763, -0.0747039318, 0.4496797919, -0.0103027672, -0.0228591301, -0.3053921461, 0.1411832273, 0.3131193519, -0.0141030028, 0.5945336819, -0.0259306021, 0.0670638084, 0.092570208, 0.0610271469, -0.461790204, 0.0695708096, 0.2748191059, -0.2647776604, 0.2141085267, -0.0019736104, 0.0121392682, -0.0241731424, 0.37117064, 0.2092074156, 0.3382585347, -0.4282612801, -0.2127806544, -0.4922038615, -0.2341064513, 0.343275696, -0.2409980893, -0.0614527278, 0.3055995405, -0.2222418189, 0.2440617234, -0.0424084812, 0.2761819363, -0.0096672028, 0.0954617634, -0.0504732169, -0.1580981314, -0.3776195049, 0.1484346539, 0.1120982468, -0.2221132815, 0.3392995298, -0.2188185602, -0.1105872095, -0.0895142257, 0.2348073274, 0.1685882211, -0.227838859, 0.1703932285, -0.0179747902, 0.1491619051, -0.060574986, 0.0319151357, 0.2514956892, 0.2419126034, -0.2968150675, -0.0082005896, -0.1475498974, -0.1339503527, -0.3201525807, 0.0209580902, -0.4668423831, 0.3759159744, 0.319899559, 0.0002509169, -0.0486245751, -0.0242103338, -0.4064565301, 0.0382362455, 0.5310792327, 0.1629969627, -0.2717092037, 0.0698958635, -0.2187841982, -0.057816539, 0.5587487221, -0.2671597004, 0.1210988909, 0.0403499454, 0.2279319167, 0.3333332539, -0.0913674161, -0.5478305817, 0.2801439762, 0.5396885276, -0.083695583, 0.0336466953, 0.2122833431, 0.0887802616, -0.0016807094, -0.1219753921, 0.4751988351, 0.1540818512, -0.3386338949, 0.0972762406, -0.0298983045 ]
https://github.com/huggingface/datasets/issues/1831
Some question about raw dataset download info in the project .
I am afraid that there is not a very straightforward way to get that location. Another option, from _split_generators would be to use: - `dl_manager._download_config.cache_dir` to get the directory where all the raw downloaded files are: ```python download_dir = dl_manager._download_config.cache_dir ``` - the function `datasets.utils.file_utils.hash_url_to_filename` to get the filenames of the raw downloaded files: ```python filenames = [hash_url_to_filename(url) for url in urls_to_download.values()] ``` Therefore the complete path to the raw downloaded files would be the join of both: ```python downloaded_paths = [os.path.join(download_dir, filename) for filename in filenames] ``` Maybe it would be interesting to make these paths accessible more easily. I could work on this. What do you think, @lhoestq ?
Hi , i review the code in https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py in the _split_generators function is the truly logic of download raw datasets with dl_manager and use Conll2003 cls by use import_main_class in load_dataset function My question is that , with this logic it seems that i can not have the raw dataset download location in variable in downloaded_files in _split_generators. If someone also want use huggingface datasets as raw dataset downloader, how can he retrieve the raw dataset download path from attributes in datasets.dataset_dict.DatasetDict ?
111
Some question about raw dataset download info in the project . Hi , i review the code in https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py in the _split_generators function is the truly logic of download raw datasets with dl_manager and use Conll2003 cls by use import_main_class in load_dataset function My question is that , with this logic it seems that i can not have the raw dataset download location in variable in downloaded_files in _split_generators. If someone also want use huggingface datasets as raw dataset downloader, how can he retrieve the raw dataset download path from attributes in datasets.dataset_dict.DatasetDict ? I am afraid that there is not a very straightforward way to get that location. Another option, from _split_generators would be to use: - `dl_manager._download_config.cache_dir` to get the directory where all the raw downloaded files are: ```python download_dir = dl_manager._download_config.cache_dir ``` - the function `datasets.utils.file_utils.hash_url_to_filename` to get the filenames of the raw downloaded files: ```python filenames = [hash_url_to_filename(url) for url in urls_to_download.values()] ``` Therefore the complete path to the raw downloaded files would be the join of both: ```python downloaded_paths = [os.path.join(download_dir, filename) for filename in filenames] ``` Maybe it would be interesting to make these paths accessible more easily. I could work on this. What do you think, @lhoestq ?
[ -0.1346984953, -0.0291418284, -0.0565956309, 0.5307530761, 0.1188366711, -0.1144693717, 0.1020082533, -0.008243422, 0.0415082946, 0.083394438, -0.4197904468, 0.2072835714, -0.1245636791, 0.5449794531, 0.1708201468, -0.0960755944, -0.0993767083, 0.1221579462, -0.1015598252, -0.0675223768, -0.386285603, 0.29641366, -0.2933223248, 0.1700220257, -0.1204363406, -0.0437135622, -0.0389081985, 0.3107965589, -0.4215295315, -0.2855052948, 0.2851449549, 0.2104236782, 0.3897266984, 0.2601918578, -0.0001252633, 0.033956334, 0.2576277554, -0.3376943171, -0.5291392803, -0.3045316935, -0.614990592, -0.0184275098, -0.0735695511, -0.2560709119, 0.1428726614, -0.0621149838, -0.0816689506, -0.1980143636, 0.0248026587, 0.0257191733, 0.0569271669, 0.3073016107, -0.0705493838, 0.0733203441, 0.2743445039, 0.2889507115, 0.006941773, 0.1065993607, -0.0094364919, 0.3097070456, 0.1909423023, 0.3141844869, 0.1917633712, 0.1161838621, 0.4544148445, 0.3511878848, -0.3605450094, -0.3333881497, 0.0019013826, 0.2414935827, 0.331174314, -0.3499562144, -0.6002609134, -0.4451581836, -0.144759357, -0.5862124562, 0.086665079, 0.1451350451, -0.4294039011, 0.278370142, -0.5737090111, -0.4702053964, -0.1078223214, -0.0630753189, -0.1245901436, 0.3833275437, -0.3021121621, 0.0366088189, 0.1222618669, 0.366538018, 0.1831101477, -0.2040057182, 0.0064976122, 0.26284343, -0.1273604333, -0.0968478024, -0.0692083687, 0.2800371945, 0.1793462187, 0.0004259869, -0.0932021737, -0.2625409663, -0.0224479847, 0.0367788896, 0.3256851137, 0.0887946934, 0.0588157475, 0.2508304119, 0.241934821, 0.1852354258, 0.2261741161, -0.2565542161, -0.0756492093, -0.0928036198, -0.3982125819, 0.168979615, 0.0230652392, -0.0881558508, -0.2564203441, -0.2584715188, -0.1173209101, -0.3153946102, 0.3284132779, 0.3631950021, -0.1064461619, 0.0918999463, -0.0218642727, 0.0300096646, 0.1342042089, -0.251306802, -0.0602546483, -0.136677593, -0.1498392522, 0.1586864293, -0.2355436236, -0.0740522742, 0.3717948198, 0.0417124145, 0.0303046331, 0.0919633433, -0.0051716194, -0.1027110368, 0.1987166703, 0.1128019989, 0.0319497958, 0.2906243801, -0.208674401, -0.2854417562, -0.2164019346, -0.1238753349, -0.2959265411, -0.4238962233, 0.010931287, -0.0265960544, -0.1496952623, 0.1380337626, -0.2426625341, 0.0063021667, 0.0641362518, 0.3371737003, 0.0211317129, 0.0066734459, -0.4359383583, -0.2875217497, 0.4370474815, 0.498526752, -0.2790234685, -0.1094860658, 0.0918298364, -0.3653408885, 0.041004166, 0.0893710852, -0.3769411147, 0.5260189176, -0.42559582, -0.1558307558, 0.4934951067, -0.4139984548, -0.283449173, 0.5482250452, 0.0819409862, -0.0119387582, 0.3946040571, -0.0027312189, 0.2809686959, -0.09966328, -0.0613668412, 0.5419442654, 0.1237986162, -0.1109532714, -0.0387095362, -0.2857450843, -0.1188866198, -0.0995089859, -0.1401039958, 0.2085416168, 0.0630515441, -0.1487573683, 0.5694388151, -0.0648538023, 0.2024183869, 0.3641734421, 0.0161421485, 0.2217392325, -0.0397492349, 0.0327577218, -0.6237205267, 0.1450577527, -0.2915886641, -0.2566766739, -0.3464308083, -0.3692538142, -0.2835108042, 0.1359039247, -0.2205854505, -0.3565537632, -0.0813376606, 0.1932130009, 0.4799256325, -0.0377770551, -0.3269172311, 0.5276398659, -0.0264155269, 0.1004447192, -0.1584219337, 0.0395964086, 0.1531457603, 0.1568752527, -0.0285877138, 0.1156431586, 0.1160012931, -0.2031233311, 0.0879381746, 0.4732972383, 0.1667213887, 0.2244892716, 0.2488669157, 0.0866521522, 0.267585814, 0.1815995127, -0.0500381663, -0.2840553522, 0.1166389957, 0.2693530321, 0.0217536893, 0.4050776958, -0.0402297042, 0.2749067247, 0.2071460634, -0.0586074069, 0.1375476867, -0.0461245626, 0.1909859776, -0.1717651486, -0.145058319, 0.1957186013, 0.3370576501, 0.146130383, -0.2831910253, 0.2967519462, 0.4335451126, -0.0422252752, -0.2803867161, 0.0072165113, -0.2794589996, -0.014330335, 0.0462970138, 0.7960913181, 0.4438541532, 0.0230253302, 0.1914228052, 0.0300604608, 0.2835536599, -0.0816389546, 0.3543809056, 0.1328089982, -0.0809347406, -0.0196260307, -0.4542380571, -0.1663334966, 0.1930842251, -0.0439951904, 0.1845148653, 0.1720056534, -0.3527050316, 0.0789798871, -0.2430789769, -0.3965582252, -0.2474399805, -0.1886557639, 0.0342920609, -0.1788606048, -0.2145891786, -0.0465761684, -0.1373556554, -0.1525720656, -0.0752799734, -0.0230885744, -0.2846534848, 0.0519273505, -0.1761707366, -0.1079143435, -0.0871831775, -0.0735014081, 0.2006452382, 0.008561708, 0.0978713259, -0.469707042, 0.0869957507, -0.2451246679, 0.1868368089, 0.3407443762, 0.0611882098, 0.1629945338, 0.3850090802, 0.154399991, -0.1284117997, -0.0355449878, -0.1043889225, 0.1108018309, -0.1283790767, -0.4418497384, 0.1264557689, 0.0732031465, -0.0949317366, -0.2078502923, -0.7182452083, -0.1001879647, 0.2222406417, -0.1430766284, 0.2521549463, -0.168158859, -0.223976925, 0.0424417891, -0.3285968006, 0.0512888506, -0.1883375347, -0.7643772364, 0.2837584019, -0.3613508642, -0.2417319119, -0.0683538243, -0.1362405866, 0.1521257013, 0.0578376278, -0.1992673278, -0.0171371587, -0.1693498045, 0.2199529111, 0.115668267, 0.3086596727, 0.0356931724, -0.0309626833, 0.1584856957, -0.1502480209, -0.0465518385, 0.215197891, -0.3422456682, 0.3589677513, 0.3947504461, -0.0425757766, 0.2158912718, 0.7951547503, 0.2289341688, -0.1130502671, 0.1516202092, -0.1019390672, 0.3906200826, 0.3349588513, -0.2302666008, -0.048087772, 0.0123577341, -0.0399532095, 0.1324038506, 0.0998544544, 0.2279894501, -0.2753508091, -0.1235036105, -0.1770437807, -0.1852115393, -0.0710342526, 0.5313083529, 0.1815864593, 0.07378418, 0.2022851855, -0.0280921869, 0.0728428364, 0.0605885088, 0.4210448861, 0.418669492, 0.1921485066, -0.134372592, -0.0396625809, -0.1815309823, 0.0533234552, 0.3352305889, -0.1567853689, 0.1472992748, 0.0737624615, 0.1796701998, 0.1191368327, 0.7116185427, 0.0238892529, -0.0698444843, -0.1431619525, -0.280181706, -0.0707875565, 0.1149267554, -0.0957355946, 0.0242423117, 0.4746970236, 0.2359753102, -0.3926455081, -0.3926123083, 0.1282390058, 0.1697733104, -0.2994648814, -0.1154548377, -0.1036772281, -0.1777818501, -0.1907157898, -0.2225710452, 0.1076343432, 0.0630093813, -0.005876828, -0.0068222284, 0.1004827619, 0.0917317197, 0.0143316798, 0.1632557362, 0.4221811295, -0.0397364236, -0.0188677795, 0.4088661671, 0.3936690986, 0.1898291111, 0.4766066074, -0.4284281135, -0.174258545, -0.0423081964, 0.0491964929, 0.6706675291, 0.2639818788, -0.4991543293, 0.0411935002, -0.0293761045, -0.1205300093, -0.3901126087, 0.2227764726, 0.299439311, -0.0055162162, -0.1625823826, -0.6853826046, 0.447974056, -0.0421153083, -0.2754619122, 0.1876000613, 0.0526284724, -0.3134815097, -0.1579357386, -0.0429694988, 0.8905712366, 0.1091686785, 0.1326387674, 0.0964357853, -0.4127991199, 0.6062421799, -0.0939919278, -0.1276176572, -0.2241679132, -0.0084786601, -0.1541099548, -0.2611880898, -0.0181293599, -0.06391377, -0.0427862406, 0.395850718, -0.067603521, 0.0316841118, 0.029226549, 0.4977274239, -0.0441744179, -0.1707648337, 0.0448243842, -0.117587924, 0.2282165587, 0.4401251078, -0.0789952129, -0.4989716411, -0.3009529114, 0.1147173643, -0.0545493737, -0.071005322, -0.4479240179, 0.0286980532, 0.0353881754, -0.3340218365, -0.0853984654, 0.6262850761, 0.2829653025, -0.0037524509, -0.1767270565, 0.072506316, -0.0578491651, 0.0756957978, 0.2738869488, 0.1586117148, -0.078876026, -0.0385618173, -0.1738843322, 0.0879258811, -0.0382087678, -0.1904807091, 0.1107860655, -0.1293094456, 0.2101066411, -0.2470290959, -0.0184246004, -0.0158434585, 0.0816946775, -0.0674476177, -0.0187768135, 0.2836293578, -0.3048091829, 0.0630547702, -0.28209728, -0.3546581864, -0.1788026094, 0.3114258051, -0.1139956564, 0.0560834706, 0.2382427752, -0.1230005994, -0.2812082767, 0.003259778, 0.2775329351, -0.1380122751, -0.3678483963, 0.2783263922, 0.3043949604, 0.1569559872, -0.3993867934, 0.255890727, 0.051277712, -0.3115508854, -0.2324522138, -0.4871127605, -0.2240508497, 0.1930628568, -0.3125162125, 0.1029732972, -0.0695723146, 0.1195989549, 0.0709022433, -0.0229242668, -0.1774470508, 0.0112335123, -0.0516064391, -0.1422382146, 0.3580640554, 0.1030119956, 0.3002462983, 0.0284353644, -0.064092502, -0.079262346, -0.0325407535, 0.0026255287, -0.2550612688, 0.1915153712, -0.1290730685, -0.2119189799, 0.0896776989, -0.1073910221, -0.0728527457, 0.0386837609, 0.2345137298, 0.2677175403, 0.1994190812, 0.3762884736, -0.0558119752, -0.0718110502, -0.5359953642, 0.4292729795, 0.0665142536, 0.4807567, -0.1121404618, 0.4839845002, -0.4124174714, -0.0912072957, 0.1744724512, -0.1353560984, -0.0491280891, -0.051689323, 0.4121034443, 0.0165323671, 0.1032275558, 0.1227180809, 0.2486456037, 0.2484254092, -0.0589137599, 0.0733959749, 0.2588758469, -0.0567362979, -0.0575203523, 0.0019688271, -0.1295771152, -0.0149244871, 0.04100997, 0.3463786244, 0.3314769268, -0.0162732378, 0.0078016557, -0.2843846083, 0.3758380115, 0.4476375282, 0.0098600835, 0.6277906895, 0.1513853222, 0.3864415288, 0.1979648471, 0.6132419109, 0.1873984337, 0.3135608435, -0.2671073079, -0.0985008925, -0.1000677645, 0.221551314, 0.3323749006, -0.4487761557, 0.1322831064, 0.1527832896, -0.1746727526, 0.0269174576, -0.2832134664, 0.5812451839, -0.1307186186, 0.1158177704, -0.122421816, 0.4958431423, 0.0782139003, -0.2474392354, -0.0964748189, -0.2381605208, -0.1213553101, 0.2078823, -0.0611490197, -0.4505816102, 0.1027270108, -0.0796876997, 0.1519849896, 0.023210343, 0.0723723918, 0.1393909603, 0.0882879645, -0.1974718571, 0.1637422293, -0.0188084356, 0.2937118709, 0.3334791362, 0.2842668891, 0.0494498871, 0.303371489, 0.1744871736, -0.2400017381, 0.2457672209, -0.0123863071, -0.0853252187, -0.0283781011, -0.1375297308, -0.0790414065, 0.4382870197, -0.0368900225, -0.0050125159, -0.2990782261, 0.1053158119, 0.2747850716, 0.0507468544, 0.5575402379, -0.0524819531, 0.0360309854, 0.125770703, -0.0050427355, -0.4562190175, 0.0532476977, 0.2740339339, -0.2587763667, 0.2118055522, 0.0217204802, -0.0001454987, 0.0238950998, 0.2618887722, 0.1903117299, 0.3403909802, -0.3425287008, -0.2439436913, -0.5069083571, -0.2015315592, 0.3620830774, -0.2535530329, -0.1272853166, 0.2939570546, -0.2235218585, 0.2132789493, 0.0510136038, 0.2868585885, -0.0318666808, 0.1422694772, -0.1117265821, -0.1762112081, -0.3298960328, 0.1201424152, 0.1010260582, -0.1956546754, 0.3169558048, -0.1772099435, -0.1324805766, -0.1015201211, 0.2413176596, 0.142283991, -0.1664539129, 0.1181592941, -0.022762645, 0.0994169489, -0.0737081841, -0.0611808673, 0.1847684234, 0.1632815152, -0.2971651852, 0.003246665, -0.1449439824, -0.1646410078, -0.3252430558, 0.0519829169, -0.5005984902, 0.3418352604, 0.2640050054, 0.0453134701, -0.0486572087, -0.0413431972, -0.3196690083, 0.0502287522, 0.5476945639, 0.1139637828, -0.2953312993, 0.0001213402, -0.1792996526, -0.0046628341, 0.5082625747, -0.2689805031, 0.1456080675, 0.0743314102, 0.1820538044, 0.3494512737, -0.0459697768, -0.5170995593, 0.2281157076, 0.5126159787, -0.07096643, 0.1337628365, 0.1736743152, 0.0446926989, -0.0202743188, -0.1174549237, 0.4670481682, 0.1793741584, -0.3825500011, 0.122993879, -0.0028742924 ]
https://github.com/huggingface/datasets/issues/1831
Some question about raw dataset download info in the project .
Sure it would be nice to have an easier access to these paths ! The dataset builder could have a method to return those, what do you think ? Feel free to work on this @albertvillanova , it would be a nice addition :) Your suggestion does work as well @albertvillanova if you complete it by specifying `etag=` to `hash_url_to_filename`. The ETag is obtained by a HEAD request and is used to know if the file on the remote host has changed. Therefore if a file is updated on the remote host, then the hash returned by `hash_url_to_filename` is different.
Hi , i review the code in https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py in the _split_generators function is the truly logic of download raw datasets with dl_manager and use Conll2003 cls by use import_main_class in load_dataset function My question is that , with this logic it seems that i can not have the raw dataset download location in variable in downloaded_files in _split_generators. If someone also want use huggingface datasets as raw dataset downloader, how can he retrieve the raw dataset download path from attributes in datasets.dataset_dict.DatasetDict ?
100
Some question about raw dataset download info in the project . Hi , i review the code in https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py in the _split_generators function is the truly logic of download raw datasets with dl_manager and use Conll2003 cls by use import_main_class in load_dataset function My question is that , with this logic it seems that i can not have the raw dataset download location in variable in downloaded_files in _split_generators. If someone also want use huggingface datasets as raw dataset downloader, how can he retrieve the raw dataset download path from attributes in datasets.dataset_dict.DatasetDict ? Sure it would be nice to have an easier access to these paths ! The dataset builder could have a method to return those, what do you think ? Feel free to work on this @albertvillanova , it would be a nice addition :) Your suggestion does work as well @albertvillanova if you complete it by specifying `etag=` to `hash_url_to_filename`. The ETag is obtained by a HEAD request and is used to know if the file on the remote host has changed. Therefore if a file is updated on the remote host, then the hash returned by `hash_url_to_filename` is different.
[ -0.1199874803, -0.100726977, -0.0441226177, 0.5240064859, 0.0438978449, -0.1414000243, 0.118340686, 0.0170495063, 0.0113146901, 0.134425506, -0.3461933732, 0.1511436701, -0.1354892552, 0.5920695662, 0.1894118935, -0.0379629694, -0.0841846988, 0.1217005551, -0.1077715904, -0.0879006088, -0.3565678, 0.2822728157, -0.2687028646, 0.1657116562, -0.1946668178, -0.0248468276, -0.0181011632, 0.3191279471, -0.4727257788, -0.2737628818, 0.3005143106, 0.2128324211, 0.4005349874, 0.1742073596, -0.0001249203, 0.0375017673, 0.2728610933, -0.3402906358, -0.5269051194, -0.2696059644, -0.6916820407, -0.0082494505, -0.0579733476, -0.2070540339, 0.1547250599, 0.0112638101, -0.0531007051, -0.1325003803, 0.0858326256, 0.1186293066, 0.0518583506, 0.3697147071, -0.0970060974, 0.0601940304, 0.3183317184, 0.2908327281, 0.0077934191, 0.1266437322, -0.0761738345, 0.3405939043, 0.1056880355, 0.302441746, 0.22258237, 0.1028111726, 0.4406279922, 0.3373488784, -0.3781237602, -0.2769114971, 0.0373098291, 0.2423307598, 0.3537123203, -0.281283766, -0.5841249228, -0.4083457589, -0.1191254109, -0.4685429931, 0.1080774218, 0.1214453131, -0.4281237721, 0.3086463511, -0.5675063133, -0.478025198, -0.1658398211, -0.0852145553, -0.1375496835, 0.3164404333, -0.2775337696, 0.0663055405, 0.0792567059, 0.3843628466, 0.2701304257, -0.2281226665, -0.0218696706, 0.2174347341, -0.1073611826, -0.1102790385, -0.0512241274, 0.2954006195, 0.1776959002, 0.0195231624, -0.124626115, -0.2577973604, -0.0622394122, 0.0344967023, 0.3408129811, 0.0334268436, 0.1301033795, 0.241209507, 0.2612248957, 0.1766110808, 0.1660883576, -0.2614009976, -0.1151489019, -0.0674977899, -0.3462032974, 0.1671790332, 0.0185231492, -0.1103436723, -0.1785896122, -0.2391811907, -0.02796527, -0.3496952355, 0.3141707182, 0.3573301136, -0.1220674515, 0.0427072234, -0.1295641512, -0.0033858083, 0.10850472, -0.3434870243, -0.0575916991, -0.2041840702, -0.1811355799, 0.1146543548, -0.2467755675, -0.1190598235, 0.3445103168, 0.0368777774, 0.0044912416, 0.051166907, -0.0212291032, -0.0554249808, 0.263383925, 0.1153130829, 0.0225035772, 0.2498407066, -0.1723192334, -0.2595725358, -0.1941960454, -0.1401343197, -0.3265097737, -0.469292134, -0.0550040603, -0.0365223438, -0.1397645473, 0.0882552415, -0.2045921981, -0.0359489694, -0.0043264851, 0.2903864384, 0.0153336637, 0.0368746594, -0.4375738502, -0.2614074647, 0.4150719643, 0.5498958826, -0.2640757859, -0.1248823106, 0.1626144052, -0.4113041461, 0.0055077709, 0.0851145983, -0.3762219846, 0.4481253624, -0.3954285383, -0.1491194665, 0.4284542203, -0.348613143, -0.2835327089, 0.5134190321, 0.0685735419, -0.0092669502, 0.4227093458, 0.0049932115, 0.3071328402, -0.0831540376, -0.0749484003, 0.5160322189, 0.1115895882, -0.1125853062, -0.0146317557, -0.2521878481, -0.1562728584, -0.0869763494, -0.0983392596, 0.2540662587, 0.1340304017, -0.1878970116, 0.5806204081, -0.0906957835, 0.2048041821, 0.2849576771, 0.0666128397, 0.1446065307, -0.043415606, 0.0592398494, -0.6398262382, 0.2061686218, -0.2713478804, -0.2402373552, -0.3789282143, -0.3321028352, -0.2896720171, 0.1395772249, -0.2251723856, -0.3142986, -0.0874109715, 0.147514686, 0.4725339413, 0.0423079208, -0.3148838282, 0.5093697906, -0.0809045061, 0.1222966388, -0.1639375985, 0.055233933, 0.1615950316, 0.1928502023, -0.0075578317, 0.0963905305, 0.1178840697, -0.1511211395, 0.037869703, 0.4245799184, 0.1222037673, 0.2514208853, 0.3347154558, 0.0576161891, 0.2651585937, 0.1458982676, -0.0056865066, -0.2740899324, 0.0745325759, 0.2104530632, 0.0384141095, 0.408347249, -0.0198513567, 0.2785647213, 0.1696807891, -0.0084311068, 0.10390044, -0.0308023542, 0.1452544034, -0.165662542, -0.1733823568, 0.1735543013, 0.3252808154, 0.090826489, -0.2493945658, 0.2692506909, 0.4680551589, -0.0680284202, -0.3477776647, 0.1148411632, -0.2691209018, -0.0557164997, 0.1246277168, 0.8814340234, 0.401753217, 0.0123440623, 0.2361505032, 0.071854353, 0.2702477574, -0.0683172643, 0.364923507, 0.0819864273, -0.0913175046, -0.0149566587, -0.4808923602, -0.1915663034, 0.1524692178, -0.0226064548, 0.1827382445, 0.1612289548, -0.3683390915, 0.0330821946, -0.2861870229, -0.371371448, -0.2221477628, -0.1441489011, -0.0842059106, -0.1802142113, -0.2356018424, -0.0917688459, -0.1567491889, -0.2011982501, -0.1180164814, 0.0290215909, -0.2226626575, 0.0688049048, -0.191680491, -0.1553706974, -0.0985751301, -0.0907021612, 0.1838147342, -0.0397568494, 0.087581642, -0.4963955879, 0.1469942629, -0.3051642478, 0.2047580332, 0.3494755924, 0.0336924158, 0.1768496782, 0.4060948789, 0.200052321, -0.066553466, 0.0030449219, -0.1094022393, 0.0911621451, -0.1093045622, -0.3894088268, 0.1404078007, 0.0943236202, -0.0475684181, -0.2293685973, -0.6929689646, -0.0416316986, 0.2408768386, -0.1981216967, 0.2762158513, -0.1055137813, -0.1378175765, 0.03868163, -0.4083724022, -0.0131053962, -0.1860482842, -0.8774713874, 0.2753807008, -0.3544984758, -0.2303794622, -0.0539298058, -0.0597016551, 0.1787716895, 0.064887926, -0.219725728, -0.0151437409, -0.1151270345, 0.2784601748, 0.1276269108, 0.2927654982, 0.0518941842, -0.056652803, 0.1648829728, -0.1588711888, -0.0507447198, 0.2370916605, -0.3477137089, 0.3656217456, 0.406117171, -0.0131742824, 0.2261142433, 0.7650012374, 0.1852659583, -0.0783655867, 0.1470416933, -0.1283286512, 0.3387123346, 0.3169539869, -0.1909827292, -0.0454269499, -0.0715172887, -0.0789536238, 0.1751827598, 0.1232248694, 0.2392907888, -0.2906848788, -0.212072134, -0.1655000448, -0.1859314442, -0.1148143336, 0.5175089836, 0.160600841, 0.1139921919, 0.2111281455, -0.1149087399, 0.0466601253, 0.0916075706, 0.3727548718, 0.444042325, 0.1854562759, -0.1331202537, 0.0172861628, -0.22045964, 0.087258175, 0.3334240019, -0.1385306418, 0.1563546062, 0.056496121, 0.1949286312, 0.1494938135, 0.7233951092, -0.0107271727, -0.0319373086, -0.2197544873, -0.2569634318, -0.0265564546, 0.1234023124, -0.0482276529, 0.0339763686, 0.4549543262, 0.2488847226, -0.3597501218, -0.3623929322, 0.1546040773, 0.1162099317, -0.2746766508, -0.1146762595, -0.0833122134, -0.0899408609, -0.18010813, -0.2004745156, 0.0539676622, 0.0568372421, -0.0310872458, -0.0269079059, 0.1527350843, 0.1428887546, -0.0335350446, 0.1749981642, 0.3482398391, -0.0658730716, -0.0234585963, 0.4482234716, 0.44150123, 0.1750421673, 0.4515222311, -0.3798856735, -0.1904298067, -0.0910219997, 0.0152670108, 0.6671975255, 0.2702575326, -0.4598641992, 0.0253374167, 0.0921914279, -0.097059682, -0.4243956506, 0.2011381239, 0.2834624946, -0.0252954997, -0.1949806064, -0.6230821609, 0.4908496439, -0.1123149469, -0.2402642369, 0.1811755598, 0.1288723052, -0.3148919344, -0.1643145233, -0.0058825053, 0.8531175256, 0.1205512509, 0.1551861167, 0.1111791134, -0.4877260625, 0.5681890249, -0.1102225855, -0.1549274921, -0.2622862458, -0.0139860362, -0.2005353868, -0.2348830849, -0.0075671561, -0.0535388514, 0.0036480501, 0.3770985901, 0.0088335425, 0.0962399095, 0.0190938413, 0.5144581795, -0.0574418232, -0.1568574607, 0.1019322723, -0.1120366976, 0.2022066563, 0.4311731756, -0.0611428842, -0.5024576783, -0.251190722, 0.0823459774, -0.0367886648, -0.0575544462, -0.4359024167, -0.0646285787, 0.1010861397, -0.3668348193, -0.101682134, 0.5698291659, 0.2479194105, 0.0213810708, -0.210635975, 0.1094161496, -0.0936091319, 0.1404229403, 0.2428722978, 0.1114892066, -0.0798581988, -0.0651346445, -0.2068642229, 0.071472615, -0.0393274203, -0.2618880868, 0.1217394322, -0.1065540984, 0.1592171043, -0.2659183741, -0.0238230154, -0.0651176125, 0.0663716197, -0.0832173005, -0.01986669, 0.2281327248, -0.2856939435, 0.0371870548, -0.2354148924, -0.35307917, -0.1704949439, 0.3664999902, -0.1845431924, 0.0369890779, 0.2687326968, -0.0928182602, -0.2668080032, 0.0150241628, 0.3082931936, -0.1077839658, -0.385350883, 0.2481777966, 0.2917560935, 0.1974306256, -0.4033755064, 0.2362276465, 0.0175400637, -0.2571879625, -0.1818031669, -0.4481992722, -0.2201607525, 0.1389449984, -0.3590064943, 0.11877051, -0.0564316958, 0.1030537039, 0.0875070691, -0.0609075725, -0.1775810719, 0.0292510986, -0.0316626541, -0.1708803177, 0.3003230095, 0.1231866032, 0.3215074539, 0.0304653049, -0.0757866874, -0.0375027731, -0.0238969512, 0.0123708621, -0.267465353, 0.2046537697, -0.1177913323, -0.1721881032, 0.0988987833, -0.0669284463, -0.1082696617, 0.1115723848, 0.2172601223, 0.251929909, 0.1715551764, 0.4327420592, -0.0578065962, -0.078141287, -0.5655526519, 0.4370854795, 0.0744243264, 0.5529673696, -0.142243132, 0.4968705177, -0.4778570533, -0.0598211139, 0.1709117293, -0.0679047108, -0.0351618826, -0.0924729109, 0.4812837839, 0.0271644015, 0.0824264809, 0.1139086932, 0.2881812155, 0.2134977579, -0.0559949651, -0.0220770687, 0.2925491035, -0.0658349544, -0.0243380405, -0.0060558096, -0.1152769029, -0.0515513048, -0.0074524209, 0.2672929466, 0.3170595765, -0.057474032, 0.0366610512, -0.2835757136, 0.3031593263, 0.4111514091, 0.0160917304, 0.6047903895, 0.1351973712, 0.3596575856, 0.205771938, 0.565069437, 0.1462513506, 0.3469208181, -0.2732596099, -0.1061097607, -0.0679323822, 0.2807174921, 0.3305305839, -0.4702316523, 0.1446442306, 0.1134789586, -0.229665786, 0.0006695688, -0.2954064906, 0.6380748153, -0.0482071452, 0.1427689791, -0.1898062378, 0.5034022331, 0.0923022926, -0.2670196295, -0.1357157081, -0.260368526, -0.1646876782, 0.2709103227, -0.068067342, -0.420415163, 0.0985172838, -0.0504766218, 0.1767949462, 0.0280133523, 0.0287284702, 0.0661974847, 0.0950495899, -0.2267217338, 0.1004464254, 0.0161683224, 0.2924773991, 0.4172535837, 0.2327009887, 0.0323165804, 0.2583261132, 0.2004223168, -0.2206255496, 0.2401104569, -0.018181555, -0.0658186823, 0.0275005698, -0.1293641776, 0.0138198864, 0.4370178282, -0.0464094169, 0.0211232379, -0.2937391996, 0.0402429551, 0.2716836929, -0.0134611242, 0.4885115325, 0.0111889783, 0.0218147039, 0.0729122981, 0.0148394182, -0.4192560315, 0.0781182349, 0.3170061409, -0.2312473357, 0.1861359477, -0.009424109, -0.0040242784, -0.0653240383, 0.3525850177, 0.2203419507, 0.38038975, -0.3470632732, -0.2478012741, -0.4514297843, -0.2148245871, 0.3679118752, -0.2235813141, -0.0821259022, 0.2524749339, -0.2352209836, 0.1795069128, 0.0145760439, 0.2517457008, -0.0515865348, 0.1812433898, -0.0746960267, -0.176178813, -0.359852314, 0.1285798848, 0.0889080763, -0.1742636263, 0.3584087789, -0.1178862676, -0.1673535407, -0.0971778631, 0.237636447, 0.1741003394, -0.2355185747, 0.172230348, 0.0413748398, 0.1344535202, -0.0645540655, -0.0557099357, 0.121246621, 0.1673985124, -0.324187994, -0.0388959348, -0.1537391096, -0.130843401, -0.1989883184, 0.0394290648, -0.5205610991, 0.3817766607, 0.2414394766, 0.0903248414, -0.0592814758, -0.056486614, -0.2958545983, 0.0116281509, 0.5659478307, 0.1310491115, -0.2498775125, 0.0230486467, -0.1982488632, 0.0172989517, 0.5022482872, -0.3008307219, 0.1593632549, 0.0607878007, 0.2231654674, 0.3416746855, -0.1027995422, -0.5669340491, 0.2001693845, 0.5056929588, -0.1171718091, 0.1527396441, 0.1659208089, 0.1424449682, 0.0287004188, -0.1023587957, 0.5085361004, 0.1950049102, -0.4277585745, 0.1314693391, -0.0252333283 ]
https://github.com/huggingface/datasets/issues/1831
Some question about raw dataset download info in the project .
Once #1846 will be merged, the paths to the raw downloaded files will be accessible as: ```python builder_instance.dl_manager.downloaded_paths ```
Hi , i review the code in https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py in the _split_generators function is the truly logic of download raw datasets with dl_manager and use Conll2003 cls by use import_main_class in load_dataset function My question is that , with this logic it seems that i can not have the raw dataset download location in variable in downloaded_files in _split_generators. If someone also want use huggingface datasets as raw dataset downloader, how can he retrieve the raw dataset download path from attributes in datasets.dataset_dict.DatasetDict ?
19
Some question about raw dataset download info in the project . Hi , i review the code in https://github.com/huggingface/datasets/blob/master/datasets/conll2003/conll2003.py in the _split_generators function is the truly logic of download raw datasets with dl_manager and use Conll2003 cls by use import_main_class in load_dataset function My question is that , with this logic it seems that i can not have the raw dataset download location in variable in downloaded_files in _split_generators. If someone also want use huggingface datasets as raw dataset downloader, how can he retrieve the raw dataset download path from attributes in datasets.dataset_dict.DatasetDict ? Once #1846 will be merged, the paths to the raw downloaded files will be accessible as: ```python builder_instance.dl_manager.downloaded_paths ```
[ -0.2227525264, -0.0727905482, -0.079534553, 0.5368558764, 0.1130916029, -0.0717309415, 0.1194332838, -0.0408378392, 0.0301589891, 0.1258059144, -0.3729732335, 0.1903687268, -0.1131501496, 0.603097856, 0.1462548077, -0.0494618081, -0.0528517552, 0.1931549758, -0.0936015993, -0.0438144542, -0.4198143184, 0.3098753095, -0.3674634695, 0.1116436869, -0.1832571924, 0.0009519476, 0.0041943789, 0.2849133611, -0.4855922163, -0.2597876191, 0.260833621, 0.2013037503, 0.4007952213, 0.24474141, -0.0001246907, 0.0452722311, 0.2902217805, -0.336006701, -0.4938017428, -0.2695345283, -0.6499730945, 0.0080853477, -0.0744822994, -0.183229357, 0.088000223, -0.0940376818, -0.088658154, -0.1186727285, 0.1216427311, 0.0911427736, 0.0624107793, 0.3518901765, -0.0213566124, 0.0244735442, 0.2250175923, 0.2522044182, 0.0580832958, 0.0618893467, -0.0252658948, 0.3873557448, 0.1903802752, 0.281583339, 0.2330065817, 0.115176186, 0.440079689, 0.2746641636, -0.2849642932, -0.3441518247, 0.0646267235, 0.1897074431, 0.3417405784, -0.3277809918, -0.4800503254, -0.35111323, -0.1297978163, -0.580676198, 0.0638196915, 0.1226148307, -0.4566833973, 0.2788125873, -0.5162332058, -0.513731122, -0.1360850781, -0.0948536396, -0.2339904457, 0.469361186, -0.3634057641, 0.0339231156, 0.0787890181, 0.4059506655, 0.2523897886, -0.1982113123, -0.0329441205, 0.2363316864, -0.1470578909, -0.1451290995, -0.1241967976, 0.243732512, 0.1872884184, -0.0102503542, -0.1592285335, -0.2508051693, 0.0632320791, 0.0414231867, 0.3790723979, 0.0483653918, 0.0730748922, 0.2580436766, 0.2510021329, 0.1209766567, 0.1441137493, -0.2335910052, -0.0929671824, -0.0628622547, -0.3814369142, 0.1422059685, 0.0251012221, -0.0544399992, -0.2750729024, -0.2144886404, -0.0897699222, -0.3215325773, 0.3057874143, 0.3743991256, -0.1019365191, 0.0220569782, -0.0423464812, 0.0158650316, 0.1265100092, -0.3291883469, -0.0845959336, -0.2330513597, -0.1551716328, 0.0351235271, -0.2879268527, -0.1038950831, 0.4116898477, 0.1091848761, 0.0140774613, 0.0599600449, 0.0134304464, -0.0717189312, 0.1696664989, 0.1859178841, 0.0490513667, 0.2148472965, -0.1917362064, -0.2592781782, -0.1738079786, -0.0748299509, -0.322701484, -0.4281929135, -0.1209011152, 0.0081478348, -0.1694130898, 0.1197638512, -0.2129069269, 0.0280260034, 0.1235993728, 0.2871415019, 0.0152978376, -0.0111903492, -0.4282564223, -0.2514010668, 0.3835567534, 0.434874028, -0.2215136439, -0.1230008751, 0.0940121487, -0.4314320683, 0.062992081, 0.0478172861, -0.3582911491, 0.5085850358, -0.4254650176, -0.1822806001, 0.5232153535, -0.3267564178, -0.2476578504, 0.5593609214, 0.1116132587, -0.0978965089, 0.4094048142, -0.0305032898, 0.2824290693, -0.0730035752, -0.0714549944, 0.5319203734, 0.1348209828, -0.1183861345, 0.0307498202, -0.2429304272, -0.1591514051, -0.1199133918, -0.1136732996, 0.252461195, 0.0738941878, -0.1367600858, 0.526057601, -0.0497717373, 0.2035022378, 0.3350774646, -0.0111468742, 0.1369569749, 0.0173292719, -0.0154989585, -0.6657515168, 0.0838522464, -0.2974477708, -0.2576331198, -0.2690088451, -0.3559126854, -0.337718904, 0.175146699, -0.2877254486, -0.3327606618, -0.0792821646, 0.0922701657, 0.4710847735, -0.0258778632, -0.3952093124, 0.5251181722, -0.0418804176, 0.1615415812, -0.0888034403, -0.004625611, 0.1427609175, 0.1398671865, 0.0007158369, 0.112695545, 0.0803143382, -0.1782865524, 0.0629311129, 0.4662192762, 0.1516308188, 0.1959068924, 0.1718021333, 0.0093574226, 0.2583300173, 0.181704551, -0.0510869622, -0.2297551036, 0.0971028209, 0.2127885818, 0.0565141365, 0.352462858, 0.0223178398, 0.259573102, 0.1650947481, -0.0690739825, 0.1472305506, -0.0168987438, 0.1959602833, -0.2239765972, -0.1486390233, 0.2068758011, 0.3971289396, 0.153617084, -0.27143085, 0.1967892647, 0.4208650589, -0.0679545179, -0.2724223733, 0.034227863, -0.3187576532, -0.0333494321, 0.0566566363, 0.7819700837, 0.4830188751, 0.0190001875, 0.1943265498, 0.0896529332, 0.2920680642, -0.1252112091, 0.400447607, 0.122445114, -0.0320636854, 0.076039575, -0.4785553515, -0.2069208324, 0.1402297616, 0.0287685022, 0.2454360723, 0.155500412, -0.3239542842, 0.0535905957, -0.2396928668, -0.3992612958, -0.2819199264, -0.1486747265, -0.0159911308, -0.1645134389, -0.2436562628, -0.0574241616, -0.0981531218, -0.1697709113, -0.0488380268, 0.0056506842, -0.2327388078, 0.0742063597, -0.1707396805, -0.0941129997, -0.1039256752, -0.064320758, 0.1774681509, -0.0226612464, 0.0893999487, -0.4694090784, 0.1217616498, -0.1666527987, 0.1832151711, 0.3540812731, 0.0813800916, 0.1517675519, 0.4431498051, 0.1289681345, -0.0204904228, 0.0068589747, -0.1250995696, 0.1245363131, -0.1264802963, -0.4716934562, 0.1030038148, 0.0985289663, -0.0831037983, -0.2064296007, -0.7116599083, -0.0992263928, 0.1218957156, -0.1045543924, 0.2185325176, -0.1333873719, -0.1711409092, 0.0174394473, -0.2863848507, -0.0070471056, -0.2202374041, -0.7402293086, 0.2095381916, -0.3735066652, -0.2058055997, -0.0553148538, -0.1200567931, 0.2111454606, -0.0086780339, -0.1650971025, 0.051404722, -0.1619435996, 0.1768591404, 0.0831116736, 0.3762398958, -0.0347806215, -0.0497434735, 0.161156863, -0.1935865134, -0.0018387213, 0.1826923788, -0.3915806413, 0.3662185371, 0.3890746534, -0.0243428331, 0.1229490787, 0.756113708, 0.2864714563, -0.1502741724, 0.1753432453, -0.1364035606, 0.4252972901, 0.2925862372, -0.1773475707, -0.0488880761, 0.0727670044, -0.0693990886, 0.1823137999, 0.092132926, 0.2284849137, -0.2628239691, -0.1667083204, -0.1121024415, -0.1302601248, -0.1420615911, 0.5496484041, 0.1925709993, 0.0929876864, 0.190204367, -0.0035491139, 0.0613077544, 0.0210149772, 0.4095697999, 0.3880935013, 0.1618989408, -0.0672065169, -0.0749607533, -0.2247974426, 0.07422176, 0.2897365987, -0.1773893535, 0.1776883304, 0.0986661017, 0.2031381577, 0.1185434386, 0.7021449208, -0.0180743746, -0.0924170464, -0.1328485906, -0.2192425132, -0.011309348, 0.1038033962, -0.1278323978, 0.1078297645, 0.5110151768, 0.2077199221, -0.3721149564, -0.4381560683, 0.2151831388, 0.1094942987, -0.2812063992, -0.1837835163, -0.1544685662, -0.1078194007, -0.222654596, -0.2091929466, 0.1499246508, 0.0881497189, -0.0057039559, -0.056678433, 0.0826511458, 0.0841818601, -0.0086774193, 0.1462728977, 0.3609341681, -0.0120860673, -0.0733287111, 0.3574352264, 0.3906069994, 0.1943040788, 0.4637274742, -0.372815609, -0.1768312901, -0.026509963, 0.0531405322, 0.7556012273, 0.1763665229, -0.4882669747, 0.0601236001, -0.0116344616, -0.0755686983, -0.3720982969, 0.2422154099, 0.2992218733, 0.0321991555, -0.1801105142, -0.6387311816, 0.4800696373, -0.052099064, -0.2018403709, 0.1666305959, 0.0069742613, -0.3069557548, -0.1485980153, -0.0105794705, 0.7889218926, 0.1614473164, 0.1122000515, 0.0857862011, -0.411088258, 0.5621548891, -0.1268181801, -0.170764029, -0.2967330813, 0.0537738055, -0.1420810819, -0.2615423799, 0.0487699807, -0.0964146182, -0.0835700631, 0.3538787365, -0.103155531, 0.0783119351, 0.0351162851, 0.5478224158, -0.0928406119, -0.1032031775, 0.0988965631, -0.1113562882, 0.2575155795, 0.4692692757, -0.1261551529, -0.4839957952, -0.1835497618, 0.1057134122, -0.0513829812, -0.0979697853, -0.4327754974, -0.017000746, 0.0926152915, -0.3537172079, 0.0128732324, 0.620847702, 0.2836617231, 0.0231479649, -0.1648340821, 0.0673449039, -0.0495208427, 0.0769013166, 0.2480773032, 0.2085041255, -0.0699045435, -0.0784724802, -0.1581485122, 0.1368759871, 0.0107303299, -0.2063123286, 0.0896551013, -0.1035652757, 0.1816355735, -0.3317039907, -0.0347608663, -0.0417183302, 0.0668423772, -0.0687277168, -0.010937904, 0.2227704376, -0.3475804329, 0.0621428117, -0.2775217593, -0.3875667453, -0.1929180622, 0.2877933383, -0.053740643, 0.060010165, 0.2207135111, -0.0982341319, -0.2024485618, -0.0398914777, 0.3363055885, -0.1070860624, -0.2793479264, 0.3372611403, 0.32251665, 0.0940123051, -0.3637563288, 0.3148421049, -0.0405118689, -0.2393660247, -0.2452915758, -0.4822892547, -0.2695067525, 0.1232938319, -0.3319842517, 0.1249402016, -0.0620175973, 0.1958289295, 0.0651969984, -0.0243791435, -0.1795799881, 0.0090980381, -0.0362626649, -0.1489294767, 0.3070866764, 0.0986235365, 0.2730360031, 0.0948402882, -0.0722216144, -0.0209142417, -0.0723858327, -0.0107932575, -0.2254006416, 0.1856941879, -0.1288863719, -0.1764188111, 0.1162186936, -0.0721574873, -0.1746609211, 0.1263106167, 0.2937783599, 0.1577111483, 0.17388089, 0.3827465773, -0.0763130188, -0.0502565764, -0.5465724468, 0.3560207188, 0.0966605842, 0.479352206, -0.1747329086, 0.4857376218, -0.4541738033, -0.0447822288, 0.1853283346, -0.123831287, 0.0049048029, -0.1167226881, 0.4232527018, -0.0213855617, 0.1024015248, 0.1084321141, 0.2947762012, 0.2523182333, -0.1078111976, 0.0440972894, 0.1966436803, -0.0459347293, -0.0586764663, -0.0020264015, -0.1170234755, -0.0076992288, 0.0213973597, 0.3223969936, 0.3394872546, 0.0151306987, -0.0119265951, -0.241677016, 0.3374831676, 0.4738019109, 0.0307139233, 0.6178549528, 0.1547662318, 0.3950326443, 0.2319709808, 0.6090505719, 0.1564682871, 0.3764049113, -0.2511894107, -0.0926401243, -0.0720532387, 0.2094827741, 0.3799165487, -0.4324011803, 0.1841050237, 0.1872382313, -0.2192241549, 0.0289911292, -0.2477704883, 0.5808364749, -0.1430681944, 0.1118899286, -0.1777611524, 0.4941426516, -0.0063956869, -0.2583305538, -0.1401863545, -0.2041163146, -0.0913494229, 0.2170605659, -0.0641436726, -0.4420028329, 0.0254703723, -0.1010130346, 0.1205316782, 0.050895527, 0.070912838, 0.0971240699, 0.0195931587, -0.2196980268, 0.2089306116, -0.0921999663, 0.3163805604, 0.3709083796, 0.2975153923, 0.0974190086, 0.312690109, 0.1595858783, -0.2844441831, 0.2018159181, -0.0475477017, -0.0905614421, 0.0061739143, -0.1210865974, 0.0058417059, 0.41826123, -0.0461421683, -0.0200621616, -0.3648142219, 0.1689006388, 0.25127846, 0.0000591762, 0.5455232859, -0.0535516888, 0.0083286241, 0.0869258568, -0.0172511004, -0.4771108329, 0.0602713525, 0.302937746, -0.2579321861, 0.2056421936, 0.0049274862, -0.0021014009, -0.0642876774, 0.3228242993, 0.1336646974, 0.3569432199, -0.3690540195, -0.2826676667, -0.472033143, -0.1578613818, 0.3902360201, -0.2169175744, -0.0885376185, 0.2607623935, -0.2557821572, 0.2271684408, 0.034068685, 0.3226416409, 0.0107523501, 0.1497736573, -0.0656410158, -0.161482051, -0.3975387812, 0.1098096222, 0.114343062, -0.1939414442, 0.3625612855, -0.2283436507, -0.1399370134, -0.11161042, 0.248699367, 0.2083440423, -0.2049419284, 0.1192517206, -0.0392198972, 0.1562286913, -0.0664400235, 0.0166163519, 0.2328227013, 0.209188953, -0.378423512, -0.0006282441, -0.100487411, -0.194092989, -0.3043054342, 0.0465801358, -0.4616068304, 0.3110300601, 0.2901498377, 0.0687090233, -0.0569684356, -0.0396672077, -0.3614220619, 0.0534359403, 0.5975098014, 0.1792016923, -0.2954567671, -0.0016949177, -0.2020286471, 0.0181054324, 0.4721162319, -0.2760742903, 0.0974704176, -0.039548412, 0.1857446432, 0.3565401137, -0.1293281913, -0.5400490761, 0.2439940572, 0.5118325949, -0.1200245619, 0.1001459956, 0.2415113896, 0.1531037688, -0.0162189007, -0.0992013365, 0.5105971098, 0.201197952, -0.4127674699, 0.1326322407, -0.0148094967 ]
https://github.com/huggingface/datasets/issues/1830
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer?
Hi @wumpusman `datasets` has a caching mechanism that allows to cache the results of `.map` so that when you want to re-run it later it doesn't recompute it again. So when you do `.map`, what actually happens is: 1. compute the hash used to identify your `map` for the cache 2. apply your function on every batch This can explain the time difference between your different experiments. The hash computation time depends of how complex your function is. For a tokenizer, the hash computation scans the lists of the words in the tokenizer to identify this tokenizer. Usually it takes 2-3 seconds. Also note that you can disable caching though using ```python import datasets datasets.set_caching_enabled(False) ```
This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function.
116
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer? This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function. Hi @wumpusman `datasets` has a caching mechanism that allows to cache the results of `.map` so that when you want to re-run it later it doesn't recompute it again. So when you do `.map`, what actually happens is: 1. compute the hash used to identify your `map` for the cache 2. apply your function on every batch This can explain the time difference between your different experiments. The hash computation time depends of how complex your function is. For a tokenizer, the hash computation scans the lists of the words in the tokenizer to identify this tokenizer. Usually it takes 2-3 seconds. Also note that you can disable caching though using ```python import datasets datasets.set_caching_enabled(False) ```
[ -0.4040468335, -0.0130074769, -0.1024705321, 0.1034294143, 0.1453053206, -0.1225538924, 0.2550545931, 0.1890889704, 0.1306779683, -0.0065018982, -0.0542235151, 0.498886168, -0.1724810302, -0.2727595568, -0.1320428252, 0.0650427788, 0.2197589725, 0.0224169306, 0.2416453212, -0.0342869461, -0.1218726635, 0.1023018137, -0.1767256558, 0.241399467, -0.3152630329, -0.0779930055, 0.0812313035, -0.209633708, -0.0027565528, -0.5689612627, -0.2084297836, 0.1581248343, 0.0209430158, 0.5331246257, -0.0001148737, 0.0403425694, -0.0291636698, 0.2731475234, 0.134717688, 0.0443616621, 0.3529546261, -0.1942856014, -0.1685834527, -0.2257663012, -0.054171212, -0.2808631659, -0.0221225098, -0.2241771221, 0.068308033, 0.0300420709, 0.1608587205, 0.1151948571, -0.3964316845, -0.059515886, -0.0024583638, -0.1042250693, -0.0991547927, 0.0140272044, 0.0713294819, -0.2551874518, -0.2116564512, 0.1949046701, -0.2130430788, -0.1478141844, 0.2687231302, 0.2163693607, 0.0346121565, -0.2425243556, 0.1680864841, 0.2316351682, 0.0670107156, -0.0272127818, -0.0171248317, -0.3350791335, -0.3706911504, -0.0284825936, 0.1461224705, -0.4334977269, -0.1206514835, -0.0896027237, -0.4140654206, 0.2037734091, 0.2642427683, -0.1223937422, -0.2039305717, 0.4352443516, 0.0954282284, 0.1497344673, 0.104151994, -0.0997519046, -0.2807917595, -0.264377594, -0.1595766395, 0.3733043075, -0.3415872455, -0.1739549339, 0.2692953348, -0.3091347218, -0.1407886147, 0.1142799705, -0.1424314082, 0.1946654916, 0.208340928, -0.0471199267, 0.0663067549, 0.246004343, 0.0384475589, 0.1738463193, 0.0296909045, -0.4802923799, -0.3160504103, -0.0903610587, -0.188875705, 0.0202139504, 0.3458716869, -0.2424583882, -0.2370808274, -0.0725834072, -0.0205964297, -0.171307236, -0.3799443841, -0.0983373374, 0.0658612251, 0.1854546368, 0.0587470196, 0.0610383451, -0.3647981286, -0.2021665573, -0.0928316712, -0.0767262876, -0.128627643, -0.17200014, -0.1044919342, 0.2542574406, -0.1882734597, 0.0913058519, 0.2601750493, 0.0789950788, -0.1153761894, 0.2103085816, 0.2196044922, -0.3643229902, 0.1047280729, -0.1130544171, 0.0748008564, 0.4360266626, -0.0055072848, 0.0017840192, -0.2595285773, 0.2082754821, -0.264908582, -0.2264891118, 0.2413856089, 0.119160004, -0.0831423551, -0.1221610382, -0.4942295253, 0.4385454655, 0.2539223135, -0.1163535491, -0.0749132335, -0.1809134781, -0.5298193097, -0.216742143, 0.2679247856, -0.0187719986, -0.0722125173, -0.193779856, 0.3418037295, 0.1921721697, 0.3103510141, 0.6430556774, -0.3864824474, 0.7953376174, -0.1250497997, 0.7483615875, 0.2579938173, -0.2477056086, -0.3778178692, 0.1166384891, -0.1784684211, 0.272221446, -0.2818516195, -0.1200631261, 0.7026369572, -0.2252788097, 0.3419846296, 0.1061444134, 0.246995315, 0.3040958643, -0.2483734787, -0.0491900444, 0.5504585505, -0.0802224204, -0.2242528945, -0.1509811729, -0.1534068137, 0.1111332923, -0.0315544493, -0.1203731969, -0.1554095149, 0.0617319755, 0.0151118496, 0.027055949, -0.0637359321, 0.2192263454, 0.1471128166, 0.217194289, 0.0741166621, 0.0683925599, 0.4290308952, -0.0061165839, 0.1055163443, -0.0645510554, -0.1504325122, -0.141928032, 0.1726528555, 0.1282206625, 0.0678984076, 0.089192532, 0.2311725914, -0.106979996, 0.0154440776, 0.1270230711, 0.4437766075, -0.3041422665, 0.1406871229, -0.1602892727, -0.1061225086, -0.1936035156, 0.1408740133, 0.108732678, -0.1834656894, 0.1624325365, 0.1247906983, 0.3094664812, -0.1730699837, 0.2074125409, 0.1145593822, 0.2654832006, 0.0448613167, 0.1117049456, 0.0164179578, -0.1618008614, -0.1011431515, 0.2487525344, 0.7665553093, 0.2934232354, -0.098131001, -0.1918504536, -0.0074497685, 0.2052227557, 0.1254603714, 0.0902862996, -0.0172137823, 0.3012905121, 0.4247044325, 0.1712670177, 0.350858748, 0.4743337929, 0.5267606974, -0.1261986047, -0.2109235525, 0.1169242859, -0.3413846195, -0.4390027523, -0.0324559063, -0.4132481217, 0.1679464877, 0.104331091, 0.2238327563, -0.168983236, -0.0138750281, 0.0025530122, 0.2727619112, 0.2319281399, -0.0062525943, -0.0347077809, 0.1677313745, 0.2354773432, -0.3278359175, -0.1683432162, -0.0177447014, 0.2466841787, -0.0202032924, -0.0880931094, 0.0660284087, 0.179038614, 0.4836560488, -0.0730335563, 0.043880038, -0.2336487323, -0.086826548, 0.0112860957, 0.0730060264, 0.1429344118, 0.2016051561, 0.0416047424, 0.0553790629, -0.1324758679, -0.0326361805, -0.2036224604, -0.3690444827, 0.0673272833, 0.0478157289, -0.1053127274, 0.3012900054, 0.1895499229, -0.0706468746, -0.0284740571, -0.4572892785, 0.0877390653, -0.1803115159, 0.0098781679, -0.1076648235, -0.1534432024, -0.1983682662, 0.0400033668, 0.1168602929, -0.2781751156, -0.2616517246, -0.322422564, -0.1180725619, -0.1744084209, 0.1405443996, -0.0200541764, 0.0511424616, -0.0312804282, 0.1222997308, 0.1008709073, 0.1293457747, -0.2491519898, -0.167208299, 0.1939766109, -0.0520041846, -0.0121718626, -0.3335226178, -0.249704957, 0.3890588582, -0.0699699819, -0.0141933151, -0.2141370773, 0.0942139328, 0.1669801176, 0.13987194, -0.2460223436, 0.2176395655, -0.3044712543, 0.2614800334, 0.0384435207, -0.2167221308, 0.394102335, 0.2282124758, -0.1222438812, 0.1697704792, -0.2478058934, 0.1691343784, -0.0590034313, -0.2350640595, 0.072313197, 0.4840382636, 0.246796146, 0.6211674213, 0.0489819869, -0.013337628, -0.0001048744, -0.3113279641, -0.1315821111, -0.4311894774, -0.075513728, 0.2071560621, -0.0991363451, 0.0257445872, 0.486576736, -0.0850559026, -0.3330843151, 0.2221699357, -0.1734430194, 0.0490760654, -0.1999392211, 0.12732853, -0.0947738662, 0.0593054146, 0.0013976693, 0.404610306, -0.5339136124, -0.1491030157, 0.2374674231, -0.2787156999, 0.252582252, -0.2517897785, -0.945553422, 0.3512923419, -0.8524877429, 0.094976306, 0.0165477358, 0.2276022881, 0.0475077108, -0.0270617902, 0.1163011268, -0.0324517339, 0.1658131182, -0.0538088493, -0.0845551565, 0.2370497584, -0.5604743958, -0.1172574162, -0.1456519961, -0.078785345, 0.1936262548, 0.5950001478, 0.7412641644, -0.0944306105, -0.2862771153, -0.3504445851, -0.0479067713, 0.0696776286, 0.0392846055, -0.0138416961, -0.1023690104, -0.1808011532, 0.0108177923, 0.1023750305, 0.1822671592, 0.1334199607, -0.1541093886, -0.0875529572, 0.150520131, 0.3036974072, 0.2778019905, 0.2423065901, -0.0387683362, 0.3437795341, 0.317371875, 0.1055741683, -0.1110976115, -0.1575462371, 0.2181516886, -0.3695305288, 0.0900225192, 0.0998721644, 0.0671070665, 0.1695056558, -0.0323252305, 0.2138268203, -0.269631803, 0.3467107415, -0.1918299943, 0.3990117311, 0.5268698931, 0.1344354302, -0.5008944273, -0.3026989102, 0.0710380524, 0.5278069973, -0.2671490014, 0.436906755, -0.4802764952, -0.4048761427, 0.4786456823, 0.2622502148, 0.5893500447, -0.000197337, 0.2131254375, 0.2467373013, 0.2820870876, 0.1871795803, -0.4422438741, -0.1283500046, -0.2351830453, 0.2189821899, 0.0432998985, -0.073547475, 0.0681039691, 0.2392937839, -0.119057931, -0.0707465187, 0.1343745887, 0.8829227686, -0.0130434483, 0.302733779, 0.48761338, -0.39955616, 0.3429581523, 0.139388293, 0.2241425812, 0.0627056733, 0.0940345079, 0.0973555148, -0.0682937354, -0.1550721675, -0.2499287426, -0.202558443, -0.5686982274, 0.297793299, -0.2047141641, 0.0308010876, 0.0798008442, 0.1448377222, 0.0416583121, 0.2406430393, 0.0066325366, 0.2885670364, 0.2132271528, 0.3364415765, 0.2534503639, -0.5096051693, -0.1977285445, -0.009806551, -0.0152435303, 0.1644135714, -0.2644812167, -0.3185322881, -0.6420419216, -0.0458642729, 0.304049015, -0.3656051159, 0.0190449953, 0.1011226028, -0.0792650953, -0.1980581284, 0.080641523, -0.1534318179, 0.0853770673, 0.4080637991, -0.0744125396, -0.2806636989, 0.018493915, 0.3022502363, 0.1215463728, -0.2107043266, 0.4307021201, -0.4703117013, -0.2629356384, -0.103587389, 0.2154362202, 0.136314854, 0.1198759228, 0.0926352143, -0.131854102, -0.1832278967, 0.0951462686, 0.2641550004, -0.1274950951, -0.109907642, -0.1724203527, -0.0183413252, -0.3060435653, -0.0105906241, -0.0599311888, 0.0916231424, 0.0973535776, 0.1349280328, -0.3185406625, 0.1697504073, -0.257768333, -0.1210307851, 0.125912264, 0.1538809389, -0.201411292, -0.1586652845, 0.1208090857, 0.0411625281, 0.0997675657, 0.2575889528, 0.0350963511, -0.2286947817, -0.0834934264, 0.142489776, 0.0466307662, -0.360457927, 0.0659410506, 0.1358207911, -0.0845474005, -0.5128017068, 0.2053453028, 0.1716242433, 0.0137768826, -0.4263347089, 0.1967778206, -0.0045444556, -0.0069769323, 0.1540149152, -0.0409202948, 0.019588735, 0.1093844622, 0.2167300582, 0.1208919957, -0.2039535046, 0.0436548181, 0.2604888082, 0.3350321054, 0.1718846112, 0.0119802132, -0.0260329433, -0.0632944554, 0.1637771726, -0.1699796319, 0.2126777172, -0.224570334, -0.4430893362, 0.2065381408, 0.1477205902, 0.0679500848, -0.2368665636, 0.4112253785, -0.2698408067, 0.1705465317, 0.0537063926, 0.2234906256, 0.2558569908, -0.2167445272, -0.1678140014, 0.458049953, -0.1856304556, 0.0927564949, 0.1185211837, -0.0464377366, 0.0143659096, 0.3236364424, 0.0896297693, 0.1318290234, 0.4207834005, 0.2065015286, 0.2570438683, 0.2392929792, 0.3731353283, -0.1887237728, -0.2324151099, -0.0579183958, 0.4835405946, -0.3375784755, 0.145225063, -0.0031015985, -0.0090717785, 0.0150642246, -0.5577234626, -0.0361897387, 0.3808557987, -0.373800993, -0.2634640336, -0.1039746106, 0.0000506192, -0.044415392, 0.3579732776, -0.1306928992, -0.0440516844, -0.3228884935, -0.1085640863, -0.0701358914, 0.1116299331, -0.253982842, -0.2345301807, 0.2184888572, -0.2175604105, 0.2340626121, -0.4240420163, 0.134942919, -0.0556652807, 0.3740639985, 0.3734022081, 0.2763727903, -0.137914151, 0.0604415461, -0.0782148838, 0.0910299867, 0.0376115963, 0.141161561, -0.0731157362, -0.3212684989, 0.1342653632, 0.0041143373, -0.1798275262, -0.3566518128, 0.032982327, -0.1090815067, 0.1966267228, 0.2209129781, 0.0509852394, -0.1480569243, 0.1166604757, 0.0628018975, 0.0814492851, -0.1601277739, 0.1489976794, 0.0793074965, 0.1826459765, -0.0843045264, 0.0706104189, 0.0378761776, 0.4189380109, 0.0274149179, -0.1120420545, -0.3786531091, -0.3307702541, -0.344181776, -0.0883447081, -0.1933033466, 0.1373799145, -0.0022714064, 0.0905377194, 0.1760573387, 0.1948622316, 0.2074847221, 0.1234852523, -0.2083261311, -0.0998502225, -0.2851069272, 0.481695205, -0.1726652831, 0.0396553427, 0.0064433515, -0.3506654501, 0.4216936827, 0.0160460584, 0.1311936378, -0.1760375202, 0.0523302481, -0.0212394297, 0.0931964219, 0.6377806664, 0.1688712835, 0.0617197677, -0.0346784964, 0.1621490866, 0.1541456133, 0.1810176373, -0.220260188, 0.0676567852, -0.0157293826, -0.0018752739, 0.0582157448, 0.0275881663, -0.0795355216, -0.1120132953, 0.1741835475, -0.0966246799, -0.2279874831, -0.0935887396, 0.0079853833, 0.1224938259, -0.2413402051, 0.33198452, 0.0734153837, 0.2080665231, -0.3973879218, -0.0614513196, 0.4318279624, -0.6654880643, -0.1201496869, -0.2693095803, -0.0117830858, 0.3286214173, 0.1732209325, -0.1057518125, -0.2817880511, 0.5291826725, 0.0278509371, -0.2813948393, 0.3174490035, -0.0696155131, -0.0076538548, -0.0337326489, 0.3865730762, -0.2410537302, -0.1833971739, -0.0738727003, -0.0449590087 ]
https://github.com/huggingface/datasets/issues/1830
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer?
Hi @lhoestq , Thanks for the reply. It's entirely possible that is the issue. Since it's a side project I won't be looking at it till later this week, but, I'll verify it by disabling caching and hopefully I'll see the same runtime. Appreciate the reference, Michael
This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function.
47
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer? This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function. Hi @lhoestq , Thanks for the reply. It's entirely possible that is the issue. Since it's a side project I won't be looking at it till later this week, but, I'll verify it by disabling caching and hopefully I'll see the same runtime. Appreciate the reference, Michael
[ -0.4040468335, -0.0130074769, -0.1024705321, 0.1034294143, 0.1453053206, -0.1225538924, 0.2550545931, 0.1890889704, 0.1306779683, -0.0065018982, -0.0542235151, 0.498886168, -0.1724810302, -0.2727595568, -0.1320428252, 0.0650427788, 0.2197589725, 0.0224169306, 0.2416453212, -0.0342869461, -0.1218726635, 0.1023018137, -0.1767256558, 0.241399467, -0.3152630329, -0.0779930055, 0.0812313035, -0.209633708, -0.0027565528, -0.5689612627, -0.2084297836, 0.1581248343, 0.0209430158, 0.5331246257, -0.0001148737, 0.0403425694, -0.0291636698, 0.2731475234, 0.134717688, 0.0443616621, 0.3529546261, -0.1942856014, -0.1685834527, -0.2257663012, -0.054171212, -0.2808631659, -0.0221225098, -0.2241771221, 0.068308033, 0.0300420709, 0.1608587205, 0.1151948571, -0.3964316845, -0.059515886, -0.0024583638, -0.1042250693, -0.0991547927, 0.0140272044, 0.0713294819, -0.2551874518, -0.2116564512, 0.1949046701, -0.2130430788, -0.1478141844, 0.2687231302, 0.2163693607, 0.0346121565, -0.2425243556, 0.1680864841, 0.2316351682, 0.0670107156, -0.0272127818, -0.0171248317, -0.3350791335, -0.3706911504, -0.0284825936, 0.1461224705, -0.4334977269, -0.1206514835, -0.0896027237, -0.4140654206, 0.2037734091, 0.2642427683, -0.1223937422, -0.2039305717, 0.4352443516, 0.0954282284, 0.1497344673, 0.104151994, -0.0997519046, -0.2807917595, -0.264377594, -0.1595766395, 0.3733043075, -0.3415872455, -0.1739549339, 0.2692953348, -0.3091347218, -0.1407886147, 0.1142799705, -0.1424314082, 0.1946654916, 0.208340928, -0.0471199267, 0.0663067549, 0.246004343, 0.0384475589, 0.1738463193, 0.0296909045, -0.4802923799, -0.3160504103, -0.0903610587, -0.188875705, 0.0202139504, 0.3458716869, -0.2424583882, -0.2370808274, -0.0725834072, -0.0205964297, -0.171307236, -0.3799443841, -0.0983373374, 0.0658612251, 0.1854546368, 0.0587470196, 0.0610383451, -0.3647981286, -0.2021665573, -0.0928316712, -0.0767262876, -0.128627643, -0.17200014, -0.1044919342, 0.2542574406, -0.1882734597, 0.0913058519, 0.2601750493, 0.0789950788, -0.1153761894, 0.2103085816, 0.2196044922, -0.3643229902, 0.1047280729, -0.1130544171, 0.0748008564, 0.4360266626, -0.0055072848, 0.0017840192, -0.2595285773, 0.2082754821, -0.264908582, -0.2264891118, 0.2413856089, 0.119160004, -0.0831423551, -0.1221610382, -0.4942295253, 0.4385454655, 0.2539223135, -0.1163535491, -0.0749132335, -0.1809134781, -0.5298193097, -0.216742143, 0.2679247856, -0.0187719986, -0.0722125173, -0.193779856, 0.3418037295, 0.1921721697, 0.3103510141, 0.6430556774, -0.3864824474, 0.7953376174, -0.1250497997, 0.7483615875, 0.2579938173, -0.2477056086, -0.3778178692, 0.1166384891, -0.1784684211, 0.272221446, -0.2818516195, -0.1200631261, 0.7026369572, -0.2252788097, 0.3419846296, 0.1061444134, 0.246995315, 0.3040958643, -0.2483734787, -0.0491900444, 0.5504585505, -0.0802224204, -0.2242528945, -0.1509811729, -0.1534068137, 0.1111332923, -0.0315544493, -0.1203731969, -0.1554095149, 0.0617319755, 0.0151118496, 0.027055949, -0.0637359321, 0.2192263454, 0.1471128166, 0.217194289, 0.0741166621, 0.0683925599, 0.4290308952, -0.0061165839, 0.1055163443, -0.0645510554, -0.1504325122, -0.141928032, 0.1726528555, 0.1282206625, 0.0678984076, 0.089192532, 0.2311725914, -0.106979996, 0.0154440776, 0.1270230711, 0.4437766075, -0.3041422665, 0.1406871229, -0.1602892727, -0.1061225086, -0.1936035156, 0.1408740133, 0.108732678, -0.1834656894, 0.1624325365, 0.1247906983, 0.3094664812, -0.1730699837, 0.2074125409, 0.1145593822, 0.2654832006, 0.0448613167, 0.1117049456, 0.0164179578, -0.1618008614, -0.1011431515, 0.2487525344, 0.7665553093, 0.2934232354, -0.098131001, -0.1918504536, -0.0074497685, 0.2052227557, 0.1254603714, 0.0902862996, -0.0172137823, 0.3012905121, 0.4247044325, 0.1712670177, 0.350858748, 0.4743337929, 0.5267606974, -0.1261986047, -0.2109235525, 0.1169242859, -0.3413846195, -0.4390027523, -0.0324559063, -0.4132481217, 0.1679464877, 0.104331091, 0.2238327563, -0.168983236, -0.0138750281, 0.0025530122, 0.2727619112, 0.2319281399, -0.0062525943, -0.0347077809, 0.1677313745, 0.2354773432, -0.3278359175, -0.1683432162, -0.0177447014, 0.2466841787, -0.0202032924, -0.0880931094, 0.0660284087, 0.179038614, 0.4836560488, -0.0730335563, 0.043880038, -0.2336487323, -0.086826548, 0.0112860957, 0.0730060264, 0.1429344118, 0.2016051561, 0.0416047424, 0.0553790629, -0.1324758679, -0.0326361805, -0.2036224604, -0.3690444827, 0.0673272833, 0.0478157289, -0.1053127274, 0.3012900054, 0.1895499229, -0.0706468746, -0.0284740571, -0.4572892785, 0.0877390653, -0.1803115159, 0.0098781679, -0.1076648235, -0.1534432024, -0.1983682662, 0.0400033668, 0.1168602929, -0.2781751156, -0.2616517246, -0.322422564, -0.1180725619, -0.1744084209, 0.1405443996, -0.0200541764, 0.0511424616, -0.0312804282, 0.1222997308, 0.1008709073, 0.1293457747, -0.2491519898, -0.167208299, 0.1939766109, -0.0520041846, -0.0121718626, -0.3335226178, -0.249704957, 0.3890588582, -0.0699699819, -0.0141933151, -0.2141370773, 0.0942139328, 0.1669801176, 0.13987194, -0.2460223436, 0.2176395655, -0.3044712543, 0.2614800334, 0.0384435207, -0.2167221308, 0.394102335, 0.2282124758, -0.1222438812, 0.1697704792, -0.2478058934, 0.1691343784, -0.0590034313, -0.2350640595, 0.072313197, 0.4840382636, 0.246796146, 0.6211674213, 0.0489819869, -0.013337628, -0.0001048744, -0.3113279641, -0.1315821111, -0.4311894774, -0.075513728, 0.2071560621, -0.0991363451, 0.0257445872, 0.486576736, -0.0850559026, -0.3330843151, 0.2221699357, -0.1734430194, 0.0490760654, -0.1999392211, 0.12732853, -0.0947738662, 0.0593054146, 0.0013976693, 0.404610306, -0.5339136124, -0.1491030157, 0.2374674231, -0.2787156999, 0.252582252, -0.2517897785, -0.945553422, 0.3512923419, -0.8524877429, 0.094976306, 0.0165477358, 0.2276022881, 0.0475077108, -0.0270617902, 0.1163011268, -0.0324517339, 0.1658131182, -0.0538088493, -0.0845551565, 0.2370497584, -0.5604743958, -0.1172574162, -0.1456519961, -0.078785345, 0.1936262548, 0.5950001478, 0.7412641644, -0.0944306105, -0.2862771153, -0.3504445851, -0.0479067713, 0.0696776286, 0.0392846055, -0.0138416961, -0.1023690104, -0.1808011532, 0.0108177923, 0.1023750305, 0.1822671592, 0.1334199607, -0.1541093886, -0.0875529572, 0.150520131, 0.3036974072, 0.2778019905, 0.2423065901, -0.0387683362, 0.3437795341, 0.317371875, 0.1055741683, -0.1110976115, -0.1575462371, 0.2181516886, -0.3695305288, 0.0900225192, 0.0998721644, 0.0671070665, 0.1695056558, -0.0323252305, 0.2138268203, -0.269631803, 0.3467107415, -0.1918299943, 0.3990117311, 0.5268698931, 0.1344354302, -0.5008944273, -0.3026989102, 0.0710380524, 0.5278069973, -0.2671490014, 0.436906755, -0.4802764952, -0.4048761427, 0.4786456823, 0.2622502148, 0.5893500447, -0.000197337, 0.2131254375, 0.2467373013, 0.2820870876, 0.1871795803, -0.4422438741, -0.1283500046, -0.2351830453, 0.2189821899, 0.0432998985, -0.073547475, 0.0681039691, 0.2392937839, -0.119057931, -0.0707465187, 0.1343745887, 0.8829227686, -0.0130434483, 0.302733779, 0.48761338, -0.39955616, 0.3429581523, 0.139388293, 0.2241425812, 0.0627056733, 0.0940345079, 0.0973555148, -0.0682937354, -0.1550721675, -0.2499287426, -0.202558443, -0.5686982274, 0.297793299, -0.2047141641, 0.0308010876, 0.0798008442, 0.1448377222, 0.0416583121, 0.2406430393, 0.0066325366, 0.2885670364, 0.2132271528, 0.3364415765, 0.2534503639, -0.5096051693, -0.1977285445, -0.009806551, -0.0152435303, 0.1644135714, -0.2644812167, -0.3185322881, -0.6420419216, -0.0458642729, 0.304049015, -0.3656051159, 0.0190449953, 0.1011226028, -0.0792650953, -0.1980581284, 0.080641523, -0.1534318179, 0.0853770673, 0.4080637991, -0.0744125396, -0.2806636989, 0.018493915, 0.3022502363, 0.1215463728, -0.2107043266, 0.4307021201, -0.4703117013, -0.2629356384, -0.103587389, 0.2154362202, 0.136314854, 0.1198759228, 0.0926352143, -0.131854102, -0.1832278967, 0.0951462686, 0.2641550004, -0.1274950951, -0.109907642, -0.1724203527, -0.0183413252, -0.3060435653, -0.0105906241, -0.0599311888, 0.0916231424, 0.0973535776, 0.1349280328, -0.3185406625, 0.1697504073, -0.257768333, -0.1210307851, 0.125912264, 0.1538809389, -0.201411292, -0.1586652845, 0.1208090857, 0.0411625281, 0.0997675657, 0.2575889528, 0.0350963511, -0.2286947817, -0.0834934264, 0.142489776, 0.0466307662, -0.360457927, 0.0659410506, 0.1358207911, -0.0845474005, -0.5128017068, 0.2053453028, 0.1716242433, 0.0137768826, -0.4263347089, 0.1967778206, -0.0045444556, -0.0069769323, 0.1540149152, -0.0409202948, 0.019588735, 0.1093844622, 0.2167300582, 0.1208919957, -0.2039535046, 0.0436548181, 0.2604888082, 0.3350321054, 0.1718846112, 0.0119802132, -0.0260329433, -0.0632944554, 0.1637771726, -0.1699796319, 0.2126777172, -0.224570334, -0.4430893362, 0.2065381408, 0.1477205902, 0.0679500848, -0.2368665636, 0.4112253785, -0.2698408067, 0.1705465317, 0.0537063926, 0.2234906256, 0.2558569908, -0.2167445272, -0.1678140014, 0.458049953, -0.1856304556, 0.0927564949, 0.1185211837, -0.0464377366, 0.0143659096, 0.3236364424, 0.0896297693, 0.1318290234, 0.4207834005, 0.2065015286, 0.2570438683, 0.2392929792, 0.3731353283, -0.1887237728, -0.2324151099, -0.0579183958, 0.4835405946, -0.3375784755, 0.145225063, -0.0031015985, -0.0090717785, 0.0150642246, -0.5577234626, -0.0361897387, 0.3808557987, -0.373800993, -0.2634640336, -0.1039746106, 0.0000506192, -0.044415392, 0.3579732776, -0.1306928992, -0.0440516844, -0.3228884935, -0.1085640863, -0.0701358914, 0.1116299331, -0.253982842, -0.2345301807, 0.2184888572, -0.2175604105, 0.2340626121, -0.4240420163, 0.134942919, -0.0556652807, 0.3740639985, 0.3734022081, 0.2763727903, -0.137914151, 0.0604415461, -0.0782148838, 0.0910299867, 0.0376115963, 0.141161561, -0.0731157362, -0.3212684989, 0.1342653632, 0.0041143373, -0.1798275262, -0.3566518128, 0.032982327, -0.1090815067, 0.1966267228, 0.2209129781, 0.0509852394, -0.1480569243, 0.1166604757, 0.0628018975, 0.0814492851, -0.1601277739, 0.1489976794, 0.0793074965, 0.1826459765, -0.0843045264, 0.0706104189, 0.0378761776, 0.4189380109, 0.0274149179, -0.1120420545, -0.3786531091, -0.3307702541, -0.344181776, -0.0883447081, -0.1933033466, 0.1373799145, -0.0022714064, 0.0905377194, 0.1760573387, 0.1948622316, 0.2074847221, 0.1234852523, -0.2083261311, -0.0998502225, -0.2851069272, 0.481695205, -0.1726652831, 0.0396553427, 0.0064433515, -0.3506654501, 0.4216936827, 0.0160460584, 0.1311936378, -0.1760375202, 0.0523302481, -0.0212394297, 0.0931964219, 0.6377806664, 0.1688712835, 0.0617197677, -0.0346784964, 0.1621490866, 0.1541456133, 0.1810176373, -0.220260188, 0.0676567852, -0.0157293826, -0.0018752739, 0.0582157448, 0.0275881663, -0.0795355216, -0.1120132953, 0.1741835475, -0.0966246799, -0.2279874831, -0.0935887396, 0.0079853833, 0.1224938259, -0.2413402051, 0.33198452, 0.0734153837, 0.2080665231, -0.3973879218, -0.0614513196, 0.4318279624, -0.6654880643, -0.1201496869, -0.2693095803, -0.0117830858, 0.3286214173, 0.1732209325, -0.1057518125, -0.2817880511, 0.5291826725, 0.0278509371, -0.2813948393, 0.3174490035, -0.0696155131, -0.0076538548, -0.0337326489, 0.3865730762, -0.2410537302, -0.1833971739, -0.0738727003, -0.0449590087 ]
https://github.com/huggingface/datasets/issues/1830
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer?
I believe this is an actual issue, tokenizing a ~4GB txt file went from an hour and a half to ~10 minutes when I switched from my pre-trained tokenizer(on the same dataset) to the default gpt2 tokenizer. Both were loaded using: ``` AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) ``` I trained the tokenizer using ByteLevelBPETokenizer from the Tokenizers library and save it to a tokenizer.json file. I have tested the caching ideas above, changing the number of process, the TOKENIZERS_PARALLELISM env variable, keep_in_memory=True and batching with different sizes. Apologies I can't really upload much code, but wanted to back up the finding and hopefully a fix/the problem can be found. I will comment back if I find a fix as well.
This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function.
117
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer? This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function. I believe this is an actual issue, tokenizing a ~4GB txt file went from an hour and a half to ~10 minutes when I switched from my pre-trained tokenizer(on the same dataset) to the default gpt2 tokenizer. Both were loaded using: ``` AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) ``` I trained the tokenizer using ByteLevelBPETokenizer from the Tokenizers library and save it to a tokenizer.json file. I have tested the caching ideas above, changing the number of process, the TOKENIZERS_PARALLELISM env variable, keep_in_memory=True and batching with different sizes. Apologies I can't really upload much code, but wanted to back up the finding and hopefully a fix/the problem can be found. I will comment back if I find a fix as well.
[ -0.4040468335, -0.0130074769, -0.1024705321, 0.1034294143, 0.1453053206, -0.1225538924, 0.2550545931, 0.1890889704, 0.1306779683, -0.0065018982, -0.0542235151, 0.498886168, -0.1724810302, -0.2727595568, -0.1320428252, 0.0650427788, 0.2197589725, 0.0224169306, 0.2416453212, -0.0342869461, -0.1218726635, 0.1023018137, -0.1767256558, 0.241399467, -0.3152630329, -0.0779930055, 0.0812313035, -0.209633708, -0.0027565528, -0.5689612627, -0.2084297836, 0.1581248343, 0.0209430158, 0.5331246257, -0.0001148737, 0.0403425694, -0.0291636698, 0.2731475234, 0.134717688, 0.0443616621, 0.3529546261, -0.1942856014, -0.1685834527, -0.2257663012, -0.054171212, -0.2808631659, -0.0221225098, -0.2241771221, 0.068308033, 0.0300420709, 0.1608587205, 0.1151948571, -0.3964316845, -0.059515886, -0.0024583638, -0.1042250693, -0.0991547927, 0.0140272044, 0.0713294819, -0.2551874518, -0.2116564512, 0.1949046701, -0.2130430788, -0.1478141844, 0.2687231302, 0.2163693607, 0.0346121565, -0.2425243556, 0.1680864841, 0.2316351682, 0.0670107156, -0.0272127818, -0.0171248317, -0.3350791335, -0.3706911504, -0.0284825936, 0.1461224705, -0.4334977269, -0.1206514835, -0.0896027237, -0.4140654206, 0.2037734091, 0.2642427683, -0.1223937422, -0.2039305717, 0.4352443516, 0.0954282284, 0.1497344673, 0.104151994, -0.0997519046, -0.2807917595, -0.264377594, -0.1595766395, 0.3733043075, -0.3415872455, -0.1739549339, 0.2692953348, -0.3091347218, -0.1407886147, 0.1142799705, -0.1424314082, 0.1946654916, 0.208340928, -0.0471199267, 0.0663067549, 0.246004343, 0.0384475589, 0.1738463193, 0.0296909045, -0.4802923799, -0.3160504103, -0.0903610587, -0.188875705, 0.0202139504, 0.3458716869, -0.2424583882, -0.2370808274, -0.0725834072, -0.0205964297, -0.171307236, -0.3799443841, -0.0983373374, 0.0658612251, 0.1854546368, 0.0587470196, 0.0610383451, -0.3647981286, -0.2021665573, -0.0928316712, -0.0767262876, -0.128627643, -0.17200014, -0.1044919342, 0.2542574406, -0.1882734597, 0.0913058519, 0.2601750493, 0.0789950788, -0.1153761894, 0.2103085816, 0.2196044922, -0.3643229902, 0.1047280729, -0.1130544171, 0.0748008564, 0.4360266626, -0.0055072848, 0.0017840192, -0.2595285773, 0.2082754821, -0.264908582, -0.2264891118, 0.2413856089, 0.119160004, -0.0831423551, -0.1221610382, -0.4942295253, 0.4385454655, 0.2539223135, -0.1163535491, -0.0749132335, -0.1809134781, -0.5298193097, -0.216742143, 0.2679247856, -0.0187719986, -0.0722125173, -0.193779856, 0.3418037295, 0.1921721697, 0.3103510141, 0.6430556774, -0.3864824474, 0.7953376174, -0.1250497997, 0.7483615875, 0.2579938173, -0.2477056086, -0.3778178692, 0.1166384891, -0.1784684211, 0.272221446, -0.2818516195, -0.1200631261, 0.7026369572, -0.2252788097, 0.3419846296, 0.1061444134, 0.246995315, 0.3040958643, -0.2483734787, -0.0491900444, 0.5504585505, -0.0802224204, -0.2242528945, -0.1509811729, -0.1534068137, 0.1111332923, -0.0315544493, -0.1203731969, -0.1554095149, 0.0617319755, 0.0151118496, 0.027055949, -0.0637359321, 0.2192263454, 0.1471128166, 0.217194289, 0.0741166621, 0.0683925599, 0.4290308952, -0.0061165839, 0.1055163443, -0.0645510554, -0.1504325122, -0.141928032, 0.1726528555, 0.1282206625, 0.0678984076, 0.089192532, 0.2311725914, -0.106979996, 0.0154440776, 0.1270230711, 0.4437766075, -0.3041422665, 0.1406871229, -0.1602892727, -0.1061225086, -0.1936035156, 0.1408740133, 0.108732678, -0.1834656894, 0.1624325365, 0.1247906983, 0.3094664812, -0.1730699837, 0.2074125409, 0.1145593822, 0.2654832006, 0.0448613167, 0.1117049456, 0.0164179578, -0.1618008614, -0.1011431515, 0.2487525344, 0.7665553093, 0.2934232354, -0.098131001, -0.1918504536, -0.0074497685, 0.2052227557, 0.1254603714, 0.0902862996, -0.0172137823, 0.3012905121, 0.4247044325, 0.1712670177, 0.350858748, 0.4743337929, 0.5267606974, -0.1261986047, -0.2109235525, 0.1169242859, -0.3413846195, -0.4390027523, -0.0324559063, -0.4132481217, 0.1679464877, 0.104331091, 0.2238327563, -0.168983236, -0.0138750281, 0.0025530122, 0.2727619112, 0.2319281399, -0.0062525943, -0.0347077809, 0.1677313745, 0.2354773432, -0.3278359175, -0.1683432162, -0.0177447014, 0.2466841787, -0.0202032924, -0.0880931094, 0.0660284087, 0.179038614, 0.4836560488, -0.0730335563, 0.043880038, -0.2336487323, -0.086826548, 0.0112860957, 0.0730060264, 0.1429344118, 0.2016051561, 0.0416047424, 0.0553790629, -0.1324758679, -0.0326361805, -0.2036224604, -0.3690444827, 0.0673272833, 0.0478157289, -0.1053127274, 0.3012900054, 0.1895499229, -0.0706468746, -0.0284740571, -0.4572892785, 0.0877390653, -0.1803115159, 0.0098781679, -0.1076648235, -0.1534432024, -0.1983682662, 0.0400033668, 0.1168602929, -0.2781751156, -0.2616517246, -0.322422564, -0.1180725619, -0.1744084209, 0.1405443996, -0.0200541764, 0.0511424616, -0.0312804282, 0.1222997308, 0.1008709073, 0.1293457747, -0.2491519898, -0.167208299, 0.1939766109, -0.0520041846, -0.0121718626, -0.3335226178, -0.249704957, 0.3890588582, -0.0699699819, -0.0141933151, -0.2141370773, 0.0942139328, 0.1669801176, 0.13987194, -0.2460223436, 0.2176395655, -0.3044712543, 0.2614800334, 0.0384435207, -0.2167221308, 0.394102335, 0.2282124758, -0.1222438812, 0.1697704792, -0.2478058934, 0.1691343784, -0.0590034313, -0.2350640595, 0.072313197, 0.4840382636, 0.246796146, 0.6211674213, 0.0489819869, -0.013337628, -0.0001048744, -0.3113279641, -0.1315821111, -0.4311894774, -0.075513728, 0.2071560621, -0.0991363451, 0.0257445872, 0.486576736, -0.0850559026, -0.3330843151, 0.2221699357, -0.1734430194, 0.0490760654, -0.1999392211, 0.12732853, -0.0947738662, 0.0593054146, 0.0013976693, 0.404610306, -0.5339136124, -0.1491030157, 0.2374674231, -0.2787156999, 0.252582252, -0.2517897785, -0.945553422, 0.3512923419, -0.8524877429, 0.094976306, 0.0165477358, 0.2276022881, 0.0475077108, -0.0270617902, 0.1163011268, -0.0324517339, 0.1658131182, -0.0538088493, -0.0845551565, 0.2370497584, -0.5604743958, -0.1172574162, -0.1456519961, -0.078785345, 0.1936262548, 0.5950001478, 0.7412641644, -0.0944306105, -0.2862771153, -0.3504445851, -0.0479067713, 0.0696776286, 0.0392846055, -0.0138416961, -0.1023690104, -0.1808011532, 0.0108177923, 0.1023750305, 0.1822671592, 0.1334199607, -0.1541093886, -0.0875529572, 0.150520131, 0.3036974072, 0.2778019905, 0.2423065901, -0.0387683362, 0.3437795341, 0.317371875, 0.1055741683, -0.1110976115, -0.1575462371, 0.2181516886, -0.3695305288, 0.0900225192, 0.0998721644, 0.0671070665, 0.1695056558, -0.0323252305, 0.2138268203, -0.269631803, 0.3467107415, -0.1918299943, 0.3990117311, 0.5268698931, 0.1344354302, -0.5008944273, -0.3026989102, 0.0710380524, 0.5278069973, -0.2671490014, 0.436906755, -0.4802764952, -0.4048761427, 0.4786456823, 0.2622502148, 0.5893500447, -0.000197337, 0.2131254375, 0.2467373013, 0.2820870876, 0.1871795803, -0.4422438741, -0.1283500046, -0.2351830453, 0.2189821899, 0.0432998985, -0.073547475, 0.0681039691, 0.2392937839, -0.119057931, -0.0707465187, 0.1343745887, 0.8829227686, -0.0130434483, 0.302733779, 0.48761338, -0.39955616, 0.3429581523, 0.139388293, 0.2241425812, 0.0627056733, 0.0940345079, 0.0973555148, -0.0682937354, -0.1550721675, -0.2499287426, -0.202558443, -0.5686982274, 0.297793299, -0.2047141641, 0.0308010876, 0.0798008442, 0.1448377222, 0.0416583121, 0.2406430393, 0.0066325366, 0.2885670364, 0.2132271528, 0.3364415765, 0.2534503639, -0.5096051693, -0.1977285445, -0.009806551, -0.0152435303, 0.1644135714, -0.2644812167, -0.3185322881, -0.6420419216, -0.0458642729, 0.304049015, -0.3656051159, 0.0190449953, 0.1011226028, -0.0792650953, -0.1980581284, 0.080641523, -0.1534318179, 0.0853770673, 0.4080637991, -0.0744125396, -0.2806636989, 0.018493915, 0.3022502363, 0.1215463728, -0.2107043266, 0.4307021201, -0.4703117013, -0.2629356384, -0.103587389, 0.2154362202, 0.136314854, 0.1198759228, 0.0926352143, -0.131854102, -0.1832278967, 0.0951462686, 0.2641550004, -0.1274950951, -0.109907642, -0.1724203527, -0.0183413252, -0.3060435653, -0.0105906241, -0.0599311888, 0.0916231424, 0.0973535776, 0.1349280328, -0.3185406625, 0.1697504073, -0.257768333, -0.1210307851, 0.125912264, 0.1538809389, -0.201411292, -0.1586652845, 0.1208090857, 0.0411625281, 0.0997675657, 0.2575889528, 0.0350963511, -0.2286947817, -0.0834934264, 0.142489776, 0.0466307662, -0.360457927, 0.0659410506, 0.1358207911, -0.0845474005, -0.5128017068, 0.2053453028, 0.1716242433, 0.0137768826, -0.4263347089, 0.1967778206, -0.0045444556, -0.0069769323, 0.1540149152, -0.0409202948, 0.019588735, 0.1093844622, 0.2167300582, 0.1208919957, -0.2039535046, 0.0436548181, 0.2604888082, 0.3350321054, 0.1718846112, 0.0119802132, -0.0260329433, -0.0632944554, 0.1637771726, -0.1699796319, 0.2126777172, -0.224570334, -0.4430893362, 0.2065381408, 0.1477205902, 0.0679500848, -0.2368665636, 0.4112253785, -0.2698408067, 0.1705465317, 0.0537063926, 0.2234906256, 0.2558569908, -0.2167445272, -0.1678140014, 0.458049953, -0.1856304556, 0.0927564949, 0.1185211837, -0.0464377366, 0.0143659096, 0.3236364424, 0.0896297693, 0.1318290234, 0.4207834005, 0.2065015286, 0.2570438683, 0.2392929792, 0.3731353283, -0.1887237728, -0.2324151099, -0.0579183958, 0.4835405946, -0.3375784755, 0.145225063, -0.0031015985, -0.0090717785, 0.0150642246, -0.5577234626, -0.0361897387, 0.3808557987, -0.373800993, -0.2634640336, -0.1039746106, 0.0000506192, -0.044415392, 0.3579732776, -0.1306928992, -0.0440516844, -0.3228884935, -0.1085640863, -0.0701358914, 0.1116299331, -0.253982842, -0.2345301807, 0.2184888572, -0.2175604105, 0.2340626121, -0.4240420163, 0.134942919, -0.0556652807, 0.3740639985, 0.3734022081, 0.2763727903, -0.137914151, 0.0604415461, -0.0782148838, 0.0910299867, 0.0376115963, 0.141161561, -0.0731157362, -0.3212684989, 0.1342653632, 0.0041143373, -0.1798275262, -0.3566518128, 0.032982327, -0.1090815067, 0.1966267228, 0.2209129781, 0.0509852394, -0.1480569243, 0.1166604757, 0.0628018975, 0.0814492851, -0.1601277739, 0.1489976794, 0.0793074965, 0.1826459765, -0.0843045264, 0.0706104189, 0.0378761776, 0.4189380109, 0.0274149179, -0.1120420545, -0.3786531091, -0.3307702541, -0.344181776, -0.0883447081, -0.1933033466, 0.1373799145, -0.0022714064, 0.0905377194, 0.1760573387, 0.1948622316, 0.2074847221, 0.1234852523, -0.2083261311, -0.0998502225, -0.2851069272, 0.481695205, -0.1726652831, 0.0396553427, 0.0064433515, -0.3506654501, 0.4216936827, 0.0160460584, 0.1311936378, -0.1760375202, 0.0523302481, -0.0212394297, 0.0931964219, 0.6377806664, 0.1688712835, 0.0617197677, -0.0346784964, 0.1621490866, 0.1541456133, 0.1810176373, -0.220260188, 0.0676567852, -0.0157293826, -0.0018752739, 0.0582157448, 0.0275881663, -0.0795355216, -0.1120132953, 0.1741835475, -0.0966246799, -0.2279874831, -0.0935887396, 0.0079853833, 0.1224938259, -0.2413402051, 0.33198452, 0.0734153837, 0.2080665231, -0.3973879218, -0.0614513196, 0.4318279624, -0.6654880643, -0.1201496869, -0.2693095803, -0.0117830858, 0.3286214173, 0.1732209325, -0.1057518125, -0.2817880511, 0.5291826725, 0.0278509371, -0.2813948393, 0.3174490035, -0.0696155131, -0.0076538548, -0.0337326489, 0.3865730762, -0.2410537302, -0.1833971739, -0.0738727003, -0.0449590087 ]
https://github.com/huggingface/datasets/issues/1830
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer?
Hi @johncookds do you think this can come from one tokenizer being faster than the other one ? Can you try to compare their speed without using `datasets` just to make sure ?
This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function.
33
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer? This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function. Hi @johncookds do you think this can come from one tokenizer being faster than the other one ? Can you try to compare their speed without using `datasets` just to make sure ?
[ -0.4040468335, -0.0130074769, -0.1024705321, 0.1034294143, 0.1453053206, -0.1225538924, 0.2550545931, 0.1890889704, 0.1306779683, -0.0065018982, -0.0542235151, 0.498886168, -0.1724810302, -0.2727595568, -0.1320428252, 0.0650427788, 0.2197589725, 0.0224169306, 0.2416453212, -0.0342869461, -0.1218726635, 0.1023018137, -0.1767256558, 0.241399467, -0.3152630329, -0.0779930055, 0.0812313035, -0.209633708, -0.0027565528, -0.5689612627, -0.2084297836, 0.1581248343, 0.0209430158, 0.5331246257, -0.0001148737, 0.0403425694, -0.0291636698, 0.2731475234, 0.134717688, 0.0443616621, 0.3529546261, -0.1942856014, -0.1685834527, -0.2257663012, -0.054171212, -0.2808631659, -0.0221225098, -0.2241771221, 0.068308033, 0.0300420709, 0.1608587205, 0.1151948571, -0.3964316845, -0.059515886, -0.0024583638, -0.1042250693, -0.0991547927, 0.0140272044, 0.0713294819, -0.2551874518, -0.2116564512, 0.1949046701, -0.2130430788, -0.1478141844, 0.2687231302, 0.2163693607, 0.0346121565, -0.2425243556, 0.1680864841, 0.2316351682, 0.0670107156, -0.0272127818, -0.0171248317, -0.3350791335, -0.3706911504, -0.0284825936, 0.1461224705, -0.4334977269, -0.1206514835, -0.0896027237, -0.4140654206, 0.2037734091, 0.2642427683, -0.1223937422, -0.2039305717, 0.4352443516, 0.0954282284, 0.1497344673, 0.104151994, -0.0997519046, -0.2807917595, -0.264377594, -0.1595766395, 0.3733043075, -0.3415872455, -0.1739549339, 0.2692953348, -0.3091347218, -0.1407886147, 0.1142799705, -0.1424314082, 0.1946654916, 0.208340928, -0.0471199267, 0.0663067549, 0.246004343, 0.0384475589, 0.1738463193, 0.0296909045, -0.4802923799, -0.3160504103, -0.0903610587, -0.188875705, 0.0202139504, 0.3458716869, -0.2424583882, -0.2370808274, -0.0725834072, -0.0205964297, -0.171307236, -0.3799443841, -0.0983373374, 0.0658612251, 0.1854546368, 0.0587470196, 0.0610383451, -0.3647981286, -0.2021665573, -0.0928316712, -0.0767262876, -0.128627643, -0.17200014, -0.1044919342, 0.2542574406, -0.1882734597, 0.0913058519, 0.2601750493, 0.0789950788, -0.1153761894, 0.2103085816, 0.2196044922, -0.3643229902, 0.1047280729, -0.1130544171, 0.0748008564, 0.4360266626, -0.0055072848, 0.0017840192, -0.2595285773, 0.2082754821, -0.264908582, -0.2264891118, 0.2413856089, 0.119160004, -0.0831423551, -0.1221610382, -0.4942295253, 0.4385454655, 0.2539223135, -0.1163535491, -0.0749132335, -0.1809134781, -0.5298193097, -0.216742143, 0.2679247856, -0.0187719986, -0.0722125173, -0.193779856, 0.3418037295, 0.1921721697, 0.3103510141, 0.6430556774, -0.3864824474, 0.7953376174, -0.1250497997, 0.7483615875, 0.2579938173, -0.2477056086, -0.3778178692, 0.1166384891, -0.1784684211, 0.272221446, -0.2818516195, -0.1200631261, 0.7026369572, -0.2252788097, 0.3419846296, 0.1061444134, 0.246995315, 0.3040958643, -0.2483734787, -0.0491900444, 0.5504585505, -0.0802224204, -0.2242528945, -0.1509811729, -0.1534068137, 0.1111332923, -0.0315544493, -0.1203731969, -0.1554095149, 0.0617319755, 0.0151118496, 0.027055949, -0.0637359321, 0.2192263454, 0.1471128166, 0.217194289, 0.0741166621, 0.0683925599, 0.4290308952, -0.0061165839, 0.1055163443, -0.0645510554, -0.1504325122, -0.141928032, 0.1726528555, 0.1282206625, 0.0678984076, 0.089192532, 0.2311725914, -0.106979996, 0.0154440776, 0.1270230711, 0.4437766075, -0.3041422665, 0.1406871229, -0.1602892727, -0.1061225086, -0.1936035156, 0.1408740133, 0.108732678, -0.1834656894, 0.1624325365, 0.1247906983, 0.3094664812, -0.1730699837, 0.2074125409, 0.1145593822, 0.2654832006, 0.0448613167, 0.1117049456, 0.0164179578, -0.1618008614, -0.1011431515, 0.2487525344, 0.7665553093, 0.2934232354, -0.098131001, -0.1918504536, -0.0074497685, 0.2052227557, 0.1254603714, 0.0902862996, -0.0172137823, 0.3012905121, 0.4247044325, 0.1712670177, 0.350858748, 0.4743337929, 0.5267606974, -0.1261986047, -0.2109235525, 0.1169242859, -0.3413846195, -0.4390027523, -0.0324559063, -0.4132481217, 0.1679464877, 0.104331091, 0.2238327563, -0.168983236, -0.0138750281, 0.0025530122, 0.2727619112, 0.2319281399, -0.0062525943, -0.0347077809, 0.1677313745, 0.2354773432, -0.3278359175, -0.1683432162, -0.0177447014, 0.2466841787, -0.0202032924, -0.0880931094, 0.0660284087, 0.179038614, 0.4836560488, -0.0730335563, 0.043880038, -0.2336487323, -0.086826548, 0.0112860957, 0.0730060264, 0.1429344118, 0.2016051561, 0.0416047424, 0.0553790629, -0.1324758679, -0.0326361805, -0.2036224604, -0.3690444827, 0.0673272833, 0.0478157289, -0.1053127274, 0.3012900054, 0.1895499229, -0.0706468746, -0.0284740571, -0.4572892785, 0.0877390653, -0.1803115159, 0.0098781679, -0.1076648235, -0.1534432024, -0.1983682662, 0.0400033668, 0.1168602929, -0.2781751156, -0.2616517246, -0.322422564, -0.1180725619, -0.1744084209, 0.1405443996, -0.0200541764, 0.0511424616, -0.0312804282, 0.1222997308, 0.1008709073, 0.1293457747, -0.2491519898, -0.167208299, 0.1939766109, -0.0520041846, -0.0121718626, -0.3335226178, -0.249704957, 0.3890588582, -0.0699699819, -0.0141933151, -0.2141370773, 0.0942139328, 0.1669801176, 0.13987194, -0.2460223436, 0.2176395655, -0.3044712543, 0.2614800334, 0.0384435207, -0.2167221308, 0.394102335, 0.2282124758, -0.1222438812, 0.1697704792, -0.2478058934, 0.1691343784, -0.0590034313, -0.2350640595, 0.072313197, 0.4840382636, 0.246796146, 0.6211674213, 0.0489819869, -0.013337628, -0.0001048744, -0.3113279641, -0.1315821111, -0.4311894774, -0.075513728, 0.2071560621, -0.0991363451, 0.0257445872, 0.486576736, -0.0850559026, -0.3330843151, 0.2221699357, -0.1734430194, 0.0490760654, -0.1999392211, 0.12732853, -0.0947738662, 0.0593054146, 0.0013976693, 0.404610306, -0.5339136124, -0.1491030157, 0.2374674231, -0.2787156999, 0.252582252, -0.2517897785, -0.945553422, 0.3512923419, -0.8524877429, 0.094976306, 0.0165477358, 0.2276022881, 0.0475077108, -0.0270617902, 0.1163011268, -0.0324517339, 0.1658131182, -0.0538088493, -0.0845551565, 0.2370497584, -0.5604743958, -0.1172574162, -0.1456519961, -0.078785345, 0.1936262548, 0.5950001478, 0.7412641644, -0.0944306105, -0.2862771153, -0.3504445851, -0.0479067713, 0.0696776286, 0.0392846055, -0.0138416961, -0.1023690104, -0.1808011532, 0.0108177923, 0.1023750305, 0.1822671592, 0.1334199607, -0.1541093886, -0.0875529572, 0.150520131, 0.3036974072, 0.2778019905, 0.2423065901, -0.0387683362, 0.3437795341, 0.317371875, 0.1055741683, -0.1110976115, -0.1575462371, 0.2181516886, -0.3695305288, 0.0900225192, 0.0998721644, 0.0671070665, 0.1695056558, -0.0323252305, 0.2138268203, -0.269631803, 0.3467107415, -0.1918299943, 0.3990117311, 0.5268698931, 0.1344354302, -0.5008944273, -0.3026989102, 0.0710380524, 0.5278069973, -0.2671490014, 0.436906755, -0.4802764952, -0.4048761427, 0.4786456823, 0.2622502148, 0.5893500447, -0.000197337, 0.2131254375, 0.2467373013, 0.2820870876, 0.1871795803, -0.4422438741, -0.1283500046, -0.2351830453, 0.2189821899, 0.0432998985, -0.073547475, 0.0681039691, 0.2392937839, -0.119057931, -0.0707465187, 0.1343745887, 0.8829227686, -0.0130434483, 0.302733779, 0.48761338, -0.39955616, 0.3429581523, 0.139388293, 0.2241425812, 0.0627056733, 0.0940345079, 0.0973555148, -0.0682937354, -0.1550721675, -0.2499287426, -0.202558443, -0.5686982274, 0.297793299, -0.2047141641, 0.0308010876, 0.0798008442, 0.1448377222, 0.0416583121, 0.2406430393, 0.0066325366, 0.2885670364, 0.2132271528, 0.3364415765, 0.2534503639, -0.5096051693, -0.1977285445, -0.009806551, -0.0152435303, 0.1644135714, -0.2644812167, -0.3185322881, -0.6420419216, -0.0458642729, 0.304049015, -0.3656051159, 0.0190449953, 0.1011226028, -0.0792650953, -0.1980581284, 0.080641523, -0.1534318179, 0.0853770673, 0.4080637991, -0.0744125396, -0.2806636989, 0.018493915, 0.3022502363, 0.1215463728, -0.2107043266, 0.4307021201, -0.4703117013, -0.2629356384, -0.103587389, 0.2154362202, 0.136314854, 0.1198759228, 0.0926352143, -0.131854102, -0.1832278967, 0.0951462686, 0.2641550004, -0.1274950951, -0.109907642, -0.1724203527, -0.0183413252, -0.3060435653, -0.0105906241, -0.0599311888, 0.0916231424, 0.0973535776, 0.1349280328, -0.3185406625, 0.1697504073, -0.257768333, -0.1210307851, 0.125912264, 0.1538809389, -0.201411292, -0.1586652845, 0.1208090857, 0.0411625281, 0.0997675657, 0.2575889528, 0.0350963511, -0.2286947817, -0.0834934264, 0.142489776, 0.0466307662, -0.360457927, 0.0659410506, 0.1358207911, -0.0845474005, -0.5128017068, 0.2053453028, 0.1716242433, 0.0137768826, -0.4263347089, 0.1967778206, -0.0045444556, -0.0069769323, 0.1540149152, -0.0409202948, 0.019588735, 0.1093844622, 0.2167300582, 0.1208919957, -0.2039535046, 0.0436548181, 0.2604888082, 0.3350321054, 0.1718846112, 0.0119802132, -0.0260329433, -0.0632944554, 0.1637771726, -0.1699796319, 0.2126777172, -0.224570334, -0.4430893362, 0.2065381408, 0.1477205902, 0.0679500848, -0.2368665636, 0.4112253785, -0.2698408067, 0.1705465317, 0.0537063926, 0.2234906256, 0.2558569908, -0.2167445272, -0.1678140014, 0.458049953, -0.1856304556, 0.0927564949, 0.1185211837, -0.0464377366, 0.0143659096, 0.3236364424, 0.0896297693, 0.1318290234, 0.4207834005, 0.2065015286, 0.2570438683, 0.2392929792, 0.3731353283, -0.1887237728, -0.2324151099, -0.0579183958, 0.4835405946, -0.3375784755, 0.145225063, -0.0031015985, -0.0090717785, 0.0150642246, -0.5577234626, -0.0361897387, 0.3808557987, -0.373800993, -0.2634640336, -0.1039746106, 0.0000506192, -0.044415392, 0.3579732776, -0.1306928992, -0.0440516844, -0.3228884935, -0.1085640863, -0.0701358914, 0.1116299331, -0.253982842, -0.2345301807, 0.2184888572, -0.2175604105, 0.2340626121, -0.4240420163, 0.134942919, -0.0556652807, 0.3740639985, 0.3734022081, 0.2763727903, -0.137914151, 0.0604415461, -0.0782148838, 0.0910299867, 0.0376115963, 0.141161561, -0.0731157362, -0.3212684989, 0.1342653632, 0.0041143373, -0.1798275262, -0.3566518128, 0.032982327, -0.1090815067, 0.1966267228, 0.2209129781, 0.0509852394, -0.1480569243, 0.1166604757, 0.0628018975, 0.0814492851, -0.1601277739, 0.1489976794, 0.0793074965, 0.1826459765, -0.0843045264, 0.0706104189, 0.0378761776, 0.4189380109, 0.0274149179, -0.1120420545, -0.3786531091, -0.3307702541, -0.344181776, -0.0883447081, -0.1933033466, 0.1373799145, -0.0022714064, 0.0905377194, 0.1760573387, 0.1948622316, 0.2074847221, 0.1234852523, -0.2083261311, -0.0998502225, -0.2851069272, 0.481695205, -0.1726652831, 0.0396553427, 0.0064433515, -0.3506654501, 0.4216936827, 0.0160460584, 0.1311936378, -0.1760375202, 0.0523302481, -0.0212394297, 0.0931964219, 0.6377806664, 0.1688712835, 0.0617197677, -0.0346784964, 0.1621490866, 0.1541456133, 0.1810176373, -0.220260188, 0.0676567852, -0.0157293826, -0.0018752739, 0.0582157448, 0.0275881663, -0.0795355216, -0.1120132953, 0.1741835475, -0.0966246799, -0.2279874831, -0.0935887396, 0.0079853833, 0.1224938259, -0.2413402051, 0.33198452, 0.0734153837, 0.2080665231, -0.3973879218, -0.0614513196, 0.4318279624, -0.6654880643, -0.1201496869, -0.2693095803, -0.0117830858, 0.3286214173, 0.1732209325, -0.1057518125, -0.2817880511, 0.5291826725, 0.0278509371, -0.2813948393, 0.3174490035, -0.0696155131, -0.0076538548, -0.0337326489, 0.3865730762, -0.2410537302, -0.1833971739, -0.0738727003, -0.0449590087 ]
https://github.com/huggingface/datasets/issues/1830
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer?
Hi yes, I'm closing the loop here with some timings below. The issue seems to be at least somewhat/mainly with the tokenizer's themselves. Moreover legacy saves of the trainer tokenizer perform faster but differently than the new tokenizer.json saves(note nothing about the training process/adding of special tokens changed between the top two trained tokenizer tests, only the way it was saved). This is only a 3x slowdown vs like a 10x but I think the slowdown is most likely due to this. ``` trained tokenizer - tokenizer.json save (same results for AutoTokenizer legacy_format=False): Tokenizer time(seconds): 0.32767510414123535 Tokenized avg. length: 323.01 trained tokenizer - AutoTokenizer legacy_format=True: Tokenizer time(seconds): 0.09258866310119629 Tokenized avg. length: 301.01 GPT2 Tokenizer from huggingface Tokenizer time(seconds): 0.1010282039642334 Tokenized avg. length: 461.21 ```
This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function.
124
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer? This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function. Hi yes, I'm closing the loop here with some timings below. The issue seems to be at least somewhat/mainly with the tokenizer's themselves. Moreover legacy saves of the trainer tokenizer perform faster but differently than the new tokenizer.json saves(note nothing about the training process/adding of special tokens changed between the top two trained tokenizer tests, only the way it was saved). This is only a 3x slowdown vs like a 10x but I think the slowdown is most likely due to this. ``` trained tokenizer - tokenizer.json save (same results for AutoTokenizer legacy_format=False): Tokenizer time(seconds): 0.32767510414123535 Tokenized avg. length: 323.01 trained tokenizer - AutoTokenizer legacy_format=True: Tokenizer time(seconds): 0.09258866310119629 Tokenized avg. length: 301.01 GPT2 Tokenizer from huggingface Tokenizer time(seconds): 0.1010282039642334 Tokenized avg. length: 461.21 ```
[ -0.4040468335, -0.0130074769, -0.1024705321, 0.1034294143, 0.1453053206, -0.1225538924, 0.2550545931, 0.1890889704, 0.1306779683, -0.0065018982, -0.0542235151, 0.498886168, -0.1724810302, -0.2727595568, -0.1320428252, 0.0650427788, 0.2197589725, 0.0224169306, 0.2416453212, -0.0342869461, -0.1218726635, 0.1023018137, -0.1767256558, 0.241399467, -0.3152630329, -0.0779930055, 0.0812313035, -0.209633708, -0.0027565528, -0.5689612627, -0.2084297836, 0.1581248343, 0.0209430158, 0.5331246257, -0.0001148737, 0.0403425694, -0.0291636698, 0.2731475234, 0.134717688, 0.0443616621, 0.3529546261, -0.1942856014, -0.1685834527, -0.2257663012, -0.054171212, -0.2808631659, -0.0221225098, -0.2241771221, 0.068308033, 0.0300420709, 0.1608587205, 0.1151948571, -0.3964316845, -0.059515886, -0.0024583638, -0.1042250693, -0.0991547927, 0.0140272044, 0.0713294819, -0.2551874518, -0.2116564512, 0.1949046701, -0.2130430788, -0.1478141844, 0.2687231302, 0.2163693607, 0.0346121565, -0.2425243556, 0.1680864841, 0.2316351682, 0.0670107156, -0.0272127818, -0.0171248317, -0.3350791335, -0.3706911504, -0.0284825936, 0.1461224705, -0.4334977269, -0.1206514835, -0.0896027237, -0.4140654206, 0.2037734091, 0.2642427683, -0.1223937422, -0.2039305717, 0.4352443516, 0.0954282284, 0.1497344673, 0.104151994, -0.0997519046, -0.2807917595, -0.264377594, -0.1595766395, 0.3733043075, -0.3415872455, -0.1739549339, 0.2692953348, -0.3091347218, -0.1407886147, 0.1142799705, -0.1424314082, 0.1946654916, 0.208340928, -0.0471199267, 0.0663067549, 0.246004343, 0.0384475589, 0.1738463193, 0.0296909045, -0.4802923799, -0.3160504103, -0.0903610587, -0.188875705, 0.0202139504, 0.3458716869, -0.2424583882, -0.2370808274, -0.0725834072, -0.0205964297, -0.171307236, -0.3799443841, -0.0983373374, 0.0658612251, 0.1854546368, 0.0587470196, 0.0610383451, -0.3647981286, -0.2021665573, -0.0928316712, -0.0767262876, -0.128627643, -0.17200014, -0.1044919342, 0.2542574406, -0.1882734597, 0.0913058519, 0.2601750493, 0.0789950788, -0.1153761894, 0.2103085816, 0.2196044922, -0.3643229902, 0.1047280729, -0.1130544171, 0.0748008564, 0.4360266626, -0.0055072848, 0.0017840192, -0.2595285773, 0.2082754821, -0.264908582, -0.2264891118, 0.2413856089, 0.119160004, -0.0831423551, -0.1221610382, -0.4942295253, 0.4385454655, 0.2539223135, -0.1163535491, -0.0749132335, -0.1809134781, -0.5298193097, -0.216742143, 0.2679247856, -0.0187719986, -0.0722125173, -0.193779856, 0.3418037295, 0.1921721697, 0.3103510141, 0.6430556774, -0.3864824474, 0.7953376174, -0.1250497997, 0.7483615875, 0.2579938173, -0.2477056086, -0.3778178692, 0.1166384891, -0.1784684211, 0.272221446, -0.2818516195, -0.1200631261, 0.7026369572, -0.2252788097, 0.3419846296, 0.1061444134, 0.246995315, 0.3040958643, -0.2483734787, -0.0491900444, 0.5504585505, -0.0802224204, -0.2242528945, -0.1509811729, -0.1534068137, 0.1111332923, -0.0315544493, -0.1203731969, -0.1554095149, 0.0617319755, 0.0151118496, 0.027055949, -0.0637359321, 0.2192263454, 0.1471128166, 0.217194289, 0.0741166621, 0.0683925599, 0.4290308952, -0.0061165839, 0.1055163443, -0.0645510554, -0.1504325122, -0.141928032, 0.1726528555, 0.1282206625, 0.0678984076, 0.089192532, 0.2311725914, -0.106979996, 0.0154440776, 0.1270230711, 0.4437766075, -0.3041422665, 0.1406871229, -0.1602892727, -0.1061225086, -0.1936035156, 0.1408740133, 0.108732678, -0.1834656894, 0.1624325365, 0.1247906983, 0.3094664812, -0.1730699837, 0.2074125409, 0.1145593822, 0.2654832006, 0.0448613167, 0.1117049456, 0.0164179578, -0.1618008614, -0.1011431515, 0.2487525344, 0.7665553093, 0.2934232354, -0.098131001, -0.1918504536, -0.0074497685, 0.2052227557, 0.1254603714, 0.0902862996, -0.0172137823, 0.3012905121, 0.4247044325, 0.1712670177, 0.350858748, 0.4743337929, 0.5267606974, -0.1261986047, -0.2109235525, 0.1169242859, -0.3413846195, -0.4390027523, -0.0324559063, -0.4132481217, 0.1679464877, 0.104331091, 0.2238327563, -0.168983236, -0.0138750281, 0.0025530122, 0.2727619112, 0.2319281399, -0.0062525943, -0.0347077809, 0.1677313745, 0.2354773432, -0.3278359175, -0.1683432162, -0.0177447014, 0.2466841787, -0.0202032924, -0.0880931094, 0.0660284087, 0.179038614, 0.4836560488, -0.0730335563, 0.043880038, -0.2336487323, -0.086826548, 0.0112860957, 0.0730060264, 0.1429344118, 0.2016051561, 0.0416047424, 0.0553790629, -0.1324758679, -0.0326361805, -0.2036224604, -0.3690444827, 0.0673272833, 0.0478157289, -0.1053127274, 0.3012900054, 0.1895499229, -0.0706468746, -0.0284740571, -0.4572892785, 0.0877390653, -0.1803115159, 0.0098781679, -0.1076648235, -0.1534432024, -0.1983682662, 0.0400033668, 0.1168602929, -0.2781751156, -0.2616517246, -0.322422564, -0.1180725619, -0.1744084209, 0.1405443996, -0.0200541764, 0.0511424616, -0.0312804282, 0.1222997308, 0.1008709073, 0.1293457747, -0.2491519898, -0.167208299, 0.1939766109, -0.0520041846, -0.0121718626, -0.3335226178, -0.249704957, 0.3890588582, -0.0699699819, -0.0141933151, -0.2141370773, 0.0942139328, 0.1669801176, 0.13987194, -0.2460223436, 0.2176395655, -0.3044712543, 0.2614800334, 0.0384435207, -0.2167221308, 0.394102335, 0.2282124758, -0.1222438812, 0.1697704792, -0.2478058934, 0.1691343784, -0.0590034313, -0.2350640595, 0.072313197, 0.4840382636, 0.246796146, 0.6211674213, 0.0489819869, -0.013337628, -0.0001048744, -0.3113279641, -0.1315821111, -0.4311894774, -0.075513728, 0.2071560621, -0.0991363451, 0.0257445872, 0.486576736, -0.0850559026, -0.3330843151, 0.2221699357, -0.1734430194, 0.0490760654, -0.1999392211, 0.12732853, -0.0947738662, 0.0593054146, 0.0013976693, 0.404610306, -0.5339136124, -0.1491030157, 0.2374674231, -0.2787156999, 0.252582252, -0.2517897785, -0.945553422, 0.3512923419, -0.8524877429, 0.094976306, 0.0165477358, 0.2276022881, 0.0475077108, -0.0270617902, 0.1163011268, -0.0324517339, 0.1658131182, -0.0538088493, -0.0845551565, 0.2370497584, -0.5604743958, -0.1172574162, -0.1456519961, -0.078785345, 0.1936262548, 0.5950001478, 0.7412641644, -0.0944306105, -0.2862771153, -0.3504445851, -0.0479067713, 0.0696776286, 0.0392846055, -0.0138416961, -0.1023690104, -0.1808011532, 0.0108177923, 0.1023750305, 0.1822671592, 0.1334199607, -0.1541093886, -0.0875529572, 0.150520131, 0.3036974072, 0.2778019905, 0.2423065901, -0.0387683362, 0.3437795341, 0.317371875, 0.1055741683, -0.1110976115, -0.1575462371, 0.2181516886, -0.3695305288, 0.0900225192, 0.0998721644, 0.0671070665, 0.1695056558, -0.0323252305, 0.2138268203, -0.269631803, 0.3467107415, -0.1918299943, 0.3990117311, 0.5268698931, 0.1344354302, -0.5008944273, -0.3026989102, 0.0710380524, 0.5278069973, -0.2671490014, 0.436906755, -0.4802764952, -0.4048761427, 0.4786456823, 0.2622502148, 0.5893500447, -0.000197337, 0.2131254375, 0.2467373013, 0.2820870876, 0.1871795803, -0.4422438741, -0.1283500046, -0.2351830453, 0.2189821899, 0.0432998985, -0.073547475, 0.0681039691, 0.2392937839, -0.119057931, -0.0707465187, 0.1343745887, 0.8829227686, -0.0130434483, 0.302733779, 0.48761338, -0.39955616, 0.3429581523, 0.139388293, 0.2241425812, 0.0627056733, 0.0940345079, 0.0973555148, -0.0682937354, -0.1550721675, -0.2499287426, -0.202558443, -0.5686982274, 0.297793299, -0.2047141641, 0.0308010876, 0.0798008442, 0.1448377222, 0.0416583121, 0.2406430393, 0.0066325366, 0.2885670364, 0.2132271528, 0.3364415765, 0.2534503639, -0.5096051693, -0.1977285445, -0.009806551, -0.0152435303, 0.1644135714, -0.2644812167, -0.3185322881, -0.6420419216, -0.0458642729, 0.304049015, -0.3656051159, 0.0190449953, 0.1011226028, -0.0792650953, -0.1980581284, 0.080641523, -0.1534318179, 0.0853770673, 0.4080637991, -0.0744125396, -0.2806636989, 0.018493915, 0.3022502363, 0.1215463728, -0.2107043266, 0.4307021201, -0.4703117013, -0.2629356384, -0.103587389, 0.2154362202, 0.136314854, 0.1198759228, 0.0926352143, -0.131854102, -0.1832278967, 0.0951462686, 0.2641550004, -0.1274950951, -0.109907642, -0.1724203527, -0.0183413252, -0.3060435653, -0.0105906241, -0.0599311888, 0.0916231424, 0.0973535776, 0.1349280328, -0.3185406625, 0.1697504073, -0.257768333, -0.1210307851, 0.125912264, 0.1538809389, -0.201411292, -0.1586652845, 0.1208090857, 0.0411625281, 0.0997675657, 0.2575889528, 0.0350963511, -0.2286947817, -0.0834934264, 0.142489776, 0.0466307662, -0.360457927, 0.0659410506, 0.1358207911, -0.0845474005, -0.5128017068, 0.2053453028, 0.1716242433, 0.0137768826, -0.4263347089, 0.1967778206, -0.0045444556, -0.0069769323, 0.1540149152, -0.0409202948, 0.019588735, 0.1093844622, 0.2167300582, 0.1208919957, -0.2039535046, 0.0436548181, 0.2604888082, 0.3350321054, 0.1718846112, 0.0119802132, -0.0260329433, -0.0632944554, 0.1637771726, -0.1699796319, 0.2126777172, -0.224570334, -0.4430893362, 0.2065381408, 0.1477205902, 0.0679500848, -0.2368665636, 0.4112253785, -0.2698408067, 0.1705465317, 0.0537063926, 0.2234906256, 0.2558569908, -0.2167445272, -0.1678140014, 0.458049953, -0.1856304556, 0.0927564949, 0.1185211837, -0.0464377366, 0.0143659096, 0.3236364424, 0.0896297693, 0.1318290234, 0.4207834005, 0.2065015286, 0.2570438683, 0.2392929792, 0.3731353283, -0.1887237728, -0.2324151099, -0.0579183958, 0.4835405946, -0.3375784755, 0.145225063, -0.0031015985, -0.0090717785, 0.0150642246, -0.5577234626, -0.0361897387, 0.3808557987, -0.373800993, -0.2634640336, -0.1039746106, 0.0000506192, -0.044415392, 0.3579732776, -0.1306928992, -0.0440516844, -0.3228884935, -0.1085640863, -0.0701358914, 0.1116299331, -0.253982842, -0.2345301807, 0.2184888572, -0.2175604105, 0.2340626121, -0.4240420163, 0.134942919, -0.0556652807, 0.3740639985, 0.3734022081, 0.2763727903, -0.137914151, 0.0604415461, -0.0782148838, 0.0910299867, 0.0376115963, 0.141161561, -0.0731157362, -0.3212684989, 0.1342653632, 0.0041143373, -0.1798275262, -0.3566518128, 0.032982327, -0.1090815067, 0.1966267228, 0.2209129781, 0.0509852394, -0.1480569243, 0.1166604757, 0.0628018975, 0.0814492851, -0.1601277739, 0.1489976794, 0.0793074965, 0.1826459765, -0.0843045264, 0.0706104189, 0.0378761776, 0.4189380109, 0.0274149179, -0.1120420545, -0.3786531091, -0.3307702541, -0.344181776, -0.0883447081, -0.1933033466, 0.1373799145, -0.0022714064, 0.0905377194, 0.1760573387, 0.1948622316, 0.2074847221, 0.1234852523, -0.2083261311, -0.0998502225, -0.2851069272, 0.481695205, -0.1726652831, 0.0396553427, 0.0064433515, -0.3506654501, 0.4216936827, 0.0160460584, 0.1311936378, -0.1760375202, 0.0523302481, -0.0212394297, 0.0931964219, 0.6377806664, 0.1688712835, 0.0617197677, -0.0346784964, 0.1621490866, 0.1541456133, 0.1810176373, -0.220260188, 0.0676567852, -0.0157293826, -0.0018752739, 0.0582157448, 0.0275881663, -0.0795355216, -0.1120132953, 0.1741835475, -0.0966246799, -0.2279874831, -0.0935887396, 0.0079853833, 0.1224938259, -0.2413402051, 0.33198452, 0.0734153837, 0.2080665231, -0.3973879218, -0.0614513196, 0.4318279624, -0.6654880643, -0.1201496869, -0.2693095803, -0.0117830858, 0.3286214173, 0.1732209325, -0.1057518125, -0.2817880511, 0.5291826725, 0.0278509371, -0.2813948393, 0.3174490035, -0.0696155131, -0.0076538548, -0.0337326489, 0.3865730762, -0.2410537302, -0.1833971739, -0.0738727003, -0.0449590087 ]
https://github.com/huggingface/datasets/issues/1830
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer?
@lhoestq , Hi, which version of datasets has datasets.set_caching_enabled(False)? I get module 'datasets' has no attribute 'set_caching_enabled'. To hopefully get around this, I reran my code on a new set of data, and did so only once. @johncookds , thanks for chiming in, it looks this might be an issue of Tokenizer. **Tokenizer**: The runtime of GPT2TokenizerFast.from_pretrained("gpt2") on 1000 chars is: **143 ms** **SlowTokenizer**: The runtime of a locally saved and loaded Tokenizer using the same vocab on 1000 chars is: **4.43 s** That being said, I compared performance on the map function: Running Tokenizer versus using it in the map function for 1000 chars goes from **141 ms** to **356 ms** Running SlowTokenizer versus using it in the map function for 1000 chars with a single element goes from **4.43 s** to **9.76 s** I'm trying to figure out why the overhead of map would increase the time by double (figured it would be a fixed increase in time)? Though maybe this is expected behavior. @lhoestq, do you by chance know how I can redirect this issue to Tokenizer? Regards, Michael
This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function.
182
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer? This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function. @lhoestq , Hi, which version of datasets has datasets.set_caching_enabled(False)? I get module 'datasets' has no attribute 'set_caching_enabled'. To hopefully get around this, I reran my code on a new set of data, and did so only once. @johncookds , thanks for chiming in, it looks this might be an issue of Tokenizer. **Tokenizer**: The runtime of GPT2TokenizerFast.from_pretrained("gpt2") on 1000 chars is: **143 ms** **SlowTokenizer**: The runtime of a locally saved and loaded Tokenizer using the same vocab on 1000 chars is: **4.43 s** That being said, I compared performance on the map function: Running Tokenizer versus using it in the map function for 1000 chars goes from **141 ms** to **356 ms** Running SlowTokenizer versus using it in the map function for 1000 chars with a single element goes from **4.43 s** to **9.76 s** I'm trying to figure out why the overhead of map would increase the time by double (figured it would be a fixed increase in time)? Though maybe this is expected behavior. @lhoestq, do you by chance know how I can redirect this issue to Tokenizer? Regards, Michael
[ -0.4040468335, -0.0130074769, -0.1024705321, 0.1034294143, 0.1453053206, -0.1225538924, 0.2550545931, 0.1890889704, 0.1306779683, -0.0065018982, -0.0542235151, 0.498886168, -0.1724810302, -0.2727595568, -0.1320428252, 0.0650427788, 0.2197589725, 0.0224169306, 0.2416453212, -0.0342869461, -0.1218726635, 0.1023018137, -0.1767256558, 0.241399467, -0.3152630329, -0.0779930055, 0.0812313035, -0.209633708, -0.0027565528, -0.5689612627, -0.2084297836, 0.1581248343, 0.0209430158, 0.5331246257, -0.0001148737, 0.0403425694, -0.0291636698, 0.2731475234, 0.134717688, 0.0443616621, 0.3529546261, -0.1942856014, -0.1685834527, -0.2257663012, -0.054171212, -0.2808631659, -0.0221225098, -0.2241771221, 0.068308033, 0.0300420709, 0.1608587205, 0.1151948571, -0.3964316845, -0.059515886, -0.0024583638, -0.1042250693, -0.0991547927, 0.0140272044, 0.0713294819, -0.2551874518, -0.2116564512, 0.1949046701, -0.2130430788, -0.1478141844, 0.2687231302, 0.2163693607, 0.0346121565, -0.2425243556, 0.1680864841, 0.2316351682, 0.0670107156, -0.0272127818, -0.0171248317, -0.3350791335, -0.3706911504, -0.0284825936, 0.1461224705, -0.4334977269, -0.1206514835, -0.0896027237, -0.4140654206, 0.2037734091, 0.2642427683, -0.1223937422, -0.2039305717, 0.4352443516, 0.0954282284, 0.1497344673, 0.104151994, -0.0997519046, -0.2807917595, -0.264377594, -0.1595766395, 0.3733043075, -0.3415872455, -0.1739549339, 0.2692953348, -0.3091347218, -0.1407886147, 0.1142799705, -0.1424314082, 0.1946654916, 0.208340928, -0.0471199267, 0.0663067549, 0.246004343, 0.0384475589, 0.1738463193, 0.0296909045, -0.4802923799, -0.3160504103, -0.0903610587, -0.188875705, 0.0202139504, 0.3458716869, -0.2424583882, -0.2370808274, -0.0725834072, -0.0205964297, -0.171307236, -0.3799443841, -0.0983373374, 0.0658612251, 0.1854546368, 0.0587470196, 0.0610383451, -0.3647981286, -0.2021665573, -0.0928316712, -0.0767262876, -0.128627643, -0.17200014, -0.1044919342, 0.2542574406, -0.1882734597, 0.0913058519, 0.2601750493, 0.0789950788, -0.1153761894, 0.2103085816, 0.2196044922, -0.3643229902, 0.1047280729, -0.1130544171, 0.0748008564, 0.4360266626, -0.0055072848, 0.0017840192, -0.2595285773, 0.2082754821, -0.264908582, -0.2264891118, 0.2413856089, 0.119160004, -0.0831423551, -0.1221610382, -0.4942295253, 0.4385454655, 0.2539223135, -0.1163535491, -0.0749132335, -0.1809134781, -0.5298193097, -0.216742143, 0.2679247856, -0.0187719986, -0.0722125173, -0.193779856, 0.3418037295, 0.1921721697, 0.3103510141, 0.6430556774, -0.3864824474, 0.7953376174, -0.1250497997, 0.7483615875, 0.2579938173, -0.2477056086, -0.3778178692, 0.1166384891, -0.1784684211, 0.272221446, -0.2818516195, -0.1200631261, 0.7026369572, -0.2252788097, 0.3419846296, 0.1061444134, 0.246995315, 0.3040958643, -0.2483734787, -0.0491900444, 0.5504585505, -0.0802224204, -0.2242528945, -0.1509811729, -0.1534068137, 0.1111332923, -0.0315544493, -0.1203731969, -0.1554095149, 0.0617319755, 0.0151118496, 0.027055949, -0.0637359321, 0.2192263454, 0.1471128166, 0.217194289, 0.0741166621, 0.0683925599, 0.4290308952, -0.0061165839, 0.1055163443, -0.0645510554, -0.1504325122, -0.141928032, 0.1726528555, 0.1282206625, 0.0678984076, 0.089192532, 0.2311725914, -0.106979996, 0.0154440776, 0.1270230711, 0.4437766075, -0.3041422665, 0.1406871229, -0.1602892727, -0.1061225086, -0.1936035156, 0.1408740133, 0.108732678, -0.1834656894, 0.1624325365, 0.1247906983, 0.3094664812, -0.1730699837, 0.2074125409, 0.1145593822, 0.2654832006, 0.0448613167, 0.1117049456, 0.0164179578, -0.1618008614, -0.1011431515, 0.2487525344, 0.7665553093, 0.2934232354, -0.098131001, -0.1918504536, -0.0074497685, 0.2052227557, 0.1254603714, 0.0902862996, -0.0172137823, 0.3012905121, 0.4247044325, 0.1712670177, 0.350858748, 0.4743337929, 0.5267606974, -0.1261986047, -0.2109235525, 0.1169242859, -0.3413846195, -0.4390027523, -0.0324559063, -0.4132481217, 0.1679464877, 0.104331091, 0.2238327563, -0.168983236, -0.0138750281, 0.0025530122, 0.2727619112, 0.2319281399, -0.0062525943, -0.0347077809, 0.1677313745, 0.2354773432, -0.3278359175, -0.1683432162, -0.0177447014, 0.2466841787, -0.0202032924, -0.0880931094, 0.0660284087, 0.179038614, 0.4836560488, -0.0730335563, 0.043880038, -0.2336487323, -0.086826548, 0.0112860957, 0.0730060264, 0.1429344118, 0.2016051561, 0.0416047424, 0.0553790629, -0.1324758679, -0.0326361805, -0.2036224604, -0.3690444827, 0.0673272833, 0.0478157289, -0.1053127274, 0.3012900054, 0.1895499229, -0.0706468746, -0.0284740571, -0.4572892785, 0.0877390653, -0.1803115159, 0.0098781679, -0.1076648235, -0.1534432024, -0.1983682662, 0.0400033668, 0.1168602929, -0.2781751156, -0.2616517246, -0.322422564, -0.1180725619, -0.1744084209, 0.1405443996, -0.0200541764, 0.0511424616, -0.0312804282, 0.1222997308, 0.1008709073, 0.1293457747, -0.2491519898, -0.167208299, 0.1939766109, -0.0520041846, -0.0121718626, -0.3335226178, -0.249704957, 0.3890588582, -0.0699699819, -0.0141933151, -0.2141370773, 0.0942139328, 0.1669801176, 0.13987194, -0.2460223436, 0.2176395655, -0.3044712543, 0.2614800334, 0.0384435207, -0.2167221308, 0.394102335, 0.2282124758, -0.1222438812, 0.1697704792, -0.2478058934, 0.1691343784, -0.0590034313, -0.2350640595, 0.072313197, 0.4840382636, 0.246796146, 0.6211674213, 0.0489819869, -0.013337628, -0.0001048744, -0.3113279641, -0.1315821111, -0.4311894774, -0.075513728, 0.2071560621, -0.0991363451, 0.0257445872, 0.486576736, -0.0850559026, -0.3330843151, 0.2221699357, -0.1734430194, 0.0490760654, -0.1999392211, 0.12732853, -0.0947738662, 0.0593054146, 0.0013976693, 0.404610306, -0.5339136124, -0.1491030157, 0.2374674231, -0.2787156999, 0.252582252, -0.2517897785, -0.945553422, 0.3512923419, -0.8524877429, 0.094976306, 0.0165477358, 0.2276022881, 0.0475077108, -0.0270617902, 0.1163011268, -0.0324517339, 0.1658131182, -0.0538088493, -0.0845551565, 0.2370497584, -0.5604743958, -0.1172574162, -0.1456519961, -0.078785345, 0.1936262548, 0.5950001478, 0.7412641644, -0.0944306105, -0.2862771153, -0.3504445851, -0.0479067713, 0.0696776286, 0.0392846055, -0.0138416961, -0.1023690104, -0.1808011532, 0.0108177923, 0.1023750305, 0.1822671592, 0.1334199607, -0.1541093886, -0.0875529572, 0.150520131, 0.3036974072, 0.2778019905, 0.2423065901, -0.0387683362, 0.3437795341, 0.317371875, 0.1055741683, -0.1110976115, -0.1575462371, 0.2181516886, -0.3695305288, 0.0900225192, 0.0998721644, 0.0671070665, 0.1695056558, -0.0323252305, 0.2138268203, -0.269631803, 0.3467107415, -0.1918299943, 0.3990117311, 0.5268698931, 0.1344354302, -0.5008944273, -0.3026989102, 0.0710380524, 0.5278069973, -0.2671490014, 0.436906755, -0.4802764952, -0.4048761427, 0.4786456823, 0.2622502148, 0.5893500447, -0.000197337, 0.2131254375, 0.2467373013, 0.2820870876, 0.1871795803, -0.4422438741, -0.1283500046, -0.2351830453, 0.2189821899, 0.0432998985, -0.073547475, 0.0681039691, 0.2392937839, -0.119057931, -0.0707465187, 0.1343745887, 0.8829227686, -0.0130434483, 0.302733779, 0.48761338, -0.39955616, 0.3429581523, 0.139388293, 0.2241425812, 0.0627056733, 0.0940345079, 0.0973555148, -0.0682937354, -0.1550721675, -0.2499287426, -0.202558443, -0.5686982274, 0.297793299, -0.2047141641, 0.0308010876, 0.0798008442, 0.1448377222, 0.0416583121, 0.2406430393, 0.0066325366, 0.2885670364, 0.2132271528, 0.3364415765, 0.2534503639, -0.5096051693, -0.1977285445, -0.009806551, -0.0152435303, 0.1644135714, -0.2644812167, -0.3185322881, -0.6420419216, -0.0458642729, 0.304049015, -0.3656051159, 0.0190449953, 0.1011226028, -0.0792650953, -0.1980581284, 0.080641523, -0.1534318179, 0.0853770673, 0.4080637991, -0.0744125396, -0.2806636989, 0.018493915, 0.3022502363, 0.1215463728, -0.2107043266, 0.4307021201, -0.4703117013, -0.2629356384, -0.103587389, 0.2154362202, 0.136314854, 0.1198759228, 0.0926352143, -0.131854102, -0.1832278967, 0.0951462686, 0.2641550004, -0.1274950951, -0.109907642, -0.1724203527, -0.0183413252, -0.3060435653, -0.0105906241, -0.0599311888, 0.0916231424, 0.0973535776, 0.1349280328, -0.3185406625, 0.1697504073, -0.257768333, -0.1210307851, 0.125912264, 0.1538809389, -0.201411292, -0.1586652845, 0.1208090857, 0.0411625281, 0.0997675657, 0.2575889528, 0.0350963511, -0.2286947817, -0.0834934264, 0.142489776, 0.0466307662, -0.360457927, 0.0659410506, 0.1358207911, -0.0845474005, -0.5128017068, 0.2053453028, 0.1716242433, 0.0137768826, -0.4263347089, 0.1967778206, -0.0045444556, -0.0069769323, 0.1540149152, -0.0409202948, 0.019588735, 0.1093844622, 0.2167300582, 0.1208919957, -0.2039535046, 0.0436548181, 0.2604888082, 0.3350321054, 0.1718846112, 0.0119802132, -0.0260329433, -0.0632944554, 0.1637771726, -0.1699796319, 0.2126777172, -0.224570334, -0.4430893362, 0.2065381408, 0.1477205902, 0.0679500848, -0.2368665636, 0.4112253785, -0.2698408067, 0.1705465317, 0.0537063926, 0.2234906256, 0.2558569908, -0.2167445272, -0.1678140014, 0.458049953, -0.1856304556, 0.0927564949, 0.1185211837, -0.0464377366, 0.0143659096, 0.3236364424, 0.0896297693, 0.1318290234, 0.4207834005, 0.2065015286, 0.2570438683, 0.2392929792, 0.3731353283, -0.1887237728, -0.2324151099, -0.0579183958, 0.4835405946, -0.3375784755, 0.145225063, -0.0031015985, -0.0090717785, 0.0150642246, -0.5577234626, -0.0361897387, 0.3808557987, -0.373800993, -0.2634640336, -0.1039746106, 0.0000506192, -0.044415392, 0.3579732776, -0.1306928992, -0.0440516844, -0.3228884935, -0.1085640863, -0.0701358914, 0.1116299331, -0.253982842, -0.2345301807, 0.2184888572, -0.2175604105, 0.2340626121, -0.4240420163, 0.134942919, -0.0556652807, 0.3740639985, 0.3734022081, 0.2763727903, -0.137914151, 0.0604415461, -0.0782148838, 0.0910299867, 0.0376115963, 0.141161561, -0.0731157362, -0.3212684989, 0.1342653632, 0.0041143373, -0.1798275262, -0.3566518128, 0.032982327, -0.1090815067, 0.1966267228, 0.2209129781, 0.0509852394, -0.1480569243, 0.1166604757, 0.0628018975, 0.0814492851, -0.1601277739, 0.1489976794, 0.0793074965, 0.1826459765, -0.0843045264, 0.0706104189, 0.0378761776, 0.4189380109, 0.0274149179, -0.1120420545, -0.3786531091, -0.3307702541, -0.344181776, -0.0883447081, -0.1933033466, 0.1373799145, -0.0022714064, 0.0905377194, 0.1760573387, 0.1948622316, 0.2074847221, 0.1234852523, -0.2083261311, -0.0998502225, -0.2851069272, 0.481695205, -0.1726652831, 0.0396553427, 0.0064433515, -0.3506654501, 0.4216936827, 0.0160460584, 0.1311936378, -0.1760375202, 0.0523302481, -0.0212394297, 0.0931964219, 0.6377806664, 0.1688712835, 0.0617197677, -0.0346784964, 0.1621490866, 0.1541456133, 0.1810176373, -0.220260188, 0.0676567852, -0.0157293826, -0.0018752739, 0.0582157448, 0.0275881663, -0.0795355216, -0.1120132953, 0.1741835475, -0.0966246799, -0.2279874831, -0.0935887396, 0.0079853833, 0.1224938259, -0.2413402051, 0.33198452, 0.0734153837, 0.2080665231, -0.3973879218, -0.0614513196, 0.4318279624, -0.6654880643, -0.1201496869, -0.2693095803, -0.0117830858, 0.3286214173, 0.1732209325, -0.1057518125, -0.2817880511, 0.5291826725, 0.0278509371, -0.2813948393, 0.3174490035, -0.0696155131, -0.0076538548, -0.0337326489, 0.3865730762, -0.2410537302, -0.1833971739, -0.0738727003, -0.0449590087 ]
https://github.com/huggingface/datasets/issues/1830
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer?
Thanks for the experiments @johncookds and @wumpusman ! > Hi, which version of datasets has datasets.set_caching_enabled(False)? Currently you have to install `datasets` from source to have this feature, but this will be available in the next release in a few days. > I'm trying to figure out why the overhead of map would increase the time by double (figured it would be a fixed increase in time)? Though maybe this is expected behavior. Could you also try with double the number of characters ? This should let us have an idea of the fixed cost (hashing) and the dynamic cost (actual tokenization, grows with the size of the input) > @lhoestq, do you by chance know how I can redirect this issue to Tokenizer? Feel free to post an issue on the `transformers` repo. Also I'm sure there should be related issues so you can also look for someone with the same concerns on the `transformers` repo.
This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function.
157
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer? This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function. Thanks for the experiments @johncookds and @wumpusman ! > Hi, which version of datasets has datasets.set_caching_enabled(False)? Currently you have to install `datasets` from source to have this feature, but this will be available in the next release in a few days. > I'm trying to figure out why the overhead of map would increase the time by double (figured it would be a fixed increase in time)? Though maybe this is expected behavior. Could you also try with double the number of characters ? This should let us have an idea of the fixed cost (hashing) and the dynamic cost (actual tokenization, grows with the size of the input) > @lhoestq, do you by chance know how I can redirect this issue to Tokenizer? Feel free to post an issue on the `transformers` repo. Also I'm sure there should be related issues so you can also look for someone with the same concerns on the `transformers` repo.
[ -0.4040468335, -0.0130074769, -0.1024705321, 0.1034294143, 0.1453053206, -0.1225538924, 0.2550545931, 0.1890889704, 0.1306779683, -0.0065018982, -0.0542235151, 0.498886168, -0.1724810302, -0.2727595568, -0.1320428252, 0.0650427788, 0.2197589725, 0.0224169306, 0.2416453212, -0.0342869461, -0.1218726635, 0.1023018137, -0.1767256558, 0.241399467, -0.3152630329, -0.0779930055, 0.0812313035, -0.209633708, -0.0027565528, -0.5689612627, -0.2084297836, 0.1581248343, 0.0209430158, 0.5331246257, -0.0001148737, 0.0403425694, -0.0291636698, 0.2731475234, 0.134717688, 0.0443616621, 0.3529546261, -0.1942856014, -0.1685834527, -0.2257663012, -0.054171212, -0.2808631659, -0.0221225098, -0.2241771221, 0.068308033, 0.0300420709, 0.1608587205, 0.1151948571, -0.3964316845, -0.059515886, -0.0024583638, -0.1042250693, -0.0991547927, 0.0140272044, 0.0713294819, -0.2551874518, -0.2116564512, 0.1949046701, -0.2130430788, -0.1478141844, 0.2687231302, 0.2163693607, 0.0346121565, -0.2425243556, 0.1680864841, 0.2316351682, 0.0670107156, -0.0272127818, -0.0171248317, -0.3350791335, -0.3706911504, -0.0284825936, 0.1461224705, -0.4334977269, -0.1206514835, -0.0896027237, -0.4140654206, 0.2037734091, 0.2642427683, -0.1223937422, -0.2039305717, 0.4352443516, 0.0954282284, 0.1497344673, 0.104151994, -0.0997519046, -0.2807917595, -0.264377594, -0.1595766395, 0.3733043075, -0.3415872455, -0.1739549339, 0.2692953348, -0.3091347218, -0.1407886147, 0.1142799705, -0.1424314082, 0.1946654916, 0.208340928, -0.0471199267, 0.0663067549, 0.246004343, 0.0384475589, 0.1738463193, 0.0296909045, -0.4802923799, -0.3160504103, -0.0903610587, -0.188875705, 0.0202139504, 0.3458716869, -0.2424583882, -0.2370808274, -0.0725834072, -0.0205964297, -0.171307236, -0.3799443841, -0.0983373374, 0.0658612251, 0.1854546368, 0.0587470196, 0.0610383451, -0.3647981286, -0.2021665573, -0.0928316712, -0.0767262876, -0.128627643, -0.17200014, -0.1044919342, 0.2542574406, -0.1882734597, 0.0913058519, 0.2601750493, 0.0789950788, -0.1153761894, 0.2103085816, 0.2196044922, -0.3643229902, 0.1047280729, -0.1130544171, 0.0748008564, 0.4360266626, -0.0055072848, 0.0017840192, -0.2595285773, 0.2082754821, -0.264908582, -0.2264891118, 0.2413856089, 0.119160004, -0.0831423551, -0.1221610382, -0.4942295253, 0.4385454655, 0.2539223135, -0.1163535491, -0.0749132335, -0.1809134781, -0.5298193097, -0.216742143, 0.2679247856, -0.0187719986, -0.0722125173, -0.193779856, 0.3418037295, 0.1921721697, 0.3103510141, 0.6430556774, -0.3864824474, 0.7953376174, -0.1250497997, 0.7483615875, 0.2579938173, -0.2477056086, -0.3778178692, 0.1166384891, -0.1784684211, 0.272221446, -0.2818516195, -0.1200631261, 0.7026369572, -0.2252788097, 0.3419846296, 0.1061444134, 0.246995315, 0.3040958643, -0.2483734787, -0.0491900444, 0.5504585505, -0.0802224204, -0.2242528945, -0.1509811729, -0.1534068137, 0.1111332923, -0.0315544493, -0.1203731969, -0.1554095149, 0.0617319755, 0.0151118496, 0.027055949, -0.0637359321, 0.2192263454, 0.1471128166, 0.217194289, 0.0741166621, 0.0683925599, 0.4290308952, -0.0061165839, 0.1055163443, -0.0645510554, -0.1504325122, -0.141928032, 0.1726528555, 0.1282206625, 0.0678984076, 0.089192532, 0.2311725914, -0.106979996, 0.0154440776, 0.1270230711, 0.4437766075, -0.3041422665, 0.1406871229, -0.1602892727, -0.1061225086, -0.1936035156, 0.1408740133, 0.108732678, -0.1834656894, 0.1624325365, 0.1247906983, 0.3094664812, -0.1730699837, 0.2074125409, 0.1145593822, 0.2654832006, 0.0448613167, 0.1117049456, 0.0164179578, -0.1618008614, -0.1011431515, 0.2487525344, 0.7665553093, 0.2934232354, -0.098131001, -0.1918504536, -0.0074497685, 0.2052227557, 0.1254603714, 0.0902862996, -0.0172137823, 0.3012905121, 0.4247044325, 0.1712670177, 0.350858748, 0.4743337929, 0.5267606974, -0.1261986047, -0.2109235525, 0.1169242859, -0.3413846195, -0.4390027523, -0.0324559063, -0.4132481217, 0.1679464877, 0.104331091, 0.2238327563, -0.168983236, -0.0138750281, 0.0025530122, 0.2727619112, 0.2319281399, -0.0062525943, -0.0347077809, 0.1677313745, 0.2354773432, -0.3278359175, -0.1683432162, -0.0177447014, 0.2466841787, -0.0202032924, -0.0880931094, 0.0660284087, 0.179038614, 0.4836560488, -0.0730335563, 0.043880038, -0.2336487323, -0.086826548, 0.0112860957, 0.0730060264, 0.1429344118, 0.2016051561, 0.0416047424, 0.0553790629, -0.1324758679, -0.0326361805, -0.2036224604, -0.3690444827, 0.0673272833, 0.0478157289, -0.1053127274, 0.3012900054, 0.1895499229, -0.0706468746, -0.0284740571, -0.4572892785, 0.0877390653, -0.1803115159, 0.0098781679, -0.1076648235, -0.1534432024, -0.1983682662, 0.0400033668, 0.1168602929, -0.2781751156, -0.2616517246, -0.322422564, -0.1180725619, -0.1744084209, 0.1405443996, -0.0200541764, 0.0511424616, -0.0312804282, 0.1222997308, 0.1008709073, 0.1293457747, -0.2491519898, -0.167208299, 0.1939766109, -0.0520041846, -0.0121718626, -0.3335226178, -0.249704957, 0.3890588582, -0.0699699819, -0.0141933151, -0.2141370773, 0.0942139328, 0.1669801176, 0.13987194, -0.2460223436, 0.2176395655, -0.3044712543, 0.2614800334, 0.0384435207, -0.2167221308, 0.394102335, 0.2282124758, -0.1222438812, 0.1697704792, -0.2478058934, 0.1691343784, -0.0590034313, -0.2350640595, 0.072313197, 0.4840382636, 0.246796146, 0.6211674213, 0.0489819869, -0.013337628, -0.0001048744, -0.3113279641, -0.1315821111, -0.4311894774, -0.075513728, 0.2071560621, -0.0991363451, 0.0257445872, 0.486576736, -0.0850559026, -0.3330843151, 0.2221699357, -0.1734430194, 0.0490760654, -0.1999392211, 0.12732853, -0.0947738662, 0.0593054146, 0.0013976693, 0.404610306, -0.5339136124, -0.1491030157, 0.2374674231, -0.2787156999, 0.252582252, -0.2517897785, -0.945553422, 0.3512923419, -0.8524877429, 0.094976306, 0.0165477358, 0.2276022881, 0.0475077108, -0.0270617902, 0.1163011268, -0.0324517339, 0.1658131182, -0.0538088493, -0.0845551565, 0.2370497584, -0.5604743958, -0.1172574162, -0.1456519961, -0.078785345, 0.1936262548, 0.5950001478, 0.7412641644, -0.0944306105, -0.2862771153, -0.3504445851, -0.0479067713, 0.0696776286, 0.0392846055, -0.0138416961, -0.1023690104, -0.1808011532, 0.0108177923, 0.1023750305, 0.1822671592, 0.1334199607, -0.1541093886, -0.0875529572, 0.150520131, 0.3036974072, 0.2778019905, 0.2423065901, -0.0387683362, 0.3437795341, 0.317371875, 0.1055741683, -0.1110976115, -0.1575462371, 0.2181516886, -0.3695305288, 0.0900225192, 0.0998721644, 0.0671070665, 0.1695056558, -0.0323252305, 0.2138268203, -0.269631803, 0.3467107415, -0.1918299943, 0.3990117311, 0.5268698931, 0.1344354302, -0.5008944273, -0.3026989102, 0.0710380524, 0.5278069973, -0.2671490014, 0.436906755, -0.4802764952, -0.4048761427, 0.4786456823, 0.2622502148, 0.5893500447, -0.000197337, 0.2131254375, 0.2467373013, 0.2820870876, 0.1871795803, -0.4422438741, -0.1283500046, -0.2351830453, 0.2189821899, 0.0432998985, -0.073547475, 0.0681039691, 0.2392937839, -0.119057931, -0.0707465187, 0.1343745887, 0.8829227686, -0.0130434483, 0.302733779, 0.48761338, -0.39955616, 0.3429581523, 0.139388293, 0.2241425812, 0.0627056733, 0.0940345079, 0.0973555148, -0.0682937354, -0.1550721675, -0.2499287426, -0.202558443, -0.5686982274, 0.297793299, -0.2047141641, 0.0308010876, 0.0798008442, 0.1448377222, 0.0416583121, 0.2406430393, 0.0066325366, 0.2885670364, 0.2132271528, 0.3364415765, 0.2534503639, -0.5096051693, -0.1977285445, -0.009806551, -0.0152435303, 0.1644135714, -0.2644812167, -0.3185322881, -0.6420419216, -0.0458642729, 0.304049015, -0.3656051159, 0.0190449953, 0.1011226028, -0.0792650953, -0.1980581284, 0.080641523, -0.1534318179, 0.0853770673, 0.4080637991, -0.0744125396, -0.2806636989, 0.018493915, 0.3022502363, 0.1215463728, -0.2107043266, 0.4307021201, -0.4703117013, -0.2629356384, -0.103587389, 0.2154362202, 0.136314854, 0.1198759228, 0.0926352143, -0.131854102, -0.1832278967, 0.0951462686, 0.2641550004, -0.1274950951, -0.109907642, -0.1724203527, -0.0183413252, -0.3060435653, -0.0105906241, -0.0599311888, 0.0916231424, 0.0973535776, 0.1349280328, -0.3185406625, 0.1697504073, -0.257768333, -0.1210307851, 0.125912264, 0.1538809389, -0.201411292, -0.1586652845, 0.1208090857, 0.0411625281, 0.0997675657, 0.2575889528, 0.0350963511, -0.2286947817, -0.0834934264, 0.142489776, 0.0466307662, -0.360457927, 0.0659410506, 0.1358207911, -0.0845474005, -0.5128017068, 0.2053453028, 0.1716242433, 0.0137768826, -0.4263347089, 0.1967778206, -0.0045444556, -0.0069769323, 0.1540149152, -0.0409202948, 0.019588735, 0.1093844622, 0.2167300582, 0.1208919957, -0.2039535046, 0.0436548181, 0.2604888082, 0.3350321054, 0.1718846112, 0.0119802132, -0.0260329433, -0.0632944554, 0.1637771726, -0.1699796319, 0.2126777172, -0.224570334, -0.4430893362, 0.2065381408, 0.1477205902, 0.0679500848, -0.2368665636, 0.4112253785, -0.2698408067, 0.1705465317, 0.0537063926, 0.2234906256, 0.2558569908, -0.2167445272, -0.1678140014, 0.458049953, -0.1856304556, 0.0927564949, 0.1185211837, -0.0464377366, 0.0143659096, 0.3236364424, 0.0896297693, 0.1318290234, 0.4207834005, 0.2065015286, 0.2570438683, 0.2392929792, 0.3731353283, -0.1887237728, -0.2324151099, -0.0579183958, 0.4835405946, -0.3375784755, 0.145225063, -0.0031015985, -0.0090717785, 0.0150642246, -0.5577234626, -0.0361897387, 0.3808557987, -0.373800993, -0.2634640336, -0.1039746106, 0.0000506192, -0.044415392, 0.3579732776, -0.1306928992, -0.0440516844, -0.3228884935, -0.1085640863, -0.0701358914, 0.1116299331, -0.253982842, -0.2345301807, 0.2184888572, -0.2175604105, 0.2340626121, -0.4240420163, 0.134942919, -0.0556652807, 0.3740639985, 0.3734022081, 0.2763727903, -0.137914151, 0.0604415461, -0.0782148838, 0.0910299867, 0.0376115963, 0.141161561, -0.0731157362, -0.3212684989, 0.1342653632, 0.0041143373, -0.1798275262, -0.3566518128, 0.032982327, -0.1090815067, 0.1966267228, 0.2209129781, 0.0509852394, -0.1480569243, 0.1166604757, 0.0628018975, 0.0814492851, -0.1601277739, 0.1489976794, 0.0793074965, 0.1826459765, -0.0843045264, 0.0706104189, 0.0378761776, 0.4189380109, 0.0274149179, -0.1120420545, -0.3786531091, -0.3307702541, -0.344181776, -0.0883447081, -0.1933033466, 0.1373799145, -0.0022714064, 0.0905377194, 0.1760573387, 0.1948622316, 0.2074847221, 0.1234852523, -0.2083261311, -0.0998502225, -0.2851069272, 0.481695205, -0.1726652831, 0.0396553427, 0.0064433515, -0.3506654501, 0.4216936827, 0.0160460584, 0.1311936378, -0.1760375202, 0.0523302481, -0.0212394297, 0.0931964219, 0.6377806664, 0.1688712835, 0.0617197677, -0.0346784964, 0.1621490866, 0.1541456133, 0.1810176373, -0.220260188, 0.0676567852, -0.0157293826, -0.0018752739, 0.0582157448, 0.0275881663, -0.0795355216, -0.1120132953, 0.1741835475, -0.0966246799, -0.2279874831, -0.0935887396, 0.0079853833, 0.1224938259, -0.2413402051, 0.33198452, 0.0734153837, 0.2080665231, -0.3973879218, -0.0614513196, 0.4318279624, -0.6654880643, -0.1201496869, -0.2693095803, -0.0117830858, 0.3286214173, 0.1732209325, -0.1057518125, -0.2817880511, 0.5291826725, 0.0278509371, -0.2813948393, 0.3174490035, -0.0696155131, -0.0076538548, -0.0337326489, 0.3865730762, -0.2410537302, -0.1833971739, -0.0738727003, -0.0449590087 ]
https://github.com/huggingface/datasets/issues/1830
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer?
@lhoestq, I just checked that previous run time was actually 3000 chars. I increased it to 6k chars, again, roughly double. SlowTokenizer **7.4 s** to **15.7 s** Tokenizer: **276 ms** to **616 ms** I'll post this issue on Tokenizer, seems it hasn't quite been raised (albeit I noticed a similar issue that might relate). Regards, Michael
This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function.
56
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer? This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function. @lhoestq, I just checked that previous run time was actually 3000 chars. I increased it to 6k chars, again, roughly double. SlowTokenizer **7.4 s** to **15.7 s** Tokenizer: **276 ms** to **616 ms** I'll post this issue on Tokenizer, seems it hasn't quite been raised (albeit I noticed a similar issue that might relate). Regards, Michael
[ -0.4040468335, -0.0130074769, -0.1024705321, 0.1034294143, 0.1453053206, -0.1225538924, 0.2550545931, 0.1890889704, 0.1306779683, -0.0065018982, -0.0542235151, 0.498886168, -0.1724810302, -0.2727595568, -0.1320428252, 0.0650427788, 0.2197589725, 0.0224169306, 0.2416453212, -0.0342869461, -0.1218726635, 0.1023018137, -0.1767256558, 0.241399467, -0.3152630329, -0.0779930055, 0.0812313035, -0.209633708, -0.0027565528, -0.5689612627, -0.2084297836, 0.1581248343, 0.0209430158, 0.5331246257, -0.0001148737, 0.0403425694, -0.0291636698, 0.2731475234, 0.134717688, 0.0443616621, 0.3529546261, -0.1942856014, -0.1685834527, -0.2257663012, -0.054171212, -0.2808631659, -0.0221225098, -0.2241771221, 0.068308033, 0.0300420709, 0.1608587205, 0.1151948571, -0.3964316845, -0.059515886, -0.0024583638, -0.1042250693, -0.0991547927, 0.0140272044, 0.0713294819, -0.2551874518, -0.2116564512, 0.1949046701, -0.2130430788, -0.1478141844, 0.2687231302, 0.2163693607, 0.0346121565, -0.2425243556, 0.1680864841, 0.2316351682, 0.0670107156, -0.0272127818, -0.0171248317, -0.3350791335, -0.3706911504, -0.0284825936, 0.1461224705, -0.4334977269, -0.1206514835, -0.0896027237, -0.4140654206, 0.2037734091, 0.2642427683, -0.1223937422, -0.2039305717, 0.4352443516, 0.0954282284, 0.1497344673, 0.104151994, -0.0997519046, -0.2807917595, -0.264377594, -0.1595766395, 0.3733043075, -0.3415872455, -0.1739549339, 0.2692953348, -0.3091347218, -0.1407886147, 0.1142799705, -0.1424314082, 0.1946654916, 0.208340928, -0.0471199267, 0.0663067549, 0.246004343, 0.0384475589, 0.1738463193, 0.0296909045, -0.4802923799, -0.3160504103, -0.0903610587, -0.188875705, 0.0202139504, 0.3458716869, -0.2424583882, -0.2370808274, -0.0725834072, -0.0205964297, -0.171307236, -0.3799443841, -0.0983373374, 0.0658612251, 0.1854546368, 0.0587470196, 0.0610383451, -0.3647981286, -0.2021665573, -0.0928316712, -0.0767262876, -0.128627643, -0.17200014, -0.1044919342, 0.2542574406, -0.1882734597, 0.0913058519, 0.2601750493, 0.0789950788, -0.1153761894, 0.2103085816, 0.2196044922, -0.3643229902, 0.1047280729, -0.1130544171, 0.0748008564, 0.4360266626, -0.0055072848, 0.0017840192, -0.2595285773, 0.2082754821, -0.264908582, -0.2264891118, 0.2413856089, 0.119160004, -0.0831423551, -0.1221610382, -0.4942295253, 0.4385454655, 0.2539223135, -0.1163535491, -0.0749132335, -0.1809134781, -0.5298193097, -0.216742143, 0.2679247856, -0.0187719986, -0.0722125173, -0.193779856, 0.3418037295, 0.1921721697, 0.3103510141, 0.6430556774, -0.3864824474, 0.7953376174, -0.1250497997, 0.7483615875, 0.2579938173, -0.2477056086, -0.3778178692, 0.1166384891, -0.1784684211, 0.272221446, -0.2818516195, -0.1200631261, 0.7026369572, -0.2252788097, 0.3419846296, 0.1061444134, 0.246995315, 0.3040958643, -0.2483734787, -0.0491900444, 0.5504585505, -0.0802224204, -0.2242528945, -0.1509811729, -0.1534068137, 0.1111332923, -0.0315544493, -0.1203731969, -0.1554095149, 0.0617319755, 0.0151118496, 0.027055949, -0.0637359321, 0.2192263454, 0.1471128166, 0.217194289, 0.0741166621, 0.0683925599, 0.4290308952, -0.0061165839, 0.1055163443, -0.0645510554, -0.1504325122, -0.141928032, 0.1726528555, 0.1282206625, 0.0678984076, 0.089192532, 0.2311725914, -0.106979996, 0.0154440776, 0.1270230711, 0.4437766075, -0.3041422665, 0.1406871229, -0.1602892727, -0.1061225086, -0.1936035156, 0.1408740133, 0.108732678, -0.1834656894, 0.1624325365, 0.1247906983, 0.3094664812, -0.1730699837, 0.2074125409, 0.1145593822, 0.2654832006, 0.0448613167, 0.1117049456, 0.0164179578, -0.1618008614, -0.1011431515, 0.2487525344, 0.7665553093, 0.2934232354, -0.098131001, -0.1918504536, -0.0074497685, 0.2052227557, 0.1254603714, 0.0902862996, -0.0172137823, 0.3012905121, 0.4247044325, 0.1712670177, 0.350858748, 0.4743337929, 0.5267606974, -0.1261986047, -0.2109235525, 0.1169242859, -0.3413846195, -0.4390027523, -0.0324559063, -0.4132481217, 0.1679464877, 0.104331091, 0.2238327563, -0.168983236, -0.0138750281, 0.0025530122, 0.2727619112, 0.2319281399, -0.0062525943, -0.0347077809, 0.1677313745, 0.2354773432, -0.3278359175, -0.1683432162, -0.0177447014, 0.2466841787, -0.0202032924, -0.0880931094, 0.0660284087, 0.179038614, 0.4836560488, -0.0730335563, 0.043880038, -0.2336487323, -0.086826548, 0.0112860957, 0.0730060264, 0.1429344118, 0.2016051561, 0.0416047424, 0.0553790629, -0.1324758679, -0.0326361805, -0.2036224604, -0.3690444827, 0.0673272833, 0.0478157289, -0.1053127274, 0.3012900054, 0.1895499229, -0.0706468746, -0.0284740571, -0.4572892785, 0.0877390653, -0.1803115159, 0.0098781679, -0.1076648235, -0.1534432024, -0.1983682662, 0.0400033668, 0.1168602929, -0.2781751156, -0.2616517246, -0.322422564, -0.1180725619, -0.1744084209, 0.1405443996, -0.0200541764, 0.0511424616, -0.0312804282, 0.1222997308, 0.1008709073, 0.1293457747, -0.2491519898, -0.167208299, 0.1939766109, -0.0520041846, -0.0121718626, -0.3335226178, -0.249704957, 0.3890588582, -0.0699699819, -0.0141933151, -0.2141370773, 0.0942139328, 0.1669801176, 0.13987194, -0.2460223436, 0.2176395655, -0.3044712543, 0.2614800334, 0.0384435207, -0.2167221308, 0.394102335, 0.2282124758, -0.1222438812, 0.1697704792, -0.2478058934, 0.1691343784, -0.0590034313, -0.2350640595, 0.072313197, 0.4840382636, 0.246796146, 0.6211674213, 0.0489819869, -0.013337628, -0.0001048744, -0.3113279641, -0.1315821111, -0.4311894774, -0.075513728, 0.2071560621, -0.0991363451, 0.0257445872, 0.486576736, -0.0850559026, -0.3330843151, 0.2221699357, -0.1734430194, 0.0490760654, -0.1999392211, 0.12732853, -0.0947738662, 0.0593054146, 0.0013976693, 0.404610306, -0.5339136124, -0.1491030157, 0.2374674231, -0.2787156999, 0.252582252, -0.2517897785, -0.945553422, 0.3512923419, -0.8524877429, 0.094976306, 0.0165477358, 0.2276022881, 0.0475077108, -0.0270617902, 0.1163011268, -0.0324517339, 0.1658131182, -0.0538088493, -0.0845551565, 0.2370497584, -0.5604743958, -0.1172574162, -0.1456519961, -0.078785345, 0.1936262548, 0.5950001478, 0.7412641644, -0.0944306105, -0.2862771153, -0.3504445851, -0.0479067713, 0.0696776286, 0.0392846055, -0.0138416961, -0.1023690104, -0.1808011532, 0.0108177923, 0.1023750305, 0.1822671592, 0.1334199607, -0.1541093886, -0.0875529572, 0.150520131, 0.3036974072, 0.2778019905, 0.2423065901, -0.0387683362, 0.3437795341, 0.317371875, 0.1055741683, -0.1110976115, -0.1575462371, 0.2181516886, -0.3695305288, 0.0900225192, 0.0998721644, 0.0671070665, 0.1695056558, -0.0323252305, 0.2138268203, -0.269631803, 0.3467107415, -0.1918299943, 0.3990117311, 0.5268698931, 0.1344354302, -0.5008944273, -0.3026989102, 0.0710380524, 0.5278069973, -0.2671490014, 0.436906755, -0.4802764952, -0.4048761427, 0.4786456823, 0.2622502148, 0.5893500447, -0.000197337, 0.2131254375, 0.2467373013, 0.2820870876, 0.1871795803, -0.4422438741, -0.1283500046, -0.2351830453, 0.2189821899, 0.0432998985, -0.073547475, 0.0681039691, 0.2392937839, -0.119057931, -0.0707465187, 0.1343745887, 0.8829227686, -0.0130434483, 0.302733779, 0.48761338, -0.39955616, 0.3429581523, 0.139388293, 0.2241425812, 0.0627056733, 0.0940345079, 0.0973555148, -0.0682937354, -0.1550721675, -0.2499287426, -0.202558443, -0.5686982274, 0.297793299, -0.2047141641, 0.0308010876, 0.0798008442, 0.1448377222, 0.0416583121, 0.2406430393, 0.0066325366, 0.2885670364, 0.2132271528, 0.3364415765, 0.2534503639, -0.5096051693, -0.1977285445, -0.009806551, -0.0152435303, 0.1644135714, -0.2644812167, -0.3185322881, -0.6420419216, -0.0458642729, 0.304049015, -0.3656051159, 0.0190449953, 0.1011226028, -0.0792650953, -0.1980581284, 0.080641523, -0.1534318179, 0.0853770673, 0.4080637991, -0.0744125396, -0.2806636989, 0.018493915, 0.3022502363, 0.1215463728, -0.2107043266, 0.4307021201, -0.4703117013, -0.2629356384, -0.103587389, 0.2154362202, 0.136314854, 0.1198759228, 0.0926352143, -0.131854102, -0.1832278967, 0.0951462686, 0.2641550004, -0.1274950951, -0.109907642, -0.1724203527, -0.0183413252, -0.3060435653, -0.0105906241, -0.0599311888, 0.0916231424, 0.0973535776, 0.1349280328, -0.3185406625, 0.1697504073, -0.257768333, -0.1210307851, 0.125912264, 0.1538809389, -0.201411292, -0.1586652845, 0.1208090857, 0.0411625281, 0.0997675657, 0.2575889528, 0.0350963511, -0.2286947817, -0.0834934264, 0.142489776, 0.0466307662, -0.360457927, 0.0659410506, 0.1358207911, -0.0845474005, -0.5128017068, 0.2053453028, 0.1716242433, 0.0137768826, -0.4263347089, 0.1967778206, -0.0045444556, -0.0069769323, 0.1540149152, -0.0409202948, 0.019588735, 0.1093844622, 0.2167300582, 0.1208919957, -0.2039535046, 0.0436548181, 0.2604888082, 0.3350321054, 0.1718846112, 0.0119802132, -0.0260329433, -0.0632944554, 0.1637771726, -0.1699796319, 0.2126777172, -0.224570334, -0.4430893362, 0.2065381408, 0.1477205902, 0.0679500848, -0.2368665636, 0.4112253785, -0.2698408067, 0.1705465317, 0.0537063926, 0.2234906256, 0.2558569908, -0.2167445272, -0.1678140014, 0.458049953, -0.1856304556, 0.0927564949, 0.1185211837, -0.0464377366, 0.0143659096, 0.3236364424, 0.0896297693, 0.1318290234, 0.4207834005, 0.2065015286, 0.2570438683, 0.2392929792, 0.3731353283, -0.1887237728, -0.2324151099, -0.0579183958, 0.4835405946, -0.3375784755, 0.145225063, -0.0031015985, -0.0090717785, 0.0150642246, -0.5577234626, -0.0361897387, 0.3808557987, -0.373800993, -0.2634640336, -0.1039746106, 0.0000506192, -0.044415392, 0.3579732776, -0.1306928992, -0.0440516844, -0.3228884935, -0.1085640863, -0.0701358914, 0.1116299331, -0.253982842, -0.2345301807, 0.2184888572, -0.2175604105, 0.2340626121, -0.4240420163, 0.134942919, -0.0556652807, 0.3740639985, 0.3734022081, 0.2763727903, -0.137914151, 0.0604415461, -0.0782148838, 0.0910299867, 0.0376115963, 0.141161561, -0.0731157362, -0.3212684989, 0.1342653632, 0.0041143373, -0.1798275262, -0.3566518128, 0.032982327, -0.1090815067, 0.1966267228, 0.2209129781, 0.0509852394, -0.1480569243, 0.1166604757, 0.0628018975, 0.0814492851, -0.1601277739, 0.1489976794, 0.0793074965, 0.1826459765, -0.0843045264, 0.0706104189, 0.0378761776, 0.4189380109, 0.0274149179, -0.1120420545, -0.3786531091, -0.3307702541, -0.344181776, -0.0883447081, -0.1933033466, 0.1373799145, -0.0022714064, 0.0905377194, 0.1760573387, 0.1948622316, 0.2074847221, 0.1234852523, -0.2083261311, -0.0998502225, -0.2851069272, 0.481695205, -0.1726652831, 0.0396553427, 0.0064433515, -0.3506654501, 0.4216936827, 0.0160460584, 0.1311936378, -0.1760375202, 0.0523302481, -0.0212394297, 0.0931964219, 0.6377806664, 0.1688712835, 0.0617197677, -0.0346784964, 0.1621490866, 0.1541456133, 0.1810176373, -0.220260188, 0.0676567852, -0.0157293826, -0.0018752739, 0.0582157448, 0.0275881663, -0.0795355216, -0.1120132953, 0.1741835475, -0.0966246799, -0.2279874831, -0.0935887396, 0.0079853833, 0.1224938259, -0.2413402051, 0.33198452, 0.0734153837, 0.2080665231, -0.3973879218, -0.0614513196, 0.4318279624, -0.6654880643, -0.1201496869, -0.2693095803, -0.0117830858, 0.3286214173, 0.1732209325, -0.1057518125, -0.2817880511, 0.5291826725, 0.0278509371, -0.2813948393, 0.3174490035, -0.0696155131, -0.0076538548, -0.0337326489, 0.3865730762, -0.2410537302, -0.1833971739, -0.0738727003, -0.0449590087 ]
https://github.com/huggingface/datasets/issues/1830
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer?
Hi, I'm following up here as I found my exact issue. It was with saving and re-loading the tokenizer. When I trained then processed the data without saving and reloading it, it was 10x-100x faster than when I saved and re-loaded it. Both resulted in the exact same tokenized datasets as well. There is additionally a bug where the older legacy tokenizer save does not preserve a learned tokenizing behavior if trained from scratch. Understand its not exactly Datasets related but hope it can help someone if they have the same issue. Thanks!
This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function.
93
using map on loaded Tokenizer 10x - 100x slower than default Tokenizer? This could total relate to me misunderstanding particular call functions, but I added words to a GPT2Tokenizer, and saved it to disk (note I'm only showing snippets but I can share more) and the map function ran much slower: ```` def save_tokenizer(original_tokenizer,text,path="simpledata/tokenizer"): words_unique = set(text.split(" ")) for i in words_unique: original_tokenizer.add_tokens(i) original_tokenizer.save_pretrained(path) tokenizer2 = GPT2Tokenizer.from_pretrained(os.path.join(experiment_path,experiment_name,"tokenizer_squad")) train_set_baby=Dataset.from_dict({"text":[train_set["text"][0][0:50]]}) ```` I then applied the dataset map function on a fairly small set of text: ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The run time for train_set_baby.map was 6 seconds, and the batch itself was 2.6 seconds **100% 1/1 [00:02<00:00, 2.60s/ba] CPU times: user 5.96 s, sys: 36 ms, total: 5.99 s Wall time: 5.99 s** In comparison using (even after adding additional tokens): ` tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")` ``` %%time train_set_baby = train_set_baby.map(lambda d:tokenizer2(d["text"]),batched=True) ``` The time is **100% 1/1 [00:00<00:00, 34.09ba/s] CPU times: user 68.1 ms, sys: 16 µs, total: 68.1 ms Wall time: 62.9 ms** It seems this might relate to the tokenizer save or load function, however, the issue appears to come up when I apply the loaded tokenizer to the map function. I should also add that playing around with the amount of words I add to the tokenizer before I save it to disk and load it into memory appears to impact the time it takes to run the map function. Hi, I'm following up here as I found my exact issue. It was with saving and re-loading the tokenizer. When I trained then processed the data without saving and reloading it, it was 10x-100x faster than when I saved and re-loaded it. Both resulted in the exact same tokenized datasets as well. There is additionally a bug where the older legacy tokenizer save does not preserve a learned tokenizing behavior if trained from scratch. Understand its not exactly Datasets related but hope it can help someone if they have the same issue. Thanks!
[ -0.4040468335, -0.0130074769, -0.1024705321, 0.1034294143, 0.1453053206, -0.1225538924, 0.2550545931, 0.1890889704, 0.1306779683, -0.0065018982, -0.0542235151, 0.498886168, -0.1724810302, -0.2727595568, -0.1320428252, 0.0650427788, 0.2197589725, 0.0224169306, 0.2416453212, -0.0342869461, -0.1218726635, 0.1023018137, -0.1767256558, 0.241399467, -0.3152630329, -0.0779930055, 0.0812313035, -0.209633708, -0.0027565528, -0.5689612627, -0.2084297836, 0.1581248343, 0.0209430158, 0.5331246257, -0.0001148737, 0.0403425694, -0.0291636698, 0.2731475234, 0.134717688, 0.0443616621, 0.3529546261, -0.1942856014, -0.1685834527, -0.2257663012, -0.054171212, -0.2808631659, -0.0221225098, -0.2241771221, 0.068308033, 0.0300420709, 0.1608587205, 0.1151948571, -0.3964316845, -0.059515886, -0.0024583638, -0.1042250693, -0.0991547927, 0.0140272044, 0.0713294819, -0.2551874518, -0.2116564512, 0.1949046701, -0.2130430788, -0.1478141844, 0.2687231302, 0.2163693607, 0.0346121565, -0.2425243556, 0.1680864841, 0.2316351682, 0.0670107156, -0.0272127818, -0.0171248317, -0.3350791335, -0.3706911504, -0.0284825936, 0.1461224705, -0.4334977269, -0.1206514835, -0.0896027237, -0.4140654206, 0.2037734091, 0.2642427683, -0.1223937422, -0.2039305717, 0.4352443516, 0.0954282284, 0.1497344673, 0.104151994, -0.0997519046, -0.2807917595, -0.264377594, -0.1595766395, 0.3733043075, -0.3415872455, -0.1739549339, 0.2692953348, -0.3091347218, -0.1407886147, 0.1142799705, -0.1424314082, 0.1946654916, 0.208340928, -0.0471199267, 0.0663067549, 0.246004343, 0.0384475589, 0.1738463193, 0.0296909045, -0.4802923799, -0.3160504103, -0.0903610587, -0.188875705, 0.0202139504, 0.3458716869, -0.2424583882, -0.2370808274, -0.0725834072, -0.0205964297, -0.171307236, -0.3799443841, -0.0983373374, 0.0658612251, 0.1854546368, 0.0587470196, 0.0610383451, -0.3647981286, -0.2021665573, -0.0928316712, -0.0767262876, -0.128627643, -0.17200014, -0.1044919342, 0.2542574406, -0.1882734597, 0.0913058519, 0.2601750493, 0.0789950788, -0.1153761894, 0.2103085816, 0.2196044922, -0.3643229902, 0.1047280729, -0.1130544171, 0.0748008564, 0.4360266626, -0.0055072848, 0.0017840192, -0.2595285773, 0.2082754821, -0.264908582, -0.2264891118, 0.2413856089, 0.119160004, -0.0831423551, -0.1221610382, -0.4942295253, 0.4385454655, 0.2539223135, -0.1163535491, -0.0749132335, -0.1809134781, -0.5298193097, -0.216742143, 0.2679247856, -0.0187719986, -0.0722125173, -0.193779856, 0.3418037295, 0.1921721697, 0.3103510141, 0.6430556774, -0.3864824474, 0.7953376174, -0.1250497997, 0.7483615875, 0.2579938173, -0.2477056086, -0.3778178692, 0.1166384891, -0.1784684211, 0.272221446, -0.2818516195, -0.1200631261, 0.7026369572, -0.2252788097, 0.3419846296, 0.1061444134, 0.246995315, 0.3040958643, -0.2483734787, -0.0491900444, 0.5504585505, -0.0802224204, -0.2242528945, -0.1509811729, -0.1534068137, 0.1111332923, -0.0315544493, -0.1203731969, -0.1554095149, 0.0617319755, 0.0151118496, 0.027055949, -0.0637359321, 0.2192263454, 0.1471128166, 0.217194289, 0.0741166621, 0.0683925599, 0.4290308952, -0.0061165839, 0.1055163443, -0.0645510554, -0.1504325122, -0.141928032, 0.1726528555, 0.1282206625, 0.0678984076, 0.089192532, 0.2311725914, -0.106979996, 0.0154440776, 0.1270230711, 0.4437766075, -0.3041422665, 0.1406871229, -0.1602892727, -0.1061225086, -0.1936035156, 0.1408740133, 0.108732678, -0.1834656894, 0.1624325365, 0.1247906983, 0.3094664812, -0.1730699837, 0.2074125409, 0.1145593822, 0.2654832006, 0.0448613167, 0.1117049456, 0.0164179578, -0.1618008614, -0.1011431515, 0.2487525344, 0.7665553093, 0.2934232354, -0.098131001, -0.1918504536, -0.0074497685, 0.2052227557, 0.1254603714, 0.0902862996, -0.0172137823, 0.3012905121, 0.4247044325, 0.1712670177, 0.350858748, 0.4743337929, 0.5267606974, -0.1261986047, -0.2109235525, 0.1169242859, -0.3413846195, -0.4390027523, -0.0324559063, -0.4132481217, 0.1679464877, 0.104331091, 0.2238327563, -0.168983236, -0.0138750281, 0.0025530122, 0.2727619112, 0.2319281399, -0.0062525943, -0.0347077809, 0.1677313745, 0.2354773432, -0.3278359175, -0.1683432162, -0.0177447014, 0.2466841787, -0.0202032924, -0.0880931094, 0.0660284087, 0.179038614, 0.4836560488, -0.0730335563, 0.043880038, -0.2336487323, -0.086826548, 0.0112860957, 0.0730060264, 0.1429344118, 0.2016051561, 0.0416047424, 0.0553790629, -0.1324758679, -0.0326361805, -0.2036224604, -0.3690444827, 0.0673272833, 0.0478157289, -0.1053127274, 0.3012900054, 0.1895499229, -0.0706468746, -0.0284740571, -0.4572892785, 0.0877390653, -0.1803115159, 0.0098781679, -0.1076648235, -0.1534432024, -0.1983682662, 0.0400033668, 0.1168602929, -0.2781751156, -0.2616517246, -0.322422564, -0.1180725619, -0.1744084209, 0.1405443996, -0.0200541764, 0.0511424616, -0.0312804282, 0.1222997308, 0.1008709073, 0.1293457747, -0.2491519898, -0.167208299, 0.1939766109, -0.0520041846, -0.0121718626, -0.3335226178, -0.249704957, 0.3890588582, -0.0699699819, -0.0141933151, -0.2141370773, 0.0942139328, 0.1669801176, 0.13987194, -0.2460223436, 0.2176395655, -0.3044712543, 0.2614800334, 0.0384435207, -0.2167221308, 0.394102335, 0.2282124758, -0.1222438812, 0.1697704792, -0.2478058934, 0.1691343784, -0.0590034313, -0.2350640595, 0.072313197, 0.4840382636, 0.246796146, 0.6211674213, 0.0489819869, -0.013337628, -0.0001048744, -0.3113279641, -0.1315821111, -0.4311894774, -0.075513728, 0.2071560621, -0.0991363451, 0.0257445872, 0.486576736, -0.0850559026, -0.3330843151, 0.2221699357, -0.1734430194, 0.0490760654, -0.1999392211, 0.12732853, -0.0947738662, 0.0593054146, 0.0013976693, 0.404610306, -0.5339136124, -0.1491030157, 0.2374674231, -0.2787156999, 0.252582252, -0.2517897785, -0.945553422, 0.3512923419, -0.8524877429, 0.094976306, 0.0165477358, 0.2276022881, 0.0475077108, -0.0270617902, 0.1163011268, -0.0324517339, 0.1658131182, -0.0538088493, -0.0845551565, 0.2370497584, -0.5604743958, -0.1172574162, -0.1456519961, -0.078785345, 0.1936262548, 0.5950001478, 0.7412641644, -0.0944306105, -0.2862771153, -0.3504445851, -0.0479067713, 0.0696776286, 0.0392846055, -0.0138416961, -0.1023690104, -0.1808011532, 0.0108177923, 0.1023750305, 0.1822671592, 0.1334199607, -0.1541093886, -0.0875529572, 0.150520131, 0.3036974072, 0.2778019905, 0.2423065901, -0.0387683362, 0.3437795341, 0.317371875, 0.1055741683, -0.1110976115, -0.1575462371, 0.2181516886, -0.3695305288, 0.0900225192, 0.0998721644, 0.0671070665, 0.1695056558, -0.0323252305, 0.2138268203, -0.269631803, 0.3467107415, -0.1918299943, 0.3990117311, 0.5268698931, 0.1344354302, -0.5008944273, -0.3026989102, 0.0710380524, 0.5278069973, -0.2671490014, 0.436906755, -0.4802764952, -0.4048761427, 0.4786456823, 0.2622502148, 0.5893500447, -0.000197337, 0.2131254375, 0.2467373013, 0.2820870876, 0.1871795803, -0.4422438741, -0.1283500046, -0.2351830453, 0.2189821899, 0.0432998985, -0.073547475, 0.0681039691, 0.2392937839, -0.119057931, -0.0707465187, 0.1343745887, 0.8829227686, -0.0130434483, 0.302733779, 0.48761338, -0.39955616, 0.3429581523, 0.139388293, 0.2241425812, 0.0627056733, 0.0940345079, 0.0973555148, -0.0682937354, -0.1550721675, -0.2499287426, -0.202558443, -0.5686982274, 0.297793299, -0.2047141641, 0.0308010876, 0.0798008442, 0.1448377222, 0.0416583121, 0.2406430393, 0.0066325366, 0.2885670364, 0.2132271528, 0.3364415765, 0.2534503639, -0.5096051693, -0.1977285445, -0.009806551, -0.0152435303, 0.1644135714, -0.2644812167, -0.3185322881, -0.6420419216, -0.0458642729, 0.304049015, -0.3656051159, 0.0190449953, 0.1011226028, -0.0792650953, -0.1980581284, 0.080641523, -0.1534318179, 0.0853770673, 0.4080637991, -0.0744125396, -0.2806636989, 0.018493915, 0.3022502363, 0.1215463728, -0.2107043266, 0.4307021201, -0.4703117013, -0.2629356384, -0.103587389, 0.2154362202, 0.136314854, 0.1198759228, 0.0926352143, -0.131854102, -0.1832278967, 0.0951462686, 0.2641550004, -0.1274950951, -0.109907642, -0.1724203527, -0.0183413252, -0.3060435653, -0.0105906241, -0.0599311888, 0.0916231424, 0.0973535776, 0.1349280328, -0.3185406625, 0.1697504073, -0.257768333, -0.1210307851, 0.125912264, 0.1538809389, -0.201411292, -0.1586652845, 0.1208090857, 0.0411625281, 0.0997675657, 0.2575889528, 0.0350963511, -0.2286947817, -0.0834934264, 0.142489776, 0.0466307662, -0.360457927, 0.0659410506, 0.1358207911, -0.0845474005, -0.5128017068, 0.2053453028, 0.1716242433, 0.0137768826, -0.4263347089, 0.1967778206, -0.0045444556, -0.0069769323, 0.1540149152, -0.0409202948, 0.019588735, 0.1093844622, 0.2167300582, 0.1208919957, -0.2039535046, 0.0436548181, 0.2604888082, 0.3350321054, 0.1718846112, 0.0119802132, -0.0260329433, -0.0632944554, 0.1637771726, -0.1699796319, 0.2126777172, -0.224570334, -0.4430893362, 0.2065381408, 0.1477205902, 0.0679500848, -0.2368665636, 0.4112253785, -0.2698408067, 0.1705465317, 0.0537063926, 0.2234906256, 0.2558569908, -0.2167445272, -0.1678140014, 0.458049953, -0.1856304556, 0.0927564949, 0.1185211837, -0.0464377366, 0.0143659096, 0.3236364424, 0.0896297693, 0.1318290234, 0.4207834005, 0.2065015286, 0.2570438683, 0.2392929792, 0.3731353283, -0.1887237728, -0.2324151099, -0.0579183958, 0.4835405946, -0.3375784755, 0.145225063, -0.0031015985, -0.0090717785, 0.0150642246, -0.5577234626, -0.0361897387, 0.3808557987, -0.373800993, -0.2634640336, -0.1039746106, 0.0000506192, -0.044415392, 0.3579732776, -0.1306928992, -0.0440516844, -0.3228884935, -0.1085640863, -0.0701358914, 0.1116299331, -0.253982842, -0.2345301807, 0.2184888572, -0.2175604105, 0.2340626121, -0.4240420163, 0.134942919, -0.0556652807, 0.3740639985, 0.3734022081, 0.2763727903, -0.137914151, 0.0604415461, -0.0782148838, 0.0910299867, 0.0376115963, 0.141161561, -0.0731157362, -0.3212684989, 0.1342653632, 0.0041143373, -0.1798275262, -0.3566518128, 0.032982327, -0.1090815067, 0.1966267228, 0.2209129781, 0.0509852394, -0.1480569243, 0.1166604757, 0.0628018975, 0.0814492851, -0.1601277739, 0.1489976794, 0.0793074965, 0.1826459765, -0.0843045264, 0.0706104189, 0.0378761776, 0.4189380109, 0.0274149179, -0.1120420545, -0.3786531091, -0.3307702541, -0.344181776, -0.0883447081, -0.1933033466, 0.1373799145, -0.0022714064, 0.0905377194, 0.1760573387, 0.1948622316, 0.2074847221, 0.1234852523, -0.2083261311, -0.0998502225, -0.2851069272, 0.481695205, -0.1726652831, 0.0396553427, 0.0064433515, -0.3506654501, 0.4216936827, 0.0160460584, 0.1311936378, -0.1760375202, 0.0523302481, -0.0212394297, 0.0931964219, 0.6377806664, 0.1688712835, 0.0617197677, -0.0346784964, 0.1621490866, 0.1541456133, 0.1810176373, -0.220260188, 0.0676567852, -0.0157293826, -0.0018752739, 0.0582157448, 0.0275881663, -0.0795355216, -0.1120132953, 0.1741835475, -0.0966246799, -0.2279874831, -0.0935887396, 0.0079853833, 0.1224938259, -0.2413402051, 0.33198452, 0.0734153837, 0.2080665231, -0.3973879218, -0.0614513196, 0.4318279624, -0.6654880643, -0.1201496869, -0.2693095803, -0.0117830858, 0.3286214173, 0.1732209325, -0.1057518125, -0.2817880511, 0.5291826725, 0.0278509371, -0.2813948393, 0.3174490035, -0.0696155131, -0.0076538548, -0.0337326489, 0.3865730762, -0.2410537302, -0.1833971739, -0.0738727003, -0.0449590087 ]
https://github.com/huggingface/datasets/issues/1827
Regarding On-the-fly Data Loading
Hi @acul3 Issue #1776 talks about doing on-the-fly data pre-processing, which I think is solved in the next release as mentioned in the issue #1825. I also look forward to using this feature, though :) I wanted to ask about on-the-fly data loading from the cache (before pre-processing).
Hi, I was wondering if it is possible to load images/texts as a batch during the training process, without loading the entire dataset on the RAM at any given point. Thanks, Gunjan
48
Regarding On-the-fly Data Loading Hi, I was wondering if it is possible to load images/texts as a batch during the training process, without loading the entire dataset on the RAM at any given point. Thanks, Gunjan Hi @acul3 Issue #1776 talks about doing on-the-fly data pre-processing, which I think is solved in the next release as mentioned in the issue #1825. I also look forward to using this feature, though :) I wanted to ask about on-the-fly data loading from the cache (before pre-processing).
[ -0.1726846993, -0.283598721, -0.1183969378, 0.2190789282, 0.3321972787, 0.0917306691, 0.5707204938, 0.1317174286, 0.120475769, 0.067004554, 0.0713881329, -0.0857145041, -0.0965598673, 0.2116189599, 0.2725098133, 0.2309676111, 0.002583351, 0.0690005124, 0.0591213964, -0.0284569189, -0.0402433872, -0.0728219151, -0.0123695806, -0.362198472, -0.4274349511, -0.093506135, -0.1793472767, 0.0571451336, -0.1536559463, -0.2890396714, 0.1886153519, 0.254003197, 0.270825088, 0.117241025, -0.0001203638, -0.0124505311, 0.3828076422, -0.1435646713, -0.3206500113, 0.1220702752, -0.0993445963, 0.1157690436, 0.1064208001, -0.1725357324, -0.0760351792, 0.4242569506, 0.1247473806, -0.3189668953, 0.4757880569, -0.0819710493, 0.0456122532, -0.0693502277, -0.3194620609, 0.0307374187, 0.2106883973, 0.1520229876, -0.0428887866, -0.0413791984, 0.3662905395, -0.1179745048, -0.102231741, 0.3062215447, -0.0025016665, 0.0041444339, 0.2204098701, -0.0154387821, 0.0600905307, -0.4758675098, -0.0239065159, 0.1586287618, 0.5854739547, 0.0645010173, -0.3178859949, -0.3903408647, 0.0198408589, -0.3572821617, 0.0862498879, 0.3821424246, -0.3288043439, 0.093231678, -0.537832737, -0.408722043, -0.2208577096, -0.114024967, -0.0902027488, -0.2912575901, 0.0688989535, -0.072428517, 0.0858769864, 0.2078733295, 0.6285199523, -0.111976862, -0.1109060943, 0.4937472343, -0.2721392214, -0.2085571587, -0.4864161015, -0.1967237294, -0.0057811514, -0.1826284826, 0.275362134, 0.1797648072, -0.1919870526, 0.0621589012, 0.3562070131, 0.0273069665, 0.1653113067, -0.0311495047, 0.0064680083, -0.295864284, -0.2373788953, -0.063420549, -0.4045851231, 0.1368602961, -0.1152530164, -0.2681528926, -0.4467125237, -0.2506440878, 0.2545189559, -0.2527228594, 0.1836286634, -0.0403484814, -0.2313980162, 0.3127175868, -0.0288002435, 0.0083066542, 0.2975400388, -0.1674129367, -0.0775291249, -0.254016757, -0.0478607751, -0.0181817971, -0.2493308485, 0.1330199242, 0.2042916119, 0.0589197725, 0.1179032326, -0.1313330084, 0.0041414071, 0.0270397589, -0.0003007874, -0.3179266453, 0.3636933267, 0.2754963636, -0.015098542, -0.2916891575, 0.0312476195, 0.3335387111, -0.0201602876, 0.5988049507, -0.2974315286, -0.0827195942, 0.3635722399, 0.0118183671, -0.0296235569, -0.239885509, -0.2626537681, 0.4184542, 0.2489561886, 0.0859440714, 0.2036075592, 0.0772558302, -0.2851472497, -0.0212871786, 0.110575445, 0.3501606286, -0.4026869535, -0.3087043762, 0.2794790864, 0.0222665295, -0.1220834181, -0.0091873556, -0.2488166988, 0.3373202085, 0.0116717815, 0.037483111, 0.1123315543, -0.2921565473, -0.0236151367, 0.4355228841, 0.0490384996, -0.031964615, -0.0090759881, 0.4269595444, 0.102032125, 0.1715194285, 0.2959524393, 0.7635227442, 0.0538493246, 0.0748613402, -0.1958502829, -0.3414075673, -0.2395246029, 0.3621118665, 0.2415040731, 0.2589144111, 0.2517333031, 0.0273113623, 0.0837512389, -0.2263399959, -0.0170136262, 0.1305212975, -0.0317250565, 0.1669830829, -0.0416581631, 0.2819930911, -0.4686065316, 0.2828410864, -0.1840272844, -0.0459724031, 0.1098970473, -0.0095282346, 0.3888604343, -0.2076936364, 0.0993757099, 0.1737116873, -0.095586136, -0.2128091753, -0.099715963, -0.0099677742, -0.4909346998, 0.8521467447, -0.4758825302, 0.2114948779, -0.1044541597, 0.1074162498, 0.449193269, -0.1081208289, -0.1963794827, -0.1719342023, -0.2991924584, 0.0181724839, 0.0061655231, 0.4675189257, 0.1323868334, 0.2539483011, -0.0984478444, 0.1048578918, 0.2965152562, 0.0731376559, 0.2004057914, -0.3838966489, 0.0407693312, -0.1957339644, -0.4062643647, 0.6067577004, 0.0608739667, 0.195490256, 0.2967915833, -0.2305459976, -0.0120988488, -0.1654076278, -0.0860126317, 0.1190430522, 0.0079784719, 0.1060782522, 0.5033367276, -0.0313712321, -0.1819936037, -0.2241878211, -0.0393431634, -0.022538133, -0.1010946035, 0.1562385261, -0.0333747566, -0.0968436822, 0.0403099805, -0.0376491994, 0.3064706624, 0.0865684003, -0.0088049062, 0.1440639645, 0.2152054459, -0.0710984766, 0.1003783643, -0.0256861895, 0.4002477229, 0.0196016841, 0.0668522567, 0.0542201735, -0.4141890109, 0.3761069775, 0.2402522564, -0.2068136483, -0.1194649041, 0.024952136, 0.1802025139, -0.2877339721, 0.0511294641, 0.0785603821, -0.2679386139, 0.2447863221, 0.0626737475, -0.035472814, 0.2312705517, -0.1007867306, -0.0505562574, 1.0589145422, -0.0778700858, 0.039690204, -0.1933267564, -0.0724978074, 0.2199303061, 0.017728325, 0.1843343377, -0.112613447, 0.2349986136, 0.1298401654, -0.1127242297, 0.2563572526, -0.1056973338, 0.1894393563, 0.2193923742, 0.1237750351, -0.3309440315, -0.0084987171, -0.2049752176, 0.0421057567, -0.1971978396, -0.4081790447, -0.287991643, -0.4751537442, 0.3778955638, 0.1120875329, -0.1671583652, 0.0250958949, -0.4167980254, -0.0401691087, 0.2077398598, 0.3384677172, 0.1406715959, 0.3773106039, 0.0208093897, -0.1806993634, -0.1592861414, -0.1036743373, -0.2029185891, -0.6760937572, -0.0939390883, -0.1416720748, -0.1950513422, -0.0356873944, 0.0936200321, 0.0362050682, 0.6651352644, -0.8735554218, -0.0531990528, 0.0262282435, -0.1240391135, -0.204283759, -0.0786602721, 0.1373701692, -0.2599743009, -0.010377273, -0.0497467779, 0.2246380746, 0.1929004192, 0.0336730629, 0.0733998716, 0.2787473202, 0.0318996981, 0.1225325763, 0.8831712604, -0.3712195158, -0.0659415126, 0.267894417, 0.1573869288, 0.3801430464, -0.2386513352, 0.2636003196, -0.1346946955, -0.1658606976, -0.1958541572, 0.1565244049, 0.0872744471, -0.5369454026, -0.4127475917, 0.4158637822, -0.1284594536, 0.1169913113, 0.2079681754, -0.322535038, 0.2557945251, 0.0267959982, 0.0214500278, -0.1968211383, -0.211588949, 0.0191264562, -0.0576585978, 0.6054168344, -0.21143502, -0.1240894645, 0.3219368458, -0.2747206688, 0.0078735165, 0.0306299068, 0.2162821889, -0.0298613235, -0.1958161294, 0.3248187602, -0.0149483234, 0.6353762746, -0.1768063903, 0.0008974936, 0.0656324252, -0.4618178904, 0.0665301234, 0.0197555423, -0.0642725676, -0.1148601621, 0.0466999747, 0.2646926045, 0.1351756006, -0.1173196584, -0.0877335817, -0.2665193975, -0.3192572594, -0.3963137865, -0.0701058581, 0.1605160832, -0.2127300799, 0.0817424282, 0.1631471366, -0.0408693478, -0.2503910661, -0.0283840895, -0.3545407653, 0.4247927368, -0.1319828928, -0.2478566915, -0.0554511659, 0.2683357, 0.1844051331, 0.2386131585, 0.1415829509, -0.0152652031, 0.2034439296, -0.2024109513, 0.0800784975, -0.1507410109, -0.1296239793, 0.2492764443, 0.6636557579, 0.2860675156, -0.0303024687, 0.1506054401, -0.1189303175, -0.2937454581, 0.1309518665, 0.0313460901, -0.2929353714, -0.1620034575, -0.5915785432, 0.6851972342, 0.2224940956, 0.0230622292, 0.3544327319, -0.5506945848, -0.3202624619, 0.2900858223, 0.3368040025, 0.9200333357, -0.3764573634, 0.5159749985, -0.2994266152, 0.309664011, 0.0008135699, -0.3276217282, 0.2093078792, -0.3369631767, -0.2832556963, -0.1473209262, -0.1753265262, -0.117382437, 0.3771115541, 0.1250204444, -0.0722638667, 0.1168527156, 0.0181827731, 0.0548082069, -0.0946767256, 0.0608401075, -0.404592067, -0.0636875182, 0.0648537278, 0.2162377834, 0.2144351304, -0.2849908471, 0.0548533052, 0.1731052399, -0.1351603568, 0.0026148409, 0.062008068, -0.2733363509, 0.0041462146, -0.201981768, -0.2839853764, -0.3501133919, 0.1486510932, 0.3003533483, -0.1588247269, 0.042869173, 0.2137991339, 0.2311351001, 0.1083909124, -0.0447530597, -0.0045007356, 0.3801798522, -0.0869496614, 0.1371849775, 0.139053598, -0.2454119325, -0.5426341891, -0.0188658088, 0.1041582376, 0.2103516608, -0.0124629997, -0.2162297517, 0.2761096954, 0.0940305591, 0.0987998992, 0.0736876279, 0.2683963776, -0.1985174567, 0.3451649547, 0.0830178708, -0.1866434216, 0.0497791916, 0.6502135396, 0.1749263108, -0.4405227304, 0.1786124557, 0.1150551736, -0.0882909223, -0.0799115971, 0.0166129619, 0.2343140095, -0.2239985466, 0.0934887156, 0.0793304592, 0.1605613679, -0.0854921415, 0.2037144005, 0.0990566015, -0.0556940809, -0.1945217848, -0.2388641238, -0.317645967, 0.166285798, -0.1389887482, 0.329090476, 0.1582849175, -0.2370779514, 0.2533075213, 0.1814439595, -0.2273148298, 0.1966859698, 0.1132531762, 0.2126763761, -0.0204173978, 0.1259809881, -0.1217226386, -0.0782727152, -0.0608331598, 0.0926749706, 0.0013125204, -0.1889595687, 0.0894674957, 0.259755224, 0.1029032394, -0.0615431294, -0.0641866699, -0.2494580299, -0.2111488283, -0.0103689376, 0.2952494621, 0.0870615989, -0.1629937738, -0.161674872, 0.2854117453, 0.5793209076, -0.1693765521, 0.4471304119, 0.012473708, 0.3442240655, 0.088552922, -0.0301329382, -0.2365306765, 0.109889701, 0.2594614029, -0.0917700157, 0.2493806481, 0.0170954503, 0.1877785027, -0.4105763435, 0.1509671509, -0.1571801007, 0.1854481399, 0.2735782862, -0.4995344579, 0.064314723, 0.311789602, 0.1444230676, 0.0699682683, -0.1901299059, -0.1092528701, -0.3621825576, -0.1649498641, 0.2804119587, 0.558488071, 0.0302950889, 0.0003435612, 0.043993067, 0.3751167953, -0.4146690369, 0.0782157406, 0.4015354514, -0.0463288091, 0.0490782037, 0.0858730525, 0.5185030699, -0.0125634894, 0.1787183583, 0.0150609985, 0.2180616558, 0.0458535217, 0.093609944, -0.2677705884, -0.4308395982, 0.058702942, 0.6751396656, -0.0713503063, 0.4519224763, -0.3695743084, -0.0558465794, -0.0169709399, -0.2555282414, -0.1590131968, 0.1286561936, -0.1327881217, 0.0760778636, -0.1052349061, -0.1248514503, -0.1445704252, 0.4197893739, -0.1007565856, -0.1425281018, 0.2564865649, 0.2617849708, 0.0130309127, 0.1989989281, -0.1012509167, 0.0968430489, 0.2134019136, -0.2731971741, 0.2259692103, -0.4411209226, 0.1773984432, 0.4834468365, 0.3473464847, -0.081381768, 0.3185934424, -0.1027417183, 0.0960772038, 0.0967178121, 0.0691893548, -0.0256331451, 0.3193222284, 0.3588231802, 0.0635124892, 0.1042466015, 0.0253968462, -0.0752461255, 0.4104226232, -0.0105712898, -0.0307150017, -0.3659187257, 0.1415160298, 0.2978209853, -0.1230255738, 0.0002621394, 0.0063753948, -0.3958482444, 0.0855415165, 0.22740978, -0.4957817793, 0.0051386692, 0.4473087192, 0.016177807, -0.2025236785, 0.5034618378, 0.3643025756, 0.113714546, -0.2773652077, -0.2858844995, -0.3451362252, 0.0241381899, 0.0438245721, 0.1658494174, -0.006225301, 0.234655425, 0.1811324656, 0.1554619223, -0.1374716759, -0.477232933, -0.1018150896, 0.1482329369, -0.3347151279, 0.2280403376, 0.1797848344, 0.463029772, -0.2251702994, -0.2288309783, 0.1836901307, 0.1424225122, -0.2046661973, 0.374040693, -0.0874627605, 0.006389983, 0.0731384903, 0.4084908664, -0.4653453529, 0.3128400147, 0.0173081756, 0.0075584054, -0.1158365756, -0.3511053324, -0.2685949802, -0.1359152943, 0.1138923988, 0.0028498173, -0.2171605229, -0.0792464688, -0.0178181604, -0.2589984834, -0.0852827728, -0.1233859062, -0.1446757317, -0.4979204535, -0.0809312165, -0.0383523032, 0.2050116658, 0.3365012109, -0.0431850962, -0.2461977899, -0.3440425098, -0.0021831915, 0.3099207878, -0.4316574037, 0.008486405, -0.2264381647, 0.032432653, -0.0082226247, 0.1528895199, -0.4410760999, 0.1689271629, 0.2995245159, -0.1188206673, -0.0464241616, 0.3388525248, 0.1388069987, -0.0459358916, -0.1166078597, 0.2619568408, 0.0111123584, -0.0911462903, -0.6637377143, -0.4207079113 ]
https://github.com/huggingface/datasets/issues/1827
Regarding On-the-fly Data Loading
Hi ! Currently when you load a dataset via `load_dataset` for example, then the dataset is memory-mapped from an Arrow file on disk. Therefore there's almost no RAM usage even if your dataset contains TB of data. Usually at training time only one batch of data at a time is loaded in memory. Does that answer your question or were you thinking about something else ?
Hi, I was wondering if it is possible to load images/texts as a batch during the training process, without loading the entire dataset on the RAM at any given point. Thanks, Gunjan
66
Regarding On-the-fly Data Loading Hi, I was wondering if it is possible to load images/texts as a batch during the training process, without loading the entire dataset on the RAM at any given point. Thanks, Gunjan Hi ! Currently when you load a dataset via `load_dataset` for example, then the dataset is memory-mapped from an Arrow file on disk. Therefore there's almost no RAM usage even if your dataset contains TB of data. Usually at training time only one batch of data at a time is loaded in memory. Does that answer your question or were you thinking about something else ?
[ -0.2869426608, -0.3630420566, -0.1495332718, 0.2731826901, 0.414362818, 0.1709424257, 0.4223021567, 0.1292586923, 0.18513982, 0.0802382752, 0.1216419414, -0.0679906234, -0.2427963912, 0.1963991821, 0.1893506944, 0.2370750904, -0.006563995, 0.1383549571, -0.1860132217, 0.0667946637, -0.0094694719, -0.2281019241, -0.134532094, -0.36008811, -0.3519831896, -0.1788702905, -0.206101045, -0.0816745758, -0.0664418489, -0.1807872355, 0.0383011997, 0.1454581469, 0.2661627531, 0.2168916613, -0.0001134483, 0.0263618827, 0.1878574342, -0.1615201831, -0.4358331859, 0.1928043664, -0.0849269032, 0.0534443781, 0.1489460021, -0.2591667473, -0.0432945229, 0.2636415958, 0.1821036786, -0.3938760757, 0.3936271667, -0.0597927943, 0.1287946105, -0.0312944129, -0.3372347951, 0.0115784593, 0.0496062823, 0.1317647099, 0.0707555115, 0.0703823194, 0.271040082, -0.0599780567, -0.1753789634, 0.3019690216, 0.0040440857, 0.0481207184, 0.342201829, 0.0536041036, 0.0754283965, -0.3361239433, -0.0324160457, 0.0897565633, 0.5630344748, -0.0347456411, -0.1553307474, -0.3663962483, 0.1146519259, -0.2698692083, -0.0625270233, 0.489333421, -0.465910852, 0.040753413, -0.5683217049, -0.4256093502, -0.2526450157, -0.0436525196, -0.0367207751, -0.4735997319, 0.1323296875, 0.0079850946, 0.1394610703, 0.1308268905, 0.3437523246, -0.2316767424, -0.0460172631, 0.4015501738, -0.2577868104, -0.096002996, -0.6005837917, -0.299829483, 0.038335219, -0.2760587931, 0.1747637093, 0.1581800133, -0.0951350778, 0.1061406806, 0.3347074389, -0.019386135, 0.0244126562, 0.0254782438, -0.0001035305, -0.275926888, -0.2644040585, -0.0578746684, -0.4595869482, 0.094992809, 0.0331917405, -0.3943004012, -0.4661898911, 0.0087624341, 0.1717684418, -0.2818394899, 0.0412118733, -0.0137914531, -0.2435888499, 0.2964887023, 0.0139826462, -0.0481419452, 0.4604892731, -0.2862051725, -0.1249801219, -0.2746883631, -0.063719824, 0.06569013, -0.3060080409, 0.2646065354, 0.1331711709, 0.1531422436, 0.066729486, -0.1371395886, -0.0669993237, 0.0364048779, 0.0199878439, -0.3356123269, 0.2059191316, 0.1551752985, -0.1178066805, -0.2792703211, -0.0381687582, 0.3118371367, 0.0060957819, 0.5027794838, -0.2631541789, -0.0698117539, 0.4293094873, 0.0817819461, 0.0833740383, -0.1546329856, -0.6008712649, 0.3655920029, 0.136995703, 0.1333419681, 0.0705767348, -0.00777697, -0.3763465583, 0.0051172562, 0.2648204267, 0.3271279335, -0.3991863132, -0.3566911221, 0.4185028672, -0.0158252176, -0.1391632408, 0.1062798649, -0.3086324334, 0.4188514054, 0.0300431624, -0.1001224071, 0.0982153639, -0.2143741548, -0.0543933958, 0.3533629477, 0.015860334, -0.1013926566, 0.0247096028, 0.5722174644, 0.0938568041, 0.2492919117, 0.3291521668, 0.7063398957, 0.1441552341, 0.1200050339, -0.1268436015, -0.2603087723, -0.3210429549, 0.3683958352, 0.1643716991, 0.1685017943, 0.0841635242, 0.0194548219, 0.2347206622, -0.2200761735, 0.0599160641, 0.2151899636, -0.0518268384, 0.1326138079, -0.1009772867, 0.2299598753, -0.4384999871, 0.2532022297, 0.04446619, 0.0821054429, 0.1139746904, -0.0054874942, 0.3631188273, -0.2487815619, 0.1507820636, 0.2011345476, -0.0444287248, -0.3101139665, -0.2252040207, -0.0229290724, -0.4112913311, 0.6960085034, -0.4796496928, 0.2173445821, -0.1416356117, 0.0989389271, 0.5003315806, -0.0849593207, -0.0852533057, -0.2335911095, -0.4635134637, 0.035313312, 0.068944253, 0.381808728, 0.140714407, 0.1782441586, 0.0316987559, 0.0492440611, 0.1813831478, 0.0268359706, 0.1826770306, -0.3104833364, 0.1619306952, -0.15216434, -0.3586106896, 0.4180774987, 0.094580844, 0.2759921253, 0.3086817861, -0.1523553133, 0.0141111091, -0.1444022357, -0.0534744821, 0.1024150997, 0.0438674204, 0.2268584669, 0.4621652365, 0.1707958877, -0.2648866773, -0.3457977474, 0.0504012555, -0.1120196953, -0.0432912335, 0.2249031514, -0.1269933879, 0.0364632457, 0.0329796076, -0.098206684, 0.2339930236, 0.2031129301, -0.0120154284, 0.170381546, 0.2188824117, 0.0095248893, 0.088277556, 0.0622378886, 0.4783917069, -0.1956154108, -0.078026399, -0.0296744332, -0.2640932202, 0.2508116364, 0.1417488754, -0.1726945043, -0.1391683221, -0.0242390409, 0.0047017708, -0.3065869212, -0.0998252928, 0.3313087225, -0.1850056499, 0.3601146936, -0.0126785869, 0.0224997718, 0.1696312875, 0.0071448423, -0.0975892693, 0.9094578028, -0.0469645336, -0.2100372165, -0.0211734921, -0.073669523, -0.0035659811, 0.0343070924, 0.3430948555, -0.0483930707, 0.3704318404, 0.1406485736, -0.1775662452, 0.1492756754, 0.2240158916, 0.1529069245, 0.2234520912, -0.0167874917, -0.3906622827, 0.1024204195, -0.2542728782, 0.0477847345, -0.0878184736, -0.3387580216, -0.2243400216, -0.3469245732, 0.3597924411, 0.0980085135, -0.0353978015, -0.0074070469, -0.4434202909, -0.0958463997, 0.140481025, 0.1994836926, 0.1051897407, 0.384119302, 0.1694539785, -0.1420044899, -0.1363409758, -0.0258121118, 0.0546570607, -0.4763892591, -0.0898557901, 0.0492233671, -0.1751328558, -0.094859913, 0.0402586088, 0.0185470525, 0.8389363289, -0.8290777206, 0.1393474489, -0.0379305705, -0.2141064554, -0.2819703519, 0.0518496186, 0.0399547853, -0.2387923896, -0.0956737474, 0.047307089, 0.3101841807, 0.1588175297, -0.1029087082, 0.0373466909, 0.2988788784, 0.1454366297, 0.1473433375, 0.7117273808, -0.2123528272, -0.1662726253, 0.1837857813, -0.0557091758, 0.2883814573, -0.1327328682, 0.2319426239, -0.1628266275, -0.2090507597, -0.260818392, 0.1789025366, 0.0665001869, -0.3049505949, -0.4226719737, 0.2403943688, -0.081353724, -0.0320500247, 0.3473742306, -0.3740394413, 0.3303472996, -0.0016484037, -0.0334113911, -0.0969611853, -0.2357496619, -0.0053578876, -0.1043844149, 0.4143749177, -0.2544368505, -0.2346522212, 0.4172888994, -0.2592048049, 0.0629909486, -0.0961623639, 0.1816754341, 0.0727686211, -0.1402253509, 0.2659955025, 0.142154187, 0.572111547, 0.0801073983, -0.1290567815, 0.04823526, -0.4424247146, -0.2215896547, 0.004601419, -0.137778461, -0.0947397277, -0.0602912605, 0.3573641777, -0.0340166092, -0.2430554628, -0.0223228373, -0.0218735095, -0.4067215919, -0.3591227233, -0.1792963445, 0.1477944702, -0.0813551769, 0.0700003728, 0.1895979941, 0.0160897411, 0.0467326269, -0.1547944248, -0.3114153147, 0.358823657, 0.0349280089, -0.2902465463, 0.0128698088, 0.2783673108, 0.2972324193, 0.1560088694, 0.1676653624, 0.2824071646, 0.2115089297, -0.2807258964, 0.0307464935, -0.1402092576, -0.0448337272, 0.3898748755, 0.4764642715, 0.2214209437, 0.0638554245, 0.1461299658, 0.018974103, -0.5502629876, 0.1762141287, 0.0959274247, -0.1931821555, -0.2183633298, -0.6674817204, 0.7044337392, 0.2265473306, 0.030439347, 0.371471107, -0.4017286003, -0.3358765244, 0.1563836187, 0.313778758, 0.7594898939, -0.5083620548, 0.5862457156, -0.2089077532, 0.3120794594, -0.0432065651, -0.2429618537, 0.2859004736, -0.2782696486, -0.2186479717, -0.0573673174, -0.228328988, -0.1376565099, 0.4003317356, 0.1875221282, 0.0805417001, 0.1148521602, 0.0512249209, -0.0216508619, -0.0426979549, 0.0049443413, -0.36372298, -0.0700794309, 0.1293795854, 0.2027825266, 0.0689086914, -0.2274373621, 0.1318278313, 0.0569335669, -0.0522894524, 0.1077696532, -0.0969801024, -0.3252195716, 0.0566040985, -0.2804446518, -0.1579394042, -0.2129367888, 0.2018792331, -0.0126546361, -0.1298567355, 0.1094614342, 0.1635956615, 0.0348535366, 0.2512395084, -0.0455207005, -0.0214388296, 0.3898708522, -0.0218956284, 0.0292105973, 0.1299552321, -0.2188920975, -0.3678270578, -0.0035801679, 0.0904560164, 0.1948285699, -0.0676591396, -0.1820919663, 0.1736179292, 0.232782796, 0.2063487172, 0.1096125096, 0.188012749, -0.1446282715, 0.4939880967, 0.2086311281, -0.2386706918, 0.0895973444, 0.4949343503, 0.1367440075, -0.303352654, 0.2160909176, -0.0414571203, -0.1133970693, -0.1351355761, 0.2718048096, 0.4831991494, -0.0381482393, 0.1606019437, 0.1519205868, 0.2268359661, -0.0794178993, 0.1180790961, 0.0783065856, -0.1671866477, -0.1144030616, -0.103643775, -0.4050603211, 0.2820174098, 0.118619591, 0.3430778682, 0.1811317056, -0.266676724, 0.1819148809, 0.111983858, -0.2680923939, 0.1936523616, 0.0865637064, 0.28394261, -0.1136799976, 0.1599309891, -0.0207435358, -0.0552256778, 0.0529273562, 0.0634661019, 0.0021788776, -0.2107868493, 0.1371090412, 0.2034443319, -0.0163176917, 0.0004692413, -0.0077617541, -0.4162226915, -0.1493646652, -0.1376379728, 0.1833475977, 0.1661134362, -0.0933713466, -0.1546974927, 0.3541567922, 0.4425533414, -0.2050751001, 0.4429438412, -0.1198162585, 0.391366601, 0.1933414787, -0.0782009065, 0.0165952668, 0.0673754215, -0.0023896024, -0.0114155114, 0.357513845, -0.1186278611, -0.0139955897, -0.3259766698, 0.1605258584, -0.1186750829, 0.2884549499, 0.3929075599, -0.5295218229, 0.0210723951, 0.2882760465, 0.2199259698, 0.0413383394, -0.0999147743, 0.001391422, -0.3731637895, -0.0823176727, 0.2886896729, 0.2444268763, 0.0573419929, -0.2947584391, -0.1455804706, 0.2715760171, -0.2606425881, -0.0618506745, 0.2537119985, 0.1017389148, -0.0880401284, -0.0667774081, 0.5002999306, 0.0994485468, 0.2923494279, -0.1078581959, 0.3313668668, -0.0780328438, 0.0673842132, -0.3112193644, -0.3604116738, 0.0117534446, 0.6964073181, -0.060391549, 0.1763447225, -0.3629174232, 0.1245697439, 0.1141190231, -0.370148629, -0.0549513809, -0.0252004229, -0.1251752675, 0.2137398422, -0.1683691889, -0.1392387599, -0.1488052011, 0.425766319, -0.0214825403, -0.3161219954, 0.1841953844, 0.3428276777, 0.0629120693, 0.2339557409, -0.0558647066, 0.1977970749, 0.0929989666, -0.2929552794, -0.0018577054, -0.300557375, 0.2502622306, 0.4217055142, 0.3071512282, -0.0888091251, 0.2305085361, -0.0098298658, 0.0692274198, 0.1632234901, 0.0619339943, -0.1380836666, 0.1137986332, 0.3265501857, 0.2447984815, 0.134754017, 0.0764111429, -0.1088596731, 0.2404530197, 0.0029707663, -0.1757609099, -0.43884781, 0.065256916, 0.2699503303, -0.151925087, -0.068470031, 0.018650718, -0.2436136603, 0.045542866, 0.3752803802, -0.5222758651, -0.0179569758, 0.485555172, 0.0530989096, -0.2187105566, 0.5302196145, 0.102628082, 0.2320317775, -0.3197324574, -0.3163998723, -0.3911035657, -0.0813907832, -0.1839069426, 0.1252808571, -0.0581019595, 0.1672066748, 0.2231075764, 0.1155926734, -0.1143736094, -0.4481285214, -0.16084674, 0.2227235734, -0.3137452602, 0.0800438449, 0.0210038517, 0.4221853018, -0.122995168, -0.3117896318, 0.0642927662, -0.1346101612, -0.1530560553, 0.3762385845, 0.0729848295, -0.0030935928, 0.2004395425, 0.4600735903, -0.4780106544, 0.3159679174, 0.0674666613, 0.016311273, 0.0193635132, -0.1592831463, -0.2847011685, 0.0015846062, 0.1615590006, -0.0372262262, -0.2762800455, -0.0611414276, -0.0320595428, -0.1948691308, -0.0641591474, -0.2005607784, -0.1224495918, -0.4066181779, 0.0587393418, 0.0516070016, 0.1041537672, 0.3399555981, -0.1439994872, -0.2960094512, -0.3409697413, 0.0431043506, 0.3233138323, -0.475014925, 0.0190591067, -0.249569118, 0.1382080913, -0.0614200234, 0.1678854674, -0.3513656259, 0.1177770346, 0.4220013916, -0.0616199933, -0.1031267196, 0.3565875888, 0.229496479, -0.0286257863, -0.0584890395, 0.2589511275, -0.2766314149, -0.1549824774, -0.60725981, -0.4248477817 ]
https://github.com/huggingface/datasets/issues/1825
Datasets library not suitable for huge text datasets.
Hi ! Looks related to #861 You are right: tokenizing a dataset using map takes a lot of space since it can store `input_ids` but also `token_type_ids`, `attention_mask` and `special_tokens_mask`. Moreover if your tokenization function returns python integers then by default they'll be stored as int64 which can take a lot of space. Padding can also increase the size of the tokenized dataset. To make things more convenient, we recently added a "lazy map" feature that allows to tokenize each batch at training time as you mentioned. For example you'll be able to do ```python from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") def encode(batch): return tokenizer(batch["text"], padding="longest", truncation=True, max_length=512, return_tensors="pt") dataset.set_transform(encode) print(dataset.format) # {'type': 'custom', 'format_kwargs': {'transform': <function __main__.encode(batch)>}, 'columns': ['idx', 'label', 'sentence1', 'sentence2'], 'output_all_columns': False} print(dataset[:2]) # {'input_ids': tensor([[ 101, 2572, 3217, ... 102]]), 'token_type_ids': tensor([[0, 0, 0, ... 0]]), 'attention_mask': tensor([[1, 1, 1, ... 1]])} ``` In this example the `encode` transform is applied on-the-fly on the "text" column. This feature will be available in the next release 2.0 which will happen in a few days. You can already play with it by installing `datasets` from source if you want :) Hope that helps !
Hi, I'm trying to use datasets library to load a 187GB dataset of pure text, with the intention of building a Language Model. The problem is that from the 187GB it goes to some TB when processed by Datasets. First of all, I think the pre-tokenizing step (with tokenizer.map()) is not really thought for datasets this big, but for fine-tuning datasets, as this process alone takes so much time, usually in expensive machines (due to the need of tpus - gpus) which is not being used for training. It would possibly be more efficient in such cases to tokenize each batch at training time (receive batch - tokenize batch - train with batch), so that the whole time the machine is up it's being used for training. Moreover, the pyarrow objects created from a 187 GB datasets are huge, I mean, we always receive OOM, or No Space left on device errors when only 10-12% of the dataset has been processed, and only that part occupies 2.1TB in disk, which is so many times the disk usage of the pure text (and this doesn't make sense, as tokenized texts should be lighter than pure texts). Any suggestions??
197
Datasets library not suitable for huge text datasets. Hi, I'm trying to use datasets library to load a 187GB dataset of pure text, with the intention of building a Language Model. The problem is that from the 187GB it goes to some TB when processed by Datasets. First of all, I think the pre-tokenizing step (with tokenizer.map()) is not really thought for datasets this big, but for fine-tuning datasets, as this process alone takes so much time, usually in expensive machines (due to the need of tpus - gpus) which is not being used for training. It would possibly be more efficient in such cases to tokenize each batch at training time (receive batch - tokenize batch - train with batch), so that the whole time the machine is up it's being used for training. Moreover, the pyarrow objects created from a 187 GB datasets are huge, I mean, we always receive OOM, or No Space left on device errors when only 10-12% of the dataset has been processed, and only that part occupies 2.1TB in disk, which is so many times the disk usage of the pure text (and this doesn't make sense, as tokenized texts should be lighter than pure texts). Any suggestions?? Hi ! Looks related to #861 You are right: tokenizing a dataset using map takes a lot of space since it can store `input_ids` but also `token_type_ids`, `attention_mask` and `special_tokens_mask`. Moreover if your tokenization function returns python integers then by default they'll be stored as int64 which can take a lot of space. Padding can also increase the size of the tokenized dataset. To make things more convenient, we recently added a "lazy map" feature that allows to tokenize each batch at training time as you mentioned. For example you'll be able to do ```python from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") def encode(batch): return tokenizer(batch["text"], padding="longest", truncation=True, max_length=512, return_tensors="pt") dataset.set_transform(encode) print(dataset.format) # {'type': 'custom', 'format_kwargs': {'transform': <function __main__.encode(batch)>}, 'columns': ['idx', 'label', 'sentence1', 'sentence2'], 'output_all_columns': False} print(dataset[:2]) # {'input_ids': tensor([[ 101, 2572, 3217, ... 102]]), 'token_type_ids': tensor([[0, 0, 0, ... 0]]), 'attention_mask': tensor([[1, 1, 1, ... 1]])} ``` In this example the `encode` transform is applied on-the-fly on the "text" column. This feature will be available in the next release 2.0 which will happen in a few days. You can already play with it by installing `datasets` from source if you want :) Hope that helps !
[ -0.2644473612, 0.0704934597, 0.0091306642, 0.1295921057, 0.3082516789, 0.0080513358, 0.2901795208, 0.3717779815, -0.280738771, -0.0181721449, -0.048823569, 0.1473778933, -0.2360722572, 0.0108855888, 0.0396096632, 0.0288684666, 0.2195765972, 0.2025508881, 0.1469026655, 0.0644165576, -0.0421973951, -0.2423409969, -0.2289887071, -0.0132890716, -0.4302167594, -0.2289029956, -0.130100593, -0.2940586209, -0.3577356637, -0.4037176669, -0.0329180323, 0.1460272372, 0.4799693823, 0.4330447912, -0.0001187578, -0.1787714511, 0.1574259996, 0.0388376936, -0.0915223509, 0.0657224059, 0.2080896646, -0.340470016, -0.1510677636, -0.254064858, 0.1679103971, -0.1874025762, 0.0126411319, -0.1223174408, 0.2558726072, -0.0221121609, 0.1069587916, 0.1478158534, -0.1175834015, 0.1175930128, 0.2055492699, -0.0257249102, -0.0671749189, -0.0461690277, 0.3811223805, -0.0764787942, -0.1874810755, 0.3004253507, -0.1841918528, -0.0576364845, 0.3920027614, -0.0049807429, -0.1302285641, -0.342899859, 0.2336873114, 0.2656779587, 0.391202867, -0.3415995836, -0.2912169397, -0.4751840234, -0.1442976594, -0.1671045423, -0.1160397828, 0.1333684921, 0.101142332, 0.1327650398, -0.5343757868, -0.330027014, -0.0942185447, 0.2805027366, -0.1244555116, 0.2533673644, -0.0309925135, 0.0617218912, 0.0674954355, -0.3011272252, 0.119761616, -0.3782682717, 0.1251966357, 0.4119562507, -0.2103303969, -0.1967037618, -0.1620583981, -0.1319680512, 0.4441076815, -0.2146408558, -0.3352546692, 0.0751731843, -0.247716248, -0.0298867226, 0.2738420665, 0.2010714561, -0.1895846426, 0.3804606199, 0.1412709951, -0.2511976063, -0.0760982484, -0.1168313622, -0.5041649938, 0.0023232847, 0.2423708439, -0.3414870799, -0.2537666261, -0.0109219849, 0.0321965143, 0.0937677473, -0.3200734854, 0.2049038261, 0.1570597589, 0.2677530944, -0.182385534, 0.1182551831, -0.2504808903, 0.1530010998, -0.1295624375, 0.0136843324, -0.0348926634, -0.0809213072, -0.311855793, 0.0885427222, 0.1323878169, 0.0369307287, 0.1483546793, -0.0311596431, 0.0830834657, 0.1199526638, 0.2286498547, -0.3431075811, 0.0696898699, 0.0881681815, -0.055142425, 0.3614565432, -0.2426370233, 0.0543854907, -0.2421159744, 0.3458733559, -0.3575134277, -0.3633338213, 0.1150057763, 0.095648095, -0.2124391645, -0.0192327891, -0.4771780074, 0.3124533296, 0.4131703973, 0.0353512913, 0.0308051687, -0.2233494669, -0.2891535163, -0.1119893193, 0.2520444393, 0.2172581255, -0.3746162355, -0.0462597832, -0.0060776062, 0.2774540186, 0.3547433317, 0.7049417496, -0.2344231606, 0.4682487249, -0.0217173956, 0.5970691442, 0.1308768392, -0.0120308176, -0.5504748821, 0.3064104021, 0.1361118108, -0.0626281202, -0.047423996, 0.0487033315, 0.564915657, -0.1264642179, 0.2421900332, 0.347728312, -0.1075709388, 0.239723891, -0.2524233162, -0.3894594908, 0.25437361, 0.2126839161, 0.2313423753, -0.4073576033, -0.1076536849, 0.5631250739, 0.1074655727, -0.234498471, 0.3512016535, 0.0694598854, 0.1932827532, 0.1367787272, -0.0244935211, -0.1917748153, -0.1133488864, 0.1387602538, 0.1284852922, -0.0340242088, -0.0177692883, -0.3649343848, 0.19883582, -0.0558938012, -0.0451728553, 0.0023123752, -0.0087507106, -0.2987189889, -0.0523149893, 0.0450561196, -0.1235792413, -0.2520159185, -0.1439157873, 0.1190631166, -0.0510434806, 0.0653498173, 0.0642399192, -0.0879656598, -0.0818805993, 0.2881657183, -0.101960659, -0.1098916531, -0.0430194475, 0.115502879, 0.1792632639, -0.1729748845, -0.1989775896, 0.6291496158, 0.3313723207, -0.0527774543, 0.2620899975, 0.0579497293, 0.087484628, -0.1010522246, -0.0608755648, 0.1980130672, 0.103843689, 0.1809869409, 0.0371336639, -0.2367585599, 0.184265703, -0.0231456086, 0.0577140674, -0.0625005588, 0.0631769821, 0.1399935484, 0.407120645, 0.3443515897, -0.0991744846, -0.1226793379, 0.3456892371, -0.2547415495, 0.094456315, 0.369259268, -0.4270766973, -0.3702395558, 0.0560605526, -0.2841133475, 0.0736769959, 0.1215593964, 0.0545074418, -0.0743529573, 0.3321840167, 0.0049928203, 0.2567669749, 0.1768511683, 0.0905409232, 0.0599087402, 0.1524798721, 0.2476588786, -0.0831811056, -0.1484982222, 0.2264688015, 0.2812067568, -0.0641536266, 0.0165546909, -0.1782045364, -0.1478783488, 0.0071277432, -0.0921136737, -0.1096904352, 0.0529506505, 0.1498164833, -0.0503597967, -0.005036734, 0.209664017, 0.0560786054, 0.3908671141, 0.0888428539, -0.2763012648, 0.0869960338, -0.0899236053, -0.3656364977, -0.0193912964, 0.2563134432, -0.3312310874, 0.2955760956, 0.1239060983, 0.1111486703, -0.3529424667, -0.5111262202, 0.0553660095, -0.0807592422, 0.0430214629, 0.0051291138, 0.0119366311, -0.3470670283, 0.0450909287, -0.082957834, -0.2204846442, -0.0486791134, 0.037784718, -0.1488905698, -0.1909846663, 0.099119693, -0.1178261787, -0.2849354148, -0.1407161653, 0.1821798682, -0.1708402038, 0.1443473995, 0.0215970092, 0.058514487, 0.0398073345, -0.0908532515, -0.2165599614, 0.0396116674, -0.3456559777, 0.4540538192, 0.0537761599, -0.1599425972, -0.0739157051, -0.0598624796, -0.0437617786, 0.3011979163, -0.4520865679, 0.2026536465, -0.294324398, 0.2322737128, -0.0625725389, 0.1154093221, 0.0628307909, 0.0229552761, 0.0532674864, 0.0854735076, -0.1402457058, -0.1986550689, -0.0442466587, 0.1966255158, 0.0458273701, 0.1926077157, 0.3319131732, 0.8323062658, 0.0649981126, -0.1224134713, 0.2346020192, 0.1743756384, 0.1243969351, -0.3345835805, -0.1610757709, 0.1468511671, -0.0445962697, -0.1165471077, 0.537445426, 0.1378042698, -0.1528318375, 0.350389421, -0.3317061365, -0.0801909044, -0.1775424778, 0.3647336662, -0.2959561646, 0.2762160301, 0.0002359748, -0.0691211, -0.2257585824, -0.372005403, 0.0028129779, -0.010876067, 0.0650559962, 0.1188461334, -0.3358928561, 0.1355589479, -0.5341359377, 0.1895341873, 0.0412226357, 0.2819494605, 0.1803767085, 0.1240451634, 0.1511194408, 0.1265986413, 0.5065210462, -0.0254911501, -0.1990228295, -0.1221660674, -0.2344270349, -0.0770516396, 0.0300620943, -0.2233587056, 0.1062346101, 0.4797859192, 0.6534508467, -0.3339405954, -0.2007188797, -0.3113006949, 0.432264626, -0.0292314664, -0.1336651444, 0.0284199566, -0.0316572599, -0.5678434968, 0.2233587652, 0.1654522121, 0.3397710919, 0.2408818305, -0.1090205833, -0.2026442736, -0.0134128109, 0.2838233113, 0.0837164521, 0.167053774, 0.0003050826, 0.2988263369, -0.0417264476, 0.0744477063, 0.4315327108, -0.0293056611, -0.224398613, -0.4143535495, -0.0252459031, 0.0462162904, 0.5054761171, 0.0984768718, -0.0385242775, 0.2553431988, -0.1259785593, 0.253257066, -0.2888219357, 0.5742151141, 0.2188750207, 0.0965441614, -0.7376469374, -0.5411157608, 0.0903894454, 0.2293255925, -0.0981859341, 0.1740110815, -0.1532958597, -0.3754504621, 0.5328887105, 0.2531071901, 0.9069619179, -0.3994156718, 0.4245502949, -0.2723046839, 0.4491717815, 0.5515663028, -0.5493835807, 0.029903844, -0.3276283443, 0.0971275121, 0.1051324829, 0.0285460502, -0.0868093967, 0.2766429186, -0.0814039037, 0.2470187247, 0.0972768515, 0.3555196226, -0.1267230511, 0.4976910353, 0.1301130503, -0.5027886033, -0.1041888148, 0.0738881528, -0.094731614, -0.0715886801, -0.1766846925, 0.0566978045, 0.0730207488, -0.0675733909, -0.2201566696, -0.1896801889, -0.1857757568, 0.2202737033, -0.0419985019, 0.0303264111, 0.461210072, -0.001107554, 0.2244469523, 0.550652802, -0.1509459168, 0.1174334958, -0.1730625033, -0.0176461432, 0.0873548463, -0.2422228754, 0.1032320708, 0.0627397299, 0.199738279, -0.1990748793, 0.0809136108, -0.0542826988, -0.3179365993, -0.1111049801, 0.6560410261, -0.3565065265, -0.1661117673, -0.1440649331, -0.0968541577, 0.0061931834, 0.0565190613, 0.1002258807, -0.0452602655, 0.3752141893, 0.034715794, -0.2648661733, -0.072671786, 0.0646327958, 0.0507314056, -0.0524653681, 0.5686107874, 0.0318165421, -0.2139261216, -0.1469619572, 0.3851613402, 0.2808519006, -0.1480035782, 0.1107221395, 0.1490307152, 0.0435371846, -0.1176781803, 0.1838833541, 0.1670868397, -0.3886722326, -0.0599259399, -0.1476561427, -0.4500803947, 0.1174715459, -0.0276116896, 0.220498085, 0.1344053149, 0.2206276357, -0.169374615, 0.0529475138, -0.2138481438, 0.3104968071, 0.0079939961, 0.3019276261, -0.3741822243, 0.0043554241, -0.1641305238, -0.0982665718, -0.0976642221, 0.2237658203, 0.0310723707, -0.1915960908, -0.2536723614, 0.1974972039, 0.2984794676, -0.3040181398, 0.0982728973, -0.2110512555, -0.0752808899, -0.4249737859, 0.2353436202, 0.1522125304, 0.0180688016, -0.1894285977, 0.2478584796, -0.1959647089, -0.2526570559, 0.1285890341, 0.0337721519, 0.1977976412, 0.0746604353, 0.2385914922, 0.3486390412, -0.148400262, -0.0132973939, 0.1799261123, 0.6943491101, -0.0666869506, 0.066837661, -0.0838265121, 0.1475382149, 0.3351515234, 0.0089716613, 0.39408198, -0.2136282176, -0.3860999942, 0.683388114, 0.1724226475, -0.0602163225, -0.1880692542, -0.0288701914, -0.1790681183, -0.1656184494, 0.1121014059, 0.180153966, 0.2911601663, -0.441890955, -0.0985675156, 0.3846246302, 0.1857510805, 0.0258366093, 0.4675316215, 0.0653677434, -0.0693074167, 0.3300029635, 0.3051341772, 0.2250808626, 0.4662772119, -0.0665647686, 0.4718082547, 0.066706419, 0.1253409088, -0.1344000697, -0.3910471201, -0.2368488014, 0.4256219268, 0.1948473454, 0.0373422429, -0.2140037119, 0.2732304335, 0.2574637532, -0.2321343571, -0.0505206808, 0.3097581565, -0.2751246989, -0.166729182, -0.0587159917, -0.0501800925, 0.0308764577, 0.2555803955, -0.2814869285, -0.2813136578, 0.1018579453, 0.0614647642, 0.0013053901, -0.2767420113, 0.209277004, 0.0969456434, 0.0506161451, -0.2989828587, 0.2383566648, -0.3614276648, 0.0396075174, -0.2037045956, 0.2652470469, 0.3167501092, 0.4223525822, -0.1601735055, 0.0402516872, -0.1901487112, 0.1461490989, -0.1259521842, 0.3894743025, 0.0751188844, 0.1377940178, 0.1000469029, -0.0678022727, -0.0697039217, -0.107437849, 0.0438320525, -0.3280684054, -0.0221285969, 0.0759529993, 0.2382022142, -0.2457772344, -0.0323610529, 0.097181268, -0.3176350296, 0.1855528951, 0.8031601906, -0.3024762571, 0.1586749256, -0.1604955494, 0.0480637327, -0.1616026908, 0.4464981854, 0.4236752391, -0.0030972203, -0.589163959, -0.0724819303, -0.3910687268, 0.1330502629, -0.4093897343, 0.2987823188, -0.0047315732, 0.0367052034, -0.1346130669, 0.0945016891, -0.2672284842, 0.1531139761, -0.4629125595, 0.0851815492, -0.0476906598, 0.291108191, -0.1900388747, 0.2047682405, -0.0044685341, -0.370198071, 0.3627033532, -0.1943223476, -0.1329681724, -0.191163063, 0.2968974411, 0.178827703, -0.1411943734, 0.4452570677, 0.1750629842, 0.1358046234, 0.0607832074, 0.2444519103, -0.0074362028, 0.0730457008, -0.2477151603, 0.0883703083, -0.0207430702, -0.0447110645, -0.2221277803, 0.1344271004, -0.1506134868, -0.1317326725, -0.0069136396, -0.1570839882, -0.2271623015, -0.0132330582, -0.1807031035, 0.1478372812, -0.0815053284, 0.4159241915, -0.1348462552, -0.0150565878, -0.2692970335, -0.2827502191, 0.2788336575, -0.6746141911, -0.4008936882, -0.1481912732, -0.0568873435, 0.5397032499, -0.1090696007, -0.6030370593, 0.1040227562, 0.4999961555, 0.1065346524, -0.459534049, 0.1034716368, -0.0113232899, 0.0178213418, -0.1956007183, 0.5466091633, -0.1942951977, -0.237662971, 0.0750033259, -0.2591938674 ]
https://github.com/huggingface/datasets/issues/1825
Datasets library not suitable for huge text datasets.
How recently was `set_transform` added? I am actually trying to implement it and getting an error: `AttributeError: 'Dataset' object has no attribute 'set_transform' ` I'm on v.1.2.1. EDIT: Oh, wait I see now it's in the v.2.0. Whoops! This should be really useful.
Hi, I'm trying to use datasets library to load a 187GB dataset of pure text, with the intention of building a Language Model. The problem is that from the 187GB it goes to some TB when processed by Datasets. First of all, I think the pre-tokenizing step (with tokenizer.map()) is not really thought for datasets this big, but for fine-tuning datasets, as this process alone takes so much time, usually in expensive machines (due to the need of tpus - gpus) which is not being used for training. It would possibly be more efficient in such cases to tokenize each batch at training time (receive batch - tokenize batch - train with batch), so that the whole time the machine is up it's being used for training. Moreover, the pyarrow objects created from a 187 GB datasets are huge, I mean, we always receive OOM, or No Space left on device errors when only 10-12% of the dataset has been processed, and only that part occupies 2.1TB in disk, which is so many times the disk usage of the pure text (and this doesn't make sense, as tokenized texts should be lighter than pure texts). Any suggestions??
43
Datasets library not suitable for huge text datasets. Hi, I'm trying to use datasets library to load a 187GB dataset of pure text, with the intention of building a Language Model. The problem is that from the 187GB it goes to some TB when processed by Datasets. First of all, I think the pre-tokenizing step (with tokenizer.map()) is not really thought for datasets this big, but for fine-tuning datasets, as this process alone takes so much time, usually in expensive machines (due to the need of tpus - gpus) which is not being used for training. It would possibly be more efficient in such cases to tokenize each batch at training time (receive batch - tokenize batch - train with batch), so that the whole time the machine is up it's being used for training. Moreover, the pyarrow objects created from a 187 GB datasets are huge, I mean, we always receive OOM, or No Space left on device errors when only 10-12% of the dataset has been processed, and only that part occupies 2.1TB in disk, which is so many times the disk usage of the pure text (and this doesn't make sense, as tokenized texts should be lighter than pure texts). Any suggestions?? How recently was `set_transform` added? I am actually trying to implement it and getting an error: `AttributeError: 'Dataset' object has no attribute 'set_transform' ` I'm on v.1.2.1. EDIT: Oh, wait I see now it's in the v.2.0. Whoops! This should be really useful.
[ -0.467805922, 0.1656077951, 0.0304234177, 0.1393031478, 0.3698441982, -0.0799575001, 0.1343443096, 0.4200883508, -0.4338594377, -0.1087067276, 0.1051202044, 0.097874999, -0.2596931159, 0.1617353112, 0.1377583444, 0.0071737668, 0.2880677581, 0.1773828864, -0.0256084688, 0.1219860688, -0.0683431998, -0.1277211905, -0.2867691219, -0.0004002303, -0.5252423882, -0.2634717822, -0.0174376704, -0.2435950637, -0.4448635578, -0.3248975873, -0.1924744844, 0.1364667714, 0.4324246645, 0.5125049949, -0.0001255966, -0.221025154, 0.2472050488, -0.0384250283, -0.2875909209, -0.0394756943, 0.2930535972, -0.3577699065, -0.196844995, -0.2132425904, 0.193828702, -0.3745191097, -0.0414699167, -0.1099502072, 0.1161912233, 0.2161801159, 0.0858882666, 0.0541304871, 0.0701664388, 0.0395163856, 0.164548263, -0.0014552101, -0.1042269766, -0.02287977, 0.4538725317, 0.0654923096, -0.1268363595, 0.1399398297, -0.1216530949, -0.0212641247, 0.4577088654, -0.0739731491, -0.2455077916, -0.2150259018, 0.171557337, 0.2889246941, 0.5197041631, -0.4864002168, -0.3977510333, -0.5967864394, -0.1693623811, -0.2333569527, -0.0051260833, 0.1050856858, 0.064477846, 0.1954612285, -0.5726390481, -0.4743476212, -0.1159551889, 0.3932580352, -0.2551801801, 0.1143130809, -0.1285423636, 0.0937680602, 0.1853441596, -0.145121038, 0.1337650269, -0.2565788329, 0.0210568439, 0.187514618, -0.3344245851, -0.1271076351, -0.1622018516, -0.0211642422, 0.4064775109, 0.0946191624, -0.432674855, 0.0650007874, -0.1359996349, -0.0083530415, 0.2543176711, 0.4710549116, -0.2227856815, 0.2742274702, 0.2237856239, -0.219639048, 0.0120657831, -0.0800842047, -0.4790990949, -0.1735172868, 0.0792801231, -0.3584183753, -0.1200912297, -0.1453280896, -0.039694678, -0.0014618114, -0.140442118, 0.1979498863, 0.1161104888, 0.1320023686, -0.0579985678, 0.1802783012, -0.1072318703, 0.2354936898, -0.1325275451, -0.2000352442, 0.0021077283, -0.020393014, -0.2910280824, 0.1360284388, 0.1617564857, -0.0009597465, 0.0848512053, -0.1097623259, 0.0947211534, 0.1195631474, 0.1449589878, -0.3230375648, 0.0003707856, 0.1692295074, -0.12798208, 0.4077441692, -0.1729892492, -0.0469152555, -0.2752201259, 0.3672425151, -0.2981246114, -0.3904722631, -0.0615494624, 0.0727414191, -0.4090564847, -0.0488917604, -0.5169223547, 0.4131366909, 0.4666950703, 0.001068756, 0.0228558145, -0.2046527863, -0.1611896157, -0.0093323309, 0.170317471, 0.1939946711, -0.6206806302, -0.0736392215, -0.0242323596, 0.1578419358, 0.2399746627, 0.6512374282, -0.1410072446, 0.3402699828, -0.0592869408, 0.3595709801, 0.2331754416, 0.1929224581, -0.5321212411, 0.2934279442, -0.0334726349, -0.2285966873, -0.0180567466, 0.0428132787, 0.3913396597, -0.119369261, 0.0282692611, 0.420673281, -0.0616829544, 0.1134216189, -0.2282678485, -0.3263329864, 0.1932422221, 0.2130992264, 0.2006417811, -0.1420844048, 0.043817699, 0.4546662569, 0.0379384682, -0.1514843106, 0.4403600097, 0.0919938534, 0.2172996104, 0.151006788, 0.0594995059, -0.2520759106, 0.1766458154, 0.0390715376, 0.1651209444, -0.0873571783, -0.0359876752, -0.2174772769, 0.0089027658, -0.0221342593, 0.0318894982, 0.072680898, -0.1267323643, -0.1551420391, -0.0079075769, 0.1740850061, -0.160818696, -0.1197566316, -0.2361315489, 0.0724432766, -0.173945725, 0.070998244, 0.0937702581, -0.1703377366, 0.0002914071, 0.1770594865, -0.1185425669, -0.1547638327, -0.0633911118, 0.2232184708, -0.034386266, -0.1681158394, -0.3214415908, 0.6541765332, 0.2707799971, -0.0625530109, 0.2410970777, -0.0750868917, 0.041662544, -0.1014062762, -0.0262596048, 0.1974639148, 0.0318032503, 0.1712824106, 0.0407972112, -0.2116277665, 0.0912052691, -0.065804489, 0.1283011436, -0.0092191845, 0.1961652339, 0.0282079056, 0.3526708782, 0.2581017017, -0.0891509801, -0.1441116333, 0.5428148508, -0.256213963, 0.2579788566, 0.463855356, -0.4305690825, -0.3219676614, 0.0750782341, -0.1099266708, 0.2708718181, 0.1814123243, 0.0384940952, -0.005050689, 0.2958003879, -0.0585590377, 0.2269819677, 0.1292662323, 0.2312539369, 0.1655012816, 0.1857072413, 0.175800547, -0.1652546525, -0.1809598505, 0.2347023189, 0.3232022822, -0.1956058145, 0.0806344599, -0.2088699937, -0.1941367686, -0.0987123251, 0.1454790235, -0.1387941539, 0.0052879453, 0.0636099949, -0.091777809, 0.1439725459, 0.1453874409, 0.1162514389, 0.3910381794, 0.0875244737, -0.3043805659, 0.1152971014, -0.0589726418, -0.4323797822, -0.0351220183, 0.2794810534, -0.4264618158, 0.2161747217, 0.1520200968, 0.0763975456, -0.2842858136, -0.5105534792, 0.0153105343, 0.0186663773, 0.2145485729, -0.0979567766, 0.0204439256, -0.104216665, 0.130488649, -0.032246273, -0.1589450687, -0.1028219461, 0.098574549, -0.1815344393, -0.2435968816, 0.1276798844, -0.1638976634, -0.2868717909, -0.2101883888, 0.2809818089, -0.1480195373, 0.0006389413, 0.1361135691, 0.1532783359, -0.0221644603, 0.0062424392, -0.0760247111, 0.1199326217, -0.2126325965, 0.5063881278, 0.1551690847, -0.2401787788, -0.1168238223, 0.0823828578, -0.1706950963, 0.4046605527, -0.4827157259, 0.2901176214, -0.317414701, 0.1822004914, -0.0747015476, 0.1196024865, 0.1363300979, -0.0662221014, 0.0911951736, 0.0743868202, -0.2566074431, -0.2644276619, -0.0348302014, 0.3190363646, -0.0538878702, 0.3580652773, 0.5046019554, 0.5707179308, -0.128400594, -0.2025969028, 0.302220732, 0.0581378117, 0.1859381199, -0.3812963068, -0.207848832, 0.3076785207, -0.1130785495, -0.1500234008, 0.4042949975, 0.0733634979, -0.1256061196, 0.1822134256, -0.2858064175, -0.0770428553, 0.0022835657, 0.1816804409, -0.2554914355, 0.1949704885, -0.0332256109, -0.14733392, -0.0552725941, -0.3543821275, 0.0065027103, 0.0854857862, -0.0398810208, 0.2780982256, -0.5231351852, 0.1445457339, -0.317229718, 0.1839582324, -0.1198382527, 0.3176473379, 0.0893476829, 0.0443346649, 0.1728511155, -0.0029819347, 0.6573580503, 0.1614987105, -0.224391982, -0.0802065432, -0.1849890649, -0.2815259695, 0.0307365656, -0.1564116925, 0.2526804507, 0.3969075382, 0.4458353519, -0.284660697, -0.0874878094, -0.1563075334, 0.599566102, -0.0287431553, -0.2090799958, 0.0097265691, -0.1937612593, -0.6171145439, 0.1411235631, 0.1184752882, 0.3723030984, 0.0513246953, -0.0176968202, -0.1607234925, -0.1487681568, 0.3314807713, -0.0212377608, 0.1076569557, -0.0759271383, 0.2275634706, -0.1148312688, 0.1661523581, 0.5096881986, -0.0112087438, 0.1589723676, -0.2057614923, 0.01603055, 0.0860806778, 0.4228657186, -0.0182472691, -0.1591091007, 0.2727678418, -0.1592999101, 0.3351097703, -0.2517128587, 0.4993903935, 0.142431438, 0.0247755013, -0.7850496173, -0.4419435263, 0.3065384626, 0.1834490001, -0.0020835251, 0.2332215458, -0.0898344964, -0.354889214, 0.2965228558, 0.1264454275, 0.9342724085, -0.3664012253, 0.2955780029, -0.3144509494, 0.3217411935, 0.5618302226, -0.63949579, -0.0108738001, -0.3764119148, 0.0519121699, 0.0855143592, -0.0542234629, 0.133485958, 0.4011876285, -0.1039244384, 0.2485841215, 0.0921482295, 0.052966401, -0.0280641019, 0.6024865508, -0.1124613881, -0.3547430336, -0.1395689398, 0.0302562565, -0.1978613585, -0.017633263, -0.1501987129, 0.1268520951, -0.0480029397, 0.0881528705, -0.3702217042, -0.0857851505, -0.0762249976, 0.1309334189, -0.071007058, -0.1586056352, 0.5522645116, -0.0243850555, 0.2939378321, 0.4906294048, -0.1599325687, 0.1951517463, -0.3952568173, 0.0072428919, 0.2270342857, -0.2535533309, 0.1769524813, -0.0029719025, 0.0467279553, -0.2274571955, 0.1215277612, -0.0144598261, -0.1863148361, -0.1406601667, 0.5457142591, -0.2815807164, -0.1525870264, -0.1081249416, 0.0739672035, -0.0937484577, 0.0124914516, 0.1646727324, -0.0203942358, 0.3688542843, -0.0650466084, -0.2675851285, -0.1635231227, 0.2240002155, 0.0383483209, -0.0482338741, 0.5090436935, 0.199902162, -0.1995313913, -0.0959963202, 0.3914940655, 0.2192797363, -0.2844054401, 0.2249102443, 0.1075527892, -0.0183574408, -0.1117919534, 0.0926159173, 0.1175079048, -0.4431256652, -0.0679437369, -0.2272985578, -0.3753505647, 0.132586807, -0.0316816643, 0.1135020107, 0.0622485727, 0.1203563213, 0.0003967583, 0.1120577753, -0.1463400871, 0.194309935, 0.0917975754, 0.2783540785, -0.1562720835, 0.0478584878, -0.2649520636, -0.0907748044, -0.1531644762, 0.1001146361, 0.1419306099, -0.1376613677, -0.2068956792, 0.2038151771, 0.2516916394, -0.262512207, 0.1488559991, -0.2941527069, -0.1333900094, -0.3269463181, 0.218889907, 0.2685705125, -0.0101764239, -0.0553016104, 0.2593251467, -0.3359721303, -0.2528076172, 0.0586053133, -0.0326533839, 0.1197474003, 0.1532146931, 0.3857435286, 0.5578312874, -0.0974077284, -0.3966266513, 0.2364943624, 0.482363075, -0.1004020274, 0.1028596908, -0.245223552, 0.1180024296, 0.3210249841, 0.1504741013, 0.484167099, -0.1821768135, -0.3888130784, 0.5509513617, 0.0933209807, -0.1055200845, -0.1948435009, 0.0620899424, -0.1472335309, -0.2354942262, 0.1320222765, 0.2544418573, 0.1740472317, -0.4353877306, -0.0554230884, 0.5197486281, 0.2001785636, 0.0402679741, 0.4844232798, 0.1650193334, -0.0563524924, 0.3396511674, 0.2591531575, 0.2522546351, 0.5600364208, -0.0156495199, 0.5746827126, 0.2159359157, 0.2291243821, -0.1778342575, -0.486479044, -0.1272127628, 0.3517715931, 0.2182941884, -0.0824781582, -0.2162062228, 0.2877642512, 0.3367441893, -0.1225600094, -0.0357288867, 0.166376695, -0.1916002035, -0.1216513813, -0.1463635415, -0.1660090685, -0.0130389407, 0.2312285006, -0.2712214589, -0.3700610399, 0.0600814931, 0.0320281722, -0.1057993397, -0.4628712535, 0.433558017, 0.0649347156, 0.0241065305, -0.2738916278, 0.2926000655, -0.2164280266, 0.0736269802, 0.0415444747, 0.2999281287, 0.4472160935, 0.4638702869, -0.0596711934, 0.010904409, -0.2410858124, 0.0245371759, -0.1439652741, 0.4624993205, 0.0349774696, 0.2712835371, 0.1345172971, -0.0633616596, -0.0324464738, 0.0050666807, 0.1022719666, -0.317035377, -0.1514538378, 0.0370286442, 0.1535602063, -0.3451305032, -0.1238740236, 0.1821553707, -0.2598914504, 0.0171437263, 0.9408840537, -0.345741272, 0.0535706766, -0.1901854426, 0.0102617145, -0.1116015017, 0.44366014, 0.4570567906, 0.0764182955, -0.3387857676, -0.0778189823, -0.3848977387, 0.2020055205, -0.2915289402, 0.2598516941, 0.0068154037, 0.0922792852, -0.0870106816, 0.0521691404, -0.2772391438, 0.3317891657, -0.3469389379, 0.0712583363, -0.076610744, 0.0129411072, -0.1179918349, 0.2422270477, -0.1184536815, -0.3655269146, 0.3441643119, -0.1634906977, -0.1625526845, -0.2217516154, 0.2344189435, 0.1863702834, -0.1241049916, 0.5211458802, 0.1639929265, 0.2844225168, 0.0696418285, 0.3814972043, -0.0657801926, 0.0296271034, -0.367936343, 0.2523975968, -0.0413008705, 0.0206544325, -0.2122358531, 0.1473592222, -0.045980528, 0.0547391213, -0.0601737946, -0.0250840485, -0.2111240327, -0.0575820059, -0.1792094857, 0.142264396, 0.0848785639, 0.2873156667, -0.0560957901, 0.0088379756, -0.3809770346, -0.2963832319, 0.2829847336, -0.4146686196, -0.3906491399, -0.1051527485, -0.0266614854, 0.5343503356, -0.2405608147, -0.5345795155, 0.0504025221, 0.5844874382, 0.0505464002, -0.3297668099, 0.3089815676, -0.2321650088, 0.0101888105, -0.1443695575, 0.5861440897, -0.1608719528, -0.2709833384, 0.0085742772, -0.1008409858 ]
https://github.com/huggingface/datasets/issues/1825
Datasets library not suitable for huge text datasets.
Yes indeed it was added a few days ago. The code is available on master We'll do a release next week :) Feel free to install `datasets` from source to try it out though, I would love to have some feedbacks
Hi, I'm trying to use datasets library to load a 187GB dataset of pure text, with the intention of building a Language Model. The problem is that from the 187GB it goes to some TB when processed by Datasets. First of all, I think the pre-tokenizing step (with tokenizer.map()) is not really thought for datasets this big, but for fine-tuning datasets, as this process alone takes so much time, usually in expensive machines (due to the need of tpus - gpus) which is not being used for training. It would possibly be more efficient in such cases to tokenize each batch at training time (receive batch - tokenize batch - train with batch), so that the whole time the machine is up it's being used for training. Moreover, the pyarrow objects created from a 187 GB datasets are huge, I mean, we always receive OOM, or No Space left on device errors when only 10-12% of the dataset has been processed, and only that part occupies 2.1TB in disk, which is so many times the disk usage of the pure text (and this doesn't make sense, as tokenized texts should be lighter than pure texts). Any suggestions??
41
Datasets library not suitable for huge text datasets. Hi, I'm trying to use datasets library to load a 187GB dataset of pure text, with the intention of building a Language Model. The problem is that from the 187GB it goes to some TB when processed by Datasets. First of all, I think the pre-tokenizing step (with tokenizer.map()) is not really thought for datasets this big, but for fine-tuning datasets, as this process alone takes so much time, usually in expensive machines (due to the need of tpus - gpus) which is not being used for training. It would possibly be more efficient in such cases to tokenize each batch at training time (receive batch - tokenize batch - train with batch), so that the whole time the machine is up it's being used for training. Moreover, the pyarrow objects created from a 187 GB datasets are huge, I mean, we always receive OOM, or No Space left on device errors when only 10-12% of the dataset has been processed, and only that part occupies 2.1TB in disk, which is so many times the disk usage of the pure text (and this doesn't make sense, as tokenized texts should be lighter than pure texts). Any suggestions?? Yes indeed it was added a few days ago. The code is available on master We'll do a release next week :) Feel free to install `datasets` from source to try it out though, I would love to have some feedbacks
[ -0.4051037431, 0.1390960962, 0.0155029371, 0.29045403, 0.2991150022, 0.0074271709, 0.0747687593, 0.3566737473, -0.328995049, -0.0648281425, 0.0511004627, 0.0604726076, -0.2490896136, 0.177726537, 0.044380717, 0.0889955014, 0.1888466328, 0.1591737866, 0.1126294732, 0.1340799034, 0.0361788794, -0.1229674742, -0.2318736315, 0.0238543004, -0.533865571, -0.2475269586, -0.0014844239, -0.2042945772, -0.4535928369, -0.316850394, -0.1865609288, 0.1878174841, 0.5089610219, 0.4989698231, -0.0001241754, -0.2766103148, 0.228096202, -0.0018141642, -0.2488396466, 0.0375929065, 0.4174692035, -0.29631266, -0.208859086, -0.1917601228, 0.1633434296, -0.2845403254, -0.0240783356, -0.0812099576, 0.1066377759, 0.0794831663, 0.0776782483, 0.0891764089, 0.0327627584, 0.1611440778, 0.1430722624, 0.0420883745, -0.0692555457, 0.0685505718, 0.4472160339, 0.0410755798, -0.1649745405, 0.1808107793, -0.1345978677, -0.0035428684, 0.3252602816, -0.0841969177, -0.1148666963, -0.1845384538, 0.2241888344, 0.2748838365, 0.5318579674, -0.4414387941, -0.2680336535, -0.5356898904, -0.1947639883, -0.2997774482, -0.0366854817, 0.1811594963, -0.0221888572, 0.2049566805, -0.4301463366, -0.4338746071, -0.1384975761, 0.3633368313, -0.2156592607, 0.1345004737, -0.1368913502, 0.111495927, 0.1807051301, -0.2048993111, 0.1003356203, -0.3374049664, 0.0127526708, 0.1920609176, -0.3882724643, -0.1360713989, -0.1989926994, -0.0134859048, 0.47187832, -0.0272690877, -0.425578028, 0.1566310674, -0.1229027957, 0.0211917553, 0.3621504009, 0.2150783539, -0.1023104787, 0.2536745965, 0.1884469688, -0.1695378423, -0.0573531054, -0.0731212795, -0.5236897469, -0.0749366358, 0.1081670225, -0.4771716297, -0.2528765202, -0.1971199811, -0.0683675408, 0.0907615051, -0.1943470836, 0.2627512813, 0.184591502, 0.1667826772, -0.0995505005, 0.0795413405, -0.2099234015, 0.1964031756, -0.1286839992, -0.1992129236, 0.0066114478, -0.0878102258, -0.2628049254, 0.1638804674, 0.1636521816, -0.0238198545, 0.1044934466, -0.0577498227, 0.0845347196, -0.0026515201, 0.1463347375, -0.3493956923, -0.0723239854, 0.0937065706, -0.0408832952, 0.3709302545, -0.2378411144, 0.0360972583, -0.2047559321, 0.3789346516, -0.251765579, -0.3602262735, -0.0587219745, 0.0722682253, -0.3575669825, 0.0288746618, -0.5238497257, 0.3691043556, 0.4520555139, 0.0841352567, 0.0100027137, -0.1078972667, -0.2290679961, -0.0152361766, 0.1661330163, 0.1557084918, -0.6027982235, 0.0375130475, -0.0748694092, 0.1012728512, 0.3304004073, 0.7473345995, -0.1570433974, 0.3759782314, -0.1028380245, 0.4475921988, 0.1434930265, 0.172567904, -0.5138145089, 0.4206914902, 0.0045102537, -0.144560799, -0.0063964054, 0.09623079, 0.3777562976, -0.1191316396, 0.1935288161, 0.3315508366, -0.0646062866, 0.0937099233, -0.3203213215, -0.3219235539, 0.134928599, 0.3081052899, 0.1901598722, -0.2884483039, -0.0160419233, 0.333759129, 0.1509051621, -0.1702379286, 0.3706076741, 0.1314392388, 0.226549387, 0.1637719721, -0.0087409988, -0.2258754373, 0.1498988569, 0.0636250898, 0.1120892316, -0.1439843178, -0.0422221944, -0.2829774618, 0.1273656338, -0.0255165994, 0.0055882432, 0.1112148389, -0.0991990939, -0.2185769826, -0.0950810462, 0.1362288892, -0.0690707415, -0.1132752448, -0.3314359486, 0.1292933971, -0.1011645347, 0.0312828198, 0.0371804535, -0.1410601735, 0.0365892947, 0.2281327695, -0.1317254901, -0.1346913278, 0.0014943108, 0.1887516975, 0.0156656317, -0.2401514351, -0.2595066726, 0.591811955, 0.2400096357, 0.0207166374, 0.2485298812, -0.0443750992, 0.047128506, -0.1107602268, 0.0558445379, 0.2861927748, 0.0867251381, 0.123967804, 0.0046204031, -0.2903570831, 0.0834712163, -0.0330149531, 0.1967632473, 0.0264624432, 0.271700114, 0.0683822632, 0.3077639341, 0.3182150722, -0.1597679704, -0.1507177055, 0.3479211926, -0.3244885504, 0.1942494661, 0.4423327446, -0.4264603257, -0.3297381401, 0.0858767182, -0.2397742718, 0.1328823566, 0.1559309363, 0.0524388291, -0.0497582853, 0.366088599, -0.0712773651, 0.1652620435, 0.1384436339, 0.1298760176, 0.2031742185, 0.1204417348, 0.1302974522, -0.1725421697, -0.0647162348, 0.195618093, 0.3540202379, -0.1527119428, 0.0529189408, -0.2162587345, -0.3077142239, -0.0110401027, 0.1897612214, -0.1802604496, 0.0459262282, 0.1223608106, 0.0164132025, 0.1256354749, 0.0556492582, 0.1618565172, 0.363315165, 0.0336523578, -0.3247651756, 0.1699573994, -0.0947103351, -0.4917177558, -0.0354663506, 0.343552649, -0.3346315026, 0.2998606265, 0.2190069109, 0.0502542779, -0.3155392706, -0.4621925056, 0.0175770633, 0.1138878912, 0.2294164002, -0.1505285501, 0.0415529907, -0.1999851465, 0.1622475684, -0.0843454748, -0.1278077662, -0.0805025175, 0.0736148804, -0.1590746939, -0.2185301632, 0.111352168, -0.0300944969, -0.2708158791, -0.1825365126, 0.2240140885, -0.1710544676, 0.0879484117, 0.0159656815, 0.0831059664, -0.014135167, -0.0620023236, -0.1454125941, 0.0298047289, -0.3128144145, 0.4159113467, 0.2049836516, -0.2109166682, -0.0561018623, 0.1267622709, -0.07173343, 0.3511764407, -0.5438866615, 0.3058473766, -0.1919423789, 0.1967352927, -0.1046427041, 0.0441000089, 0.0190383233, -0.1551858485, 0.1073558033, 0.1218109354, -0.2267124653, -0.2391877174, -0.1558685154, 0.340234369, -0.0448819697, 0.3125683069, 0.4254992008, 0.5209856033, -0.0903385729, -0.1613206714, 0.3123965263, 0.1599564254, 0.2083931267, -0.3067101538, -0.1090810597, 0.2963910699, -0.0646375269, -0.1498520225, 0.4975773096, 0.1420864761, -0.1262382269, 0.2444568872, -0.3252076209, -0.0537725389, -0.0712479949, 0.2029606849, -0.2755317986, 0.2106802762, -0.0213305019, -0.1758273691, -0.0468520634, -0.3733196259, -0.0410230495, 0.1587288678, -0.0383766741, 0.2196472287, -0.5036863685, 0.2241735458, -0.3506966531, 0.1727129221, -0.1008411646, 0.3289102316, 0.1193177402, 0.1923475564, 0.2529752851, 0.0295969956, 0.590569973, 0.1286062598, -0.1712752879, -0.1472328007, -0.1064747423, -0.1970105469, 0.0440700203, -0.1064046547, 0.2871228755, 0.4626606405, 0.467831403, -0.3716438413, -0.151019901, -0.2931527495, 0.5599130392, -0.011181362, -0.3234751523, -0.021163851, -0.1401322037, -0.5439130664, 0.1772213578, 0.1554723382, 0.3789794445, 0.109854959, -0.0748980865, -0.1285216957, -0.0583996102, 0.3375989199, -0.0386169627, 0.1393353939, -0.1615232676, 0.2351152003, -0.204826653, 0.1606554389, 0.5302140117, -0.0235484112, 0.1311442852, -0.270522356, 0.0150601044, 0.0480279364, 0.4064320624, 0.0143541992, -0.1317490786, 0.3606281877, -0.2724705935, 0.2747160792, -0.1869235635, 0.5377908349, 0.1321879923, 0.0761110261, -0.8546541929, -0.3134077787, 0.2389554679, 0.2096376419, -0.020394288, 0.2407510579, -0.1654564887, -0.2896408737, 0.2982033491, 0.095196113, 0.8781989813, -0.4335552156, 0.3147645593, -0.3794053793, 0.3414393365, 0.5416306853, -0.6066263914, -0.0487491637, -0.4083098471, 0.1615252346, 0.1442632526, 0.0018783957, 0.0331327468, 0.4243251681, 0.0419183746, 0.2461103499, 0.1147082746, 0.1426829398, 0.0231639892, 0.6419767141, -0.0407158658, -0.3181242347, -0.1395402551, 0.0397099182, -0.2120801806, -0.0449910648, -0.2248385251, 0.0811414421, 0.0633497387, 0.046765469, -0.297720015, -0.1569367349, -0.106802687, 0.1042601541, -0.0331255794, -0.1095274985, 0.5250967145, -0.0911675096, 0.2498137653, 0.525962472, -0.1830591559, 0.1304573715, -0.3457990289, -0.1237149537, 0.1785328388, -0.2479607016, 0.0235182811, -0.0207603574, 0.0566465408, -0.270975858, 0.1404962987, -0.0610770509, -0.1720452309, -0.0925641209, 0.5309397578, -0.2246365249, -0.1855243742, -0.2013038099, 0.0065350905, -0.0588908121, 0.0140480641, 0.2020165175, -0.0909736603, 0.3338698447, -0.003167606, -0.2340915501, -0.1526645869, 0.1435000896, 0.064766258, -0.0494585373, 0.4163269699, 0.2087787986, -0.1609242857, -0.1365438104, 0.3690232038, 0.2042340636, -0.1333568692, 0.1669917256, 0.215700537, 0.0336739421, -0.0534233414, 0.0314001366, 0.1624213755, -0.4770179093, -0.0215207264, -0.2094075382, -0.4017367959, 0.0650743693, -0.0659413934, 0.140086472, 0.0986139998, 0.1832355559, -0.121397607, 0.0774229094, -0.142604202, 0.3031954765, 0.0717251897, 0.2567865849, -0.2012079358, 0.0669809505, -0.2717161477, -0.0734872818, -0.1367839873, 0.1810039282, 0.0861928165, -0.1584146917, -0.1302121878, 0.2053360045, 0.2879725099, -0.3035105169, 0.1958217174, -0.2923233211, -0.157163769, -0.2866822779, 0.2603017092, 0.2527883947, 0.0190027282, -0.2047920525, 0.247549355, -0.1835204661, -0.3007826209, 0.1086714417, -0.0695389658, 0.1680460572, 0.1572904289, 0.3060737252, 0.5086447001, -0.1263927668, -0.2461179644, 0.2235289514, 0.5379692912, -0.139058575, 0.0469006151, -0.2240176201, 0.0562617332, 0.3431702554, 0.1255344898, 0.4919008613, -0.1794981658, -0.4391125441, 0.5194436908, 0.1138294637, -0.0627845228, -0.1875598431, 0.0103210844, -0.2073720545, -0.2274605334, 0.1133366153, 0.2939915061, 0.2318716198, -0.4301711321, -0.107314527, 0.4482294619, 0.2221771777, -0.0320121683, 0.3989518583, 0.2036204636, -0.0728803501, 0.3351422548, 0.3068632185, 0.2198586762, 0.5268706679, -0.0581780523, 0.4922592044, 0.1662912965, 0.2116734684, -0.2272537649, -0.5121082067, -0.2115657926, 0.4970754087, 0.2400820553, -0.1219466925, -0.2991297245, 0.2617679536, 0.2839817107, -0.162258938, -0.0132666677, 0.1090704203, -0.272247076, -0.1288956702, -0.1676671505, -0.1421463937, 0.0024209917, 0.2354133427, -0.2957066, -0.3620267212, -0.1098733991, -0.017090369, -0.1344926357, -0.4729761481, 0.3292237222, 0.1380203962, -0.0384657122, -0.2397851944, 0.3410390913, -0.2583074272, 0.0637730658, 0.0080563575, 0.1592167616, 0.3800539374, 0.4069362879, -0.0449397638, -0.0394806713, -0.2551727295, 0.1269797236, -0.1580905467, 0.4713902473, 0.1255231202, 0.244582206, 0.2040170878, -0.0757749528, -0.027360674, 0.0225054603, 0.1525159329, -0.3925789297, -0.1344254017, -0.0289973803, 0.1252280921, -0.308319211, -0.181784898, 0.1292361021, -0.2639214396, 0.0268081352, 0.9157549739, -0.3334178329, 0.0808727592, -0.1699117273, 0.0257631354, -0.2719905674, 0.4641676545, 0.4530326426, 0.0959289446, -0.4936906993, -0.100870803, -0.4239510596, 0.2393168062, -0.4164298177, 0.2648032904, -0.0322675407, 0.0965502113, -0.0368505418, 0.0834421962, -0.3513628244, 0.4076353312, -0.3663595915, 0.02912049, -0.1237227023, 0.1158566251, -0.1410601139, 0.1594539434, -0.115245007, -0.4063183665, 0.3437702358, -0.2157746404, -0.1688444912, -0.1341075003, 0.2802433372, 0.1360770464, -0.151736483, 0.4600013494, 0.1406886429, 0.2341685295, 0.142518878, 0.2970135808, -0.032654427, 0.1505417228, -0.3552690744, 0.1838358194, 0.0279489458, -0.0022605136, -0.1371672899, 0.2312855572, -0.0470790043, 0.0380466916, -0.0372096263, -0.0808863267, -0.1327137947, -0.0746402591, -0.1198438033, 0.1599335223, 0.0416635796, 0.3343159854, -0.0387920514, -0.0374470092, -0.3385152519, -0.2272848189, 0.2538478971, -0.4144104719, -0.2750647068, -0.1406800151, 0.0405464619, 0.6282324791, -0.2390318811, -0.5446510315, 0.0836586505, 0.5542649627, 0.0989969224, -0.2914943397, 0.2658553421, -0.1875572354, 0.0611149669, -0.1237357631, 0.4827390313, -0.1363037825, -0.2857729793, 0.0782939345, -0.1773692071 ]
https://github.com/huggingface/datasets/issues/1825
Datasets library not suitable for huge text datasets.
For information: it's now available in `datasets` 1.3.0. The 2.0 is reserved for even cooler features ;)
Hi, I'm trying to use datasets library to load a 187GB dataset of pure text, with the intention of building a Language Model. The problem is that from the 187GB it goes to some TB when processed by Datasets. First of all, I think the pre-tokenizing step (with tokenizer.map()) is not really thought for datasets this big, but for fine-tuning datasets, as this process alone takes so much time, usually in expensive machines (due to the need of tpus - gpus) which is not being used for training. It would possibly be more efficient in such cases to tokenize each batch at training time (receive batch - tokenize batch - train with batch), so that the whole time the machine is up it's being used for training. Moreover, the pyarrow objects created from a 187 GB datasets are huge, I mean, we always receive OOM, or No Space left on device errors when only 10-12% of the dataset has been processed, and only that part occupies 2.1TB in disk, which is so many times the disk usage of the pure text (and this doesn't make sense, as tokenized texts should be lighter than pure texts). Any suggestions??
17
Datasets library not suitable for huge text datasets. Hi, I'm trying to use datasets library to load a 187GB dataset of pure text, with the intention of building a Language Model. The problem is that from the 187GB it goes to some TB when processed by Datasets. First of all, I think the pre-tokenizing step (with tokenizer.map()) is not really thought for datasets this big, but for fine-tuning datasets, as this process alone takes so much time, usually in expensive machines (due to the need of tpus - gpus) which is not being used for training. It would possibly be more efficient in such cases to tokenize each batch at training time (receive batch - tokenize batch - train with batch), so that the whole time the machine is up it's being used for training. Moreover, the pyarrow objects created from a 187 GB datasets are huge, I mean, we always receive OOM, or No Space left on device errors when only 10-12% of the dataset has been processed, and only that part occupies 2.1TB in disk, which is so many times the disk usage of the pure text (and this doesn't make sense, as tokenized texts should be lighter than pure texts). Any suggestions?? For information: it's now available in `datasets` 1.3.0. The 2.0 is reserved for even cooler features ;)
[ -0.4345218241, 0.1332367063, 0.0117715374, 0.264824152, 0.2677348554, 0.0202761292, 0.0753501356, 0.3607459068, -0.3179916739, -0.0622064471, 0.0359683186, 0.0512573533, -0.2549732327, 0.1889113188, 0.0521262325, 0.0839584246, 0.1855184436, 0.1725184917, 0.1144119725, 0.1579607129, 0.0227793828, -0.1485539526, -0.2536754012, 0.0014495961, -0.5004290938, -0.2469412684, 0.0015425831, -0.2171643674, -0.449196279, -0.3404017091, -0.1768148094, 0.1993860453, 0.5116475224, 0.4627270699, -0.0001238177, -0.281329155, 0.2467758954, 0.0012897775, -0.2723435462, 0.0447510071, 0.387678057, -0.3245377243, -0.2008230835, -0.1749610901, 0.1608987004, -0.2847051024, 0.0148905125, -0.0699785352, 0.0965196341, 0.0494218469, 0.0779270828, 0.0929793417, 0.0187181979, 0.1376075149, 0.1242058799, 0.0346615575, -0.0822468176, 0.0537677333, 0.4505400658, 0.0497523397, -0.155213967, 0.1750815362, -0.1166121513, 0.0095221028, 0.3391449451, -0.1126098186, -0.1405125111, -0.1884114593, 0.2254880369, 0.2983861566, 0.5142068863, -0.4272145331, -0.2893554866, -0.5464208722, -0.2044094205, -0.3196325302, -0.0669308454, 0.1782540828, -0.0131109506, 0.2042058855, -0.4558202326, -0.4421235025, -0.1168553159, 0.3653901219, -0.2350142598, 0.1488131583, -0.1368508041, 0.1141697094, 0.1659150124, -0.2179450691, 0.112626642, -0.3288346529, 0.0219103284, 0.1951113492, -0.3774073124, -0.1529271007, -0.2038582116, -0.0359362513, 0.4822558761, -0.0165516157, -0.4332741201, 0.1530095041, -0.1389320344, 0.029494375, 0.3459943533, 0.2049814165, -0.1033097357, 0.2640488148, 0.198286742, -0.1752958298, -0.0434123799, -0.0784638375, -0.5217925906, -0.0583360977, 0.1153697371, -0.4676719308, -0.279463172, -0.1709811091, -0.0768823549, 0.089399673, -0.1661058664, 0.3055482805, 0.1728392839, 0.1523609161, -0.1039776057, 0.0859921798, -0.219154492, 0.1837835908, -0.09745951, -0.1802396327, 0.0022477023, -0.1083156765, -0.2347272933, 0.1755832434, 0.1531198472, -0.0435900502, 0.1302112341, -0.0576465651, 0.0576005094, 0.0121802688, 0.169793427, -0.3426533341, -0.0727013201, 0.1154426634, -0.0238893256, 0.3663885593, -0.2478743345, 0.0542963371, -0.2058061063, 0.3545785844, -0.2399347126, -0.3611764908, -0.0457571596, 0.0719052181, -0.3407800496, 0.0206721257, -0.5490441918, 0.3761830628, 0.4263476133, 0.0905839652, 0.0118542537, -0.118669048, -0.2479606867, -0.0161010716, 0.1722045243, 0.1334885657, -0.5778151751, 0.0366078541, -0.0681398809, 0.1124099344, 0.3034363985, 0.7545215487, -0.1512488425, 0.3304148018, -0.0916665941, 0.4423213005, 0.1452021003, 0.1598954499, -0.5134211183, 0.4223714769, 0.0371214449, -0.1640300751, -0.0128783435, 0.1075422168, 0.3807857335, -0.1396209151, 0.1872457564, 0.3340221047, -0.0645644292, 0.0848614872, -0.2775014043, -0.3438344598, 0.1302626282, 0.28808707, 0.1969875097, -0.2810752392, -0.0097939707, 0.3730163276, 0.1329236329, -0.155336827, 0.3648218215, 0.1345095634, 0.1909358799, 0.1730595529, -0.0348843038, -0.2371497899, 0.1483794451, 0.0740295872, 0.1063020378, -0.1766884476, -0.0091569014, -0.3077903092, 0.1440496892, -0.0243834816, 0.0311876368, 0.110327743, -0.1044519991, -0.2197158635, -0.0854508802, 0.1351992488, -0.1043638214, -0.1191574112, -0.3198540807, 0.1355398446, -0.089216128, -0.0005724505, 0.0629659817, -0.1361072659, 0.0411914662, 0.2246114761, -0.147646755, -0.1313588172, 0.021908164, 0.1872601807, 0.0183316283, -0.2357048988, -0.2702255249, 0.5758537054, 0.2275517285, 0.0480046496, 0.2099345475, -0.0309422165, 0.0352991484, -0.092043817, 0.0470423587, 0.2821455598, 0.1014202982, 0.1170901656, 0.0349609777, -0.2804764211, 0.1036205292, -0.0223458409, 0.193751812, 0.0064908788, 0.2591927052, 0.0792196915, 0.3156827688, 0.317997247, -0.180690825, -0.1745743752, 0.3581420183, -0.3210417926, 0.2150853723, 0.4250731468, -0.4366923869, -0.338296175, 0.072577104, -0.2350004166, 0.105622679, 0.1427422762, 0.0731133297, -0.0428088307, 0.363147229, -0.0525316745, 0.1752879918, 0.1317138821, 0.1352779418, 0.2091442645, 0.1257627457, 0.129895702, -0.1594124734, -0.0640986562, 0.1919548213, 0.3366983831, -0.1090404168, 0.0508372486, -0.208741799, -0.3060901761, 0.0004513375, 0.2116793096, -0.1640039384, 0.0426931083, 0.1251249015, 0.0437284335, 0.1306490898, 0.0544445515, 0.1263917536, 0.369322896, 0.0503857881, -0.3098161817, 0.1500755847, -0.0545791723, -0.4672500789, -0.0370834395, 0.3112080395, -0.3574154973, 0.2815754712, 0.2022110224, 0.0586504415, -0.3188082576, -0.447656095, 0.0214606933, 0.1317866594, 0.2077720463, -0.1410451978, 0.0467340574, -0.1914002001, 0.1635480076, -0.1014141962, -0.1061109304, -0.0787279755, 0.0649724752, -0.1645174325, -0.1977961361, 0.1205723137, -0.0024961308, -0.270437628, -0.1932477653, 0.2242641598, -0.1564696729, 0.0722558126, 0.0276170187, 0.064383015, -0.025846215, -0.0570877343, -0.1401273906, 0.0512428209, -0.3130625486, 0.4259619415, 0.2022452056, -0.1976531148, -0.0776710883, 0.1161191091, -0.0912988335, 0.358863771, -0.5269432068, 0.3114680946, -0.1990623176, 0.1910689324, -0.0856879503, 0.0177109186, 0.0093989968, -0.1782581359, 0.1044141501, 0.1252231598, -0.2186256349, -0.2550845146, -0.1566656083, 0.3327915668, -0.0344832577, 0.315412432, 0.4613988101, 0.5344964862, -0.0702421814, -0.1545266956, 0.3131115735, 0.1734438539, 0.2241768837, -0.332526058, -0.0860122964, 0.2662090659, -0.0626247823, -0.1146855503, 0.4754685163, 0.141180709, -0.1146157682, 0.2510148883, -0.35038656, -0.0248321518, -0.0610996485, 0.1744008958, -0.3004297912, 0.2343144715, -0.0234203711, -0.1732244939, -0.0275202356, -0.3812793493, -0.0580094159, 0.1766907573, -0.0298214667, 0.2385103405, -0.4791232944, 0.2534339726, -0.3464235663, 0.1705217063, -0.1004620492, 0.3617983162, 0.1357781142, 0.1863537431, 0.2199884355, 0.0214753971, 0.5436987877, 0.1241025701, -0.1632370949, -0.1701988578, -0.1254711747, -0.2008710951, 0.0512493774, -0.106446743, 0.2916577458, 0.4566515088, 0.4787532985, -0.3634495735, -0.1394795179, -0.2989524007, 0.5648918152, -0.0116859004, -0.2951665223, -0.0116855949, -0.1437799484, -0.5237721205, 0.1901266128, 0.153301388, 0.3718515038, 0.1237610877, -0.0931890085, -0.1831274629, -0.0919849575, 0.328253001, -0.0300573073, 0.0913554206, -0.1428200305, 0.2336043417, -0.2097427249, 0.144884795, 0.5053812861, -0.0385294966, 0.1447776556, -0.2899258733, 0.0055156946, 0.0698986799, 0.3870851696, -0.0314582512, -0.1435098797, 0.3864054978, -0.2510167956, 0.2598464787, -0.1936822981, 0.5484663248, 0.1282876581, 0.0551667213, -0.8614724874, -0.3365223408, 0.239101842, 0.2278054655, -0.0184536129, 0.2278816849, -0.1837543696, -0.2924679816, 0.2764531374, 0.1032718793, 0.8179162145, -0.4555811286, 0.3244090676, -0.4055630565, 0.3411646783, 0.5398202538, -0.5751264691, -0.0365351401, -0.3981423676, 0.1355867833, 0.1298667341, 0.0066976398, 0.0402745306, 0.4150403142, 0.0717971325, 0.2767039239, 0.1156628877, 0.1328900456, 0.0083339028, 0.6496938467, -0.0778858736, -0.310295254, -0.1348366439, 0.0370051004, -0.1922158301, -0.0505621023, -0.2243537605, 0.1070403904, 0.1151737273, 0.0607998967, -0.3009159565, -0.1705037951, -0.1133761853, 0.1218414605, -0.0318335816, -0.1087735668, 0.5061594248, -0.084153831, 0.246142149, 0.5565776229, -0.1738190651, 0.1275268793, -0.3588403761, -0.1274368912, 0.1747508347, -0.249972865, 0.0264443289, -0.0169455186, 0.097386241, -0.2636162937, 0.1535227299, -0.0709162131, -0.1601662934, -0.0865985677, 0.5369496346, -0.2056360245, -0.187161088, -0.2134483606, 0.0121408924, -0.0626672059, 0.0102581056, 0.1915260255, -0.0572931767, 0.2991551757, -0.0133969737, -0.2419012189, -0.1446448416, 0.1430331767, 0.0640012771, -0.0426906049, 0.4207985103, 0.182964474, -0.147790879, -0.1278966069, 0.3998600245, 0.2036782205, -0.1033187211, 0.1846522689, 0.2032352686, 0.0290572345, -0.060143888, 0.0495666973, 0.137486577, -0.4985468984, -0.052676551, -0.2140190005, -0.3960344195, 0.0668351799, -0.0665159971, 0.1478191614, 0.1198978573, 0.1561045647, -0.1483900994, 0.0702318773, -0.1334624141, 0.3090940118, 0.0708300248, 0.2612692714, -0.2005295753, 0.0824506581, -0.2894151211, -0.0595851243, -0.1407784373, 0.1734316796, 0.0907125771, -0.1506279707, -0.1572404504, 0.2040565461, 0.301505208, -0.2897495329, 0.1962044686, -0.2798903584, -0.1721051484, -0.301371783, 0.2562595904, 0.2545862794, 0.0247848593, -0.2037380934, 0.2178128362, -0.1880240887, -0.3108056486, 0.1195627302, -0.0631842315, 0.1413165927, 0.1413943768, 0.3235110343, 0.5331246853, -0.1139006317, -0.2503628135, 0.2166423202, 0.5411874652, -0.1625244319, 0.0464542806, -0.1985039413, 0.0562482402, 0.3416446149, 0.1208995357, 0.4793934524, -0.1609939635, -0.4485670626, 0.5291867256, 0.1018117666, -0.0579218343, -0.1864107251, -0.0204844195, -0.1886226982, -0.2163286209, 0.103205055, 0.2899165154, 0.2510036528, -0.4375891984, -0.1248649359, 0.4320605993, 0.2399142683, -0.0240662359, 0.4210997522, 0.2311269194, -0.0921540856, 0.3365712464, 0.3232382238, 0.2409474403, 0.5528314114, -0.0477682613, 0.526771903, 0.1754158139, 0.1959535778, -0.1960278153, -0.5036005378, -0.2226984352, 0.4708330631, 0.2283297479, -0.1109246314, -0.3145105839, 0.2295246869, 0.2637505531, -0.1477517784, -0.0191178694, 0.1155164391, -0.2704106569, -0.1847074926, -0.1443491727, -0.1364813596, 0.0266382694, 0.2635378242, -0.2816628218, -0.3591852784, -0.1041409448, -0.0335505269, -0.0890955329, -0.4542910457, 0.3771338761, 0.1530843377, -0.0305492394, -0.2375962138, 0.3415529132, -0.2511643767, 0.0685577691, 0.0139336437, 0.1642075032, 0.3705229759, 0.3742656112, -0.0429956093, -0.0434730053, -0.2629965842, 0.1246313676, -0.1643609703, 0.4631352723, 0.1134569049, 0.2455964386, 0.2111253738, -0.078047663, -0.0154690351, 0.0147946887, 0.129423514, -0.4031861126, -0.1628546268, -0.013906233, 0.1217600182, -0.2851451635, -0.1575857997, 0.171926856, -0.2431898117, 0.0065635517, 0.9193084836, -0.3252095878, 0.0808190107, -0.1628735214, 0.0249119885, -0.2839210629, 0.4645770788, 0.4519180655, 0.0823254436, -0.4455362558, -0.0914769173, -0.4034665227, 0.2238802314, -0.4040193558, 0.2532672584, -0.0449522287, 0.1031089202, -0.0548033565, 0.0809809119, -0.3658023477, 0.4317955971, -0.3566430211, 0.0201067589, -0.0732471198, 0.0947925448, -0.1340710968, 0.1532259434, -0.1174075902, -0.4135875702, 0.3353912532, -0.2376119047, -0.1686393172, -0.1295073032, 0.2847557366, 0.1521080434, -0.1714215875, 0.4486645162, 0.1417049468, 0.2121009827, 0.1436329782, 0.2874577045, -0.0233935341, 0.1706354618, -0.3489333689, 0.177958101, 0.0055745468, -0.0166498236, -0.1431227922, 0.2426624745, -0.0186136011, 0.0469748974, -0.0603478067, -0.0916926265, -0.1263714433, -0.0789711997, -0.1517832577, 0.1540198475, 0.0576656386, 0.3408266306, -0.0482657813, -0.0625470877, -0.310564816, -0.2342226058, 0.2298223674, -0.4213121831, -0.2648096085, -0.1801566482, 0.0154335387, 0.6642017365, -0.2201964408, -0.5252723098, 0.1011430025, 0.5639670491, 0.0911810547, -0.3091642857, 0.2561301887, -0.1819330454, 0.062925607, -0.1353605688, 0.4806588888, -0.1493543833, -0.2951601148, 0.0539434552, -0.1682290137 ]
https://github.com/huggingface/datasets/issues/1825
Datasets library not suitable for huge text datasets.
Hi @alexvaca0 , we have optimized Datasets' disk usage in the latest release v1.5. Feel free to update your Datasets version ```shell pip install -U datasets ``` and see if it better suits your needs.
Hi, I'm trying to use datasets library to load a 187GB dataset of pure text, with the intention of building a Language Model. The problem is that from the 187GB it goes to some TB when processed by Datasets. First of all, I think the pre-tokenizing step (with tokenizer.map()) is not really thought for datasets this big, but for fine-tuning datasets, as this process alone takes so much time, usually in expensive machines (due to the need of tpus - gpus) which is not being used for training. It would possibly be more efficient in such cases to tokenize each batch at training time (receive batch - tokenize batch - train with batch), so that the whole time the machine is up it's being used for training. Moreover, the pyarrow objects created from a 187 GB datasets are huge, I mean, we always receive OOM, or No Space left on device errors when only 10-12% of the dataset has been processed, and only that part occupies 2.1TB in disk, which is so many times the disk usage of the pure text (and this doesn't make sense, as tokenized texts should be lighter than pure texts). Any suggestions??
35
Datasets library not suitable for huge text datasets. Hi, I'm trying to use datasets library to load a 187GB dataset of pure text, with the intention of building a Language Model. The problem is that from the 187GB it goes to some TB when processed by Datasets. First of all, I think the pre-tokenizing step (with tokenizer.map()) is not really thought for datasets this big, but for fine-tuning datasets, as this process alone takes so much time, usually in expensive machines (due to the need of tpus - gpus) which is not being used for training. It would possibly be more efficient in such cases to tokenize each batch at training time (receive batch - tokenize batch - train with batch), so that the whole time the machine is up it's being used for training. Moreover, the pyarrow objects created from a 187 GB datasets are huge, I mean, we always receive OOM, or No Space left on device errors when only 10-12% of the dataset has been processed, and only that part occupies 2.1TB in disk, which is so many times the disk usage of the pure text (and this doesn't make sense, as tokenized texts should be lighter than pure texts). Any suggestions?? Hi @alexvaca0 , we have optimized Datasets' disk usage in the latest release v1.5. Feel free to update your Datasets version ```shell pip install -U datasets ``` and see if it better suits your needs.
[ -0.4028153419, 0.0771393776, 0.0086003318, 0.3193155527, 0.3035770059, 0.0233493, 0.0301558543, 0.355931133, -0.2499679923, -0.0241901428, 0.0388908684, 0.1070221812, -0.2629808784, 0.1188514605, 0.0347163267, 0.1091511101, 0.2107037008, 0.1721985936, 0.1067034155, 0.1461049467, 0.0033635646, -0.0768987834, -0.235955894, -0.0442243703, -0.4917667806, -0.246796757, -0.0052544773, -0.2256905735, -0.4161316752, -0.3108099699, -0.1463018805, 0.2057923675, 0.4900789857, 0.498064965, -0.0001231333, -0.2699461579, 0.2363726199, 0.0186439529, -0.3187196255, 0.0508897752, 0.4693200588, -0.3577678204, -0.2028603256, -0.2081340253, 0.1659418792, -0.2171033025, -0.0014261669, -0.1183155775, 0.1075648665, 0.054120481, 0.0970021039, 0.1303242743, 0.0105503127, 0.1590500176, 0.1015546769, 0.0934821218, -0.0940496773, 0.0596260242, 0.4631818235, 0.0898428932, -0.1676843762, 0.2201167941, -0.1535093188, 0.0276000351, 0.363045305, -0.0872998089, -0.0916155428, -0.1663147509, 0.2746695578, 0.2592950761, 0.5688686371, -0.4413161278, -0.2612149119, -0.5455194712, -0.2219269127, -0.2722449899, 0.0044183191, 0.1677698195, -0.0375922248, 0.1915648878, -0.4412501454, -0.4712104797, -0.0885307491, 0.3492922485, -0.2183879316, 0.0799289942, -0.1663345397, 0.1026662141, 0.2382718623, -0.2418371886, 0.1028118879, -0.3338502347, 0.0022665327, 0.1644578129, -0.3736108243, -0.1478252411, -0.2142486572, -0.0576938726, 0.4252459705, 0.0029206555, -0.4150720835, 0.1444520652, -0.1237991229, 0.0363090783, 0.3516072333, 0.2578932047, -0.0990970358, 0.2503685057, 0.1979774833, -0.1737039983, -0.0160003752, -0.1105488166, -0.5208444595, -0.0662996843, 0.1376716644, -0.5249607563, -0.2645243704, -0.1763340235, -0.0862714946, 0.0780045837, -0.0980496481, 0.245983243, 0.1834305227, 0.1818473637, -0.0734421462, 0.1200843304, -0.1878757775, 0.1694706678, -0.1226169467, -0.167670399, 0.0043567792, -0.1066700667, -0.228706032, 0.1115946919, 0.1700582355, -0.0129802879, 0.1193300262, -0.0604935363, 0.0389973223, 0.0096376836, 0.1425360888, -0.3770751059, -0.0747798979, 0.1250582784, -0.0162477195, 0.3819415867, -0.2452010661, 0.043857947, -0.2310597003, 0.3684505224, -0.2714807391, -0.3721603155, -0.1170412153, 0.0728530511, -0.3259705007, -0.0053126458, -0.6098569632, 0.359302789, 0.4154553413, 0.087837778, -0.0540280826, -0.1027544811, -0.2495369613, -0.0512957163, 0.1633381546, 0.1536834836, -0.5558543801, 0.0424051508, -0.1050060689, 0.1381261349, 0.3448683918, 0.7818448544, -0.1540690809, 0.3443175554, -0.0837313458, 0.3829892874, 0.1397250891, 0.0865027308, -0.5390254855, 0.4260478914, 0.0805560946, -0.1469303071, 0.0165786073, 0.1089472324, 0.3508242071, -0.1401629001, 0.1549423784, 0.3197363615, -0.0168226901, 0.0955381989, -0.3492799699, -0.3166875839, 0.1213874519, 0.3060806394, 0.1666432619, -0.3364425302, -0.0267377496, 0.3738552034, 0.1500834376, -0.1257286966, 0.3451296389, 0.1695320904, 0.2498044521, 0.179723531, -0.0031750873, -0.2126872689, 0.1286491454, 0.0907981098, 0.1697637439, -0.1913999468, -0.0275452621, -0.27726686, 0.1492591202, -0.0167025551, 0.0196451638, 0.1086304784, -0.0833171755, -0.2104957402, -0.0578192398, 0.1369719356, -0.0665688813, -0.1515646577, -0.3148000836, 0.1400072575, -0.0645669699, 0.0235899314, 0.0524302125, -0.1167231798, 0.0183349624, 0.2091656327, -0.1672680676, -0.1363950819, 0.012123175, 0.194898501, 0.0151769035, -0.2138115764, -0.199900195, 0.5545610189, 0.2331965268, 0.0591156706, 0.2807887197, -0.0021754485, 0.0538059957, -0.0984086618, 0.0032170173, 0.2129259408, 0.0822622925, 0.1509801596, -0.0122650191, -0.2621987462, 0.1246825457, 0.0181972906, 0.2300264239, 0.0179347396, 0.2678827941, 0.0690591633, 0.3252795339, 0.3191107213, -0.1439493001, -0.1528828591, 0.3700924516, -0.3132961392, 0.2127895653, 0.4723601937, -0.4098826051, -0.3531784415, 0.0724829584, -0.1715943664, 0.1418940723, 0.1543641388, 0.0579907671, -0.0924888775, 0.386777252, -0.0452662446, 0.2055204511, 0.1396346241, 0.1116905883, 0.1776806265, 0.1302105188, 0.1157865822, -0.1611311734, -0.0654387921, 0.1719735116, 0.3680223823, -0.1127543896, 0.0396663919, -0.2015715241, -0.2762776613, 0.0119577572, 0.223887071, -0.1521975994, 0.0127018765, 0.0925222337, 0.0416020937, 0.1437934637, 0.0740732402, 0.2089529634, 0.3292386532, 0.0085597709, -0.3077065647, 0.115359515, -0.0328586362, -0.4963885844, -0.0283088181, 0.3630423546, -0.3414938748, 0.2948133945, 0.1539148986, 0.0766328797, -0.3204393089, -0.4033298194, -0.013397092, 0.1026635766, 0.2224614918, -0.1516815573, 0.0797144696, -0.2505561709, 0.1806446612, -0.0657987148, -0.1377867758, -0.0574447848, 0.0679610595, -0.1512972414, -0.2519558072, 0.098115921, -0.0180101097, -0.3014726639, -0.1782748401, 0.2398394346, -0.1504434943, 0.1131774187, 0.014203839, 0.0704072267, -0.0160822906, -0.057249181, -0.1329590678, 0.0318352208, -0.3583614826, 0.4102058709, 0.2523450851, -0.175455451, -0.0017284006, 0.1510431916, -0.0866940469, 0.2985331714, -0.5361640453, 0.2482322007, -0.2271318287, 0.1707009077, -0.0989367962, 0.0939540565, 0.0085233822, -0.1408997476, 0.112637423, 0.1357522309, -0.237764433, -0.2494041026, -0.1299274266, 0.3253560364, -0.0392632671, 0.3188127279, 0.5074319839, 0.4777012169, -0.0744746476, -0.1131633446, 0.3097049296, 0.1841124594, 0.2432106733, -0.3235912919, -0.1137648821, 0.2541648746, -0.0705373734, -0.1344351619, 0.456322372, 0.1818729341, -0.1035492718, 0.2594857216, -0.3549361825, -0.0414932221, -0.0583155565, 0.2022916675, -0.2457620651, 0.208710447, -0.0166272447, -0.160921216, -0.0318123437, -0.3627415001, -0.0547644719, 0.1677935123, -0.0110035948, 0.2217928618, -0.4764857888, 0.2394006848, -0.3992721438, 0.1984274387, -0.1730270982, 0.3066080213, 0.1419066489, 0.211469233, 0.2595523298, 0.0174003392, 0.549284637, 0.1528875679, -0.1475339234, -0.1698977202, -0.1421880424, -0.2579240501, 0.0550859272, -0.1505862772, 0.2799942493, 0.4357593954, 0.5038671494, -0.364741683, -0.2012862265, -0.3397356272, 0.5800453424, -0.0480563603, -0.2907161415, -0.0267971233, -0.2180375457, -0.5310122967, 0.1750017405, 0.1872733682, 0.3673220277, 0.1741117388, -0.0582786836, -0.1614657193, -0.0703893751, 0.3420440257, -0.0464396439, 0.1844157428, -0.1968514323, 0.2335069478, -0.2128453851, 0.1189101636, 0.5117976069, -0.0424067155, 0.0731495023, -0.206035316, -0.0037424639, 0.0500433557, 0.3726010621, -0.033047758, -0.1493565589, 0.3144879341, -0.2959530354, 0.2798677087, -0.2172096968, 0.4888460636, 0.1572150886, 0.0978677422, -0.7616373897, -0.3631929755, 0.2361016124, 0.2465046197, -0.022233285, 0.1951889396, -0.1537140608, -0.286221683, 0.3004185557, 0.1105558723, 0.8260048628, -0.4686468244, 0.2963404059, -0.363117069, 0.3105924726, 0.5010316372, -0.6091920733, -0.032178726, -0.3963598907, 0.1395548284, 0.1546206623, 0.0086517483, 0.045843482, 0.406832993, 0.0398776159, 0.3078386486, 0.1045459956, 0.0989684165, -0.0132915583, 0.6598162651, -0.1008163616, -0.3176690042, -0.1528225988, 0.060333509, -0.2292143852, -0.0482930765, -0.1904263645, 0.0984812975, 0.1104765609, 0.0445941091, -0.3024246097, -0.2183115482, -0.107822299, 0.1403214782, -0.0309800245, -0.0960663557, 0.4986240268, -0.0021383017, 0.2062822431, 0.5608214736, -0.1603027582, 0.1573553085, -0.3864062428, -0.0873468816, 0.1849468052, -0.1999980807, -0.0410520434, -0.0567887127, 0.0958382189, -0.3077459931, 0.1138443202, -0.068825841, -0.1552897096, -0.0821395516, 0.4945063293, -0.1761371195, -0.2396703959, -0.242515713, -0.0239895023, -0.0590675846, 0.0263953023, 0.2346218228, -0.0767953545, 0.3747394085, -0.0302203484, -0.2205345035, -0.1249230504, 0.1324593276, 0.0872407258, -0.0343006328, 0.4078706801, 0.1404272318, -0.1649449915, -0.1530835927, 0.4082033634, 0.1247077361, -0.1289007962, 0.2105678916, 0.2344240844, 0.0088984817, -0.0501610041, 0.0030257544, 0.1752152741, -0.5009049773, -0.0918842554, -0.1805161834, -0.3987694085, 0.073657237, -0.0459939837, 0.1356542557, 0.1200379878, 0.0612377375, -0.1396031231, 0.0608017594, -0.1573094279, 0.3485962451, 0.0797352642, 0.2396009266, -0.2243044376, 0.0398440957, -0.2172419876, -0.0972270221, -0.126770407, 0.1385208666, 0.093940042, -0.1650672406, -0.1413879842, 0.1879231781, 0.2528237104, -0.2673341334, 0.1879467219, -0.2861519456, -0.1580533683, -0.3490871191, 0.2193030566, 0.2547695339, 0.0222538207, -0.185841471, 0.2162827849, -0.2088622898, -0.2859122157, 0.1125048697, -0.067804426, 0.1309941113, 0.1480816305, 0.3166667819, 0.5489239693, -0.1366278082, -0.2980537713, 0.1985021234, 0.5358870625, -0.1197688431, 0.0347274169, -0.2065893114, 0.0574981049, 0.3748195171, 0.1081885844, 0.4812158942, -0.1683334708, -0.4468157887, 0.4947701693, 0.1289744675, -0.0571263693, -0.2476888299, 0.002981931, -0.180635199, -0.2533293664, 0.0809943378, 0.3137275577, 0.201420784, -0.406683743, -0.1012645066, 0.5237572789, 0.165332213, 0.0029216819, 0.4272443652, 0.2243707776, -0.1126740426, 0.3166329265, 0.293941319, 0.2337685972, 0.5904653072, -0.0754010975, 0.5070319772, 0.219557941, 0.1999551803, -0.2541434467, -0.4688104689, -0.2125880718, 0.4607969224, 0.2010649145, -0.1069235727, -0.3281905055, 0.2388101965, 0.2232536077, -0.1692098975, -0.050106883, 0.0795331225, -0.2972471714, -0.1967018098, -0.0497734286, -0.0938537419, 0.0315488279, 0.2399545312, -0.2930005789, -0.3910027444, -0.1438049376, -0.0094449893, -0.1031278074, -0.3992472291, 0.3458121717, 0.137921989, -0.033060696, -0.2205663174, 0.3262318075, -0.2420053184, 0.077866286, -0.0303840842, 0.1417760551, 0.3925178349, 0.3610637188, -0.0422689356, -0.0485453829, -0.2711453438, 0.1492199153, -0.182867825, 0.4642490149, 0.0610439479, 0.2757787406, 0.1816595793, -0.0559629537, -0.0337355509, -0.0268848408, 0.1235692352, -0.3364809453, -0.148485288, -0.0217153616, 0.0802413896, -0.2911399305, -0.14841941, 0.1495285928, -0.2476089299, -0.0356493182, 0.8947809339, -0.2939737439, 0.0742619783, -0.1504416019, 0.0362366661, -0.2652700245, 0.4319397509, 0.418150723, 0.0045710774, -0.4741910696, -0.0920987725, -0.4654784203, 0.1554789543, -0.386072576, 0.2582812905, -0.0038846917, 0.1088587567, -0.0433048494, 0.0417879708, -0.3536687791, 0.4079421461, -0.3383268714, -0.0126242545, -0.1160093322, 0.1326440871, -0.130485639, 0.1457921714, -0.0697083175, -0.4247710109, 0.3027366698, -0.2206452936, -0.1616444886, -0.1389223933, 0.3290127218, 0.1359473169, -0.0847080871, 0.4330038726, 0.1464905739, 0.1933500767, 0.1440929025, 0.230001241, -0.0101876017, 0.1664085388, -0.3035308719, 0.1640968919, 0.0135092083, 0.0317512229, -0.1838488579, 0.2569764853, -0.0370004699, 0.067478478, -0.0618178621, -0.0744778663, -0.1171977296, -0.0723750591, -0.1005487666, 0.1552348435, 0.0650889128, 0.3275765181, -0.0324824154, -0.059436515, -0.382610023, -0.2208423465, 0.2281023115, -0.3616301715, -0.2914254665, -0.1502734721, 0.0420758165, 0.6636847258, -0.1947216094, -0.5574439764, 0.094189778, 0.5367164016, 0.0990345925, -0.3179397881, 0.2728791535, -0.1779841483, 0.057638973, -0.0885170624, 0.5082889199, -0.158369258, -0.3004290462, 0.0639646277, -0.154406324 ]
https://github.com/huggingface/datasets/issues/1821
Provide better exception message when one of many files results in an exception
Hi! Thank you for reporting this issue. I agree that the information about the exception should be more clear and explicit. I could take on this issue. On the meantime, as you can see from the exception stack trace, HF Datasets uses pandas to read the CSV files. You can pass arguments to `pandas.read_csv` by passing additional keyword arguments to `load_dataset`. For example, you may find useful this argument: - `error_bad_lines` : bool, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will be dropped from the DataFrame that is returned. You could try: ```python datasets = load_dataset("csv", data_files=dict(train=train_files, validation=validation_files), error_bad_lines=False) ```
I find when I process many files, i.e. ``` train_files = glob.glob('rain*.csv') validation_files = glob.glob(validation*.csv') datasets = load_dataset("csv", data_files=dict(train=train_files, validation=validation_files)) ``` I sometimes encounter an error due to one of the files being misformed (i.e. no data, or a comma in a field that isn't quoted, etc). For example, this is the tail of an exception which I suspect is due to a stray comma. > File "pandas/_libs/parsers.pyx", line 756, in pandas._libs.parsers.TextReader.read > File "pandas/_libs/parsers.pyx", line 783, in pandas._libs.parsers.TextReader._read_low_memory > File "pandas/_libs/parsers.pyx", line 827, in pandas._libs.parsers.TextReader._read_rows > File "pandas/_libs/parsers.pyx", line 814, in pandas._libs.parsers.TextReader._tokenize_rows > File "pandas/_libs/parsers.pyx", line 1951, in pandas._libs.parsers.raise_parser_error > pandas.errors.ParserError: Error tokenizing data. C error: Expected 2 fields in line 559, saw 3 It would be nice if the exception trace contained the name of the file being processed (I have 250 separate files!)
129
Provide better exception message when one of many files results in an exception I find when I process many files, i.e. ``` train_files = glob.glob('rain*.csv') validation_files = glob.glob(validation*.csv') datasets = load_dataset("csv", data_files=dict(train=train_files, validation=validation_files)) ``` I sometimes encounter an error due to one of the files being misformed (i.e. no data, or a comma in a field that isn't quoted, etc). For example, this is the tail of an exception which I suspect is due to a stray comma. > File "pandas/_libs/parsers.pyx", line 756, in pandas._libs.parsers.TextReader.read > File "pandas/_libs/parsers.pyx", line 783, in pandas._libs.parsers.TextReader._read_low_memory > File "pandas/_libs/parsers.pyx", line 827, in pandas._libs.parsers.TextReader._read_rows > File "pandas/_libs/parsers.pyx", line 814, in pandas._libs.parsers.TextReader._tokenize_rows > File "pandas/_libs/parsers.pyx", line 1951, in pandas._libs.parsers.raise_parser_error > pandas.errors.ParserError: Error tokenizing data. C error: Expected 2 fields in line 559, saw 3 It would be nice if the exception trace contained the name of the file being processed (I have 250 separate files!) Hi! Thank you for reporting this issue. I agree that the information about the exception should be more clear and explicit. I could take on this issue. On the meantime, as you can see from the exception stack trace, HF Datasets uses pandas to read the CSV files. You can pass arguments to `pandas.read_csv` by passing additional keyword arguments to `load_dataset`. For example, you may find useful this argument: - `error_bad_lines` : bool, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will be dropped from the DataFrame that is returned. You could try: ```python datasets = load_dataset("csv", data_files=dict(train=train_files, validation=validation_files), error_bad_lines=False) ```
[ -0.1087329984, -0.4190312028, 0.0075154379, 0.2815204263, 0.1845358312, 0.1635627896, 0.1409222335, 0.3934292197, 0.2262877822, 0.2882854342, 0.2727557123, -0.2174745351, -0.0589206852, -0.2714684904, -0.2407846749, -0.1619681269, 0.0860742182, 0.1235786676, 0.2567388713, -0.0407730974, -0.0435576774, 0.172932148, 0.1145247966, 0.2511813641, -0.4897428155, -0.2769160569, -0.3172522783, 0.3817557096, 0.2166703045, -0.5677114129, 0.0001505911, 0.0310577415, 0.1003035456, 0.5251942277, -0.0001157862, -0.1504171789, 0.1501867473, 0.0271879807, -0.377884835, -0.1116748452, -0.185666427, -0.6877270937, -0.0241564289, -0.2813292146, 0.3580898643, -0.0366705954, 0.2445521653, -0.1590945572, 0.3761558533, 0.3548003435, 0.0947954357, -0.1653122604, 0.258282721, -0.0023043267, 0.3424386978, 0.1431550384, 0.0669533238, 0.2645776868, 0.3179497123, -0.4284530282, -0.2257969826, 0.0672471449, -0.2100598216, 0.0604889132, 0.0722261667, 0.0547767356, 0.3765810132, -0.1714557707, -0.2216405272, 0.4012447, 0.2046242207, -0.1446510702, -0.5563564897, -0.6639553905, 0.1868024021, -0.299066782, -0.0956110507, 0.3052094877, -0.2246572226, 0.1164680049, 0.3411988914, -0.1564718485, -0.3696018457, -0.0656502694, -0.0943444073, -0.177450791, 0.1163331568, -0.0665729046, 0.0795393586, -0.0301016755, -0.2295915931, -0.0244010352, -0.1405244768, -0.0659566596, -0.5154394507, -0.0611238033, 0.1398732066, -0.5946626067, 0.2344191521, -0.387250632, 0.3423087001, 0.1268077642, -0.0876093954, 0.3240605891, 0.3673043251, -0.1802646965, 0.0446516648, -0.0735893101, 0.4588176012, 0.0975562707, -0.1286378205, -0.1786254644, 0.0580482073, -0.2865336239, 0.0131827891, 0.4915902019, 0.0972695574, -0.2422264963, -0.562576592, 0.1740456522, -0.2998228967, -0.1295001805, -0.101907596, 0.3863109052, -0.1491404176, 0.294147402, -0.0718411952, 0.0743074715, 0.1058582664, -0.3490164876, 0.0190029293, 0.0955065116, -0.1309890747, 0.1971978843, -0.1066787988, 0.0426527224, -0.105327934, 0.2125283033, 0.1612883359, -0.1958128661, -0.0266666152, -0.4223655164, -0.0123045072, 0.1347551495, 0.036086835, 0.278717339, 0.1180072129, -0.1997918785, -0.0155295879, 0.0390921086, -0.5052164197, -0.4055265188, -0.1516360641, -0.0190637931, 0.2258602977, 0.2026076615, -0.1184595078, 0.254349798, -0.0653015524, -0.1149036363, -0.096118018, -0.1168491989, 0.2591305375, -0.3146845996, 0.0744723678, 0.5779362321, -0.3668701649, 0.2835256457, -0.1532495618, 0.0071682036, 0.3014098406, 0.5016702414, -0.2213500142, 0.3920572996, -0.3043754101, 0.2214910239, 0.0214416273, -0.2410397232, 0.069612816, 0.5922528505, -0.099507764, 0.3384661674, 0.4496507943, -0.0548263639, 0.0299318209, -0.1319980323, 0.2314149737, 0.1058333516, -0.2101562917, 0.1193099245, -0.1383869052, -0.0164881349, 0.0586401783, -0.0880045295, -0.0457930453, -0.1698715538, 0.3214453459, -0.1717793196, 0.6836053729, -0.2008426189, -0.1986036003, 0.3270803094, 0.3706171215, 0.1801683903, -0.3365704119, 0.1081393361, -0.1433930248, -0.0562940091, -0.0956451893, -0.04063062, -0.3002386987, -0.3844310641, 0.0482084975, -0.188055113, 0.1139164716, 0.0421365984, 0.0909382403, 0.1164958924, -0.2879985571, -0.1191723943, 0.126744315, 0.4215734005, -0.3311342299, 0.2209107429, 0.2074858695, 0.0408953801, -0.1284811497, -0.0950805098, 0.1966288984, 0.0105176419, 0.3892309964, -0.23856619, -0.0453909338, 0.4332704544, 0.0857673511, -0.0695130825, -0.0058441763, 0.0081364885, 0.1619237959, 0.1554268748, -0.2069428414, -0.1082890332, -0.2072975039, 0.0152074844, -0.1600510478, 0.1527826041, 0.1803390086, 0.18122226, 0.135561049, 0.0601343811, 0.1999209076, 0.0841965228, 0.2385477126, -0.018100448, 0.0409563035, -0.1881005168, -0.1225962788, -0.0814205483, -0.5105938911, -0.0667408109, 0.3919044137, -0.0359768234, 0.1042284369, 0.3644505739, 0.2609387338, 0.0450896695, 0.4243877232, 0.2009594589, 0.3029171228, 0.2737502754, -0.1668340862, -0.1221467555, -0.2403464913, -0.0530330166, 0.1558333635, 0.2600558698, -0.0753521696, 0.281139046, -0.0913240165, 0.1730603278, -0.0010682791, -0.5670700073, -0.0049581788, 0.193350628, -0.4135926068, 0.1167608127, -0.3286733329, -0.4525232315, -0.3685522079, 0.0141994245, -0.1077621877, -0.2883922458, -0.0081440285, 0.1077217013, -0.1718173772, -0.0819018483, 0.0299162716, 0.1688561141, 0.0349314958, 0.2562252283, -0.0761336386, 0.1002631336, -0.1177721918, -0.1330837607, 0.3697408736, -0.1396032274, 0.0051860418, -0.0098294318, -0.238626197, -0.368198514, 0.0867846757, 0.0194472056, -0.0267847404, -0.1194074899, 0.2449994683, 0.3923152685, -0.122242175, -0.5848964453, 0.1295443326, 0.0119565576, 0.0188378021, 0.0164074302, 0.1567735225, 0.0439008176, -0.0345851816, -0.1233543381, -0.1896685064, -0.4294611216, 0.1302320957, -0.4879536629, 0.3233156502, 0.2519039214, 0.2206078172, 0.1107883453, -0.0591550842, 0.350651741, 0.2963025272, -0.268956095, 0.1074778736, -0.1403617561, -0.1288819611, 0.0123321787, 0.0599700212, -0.1671209931, 0.1541719437, -0.4859210253, -0.2744221985, -0.072059609, -0.0810689554, -0.1790813804, 0.0421774015, -0.0532374531, 0.0425297208, -0.1384542882, 0.1540129781, -0.0546145998, -0.0860620141, 0.0819202662, 0.551102221, -0.1832881421, 0.380451113, 0.2542592883, 0.4371029139, 0.0799586773, 0.2348532528, 0.3483045995, 0.151468128, 0.2243078351, 0.4164161384, -0.0817880556, 0.0672472268, -0.4160608947, -0.1437937766, 0.0633478016, -0.0692746639, 0.0354940593, 0.0847487599, -0.1507844329, -0.3204996288, -0.4465424418, 0.2643265724, -0.338742584, 0.0958344266, -0.1978264153, -0.2251449823, 0.1519885212, 0.1821353883, 0.1994281113, 0.3629789352, 0.4580830634, -0.0320935622, 0.4049343765, -0.4784294665, -0.22039406, 0.2758816481, 0.1289046407, 0.41577214, -0.2298938334, 0.2235708088, -0.130199492, 0.0188214779, 0.8039572835, -0.2620460987, -0.3299182057, -0.0154310241, 0.068154633, 0.1336501837, -0.157827884, -0.179995209, 0.4455318153, 0.2653980851, 0.3116162121, -0.4177494049, -0.2524326444, -0.0584325083, 0.4364770353, -0.0185253248, 0.0429909453, -0.0998031348, 0.0102294907, -0.2890788615, 0.2386061102, 0.2925157249, -0.0136913955, -0.0169364102, -0.2078025192, -0.0076674987, -0.0479654633, 0.4319798648, 0.1046216711, 0.1274831444, -0.3237044513, -0.0890049636, -0.0513637625, 0.4259847105, 0.8350529671, 0.2568826377, -0.4463809729, -0.4004333019, -0.0267004948, -0.118292436, 0.6949507594, 0.5460370779, 0.0011482574, 0.3498131633, -0.2061713636, 0.1629812866, -0.0017579272, 0.240500927, 0.4419851005, 0.2451387048, -0.5271654725, -0.2777051628, -0.0143190622, 0.2728558183, -0.1527778953, 0.2488197684, 0.2822424173, -0.3482762277, 0.4481821358, -0.2180047929, 0.9202817678, -0.1080997139, 0.1769840568, -0.233466357, -0.235528484, 0.4540650249, -0.4126850367, 0.246037811, -0.3492016792, -0.4742127955, -0.1100325584, 0.0365058631, 0.3672524989, 0.3979193568, -0.0953563079, 0.4710980058, -0.0768572241, -0.0594707392, -0.1357295364, 0.495211035, -0.0808082223, -0.2098915726, -0.4640030265, -0.0342162214, 0.0577563643, -0.1429525167, -0.0774754584, -0.2687586248, 0.153649196, -0.3202186227, -0.5534126759, -0.2738955319, -0.1238662824, 0.0520059653, -0.106547147, -0.2890205383, 0.2439147383, 0.0601761937, 0.0170921609, 0.2996909022, 0.0748780444, 0.0250023715, -0.1556889713, 0.0086949468, -0.2661745846, -0.2534131408, 0.424394697, 0.2638280392, -0.1476567835, 0.3652547002, -0.1935144961, -0.3234772682, 0.1794546843, 0.0400714949, 0.0007882072, 0.1152524501, -0.0381948277, -0.2317098826, -0.2358816713, -0.2420248538, 0.0861755461, 0.209170863, -0.1811239272, 0.3741349876, -0.0825568959, -0.2004746497, -0.0525823943, -0.0787108094, -0.427891463, -0.0917413086, 0.244684726, -0.05928142, -0.1956137419, -0.124620147, 0.0944461375, 0.1489366293, -0.0456990525, 0.1569084376, -0.0389282592, 0.0742422044, 0.0140256546, -0.1312746108, 0.4664576948, 0.1307410747, -0.2354866564, -0.3894789219, -0.3047164381, -0.0004173778, 0.0312521718, 0.3860536516, 0.0768791884, 0.1696016788, -0.0221423879, 0.2160578817, -0.2095840573, -0.1860389858, -0.1528142989, -0.0540537275, -0.1907169223, 0.2986858189, 0.0557188392, -0.0465522781, 0.0703083798, 0.2521033883, 0.3689199388, -0.0473033749, -0.0336488821, 0.1581773311, -0.0297822263, 0.1915012002, 0.2068057656, -0.257368207, 0.2554953098, -0.2544526458, -0.0062642768, 0.2262755036, 0.0535786375, 0.1188178211, 0.0879485607, 0.0235849582, -0.1865264177, 0.0087527968, -0.1153783798, 0.2938223481, 0.3038095832, 0.1885799468, -0.197846666, -0.0713794827, 0.1604605615, 0.2074497938, -0.1234300211, -0.0735500753, 0.1111281663, 0.1211489365, -0.4866569638, 0.3509531617, 0.263712436, 0.1089421362, -0.0653702021, 0.0964130908, 0.3562045097, 0.0854203179, -0.0353140905, -0.1407132447, 0.0487707965, -0.3552120328, -0.0006580353, 0.2693494856, 0.2658033371, -0.185626477, -0.1421913207, -0.090394102, 0.383151859, 0.1608849615, 0.0113519281, 0.3325922787, 0.0484104678, 0.0151842646, 0.1616110355, -0.0812549591, 0.4215298295, 0.3943682611, -0.1059539318, -0.1336727589, 0.0422798358, -0.2566128671, -0.2990852594, -0.3335378766, 0.333373338, 0.1233000532, -0.2008339167, -0.2057079971, 0.1558202505, 0.5819084048, -0.3255527318, -0.1698463559, 0.0932431147, 0.0151967481, -0.1296872348, 0.1355938911, 0.2539345324, 0.1188133359, -0.1187751144, -0.3039394021, 0.1671479046, -0.1479538679, 0.1235579699, -0.011367023, 0.2726222873, -0.0429068916, -0.1298955381, 0.1385738552, 0.5868186355, -0.2482187748, -0.1109957173, 0.2599120438, -0.1228410155, 0.0991811752, -0.195254907, 0.6805847883, 0.3961874545, 0.2024147362, -0.2139312923, -0.2139331549, 0.1438146085, 0.0880246162, -0.2117616236, -0.2278229296, -0.1733567864, 0.2931329012, 0.0596401766, -0.0600832477, 0.172161743, 0.2266807705, 0.0493761189, -0.1090068743, -0.0734018683, 0.0593285486, -0.240562588, -0.1325252056, -0.1790396273, -0.2729077637, -0.2147063166, 0.4603154659, -0.288918972, 0.1828611791, 0.1995467097, 0.0662999302, 0.1559031904, 0.0591118932, 0.4475523531, 0.2244104445, -0.4179139137, 0.0879035741, -0.805860281, -0.1965545565, -0.1332130134, 0.0353205875, 0.1043253094, 0.0707272068, -0.1179593578, -0.1067903787, 0.3442200422, 0.0314415619, 0.1797851026, 0.2814748287, -0.4411145747, -0.1865924448, -0.2060500979, -0.0418428704, -0.0726902857, -0.0307980403, 0.2907045484, 0.3199259639, 0.0122962371, -0.1926453114, 0.0879676491, -0.0157401152, 0.122367397, 0.1741415709, 0.0154719669, 0.4901052117, -0.2843931317, -0.2433407605, 0.1756735593, 0.0526334867, -0.2411288023, 0.2213324606, 0.0903314203, 0.2468904257, -0.0907970369, -0.3145153821, -0.296418637, 0.354573071, 0.1674232632, -0.1575470269, -0.26454705, 0.4259020686, 0.0076892897, -0.0380670093, -0.0111225471, -0.0175951794, 0.0060380669, 0.1518342495, -0.2819748521, -0.3354222178, 0.363148123, 0.1472551525, -0.0215617828, -0.2779442966, 0.5018216968, -0.1264555156, 0.4052014351, -0.3974801898, -0.3426756263, 0.3026509583, 0.2451994717, -0.5436031818, -0.1363786161, 0.0492597297, 0.074807182, -0.0160510167, 0.1413263828, 0.1578428596, -0.2588275075, 0.2586649954, -0.1373972297 ]
https://github.com/huggingface/datasets/issues/1818
Loading local dataset raise requests.exceptions.ConnectTimeout
Hi ! Thanks for reporting. This was indeed a bug introduced when we moved the `json` dataset loader inside the `datasets` package (before that, the `json` loader was fetched online, as all the other dataset scripts). This should be fixed on master now. Feel free to install `datasets` from source to try it out. The fix will be available in the next release of `datasets` in a few days
Load local dataset: ``` dataset = load_dataset('json', data_files=["../../data/json.json"]) train = dataset["train"] print(train.features) train1 = train.map(lambda x: {"labels": 1}) print(train1[:2]) ``` but it raised requests.exceptions.ConnectTimeout: ``` /Users/littlely/myvirtual/tf2/bin/python3.7 /Users/littlely/projects/python_projects/pytorch_learning/nlp/dataset/transformers_datasets.py Traceback (most recent call last): File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connection.py", line 160, in _new_conn (self._dns_host, self.port), self.timeout, **extra_kw File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/util/connection.py", line 84, in create_connection raise err File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/util/connection.py", line 74, in create_connection sock.connect(sa) socket.timeout: timed out During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 677, in urlopen chunked=chunked, File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 381, in _make_request self._validate_conn(conn) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 978, in _validate_conn conn.connect() File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connection.py", line 309, in connect conn = self._new_conn() File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connection.py", line 167, in _new_conn % (self.host, self.timeout), urllib3.exceptions.ConnectTimeoutError: (<urllib3.connection.HTTPSConnection object at 0x1181e9940>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/adapters.py", line 449, in send timeout=timeout File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 727, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/util/retry.py", line 439, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='s3.amazonaws.com', port=443): Max retries exceeded with url: /datasets.huggingface.co/datasets/datasets/json/json.py (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x1181e9940>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)')) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/littlely/projects/python_projects/pytorch_learning/nlp/dataset/transformers_datasets.py", line 12, in <module> dataset = load_dataset('json', data_files=["../../data/json.json"]) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/load.py", line 591, in load_dataset path, script_version=script_version, download_config=download_config, download_mode=download_mode, dataset=True File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/load.py", line 263, in prepare_module head_hf_s3(path, filename=name, dataset=dataset, max_retries=download_config.max_retries) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 232, in head_hf_s3 max_retries=max_retries, File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 523, in http_head max_retries=max_retries, File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 458, in _request_with_retry raise err File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 454, in _request_with_retry response = requests.request(verb.upper(), url, **params) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/api.py", line 61, in request return session.request(method=method, url=url, **kwargs) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/sessions.py", line 530, in request resp = self.send(prep, **send_kwargs) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/sessions.py", line 643, in send r = adapter.send(request, **kwargs) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/adapters.py", line 504, in send raise ConnectTimeout(e, request=request) requests.exceptions.ConnectTimeout: HTTPSConnectionPool(host='s3.amazonaws.com', port=443): Max retries exceeded with url: /datasets.huggingface.co/datasets/datasets/json/json.py (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x1181e9940>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)')) Process finished with exit code 1 ``` Why it want to connect a remote url when I load local datasets, and how can I fix it?
69
Loading local dataset raise requests.exceptions.ConnectTimeout Load local dataset: ``` dataset = load_dataset('json', data_files=["../../data/json.json"]) train = dataset["train"] print(train.features) train1 = train.map(lambda x: {"labels": 1}) print(train1[:2]) ``` but it raised requests.exceptions.ConnectTimeout: ``` /Users/littlely/myvirtual/tf2/bin/python3.7 /Users/littlely/projects/python_projects/pytorch_learning/nlp/dataset/transformers_datasets.py Traceback (most recent call last): File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connection.py", line 160, in _new_conn (self._dns_host, self.port), self.timeout, **extra_kw File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/util/connection.py", line 84, in create_connection raise err File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/util/connection.py", line 74, in create_connection sock.connect(sa) socket.timeout: timed out During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 677, in urlopen chunked=chunked, File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 381, in _make_request self._validate_conn(conn) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 978, in _validate_conn conn.connect() File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connection.py", line 309, in connect conn = self._new_conn() File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connection.py", line 167, in _new_conn % (self.host, self.timeout), urllib3.exceptions.ConnectTimeoutError: (<urllib3.connection.HTTPSConnection object at 0x1181e9940>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/adapters.py", line 449, in send timeout=timeout File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/connectionpool.py", line 727, in urlopen method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/urllib3/util/retry.py", line 439, in increment raise MaxRetryError(_pool, url, error or ResponseError(cause)) urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='s3.amazonaws.com', port=443): Max retries exceeded with url: /datasets.huggingface.co/datasets/datasets/json/json.py (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x1181e9940>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)')) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/littlely/projects/python_projects/pytorch_learning/nlp/dataset/transformers_datasets.py", line 12, in <module> dataset = load_dataset('json', data_files=["../../data/json.json"]) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/load.py", line 591, in load_dataset path, script_version=script_version, download_config=download_config, download_mode=download_mode, dataset=True File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/load.py", line 263, in prepare_module head_hf_s3(path, filename=name, dataset=dataset, max_retries=download_config.max_retries) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 232, in head_hf_s3 max_retries=max_retries, File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 523, in http_head max_retries=max_retries, File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 458, in _request_with_retry raise err File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/datasets/utils/file_utils.py", line 454, in _request_with_retry response = requests.request(verb.upper(), url, **params) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/api.py", line 61, in request return session.request(method=method, url=url, **kwargs) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/sessions.py", line 530, in request resp = self.send(prep, **send_kwargs) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/sessions.py", line 643, in send r = adapter.send(request, **kwargs) File "/Users/littlely/myvirtual/tf2/lib/python3.7/site-packages/requests/adapters.py", line 504, in send raise ConnectTimeout(e, request=request) requests.exceptions.ConnectTimeout: HTTPSConnectionPool(host='s3.amazonaws.com', port=443): Max retries exceeded with url: /datasets.huggingface.co/datasets/datasets/json/json.py (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x1181e9940>, 'Connection to s3.amazonaws.com timed out. (connect timeout=10)')) Process finished with exit code 1 ``` Why it want to connect a remote url when I load local datasets, and how can I fix it? Hi ! Thanks for reporting. This was indeed a bug introduced when we moved the `json` dataset loader inside the `datasets` package (before that, the `json` loader was fetched online, as all the other dataset scripts). This should be fixed on master now. Feel free to install `datasets` from source to try it out. The fix will be available in the next release of `datasets` in a few days
[ -0.0876651779, -0.309654057, -0.0747826248, 0.2496918738, 0.3151808381, 0.0891380757, 0.3149231672, 0.2885442376, -0.146754235, 0.0568147823, -0.0469761454, 0.3553399146, 0.062465366, -0.0724609792, -0.0074790139, -0.3571035564, -0.1442814171, 0.0838935673, -0.0475475229, -0.1543699205, -0.2529874444, 0.0257254038, -0.1874685436, 0.2330839783, -0.2529919744, -0.2066888362, -0.0868967995, 0.1169289276, 0.0257290006, -0.4841199219, 0.1179937124, -0.3125516176, 0.0555522963, 0.5283833742, -0.0001154436, 0.1222110689, 0.0945108682, 0.0215763003, -0.1321411431, -0.0498595238, -0.0674966127, -0.2368898988, 0.2450842112, -0.3710686862, -0.1075159013, -0.3912546933, 0.0075891409, -0.2066580057, 0.5702976584, 0.5039224625, 0.1457756758, 0.568171382, 0.0515226722, 0.078559041, 0.2667642832, 0.1773377061, -0.2064678371, 0.2898198068, 0.2549915612, -0.4005661905, 0.0400110744, -0.0825462863, -0.0017518401, 0.0780523568, 0.0907533988, 0.1272233129, -0.1359145045, -0.3480365574, -0.165573746, 0.3539237976, 0.3100982606, 0.0707034543, -0.2927104235, -0.227076754, -0.2015626431, -0.029326722, 0.1347279847, 0.1666530222, -0.3210849762, 0.1775444299, -0.3006034195, 0.0551209785, -0.4535173178, 0.5489293337, 0.0865124017, 0.5155922771, 0.0830383673, 0.3091308177, -0.0458226129, 0.0133975167, -0.0089779422, -0.0843445882, 0.0171155352, 0.1844491512, -0.196367234, -0.1544387341, 0.1146633029, -0.4060585797, 0.1601897478, 0.0676579252, 0.154643774, -0.0878826082, -0.1699436903, 0.3116518855, -0.0025949888, 0.1281776428, -0.0578195751, 0.3318805695, 0.3709954619, 0.0912052318, -0.1829870641, 0.1557962, 0.1085647717, -0.1445653588, 0.0419754237, -0.0599973835, 0.492986083, 0.0511098653, 0.0875483528, -0.0159910079, -0.5868577957, -0.0332804099, 0.1956098974, 0.3493117392, -0.342244029, 0.0827540532, 0.0123643354, -0.0544692129, -0.3163070977, 0.0691054761, -0.242596373, 0.2482569814, 0.0804515108, -0.0591251254, 0.1660158634, 0.0636308938, 0.4791111648, -0.1673443764, -0.0349104591, -0.0415874347, 0.5842095613, -0.3233097494, 0.1414038241, 0.2345128357, -0.2718016803, 0.0687617436, 0.2806973755, 0.1037613973, -0.1080800146, 0.0201464295, -0.2452028096, -0.4628186822, -0.0414953604, 0.2253669202, 0.0443507284, -0.108739838, 0.0094921626, -0.1632416397, 0.4137928784, -0.3300023079, 0.0523999557, -0.2123022825, -0.2179459333, -0.1649780869, 0.2293941826, 0.3468135595, -0.2586834729, 0.0798249766, 0.2683030069, -0.0013031326, 0.2266994119, 0.4093842506, -0.5121424198, 0.4743844569, -0.3170549572, 0.1415547132, 0.5460799932, -0.4671505988, -0.2384577394, 0.5044528842, -0.2510959506, -0.0711531565, 0.0435652919, 0.2766904831, 0.1196677238, 0.0741801858, 0.4246087968, 0.3509934247, -0.2929824889, 0.1134742647, -0.2766139507, -0.2069238573, 0.0072745234, 0.0785310417, 0.0622740909, 0.0114249438, 0.1617799699, 0.0338043049, 0.27313447, -0.0619285665, 0.1070542932, 0.3353095651, 0.0764933378, -0.0913644806, 0.0302905515, -0.0215979703, -0.2053333521, 0.2261997014, -0.0307396613, 0.2425399125, -0.2673668563, -0.0202197582, -0.3861397207, 0.0638862774, -0.3079500794, 0.0851650536, 0.0618032701, 0.2712075114, 0.1725233346, 0.1565876901, 0.0425035059, -0.0275296178, -0.2579174936, 0.1061814576, -0.3778767586, 0.2617049515, -0.0599823073, -0.0379349478, -0.0919820294, -0.1287305057, 0.1428042948, -0.2689325511, -0.2771677375, 0.1943444908, 0.0190406069, 0.1645127684, 0.0183444228, 0.0385958776, 0.0624709278, -0.1664232463, 0.0212315414, 0.0946421921, 0.114808172, -0.1870048046, -0.1732776761, 0.2998912334, 0.215678364, 0.3294456005, 0.118227005, -0.1258408278, 0.249357909, 0.0717816204, -0.0189658701, -0.0102474317, 0.0795536935, 0.0412088633, 0.1136682481, -0.0922210515, -0.2574561238, 0.0602615327, 0.4460495412, -0.1701763272, 0.0450151861, 0.0696922988, 0.3061299622, -0.1095028073, 0.17633681, 0.1549546719, 0.6341342926, 0.2085808069, 0.1621566564, 0.151149407, -0.134897545, -0.2292597741, 0.0644126907, -0.026680097, 0.2473057806, 0.3175882697, 0.305726409, 0.0243182629, -0.4263643622, -0.2775948942, 0.1161995009, 0.3775264621, -0.274240315, 0.2351564467, -0.1033194959, -0.1564786136, -0.0477512144, 0.0394216962, -0.2301469892, -0.4215002954, 0.0583363175, 0.2158533484, -0.0731707886, 0.2756845355, -0.0093071759, 0.0201467872, 0.3500885963, -0.4383777976, -0.1064931378, -0.1761182845, -0.36415416, 0.0252940282, 0.1524998546, -0.0963637978, 0.4177517295, -0.049924098, -0.4756880403, -0.1872625202, -0.2943217158, 0.0119484439, -0.0652059764, 0.2479964346, 0.1509257555, 0.3515702486, -0.0174460486, -0.1918195933, 0.4221314788, -0.0898678303, -0.1238977984, -0.0267952904, 0.024070818, 0.1492928565, -0.0307475589, -0.6379078627, -0.4048391879, -0.4066762924, 0.2181978375, 0.0466195941, 0.277518779, 0.0849548727, 0.035815347, 0.3597217202, 0.1112167537, 0.1276405156, -0.0538618788, -0.3271385431, 0.257460326, -0.2653144598, -0.263366878, -0.0142950714, -0.117288053, 0.0885659531, 0.0501006395, -0.5194665194, -0.4453579783, -0.2787287831, 0.2407434583, -0.2776930034, -0.1170529127, 0.2960998416, -0.1703327596, -0.1082185805, -0.0064745992, -0.0444768071, 0.3415368497, 0.2659061551, 0.1737860888, 0.0614484884, 0.7596713901, -0.0332469977, 0.5413734913, 0.0296802223, 0.0352778658, 0.4892272651, -0.2829692364, -0.0174787641, -0.0779780447, -0.2684921026, 0.0801823735, 0.1409263611, -0.2075181007, -0.0933659375, 0.1615559161, -0.1225306094, -0.2405093312, -0.230432108, -0.2888834476, -0.2335734516, 0.0097270701, -0.1465507746, 0.2895323634, -0.0222469978, 0.0659927875, -0.1431168616, -0.0516232178, -0.1466686428, 0.0693069622, -0.0167995729, -0.1624403298, -0.6813387871, -0.1749102473, -0.5136031508, 0.2706350088, 0.1567562521, 0.5439186096, -0.2641370893, -0.0684386715, 0.2611940503, -0.1415597349, 0.8109993339, -0.2408432811, 0.1052411273, 0.025069274, 0.1355765909, -0.3428854942, 0.005817771, -0.0008368641, 0.2688806355, 0.2481941432, 0.574373126, -0.1280053407, -0.2865647674, 0.2069714665, 0.2740255594, -0.2358226925, -0.0762404054, -0.2177330554, -0.689669311, -0.1968452632, 0.0832697749, -0.0547162369, 0.2028001249, 0.0924304053, -0.4169502854, 0.0952307582, 0.166406244, -0.0523580872, 0.0799485892, -0.1108463481, 0.0158891976, 0.1148235649, -0.2471912801, 0.2845290005, 0.2450391352, 0.3522232771, -0.1490687132, -0.2630354464, 0.143648237, 0.1238205433, 0.3318549097, 0.294762373, -0.0212465711, 0.1408846527, 0.1599986255, 0.3401942551, -0.0828354508, 0.3873805106, 0.5323922634, -0.122336939, -0.2031579912, -0.5039530396, 0.1332385689, -0.0471884906, -0.0636866316, 0.2192025781, -0.2862209082, -0.2772030234, 0.3792083561, 0.1395540833, 0.9921338558, -0.011306433, 0.2558077872, 0.6406011581, -0.0664972514, 0.6649611592, -0.2646172643, 0.2580272853, -0.3804026544, 0.0429763347, -0.1054763645, -0.2358800769, 0.0285094492, 0.0944369137, -0.1649479568, 0.1491955221, -0.117283836, 0.195985198, -0.1463421285, 0.5414194465, 0.0756283179, -0.059848059, -0.5874493122, 0.1064096987, -0.0261031315, 0.0985838473, -0.0268355459, -0.1081688106, 0.0200303346, -0.3731743693, 0.1574333757, 0.0943822712, -0.2812201977, 0.5121895671, -0.1859299839, -0.0758689716, -0.0156012103, 0.3076257706, 0.034866333, -0.0000251494, -0.1064448357, 0.0362809896, -0.1130684316, 0.1308704913, -0.1006315798, -0.0095311627, 0.1547373682, -0.1163207069, -0.421895057, 0.4718743861, -0.3494647741, -0.375762254, -0.0709016174, 0.1223006546, -0.0595236681, -0.4409899712, -0.1029621959, -0.1443651319, -0.2691300213, -0.2003667951, 0.0858176574, 0.0195274595, -0.3188182414, 0.3204015195, 0.0177515671, -0.3153618574, -0.021574799, 0.4522784054, 0.1165138781, 0.2216842324, 0.7525090575, 0.1699734628, 0.0249587521, -0.3292617202, 0.4612759352, -0.0180310253, -0.2892801762, 0.104687497, 0.2482042164, 0.2518321872, 0.0637087002, 0.2772767246, 0.2292514741, 0.1389218271, 0.003696464, -0.3916378915, -0.4703884125, 0.1692252159, 0.076544188, 0.2141620666, 0.2396150827, 0.2498912811, -0.1893875599, 0.2043239027, -0.2954698503, 0.0561620221, -0.5371047854, 0.1856479198, -0.0375431739, -0.1155712754, 0.3783704042, 0.0621664897, 0.140145272, -0.021300979, -0.3744775057, -0.1664373279, -0.0505242795, 0.1663370728, 0.0718502402, -0.1864742637, -0.4386375546, -0.5062544942, -0.0181478523, 0.096566081, 0.053542465, 0.0188475251, -0.0811801106, 0.0175816566, 0.0141585199, 0.1220888495, 0.0841594934, 0.0472677872, -0.1538112015, -0.0157427788, 0.2301687151, 0.0772617236, 0.1983970404, -0.1885783076, -0.0674611852, 0.0197661631, 0.0356261358, -0.1773953736, 0.292669028, -0.2847872972, -0.274227947, -0.0748814195, 0.2242603302, 0.3945916593, -0.1961328387, 0.028379418, 0.1952042729, 0.2080866545, -0.1833195835, -0.2920611203, 0.4560912848, -0.2019452155, 0.1378968507, 0.1103225127, -0.2127423137, 0.0894701183, -0.2245316207, 0.2033675909, 0.234123081, 0.0223262608, 0.0371880159, 0.3005509973, -0.2989984155, -0.0828121975, 0.1474565864, 0.1270944774, 0.3212960362, 0.0047756303, -0.0055459738, 0.0433279201, -0.3767877817, 0.3542629182, -0.0860255957, -0.4847980738, 0.0512524694, -0.1688600779, -0.2988904119, -0.130030632, -0.0237506665, 0.4819837809, -0.2367400378, -0.1881804168, -0.1995154023, 0.3600149155, -0.1028242111, -0.1955421418, -0.2295161933, -0.2858206034, 0.1354685277, -0.1978504807, 0.1609133184, 0.019045407, -0.0650871247, 0.0894728303, 0.0383865088, -0.2019252628, -0.0201457292, 0.0612039082, 0.0640063137, -0.3245761096, 0.1949739456, 0.2483703643, -0.0607036315, -0.4171527624, 0.0106875245, 0.3459569812, 0.4239966869, -0.0218452439, 0.3124996424, -0.0947108492, -0.1583964676, -0.005541034, 0.1134833768, 0.2338087112, -0.0364379026, 0.3514872789, 0.0933529884, -0.1481023729, 0.2936782241, -0.0237194002, 0.1534291357, -0.221173659, 0.5093346238, 0.0122410692, -0.292875737, 0.0004255194, 0.0211053696, -0.4169077575, 0.1007512659, 0.4297303855, -0.1344190687, 0.3220782578, -0.0988745391, 0.0500603504, -0.3950726688, 0.6884118915, 0.233284533, 0.1067480296, -0.3425547183, 0.000853911, -0.3407244086, 0.0283508934, -0.4788585305, -0.0240353644, 0.0740340948, 0.1004005373, 0.0750097781, -0.0460601486, -0.127033174, 0.0030356832, 0.0218558833, 0.1133117601, -0.2876621485, -0.2759695053, -0.0043594483, 0.2354529947, -0.0187375993, -0.4727281928, 0.2163546085, -0.260030508, -0.0307255052, -0.2679131627, -0.0484623536, 0.2021929324, -0.0579154901, 0.4343683422, 0.349629581, 0.4295277596, 0.0720886141, -0.0606515519, 0.0439473242, -0.4789817333, 0.0459216908, -0.0047923997, 0.1576922983, 0.5942360163, -0.1884738207, -0.0180711467, -0.3390835226, 0.172962293, -0.1238197833, -0.3846410513, 0.3237591982, -0.0524618924, 0.0261465907, 0.0659151375, 0.1001642495, 0.1330549717, 0.0819869339, 0.029797636, -0.2536605, -0.2163209766, 0.7234711647, -0.3179052472, -0.1667279005, -0.043735452, 0.1857220232, 0.0977981091, 0.004967751, -0.158629179, -0.0803992525, 0.6721760035, 0.0862086192, -0.3109281361, 0.4904257655, 0.1578736901, 0.0310348719, 0.0725696683, -0.0335414112, -0.1904414296, -0.2747125924, -0.0402267501, -0.310072273 ]
https://github.com/huggingface/datasets/issues/1817
pyarrow.lib.ArrowInvalid: Column 1 named input_ids expected length 599 but got length 1500
Hi ! The error you have is due to the `input_ids` column not having the same number of examples as the other columns. Indeed you're concatenating the `input_ids` at this line: https://github.com/LuCeHe/GenericTools/blob/431835d8e13ec24dceb5ee4dc4ae58f0e873b091/KerasTools/lm_preprocessing.py#L134 However the other columns are kept unchanged, and therefore you end up with an `input_ids` column with 599 elements while the others columns like `attention_mask` have 1500. To fix that you can instead concatenate them all using ```python concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} ``` Also you may need to drop the "text" column before applying `group_texts` since strings can't be concatenated with lists. You can drop it at the tokenization step: ```python dset = dset.map( tokenize_function, batched=True, remove_columns=["text"] ) ```
I am trying to preprocess any dataset in this package with GPT-2 tokenizer, so I need to structure the datasets as long sequences of text without padding. I've been following a couple of your tutorials and here you can find the script that is failing right at the end https://github.com/LuCeHe/GenericTools/blob/master/KerasTools/lm_preprocessing.py In the last iteration of the last dset.map, it gives the error that I copied in the title. Another issue that I have, if I leave the batch_size set as 1000 in the last .map, I'm afraid it's going to lose most text, so I'm considering setting both writer_batch_size and batch_size to 300 K, but I'm not sure it's the best way to go. Can you help me? Thanks!
116
pyarrow.lib.ArrowInvalid: Column 1 named input_ids expected length 599 but got length 1500 I am trying to preprocess any dataset in this package with GPT-2 tokenizer, so I need to structure the datasets as long sequences of text without padding. I've been following a couple of your tutorials and here you can find the script that is failing right at the end https://github.com/LuCeHe/GenericTools/blob/master/KerasTools/lm_preprocessing.py In the last iteration of the last dset.map, it gives the error that I copied in the title. Another issue that I have, if I leave the batch_size set as 1000 in the last .map, I'm afraid it's going to lose most text, so I'm considering setting both writer_batch_size and batch_size to 300 K, but I'm not sure it's the best way to go. Can you help me? Thanks! Hi ! The error you have is due to the `input_ids` column not having the same number of examples as the other columns. Indeed you're concatenating the `input_ids` at this line: https://github.com/LuCeHe/GenericTools/blob/431835d8e13ec24dceb5ee4dc4ae58f0e873b091/KerasTools/lm_preprocessing.py#L134 However the other columns are kept unchanged, and therefore you end up with an `input_ids` column with 599 elements while the others columns like `attention_mask` have 1500. To fix that you can instead concatenate them all using ```python concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} ``` Also you may need to drop the "text" column before applying `group_texts` since strings can't be concatenated with lists. You can drop it at the tokenization step: ```python dset = dset.map( tokenize_function, batched=True, remove_columns=["text"] ) ```
[ -0.1550026238, -0.0703642368, -0.008634638, 0.1708291918, 0.2552529573, 0.0364475995, 0.5036023259, 0.5221665502, -0.5246613026, 0.0104544349, 0.3807768822, 0.2319066823, 0.0748816431, -0.174507767, 0.1261404008, -0.2886480689, 0.0141824186, 0.247758463, -0.0138818175, 0.1944545209, -0.0676677153, 0.3307291567, -0.3295417428, 0.2716697454, -0.3865052164, -0.0922520682, -0.1422723532, -0.1698894203, -0.1691986322, -0.5931812525, 0.0828091279, -0.2285579741, 0.047805205, 0.2794104815, -0.0001236288, -0.1168292835, 0.4077006578, -0.1066746488, 0.0701528043, -0.0044736117, 0.0422803462, -0.2361374646, 0.0165135711, -0.2340285629, 0.0912679285, -0.5475605726, -0.2920789719, 0.2607315481, 0.2835210562, 0.3589547575, 0.1257848442, -0.0448941365, 0.1790400594, -0.0412860326, 0.5702495575, 0.0536099225, 0.0055336356, 0.1160502732, 0.1458774954, -0.2013940662, 0.0534412973, 0.214429751, -0.2680258155, -0.1032517254, 0.0580860786, -0.0039267093, 0.0565316454, -0.2023721486, 0.2105339915, 0.1588907391, 0.3037467599, -0.3780477941, -0.0483499169, -0.2628531754, 0.176687479, -0.3986365199, -0.0885518044, -0.0606475733, -0.1943920851, 0.1883023977, -0.102153495, 0.1745143384, -0.2574052513, 0.0938392878, 0.0956304818, 0.2773375809, 0.1587263048, 0.2896915078, -0.0706557482, -0.1704555452, 0.0365098864, 0.1347861886, -0.2240157425, 0.2108974159, -0.2329891622, -0.0353560895, -0.1298372149, -0.2215497196, 0.4244503379, -0.1432873905, 0.2827806771, -0.1606895924, 0.7112699747, -0.1186457053, -0.0855471864, 0.459897548, 0.2372584492, 0.2067826688, -0.1270626634, -0.3863638341, 0.2913979888, 0.1470928639, -0.2602183223, -0.6117141843, 0.2757361531, 0.1679493487, 0.0617795289, 0.180297792, -0.1971883178, 0.4800279737, -0.4964808226, -0.0251221098, -0.1530765593, 0.0553496592, 0.0796747357, 0.063772589, -0.0022886023, 0.0737528205, 0.064304173, -0.2553145289, -0.1027696729, 0.2139762044, -0.3910425305, 0.0601491556, 0.1080488861, 0.0560681783, 0.3017200828, 0.0623578578, 0.0746023208, 0.0635033548, -0.010166835, -0.0717617422, 0.2443723977, 0.2771905959, -0.1186133996, 0.1828496903, 0.2038539648, -0.1445944309, -0.3017872572, 0.2960032821, -0.3270396292, -0.3279039264, -0.1085567251, 0.0631792396, 0.1062356979, 0.1053578705, -0.2185854018, 0.1509512216, 0.692049861, -0.0988647342, 0.1823330224, -0.4258136153, 0.1980240047, -0.3123605251, 0.148588568, 0.1613928378, -0.5673120022, 0.1217050999, 0.3949627876, 0.3733772635, 0.3328751922, 0.381362021, -0.0831796378, 0.5039743185, -0.0906992331, 0.7552218437, 0.3342805803, -0.0888389945, -0.2165766656, 0.3936941624, -0.064330548, -0.2323004305, 0.0295616556, -0.2319584191, 0.212883234, -0.0096773095, 0.1547478735, -0.1016391665, -0.1074724495, -0.0029566213, -0.288798213, -0.134603709, 0.1084657535, -0.0687078089, -0.107674405, -0.256362319, -0.2608837783, -0.4103669226, 0.1153544411, -0.1635285169, 0.359787941, 0.3475105166, 0.0196289532, 0.0267152991, 0.3291783631, 0.0950940996, -0.1781704724, -0.0235902593, 0.0442915335, -0.034959279, -0.2201661468, -0.3523424268, -0.2672819495, 0.1990019083, 0.0381779633, 0.1776502877, 0.0093466863, -0.2265123576, 0.1835491657, -0.163361609, -0.0336498693, -0.2718362808, 0.0508427918, 0.0964220837, -0.1822099537, -0.1217024028, -0.1731587201, -0.406190753, 0.0997497588, -0.0075104758, 0.2952214181, -0.0537830144, 0.0143547505, 0.3127264977, 0.131142512, -0.3347698152, -0.3954312503, 0.2027164698, -0.0828415975, -0.1941530854, -0.1910976321, -0.1059259623, -0.0302318688, -0.0867645442, 0.1134174541, 0.311424762, 0.0878980234, 0.300499171, -0.2077563703, -0.0319661945, 0.0630754232, 0.068676874, -0.234800905, 0.0100701079, 0.0778634623, -0.0475962833, 0.1326376349, 0.0023547206, -0.3153675199, 0.1728618741, 0.1770053506, 0.0155086815, -0.0637860596, 0.1986920834, -0.0801162198, -0.0147262998, 0.1154867485, -0.1970088035, 0.1011902392, 0.1659036577, -0.0247779414, -0.054735586, -0.2063384205, -0.1961252093, 0.2262761593, 0.0736101195, 0.2035346925, 0.5516646504, 0.0526559576, 0.1273687333, 0.0501686037, -0.0934746414, 0.2298325896, 0.3550691009, -0.3621884584, 0.193380028, -0.2526602149, 0.0196315423, -0.0059753638, -0.611399889, 0.1719785035, -0.0306187402, 0.0457913987, -0.1291831136, -0.1622223556, 0.3853450716, 0.1819876432, 0.1849831939, 0.5495919585, -0.1675561517, -0.1204284877, -0.2368340939, -0.1843621433, -0.0954641253, 0.2132760882, -0.1506295204, -0.0212398358, 0.1077951118, -0.1174564064, -0.2242487818, -0.5022530556, 0.3119059205, -0.3466985524, -0.1121640727, 0.4024563432, 0.1223672479, -0.2633650899, -0.2280541658, 0.0554425567, 0.229954958, -0.2798077166, 0.3484914899, -0.0896361619, -0.2746524811, -0.1506220996, -0.1697362065, 0.1745992452, -0.1914544106, 0.177233696, -0.1534641236, 0.1468401998, 0.0637498125, 0.4653072953, 0.0369058251, -0.0069354437, 0.0424287394, 0.057454668, 0.2105314285, 0.4343685806, -0.2766295671, -0.2573384047, 0.0865588188, -0.1728404462, 0.3282192349, 0.2733300626, -0.3643851578, 0.1617100537, -0.0685938448, 0.093641445, -0.3578869998, 0.0590332672, 0.4605167508, 0.1466500163, 0.0051058158, -0.1141969487, 0.0346327946, 0.373673439, -0.2701493502, 0.0551127233, 0.0552537404, 0.6357030869, -0.0250457078, 0.7274158597, 0.2814559639, -0.119782567, 0.1013613492, -0.2490905821, -0.1202091053, -0.2398967594, 0.162542671, -0.2318488657, -0.0949842483, 0.0369532853, 0.3688106537, -0.2972483039, -0.3330017924, 0.2210149169, 0.1925227791, -0.2142066807, -0.0720816106, 0.3196910322, 0.0360596925, 0.3239007592, -0.0419194363, 0.0790790021, -0.1929028183, -0.0333551243, 0.0495355129, -0.3764074147, 0.0325696394, 0.0649054796, -0.2317736745, -0.4118339717, -0.6226689219, 0.3684792519, 0.3064646125, 0.4693976343, 0.1016399562, -0.3109785318, -0.0006429665, -0.2770530879, 0.517624259, -0.1439094543, -0.3334729671, 0.3643980622, 0.1254676729, -0.4200964868, -0.3367703557, -0.0527213141, 0.1455672979, 0.3767842948, 0.1362757236, -0.5397257805, -0.0318674743, 0.3549747467, -0.026120767, -0.0126672015, -0.1469441652, -0.2477857769, -0.3502271175, -0.2020338029, -0.0166319907, 0.6145428419, 0.3996126056, -0.0125640109, -0.004970476, -0.0547663532, -0.2995448112, 0.0977138281, 0.009557277, 0.3902047276, 0.0011867546, 0.2208579779, -0.223500818, 0.3756490946, 0.3819261491, 0.1147093028, 0.1507871449, -0.2386593521, 0.2495277375, -0.2736166418, 0.4812789857, 0.276054889, -0.2233425081, 0.2875677645, -0.444521904, 0.2794282138, -0.0792395994, 0.1409674138, 0.3965916336, -0.17318739, -0.3562675714, -0.1305024922, 0.2430723011, 0.0210245922, -0.0263373926, 0.456723094, 0.0673951805, -0.3701600432, 0.3138678372, 0.2621950507, 1.1447811127, 0.3166948259, 0.2496209443, 0.3733640015, 0.0835125744, 0.0062092543, 0.0769702345, 0.1055412441, -0.5544155836, -0.0051707905, 0.0093710348, -0.1675919592, -0.01380964, 0.2013979256, -0.3329412341, -0.1281973571, -0.3151691556, 0.1709833592, -0.1320947111, 0.1428223997, -0.0059345681, -0.0872806162, 0.2379433513, -0.02084703, -0.0131024439, -0.3700396121, -0.1652093977, -0.0691827089, -0.3673366308, -0.3569473326, -0.4112289846, -0.0752256811, -0.2250600606, 0.039151676, 0.1121888012, -0.2581790388, 0.1797898114, 0.0262510646, 0.2069528401, 0.1652826816, -0.1984623969, 0.0085505303, 0.0443305001, -0.2909436822, -0.1584413946, -0.1409946978, 0.1220934838, -0.0171996951, 0.0525764376, 0.1850582063, 0.042504441, 0.069497548, -0.3031353354, -0.1627692282, 0.2704519033, -0.4907825589, -0.0921756029, 0.030488601, 0.0029678643, -0.1565636396, -0.0067444025, 0.0492531955, -0.2209219337, 0.2321988493, -0.1529703289, -0.2571034729, 0.060138084, 0.0723260492, 0.0023340229, -0.0311883502, 0.6073063016, 0.3159708977, -0.1589481235, -0.1069921553, 0.1637090296, 0.5035052299, -0.6606779099, 0.0749177635, -0.1885090321, 0.0594585687, 0.0509858541, 0.5169559717, 0.271717608, 0.3059379756, 0.1216227114, -0.0753784776, -0.2998273075, 0.202827096, 0.2588072717, 0.3612178564, -0.2054404169, 0.0983742625, -0.1620796621, 0.1159507334, -0.1893985271, -0.0878789276, -0.0577511638, 0.1876956671, -0.1030354202, -0.0182806607, -0.2642347813, 0.0514645465, -0.0315390714, 0.3885488808, -0.0102441069, -0.1027792394, -0.2301063389, 0.1527893841, 0.0681772828, -0.0534088202, 0.2742184997, -0.1448955536, -0.2985362709, -0.14501369, 0.0136726275, -0.0535814352, -0.0210788213, -0.0242107846, 0.4298158586, 0.0646906197, -0.0873844549, 0.0276945904, 0.0022442527, 0.1453477442, 0.1146921366, 0.2281082273, 0.0958376452, 0.0262142271, 0.1361530423, 0.3351013064, 0.0527842082, -0.3552293181, 0.1339014769, -0.4393782914, -0.1296576709, -0.0578081757, 0.2475420535, 0.30091241, -0.3606338501, -0.1328803301, 0.4503156543, 0.1535474807, -0.2865346074, -0.1164166927, -0.1829865724, 0.0641656667, -0.1379846036, 0.2008394748, 0.109447971, -0.0606063455, -0.2202549577, 0.1737436354, 0.3542886376, 0.1231872737, -0.3958588839, 0.3194215894, -0.1859205365, 0.1239871234, 0.3163272142, 0.2035690248, 0.2621987462, 0.0297567639, -0.1187682822, 0.2451476157, 0.267840445, 0.0912138224, -0.2393342257, -0.2031652033, -0.0724440143, 0.276299417, 0.088381812, 0.0028187307, 0.179075107, 0.3353700638, 0.4524992704, -0.228924334, 0.0278903618, 0.3590198457, -0.1949386597, -0.0660151541, -0.712288022, 0.0824286491, -0.2180039585, -0.1749485731, -0.1023457497, 0.0737309754, 0.4343530238, 0.0964006633, -0.0904743075, -0.1987383068, 0.0707280338, -0.006839287, 0.0945067853, -0.3231535256, 0.4119292498, 0.1004951373, -0.2849642038, -0.1137820482, 0.3278912604, 0.6728410721, 0.4071212411, -0.1261105984, -0.3004504144, -0.288066566, 0.1028202549, 0.1032603532, 0.354061991, 0.335921824, 0.1313993037, 0.215836823, -0.0917936042, -0.0349796899, -0.0927520022, 0.3317202032, -0.0684675127, 0.2488198429, -0.054733675, -0.1573167145, -0.4111021757, -0.0005266303, 0.2015106529, -0.5054790378, 0.2205098867, 0.550558567, 0.1804082394, 0.151589185, -0.0997028053, 0.0322802588, -0.0781506374, 0.4440884888, 0.3804037869, 0.1010720879, -0.3919534981, -0.3986078799, -0.2410695255, 0.1371296942, -0.4373244941, -0.1312001795, 0.2652822137, 0.1691053212, 0.2406358421, 0.0195800886, 0.1167045832, 0.1667087972, -0.345482558, 0.582002759, -0.2765936255, 0.2108575702, 0.1482131928, 0.0865803957, 0.0272796527, -0.1982695162, 0.4266259074, -0.0150998943, -0.0107727349, -0.3655945659, 0.0269142985, 0.1797391772, 0.2164814025, 0.2508491278, 0.0789009556, 0.283662945, -0.0113755316, 0.1057759672, -0.3002662063, -0.1518848389, -0.1774404496, 0.3001047075, 0.096074, 0.0366608948, -0.1852330714, -0.2117046416, 0.0342736617, -0.1169181243, -0.0780772045, -0.0607335679, -0.3419036865, 0.1300677657, -0.2000258565, 0.186888501, -0.0354953855, 0.1137788221, 0.1058962643, 0.2066838443, -0.3272296786, -0.6539342403, 0.7069844007, -0.4853314757, -0.4971396923, -0.0232496895, -0.0063090175, 0.3170477748, 0.1148773804, -0.139287889, -0.1747905612, 0.2745013237, 0.1119708568, -0.5378227234, 0.3033053875, -0.0773033574, 0.0450053364, -0.1753375828, 0.2336109728, 0.0831822604, -0.224484086, -0.4705748558, -0.6530272961 ]
https://github.com/huggingface/datasets/issues/1811
Unable to add Multi-label Datasets
Thanks for adding this dataset! As far as I know `supervised_keys` is mostly a holdover from TFDS, but isn't really used, so feel free to drop it (@lhoestq or @thomwolf correct me if I'm wrong). It definitely shouldn't be blocking :)
I am trying to add [CIFAR-100](https://www.cs.toronto.edu/~kriz/cifar.html) dataset. The dataset contains two labels per image - `fine label` and `coarse label`. Using just one label in supervised keys as `supervised_keys=("img", "fine_label")` raises no issue. But trying `supervised_keys=("img", "fine_label","coarse_label")` leads to this error : ```python Traceback (most recent call last): File "test_script.py", line 2, in <module> d = load_dataset('./datasets/cifar100') File "~/datasets/src/datasets/load.py", line 668, in load_dataset **config_kwargs, File "~/datasets/src/datasets/builder.py", line 896, in __init__ super(GeneratorBasedBuilder, self).__init__(*args, **kwargs) File "~/datasets/src/datasets/builder.py", line 247, in __init__ info.update(self._info()) File "~/.cache/huggingface/modules/datasets_modules/datasets/cifar100/61d2489b2d4a4abc34201432541b7380984ec714e290817d9a1ee318e4b74e0f/cifar100.py", line 79, in _info citation=_CITATION, File "<string>", line 19, in __init__ File "~/datasets/src/datasets/info.py", line 136, in __post_init__ self.supervised_keys = SupervisedKeysData(*self.supervised_keys) TypeError: __init__() takes from 1 to 3 positional arguments but 4 were given ``` Is there a way I can fix this? Also, what does adding `supervised_keys` do? Is it necessary? How would I specify `supervised_keys` for a multi-input, multi-label dataset? Thanks, Gunjan
41
Unable to add Multi-label Datasets I am trying to add [CIFAR-100](https://www.cs.toronto.edu/~kriz/cifar.html) dataset. The dataset contains two labels per image - `fine label` and `coarse label`. Using just one label in supervised keys as `supervised_keys=("img", "fine_label")` raises no issue. But trying `supervised_keys=("img", "fine_label","coarse_label")` leads to this error : ```python Traceback (most recent call last): File "test_script.py", line 2, in <module> d = load_dataset('./datasets/cifar100') File "~/datasets/src/datasets/load.py", line 668, in load_dataset **config_kwargs, File "~/datasets/src/datasets/builder.py", line 896, in __init__ super(GeneratorBasedBuilder, self).__init__(*args, **kwargs) File "~/datasets/src/datasets/builder.py", line 247, in __init__ info.update(self._info()) File "~/.cache/huggingface/modules/datasets_modules/datasets/cifar100/61d2489b2d4a4abc34201432541b7380984ec714e290817d9a1ee318e4b74e0f/cifar100.py", line 79, in _info citation=_CITATION, File "<string>", line 19, in __init__ File "~/datasets/src/datasets/info.py", line 136, in __post_init__ self.supervised_keys = SupervisedKeysData(*self.supervised_keys) TypeError: __init__() takes from 1 to 3 positional arguments but 4 were given ``` Is there a way I can fix this? Also, what does adding `supervised_keys` do? Is it necessary? How would I specify `supervised_keys` for a multi-input, multi-label dataset? Thanks, Gunjan Thanks for adding this dataset! As far as I know `supervised_keys` is mostly a holdover from TFDS, but isn't really used, so feel free to drop it (@lhoestq or @thomwolf correct me if I'm wrong). It definitely shouldn't be blocking :)
[ 0.0216593668, -0.2712222934, 0.0181459635, 0.1329572201, 0.37121737, 0.3166498542, 0.6164798141, -0.4762449861, 0.1994257569, 0.2660482228, -0.2177262306, 0.15355286, -0.2759883106, 0.3479331732, 0.1080323905, -0.1204763949, 0.1780961901, -0.2174013108, 0.0256009977, -0.0332676768, -0.221541211, 0.0074297078, -0.2346254587, -0.2840358317, -0.6864253283, -0.2522577941, -0.348762691, -0.1600372493, -0.2611855268, -0.6842921972, 0.1742343307, 0.3276168406, -0.1799797714, 0.4868171215, -0.0001189697, 0.0539395809, 0.0060150996, -0.0270136148, -0.1315758526, -0.0884086341, 0.0338956267, -0.0997655541, -0.0230812412, -0.1876843572, -0.0205908716, -0.3216595054, -0.0478546098, -0.2678295374, 0.2622787952, 0.1708979607, 0.1447005868, -0.1211825162, 0.3119574189, -0.1777846813, -0.0340042599, 0.2013508528, -0.1293975711, 0.1572745293, 0.1325557977, -0.1618613899, 0.4810106754, 0.2527091503, -0.0045298487, -0.1883504391, 0.4128495753, -0.0407811031, -0.1479683816, -0.5755077004, 0.1524928808, 0.3097068369, 0.6528838873, -0.0376971848, -0.648527801, -0.1441021413, 0.3986091018, -0.1604739577, -0.1403429359, 0.0104318112, -0.003859736, -0.2375008017, -0.3692447543, -0.0498814136, -0.2118252516, 0.2764358521, 0.3331706524, 0.3576147556, 0.0522683598, 0.3509879708, 0.2702973187, -0.0573838614, -0.0252625756, -0.1056554765, 0.0451551974, 0.2221507132, -0.289824605, 0.1726472676, -0.0475979075, 0.1391518116, 0.1451031268, -0.1027215272, 0.0525575243, -0.3232680559, -0.2117194235, 0.11969354, 0.1027331948, -0.0196696185, -0.0022726282, 0.4025926292, -0.0366643183, -0.0274586175, 0.1102098897, -0.2352030873, -0.0683441833, -0.1296106577, 0.3619588017, 0.1870025247, -0.1424216926, 0.1166463196, 0.0462241843, -0.1570322514, -0.0611534454, -0.0322758891, 0.356719166, 0.309689641, 0.2346779406, 0.0138951875, 0.1058848798, 0.4291902184, 0.1078818589, 0.0548973344, -0.1495377868, 0.3543498814, -0.1401568055, 0.0218002684, 0.290984273, 0.0014128238, 0.1271668077, 0.320697695, 0.2556935847, -0.1487240642, 0.047453329, -0.2202004194, 0.1937616616, 0.3569912314, -0.025585752, 0.2145912945, -0.0456783511, -0.3797813356, -0.11004062, 0.0452664532, -0.3311829567, -0.0257801265, -0.0522256419, 0.0699772239, 0.195308581, -0.0917196423, -0.4771167636, 0.2014681697, 0.1235158071, 0.0339206904, -0.0702252835, -0.2045562565, -0.2669655979, -0.2525109649, 0.2751825452, 0.4011730552, -0.2575545609, -0.2091661245, -0.1150707155, 0.1693902165, -0.2034938484, 0.2128368765, -0.2620730698, 0.4487381577, -0.094030574, 0.062893182, 0.0426745117, -0.8922805786, -0.0666833594, -0.0147576705, 0.0866597965, -0.1285033524, 0.1614068449, 0.325617969, 0.1087987125, 0.0289791524, 0.1426025629, 0.1137604415, -0.1924500018, -0.04820925, 0.1788377315, 0.1565863788, -0.1048269272, 0.3070022166, 0.210284248, -0.2103252411, 0.1564219147, -0.156665951, -0.0160314217, -0.1635688543, 0.1207386032, 0.3795166016, 0.2092374712, -0.0499873348, 0.0313235931, 0.0380037427, -0.4350193143, 0.4339157939, 0.2955793738, 0.3049952388, -0.1049282476, -0.1757051796, -0.0116096027, 0.0613494292, -0.4852902591, -0.1146175787, 0.0656741709, 0.2741552591, -0.0914814398, -0.0599611476, 0.0205959529, 0.1393004358, 0.4397171438, 0.1631940305, 0.0898369551, 0.0351093113, -0.1254134625, 0.0317973457, -0.0982278064, 0.0179513283, 0.4089220166, -0.0632737428, 0.03488563, 0.4561133385, 0.1855803728, -0.3028661013, -0.1581853926, 0.0631941259, 0.4092926979, -0.2760540247, -0.2940940261, -0.2007402927, 0.2320427299, -0.341172874, -0.1550142616, 0.0775262043, -0.3345647752, 0.2867107689, -0.0063108057, 0.1957472861, 0.1347314268, 0.1028226092, -0.1135906875, -0.2067491114, 0.0379194655, -0.1822334975, -0.0228357725, -0.2354649454, 0.0413876325, 0.0655712858, 0.0258156266, 0.0400972515, -0.0610705838, -0.0535846427, 0.0286563504, 0.2431072593, 0.1560311615, 0.5032749772, 0.2892151475, 0.2665801048, -0.1650920361, -0.2013624609, -0.289696008, 0.0578941219, 0.1002953723, -0.0812714025, 0.1857184023, 0.198581323, 0.1882681847, 0.0334806666, -0.223782897, -0.4800539315, 0.3684943318, 0.1311242282, -0.2911787629, 0.013699919, -0.3054615557, -0.2097311616, -0.0478185788, -0.2719694972, -0.0329391733, -0.2731934488, 0.1002843156, 0.2303826809, 0.111088708, 0.218740195, 0.0505729541, 0.2245624214, -0.2533393502, 0.0736533552, -0.029003866, -0.1045129299, -0.0029993602, -0.0265573263, 0.3638055027, -0.3310748041, 0.5024330616, 0.0892857835, -0.1429111511, -0.2049163878, -0.4361687303, 0.0277465526, -0.1707713604, 0.2560726106, 0.0792688504, -0.0453790054, -0.1205531582, -0.2528281212, 0.3231549561, 0.1433302164, -0.0671825632, -0.0222597606, -0.2092651725, -0.318177253, -0.3291822374, -0.0019015446, -0.2415914536, -0.0313349627, 0.1783396453, 0.0039088652, -0.0620981827, 0.6229844093, 0.1421975642, -0.3269356787, 0.1114382744, 0.1087922454, -0.0204633083, -0.3791362047, 0.2307924181, -0.3280832171, -0.2458157539, 0.1112752408, -0.2078541815, 0.4561772645, -0.0236299466, -0.074241057, -0.0516701862, 0.0600440651, 0.0250433013, -0.0242210925, 0.2214041203, 0.1233271211, 0.1223817021, 0.0012234673, -0.2397069335, -0.4332717061, 0.3612814844, -0.2303790003, 0.2302515805, -0.3453046978, 0.2405831516, 0.0744777024, 0.245303601, 0.0080904812, 0.0415511206, 0.4380138516, -0.2188452631, 0.3824877143, -0.1967355311, -0.5095447898, 0.2663565278, 0.0068043396, 0.0746748298, -0.0564308912, 0.0025116578, -0.1534563303, -0.1369741857, 0.4596604705, -0.2982488275, -0.0714149773, -0.1395440847, -0.0614005588, 0.1793227941, -0.1286798716, -0.2386002094, -0.4252118766, -0.0979252234, -0.3168430924, 0.0837054849, 0.0300568435, -0.0836134478, -0.5794290304, -0.2799664438, -0.2095400244, 0.0962747931, 0.2015605271, 0.1998219192, -0.2501440644, 0.3073731661, 0.0423245654, 0.0750111118, 0.6299781203, -0.5078378916, -0.2072090209, 0.4064024687, 0.0823349655, -0.4420146942, -0.3596886694, -0.063763015, 0.2939630151, 0.0598796345, 0.3375253975, -0.3172758818, 0.1752973646, 0.1442776471, 0.0290731788, -0.1157469377, -0.2602499425, -0.1650698632, -0.3463684022, -0.2542932034, 0.0387582816, 0.2610559464, 0.2220250964, 0.0756108612, 0.0557876825, 0.0451995507, 0.0471871048, 0.1067098379, -0.007339403, 0.0891595185, 0.5999578834, 0.3521909714, 0.0442499965, -0.2238943726, 0.56545192, 0.4997177124, -0.3498898745, -0.2776921391, -0.0696077272, -0.2492356598, 0.2417491078, -0.0740414634, 0.2450900078, 0.2074234188, 0.2566078603, 0.032664232, 0.0169427656, 0.190145582, 0.5320222974, -0.0338642783, -0.5876458287, -0.3630559444, 0.1882240772, 0.0840373933, -0.0925074294, 0.3905679584, 0.0355889164, -0.3100585938, 0.2069024593, 0.152016446, 0.7129696608, -0.5040869713, 0.2006382793, -0.1281061471, -0.0514073558, 0.6691424251, 0.0259145573, 0.1060546339, -0.165091753, -0.2414851487, 0.1075206697, 0.0631438792, 0.0530456528, 0.3399396837, -0.1476923823, 0.1040080041, -0.1996168792, 0.1442140937, -0.2286386788, 0.0942786336, 0.2413908988, -0.3566122055, 0.3155283332, 0.1148124263, -0.0379256457, -0.2212825418, 0.0147403479, -0.0131453779, -0.0485541299, -0.2762641311, -0.456035018, -0.1082490087, -0.3264351487, 0.3514829874, -0.0545666516, -0.082947284, 0.0922913402, 0.3642335832, 0.6377287507, -0.0870180428, -0.0121603124, 0.1931256056, -0.0072709341, -0.1853408664, -0.4156343341, -0.2583946586, 0.1583056003, -0.0967744067, -0.3491543531, 0.0630332828, 0.0483211651, -0.2924517095, -0.1737175435, 0.1112414002, -0.133845076, 0.0843072981, 0.019452665, 0.2658881545, 0.2253151238, -0.3193774819, 0.0304355957, 0.0522684008, -0.0975166932, 0.3346411288, -0.1579447389, 0.0292432457, -0.0027380777, 0.3327622116, 0.0285512432, 0.2265633643, 0.4172632694, -0.0195386261, 0.0441503003, -0.0707634464, -0.078597784, 0.2807224691, -0.3569045365, -0.0215919632, 0.4509513378, 0.0682091266, -0.0082824863, 0.407038033, 0.0060865092, 0.1032974049, 0.0879295468, -0.1227885932, -0.414031893, 0.0571801662, -0.4007035494, 0.2787564099, -0.0407933146, 0.4472045004, 0.1755110174, 0.4107343554, -0.2010179162, -0.0609041378, -0.2943557501, -0.0041191159, 0.4779884517, 0.0559545234, -0.136212945, 0.0865930766, 0.1084028482, -0.1853461713, 0.1712533981, -0.0311151668, -0.1749442816, 0.1246728748, 0.2514072955, 0.1749785542, 0.0139207616, -0.4309504032, -0.1583900601, -0.114319995, 0.2133871019, 0.2629471123, -0.0949873179, 0.3122135103, -0.4964764118, 0.0038020276, 0.0238732472, 0.1440283358, 0.0420848504, -0.0607595704, 0.32936728, 0.0790250823, 0.1272113025, -0.1499330848, -0.3488268852, 0.0482539609, -0.4432691634, -0.1288997829, 0.084179759, -0.3632187843, 0.4464634657, 0.2567122281, 0.2399900705, -0.1217627525, -0.2593410313, 0.429659605, 0.0848013684, 0.0733723044, -0.2197781652, -0.4196278155, -0.0084309671, 0.023884885, 0.1413664669, 0.2538611293, 0.2197540551, -0.0843566358, 0.0170368925, -0.1205666065, 0.059212517, 0.0718335137, 0.1195048243, 0.1281977147, -0.0726766884, 0.0837640613, 0.281983912, 0.2315363288, 0.0600669309, 0.1948667169, -0.0722378492, 0.3028274179, -0.1764680147, -0.0757143795, 0.2405505478, -0.3558900654, 0.4976221025, -0.1813223511, -0.0065753683, -0.0445874557, -0.0960163847, 0.2008920014, -0.2110216171, -0.3887047768, -0.2711665034, 0.3218337893, -0.1305862367, -0.1066606492, -0.1825624406, -0.1056455448, -0.0563146174, -0.0584489815, 0.0690639168, -0.1914360821, 0.3167050481, -0.109862715, -0.1567378491, -0.1262356341, -0.4305463135, 0.4618844986, 0.2834605575, -0.2831436098, 0.2036371976, 0.3541094661, -0.4410462081, 0.1897423267, 0.3322362006, 0.6006937027, 0.2195315063, 0.2928981483, 0.0838775113, -0.1760640889, -0.107889995, 0.1742134392, 0.0496436656, 0.4417834282, -0.06862773, 0.1369452775, 0.0067783631, -0.0832347274, 0.2980151176, 0.1812419891, 0.3393849134, -0.0167955048, -0.3750322163, -0.0341069177, -0.1780611724, -0.0763008222, 0.3583649099, -0.3215563893, -0.0696089864, 0.2845407724, -0.0804057941, 0.0143416151, -0.3408438563, 0.0184786879, 0.1767687052, 0.4923864305, 0.1872954369, 0.1653291732, -0.2372944653, -0.1239613444, -0.5642420053, -0.2042976469, -0.3196797371, -0.2337517589, -0.0577931441, -0.0994748399, 0.3641076982, -0.2035190165, 0.6210824251, -0.28564623, 0.3848315775, 0.3869749308, -0.2538064718, 0.0657705963, 0.2019015402, 0.0772044957, 0.039699316, -0.1581984609, -0.0872715786, 0.0368851535, 0.0007560849, -0.1040419191, 0.1626859009, -0.2012911588, -0.220744282, 0.1988334656, 0.0763102621, 0.8045891523, -0.0558601543, 0.0646563321, -0.149620235, -0.0560618266, -0.1025547981, 0.0681206807, 0.4282156229, 0.5867263079, -0.2910675406, -0.0661170185, -0.0673989654, -0.0161997527, -0.0980612189, -0.0475922003, -0.2880604267, 0.3186066747, -0.0191524923, 0.0055987164, 0.2622625828, 0.2214759439, -0.0565427057, 0.040598169, -0.0261393189, -0.369487524, 0.5187729001, -0.1914697587, -0.1348088533, -0.1738876849, 0.0139730349, 0.0507744439, 0.1048736721, -0.3421269059, 0.1284423321, 0.2554289401, 0.0750763491, -0.7180348635, 0.4141145945, -0.2150643021, -0.0544046983, 0.0822754428, 0.00611501, -0.1176433042, 0.0204467401, -0.1353333145, -0.1060192585 ]
https://github.com/huggingface/datasets/issues/1811
Unable to add Multi-label Datasets
Thanks @yjernite @lhoestq The template for new dataset makes it slightly confusing. I suppose the comment suggesting its update can be removed.
I am trying to add [CIFAR-100](https://www.cs.toronto.edu/~kriz/cifar.html) dataset. The dataset contains two labels per image - `fine label` and `coarse label`. Using just one label in supervised keys as `supervised_keys=("img", "fine_label")` raises no issue. But trying `supervised_keys=("img", "fine_label","coarse_label")` leads to this error : ```python Traceback (most recent call last): File "test_script.py", line 2, in <module> d = load_dataset('./datasets/cifar100') File "~/datasets/src/datasets/load.py", line 668, in load_dataset **config_kwargs, File "~/datasets/src/datasets/builder.py", line 896, in __init__ super(GeneratorBasedBuilder, self).__init__(*args, **kwargs) File "~/datasets/src/datasets/builder.py", line 247, in __init__ info.update(self._info()) File "~/.cache/huggingface/modules/datasets_modules/datasets/cifar100/61d2489b2d4a4abc34201432541b7380984ec714e290817d9a1ee318e4b74e0f/cifar100.py", line 79, in _info citation=_CITATION, File "<string>", line 19, in __init__ File "~/datasets/src/datasets/info.py", line 136, in __post_init__ self.supervised_keys = SupervisedKeysData(*self.supervised_keys) TypeError: __init__() takes from 1 to 3 positional arguments but 4 were given ``` Is there a way I can fix this? Also, what does adding `supervised_keys` do? Is it necessary? How would I specify `supervised_keys` for a multi-input, multi-label dataset? Thanks, Gunjan
22
Unable to add Multi-label Datasets I am trying to add [CIFAR-100](https://www.cs.toronto.edu/~kriz/cifar.html) dataset. The dataset contains two labels per image - `fine label` and `coarse label`. Using just one label in supervised keys as `supervised_keys=("img", "fine_label")` raises no issue. But trying `supervised_keys=("img", "fine_label","coarse_label")` leads to this error : ```python Traceback (most recent call last): File "test_script.py", line 2, in <module> d = load_dataset('./datasets/cifar100') File "~/datasets/src/datasets/load.py", line 668, in load_dataset **config_kwargs, File "~/datasets/src/datasets/builder.py", line 896, in __init__ super(GeneratorBasedBuilder, self).__init__(*args, **kwargs) File "~/datasets/src/datasets/builder.py", line 247, in __init__ info.update(self._info()) File "~/.cache/huggingface/modules/datasets_modules/datasets/cifar100/61d2489b2d4a4abc34201432541b7380984ec714e290817d9a1ee318e4b74e0f/cifar100.py", line 79, in _info citation=_CITATION, File "<string>", line 19, in __init__ File "~/datasets/src/datasets/info.py", line 136, in __post_init__ self.supervised_keys = SupervisedKeysData(*self.supervised_keys) TypeError: __init__() takes from 1 to 3 positional arguments but 4 were given ``` Is there a way I can fix this? Also, what does adding `supervised_keys` do? Is it necessary? How would I specify `supervised_keys` for a multi-input, multi-label dataset? Thanks, Gunjan Thanks @yjernite @lhoestq The template for new dataset makes it slightly confusing. I suppose the comment suggesting its update can be removed.
[ 0.0216593668, -0.2712222934, 0.0181459635, 0.1329572201, 0.37121737, 0.3166498542, 0.6164798141, -0.4762449861, 0.1994257569, 0.2660482228, -0.2177262306, 0.15355286, -0.2759883106, 0.3479331732, 0.1080323905, -0.1204763949, 0.1780961901, -0.2174013108, 0.0256009977, -0.0332676768, -0.221541211, 0.0074297078, -0.2346254587, -0.2840358317, -0.6864253283, -0.2522577941, -0.348762691, -0.1600372493, -0.2611855268, -0.6842921972, 0.1742343307, 0.3276168406, -0.1799797714, 0.4868171215, -0.0001189697, 0.0539395809, 0.0060150996, -0.0270136148, -0.1315758526, -0.0884086341, 0.0338956267, -0.0997655541, -0.0230812412, -0.1876843572, -0.0205908716, -0.3216595054, -0.0478546098, -0.2678295374, 0.2622787952, 0.1708979607, 0.1447005868, -0.1211825162, 0.3119574189, -0.1777846813, -0.0340042599, 0.2013508528, -0.1293975711, 0.1572745293, 0.1325557977, -0.1618613899, 0.4810106754, 0.2527091503, -0.0045298487, -0.1883504391, 0.4128495753, -0.0407811031, -0.1479683816, -0.5755077004, 0.1524928808, 0.3097068369, 0.6528838873, -0.0376971848, -0.648527801, -0.1441021413, 0.3986091018, -0.1604739577, -0.1403429359, 0.0104318112, -0.003859736, -0.2375008017, -0.3692447543, -0.0498814136, -0.2118252516, 0.2764358521, 0.3331706524, 0.3576147556, 0.0522683598, 0.3509879708, 0.2702973187, -0.0573838614, -0.0252625756, -0.1056554765, 0.0451551974, 0.2221507132, -0.289824605, 0.1726472676, -0.0475979075, 0.1391518116, 0.1451031268, -0.1027215272, 0.0525575243, -0.3232680559, -0.2117194235, 0.11969354, 0.1027331948, -0.0196696185, -0.0022726282, 0.4025926292, -0.0366643183, -0.0274586175, 0.1102098897, -0.2352030873, -0.0683441833, -0.1296106577, 0.3619588017, 0.1870025247, -0.1424216926, 0.1166463196, 0.0462241843, -0.1570322514, -0.0611534454, -0.0322758891, 0.356719166, 0.309689641, 0.2346779406, 0.0138951875, 0.1058848798, 0.4291902184, 0.1078818589, 0.0548973344, -0.1495377868, 0.3543498814, -0.1401568055, 0.0218002684, 0.290984273, 0.0014128238, 0.1271668077, 0.320697695, 0.2556935847, -0.1487240642, 0.047453329, -0.2202004194, 0.1937616616, 0.3569912314, -0.025585752, 0.2145912945, -0.0456783511, -0.3797813356, -0.11004062, 0.0452664532, -0.3311829567, -0.0257801265, -0.0522256419, 0.0699772239, 0.195308581, -0.0917196423, -0.4771167636, 0.2014681697, 0.1235158071, 0.0339206904, -0.0702252835, -0.2045562565, -0.2669655979, -0.2525109649, 0.2751825452, 0.4011730552, -0.2575545609, -0.2091661245, -0.1150707155, 0.1693902165, -0.2034938484, 0.2128368765, -0.2620730698, 0.4487381577, -0.094030574, 0.062893182, 0.0426745117, -0.8922805786, -0.0666833594, -0.0147576705, 0.0866597965, -0.1285033524, 0.1614068449, 0.325617969, 0.1087987125, 0.0289791524, 0.1426025629, 0.1137604415, -0.1924500018, -0.04820925, 0.1788377315, 0.1565863788, -0.1048269272, 0.3070022166, 0.210284248, -0.2103252411, 0.1564219147, -0.156665951, -0.0160314217, -0.1635688543, 0.1207386032, 0.3795166016, 0.2092374712, -0.0499873348, 0.0313235931, 0.0380037427, -0.4350193143, 0.4339157939, 0.2955793738, 0.3049952388, -0.1049282476, -0.1757051796, -0.0116096027, 0.0613494292, -0.4852902591, -0.1146175787, 0.0656741709, 0.2741552591, -0.0914814398, -0.0599611476, 0.0205959529, 0.1393004358, 0.4397171438, 0.1631940305, 0.0898369551, 0.0351093113, -0.1254134625, 0.0317973457, -0.0982278064, 0.0179513283, 0.4089220166, -0.0632737428, 0.03488563, 0.4561133385, 0.1855803728, -0.3028661013, -0.1581853926, 0.0631941259, 0.4092926979, -0.2760540247, -0.2940940261, -0.2007402927, 0.2320427299, -0.341172874, -0.1550142616, 0.0775262043, -0.3345647752, 0.2867107689, -0.0063108057, 0.1957472861, 0.1347314268, 0.1028226092, -0.1135906875, -0.2067491114, 0.0379194655, -0.1822334975, -0.0228357725, -0.2354649454, 0.0413876325, 0.0655712858, 0.0258156266, 0.0400972515, -0.0610705838, -0.0535846427, 0.0286563504, 0.2431072593, 0.1560311615, 0.5032749772, 0.2892151475, 0.2665801048, -0.1650920361, -0.2013624609, -0.289696008, 0.0578941219, 0.1002953723, -0.0812714025, 0.1857184023, 0.198581323, 0.1882681847, 0.0334806666, -0.223782897, -0.4800539315, 0.3684943318, 0.1311242282, -0.2911787629, 0.013699919, -0.3054615557, -0.2097311616, -0.0478185788, -0.2719694972, -0.0329391733, -0.2731934488, 0.1002843156, 0.2303826809, 0.111088708, 0.218740195, 0.0505729541, 0.2245624214, -0.2533393502, 0.0736533552, -0.029003866, -0.1045129299, -0.0029993602, -0.0265573263, 0.3638055027, -0.3310748041, 0.5024330616, 0.0892857835, -0.1429111511, -0.2049163878, -0.4361687303, 0.0277465526, -0.1707713604, 0.2560726106, 0.0792688504, -0.0453790054, -0.1205531582, -0.2528281212, 0.3231549561, 0.1433302164, -0.0671825632, -0.0222597606, -0.2092651725, -0.318177253, -0.3291822374, -0.0019015446, -0.2415914536, -0.0313349627, 0.1783396453, 0.0039088652, -0.0620981827, 0.6229844093, 0.1421975642, -0.3269356787, 0.1114382744, 0.1087922454, -0.0204633083, -0.3791362047, 0.2307924181, -0.3280832171, -0.2458157539, 0.1112752408, -0.2078541815, 0.4561772645, -0.0236299466, -0.074241057, -0.0516701862, 0.0600440651, 0.0250433013, -0.0242210925, 0.2214041203, 0.1233271211, 0.1223817021, 0.0012234673, -0.2397069335, -0.4332717061, 0.3612814844, -0.2303790003, 0.2302515805, -0.3453046978, 0.2405831516, 0.0744777024, 0.245303601, 0.0080904812, 0.0415511206, 0.4380138516, -0.2188452631, 0.3824877143, -0.1967355311, -0.5095447898, 0.2663565278, 0.0068043396, 0.0746748298, -0.0564308912, 0.0025116578, -0.1534563303, -0.1369741857, 0.4596604705, -0.2982488275, -0.0714149773, -0.1395440847, -0.0614005588, 0.1793227941, -0.1286798716, -0.2386002094, -0.4252118766, -0.0979252234, -0.3168430924, 0.0837054849, 0.0300568435, -0.0836134478, -0.5794290304, -0.2799664438, -0.2095400244, 0.0962747931, 0.2015605271, 0.1998219192, -0.2501440644, 0.3073731661, 0.0423245654, 0.0750111118, 0.6299781203, -0.5078378916, -0.2072090209, 0.4064024687, 0.0823349655, -0.4420146942, -0.3596886694, -0.063763015, 0.2939630151, 0.0598796345, 0.3375253975, -0.3172758818, 0.1752973646, 0.1442776471, 0.0290731788, -0.1157469377, -0.2602499425, -0.1650698632, -0.3463684022, -0.2542932034, 0.0387582816, 0.2610559464, 0.2220250964, 0.0756108612, 0.0557876825, 0.0451995507, 0.0471871048, 0.1067098379, -0.007339403, 0.0891595185, 0.5999578834, 0.3521909714, 0.0442499965, -0.2238943726, 0.56545192, 0.4997177124, -0.3498898745, -0.2776921391, -0.0696077272, -0.2492356598, 0.2417491078, -0.0740414634, 0.2450900078, 0.2074234188, 0.2566078603, 0.032664232, 0.0169427656, 0.190145582, 0.5320222974, -0.0338642783, -0.5876458287, -0.3630559444, 0.1882240772, 0.0840373933, -0.0925074294, 0.3905679584, 0.0355889164, -0.3100585938, 0.2069024593, 0.152016446, 0.7129696608, -0.5040869713, 0.2006382793, -0.1281061471, -0.0514073558, 0.6691424251, 0.0259145573, 0.1060546339, -0.165091753, -0.2414851487, 0.1075206697, 0.0631438792, 0.0530456528, 0.3399396837, -0.1476923823, 0.1040080041, -0.1996168792, 0.1442140937, -0.2286386788, 0.0942786336, 0.2413908988, -0.3566122055, 0.3155283332, 0.1148124263, -0.0379256457, -0.2212825418, 0.0147403479, -0.0131453779, -0.0485541299, -0.2762641311, -0.456035018, -0.1082490087, -0.3264351487, 0.3514829874, -0.0545666516, -0.082947284, 0.0922913402, 0.3642335832, 0.6377287507, -0.0870180428, -0.0121603124, 0.1931256056, -0.0072709341, -0.1853408664, -0.4156343341, -0.2583946586, 0.1583056003, -0.0967744067, -0.3491543531, 0.0630332828, 0.0483211651, -0.2924517095, -0.1737175435, 0.1112414002, -0.133845076, 0.0843072981, 0.019452665, 0.2658881545, 0.2253151238, -0.3193774819, 0.0304355957, 0.0522684008, -0.0975166932, 0.3346411288, -0.1579447389, 0.0292432457, -0.0027380777, 0.3327622116, 0.0285512432, 0.2265633643, 0.4172632694, -0.0195386261, 0.0441503003, -0.0707634464, -0.078597784, 0.2807224691, -0.3569045365, -0.0215919632, 0.4509513378, 0.0682091266, -0.0082824863, 0.407038033, 0.0060865092, 0.1032974049, 0.0879295468, -0.1227885932, -0.414031893, 0.0571801662, -0.4007035494, 0.2787564099, -0.0407933146, 0.4472045004, 0.1755110174, 0.4107343554, -0.2010179162, -0.0609041378, -0.2943557501, -0.0041191159, 0.4779884517, 0.0559545234, -0.136212945, 0.0865930766, 0.1084028482, -0.1853461713, 0.1712533981, -0.0311151668, -0.1749442816, 0.1246728748, 0.2514072955, 0.1749785542, 0.0139207616, -0.4309504032, -0.1583900601, -0.114319995, 0.2133871019, 0.2629471123, -0.0949873179, 0.3122135103, -0.4964764118, 0.0038020276, 0.0238732472, 0.1440283358, 0.0420848504, -0.0607595704, 0.32936728, 0.0790250823, 0.1272113025, -0.1499330848, -0.3488268852, 0.0482539609, -0.4432691634, -0.1288997829, 0.084179759, -0.3632187843, 0.4464634657, 0.2567122281, 0.2399900705, -0.1217627525, -0.2593410313, 0.429659605, 0.0848013684, 0.0733723044, -0.2197781652, -0.4196278155, -0.0084309671, 0.023884885, 0.1413664669, 0.2538611293, 0.2197540551, -0.0843566358, 0.0170368925, -0.1205666065, 0.059212517, 0.0718335137, 0.1195048243, 0.1281977147, -0.0726766884, 0.0837640613, 0.281983912, 0.2315363288, 0.0600669309, 0.1948667169, -0.0722378492, 0.3028274179, -0.1764680147, -0.0757143795, 0.2405505478, -0.3558900654, 0.4976221025, -0.1813223511, -0.0065753683, -0.0445874557, -0.0960163847, 0.2008920014, -0.2110216171, -0.3887047768, -0.2711665034, 0.3218337893, -0.1305862367, -0.1066606492, -0.1825624406, -0.1056455448, -0.0563146174, -0.0584489815, 0.0690639168, -0.1914360821, 0.3167050481, -0.109862715, -0.1567378491, -0.1262356341, -0.4305463135, 0.4618844986, 0.2834605575, -0.2831436098, 0.2036371976, 0.3541094661, -0.4410462081, 0.1897423267, 0.3322362006, 0.6006937027, 0.2195315063, 0.2928981483, 0.0838775113, -0.1760640889, -0.107889995, 0.1742134392, 0.0496436656, 0.4417834282, -0.06862773, 0.1369452775, 0.0067783631, -0.0832347274, 0.2980151176, 0.1812419891, 0.3393849134, -0.0167955048, -0.3750322163, -0.0341069177, -0.1780611724, -0.0763008222, 0.3583649099, -0.3215563893, -0.0696089864, 0.2845407724, -0.0804057941, 0.0143416151, -0.3408438563, 0.0184786879, 0.1767687052, 0.4923864305, 0.1872954369, 0.1653291732, -0.2372944653, -0.1239613444, -0.5642420053, -0.2042976469, -0.3196797371, -0.2337517589, -0.0577931441, -0.0994748399, 0.3641076982, -0.2035190165, 0.6210824251, -0.28564623, 0.3848315775, 0.3869749308, -0.2538064718, 0.0657705963, 0.2019015402, 0.0772044957, 0.039699316, -0.1581984609, -0.0872715786, 0.0368851535, 0.0007560849, -0.1040419191, 0.1626859009, -0.2012911588, -0.220744282, 0.1988334656, 0.0763102621, 0.8045891523, -0.0558601543, 0.0646563321, -0.149620235, -0.0560618266, -0.1025547981, 0.0681206807, 0.4282156229, 0.5867263079, -0.2910675406, -0.0661170185, -0.0673989654, -0.0161997527, -0.0980612189, -0.0475922003, -0.2880604267, 0.3186066747, -0.0191524923, 0.0055987164, 0.2622625828, 0.2214759439, -0.0565427057, 0.040598169, -0.0261393189, -0.369487524, 0.5187729001, -0.1914697587, -0.1348088533, -0.1738876849, 0.0139730349, 0.0507744439, 0.1048736721, -0.3421269059, 0.1284423321, 0.2554289401, 0.0750763491, -0.7180348635, 0.4141145945, -0.2150643021, -0.0544046983, 0.0822754428, 0.00611501, -0.1176433042, 0.0204467401, -0.1353333145, -0.1060192585 ]
https://github.com/huggingface/datasets/issues/1810
Add Hateful Memes Dataset
Hi @gchhablani since Array2D doesn't support images of different sizes, I would suggest to store in the dataset the paths to the image file instead of the image data. This has the advantage of not decompressing the data (images are often compressed using jpeg, png etc.). Users can still apply `.map` to load the images if they want to. Though it would en up being Sequences features. In the future we'll add support for ragged tensors for this case and update the relevant dataset with this feature.
## Add Hateful Memes Dataset - **Name:** Hateful Memes - **Description:** [https://ai.facebook.com/blog/hateful-memes-challenge-and-data-set]( https://ai.facebook.com/blog/hateful-memes-challenge-and-data-set) - **Paper:** [https://arxiv.org/pdf/2005.04790.pdf](https://arxiv.org/pdf/2005.04790.pdf) - **Data:** [This link](https://drivendata-competition-fb-hateful-memes-data.s3.amazonaws.com/XjiOc5ycDBRRNwbhRlgH.zip?AWSAccessKeyId=AKIARVBOBDCY4MWEDJKS&Signature=DaUuGgZWUgDHzEPPbyJ2PhSJ56Q%3D&Expires=1612816874) - **Motivation:** Including multi-modal datasets to 🤗 datasets. I will be adding this dataset. It requires the user to sign an agreement on DrivenData. So, it will be used with a manual download. The issue with this dataset is that the images are of different sizes. The image datasets added so far (CIFAR-10 and MNIST) have a uniform shape throughout. So something like ```python datasets.Array2D(shape=(28, 28), dtype="uint8") ``` won't work for the images. How would I add image features then? I checked `datasets/features.py` but couldn't figure out the appropriate class for this. I'm assuming I would want to avoid re-sizing at all since we want the user to be able to access the original images. Also, in case I want to load only a subset of the data, since the actual data is around 8.8GB, how would that be possible? Thanks, Gunjan
87
Add Hateful Memes Dataset ## Add Hateful Memes Dataset - **Name:** Hateful Memes - **Description:** [https://ai.facebook.com/blog/hateful-memes-challenge-and-data-set]( https://ai.facebook.com/blog/hateful-memes-challenge-and-data-set) - **Paper:** [https://arxiv.org/pdf/2005.04790.pdf](https://arxiv.org/pdf/2005.04790.pdf) - **Data:** [This link](https://drivendata-competition-fb-hateful-memes-data.s3.amazonaws.com/XjiOc5ycDBRRNwbhRlgH.zip?AWSAccessKeyId=AKIARVBOBDCY4MWEDJKS&Signature=DaUuGgZWUgDHzEPPbyJ2PhSJ56Q%3D&Expires=1612816874) - **Motivation:** Including multi-modal datasets to 🤗 datasets. I will be adding this dataset. It requires the user to sign an agreement on DrivenData. So, it will be used with a manual download. The issue with this dataset is that the images are of different sizes. The image datasets added so far (CIFAR-10 and MNIST) have a uniform shape throughout. So something like ```python datasets.Array2D(shape=(28, 28), dtype="uint8") ``` won't work for the images. How would I add image features then? I checked `datasets/features.py` but couldn't figure out the appropriate class for this. I'm assuming I would want to avoid re-sizing at all since we want the user to be able to access the original images. Also, in case I want to load only a subset of the data, since the actual data is around 8.8GB, how would that be possible? Thanks, Gunjan Hi @gchhablani since Array2D doesn't support images of different sizes, I would suggest to store in the dataset the paths to the image file instead of the image data. This has the advantage of not decompressing the data (images are often compressed using jpeg, png etc.). Users can still apply `.map` to load the images if they want to. Though it would en up being Sequences features. In the future we'll add support for ragged tensors for this case and update the relevant dataset with this feature.
[ -0.2504217625, 0.1592069715, -0.1446142942, 0.0486409217, 0.1048058793, 0.2664600015, 0.4449891746, -0.0732124001, -0.0832342729, -0.2253456116, -0.023049945, -0.2821851373, -0.5021377206, 0.2475008965, 0.0156488642, -0.1245206967, 0.032390818, 0.0315235667, -0.1846616119, -0.0556142442, -0.0390984379, -0.1718229949, 0.1833570302, -0.2621169984, -0.572902441, -0.0794128105, -0.292271018, 0.2743024826, -0.1746698916, -0.4757303596, 0.0342120975, 0.3668723106, 0.1425361335, 0.5114073753, -0.0001180374, 0.061328724, -0.0814564675, -0.1974323392, 0.0460135937, 0.0979806483, 0.0788962841, -0.5317851305, -0.1205240786, -0.2593847215, 0.1425025761, -0.499773562, 0.2076672614, -0.0505463146, 0.6721633077, -0.0005181953, 0.140340656, -0.1678141057, 0.2236774713, -0.0295418818, 0.0302442182, 0.7310445309, -0.0535114445, -0.2448933125, 0.0850690156, 0.1053890586, 0.2414752245, 0.2661069036, -0.1824460179, 0.0981591046, 0.4686675668, -0.1495057344, -0.0850304812, -0.365139693, 0.069254458, 0.3533005714, 0.3158089519, -0.11577411, -0.2830893695, -0.4789533019, -0.0519871712, 0.0470747724, -0.0973816141, 0.2933703363, -0.0024279505, -0.0083623389, -0.4078710377, -0.1113791168, -0.390848875, 0.4031020701, -0.0128046945, -0.1113747209, 0.0441607684, 0.3313261569, -0.0470417589, -0.3176801503, -0.050353393, -0.0321195163, 0.334410727, 0.2942706943, 0.2471239865, 0.0357241482, -0.2338343114, -0.2644751072, 0.4943547547, -0.2746841311, -0.0365185514, -0.0611694567, -0.5127971172, -0.109196566, 0.1728679538, -0.2186561227, -0.4133869112, 0.288422823, 0.1423449367, 0.023907952, -0.0680185407, -0.0000660289, -0.1721002609, 0.0852601826, -0.0206119418, -0.0413675234, 0.2201974988, 0.0065692291, -0.2225716114, -0.2236705422, 0.1090394258, 0.0613115095, -0.0797583759, 0.1821874529, 0.0928372592, -0.0467925593, -0.0691649467, 0.2312928587, 0.0642931759, -0.1113332883, -0.1213241518, -0.0465071872, -0.0835089907, 0.2189405859, 0.3173370659, 0.4066416323, 0.3729763329, -0.0502354279, 0.0361433476, 0.1877490729, 0.1703286767, -0.1536279619, 0.2397407889, 0.1025630832, 0.123959139, -0.0443040058, -0.025908025, 0.1373513937, -0.1783612221, 0.1234836355, -0.2965263724, -0.0349517018, -0.0787501037, 0.0607705116, -0.3073107004, 0.1393745393, -0.0952757597, 0.3325944245, 0.0445989333, -0.0998569056, 0.0798220187, -0.0691167414, -0.2916135788, -0.4136887789, 0.0731458142, 0.5717695951, -0.4198011756, -0.0388680995, -0.2598005533, 0.004876975, -0.3514774442, 0.1411675215, -0.0738462582, 0.0804826617, -0.1422954798, -0.0395543277, 0.1971666813, -0.1646540165, -0.2917401195, 0.1448030472, 0.0503730476, 0.26913625, 0.199737072, 0.4102458954, 0.167988047, -0.092359513, -0.003995914, 0.6235692501, -0.2270169109, -0.0232369527, 0.2167759836, -0.4549311101, 0.0900894552, 0.3774322569, 0.3031716049, -0.2699363828, 0.3662008345, -0.0529145785, 0.1597316265, -0.278639555, 0.1843122244, 0.0729181916, 0.3280516267, 0.0044642277, 0.0812782645, -0.1909700334, -0.58328408, 0.2914874554, -0.130162403, -0.2425611913, -0.1890537441, -0.0745363012, -0.2226565182, -0.1695448309, -0.5431599617, -0.1439878643, 0.0809653103, 0.0673677027, 0.1173335165, -0.0855120048, -0.1075577363, 0.3108453751, 0.0377635658, 0.0376630537, 0.0759399384, 0.3562740982, 0.2526935637, -0.2590901852, -0.1550351977, 0.1933311224, -0.0770663992, -0.277697742, 0.0310581997, 0.4657756388, 0.2533088326, 0.1999032199, -0.0602828711, 0.5921092629, 0.3864940107, -0.430657208, 0.424651742, 0.2981196046, 0.1676472127, -0.1962483078, -0.1448148489, 0.4161931276, -0.1086043045, 0.0944967493, -0.0901602954, -0.1568719745, 0.1208516806, 0.1988421232, -0.0697346255, -0.4860264063, -0.1375582665, 0.3124350011, -0.0352830738, -0.0333196111, 0.0816609114, -0.0311006233, 0.1444078386, 0.1584203392, 0.1950877011, 0.1174779981, -0.204509154, 0.2176681906, 0.1160245985, -0.0820588768, 0.5058941245, 0.2438027859, -0.2884395123, 0.1893190891, 0.0441547111, 0.0703345463, -0.0591773093, 0.0718808174, 0.1592858732, 0.1814646125, 0.2923964262, -0.0972120017, -0.2935051918, -0.3649148941, -0.0464105755, -0.1391710043, 0.0285093337, -0.2159314752, -0.1760033369, -0.0752428025, -0.1771730334, 0.0619004816, -0.2731124461, 0.3103004098, 0.2432678342, -0.0844476074, -0.0076462328, 0.098670356, -0.1790387928, 0.4522790909, 0.1903003156, -0.112439245, 0.2018893659, 0.2738087773, -0.1722249091, 0.0234752186, 0.341486156, 0.0180949159, 0.3103944957, -0.2085749507, 0.2875605524, -0.3016795218, -0.5269960761, -0.0177564714, -0.1278630197, 0.4184364676, 0.1583188921, 0.0569811873, 0.1466146111, -0.0490892455, 0.2545938194, 0.0839701816, -0.1261508763, -0.3579850495, -0.3124558628, -0.1176282316, 0.0876336396, 0.1875389665, -0.2937673628, -0.2434358597, 0.4645286202, 0.5125317574, 0.1423604786, 0.2152910978, 0.5227332115, -0.1563186944, 0.1688375473, 0.2114795297, -0.0623732135, -0.0816044882, 0.4824644327, -0.2617919445, -0.2787492573, -0.0011845455, -0.200517267, -0.2126510292, 0.3634603918, -0.4871140122, -0.1780946553, -0.1202252433, 0.1878045201, 0.0320541523, -0.0260779466, 0.0824707747, -0.028169129, 0.1132401899, -0.0663223714, -0.0998321921, 0.0764130205, 0.39128232, 0.2211259007, 0.0891549736, -0.0360579379, 0.2834274173, 0.4973532557, 0.0504423156, -0.0778697208, 0.4475952983, 0.0592902154, 0.2628370523, -0.0026232675, -0.3571559489, 0.3998300135, 0.1978181303, -0.1814905107, 0.1413678527, 0.1234127507, 0.0140400678, 0.0465474576, 0.384658277, -0.1950739175, -0.1501944214, 0.2425006628, 0.0356558263, 0.2080599517, -0.2231537253, -0.2774920464, -0.7103011608, -0.2136516869, 0.0608370639, 0.2419238687, -0.2063890696, 0.2661420107, -0.6109215617, -0.0451591723, 0.1607521176, 0.3234850764, 0.1610219181, 0.0686574802, -0.1207007617, -0.073688969, -0.0431586243, 0.029051736, 0.7224553227, 0.0184896458, -0.3272474706, -0.0201015919, 0.2369355857, -0.3815583587, -0.2712818682, 0.10928417, -0.0826967731, -0.1491672546, 0.656852603, -0.2573144436, 0.0512711518, 0.245047912, 0.321965158, -0.1487640291, -0.2222959399, -0.0937419757, -0.3714408576, -0.4741392732, -0.132550329, 0.1794005632, 0.0563346632, 0.1760860384, -0.4480546117, -0.0918845385, -0.1943967789, 0.1649777889, 0.1058013439, 0.0951882005, 0.2612833083, -0.03457205, 0.1756409705, -0.158434242, 0.2575205564, 0.3741612136, 0.0439134836, -0.1428476572, 0.094946295, -0.1685844064, 0.1172891706, 0.4597492218, 0.2344308347, -0.2063050866, 0.0265828408, -0.0773553923, -0.1809724867, 0.4501096308, 0.141269803, -0.2658028305, -0.0244549531, -0.5977191329, 0.1939567029, 0.1625721455, 0.038733542, 0.0833347365, -0.1662770808, -0.2910216153, 0.3688753247, 0.4148890078, 0.8890537024, -0.1004761904, 0.3690148294, -0.1744818985, 0.1872289181, 0.0291852839, -0.2127091885, -0.215151906, 0.102307193, 0.0166734569, -0.128718093, -0.0617993772, 0.3094142079, 0.2182050943, 0.1082592756, 0.0370074958, 0.1305920184, 0.1451583505, -0.0833370462, 0.1909993142, -0.2910301387, -0.3754473925, -0.0224434417, 0.0718093514, 0.002582374, -0.0975056738, -0.1028367132, -0.1750883758, -0.1285844296, -0.0624644831, -0.3139395118, -0.4170057178, -0.6177828312, 0.3116014302, 0.0959149897, -0.1583428085, -0.0477428511, 0.436458379, 0.2387739718, -0.0216693524, -0.0999173447, 0.181347847, 0.1393331587, 0.0159077719, -0.3843262792, -0.4722926915, 0.3890896738, -0.0097455904, -0.0883988142, 0.0408193618, 0.1852222681, -0.0622618906, -0.621322453, -0.1009948477, 0.3510935605, -0.2371735275, -0.3729330003, -0.0460391268, 0.0845939666, -0.0351509564, 0.0482118949, 0.1355674863, 0.0513296388, 0.2593282163, 0.2925768197, -0.1346598417, 0.0144937467, 0.0537604056, 0.141553238, -0.248570025, 0.3979210258, 0.0191126019, 0.2050876915, -0.1009725034, 0.4004033804, 0.2464226186, -0.2275557816, 0.0301120654, 0.055887688, -0.0923080742, -0.3010916114, 0.1867815405, 0.3047511578, 0.1123448163, 0.1786675453, -0.4206001163, -0.3385640085, 0.3300175369, -0.0448724739, 0.3595160246, -0.0959177315, 0.2453261018, -0.1896497607, 0.2075489163, -0.2435893118, 0.2797915041, 0.0342171043, 0.0165743195, 0.0133614317, -0.0864675641, -0.3129188418, 0.1869141906, 0.0548302904, -0.0084563158, -0.4545390606, -0.081984967, -0.1728127599, 0.2163760066, 0.1508247107, -0.1186476648, 0.0461593941, -0.3085322976, -0.0792780295, -0.0771325529, 0.1993966699, -0.1210665703, -0.3016905189, -0.0212105438, -0.2817970514, -0.0210437439, -0.0050858483, 0.1918304861, 0.0055682398, 0.09474691, 0.4647140205, 0.4612270594, -0.0899199694, -0.0705759376, 0.1159429997, 0.26316607, 0.1321068704, 0.0130428802, 0.2711664736, -0.2114789486, 0.1537315547, 0.1622491032, 0.0216152593, 0.3007541001, -0.3699857295, 0.1090488657, 0.2009073645, 0.1213938445, -0.2129846215, 0.1097905934, 0.4337889552, -0.0872260109, 0.1015937701, 0.3715547323, 0.3916657269, 0.2633988261, -0.2922074199, 0.1028848216, 0.2551816106, 0.0022370312, 0.0483150408, 0.187687248, -0.302691102, 0.0690410435, 0.174618423, 0.4449329376, 0.2387213558, 0.5049596429, -0.3436603844, 0.4133915305, 0.1104386151, -0.1653072834, 0.2926423252, -0.5142853856, 0.2334798425, 0.322068125, 0.1003443748, 0.4405694008, -0.141151756, 0.1429876536, -0.0843478739, -0.3823215961, -0.153634727, 0.1817495823, 0.238914609, -0.1287264824, -0.3973868191, -0.32956177, -0.5255420208, -0.0513874665, -0.0321119204, -0.5779092908, 0.1415557265, -0.1235466674, -0.1133024544, -0.3197182417, 0.0532001443, 0.2641004324, 0.021432925, -0.3121996224, 0.2355463654, 0.4401601255, -0.0962107927, 0.2448839247, -0.0619916469, 0.2725961208, 0.1712173969, -0.2464677691, 0.2377245128, -0.1022489965, -0.2724085748, -0.1546006799, 0.1053099483, 0.0545735098, 0.3160356879, 0.1064425558, 0.0642454475, -0.1034050137, -0.2114142329, -0.1423080266, -0.0897924751, -0.4951943457, -0.1446510106, -0.1938595176, -0.1958301067, -0.0647403598, 0.0566846132, -0.4392277598, -0.6049895287, 0.490696758, -0.516356647, 0.2248384058, -0.0296898279, 0.0092394128, -0.4217175543, 0.0520846136, 0.3018873036, -0.0143104158, 0.0345556065, -0.0447393134, -0.3840904236, 0.1674562991, -0.2783690393, -0.2578518093, -0.0539679118, 0.2680947185, 0.2295306027, 0.0208569616, 0.3160772324, -0.1001031995, 0.0873316899, 0.261777252, -0.2485551536, 0.0713349953, 0.1462796181, 0.5599989295, 0.0346905366, -0.0936444774, 0.0408403203, 0.003086701, -0.0220300891, -0.1176196188, -0.1751277149, 0.0550971478, -0.337094754, 0.3505984545, 0.0402447581, 0.1881268024, -0.0477153808, -0.0568387322, -0.3671642244, 0.1420490295, -0.0202488452, -0.010038903, 0.154393822, 0.7235084772, -0.3094786108, 0.2260929346, -0.0420954674, 0.3157184422, 0.0397886783, -0.3485491872, -0.0814389288, 0.3176930845, -0.2902959585, 0.0474669561, 0.1136441678, 0.2330194116, -0.0386278518, -0.1395374835, 0.3328946233, -0.3573355973, 0.4361348152, -0.1375588626, -0.4307521582, 0.0136345364, -0.0708093271, 0.096058026, 0.426859796, -0.2791132331, 0.2198583633, 0.345535785, 0.0700149536, -0.0514796376, 0.3274361789, -0.009830961, -0.4515475035, -0.0036135465, 0.1303822398, -0.3480068445, -0.212998867, -0.0162919909, -0.3059488535 ]
https://github.com/huggingface/datasets/issues/1808
writing Datasets in a human readable format
AFAIK, there is currently no built-in method on the `Dataset` object to do this. However, a workaround is to directly use the Arrow table backing the dataset, **but it implies loading the whole dataset in memory** (correct me if I'm mistaken @lhoestq). You can convert the Arrow table to a pandas dataframe to save the data as csv as follows: ```python arrow_table = dataset.data dataframe = arrow_table.to_pandas() dataframe.to_csv("/path/to/file.csv") ``` Similarly, you can convert the dataset to a Python dict and save it as JSON: ```python import json arrow_table = dataset.data py_dict = arrow_table.to_pydict() with open("/path/to/file.json", "w+") as f: json.dump(py_dict, f) ```
Hi I see there is a save_to_disk function to save data, but this is not human readable format, is there a way I could save a Dataset object in a human readable format to a file like json? thanks @lhoestq
101
writing Datasets in a human readable format Hi I see there is a save_to_disk function to save data, but this is not human readable format, is there a way I could save a Dataset object in a human readable format to a file like json? thanks @lhoestq AFAIK, there is currently no built-in method on the `Dataset` object to do this. However, a workaround is to directly use the Arrow table backing the dataset, **but it implies loading the whole dataset in memory** (correct me if I'm mistaken @lhoestq). You can convert the Arrow table to a pandas dataframe to save the data as csv as follows: ```python arrow_table = dataset.data dataframe = arrow_table.to_pandas() dataframe.to_csv("/path/to/file.csv") ``` Similarly, you can convert the dataset to a Python dict and save it as JSON: ```python import json arrow_table = dataset.data py_dict = arrow_table.to_pydict() with open("/path/to/file.json", "w+") as f: json.dump(py_dict, f) ```
[ -0.10645172, 0.2575984597, -0.0731424019, 0.1242810562, 0.4906322658, 0.2974197268, -0.1625234634, 0.3496725559, 0.04431054, 0.025897488, -0.1533561647, 0.3309134245, -0.4147045612, 0.2707338035, 0.2647759914, -0.1661132425, 0.0718677342, -0.0046488531, 0.0115187131, 0.1498274207, -0.1541503221, -0.0508933514, 0.2294982374, -0.0256733857, -0.0389471613, -0.3820806146, -0.2350026369, -0.1319588721, -0.2951256633, -0.2115116119, -0.0870228037, 0.0582864955, 0.1421893239, 0.0619913377, -0.000117436, -0.090346247, 0.0592744462, -0.1883001328, -0.4185788631, -0.1192437485, -0.2572651505, -0.4672527909, 0.2826540172, -0.3885617256, 0.0572323874, -0.5000997782, 0.1672140807, -0.3590870798, 0.4838617742, 0.270611465, 0.2117938846, -0.1439215839, 0.3098012209, 0.2972798944, 0.0524505526, 0.615929544, -0.3162022829, 0.154430598, -0.0756999701, 0.0732606649, 0.3559263647, -0.1744702458, -0.1545524895, -0.3159638345, 0.3756183386, 0.0782594383, -0.2154062539, -0.0293780062, -0.0379321501, 0.2223851234, 0.7566880584, -0.7057832479, -0.5702955127, -0.0148928538, 0.0362193584, -0.0766564459, -0.1443181783, 0.5130926967, 0.0262533911, 0.229706645, -0.1699937582, -0.5853191614, -0.3661932051, 0.0704637468, 0.3859952688, -0.1131253541, -0.1840334982, -0.0402980112, 0.0515584126, 0.0164255966, 0.3137091696, -0.1765543818, -0.0960148126, 0.1227476001, -0.1509610862, -0.2741805911, -0.5675677657, -0.2052544206, 0.010116145, 0.0844311714, 0.4611464739, -0.0475818142, -0.0811261162, 0.09407603, 0.3766885102, 0.0881234109, 0.1881902069, 0.0747265816, 0.1809171885, -0.2470787764, 0.0940369219, -0.2720763385, 0.0188920572, 0.1625403017, 0.4624990821, -0.0868977159, 0.0454674959, -0.2265892923, -0.0494798124, 0.0183053464, -0.1780697107, 0.1294328868, -0.3326534033, 0.1597581208, 0.0246284194, 0.1252074987, 0.1071005687, 0.2388101816, 0.1295620799, -0.0150889531, 0.1851650774, 0.1889401823, 0.042116791, 0.1680559814, -0.0994377658, 0.0223752633, 0.048800908, -0.0798076317, 0.0742932484, -0.4312083423, 0.3465844989, -0.1666998863, 0.2300368547, 0.284081161, 0.1565830261, 0.088009268, -0.0418890864, -0.5203968287, -0.2893022299, 0.2648201883, 0.0096720243, -0.110315226, -0.3392944634, 0.0516569614, -0.1047599837, -0.1274160445, -0.7118955255, 0.0507394858, 0.0460142903, 0.0264465213, 0.1481798589, -0.0401071757, -0.1091861799, -0.5510828495, 0.1095228493, 0.02859715, -0.5763206482, 0.1701296568, 0.0707034171, -0.0269816667, 0.0793614835, 0.2944975495, 0.1584197134, 0.3940743208, 0.056722708, 0.1613833159, 0.3168118, -0.1142695099, -0.0339383967, 0.3281462491, 0.1536333412, 0.0527911633, -0.2635240257, 0.4900125265, 0.4048583806, 0.0110458173, -0.1125624403, 0.0533570349, 0.1434193403, 0.0167619288, -0.1362841427, -0.373878181, 0.1573848277, 0.0359616876, -0.3810764551, -0.090245232, 0.3390371799, -0.0026246272, 0.3020038307, -0.297960043, 0.2616698146, 0.5488733649, 0.3298593462, 0.0892499089, -0.1869286597, -0.2176184207, -0.2303953469, -0.1483855098, 0.4737422466, -0.1687744558, -0.1578411162, -0.341139704, 0.1417447031, 0.0717258751, -0.131806314, 0.2105414271, 0.0646366626, -0.2472124994, -0.1737647951, 0.1570232213, -0.2253968716, 0.3347906768, -0.0315158702, 0.1102836579, -0.212312758, 0.1414781511, -0.004306261, -0.2985953987, 0.1239465252, 0.0093762986, 0.0077000195, 0.0071596615, -0.0397446565, 0.3718757033, 0.1717893928, 0.0548249036, 0.0678474009, 0.5374656916, 0.069266364, -0.2176721543, 0.138190344, 0.204817906, 0.2182476819, -0.0328976065, -0.6860598922, 0.5157960653, 0.0122280437, 0.009676341, -0.0234440416, 0.2769928575, 0.15215379, 0.1961561739, -0.1398269534, 0.0576455444, 0.0091585703, 0.062728934, -0.1090609357, -0.2286321968, -0.4677339792, 0.0491143316, 0.5178411603, -0.3079947829, 0.5596216321, 0.024520034, -0.0674515069, -0.1197859794, 0.1391739547, 0.1694334745, 0.0988084227, 0.0131214, 0.0084055541, -0.0152110206, -0.1322945654, 0.0793195963, 0.1636237204, -0.1759057939, 0.2189536244, -0.1926091462, -0.0880051255, -0.1375405788, -0.2838563919, 0.2554501593, -0.1744094193, 0.0286314581, -0.2344364673, 0.0963488892, -0.1480450928, 0.0690906495, -0.0803008825, 0.0835792124, -0.1047160476, -0.2666878998, -0.3607382774, 0.1366752386, 0.1016835645, -0.1860565543, -0.068728894, 0.2181332111, -0.1224072278, -0.0292222295, -0.2400661856, -0.0789849311, 0.0528297909, 0.0032244325, 0.1677333862, 0.2358340472, 0.4595131278, -0.1864618063, 0.3139981925, -0.3245363235, 0.0425704941, -0.2352767885, -0.073307775, 0.2968512177, -0.0385016315, 0.3675039709, -0.4057821035, 0.0554121919, -0.057818383, 0.0680497512, -0.1202372313, 0.0670585781, 0.1310899556, -0.1453341544, 0.0033633858, 0.1358358711, -0.3315481842, -0.091880694, 0.5880927444, -0.0212845393, 0.0851840526, -0.2015005499, 0.1822723895, 0.0390198566, -0.0594492629, -0.1134715825, 0.1022589952, -0.4799202681, 0.3875847459, -0.2450954467, -0.3918482363, 0.2173520476, 0.3804704845, -0.1191380769, -0.0605498552, -0.1390841454, 0.0108353123, -0.1433647424, -0.1700056791, -0.053838063, 0.1813925207, 0.0168660078, 0.2060141563, 0.1637835056, 0.0642000437, -0.2167954743, 0.1224522963, 0.3177888989, 0.0929097682, -0.0520328991, 0.3663928211, 0.0803734958, -0.0182100981, 0.3591731489, 0.2471935302, 0.2278040648, -0.0486977845, 0.438106209, -0.1248672754, 0.0292694345, 0.0408792049, -0.3164153695, -0.1899912804, -0.1023088098, 0.1691313386, 0.0362690091, 0.2131181359, -0.0089111477, -0.2511671185, -0.2523018122, 0.2345301658, -0.2422940731, 0.0265632141, -0.1178323328, 0.1100166142, -0.0175664574, -0.1718044579, 0.0806338564, 0.383793503, 0.2663039565, 0.0322687924, -0.5151155591, -0.2940560877, -0.5803803802, 0.0998745561, -0.0295967795, 0.3618457019, 0.1022812873, 0.1812072396, 0.2147047073, -0.1119509563, 0.3909143209, -0.1343431473, -0.2980665863, 0.0561333895, 0.1621563137, -0.3671405911, 0.2348608673, -0.0473511145, 0.2741596103, -0.2787130773, 0.3191594183, -0.1746147275, -0.1206109449, -0.2288215458, 0.3668919802, -0.4481758475, -0.1200769916, 0.0821692571, -0.421810776, -0.1823728681, -0.3053174615, 0.151322186, -0.1954496354, 0.0067476667, -0.1221501082, -0.334416002, 0.070210278, 0.1866710335, -0.2903485298, 0.22430785, -0.0119881146, -0.1412698627, 0.3285470009, 0.3046222627, 0.1024218127, 0.3054980934, -0.0795760602, -0.3287599087, -0.2732931674, -0.167009756, 0.3981631994, -0.0980883986, 0.0966516435, -0.0320461243, 0.2533676028, -0.2423794121, -0.3861219585, -0.129443869, 0.0660814047, 0.1474064291, -0.5840483308, -0.6087496877, 0.3970063031, 0.1133666635, 0.0549411327, 0.0138993515, 0.1954514384, -0.1718691885, 0.4643929005, 0.3657187521, 0.9020744562, -0.604450345, 0.5735936761, -0.0385322906, -0.6457208395, 0.2766192257, -0.4204301536, -0.0273247603, -0.3712977767, 0.11743927, -0.1189442575, -0.0093259737, 0.3070977628, 0.2328094691, -0.2221039981, 0.1798442304, -0.1137192771, -0.1695740074, 0.0838305801, 0.2791962624, -0.12142542, -0.1039381027, -0.1601460278, 0.1506623626, -0.1781390458, -0.3596466184, 0.0895339698, -0.373008728, -0.0610663742, 0.2402313054, -0.2900500298, -0.0070621371, -0.1904811561, 0.1023723334, -0.3404386044, -0.2851463854, 0.1627354622, 0.2513296306, 0.2861891389, 0.2359692752, -0.0347435996, -0.0771181285, -0.2271258235, 0.029757984, 0.0466882177, -0.0615854003, 0.1257041246, 0.212791577, -0.0325125158, 0.2309786528, -0.0446455851, -0.3499728441, 0.110766679, -0.0269320123, -0.0427053161, -0.2084443569, -0.2369852215, -0.1178416312, -0.1680608988, -0.1451388597, 0.0968286246, 0.4093708992, 0.3144996464, 0.4892162681, -0.0470162034, -0.0696010888, 0.0739860237, 0.077777952, 0.0151668638, 0.0650848299, 0.2172195464, -0.038764067, -0.2438249141, -0.2203438431, 0.6501059532, 0.1738116592, 0.0053954795, 0.206190154, -0.2736010849, 0.1468953788, -0.22252509, 0.0149075845, 0.092517212, -0.2587204874, -0.2671196759, -0.4189398289, -0.36769858, 0.1884375066, 0.3738775849, 0.2795007229, 0.1300150454, -0.2986118793, -0.2512315512, -0.108519353, -0.1967221498, 0.0870150402, -0.053890761, -0.0562732704, 0.078737475, 0.2680080235, 0.2168201804, -0.3074115217, 0.0350420699, -0.0519607253, 0.1876034141, -0.0996492505, -0.1900954247, 0.1305592507, 0.0866741687, -0.1253447533, -0.1687788367, -0.4526854157, -0.0305362791, -0.1521852314, -0.3153104782, 0.3631749749, -0.0966382623, 0.3008652031, 0.0125913275, 0.1385027766, -0.0113981962, -0.0335732773, 0.0614380017, 0.326346606, -0.1698084027, 0.0586510971, 0.2863138914, -0.0419737026, -0.1188759133, 0.1244862378, 0.1370640248, -0.1231818944, 0.3291628957, -0.1266669184, -0.0109351575, -0.0754385516, 0.3813681006, 0.3408975601, -0.1769037545, 0.2275377512, 0.2048674822, 0.0786915645, 0.1729991734, -0.1341192573, 0.2587116659, -0.0603925511, -0.1156146228, 0.117365092, -0.1337969005, 0.0944373161, -0.3814756274, -0.316957891, 0.0581978895, -0.1218340844, -0.1312619597, 0.2519333661, 0.1693170518, -0.1154479235, 0.0012946147, 0.2567518055, 0.2531088889, 0.6264763474, 0.1446096152, 0.111755237, 0.5608849525, 0.167717129, 0.063716054, 0.056395404, 0.0664289817, -0.1512660384, 0.0879572779, 0.3625525534, 0.4243085086, 0.0104290657, -0.0020099506, -0.2219339907, 0.0830373913, 0.1312358379, -0.0474900864, -0.0755934119, -0.0296515711, -0.0509904847, 0.1968565285, -0.1094434708, -0.2953988016, -0.4354919493, 0.038759362, 0.1948019713, 0.4805166721, 0.0781075954, 0.3756709993, 0.1052033752, 0.1889466643, -0.2450514138, -0.2562159002, -0.0034828149, 0.0284076668, -0.3446306884, 0.1636254936, 0.2867846787, 0.0134550631, -0.1108853817, 0.4924835265, -0.1011633277, -0.1818975061, 0.106070891, 0.0341399387, 0.1640356183, -0.139296025, 0.3932145536, 0.1226921678, 0.1094272286, 0.2109399289, 0.0213192366, -0.014471909, -0.0988775045, 0.0922455192, -0.0188537128, -0.5013270974, -0.1279325336, -0.1039540321, -0.127195105, -0.2156639695, 0.5050706863, -0.0352514125, 0.1124873012, -0.0289678387, 0.0482331663, 0.0474050865, 0.3016919792, 0.4544298351, 0.0897109509, -0.0695184618, 0.030858621, -0.1595071554, -0.1504457891, -0.0818228275, -0.0607452095, -0.0279469006, 0.094606407, 0.3062110245, 0.3246446252, -0.0154572427, 0.3501589894, -0.0966227353, 0.4746275246, -0.1529737413, -0.1095173508, 0.3460098505, 0.3962835968, 0.0240953341, -0.4002614021, 0.4055838585, 0.2499222904, 0.0269376636, -0.3491511047, 0.3835626543, -0.3014107943, -0.0613453053, 0.3309571147, 0.0696276277, -0.0606319718, -0.021439258, -0.2752470076, 0.2633810043, 0.3521860242, 0.0958075449, 0.3177365363, -0.0724048913, 0.3416813016, -0.2775281966, 0.1618970484, -0.0880664065, -0.2432598174, -0.5080468059, -0.0426240861, -0.2744733989, 0.1040450111, -0.1105255708, -0.0234466735, 0.162951231, 0.239567697, -0.2278753817, 0.2146224678, -0.1298569143, 0.3445456624, -0.0600250512, -0.0869833902, -0.2443918735, 0.3853408992, -0.1268393993, -0.0440096222, -0.0251778383, -0.4408197403, -0.0154447407, 0.3302831352, -0.219727546, 0.0105376244, 0.240509063, -0.0074137244, 0.2687164247, -0.0039452091, 0.6607912183, -0.0080848942, -0.0002098083, -0.2892733216, -0.3808010817 ]
https://github.com/huggingface/datasets/issues/1808
writing Datasets in a human readable format
Indeed this works as long as you have enough memory. It would be amazing to have export options like csv, json etc. ! It should be doable to implement something that iterates through the dataset batch by batch to write to csv for example. There is already an `export` method but currently the only export type that is supported is `tfrecords`.
Hi I see there is a save_to_disk function to save data, but this is not human readable format, is there a way I could save a Dataset object in a human readable format to a file like json? thanks @lhoestq
61
writing Datasets in a human readable format Hi I see there is a save_to_disk function to save data, but this is not human readable format, is there a way I could save a Dataset object in a human readable format to a file like json? thanks @lhoestq Indeed this works as long as you have enough memory. It would be amazing to have export options like csv, json etc. ! It should be doable to implement something that iterates through the dataset batch by batch to write to csv for example. There is already an `export` method but currently the only export type that is supported is `tfrecords`.
[ -0.2098385096, 0.0492691398, -0.107666865, 0.0664266944, 0.5001395345, 0.2327687889, -0.1172601134, 0.3574724793, 0.0007518157, 0.1492751539, -0.1676979512, 0.0527244844, -0.3711422384, 0.4290180802, 0.3048388064, -0.1157783419, 0.0749911219, -0.1399858296, 0.0092278905, 0.1033091843, -0.1731936038, 0.0031023417, 0.1856797636, -0.104469955, -0.0075999983, -0.4232764542, -0.2167163044, -0.2166222632, -0.1934353411, -0.1114807501, -0.1856018901, 0.0026595108, 0.330757618, 0.0372147709, -0.0001181302, -0.1858899444, -0.0230947249, -0.1615507305, -0.3787549734, -0.0889038518, -0.2690249085, -0.2977552414, 0.0627995282, -0.4023829103, 0.0958816856, -0.2471898794, 0.4078348577, -0.3925504684, 0.2636528611, 0.2429074496, 0.187560752, -0.1289436817, 0.2089092433, 0.2194777727, 0.0918986797, 0.6853558421, -0.3673558235, 0.0276127495, 0.0916351303, 0.1872601807, 0.4378952682, -0.287405163, -0.1316046715, -0.3443315029, 0.3439820707, 0.0561670028, -0.0894860625, -0.0855565518, -0.0113041662, 0.2284475416, 0.8819466829, -0.5850655437, -0.4965890646, 0.0562341064, -0.0367572568, -0.0845805258, -0.1327416003, 0.4962069988, 0.0031536818, 0.2550378144, -0.3079486489, -0.6020659208, -0.4352657497, 0.0158187486, 0.4432984591, -0.0723043606, -0.1896706074, -0.0486627072, 0.0651549846, 0.1475457847, 0.3959630132, -0.1175902039, -0.1520477384, 0.1304976493, -0.1174586639, -0.3553518057, -0.6162093282, -0.0790421739, 0.0551156402, 0.0091144741, 0.3531563282, -0.0813897029, 0.0763224512, 0.0985916182, 0.4005743861, 0.0226745382, 0.3162569404, -0.047976505, 0.181860134, -0.4053882062, 0.11731942, -0.2435547709, 0.0092506781, 0.1748858392, 0.4574068785, -0.0047272481, -0.0768972337, -0.2648997307, 0.042527467, -0.0964036733, -0.0780491084, -0.0268153492, -0.4872848988, 0.0815214515, 0.0194433033, -0.113536492, 0.0742610693, 0.076662153, -0.0136125945, -0.1499935985, 0.2075237334, 0.1393625289, 0.030904457, 0.1772510707, -0.1824781299, -0.0466997139, -0.0887520015, -0.0720064864, 0.1316602826, -0.3586090803, 0.3845713437, -0.2493531853, 0.2336791307, 0.058267042, 0.1374217272, 0.1378743351, -0.1352058053, -0.5077311397, -0.3294371068, 0.2013818324, -0.1224832237, -0.1518188566, -0.3533751369, 0.0441593565, -0.0617385618, -0.2341740131, -0.6611487269, 0.1238480508, 0.1232445911, -0.0381360352, 0.0982438773, -0.0732542872, -0.1500760615, -0.4955065846, 0.0272693709, -0.0362049416, -0.6494598985, 0.1883054972, 0.1602354646, -0.0922062993, 0.1351406276, 0.3854273558, 0.2524665296, 0.5349966288, -0.0050934441, 0.1908499599, 0.2792837322, 0.0055638775, 0.1569123566, 0.3973150551, 0.1233958229, -0.1115943044, -0.2646244466, 0.4624730647, 0.5034453273, -0.1858538538, -0.1742168069, 0.0487022884, 0.1154662743, -0.0147590488, -0.1799326539, -0.3490654528, 0.0157870203, -0.066407755, -0.2319363058, -0.0439233854, 0.5080921054, 0.0998144001, 0.2476150692, -0.3435504436, 0.3596274853, 0.5124644041, 0.3237616122, 0.1429353654, -0.2747884095, -0.2920853198, -0.2649781704, -0.2304358035, 0.3505917788, -0.2540546954, 0.2577136159, -0.3342517018, 0.2862891257, 0.0189477801, 0.0523893386, 0.2952237427, 0.0199202299, -0.0535011776, -0.1708803773, 0.1500767618, -0.3343760371, 0.2304332554, -0.0469823405, -0.0708580688, -0.180643782, 0.1290429533, 0.006797757, -0.2635653019, 0.0730490386, -0.111521177, -0.0074962843, -0.1651373804, 0.0253625102, 0.3055084348, 0.0756188929, 0.0746357441, 0.1550765634, 0.6029986143, 0.0291010235, -0.0924292356, 0.0618127659, 0.0457078554, 0.0842040926, -0.0397249013, -0.7325783372, 0.4708713889, -0.0299043823, -0.0231567882, -0.0381003506, 0.1662542224, 0.0391307101, 0.0894584209, 0.0318248197, 0.0888795704, 0.1403708309, 0.0402229577, -0.264154017, -0.2821544409, -0.4200906157, 0.0944668576, 0.6116842031, -0.3029910326, 0.4891394973, -0.0324110128, 0.1629304141, -0.0735493749, 0.1590602249, 0.0599538982, 0.1638480425, 0.0063392781, 0.1523171663, -0.020032905, -0.1002855748, 0.0414519086, 0.1809065938, -0.3330414593, 0.1086974591, -0.1366847306, -0.2732612491, -0.0263080876, -0.2412548959, 0.2050082386, -0.1510561705, 0.0028076246, -0.2534694076, -0.0020915791, -0.1439947039, 0.0682084262, -0.089292407, 0.2924489975, -0.0737615079, -0.2302347124, -0.2821518183, 0.2217077911, 0.0110721886, -0.2715148926, 0.0190675929, 0.394903928, -0.208705157, 0.1366724819, -0.2805608511, -0.0104769878, 0.0772216916, 0.0013887845, 0.1501664519, 0.2121296525, 0.5001711845, -0.2471011281, 0.2344093174, -0.3675443232, -0.0073751658, -0.160047397, -0.0063727023, 0.3519593179, -0.1012437344, 0.339530468, -0.4360644221, 0.0627958253, -0.1589546502, 0.0349303856, -0.0650756881, -0.0743051097, 0.1325966418, -0.2086405754, -0.084045358, 0.1942924857, -0.3629710674, -0.1273270249, 0.543640554, -0.0702462718, 0.1053251326, -0.2141473293, 0.0746371448, -0.0660375133, -0.1418340802, -0.1646411419, 0.0744823068, -0.636077106, 0.2971101105, -0.3602563739, -0.4670174718, 0.2232370377, 0.5383544564, -0.1780401766, 0.0747441649, -0.2141811401, 0.1051235646, 0.0104012284, -0.2355578542, -0.0313849077, 0.2207896709, 0.0310314465, 0.0849166065, 0.1721574962, 0.062260285, -0.1802072525, 0.0317775458, 0.3285799325, 0.2549754679, -0.033370316, 0.2822731137, 0.2257811129, 0.0145833008, 0.2588452101, 0.2226627618, 0.1427477449, 0.0221683029, 0.4139012098, -0.0327833258, 0.0022068918, 0.3475818336, -0.3031909466, -0.2985246778, -0.0196204036, 0.0720024779, 0.0848767832, 0.1824378073, 0.0174720362, -0.0904314667, -0.2348344177, 0.3269672096, 0.00302818, 0.1502865255, -0.1556912512, 0.115404807, -0.1132466048, -0.1336516291, 0.0767763704, 0.3554424942, 0.3367664516, 0.1070486903, -0.6552959681, -0.23153162, -0.4852989316, 0.1907075047, 0.0501581915, 0.2119169682, -0.1267170906, 0.1747839749, 0.1891009361, -0.0203108508, 0.4097021818, -0.2429732531, -0.2298624516, 0.0398620367, 0.1058923304, -0.1899779141, 0.1949257255, -0.0307502672, 0.2844807506, -0.0784666836, 0.3948440552, -0.1224786267, -0.1046815515, -0.1835706532, 0.2617671788, -0.4513822794, -0.2274118364, 0.2144456506, -0.2858097255, -0.0793606266, -0.2414368689, 0.1410571933, -0.2363557518, -0.068396762, -0.1851715147, -0.26650244, 0.1350853145, 0.191920042, -0.3439515829, -0.0101495739, 0.0290648527, -0.223308444, 0.28274858, 0.3313414454, 0.0968821943, 0.0708972663, -0.1467025876, -0.2290759981, -0.0741187036, -0.3246363997, 0.523856163, -0.110800527, 0.186069414, -0.0708480403, 0.3306652904, -0.1715368032, -0.3715520501, -0.2041894048, 0.0513590202, 0.1517586261, -0.7371710539, -0.4786502123, 0.1942823827, 0.0169836134, 0.0677902699, -0.0319630168, 0.1035455614, -0.1954326928, 0.2718692124, 0.5431916118, 0.9837473631, -0.6078289151, 0.4128285944, -0.1637286544, -0.5005873442, 0.328419894, -0.4307347536, 0.0627747402, -0.3551387489, -0.0276476163, -0.107819885, 0.0088212863, 0.2886621356, 0.2476260364, -0.2568736374, 0.1114458442, 0.0429646671, -0.0276018437, 0.0065243319, 0.204203099, -0.0899185017, -0.061659757, -0.0040141474, 0.1460143179, -0.1574333906, -0.3205996156, -0.0201731957, -0.3327823579, 0.1395347118, 0.4025576711, -0.2020187974, -0.0209280141, -0.1463061869, 0.0150448196, -0.3082629442, -0.2517388463, 0.1647439599, 0.217953369, 0.5346000195, 0.2676829696, -0.0082503185, -0.2146235853, -0.2167554051, 0.0655891746, -0.0220927019, -0.0354239009, 0.093972519, 0.1627645493, -0.0731018707, 0.3064501882, 0.0288081206, -0.3392608464, 0.0228169411, -0.0798974484, -0.0847578123, -0.2946387529, -0.1190946624, -0.0714353994, -0.0903846398, -0.0838375986, 0.0825991184, 0.4026635587, 0.3868675828, 0.6266883016, -0.1138430238, -0.0243492424, -0.0264972076, 0.0735807046, 0.0862441435, -0.1006960645, 0.0623358823, -0.0058065429, -0.2779268622, -0.2418330014, 0.645909965, 0.022128839, -0.0729258657, 0.2438971698, -0.3161091208, 0.1931047291, -0.1895979941, 0.1027762368, 0.062011797, -0.304351747, -0.3431844711, -0.2934037447, -0.1822023839, 0.106088087, 0.3513623476, 0.2742486, 0.1964373738, -0.2088548243, -0.1980816275, -0.0715914965, -0.1946106553, -0.0148157068, -0.0851609856, 0.0202354677, 0.1642275155, 0.2659722865, 0.0690855384, -0.2713039517, -0.0321457684, -0.0136921452, 0.1524146199, -0.0729750097, -0.2203809619, 0.144368276, 0.0652039424, 0.0645054057, -0.0626735315, -0.3862689734, 0.0028052013, -0.1917511523, -0.3020140529, 0.4181833267, -0.1112124175, 0.3120133877, 0.0823348612, 0.1562835127, -0.0018330887, -0.03986644, 0.2709318995, 0.4351329207, -0.2582454681, 0.1065222919, 0.2574399114, -0.0351618454, -0.120685339, 0.1419337541, 0.3585568964, -0.0054718144, 0.2918896973, -0.1320078969, 0.0210153088, 0.0817456543, 0.1922924072, 0.2230271995, -0.1513835341, 0.2095309645, 0.2021975219, 0.0894818529, 0.3666163087, -0.098046042, 0.2809937, -0.0219849087, -0.1846568286, 0.1747458279, -0.088846691, 0.0154188573, -0.0415834598, -0.3821219206, 0.0678361058, -0.205319792, -0.165551126, 0.2034166306, 0.1272652298, -0.066316098, -0.0298959892, 0.1465526074, 0.2336006612, 0.4929719567, 0.206235975, 0.0732565969, 0.4920812547, 0.2002185136, 0.0824680552, -0.098207444, 0.1632052958, -0.1484130323, 0.1188441068, 0.4701644778, 0.4780255258, -0.2022808492, -0.1375745237, -0.2050094604, 0.0606810674, 0.0712559074, -0.0733533651, 0.0407071598, -0.1687209904, -0.0187058747, 0.2555472851, 0.0180925056, -0.3080134988, -0.3289763033, 0.0334218293, 0.2333350182, 0.5413276553, 0.1409212649, 0.3043999076, -0.0077628987, 0.1501619518, -0.2206458449, -0.1622950733, -0.1543226838, 0.0149483178, -0.31749928, 0.3099463582, 0.1703504771, 0.0588458367, 0.0753083378, 0.4118943214, -0.1623410136, -0.0831414238, 0.0934856385, 0.150054872, 0.0717755258, -0.0524236783, 0.4647694826, 0.0988009125, 0.16525352, 0.3295047283, 0.0059087793, -0.1236522943, -0.1341717541, -0.0283537693, 0.1266492456, -0.4638592899, -0.172794953, -0.1395134032, -0.1048983634, -0.101924248, 0.4397475421, -0.1383690238, 0.1056914032, 0.0689348802, 0.0451065265, 0.0810735002, 0.3107047677, 0.5162878036, 0.031330362, -0.0684716478, 0.0654622614, -0.0065770969, 0.0252945907, 0.0163494423, 0.0962509215, -0.1207719147, 0.1353668571, 0.3248271048, 0.3486245275, 0.0382466018, 0.1583913863, -0.0753915161, 0.5430313349, -0.1199704856, -0.1642115712, 0.3302969635, 0.3895035982, 0.0072046965, -0.3909870982, 0.5046799779, 0.2837265134, -0.013007503, -0.4221144617, 0.4101162553, -0.2834378481, -0.2210485786, 0.3415220082, 0.0683486238, -0.1018351465, -0.0187308304, -0.2133677304, 0.2306766659, 0.3925395906, 0.1220636889, 0.2381235957, 0.0703166649, 0.2418001443, -0.3717211485, 0.0908147246, -0.1417987347, -0.1396602839, -0.4831586182, 0.1779391319, -0.1455749273, -0.011170011, -0.1442709118, -0.1653170586, 0.3295236826, 0.1953501254, -0.2057490945, 0.205686599, -0.1991422921, 0.5085459948, -0.1622636467, -0.0935355276, -0.2657577991, 0.2492879778, -0.1632489413, -0.0005452652, -0.043802429, -0.3620735407, -0.0830065086, 0.3840695322, -0.2108117789, 0.1024112552, 0.2996652424, -0.0099464599, 0.2332293242, 0.0598657727, 0.5324206948, 0.1018793732, -0.0518436804, -0.2351113707, -0.3200594485 ]
https://github.com/huggingface/datasets/issues/1805
can't pickle SwigPyObject objects when calling dataset.get_nearest_examples from FAISS index
Hi ! Indeed we used to require mapping functions to be picklable with `pickle` or `dill` in order to cache the resulting datasets. And FAISS indexes are not picklable unfortunately. But since #1703 this is no longer required (the caching will simply be disabled). This change will be available in the next release of `datasets`, or you can also install `datasets` from source.
So, I have the following instances in my dataset ``` {'question': 'An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most likely effect of this increase in rotation?', 'answer': 'C', 'example_id': 'ARCCH_Mercury_7175875', 'options':[{'option_context': 'One effect of increased amperage in the planetary world (..)', 'option_id': 'A', 'option_text': 'Planetary density will decrease.'}, (...)]} ``` The `options` value is always an list with 4 options, each one is a dict with `option_context`; `option_id` and `option_text`. I would like to overwrite the `option_context` of each instance of my dataset for a dpr result that I am developing. Then, I trained a model already and save it in a FAISS index ``` dpr_dataset = load_dataset( "text", data_files=ARC_CORPUS_TEXT, cache_dir=CACHE_DIR, split="train[:100%]", ) dpr_dataset.load_faiss_index("embeddings", f"{ARC_CORPUS_FAISS}") torch.set_grad_enabled(False) ``` Then, as a processor of my dataset, I created a map function that calls the `dpr_dataset` for each _option_ ``` def generate_context(example): question_text = example['question'] for option in example['options']: question_with_option = question_text + " " + option['option_text'] tokenize_text = question_tokenizer(question_with_option, return_tensors="pt").to(device) question_embed = ( question_encoder(**tokenize_text) )[0][0].cpu().numpy() _, retrieved_examples = dpr_dataset.get_nearest_examples( "embeddings", question_embed, k=10 ) # option["option_context"] = retrieved_examples["text"] # option["option_context"] = " ".join(option["option_context"]).strip() #result_dict = { # 'example_id': example['example_id'], # 'answer': example['answer'], # 'question': question_text, #options': example['options'] # } return example ``` I intentionally commented on this portion of the code. But when I call the `map` method, `ds_with_context = dataset.map(generate_context,load_from_cache_file=False)` It calls the following error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-55-75a458ce205c> in <module> ----> 1 ds_with_context = dataset.map(generate_context,load_from_cache_file=False) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/dataset_dict.py in map(self, function, with_indices, input_columns, batched, batch_size, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc) 301 num_proc=num_proc, 302 ) --> 303 for k, dataset in self.items() 304 } 305 ) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/dataset_dict.py in <dictcomp>(.0) 301 num_proc=num_proc, 302 ) --> 303 for k, dataset in self.items() 304 } 305 ) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1257 fn_kwargs=fn_kwargs, 1258 new_fingerprint=new_fingerprint, -> 1259 update_data=update_data, 1260 ) 1261 else: ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 155 } 156 # apply actual function --> 157 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 158 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 159 # re-apply format to the output ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 156 kwargs_for_fingerprint["fingerprint_name"] = fingerprint_name 157 kwargs[fingerprint_name] = update_fingerprint( --> 158 self._fingerprint, transform, kwargs_for_fingerprint 159 ) 160 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in update_fingerprint(fingerprint, transform, transform_args) 103 for key in sorted(transform_args): 104 hasher.update(key) --> 105 hasher.update(transform_args[key]) 106 return hasher.hexdigest() 107 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in update(self, value) 55 def update(self, value): 56 self.m.update(f"=={type(value)}==".encode("utf8")) ---> 57 self.m.update(self.hash(value).encode("utf-8")) 58 59 def hexdigest(self): ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in hash(cls, value) 51 return cls.dispatch[type(value)](cls, value) 52 else: ---> 53 return cls.hash_default(value) 54 55 def update(self, value): ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in hash_default(cls, value) 44 @classmethod 45 def hash_default(cls, value): ---> 46 return cls.hash_bytes(dumps(value)) 47 48 @classmethod ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in dumps(obj) 387 file = StringIO() 388 with _no_cache_fields(obj): --> 389 dump(obj, file) 390 return file.getvalue() 391 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in dump(obj, file) 359 def dump(obj, file): 360 """pickle an object to a file""" --> 361 Pickler(file, recurse=True).dump(obj) 362 return 363 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in dump(self, obj) 452 raise PicklingError(msg) 453 else: --> 454 StockPickler.dump(self, obj) 455 stack.clear() # clear record of 'recursion-sensitive' pickled objects 456 return /usr/lib/python3.7/pickle.py in dump(self, obj) 435 if self.proto >= 4: 436 self.framer.start_framing() --> 437 self.save(obj) 438 self.write(STOP) 439 self.framer.end_framing() /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in save_function(pickler, obj) 554 dill._dill._create_function, 555 (obj.__code__, globs, obj.__name__, obj.__defaults__, obj.__closure__, obj.__dict__, fkwdefaults), --> 556 obj=obj, 557 ) 558 else: /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 636 else: 637 save(func) --> 638 save(args) 639 write(REDUCE) 640 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 /usr/lib/python3.7/pickle.py in save_tuple(self, obj) 784 write(MARK) 785 for element in obj: --> 786 save(element) 787 788 if id(obj) in memo: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 885 k, v = tmp[0] 886 save(k) --> 887 save(v) 888 write(SETITEM) 889 # else tmp is empty, and we're done /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 885 k, v = tmp[0] 886 save(k) --> 887 save(v) 888 write(SETITEM) 889 # else tmp is empty, and we're done /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 522 reduce = getattr(obj, "__reduce_ex__", None) 523 if reduce is not None: --> 524 rv = reduce(self.proto) 525 else: 526 reduce = getattr(obj, "__reduce__", None) TypeError: can't pickle SwigPyObject objects ``` Which I have no idea how to solve/deal with it
63
can't pickle SwigPyObject objects when calling dataset.get_nearest_examples from FAISS index So, I have the following instances in my dataset ``` {'question': 'An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most likely effect of this increase in rotation?', 'answer': 'C', 'example_id': 'ARCCH_Mercury_7175875', 'options':[{'option_context': 'One effect of increased amperage in the planetary world (..)', 'option_id': 'A', 'option_text': 'Planetary density will decrease.'}, (...)]} ``` The `options` value is always an list with 4 options, each one is a dict with `option_context`; `option_id` and `option_text`. I would like to overwrite the `option_context` of each instance of my dataset for a dpr result that I am developing. Then, I trained a model already and save it in a FAISS index ``` dpr_dataset = load_dataset( "text", data_files=ARC_CORPUS_TEXT, cache_dir=CACHE_DIR, split="train[:100%]", ) dpr_dataset.load_faiss_index("embeddings", f"{ARC_CORPUS_FAISS}") torch.set_grad_enabled(False) ``` Then, as a processor of my dataset, I created a map function that calls the `dpr_dataset` for each _option_ ``` def generate_context(example): question_text = example['question'] for option in example['options']: question_with_option = question_text + " " + option['option_text'] tokenize_text = question_tokenizer(question_with_option, return_tensors="pt").to(device) question_embed = ( question_encoder(**tokenize_text) )[0][0].cpu().numpy() _, retrieved_examples = dpr_dataset.get_nearest_examples( "embeddings", question_embed, k=10 ) # option["option_context"] = retrieved_examples["text"] # option["option_context"] = " ".join(option["option_context"]).strip() #result_dict = { # 'example_id': example['example_id'], # 'answer': example['answer'], # 'question': question_text, #options': example['options'] # } return example ``` I intentionally commented on this portion of the code. But when I call the `map` method, `ds_with_context = dataset.map(generate_context,load_from_cache_file=False)` It calls the following error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-55-75a458ce205c> in <module> ----> 1 ds_with_context = dataset.map(generate_context,load_from_cache_file=False) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/dataset_dict.py in map(self, function, with_indices, input_columns, batched, batch_size, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc) 301 num_proc=num_proc, 302 ) --> 303 for k, dataset in self.items() 304 } 305 ) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/dataset_dict.py in <dictcomp>(.0) 301 num_proc=num_proc, 302 ) --> 303 for k, dataset in self.items() 304 } 305 ) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1257 fn_kwargs=fn_kwargs, 1258 new_fingerprint=new_fingerprint, -> 1259 update_data=update_data, 1260 ) 1261 else: ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 155 } 156 # apply actual function --> 157 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 158 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 159 # re-apply format to the output ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 156 kwargs_for_fingerprint["fingerprint_name"] = fingerprint_name 157 kwargs[fingerprint_name] = update_fingerprint( --> 158 self._fingerprint, transform, kwargs_for_fingerprint 159 ) 160 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in update_fingerprint(fingerprint, transform, transform_args) 103 for key in sorted(transform_args): 104 hasher.update(key) --> 105 hasher.update(transform_args[key]) 106 return hasher.hexdigest() 107 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in update(self, value) 55 def update(self, value): 56 self.m.update(f"=={type(value)}==".encode("utf8")) ---> 57 self.m.update(self.hash(value).encode("utf-8")) 58 59 def hexdigest(self): ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in hash(cls, value) 51 return cls.dispatch[type(value)](cls, value) 52 else: ---> 53 return cls.hash_default(value) 54 55 def update(self, value): ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in hash_default(cls, value) 44 @classmethod 45 def hash_default(cls, value): ---> 46 return cls.hash_bytes(dumps(value)) 47 48 @classmethod ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in dumps(obj) 387 file = StringIO() 388 with _no_cache_fields(obj): --> 389 dump(obj, file) 390 return file.getvalue() 391 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in dump(obj, file) 359 def dump(obj, file): 360 """pickle an object to a file""" --> 361 Pickler(file, recurse=True).dump(obj) 362 return 363 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in dump(self, obj) 452 raise PicklingError(msg) 453 else: --> 454 StockPickler.dump(self, obj) 455 stack.clear() # clear record of 'recursion-sensitive' pickled objects 456 return /usr/lib/python3.7/pickle.py in dump(self, obj) 435 if self.proto >= 4: 436 self.framer.start_framing() --> 437 self.save(obj) 438 self.write(STOP) 439 self.framer.end_framing() /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in save_function(pickler, obj) 554 dill._dill._create_function, 555 (obj.__code__, globs, obj.__name__, obj.__defaults__, obj.__closure__, obj.__dict__, fkwdefaults), --> 556 obj=obj, 557 ) 558 else: /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 636 else: 637 save(func) --> 638 save(args) 639 write(REDUCE) 640 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 /usr/lib/python3.7/pickle.py in save_tuple(self, obj) 784 write(MARK) 785 for element in obj: --> 786 save(element) 787 788 if id(obj) in memo: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 885 k, v = tmp[0] 886 save(k) --> 887 save(v) 888 write(SETITEM) 889 # else tmp is empty, and we're done /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 885 k, v = tmp[0] 886 save(k) --> 887 save(v) 888 write(SETITEM) 889 # else tmp is empty, and we're done /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 522 reduce = getattr(obj, "__reduce_ex__", None) 523 if reduce is not None: --> 524 rv = reduce(self.proto) 525 else: 526 reduce = getattr(obj, "__reduce__", None) TypeError: can't pickle SwigPyObject objects ``` Which I have no idea how to solve/deal with it Hi ! Indeed we used to require mapping functions to be picklable with `pickle` or `dill` in order to cache the resulting datasets. And FAISS indexes are not picklable unfortunately. But since #1703 this is no longer required (the caching will simply be disabled). This change will be available in the next release of `datasets`, or you can also install `datasets` from source.
[ 0.0690421015, -0.3887838125, -0.0696356744, 0.246825397, 0.1642261446, 0.0277642012, 0.1784280986, 0.0541117415, 0.40896523, 0.5476052165, -0.0500988811, 0.4959976077, 0.1157933474, -0.1273346841, -0.267626524, 0.0515104569, 0.0849942267, 0.0134224445, 0.0216208287, -0.2425851971, -0.5357055664, -0.0484025739, -0.198426038, 0.049339138, -0.0398414508, 0.0180332679, -0.0332829542, 0.0954479352, -0.0584461838, -0.453925401, 0.4045756459, 0.2576847672, 0.21166116, -0.0134233385, -0.0001266745, 0.0679021776, 0.205347389, -0.0212523453, -0.1646226048, 0.0867505074, -0.0015756339, 0.3058412671, 0.2944120169, -0.3542491794, -0.217924729, -0.2550704181, -0.0504560769, -0.1345559955, 0.0680650547, 0.1915954053, 0.0670927092, 0.1456795037, -0.1130727604, -0.1586895287, 0.2215852737, -0.0109135732, -0.062061999, 0.1621502787, 0.2719882429, 0.3066602349, 0.2544571459, 0.2748858631, -0.246070832, 0.0368731916, -0.0725990981, 0.092639938, 0.3378043771, 0.0920078978, 0.1556723267, 0.096946694, 0.2498124838, -0.2737825811, -0.4702078402, -0.4137726128, -0.0613961965, -0.156748727, -0.2627948225, -0.5509216785, -0.0172373094, 0.2482925653, 0.1254626364, 0.1021862105, -0.0639563277, 0.5212544799, 0.4118605256, 0.0359550118, 0.0144238845, 0.2109336108, 0.1066411734, -0.0576483309, 0.1366032064, -0.1332530677, -0.0283685923, -0.132119894, -0.213148728, -0.1242146119, 0.4846386611, -0.235414803, 0.2450583726, 0.0846260637, -0.1290586293, 0.4014525414, 0.0691415966, 0.1075497121, 0.1615172029, -0.1186264008, -0.0983870029, 0.0395723954, -0.1171172559, 0.0870350897, -0.1678487659, 0.1142575443, 0.0268997401, -0.0553062782, -0.6315290332, -0.0129408147, 0.3205946386, -0.144903034, -0.1014327034, 0.2506066263, -0.6014733911, 0.342908591, 0.131870389, 0.5309948325, 0.0145980045, 0.1166362315, 0.1949885339, 0.2470778674, -0.2960155904, 0.4217507243, -0.2266984582, -0.0420276076, 0.0346690044, -0.0588204265, -0.1218069345, 0.4785677195, 0.2849892378, -0.2606021762, 0.0978315249, -0.0784841031, 0.0227261111, -0.1106627882, 0.3640696406, 0.1970126331, -0.0533647984, 0.0772831663, 0.1710079312, -0.0954406634, -0.1744897664, 0.1174804643, 0.1384010911, -0.102139093, 0.1903930902, 0.0709636509, -0.1389862597, -0.1317989677, -0.2130443901, 0.1211960763, -0.0878354982, 0.2369576991, 0.1870572269, -0.1878822297, -0.0876030102, -0.1486044824, 0.2090398073, 0.5161316395, -0.2350451499, -0.0758555159, 0.0244942047, 0.1951783299, 0.3501954079, 0.2010141313, -0.3267982602, 0.2561721504, 0.0371252522, 0.2322165072, 0.3163653016, -0.4490186274, -0.663924396, -0.0901996046, -0.0756991804, 0.039773196, 0.3317386806, 0.0975896493, 0.3703523576, 0.2930629551, -0.1459471285, 0.5172794461, 0.1696157604, 0.0434676185, -0.2609553337, -0.3448404372, 0.0231416859, 0.127014488, -0.0733680353, 0.163238436, -0.0440484434, -0.2676257491, 0.3614015281, -0.1503375471, -0.102128379, 0.2690656781, 0.5216956139, 0.2159872204, 0.2130893916, -0.2032634169, -0.0844260156, 0.1282854378, -0.1522228718, 0.0228899457, -0.0782165751, -0.2090478092, -0.0135676526, 0.197749123, -0.3135469854, -0.174049139, -0.0746522397, 0.1529776156, 0.2881991267, -0.1318621039, -0.0989454538, 0.0493430719, -0.3399664164, 0.2049800903, -0.5214461684, 0.4270997047, -0.0935476571, -0.3137367368, -0.1872019023, 0.258349508, 0.0134849176, -0.1509951949, -0.1589760184, 0.1067026928, 0.4748961627, -0.406360954, 0.1756881177, -0.3079205751, -0.0195663366, -0.1098890379, 0.1134149656, 0.0090816431, 0.1443974078, 0.2156585008, -0.0095153861, 0.622720778, 0.3724325597, 0.1507984996, -0.0765271559, 0.1891473085, 0.1473814547, -0.1591729522, -0.0528289899, -0.5078774691, -0.1828077585, 0.3740831614, 0.1135972142, 0.028330015, -0.4408773482, 0.4054223299, 0.2401174307, 0.0603242964, -0.1184277087, 0.1541836113, -0.0568144508, -0.0367469229, 0.02928905, -0.2139261067, 0.1052957773, 0.3675742149, -0.2779197693, -0.3208731115, 0.0087618716, -0.0421886221, 0.0650619566, 0.3736088276, -0.0423655212, -0.2475413084, 0.0935090035, -0.0054279659, -0.3840718567, -0.3060504198, -0.0381189063, 0.0701653287, -0.1114427298, 0.1743902266, -0.374951303, -0.1492137462, 0.0872081369, -0.4578383863, 0.1916305572, -0.0981230363, 0.1739195436, 0.2258580625, -0.2370433509, 0.4466659129, 0.1191982329, 0.1598459333, 0.0529771075, -0.1998590976, -0.1200762838, -0.1755337417, -0.457616806, -0.092289567, -0.2286257446, 0.4021474123, 0.1773946881, 0.2158047259, -0.0975214243, -0.2927099168, 0.0211016685, 0.0287385657, 0.1406078339, 0.2020924985, 0.1879703254, 0.0467987843, -0.2393503338, -0.1135703623, 0.0707940757, 0.1661298722, -0.2033126056, -0.1762379557, -0.0430422984, -0.0814639404, 0.1018628478, -0.2113614976, -0.2890199423, -0.2259371728, 0.1515956223, 0.0919153392, 0.1095536649, 0.0218206868, 0.3725824654, 0.055136811, -0.2080988735, -0.1080143973, -0.2729107738, 0.0094555914, -0.0735265017, -0.041499421, -0.2861773372, -0.5065013766, -0.339802146, -0.2370946556, 0.1956366599, -0.2353993952, -0.336114943, -0.3440829813, 0.1592897028, 0.1556718498, 0.1409615576, 0.376039505, 0.2247820199, -0.0875743702, -0.1666590571, -0.3055535257, 0.4445741475, 0.1400023401, 0.088299945, 0.1077335924, 0.4067179561, -0.1840821803, 0.5277171731, 0.1247860938, -0.5209573507, 0.3717172742, -0.0140297851, 0.0158726629, -0.0675412267, -0.2851008773, 0.1656640768, 0.1925270855, -0.1816552579, 0.1626509726, -0.1984018683, 0.0591689646, 0.3394253254, 0.3197870553, -0.3819196224, -0.2768356502, -0.0537333935, -0.159519732, -0.3160978556, 0.025267832, 0.3339839578, -0.5367692709, 0.2368257791, 0.0828457773, 0.1489060819, 0.1879774928, -0.0566982888, -0.0769121647, -0.1068077981, -0.3594066501, 0.4149489701, 0.0144542344, 0.240124017, 0.084614709, -0.0340126939, 0.3434589505, 0.0684321374, 0.957190156, -0.0614790171, -0.0239520073, 0.3976438046, -0.2214733064, -0.3634820282, 0.025664553, -0.1771549881, 0.0797579437, 0.1019291282, 0.2299429774, -0.1601285189, -0.3377131522, 0.0265324451, 0.0167386644, -0.1257559508, 0.0394155458, -0.0708354414, -0.4167459011, -0.4663289189, 0.1146946251, -0.0202138908, 0.1422993839, 0.0958662629, -0.2113022059, -0.5041610599, -0.1101826727, -0.1364938915, 0.151746273, 0.3936241567, 0.1454344094, 0.1311239302, 0.1425935179, 0.3486029506, 0.6238427758, 0.2257178426, -0.0752177089, -0.2151193321, -0.0062145237, 0.1642844975, 0.094556272, 0.4280675352, -0.0638237894, 0.436309576, -0.0415077023, 0.1246343404, 0.0061392076, 0.2227662802, 0.2262482047, 0.2113562226, 0.0564512834, -0.4379891753, 0.563046813, 0.021087192, -0.1794915795, 0.3136002123, 0.161850214, -0.2578877211, 1.0739569664, 0.2233302891, 1.0657086372, -0.0835497975, 0.2263787538, 0.1986540258, 0.0644551218, 0.4328967631, 0.1228054911, 0.1599918604, -0.3314412236, 0.2574236095, 0.0078828037, -0.3100057244, 0.1413200647, 0.2411956936, -0.0830923468, -0.0947630405, -0.2193001807, -0.2675541341, -0.0694855601, 0.0392067134, 0.3647847474, -0.3496558666, -0.3084582388, -0.0315425247, 0.2854224443, 0.2928272486, 0.2488316298, -0.1491139233, -0.4724771678, -0.183876276, -0.2159601003, 0.005299665, -0.2775576711, 0.2701741159, 0.1710419059, -0.3057253063, -0.1693385839, 0.238059476, 0.1891987026, -0.1477198303, -0.1746556759, 0.1169826239, 0.1554353386, -0.0974490792, -0.0089842714, -0.2751390338, 0.3801999688, 0.1556447595, -0.3932552934, 0.0153320329, 0.1589361429, -0.4387568831, -0.0904447436, -0.080171302, -0.2309855372, -0.2791679502, -0.3515002429, -0.0657419115, -0.1390074193, -0.4286187589, -0.0218833089, 0.0130571006, -0.2057514787, 0.4152246416, -0.1201146692, -0.3386864364, -0.1725049317, 0.5766257644, 0.2049620003, 0.0953758284, 0.4988758266, 0.2045173347, -0.1476263404, -0.1861622334, -0.4698061943, 0.4244086146, 0.0736835673, 0.303047359, -0.0764297619, -0.3145205975, -0.1098777503, -0.0109324679, 0.032249555, -0.1338236779, -0.5415477157, -0.222772181, -0.5453007221, 0.1993275285, 0.0189193636, 0.4727431238, -0.2054035664, 0.5167483091, -0.5072888732, -0.2756152451, -0.1670345813, -0.0221072771, -0.4664254487, 0.0234726146, -0.3302721381, -0.1691894829, 0.0772079676, 0.0515029058, 0.0324488282, -0.0511220694, -0.0658901557, -0.105554074, -0.1573596001, 0.1804270744, 0.093168363, -0.1917534322, -0.1235966533, -0.0418647155, -0.1471067816, -0.1790006608, 0.1822987944, 0.2753228545, -0.0650037378, 0.1734466106, 0.0464402176, 0.0953353643, 0.2519483268, 0.0938527137, -0.0296615362, 0.3096497059, 0.0970650315, 0.1175343841, -0.1214079112, -0.0311480761, -0.0639290735, 0.0233556218, -0.0015799887, -0.0470110625, -0.0850182921, -0.0344838351, -0.3594439328, 0.3289601207, 0.2795447409, 0.5147302151, 0.0854522586, -0.2399227619, 0.2423895001, 0.046331916, -0.2119928002, -0.2285027504, 0.3535671234, -0.2673205435, 0.2338825166, 0.2101588398, -0.0903711766, 0.1981295943, -0.3148199022, -0.0522817671, 0.2038476467, 0.35052073, 0.1475190818, 0.2091765404, 0.1317098141, 0.051563967, 0.1366331279, 0.4851377308, 0.7115121484, 0.5667841434, -0.0109820999, 0.6284355521, -0.2339819074, 0.0387723371, 0.033012554, -0.580250144, 0.5933224559, 0.0816222578, -0.0160704553, 0.0552335903, 0.0665335506, 0.1697082818, 0.122005567, -0.2425166816, -0.0767809004, 0.2856155932, -0.2219862342, -0.5239712, -0.1637638807, 0.0134422332, 0.0549098551, -0.1030840799, -0.0041459575, -0.2838754654, 0.1822274029, -0.1851776838, -0.2403618693, -0.2812504172, -0.2857093513, -0.0640090033, 0.1365903169, -0.0753128454, -0.1024109125, -0.100636296, -0.1416368037, -0.116316542, 0.0588546991, 0.0947042927, 0.1416909844, -0.5192406178, -0.0378288776, -0.0573733822, -0.1766136885, -0.2065093219, 0.0233235136, -0.1637978852, -0.0212643407, 0.1977410465, -0.0061104707, -0.0758737922, -0.344566226, 0.2321968973, 0.3549711704, 0.0381554775, 0.0939721987, 0.0618265681, 0.0781842917, 0.0891682804, -0.0918704793, -0.2969632447, -0.0976452678, 0.3326541185, -0.0406774357, 0.1927185357, 0.1647500247, 0.0005436838, -0.2479171455, 0.3903943896, 0.3924216032, 0.3247528076, -0.2164478302, 0.3476308584, -0.0362352654, 0.2104085237, -0.0479441211, -0.3186001182, 0.3779135942, 0.1847471595, 0.0428149402, -0.0657224804, 0.0145694353, 0.3071999252, 0.3281788826, 0.6772938967, -0.2702367604, -0.1875338256, -0.3799321949, 0.0430865139, 0.2865406871, -0.3073636889, -0.0778107718, 0.0472267792, -0.1265607476, -0.3398209214, -0.0070949271, 0.103346169, -0.1698274314, 0.2588122487, 0.3162371218, 0.1465730667, -0.0743976012, -0.1218502074, -0.1294405907, -0.2518593967, -0.2222988307, -0.2623869181, -0.1795759499, 0.1798288524, -0.0964836031, -0.0973356068, -0.1671267003, 0.0176445916, 0.3991203904, -0.2093280107, -0.166892767, 0.3177429438, -0.231544733, 0.0597219691, 0.0446630716, 0.2218234241, -0.0057719611, 0.4940702915, -0.285569191, -0.0785237253, 0.7860212326, -0.3918512166, -0.0228453688, -0.2092846334, 0.2463768423, -0.0842902064, -0.1669455022, -0.2345833778, 0.0083821714, 0.2062712759, 0.0018959306, -0.3033872247, 0.0600999482, 0.4667135179, -0.0710080862, -0.1460603178, 0.3939971328, 0.1948148608, 0.1731726229, 0.1124257222, -0.2069985569 ]
https://github.com/huggingface/datasets/issues/1805
can't pickle SwigPyObject objects when calling dataset.get_nearest_examples from FAISS index
I totally forgot to answer this issue, I'm so sorry. I was able to get it working by installing `datasets` from source. Huge thanks!
So, I have the following instances in my dataset ``` {'question': 'An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most likely effect of this increase in rotation?', 'answer': 'C', 'example_id': 'ARCCH_Mercury_7175875', 'options':[{'option_context': 'One effect of increased amperage in the planetary world (..)', 'option_id': 'A', 'option_text': 'Planetary density will decrease.'}, (...)]} ``` The `options` value is always an list with 4 options, each one is a dict with `option_context`; `option_id` and `option_text`. I would like to overwrite the `option_context` of each instance of my dataset for a dpr result that I am developing. Then, I trained a model already and save it in a FAISS index ``` dpr_dataset = load_dataset( "text", data_files=ARC_CORPUS_TEXT, cache_dir=CACHE_DIR, split="train[:100%]", ) dpr_dataset.load_faiss_index("embeddings", f"{ARC_CORPUS_FAISS}") torch.set_grad_enabled(False) ``` Then, as a processor of my dataset, I created a map function that calls the `dpr_dataset` for each _option_ ``` def generate_context(example): question_text = example['question'] for option in example['options']: question_with_option = question_text + " " + option['option_text'] tokenize_text = question_tokenizer(question_with_option, return_tensors="pt").to(device) question_embed = ( question_encoder(**tokenize_text) )[0][0].cpu().numpy() _, retrieved_examples = dpr_dataset.get_nearest_examples( "embeddings", question_embed, k=10 ) # option["option_context"] = retrieved_examples["text"] # option["option_context"] = " ".join(option["option_context"]).strip() #result_dict = { # 'example_id': example['example_id'], # 'answer': example['answer'], # 'question': question_text, #options': example['options'] # } return example ``` I intentionally commented on this portion of the code. But when I call the `map` method, `ds_with_context = dataset.map(generate_context,load_from_cache_file=False)` It calls the following error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-55-75a458ce205c> in <module> ----> 1 ds_with_context = dataset.map(generate_context,load_from_cache_file=False) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/dataset_dict.py in map(self, function, with_indices, input_columns, batched, batch_size, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc) 301 num_proc=num_proc, 302 ) --> 303 for k, dataset in self.items() 304 } 305 ) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/dataset_dict.py in <dictcomp>(.0) 301 num_proc=num_proc, 302 ) --> 303 for k, dataset in self.items() 304 } 305 ) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1257 fn_kwargs=fn_kwargs, 1258 new_fingerprint=new_fingerprint, -> 1259 update_data=update_data, 1260 ) 1261 else: ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 155 } 156 # apply actual function --> 157 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 158 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 159 # re-apply format to the output ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 156 kwargs_for_fingerprint["fingerprint_name"] = fingerprint_name 157 kwargs[fingerprint_name] = update_fingerprint( --> 158 self._fingerprint, transform, kwargs_for_fingerprint 159 ) 160 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in update_fingerprint(fingerprint, transform, transform_args) 103 for key in sorted(transform_args): 104 hasher.update(key) --> 105 hasher.update(transform_args[key]) 106 return hasher.hexdigest() 107 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in update(self, value) 55 def update(self, value): 56 self.m.update(f"=={type(value)}==".encode("utf8")) ---> 57 self.m.update(self.hash(value).encode("utf-8")) 58 59 def hexdigest(self): ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in hash(cls, value) 51 return cls.dispatch[type(value)](cls, value) 52 else: ---> 53 return cls.hash_default(value) 54 55 def update(self, value): ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in hash_default(cls, value) 44 @classmethod 45 def hash_default(cls, value): ---> 46 return cls.hash_bytes(dumps(value)) 47 48 @classmethod ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in dumps(obj) 387 file = StringIO() 388 with _no_cache_fields(obj): --> 389 dump(obj, file) 390 return file.getvalue() 391 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in dump(obj, file) 359 def dump(obj, file): 360 """pickle an object to a file""" --> 361 Pickler(file, recurse=True).dump(obj) 362 return 363 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in dump(self, obj) 452 raise PicklingError(msg) 453 else: --> 454 StockPickler.dump(self, obj) 455 stack.clear() # clear record of 'recursion-sensitive' pickled objects 456 return /usr/lib/python3.7/pickle.py in dump(self, obj) 435 if self.proto >= 4: 436 self.framer.start_framing() --> 437 self.save(obj) 438 self.write(STOP) 439 self.framer.end_framing() /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in save_function(pickler, obj) 554 dill._dill._create_function, 555 (obj.__code__, globs, obj.__name__, obj.__defaults__, obj.__closure__, obj.__dict__, fkwdefaults), --> 556 obj=obj, 557 ) 558 else: /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 636 else: 637 save(func) --> 638 save(args) 639 write(REDUCE) 640 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 /usr/lib/python3.7/pickle.py in save_tuple(self, obj) 784 write(MARK) 785 for element in obj: --> 786 save(element) 787 788 if id(obj) in memo: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 885 k, v = tmp[0] 886 save(k) --> 887 save(v) 888 write(SETITEM) 889 # else tmp is empty, and we're done /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 885 k, v = tmp[0] 886 save(k) --> 887 save(v) 888 write(SETITEM) 889 # else tmp is empty, and we're done /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 522 reduce = getattr(obj, "__reduce_ex__", None) 523 if reduce is not None: --> 524 rv = reduce(self.proto) 525 else: 526 reduce = getattr(obj, "__reduce__", None) TypeError: can't pickle SwigPyObject objects ``` Which I have no idea how to solve/deal with it
24
can't pickle SwigPyObject objects when calling dataset.get_nearest_examples from FAISS index So, I have the following instances in my dataset ``` {'question': 'An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most likely effect of this increase in rotation?', 'answer': 'C', 'example_id': 'ARCCH_Mercury_7175875', 'options':[{'option_context': 'One effect of increased amperage in the planetary world (..)', 'option_id': 'A', 'option_text': 'Planetary density will decrease.'}, (...)]} ``` The `options` value is always an list with 4 options, each one is a dict with `option_context`; `option_id` and `option_text`. I would like to overwrite the `option_context` of each instance of my dataset for a dpr result that I am developing. Then, I trained a model already and save it in a FAISS index ``` dpr_dataset = load_dataset( "text", data_files=ARC_CORPUS_TEXT, cache_dir=CACHE_DIR, split="train[:100%]", ) dpr_dataset.load_faiss_index("embeddings", f"{ARC_CORPUS_FAISS}") torch.set_grad_enabled(False) ``` Then, as a processor of my dataset, I created a map function that calls the `dpr_dataset` for each _option_ ``` def generate_context(example): question_text = example['question'] for option in example['options']: question_with_option = question_text + " " + option['option_text'] tokenize_text = question_tokenizer(question_with_option, return_tensors="pt").to(device) question_embed = ( question_encoder(**tokenize_text) )[0][0].cpu().numpy() _, retrieved_examples = dpr_dataset.get_nearest_examples( "embeddings", question_embed, k=10 ) # option["option_context"] = retrieved_examples["text"] # option["option_context"] = " ".join(option["option_context"]).strip() #result_dict = { # 'example_id': example['example_id'], # 'answer': example['answer'], # 'question': question_text, #options': example['options'] # } return example ``` I intentionally commented on this portion of the code. But when I call the `map` method, `ds_with_context = dataset.map(generate_context,load_from_cache_file=False)` It calls the following error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-55-75a458ce205c> in <module> ----> 1 ds_with_context = dataset.map(generate_context,load_from_cache_file=False) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/dataset_dict.py in map(self, function, with_indices, input_columns, batched, batch_size, remove_columns, keep_in_memory, load_from_cache_file, cache_file_names, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc) 301 num_proc=num_proc, 302 ) --> 303 for k, dataset in self.items() 304 } 305 ) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/dataset_dict.py in <dictcomp>(.0) 301 num_proc=num_proc, 302 ) --> 303 for k, dataset in self.items() 304 } 305 ) ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/arrow_dataset.py in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint) 1257 fn_kwargs=fn_kwargs, 1258 new_fingerprint=new_fingerprint, -> 1259 update_data=update_data, 1260 ) 1261 else: ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs) 155 } 156 # apply actual function --> 157 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 158 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 159 # re-apply format to the output ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in wrapper(*args, **kwargs) 156 kwargs_for_fingerprint["fingerprint_name"] = fingerprint_name 157 kwargs[fingerprint_name] = update_fingerprint( --> 158 self._fingerprint, transform, kwargs_for_fingerprint 159 ) 160 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in update_fingerprint(fingerprint, transform, transform_args) 103 for key in sorted(transform_args): 104 hasher.update(key) --> 105 hasher.update(transform_args[key]) 106 return hasher.hexdigest() 107 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in update(self, value) 55 def update(self, value): 56 self.m.update(f"=={type(value)}==".encode("utf8")) ---> 57 self.m.update(self.hash(value).encode("utf-8")) 58 59 def hexdigest(self): ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in hash(cls, value) 51 return cls.dispatch[type(value)](cls, value) 52 else: ---> 53 return cls.hash_default(value) 54 55 def update(self, value): ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/fingerprint.py in hash_default(cls, value) 44 @classmethod 45 def hash_default(cls, value): ---> 46 return cls.hash_bytes(dumps(value)) 47 48 @classmethod ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in dumps(obj) 387 file = StringIO() 388 with _no_cache_fields(obj): --> 389 dump(obj, file) 390 return file.getvalue() 391 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in dump(obj, file) 359 def dump(obj, file): 360 """pickle an object to a file""" --> 361 Pickler(file, recurse=True).dump(obj) 362 return 363 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in dump(self, obj) 452 raise PicklingError(msg) 453 else: --> 454 StockPickler.dump(self, obj) 455 stack.clear() # clear record of 'recursion-sensitive' pickled objects 456 return /usr/lib/python3.7/pickle.py in dump(self, obj) 435 if self.proto >= 4: 436 self.framer.start_framing() --> 437 self.save(obj) 438 self.write(STOP) 439 self.framer.end_framing() /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/datasets/utils/py_utils.py in save_function(pickler, obj) 554 dill._dill._create_function, 555 (obj.__code__, globs, obj.__name__, obj.__defaults__, obj.__closure__, obj.__dict__, fkwdefaults), --> 556 obj=obj, 557 ) 558 else: /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 636 else: 637 save(func) --> 638 save(args) 639 write(REDUCE) 640 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 /usr/lib/python3.7/pickle.py in save_tuple(self, obj) 784 write(MARK) 785 for element in obj: --> 786 save(element) 787 788 if id(obj) in memo: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 885 k, v = tmp[0] 886 save(k) --> 887 save(v) 888 write(SETITEM) 889 # else tmp is empty, and we're done /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 880 for k, v in tmp: 881 save(k) --> 882 save(v) 883 write(SETITEMS) 884 elif n: /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 547 548 # Save the reduce() output and finally memoize the object --> 549 self.save_reduce(obj=obj, *rv) 550 551 def persistent_id(self, obj): /usr/lib/python3.7/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, obj) 660 661 if state is not None: --> 662 save(state) 663 write(BUILD) 664 /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 502 f = self.dispatch.get(t) 503 if f is not None: --> 504 f(self, obj) # Call unbound method with explicit self 505 return 506 ~/.cache/pypoetry/virtualenvs/masters-utTTC0p8-py3.7/lib/python3.7/site-packages/dill/_dill.py in save_module_dict(pickler, obj) 939 # we only care about session the first pass thru 940 pickler._session = False --> 941 StockPickler.save_dict(pickler, obj) 942 log.info("# D2") 943 return /usr/lib/python3.7/pickle.py in save_dict(self, obj) 854 855 self.memoize(obj) --> 856 self._batch_setitems(obj.items()) 857 858 dispatch[dict] = save_dict /usr/lib/python3.7/pickle.py in _batch_setitems(self, items) 885 k, v = tmp[0] 886 save(k) --> 887 save(v) 888 write(SETITEM) 889 # else tmp is empty, and we're done /usr/lib/python3.7/pickle.py in save(self, obj, save_persistent_id) 522 reduce = getattr(obj, "__reduce_ex__", None) 523 if reduce is not None: --> 524 rv = reduce(self.proto) 525 else: 526 reduce = getattr(obj, "__reduce__", None) TypeError: can't pickle SwigPyObject objects ``` Which I have no idea how to solve/deal with it I totally forgot to answer this issue, I'm so sorry. I was able to get it working by installing `datasets` from source. Huge thanks!
[ 0.0690421015, -0.3887838125, -0.0696356744, 0.246825397, 0.1642261446, 0.0277642012, 0.1784280986, 0.0541117415, 0.40896523, 0.5476052165, -0.0500988811, 0.4959976077, 0.1157933474, -0.1273346841, -0.267626524, 0.0515104569, 0.0849942267, 0.0134224445, 0.0216208287, -0.2425851971, -0.5357055664, -0.0484025739, -0.198426038, 0.049339138, -0.0398414508, 0.0180332679, -0.0332829542, 0.0954479352, -0.0584461838, -0.453925401, 0.4045756459, 0.2576847672, 0.21166116, -0.0134233385, -0.0001266745, 0.0679021776, 0.205347389, -0.0212523453, -0.1646226048, 0.0867505074, -0.0015756339, 0.3058412671, 0.2944120169, -0.3542491794, -0.217924729, -0.2550704181, -0.0504560769, -0.1345559955, 0.0680650547, 0.1915954053, 0.0670927092, 0.1456795037, -0.1130727604, -0.1586895287, 0.2215852737, -0.0109135732, -0.062061999, 0.1621502787, 0.2719882429, 0.3066602349, 0.2544571459, 0.2748858631, -0.246070832, 0.0368731916, -0.0725990981, 0.092639938, 0.3378043771, 0.0920078978, 0.1556723267, 0.096946694, 0.2498124838, -0.2737825811, -0.4702078402, -0.4137726128, -0.0613961965, -0.156748727, -0.2627948225, -0.5509216785, -0.0172373094, 0.2482925653, 0.1254626364, 0.1021862105, -0.0639563277, 0.5212544799, 0.4118605256, 0.0359550118, 0.0144238845, 0.2109336108, 0.1066411734, -0.0576483309, 0.1366032064, -0.1332530677, -0.0283685923, -0.132119894, -0.213148728, -0.1242146119, 0.4846386611, -0.235414803, 0.2450583726, 0.0846260637, -0.1290586293, 0.4014525414, 0.0691415966, 0.1075497121, 0.1615172029, -0.1186264008, -0.0983870029, 0.0395723954, -0.1171172559, 0.0870350897, -0.1678487659, 0.1142575443, 0.0268997401, -0.0553062782, -0.6315290332, -0.0129408147, 0.3205946386, -0.144903034, -0.1014327034, 0.2506066263, -0.6014733911, 0.342908591, 0.131870389, 0.5309948325, 0.0145980045, 0.1166362315, 0.1949885339, 0.2470778674, -0.2960155904, 0.4217507243, -0.2266984582, -0.0420276076, 0.0346690044, -0.0588204265, -0.1218069345, 0.4785677195, 0.2849892378, -0.2606021762, 0.0978315249, -0.0784841031, 0.0227261111, -0.1106627882, 0.3640696406, 0.1970126331, -0.0533647984, 0.0772831663, 0.1710079312, -0.0954406634, -0.1744897664, 0.1174804643, 0.1384010911, -0.102139093, 0.1903930902, 0.0709636509, -0.1389862597, -0.1317989677, -0.2130443901, 0.1211960763, -0.0878354982, 0.2369576991, 0.1870572269, -0.1878822297, -0.0876030102, -0.1486044824, 0.2090398073, 0.5161316395, -0.2350451499, -0.0758555159, 0.0244942047, 0.1951783299, 0.3501954079, 0.2010141313, -0.3267982602, 0.2561721504, 0.0371252522, 0.2322165072, 0.3163653016, -0.4490186274, -0.663924396, -0.0901996046, -0.0756991804, 0.039773196, 0.3317386806, 0.0975896493, 0.3703523576, 0.2930629551, -0.1459471285, 0.5172794461, 0.1696157604, 0.0434676185, -0.2609553337, -0.3448404372, 0.0231416859, 0.127014488, -0.0733680353, 0.163238436, -0.0440484434, -0.2676257491, 0.3614015281, -0.1503375471, -0.102128379, 0.2690656781, 0.5216956139, 0.2159872204, 0.2130893916, -0.2032634169, -0.0844260156, 0.1282854378, -0.1522228718, 0.0228899457, -0.0782165751, -0.2090478092, -0.0135676526, 0.197749123, -0.3135469854, -0.174049139, -0.0746522397, 0.1529776156, 0.2881991267, -0.1318621039, -0.0989454538, 0.0493430719, -0.3399664164, 0.2049800903, -0.5214461684, 0.4270997047, -0.0935476571, -0.3137367368, -0.1872019023, 0.258349508, 0.0134849176, -0.1509951949, -0.1589760184, 0.1067026928, 0.4748961627, -0.406360954, 0.1756881177, -0.3079205751, -0.0195663366, -0.1098890379, 0.1134149656, 0.0090816431, 0.1443974078, 0.2156585008, -0.0095153861, 0.622720778, 0.3724325597, 0.1507984996, -0.0765271559, 0.1891473085, 0.1473814547, -0.1591729522, -0.0528289899, -0.5078774691, -0.1828077585, 0.3740831614, 0.1135972142, 0.028330015, -0.4408773482, 0.4054223299, 0.2401174307, 0.0603242964, -0.1184277087, 0.1541836113, -0.0568144508, -0.0367469229, 0.02928905, -0.2139261067, 0.1052957773, 0.3675742149, -0.2779197693, -0.3208731115, 0.0087618716, -0.0421886221, 0.0650619566, 0.3736088276, -0.0423655212, -0.2475413084, 0.0935090035, -0.0054279659, -0.3840718567, -0.3060504198, -0.0381189063, 0.0701653287, -0.1114427298, 0.1743902266, -0.374951303, -0.1492137462, 0.0872081369, -0.4578383863, 0.1916305572, -0.0981230363, 0.1739195436, 0.2258580625, -0.2370433509, 0.4466659129, 0.1191982329, 0.1598459333, 0.0529771075, -0.1998590976, -0.1200762838, -0.1755337417, -0.457616806, -0.092289567, -0.2286257446, 0.4021474123, 0.1773946881, 0.2158047259, -0.0975214243, -0.2927099168, 0.0211016685, 0.0287385657, 0.1406078339, 0.2020924985, 0.1879703254, 0.0467987843, -0.2393503338, -0.1135703623, 0.0707940757, 0.1661298722, -0.2033126056, -0.1762379557, -0.0430422984, -0.0814639404, 0.1018628478, -0.2113614976, -0.2890199423, -0.2259371728, 0.1515956223, 0.0919153392, 0.1095536649, 0.0218206868, 0.3725824654, 0.055136811, -0.2080988735, -0.1080143973, -0.2729107738, 0.0094555914, -0.0735265017, -0.041499421, -0.2861773372, -0.5065013766, -0.339802146, -0.2370946556, 0.1956366599, -0.2353993952, -0.336114943, -0.3440829813, 0.1592897028, 0.1556718498, 0.1409615576, 0.376039505, 0.2247820199, -0.0875743702, -0.1666590571, -0.3055535257, 0.4445741475, 0.1400023401, 0.088299945, 0.1077335924, 0.4067179561, -0.1840821803, 0.5277171731, 0.1247860938, -0.5209573507, 0.3717172742, -0.0140297851, 0.0158726629, -0.0675412267, -0.2851008773, 0.1656640768, 0.1925270855, -0.1816552579, 0.1626509726, -0.1984018683, 0.0591689646, 0.3394253254, 0.3197870553, -0.3819196224, -0.2768356502, -0.0537333935, -0.159519732, -0.3160978556, 0.025267832, 0.3339839578, -0.5367692709, 0.2368257791, 0.0828457773, 0.1489060819, 0.1879774928, -0.0566982888, -0.0769121647, -0.1068077981, -0.3594066501, 0.4149489701, 0.0144542344, 0.240124017, 0.084614709, -0.0340126939, 0.3434589505, 0.0684321374, 0.957190156, -0.0614790171, -0.0239520073, 0.3976438046, -0.2214733064, -0.3634820282, 0.025664553, -0.1771549881, 0.0797579437, 0.1019291282, 0.2299429774, -0.1601285189, -0.3377131522, 0.0265324451, 0.0167386644, -0.1257559508, 0.0394155458, -0.0708354414, -0.4167459011, -0.4663289189, 0.1146946251, -0.0202138908, 0.1422993839, 0.0958662629, -0.2113022059, -0.5041610599, -0.1101826727, -0.1364938915, 0.151746273, 0.3936241567, 0.1454344094, 0.1311239302, 0.1425935179, 0.3486029506, 0.6238427758, 0.2257178426, -0.0752177089, -0.2151193321, -0.0062145237, 0.1642844975, 0.094556272, 0.4280675352, -0.0638237894, 0.436309576, -0.0415077023, 0.1246343404, 0.0061392076, 0.2227662802, 0.2262482047, 0.2113562226, 0.0564512834, -0.4379891753, 0.563046813, 0.021087192, -0.1794915795, 0.3136002123, 0.161850214, -0.2578877211, 1.0739569664, 0.2233302891, 1.0657086372, -0.0835497975, 0.2263787538, 0.1986540258, 0.0644551218, 0.4328967631, 0.1228054911, 0.1599918604, -0.3314412236, 0.2574236095, 0.0078828037, -0.3100057244, 0.1413200647, 0.2411956936, -0.0830923468, -0.0947630405, -0.2193001807, -0.2675541341, -0.0694855601, 0.0392067134, 0.3647847474, -0.3496558666, -0.3084582388, -0.0315425247, 0.2854224443, 0.2928272486, 0.2488316298, -0.1491139233, -0.4724771678, -0.183876276, -0.2159601003, 0.005299665, -0.2775576711, 0.2701741159, 0.1710419059, -0.3057253063, -0.1693385839, 0.238059476, 0.1891987026, -0.1477198303, -0.1746556759, 0.1169826239, 0.1554353386, -0.0974490792, -0.0089842714, -0.2751390338, 0.3801999688, 0.1556447595, -0.3932552934, 0.0153320329, 0.1589361429, -0.4387568831, -0.0904447436, -0.080171302, -0.2309855372, -0.2791679502, -0.3515002429, -0.0657419115, -0.1390074193, -0.4286187589, -0.0218833089, 0.0130571006, -0.2057514787, 0.4152246416, -0.1201146692, -0.3386864364, -0.1725049317, 0.5766257644, 0.2049620003, 0.0953758284, 0.4988758266, 0.2045173347, -0.1476263404, -0.1861622334, -0.4698061943, 0.4244086146, 0.0736835673, 0.303047359, -0.0764297619, -0.3145205975, -0.1098777503, -0.0109324679, 0.032249555, -0.1338236779, -0.5415477157, -0.222772181, -0.5453007221, 0.1993275285, 0.0189193636, 0.4727431238, -0.2054035664, 0.5167483091, -0.5072888732, -0.2756152451, -0.1670345813, -0.0221072771, -0.4664254487, 0.0234726146, -0.3302721381, -0.1691894829, 0.0772079676, 0.0515029058, 0.0324488282, -0.0511220694, -0.0658901557, -0.105554074, -0.1573596001, 0.1804270744, 0.093168363, -0.1917534322, -0.1235966533, -0.0418647155, -0.1471067816, -0.1790006608, 0.1822987944, 0.2753228545, -0.0650037378, 0.1734466106, 0.0464402176, 0.0953353643, 0.2519483268, 0.0938527137, -0.0296615362, 0.3096497059, 0.0970650315, 0.1175343841, -0.1214079112, -0.0311480761, -0.0639290735, 0.0233556218, -0.0015799887, -0.0470110625, -0.0850182921, -0.0344838351, -0.3594439328, 0.3289601207, 0.2795447409, 0.5147302151, 0.0854522586, -0.2399227619, 0.2423895001, 0.046331916, -0.2119928002, -0.2285027504, 0.3535671234, -0.2673205435, 0.2338825166, 0.2101588398, -0.0903711766, 0.1981295943, -0.3148199022, -0.0522817671, 0.2038476467, 0.35052073, 0.1475190818, 0.2091765404, 0.1317098141, 0.051563967, 0.1366331279, 0.4851377308, 0.7115121484, 0.5667841434, -0.0109820999, 0.6284355521, -0.2339819074, 0.0387723371, 0.033012554, -0.580250144, 0.5933224559, 0.0816222578, -0.0160704553, 0.0552335903, 0.0665335506, 0.1697082818, 0.122005567, -0.2425166816, -0.0767809004, 0.2856155932, -0.2219862342, -0.5239712, -0.1637638807, 0.0134422332, 0.0549098551, -0.1030840799, -0.0041459575, -0.2838754654, 0.1822274029, -0.1851776838, -0.2403618693, -0.2812504172, -0.2857093513, -0.0640090033, 0.1365903169, -0.0753128454, -0.1024109125, -0.100636296, -0.1416368037, -0.116316542, 0.0588546991, 0.0947042927, 0.1416909844, -0.5192406178, -0.0378288776, -0.0573733822, -0.1766136885, -0.2065093219, 0.0233235136, -0.1637978852, -0.0212643407, 0.1977410465, -0.0061104707, -0.0758737922, -0.344566226, 0.2321968973, 0.3549711704, 0.0381554775, 0.0939721987, 0.0618265681, 0.0781842917, 0.0891682804, -0.0918704793, -0.2969632447, -0.0976452678, 0.3326541185, -0.0406774357, 0.1927185357, 0.1647500247, 0.0005436838, -0.2479171455, 0.3903943896, 0.3924216032, 0.3247528076, -0.2164478302, 0.3476308584, -0.0362352654, 0.2104085237, -0.0479441211, -0.3186001182, 0.3779135942, 0.1847471595, 0.0428149402, -0.0657224804, 0.0145694353, 0.3071999252, 0.3281788826, 0.6772938967, -0.2702367604, -0.1875338256, -0.3799321949, 0.0430865139, 0.2865406871, -0.3073636889, -0.0778107718, 0.0472267792, -0.1265607476, -0.3398209214, -0.0070949271, 0.103346169, -0.1698274314, 0.2588122487, 0.3162371218, 0.1465730667, -0.0743976012, -0.1218502074, -0.1294405907, -0.2518593967, -0.2222988307, -0.2623869181, -0.1795759499, 0.1798288524, -0.0964836031, -0.0973356068, -0.1671267003, 0.0176445916, 0.3991203904, -0.2093280107, -0.166892767, 0.3177429438, -0.231544733, 0.0597219691, 0.0446630716, 0.2218234241, -0.0057719611, 0.4940702915, -0.285569191, -0.0785237253, 0.7860212326, -0.3918512166, -0.0228453688, -0.2092846334, 0.2463768423, -0.0842902064, -0.1669455022, -0.2345833778, 0.0083821714, 0.2062712759, 0.0018959306, -0.3033872247, 0.0600999482, 0.4667135179, -0.0710080862, -0.1460603178, 0.3939971328, 0.1948148608, 0.1731726229, 0.1124257222, -0.2069985569 ]
https://github.com/huggingface/datasets/issues/1803
Querying examples from big datasets is slower than small datasets
Hello, @lhoestq / @gaceladri : We have been seeing similar behavior with bigger datasets, where querying time increases. Are you folks aware of any solution that fixes this problem yet?
After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed.
30
Querying examples from big datasets is slower than small datasets After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed. Hello, @lhoestq / @gaceladri : We have been seeing similar behavior with bigger datasets, where querying time increases. Are you folks aware of any solution that fixes this problem yet?
[ -0.4054939747, 0.0586444139, -0.0799715742, 0.1315324903, -0.0796940178, -0.1776912808, 0.2441748083, 0.4918095767, -0.2313986421, 0.1801939607, 0.0814935714, 0.0550894439, 0.1250855923, -0.1007568687, 0.1307256818, -0.2734062672, 0.0807415694, 0.124846071, -0.0751320571, -0.0345287025, 0.0240301639, -0.1902871132, -0.3486273885, 0.018469898, -0.0663276166, -0.2240722328, -0.2307063341, 0.107206136, -0.1658506691, -0.4173950553, -0.0595365278, -0.1528191715, 0.2299298495, 0.427030772, -0.0001130733, 0.0164050311, 0.2279310077, 0.0894176289, -0.1997469664, 0.1829337329, 0.1748071909, -0.2838543952, 0.0868746936, -0.409766227, -0.0471539199, -0.2971982956, 0.0934279785, 0.0189005211, -0.0412532985, 0.3089759648, 0.1403642893, 0.5131546855, -0.1917043626, -0.1336634159, 0.6230677366, 0.2051520348, -0.3506301939, 0.5299631953, 0.5806369185, -0.0487994887, -0.3053151965, 0.1361400485, -0.081444189, 0.2701412439, 0.0370224789, 0.1979728937, -0.1128055379, 0.1795917749, 0.1238101348, 0.4088888466, 0.308390677, -0.0893915296, -0.31488657, -0.2920184135, -0.0569283739, -0.2332933545, 0.0203074664, 0.3264190555, -0.2583794594, 0.2713417411, -0.3137761056, 0.1547780633, -0.105650872, 0.1795516908, -0.1511590481, -0.0686154813, 0.1150509715, 0.1985103041, 0.0937959999, 0.013313245, 0.1511932909, -0.1696214676, 0.02840616, -0.0521108359, -0.2883043289, -0.0881547257, 0.1556629986, 0.1755786538, 0.2685055733, 0.1593102217, 0.422320962, 0.1182836294, 0.265193522, 0.0943620056, 0.0451357178, -0.00902123, -0.2695652246, -0.0009782985, 0.3478800952, 0.2753001153, -0.2945162356, 0.0208777897, -0.2383212, -0.1844544411, 0.18156299, -0.1973297, -0.0274536572, -0.1337168217, 0.004322812, -0.0873045921, -0.3421143293, -0.1278229654, -0.0265573356, 0.4784683287, -0.1834656596, -0.0265719481, -0.2126670331, 0.122223638, -0.3353426754, -0.2540249228, -0.1243124455, -0.1883355528, -0.1600802243, 0.230307579, 0.1097953022, 0.0560975373, 0.3020733893, 0.0585403889, -0.1985149235, 0.2419624925, 0.3923712373, -0.1808657944, 0.1044564396, 0.0197549704, 0.0112555176, 0.0635319576, -0.1637398601, 0.2447639406, -0.3910898566, 0.1972704232, -0.1953566968, -0.3384779692, 0.0306390878, 0.0919930711, -0.1056954265, -0.0997603312, -0.2270813733, 0.246245116, -0.0694222227, -0.1997462511, -0.0774373189, -0.094193913, 0.0402900577, -0.1531327516, 0.1413004547, 0.0776271224, -0.2506590486, 0.2018506676, -0.0451862887, 0.3970346153, 0.2543900013, 0.5308364034, -0.5031033158, 0.1623608768, -0.1327786446, 0.2966160476, 0.2320237309, -0.0281320959, -0.6667608619, 0.4973527193, -0.004258588, 0.0241891295, 0.2724839747, 0.1617120355, 0.3516781926, 0.1078480259, -0.0490623787, 0.3837116957, 0.1839479506, 0.227930665, -0.3400993347, -0.2303103507, -0.0487275794, 0.3479747772, -0.3244731724, -0.1571214497, 0.3112511337, -0.36459741, 0.4906599522, -0.2065639794, -0.1836263537, 0.2509782612, 0.0870240331, -0.2777459621, 0.1183483601, 0.0964876413, 0.0859434903, 0.2421764582, -0.1894864291, -0.0184650589, 0.0450902954, -0.1888085455, -0.072214976, 0.061963059, -0.055260241, -0.0473853797, -0.0448972918, -0.0918296874, 0.3306872845, -0.003531523, 0.1647335887, -0.1632057726, -0.2693369091, -0.0094456971, -0.2626184225, 0.0792924687, 0.0950684994, -0.1213106662, 0.0093062818, -0.249253124, -0.0884236991, -0.0017328337, -0.1519375592, 0.3275275826, 0.1502294689, 0.1502474844, 0.2235308886, 0.1522479355, 0.1419567168, -0.0849315599, 0.3879739344, 0.2968660891, 0.0753156543, 0.0365262255, -0.4053476155, 0.5263323784, 0.3933125138, 0.31605497, 0.2904031873, -0.373390466, 0.1644446254, 0.0483796299, 0.1105025336, 0.4106383622, 0.293798238, 0.2421560585, 0.5489562154, 0.1663254946, -0.3161973357, 0.1155824065, 0.4506137371, -0.2496014237, 0.0180418901, 0.1873046011, -0.4217130542, -0.1856172383, 0.3702152371, -0.1509688944, 0.326580286, 0.3312532306, 0.1606442779, -0.12395522, 0.0274434276, -0.2904404998, 0.2625501752, 0.096794948, 0.1414085329, -0.2201081961, 0.4368430376, -0.0920059234, -0.2460106015, -0.3815978467, -0.0392078273, 0.1921317428, -0.126401186, 0.3072987497, -0.0982985869, 0.0536194295, -0.0324512869, 0.130800575, 0.0790726244, -0.0865352303, 0.045038607, 0.1935409009, -0.1812104583, -0.1583380103, -0.0551913902, 0.2278951257, 0.2617878318, -0.2087613046, -0.0017741174, -0.0716876909, -0.3983869553, 0.0803131983, 0.2775999308, 0.1493916065, 0.1450454444, -0.0469179899, -0.1854476333, -0.2801736891, -0.3152379096, -0.0065730242, 0.0799066126, 0.28661865, -0.0709002241, 0.0763944536, -0.3244521022, -0.1447663754, 0.063709721, -0.2329102755, -0.1513257474, 0.2760068476, -0.1807475835, 0.0008987412, 0.0887835324, -0.316375345, -0.1673078388, -0.3001770973, 0.3784306645, 0.1727608591, 0.2083455473, 0.1075551733, 0.3943432271, 0.1223712862, 0.0096597932, 0.1228193492, 0.0379167236, -0.4149514139, 0.5190879107, -0.1802635342, -0.4500639737, -0.4888218045, -0.242930308, -0.164149031, 0.4524992108, -0.5341608524, -0.0311467629, -0.5311311483, 0.4127758741, 0.123539716, 0.1021672487, 0.0496034212, -0.2131573707, -0.2089556009, 0.1292295903, 0.0826178864, -0.0064190216, -0.0878510252, 0.2021376491, -0.0615212247, 0.0337111652, -0.0098686591, 0.7692424059, 0.0689441711, -0.0129050007, 0.2635357976, -0.0949028134, 0.0519068427, -0.1647453606, 0.1458879113, 0.0905036554, -0.2608799338, -0.2699276805, 0.4183898568, 0.1641468108, -0.3080245256, 0.0591342896, -0.1851302534, -0.097659111, -0.2781836092, 0.2541960776, 0.1588241458, 0.1743984073, 0.0698608682, 0.3926579654, -0.3018996716, -0.1359270215, 0.0707091317, -0.2578144372, 0.0201729257, -0.1169836372, -0.3373413682, -0.0597156547, -0.6845928431, 0.2021396607, -0.0698037893, 0.0391389206, 0.2540457547, -0.3021758795, 0.2348045558, -0.0662641153, 0.5487115383, 0.1905720383, -0.1996436715, -0.1152184829, -0.2325003147, -0.4247888327, -0.1554235518, -0.4956257045, 0.1136514768, -0.0005399846, 0.3345812857, -0.3185558319, 0.1118362546, 0.0000605714, 0.3112286329, 0.1916496307, -0.044278685, -0.1676546037, -0.2823403478, -0.1325233579, 0.1623778641, -0.1995149255, 0.050449606, -0.269434154, -0.1696101427, -0.1472622305, 0.1772930622, 0.1168198958, 0.4819425046, 0.2846929729, -0.4382564425, 0.3633344173, 0.0272250623, 0.1518048793, 0.3828200102, 0.4000198245, 0.3224880993, -0.1235771626, 0.1998888403, 0.1022293866, 0.0747966468, 0.5333116055, -0.0012650341, 0.1972724199, 0.0611076467, 0.2763024867, -0.0564491451, 0.0823672861, 0.3274201453, -0.08233881, -0.0624976307, -0.3168289065, 0.7024027705, 0.0998988003, 0.0085827112, 0.2355285883, -0.1901873946, 0.130443126, 0.3013944924, -0.1022063345, 0.9143371582, -0.1250879765, 0.2525978088, 0.3494728208, 0.066730313, 0.0075901709, -0.0959172845, 0.1510159373, -0.3135031164, -0.2316491604, 0.1761056334, -0.2805036008, 0.0849208087, 0.212859273, -0.1312745064, 0.0862879381, -0.0537316576, 0.1990434229, -0.2258602381, 0.2392510921, -0.2529600859, -0.0510925539, -0.4353417754, 0.028821148, 0.0972890928, -0.0646521896, 0.0886060596, -0.1453693658, -0.5541803241, 0.0102535784, -0.0938769281, 0.0389146432, -0.2355806381, 0.1632977575, 0.0593758337, -0.4771615863, -0.0842534602, 0.1212540343, -0.4953689575, 0.0789548755, -0.2458119839, 0.4174095392, 0.043545872, 0.2301590592, 0.5308091044, -0.3330539465, -0.0087194499, -0.0292188935, -0.2165677249, 0.2495409697, -0.153989464, -0.2520104647, 0.0252856314, 0.14373146, 0.3611812592, -0.167501837, -0.2776466608, -0.1240047663, -0.4408730567, -0.2431268841, 0.0841378346, -0.0427369699, 0.0855585486, 0.2314763665, 0.3174690604, -0.3549931645, -0.2242874801, 0.3709995151, 0.094312571, 0.260320574, 0.3130872548, 0.0880957395, -0.2163754553, -0.1274372786, 0.2965530753, 0.4111421108, -0.4757104516, 0.0690821707, 0.0139512196, 0.1246269196, 0.2461798638, 0.0182093363, 0.0741977543, -0.2569896281, -0.3386789858, -0.0690868795, 0.0099439397, 0.3278675377, 0.1207610667, 0.1357961893, 0.0576913282, -0.0145964157, -0.3653220236, 0.0142487343, -0.2701687217, 0.1390894949, -0.0243225731, 0.18286331, -0.4315899909, 0.0174092576, 0.0081377886, 0.1431651413, 0.1091622412, 0.1063816696, -0.1234385818, -0.2166474462, 0.0291855633, 0.1290723681, -0.13618806, -0.2797194123, 0.2394433022, -0.2063070983, -0.0508660451, -0.3758654594, 0.142124176, -0.136420846, -0.0316604823, -0.4254382849, 0.2596431971, -0.1692035943, -0.3019401431, 0.3180859685, -0.4044681191, 0.1779982597, 0.0607634895, 0.1787561625, 0.004005719, -0.1559253931, 0.0720916018, 0.2029668242, 0.1648201048, 0.1396781504, 0.3797293007, -0.026212275, -0.0972279757, -0.1073895246, 0.3312667906, 0.3493905663, 0.0380297005, -0.1387913972, 0.1757901758, 0.2256356776, -0.3251367807, -0.28282094, -0.1296374202, -0.2570058703, 0.2418893278, 0.009579286, 0.2093758583, 0.1670221388, -0.0789555311, -0.2068968862, 0.0986438766, 0.5504125357, -0.145175159, 0.6776701808, 0.3272513449, -0.1993044615, 0.2702794969, 0.0020872001, 0.3459144533, 0.3618879914, -0.1196034104, 0.536823988, 0.2320744246, 0.2449540347, -0.133967191, -0.3090497255, 0.1352110356, -0.0015169755, -0.0136433244, 0.1391917467, 0.062129274, 0.4490417242, 0.0052281991, 0.0771014839, -0.3266301751, -0.1267498136, 0.0290441699, -0.0826171339, -0.0433853902, -0.117739737, -0.0748516172, 0.1068687886, -0.3724668026, -0.1312434673, 0.3648227751, 0.0338450074, 0.1812083274, -0.4446077347, 0.2035417557, -0.15691787, 0.2180987746, -0.2398338318, 0.1747611463, 0.0500848889, -0.0667941421, 0.0713927001, 0.1016839594, 0.3679462373, 0.1852423102, -0.1066012233, -0.1730930656, -0.0566400141, -0.0385058783, -0.0139066614, -0.0869699568, 0.0414153971, -0.0986005217, 0.3017620742, 0.0308142304, -0.1557210386, -0.1387577206, -0.0228553154, -0.2242790908, -0.3263449669, -0.3453311324, -0.2006977797, -0.328232348, -0.1295249462, -0.189568311, -0.2536431253, 0.1835208088, 0.2279348075, -0.313331902, -0.0675589591, 0.0006712116, 0.0845005512, -0.5105260015, 0.6805171371, 0.4650321901, 0.5556753874, -0.3209067285, -0.1160447821, -0.435654819, 0.062921308, -0.6595265865, -0.0497878492, 0.2942714095, 0.3931101263, 0.1516693085, 0.215378046, 0.1646080613, 0.1359260231, -0.1916751862, 0.3211122453, -0.530500412, -0.0809499696, -0.0275070444, 0.0169764962, -0.2176148593, -0.6412063241, 0.4145414829, -0.4362512529, 0.0196193978, -0.1795396656, -0.1805547327, 0.3991859555, 0.2217821032, 0.5155704618, 0.0022800695, 0.1430402696, 0.0240668207, -0.1811048985, -0.1920029223, -0.0376324616, 0.0861410424, 0.176272884, -0.0916484892, 0.0870483145, 0.1293835044, -0.1807274073, 0.0944080949, 0.6064491868, -0.1033742353, 0.0085012913, 0.1139353141, -0.1410084963, -0.2004249394, 0.1103876978, -0.1858647764, -0.0338986441, -0.0985817611, -0.2373308539, -0.1588727385, -0.1999850869, 0.4235756099, -0.4598160684, 0.0573060364, -0.1773603857, 0.2722938657, 0.2497566193, 0.3505437374, -0.1962877512, 0.0297313333, 0.3197361231, 0.0932117105, -0.0431470387, 0.2311460823, 0.1514276117, 0.1145223379, -0.0749372691, 0.3918387592, -0.3036593497, -0.306638658, -0.2293882817, -0.3594549298 ]
https://github.com/huggingface/datasets/issues/1803
Querying examples from big datasets is slower than small datasets
Hi ! I'm pretty sure that it can be fixed by using the Arrow IPC file format instead of the raw streaming format but I haven't tested yet. I'll take a look at it soon and let you know
After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed.
39
Querying examples from big datasets is slower than small datasets After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed. Hi ! I'm pretty sure that it can be fixed by using the Arrow IPC file format instead of the raw streaming format but I haven't tested yet. I'll take a look at it soon and let you know
[ -0.4054939747, 0.0586444139, -0.0799715742, 0.1315324903, -0.0796940178, -0.1776912808, 0.2441748083, 0.4918095767, -0.2313986421, 0.1801939607, 0.0814935714, 0.0550894439, 0.1250855923, -0.1007568687, 0.1307256818, -0.2734062672, 0.0807415694, 0.124846071, -0.0751320571, -0.0345287025, 0.0240301639, -0.1902871132, -0.3486273885, 0.018469898, -0.0663276166, -0.2240722328, -0.2307063341, 0.107206136, -0.1658506691, -0.4173950553, -0.0595365278, -0.1528191715, 0.2299298495, 0.427030772, -0.0001130733, 0.0164050311, 0.2279310077, 0.0894176289, -0.1997469664, 0.1829337329, 0.1748071909, -0.2838543952, 0.0868746936, -0.409766227, -0.0471539199, -0.2971982956, 0.0934279785, 0.0189005211, -0.0412532985, 0.3089759648, 0.1403642893, 0.5131546855, -0.1917043626, -0.1336634159, 0.6230677366, 0.2051520348, -0.3506301939, 0.5299631953, 0.5806369185, -0.0487994887, -0.3053151965, 0.1361400485, -0.081444189, 0.2701412439, 0.0370224789, 0.1979728937, -0.1128055379, 0.1795917749, 0.1238101348, 0.4088888466, 0.308390677, -0.0893915296, -0.31488657, -0.2920184135, -0.0569283739, -0.2332933545, 0.0203074664, 0.3264190555, -0.2583794594, 0.2713417411, -0.3137761056, 0.1547780633, -0.105650872, 0.1795516908, -0.1511590481, -0.0686154813, 0.1150509715, 0.1985103041, 0.0937959999, 0.013313245, 0.1511932909, -0.1696214676, 0.02840616, -0.0521108359, -0.2883043289, -0.0881547257, 0.1556629986, 0.1755786538, 0.2685055733, 0.1593102217, 0.422320962, 0.1182836294, 0.265193522, 0.0943620056, 0.0451357178, -0.00902123, -0.2695652246, -0.0009782985, 0.3478800952, 0.2753001153, -0.2945162356, 0.0208777897, -0.2383212, -0.1844544411, 0.18156299, -0.1973297, -0.0274536572, -0.1337168217, 0.004322812, -0.0873045921, -0.3421143293, -0.1278229654, -0.0265573356, 0.4784683287, -0.1834656596, -0.0265719481, -0.2126670331, 0.122223638, -0.3353426754, -0.2540249228, -0.1243124455, -0.1883355528, -0.1600802243, 0.230307579, 0.1097953022, 0.0560975373, 0.3020733893, 0.0585403889, -0.1985149235, 0.2419624925, 0.3923712373, -0.1808657944, 0.1044564396, 0.0197549704, 0.0112555176, 0.0635319576, -0.1637398601, 0.2447639406, -0.3910898566, 0.1972704232, -0.1953566968, -0.3384779692, 0.0306390878, 0.0919930711, -0.1056954265, -0.0997603312, -0.2270813733, 0.246245116, -0.0694222227, -0.1997462511, -0.0774373189, -0.094193913, 0.0402900577, -0.1531327516, 0.1413004547, 0.0776271224, -0.2506590486, 0.2018506676, -0.0451862887, 0.3970346153, 0.2543900013, 0.5308364034, -0.5031033158, 0.1623608768, -0.1327786446, 0.2966160476, 0.2320237309, -0.0281320959, -0.6667608619, 0.4973527193, -0.004258588, 0.0241891295, 0.2724839747, 0.1617120355, 0.3516781926, 0.1078480259, -0.0490623787, 0.3837116957, 0.1839479506, 0.227930665, -0.3400993347, -0.2303103507, -0.0487275794, 0.3479747772, -0.3244731724, -0.1571214497, 0.3112511337, -0.36459741, 0.4906599522, -0.2065639794, -0.1836263537, 0.2509782612, 0.0870240331, -0.2777459621, 0.1183483601, 0.0964876413, 0.0859434903, 0.2421764582, -0.1894864291, -0.0184650589, 0.0450902954, -0.1888085455, -0.072214976, 0.061963059, -0.055260241, -0.0473853797, -0.0448972918, -0.0918296874, 0.3306872845, -0.003531523, 0.1647335887, -0.1632057726, -0.2693369091, -0.0094456971, -0.2626184225, 0.0792924687, 0.0950684994, -0.1213106662, 0.0093062818, -0.249253124, -0.0884236991, -0.0017328337, -0.1519375592, 0.3275275826, 0.1502294689, 0.1502474844, 0.2235308886, 0.1522479355, 0.1419567168, -0.0849315599, 0.3879739344, 0.2968660891, 0.0753156543, 0.0365262255, -0.4053476155, 0.5263323784, 0.3933125138, 0.31605497, 0.2904031873, -0.373390466, 0.1644446254, 0.0483796299, 0.1105025336, 0.4106383622, 0.293798238, 0.2421560585, 0.5489562154, 0.1663254946, -0.3161973357, 0.1155824065, 0.4506137371, -0.2496014237, 0.0180418901, 0.1873046011, -0.4217130542, -0.1856172383, 0.3702152371, -0.1509688944, 0.326580286, 0.3312532306, 0.1606442779, -0.12395522, 0.0274434276, -0.2904404998, 0.2625501752, 0.096794948, 0.1414085329, -0.2201081961, 0.4368430376, -0.0920059234, -0.2460106015, -0.3815978467, -0.0392078273, 0.1921317428, -0.126401186, 0.3072987497, -0.0982985869, 0.0536194295, -0.0324512869, 0.130800575, 0.0790726244, -0.0865352303, 0.045038607, 0.1935409009, -0.1812104583, -0.1583380103, -0.0551913902, 0.2278951257, 0.2617878318, -0.2087613046, -0.0017741174, -0.0716876909, -0.3983869553, 0.0803131983, 0.2775999308, 0.1493916065, 0.1450454444, -0.0469179899, -0.1854476333, -0.2801736891, -0.3152379096, -0.0065730242, 0.0799066126, 0.28661865, -0.0709002241, 0.0763944536, -0.3244521022, -0.1447663754, 0.063709721, -0.2329102755, -0.1513257474, 0.2760068476, -0.1807475835, 0.0008987412, 0.0887835324, -0.316375345, -0.1673078388, -0.3001770973, 0.3784306645, 0.1727608591, 0.2083455473, 0.1075551733, 0.3943432271, 0.1223712862, 0.0096597932, 0.1228193492, 0.0379167236, -0.4149514139, 0.5190879107, -0.1802635342, -0.4500639737, -0.4888218045, -0.242930308, -0.164149031, 0.4524992108, -0.5341608524, -0.0311467629, -0.5311311483, 0.4127758741, 0.123539716, 0.1021672487, 0.0496034212, -0.2131573707, -0.2089556009, 0.1292295903, 0.0826178864, -0.0064190216, -0.0878510252, 0.2021376491, -0.0615212247, 0.0337111652, -0.0098686591, 0.7692424059, 0.0689441711, -0.0129050007, 0.2635357976, -0.0949028134, 0.0519068427, -0.1647453606, 0.1458879113, 0.0905036554, -0.2608799338, -0.2699276805, 0.4183898568, 0.1641468108, -0.3080245256, 0.0591342896, -0.1851302534, -0.097659111, -0.2781836092, 0.2541960776, 0.1588241458, 0.1743984073, 0.0698608682, 0.3926579654, -0.3018996716, -0.1359270215, 0.0707091317, -0.2578144372, 0.0201729257, -0.1169836372, -0.3373413682, -0.0597156547, -0.6845928431, 0.2021396607, -0.0698037893, 0.0391389206, 0.2540457547, -0.3021758795, 0.2348045558, -0.0662641153, 0.5487115383, 0.1905720383, -0.1996436715, -0.1152184829, -0.2325003147, -0.4247888327, -0.1554235518, -0.4956257045, 0.1136514768, -0.0005399846, 0.3345812857, -0.3185558319, 0.1118362546, 0.0000605714, 0.3112286329, 0.1916496307, -0.044278685, -0.1676546037, -0.2823403478, -0.1325233579, 0.1623778641, -0.1995149255, 0.050449606, -0.269434154, -0.1696101427, -0.1472622305, 0.1772930622, 0.1168198958, 0.4819425046, 0.2846929729, -0.4382564425, 0.3633344173, 0.0272250623, 0.1518048793, 0.3828200102, 0.4000198245, 0.3224880993, -0.1235771626, 0.1998888403, 0.1022293866, 0.0747966468, 0.5333116055, -0.0012650341, 0.1972724199, 0.0611076467, 0.2763024867, -0.0564491451, 0.0823672861, 0.3274201453, -0.08233881, -0.0624976307, -0.3168289065, 0.7024027705, 0.0998988003, 0.0085827112, 0.2355285883, -0.1901873946, 0.130443126, 0.3013944924, -0.1022063345, 0.9143371582, -0.1250879765, 0.2525978088, 0.3494728208, 0.066730313, 0.0075901709, -0.0959172845, 0.1510159373, -0.3135031164, -0.2316491604, 0.1761056334, -0.2805036008, 0.0849208087, 0.212859273, -0.1312745064, 0.0862879381, -0.0537316576, 0.1990434229, -0.2258602381, 0.2392510921, -0.2529600859, -0.0510925539, -0.4353417754, 0.028821148, 0.0972890928, -0.0646521896, 0.0886060596, -0.1453693658, -0.5541803241, 0.0102535784, -0.0938769281, 0.0389146432, -0.2355806381, 0.1632977575, 0.0593758337, -0.4771615863, -0.0842534602, 0.1212540343, -0.4953689575, 0.0789548755, -0.2458119839, 0.4174095392, 0.043545872, 0.2301590592, 0.5308091044, -0.3330539465, -0.0087194499, -0.0292188935, -0.2165677249, 0.2495409697, -0.153989464, -0.2520104647, 0.0252856314, 0.14373146, 0.3611812592, -0.167501837, -0.2776466608, -0.1240047663, -0.4408730567, -0.2431268841, 0.0841378346, -0.0427369699, 0.0855585486, 0.2314763665, 0.3174690604, -0.3549931645, -0.2242874801, 0.3709995151, 0.094312571, 0.260320574, 0.3130872548, 0.0880957395, -0.2163754553, -0.1274372786, 0.2965530753, 0.4111421108, -0.4757104516, 0.0690821707, 0.0139512196, 0.1246269196, 0.2461798638, 0.0182093363, 0.0741977543, -0.2569896281, -0.3386789858, -0.0690868795, 0.0099439397, 0.3278675377, 0.1207610667, 0.1357961893, 0.0576913282, -0.0145964157, -0.3653220236, 0.0142487343, -0.2701687217, 0.1390894949, -0.0243225731, 0.18286331, -0.4315899909, 0.0174092576, 0.0081377886, 0.1431651413, 0.1091622412, 0.1063816696, -0.1234385818, -0.2166474462, 0.0291855633, 0.1290723681, -0.13618806, -0.2797194123, 0.2394433022, -0.2063070983, -0.0508660451, -0.3758654594, 0.142124176, -0.136420846, -0.0316604823, -0.4254382849, 0.2596431971, -0.1692035943, -0.3019401431, 0.3180859685, -0.4044681191, 0.1779982597, 0.0607634895, 0.1787561625, 0.004005719, -0.1559253931, 0.0720916018, 0.2029668242, 0.1648201048, 0.1396781504, 0.3797293007, -0.026212275, -0.0972279757, -0.1073895246, 0.3312667906, 0.3493905663, 0.0380297005, -0.1387913972, 0.1757901758, 0.2256356776, -0.3251367807, -0.28282094, -0.1296374202, -0.2570058703, 0.2418893278, 0.009579286, 0.2093758583, 0.1670221388, -0.0789555311, -0.2068968862, 0.0986438766, 0.5504125357, -0.145175159, 0.6776701808, 0.3272513449, -0.1993044615, 0.2702794969, 0.0020872001, 0.3459144533, 0.3618879914, -0.1196034104, 0.536823988, 0.2320744246, 0.2449540347, -0.133967191, -0.3090497255, 0.1352110356, -0.0015169755, -0.0136433244, 0.1391917467, 0.062129274, 0.4490417242, 0.0052281991, 0.0771014839, -0.3266301751, -0.1267498136, 0.0290441699, -0.0826171339, -0.0433853902, -0.117739737, -0.0748516172, 0.1068687886, -0.3724668026, -0.1312434673, 0.3648227751, 0.0338450074, 0.1812083274, -0.4446077347, 0.2035417557, -0.15691787, 0.2180987746, -0.2398338318, 0.1747611463, 0.0500848889, -0.0667941421, 0.0713927001, 0.1016839594, 0.3679462373, 0.1852423102, -0.1066012233, -0.1730930656, -0.0566400141, -0.0385058783, -0.0139066614, -0.0869699568, 0.0414153971, -0.0986005217, 0.3017620742, 0.0308142304, -0.1557210386, -0.1387577206, -0.0228553154, -0.2242790908, -0.3263449669, -0.3453311324, -0.2006977797, -0.328232348, -0.1295249462, -0.189568311, -0.2536431253, 0.1835208088, 0.2279348075, -0.313331902, -0.0675589591, 0.0006712116, 0.0845005512, -0.5105260015, 0.6805171371, 0.4650321901, 0.5556753874, -0.3209067285, -0.1160447821, -0.435654819, 0.062921308, -0.6595265865, -0.0497878492, 0.2942714095, 0.3931101263, 0.1516693085, 0.215378046, 0.1646080613, 0.1359260231, -0.1916751862, 0.3211122453, -0.530500412, -0.0809499696, -0.0275070444, 0.0169764962, -0.2176148593, -0.6412063241, 0.4145414829, -0.4362512529, 0.0196193978, -0.1795396656, -0.1805547327, 0.3991859555, 0.2217821032, 0.5155704618, 0.0022800695, 0.1430402696, 0.0240668207, -0.1811048985, -0.1920029223, -0.0376324616, 0.0861410424, 0.176272884, -0.0916484892, 0.0870483145, 0.1293835044, -0.1807274073, 0.0944080949, 0.6064491868, -0.1033742353, 0.0085012913, 0.1139353141, -0.1410084963, -0.2004249394, 0.1103876978, -0.1858647764, -0.0338986441, -0.0985817611, -0.2373308539, -0.1588727385, -0.1999850869, 0.4235756099, -0.4598160684, 0.0573060364, -0.1773603857, 0.2722938657, 0.2497566193, 0.3505437374, -0.1962877512, 0.0297313333, 0.3197361231, 0.0932117105, -0.0431470387, 0.2311460823, 0.1514276117, 0.1145223379, -0.0749372691, 0.3918387592, -0.3036593497, -0.306638658, -0.2293882817, -0.3594549298 ]
https://github.com/huggingface/datasets/issues/1803
Querying examples from big datasets is slower than small datasets
My workaround is to shard the dataset into splits in my ssd disk and feed the data in different training sessions. But it is a bit of a pain when we need to reload the last training session with the rest of the split with the Trainer in transformers. I mean, when I split the training and then reloads the model and optimizer, it not gets the correct global_status of the optimizer, so I need to hardcode some things. I'm planning to open an issue in transformers and think about it. ``` from datasets import load_dataset book_corpus = load_dataset("bookcorpus", split="train[:25%]") wikicorpus = load_dataset("wikicorpus", split="train[:25%]") openwebtext = load_dataset("openwebtext", split="train[:25%]") big_dataset = datasets.concatenate_datasets([wikicorpus, openwebtext, book_corpus]) big_dataset.shuffle(seed=42) big_dataset = big_dataset.map(encode, batched=True, num_proc=20, load_from_cache_file=True, writer_batch_size=5000) big_dataset.set_format(type='torch', columns=["text", "input_ids", "attention_mask", "token_type_ids"]) training_args = TrainingArguments( output_dir="./linear_bert", overwrite_output_dir=True, per_device_train_batch_size=71, save_steps=500, save_total_limit=10, logging_first_step=True, logging_steps=100, gradient_accumulation_steps=9, fp16=True, dataloader_num_workers=20, warmup_steps=24000, learning_rate=0.000545205002870214, adam_epsilon=1e-6, adam_beta2=0.98, weight_decay=0.01, max_steps=138974, # the total number of steps after concatenating 100% datasets max_grad_norm=1.0, ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=big_dataset, tokenizer=tokenizer)) ``` I do one training pass with the total steps of this shard and I use len(bbig)/batchsize to stop the training (hardcoded in the trainer.py) when I pass over all the examples in this split. Now Im working, I will edit the comment with a more elaborated answer when I left the work.
After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed.
218
Querying examples from big datasets is slower than small datasets After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed. My workaround is to shard the dataset into splits in my ssd disk and feed the data in different training sessions. But it is a bit of a pain when we need to reload the last training session with the rest of the split with the Trainer in transformers. I mean, when I split the training and then reloads the model and optimizer, it not gets the correct global_status of the optimizer, so I need to hardcode some things. I'm planning to open an issue in transformers and think about it. ``` from datasets import load_dataset book_corpus = load_dataset("bookcorpus", split="train[:25%]") wikicorpus = load_dataset("wikicorpus", split="train[:25%]") openwebtext = load_dataset("openwebtext", split="train[:25%]") big_dataset = datasets.concatenate_datasets([wikicorpus, openwebtext, book_corpus]) big_dataset.shuffle(seed=42) big_dataset = big_dataset.map(encode, batched=True, num_proc=20, load_from_cache_file=True, writer_batch_size=5000) big_dataset.set_format(type='torch', columns=["text", "input_ids", "attention_mask", "token_type_ids"]) training_args = TrainingArguments( output_dir="./linear_bert", overwrite_output_dir=True, per_device_train_batch_size=71, save_steps=500, save_total_limit=10, logging_first_step=True, logging_steps=100, gradient_accumulation_steps=9, fp16=True, dataloader_num_workers=20, warmup_steps=24000, learning_rate=0.000545205002870214, adam_epsilon=1e-6, adam_beta2=0.98, weight_decay=0.01, max_steps=138974, # the total number of steps after concatenating 100% datasets max_grad_norm=1.0, ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=big_dataset, tokenizer=tokenizer)) ``` I do one training pass with the total steps of this shard and I use len(bbig)/batchsize to stop the training (hardcoded in the trainer.py) when I pass over all the examples in this split. Now Im working, I will edit the comment with a more elaborated answer when I left the work.
[ -0.4054939747, 0.0586444139, -0.0799715742, 0.1315324903, -0.0796940178, -0.1776912808, 0.2441748083, 0.4918095767, -0.2313986421, 0.1801939607, 0.0814935714, 0.0550894439, 0.1250855923, -0.1007568687, 0.1307256818, -0.2734062672, 0.0807415694, 0.124846071, -0.0751320571, -0.0345287025, 0.0240301639, -0.1902871132, -0.3486273885, 0.018469898, -0.0663276166, -0.2240722328, -0.2307063341, 0.107206136, -0.1658506691, -0.4173950553, -0.0595365278, -0.1528191715, 0.2299298495, 0.427030772, -0.0001130733, 0.0164050311, 0.2279310077, 0.0894176289, -0.1997469664, 0.1829337329, 0.1748071909, -0.2838543952, 0.0868746936, -0.409766227, -0.0471539199, -0.2971982956, 0.0934279785, 0.0189005211, -0.0412532985, 0.3089759648, 0.1403642893, 0.5131546855, -0.1917043626, -0.1336634159, 0.6230677366, 0.2051520348, -0.3506301939, 0.5299631953, 0.5806369185, -0.0487994887, -0.3053151965, 0.1361400485, -0.081444189, 0.2701412439, 0.0370224789, 0.1979728937, -0.1128055379, 0.1795917749, 0.1238101348, 0.4088888466, 0.308390677, -0.0893915296, -0.31488657, -0.2920184135, -0.0569283739, -0.2332933545, 0.0203074664, 0.3264190555, -0.2583794594, 0.2713417411, -0.3137761056, 0.1547780633, -0.105650872, 0.1795516908, -0.1511590481, -0.0686154813, 0.1150509715, 0.1985103041, 0.0937959999, 0.013313245, 0.1511932909, -0.1696214676, 0.02840616, -0.0521108359, -0.2883043289, -0.0881547257, 0.1556629986, 0.1755786538, 0.2685055733, 0.1593102217, 0.422320962, 0.1182836294, 0.265193522, 0.0943620056, 0.0451357178, -0.00902123, -0.2695652246, -0.0009782985, 0.3478800952, 0.2753001153, -0.2945162356, 0.0208777897, -0.2383212, -0.1844544411, 0.18156299, -0.1973297, -0.0274536572, -0.1337168217, 0.004322812, -0.0873045921, -0.3421143293, -0.1278229654, -0.0265573356, 0.4784683287, -0.1834656596, -0.0265719481, -0.2126670331, 0.122223638, -0.3353426754, -0.2540249228, -0.1243124455, -0.1883355528, -0.1600802243, 0.230307579, 0.1097953022, 0.0560975373, 0.3020733893, 0.0585403889, -0.1985149235, 0.2419624925, 0.3923712373, -0.1808657944, 0.1044564396, 0.0197549704, 0.0112555176, 0.0635319576, -0.1637398601, 0.2447639406, -0.3910898566, 0.1972704232, -0.1953566968, -0.3384779692, 0.0306390878, 0.0919930711, -0.1056954265, -0.0997603312, -0.2270813733, 0.246245116, -0.0694222227, -0.1997462511, -0.0774373189, -0.094193913, 0.0402900577, -0.1531327516, 0.1413004547, 0.0776271224, -0.2506590486, 0.2018506676, -0.0451862887, 0.3970346153, 0.2543900013, 0.5308364034, -0.5031033158, 0.1623608768, -0.1327786446, 0.2966160476, 0.2320237309, -0.0281320959, -0.6667608619, 0.4973527193, -0.004258588, 0.0241891295, 0.2724839747, 0.1617120355, 0.3516781926, 0.1078480259, -0.0490623787, 0.3837116957, 0.1839479506, 0.227930665, -0.3400993347, -0.2303103507, -0.0487275794, 0.3479747772, -0.3244731724, -0.1571214497, 0.3112511337, -0.36459741, 0.4906599522, -0.2065639794, -0.1836263537, 0.2509782612, 0.0870240331, -0.2777459621, 0.1183483601, 0.0964876413, 0.0859434903, 0.2421764582, -0.1894864291, -0.0184650589, 0.0450902954, -0.1888085455, -0.072214976, 0.061963059, -0.055260241, -0.0473853797, -0.0448972918, -0.0918296874, 0.3306872845, -0.003531523, 0.1647335887, -0.1632057726, -0.2693369091, -0.0094456971, -0.2626184225, 0.0792924687, 0.0950684994, -0.1213106662, 0.0093062818, -0.249253124, -0.0884236991, -0.0017328337, -0.1519375592, 0.3275275826, 0.1502294689, 0.1502474844, 0.2235308886, 0.1522479355, 0.1419567168, -0.0849315599, 0.3879739344, 0.2968660891, 0.0753156543, 0.0365262255, -0.4053476155, 0.5263323784, 0.3933125138, 0.31605497, 0.2904031873, -0.373390466, 0.1644446254, 0.0483796299, 0.1105025336, 0.4106383622, 0.293798238, 0.2421560585, 0.5489562154, 0.1663254946, -0.3161973357, 0.1155824065, 0.4506137371, -0.2496014237, 0.0180418901, 0.1873046011, -0.4217130542, -0.1856172383, 0.3702152371, -0.1509688944, 0.326580286, 0.3312532306, 0.1606442779, -0.12395522, 0.0274434276, -0.2904404998, 0.2625501752, 0.096794948, 0.1414085329, -0.2201081961, 0.4368430376, -0.0920059234, -0.2460106015, -0.3815978467, -0.0392078273, 0.1921317428, -0.126401186, 0.3072987497, -0.0982985869, 0.0536194295, -0.0324512869, 0.130800575, 0.0790726244, -0.0865352303, 0.045038607, 0.1935409009, -0.1812104583, -0.1583380103, -0.0551913902, 0.2278951257, 0.2617878318, -0.2087613046, -0.0017741174, -0.0716876909, -0.3983869553, 0.0803131983, 0.2775999308, 0.1493916065, 0.1450454444, -0.0469179899, -0.1854476333, -0.2801736891, -0.3152379096, -0.0065730242, 0.0799066126, 0.28661865, -0.0709002241, 0.0763944536, -0.3244521022, -0.1447663754, 0.063709721, -0.2329102755, -0.1513257474, 0.2760068476, -0.1807475835, 0.0008987412, 0.0887835324, -0.316375345, -0.1673078388, -0.3001770973, 0.3784306645, 0.1727608591, 0.2083455473, 0.1075551733, 0.3943432271, 0.1223712862, 0.0096597932, 0.1228193492, 0.0379167236, -0.4149514139, 0.5190879107, -0.1802635342, -0.4500639737, -0.4888218045, -0.242930308, -0.164149031, 0.4524992108, -0.5341608524, -0.0311467629, -0.5311311483, 0.4127758741, 0.123539716, 0.1021672487, 0.0496034212, -0.2131573707, -0.2089556009, 0.1292295903, 0.0826178864, -0.0064190216, -0.0878510252, 0.2021376491, -0.0615212247, 0.0337111652, -0.0098686591, 0.7692424059, 0.0689441711, -0.0129050007, 0.2635357976, -0.0949028134, 0.0519068427, -0.1647453606, 0.1458879113, 0.0905036554, -0.2608799338, -0.2699276805, 0.4183898568, 0.1641468108, -0.3080245256, 0.0591342896, -0.1851302534, -0.097659111, -0.2781836092, 0.2541960776, 0.1588241458, 0.1743984073, 0.0698608682, 0.3926579654, -0.3018996716, -0.1359270215, 0.0707091317, -0.2578144372, 0.0201729257, -0.1169836372, -0.3373413682, -0.0597156547, -0.6845928431, 0.2021396607, -0.0698037893, 0.0391389206, 0.2540457547, -0.3021758795, 0.2348045558, -0.0662641153, 0.5487115383, 0.1905720383, -0.1996436715, -0.1152184829, -0.2325003147, -0.4247888327, -0.1554235518, -0.4956257045, 0.1136514768, -0.0005399846, 0.3345812857, -0.3185558319, 0.1118362546, 0.0000605714, 0.3112286329, 0.1916496307, -0.044278685, -0.1676546037, -0.2823403478, -0.1325233579, 0.1623778641, -0.1995149255, 0.050449606, -0.269434154, -0.1696101427, -0.1472622305, 0.1772930622, 0.1168198958, 0.4819425046, 0.2846929729, -0.4382564425, 0.3633344173, 0.0272250623, 0.1518048793, 0.3828200102, 0.4000198245, 0.3224880993, -0.1235771626, 0.1998888403, 0.1022293866, 0.0747966468, 0.5333116055, -0.0012650341, 0.1972724199, 0.0611076467, 0.2763024867, -0.0564491451, 0.0823672861, 0.3274201453, -0.08233881, -0.0624976307, -0.3168289065, 0.7024027705, 0.0998988003, 0.0085827112, 0.2355285883, -0.1901873946, 0.130443126, 0.3013944924, -0.1022063345, 0.9143371582, -0.1250879765, 0.2525978088, 0.3494728208, 0.066730313, 0.0075901709, -0.0959172845, 0.1510159373, -0.3135031164, -0.2316491604, 0.1761056334, -0.2805036008, 0.0849208087, 0.212859273, -0.1312745064, 0.0862879381, -0.0537316576, 0.1990434229, -0.2258602381, 0.2392510921, -0.2529600859, -0.0510925539, -0.4353417754, 0.028821148, 0.0972890928, -0.0646521896, 0.0886060596, -0.1453693658, -0.5541803241, 0.0102535784, -0.0938769281, 0.0389146432, -0.2355806381, 0.1632977575, 0.0593758337, -0.4771615863, -0.0842534602, 0.1212540343, -0.4953689575, 0.0789548755, -0.2458119839, 0.4174095392, 0.043545872, 0.2301590592, 0.5308091044, -0.3330539465, -0.0087194499, -0.0292188935, -0.2165677249, 0.2495409697, -0.153989464, -0.2520104647, 0.0252856314, 0.14373146, 0.3611812592, -0.167501837, -0.2776466608, -0.1240047663, -0.4408730567, -0.2431268841, 0.0841378346, -0.0427369699, 0.0855585486, 0.2314763665, 0.3174690604, -0.3549931645, -0.2242874801, 0.3709995151, 0.094312571, 0.260320574, 0.3130872548, 0.0880957395, -0.2163754553, -0.1274372786, 0.2965530753, 0.4111421108, -0.4757104516, 0.0690821707, 0.0139512196, 0.1246269196, 0.2461798638, 0.0182093363, 0.0741977543, -0.2569896281, -0.3386789858, -0.0690868795, 0.0099439397, 0.3278675377, 0.1207610667, 0.1357961893, 0.0576913282, -0.0145964157, -0.3653220236, 0.0142487343, -0.2701687217, 0.1390894949, -0.0243225731, 0.18286331, -0.4315899909, 0.0174092576, 0.0081377886, 0.1431651413, 0.1091622412, 0.1063816696, -0.1234385818, -0.2166474462, 0.0291855633, 0.1290723681, -0.13618806, -0.2797194123, 0.2394433022, -0.2063070983, -0.0508660451, -0.3758654594, 0.142124176, -0.136420846, -0.0316604823, -0.4254382849, 0.2596431971, -0.1692035943, -0.3019401431, 0.3180859685, -0.4044681191, 0.1779982597, 0.0607634895, 0.1787561625, 0.004005719, -0.1559253931, 0.0720916018, 0.2029668242, 0.1648201048, 0.1396781504, 0.3797293007, -0.026212275, -0.0972279757, -0.1073895246, 0.3312667906, 0.3493905663, 0.0380297005, -0.1387913972, 0.1757901758, 0.2256356776, -0.3251367807, -0.28282094, -0.1296374202, -0.2570058703, 0.2418893278, 0.009579286, 0.2093758583, 0.1670221388, -0.0789555311, -0.2068968862, 0.0986438766, 0.5504125357, -0.145175159, 0.6776701808, 0.3272513449, -0.1993044615, 0.2702794969, 0.0020872001, 0.3459144533, 0.3618879914, -0.1196034104, 0.536823988, 0.2320744246, 0.2449540347, -0.133967191, -0.3090497255, 0.1352110356, -0.0015169755, -0.0136433244, 0.1391917467, 0.062129274, 0.4490417242, 0.0052281991, 0.0771014839, -0.3266301751, -0.1267498136, 0.0290441699, -0.0826171339, -0.0433853902, -0.117739737, -0.0748516172, 0.1068687886, -0.3724668026, -0.1312434673, 0.3648227751, 0.0338450074, 0.1812083274, -0.4446077347, 0.2035417557, -0.15691787, 0.2180987746, -0.2398338318, 0.1747611463, 0.0500848889, -0.0667941421, 0.0713927001, 0.1016839594, 0.3679462373, 0.1852423102, -0.1066012233, -0.1730930656, -0.0566400141, -0.0385058783, -0.0139066614, -0.0869699568, 0.0414153971, -0.0986005217, 0.3017620742, 0.0308142304, -0.1557210386, -0.1387577206, -0.0228553154, -0.2242790908, -0.3263449669, -0.3453311324, -0.2006977797, -0.328232348, -0.1295249462, -0.189568311, -0.2536431253, 0.1835208088, 0.2279348075, -0.313331902, -0.0675589591, 0.0006712116, 0.0845005512, -0.5105260015, 0.6805171371, 0.4650321901, 0.5556753874, -0.3209067285, -0.1160447821, -0.435654819, 0.062921308, -0.6595265865, -0.0497878492, 0.2942714095, 0.3931101263, 0.1516693085, 0.215378046, 0.1646080613, 0.1359260231, -0.1916751862, 0.3211122453, -0.530500412, -0.0809499696, -0.0275070444, 0.0169764962, -0.2176148593, -0.6412063241, 0.4145414829, -0.4362512529, 0.0196193978, -0.1795396656, -0.1805547327, 0.3991859555, 0.2217821032, 0.5155704618, 0.0022800695, 0.1430402696, 0.0240668207, -0.1811048985, -0.1920029223, -0.0376324616, 0.0861410424, 0.176272884, -0.0916484892, 0.0870483145, 0.1293835044, -0.1807274073, 0.0944080949, 0.6064491868, -0.1033742353, 0.0085012913, 0.1139353141, -0.1410084963, -0.2004249394, 0.1103876978, -0.1858647764, -0.0338986441, -0.0985817611, -0.2373308539, -0.1588727385, -0.1999850869, 0.4235756099, -0.4598160684, 0.0573060364, -0.1773603857, 0.2722938657, 0.2497566193, 0.3505437374, -0.1962877512, 0.0297313333, 0.3197361231, 0.0932117105, -0.0431470387, 0.2311460823, 0.1514276117, 0.1145223379, -0.0749372691, 0.3918387592, -0.3036593497, -0.306638658, -0.2293882817, -0.3594549298 ]
https://github.com/huggingface/datasets/issues/1803
Querying examples from big datasets is slower than small datasets
I just tested and using the Arrow File format doesn't improve the speed... This will need further investigation. My guess is that it has to iterate over the record batches or chunks of a ChunkedArray in order to retrieve elements. However if we know in advance in which chunk the element is, and at what index it is, then we can access it instantaneously. But this requires dealing with the chunked arrays instead of the pyarrow Table directly which is not practical.
After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed.
82
Querying examples from big datasets is slower than small datasets After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed. I just tested and using the Arrow File format doesn't improve the speed... This will need further investigation. My guess is that it has to iterate over the record batches or chunks of a ChunkedArray in order to retrieve elements. However if we know in advance in which chunk the element is, and at what index it is, then we can access it instantaneously. But this requires dealing with the chunked arrays instead of the pyarrow Table directly which is not practical.
[ -0.4054939747, 0.0586444139, -0.0799715742, 0.1315324903, -0.0796940178, -0.1776912808, 0.2441748083, 0.4918095767, -0.2313986421, 0.1801939607, 0.0814935714, 0.0550894439, 0.1250855923, -0.1007568687, 0.1307256818, -0.2734062672, 0.0807415694, 0.124846071, -0.0751320571, -0.0345287025, 0.0240301639, -0.1902871132, -0.3486273885, 0.018469898, -0.0663276166, -0.2240722328, -0.2307063341, 0.107206136, -0.1658506691, -0.4173950553, -0.0595365278, -0.1528191715, 0.2299298495, 0.427030772, -0.0001130733, 0.0164050311, 0.2279310077, 0.0894176289, -0.1997469664, 0.1829337329, 0.1748071909, -0.2838543952, 0.0868746936, -0.409766227, -0.0471539199, -0.2971982956, 0.0934279785, 0.0189005211, -0.0412532985, 0.3089759648, 0.1403642893, 0.5131546855, -0.1917043626, -0.1336634159, 0.6230677366, 0.2051520348, -0.3506301939, 0.5299631953, 0.5806369185, -0.0487994887, -0.3053151965, 0.1361400485, -0.081444189, 0.2701412439, 0.0370224789, 0.1979728937, -0.1128055379, 0.1795917749, 0.1238101348, 0.4088888466, 0.308390677, -0.0893915296, -0.31488657, -0.2920184135, -0.0569283739, -0.2332933545, 0.0203074664, 0.3264190555, -0.2583794594, 0.2713417411, -0.3137761056, 0.1547780633, -0.105650872, 0.1795516908, -0.1511590481, -0.0686154813, 0.1150509715, 0.1985103041, 0.0937959999, 0.013313245, 0.1511932909, -0.1696214676, 0.02840616, -0.0521108359, -0.2883043289, -0.0881547257, 0.1556629986, 0.1755786538, 0.2685055733, 0.1593102217, 0.422320962, 0.1182836294, 0.265193522, 0.0943620056, 0.0451357178, -0.00902123, -0.2695652246, -0.0009782985, 0.3478800952, 0.2753001153, -0.2945162356, 0.0208777897, -0.2383212, -0.1844544411, 0.18156299, -0.1973297, -0.0274536572, -0.1337168217, 0.004322812, -0.0873045921, -0.3421143293, -0.1278229654, -0.0265573356, 0.4784683287, -0.1834656596, -0.0265719481, -0.2126670331, 0.122223638, -0.3353426754, -0.2540249228, -0.1243124455, -0.1883355528, -0.1600802243, 0.230307579, 0.1097953022, 0.0560975373, 0.3020733893, 0.0585403889, -0.1985149235, 0.2419624925, 0.3923712373, -0.1808657944, 0.1044564396, 0.0197549704, 0.0112555176, 0.0635319576, -0.1637398601, 0.2447639406, -0.3910898566, 0.1972704232, -0.1953566968, -0.3384779692, 0.0306390878, 0.0919930711, -0.1056954265, -0.0997603312, -0.2270813733, 0.246245116, -0.0694222227, -0.1997462511, -0.0774373189, -0.094193913, 0.0402900577, -0.1531327516, 0.1413004547, 0.0776271224, -0.2506590486, 0.2018506676, -0.0451862887, 0.3970346153, 0.2543900013, 0.5308364034, -0.5031033158, 0.1623608768, -0.1327786446, 0.2966160476, 0.2320237309, -0.0281320959, -0.6667608619, 0.4973527193, -0.004258588, 0.0241891295, 0.2724839747, 0.1617120355, 0.3516781926, 0.1078480259, -0.0490623787, 0.3837116957, 0.1839479506, 0.227930665, -0.3400993347, -0.2303103507, -0.0487275794, 0.3479747772, -0.3244731724, -0.1571214497, 0.3112511337, -0.36459741, 0.4906599522, -0.2065639794, -0.1836263537, 0.2509782612, 0.0870240331, -0.2777459621, 0.1183483601, 0.0964876413, 0.0859434903, 0.2421764582, -0.1894864291, -0.0184650589, 0.0450902954, -0.1888085455, -0.072214976, 0.061963059, -0.055260241, -0.0473853797, -0.0448972918, -0.0918296874, 0.3306872845, -0.003531523, 0.1647335887, -0.1632057726, -0.2693369091, -0.0094456971, -0.2626184225, 0.0792924687, 0.0950684994, -0.1213106662, 0.0093062818, -0.249253124, -0.0884236991, -0.0017328337, -0.1519375592, 0.3275275826, 0.1502294689, 0.1502474844, 0.2235308886, 0.1522479355, 0.1419567168, -0.0849315599, 0.3879739344, 0.2968660891, 0.0753156543, 0.0365262255, -0.4053476155, 0.5263323784, 0.3933125138, 0.31605497, 0.2904031873, -0.373390466, 0.1644446254, 0.0483796299, 0.1105025336, 0.4106383622, 0.293798238, 0.2421560585, 0.5489562154, 0.1663254946, -0.3161973357, 0.1155824065, 0.4506137371, -0.2496014237, 0.0180418901, 0.1873046011, -0.4217130542, -0.1856172383, 0.3702152371, -0.1509688944, 0.326580286, 0.3312532306, 0.1606442779, -0.12395522, 0.0274434276, -0.2904404998, 0.2625501752, 0.096794948, 0.1414085329, -0.2201081961, 0.4368430376, -0.0920059234, -0.2460106015, -0.3815978467, -0.0392078273, 0.1921317428, -0.126401186, 0.3072987497, -0.0982985869, 0.0536194295, -0.0324512869, 0.130800575, 0.0790726244, -0.0865352303, 0.045038607, 0.1935409009, -0.1812104583, -0.1583380103, -0.0551913902, 0.2278951257, 0.2617878318, -0.2087613046, -0.0017741174, -0.0716876909, -0.3983869553, 0.0803131983, 0.2775999308, 0.1493916065, 0.1450454444, -0.0469179899, -0.1854476333, -0.2801736891, -0.3152379096, -0.0065730242, 0.0799066126, 0.28661865, -0.0709002241, 0.0763944536, -0.3244521022, -0.1447663754, 0.063709721, -0.2329102755, -0.1513257474, 0.2760068476, -0.1807475835, 0.0008987412, 0.0887835324, -0.316375345, -0.1673078388, -0.3001770973, 0.3784306645, 0.1727608591, 0.2083455473, 0.1075551733, 0.3943432271, 0.1223712862, 0.0096597932, 0.1228193492, 0.0379167236, -0.4149514139, 0.5190879107, -0.1802635342, -0.4500639737, -0.4888218045, -0.242930308, -0.164149031, 0.4524992108, -0.5341608524, -0.0311467629, -0.5311311483, 0.4127758741, 0.123539716, 0.1021672487, 0.0496034212, -0.2131573707, -0.2089556009, 0.1292295903, 0.0826178864, -0.0064190216, -0.0878510252, 0.2021376491, -0.0615212247, 0.0337111652, -0.0098686591, 0.7692424059, 0.0689441711, -0.0129050007, 0.2635357976, -0.0949028134, 0.0519068427, -0.1647453606, 0.1458879113, 0.0905036554, -0.2608799338, -0.2699276805, 0.4183898568, 0.1641468108, -0.3080245256, 0.0591342896, -0.1851302534, -0.097659111, -0.2781836092, 0.2541960776, 0.1588241458, 0.1743984073, 0.0698608682, 0.3926579654, -0.3018996716, -0.1359270215, 0.0707091317, -0.2578144372, 0.0201729257, -0.1169836372, -0.3373413682, -0.0597156547, -0.6845928431, 0.2021396607, -0.0698037893, 0.0391389206, 0.2540457547, -0.3021758795, 0.2348045558, -0.0662641153, 0.5487115383, 0.1905720383, -0.1996436715, -0.1152184829, -0.2325003147, -0.4247888327, -0.1554235518, -0.4956257045, 0.1136514768, -0.0005399846, 0.3345812857, -0.3185558319, 0.1118362546, 0.0000605714, 0.3112286329, 0.1916496307, -0.044278685, -0.1676546037, -0.2823403478, -0.1325233579, 0.1623778641, -0.1995149255, 0.050449606, -0.269434154, -0.1696101427, -0.1472622305, 0.1772930622, 0.1168198958, 0.4819425046, 0.2846929729, -0.4382564425, 0.3633344173, 0.0272250623, 0.1518048793, 0.3828200102, 0.4000198245, 0.3224880993, -0.1235771626, 0.1998888403, 0.1022293866, 0.0747966468, 0.5333116055, -0.0012650341, 0.1972724199, 0.0611076467, 0.2763024867, -0.0564491451, 0.0823672861, 0.3274201453, -0.08233881, -0.0624976307, -0.3168289065, 0.7024027705, 0.0998988003, 0.0085827112, 0.2355285883, -0.1901873946, 0.130443126, 0.3013944924, -0.1022063345, 0.9143371582, -0.1250879765, 0.2525978088, 0.3494728208, 0.066730313, 0.0075901709, -0.0959172845, 0.1510159373, -0.3135031164, -0.2316491604, 0.1761056334, -0.2805036008, 0.0849208087, 0.212859273, -0.1312745064, 0.0862879381, -0.0537316576, 0.1990434229, -0.2258602381, 0.2392510921, -0.2529600859, -0.0510925539, -0.4353417754, 0.028821148, 0.0972890928, -0.0646521896, 0.0886060596, -0.1453693658, -0.5541803241, 0.0102535784, -0.0938769281, 0.0389146432, -0.2355806381, 0.1632977575, 0.0593758337, -0.4771615863, -0.0842534602, 0.1212540343, -0.4953689575, 0.0789548755, -0.2458119839, 0.4174095392, 0.043545872, 0.2301590592, 0.5308091044, -0.3330539465, -0.0087194499, -0.0292188935, -0.2165677249, 0.2495409697, -0.153989464, -0.2520104647, 0.0252856314, 0.14373146, 0.3611812592, -0.167501837, -0.2776466608, -0.1240047663, -0.4408730567, -0.2431268841, 0.0841378346, -0.0427369699, 0.0855585486, 0.2314763665, 0.3174690604, -0.3549931645, -0.2242874801, 0.3709995151, 0.094312571, 0.260320574, 0.3130872548, 0.0880957395, -0.2163754553, -0.1274372786, 0.2965530753, 0.4111421108, -0.4757104516, 0.0690821707, 0.0139512196, 0.1246269196, 0.2461798638, 0.0182093363, 0.0741977543, -0.2569896281, -0.3386789858, -0.0690868795, 0.0099439397, 0.3278675377, 0.1207610667, 0.1357961893, 0.0576913282, -0.0145964157, -0.3653220236, 0.0142487343, -0.2701687217, 0.1390894949, -0.0243225731, 0.18286331, -0.4315899909, 0.0174092576, 0.0081377886, 0.1431651413, 0.1091622412, 0.1063816696, -0.1234385818, -0.2166474462, 0.0291855633, 0.1290723681, -0.13618806, -0.2797194123, 0.2394433022, -0.2063070983, -0.0508660451, -0.3758654594, 0.142124176, -0.136420846, -0.0316604823, -0.4254382849, 0.2596431971, -0.1692035943, -0.3019401431, 0.3180859685, -0.4044681191, 0.1779982597, 0.0607634895, 0.1787561625, 0.004005719, -0.1559253931, 0.0720916018, 0.2029668242, 0.1648201048, 0.1396781504, 0.3797293007, -0.026212275, -0.0972279757, -0.1073895246, 0.3312667906, 0.3493905663, 0.0380297005, -0.1387913972, 0.1757901758, 0.2256356776, -0.3251367807, -0.28282094, -0.1296374202, -0.2570058703, 0.2418893278, 0.009579286, 0.2093758583, 0.1670221388, -0.0789555311, -0.2068968862, 0.0986438766, 0.5504125357, -0.145175159, 0.6776701808, 0.3272513449, -0.1993044615, 0.2702794969, 0.0020872001, 0.3459144533, 0.3618879914, -0.1196034104, 0.536823988, 0.2320744246, 0.2449540347, -0.133967191, -0.3090497255, 0.1352110356, -0.0015169755, -0.0136433244, 0.1391917467, 0.062129274, 0.4490417242, 0.0052281991, 0.0771014839, -0.3266301751, -0.1267498136, 0.0290441699, -0.0826171339, -0.0433853902, -0.117739737, -0.0748516172, 0.1068687886, -0.3724668026, -0.1312434673, 0.3648227751, 0.0338450074, 0.1812083274, -0.4446077347, 0.2035417557, -0.15691787, 0.2180987746, -0.2398338318, 0.1747611463, 0.0500848889, -0.0667941421, 0.0713927001, 0.1016839594, 0.3679462373, 0.1852423102, -0.1066012233, -0.1730930656, -0.0566400141, -0.0385058783, -0.0139066614, -0.0869699568, 0.0414153971, -0.0986005217, 0.3017620742, 0.0308142304, -0.1557210386, -0.1387577206, -0.0228553154, -0.2242790908, -0.3263449669, -0.3453311324, -0.2006977797, -0.328232348, -0.1295249462, -0.189568311, -0.2536431253, 0.1835208088, 0.2279348075, -0.313331902, -0.0675589591, 0.0006712116, 0.0845005512, -0.5105260015, 0.6805171371, 0.4650321901, 0.5556753874, -0.3209067285, -0.1160447821, -0.435654819, 0.062921308, -0.6595265865, -0.0497878492, 0.2942714095, 0.3931101263, 0.1516693085, 0.215378046, 0.1646080613, 0.1359260231, -0.1916751862, 0.3211122453, -0.530500412, -0.0809499696, -0.0275070444, 0.0169764962, -0.2176148593, -0.6412063241, 0.4145414829, -0.4362512529, 0.0196193978, -0.1795396656, -0.1805547327, 0.3991859555, 0.2217821032, 0.5155704618, 0.0022800695, 0.1430402696, 0.0240668207, -0.1811048985, -0.1920029223, -0.0376324616, 0.0861410424, 0.176272884, -0.0916484892, 0.0870483145, 0.1293835044, -0.1807274073, 0.0944080949, 0.6064491868, -0.1033742353, 0.0085012913, 0.1139353141, -0.1410084963, -0.2004249394, 0.1103876978, -0.1858647764, -0.0338986441, -0.0985817611, -0.2373308539, -0.1588727385, -0.1999850869, 0.4235756099, -0.4598160684, 0.0573060364, -0.1773603857, 0.2722938657, 0.2497566193, 0.3505437374, -0.1962877512, 0.0297313333, 0.3197361231, 0.0932117105, -0.0431470387, 0.2311460823, 0.1514276117, 0.1145223379, -0.0749372691, 0.3918387592, -0.3036593497, -0.306638658, -0.2293882817, -0.3594549298 ]
https://github.com/huggingface/datasets/issues/1803
Querying examples from big datasets is slower than small datasets
I have a dataset with about 2.7 million rows (which I'm loading via `load_from_disk`), and I need to fetch around 300k (particular) rows of it, by index. Currently this is taking a really long time (~8 hours). I tried sharding the large dataset but overall it doesn't change how long it takes to fetch the desired rows. I actually have enough RAM that I could fit the large dataset in memory. Would having the large dataset in memory speed up querying? To find out, I tried to load (a column of) the large dataset into memory like this: ``` column_data = large_ds['column_name'] ``` but in itself this takes a really long time. I'm pretty stuck - do you have any ideas what I should do?
After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed.
125
Querying examples from big datasets is slower than small datasets After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed. I have a dataset with about 2.7 million rows (which I'm loading via `load_from_disk`), and I need to fetch around 300k (particular) rows of it, by index. Currently this is taking a really long time (~8 hours). I tried sharding the large dataset but overall it doesn't change how long it takes to fetch the desired rows. I actually have enough RAM that I could fit the large dataset in memory. Would having the large dataset in memory speed up querying? To find out, I tried to load (a column of) the large dataset into memory like this: ``` column_data = large_ds['column_name'] ``` but in itself this takes a really long time. I'm pretty stuck - do you have any ideas what I should do?
[ -0.4054939747, 0.0586444139, -0.0799715742, 0.1315324903, -0.0796940178, -0.1776912808, 0.2441748083, 0.4918095767, -0.2313986421, 0.1801939607, 0.0814935714, 0.0550894439, 0.1250855923, -0.1007568687, 0.1307256818, -0.2734062672, 0.0807415694, 0.124846071, -0.0751320571, -0.0345287025, 0.0240301639, -0.1902871132, -0.3486273885, 0.018469898, -0.0663276166, -0.2240722328, -0.2307063341, 0.107206136, -0.1658506691, -0.4173950553, -0.0595365278, -0.1528191715, 0.2299298495, 0.427030772, -0.0001130733, 0.0164050311, 0.2279310077, 0.0894176289, -0.1997469664, 0.1829337329, 0.1748071909, -0.2838543952, 0.0868746936, -0.409766227, -0.0471539199, -0.2971982956, 0.0934279785, 0.0189005211, -0.0412532985, 0.3089759648, 0.1403642893, 0.5131546855, -0.1917043626, -0.1336634159, 0.6230677366, 0.2051520348, -0.3506301939, 0.5299631953, 0.5806369185, -0.0487994887, -0.3053151965, 0.1361400485, -0.081444189, 0.2701412439, 0.0370224789, 0.1979728937, -0.1128055379, 0.1795917749, 0.1238101348, 0.4088888466, 0.308390677, -0.0893915296, -0.31488657, -0.2920184135, -0.0569283739, -0.2332933545, 0.0203074664, 0.3264190555, -0.2583794594, 0.2713417411, -0.3137761056, 0.1547780633, -0.105650872, 0.1795516908, -0.1511590481, -0.0686154813, 0.1150509715, 0.1985103041, 0.0937959999, 0.013313245, 0.1511932909, -0.1696214676, 0.02840616, -0.0521108359, -0.2883043289, -0.0881547257, 0.1556629986, 0.1755786538, 0.2685055733, 0.1593102217, 0.422320962, 0.1182836294, 0.265193522, 0.0943620056, 0.0451357178, -0.00902123, -0.2695652246, -0.0009782985, 0.3478800952, 0.2753001153, -0.2945162356, 0.0208777897, -0.2383212, -0.1844544411, 0.18156299, -0.1973297, -0.0274536572, -0.1337168217, 0.004322812, -0.0873045921, -0.3421143293, -0.1278229654, -0.0265573356, 0.4784683287, -0.1834656596, -0.0265719481, -0.2126670331, 0.122223638, -0.3353426754, -0.2540249228, -0.1243124455, -0.1883355528, -0.1600802243, 0.230307579, 0.1097953022, 0.0560975373, 0.3020733893, 0.0585403889, -0.1985149235, 0.2419624925, 0.3923712373, -0.1808657944, 0.1044564396, 0.0197549704, 0.0112555176, 0.0635319576, -0.1637398601, 0.2447639406, -0.3910898566, 0.1972704232, -0.1953566968, -0.3384779692, 0.0306390878, 0.0919930711, -0.1056954265, -0.0997603312, -0.2270813733, 0.246245116, -0.0694222227, -0.1997462511, -0.0774373189, -0.094193913, 0.0402900577, -0.1531327516, 0.1413004547, 0.0776271224, -0.2506590486, 0.2018506676, -0.0451862887, 0.3970346153, 0.2543900013, 0.5308364034, -0.5031033158, 0.1623608768, -0.1327786446, 0.2966160476, 0.2320237309, -0.0281320959, -0.6667608619, 0.4973527193, -0.004258588, 0.0241891295, 0.2724839747, 0.1617120355, 0.3516781926, 0.1078480259, -0.0490623787, 0.3837116957, 0.1839479506, 0.227930665, -0.3400993347, -0.2303103507, -0.0487275794, 0.3479747772, -0.3244731724, -0.1571214497, 0.3112511337, -0.36459741, 0.4906599522, -0.2065639794, -0.1836263537, 0.2509782612, 0.0870240331, -0.2777459621, 0.1183483601, 0.0964876413, 0.0859434903, 0.2421764582, -0.1894864291, -0.0184650589, 0.0450902954, -0.1888085455, -0.072214976, 0.061963059, -0.055260241, -0.0473853797, -0.0448972918, -0.0918296874, 0.3306872845, -0.003531523, 0.1647335887, -0.1632057726, -0.2693369091, -0.0094456971, -0.2626184225, 0.0792924687, 0.0950684994, -0.1213106662, 0.0093062818, -0.249253124, -0.0884236991, -0.0017328337, -0.1519375592, 0.3275275826, 0.1502294689, 0.1502474844, 0.2235308886, 0.1522479355, 0.1419567168, -0.0849315599, 0.3879739344, 0.2968660891, 0.0753156543, 0.0365262255, -0.4053476155, 0.5263323784, 0.3933125138, 0.31605497, 0.2904031873, -0.373390466, 0.1644446254, 0.0483796299, 0.1105025336, 0.4106383622, 0.293798238, 0.2421560585, 0.5489562154, 0.1663254946, -0.3161973357, 0.1155824065, 0.4506137371, -0.2496014237, 0.0180418901, 0.1873046011, -0.4217130542, -0.1856172383, 0.3702152371, -0.1509688944, 0.326580286, 0.3312532306, 0.1606442779, -0.12395522, 0.0274434276, -0.2904404998, 0.2625501752, 0.096794948, 0.1414085329, -0.2201081961, 0.4368430376, -0.0920059234, -0.2460106015, -0.3815978467, -0.0392078273, 0.1921317428, -0.126401186, 0.3072987497, -0.0982985869, 0.0536194295, -0.0324512869, 0.130800575, 0.0790726244, -0.0865352303, 0.045038607, 0.1935409009, -0.1812104583, -0.1583380103, -0.0551913902, 0.2278951257, 0.2617878318, -0.2087613046, -0.0017741174, -0.0716876909, -0.3983869553, 0.0803131983, 0.2775999308, 0.1493916065, 0.1450454444, -0.0469179899, -0.1854476333, -0.2801736891, -0.3152379096, -0.0065730242, 0.0799066126, 0.28661865, -0.0709002241, 0.0763944536, -0.3244521022, -0.1447663754, 0.063709721, -0.2329102755, -0.1513257474, 0.2760068476, -0.1807475835, 0.0008987412, 0.0887835324, -0.316375345, -0.1673078388, -0.3001770973, 0.3784306645, 0.1727608591, 0.2083455473, 0.1075551733, 0.3943432271, 0.1223712862, 0.0096597932, 0.1228193492, 0.0379167236, -0.4149514139, 0.5190879107, -0.1802635342, -0.4500639737, -0.4888218045, -0.242930308, -0.164149031, 0.4524992108, -0.5341608524, -0.0311467629, -0.5311311483, 0.4127758741, 0.123539716, 0.1021672487, 0.0496034212, -0.2131573707, -0.2089556009, 0.1292295903, 0.0826178864, -0.0064190216, -0.0878510252, 0.2021376491, -0.0615212247, 0.0337111652, -0.0098686591, 0.7692424059, 0.0689441711, -0.0129050007, 0.2635357976, -0.0949028134, 0.0519068427, -0.1647453606, 0.1458879113, 0.0905036554, -0.2608799338, -0.2699276805, 0.4183898568, 0.1641468108, -0.3080245256, 0.0591342896, -0.1851302534, -0.097659111, -0.2781836092, 0.2541960776, 0.1588241458, 0.1743984073, 0.0698608682, 0.3926579654, -0.3018996716, -0.1359270215, 0.0707091317, -0.2578144372, 0.0201729257, -0.1169836372, -0.3373413682, -0.0597156547, -0.6845928431, 0.2021396607, -0.0698037893, 0.0391389206, 0.2540457547, -0.3021758795, 0.2348045558, -0.0662641153, 0.5487115383, 0.1905720383, -0.1996436715, -0.1152184829, -0.2325003147, -0.4247888327, -0.1554235518, -0.4956257045, 0.1136514768, -0.0005399846, 0.3345812857, -0.3185558319, 0.1118362546, 0.0000605714, 0.3112286329, 0.1916496307, -0.044278685, -0.1676546037, -0.2823403478, -0.1325233579, 0.1623778641, -0.1995149255, 0.050449606, -0.269434154, -0.1696101427, -0.1472622305, 0.1772930622, 0.1168198958, 0.4819425046, 0.2846929729, -0.4382564425, 0.3633344173, 0.0272250623, 0.1518048793, 0.3828200102, 0.4000198245, 0.3224880993, -0.1235771626, 0.1998888403, 0.1022293866, 0.0747966468, 0.5333116055, -0.0012650341, 0.1972724199, 0.0611076467, 0.2763024867, -0.0564491451, 0.0823672861, 0.3274201453, -0.08233881, -0.0624976307, -0.3168289065, 0.7024027705, 0.0998988003, 0.0085827112, 0.2355285883, -0.1901873946, 0.130443126, 0.3013944924, -0.1022063345, 0.9143371582, -0.1250879765, 0.2525978088, 0.3494728208, 0.066730313, 0.0075901709, -0.0959172845, 0.1510159373, -0.3135031164, -0.2316491604, 0.1761056334, -0.2805036008, 0.0849208087, 0.212859273, -0.1312745064, 0.0862879381, -0.0537316576, 0.1990434229, -0.2258602381, 0.2392510921, -0.2529600859, -0.0510925539, -0.4353417754, 0.028821148, 0.0972890928, -0.0646521896, 0.0886060596, -0.1453693658, -0.5541803241, 0.0102535784, -0.0938769281, 0.0389146432, -0.2355806381, 0.1632977575, 0.0593758337, -0.4771615863, -0.0842534602, 0.1212540343, -0.4953689575, 0.0789548755, -0.2458119839, 0.4174095392, 0.043545872, 0.2301590592, 0.5308091044, -0.3330539465, -0.0087194499, -0.0292188935, -0.2165677249, 0.2495409697, -0.153989464, -0.2520104647, 0.0252856314, 0.14373146, 0.3611812592, -0.167501837, -0.2776466608, -0.1240047663, -0.4408730567, -0.2431268841, 0.0841378346, -0.0427369699, 0.0855585486, 0.2314763665, 0.3174690604, -0.3549931645, -0.2242874801, 0.3709995151, 0.094312571, 0.260320574, 0.3130872548, 0.0880957395, -0.2163754553, -0.1274372786, 0.2965530753, 0.4111421108, -0.4757104516, 0.0690821707, 0.0139512196, 0.1246269196, 0.2461798638, 0.0182093363, 0.0741977543, -0.2569896281, -0.3386789858, -0.0690868795, 0.0099439397, 0.3278675377, 0.1207610667, 0.1357961893, 0.0576913282, -0.0145964157, -0.3653220236, 0.0142487343, -0.2701687217, 0.1390894949, -0.0243225731, 0.18286331, -0.4315899909, 0.0174092576, 0.0081377886, 0.1431651413, 0.1091622412, 0.1063816696, -0.1234385818, -0.2166474462, 0.0291855633, 0.1290723681, -0.13618806, -0.2797194123, 0.2394433022, -0.2063070983, -0.0508660451, -0.3758654594, 0.142124176, -0.136420846, -0.0316604823, -0.4254382849, 0.2596431971, -0.1692035943, -0.3019401431, 0.3180859685, -0.4044681191, 0.1779982597, 0.0607634895, 0.1787561625, 0.004005719, -0.1559253931, 0.0720916018, 0.2029668242, 0.1648201048, 0.1396781504, 0.3797293007, -0.026212275, -0.0972279757, -0.1073895246, 0.3312667906, 0.3493905663, 0.0380297005, -0.1387913972, 0.1757901758, 0.2256356776, -0.3251367807, -0.28282094, -0.1296374202, -0.2570058703, 0.2418893278, 0.009579286, 0.2093758583, 0.1670221388, -0.0789555311, -0.2068968862, 0.0986438766, 0.5504125357, -0.145175159, 0.6776701808, 0.3272513449, -0.1993044615, 0.2702794969, 0.0020872001, 0.3459144533, 0.3618879914, -0.1196034104, 0.536823988, 0.2320744246, 0.2449540347, -0.133967191, -0.3090497255, 0.1352110356, -0.0015169755, -0.0136433244, 0.1391917467, 0.062129274, 0.4490417242, 0.0052281991, 0.0771014839, -0.3266301751, -0.1267498136, 0.0290441699, -0.0826171339, -0.0433853902, -0.117739737, -0.0748516172, 0.1068687886, -0.3724668026, -0.1312434673, 0.3648227751, 0.0338450074, 0.1812083274, -0.4446077347, 0.2035417557, -0.15691787, 0.2180987746, -0.2398338318, 0.1747611463, 0.0500848889, -0.0667941421, 0.0713927001, 0.1016839594, 0.3679462373, 0.1852423102, -0.1066012233, -0.1730930656, -0.0566400141, -0.0385058783, -0.0139066614, -0.0869699568, 0.0414153971, -0.0986005217, 0.3017620742, 0.0308142304, -0.1557210386, -0.1387577206, -0.0228553154, -0.2242790908, -0.3263449669, -0.3453311324, -0.2006977797, -0.328232348, -0.1295249462, -0.189568311, -0.2536431253, 0.1835208088, 0.2279348075, -0.313331902, -0.0675589591, 0.0006712116, 0.0845005512, -0.5105260015, 0.6805171371, 0.4650321901, 0.5556753874, -0.3209067285, -0.1160447821, -0.435654819, 0.062921308, -0.6595265865, -0.0497878492, 0.2942714095, 0.3931101263, 0.1516693085, 0.215378046, 0.1646080613, 0.1359260231, -0.1916751862, 0.3211122453, -0.530500412, -0.0809499696, -0.0275070444, 0.0169764962, -0.2176148593, -0.6412063241, 0.4145414829, -0.4362512529, 0.0196193978, -0.1795396656, -0.1805547327, 0.3991859555, 0.2217821032, 0.5155704618, 0.0022800695, 0.1430402696, 0.0240668207, -0.1811048985, -0.1920029223, -0.0376324616, 0.0861410424, 0.176272884, -0.0916484892, 0.0870483145, 0.1293835044, -0.1807274073, 0.0944080949, 0.6064491868, -0.1033742353, 0.0085012913, 0.1139353141, -0.1410084963, -0.2004249394, 0.1103876978, -0.1858647764, -0.0338986441, -0.0985817611, -0.2373308539, -0.1588727385, -0.1999850869, 0.4235756099, -0.4598160684, 0.0573060364, -0.1773603857, 0.2722938657, 0.2497566193, 0.3505437374, -0.1962877512, 0.0297313333, 0.3197361231, 0.0932117105, -0.0431470387, 0.2311460823, 0.1514276117, 0.1145223379, -0.0749372691, 0.3918387592, -0.3036593497, -0.306638658, -0.2293882817, -0.3594549298 ]
https://github.com/huggingface/datasets/issues/1803
Querying examples from big datasets is slower than small datasets
Hi ! Feel free to post a message on the [forum](https://discuss.huggingface.co/c/datasets/10). I'd be happy to help you with this. In your post on the forum, feel free to add more details about your setup: What are column names and types of your dataset ? How was the dataset constructed ? Is the dataset shuffled ? Is the dataset tokenized ? Are you on a SSD or an HDD ? I'm sure we can figure something out. For example on my laptop I can access the 6 millions articles from wikipedia in less than a minute.
After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed.
95
Querying examples from big datasets is slower than small datasets After some experiments with bookcorpus I noticed that querying examples from big datasets is slower than small datasets. For example ```python from datasets import load_dataset b1 = load_dataset("bookcorpus", split="train[:1%]") b50 = load_dataset("bookcorpus", split="train[:50%]") b100 = load_dataset("bookcorpus", split="train[:100%]") %timeit _ = b1[-1] # 12.2 µs ± 70.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) %timeit _ = b50[-1] # 92.5 µs ± 1.24 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) %timeit _ = b100[-1] # 177 µs ± 3.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each) ``` It looks like the time to fetch the example increases with the size of the dataset. This is maybe due to the use of the Arrow streaming format to store the data on disk. I guess pyarrow needs to iterate through the file as a stream to find the queried sample. Maybe switching to the Arrow IPC file format could help fixing this issue. Indeed according to the [documentation](https://arrow.apache.org/docs/format/Columnar.html?highlight=arrow1#ipc-file-format), it's identical to the streaming format except that it contains the memory offsets of each sample, which could fix the issue: > We define a “file format” supporting random access that is build with the stream format. The file starts and ends with a magic string ARROW1 (plus padding). What follows in the file is identical to the stream format. At the end of the file, we write a footer containing a redundant copy of the schema (which is a part of the streaming format) plus memory offsets and sizes for each of the data blocks in the file. This enables random access any record batch in the file. See File.fbs for the precise details of the file footer. cc @gaceladri since it can help speed up your training when this one is fixed. Hi ! Feel free to post a message on the [forum](https://discuss.huggingface.co/c/datasets/10). I'd be happy to help you with this. In your post on the forum, feel free to add more details about your setup: What are column names and types of your dataset ? How was the dataset constructed ? Is the dataset shuffled ? Is the dataset tokenized ? Are you on a SSD or an HDD ? I'm sure we can figure something out. For example on my laptop I can access the 6 millions articles from wikipedia in less than a minute.
[ -0.4054939747, 0.0586444139, -0.0799715742, 0.1315324903, -0.0796940178, -0.1776912808, 0.2441748083, 0.4918095767, -0.2313986421, 0.1801939607, 0.0814935714, 0.0550894439, 0.1250855923, -0.1007568687, 0.1307256818, -0.2734062672, 0.0807415694, 0.124846071, -0.0751320571, -0.0345287025, 0.0240301639, -0.1902871132, -0.3486273885, 0.018469898, -0.0663276166, -0.2240722328, -0.2307063341, 0.107206136, -0.1658506691, -0.4173950553, -0.0595365278, -0.1528191715, 0.2299298495, 0.427030772, -0.0001130733, 0.0164050311, 0.2279310077, 0.0894176289, -0.1997469664, 0.1829337329, 0.1748071909, -0.2838543952, 0.0868746936, -0.409766227, -0.0471539199, -0.2971982956, 0.0934279785, 0.0189005211, -0.0412532985, 0.3089759648, 0.1403642893, 0.5131546855, -0.1917043626, -0.1336634159, 0.6230677366, 0.2051520348, -0.3506301939, 0.5299631953, 0.5806369185, -0.0487994887, -0.3053151965, 0.1361400485, -0.081444189, 0.2701412439, 0.0370224789, 0.1979728937, -0.1128055379, 0.1795917749, 0.1238101348, 0.4088888466, 0.308390677, -0.0893915296, -0.31488657, -0.2920184135, -0.0569283739, -0.2332933545, 0.0203074664, 0.3264190555, -0.2583794594, 0.2713417411, -0.3137761056, 0.1547780633, -0.105650872, 0.1795516908, -0.1511590481, -0.0686154813, 0.1150509715, 0.1985103041, 0.0937959999, 0.013313245, 0.1511932909, -0.1696214676, 0.02840616, -0.0521108359, -0.2883043289, -0.0881547257, 0.1556629986, 0.1755786538, 0.2685055733, 0.1593102217, 0.422320962, 0.1182836294, 0.265193522, 0.0943620056, 0.0451357178, -0.00902123, -0.2695652246, -0.0009782985, 0.3478800952, 0.2753001153, -0.2945162356, 0.0208777897, -0.2383212, -0.1844544411, 0.18156299, -0.1973297, -0.0274536572, -0.1337168217, 0.004322812, -0.0873045921, -0.3421143293, -0.1278229654, -0.0265573356, 0.4784683287, -0.1834656596, -0.0265719481, -0.2126670331, 0.122223638, -0.3353426754, -0.2540249228, -0.1243124455, -0.1883355528, -0.1600802243, 0.230307579, 0.1097953022, 0.0560975373, 0.3020733893, 0.0585403889, -0.1985149235, 0.2419624925, 0.3923712373, -0.1808657944, 0.1044564396, 0.0197549704, 0.0112555176, 0.0635319576, -0.1637398601, 0.2447639406, -0.3910898566, 0.1972704232, -0.1953566968, -0.3384779692, 0.0306390878, 0.0919930711, -0.1056954265, -0.0997603312, -0.2270813733, 0.246245116, -0.0694222227, -0.1997462511, -0.0774373189, -0.094193913, 0.0402900577, -0.1531327516, 0.1413004547, 0.0776271224, -0.2506590486, 0.2018506676, -0.0451862887, 0.3970346153, 0.2543900013, 0.5308364034, -0.5031033158, 0.1623608768, -0.1327786446, 0.2966160476, 0.2320237309, -0.0281320959, -0.6667608619, 0.4973527193, -0.004258588, 0.0241891295, 0.2724839747, 0.1617120355, 0.3516781926, 0.1078480259, -0.0490623787, 0.3837116957, 0.1839479506, 0.227930665, -0.3400993347, -0.2303103507, -0.0487275794, 0.3479747772, -0.3244731724, -0.1571214497, 0.3112511337, -0.36459741, 0.4906599522, -0.2065639794, -0.1836263537, 0.2509782612, 0.0870240331, -0.2777459621, 0.1183483601, 0.0964876413, 0.0859434903, 0.2421764582, -0.1894864291, -0.0184650589, 0.0450902954, -0.1888085455, -0.072214976, 0.061963059, -0.055260241, -0.0473853797, -0.0448972918, -0.0918296874, 0.3306872845, -0.003531523, 0.1647335887, -0.1632057726, -0.2693369091, -0.0094456971, -0.2626184225, 0.0792924687, 0.0950684994, -0.1213106662, 0.0093062818, -0.249253124, -0.0884236991, -0.0017328337, -0.1519375592, 0.3275275826, 0.1502294689, 0.1502474844, 0.2235308886, 0.1522479355, 0.1419567168, -0.0849315599, 0.3879739344, 0.2968660891, 0.0753156543, 0.0365262255, -0.4053476155, 0.5263323784, 0.3933125138, 0.31605497, 0.2904031873, -0.373390466, 0.1644446254, 0.0483796299, 0.1105025336, 0.4106383622, 0.293798238, 0.2421560585, 0.5489562154, 0.1663254946, -0.3161973357, 0.1155824065, 0.4506137371, -0.2496014237, 0.0180418901, 0.1873046011, -0.4217130542, -0.1856172383, 0.3702152371, -0.1509688944, 0.326580286, 0.3312532306, 0.1606442779, -0.12395522, 0.0274434276, -0.2904404998, 0.2625501752, 0.096794948, 0.1414085329, -0.2201081961, 0.4368430376, -0.0920059234, -0.2460106015, -0.3815978467, -0.0392078273, 0.1921317428, -0.126401186, 0.3072987497, -0.0982985869, 0.0536194295, -0.0324512869, 0.130800575, 0.0790726244, -0.0865352303, 0.045038607, 0.1935409009, -0.1812104583, -0.1583380103, -0.0551913902, 0.2278951257, 0.2617878318, -0.2087613046, -0.0017741174, -0.0716876909, -0.3983869553, 0.0803131983, 0.2775999308, 0.1493916065, 0.1450454444, -0.0469179899, -0.1854476333, -0.2801736891, -0.3152379096, -0.0065730242, 0.0799066126, 0.28661865, -0.0709002241, 0.0763944536, -0.3244521022, -0.1447663754, 0.063709721, -0.2329102755, -0.1513257474, 0.2760068476, -0.1807475835, 0.0008987412, 0.0887835324, -0.316375345, -0.1673078388, -0.3001770973, 0.3784306645, 0.1727608591, 0.2083455473, 0.1075551733, 0.3943432271, 0.1223712862, 0.0096597932, 0.1228193492, 0.0379167236, -0.4149514139, 0.5190879107, -0.1802635342, -0.4500639737, -0.4888218045, -0.242930308, -0.164149031, 0.4524992108, -0.5341608524, -0.0311467629, -0.5311311483, 0.4127758741, 0.123539716, 0.1021672487, 0.0496034212, -0.2131573707, -0.2089556009, 0.1292295903, 0.0826178864, -0.0064190216, -0.0878510252, 0.2021376491, -0.0615212247, 0.0337111652, -0.0098686591, 0.7692424059, 0.0689441711, -0.0129050007, 0.2635357976, -0.0949028134, 0.0519068427, -0.1647453606, 0.1458879113, 0.0905036554, -0.2608799338, -0.2699276805, 0.4183898568, 0.1641468108, -0.3080245256, 0.0591342896, -0.1851302534, -0.097659111, -0.2781836092, 0.2541960776, 0.1588241458, 0.1743984073, 0.0698608682, 0.3926579654, -0.3018996716, -0.1359270215, 0.0707091317, -0.2578144372, 0.0201729257, -0.1169836372, -0.3373413682, -0.0597156547, -0.6845928431, 0.2021396607, -0.0698037893, 0.0391389206, 0.2540457547, -0.3021758795, 0.2348045558, -0.0662641153, 0.5487115383, 0.1905720383, -0.1996436715, -0.1152184829, -0.2325003147, -0.4247888327, -0.1554235518, -0.4956257045, 0.1136514768, -0.0005399846, 0.3345812857, -0.3185558319, 0.1118362546, 0.0000605714, 0.3112286329, 0.1916496307, -0.044278685, -0.1676546037, -0.2823403478, -0.1325233579, 0.1623778641, -0.1995149255, 0.050449606, -0.269434154, -0.1696101427, -0.1472622305, 0.1772930622, 0.1168198958, 0.4819425046, 0.2846929729, -0.4382564425, 0.3633344173, 0.0272250623, 0.1518048793, 0.3828200102, 0.4000198245, 0.3224880993, -0.1235771626, 0.1998888403, 0.1022293866, 0.0747966468, 0.5333116055, -0.0012650341, 0.1972724199, 0.0611076467, 0.2763024867, -0.0564491451, 0.0823672861, 0.3274201453, -0.08233881, -0.0624976307, -0.3168289065, 0.7024027705, 0.0998988003, 0.0085827112, 0.2355285883, -0.1901873946, 0.130443126, 0.3013944924, -0.1022063345, 0.9143371582, -0.1250879765, 0.2525978088, 0.3494728208, 0.066730313, 0.0075901709, -0.0959172845, 0.1510159373, -0.3135031164, -0.2316491604, 0.1761056334, -0.2805036008, 0.0849208087, 0.212859273, -0.1312745064, 0.0862879381, -0.0537316576, 0.1990434229, -0.2258602381, 0.2392510921, -0.2529600859, -0.0510925539, -0.4353417754, 0.028821148, 0.0972890928, -0.0646521896, 0.0886060596, -0.1453693658, -0.5541803241, 0.0102535784, -0.0938769281, 0.0389146432, -0.2355806381, 0.1632977575, 0.0593758337, -0.4771615863, -0.0842534602, 0.1212540343, -0.4953689575, 0.0789548755, -0.2458119839, 0.4174095392, 0.043545872, 0.2301590592, 0.5308091044, -0.3330539465, -0.0087194499, -0.0292188935, -0.2165677249, 0.2495409697, -0.153989464, -0.2520104647, 0.0252856314, 0.14373146, 0.3611812592, -0.167501837, -0.2776466608, -0.1240047663, -0.4408730567, -0.2431268841, 0.0841378346, -0.0427369699, 0.0855585486, 0.2314763665, 0.3174690604, -0.3549931645, -0.2242874801, 0.3709995151, 0.094312571, 0.260320574, 0.3130872548, 0.0880957395, -0.2163754553, -0.1274372786, 0.2965530753, 0.4111421108, -0.4757104516, 0.0690821707, 0.0139512196, 0.1246269196, 0.2461798638, 0.0182093363, 0.0741977543, -0.2569896281, -0.3386789858, -0.0690868795, 0.0099439397, 0.3278675377, 0.1207610667, 0.1357961893, 0.0576913282, -0.0145964157, -0.3653220236, 0.0142487343, -0.2701687217, 0.1390894949, -0.0243225731, 0.18286331, -0.4315899909, 0.0174092576, 0.0081377886, 0.1431651413, 0.1091622412, 0.1063816696, -0.1234385818, -0.2166474462, 0.0291855633, 0.1290723681, -0.13618806, -0.2797194123, 0.2394433022, -0.2063070983, -0.0508660451, -0.3758654594, 0.142124176, -0.136420846, -0.0316604823, -0.4254382849, 0.2596431971, -0.1692035943, -0.3019401431, 0.3180859685, -0.4044681191, 0.1779982597, 0.0607634895, 0.1787561625, 0.004005719, -0.1559253931, 0.0720916018, 0.2029668242, 0.1648201048, 0.1396781504, 0.3797293007, -0.026212275, -0.0972279757, -0.1073895246, 0.3312667906, 0.3493905663, 0.0380297005, -0.1387913972, 0.1757901758, 0.2256356776, -0.3251367807, -0.28282094, -0.1296374202, -0.2570058703, 0.2418893278, 0.009579286, 0.2093758583, 0.1670221388, -0.0789555311, -0.2068968862, 0.0986438766, 0.5504125357, -0.145175159, 0.6776701808, 0.3272513449, -0.1993044615, 0.2702794969, 0.0020872001, 0.3459144533, 0.3618879914, -0.1196034104, 0.536823988, 0.2320744246, 0.2449540347, -0.133967191, -0.3090497255, 0.1352110356, -0.0015169755, -0.0136433244, 0.1391917467, 0.062129274, 0.4490417242, 0.0052281991, 0.0771014839, -0.3266301751, -0.1267498136, 0.0290441699, -0.0826171339, -0.0433853902, -0.117739737, -0.0748516172, 0.1068687886, -0.3724668026, -0.1312434673, 0.3648227751, 0.0338450074, 0.1812083274, -0.4446077347, 0.2035417557, -0.15691787, 0.2180987746, -0.2398338318, 0.1747611463, 0.0500848889, -0.0667941421, 0.0713927001, 0.1016839594, 0.3679462373, 0.1852423102, -0.1066012233, -0.1730930656, -0.0566400141, -0.0385058783, -0.0139066614, -0.0869699568, 0.0414153971, -0.0986005217, 0.3017620742, 0.0308142304, -0.1557210386, -0.1387577206, -0.0228553154, -0.2242790908, -0.3263449669, -0.3453311324, -0.2006977797, -0.328232348, -0.1295249462, -0.189568311, -0.2536431253, 0.1835208088, 0.2279348075, -0.313331902, -0.0675589591, 0.0006712116, 0.0845005512, -0.5105260015, 0.6805171371, 0.4650321901, 0.5556753874, -0.3209067285, -0.1160447821, -0.435654819, 0.062921308, -0.6595265865, -0.0497878492, 0.2942714095, 0.3931101263, 0.1516693085, 0.215378046, 0.1646080613, 0.1359260231, -0.1916751862, 0.3211122453, -0.530500412, -0.0809499696, -0.0275070444, 0.0169764962, -0.2176148593, -0.6412063241, 0.4145414829, -0.4362512529, 0.0196193978, -0.1795396656, -0.1805547327, 0.3991859555, 0.2217821032, 0.5155704618, 0.0022800695, 0.1430402696, 0.0240668207, -0.1811048985, -0.1920029223, -0.0376324616, 0.0861410424, 0.176272884, -0.0916484892, 0.0870483145, 0.1293835044, -0.1807274073, 0.0944080949, 0.6064491868, -0.1033742353, 0.0085012913, 0.1139353141, -0.1410084963, -0.2004249394, 0.1103876978, -0.1858647764, -0.0338986441, -0.0985817611, -0.2373308539, -0.1588727385, -0.1999850869, 0.4235756099, -0.4598160684, 0.0573060364, -0.1773603857, 0.2722938657, 0.2497566193, 0.3505437374, -0.1962877512, 0.0297313333, 0.3197361231, 0.0932117105, -0.0431470387, 0.2311460823, 0.1514276117, 0.1145223379, -0.0749372691, 0.3918387592, -0.3036593497, -0.306638658, -0.2293882817, -0.3594549298 ]
https://github.com/huggingface/datasets/issues/1797
Connection error
Hi ! For future references let me add a link to our discussion here : https://github.com/huggingface/datasets/issues/759#issuecomment-770684693 Let me know if you manage to fix your proxy issue or if we can do something on our end to help you :)
Hi I am hitting to the error, help me and thanks. `train_data = datasets.load_dataset("xsum", split="train")` `ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/1.0.2/datasets/xsum/xsum.py`
40
Connection error Hi I am hitting to the error, help me and thanks. `train_data = datasets.load_dataset("xsum", split="train")` `ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/1.0.2/datasets/xsum/xsum.py` Hi ! For future references let me add a link to our discussion here : https://github.com/huggingface/datasets/issues/759#issuecomment-770684693 Let me know if you manage to fix your proxy issue or if we can do something on our end to help you :)
[ -0.262468189, -0.4733124673, -0.105545491, 0.1787157804, 0.5621637702, -0.1030882448, -0.0170719456, 0.2268313617, 0.1645881385, 0.2273810953, -0.3096103072, -0.0045987777, 0.2044960111, 0.4432289004, 0.204739809, -0.2917327881, -0.0440435931, -0.0842050463, -0.4558957815, 0.0675010979, 0.0823037028, 0.0975514948, -0.1073439792, 0.0312041789, -0.3415581286, -0.075544849, -0.1273663044, 0.2207472026, -0.268660903, -0.1070597619, 0.4869900942, 0.1393875331, 0.0232106932, 0.5769346952, -0.0001075649, 0.1149471998, 0.3164843619, 0.0242447704, -0.2239995301, -0.331140101, -0.1180699021, -0.0296367723, 0.2868142724, -0.0743957534, -0.3245800734, 0.0551902577, 0.166398257, -0.2252039611, 0.597260654, 0.1780353785, 0.2932914197, 0.4454433024, 0.3417462409, -0.1741364449, -0.0087847486, -0.23596102, -0.0033458397, 0.4921542406, 0.1815269887, 0.0471879169, 0.2132840157, 0.2337231636, 0.0923607349, -0.1159162372, 0.2341251373, -0.1357223243, 0.082261622, -0.3459508717, 0.0348142087, 0.3595281839, 0.5571651459, -0.1973255724, -0.289778769, 0.0463786423, -0.047395058, -0.1539388895, 0.2277332246, 0.0708232522, -0.0782244653, 0.1751244217, -0.2249844968, -0.2149576396, -0.2798596621, 0.2543143928, -0.0623600334, 0.0234313421, -0.2333236486, 0.1285449415, 0.066239059, -0.1325380206, -0.1261296868, 0.1575850248, 0.0271809548, 0.1737778634, -0.4677265882, -0.0263174996, -0.1510637403, 0.230041191, 0.2147615552, 0.1480177641, -0.1089279577, 0.1767995656, -0.1645569354, 0.2396333516, 0.2342702597, 0.0991904214, -0.0924915895, -0.0806319937, 0.2583271861, 0.2595563233, -0.1094023585, -0.1085265428, -0.0784778297, -0.2059408873, -0.3137499094, -0.0620305128, 0.2355894744, -0.2644435763, -0.2093430459, 0.0777384639, 0.1508233249, -0.0532452948, 0.1676168293, 0.4941652715, -0.2439727634, 0.1843066514, 0.0398412347, 0.1510657221, -0.2680298686, -0.0373110697, -0.3129376471, 0.1806303263, -0.196421355, -0.0615593046, -0.0442414954, -0.1772376299, 0.2160774767, -0.0785508528, 0.3434205353, -0.1640196592, 0.0547121465, -0.1044939533, -0.3085643947, 0.2629111409, 0.1635639369, -0.0282104984, 0.2825820148, -0.0607515536, -0.0348772183, -0.2365298867, -0.3340731561, -0.3741346002, -0.0552134514, 0.2754741609, -0.0566122308, -0.008534044, -0.3372320235, 0.0182860401, -0.0396474935, 0.1264606565, -0.1866016388, -0.063207455, -0.1109020934, -0.1256735027, 0.4100504816, 0.2269443423, -0.0682611093, -0.2711589932, 0.335516125, -0.3717987537, 0.1890810728, 0.1869220883, -0.1268946528, -0.0194467306, -0.1061919034, 0.1100189686, 0.1655589938, -0.3452138305, -0.3684439361, 0.1967098862, -0.2838745415, -0.0734607652, 0.0429041795, 0.0068501085, 0.0907798707, 0.1455779672, 0.2033011168, 0.2076738775, -0.0318414643, -0.0436766632, -0.133738175, -0.2656518221, 0.0427703708, 0.2702593207, 0.0227738637, 0.0227791052, 0.1320149601, -0.0515484028, 0.2843170464, 0.0502961725, 0.0927806869, 0.2592824697, 0.2045938671, 0.2270040065, 0.0053051598, -0.3561691046, 0.0282294564, 0.0911855549, 0.0471844226, 0.2919333577, -0.0791226402, -0.1105626673, -0.3629341722, -0.152082324, -0.1835043281, -0.0659438074, 0.1536895633, -0.2198697031, 0.1973170191, 0.2385950387, -0.1191704422, 0.2829244137, -0.1795577407, 0.2405001372, -0.4697931409, 0.4009588361, -0.193750307, 0.0068574138, 0.0877897143, 0.0934885591, 0.1160452664, -0.2712266445, -0.1282042563, 0.4408639073, -0.2160943002, 0.3192707598, 0.389752239, 0.0405474454, 0.2562574446, -0.4583197236, -0.0476711765, -0.0960999876, 0.0659597963, 0.0526323244, 0.2186979204, 0.2048563808, 0.0553213246, 0.1382390559, 0.135387361, 0.1918752491, 0.3227007389, 0.060696654, -0.0891447663, 0.0702669472, 0.2163235694, -0.1981061697, 0.0355746001, -0.1962534636, -0.2209892124, -0.0054440536, 0.0077675097, -0.0190759487, -0.05225043, 0.0720911995, -0.1022573113, -0.0005346984, 0.0729401261, 0.0690680593, 0.2663549781, 0.2399249524, -0.0378362834, 0.2792977989, 0.0580010749, -0.1021746844, 0.1855023056, 0.0684303716, 0.0449506529, -0.0382118672, -0.1211702004, -0.1182549, -0.2871050835, -0.0011873096, -0.22105667, 0.1795215011, -0.2470754385, -0.0214799047, -0.0927760378, -0.3123775125, 0.0658892989, -0.1617255509, -0.2731583118, -0.348095715, -0.0534440428, 0.1365808696, 0.0331341997, 0.1988118887, -0.3494464457, 0.1007375792, 0.1558249444, 0.0168120321, -0.1158866286, -0.1174212694, -0.1286857128, 0.156578213, 0.0093748383, 0.0626328886, 0.3976944685, -0.2893913984, -0.1418684423, -0.1058538631, -0.2319445312, 0.0629833043, -0.1083932221, 0.304418236, 0.277815938, 0.4564885497, -0.0864183232, -0.0520351194, 0.605653286, -0.1802675426, -0.0275542066, -0.0341370553, 0.0227982216, -0.1331536472, 0.1109788045, -0.2991698384, -0.5104171634, -0.2131535411, 0.1405189335, -0.0693681985, 0.1047186777, 0.1160702631, 0.0068445541, 0.1172979996, -0.1809821874, 0.1372248381, -0.3094084263, -0.8145679235, 0.1136590689, -0.0933667272, -0.4647525847, 0.1229596063, 0.1953831166, 0.2569902539, 0.1191846952, -0.3289044201, -0.3935404718, -0.0334090516, 0.0985693336, 0.1863355935, 0.1409391761, 0.1660902351, -0.2663915157, -0.1748818457, -0.011950843, 0.026689522, -0.0368768387, -0.2150579691, 0.4406511188, -0.0084781358, 0.4517733157, -0.0168994591, 0.4030780792, 0.2012055218, 0.0466531254, 0.4095164537, -0.3087840378, 0.2212130427, -0.0356287584, -0.6038442254, 0.2042994201, -0.1897950172, 0.0618308187, 0.0096048526, 0.1967375726, 0.2806482911, -0.4943082929, -0.235485211, -0.2183477432, -0.2715517282, -0.235432893, -0.0054233847, 0.1608941406, 0.0405541286, -0.1433327496, -0.0249080434, -0.0667842999, -0.0164612047, 0.5720892549, -0.0693983138, 0.1114214286, -0.6191424131, 0.0422342084, -0.6355407238, 0.3562633395, -0.1448630393, 0.1651326269, -0.2958748937, 0.0792201906, 0.093822971, -0.0150768142, 0.7718527913, 0.0018984172, -0.0179306995, -0.1105163172, -0.1907022297, -0.2759567499, 0.1091515124, -0.0089846775, 0.4083504677, 0.4919063747, 0.2473708391, -0.347074002, -0.1145485044, 0.0872872621, -0.0210557878, -0.2440117747, -0.2094926238, -0.3656121492, -0.2786716223, -0.1774246097, 0.0564007685, -0.0437283404, 0.3815522194, 0.0810395554, -0.2656276822, 0.0091092158, -0.0542901382, 0.2826077938, 0.0385258645, 0.144778952, 0.0094427988, 0.1691837013, 0.3119986057, 0.4208044708, 0.1319470853, 0.4850692749, -0.2108381391, -0.2717648745, -0.0984514952, 0.1013868451, 0.123109743, 0.2183829993, -0.1941262633, 0.20236817, 0.2547453046, 0.4601498544, -0.1706767827, 0.2522598803, 0.2773422599, 0.2792244852, -0.3641132116, -0.4865397215, 0.1555071771, -0.0917389393, 0.0943061411, 0.2631673515, 0.2964453697, -0.0355947092, -0.1662322134, -0.284291625, 1.0478127003, -0.0956730172, 0.0067074802, 0.1944356561, 0.1370848268, 0.4507588446, -0.0921952426, 0.1417499185, -0.2144230604, -0.294965744, -0.0541799851, -0.1743753552, 0.1680575162, -0.236224398, -0.053743057, 0.348444432, -0.0203508884, 0.0292553827, -0.132003665, 0.2688500285, -0.29671368, 0.0120332465, -0.3091320097, 0.2553619444, -0.134301275, 0.4604222178, -0.0302185733, -0.1518831551, -0.1035432667, -0.3361428678, -0.0636126921, 0.1191886514, -0.2714742422, 0.109589234, 0.1017429084, -0.2224696577, 0.0017541498, 0.1140814275, 0.0938338488, 0.0761764646, -0.2716825902, 0.2065557092, -0.5015836358, -0.152868554, 0.1270388961, 0.117747739, 0.146158129, -0.2006832808, -0.4935425222, 0.1187355816, 0.1249828637, -0.1905115247, -0.0510729998, -0.1371849179, 0.0943689868, -0.4705700576, -0.195613265, -0.3145423532, 0.0358890519, -0.1969576776, 0.20312953, 0.1291760057, -0.2606883049, 0.0935679376, 0.2006005496, -0.1175683439, -0.0630936697, 0.5965723395, -0.092462495, 0.0054062307, 0.4578072429, 0.1677638739, -0.1380166709, -0.1807496548, -0.0779089779, 0.2252721339, -0.2601619065, -0.0446518362, 0.0442486815, 0.1300583631, -0.2083079815, 0.0384569839, 0.2260816842, 0.0097827464, 0.2754866779, -0.5902450085, -0.4207304716, 0.1600780189, 0.069679901, 0.1743371934, 0.2952530384, 0.3555340171, 0.118881993, 0.0842628852, -0.3726805151, 0.0141944736, -0.257959187, -0.0338924527, 0.3824025989, -0.3016344011, 0.3503544629, -0.1016356796, 0.2228461355, -0.0641883463, -0.3282789588, -0.2289401293, -0.0984086916, 0.089808628, -0.0183261167, -0.3839885592, -0.0003595576, -0.1192765534, -0.068590723, 0.0058196634, 0.1239216775, 0.1958063692, 0.022974832, -0.1963896453, 0.0738451332, -0.036541041, -0.0993710086, 0.1559784561, 0.1055217981, 0.258466661, 0.0365739763, -0.0811824948, -0.1045224369, -0.2432992756, -0.2736449838, -0.0624736175, 0.2513030469, -0.1278463304, 0.267611742, -0.1688306034, -0.0725646019, 0.1447964907, 0.5498502851, 0.3072592616, -0.2752389312, 0.3285322785, 0.152573809, 0.281003505, -0.249531731, -0.0088567622, 0.2969355881, -0.0427343175, -0.0819264352, -0.1622230262, 0.0722941011, 0.199644655, 0.0240229424, 0.0446378253, 0.5042865276, -0.0238161795, 0.1788909286, -0.0350744687, -0.0562040322, 0.0050124591, 0.1521482617, 0.2320992351, -0.0585868098, 0.3224657476, -0.3049380779, 0.3366060257, -0.2997874022, 0.2508379519, -0.1354238987, -0.303955555, -0.144714132, 0.1380614936, -0.2659604847, -0.1088378131, -0.2559171319, 0.7806464434, -0.3334016204, -0.0139062237, -0.2232391536, 0.3534819186, -0.0758548006, -0.3060182035, -0.0491389111, -0.2112850845, -0.0329264179, -0.1981338412, 0.1309959441, -0.2458432913, 0.0111709423, 0.0343957618, -0.0802694112, -0.5813346505, -0.1702586412, 0.1976889819, 0.1456968635, -0.038790442, 0.23392573, 0.2654061317, 0.1201950461, 0.0710985214, 0.3345952332, 0.4603472352, 0.2285659909, 0.1212583184, 0.1023031026, 0.1440173686, -0.0438802615, 0.0165888928, 0.0583184473, 0.1513798237, 0.0268125087, 0.279459089, 0.2609656751, -0.2058106959, 0.0252847336, -0.0916610658, 0.3647482693, -0.2482301891, 0.3037290573, -0.1616885662, 0.0187715441, -0.4195709825, 0.0384398475, -0.727961719, 0.3941763043, 0.1401261687, -0.0890671313, 0.1646357924, -0.3102861643, 0.109173283, -0.1697920114, 0.5486785769, 0.2740632892, 0.2621697187, -0.2371131927, -0.1858237535, -0.5177460313, 0.1752019525, -0.0475244708, -0.288072139, -0.0966670662, 0.0466473699, -0.11427553, 0.0965365022, 0.1236989349, 0.0150244124, 0.1897219419, -0.0559558645, -0.1848658621, 0.0535531826, -0.3134875, 0.1869217604, 0.1249469593, -0.1335357726, 0.2388920486, 0.1444465816, 0.0627692193, -0.0373315886, 0.2129230499, -0.2674396038, -0.2997754812, 0.2467645556, 0.1838713288, 0.5290334225, -0.0266213603, 0.0692391098, -0.1084940434, -0.4502315521, -0.225464493, 0.0992140323, 0.1485068202, 0.1336232126, -0.0102896355, -0.2486864179, -0.279152602, 0.4303969145, -0.0519706383, -0.3362523913, -0.0394179001, -0.063052319, 0.1515263915, -0.0076332018, 0.1565960497, 0.3153597713, -0.0226594321, 0.0860468, -0.0989818871, -0.2700572312, 0.6556452513, -0.2379181087, -0.0130218267, -0.2519052029, 0.2108681202, 0.3994063139, -0.1213892996, -0.4444725811, 0.2536523342, 0.2380932868, 0.0883381963, -0.0961515307, 0.4788864255, -0.0321511254, 0.1870009452, 0.0243745744, 0.074023746, 0.0143950488, -0.1268231273, 0.1934875846, -0.0743514299 ]
https://github.com/huggingface/datasets/issues/1796
Filter on dataset too much slowww
When I use the filter on the arrow table directly, it works like butter. But I can't find a way to update the table in `Dataset` object. ``` ds_table = dataset.data.filter(mask=dataset['flag']) ```
I have a dataset with 50M rows. For pre-processing, I need to tokenize this and filter rows with the large sequence. My tokenization took roughly 12mins. I used `map()` with batch size 1024 and multi-process with 96 processes. When I applied the `filter()` function it is taking too much time. I need to filter sequences based on a boolean column. Below are the variants I tried. 1. filter() with batch size 1024, single process (takes roughly 3 hr) 2. filter() with batch size 1024, 96 processes (takes 5-6 hrs ¯\\\_(ツ)\_/¯) 3. filter() with loading all data in memory, only a single boolean column (never ends). Can someone please help? Below is a sample code for small dataset. ``` from datasets import load_dataset dataset = load_dataset('glue', 'mrpc', split='train') dataset = dataset.map(lambda x: {'flag': random.randint(0,1)==1}) def _amplify(data): return data dataset = dataset.filter(_amplify, batch_size=1024, keep_in_memory=False, input_columns=['flag']) ```
32
Filter on dataset too much slowww I have a dataset with 50M rows. For pre-processing, I need to tokenize this and filter rows with the large sequence. My tokenization took roughly 12mins. I used `map()` with batch size 1024 and multi-process with 96 processes. When I applied the `filter()` function it is taking too much time. I need to filter sequences based on a boolean column. Below are the variants I tried. 1. filter() with batch size 1024, single process (takes roughly 3 hr) 2. filter() with batch size 1024, 96 processes (takes 5-6 hrs ¯\\\_(ツ)\_/¯) 3. filter() with loading all data in memory, only a single boolean column (never ends). Can someone please help? Below is a sample code for small dataset. ``` from datasets import load_dataset dataset = load_dataset('glue', 'mrpc', split='train') dataset = dataset.map(lambda x: {'flag': random.randint(0,1)==1}) def _amplify(data): return data dataset = dataset.filter(_amplify, batch_size=1024, keep_in_memory=False, input_columns=['flag']) ``` When I use the filter on the arrow table directly, it works like butter. But I can't find a way to update the table in `Dataset` object. ``` ds_table = dataset.data.filter(mask=dataset['flag']) ```
[ -0.2712091208, -0.0597312897, -0.1147631258, -0.2779482305, -0.1706507057, -0.2504285276, 0.1707621515, 0.209024474, 0.2598773539, -0.1163968891, -0.0861833096, 0.2958264351, -0.0557142794, 0.4060817063, -0.180425629, 0.2453582883, 0.130790934, 0.297056973, 0.1960128248, 0.0333572403, -0.0224028826, -0.1882674098, -0.2929409742, -0.0703883171, -0.0096253976, -0.2621651888, 0.1859866381, -0.3086515367, -0.2785187066, -0.2126029581, -0.0173908398, 0.5965906978, -0.0182768367, 0.5038163066, -0.0001307184, -0.2338383496, 0.2439537793, 0.0724605322, 0.0831187367, 0.1498078555, -0.2113013566, -0.1286035478, -0.0140377097, -0.0004981905, -0.1250067949, 0.0027300231, -0.3318001032, -0.2216517925, 0.3499704301, 0.0944687128, -0.027775079, -0.1412249207, -0.2549342513, 0.3521130979, 0.2052822262, 0.3541744947, 0.1411340386, -0.1513694823, 0.5533320904, -0.3358143866, 0.0539453663, 0.6059806943, -0.4179317355, -0.1313285828, 0.2100653499, -0.2898600101, 0.0583834834, -0.1515575945, 0.2810189426, 0.0848346129, 0.1335705072, -0.16201666, -0.2986914814, -0.2322744429, -0.0849647969, -0.4459282756, -0.0143866725, -0.0934055299, -0.257945627, 0.0345798396, -0.5128166676, -0.3484368324, 0.0861516595, 0.1266559213, -0.326145798, 0.3600148261, -0.0063062608, 0.2096575499, 0.1311978698, -0.245267421, 0.0699501783, -0.212239325, 0.1913417727, 0.3051819205, -0.6571979523, -0.1016248837, -0.0962862372, 0.1605429798, -0.0209175013, 0.0603326075, -0.1847845912, 0.5039319396, 0.2157584727, -0.0072758999, 0.0003441162, 0.2503770888, 0.1227048412, 0.4484065473, 0.2802662253, -0.1453335285, -0.2991338968, 0.1851136088, -0.0733835399, 0.0487985499, 0.0876704901, -0.0571782999, -0.3887727261, -0.1275837421, -0.3137274086, -0.0533894189, -0.2973858714, -0.0597958192, 0.6444660425, 0.5041767359, -0.1133062243, -0.0650425702, -0.0732963458, -0.2993191481, -0.1293627024, 0.0170783959, 0.0323410928, -0.1580843776, -0.1048118547, 0.2392276078, 0.0378135741, -0.234551385, -0.1911478192, -0.0324770436, -0.1686948389, 0.1806275398, 0.0712085068, -0.3621058166, 0.2372622192, 0.4139117002, -0.2685699463, 0.3007684052, 0.084211722, 0.0556685403, -0.1265520304, 0.1775274277, -0.315616101, -0.3334100842, 0.2214106768, -0.0167183168, -0.0847424492, 0.1368688345, -0.180580914, 0.4090794027, 0.2862333059, -0.2051103711, -0.1643702239, -0.1768732518, -0.5952666998, -0.1606844962, 0.2633838952, 0.2223776132, -0.5520038009, 0.0523663908, -0.3266300261, 0.2614664435, 0.4948301911, 0.3584704697, -0.0671724826, 0.2171266079, 0.1002384424, -0.0703615174, 0.2984155416, -0.0785397366, -0.4758495986, 0.5441427231, -0.0614159219, 0.0120767355, 0.1328440607, 0.155941844, 0.5201340914, -0.2442358285, 0.3975710273, 0.3375460505, -0.1997920424, 0.0735181123, 0.0002539828, -0.009157896, 0.2259212881, 0.1488592178, -0.3431071639, -0.0221704133, -0.0321323611, -0.4266485274, 0.1524592042, 0.1380379796, -0.0138798635, 0.2082133144, 0.2469474822, 0.1468656659, 0.0114976987, -0.1173822731, -0.002903536, -0.0856792852, 0.0895474702, -0.2041618377, -0.267819792, -0.2276494652, -0.2681233287, 0.1229259595, 0.0763178319, 0.2027756721, -0.141734004, -0.1732806712, 0.1918347776, -0.2997711003, -0.0245425105, 0.4423806965, -0.1199386567, -0.0766717643, 0.187675342, 0.0041586533, 0.3773688674, -0.1478649229, 0.1558628082, -0.0638162047, 0.2566291094, 0.0597915873, -0.0512208492, 0.2228675783, 0.4853754044, -0.2909348905, -0.3249591291, 0.1911718696, 0.0907264575, 0.3223302364, 0.159469977, -0.0299946722, 0.2172129303, -0.0669633895, -0.1975266039, 0.5968000293, -0.0842722356, 0.451528579, 0.0961709023, -0.0534644797, 0.3551803827, 0.257982403, -0.1379967779, -0.2240041792, 0.2483915687, -0.0168589316, 0.1414317936, 0.1916798055, -0.1041448712, 0.3914269209, -0.0069529228, -0.1684072465, -0.0578754768, 0.2389458716, 0.1703023911, 0.0307575837, 0.1890270263, 0.0051110238, 0.1146774292, 0.1844975054, -0.142740503, -0.0982928351, 0.0815935805, -0.0547585823, 0.254717648, 0.1561012417, 0.307512939, -0.2542978525, 0.3530647159, -0.1137331277, -0.1732012182, -0.1776498258, 0.2034720182, 0.3338277936, -0.2167353034, 0.069975242, -0.3757011294, -0.5355602503, 0.2271122038, -0.1121498942, 0.2265583873, 0.0880123228, 0.2230782807, 0.0783290118, 0.1746553183, 0.2855864763, 0.1994998157, 0.1593718529, 0.1661268771, -0.4469211102, -0.1344804168, -0.1596937627, -0.0713531524, -0.1074965447, 0.2684336007, 0.3947561085, 0.3735951483, 0.2810975313, 0.0489866808, -0.186135143, -0.5580239892, -0.2156650275, -0.0151028112, 0.0744731352, 0.2174895704, 0.1304197311, -0.3905107379, -0.0501937345, 0.0361118503, -0.1326580346, -0.1809352338, 0.0968125015, -0.2643179595, 0.071242705, 0.132580325, 0.1171381176, -0.2342649698, -0.0533799641, -0.1480297446, -0.0901709199, 0.2890063822, -0.2378837168, 0.0384712443, -0.3095990717, -0.2900481224, -0.0745964646, 0.0627017319, -0.1542515755, 0.2361343056, 0.284522593, -0.0103316652, -0.1767279953, -0.0545517318, -0.2922156751, 0.5495020747, -0.2610018253, 0.1806715131, -0.4031959474, -0.2862223983, 0.1927293986, 0.0184686165, 0.3718923628, -0.1154162288, 0.1365425289, -0.0016429722, -0.4650854468, -0.1635535061, -0.1761947274, 0.0963356271, 0.2124690264, 0.8827466369, 0.0940155536, 0.3070502579, 0.0628350377, -0.0016839706, 0.0701518953, 0.2428096831, -0.1153800339, -0.2179842293, -0.3367716074, -0.2030338794, 0.1458655149, 0.064251855, 0.0387097187, 0.1361509711, -0.1435865462, -0.0339636691, -0.227114737, -0.0657966435, -0.1354944259, 0.0942664817, -0.2203653753, 0.2903559804, 0.350448221, -0.0555738546, -0.5428820848, -0.3475461602, -0.2544791996, 0.0263412613, 0.1311551481, -0.1841547787, -0.6282450557, -0.3186333776, -0.3433012664, 0.4391599298, 0.186568439, 0.441231817, 0.1740358174, 0.0723442733, 0.1996861696, -0.0993007571, 0.7873361111, -0.1795363426, -0.0000879362, 0.0532537401, -0.5388457775, -0.4195428193, 0.0940797329, -0.0101872683, 0.2481461912, 0.2991225421, 0.3818722069, -0.2770798802, -0.3589818776, -0.0407961756, 0.1242223829, -0.1010714397, -0.1960702538, -0.2369448692, -0.2199008465, -0.3587256968, 0.2803164721, -0.0494063571, 0.2188858986, 0.3615350127, -0.3112305999, -0.0476940051, -0.1954778582, 0.1896837205, 0.0493269637, 0.0551218316, 0.3121328354, 0.3041160405, -0.0797560662, 0.1950197071, 0.056564495, -0.1036900207, -0.1127289608, 0.0270736665, -0.0091859847, 0.1956084818, 0.381526798, 0.5263150334, -0.124636963, 0.5532614589, 0.0629928038, 0.4241690636, 0.0678063408, 0.2134748846, -0.1809375584, 0.1748361737, -0.5886358619, -0.7435216308, 0.1466279626, 0.4004864693, -0.3319713473, 0.5015227795, 0.1510134935, -0.0640745014, 0.4643265307, 0.0759486109, 0.8864940405, -0.3235602975, -0.1276144534, -0.0528229289, 0.0650776476, 0.3599280119, -0.1648576856, 0.1193323806, 0.0267444104, -0.3669936955, 0.0609791055, -0.0934692621, 0.0710567832, 0.0802964196, 0.0669524819, 0.353090167, -0.126610145, 0.0602890104, 0.0606926754, 0.2552210689, 0.2188887447, -0.3514134884, -0.2449194342, -0.0771521181, 0.1735339165, -0.1433552355, 0.0447940007, 0.0445484072, 0.2399153411, -0.3018664718, -0.2113610953, -0.5126226544, -0.4052535295, -0.0081728417, -0.1805771291, -0.1766789109, 0.1086180285, -0.2058486044, -0.2409988344, 0.4316933453, 0.1569406241, 0.2249770612, 0.2834922671, 0.3169196546, -0.0349664837, -0.3678515553, 0.2215469182, -0.132439658, -0.1802752912, 0.0131077124, -0.0311694127, -0.5412837267, 0.0419517308, 0.1744593382, 0.4846717119, 0.085386686, -0.1789313406, 0.0405984558, 0.0019732639, -0.2304075807, -0.0539916605, 0.0655844584, 0.0918438062, 0.6818689704, 0.010931164, -0.3466659188, -0.0823412165, 0.2244322598, 0.2488315403, -0.1049908847, 0.3481354713, 0.1715011299, -0.3952924609, -0.1170044988, 0.0336571932, 0.250634253, 0.1648851037, 0.1414191872, -0.1345140189, -0.2305839509, 0.4424912632, 0.0179607272, -0.1558718383, 0.016345378, -0.1148775369, -0.602812767, -0.1591872275, 0.0887797624, -0.0339457691, -0.2836894393, 0.0792493671, 0.1788770109, -0.2286402434, 0.4104103148, -0.142988503, -0.1034457311, 0.0149188414, 0.1952461004, -0.2978612781, 0.3553290963, -0.109238632, -0.0254917666, -0.0584354401, 0.081828475, 0.0158340186, -0.1095688567, 0.1582008302, 0.1992668808, -0.1821384579, -0.1482774615, 0.1193575412, -0.3192935586, -0.2785271406, -0.1667121351, 0.0863984153, -0.094542481, 0.0135387294, -0.6226952672, 0.0796455592, -0.306878686, -0.0308553055, 0.1479805261, -0.0689831525, -0.2993613183, 0.0393472724, 0.1808091998, 0.254748404, -0.0701489598, 0.0305703171, -0.0425857455, 0.0087945238, -0.1373347193, 0.1609221995, -0.0131396353, -0.0361734629, 0.1334585249, 0.1339659691, 0.3425038457, 0.1542832404, -0.2189278901, 0.4608938694, -0.0892685875, -0.3246287107, -0.1629706621, 0.1868811399, 0.13234438, 0.1914502382, 0.1589536965, -0.1432944536, 0.4014590979, -0.185927093, 0.1897578835, 0.240855515, 0.0335241295, -0.1840331852, 0.3610529602, 0.3969339728, -0.1160279289, 0.4024518728, 0.3945575356, -0.2262265831, 0.6142657995, 0.2224930078, 0.4195974767, 0.4634613991, 0.4451638162, -0.3034525514, -0.33808285, -0.2056551278, 0.6224386096, -0.1491272449, -0.2401644886, 0.1060001701, -0.2050468028, 0.4029745162, -0.4408557117, 0.1021220088, 0.3491743207, 0.2446171343, -0.1234744191, -0.4045474529, 0.0168195069, 0.1725479364, -0.0365311466, -0.0128716342, -0.0016648471, 0.2551497519, 0.0111504411, 0.2619936168, -0.3760183752, -0.2330496907, -0.1158901602, 0.2028701007, 0.0230049863, 0.1552751958, -0.2527200878, 0.3291516006, 0.3357111216, -0.3138514161, 0.1728476435, 0.4240103364, -0.0268683787, 0.1570848823, -0.3043256998, -0.1973878294, -0.015256308, 0.3792421818, 0.1525564045, 0.1451673508, -0.0693072453, -0.1082880199, -0.034402322, -0.025302168, 0.2767589986, 0.1954935491, 0.0847866982, 0.3311172128, 0.2029563785, 0.0142709315, -0.038432356, 0.0576427989, -0.1150837392, 0.2869707346, 0.2904752791, -0.3353185654, 0.168661043, 0.12979877, -0.0057099499, -0.2572618723, 0.1182307452, -0.0713957027, 0.3901486993, -0.2078111768, -0.3351302147, -0.4416583478, -0.3361502588, -0.3414926231, -0.0613203496, 0.1446585804, 0.0870982707, 0.2598429024, 0.0411546901, 0.149135381, 0.039258372, -0.2425344586, 0.0631314442, -0.1808053702, 0.337682426, -0.1651819795, 0.3906685114, -0.074354142, -0.3516142666, 0.3682203293, -0.2127821743, -0.0578486398, -0.0417919457, 0.0814251453, 0.2041240335, 0.145118922, 0.0432650149, -0.0145804677, 0.3600326478, 0.1521868706, 0.5289026499, -0.046016708, 0.0723422989, -0.3264321387, 0.2590903044, 0.2396053821, 0.1181288287, -0.0328037664, 0.0460818037, 0.1615457237, 0.0981585085, -0.1329068691, -0.1898024529, -0.076568082, 0.1568208635, 0.1963782161, 0.302276969, -0.3197205663, 0.1080469266, 0.0558900274, 0.0469931215, -0.3058776855, -0.0662638769, 0.5844327211, -0.555150032, -0.2744620144, -0.3311438262, 0.2266702205, 0.4001956284, 0.0762995109, 0.0532931983, -0.1094822362, 0.1079560146, -0.1184764951, -0.3128965199, 0.3040601015, 0.0193842612, 0.0772826821, -0.210327059, -0.1349583864, 0.0183367208, -0.1712662727, -0.449262917, -0.1877037287 ]
https://github.com/huggingface/datasets/issues/1796
Filter on dataset too much slowww
Hi ! Currently the filter method reads the dataset batch by batch to write a new, filtered, arrow file on disk. Therefore all the reading + writing can take some time. Using a mask directly on the arrow table doesn't do any read or write operation therefore it's way quicker. Replacing the old table by the new one should do the job: ```python dataset._data = dataset._data.filter(...) ``` Note: this is a **workaround** and in general users shouldn't have to do that. In particular if you did some `shuffle` or `select` before that then it would not work correctly since the indices mapping (index from `__getitem__` -> index in the table) would not be valid anymore. But if you haven't done any `shuffle`, `select`, `shard`, `train_test_split` etc. then it should work. Ideally it would be awesome to update the filter function to allow masking this way ! If you would like to give it a shot I will be happy to help :)
I have a dataset with 50M rows. For pre-processing, I need to tokenize this and filter rows with the large sequence. My tokenization took roughly 12mins. I used `map()` with batch size 1024 and multi-process with 96 processes. When I applied the `filter()` function it is taking too much time. I need to filter sequences based on a boolean column. Below are the variants I tried. 1. filter() with batch size 1024, single process (takes roughly 3 hr) 2. filter() with batch size 1024, 96 processes (takes 5-6 hrs ¯\\\_(ツ)\_/¯) 3. filter() with loading all data in memory, only a single boolean column (never ends). Can someone please help? Below is a sample code for small dataset. ``` from datasets import load_dataset dataset = load_dataset('glue', 'mrpc', split='train') dataset = dataset.map(lambda x: {'flag': random.randint(0,1)==1}) def _amplify(data): return data dataset = dataset.filter(_amplify, batch_size=1024, keep_in_memory=False, input_columns=['flag']) ```
162
Filter on dataset too much slowww I have a dataset with 50M rows. For pre-processing, I need to tokenize this and filter rows with the large sequence. My tokenization took roughly 12mins. I used `map()` with batch size 1024 and multi-process with 96 processes. When I applied the `filter()` function it is taking too much time. I need to filter sequences based on a boolean column. Below are the variants I tried. 1. filter() with batch size 1024, single process (takes roughly 3 hr) 2. filter() with batch size 1024, 96 processes (takes 5-6 hrs ¯\\\_(ツ)\_/¯) 3. filter() with loading all data in memory, only a single boolean column (never ends). Can someone please help? Below is a sample code for small dataset. ``` from datasets import load_dataset dataset = load_dataset('glue', 'mrpc', split='train') dataset = dataset.map(lambda x: {'flag': random.randint(0,1)==1}) def _amplify(data): return data dataset = dataset.filter(_amplify, batch_size=1024, keep_in_memory=False, input_columns=['flag']) ``` Hi ! Currently the filter method reads the dataset batch by batch to write a new, filtered, arrow file on disk. Therefore all the reading + writing can take some time. Using a mask directly on the arrow table doesn't do any read or write operation therefore it's way quicker. Replacing the old table by the new one should do the job: ```python dataset._data = dataset._data.filter(...) ``` Note: this is a **workaround** and in general users shouldn't have to do that. In particular if you did some `shuffle` or `select` before that then it would not work correctly since the indices mapping (index from `__getitem__` -> index in the table) would not be valid anymore. But if you haven't done any `shuffle`, `select`, `shard`, `train_test_split` etc. then it should work. Ideally it would be awesome to update the filter function to allow masking this way ! If you would like to give it a shot I will be happy to help :)
[ -0.2580148578, -0.1224423274, -0.0864246488, -0.2601468861, -0.165266037, -0.2456997931, 0.259375304, 0.2613685131, 0.3136888146, -0.1532164514, 0.0066367686, 0.2217897475, -0.1138355061, 0.3481481671, -0.2551463842, 0.2076897472, 0.0726484656, 0.2243813127, 0.3868044019, 0.0485851988, -0.0817236602, -0.1438358724, -0.2755506635, -0.0574541762, -0.0197118409, -0.3511651754, 0.27382797, -0.1885659397, -0.2887648642, -0.239111498, -0.0230930783, 0.4542039335, -0.0112252198, 0.4893323779, -0.0001260598, -0.3033392131, 0.2190799266, 0.0967452973, 0.0969076082, 0.131170094, -0.1555373967, -0.0342100561, -0.0015715994, -0.0732349902, -0.1380982846, -0.0277742334, -0.2938838899, -0.3395696282, 0.4358004928, 0.0762713552, -0.0212180354, -0.1640915871, -0.3436222374, 0.390652746, 0.1486465186, 0.3552734554, 0.1600952595, -0.135531947, 0.6643033624, -0.3910477459, -0.0594235398, 0.5160928369, -0.5235146284, -0.09357398, 0.2468022108, -0.2897867262, 0.147323966, -0.2044603974, 0.2251319289, 0.143473953, 0.0414353982, -0.130504638, -0.2387339175, -0.3114275336, -0.084102042, -0.4326247573, 0.058440689, 0.0501063094, -0.3467149734, 0.0126458928, -0.5090165138, -0.2438464165, 0.0958383828, 0.1211496145, -0.3476197124, 0.3207410276, 0.0449049324, 0.1487961709, 0.2462176532, -0.1956784725, 0.0892602801, -0.2859345376, 0.2442051172, 0.3371780813, -0.5745358467, -0.1418317407, -0.138105318, 0.1576308161, -0.0300546065, 0.082405448, -0.2531948388, 0.4543234706, 0.2301657647, -0.0332322046, -0.0178977307, 0.2066558748, 0.07948035, 0.5078430176, 0.251445353, -0.1950933188, -0.1972020268, 0.2502978444, -0.0304292608, 0.0641795993, 0.1051931679, -0.0808328241, -0.4626238942, -0.1382436752, -0.2418834865, -0.0940401778, -0.3737151027, -0.0942642689, 0.6346341968, 0.4418670833, -0.0783585235, -0.1341264546, -0.0508999527, -0.2795560658, -0.1667900532, 0.0838871524, 0.0413886048, -0.1199254096, -0.0650093555, 0.2181843519, 0.0996671766, -0.2918973565, -0.2306298018, 0.0494005717, -0.1871842891, 0.1988065541, 0.2259200513, -0.364376843, 0.2283469886, 0.3430494666, -0.3088800907, 0.3217531443, 0.1475791335, 0.0212170035, -0.1408422887, 0.1872083098, -0.3472839892, -0.3065007329, 0.221502319, 0.0037914356, -0.1534260511, 0.1652536988, -0.1067524925, 0.3195848763, 0.2384777069, -0.1845530272, -0.2099700868, -0.2296186835, -0.5389136672, -0.1934919059, 0.2326155603, 0.1322149038, -0.5897629261, 0.0171472579, -0.3143192828, 0.2596713305, 0.5231365561, 0.4517055154, -0.074323155, 0.2232611179, -0.0143171959, 0.0126739889, 0.2559304535, -0.0851266757, -0.4165561795, 0.6068711281, -0.0548081845, 0.0906558633, 0.1787694842, 0.1575140804, 0.5775738955, -0.2714687586, 0.4816092551, 0.3299987614, -0.2129823267, 0.0879462734, -0.0300115943, -0.13233082, 0.1419951767, 0.1850207597, -0.3507846594, -0.12070667, -0.0437385328, -0.4507985115, 0.2112184465, 0.046644114, 0.0334007144, 0.137298882, 0.2628431022, 0.0677379146, 0.0024270788, -0.1319777071, 0.0437038131, -0.0079639032, 0.0262258947, -0.1991900206, -0.2843852043, -0.2172748744, -0.2058337927, -0.0102896765, 0.0502195917, 0.2281265259, -0.128611654, -0.2074562311, 0.1340387315, -0.2319642305, -0.0181156397, 0.4373139739, -0.1152947843, -0.0412795804, 0.141591087, -0.060607966, 0.3979135752, -0.0976239741, 0.100691244, -0.031405542, 0.3001840115, 0.0400555767, 0.0454704128, 0.1611024439, 0.4899813831, -0.2906463742, -0.2897321284, 0.1746490598, 0.1120864302, 0.3210208416, 0.1585343778, 0.0342963263, 0.1842806339, -0.0922883824, -0.297190249, 0.5812556148, -0.1030584052, 0.4783247709, 0.1044820771, -0.0394964032, 0.3194075227, 0.2093015909, -0.1225639582, -0.1995679289, 0.4308716059, -0.0314357355, 0.1005754769, 0.2806023061, -0.0277568027, 0.3283563256, -0.0127494438, -0.2614404559, -0.0546491891, 0.2450743169, 0.1661771983, 0.0988611057, 0.176604256, 0.0861359313, 0.0534121543, 0.2262303382, -0.161071375, -0.1625952125, 0.0040005483, -0.0623851903, 0.2874435782, 0.1224415302, 0.2521750629, -0.2539429963, 0.2011263967, -0.1105848625, -0.1166065931, -0.2918697, 0.1945299804, 0.3008258939, -0.2301909626, 0.0814739466, -0.3432753682, -0.5400553346, 0.2144396007, -0.0921165869, 0.2033650726, 0.0089941099, 0.1777586043, 0.0631354228, 0.1822884679, 0.1455847621, 0.0892182738, 0.2276862115, 0.2094934285, -0.5467381477, -0.148385033, -0.2128755152, -0.061617583, -0.0649382696, 0.3395972252, 0.3524470329, 0.3918845654, 0.3119645417, -0.102037847, -0.1546337605, -0.4452132583, -0.1585078686, -0.0286897309, 0.110462822, 0.1032713205, 0.133842364, -0.3872928321, -0.1545074582, -0.0147919469, -0.0254877433, -0.1784636825, 0.1289548278, -0.1389276385, 0.1105799973, 0.0965418369, 0.1577353477, -0.21082744, -0.0657867268, -0.1922358274, -0.0803297609, 0.3034642637, -0.1891364753, -0.0917609334, -0.2278671861, -0.3064528704, -0.0987780914, 0.0939660966, -0.1424890012, 0.2768473029, 0.3038762808, -0.0370683856, -0.0938281342, -0.1172880232, -0.3516657352, 0.622611165, -0.287389636, 0.1780136228, -0.4116137624, -0.2254094779, 0.1542643458, 0.0324836075, 0.2691564262, -0.0742151439, 0.1376710683, 0.027318269, -0.2938501239, -0.1813466698, -0.1916177422, 0.2125632912, 0.2483045161, 0.7651828527, 0.1278293431, 0.3413034081, 0.1974570751, 0.1569409966, -0.0195174068, 0.2924418747, -0.1555916667, -0.1801238507, -0.345939368, -0.1539197862, 0.1461712867, 0.0725650638, 0.0339549035, 0.155767113, -0.1621884704, -0.0385267846, -0.1408115327, -0.0474463515, -0.2200169563, 0.1565881222, -0.2120191455, 0.2928080261, 0.2550816834, -0.0010024309, -0.5004400015, -0.3563646674, -0.2340473682, 0.0245731156, 0.1940566897, -0.1826558411, -0.4920961857, -0.1426579654, -0.4179571569, 0.3404889703, 0.1994545013, 0.2822418511, 0.0868158042, 0.0365655422, 0.114863798, 0.0004402921, 0.8182597756, -0.1471987963, 0.0154002681, 0.1322245002, -0.4685994387, -0.4602781832, 0.1328986883, -0.0798727795, 0.1653362662, 0.2958435416, 0.3902945817, -0.2847400904, -0.3065438867, -0.0625823438, 0.1826978177, -0.066734761, -0.2874946296, -0.1903693378, -0.2101449668, -0.3705478907, 0.2802364826, -0.017591849, 0.2808859348, 0.3762198985, -0.3433226645, 0.0080505256, -0.2611862719, 0.3136885166, 0.0138878301, 0.0069035664, 0.2061007321, 0.3031759858, 0.0193469021, 0.1766960323, 0.0116153304, -0.1248458475, -0.0295881741, 0.0242839176, 0.013629023, 0.0800655633, 0.3616870642, 0.5575125813, -0.1202878952, 0.5586549044, 0.0533806756, 0.447255373, -0.0033801943, 0.1796392947, -0.198572278, 0.1545090079, -0.6475358605, -0.6661444902, 0.0821381435, 0.352861464, -0.3209253252, 0.495852381, 0.1206009015, -0.0689840764, 0.4795323312, 0.0689442903, 0.9122273922, -0.4223336875, -0.129320696, -0.0037964676, 0.1887133569, 0.428832978, -0.0892133787, 0.128396824, 0.0789816454, -0.3048507571, 0.0442274734, -0.177950412, 0.0511389859, 0.0752147436, 0.0846470445, 0.3383794427, -0.1061578393, 0.0073742811, 0.0275459066, 0.3325157166, 0.1898480505, -0.3797966838, -0.1462016702, -0.0556654558, 0.1084278449, -0.1734428108, 0.0630043522, 0.0359466039, 0.1965930313, -0.2196015418, -0.1999834031, -0.4815897048, -0.3552478552, 0.0192445219, -0.2322671115, -0.1909116954, 0.1824410558, -0.2131923437, -0.243989408, 0.448825568, 0.0917856395, 0.170830667, 0.2580389678, 0.2994172573, -0.0158790872, -0.460149467, 0.1972996444, -0.1218349859, -0.1465220898, 0.0549800135, -0.0540583096, -0.5098164678, 0.048308149, 0.2030020058, 0.4885254502, 0.0099239983, -0.2172054052, -0.0251095109, -0.0074486956, -0.1663378179, -0.0355489179, 0.1535979658, 0.0961095691, 0.6945756674, -0.0525583327, -0.3168733418, -0.0998817757, 0.1070696712, 0.1990886629, -0.2146318406, 0.2994440198, 0.1840759218, -0.4404842854, -0.1097446233, 0.0722018033, 0.2474167645, 0.2998211682, 0.1541188359, -0.0664502829, -0.2158153355, 0.4328505099, 0.0284720827, -0.0817722678, 0.0312949382, -0.0928014889, -0.5693458915, -0.2018581331, 0.114426434, -0.0439684317, -0.2117530107, 0.061468944, 0.1806743145, -0.2705646753, 0.3613461852, -0.1649130285, -0.0791562647, -0.0128511116, 0.2124869376, -0.2546992004, 0.2238380313, -0.0781834647, -0.007229045, -0.016349731, 0.0788105428, -0.0027595609, -0.1311947405, 0.1103281379, 0.1862534881, -0.180319488, -0.2964835167, 0.2364364117, -0.3541325331, -0.2470615506, -0.2154275179, 0.0686767548, 0.004094854, 0.0105028162, -0.6836893559, 0.0963218808, -0.454323858, -0.1039835215, 0.1455974281, -0.1669252813, -0.2937220931, 0.0120152757, 0.2149535418, 0.1863133907, -0.0142356306, 0.0982929841, -0.0320917852, 0.0350416973, -0.0960115641, 0.265591383, 0.0278557483, -0.0443386286, 0.1940909326, 0.1606880724, 0.3102346063, 0.0813852102, -0.1666776389, 0.4834390283, -0.0591805428, -0.2837424278, -0.2047856301, 0.1989351362, 0.1791322231, 0.1836618334, 0.1498319805, -0.2726893425, 0.3341100812, -0.2075674534, 0.1090358496, 0.3740891218, -0.0703381747, -0.2158269882, 0.3936488926, 0.4317410588, -0.2141318321, 0.4373220503, 0.3448053002, -0.1633816957, 0.6248005033, 0.1625696123, 0.3235560954, 0.4254296422, 0.5249887705, -0.350004077, -0.4269688129, -0.0866606236, 0.6189131737, -0.2344914675, -0.1834455132, 0.0928305835, -0.2442379892, 0.2608453631, -0.3488542736, 0.1344262064, 0.3292417526, 0.1828830242, -0.025894206, -0.3440882564, -0.0044810474, 0.2810171843, 0.0080981776, -0.044400759, -0.0167208463, 0.1577602178, 0.1425014287, 0.2987146974, -0.2946136892, -0.1925166398, -0.1364806294, 0.2268216461, -0.0764759704, 0.0530296639, -0.2720611691, 0.2915358245, 0.2898280621, -0.3670108616, 0.2098891139, 0.4030946493, -0.0381553322, 0.1471684426, -0.3606918156, -0.181336537, -0.0150079727, 0.4001681209, 0.167685166, 0.1575700641, -0.0220812708, -0.0604054257, -0.0522031449, -0.1389399469, 0.2176388055, 0.0740094483, 0.1071448326, 0.3026019335, 0.2705262899, 0.0071117058, -0.0615187548, 0.0523055047, -0.1224307343, 0.3401495516, 0.2895962298, -0.2651776075, 0.2117101252, 0.2369521111, 0.0192529336, -0.2257691622, 0.0452476926, -0.0455715023, 0.3995996416, -0.2582892776, -0.2478111684, -0.4215646982, -0.4059769213, -0.4042252302, -0.0365700088, 0.1455504298, 0.0629474148, 0.2698785663, 0.0955256969, 0.0435492955, 0.1298077255, -0.2022348493, 0.0265408773, -0.137274012, 0.3220697045, 0.0594363585, 0.3153894246, -0.1090595126, -0.3862200677, 0.4728353918, -0.2299933136, -0.03084765, 0.116213724, 0.0425746664, 0.2271545231, 0.0803689957, -0.0552264601, 0.0678234249, 0.3736476004, 0.1915310323, 0.5193091631, 0.0005670423, 0.1978705227, -0.2546802461, 0.2054697275, 0.2659474313, 0.1792628467, -0.1063976586, -0.0012780572, 0.0430168919, 0.2105868459, -0.1673604548, -0.1914362311, -0.1458100379, 0.113541387, 0.1374343336, 0.3232655525, -0.3512886465, 0.1273343712, -0.0530492999, 0.0673584715, -0.2710542679, -0.0772757158, 0.5529333353, -0.6079836488, -0.2792537212, -0.2729257941, 0.2432746291, 0.3418399394, 0.1827058643, 0.1242088377, -0.0995533317, 0.1359943449, -0.1705009937, -0.3291716874, 0.2202583402, -0.0508967228, 0.0331558734, -0.2044652998, -0.1727463007, 0.0590476319, -0.1852394938, -0.3525722921, -0.1822316945 ]
https://github.com/huggingface/datasets/issues/1796
Filter on dataset too much slowww
Hi @lhoestq @ayubSubhaniya, If there's no progress on this one, can I try working on it? Thanks, Gunjan
I have a dataset with 50M rows. For pre-processing, I need to tokenize this and filter rows with the large sequence. My tokenization took roughly 12mins. I used `map()` with batch size 1024 and multi-process with 96 processes. When I applied the `filter()` function it is taking too much time. I need to filter sequences based on a boolean column. Below are the variants I tried. 1. filter() with batch size 1024, single process (takes roughly 3 hr) 2. filter() with batch size 1024, 96 processes (takes 5-6 hrs ¯\\\_(ツ)\_/¯) 3. filter() with loading all data in memory, only a single boolean column (never ends). Can someone please help? Below is a sample code for small dataset. ``` from datasets import load_dataset dataset = load_dataset('glue', 'mrpc', split='train') dataset = dataset.map(lambda x: {'flag': random.randint(0,1)==1}) def _amplify(data): return data dataset = dataset.filter(_amplify, batch_size=1024, keep_in_memory=False, input_columns=['flag']) ```
18
Filter on dataset too much slowww I have a dataset with 50M rows. For pre-processing, I need to tokenize this and filter rows with the large sequence. My tokenization took roughly 12mins. I used `map()` with batch size 1024 and multi-process with 96 processes. When I applied the `filter()` function it is taking too much time. I need to filter sequences based on a boolean column. Below are the variants I tried. 1. filter() with batch size 1024, single process (takes roughly 3 hr) 2. filter() with batch size 1024, 96 processes (takes 5-6 hrs ¯\\\_(ツ)\_/¯) 3. filter() with loading all data in memory, only a single boolean column (never ends). Can someone please help? Below is a sample code for small dataset. ``` from datasets import load_dataset dataset = load_dataset('glue', 'mrpc', split='train') dataset = dataset.map(lambda x: {'flag': random.randint(0,1)==1}) def _amplify(data): return data dataset = dataset.filter(_amplify, batch_size=1024, keep_in_memory=False, input_columns=['flag']) ``` Hi @lhoestq @ayubSubhaniya, If there's no progress on this one, can I try working on it? Thanks, Gunjan
[ -0.2252545059, -0.2595494092, -0.1091805547, -0.214815706, -0.1230363771, -0.269241333, 0.221560806, 0.211483866, 0.2634299099, -0.1233139411, 0.0279617459, 0.0908808485, -0.1160681918, 0.4082367122, -0.2278894335, 0.1516524553, 0.1011280417, 0.2131095827, 0.4031718373, 0.0390013009, -0.0577569865, -0.0807915106, -0.3609127998, -0.0298269056, -0.0847065151, -0.2762126923, 0.2782404423, -0.247679472, -0.2799649835, -0.1902085543, -0.1176553592, 0.4328627586, 0.0416844264, 0.522716105, -0.000128576, -0.3842285872, 0.2686327398, 0.1016898081, 0.2251770496, 0.103496626, -0.1696638763, -0.0080827475, -0.0367201231, -0.0586647019, -0.2172692418, 0.066933766, -0.289647162, -0.2367754579, 0.4300408363, 0.1496508718, -0.0269951113, -0.2186436504, -0.3358839154, 0.356335938, 0.1525758207, 0.3359153569, 0.1869013309, -0.226126194, 0.7080860138, -0.3562739491, 0.0696439222, 0.4721479416, -0.4560541511, -0.1615432799, 0.1487727463, -0.3453469276, 0.1096851453, -0.3132960498, 0.2409453243, 0.1769206673, 0.0656609237, -0.0571092516, -0.2008105516, -0.2538342476, -0.0454389453, -0.4103201926, 0.0202636328, 0.0456012636, -0.3242428303, -0.0042452072, -0.5788226724, -0.2189126313, 0.0876278058, 0.1583896279, -0.385345906, 0.3735460639, 0.0321888179, 0.1135236025, 0.1993613243, -0.215529561, 0.0075013973, -0.2545444667, 0.2832426429, 0.3554541469, -0.6740974784, -0.1508335471, -0.1581910849, 0.2203148305, 0.0110633895, 0.025714919, -0.3736513257, 0.4627342522, 0.2508266568, -0.040211089, -0.0583137572, 0.2461996526, 0.0641968995, 0.4818007648, 0.2978993654, -0.2198610008, -0.2987449169, 0.2547264993, -0.0507867932, 0.0679054335, 0.0823753029, -0.0540155694, -0.5015362501, -0.1702795029, -0.2727936208, -0.10285604, -0.416802913, -0.1203471422, 0.668340981, 0.4683458805, -0.100753434, -0.1219636202, -0.1264316738, -0.2415729761, -0.1646136045, 0.0298384987, 0.0279094316, -0.0445403755, -0.0681125671, 0.1991348714, 0.0899438187, -0.2929749191, -0.1792654395, 0.0473016389, -0.1829545945, 0.1261352301, 0.2369166017, -0.3831787109, 0.1323813647, 0.2923039496, -0.285466373, 0.3071513176, 0.0823031068, 0.1024767309, -0.1182382554, 0.1186319441, -0.3777611852, -0.336771667, 0.2411239147, 0.0114388457, -0.1120517552, 0.1816655993, -0.0739682615, 0.3442536891, 0.3069840074, -0.08808586, -0.2214003205, -0.1915691495, -0.5816184282, -0.1587522328, 0.2008325011, 0.0921893269, -0.4657714963, 0.0186851025, -0.279820323, 0.2105337381, 0.588083744, 0.4387433529, -0.0369402878, 0.2249875665, -0.04308974, 0.0483516604, 0.2181493342, -0.1122597307, -0.3453877568, 0.6233468056, -0.0395007357, 0.0077323541, 0.1885050684, 0.0785485357, 0.5663006902, -0.2632849216, 0.5140784979, 0.3756267428, -0.2153287381, 0.1178367138, -0.0218423903, -0.103648223, 0.1589714438, 0.2371781766, -0.2816351056, -0.0733494759, -0.0703741461, -0.3758478761, 0.1747684777, 0.0260584988, 0.0309027582, 0.1709758043, 0.2361924499, 0.0627347976, 0.011159949, -0.1820664257, 0.1184111685, -0.0608216822, -0.0504305623, -0.1652126312, -0.1754468083, -0.1815263033, -0.2594466805, -0.0090871267, 0.064142257, 0.2332099825, -0.116349034, -0.1710828692, 0.119956769, -0.2128811628, 0.0389985293, 0.4870575666, -0.0661610886, -0.0465142615, 0.1828296185, -0.0481047481, 0.3280164599, -0.1143479794, 0.1694706976, 0.0258429479, 0.3714915216, 0.0142314285, 0.0571063384, 0.1386635602, 0.5027493834, -0.2991530299, -0.3137467802, 0.1767043173, 0.1542361528, 0.33893767, 0.1094479933, 0.016436033, 0.1302593648, -0.1143237278, -0.1493638158, 0.5312943459, -0.0404824279, 0.4238993227, 0.0877421051, -0.0993586555, 0.3138716817, 0.1738132983, -0.0924368277, -0.2166416645, 0.5034923553, 0.013821397, 0.1286029667, 0.2449537367, -0.1035161018, 0.3022045493, -0.0475000441, -0.3135299981, -0.0592062697, 0.2680287957, 0.1906662583, 0.0849726498, 0.1419327259, -0.0174570009, 0.0390060507, 0.197861746, -0.188334927, -0.1547814012, 0.0823925734, -0.0621349663, 0.258713752, 0.103496328, 0.235314101, -0.2182342112, 0.2533361316, -0.1286805719, -0.0980200693, -0.2866778672, 0.2284124494, 0.3222565949, -0.2280869037, 0.0149426088, -0.3553001583, -0.5684857965, 0.2344615757, -0.1010881513, 0.2024692893, 0.0458727106, 0.1592310965, 0.0498126708, 0.2844613194, 0.1175136939, 0.1196427792, 0.20554322, 0.2214317322, -0.4647489488, -0.1081779972, -0.1323723793, -0.0417076498, -0.0571200624, 0.2584052682, 0.3142124712, 0.3845155239, 0.3064912558, -0.09748438, -0.1131291837, -0.5374433398, -0.1481488645, 0.0105010886, 0.1324188113, 0.1226700693, 0.1452455372, -0.3143947423, -0.1035702676, -0.0251872689, 0.0196890831, -0.1629321873, 0.0662415624, -0.1998527944, 0.0767849684, 0.1099000275, 0.1567242295, -0.2886811495, -0.0323662274, -0.2201775163, -0.0711630806, 0.2759138346, -0.3124831319, -0.1172246188, -0.2404729426, -0.2843362689, -0.0630580485, 0.0203150064, -0.1998873651, 0.2910322845, 0.2740530968, -0.017506225, -0.1282384992, -0.0829757974, -0.3217391968, 0.5405508876, -0.2413508445, 0.1424675882, -0.4174325168, -0.2339671254, 0.1934639812, -0.0433743075, 0.2607775927, -0.1583854556, 0.1518047452, 0.046102047, -0.3172047734, -0.1860857904, -0.1872586161, 0.2764711082, 0.2739782631, 0.7350677848, 0.0479090363, 0.3134379387, 0.1614058018, 0.0978118032, 0.0234633069, 0.2742675543, -0.2951157689, -0.1754238158, -0.3233997226, -0.0374852717, 0.2471008599, 0.0507655144, 0.0771015286, 0.1735539436, -0.1551263928, -0.0521912612, -0.2132915556, -0.0872247592, -0.1421201825, 0.1017120853, -0.1648363322, 0.3068119884, 0.2345010638, -0.0391526222, -0.4587774277, -0.3636746109, -0.3014774621, 0.0613550022, 0.1693895012, -0.1827860177, -0.506577611, -0.2059261799, -0.3918889165, 0.3594694734, 0.2159307301, 0.2798334062, 0.046232, 0.1300626397, 0.1529965103, -0.0007639974, 0.8587453365, -0.1964031458, 0.0236837007, 0.077343069, -0.5784473419, -0.2750439644, 0.1098080873, -0.0400724523, 0.0650057048, 0.4197525382, 0.3936813474, -0.305129081, -0.3487199545, -0.052308809, 0.1268809587, 0.0077714026, -0.3749650717, -0.1559258699, -0.1641945839, -0.3765982091, 0.303928256, -0.023508817, 0.3030173779, 0.3059744537, -0.4037962556, 0.0278200116, -0.2339782268, 0.3217286766, -0.0272872858, -0.0450223535, 0.1439341158, 0.2509562969, -0.0557607375, 0.1492965817, -0.0016956441, -0.2590815723, -0.0302044824, 0.0440486409, 0.0972665697, 0.0444830731, 0.3970542252, 0.4827743769, -0.1612477601, 0.5882350206, 0.0505076796, 0.488602519, 0.011629574, 0.2173452526, -0.0917053372, 0.2079639137, -0.6904321313, -0.6199191213, 0.0585210398, 0.3905728161, -0.3461592197, 0.3499728441, 0.0200450663, -0.0846654326, 0.4471517801, 0.0663011074, 0.958196044, -0.4153422713, -0.210830763, -0.0812216997, 0.2532029152, 0.4408655763, -0.1588870138, 0.1169546321, 0.0642560348, -0.3563608825, 0.0335155204, -0.1627473533, 0.031904459, 0.1154622436, 0.0592168868, 0.3585590422, -0.099434495, 0.0464693941, 0.0220799744, 0.3321063519, 0.303319633, -0.3577498496, -0.1986602843, -0.0548403487, 0.1066497415, -0.0445861667, 0.0151254386, 0.0325655825, 0.2558642924, -0.2082431018, -0.1969839483, -0.4552558064, -0.3432826698, -0.0408172645, -0.1839430332, -0.1707675457, 0.2155316621, -0.1453852803, -0.148943454, 0.4777184427, 0.0395527706, 0.2064714283, 0.2317765951, 0.2153300047, -0.0568479002, -0.4187890291, 0.1855113208, -0.178676635, -0.1958904266, 0.0447837934, -0.0129555166, -0.4329486489, -0.0632166564, 0.1401577145, 0.4846389294, -0.0020975396, -0.2411369532, 0.0008222982, -0.0012014508, -0.1708168387, -0.0320652612, 0.1475130171, 0.0614322945, 0.7015863657, -0.0356987566, -0.2789463401, -0.1368633509, 0.1221277565, 0.2942486405, -0.2797679305, 0.3097614646, 0.2331238091, -0.4130248725, -0.1083010435, 0.0172182471, 0.1657748967, 0.3465475142, 0.0790229589, 0.0083404444, -0.2764843106, 0.4665231705, 0.040258795, -0.1502175629, -0.0065306164, 0.021022141, -0.6080694795, -0.2222402394, 0.0133889001, -0.1192979664, -0.2351453006, 0.0938160196, 0.2466763705, -0.2269976288, 0.404736191, -0.1552990675, -0.1191567108, -0.0896124467, 0.2054948956, -0.1751522571, 0.1732694656, -0.1048566401, 0.0844784603, -0.0092604421, 0.0975957438, 0.0234888718, -0.1187349632, 0.1299327463, 0.1904268116, -0.1591578573, -0.2345915735, 0.2908118665, -0.2887118757, -0.2566343844, -0.1597930491, 0.0984030366, -0.0179288015, 0.057717558, -0.6547788382, 0.0694829673, -0.4861405194, -0.1320482939, 0.1135096774, -0.1249687374, -0.3016546667, 0.0651140958, 0.1955115944, 0.1558886468, -0.039698869, 0.0083109252, -0.0594496503, 0.13631998, -0.098167643, 0.2446375489, 0.0385852531, -0.0546673909, 0.2382382154, 0.1201959401, 0.1842217296, 0.0489122868, -0.1412813067, 0.4671065509, -0.0722420216, -0.2741678357, -0.16410245, 0.1977158487, 0.1868244559, 0.1511612087, 0.1790212393, -0.2410618663, 0.3629324436, -0.1833377331, 0.0998070017, 0.4350858927, -0.0554786958, -0.221737206, 0.3130111098, 0.433221519, -0.2051405907, 0.4461445212, 0.3638699353, -0.2131381333, 0.5768557191, 0.1865545213, 0.3318861425, 0.3495146036, 0.5341726542, -0.2553031743, -0.3887854517, -0.1109638065, 0.7703388929, -0.2449413836, -0.213672787, 0.0333934911, -0.2079731822, 0.334908843, -0.3433467448, 0.1132228374, 0.4351330101, 0.1481791586, -0.0408239737, -0.3570047617, 0.0204017311, 0.2482735664, -0.0369982049, 0.0036889133, 0.018553542, 0.1613121778, 0.1794337928, 0.2775252163, -0.2858622074, -0.2290667742, -0.1520700753, 0.1804333776, -0.0591077842, 0.152285412, -0.2897803187, 0.2591447234, 0.321539849, -0.356366694, 0.2093615532, 0.4154399633, -0.0153535884, 0.10739775, -0.3542914689, -0.1556839347, 0.0286300331, 0.4394170046, 0.2068327069, 0.2189011276, -0.0373838283, -0.068097204, -0.0727641284, -0.0777663291, 0.2325562239, 0.0656389371, 0.1578761935, 0.2685890496, 0.2677965462, 0.0526472107, -0.1324347258, 0.06583675, -0.1772333235, 0.3990627825, 0.1876477301, -0.2525111437, 0.2420501113, 0.2378874123, 0.0081936903, -0.2458668351, 0.0123943053, -0.0878849775, 0.4355199933, -0.2969926298, -0.3003425896, -0.3489141464, -0.3365275562, -0.3431504369, -0.0251454823, 0.0969920009, 0.0010711998, 0.2146295756, 0.0203986615, 0.0080331266, 0.1167678759, -0.2403491288, 0.0444589816, -0.1369324028, 0.374976337, -0.0254138708, 0.3593271077, -0.0807765573, -0.3088650405, 0.4820465744, -0.2655580342, -0.0422149971, 0.0557008758, 0.087563701, 0.1483187526, 0.0405414477, -0.1082426608, 0.0369233936, 0.4210780263, 0.120425202, 0.5725920796, 0.0505462177, 0.149659127, -0.2269867808, 0.1850086451, 0.3237873912, 0.1223639548, -0.0324244313, 0.0748082548, 0.080368489, 0.2249290943, -0.1496293098, -0.277357012, -0.0969024077, 0.0771479309, 0.1535182893, 0.2936277986, -0.2447821051, 0.1370541155, -0.0368247554, 0.0204691067, -0.2410460413, -0.122707963, 0.5522248149, -0.5193555951, -0.2587076128, -0.3608832657, 0.2557358742, 0.2829854488, 0.2068327516, 0.144143939, -0.0422924533, 0.147931695, -0.1221392676, -0.2939150333, 0.3119497597, 0.008995682, 0.0091705769, -0.2084153146, -0.2674077451, 0.0957366079, -0.1376582086, -0.3251848817, -0.1448198557 ]
https://github.com/huggingface/datasets/issues/1796
Filter on dataset too much slowww
Sure @gchhablani feel free to start working on it, this would be very appreciated :) This feature is would be really awesome, especially since arrow allows to mask really quickly and without having to rewrite the dataset on disk
I have a dataset with 50M rows. For pre-processing, I need to tokenize this and filter rows with the large sequence. My tokenization took roughly 12mins. I used `map()` with batch size 1024 and multi-process with 96 processes. When I applied the `filter()` function it is taking too much time. I need to filter sequences based on a boolean column. Below are the variants I tried. 1. filter() with batch size 1024, single process (takes roughly 3 hr) 2. filter() with batch size 1024, 96 processes (takes 5-6 hrs ¯\\\_(ツ)\_/¯) 3. filter() with loading all data in memory, only a single boolean column (never ends). Can someone please help? Below is a sample code for small dataset. ``` from datasets import load_dataset dataset = load_dataset('glue', 'mrpc', split='train') dataset = dataset.map(lambda x: {'flag': random.randint(0,1)==1}) def _amplify(data): return data dataset = dataset.filter(_amplify, batch_size=1024, keep_in_memory=False, input_columns=['flag']) ```
39
Filter on dataset too much slowww I have a dataset with 50M rows. For pre-processing, I need to tokenize this and filter rows with the large sequence. My tokenization took roughly 12mins. I used `map()` with batch size 1024 and multi-process with 96 processes. When I applied the `filter()` function it is taking too much time. I need to filter sequences based on a boolean column. Below are the variants I tried. 1. filter() with batch size 1024, single process (takes roughly 3 hr) 2. filter() with batch size 1024, 96 processes (takes 5-6 hrs ¯\\\_(ツ)\_/¯) 3. filter() with loading all data in memory, only a single boolean column (never ends). Can someone please help? Below is a sample code for small dataset. ``` from datasets import load_dataset dataset = load_dataset('glue', 'mrpc', split='train') dataset = dataset.map(lambda x: {'flag': random.randint(0,1)==1}) def _amplify(data): return data dataset = dataset.filter(_amplify, batch_size=1024, keep_in_memory=False, input_columns=['flag']) ``` Sure @gchhablani feel free to start working on it, this would be very appreciated :) This feature is would be really awesome, especially since arrow allows to mask really quickly and without having to rewrite the dataset on disk
[ -0.2547405362, -0.2351185679, -0.1014518887, -0.2257347107, -0.1428644061, -0.2871684432, 0.2794649005, 0.2359781861, 0.3127669692, -0.1190764755, 0.062109448, 0.1304161251, -0.126346916, 0.422411263, -0.2473775446, 0.1691474617, 0.0948604345, 0.2099194378, 0.365164876, 0.0446348637, -0.0494472645, -0.1138271019, -0.3327174187, -0.0442435518, -0.0404986069, -0.2961441278, 0.2930480242, -0.2661841214, -0.2599880099, -0.1789189279, -0.0893383101, 0.4252873957, 0.0437739566, 0.4724212885, -0.0001284532, -0.3640068769, 0.26256603, 0.1131878868, 0.1909706891, 0.1135961711, -0.184861511, -0.0163561516, -0.021852117, -0.0593499541, -0.2138736695, 0.0530097336, -0.273175329, -0.3023948669, 0.4287187755, 0.1006163731, -0.0289606676, -0.1832483262, -0.3738386929, 0.3723734319, 0.1458554864, 0.356184423, 0.1437242478, -0.250230521, 0.6577314734, -0.373789221, 0.0461210981, 0.5352957249, -0.4705413878, -0.1681779325, 0.1968520731, -0.3184742928, 0.1125073656, -0.2822367549, 0.2291530222, 0.1690669209, 0.014992686, -0.0777093768, -0.214353323, -0.2915639877, -0.0615598336, -0.4139198959, 0.0252864379, 0.028611429, -0.3154195249, 0.016422892, -0.5580668449, -0.2037366033, 0.096551016, 0.1403736472, -0.354791373, 0.3611058593, 0.034612529, 0.1313697845, 0.2142254412, -0.2130947709, 0.0226944014, -0.2870534062, 0.2648453414, 0.3623131216, -0.6492136717, -0.1423452199, -0.1743774861, 0.1750466675, 0.0069196895, 0.0786333829, -0.3529719114, 0.4686014354, 0.2220185101, -0.0259515792, -0.0626640618, 0.2397353053, 0.0740980655, 0.4572773278, 0.2873616517, -0.2147800922, -0.2366795838, 0.2544235587, -0.0684946328, 0.079900302, 0.0800582319, -0.0319134034, -0.4939536154, -0.1388382465, -0.264806509, -0.1102305353, -0.3951862752, -0.1192374453, 0.6373214126, 0.4258010685, -0.0795858875, -0.1344535202, -0.1196866333, -0.2380565405, -0.1651943922, 0.0285185091, 0.0324383788, -0.0963222384, -0.069513686, 0.1784168184, 0.0781028643, -0.2720377147, -0.1977618784, 0.0326229408, -0.1777711809, 0.1730161458, 0.2551947236, -0.3473982513, 0.1557761878, 0.3013788462, -0.3203006685, 0.3183273077, 0.1355059445, 0.0904028565, -0.1295002699, 0.1477259696, -0.3459281325, -0.3141597509, 0.2130756527, -0.001920776, -0.1204020679, 0.168920368, -0.1210168973, 0.3417939246, 0.275141269, -0.100694038, -0.2016450167, -0.1915020049, -0.5472357273, -0.1620806754, 0.20939821, 0.1171444505, -0.4860530198, -0.0119031817, -0.2796176076, 0.2233321667, 0.6011428833, 0.4344094992, -0.0460534096, 0.1472396851, -0.029907044, 0.0564310402, 0.2358343154, -0.1227659658, -0.3312913775, 0.6238359213, -0.0638754144, 0.0400917903, 0.212648958, 0.1053389013, 0.5331237912, -0.2556840181, 0.4627815485, 0.394464612, -0.1878144741, 0.1091040596, 0.0033414662, -0.1312590539, 0.1949513853, 0.2179063857, -0.3320953548, -0.0757943094, -0.0696717426, -0.4481105506, 0.1965841353, 0.0232220367, 0.0347891077, 0.1189476252, 0.2403094023, 0.01632604, 0.0206498504, -0.135776639, 0.0884332359, -0.0511188507, -0.0140722767, -0.1671028137, -0.2494913489, -0.1959041953, -0.2026102096, -0.0224119052, 0.0633284748, 0.2025331408, -0.1286608875, -0.1770582199, 0.0898273885, -0.2292305529, 0.0088760406, 0.4807581902, -0.0409270525, -0.0277852863, 0.1705212444, -0.0746283978, 0.3705913723, -0.0782505572, 0.1451504529, 0.0169993304, 0.3502372503, 0.0186619647, 0.0410104841, 0.1407466978, 0.4962438643, -0.2891914248, -0.291978538, 0.1777760088, 0.1451970339, 0.3355655968, 0.1232618615, 0.0453379676, 0.1189535111, -0.101849027, -0.224290207, 0.547572732, -0.0494962968, 0.4638312161, 0.0708088428, -0.0753634423, 0.3280291259, 0.1719778776, -0.1158201322, -0.2379232198, 0.4602115452, -0.0143442471, 0.1340288222, 0.2429943234, -0.0889172554, 0.3365109563, -0.0756698996, -0.2729930878, -0.0627099052, 0.2376001328, 0.1726811975, 0.1039545015, 0.1899481416, 0.0109502077, 0.0056817383, 0.2170875371, -0.1980081797, -0.1666434705, 0.0511953831, -0.0437557921, 0.2654489875, 0.0814944804, 0.259652704, -0.2470975518, 0.2572679222, -0.1374319196, -0.1171310768, -0.3422017694, 0.2011793852, 0.2727071643, -0.2090352923, 0.031249091, -0.3480930328, -0.5751770735, 0.254105866, -0.0879077911, 0.2226928771, 0.0729395747, 0.1610176861, 0.0471447743, 0.2452379763, 0.1408629119, 0.0855322182, 0.2216344774, 0.2345061749, -0.5197228789, -0.110531643, -0.151237756, -0.0394728556, -0.0571239665, 0.2479061186, 0.315669775, 0.378095597, 0.341663301, -0.0667105615, -0.1172672659, -0.5213433504, -0.1506474316, -0.0124812201, 0.1178543642, 0.1023148596, 0.1462199688, -0.3354575932, -0.1229351908, -0.0298260488, 0.0491521433, -0.1772670448, 0.0726651177, -0.1669163108, 0.0829740614, 0.0800650567, 0.1700884998, -0.2357679456, -0.0381801166, -0.2073810995, -0.0565626696, 0.2702918947, -0.2656606138, -0.0730578601, -0.2781137228, -0.2712408304, -0.1031877771, 0.036469616, -0.2044024467, 0.2926087976, 0.2826994658, 0.0196529794, -0.1517452747, -0.0983473882, -0.3492053747, 0.5780208707, -0.2696867585, 0.1584289968, -0.4038266838, -0.2313586473, 0.2019393146, -0.0334442034, 0.2865875959, -0.1035003066, 0.1401914656, 0.027501516, -0.3251665235, -0.1949958056, -0.2094119042, 0.2677609026, 0.2775138021, 0.7451364994, 0.0741664171, 0.3454882503, 0.1802722812, 0.1070334613, 0.0168004148, 0.2816303074, -0.2569594979, -0.1691365689, -0.3194510341, -0.0622098595, 0.2351970673, 0.0858153775, 0.025759805, 0.1553872377, -0.1771256924, -0.038900096, -0.2113518119, -0.0666950867, -0.1591697931, 0.1071521938, -0.2032225877, 0.2908295393, 0.2369364351, -0.0089527816, -0.4920889735, -0.3526349664, -0.2461755574, 0.0338332728, 0.2247826308, -0.1775357723, -0.5154922605, -0.1536711752, -0.3968796432, 0.3571226597, 0.2105638385, 0.2496903986, 0.073329702, 0.0918408409, 0.1379288137, 0.0048200227, 0.8831472397, -0.1925909817, 0.0478242487, 0.0855075791, -0.5386552811, -0.3299157023, 0.121303454, -0.0266267657, 0.0627531707, 0.3690214157, 0.4005455375, -0.3076556325, -0.3361250758, -0.0596702062, 0.1310087293, -0.0072172508, -0.3539112508, -0.1504348218, -0.1287595928, -0.3918296695, 0.3001624048, -0.0020011961, 0.2927741408, 0.3270321786, -0.3938689828, 0.0023750197, -0.2537272573, 0.310267508, -0.0174854957, -0.0331124403, 0.1579239368, 0.2585355043, 0.0094521623, 0.1730178595, -0.036503043, -0.2073553801, -0.0223440845, -0.0015389957, 0.0565206073, 0.0482674204, 0.3998784125, 0.49510777, -0.1465215981, 0.5836418867, 0.069402799, 0.4908260703, -0.0113035515, 0.2272511721, -0.1186983809, 0.1846879125, -0.6643239856, -0.6317515969, 0.0898281932, 0.3616835475, -0.3592296243, 0.4149480462, 0.0539051443, -0.0925547481, 0.484636873, 0.0796504021, 0.9722084999, -0.4101479948, -0.1564436555, -0.1024755612, 0.234839648, 0.4491520822, -0.1452311575, 0.1185022965, 0.0526880249, -0.3127819896, 0.0187685639, -0.1789843142, 0.0131358188, 0.1035683751, 0.1015665531, 0.3528617024, -0.1354781538, 0.0532925949, 0.0173896737, 0.3033021986, 0.2745911479, -0.3907105327, -0.1281694025, -0.0674055144, 0.1484355628, -0.0544954687, 0.041740872, 0.0231090523, 0.2586683333, -0.2181494385, -0.1786283702, -0.4309233427, -0.3346196413, -0.0290316734, -0.186109364, -0.2180697918, 0.1856089532, -0.1499714553, -0.1546511948, 0.4800976217, 0.0550311208, 0.1872082055, 0.2561999857, 0.2629365921, -0.0710087121, -0.4394879639, 0.1941314489, -0.1478515416, -0.1893985271, 0.0399276279, -0.0202834383, -0.4675247073, -0.0285940617, 0.1664800346, 0.476583153, 0.0160729252, -0.2211515754, -0.0090736076, 0.0133569241, -0.1800495386, -0.0390072614, 0.1601356566, 0.0872106254, 0.680351615, -0.0118066426, -0.2712481022, -0.1171463951, 0.1355697364, 0.2716130912, -0.2544378638, 0.3072370589, 0.2026950717, -0.4166203141, -0.1117486954, 0.0054928586, 0.2209945172, 0.339014411, 0.1124828681, -0.0173631683, -0.297378391, 0.4311399758, 0.0399326384, -0.1429939121, 0.022601556, -0.0035555214, -0.6040538549, -0.1978467405, 0.0445597954, -0.1624216139, -0.2262349129, 0.0922237188, 0.2347443402, -0.2562172413, 0.3702440262, -0.1560824662, -0.1145806089, -0.0422539599, 0.2249818593, -0.1870001554, 0.2397274077, -0.069639504, 0.0781731755, -0.0215618443, 0.0846772194, 0.0055006444, -0.1249879822, 0.0938566476, 0.1914307624, -0.1692729741, -0.2661701739, 0.285449028, -0.3040849566, -0.2480561286, -0.2004137784, 0.1181162149, -0.0329116061, 0.0581700914, -0.683144331, 0.0294050854, -0.4843919575, -0.1465280652, 0.0845040455, -0.1279474795, -0.302551657, 0.0446088873, 0.1762180328, 0.1422256678, -0.0272616446, 0.0484142154, -0.0653512031, 0.1146878302, -0.0626344234, 0.2472891808, 0.0431437232, -0.0827456638, 0.2133443356, 0.1262268126, 0.1769420803, 0.0563258119, -0.1567685902, 0.4866523743, -0.0668556616, -0.2868570685, -0.1953932643, 0.1671300828, 0.2077482045, 0.1736730784, 0.1619258225, -0.245189786, 0.3579372466, -0.1853936613, 0.0889692158, 0.4020835757, -0.0821810812, -0.2352082729, 0.338804245, 0.4077506065, -0.2249971032, 0.4805640876, 0.3468936682, -0.1937999576, 0.6008088589, 0.1963530928, 0.3269642293, 0.4239940643, 0.5279600024, -0.3396156132, -0.3884891868, -0.1107793301, 0.7172065973, -0.2031839192, -0.1873832047, 0.0708057061, -0.2135528177, 0.3435967565, -0.3242046237, 0.1368948817, 0.3997924924, 0.1689611077, -0.0689868033, -0.3674278855, 0.015545994, 0.2693640888, -0.0258646049, 0.0015564997, 0.0039910963, 0.206834659, 0.1559247077, 0.3189150691, -0.27651003, -0.2405989766, -0.1286068708, 0.2134979218, -0.051053077, 0.1259864569, -0.2663526833, 0.2794304192, 0.3113370538, -0.3693412244, 0.2065238208, 0.3697749972, -0.0400803648, 0.0977609307, -0.3742182851, -0.1569201499, 0.0034286082, 0.4361081123, 0.2118590623, 0.19151932, -0.0341018885, -0.0733795688, -0.0547665097, -0.0629167631, 0.2353902757, 0.0497870333, 0.1619335711, 0.2595258057, 0.2800490856, 0.0348719656, -0.1228135824, 0.0269114953, -0.1231810972, 0.398319006, 0.2354518771, -0.2709560394, 0.236327976, 0.2429219931, 0.0075737908, -0.2389284372, -0.0133873876, -0.0855351985, 0.4185398817, -0.288680464, -0.2669928074, -0.3452300727, -0.3425405025, -0.3784067631, -0.0410973579, 0.0931634903, 0.012588419, 0.2585784793, 0.0449904092, 0.0296725109, 0.1020230651, -0.1909073293, 0.028304683, -0.1394939721, 0.3953849971, 0.0095602442, 0.3836016655, -0.0542449057, -0.3450878859, 0.4803274572, -0.2367370129, -0.0424050801, 0.0815748274, 0.08671543, 0.1680946499, 0.028279515, -0.0564318374, 0.0356681868, 0.3896333277, 0.1423923075, 0.5392437577, 0.0255774539, 0.1664273739, -0.2396232784, 0.1745083928, 0.3232299089, 0.162324369, -0.0563940965, 0.0658029914, 0.0653193817, 0.2356823087, -0.142014429, -0.251215905, -0.100831151, 0.1202277839, 0.1188260168, 0.2824153304, -0.3085882664, 0.1336146742, -0.0352305323, 0.0329060033, -0.2267473638, -0.1435493231, 0.5653971434, -0.5540589094, -0.3062085509, -0.3145026863, 0.2423719466, 0.3347372115, 0.1990551203, 0.1113849878, -0.0586149171, 0.1164707318, -0.1394051611, -0.3094707131, 0.2706580162, 0.0268349871, 0.0200898424, -0.2097317278, -0.2281593978, 0.0892248899, -0.1314508021, -0.3454655409, -0.1742687225 ]
https://github.com/huggingface/datasets/issues/1790
ModuleNotFoundError: No module named 'apache_beam', when specific languages.
Hi ! Apache Beam is a framework used to define data transformation pipelines. These pipeline can then be run in many runtimes: DataFlow, Spark, Flink, etc. There also exist a local runner called the DirectRunner. Wikipedia is a dataset that requires some parsing, so to allow the processing to be run on this kind of runtime we're using Apache Beam. At Hugging Face we've already processed certain versions of wikipedia (the `20200501.en` one for example) so that users can directly download the processed version instead of using Apache Beam to process it. However for the japanese language we haven't processed it so you'll have to run the processing on your side. So you do need Apache Beam to process `20200501.ja`. You can install Apache Beam with ``` pip install apache-beam ``` I think we can probably improve the error message to let users know of this subtlety. What #498 implied is that Apache Beam is not needed when you process a dataset that doesn't use Apache Beam.
```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct?
167
ModuleNotFoundError: No module named 'apache_beam', when specific languages. ```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct? Hi ! Apache Beam is a framework used to define data transformation pipelines. These pipeline can then be run in many runtimes: DataFlow, Spark, Flink, etc. There also exist a local runner called the DirectRunner. Wikipedia is a dataset that requires some parsing, so to allow the processing to be run on this kind of runtime we're using Apache Beam. At Hugging Face we've already processed certain versions of wikipedia (the `20200501.en` one for example) so that users can directly download the processed version instead of using Apache Beam to process it. However for the japanese language we haven't processed it so you'll have to run the processing on your side. So you do need Apache Beam to process `20200501.ja`. You can install Apache Beam with ``` pip install apache-beam ``` I think we can probably improve the error message to let users know of this subtlety. What #498 implied is that Apache Beam is not needed when you process a dataset that doesn't use Apache Beam.
[ 0.1911677122, 0.0017938614, -0.0041888319, 0.186983645, 0.2713817656, 0.1396202743, 0.4213472605, 0.3950365782, 0.2294802666, 0.1781060249, 0.1076986343, -0.0914167464, 0.0533496328, -0.1092455536, 0.1017360836, -0.4603550136, 0.3123895228, 0.0755010545, -0.1031826586, -0.1862580776, -0.3473693728, 0.0844962597, -0.3394604623, 0.2037169337, -0.2264509797, 0.1729810089, -0.1223802418, 0.0795247033, 0.0796695948, -0.3102599382, 0.0695771426, -0.2526937723, -0.0015345588, 0.3789241016, -0.0001123201, 0.1725935042, 0.4942123294, -0.1868752241, -0.3528475463, -0.2001890838, -0.044073686, -0.5268993974, 0.0270450711, -0.4995657206, -0.1185736135, -0.3200572729, 0.124841705, -0.3306962848, 0.660890162, 0.2097997367, 0.1821455956, 0.3544293642, 0.0479210168, -0.0867461115, 0.4274947643, 0.0936123133, -0.1490343213, -0.0419641882, -0.0831073225, 0.0119519383, -0.0941675305, 0.5700824857, -0.3236298561, -0.0393853262, 0.2292388976, -0.2227158844, 0.0566583388, -0.6094757318, 0.1776169837, 0.3224823773, 0.7865329981, -0.1351767629, -0.2221818268, -0.1530815661, -0.1098431498, 0.235142976, 0.1595034003, 0.1091493294, -0.2148615718, 0.0463169254, 0.4381082058, -0.2706965506, -0.1476811171, 0.0733521804, 0.1302392483, 0.4315975606, 0.0706527233, 0.3176282346, -0.0545342416, -0.0860567316, -0.1191401929, -0.3226896822, 0.2525666952, 0.3874099851, -0.1137108877, 0.0848223418, 0.101793617, 0.1508977413, -0.0367009901, -0.2810485959, -0.1921423078, 0.1158809215, 0.1053411812, 0.1082062125, 0.1243435368, 0.1274575144, 0.3880293965, -0.0257628299, 0.3348404169, -0.2162709385, 0.1098150313, 0.0442703702, 0.0299779736, -0.2803062499, -0.3338727653, 0.2226012945, 0.3565323651, -0.0905373394, -0.0576839596, 0.0482549705, -0.4567848742, -0.3259343803, -0.2221912146, 0.3378890157, 0.1325862259, 0.4152708352, 0.1352868825, 0.2345645428, -0.2575586438, -0.4546526074, -0.0323014855, 0.3424354494, -0.4076469541, 0.1976638138, -0.046132762, 0.0144775435, 0.2195373178, -0.1552635431, 0.1326284111, 0.1820785254, -0.0900049061, -0.0856829509, -0.0457455479, 0.45031479, 0.0657335967, 0.4466488361, 0.2975470424, -0.1272508055, -0.2159793675, 0.2281533182, -0.2719877362, -0.2765984535, 0.1818431318, 0.0594422668, -0.3565078974, 0.2080850601, -0.010424383, -0.074066788, 0.0480914861, -0.0854226202, 0.2088578045, 0.0514476113, -0.0277338251, -0.2898871601, -0.0214104019, 0.7498966455, -0.2269247472, -0.0638566315, -0.0097219534, -0.1436579376, -0.1310088634, -0.0040015448, -0.1556618065, 0.2832135856, -0.2314025611, -0.0215377957, 0.5308305621, -0.5257612467, 0.0584362, 0.1944163442, -0.0982037485, 0.2102933526, 0.2612051666, 0.002672933, -0.4192947447, -0.2195366621, -0.288130641, 0.0506399311, 0.1025502756, -0.0246718079, -0.2568200231, -0.0081706494, 0.1157975942, 0.153702572, 0.1938264668, 0.078725636, 0.1328651309, 0.4823889136, 0.2445160151, -0.1990594715, 0.2263819575, 0.4565430284, -0.0051687099, 0.1091256142, 0.2236135602, 0.0644487664, -0.0629835725, 0.2775995731, -0.0855788663, 0.4019979239, -0.0905069709, -0.1003322005, -0.1479927152, -0.0885237306, -0.2833201289, -0.300855428, 0.0780691579, 0.0352993309, -0.0723937377, 0.331641674, -0.2848317325, 0.4456299543, -0.1219720393, 0.0501288325, -0.5256510973, -0.0278600529, -0.2387654185, 0.145837605, -0.0339006707, 0.0709548146, 0.2233176231, -0.1908290237, -0.0455725417, 0.1484084129, 0.1055572778, 0.1109235734, -0.0744637549, -0.0624694675, 0.144983843, -0.3980559707, 0.3778229058, 0.1355361044, 0.1264110804, -0.034706831, 0.1138771474, 0.263661623, 0.150561437, 0.5216034651, 0.0231503695, -0.0100320466, 0.0495376214, 0.0356118232, -0.343896538, -0.1951040328, 0.2003540993, 0.2368832082, 0.299969852, 0.047300756, 0.1174448654, -0.3627565205, 0.5069277883, -0.05430061, 0.1757463515, -0.0242704637, -0.324691236, 0.147503823, 0.1711483896, -0.2194789946, 0.2410334051, 0.1912722886, -0.1260134727, 0.0883797929, 0.2026081383, -0.1247961521, 0.0700961202, 0.2243947685, 0.4852196276, -0.0354692936, -0.2386365533, 0.0484006219, -0.1771228313, -0.0702499673, -0.2258550525, -0.0329048112, -0.2475074828, 0.1603959352, -0.1956041157, -0.6308540106, -0.3146679699, 0.049406644, -0.5606022477, -0.2840161324, -0.0563855954, -0.2035316378, -0.2767910361, 0.228088066, 0.1178845316, -0.049403131, 0.0303966925, -0.4305204451, -0.326308012, -0.3265706897, -0.3022224009, 0.0115314312, 0.2494440228, 0.080814898, 0.1863837987, -0.400044322, 0.0187864155, -0.2099527866, -0.2723644972, 0.2021512985, -0.172335431, -0.0010475311, -0.0152865425, 0.5179564357, -0.0564174019, -0.0476005003, 0.4222888052, -0.139916867, -0.1939955652, 0.1210300773, 0.1419622004, 0.0817628652, 0.0471342206, -0.5049284697, -0.1154184937, -0.4123277366, -0.0873087347, 0.0832736567, 0.1298006326, 0.2418060899, 0.1741638184, 0.2212675661, 0.0440377519, 0.0194629058, 0.0029388964, -0.0079014599, 0.2857333124, -0.133402735, -0.3504652381, 0.3051894605, -0.154602766, 0.114462316, 0.1189530045, -0.2039323747, -0.1464455575, 0.2433495075, 0.0775511861, -0.0539500527, 0.3316074014, 0.4205644727, -0.1318390071, 0.0001820326, -0.1190085039, -0.0543217845, -0.1399505734, -0.176916033, 0.3257745206, 0.2829317749, 0.3171049953, -0.0185836032, 0.8535456061, -0.0275242999, 0.469592452, 0.4642805159, 0.1470201015, 0.3714673817, -0.41120556, -0.1172695756, -0.091610074, 0.0645119548, -0.1340085119, 0.1620412469, -0.0790209323, 0.0574372932, -0.6090329885, -0.3949506283, -0.3404396474, -0.2219668627, 0.1575283855, -0.1700623333, 0.2305217534, 0.0265097842, 0.0417209417, 0.1240239665, 0.1018321067, 0.2508081198, 0.3875488937, 0.1745313257, 0.0880678892, -0.0849713385, -0.0875834823, -0.2883145809, 0.387193203, -0.0084187761, 0.1123480052, -0.065278396, -0.3105086088, 0.0889982581, 0.0730065703, 0.4744766951, -0.2369821817, -0.2140562087, 0.244482711, -0.0033576488, -0.6545328498, -0.0518579334, 0.0534755886, 0.0339649431, -0.0903275311, 0.1465221494, -0.2105579078, -0.3132275641, 0.1991849542, 0.4235745668, -0.1190468892, -0.2092808783, -0.5875594616, -0.0709563643, -0.4787140191, -0.094979085, -0.0751944855, -0.0542524345, 0.0713017806, 0.3650440872, 0.1260066479, -0.0556116626, 0.0407625549, -0.0285093077, 0.070158273, -0.1987765729, -0.3843262196, 0.1629838794, 0.2838367224, -0.129362151, 0.3129347861, -0.0545833483, -0.417164892, -0.203095451, -0.0646222532, 0.1295169741, 0.4219568968, 0.0074732266, -0.1024845317, 0.0093755983, -0.2213626951, 0.0771463513, -0.0407828391, 0.1367147863, -0.0255440604, -0.4656977952, -0.426004827, 0.727545321, 0.0573014393, -0.1102520674, 0.2195151001, 0.3865066171, -0.096120283, 0.4131186604, 0.120505318, 1.0968145132, -0.0403656736, 0.2054994106, 0.1531870365, 0.1145942509, 0.7433241606, -0.6203222871, 0.1198613122, -0.1833266765, 0.1576323509, -0.1322312355, -0.0103875771, 0.6084541678, 0.0741042271, 0.0390937626, 0.5708760023, 0.1639004797, 0.2875725925, -0.0295881666, 0.1656965315, -0.2634518743, -0.0626113266, -0.4114671648, 0.0360436738, -0.1083327532, 0.7435285449, -0.1365131736, -0.1755881608, -0.3005134165, -0.4897767603, -0.0995775163, -0.0115366764, -0.2393391281, 0.1199966073, -0.2641691566, -0.3201241493, -0.0009490401, 0.3039795756, 0.3844963908, -0.0567822121, -0.2318543196, 0.123467207, -0.1061984152, -0.0880051181, -0.2654598057, -0.0403254144, 0.4411509931, -0.1480442435, -0.1679430157, 0.1714524031, -0.4244392216, -0.0879567787, -0.1084508225, 0.1357579082, 0.5168759227, 0.2983567119, -0.1830002666, 0.2779880464, 0.0278040618, 0.0789498687, 0.1227025464, -0.1928294152, -0.0697578415, -0.1583997011, -0.2607504129, -0.129984796, -0.0765770078, 0.2389581203, 0.2075750679, -0.1365612894, 0.2965824008, 0.0048325732, -0.2153783292, -0.1935856938, 0.2620065808, 0.196881026, -0.1408132911, -0.2442779988, 0.1170084327, 0.0080764592, -0.2089568973, 0.0671193898, 0.0679160357, -0.1068510786, -0.0382123329, -0.2769327164, -0.2390617579, 0.3213489354, 0.010833919, -0.2085025907, 0.0373128206, 0.1167573035, 0.541667521, -0.0854341313, -0.2512436211, -0.236271441, 0.1338643134, 0.2141528279, 0.5877949595, 0.3229280114, 0.0615969338, 0.0207411274, 0.0353409983, -0.0073233983, -0.3004599512, -0.1186440289, 0.0404924378, 0.2043308318, 0.1712899208, 0.0379313678, 0.2153564095, -0.2638364136, 0.2779996991, -0.1914843917, 0.0485911071, 0.2978197038, -0.1865315437, 0.2497088313, 0.1298920959, 0.3748375177, -0.312964499, 0.1826842427, -0.2493487895, 0.1914862692, 0.2297150642, -0.0310409497, 0.3727428317, 0.114691034, -0.1360600591, -0.1334815919, -0.1840708554, -0.0747603104, -0.0018255236, -0.1629541814, 0.0507635027, -0.0449641012, 0.126365751, 0.1798336804, -0.2456466705, -0.0594853088, 0.2569032311, 0.135615319, -0.3840175569, 0.1147184074, 0.4462438524, -0.2306538969, -0.1444596052, 0.3152914643, 0.2557355762, 0.0696523637, 0.2864887118, 0.0793632567, 0.1090922803, -0.0833658129, 0.3604848683, 0.3540112078, 0.1339810491, 0.1699281931, 0.119309932, -0.0394220278, 0.1235607564, 0.6183955669, -0.3597970009, 0.5293433666, 0.1383291334, 0.2234868705, -0.2095674574, -0.1719873846, 0.4043194354, 0.3491841555, 0.0307414569, -0.063723214, -0.0098117478, -0.0151650198, -0.0383448973, -0.0439839214, -0.1558845937, 0.1526426077, -0.0238107052, 0.1840655208, 0.0606992841, -0.2756791711, -0.0898629278, -0.004263863, 0.0583705343, -0.3857108355, 0.2008375525, 0.1657791883, -0.0824830681, -0.0335786641, 0.2867559791, -0.0610286072, 0.1891627014, -0.0892436728, -0.1562723517, 0.0612952039, -0.2288974077, 0.0749252588, 0.0788592622, 0.2476974279, 0.2621337175, -0.1203020513, -0.0215710495, -0.013732614, -0.0387167968, 0.132817924, 0.1091327667, -0.0945224464, 0.2317101359, 0.2226294279, 0.0645292699, -0.1721494496, -0.0432612449, 0.1390095949, 0.0033628754, -0.4188854098, 0.044282373, -0.4233118594, -0.142373994, -0.4599451125, 0.1326025128, -0.4896370173, 0.0648630261, 0.142006427, 0.2148464769, -0.1376214474, -0.3698986769, 0.0368541367, -0.1593540162, 0.2568938136, 0.3579012752, 0.1144519448, -0.2953968048, -0.18135418, -0.6622399092, 0.0893711895, -0.3208748698, 0.1805421114, -0.1669026166, -0.1049252152, 0.2438536286, 0.3968713582, -0.0135990754, 0.0720950961, -0.0804831982, 0.0321501642, -0.3542993665, -0.11914967, -0.0947058946, 0.1253853291, -0.1326463521, -0.2455038875, 0.085980542, 0.0227907524, -0.007010147, -0.1017630994, -0.3187883496, 0.4922679067, -0.0574580543, 0.5561670661, 0.0317358598, 0.3317186534, 0.0810963362, -0.1596714556, 0.0483923517, 0.04617735, -0.2101218998, 0.2767448425, 0.0403250605, 0.2443188131, -0.202321291, -0.138950333, -0.3106030822, 0.5070669055, -0.0894305333, 0.0841184109, -0.2534946501, -0.0817407221, -0.0257495642, 0.1667096615, -0.1138293445, 0.0313686393, -0.0296892114, -0.1530406475, -0.5479575396, -0.0543607399, 0.4010425806, -0.6405130625, -0.3518933058, 0.0424925126, 0.2713646889, -0.006868314, -0.0719661117, -0.4508556426, 0.0561415702, 0.286824286, 0.209880963, 0.0925856084, -0.056256257, -0.2399145663, -0.1344611347, -0.0398825593, -0.4349629879, -0.1276825219, -0.0872315913, -0.075580053, -0.3943344951 ]
https://github.com/huggingface/datasets/issues/1790
ModuleNotFoundError: No module named 'apache_beam', when specific languages.
Thanks for your reply! I understood. I tried again with installing apache-beam, add ` beam_runner="DirectRunner"` and an anther `mwparserfromhell` is also required so I installed it. but, it also failed. It exited 1 without error message. ```py import datasets # BTW, 20200501.ja doesn't exist at wikipedia, so I specified date argument wiki = datasets.load_dataset("wikipedia", language="ja", date="20210120", cache_dir="./datasets", beam_runner="DirectRunner") print(wiki) ``` and its log is below ``` Using custom data configuration 20210120.ja Downloading and preparing dataset wikipedia/20210120.ja-date=20210120,language=ja (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to ./datasets/wikipedia/20210120.ja-date=20210120,language=ja/0.0.0/4021357e28509391eab2f8300d9b689e7e8f3a877ebb3d354b01577d497ebc63... Killed ``` I also tried on another machine because it may caused by insufficient resources. ``` $ python main.py Using custom data configuration 20210120.ja Downloading and preparing dataset wikipedia/20210120.ja-date=20210120,language=ja (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to ./datasets/wikipedia/20210120.ja-date=20210120,language=ja/0.0.0/4021357e28509391eab2f8300d9b689e7e8f3a877ebb3d354b01577d497ebc63... Traceback (most recent call last): File "main.py", line 3, in <module> wiki = datasets.load_dataset("wikipedia", language="ja", date="20210120", cache_dir="./datasets", beam_runner="DirectRunner") File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/datasets/load.py", line 609, in load_dataset builder_instance.download_and_prepare( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/datasets/builder.py", line 526, in download_and_prepare self._download_and_prepare( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/datasets/builder.py", line 1069, in _download_and_prepare pipeline_results = pipeline.run() File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/pipeline.py", line 561, in run return self.runner.run_pipeline(self, self._options) File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/direct/direct_runner.py", line 126, in run_pipeline return runner.run_pipeline(pipeline, options) File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 182, in run_pipeline self._latest_run_result = self.run_via_runner_api( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 193, in run_via_runner_api return self.run_stages(stage_context, stages) File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 358, in run_stages stage_results = self._run_stage( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 549, in _run_stage last_result, deferred_inputs, fired_timers = self._run_bundle( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 595, in _run_bundle result, splits = bundle_manager.process_bundle( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 888, in process_bundle self._send_input_to_worker(process_bundle_id, transform_id, elements) File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 765, in _send_input_to_worker data_out.write(byte_stream) File "apache_beam/coders/stream.pyx", line 42, in apache_beam.coders.stream.OutputStream.write File "apache_beam/coders/stream.pyx", line 47, in apache_beam.coders.stream.OutputStream.write File "apache_beam/coders/stream.pyx", line 109, in apache_beam.coders.stream.OutputStream.extend AssertionError: OutputStream realloc failed. ```
```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct?
279
ModuleNotFoundError: No module named 'apache_beam', when specific languages. ```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct? Thanks for your reply! I understood. I tried again with installing apache-beam, add ` beam_runner="DirectRunner"` and an anther `mwparserfromhell` is also required so I installed it. but, it also failed. It exited 1 without error message. ```py import datasets # BTW, 20200501.ja doesn't exist at wikipedia, so I specified date argument wiki = datasets.load_dataset("wikipedia", language="ja", date="20210120", cache_dir="./datasets", beam_runner="DirectRunner") print(wiki) ``` and its log is below ``` Using custom data configuration 20210120.ja Downloading and preparing dataset wikipedia/20210120.ja-date=20210120,language=ja (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to ./datasets/wikipedia/20210120.ja-date=20210120,language=ja/0.0.0/4021357e28509391eab2f8300d9b689e7e8f3a877ebb3d354b01577d497ebc63... Killed ``` I also tried on another machine because it may caused by insufficient resources. ``` $ python main.py Using custom data configuration 20210120.ja Downloading and preparing dataset wikipedia/20210120.ja-date=20210120,language=ja (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to ./datasets/wikipedia/20210120.ja-date=20210120,language=ja/0.0.0/4021357e28509391eab2f8300d9b689e7e8f3a877ebb3d354b01577d497ebc63... Traceback (most recent call last): File "main.py", line 3, in <module> wiki = datasets.load_dataset("wikipedia", language="ja", date="20210120", cache_dir="./datasets", beam_runner="DirectRunner") File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/datasets/load.py", line 609, in load_dataset builder_instance.download_and_prepare( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/datasets/builder.py", line 526, in download_and_prepare self._download_and_prepare( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/datasets/builder.py", line 1069, in _download_and_prepare pipeline_results = pipeline.run() File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/pipeline.py", line 561, in run return self.runner.run_pipeline(self, self._options) File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/direct/direct_runner.py", line 126, in run_pipeline return runner.run_pipeline(pipeline, options) File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 182, in run_pipeline self._latest_run_result = self.run_via_runner_api( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 193, in run_via_runner_api return self.run_stages(stage_context, stages) File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 358, in run_stages stage_results = self._run_stage( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 549, in _run_stage last_result, deferred_inputs, fired_timers = self._run_bundle( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 595, in _run_bundle result, splits = bundle_manager.process_bundle( File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 888, in process_bundle self._send_input_to_worker(process_bundle_id, transform_id, elements) File "/home/miyamonz/.cache/pypoetry/virtualenvs/try-datasets-4t4JWXxu-py3.8/lib/python3.8/site-packages/apache_beam/runners/portability/fn_api_runner/fn_runner.py", line 765, in _send_input_to_worker data_out.write(byte_stream) File "apache_beam/coders/stream.pyx", line 42, in apache_beam.coders.stream.OutputStream.write File "apache_beam/coders/stream.pyx", line 47, in apache_beam.coders.stream.OutputStream.write File "apache_beam/coders/stream.pyx", line 109, in apache_beam.coders.stream.OutputStream.extend AssertionError: OutputStream realloc failed. ```
[ 0.0917948335, 0.0745990723, 0.0195860565, 0.2518458664, 0.257083714, 0.0409057438, 0.3200166821, 0.3480709195, 0.1667263806, 0.19595249, 0.2174152732, 0.0488914698, -0.0974618867, -0.2695734501, 0.0972722322, -0.3023029268, 0.2464136928, 0.0408722572, -0.164441824, -0.2330406606, -0.3931178451, 0.1340929568, -0.3705986142, 0.0350905806, -0.1296225339, 0.3397007585, -0.0780817941, 0.0638156533, 0.0173255913, -0.2700098455, 0.0453569815, -0.3246162534, 0.1215119362, 0.373931706, -0.0001173204, 0.134380877, 0.4923773408, -0.2628590465, -0.3836726844, -0.2569675148, -0.1403351724, -0.4439763725, 0.0448289067, -0.4475935102, -0.1867606938, -0.2697493434, 0.0532010347, -0.3586478233, 0.3953624368, 0.2671945393, 0.1607774198, 0.2647910118, 0.1899028271, -0.0418006331, 0.4182234704, 0.0558924377, -0.2807166874, 0.0011080354, -0.0778782368, 0.1042611971, 0.032884527, 0.3811947107, -0.2652490735, 0.0351822712, 0.219608292, -0.2989068031, 0.0275771692, -0.5322274566, 0.1891092062, 0.1666529328, 0.7942329645, -0.3169865012, -0.1359950006, 0.0134902, -0.0399669223, 0.0834227651, 0.2887853384, 0.1149209365, -0.1483091414, -0.0395824835, 0.4454578757, -0.2758437991, -0.1213792339, 0.3104603887, 0.0970901921, 0.4800927043, 0.0280744694, 0.2852402925, -0.2220670879, -0.1609824449, -0.019383885, -0.3305300772, 0.2255714685, 0.3868536651, -0.2711616457, 0.0091112331, 0.0303923525, 0.170152843, 0.0020988584, -0.2076064199, -0.2619358003, 0.1003814489, 0.169239521, -0.0123884659, 0.0890530646, 0.15290007, 0.3734168112, 0.1121672839, 0.220674783, -0.1710113883, 0.0056283996, 0.0340127684, -0.0521674715, -0.3492519259, -0.3236452937, 0.1878949106, 0.3179504871, -0.162129283, -0.0892109871, 0.0642646328, -0.6158863306, -0.2876562774, -0.2265936136, 0.3501835465, 0.0944341719, 0.3287707567, 0.1527711749, 0.2902513146, -0.2045258582, -0.3957128227, -0.0542583242, 0.4753558934, -0.364549458, 0.2409628928, 0.0873939395, 0.1367838532, 0.1506340504, -0.1451437473, -0.045282159, 0.0375525057, -0.0371276811, 0.0036608092, -0.1230322421, 0.3735713363, 0.1352754533, 0.51921314, 0.2212900966, -0.0427364707, -0.09363316, 0.1430322826, -0.1821732819, -0.2547633648, 0.0409881175, 0.0198265798, -0.3785464764, 0.1690728366, 0.0418638662, -0.1529211402, -0.0193213299, -0.0137385577, 0.1795716882, 0.0659219772, -0.0775270686, -0.2482932955, 0.1928220391, 0.7632600069, -0.1837839484, -0.0071702227, -0.0386878997, -0.0945175812, -0.1337480396, -0.1851741374, -0.0107633881, 0.3875402808, -0.2644916177, -0.065222621, 0.6910916567, -0.5287436247, -0.0048349183, 0.1956306249, -0.0111864135, 0.0338993967, 0.2492822558, -0.1067638546, -0.2923361957, -0.1760914624, -0.259634912, 0.0050264671, 0.1304200292, -0.0345538706, -0.3318174481, -0.071458824, 0.0876162946, 0.2745759189, 0.3723239005, 0.0291087516, 0.2889195681, 0.6823459268, 0.1276977211, -0.0668428242, 0.2065408528, 0.5193422437, -0.0871529579, -0.0227723047, 0.1958386153, -0.0088051036, -0.2356020957, 0.2555716634, -0.1881495118, 0.2531148195, 0.0075529031, 0.0816440284, -0.172011584, -0.180682525, -0.3440954089, -0.214448303, 0.0655370355, 0.0168307722, 0.0882705227, 0.313051343, -0.3127646148, 0.43960464, -0.1976925135, 0.0134640709, -0.446765244, 0.0812011585, -0.1344241798, -0.0401019715, -0.0064322203, 0.0986572057, 0.3700563908, -0.2254784405, -0.1251106113, 0.1368412971, 0.0944713429, -0.0113432109, -0.0501034185, -0.1107399091, 0.1207017452, -0.3321649134, 0.423789382, 0.1321919858, 0.1378666312, -0.1063947976, 0.1518633664, 0.0876187906, 0.3021604419, 0.4313704371, 0.0128362104, -0.0354973637, -0.0844976082, -0.0023271292, -0.2098860145, -0.2393540144, 0.2860514522, 0.3622853756, 0.2126557231, -0.0158596151, 0.1649515629, -0.3541211188, 0.4365086555, 0.0414415225, 0.23511374, -0.0608066022, -0.4502047896, 0.2783482373, 0.0984189585, -0.1064570621, 0.3670890629, 0.1384745985, -0.2372380048, 0.1293945462, 0.2279011607, -0.057579577, 0.0922067314, 0.1565441042, 0.4523301721, 0.1082719415, -0.2713342905, 0.0434034579, -0.0382356755, -0.1230824143, -0.078040354, 0.1159631386, -0.2822549045, -0.0589114167, -0.3727226257, -0.49145329, -0.3270526826, 0.0718238205, -0.4088910818, -0.2334059477, -0.1688347608, -0.1222827435, -0.1346064508, 0.3930948675, 0.21238029, -0.2270426154, -0.0681201145, -0.3959477544, -0.2092330754, -0.2032679319, -0.268312484, -0.0390979238, 0.2976369262, 0.1895361841, 0.1925696284, -0.2675950229, -0.0959041491, -0.2099438161, -0.1003021002, 0.1910176575, 0.0083409064, -0.099482879, -0.0512177907, 0.4569109976, -0.0361202322, 0.0497275665, 0.3699607551, -0.0084839091, -0.1452655196, 0.177740857, 0.0052207671, 0.1532686055, -0.0275915563, -0.5211428404, -0.2453732491, -0.3921805024, -0.2898656428, 0.2246522605, 0.0522172377, 0.0134102218, 0.1566920877, 0.1527424157, -0.0422595516, 0.0668441504, 0.0891850367, 0.0916853845, 0.4245997965, -0.1491636187, -0.2796570957, 0.3423871398, -0.1902859807, 0.0289848186, 0.0970073044, -0.173014164, -0.0193446726, 0.3139031827, -0.1163846105, -0.0652332008, 0.2874519229, 0.5190104842, -0.1943498701, 0.0928248242, -0.0690186471, 0.008345373, -0.144400537, -0.244148761, 0.4245215654, 0.2974081039, 0.3056078553, -0.0435312539, 0.7822395563, 0.0108600706, 0.2556973398, 0.4260955453, 0.076299347, 0.2692809999, -0.3486821949, -0.0499946252, 0.0104914531, 0.2544057369, -0.0323164798, 0.1112650186, -0.0598253272, 0.0762262642, -0.6192238331, -0.3698079586, -0.2994991541, -0.2159065157, 0.1090988219, -0.2741406262, 0.1910421848, -0.0487077124, 0.0950106233, 0.1237664074, 0.0207048282, 0.2188320756, 0.4647519886, 0.0035707168, 0.0639351457, -0.0234032571, -0.092217654, -0.2643967271, 0.3273772299, -0.0421183743, 0.1358173639, -0.0947874188, -0.2361926734, 0.0894805565, 0.0631984174, 0.3092841506, -0.4035589099, -0.160622552, 0.3869543076, 0.0780750364, -0.6535660028, -0.1758490205, 0.0604874119, -0.0153945424, -0.0175039303, 0.0102818254, -0.193323791, -0.2446998954, 0.2949997187, 0.4285180271, -0.1423180699, -0.3749650121, -0.4727920592, 0.0281871334, -0.4894364774, -0.1883935034, -0.1379599273, 0.0788535923, 0.2421520054, 0.2184175551, 0.0651049912, -0.0924428329, 0.0236949231, -0.1127032861, 0.1126641706, -0.160725534, -0.161054343, -0.0255066864, 0.3260906339, -0.1186319068, 0.0631388873, 0.1046712995, -0.2547034621, -0.0499393269, -0.0169842876, 0.0706430301, 0.2264760733, -0.0151431225, -0.0195698291, -0.1449168026, -0.1970618516, 0.1059783995, -0.1217359975, 0.0783256441, -0.2491556704, -0.3910133839, -0.3480045199, 0.7426952124, 0.0271396637, -0.015964061, 0.3429035246, 0.2017015815, -0.1514667869, 0.3397690356, 0.0474290736, 0.9796897173, 0.0141841182, 0.0064001782, 0.0223955885, 0.1022481397, 0.8341009617, -0.6507050991, 0.0667033643, -0.2045769095, 0.2286322564, -0.054577224, -0.0850016996, 0.57181108, 0.1132342964, 0.0078876615, 0.6712855101, 0.140336737, 0.4805467427, -0.0816387236, 0.2062823027, -0.1636157781, -0.0353389792, -0.3509259224, 0.0182057619, -0.1721030474, 0.8090727925, -0.1634286195, -0.0957969278, -0.2525321841, -0.3281345367, -0.2581406236, 0.1180370152, -0.2528877556, 0.1364771724, -0.3172073662, -0.3505345881, 0.0723372251, 0.3597848415, 0.4233639836, 0.0166259259, -0.1673576683, 0.1833546013, -0.0774712861, -0.1585699171, -0.2163070738, 0.107541807, 0.2258036435, -0.1334332228, -0.1807710528, 0.16909796, -0.3425919414, -0.1193558499, -0.0113396794, 0.0227900445, 0.6689749956, 0.2682597339, -0.2767084241, 0.355376035, 0.1283432096, 0.0693107843, 0.1103161722, -0.2117784023, -0.0266519263, 0.0278244335, -0.3508480191, -0.0341708139, -0.1292223036, 0.3872735202, 0.2311328501, -0.1130412519, 0.3309110999, 0.1251433492, -0.123367548, -0.2332202494, 0.2853120267, 0.1719536632, -0.2076357752, -0.2752785087, 0.2128840685, 0.1703673005, -0.0983969122, 0.0386641733, 0.033519838, -0.0663087815, 0.0395463631, -0.2681114972, -0.1334900409, 0.2705456018, -0.0388369262, -0.1897755265, -0.0689271316, 0.214150086, 0.4571787715, -0.2815122902, -0.1937304437, -0.253908962, 0.0339947417, 0.1256140769, 0.495890677, 0.3753300011, -0.0051881373, 0.0660260469, 0.0335873775, -0.0018730154, -0.1946711242, -0.1027395129, 0.0161385834, 0.2142413855, 0.2061054111, 0.1632522494, 0.1095707864, -0.4472340047, 0.2173192799, -0.1595728099, -0.022316277, 0.2547008097, -0.1646430492, 0.2865303159, 0.17364721, 0.321105063, -0.5296332836, 0.2142917663, -0.1817488223, 0.3453175128, 0.1947266906, 0.0170995574, 0.4853263199, 0.1384411752, -0.4599796534, -0.1773356199, -0.3498991132, -0.0312799774, 0.0323652439, -0.1172960848, 0.0418918356, -0.0186135806, 0.0521194488, 0.1834576726, -0.2758885622, -0.0591305755, 0.2848199904, 0.1028099582, -0.2974637747, 0.1754073054, 0.489100039, -0.0981938764, -0.1404957324, 0.2333764136, 0.1426935196, -0.091671437, 0.3412103653, 0.1548686326, 0.1631515622, -0.1787315011, 0.20530954, 0.1840970367, 0.2948666215, 0.1575997472, 0.0475283489, -0.0538382046, 0.0880154148, 0.6539545655, -0.2858648896, 0.4924993217, 0.1011861339, 0.1677300036, -0.2116199881, -0.241617322, 0.3595822752, 0.4214579463, 0.0517493486, -0.1443925649, -0.1237961948, -0.0773714259, -0.014710743, -0.0196917821, -0.2302412391, 0.1290179193, 0.0224808641, 0.2884570062, -0.127694428, -0.2530808449, -0.055131048, 0.029763326, 0.0555027686, -0.3724523187, 0.1534011364, 0.2548290491, -0.1121662781, -0.0339410603, 0.3947483301, 0.0025753006, 0.0506306961, -0.1041764244, -0.026668407, -0.0051420666, -0.1853562295, -0.0603184439, 0.1111042053, 0.2266116142, 0.3590022027, -0.1547213197, -0.077951476, 0.1268207282, -0.0255478248, 0.1880697757, 0.0604320802, -0.1555505097, 0.2081419379, 0.2435005605, 0.0489711761, -0.152484864, -0.0412455983, 0.2414976209, 0.0703480244, -0.2723354101, 0.0677772835, -0.357355088, 0.0387386382, -0.4263153672, 0.2583352327, -0.564267695, 0.0693700537, 0.0122657716, 0.3249207139, -0.1382800341, -0.3196531534, 0.0110139847, -0.2432869375, 0.134806931, 0.2248660922, 0.118595466, -0.4263073206, -0.3554019332, -0.4867433012, 0.0426193178, -0.3128665388, 0.13087219, -0.2051989734, 0.0502482206, 0.0146708358, 0.3552871644, 0.0461791605, 0.2269866318, -0.1186076403, 0.2433991432, -0.3425809145, -0.1701990664, -0.0914429352, 0.1100939363, -0.0911926776, -0.2694913149, -0.0306064859, -0.226007089, -0.024298463, -0.1080481857, -0.4202314317, 0.5537155867, -0.0947473198, 0.582588315, -0.1459341347, 0.3008622527, 0.0713765249, -0.1396202296, -0.004673738, -0.0106662735, -0.0691249296, 0.1544356048, -0.0537481047, 0.2252951264, -0.2020621896, -0.0179010145, -0.3485686779, 0.4514455199, -0.2499371469, 0.1921251714, -0.1374956667, 0.0063455254, 0.0350946337, 0.2750194371, -0.0353066772, -0.0754015744, -0.1648886502, 0.0065832213, -0.5357225537, -0.0180694163, 0.2722667456, -0.4996757805, -0.2172190398, -0.0332432985, 0.3454780579, -0.1404283047, -0.0262268595, -0.4189312756, 0.1473215222, 0.3714239597, 0.1580149531, 0.1390683502, -0.0115359277, -0.158379063, -0.0784910098, 0.0356108323, -0.5600675344, -0.1644401252, -0.0257757232, -0.0694183484, -0.2995333076 ]
https://github.com/huggingface/datasets/issues/1790
ModuleNotFoundError: No module named 'apache_beam', when specific languages.
Hi @miyamonz, I tried replicating this issue using the same snippet used by you. I am able to download the dataset without any issues, although I stopped it in the middle because the dataset is huge. Based on a similar issue [here](https://github.com/google-research/fixmatch/issues/23), it could be related to your environment setup, although I am just guessing here. Can you share these details?
```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct?
61
ModuleNotFoundError: No module named 'apache_beam', when specific languages. ```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct? Hi @miyamonz, I tried replicating this issue using the same snippet used by you. I am able to download the dataset without any issues, although I stopped it in the middle because the dataset is huge. Based on a similar issue [here](https://github.com/google-research/fixmatch/issues/23), it could be related to your environment setup, although I am just guessing here. Can you share these details?
[ -0.086890772, 0.154411912, 0.034921214, 0.2511789501, 0.3533329368, 0.1083714664, 0.3212845922, 0.4499053061, 0.3734616935, 0.0088103339, 0.1023253649, 0.0063318387, -0.0099072773, -0.02255987, -0.0207932629, -0.2547832131, 0.1721132398, 0.0012148805, -0.2130486965, -0.2989026904, -0.3872272968, 0.0866741687, -0.3275979459, 0.0159584302, -0.0521655008, 0.1556020677, -0.0279715247, 0.1574121565, 0.0401066244, -0.174925521, 0.2103829086, -0.1249950528, -0.0505449027, 0.3043377995, -0.0001079279, 0.0701230466, 0.4934640527, -0.2194036543, -0.3645665646, -0.4068616033, -0.0887668654, -0.3472994566, 0.0214764029, -0.4108133614, -0.1609839648, -0.1692383587, 0.0275848638, -0.4244208634, 0.2876334786, 0.2971324623, 0.2558147609, 0.3765888512, 0.1853015125, -0.0902390331, 0.4627014101, -0.250867784, -0.1734851301, 0.1522738039, 0.1026160419, -0.0133813545, 0.0926946104, 0.4647521973, -0.3321599662, 0.1229284406, 0.3978904486, -0.2104094177, -0.109965682, -0.5223606229, 0.1911681592, 0.2853012383, 0.8053055406, -0.3187527955, -0.2136245221, -0.0639345944, -0.0466214158, 0.0935501233, 0.1669068635, 0.1960047483, -0.13857086, 0.0132208439, 0.2564673126, -0.2776072323, -0.1129508689, 0.2547970116, 0.0206989199, 0.4345429838, 0.1130513102, 0.2906377614, -0.1213331893, -0.1309856772, 0.0601089671, -0.3038207889, 0.1790288687, 0.4227380753, -0.3936531246, 0.0983678848, 0.0753656775, 0.0314876474, 0.2047477663, -0.0097003356, -0.1731484234, 0.2701099515, 0.1781291366, 0.0558496267, 0.1880674511, 0.2425357699, 0.2048567235, 0.2180305421, 0.379183054, -0.0918194652, -0.0715206861, 0.0213900972, 0.0087916888, -0.3030602932, -0.2551547289, 0.2065252513, 0.3416900933, -0.2393633276, -0.2113463283, 0.1680405289, -0.3932999074, -0.1952901781, -0.189036116, 0.4464721382, 0.0903827399, 0.3386284709, 0.127075702, 0.3620222211, -0.227798298, -0.4340923131, -0.1698251665, 0.2832835913, -0.2518641353, 0.1006730497, 0.1977661252, 0.1170082986, 0.1428783834, -0.1512924731, 0.0498558059, 0.067235738, 0.1198379844, 0.0282121822, -0.0978279412, 0.3394683599, 0.1440696418, 0.5026990175, 0.1971622556, -0.0773213953, -0.1979622394, 0.0690232515, -0.3356408179, -0.0876071006, 0.030022027, 0.145482868, -0.4106612504, 0.1392477453, 0.0276992414, -0.160950765, -0.0260568894, -0.1307489425, 0.0702850968, -0.0336302891, -0.0718865246, -0.3641682863, 0.1907552183, 0.7568347454, -0.1171796322, -0.0507882684, 0.1492201984, -0.0326978266, -0.0346768275, 0.0621210113, -0.0179951955, 0.0897546038, -0.2658485174, 0.0493912995, 0.5301238298, -0.497159034, -0.3745909035, 0.1492233723, -0.1303745359, 0.0674141571, 0.1934700012, 0.0981657803, -0.2233921438, -0.0491438359, -0.0737072825, 0.3216209412, 0.1220702305, 0.1127695963, -0.3805291653, -0.0859914571, 0.2065780908, 0.1555686891, 0.2180373669, 0.0378917083, 0.2462632358, 0.1764463782, 0.1007474512, -0.2408954352, 0.2300169468, 0.4026341438, 0.0822452456, -0.0768728703, 0.2185532153, -0.0472879298, -0.3427561522, 0.3855518699, -0.2262893021, 0.2532648444, -0.1266786009, 0.0323276371, -0.2458291948, -0.0815851688, -0.3950968683, -0.315359205, 0.1326069236, -0.0861044228, 0.1729102731, 0.4195107818, -0.0904740691, 0.5479966998, -0.0806824267, 0.0869766623, -0.3802217841, 0.3531742394, -0.1568662524, -0.0223208982, 0.0899971724, 0.162747398, 0.2166814804, -0.2049011141, -0.1471842378, 0.2453874052, 0.0316126384, 0.1753812879, 0.0656090528, -0.1363479644, 0.1981263459, -0.4174292386, 0.2811174393, 0.3059634864, 0.2019189149, 0.0005686507, -0.0248595141, 0.3194141388, 0.2762658596, 0.3443272114, 0.1001222134, 0.1419813633, 0.1740660369, -0.1156530827, -0.1184249669, -0.2050986439, 0.3828371465, 0.2041457891, 0.2647700906, -0.0008263532, 0.0527260005, -0.1929024756, 0.4928573966, -0.0328531563, 0.3465646803, -0.0434930623, -0.455396086, 0.1410558075, 0.0728565529, 0.0346844196, 0.3330877423, 0.1398337781, -0.1654708534, 0.1523960531, 0.1527923048, -0.0811332613, 0.0703575611, 0.0401981734, 0.2829315066, 0.1309207678, -0.0361880809, 0.0502578802, -0.1252747923, -0.0067714974, -0.2078781128, 0.1457997561, -0.2919573188, 0.0663337931, -0.3126635849, -0.3919145465, -0.1884229481, 0.2504108548, -0.4732928872, -0.3105266094, -0.1453042179, -0.0280139297, -0.1986226737, 0.2472379208, -0.0033551082, -0.1925319135, 0.16338557, -0.4583181143, -0.1651169658, -0.3762438595, -0.3328976631, 0.0173070431, 0.3358546495, 0.1337053776, 0.2784573734, -0.2997748852, 0.0515950173, -0.4177362919, -0.272166729, 0.1581751406, -0.0346397534, 0.0360916853, 0.0005480908, 0.4427485764, -0.0048959702, 0.0365112796, 0.3516402245, -0.2354393303, -0.1929249465, 0.3119668961, 0.0282667615, -0.0133798234, 0.0411229506, -0.6374546289, -0.3070066571, -0.4252648354, -0.1391488612, 0.0489383042, -0.0108336322, 0.0516516194, 0.1416080445, -0.0006664693, 0.0320222415, -0.0082555823, -0.0140781272, 0.1327497065, 0.5062488317, -0.145672664, -0.5656462312, 0.3194140196, -0.1603343487, 0.0624305271, 0.1956934184, -0.1955650747, -0.0620268546, 0.1375662088, -0.0365844034, 0.0259971712, 0.2926808596, 0.3939032257, -0.2571810484, 0.0382181853, -0.136545673, 0.0062153637, -0.0437450446, -0.0114897471, 0.295016408, 0.2645318806, 0.1776740849, -0.0364727452, 0.7936726809, 0.0073538795, 0.2100248337, 0.4813814759, 0.0773185268, 0.2936624587, -0.3421625495, -0.1942973435, 0.008329615, -0.0027577505, 0.014970243, 0.1873183846, -0.0818460286, -0.1355631799, -0.6442768574, -0.3588297367, -0.2766450047, -0.3226228952, 0.0453202426, -0.2160211802, 0.1843607426, 0.2023990899, 0.0938607007, 0.0738990232, -0.1065476835, 0.2340160906, 0.2605073452, -0.1759538502, 0.0929546505, -0.1118323058, -0.1769472063, -0.32822752, 0.4158121347, 0.0226241015, 0.202285111, 0.0030381754, -0.2317769229, 0.0856691748, 0.018948447, 0.4692162275, -0.3120104373, -0.0437581688, 0.1216036454, 0.2594096661, -0.5550559759, -0.1870959103, -0.0322665796, 0.0321301073, -0.0438287035, 0.1810924262, -0.2550390661, -0.0802217871, 0.0668693781, 0.4545520544, -0.0828832686, -0.1274317354, -0.4367998838, -0.050219968, -0.5733696222, -0.0828637183, -0.0977894589, 0.1422573924, 0.0972931832, 0.1623548418, 0.0961019099, -0.0142737627, -0.0320802778, -0.0085723661, 0.3404169977, -0.2043997645, -0.035457205, 0.0853671134, 0.1748307049, 0.0460114628, 0.4567002654, 0.1034707874, -0.4493021369, -0.0529026315, -0.2239477336, -0.0457786471, 0.1897383481, -0.0751508772, -0.2041161656, -0.1439584345, -0.0854971707, 0.0563914664, -0.0305152293, 0.0876143724, -0.0236541126, -0.435292542, -0.3729910254, 0.5270695686, -0.0330389142, -0.0570131689, 0.3110019863, 0.1127650142, -0.1070810631, 0.4222751558, 0.0187407844, 0.8645868301, -0.0188710317, 0.210195601, 0.0582884029, -0.0400820225, 0.7248645425, -0.5399270058, 0.077163592, -0.2701843381, 0.0008101948, -0.087906532, -0.1371290237, 0.3018960953, 0.0046130815, -0.0912814885, 0.7011964917, 0.113635391, 0.3072914779, -0.0284122191, 0.1268318444, -0.2231798172, 0.0247500874, -0.2159260064, 0.0936156064, -0.2517372966, 0.7930027246, -0.1146829128, -0.1685599238, -0.3997274041, -0.4847642481, -0.2735731006, 0.2067972124, -0.3265919089, 0.1057648212, -0.1365809441, -0.2755324244, -0.0160142668, 0.1685111225, 0.3396861553, 0.0835612193, -0.3524111807, 0.1991563737, -0.0432499871, -0.0633540601, -0.0457835682, 0.0030711666, 0.271738857, -0.0967704728, -0.2318738103, 0.1485334635, -0.2545041144, -0.1019379571, -0.115730077, 0.0610879771, 0.3317455649, 0.2247246057, -0.2792204618, 0.2246246338, 0.1533651352, -0.0630285293, 0.180022493, -0.0494340062, -0.0303300675, -0.0032995306, -0.1809818149, -0.2474682331, -0.1228527576, 0.520588994, 0.1839739084, -0.2424334884, 0.4066536725, 0.1723616123, -0.2104173154, -0.2410998642, 0.1621389985, 0.1905706823, -0.2650225163, -0.1460515559, -0.0318618417, 0.0957717299, -0.1386881173, 0.1677307189, -0.0113468133, -0.1096299291, 0.0953372866, -0.4442578554, -0.0326412581, 0.1852376163, -0.0854348987, -0.1010638475, 0.0033142492, 0.0053183474, 0.4032243788, -0.29716295, -0.2888949513, -0.1376590431, -0.1059076414, 0.0224618874, 0.5605171919, 0.2935125828, 0.0023231804, -0.0581454635, 0.0937647969, -0.1268177778, -0.193780303, -0.2027930021, -0.014947772, 0.1385531873, 0.0434804372, 0.1630501449, 0.0703656375, -0.4823306799, 0.2021602392, -0.1527926624, 0.0567931235, 0.2536280453, -0.1994744092, 0.1771408617, 0.1085899249, 0.1843017489, -0.3525301814, 0.2674996555, -0.3646937311, 0.1721935272, 0.1304797381, 0.0686094612, 0.3867247999, 0.1516537815, -0.1735511124, -0.1742302179, -0.3743778169, -0.0482578091, 0.2108210325, -0.1414895505, -0.0068629831, 0.1340986192, 0.1062338203, 0.2562639117, -0.35032776, -0.1075853854, 0.1836727262, 0.1969270706, -0.4555108845, -0.0751975253, 0.403757751, -0.1358787715, -0.0214966461, 0.1843523681, 0.2636781931, -0.2410953194, 0.305970639, 0.1916550994, 0.3945592344, -0.1170291305, 0.3011952341, 0.3527545035, 0.1779987961, 0.139612481, -0.0304127783, 0.047454983, 0.1353857964, 0.6484866738, -0.2091656476, 0.4114721715, 0.0674025491, 0.1030042619, -0.262419343, -0.3011830747, 0.2992067933, 0.2204037756, -0.0695168078, 0.0292884558, -0.0240158178, -0.0019984208, 0.0860411301, -0.0565786138, -0.1585497856, 0.1666675806, 0.0012735063, 0.2253451198, 0.0179717839, -0.3519012332, -0.0729079023, 0.1331724972, 0.0312033072, -0.2385889888, 0.2281273305, 0.1682943106, -0.1240404546, -0.1239726618, 0.3742432892, -0.1189195514, 0.0136318244, -0.1376559138, 0.0254038777, 0.0463539213, -0.1598242223, 0.0069210092, 0.163575232, 0.26063025, 0.3488023877, -0.286647439, -0.0238138549, 0.1784339249, -0.0675253496, -0.0155992359, 0.0920844227, -0.0621978864, -0.0524861328, 0.2890610099, 0.1136481017, -0.1780466735, 0.095382303, 0.0433130786, -0.036969915, -0.2705108523, -0.0533740558, -0.3792496622, 0.0871786624, -0.3402254879, 0.0389809236, -0.6098287106, -0.0060964525, 0.1512968987, 0.1895901412, -0.0063754357, -0.3605642021, 0.060546577, -0.1073404849, 0.3097569346, 0.4319078624, 0.1203090847, -0.3997267485, -0.2315174341, -0.7111361623, 0.2788396776, -0.4106047153, 0.1450006366, -0.149578765, 0.0707300454, 0.0984140858, 0.2337606549, 0.1786880195, 0.3277376294, -0.2366157472, 0.1039687842, -0.3699017465, -0.3021473885, -0.2403443754, -0.0011570416, -0.1039976776, -0.3225291967, 0.1565545201, -0.1339521408, 0.0949151218, -0.1408354342, -0.3069472611, 0.390530169, -0.0223493669, 0.5410961509, 0.0151772443, 0.4371796548, 0.0846310407, 0.0127382502, -0.0869759172, -0.0852236003, -0.1114196852, 0.1609832197, -0.0790186301, 0.0597910285, -0.1316003054, -0.163412869, -0.2565715313, 0.4323994517, 0.1219810992, 0.1696545333, -0.1993858814, 0.0667919964, 0.0294772089, 0.1640384048, -0.135773629, -0.0447174385, -0.2038326114, -0.0330543369, -0.3078813851, -0.2646477818, 0.2891610861, -0.4281415641, -0.3605462909, -0.002463799, 0.1914000511, -0.2226689458, 0.0112383422, -0.3648007214, 0.2167716622, 0.3255027235, 0.1010455638, -0.1234168559, -0.0122087765, -0.1454687119, -0.088190414, 0.0029762089, -0.3081107736, 0.0867413431, -0.1296567917, 0.0083834454, -0.2291346192 ]
https://github.com/huggingface/datasets/issues/1790
ModuleNotFoundError: No module named 'apache_beam', when specific languages.
thanks for your reply and sorry for my late response. ## environment my local machine environment info - Ubuntu on WSL2 `lsb_release -a` ``` No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 20.04.2 LTS Release: 20.04 Codename: focal ``` RTX 2070 super Inside WSL, there is no nvidia-msi command. I don't know why. But, `torch.cuda.is_available()` is true and when I start something ML training code GPU usage is growing up, so I think it works. From PowerShell, there is nvidia-smi.exe and result is below. ``` +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.05 Driver Version: 470.05 CUDA Version: 11.3 | |-------------------------------+----------------------+----------------------+ | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... WDDM | 00000000:09:00.0 On | N/A | | 0% 30C P8 19W / 175W | 523MiB / 8192MiB | 3% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 1728 C+G Insufficient Permissions N/A | | 0 N/A N/A 3672 C+G ...ekyb3d8bbwe\YourPhone.exe N/A | | 0 N/A N/A 6304 C+G ...2txyewy\TextInputHost.exe N/A | | 0 N/A N/A 8648 C+G C:\Windows\explorer.exe N/A | | 0 N/A N/A 9536 C+G ...y\ShellExperienceHost.exe N/A | | 0 N/A N/A 10668 C+G ...5n1h2txyewy\SearchApp.exe N/A | | 0 N/A N/A 10948 C+G ...artMenuExperienceHost.exe N/A | | 0 N/A N/A 11988 C+G ...8wekyb3d8bbwe\Cortana.exe N/A | | 0 N/A N/A 12464 C+G ...cw5n1h2txyewy\LockApp.exe N/A | | 0 N/A N/A 13280 C+G ...upport\CEF\Max Helper.exe N/A | | 0 N/A N/A 15948 C+G ...t\GoogleIMEJaRenderer.exe N/A | | 0 N/A N/A 16128 C+G ...ram Files\Slack\Slack.exe N/A | | 0 N/A N/A 19096 C+G ...8bbwe\WindowsTerminal.exe N/A | +-----------------------------------------------------------------------------+ ``` I don't know what should I show in such a case. If it's not enough, please tell me some commands. --- ## what I did I surveyed more and I found 2 issues. About the first one, I wrote it as a new issue. https://github.com/huggingface/datasets/issues/2031 The error I mentioned in the previous comment above, which occurred on my local machine, is no longer occurring. But, it still failed. In the previous comment, I wrote `AssertionError: OutputStream realloc failed.` happen on another machine. It also happens on my local machine. Here's what I've tried. the wikipedia.py downloads these xml.bz2 files based on dumpstatus.json In Japanese Wikipedia dataset that I specified, it will download these 6 files. `https://dumps.wikimedia.org/jawiki/20210120/dumpstatus.json` and filtered json based on wikipedia.py is below. ```json { "jobs": { "articlesmultistreamdump": { "files": { "jawiki-20210120-pages-articles-multistream1.xml-p1p114794.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream1.xml-p1p114794.bz2" }, "jawiki-20210120-pages-articles-multistream2.xml-p114795p390428.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream2.xml-p114795p390428.bz2" }, "jawiki-20210120-pages-articles-multistream3.xml-p390429p902407.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream3.xml-p390429p902407.bz2" }, "jawiki-20210120-pages-articles-multistream4.xml-p902408p1721646.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream4.xml-p902408p1721646.bz2" }, "jawiki-20210120-pages-articles-multistream5.xml-p1721647p2807947.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream5.xml-p1721647p2807947.bz2" }, "jawiki-20210120-pages-articles-multistream6.xml-p2807948p4290013.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream6.xml-p2807948p4290013.bz2" } } } } } ``` So, I tried running with fewer resources by modifying this line. https://github.com/huggingface/datasets/blob/13a5b7db992ad5cf77895e4c0f76595314390418/datasets/wikipedia/wikipedia.py#L524 I changed it like this. just change filepaths list. ` | "Initialize" >> beam.Create(filepaths[:1])` and I added a print line inside for the loop of _extract_content. like this `if(i % 100000 == 0): print(i)` first, without modification, it always stops after all _extract_content is done. - `filepaths[:1]` then it succeeded. - `filepaths[:2]` then it failed. I don't try all patterns because each pattern takes a long time. ### my opinion It seems it's successful when the entire file size is small. so, at least it doesn't file-specific issue. I don't know it's true but I think when beam_writter writes into a file, it consumes memory depends on its entire file. but It's correct Apache Beam's behavior? I'm not familiar with this library.
```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct?
606
ModuleNotFoundError: No module named 'apache_beam', when specific languages. ```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct? thanks for your reply and sorry for my late response. ## environment my local machine environment info - Ubuntu on WSL2 `lsb_release -a` ``` No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 20.04.2 LTS Release: 20.04 Codename: focal ``` RTX 2070 super Inside WSL, there is no nvidia-msi command. I don't know why. But, `torch.cuda.is_available()` is true and when I start something ML training code GPU usage is growing up, so I think it works. From PowerShell, there is nvidia-smi.exe and result is below. ``` +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.05 Driver Version: 470.05 CUDA Version: 11.3 | |-------------------------------+----------------------+----------------------+ | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... WDDM | 00000000:09:00.0 On | N/A | | 0% 30C P8 19W / 175W | 523MiB / 8192MiB | 3% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 1728 C+G Insufficient Permissions N/A | | 0 N/A N/A 3672 C+G ...ekyb3d8bbwe\YourPhone.exe N/A | | 0 N/A N/A 6304 C+G ...2txyewy\TextInputHost.exe N/A | | 0 N/A N/A 8648 C+G C:\Windows\explorer.exe N/A | | 0 N/A N/A 9536 C+G ...y\ShellExperienceHost.exe N/A | | 0 N/A N/A 10668 C+G ...5n1h2txyewy\SearchApp.exe N/A | | 0 N/A N/A 10948 C+G ...artMenuExperienceHost.exe N/A | | 0 N/A N/A 11988 C+G ...8wekyb3d8bbwe\Cortana.exe N/A | | 0 N/A N/A 12464 C+G ...cw5n1h2txyewy\LockApp.exe N/A | | 0 N/A N/A 13280 C+G ...upport\CEF\Max Helper.exe N/A | | 0 N/A N/A 15948 C+G ...t\GoogleIMEJaRenderer.exe N/A | | 0 N/A N/A 16128 C+G ...ram Files\Slack\Slack.exe N/A | | 0 N/A N/A 19096 C+G ...8bbwe\WindowsTerminal.exe N/A | +-----------------------------------------------------------------------------+ ``` I don't know what should I show in such a case. If it's not enough, please tell me some commands. --- ## what I did I surveyed more and I found 2 issues. About the first one, I wrote it as a new issue. https://github.com/huggingface/datasets/issues/2031 The error I mentioned in the previous comment above, which occurred on my local machine, is no longer occurring. But, it still failed. In the previous comment, I wrote `AssertionError: OutputStream realloc failed.` happen on another machine. It also happens on my local machine. Here's what I've tried. the wikipedia.py downloads these xml.bz2 files based on dumpstatus.json In Japanese Wikipedia dataset that I specified, it will download these 6 files. `https://dumps.wikimedia.org/jawiki/20210120/dumpstatus.json` and filtered json based on wikipedia.py is below. ```json { "jobs": { "articlesmultistreamdump": { "files": { "jawiki-20210120-pages-articles-multistream1.xml-p1p114794.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream1.xml-p1p114794.bz2" }, "jawiki-20210120-pages-articles-multistream2.xml-p114795p390428.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream2.xml-p114795p390428.bz2" }, "jawiki-20210120-pages-articles-multistream3.xml-p390429p902407.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream3.xml-p390429p902407.bz2" }, "jawiki-20210120-pages-articles-multistream4.xml-p902408p1721646.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream4.xml-p902408p1721646.bz2" }, "jawiki-20210120-pages-articles-multistream5.xml-p1721647p2807947.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream5.xml-p1721647p2807947.bz2" }, "jawiki-20210120-pages-articles-multistream6.xml-p2807948p4290013.bz2": { "url": "/jawiki/20210120/jawiki-20210120-pages-articles-multistream6.xml-p2807948p4290013.bz2" } } } } } ``` So, I tried running with fewer resources by modifying this line. https://github.com/huggingface/datasets/blob/13a5b7db992ad5cf77895e4c0f76595314390418/datasets/wikipedia/wikipedia.py#L524 I changed it like this. just change filepaths list. ` | "Initialize" >> beam.Create(filepaths[:1])` and I added a print line inside for the loop of _extract_content. like this `if(i % 100000 == 0): print(i)` first, without modification, it always stops after all _extract_content is done. - `filepaths[:1]` then it succeeded. - `filepaths[:2]` then it failed. I don't try all patterns because each pattern takes a long time. ### my opinion It seems it's successful when the entire file size is small. so, at least it doesn't file-specific issue. I don't know it's true but I think when beam_writter writes into a file, it consumes memory depends on its entire file. but It's correct Apache Beam's behavior? I'm not familiar with this library.
[ -0.0164621174, -0.1208427399, -0.044925943, 0.1289525777, 0.3602371514, 0.0117901415, 0.4635167122, 0.3990744352, 0.2657026649, 0.2212449759, 0.3692162335, -0.0926485658, 0.0788547248, -0.0503802001, 0.3171318173, -0.3475853205, 0.3893395066, -0.1023073047, -0.0446153209, -0.2853876352, -0.3970682025, 0.097274363, -0.3274346292, 0.2043331265, -0.2763908803, 0.383448571, 0.0855947137, 0.0011824397, 0.2684018016, -0.0742646828, 0.0483054668, -0.3112154603, 0.2795854807, 0.1183502972, -0.0001173796, 0.153929472, 0.2787111402, -0.379684329, -0.2545412779, -0.3259485066, 0.1180820465, -0.5497903228, 0.0536578, -0.4102144241, -0.3081612885, -0.3167407513, -0.0167243816, -0.3641589582, 0.2351645529, 0.2283264101, 0.1696380824, 0.2152371258, -0.0553047359, 0.0463573113, 0.4933215976, 0.0602149405, -0.3058097363, -0.0181187615, 0.0697604567, 0.0744796991, 0.1465840787, 0.6420860887, -0.2314606309, -0.0152313579, 0.0673135296, -0.0167856142, 0.1663652658, -0.3263391852, 0.1945957392, 0.0899545699, 0.4828103185, -0.2662921548, -0.0162720364, 0.0410079509, -0.1090238392, -0.1496424973, 0.2806898952, 0.2335034013, -0.2153162062, 0.0255008079, 0.446775645, -0.0751216561, 0.0193947703, 0.1508821845, -0.0414784998, 0.664296031, 0.0698073432, 0.3139584363, -0.1830180734, -0.038737528, -0.2058107853, -0.1763625741, 0.2024043202, 0.1869177669, -0.4122219384, 0.0578313246, 0.1730615497, -0.1539802402, -0.1882952601, 0.0296370313, -0.2198073119, 0.0229542553, 0.5886102915, 0.0437287986, -0.1492428184, 0.1641058773, 0.2641571462, -0.1119213253, 0.2892177105, -0.2116501927, -0.0529460832, -0.0375726223, -0.117679283, -0.3208051026, -0.6114048958, 0.2161323279, 0.3799571395, -0.1107206717, -0.3758544922, 0.0015659146, -0.784484148, -0.176755473, -0.0009920597, 0.5293395519, 0.2928491533, 0.4186646044, 0.289136529, 0.2036615759, -0.2172862589, -0.3478892744, -0.079372257, 0.2945081592, -0.3448714614, 0.2523283362, 0.1170185804, 0.1859696209, 0.2121744454, -0.2013958991, -0.0995038822, 0.0343455523, 0.0177219212, -0.0544662438, 0.1690148115, 0.47995767, 0.0484012365, 0.4080631137, 0.2257782668, 0.0116722435, -0.1172765568, 0.2429514378, -0.1548589319, -0.3944119215, -0.1468823701, 0.0511060581, -0.0167559348, 0.1968867183, 0.3628744483, 0.0426822044, 0.1228853315, 0.0123579055, 0.253031373, 0.017857369, -0.1054165065, -0.2124257088, 0.2507419884, 0.5459206104, -0.3039048016, -0.1106568426, 0.3961586058, -0.1053838581, -0.0786055475, 0.1152245402, -0.0978571028, 0.1636812687, -0.228357017, -0.0972189307, 0.4880374074, -0.5070931315, -0.011067003, 0.0804195702, -0.1673005968, -0.1454680711, 0.4160166681, -0.0158101879, -0.2155860066, -0.1384607255, -0.2177503556, 0.0179403424, 0.0955032781, -0.042616304, -0.2979279757, -0.0848436207, 0.296535641, 0.2143166661, 0.2368062139, -0.186246261, 0.1066010296, 0.7018895745, 0.1804239452, -0.1468918175, 0.1232181042, 0.1206347197, 0.2017994225, -0.0314942785, 0.2057329118, 0.0816737115, -0.3195114732, 0.1778332144, -0.1611635387, 0.2450398803, -0.0391563401, 0.0096769184, 0.1222389042, -0.0296208635, -0.1899359226, -0.4091174304, 0.0764830709, 0.1182895079, 0.0033132434, 0.2217069566, -0.3516420126, 0.2491338551, -0.6650170684, 0.0230837874, -0.1228886917, 0.0653185695, -0.2248588949, -0.139324367, -0.2083540559, 0.2041694969, 0.1631704569, -0.2657231688, -0.0550112277, -0.0124196373, 0.0863433927, -0.1019487232, -0.16889368, 0.1001052037, 0.1083897501, -0.1080822423, 0.3500638306, 0.075936757, 0.2190002799, 0.0002392381, -0.0466162115, 0.1902193725, 0.3913537264, 0.403108567, 0.0441157967, -0.0826884583, 0.1671351492, -0.0675748289, -0.2320242226, -0.216559425, 0.1896586418, 0.3165907562, 0.028862901, -0.0392218754, 0.0378774256, -0.1052467972, 0.5922948122, 0.1246692762, 0.2972466946, -0.0710369796, -0.3637946546, 0.1717133075, 0.2669871449, -0.1361997426, 0.3765206337, 0.1118715107, -0.2514680624, 0.074088417, 0.1832259595, -0.1975176334, 0.1446844637, 0.0935384929, 0.1617261022, 0.109569028, -0.1530921161, -0.0049604122, -0.1756978035, 0.0117728561, -0.0014160573, -0.1109334752, -0.2594310641, 0.1029187292, -0.3478599787, -0.4859150946, -0.2813383937, 0.0404135548, -0.278539598, -0.0732488111, -0.1160378829, -0.0294320788, -0.2187061012, 0.430454731, 0.2571207583, 0.0219327211, -0.0411657393, -0.3306414783, -0.1026050895, -0.204881236, -0.2449602038, -0.0036243126, 0.3105494976, 0.176178962, 0.2550486624, -0.3488142788, 0.0870182216, -0.1086341813, -0.3360552192, 0.1465454698, 0.0418365635, -0.2310842276, -0.1000548229, 0.1832404584, 0.0651178211, -0.0239212848, 0.4265319407, -0.1253952682, -0.1427243948, -0.0013664812, -0.0498997942, -0.0958694518, -0.1020318419, -0.4964429736, -0.2645768225, -0.4758712351, -0.4259918928, 0.2412475348, 0.0810972154, -0.1281325817, 0.1606528312, 0.2923530936, -0.1703212708, 0.0371362716, 0.0311209969, 0.2079802305, 0.2317315489, -0.0090697631, -0.3604701459, 0.4372158051, -0.0842039585, 0.0385989919, 0.1158177257, -0.2603439093, 0.0137459263, 0.2989228666, -0.0371981077, -0.0009435769, 0.2632434368, 0.7203306556, -0.2250905037, 0.0127086602, -0.01416298, -0.3290920258, 0.0510528535, 0.0073771104, 0.5198998451, 0.1697764248, 0.4387990236, 0.0848531723, 0.8618531823, -0.0845361277, -0.0700843036, 0.3741453588, 0.0939900279, 0.2071835101, -0.3162724972, -0.0314852037, 0.2195480764, 0.0864553303, -0.010963656, 0.1871256828, -0.0883606225, 0.1706029177, -0.5178009868, -0.2898620963, -0.011129871, -0.1790737212, 0.3663791418, -0.285435915, 0.1987070441, 0.0410360023, 0.1937968135, 0.046906516, 0.1392713636, 0.1639203727, 0.6295225024, -0.0126568675, 0.0139247924, -0.1779280752, -0.1202639863, -0.1199806929, 0.2195670605, 0.0725235194, 0.2189493924, -0.1290303618, -0.4745144248, 0.1856989563, 0.0349477828, 0.3213560581, -0.0358856693, -0.2871362865, 0.3316370845, -0.2321503758, -0.3497001529, -0.306248039, -0.0189684704, -0.1487318575, -0.057086233, 0.001377739, -0.031717211, -0.458586961, 0.3761838973, 0.2340418845, -0.2524053752, -0.2274866402, -0.4287633598, -0.0469678976, -0.5095897913, 0.0084900372, -0.1324005425, -0.1292979121, 0.0264418796, 0.1764398217, -0.069071494, -0.201770097, -0.0562060811, -0.0629936606, 0.0851252824, -0.0699709654, -0.263638556, -0.2326470613, 0.7186850309, -0.1507544369, -0.0402484909, 0.192561686, -0.0018097274, 0.119908601, -0.1079843044, 0.2137893438, 0.4486493468, -0.1768035442, 0.1594312191, -0.2837941647, -0.1207114458, -0.1063006371, -0.1808041781, 0.3044553995, -0.0509131439, -0.0430608392, -0.3201408088, 0.6241832972, -0.1073559448, 0.004430607, 0.1471899748, 0.1318545938, -0.1044126898, 0.3319958448, 0.2336582989, 1.0358111858, 0.1642738581, 0.1324457079, 0.1799948961, 0.1077856123, 0.8329395652, -0.5984466076, 0.2173625231, -0.0851071253, 0.1365098804, -0.1082870215, -0.0818742067, 0.5945871472, -0.0067094052, 0.0705297291, 0.3790999055, 0.2664600611, 0.6037866473, 0.0037625208, -0.1099148467, 0.0355480835, -0.1497258097, -0.5489435792, -0.0168924704, -0.0744282603, 0.7894797921, -0.2071017027, -0.1128804162, -0.2280256748, -0.364182353, -0.0988955498, 0.0411765799, -0.2909250259, 0.1858054399, -0.3828184903, -0.3268049359, -0.0402574465, 0.1437871456, 0.3549684882, -0.0868408829, -0.1235942245, 0.0426939912, 0.0076070623, 0.0000145957, -0.2081601322, 0.0367930867, 0.3847233951, -0.2481491864, -0.2196931094, 0.1634670198, -0.1109335348, -0.04944418, 0.0160126686, 0.0696562827, 0.7141790986, 0.2927415669, -0.2967755198, 0.3870976865, 0.0980728194, 0.00524766, 0.0951582119, -0.2514202297, -0.1515530795, -0.0723020434, -0.2172108591, -0.1010124832, -0.2248371243, 0.3276059628, 0.1999415755, -0.0972818136, 0.2712371051, 0.1732694954, -0.1741064489, -0.211903885, 0.1623616517, 0.0368802622, -0.4369897246, -0.2890703678, 0.3023827374, -0.1709167361, -0.1562232524, 0.1783193499, 0.0681605935, -0.1861300766, -0.0853958726, -0.2221892923, -0.234011054, 0.2098846734, -0.1233103871, -0.2150211185, -0.063181214, 0.2806891501, 0.4156886339, -0.1537004262, -0.2261553407, -0.2628732622, -0.1230093166, 0.1928089261, 0.4427240491, 0.2965598106, -0.0127697028, 0.1895494312, 0.0074953213, -0.0380016193, -0.2186238766, -0.1312115788, -0.0150047168, 0.1765696555, 0.2285006493, 0.1959924698, 0.1880878657, -0.2676888704, 0.0865135342, -0.0725877732, 0.099260509, 0.1864967942, -0.0894795433, 0.3508021235, -0.0306744315, 0.3316594362, -0.4477109015, 0.2372738123, -0.249956727, 0.3688058257, 0.2676359415, -0.0803975761, 0.4092099369, 0.2389477938, -0.3746151328, -0.1523707062, -0.3645436764, 0.0104735252, -0.054628171, -0.0719813406, -0.1021177694, -0.1859802753, -0.0245210603, 0.1607103348, -0.3545148969, -0.0365306027, 0.2327326536, 0.1266968846, -0.4543905258, 0.3731449842, 0.2427683622, -0.2154417932, -0.077271916, 0.306043148, 0.4231770337, -0.0923661515, 0.3880969584, 0.1781987101, 0.0841988921, -0.2030155957, 0.2066867948, 0.3618158698, 0.2963564396, 0.3598020375, 0.0202724133, 0.1120372564, 0.1950111985, 0.5736835599, -0.1265514195, 0.5901023746, 0.1574228704, 0.349547714, -0.0969412029, -0.1490584165, 0.3120423257, 0.3322591484, -0.0146960281, -0.3303586245, -0.2264348716, -0.3042707443, 0.0454338491, -0.194999367, -0.2628131807, 0.18080917, -0.1972092837, 0.0793896616, -0.1102150232, -0.124067083, -0.0704080686, 0.0157014579, 0.0519335829, -0.1951786876, -0.0949363858, 0.1215051413, -0.1331932843, 0.0533884689, 0.1281687319, -0.0643570572, 0.0308022127, -0.0860061347, 0.0869321823, 0.144592315, -0.1378287971, -0.0600603931, 0.0844447687, 0.2197665572, 0.4621064365, -0.0828693733, -0.025800623, 0.1449404806, 0.0030348822, 0.0541767702, 0.1591965854, -0.061380621, 0.2768361568, 0.2779890895, 0.0565826856, -0.159150064, 0.121831581, 0.1582958102, -0.0883101374, -0.2958938777, 0.2388641238, -0.4307888746, 0.0510209203, -0.5330099463, 0.2233328521, -0.3449475765, -0.0787933171, 0.0157658607, 0.1041169018, -0.0151449405, -0.2899124622, 0.0178292207, -0.257335186, 0.2379450202, -0.0647527054, 0.0380458161, -0.2512812018, -0.2304190397, -0.3195031285, 0.1034673452, -0.2553524375, 0.2922730744, -0.2727169693, 0.1275993586, 0.1763635427, 0.239523679, -0.0413034782, 0.1959234923, 0.0757296905, 0.0428483784, -0.3069562316, -0.2197025865, -0.3401434422, 0.1160200015, -0.1083827466, -0.2545757294, -0.0424584188, -0.2332201898, -0.0129374936, -0.3310772181, -0.2316154242, 0.4752676487, 0.0814736038, 0.5481069684, -0.0275499728, 0.2614421248, 0.1008104533, -0.0696969181, -0.0400294997, 0.0391205773, -0.2041771114, 0.1928943843, 0.0422975756, 0.0197435096, -0.0921116173, -0.1000732481, -0.2449550629, 0.3905465007, -0.0151443258, -0.0077191852, -0.1053688079, 0.0947119072, -0.0885481834, 0.0687783808, 0.2280655056, -0.0909725875, -0.1401728541, -0.1901366413, -0.4491510987, 0.0603896379, 0.2830468118, -0.3310952187, -0.1412517726, -0.0922324508, 0.3614771962, -0.2765076756, 0.0967672765, -0.3255518675, 0.0648279786, 0.2081927955, 0.099997282, 0.0435725674, 0.156887114, 0.0078005232, -0.2377974391, -0.0828837752, -0.7149181366, -0.1067866907, -0.0013869628, -0.1434370428, -0.4423044026 ]
https://github.com/huggingface/datasets/issues/1790
ModuleNotFoundError: No module named 'apache_beam', when specific languages.
I don't know if this is related, but there is this issue on the wikipedia processing that you reported at #2031 (open PR is at #2037 ) . Does the fix your proposed at #2037 helps in your case ? And for information, the DirectRunner of Apache Beam is not optimized for memory intensive tasks, so you must be right when you say that it uses the memory for the entire file.
```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct?
72
ModuleNotFoundError: No module named 'apache_beam', when specific languages. ```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct? I don't know if this is related, but there is this issue on the wikipedia processing that you reported at #2031 (open PR is at #2037 ) . Does the fix your proposed at #2037 helps in your case ? And for information, the DirectRunner of Apache Beam is not optimized for memory intensive tasks, so you must be right when you say that it uses the memory for the entire file.
[ 0.1117344648, -0.0064416826, 0.0087710805, 0.3851284087, 0.3766980171, 0.0904633999, 0.1866946816, 0.4343986511, 0.2380296737, 0.127368629, 0.1705146581, 0.0224920735, -0.0121388063, -0.2175728232, 0.029376898, -0.3352374136, 0.2749053836, -0.0193757862, -0.1703931093, -0.2335793972, -0.3629106283, 0.1133486852, -0.4148779809, -0.1094509959, -0.1601737142, 0.1928723454, -0.0480317362, 0.0954620689, 0.1394947469, -0.3413199782, -0.1171519905, -0.1067333817, -0.0180486515, 0.3060230613, -0.0001087955, 0.091256462, 0.5745630264, -0.188805759, -0.2846514583, 0.0406403616, -0.0371731035, -0.4954471588, -0.0139748082, -0.4732251167, -0.0351128615, -0.2119349539, 0.1526018828, -0.3777805269, 0.3918661475, 0.1425274014, 0.2509559691, 0.2651477456, 0.0663071945, -0.0078427456, 0.5856629014, -0.0968204737, -0.0510735214, -0.1122034639, -0.2888483405, -0.049899444, -0.2235361934, 0.5995764732, -0.2624767721, 0.0702701658, 0.359903127, -0.2300790846, -0.1492040902, -0.4521152675, 0.3267110884, 0.1715231836, 0.8122544289, -0.2932117581, -0.1780867279, -0.1161258221, -0.1816054434, 0.0567493811, 0.21397084, 0.3344721496, -0.1897805184, -0.0612506159, 0.4706634581, -0.2275061309, -0.040982537, 0.0693852305, 0.0202941447, 0.3031225801, 0.094548896, 0.1988315582, 0.1080077067, -0.0590913519, -0.0815235525, -0.2535692453, 0.0567312166, 0.2874175608, -0.3248103559, 0.1121490225, 0.1160271615, 0.0625171065, 0.1234365553, -0.263925463, -0.2927088737, 0.2417604923, 0.2671037316, 0.0355525389, 0.224114567, 0.1502583325, 0.0286989678, 0.1377192438, 0.5333327055, -0.1961989105, -0.1896420419, -0.015571516, 0.0257251859, -0.2397146821, -0.083557263, -0.0701147765, 0.1421353966, -0.1068671346, -0.001967527, 0.1800702214, -0.2986363769, -0.1659314334, -0.2292384803, 0.5316998363, 0.0575339273, 0.5937871933, 0.2013931572, 0.1262188852, -0.3433281481, -0.299261719, -0.1430037171, 0.3405371904, -0.340012759, 0.208090052, 0.0598624647, 0.2209750116, 0.2671979964, -0.1440650821, 0.0279359352, -0.0987525731, 0.1566368043, -0.1712191701, -0.0322681665, 0.4470674396, 0.0875975862, 0.4486975968, 0.1538458467, -0.0098932013, -0.0720625222, 0.2632386386, -0.2432984859, -0.3493454456, 0.2551340461, 0.1173765659, -0.287962079, 0.290291369, 0.0025141723, -0.0284823757, 0.1678846627, -0.0079854652, 0.0465839207, -0.0180216432, -0.2205018848, -0.3830626905, 0.2032210976, 0.7963466048, -0.0692895576, 0.0477906317, 0.050691694, -0.066288352, 0.1584431976, 0.1949175298, -0.0704003721, 0.2086954713, -0.1676572114, -0.0316929445, 0.5124143958, -0.585801959, -0.1874887347, 0.2188699841, 0.0223697722, 0.0330210775, 0.2664824128, 0.1075233668, -0.1900942326, -0.126057893, -0.0653750896, 0.1762630343, 0.1519225687, 0.3302553892, -0.5582462549, 0.0229577422, 0.0813492984, 0.165237695, 0.3261908293, -0.0923689082, -0.0132217221, 0.5644578934, 0.2360057831, -0.2773537934, 0.2775589824, 0.4496909976, -0.1457098424, -0.0214724727, 0.3341240883, -0.0170704499, 0.0314776748, 0.283288449, -0.2546028197, 0.2395660728, 0.017152492, -0.1440322697, -0.093574591, -0.0090360232, -0.2172045261, -0.3565835953, 0.1877318323, -0.0370380282, -0.0251051672, 0.2928380966, -0.0906109139, 0.3070313632, -0.1983903348, -0.0440985262, -0.3090108931, 0.0575739145, -0.2160297334, -0.0091514941, 0.0731727481, 0.0985508859, 0.1550626904, -0.0391973034, -0.1397494525, 0.2085855901, 0.2723039985, 0.0015523508, 0.0643669069, -0.0344762132, 0.1558852196, -0.2128018886, 0.3646448553, 0.2092393041, 0.2507329583, -0.138088733, -0.0111316703, 0.1207705885, 0.2412225753, 0.3808268905, 0.1354597807, -0.0667671859, 0.0642805696, 0.061338678, -0.0879729688, -0.228333503, 0.1964174509, 0.3356741965, 0.0988569707, 0.0624626279, 0.0435921177, -0.2446840256, 0.5019391179, 0.0910702571, 0.1994128823, 0.0351188518, -0.5036807656, -0.0295866057, 0.1220313609, -0.1232216656, 0.2044374049, 0.1894410849, -0.0085469708, -0.0047068661, 0.3041696548, -0.0965256244, 0.2194780856, 0.1881992817, 0.3777445257, 0.021214772, 0.0054693148, -0.0665692985, -0.1015984267, 0.0596393347, -0.1179072708, 0.1842222512, -0.1934272051, -0.0259491876, -0.286480546, -0.4760190845, -0.1996366382, 0.3563888669, -0.3619389236, -0.2971888781, -0.0733863264, -0.094398573, -0.2513523698, 0.2048179209, 0.1730588973, -0.0069652796, 0.0783339813, -0.2935419679, -0.1500487477, -0.523681879, -0.2300803363, 0.0003819428, 0.3928464353, 0.0505261309, 0.2879628539, -0.0820046961, -0.088678509, -0.1884255707, -0.0557331145, 0.0971687734, 0.0015283795, -0.0784612, -0.1432336271, 0.4003280103, 0.0184105933, 0.0845484287, 0.3466523588, -0.1144115701, -0.0997573212, 0.1798039973, 0.1147886664, 0.1361715943, 0.0201296583, -0.4075713754, -0.1568485945, -0.5240031481, -0.03644979, 0.1353271604, 0.1469871402, -0.0409758464, 0.1697188318, 0.0780954957, 0.142880559, 0.1414458007, -0.0451132841, 0.1010598689, 0.3315562904, -0.1958371848, -0.4916894734, 0.2615274191, -0.1101643369, 0.0772579238, 0.2027610391, -0.3696198463, -0.1323046833, 0.0450658053, -0.0470005125, -0.0215636361, 0.3600571454, 0.4021162093, -0.1137846559, -0.0945899859, -0.0554751009, -0.054510165, -0.1878401339, -0.3114813864, 0.126268521, 0.1768586338, 0.2660351396, 0.1244633123, 0.89186728, 0.0613353252, 0.5280166268, 0.4090194404, 0.1065372601, 0.237045452, -0.3116821051, -0.0100682825, 0.0871224999, -0.0212933794, -0.1122222841, 0.2411686778, 0.0693530142, -0.2553134561, -0.4276476502, -0.4160267115, -0.2520230711, -0.3027331531, 0.2996937037, -0.1315898746, 0.238793686, 0.1150136441, 0.1127484962, -0.1054301485, -0.0923344344, 0.2437112629, 0.1362128854, 0.1016863585, -0.0783150196, 0.1050667316, -0.0967990085, -0.4224519134, 0.3081121743, -0.0670121908, 0.0607823469, 0.007972829, -0.3941714764, 0.1360590756, -0.1513963938, 0.5284692049, -0.1971021891, -0.1498372257, 0.2106809318, -0.0545682497, -0.6518246531, -0.084586814, 0.0267256498, 0.0095120482, 0.0669475943, -0.0528253317, -0.3164818287, -0.190703854, 0.1585879922, 0.4411773682, -0.1934056878, -0.1890025884, -0.5053489208, -0.0205358714, -0.5622540712, -0.0558288917, -0.1067502648, 0.0558155552, 0.1581384689, 0.2365365922, 0.1242460236, -0.047210563, -0.0412543155, 0.0051667914, 0.3255876303, -0.2354881465, -0.1083523706, -0.06813474, 0.121360451, -0.1879374534, 0.2294455022, 0.0457892455, -0.1827739477, -0.0938021243, -0.0796412751, 0.02772462, 0.3150015771, -0.0404917486, -0.0408112183, -0.1707969308, -0.1193850487, -0.1208505258, 0.013112396, 0.1002243832, -0.1311949342, -0.2984969318, -0.483643353, 0.6179900169, 0.0960463062, -0.0949289873, 0.4127902091, 0.0930461809, -0.2057655454, 0.5778884292, 0.1268903017, 0.9856179953, -0.0980035886, 0.2745044827, 0.0798085481, 0.0544579476, 0.6281545758, -0.7983611822, 0.247732088, -0.2950814366, 0.0890978277, 0.0915510654, -0.0233628824, 0.2411325127, -0.0934450254, 0.0697585046, 0.4806116223, 0.1804445088, 0.283238709, -0.1868929565, 0.2330121696, -0.1742581427, -0.1990812421, -0.2856554091, 0.1044498831, -0.0655606836, 0.4440696836, -0.1535349637, -0.0071035493, -0.1861335635, -0.2392896712, -0.3046663702, -0.009920001, -0.1477641016, 0.1759128422, -0.3943833709, -0.3973292112, -0.1162180007, 0.3625176847, 0.2008930296, 0.1639960259, -0.218924433, 0.2082358301, -0.159237653, -0.0306057446, -0.1227028519, 0.1668755561, 0.2763906717, -0.2980983853, -0.1943888962, 0.0629002005, -0.3802573085, -0.1166152284, -0.1380206048, 0.1541888267, 0.4423932135, 0.217778936, -0.3047640324, 0.2423824221, -0.1472387314, -0.0508675501, 0.1976381391, -0.0842676014, -0.1481402963, 0.1261873692, -0.1883118749, -0.1309755147, -0.0109775644, 0.3976470232, 0.3433178365, -0.0041503236, 0.4232975841, 0.0521045774, -0.3017271459, -0.2160415947, 0.1823887527, -0.0104284845, -0.1183827743, 0.0265465602, 0.1244935542, -0.0301536769, -0.2032163292, -0.0371122397, -0.0755900964, -0.1407435834, -0.0820235088, -0.2634492218, -0.2033623755, 0.2270506024, -0.1080823764, -0.1015237942, -0.0274179913, 0.0469671339, 0.2720538378, -0.0508879125, -0.305616647, -0.1709727645, -0.0949802548, 0.2063296735, 0.3415110111, 0.2306924462, 0.0489355586, 0.1019950956, 0.076737754, 0.111058712, -0.208702594, -0.2281425893, 0.0516662672, 0.1599779725, 0.0309397057, 0.01778505, 0.198880583, -0.3915287256, 0.1825535744, -0.3639064133, 0.1421436816, 0.1092843339, -0.272272557, 0.2204233855, 0.1361771524, 0.2705430388, -0.1716287583, 0.2488497496, -0.22883448, 0.3137668967, 0.254360199, 0.0372397788, 0.4439244866, 0.0092061162, -0.3684695959, -0.120626606, -0.2661693394, -0.0666712448, 0.1150609851, -0.1013007611, -0.1882528663, 0.0767028928, 0.0809452683, 0.27711308, -0.1883515269, 0.0011665821, 0.2110151798, 0.2167643011, -0.2984399199, 0.0378497764, 0.3729892075, -0.3067619205, -0.0739121512, 0.1783726811, 0.2772949338, -0.1161829829, 0.1965161562, 0.2012998909, 0.1917831302, -0.3311787546, 0.1913971007, 0.0333523154, 0.2625000477, 0.0091253053, -0.0425488949, -0.0267027672, 0.2035578489, 0.6850830317, -0.1094502956, 0.5020676851, 0.2098355591, 0.1165133789, -0.3393759131, -0.3047338426, 0.3627034426, 0.3669025004, -0.0226041824, 0.0368799195, -0.0835044011, -0.0752132013, 0.2278700471, -0.1050914228, -0.189789772, 0.2455681413, -0.0877799094, 0.0067214891, 0.049344793, -0.2445985824, 0.0870342106, 0.205068469, 0.1063702255, -0.2664586902, 0.1961646527, 0.2542012632, -0.1388522238, -0.0565977097, 0.447915554, -0.096110113, 0.297023803, -0.2762940228, -0.1655038446, 0.0654659495, -0.0799275637, -0.0222029556, 0.0861081406, 0.3277604878, 0.3482869565, -0.3159306943, -0.0767400041, 0.0297201648, -0.0269051716, -0.0978558958, 0.1472105831, -0.0032558553, 0.3576389253, 0.1961806417, 0.0948205739, -0.2257528454, -0.1506101787, 0.2103350759, -0.1046941131, -0.2842307687, -0.0389179327, -0.1862664819, -0.2125803232, -0.3217767477, 0.0565657951, -0.461781323, 0.1619288623, 0.0885245204, 0.1317564547, -0.1158989295, -0.289835602, 0.0823645517, -0.1569629759, 0.3282440007, 0.113990441, 0.1221562847, -0.3864791989, -0.2317988873, -0.5559617281, 0.147436142, -0.4531602263, 0.1083782688, -0.1252704263, 0.2878433466, 0.005668167, 0.1955991238, -0.0177470967, -0.0319791585, -0.0608997643, 0.2072954178, -0.4182607532, -0.1043716222, -0.2251000106, -0.0161752272, -0.068476215, -0.3324566483, 0.0818644315, -0.1801074445, 0.081411086, -0.0909271836, -0.323887676, 0.4874150157, 0.0769172311, 0.6690846682, 0.0324621573, 0.2532435954, 0.0384889394, -0.1536325812, -0.1856964529, -0.0469213203, -0.1451806426, -0.0742816254, 0.0275630057, 0.2506352365, -0.2115621269, -0.2013023496, -0.2911405563, 0.594409287, -0.1731041968, 0.2295298278, 0.0483158007, -0.0574912354, 0.1654844135, 0.2090781778, -0.100628525, 0.0978660882, -0.1423154771, -0.1428381801, -0.5927693248, -0.2566543818, 0.3185789585, -0.652300477, -0.3354023695, 0.0270407237, 0.3586629629, -0.2010263652, -0.0247717537, -0.4774933457, 0.1134856939, 0.2376119941, 0.2094260603, -0.1371399313, -0.0500034131, -0.2336892784, -0.0083018839, -0.0635836422, -0.3490177393, -0.1845494062, -0.2370747626, -0.0594087504, -0.3310345411 ]
https://github.com/huggingface/datasets/issues/1790
ModuleNotFoundError: No module named 'apache_beam', when specific languages.
the #2037 doesn't solve my problem directly, but I found the point! https://github.com/huggingface/datasets/blob/349ac4398a3bcae6356f14c5754483383a60e8a4/datasets/wikipedia/wikipedia.py#L523 this `beam.transforms.Reshuffle()` cause the memory error. it makes sense if I consider the shuffle means. Beam's reshuffle seems need put all data in memory. Previously I doubt that this line causes error, but at that time another bug showed in #2037 made error, so I can't found it. Anyway, I comment out this line, and run load_dataset, then it works! ```python wiki = datasets.load_dataset( "./wikipedia.py", cache_dir="./datasets", beam_runner="DirectRunner", language="ja", date="20210120", )["train"] ``` ![image](https://user-images.githubusercontent.com/6331508/112283369-6a9f3300-8ccb-11eb-82e5-827bf7fddfb9.png) Dataset has already shuffle function. https://github.com/huggingface/datasets/blob/349ac4398a3bcae6356f14c5754483383a60e8a4/src/datasets/arrow_dataset.py#L2069 So, though I don't know it's difference correctly, but I think Beam's reshuffle isn't be needed. How do you think?
```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct?
111
ModuleNotFoundError: No module named 'apache_beam', when specific languages. ```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct? the #2037 doesn't solve my problem directly, but I found the point! https://github.com/huggingface/datasets/blob/349ac4398a3bcae6356f14c5754483383a60e8a4/datasets/wikipedia/wikipedia.py#L523 this `beam.transforms.Reshuffle()` cause the memory error. it makes sense if I consider the shuffle means. Beam's reshuffle seems need put all data in memory. Previously I doubt that this line causes error, but at that time another bug showed in #2037 made error, so I can't found it. Anyway, I comment out this line, and run load_dataset, then it works! ```python wiki = datasets.load_dataset( "./wikipedia.py", cache_dir="./datasets", beam_runner="DirectRunner", language="ja", date="20210120", )["train"] ``` ![image](https://user-images.githubusercontent.com/6331508/112283369-6a9f3300-8ccb-11eb-82e5-827bf7fddfb9.png) Dataset has already shuffle function. https://github.com/huggingface/datasets/blob/349ac4398a3bcae6356f14c5754483383a60e8a4/src/datasets/arrow_dataset.py#L2069 So, though I don't know it's difference correctly, but I think Beam's reshuffle isn't be needed. How do you think?
[ 0.1194348633, 0.1108863354, 0.009472847, 0.4295069575, 0.5010868311, 0.0540741459, 0.1819473356, 0.4008021355, -0.0547776297, 0.3162618279, 0.111268647, 0.0270885155, -0.1956254244, -0.3097157776, 0.0873772874, -0.3430967927, 0.269775033, -0.096094951, -0.2489874363, -0.232113272, -0.3576428592, 0.0421388969, -0.4852919579, -0.19316414, -0.2590050697, 0.3534102142, -0.1904881895, 0.245130524, -0.011713801, -0.175707832, -0.0820925534, -0.1067035049, -0.1121076718, 0.31313923, -0.0001133347, 0.1047417969, 0.3758172095, -0.2779261172, -0.3259076476, -0.1989420354, -0.0553083159, -0.300011307, -0.1625952721, -0.3917809129, -0.0717181712, -0.267577827, 0.1196646318, -0.3548972011, 0.4223274291, 0.2012150735, 0.2053965032, 0.2258872688, 0.0281291157, -0.0164731704, 0.6700220704, 0.0871261805, -0.1116373986, 0.0683364421, -0.1488498449, 0.0098394379, -0.1615007967, 0.5495010018, -0.2070956826, 0.0743293315, 0.2397666425, -0.2371826321, -0.2322135419, -0.3541302681, 0.2216895521, 0.1782290637, 0.6323608756, -0.3489940166, -0.1243472621, -0.1607488394, -0.053946998, 0.1443855166, 0.2540584207, 0.186424762, -0.1200918257, -0.1221164614, 0.1319262832, -0.1353091598, 0.0127927363, 0.2098912299, 0.2306219637, 0.4240315855, 0.0276736617, 0.2996921241, 0.1630720794, -0.1836211383, 0.1571725309, -0.2461176366, 0.0766194016, 0.357293427, -0.3937427104, 0.0347969308, 0.0281331558, 0.0014927275, 0.1085038185, -0.1232894808, -0.1755146533, 0.174469769, 0.3144142926, -0.0094596408, 0.1199690774, 0.4047932625, 0.0989429802, 0.264718771, 0.1185763925, -0.1872931719, -0.0639555454, -0.0435257889, -0.0905003399, -0.4336493015, -0.2620343566, 0.2131784558, 0.1339182407, -0.0305911377, -0.1540103406, 0.0565459579, -0.4272990823, -0.1620936245, -0.0612863302, 0.4848382771, 0.1439730525, 0.5003717542, 0.21227175, 0.1486692876, -0.2858891785, -0.2623576522, -0.2568901777, 0.4522440434, -0.481220752, 0.1976670325, 0.038340345, 0.2481759042, 0.2800933719, -0.1724485904, 0.1591965705, 0.0334208459, 0.061364308, -0.1664859205, 0.0487567894, 0.410395503, 0.011914067, 0.3502831757, 0.1928021908, 0.1393465847, -0.0928636417, 0.2679372728, -0.353598237, -0.3601423204, 0.2299659699, 0.0713833943, -0.3113715649, 0.19205226, -0.1264997125, -0.0647273064, 0.1432964951, 0.0446435809, 0.2136844099, -0.0210937206, -0.1541178226, -0.3666599393, 0.1856178641, 0.7775563002, -0.1079001501, -0.0855643377, 0.0330541506, -0.2180710733, 0.1770855635, 0.0684085041, -0.0754175633, 0.0966387838, -0.2716712356, 0.0151541382, 0.5695838332, -0.4580413103, -0.1668787301, -0.0221465621, -0.0789951086, 0.0365230441, 0.1895154119, 0.1257300675, -0.2894612551, -0.1047199816, 0.1173079535, 0.1043082327, 0.0383789763, 0.2566963434, -0.4343808889, -0.1676716506, 0.0616066158, 0.2503468394, 0.2828436494, -0.0925019234, 0.0311433896, 0.5866726041, 0.1889616996, -0.1102682203, 0.2881116271, 0.45247823, -0.0726474822, 0.0778380036, 0.1638424248, -0.0598281771, -0.2577003837, 0.29026106, -0.108545661, 0.222290948, 0.0507583357, -0.0135215446, -0.0683134273, -0.2290741056, -0.2977707088, -0.2829664946, 0.1336337775, 0.0285771918, 0.088018015, 0.1543253362, -0.2626297474, 0.3814664185, -0.3416257203, 0.0295178071, -0.502412498, 0.2508624792, -0.1954639107, -0.1462165117, 0.0308591723, 0.0873254985, 0.1917509884, -0.1371608675, -0.1381656528, 0.3913840353, 0.2522925735, -0.0563740283, -0.0376482233, -0.0895878896, 0.1325114071, -0.2032928169, 0.3407706618, 0.058476571, 0.1820220053, -0.1298590451, 0.1848861575, 0.1325742304, 0.0625200421, 0.3970300257, 0.1156469733, -0.0693380609, -0.0677481145, 0.1494115293, -0.1136083454, -0.3245387673, 0.3509789407, 0.3328658044, 0.1574704647, 0.0885931253, 0.0377293229, -0.2971397042, 0.6881403923, 0.1426716298, 0.1136762649, -0.0574943163, -0.4095011055, 0.0693989843, 0.1513948143, 0.0344953984, 0.4079181552, 0.1365348995, -0.1149396598, 0.1409750283, 0.2153795063, -0.098757036, 0.1317025572, 0.237741217, 0.4221461713, 0.0527265966, -0.0896576494, -0.0112264454, -0.1930361986, -0.1728316545, 0.0667530596, 0.1590051204, -0.2549692094, -0.1209209412, -0.4197221398, -0.5174446106, -0.2753362954, 0.1492743194, -0.3977885842, -0.2453019768, -0.1070486307, -0.0726698041, -0.3224289417, 0.3194848895, 0.2790144682, -0.0490606278, 0.0168626979, -0.3235235512, -0.1718973517, -0.2900438905, -0.257132262, 0.0216142163, 0.3672424853, 0.0608447231, 0.2379077077, -0.2665833533, -0.1685303897, -0.1087959781, -0.1508056521, 0.1511536688, 0.0263009369, -0.1442514956, -0.1114372164, 0.351028204, -0.1820261329, -0.101885587, 0.477519989, -0.0571264029, -0.2166936696, 0.2488491237, 0.183146745, 0.0790498704, -0.1002006829, -0.4466010332, -0.1296705306, -0.510966897, -0.0740840286, 0.0898636431, 0.0974502414, 0.1583662778, 0.2631682456, 0.1819612384, -0.1276184022, -0.0301727615, -0.1160966903, -0.0521414168, 0.2722151577, -0.1465053856, -0.3368286192, 0.201480478, -0.1044793129, -0.0021727821, 0.3633415401, -0.1813988239, -0.0972968936, 0.0007992182, -0.2872738242, -0.0532517172, 0.3520984352, 0.5604920983, -0.1533246934, -0.0316334479, -0.0331121795, -0.0858614966, -0.1202542186, 0.0027144048, 0.3534732163, 0.0590058789, 0.2731180489, 0.1735911667, 0.9325159788, -0.0268989392, 0.4621212184, 0.4056244195, 0.0499277711, 0.3116861284, -0.3958242536, -0.0405503735, 0.2475840449, 0.1420387626, -0.0782606453, 0.1939634085, -0.011283515, -0.0358979851, -0.515216589, -0.3167854548, -0.2198875099, -0.3144632876, 0.3542353511, -0.1514079571, 0.0098826541, -0.0006798506, 0.0473473966, 0.0278678685, -0.0633756444, 0.0390425734, 0.2465272546, -0.0347131714, 0.0417485014, -0.2293192744, -0.1894801855, -0.3416490853, 0.2945887446, 0.0248190984, 0.1704506278, -0.0590177886, -0.340098083, 0.1011070013, 0.0709241331, 0.6148950458, -0.2257053405, -0.2467265874, 0.2860554159, 0.0270743519, -0.6423115134, -0.1949950755, -0.0242510065, -0.1003395766, -0.1818849593, 0.0819025338, -0.2344071865, -0.1979134232, 0.1702032089, 0.3472844362, -0.0462825932, -0.1886785924, -0.4585424364, -0.0359802209, -0.5773240328, -0.1374495476, -0.0305472985, 0.0302878469, 0.0899485797, 0.3163580298, 0.1898748279, -0.1917280704, -0.0215154998, -0.111942634, 0.3413625956, -0.1046369746, -0.1710597426, 0.1090289354, 0.042470485, 0.0303458069, 0.2900732458, 0.1259761006, -0.1707874238, 0.0434146449, 0.029468298, 0.0508786514, 0.4066848457, -0.0721738487, -0.0411550663, -0.0437264182, -0.0693143979, -0.0208207201, 0.0298810937, 0.1085257009, -0.2762962878, -0.2065791339, -0.6122497916, 0.6164751053, 0.0779391229, -0.0070473105, 0.4423123002, 0.1935300529, -0.2312547266, 0.5099320412, 0.1472665668, 1.1177159548, -0.1503803134, 0.2815016806, 0.1789486408, 0.1342023313, 0.6970807314, -0.6101927161, 0.3381560147, -0.1902337968, 0.0593842305, 0.0498277321, -0.1147463024, 0.3421472311, 0.0742262602, 0.0520735085, 0.5547212362, 0.0944091976, 0.3872455955, -0.3301383853, -0.0382316709, -0.4087440073, -0.09955585, -0.2862852216, 0.0773018822, -0.1073562354, 0.5356618762, -0.1105021685, 0.0492258817, -0.3678708673, -0.2697416544, -0.2712930441, 0.0676359683, -0.2752243876, 0.2253465652, -0.438857615, -0.1412002891, -0.1835286617, 0.2323124111, 0.264960736, -0.0146419015, -0.0779355988, 0.2345311791, 0.0545256957, 0.0144434124, -0.1612458527, 0.0704639703, 0.3199258149, -0.1493271589, -0.2023090422, -0.0072202422, -0.2528013885, -0.1998403966, -0.2708639205, 0.1244179457, 0.5775040388, 0.2529713213, -0.3201370835, 0.3392540514, -0.0437237807, 0.0853202641, 0.1442816406, -0.1620112807, -0.0689976439, 0.0958442688, -0.3166086972, -0.0318891704, -0.0409999751, 0.411447227, 0.3425065875, -0.0451261662, 0.3743168116, 0.0268036127, -0.1699327379, -0.1892459989, 0.1815710068, 0.2453127801, -0.2064421773, 0.0405977182, 0.0530039445, -0.0656871349, -0.113531962, -0.0082211103, -0.0316908509, 0.0257288087, 0.0861473531, -0.2623576522, -0.2688730359, 0.4009698927, 0.0285681523, 0.0962439477, -0.1838035285, 0.1682521999, 0.2581398189, -0.28045398, -0.263661623, -0.1664467156, -0.1379229575, 0.2131752521, 0.1611239463, 0.2940627933, 0.0711480081, 0.0260657407, 0.0308841988, 0.1700145006, -0.3657002449, -0.1506895125, 0.0269949511, 0.1648257673, 0.1837410182, 0.0149642937, 0.1629317254, -0.4742914438, 0.1331103742, -0.3103110194, 0.1451511979, 0.3282080591, -0.1741094887, 0.33300969, 0.3119805455, 0.1528913975, -0.1263669431, 0.2810012996, -0.2080896497, 0.1811093688, 0.2060036212, -0.0202516187, 0.374719888, 0.1296891719, -0.4093850851, -0.1814793646, -0.3265289962, -0.0267218854, -0.0540517122, -0.0679626912, -0.0941456184, -0.0720655769, 0.1391074359, 0.3085330725, -0.2720419765, -0.1431088299, 0.2774803936, 0.1624224484, -0.219217062, 0.0750610977, 0.3696582913, -0.0732686445, -0.0315308906, 0.1624496579, 0.0274778903, -0.0455582812, 0.1803493798, 0.1916208714, 0.2042516172, -0.2743168771, 0.3263812065, 0.1230562851, 0.2487041801, -0.0368459485, 0.0143051092, -0.0407127067, 0.2321395576, 0.6695385575, -0.1790866107, 0.5875694156, 0.0621431582, 0.1620478928, -0.2189341635, -0.3987020552, 0.2998220026, 0.6812435389, -0.0985097736, 0.1004624069, -0.158005029, -0.0540072136, 0.1763885021, -0.0204280857, -0.0960498601, 0.1124384031, -0.0607526898, 0.1433698237, 0.021404326, -0.2690527439, -0.1828234792, 0.1030614376, 0.0882199556, -0.3828248978, 0.3714801967, 0.197401166, -0.1855779588, -0.0804096088, 0.3417036533, 0.1561096013, 0.0718710423, -0.2412333488, -0.1007752866, 0.1273661554, -0.1581714153, 0.1788202971, 0.116405651, 0.2657679915, 0.4134484529, -0.067616798, -0.0847827643, 0.1543547511, -0.0182006359, -0.0186744407, 0.1784268022, 0.0545296334, 0.1362751275, 0.1742999852, 0.0870506763, -0.2107060701, -0.1594396681, 0.2782296538, 0.0892285854, -0.2767752409, -0.0333554745, -0.3387449384, 0.0231567174, -0.2729213238, 0.0958565697, -0.6517590284, 0.0046341978, -0.0973905027, 0.150931403, 0.0231207684, -0.1643295586, 0.0431655422, -0.1716596633, 0.2587977648, 0.1433946341, -0.1367455125, -0.3192220032, -0.3952597976, -0.5910952091, 0.0117546581, -0.3184986115, 0.3399733901, -0.1448811889, 0.2900011837, 0.0270660073, 0.18409051, -0.0946341157, 0.0659248382, -0.0728729665, 0.1686775535, -0.4083978534, -0.1803994775, -0.1847619861, 0.0844622925, 0.0828007907, -0.385166198, -0.0301347226, -0.0941680223, -0.0328179784, -0.0980993211, -0.2634515166, 0.4284457564, -0.1124790013, 0.5186235309, -0.1062076539, 0.2381479591, 0.0832455903, -0.1408232749, -0.2633818686, -0.1576006562, -0.0788623691, -0.0940653235, 0.031377051, 0.4429893494, -0.2951667607, -0.062289618, -0.3243884742, 0.4698705077, -0.2132889777, 0.2390982807, -0.1712669283, 0.1514723599, 0.147127375, 0.3593335152, -0.1664116532, 0.0064463024, -0.0772218257, -0.0631925836, -0.5480509996, -0.2193655074, 0.5287928581, -0.4788556695, -0.281933248, -0.0606859289, 0.2528173923, -0.1767331213, -0.0653754398, -0.5018324852, 0.1924415231, 0.2456647456, 0.192352429, -0.0027939007, 0.0548754744, -0.2297174782, -0.0328225791, -0.0410185494, -0.3641456664, -0.2055201828, -0.1534763873, 0.1743491143, -0.299189657 ]
https://github.com/huggingface/datasets/issues/1790
ModuleNotFoundError: No module named 'apache_beam', when specific languages.
The reshuffle is needed when you use parallelism. The objective is to redistribute the articles evenly on the workers, since the `_extract_content` step generated many articles per file. By using reshuffle, we can split the processing of the articles of one file into several workers. Without reshuffle, all the articles of one file would be processed on the same worker that read the file, making the whole process take a very long time.
```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct?
73
ModuleNotFoundError: No module named 'apache_beam', when specific languages. ```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct? The reshuffle is needed when you use parallelism. The objective is to redistribute the articles evenly on the workers, since the `_extract_content` step generated many articles per file. By using reshuffle, we can split the processing of the articles of one file into several workers. Without reshuffle, all the articles of one file would be processed on the same worker that read the file, making the whole process take a very long time.
[ 0.0401644632, 0.010121271, -0.0058726221, 0.129346028, -0.0119506642, 0.0596709102, 0.3661440611, 0.3480101526, 0.0229749307, 0.279761672, 0.1604570001, 0.0736097172, 0.1980750859, -0.1953663826, -0.0845640153, -0.2648457289, 0.3423889577, -0.0130628534, -0.0566426925, -0.3558185697, -0.447902739, 0.2000832111, -0.5033824444, -0.178014189, -0.1696121693, 0.2718341053, -0.1433468759, 0.3892426789, 0.1860796213, -0.0491475984, -0.0400717482, -0.0870492905, -0.0869860426, 0.2562695444, -0.0001181821, 0.0990972519, 0.2742287517, -0.2264609039, -0.2354048193, -0.135538131, -0.0001667514, -0.5018970966, -0.0932027921, -0.423170805, 0.0232976526, -0.0400470831, 0.0391364843, -0.2083497345, 0.5846297741, 0.1001814082, 0.1030462235, 0.2666601837, 0.0476950705, -0.0251140278, 0.3200202882, -0.04748936, -0.0405140482, 0.1522979438, -0.0020845011, 0.213285327, -0.1075011119, 0.4607255161, -0.2558429539, 0.1357321739, -0.0586364381, -0.1971605122, -0.1175451577, -0.4867199063, 0.3078399897, 0.261000365, 0.4405617714, 0.0164710805, -0.1753838956, -0.2519317567, -0.1330921948, 0.1144908369, 0.1225961819, 0.1937912852, 0.1123030633, 0.0998714119, 0.5713415742, -0.3144804239, 0.0563263446, 0.0551687256, 0.232682839, 0.5872220397, 0.1105984449, 0.4362626672, 0.0444843285, 0.154560715, 0.206400767, -0.2861565351, 0.2010482401, 0.2365497053, -0.2430970073, -0.0052307621, -0.0373827219, -0.2237177342, -0.0731728747, -0.1004004776, -0.5007818341, 0.2464473695, 0.4761479497, 0.1704074889, 0.157904923, 0.1818658412, 0.1793933064, 0.2194053829, 0.2643758953, -0.2684376836, -0.0538066253, -0.0212683044, 0.1332736313, -0.3763230145, -0.4731952548, 0.2896764874, 0.0331061408, -0.1172801331, -0.1124827713, -0.2394607514, -0.2518795729, -0.3447424769, -0.2870918512, 0.2796640992, 0.3040516376, 0.584985733, 0.0309540927, 0.2881346941, -0.5063955188, -0.1919751316, -0.1429308355, 0.19936575, -0.2677185833, 0.1640225947, -0.0752120763, 0.145844087, 0.1551927924, -0.1586447954, 0.2210360318, 0.032992661, 0.0926921517, -0.0229869112, 0.0294056423, 0.4956110716, 0.129681617, 0.3343688548, 0.381850183, 0.0441215187, -0.3361369371, 0.2725725174, -0.5118634701, -0.4985119104, 0.143673718, 0.0310976058, -0.1891682744, 0.1958591342, -0.0187793225, -0.0286518708, 0.2861873507, -0.1459285617, 0.2613283396, -0.0038731042, -0.0005568787, -0.3166022897, -0.0428890139, 0.6379069686, -0.1172443926, 0.0082376376, -0.0107365511, -0.1041541398, 0.2127789408, 0.193970263, -0.1101898253, 0.0763256848, -0.2047853172, 0.0210154355, 0.5991592407, -0.57335186, -0.1203277856, 0.0884784609, -0.246071443, 0.1072987989, 0.4706140459, -0.0097042993, -0.0795361251, -0.2263074517, 0.0292198248, 0.1647596955, 0.0946114957, 0.1012687683, -0.4208424687, 0.0282600969, 0.1501707584, 0.1666886359, 0.1931991428, 0.1797626019, 0.0612409115, 0.1191943809, 0.2179639339, -0.0308029354, 0.2628243864, 0.2563930154, -0.195560053, 0.2426507473, 0.3924928904, 0.2315066904, -0.0732824951, 0.2811632752, -0.1374690384, 0.3438966572, 0.0679794177, -0.1475528479, -0.0213429034, -0.4191903472, -0.3652012944, -0.5023630261, -0.0390961729, -0.0010688696, 0.2320949137, 0.280637145, -0.4111865163, 0.3606010675, -0.3701223433, 0.0576596074, -0.5175858736, 0.2484357357, -0.1954283565, -0.0150761921, -0.0902093127, 0.1160370782, -0.0062019881, -0.2410621047, -0.0278797857, 0.3686268032, 0.2898937166, 0.1484849602, 0.1862210631, -0.227882266, 0.1058298424, -0.2935658991, 0.3605098724, 0.2167859674, 0.1143659502, -0.1836789101, 0.2624614239, 0.3334522545, 0.0331232361, 0.4286051691, 0.0929740071, -0.050136961, 0.1583973765, -0.0014184341, -0.1741595864, -0.1964771152, 0.2689026296, 0.2168021798, 0.0400734097, -0.084064275, 0.0163173676, -0.1216809303, 0.6155576706, 0.0400266722, 0.1203410625, -0.0023303828, -0.2098279744, -0.0071062595, 0.0358043537, 0.0477511287, 0.4985298514, 0.1664863229, 0.0284512583, 0.0910320133, 0.3129201233, -0.221442312, -0.0211746395, 0.1403503567, 0.3321325183, 0.2238540947, -0.2455613315, 0.0303167142, -0.3016816974, -0.1041562185, -0.1987624168, 0.0637184083, -0.0474324897, -0.021309413, -0.0229486786, -0.3624950945, -0.4416366816, 0.0558631942, -0.3911738992, -0.3372016549, 0.0788687319, -0.0377289578, -0.2612819374, 0.3961454034, 0.3479462266, -0.0649435967, -0.0434286594, -0.1267153472, -0.227443248, -0.3022430539, -0.2869902253, -0.0414454974, 0.1613828242, 0.2441121638, 0.0500851572, -0.3857807517, -0.162446171, -0.1729759276, -0.1353341639, 0.0865202695, -0.058274921, -0.102167055, -0.1136891097, 0.3374115229, -0.043515306, -0.1603808254, 0.3628313243, -0.0497333184, -0.1989868283, 0.2759113014, 0.100740701, 0.0926558673, 0.0612149686, -0.6890729666, -0.3914899826, -0.4526815414, 0.0283050947, 0.1488547921, -0.0023450144, -0.1121012717, 0.1457040012, -0.1862112582, 0.0437315851, -0.1842687726, -0.1412887424, -0.148224771, 0.1839482486, -0.1587508023, -0.3171842098, 0.1166821271, -0.1749305725, -0.1934993267, 0.1352563649, -0.0955845714, -0.0055909641, 0.118306838, -0.2816365957, -0.1481218487, 0.6191089749, 0.6890800595, -0.1661870033, 0.0601064377, -0.0240420476, 0.1223904714, -0.0701787695, 0.0990799889, 0.3527525365, -0.08788234, 0.0569442287, 0.0799828619, 0.8017927408, 0.1350186318, 0.6213976741, 0.2583410144, 0.1399968863, 0.2320949137, -0.4885395169, -0.0433360897, 0.1662049592, 0.0175426081, -0.1670776904, 0.2452232242, 0.0493526347, 0.0112373754, -0.4611927271, -0.4745745063, -0.3980815113, -0.2800996006, 0.2716124058, -0.05905414, 0.1806713343, 0.0098429173, -0.1435565948, 0.130843997, 0.1081406325, 0.0183617137, 0.5039037466, 0.0818249285, 0.0498271957, -0.3906683326, -0.2206048965, -0.2547486424, 0.390403837, 0.103883937, 0.0071674734, 0.2192422748, -0.4376812875, 0.175600484, 0.0366979726, 0.7510882616, -0.2891375124, -0.2462833673, 0.1214050353, 0.073425442, -0.4148048759, -0.2408629358, -0.0132124647, 0.0017454103, -0.0753207803, 0.1231320202, -0.3026683033, -0.0831564143, 0.1161782369, 0.2808744013, -0.2045968771, -0.2897414565, -0.634830296, -0.1960391849, -0.7667275071, -0.100917615, -0.2245741636, -0.0269016717, -0.0457422584, 0.2402988821, 0.2664464414, -0.1687163413, -0.13063775, 0.04956761, 0.0420689993, -0.2761186063, -0.3636623323, 0.1034521833, -0.1921048909, 0.236141175, 0.2059916854, -0.0251836572, -0.1817451566, -0.0661987811, -0.1538835466, 0.2551397085, 0.3604370654, -0.0031677336, 0.0669379234, -0.0211363286, -0.0070202276, -0.0431658924, -0.4192322493, -0.0045988299, -0.0795828998, -0.2701922953, -0.5315516591, 0.4778113067, -0.1089425683, -0.0097235143, 0.2204694152, 0.1652799547, -0.0740981027, 0.5455198884, -0.0370404869, 1.1979780197, 0.0697288662, 0.261931777, 0.020000916, 0.0673672482, 0.8408923149, -0.7155607343, 0.3852574825, -0.1788087338, 0.0753539279, -0.1027159542, -0.0964368433, 0.5330148339, 0.1523684263, -0.1115495712, 0.6340993643, 0.0897983462, 0.1107653975, -0.3829467595, 0.0491497815, -0.5872071385, -0.0020176787, -0.0955370814, -0.1017631218, 0.1078922004, 0.5783394575, -0.1541686058, 0.1405352503, -0.4126494527, -0.4174625278, -0.0435711145, -0.0402044579, 0.156347096, 0.3821921647, -0.2015432566, -0.2772364616, -0.2275536358, 0.0341189206, 0.3032431901, -0.2450381368, 0.1195623502, 0.0719764978, 0.1027843505, -0.1334930062, -0.0851185471, 0.0266553238, 0.3381586075, -0.1617873013, -0.2683915496, -0.141852662, -0.2589021921, -0.2996103764, -0.1787228882, 0.2115918994, 0.389318794, 0.1588392258, -0.3468773067, 0.6813213825, -0.1538223326, -0.0783033967, 0.0517502204, -0.0718399584, -0.3309110105, 0.2146337628, -0.4696038961, -0.0516262278, -0.1445709765, 0.2845221162, 0.5598360896, -0.0852774009, 0.2096585929, 0.0481221527, -0.1559475958, -0.1406455338, 0.2061289996, 0.0663559213, -0.1167551875, -0.0088436007, -0.0003368333, -0.0602786839, -0.1183354482, 0.1223802939, 0.0960980728, 0.1756451875, -0.1687562466, -0.5080209374, 0.0360028595, 0.3683110178, 0.0885489881, -0.1269350499, -0.0267044418, 0.2383687198, 0.3466285467, -0.0447960421, -0.1975695193, -0.044314649, -0.0991522297, 0.3087217808, 0.1973847598, 0.1657431424, 0.0202004761, 0.098367095, -0.0506108999, 0.0820614696, -0.2794937789, -0.0896707922, 0.1034570038, 0.2129494548, 0.1301286221, 0.0839393735, 0.1040167511, -0.2892779708, 0.135173887, -0.1096882373, 0.0343009308, 0.1533061117, -0.2824154198, 0.4188386798, 0.3241229951, 0.2274625152, -0.4157667458, 0.3026826978, -0.3377510309, 0.0373845398, 0.0953710675, 0.1226105094, 0.3036293983, 0.1579970419, -0.2214698642, -0.1125484481, -0.1013613492, 0.0859856009, 0.1019837856, -0.005394157, 0.0509436131, -0.3437861204, 0.299864769, 0.5285132527, -0.0004931875, -0.1901672482, 0.1603441536, 0.0536320359, -0.377227366, -0.0003574491, 0.6144305468, -0.1160396188, -0.0262055174, 0.2547371686, 0.2971380949, -0.163360253, 0.12144126, 0.1717966646, 0.3075537086, -0.3022239506, 0.3114133477, 0.2198166847, 0.2022476941, 0.1023769751, 0.0438007861, -0.0593719073, 0.2315732837, 0.4631901085, 0.0525062382, 0.7212811708, 0.2852931321, 0.1726118326, -0.2643495202, -0.3424146771, 0.3993783295, 0.4465335608, 0.0446771085, -0.0783045292, 0.0100714229, -0.1394174844, 0.0058780313, 0.1516018659, 0.0343412459, 0.2824631631, -0.0321253315, 0.133859098, 0.1411111504, -0.2624066472, 0.0187201649, -0.0741356611, 0.1088447124, -0.0734165758, 0.4331255853, 0.1227408499, -0.0267005973, 0.1284410954, 0.2447279841, -0.2824225426, 0.1447905302, -0.0760190338, -0.2901900411, 0.2440316826, 0.0011969469, 0.1647978723, 0.2264444232, 0.2207720578, 0.1477452517, -0.1869584173, -0.0110663883, 0.1191356406, -0.0742232502, -0.0400303602, 0.2172245085, -0.0867466927, 0.186364159, 0.0443033129, 0.0615515858, -0.1333116442, -0.0444111302, 0.1823522002, -0.1542582363, -0.181179598, 0.0117918923, -0.1430220604, -0.1555944532, -0.1952768266, 0.2217179388, -0.4802036285, -0.0314698555, -0.0326494202, -0.1143597215, -0.1712020487, -0.1373382956, 0.0024436004, -0.1196256727, 0.2270770222, 0.415125072, 0.0142977126, -0.1361877471, -0.3554023504, -0.3997885883, 0.1810670048, -0.4627878368, 0.1659281701, -0.1951676011, 0.3386711478, 0.1467345208, 0.3504430354, -0.0512542799, 0.1434312612, -0.2581033409, 0.240231961, -0.1519415677, -0.1650686711, -0.1928877234, -0.0824904963, -0.10497877, -0.3492974043, -0.0071596, 0.2173501253, -0.0368052162, 0.0735218674, -0.2756353319, 0.5410723686, -0.1676592231, 0.3580454886, 0.1330914348, 0.2596683502, 0.0470486879, -0.0877508968, 0.2461747974, -0.0556870215, -0.2559539378, 0.1827914268, -0.0121114338, 0.2132977545, -0.4219232798, -0.0811938047, -0.2149405777, 0.4899175465, -0.0249408633, 0.1334861219, -0.3324630558, 0.1876619458, 0.1471927762, 0.1325829327, -0.0528519973, 0.3269252777, 0.0415283702, -0.1088427082, -0.4738568664, -0.0035290942, 0.2111255527, -0.4024798572, -0.4467405081, -0.0865471512, 0.2853619754, -0.1469683647, 0.0271625053, -0.4059702158, 0.0087407678, 0.2635793686, 0.1890695542, 0.0547970831, 0.0043812692, -0.1645893306, -0.367469579, 0.0327626243, -0.4655791819, -0.1391332746, -0.1570224166, 0.0946327448, -0.4148331881 ]
https://github.com/huggingface/datasets/issues/1790
ModuleNotFoundError: No module named 'apache_beam', when specific languages.
Maybe the reshuffle step can be added only if the runner is not a DirectRunner ?
```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct?
16
ModuleNotFoundError: No module named 'apache_beam', when specific languages. ```py import datasets wiki = datasets.load_dataset('wikipedia', '20200501.ja', cache_dir='./datasets') ``` then `ModuleNotFoundError: No module named 'apache_beam'` happend. The error doesn't appear when it's '20200501.en'. I don't know Apache Beam, but according to #498 it isn't necessary when it's saved to local. is it correct? Maybe the reshuffle step can be added only if the runner is not a DirectRunner ?
[ -0.0378291309, 0.0517894924, 0.0459224954, 0.1618947685, 0.2217684835, 0.0495496094, 0.2877704501, 0.3032410145, 0.0259334743, 0.1799339354, 0.2910349369, -0.0192490444, 0.1045150161, -0.023227606, 0.1100319028, -0.3740749955, 0.3071029186, -0.0370497815, -0.0959915891, -0.2818305492, -0.4426354766, 0.1054401174, -0.3799929619, -0.1579354554, -0.0031888559, 0.2331445962, -0.0568358898, 0.2654177845, 0.200373143, -0.1437356621, -0.0345399976, -0.2057224214, -0.0999971628, 0.3504474759, -0.000123889, 0.2205036581, 0.3199234009, -0.293764919, -0.2419769764, -0.1562590003, 0.0231215507, -0.3215467334, -0.1388464272, -0.3631031513, -0.1016658023, -0.0253452547, 0.0665039942, -0.3819903433, 0.6048763394, 0.1928149313, 0.1098593771, 0.421002388, -0.0207725912, -0.0147779081, 0.3787580431, -0.0865182504, -0.1000083014, -0.0779457539, -0.201074332, 0.2293723226, -0.1714307815, 0.3713361025, -0.2388275415, 0.0087697916, 0.0032124887, -0.27862221, -0.0851294994, -0.4114533663, 0.189735502, 0.2687949538, 0.4893788397, -0.2717169523, -0.2248744369, -0.2171140015, 0.0023345836, -0.0665183961, 0.2809656858, 0.0015106387, 0.0660390854, 0.0086566443, 0.511803627, -0.3065732718, 0.1025719419, -0.0175946839, -0.1090354249, 0.6667247415, 0.2183996737, 0.3571632206, -0.0904256403, 0.1953649521, 0.3329963982, -0.2005525976, 0.0652887672, 0.1246238351, -0.3468624949, -0.0545841157, 0.0373449102, 0.1232197359, -0.167746067, -0.009198105, -0.247233212, 0.1628329158, 0.3050272763, 0.0636527166, 0.0405446626, 0.2389966995, 0.1641887575, 0.3014989793, 0.2608811259, -0.3187679946, 0.1340392977, 0.0162616242, 0.1202595085, -0.5691351891, -0.5156909227, 0.3740121126, 0.0190283135, -0.026121594, -0.1588703394, -0.0768229961, -0.3505403996, -0.2740904987, -0.0533221066, 0.3207165003, 0.1593186855, 0.3862248063, 0.1374738812, 0.3043717742, -0.2998505831, -0.1806762069, -0.0933372378, 0.1023255438, -0.2912921906, 0.0453902781, -0.0807788521, 0.0810586512, 0.1793287396, -0.1545541137, 0.1975853294, 0.2324463427, -0.0161839277, 0.0808044523, -0.0513105989, 0.4848628342, 0.2038981616, 0.3424089551, 0.4302807152, 0.1734015048, -0.2173183858, 0.370519489, -0.4540524781, -0.3109499514, 0.192840308, -0.010565958, -0.1869196594, 0.0678289384, -0.0408777967, -0.0447851717, 0.1960521489, -0.1627373099, 0.2673735023, -0.1260741949, -0.1356469989, -0.2988694012, 0.0402594432, 0.6308399439, -0.1694735885, -0.0710988715, 0.0578631423, -0.0961324051, 0.1474756002, -0.0768605843, -0.0319538936, 0.2058145404, -0.2901692986, -0.0351818204, 0.9126726389, -0.5441172719, 0.0465965569, -0.0909164324, -0.3012405932, 0.0395177975, 0.5204703212, -0.0860052481, -0.2685619593, -0.2502497733, -0.0669795424, 0.2802209556, 0.0710942745, 0.1019852608, -0.2831768095, 0.1158962175, 0.1996942461, 0.2040526569, 0.347771287, 0.1337684393, -0.0263225622, 0.3089299798, 0.1329003423, -0.0437425263, 0.2109895647, 0.3810608983, -0.3102932274, 0.0953513309, 0.3288868666, 0.1389880478, -0.0363513976, 0.2736403942, -0.2340339124, 0.126184389, 0.220085755, -0.0863327906, -0.0491343774, -0.3538447917, -0.4471889436, -0.1766670942, -0.0177155025, 0.0479139537, 0.1006738991, 0.2592093349, -0.438626647, 0.3504110873, -0.2382589579, 0.1331077963, -0.3313282132, 0.3779860735, -0.1291902661, -0.009474773, -0.0357465334, 0.1551730633, 0.1023942977, -0.2608761787, -0.0117664281, 0.3821972013, 0.1847785711, 0.0009454079, 0.0661204755, -0.264780134, 0.1108390391, -0.0088176504, 0.3106170595, 0.222277537, -0.0423320234, -0.1995380074, 0.1582318544, 0.3815399408, -0.0263563003, 0.5534000993, 0.0767531395, 0.0388493687, 0.0933386683, 0.0327164978, -0.1753466129, -0.0997215658, 0.3674669862, 0.2749310732, 0.1782637239, -0.1733292192, -0.038780421, -0.1163837761, 0.6952415705, 0.1830938905, 0.1338067353, 0.0048370347, -0.2690497339, 0.151497975, -0.0059787575, 0.0746214241, 0.3360260129, 0.2021523416, 0.0381284207, 0.176622048, 0.2083055526, -0.1654425114, 0.0427259579, 0.1187447011, 0.3286022842, 0.3047617376, -0.204067409, -0.0914360285, -0.3562949896, -0.0728420541, -0.0272837058, 0.0737779364, -0.1998994052, -0.0119141378, -0.2538819909, -0.4885878265, -0.4647910893, -0.0220781639, -0.5278832316, -0.3266161382, 0.1899415404, 0.0178200286, -0.1534132361, 0.5467295647, 0.3333819211, -0.1433530897, -0.0060547963, -0.4190133214, -0.2095362842, -0.2616888881, -0.2897980809, 0.0098997653, 0.3442021608, -0.0150852688, 0.0647744164, -0.3819513023, -0.0901694521, -0.1610023975, -0.2000041455, 0.0520416722, -0.035718374, -0.3044554591, -0.0490272902, 0.3831196725, -0.1667331904, 0.0269657113, 0.3886790276, 0.1256408542, -0.2855385244, 0.2123600096, 0.1414211988, 0.090604201, 0.0217539221, -0.5343979597, -0.2619633973, -0.4425388277, -0.1127429381, 0.3377595246, -0.0179363303, -0.2148830593, 0.2542979419, -0.1770941019, 0.0141041018, -0.2195475399, -0.0476566628, -0.0188099146, 0.2171594948, -0.0823241621, -0.2377468646, 0.1454091668, -0.1483948827, -0.0491366461, 0.1627832055, -0.1970965713, -0.2041375339, 0.2359638363, -0.2119007409, -0.1554111838, 0.6291610599, 0.7919956446, -0.0584628023, 0.0516694523, -0.0522564314, -0.0450743139, -0.1296369433, -0.0457171425, 0.4874377549, -0.0442973748, 0.3777839839, -0.0016313642, 0.8330235481, -0.0795277357, 0.5151054859, 0.2486050427, 0.0314510316, 0.3576625884, -0.5895618796, 0.0750974342, 0.1400813162, 0.18108055, -0.0809005126, 0.1826245338, 0.08488442, 0.2279674709, -0.42523247, -0.2832067311, -0.1590495408, -0.3067366779, 0.2424544394, -0.2019097954, 0.0492009446, -0.0209224485, -0.0076370239, -0.0459685698, 0.0837606788, 0.1303992867, 0.4588713646, -0.0162468441, 0.1149082929, -0.3714071512, -0.1982641518, -0.2697687745, 0.4062990546, -0.037550319, 0.0089866556, -0.0109698847, -0.3440274298, 0.0577889383, 0.0095755234, 0.7247852683, -0.2223725319, -0.2160000205, 0.136184901, 0.0658363253, -0.3969596326, -0.2671535015, 0.1685896367, 0.110461086, -0.1129766703, -0.0603253096, -0.1990757436, 0.0028693639, 0.2013633847, 0.3502613604, -0.1858437955, -0.2565715909, -0.6710650921, -0.128343761, -0.6659098268, 0.034569446, -0.0235291161, -0.0380821005, 0.1507723331, 0.1970325112, 0.1336764693, -0.4105210304, 0.0060414188, -0.0339904837, 0.1067856103, -0.1963942647, -0.3931010067, 0.0838725865, 0.1498658061, 0.0119268391, 0.1818656474, 0.04892046, -0.1927949041, -0.022461554, -0.0939999968, 0.3057219684, 0.325475812, -0.1210918278, 0.2026846707, -0.0988029987, -0.1369830668, 0.058111921, -0.2772010863, 0.0825001672, 0.0212354474, -0.2918602228, -0.5804408789, 0.5959305167, 0.0238307491, -0.0611402914, 0.4912588298, 0.2390517145, -0.2107003331, 0.5178576708, -0.1179178208, 1.1283657551, -0.0416321419, 0.2160151005, 0.1365786493, -0.030607976, 0.6529220343, -0.7152813673, 0.3328056037, -0.249971509, 0.1918947548, -0.1073212177, -0.1381451786, 0.4551339447, 0.0230786726, -0.0000855774, 0.6919453144, -0.0696714818, 0.2239046395, -0.2821064889, -0.1195759028, -0.2298955768, 0.0141804479, -0.2873302996, -0.1048290804, 0.0490022004, 0.5750830173, -0.2609503865, 0.1015166938, -0.2526408434, -0.3439984918, -0.0964746848, -0.053897921, -0.1133999527, 0.1003811285, -0.2506742477, -0.3562536836, -0.1733190417, 0.1902550459, 0.4215755463, -0.1046227142, 0.0631271452, 0.2058875263, 0.0568379983, 0.0017741993, -0.1125629693, 0.1085181385, 0.2183765769, -0.171753794, -0.1444942504, -0.0625030547, -0.2645853162, -0.3730091751, -0.112417914, 0.092706427, 0.7888134122, 0.2436785102, -0.1366640329, 0.5964682102, 0.0447728932, -0.0597373843, 0.0402124822, -0.1973057985, -0.0520922989, 0.024471635, -0.3202801943, -0.0879469365, -0.1904219091, 0.3382103443, 0.5054776669, -0.1090092361, 0.3684284687, 0.0020971373, -0.0641612858, -0.1022731289, 0.141314894, 0.0933737084, -0.1211454049, 0.0321348682, 0.1755928248, -0.1490765512, -0.1830692887, -0.0648158193, 0.0359758995, 0.1165767312, -0.1092987135, -0.347104609, 0.0097766295, 0.1867249459, 0.0818004757, -0.0749900565, -0.1192837507, 0.4146802723, 0.3110106885, -0.2838918269, -0.157091558, -0.1663303673, 0.0561400875, 0.1389807165, 0.0468086451, 0.3287314773, -0.0659126639, 0.215400517, 0.0019714423, -0.0859810859, -0.2071030736, -0.075469844, 0.0507458746, 0.2360821366, 0.1155921817, 0.1225412712, 0.2319331914, -0.2529882789, 0.1190036312, -0.1333071738, -0.0471673496, 0.2049923837, -0.1743317693, 0.2479428947, 0.472227931, 0.1558713615, -0.4540855885, 0.1151992977, -0.2590805292, -0.0721191838, 0.0176858902, 0.2242807448, 0.2557979524, 0.1642473638, -0.3291206658, -0.0661544353, -0.0070637763, 0.0523628034, 0.0173696671, -0.1378447413, 0.0108230561, -0.2007794976, 0.2597388029, 0.4037546515, -0.1165412515, -0.1918816417, 0.2356770337, 0.0097521488, -0.6148344874, 0.1283180863, 0.5827642083, -0.0436285548, 0.0342310369, 0.2916868925, 0.2184491307, -0.2475516796, 0.3061937988, 0.1987026483, 0.1265825629, -0.3680982888, 0.3958075047, 0.2837429643, 0.1989345551, 0.173713997, 0.3414798379, -0.1861775815, 0.1620644182, 0.6131902933, -0.0779114589, 0.5723164678, 0.2195225209, -0.0528069101, -0.3409300745, -0.344014436, 0.3430027962, 0.4752601087, 0.2266089469, -0.2065157294, 0.1544107497, -0.1298748404, -0.0306209438, -0.0297718104, -0.1927203536, 0.0874814317, -0.100799039, 0.0834338218, 0.0292318985, -0.3153882325, 0.0002237409, -0.0326269232, 0.1068399101, -0.0736552402, 0.2326970398, -0.0119549446, -0.0000040457, 0.0383536518, 0.2689737082, -0.2507520914, 0.0448512919, -0.0744481906, -0.1020021364, 0.2303337455, -0.0982784554, 0.2454407215, 0.1394628882, 0.0990578681, 0.0319893584, -0.0642367527, -0.1891167313, 0.0995638967, 0.0698036477, -0.0910215974, 0.0897792727, -0.1794643551, 0.1652263403, 0.1663867533, 0.054142423, -0.1633563042, 0.1356811523, 0.052620884, -0.1210120469, -0.1623203307, 0.2607015073, -0.1448886096, -0.0855362564, -0.2999682724, 0.1323326379, -0.4391358495, -0.0361807644, 0.069201082, 0.1096899584, -0.2089390904, -0.2250739932, -0.0050088409, 0.0577381365, 0.1765890867, 0.3686089516, -0.1502883136, -0.1989368498, -0.287545681, -0.4894710183, 0.1540002525, -0.4054338932, 0.2183383554, -0.2065912932, 0.2182590663, 0.1433667243, 0.279342562, 0.1631581187, -0.0037902258, -0.1784085035, 0.1113901436, -0.2246068269, -0.1581051648, -0.199661091, 0.0984457135, -0.144167766, -0.3681927323, -0.0305781364, 0.0476008542, -0.0159630515, 0.02309452, -0.2837208807, 0.5991745591, -0.25033921, 0.2883058488, 0.0000730027, 0.21580109, 0.1250247061, -0.0017147958, 0.1506818384, -0.1211904436, -0.4373411536, 0.114683494, -0.0757658333, 0.2590181828, -0.3916988075, -0.1559030116, -0.3126990795, 0.4246472418, 0.0334185362, 0.3534770012, -0.2941411436, 0.273861587, 0.1248203963, 0.242126137, -0.0782947093, 0.24047333, 0.0372119844, -0.0417717174, -0.5601404309, -0.090134427, 0.2070987523, -0.4825281799, -0.3584973812, -0.0474842303, 0.1790841818, -0.0680186152, 0.095855765, -0.4054121971, 0.1350022256, 0.3061632216, 0.0924020857, 0.1401242018, 0.0371979512, -0.436436981, -0.1897844076, -0.0181784704, -0.6344158649, -0.1510040462, -0.1968304664, 0.1020774692, -0.3524165452 ]
https://github.com/huggingface/datasets/issues/1786
How to use split dataset
By default, all 3 splits will be loaded if you run the following: ```python from datasets import load_dataset dataset = load_dataset("lambada") print(dataset["train"]) print(dataset["valid"]) ``` If you wanted to do load this manually, you could do this: ```python from datasets import load_dataset data_files = { "train": "data/lambada/train.txt", "valid": "data/lambada/valid.txt", "test": "data/lambada/test.txt", } ds = load_dataset("text", data_files=data_files) ```
![Capture1](https://user-images.githubusercontent.com/78090287/106057436-cb6a1f00-6111-11eb-8c9c-3658065b1fdf.PNG) Hey, I want to split the lambada dataset into corpus, test, train and valid txt files (like penn treebank) but I am not able to achieve this. What I am doing is, executing the lambada.py file in my project but its not giving desired results. Any help will be appreciated!
56
How to use split dataset ![Capture1](https://user-images.githubusercontent.com/78090287/106057436-cb6a1f00-6111-11eb-8c9c-3658065b1fdf.PNG) Hey, I want to split the lambada dataset into corpus, test, train and valid txt files (like penn treebank) but I am not able to achieve this. What I am doing is, executing the lambada.py file in my project but its not giving desired results. Any help will be appreciated! By default, all 3 splits will be loaded if you run the following: ```python from datasets import load_dataset dataset = load_dataset("lambada") print(dataset["train"]) print(dataset["valid"]) ``` If you wanted to do load this manually, you could do this: ```python from datasets import load_dataset data_files = { "train": "data/lambada/train.txt", "valid": "data/lambada/valid.txt", "test": "data/lambada/test.txt", } ds = load_dataset("text", data_files=data_files) ```
[ -0.3074783087, -0.0464305729, -0.0625261813, 0.4651071727, 0.1305700839, 0.2037909627, 0.2765963972, 0.5807618499, -0.4295649529, 0.015046034, -0.3925749362, 0.2540951967, 0.1838493198, 0.3340368569, -0.1944948435, -0.4850149453, 0.0906332806, 0.2447200119, 0.0513657928, -0.1060135663, -0.0785973221, 0.1636878997, -0.4311266243, -0.1009090692, -0.5181134939, -0.1812318116, -0.2913367152, 0.1126132309, -0.3164638281, 0.0334360525, 0.0643467903, 0.1915282905, 0.2770762146, 0.4318369329, -0.0001236601, 0.0267233849, -0.0548700355, -0.251576215, -0.1459672451, -0.0903863162, 0.0458019674, 0.0903778449, 0.1970302761, -0.332878828, -0.1814205348, -0.4163514972, -0.0681707337, 0.0015485883, 0.6935946941, 0.4342881739, 0.0081108138, -0.4164193273, -0.0055434927, 0.1647206992, 0.3672721982, 0.3402591646, -0.0229085982, -0.0657092184, 0.1916344017, 0.0812231079, 0.0823046044, 0.0832439214, -0.0158375353, 0.3440509737, 0.0033667786, 0.1852826178, -0.2075949013, -0.4350945354, 0.0201415066, 0.1973955482, 0.668148756, -0.3729458153, -0.1618388444, -0.2038093209, -0.1345125735, -0.4180257916, -0.0779002011, 0.4423206747, -0.1205712855, 0.137815088, -0.2383988351, 0.1256262362, -0.24455598, 0.3950929642, -0.0653968975, 0.2446011454, -0.085191302, 0.158007279, 0.1469617486, 0.2207307518, 0.1795395315, -0.238950178, -0.1969652772, 0.0609346367, -0.33901757, -0.1809934676, -0.4194631875, -0.2334726751, 0.2693912983, 0.4270797968, -0.1869288087, -0.1305602193, -0.1368005425, -0.1355262697, 0.5117038488, 0.0301424861, 0.2042324245, 0.3433420658, 0.0389582738, -0.0347345136, -0.2185377926, -0.1680014282, -0.1378878802, -0.2395495474, -0.0726652443, 0.3465912342, 0.2915111184, -0.2763412297, -0.1029527634, -0.5062013268, -0.5687619448, -0.2831330895, 0.0132068209, 0.2261784971, 0.0955340043, -0.0874018967, -0.0726816058, 0.3877470791, -0.3162639737, -0.1819901317, 0.0231043287, 0.0718564987, -0.2617368698, -0.0702702031, 0.3142622709, -0.4424536824, 0.1238226742, -0.0749288201, 0.0452285782, -0.3328416348, 0.1651380956, -0.3937927186, 0.054579135, 0.2088657022, 0.218896687, -0.0664286464, 0.1271423697, 0.1447397768, -0.2334045321, 0.1049001217, -0.1808666587, -0.0801765025, 0.155826956, -0.0196959488, 0.0611529052, 0.1351347566, -0.4866167605, 0.2976645231, 0.0896811932, 0.1010287926, 0.036778681, 0.1594927758, -0.1407069862, -0.0847331285, 0.2250466347, 0.1343904138, -0.292560637, 0.0847756341, 0.0228855498, -0.281904012, 0.245317027, 0.1108603328, -0.1238233745, 0.5956164002, -0.0330512971, 0.0815180987, 0.4777337313, -0.7511568666, -0.143872574, 0.3750925958, 0.2684721351, -0.267881304, 0.0732862651, -0.1370614469, 0.5824894309, -0.060070999, -0.1912476569, 0.5537318587, -0.2710951567, 0.0165224224, 0.0668276995, -0.2530248165, -0.0888293684, 0.2614716291, 0.0190682635, -0.0778128207, 0.2262898982, 0.1465777457, 0.3665561974, -0.1042811275, 0.308785975, -0.0434689075, 0.2427295595, 0.0071521532, 0.178687185, -0.3716312051, -0.2358858436, 0.0932082832, 0.0062297732, -0.0141478311, 0.075658381, -0.2274846137, -0.2097717226, -0.352607429, -0.3782558739, -0.1538070142, 0.0048068948, -0.1962915212, 0.2621352673, 0.0109240562, -0.2893617749, 0.0339711681, 0.0975754559, 0.4323087335, 0.0469639897, 0.4479080141, 0.1255495995, -0.08861918, 0.0299215764, 0.0520884171, 0.0634899586, -0.1969067901, -0.1304464638, 0.420008868, 0.3873399794, -0.0858752429, -0.0276354514, -0.2635813057, 0.2716657221, -0.2346799374, 0.0363776609, -0.0131425299, 0.0668623671, -0.2364051193, -0.3931197226, 0.1513241529, -0.2954006791, 0.2507549524, -0.0045372546, 0.1367307901, 0.1403152049, -0.2662442923, 0.1603451669, 0.0253538042, -0.1090280786, -0.2627276778, 0.2647829056, -0.3021568954, 0.1317906827, -0.062724933, 0.4427016675, -0.1344833821, -0.0271010771, 0.0019467534, -0.0146333687, 0.3422632217, 0.127785027, 0.4383703768, 0.3600809574, 0.1405370533, 0.1169459969, 0.1188060045, 0.2640933096, -0.0330179483, 0.1776480675, 0.1477963626, 0.2139982432, 0.1553720236, -0.2412404567, -0.1930328906, -0.0302052274, -0.0356369875, 0.2965056896, 0.3059889376, -0.0889391676, 0.1264162213, -0.2307715118, -0.4963017404, -0.3396853805, -0.3279795349, 0.1289582253, 0.0233277529, 0.0331725441, 0.0473308116, 0.2906075716, 0.1235114411, 0.1898518056, 0.0364795923, -0.0740120932, 0.0600007325, -0.0685787797, -0.1514945477, -0.1349992156, 0.0668267906, 0.3735646904, 0.7918114066, 0.2371254712, -0.318859309, 0.0106521323, -0.2567153275, 0.0796775296, 0.2232895046, -0.309864223, 0.0498286784, 0.1674470156, -0.0184571892, 0.0096680075, -0.0992563516, 0.1296454668, 0.0814135, -0.1913520396, 0.0079765841, -0.0498735048, 0.0759781301, -0.0945535749, -0.5739891529, -0.1470647007, -0.2587658763, 0.4122138023, 0.2381136268, 0.1185840666, -0.0971848145, 0.0823048055, 0.091028899, 0.0020558424, 0.0315575898, 0.1899358332, -0.111955069, 0.1132454649, -0.2350586951, -0.2499634475, 0.3675470054, 0.1742354035, -0.0573563837, -0.0786819533, -0.2121852636, 0.2335444093, -0.0393021107, -0.0227118134, 0.0712004155, 0.1150882766, 0.2429212332, -0.2319126129, 0.1688637882, -0.0902312323, 0.0654573739, 0.1491006166, -0.2139848322, 0.262665838, -0.134207502, 0.3909489512, 0.0201904029, 0.6240468621, 0.4335103035, -0.0120475031, 0.036273282, -0.1909751594, -0.3649744391, -0.0788717717, -0.2182035446, 0.0700496286, -0.1186105832, 0.0122596323, 0.4296045899, 0.2938131094, -0.0210731924, -0.3732334375, -0.3243961036, -0.3882583976, -0.3626785874, 0.0344233736, -0.1725732833, -0.0155387893, -0.2830412388, 0.0333823115, 0.2826632559, -0.1496886462, -0.3008394539, 0.2882889509, 0.0686449483, -0.0268581416, -0.4724094272, 0.0764362961, -0.2553853989, 0.3712056279, -0.0017333515, -0.1647526026, -0.050184872, 0.1439051926, 0.3047735393, 0.0562231727, 0.6318734884, 0.0120182578, -0.0175541248, 0.0538033471, -0.0395119749, 0.1283358634, 0.0321727321, -0.3007616401, 0.1802009046, 0.217947185, 0.0696549118, -0.4603877664, -0.3480933905, 0.3474251032, 0.090508461, -0.1073827595, -0.0542225018, -0.2201906443, -0.1384025812, -0.4269976616, -0.0372313857, 0.2381212413, 0.0470562503, -0.1664706767, -0.2025654614, -0.0576919392, -0.1789474338, 0.2900050282, 0.0832045674, 0.2673641443, -0.1505033672, 0.1634495407, 0.0319860727, -0.0256314501, 0.5261574388, 0.550986886, -0.238863036, -0.6641387343, -0.0823726356, -0.2544226348, 0.4143174887, 0.0188774243, -0.1984589398, -0.057679221, -0.0474882796, -0.0492347628, -0.0493977629, 0.0503163524, 0.2752566934, -0.0799270421, -0.4217451215, -0.3295517564, 0.2977845073, -0.0490430072, 0.1013775468, 0.3222384155, -0.0535087734, -0.3448221982, 0.404664278, 0.1755124032, 0.8032979369, -0.3154440224, -0.0005886992, -0.016341269, 0.0220422894, 0.4005246162, -0.660214901, 0.0886543095, -0.2385680079, -0.1123944893, -0.1394271702, -0.0939431936, 0.2245838046, 0.4019755721, -0.4566557109, 0.1663924903, 0.1698404253, -0.0922524929, -0.2540281713, 0.1580014825, -0.1684262455, -0.1770730764, -0.1891630888, -0.0005676784, -0.1797831059, 0.1242979318, 0.0883839056, -0.0329316258, -0.1870018244, -0.019758597, -0.0014659613, 0.0808520764, -0.1125744134, -0.1086506695, -0.1998763829, -0.228472501, 0.2189377844, 0.6059164405, 0.2206414789, -0.1742941439, -0.1218371764, 0.1038347334, -0.0908452868, -0.1631282866, -0.0984105468, -0.0659002438, 0.1742148697, -0.0648381934, -0.3266786933, 0.1432162225, 0.1472800821, -0.1852101088, 0.2426715493, 0.1704327464, 0.1030173004, -0.5554350615, -0.0098948218, 0.0667538196, -0.0916172564, -0.1178815514, 0.0122631118, 0.0074494937, -0.2226941139, 0.3630225956, -0.3571640551, -0.2547811568, -0.098125197, -0.0154841579, 0.0817960054, -0.0431546159, 0.2503519952, 0.4610137343, 0.0802974999, -0.2130611837, 0.3313154578, -0.0468945913, -0.5658298135, 0.1925092191, -0.0715364143, 0.212195456, 0.2029457688, 0.6457027793, -0.1237531304, -0.0773301274, -0.1040319726, -0.398221314, -0.1800464094, 0.1881072223, 0.0979689807, 0.2443712652, 0.1031342745, 0.4572245777, 0.1946158707, 0.1644681841, -0.0912946761, 0.4208091497, 0.0160160959, 0.2344452739, -0.2441112101, 0.0202302355, 0.1939492375, 0.0831428468, -0.0726449564, 0.1258040518, -0.0110152159, -0.1045787036, -0.132672295, 0.2093546093, 0.039248731, -0.0429213494, -0.168212235, -0.2046526819, -0.2691369355, -0.2062192857, 0.1293131411, -0.0536733456, 0.0404615775, 0.3889117837, 0.5246464014, 0.0588927679, -0.5523725748, -0.083144635, -0.0314931087, 0.0178718735, 0.1262950748, 0.1004039049, -0.0244425517, 0.0050222129, -0.5351826549, -0.0438056886, 0.4880595803, -0.0485446602, 0.3229615688, 0.0124438452, 0.3669817746, -0.1774815917, 0.4626230001, 0.3782724142, -0.0179464053, 0.1993534118, 0.1697978228, 0.0539514944, 0.0176977441, 0.1849736571, 0.220545873, -0.0006580204, 0.0160365105, 0.4903231859, -0.2690648139, 0.1666277945, -0.3717581332, -0.0421494022, 0.3210777342, 0.1542684436, 0.3033195436, 0.9101154208, -0.059588518, 0.0866478756, 0.1254604012, 0.0057803988, 0.0839023814, 0.4529550672, -0.0634017587, 0.3624614477, -0.2818380594, 0.1066175103, 0.2083310783, -0.1350650489, 0.1179997176, 0.1469714642, -0.1605196595, -0.2424384654, -0.0634816885, 0.6651054025, -0.0648376495, -0.1775447279, -0.2696160376, 0.3691825867, 0.2023307532, 0.0846263468, -0.3215958476, -0.0835635588, 0.2510617971, -0.1073640212, -0.1984582543, -0.2229515016, 0.0666632503, 0.2417345494, 0.0216236841, -0.0559883043, 0.0558457226, -0.0804672316, 0.1826962829, -0.0439479947, 0.0037153307, 0.1432077438, -0.071804136, 0.3600773513, 0.160308525, 0.0938420668, 0.0030688737, -0.1667498797, 0.0194934718, -0.0423206501, -0.0701034665, 0.3184691668, 0.2982743382, 0.1052556634, 0.4170580506, 0.2447343171, 0.0421322137, -0.0236735232, -0.136038214, -0.0143918451, -0.0399269424, -0.2733767927, 0.38645491, 0.0119798724, -0.0934822112, -0.0182078741, -0.0559801757, -0.3887079358, -0.1473828256, 0.0218492709, -0.2804157436, 0.0626526475, -0.0745948851, -0.0414688364, -0.0644685254, 0.2426130772, -0.0561754145, 0.2943318784, -0.3316034377, -0.1498586088, -0.1963465959, -0.1389786899, -0.451451242, -0.5549048185, -0.0720993727, 0.0673271343, 0.0214774348, 0.2326617092, 0.0926979631, -0.1600027084, 0.1497939676, 0.5700587034, -0.1629796922, -0.2597330809, -0.2790686488, 0.3490465581, -0.1956105083, -0.389521122, 0.0840134174, 0.3195916414, -0.2047346681, 0.145927012, -0.151439473, 0.4545049071, 0.0031891796, -0.3598991334, 0.0629173368, 0.5531311035, 0.2346212864, 0.3608320057, 0.164086923, 0.0573133267, -0.0704561546, 0.2012004852, 0.1174851656, 0.2913326621, -0.3149189353, 0.200357452, -0.1085396335, 0.0894613564, -0.0003403053, -0.0149925724, -0.3560351133, 0.0652303696, -0.0707267001, 0.1926896572, 0.5887853503, 0.5346589684, -0.2799523473, -0.1900987625, -0.2888095975, -0.1398528516, 0.1622960716, -0.5503789783, -0.1900803745, 0.194152385, 0.0497575067, 0.3609688282, -0.0554297492, -0.575209856, -0.0025693774, 0.2839440405, -0.1510566324, -0.164981693, 0.2527157366, 0.3656668663, -0.1321684569, 0.0594671965, 0.0527025983, 0.1399405897, -0.2519497275, -0.0149262697, -0.2372124344 ]
https://github.com/huggingface/datasets/issues/1785
Not enough disk space (Needed: Unknown size) when caching on a cluster
Hi ! What do you mean by "disk_usage(".").free` can't compute on the cluster's shared disk" exactly ? Does it return 0 ?
I'm running some experiments where I'm caching datasets on a cluster and accessing it through multiple compute nodes. However, I get an error when loading the cached dataset from the shared disk. The exact error thrown: ```bash >>> load_dataset(dataset, cache_dir="/path/to/cluster/shared/path") OSError: Not enough disk space. Needed: Unknown size (download: Unknown size, generated: Unknown size, post-processed: Unknown size) ``` [`utils.has_sufficient_disk_space`](https://github.com/huggingface/datasets/blob/8a03ab7d123a76ee744304f21ce868c75f411214/src/datasets/utils/py_utils.py#L332) fails on each job because of how the cluster system is designed (`disk_usage(".").free` can't compute on the cluster's shared disk). This is exactly where the error gets thrown: https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L502 ```python if not utils.has_sufficient_disk_space(self.info.size_in_bytes or 0, directory=self._cache_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {}, post-processed: {})".format( utils.size_str(self.info.size_in_bytes or 0), utils.size_str(self.info.download_size or 0), utils.size_str(self.info.dataset_size or 0), utils.size_str(self.info.post_processing_size or 0), ) ) ``` What would be a good way to circumvent this? my current fix is to manually comment out that part, but that is not ideal. Would it be possible to pass a flag to skip this check on disk space?
22
Not enough disk space (Needed: Unknown size) when caching on a cluster I'm running some experiments where I'm caching datasets on a cluster and accessing it through multiple compute nodes. However, I get an error when loading the cached dataset from the shared disk. The exact error thrown: ```bash >>> load_dataset(dataset, cache_dir="/path/to/cluster/shared/path") OSError: Not enough disk space. Needed: Unknown size (download: Unknown size, generated: Unknown size, post-processed: Unknown size) ``` [`utils.has_sufficient_disk_space`](https://github.com/huggingface/datasets/blob/8a03ab7d123a76ee744304f21ce868c75f411214/src/datasets/utils/py_utils.py#L332) fails on each job because of how the cluster system is designed (`disk_usage(".").free` can't compute on the cluster's shared disk). This is exactly where the error gets thrown: https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L502 ```python if not utils.has_sufficient_disk_space(self.info.size_in_bytes or 0, directory=self._cache_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {}, post-processed: {})".format( utils.size_str(self.info.size_in_bytes or 0), utils.size_str(self.info.download_size or 0), utils.size_str(self.info.dataset_size or 0), utils.size_str(self.info.post_processing_size or 0), ) ) ``` What would be a good way to circumvent this? my current fix is to manually comment out that part, but that is not ideal. Would it be possible to pass a flag to skip this check on disk space? Hi ! What do you mean by "disk_usage(".").free` can't compute on the cluster's shared disk" exactly ? Does it return 0 ?
[ -0.0777429789, -0.4187167287, -0.0846218839, 0.2431604415, -0.0970098004, 0.1506601721, 0.0705345422, 0.3401211798, 0.3962349892, 0.3933157921, 0.4183929563, -0.1389311254, -0.091250293, 0.003891699, -0.1739585698, 0.2417321056, -0.0082295723, -0.060645178, 0.3455673754, 0.1274866462, -0.4057287276, 0.0130441319, 0.0944503248, -0.3736139834, -0.5426241159, -0.1880919784, -0.1662805974, 0.1566852331, 0.2269619703, -0.2247432172, 0.3221061826, -0.0054950463, -0.101139307, 0.5720779896, -0.000115944, 0.0363123417, 0.1715253741, -0.1809052527, -0.4399377108, -0.0386955291, 0.2173041999, -0.4069227874, -0.2233587503, -0.3619658351, -0.0103092417, 0.1603567749, -0.0511808842, -0.4436120093, 0.1765249968, -0.0691839382, 0.1679692566, 0.3530053198, -0.2203018069, -0.092613928, -0.2659410238, 0.1767234504, -0.0469131172, 0.5180590153, 0.2992624044, 0.0753149763, -0.2787300348, 0.2208093703, -0.1333251745, 0.1601160765, 0.4138149321, -0.1359975934, -0.074527666, -0.1845136285, 0.1962376237, -0.0268670432, 0.4277344942, -0.195032388, -0.5273439288, -0.5711028576, 0.0500526763, -0.1597713232, 0.4396586418, 0.0364263877, -0.4096869826, 0.1226711571, -0.3018590808, -0.3372612596, -0.2010518014, -0.2099774182, 0.0532092452, 0.164129898, 0.0016834922, 0.0830850899, 0.3270329833, 0.0175014641, -0.0256254002, 0.026436165, 0.1729608178, 0.2536420822, -0.2865464687, 0.0151760206, -0.0948410779, 0.2101235539, 0.1011189818, 0.2106983215, 0.0610055514, -0.1125412136, 0.0735729039, 0.2540668249, 0.013658084, 0.2466121912, -0.2650674582, -0.0978879854, 0.2030571699, -0.0030463822, 0.1735390127, -0.1133196428, 0.0481717624, -0.3508071005, 0.1162030101, -0.0180884562, 0.20401299, -0.071485132, -0.3821851909, 0.1272477359, 0.2050052583, 0.3049911559, 0.212281853, 0.2848547101, 0.0810500234, 0.2399785221, 0.2188414931, 0.1994529814, -0.0902341455, -0.0968263298, -0.1159810275, -0.014707068, 0.0885302871, 0.1693161875, 0.3448050022, 0.036770381, 0.2115974873, -0.0179043263, 0.4590657949, -0.1054458842, -0.0721758604, -0.2352617681, -0.1191630363, 0.4233519435, 0.1197761297, 0.0117571652, 0.2519823611, 0.1500506252, -0.1510385573, 0.2677905858, -0.3836433887, -0.4553592205, 0.0440195277, 0.0724627599, -0.3528415859, 0.2011186928, -0.4066094756, -0.0384401567, 0.3097245693, -0.1824394166, 0.1011646688, 0.0928384066, -0.3887100816, -0.2462706864, 0.1381938457, 0.3473315239, -0.1142509133, 0.0037160292, -0.3107169867, 0.1621557772, 0.0525878593, 0.4145957232, 0.1311628073, 0.13864398, -0.4277252853, 0.1380101889, 0.1127068549, -0.3308420777, -0.5418022275, 0.3061303496, -0.1718520075, 0.2516015768, 0.5377889276, 0.2614463568, -0.0163331032, -0.23369129, 0.2327863574, 0.2714539468, -0.2196911573, 0.0563454926, -0.3533274829, -0.263456434, 0.0278724208, 0.0614294857, 0.3454007804, 0.108564727, 0.0109477565, -0.0060027987, 0.1818706393, 0.0549798235, 0.2010059655, 0.3193238676, 0.3190517724, -0.3444590569, -0.0738660619, 0.0217244625, -0.519477725, 0.3491622508, 0.1930716634, -0.210014835, -0.0646495745, -0.443294853, -0.2809631228, 0.0622078851, 0.2482937425, 0.3274293542, 0.0486465544, -0.0373881496, 0.2494669557, -0.3069351315, -0.0596499071, 0.1668300629, -0.2572429478, -0.0578985512, 0.1028764397, -0.037163429, -0.0423912555, -0.1400397569, 0.0494484305, 0.0646104738, 0.0650269166, 0.1349683404, -0.0143351536, 0.4134908617, -0.1063748002, 0.2247717828, -0.0903507769, 0.1346000433, 0.152313605, 0.3512613177, 0.002052106, 0.1752402186, 0.0069470666, -0.1697664559, -0.1110433415, 0.2095979303, -0.0455698408, 0.2853602469, -0.0826584473, 0.0640583932, 0.0624382049, 0.0560382903, 0.1237754822, -0.0592898428, 0.2901299596, -0.1966568232, 0.4879350364, 0.081317611, 0.0228468254, -0.0144201182, 0.0694394112, 0.1592282355, 0.2913537025, 0.1565068662, 0.2970968485, -0.034521699, -0.0058797766, 0.2817406356, 0.2664147913, 0.1560029089, 0.0153092369, -0.1753182113, 0.0451874807, -0.2055585682, 0.0528199263, -0.0503013246, 0.1580186933, 0.2922104299, 0.0067300685, -0.2964169383, 0.0960466042, -0.3090458512, 0.2155116796, 0.0772979036, -0.2874602675, -0.0579077899, 0.0557798743, 0.182818234, 0.0615938418, 0.1889596879, -0.4589173198, -0.3148480654, 0.1746362001, 0.6444195509, -0.2373900414, -0.095242843, -0.3729636669, 0.4732410312, 0.0780525655, -0.4257942438, -0.0265631676, -0.2685462832, -0.1055517197, 0.0170708075, 0.3254655898, -0.257827431, 0.3435428739, 0.0094136372, 0.0713446289, -0.4250703752, 0.158122927, -0.1697877049, 0.0267440677, 0.1604888737, -0.1307637393, 0.3355611861, -0.122108385, -0.1611020267, 0.1600525975, -0.0386517532, -0.0417478345, 0.0091872215, 0.157061711, 0.1753276438, -0.323263824, 0.0315410607, -0.1793826371, -0.5495163202, 0.1743901819, -0.1816839576, 0.2716465294, 0.1036405712, 0.1733866334, -0.1049472541, 0.7099815607, -0.1731764078, -0.2496190667, -0.6116567254, 0.2382909656, -0.0803573504, -0.029551724, -0.0471711755, 0.0296283588, 0.2122025192, 0.4242190421, -0.4782415628, -0.4002629817, -0.1671660841, 0.2294674069, -0.2420354187, -0.0321567617, 0.1791037321, -0.1486545205, -0.0734726712, -0.1409638673, -0.0281640664, 0.0528292432, 0.0094649065, 0.2762106061, 0.2927936614, 0.2192625403, 0.3207839131, 0.7062376738, -0.1594575346, 0.2500558197, 0.2755181789, 0.1817433089, 0.6162170172, 0.0905259103, -0.0536036417, 0.0400999337, 0.0080742687, -0.6150445342, 0.0189750865, -0.0332707502, 0.1380775422, -0.028210301, -0.3949747086, 0.0797363967, -0.2690034807, 0.3064283431, -0.4407605231, 0.2631148398, -0.262496233, 0.0036534742, -0.3661700785, -0.0888019502, -0.0278779864, 0.0957247019, 0.51638937, 0.199370265, -0.257881403, -0.2660911381, -0.5647938848, 0.3253154159, -0.0060485154, 0.1244610697, -0.3100082278, 0.0745291412, -0.0808815658, 0.010127455, 0.7869895101, -0.0905365571, 0.2198171914, 0.0822388828, 0.025765568, -0.5359351635, -0.0108494535, 0.1368560046, 0.3804579973, -0.0719698668, 0.4385929108, -0.1767696589, 0.1249716803, -0.4394179285, 0.3606898785, -0.3306919038, -0.2415882945, -0.3854801953, -0.3814746737, -0.4833006263, 0.4473903477, 0.4565168917, 0.2527858317, -0.0483524054, 0.3299104571, -0.1702633202, -0.0149610415, 0.173651427, -0.0075805187, 0.4432083964, -0.1366668046, 0.0413893983, 0.1019200236, -0.0565785803, 0.4277547896, 0.4132583439, 0.1096959189, 0.1532111019, 0.2755294442, 0.0156117938, 0.3339523673, 0.3349297047, -0.0720827654, 0.0272415429, 0.1159463525, 0.2456974983, -0.4392105937, -0.064936161, -0.3937532902, -0.0534106493, -0.0902631879, -0.0206969865, 0.3726736605, 0.3526020646, 0.0177914947, 0.0702154264, 0.3179868162, -0.312715739, 0.2607080638, -0.0260274373, 0.8725861311, -0.0851956606, 0.0190445073, 0.0668716505, 0.3008269668, 0.3401432931, -0.4726659954, 0.3613075018, 0.0440846384, -0.2942005694, 0.0325814709, -0.0121937394, -0.0210773237, 0.2959339321, -0.1688451171, 0.4016993046, -0.5068143606, 0.0121941892, -0.0954148546, 0.136552915, -0.6846148968, -0.3742955327, -0.2389677018, 0.1206891835, -0.1377953291, 0.2103002369, -0.2451044172, 0.1086563244, 0.0337139666, -0.3128849864, -0.3662666976, -0.1701534688, 0.0267180465, 0.3035690188, -0.178985551, 0.0236432403, -0.0893728659, 0.1346773803, 0.2152778208, 0.3010417223, -0.1435461938, 0.1024802625, -0.1572920084, -0.0557974689, 0.0648062602, 0.0752227604, 0.1123976782, 0.0016258359, -0.3096865118, 0.1574648619, -0.2591037154, -0.4899290502, 0.0290627331, -0.0438139103, -0.2942898571, -0.0338735282, -0.2902981639, -0.456600368, -0.0054635853, -0.0876832008, 0.0665069148, 0.0191741493, -0.1189477742, 0.1476352215, 0.0235254187, -0.2044094503, 0.1164215207, 0.1907235086, 0.1715483814, -0.3462994099, 0.3859963417, -0.3731985688, -0.0873680487, -0.1736940444, -0.1504092366, -0.1342985779, 0.0950827003, 0.3430255949, -0.0794040635, -0.128579706, -0.2427508831, -0.2310127616, 0.6502942443, 0.426238358, -0.1440830827, -0.4783767462, -0.3731829524, 0.2676645517, 0.0803002492, 0.2381605506, -0.0641212463, -0.0984877646, 0.0306083411, 0.1129469201, -0.2559909821, -0.0557872169, -0.4407337606, 0.0071714465, 0.2117856443, 0.1263763309, 0.2143029869, -0.0947058499, -0.0827279985, 0.1265946776, -0.0557574183, -0.1126360148, 0.0449620038, 0.1506277472, 0.0469185673, 0.1951720268, 0.1735434085, -0.4588235021, 0.2376361936, -0.2655067444, 0.1753757298, 0.418269217, -0.0454815961, -0.3415572047, 0.0746579915, 0.497474879, -0.1709235013, 0.142231673, 0.1285940707, 0.1546491086, -0.2296800017, 0.1842867732, 0.1251479834, 0.1417403966, 0.2366857529, -0.1120786667, 0.220143795, 0.0385221653, -0.1545706987, 0.0684717745, -0.0448022075, 0.2478230596, 0.2652955353, -0.0790443867, -0.0293990802, 0.0338053107, 0.0698838681, 0.2173098475, -0.2394901514, -0.1172489226, 0.2396282405, -0.0299389865, 0.1197567284, 0.5013857484, 0.3876142502, -0.3748736382, 0.0745423138, 0.092380479, 0.5648562908, -0.2601764202, 0.0413096733, 0.1336950362, 0.0506068915, 0.0030419668, 0.1490098387, -0.0633013546, 0.3891543746, 0.3070388138, -0.1713537276, 0.2159723192, 0.2408121377, -0.1208607107, -0.1497631371, -0.4051085711, 0.0863525271, 0.0817288756, 0.0425831527, 0.1304462552, -0.3192767799, -0.047600396, -0.3641906381, -0.1965405941, -0.2249186933, -0.1132412106, -0.4139752388, -0.0106492303, -0.0181170404, -0.0879315436, -0.0273673013, -0.1237474382, 0.3569253981, -0.3851692975, 0.3071929812, 0.0091478359, 0.0622753426, 0.2990063131, -0.2994194925, 0.468478024, 0.1641293764, -0.3684590161, 0.0377959609, 0.2732794881, -0.2538942397, 0.299713254, 0.1712867767, 0.6783190966, 0.2227467299, -0.0918962061, 0.0675154328, 0.0342148766, 0.0763493329, -0.3394201696, -0.023013059, 0.0669182539, -0.1332620233, 0.1145664603, 0.1374944299, -0.0944961458, 0.2236460596, 0.0117416847, 0.2606365383, -0.2572069764, -0.1200353652, -0.1719234288, -0.1995496452, -0.1337639093, 0.0917496532, -0.2527791858, -0.2110944092, 0.3524630666, -0.0509156287, 0.1831523776, 0.1991888285, 0.067212522, -0.0960668847, 0.2713786364, 0.3381310999, -0.5006520748, -0.3073889911, 0.0890708119, -0.5300474167, 0.2179002911, -0.2879719138, -0.0791888982, -0.031629432, 0.2162606716, -0.0353248753, -0.1100047529, 0.0923835933, -0.0869552568, -0.0684575737, -0.1544492245, -0.263378948, -0.2788788676, -0.0878153741, -0.2979597151, 0.2715916038, -0.5973241329, -0.0476715267, 0.1096990556, 0.0626049936, 0.0808957592, -0.0069346055, 0.2312020659, 0.44211483, 0.3236787915, -0.0014011748, 0.4533214569, 0.0691780001, -0.1578183621, -0.3555996418, -0.0512273796, -0.1567314714, 0.0503355451, 0.1229818314, 0.2397247255, -0.6420223713, 0.0890369639, -0.2371958494, 0.2477701604, 0.0678069592, -0.0797337666, 0.0980475619, -0.0238933936, -0.3431885839, 0.1982948482, 0.2360747904, 0.2301771194, -0.0658627152, 0.3270434141, -0.1933469474, -0.1563149393, 0.4829872847, -0.1396927536, -0.3495693505, -0.224676773, 0.4760473371, 0.0577695854, -0.0404224284, -0.1970507205, -0.0889567286, 0.1853536963, 0.0791051835, 0.063200362, -0.1794751585, -0.2648893893, -0.2492372394, -0.0139691681, 0.2091804147, -0.3121144772, -0.3135881424, 0.0350732729, -0.2094388008 ]
https://github.com/huggingface/datasets/issues/1785
Not enough disk space (Needed: Unknown size) when caching on a cluster
Yes, that's right. It shows 0 free space even though there is. I suspect it might have to do with permissions on the shared disk. ```python >>> disk_usage(".") usage(total=999999, used=999999, free=0) ```
I'm running some experiments where I'm caching datasets on a cluster and accessing it through multiple compute nodes. However, I get an error when loading the cached dataset from the shared disk. The exact error thrown: ```bash >>> load_dataset(dataset, cache_dir="/path/to/cluster/shared/path") OSError: Not enough disk space. Needed: Unknown size (download: Unknown size, generated: Unknown size, post-processed: Unknown size) ``` [`utils.has_sufficient_disk_space`](https://github.com/huggingface/datasets/blob/8a03ab7d123a76ee744304f21ce868c75f411214/src/datasets/utils/py_utils.py#L332) fails on each job because of how the cluster system is designed (`disk_usage(".").free` can't compute on the cluster's shared disk). This is exactly where the error gets thrown: https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L502 ```python if not utils.has_sufficient_disk_space(self.info.size_in_bytes or 0, directory=self._cache_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {}, post-processed: {})".format( utils.size_str(self.info.size_in_bytes or 0), utils.size_str(self.info.download_size or 0), utils.size_str(self.info.dataset_size or 0), utils.size_str(self.info.post_processing_size or 0), ) ) ``` What would be a good way to circumvent this? my current fix is to manually comment out that part, but that is not ideal. Would it be possible to pass a flag to skip this check on disk space?
32
Not enough disk space (Needed: Unknown size) when caching on a cluster I'm running some experiments where I'm caching datasets on a cluster and accessing it through multiple compute nodes. However, I get an error when loading the cached dataset from the shared disk. The exact error thrown: ```bash >>> load_dataset(dataset, cache_dir="/path/to/cluster/shared/path") OSError: Not enough disk space. Needed: Unknown size (download: Unknown size, generated: Unknown size, post-processed: Unknown size) ``` [`utils.has_sufficient_disk_space`](https://github.com/huggingface/datasets/blob/8a03ab7d123a76ee744304f21ce868c75f411214/src/datasets/utils/py_utils.py#L332) fails on each job because of how the cluster system is designed (`disk_usage(".").free` can't compute on the cluster's shared disk). This is exactly where the error gets thrown: https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L502 ```python if not utils.has_sufficient_disk_space(self.info.size_in_bytes or 0, directory=self._cache_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {}, post-processed: {})".format( utils.size_str(self.info.size_in_bytes or 0), utils.size_str(self.info.download_size or 0), utils.size_str(self.info.dataset_size or 0), utils.size_str(self.info.post_processing_size or 0), ) ) ``` What would be a good way to circumvent this? my current fix is to manually comment out that part, but that is not ideal. Would it be possible to pass a flag to skip this check on disk space? Yes, that's right. It shows 0 free space even though there is. I suspect it might have to do with permissions on the shared disk. ```python >>> disk_usage(".") usage(total=999999, used=999999, free=0) ```
[ -0.0777429789, -0.4187167287, -0.0846218839, 0.2431604415, -0.0970098004, 0.1506601721, 0.0705345422, 0.3401211798, 0.3962349892, 0.3933157921, 0.4183929563, -0.1389311254, -0.091250293, 0.003891699, -0.1739585698, 0.2417321056, -0.0082295723, -0.060645178, 0.3455673754, 0.1274866462, -0.4057287276, 0.0130441319, 0.0944503248, -0.3736139834, -0.5426241159, -0.1880919784, -0.1662805974, 0.1566852331, 0.2269619703, -0.2247432172, 0.3221061826, -0.0054950463, -0.101139307, 0.5720779896, -0.000115944, 0.0363123417, 0.1715253741, -0.1809052527, -0.4399377108, -0.0386955291, 0.2173041999, -0.4069227874, -0.2233587503, -0.3619658351, -0.0103092417, 0.1603567749, -0.0511808842, -0.4436120093, 0.1765249968, -0.0691839382, 0.1679692566, 0.3530053198, -0.2203018069, -0.092613928, -0.2659410238, 0.1767234504, -0.0469131172, 0.5180590153, 0.2992624044, 0.0753149763, -0.2787300348, 0.2208093703, -0.1333251745, 0.1601160765, 0.4138149321, -0.1359975934, -0.074527666, -0.1845136285, 0.1962376237, -0.0268670432, 0.4277344942, -0.195032388, -0.5273439288, -0.5711028576, 0.0500526763, -0.1597713232, 0.4396586418, 0.0364263877, -0.4096869826, 0.1226711571, -0.3018590808, -0.3372612596, -0.2010518014, -0.2099774182, 0.0532092452, 0.164129898, 0.0016834922, 0.0830850899, 0.3270329833, 0.0175014641, -0.0256254002, 0.026436165, 0.1729608178, 0.2536420822, -0.2865464687, 0.0151760206, -0.0948410779, 0.2101235539, 0.1011189818, 0.2106983215, 0.0610055514, -0.1125412136, 0.0735729039, 0.2540668249, 0.013658084, 0.2466121912, -0.2650674582, -0.0978879854, 0.2030571699, -0.0030463822, 0.1735390127, -0.1133196428, 0.0481717624, -0.3508071005, 0.1162030101, -0.0180884562, 0.20401299, -0.071485132, -0.3821851909, 0.1272477359, 0.2050052583, 0.3049911559, 0.212281853, 0.2848547101, 0.0810500234, 0.2399785221, 0.2188414931, 0.1994529814, -0.0902341455, -0.0968263298, -0.1159810275, -0.014707068, 0.0885302871, 0.1693161875, 0.3448050022, 0.036770381, 0.2115974873, -0.0179043263, 0.4590657949, -0.1054458842, -0.0721758604, -0.2352617681, -0.1191630363, 0.4233519435, 0.1197761297, 0.0117571652, 0.2519823611, 0.1500506252, -0.1510385573, 0.2677905858, -0.3836433887, -0.4553592205, 0.0440195277, 0.0724627599, -0.3528415859, 0.2011186928, -0.4066094756, -0.0384401567, 0.3097245693, -0.1824394166, 0.1011646688, 0.0928384066, -0.3887100816, -0.2462706864, 0.1381938457, 0.3473315239, -0.1142509133, 0.0037160292, -0.3107169867, 0.1621557772, 0.0525878593, 0.4145957232, 0.1311628073, 0.13864398, -0.4277252853, 0.1380101889, 0.1127068549, -0.3308420777, -0.5418022275, 0.3061303496, -0.1718520075, 0.2516015768, 0.5377889276, 0.2614463568, -0.0163331032, -0.23369129, 0.2327863574, 0.2714539468, -0.2196911573, 0.0563454926, -0.3533274829, -0.263456434, 0.0278724208, 0.0614294857, 0.3454007804, 0.108564727, 0.0109477565, -0.0060027987, 0.1818706393, 0.0549798235, 0.2010059655, 0.3193238676, 0.3190517724, -0.3444590569, -0.0738660619, 0.0217244625, -0.519477725, 0.3491622508, 0.1930716634, -0.210014835, -0.0646495745, -0.443294853, -0.2809631228, 0.0622078851, 0.2482937425, 0.3274293542, 0.0486465544, -0.0373881496, 0.2494669557, -0.3069351315, -0.0596499071, 0.1668300629, -0.2572429478, -0.0578985512, 0.1028764397, -0.037163429, -0.0423912555, -0.1400397569, 0.0494484305, 0.0646104738, 0.0650269166, 0.1349683404, -0.0143351536, 0.4134908617, -0.1063748002, 0.2247717828, -0.0903507769, 0.1346000433, 0.152313605, 0.3512613177, 0.002052106, 0.1752402186, 0.0069470666, -0.1697664559, -0.1110433415, 0.2095979303, -0.0455698408, 0.2853602469, -0.0826584473, 0.0640583932, 0.0624382049, 0.0560382903, 0.1237754822, -0.0592898428, 0.2901299596, -0.1966568232, 0.4879350364, 0.081317611, 0.0228468254, -0.0144201182, 0.0694394112, 0.1592282355, 0.2913537025, 0.1565068662, 0.2970968485, -0.034521699, -0.0058797766, 0.2817406356, 0.2664147913, 0.1560029089, 0.0153092369, -0.1753182113, 0.0451874807, -0.2055585682, 0.0528199263, -0.0503013246, 0.1580186933, 0.2922104299, 0.0067300685, -0.2964169383, 0.0960466042, -0.3090458512, 0.2155116796, 0.0772979036, -0.2874602675, -0.0579077899, 0.0557798743, 0.182818234, 0.0615938418, 0.1889596879, -0.4589173198, -0.3148480654, 0.1746362001, 0.6444195509, -0.2373900414, -0.095242843, -0.3729636669, 0.4732410312, 0.0780525655, -0.4257942438, -0.0265631676, -0.2685462832, -0.1055517197, 0.0170708075, 0.3254655898, -0.257827431, 0.3435428739, 0.0094136372, 0.0713446289, -0.4250703752, 0.158122927, -0.1697877049, 0.0267440677, 0.1604888737, -0.1307637393, 0.3355611861, -0.122108385, -0.1611020267, 0.1600525975, -0.0386517532, -0.0417478345, 0.0091872215, 0.157061711, 0.1753276438, -0.323263824, 0.0315410607, -0.1793826371, -0.5495163202, 0.1743901819, -0.1816839576, 0.2716465294, 0.1036405712, 0.1733866334, -0.1049472541, 0.7099815607, -0.1731764078, -0.2496190667, -0.6116567254, 0.2382909656, -0.0803573504, -0.029551724, -0.0471711755, 0.0296283588, 0.2122025192, 0.4242190421, -0.4782415628, -0.4002629817, -0.1671660841, 0.2294674069, -0.2420354187, -0.0321567617, 0.1791037321, -0.1486545205, -0.0734726712, -0.1409638673, -0.0281640664, 0.0528292432, 0.0094649065, 0.2762106061, 0.2927936614, 0.2192625403, 0.3207839131, 0.7062376738, -0.1594575346, 0.2500558197, 0.2755181789, 0.1817433089, 0.6162170172, 0.0905259103, -0.0536036417, 0.0400999337, 0.0080742687, -0.6150445342, 0.0189750865, -0.0332707502, 0.1380775422, -0.028210301, -0.3949747086, 0.0797363967, -0.2690034807, 0.3064283431, -0.4407605231, 0.2631148398, -0.262496233, 0.0036534742, -0.3661700785, -0.0888019502, -0.0278779864, 0.0957247019, 0.51638937, 0.199370265, -0.257881403, -0.2660911381, -0.5647938848, 0.3253154159, -0.0060485154, 0.1244610697, -0.3100082278, 0.0745291412, -0.0808815658, 0.010127455, 0.7869895101, -0.0905365571, 0.2198171914, 0.0822388828, 0.025765568, -0.5359351635, -0.0108494535, 0.1368560046, 0.3804579973, -0.0719698668, 0.4385929108, -0.1767696589, 0.1249716803, -0.4394179285, 0.3606898785, -0.3306919038, -0.2415882945, -0.3854801953, -0.3814746737, -0.4833006263, 0.4473903477, 0.4565168917, 0.2527858317, -0.0483524054, 0.3299104571, -0.1702633202, -0.0149610415, 0.173651427, -0.0075805187, 0.4432083964, -0.1366668046, 0.0413893983, 0.1019200236, -0.0565785803, 0.4277547896, 0.4132583439, 0.1096959189, 0.1532111019, 0.2755294442, 0.0156117938, 0.3339523673, 0.3349297047, -0.0720827654, 0.0272415429, 0.1159463525, 0.2456974983, -0.4392105937, -0.064936161, -0.3937532902, -0.0534106493, -0.0902631879, -0.0206969865, 0.3726736605, 0.3526020646, 0.0177914947, 0.0702154264, 0.3179868162, -0.312715739, 0.2607080638, -0.0260274373, 0.8725861311, -0.0851956606, 0.0190445073, 0.0668716505, 0.3008269668, 0.3401432931, -0.4726659954, 0.3613075018, 0.0440846384, -0.2942005694, 0.0325814709, -0.0121937394, -0.0210773237, 0.2959339321, -0.1688451171, 0.4016993046, -0.5068143606, 0.0121941892, -0.0954148546, 0.136552915, -0.6846148968, -0.3742955327, -0.2389677018, 0.1206891835, -0.1377953291, 0.2103002369, -0.2451044172, 0.1086563244, 0.0337139666, -0.3128849864, -0.3662666976, -0.1701534688, 0.0267180465, 0.3035690188, -0.178985551, 0.0236432403, -0.0893728659, 0.1346773803, 0.2152778208, 0.3010417223, -0.1435461938, 0.1024802625, -0.1572920084, -0.0557974689, 0.0648062602, 0.0752227604, 0.1123976782, 0.0016258359, -0.3096865118, 0.1574648619, -0.2591037154, -0.4899290502, 0.0290627331, -0.0438139103, -0.2942898571, -0.0338735282, -0.2902981639, -0.456600368, -0.0054635853, -0.0876832008, 0.0665069148, 0.0191741493, -0.1189477742, 0.1476352215, 0.0235254187, -0.2044094503, 0.1164215207, 0.1907235086, 0.1715483814, -0.3462994099, 0.3859963417, -0.3731985688, -0.0873680487, -0.1736940444, -0.1504092366, -0.1342985779, 0.0950827003, 0.3430255949, -0.0794040635, -0.128579706, -0.2427508831, -0.2310127616, 0.6502942443, 0.426238358, -0.1440830827, -0.4783767462, -0.3731829524, 0.2676645517, 0.0803002492, 0.2381605506, -0.0641212463, -0.0984877646, 0.0306083411, 0.1129469201, -0.2559909821, -0.0557872169, -0.4407337606, 0.0071714465, 0.2117856443, 0.1263763309, 0.2143029869, -0.0947058499, -0.0827279985, 0.1265946776, -0.0557574183, -0.1126360148, 0.0449620038, 0.1506277472, 0.0469185673, 0.1951720268, 0.1735434085, -0.4588235021, 0.2376361936, -0.2655067444, 0.1753757298, 0.418269217, -0.0454815961, -0.3415572047, 0.0746579915, 0.497474879, -0.1709235013, 0.142231673, 0.1285940707, 0.1546491086, -0.2296800017, 0.1842867732, 0.1251479834, 0.1417403966, 0.2366857529, -0.1120786667, 0.220143795, 0.0385221653, -0.1545706987, 0.0684717745, -0.0448022075, 0.2478230596, 0.2652955353, -0.0790443867, -0.0293990802, 0.0338053107, 0.0698838681, 0.2173098475, -0.2394901514, -0.1172489226, 0.2396282405, -0.0299389865, 0.1197567284, 0.5013857484, 0.3876142502, -0.3748736382, 0.0745423138, 0.092380479, 0.5648562908, -0.2601764202, 0.0413096733, 0.1336950362, 0.0506068915, 0.0030419668, 0.1490098387, -0.0633013546, 0.3891543746, 0.3070388138, -0.1713537276, 0.2159723192, 0.2408121377, -0.1208607107, -0.1497631371, -0.4051085711, 0.0863525271, 0.0817288756, 0.0425831527, 0.1304462552, -0.3192767799, -0.047600396, -0.3641906381, -0.1965405941, -0.2249186933, -0.1132412106, -0.4139752388, -0.0106492303, -0.0181170404, -0.0879315436, -0.0273673013, -0.1237474382, 0.3569253981, -0.3851692975, 0.3071929812, 0.0091478359, 0.0622753426, 0.2990063131, -0.2994194925, 0.468478024, 0.1641293764, -0.3684590161, 0.0377959609, 0.2732794881, -0.2538942397, 0.299713254, 0.1712867767, 0.6783190966, 0.2227467299, -0.0918962061, 0.0675154328, 0.0342148766, 0.0763493329, -0.3394201696, -0.023013059, 0.0669182539, -0.1332620233, 0.1145664603, 0.1374944299, -0.0944961458, 0.2236460596, 0.0117416847, 0.2606365383, -0.2572069764, -0.1200353652, -0.1719234288, -0.1995496452, -0.1337639093, 0.0917496532, -0.2527791858, -0.2110944092, 0.3524630666, -0.0509156287, 0.1831523776, 0.1991888285, 0.067212522, -0.0960668847, 0.2713786364, 0.3381310999, -0.5006520748, -0.3073889911, 0.0890708119, -0.5300474167, 0.2179002911, -0.2879719138, -0.0791888982, -0.031629432, 0.2162606716, -0.0353248753, -0.1100047529, 0.0923835933, -0.0869552568, -0.0684575737, -0.1544492245, -0.263378948, -0.2788788676, -0.0878153741, -0.2979597151, 0.2715916038, -0.5973241329, -0.0476715267, 0.1096990556, 0.0626049936, 0.0808957592, -0.0069346055, 0.2312020659, 0.44211483, 0.3236787915, -0.0014011748, 0.4533214569, 0.0691780001, -0.1578183621, -0.3555996418, -0.0512273796, -0.1567314714, 0.0503355451, 0.1229818314, 0.2397247255, -0.6420223713, 0.0890369639, -0.2371958494, 0.2477701604, 0.0678069592, -0.0797337666, 0.0980475619, -0.0238933936, -0.3431885839, 0.1982948482, 0.2360747904, 0.2301771194, -0.0658627152, 0.3270434141, -0.1933469474, -0.1563149393, 0.4829872847, -0.1396927536, -0.3495693505, -0.224676773, 0.4760473371, 0.0577695854, -0.0404224284, -0.1970507205, -0.0889567286, 0.1853536963, 0.0791051835, 0.063200362, -0.1794751585, -0.2648893893, -0.2492372394, -0.0139691681, 0.2091804147, -0.3121144772, -0.3135881424, 0.0350732729, -0.2094388008 ]
https://github.com/huggingface/datasets/issues/1785
Not enough disk space (Needed: Unknown size) when caching on a cluster
That's an interesting behavior... Do you know any other way to get the free space that works in your case ? Also if it's a permission issue could you try fix the permissions and let mus know if that helped ?
I'm running some experiments where I'm caching datasets on a cluster and accessing it through multiple compute nodes. However, I get an error when loading the cached dataset from the shared disk. The exact error thrown: ```bash >>> load_dataset(dataset, cache_dir="/path/to/cluster/shared/path") OSError: Not enough disk space. Needed: Unknown size (download: Unknown size, generated: Unknown size, post-processed: Unknown size) ``` [`utils.has_sufficient_disk_space`](https://github.com/huggingface/datasets/blob/8a03ab7d123a76ee744304f21ce868c75f411214/src/datasets/utils/py_utils.py#L332) fails on each job because of how the cluster system is designed (`disk_usage(".").free` can't compute on the cluster's shared disk). This is exactly where the error gets thrown: https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L502 ```python if not utils.has_sufficient_disk_space(self.info.size_in_bytes or 0, directory=self._cache_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {}, post-processed: {})".format( utils.size_str(self.info.size_in_bytes or 0), utils.size_str(self.info.download_size or 0), utils.size_str(self.info.dataset_size or 0), utils.size_str(self.info.post_processing_size or 0), ) ) ``` What would be a good way to circumvent this? my current fix is to manually comment out that part, but that is not ideal. Would it be possible to pass a flag to skip this check on disk space?
41
Not enough disk space (Needed: Unknown size) when caching on a cluster I'm running some experiments where I'm caching datasets on a cluster and accessing it through multiple compute nodes. However, I get an error when loading the cached dataset from the shared disk. The exact error thrown: ```bash >>> load_dataset(dataset, cache_dir="/path/to/cluster/shared/path") OSError: Not enough disk space. Needed: Unknown size (download: Unknown size, generated: Unknown size, post-processed: Unknown size) ``` [`utils.has_sufficient_disk_space`](https://github.com/huggingface/datasets/blob/8a03ab7d123a76ee744304f21ce868c75f411214/src/datasets/utils/py_utils.py#L332) fails on each job because of how the cluster system is designed (`disk_usage(".").free` can't compute on the cluster's shared disk). This is exactly where the error gets thrown: https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L502 ```python if not utils.has_sufficient_disk_space(self.info.size_in_bytes or 0, directory=self._cache_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {}, post-processed: {})".format( utils.size_str(self.info.size_in_bytes or 0), utils.size_str(self.info.download_size or 0), utils.size_str(self.info.dataset_size or 0), utils.size_str(self.info.post_processing_size or 0), ) ) ``` What would be a good way to circumvent this? my current fix is to manually comment out that part, but that is not ideal. Would it be possible to pass a flag to skip this check on disk space? That's an interesting behavior... Do you know any other way to get the free space that works in your case ? Also if it's a permission issue could you try fix the permissions and let mus know if that helped ?
[ -0.0777429789, -0.4187167287, -0.0846218839, 0.2431604415, -0.0970098004, 0.1506601721, 0.0705345422, 0.3401211798, 0.3962349892, 0.3933157921, 0.4183929563, -0.1389311254, -0.091250293, 0.003891699, -0.1739585698, 0.2417321056, -0.0082295723, -0.060645178, 0.3455673754, 0.1274866462, -0.4057287276, 0.0130441319, 0.0944503248, -0.3736139834, -0.5426241159, -0.1880919784, -0.1662805974, 0.1566852331, 0.2269619703, -0.2247432172, 0.3221061826, -0.0054950463, -0.101139307, 0.5720779896, -0.000115944, 0.0363123417, 0.1715253741, -0.1809052527, -0.4399377108, -0.0386955291, 0.2173041999, -0.4069227874, -0.2233587503, -0.3619658351, -0.0103092417, 0.1603567749, -0.0511808842, -0.4436120093, 0.1765249968, -0.0691839382, 0.1679692566, 0.3530053198, -0.2203018069, -0.092613928, -0.2659410238, 0.1767234504, -0.0469131172, 0.5180590153, 0.2992624044, 0.0753149763, -0.2787300348, 0.2208093703, -0.1333251745, 0.1601160765, 0.4138149321, -0.1359975934, -0.074527666, -0.1845136285, 0.1962376237, -0.0268670432, 0.4277344942, -0.195032388, -0.5273439288, -0.5711028576, 0.0500526763, -0.1597713232, 0.4396586418, 0.0364263877, -0.4096869826, 0.1226711571, -0.3018590808, -0.3372612596, -0.2010518014, -0.2099774182, 0.0532092452, 0.164129898, 0.0016834922, 0.0830850899, 0.3270329833, 0.0175014641, -0.0256254002, 0.026436165, 0.1729608178, 0.2536420822, -0.2865464687, 0.0151760206, -0.0948410779, 0.2101235539, 0.1011189818, 0.2106983215, 0.0610055514, -0.1125412136, 0.0735729039, 0.2540668249, 0.013658084, 0.2466121912, -0.2650674582, -0.0978879854, 0.2030571699, -0.0030463822, 0.1735390127, -0.1133196428, 0.0481717624, -0.3508071005, 0.1162030101, -0.0180884562, 0.20401299, -0.071485132, -0.3821851909, 0.1272477359, 0.2050052583, 0.3049911559, 0.212281853, 0.2848547101, 0.0810500234, 0.2399785221, 0.2188414931, 0.1994529814, -0.0902341455, -0.0968263298, -0.1159810275, -0.014707068, 0.0885302871, 0.1693161875, 0.3448050022, 0.036770381, 0.2115974873, -0.0179043263, 0.4590657949, -0.1054458842, -0.0721758604, -0.2352617681, -0.1191630363, 0.4233519435, 0.1197761297, 0.0117571652, 0.2519823611, 0.1500506252, -0.1510385573, 0.2677905858, -0.3836433887, -0.4553592205, 0.0440195277, 0.0724627599, -0.3528415859, 0.2011186928, -0.4066094756, -0.0384401567, 0.3097245693, -0.1824394166, 0.1011646688, 0.0928384066, -0.3887100816, -0.2462706864, 0.1381938457, 0.3473315239, -0.1142509133, 0.0037160292, -0.3107169867, 0.1621557772, 0.0525878593, 0.4145957232, 0.1311628073, 0.13864398, -0.4277252853, 0.1380101889, 0.1127068549, -0.3308420777, -0.5418022275, 0.3061303496, -0.1718520075, 0.2516015768, 0.5377889276, 0.2614463568, -0.0163331032, -0.23369129, 0.2327863574, 0.2714539468, -0.2196911573, 0.0563454926, -0.3533274829, -0.263456434, 0.0278724208, 0.0614294857, 0.3454007804, 0.108564727, 0.0109477565, -0.0060027987, 0.1818706393, 0.0549798235, 0.2010059655, 0.3193238676, 0.3190517724, -0.3444590569, -0.0738660619, 0.0217244625, -0.519477725, 0.3491622508, 0.1930716634, -0.210014835, -0.0646495745, -0.443294853, -0.2809631228, 0.0622078851, 0.2482937425, 0.3274293542, 0.0486465544, -0.0373881496, 0.2494669557, -0.3069351315, -0.0596499071, 0.1668300629, -0.2572429478, -0.0578985512, 0.1028764397, -0.037163429, -0.0423912555, -0.1400397569, 0.0494484305, 0.0646104738, 0.0650269166, 0.1349683404, -0.0143351536, 0.4134908617, -0.1063748002, 0.2247717828, -0.0903507769, 0.1346000433, 0.152313605, 0.3512613177, 0.002052106, 0.1752402186, 0.0069470666, -0.1697664559, -0.1110433415, 0.2095979303, -0.0455698408, 0.2853602469, -0.0826584473, 0.0640583932, 0.0624382049, 0.0560382903, 0.1237754822, -0.0592898428, 0.2901299596, -0.1966568232, 0.4879350364, 0.081317611, 0.0228468254, -0.0144201182, 0.0694394112, 0.1592282355, 0.2913537025, 0.1565068662, 0.2970968485, -0.034521699, -0.0058797766, 0.2817406356, 0.2664147913, 0.1560029089, 0.0153092369, -0.1753182113, 0.0451874807, -0.2055585682, 0.0528199263, -0.0503013246, 0.1580186933, 0.2922104299, 0.0067300685, -0.2964169383, 0.0960466042, -0.3090458512, 0.2155116796, 0.0772979036, -0.2874602675, -0.0579077899, 0.0557798743, 0.182818234, 0.0615938418, 0.1889596879, -0.4589173198, -0.3148480654, 0.1746362001, 0.6444195509, -0.2373900414, -0.095242843, -0.3729636669, 0.4732410312, 0.0780525655, -0.4257942438, -0.0265631676, -0.2685462832, -0.1055517197, 0.0170708075, 0.3254655898, -0.257827431, 0.3435428739, 0.0094136372, 0.0713446289, -0.4250703752, 0.158122927, -0.1697877049, 0.0267440677, 0.1604888737, -0.1307637393, 0.3355611861, -0.122108385, -0.1611020267, 0.1600525975, -0.0386517532, -0.0417478345, 0.0091872215, 0.157061711, 0.1753276438, -0.323263824, 0.0315410607, -0.1793826371, -0.5495163202, 0.1743901819, -0.1816839576, 0.2716465294, 0.1036405712, 0.1733866334, -0.1049472541, 0.7099815607, -0.1731764078, -0.2496190667, -0.6116567254, 0.2382909656, -0.0803573504, -0.029551724, -0.0471711755, 0.0296283588, 0.2122025192, 0.4242190421, -0.4782415628, -0.4002629817, -0.1671660841, 0.2294674069, -0.2420354187, -0.0321567617, 0.1791037321, -0.1486545205, -0.0734726712, -0.1409638673, -0.0281640664, 0.0528292432, 0.0094649065, 0.2762106061, 0.2927936614, 0.2192625403, 0.3207839131, 0.7062376738, -0.1594575346, 0.2500558197, 0.2755181789, 0.1817433089, 0.6162170172, 0.0905259103, -0.0536036417, 0.0400999337, 0.0080742687, -0.6150445342, 0.0189750865, -0.0332707502, 0.1380775422, -0.028210301, -0.3949747086, 0.0797363967, -0.2690034807, 0.3064283431, -0.4407605231, 0.2631148398, -0.262496233, 0.0036534742, -0.3661700785, -0.0888019502, -0.0278779864, 0.0957247019, 0.51638937, 0.199370265, -0.257881403, -0.2660911381, -0.5647938848, 0.3253154159, -0.0060485154, 0.1244610697, -0.3100082278, 0.0745291412, -0.0808815658, 0.010127455, 0.7869895101, -0.0905365571, 0.2198171914, 0.0822388828, 0.025765568, -0.5359351635, -0.0108494535, 0.1368560046, 0.3804579973, -0.0719698668, 0.4385929108, -0.1767696589, 0.1249716803, -0.4394179285, 0.3606898785, -0.3306919038, -0.2415882945, -0.3854801953, -0.3814746737, -0.4833006263, 0.4473903477, 0.4565168917, 0.2527858317, -0.0483524054, 0.3299104571, -0.1702633202, -0.0149610415, 0.173651427, -0.0075805187, 0.4432083964, -0.1366668046, 0.0413893983, 0.1019200236, -0.0565785803, 0.4277547896, 0.4132583439, 0.1096959189, 0.1532111019, 0.2755294442, 0.0156117938, 0.3339523673, 0.3349297047, -0.0720827654, 0.0272415429, 0.1159463525, 0.2456974983, -0.4392105937, -0.064936161, -0.3937532902, -0.0534106493, -0.0902631879, -0.0206969865, 0.3726736605, 0.3526020646, 0.0177914947, 0.0702154264, 0.3179868162, -0.312715739, 0.2607080638, -0.0260274373, 0.8725861311, -0.0851956606, 0.0190445073, 0.0668716505, 0.3008269668, 0.3401432931, -0.4726659954, 0.3613075018, 0.0440846384, -0.2942005694, 0.0325814709, -0.0121937394, -0.0210773237, 0.2959339321, -0.1688451171, 0.4016993046, -0.5068143606, 0.0121941892, -0.0954148546, 0.136552915, -0.6846148968, -0.3742955327, -0.2389677018, 0.1206891835, -0.1377953291, 0.2103002369, -0.2451044172, 0.1086563244, 0.0337139666, -0.3128849864, -0.3662666976, -0.1701534688, 0.0267180465, 0.3035690188, -0.178985551, 0.0236432403, -0.0893728659, 0.1346773803, 0.2152778208, 0.3010417223, -0.1435461938, 0.1024802625, -0.1572920084, -0.0557974689, 0.0648062602, 0.0752227604, 0.1123976782, 0.0016258359, -0.3096865118, 0.1574648619, -0.2591037154, -0.4899290502, 0.0290627331, -0.0438139103, -0.2942898571, -0.0338735282, -0.2902981639, -0.456600368, -0.0054635853, -0.0876832008, 0.0665069148, 0.0191741493, -0.1189477742, 0.1476352215, 0.0235254187, -0.2044094503, 0.1164215207, 0.1907235086, 0.1715483814, -0.3462994099, 0.3859963417, -0.3731985688, -0.0873680487, -0.1736940444, -0.1504092366, -0.1342985779, 0.0950827003, 0.3430255949, -0.0794040635, -0.128579706, -0.2427508831, -0.2310127616, 0.6502942443, 0.426238358, -0.1440830827, -0.4783767462, -0.3731829524, 0.2676645517, 0.0803002492, 0.2381605506, -0.0641212463, -0.0984877646, 0.0306083411, 0.1129469201, -0.2559909821, -0.0557872169, -0.4407337606, 0.0071714465, 0.2117856443, 0.1263763309, 0.2143029869, -0.0947058499, -0.0827279985, 0.1265946776, -0.0557574183, -0.1126360148, 0.0449620038, 0.1506277472, 0.0469185673, 0.1951720268, 0.1735434085, -0.4588235021, 0.2376361936, -0.2655067444, 0.1753757298, 0.418269217, -0.0454815961, -0.3415572047, 0.0746579915, 0.497474879, -0.1709235013, 0.142231673, 0.1285940707, 0.1546491086, -0.2296800017, 0.1842867732, 0.1251479834, 0.1417403966, 0.2366857529, -0.1120786667, 0.220143795, 0.0385221653, -0.1545706987, 0.0684717745, -0.0448022075, 0.2478230596, 0.2652955353, -0.0790443867, -0.0293990802, 0.0338053107, 0.0698838681, 0.2173098475, -0.2394901514, -0.1172489226, 0.2396282405, -0.0299389865, 0.1197567284, 0.5013857484, 0.3876142502, -0.3748736382, 0.0745423138, 0.092380479, 0.5648562908, -0.2601764202, 0.0413096733, 0.1336950362, 0.0506068915, 0.0030419668, 0.1490098387, -0.0633013546, 0.3891543746, 0.3070388138, -0.1713537276, 0.2159723192, 0.2408121377, -0.1208607107, -0.1497631371, -0.4051085711, 0.0863525271, 0.0817288756, 0.0425831527, 0.1304462552, -0.3192767799, -0.047600396, -0.3641906381, -0.1965405941, -0.2249186933, -0.1132412106, -0.4139752388, -0.0106492303, -0.0181170404, -0.0879315436, -0.0273673013, -0.1237474382, 0.3569253981, -0.3851692975, 0.3071929812, 0.0091478359, 0.0622753426, 0.2990063131, -0.2994194925, 0.468478024, 0.1641293764, -0.3684590161, 0.0377959609, 0.2732794881, -0.2538942397, 0.299713254, 0.1712867767, 0.6783190966, 0.2227467299, -0.0918962061, 0.0675154328, 0.0342148766, 0.0763493329, -0.3394201696, -0.023013059, 0.0669182539, -0.1332620233, 0.1145664603, 0.1374944299, -0.0944961458, 0.2236460596, 0.0117416847, 0.2606365383, -0.2572069764, -0.1200353652, -0.1719234288, -0.1995496452, -0.1337639093, 0.0917496532, -0.2527791858, -0.2110944092, 0.3524630666, -0.0509156287, 0.1831523776, 0.1991888285, 0.067212522, -0.0960668847, 0.2713786364, 0.3381310999, -0.5006520748, -0.3073889911, 0.0890708119, -0.5300474167, 0.2179002911, -0.2879719138, -0.0791888982, -0.031629432, 0.2162606716, -0.0353248753, -0.1100047529, 0.0923835933, -0.0869552568, -0.0684575737, -0.1544492245, -0.263378948, -0.2788788676, -0.0878153741, -0.2979597151, 0.2715916038, -0.5973241329, -0.0476715267, 0.1096990556, 0.0626049936, 0.0808957592, -0.0069346055, 0.2312020659, 0.44211483, 0.3236787915, -0.0014011748, 0.4533214569, 0.0691780001, -0.1578183621, -0.3555996418, -0.0512273796, -0.1567314714, 0.0503355451, 0.1229818314, 0.2397247255, -0.6420223713, 0.0890369639, -0.2371958494, 0.2477701604, 0.0678069592, -0.0797337666, 0.0980475619, -0.0238933936, -0.3431885839, 0.1982948482, 0.2360747904, 0.2301771194, -0.0658627152, 0.3270434141, -0.1933469474, -0.1563149393, 0.4829872847, -0.1396927536, -0.3495693505, -0.224676773, 0.4760473371, 0.0577695854, -0.0404224284, -0.1970507205, -0.0889567286, 0.1853536963, 0.0791051835, 0.063200362, -0.1794751585, -0.2648893893, -0.2492372394, -0.0139691681, 0.2091804147, -0.3121144772, -0.3135881424, 0.0350732729, -0.2094388008 ]
https://github.com/huggingface/datasets/issues/1785
Not enough disk space (Needed: Unknown size) when caching on a cluster
I think its an issue on the clusters end (unclear exactly why -- maybe something with docker containers?), will close the issue
I'm running some experiments where I'm caching datasets on a cluster and accessing it through multiple compute nodes. However, I get an error when loading the cached dataset from the shared disk. The exact error thrown: ```bash >>> load_dataset(dataset, cache_dir="/path/to/cluster/shared/path") OSError: Not enough disk space. Needed: Unknown size (download: Unknown size, generated: Unknown size, post-processed: Unknown size) ``` [`utils.has_sufficient_disk_space`](https://github.com/huggingface/datasets/blob/8a03ab7d123a76ee744304f21ce868c75f411214/src/datasets/utils/py_utils.py#L332) fails on each job because of how the cluster system is designed (`disk_usage(".").free` can't compute on the cluster's shared disk). This is exactly where the error gets thrown: https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L502 ```python if not utils.has_sufficient_disk_space(self.info.size_in_bytes or 0, directory=self._cache_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {}, post-processed: {})".format( utils.size_str(self.info.size_in_bytes or 0), utils.size_str(self.info.download_size or 0), utils.size_str(self.info.dataset_size or 0), utils.size_str(self.info.post_processing_size or 0), ) ) ``` What would be a good way to circumvent this? my current fix is to manually comment out that part, but that is not ideal. Would it be possible to pass a flag to skip this check on disk space?
22
Not enough disk space (Needed: Unknown size) when caching on a cluster I'm running some experiments where I'm caching datasets on a cluster and accessing it through multiple compute nodes. However, I get an error when loading the cached dataset from the shared disk. The exact error thrown: ```bash >>> load_dataset(dataset, cache_dir="/path/to/cluster/shared/path") OSError: Not enough disk space. Needed: Unknown size (download: Unknown size, generated: Unknown size, post-processed: Unknown size) ``` [`utils.has_sufficient_disk_space`](https://github.com/huggingface/datasets/blob/8a03ab7d123a76ee744304f21ce868c75f411214/src/datasets/utils/py_utils.py#L332) fails on each job because of how the cluster system is designed (`disk_usage(".").free` can't compute on the cluster's shared disk). This is exactly where the error gets thrown: https://github.com/huggingface/datasets/blob/master/src/datasets/builder.py#L502 ```python if not utils.has_sufficient_disk_space(self.info.size_in_bytes or 0, directory=self._cache_dir_root): raise IOError( "Not enough disk space. Needed: {} (download: {}, generated: {}, post-processed: {})".format( utils.size_str(self.info.size_in_bytes or 0), utils.size_str(self.info.download_size or 0), utils.size_str(self.info.dataset_size or 0), utils.size_str(self.info.post_processing_size or 0), ) ) ``` What would be a good way to circumvent this? my current fix is to manually comment out that part, but that is not ideal. Would it be possible to pass a flag to skip this check on disk space? I think its an issue on the clusters end (unclear exactly why -- maybe something with docker containers?), will close the issue
[ -0.0777429789, -0.4187167287, -0.0846218839, 0.2431604415, -0.0970098004, 0.1506601721, 0.0705345422, 0.3401211798, 0.3962349892, 0.3933157921, 0.4183929563, -0.1389311254, -0.091250293, 0.003891699, -0.1739585698, 0.2417321056, -0.0082295723, -0.060645178, 0.3455673754, 0.1274866462, -0.4057287276, 0.0130441319, 0.0944503248, -0.3736139834, -0.5426241159, -0.1880919784, -0.1662805974, 0.1566852331, 0.2269619703, -0.2247432172, 0.3221061826, -0.0054950463, -0.101139307, 0.5720779896, -0.000115944, 0.0363123417, 0.1715253741, -0.1809052527, -0.4399377108, -0.0386955291, 0.2173041999, -0.4069227874, -0.2233587503, -0.3619658351, -0.0103092417, 0.1603567749, -0.0511808842, -0.4436120093, 0.1765249968, -0.0691839382, 0.1679692566, 0.3530053198, -0.2203018069, -0.092613928, -0.2659410238, 0.1767234504, -0.0469131172, 0.5180590153, 0.2992624044, 0.0753149763, -0.2787300348, 0.2208093703, -0.1333251745, 0.1601160765, 0.4138149321, -0.1359975934, -0.074527666, -0.1845136285, 0.1962376237, -0.0268670432, 0.4277344942, -0.195032388, -0.5273439288, -0.5711028576, 0.0500526763, -0.1597713232, 0.4396586418, 0.0364263877, -0.4096869826, 0.1226711571, -0.3018590808, -0.3372612596, -0.2010518014, -0.2099774182, 0.0532092452, 0.164129898, 0.0016834922, 0.0830850899, 0.3270329833, 0.0175014641, -0.0256254002, 0.026436165, 0.1729608178, 0.2536420822, -0.2865464687, 0.0151760206, -0.0948410779, 0.2101235539, 0.1011189818, 0.2106983215, 0.0610055514, -0.1125412136, 0.0735729039, 0.2540668249, 0.013658084, 0.2466121912, -0.2650674582, -0.0978879854, 0.2030571699, -0.0030463822, 0.1735390127, -0.1133196428, 0.0481717624, -0.3508071005, 0.1162030101, -0.0180884562, 0.20401299, -0.071485132, -0.3821851909, 0.1272477359, 0.2050052583, 0.3049911559, 0.212281853, 0.2848547101, 0.0810500234, 0.2399785221, 0.2188414931, 0.1994529814, -0.0902341455, -0.0968263298, -0.1159810275, -0.014707068, 0.0885302871, 0.1693161875, 0.3448050022, 0.036770381, 0.2115974873, -0.0179043263, 0.4590657949, -0.1054458842, -0.0721758604, -0.2352617681, -0.1191630363, 0.4233519435, 0.1197761297, 0.0117571652, 0.2519823611, 0.1500506252, -0.1510385573, 0.2677905858, -0.3836433887, -0.4553592205, 0.0440195277, 0.0724627599, -0.3528415859, 0.2011186928, -0.4066094756, -0.0384401567, 0.3097245693, -0.1824394166, 0.1011646688, 0.0928384066, -0.3887100816, -0.2462706864, 0.1381938457, 0.3473315239, -0.1142509133, 0.0037160292, -0.3107169867, 0.1621557772, 0.0525878593, 0.4145957232, 0.1311628073, 0.13864398, -0.4277252853, 0.1380101889, 0.1127068549, -0.3308420777, -0.5418022275, 0.3061303496, -0.1718520075, 0.2516015768, 0.5377889276, 0.2614463568, -0.0163331032, -0.23369129, 0.2327863574, 0.2714539468, -0.2196911573, 0.0563454926, -0.3533274829, -0.263456434, 0.0278724208, 0.0614294857, 0.3454007804, 0.108564727, 0.0109477565, -0.0060027987, 0.1818706393, 0.0549798235, 0.2010059655, 0.3193238676, 0.3190517724, -0.3444590569, -0.0738660619, 0.0217244625, -0.519477725, 0.3491622508, 0.1930716634, -0.210014835, -0.0646495745, -0.443294853, -0.2809631228, 0.0622078851, 0.2482937425, 0.3274293542, 0.0486465544, -0.0373881496, 0.2494669557, -0.3069351315, -0.0596499071, 0.1668300629, -0.2572429478, -0.0578985512, 0.1028764397, -0.037163429, -0.0423912555, -0.1400397569, 0.0494484305, 0.0646104738, 0.0650269166, 0.1349683404, -0.0143351536, 0.4134908617, -0.1063748002, 0.2247717828, -0.0903507769, 0.1346000433, 0.152313605, 0.3512613177, 0.002052106, 0.1752402186, 0.0069470666, -0.1697664559, -0.1110433415, 0.2095979303, -0.0455698408, 0.2853602469, -0.0826584473, 0.0640583932, 0.0624382049, 0.0560382903, 0.1237754822, -0.0592898428, 0.2901299596, -0.1966568232, 0.4879350364, 0.081317611, 0.0228468254, -0.0144201182, 0.0694394112, 0.1592282355, 0.2913537025, 0.1565068662, 0.2970968485, -0.034521699, -0.0058797766, 0.2817406356, 0.2664147913, 0.1560029089, 0.0153092369, -0.1753182113, 0.0451874807, -0.2055585682, 0.0528199263, -0.0503013246, 0.1580186933, 0.2922104299, 0.0067300685, -0.2964169383, 0.0960466042, -0.3090458512, 0.2155116796, 0.0772979036, -0.2874602675, -0.0579077899, 0.0557798743, 0.182818234, 0.0615938418, 0.1889596879, -0.4589173198, -0.3148480654, 0.1746362001, 0.6444195509, -0.2373900414, -0.095242843, -0.3729636669, 0.4732410312, 0.0780525655, -0.4257942438, -0.0265631676, -0.2685462832, -0.1055517197, 0.0170708075, 0.3254655898, -0.257827431, 0.3435428739, 0.0094136372, 0.0713446289, -0.4250703752, 0.158122927, -0.1697877049, 0.0267440677, 0.1604888737, -0.1307637393, 0.3355611861, -0.122108385, -0.1611020267, 0.1600525975, -0.0386517532, -0.0417478345, 0.0091872215, 0.157061711, 0.1753276438, -0.323263824, 0.0315410607, -0.1793826371, -0.5495163202, 0.1743901819, -0.1816839576, 0.2716465294, 0.1036405712, 0.1733866334, -0.1049472541, 0.7099815607, -0.1731764078, -0.2496190667, -0.6116567254, 0.2382909656, -0.0803573504, -0.029551724, -0.0471711755, 0.0296283588, 0.2122025192, 0.4242190421, -0.4782415628, -0.4002629817, -0.1671660841, 0.2294674069, -0.2420354187, -0.0321567617, 0.1791037321, -0.1486545205, -0.0734726712, -0.1409638673, -0.0281640664, 0.0528292432, 0.0094649065, 0.2762106061, 0.2927936614, 0.2192625403, 0.3207839131, 0.7062376738, -0.1594575346, 0.2500558197, 0.2755181789, 0.1817433089, 0.6162170172, 0.0905259103, -0.0536036417, 0.0400999337, 0.0080742687, -0.6150445342, 0.0189750865, -0.0332707502, 0.1380775422, -0.028210301, -0.3949747086, 0.0797363967, -0.2690034807, 0.3064283431, -0.4407605231, 0.2631148398, -0.262496233, 0.0036534742, -0.3661700785, -0.0888019502, -0.0278779864, 0.0957247019, 0.51638937, 0.199370265, -0.257881403, -0.2660911381, -0.5647938848, 0.3253154159, -0.0060485154, 0.1244610697, -0.3100082278, 0.0745291412, -0.0808815658, 0.010127455, 0.7869895101, -0.0905365571, 0.2198171914, 0.0822388828, 0.025765568, -0.5359351635, -0.0108494535, 0.1368560046, 0.3804579973, -0.0719698668, 0.4385929108, -0.1767696589, 0.1249716803, -0.4394179285, 0.3606898785, -0.3306919038, -0.2415882945, -0.3854801953, -0.3814746737, -0.4833006263, 0.4473903477, 0.4565168917, 0.2527858317, -0.0483524054, 0.3299104571, -0.1702633202, -0.0149610415, 0.173651427, -0.0075805187, 0.4432083964, -0.1366668046, 0.0413893983, 0.1019200236, -0.0565785803, 0.4277547896, 0.4132583439, 0.1096959189, 0.1532111019, 0.2755294442, 0.0156117938, 0.3339523673, 0.3349297047, -0.0720827654, 0.0272415429, 0.1159463525, 0.2456974983, -0.4392105937, -0.064936161, -0.3937532902, -0.0534106493, -0.0902631879, -0.0206969865, 0.3726736605, 0.3526020646, 0.0177914947, 0.0702154264, 0.3179868162, -0.312715739, 0.2607080638, -0.0260274373, 0.8725861311, -0.0851956606, 0.0190445073, 0.0668716505, 0.3008269668, 0.3401432931, -0.4726659954, 0.3613075018, 0.0440846384, -0.2942005694, 0.0325814709, -0.0121937394, -0.0210773237, 0.2959339321, -0.1688451171, 0.4016993046, -0.5068143606, 0.0121941892, -0.0954148546, 0.136552915, -0.6846148968, -0.3742955327, -0.2389677018, 0.1206891835, -0.1377953291, 0.2103002369, -0.2451044172, 0.1086563244, 0.0337139666, -0.3128849864, -0.3662666976, -0.1701534688, 0.0267180465, 0.3035690188, -0.178985551, 0.0236432403, -0.0893728659, 0.1346773803, 0.2152778208, 0.3010417223, -0.1435461938, 0.1024802625, -0.1572920084, -0.0557974689, 0.0648062602, 0.0752227604, 0.1123976782, 0.0016258359, -0.3096865118, 0.1574648619, -0.2591037154, -0.4899290502, 0.0290627331, -0.0438139103, -0.2942898571, -0.0338735282, -0.2902981639, -0.456600368, -0.0054635853, -0.0876832008, 0.0665069148, 0.0191741493, -0.1189477742, 0.1476352215, 0.0235254187, -0.2044094503, 0.1164215207, 0.1907235086, 0.1715483814, -0.3462994099, 0.3859963417, -0.3731985688, -0.0873680487, -0.1736940444, -0.1504092366, -0.1342985779, 0.0950827003, 0.3430255949, -0.0794040635, -0.128579706, -0.2427508831, -0.2310127616, 0.6502942443, 0.426238358, -0.1440830827, -0.4783767462, -0.3731829524, 0.2676645517, 0.0803002492, 0.2381605506, -0.0641212463, -0.0984877646, 0.0306083411, 0.1129469201, -0.2559909821, -0.0557872169, -0.4407337606, 0.0071714465, 0.2117856443, 0.1263763309, 0.2143029869, -0.0947058499, -0.0827279985, 0.1265946776, -0.0557574183, -0.1126360148, 0.0449620038, 0.1506277472, 0.0469185673, 0.1951720268, 0.1735434085, -0.4588235021, 0.2376361936, -0.2655067444, 0.1753757298, 0.418269217, -0.0454815961, -0.3415572047, 0.0746579915, 0.497474879, -0.1709235013, 0.142231673, 0.1285940707, 0.1546491086, -0.2296800017, 0.1842867732, 0.1251479834, 0.1417403966, 0.2366857529, -0.1120786667, 0.220143795, 0.0385221653, -0.1545706987, 0.0684717745, -0.0448022075, 0.2478230596, 0.2652955353, -0.0790443867, -0.0293990802, 0.0338053107, 0.0698838681, 0.2173098475, -0.2394901514, -0.1172489226, 0.2396282405, -0.0299389865, 0.1197567284, 0.5013857484, 0.3876142502, -0.3748736382, 0.0745423138, 0.092380479, 0.5648562908, -0.2601764202, 0.0413096733, 0.1336950362, 0.0506068915, 0.0030419668, 0.1490098387, -0.0633013546, 0.3891543746, 0.3070388138, -0.1713537276, 0.2159723192, 0.2408121377, -0.1208607107, -0.1497631371, -0.4051085711, 0.0863525271, 0.0817288756, 0.0425831527, 0.1304462552, -0.3192767799, -0.047600396, -0.3641906381, -0.1965405941, -0.2249186933, -0.1132412106, -0.4139752388, -0.0106492303, -0.0181170404, -0.0879315436, -0.0273673013, -0.1237474382, 0.3569253981, -0.3851692975, 0.3071929812, 0.0091478359, 0.0622753426, 0.2990063131, -0.2994194925, 0.468478024, 0.1641293764, -0.3684590161, 0.0377959609, 0.2732794881, -0.2538942397, 0.299713254, 0.1712867767, 0.6783190966, 0.2227467299, -0.0918962061, 0.0675154328, 0.0342148766, 0.0763493329, -0.3394201696, -0.023013059, 0.0669182539, -0.1332620233, 0.1145664603, 0.1374944299, -0.0944961458, 0.2236460596, 0.0117416847, 0.2606365383, -0.2572069764, -0.1200353652, -0.1719234288, -0.1995496452, -0.1337639093, 0.0917496532, -0.2527791858, -0.2110944092, 0.3524630666, -0.0509156287, 0.1831523776, 0.1991888285, 0.067212522, -0.0960668847, 0.2713786364, 0.3381310999, -0.5006520748, -0.3073889911, 0.0890708119, -0.5300474167, 0.2179002911, -0.2879719138, -0.0791888982, -0.031629432, 0.2162606716, -0.0353248753, -0.1100047529, 0.0923835933, -0.0869552568, -0.0684575737, -0.1544492245, -0.263378948, -0.2788788676, -0.0878153741, -0.2979597151, 0.2715916038, -0.5973241329, -0.0476715267, 0.1096990556, 0.0626049936, 0.0808957592, -0.0069346055, 0.2312020659, 0.44211483, 0.3236787915, -0.0014011748, 0.4533214569, 0.0691780001, -0.1578183621, -0.3555996418, -0.0512273796, -0.1567314714, 0.0503355451, 0.1229818314, 0.2397247255, -0.6420223713, 0.0890369639, -0.2371958494, 0.2477701604, 0.0678069592, -0.0797337666, 0.0980475619, -0.0238933936, -0.3431885839, 0.1982948482, 0.2360747904, 0.2301771194, -0.0658627152, 0.3270434141, -0.1933469474, -0.1563149393, 0.4829872847, -0.1396927536, -0.3495693505, -0.224676773, 0.4760473371, 0.0577695854, -0.0404224284, -0.1970507205, -0.0889567286, 0.1853536963, 0.0791051835, 0.063200362, -0.1794751585, -0.2648893893, -0.2492372394, -0.0139691681, 0.2091804147, -0.3121144772, -0.3135881424, 0.0350732729, -0.2094388008 ]
https://github.com/huggingface/datasets/issues/1784
JSONDecodeError on JSON with multiple lines
Hi ! The `json` dataset script does support this format. For example loading a dataset with this format works on my side: ```json {"key1":11, "key2":12, "key3":13} {"key1":21, "key2":22, "key3":23} ``` Can you show the full stacktrace please ? Also which version of datasets and pyarrow are you using ?
Hello :), I have been trying to load data using a JSON file. Based on the [docs](https://huggingface.co/docs/datasets/loading_datasets.html#json-files), the following format is supported: ```json {"key1":11, "key2":12, "key3":13} {"key1":21, "key2":22, "key3":23} ``` But, when I try loading a dataset with the same format, I get a JSONDecodeError : `JSONDecodeError: Extra data: line 2 column 1 (char 7142)`. Now, this is expected when using `json` to load a JSON file. But I was wondering if there are any special arguments to pass when using `load_dataset` as the docs suggest that this format is supported. When I convert the JSON file to a list of dictionaries format, I get AttributeError: `AttributeError: 'list' object has no attribute 'keys'`. So, I can't convert them to list of dictionaries either. Please let me know :) Thanks, Gunjan
49
JSONDecodeError on JSON with multiple lines Hello :), I have been trying to load data using a JSON file. Based on the [docs](https://huggingface.co/docs/datasets/loading_datasets.html#json-files), the following format is supported: ```json {"key1":11, "key2":12, "key3":13} {"key1":21, "key2":22, "key3":23} ``` But, when I try loading a dataset with the same format, I get a JSONDecodeError : `JSONDecodeError: Extra data: line 2 column 1 (char 7142)`. Now, this is expected when using `json` to load a JSON file. But I was wondering if there are any special arguments to pass when using `load_dataset` as the docs suggest that this format is supported. When I convert the JSON file to a list of dictionaries format, I get AttributeError: `AttributeError: 'list' object has no attribute 'keys'`. So, I can't convert them to list of dictionaries either. Please let me know :) Thanks, Gunjan Hi ! The `json` dataset script does support this format. For example loading a dataset with this format works on my side: ```json {"key1":11, "key2":12, "key3":13} {"key1":21, "key2":22, "key3":23} ``` Can you show the full stacktrace please ? Also which version of datasets and pyarrow are you using ?
[ 0.0756986141, -0.0048341304, -0.0292827971, 0.4874005318, 0.354782939, 0.1495192349, 0.4615650475, 0.0634569377, 0.1587534994, 0.0187911019, 0.1641429216, 0.2806329131, -0.0464720391, 0.2131015658, 0.0773411244, -0.2579194903, 0.0545295477, 0.2539742887, 0.2304694355, 0.0939233005, -0.1753568053, 0.2821831107, -0.1558836102, -0.0859778821, -0.1164933071, 0.1821442246, -0.1478191614, 0.2230658084, 0.115219377, -0.6116790175, 0.1991685927, 0.1072018743, 0.1027610973, 0.4384287596, -0.0001222827, 0.1784517765, 0.2798021138, -0.2406274676, -0.437751621, -0.2415918559, -0.3200460076, -0.2146715373, 0.3941474855, -0.2164656073, -0.0171035454, -0.5522254705, -0.1071556956, -0.2231709808, 0.8473547101, 0.3154248595, 0.0736972988, -0.0370576158, 0.1545829475, 0.0937760174, 0.1382789612, 0.3976798654, 0.1040197983, 0.3903298676, 0.1572732329, 0.3830768168, 0.0803718567, -0.1940740347, -0.0791404694, 0.112590678, 0.2857991755, 0.1097655147, -0.0717057884, -0.080754146, 0.0151100531, 0.4550835788, 0.6541769505, -0.1046296358, -0.4009039998, -0.4307036996, -0.1288363785, -0.1373525113, 0.261040628, 0.1544521153, -0.1068272665, 0.1755381823, -0.2287270576, -0.1890085042, -0.2531899214, 0.2583876252, -0.0928345472, -0.3173471093, -0.2160384059, 0.2146326005, 0.1909275353, -0.1639518887, -0.147603631, -0.2164839357, -0.3134981394, 0.1610169113, -0.0158158019, 0.0244270787, -0.1692640483, -0.2996099591, 0.3776487112, 0.0606462993, 0.2912247181, 0.0090572573, -0.3051210344, 0.1320208013, 0.423373729, -0.0412973389, 0.4679247737, -0.2059043348, 0.0228298567, -0.0509500615, 0.2377182841, -0.2316978574, -0.1745303869, -0.0246611424, 0.06675791, -0.2337434739, 0.1367670149, -0.1931571662, 0.0409569964, -0.1141452938, -0.3299008012, -0.2379556894, -0.0778572634, 0.2825757265, 0.3413723409, 0.1305531859, 0.0085197166, 0.4388345182, 0.1512416899, -0.1779144704, 0.0612652563, 0.0336140394, 0.1091151983, 0.1203231141, 0.2002599239, -0.1847382039, 0.1546730995, 0.1673329473, -0.0312029906, -0.1802988052, -0.2248147875, 0.0954530686, 0.0053399131, 0.2034657001, 0.1514879912, 0.0381723791, 0.0465456732, -0.3754885793, -0.1229785755, 0.261492759, -0.3664222658, -0.1086111292, -0.2158958763, 0.0045942096, -0.2165378928, -0.0427541509, -0.750418067, 0.2429643571, -0.0581947006, -0.359372735, 0.0278874654, -0.141428113, 0.140170902, -0.2898021936, 0.0539405495, 0.4843588471, -0.5632109046, -0.3126641512, 0.2905025482, -0.1905966699, -0.1055358648, 0.362650454, -0.4107255042, 0.2188344002, -0.2073310018, 0.3010169268, 0.3687205315, -0.3092294633, -0.2301799804, 0.5485829115, 0.1091074497, 0.3371363282, 0.2294212282, -0.1662469357, 0.2583562732, -0.0088669658, 0.235890165, 0.1111457273, 0.1393965483, 0.0451235622, 0.1017302647, -0.0208238214, 0.3151666224, 0.2690213621, -0.3838230371, 0.0342156403, 0.0319789946, 0.0770259202, 0.3040089011, -0.2865877151, -0.1244971678, 0.3002172709, -0.2268985212, 0.0445506759, 0.0317662209, 0.1740530729, -0.7827894092, 0.0318350345, 0.1511202008, -0.1864997894, -0.3102797568, -0.0598720424, -0.0096399784, 0.0180451199, -0.4591427147, -0.052005209, -0.0432897732, 0.052906014, 0.1861688793, 0.0698305219, -0.1512100697, 0.260281682, 0.0843931884, 0.1272290051, -0.2944524586, 0.3275439441, 0.1130034849, -0.1274399012, 0.0821476057, -0.0147798024, 0.1743901819, -0.3622348607, -0.0237969086, 0.3017579317, 0.4365183413, -0.2380354851, -0.1748334467, 0.0855644494, 0.2663766742, 0.2200500369, -0.0744525716, 0.2505383193, 0.2237164825, -0.2906742692, -0.3921757638, 0.2784982324, -0.0886455104, 0.4363921881, 0.0388429314, -0.1501077265, 0.4239459634, 0.1045754626, -0.2950928807, -0.1024179533, 0.1572769135, 0.1999423951, 0.0250991732, 0.037161693, -0.3032550216, -0.1938174963, 0.5734386444, -0.1982162595, 0.1366869658, 0.3101388216, -0.1643849462, -0.1224130392, 0.0132786501, -0.0233274847, 0.3320558965, 0.1498830616, -0.3159901798, 0.0376023501, 0.2749462724, -0.2184940577, 0.1245725229, -0.1084824577, 0.2380926609, 0.0401963443, 0.1783394516, -0.0797341019, -0.3305120468, -0.4385953546, 0.1077527031, 0.0704084635, -0.5264177918, 0.1137507707, -0.4291844666, -0.0921920463, -0.0660928562, -0.2417520583, -0.1806002259, -0.2090833187, -0.1459432989, 0.0689224899, 0.0243193358, -0.092208609, 0.0943390131, 0.1706511676, 0.1414883733, -0.1998651922, -0.1468556523, -0.1468745172, -0.2379733771, -0.0691627562, 0.2437768131, -0.0099237114, 0.0070756413, -0.3262992203, -0.1477710754, -0.1586068869, -0.0661573783, 0.1092129201, -0.1067407876, 0.1586826444, 0.1463219523, 0.4827865064, -0.0861448348, -0.03338103, 0.3210742772, 0.2586281002, -0.2111030966, 0.2427028865, 0.1239625216, -0.0303504691, -0.0638520569, -0.0726980865, 0.0486170128, -0.1663969755, 0.684247613, -0.0452208407, 0.1938862801, -0.0541444868, 0.1299836338, 0.0972087905, -0.2045085281, 0.0939911678, -0.1179483607, -0.2161601782, 0.2748552263, -0.1578397155, -0.4564419985, 0.0866723061, 0.1376079321, -0.1101880074, -0.0661051869, -0.4292572141, -0.1951761544, -0.0504836217, 0.1136904359, -0.1206956357, -0.0474421345, 0.2318423986, -0.0019962825, 0.0809706226, -0.055832345, -0.3087208569, 0.1214716733, 0.018698819, 0.0840989798, 0.2554671764, 0.7511199117, -0.1643750668, 0.1048239619, 0.4095941484, -0.0908320695, 0.335814178, -0.2318022549, 0.2796770036, -0.2613413036, -0.0558580607, -0.148567155, -0.1008693576, 0.0553967655, 0.2300317287, -0.004467912, 0.1011442244, -0.1548945457, 0.0414441749, -0.4394155145, -0.1142977923, 0.1158776954, -0.0837007686, -0.2346479297, -0.2505990863, 0.0827207714, 0.0823532045, 0.1297957301, -0.2238009721, 0.4012429714, 0.2909093797, 0.0108791031, -0.4823313951, -0.1782715321, -0.2993756831, 0.3115850687, 0.0724720359, 0.3987673521, -0.0525592491, 0.3056712747, 0.151341781, -0.1640328914, 0.8771930933, -0.0720196739, -0.1486296356, 0.1351091862, 0.0790696144, -0.4990382195, 0.0231592506, -0.0832154676, 0.3365110159, 0.1128194034, 0.1889235228, -0.5262193084, -0.1411769092, -0.1502993554, 0.1219520047, -0.13064906, -0.3131034076, -0.1105349064, -0.4094934762, -0.548759222, -0.2788083255, 0.0503898486, 0.249614045, 0.0547448173, -0.1173457503, 0.0764077157, -0.2830373347, 0.0264886022, 0.1006236821, 0.1723234057, 0.1050176248, -0.0677217841, 0.1160444021, 0.0810783505, 0.6050031185, 0.6168931723, 0.220041275, -0.5725252628, -0.1515593976, -0.3779134154, 0.338691175, 0.1236371472, 0.0089894496, 0.0958791003, -0.1069691926, -0.0281356722, 0.0381138809, -0.2126392722, 0.4485839307, -0.1523481756, -0.3894654214, -0.4445136189, 0.5677695274, 0.0223049447, -0.0151197612, 0.0311267152, 0.2863833308, -0.432748735, 0.3331761658, -0.2572876215, 0.5948885679, -0.0670587867, 0.3598079383, 0.4278510809, -0.2802692652, 0.5248783231, -0.0857869014, -0.0531440265, -0.1445718259, 0.1677120626, -0.1333740205, -0.131836623, 0.2990583777, 0.4635649621, -0.2111043632, 0.199457109, -0.3796827793, -0.0257821083, 0.0219227262, 0.3363603055, -0.0447593629, -0.2403119802, -0.6766848564, 0.0142874718, -0.0731550679, -0.219883278, -0.0554786995, -0.1762813479, 0.0918206722, -0.3764568269, -0.3643439412, -0.0236471258, 0.0180892982, -0.0852233469, 0.2905061543, -0.2800562382, 0.3040167689, 0.2946937084, 0.003028566, -0.1377632022, -0.1765665412, 0.0029853582, -0.324069649, -0.1500298828, -0.3393163085, -0.0613902621, 0.1898654699, -0.0163222849, -0.2327297479, 0.1667877138, -0.1638561636, -0.4918405414, -0.0593730956, 0.2506645918, -0.5110681653, -0.4745006561, -0.3947390616, -0.1168438643, 0.0519515947, -0.044252716, -0.0072200838, 0.2400053442, -0.0497965179, -0.1048772633, 0.0629912093, -0.0384452343, -0.0195882544, 0.1853260398, 0.022406172, -0.1815969944, 0.6452673078, 0.4009431303, 0.0333054289, -0.1279840469, 0.3129695952, 0.6787832379, -0.1460887045, 0.3107436895, 0.1308352053, 0.429587692, -0.0704203099, 0.3472552598, -0.074999705, 0.1801511645, 0.3063793778, -0.6065919399, -0.0971381739, 0.2598368824, 0.0545562059, 0.1040454656, 0.236610353, -0.0283826981, 0.0236268789, -0.0122390874, -0.1246077716, 0.3266862035, 0.0775354132, 0.0731422529, 0.1894119382, 0.1207104251, 0.2873910666, -0.0857670158, -0.0112722032, 0.0861579105, 0.0055684522, -0.0671928898, -0.0116520263, 0.1908574998, 0.2449629009, -0.1065148413, -0.2095547616, -0.1429026574, -0.0313247703, -0.1739064902, 0.3243983686, 0.0644429997, -0.12879017, 0.2100991458, 0.3157553673, 0.1497423053, -0.3055717349, 0.1047450602, -0.187239781, 0.5721406937, -0.0215310417, 0.0584523939, -0.114542529, 0.0733320117, -0.24764961, 0.397383213, 0.1267001927, 0.0646817982, 0.2737926841, -0.4780191481, 0.2461459488, 0.0544704646, 0.1764318198, 0.5079079866, -0.463291198, 0.2767199576, -0.0871523768, -0.0323948525, 0.0746791437, -0.1712872982, 0.3691146374, 0.1350055784, -0.1295897961, 0.1843111366, -0.0573185645, -0.1345750242, -0.0280412212, -0.1097543612, 0.2922794819, 0.159172982, -0.0371068716, 0.4146480262, -0.1724984348, -0.0784381628, 0.0897988006, 0.3331096768, 0.2535050511, 0.3189612031, -0.2833828032, -0.0099923983, 0.2608402073, 0.1258875281, -0.0723961443, -0.3877482116, -0.0550848395, 0.3519824743, 0.0916909128, 0.121103853, 0.1613056362, 0.1335011572, 0.0547608137, 0.1395136714, -0.1904902756, 0.0833465457, 0.0102805197, -0.284088254, -0.0998748839, -0.1132305115, -0.1254783422, 0.0288862661, -0.2928873301, -0.2805135548, 0.1353382468, 0.081941545, 0.0951071084, -0.4350187778, 0.3131979406, -0.0405782275, -0.0153838508, -0.2048436701, 0.2946710587, 0.333935678, -0.1596254408, 0.5769931674, 0.0090872105, 0.548386991, 0.2124695629, 0.1156955659, 0.013271004, -0.490902096, -0.0946570411, 0.207146883, 0.3553981185, 0.0508530587, 0.0046824012, 0.2090475857, 0.0558940284, 0.0869759098, 0.3290418386, 0.0325116478, 0.1568681151, -0.3156079054, 0.0302325543, -0.3788298965, -0.0873626247, -0.1211290956, -0.1011803001, -0.1344504803, -0.4340039492, 0.1330703795, 0.1707015783, 0.0793331861, 0.0714914948, -0.0028354209, -0.1310884953, 0.4665916562, 0.3894787431, 0.2655850649, 0.0237387978, -0.0335915089, -0.165628463, -0.203682974, -0.2785919905, -0.137072444, 0.2476900965, 0.0628392398, 0.2403699309, 0.2577143908, -0.005891107, 0.2844989896, -0.3355714977, 0.0001500635, -0.2361424714, -0.2020064145, 0.3589681089, 0.2450479418, -0.1921956241, 0.0815471709, 0.3909068108, -0.0826663151, -0.0857478827, -0.2182661593, 0.3969539404, -0.2062811255, -0.176396504, 0.2374651432, 0.2302734405, 0.5443313122, 0.1605998427, -0.086917825, -0.0404684506, -0.1670812219, 0.013556242, 0.6156163812, -0.037002869, 0.4068599343, -0.2951593399, 0.0592503324, -0.1242646426, 0.0251253136, -0.4160119295, -0.0127064474, -0.3439691663, 0.2034492493, -0.0015564784, -0.1828734726, 0.0542491078, 0.086301513, -0.1540882736, 0.0811346248, -0.0142947584, -0.1092117429, 0.2355831116, -0.3649299741, -0.1854999214, 0.1340007484, -0.0453588739, -0.1485258788, -0.0898535177, -0.5390960574, 0.1714610755, 0.4368410707, -0.0269900169, -0.5867698193, 0.1004965603, -0.0533169545, -0.1755791306, -0.1529475451, 0.3230694234, 0.0704885498, -0.2000648677, -0.1911254376, -0.3086665273 ]
https://github.com/huggingface/datasets/issues/1784
JSONDecodeError on JSON with multiple lines
Hi Quentin! I apologize for bothering you. There was some issue with my pyarrow version as far as I understand. I don't remember the exact version I was using as I didn't check it. I repeated it with `datasets 1.2.1` and `pyarrow 2.0.0` and it worked. Closing this issue. Again, sorry for the bother. Thanks, Gunjan
Hello :), I have been trying to load data using a JSON file. Based on the [docs](https://huggingface.co/docs/datasets/loading_datasets.html#json-files), the following format is supported: ```json {"key1":11, "key2":12, "key3":13} {"key1":21, "key2":22, "key3":23} ``` But, when I try loading a dataset with the same format, I get a JSONDecodeError : `JSONDecodeError: Extra data: line 2 column 1 (char 7142)`. Now, this is expected when using `json` to load a JSON file. But I was wondering if there are any special arguments to pass when using `load_dataset` as the docs suggest that this format is supported. When I convert the JSON file to a list of dictionaries format, I get AttributeError: `AttributeError: 'list' object has no attribute 'keys'`. So, I can't convert them to list of dictionaries either. Please let me know :) Thanks, Gunjan
56
JSONDecodeError on JSON with multiple lines Hello :), I have been trying to load data using a JSON file. Based on the [docs](https://huggingface.co/docs/datasets/loading_datasets.html#json-files), the following format is supported: ```json {"key1":11, "key2":12, "key3":13} {"key1":21, "key2":22, "key3":23} ``` But, when I try loading a dataset with the same format, I get a JSONDecodeError : `JSONDecodeError: Extra data: line 2 column 1 (char 7142)`. Now, this is expected when using `json` to load a JSON file. But I was wondering if there are any special arguments to pass when using `load_dataset` as the docs suggest that this format is supported. When I convert the JSON file to a list of dictionaries format, I get AttributeError: `AttributeError: 'list' object has no attribute 'keys'`. So, I can't convert them to list of dictionaries either. Please let me know :) Thanks, Gunjan Hi Quentin! I apologize for bothering you. There was some issue with my pyarrow version as far as I understand. I don't remember the exact version I was using as I didn't check it. I repeated it with `datasets 1.2.1` and `pyarrow 2.0.0` and it worked. Closing this issue. Again, sorry for the bother. Thanks, Gunjan
[ 0.1118794829, -0.0649548545, -0.0127835311, 0.5094957352, 0.3668513, 0.1452076882, 0.4116667211, 0.0697857887, 0.1164882705, 0.0775828362, 0.1227525547, 0.313999474, -0.0133125819, 0.1743162274, 0.1052535102, -0.3321565986, 0.0563052446, 0.2422203124, 0.2812244892, 0.0448312983, -0.188326329, 0.3222273886, -0.1211520508, -0.0215251967, -0.1003589928, 0.2009462267, -0.1490636021, 0.2098399997, 0.0983381495, -0.5983390212, 0.1811591685, 0.0787485838, 0.0896522924, 0.409478575, -0.0001244392, 0.1713653207, 0.2335571796, -0.2385098636, -0.419300139, -0.2048564404, -0.2344135642, -0.1837656051, 0.4074414968, -0.2153498232, -0.0434501432, -0.613232255, -0.1171407104, -0.0572156422, 0.8382022977, 0.2899007797, 0.0557004139, 0.0221741125, 0.2437992245, 0.0981307924, 0.1929416358, 0.3184738457, 0.1145069301, 0.4430994689, 0.2087326497, 0.3381673992, 0.0679093301, -0.1586391181, -0.071187377, 0.083556965, 0.2809577286, 0.1195683852, -0.0219778568, -0.1146165356, -0.0106238844, 0.4550396204, 0.6182888746, -0.1244441122, -0.3540066481, -0.4397031665, -0.1298503727, -0.2184530348, 0.2876078784, 0.1772155762, -0.1519282609, 0.1779496372, -0.1595245898, -0.1754686832, -0.3075224757, 0.3047271371, -0.0470937937, -0.2925512195, -0.1445955783, 0.2423643172, 0.2514727116, -0.1574359834, -0.1731510013, -0.1707073003, -0.3005770743, 0.1942364573, -0.0374583676, 0.0332616642, -0.1622178853, -0.2602839172, 0.3593864739, 0.0219993964, 0.2777706981, -0.0156083368, -0.2210018188, 0.1750969887, 0.3867209554, -0.0310707185, 0.3983151317, -0.211835742, 0.0357384309, -0.0887702182, 0.1991066635, -0.1957683712, -0.1575286984, -0.0030408539, 0.0626830533, -0.2527761459, 0.1424386799, -0.2047819197, 0.0941170976, -0.1280955076, -0.3872185349, -0.2571389973, -0.1042992771, 0.3170134723, 0.3308332562, 0.032745108, 0.0213841647, 0.4348159134, 0.1162054464, -0.2527853847, 0.0686018169, 0.0260871127, 0.1068150699, 0.1247437596, 0.1768325716, -0.2131349742, 0.1577489674, 0.1446982175, -0.0201771371, -0.140121907, -0.2365126759, 0.10405121, -0.0314319693, 0.2174634784, 0.0933533907, 0.0051286742, 0.0656848103, -0.3857873678, -0.1371871978, 0.2650325298, -0.3571532071, -0.185362637, -0.2478069961, -0.013028983, -0.2101791948, -0.0484980978, -0.7054870129, 0.2720552087, -0.0497145802, -0.3916547, 0.0422813371, -0.115132235, 0.200167343, -0.2836833298, 0.0393824279, 0.4265239835, -0.5727177858, -0.3258417845, 0.3022891283, -0.2016310245, -0.0620365664, 0.3925491571, -0.4634451568, 0.2692920268, -0.1763115078, 0.3346167803, 0.3625280261, -0.3054616451, -0.2864088714, 0.4760512114, 0.0608114526, 0.3308361173, 0.2555823624, -0.1510691047, 0.2409440428, 0.0393104814, 0.2559550107, 0.0936086029, 0.1579337567, 0.0332764238, 0.0208977237, -0.0401273631, 0.3830369115, 0.262258023, -0.3467321396, 0.0336252749, 0.0298388526, 0.0210784785, 0.3198067546, -0.3416236341, -0.1486135423, 0.3134539425, -0.1775079072, 0.0725345463, 0.041867625, 0.1931000948, -0.7275476456, 0.0468462706, 0.0616338477, -0.0923419148, -0.328135848, -0.0458586626, -0.0145273395, 0.0376029015, -0.4042335749, -0.0969730616, -0.0637846217, 0.0427361429, 0.2181386948, 0.1092855856, -0.1538802683, 0.2307796478, 0.0312646478, 0.1312131584, -0.3026625216, 0.3729827404, 0.0696920529, -0.1885006726, 0.0212979168, -0.0272979029, 0.2060647011, -0.3279631734, -0.0248572417, 0.2660456896, 0.3668584228, -0.2670183778, -0.1989664435, 0.0652981177, 0.2587859929, 0.0962705314, -0.0828847066, 0.2987169921, 0.2130888402, -0.2320664823, -0.3045404553, 0.3062800169, 0.0069994424, 0.420573175, 0.0265314355, -0.1826449633, 0.3832909465, 0.1058386564, -0.2332841754, -0.0060081929, 0.2103121877, 0.2088832259, 0.0312988609, 0.0615090206, -0.3478972912, -0.1770059019, 0.5678305626, -0.2046073973, 0.11214073, 0.3307666779, -0.156991601, -0.0826684609, 0.0503764451, -0.1266836226, 0.3211074471, 0.1670219004, -0.3652742505, 0.0371902138, 0.2347431928, -0.201191932, 0.1160398275, -0.0974498093, 0.2182057947, 0.0531890132, 0.2291597575, -0.0788061619, -0.4170311093, -0.4203804135, 0.1339415759, 0.1108304933, -0.5512765646, 0.1252057254, -0.3722786903, -0.0822067857, -0.0405489467, -0.3005826771, -0.2753339708, -0.1956277788, -0.0834283084, 0.0990593731, 0.0312620029, -0.0518527031, 0.1712452471, 0.170026958, 0.1119885519, -0.2457605898, -0.2071046233, -0.2123645842, -0.2687693536, -0.0905149356, 0.2157165259, -0.0490055121, -0.0251575671, -0.3031786978, -0.2045317441, -0.1507423222, -0.1372847855, 0.0808488131, -0.1706148982, 0.2122218907, 0.084878549, 0.4887609482, -0.0839295834, -0.1283807158, 0.3590872288, 0.2363951802, -0.2614621818, 0.2470537573, 0.0831591934, 0.0184302852, -0.046408534, -0.0690744743, 0.0052783322, -0.1544253379, 0.7430192828, -0.0833438635, 0.2016302347, -0.0415603779, 0.1645390987, 0.1299037039, -0.2662783861, 0.100052923, -0.1210285425, -0.213934198, 0.2681328058, -0.1243893951, -0.4402165413, 0.0721985698, 0.146923244, -0.0704936236, -0.0599184707, -0.4526897371, -0.2472374141, -0.0388536379, 0.228696838, -0.1373570412, -0.0575732142, 0.2596033812, -0.0101238675, 0.0912240744, -0.0265846029, -0.334238559, 0.1173290536, 0.0551328138, 0.1163618863, 0.164309755, 0.6633321047, -0.2180378139, 0.2359453142, 0.3052800894, -0.04701069, 0.3674231768, -0.2426071763, 0.259614259, -0.2432772815, -0.0913030505, -0.1268054843, -0.1253760755, 0.0130448192, 0.1845622659, -0.0201930255, 0.0507536307, -0.1736584157, -0.0452298, -0.4609680772, -0.1012776569, 0.1402492523, 0.0856637657, -0.228700757, -0.2212108821, 0.0866020918, 0.0337410793, 0.1150734574, -0.1839327067, 0.4028843939, 0.3039775193, 0.0090634264, -0.4590245783, -0.2491077185, -0.2739677131, 0.3141448796, 0.0809368938, 0.3001998663, -0.0620872155, 0.2909623682, 0.2164378911, -0.1976755261, 0.9261081815, 0.0026834887, -0.1659577489, 0.1430732906, 0.0866746753, -0.4900354445, 0.0012994483, -0.0514400676, 0.2541292012, 0.1277288198, 0.2014630735, -0.6062141061, -0.1465935856, -0.1256861687, 0.1696173996, -0.1325751394, -0.3024124503, -0.1702274382, -0.4666596651, -0.5862989426, -0.2181211114, 0.02859658, 0.2952233255, 0.081534721, -0.0359522067, 0.0951208696, -0.2656361461, 0.002454225, 0.126808852, 0.1854031533, 0.0804397315, -0.0903360024, 0.082038492, 0.0542671718, 0.5888192058, 0.6108231544, 0.2106246203, -0.6033203006, -0.1698661745, -0.3187560737, 0.4119627476, 0.1917918622, -0.0333700031, 0.1753222048, -0.1057087854, -0.0074270256, 0.0734495595, -0.2139063478, 0.4310306311, -0.1350055337, -0.3312547207, -0.3607967198, 0.5874239802, 0.0033596158, -0.0127397776, 0.0707015991, 0.3162637055, -0.3953837454, 0.3670035899, -0.2552438378, 0.7166481018, -0.0982211083, 0.3945842683, 0.4653702676, -0.2684084773, 0.5387393832, -0.1318392754, 0.0256850086, -0.1567896008, 0.1508011669, -0.1145971045, -0.1021991894, 0.2868120968, 0.4203555882, -0.190078944, 0.1530015618, -0.3553854227, -0.0051562926, 0.0449536592, 0.2930895984, 0.0029419865, -0.2236181498, -0.8049349189, -0.0073046722, -0.09068726, -0.1672312021, -0.0486387424, -0.2482411712, 0.0377583206, -0.4397960007, -0.3008871675, -0.0289536417, -0.0417472273, -0.0845263749, 0.3456771076, -0.3072954416, 0.2221973836, 0.3093559146, -0.0634281486, -0.1697475761, -0.2068008929, 0.0339382403, -0.2961463928, -0.2027094215, -0.3475345373, -0.0442657173, 0.1643641144, -0.0564822219, -0.2733545899, 0.2610809505, -0.2105809152, -0.5443146825, -0.0701418817, 0.2332808673, -0.4967074096, -0.4386481643, -0.3127340674, -0.1415803134, 0.0350837186, -0.0848480836, -0.0190849416, 0.1989034414, -0.1074973345, -0.1280622184, 0.0554454252, -0.0789760947, -0.0511301868, 0.2231671363, 0.0287350267, -0.1254389137, 0.6856864691, 0.3832614422, 0.0582156628, -0.1036356539, 0.2032694817, 0.672096312, -0.2489135414, 0.3087468743, 0.1828707159, 0.4318404198, -0.1328356564, 0.4236623049, 0.0219976585, 0.1273986697, 0.3115242422, -0.5580518246, -0.1535035521, 0.3016929626, 0.0815710947, 0.0777000636, 0.2658523917, 0.0633565634, 0.0652711391, 0.0579959974, -0.1272094995, 0.3353776336, 0.0415446013, 0.0779568255, 0.2087291926, 0.0826459751, 0.3267765939, -0.0425707735, -0.0193541013, 0.1076975837, -0.0010704286, -0.0558862574, -0.0491489246, 0.2018556297, 0.2419832349, -0.096025221, -0.1949384809, -0.1539122611, 0.0119559243, -0.1337750852, 0.3213220537, 0.0384286344, -0.0873592943, 0.1955228001, 0.3714820743, 0.1643390357, -0.3251366317, 0.1141155064, -0.1638461053, 0.6059878469, 0.046997074, -0.0119018229, -0.1791573763, 0.0803649127, -0.2306511998, 0.3374818265, 0.0988277346, 0.0001536924, 0.2705643177, -0.4505707026, 0.1796671599, -0.0524170399, 0.2017090917, 0.493837595, -0.4585258067, 0.3138845563, -0.0284845755, -0.0570583232, 0.0034638867, -0.1709428728, 0.4224451482, 0.0875828564, -0.1638118625, 0.1700983793, 0.0028251931, -0.1336952299, 0.0171120539, -0.1054553539, 0.2873850465, 0.2006532699, -0.0894224122, 0.4312492311, -0.183462292, -0.0569863953, 0.1248565018, 0.3617694974, 0.2412099689, 0.2141117007, -0.3609217405, -0.0355869532, 0.142388761, 0.1633583903, -0.1051955149, -0.3548903465, -0.0279863253, 0.3401579559, 0.2029381096, 0.061626818, 0.119415164, 0.236237973, 0.1331352293, 0.1293348521, -0.1833064556, 0.2270359844, 0.0308603607, -0.3004810214, -0.0711384118, -0.1158105507, -0.0918038115, 0.0500388294, -0.2572748065, -0.3297424316, 0.1884561628, 0.1104961634, 0.076376617, -0.4972602129, 0.1957596987, 0.0194557738, -0.0014931597, -0.2102148682, 0.3131484687, 0.3145590425, -0.2211557031, 0.5350202322, 0.0256418232, 0.5477107763, 0.218026787, 0.066522859, 0.0182385296, -0.5012837052, -0.0442915186, 0.1924672127, 0.3591533601, 0.1176426411, 0.0810042322, 0.2109432369, 0.027481202, 0.0577175431, 0.2730033696, 0.065514423, 0.1863233596, -0.3028694093, -0.0369329341, -0.3501709998, -0.100145638, -0.1512103379, -0.117087014, -0.1513701975, -0.3333918154, 0.0944500864, 0.2090523541, 0.0679278597, 0.104709208, -0.0146006737, -0.1393784732, 0.5112259388, 0.4039310217, 0.3075304627, -0.0957839563, -0.0280131176, -0.2047958076, -0.1363398433, -0.3467090428, -0.1190746948, 0.2723597288, 0.0867548734, 0.2639310956, 0.2851454318, -0.0107749104, 0.2542977929, -0.3200685382, 0.0292570293, -0.3025751114, -0.1702690572, 0.3497337103, 0.2315202504, -0.1659977287, 0.143617928, 0.4026559591, -0.0710458383, -0.096401304, -0.2188061774, 0.3641435504, -0.1985042095, -0.0947703049, 0.3104700446, 0.1703802496, 0.5703427792, 0.1612477601, -0.1028224081, 0.0325651467, -0.1898336112, -0.0179045498, 0.5546192527, 0.0107956491, 0.3781963587, -0.2969706059, 0.0308744013, -0.1800391376, 0.0773295015, -0.3476777375, -0.0699010193, -0.2934136689, 0.2021336555, 0.0524852127, -0.1814601123, 0.0146750882, 0.0893939286, -0.13100411, 0.0649522543, -0.1094195843, -0.1019576639, 0.3342759907, -0.4352566898, -0.1552676708, 0.176779151, -0.0317634419, -0.1027402356, -0.1141517162, -0.5677463412, 0.1682781875, 0.4463461637, -0.0140640326, -0.5691121221, 0.11022605, -0.0618531071, -0.1592489779, -0.1474107653, 0.2672368288, 0.0738586187, -0.1737385094, -0.2226577997, -0.3186437488 ]
https://github.com/huggingface/datasets/issues/1783
Dataset Examples Explorer
Hi @ChewKokWah, We're working on it! In the meantime, you can still find the dataset explorer at the following URL: https://huggingface.co/datasets/viewer/
In the Older version of the Dataset, there are a useful Dataset Explorer that allow user to visualize the examples (training, test and validation) of a particular dataset, it is no longer there in current version. Hope HuggingFace can re-enable the feature that at least allow viewing of the first 20 examples of a particular dataset, or alternatively can extract 20 examples for each datasets and make those part of the Dataset Card Documentation.
21
Dataset Examples Explorer In the Older version of the Dataset, there are a useful Dataset Explorer that allow user to visualize the examples (training, test and validation) of a particular dataset, it is no longer there in current version. Hope HuggingFace can re-enable the feature that at least allow viewing of the first 20 examples of a particular dataset, or alternatively can extract 20 examples for each datasets and make those part of the Dataset Card Documentation. Hi @ChewKokWah, We're working on it! In the meantime, you can still find the dataset explorer at the following URL: https://huggingface.co/datasets/viewer/
[ -0.3861368895, -0.3873983622, -0.0618846938, 0.2974124253, 0.1567150205, 0.2989471257, 0.084483102, 0.3552838266, -0.0643109679, 0.3763422966, 0.0037852786, 0.2994419932, -0.2900573015, 0.5288339853, 0.3926570714, -0.2897699177, 0.0115507953, 0.2083534896, -0.1008173302, 0.1148870215, 0.0792254955, 0.0855687484, -0.1743279994, 0.1514347196, -0.4029158652, -0.1880391836, -0.3037719131, -0.0746547282, -0.2611450851, -0.5259743929, 0.0975276828, -0.0969804749, 0.3257599771, 0.0875244886, -0.0001094514, -0.137206614, 0.224706471, 0.0796678215, -0.4892880321, -0.0592525452, -0.3846615851, -0.0151575319, 0.3065685034, -0.160369873, -0.2138927728, -0.4064325988, 0.2569763362, 0.0607668757, 0.3277086914, -0.0574039891, 0.1862078309, 0.4664740264, -0.1011996493, -0.3095895648, -0.0577800088, 0.5932615399, -0.3776038289, 0.1418803781, 0.405665338, 0.1719202697, -0.0558736064, 0.3942483366, 0.4434018135, 0.1074616611, 0.0666831359, 0.122472316, -0.0140311159, -0.1412604004, 0.0352268182, 0.6123386025, 0.48412323, 0.1082844883, -0.3699077666, -0.4363874793, -0.0279570296, -0.1658655703, -0.112170659, 0.382439971, 0.0701825246, 0.2538600564, -0.3750244975, 0.1134656221, -0.1830789447, -0.0366974883, -0.0914133266, -0.0198506601, -0.3480018377, -0.071208179, 0.4680237472, -0.0432209373, 0.0942932889, 0.2341703326, -0.0011736697, 0.1652161479, -0.0263170376, -0.2085906267, 0.1860805154, 0.1761119813, 0.1291077435, 0.2292695343, 0.1167376265, 0.3246678114, -0.0312283449, 0.1755796373, 0.2116532326, -0.10557428, 0.4409828782, 0.2119698226, 0.1845702678, 0.3149198592, 0.0476231575, -0.0426711403, -0.3810490668, 0.1570367515, -0.3530600667, -0.2361379862, -0.0104280189, -0.1697175056, -0.0877127498, -0.1154187098, -0.2391984463, -0.063685216, 0.1094628721, 0.4093826413, -0.0947331339, -0.3719475567, -0.3213819563, -0.132431522, 0.0660621524, -0.3266576529, -0.1745932847, 0.0009160656, -0.2827332616, 0.0300792828, 0.1448106617, -0.5260006785, 0.4474386573, -0.0701303408, -0.0689212531, 0.0031332299, 0.3343256116, 0.1553656757, 0.3408134282, 0.1037810445, -0.0048324466, -0.2238625139, 0.1557137966, 0.0739416778, -0.2017612755, -0.0292446017, -0.1053103805, -0.3409497738, -0.3423968852, 0.1137072295, -0.280243665, 0.0596915297, -0.3804874122, 0.4780718386, -0.4661559165, -0.201066494, -0.0501738377, 0.1169520542, -0.2553440332, 0.0600066297, 0.3718670011, 0.2557031512, -0.3894897699, -0.3772591054, 0.0182704292, -0.212476939, -0.3901627064, -0.037462756, -0.3442841172, 0.3350666463, -0.5363284349, 0.2352287173, 0.3367299736, -0.2228098661, -0.0518805012, 0.0936629027, 0.1573923677, -0.0549474508, 0.0014531501, -0.1481587589, 0.4459005892, -0.0305542462, -0.3026455045, -0.0790589675, 0.0599404052, -0.0368747935, 0.0009242892, -0.1719298065, -0.0129103241, 0.0563328639, -0.1486152261, 0.1010531336, 0.119132258, 0.0383440629, 0.4723883271, -0.2317596674, -0.1125412583, 0.1484722644, 0.2192696482, 0.2432039082, 0.0111545883, -0.4020671248, -0.1583314091, 0.0949404091, 0.0038213283, -0.1807397306, 0.3076317012, -0.3185964525, -0.1131107211, -0.0341546461, -0.2596440911, -0.2621263862, 0.158498019, -0.1365665346, 0.1611818373, 0.1251431406, -0.1892434657, 0.0885897428, -0.3987360597, 0.1870053858, -0.3901413381, 0.2090327591, 0.1105591655, 0.0536066815, 0.0102649927, 0.0267265737, -0.0408343934, -0.2687212229, 0.0686030537, 0.2217149436, 0.1641522348, -0.1090135425, 0.1630971283, 0.4362354279, 0.2089856416, -0.391767174, -0.0104675107, -0.1331778765, -0.1332424879, 0.2064636797, -0.7598800659, 0.3216647506, 0.2521368265, 0.1578046083, 0.3173382878, 0.1152513251, 0.0231767818, 0.1110880077, -0.2549540102, -0.283744812, 0.130849883, 0.0769311637, 0.1748404056, -0.0528693497, -0.6406166553, 0.1478696913, 0.2648254037, -0.0942748785, -0.0380187929, 0.0963489339, -0.327173382, -0.0201581679, 0.4219532013, 0.0524049401, 0.0221040435, 0.2686969042, 0.2439731061, 0.0857682601, -0.1344520003, 0.1146749109, 0.1895124763, 0.0684706345, 0.0004233532, -0.3579307199, -0.1732078791, 0.0783766657, -0.2876154482, -0.0603781752, 0.1106495783, 0.117541939, -0.27388978, 0.0905589461, -0.3630375266, -0.4837639332, -0.0697943866, 0.0704645663, 0.1552468389, -0.3996531963, 0.080367282, 0.2161303759, -0.1143752635, 0.058318533, -0.162574023, 0.3223589659, -0.297540009, 0.7413787246, -0.1173181608, 0.1161013469, -0.1537314802, 0.1364968121, 0.2291522473, 0.3248566389, 0.3808381557, -0.2231338322, 0.1128321141, -0.578158617, -0.5961936116, 0.4128218293, 0.0946188569, 0.2726968527, 0.3713108897, 0.1063176319, -0.4431182444, -0.0808979049, 0.0142678581, -0.3306340575, -0.2247578651, -0.1559309661, -0.0645111129, 0.144242391, -0.0447172411, -0.1804036051, -0.1693991572, -0.1982710361, 0.3752359152, -0.0849382654, 0.1998655647, 0.1477503777, 0.0412282757, 0.3752746582, -0.550106585, -0.0154578909, -0.1189943925, -0.4080893397, 0.0377527028, -0.6036456823, -0.3449813724, 0.1304650903, -0.1481447816, -0.0367349014, -0.1181495786, -0.243789643, -0.2489359677, -0.2817434072, -0.046445962, -0.0438787192, 0.0582120419, 0.3366226554, -0.0722353011, -0.0918442458, 0.0653490946, -0.1439101845, -0.0627384335, -0.011668806, 0.1149913371, -0.1781762242, -0.0343369693, 0.1868714094, 0.3779299855, 0.2188416719, -0.1248092204, 0.0270540472, -0.4515985847, 0.2974494398, -0.0454942584, -0.0707406998, 0.1005071998, -0.1144087017, 0.1488362253, 0.1586332321, 0.2225462198, 0.3080056906, 0.3026152849, 0.2815342546, -0.3162562549, -0.1943415105, 0.0545284823, -0.1732912958, 0.226057753, -0.1356069744, 0.1330335885, -0.0513309315, 0.106368944, 0.0045786239, 0.0369433872, 0.2384203523, 0.0258268267, -0.3806379735, 0.0398967676, 0.0520675778, -0.0444805473, -0.008907076, -0.1164746881, -0.2867599726, -0.1160021126, 0.0673917234, 0.2316896319, 0.6677560806, -0.0412942395, -0.0051501398, 0.0473207235, -0.471927464, -0.3972481787, -0.0349906683, -0.2830822468, 0.0984153003, 0.1577623188, 0.449845016, 0.1115665138, -0.2531615198, 0.6400966048, 0.1472350359, -0.192418471, 0.1099449247, 0.1065794528, 0.1087525785, -0.1604262292, 0.0033706017, 0.126691848, -0.0600129478, -0.0714541674, -0.2331010252, -0.3549363017, 0.0225642622, 0.0138481855, 0.43315956, 0.3815610111, 0.0909095556, 0.2579390109, 0.5203461051, 0.375303179, 0.305642277, 0.3549172282, 0.1044134498, -0.1209681779, 0.3064053357, -0.0617569759, 0.3310106099, 0.1565054953, 0.0389384404, 0.1024666131, -0.0421236604, 0.139038533, -0.3317563534, 0.3228487074, 0.2974024117, 0.089457497, -0.3194745481, -0.2341735661, 0.5605677366, 0.2237867862, -0.1851389408, 0.4620556831, 0.4765683115, 0.1422177255, -0.2373573929, 0.0535312444, 0.6876664162, 0.0365229249, 0.0843453556, 0.2455758005, -0.1716544032, 0.5021944642, 0.1209287643, -0.1125573963, -0.2956693769, -0.4778714776, -0.1147816852, -0.2216898948, 0.2821292877, 0.1816496998, -0.1988604665, -0.0246849209, -0.0100782663, 0.1824439466, -0.0426990949, 0.0637454167, 0.0157805923, -0.072671473, -0.3819888234, 0.1237995476, 0.1878638864, -0.003254781, 0.0093380325, -0.1006217003, 0.0058429688, -0.0604000241, -0.4639256597, -0.2156301439, -0.1343783736, 0.0016824193, 0.2792569995, -0.2689448297, 0.3096628487, 0.3147810102, 0.0312167481, 0.0395606793, -0.2702920735, 0.01694143, -0.4660324454, -0.0458329283, -0.1562337577, -0.001732897, 0.2650192678, -0.1244599968, -0.2057228833, 0.2733052373, -0.0144137256, 0.0176641718, -0.0818941593, 0.1602961123, -0.2555713952, -0.1735800356, -0.0668572187, -0.1034817994, 0.0298796967, -0.2667160928, 0.1227919981, 0.2154371738, -0.1349744052, -0.0131827556, 0.3866213262, 0.1808193475, 0.0047535421, 0.1999899149, -0.1486936957, -0.0018689483, 0.27526474, 0.1902958751, 0.0427185893, -0.2142772973, 0.2983701527, 0.4879494309, -0.2186919153, -0.0052251332, -0.1280593276, 0.0626679212, 0.1973382831, 0.35698241, 0.1994886696, -0.1900321543, -0.2914751768, -0.058181081, -0.3802822232, 0.2114995867, -0.1183485165, 0.498781383, -0.1797663271, 0.0155374631, 0.0540675446, 0.1239060685, -0.3196073771, 0.2481547594, -0.32386747, 0.0638504028, -0.0027059186, 0.2991050482, 0.113403514, -0.3290358782, -0.0358923897, 0.1201804355, -0.1838929802, -0.2319046557, -0.3390773237, 0.1232620031, 0.0479893126, -0.0015724823, 0.2810544074, 0.3564519882, -0.0047400901, -0.2098502368, 0.1643419266, 0.0381745771, 0.2374486625, 0.2311757952, 0.0434187427, -0.141730994, 0.2041555643, -0.0501080528, 0.2943196893, 0.1833576113, 0.3143187761, -0.0947325975, -0.1675237715, -0.0726325735, -0.0399608314, 0.1879499704, -0.0444884263, -0.3453727365, 0.0505961888, 0.0246745832, 0.1378044188, -0.0245432835, 0.3533414602, 0.0892767459, 0.025667429, 0.1503742337, 0.3059254587, 0.2060718983, -0.1718242466, -0.1820330918, 0.0941532105, -0.0817898065, 0.2399891466, -0.028303951, 0.1882386208, 0.3200187087, 0.1430031955, -0.1456785798, -0.0193488616, -0.0278934855, 0.4929861128, 0.348808825, -0.2583788037, 0.0763229728, 0.1167522222, 0.0699775368, 0.3328178525, -0.0869749039, -0.0373553671, 0.3632177413, -0.2329983115, 0.082215175, 0.5594727993, -0.2854762077, -0.0367402211, 0.0957806259, -0.1388900578, 0.0861751139, -0.2034253478, 0.5114122629, -0.1582647711, -0.3456503749, -0.2892790735, -0.0635989606, 0.0663787499, -0.0988222435, -0.0952323303, -0.2246952206, 0.0775166526, 0.1003465205, 0.1074531972, -0.4275765419, 0.1521023512, -0.3320241868, -0.0672018901, -0.4065212309, -0.007739001, 0.2845522165, 0.2409392148, 0.0388465524, -0.0567139089, -0.1350168586, 0.0345028006, 0.0069478387, 0.6226806045, 0.1937185675, -0.2719531357, 0.449418366, -0.0038369596, -0.2786708474, -0.0097365379, 0.0881032795, -0.0938065499, 0.0963915512, -0.3321144581, 0.2460117489, 0.1230236143, -0.1396177262, 0.1429753006, -0.1674235761, 0.2251500487, -0.4204901457, -0.1419073641, -0.1662167609, -0.2215794921, 0.1382439733, -0.2380771637, -0.2436446249, 0.1490852237, 0.3808841705, 0.0073079802, -0.0184752941, 0.1062794477, 0.0704990998, 0.017671302, 0.3879519105, 0.5070175529, 0.0912009403, 0.0155650452, -0.4338000417, -0.4961233139, -0.0477704331, -0.2083729357, -0.0755691826, 0.2671862543, 0.0514976904, 0.0792372301, 0.1202501208, 0.1934063435, -0.1729040742, 0.1122848839, 0.1488932371, -0.3747886419, -0.2444619983, 0.1333278269, 0.1647690535, -0.1115223169, 0.097301811, 0.1833659858, -0.2671874464, -0.0605350807, -0.0539657436, 0.4409009814, -0.3858112693, -0.2134544402, 0.2742439508, -0.0893195421, 0.2211428434, -0.0542889535, -0.0579264611, -0.1133802086, 0.1059221476, 0.0567834899, 0.3305470347, 0.1192980558, 0.3175495267, -0.03660319, -0.2714532614, -0.0694230795, -0.152883321, 0.4136190712, 0.1176903024, -0.2102362067, 0.0262815803, 0.0310722962, -0.0865949765, 0.5606874228, 0.349524498, -0.1818979681, -0.2859419286, -0.0456776544, -0.0751355514, 0.2033851445, -0.4242957532, 0.0203813761, -0.0072011612, 0.0730978772, 0.2851406932, -0.1397033781, -0.5321122408, -0.0779316425, 0.3862551749, -0.2537594736, 0.0817723572, 0.4235802591, 0.0683882385, 0.0249760896, -0.0616192892, 0.7284911275, 0.2601011395, -0.1255478561, 0.0781496912, -0.2238432765 ]
https://github.com/huggingface/datasets/issues/1783
Dataset Examples Explorer
Glad to see that it still exist, this existing one is more than good enough for me, it is feature rich, simple to use and concise. Hope similar feature can be retain in the future version.
In the Older version of the Dataset, there are a useful Dataset Explorer that allow user to visualize the examples (training, test and validation) of a particular dataset, it is no longer there in current version. Hope HuggingFace can re-enable the feature that at least allow viewing of the first 20 examples of a particular dataset, or alternatively can extract 20 examples for each datasets and make those part of the Dataset Card Documentation.
36
Dataset Examples Explorer In the Older version of the Dataset, there are a useful Dataset Explorer that allow user to visualize the examples (training, test and validation) of a particular dataset, it is no longer there in current version. Hope HuggingFace can re-enable the feature that at least allow viewing of the first 20 examples of a particular dataset, or alternatively can extract 20 examples for each datasets and make those part of the Dataset Card Documentation. Glad to see that it still exist, this existing one is more than good enough for me, it is feature rich, simple to use and concise. Hope similar feature can be retain in the future version.
[ -0.3628721535, -0.4238746762, -0.0469128639, 0.3083786964, 0.1272348166, 0.234673813, 0.1710142791, 0.3707434535, -0.0460054129, 0.3754507899, 0.0373597071, 0.2407730371, -0.310693562, 0.5867730379, 0.4250451028, -0.3711117208, 0.0176206194, 0.1814071387, -0.0853759646, 0.086842604, 0.0558810383, 0.0799585134, -0.1806427091, 0.1946164668, -0.4375640154, -0.2032097727, -0.2906792164, -0.0181119256, -0.2234526277, -0.5350549817, 0.0933510065, -0.1131595746, 0.3181229532, 0.0995312035, -0.0001116613, -0.1911393702, 0.2427991182, 0.1175149307, -0.5374827385, -0.0170247927, -0.3509193659, -0.0632479861, 0.3206756711, -0.1844150275, -0.1859278679, -0.3335362673, 0.2009565234, 0.08714284, 0.3625760972, -0.1000133604, 0.154015258, 0.4514332414, -0.1147694513, -0.2746317089, 0.0215254761, 0.6503048539, -0.4158146083, 0.1027742773, 0.4872646332, 0.1220441833, -0.0628316104, 0.4364342391, 0.3849208355, 0.1084416285, 0.0827866495, 0.1359821856, 0.0367400795, -0.1285456866, -0.0026758388, 0.6877957582, 0.43814677, 0.0931985229, -0.3632136583, -0.5371536613, -0.0944299549, -0.2077553868, -0.1235665679, 0.3460618854, 0.0456615984, 0.2922642827, -0.32744205, 0.1238083541, -0.2014064789, -0.0435203165, -0.0316089764, -0.0419528671, -0.3505461514, -0.0388572328, 0.4434105456, -0.0454551615, 0.032144323, 0.1650788784, 0.027494207, 0.1676373482, -0.0362645388, -0.178974539, 0.2143938243, 0.1790535599, 0.2006741464, 0.1832563877, 0.0436737798, 0.2886768579, -0.0051312, 0.1875258237, 0.2100376785, -0.1485775262, 0.4455878735, 0.1579921842, 0.198757425, 0.2905831635, 0.1111950576, -0.0247341376, -0.3412180543, 0.1907039583, -0.3514391184, -0.2364158183, 0.0480778292, -0.1570363641, -0.0745463222, -0.1104140878, -0.196698606, -0.1001116559, 0.0987716019, 0.3787337542, -0.0820649564, -0.3699352741, -0.3043928742, -0.1323145032, 0.0953299925, -0.3404925466, -0.1633529812, 0.0134241693, -0.2573068738, 0.0765169114, 0.140893504, -0.4891136289, 0.4031634033, -0.0637200326, -0.0823206604, 0.0182060078, 0.3176815808, 0.1376456767, 0.3231966794, 0.0846773982, -0.0698208064, -0.2001847476, 0.1453599185, 0.0466805249, -0.2402201593, -0.0332044624, -0.1150544882, -0.4029281735, -0.3197676539, 0.0904975012, -0.1786216795, 0.1010475457, -0.5091861486, 0.5675258636, -0.4719489813, -0.1423958093, -0.0522875227, 0.1688281447, -0.2888943851, 0.0808209032, 0.3657827377, 0.3202440143, -0.3815148175, -0.402302891, 0.0040496849, -0.2024497688, -0.3541720808, -0.0102659333, -0.3748866916, 0.3842630386, -0.5060610771, 0.1932108551, 0.3482878208, -0.2705030441, -0.0268902257, 0.0732423812, 0.1342184395, -0.0153001398, 0.0547207557, -0.1656398177, 0.5171089768, -0.0580827519, -0.3266583085, -0.005883852, 0.0500525236, 0.0045675859, -0.0057810396, -0.143633604, -0.0126426639, 0.0987414718, -0.1880908161, 0.082975477, 0.1046866626, -0.0291380435, 0.5324889421, -0.2547030747, -0.0623810701, 0.1240165904, 0.2447230518, 0.1867268533, 0.0332898423, -0.3907248378, -0.2663160861, 0.0874274969, 0.0173913389, -0.170436874, 0.3375403285, -0.3268710077, -0.1081181988, -0.0301379301, -0.2641525269, -0.2458118647, 0.1156630963, -0.1632664055, 0.1129677296, 0.1194051802, -0.2301289141, 0.1028628498, -0.487690866, 0.193700105, -0.3489356637, 0.1925223768, 0.1154591516, 0.0896765441, -0.0020307824, 0.0805488229, -0.023297444, -0.282687664, 0.0523238331, 0.1806111485, 0.1651827991, -0.1275321245, 0.2021797746, 0.4183841944, 0.2501943409, -0.3330259323, -0.0042097662, -0.2055592686, -0.0718845576, 0.1867928803, -0.7351930737, 0.3116651773, 0.2892590165, 0.1737938821, 0.2762282789, 0.0559665933, 0.0272190124, 0.0849291384, -0.2509570718, -0.2338691056, 0.1624346673, 0.0834238827, 0.1351511776, 0.0118410178, -0.677361846, 0.1799952239, 0.3371829689, -0.1255377382, -0.0636918843, 0.1597158164, -0.2830049694, -0.0718510076, 0.4228708446, 0.0580272898, 0.0078619048, 0.2213020325, 0.1757678092, 0.0611360222, -0.1028248444, 0.13898772, 0.2311142534, 0.0595353805, -0.0213477928, -0.3625929654, -0.1599093527, 0.1234789416, -0.269135952, -0.0851848945, 0.1261214614, 0.0675014928, -0.2492977828, 0.0882231146, -0.3124134243, -0.4699498713, -0.0558278859, 0.0536705293, 0.1064353436, -0.3449403644, 0.0961490199, 0.1833516657, -0.1305017173, 0.080801934, -0.0739755481, 0.4409161806, -0.2626436353, 0.6817621589, -0.1589348167, 0.12168248, -0.1466042548, 0.0929055512, 0.1964096874, 0.2997834682, 0.3955372572, -0.1922944486, 0.1253750175, -0.6362912059, -0.5710223913, 0.4147370756, 0.1140512004, 0.2819752395, 0.3237909675, 0.12125846, -0.480971992, -0.0920615122, 0.023897972, -0.3108511269, -0.1952955425, -0.1606527865, -0.0696496069, 0.0866160244, -0.0036350861, -0.1760457158, -0.2337191701, -0.1928887367, 0.3730761707, -0.1350288987, 0.2156968415, 0.1801918596, 0.0222204551, 0.3586764634, -0.5773911476, 0.0656878799, -0.1230051666, -0.4196790159, -0.0341911428, -0.5392008424, -0.3599958122, 0.0488110036, -0.1813383698, -0.1222138777, -0.0861300156, -0.2249406576, -0.2832897902, -0.2888915837, -0.0127118602, -0.0550168268, 0.1428120881, 0.3644660711, -0.0129617993, -0.048052378, 0.0823385492, -0.2271727026, -0.0411862731, -0.019522639, 0.1034804285, -0.1157061607, 0.0113717653, 0.1424407959, 0.4282984138, 0.1344207376, -0.0786097944, 0.0477126166, -0.4147197306, 0.2543255985, -0.0843590051, -0.1063030958, 0.1534172148, -0.0989838615, 0.1714025736, 0.1308541894, 0.210269466, 0.3452123702, 0.2885036469, 0.2634059191, -0.2960063219, -0.2334068716, 0.0258640219, -0.0685666725, 0.2710051537, -0.0581062622, 0.0561369359, -0.050293386, 0.1148021072, 0.0017155297, 0.1360840052, 0.2629625797, 0.0426918752, -0.4515693188, 0.0488925949, 0.0635928959, -0.0651575997, 0.0423952565, -0.1487873048, -0.2744350433, -0.1030250788, 0.0133102238, 0.2753251195, 0.6601599455, 0.0227465685, -0.0210921746, 0.0015429854, -0.5326406956, -0.38593027, -0.0235720947, -0.2493938357, 0.0746178627, 0.1191317886, 0.4595211744, 0.0635116547, -0.3181057572, 0.6373789907, 0.2131970525, -0.1942307055, 0.1262275726, 0.1192456782, 0.1060941443, -0.2007534951, 0.0158854239, 0.1677349508, -0.0721867681, -0.0692644566, -0.2534734011, -0.3691616058, 0.0623062253, -0.0160833821, 0.4453268945, 0.3887854218, 0.0738938674, 0.3272367418, 0.4302354455, 0.4262765348, 0.3560321927, 0.2934802175, 0.0179014504, -0.1467511207, 0.259575218, -0.1083227843, 0.4040625691, 0.2071854323, -0.0402674414, 0.1380899847, -0.105649069, 0.1593222469, -0.3352411985, 0.290412426, 0.3205353022, 0.141012907, -0.3666877747, -0.2220760286, 0.5649852157, 0.2509385347, -0.1964267492, 0.4854004383, 0.5616512299, 0.1654265672, -0.2337638289, -0.0134837404, 0.7488547564, 0.0113569051, 0.1794236898, 0.2811603546, -0.0862899721, 0.5181323886, 0.2136396468, -0.0785980672, -0.3509382606, -0.4129316211, -0.1072378308, -0.2359373122, 0.251455754, 0.2131428868, -0.1995898336, -0.0309328344, 0.0339613259, 0.1847018301, -0.0806810036, 0.0858265907, 0.0671866983, -0.1996517777, -0.4594394267, 0.0668154806, 0.1864131689, -0.0313174501, -0.0020043999, -0.145493269, 0.033726275, -0.0769510865, -0.4161770344, -0.2480276525, -0.1253673434, -0.0278667901, 0.3732721508, -0.3237704635, 0.3246669769, 0.2412866652, -0.0232415982, 0.0666115135, -0.2086130828, -0.031621024, -0.538320303, 0.0119533055, -0.2288868874, -0.0497356206, 0.2615382075, -0.1323259473, -0.2374705821, 0.1870977581, -0.0615189746, 0.0161332637, -0.0706648231, 0.174161613, -0.1979464442, -0.1789816171, -0.0728761852, -0.114697136, 0.0056843609, -0.2668552995, 0.0995809063, 0.2071617097, -0.1186471581, -0.0114448741, 0.3965776265, 0.1650595665, 0.0238773376, 0.1108318716, -0.1763142794, -0.01612892, 0.2718544602, 0.1713451743, 0.0496564507, -0.1989776492, 0.2984875143, 0.5128170848, -0.205612272, 0.0405336097, -0.0790152252, -0.0047815889, 0.1420995444, 0.4264115691, 0.2334618568, -0.1881691515, -0.2181655467, -0.0426887125, -0.3736993968, 0.2281524539, -0.1707382798, 0.4515781403, -0.1238326505, -0.0085979514, 0.0644108802, 0.1072043106, -0.2979232371, 0.2373310328, -0.2675720453, 0.0675865114, 0.1066536456, 0.2853391469, 0.1486872435, -0.2966263294, -0.0560370721, 0.089898169, -0.1692584008, -0.2235217392, -0.3569560051, 0.1449779421, 0.0643262416, -0.0398163982, 0.2931800485, 0.3415265977, -0.0312435105, -0.2159668952, 0.2144909203, 0.053311795, 0.2625320256, 0.2650321424, 0.0118768346, -0.1454113722, 0.2332727015, 0.026837118, 0.2896947563, 0.1986461282, 0.3081665039, -0.1180164218, -0.1354851127, -0.0996296704, 0.0139548033, 0.1951921582, -0.0486499034, -0.3119459152, 0.0135784149, 0.0048812395, 0.074232623, 0.0398387425, 0.355167985, 0.1148306504, 0.0165194534, 0.1727307737, 0.2973676622, 0.1809267253, -0.1903833151, -0.2095322311, 0.1714631319, -0.1108705923, 0.2763526142, 0.0186878107, 0.2120940685, 0.3231052458, 0.1600314677, -0.1867731214, 0.0366660468, -0.0178795941, 0.4736910164, 0.281827569, -0.2511590123, 0.0975117236, 0.1115470827, 0.1697710454, 0.3672659397, -0.1209308654, -0.0234210081, 0.3076200187, -0.1960156411, 0.0861853734, 0.5580365062, -0.3268478513, 0.0336427316, 0.0866759196, -0.1684753895, 0.0443017222, -0.2090536058, 0.5345982909, -0.1278410554, -0.4057994485, -0.2514266968, -0.0618173853, 0.0548417494, -0.1127427518, -0.0393094644, -0.2156905234, 0.0880427361, 0.093218334, 0.1074287072, -0.372996062, 0.2144725323, -0.3236887157, -0.008395575, -0.4254331291, 0.0057018213, 0.3477915525, 0.2657504976, 0.0909907371, -0.0972996801, -0.0993014053, 0.0328819901, -0.0346275046, 0.6206562519, 0.1180766374, -0.2262895107, 0.4333227277, 0.0406723395, -0.3129926026, 0.0022461936, 0.0734696239, -0.1207939982, 0.1067874134, -0.3400850892, 0.2328075618, 0.0746834874, -0.1075117737, 0.1573761404, -0.1454614401, 0.0912462175, -0.4371273816, -0.1730301231, -0.1889231652, -0.2234085947, 0.0394580364, -0.2309255004, -0.2144013047, 0.0947491378, 0.5052253604, 0.0336165279, 0.0103736259, 0.0725557208, 0.0557908639, 0.0071010124, 0.3296579421, 0.5122722387, 0.1003580838, 0.0307942331, -0.3707311749, -0.4566684365, -0.0553625226, -0.2726143003, -0.1133476794, 0.3075874448, 0.0595561787, 0.0208584499, 0.1412316859, 0.2326318771, -0.1926284581, 0.1496747732, 0.0902005658, -0.4039145112, -0.246818319, 0.1658664942, 0.143137902, -0.1139869764, 0.0197617188, 0.1975490898, -0.2165279388, -0.0819167122, -0.0905739591, 0.4436956048, -0.3907446265, -0.1234759539, 0.2300350964, -0.0508330315, 0.1791041195, -0.0547772795, -0.1305192113, -0.1095265895, 0.1321536452, 0.060137175, 0.3216050565, 0.1370902956, 0.2485488504, -0.0404413193, -0.2820131183, -0.1084606946, -0.103703253, 0.4561387897, 0.0615926422, -0.2457846105, 0.078403689, 0.0684584901, -0.0974803567, 0.5709720254, 0.3588677943, -0.2080979943, -0.2477644533, -0.1020752415, -0.1012576967, 0.2366829664, -0.3834226429, -0.0257164575, -0.0323446319, 0.0827094391, 0.2758225799, -0.1074642017, -0.5303413868, -0.1059395969, 0.3487040102, -0.2784738243, 0.0735512227, 0.4093363285, 0.0977712423, -0.005446732, -0.0686583072, 0.6830686927, 0.2762748003, -0.117721349, 0.0996520594, -0.2393695265 ]
https://github.com/huggingface/datasets/issues/1781
AttributeError: module 'pyarrow' has no attribute 'PyExtensionType' during import
Hi ! I'm not able to reproduce the issue. Can you try restarting your runtime ? The PyExtensionType is available in pyarrow starting 0.17.1 iirc. If restarting your runtime doesn't fix this, can you try updating pyarrow ? ``` pip install pyarrow --upgrade ```
I'm using Colab. And suddenly this morning, there is this error. Have a look below! ![screenshot-colab research google com-2021 01 26-08-15-36](https://user-images.githubusercontent.com/45964869/105799890-fdaf3b80-5fae-11eb-8f06-11b65cdccc30.png)
44
AttributeError: module 'pyarrow' has no attribute 'PyExtensionType' during import I'm using Colab. And suddenly this morning, there is this error. Have a look below! ![screenshot-colab research google com-2021 01 26-08-15-36](https://user-images.githubusercontent.com/45964869/105799890-fdaf3b80-5fae-11eb-8f06-11b65cdccc30.png) Hi ! I'm not able to reproduce the issue. Can you try restarting your runtime ? The PyExtensionType is available in pyarrow starting 0.17.1 iirc. If restarting your runtime doesn't fix this, can you try updating pyarrow ? ``` pip install pyarrow --upgrade ```
[ -0.179066062, -0.1585776806, -0.0443938598, 0.2205854654, 0.1801979542, -0.0639266297, 0.1799793392, 0.2682424784, -0.3114216328, 0.1932340264, -0.0361048095, 0.432988435, -0.1667325348, -0.1118561327, 0.0816412717, -0.0672645271, 0.250748992, 0.3972359002, 0.2283163965, 0.01529935, -0.1987966895, 0.2214334011, -0.3317897916, 0.2289112508, -0.3630695939, 0.2572515607, 0.0558957905, -0.1920560151, -0.2301741987, -0.5764157772, 0.4622825086, -0.4576902688, 0.1837864816, 0.0198197216, -0.0001144319, -0.0085833371, 0.3469853997, 0.0369327441, -0.0782001019, -0.1799273491, 0.0146690384, -0.0796004236, 0.3153557479, -0.0688828528, 0.1376844645, -0.0490984097, -0.045562245, 0.3671181798, -0.0516868159, 0.2796535492, 0.2375448942, -0.0251758844, 0.5402339697, 0.0167234503, 0.5227000713, -0.1609019935, -0.2256374359, 0.6437644958, 0.3970014155, -0.3397269845, 0.3303515911, -0.0623880737, -0.3161486685, 0.1467278898, 0.341337353, 0.0093863755, 0.4785273671, -0.2968400717, -0.0349209644, 0.0639051199, 0.1993094832, -0.1061324775, -0.0536229461, 0.1321715117, 0.2737746835, -0.4418086708, 0.1780534387, 0.3744234443, -0.0651032627, 0.1674176753, 0.3446933329, -0.0282735266, -0.1547163874, 0.1121770665, -0.3299471736, 0.4400118887, -0.0608915463, -0.0126786269, 0.1606594771, -0.0143532325, 0.4384030998, 0.1720190942, -0.1464571655, 0.1746093929, -0.1346676499, 0.1695788354, 0.0346121974, 0.3614486754, -0.0168974847, -0.3039340079, -0.1646399945, -0.22025612, 0.1852380633, 0.4585881829, -0.1547239721, 0.296910435, 0.0425986946, -0.1898494661, 0.1939643323, 0.0431141816, -0.104429327, 0.1421605945, -0.1413403451, -0.3777516484, 0.238135159, -0.0861330256, 0.4219929278, -0.1524941325, -0.4551398158, -0.3460400403, -0.5161126852, 0.0715424716, -0.0819107294, 0.2317311764, -0.1786216795, 0.1398225725, 0.013510026, 0.2279355526, -0.1297754645, -0.2341375053, -0.0415704995, 0.3183738589, -0.1867560148, -0.2240169346, -0.0605835915, -0.1977537274, -0.0344873071, 0.0647207275, 0.0029573739, -0.1728654951, -0.3638981283, -0.2314033061, -0.2383738011, 0.3250190318, -0.1241197139, -0.0144522041, 0.1709781438, -0.5575416088, -0.1424942017, 0.3194749057, -0.5617519617, -0.4043888152, -0.2904802263, 0.1659997404, -0.1723260581, -0.1548974663, -0.3065095246, -0.1803507209, -0.0339651071, -0.2712189555, -0.134447366, -0.4794242382, -0.0160607696, -0.4012239575, -0.0779943541, 0.0237127617, -0.4536841512, -0.1713844091, -0.06733457, -0.0593353137, 0.3455153704, 0.0348363966, -0.1741033196, 0.0599540249, -0.084344849, 0.1987009943, 0.0848143548, -0.1136742532, -0.2233837545, -0.2362247705, -0.0785071552, -0.0386036523, -0.0020762458, -0.2877237797, -0.0197692513, -0.0431310646, 0.4431335032, 0.2906012833, -0.1093345433, 0.2179859728, -0.3110335171, -0.1981665939, 0.3580449224, 0.1255991459, 0.0955358669, -0.1678242534, 0.0892779082, -0.2828479409, 0.0909031779, -0.1441042125, -0.0333424583, -0.0247802231, 0.5660245419, 0.0915234163, -0.1175734401, -0.0555667318, 0.0603022575, 0.1770726144, -0.1671848893, 0.1522557288, -0.3447421193, -0.0380014144, -0.3247754872, 0.3926256597, -0.2453926355, -0.0746602714, 0.0887516662, -0.1059180573, -0.1791074872, 0.4000238478, -0.0704851151, 0.0581475943, 0.1778248399, 0.1856283545, 0.0744911134, 0.4301853776, -0.270831883, -0.4979072511, -0.1084053516, 0.0034129657, 0.2324229181, 0.0094571225, -0.1076801792, -0.0670002699, -0.0296544153, 0.1820949316, -0.273832649, 0.1543228626, 0.0993478075, -0.4678510129, -0.0098043485, -0.2234822512, 0.0692757964, -0.0187456459, 0.8860571384, 0.1675924361, 0.2548609078, 0.1322640479, -0.2607864738, 0.1686573923, 0.0046347454, 0.0924632177, 0.2096389234, 0.1399047822, 0.0681173056, 0.2411943972, -0.1811218113, -0.1170747951, -0.0255327001, 0.0542543642, 0.2834238708, 0.2026453316, 0.1976952553, 0.0019476251, -0.4756842554, 0.0932435691, 0.236592114, -0.1732936651, 0.325006783, 0.0668008476, -0.3597567081, 0.0757200047, 0.0793351233, -0.0889668912, 0.2429630309, 0.1491231918, 0.5926094055, -0.0030887686, 0.265088141, 0.0802501142, -0.1685391366, -0.2275589705, -0.0866513476, 0.2750089467, -0.2485770136, 0.2147495747, -0.3447979391, -0.023402743, -0.1641615927, -0.5490460396, -0.1036438271, -0.1264574528, -0.1215841621, 0.2856433392, 0.191525802, 0.0521730334, 0.27012676, -0.0963662565, 0.0707283467, -0.4580153227, -0.0769522712, -0.2203986943, -0.3743091226, 0.0262892097, 0.1251773536, -0.0590723567, -0.0304246936, -0.3601933718, 0.1301648319, 0.0701580718, -0.3697499633, 0.1027367562, -0.2174157798, 0.3510778546, 0.1288847327, 0.1389355958, -0.228343159, -0.2265940309, 0.341027379, -0.2279566675, -0.2316578031, 0.1729715168, -0.253002882, -0.1466670036, -0.0388244279, -0.0024363957, -0.4087467194, -0.1356751025, -0.0016150735, 0.0617810786, 0.0647764206, 0.2473360598, 0.3024420142, 0.2300613523, 0.0246633105, -0.0055177715, 0.1005854309, 0.1662606299, 0.4291492701, -0.1283851266, -0.1799855381, 0.3432488143, -0.2596542537, -0.0454660952, -0.1025904715, -0.21025756, -0.4968864918, -0.0208500549, 0.4942530096, -0.1182470173, -0.0494855121, 0.1953200847, 0.13268888, 0.0062990114, 0.0963874459, -0.0298700519, -0.4402617216, 0.3675143123, 0.2336596847, 0.0597360246, 0.0384738781, -0.1328351796, 0.5266127586, -0.3150182068, -0.0349398926, 0.3293397725, -0.2715456784, -0.0616860576, 0.0273058712, -0.3756975234, -0.0280948412, -0.1555029601, -0.2060227096, 0.1761329919, -0.2777554989, -0.1640520245, -0.1638623029, -0.0774839222, -0.2383019179, -0.2118121982, 0.157907337, 0.320114553, 0.2225833535, -0.1609208137, -0.1791938841, -0.0132107958, -0.1428376287, 0.1238499135, 0.2051281929, -0.2716386616, 0.0700984001, 0.4383121133, -0.6262351871, -0.0596393496, 0.2981523871, 0.3296100795, -0.045216009, 0.1585371941, 0.0653333068, 0.0440481827, -0.0163499527, 0.3518735468, 0.2703383863, -0.0755226761, 0.1412085444, 0.0766277686, -0.1490994096, -0.4287261665, -0.1191013008, -0.2681033015, 0.0243273228, -0.4682485163, -0.1296649277, 0.2163131535, 0.3303780854, 0.4147615433, -0.1004250348, 0.2933025956, -0.3792909086, -0.4569357932, -0.182923317, -0.1471693665, 0.1107232869, 0.5425564051, 0.0442088395, 0.2326034456, -0.1123696715, -0.1195010245, 0.0481868498, 0.2808308303, 0.0800943971, -0.0887427181, -0.0581210852, -0.245163545, -0.1497920156, 0.4851494431, 0.3575556278, 0.3432015777, -0.5243743658, -0.2735809386, 0.1761348695, 0.282677412, -0.0850717798, -0.3356332183, 0.1472048014, -0.6066707969, -0.1070990711, 0.2576446235, -0.0559981503, 0.2430213392, 0.1222139597, -0.0310081393, 0.1505090147, 0.5593098998, 0.0524690971, 0.0837614983, -0.1632103473, 0.4474861622, -0.1040821671, 0.199844569, 0.033147309, 0.8620262146, 0.0962166712, -0.1062673703, 0.5184581876, -0.0881286711, 0.1878961325, -0.0081635937, 0.1899982244, -0.3045164049, -0.0799038336, -0.0812915415, -0.2375046164, 0.3007556796, -0.3801081181, -0.1855719388, 0.032174509, -0.1073662862, 0.0412658527, 0.2691589892, -0.3244306743, 0.1020284966, -0.0270945001, -0.1815608442, 0.1279206276, -0.339073509, 0.3881623745, -0.2331752181, 0.0897139013, -0.238381058, -0.0345179215, -0.3565084636, 0.1594756991, -0.4747302532, 0.0953372046, 0.4025708735, -0.260730803, 0.218015179, 0.2544821501, -0.0881717652, -0.2051602453, -0.1190966964, 0.15318124, 0.2104901969, -0.2932991385, -0.1400913149, -0.0148194171, 0.3789058626, -0.2663354278, -0.2053688318, 0.3243810833, -0.1200552285, 0.0190125853, 0.2079236954, 0.2172122002, 0.2174224705, -0.1397689283, -0.1159704998, -0.154820472, 0.4396516383, -0.1793829501, 0.0974546298, 0.1022866964, -0.1480679065, 0.2389144003, 0.0597930923, -0.1215440407, -0.0676657706, 0.0342867561, 0.0530837737, 0.1256927252, 0.43789047, 0.0360093117, -0.1338087618, -0.0892589167, 0.0835768431, -0.2452504635, -0.3923934102, 0.1614234596, 0.0413190797, 0.0945866406, 0.154169485, 0.6016372442, 0.2200906426, 0.1959428787, -0.0029779524, -0.3935837746, 0.0153970942, 0.19521299, 0.223405838, -0.1829374135, 0.1482767016, 0.4871100783, 0.2310222238, -0.2154339403, -0.2355452478, 0.1699389517, -0.0202160068, 0.1654954851, -0.2081311941, -0.0237617418, 0.1376886517, -0.0255886372, 0.1706533879, 0.1360500604, 0.0790041387, -0.2413070202, -0.2038369179, 0.1567434072, 0.0473502055, 0.1087638587, 0.144431442, 0.0323913097, 0.1363894939, 0.1075625941, -0.0144930631, -0.011574246, -0.2664197683, 0.0206280351, 0.5048090816, 0.0116714491, -0.1032408923, 0.1398867965, -0.1736041009, 0.4591967165, 0.1729915142, 0.0851140618, 0.0556666069, 0.1222589463, 0.0067550279, -0.1525088549, -0.3688289225, -0.0822530389, 0.2527532876, -0.5157039762, -0.0102973729, -0.3664904535, -0.0804440007, 0.3681674004, -0.2823775411, 0.1550216824, 0.3580297828, 0.148714751, -0.2343889773, 0.0802347735, 0.1561588347, 0.0121041872, -0.0657278746, 0.208569929, 0.0962712467, 0.1325169951, 0.0135206953, 0.1941374689, 0.1125742793, 0.3337906301, 0.0733123571, 0.1991664171, -0.1907488108, 0.3111234605, 0.3012806177, -0.0447269976, 0.099725306, 0.1071463004, -0.2848710418, 0.1915014833, -0.122345604, -0.036643818, 0.3447069824, -0.2727974653, 0.0545445681, -0.0499815941, 0.2050124407, -0.1866603196, 0.2229486406, 0.4996080697, -0.0381266251, -0.0852460712, 0.0450400114, 0.4715330899, -0.0909213126, 0.2189591974, 0.2121888101, 0.0400193036, -0.1102892309, 0.0615603477, 0.0899290591, -0.1647671163, 0.1405577809, 0.3287212849, -0.2781495452, -0.1683350801, 0.1341960877, 0.1551510543, 0.2446390986, -0.1510167867, -0.0291921478, -0.0126027875, -0.2535865903, -0.342517972, 0.3309092224, 0.5272141099, 0.3617964983, -0.2228709459, -0.3505696356, -0.262776345, -0.086315386, 0.1195720136, -0.1643646359, 0.1972002983, 0.5600973368, 0.0767566189, 0.1942419559, -0.1704493761, 0.1397043616, -0.0916649178, -0.0431897417, -0.0491227657, 0.1625782251, -0.008292513, -0.2567866743, -0.5138965845, 0.096671164, -0.0504027642, 0.3500349522, 0.112572819, 0.1148152053, -0.1855022609, 0.0442880988, 0.0609001257, 0.1665432155, 0.3051975965, 0.3875775337, 0.4755406976, -0.2138942331, -0.1814344227, -0.2916366756, 0.3696192205, -0.2389662862, 0.0414595678, 0.110527277, -0.0062892474, -0.1999725848, 0.370228529, -0.0114937797, 0.1765710413, 0.0734885484, 0.029802816, -0.3209840357, -0.2221901268, 0.1444745213, -0.3279421031, 0.0714495331, -0.1231061295, 0.2319747955, -0.6399852037, 0.1101723462, -0.3500308394, -0.2746467292, 0.0027536377, -0.0029039374, 0.6594687104, -0.0845695436, 0.4161301553, 0.1328026652, 0.0950929821, 0.0378226563, -0.3472765684, -0.0520949177, 0.2472883761, -0.0002781972, 0.2236513495, 0.114988327, 0.0075578699, -0.3633069992, 0.3691529036, 0.0104587674, -0.1032635719, -0.1003400683, 0.0807716101, 0.0182325989, 0.161239326, -0.166969955, 0.0177484602, -0.1094032601, 0.0470386818, -0.3611800671, -0.5371569991, 0.4243588746, -0.314658016, -0.3414466977, 0.0673389882, 0.2100274563, -0.1327817142, -0.1468289346, -0.408765167, 0.0332320482, 0.2969631553, 0.1331398934, -0.2754377723, 0.2085573077, 0.0338271558, 0.0557053983, -0.0335560292, 0.3838150203, -0.0997876525, 0.1347156167, -0.251853168, -0.0629428923 ]
https://github.com/huggingface/datasets/issues/1781
AttributeError: module 'pyarrow' has no attribute 'PyExtensionType' during import
Yes indeed. Also it looks like Pyarrow 3.0.0 got released on pypi 10 hours ago. This might be related to the bug, I'll investigate EDIT: looks like the 3.0.0 release doesn't have unexpected breaking changes for us, so I don't think the issue comes from that
I'm using Colab. And suddenly this morning, there is this error. Have a look below! ![screenshot-colab research google com-2021 01 26-08-15-36](https://user-images.githubusercontent.com/45964869/105799890-fdaf3b80-5fae-11eb-8f06-11b65cdccc30.png)
46
AttributeError: module 'pyarrow' has no attribute 'PyExtensionType' during import I'm using Colab. And suddenly this morning, there is this error. Have a look below! ![screenshot-colab research google com-2021 01 26-08-15-36](https://user-images.githubusercontent.com/45964869/105799890-fdaf3b80-5fae-11eb-8f06-11b65cdccc30.png) Yes indeed. Also it looks like Pyarrow 3.0.0 got released on pypi 10 hours ago. This might be related to the bug, I'll investigate EDIT: looks like the 3.0.0 release doesn't have unexpected breaking changes for us, so I don't think the issue comes from that
[ -0.0131391883, -0.0668327585, -0.0331191346, 0.1483882666, 0.1552637219, -0.1366583854, 0.2972116172, 0.3255248666, -0.3937355876, 0.1865730584, -0.0172689054, 0.3017127514, -0.0978723988, -0.1359521151, 0.1570975333, -0.0766468644, 0.3692230284, 0.3322658241, 0.2101122737, 0.0341320261, -0.2047906965, 0.2435744852, -0.3605642617, 0.2816296816, -0.3349712491, 0.2964655459, -0.0501943305, -0.2114923894, -0.1720487028, -0.5515248179, 0.4652974308, -0.3716565967, 0.1718031019, 0.0862077177, -0.0001152871, 0.0478764772, 0.3382733166, 0.0108992606, -0.0602639578, -0.097144708, 0.0056825727, -0.0494795479, 0.2477092147, -0.0170460194, 0.1799537539, -0.0465858057, -0.1243837103, 0.3421863317, -0.0906014442, 0.3016500175, 0.2360052317, 0.0828581154, 0.4873181283, 0.0309319049, 0.6077608466, -0.0773165971, -0.269359678, 0.5535907745, 0.347196728, -0.3623816669, 0.3086408079, -0.0397062227, -0.269061923, 0.1196531057, 0.2864124179, 0.029936891, 0.4240362942, -0.2688584626, -0.0992741734, 0.1516014934, 0.1677061915, -0.1728440672, -0.1481742859, 0.0579550713, 0.2575569153, -0.4599103034, 0.2317681015, 0.31120193, -0.1151485443, 0.1562720984, 0.3843081594, 0.0039482825, -0.2121082246, 0.0566881485, -0.3574642539, 0.4364011884, 0.0000959374, -0.03212386, 0.1804159284, -0.0024625012, 0.4826473594, 0.217644453, -0.2250597477, 0.1874585748, -0.1264518499, 0.1205258146, 0.0969839394, 0.2131737024, 0.0326535925, -0.243433401, -0.1718939841, -0.2731763721, 0.2743751705, 0.3453640342, -0.1747222245, 0.2405589372, 0.051155813, -0.0985385478, 0.214135766, -0.0170267429, 0.0022327006, 0.1582271159, -0.1324883699, -0.3309862316, 0.1595115662, -0.1174671128, 0.388700664, -0.1071971506, -0.4032923281, -0.3672437072, -0.4772162735, 0.0425830074, -0.2066436112, 0.1653787196, -0.0999652594, 0.1763216704, -0.051944606, 0.2494452, -0.2004778683, -0.1350601614, -0.0154275075, 0.3069821596, -0.1381400675, -0.1166273132, -0.150195688, -0.1173729599, -0.1203546524, -0.0288931057, 0.0037057493, -0.0938862115, -0.3903514445, -0.2269087434, -0.1927278489, 0.4000965357, -0.2094472647, 0.0106316507, 0.0361663848, -0.43288064, -0.1751114279, 0.3084085882, -0.510522604, -0.4189543426, -0.3386984766, 0.1622045636, -0.2392556816, -0.159033224, -0.2101457715, -0.1539175808, -0.0257823654, -0.2977169752, -0.0679370612, -0.4593392313, 0.0661234036, -0.3761540651, -0.0889947638, 0.1171999872, -0.460057199, -0.2082940489, -0.0396743305, -0.1002492681, 0.2123406082, 0.0334531814, -0.1382900178, 0.0476340428, -0.1362774074, 0.2307427824, -0.0242857337, -0.0594624169, -0.2722766399, -0.2320830226, -0.0442513302, -0.038859766, 0.092850022, -0.3169507682, 0.0343440175, -0.0749511719, 0.4046433568, 0.2313244343, -0.1184695438, 0.2528599203, -0.2151909024, -0.2250580788, 0.4088804722, 0.0668418184, 0.0973034352, -0.2397805452, 0.069201842, -0.2193100452, 0.1449563801, -0.1628499329, -0.0161279645, -0.0041736215, 0.5557932854, 0.0114314063, -0.0856289566, -0.0505720451, 0.0189573485, 0.2229179144, -0.1853203773, 0.1959263533, -0.3770171404, 0.0508205518, -0.2732281685, 0.4390934408, -0.239970237, -0.2291370332, 0.0691436827, -0.0709551424, -0.1686137319, 0.4575910866, -0.1253301948, 0.0845665038, 0.2847536206, 0.1448571235, 0.1470871717, 0.4999443889, -0.2506093383, -0.453047365, -0.1584196687, 0.0097189173, 0.1861775368, -0.0356308222, -0.0880456567, -0.0568741783, 0.0108955726, 0.2653045058, -0.2652030885, 0.1235496327, 0.1738426089, -0.392958045, -0.0181139316, -0.1742797643, 0.0877438858, -0.0335607603, 0.8921658993, 0.1687956452, 0.4038023651, 0.1602567583, -0.1517966688, 0.1315705031, -0.0135128275, 0.1269463003, 0.1719960868, 0.1579269618, 0.0358103141, 0.3080630302, -0.1634715497, -0.0871258974, 0.0040985271, 0.0815084577, 0.3480775952, 0.0909013674, 0.1321677119, 0.0951319858, -0.4533492029, 0.108584024, 0.2875911295, -0.2044249326, 0.3006252646, -0.0027225874, -0.3478747308, 0.0968063623, 0.0687797219, -0.103633292, 0.231244877, 0.1464689672, 0.6274520755, -0.053962104, 0.2600464225, 0.120814845, -0.1754732132, -0.1735770106, -0.0345087387, 0.1754893064, -0.3216812015, 0.2472687066, -0.2865737081, -0.033084482, -0.1837987304, -0.6172889471, -0.2467292249, -0.0972244591, -0.086363852, 0.2397946715, 0.1439484954, 0.0494821742, 0.1944265664, -0.1363158226, 0.1318316758, -0.3939237893, -0.0659632832, -0.1660008579, -0.4110151529, 0.0342336446, 0.0789109021, -0.128023386, -0.0826192275, -0.3824842572, 0.0980386138, 0.0232921746, -0.4178724289, 0.1835726351, -0.2367061526, 0.2517471015, 0.15669927, 0.0464336164, -0.1301650703, -0.182927072, 0.282011658, -0.2733280063, -0.3171108067, 0.2481304407, -0.1968502402, -0.0255364701, -0.0423545353, 0.0016374141, -0.4315138459, -0.1270965934, 0.0063963691, 0.0411541909, 0.0813725516, 0.4008951187, 0.3015106618, 0.2564191818, -0.0694124103, -0.0516871437, 0.2051506937, 0.1729595959, 0.4019712806, -0.0453339033, -0.2462501377, 0.1988834739, -0.2110727876, -0.1946010292, -0.0431776494, -0.2507729232, -0.4114253521, 0.0060347542, 0.5550533533, -0.0497531705, -0.069741331, 0.3415048718, 0.0640973374, 0.0203942321, 0.1028012037, -0.0575504825, -0.4246291518, 0.3636847138, 0.1950744092, 0.020997569, -0.0470947884, -0.0910296515, 0.5344067216, -0.3050166667, 0.0196949225, 0.3806325495, -0.3165949583, 0.0085187163, -0.0075044036, -0.3508320153, 0.0020643026, -0.2164062858, -0.2069074363, 0.1151532829, -0.2021020651, -0.1999473125, -0.2324253917, -0.0081793517, -0.1488265395, -0.2450309098, 0.1605929881, 0.172338143, 0.2058910877, -0.1472098231, -0.0359694585, -0.0803490728, -0.1351228207, 0.1414118111, 0.0991827399, -0.2391813397, 0.0221706033, 0.3737477064, -0.4715351164, -0.1865343153, 0.2090769112, 0.3911677599, -0.0005618371, 0.2155110538, -0.101937905, 0.0302233323, -0.0597648509, 0.4634604156, 0.3329997361, -0.0764130875, 0.2497051656, 0.1063946337, -0.192533195, -0.4660721421, -0.1530639678, -0.3820137084, 0.0467143022, -0.3956742585, -0.0991572589, 0.1917424798, 0.3078095317, 0.3542787135, -0.0524162725, 0.232692793, -0.3907871842, -0.5037891865, -0.1083228141, -0.1856617779, 0.0735417902, 0.406732738, -0.0511605889, 0.2021988928, -0.0522495136, -0.1719231009, -0.055118233, 0.2742960751, -0.026355762, -0.1114034578, -0.0432217792, -0.203258127, -0.1201070249, 0.4974156022, 0.3016120791, 0.4307506979, -0.5198175311, -0.2346644402, 0.153954193, 0.2733054161, 0.02822043, -0.2632869184, 0.1659518778, -0.5596693158, -0.172491014, 0.2411612123, -0.1367805451, 0.3588765264, 0.0973063931, -0.0596349612, 0.2025465667, 0.5289088488, 0.0248946995, 0.074985683, -0.2459075749, 0.4537630081, -0.0983142853, 0.0699343607, 0.0436740518, 0.8350269794, 0.1248508841, 0.0305075645, 0.6416877508, -0.2158603072, 0.253765434, 0.0945042521, 0.1731382459, -0.29613778, -0.1071064919, -0.1075479016, -0.2412972152, 0.3092469573, -0.5395002365, -0.1265193373, -0.01607484, -0.062882334, 0.1311436594, 0.3468614519, -0.4278761148, 0.0938201174, -0.0330335237, -0.2038727403, 0.1121441051, -0.2138208449, 0.396659255, -0.2033082843, 0.0648429021, -0.2075216025, -0.0953240693, -0.3254084587, 0.2572103143, -0.3843844235, 0.0723648071, 0.4309490323, -0.3136197329, 0.0897604302, 0.1476743221, -0.1038964391, -0.3308495283, -0.13816531, 0.1379953623, 0.2811754942, -0.1602490842, -0.0330575258, -0.0758945048, 0.4511497319, -0.2567559481, -0.2407040596, 0.3248724043, -0.1724441648, -0.0252041072, 0.1689874232, 0.2126979828, 0.3129541874, -0.0634055585, 0.0474488325, -0.1949808598, 0.4568567276, -0.1830205023, 0.0838969722, 0.0512901768, -0.1537173837, 0.1318116486, -0.0672403947, -0.0820613354, -0.0933937207, 0.142264545, 0.1050038338, 0.1677747816, 0.470296979, 0.091643557, -0.0756590068, -0.0608484484, 0.144407168, -0.1836299002, -0.4542880654, 0.0926684588, -0.0591410398, 0.0339045972, 0.0791584253, 0.5761159658, 0.2180943638, 0.0987733305, -0.0183407739, -0.3346137702, -0.0040289238, 0.1269532442, 0.1444272697, -0.2800020576, 0.1589995325, 0.4735196233, 0.308825016, -0.2921717763, -0.2072614878, 0.1344075203, 0.0139313713, 0.1114376783, -0.198435396, -0.0344797634, 0.1641916037, -0.0530162267, 0.1802766174, 0.1762222201, 0.0299032964, -0.196048677, -0.2763875127, 0.1646425426, 0.0262454711, 0.0828450546, 0.2277652025, -0.0142277144, 0.1288473606, 0.1400891095, -0.0335572176, -0.0232176371, -0.3132750094, 0.0749503002, 0.468621552, -0.003544705, -0.0383275636, 0.1672220975, -0.1821649969, 0.4613621235, 0.1279822439, 0.1962507218, -0.0048737824, 0.1413672268, -0.073882632, -0.0500203669, -0.5202832222, -0.0969448686, 0.300270319, -0.5328300595, 0.0007333905, -0.4318065643, -0.0064553693, 0.4072600603, -0.3208840191, 0.0898790136, 0.4028600156, 0.1345388442, -0.2542098165, 0.0681840181, 0.0502430312, -0.0042672437, -0.1172655746, 0.2047825158, 0.1054387838, 0.0983835459, 0.1125994772, 0.2177935541, 0.0951181725, 0.4087660313, 0.078445822, 0.3108327687, -0.2199382633, 0.3216120005, 0.3078153729, -0.0826827288, 0.0700757354, 0.0491853468, -0.2488768697, 0.197155863, -0.1439424455, -0.0132070035, 0.312397927, -0.232786119, 0.0940202549, -0.0964872912, 0.1734164655, -0.208920598, 0.3062179685, 0.4925247133, -0.0597416125, -0.0954320431, -0.0726951435, 0.4616526663, -0.0985454023, 0.2110271752, 0.2701736093, -0.0040657371, -0.0381483138, 0.0233463645, 0.0364447348, -0.1881680191, 0.2913279235, 0.2702757418, -0.2566882372, -0.2534961104, 0.1303732246, 0.0896567404, 0.2583931983, -0.1812179983, 0.0337641984, -0.0694995522, -0.2266216874, -0.3217249513, 0.3388968408, 0.5313586593, 0.3796490431, -0.1952033192, -0.3217885196, -0.1860150099, -0.0729915202, 0.1196316332, -0.1308958977, 0.2220326066, 0.6603375077, 0.119367443, 0.1698141247, -0.1256334186, 0.1839614511, -0.0307590701, 0.0563007109, -0.1492145061, 0.2286605686, -0.146794349, -0.2453062087, -0.4656850696, 0.1232058257, -0.0555100776, 0.3984954655, 0.0743231624, 0.0825469419, -0.1017231941, 0.0300506838, 0.0563482456, 0.1842729896, 0.3445963264, 0.4053152204, 0.3979041278, -0.1108899415, -0.1044433564, -0.2590640485, 0.4423458576, -0.2495422661, 0.0895813555, 0.1316605806, -0.0088868663, -0.1571725309, 0.31254372, -0.0154561549, 0.2476421893, -0.0797141567, -0.0851196647, -0.3925023079, -0.2460027784, 0.1071515381, -0.2053279728, -0.0182973668, -0.1419058144, 0.3042199016, -0.6519693732, 0.1224000826, -0.2782093585, -0.2564261556, 0.0777501017, 0.0453956015, 0.6552138925, -0.0219034981, 0.3961557448, 0.1705241203, -0.027097743, -0.0799268484, -0.3554822206, -0.0862280205, 0.2046666443, -0.0640854463, 0.1238141358, 0.102091372, -0.0947148502, -0.3230879605, 0.4325677752, 0.0517918468, -0.0371954776, -0.1337213218, 0.1391982734, 0.0638657212, 0.0863114744, -0.1177843213, -0.0463272072, -0.1643606126, -0.0378953367, -0.327434063, -0.5092480183, 0.3003087044, -0.4232924879, -0.3363008797, 0.0668105781, 0.1847189367, -0.2212518305, -0.1529462188, -0.3810843229, 0.0995870382, 0.3112213016, 0.1313260794, -0.3076265752, 0.2013767064, -0.0241783541, 0.0009538084, -0.0122423619, 0.4474132657, -0.1461010575, 0.0542350858, -0.1215180159, -0.0445528924 ]
https://github.com/huggingface/datasets/issues/1781
AttributeError: module 'pyarrow' has no attribute 'PyExtensionType' during import
Installing datasets installs pyarrow>=0.17.1 so in theory it doesn't matter which version of pyarrow colab has by default (which is currently pyarrow 0.14.1). Also now the colab runtime refresh the pyarrow version automatically after the update from pip (previously you needed to restart your runtime). I guess what happened is that Colab didn't refresh pyarrow for some reason, and the AttributeError was raised *before* the pyarrow version check from `datasets` at https://github.com/huggingface/datasets/blob/master/src/datasets/__init__.py#L60
I'm using Colab. And suddenly this morning, there is this error. Have a look below! ![screenshot-colab research google com-2021 01 26-08-15-36](https://user-images.githubusercontent.com/45964869/105799890-fdaf3b80-5fae-11eb-8f06-11b65cdccc30.png)
72
AttributeError: module 'pyarrow' has no attribute 'PyExtensionType' during import I'm using Colab. And suddenly this morning, there is this error. Have a look below! ![screenshot-colab research google com-2021 01 26-08-15-36](https://user-images.githubusercontent.com/45964869/105799890-fdaf3b80-5fae-11eb-8f06-11b65cdccc30.png) Installing datasets installs pyarrow>=0.17.1 so in theory it doesn't matter which version of pyarrow colab has by default (which is currently pyarrow 0.14.1). Also now the colab runtime refresh the pyarrow version automatically after the update from pip (previously you needed to restart your runtime). I guess what happened is that Colab didn't refresh pyarrow for some reason, and the AttributeError was raised *before* the pyarrow version check from `datasets` at https://github.com/huggingface/datasets/blob/master/src/datasets/__init__.py#L60
[ -0.4181624055, 0.1504388154, -0.0190765634, 0.1533482969, 0.13422741, -0.0236932561, 0.2542464137, 0.2454891801, -0.3241708279, 0.1116401851, 0.0381209552, 0.377430588, -0.0813137665, -0.0478630066, -0.0118859094, 0.04188741, 0.3027806878, 0.3409286141, 0.207190454, 0.0259101093, -0.2342767119, 0.0909717605, -0.3210463524, 0.2035170645, -0.4118349552, 0.2203691155, -0.0174814761, -0.1700023115, -0.3172969818, -0.679212153, 0.5830786824, -0.2323220223, 0.2768804431, 0.1425852925, -0.0001209328, -0.0209164023, 0.3580554426, 0.102465041, -0.2893367708, -0.1401554644, -0.1511044949, -0.1866816729, 0.3294045925, 0.0138394237, 0.209861517, -0.2561298311, -0.0134526175, 0.218142435, -0.0807271674, 0.2746795714, 0.1697658002, 0.0567857847, 0.4970564544, 0.0424643904, 0.38315323, -0.071019046, -0.1261998117, 0.5384054184, 0.257376045, -0.3175980449, 0.3273626864, 0.0955689177, -0.3002937734, 0.245308578, 0.3384180367, 0.0261109807, 0.3156372309, -0.1950560808, -0.0080027319, 0.2326881737, 0.4724452496, -0.2055785656, -0.3742720485, -0.1450870633, 0.2462433279, -0.3504835665, 0.2955636084, 0.1823575497, 0.0134681612, 0.1489956379, 0.1497538686, -0.0184532516, -0.0669814944, 0.0797985345, -0.3698369861, 0.4304913878, -0.115157336, 0.0948725864, 0.1171314567, -0.0667925254, 0.5531333685, -0.0353315696, -0.2178257108, 0.2489421964, -0.233792305, 0.1079052538, 0.084938772, 0.3836949766, 0.0191437751, -0.1634806395, -0.2799125314, -0.3150516152, 0.0434297547, 0.3021691442, -0.0314208493, 0.2702072561, 0.0722960532, -0.0455676317, 0.2369810045, 0.0130289011, -0.0343976952, 0.1162369847, -0.1001425087, -0.3603296876, 0.2520412803, -0.057451088, 0.6233628988, -0.2348874211, -0.4208146632, -0.2791057229, -0.495939374, -0.1293876171, -0.1401715577, 0.1667964756, -0.2977565527, 0.2598462701, -0.1432747096, 0.1083352268, -0.253990531, -0.1861819029, -0.0646512285, 0.1568897963, -0.1410631835, -0.1038214415, -0.0783215463, -0.1958211362, -0.0038998574, 0.0601157323, -0.1246233284, -0.0684766695, -0.2699034512, -0.3182117641, -0.1636869311, 0.4307079613, -0.2343383282, 0.1612663865, 0.1176148355, -0.5139945149, -0.1687963605, 0.2821596563, -0.5118228197, -0.4434717596, -0.2082923204, 0.0998679921, -0.3005480468, -0.193651557, -0.4257186651, -0.0990353972, 0.0882478803, -0.4811266959, -0.024284631, -0.5677359104, 0.0094444752, -0.374841392, -0.0311755836, 0.295478344, -0.6035423875, -0.1913354099, -0.1196310222, -0.1438693553, 0.142223686, -0.0320602916, -0.1355498284, 0.0877710283, -0.0691847578, 0.0052967966, 0.0978052691, -0.201942414, -0.4289780259, -0.1281323731, 0.039155513, 0.0890588686, 0.0629900768, -0.1787742823, 0.0733824819, -0.0738645345, 0.345624119, 0.2120341659, -0.1600933373, 0.0766816139, -0.0946313068, -0.1960214078, 0.3323126733, 0.1353756487, 0.0791467279, -0.0963711664, 0.1051179841, -0.152816698, 0.1042481363, -0.0824321955, -0.0228676423, 0.0151803382, 0.5127729774, 0.0129783787, -0.1164857, -0.1611536294, -0.1859287918, 0.2242623568, 0.0850024298, -0.0598823801, -0.4205749035, -0.1836571991, -0.2416518927, 0.2941110134, -0.1884558201, -0.259441942, -0.0057254322, 0.1202160791, -0.1577470899, 0.3912130892, -0.1406080276, 0.3141979277, 0.0699944645, 0.2449354529, -0.0793029666, 0.364993602, -0.1673130542, -0.38925457, -0.1534989476, 0.0461944863, 0.1388096362, -0.0449940227, -0.1133976355, 0.1098345518, -0.0093773901, 0.2966067791, -0.2214615643, 0.1578573436, 0.1264437884, -0.1821914315, 0.0310815107, -0.308649987, -0.0047079325, 0.0026350543, 0.6934748292, 0.1561755687, 0.2425138652, 0.1873316467, -0.1939786375, 0.0710177273, 0.0452381, 0.1769447625, 0.0338251069, 0.0847996473, -0.0266791917, 0.2097432911, 0.0241806209, 0.0152946059, -0.1246282756, 0.1560419798, 0.365210712, 0.1491885781, 0.1532501727, -0.0186699834, -0.4601624906, 0.0689493716, 0.3831282556, 0.1304518133, 0.4296893775, 0.0333590619, -0.305747509, 0.042786397, -0.0728986189, 0.0013501644, 0.0672049671, 0.18508479, 0.5060129166, -0.0201592185, 0.2183591425, 0.20898211, -0.1588148177, -0.3102003336, 0.0411300063, 0.3739795685, -0.3386673927, 0.2943222523, -0.3655648232, -0.1117809266, -0.1900115758, -0.6143969297, -0.2298165858, -0.139765501, -0.1837115139, 0.3203368187, 0.2036804855, 0.1484705508, 0.0623818934, -0.1352200657, 0.0419021323, -0.4303115904, 0.0690355971, -0.178509146, -0.2635132074, -0.000469666, 0.0800382942, -0.1433691233, 0.0108114034, -0.4225104451, 0.082815215, -0.0152944103, -0.3495781422, 0.0856366158, -0.3275429606, 0.4431428015, 0.2561698556, 0.1518148333, -0.2441197336, -0.133662805, 0.3365137279, -0.2175848484, -0.2805584073, -0.0804266036, -0.1813364327, -0.0858775526, 0.0960071906, -0.0889934152, -0.4324345291, -0.1147841215, 0.0239355508, 0.1166306213, 0.0384807885, 0.3249646723, 0.2670057416, 0.1228090674, -0.038152229, 0.0272236317, 0.0604037866, 0.014573805, 0.3432317674, -0.0439676344, -0.0917209685, 0.2418819517, -0.1861955822, -0.1578912437, 0.0988415778, -0.3921027184, -0.6064207554, -0.1058822274, 0.4493831694, -0.0804876611, 0.028575832, 0.3183557987, 0.2103990465, 0.0588824302, -0.001433149, -0.1303636581, -0.501696825, 0.2687037289, 0.1951233894, 0.0392834321, 0.1592849493, -0.11933209, 0.5885622501, -0.1180830076, -0.1307070851, 0.1967378855, -0.2780770063, 0.2577852905, 0.0037795901, -0.3999599814, 0.0001087338, -0.1838214993, -0.1722366959, 0.0561545081, -0.0889739767, 0.0206058603, -0.1776574254, -0.1040867567, -0.2045784295, -0.1649919748, 0.0485993549, 0.1484628767, 0.2544667721, 0.0124211162, 0.0146218687, -0.198930487, -0.1270336807, -0.0133111291, 0.3179435432, -0.1033570319, 0.0975216925, 0.2111829817, -0.3801302612, -0.1920147538, 0.3192767501, 0.3189559579, 0.0780694634, 0.2148052603, 0.0115071982, 0.0117196701, -0.013603054, 0.377300024, 0.1215169504, -0.0888896212, 0.1494613737, 0.0307088643, -0.294044286, -0.3276793361, -0.0779706985, -0.1999317855, -0.0321916267, -0.291596055, -0.1149148047, 0.0800373256, 0.4781744778, 0.4865282774, 0.0007786378, 0.2729395628, -0.2663763762, -0.4203899801, -0.1045851782, -0.137121737, -0.08413288, 0.2471649498, -0.0090549849, 0.3496675491, -0.2689822316, -0.1279772669, 0.0009085536, 0.2837116122, 0.1002661735, -0.0145212598, 0.0328850225, -0.067773439, -0.0991420895, 0.6560021639, 0.5683667064, 0.2228672355, -0.5871348381, -0.3114333749, 0.2615459859, 0.3081311285, 0.0385414511, -0.3654316664, 0.1598128527, -0.4349409342, -0.2039361596, 0.1181139797, -0.0032241829, 0.3611797094, 0.2568579316, -0.2989949584, -0.1709064245, 0.6227722764, 0.1870382428, -0.0497827828, -0.0120431073, 0.4989396036, -0.1086796299, 0.0867683068, -0.0708635077, 0.7722882032, 0.2161621898, -0.0164656974, 0.5215464234, -0.0375140235, 0.3984515965, 0.0963154361, 0.2034584582, -0.3084243536, -0.2251470983, -0.1771803796, -0.2383139729, 0.4370368719, -0.3925251961, -0.1204814464, 0.1257025898, 0.1099549383, 0.1674301475, 0.2934599817, -0.2357237041, -0.0970845297, 0.0407844931, -0.2799021006, 0.0703095496, -0.2062651813, 0.4521024227, -0.239418596, 0.19165501, -0.1744404137, -0.1181282699, -0.3269028068, 0.0272017494, -0.4223393798, 0.0469850376, 0.3487409353, -0.3465303481, 0.1412332058, 0.308262676, 0.1490031481, -0.110561125, -0.1429969072, 0.1925393939, 0.1203577816, -0.0830729902, -0.0876868293, -0.1431602985, 0.4585090876, -0.0869703814, -0.2914060056, 0.1181491464, -0.1757519394, -0.1169967204, 0.192783311, 0.1780389547, 0.1803473085, -0.1606611013, -0.008434359, -0.2092552483, 0.4160997868, -0.2062872946, 0.0337352753, 0.0291550346, -0.03081844, 0.258929342, -0.0415644981, -0.2023427635, -0.2383624464, 0.2251692265, 0.0538899228, 0.2207306921, 0.5160393715, 0.0045139045, -0.1424065083, -0.0259940773, 0.0368428528, -0.2040506303, -0.4193039238, 0.0943091661, -0.0472631864, 0.1737487018, 0.1484475285, 0.5579471588, 0.1887618303, 0.0739826933, -0.0120351985, -0.4998328686, -0.017501168, 0.2965071797, 0.1705467254, -0.1402315646, 0.2619214654, 0.3161824346, 0.146299392, -0.2080894113, -0.1621001065, 0.1114121303, 0.0875495076, 0.2187369019, -0.1014425159, 0.1857635975, 0.2712577879, -0.1186803281, 0.0882633477, 0.1107571721, 0.0232379884, -0.1679695845, -0.1551800817, 0.1952310354, 0.0790805146, -0.0309847295, 0.1443665773, -0.0506839454, 0.0514106564, -0.0166521054, 0.1229134575, 0.1435354799, -0.2517280877, 0.0204635784, 0.3447139561, 0.1018141657, -0.1064431667, 0.2578164041, -0.1646611094, 0.3178769648, 0.1187174767, 0.2142812163, 0.0441241972, 0.1659113765, -0.0493743122, -0.0369119309, -0.3980922997, -0.0909592584, 0.2025743872, -0.5558547974, 0.0694072396, -0.283544451, 0.2389627844, 0.4619530439, -0.2067476809, 0.0361855775, 0.4877444804, 0.0747225061, -0.2718811929, 0.1139423251, 0.2718525529, 0.1040503979, 0.0084563419, 0.3226700425, 0.1910166442, 0.2318346649, 0.0050496459, 0.2871260345, 0.2534641027, 0.3062470555, 0.2237189114, 0.3408563733, -0.1183856055, 0.3203246891, 0.466403693, 0.1085290164, -0.0223922059, 0.256712079, -0.2122323066, 0.2128286809, 0.0245729201, -0.0816998407, 0.1981667131, -0.4361228049, 0.3141306937, -0.0638902634, 0.1463705748, -0.2770727277, 0.3593444228, 0.4206176698, -0.1748636365, -0.0972500294, -0.1061295196, 0.4280220568, -0.1015812755, 0.0380418785, 0.2254815996, -0.0710923225, 0.0765769333, 0.0310192034, -0.0099992584, -0.2566750348, 0.3153357208, 0.1951400042, -0.3157760203, -0.4515145123, 0.1660024226, 0.1537613571, 0.254573226, -0.0800386891, 0.0687814951, -0.0559655651, -0.1540688574, -0.1322261095, 0.5119330287, 0.6078241467, 0.3323935866, -0.0730938017, -0.2313450873, -0.3119516373, -0.0285724029, 0.0980186015, -0.0754056796, -0.0635235533, 0.3634940982, 0.1849326193, 0.1777666956, -0.1057398617, 0.268384248, -0.1154610142, -0.0876862854, -0.3277677596, 0.3378293514, -0.0771925002, -0.150478065, -0.2973753512, 0.2666490078, 0.0063826293, 0.2759132683, 0.2482225895, 0.0690191239, -0.1253397763, -0.0256370362, 0.0088806935, 0.1134218946, 0.3014831841, 0.5731636286, 0.3423221111, -0.0488621704, -0.0322647393, -0.52465868, 0.2737060785, -0.3799613416, -0.0126915425, 0.122108236, -0.1102098599, -0.197221905, 0.4066536725, 0.1094073653, 0.1486457586, 0.0448763818, -0.055034548, -0.3251522183, -0.3328724802, -0.0518056229, -0.2736150324, -0.0470761955, -0.2848770022, 0.2699875236, -0.6724922061, -0.0098381378, -0.1648214459, -0.1948524266, 0.1339522004, -0.2329443693, 0.693285346, -0.0060903393, 0.5324744582, 0.1538999081, 0.0189521685, -0.2397971451, -0.3865701854, -0.228965193, 0.3694833815, -0.1253317595, 0.3657644987, -0.1208417639, -0.0098069422, -0.2979021668, 0.4230305851, 0.0462111831, 0.0518476516, -0.1854897439, 0.1832356304, -0.0671850666, 0.0773556009, -0.1123985946, 0.0336337537, -0.0960216522, 0.2061694264, -0.3234834075, -0.5417071581, 0.407137543, -0.4472002983, -0.2611283362, -0.1382687092, 0.1575763524, -0.0201770291, -0.291069895, -0.5523160696, 0.1713494956, 0.3971260786, 0.0870347545, -0.3133405447, 0.1738691181, -0.0106520951, 0.0655375645, -0.0747492984, 0.5040863752, -0.318208456, -0.0150985867, -0.0719003007, -0.0107887834 ]
https://github.com/huggingface/datasets/issues/1781
AttributeError: module 'pyarrow' has no attribute 'PyExtensionType' during import
Yes colab doesn’t reload preloaded library unless you restart the instance. Maybe we should move the check on top of the init
I'm using Colab. And suddenly this morning, there is this error. Have a look below! ![screenshot-colab research google com-2021 01 26-08-15-36](https://user-images.githubusercontent.com/45964869/105799890-fdaf3b80-5fae-11eb-8f06-11b65cdccc30.png)
22
AttributeError: module 'pyarrow' has no attribute 'PyExtensionType' during import I'm using Colab. And suddenly this morning, there is this error. Have a look below! ![screenshot-colab research google com-2021 01 26-08-15-36](https://user-images.githubusercontent.com/45964869/105799890-fdaf3b80-5fae-11eb-8f06-11b65cdccc30.png) Yes colab doesn’t reload preloaded library unless you restart the instance. Maybe we should move the check on top of the init
[ -0.1401676387, -0.1440021843, -0.0386943668, 0.2877443433, 0.208687976, -0.157532692, 0.1334637105, 0.192602843, -0.2747633159, 0.1211348027, -0.0618399903, 0.4179864228, -0.1491586864, 0.0373288915, 0.1723477542, 0.2285045683, 0.2047673315, 0.4507703185, 0.1933164597, -0.0358728766, -0.0563337877, 0.0911346748, -0.4517784417, -0.0227690637, -0.3740772307, 0.1728887111, 0.0168111026, -0.0385991894, -0.1438814104, -0.5761189461, 0.5109916925, -0.2018952519, 0.1176527813, 0.0456297137, -0.0001169598, -0.0215619132, 0.2957279682, -0.0815274566, -0.182867825, -0.0304469615, 0.1039993912, 0.085908778, 0.4524632692, -0.038761124, 0.1377263516, 0.0620981753, -0.1428723484, 0.2268148959, 0.0426717103, 0.2654358447, 0.2162775695, -0.0245501399, 0.2785422802, 0.2467482388, 0.3330413103, -0.0338499956, -0.109925434, 0.5772958994, 0.3482241035, -0.3117035031, 0.2219972014, 0.0770803243, -0.3472616673, 0.1298997998, 0.5009502172, -0.1533363611, 0.2511974871, -0.1369098425, -0.0713901892, 0.0851652175, 0.1308464408, -0.1807098687, -0.0385493375, -0.0226830095, 0.3367502987, -0.4357970655, 0.294339627, 0.1536547989, 0.0482855551, 0.140681535, 0.4038322568, -0.1159278676, -0.0492081791, 0.0561698936, -0.2977426052, 0.5725083351, -0.0990439653, 0.0298044495, 0.2147827744, 0.077614665, 0.5299269557, 0.1352573186, -0.3125365376, 0.2130870968, -0.1809972823, 0.0572746098, 0.1509377211, 0.3558629155, -0.2009798586, -0.0605278388, 0.0495060757, -0.1632778347, 0.1300142556, 0.3676849902, -0.1424962133, 0.3776365221, 0.1548829675, -0.0959658325, 0.3594748974, 0.1658725291, -0.2740061283, 0.1589541435, -0.2349022031, -0.336779952, 0.4507611394, -0.0824940726, 0.3774913251, -0.2482680976, -0.3130385578, -0.2947344482, -0.5301499963, -0.1343029439, 0.1129379943, 0.2356719673, -0.2533462048, 0.2633485198, 0.0208704993, 0.0620079115, -0.3324307799, 0.0141468123, -0.042638611, 0.3480692804, -0.2938278615, -0.0135677904, 0.0325772613, -0.2584100664, 0.1664141715, -0.1595476866, 0.2574126124, -0.3906570077, -0.2437108308, -0.2300010175, -0.1325034499, 0.4801093638, -0.2656367719, -0.1174911261, 0.2300434858, -0.5545185208, -0.2062152326, 0.3420897126, -0.4835701883, -0.4480423331, -0.0692129806, 0.131864205, -0.2776032388, -0.1435285211, -0.171168983, -0.3030305803, 0.074599959, -0.4376572967, -0.0581507497, -0.4439564049, 0.0284819677, -0.3985579014, 0.0237915069, 0.1919601709, -0.4507099688, -0.1807584912, -0.0612380952, 0.0278931633, 0.1731996834, -0.0307789184, -0.2933190167, 0.0139536001, -0.2074743956, -0.0857501999, 0.0822564512, -0.10669671, -0.2593960166, -0.277618289, -0.0503494069, -0.0017583817, 0.0750196427, -0.202312842, -0.0372997038, -0.1282961071, 0.3937429786, 0.265871644, -0.0960769057, 0.167116493, -0.3055381775, -0.1047832072, 0.2357510328, -0.0243391432, 0.1718824506, -0.0098856539, 0.2645914555, -0.0580476709, 0.0703271329, -0.0737957582, -0.20177944, -0.0384663977, 0.5287055373, -0.0025241729, -0.046185188, 0.0231026337, 0.090954408, 0.1952460706, -0.0939875022, 0.0149223208, -0.3915694356, -0.0123153552, -0.3587918878, 0.3929847479, -0.2013742626, -0.2269889563, 0.0655968338, 0.0814307034, -0.1832761467, 0.4519273043, -0.1334313303, 0.1085770279, -0.0099226311, 0.0554279909, 0.027166903, 0.4176921844, -0.1555550247, -0.4423773587, -0.2066216171, 0.0164656937, 0.070490092, -0.0276794638, -0.2374274433, 0.0117330458, 0.0611472353, 0.3287149668, -0.2297951579, 0.1134171188, 0.2255124152, -0.3239572942, -0.0130354734, -0.305393219, 0.2059908211, -0.0975386202, 0.8549451232, 0.2274996787, 0.1324668229, 0.1277952194, -0.1672810912, -0.0512824878, 0.0174074993, 0.0339290649, 0.0438179895, 0.1433742642, 0.0099966414, 0.3170180619, 0.0156321973, 0.0575688854, -0.0104983747, -0.05327411, 0.2539077401, 0.1852037013, 0.1830992699, -0.0392839909, -0.3725687861, 0.0153123587, 0.3927863836, -0.1042215079, 0.3537482917, -0.0030455664, -0.4114218354, 0.0008038916, 0.1020716727, -0.1002081931, 0.1456440091, 0.1736981422, 0.8331605196, 0.0913992971, 0.2913971841, 0.0990436822, -0.3745930195, -0.2292361259, 0.084809877, 0.1412868649, -0.3006950021, 0.196233362, -0.2893140316, 0.0214101225, -0.1627857685, -0.5309423208, -0.0738260448, -0.1034969538, -0.1243856996, 0.4379890263, 0.2560109496, 0.1048149988, 0.2743665278, -0.0679705143, -0.0091142207, -0.6351598501, -0.0303663462, -0.2195121944, -0.3502957523, -0.0034259595, 0.2406206727, 0.0253645629, 0.0885536, -0.2230241001, 0.1152780056, 0.1969490647, -0.4630784392, 0.0964264572, -0.1084731966, 0.3668431938, 0.0340615287, 0.104490675, -0.1882029176, -0.2383415699, 0.2162092924, -0.26715523, -0.2033488601, 0.0590686575, -0.0798354894, 0.0052182376, -0.0440484658, -0.1136512905, -0.2847558856, -0.1694563031, -0.1283541024, 0.1254851967, 0.0338841081, 0.3986454606, 0.3249467611, 0.200076133, 0.1735306382, 0.0766691864, 0.1222383007, -0.0927145556, 0.3231504858, -0.0346931405, 0.0231613722, 0.2990022004, -0.3058595061, 0.0286028869, -0.1258527935, -0.4488914609, -0.5858921409, 0.014621364, 0.2705053985, -0.0449821278, 0.0228953976, 0.329297781, 0.1701290309, -0.0099395104, 0.1031592861, -0.1817323864, -0.3934590518, 0.2843802869, 0.2490623891, -0.0437384322, -0.0391656533, -0.2207200229, 0.541287899, -0.4730606675, -0.0344150998, 0.3007102311, -0.0463126078, 0.1220672801, -0.0938378423, -0.3473145962, 0.0026159547, -0.1770348996, -0.3872646689, 0.1603214443, -0.1921952069, -0.189446032, -0.2503651381, 0.0279519483, -0.29327479, -0.2187055498, 0.1310605109, 0.0105108302, 0.0252695791, -0.0920438617, -0.0690284669, -0.0432195589, -0.1032586917, 0.0107471645, 0.2959593236, -0.222054407, 0.0204845294, 0.3319790959, -0.6371982098, 0.011433647, 0.0785691962, 0.2924873829, 0.0161092095, 0.2801788449, -0.1238994896, 0.0581369698, -0.1154015139, 0.2588290274, 0.266990602, -0.1222723797, 0.1879419386, -0.1569965482, 0.0872346237, -0.4683198333, 0.0024568215, -0.3910142183, -0.0371953957, -0.5108368397, -0.0007464141, 0.3016479611, 0.3158559799, 0.2830545604, -0.0746997669, 0.1845622659, -0.4773099422, -0.49288854, -0.4238077104, -0.1448921859, -0.0340280384, 0.2792026401, 0.0137783848, 0.1574703753, -0.1167863682, -0.2421432734, 0.076300174, 0.3607854843, 0.1209138036, 0.1257693917, -0.0493438989, -0.2595837414, -0.1350412816, 0.4870650172, 0.4426619112, 0.2938048244, -0.3357531428, -0.3080011606, 0.2927731872, 0.3107412159, 0.0435004234, -0.3941920996, 0.1987717152, -0.4934762716, -0.1911952049, 0.1731109768, 0.0440080948, 0.112799108, 0.2055022568, -0.2596430182, -0.0505588427, 0.5910874009, 0.0034476146, 0.0358359218, 0.0617530532, 0.3198790252, -0.1341248751, 0.2430289984, 0.2231679559, 0.9656522274, 0.0120152021, -0.0546535216, 0.4602911472, 0.032718122, 0.271397531, -0.0514927953, 0.3049478829, -0.3573490679, -0.2458045185, -0.061177101, -0.2653259039, 0.3560566902, -0.6037127972, -0.2224781513, -0.0300629158, 0.0151700675, -0.056789875, 0.1870261729, -0.2615446448, -0.0575117543, -0.0694342852, -0.2246145308, 0.046108216, -0.2375417352, 0.5531839728, -0.3224277794, 0.212082386, -0.0156272873, -0.1024763286, -0.2567564547, 0.1074161083, -0.3843135834, 0.0819490775, 0.1826646626, -0.1906044334, -0.002057448, 0.2088581175, -0.0480971113, 0.0258949827, -0.0038117189, 0.2053357959, 0.2875345349, -0.2509103715, -0.2406317294, -0.0412312113, 0.4544916451, -0.0739619881, -0.2232006341, 0.1632986516, -0.1486963183, -0.1203097031, 0.2079341263, 0.2491943538, 0.2404619604, -0.0666804388, -0.11946401, 0.050387226, 0.1910236031, -0.234957695, 0.0667046607, 0.051996462, -0.1581678092, 0.19815512, 0.1511413902, -0.301209867, -0.1404928118, 0.0968231112, 0.1954910159, 0.1271104664, 0.4786172807, 0.0046556145, -0.0343616121, -0.1182940677, 0.1016350016, -0.4566183686, -0.2995001674, 0.275573045, 0.1854286492, -0.0628452152, 0.2035854459, 0.578124404, 0.1484232247, 0.28338781, 0.0016781539, -0.4137294292, -0.0685867146, 0.144792974, 0.1112539321, -0.0606707148, 0.2027843744, 0.5849716663, 0.1415169686, -0.0208866708, -0.2094156146, 0.076033324, -0.0795697197, 0.1131137609, -0.3074974716, 0.1867477298, 0.0430937111, -0.0073709972, 0.114891164, 0.2219357491, 0.0825929642, -0.2004006505, -0.0969476327, 0.1931075007, 0.0397290662, 0.3005509079, 0.2324900627, -0.0833233222, 0.0887919068, 0.0431922525, 0.0707474798, -0.0454779826, -0.2720469236, 0.0044179708, 0.5248971581, -0.0293157436, -0.1394847333, 0.2138792872, -0.2634387314, 0.3821102083, 0.0388787836, -0.004083158, -0.021580575, 0.1026025563, 0.039544493, -0.0718549937, -0.4443146288, 0.0025522746, 0.1375381649, -0.427015543, -0.0080812052, -0.4568270147, -0.0880280659, 0.4660229683, -0.1164564341, 0.1230649054, 0.3373887837, 0.0909792632, -0.3088122606, 0.1949312985, -0.0460895337, -0.0582607314, 0.0389128625, 0.4427159429, 0.0595052838, 0.1074465513, 0.2294196188, 0.2066301554, -0.023166582, 0.2925176919, 0.1275267899, 0.1681660414, -0.2863568664, 0.2210295647, 0.3486666679, -0.086871773, 0.0117013827, -0.0556897037, -0.1806060821, 0.4193438888, -0.1166280657, 0.1621091664, 0.081976667, -0.5037822127, 0.3588398993, 0.0932253227, 0.1893334091, -0.1108095944, 0.3356679976, 0.4114012718, 0.0175606795, -0.114958927, 0.0365130305, 0.3873960972, -0.1941825151, 0.206913054, 0.2968497276, -0.0104498118, -0.0987942219, 0.1528920978, 0.2635690868, -0.1121149659, 0.1424233019, 0.276593715, -0.3965964317, -0.344494611, -0.0058120461, 0.0751987845, 0.1885024905, -0.1558037698, 0.0897362903, -0.0908198804, -0.1286640912, -0.2432132661, 0.3294363916, 0.4504806399, 0.4281196296, -0.0795046836, -0.3229374588, -0.1604537666, 0.0746457577, 0.1047824621, -0.1451221406, 0.2769158483, 0.6709738374, 0.0522966087, 0.1748086214, -0.1952822953, 0.3402729332, -0.0967920423, -0.3059834838, -0.1856523156, 0.1936624348, 0.252637893, -0.1094961911, -0.4630561173, 0.2653670013, -0.0621713772, 0.3748272359, 0.0647197217, -0.0029491819, -0.1486266851, 0.0214040801, 0.0385716595, 0.2800286412, 0.3117565811, 0.5116198063, 0.3169772625, -0.139861986, -0.1157505363, -0.5177513957, 0.4010749757, -0.1786642969, 0.1842114329, 0.0220363438, -0.0267885365, -0.0997660533, 0.3125272095, -0.0283729136, 0.1194555163, 0.0742440298, -0.1069623381, -0.2954266965, -0.3318927884, -0.0963864326, -0.3195105493, -0.0000722259, -0.2787986994, 0.1629818529, -0.6408562064, 0.0828794688, -0.1802206933, -0.3284860849, 0.1035499275, -0.068984732, 0.7786421776, -0.1724223346, 0.372123301, 0.1072879136, 0.0892626792, 0.1509095877, -0.4144451618, -0.1447093189, 0.0910981894, 0.1098465845, 0.3065458834, 0.0231364965, -0.0199300908, -0.3485966027, 0.352478832, 0.1307272911, -0.0824347287, -0.2510980368, -0.0061517172, 0.0335112438, 0.1983196437, -0.1538300216, 0.3151009679, -0.1176369637, 0.055994615, -0.2864587903, -0.4610401094, 0.468349278, -0.2231797725, -0.2698684335, 0.0057848617, 0.1729333401, -0.2487138659, -0.21862562, -0.5525952578, 0.0779675543, 0.2595116496, 0.1068584695, -0.2170875818, 0.2491259873, 0.0512750447, 0.0937589481, -0.1307454109, 0.2270709425, -0.1303289235, 0.1138674021, -0.1932692826, -0.0613109246 ]
https://github.com/huggingface/datasets/issues/1776
[Question & Bug Report] Can we preprocess a dataset on the fly?
We are very actively working on this. How does your dataset look like in practice (number/size/type of files)?
I know we can use `Datasets.map` to preprocess a dataset, but I'm using it with very large corpus which generates huge cache file (several TB cache from a 400 GB text file). I have no disk large enough to save it. Can we preprocess a dataset on the fly without generating cache? BTW, I tried raising `writer_batch_size`. Seems that argument doesn't have any effect when it's larger than `batch_size`, because you are saving all the batch instantly after it's processed. Please check the following code: https://github.com/huggingface/datasets/blob/0281f9d881f3a55c89aeaa642f1ba23444b64083/src/datasets/arrow_dataset.py#L1532
18
[Question & Bug Report] Can we preprocess a dataset on the fly? I know we can use `Datasets.map` to preprocess a dataset, but I'm using it with very large corpus which generates huge cache file (several TB cache from a 400 GB text file). I have no disk large enough to save it. Can we preprocess a dataset on the fly without generating cache? BTW, I tried raising `writer_batch_size`. Seems that argument doesn't have any effect when it's larger than `batch_size`, because you are saving all the batch instantly after it's processed. Please check the following code: https://github.com/huggingface/datasets/blob/0281f9d881f3a55c89aeaa642f1ba23444b64083/src/datasets/arrow_dataset.py#L1532 We are very actively working on this. How does your dataset look like in practice (number/size/type of files)?
[ -0.390396297, -0.1971473843, -0.0773908943, -0.0038241204, 0.3977739513, 0.3356426358, 0.2610037327, 0.2968969643, -0.0846411139, 0.132767126, 0.0693480298, 0.1286533922, -0.1356011182, 0.2288653702, 0.2126401067, 0.1509194672, 0.212841928, 0.0664263815, 0.0356725641, 0.2065106928, -0.2539819181, -0.1531420499, -0.1100580841, -0.2128918171, -0.4570015073, -0.2720248997, -0.1605048925, 0.0205964632, -0.2341966033, -0.1767741591, 0.314664036, 0.3214797378, 0.0866019949, 0.5502459407, -0.0001117338, 0.0088929832, 0.4019140899, -0.0934247896, -0.1076297164, -0.1060747057, 0.1285000741, -0.2643047273, -0.1480517685, -0.2470783591, -0.1567153931, -0.0504480265, 0.1196825504, -0.6373547912, 0.3856015205, 0.1254339069, 0.2115146518, 0.128656745, -0.0810713992, 0.1382959187, 0.3179635108, 0.3585824966, -0.3582457006, -0.0789367035, 0.2596544623, -0.0795596838, 0.0480674729, 0.1202431321, -0.3685799837, -0.0111844977, 0.3391450942, 0.1131043136, -0.2082388997, -0.644615531, 0.1036311388, 0.2764863372, 0.4921410084, -0.5251834989, -0.6757847071, -0.2348737717, 0.1164426208, -0.3433661461, 0.044572562, 0.4104193449, -0.1506753564, 0.0462534614, -0.4445934594, -0.3685856462, 0.0073840469, -0.3361419439, 0.2708496451, -0.1538699418, -0.235151127, 0.0023271348, 0.0621328689, 0.146643281, 0.3794545829, -0.2408936918, -0.3575366437, 0.5096227527, -0.2625170946, -0.2431846112, -0.2934468389, 0.1031614617, 0.2890481651, 0.1290299892, 0.0322179422, -0.1347648203, -0.0453482941, -0.033124011, 0.180827871, 0.0479213148, -0.0593692474, -0.1961770952, 0.3188605607, -0.219650209, 0.0754330158, -0.0793791264, 0.0598627143, -0.3965125084, 0.3271104991, 0.037708912, 0.3040316105, -0.3226731122, 0.4087906182, -0.0180787537, 0.0922287032, -0.013514366, -0.4056243002, 0.1021768823, -0.1372483373, -0.0178539008, 0.1294894218, 0.0807887688, 0.0287716463, -0.17341654, -0.1040254086, 0.0153775997, 0.0140402168, 0.2762533128, 0.1291565746, -0.2255570889, 0.0598058105, 0.1925709099, -0.0866800845, -0.1647260189, 0.1988247931, -0.4564758241, 0.1030176878, 0.3438340127, 0.0327932313, 0.0540712699, -0.0675213858, 0.3300347626, -0.1948367953, 0.4849701822, -0.2016842961, -0.27767241, 0.0362529159, 0.1042883247, -0.0199730471, 0.0556142777, -0.6019013524, 0.1712472141, 0.5740996003, 0.2262292802, 0.2237463146, 0.2339285612, -0.2646639049, -0.1679983437, 0.1193474904, 0.4449636936, -0.189895153, 0.2122202069, 0.2736874223, 0.0231915601, 0.1523587853, 0.1042373478, 0.0275391713, 0.2540638447, -0.0630075783, -0.1503755152, 0.3098080158, -0.1066604555, 0.1157014444, 0.4008814394, -0.0550092459, -0.2682389021, 0.0742101297, 0.1855354905, -0.0364892557, -0.1308400035, 0.000057904, 0.3976076543, 0.0050128456, 0.195096314, -0.1847908795, -0.4482398927, -0.3217773139, 0.0058110133, -0.0378196575, 0.1062786877, -0.1856065542, -0.3014106452, 0.0877302215, -0.197813347, 0.1949758977, 0.3726012111, -0.0443878807, 0.0690668672, 0.0505193621, -0.1592520475, -0.3661356866, 0.2145511359, -0.1230579391, 0.016303014, 0.1816826463, -0.4576366246, 0.1819761992, 0.0651790053, 0.0800104439, 0.113260366, 0.0453958623, -0.3407963812, 0.3032751977, -0.0114897564, -0.4556632042, 0.2294505686, -0.1917675883, 0.1052213758, -0.3946022093, -0.0814100802, 0.1480353922, -0.0604750067, -0.0355987102, -0.1678522527, -0.2173682451, -0.0086431652, -0.0828094929, 0.3009221554, -0.0961251408, 0.1768972576, -0.0134270359, 0.1686757952, -0.1474283338, -0.1476059556, -0.0205907729, -0.132105425, 0.1468913257, -0.1920772493, -0.276848942, 0.2378068715, -0.1526383758, 0.4071859419, -0.056559626, -0.1704911739, 0.2015395164, -0.0626928359, -0.0467207059, 0.1874063611, 0.0113467537, -0.0184695516, 0.7148054838, -0.1235886365, -0.0870059282, -0.1725436002, -0.0114092231, -0.0265266374, -0.0448286422, 0.263630271, -0.0986319557, -0.1139738634, -0.2289432883, 0.0929390341, 0.2143617123, 0.1423554569, 0.0484323725, 0.1799985021, 0.095406875, -0.0961784124, 0.2947974205, 0.0102293231, 0.4094161987, -0.0306620672, 0.2173749357, 0.1128183603, -0.1889412701, 0.1710870713, 0.0641642883, 0.0664079785, -0.1352334321, 0.1167890429, 0.1735372692, -0.1463000178, 0.1443758011, 0.034631338, -0.2236534655, 0.1055331528, -0.1247567385, 0.0065265675, 0.0684494674, -0.0014729835, -0.4324000478, 0.407748431, 0.0714965388, -0.1607211977, -0.1685136706, -0.1798398495, 0.2189040184, 0.0133905448, 0.2648711801, -0.1633471251, 0.4653584063, -0.0518571399, 0.047822699, -0.3106507361, 0.1889937371, 0.0980872214, 0.0368411019, 0.3631498516, -0.0228798762, 0.0573133379, 0.2028741241, 0.1895761043, -0.0003713891, -0.1338358521, -0.1612000465, -0.2465213239, -0.0330792367, 0.0012594238, -0.2042113543, 0.0467961952, -0.1116842553, -0.2437697351, 0.1459950507, -0.0001907721, 0.0341539383, 0.2436152399, 0.0226552226, -0.1487398148, -0.1455843747, 0.0798741132, -0.0226016715, -0.7236914635, 0.2888320088, -0.0164140649, -0.3574145436, 0.0216523707, 0.005314, -0.0362320468, 0.3411471546, -0.6054071188, 0.0128708705, -0.3743883967, 0.035554722, -0.1713718623, 0.1643204689, 0.2667720318, 0.0743673444, -0.0715070814, 0.0220159143, -0.1048545688, 0.0018190853, -0.1901121289, 0.0152304918, 0.2821192443, 0.4061173201, 0.0109551623, 0.6870187521, 0.1741276979, 0.0132042961, 0.3461166918, 0.0442666188, 0.5539387465, -0.277326405, -0.0958693996, -0.1771089137, -0.2428266108, -0.1766516864, 0.1236019656, 0.2735068798, -0.3021137118, -0.1938183457, 0.0253618732, -0.0795210153, -0.0992978439, 0.1347560287, -0.288426429, 0.288728714, -0.0055786818, 0.0322166085, -0.2510040402, -0.4088844955, 0.1039893925, 0.0649313107, 0.6988078356, -0.1419105977, -0.1913322806, 0.2181937695, -0.6576190591, 0.2069144398, -0.0033271424, 0.2896777093, 0.1281389445, 0.067162551, 0.0759672374, -0.3018741608, 0.5862103105, -0.2058389187, 0.0302288737, 0.4009720385, -0.0075555146, -0.2386105657, 0.1260060966, 0.0773037821, 0.5740271211, -0.1925808787, 0.3010316789, -0.0307210982, -0.171630308, 0.0872894451, 0.3777670264, -0.2151725143, -0.5332975388, -0.1703980714, -0.1797483563, -0.1750020087, 0.1504673362, 0.0549046323, -0.1973290145, -0.1321407557, -0.1062020585, -0.3844803572, 0.3052111268, -0.0211573429, -0.1930193007, 0.1160211191, -0.0337625034, 0.485358119, 0.0394346043, -0.1699627489, -0.0728720352, 0.523240447, -0.2595116198, -0.1893887818, -0.147498548, -0.0363622829, 0.3864379823, 0.2437523901, 0.0483537987, 0.2093799412, -0.0149339233, 0.0861014277, -0.5349302888, 0.1091596037, 0.1268617213, -0.0836397484, -0.6452921629, -0.6370648146, 0.610352695, 0.452773273, 0.0547731221, 0.4409402609, 0.0547216907, -0.1575471014, 0.2837332785, 0.2144523263, 0.8360584378, -0.3474934697, 0.2523155212, -0.3638065755, 0.1622585952, 0.2669761777, -0.3113693595, 0.0150994547, -0.3076030016, -0.4002590179, 0.0424684808, -0.1455599666, 0.105368495, 0.3223259747, 0.0580712855, 0.2982224822, -0.051114969, -0.0921741277, -0.1188706681, -0.0743386224, -0.0784389079, -0.584461987, -0.1622670889, 0.1747303903, -0.0435514525, 0.1200111657, -0.1409793198, 0.2036852837, 0.2561593056, -0.1187514365, -0.3911299109, -0.0167690814, -0.2120414674, -0.280205816, -0.1674093008, -0.1748956144, -0.1033788025, 0.0724103749, 0.4791935086, 0.5132246017, -0.0546387359, -0.0849704891, 0.1039530486, 0.1152411699, -0.098663643, 0.1121682376, 0.1111839414, -0.0754239634, 0.0722721517, -0.0286082551, -0.3929861486, -0.1395228356, 0.1768449694, -0.0854209214, 0.0860087797, 0.0270312987, -0.2994520962, 0.0694884211, 0.2213979959, -0.0579575226, 0.1077322289, 0.3272390664, 0.0183357894, 0.3171116412, -0.1506402642, -0.3271251917, 0.0125235226, 0.2531430125, 0.1449329108, -0.3179357648, 0.2900617719, 0.1992645711, -0.2374034077, -0.1379887164, 0.2061211765, -0.0179355778, -0.3303299248, 0.2150024176, 0.1320089549, 0.2330527604, -0.0694899783, 0.1627012491, 0.0822031945, -0.2622517645, 0.1388379782, -0.1855167001, -0.5902348757, -0.0965858996, 0.1428099573, 0.2233102918, 0.538251698, -0.3736317158, 0.149096176, 0.3163088858, -0.2533814907, -0.0101815686, 0.0427112728, 0.1136298478, 0.1111270264, 0.2753557861, 0.0298254527, -0.1789197028, -0.0052513182, 0.0539140217, 0.0332928598, -0.2794555426, -0.047746554, 0.1669955552, -0.142047286, -0.0874355137, 0.2233614028, -0.2128167897, -0.2577117682, -0.3818079531, 0.0933892578, 0.3412835896, -0.0700267106, -0.2541684806, 0.3046007156, 0.1450244188, -0.3586773276, 0.3340474069, 0.0700192451, 0.1435258389, -0.1232575178, 0.1237588823, 0.1664766073, -0.0555972978, 0.1118845791, -0.1866809577, 0.2464663982, -0.0238261633, 0.1362110972, -0.1701819897, 0.0610305816, 0.2766333818, 0.2868180871, 0.1773669869, -0.0933017954, 0.1268341839, 0.2990507483, 0.1772527099, -0.2163124233, -0.204011783, 0.1293660104, -0.0591136105, 0.1035021469, 0.259546876, 0.2191542387, 0.1358408928, -0.1556210816, 0.2655942142, 0.2433724701, -0.4232627451, 0.0423719734, 0.2177228928, 0.1372021586, 0.1452836394, 0.2677955925, 0.3036686778, 0.1623480618, 0.3597692251, 0.2897258699, 0.5725320578, 0.3371700346, 0.0547585189, -0.2753029466, -0.6611908078, 0.3065600693, 0.0854215994, 0.3103349209, 0.3788241148, -0.0135846958, 0.2490007877, 0.0256537758, -0.1785308421, -0.2163429111, 0.1090385765, -0.1140521169, -0.1785173416, 0.3778686225, 0.02018857, 0.3296592236, 0.1227004528, -0.0472566858, -0.1081707552, 0.2652038634, 0.0449248254, 0.1607596576, 0.1678286344, 0.1748289168, 0.0563543066, 0.3255892992, -0.1390041113, 0.167077288, 0.0338009074, 0.0520102605, -0.0451625399, 0.5297794938, 0.2772934735, 0.3780843019, -0.0987553298, 0.1468123496, -0.0556048527, 0.0012174323, -0.0299479291, 0.2641468048, -0.115057461, -0.1527373791, 0.1634346545, 0.0694901347, -0.0818066001, 0.2432889044, -0.1549186707, 0.3400702775, -0.1396977901, 0.2530259788, 0.0932921767, -0.3390542269, -0.2198703587, 0.174873963, -0.2293972075, 0.1370787323, 0.6883224845, -0.3523361087, -0.0466697961, -0.0549992248, 0.0778948516, 0.1893007606, 0.4720001817, 0.3703413308, 0.0690937638, -0.1510738432, 0.0763526559, -0.4328626096, -0.1537939906, -0.1426945627, 0.2503025532, -0.2072924972, -0.1127904952, 0.1592159569, 0.2857860923, -0.0219078287, -0.3598350286, 0.0739044696, 0.4348345399, -0.3127694726, -0.1881669164, -0.1850735396, 0.0751493424, 0.0557163805, -0.5030344725, 0.1237585917, 0.1257853061, -0.0742688105, 0.0443493873, 0.0941214487, 0.153739959, -0.0111307781, 0.4049521685, 0.0043678973, 0.1726037711, -0.165609628, -0.0145585872, -0.3031443655, -0.0436841175, -0.2267342806, 0.1296515167, 0.0770136863, -0.0606907718, -0.5568869114, -0.2705355585, -0.0729451403, -0.2407100499, -0.2368828505, 0.0600513294, -0.3554626405, -0.2455928326, -0.1167486161, -0.0597560331, 0.1881878823, 0.2010666132, -0.0200573802, 0.08956597, -0.307641387, -0.2897493243, 0.5246587992, -0.1734450758, -0.2983178198, -0.2442417145, 0.0616428964, 0.0614121817, -0.1606091708, -0.3795976043, 0.2405108362, 0.2741989493, -0.1191732883, 0.155120343, 0.3109648228, -0.3516449034, 0.0646965429, -0.2036038935, 0.6356158257, -0.1921976358, 0.0002169311, -0.4029257894, -0.3338173032 ]
https://github.com/huggingface/datasets/issues/1776
[Question & Bug Report] Can we preprocess a dataset on the fly?
It's a text file with many lines (about 1B) of Chinese sentences. I use it to train language model using https://github.com/huggingface/transformers/blob/master/examples/language-modeling/run_mlm_wwm.py
I know we can use `Datasets.map` to preprocess a dataset, but I'm using it with very large corpus which generates huge cache file (several TB cache from a 400 GB text file). I have no disk large enough to save it. Can we preprocess a dataset on the fly without generating cache? BTW, I tried raising `writer_batch_size`. Seems that argument doesn't have any effect when it's larger than `batch_size`, because you are saving all the batch instantly after it's processed. Please check the following code: https://github.com/huggingface/datasets/blob/0281f9d881f3a55c89aeaa642f1ba23444b64083/src/datasets/arrow_dataset.py#L1532
21
[Question & Bug Report] Can we preprocess a dataset on the fly? I know we can use `Datasets.map` to preprocess a dataset, but I'm using it with very large corpus which generates huge cache file (several TB cache from a 400 GB text file). I have no disk large enough to save it. Can we preprocess a dataset on the fly without generating cache? BTW, I tried raising `writer_batch_size`. Seems that argument doesn't have any effect when it's larger than `batch_size`, because you are saving all the batch instantly after it's processed. Please check the following code: https://github.com/huggingface/datasets/blob/0281f9d881f3a55c89aeaa642f1ba23444b64083/src/datasets/arrow_dataset.py#L1532 It's a text file with many lines (about 1B) of Chinese sentences. I use it to train language model using https://github.com/huggingface/transformers/blob/master/examples/language-modeling/run_mlm_wwm.py
[ -0.3749496937, -0.310544908, -0.0253563114, 0.0781465322, 0.4190763831, 0.3276047111, 0.2523880303, 0.2493898124, -0.1120238304, 0.0602597557, -0.0421744063, 0.0807494074, -0.1185978949, 0.1677815914, 0.318941772, 0.0842124894, 0.2063729614, 0.0334927738, -0.0025371946, 0.1758532226, -0.2277176082, -0.1650640666, -0.0601748601, -0.1133638024, -0.566770494, -0.2768301368, -0.2453326881, -0.0490859151, -0.1583474576, -0.2284191847, 0.2756983042, 0.2340819836, 0.0893833339, 0.5178627968, -0.0001183977, 0.0513978004, 0.3754439056, -0.080658935, -0.1265791357, -0.100673914, 0.1375202984, -0.2211701423, -0.1770977676, -0.1919110417, -0.1763417125, -0.0012006424, 0.1539300084, -0.4922326207, 0.5047302246, 0.1946832985, 0.1448630095, 0.2098597139, -0.0517700352, 0.2219604105, 0.2185231298, 0.3186277151, -0.2461316288, 0.1444974542, 0.2155946046, -0.0166624971, -0.0376082361, 0.1634664237, -0.316607058, -0.0151863443, 0.2694858909, 0.1486746967, -0.1537855566, -0.5454913378, 0.1296335161, 0.3487484753, 0.3943713605, -0.5621159077, -0.6745550632, -0.2740337849, 0.1808796972, -0.3332334757, 0.0932864547, 0.4548132718, -0.1409770995, 0.2020018995, -0.4392781556, -0.4125903845, 0.0781616643, -0.311717093, 0.2973231375, -0.0474815592, -0.2603075504, 0.0327827111, 0.0513388515, 0.1321083307, 0.306686461, -0.2835434675, -0.3123466671, 0.5733693242, -0.2480733693, -0.2415749431, -0.3126244843, 0.1712333262, 0.2013995498, -0.0665582567, 0.0682616755, -0.1289223582, 0.00419081, -0.0502714738, 0.1260251403, 0.039294228, -0.0833769739, -0.2117568552, 0.2936162055, -0.1786154211, 0.0200481936, -0.02295628, 0.0223850459, -0.3257002831, 0.2305513471, 0.0885227472, 0.2718846798, -0.1417565346, 0.3139846027, -0.0136684962, -0.0189769939, -0.0311283879, -0.3354024291, 0.1593689322, -0.1914642751, -0.0439445227, 0.1445106566, 0.1041968539, -0.0308408141, -0.2627183199, -0.0954936892, 0.0899270996, -0.0553902723, 0.3115383089, 0.1160631701, -0.1680893302, 0.0953001902, 0.1865531802, -0.1242666245, -0.2649586797, 0.0811402872, -0.4365718365, 0.0148302112, 0.2506142855, -0.0197154284, 0.0720883161, -0.0367931873, 0.3380576968, -0.1779045165, 0.4492944181, -0.2043384165, -0.2573891878, 0.1642539501, 0.0534858219, -0.008352939, 0.0555136316, -0.470235914, 0.3273874819, 0.6150683165, 0.2876586616, 0.2803551555, 0.3247428834, -0.3547718525, -0.0543346331, 0.1112443507, 0.5088638663, -0.2824390531, 0.0445284247, 0.3910317719, -0.0378992185, 0.1227309555, 0.20045048, -0.0386202298, 0.3778627813, -0.0348490216, -0.1377106756, 0.2549002469, -0.0279570818, -0.0049304571, 0.4297847152, -0.1329645514, -0.2408828139, 0.0994632542, 0.2273843884, -0.1922979057, -0.0534687676, 0.0641365945, 0.394348681, 0.0507266, 0.1347921789, -0.1889545023, -0.5016100407, -0.2405148894, -0.0254903249, -0.0514847375, 0.1133790463, -0.1985216737, -0.0784512907, 0.1419788301, -0.186540693, 0.1762099713, 0.3741009533, -0.1776563823, 0.1049663275, -0.0246020202, -0.2391482592, -0.3564994633, 0.2378042638, -0.1851832122, 0.0727883428, 0.1977107674, -0.4412867427, 0.25641644, 0.0928596705, 0.0211976916, 0.0967228636, -0.004148379, -0.3817104399, 0.3277624547, 0.0220818371, -0.4443690181, 0.2501785159, -0.3590976894, 0.0738286674, -0.4026614428, -0.114350304, 0.10624782, 0.0095002949, -0.1003313661, -0.0945284665, -0.2604740858, 0.0071636327, -0.1008775979, 0.2901643813, -0.1616960317, 0.2272223085, -0.1203623489, 0.0991880968, -0.0737569109, -0.2234305739, -0.0107727386, -0.1301415414, 0.1044432074, -0.2295477688, -0.2490976304, 0.2669839263, -0.0294237137, 0.4033822417, 0.0256116092, -0.2489112914, 0.2217791975, -0.041125536, -0.0857889354, 0.0846275836, 0.1030278653, -0.0495605543, 0.7756673098, -0.0289045963, -0.1323895305, -0.2946954966, 0.1223668903, -0.03221111, 0.0509432442, 0.2729351223, -0.1622236371, -0.1328102052, -0.2435213923, 0.0138939992, 0.2328963876, 0.096644938, 0.0882692337, 0.309880197, 0.051168479, -0.1263477504, 0.2850105464, 0.0187538154, 0.439648807, -0.0250516385, 0.1615844667, 0.1324828416, -0.2792648077, 0.2479462028, 0.0971256271, 0.0697616488, -0.2154579759, 0.1413432956, 0.0990855023, -0.1793440282, 0.031003736, 0.0360493846, -0.264547497, 0.1805559248, -0.2056172937, -0.1350846738, 0.1120666414, 0.0225046985, -0.3421090841, 0.3792154789, 0.103795737, -0.0551779121, -0.0645872876, -0.1764418781, 0.1415840536, -0.0590536334, 0.3099806607, -0.2132004499, 0.3635680079, -0.0960217416, -0.0447246134, -0.2309786826, 0.1858301461, 0.1836380363, 0.0575984754, 0.3153477907, 0.0150035359, 0.0612773262, 0.1458826065, 0.1730892807, 0.0315094888, -0.126861155, -0.229355067, -0.2512012422, 0.0078260973, -0.0029186234, -0.1471858323, 0.0929358453, -0.185315147, -0.1976007074, 0.2195745409, -0.066149421, 0.0594115779, 0.3334246278, -0.0181250721, 0.004022669, -0.1771631837, 0.064665474, -0.0010533705, -0.7291208506, 0.3107968867, 0.0556923896, -0.3598351479, -0.0095340908, -0.083332181, 0.0246741995, 0.3075176179, -0.6023689508, 0.0590272397, -0.3641528487, 0.0222921371, -0.1750623882, 0.1446497291, 0.1694186926, -0.0068359226, 0.0020273253, 0.0335192978, -0.0329026133, 0.0712471977, -0.1892558187, 0.0448544957, 0.2905825377, 0.6020945907, 0.0019183531, 0.6774528027, 0.2382276654, -0.0101031177, 0.3234531879, 0.113563709, 0.5247788429, -0.2154268175, -0.0926541463, -0.1671078503, -0.2162953019, -0.1027709842, 0.2582957447, 0.2151992768, -0.2334215492, -0.180496648, -0.0443664156, -0.0072848126, -0.0935486928, 0.1971037835, -0.3860431314, 0.3524754345, 0.043121919, 0.0404769853, -0.2245043665, -0.3934682906, 0.1024746299, 0.026566064, 0.6047847271, -0.0617154278, -0.2506677508, 0.1356466115, -0.7349538803, 0.1575906724, 0.06089269, 0.3999411166, 0.1161183044, 0.142343536, 0.1530469954, -0.2671489716, 0.6611443758, -0.1820892543, 0.0236956421, 0.2840820849, -0.0700308532, -0.2258527726, 0.1690514982, 0.0049062073, 0.5148668289, 0.0192247108, 0.3401050568, -0.0085863024, -0.2024802566, 0.0908489674, 0.3764362931, -0.2770530581, -0.5819286704, -0.2186644673, -0.1276066899, -0.2294224501, 0.1933106929, 0.103565231, -0.1981812119, -0.0617475435, -0.0676769391, -0.3200579286, 0.2900866568, 0.0510931537, -0.1866369843, 0.0040525086, 0.083767049, 0.4016826153, 0.051874727, -0.0788612813, -0.1687556803, 0.5229563713, -0.259732008, -0.2651682496, -0.1819011271, -0.0811789706, 0.3944949806, 0.3223757446, 0.094120577, 0.2992991209, 0.1786823124, 0.1138532385, -0.5120100379, 0.1892687082, 0.1549813151, 0.0719948709, -0.7229222059, -0.6222506166, 0.652592957, 0.3519834876, 0.1259385943, 0.2537678182, 0.1220530719, -0.2655963302, 0.2247301191, 0.2336196005, 0.8952522278, -0.3194475472, 0.2945692837, -0.2977179885, 0.1884461194, 0.4412752986, -0.3313084245, 0.087024197, -0.1864237487, -0.3148829043, -0.0036825463, -0.1161768436, 0.171641767, 0.3708029091, 0.0952129215, 0.3008531928, -0.0179841369, -0.051608514, -0.0166099165, 0.0293023884, -0.0820475817, -0.5858248472, -0.2183345556, 0.1013284475, -0.085574016, 0.1453359872, -0.1920998693, 0.1840762794, 0.2510240674, -0.0993479267, -0.4174715281, -0.0366446488, -0.3467862904, -0.1779516041, -0.1979892403, -0.1622331738, 0.0526019633, 0.0865082517, 0.5049936771, 0.5158251524, -0.0750928074, -0.0995388925, 0.0192859843, 0.0976050198, -0.1561747938, 0.0864427388, 0.1889237016, -0.0573592335, 0.054486379, -0.0292992368, -0.3847139776, -0.1260059327, 0.1087398678, -0.1294966936, 0.0852853358, 0.1332559586, -0.410595119, 0.0430442542, 0.1881161481, -0.0803622752, 0.0460288897, 0.2664841115, -0.0843113065, 0.1766825914, -0.1003566086, -0.3924737573, -0.0170775186, 0.3325716853, 0.1509131938, -0.2541077137, 0.4268795252, 0.301394701, -0.2781748474, -0.0730167925, 0.1619434804, 0.0966811255, -0.4329399765, 0.1042793244, 0.1879655719, 0.2459785491, -0.2142017484, 0.0548301414, 0.12209481, -0.2156112343, 0.1215829775, -0.2027390003, -0.6988819838, -0.1157465875, 0.1937430501, 0.0963309556, 0.5451953411, -0.0953008309, 0.1898055971, 0.4475334883, -0.1852530539, -0.0341503993, -0.0051071867, 0.0938500017, 0.1589474678, 0.2476891279, 0.0246209987, -0.135083124, -0.0457720719, 0.0844503418, 0.0626785457, -0.237390548, -0.0988689512, 0.2000258267, -0.0570259131, -0.1207515076, 0.2125355303, -0.1871807724, -0.1679419577, -0.4030841291, 0.0339222699, 0.3511117399, -0.0069714449, -0.2097284943, 0.2676530182, 0.2040480524, -0.3131279945, 0.2779679894, 0.0748593435, 0.1064926386, -0.0686848611, 0.0969449878, 0.2907654643, 0.0461496413, 0.0658228174, -0.1529538482, 0.2815493643, -0.1276481003, 0.0869906992, -0.2359281927, 0.0880425051, 0.2308560014, 0.2229379117, 0.1889083385, -0.1196663976, 0.0540846214, 0.3452783525, 0.0965868235, -0.3158839941, -0.1373808533, 0.2207076699, -0.127936095, 0.1054340452, 0.2710894048, 0.2083108127, 0.2108287364, -0.1556238383, 0.2213844061, 0.1554812193, -0.367910862, -0.0255749971, 0.3143433034, 0.2194730639, 0.2891559005, 0.3471426666, 0.3937496841, 0.1932376325, 0.3604696989, 0.2966650426, 0.556643486, 0.1156128719, 0.1460447609, -0.2761045992, -0.6948464513, 0.1686468869, 0.1119161472, 0.1437650323, 0.3430638611, -0.1404846013, 0.2499818355, 0.0134365745, -0.2159703523, -0.1870096475, 0.1724845022, -0.2066753507, -0.2646562159, 0.3597437739, 0.0299954712, 0.3080589175, 0.1755876243, -0.0062245624, -0.1758532524, 0.1199120283, 0.0362681523, 0.1059834361, 0.0291430634, 0.120973438, 0.0765613914, 0.1871215552, -0.209754616, 0.1574238241, 0.0188926831, 0.1319532841, -0.163479507, 0.428920716, 0.1874070466, 0.39559865, -0.0757288337, 0.1927970648, -0.0569288954, 0.023351796, -0.0576291382, 0.1993985474, 0.002304513, -0.0740153491, 0.1786216795, 0.0053612553, -0.0582532063, 0.1853408813, -0.07937558, 0.3324705958, -0.2297224998, 0.2897551656, -0.038106434, -0.3007815182, -0.2321137488, 0.257709384, -0.3346064389, 0.3339967132, 0.7271058559, -0.4429171979, -0.0402120799, -0.0623482317, 0.0351394825, 0.1675345749, 0.5127869844, 0.3862250149, 0.130207926, -0.213223815, 0.1055067033, -0.5249493718, -0.1979755759, -0.1035250872, 0.3607327044, -0.2679538429, -0.1362629533, 0.162843436, 0.2141894698, -0.1237192601, -0.2999059558, -0.0559152924, 0.3310477138, -0.257977128, -0.2018975616, -0.3481366336, 0.1867287904, 0.0171722919, -0.4353334606, 0.1584533006, 0.2004405856, -0.1738943458, -0.0889286101, 0.1638791859, 0.0304907486, -0.0180216394, 0.3460176885, 0.0734666362, 0.2587006688, -0.1941827089, 0.0096102133, -0.305873692, 0.0232036561, -0.2586736083, 0.2087650746, 0.0514143072, 0.0079049617, -0.5748571157, -0.3172646165, -0.1032143384, -0.2164856791, -0.1374962628, -0.0587224774, -0.3331209421, -0.2301084399, -0.1784719676, 0.002949588, 0.3238130808, 0.2766805887, -0.0085445344, 0.1011758372, -0.2328115106, -0.1817189753, 0.4950385094, -0.3164900839, -0.3039826155, -0.2405496836, 0.0564858019, 0.1237997711, -0.256673485, -0.4457376599, 0.1504122019, 0.2864791453, -0.1394604445, 0.0588702634, 0.3648121357, -0.302382499, 0.0923661962, -0.2112694085, 0.6263195872, -0.1821257919, -0.099651657, -0.3672669232, -0.404474169 ]
https://github.com/huggingface/datasets/issues/1776
[Question & Bug Report] Can we preprocess a dataset on the fly?
Indeed I will submit a PR in a fez days to enable processing on-the-fly :) This can be useful in language modeling for tokenization, padding etc.
I know we can use `Datasets.map` to preprocess a dataset, but I'm using it with very large corpus which generates huge cache file (several TB cache from a 400 GB text file). I have no disk large enough to save it. Can we preprocess a dataset on the fly without generating cache? BTW, I tried raising `writer_batch_size`. Seems that argument doesn't have any effect when it's larger than `batch_size`, because you are saving all the batch instantly after it's processed. Please check the following code: https://github.com/huggingface/datasets/blob/0281f9d881f3a55c89aeaa642f1ba23444b64083/src/datasets/arrow_dataset.py#L1532
26
[Question & Bug Report] Can we preprocess a dataset on the fly? I know we can use `Datasets.map` to preprocess a dataset, but I'm using it with very large corpus which generates huge cache file (several TB cache from a 400 GB text file). I have no disk large enough to save it. Can we preprocess a dataset on the fly without generating cache? BTW, I tried raising `writer_batch_size`. Seems that argument doesn't have any effect when it's larger than `batch_size`, because you are saving all the batch instantly after it's processed. Please check the following code: https://github.com/huggingface/datasets/blob/0281f9d881f3a55c89aeaa642f1ba23444b64083/src/datasets/arrow_dataset.py#L1532 Indeed I will submit a PR in a fez days to enable processing on-the-fly :) This can be useful in language modeling for tokenization, padding etc.
[ -0.3806300163, -0.1969688237, -0.0746240765, -0.0068637263, 0.4007777274, 0.3399392068, 0.2778782547, 0.263427496, -0.0995358527, 0.146199733, 0.1342773438, 0.1849375963, -0.1421177983, 0.287547797, 0.2689658701, 0.1431527436, 0.1967976093, 0.0332214907, 0.0725328028, 0.2377661169, -0.2820776105, -0.1595614254, -0.1298618466, -0.1796599776, -0.408660233, -0.3066296875, -0.1547999233, -0.0939176902, -0.2736937702, -0.2001534998, 0.2956176102, 0.2963145077, 0.0653250068, 0.4654718339, -0.0001154027, 0.0105222017, 0.4278817475, -0.0547126904, -0.0995461941, -0.1435345411, 0.137684375, -0.2483471036, -0.1386115551, -0.2409491837, -0.1121581867, -0.0338171273, 0.0784299746, -0.6800122261, 0.3494406343, 0.1158154309, 0.1876232922, 0.1196272969, -0.0841416121, 0.1558763832, 0.2843363583, 0.3790514767, -0.349345088, -0.1307846904, 0.1972600371, -0.0772143751, 0.0815449506, 0.0771731883, -0.3598993421, -0.0484259725, 0.289482832, 0.0892699584, -0.2145827711, -0.6604298949, 0.13883017, 0.2746992111, 0.4689070582, -0.5630962849, -0.7029761672, -0.2193477452, 0.1402739137, -0.3208349943, 0.038290754, 0.4482019544, -0.1715642065, 0.0731239766, -0.4151315391, -0.4202466011, 0.0413670316, -0.3086301088, 0.2753442526, -0.0720978156, -0.2119607925, 0.0252017602, 0.0342017934, 0.1810990721, 0.4665648043, -0.2718545198, -0.309037745, 0.4835748076, -0.2577782273, -0.1970093846, -0.2645563483, 0.0677480698, 0.2692094445, 0.0593974441, 0.0312876441, -0.1208761483, -0.0593946129, -0.0603434443, 0.1857629269, 0.0467244945, -0.0205966122, -0.1888606101, 0.2885477841, -0.2618695796, 0.1094835848, -0.0513227023, 0.0204735324, -0.3383106291, 0.3059314489, 0.0955198929, 0.2437420338, -0.2711469531, 0.3885359466, -0.027221445, 0.0765129328, -0.023570165, -0.4008276463, 0.0876813307, -0.115952149, -0.0047160145, 0.1546853483, 0.0961962342, 0.067243211, -0.2288591117, -0.0770791695, 0.0140276588, 0.0041488558, 0.2325496972, 0.072771281, -0.1973730177, 0.0311662182, 0.2105323523, -0.0917339399, -0.2058474123, 0.1751338094, -0.4416751564, 0.0907109529, 0.2982268035, 0.0351359397, 0.0468142256, -0.0299171731, 0.3525291979, -0.2366732508, 0.5580149293, -0.1571927369, -0.295884043, 0.0467775017, 0.0742289945, -0.0204164647, 0.0069828872, -0.5607434511, 0.2342842668, 0.6066608429, 0.2160431743, 0.2605377138, 0.2320738435, -0.3053675592, -0.1547012329, 0.1365789771, 0.4368863404, -0.2761692107, 0.1823853701, 0.2781616449, 0.0397013091, 0.2247022688, 0.028513357, -0.0242420211, 0.2706715167, -0.0475755967, -0.1463965625, 0.3211702108, -0.0999134853, 0.1367200315, 0.3996352553, -0.0590501018, -0.2813991308, 0.0810683966, 0.1655159593, -0.0632074848, -0.0565833487, -0.0004901104, 0.4461780488, 0.0238895696, 0.1589466035, -0.1804378927, -0.475210011, -0.2243531942, -0.0135990605, 0.011864258, 0.1263295114, -0.1286603808, -0.2577131689, 0.0810363293, -0.2028315812, 0.1990295053, 0.3393393755, -0.0400335714, 0.0700502396, 0.0501673184, -0.2194066644, -0.3255527914, 0.2392321229, -0.1290399432, 0.07254076, 0.1684770882, -0.4414998293, 0.2057804614, 0.1176256239, 0.0929606706, 0.1650896519, 0.0184885375, -0.3471726775, 0.257183075, 0.008034274, -0.4888254404, 0.2847565413, -0.2818238735, 0.0605552904, -0.3192243874, -0.0891124159, 0.1544454247, -0.0264189374, -0.0729774758, -0.1170579642, -0.2385204881, 0.0320942812, -0.1021130085, 0.2757896781, -0.0663899183, 0.1682732403, -0.0866349265, 0.1256415546, -0.144745335, -0.1290697306, -0.0076086288, -0.1717791408, 0.1499707699, -0.1908591986, -0.1879915744, 0.2441372275, -0.0906544104, 0.4551092684, -0.01866851, -0.1764632761, 0.1805125922, 0.0065298453, -0.0552362017, 0.1250547469, 0.0155821098, -0.0882805586, 0.7388347387, -0.1510335058, -0.0979688093, -0.1166277826, 0.0265189447, 0.0043682978, -0.0117036626, 0.2582091987, -0.1133451089, -0.1405485272, -0.2205935568, 0.0856269449, 0.2107994705, 0.1212840527, 0.0395463817, 0.2407400608, 0.0709574819, -0.0643184185, 0.3207211494, 0.0227347761, 0.4563129246, -0.046853099, 0.2302241921, 0.1575254947, -0.2121620476, 0.1479545981, 0.061193265, 0.0646844134, -0.1386883557, 0.1182624847, 0.1323522925, -0.1580019593, 0.1392469704, -0.0285876729, -0.2757461965, 0.0956976563, -0.1378239095, -0.1189018935, 0.143519327, -0.0278892722, -0.4474337101, 0.4689068794, 0.0511715785, -0.1783303618, -0.1720495224, -0.2506061792, 0.21449247, -0.0087659359, 0.2332841605, -0.1438087523, 0.4303097129, -0.0180496573, 0.0589523539, -0.2585682571, 0.1374775916, 0.1043522507, 0.0309750959, 0.383071214, -0.0061092302, 0.0010171682, 0.2085379064, 0.205090642, -0.001941599, -0.1447565854, -0.2003000379, -0.2609393895, -0.0236172713, -0.0058716536, -0.2088483572, 0.0928850845, -0.1521233916, -0.2390487641, 0.1361913383, -0.0025108308, 0.0520361364, 0.1913916171, -0.0341624618, -0.0971088633, -0.1601894945, 0.068031989, -0.0249221604, -0.682762146, 0.2437422574, 0.0176172592, -0.3386532068, -0.0238721296, 0.0088691264, 0.0437362567, 0.3255075812, -0.5940135717, 0.0640684068, -0.405715704, 0.0709717199, -0.2209233195, 0.1615332961, 0.3194850981, 0.1000272632, -0.0216585211, 0.0339366794, -0.1603555232, -0.0201175064, -0.1682430953, -0.0235502683, 0.3433023989, 0.4535854757, 0.0314812213, 0.6971467733, 0.1354648471, -0.0072678104, 0.3471180201, 0.0375199541, 0.4989185035, -0.3026138246, -0.1154118627, -0.1929937154, -0.2688212991, -0.1742164791, 0.0781137794, 0.2036477029, -0.2888617814, -0.2173530906, 0.0515050814, -0.1161350608, -0.0403539315, 0.0860864967, -0.3470906615, 0.3549282551, 0.0275552049, 0.0275924355, -0.2921553552, -0.3815269768, 0.1133365482, 0.0050596036, 0.715257585, -0.1412917674, -0.1982316673, 0.1818394959, -0.6152509451, 0.1812921464, 0.0240408517, 0.3918984234, 0.130901888, 0.0447118729, 0.1315588504, -0.2936674356, 0.5625491142, -0.2596137822, 0.0218200795, 0.3942946494, -0.0488949195, -0.248401165, 0.1503464878, 0.0803653896, 0.5243754387, -0.1954710484, 0.2850284874, -0.020366855, -0.1341269612, 0.0474234, 0.3616245389, -0.2078998983, -0.5691264868, -0.2100687921, -0.1369139701, -0.1960628629, 0.1672900617, 0.050685741, -0.1484780759, -0.098984167, -0.0793979168, -0.435374856, 0.3044627607, -0.0492161401, -0.2059287876, 0.0309129134, -0.0521688089, 0.4565044343, 0.0107049644, -0.2476540506, -0.1679906547, 0.4879391193, -0.1882156283, -0.2456013858, -0.158066839, -0.0051013827, 0.4487924576, 0.2274588943, 0.0468064398, 0.2421489507, 0.0288116224, 0.0678721592, -0.5434039235, 0.0580657721, 0.1293228865, -0.0768528804, -0.6611811519, -0.6796526909, 0.5924069881, 0.4728293419, 0.0690129548, 0.467906177, 0.0373831652, -0.1862162948, 0.3434485495, 0.2481503934, 0.8985000253, -0.3707824051, 0.2124951184, -0.3760995269, 0.1162079722, 0.299849093, -0.3049740791, 0.0756968558, -0.3092538714, -0.341037333, 0.0316978768, -0.1626027972, 0.1744956225, 0.3247882724, 0.0713593066, 0.2498449683, -0.0499541312, -0.0841632783, -0.0228542946, -0.1055414379, -0.0549490936, -0.5814419389, -0.1364497244, 0.1379918903, -0.0684121996, 0.1358139962, -0.1396818012, 0.2095084339, 0.2830488682, -0.130016923, -0.438883394, -0.0014408603, -0.2389283925, -0.2830253243, -0.1929850727, -0.1482585967, -0.020520065, 0.0289841052, 0.5220215917, 0.5669854879, 0.0151479598, -0.1017070115, 0.144986853, 0.1029068679, -0.0549153686, 0.1144180447, 0.0950661972, -0.0876573175, 0.06441921, -0.0018639006, -0.3893854916, -0.1696491241, 0.1456435174, -0.049754329, 0.1266861558, 0.0535048842, -0.3307956159, 0.1241157427, 0.2743762732, -0.0897081196, 0.0835442171, 0.3032917082, -0.0005669668, 0.2926303148, -0.1984925568, -0.3364448249, 0.001681082, 0.2342014909, 0.1770995408, -0.2752555907, 0.2237224877, 0.2338782847, -0.2575758696, -0.1063042283, 0.1723998189, -0.0763133764, -0.3368684649, 0.1599054635, 0.1280331016, 0.2558523417, -0.1217140704, 0.1438897997, 0.0312531367, -0.1869902015, 0.0978010744, -0.2196779549, -0.5614849925, -0.0840025619, 0.0762474537, 0.1519248039, 0.588552177, -0.3070673347, 0.1264452934, 0.3701991141, -0.2179433852, -0.0109183267, 0.0840471312, 0.0907297581, 0.1064971909, 0.2765710056, -0.026167281, -0.147014901, -0.02355255, 0.0801505148, 0.0814549327, -0.2511889935, -0.0210666582, 0.1889359802, -0.1097428873, -0.0278196987, 0.237838164, -0.1992596388, -0.3205325305, -0.3503118753, 0.0754181147, 0.3556349576, -0.1250250936, -0.2205458283, 0.3059661984, 0.1924338639, -0.3947243094, 0.3645473123, 0.1125157923, 0.1303448826, -0.1061446518, 0.1755121052, 0.2099295557, -0.0145889595, 0.1223228574, -0.1652099937, 0.2344042957, -0.0214199312, 0.1516184956, -0.2099457383, 0.1074149162, 0.1961651146, 0.2712398171, 0.1962304711, -0.0628974959, 0.0937997475, 0.3183843791, 0.127336055, -0.2558273375, -0.181325689, 0.1610767245, -0.0221009366, 0.1044319868, 0.2958100438, 0.2726109624, 0.1973699033, -0.1681463271, 0.2517398, 0.2223007083, -0.4465559423, 0.0478884429, 0.2298189998, 0.1601933241, 0.1691000164, 0.2685852349, 0.3256410956, 0.0999971479, 0.3341903389, 0.3340489268, 0.582002759, 0.3988993764, 0.0812578201, -0.2637986541, -0.6308769584, 0.3162617385, 0.0625253245, 0.2412299365, 0.3569067121, -0.0555263683, 0.2297918797, 0.0353864431, -0.1706925035, -0.1988726854, 0.1212286949, -0.1375642717, -0.166537866, 0.3772592545, 0.0165349245, 0.317646265, 0.1049214751, -0.0418569036, -0.0992724746, 0.2685160637, 0.0013306476, 0.1823672056, 0.1183914393, 0.1652444303, 0.0600970201, 0.2857716382, -0.183423847, 0.1760759652, -0.0436936133, 0.0471835211, -0.1334073991, 0.538723886, 0.2672438025, 0.3809128404, -0.1241644621, 0.1615905762, -0.10296534, 0.0101560801, -0.0124836788, 0.2942132652, -0.0430897996, -0.0743370131, 0.1786456108, 0.045570869, -0.0442043766, 0.2325783819, -0.1303555667, 0.3855476975, -0.1641395688, 0.335988611, 0.0904146507, -0.2982102633, -0.1875431091, 0.206123963, -0.2436431646, 0.1571835876, 0.7409974337, -0.3596804738, -0.1059646755, -0.0848392621, 0.0538699366, 0.198926419, 0.4421613216, 0.3787407875, 0.0970766097, -0.1298152208, 0.0690919459, -0.3757623136, -0.1561978012, -0.1044112891, 0.2584379315, -0.2027383745, -0.1442376077, 0.1973618716, 0.3004537821, -0.0320042297, -0.2971872091, -0.0014057979, 0.4319018722, -0.2911933362, -0.1324741542, -0.2300361842, 0.0653184131, 0.0283210129, -0.4767264128, 0.1169423014, 0.1917358488, -0.1106867045, 0.0352423713, 0.0704240575, 0.1664675772, -0.0603740327, 0.4525506496, 0.0339961126, 0.182551235, -0.1279176772, 0.0058652908, -0.3119245768, -0.0759391636, -0.228769511, 0.239622876, 0.051136665, -0.1284499466, -0.5494622588, -0.3066654503, -0.1070031375, -0.2587787509, -0.2332361788, 0.0391210057, -0.326236099, -0.2682567537, -0.168886736, -0.0569063313, 0.2241001427, 0.1854245663, 0.0212510098, 0.0982696936, -0.2764487267, -0.2764080167, 0.4450550973, -0.1166560352, -0.3241907656, -0.2345124781, 0.0578570589, 0.0800352544, -0.2177993059, -0.385401547, 0.1555529386, 0.2995450795, -0.1309604496, 0.2152190953, 0.3185414374, -0.3890826404, 0.1024347246, -0.2206641287, 0.6346164942, -0.2192078233, 0.0336231515, -0.4068101645, -0.3738468885 ]
https://github.com/huggingface/datasets/issues/1776
[Question & Bug Report] Can we preprocess a dataset on the fly?
Hi @acul3, Please look at the discussion on a related Issue #1825. I think using `set_transform` after building from source should do.
I know we can use `Datasets.map` to preprocess a dataset, but I'm using it with very large corpus which generates huge cache file (several TB cache from a 400 GB text file). I have no disk large enough to save it. Can we preprocess a dataset on the fly without generating cache? BTW, I tried raising `writer_batch_size`. Seems that argument doesn't have any effect when it's larger than `batch_size`, because you are saving all the batch instantly after it's processed. Please check the following code: https://github.com/huggingface/datasets/blob/0281f9d881f3a55c89aeaa642f1ba23444b64083/src/datasets/arrow_dataset.py#L1532
22
[Question & Bug Report] Can we preprocess a dataset on the fly? I know we can use `Datasets.map` to preprocess a dataset, but I'm using it with very large corpus which generates huge cache file (several TB cache from a 400 GB text file). I have no disk large enough to save it. Can we preprocess a dataset on the fly without generating cache? BTW, I tried raising `writer_batch_size`. Seems that argument doesn't have any effect when it's larger than `batch_size`, because you are saving all the batch instantly after it's processed. Please check the following code: https://github.com/huggingface/datasets/blob/0281f9d881f3a55c89aeaa642f1ba23444b64083/src/datasets/arrow_dataset.py#L1532 Hi @acul3, Please look at the discussion on a related Issue #1825. I think using `set_transform` after building from source should do.
[ -0.4329624772, -0.1497622877, -0.0210899673, 0.0117296185, 0.4850178063, 0.2730877995, 0.3065051436, 0.2762749493, -0.1747131646, 0.102661252, 0.0982055068, 0.1963545978, -0.0868417919, 0.2460448891, 0.2638711333, 0.142283842, 0.2081042379, 0.0898797661, -0.0966305733, 0.1875966042, -0.2959867716, -0.1425744593, -0.0633271784, -0.1839765161, -0.4694176018, -0.2427726984, -0.1292231232, 0.0019164188, -0.1816214919, -0.2031060904, 0.2927232385, 0.2324055582, -0.0148586445, 0.482457757, -0.0001141936, 0.0488189533, 0.4127866924, -0.1013959944, -0.1420304328, -0.12526308, 0.1022013277, -0.3030610681, -0.134837538, -0.2586302757, -0.1555444896, -0.1020517871, 0.0397007763, -0.6355345845, 0.4321353734, 0.1466097385, 0.2200483978, 0.1474145353, -0.0451226607, 0.1245690286, 0.2610999942, 0.3140591681, -0.3821602762, -0.1072557867, 0.1808371246, 0.0386673808, 0.0378092118, 0.151930362, -0.3269189596, 0.0053005777, 0.3591573238, 0.1101513356, -0.2363424897, -0.5635487437, 0.1477531344, 0.2872585058, 0.4784784317, -0.5608295798, -0.7194268107, -0.2661268115, 0.1451828629, -0.338550657, 0.1005584076, 0.4154747725, -0.1705153137, 0.0658451021, -0.4523690045, -0.4309620261, 0.0252114683, -0.3683644831, 0.2405141592, -0.1445685327, -0.2335284799, 0.0204998571, 0.0057089315, 0.1899289787, 0.4107082784, -0.218843475, -0.3381607831, 0.435534507, -0.218555361, -0.2187633067, -0.2661302686, 0.0814250782, 0.2457325459, 0.1398302317, 0.0155079551, -0.1161651239, -0.0325904265, -0.0893719643, 0.1360763907, 0.1203241944, -0.0844900236, -0.1408300996, 0.2896368206, -0.2251356691, 0.0950000137, -0.0980815813, 0.0825611949, -0.4091348052, 0.3306640983, 0.1045778766, 0.3203133345, -0.300201714, 0.3989456296, 0.014008861, 0.1325962543, 0.015018329, -0.3814521134, 0.1457344592, -0.1104525179, 0.0512314253, 0.1466378868, 0.1422730833, 0.0613343418, -0.1713285148, -0.1215861738, -0.0579744615, -0.0176576823, 0.3037644625, 0.1017586142, -0.2035061419, 0.0960328355, 0.196831584, -0.0693056583, -0.1474778354, 0.1593563855, -0.4074444473, 0.1773693413, 0.3492157161, -0.0258464254, 0.0895799175, -0.0435278118, 0.3530142903, -0.1998041123, 0.5373976231, -0.1354407072, -0.3122021854, 0.0356284827, 0.0945885256, -0.053180106, 0.0373739377, -0.5619780421, 0.1426611841, 0.6161590219, 0.2149139345, 0.2612340748, 0.1844769418, -0.2494730353, -0.161020726, 0.1391240507, 0.4578090906, -0.2424224615, 0.1542513072, 0.3046618998, 0.0511819124, 0.1385353506, 0.096101962, -0.0289497338, 0.2064508945, -0.038737826, -0.199752003, 0.3259776831, -0.0721961483, 0.0467531458, 0.3394369781, -0.0908212066, -0.2645247579, 0.0823536962, 0.1384713501, -0.0276602302, -0.0962675959, -0.0548359528, 0.4266060889, -0.0195710566, 0.2360433191, -0.1810709983, -0.442528069, -0.2827940583, -0.0746695027, 0.017609356, 0.1378519535, -0.1969924271, -0.2738490701, 0.0570901893, -0.1821344793, 0.2325851321, 0.3486990929, -0.0456053466, 0.0465126932, 0.0585953407, -0.1447847188, -0.3847301602, 0.2210922837, -0.1042707264, 0.0422118343, 0.1136272997, -0.4316210747, 0.1256343424, 0.1094217673, 0.0725461692, 0.1065262184, 0.0396177769, -0.3019033074, 0.2947495282, -0.0410910286, -0.4444380403, 0.2486052215, -0.1694128513, 0.1128234193, -0.4200752079, -0.0761258081, 0.1506418437, -0.0647378489, -0.0618648455, -0.1236238852, -0.1879746914, -0.0074728653, -0.1552287191, 0.3102422655, -0.1509395838, 0.2376551479, -0.0833663195, 0.1479143649, -0.1031505689, -0.2216742337, 0.0134709924, -0.146115914, 0.1204978377, -0.1898349524, -0.2374298126, 0.2405592501, -0.125441432, 0.4528131187, -0.0244469717, -0.1067401767, 0.1965592355, -0.057426814, -0.0650347471, 0.0989395529, -0.0469947457, -0.0435777269, 0.7283755541, -0.0893417895, -0.0646385029, -0.0855533555, 0.0716885254, 0.0146112293, -0.0450502746, 0.2503601611, -0.1430050582, -0.1239449978, -0.205818519, 0.1123898774, 0.2271235585, 0.1460504234, 0.0281833187, 0.209461987, 0.0540079474, -0.1065892279, 0.331243813, 0.0195439439, 0.4602994621, -0.0285264067, 0.2461503744, 0.1056512818, -0.2152441293, 0.2044368535, 0.0851660445, 0.0561343059, -0.1728529632, 0.112630114, 0.1550610065, -0.0694653764, 0.036156252, 0.0005297139, -0.2245989144, 0.0833593085, -0.1207844913, -0.0309182145, 0.0240619481, 0.0583938509, -0.4411793351, 0.3388666511, 0.0531034395, -0.1855513901, -0.1853675246, -0.2100471407, 0.2090854049, 0.0030895695, 0.191182375, -0.1702627242, 0.4499085844, -0.0654059127, 0.0290906653, -0.2961732149, 0.1470836848, 0.0948987454, -0.0052771545, 0.3585244417, 0.0148649383, 0.0273949113, 0.2091140747, 0.199898988, 0.0595944598, -0.1688084006, -0.180628255, -0.2080808133, -0.0564350374, 0.0179908089, -0.1513293982, -0.0069004595, -0.0297327396, -0.2902209163, 0.1317757368, -0.0271703005, 0.0225432403, 0.2314046919, 0.04084168, -0.1508441269, -0.060903877, 0.0651345998, -0.0411672667, -0.6186643839, 0.301676929, -0.0587815344, -0.3465436399, -0.0441341102, -0.0279052928, 0.0178735182, 0.3690828979, -0.6034701467, 0.0759537145, -0.4336878061, 0.0787582994, -0.1546197981, 0.1942053288, 0.3209496737, 0.1343016326, -0.0956201404, -0.0347259194, -0.1735878587, 0.0148212165, -0.1583305299, -0.0087433234, 0.2583469748, 0.425481379, -0.0141154006, 0.766774714, 0.1563383937, -0.0408220552, 0.3145266771, 0.0177240949, 0.587882936, -0.356418848, -0.1258502603, -0.1813504398, -0.2166439593, -0.1491371989, 0.0718439445, 0.2537598014, -0.257501781, -0.2045565695, 0.0701104254, -0.1112938672, -0.117204681, 0.1579771191, -0.3516556621, 0.2993710041, 0.0467633307, 0.100960128, -0.2630334496, -0.3549570143, 0.1259233803, -0.0599191636, 0.6850693822, -0.1539002061, -0.1800370216, 0.1375824064, -0.6912074089, 0.2251763195, 0.0109915286, 0.2751895487, 0.1694923639, 0.0124620572, 0.0676197559, -0.3236370683, 0.5596724749, -0.2098638415, -0.0185781159, 0.391648829, -0.0410805158, -0.3185814023, 0.14383775, 0.0832033306, 0.521553278, -0.1703882515, 0.2730242312, -0.0799726322, -0.1630999297, 0.1364084035, 0.4082417786, -0.220516488, -0.4579715729, -0.2055650353, -0.2104369998, -0.2233046889, 0.1625536978, -0.0004980117, -0.1777329445, -0.1616406143, -0.1108223945, -0.3879924417, 0.2419281602, -0.1016709805, -0.1816685498, 0.1594802737, -0.0070233233, 0.5028969049, 0.0914541334, -0.1354880184, -0.0467012636, 0.6026400328, -0.1695321202, -0.1621046066, -0.1636355221, 0.0054737739, 0.3667345643, 0.3100370467, 0.0287968442, 0.1405538917, 0.0074565373, 0.1056362689, -0.5073132515, 0.0600983277, 0.1315066218, -0.0806749314, -0.5603204966, -0.6287381649, 0.6531297565, 0.3827985525, 0.0311172158, 0.4319265783, 0.1165408194, -0.1684405059, 0.3139217198, 0.2665284872, 0.8644786477, -0.3468033373, 0.249041751, -0.283860743, 0.0972329825, 0.3066903353, -0.2182272822, 0.0343564674, -0.3303464651, -0.3620760143, 0.0688374192, -0.1924999654, 0.114151381, 0.2670468688, 0.0511518419, 0.2359421402, -0.0958775282, -0.1219234616, -0.1197625026, -0.0817141458, -0.1360372901, -0.6008027792, -0.178362608, 0.1515985727, -0.046802897, 0.1319122016, -0.1145200133, 0.2092530131, 0.1811385006, -0.1507107019, -0.4558631182, 0.0270152465, -0.2561564147, -0.2469814718, -0.1386921257, -0.2268928736, -0.0680657104, 0.0406022295, 0.5350571871, 0.4937661886, -0.045358073, -0.0554353632, 0.1498516798, 0.1393459439, -0.0006826855, 0.1040049344, 0.1361525357, -0.0553037375, 0.0626221448, 0.0052338215, -0.3632959127, -0.1164647862, 0.188063696, -0.1644738317, 0.0754113793, -0.0557456017, -0.2545490563, 0.0733777657, 0.2466441244, -0.1198312789, 0.09575627, 0.275167346, 0.0035111643, 0.2970246077, -0.1572021246, -0.3641901016, -0.022430405, 0.2522277534, 0.1832284331, -0.2786247134, 0.354268074, 0.1972770095, -0.2224344313, -0.1341264844, 0.1842358261, 0.018239826, -0.4513964057, 0.2480621338, 0.126296699, 0.1829119772, -0.1139217839, 0.1716472208, 0.0206691921, -0.1863154173, 0.1057581604, -0.1607488841, -0.590862155, -0.0775444955, 0.1379880309, 0.2136134058, 0.4876226485, -0.3452979624, 0.114718318, 0.3632793128, -0.2515030503, -0.0527470857, 0.0716378391, 0.1376982778, 0.0814590156, 0.2629785538, 0.0363621525, -0.1899967641, -0.0067938156, 0.0413637571, 0.0050944872, -0.2564019859, -0.0651595742, 0.166885823, -0.1567249298, -0.0877524838, 0.1447249055, -0.1997514069, -0.2308959663, -0.4138130844, 0.1614042222, 0.36096102, -0.1076850295, -0.2222439647, 0.2847191095, 0.1251553893, -0.3574778438, 0.2958549261, 0.0576340966, 0.1430908889, -0.1466935873, 0.179928869, 0.1828744113, -0.0703942627, 0.0689478219, -0.1754449159, 0.2120844871, 0.0560051911, 0.1681277752, -0.2220022231, 0.0552013814, 0.2648106515, 0.3314077854, 0.1910045892, -0.0749560446, 0.0767025873, 0.2916673422, 0.1731111556, -0.2603948116, -0.1648773253, 0.0726808906, -0.0823379084, 0.1157803088, 0.278678298, 0.232000038, 0.1014923155, -0.1081491038, 0.2868593931, 0.1727775931, -0.4057706892, 0.0897595882, 0.2512678206, 0.1278174818, 0.1547182053, 0.3263247907, 0.310687989, 0.1880292892, 0.3593755364, 0.2982605696, 0.5835422277, 0.3375903964, 0.0854642242, -0.2475427389, -0.6166616678, 0.2919546962, 0.012683548, 0.2537060678, 0.3417038918, 0.0011658333, 0.2255643308, 0.041030515, -0.2557657659, -0.248986125, 0.144586578, -0.157744348, -0.1740818024, 0.354208082, 0.0349884778, 0.3517547846, 0.134575516, -0.0684280843, -0.0899401978, 0.3206822276, 0.0430110618, 0.1703485698, 0.1047035679, 0.2247070819, 0.0074585713, 0.3076194823, -0.1570518315, 0.1943331808, -0.0012037866, 0.0391932651, -0.0729846731, 0.5906713605, 0.3127559721, 0.3928543627, -0.1074757725, 0.1859054565, -0.0150374155, -0.0197712183, -0.0328728855, 0.2742161155, -0.086640954, -0.1349048465, 0.1934507787, 0.064588502, -0.0940358713, 0.1881129295, -0.1571761966, 0.3570961356, -0.1075856015, 0.3226369321, 0.0969848186, -0.3717991114, -0.2190296054, 0.1861293018, -0.1853239238, 0.1298696995, 0.7191514373, -0.3829758167, -0.066142112, -0.1163973063, 0.0697058067, 0.2253583521, 0.5203016996, 0.3859866858, 0.0675295293, -0.1704459488, 0.079804942, -0.3966829181, -0.1173790246, -0.1092894822, 0.2891946137, -0.1593006551, -0.0939624459, 0.1794188619, 0.2901892662, -0.0023133904, -0.3146262467, 0.0482029915, 0.4311462939, -0.2662270963, -0.2024324536, -0.1907081008, 0.0574132502, 0.0234134793, -0.5342942476, 0.1379933655, 0.1352619827, -0.0791159123, 0.0726098418, 0.1056383327, 0.1728839278, -0.0099297734, 0.425645709, 0.0713875517, 0.1645064056, -0.1374814212, -0.0105167404, -0.300101161, -0.1640689969, -0.2427417487, 0.1930494457, 0.0539639145, -0.0371850915, -0.4960951805, -0.2699703872, -0.1496704519, -0.2413802445, -0.1611335874, 0.1025707275, -0.3433540165, -0.1769258082, -0.1870299578, -0.0430506617, 0.1983018667, 0.2129075229, -0.0182536989, 0.1253938973, -0.3085355163, -0.3872487247, 0.5898019075, -0.1565363407, -0.368281275, -0.2112172246, 0.1110896096, 0.0912110955, -0.225802362, -0.3942168355, 0.2338770181, 0.2611789107, -0.1221780851, 0.1215258464, 0.2710573375, -0.3783169389, 0.0823225528, -0.2273857445, 0.697974205, -0.225420326, -0.0171110369, -0.4264144301, -0.2989899516 ]
https://github.com/huggingface/datasets/issues/1775
Efficient ways to iterate the dataset
It seems that selecting a subset of colums directly from the dataset, i.e., dataset["column"], is slow.
For a large dataset that does not fits the memory, how can I select only a subset of features from each example? If I iterate over the dataset and then select the subset of features one by one, the resulted memory usage will be huge. Any ways to solve this? Thanks
16
Efficient ways to iterate the dataset For a large dataset that does not fits the memory, how can I select only a subset of features from each example? If I iterate over the dataset and then select the subset of features one by one, the resulted memory usage will be huge. Any ways to solve this? Thanks It seems that selecting a subset of colums directly from the dataset, i.e., dataset["column"], is slow.
[ -0.2726210356, -0.384242475, -0.0938193873, 0.3328416944, -0.0648834854, 0.0687174425, -0.0869262591, 0.2765879333, 0.1568149626, 0.185351789, 0.1041572914, 0.0968726873, 0.0757733509, 0.171301499, 0.059449479, 0.0244092979, -0.1179831401, 0.2368056923, -0.1938431859, -0.0943646654, -0.3235398829, -0.3371295035, -0.3414106667, -0.4139210582, -0.0448214598, -0.2763504088, -0.0030554011, -0.0701163039, -0.1004956439, -0.2022735327, 0.0649099946, -0.1059203446, 0.1723704636, 0.1313778907, -0.0001110768, -0.3096604049, -0.0061720666, -0.0167972669, -0.2181180418, 0.212790072, -0.4324011505, -0.1536880136, -0.2096731365, -0.4574201107, 0.0789367259, -0.1935442537, 0.0418521911, -0.3434143662, -0.3945269585, 0.0019655563, 0.1722189486, 0.3632743955, -0.4281519055, -0.2193822563, 0.1636472791, 0.2020665854, -0.1860645115, -0.1688097119, 0.3972514868, -0.0317174457, 0.1105103046, 0.1986814737, 0.0027409345, 0.0643333644, 0.4581539333, -0.0933370143, -0.2695297599, -0.0912526101, 0.2907190919, 0.3570753038, 0.7055128813, 0.0142393745, -0.0204163361, -0.2548286319, -0.114691332, -0.4821659327, -0.0554719344, 0.2097761929, -0.1812405586, 0.1794071496, -0.3754856586, -0.282171309, -0.1214113384, 0.1009939909, 0.2251812071, -0.1510585546, 0.0702473223, 0.0095482375, 0.5192238688, -0.2228608727, 0.2806359529, -0.1883520782, 0.0423956476, 0.1281943917, -0.5794631243, -0.3097938895, -0.1118836477, -0.0624919012, 0.3452713192, 0.1076844037, 0.0815122873, 0.090484336, 0.230703637, 0.0643643737, 0.3840841651, -0.1338303387, -0.1883255839, 0.134557873, 0.145644635, -0.1606634557, -0.0020950809, -0.090780884, -0.2182660401, 0.0937925428, 0.2085402012, -0.4199846089, -0.156932801, -0.1290026009, -0.1494207829, -0.1261436641, -0.1378620565, -0.0162502341, -0.0246441644, 0.4202544391, 0.0619458742, -0.1889306754, -0.4265062809, -0.0111110415, -0.2233896255, -0.2640568316, -0.2986493409, 0.2844233811, -0.0498720482, 0.0189672559, 0.0652079061, 0.199422434, 0.154055655, -0.1386210769, -0.154717505, -0.139238745, 0.0547331572, -0.3360626996, 0.2683527768, -0.0082826689, -0.1358436346, -0.0077021532, -0.0597725771, 0.336125195, -0.3245048523, 0.219170332, 0.1463290304, -0.5682115555, 0.1834128499, 0.071072787, 0.0017377064, -0.0667321011, -0.3420161307, 0.4201234579, -0.098989442, 0.4257793128, -0.099533841, 0.0706475824, -0.3074535728, -0.1526210606, 0.372374624, 0.4698696136, -0.3293994665, 0.0510873497, 0.1202646643, 0.1393203139, 0.385643959, 0.4193018973, -0.2203957438, 0.152584359, -0.1224394739, 0.0959463716, 0.1902546883, 0.1820034534, -0.5025991201, 0.3416080177, 0.1080679297, 0.0722891688, 0.250436306, 0.5023418069, 0.0730348453, 0.0638116226, -0.1298100799, 0.3935358822, -0.2775793374, 0.1868894249, -0.0036723167, -0.3479521275, 0.2195584029, 0.0396699533, 0.2890778184, 0.2412096262, -0.0083284378, 0.0443277024, 0.2857304811, -0.3043043017, -0.1506112218, 0.1334233284, 0.5146898031, -0.0039331391, -0.0409264751, -0.3039368987, -0.37445575, 0.2273037285, 0.4574955106, -0.5265100598, 0.3239095807, -0.1340290755, 0.1073586494, 0.0188050196, 0.1776628941, 0.1412483901, 0.0175362006, -0.0444856323, 0.2947911024, -0.4913440347, -0.2310364246, 0.090599969, -0.3048675954, -0.1007344127, -0.2995916605, -0.0163099989, 0.5265928507, 0.0019100271, 0.2137760669, -0.0286796577, -0.0328833722, -0.2907178104, 0.1498334706, 0.1483505368, 0.3771877289, -0.0658313408, 0.1169123799, 0.3529289365, 0.0880185366, -0.1726698875, 0.0474600941, -0.3250954747, 0.2133401632, 0.031035535, -0.2105387747, 0.1571556628, 0.0987471119, 0.5199264884, 0.2963039279, -0.0036351122, 0.027997084, -0.030929029, 0.27649647, 0.0714426488, 0.193666622, 0.1736860573, 0.1350110024, 0.3530492485, -0.6447688341, 0.0454975739, 0.1994259208, 0.0886545703, -0.0918918848, 0.0251974557, -0.1220784336, 0.0939574167, 0.1217485592, -0.3537806869, -0.0296608582, 0.0877937451, 0.0354814157, -0.1350250542, 0.0879065692, 0.1048285589, 0.1275733262, 0.2802191377, 0.3064312041, -0.3647535443, -0.0424482711, -0.2706397772, -0.1003277749, 0.0671239495, 0.0494894907, 0.1145842522, 0.0018406063, 0.0724695325, -0.3552098274, -0.1168475747, 0.2057605088, 0.3313178122, 0.2393416762, -0.1104751378, -0.1124652326, 0.5158163905, -0.0581070259, -0.1062866673, -0.1323309094, 0.5061991811, -0.0120508149, 0.016813742, 0.1103372425, -0.0603422746, -0.0699993819, 0.004581254, 0.3546583056, 0.1378187835, 0.3736890256, 0.1214239597, -0.1678832173, -0.4728030562, 0.1906892508, 0.1277218461, 0.2162524313, 0.0835691392, -0.1990766972, 0.1286504865, -0.351913631, 0.104718551, -0.1672062278, 0.1980485022, -0.0278879926, 0.0853997469, -0.034340851, -0.019680256, 0.3902203739, -0.320862174, -0.2228171229, -0.2923352122, 0.3292644322, 0.0246352479, 0.2442335486, -0.0116648562, 0.0537038222, -0.261007905, -0.0664392188, 0.0236433819, 0.0586673319, -0.1673668027, 0.2899854481, -0.0720578581, -0.1938503087, -0.0757570565, 0.0666712373, -0.0286637936, 0.5141795278, -0.4075914621, 0.064517051, -0.5274325013, -0.0467711538, -0.1802232713, 0.0347188115, -0.0563655756, -0.2087926865, -0.0364185497, 0.0583289564, -0.0273865014, 0.2015377879, 0.1771993935, 0.05472745, 0.3681702614, 0.1776546836, 0.2260529995, 0.2913787067, 0.3049383163, 0.2829528451, 0.2341084033, -0.091873534, -0.1326284856, 0.0755498633, -0.0428377092, 0.223938331, -0.1186183542, -0.2447643876, 0.2743477523, -0.1057317629, -0.2245056778, -0.004137449, -0.0618051514, 0.0859004706, -0.1929445565, 0.2523657978, 0.0101642795, 0.2669518888, 0.1592274755, -0.0574016497, -0.3361461759, 0.0413214229, 0.0789015666, -0.382448256, 0.3009422719, 0.0097932406, -0.6226492524, -0.1496896595, -0.3150056303, -0.0049219728, -0.1470128447, 0.3232966661, 0.1405625641, -0.3313435316, 0.0358269215, 0.2714029551, 0.518884182, 0.2771598697, -0.1971916109, -0.0996636972, -0.6063254476, -0.0046599507, 0.1985526979, -0.3383183777, 0.4118953347, -0.0864855796, 0.1271380931, -0.1311613321, -0.3343244195, 0.3492304087, 0.5830067396, -0.1878556609, -0.1890680492, 0.2267916352, -0.2329860032, -0.060349457, 0.2388961911, 0.2808483839, 0.0524780452, 0.2656182647, -0.0532157496, -0.3900207877, -0.0699555501, 0.4186627865, 0.158532545, 0.0948846117, -0.0974436775, 0.3590679169, 0.0423909724, -0.0083674416, 0.4233680665, 0.5041764379, 0.2458580881, -0.4154842496, 0.0452450886, -0.1006385088, 0.7665141225, 0.2695273757, 0.0186783448, 0.2186740637, -0.2198276222, 0.1789370924, -0.3878571987, -0.1302851439, 0.0250325948, -0.1545522809, -0.2564934492, -0.3809869885, 0.4144179821, 0.0153406784, -0.0022167712, 0.2992091477, -0.0444111377, 0.1037928313, 0.002570536, 0.2479051799, 0.7095939517, -0.1336074471, -0.1503455937, -0.1070074588, 0.3820203841, 0.2121768892, -0.0353322849, 0.3061557412, -0.1831867695, -0.8363986015, 0.0446951166, -0.1112047359, -0.018226143, 0.2377367765, 0.1937701106, 0.4545470476, -0.0720033795, 0.1075690612, 0.0659201294, -0.1468534321, -0.0741965845, -0.2159575522, 0.048766233, 0.078315571, 0.1801821291, -0.0230886359, 0.0946117491, 0.1520493329, 0.1482015848, -0.0146761686, -0.2205899656, -0.0444679148, -0.3808142543, 0.0430254191, 0.0243884884, -0.3118441105, 0.0591275543, -0.0249103419, 0.0035381578, 0.2777451873, 0.1099120378, 0.0352248885, 0.2503723502, 0.106868729, -0.126262188, 0.0785342455, -0.0459505506, 0.0317994133, -0.1842189878, 0.1145006418, -0.0049383715, 0.0529029816, -0.09107171, -0.0822484568, 0.2172929645, 0.0548583344, -0.4014469385, 0.1169022396, -0.1205482781, -0.1110370532, 0.1151477545, 0.0813660398, -0.0654046312, 0.4636638165, 0.0919790417, -0.1415276825, -0.1286735684, -0.1442206353, 0.2252928913, 0.0965717509, 0.3756389916, 0.1870126873, -0.2087512761, -0.2521998286, 0.1631616801, 0.3087824285, 0.1714207977, -0.022754956, -0.3325639665, 0.1336073875, -0.018455781, 0.1659057289, 0.0621700026, -0.2094890624, -0.235020414, -0.0221909955, -0.0307509117, 0.3404423594, 0.2304006815, 0.2985274494, -0.2309800088, -0.3417856693, -0.4882928729, 0.4365466535, -0.2348097861, -0.0507625379, -0.3153344691, 0.2696286142, 0.1566262841, 0.3287499547, -0.1983398348, -0.0383748449, 0.1348452419, 0.1753711551, 0.0400102884, -0.1948372871, -0.0821789652, 0.1031887084, 0.0268355869, -0.2245438248, 0.0337740071, -0.2329858541, -0.3304449916, -0.4621058106, 0.242794618, -0.0296160989, 0.149724111, -0.0282517113, 0.255970031, -0.4835477471, -0.2318071127, 0.3730160594, 0.105962649, 0.1376318485, 0.1328081638, 0.2342755198, 0.305788368, -0.1516670734, -0.1500677168, 0.0125362165, 0.0622961745, -0.1901886165, -0.1272410452, 0.1784269065, 0.0779714882, 0.3225121498, -0.1324902028, 0.616122365, 0.2012062371, 0.1732308865, 0.3271647096, 0.223604992, -0.1429850757, -0.4484677315, 0.013641037, -0.2504251897, 0.1873438209, 0.5648920536, 0.2223635465, 0.2721700072, -0.1308401823, -0.3672898114, 0.1098507792, -0.0540546589, 0.0232721157, 0.2495565712, 0.2116694599, -0.4596951306, 0.0172509719, 0.593133688, 0.4760163724, 0.5107031465, -0.0848309547, 0.3243484497, 0.2221823484, 0.1353188455, -0.1216244102, -0.6607636213, -0.0843937322, 0.403732568, -0.0318582393, 0.0155978184, -0.1882160455, -0.4264798164, 0.0212303661, -0.1018529087, -0.2572140694, -0.0009445325, 0.0771640539, -0.1222023442, -0.0241952613, -0.2490435541, -0.1489126682, 0.2084705681, 0.018962007, -0.4960001111, 0.3610438108, 0.0067270603, 0.3690363169, -0.2016271502, 0.5517866015, -0.0104257576, 0.2209768295, -0.3973645866, 0.0490524769, -0.2184406668, 0.0852002352, -0.0450375639, 0.0911327153, -0.2329302132, 0.114879787, -0.0150888432, -0.0266083498, -0.1786057949, -0.231380105, -0.1345183849, -0.2221690863, -0.231994465, 0.1745183617, 0.3362199962, -0.0219491683, 0.0188031159, 0.12200813, 0.0644325763, -0.2388847172, -0.6822422743, -0.21424146, 0.1744692922, -0.2910798192, 0.1559343934, 0.022110967, 0.0655487627, -0.2823660672, 0.4207380116, -0.4660413861, 0.1919427216, 0.5151318908, 0.0926827267, -0.528908968, 0.4705026746, 0.0161603671, 0.0309731122, -0.2906502187, -0.2319732606, -0.0849879086, -0.0696397126, -0.4132068157, -0.1349158585, 0.5719473362, 0.4682940245, 0.0096736886, 0.1252074987, -0.0798151642, 0.0434403494, -0.0545613728, 0.4297469258, -0.2400338352, -0.4153183997, 0.0612086765, 0.2196921408, 0.0498346388, -0.3647941649, 0.4084433615, -0.2142223865, 0.028202951, -0.1376092285, 0.0682932064, 0.2423674911, 0.1012119353, 0.2061183006, -0.1186036095, -0.0502855144, 0.0660859644, -0.048022978, 0.0322181098, -0.0795102119, 0.0072773769, 0.1419920176, -0.0371354371, 0.0833229274, -0.2190541625, 0.3915692568, 0.0881102979, 0.1482815295, -0.0699858293, -0.1448044777, 0.0704678595, 0.0794522613, -0.1418893188, 0.3347404599, 0.2606510818, 0.1003754288, -0.2480085194, -0.0457485318, -0.0300718024, 0.0121019036, 0.1946261078, 0.0748130232, -0.3734344244, -0.2700417042, 0.1632229388, 0.297055006, -0.0165147483, -0.1167203709, -0.0852266699, 0.3182210326, -0.2520098388, -0.0121924207, 0.2000527382, 0.01267232, -0.238437295, -0.0195359364, 0.423286289, -0.3153411746, -0.2699566782, -0.2308863997, -0.3392123878 ]
https://github.com/huggingface/datasets/issues/1774
is it possible to make slice to be more compatible like python list and numpy?
Hi ! Thanks for reporting. I am working on changes in the way data are sliced from arrow. I can probably fix your issue with the changes I'm doing. If you have some code to reproduce the issue it would be nice so I can make sure that this case will be supported :) I'll make a PR in a few days
Hi, see below error: ``` AssertionError: Requested slice [:10000000000000000] incompatible with 20 examples. ```
62
is it possible to make slice to be more compatible like python list and numpy? Hi, see below error: ``` AssertionError: Requested slice [:10000000000000000] incompatible with 20 examples. ``` Hi ! Thanks for reporting. I am working on changes in the way data are sliced from arrow. I can probably fix your issue with the changes I'm doing. If you have some code to reproduce the issue it would be nice so I can make sure that this case will be supported :) I'll make a PR in a few days
[ 0.00451947, -0.068745546, -0.2415333241, 0.0569709167, 0.4289459288, -0.3012435734, 0.1267032623, 0.3713271022, -0.1317170858, 0.4324045181, -0.0149550699, 0.7657299638, -0.0799334198, 0.2857098877, -0.376324296, -0.4880151153, -0.0210642442, 0.1064819545, 0.2514835894, 0.120209977, 0.0552422106, 0.0996666327, -0.339666903, 0.1170677245, -0.1888772249, -0.1790935546, 0.2490355968, -0.0215796493, -0.0056372266, -0.2691525817, -0.126141414, -0.4162090421, 0.0354161076, 0.1907057762, -0.0001093078, 0.1138293594, 0.52908355, 0.0426964015, -0.2076607943, -0.0507461876, 0.28704831, -0.487958014, 0.2421301156, -0.2416450977, 0.0444297343, 0.055497665, -0.3735235035, 0.0107540786, 0.4677681625, -0.0264653713, 0.2545258999, 0.0062991306, 0.3490650058, 0.0459643416, 0.0709801316, 0.3102605045, -0.2072952986, -0.1372472644, 0.5058740377, 0.4029472172, 0.2683988512, 0.1032429338, -0.0779390186, 0.0405438803, -0.4270560145, 0.004429169, -0.0684792548, -0.3739693463, -0.1177276373, 0.573800087, 0.1728353798, 0.1928464025, -0.2151761353, -0.0106724203, -0.3015367389, -0.2650509477, -0.1554954946, 0.1012291014, -0.0972412303, 0.1049901098, 0.0690572336, 0.0057899877, -0.1316060126, 0.3030081987, 0.284627229, 0.489672482, -0.0355276428, 0.1082356572, 0.1635646373, -0.3503347933, 0.2268581688, 0.1243721247, -0.0745610297, -0.096661821, -0.1592772007, -0.0053478256, -0.5801073909, 0.168865487, 0.1484341323, -0.0063065593, 0.3238730133, 0.4233800173, -0.1502630264, 0.150219962, 0.234686628, -0.0638786554, -0.086109221, 0.0048745386, 0.1310963631, -0.1369229853, 0.1043629795, -0.0289425589, 0.2619711161, -0.3201714754, -0.2399541736, 0.0034456961, -0.0258917734, -0.0790594593, -0.073367998, -0.2654663026, -0.3296069801, -0.0969410986, 0.3133117557, 0.128462702, -0.0212010276, 0.0965300947, -0.1779134572, 0.2430861741, -0.1994259357, -0.125142619, 0.0082123354, 0.0385232121, 0.1689667255, -0.4833797514, -0.0331375636, -0.2485743016, -0.0058783703, -0.004819598, 0.3314136267, 0.0867037624, -0.1492837071, -0.0148873739, 0.0628195032, 0.0198611114, 0.0747855678, -0.2142447531, 0.173936218, 0.0672098026, -0.0024389848, 0.4090490639, -0.5157787204, -0.1685251594, -0.1478643417, 0.1307654977, 0.4457748532, 0.2731143236, 0.2207441032, -0.1539465636, 0.005732201, -0.3226753473, -0.0811061561, -0.1813513637, 0.2451286912, -0.3095429838, 0.2209000885, -0.3931466043, -0.3490612507, 0.0853374898, -0.4180670977, 0.2275341153, 0.2932496071, 0.7705187201, -0.1812040806, -0.2930048406, -0.0307124704, 0.3370466232, 0.4182477593, 0.105032146, -0.2453852296, 0.2037248164, 0.0509395078, -0.1719103456, -0.3283392191, 0.2673073113, 0.1533444077, -0.2094570547, -0.0209725313, 0.169602558, 0.04616265, -0.0351627395, -0.2500964403, -0.4086686075, 0.289860189, -0.088814579, -0.0698135793, -0.1406369954, 0.2050483823, -0.3768816292, 0.2609754205, -0.091998145, 0.0247561187, 0.0110764075, 0.4300153852, -0.4044124186, 0.1026900709, -0.0949770808, 0.1602244377, -0.1923352182, -0.1811702549, -0.0422615893, -0.1741903573, 0.0141705945, 0.1139549017, 0.2723792493, 0.2118364722, 0.172677651, 0.1438182145, -0.4210806191, 0.3586547971, -0.1922202557, 0.0335084498, -0.0331122652, -0.194981724, 0.0527648404, -0.1643977761, 0.3395624757, -0.3022043705, -0.3105171025, -0.1181159765, 0.1678342521, 0.239844352, -0.1890412271, -0.2328324616, 0.2748933733, 0.1014758125, -0.1820402741, -0.2686280012, 0.0532159284, 0.1615170389, -0.4648516178, 0.2335284054, 0.228094995, 0.0137514137, -0.0216456354, 0.0080414694, 0.2652311921, -0.5424754024, 0.3630338907, 0.0904719606, 0.2836494446, 0.1975425482, 0.1266445518, 0.0652363151, -0.0316098854, 0.3338298202, 0.1231468916, -0.1631326824, -0.1990458965, -0.1483728439, 0.0126214549, -0.0037902864, -0.0754328519, 0.2589481771, 0.2821460962, 0.0397440232, 0.1176442206, -0.0154704368, -0.4251078963, 0.1360584497, 0.2354199141, -0.0837447047, -0.1584737301, 0.2301813066, -0.33596313, 0.2332280874, 0.4529041648, 0.0288972221, -0.1256341934, 0.0725973248, -0.0046533477, 0.0529951155, 0.2206350416, -0.2965286076, 0.0165033061, -0.0617350079, 0.1354551911, -0.3268109858, 0.2384213209, 0.0465472378, -0.8412554264, -0.1915150881, -0.3362054527, 0.0675209016, 0.0370615758, -0.2109217644, 0.3076393008, 0.1330838203, 0.1019630656, -0.0271365382, 0.324450016, -0.1016391218, -0.1711581051, -0.3002122045, 0.164232105, 0.1031266451, 0.3488459587, -0.083288081, 0.1877928078, 0.0227539912, 0.0295583811, -0.4092305899, 0.0001542754, -0.0346475989, 0.5563628674, 0.1088161618, -0.0025665015, -0.17182827, -0.316152215, 0.1827594042, -0.4125509858, -0.0562064014, 0.3178080916, 0.0368711576, -0.2372613102, 0.0107531548, 0.0160019118, -0.609857142, -0.3351959884, 0.3220386207, 0.2363473475, 0.1585872471, -0.1259809136, 0.1917729378, -0.1530329287, 0.2735914886, -0.0746408775, -0.031810157, 0.0687903464, 0.1247196347, -0.1566830873, -0.19345662, -0.134891808, -0.1770820469, -0.1167834699, -0.076560244, 0.0415162593, 0.1929942966, -0.3029780984, -0.0505100116, -0.1226356775, 0.1321015805, 0.3967477977, 0.1560403109, -0.1027523652, -0.0566879213, -0.1804208905, 0.1074581742, 0.0232550614, -0.1332283169, 0.4811716676, 0.3465815783, 0.1279282272, 0.3688403368, 0.2477859259, -0.1196170822, 0.2847773135, 0.2797136903, 0.0390911028, -0.1042085066, -0.2776119709, 0.2276640832, -0.0037572011, -0.2275749594, 0.0122455135, 0.0141049288, 0.0418600217, 0.0377196446, -0.2182121724, -0.4395797849, -0.1761209071, 0.2133849263, 0.0921331123, -0.0486649796, -0.1101055592, -0.1205695644, -0.2722118199, -0.2261458486, 0.1058269292, -0.123703897, 0.4476041198, -0.2446352094, -0.3568992019, -0.5452684164, 0.0441703945, 0.5647822618, 0.3321602345, 0.2490003258, -0.0278463513, -0.1814687252, 0.0598045141, 0.0594174601, 0.6105977893, -0.2074546963, -0.3850250244, -0.1052482277, 0.0917269066, -0.1567702591, 0.228867501, -0.1590212882, 0.3620491624, 0.279897511, -0.1927828789, -0.0845237151, 0.0735426992, 0.283246398, 0.2585206628, -0.0507097617, -0.0452482104, 0.2243752182, 0.2511662245, -0.191172421, -0.0640020519, -0.0868362412, 0.0999158174, -0.1130229384, -0.2351840734, -0.4449391067, -0.4831212461, -0.1476336271, -0.2586731017, 0.3886399269, -0.2742813528, -0.0184731893, -0.3252069056, 0.285164535, 0.2168973684, 0.259951055, -0.1063734889, 0.1940312088, -0.2688564956, 0.0768446848, 0.2581608295, 0.0847632885, 0.040571332, 0.1307299435, 0.0482747108, 0.1561045349, 0.1198096424, -0.5726231933, -0.0314529613, -0.1110069752, -0.212909773, 0.369768858, 0.40430215, 0.300557673, -0.0325878561, 0.4440711141, -0.1986138076, 0.0789544508, 0.1998648643, 0.4521448016, 0.9886344671, 0.1013302729, -0.153008312, -0.0159242842, -0.05972014, 0.4266940057, 0.1008191407, 0.1663973629, -0.3995169401, -0.1502481103, -0.0319389887, -0.2249174863, -0.118526645, 0.0561292805, -0.3110295236, -0.0563966073, -0.5337852836, -0.0403966494, -0.2572264671, 0.0648102462, 0.0796503648, -0.1968762279, -0.3503137231, 0.1315544993, -0.1524080634, -0.3069132864, -0.0183407292, -0.3018189967, -0.2096472979, -0.2561689615, -0.124001123, 0.0877362117, -0.3059890866, 0.4180999398, 0.2314323932, -0.4586019516, 0.2111600935, 0.0515427366, 0.2225205004, 0.0978381187, -0.1563036889, -0.036019206, 0.1318299621, -0.0493442602, 0.0660976321, 0.20491907, 0.1444842368, 0.0021686405, -0.1125632077, 0.1495084763, 0.0704614297, -0.596678257, -0.2847768962, 0.1402310878, 0.1145455241, -0.2185787857, -0.2229590714, -0.2625515461, -0.4028541446, -0.161910519, 0.1460354775, 0.2562429905, -0.0379578397, 0.38832739, 0.542960763, 0.178456068, -0.0404919535, -0.0327429138, 0.1441874206, 0.0696644783, 0.1716313362, 0.3212610185, -0.2490282506, -0.1890687495, 0.1801001281, -0.1816719472, -0.0541253798, 0.0256881006, -0.0807537436, 0.0155016482, 0.0634426475, 0.3246162236, 0.142408222, 0.4862166345, -0.4675270915, -0.3633794188, -0.2418726981, 0.3637574613, 0.0507295243, 0.1370355934, -0.2009012848, -0.0810731053, -0.2109213769, 0.2939001918, -0.2792305946, 0.2067288756, 0.0603094399, 0.1292990148, -0.3833134174, -0.1093003601, -0.0650035962, 0.0169278122, 0.0719963014, 0.2888395786, -0.2490580976, -0.2088917792, 0.121420607, 0.0957684517, 0.0369799547, -0.5805705786, -0.3033236861, -0.1584571302, 0.0030394774, -0.1595589221, -0.4319698215, -0.2644381523, -0.0336923711, -0.1819985211, 0.495941788, -0.0086944588, 0.1645432562, 0.2707715333, -0.1768412739, 0.3435401618, 0.1144156456, -0.0168844685, 0.3338821828, -0.0011245459, -0.0050518028, 0.072436668, 0.202782169, 0.0538878068, 0.0777540356, -0.2313009799, -0.3053878844, -0.0528204553, 0.4625084102, 0.2455819994, 0.1443074197, 0.152499944, 0.2244811803, 0.1997746825, -0.0548333377, -0.2919035852, 0.2320182174, 0.2011737227, 0.0303217694, 0.3115657568, 0.0192215219, 0.1655313671, 0.3544037938, -0.0071889348, 0.1710475236, -0.6634290814, 0.0769562051, 0.3633343875, 0.0860722065, -0.1353577226, -0.2520188093, -0.3793858886, 0.2799768746, -0.0165051073, -0.29891783, 0.1296318471, 0.169675678, -0.075823307, 0.3128223717, 0.0548951626, -0.1294256002, 0.0404876061, -0.0090988986, 0.0540242456, 0.3673407733, 0.3564635515, -0.017252, -0.1925058067, -0.2261397243, 0.1992286444, 0.0159932449, -0.1283413023, -0.1642078906, -0.1144074053, 0.047697559, -0.3337887526, 0.0281412415, 0.2662842572, 0.4338027537, 0.2356032729, 0.012193799, -0.2688332796, 0.0040642954, 0.2407895625, 0.1526183933, -0.2270520627, -0.0184957162, 0.0678814203, -0.0465258844, -0.1567805558, -0.0096865129, 0.5891752243, 0.2141217589, -0.4062789679, -0.1657726169, -0.1119146943, -0.1672050953, 0.0304750316, 0.1676189303, 0.1938890368, 0.1115805656, 0.1253650934, 0.2348321974, -0.1369705796, 0.0620138831, 0.1314622462, 0.2517554462, -0.2453317642, 0.3672531545, 0.1214340925, -0.2679495811, -0.3027444482, -0.3604243696, -0.183049947, 0.1741007566, -0.2602975965, -0.3829796314, -0.0166715495, 0.2625743151, 0.0917009115, -0.211870119, 0.3728057742, 0.1517220438, 0.1552774161, -0.2208612859, 0.0982096046, 0.1039773226, 0.0218622051, -0.2331650853, 0.1711065769, 0.2647583187, -0.0954850614, 0.380543679, 0.4274758697, 0.2128988206, 0.047187224, 0.0323065557, 0.1043119356, -0.52060467, 0.1669883281, 0.3593797684, -0.1979934573, 0.0848286077, -0.0323783755, 0.0864917561, 0.0843962133, 0.0388536975, -0.2193259597, 0.0182623863, 0.020891726, 0.1753845364, 0.1576272398, 0.4535899758, -0.0117716044, -0.1680049598, -0.0772648901, 0.1454773843, -0.0514580533, -0.0009285361, 0.6229219437, 0.2327604741, 0.2851271331, -0.2586369216, -0.4273084402, -0.3670190871, -0.2845757306, -0.3651993871, 0.3357765079, 0.1669152528, 0.1830337048, -0.0947476029, 0.0311850198, 0.1386927962, -0.0341283716, 0.1467217952, 0.2278099358, -0.0313038751, -0.2833383679, 0.2253671885, -0.0052031912, -0.0835774392, -0.0154667646, -0.0148502663, 0.0944104791, -0.1263692379, -0.0704234913, -0.2874096036, 0.2488089353, -0.1169525161, 0.3575585485, 0.0694594234, 0.3240209818, -0.1032738462, -0.0204294026, 0.2113595903, 0.3053733408, 0.056113027, -0.1807694733, -0.0801794454 ]